Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158struct task_struct *kdb_curr_task(int cpu)
159{
160 struct task_struct *p = curr_task(cpu);
161#ifdef _TIF_MCA_INIT
162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
163 p = krp->p;
164#endif
165 return p;
166}
167
168/*
169 * Update the permissions flags (kdb_cmd_enabled) to match the
170 * current lockdown state.
171 *
172 * Within this function the calls to security_locked_down() are "lazy". We
173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
174 * flags that might be subject to lockdown. Additionally we deliberately check
175 * the lockdown flags independently (even though read lockdown implies write
176 * lockdown) since that results in both simpler code and clearer messages to
177 * the user on first-time debugger entry.
178 *
179 * The permission masks during a read+write lockdown permits the following
180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
181 *
182 * The INSPECT commands are not blocked during lockdown because they are
183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
184 * forcing them to have no arguments) and lsmod. These commands do expose
185 * some kernel state but do not allow the developer seated at the console to
186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
187 * given these are allowed for root during lockdown already.
188 */
189static void kdb_check_for_lockdown(void)
190{
191 const int write_flags = KDB_ENABLE_MEM_WRITE |
192 KDB_ENABLE_REG_WRITE |
193 KDB_ENABLE_FLOW_CTRL;
194 const int read_flags = KDB_ENABLE_MEM_READ |
195 KDB_ENABLE_REG_READ;
196
197 bool need_to_lockdown_write = false;
198 bool need_to_lockdown_read = false;
199
200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
201 need_to_lockdown_write =
202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
203
204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
205 need_to_lockdown_read =
206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
207
208 /* De-compose KDB_ENABLE_ALL if required */
209 if (need_to_lockdown_write || need_to_lockdown_read)
210 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
212
213 if (need_to_lockdown_write)
214 kdb_cmd_enabled &= ~write_flags;
215
216 if (need_to_lockdown_read)
217 kdb_cmd_enabled &= ~read_flags;
218}
219
220/*
221 * Check whether the flags of the current command, the permissions of the kdb
222 * console and the lockdown state allow a command to be run.
223 */
224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
225 bool no_args)
226{
227 /* permissions comes from userspace so needs massaging slightly */
228 permissions &= KDB_ENABLE_MASK;
229 permissions |= KDB_ENABLE_ALWAYS_SAFE;
230
231 /* some commands change group when launched with no arguments */
232 if (no_args)
233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
234
235 flags |= KDB_ENABLE_ALL;
236
237 return permissions & flags;
238}
239
240/*
241 * kdbgetenv - This function will return the character string value of
242 * an environment variable.
243 * Parameters:
244 * match A character string representing an environment variable.
245 * Returns:
246 * NULL No environment variable matches 'match'
247 * char* Pointer to string value of environment variable.
248 */
249char *kdbgetenv(const char *match)
250{
251 char **ep = __env;
252 int matchlen = strlen(match);
253 int i;
254
255 for (i = 0; i < __nenv; i++) {
256 char *e = *ep++;
257
258 if (!e)
259 continue;
260
261 if ((strncmp(match, e, matchlen) == 0)
262 && ((e[matchlen] == '\0')
263 || (e[matchlen] == '='))) {
264 char *cp = strchr(e, '=');
265 return cp ? ++cp : "";
266 }
267 }
268 return NULL;
269}
270
271/*
272 * kdballocenv - This function is used to allocate bytes for
273 * environment entries.
274 * Parameters:
275 * match A character string representing a numeric value
276 * Outputs:
277 * *value the unsigned long representation of the env variable 'match'
278 * Returns:
279 * Zero on success, a kdb diagnostic on failure.
280 * Remarks:
281 * We use a static environment buffer (envbuffer) to hold the values
282 * of dynamically generated environment variables (see kdb_set). Buffer
283 * space once allocated is never free'd, so over time, the amount of space
284 * (currently 512 bytes) will be exhausted if env variables are changed
285 * frequently.
286 */
287static char *kdballocenv(size_t bytes)
288{
289#define KDB_ENVBUFSIZE 512
290 static char envbuffer[KDB_ENVBUFSIZE];
291 static int envbufsize;
292 char *ep = NULL;
293
294 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
295 ep = &envbuffer[envbufsize];
296 envbufsize += bytes;
297 }
298 return ep;
299}
300
301/*
302 * kdbgetulenv - This function will return the value of an unsigned
303 * long-valued environment variable.
304 * Parameters:
305 * match A character string representing a numeric value
306 * Outputs:
307 * *value the unsigned long representation of the env variable 'match'
308 * Returns:
309 * Zero on success, a kdb diagnostic on failure.
310 */
311static int kdbgetulenv(const char *match, unsigned long *value)
312{
313 char *ep;
314
315 ep = kdbgetenv(match);
316 if (!ep)
317 return KDB_NOTENV;
318 if (strlen(ep) == 0)
319 return KDB_NOENVVALUE;
320
321 *value = simple_strtoul(ep, NULL, 0);
322
323 return 0;
324}
325
326/*
327 * kdbgetintenv - This function will return the value of an
328 * integer-valued environment variable.
329 * Parameters:
330 * match A character string representing an integer-valued env variable
331 * Outputs:
332 * *value the integer representation of the environment variable 'match'
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetintenv(const char *match, int *value)
337{
338 unsigned long val;
339 int diag;
340
341 diag = kdbgetulenv(match, &val);
342 if (!diag)
343 *value = (int) val;
344 return diag;
345}
346
347/*
348 * kdb_setenv() - Alter an existing environment variable or create a new one.
349 * @var: Name of the variable
350 * @val: Value of the variable
351 *
352 * Return: Zero on success, a kdb diagnostic on failure.
353 */
354static int kdb_setenv(const char *var, const char *val)
355{
356 int i;
357 char *ep;
358 size_t varlen, vallen;
359
360 varlen = strlen(var);
361 vallen = strlen(val);
362 ep = kdballocenv(varlen + vallen + 2);
363 if (ep == (char *)0)
364 return KDB_ENVBUFFULL;
365
366 sprintf(ep, "%s=%s", var, val);
367
368 for (i = 0; i < __nenv; i++) {
369 if (__env[i]
370 && ((strncmp(__env[i], var, varlen) == 0)
371 && ((__env[i][varlen] == '\0')
372 || (__env[i][varlen] == '=')))) {
373 __env[i] = ep;
374 return 0;
375 }
376 }
377
378 /*
379 * Wasn't existing variable. Fit into slot.
380 */
381 for (i = 0; i < __nenv-1; i++) {
382 if (__env[i] == (char *)0) {
383 __env[i] = ep;
384 return 0;
385 }
386 }
387
388 return KDB_ENVFULL;
389}
390
391/*
392 * kdb_printenv() - Display the current environment variables.
393 */
394static void kdb_printenv(void)
395{
396 int i;
397
398 for (i = 0; i < __nenv; i++) {
399 if (__env[i])
400 kdb_printf("%s\n", __env[i]);
401 }
402}
403
404/*
405 * kdbgetularg - This function will convert a numeric string into an
406 * unsigned long value.
407 * Parameters:
408 * arg A character string representing a numeric value
409 * Outputs:
410 * *value the unsigned long representation of arg.
411 * Returns:
412 * Zero on success, a kdb diagnostic on failure.
413 */
414int kdbgetularg(const char *arg, unsigned long *value)
415{
416 char *endp;
417 unsigned long val;
418
419 val = simple_strtoul(arg, &endp, 0);
420
421 if (endp == arg) {
422 /*
423 * Also try base 16, for us folks too lazy to type the
424 * leading 0x...
425 */
426 val = simple_strtoul(arg, &endp, 16);
427 if (endp == arg)
428 return KDB_BADINT;
429 }
430
431 *value = val;
432
433 return 0;
434}
435
436int kdbgetu64arg(const char *arg, u64 *value)
437{
438 char *endp;
439 u64 val;
440
441 val = simple_strtoull(arg, &endp, 0);
442
443 if (endp == arg) {
444
445 val = simple_strtoull(arg, &endp, 16);
446 if (endp == arg)
447 return KDB_BADINT;
448 }
449
450 *value = val;
451
452 return 0;
453}
454
455/*
456 * kdb_set - This function implements the 'set' command. Alter an
457 * existing environment variable or create a new one.
458 */
459int kdb_set(int argc, const char **argv)
460{
461 /*
462 * we can be invoked two ways:
463 * set var=value argv[1]="var", argv[2]="value"
464 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
465 * - if the latter, shift 'em down.
466 */
467 if (argc == 3) {
468 argv[2] = argv[3];
469 argc--;
470 }
471
472 if (argc != 2)
473 return KDB_ARGCOUNT;
474
475 /*
476 * Censor sensitive variables
477 */
478 if (strcmp(argv[1], "PROMPT") == 0 &&
479 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
480 return KDB_NOPERM;
481
482 /*
483 * Check for internal variables
484 */
485 if (strcmp(argv[1], "KDBDEBUG") == 0) {
486 unsigned int debugflags;
487 char *cp;
488
489 debugflags = simple_strtoul(argv[2], &cp, 0);
490 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
491 kdb_printf("kdb: illegal debug flags '%s'\n",
492 argv[2]);
493 return 0;
494 }
495 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
496 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
497
498 return 0;
499 }
500
501 /*
502 * Tokenizer squashed the '=' sign. argv[1] is variable
503 * name, argv[2] = value.
504 */
505 return kdb_setenv(argv[1], argv[2]);
506}
507
508static int kdb_check_regs(void)
509{
510 if (!kdb_current_regs) {
511 kdb_printf("No current kdb registers."
512 " You may need to select another task\n");
513 return KDB_BADREG;
514 }
515 return 0;
516}
517
518/*
519 * kdbgetaddrarg - This function is responsible for parsing an
520 * address-expression and returning the value of the expression,
521 * symbol name, and offset to the caller.
522 *
523 * The argument may consist of a numeric value (decimal or
524 * hexadecimal), a symbol name, a register name (preceded by the
525 * percent sign), an environment variable with a numeric value
526 * (preceded by a dollar sign) or a simple arithmetic expression
527 * consisting of a symbol name, +/-, and a numeric constant value
528 * (offset).
529 * Parameters:
530 * argc - count of arguments in argv
531 * argv - argument vector
532 * *nextarg - index to next unparsed argument in argv[]
533 * regs - Register state at time of KDB entry
534 * Outputs:
535 * *value - receives the value of the address-expression
536 * *offset - receives the offset specified, if any
537 * *name - receives the symbol name, if any
538 * *nextarg - index to next unparsed argument in argv[]
539 * Returns:
540 * zero is returned on success, a kdb diagnostic code is
541 * returned on error.
542 */
543int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
544 unsigned long *value, long *offset,
545 char **name)
546{
547 unsigned long addr;
548 unsigned long off = 0;
549 int positive;
550 int diag;
551 int found = 0;
552 char *symname;
553 char symbol = '\0';
554 char *cp;
555 kdb_symtab_t symtab;
556
557 /*
558 * If the enable flags prohibit both arbitrary memory access
559 * and flow control then there are no reasonable grounds to
560 * provide symbol lookup.
561 */
562 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
563 kdb_cmd_enabled, false))
564 return KDB_NOPERM;
565
566 /*
567 * Process arguments which follow the following syntax:
568 *
569 * symbol | numeric-address [+/- numeric-offset]
570 * %register
571 * $environment-variable
572 */
573
574 if (*nextarg > argc)
575 return KDB_ARGCOUNT;
576
577 symname = (char *)argv[*nextarg];
578
579 /*
580 * If there is no whitespace between the symbol
581 * or address and the '+' or '-' symbols, we
582 * remember the character and replace it with a
583 * null so the symbol/value can be properly parsed
584 */
585 cp = strpbrk(symname, "+-");
586 if (cp != NULL) {
587 symbol = *cp;
588 *cp++ = '\0';
589 }
590
591 if (symname[0] == '$') {
592 diag = kdbgetulenv(&symname[1], &addr);
593 if (diag)
594 return diag;
595 } else if (symname[0] == '%') {
596 diag = kdb_check_regs();
597 if (diag)
598 return diag;
599 /* Implement register values with % at a later time as it is
600 * arch optional.
601 */
602 return KDB_NOTIMP;
603 } else {
604 found = kdbgetsymval(symname, &symtab);
605 if (found) {
606 addr = symtab.sym_start;
607 } else {
608 diag = kdbgetularg(argv[*nextarg], &addr);
609 if (diag)
610 return diag;
611 }
612 }
613
614 if (!found)
615 found = kdbnearsym(addr, &symtab);
616
617 (*nextarg)++;
618
619 if (name)
620 *name = symname;
621 if (value)
622 *value = addr;
623 if (offset && name && *name)
624 *offset = addr - symtab.sym_start;
625
626 if ((*nextarg > argc)
627 && (symbol == '\0'))
628 return 0;
629
630 /*
631 * check for +/- and offset
632 */
633
634 if (symbol == '\0') {
635 if ((argv[*nextarg][0] != '+')
636 && (argv[*nextarg][0] != '-')) {
637 /*
638 * Not our argument. Return.
639 */
640 return 0;
641 } else {
642 positive = (argv[*nextarg][0] == '+');
643 (*nextarg)++;
644 }
645 } else
646 positive = (symbol == '+');
647
648 /*
649 * Now there must be an offset!
650 */
651 if ((*nextarg > argc)
652 && (symbol == '\0')) {
653 return KDB_INVADDRFMT;
654 }
655
656 if (!symbol) {
657 cp = (char *)argv[*nextarg];
658 (*nextarg)++;
659 }
660
661 diag = kdbgetularg(cp, &off);
662 if (diag)
663 return diag;
664
665 if (!positive)
666 off = -off;
667
668 if (offset)
669 *offset += off;
670
671 if (value)
672 *value += off;
673
674 return 0;
675}
676
677static void kdb_cmderror(int diag)
678{
679 int i;
680
681 if (diag >= 0) {
682 kdb_printf("no error detected (diagnostic is %d)\n", diag);
683 return;
684 }
685
686 for (i = 0; i < __nkdb_err; i++) {
687 if (kdbmsgs[i].km_diag == diag) {
688 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
689 return;
690 }
691 }
692
693 kdb_printf("Unknown diag %d\n", -diag);
694}
695
696/*
697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
698 * command which defines one command as a set of other commands,
699 * terminated by endefcmd. kdb_defcmd processes the initial
700 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
701 * the following commands until 'endefcmd'.
702 * Inputs:
703 * argc argument count
704 * argv argument vector
705 * Returns:
706 * zero for success, a kdb diagnostic if error
707 */
708struct kdb_macro {
709 kdbtab_t cmd; /* Macro command */
710 struct list_head statements; /* Associated statement list */
711};
712
713struct kdb_macro_statement {
714 char *statement; /* Statement text */
715 struct list_head list_node; /* Statement list node */
716};
717
718static struct kdb_macro *kdb_macro;
719static bool defcmd_in_progress;
720
721/* Forward references */
722static int kdb_exec_defcmd(int argc, const char **argv);
723
724static int kdb_defcmd2(const char *cmdstr, const char *argv0)
725{
726 struct kdb_macro_statement *kms;
727
728 if (!kdb_macro)
729 return KDB_NOTIMP;
730
731 if (strcmp(argv0, "endefcmd") == 0) {
732 defcmd_in_progress = false;
733 if (!list_empty(&kdb_macro->statements))
734 kdb_register(&kdb_macro->cmd);
735 return 0;
736 }
737
738 kms = kmalloc(sizeof(*kms), GFP_KDB);
739 if (!kms) {
740 kdb_printf("Could not allocate new kdb macro command: %s\n",
741 cmdstr);
742 return KDB_NOTIMP;
743 }
744
745 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
746 list_add_tail(&kms->list_node, &kdb_macro->statements);
747
748 return 0;
749}
750
751static int kdb_defcmd(int argc, const char **argv)
752{
753 kdbtab_t *mp;
754
755 if (defcmd_in_progress) {
756 kdb_printf("kdb: nested defcmd detected, assuming missing "
757 "endefcmd\n");
758 kdb_defcmd2("endefcmd", "endefcmd");
759 }
760 if (argc == 0) {
761 kdbtab_t *kp;
762 struct kdb_macro *kmp;
763 struct kdb_macro_statement *kms;
764
765 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
766 if (kp->func == kdb_exec_defcmd) {
767 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
768 kp->name, kp->usage, kp->help);
769 kmp = container_of(kp, struct kdb_macro, cmd);
770 list_for_each_entry(kms, &kmp->statements,
771 list_node)
772 kdb_printf("%s", kms->statement);
773 kdb_printf("endefcmd\n");
774 }
775 }
776 return 0;
777 }
778 if (argc != 3)
779 return KDB_ARGCOUNT;
780 if (in_dbg_master()) {
781 kdb_printf("Command only available during kdb_init()\n");
782 return KDB_NOTIMP;
783 }
784 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
785 if (!kdb_macro)
786 goto fail_defcmd;
787
788 mp = &kdb_macro->cmd;
789 mp->func = kdb_exec_defcmd;
790 mp->minlen = 0;
791 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
792 mp->name = kdb_strdup(argv[1], GFP_KDB);
793 if (!mp->name)
794 goto fail_name;
795 mp->usage = kdb_strdup(argv[2], GFP_KDB);
796 if (!mp->usage)
797 goto fail_usage;
798 mp->help = kdb_strdup(argv[3], GFP_KDB);
799 if (!mp->help)
800 goto fail_help;
801 if (mp->usage[0] == '"') {
802 strcpy(mp->usage, argv[2]+1);
803 mp->usage[strlen(mp->usage)-1] = '\0';
804 }
805 if (mp->help[0] == '"') {
806 strcpy(mp->help, argv[3]+1);
807 mp->help[strlen(mp->help)-1] = '\0';
808 }
809
810 INIT_LIST_HEAD(&kdb_macro->statements);
811 defcmd_in_progress = true;
812 return 0;
813fail_help:
814 kfree(mp->usage);
815fail_usage:
816 kfree(mp->name);
817fail_name:
818 kfree(kdb_macro);
819fail_defcmd:
820 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
821 return KDB_NOTIMP;
822}
823
824/*
825 * kdb_exec_defcmd - Execute the set of commands associated with this
826 * defcmd name.
827 * Inputs:
828 * argc argument count
829 * argv argument vector
830 * Returns:
831 * zero for success, a kdb diagnostic if error
832 */
833static int kdb_exec_defcmd(int argc, const char **argv)
834{
835 int ret;
836 kdbtab_t *kp;
837 struct kdb_macro *kmp;
838 struct kdb_macro_statement *kms;
839
840 if (argc != 0)
841 return KDB_ARGCOUNT;
842
843 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
844 if (strcmp(kp->name, argv[0]) == 0)
845 break;
846 }
847 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
848 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
849 argv[0]);
850 return KDB_NOTIMP;
851 }
852 kmp = container_of(kp, struct kdb_macro, cmd);
853 list_for_each_entry(kms, &kmp->statements, list_node) {
854 /*
855 * Recursive use of kdb_parse, do not use argv after this point.
856 */
857 argv = NULL;
858 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
859 ret = kdb_parse(kms->statement);
860 if (ret)
861 return ret;
862 }
863 return 0;
864}
865
866/* Command history */
867#define KDB_CMD_HISTORY_COUNT 32
868#define CMD_BUFLEN 200 /* kdb_printf: max printline
869 * size == 256 */
870static unsigned int cmd_head, cmd_tail;
871static unsigned int cmdptr;
872static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
873static char cmd_cur[CMD_BUFLEN];
874
875/*
876 * The "str" argument may point to something like | grep xyz
877 */
878static void parse_grep(const char *str)
879{
880 int len;
881 char *cp = (char *)str, *cp2;
882
883 /* sanity check: we should have been called with the \ first */
884 if (*cp != '|')
885 return;
886 cp++;
887 while (isspace(*cp))
888 cp++;
889 if (!str_has_prefix(cp, "grep ")) {
890 kdb_printf("invalid 'pipe', see grephelp\n");
891 return;
892 }
893 cp += 5;
894 while (isspace(*cp))
895 cp++;
896 cp2 = strchr(cp, '\n');
897 if (cp2)
898 *cp2 = '\0'; /* remove the trailing newline */
899 len = strlen(cp);
900 if (len == 0) {
901 kdb_printf("invalid 'pipe', see grephelp\n");
902 return;
903 }
904 /* now cp points to a nonzero length search string */
905 if (*cp == '"') {
906 /* allow it be "x y z" by removing the "'s - there must
907 be two of them */
908 cp++;
909 cp2 = strchr(cp, '"');
910 if (!cp2) {
911 kdb_printf("invalid quoted string, see grephelp\n");
912 return;
913 }
914 *cp2 = '\0'; /* end the string where the 2nd " was */
915 }
916 kdb_grep_leading = 0;
917 if (*cp == '^') {
918 kdb_grep_leading = 1;
919 cp++;
920 }
921 len = strlen(cp);
922 kdb_grep_trailing = 0;
923 if (*(cp+len-1) == '$') {
924 kdb_grep_trailing = 1;
925 *(cp+len-1) = '\0';
926 }
927 len = strlen(cp);
928 if (!len)
929 return;
930 if (len >= KDB_GREP_STRLEN) {
931 kdb_printf("search string too long\n");
932 return;
933 }
934 strcpy(kdb_grep_string, cp);
935 kdb_grepping_flag++;
936 return;
937}
938
939/*
940 * kdb_parse - Parse the command line, search the command table for a
941 * matching command and invoke the command function. This
942 * function may be called recursively, if it is, the second call
943 * will overwrite argv and cbuf. It is the caller's
944 * responsibility to save their argv if they recursively call
945 * kdb_parse().
