Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
 
  29#include <linux/moduleparam.h>
  30#include <linux/mm.h>
  31#include <linux/init.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kgdb.h>
  34#include <linux/kdb.h>
  35#include <linux/notifier.h>
  36#include <linux/interrupt.h>
  37#include <linux/delay.h>
  38#include <linux/nmi.h>
  39#include <linux/time.h>
  40#include <linux/ptrace.h>
  41#include <linux/sysctl.h>
  42#include <linux/cpu.h>
  43#include <linux/kdebug.h>
  44#include <linux/proc_fs.h>
  45#include <linux/uaccess.h>
  46#include <linux/slab.h>
  47#include <linux/security.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
 
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_cmds_head describes the available commands. */
  88static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  89
  90typedef struct _kdbmsg {
  91	int	km_diag;	/* kdb diagnostic */
  92	char	*km_msg;	/* Corresponding message text */
  93} kdbmsg_t;
  94
  95#define KDBMSG(msgnum, text) \
  96	{ KDB_##msgnum, text }
  97
  98static kdbmsg_t kdbmsgs[] = {
  99	KDBMSG(NOTFOUND, "Command Not Found"),
 100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 102	       "8 is only allowed on 64 bit systems"),
 103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 104	KDBMSG(NOTENV, "Cannot find environment variable"),
 105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 106	KDBMSG(NOTIMP, "Command not implemented"),
 107	KDBMSG(ENVFULL, "Environment full"),
 108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 110#ifdef CONFIG_CPU_XSCALE
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 112#else
 113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 114#endif
 115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 117	KDBMSG(BADMODE, "Invalid IDMODE"),
 118	KDBMSG(BADINT, "Illegal numeric value"),
 119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 120	KDBMSG(BADREG, "Invalid register name"),
 121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 122	KDBMSG(BADLENGTH, "Invalid length field"),
 123	KDBMSG(NOBP, "No Breakpoint exists"),
 124	KDBMSG(BADADDR, "Invalid address"),
 125	KDBMSG(NOPERM, "Permission denied"),
 126};
 127#undef KDBMSG
 128
 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 130
 131
 132/*
 133 * Initial environment.   This is all kept static and local to
 134 * this file.   We don't want to rely on the memory allocation
 135 * mechanisms in the kernel, so we use a very limited allocate-only
 136 * heap for new and altered environment variables.  The entire
 137 * environment is limited to a fixed number of entries (add more
 138 * to __env[] if required) and a fixed amount of heap (add more to
 139 * KDB_ENVBUFSIZE if required).
 140 */
 141
 142static char *__env[31] = {
 143#if defined(CONFIG_SMP)
 144	"PROMPT=[%d]kdb> ",
 145#else
 146	"PROMPT=kdb> ",
 147#endif
 148	"MOREPROMPT=more> ",
 149	"RADIX=16",
 150	"MDCOUNT=8",		/* lines of md output */
 151	KDB_PLATFORM_ENV,
 152	"DTABCOUNT=30",
 153	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154};
 155
 156static const int __nenv = ARRAY_SIZE(__env);
 157
 158struct task_struct *kdb_curr_task(int cpu)
 159{
 160	struct task_struct *p = curr_task(cpu);
 161#ifdef	_TIF_MCA_INIT
 162	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 163		p = krp->p;
 164#endif
 165	return p;
 166}
 167
 168/*
 169 * Update the permissions flags (kdb_cmd_enabled) to match the
 170 * current lockdown state.
 171 *
 172 * Within this function the calls to security_locked_down() are "lazy". We
 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
 174 * flags that might be subject to lockdown. Additionally we deliberately check
 175 * the lockdown flags independently (even though read lockdown implies write
 176 * lockdown) since that results in both simpler code and clearer messages to
 177 * the user on first-time debugger entry.
 178 *
 179 * The permission masks during a read+write lockdown permits the following
 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
 181 *
 182 * The INSPECT commands are not blocked during lockdown because they are
 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
 184 * forcing them to have no arguments) and lsmod. These commands do expose
 185 * some kernel state but do not allow the developer seated at the console to
 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
 187 * given these are allowed for root during lockdown already.
 188 */
 189static void kdb_check_for_lockdown(void)
 190{
 191	const int write_flags = KDB_ENABLE_MEM_WRITE |
 192				KDB_ENABLE_REG_WRITE |
 193				KDB_ENABLE_FLOW_CTRL;
 194	const int read_flags = KDB_ENABLE_MEM_READ |
 195			       KDB_ENABLE_REG_READ;
 196
 197	bool need_to_lockdown_write = false;
 198	bool need_to_lockdown_read = false;
 199
 200	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
 201		need_to_lockdown_write =
 202			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
 203
 204	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
 205		need_to_lockdown_read =
 206			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
 207
 208	/* De-compose KDB_ENABLE_ALL if required */
 209	if (need_to_lockdown_write || need_to_lockdown_read)
 210		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
 211			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
 212
 213	if (need_to_lockdown_write)
 214		kdb_cmd_enabled &= ~write_flags;
 215
 216	if (need_to_lockdown_read)
 217		kdb_cmd_enabled &= ~read_flags;
 218}
 219
 220/*
 221 * Check whether the flags of the current command, the permissions of the kdb
 222 * console and the lockdown state allow a command to be run.
 223 */
 224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 225				   bool no_args)
 226{
 227	/* permissions comes from userspace so needs massaging slightly */
 228	permissions &= KDB_ENABLE_MASK;
 229	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 230
