Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
 
  29#include <linux/moduleparam.h>
  30#include <linux/mm.h>
  31#include <linux/init.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kgdb.h>
  34#include <linux/kdb.h>
  35#include <linux/notifier.h>
  36#include <linux/interrupt.h>
  37#include <linux/delay.h>
  38#include <linux/nmi.h>
  39#include <linux/time.h>
  40#include <linux/ptrace.h>
  41#include <linux/sysctl.h>
  42#include <linux/cpu.h>
  43#include <linux/kdebug.h>
  44#include <linux/proc_fs.h>
  45#include <linux/uaccess.h>
  46#include <linux/slab.h>
  47#include <linux/security.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
 
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_cmds_head describes the available commands. */
  88static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  89
  90typedef struct _kdbmsg {
  91	int	km_diag;	/* kdb diagnostic */
  92	char	*km_msg;	/* Corresponding message text */
  93} kdbmsg_t;
  94
  95#define KDBMSG(msgnum, text) \
  96	{ KDB_##msgnum, text }
  97
  98static kdbmsg_t kdbmsgs[] = {
  99	KDBMSG(NOTFOUND, "Command Not Found"),
 100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 102	       "8 is only allowed on 64 bit systems"),
 103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 104	KDBMSG(NOTENV, "Cannot find environment variable"),
 105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 106	KDBMSG(NOTIMP, "Command not implemented"),
 107	KDBMSG(ENVFULL, "Environment full"),
 108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 110#ifdef CONFIG_CPU_XSCALE
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 112#else
 113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 114#endif
 115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 117	KDBMSG(BADMODE, "Invalid IDMODE"),
 118	KDBMSG(BADINT, "Illegal numeric value"),
 119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 120	KDBMSG(BADREG, "Invalid register name"),
 121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 122	KDBMSG(BADLENGTH, "Invalid length field"),
 123	KDBMSG(NOBP, "No Breakpoint exists"),
 124	KDBMSG(BADADDR, "Invalid address"),
 125	KDBMSG(NOPERM, "Permission denied"),
 126};
 127#undef KDBMSG
 128
 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 130
 131
 132/*
 133 * Initial environment.   This is all kept static and local to
 134 * this file.   We don't want to rely on the memory allocation
 135 * mechanisms in the kernel, so we use a very limited allocate-only
 136 * heap for new and altered environment variables.  The entire
 137 * environment is limited to a fixed number of entries (add more
 138 * to __env[] if required) and a fixed amount of heap (add more to
 139 * KDB_ENVBUFSIZE if required).
 140 */
 141
 142static char *__env[31] = {
 143#if defined(CONFIG_SMP)
 144	"PROMPT=[%d]kdb> ",
 145#else
 146	"PROMPT=kdb> ",
 147#endif
 148	"MOREPROMPT=more> ",
 149	"RADIX=16",
 150	"MDCOUNT=8",		/* lines of md output */
 151	KDB_PLATFORM_ENV,
 152	"DTABCOUNT=30",
 153	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154};
 155
 156static const int __nenv = ARRAY_SIZE(__env);
 157
 158struct task_struct *kdb_curr_task(int cpu)
 159{
 160	struct task_struct *p = curr_task(cpu);
 161#ifdef	_TIF_MCA_INIT
 162	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 163		p = krp->p;
 164#endif
 165	return p;
 166}
 167
 168/*
 169 * Update the permissions flags (kdb_cmd_enabled) to match the
 170 * current lockdown state.
 171 *
 172 * Within this function the calls to security_locked_down() are "lazy". We
 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
 174 * flags that might be subject to lockdown. Additionally we deliberately check
 175 * the lockdown flags independently (even though read lockdown implies write
 176 * lockdown) since that results in both simpler code and clearer messages to
 177 * the user on first-time debugger entry.
 178 *
 179 * The permission masks during a read+write lockdown permits the following
 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
 181 *
 182 * The INSPECT commands are not blocked during lockdown because they are
 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
 184 * forcing them to have no arguments) and lsmod. These commands do expose
 185 * some kernel state but do not allow the developer seated at the console to
 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
 187 * given these are allowed for root during lockdown already.
 188 */
 189static void kdb_check_for_lockdown(void)
 190{
 191	const int write_flags = KDB_ENABLE_MEM_WRITE |
 192				KDB_ENABLE_REG_WRITE |
 193				KDB_ENABLE_FLOW_CTRL;
 194	const int read_flags = KDB_ENABLE_MEM_READ |
 195			       KDB_ENABLE_REG_READ;
 196
 197	bool need_to_lockdown_write = false;
 198	bool need_to_lockdown_read = false;
 199
 200	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
 201		need_to_lockdown_write =
 202			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
 203
 204	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
 205		need_to_lockdown_read =
 206			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
 207
 208	/* De-compose KDB_ENABLE_ALL if required */
 209	if (need_to_lockdown_write || need_to_lockdown_read)
 210		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
 211			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
 212
 213	if (need_to_lockdown_write)
 214		kdb_cmd_enabled &= ~write_flags;
 215
 216	if (need_to_lockdown_read)
 217		kdb_cmd_enabled &= ~read_flags;
 218}
 219
 220/*
 221 * Check whether the flags of the current command, the permissions of the kdb
 222 * console and the lockdown state allow a command to be run.
 223 */
 224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 225				   bool no_args)
 226{
 227	/* permissions comes from userspace so needs massaging slightly */
 228	permissions &= KDB_ENABLE_MASK;
 229	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 230
 231	/* some commands change group when launched with no arguments */
 232	if (no_args)
 233		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 234
 235	flags |= KDB_ENABLE_ALL;
 236
 237	return permissions & flags;
 238}
 239
 240/*
 241 * kdbgetenv - This function will return the character string value of
 242 *	an environment variable.
 243 * Parameters:
 244 *	match	A character string representing an environment variable.
 245 * Returns:
 246 *	NULL	No environment variable matches 'match'
 247 *	char*	Pointer to string value of environment variable.
 248 */
 249char *kdbgetenv(const char *match)
 250{
 251	char **ep = __env;
 252	int matchlen = strlen(match);
 253	int i;
 254
 255	for (i = 0; i < __nenv; i++) {
 256		char *e = *ep++;
 257
 258		if (!e)
 259			continue;
 260
 261		if ((strncmp(match, e, matchlen) == 0)
 262		 && ((e[matchlen] == '\0')
 263		   || (e[matchlen] == '='))) {
 264			char *cp = strchr(e, '=');
 265			return cp ? ++cp : "";
 266		}
 267	}
 268	return NULL;
 269}
 270
 271/*
 272 * kdballocenv - This function is used to allocate bytes for
 273 *	environment entries.
 274 * Parameters:
 275 *	match	A character string representing a numeric value
 276 * Outputs:
 277 *	*value  the unsigned long representation of the env variable 'match'
 278 * Returns:
 279 *	Zero on success, a kdb diagnostic on failure.
 280 * Remarks:
 281 *	We use a static environment buffer (envbuffer) to hold the values
 282 *	of dynamically generated environment variables (see kdb_set).  Buffer
 283 *	space once allocated is never free'd, so over time, the amount of space
 284 *	(currently 512 bytes) will be exhausted if env variables are changed
 285 *	frequently.
 286 */
 287static char *kdballocenv(size_t bytes)
 288{
 289#define	KDB_ENVBUFSIZE	512
 290	static char envbuffer[KDB_ENVBUFSIZE];
 291	static int envbufsize;
 292	char *ep = NULL;
 293
 294	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 295		ep = &envbuffer[envbufsize];
 296		envbufsize += bytes;
 297	}
 298	return ep;
 299}
 300
 301/*
 302 * kdbgetulenv - This function will return the value of an unsigned
 303 *	long-valued environment variable.
 304 * Parameters:
 305 *	match	A character string representing a numeric value
 306 * Outputs:
 307 *	*value  the unsigned long representation of the env variable 'match'
 308 * Returns:
 309 *	Zero on success, a kdb diagnostic on failure.
 310 */
 311static int kdbgetulenv(const char *match, unsigned long *value)
 312{
 313	char *ep;
 314
 315	ep = kdbgetenv(match);
 316	if (!ep)
 317		return KDB_NOTENV;
 318	if (strlen(ep) == 0)
 319		return KDB_NOENVVALUE;
 320
 321	*value = simple_strtoul(ep, NULL, 0);
 322
 323	return 0;
 324}
 325
 326/*
 327 * kdbgetintenv - This function will return the value of an
 328 *	integer-valued environment variable.
 329 * Parameters:
 330 *	match	A character string representing an integer-valued env variable
 331 * Outputs:
 332 *	*value  the integer representation of the environment variable 'match'
 333 * Returns:
 334 *	Zero on success, a kdb diagnostic on failure.
 335 */
 336int kdbgetintenv(const char *match, int *value)
 337{
 338	unsigned long val;
 339	int diag;
 340
 341	diag = kdbgetulenv(match, &val);
 342	if (!diag)
 343		*value = (int) val;
 344	return diag;
 345}
 346
 347/*
 348 * kdb_setenv() - Alter an existing environment variable or create a new one.
 349 * @var: Name of the variable
 350 * @val: Value of the variable
 351 *
 352 * Return: Zero on success, a kdb diagnostic on failure.
 353 */
 354static int kdb_setenv(const char *var, const char *val)
 355{
 356	int i;
 357	char *ep;
 358	size_t varlen, vallen;
 359
 360	varlen = strlen(var);
 361	vallen = strlen(val);
 362	ep = kdballocenv(varlen + vallen + 2);
 363	if (ep == (char *)0)
 364		return KDB_ENVBUFFULL;
 365
 366	sprintf(ep, "%s=%s", var, val);
 367
 368	for (i = 0; i < __nenv; i++) {
 369		if (__env[i]
 370		 && ((strncmp(__env[i], var, varlen) == 0)
 371		   && ((__env[i][varlen] == '\0')
 372		    || (__env[i][varlen] == '=')))) {
 373			__env[i] = ep;
 374			return 0;
 375		}
 376	}
 377
 378	/*
 379	 * Wasn't existing variable.  Fit into slot.
 380	 */
 381	for (i = 0; i < __nenv-1; i++) {
 382		if (__env[i] == (char *)0) {
 383			__env[i] = ep;
 384			return 0;
 385		}
 386	}
 387
 388	return KDB_ENVFULL;
 389}
 390
 391/*
 392 * kdb_printenv() - Display the current environment variables.
 393 */
 394static void kdb_printenv(void)
 395{
 396	int i;
 397
 398	for (i = 0; i < __nenv; i++) {
 399		if (__env[i])
 400			kdb_printf("%s\n", __env[i]);
 401	}
 402}
 403
 404/*
 405 * kdbgetularg - This function will convert a numeric string into an
 406 *	unsigned long value.
 407 * Parameters:
 408 *	arg	A character string representing a numeric value
 409 * Outputs:
 410 *	*value  the unsigned long representation of arg.
 411 * Returns:
 412 *	Zero on success, a kdb diagnostic on failure.
 413 */
 414int kdbgetularg(const char *arg, unsigned long *value)
 415{
 416	char *endp;
 417	unsigned long val;
 418
 419	val = simple_strtoul(arg, &endp, 0);
 420
 421	if (endp == arg) {
 422		/*
 423		 * Also try base 16, for us folks too lazy to type the
 424		 * leading 0x...
 425		 */
 426		val = simple_strtoul(arg, &endp, 16);
 427		if (endp == arg)
 428			return KDB_BADINT;
 429	}
 430
 431	*value = val;
 432
 433	return 0;
 434}
 435
 436int kdbgetu64arg(const char *arg, u64 *value)
 437{
 438	char *endp;
 439	u64 val;
 440
 441	val = simple_strtoull(arg, &endp, 0);
 442
 443	if (endp == arg) {
 444
 445		val = simple_strtoull(arg, &endp, 16);
 446		if (endp == arg)
 447			return KDB_BADINT;
 448	}
 449
 450	*value = val;
 451
 452	return 0;
 453}
 454
 455/*
 456 * kdb_set - This function implements the 'set' command.  Alter an
 457 *	existing environment variable or create a new one.
 458 */
 459int kdb_set(int argc, const char **argv)
 460{
 
 
 
 
 461	/*
 462	 * we can be invoked two ways:
 463	 *   set var=value    argv[1]="var", argv[2]="value"
 464	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 465	 * - if the latter, shift 'em down.
 466	 */
 467	if (argc == 3) {
 468		argv[2] = argv[3];
 469		argc--;
 470	}
 471
 472	if (argc != 2)
 473		return KDB_ARGCOUNT;
 474
 475	/*
 476	 * Censor sensitive variables
 477	 */
 478	if (strcmp(argv[1], "PROMPT") == 0 &&
 479	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 480		return KDB_NOPERM;
 481
 482	/*
 483	 * Check for internal variables
 484	 */
 485	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 486		unsigned int debugflags;
 487		char *cp;
 488
 489		debugflags = simple_strtoul(argv[2], &cp, 0);
 490		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 491			kdb_printf("kdb: illegal debug flags '%s'\n",
 492				    argv[2]);
 493			return 0;
 494		}
 495		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 496			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 497
 498		return 0;
 499	}
 500
 501	/*
 502	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 503	 * name, argv[2] = value.
 504	 */
 505	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506}
 507
 508static int kdb_check_regs(void)
 509{
 510	if (!kdb_current_regs) {
 511		kdb_printf("No current kdb registers."
 512			   "  You may need to select another task\n");
 513		return KDB_BADREG;
 514	}
 515	return 0;
 516}
 517
 518/*
 519 * kdbgetaddrarg - This function is responsible for parsing an
 520 *	address-expression and returning the value of the expression,
 521 *	symbol name, and offset to the caller.
 522 *
 523 *	The argument may consist of a numeric value (decimal or
 524 *	hexadecimal), a symbol name, a register name (preceded by the
 525 *	percent sign), an environment variable with a numeric value
 526 *	(preceded by a dollar sign) or a simple arithmetic expression
 527 *	consisting of a symbol name, +/-, and a numeric constant value
 528 *	(offset).
 529 * Parameters:
 530 *	argc	- count of arguments in argv
 531 *	argv	- argument vector
 532 *	*nextarg - index to next unparsed argument in argv[]
 533 *	regs	- Register state at time of KDB entry
 534 * Outputs:
 535 *	*value	- receives the value of the address-expression
 536 *	*offset - receives the offset specified, if any
 537 *	*name   - receives the symbol name, if any
 538 *	*nextarg - index to next unparsed argument in argv[]
 539 * Returns:
 540 *	zero is returned on success, a kdb diagnostic code is
 541 *      returned on error.
 542 */
 543int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 544		  unsigned long *value,  long *offset,
 545		  char **name)
 546{
 547	unsigned long addr;
 548	unsigned long off = 0;
 549	int positive;
 550	int diag;
 551	int found = 0;
 552	char *symname;
 553	char symbol = '\0';
 554	char *cp;
 555	kdb_symtab_t symtab;
 556
 557	/*
 558	 * If the enable flags prohibit both arbitrary memory access
 559	 * and flow control then there are no reasonable grounds to
 560	 * provide symbol lookup.
 561	 */
 562	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 563			     kdb_cmd_enabled, false))
 564		return KDB_NOPERM;
 565
 566	/*
 567	 * Process arguments which follow the following syntax:
 568	 *
 569	 *  symbol | numeric-address [+/- numeric-offset]
 570	 *  %register
 571	 *  $environment-variable
 572	 */
 573
 574	if (*nextarg > argc)
 575		return KDB_ARGCOUNT;
 576
 577	symname = (char *)argv[*nextarg];
 578
 579	/*
 580	 * If there is no whitespace between the symbol
 581	 * or address and the '+' or '-' symbols, we
 582	 * remember the character and replace it with a
 583	 * null so the symbol/value can be properly parsed
 584	 */
 585	cp = strpbrk(symname, "+-");
 586	if (cp != NULL) {
 587		symbol = *cp;
 588		*cp++ = '\0';
 589	}
 590
 591	if (symname[0] == '$') {
 592		diag = kdbgetulenv(&symname[1], &addr);
 593		if (diag)
 594			return diag;
 595	} else if (symname[0] == '%') {
 596		diag = kdb_check_regs();
 597		if (diag)
 598			return diag;
 599		/* Implement register values with % at a later time as it is
 600		 * arch optional.
 601		 */
 602		return KDB_NOTIMP;
 603	} else {
 604		found = kdbgetsymval(symname, &symtab);
 605		if (found) {
 606			addr = symtab.sym_start;
 607		} else {
 608			diag = kdbgetularg(argv[*nextarg], &addr);
 609			if (diag)
 610				return diag;
 611		}
 612	}
 613
 614	if (!found)
 615		found = kdbnearsym(addr, &symtab);
 616
 617	(*nextarg)++;
 618
 619	if (name)
 620		*name = symname;
 621	if (value)
 622		*value = addr;
 623	if (offset && name && *name)
 624		*offset = addr - symtab.sym_start;
 625
 626	if ((*nextarg > argc)
 627	 && (symbol == '\0'))
 628		return 0;
 629
 630	/*
 631	 * check for +/- and offset
 632	 */
 633
 634	if (symbol == '\0') {
 635		if ((argv[*nextarg][0] != '+')
 636		 && (argv[*nextarg][0] != '-')) {
 637			/*
 638			 * Not our argument.  Return.
 639			 */
 640			return 0;
 641		} else {
 642			positive = (argv[*nextarg][0] == '+');
 643			(*nextarg)++;
 644		}
 645	} else
 646		positive = (symbol == '+');
 647
 648	/*
 649	 * Now there must be an offset!
 650	 */
 651	if ((*nextarg > argc)
 652	 && (symbol == '\0')) {
 653		return KDB_INVADDRFMT;
 654	}
 655
 656	if (!symbol) {
 657		cp = (char *)argv[*nextarg];
 658		(*nextarg)++;
 659	}
 660
 661	diag = kdbgetularg(cp, &off);
 662	if (diag)
 663		return diag;
 664
 665	if (!positive)
 666		off = -off;
 667
 668	if (offset)
 669		*offset += off;
 670
 671	if (value)
 672		*value += off;
 673
 674	return 0;
 675}
 676
 677static void kdb_cmderror(int diag)
 678{
 679	int i;
 680
 681	if (diag >= 0) {
 682		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 683		return;
 684	}
 685
 686	for (i = 0; i < __nkdb_err; i++) {
 687		if (kdbmsgs[i].km_diag == diag) {
 688			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 689			return;
 690		}
 691	}
 692
 693	kdb_printf("Unknown diag %d\n", -diag);
 694}
 695
 696/*
 697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 698 *	command which defines one command as a set of other commands,
 699 *	terminated by endefcmd.  kdb_defcmd processes the initial
 700 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 701 *	the following commands until 'endefcmd'.
 702 * Inputs:
 703 *	argc	argument count
 704 *	argv	argument vector
 705 * Returns:
 706 *	zero for success, a kdb diagnostic if error
 707 */
 708struct kdb_macro {
 709	kdbtab_t cmd;			/* Macro command */
 710	struct list_head statements;	/* Associated statement list */
 
 
 
 
 711};
 712
 713struct kdb_macro_statement {
 714	char *statement;		/* Statement text */
 715	struct list_head list_node;	/* Statement list node */
 716};
 717
 718static struct kdb_macro *kdb_macro;
 719static bool defcmd_in_progress;
 720
 721/* Forward references */
 722static int kdb_exec_defcmd(int argc, const char **argv);
 723
 724static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 725{
 726	struct kdb_macro_statement *kms;
 727
 728	if (!kdb_macro)
 729		return KDB_NOTIMP;
 730
 731	if (strcmp(argv0, "endefcmd") == 0) {
 732		defcmd_in_progress = false;
 733		if (!list_empty(&kdb_macro->statements))
 734			kdb_register(&kdb_macro->cmd);
 
 
 
 
 
 
 
 
 735		return 0;
 736	}
 737
 738	kms = kmalloc(sizeof(*kms), GFP_KDB);
 739	if (!kms) {
 740		kdb_printf("Could not allocate new kdb macro command: %s\n",
 