946 * Parameters:
947 * cmdstr The input command line to be parsed.
948 * regs The registers at the time kdb was entered.
949 * Returns:
950 * Zero for success, a kdb diagnostic if failure.
951 * Remarks:
952 * Limited to 20 tokens.
953 *
954 * Real rudimentary tokenization. Basically only whitespace
955 * is considered a token delimiter (but special consideration
956 * is taken of the '=' sign as used by the 'set' command).
957 *
958 * The algorithm used to tokenize the input string relies on
959 * there being at least one whitespace (or otherwise useless)
960 * character between tokens as the character immediately following
961 * the token is altered in-place to a null-byte to terminate the
962 * token string.
963 */
964
965#define MAXARGC 20
966
967int kdb_parse(const char *cmdstr)
968{
969 static char *argv[MAXARGC];
970 static int argc;
971 static char cbuf[CMD_BUFLEN+2];
972 char *cp;
973 char *cpp, quoted;
974 kdbtab_t *tp;
975 int escaped, ignore_errors = 0, check_grep = 0;
976
977 /*
978 * First tokenize the command string.
979 */
980 cp = (char *)cmdstr;
981
982 if (KDB_FLAG(CMD_INTERRUPT)) {
983 /* Previous command was interrupted, newline must not
984 * repeat the command */
985 KDB_FLAG_CLEAR(CMD_INTERRUPT);
986 KDB_STATE_SET(PAGER);
987 argc = 0; /* no repeat */
988 }
989
990 if (*cp != '\n' && *cp != '\0') {
991 argc = 0;
992 cpp = cbuf;
993 while (*cp) {
994 /* skip whitespace */
995 while (isspace(*cp))
996 cp++;
997 if ((*cp == '\0') || (*cp == '\n') ||
998 (*cp == '#' && !defcmd_in_progress))
999 break;
1000 /* special case: check for | grep pattern */
1001 if (*cp == '|') {
1002 check_grep++;
1003 break;
1004 }
1005 if (cpp >= cbuf + CMD_BUFLEN) {
1006 kdb_printf("kdb_parse: command buffer "
1007 "overflow, command ignored\n%s\n",
1008 cmdstr);
1009 return KDB_NOTFOUND;
1010 }
1011 if (argc >= MAXARGC - 1) {
1012 kdb_printf("kdb_parse: too many arguments, "
1013 "command ignored\n%s\n", cmdstr);
1014 return KDB_NOTFOUND;
1015 }
1016 argv[argc++] = cpp;
1017 escaped = 0;
1018 quoted = '\0';
1019 /* Copy to next unquoted and unescaped
1020 * whitespace or '=' */
1021 while (*cp && *cp != '\n' &&
1022 (escaped || quoted || !isspace(*cp))) {
1023 if (cpp >= cbuf + CMD_BUFLEN)
1024 break;
1025 if (escaped) {
1026 escaped = 0;
1027 *cpp++ = *cp++;
1028 continue;
1029 }
1030 if (*cp == '\\') {
1031 escaped = 1;
1032 ++cp;
1033 continue;
1034 }
1035 if (*cp == quoted)
1036 quoted = '\0';
1037 else if (*cp == '\'' || *cp == '"')
1038 quoted = *cp;
1039 *cpp = *cp++;
1040 if (*cpp == '=' && !quoted)
1041 break;
1042 ++cpp;
1043 }
1044 *cpp++ = '\0'; /* Squash a ws or '=' character */
1045 }
1046 }
1047 if (!argc)
1048 return 0;
1049 if (check_grep)
1050 parse_grep(cp);
1051 if (defcmd_in_progress) {
1052 int result = kdb_defcmd2(cmdstr, argv[0]);
1053 if (!defcmd_in_progress) {
1054 argc = 0; /* avoid repeat on endefcmd */
1055 *(argv[0]) = '\0';
1056 }
1057 return result;
1058 }
1059 if (argv[0][0] == '-' && argv[0][1] &&
1060 (argv[0][1] < '0' || argv[0][1] > '9')) {
1061 ignore_errors = 1;
1062 ++argv[0];
1063 }
1064
1065 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1066 /*
1067 * If this command is allowed to be abbreviated,
1068 * check to see if this is it.
1069 */
1070 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1071 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1072 break;
1073
1074 if (strcmp(argv[0], tp->name) == 0)
1075 break;
1076 }
1077
1078 /*
1079 * If we don't find a command by this name, see if the first
1080 * few characters of this match any of the known commands.
1081 * e.g., md1c20 should match md.
1082 */
1083 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1084 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1085 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1086 break;
1087 }
1088 }
1089
1090 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1091 int result;
1092
1093 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1094 return KDB_NOPERM;
1095
1096 KDB_STATE_SET(CMD);
1097 result = (*tp->func)(argc-1, (const char **)argv);
1098 if (result && ignore_errors && result > KDB_CMD_GO)
1099 result = 0;
1100 KDB_STATE_CLEAR(CMD);
1101
1102 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1103 return result;
1104
1105 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1106 if (argv[argc])
1107 *(argv[argc]) = '\0';
1108 return result;
1109 }
1110
1111 /*
1112 * If the input with which we were presented does not
1113 * map to an existing command, attempt to parse it as an
1114 * address argument and display the result. Useful for
1115 * obtaining the address of a variable, or the nearest symbol
1116 * to an address contained in a register.
1117 */
1118 {
1119 unsigned long value;
1120 char *name = NULL;
1121 long offset;
1122 int nextarg = 0;
1123
1124 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1125 &value, &offset, &name)) {
1126 return KDB_NOTFOUND;
1127 }
1128
1129 kdb_printf("%s = ", argv[0]);
1130 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1131 kdb_printf("\n");
1132 return 0;
1133 }
1134}
1135
1136
1137static int handle_ctrl_cmd(char *cmd)
1138{
1139#define CTRL_P 16
1140#define CTRL_N 14
1141
1142 /* initial situation */
1143 if (cmd_head == cmd_tail)
1144 return 0;
1145 switch (*cmd) {
1146 case CTRL_P:
1147 if (cmdptr != cmd_tail)
1148 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1149 KDB_CMD_HISTORY_COUNT;
1150 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1151 return 1;
1152 case CTRL_N:
1153 if (cmdptr != cmd_head)
1154 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1155 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1156 return 1;
1157 }
1158 return 0;
1159}
1160
1161/*
1162 * kdb_reboot - This function implements the 'reboot' command. Reboot
1163 * the system immediately, or loop for ever on failure.
1164 */
1165static int kdb_reboot(int argc, const char **argv)
1166{
1167 emergency_restart();
1168 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1169 while (1)
1170 cpu_relax();
1171 /* NOTREACHED */
1172 return 0;
1173}
1174
1175static void kdb_dumpregs(struct pt_regs *regs)
1176{
1177 int old_lvl = console_loglevel;
1178 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1179 kdb_trap_printk++;
1180 show_regs(regs);
1181 kdb_trap_printk--;
1182 kdb_printf("\n");
1183 console_loglevel = old_lvl;
1184}
1185
1186static void kdb_set_current_task(struct task_struct *p)
1187{
1188 kdb_current_task = p;
1189
1190 if (kdb_task_has_cpu(p)) {
1191 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1192 return;
1193 }
1194 kdb_current_regs = NULL;
1195}
1196
1197static void drop_newline(char *buf)
1198{
1199 size_t len = strlen(buf);
1200
1201 if (len == 0)
1202 return;
1203 if (*(buf + len - 1) == '\n')
1204 *(buf + len - 1) = '\0';
1205}
1206
1207/*
1208 * kdb_local - The main code for kdb. This routine is invoked on a
1209 * specific processor, it is not global. The main kdb() routine
1210 * ensures that only one processor at a time is in this routine.
1211 * This code is called with the real reason code on the first
1212 * entry to a kdb session, thereafter it is called with reason
1213 * SWITCH, even if the user goes back to the original cpu.
1214 * Inputs:
1215 * reason The reason KDB was invoked
1216 * error The hardware-defined error code
1217 * regs The exception frame at time of fault/breakpoint.
1218 * db_result Result code from the break or debug point.
1219 * Returns:
1220 * 0 KDB was invoked for an event which it wasn't responsible
1221 * 1 KDB handled the event for which it was invoked.
1222 * KDB_CMD_GO User typed 'go'.
1223 * KDB_CMD_CPU User switched to another cpu.
1224 * KDB_CMD_SS Single step.
1225 */
1226static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1227 kdb_dbtrap_t db_result)
1228{
1229 char *cmdbuf;
1230 int diag;
1231 struct task_struct *kdb_current =
1232 kdb_curr_task(raw_smp_processor_id());
1233
1234 KDB_DEBUG_STATE("kdb_local 1", reason);
1235
1236 kdb_check_for_lockdown();
1237
1238 kdb_go_count = 0;
1239 if (reason == KDB_REASON_DEBUG) {
1240 /* special case below */
1241 } else {
1242 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1243 kdb_current, kdb_current ? kdb_current->pid : 0);
1244#if defined(CONFIG_SMP)
1245 kdb_printf("on processor %d ", raw_smp_processor_id());
1246#endif
1247 }
1248
1249 switch (reason) {
1250 case KDB_REASON_DEBUG:
1251 {
1252 /*
1253 * If re-entering kdb after a single step
1254 * command, don't print the message.
1255 */
1256 switch (db_result) {
1257 case KDB_DB_BPT:
1258 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1259 kdb_current, kdb_current->pid);
1260#if defined(CONFIG_SMP)
1261 kdb_printf("on processor %d ", raw_smp_processor_id());
1262#endif
1263 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1264 instruction_pointer(regs));
1265 break;
1266 case KDB_DB_SS:
1267 break;
1268 case KDB_DB_SSBPT:
1269 KDB_DEBUG_STATE("kdb_local 4", reason);
1270 return 1; /* kdba_db_trap did the work */
1271 default:
1272 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1273 db_result);
1274 break;
1275 }
1276
1277 }
1278 break;
1279 case KDB_REASON_ENTER:
1280 if (KDB_STATE(KEYBOARD))
1281 kdb_printf("due to Keyboard Entry\n");
1282 else
1283 kdb_printf("due to KDB_ENTER()\n");
1284 break;
1285 case KDB_REASON_KEYBOARD:
1286 KDB_STATE_SET(KEYBOARD);
1287 kdb_printf("due to Keyboard Entry\n");
1288 break;
1289 case KDB_REASON_ENTER_SLAVE:
1290 /* drop through, slaves only get released via cpu switch */
1291 case KDB_REASON_SWITCH:
1292 kdb_printf("due to cpu switch\n");
1293 break;
1294 case KDB_REASON_OOPS:
1295 kdb_printf("Oops: %s\n", kdb_diemsg);
1296 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1297 instruction_pointer(regs));
1298 kdb_dumpregs(regs);
1299 break;
1300 case KDB_REASON_SYSTEM_NMI:
1301 kdb_printf("due to System NonMaskable Interrupt\n");
1302 break;
1303 case KDB_REASON_NMI:
1304 kdb_printf("due to NonMaskable Interrupt @ "
1305 kdb_machreg_fmt "\n",
1306 instruction_pointer(regs));
1307 break;
1308 case KDB_REASON_SSTEP:
1309 case KDB_REASON_BREAK:
1310 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1311 reason == KDB_REASON_BREAK ?
1312 "Breakpoint" : "SS trap", instruction_pointer(regs));
1313 /*
1314 * Determine if this breakpoint is one that we
1315 * are interested in.
1316 */
1317 if (db_result != KDB_DB_BPT) {
1318 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1319 db_result);
1320 KDB_DEBUG_STATE("kdb_local 6", reason);
1321 return 0; /* Not for us, dismiss it */
1322 }
1323 break;
1324 case KDB_REASON_RECURSE:
1325 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1326 instruction_pointer(regs));
1327 break;
1328 default:
1329 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1330 KDB_DEBUG_STATE("kdb_local 8", reason);
1331 return 0; /* Not for us, dismiss it */
1332 }
1333
1334 while (1) {
1335 /*
1336 * Initialize pager context.
1337 */
1338 kdb_nextline = 1;
1339 KDB_STATE_CLEAR(SUPPRESS);
1340 kdb_grepping_flag = 0;
1341 /* ensure the old search does not leak into '/' commands */
1342 kdb_grep_string[0] = '\0';
1343
1344 cmdbuf = cmd_cur;
1345 *cmdbuf = '\0';
1346 *(cmd_hist[cmd_head]) = '\0';
1347
1348do_full_getstr:
1349 /* PROMPT can only be set if we have MEM_READ permission. */
1350 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1351 raw_smp_processor_id());
1352 if (defcmd_in_progress)
1353 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1354
1355 /*
1356 * Fetch command from keyboard
1357 */
1358 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1359 if (*cmdbuf != '\n') {
1360 if (*cmdbuf < 32) {
1361 if (cmdptr == cmd_head) {
1362 strscpy(cmd_hist[cmd_head], cmd_cur,
1363 CMD_BUFLEN);
1364 *(cmd_hist[cmd_head] +
1365 strlen(cmd_hist[cmd_head])-1) = '\0';
1366 }
1367 if (!handle_ctrl_cmd(cmdbuf))
1368 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1369 cmdbuf = cmd_cur;
1370 goto do_full_getstr;
1371 } else {
1372 strscpy(cmd_hist[cmd_head], cmd_cur,
1373 CMD_BUFLEN);
1374 }
1375
1376 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1377 if (cmd_head == cmd_tail)
1378 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1379 }
1380
1381 cmdptr = cmd_head;
1382 diag = kdb_parse(cmdbuf);
1383 if (diag == KDB_NOTFOUND) {
1384 drop_newline(cmdbuf);
1385 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1386 diag = 0;
1387 }
1388 if (diag == KDB_CMD_GO
1389 || diag == KDB_CMD_CPU
1390 || diag == KDB_CMD_SS
1391 || diag == KDB_CMD_KGDB)
1392 break;
1393
1394 if (diag)
1395 kdb_cmderror(diag);
1396 }
1397 KDB_DEBUG_STATE("kdb_local 9", diag);
1398 return diag;
1399}
1400
1401
1402/*
1403 * kdb_print_state - Print the state data for the current processor
1404 * for debugging.
1405 * Inputs:
1406 * text Identifies the debug point
1407 * value Any integer value to be printed, e.g. reason code.
1408 */
1409void kdb_print_state(const char *text, int value)
1410{
1411 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1412 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1413 kdb_state);
1414}
1415
1416/*
1417 * kdb_main_loop - After initial setup and assignment of the
1418 * controlling cpu, all cpus are in this loop. One cpu is in
1419 * control and will issue the kdb prompt, the others will spin
1420 * until 'go' or cpu switch.
1421 *
1422 * To get a consistent view of the kernel stacks for all
1423 * processes, this routine is invoked from the main kdb code via
1424 * an architecture specific routine. kdba_main_loop is
1425 * responsible for making the kernel stacks consistent for all
1426 * processes, there should be no difference between a blocked
1427 * process and a running process as far as kdb is concerned.
1428 * Inputs:
1429 * reason The reason KDB was invoked
1430 * error The hardware-defined error code
1431 * reason2 kdb's current reason code.
1432 * Initially error but can change
1433 * according to kdb state.
1434 * db_result Result code from break or debug point.
1435 * regs The exception frame at time of fault/breakpoint.
1436 * should always be valid.
1437 * Returns:
1438 * 0 KDB was invoked for an event which it wasn't responsible
1439 * 1 KDB handled the event for which it was invoked.
1440 */
1441int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1442 kdb_dbtrap_t db_result, struct pt_regs *regs)
1443{
1444 int result = 1;
1445 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1446 while (1) {
1447 /*
1448 * All processors except the one that is in control
1449 * will spin here.
1450 */
1451 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1452 while (KDB_STATE(HOLD_CPU)) {
1453 /* state KDB is turned off by kdb_cpu to see if the
1454 * other cpus are still live, each cpu in this loop
1455 * turns it back on.
1456 */
1457 if (!KDB_STATE(KDB))
1458 KDB_STATE_SET(KDB);
1459 }
1460
1461 KDB_STATE_CLEAR(SUPPRESS);
1462 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1463 if (KDB_STATE(LEAVING))
1464 break; /* Another cpu said 'go' */
1465 /* Still using kdb, this processor is in control */
1466 result = kdb_local(reason2, error, regs, db_result);
1467 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1468
1469 if (result == KDB_CMD_CPU)
1470 break;
1471
1472 if (result == KDB_CMD_SS) {
1473 KDB_STATE_SET(DOING_SS);
1474 break;
1475 }
1476
1477 if (result == KDB_CMD_KGDB) {
1478 if (!KDB_STATE(DOING_KGDB))
1479 kdb_printf("Entering please attach debugger "
1480 "or use $D#44+ or $3#33\n");
1481 break;
1482 }
1483 if (result && result != 1 && result != KDB_CMD_GO)
1484 kdb_printf("\nUnexpected kdb_local return code %d\n",
1485 result);
1486 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1487 break;
1488 }
1489 if (KDB_STATE(DOING_SS))
1490 KDB_STATE_CLEAR(SSBPT);
1491
1492 /* Clean up any keyboard devices before leaving */
1493 kdb_kbd_cleanup_state();
1494
1495 return result;
1496}
1497
1498/*
1499 * kdb_mdr - This function implements the guts of the 'mdr', memory
1500 * read command.
1501 * mdr <addr arg>,<byte count>
1502 * Inputs:
1503 * addr Start address
1504 * count Number of bytes
1505 * Returns:
1506 * Always 0. Any errors are detected and printed by kdb_getarea.
1507 */
1508static int kdb_mdr(unsigned long addr, unsigned int count)
1509{
1510 unsigned char c;
1511 while (count--) {
1512 if (kdb_getarea(c, addr))
1513 return 0;
1514 kdb_printf("%02x", c);
1515 addr++;
1516 }
1517 kdb_printf("\n");
1518 return 0;
1519}
1520
1521/*
1522 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1523 * 'md8' 'mdr' and 'mds' commands.
1524 *
1525 * md|mds [<addr arg> [<line count> [<radix>]]]
1526 * mdWcN [<addr arg> [<line count> [<radix>]]]
1527 * where W = is the width (1, 2, 4 or 8) and N is the count.
1528 * for eg., md1c20 reads 20 bytes, 1 at a time.