 231	/* some commands change group when launched with no arguments */
 232	if (no_args)
 233		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 234
 235	flags |= KDB_ENABLE_ALL;
 236
 237	return permissions & flags;
 238}
 239
 240/*
 241 * kdbgetenv - This function will return the character string value of
 242 *	an environment variable.
 243 * Parameters:
 244 *	match	A character string representing an environment variable.
 245 * Returns:
 246 *	NULL	No environment variable matches 'match'
 247 *	char*	Pointer to string value of environment variable.
 248 */
 249char *kdbgetenv(const char *match)
 250{
 251	char **ep = __env;
 252	int matchlen = strlen(match);
 253	int i;
 254
 255	for (i = 0; i < __nenv; i++) {
 256		char *e = *ep++;
 257
 258		if (!e)
 259			continue;
 260
 261		if ((strncmp(match, e, matchlen) == 0)
 262		 && ((e[matchlen] == '\0')
 263		   || (e[matchlen] == '='))) {
 264			char *cp = strchr(e, '=');
 265			return cp ? ++cp : "";
 266		}
 267	}
 268	return NULL;
 269}
 270
 271/*
 272 * kdballocenv - This function is used to allocate bytes for
 273 *	environment entries.
 274 * Parameters:
 275 *	match	A character string representing a numeric value
 276 * Outputs:
 277 *	*value  the unsigned long representation of the env variable 'match'
 278 * Returns:
 279 *	Zero on success, a kdb diagnostic on failure.
 280 * Remarks:
 281 *	We use a static environment buffer (envbuffer) to hold the values
 282 *	of dynamically generated environment variables (see kdb_set).  Buffer
 283 *	space once allocated is never free'd, so over time, the amount of space
 284 *	(currently 512 bytes) will be exhausted if env variables are changed
 285 *	frequently.
 286 */
 287static char *kdballocenv(size_t bytes)
 288{
 289#define	KDB_ENVBUFSIZE	512
 290	static char envbuffer[KDB_ENVBUFSIZE];
 291	static int envbufsize;
 292	char *ep = NULL;
 293
 294	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 295		ep = &envbuffer[envbufsize];
 296		envbufsize += bytes;
 297	}
 298	return ep;
 299}
 300
 301/*
 302 * kdbgetulenv - This function will return the value of an unsigned
 303 *	long-valued environment variable.
 304 * Parameters:
 305 *	match	A character string representing a numeric value
 306 * Outputs:
 307 *	*value  the unsigned long representation of the env variable 'match'
 308 * Returns:
 309 *	Zero on success, a kdb diagnostic on failure.
 310 */
 311static int kdbgetulenv(const char *match, unsigned long *value)
 312{
 313	char *ep;
 314
 315	ep = kdbgetenv(match);
 316	if (!ep)
 317		return KDB_NOTENV;
 318	if (strlen(ep) == 0)
 319		return KDB_NOENVVALUE;
 320
 321	*value = simple_strtoul(ep, NULL, 0);
 322
 323	return 0;
 324}
 325
 326/*
 327 * kdbgetintenv - This function will return the value of an
 328 *	integer-valued environment variable.
 329 * Parameters:
 330 *	match	A character string representing an integer-valued env variable
 331 * Outputs:
 332 *	*value  the integer representation of the environment variable 'match'
 333 * Returns:
 334 *	Zero on success, a kdb diagnostic on failure.
 335 */
 336int kdbgetintenv(const char *match, int *value)
 337{
 338	unsigned long val;
 339	int diag;
 340
 341	diag = kdbgetulenv(match, &val);
 342	if (!diag)
 343		*value = (int) val;
 344	return diag;
 345}
 346
 347/*
 348 * kdb_setenv() - Alter an existing environment variable or create a new one.
 349 * @var: Name of the variable
 350 * @val: Value of the variable
 351 *
 352 * Return: Zero on success, a kdb diagnostic on failure.
 353 */
 354static int kdb_setenv(const char *var, const char *val)
 355{
 356	int i;
 357	char *ep;
 358	size_t varlen, vallen;
 359
 360	varlen = strlen(var);
 361	vallen = strlen(val);
 362	ep = kdballocenv(varlen + vallen + 2);
 363	if (ep == (char *)0)
 364		return KDB_ENVBUFFULL;
 365
 366	sprintf(ep, "%s=%s", var, val);
 367
 368	for (i = 0; i < __nenv; i++) {
 369		if (__env[i]
 370		 && ((strncmp(__env[i], var, varlen) == 0)
 371		   && ((__env[i][varlen] == '\0')
 372		    || (__env[i][varlen] == '=')))) {
 373			__env[i] = ep;
 374			return 0;
 375		}
 376	}
 377
 378	/*
 379	 * Wasn't existing variable.  Fit into slot.
 380	 */
 381	for (i = 0; i < __nenv-1; i++) {
 382		if (__env[i] == (char *)0) {
 383			__env[i] = ep;
 384			return 0;
 385		}
 386	}
 387
 388	return KDB_ENVFULL;
 389}
 390
 391/*
 392 * kdb_printenv() - Display the current environment variables.
 393 */
 394static void kdb_printenv(void)
 395{
 396	int i;
 397
 398	for (i = 0; i < __nenv; i++) {
 399		if (__env[i])
 400			kdb_printf("%s\n", __env[i]);
 401	}
 402}
 403
 404/*
 405 * kdbgetularg - This function will convert a numeric string into an
 406 *	unsigned long value.
 407 * Parameters:
 408 *	arg	A character string representing a numeric value
 409 * Outputs:
 410 *	*value  the unsigned long representation of arg.
 411 * Returns:
 412 *	Zero on success, a kdb diagnostic on failure.
 413 */
 414int kdbgetularg(const char *arg, unsigned long *value)
 415{
 416	char *endp;
 417	unsigned long val;
 418
 419	val = simple_strtoul(arg, &endp, 0);
 420
 421	if (endp == arg) {
 422		/*
 423		 * Also try base 16, for us folks too lazy to type the
 424		 * leading 0x...
 425		 */
 426		val = simple_strtoul(arg, &endp, 16);
 427		if (endp == arg)
 428			return KDB_BADINT;
 429	}
 430
 431	*value = val;
 432
 433	return 0;
 434}
 435
 436int kdbgetu64arg(const char *arg, u64 *value)
 437{
 438	char *endp;
 439	u64 val;
 440
 441	val = simple_strtoull(arg, &endp, 0);
 442
 443	if (endp == arg) {
 444
 445		val = simple_strtoull(arg, &endp, 16);
 446		if (endp == arg)
 447			return KDB_BADINT;
 448	}
 449
 450	*value = val;
 451
 452	return 0;
 453}
 454
 455/*
 456 * kdb_set - This function implements the 'set' command.  Alter an
 457 *	existing environment variable or create a new one.
 458 */
 459int kdb_set(int argc, const char **argv)
 460{
 