 741			   cmdstr);
 
 742		return KDB_NOTIMP;
 743	}
 744
 745	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
 746	list_add_tail(&kms->list_node, &kdb_macro->statements);
 747
 748	return 0;
 749}
 750
 751static int kdb_defcmd(int argc, const char **argv)
 752{
 753	kdbtab_t *mp;
 754
 755	if (defcmd_in_progress) {
 756		kdb_printf("kdb: nested defcmd detected, assuming missing "
 757			   "endefcmd\n");
 758		kdb_defcmd2("endefcmd", "endefcmd");
 759	}
 760	if (argc == 0) {
 761		kdbtab_t *kp;
 762		struct kdb_macro *kmp;
 763		struct kdb_macro_statement *kms;
 764
 765		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 766			if (kp->func == kdb_exec_defcmd) {
 767				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
 768					   kp->name, kp->usage, kp->help);
 769				kmp = container_of(kp, struct kdb_macro, cmd);
 770				list_for_each_entry(kms, &kmp->statements,
 771						    list_node)
 772					kdb_printf("%s", kms->statement);
 773				kdb_printf("endefcmd\n");
 774			}
 775		}
 776		return 0;
 777	}
 778	if (argc != 3)
 779		return KDB_ARGCOUNT;
 780	if (in_dbg_master()) {
 781		kdb_printf("Command only available during kdb_init()\n");
 782		return KDB_NOTIMP;
 783	}
 784	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
 785	if (!kdb_macro)
 
 786		goto fail_defcmd;
 787
 788	mp = &kdb_macro->cmd;
 789	mp->func = kdb_exec_defcmd;
 790	mp->minlen = 0;
 791	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
 792	mp->name = kdb_strdup(argv[1], GFP_KDB);
 793	if (!mp->name)
 794		goto fail_name;
 795	mp->usage = kdb_strdup(argv[2], GFP_KDB);
 796	if (!mp->usage)
 797		goto fail_usage;
 798	mp->help = kdb_strdup(argv[3], GFP_KDB);
 799	if (!mp->help)
 800		goto fail_help;
 801	if (mp->usage[0] == '"') {
 802		strcpy(mp->usage, argv[2]+1);
 803		mp->usage[strlen(mp->usage)-1] = '\0';
 804	}
 805	if (mp->help[0] == '"') {
 806		strcpy(mp->help, argv[3]+1);
 807		mp->help[strlen(mp->help)-1] = '\0';
 808	}
 809
 810	INIT_LIST_HEAD(&kdb_macro->statements);
 811	defcmd_in_progress = true;
 812	return 0;
 813fail_help:
 814	kfree(mp->usage);
 815fail_usage:
 816	kfree(mp->name);
 817fail_name:
 818	kfree(kdb_macro);
 819fail_defcmd:
 820	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
 
 821	return KDB_NOTIMP;
 822}
 823
 824/*
 825 * kdb_exec_defcmd - Execute the set of commands associated with this
 826 *	defcmd name.
 827 * Inputs:
 828 *	argc	argument count
 829 *	argv	argument vector
 830 * Returns:
 831 *	zero for success, a kdb diagnostic if error
 832 */
 833static int kdb_exec_defcmd(int argc, const char **argv)
 834{
 835	int ret;
 836	kdbtab_t *kp;
 837	struct kdb_macro *kmp;
 838	struct kdb_macro_statement *kms;
 839
 840	if (argc != 0)
 841		return KDB_ARGCOUNT;
 842
 843	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 844		if (strcmp(kp->name, argv[0]) == 0)
 845			break;
 846	}
 847	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
 848		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 849			   argv[0]);
 850		return KDB_NOTIMP;
 851	}
 852	kmp = container_of(kp, struct kdb_macro, cmd);
 853	list_for_each_entry(kms, &kmp->statements, list_node) {
 854		/*
 855		 * Recursive use of kdb_parse, do not use argv after this point.
 856		 */
 857		argv = NULL;
 858		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
 859		ret = kdb_parse(kms->statement);
 860		if (ret)
 861			return ret;
 862	}
 863	return 0;
 864}
 865
 866/* Command history */
 867#define KDB_CMD_HISTORY_COUNT	32
 868#define CMD_BUFLEN		200	/* kdb_printf: max printline
 869					 * size == 256 */
 870static unsigned int cmd_head, cmd_tail;
 871static unsigned int cmdptr;
 872static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 873static char cmd_cur[CMD_BUFLEN];
 874
 875/*
 876 * The "str" argument may point to something like  | grep xyz
 877 */
 878static void parse_grep(const char *str)
 879{
 880	int	len;
 881	char	*cp = (char *)str, *cp2;
 882
 883	/* sanity check: we should have been called with the \ first */
 884	if (*cp != '|')
 885		return;
 886	cp++;
 887	while (isspace(*cp))
 888		cp++;
 889	if (!str_has_prefix(cp, "grep ")) {
 890		kdb_printf("invalid 'pipe', see grephelp\n");
 891		return;
 892	}
 893	cp += 5;
 894	while (isspace(*cp))
 895		cp++;
 896	cp2 = strchr(cp, '\n');
 897	if (cp2)
 898		*cp2 = '\0'; /* remove the trailing newline */
 899	len = strlen(cp);
 900	if (len == 0) {
 901		kdb_printf("invalid 'pipe', see grephelp\n");
 902		return;
 903	}
 904	/* now cp points to a nonzero length search string */
 905	if (*cp == '"') {
 906		/* allow it be "x y z" by removing the "'s - there must
 907		   be two of them */
 908		cp++;
 909		cp2 = strchr(cp, '"');
 910		if (!cp2) {
 911			kdb_printf("invalid quoted string, see grephelp\n");
 912			return;
 913		}
 914		*cp2 = '\0'; /* end the string where the 2nd " was */
 915	}
 916	kdb_grep_leading = 0;
 917	if (*cp == '^') {
 918		kdb_grep_leading = 1;
 919		cp++;
 920	}
 921	len = strlen(cp);
 922	kdb_grep_trailing = 0;
 923	if (*(cp+len-1) == '$') {
 924		kdb_grep_trailing = 1;
 925		*(cp+len-1) = '\0';
 926	}
 927	len = strlen(cp);
 928	if (!len)
 929		return;
 930	if (len >= KDB_GREP_STRLEN) {
 931		kdb_printf("search string too long\n");
 932		return;
 933	}
 934	strcpy(kdb_grep_string, cp);
 935	kdb_grepping_flag++;
 936	return;
 937}
 938
 939/*
 940 * kdb_parse - Parse the command line, search the command table for a
 941 *	matching command and invoke the command function.  This
 942 *	function may be called recursively, if it is, the second call
 943 *	will overwrite argv and cbuf.  It is the caller's
 944 *	responsibility to save their argv if they recursively call
 945 *	kdb_parse().
 946 * Parameters:
 947 *      cmdstr	The input command line to be parsed.
 948 *	regs	The registers at the time kdb was entered.
 949 * Returns:
 950 *	Zero for success, a kdb diagnostic if failure.
 951 * Remarks:
 952 *	Limited to 20 tokens.
 953 *
 954 *	Real rudimentary tokenization. Basically only whitespace
 955 *	is considered a token delimiter (but special consideration
 956 *	is taken of the '=' sign as used by the 'set' command).
 957 *
 958 *	The algorithm used to tokenize the input string relies on
 959 *	there being at least one whitespace (or otherwise useless)
 960 *	character between tokens as the character immediately following
 961 *	the token is altered in-place to a null-byte to terminate the
 962 *	token string.
 963 */
 964
 965#define MAXARGC	20
 966
 967int kdb_parse(const char *cmdstr)
 968{
 969	static char *argv[MAXARGC];
 970	static int argc;
 971	static char cbuf[CMD_BUFLEN+2];
 972	char *cp;
 973	char *cpp, quoted;
 974	kdbtab_t *tp;
 975	int escaped, ignore_errors = 0, check_grep = 0;
 976
 977	/*
 978	 * First tokenize the command string.
 979	 */
 980	cp = (char *)cmdstr;
 981
 982	if (KDB_FLAG(CMD_INTERRUPT)) {
 983		/* Previous command was interrupted, newline must not
 984		 * repeat the command */
 985		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 986		KDB_STATE_SET(PAGER);
 987		argc = 0;	/* no repeat */
 988	}
 989
 990	if (*cp != '\n' && *cp != '\0') {
 991		argc = 0;
 992		cpp = cbuf;
 993		while (*cp) {
 994			/* skip whitespace */
 995			while (isspace(*cp))
 996				cp++;
 997			if ((*cp == '\0') || (*cp == '\n') ||
 998			    (*cp == '#' && !defcmd_in_progress))
 999				break;
1000			/* special case: check for | grep pattern */
1001			if (*cp == '|') {
1002				check_grep++;
1003				break;
1004			}
1005			if (cpp >= cbuf + CMD_BUFLEN) {
1006				kdb_printf("kdb_parse: command buffer "
1007					   "overflow, command ignored\n%s\n",
1008					   cmdstr);
1009				return KDB_NOTFOUND;
1010			}
1011			if (argc >= MAXARGC - 1) {
1012				kdb_printf("kdb_parse: too many arguments, "
1013					   "command ignored\n%s\n", cmdstr);
1014				return KDB_NOTFOUND;
1015			}
1016			argv[argc++] = cpp;
1017			escaped = 0;
1018			quoted = '\0';
1019			/* Copy to next unquoted and unescaped
1020			 * whitespace or '=' */
1021			while (*cp && *cp != '\n' &&
1022			       (escaped || quoted || !isspace(*cp))) {
1023				if (cpp >= cbuf + CMD_BUFLEN)
1024					break;
1025				if (escaped) {
1026					escaped = 0;
1027					*cpp++ = *cp++;
1028					continue;
1029				}
1030				if (*cp == '\\') {
1031					escaped = 1;
1032					++cp;
1033					continue;
1034				}
1035				if (*cp == quoted)
1036					quoted = '\0';
1037				else if (*cp == '\'' || *cp == '"')
1038					quoted = *cp;
1039				*cpp = *cp++;
1040				if (*cpp == '=' && !quoted)
1041					break;
1042				++cpp;
1043			}
1044			*cpp++ = '\0';	/* Squash a ws or '=' character */
1045		}
1046	}
1047	if (!argc)
1048		return 0;
1049	if (check_grep)
1050		parse_grep(cp);
1051	if (defcmd_in_progress) {
1052		int result = kdb_defcmd2(cmdstr, argv[0]);
1053		if (!defcmd_in_progress) {
1054			argc = 0;	/* avoid repeat on endefcmd */
1055			*(argv[0]) = '\0';
1056		}
1057		return result;
1058	}
1059	if (argv[0][0] == '-' && argv[0][1] &&
1060	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1061		ignore_errors = 1;
1062		++argv[0];
1063	}
1064
1065	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1066		/*
1067		 * If this command is allowed to be abbreviated,
1068		 * check to see if this is it.
1069		 */
1070		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1071		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
1072			break;
1073
1074		if (strcmp(argv[0], tp->name) == 0)
1075			break;
 
 
 
 
 
 
 
 
 
 
1076	}
1077
1078	/*
1079	 * If we don't find a command by this name, see if the first
1080	 * few characters of this match any of the known commands.
1081	 * e.g., md1c20 should match md.
1082	 */
1083	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1084		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1085			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1086				break;
 
 
 
 
 
1087		}
1088	}
1089
1090	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1091		int result;
1092
1093		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1094			return KDB_NOPERM;
1095
1096		KDB_STATE_SET(CMD);
1097		result = (*tp->func)(argc-1, (const char **)argv);
1098		if (result && ignore_errors && result > KDB_CMD_GO)
1099			result = 0;
1100		KDB_STATE_CLEAR(CMD);
1101
1102		if (tp->flags & KDB_REPEAT_WITH_ARGS)
1103			return result;
1104
1105		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1106		if (argv[argc])
1107			*(argv[argc]) = '\0';
1108		return result;
1109	}
1110
1111	/*
1112	 * If the input with which we were presented does not
1113	 * map to an existing command, attempt to parse it as an
1114	 * address argument and display the result.   Useful for
1115	 * obtaining the address of a variable, or the nearest symbol
1116	 * to an address contained in a register.
1117	 */
1118	{
1119		unsigned long value;
1120		char *name = NULL;
1121		long offset;
1122		int nextarg = 0;
1123
1124		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1125				  &value, &offset, &name)) {
1126			return KDB_NOTFOUND;
1127		}
1128
1129		kdb_printf("%s = ", argv[0]);
1130		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1131		kdb_printf("\n");
1132		return 0;
1133	}
1134}
1135
1136
1137static int handle_ctrl_cmd(char *cmd)
1138{
1139#define CTRL_P	16
1140#define CTRL_N	14
1141
1142	/* initial situation */
1143	if (cmd_head == cmd_tail)
1144		return 0;
1145	switch (*cmd) {
1146	case CTRL_P:
1147		if (cmdptr != cmd_tail)
1148			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1149				 KDB_CMD_HISTORY_COUNT;
1150		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1151		return 1;
1152	case CTRL_N:
1153		if (cmdptr != cmd_head)
1154			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1155		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1156		return 1;
1157	}
1158	return 0;
1159}
1160
1161/*
1162 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1163 *	the system immediately, or loop for ever on failure.
1164 */
1165static int kdb_reboot(int argc, const char **argv)
1166{
1167	emergency_restart();
1168	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1169	while (1)
1170		cpu_relax();
1171	/* NOTREACHED */
1172	return 0;
1173}
1174
1175static void kdb_dumpregs(struct pt_regs *regs)
1176{
1177	int old_lvl = console_loglevel;
1178	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1179	kdb_trap_printk++;
1180	show_regs(regs);
1181	kdb_trap_printk--;
1182	kdb_printf("\n");
1183	console_loglevel = old_lvl;
1184}
1185
1186static void kdb_set_current_task(struct task_struct *p)
1187{
1188	kdb_current_task = p;
1189
1190	if (kdb_task_has_cpu(p)) {
1191		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1192		return;
1193	}
1194	kdb_current_regs = NULL;
1195}
1196
1197static void drop_newline(char *buf)
1198{
1199	size_t len = strlen(buf);
1200
1201	if (len == 0)
1202		return;
1203	if (*(buf + len - 1) == '\n')
1204		*(buf + len - 1) = '\0';
1205}
1206
1207/*
1208 * kdb_local - The main code for kdb.  This routine is invoked on a
1209 *	specific processor, it is not global.  The main kdb() routine
1210 *	ensures that only one processor at a time is in this routine.
1211 *	This code is called with the real reason code on the first
1212 *	entry to a kdb session, thereafter it is called with reason
1213 *	SWITCH, even if the user goes back to the original cpu.
1214 * Inputs:
1215 *	reason		The reason KDB was invoked
1216 *	error		The hardware-defined error code
1217 *	regs		The exception frame at time of fault/breakpoint.
1218 *	db_result	Result code from the break or debug point.
1219 * Returns:
1220 *	0	KDB was invoked for an event which it wasn't responsible
1221 *	1	KDB handled the event for which it was invoked.
1222 *	KDB_CMD_GO	User typed 'go'.
1223 *	KDB_CMD_CPU	User switched to another cpu.
1224 *	KDB_CMD_SS	Single step.
1225 */
1226static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1227		     kdb_dbtrap_t db_result)
1228{
1229	char *cmdbuf;
1230	int diag;
1231	struct task_struct *kdb_current =
1232		kdb_curr_task(raw_smp_processor_id());
1233
1234	KDB_DEBUG_STATE("kdb_local 1", reason);
1235
1236	kdb_check_for_lockdown();
1237
1238	kdb_go_count = 0;
1239	if (reason == KDB_REASON_DEBUG) {
1240		/* special case below */
1241	} else {
1242		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1243			   kdb_current, kdb_current ? kdb_current->pid : 0);
1244#if defined(CONFIG_SMP)
1245		kdb_printf("on processor %d ", raw_smp_processor_id());
1246#endif
1247	}
1248
1249	switch (reason) {
1250	case KDB_REASON_DEBUG:
1251	{
1252		/*
1253		 * If re-entering kdb after a single step
1254		 * command, don't print the message.
1255		 */
1256		switch (db_result) {
1257		case KDB_DB_BPT:
1258			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1259				   kdb_current, kdb_current->pid);
1260#if defined(CONFIG_SMP)
1261			kdb_printf("on processor %d ", raw_smp_processor_id());
1262#endif
1263			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1264				   instruction_pointer(regs));
1265			break;
1266		case KDB_DB_SS:
1267			break;
1268		case KDB_DB_SSBPT:
1269			KDB_DEBUG_STATE("kdb_local 4", reason);
1270			return 1;	/* kdba_db_trap did the work */
1271		default:
1272			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1273				   db_result);
1274			break;
1275		}
1276
1277	}
1278		break;
1279	case KDB_REASON_ENTER:
1280		if (KDB_STATE(KEYBOARD))
1281			kdb_printf("due to Keyboard Entry\n");
1282		else
1283			kdb_printf("due to KDB_ENTER()\n");
1284		break;
1285	case KDB_REASON_KEYBOARD:
1286		KDB_STATE_SET(KEYBOARD);
1287		kdb_printf("due to Keyboard Entry\n");
1288		break;
1289	case KDB_REASON_ENTER_SLAVE:
1290		/* drop through, slaves only get released via cpu switch */
1291	case KDB_REASON_SWITCH:
1292		kdb_printf("due to cpu switch\n");
1293		break;
1294	case KDB_REASON_OOPS:
1295		kdb_printf("Oops: %s\n", kdb_diemsg);
1296		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1297			   instruction_pointer(regs));
1298		kdb_dumpregs(regs);
1299		break;
1300	case KDB_REASON_SYSTEM_NMI:
1301		kdb_printf("due to System NonMaskable Interrupt\n");
1302		break;
1303	case KDB_REASON_NMI:
1304		kdb_printf("due to NonMaskable Interrupt @ "
1305			   kdb_machreg_fmt "\n",
1306			   instruction_pointer(regs));
1307		break;
1308	case KDB_REASON_SSTEP:
1309	case KDB_REASON_BREAK:
1310		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1311			   reason == KDB_REASON_BREAK ?
1312			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1313		/*
1314		 * Determine if this breakpoint is one that we
1315		 * are interested in.
1316		 */
1317		if (db_result != KDB_DB_BPT) {
1318			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1319				   db_result);
1320			KDB_DEBUG_STATE("kdb_local 6", reason);
1321			return 0;	/* Not for us, dismiss it */
1322		}
1323		break;
1324	case KDB_REASON_RECURSE:
1325		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1326			   instruction_pointer(regs));
1327		break;
1328	default:
1329		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1330		KDB_DEBUG_STATE("kdb_local 8", reason);
1331		return 0;	/* Not for us, dismiss it */
1332	}
1333
1334	while (1) {
1335		/*
1336		 * Initialize pager context.
1337		 */
1338		kdb_nextline = 1;
1339		KDB_STATE_CLEAR(SUPPRESS);
1340		kdb_grepping_flag = 0;
1341		/* ensure the old search does not leak into '/' commands */
1342		kdb_grep_string[0] = '\0';
1343
1344		cmdbuf = cmd_cur;
1345		*cmdbuf = '\0';
1346		*(cmd_hist[cmd_head]) = '\0';
1347
1348do_full_getstr:
1349		/* PROMPT can only be set if we have MEM_READ permission. */
1350		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1351			 raw_smp_processor_id());
 
 
 