1529 * mdr <addr arg>,<byte count>
1530 */
1531static void kdb_md_line(const char *fmtstr, unsigned long addr,
1532 int symbolic, int nosect, int bytesperword,
1533 int num, int repeat, int phys)
1534{
1535 /* print just one line of data */
1536 kdb_symtab_t symtab;
1537 char cbuf[32];
1538 char *c = cbuf;
1539 int i;
1540 int j;
1541 unsigned long word;
1542
1543 memset(cbuf, '\0', sizeof(cbuf));
1544 if (phys)
1545 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1546 else
1547 kdb_printf(kdb_machreg_fmt0 " ", addr);
1548
1549 for (i = 0; i < num && repeat--; i++) {
1550 if (phys) {
1551 if (kdb_getphysword(&word, addr, bytesperword))
1552 break;
1553 } else if (kdb_getword(&word, addr, bytesperword))
1554 break;
1555 kdb_printf(fmtstr, word);
1556 if (symbolic)
1557 kdbnearsym(word, &symtab);
1558 else
1559 memset(&symtab, 0, sizeof(symtab));
1560 if (symtab.sym_name) {
1561 kdb_symbol_print(word, &symtab, 0);
1562 if (!nosect) {
1563 kdb_printf("\n");
1564 kdb_printf(" %s %s "
1565 kdb_machreg_fmt " "
1566 kdb_machreg_fmt " "
1567 kdb_machreg_fmt, symtab.mod_name,
1568 symtab.sec_name, symtab.sec_start,
1569 symtab.sym_start, symtab.sym_end);
1570 }
1571 addr += bytesperword;
1572 } else {
1573 union {
1574 u64 word;
1575 unsigned char c[8];
1576 } wc;
1577 unsigned char *cp;
1578#ifdef __BIG_ENDIAN
1579 cp = wc.c + 8 - bytesperword;
1580#else
1581 cp = wc.c;
1582#endif
1583 wc.word = word;
1584#define printable_char(c) \
1585 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1586 for (j = 0; j < bytesperword; j++)
1587 *c++ = printable_char(*cp++);
1588 addr += bytesperword;
1589#undef printable_char
1590 }
1591 }
1592 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1593 " ", cbuf);
1594}
1595
1596static int kdb_md(int argc, const char **argv)
1597{
1598 static unsigned long last_addr;
1599 static int last_radix, last_bytesperword, last_repeat;
1600 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1601 int nosect = 0;
1602 char fmtchar, fmtstr[64];
1603 unsigned long addr;
1604 unsigned long word;
1605 long offset = 0;
1606 int symbolic = 0;
1607 int valid = 0;
1608 int phys = 0;
1609 int raw = 0;
1610
1611 kdbgetintenv("MDCOUNT", &mdcount);
1612 kdbgetintenv("RADIX", &radix);
1613 kdbgetintenv("BYTESPERWORD", &bytesperword);
1614
1615 /* Assume 'md <addr>' and start with environment values */
1616 repeat = mdcount * 16 / bytesperword;
1617
1618 if (strcmp(argv[0], "mdr") == 0) {
1619 if (argc == 2 || (argc == 0 && last_addr != 0))
1620 valid = raw = 1;
1621 else
1622 return KDB_ARGCOUNT;
1623 } else if (isdigit(argv[0][2])) {
1624 bytesperword = (int)(argv[0][2] - '0');
1625 if (bytesperword == 0) {
1626 bytesperword = last_bytesperword;
1627 if (bytesperword == 0)
1628 bytesperword = 4;
1629 }
1630 last_bytesperword = bytesperword;
1631 repeat = mdcount * 16 / bytesperword;
1632 if (!argv[0][3])
1633 valid = 1;
1634 else if (argv[0][3] == 'c' && argv[0][4]) {
1635 char *p;
1636 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1637 mdcount = ((repeat * bytesperword) + 15) / 16;
1638 valid = !*p;
1639 }
1640 last_repeat = repeat;
1641 } else if (strcmp(argv[0], "md") == 0)
1642 valid = 1;
1643 else if (strcmp(argv[0], "mds") == 0)
1644 valid = 1;
1645 else if (strcmp(argv[0], "mdp") == 0) {
1646 phys = valid = 1;
1647 }
1648 if (!valid)
1649 return KDB_NOTFOUND;
1650
1651 if (argc == 0) {
1652 if (last_addr == 0)
1653 return KDB_ARGCOUNT;
1654 addr = last_addr;
1655 radix = last_radix;
1656 bytesperword = last_bytesperword;
1657 repeat = last_repeat;
1658 if (raw)
1659 mdcount = repeat;
1660 else
1661 mdcount = ((repeat * bytesperword) + 15) / 16;
1662 }
1663
1664 if (argc) {
1665 unsigned long val;
1666 int diag, nextarg = 1;
1667 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1668 &offset, NULL);
1669 if (diag)
1670 return diag;
1671 if (argc > nextarg+2)
1672 return KDB_ARGCOUNT;
1673
1674 if (argc >= nextarg) {
1675 diag = kdbgetularg(argv[nextarg], &val);
1676 if (!diag) {
1677 mdcount = (int) val;
1678 if (raw)
1679 repeat = mdcount;
1680 else
1681 repeat = mdcount * 16 / bytesperword;
1682 }
1683 }
1684 if (argc >= nextarg+1) {
1685 diag = kdbgetularg(argv[nextarg+1], &val);
1686 if (!diag)
1687 radix = (int) val;
1688 }
1689 }
1690
1691 if (strcmp(argv[0], "mdr") == 0) {
1692 int ret;
1693 last_addr = addr;
1694 ret = kdb_mdr(addr, mdcount);
1695 last_addr += mdcount;
1696 last_repeat = mdcount;
1697 last_bytesperword = bytesperword; // to make REPEAT happy
1698 return ret;
1699 }
1700
1701 switch (radix) {
1702 case 10:
1703 fmtchar = 'd';
1704 break;
1705 case 16:
1706 fmtchar = 'x';
1707 break;
1708 case 8:
1709 fmtchar = 'o';
1710 break;
1711 default:
1712 return KDB_BADRADIX;
1713 }
1714
1715 last_radix = radix;
1716
1717 if (bytesperword > KDB_WORD_SIZE)
1718 return KDB_BADWIDTH;
1719
1720 switch (bytesperword) {
1721 case 8:
1722 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1723 break;
1724 case 4:
1725 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1726 break;
1727 case 2:
1728 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1729 break;
1730 case 1:
1731 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1732 break;
1733 default:
1734 return KDB_BADWIDTH;
1735 }
1736
1737 last_repeat = repeat;
1738 last_bytesperword = bytesperword;
1739
1740 if (strcmp(argv[0], "mds") == 0) {
1741 symbolic = 1;
1742 /* Do not save these changes as last_*, they are temporary mds
1743 * overrides.
1744 */
1745 bytesperword = KDB_WORD_SIZE;
1746 repeat = mdcount;
1747 kdbgetintenv("NOSECT", &nosect);
1748 }
1749
1750 /* Round address down modulo BYTESPERWORD */
1751
1752 addr &= ~(bytesperword-1);
1753
1754 while (repeat > 0) {
1755 unsigned long a;
1756 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1757
1758 if (KDB_FLAG(CMD_INTERRUPT))
1759 return 0;
1760 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1761 if (phys) {
1762 if (kdb_getphysword(&word, a, bytesperword)
1763 || word)
1764 break;
1765 } else if (kdb_getword(&word, a, bytesperword) || word)
1766 break;
1767 }
1768 n = min(num, repeat);
1769 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1770 num, repeat, phys);
1771 addr += bytesperword * n;
1772 repeat -= n;
1773 z = (z + num - 1) / num;
1774 if (z > 2) {
1775 int s = num * (z-2);
1776 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1777 " zero suppressed\n",
1778 addr, addr + bytesperword * s - 1);
1779 addr += bytesperword * s;
1780 repeat -= s;
1781 }
1782 }
1783 last_addr = addr;
1784
1785 return 0;
1786}
1787
1788/*
1789 * kdb_mm - This function implements the 'mm' command.
1790 * mm address-expression new-value
1791 * Remarks:
1792 * mm works on machine words, mmW works on bytes.
1793 */
1794static int kdb_mm(int argc, const char **argv)
1795{
1796 int diag;
1797 unsigned long addr;
1798 long offset = 0;
1799 unsigned long contents;
1800 int nextarg;
1801 int width;
1802
1803 if (argv[0][2] && !isdigit(argv[0][2]))
1804 return KDB_NOTFOUND;
1805
1806 if (argc < 2)
1807 return KDB_ARGCOUNT;
1808
1809 nextarg = 1;
1810 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1811 if (diag)
1812 return diag;
1813
1814 if (nextarg > argc)
1815 return KDB_ARGCOUNT;
1816 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1817 if (diag)
1818 return diag;
1819
1820 if (nextarg != argc + 1)
1821 return KDB_ARGCOUNT;
1822
1823 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1824 diag = kdb_putword(addr, contents, width);
1825 if (diag)
1826 return diag;
1827
1828 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1829
1830 return 0;
1831}
1832
1833/*
1834 * kdb_go - This function implements the 'go' command.
1835 * go [address-expression]
1836 */
1837static int kdb_go(int argc, const char **argv)
1838{
1839 unsigned long addr;
1840 int diag;
1841 int nextarg;
1842 long offset;
1843
1844 if (raw_smp_processor_id() != kdb_initial_cpu) {
1845 kdb_printf("go must execute on the entry cpu, "
1846 "please use \"cpu %d\" and then execute go\n",
1847 kdb_initial_cpu);
1848 return KDB_BADCPUNUM;
1849 }
1850 if (argc == 1) {
1851 nextarg = 1;
1852 diag = kdbgetaddrarg(argc, argv, &nextarg,
1853 &addr, &offset, NULL);
1854 if (diag)
1855 return diag;
1856 } else if (argc) {
1857 return KDB_ARGCOUNT;
1858 }
1859
1860 diag = KDB_CMD_GO;
1861 if (KDB_FLAG(CATASTROPHIC)) {
1862 kdb_printf("Catastrophic error detected\n");
1863 kdb_printf("kdb_continue_catastrophic=%d, ",
1864 kdb_continue_catastrophic);
1865 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1866 kdb_printf("type go a second time if you really want "
1867 "to continue\n");
1868 return 0;
1869 }
1870 if (kdb_continue_catastrophic == 2) {
1871 kdb_printf("forcing reboot\n");
1872 kdb_reboot(0, NULL);
1873 }
1874 kdb_printf("attempting to continue\n");
1875 }
1876 return diag;
1877}
1878
1879/*
1880 * kdb_rd - This function implements the 'rd' command.
1881 */
1882static int kdb_rd(int argc, const char **argv)
1883{
1884 int len = kdb_check_regs();
1885#if DBG_MAX_REG_NUM > 0
1886 int i;
1887 char *rname;
1888 int rsize;
1889 u64 reg64;
1890 u32 reg32;
1891 u16 reg16;
1892 u8 reg8;
1893
1894 if (len)
1895 return len;
1896
1897 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1898 rsize = dbg_reg_def[i].size * 2;
1899 if (rsize > 16)
1900 rsize = 2;
1901 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1902 len = 0;
1903 kdb_printf("\n");
1904 }
1905 if (len)
1906 len += kdb_printf(" ");
1907 switch(dbg_reg_def[i].size * 8) {
1908 case 8:
1909 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1910 if (!rname)
1911 break;
1912 len += kdb_printf("%s: %02x", rname, reg8);
1913 break;
1914 case 16:
1915 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1916 if (!rname)
1917 break;
1918 len += kdb_printf("%s: %04x", rname, reg16);
1919 break;
1920 case 32:
1921 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1922 if (!rname)
1923 break;
1924 len += kdb_printf("%s: %08x", rname, reg32);
1925 break;
1926 case 64:
1927 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1928 if (!rname)
1929 break;
1930 len += kdb_printf("%s: %016llx", rname, reg64);
1931 break;
1932 default:
1933 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1934 }
1935 }
1936 kdb_printf("\n");
1937#else
1938 if (len)
1939 return len;
1940
1941 kdb_dumpregs(kdb_current_regs);
1942#endif
1943 return 0;
1944}
1945
1946/*
1947 * kdb_rm - This function implements the 'rm' (register modify) command.
1948 * rm register-name new-contents
1949 * Remarks:
1950 * Allows register modification with the same restrictions as gdb
1951 */
1952static int kdb_rm(int argc, const char **argv)
1953{
1954#if DBG_MAX_REG_NUM > 0
1955 int diag;
1956 const char *rname;
1957 int i;
1958 u64 reg64;
1959 u32 reg32;
1960 u16 reg16;
1961 u8 reg8;
1962
1963 if (argc != 2)
1964 return KDB_ARGCOUNT;
1965 /*
1966 * Allow presence or absence of leading '%' symbol.
1967 */
1968 rname = argv[1];
1969 if (*rname == '%')
1970 rname++;
1971
1972 diag = kdbgetu64arg(argv[2], ®64);
1973 if (diag)
1974 return diag;
1975
1976 diag = kdb_check_regs();
1977 if (diag)
1978 return diag;
1979
1980 diag = KDB_BADREG;
1981 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1982 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1983 diag = 0;
1984 break;
1985 }
1986 }
1987 if (!diag) {
1988 switch(dbg_reg_def[i].size * 8) {
1989 case 8:
1990 reg8 = reg64;
1991 dbg_set_reg(i, ®8, kdb_current_regs);
1992 break;
1993 case 16:
1994 reg16 = reg64;
1995 dbg_set_reg(i, ®16, kdb_current_regs);
1996 break;
1997 case 32:
1998 reg32 = reg64;
1999 dbg_set_reg(i, ®32, kdb_current_regs);
2000 break;
2001 case 64:
2002 dbg_set_reg(i, ®64, kdb_current_regs);
2003 break;
2004 }
2005 }
2006 return diag;
2007#else
2008 kdb_printf("ERROR: Register set currently not implemented\n");
2009 return 0;
2010#endif
2011}
2012
2013#if defined(CONFIG_MAGIC_SYSRQ)
2014/*
2015 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2016 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2017 * sr <magic-sysrq-code>
2018 */
2019static int kdb_sr(int argc, const char **argv)
2020{
2021 bool check_mask =
2022 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2023
2024 if (argc != 1)
2025 return KDB_ARGCOUNT;
2026
2027 kdb_trap_printk++;
2028 __handle_sysrq(*argv[1], check_mask);
2029 kdb_trap_printk--;
2030
2031 return 0;
2032}
2033#endif /* CONFIG_MAGIC_SYSRQ */
2034
2035/*
2036 * kdb_ef - This function implements the 'regs' (display exception
2037 * frame) command. This command takes an address and expects to
2038 * find an exception frame at that address, formats and prints
2039 * it.
2040 * regs address-expression
2041 * Remarks:
2042 * Not done yet.
2043 */
2044static int kdb_ef(int argc, const char **argv)
2045{
2046 int diag;
2047 unsigned long addr;
2048 long offset;
2049 int nextarg;
2050
2051 if (argc != 1)
2052 return KDB_ARGCOUNT;
2053
2054 nextarg = 1;
2055 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2056 if (diag)
2057 return diag;
2058 show_regs((struct pt_regs *)addr);
2059 return 0;
2060}
2061
2062/*
2063 * kdb_env - This function implements the 'env' command. Display the
2064 * current environment variables.
2065 */
2066
2067static int kdb_env(int argc, const char **argv)
2068{
2069 kdb_printenv();
2070
2071 if (KDB_DEBUG(MASK))
2072 kdb_printf("KDBDEBUG=0x%x\n",
2073 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2074
2075 return 0;
2076}
2077
2078#ifdef CONFIG_PRINTK
2079/*
2080 * kdb_dmesg - This function implements the 'dmesg' command to display
2081 * the contents of the syslog buffer.
2082 * dmesg [lines] [adjust]
2083 */
2084static int kdb_dmesg(int argc, const char **argv)
2085{
2086 int diag;
2087 int logging;
2088 int lines = 0;
2089 int adjust = 0;
2090 int n = 0;
2091 int skip = 0;
2092 struct kmsg_dump_iter iter;
2093 size_t len;
2094 char buf[201];
2095
2096 if (argc > 2)
2097 return KDB_ARGCOUNT;
2098 if (argc) {
2099 char *cp;
2100 lines = simple_strtol(argv[1], &cp, 0);
2101 if (*cp)
2102 lines = 0;
2103 if (argc > 1) {
2104 adjust = simple_strtoul(argv[2], &cp, 0);
2105 if (*cp || adjust < 0)
2106 adjust = 0;
2107 }
2108 }
2109
2110 /* disable LOGGING if set */
2111 diag = kdbgetintenv("LOGGING", &logging);
2112 if (!diag && logging) {
2113 const char *setargs[] = { "set", "LOGGING", "0" };
2114 kdb_set(2, setargs);
2115 }
2116
2117 kmsg_dump_rewind(&iter);
2118 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2119 n++;
2120
2121 if (lines < 0) {
2122 if (adjust >= n)
2123 kdb_printf("buffer only contains %d lines, nothing "
2124 "printed\n", n);
2125 else if (adjust - lines >= n)
2126 kdb_printf("buffer only contains %d lines, last %d "
2127 "lines printed\n", n, n - adjust);
2128 skip = adjust;
2129 lines = abs(lines);
2130 } else if (lines > 0) {
2131 skip = n - lines - adjust;
2132 lines = abs(lines);
2133 if (adjust >= n) {
2134 kdb_printf("buffer only contains %d lines, "
2135 "nothing printed\n", n);
2136 skip = n;
2137 } else if (skip < 0) {
2138 lines += skip;
2139 skip = 0;
2140 kdb_printf("buffer only contains %d lines, first "
2141 "%d lines printed\n", n, lines);
2142 }
2143 } else {
2144 lines = n;
2145 }
2146
2147 if (skip >= n || skip < 0)
2148 return 0;
2149
2150 kmsg_dump_rewind(&iter);
2151 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2152 if (skip) {
2153 skip--;
2154 continue;
2155 }
2156 if (!lines--)
2157 break;
2158 if (KDB_FLAG(CMD_INTERRUPT))
2159 return 0;
2160
2161 kdb_printf("%.*s\n", (int)len - 1, buf);
2162 }
2163
2164 return 0;
2165}
2166#endif /* CONFIG_PRINTK */
2167
2168/* Make sure we balance enable/disable calls, must disable first. */
2169static atomic_t kdb_nmi_disabled;
2170
2171static int kdb_disable_nmi(int argc, const char *argv[])
2172{
2173 if (atomic_read(&kdb_nmi_disabled))
2174 return 0;
2175 atomic_set(&kdb_nmi_disabled, 1);
2176 arch_kgdb_ops.enable_nmi(0);
2177 return 0;
2178}
2179
2180static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2181{
2182 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2183 return -EINVAL;
2184 arch_kgdb_ops.enable_nmi(1);
2185 return 0;
2186}
2187
2188static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2189 .set = kdb_param_enable_nmi,
2190};
2191module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2192
2193/*
2194 * kdb_cpu - This function implements the 'cpu' command.
2195 * cpu [<cpunum>]
2196 * Returns:
2197 * KDB_CMD_CPU for success, a kdb diagnostic if error
2198 */
2199static void kdb_cpu_status(void)
2200{
2201 int i, start_cpu, first_print = 1;
2202 char state, prev_state = '?';
2203
2204 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2205 kdb_printf("Available cpus: ");
2206 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2207 if (!cpu_online(i)) {
2208 state = 'F'; /* cpu is offline */
2209 } else if (!kgdb_info[i].enter_kgdb) {
2210 state = 'D'; /* cpu is online but unresponsive */
2211 } else {
2212 state = ' '; /* cpu is responding to kdb */
2213 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2214 state = '-'; /* idle task */
2215 }
2216 if (state != prev_state) {
2217 if (prev_state != '?') {
2218 if (!first_print)
2219 kdb_printf(", ");
2220 first_print = 0;
2221 kdb_printf("%d", start_cpu);
2222 if (start_cpu < i-1)
2223 kdb_printf("-%d", i-1);
2224 if (prev_state != ' ')
2225 kdb_printf("(%c)", prev_state);
2226 }
2227 prev_state = state;
2228 start_cpu = i;
2229 }
2230 }
2231 /* print the trailing cpus, ignoring them if they are all offline */
2232 if (prev_state != 'F') {
2233 if (!first_print)
2234 kdb_printf(", ");
2235 kdb_printf("%d", start_cpu);
2236 if (start_cpu < i-1)
2237 kdb_printf("-%d", i-1);
2238 if (prev_state != ' ')
2239 kdb_printf("(%c)", prev_state);
2240 }
2241 kdb_printf("\n");
2242}
2243
2244static int kdb_cpu(int argc, const char **argv)
2245{
2246 unsigned long cpunum;
2247 int diag;
2248
2249 if (argc == 0) {
2250 kdb_cpu_status();
2251 return 0;
2252 }
2253
2254 if (argc != 1)
2255 return KDB_ARGCOUNT;
2256
2257 diag = kdbgetularg(argv[1], &cpunum);
2258 if (diag)
2259 return diag;
2260
2261 /*
2262 * Validate cpunum
2263 */
2264 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2265 return KDB_BADCPUNUM;
2266
2267 dbg_switch_cpu = cpunum;
2268
2269 /*
2270 * Switch to other cpu
2271 */
2272 return KDB_CMD_CPU;
2273}
2274
2275/* The user may not realize that ps/bta with no parameters does not print idle
2276 * or sleeping system daemon processes, so tell them how many were suppressed.
2277 */
2278void kdb_ps_suppressed(void)
2279{
2280 int idle = 0, daemon = 0;
2281 unsigned long cpu;
2282 const struct task_struct *p, *g;
2283 for_each_online_cpu(cpu) {
2284 p = kdb_curr_task(cpu);
2285 if (kdb_task_state(p, "-"))
2286 ++idle;
2287 }
2288 for_each_process_thread(g, p) {
2289 if (kdb_task_state(p, "ims"))
2290 ++daemon;
2291 }
2292 if (idle || daemon) {
2293 if (idle)
2294 kdb_printf("%d idle process%s (state -)%s\n",
2295 idle, idle == 1 ? "" : "es",
2296 daemon ? " and " : "");
2297 if (daemon)
2298 kdb_printf("%d sleeping system daemon (state [ims]) "
2299 "process%s", daemon,
2300 daemon == 1 ? "" : "es");
2301 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2302 }
2303}
2304
2305void kdb_ps1(const struct task_struct *p)
2306{
2307 int cpu;
2308 unsigned long tmp;
2309
2310 if (!p ||
2311 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2312 return;
2313
2314 cpu = kdb_process_cpu(p);
2315 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2316 (void *)p, p->pid, p->parent->pid,
2317 kdb_task_has_cpu(p), kdb_process_cpu(p),
2318 kdb_task_state_char(p),
2319 (void *)(&p->thread),
2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321 p->comm);
2322 if (kdb_task_has_cpu(p)) {
2323 if (!KDB_TSK(cpu)) {
2324 kdb_printf(" Error: no saved data for this cpu\n");
2325 } else {
2326 if (KDB_TSK(cpu) != p)
2327 kdb_printf(" Error: does not match running "
2328 "process table (0x%px)\n", KDB_TSK(cpu));
2329 }
2330 }
2331}
2332
2333/*
2334 * kdb_ps - This function implements the 'ps' command which shows a
2335 * list of the active processes.