 
 
 
 461	/*
 462	 * we can be invoked two ways:
 463	 *   set var=value    argv[1]="var", argv[2]="value"
 464	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 465	 * - if the latter, shift 'em down.
 466	 */
 467	if (argc == 3) {
 468		argv[2] = argv[3];
 469		argc--;
 470	}
 471
 472	if (argc != 2)
 473		return KDB_ARGCOUNT;
 474
 475	/*
 476	 * Censor sensitive variables
 477	 */
 478	if (strcmp(argv[1], "PROMPT") == 0 &&
 479	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 480		return KDB_NOPERM;
 481
 482	/*
 483	 * Check for internal variables
 484	 */
 485	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 486		unsigned int debugflags;
 487		char *cp;
 488
 489		debugflags = simple_strtoul(argv[2], &cp, 0);
 490		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 491			kdb_printf("kdb: illegal debug flags '%s'\n",
 492				    argv[2]);
 493			return 0;
 494		}
 495		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 496			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 497
 498		return 0;
 499	}
 500
 501	/*
 502	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 503	 * name, argv[2] = value.
 504	 */
 505	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506}
 507
 508static int kdb_check_regs(void)
 509{
 510	if (!kdb_current_regs) {
 511		kdb_printf("No current kdb registers."
 512			   "  You may need to select another task\n");
 513		return KDB_BADREG;
 514	}
 515	return 0;
 516}
 517
 518/*
 519 * kdbgetaddrarg - This function is responsible for parsing an
 520 *	address-expression and returning the value of the expression,
 521 *	symbol name, and offset to the caller.
 522 *
 523 *	The argument may consist of a numeric value (decimal or
 524 *	hexadecimal), a symbol name, a register name (preceded by the
 525 *	percent sign), an environment variable with a numeric value
 526 *	(preceded by a dollar sign) or a simple arithmetic expression
 527 *	consisting of a symbol name, +/-, and a numeric constant value
 528 *	(offset).
 529 * Parameters:
 530 *	argc	- count of arguments in argv
 531 *	argv	- argument vector
 532 *	*nextarg - index to next unparsed argument in argv[]
 533 *	regs	- Register state at time of KDB entry
 534 * Outputs:
 535 *	*value	- receives the value of the address-expression
 536 *	*offset - receives the offset specified, if any
 537 *	*name   - receives the symbol name, if any
 538 *	*nextarg - index to next unparsed argument in argv[]
 539 * Returns:
 540 *	zero is returned on success, a kdb diagnostic code is
 541 *      returned on error.
 542 */
 543int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 544		  unsigned long *value,  long *offset,
 545		  char **name)
 546{
 547	unsigned long addr;
 548	unsigned long off = 0;
 549	int positive;
 550	int diag;
 551	int found = 0;
 552	char *symname;
 553	char symbol = '\0';
 554	char *cp;
 555	kdb_symtab_t symtab;
 556
 557	/*
 558	 * If the enable flags prohibit both arbitrary memory access
 559	 * and flow control then there are no reasonable grounds to
 560	 * provide symbol lookup.
 561	 */
 562	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 563			     kdb_cmd_enabled, false))
 564		return KDB_NOPERM;
 565
 566	/*
 567	 * Process arguments which follow the following syntax:
 568	 *
 569	 *  symbol | numeric-address [+/- numeric-offset]
 570	 *  %register
 571	 *  $environment-variable
 572	 */
 573
 574	if (*nextarg > argc)
 575		return KDB_ARGCOUNT;
 576
 577	symname = (char *)argv[*nextarg];
 578
 579	/*
 580	 * If there is no whitespace between the symbol
 581	 * or address and the '+' or '-' symbols, we
 582	 * remember the character and replace it with a
 583	 * null so the symbol/value can be properly parsed
 584	 */
 585	cp = strpbrk(symname, "+-");
 586	if (cp != NULL) {
 587		symbol = *cp;
 588		*cp++ = '\0';
 589	}
 590
 591	if (symname[0] == '$') {
 592		diag = kdbgetulenv(&symname[1], &addr);
 593		if (diag)
 594			return diag;
 595	} else if (symname[0] == '%') {
 596		diag = kdb_check_regs();
 597		if (diag)
 598			return diag;
 599		/* Implement register values with % at a later time as it is
 600		 * arch optional.
 601		 */
 602		return KDB_NOTIMP;
 603	} else {
 604		found = kdbgetsymval(symname, &symtab);
 605		if (found) {
 606			addr = symtab.sym_start;
 607		} else {
 608			diag = kdbgetularg(argv[*nextarg], &addr);
 609			if (diag)
 610				return diag;
 611		}
 612	}
 613
 614	if (!found)
 615		found = kdbnearsym(addr, &symtab);
 616
 617	(*nextarg)++;
 618
 619	if (name)
 620		*name = symname;
 621	if (value)
 622		*value = addr;
 623	if (offset && name && *name)
 624		*offset = addr - symtab.sym_start;
 625
 626	if ((*nextarg > argc)
 627	 && (symbol == '\0'))
 628		return 0;
 629
 630	/*
 631	 * check for +/- and offset
 632	 */
 633
 634	if (symbol == '\0') {
 635		if ((argv[*nextarg][0] != '+')
 636		 && (argv[*nextarg][0] != '-')) {
 637			/*
 638			 * Not our argument.  Return.
 639			 */
 640			return 0;
 641		} else {
 642			positive = (argv[*nextarg][0] == '+');
 643			(*nextarg)++;
 644		}
 645	} else
 646		positive = (symbol == '+');
 647
 648	/*
 649	 * Now there must be an offset!
 650	 */
 651	if ((*nextarg > argc)
 652	 && (symbol == '\0')) {
 653		return KDB_INVADDRFMT;
 654	}
 655
 656	if (!symbol) {
 657		cp = (char *)argv[*nextarg];
 658		(*nextarg)++;
 659	}
 660
 661	diag = kdbgetularg(cp, &off);
 662	if (diag)
 663		return diag;
 664
 665	if (!positive)
 666		off = -off;
 667
 668	if (offset)
 669		*offset += off;
 670
 671	if (value)
 672		*value += off;
 673
 674	return 0;
 675}
 676
 677static void kdb_cmderror(int diag)
 678{
 679	int i;
 680
 681	if (diag >= 0) {
 682		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 683		return;
 684	}
 685
 686	for (i = 0; i < __nkdb_err; i++) {
 687		if (kdbmsgs[i].km_diag == diag) {
 688			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 689			return;
 690		}
 691	}
 692
 693	kdb_printf("Unknown diag %d\n", -diag);
 694}
 695
 696/*
 697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 698 *	command which defines one command as a set of other commands,
 699 *	terminated by endefcmd.  kdb_defcmd processes the initial
 700 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 701 *	the following commands until 'endefcmd'.
 702 * Inputs:
 703 *	argc	argument count
 704 *	argv	argument vector
 705 * Returns:
 706 *	zero for success, a kdb diagnostic if error
 707 */
 708struct kdb_macro {
 709	kdbtab_t cmd;			/* Macro command */
 710	struct list_head statements;	/* Associated statement list */
 711};
 712
 713struct kdb_macro_statement {
 714	char *statement;		/* Statement text */
 715	struct list_head list_node;	/* Statement list node */
 716};
 717
 718static struct kdb_macro *kdb_macro;
 719static bool defcmd_in_progress;
 720
 721/* Forward references */
 722static int kdb_exec_defcmd(int argc, const char **argv);
 723
 724static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 725{
 726	struct kdb_macro_statement *kms;
 727
 728	if (!kdb_macro)
 729		return KDB_NOTIMP;
 730
 731	if (strcmp(argv0, "endefcmd") == 0) {
 732		defcmd_in_progress = false;
 733		if (!list_empty(&kdb_macro->statements))
 734			kdb_register(&kdb_macro->cmd);
 
 
 
 
 
 
 
 
 735		return 0;
 736	}
 737
 738	kms = kmalloc(sizeof(*kms), GFP_KDB);
 739	if (!kms) {
 740		kdb_printf("Could not allocate new kdb macro command: %s\n",
 
 741			   cmdstr);
 