1352		if (defcmd_in_progress)
1353			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1354
1355		/*
1356		 * Fetch command from keyboard
1357		 */
1358		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1359		if (*cmdbuf != '\n') {
1360			if (*cmdbuf < 32) {
1361				if (cmdptr == cmd_head) {
1362					strscpy(cmd_hist[cmd_head], cmd_cur,
1363						CMD_BUFLEN);
1364					*(cmd_hist[cmd_head] +
1365					  strlen(cmd_hist[cmd_head])-1) = '\0';
1366				}
1367				if (!handle_ctrl_cmd(cmdbuf))
1368					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1369				cmdbuf = cmd_cur;
1370				goto do_full_getstr;
1371			} else {
1372				strscpy(cmd_hist[cmd_head], cmd_cur,
1373					CMD_BUFLEN);
1374			}
1375
1376			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1377			if (cmd_head == cmd_tail)
1378				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1379		}
1380
1381		cmdptr = cmd_head;
1382		diag = kdb_parse(cmdbuf);
1383		if (diag == KDB_NOTFOUND) {
1384			drop_newline(cmdbuf);
1385			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1386			diag = 0;
1387		}
1388		if (diag == KDB_CMD_GO
1389		 || diag == KDB_CMD_CPU
1390		 || diag == KDB_CMD_SS
1391		 || diag == KDB_CMD_KGDB)
1392			break;
1393
1394		if (diag)
1395			kdb_cmderror(diag);
1396	}
1397	KDB_DEBUG_STATE("kdb_local 9", diag);
1398	return diag;
1399}
1400
1401
1402/*
1403 * kdb_print_state - Print the state data for the current processor
1404 *	for debugging.
1405 * Inputs:
1406 *	text		Identifies the debug point
1407 *	value		Any integer value to be printed, e.g. reason code.
1408 */
1409void kdb_print_state(const char *text, int value)
1410{
1411	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1412		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1413		   kdb_state);
1414}
1415
1416/*
1417 * kdb_main_loop - After initial setup and assignment of the
1418 *	controlling cpu, all cpus are in this loop.  One cpu is in
1419 *	control and will issue the kdb prompt, the others will spin
1420 *	until 'go' or cpu switch.
1421 *
1422 *	To get a consistent view of the kernel stacks for all
1423 *	processes, this routine is invoked from the main kdb code via
1424 *	an architecture specific routine.  kdba_main_loop is
1425 *	responsible for making the kernel stacks consistent for all
1426 *	processes, there should be no difference between a blocked
1427 *	process and a running process as far as kdb is concerned.
1428 * Inputs:
1429 *	reason		The reason KDB was invoked
1430 *	error		The hardware-defined error code
1431 *	reason2		kdb's current reason code.
1432 *			Initially error but can change
1433 *			according to kdb state.
1434 *	db_result	Result code from break or debug point.
1435 *	regs		The exception frame at time of fault/breakpoint.
1436 *			should always be valid.
1437 * Returns:
1438 *	0	KDB was invoked for an event which it wasn't responsible
1439 *	1	KDB handled the event for which it was invoked.
1440 */
1441int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1442	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1443{
1444	int result = 1;
1445	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1446	while (1) {
1447		/*
1448		 * All processors except the one that is in control
1449		 * will spin here.
1450		 */
1451		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1452		while (KDB_STATE(HOLD_CPU)) {
1453			/* state KDB is turned off by kdb_cpu to see if the
1454			 * other cpus are still live, each cpu in this loop
1455			 * turns it back on.
1456			 */
1457			if (!KDB_STATE(KDB))
1458				KDB_STATE_SET(KDB);
1459		}
1460
1461		KDB_STATE_CLEAR(SUPPRESS);
1462		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1463		if (KDB_STATE(LEAVING))
1464			break;	/* Another cpu said 'go' */
1465		/* Still using kdb, this processor is in control */
1466		result = kdb_local(reason2, error, regs, db_result);
1467		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1468
1469		if (result == KDB_CMD_CPU)
1470			break;
1471
1472		if (result == KDB_CMD_SS) {
1473			KDB_STATE_SET(DOING_SS);
1474			break;
1475		}
1476
1477		if (result == KDB_CMD_KGDB) {
1478			if (!KDB_STATE(DOING_KGDB))
1479				kdb_printf("Entering please attach debugger "
1480					   "or use $D#44+ or $3#33\n");
1481			break;
1482		}
1483		if (result && result != 1 && result != KDB_CMD_GO)
1484			kdb_printf("\nUnexpected kdb_local return code %d\n",
1485				   result);
1486		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1487		break;
1488	}
1489	if (KDB_STATE(DOING_SS))
1490		KDB_STATE_CLEAR(SSBPT);
1491
1492	/* Clean up any keyboard devices before leaving */
1493	kdb_kbd_cleanup_state();
1494
1495	return result;
1496}
1497
1498/*
1499 * kdb_mdr - This function implements the guts of the 'mdr', memory
1500 * read command.
1501 *	mdr  <addr arg>,<byte count>
1502 * Inputs:
1503 *	addr	Start address
1504 *	count	Number of bytes
1505 * Returns:
1506 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1507 */
1508static int kdb_mdr(unsigned long addr, unsigned int count)
1509{
1510	unsigned char c;
1511	while (count--) {
1512		if (kdb_getarea(c, addr))
1513			return 0;
1514		kdb_printf("%02x", c);
1515		addr++;
1516	}
1517	kdb_printf("\n");
1518	return 0;
1519}
1520
1521/*
1522 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1523 *	'md8' 'mdr' and 'mds' commands.
1524 *
1525 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1526 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1527 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1528 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1529 *	mdr  <addr arg>,<byte count>
1530 */
1531static void kdb_md_line(const char *fmtstr, unsigned long addr,
1532			int symbolic, int nosect, int bytesperword,
1533			int num, int repeat, int phys)
1534{
1535	/* print just one line of data */
1536	kdb_symtab_t symtab;
1537	char cbuf[32];
1538	char *c = cbuf;
1539	int i;
1540	int j;
1541	unsigned long word;
1542
1543	memset(cbuf, '\0', sizeof(cbuf));
1544	if (phys)
1545		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1546	else
1547		kdb_printf(kdb_machreg_fmt0 " ", addr);
1548
1549	for (i = 0; i < num && repeat--; i++) {
1550		if (phys) {
1551			if (kdb_getphysword(&word, addr, bytesperword))
1552				break;
1553		} else if (kdb_getword(&word, addr, bytesperword))
1554			break;
1555		kdb_printf(fmtstr, word);
1556		if (symbolic)
1557			kdbnearsym(word, &symtab);
1558		else
1559			memset(&symtab, 0, sizeof(symtab));
1560		if (symtab.sym_name) {
1561			kdb_symbol_print(word, &symtab, 0);
1562			if (!nosect) {
1563				kdb_printf("\n");
1564				kdb_printf("                       %s %s "
1565					   kdb_machreg_fmt " "
1566					   kdb_machreg_fmt " "
1567					   kdb_machreg_fmt, symtab.mod_name,
1568					   symtab.sec_name, symtab.sec_start,
1569					   symtab.sym_start, symtab.sym_end);
1570			}
1571			addr += bytesperword;
1572		} else {
1573			union {
1574				u64 word;
1575				unsigned char c[8];
1576			} wc;
1577			unsigned char *cp;
1578#ifdef	__BIG_ENDIAN
1579			cp = wc.c + 8 - bytesperword;
1580#else
1581			cp = wc.c;
1582#endif
1583			wc.word = word;
1584#define printable_char(c) \
1585	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1586			for (j = 0; j < bytesperword; j++)
 
1587				*c++ = printable_char(*cp++);
1588			addr += bytesperword;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589#undef printable_char
1590		}
1591	}
1592	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1593		   " ", cbuf);
1594}
1595
1596static int kdb_md(int argc, const char **argv)
1597{
1598	static unsigned long last_addr;
1599	static int last_radix, last_bytesperword, last_repeat;
1600	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1601	int nosect = 0;
1602	char fmtchar, fmtstr[64];
1603	unsigned long addr;
1604	unsigned long word;
1605	long offset = 0;
1606	int symbolic = 0;
1607	int valid = 0;
1608	int phys = 0;
1609	int raw = 0;
1610
1611	kdbgetintenv("MDCOUNT", &mdcount);
1612	kdbgetintenv("RADIX", &radix);
1613	kdbgetintenv("BYTESPERWORD", &bytesperword);
1614
1615	/* Assume 'md <addr>' and start with environment values */
1616	repeat = mdcount * 16 / bytesperword;
1617
1618	if (strcmp(argv[0], "mdr") == 0) {
1619		if (argc == 2 || (argc == 0 && last_addr != 0))
1620			valid = raw = 1;
1621		else
1622			return KDB_ARGCOUNT;
 
1623	} else if (isdigit(argv[0][2])) {
1624		bytesperword = (int)(argv[0][2] - '0');
1625		if (bytesperword == 0) {
1626			bytesperword = last_bytesperword;
1627			if (bytesperword == 0)
1628				bytesperword = 4;
1629		}
1630		last_bytesperword = bytesperword;
1631		repeat = mdcount * 16 / bytesperword;
1632		if (!argv[0][3])
1633			valid = 1;
1634		else if (argv[0][3] == 'c' && argv[0][4]) {
1635			char *p;
1636			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1637			mdcount = ((repeat * bytesperword) + 15) / 16;
1638			valid = !*p;
1639		}
1640		last_repeat = repeat;
1641	} else if (strcmp(argv[0], "md") == 0)
1642		valid = 1;
1643	else if (strcmp(argv[0], "mds") == 0)
1644		valid = 1;
1645	else if (strcmp(argv[0], "mdp") == 0) {
1646		phys = valid = 1;
1647	}
1648	if (!valid)
1649		return KDB_NOTFOUND;
1650
1651	if (argc == 0) {
1652		if (last_addr == 0)
1653			return KDB_ARGCOUNT;
1654		addr = last_addr;
1655		radix = last_radix;
1656		bytesperword = last_bytesperword;
1657		repeat = last_repeat;
1658		if (raw)
1659			mdcount = repeat;
1660		else
1661			mdcount = ((repeat * bytesperword) + 15) / 16;
1662	}
1663
1664	if (argc) {
1665		unsigned long val;
1666		int diag, nextarg = 1;
1667		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1668				     &offset, NULL);
1669		if (diag)
1670			return diag;
1671		if (argc > nextarg+2)
1672			return KDB_ARGCOUNT;
1673
1674		if (argc >= nextarg) {
1675			diag = kdbgetularg(argv[nextarg], &val);
1676			if (!diag) {
1677				mdcount = (int) val;
1678				if (raw)
1679					repeat = mdcount;
1680				else
1681					repeat = mdcount * 16 / bytesperword;
1682			}
1683		}
1684		if (argc >= nextarg+1) {
1685			diag = kdbgetularg(argv[nextarg+1], &val);
1686			if (!diag)
1687				radix = (int) val;
1688		}
1689	}
1690
1691	if (strcmp(argv[0], "mdr") == 0) {
1692		int ret;
1693		last_addr = addr;
1694		ret = kdb_mdr(addr, mdcount);
1695		last_addr += mdcount;
1696		last_repeat = mdcount;
1697		last_bytesperword = bytesperword; // to make REPEAT happy
1698		return ret;
1699	}
1700
1701	switch (radix) {
1702	case 10:
1703		fmtchar = 'd';
1704		break;
1705	case 16:
1706		fmtchar = 'x';
1707		break;
1708	case 8:
1709		fmtchar = 'o';
1710		break;
1711	default:
1712		return KDB_BADRADIX;
1713	}
1714
1715	last_radix = radix;
1716
1717	if (bytesperword > KDB_WORD_SIZE)
1718		return KDB_BADWIDTH;
1719
1720	switch (bytesperword) {
1721	case 8:
1722		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1723		break;
1724	case 4:
1725		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1726		break;
1727	case 2:
1728		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1729		break;
1730	case 1:
1731		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1732		break;
1733	default:
1734		return KDB_BADWIDTH;
1735	}
1736
1737	last_repeat = repeat;
1738	last_bytesperword = bytesperword;
1739
1740	if (strcmp(argv[0], "mds") == 0) {
1741		symbolic = 1;
1742		/* Do not save these changes as last_*, they are temporary mds
1743		 * overrides.
1744		 */
1745		bytesperword = KDB_WORD_SIZE;
1746		repeat = mdcount;
1747		kdbgetintenv("NOSECT", &nosect);
1748	}
1749
1750	/* Round address down modulo BYTESPERWORD */
1751
1752	addr &= ~(bytesperword-1);
1753
1754	while (repeat > 0) {
1755		unsigned long a;
1756		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1757
1758		if (KDB_FLAG(CMD_INTERRUPT))
1759			return 0;
1760		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1761			if (phys) {
1762				if (kdb_getphysword(&word, a, bytesperword)
1763						|| word)
1764					break;
1765			} else if (kdb_getword(&word, a, bytesperword) || word)
1766				break;
1767		}
1768		n = min(num, repeat);
1769		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1770			    num, repeat, phys);
1771		addr += bytesperword * n;
1772		repeat -= n;
1773		z = (z + num - 1) / num;
1774		if (z > 2) {
1775			int s = num * (z-2);
1776			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1777				   " zero suppressed\n",
1778				addr, addr + bytesperword * s - 1);
1779			addr += bytesperword * s;
1780			repeat -= s;
1781		}
1782	}
1783	last_addr = addr;
1784
1785	return 0;
1786}
1787
1788/*
1789 * kdb_mm - This function implements the 'mm' command.
1790 *	mm address-expression new-value
1791 * Remarks:
1792 *	mm works on machine words, mmW works on bytes.
1793 */
1794static int kdb_mm(int argc, const char **argv)
1795{
1796	int diag;
1797	unsigned long addr;
1798	long offset = 0;
1799	unsigned long contents;
1800	int nextarg;
1801	int width;
1802
1803	if (argv[0][2] && !isdigit(argv[0][2]))
1804		return KDB_NOTFOUND;
1805
1806	if (argc < 2)
1807		return KDB_ARGCOUNT;
1808
1809	nextarg = 1;
1810	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1811	if (diag)
1812		return diag;
1813
1814	if (nextarg > argc)
1815		return KDB_ARGCOUNT;
1816	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1817	if (diag)
1818		return diag;
1819
1820	if (nextarg != argc + 1)
1821		return KDB_ARGCOUNT;
1822
1823	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1824	diag = kdb_putword(addr, contents, width);
1825	if (diag)
1826		return diag;
1827
1828	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1829
1830	return 0;
1831}
1832
1833/*
1834 * kdb_go - This function implements the 'go' command.
1835 *	go [address-expression]
1836 */
1837static int kdb_go(int argc, const char **argv)
1838{
1839	unsigned long addr;
1840	int diag;
1841	int nextarg;
1842	long offset;
1843
1844	if (raw_smp_processor_id() != kdb_initial_cpu) {
1845		kdb_printf("go must execute on the entry cpu, "
1846			   "please use \"cpu %d\" and then execute go\n",
1847			   kdb_initial_cpu);
1848		return KDB_BADCPUNUM;
1849	}
1850	if (argc == 1) {
1851		nextarg = 1;
1852		diag = kdbgetaddrarg(argc, argv, &nextarg,
1853				     &addr, &offset, NULL);
1854		if (diag)
1855			return diag;
1856	} else if (argc) {
1857		return KDB_ARGCOUNT;
1858	}
1859
1860	diag = KDB_CMD_GO;
1861	if (KDB_FLAG(CATASTROPHIC)) {
1862		kdb_printf("Catastrophic error detected\n");
1863		kdb_printf("kdb_continue_catastrophic=%d, ",
1864			kdb_continue_catastrophic);
1865		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1866			kdb_printf("type go a second time if you really want "
1867				   "to continue\n");
1868			return 0;
1869		}
1870		if (kdb_continue_catastrophic == 2) {
1871			kdb_printf("forcing reboot\n");
1872			kdb_reboot(0, NULL);
1873		}
1874		kdb_printf("attempting to continue\n");
1875	}
1876	return diag;
1877}
1878
1879/*
1880 * kdb_rd - This function implements the 'rd' command.
1881 */
1882static int kdb_rd(int argc, const char **argv)
1883{
1884	int len = kdb_check_regs();
1885#if DBG_MAX_REG_NUM > 0
1886	int i;
1887	char *rname;
1888	int rsize;
1889	u64 reg64;
1890	u32 reg32;
1891	u16 reg16;
1892	u8 reg8;
1893
1894	if (len)
1895		return len;
1896
1897	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1898		rsize = dbg_reg_def[i].size * 2;
1899		if (rsize > 16)
1900			rsize = 2;
1901		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1902			len = 0;
1903			kdb_printf("\n");
1904		}
1905		if (len)
1906			len += kdb_printf("  ");
1907		switch(dbg_reg_def[i].size * 8) {
1908		case 8:
1909			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1910			if (!rname)
1911				break;
1912			len += kdb_printf("%s: %02x", rname, reg8);
1913			break;
1914		case 16:
1915			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1916			if (!rname)
1917				break;
1918			len += kdb_printf("%s: %04x", rname, reg16);
1919			break;
1920		case 32:
1921			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1922			if (!rname)
1923				break;
1924			len += kdb_printf("%s: %08x", rname, reg32);
1925			break;
1926		case 64:
1927			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1928			if (!rname)
1929				break;
1930			len += kdb_printf("%s: %016llx", rname, reg64);
1931			break;
1932		default:
1933			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1934		}
1935	}
1936	kdb_printf("\n");
1937#else
1938	if (len)
1939		return len;
1940
1941	kdb_dumpregs(kdb_current_regs);
1942#endif
1943	return 0;
1944}
1945
1946/*
1947 * kdb_rm - This function implements the 'rm' (register modify)  command.
1948 *	rm register-name new-contents
1949 * Remarks:
1950 *	Allows register modification with the same restrictions as gdb
1951 */
1952static int kdb_rm(int argc, const char **argv)
1953{
1954#if DBG_MAX_REG_NUM > 0
1955	int diag;
1956	const char *rname;
1957	int i;
1958	u64 reg64;
1959	u32 reg32;
1960	u16 reg16;
1961	u8 reg8;
1962
1963	if (argc != 2)
1964		return KDB_ARGCOUNT;
1965	/*
1966	 * Allow presence or absence of leading '%' symbol.
1967	 */
1968	rname = argv[1];
1969	if (*rname == '%')
1970		rname++;
1971
1972	diag = kdbgetu64arg(argv[2], &reg64);
1973	if (diag)
1974		return diag;
1975
1976	diag = kdb_check_regs();
1977	if (diag)
1978		return diag;
1979
1980	diag = KDB_BADREG;
1981	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1982		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1983			diag = 0;
1984			break;
1985		}
1986	}
1987	if (!diag) {
1988		switch(dbg_reg_def[i].size * 8) {
1989		case 8:
1990			reg8 = reg64;
1991			dbg_set_reg(i, &reg8, kdb_current_regs);
1992			break;
1993		case 16:
1994			reg16 = reg64;
1995			dbg_set_reg(i, &reg16, kdb_current_regs);
1996			break;
1997		case 32:
1998			reg32 = reg64;
1999			dbg_set_reg(i, &reg32, kdb_current_regs);
2000			break;
2001		case 64:
2002			dbg_set_reg(i, &reg64, kdb_current_regs);
2003			break;
2004		}
2005	}
2006	return diag;
2007#else
2008	kdb_printf("ERROR: Register set currently not implemented\n");
2009    return 0;
2010#endif
2011}
2012
2013#if defined(CONFIG_MAGIC_SYSRQ)
2014/*
2015 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2016 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
2017 *		sr <magic-sysrq-code>
2018 */
2019static int kdb_sr(int argc, const char **argv)
2020{
2021	bool check_mask =
2022	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2023
2024	if (argc != 1)
2025		return KDB_ARGCOUNT;
2026
2027	kdb_trap_printk++;
2028	__handle_sysrq(*argv[1], check_mask);
2029	kdb_trap_printk--;
2030
2031	return 0;
2032}
2033#endif	/* CONFIG_MAGIC_SYSRQ */
2034
2035/*
2036 * kdb_ef - This function implements the 'regs' (display exception
2037 *	frame) command.  This command takes an address and expects to
2038 *	find an exception frame at that address, formats and prints
2039 *	it.
2040 *		regs address-expression
2041 * Remarks:
2042 *	Not done yet.
2043 */
2044static int kdb_ef(int argc, const char **argv)
2045{
2046	int diag;
2047	unsigned long addr;
2048	long offset;
2049	int nextarg;
2050
2051	if (argc != 1)
2052		return KDB_ARGCOUNT;
2053
2054	nextarg = 1;
2055	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2056	if (diag)
2057		return diag;
2058	show_regs((struct pt_regs *)addr);
2059	return 0;
2060}
2061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062/*
2063 * kdb_env - This function implements the 'env' command.  Display the
2064 *	current environment variables.
2065 */
2066
2067static int kdb_env(int argc, const char **argv)
2068{
2069	kdb_printenv();
 