2336 *
2337 * ps [<state_chars>] Show processes, optionally selecting only those whose
2338 * state character is found in <state_chars>.
2339 */
2340static int kdb_ps(int argc, const char **argv)
2341{
2342 struct task_struct *g, *p;
2343 const char *mask;
2344 unsigned long cpu;
2345
2346 if (argc == 0)
2347 kdb_ps_suppressed();
2348 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2349 (int)(2*sizeof(void *))+2, "Task Addr",
2350 (int)(2*sizeof(void *))+2, "Thread");
2351 mask = argc ? argv[1] : kdbgetenv("PS");
2352 /* Run the active tasks first */
2353 for_each_online_cpu(cpu) {
2354 if (KDB_FLAG(CMD_INTERRUPT))
2355 return 0;
2356 p = kdb_curr_task(cpu);
2357 if (kdb_task_state(p, mask))
2358 kdb_ps1(p);
2359 }
2360 kdb_printf("\n");
2361 /* Now the real tasks */
2362 for_each_process_thread(g, p) {
2363 if (KDB_FLAG(CMD_INTERRUPT))
2364 return 0;
2365 if (kdb_task_state(p, mask))
2366 kdb_ps1(p);
2367 }
2368
2369 return 0;
2370}
2371
2372/*
2373 * kdb_pid - This function implements the 'pid' command which switches
2374 * the currently active process.
2375 * pid [<pid> | R]
2376 */
2377static int kdb_pid(int argc, const char **argv)
2378{
2379 struct task_struct *p;
2380 unsigned long val;
2381 int diag;
2382
2383 if (argc > 1)
2384 return KDB_ARGCOUNT;
2385
2386 if (argc) {
2387 if (strcmp(argv[1], "R") == 0) {
2388 p = KDB_TSK(kdb_initial_cpu);
2389 } else {
2390 diag = kdbgetularg(argv[1], &val);
2391 if (diag)
2392 return KDB_BADINT;
2393
2394 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2395 if (!p) {
2396 kdb_printf("No task with pid=%d\n", (pid_t)val);
2397 return 0;
2398 }
2399 }
2400 kdb_set_current_task(p);
2401 }
2402 kdb_printf("KDB current process is %s(pid=%d)\n",
2403 kdb_current_task->comm,
2404 kdb_current_task->pid);
2405
2406 return 0;
2407}
2408
2409static int kdb_kgdb(int argc, const char **argv)
2410{
2411 return KDB_CMD_KGDB;
2412}
2413
2414/*
2415 * kdb_help - This function implements the 'help' and '?' commands.
2416 */
2417static int kdb_help(int argc, const char **argv)
2418{
2419 kdbtab_t *kt;
2420
2421 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2422 kdb_printf("-----------------------------"
2423 "-----------------------------\n");
2424 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2425 char *space = "";
2426 if (KDB_FLAG(CMD_INTERRUPT))
2427 return 0;
2428 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2429 continue;
2430 if (strlen(kt->usage) > 20)
2431 space = "\n ";
2432 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2433 kt->usage, space, kt->help);
2434 }
2435 return 0;
2436}
2437
2438/*
2439 * kdb_kill - This function implements the 'kill' commands.
2440 */
2441static int kdb_kill(int argc, const char **argv)
2442{
2443 long sig, pid;
2444 char *endp;
2445 struct task_struct *p;
2446
2447 if (argc != 2)
2448 return KDB_ARGCOUNT;
2449
2450 sig = simple_strtol(argv[1], &endp, 0);
2451 if (*endp)
2452 return KDB_BADINT;
2453 if ((sig >= 0) || !valid_signal(-sig)) {
2454 kdb_printf("Invalid signal parameter.<-signal>\n");
2455 return 0;
2456 }
2457 sig = -sig;
2458
2459 pid = simple_strtol(argv[2], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if (pid <= 0) {
2463 kdb_printf("Process ID must be large than 0.\n");
2464 return 0;
2465 }
2466
2467 /* Find the process. */
2468 p = find_task_by_pid_ns(pid, &init_pid_ns);
2469 if (!p) {
2470 kdb_printf("The specified process isn't found.\n");
2471 return 0;
2472 }
2473 p = p->group_leader;
2474 kdb_send_sig(p, sig);
2475 return 0;
2476}
2477
2478/*
2479 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2480 * I cannot call that code directly from kdb, it has an unconditional
2481 * cli()/sti() and calls routines that take locks which can stop the debugger.
2482 */
2483static void kdb_sysinfo(struct sysinfo *val)
2484{
2485 u64 uptime = ktime_get_mono_fast_ns();
2486
2487 memset(val, 0, sizeof(*val));
2488 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2489 val->loads[0] = avenrun[0];
2490 val->loads[1] = avenrun[1];
2491 val->loads[2] = avenrun[2];
2492 val->procs = nr_threads-1;
2493 si_meminfo(val);
2494
2495 return;
2496}
2497
2498/*
2499 * kdb_summary - This function implements the 'summary' command.
2500 */
2501static int kdb_summary(int argc, const char **argv)
2502{
2503 time64_t now;
2504 struct sysinfo val;
2505
2506 if (argc)
2507 return KDB_ARGCOUNT;
2508
2509 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2510 kdb_printf("release %s\n", init_uts_ns.name.release);
2511 kdb_printf("version %s\n", init_uts_ns.name.version);
2512 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2513 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2514 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2515
2516 now = __ktime_get_real_seconds();
2517 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2518 kdb_sysinfo(&val);
2519 kdb_printf("uptime ");
2520 if (val.uptime > (24*60*60)) {
2521 int days = val.uptime / (24*60*60);
2522 val.uptime %= (24*60*60);
2523 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2524 }
2525 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2526
2527 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2528 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2529 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2530 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2531
2532 /* Display in kilobytes */
2533#define K(x) ((x) << (PAGE_SHIFT - 10))
2534 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2535 "Buffers: %8lu kB\n",
2536 K(val.totalram), K(val.freeram), K(val.bufferram));
2537 return 0;
2538}
2539
2540/*
2541 * kdb_per_cpu - This function implements the 'per_cpu' command.
2542 */
2543static int kdb_per_cpu(int argc, const char **argv)
2544{
2545 char fmtstr[64];
2546 int cpu, diag, nextarg = 1;
2547 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2548
2549 if (argc < 1 || argc > 3)
2550 return KDB_ARGCOUNT;
2551
2552 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2553 if (diag)
2554 return diag;
2555
2556 if (argc >= 2) {
2557 diag = kdbgetularg(argv[2], &bytesperword);
2558 if (diag)
2559 return diag;
2560 }
2561 if (!bytesperword)
2562 bytesperword = KDB_WORD_SIZE;
2563 else if (bytesperword > KDB_WORD_SIZE)
2564 return KDB_BADWIDTH;
2565 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2566 if (argc >= 3) {
2567 diag = kdbgetularg(argv[3], &whichcpu);
2568 if (diag)
2569 return diag;
2570 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2571 kdb_printf("cpu %ld is not online\n", whichcpu);
2572 return KDB_BADCPUNUM;
2573 }
2574 }
2575
2576 /* Most architectures use __per_cpu_offset[cpu], some use
2577 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2578 */
2579#ifdef __per_cpu_offset
2580#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2581#else
2582#ifdef CONFIG_SMP
2583#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2584#else
2585#define KDB_PCU(cpu) 0
2586#endif
2587#endif
2588 for_each_online_cpu(cpu) {
2589 if (KDB_FLAG(CMD_INTERRUPT))
2590 return 0;
2591
2592 if (whichcpu != ~0UL && whichcpu != cpu)
2593 continue;
2594 addr = symaddr + KDB_PCU(cpu);
2595 diag = kdb_getword(&val, addr, bytesperword);
2596 if (diag) {
2597 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2598 "read, diag=%d\n", cpu, addr, diag);
2599 continue;
2600 }
2601 kdb_printf("%5d ", cpu);
2602 kdb_md_line(fmtstr, addr,
2603 bytesperword == KDB_WORD_SIZE,
2604 1, bytesperword, 1, 1, 0);
2605 }
2606#undef KDB_PCU
2607 return 0;
2608}
2609
2610/*
2611 * display help for the use of cmd | grep pattern
2612 */
2613static int kdb_grep_help(int argc, const char **argv)
2614{
2615 kdb_printf("Usage of cmd args | grep pattern:\n");
2616 kdb_printf(" Any command's output may be filtered through an ");
2617 kdb_printf("emulated 'pipe'.\n");
2618 kdb_printf(" 'grep' is just a key word.\n");
2619 kdb_printf(" The pattern may include a very limited set of "
2620 "metacharacters:\n");
2621 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2622 kdb_printf(" And if there are spaces in the pattern, you may "
2623 "quote it:\n");
2624 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2625 " or \"^pat tern$\"\n");
2626 return 0;
2627}
2628
2629/**
2630 * kdb_register() - This function is used to register a kernel debugger
2631 * command.
2632 * @cmd: pointer to kdb command
2633 *
2634 * Note that it's the job of the caller to keep the memory for the cmd
2635 * allocated until unregister is called.
2636 */
2637int kdb_register(kdbtab_t *cmd)
2638{
2639 kdbtab_t *kp;
2640
2641 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2642 if (strcmp(kp->name, cmd->name) == 0) {
2643 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2644 cmd->name, cmd->func, cmd->help);
2645 return 1;
2646 }
2647 }
2648
2649 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2650 return 0;
2651}
2652EXPORT_SYMBOL_GPL(kdb_register);
2653
2654/**
2655 * kdb_register_table() - This function is used to register a kdb command
2656 * table.
2657 * @kp: pointer to kdb command table
2658 * @len: length of kdb command table
2659 */
2660void kdb_register_table(kdbtab_t *kp, size_t len)
2661{
2662 while (len--) {
2663 list_add_tail(&kp->list_node, &kdb_cmds_head);
2664 kp++;
2665 }
2666}
2667
2668/**
2669 * kdb_unregister() - This function is used to unregister a kernel debugger
2670 * command. It is generally called when a module which
2671 * implements kdb command is unloaded.
2672 * @cmd: pointer to kdb command
2673 */
2674void kdb_unregister(kdbtab_t *cmd)
2675{
2676 list_del(&cmd->list_node);
2677}
2678EXPORT_SYMBOL_GPL(kdb_unregister);
2679
2680static kdbtab_t maintab[] = {
2681 { .name = "md",
2682 .func = kdb_md,
2683 .usage = "<vaddr>",
2684 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2685 .minlen = 1,
2686 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2687 },
2688 { .name = "mdr",
2689 .func = kdb_md,
2690 .usage = "<vaddr> <bytes>",
2691 .help = "Display Raw Memory",
2692 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2693 },
2694 { .name = "mdp",
2695 .func = kdb_md,
2696 .usage = "<paddr> <bytes>",
2697 .help = "Display Physical Memory",
2698 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2699 },
2700 { .name = "mds",
2701 .func = kdb_md,
2702 .usage = "<vaddr>",
2703 .help = "Display Memory Symbolically",
2704 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2705 },
2706 { .name = "mm",
2707 .func = kdb_mm,
2708 .usage = "<vaddr> <contents>",
2709 .help = "Modify Memory Contents",
2710 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2711 },
2712 { .name = "go",
2713 .func = kdb_go,
2714 .usage = "[<vaddr>]",
2715 .help = "Continue Execution",
2716 .minlen = 1,
2717 .flags = KDB_ENABLE_REG_WRITE |
2718 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2719 },
2720 { .name = "rd",
2721 .func = kdb_rd,
2722 .usage = "",
2723 .help = "Display Registers",
2724 .flags = KDB_ENABLE_REG_READ,
2725 },
2726 { .name = "rm",
2727 .func = kdb_rm,
2728 .usage = "<reg> <contents>",
2729 .help = "Modify Registers",
2730 .flags = KDB_ENABLE_REG_WRITE,
2731 },
2732 { .name = "ef",
2733 .func = kdb_ef,
2734 .usage = "<vaddr>",
2735 .help = "Display exception frame",
2736 .flags = KDB_ENABLE_MEM_READ,
2737 },
2738 { .name = "bt",
2739 .func = kdb_bt,
2740 .usage = "[<vaddr>]",
2741 .help = "Stack traceback",
2742 .minlen = 1,
2743 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2744 },
2745 { .name = "btp",
2746 .func = kdb_bt,
2747 .usage = "<pid>",
2748 .help = "Display stack for process <pid>",
2749 .flags = KDB_ENABLE_INSPECT,
2750 },
2751 { .name = "bta",
2752 .func = kdb_bt,
2753 .usage = "[<state_chars>|A]",
2754 .help = "Backtrace all processes whose state matches",
2755 .flags = KDB_ENABLE_INSPECT,
2756 },
2757 { .name = "btc",
2758 .func = kdb_bt,
2759 .usage = "",
2760 .help = "Backtrace current process on each cpu",
2761 .flags = KDB_ENABLE_INSPECT,
2762 },
2763 { .name = "btt",
2764 .func = kdb_bt,
2765 .usage = "<vaddr>",
2766 .help = "Backtrace process given its struct task address",
2767 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2768 },
2769 { .name = "env",
2770 .func = kdb_env,
2771 .usage = "",
2772 .help = "Show environment variables",
2773 .flags = KDB_ENABLE_ALWAYS_SAFE,
2774 },
2775 { .name = "set",
2776 .func = kdb_set,
2777 .usage = "",
2778 .help = "Set environment variables",
2779 .flags = KDB_ENABLE_ALWAYS_SAFE,
2780 },
2781 { .name = "help",
2782 .func = kdb_help,
2783 .usage = "",
2784 .help = "Display Help Message",
2785 .minlen = 1,
2786 .flags = KDB_ENABLE_ALWAYS_SAFE,
2787 },
2788 { .name = "?",
2789 .func = kdb_help,
2790 .usage = "",
2791 .help = "Display Help Message",
2792 .flags = KDB_ENABLE_ALWAYS_SAFE,
2793 },
2794 { .name = "cpu",
2795 .func = kdb_cpu,
2796 .usage = "<cpunum>",
2797 .help = "Switch to new cpu",
2798 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2799 },
2800 { .name = "kgdb",
2801 .func = kdb_kgdb,
2802 .usage = "",
2803 .help = "Enter kgdb mode",
2804 .flags = 0,
2805 },
2806 { .name = "ps",
2807 .func = kdb_ps,
2808 .usage = "[<state_chars>|A]",
2809 .help = "Display active task list",
2810 .flags = KDB_ENABLE_INSPECT,
2811 },
2812 { .name = "pid",
2813 .func = kdb_pid,
2814 .usage = "<pidnum>",
2815 .help = "Switch to another task",
2816 .flags = KDB_ENABLE_INSPECT,
2817 },
2818 { .name = "reboot",
2819 .func = kdb_reboot,
2820 .usage = "",
2821 .help = "Reboot the machine immediately",
2822 .flags = KDB_ENABLE_REBOOT,
2823 },
2824#if defined(CONFIG_MODULES)
2825 { .name = "lsmod",
2826 .func = kdb_lsmod,
2827 .usage = "",
2828 .help = "List loaded kernel modules",
2829 .flags = KDB_ENABLE_INSPECT,
2830 },
2831#endif
2832#if defined(CONFIG_MAGIC_SYSRQ)
2833 { .name = "sr",
2834 .func = kdb_sr,
2835 .usage = "<key>",
2836 .help = "Magic SysRq key",
2837 .flags = KDB_ENABLE_ALWAYS_SAFE,
2838 },
2839#endif
2840#if defined(CONFIG_PRINTK)
2841 { .name = "dmesg",
2842 .func = kdb_dmesg,
2843 .usage = "[lines]",
2844 .help = "Display syslog buffer",
2845 .flags = KDB_ENABLE_ALWAYS_SAFE,
2846 },
2847#endif
2848 { .name = "defcmd",
2849 .func = kdb_defcmd,
2850 .usage = "name \"usage\" \"help\"",
2851 .help = "Define a set of commands, down to endefcmd",
2852 /*
2853 * Macros are always safe because when executed each
2854 * internal command re-enters kdb_parse() and is safety
2855 * checked individually.
2856 */
2857 .flags = KDB_ENABLE_ALWAYS_SAFE,
2858 },
2859 { .name = "kill",
2860 .func = kdb_kill,
2861 .usage = "<-signal> <pid>",
2862 .help = "Send a signal to a process",
2863 .flags = KDB_ENABLE_SIGNAL,
2864 },
2865 { .name = "summary",
2866 .func = kdb_summary,
2867 .usage = "",
2868 .help = "Summarize the system",
2869 .minlen = 4,
2870 .flags = KDB_ENABLE_ALWAYS_SAFE,
2871 },
2872 { .name = "per_cpu",
2873 .func = kdb_per_cpu,
2874 .usage = "<sym> [<bytes>] [<cpu>]",
2875 .help = "Display per_cpu variables",
2876 .minlen = 3,
2877 .flags = KDB_ENABLE_MEM_READ,
2878 },
2879 { .name = "grephelp",
2880 .func = kdb_grep_help,
2881 .usage = "",
2882 .help = "Display help on | grep",
2883 .flags = KDB_ENABLE_ALWAYS_SAFE,
2884 },
2885};
2886
2887static kdbtab_t nmicmd = {
2888 .name = "disable_nmi",
2889 .func = kdb_disable_nmi,
2890 .usage = "",
2891 .help = "Disable NMI entry to KDB",
2892 .flags = KDB_ENABLE_ALWAYS_SAFE,
2893};
2894
2895/* Initialize the kdb command table. */
2896static void __init kdb_inittab(void)
2897{
2898 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2899 if (arch_kgdb_ops.enable_nmi)
2900 kdb_register_table(&nmicmd, 1);
2901}
2902
2903/* Execute any commands defined in kdb_cmds. */
2904static void __init kdb_cmd_init(void)
2905{
2906 int i, diag;
2907 for (i = 0; kdb_cmds[i]; ++i) {
2908 diag = kdb_parse(kdb_cmds[i]);
2909 if (diag)
2910 kdb_printf("kdb command %s failed, kdb diag %d\n",
2911 kdb_cmds[i], diag);
2912 }
2913 if (defcmd_in_progress) {
2914 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2915 kdb_parse("endefcmd");
2916 }
2917}
2918
2919/* Initialize kdb_printf, breakpoint tables and kdb state */
2920void __init kdb_init(int lvl)
2921{
2922 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2923 int i;
2924
2925 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2926 return;
2927 for (i = kdb_init_lvl; i < lvl; i++) {
2928 switch (i) {
2929 case KDB_NOT_INITIALIZED:
2930 kdb_inittab(); /* Initialize Command Table */
2931 kdb_initbptab(); /* Initialize Breakpoints */
2932 break;
2933 case KDB_INIT_EARLY:
2934 kdb_cmd_init(); /* Build kdb_cmds tables */
2935 break;
2936 }
2937 }
2938 kdb_init_lvl = lvl;
2939}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
25#include <linux/atomic.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
53char kdb_grep_string[KDB_GREP_STRLEN];
54int kdb_grepping_flag;
55EXPORT_SYMBOL(kdb_grepping_flag);
56int kdb_grep_leading;
57int kdb_grep_trailing;
58
59/*
60 * Kernel debugger state flags
61 */
62int kdb_flags;
63atomic_t kdb_event;
64
65/*
66 * kdb_lock protects updates to kdb_initial_cpu. Used to
67 * single thread processors through the kernel debugger.