 742		return KDB_NOTIMP;
 743	}
 744
 745	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
 746	list_add_tail(&kms->list_node, &kdb_macro->statements);
 747
 748	return 0;
 749}
 750
 751static int kdb_defcmd(int argc, const char **argv)
 752{
 753	kdbtab_t *mp;
 754
 755	if (defcmd_in_progress) {
 756		kdb_printf("kdb: nested defcmd detected, assuming missing "
 757			   "endefcmd\n");
 758		kdb_defcmd2("endefcmd", "endefcmd");
 759	}
 760	if (argc == 0) {
 761		kdbtab_t *kp;
 762		struct kdb_macro *kmp;
 763		struct kdb_macro_statement *kms;
 764
 765		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 766			if (kp->func == kdb_exec_defcmd) {
 767				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
 768					   kp->name, kp->usage, kp->help);
 769				kmp = container_of(kp, struct kdb_macro, cmd);
 770				list_for_each_entry(kms, &kmp->statements,
 771						    list_node)
 772					kdb_printf("%s", kms->statement);
 773				kdb_printf("endefcmd\n");
 774			}
 775		}
 776		return 0;
 777	}
 778	if (argc != 3)
 779		return KDB_ARGCOUNT;
 780	if (in_dbg_master()) {
 781		kdb_printf("Command only available during kdb_init()\n");
 782		return KDB_NOTIMP;
 783	}
 784	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
 785	if (!kdb_macro)
 
 786		goto fail_defcmd;
 787
 788	mp = &kdb_macro->cmd;
 789	mp->func = kdb_exec_defcmd;
 790	mp->minlen = 0;
 791	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
 792	mp->name = kdb_strdup(argv[1], GFP_KDB);
 793	if (!mp->name)
 794		goto fail_name;
 795	mp->usage = kdb_strdup(argv[2], GFP_KDB);
 796	if (!mp->usage)
 797		goto fail_usage;
 798	mp->help = kdb_strdup(argv[3], GFP_KDB);
 799	if (!mp->help)
 800		goto fail_help;
 801	if (mp->usage[0] == '"') {
 802		strcpy(mp->usage, argv[2]+1);
 803		mp->usage[strlen(mp->usage)-1] = '\0';
 804	}
 805	if (mp->help[0] == '"') {
 806		strcpy(mp->help, argv[3]+1);
 807		mp->help[strlen(mp->help)-1] = '\0';
 808	}
 809
 810	INIT_LIST_HEAD(&kdb_macro->statements);
 811	defcmd_in_progress = true;
 
 812	return 0;
 813fail_help:
 814	kfree(mp->usage);
 815fail_usage:
 816	kfree(mp->name);
 817fail_name:
 818	kfree(kdb_macro);
 819fail_defcmd:
 820	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
 