 
 
 
 
2070
2071	if (KDB_DEBUG(MASK))
2072		kdb_printf("KDBDEBUG=0x%x\n",
2073			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2074
2075	return 0;
2076}
2077
2078#ifdef CONFIG_PRINTK
2079/*
2080 * kdb_dmesg - This function implements the 'dmesg' command to display
2081 *	the contents of the syslog buffer.
2082 *		dmesg [lines] [adjust]
2083 */
2084static int kdb_dmesg(int argc, const char **argv)
2085{
2086	int diag;
2087	int logging;
2088	int lines = 0;
2089	int adjust = 0;
2090	int n = 0;
2091	int skip = 0;
2092	struct kmsg_dump_iter iter;
2093	size_t len;
2094	char buf[201];
2095
2096	if (argc > 2)
2097		return KDB_ARGCOUNT;
2098	if (argc) {
2099		char *cp;
2100		lines = simple_strtol(argv[1], &cp, 0);
2101		if (*cp)
2102			lines = 0;
2103		if (argc > 1) {
2104			adjust = simple_strtoul(argv[2], &cp, 0);
2105			if (*cp || adjust < 0)
2106				adjust = 0;
2107		}
2108	}
2109
2110	/* disable LOGGING if set */
2111	diag = kdbgetintenv("LOGGING", &logging);
2112	if (!diag && logging) {
2113		const char *setargs[] = { "set", "LOGGING", "0" };
2114		kdb_set(2, setargs);
2115	}
2116
2117	kmsg_dump_rewind(&iter);
2118	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2119		n++;
2120
2121	if (lines < 0) {
2122		if (adjust >= n)
2123			kdb_printf("buffer only contains %d lines, nothing "
2124				   "printed\n", n);
2125		else if (adjust - lines >= n)
2126			kdb_printf("buffer only contains %d lines, last %d "
2127				   "lines printed\n", n, n - adjust);
2128		skip = adjust;
2129		lines = abs(lines);
2130	} else if (lines > 0) {
2131		skip = n - lines - adjust;
2132		lines = abs(lines);
2133		if (adjust >= n) {
2134			kdb_printf("buffer only contains %d lines, "
2135				   "nothing printed\n", n);
2136			skip = n;
2137		} else if (skip < 0) {
2138			lines += skip;
2139			skip = 0;
2140			kdb_printf("buffer only contains %d lines, first "
2141				   "%d lines printed\n", n, lines);
2142		}
2143	} else {
2144		lines = n;
2145	}
2146
2147	if (skip >= n || skip < 0)
2148		return 0;
2149
2150	kmsg_dump_rewind(&iter);
2151	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2152		if (skip) {
2153			skip--;
2154			continue;
2155		}
2156		if (!lines--)
2157			break;
2158		if (KDB_FLAG(CMD_INTERRUPT))
2159			return 0;
2160
2161		kdb_printf("%.*s\n", (int)len - 1, buf);
2162	}
2163
2164	return 0;
2165}
2166#endif /* CONFIG_PRINTK */
2167
2168/* Make sure we balance enable/disable calls, must disable first. */
2169static atomic_t kdb_nmi_disabled;
2170
2171static int kdb_disable_nmi(int argc, const char *argv[])
2172{
2173	if (atomic_read(&kdb_nmi_disabled))
2174		return 0;
2175	atomic_set(&kdb_nmi_disabled, 1);
2176	arch_kgdb_ops.enable_nmi(0);
2177	return 0;
2178}
2179
2180static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2181{
2182	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2183		return -EINVAL;
2184	arch_kgdb_ops.enable_nmi(1);
2185	return 0;
2186}
2187
2188static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2189	.set = kdb_param_enable_nmi,
2190};
2191module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2192
2193/*
2194 * kdb_cpu - This function implements the 'cpu' command.
2195 *	cpu	[<cpunum>]
2196 * Returns:
2197 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2198 */
2199static void kdb_cpu_status(void)
2200{
2201	int i, start_cpu, first_print = 1;
2202	char state, prev_state = '?';
2203
2204	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2205	kdb_printf("Available cpus: ");
2206	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2207		if (!cpu_online(i)) {
2208			state = 'F';	/* cpu is offline */
2209		} else if (!kgdb_info[i].enter_kgdb) {
2210			state = 'D';	/* cpu is online but unresponsive */
2211		} else {
2212			state = ' ';	/* cpu is responding to kdb */
2213			if (kdb_task_state_char(KDB_TSK(i)) == '-')
2214				state = '-';	/* idle task */
2215		}
2216		if (state != prev_state) {
2217			if (prev_state != '?') {
2218				if (!first_print)
2219					kdb_printf(", ");
2220				first_print = 0;
2221				kdb_printf("%d", start_cpu);
2222				if (start_cpu < i-1)
2223					kdb_printf("-%d", i-1);
2224				if (prev_state != ' ')
2225					kdb_printf("(%c)", prev_state);
2226			}
2227			prev_state = state;
2228			start_cpu = i;
2229		}
2230	}
2231	/* print the trailing cpus, ignoring them if they are all offline */
2232	if (prev_state != 'F') {
2233		if (!first_print)
2234			kdb_printf(", ");
2235		kdb_printf("%d", start_cpu);
2236		if (start_cpu < i-1)
2237			kdb_printf("-%d", i-1);
2238		if (prev_state != ' ')
2239			kdb_printf("(%c)", prev_state);
2240	}
2241	kdb_printf("\n");
2242}
2243
2244static int kdb_cpu(int argc, const char **argv)
2245{
2246	unsigned long cpunum;
2247	int diag;
2248
2249	if (argc == 0) {
2250		kdb_cpu_status();
2251		return 0;
2252	}
2253
2254	if (argc != 1)
2255		return KDB_ARGCOUNT;
2256
2257	diag = kdbgetularg(argv[1], &cpunum);
2258	if (diag)
2259		return diag;
2260
2261	/*
2262	 * Validate cpunum
2263	 */
2264	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2265		return KDB_BADCPUNUM;
2266
2267	dbg_switch_cpu = cpunum;
2268
2269	/*
2270	 * Switch to other cpu
2271	 */
2272	return KDB_CMD_CPU;
2273}
2274
2275/* The user may not realize that ps/bta with no parameters does not print idle
2276 * or sleeping system daemon processes, so tell them how many were suppressed.
2277 */
2278void kdb_ps_suppressed(void)
2279{
2280	int idle = 0, daemon = 0;
 
 
2281	unsigned long cpu;
2282	const struct task_struct *p, *g;
2283	for_each_online_cpu(cpu) {
2284		p = kdb_curr_task(cpu);
2285		if (kdb_task_state(p, "-"))
2286			++idle;
2287	}
2288	for_each_process_thread(g, p) {
2289		if (kdb_task_state(p, "ims"))
2290			++daemon;
2291	}
2292	if (idle || daemon) {
2293		if (idle)
2294			kdb_printf("%d idle process%s (state -)%s\n",
2295				   idle, idle == 1 ? "" : "es",
2296				   daemon ? " and " : "");
2297		if (daemon)
2298			kdb_printf("%d sleeping system daemon (state [ims]) "
2299				   "process%s", daemon,
2300				   daemon == 1 ? "" : "es");
2301		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2302	}
2303}
2304
 
 
 
 
 
2305void kdb_ps1(const struct task_struct *p)
2306{
2307	int cpu;
2308	unsigned long tmp;
2309
2310	if (!p ||
2311	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%px)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
2333/*
2334 * kdb_ps - This function implements the 'ps' command which shows a
2335 *	    list of the active processes.
2336 *
2337 * ps [<state_chars>]   Show processes, optionally selecting only those whose
2338 *                      state character is found in <state_chars>.
2339 */
2340static int kdb_ps(int argc, const char **argv)
2341{
2342	struct task_struct *g, *p;
2343	const char *mask;
2344	unsigned long cpu;
2345
2346	if (argc == 0)
2347		kdb_ps_suppressed();
2348	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2349		(int)(2*sizeof(void *))+2, "Task Addr",
2350		(int)(2*sizeof(void *))+2, "Thread");
2351	mask = argc ? argv[1] : kdbgetenv("PS");
2352	/* Run the active tasks first */
2353	for_each_online_cpu(cpu) {
2354		if (KDB_FLAG(CMD_INTERRUPT))
2355			return 0;
2356		p = kdb_curr_task(cpu);
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	}
2360	kdb_printf("\n");
2361	/* Now the real tasks */
2362	for_each_process_thread(g, p) {
2363		if (KDB_FLAG(CMD_INTERRUPT))
2364			return 0;
2365		if (kdb_task_state(p, mask))
2366			kdb_ps1(p);
2367	}
2368
2369	return 0;
2370}
2371
2372/*
2373 * kdb_pid - This function implements the 'pid' command which switches
2374 *	the currently active process.
2375 *		pid [<pid> | R]
2376 */
2377static int kdb_pid(int argc, const char **argv)
2378{
2379	struct task_struct *p;
2380	unsigned long val;
2381	int diag;
2382
2383	if (argc > 1)
2384		return KDB_ARGCOUNT;
2385
2386	if (argc) {
2387		if (strcmp(argv[1], "R") == 0) {
2388			p = KDB_TSK(kdb_initial_cpu);
2389		} else {
2390			diag = kdbgetularg(argv[1], &val);
2391			if (diag)
2392				return KDB_BADINT;
2393
2394			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2395			if (!p) {
2396				kdb_printf("No task with pid=%d\n", (pid_t)val);
2397				return 0;
2398			}
2399		}
2400		kdb_set_current_task(p);
2401	}
2402	kdb_printf("KDB current process is %s(pid=%d)\n",
2403		   kdb_current_task->comm,
2404		   kdb_current_task->pid);
2405
2406	return 0;
2407}
2408
2409static int kdb_kgdb(int argc, const char **argv)
2410{
2411	return KDB_CMD_KGDB;
2412}
2413
2414/*
2415 * kdb_help - This function implements the 'help' and '?' commands.
2416 */
2417static int kdb_help(int argc, const char **argv)
2418{
2419	kdbtab_t *kt;
 
2420
2421	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2422	kdb_printf("-----------------------------"
2423		   "-----------------------------\n");
2424	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2425		char *space = "";
2426		if (KDB_FLAG(CMD_INTERRUPT))
2427			return 0;
2428		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2429			continue;
2430		if (strlen(kt->usage) > 20)
 
 
2431			space = "\n                                    ";
2432		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2433			   kt->usage, space, kt->help);
2434	}
2435	return 0;
2436}
2437
2438/*
2439 * kdb_kill - This function implements the 'kill' commands.
2440 */
2441static int kdb_kill(int argc, const char **argv)
2442{
2443	long sig, pid;
2444	char *endp;
2445	struct task_struct *p;
 
2446
2447	if (argc != 2)
2448		return KDB_ARGCOUNT;
2449
2450	sig = simple_strtol(argv[1], &endp, 0);
2451	if (*endp)
2452		return KDB_BADINT;
2453	if ((sig >= 0) || !valid_signal(-sig)) {
2454		kdb_printf("Invalid signal parameter.<-signal>\n");
2455		return 0;
2456	}
2457	sig = -sig;
2458
2459	pid = simple_strtol(argv[2], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if (pid <= 0) {
2463		kdb_printf("Process ID must be large than 0.\n");
2464		return 0;
2465	}
2466
2467	/* Find the process. */
2468	p = find_task_by_pid_ns(pid, &init_pid_ns);
2469	if (!p) {
2470		kdb_printf("The specified process isn't found.\n");
2471		return 0;
2472	}
2473	p = p->group_leader;
2474	kdb_send_sig(p, sig);
 
 
 
 
 
2475	return 0;
2476}
2477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478/*
2479 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2480 * I cannot call that code directly from kdb, it has an unconditional
2481 * cli()/sti() and calls routines that take locks which can stop the debugger.
2482 */
2483static void kdb_sysinfo(struct sysinfo *val)
2484{
2485	u64 uptime = ktime_get_mono_fast_ns();
2486
2487	memset(val, 0, sizeof(*val));
2488	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2489	val->loads[0] = avenrun[0];
2490	val->loads[1] = avenrun[1];
2491	val->loads[2] = avenrun[2];
2492	val->procs = nr_threads-1;
2493	si_meminfo(val);
2494
2495	return;
2496}
2497
2498/*
2499 * kdb_summary - This function implements the 'summary' command.
2500 */
2501static int kdb_summary(int argc, const char **argv)
2502{
2503	time64_t now;
 
2504	struct sysinfo val;
2505
2506	if (argc)
2507		return KDB_ARGCOUNT;
2508
2509	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2510	kdb_printf("release    %s\n", init_uts_ns.name.release);
2511	kdb_printf("version    %s\n", init_uts_ns.name.version);
2512	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2513	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2514	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2515
2516	now = __ktime_get_real_seconds();
2517	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2518	kdb_sysinfo(&val);
2519	kdb_printf("uptime     ");
2520	if (val.uptime > (24*60*60)) {
2521		int days = val.uptime / (24*60*60);
2522		val.uptime %= (24*60*60);
2523		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2524	}
2525	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2526
 
 
 
 
2527	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2528		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2529		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2530		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2531
 
2532	/* Display in kilobytes */
2533#define K(x) ((x) << (PAGE_SHIFT - 10))
2534	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2535		   "Buffers:        %8lu kB\n",
2536		   K(val.totalram), K(val.freeram), K(val.bufferram));
2537	return 0;
2538}
2539
2540/*
2541 * kdb_per_cpu - This function implements the 'per_cpu' command.
2542 */
2543static int kdb_per_cpu(int argc, const char **argv)
2544{
2545	char fmtstr[64];
2546	int cpu, diag, nextarg = 1;
2547	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2548
2549	if (argc < 1 || argc > 3)
2550		return KDB_ARGCOUNT;
2551
2552	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2553	if (diag)
2554		return diag;
2555
2556	if (argc >= 2) {
2557		diag = kdbgetularg(argv[2], &bytesperword);
2558		if (diag)
2559			return diag;
2560	}
2561	if (!bytesperword)
2562		bytesperword = KDB_WORD_SIZE;
2563	else if (bytesperword > KDB_WORD_SIZE)
2564		return KDB_BADWIDTH;
2565	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2566	if (argc >= 3) {
2567		diag = kdbgetularg(argv[3], &whichcpu);
2568		if (diag)
2569			return diag;
2570		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2571			kdb_printf("cpu %ld is not online\n", whichcpu);
2572			return KDB_BADCPUNUM;
2573		}
2574	}
2575
2576	/* Most architectures use __per_cpu_offset[cpu], some use
2577	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2578	 */
2579#ifdef	__per_cpu_offset
2580#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2581#else
2582#ifdef	CONFIG_SMP
2583#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2584#else
2585#define KDB_PCU(cpu) 0
2586#endif
2587#endif
2588	for_each_online_cpu(cpu) {
2589		if (KDB_FLAG(CMD_INTERRUPT))
2590			return 0;
2591
2592		if (whichcpu != ~0UL && whichcpu != cpu)
2593			continue;
2594		addr = symaddr + KDB_PCU(cpu);
2595		diag = kdb_getword(&val, addr, bytesperword);
2596		if (diag) {
2597			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2598				   "read, diag=%d\n", cpu, addr, diag);
2599			continue;
2600		}
2601		kdb_printf("%5d ", cpu);
2602		kdb_md_line(fmtstr, addr,
2603			bytesperword == KDB_WORD_SIZE,
2604			1, bytesperword, 1, 1, 0);
2605	}
2606#undef KDB_PCU
2607	return 0;
2608}
2609
2610/*
2611 * display help for the use of cmd | grep pattern
2612 */
2613static int kdb_grep_help(int argc, const char **argv)
2614{
2615	kdb_printf("Usage of  cmd args | grep pattern:\n");
2616	kdb_printf("  Any command's output may be filtered through an ");
2617	kdb_printf("emulated 'pipe'.\n");
2618	kdb_printf("  'grep' is just a key word.\n");
2619	kdb_printf("  The pattern may include a very limited set of "
2620		   "metacharacters:\n");
2621	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2622	kdb_printf("  And if there are spaces in the pattern, you may "
2623		   "quote it:\n");
2624	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2625		   " or \"^pat tern$\"\n");
2626	return 0;
2627}
2628
2629/**
2630 * kdb_register() - This function is used to register a kernel debugger
2631 *                  command.
2632 * @cmd: pointer to kdb command
2633 *
2634 * Note that it's the job of the caller to keep the memory for the cmd
2635 * allocated until unregister is called.
 
 
 
 
2636 */
2637int kdb_register(kdbtab_t *cmd)
 
 
 
 
 
 
2638{
 
2639	kdbtab_t *kp;
2640
2641	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2642		if (strcmp(kp->name, cmd->name) == 0) {
2643			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2644				   cmd->name, cmd->func, cmd->help);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645			return 1;
2646		}
 
 
 
 
 
 
 
 
 
 
2647	}
2648
2649	list_add_tail(&cmd->list_node, &kdb_cmds_head);
 
 
 
 
 
 
2650	return 0;
2651}
2652EXPORT_SYMBOL_GPL(kdb_register);
2653
2654/**
2655 * kdb_register_table() - This function is used to register a kdb command
2656 *                        table.
2657 * @kp: pointer to kdb command table
2658 * @len: length of kdb command table
 
 
 
 
 
 
 
2659 */
2660void kdb_register_table(kdbtab_t *kp, size_t len)
 
 
 
 
2661{
2662	while (len--) {
2663		list_add_tail(&kp->list_node, &kdb_cmds_head);
2664		kp++;
2665	}
2666}
 
2667
2668/**
2669 * kdb_unregister() - This function is used to unregister a kernel debugger
2670 *                    command. It is generally called when a module which
2671 *                    implements kdb command is unloaded.
2672 * @cmd: pointer to kdb command
 
 
 