68 */
69int kdb_initial_cpu = -1; /* cpu number that owns kdb */
70int kdb_nextline = 1;
71int kdb_state; /* General KDB state */
72
73struct task_struct *kdb_current_task;
74EXPORT_SYMBOL(kdb_current_task);
75struct pt_regs *kdb_current_regs;
76
77const char *kdb_diemsg;
78static int kdb_go_count;
79#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
80static unsigned int kdb_continue_catastrophic =
81 CONFIG_KDB_CONTINUE_CATASTROPHIC;
82#else
83static unsigned int kdb_continue_catastrophic;
84#endif
85
86/* kdb_commands describes the available commands. */
87static kdbtab_t *kdb_commands;
88#define KDB_BASE_CMD_MAX 50
89static int kdb_max_commands = KDB_BASE_CMD_MAX;
90static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
91#define for_each_kdbcmd(cmd, num) \
92 for ((cmd) = kdb_base_commands, (num) = 0; \
93 num < kdb_max_commands; \
94 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
95
96typedef struct _kdbmsg {
97 int km_diag; /* kdb diagnostic */
98 char *km_msg; /* Corresponding message text */
99} kdbmsg_t;
100
101#define KDBMSG(msgnum, text) \
102 { KDB_##msgnum, text }
103
104static kdbmsg_t kdbmsgs[] = {
105 KDBMSG(NOTFOUND, "Command Not Found"),
106 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
107 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
108 "8 is only allowed on 64 bit systems"),
109 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
110 KDBMSG(NOTENV, "Cannot find environment variable"),
111 KDBMSG(NOENVVALUE, "Environment variable should have value"),
112 KDBMSG(NOTIMP, "Command not implemented"),
113 KDBMSG(ENVFULL, "Environment full"),
114 KDBMSG(ENVBUFFULL, "Environment buffer full"),
115 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
116#ifdef CONFIG_CPU_XSCALE
117 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
118#else
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
120#endif
121 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
122 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
123 KDBMSG(BADMODE, "Invalid IDMODE"),
124 KDBMSG(BADINT, "Illegal numeric value"),
125 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
126 KDBMSG(BADREG, "Invalid register name"),
127 KDBMSG(BADCPUNUM, "Invalid cpu number"),
128 KDBMSG(BADLENGTH, "Invalid length field"),
129 KDBMSG(NOBP, "No Breakpoint exists"),
130 KDBMSG(BADADDR, "Invalid address"),
131 KDBMSG(NOPERM, "Permission denied"),
132};
133#undef KDBMSG
134
135static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
136
137
138/*
139 * Initial environment. This is all kept static and local to
140 * this file. We don't want to rely on the memory allocation
141 * mechanisms in the kernel, so we use a very limited allocate-only
142 * heap for new and altered environment variables. The entire
143 * environment is limited to a fixed number of entries (add more
144 * to __env[] if required) and a fixed amount of heap (add more to
145 * KDB_ENVBUFSIZE if required).
146 */
147
148static char *__env[] = {
149#if defined(CONFIG_SMP)
150 "PROMPT=[%d]kdb> ",
151#else
152 "PROMPT=kdb> ",
153#endif
154 "MOREPROMPT=more> ",
155 "RADIX=16",
156 "MDCOUNT=8", /* lines of md output */
157 KDB_PLATFORM_ENV,
158 "DTABCOUNT=30",
159 "NOSECT=1",
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184};
185
186static const int __nenv = ARRAY_SIZE(__env);
187
188struct task_struct *kdb_curr_task(int cpu)
189{
190 struct task_struct *p = curr_task(cpu);
191#ifdef _TIF_MCA_INIT
192 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
193 p = krp->p;
194#endif
195 return p;
196}
197
198/*
199 * Check whether the flags of the current command and the permissions
200 * of the kdb console has allow a command to be run.
201 */
202static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
203 bool no_args)
204{
205 /* permissions comes from userspace so needs massaging slightly */
206 permissions &= KDB_ENABLE_MASK;
207 permissions |= KDB_ENABLE_ALWAYS_SAFE;
208
209 /* some commands change group when launched with no arguments */
210 if (no_args)
211 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
212
213 flags |= KDB_ENABLE_ALL;
214
215 return permissions & flags;
216}
217
218/*
219 * kdbgetenv - This function will return the character string value of
220 * an environment variable.
221 * Parameters:
222 * match A character string representing an environment variable.
223 * Returns:
224 * NULL No environment variable matches 'match'
225 * char* Pointer to string value of environment variable.
226 */
227char *kdbgetenv(const char *match)
228{
229 char **ep = __env;
230 int matchlen = strlen(match);
231 int i;
232
233 for (i = 0; i < __nenv; i++) {
234 char *e = *ep++;
235
236 if (!e)
237 continue;
238
239 if ((strncmp(match, e, matchlen) == 0)
240 && ((e[matchlen] == '\0')
241 || (e[matchlen] == '='))) {
242 char *cp = strchr(e, '=');
243 return cp ? ++cp : "";
244 }
245 }
246 return NULL;
247}
248
249/*
250 * kdballocenv - This function is used to allocate bytes for
251 * environment entries.
252 * Parameters:
253 * match A character string representing a numeric value
254 * Outputs:
255 * *value the unsigned long representation of the env variable 'match'
256 * Returns:
257 * Zero on success, a kdb diagnostic on failure.
258 * Remarks:
259 * We use a static environment buffer (envbuffer) to hold the values
260 * of dynamically generated environment variables (see kdb_set). Buffer
261 * space once allocated is never free'd, so over time, the amount of space
262 * (currently 512 bytes) will be exhausted if env variables are changed
263 * frequently.
264 */
265static char *kdballocenv(size_t bytes)
266{
267#define KDB_ENVBUFSIZE 512
268 static char envbuffer[KDB_ENVBUFSIZE];
269 static int envbufsize;
270 char *ep = NULL;
271
272 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
273 ep = &envbuffer[envbufsize];
274 envbufsize += bytes;
275 }
276 return ep;
277}
278
279/*
280 * kdbgetulenv - This function will return the value of an unsigned
281 * long-valued environment variable.
282 * Parameters:
283 * match A character string representing a numeric value
284 * Outputs:
285 * *value the unsigned long represntation of the env variable 'match'
286 * Returns:
287 * Zero on success, a kdb diagnostic on failure.
288 */
289static int kdbgetulenv(const char *match, unsigned long *value)
290{
291 char *ep;
292
293 ep = kdbgetenv(match);
294 if (!ep)
295 return KDB_NOTENV;
296 if (strlen(ep) == 0)
297 return KDB_NOENVVALUE;
298
299 *value = simple_strtoul(ep, NULL, 0);
300
301 return 0;
302}
303
304/*
305 * kdbgetintenv - This function will return the value of an
306 * integer-valued environment variable.
307 * Parameters:
308 * match A character string representing an integer-valued env variable
309 * Outputs:
310 * *value the integer representation of the environment variable 'match'
311 * Returns:
312 * Zero on success, a kdb diagnostic on failure.
313 */
314int kdbgetintenv(const char *match, int *value)
315{
316 unsigned long val;
317 int diag;
318
319 diag = kdbgetulenv(match, &val);
320 if (!diag)
321 *value = (int) val;
322 return diag;
323}
324
325/*
326 * kdbgetularg - This function will convert a numeric string into an
327 * unsigned long value.
328 * Parameters:
329 * arg A character string representing a numeric value
330 * Outputs:
331 * *value the unsigned long represntation of arg.
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
335int kdbgetularg(const char *arg, unsigned long *value)
336{
337 char *endp;
338 unsigned long val;
339
340 val = simple_strtoul(arg, &endp, 0);
341
342 if (endp == arg) {
343 /*
344 * Also try base 16, for us folks too lazy to type the
345 * leading 0x...
346 */
347 val = simple_strtoul(arg, &endp, 16);
348 if (endp == arg)
349 return KDB_BADINT;
350 }
351
352 *value = val;
353
354 return 0;
355}
356
357int kdbgetu64arg(const char *arg, u64 *value)
358{
359 char *endp;
360 u64 val;
361
362 val = simple_strtoull(arg, &endp, 0);
363
364 if (endp == arg) {
365
366 val = simple_strtoull(arg, &endp, 16);
367 if (endp == arg)
368 return KDB_BADINT;
369 }
370
371 *value = val;
372
373 return 0;
374}
375
376/*
377 * kdb_set - This function implements the 'set' command. Alter an
378 * existing environment variable or create a new one.
379 */
380int kdb_set(int argc, const char **argv)
381{
382 int i;
383 char *ep;
384 size_t varlen, vallen;
385
386 /*
387 * we can be invoked two ways:
388 * set var=value argv[1]="var", argv[2]="value"
389 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
390 * - if the latter, shift 'em down.
391 */
392 if (argc == 3) {
393 argv[2] = argv[3];
394 argc--;
395 }
396
397 if (argc != 2)
398 return KDB_ARGCOUNT;
399
400 /*
401 * Check for internal variables
402 */
403 if (strcmp(argv[1], "KDBDEBUG") == 0) {
404 unsigned int debugflags;
405 char *cp;
406
407 debugflags = simple_strtoul(argv[2], &cp, 0);
408 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
409 kdb_printf("kdb: illegal debug flags '%s'\n",
410 argv[2]);
411 return 0;
412 }
413 kdb_flags = (kdb_flags &
414 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
415 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
416
417 return 0;
418 }
419
420 /*
421 * Tokenizer squashed the '=' sign. argv[1] is variable
422 * name, argv[2] = value.
423 */
424 varlen = strlen(argv[1]);
425 vallen = strlen(argv[2]);
426 ep = kdballocenv(varlen + vallen + 2);
427 if (ep == (char *)0)
428 return KDB_ENVBUFFULL;
429
430 sprintf(ep, "%s=%s", argv[1], argv[2]);
431
432 ep[varlen+vallen+1] = '\0';
433
434 for (i = 0; i < __nenv; i++) {
435 if (__env[i]
436 && ((strncmp(__env[i], argv[1], varlen) == 0)
437 && ((__env[i][varlen] == '\0')
438 || (__env[i][varlen] == '=')))) {
439 __env[i] = ep;
440 return 0;
441 }
442 }
443
444 /*
445 * Wasn't existing variable. Fit into slot.
446 */
447 for (i = 0; i < __nenv-1; i++) {
448 if (__env[i] == (char *)0) {
449 __env[i] = ep;
450 return 0;
451 }
452 }
453
454 return KDB_ENVFULL;
455}
456
457static int kdb_check_regs(void)
458{
459 if (!kdb_current_regs) {
460 kdb_printf("No current kdb registers."
461 " You may need to select another task\n");
462 return KDB_BADREG;
463 }
464 return 0;
465}
466
467/*
468 * kdbgetaddrarg - This function is responsible for parsing an
469 * address-expression and returning the value of the expression,
470 * symbol name, and offset to the caller.
471 *
472 * The argument may consist of a numeric value (decimal or
473 * hexidecimal), a symbol name, a register name (preceded by the
474 * percent sign), an environment variable with a numeric value
475 * (preceded by a dollar sign) or a simple arithmetic expression
476 * consisting of a symbol name, +/-, and a numeric constant value
477 * (offset).
478 * Parameters:
479 * argc - count of arguments in argv
480 * argv - argument vector
481 * *nextarg - index to next unparsed argument in argv[]
482 * regs - Register state at time of KDB entry
483 * Outputs:
484 * *value - receives the value of the address-expression
485 * *offset - receives the offset specified, if any
486 * *name - receives the symbol name, if any
487 * *nextarg - index to next unparsed argument in argv[]
488 * Returns:
489 * zero is returned on success, a kdb diagnostic code is
490 * returned on error.
491 */
492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 unsigned long *value, long *offset,
494 char **name)
495{
496 unsigned long addr;
497 unsigned long off = 0;
498 int positive;
499 int diag;
500 int found = 0;
501 char *symname;
502 char symbol = '\0';
503 char *cp;
504 kdb_symtab_t symtab;
505
506 /*
507 * If the enable flags prohibit both arbitrary memory access
508 * and flow control then there are no reasonable grounds to
509 * provide symbol lookup.
510 */
511 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 kdb_cmd_enabled, false))
513 return KDB_NOPERM;
514
515 /*
516 * Process arguments which follow the following syntax:
517 *
518 * symbol | numeric-address [+/- numeric-offset]
519 * %register
520 * $environment-variable
521 */
522
523 if (*nextarg > argc)
524 return KDB_ARGCOUNT;
525
526 symname = (char *)argv[*nextarg];
527
528 /*
529 * If there is no whitespace between the symbol
530 * or address and the '+' or '-' symbols, we
531 * remember the character and replace it with a
532 * null so the symbol/value can be properly parsed
533 */
534 cp = strpbrk(symname, "+-");
535 if (cp != NULL) {
536 symbol = *cp;
537 *cp++ = '\0';
538 }
539
540 if (symname[0] == '$') {
541 diag = kdbgetulenv(&symname[1], &addr);
542 if (diag)
543 return diag;
544 } else if (symname[0] == '%') {
545 diag = kdb_check_regs();
546 if (diag)
547 return diag;
548 /* Implement register values with % at a later time as it is
549 * arch optional.
550 */
551 return KDB_NOTIMP;
552 } else {
553 found = kdbgetsymval(symname, &symtab);
554 if (found) {
555 addr = symtab.sym_start;
556 } else {
557 diag = kdbgetularg(argv[*nextarg], &addr);
558 if (diag)
559 return diag;
560 }
561 }
562
563 if (!found)
564 found = kdbnearsym(addr, &symtab);
565
566 (*nextarg)++;
567
568 if (name)
569 *name = symname;
570 if (value)
571 *value = addr;
572 if (offset && name && *name)
573 *offset = addr - symtab.sym_start;
574
575 if ((*nextarg > argc)
576 && (symbol == '\0'))
577 return 0;
578
579 /*
580 * check for +/- and offset
581 */
582
583 if (symbol == '\0') {
584 if ((argv[*nextarg][0] != '+')
585 && (argv[*nextarg][0] != '-')) {
586 /*
587 * Not our argument. Return.
588 */
589 return 0;
590 } else {
591 positive = (argv[*nextarg][0] == '+');
592 (*nextarg)++;
593 }
594 } else
595 positive = (symbol == '+');
596
597 /*
598 * Now there must be an offset!
599 */
600 if ((*nextarg > argc)
601 && (symbol == '\0')) {
602 return KDB_INVADDRFMT;
603 }
604
605 if (!symbol) {
606 cp = (char *)argv[*nextarg];
607 (*nextarg)++;
608 }
609
610 diag = kdbgetularg(cp, &off);
611 if (diag)
612 return diag;
613
614 if (!positive)
615 off = -off;
616
617 if (offset)
618 *offset += off;
619
620 if (value)
621 *value += off;
622
623 return 0;
624}
625
626static void kdb_cmderror(int diag)
627{
628 int i;
629
630 if (diag >= 0) {
631 kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 return;
633 }
634
635 for (i = 0; i < __nkdb_err; i++) {
636 if (kdbmsgs[i].km_diag == diag) {
637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 return;
639 }
640 }
641
642 kdb_printf("Unknown diag %d\n", -diag);
643}
644
645/*
646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647 * command which defines one command as a set of other commands,
648 * terminated by endefcmd. kdb_defcmd processes the initial
649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650 * the following commands until 'endefcmd'.
651 * Inputs:
652 * argc argument count
653 * argv argument vector
654 * Returns:
655 * zero for success, a kdb diagnostic if error
656 */
657struct defcmd_set {
658 int count;
659 int usable;
660 char *name;
661 char *usage;
662 char *help;
663 char **command;
664};
665static struct defcmd_set *defcmd_set;
666static int defcmd_set_count;
667static int defcmd_in_progress;
668
669/* Forward references */
670static int kdb_exec_defcmd(int argc, const char **argv);
671
672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673{
674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 char **save_command = s->command;
676 if (strcmp(argv0, "endefcmd") == 0) {
677 defcmd_in_progress = 0;
678 if (!s->count)
679 s->usable = 0;
680 if (s->usable)
681 /* macros are always safe because when executed each
682 * internal command re-enters kdb_parse() and is
683 * safety checked individually.
684 */
685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 s->help, 0,
687 KDB_ENABLE_ALWAYS_SAFE);
688 return 0;
689 }
690 if (!s->usable)
691 return KDB_NOTIMP;
692 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
693 if (!s->command) {
694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 cmdstr);
696 s->usable = 0;
697 return KDB_NOTIMP;
698 }
699 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 kfree(save_command);
702 return 0;
703}
704
705static int kdb_defcmd(int argc, const char **argv)
706{
707 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 if (defcmd_in_progress) {
709 kdb_printf("kdb: nested defcmd detected, assuming missing "
710 "endefcmd\n");
711 kdb_defcmd2("endefcmd", "endefcmd");
712 }
713 if (argc == 0) {
714 int i;
715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 s->usage, s->help);
718 for (i = 0; i < s->count; ++i)
719 kdb_printf("%s", s->command[i]);
720 kdb_printf("endefcmd\n");
721 }
722 return 0;
723 }
724 if (argc != 3)
725 return KDB_ARGCOUNT;
726 if (in_dbg_master()) {
727 kdb_printf("Command only available during kdb_init()\n");
728 return KDB_NOTIMP;
729 }
730 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
731 GFP_KDB);
732 if (!defcmd_set)
733 goto fail_defcmd;
734 memcpy(defcmd_set, save_defcmd_set,
735 defcmd_set_count * sizeof(*defcmd_set));
736 s = defcmd_set + defcmd_set_count;
737 memset(s, 0, sizeof(*s));
738 s->usable = 1;
739 s->name = kdb_strdup(argv[1], GFP_KDB);
740 if (!s->name)
741 goto fail_name;
742 s->usage = kdb_strdup(argv[2], GFP_KDB);
743 if (!s->usage)
744 goto fail_usage;
745 s->help = kdb_strdup(argv[3], GFP_KDB);
746 if (!s->help)
747 goto fail_help;
748 if (s->usage[0] == '"') {
749 strcpy(s->usage, argv[2]+1);
750 s->usage[strlen(s->usage)-1] = '\0';
751 }
752 if (s->help[0] == '"') {
753 strcpy(s->help, argv[3]+1);
754 s->help[strlen(s->help)-1] = '\0';
755 }
756 ++defcmd_set_count;
757 defcmd_in_progress = 1;
758 kfree(save_defcmd_set);
759 return 0;
760fail_help:
761 kfree(s->usage);
762fail_usage:
763 kfree(s->name);
764fail_name:
765 kfree(defcmd_set);
766fail_defcmd:
767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 defcmd_set = save_defcmd_set;
769 return KDB_NOTIMP;
770}
771
772/*
773 * kdb_exec_defcmd - Execute the set of commands associated with this
774 * defcmd name.
775 * Inputs:
776 * argc argument count
777 * argv argument vector
778 * Returns:
779 * zero for success, a kdb diagnostic if error
780 */
781static int kdb_exec_defcmd(int argc, const char **argv)
782{
783 int i, ret;
784 struct defcmd_set *s;
785 if (argc != 0)
786 return KDB_ARGCOUNT;
787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 if (strcmp(s->name, argv[0]) == 0)
789 break;
790 }
791 if (i == defcmd_set_count) {
792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 argv[0]);
794 return KDB_NOTIMP;
795 }
796 for (i = 0; i < s->count; ++i) {
797 /* Recursive use of kdb_parse, do not use argv after
798 * this point */
799 argv = NULL;
800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 ret = kdb_parse(s->command[i]);
802 if (ret)
803 return ret;
804 }
805 return 0;
806}
807
808/* Command history */
809#define KDB_CMD_HISTORY_COUNT 32
810#define CMD_BUFLEN 200 /* kdb_printf: max printline
811 * size == 256 */
812static unsigned int cmd_head, cmd_tail;
813static unsigned int cmdptr;
814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815static char cmd_cur[CMD_BUFLEN];
816
817/*
818 * The "str" argument may point to something like | grep xyz
819 */
820static void parse_grep(const char *str)
821{
822 int len;
823 char *cp = (char *)str, *cp2;
824
825 /* sanity check: we should have been called with the \ first */
826 if (*cp != '|')
827 return;
828 cp++;
829 while (isspace(*cp))
830 cp++;
831 if (strncmp(cp, "grep ", 5)) {
832 kdb_printf("invalid 'pipe', see grephelp\n");
833 return;
834 }
835 cp += 5;
836 while (isspace(*cp))
837 cp++;
838 cp2 = strchr(cp, '\n');
839 if (cp2)
840 *cp2 = '\0'; /* remove the trailing newline */
841 len = strlen(cp);
842 if (len == 0) {
843 kdb_printf("invalid 'pipe', see grephelp\n");
844 return;
845 }
846 /* now cp points to a nonzero length search string */
847 if (*cp == '"') {
848 /* allow it be "x y z" by removing the "'s - there must
849 be two of them */
850 cp++;
851 cp2 = strchr(cp, '"');
852 if (!cp2) {
853 kdb_printf("invalid quoted string, see grephelp\n");
854 return;
855 }
856 *cp2 = '\0'; /* end the string where the 2nd " was */
857 }
858 kdb_grep_leading = 0;
859 if (*cp == '^') {
860 kdb_grep_leading = 1;
861 cp++;
862 }
863 len = strlen(cp);
864 kdb_grep_trailing = 0;
865 if (*(cp+len-1) == '$') {
866 kdb_grep_trailing = 1;
867 *(cp+len-1) = '\0';
868 }
869 len = strlen(cp);
870 if (!len)
871 return;
872 if (len >= KDB_GREP_STRLEN) {
873 kdb_printf("search string too long\n");
874 return;
875 }
876 strcpy(kdb_grep_string, cp);
877 kdb_grepping_flag++;
878 return;
879}
880
881/*
882 * kdb_parse - Parse the command line, search the command table for a
883 * matching command and invoke the command function. This
884 * function may be called recursively, if it is, the second call
885 * will overwrite argv and cbuf. It is the caller's
886 * responsibility to save their argv if they recursively call
887 * kdb_parse().