 821	return KDB_NOTIMP;
 822}
 823
 824/*
 825 * kdb_exec_defcmd - Execute the set of commands associated with this
 826 *	defcmd name.
 827 * Inputs:
 828 *	argc	argument count
 829 *	argv	argument vector
 830 * Returns:
 831 *	zero for success, a kdb diagnostic if error
 832 */
 833static int kdb_exec_defcmd(int argc, const char **argv)
 834{
 835	int ret;
 836	kdbtab_t *kp;
 837	struct kdb_macro *kmp;
 838	struct kdb_macro_statement *kms;
 839
 840	if (argc != 0)
 841		return KDB_ARGCOUNT;
 842
 843	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 844		if (strcmp(kp->name, argv[0]) == 0)
 845			break;
 846	}
 847	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
 848		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 849			   argv[0]);
 850		return KDB_NOTIMP;
 851	}
 852	kmp = container_of(kp, struct kdb_macro, cmd);
 853	list_for_each_entry(kms, &kmp->statements, list_node) {
 854		/*
 855		 * Recursive use of kdb_parse, do not use argv after this point.
 856		 */
 857		argv = NULL;
 858		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
 859		ret = kdb_parse(kms->statement);
 860		if (ret)
 861			return ret;
 862	}
 863	return 0;
 864}
 865
 866/* Command history */
 867#define KDB_CMD_HISTORY_COUNT	32
 868#define CMD_BUFLEN		200	/* kdb_printf: max printline
 869					 * size == 256 */
 870static unsigned int cmd_head, cmd_tail;
 871static unsigned int cmdptr;
 872static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 873static char cmd_cur[CMD_BUFLEN];
 874
 875/*
 876 * The "str" argument may point to something like  | grep xyz
 877 */
 878static void parse_grep(const char *str)
 879{
 880	int	len;
 881	char	*cp = (char *)str, *cp2;
 882
 883	/* sanity check: we should have been called with the \ first */
 884	if (*cp != '|')
 885		return;
 886	cp++;
 887	while (isspace(*cp))
 888		cp++;
 889	if (!str_has_prefix(cp, "grep ")) {
 890		kdb_printf("invalid 'pipe', see grephelp\n");
 891		return;
 892	}
 893	cp += 5;
 894	while (isspace(*cp))
 895		cp++;
 896	cp2 = strchr(cp, '\n');
 897	if (cp2)
 898		*cp2 = '\0'; /* remove the trailing newline */
 899	len = strlen(cp);
 900	if (len == 0) {
 901		kdb_printf("invalid 'pipe', see grephelp\n");
 902		return;
 903	}
 904	/* now cp points to a nonzero length search string */
 905	if (*cp == '"') {
 906		/* allow it be "x y z" by removing the "'s - there must
 907		   be two of them */
 908		cp++;
 909		cp2 = strchr(cp, '"');
 910		if (!cp2) {
 911			kdb_printf("invalid quoted string, see grephelp\n");
 912			return;
 913		}
 914		*cp2 = '\0'; /* end the string where the 2nd " was */
 915	}
 916	kdb_grep_leading = 0;
 917	if (*cp == '^') {
 918		kdb_grep_leading = 1;
 919		cp++;
 920	}
 921	len = strlen(cp);
 922	kdb_grep_trailing = 0;
 923	if (*(cp+len-1) == '$') {
 924		kdb_grep_trailing = 1;
 925		*(cp+len-1) = '\0';
 926	}
 927	len = strlen(cp);
 928	if (!len)
 929		return;
 930	if (len >= KDB_GREP_STRLEN) {
 931		kdb_printf("search string too long\n");
 932		return;
 933	}
 934	strcpy(kdb_grep_string, cp);
 935	kdb_grepping_flag++;
 936	return;
 937}
 938
 939/*
 940 * kdb_parse - Parse the command line, search the command table for a
 941 *	matching command and invoke the command function.  This
 942 *	function may be called recursively, if it is, the second call
 943 *	will overwrite argv and cbuf.  It is the caller's
 944 *	responsibility to save their argv if they recursively call
 945 *	kdb_parse().
 946 * Parameters:
 947 *      cmdstr	The input command line to be parsed.
 948 *	regs	The registers at the time kdb was entered.
 949 * Returns:
 950 *	Zero for success, a kdb diagnostic if failure.
 951 * Remarks:
 952 *	Limited to 20 tokens.
 953 *
 954 *	Real rudimentary tokenization. Basically only whitespace
 955 *	is considered a token delimiter (but special consideration
 956 *	is taken of the '=' sign as used by the 'set' command).
 957 *
 958 *	The algorithm used to tokenize the input string relies on
 959 *	there being at least one whitespace (or otherwise useless)
 960 *	character between tokens as the character immediately following
 961 *	the token is altered in-place to a null-byte to terminate the
 962 *	token string.
 963 */
 964
 965#define MAXARGC	20
 966
 967int kdb_parse(const char *cmdstr)
 968{
 969	static char *argv[MAXARGC];
 970	static int argc;
 971	static char cbuf[CMD_BUFLEN+2];
 972	char *cp;
 973	char *cpp, quoted;
 974	kdbtab_t *tp;
 975	int escaped, ignore_errors = 0, check_grep = 0;
 976
 977	/*
 978	 * First tokenize the command string.
 979	 */
 980	cp = (char *)cmdstr;
 981
 982	if (KDB_FLAG(CMD_INTERRUPT)) {
 983		/* Previous command was interrupted, newline must not
 984		 * repeat the command */
 985		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 986		KDB_STATE_SET(PAGER);
 987		argc = 0;	/* no repeat */
 988	}
 989
 990	if (*cp != '\n' && *cp != '\0') {
 991		argc = 0;
 992		cpp = cbuf;
 993		while (*cp) {
 994			/* skip whitespace */
 995			while (isspace(*cp))
 996				cp++;
 997			if ((*cp == '\0') || (*cp == '\n') ||
 998			    (*cp == '#' && !defcmd_in_progress))
 999				break;
1000			/* special case: check for | grep pattern */
1001			if (*cp == '|') {
1002				check_grep++;
1003				break;
1004			}
1005			if (cpp >= cbuf + CMD_BUFLEN) {
1006				kdb_printf("kdb_parse: command buffer "
1007					   "overflow, command ignored\n%s\n",
1008					   cmdstr);
1009				return KDB_NOTFOUND;
1010			}
1011			if (argc >= MAXARGC - 1) {
1012				kdb_printf("kdb_parse: too many arguments, "
1013					   "command ignored\n%s\n", cmdstr);
1014				return KDB_NOTFOUND;
1015			}
1016			argv[argc++] = cpp;
1017			escaped = 0;
1018			quoted = '\0';
1019			/* Copy to next unquoted and unescaped
1020			 * whitespace or '=' */
1021			while (*cp && *cp != '\n' &&
1022			       (escaped || quoted || !isspace(*cp))) {
1023				if (cpp >= cbuf + CMD_BUFLEN)
1024					break;
1025				if (escaped) {
1026					escaped = 0;
1027					*cpp++ = *cp++;
1028					continue;
1029				}
1030				if (*cp == '\\') {
1031					escaped = 1;
1032					++cp;
1033					continue;
1034				}
1035				if (*cp == quoted)
1036					quoted = '\0';
1037				else if (*cp == '\'' || *cp == '"')
1038					quoted = *cp;
1039				*cpp = *cp++;
1040				if (*cpp == '=' && !quoted)
1041					break;
1042				++cpp;
1043			}
1044			*cpp++ = '\0';	/* Squash a ws or '=' character */
1045		}
1046	}
1047	if (!argc)
1048		return 0;
1049	if (check_grep)
1050		parse_grep(cp);
1051	if (defcmd_in_progress) {
1052		int result = kdb_defcmd2(cmdstr, argv[0]);
1053		if (!defcmd_in_progress) {
1054			argc = 0;	/* avoid repeat on endefcmd */
1055			*(argv[0]) = '\0';
1056		}
1057		return result;
1058	}
1059	if (argv[0][0] == '-' && argv[0][1] &&
1060	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1061		ignore_errors = 1;
1062		++argv[0];
1063	}
1064
1065	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1066		/*
1067		 * If this command is allowed to be abbreviated,
1068		 * check to see if this is it.
1069		 */
1070		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1071		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
1072			break;
1073
1074		if (strcmp(argv[0], tp->name) == 0)
1075			break;
 