2673 */
2674void kdb_unregister(kdbtab_t *cmd)
2675{
2676	list_del(&cmd->list_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677}
2678EXPORT_SYMBOL_GPL(kdb_unregister);
2679
2680static kdbtab_t maintab[] = {
2681	{	.name = "md",
2682		.func = kdb_md,
2683		.usage = "<vaddr>",
2684		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2685		.minlen = 1,
2686		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2687	},
2688	{	.name = "mdr",
2689		.func = kdb_md,
2690		.usage = "<vaddr> <bytes>",
2691		.help = "Display Raw Memory",
2692		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2693	},
2694	{	.name = "mdp",
2695		.func = kdb_md,
2696		.usage = "<paddr> <bytes>",
2697		.help = "Display Physical Memory",
2698		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2699	},
2700	{	.name = "mds",
2701		.func = kdb_md,
2702		.usage = "<vaddr>",
2703		.help = "Display Memory Symbolically",
2704		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2705	},
2706	{	.name = "mm",
2707		.func = kdb_mm,
2708		.usage = "<vaddr> <contents>",
2709		.help = "Modify Memory Contents",
2710		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2711	},
2712	{	.name = "go",
2713		.func = kdb_go,
2714		.usage = "[<vaddr>]",
2715		.help = "Continue Execution",
2716		.minlen = 1,
2717		.flags = KDB_ENABLE_REG_WRITE |
2718			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2719	},
2720	{	.name = "rd",
2721		.func = kdb_rd,
2722		.usage = "",
2723		.help = "Display Registers",
2724		.flags = KDB_ENABLE_REG_READ,
2725	},
2726	{	.name = "rm",
2727		.func = kdb_rm,
2728		.usage = "<reg> <contents>",
2729		.help = "Modify Registers",
2730		.flags = KDB_ENABLE_REG_WRITE,
2731	},
2732	{	.name = "ef",
2733		.func = kdb_ef,
2734		.usage = "<vaddr>",
2735		.help = "Display exception frame",
2736		.flags = KDB_ENABLE_MEM_READ,
2737	},
2738	{	.name = "bt",
2739		.func = kdb_bt,
2740		.usage = "[<vaddr>]",
2741		.help = "Stack traceback",
2742		.minlen = 1,
2743		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2744	},
2745	{	.name = "btp",
2746		.func = kdb_bt,
2747		.usage = "<pid>",
2748		.help = "Display stack for process <pid>",
2749		.flags = KDB_ENABLE_INSPECT,
2750	},
2751	{	.name = "bta",
2752		.func = kdb_bt,
2753		.usage = "[<state_chars>|A]",
2754		.help = "Backtrace all processes whose state matches",
2755		.flags = KDB_ENABLE_INSPECT,
2756	},
2757	{	.name = "btc",
2758		.func = kdb_bt,
2759		.usage = "",
2760		.help = "Backtrace current process on each cpu",
2761		.flags = KDB_ENABLE_INSPECT,
2762	},
2763	{	.name = "btt",
2764		.func = kdb_bt,
2765		.usage = "<vaddr>",
2766		.help = "Backtrace process given its struct task address",
2767		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2768	},
2769	{	.name = "env",
2770		.func = kdb_env,
2771		.usage = "",
2772		.help = "Show environment variables",
2773		.flags = KDB_ENABLE_ALWAYS_SAFE,
2774	},
2775	{	.name = "set",
2776		.func = kdb_set,
2777		.usage = "",
2778		.help = "Set environment variables",
2779		.flags = KDB_ENABLE_ALWAYS_SAFE,
2780	},
2781	{	.name = "help",
2782		.func = kdb_help,
2783		.usage = "",
2784		.help = "Display Help Message",
2785		.minlen = 1,
2786		.flags = KDB_ENABLE_ALWAYS_SAFE,
2787	},
2788	{	.name = "?",
2789		.func = kdb_help,
2790		.usage = "",
2791		.help = "Display Help Message",
2792		.flags = KDB_ENABLE_ALWAYS_SAFE,
2793	},
2794	{	.name = "cpu",
2795		.func = kdb_cpu,
2796		.usage = "<cpunum>",
2797		.help = "Switch to new cpu",
2798		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2799	},
2800	{	.name = "kgdb",
2801		.func = kdb_kgdb,
2802		.usage = "",
2803		.help = "Enter kgdb mode",
2804		.flags = 0,
2805	},
2806	{	.name = "ps",
2807		.func = kdb_ps,
2808		.usage = "[<state_chars>|A]",
2809		.help = "Display active task list",
2810		.flags = KDB_ENABLE_INSPECT,
2811	},
2812	{	.name = "pid",
2813		.func = kdb_pid,
2814		.usage = "<pidnum>",
2815		.help = "Switch to another task",
2816		.flags = KDB_ENABLE_INSPECT,
2817	},
2818	{	.name = "reboot",
2819		.func = kdb_reboot,
2820		.usage = "",
2821		.help = "Reboot the machine immediately",
2822		.flags = KDB_ENABLE_REBOOT,
2823	},
2824#if defined(CONFIG_MODULES)
2825	{	.name = "lsmod",
2826		.func = kdb_lsmod,
2827		.usage = "",
2828		.help = "List loaded kernel modules",
2829		.flags = KDB_ENABLE_INSPECT,
2830	},
2831#endif
2832#if defined(CONFIG_MAGIC_SYSRQ)
2833	{	.name = "sr",
2834		.func = kdb_sr,
2835		.usage = "<key>",
2836		.help = "Magic SysRq key",
2837		.flags = KDB_ENABLE_ALWAYS_SAFE,
2838	},
2839#endif
2840#if defined(CONFIG_PRINTK)
2841	{	.name = "dmesg",
2842		.func = kdb_dmesg,
2843		.usage = "[lines]",
2844		.help = "Display syslog buffer",
2845		.flags = KDB_ENABLE_ALWAYS_SAFE,
2846	},
2847#endif
2848	{	.name = "defcmd",
2849		.func = kdb_defcmd,
2850		.usage = "name \"usage\" \"help\"",
2851		.help = "Define a set of commands, down to endefcmd",
2852		/*
2853		 * Macros are always safe because when executed each
2854		 * internal command re-enters kdb_parse() and is safety
2855		 * checked individually.
2856		 */
2857		.flags = KDB_ENABLE_ALWAYS_SAFE,
2858	},
2859	{	.name = "kill",
2860		.func = kdb_kill,
2861		.usage = "<-signal> <pid>",
2862		.help = "Send a signal to a process",
2863		.flags = KDB_ENABLE_SIGNAL,
2864	},
2865	{	.name = "summary",
2866		.func = kdb_summary,
2867		.usage = "",
2868		.help = "Summarize the system",
2869		.minlen = 4,
2870		.flags = KDB_ENABLE_ALWAYS_SAFE,
2871	},
2872	{	.name = "per_cpu",
2873		.func = kdb_per_cpu,
2874		.usage = "<sym> [<bytes>] [<cpu>]",
2875		.help = "Display per_cpu variables",
2876		.minlen = 3,
2877		.flags = KDB_ENABLE_MEM_READ,
2878	},
2879	{	.name = "grephelp",
2880		.func = kdb_grep_help,
2881		.usage = "",
2882		.help = "Display help on | grep",
2883		.flags = KDB_ENABLE_ALWAYS_SAFE,
2884	},
2885};
2886
2887static kdbtab_t nmicmd = {
2888	.name = "disable_nmi",
2889	.func = kdb_disable_nmi,
2890	.usage = "",
2891	.help = "Disable NMI entry to KDB",
2892	.flags = KDB_ENABLE_ALWAYS_SAFE,
2893};
2894
2895/* Initialize the kdb command table. */
2896static void __init kdb_inittab(void)
2897{
2898	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2899	if (arch_kgdb_ops.enable_nmi)
2900		kdb_register_table(&nmicmd, 1);
2901}
2902
2903/* Execute any commands defined in kdb_cmds.  */
2904static void __init kdb_cmd_init(void)
2905{
2906	int i, diag;
2907	for (i = 0; kdb_cmds[i]; ++i) {
2908		diag = kdb_parse(kdb_cmds[i]);
2909		if (diag)
2910			kdb_printf("kdb command %s failed, kdb diag %d\n",
2911				kdb_cmds[i], diag);
2912	}
2913	if (defcmd_in_progress) {
2914		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2915		kdb_parse("endefcmd");
2916	}
2917}
2918
2919/* Initialize kdb_printf, breakpoint tables and kdb state */
2920void __init kdb_init(int lvl)
2921{
2922	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2923	int i;
2924
2925	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2926		return;
2927	for (i = kdb_init_lvl; i < lvl; i++) {
2928		switch (i) {
2929		case KDB_NOT_INITIALIZED:
2930			kdb_inittab();		/* Initialize Command Table */
2931			kdb_initbptab();	/* Initialize Breakpoints */
2932			break;
2933		case KDB_INIT_EARLY:
2934			kdb_cmd_init();		/* Build kdb_cmds tables */
2935			break;
2936		}
2937	}
2938	kdb_init_lvl = lvl;
2939}
v4.10.11
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
 
 
 
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
 
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
  63
  64/*
  65 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  66 * single thread processors through the kernel debugger.
  67 */
  68int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  69int kdb_nextline = 1;
  70int kdb_state;			/* General KDB state */
  71
  72struct task_struct *kdb_current_task;
  73EXPORT_SYMBOL(kdb_current_task);
  74struct pt_regs *kdb_current_regs;
  75
  76const char *kdb_diemsg;
  77static int kdb_go_count;
  78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  79static unsigned int kdb_continue_catastrophic =
  80	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  81#else
  82static unsigned int kdb_continue_catastrophic;
  83#endif
  84
  85/* kdb_commands describes the available commands. */
  86static kdbtab_t *kdb_commands;
  87#define KDB_BASE_CMD_MAX 50
  88static int kdb_max_commands = KDB_BASE_CMD_MAX;
  89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  90#define for_each_kdbcmd(cmd, num)					\
  91	for ((cmd) = kdb_base_commands, (num) = 0;			\
  92	     num < kdb_max_commands;					\
  93	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  94
  95typedef struct _kdbmsg {
  96	int	km_diag;	/* kdb diagnostic */
  97	char	*km_msg;	/* Corresponding message text */
  98} kdbmsg_t;
  99
 100#define KDBMSG(msgnum, text) \
 101	{ KDB_##msgnum, text }
 102
 103static kdbmsg_t kdbmsgs[] = {
 104	KDBMSG(NOTFOUND, "Command Not Found"),
 105	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 106	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 107	       "8 is only allowed on 64 bit systems"),
 108	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 109	KDBMSG(NOTENV, "Cannot find environment variable"),
 110	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 111	KDBMSG(NOTIMP, "Command not implemented"),
 112	KDBMSG(ENVFULL, "Environment full"),
 113	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 114	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 115#ifdef CONFIG_CPU_XSCALE
 116	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 117#else
 118	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 119#endif
 120	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 121	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 122	KDBMSG(BADMODE, "Invalid IDMODE"),
 123	KDBMSG(BADINT, "Illegal numeric value"),
 124	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 125	KDBMSG(BADREG, "Invalid register name"),
 126	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 127	KDBMSG(BADLENGTH, "Invalid length field"),
 128	KDBMSG(NOBP, "No Breakpoint exists"),
 129	KDBMSG(BADADDR, "Invalid address"),
 130	KDBMSG(NOPERM, "Permission denied"),
 131};
 132#undef KDBMSG
 133
 134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 135
 136
 137/*
 138 * Initial environment.   This is all kept static and local to
 139 * this file.   We don't want to rely on the memory allocation
 140 * mechanisms in the kernel, so we use a very limited allocate-only
 141 * heap for new and altered environment variables.  The entire
 142 * environment is limited to a fixed number of entries (add more
 143 * to __env[] if required) and a fixed amount of heap (add more to
 144 * KDB_ENVBUFSIZE if required).
 145 */
 146
 147static char *__env[] = {
 148#if defined(CONFIG_SMP)
 149 "PROMPT=[%d]kdb> ",
 150#else
 151 "PROMPT=kdb> ",
 152#endif
 153 "MOREPROMPT=more> ",
 154 "RADIX=16",
 155 "MDCOUNT=8",			/* lines of md output */
 156 KDB_PLATFORM_ENV,
 157 "DTABCOUNT=30",
 158 "NOSECT=1",
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183};
 184
 185static const int __nenv = ARRAY_SIZE(__env);
 186
 187struct task_struct *kdb_curr_task(int cpu)
 188{
 189	struct task_struct *p = curr_task(cpu);
 190#ifdef	_TIF_MCA_INIT
 191	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 192		p = krp->p;
 193#endif
 194	return p;
 195}
 196
 197/*
 198 * Check whether the flags of the current command and the permissions
 199 * of the kdb console has allow a command to be run.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200 */
 201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202				   bool no_args)
 203{
 204	/* permissions comes from userspace so needs massaging slightly */
 205	permissions &= KDB_ENABLE_MASK;
 206	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 207
 208	/* some commands change group when launched with no arguments */
 209	if (no_args)
 210		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 211
 212	flags |= KDB_ENABLE_ALL;
 213
 214	return permissions & flags;
 215}
 216
 217/*
 218 * kdbgetenv - This function will return the character string value of
 219 *	an environment variable.
 220 * Parameters:
 221 *	match	A character string representing an environment variable.
 222 * Returns:
 223 *	NULL	No environment variable matches 'match'
 224 *	char*	Pointer to string value of environment variable.
 225 */
 226char *kdbgetenv(const char *match)
 227{
 228	char **ep = __env;
 229	int matchlen = strlen(match);
 230	int i;
 231
 232	for (i = 0; i < __nenv; i++) {
 233		char *e = *ep++;
 234
 235		if (!e)
 236			continue;
 237
 238		if ((strncmp(match, e, matchlen) == 0)
 239		 && ((e[matchlen] == '\0')
 240		   || (e[matchlen] == '='))) {
 241			char *cp = strchr(e, '=');
 242			return cp ? ++cp : "";
 243		}
 244	}
 245	return NULL;
 246}
 247
 248/*
 249 * kdballocenv - This function is used to allocate bytes for
 250 *	environment entries.
 251 * Parameters:
 252 *	match	A character string representing a numeric value
 253 * Outputs:
 254 *	*value  the unsigned long representation of the env variable 'match'
 255 * Returns:
 256 *	Zero on success, a kdb diagnostic on failure.
 257 * Remarks:
 258 *	We use a static environment buffer (envbuffer) to hold the values
 259 *	of dynamically generated environment variables (see kdb_set).  Buffer
 260 *	space once allocated is never free'd, so over time, the amount of space
 261 *	(currently 512 bytes) will be exhausted if env variables are changed
 262 *	frequently.
 263 */
 264static char *kdballocenv(size_t bytes)
 265{
 266#define	KDB_ENVBUFSIZE	512
 267	static char envbuffer[KDB_ENVBUFSIZE];
 268	static int envbufsize;
 269	char *ep = NULL;
 270
 271	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 272		ep = &envbuffer[envbufsize];
 273		envbufsize += bytes;
 274	}
 275	return ep;
 276}
 277
 278/*
 279 * kdbgetulenv - This function will return the value of an unsigned
 280 *	long-valued environment variable.
 281 * Parameters:
 282 *	match	A character string representing a numeric value
 283 * Outputs:
 284 *	*value  the unsigned long represntation of the env variable 'match'
 285 * Returns:
 286 *	Zero on success, a kdb diagnostic on failure.
 287 */
 288static int kdbgetulenv(const char *match, unsigned long *value)
 289{
 290	char *ep;
 291
 292	ep = kdbgetenv(match);
 293	if (!ep)
 294		return KDB_NOTENV;
 295	if (strlen(ep) == 0)
 296		return KDB_NOENVVALUE;
 297
 298	*value = simple_strtoul(ep, NULL, 0);
 299
 300	return 0;
 301}
 302
 303/*
 304 * kdbgetintenv - This function will return the value of an
 305 *	integer-valued environment variable.
 306 * Parameters:
 307 *	match	A character string representing an integer-valued env variable
 308 * Outputs:
 309 *	*value  the integer representation of the environment variable 'match'
 310 * Returns:
 311 *	Zero on success, a kdb diagnostic on failure.
 312 */
 313int kdbgetintenv(const char *match, int *value)
 314{
 315	unsigned long val;
 316	int diag;
 317
 318	diag = kdbgetulenv(match, &val);
 319	if (!diag)
 320		*value = (int) val;
 321	return diag;
 322}
 323
 324/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325 * kdbgetularg - This function will convert a numeric string into an
 326 *	unsigned long value.
 327 * Parameters:
 328 *	arg	A character string representing a numeric value
 329 * Outputs:
 330 *	*value  the unsigned long represntation of arg.
 331 * Returns:
 332 *	Zero on success, a kdb diagnostic on failure.
 333 */
 334int kdbgetularg(const char *arg, unsigned long *value)
 335{
 336	char *endp;
 337	unsigned long val;
 338
 339	val = simple_strtoul(arg, &endp, 0);
 340
 341	if (endp == arg) {
 342		/*
 343		 * Also try base 16, for us folks too lazy to type the
 344		 * leading 0x...
 345		 */
 346		val = simple_strtoul(arg, &endp, 16);
 347		if (endp == arg)
 348			return KDB_BADINT;
 349	}
 350
 351	*value = val;
 352
 353	return 0;
 354}
 355
 356int kdbgetu64arg(const char *arg, u64 *value)
 357{
 358	char *endp;
 359	u64 val;
 360
 361	val = simple_strtoull(arg, &endp, 0);
 362
 363	if (endp == arg) {
 364
 365		val = simple_strtoull(arg, &endp, 16);
 366		if (endp == arg)
 367			return KDB_BADINT;
 368	}
 369
 370	*value = val;
 371
 372	return 0;
 373}
 374
 375/*
 376 * kdb_set - This function implements the 'set' command.  Alter an
 377 *	existing environment variable or create a new one.
 378 */
 379int kdb_set(int argc, const char **argv)
 380{
 381	int i;
 382	char *ep;
 383	size_t varlen, vallen;
 384
 385	/*
 386	 * we can be invoked two ways:
 387	 *   set var=value    argv[1]="var", argv[2]="value"
 388	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 389	 * - if the latter, shift 'em down.
 390	 */
 391	if (argc == 3) {
 392		argv[2] = argv[3];
 393		argc--;
 394	}
 395
 396	if (argc != 2)
 397		return KDB_ARGCOUNT;
 398
 399	/*
 
 
 
 
 
 
 