888 * Parameters:
889 * cmdstr The input command line to be parsed.
890 * regs The registers at the time kdb was entered.
891 * Returns:
892 * Zero for success, a kdb diagnostic if failure.
893 * Remarks:
894 * Limited to 20 tokens.
895 *
896 * Real rudimentary tokenization. Basically only whitespace
897 * is considered a token delimeter (but special consideration
898 * is taken of the '=' sign as used by the 'set' command).
899 *
900 * The algorithm used to tokenize the input string relies on
901 * there being at least one whitespace (or otherwise useless)
902 * character between tokens as the character immediately following
903 * the token is altered in-place to a null-byte to terminate the
904 * token string.
905 */
906
907#define MAXARGC 20
908
909int kdb_parse(const char *cmdstr)
910{
911 static char *argv[MAXARGC];
912 static int argc;
913 static char cbuf[CMD_BUFLEN+2];
914 char *cp;
915 char *cpp, quoted;
916 kdbtab_t *tp;
917 int i, escaped, ignore_errors = 0, check_grep = 0;
918
919 /*
920 * First tokenize the command string.
921 */
922 cp = (char *)cmdstr;
923
924 if (KDB_FLAG(CMD_INTERRUPT)) {
925 /* Previous command was interrupted, newline must not
926 * repeat the command */
927 KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 KDB_STATE_SET(PAGER);
929 argc = 0; /* no repeat */
930 }
931
932 if (*cp != '\n' && *cp != '\0') {
933 argc = 0;
934 cpp = cbuf;
935 while (*cp) {
936 /* skip whitespace */
937 while (isspace(*cp))
938 cp++;
939 if ((*cp == '\0') || (*cp == '\n') ||
940 (*cp == '#' && !defcmd_in_progress))
941 break;
942 /* special case: check for | grep pattern */
943 if (*cp == '|') {
944 check_grep++;
945 break;
946 }
947 if (cpp >= cbuf + CMD_BUFLEN) {
948 kdb_printf("kdb_parse: command buffer "
949 "overflow, command ignored\n%s\n",
950 cmdstr);
951 return KDB_NOTFOUND;
952 }
953 if (argc >= MAXARGC - 1) {
954 kdb_printf("kdb_parse: too many arguments, "
955 "command ignored\n%s\n", cmdstr);
956 return KDB_NOTFOUND;
957 }
958 argv[argc++] = cpp;
959 escaped = 0;
960 quoted = '\0';
961 /* Copy to next unquoted and unescaped
962 * whitespace or '=' */
963 while (*cp && *cp != '\n' &&
964 (escaped || quoted || !isspace(*cp))) {
965 if (cpp >= cbuf + CMD_BUFLEN)
966 break;
967 if (escaped) {
968 escaped = 0;
969 *cpp++ = *cp++;
970 continue;
971 }
972 if (*cp == '\\') {
973 escaped = 1;
974 ++cp;
975 continue;
976 }
977 if (*cp == quoted)
978 quoted = '\0';
979 else if (*cp == '\'' || *cp == '"')
980 quoted = *cp;
981 *cpp = *cp++;
982 if (*cpp == '=' && !quoted)
983 break;
984 ++cpp;
985 }
986 *cpp++ = '\0'; /* Squash a ws or '=' character */
987 }
988 }
989 if (!argc)
990 return 0;
991 if (check_grep)
992 parse_grep(cp);
993 if (defcmd_in_progress) {
994 int result = kdb_defcmd2(cmdstr, argv[0]);
995 if (!defcmd_in_progress) {
996 argc = 0; /* avoid repeat on endefcmd */
997 *(argv[0]) = '\0';
998 }
999 return result;
1000 }
1001 if (argv[0][0] == '-' && argv[0][1] &&
1002 (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 ignore_errors = 1;
1004 ++argv[0];
1005 }
1006
1007 for_each_kdbcmd(tp, i) {
1008 if (tp->cmd_name) {
1009 /*
1010 * If this command is allowed to be abbreviated,
1011 * check to see if this is it.
1012 */
1013
1014 if (tp->cmd_minlen
1015 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016 if (strncmp(argv[0],
1017 tp->cmd_name,
1018 tp->cmd_minlen) == 0) {
1019 break;
1020 }
1021 }
1022
1023 if (strcmp(argv[0], tp->cmd_name) == 0)
1024 break;
1025 }
1026 }
1027
1028 /*
1029 * If we don't find a command by this name, see if the first
1030 * few characters of this match any of the known commands.
1031 * e.g., md1c20 should match md.
1032 */
1033 if (i == kdb_max_commands) {
1034 for_each_kdbcmd(tp, i) {
1035 if (tp->cmd_name) {
1036 if (strncmp(argv[0],
1037 tp->cmd_name,
1038 strlen(tp->cmd_name)) == 0) {
1039 break;
1040 }
1041 }
1042 }
1043 }
1044
1045 if (i < kdb_max_commands) {
1046 int result;
1047
1048 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049 return KDB_NOPERM;
1050
1051 KDB_STATE_SET(CMD);
1052 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053 if (result && ignore_errors && result > KDB_CMD_GO)
1054 result = 0;
1055 KDB_STATE_CLEAR(CMD);
1056
1057 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058 return result;
1059
1060 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061 if (argv[argc])
1062 *(argv[argc]) = '\0';
1063 return result;
1064 }
1065
1066 /*
1067 * If the input with which we were presented does not
1068 * map to an existing command, attempt to parse it as an
1069 * address argument and display the result. Useful for
1070 * obtaining the address of a variable, or the nearest symbol
1071 * to an address contained in a register.
1072 */
1073 {
1074 unsigned long value;
1075 char *name = NULL;
1076 long offset;
1077 int nextarg = 0;
1078
1079 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080 &value, &offset, &name)) {
1081 return KDB_NOTFOUND;
1082 }
1083
1084 kdb_printf("%s = ", argv[0]);
1085 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086 kdb_printf("\n");
1087 return 0;
1088 }
1089}
1090
1091
1092static int handle_ctrl_cmd(char *cmd)
1093{
1094#define CTRL_P 16
1095#define CTRL_N 14
1096
1097 /* initial situation */
1098 if (cmd_head == cmd_tail)
1099 return 0;
1100 switch (*cmd) {
1101 case CTRL_P:
1102 if (cmdptr != cmd_tail)
1103 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1105 return 1;
1106 case CTRL_N:
1107 if (cmdptr != cmd_head)
1108 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110 return 1;
1111 }
1112 return 0;
1113}
1114
1115/*
1116 * kdb_reboot - This function implements the 'reboot' command. Reboot
1117 * the system immediately, or loop for ever on failure.
1118 */
1119static int kdb_reboot(int argc, const char **argv)
1120{
1121 emergency_restart();
1122 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123 while (1)
1124 cpu_relax();
1125 /* NOTREACHED */
1126 return 0;
1127}
1128
1129static void kdb_dumpregs(struct pt_regs *regs)
1130{
1131 int old_lvl = console_loglevel;
1132 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133 kdb_trap_printk++;
1134 show_regs(regs);
1135 kdb_trap_printk--;
1136 kdb_printf("\n");
1137 console_loglevel = old_lvl;
1138}
1139
1140void kdb_set_current_task(struct task_struct *p)
1141{
1142 kdb_current_task = p;
1143
1144 if (kdb_task_has_cpu(p)) {
1145 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146 return;
1147 }
1148 kdb_current_regs = NULL;
1149}
1150
1151/*
1152 * kdb_local - The main code for kdb. This routine is invoked on a
1153 * specific processor, it is not global. The main kdb() routine
1154 * ensures that only one processor at a time is in this routine.
1155 * This code is called with the real reason code on the first
1156 * entry to a kdb session, thereafter it is called with reason
1157 * SWITCH, even if the user goes back to the original cpu.
1158 * Inputs:
1159 * reason The reason KDB was invoked
1160 * error The hardware-defined error code
1161 * regs The exception frame at time of fault/breakpoint.
1162 * db_result Result code from the break or debug point.
1163 * Returns:
1164 * 0 KDB was invoked for an event which it wasn't responsible
1165 * 1 KDB handled the event for which it was invoked.
1166 * KDB_CMD_GO User typed 'go'.
1167 * KDB_CMD_CPU User switched to another cpu.
1168 * KDB_CMD_SS Single step.
1169 */
1170static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171 kdb_dbtrap_t db_result)
1172{
1173 char *cmdbuf;
1174 int diag;
1175 struct task_struct *kdb_current =
1176 kdb_curr_task(raw_smp_processor_id());
1177
1178 KDB_DEBUG_STATE("kdb_local 1", reason);
1179 kdb_go_count = 0;
1180 if (reason == KDB_REASON_DEBUG) {
1181 /* special case below */
1182 } else {
1183 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184 kdb_current, kdb_current ? kdb_current->pid : 0);
1185#if defined(CONFIG_SMP)
1186 kdb_printf("on processor %d ", raw_smp_processor_id());
1187#endif
1188 }
1189
1190 switch (reason) {
1191 case KDB_REASON_DEBUG:
1192 {
1193 /*
1194 * If re-entering kdb after a single step
1195 * command, don't print the message.
1196 */
1197 switch (db_result) {
1198 case KDB_DB_BPT:
1199 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200 kdb_current, kdb_current->pid);
1201#if defined(CONFIG_SMP)
1202 kdb_printf("on processor %d ", raw_smp_processor_id());
1203#endif
1204 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205 instruction_pointer(regs));
1206 break;
1207 case KDB_DB_SS:
1208 break;
1209 case KDB_DB_SSBPT:
1210 KDB_DEBUG_STATE("kdb_local 4", reason);
1211 return 1; /* kdba_db_trap did the work */
1212 default:
1213 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214 db_result);
1215 break;
1216 }
1217
1218 }
1219 break;
1220 case KDB_REASON_ENTER:
1221 if (KDB_STATE(KEYBOARD))
1222 kdb_printf("due to Keyboard Entry\n");
1223 else
1224 kdb_printf("due to KDB_ENTER()\n");
1225 break;
1226 case KDB_REASON_KEYBOARD:
1227 KDB_STATE_SET(KEYBOARD);
1228 kdb_printf("due to Keyboard Entry\n");
1229 break;
1230 case KDB_REASON_ENTER_SLAVE:
1231 /* drop through, slaves only get released via cpu switch */
1232 case KDB_REASON_SWITCH:
1233 kdb_printf("due to cpu switch\n");
1234 break;
1235 case KDB_REASON_OOPS:
1236 kdb_printf("Oops: %s\n", kdb_diemsg);
1237 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238 instruction_pointer(regs));
1239 kdb_dumpregs(regs);
1240 break;
1241 case KDB_REASON_SYSTEM_NMI:
1242 kdb_printf("due to System NonMaskable Interrupt\n");
1243 break;
1244 case KDB_REASON_NMI:
1245 kdb_printf("due to NonMaskable Interrupt @ "
1246 kdb_machreg_fmt "\n",
1247 instruction_pointer(regs));
1248 break;
1249 case KDB_REASON_SSTEP:
1250 case KDB_REASON_BREAK:
1251 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252 reason == KDB_REASON_BREAK ?
1253 "Breakpoint" : "SS trap", instruction_pointer(regs));
1254 /*
1255 * Determine if this breakpoint is one that we
1256 * are interested in.
1257 */
1258 if (db_result != KDB_DB_BPT) {
1259 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260 db_result);
1261 KDB_DEBUG_STATE("kdb_local 6", reason);
1262 return 0; /* Not for us, dismiss it */
1263 }
1264 break;
1265 case KDB_REASON_RECURSE:
1266 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267 instruction_pointer(regs));
1268 break;
1269 default:
1270 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271 KDB_DEBUG_STATE("kdb_local 8", reason);
1272 return 0; /* Not for us, dismiss it */
1273 }
1274
1275 while (1) {
1276 /*
1277 * Initialize pager context.
1278 */
1279 kdb_nextline = 1;
1280 KDB_STATE_CLEAR(SUPPRESS);
1281 kdb_grepping_flag = 0;
1282 /* ensure the old search does not leak into '/' commands */
1283 kdb_grep_string[0] = '\0';
1284
1285 cmdbuf = cmd_cur;
1286 *cmdbuf = '\0';
1287 *(cmd_hist[cmd_head]) = '\0';
1288
1289do_full_getstr:
1290#if defined(CONFIG_SMP)
1291 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292 raw_smp_processor_id());
1293#else
1294 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295#endif
1296 if (defcmd_in_progress)
1297 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299 /*
1300 * Fetch command from keyboard
1301 */
1302 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303 if (*cmdbuf != '\n') {
1304 if (*cmdbuf < 32) {
1305 if (cmdptr == cmd_head) {
1306 strncpy(cmd_hist[cmd_head], cmd_cur,
1307 CMD_BUFLEN);
1308 *(cmd_hist[cmd_head] +
1309 strlen(cmd_hist[cmd_head])-1) = '\0';
1310 }
1311 if (!handle_ctrl_cmd(cmdbuf))
1312 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313 cmdbuf = cmd_cur;
1314 goto do_full_getstr;
1315 } else {
1316 strncpy(cmd_hist[cmd_head], cmd_cur,
1317 CMD_BUFLEN);
1318 }
1319
1320 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321 if (cmd_head == cmd_tail)
1322 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323 }
1324
1325 cmdptr = cmd_head;
1326 diag = kdb_parse(cmdbuf);
1327 if (diag == KDB_NOTFOUND) {
1328 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329 diag = 0;
1330 }
1331 if (diag == KDB_CMD_GO
1332 || diag == KDB_CMD_CPU
1333 || diag == KDB_CMD_SS
1334 || diag == KDB_CMD_KGDB)
1335 break;
1336
1337 if (diag)
1338 kdb_cmderror(diag);
1339 }
1340 KDB_DEBUG_STATE("kdb_local 9", diag);
1341 return diag;
1342}
1343
1344
1345/*
1346 * kdb_print_state - Print the state data for the current processor
1347 * for debugging.
1348 * Inputs:
1349 * text Identifies the debug point
1350 * value Any integer value to be printed, e.g. reason code.
1351 */
1352void kdb_print_state(const char *text, int value)
1353{
1354 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356 kdb_state);
1357}
1358
1359/*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 * controlling cpu, all cpus are in this loop. One cpu is in
1362 * control and will issue the kdb prompt, the others will spin
1363 * until 'go' or cpu switch.
1364 *
1365 * To get a consistent view of the kernel stacks for all
1366 * processes, this routine is invoked from the main kdb code via
1367 * an architecture specific routine. kdba_main_loop is
1368 * responsible for making the kernel stacks consistent for all
1369 * processes, there should be no difference between a blocked
1370 * process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 * reason The reason KDB was invoked
1373 * error The hardware-defined error code
1374 * reason2 kdb's current reason code.
1375 * Initially error but can change
1376 * according to kdb state.
1377 * db_result Result code from break or debug point.
1378 * regs The exception frame at time of fault/breakpoint.
1379 * should always be valid.
1380 * Returns:
1381 * 0 KDB was invoked for an event which it wasn't responsible
1382 * 1 KDB handled the event for which it was invoked.
1383 */
1384int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385 kdb_dbtrap_t db_result, struct pt_regs *regs)
1386{
1387 int result = 1;
1388 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1389 while (1) {
1390 /*
1391 * All processors except the one that is in control
1392 * will spin here.
1393 */
1394 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395 while (KDB_STATE(HOLD_CPU)) {
1396 /* state KDB is turned off by kdb_cpu to see if the
1397 * other cpus are still live, each cpu in this loop
1398 * turns it back on.
1399 */
1400 if (!KDB_STATE(KDB))
1401 KDB_STATE_SET(KDB);
1402 }
1403
1404 KDB_STATE_CLEAR(SUPPRESS);
1405 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406 if (KDB_STATE(LEAVING))
1407 break; /* Another cpu said 'go' */
1408 /* Still using kdb, this processor is in control */
1409 result = kdb_local(reason2, error, regs, db_result);
1410 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412 if (result == KDB_CMD_CPU)
1413 break;
1414
1415 if (result == KDB_CMD_SS) {
1416 KDB_STATE_SET(DOING_SS);
1417 break;
1418 }
1419
1420 if (result == KDB_CMD_KGDB) {
1421 if (!KDB_STATE(DOING_KGDB))
1422 kdb_printf("Entering please attach debugger "
1423 "or use $D#44+ or $3#33\n");
1424 break;
1425 }
1426 if (result && result != 1 && result != KDB_CMD_GO)
1427 kdb_printf("\nUnexpected kdb_local return code %d\n",
1428 result);
1429 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430 break;
1431 }
1432 if (KDB_STATE(DOING_SS))
1433 KDB_STATE_CLEAR(SSBPT);
1434
1435 /* Clean up any keyboard devices before leaving */
1436 kdb_kbd_cleanup_state();
1437
1438 return result;
1439}
1440
1441/*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 * mdr <addr arg>,<byte count>
1445 * Inputs:
1446 * addr Start address
1447 * count Number of bytes
1448 * Returns:
1449 * Always 0. Any errors are detected and printed by kdb_getarea.
1450 */
1451static int kdb_mdr(unsigned long addr, unsigned int count)
1452{
1453 unsigned char c;
1454 while (count--) {
1455 if (kdb_getarea(c, addr))
1456 return 0;
1457 kdb_printf("%02x", c);
1458 addr++;
1459 }
1460 kdb_printf("\n");
1461 return 0;
1462}
1463
1464/*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 * 'md8' 'mdr' and 'mds' commands.
1467 *
1468 * md|mds [<addr arg> [<line count> [<radix>]]]
1469 * mdWcN [<addr arg> [<line count> [<radix>]]]
1470 * where W = is the width (1, 2, 4 or 8) and N is the count.
1471 * for eg., md1c20 reads 20 bytes, 1 at a time.