 
 
 
 
 
 
 
 
 
1076	}
1077
1078	/*
1079	 * If we don't find a command by this name, see if the first
1080	 * few characters of this match any of the known commands.
1081	 * e.g., md1c20 should match md.
1082	 */
1083	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1084		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1085			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1086				break;
 
 
 
 
 
1087		}
1088	}
1089
1090	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1091		int result;
1092
1093		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1094			return KDB_NOPERM;
1095
1096		KDB_STATE_SET(CMD);
1097		result = (*tp->func)(argc-1, (const char **)argv);
1098		if (result && ignore_errors && result > KDB_CMD_GO)
1099			result = 0;
1100		KDB_STATE_CLEAR(CMD);
1101
1102		if (tp->flags & KDB_REPEAT_WITH_ARGS)
1103			return result;
1104
1105		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1106		if (argv[argc])
1107			*(argv[argc]) = '\0';
1108		return result;
1109	}
1110
1111	/*
1112	 * If the input with which we were presented does not
1113	 * map to an existing command, attempt to parse it as an
1114	 * address argument and display the result.   Useful for
1115	 * obtaining the address of a variable, or the nearest symbol
1116	 * to an address contained in a register.
1117	 */
1118	{
1119		unsigned long value;
1120		char *name = NULL;
1121		long offset;
1122		int nextarg = 0;
1123
1124		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1125				  &value, &offset, &name)) {
1126			return KDB_NOTFOUND;
1127		}
1128
1129		kdb_printf("%s = ", argv[0]);
1130		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1131		kdb_printf("\n");
1132		return 0;
1133	}
1134}
1135
1136
1137static int handle_ctrl_cmd(char *cmd)
1138{
1139#define CTRL_P	16
1140#define CTRL_N	14
1141
1142	/* initial situation */
1143	if (cmd_head == cmd_tail)
1144		return 0;
1145	switch (*cmd) {
1146	case CTRL_P:
1147		if (cmdptr != cmd_tail)
1148			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1149				 KDB_CMD_HISTORY_COUNT;
1150		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1151		return 1;
1152	case CTRL_N:
1153		if (cmdptr != cmd_head)
1154			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1155		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1156		return 1;
1157	}
1158	return 0;
1159}
1160
1161/*
1162 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1163 *	the system immediately, or loop for ever on failure.
1164 */
1165static int kdb_reboot(int argc, const char **argv)
1166{
1167	emergency_restart();
1168	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1169	while (1)
1170		cpu_relax();
1171	/* NOTREACHED */
1172	return 0;
1173}
1174
1175static void kdb_dumpregs(struct pt_regs *regs)
1176{
1177	int old_lvl = console_loglevel;
1178	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1179	kdb_trap_printk++;
1180	show_regs(regs);
1181	kdb_trap_printk--;
1182	kdb_printf("\n");
1183	console_loglevel = old_lvl;
1184}
1185
1186static void kdb_set_current_task(struct task_struct *p)
1187{
1188	kdb_current_task = p;
1189
1190	if (kdb_task_has_cpu(p)) {
1191		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1192		return;
1193	}
1194	kdb_current_regs = NULL;
1195}
1196
1197static void drop_newline(char *buf)
1198{
1199	size_t len = strlen(buf);
1200
1201	if (len == 0)
1202		return;
1203	if (*(buf + len - 1) == '\n')
1204		*(buf + len - 1) = '\0';
1205}
1206
1207/*
1208 * kdb_local - The main code for kdb.  This routine is invoked on a
1209 *	specific processor, it is not global.  The main kdb() routine
1210 *	ensures that only one processor at a time is in this routine.
1211 *	This code is called with the real reason code on the first
1212 *	entry to a kdb session, thereafter it is called with reason
1213 *	SWITCH, even if the user goes back to the original cpu.
1214 * Inputs:
1215 *	reason		The reason KDB was invoked
1216 *	error		The hardware-defined error code
1217 *	regs		The exception frame at time of fault/breakpoint.
1218 *	db_result	Result code from the break or debug point.
1219 * Returns:
1220 *	0	KDB was invoked for an event which it wasn't responsible
1221 *	1	KDB handled the event for which it was invoked.
1222 *	KDB_CMD_GO	User typed 'go'.
1223 *	KDB_CMD_CPU	User switched to another cpu.
1224 *	KDB_CMD_SS	Single step.
1225 */
1226static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1227		     kdb_dbtrap_t db_result)