 400	 * Check for internal variables
 401	 */
 402	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 403		unsigned int debugflags;
 404		char *cp;
 405
 406		debugflags = simple_strtoul(argv[2], &cp, 0);
 407		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 408			kdb_printf("kdb: illegal debug flags '%s'\n",
 409				    argv[2]);
 410			return 0;
 411		}
 412		kdb_flags = (kdb_flags &
 413			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 414			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 415
 416		return 0;
 417	}
 418
 419	/*
 420	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 421	 * name, argv[2] = value.
 422	 */
 423	varlen = strlen(argv[1]);
 424	vallen = strlen(argv[2]);
 425	ep = kdballocenv(varlen + vallen + 2);
 426	if (ep == (char *)0)
 427		return KDB_ENVBUFFULL;
 428
 429	sprintf(ep, "%s=%s", argv[1], argv[2]);
 430
 431	ep[varlen+vallen+1] = '\0';
 432
 433	for (i = 0; i < __nenv; i++) {
 434		if (__env[i]
 435		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 436		   && ((__env[i][varlen] == '\0')
 437		    || (__env[i][varlen] == '=')))) {
 438			__env[i] = ep;
 439			return 0;
 440		}
 441	}
 442
 443	/*
 444	 * Wasn't existing variable.  Fit into slot.
 445	 */
 446	for (i = 0; i < __nenv-1; i++) {
 447		if (__env[i] == (char *)0) {
 448			__env[i] = ep;
 449			return 0;
 450		}
 451	}
 452
 453	return KDB_ENVFULL;
 454}
 455
 456static int kdb_check_regs(void)
 457{
 458	if (!kdb_current_regs) {
 459		kdb_printf("No current kdb registers."
 460			   "  You may need to select another task\n");
 461		return KDB_BADREG;
 462	}
 463	return 0;
 464}
 465
 466/*
 467 * kdbgetaddrarg - This function is responsible for parsing an
 468 *	address-expression and returning the value of the expression,
 469 *	symbol name, and offset to the caller.
 470 *
 471 *	The argument may consist of a numeric value (decimal or
 472 *	hexidecimal), a symbol name, a register name (preceded by the
 473 *	percent sign), an environment variable with a numeric value
 474 *	(preceded by a dollar sign) or a simple arithmetic expression
 475 *	consisting of a symbol name, +/-, and a numeric constant value
 476 *	(offset).
 477 * Parameters:
 478 *	argc	- count of arguments in argv
 479 *	argv	- argument vector
 480 *	*nextarg - index to next unparsed argument in argv[]
 481 *	regs	- Register state at time of KDB entry
 482 * Outputs:
 483 *	*value	- receives the value of the address-expression
 484 *	*offset - receives the offset specified, if any
 485 *	*name   - receives the symbol name, if any
 486 *	*nextarg - index to next unparsed argument in argv[]
 487 * Returns:
 488 *	zero is returned on success, a kdb diagnostic code is
 489 *      returned on error.
 490 */
 491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 492		  unsigned long *value,  long *offset,
 493		  char **name)
 494{
 495	unsigned long addr;
 496	unsigned long off = 0;
 497	int positive;
 498	int diag;
 499	int found = 0;
 500	char *symname;
 501	char symbol = '\0';
 502	char *cp;
 503	kdb_symtab_t symtab;
 504
 505	/*
 506	 * If the enable flags prohibit both arbitrary memory access
 507	 * and flow control then there are no reasonable grounds to
 508	 * provide symbol lookup.
 509	 */
 510	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 511			     kdb_cmd_enabled, false))
 512		return KDB_NOPERM;
 513
 514	/*
 515	 * Process arguments which follow the following syntax:
 516	 *
 517	 *  symbol | numeric-address [+/- numeric-offset]
 518	 *  %register
 519	 *  $environment-variable
 520	 */
 521
 522	if (*nextarg > argc)
 523		return KDB_ARGCOUNT;
 524
 525	symname = (char *)argv[*nextarg];
 526
 527	/*
 528	 * If there is no whitespace between the symbol
 529	 * or address and the '+' or '-' symbols, we
 530	 * remember the character and replace it with a
 531	 * null so the symbol/value can be properly parsed
 532	 */
 533	cp = strpbrk(symname, "+-");
 534	if (cp != NULL) {
 535		symbol = *cp;
 536		*cp++ = '\0';
 537	}
 538
 539	if (symname[0] == '$') {
 540		diag = kdbgetulenv(&symname[1], &addr);
 541		if (diag)
 542			return diag;
 543	} else if (symname[0] == '%') {
 544		diag = kdb_check_regs();
 545		if (diag)
 546			return diag;
 547		/* Implement register values with % at a later time as it is
 548		 * arch optional.
 549		 */
 550		return KDB_NOTIMP;
 551	} else {
 552		found = kdbgetsymval(symname, &symtab);
 553		if (found) {
 554			addr = symtab.sym_start;
 555		} else {
 556			diag = kdbgetularg(argv[*nextarg], &addr);
 557			if (diag)
 558				return diag;
 559		}
 560	}
 561
 562	if (!found)
 563		found = kdbnearsym(addr, &symtab);
 564
 565	(*nextarg)++;
 566
 567	if (name)
 568		*name = symname;
 569	if (value)
 570		*value = addr;
 571	if (offset && name && *name)
 572		*offset = addr - symtab.sym_start;
 573
 574	if ((*nextarg > argc)
 575	 && (symbol == '\0'))
 576		return 0;
 577
 578	/*
 579	 * check for +/- and offset
 580	 */
 581
 582	if (symbol == '\0') {
 583		if ((argv[*nextarg][0] != '+')
 584		 && (argv[*nextarg][0] != '-')) {
 585			/*
 586			 * Not our argument.  Return.
 587			 */
 588			return 0;
 589		} else {
 590			positive = (argv[*nextarg][0] == '+');
 591			(*nextarg)++;
 592		}
 593	} else
 594		positive = (symbol == '+');
 595
 596	/*
 597	 * Now there must be an offset!
 598	 */
 599	if ((*nextarg > argc)
 600	 && (symbol == '\0')) {
 601		return KDB_INVADDRFMT;
 602	}
 603
 604	if (!symbol) {
 605		cp = (char *)argv[*nextarg];
 606		(*nextarg)++;
 607	}
 608
 609	diag = kdbgetularg(cp, &off);
 610	if (diag)
 611		return diag;
 612
 613	if (!positive)
 614		off = -off;
 615
 616	if (offset)
 617		*offset += off;
 618
 619	if (value)
 620		*value += off;
 621
 622	return 0;
 623}
 624
 625static void kdb_cmderror(int diag)
 626{
 627	int i;
 628
 629	if (diag >= 0) {
 630		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 631		return;
 632	}
 633
 634	for (i = 0; i < __nkdb_err; i++) {
 635		if (kdbmsgs[i].km_diag == diag) {
 636			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 637			return;
 638		}
 639	}
 640
 641	kdb_printf("Unknown diag %d\n", -diag);
 642}
 643
 644/*
 645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 646 *	command which defines one command as a set of other commands,
 647 *	terminated by endefcmd.  kdb_defcmd processes the initial
 648 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 649 *	the following commands until 'endefcmd'.
 650 * Inputs:
 651 *	argc	argument count
 652 *	argv	argument vector
 653 * Returns:
 654 *	zero for success, a kdb diagnostic if error
 655 */
 656struct defcmd_set {
 657	int count;
 658	int usable;
 659	char *name;
 660	char *usage;
 661	char *help;
 662	char **command;
 663};
 664static struct defcmd_set *defcmd_set;
 665static int defcmd_set_count;
 666static int defcmd_in_progress;
 
 
 
 
 
 667
 668/* Forward references */
 669static int kdb_exec_defcmd(int argc, const char **argv);
 670
 671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 672{
 673	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 674	char **save_command = s->command;
 
 
 
 675	if (strcmp(argv0, "endefcmd") == 0) {
 676		defcmd_in_progress = 0;
 677		if (!s->count)
 678			s->usable = 0;
 679		if (s->usable)
 680			/* macros are always safe because when executed each
 681			 * internal command re-enters kdb_parse() and is
 682			 * safety checked individually.
 683			 */
 684			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 685					   s->help, 0,
 686					   KDB_ENABLE_ALWAYS_SAFE);
 687		return 0;
 688	}
 689	if (!s->usable)
 690		return KDB_NOTIMP;
 691	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 692	if (!s->command) {
 693		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 694			   cmdstr);
 695		s->usable = 0;
 696		return KDB_NOTIMP;
 697	}
 698	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 699	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 700	kfree(save_command);
 
 701	return 0;
 702}
 703
 704static int kdb_defcmd(int argc, const char **argv)
 705{
 706	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 
 707	if (defcmd_in_progress) {
 708		kdb_printf("kdb: nested defcmd detected, assuming missing "
 709			   "endefcmd\n");
 710		kdb_defcmd2("endefcmd", "endefcmd");
 711	}
 712	if (argc == 0) {
 713		int i;
 714		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 715			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 716				   s->usage, s->help);
 717			for (i = 0; i < s->count; ++i)
 718				kdb_printf("%s", s->command[i]);
 719			kdb_printf("endefcmd\n");
 
 
 
 
 
 
 
 720		}
 721		return 0;
 722	}
 723	if (argc != 3)
 724		return KDB_ARGCOUNT;
 725	if (in_dbg_master()) {
 726		kdb_printf("Command only available during kdb_init()\n");
 727		return KDB_NOTIMP;
 728	}
 729	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 730			     GFP_KDB);
 731	if (!defcmd_set)
 732		goto fail_defcmd;
 733	memcpy(defcmd_set, save_defcmd_set,
 734	       defcmd_set_count * sizeof(*defcmd_set));
 735	s = defcmd_set + defcmd_set_count;
 736	memset(s, 0, sizeof(*s));
 737	s->usable = 1;
 738	s->name = kdb_strdup(argv[1], GFP_KDB);
 739	if (!s->name)
 740		goto fail_name;
 741	s->usage = kdb_strdup(argv[2], GFP_KDB);
 742	if (!s->usage)
 743		goto fail_usage;
 744	s->help = kdb_strdup(argv[3], GFP_KDB);
 745	if (!s->help)
 746		goto fail_help;
 747	if (s->usage[0] == '"') {
 748		strcpy(s->usage, argv[2]+1);
 749		s->usage[strlen(s->usage)-1] = '\0';
 750	}
 751	if (s->help[0] == '"') {
 752		strcpy(s->help, argv[3]+1);
 753		s->help[strlen(s->help)-1] = '\0';
 754	}
 755	++defcmd_set_count;
 756	defcmd_in_progress = 1;
 757	kfree(save_defcmd_set);
 758	return 0;
 759fail_help:
 760	kfree(s->usage);
 761fail_usage:
 762	kfree(s->name);
 763fail_name:
 764	kfree(defcmd_set);
 765fail_defcmd:
 766	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 767	defcmd_set = save_defcmd_set;
 768	return KDB_NOTIMP;
 769}
 770
 771/*
 772 * kdb_exec_defcmd - Execute the set of commands associated with this
 773 *	defcmd name.
 774 * Inputs:
 775 *	argc	argument count
 776 *	argv	argument vector
 777 * Returns:
 778 *	zero for success, a kdb diagnostic if error
 779 */
 780static int kdb_exec_defcmd(int argc, const char **argv)
 781{
 782	int i, ret;
 783	struct defcmd_set *s;
 
 
 
 784	if (argc != 0)
 785		return KDB_ARGCOUNT;
 786	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 787		if (strcmp(s->name, argv[0]) == 0)
 
 788			break;
 789	}
 790	if (i == defcmd_set_count) {
 791		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 792			   argv[0]);
 793		return KDB_NOTIMP;
 794	}
 795	for (i = 0; i < s->count; ++i) {
 796		/* Recursive use of kdb_parse, do not use argv after
 797		 * this point */
 
 
 798		argv = NULL;
 799		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 800		ret = kdb_parse(s->command[i]);
 801		if (ret)
 802			return ret;
 803	}
 804	return 0;
 805}
 806
 807/* Command history */
 808#define KDB_CMD_HISTORY_COUNT	32
 809#define CMD_BUFLEN		200	/* kdb_printf: max printline
 810					 * size == 256 */
 811static unsigned int cmd_head, cmd_tail;
 812static unsigned int cmdptr;
 813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 814static char cmd_cur[CMD_BUFLEN];
 815
 816/*
 817 * The "str" argument may point to something like  | grep xyz
 818 */
 819static void parse_grep(const char *str)
 820{
 821	int	len;
 822	char	*cp = (char *)str, *cp2;
 823
 824	/* sanity check: we should have been called with the \ first */
 825	if (*cp != '|')
 826		return;
 827	cp++;
 828	while (isspace(*cp))
 829		cp++;
 830	if (strncmp(cp, "grep ", 5)) {
 831		kdb_printf("invalid 'pipe', see grephelp\n");
 832		return;
 833	}
 834	cp += 5;
 835	while (isspace(*cp))
 836		cp++;
 837	cp2 = strchr(cp, '\n');
 838	if (cp2)
 839		*cp2 = '\0'; /* remove the trailing newline */
 840	len = strlen(cp);
 841	if (len == 0) {
 842		kdb_printf("invalid 'pipe', see grephelp\n");
 843		return;
 844	}
 845	/* now cp points to a nonzero length search string */
 846	if (*cp == '"') {
 847		/* allow it be "x y z" by removing the "'s - there must
 848		   be two of them */
 849		cp++;
 850		cp2 = strchr(cp, '"');
 851		if (!cp2) {
 852			kdb_printf("invalid quoted string, see grephelp\n");
 853			return;
 854		}
 855		*cp2 = '\0'; /* end the string where the 2nd " was */
 856	}
 857	kdb_grep_leading = 0;
 858	if (*cp == '^') {
 859		kdb_grep_leading = 1;
 860		cp++;
 861	}
 862	len = strlen(cp);
 863	kdb_grep_trailing = 0;
 864	if (*(cp+len-1) == '$') {
 865		kdb_grep_trailing = 1;
 866		*(cp+len-1) = '\0';
 867	}
 868	len = strlen(cp);
 869	if (!len)
 870		return;
 871	if (len >= KDB_GREP_STRLEN) {
 872		kdb_printf("search string too long\n");
 873		return;
 874	}
 875	strcpy(kdb_grep_string, cp);
 876	kdb_grepping_flag++;
 877	return;
 878}
 879
 880/*
 881 * kdb_parse - Parse the command line, search the command table for a
 882 *	matching command and invoke the command function.  This
 883 *	function may be called recursively, if it is, the second call
 884 *	will overwrite argv and cbuf.  It is the caller's
 885 *	responsibility to save their argv if they recursively call
 886 *	kdb_parse().
 887 * Parameters:
 888 *      cmdstr	The input command line to be parsed.
 889 *	regs	The registers at the time kdb was entered.
 890 * Returns:
 891 *	Zero for success, a kdb diagnostic if failure.
 892 * Remarks:
 893 *	Limited to 20 tokens.
 894 *
 895 *	Real rudimentary tokenization. Basically only whitespace
 896 *	is considered a token delimeter (but special consideration
 897 *	is taken of the '=' sign as used by the 'set' command).
 898 *
 899 *	The algorithm used to tokenize the input string relies on
 900 *	there being at least one whitespace (or otherwise useless)
 901 *	character between tokens as the character immediately following
 902 *	the token is altered in-place to a null-byte to terminate the
 903 *	token string.
 904 */
 905
 906#define MAXARGC	20
 907
 908int kdb_parse(const char *cmdstr)
 909{
 910	static char *argv[MAXARGC];
 911	static int argc;
 912	static char cbuf[CMD_BUFLEN+2];
 913	char *cp;
 914	char *cpp, quoted;
 915	kdbtab_t *tp;
 916	int i, escaped, ignore_errors = 0, check_grep = 0;
 917
 918	/*
 919	 * First tokenize the command string.
 920	 */
 921	cp = (char *)cmdstr;
 922
 923	if (KDB_FLAG(CMD_INTERRUPT)) {
 924		/* Previous command was interrupted, newline must not
 925		 * repeat the command */
 926		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 927		KDB_STATE_SET(PAGER);
 928		argc = 0;	/* no repeat */
 929	}
 930
 931	if (*cp != '\n' && *cp != '\0') {
 932		argc = 0;
 933		cpp = cbuf;
 934		while (*cp) {
 935			/* skip whitespace */
 936			while (isspace(*cp))
 937				cp++;
 938			if ((*cp == '\0') || (*cp == '\n') ||
 939			    (*cp == '#' && !defcmd_in_progress))
 940				break;
 941			/* special case: check for | grep pattern */
 942			if (*cp == '|') {
 943				check_grep++;
 944				break;
 945			}
 946			if (cpp >= cbuf + CMD_BUFLEN) {
 947				kdb_printf("kdb_parse: command buffer "
 948					   "overflow, command ignored\n%s\n",
 949					   cmdstr);
 950				return KDB_NOTFOUND;
 951			}
 952			if (argc >= MAXARGC - 1) {
 953				kdb_printf("kdb_parse: too many arguments, "
 954					   "command ignored\n%s\n", cmdstr);
 955				return KDB_NOTFOUND;
 956			}
 957			argv[argc++] = cpp;
 958			escaped = 0;
 959			quoted = '\0';
 960			/* Copy to next unquoted and unescaped
 961			 * whitespace or '=' */
 962			while (*cp && *cp != '\n' &&
 963			       (escaped || quoted || !isspace(*cp))) {
 964				if (cpp >= cbuf + CMD_BUFLEN)
 965					break;
 966				if (escaped) {
 967					escaped = 0;
 968					*cpp++ = *cp++;
 969					continue;
 970				}
 971				if (*cp == '\\') {
 972					escaped = 1;
 973					++cp;
 974					continue;
 975				}
 976				if (*cp == quoted)
 977					quoted = '\0';
 978				else if (*cp == '\'' || *cp == '"')
 979					quoted = *cp;
 980				*cpp = *cp++;
 981				if (*cpp == '=' && !quoted)
 982					break;
 983				++cpp;
 984			}
 985			*cpp++ = '\0';	/* Squash a ws or '=' character */
 986		}
 987	}
 988	if (!argc)
 989		return 0;
 990	if (check_grep)
 991		parse_grep(cp);
 992	if (defcmd_in_progress) {
 993		int result = kdb_defcmd2(cmdstr, argv[0]);
 994		if (!defcmd_in_progress) {
 995			argc = 0;	/* avoid repeat on endefcmd */
 996			*(argv[0]) = '\0';
 997		}
 998		return result;
 999	}
1000	if (argv[0][0] == '-' && argv[0][1] &&
1001	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1002		ignore_errors = 1;
1003		++argv[0];
1004	}
1005
1006	for_each_kdbcmd(tp, i) {
1007		if (tp->cmd_name) {
1008			/*
1009			 * If this command is allowed to be abbreviated,
1010			 * check to see if this is it.
1011			 */
 
 
1012
1013			if (tp->cmd_minlen
1014			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015				if (strncmp(argv[0],
1016					    tp->cmd_name,
1017					    tp->cmd_minlen) == 0) {
1018					break;
1019				}
1020			}
1021
1022			if (strcmp(argv[0], tp->cmd_name) == 0)
1023				break;
1024		}
1025	}
1026
1027	/*
1028	 * If we don't find a command by this name, see if the first
1029	 * few characters of this match any of the known commands.
1030	 * e.g., md1c20 should match md.
1031	 */
1032	if (i == kdb_max_commands) {
1033		for_each_kdbcmd(tp, i) {
1034			if (tp->cmd_name) {
1035				if (strncmp(argv[0],
1036					    tp->cmd_name,
1037					    strlen(tp->cmd_name)) == 0) {
1038					break;
1039				}
1040			}
1041		}
1042	}
1043
1044	if (i < kdb_max_commands) {
1045		int result;
1046
1047		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048			return KDB_NOPERM;
1049
1050		KDB_STATE_SET(CMD);
1051		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052		if (result && ignore_errors && result > KDB_CMD_GO)
1053			result = 0;
1054		KDB_STATE_CLEAR(CMD);
1055
1056		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057			return result;
1058
1059		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060		if (argv[argc])
1061			*(argv[argc]) = '\0';
1062		return result;
1063	}
1064
1065	/*
1066	 * If the input with which we were presented does not
1067	 * map to an existing command, attempt to parse it as an
1068	 * address argument and display the result.   Useful for
1069	 * obtaining the address of a variable, or the nearest symbol
1070	 * to an address contained in a register.
1071	 */
1072	{
1073		unsigned long value;
1074		char *name = NULL;
1075		long offset;
1076		int nextarg = 0;
1077
1078		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079				  &value, &offset, &name)) {
1080			return KDB_NOTFOUND;
1081		}
1082
1083		kdb_printf("%s = ", argv[0]);
1084		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085		kdb_printf("\n");
1086		return 0;
1087	}
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P	16
1094#define CTRL_N	14
1095
1096	/* initial situation */
1097	if (cmd_head == cmd_tail)
1098		return 0;
1099	switch (*cmd) {
1100	case CTRL_P:
1101		if (cmdptr != cmd_tail)
1102			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1104		return 1;
1105	case CTRL_N:
1106		if (cmdptr != cmd_head)
1107			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109		return 1;
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1116 *	the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120	emergency_restart();
1121	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122	while (1)
1123		cpu_relax();
1124	/* NOTREACHED */
1125	return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130	int old_lvl = console_loglevel;
1131	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132	kdb_trap_printk++;
1133	show_regs(regs);
1134	kdb_trap_printk--;
1135	kdb_printf("\n");
1136	console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141	kdb_current_task = p;
1142
1143	if (kdb_task_has_cpu(p)) {
1144		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145		return;
1146	}
1147	kdb_current_regs = NULL;
1148}
1149
 
 
 
 
 
 
 
 
 
 
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
 
 
 
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
1292#else
1293		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295		if (defcmd_in_progress)
1296			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298		/*
1299		 * Fetch command from keyboard
1300		 */
1301		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302		if (*cmdbuf != '\n') {
1303			if (*cmdbuf < 32) {
1304				if (cmdptr == cmd_head) {
1305					strncpy(cmd_hist[cmd_head], cmd_cur,
1306						CMD_BUFLEN);
1307					*(cmd_hist[cmd_head] +
1308					  strlen(cmd_hist[cmd_head])-1) = '\0';
1309				}
1310				if (!handle_ctrl_cmd(cmdbuf))
1311					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312				cmdbuf = cmd_cur;
1313				goto do_full_getstr;
1314			} else {
1315				strncpy(cmd_hist[cmd_head], cmd_cur,
1316					CMD_BUFLEN);
1317			}
1318
1319			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320			if (cmd_head == cmd_tail)
1321				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322		}
1323
1324		cmdptr = cmd_head;
1325		diag = kdb_parse(cmdbuf);
1326		if (diag == KDB_NOTFOUND) {
 