1472 * mdr <addr arg>,<byte count>
1473 */
1474static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475 int symbolic, int nosect, int bytesperword,
1476 int num, int repeat, int phys)
1477{
1478 /* print just one line of data */
1479 kdb_symtab_t symtab;
1480 char cbuf[32];
1481 char *c = cbuf;
1482 int i;
1483 unsigned long word;
1484
1485 memset(cbuf, '\0', sizeof(cbuf));
1486 if (phys)
1487 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488 else
1489 kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491 for (i = 0; i < num && repeat--; i++) {
1492 if (phys) {
1493 if (kdb_getphysword(&word, addr, bytesperword))
1494 break;
1495 } else if (kdb_getword(&word, addr, bytesperword))
1496 break;
1497 kdb_printf(fmtstr, word);
1498 if (symbolic)
1499 kdbnearsym(word, &symtab);
1500 else
1501 memset(&symtab, 0, sizeof(symtab));
1502 if (symtab.sym_name) {
1503 kdb_symbol_print(word, &symtab, 0);
1504 if (!nosect) {
1505 kdb_printf("\n");
1506 kdb_printf(" %s %s "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt " "
1509 kdb_machreg_fmt, symtab.mod_name,
1510 symtab.sec_name, symtab.sec_start,
1511 symtab.sym_start, symtab.sym_end);
1512 }
1513 addr += bytesperword;
1514 } else {
1515 union {
1516 u64 word;
1517 unsigned char c[8];
1518 } wc;
1519 unsigned char *cp;
1520#ifdef __BIG_ENDIAN
1521 cp = wc.c + 8 - bytesperword;
1522#else
1523 cp = wc.c;
1524#endif
1525 wc.word = word;
1526#define printable_char(c) \
1527 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528 switch (bytesperword) {
1529 case 8:
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 addr += 4;
1535 case 4:
1536 *c++ = printable_char(*cp++);
1537 *c++ = printable_char(*cp++);
1538 addr += 2;
1539 case 2:
1540 *c++ = printable_char(*cp++);
1541 addr++;
1542 case 1:
1543 *c++ = printable_char(*cp++);
1544 addr++;
1545 break;
1546 }
1547#undef printable_char
1548 }
1549 }
1550 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551 " ", cbuf);
1552}
1553
1554static int kdb_md(int argc, const char **argv)
1555{
1556 static unsigned long last_addr;
1557 static int last_radix, last_bytesperword, last_repeat;
1558 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559 int nosect = 0;
1560 char fmtchar, fmtstr[64];
1561 unsigned long addr;
1562 unsigned long word;
1563 long offset = 0;
1564 int symbolic = 0;
1565 int valid = 0;
1566 int phys = 0;
1567
1568 kdbgetintenv("MDCOUNT", &mdcount);
1569 kdbgetintenv("RADIX", &radix);
1570 kdbgetintenv("BYTESPERWORD", &bytesperword);
1571
1572 /* Assume 'md <addr>' and start with environment values */
1573 repeat = mdcount * 16 / bytesperword;
1574
1575 if (strcmp(argv[0], "mdr") == 0) {
1576 if (argc != 2)
1577 return KDB_ARGCOUNT;
1578 valid = 1;
1579 } else if (isdigit(argv[0][2])) {
1580 bytesperword = (int)(argv[0][2] - '0');
1581 if (bytesperword == 0) {
1582 bytesperword = last_bytesperword;
1583 if (bytesperword == 0)
1584 bytesperword = 4;
1585 }
1586 last_bytesperword = bytesperword;
1587 repeat = mdcount * 16 / bytesperword;
1588 if (!argv[0][3])
1589 valid = 1;
1590 else if (argv[0][3] == 'c' && argv[0][4]) {
1591 char *p;
1592 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593 mdcount = ((repeat * bytesperword) + 15) / 16;
1594 valid = !*p;
1595 }
1596 last_repeat = repeat;
1597 } else if (strcmp(argv[0], "md") == 0)
1598 valid = 1;
1599 else if (strcmp(argv[0], "mds") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mdp") == 0) {
1602 phys = valid = 1;
1603 }
1604 if (!valid)
1605 return KDB_NOTFOUND;
1606
1607 if (argc == 0) {
1608 if (last_addr == 0)
1609 return KDB_ARGCOUNT;
1610 addr = last_addr;
1611 radix = last_radix;
1612 bytesperword = last_bytesperword;
1613 repeat = last_repeat;
1614 mdcount = ((repeat * bytesperword) + 15) / 16;
1615 }
1616
1617 if (argc) {
1618 unsigned long val;
1619 int diag, nextarg = 1;
1620 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621 &offset, NULL);
1622 if (diag)
1623 return diag;
1624 if (argc > nextarg+2)
1625 return KDB_ARGCOUNT;
1626
1627 if (argc >= nextarg) {
1628 diag = kdbgetularg(argv[nextarg], &val);
1629 if (!diag) {
1630 mdcount = (int) val;
1631 repeat = mdcount * 16 / bytesperword;
1632 }
1633 }
1634 if (argc >= nextarg+1) {
1635 diag = kdbgetularg(argv[nextarg+1], &val);
1636 if (!diag)
1637 radix = (int) val;
1638 }
1639 }
1640
1641 if (strcmp(argv[0], "mdr") == 0)
1642 return kdb_mdr(addr, mdcount);
1643
1644 switch (radix) {
1645 case 10:
1646 fmtchar = 'd';
1647 break;
1648 case 16:
1649 fmtchar = 'x';
1650 break;
1651 case 8:
1652 fmtchar = 'o';
1653 break;
1654 default:
1655 return KDB_BADRADIX;
1656 }
1657
1658 last_radix = radix;
1659
1660 if (bytesperword > KDB_WORD_SIZE)
1661 return KDB_BADWIDTH;
1662
1663 switch (bytesperword) {
1664 case 8:
1665 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666 break;
1667 case 4:
1668 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669 break;
1670 case 2:
1671 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672 break;
1673 case 1:
1674 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675 break;
1676 default:
1677 return KDB_BADWIDTH;
1678 }
1679
1680 last_repeat = repeat;
1681 last_bytesperword = bytesperword;
1682
1683 if (strcmp(argv[0], "mds") == 0) {
1684 symbolic = 1;
1685 /* Do not save these changes as last_*, they are temporary mds
1686 * overrides.
1687 */
1688 bytesperword = KDB_WORD_SIZE;
1689 repeat = mdcount;
1690 kdbgetintenv("NOSECT", &nosect);
1691 }
1692
1693 /* Round address down modulo BYTESPERWORD */
1694
1695 addr &= ~(bytesperword-1);
1696
1697 while (repeat > 0) {
1698 unsigned long a;
1699 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700
1701 if (KDB_FLAG(CMD_INTERRUPT))
1702 return 0;
1703 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704 if (phys) {
1705 if (kdb_getphysword(&word, a, bytesperword)
1706 || word)
1707 break;
1708 } else if (kdb_getword(&word, a, bytesperword) || word)
1709 break;
1710 }
1711 n = min(num, repeat);
1712 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713 num, repeat, phys);
1714 addr += bytesperword * n;
1715 repeat -= n;
1716 z = (z + num - 1) / num;
1717 if (z > 2) {
1718 int s = num * (z-2);
1719 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720 " zero suppressed\n",
1721 addr, addr + bytesperword * s - 1);
1722 addr += bytesperword * s;
1723 repeat -= s;
1724 }
1725 }
1726 last_addr = addr;
1727
1728 return 0;
1729}
1730
1731/*
1732 * kdb_mm - This function implements the 'mm' command.
1733 * mm address-expression new-value
1734 * Remarks:
1735 * mm works on machine words, mmW works on bytes.
1736 */
1737static int kdb_mm(int argc, const char **argv)
1738{
1739 int diag;
1740 unsigned long addr;
1741 long offset = 0;
1742 unsigned long contents;
1743 int nextarg;
1744 int width;
1745
1746 if (argv[0][2] && !isdigit(argv[0][2]))
1747 return KDB_NOTFOUND;
1748
1749 if (argc < 2)
1750 return KDB_ARGCOUNT;
1751
1752 nextarg = 1;
1753 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754 if (diag)
1755 return diag;
1756
1757 if (nextarg > argc)
1758 return KDB_ARGCOUNT;
1759 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760 if (diag)
1761 return diag;
1762
1763 if (nextarg != argc + 1)
1764 return KDB_ARGCOUNT;
1765
1766 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767 diag = kdb_putword(addr, contents, width);
1768 if (diag)
1769 return diag;
1770
1771 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772
1773 return 0;
1774}
1775
1776/*
1777 * kdb_go - This function implements the 'go' command.
1778 * go [address-expression]
1779 */
1780static int kdb_go(int argc, const char **argv)
1781{
1782 unsigned long addr;
1783 int diag;
1784 int nextarg;
1785 long offset;
1786
1787 if (raw_smp_processor_id() != kdb_initial_cpu) {
1788 kdb_printf("go must execute on the entry cpu, "
1789 "please use \"cpu %d\" and then execute go\n",
1790 kdb_initial_cpu);
1791 return KDB_BADCPUNUM;
1792 }
1793 if (argc == 1) {
1794 nextarg = 1;
1795 diag = kdbgetaddrarg(argc, argv, &nextarg,
1796 &addr, &offset, NULL);
1797 if (diag)
1798 return diag;
1799 } else if (argc) {
1800 return KDB_ARGCOUNT;
1801 }
1802
1803 diag = KDB_CMD_GO;
1804 if (KDB_FLAG(CATASTROPHIC)) {
1805 kdb_printf("Catastrophic error detected\n");
1806 kdb_printf("kdb_continue_catastrophic=%d, ",
1807 kdb_continue_catastrophic);
1808 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809 kdb_printf("type go a second time if you really want "
1810 "to continue\n");
1811 return 0;
1812 }
1813 if (kdb_continue_catastrophic == 2) {
1814 kdb_printf("forcing reboot\n");
1815 kdb_reboot(0, NULL);
1816 }
1817 kdb_printf("attempting to continue\n");
1818 }
1819 return diag;
1820}
1821
1822/*
1823 * kdb_rd - This function implements the 'rd' command.
1824 */
1825static int kdb_rd(int argc, const char **argv)
1826{
1827 int len = kdb_check_regs();
1828#if DBG_MAX_REG_NUM > 0
1829 int i;
1830 char *rname;
1831 int rsize;
1832 u64 reg64;
1833 u32 reg32;
1834 u16 reg16;
1835 u8 reg8;
1836
1837 if (len)
1838 return len;
1839
1840 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841 rsize = dbg_reg_def[i].size * 2;
1842 if (rsize > 16)
1843 rsize = 2;
1844 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845 len = 0;
1846 kdb_printf("\n");
1847 }
1848 if (len)
1849 len += kdb_printf(" ");
1850 switch(dbg_reg_def[i].size * 8) {
1851 case 8:
1852 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1853 if (!rname)
1854 break;
1855 len += kdb_printf("%s: %02x", rname, reg8);
1856 break;
1857 case 16:
1858 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1859 if (!rname)
1860 break;
1861 len += kdb_printf("%s: %04x", rname, reg16);
1862 break;
1863 case 32:
1864 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1865 if (!rname)
1866 break;
1867 len += kdb_printf("%s: %08x", rname, reg32);
1868 break;
1869 case 64:
1870 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1871 if (!rname)
1872 break;
1873 len += kdb_printf("%s: %016llx", rname, reg64);
1874 break;
1875 default:
1876 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877 }
1878 }
1879 kdb_printf("\n");
1880#else
1881 if (len)
1882 return len;
1883
1884 kdb_dumpregs(kdb_current_regs);
1885#endif
1886 return 0;
1887}
1888
1889/*
1890 * kdb_rm - This function implements the 'rm' (register modify) command.
1891 * rm register-name new-contents
1892 * Remarks:
1893 * Allows register modification with the same restrictions as gdb
1894 */
1895static int kdb_rm(int argc, const char **argv)
1896{
1897#if DBG_MAX_REG_NUM > 0
1898 int diag;
1899 const char *rname;
1900 int i;
1901 u64 reg64;
1902 u32 reg32;
1903 u16 reg16;
1904 u8 reg8;
1905
1906 if (argc != 2)
1907 return KDB_ARGCOUNT;
1908 /*
1909 * Allow presence or absence of leading '%' symbol.
1910 */
1911 rname = argv[1];
1912 if (*rname == '%')
1913 rname++;
1914
1915 diag = kdbgetu64arg(argv[2], ®64);
1916 if (diag)
1917 return diag;
1918
1919 diag = kdb_check_regs();
1920 if (diag)
1921 return diag;
1922
1923 diag = KDB_BADREG;
1924 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926 diag = 0;
1927 break;
1928 }
1929 }
1930 if (!diag) {
1931 switch(dbg_reg_def[i].size * 8) {
1932 case 8:
1933 reg8 = reg64;
1934 dbg_set_reg(i, ®8, kdb_current_regs);
1935 break;
1936 case 16:
1937 reg16 = reg64;
1938 dbg_set_reg(i, ®16, kdb_current_regs);
1939 break;
1940 case 32:
1941 reg32 = reg64;
1942 dbg_set_reg(i, ®32, kdb_current_regs);
1943 break;
1944 case 64:
1945 dbg_set_reg(i, ®64, kdb_current_regs);
1946 break;
1947 }
1948 }
1949 return diag;
1950#else
1951 kdb_printf("ERROR: Register set currently not implemented\n");
1952 return 0;
1953#endif
1954}
1955
1956#if defined(CONFIG_MAGIC_SYSRQ)
1957/*
1958 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960 * sr <magic-sysrq-code>
1961 */
1962static int kdb_sr(int argc, const char **argv)
1963{
1964 bool check_mask =
1965 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966
1967 if (argc != 1)
1968 return KDB_ARGCOUNT;
1969
1970 kdb_trap_printk++;
1971 __handle_sysrq(*argv[1], check_mask);
1972 kdb_trap_printk--;
1973
1974 return 0;
1975}
1976#endif /* CONFIG_MAGIC_SYSRQ */
1977
1978/*
1979 * kdb_ef - This function implements the 'regs' (display exception
1980 * frame) command. This command takes an address and expects to
1981 * find an exception frame at that address, formats and prints
1982 * it.
1983 * regs address-expression
1984 * Remarks:
1985 * Not done yet.
1986 */
1987static int kdb_ef(int argc, const char **argv)
1988{
1989 int diag;
1990 unsigned long addr;
1991 long offset;
1992 int nextarg;
1993
1994 if (argc != 1)
1995 return KDB_ARGCOUNT;
1996
1997 nextarg = 1;
1998 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999 if (diag)
2000 return diag;
2001 show_regs((struct pt_regs *)addr);
2002 return 0;
2003}
2004
2005#if defined(CONFIG_MODULES)
2006/*
2007 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2008 * currently loaded kernel modules.
2009 * Mostly taken from userland lsmod.
2010 */
2011static int kdb_lsmod(int argc, const char **argv)
2012{
2013 struct module *mod;
2014
2015 if (argc != 0)
2016 return KDB_ARGCOUNT;
2017
2018 kdb_printf("Module Size modstruct Used by\n");
2019 list_for_each_entry(mod, kdb_modules, list) {
2020 if (mod->state == MODULE_STATE_UNFORMED)
2021 continue;
2022
2023 kdb_printf("%-20s%8u 0x%p ", mod->name,
2024 mod->core_layout.size, (void *)mod);
2025#ifdef CONFIG_MODULE_UNLOAD
2026 kdb_printf("%4d ", module_refcount(mod));
2027#endif
2028 if (mod->state == MODULE_STATE_GOING)
2029 kdb_printf(" (Unloading)");
2030 else if (mod->state == MODULE_STATE_COMING)
2031 kdb_printf(" (Loading)");
2032 else
2033 kdb_printf(" (Live)");
2034 kdb_printf(" 0x%p", mod->core_layout.base);
2035
2036#ifdef CONFIG_MODULE_UNLOAD
2037 {
2038 struct module_use *use;
2039 kdb_printf(" [ ");
2040 list_for_each_entry(use, &mod->source_list,
2041 source_list)
2042 kdb_printf("%s ", use->target->name);
2043 kdb_printf("]\n");
2044 }
2045#endif
2046 }
2047
2048 return 0;
2049}
2050
2051#endif /* CONFIG_MODULES */
2052
2053/*
2054 * kdb_env - This function implements the 'env' command. Display the
2055 * current environment variables.
2056 */
2057
2058static int kdb_env(int argc, const char **argv)
2059{
2060 int i;
2061
2062 for (i = 0; i < __nenv; i++) {
2063 if (__env[i])
2064 kdb_printf("%s\n", __env[i]);
2065 }
2066
2067 if (KDB_DEBUG(MASK))
2068 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2069
2070 return 0;
2071}
2072
2073#ifdef CONFIG_PRINTK
2074/*
2075 * kdb_dmesg - This function implements the 'dmesg' command to display
2076 * the contents of the syslog buffer.
2077 * dmesg [lines] [adjust]
2078 */
2079static int kdb_dmesg(int argc, const char **argv)
2080{
2081 int diag;
2082 int logging;
2083 int lines = 0;
2084 int adjust = 0;
2085 int n = 0;
2086 int skip = 0;
2087 struct kmsg_dumper dumper = { .active = 1 };
2088 size_t len;
2089 char buf[201];
2090
2091 if (argc > 2)
2092 return KDB_ARGCOUNT;
2093 if (argc) {
2094 char *cp;
2095 lines = simple_strtol(argv[1], &cp, 0);
2096 if (*cp)
2097 lines = 0;
2098 if (argc > 1) {
2099 adjust = simple_strtoul(argv[2], &cp, 0);
2100 if (*cp || adjust < 0)
2101 adjust = 0;
2102 }
2103 }
2104
2105 /* disable LOGGING if set */
2106 diag = kdbgetintenv("LOGGING", &logging);
2107 if (!diag && logging) {
2108 const char *setargs[] = { "set", "LOGGING", "0" };
2109 kdb_set(2, setargs);
2110 }
2111
2112 kmsg_dump_rewind_nolock(&dumper);
2113 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2114 n++;
2115
2116 if (lines < 0) {
2117 if (adjust >= n)
2118 kdb_printf("buffer only contains %d lines, nothing "
2119 "printed\n", n);
2120 else if (adjust - lines >= n)
2121 kdb_printf("buffer only contains %d lines, last %d "
2122 "lines printed\n", n, n - adjust);
2123 skip = adjust;
2124 lines = abs(lines);
2125 } else if (lines > 0) {
2126 skip = n - lines - adjust;
2127 lines = abs(lines);
2128 if (adjust >= n) {
2129 kdb_printf("buffer only contains %d lines, "
2130 "nothing printed\n", n);
2131 skip = n;
2132 } else if (skip < 0) {
2133 lines += skip;
2134 skip = 0;
2135 kdb_printf("buffer only contains %d lines, first "
2136 "%d lines printed\n", n, lines);
2137 }
2138 } else {
2139 lines = n;
2140 }
2141
2142 if (skip >= n || skip < 0)
2143 return 0;
2144
2145 kmsg_dump_rewind_nolock(&dumper);
2146 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2147 if (skip) {
2148 skip--;
2149 continue;
2150 }
2151 if (!lines--)
2152 break;
2153 if (KDB_FLAG(CMD_INTERRUPT))
2154 return 0;
2155
2156 kdb_printf("%.*s\n", (int)len - 1, buf);
2157 }
2158
2159 return 0;
2160}
2161#endif /* CONFIG_PRINTK */
2162
2163/* Make sure we balance enable/disable calls, must disable first. */
2164static atomic_t kdb_nmi_disabled;
2165
2166static int kdb_disable_nmi(int argc, const char *argv[])
2167{
2168 if (atomic_read(&kdb_nmi_disabled))
2169 return 0;
2170 atomic_set(&kdb_nmi_disabled, 1);
2171 arch_kgdb_ops.enable_nmi(0);
2172 return 0;
2173}
2174
2175static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176{
2177 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178 return -EINVAL;
2179 arch_kgdb_ops.enable_nmi(1);
2180 return 0;
2181}
2182
2183static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184 .set = kdb_param_enable_nmi,
2185};
2186module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187
2188/*
2189 * kdb_cpu - This function implements the 'cpu' command.
2190 * cpu [<cpunum>]
2191 * Returns:
2192 * KDB_CMD_CPU for success, a kdb diagnostic if error
2193 */
2194static void kdb_cpu_status(void)
2195{
2196 int i, start_cpu, first_print = 1;
2197 char state, prev_state = '?';
2198
2199 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200 kdb_printf("Available cpus: ");
2201 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202 if (!cpu_online(i)) {
2203 state = 'F'; /* cpu is offline */
2204 } else if (!kgdb_info[i].enter_kgdb) {
2205 state = 'D'; /* cpu is online but unresponsive */
2206 } else {
2207 state = ' '; /* cpu is responding to kdb */
2208 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209 state = 'I'; /* idle task */
2210 }
2211 if (state != prev_state) {
2212 if (prev_state != '?') {
2213 if (!first_print)
2214 kdb_printf(", ");
2215 first_print = 0;
2216 kdb_printf("%d", start_cpu);
2217 if (start_cpu < i-1)
2218 kdb_printf("-%d", i-1);
2219 if (prev_state != ' ')
2220 kdb_printf("(%c)", prev_state);
2221 }
2222 prev_state = state;
2223 start_cpu = i;
2224 }
2225 }
2226 /* print the trailing cpus, ignoring them if they are all offline */
2227 if (prev_state != 'F') {
2228 if (!first_print)
2229 kdb_printf(", ");
2230 kdb_printf("%d", start_cpu);
2231 if (start_cpu < i-1)
2232 kdb_printf("-%d", i-1);
2233 if (prev_state != ' ')
2234 kdb_printf("(%c)", prev_state);
2235 }
2236 kdb_printf("\n");
2237}
2238
2239static int kdb_cpu(int argc, const char **argv)
2240{
2241 unsigned long cpunum;
2242 int diag;
2243
2244 if (argc == 0) {
2245 kdb_cpu_status();
2246 return 0;
2247 }
2248
2249 if (argc != 1)
2250 return KDB_ARGCOUNT;
2251
2252 diag = kdbgetularg(argv[1], &cpunum);
2253 if (diag)
2254 return diag;
2255
2256 /*
2257 * Validate cpunum
2258 */
2259 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2260 return KDB_BADCPUNUM;
2261
2262 dbg_switch_cpu = cpunum;
2263
2264 /*
2265 * Switch to other cpu
2266 */
2267 return KDB_CMD_CPU;
2268}
2269
2270/* The user may not realize that ps/bta with no parameters does not print idle
2271 * or sleeping system daemon processes, so tell them how many were suppressed.
2272 */
2273void kdb_ps_suppressed(void)
2274{
2275 int idle = 0, daemon = 0;
2276 unsigned long mask_I = kdb_task_state_string("I"),
2277 mask_M = kdb_task_state_string("M");
2278 unsigned long cpu;
2279 const struct task_struct *p, *g;
2280 for_each_online_cpu(cpu) {
2281 p = kdb_curr_task(cpu);
2282 if (kdb_task_state(p, mask_I))
2283 ++idle;
2284 }
2285 kdb_do_each_thread(g, p) {
2286 if (kdb_task_state(p, mask_M))
2287 ++daemon;
2288 } kdb_while_each_thread(g, p);
2289 if (idle || daemon) {
2290 if (idle)
2291 kdb_printf("%d idle process%s (state I)%s\n",
2292 idle, idle == 1 ? "" : "es",
2293 daemon ? " and " : "");
2294 if (daemon)
2295 kdb_printf("%d sleeping system daemon (state M) "
2296 "process%s", daemon,
2297 daemon == 1 ? "" : "es");
2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 }
2300}
2301
2302/*
2303 * kdb_ps - This function implements the 'ps' command which shows a
2304 * list of the active processes.
2305 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2306 */
2307void kdb_ps1(const struct task_struct *p)
2308{
2309 int cpu;
2310 unsigned long tmp;
2311
2312 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2313 return;
2314
2315 cpu = kdb_process_cpu(p);
2316 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2317 (void *)p, p->pid, p->parent->pid,
2318 kdb_task_has_cpu(p), kdb_process_cpu(p),
2319 kdb_task_state_char(p),
2320 (void *)(&p->thread),
2321 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322 p->comm);
2323 if (kdb_task_has_cpu(p)) {
2324 if (!KDB_TSK(cpu)) {
2325 kdb_printf(" Error: no saved data for this cpu\n");
2326 } else {
2327 if (KDB_TSK(cpu) != p)
2328 kdb_printf(" Error: does not match running "
2329 "process table (0x%p)\n", KDB_TSK(cpu));
2330 }
2331 }
2332}
2333
2334static int kdb_ps(int argc, const char **argv)
2335{
2336 struct task_struct *g, *p;
2337 unsigned long mask, cpu;
2338
2339 if (argc == 0)
2340 kdb_ps_suppressed();
2341 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2342 (int)(2*sizeof(void *))+2, "Task Addr",
2343 (int)(2*sizeof(void *))+2, "Thread");
2344 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345 /* Run the active tasks first */
2346 for_each_online_cpu(cpu) {
2347 if (KDB_FLAG(CMD_INTERRUPT))
2348 return 0;
2349 p = kdb_curr_task(cpu);
2350 if (kdb_task_state(p, mask))
2351 kdb_ps1(p);
2352 }
2353 kdb_printf("\n");
2354 /* Now the real tasks */
2355 kdb_do_each_thread(g, p) {
2356 if (KDB_FLAG(CMD_INTERRUPT))
2357 return 0;
2358 if (kdb_task_state(p, mask))
2359 kdb_ps1(p);
2360 } kdb_while_each_thread(g, p);
2361
2362 return 0;
2363}
2364
2365/*
2366 * kdb_pid - This function implements the 'pid' command which switches
2367 * the currently active process.
2368 * pid [<pid> | R]
2369 */
2370static int kdb_pid(int argc, const char **argv)
2371{
2372 struct task_struct *p;
2373 unsigned long val;
2374 int diag;
2375
2376 if (argc > 1)
2377 return KDB_ARGCOUNT;
2378
2379 if (argc) {
2380 if (strcmp(argv[1], "R") == 0) {
2381 p = KDB_TSK(kdb_initial_cpu);
2382 } else {
2383 diag = kdbgetularg(argv[1], &val);
2384 if (diag)
2385 return KDB_BADINT;
2386
2387 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2388 if (!p) {
2389 kdb_printf("No task with pid=%d\n", (pid_t)val);
2390 return 0;
2391 }
2392 }
2393 kdb_set_current_task(p);
2394 }
2395 kdb_printf("KDB current process is %s(pid=%d)\n",
2396 kdb_current_task->comm,
2397 kdb_current_task->pid);
2398
2399 return 0;
2400}
2401
2402static int kdb_kgdb(int argc, const char **argv)
2403{
2404 return KDB_CMD_KGDB;
2405}
2406
2407/*
2408 * kdb_help - This function implements the 'help' and '?' commands.
2409 */
2410static int kdb_help(int argc, const char **argv)
2411{
2412 kdbtab_t *kt;
2413 int i;
2414
2415 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416 kdb_printf("-----------------------------"
2417 "-----------------------------\n");
2418 for_each_kdbcmd(kt, i) {
2419 char *space = "";
2420 if (KDB_FLAG(CMD_INTERRUPT))
2421 return 0;
2422 if (!kt->cmd_name)
2423 continue;
2424 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425 continue;
2426 if (strlen(kt->cmd_usage) > 20)
2427 space = "\n ";
2428 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429 kt->cmd_usage, space, kt->cmd_help);
2430 }
2431 return 0;
2432}
2433
2434/*
2435 * kdb_kill - This function implements the 'kill' commands.
2436 */
2437static int kdb_kill(int argc, const char **argv)
2438{
2439 long sig, pid;
2440 char *endp;
2441 struct task_struct *p;
2442 struct siginfo info;
2443
2444 if (argc != 2)
2445 return KDB_ARGCOUNT;
2446
2447 sig = simple_strtol(argv[1], &endp, 0);
2448 if (*endp)
2449 return KDB_BADINT;
2450 if (sig >= 0) {
2451 kdb_printf("Invalid signal parameter.<-signal>\n");
2452 return 0;
2453 }
2454 sig = -sig;
2455
2456 pid = simple_strtol(argv[2], &endp, 0);
2457 if (*endp)
2458 return KDB_BADINT;
2459 if (pid <= 0) {
2460 kdb_printf("Process ID must be large than 0.\n");
2461 return 0;
2462 }
2463
2464 /* Find the process. */
2465 p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 if (!p) {
2467 kdb_printf("The specified process isn't found.\n");
2468 return 0;
2469 }
2470 p = p->group_leader;
2471 info.si_signo = sig;
2472 info.si_errno = 0;
2473 info.si_code = SI_USER;
2474 info.si_pid = pid; /* same capabilities as process being signalled */
2475 info.si_uid = 0; /* kdb has root authority */
2476 kdb_send_sig_info(p, &info);
2477 return 0;
2478}
2479
2480struct kdb_tm {
2481 int tm_sec; /* seconds */
2482 int tm_min; /* minutes */
2483 int tm_hour; /* hours */
2484 int tm_mday; /* day of the month */
2485 int tm_mon; /* month */
2486 int tm_year; /* year */
2487};
2488
2489static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490{
2491 /* This will work from 1970-2099, 2100 is not a leap year */
2492 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493 31, 30, 31, 30, 31 };
2494 memset(tm, 0, sizeof(*tm));
2495 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2496 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2498 tm->tm_min = tm->tm_sec / 60 % 60;
2499 tm->tm_hour = tm->tm_sec / 60 / 60;
2500 tm->tm_sec = tm->tm_sec % 60;
2501 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502 tm->tm_mday %= (4*365+1);
2503 mon_day[1] = 29;
2504 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505 tm->tm_mday -= mon_day[tm->tm_mon];
2506 if (++tm->tm_mon == 12) {
2507 tm->tm_mon = 0;
2508 ++tm->tm_year;
2509 mon_day[1] = 28;
2510 }
2511 }
2512 ++tm->tm_mday;
2513}
2514
2515/*
2516 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517 * I cannot call that code directly from kdb, it has an unconditional
2518 * cli()/sti() and calls routines that take locks which can stop the debugger.
2519 */
2520static void kdb_sysinfo(struct sysinfo *val)
2521{
2522 struct timespec uptime;
2523 ktime_get_ts(&uptime);
2524 memset(val, 0, sizeof(*val));
2525 val->uptime = uptime.tv_sec;
2526 val->loads[0] = avenrun[0];
2527 val->loads[1] = avenrun[1];
2528 val->loads[2] = avenrun[2];
2529 val->procs = nr_threads-1;
2530 si_meminfo(val);
2531
2532 return;
2533}
2534
2535/*
2536 * kdb_summary - This function implements the 'summary' command.
2537 */
2538static int kdb_summary(int argc, const char **argv)
2539{
2540 struct timespec now;
2541 struct kdb_tm tm;
2542 struct sysinfo val;
2543
2544 if (argc)
2545 return KDB_ARGCOUNT;
2546
2547 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2548 kdb_printf("release %s\n", init_uts_ns.name.release);
2549 kdb_printf("version %s\n", init_uts_ns.name.version);
2550 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2551 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2552 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2554
2555 now = __current_kernel_time();
2556 kdb_gmtime(&now, &tm);
2557 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2558 "tz_minuteswest %d\n",
2559 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560 tm.tm_hour, tm.tm_min, tm.tm_sec,
2561 sys_tz.tz_minuteswest);
2562
2563 kdb_sysinfo(&val);
2564 kdb_printf("uptime ");
2565 if (val.uptime > (24*60*60)) {
2566 int days = val.uptime / (24*60*60);
2567 val.uptime %= (24*60*60);
2568 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569 }
2570 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571
2572 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573
2574#define LOAD_INT(x) ((x) >> FSHIFT)
2575#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580#undef LOAD_INT
2581#undef LOAD_FRAC
2582 /* Display in kilobytes */
2583#define K(x) ((x) << (PAGE_SHIFT - 10))
2584 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2585 "Buffers: %8lu kB\n",
2586 K(val.totalram), K(val.freeram), K(val.bufferram));
2587 return 0;
2588}
2589
2590/*
2591 * kdb_per_cpu - This function implements the 'per_cpu' command.
2592 */
2593static int kdb_per_cpu(int argc, const char **argv)
2594{
2595 char fmtstr[64];
2596 int cpu, diag, nextarg = 1;
2597 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2598
2599 if (argc < 1 || argc > 3)
2600 return KDB_ARGCOUNT;
2601
2602 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603 if (diag)
2604 return diag;
2605
2606 if (argc >= 2) {
2607 diag = kdbgetularg(argv[2], &bytesperword);
2608 if (diag)
2609 return diag;
2610 }
2611 if (!bytesperword)
2612 bytesperword = KDB_WORD_SIZE;
2613 else if (bytesperword > KDB_WORD_SIZE)
2614 return KDB_BADWIDTH;
2615 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616 if (argc >= 3) {
2617 diag = kdbgetularg(argv[3], &whichcpu);
2618 if (diag)
2619 return diag;
2620 if (!cpu_online(whichcpu)) {
2621 kdb_printf("cpu %ld is not online\n", whichcpu);
2622 return KDB_BADCPUNUM;
2623 }
2624 }
2625
2626 /* Most architectures use __per_cpu_offset[cpu], some use
2627 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628 */
2629#ifdef __per_cpu_offset
2630#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631#else
2632#ifdef CONFIG_SMP
2633#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634#else
2635#define KDB_PCU(cpu) 0
2636#endif
2637#endif
2638 for_each_online_cpu(cpu) {
2639 if (KDB_FLAG(CMD_INTERRUPT))
2640 return 0;
2641
2642 if (whichcpu != ~0UL && whichcpu != cpu)
2643 continue;
2644 addr = symaddr + KDB_PCU(cpu);
2645 diag = kdb_getword(&val, addr, bytesperword);
2646 if (diag) {
2647 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648 "read, diag=%d\n", cpu, addr, diag);
2649 continue;
2650 }
2651 kdb_printf("%5d ", cpu);
2652 kdb_md_line(fmtstr, addr,
2653 bytesperword == KDB_WORD_SIZE,
2654 1, bytesperword, 1, 1, 0);
2655 }
2656#undef KDB_PCU
2657 return 0;
2658}
2659
2660/*
2661 * display help for the use of cmd | grep pattern
2662 */
2663static int kdb_grep_help(int argc, const char **argv)
2664{
2665 kdb_printf("Usage of cmd args | grep pattern:\n");
2666 kdb_printf(" Any command's output may be filtered through an ");
2667 kdb_printf("emulated 'pipe'.\n");
2668 kdb_printf(" 'grep' is just a key word.\n");
2669 kdb_printf(" The pattern may include a very limited set of "
2670 "metacharacters:\n");
2671 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2672 kdb_printf(" And if there are spaces in the pattern, you may "
2673 "quote it:\n");
2674 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675 " or \"^pat tern$\"\n");
2676 return 0;
2677}
2678
2679/*
2680 * kdb_register_flags - This function is used to register a kernel
2681 * debugger command.
2682 * Inputs:
2683 * cmd Command name
2684 * func Function to execute the command
2685 * usage A simple usage string showing arguments
2686 * help A simple help string describing command
2687 * repeat Does the command auto repeat on enter?
2688 * Returns:
2689 * zero for success, one if a duplicate command.
2690 */
2691#define kdb_command_extend 50 /* arbitrary */
2692int kdb_register_flags(char *cmd,
2693 kdb_func_t func,
2694 char *usage,
2695 char *help,
2696 short minlen,
2697 kdb_cmdflags_t flags)
2698{
2699 int i;
2700 kdbtab_t *kp;
2701
2702 /*
2703 * Brute force method to determine duplicates
2704 */
2705 for_each_kdbcmd(kp, i) {
2706 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707 kdb_printf("Duplicate kdb command registered: "
2708 "%s, func %p help %s\n", cmd, func, help);
2709 return 1;
2710 }
2711 }
2712
2713 /*
2714 * Insert command into first available location in table
2715 */
2716 for_each_kdbcmd(kp, i) {
2717 if (kp->cmd_name == NULL)
2718 break;
2719 }
2720
2721 if (i >= kdb_max_commands) {
2722 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723 kdb_command_extend) * sizeof(*new), GFP_KDB);
2724 if (!new) {
2725 kdb_printf("Could not allocate new kdb_command "
2726 "table\n");
2727 return 1;
2728 }
2729 if (kdb_commands) {
2730 memcpy(new, kdb_commands,
2731 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2732 kfree(kdb_commands);
2733 }
2734 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2735 kdb_command_extend * sizeof(*new));
2736 kdb_commands = new;
2737 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2738 kdb_max_commands += kdb_command_extend;
2739 }
2740
2741 kp->cmd_name = cmd;
2742 kp->cmd_func = func;
2743 kp->cmd_usage = usage;
2744 kp->cmd_help = help;
2745 kp->cmd_minlen = minlen;
2746 kp->cmd_flags = flags;
2747
2748 return 0;
2749}
2750EXPORT_SYMBOL_GPL(kdb_register_flags);
2751
2752
2753/*
2754 * kdb_register - Compatibility register function for commands that do
2755 * not need to specify a repeat state. Equivalent to
2756 * kdb_register_flags with flags set to 0.
2757 * Inputs:
2758 * cmd Command name
2759 * func Function to execute the command
2760 * usage A simple usage string showing arguments
2761 * help A simple help string describing command
2762 * Returns:
2763 * zero for success, one if a duplicate command.
2764 */
2765int kdb_register(char *cmd,
2766 kdb_func_t func,
2767 char *usage,
2768 char *help,
2769 short minlen)
2770{
2771 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2772}
2773EXPORT_SYMBOL_GPL(kdb_register);
2774
2775/*
2776 * kdb_unregister - This function is used to unregister a kernel
2777 * debugger command. It is generally called when a module which
2778 * implements kdb commands is unloaded.
2779 * Inputs:
2780 * cmd Command name
2781 * Returns:
2782 * zero for success, one command not registered.
2783 */
2784int kdb_unregister(char *cmd)
2785{
2786 int i;
2787 kdbtab_t *kp;
2788
2789 /*
2790 * find the command.
2791 */
2792 for_each_kdbcmd(kp, i) {
2793 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794 kp->cmd_name = NULL;
2795 return 0;
2796 }
2797 }
2798
2799 /* Couldn't find it. */
2800 return 1;
2801}
2802EXPORT_SYMBOL_GPL(kdb_unregister);
2803
2804/* Initialize the kdb command table. */
2805static void __init kdb_inittab(void)
2806{
2807 int i;
2808 kdbtab_t *kp;
2809
2810 for_each_kdbcmd(kp, i)
2811 kp->cmd_name = NULL;
2812
2813 kdb_register_flags("md", kdb_md, "<vaddr>",
2814 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2815 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2816 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2817 "Display Raw Memory", 0,
2818 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2819 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2820 "Display Physical Memory", 0,
2821 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2822 kdb_register_flags("mds", kdb_md, "<vaddr>",
2823 "Display Memory Symbolically", 0,
2824 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2825 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2826 "Modify Memory Contents", 0,
2827 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2828 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2829 "Continue Execution", 1,
2830 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2831 kdb_register_flags("rd", kdb_rd, "",
2832 "Display Registers", 0,
2833 KDB_ENABLE_REG_READ);
2834 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2835 "Modify Registers", 0,
2836 KDB_ENABLE_REG_WRITE);
2837 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2838 "Display exception frame", 0,
2839 KDB_ENABLE_MEM_READ);
2840 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2841 "Stack traceback", 1,
2842 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2843 kdb_register_flags("btp", kdb_bt, "<pid>",
2844 "Display stack for process <pid>", 0,
2845 KDB_ENABLE_INSPECT);
2846 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2847 "Backtrace all processes matching state flag", 0,
2848 KDB_ENABLE_INSPECT);
2849 kdb_register_flags("btc", kdb_bt, "",
2850 "Backtrace current process on each cpu", 0,
2851 KDB_ENABLE_INSPECT);
2852 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2853 "Backtrace process given its struct task address", 0,
2854 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2855 kdb_register_flags("env", kdb_env, "",
2856 "Show environment variables", 0,
2857 KDB_ENABLE_ALWAYS_SAFE);
2858 kdb_register_flags("set", kdb_set, "",
2859 "Set environment variables", 0,
2860 KDB_ENABLE_ALWAYS_SAFE);
2861 kdb_register_flags("help", kdb_help, "",
2862 "Display Help Message", 1,
2863 KDB_ENABLE_ALWAYS_SAFE);
2864 kdb_register_flags("?", kdb_help, "",
2865 "Display Help Message", 0,
2866 KDB_ENABLE_ALWAYS_SAFE);
2867 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0,
2869 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2870 kdb_register_flags("kgdb", kdb_kgdb, "",
2871 "Enter kgdb mode", 0, 0);
2872 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2873 "Display active task list", 0,
2874 KDB_ENABLE_INSPECT);
2875 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2876 "Switch to another task", 0,
2877 KDB_ENABLE_INSPECT);
2878 kdb_register_flags("reboot", kdb_reboot, "",
2879 "Reboot the machine immediately", 0,
2880 KDB_ENABLE_REBOOT);
2881#if defined(CONFIG_MODULES)
2882 kdb_register_flags("lsmod", kdb_lsmod, "",
2883 "List loaded kernel modules", 0,
2884 KDB_ENABLE_INSPECT);
2885#endif
2886#if defined(CONFIG_MAGIC_SYSRQ)
2887 kdb_register_flags("sr", kdb_sr, "<key>",
2888 "Magic SysRq key", 0,
2889 KDB_ENABLE_ALWAYS_SAFE);
2890#endif
2891#if defined(CONFIG_PRINTK)
2892 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2893 "Display syslog buffer", 0,
2894 KDB_ENABLE_ALWAYS_SAFE);
2895#endif
2896 if (arch_kgdb_ops.enable_nmi) {
2897 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2898 "Disable NMI entry to KDB", 0,
2899 KDB_ENABLE_ALWAYS_SAFE);
2900 }
2901 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2902 "Define a set of commands, down to endefcmd", 0,
2903 KDB_ENABLE_ALWAYS_SAFE);
2904 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2905 "Send a signal to a process", 0,
2906 KDB_ENABLE_SIGNAL);
2907 kdb_register_flags("summary", kdb_summary, "",
2908 "Summarize the system", 4,
2909 KDB_ENABLE_ALWAYS_SAFE);
2910 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2911 "Display per_cpu variables", 3,
2912 KDB_ENABLE_MEM_READ);
2913 kdb_register_flags("grephelp", kdb_grep_help, "",
2914 "Display help on | grep", 0,
2915 KDB_ENABLE_ALWAYS_SAFE);
2916}
2917
2918/* Execute any commands defined in kdb_cmds. */
2919static void __init kdb_cmd_init(void)
2920{
2921 int i, diag;
2922 for (i = 0; kdb_cmds[i]; ++i) {
2923 diag = kdb_parse(kdb_cmds[i]);
2924 if (diag)
2925 kdb_printf("kdb command %s failed, kdb diag %d\n",
2926 kdb_cmds[i], diag);
2927 }
2928 if (defcmd_in_progress) {
2929 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930 kdb_parse("endefcmd");
2931 }
2932}
2933
2934/* Initialize kdb_printf, breakpoint tables and kdb state */
2935void __init kdb_init(int lvl)
2936{
2937 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938 int i;
2939
2940 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941 return;
2942 for (i = kdb_init_lvl; i < lvl; i++) {
2943 switch (i) {
2944 case KDB_NOT_INITIALIZED:
2945 kdb_inittab(); /* Initialize Command Table */
2946 kdb_initbptab(); /* Initialize Breakpoints */
2947 break;
2948 case KDB_INIT_EARLY:
2949 kdb_cmd_init(); /* Build kdb_cmds tables */
2950 break;
2951 }
2952 }
2953 kdb_init_lvl = lvl;
2954}