1327			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328			diag = 0;
1329		}
1330		if (diag == KDB_CMD_GO
1331		 || diag == KDB_CMD_CPU
1332		 || diag == KDB_CMD_SS
1333		 || diag == KDB_CMD_KGDB)
1334			break;
1335
1336		if (diag)
1337			kdb_cmderror(diag);
1338	}
1339	KDB_DEBUG_STATE("kdb_local 9", diag);
1340	return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 *	for debugging.
1347 * Inputs:
1348 *	text		Identifies the debug point
1349 *	value		Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355		   kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 *	controlling cpu, all cpus are in this loop.  One cpu is in
1361 *	control and will issue the kdb prompt, the others will spin
1362 *	until 'go' or cpu switch.
1363 *
1364 *	To get a consistent view of the kernel stacks for all
1365 *	processes, this routine is invoked from the main kdb code via
1366 *	an architecture specific routine.  kdba_main_loop is
1367 *	responsible for making the kernel stacks consistent for all
1368 *	processes, there should be no difference between a blocked
1369 *	process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 *	reason		The reason KDB was invoked
1372 *	error		The hardware-defined error code
1373 *	reason2		kdb's current reason code.
1374 *			Initially error but can change
1375 *			according to kdb state.
1376 *	db_result	Result code from break or debug point.
1377 *	regs		The exception frame at time of fault/breakpoint.
1378 *			should always be valid.
1379 * Returns:
1380 *	0	KDB was invoked for an event which it wasn't responsible
1381 *	1	KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386	int result = 1;
1387	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1388	while (1) {
1389		/*
1390		 * All processors except the one that is in control
1391		 * will spin here.
1392		 */
1393		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394		while (KDB_STATE(HOLD_CPU)) {
1395			/* state KDB is turned off by kdb_cpu to see if the
1396			 * other cpus are still live, each cpu in this loop
1397			 * turns it back on.
1398			 */
1399			if (!KDB_STATE(KDB))
1400				KDB_STATE_SET(KDB);
1401		}
1402
1403		KDB_STATE_CLEAR(SUPPRESS);
1404		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405		if (KDB_STATE(LEAVING))
1406			break;	/* Another cpu said 'go' */
1407		/* Still using kdb, this processor is in control */
1408		result = kdb_local(reason2, error, regs, db_result);
1409		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411		if (result == KDB_CMD_CPU)
1412			break;
1413
1414		if (result == KDB_CMD_SS) {
1415			KDB_STATE_SET(DOING_SS);
1416			break;
1417		}
1418
1419		if (result == KDB_CMD_KGDB) {
1420			if (!KDB_STATE(DOING_KGDB))
1421				kdb_printf("Entering please attach debugger "
1422					   "or use $D#44+ or $3#33\n");
1423			break;
1424		}
1425		if (result && result != 1 && result != KDB_CMD_GO)
1426			kdb_printf("\nUnexpected kdb_local return code %d\n",
1427				   result);
1428		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429		break;
1430	}
1431	if (KDB_STATE(DOING_SS))
1432		KDB_STATE_CLEAR(SSBPT);
1433
1434	/* Clean up any keyboard devices before leaving */
1435	kdb_kbd_cleanup_state();
1436
1437	return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 *	mdr  <addr arg>,<byte count>
1444 * Inputs:
1445 *	addr	Start address
1446 *	count	Number of bytes
1447 * Returns:
1448 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452	unsigned char c;
1453	while (count--) {
1454		if (kdb_getarea(c, addr))
1455			return 0;
1456		kdb_printf("%02x", c);
1457		addr++;
1458	}
1459	kdb_printf("\n");
1460	return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 *	'md8' 'mdr' and 'mds' commands.
1466 *
1467 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1468 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1469 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1470 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1471 *	mdr  <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474			int symbolic, int nosect, int bytesperword,
1475			int num, int repeat, int phys)
1476{
1477	/* print just one line of data */
1478	kdb_symtab_t symtab;
1479	char cbuf[32];
1480	char *c = cbuf;
1481	int i;
 
1482	unsigned long word;
1483
1484	memset(cbuf, '\0', sizeof(cbuf));
1485	if (phys)
1486		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487	else
1488		kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490	for (i = 0; i < num && repeat--; i++) {
1491		if (phys) {
1492			if (kdb_getphysword(&word, addr, bytesperword))
1493				break;
1494		} else if (kdb_getword(&word, addr, bytesperword))
1495			break;
1496		kdb_printf(fmtstr, word);
1497		if (symbolic)
1498			kdbnearsym(word, &symtab);
1499		else
1500			memset(&symtab, 0, sizeof(symtab));
1501		if (symtab.sym_name) {
1502			kdb_symbol_print(word, &symtab, 0);
1503			if (!nosect) {
1504				kdb_printf("\n");
1505				kdb_printf("                       %s %s "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt, symtab.mod_name,
1509					   symtab.sec_name, symtab.sec_start,
1510					   symtab.sym_start, symtab.sym_end);
1511			}
1512			addr += bytesperword;
1513		} else {
1514			union {
1515				u64 word;
1516				unsigned char c[8];
1517			} wc;
1518			unsigned char *cp;
1519#ifdef	__BIG_ENDIAN
1520			cp = wc.c + 8 - bytesperword;
1521#else
1522			cp = wc.c;
1523#endif
1524			wc.word = word;
1525#define printable_char(c) \
1526	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527			switch (bytesperword) {
1528			case 8:
1529				*c++ = printable_char(*cp++);
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				addr += 4;
1534			case 4:
1535				*c++ = printable_char(*cp++);
1536				*c++ = printable_char(*cp++);
1537				addr += 2;
1538			case 2:
1539				*c++ = printable_char(*cp++);
1540				addr++;
1541			case 1:
1542				*c++ = printable_char(*cp++);
1543				addr++;
1544				break;
1545			}
1546#undef printable_char
1547		}
1548	}
1549	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550		   " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555	static unsigned long last_addr;
1556	static int last_radix, last_bytesperword, last_repeat;
1557	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558	int nosect = 0;
1559	char fmtchar, fmtstr[64];
1560	unsigned long addr;
1561	unsigned long word;
1562	long offset = 0;
1563	int symbolic = 0;
1564	int valid = 0;
1565	int phys = 0;
 
1566
1567	kdbgetintenv("MDCOUNT", &mdcount);
1568	kdbgetintenv("RADIX", &radix);
1569	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571	/* Assume 'md <addr>' and start with environment values */
1572	repeat = mdcount * 16 / bytesperword;
1573
1574	if (strcmp(argv[0], "mdr") == 0) {
1575		if (argc != 2)
 
 
1576			return KDB_ARGCOUNT;
1577		valid = 1;
1578	} else if (isdigit(argv[0][2])) {
1579		bytesperword = (int)(argv[0][2] - '0');
1580		if (bytesperword == 0) {
1581			bytesperword = last_bytesperword;
1582			if (bytesperword == 0)
1583				bytesperword = 4;
1584		}
1585		last_bytesperword = bytesperword;
1586		repeat = mdcount * 16 / bytesperword;
1587		if (!argv[0][3])
1588			valid = 1;
1589		else if (argv[0][3] == 'c' && argv[0][4]) {
1590			char *p;
1591			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592			mdcount = ((repeat * bytesperword) + 15) / 16;
1593			valid = !*p;
1594		}
1595		last_repeat = repeat;
1596	} else if (strcmp(argv[0], "md") == 0)
1597		valid = 1;
1598	else if (strcmp(argv[0], "mds") == 0)
1599		valid = 1;
1600	else if (strcmp(argv[0], "mdp") == 0) {
1601		phys = valid = 1;
1602	}
1603	if (!valid)
1604		return KDB_NOTFOUND;
1605
1606	if (argc == 0) {
1607		if (last_addr == 0)
1608			return KDB_ARGCOUNT;
1609		addr = last_addr;
1610		radix = last_radix;
1611		bytesperword = last_bytesperword;
1612		repeat = last_repeat;
1613		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1614	}
1615
1616	if (argc) {
1617		unsigned long val;
1618		int diag, nextarg = 1;
1619		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620				     &offset, NULL);
1621		if (diag)
1622			return diag;
1623		if (argc > nextarg+2)
1624			return KDB_ARGCOUNT;
1625
1626		if (argc >= nextarg) {
1627			diag = kdbgetularg(argv[nextarg], &val);
1628			if (!diag) {
1629				mdcount = (int) val;
1630				repeat = mdcount * 16 / bytesperword;
 
 
 
1631			}
1632		}
1633		if (argc >= nextarg+1) {
1634			diag = kdbgetularg(argv[nextarg+1], &val);
1635			if (!diag)
1636				radix = (int) val;
1637		}
1638	}
1639
1640	if (strcmp(argv[0], "mdr") == 0)
1641		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1642
1643	switch (radix) {
1644	case 10:
1645		fmtchar = 'd';
1646		break;
1647	case 16:
1648		fmtchar = 'x';
1649		break;
1650	case 8:
1651		fmtchar = 'o';
1652		break;
1653	default:
1654		return KDB_BADRADIX;
1655	}
1656
1657	last_radix = radix;
1658
1659	if (bytesperword > KDB_WORD_SIZE)
1660		return KDB_BADWIDTH;
1661
1662	switch (bytesperword) {
1663	case 8:
1664		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665		break;
1666	case 4:
1667		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668		break;
1669	case 2:
1670		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671		break;
1672	case 1:
1673		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674		break;
1675	default:
1676		return KDB_BADWIDTH;
1677	}
1678
1679	last_repeat = repeat;
1680	last_bytesperword = bytesperword;
1681
1682	if (strcmp(argv[0], "mds") == 0) {
1683		symbolic = 1;
1684		/* Do not save these changes as last_*, they are temporary mds
1685		 * overrides.
1686		 */
1687		bytesperword = KDB_WORD_SIZE;
1688		repeat = mdcount;
1689		kdbgetintenv("NOSECT", &nosect);
1690	}
1691
1692	/* Round address down modulo BYTESPERWORD */
1693
1694	addr &= ~(bytesperword-1);
1695
1696	while (repeat > 0) {
1697		unsigned long a;
1698		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700		if (KDB_FLAG(CMD_INTERRUPT))
1701			return 0;
1702		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703			if (phys) {
1704				if (kdb_getphysword(&word, a, bytesperword)
1705						|| word)
1706					break;
1707			} else if (kdb_getword(&word, a, bytesperword) || word)
1708				break;
1709		}
1710		n = min(num, repeat);
1711		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712			    num, repeat, phys);
1713		addr += bytesperword * n;
1714		repeat -= n;
1715		z = (z + num - 1) / num;
1716		if (z > 2) {
1717			int s = num * (z-2);
1718			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719				   " zero suppressed\n",
1720				addr, addr + bytesperword * s - 1);
1721			addr += bytesperword * s;
1722			repeat -= s;
1723		}
1724	}
1725	last_addr = addr;
1726
1727	return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 *	mm address-expression new-value
1733 * Remarks:
1734 *	mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738	int diag;
1739	unsigned long addr;
1740	long offset = 0;
1741	unsigned long contents;
1742	int nextarg;
1743	int width;
1744
1745	if (argv[0][2] && !isdigit(argv[0][2]))
1746		return KDB_NOTFOUND;
1747
1748	if (argc < 2)
1749		return KDB_ARGCOUNT;
1750
1751	nextarg = 1;
1752	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753	if (diag)
1754		return diag;
1755
1756	if (nextarg > argc)
1757		return KDB_ARGCOUNT;
1758	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759	if (diag)
1760		return diag;
1761
1762	if (nextarg != argc + 1)
1763		return KDB_ARGCOUNT;
1764
1765	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766	diag = kdb_putword(addr, contents, width);
1767	if (diag)
1768		return diag;
1769
1770	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772	return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 *	go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781	unsigned long addr;
1782	int diag;
1783	int nextarg;
1784	long offset;
1785
1786	if (raw_smp_processor_id() != kdb_initial_cpu) {
1787		kdb_printf("go must execute on the entry cpu, "
1788			   "please use \"cpu %d\" and then execute go\n",
1789			   kdb_initial_cpu);
1790		return KDB_BADCPUNUM;
1791	}
1792	if (argc == 1) {
1793		nextarg = 1;
1794		diag = kdbgetaddrarg(argc, argv, &nextarg,
1795				     &addr, &offset, NULL);
1796		if (diag)
1797			return diag;
1798	} else if (argc) {
1799		return KDB_ARGCOUNT;
1800	}
1801
1802	diag = KDB_CMD_GO;
1803	if (KDB_FLAG(CATASTROPHIC)) {
1804		kdb_printf("Catastrophic error detected\n");
1805		kdb_printf("kdb_continue_catastrophic=%d, ",
1806			kdb_continue_catastrophic);
1807		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808			kdb_printf("type go a second time if you really want "
1809				   "to continue\n");
1810			return 0;
1811		}
1812		if (kdb_continue_catastrophic == 2) {
1813			kdb_printf("forcing reboot\n");
1814			kdb_reboot(0, NULL);
1815		}
1816		kdb_printf("attempting to continue\n");
1817	}
1818	return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826	int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828	int i;
1829	char *rname;
1830	int rsize;
1831	u64 reg64;
1832	u32 reg32;
1833	u16 reg16;
1834	u8 reg8;
1835
1836	if (len)
1837		return len;
1838
1839	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840		rsize = dbg_reg_def[i].size * 2;
1841		if (rsize > 16)
1842			rsize = 2;
1843		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844			len = 0;
1845			kdb_printf("\n");
1846		}
1847		if (len)
1848			len += kdb_printf("  ");
1849		switch(dbg_reg_def[i].size * 8) {
1850		case 8:
1851			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1852			if (!rname)
1853				break;
1854			len += kdb_printf("%s: %02x", rname, reg8);
1855			break;
1856		case 16:
1857			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1858			if (!rname)
1859				break;
1860			len += kdb_printf("%s: %04x", rname, reg16);
1861			break;
1862		case 32:
1863			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1864			if (!rname)
1865				break;
1866			len += kdb_printf("%s: %08x", rname, reg32);
1867			break;
1868		case 64:
1869			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1870			if (!rname)
1871				break;
1872			len += kdb_printf("%s: %016llx", rname, reg64);
1873			break;
1874		default:
1875			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876		}
1877	}
1878	kdb_printf("\n");
1879#else
1880	if (len)
1881		return len;
1882
1883	kdb_dumpregs(kdb_current_regs);
1884#endif
1885	return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify)  command.
1890 *	rm register-name new-contents
1891 * Remarks:
1892 *	Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897	int diag;
1898	const char *rname;
1899	int i;
1900	u64 reg64;
1901	u32 reg32;
1902	u16 reg16;
1903	u8 reg8;
1904
1905	if (argc != 2)
1906		return KDB_ARGCOUNT;
1907	/*
1908	 * Allow presence or absence of leading '%' symbol.
1909	 */
1910	rname = argv[1];
1911	if (*rname == '%')
1912		rname++;
1913
1914	diag = kdbgetu64arg(argv[2], &reg64);
1915	if (diag)
1916		return diag;
1917
1918	diag = kdb_check_regs();
1919	if (diag)
1920		return diag;
1921
1922	diag = KDB_BADREG;
1923	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925			diag = 0;
1926			break;
1927		}
1928	}
1929	if (!diag) {
1930		switch(dbg_reg_def[i].size * 8) {
1931		case 8:
1932			reg8 = reg64;
1933			dbg_set_reg(i, &reg8, kdb_current_regs);
1934			break;
1935		case 16:
1936			reg16 = reg64;
1937			dbg_set_reg(i, &reg16, kdb_current_regs);
1938			break;
1939		case 32:
1940			reg32 = reg64;
1941			dbg_set_reg(i, &reg32, kdb_current_regs);
1942			break;
1943		case 64:
1944			dbg_set_reg(i, &reg64, kdb_current_regs);
1945			break;
1946		}
1947	}
1948	return diag;
1949#else
1950	kdb_printf("ERROR: Register set currently not implemented\n");
1951    return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 *		sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963	bool check_mask =
1964	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966	if (argc != 1)
1967		return KDB_ARGCOUNT;
1968
1969	kdb_trap_printk++;
1970	__handle_sysrq(*argv[1], check_mask);
1971	kdb_trap_printk--;
1972
1973	return 0;
1974}
1975#endif	/* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 *	frame) command.  This command takes an address and expects to
1980 *	find an exception frame at that address, formats and prints
1981 *	it.
1982 *		regs address-expression
1983 * Remarks:
1984 *	Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988	int diag;
1989	unsigned long addr;
1990	long offset;
1991	int nextarg;
1992
1993	if (argc != 1)
1994		return KDB_ARGCOUNT;
1995
1996	nextarg = 1;
1997	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998	if (diag)
1999		return diag;
2000	show_regs((struct pt_regs *)addr);
2001	return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2007 *	currently loaded kernel modules.
2008 *	Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012	struct module *mod;
2013
2014	if (argc != 0)
2015		return KDB_ARGCOUNT;
2016
2017	kdb_printf("Module                  Size  modstruct     Used by\n");
2018	list_for_each_entry(mod, kdb_modules, list) {
2019		if (mod->state == MODULE_STATE_UNFORMED)
2020			continue;
2021
2022		kdb_printf("%-20s%8u  0x%p ", mod->name,
2023			   mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025		kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027		if (mod->state == MODULE_STATE_GOING)
2028			kdb_printf(" (Unloading)");
2029		else if (mod->state == MODULE_STATE_COMING)
2030			kdb_printf(" (Loading)");
2031		else
2032			kdb_printf(" (Live)");
2033		kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036		{
2037			struct module_use *use;
2038			kdb_printf(" [ ");
2039			list_for_each_entry(use, &mod->source_list,
2040					    source_list)
2041				kdb_printf("%s ", use->target->name);
2042			kdb_printf("]\n");
2043		}
2044#endif
2045	}
2046
2047	return 0;
2048}
2049
2050#endif	/* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command.  Display the
2054 *	current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059	int i;
2060
2061	for (i = 0; i < __nenv; i++) {
2062		if (__env[i])
2063			kdb_printf("%s\n", __env[i]);
2064	}
2065
2066	if (KDB_DEBUG(MASK))
2067		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2068
2069	return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 *	the contents of the syslog buffer.
2076 *		dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080	int diag;
2081	int logging;
2082	int lines = 0;
2083	int adjust = 0;
2084	int n = 0;
2085	int skip = 0;
2086	struct kmsg_dumper dumper = { .active = 1 };
2087	size_t len;
2088	char buf[201];
2089
2090	if (argc > 2)
2091		return KDB_ARGCOUNT;
2092	if (argc) {
2093		char *cp;
2094		lines = simple_strtol(argv[1], &cp, 0);
2095		if (*cp)
2096			lines = 0;
2097		if (argc > 1) {
2098			adjust = simple_strtoul(argv[2], &cp, 0);
2099			if (*cp || adjust < 0)
2100				adjust = 0;
2101		}
2102	}
2103
2104	/* disable LOGGING if set */
2105	diag = kdbgetintenv("LOGGING", &logging);
2106	if (!diag && logging) {
2107		const char *setargs[] = { "set", "LOGGING", "0" };
2108		kdb_set(2, setargs);
2109	}
2110
2111	kmsg_dump_rewind_nolock(&dumper);
2112	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113		n++;
2114
2115	if (lines < 0) {
2116		if (adjust >= n)
2117			kdb_printf("buffer only contains %d lines, nothing "
2118				   "printed\n", n);
2119		else if (adjust - lines >= n)
2120			kdb_printf("buffer only contains %d lines, last %d "
2121				   "lines printed\n", n, n - adjust);
2122		skip = adjust;
2123		lines = abs(lines);
2124	} else if (lines > 0) {
2125		skip = n - lines - adjust;
2126		lines = abs(lines);
2127		if (adjust >= n) {
2128			kdb_printf("buffer only contains %d lines, "
2129				   "nothing printed\n", n);
2130			skip = n;
2131		} else if (skip < 0) {
2132			lines += skip;
2133			skip = 0;
2134			kdb_printf("buffer only contains %d lines, first "
2135				   "%d lines printed\n", n, lines);
2136		}
2137	} else {
2138		lines = n;
2139	}
2140
2141	if (skip >= n || skip < 0)
2142		return 0;
2143
2144	kmsg_dump_rewind_nolock(&dumper);
2145	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146		if (skip) {
2147			skip--;
2148			continue;
2149		}
2150		if (!lines--)
2151			break;
2152		if (KDB_FLAG(CMD_INTERRUPT))
2153			return 0;
2154
2155		kdb_printf("%.*s\n", (int)len - 1, buf);
2156	}
2157
2158	return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167	if (atomic_read(&kdb_nmi_disabled))
2168		return 0;
2169	atomic_set(&kdb_nmi_disabled, 1);
2170	arch_kgdb_ops.enable_nmi(0);
2171	return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177		return -EINVAL;
2178	arch_kgdb_ops.enable_nmi(1);
2179	return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183	.set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 *	cpu	[<cpunum>]
2190 * Returns:
2191 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195	int i, start_cpu, first_print = 1;
2196	char state, prev_state = '?';
2197
2198	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199	kdb_printf("Available cpus: ");
2200	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201		if (!cpu_online(i)) {
2202			state = 'F';	/* cpu is offline */
2203		} else if (!kgdb_info[i].enter_kgdb) {
2204			state = 'D';	/* cpu is online but unresponsive */
2205		} else {
2206			state = ' ';	/* cpu is responding to kdb */
2207			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208				state = 'I';	/* idle task */
2209		}
2210		if (state != prev_state) {
2211			if (prev_state != '?') {
2212				if (!first_print)
2213					kdb_printf(", ");
2214				first_print = 0;
2215				kdb_printf("%d", start_cpu);
2216				if (start_cpu < i-1)
2217					kdb_printf("-%d", i-1);
2218				if (prev_state != ' ')
2219					kdb_printf("(%c)", prev_state);
2220			}
2221			prev_state = state;
2222			start_cpu = i;
2223		}
2224	}
2225	/* print the trailing cpus, ignoring them if they are all offline */
2226	if (prev_state != 'F') {
2227		if (!first_print)
2228			kdb_printf(", ");
2229		kdb_printf("%d", start_cpu);
2230		if (start_cpu < i-1)
2231			kdb_printf("-%d", i-1);
2232		if (prev_state != ' ')
2233			kdb_printf("(%c)", prev_state);
2234	}
2235	kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240	unsigned long cpunum;
2241	int diag;
2242
2243	if (argc == 0) {
2244		kdb_cpu_status();
2245		return 0;
2246	}
2247
2248	if (argc != 1)
2249		return KDB_ARGCOUNT;
2250
2251	diag = kdbgetularg(argv[1], &cpunum);
2252	if (diag)
2253		return diag;
2254
2255	/*
2256	 * Validate cpunum
2257	 */
2258	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259		return KDB_BADCPUNUM;
2260
2261	dbg_switch_cpu = cpunum;
2262
2263	/*
2264	 * Switch to other cpu
2265	 */
2266	return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274	int idle = 0, daemon = 0;
2275	unsigned long mask_I = kdb_task_state_string("I"),
2276		      mask_M = kdb_task_state_string("M");
2277	unsigned long cpu;
2278	const struct task_struct *p, *g;
2279	for_each_online_cpu(cpu) {
2280		p = kdb_curr_task(cpu);
2281		if (kdb_task_state(p, mask_I))
2282			++idle;
2283	}
2284	kdb_do_each_thread(g, p) {
2285		if (kdb_task_state(p, mask_M))
2286			++daemon;
2287	} kdb_while_each_thread(g, p);
2288	if (idle || daemon) {
2289		if (idle)
2290			kdb_printf("%d idle process%s (state I)%s\n",
2291				   idle, idle == 1 ? "" : "es",
2292				   daemon ? " and " : "");
2293		if (daemon)
2294			kdb_printf("%d sleeping system daemon (state M) "
2295				   "process%s", daemon,
2296				   daemon == 1 ? "" : "es");
2297		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298	}
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 *	list of the active processes.
2304 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308	int cpu;
2309	unsigned long tmp;
2310
2311	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%p)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
 
 
 
 
 
 
 
2333static int kdb_ps(int argc, const char **argv)
2334{
2335	struct task_struct *g, *p;
2336	unsigned long mask, cpu;
 
2337
2338	if (argc == 0)
2339		kdb_ps_suppressed();
2340	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2341		(int)(2*sizeof(void *))+2, "Task Addr",
2342		(int)(2*sizeof(void *))+2, "Thread");
2343	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344	/* Run the active tasks first */
2345	for_each_online_cpu(cpu) {
2346		if (KDB_FLAG(CMD_INTERRUPT))
2347			return 0;
2348		p = kdb_curr_task(cpu);
2349		if (kdb_task_state(p, mask))
2350			kdb_ps1(p);
2351	}
2352	kdb_printf("\n");
2353	/* Now the real tasks */
2354	kdb_do_each_thread(g, p) {
2355		if (KDB_FLAG(CMD_INTERRUPT))
2356			return 0;
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	} kdb_while_each_thread(g, p);
2360
2361	return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 *	the currently active process.
2367 *		pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371	struct task_struct *p;
2372	unsigned long val;
2373	int diag;
2374
2375	if (argc > 1)
2376		return KDB_ARGCOUNT;
2377
2378	if (argc) {
2379		if (strcmp(argv[1], "R") == 0) {
2380			p = KDB_TSK(kdb_initial_cpu);
2381		} else {
2382			diag = kdbgetularg(argv[1], &val);
2383			if (diag)
2384				return KDB_BADINT;
2385
2386			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2387			if (!p) {
2388				kdb_printf("No task with pid=%d\n", (pid_t)val);
2389				return 0;
2390			}
2391		}
2392		kdb_set_current_task(p);
2393	}
2394	kdb_printf("KDB current process is %s(pid=%d)\n",
2395		   kdb_current_task->comm,
2396		   kdb_current_task->pid);
2397
2398	return 0;
2399}
2400
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403	return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411	kdbtab_t *kt;
2412	int i;
2413
2414	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415	kdb_printf("-----------------------------"
2416		   "-----------------------------\n");
2417	for_each_kdbcmd(kt, i) {
2418		char *space = "";
2419		if (KDB_FLAG(CMD_INTERRUPT))
2420			return 0;
2421		if (!kt->cmd_name)
2422			continue;
2423		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424			continue;
2425		if (strlen(kt->cmd_usage) > 20)
2426			space = "\n                                    ";
2427		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428			   kt->cmd_usage, space, kt->cmd_help);
2429	}
2430	return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438	long sig, pid;
2439	char *endp;
2440	struct task_struct *p;
2441	struct siginfo info;
2442
2443	if (argc != 2)
2444		return KDB_ARGCOUNT;
2445
2446	sig = simple_strtol(argv[1], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (sig >= 0) {
2450		kdb_printf("Invalid signal parameter.<-signal>\n");
2451		return 0;
2452	}
2453	sig = -sig;
2454
2455	pid = simple_strtol(argv[2], &endp, 0);
2456	if (*endp)
2457		return KDB_BADINT;
2458	if (pid <= 0) {
2459		kdb_printf("Process ID must be large than 0.\n");
2460		return 0;
2461	}
2462
2463	/* Find the process. */
2464	p = find_task_by_pid_ns(pid, &init_pid_ns);
2465	if (!p) {
2466		kdb_printf("The specified process isn't found.\n");
2467		return 0;
2468	}
2469	p = p->group_leader;
2470	info.si_signo = sig;
2471	info.si_errno = 0;
2472	info.si_code = SI_USER;
2473	info.si_pid = pid;  /* same capabilities as process being signalled */
2474	info.si_uid = 0;    /* kdb has root authority */
2475	kdb_send_sig_info(p, &info);
2476	return 0;
2477}
2478
2479struct kdb_tm {
2480	int tm_sec;	/* seconds */
2481	int tm_min;	/* minutes */
2482	int tm_hour;	/* hours */
2483	int tm_mday;	/* day of the month */
2484	int tm_mon;	/* month */
2485	int tm_year;	/* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490	/* This will work from 1970-2099, 2100 is not a leap year */
2491	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492				 31, 30, 31, 30, 31 };
2493	memset(tm, 0, sizeof(*tm));
2494	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2495	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2497	tm->tm_min =  tm->tm_sec / 60 % 60;
2498	tm->tm_hour = tm->tm_sec / 60 / 60;
2499	tm->tm_sec =  tm->tm_sec % 60;
2500	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501	tm->tm_mday %= (4*365+1);
2502	mon_day[1] = 29;
2503	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504		tm->tm_mday -= mon_day[tm->tm_mon];
2505		if (++tm->tm_mon == 12) {
2506			tm->tm_mon = 0;
2507			++tm->tm_year;
2508			mon_day[1] = 28;
2509		}
2510	}
2511	++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521	struct timespec uptime;
2522	ktime_get_ts(&uptime);
2523	memset(val, 0, sizeof(*val));
2524	val->uptime = uptime.tv_sec;
2525	val->loads[0] = avenrun[0];
2526	val->loads[1] = avenrun[1];
2527	val->loads[2] = avenrun[2];
2528	val->procs = nr_threads-1;
2529	si_meminfo(val);
2530
2531	return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539	struct timespec now;
2540	struct kdb_tm tm;
2541	struct sysinfo val;
2542
2543	if (argc)
2544		return KDB_ARGCOUNT;
2545
2546	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2547	kdb_printf("release    %s\n", init_uts_ns.name.release);
2548	kdb_printf("version    %s\n", init_uts_ns.name.version);
2549	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2550	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2551	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2553
2554	now = __current_kernel_time();
2555	kdb_gmtime(&now, &tm);
2556	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2557		   "tz_minuteswest %d\n",
2558		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559		tm.tm_hour, tm.tm_min, tm.tm_sec,
2560		sys_tz.tz_minuteswest);
2561
 
 
2562	kdb_sysinfo(&val);
2563	kdb_printf("uptime     ");
2564	if (val.uptime > (24*60*60)) {
2565		int days = val.uptime / (24*60*60);
2566		val.uptime %= (24*60*60);
2567		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568	}
2569	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581	/* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2584		   "Buffers:        %8lu kB\n",
2585		   K(val.totalram), K(val.freeram), K(val.bufferram));
2586	return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594	char fmtstr[64];
2595	int cpu, diag, nextarg = 1;
2596	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598	if (argc < 1 || argc > 3)
2599		return KDB_ARGCOUNT;
2600
2601	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602	if (diag)
2603		return diag;
2604
2605	if (argc >= 2) {
2606		diag = kdbgetularg(argv[2], &bytesperword);
2607		if (diag)
2608			return diag;
2609	}
2610	if (!bytesperword)
2611		bytesperword = KDB_WORD_SIZE;
2612	else if (bytesperword > KDB_WORD_SIZE)
2613		return KDB_BADWIDTH;
2614	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615	if (argc >= 3) {
2616		diag = kdbgetularg(argv[3], &whichcpu);
2617		if (diag)
2618			return diag;
2619		if (!cpu_online(whichcpu)) {
2620			kdb_printf("cpu %ld is not online\n", whichcpu);
2621			return KDB_BADCPUNUM;
2622		}
2623	}
2624
2625	/* Most architectures use __per_cpu_offset[cpu], some use
2626	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627	 */
2628#ifdef	__per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef	CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637	for_each_online_cpu(cpu) {
2638		if (KDB_FLAG(CMD_INTERRUPT))
2639			return 0;
2640
2641		if (whichcpu != ~0UL && whichcpu != cpu)
2642			continue;
2643		addr = symaddr + KDB_PCU(cpu);
2644		diag = kdb_getword(&val, addr, bytesperword);
2645		if (diag) {
2646			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647				   "read, diag=%d\n", cpu, addr, diag);
2648			continue;
2649		}
2650		kdb_printf("%5d ", cpu);
2651		kdb_md_line(fmtstr, addr,
2652			bytesperword == KDB_WORD_SIZE,
2653			1, bytesperword, 1, 1, 0);
2654	}
2655#undef KDB_PCU
2656	return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664	kdb_printf("Usage of  cmd args | grep pattern:\n");
2665	kdb_printf("  Any command's output may be filtered through an ");
2666	kdb_printf("emulated 'pipe'.\n");
2667	kdb_printf("  'grep' is just a key word.\n");
2668	kdb_printf("  The pattern may include a very limited set of "
2669		   "metacharacters:\n");
2670	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2671	kdb_printf("  And if there are spaces in the pattern, you may "
2672		   "quote it:\n");
2673	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674		   " or \"^pat tern$\"\n");
2675	return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * 	debugger command.
2681 * Inputs:
2682 *	cmd	Command name
2683 *	func	Function to execute the command
2684 *	usage	A simple usage string showing arguments
2685 *	help	A simple help string describing command
2686 *	repeat	Does the command auto repeat on enter?
2687 * Returns:
2688 *	zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50	/* arbitrary */
2691int kdb_register_flags(char *cmd,
2692		       kdb_func_t func,
2693		       char *usage,
2694		       char *help,
2695		       short minlen,
2696		       kdb_cmdflags_t flags)
2697{
2698	int i;
2699	kdbtab_t *kp;
2700
2701	/*
2702	 *  Brute force method to determine duplicates
2703	 */
2704	for_each_kdbcmd(kp, i) {
2705		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706			kdb_printf("Duplicate kdb command registered: "
2707				"%s, func %p help %s\n", cmd, func, help);
2708			return 1;
2709		}
2710	}
2711
2712	/*
2713	 * Insert command into first available location in table
2714	 */
2715	for_each_kdbcmd(kp, i) {
2716		if (kp->cmd_name == NULL)
2717			break;
2718	}
2719
2720	if (i >= kdb_max_commands) {
2721		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723		if (!new) {
2724			kdb_printf("Could not allocate new kdb_command "
2725				   "table\n");
2726			return 1;
2727		}
2728		if (kdb_commands) {
2729			memcpy(new, kdb_commands,
2730			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731			kfree(kdb_commands);
2732		}
2733		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734		       kdb_command_extend * sizeof(*new));
2735		kdb_commands = new;
2736		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737		kdb_max_commands += kdb_command_extend;
2738	}
2739
2740	kp->cmd_name   = cmd;
2741	kp->cmd_func   = func;
2742	kp->cmd_usage  = usage;
2743	kp->cmd_help   = help;
2744	kp->cmd_minlen = minlen;
2745	kp->cmd_flags  = flags;
2746
2747	return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 *	not need to specify a repeat state.  Equivalent to
2755 *	kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 *	cmd	Command name
2758 *	func	Function to execute the command
2759 *	usage	A simple usage string showing arguments
2760 *	help	A simple help string describing command
2761 * Returns:
2762 *	zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765	     kdb_func_t func,
2766	     char *usage,
2767	     char *help,
2768	     short minlen)
2769{
2770	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
 
 
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 *	debugger command.  It is generally called when a module which
2777 *	implements kdb commands is unloaded.
2778 * Inputs:
2779 *	cmd	Command name
2780 * Returns:
2781 *	zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785	int i;
2786	kdbtab_t *kp;
2787
2788	/*
2789	 *  find the command.
2790	 */
2791	for_each_kdbcmd(kp, i) {
2792		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793			kp->cmd_name = NULL;
2794			return 0;
2795		}
2796	}
2797
2798	/* Couldn't find it.  */
2799	return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806	int i;
2807	kdbtab_t *kp;
2808
2809	for_each_kdbcmd(kp, i)
2810		kp->cmd_name = NULL;
2811
2812	kdb_register_flags("md", kdb_md, "<vaddr>",
2813	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816	  "Display Raw Memory", 0,
2817	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819	  "Display Physical Memory", 0,
2820	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821	kdb_register_flags("mds", kdb_md, "<vaddr>",
2822	  "Display Memory Symbolically", 0,
2823	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825	  "Modify Memory Contents", 0,
2826	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828	  "Continue Execution", 1,
2829	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830	kdb_register_flags("rd", kdb_rd, "",
2831	  "Display Registers", 0,
2832	  KDB_ENABLE_REG_READ);
2833	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834	  "Modify Registers", 0,
2835	  KDB_ENABLE_REG_WRITE);
2836	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837	  "Display exception frame", 0,
2838	  KDB_ENABLE_MEM_READ);
2839	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840	  "Stack traceback", 1,
2841	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842	kdb_register_flags("btp", kdb_bt, "<pid>",
2843	  "Display stack for process <pid>", 0,
2844	  KDB_ENABLE_INSPECT);
2845	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846	  "Backtrace all processes matching state flag", 0,
2847	  KDB_ENABLE_INSPECT);
2848	kdb_register_flags("btc", kdb_bt, "",
2849	  "Backtrace current process on each cpu", 0,
2850	  KDB_ENABLE_INSPECT);
2851	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852	  "Backtrace process given its struct task address", 0,
2853	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854	kdb_register_flags("env", kdb_env, "",
2855	  "Show environment variables", 0,
2856	  KDB_ENABLE_ALWAYS_SAFE);
2857	kdb_register_flags("set", kdb_set, "",
2858	  "Set environment variables", 0,
2859	  KDB_ENABLE_ALWAYS_SAFE);
2860	kdb_register_flags("help", kdb_help, "",
2861	  "Display Help Message", 1,
2862	  KDB_ENABLE_ALWAYS_SAFE);
2863	kdb_register_flags("?", kdb_help, "",
2864	  "Display Help Message", 0,
2865	  KDB_ENABLE_ALWAYS_SAFE);
2866	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867	  "Switch to new cpu", 0,
2868	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869	kdb_register_flags("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, 0);
2871	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0,
2873	  KDB_ENABLE_INSPECT);
2874	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875	  "Switch to another task", 0,
2876	  KDB_ENABLE_INSPECT);
2877	kdb_register_flags("reboot", kdb_reboot, "",
2878	  "Reboot the machine immediately", 0,
2879	  KDB_ENABLE_REBOOT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880#if defined(CONFIG_MODULES)
2881	kdb_register_flags("lsmod", kdb_lsmod, "",
2882	  "List loaded kernel modules", 0,
2883	  KDB_ENABLE_INSPECT);
 
 
 
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886	kdb_register_flags("sr", kdb_sr, "<key>",
2887	  "Magic SysRq key", 0,
2888	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2889#endif
2890#if defined(CONFIG_PRINTK)
2891	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892	  "Display syslog buffer", 0,
2893	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2894#endif
2895	if (arch_kgdb_ops.enable_nmi) {
2896		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897		  "Disable NMI entry to KDB", 0,
2898		  KDB_ENABLE_ALWAYS_SAFE);
2899	}
2900	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901	  "Define a set of commands, down to endefcmd", 0,
2902	  KDB_ENABLE_ALWAYS_SAFE);
2903	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904	  "Send a signal to a process", 0,
2905	  KDB_ENABLE_SIGNAL);
2906	kdb_register_flags("summary", kdb_summary, "",
2907	  "Summarize the system", 4,
2908	  KDB_ENABLE_ALWAYS_SAFE);
2909	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910	  "Display per_cpu variables", 3,
2911	  KDB_ENABLE_MEM_READ);
2912	kdb_register_flags("grephelp", kdb_grep_help, "",
2913	  "Display help on | grep", 0,
2914	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915}
2916
2917/* Execute any commands defined in kdb_cmds.  */
2918static void __init kdb_cmd_init(void)
2919{
2920	int i, diag;
2921	for (i = 0; kdb_cmds[i]; ++i) {
2922		diag = kdb_parse(kdb_cmds[i]);
2923		if (diag)
2924			kdb_printf("kdb command %s failed, kdb diag %d\n",
2925				kdb_cmds[i], diag);
2926	}
2927	if (defcmd_in_progress) {
2928		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929		kdb_parse("endefcmd");
2930	}
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937	int i;
2938
2939	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940		return;
2941	for (i = kdb_init_lvl; i < lvl; i++) {
2942		switch (i) {
2943		case KDB_NOT_INITIALIZED:
2944			kdb_inittab();		/* Initialize Command Table */
2945			kdb_initbptab();	/* Initialize Breakpoints */
2946			break;
2947		case KDB_INIT_EARLY:
2948			kdb_cmd_init();		/* Build kdb_cmds tables */
2949			break;
2950		}
2951	}
2952	kdb_init_lvl = lvl;
2953}