1228{
1229	char *cmdbuf;
1230	int diag;
1231	struct task_struct *kdb_current =
1232		kdb_curr_task(raw_smp_processor_id());
1233
1234	KDB_DEBUG_STATE("kdb_local 1", reason);
1235
1236	kdb_check_for_lockdown();
1237
1238	kdb_go_count = 0;
1239	if (reason == KDB_REASON_DEBUG) {
1240		/* special case below */
1241	} else {
1242		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1243			   kdb_current, kdb_current ? kdb_current->pid : 0);
1244#if defined(CONFIG_SMP)
1245		kdb_printf("on processor %d ", raw_smp_processor_id());
1246#endif
1247	}
1248
1249	switch (reason) {
1250	case KDB_REASON_DEBUG:
1251	{
1252		/*
1253		 * If re-entering kdb after a single step
1254		 * command, don't print the message.
1255		 */
1256		switch (db_result) {
1257		case KDB_DB_BPT:
1258			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1259				   kdb_current, kdb_current->pid);
1260#if defined(CONFIG_SMP)
1261			kdb_printf("on processor %d ", raw_smp_processor_id());
1262#endif
1263			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1264				   instruction_pointer(regs));
1265			break;
1266		case KDB_DB_SS:
1267			break;
1268		case KDB_DB_SSBPT:
1269			KDB_DEBUG_STATE("kdb_local 4", reason);
1270			return 1;	/* kdba_db_trap did the work */
1271		default:
1272			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1273				   db_result);
1274			break;
1275		}
1276
1277	}
1278		break;
1279	case KDB_REASON_ENTER:
1280		if (KDB_STATE(KEYBOARD))
1281			kdb_printf("due to Keyboard Entry\n");
1282		else
1283			kdb_printf("due to KDB_ENTER()\n");
1284		break;
1285	case KDB_REASON_KEYBOARD:
1286		KDB_STATE_SET(KEYBOARD);
1287		kdb_printf("due to Keyboard Entry\n");
1288		break;
1289	case KDB_REASON_ENTER_SLAVE:
1290		/* drop through, slaves only get released via cpu switch */
1291	case KDB_REASON_SWITCH:
1292		kdb_printf("due to cpu switch\n");
1293		break;
1294	case KDB_REASON_OOPS:
1295		kdb_printf("Oops: %s\n", kdb_diemsg);
1296		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1297			   instruction_pointer(regs));
1298		kdb_dumpregs(regs);
1299		break;
1300	case KDB_REASON_SYSTEM_NMI:
1301		kdb_printf("due to System NonMaskable Interrupt\n");
1302		break;
1303	case KDB_REASON_NMI:
1304		kdb_printf("due to NonMaskable Interrupt @ "
1305			   kdb_machreg_fmt "\n",
1306			   instruction_pointer(regs));
1307		break;
1308	case KDB_REASON_SSTEP:
1309	case KDB_REASON_BREAK:
1310		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1311			   reason == KDB_REASON_BREAK ?
1312			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1313		/*
1314		 * Determine if this breakpoint is one that we
1315		 * are interested in.
1316		 */
1317		if (db_result != KDB_DB_BPT) {
1318			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1319				   db_result);
1320			KDB_DEBUG_STATE("kdb_local 6", reason);
1321			return 0;	/* Not for us, dismiss it */
1322		}
1323		break;
1324	case KDB_REASON_RECURSE:
1325		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1326			   instruction_pointer(regs));
1327		break;
1328	default:
1329		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1330		KDB_DEBUG_STATE("kdb_local 8", reason);
1331		return 0;	/* Not for us, dismiss it */
1332	}
1333
1334	while (1) {
1335		/*
1336		 * Initialize pager context.
1337		 */
1338		kdb_nextline = 1;
1339		KDB_STATE_CLEAR(SUPPRESS);
1340		kdb_grepping_flag = 0;
1341		/* ensure the old search does not leak into '/' commands */
1342		kdb_grep_string[0] = '\0';
1343
1344		cmdbuf = cmd_cur;
1345		*cmdbuf = '\0';
1346		*(cmd_hist[cmd_head]) = '\0';
1347
1348do_full_getstr:
1349		/* PROMPT can only be set if we have MEM_READ permission. */
1350		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1351			 raw_smp_processor_id());
 
 
 
1352		if (defcmd_in_progress)
1353			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1354
1355		/*
1356		 * Fetch command from keyboard
1357		 */
1358		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1359		if (*cmdbuf != '\n') {
1360			if (*cmdbuf < 32) {
1361				if (cmdptr == cmd_head) {
1362					strscpy(cmd_hist[cmd_head], cmd_cur,
1363						CMD_BUFLEN);
1364					*(cmd_hist[cmd_head] +
1365					  strlen(cmd_hist[cmd_head])-1) = '\0';
1366				}
1367				if (!handle_ctrl_cmd(cmdbuf))
1368					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1369				cmdbuf = cmd_cur;
1370				goto do_full_getstr;
1371			} else {
1372				strscpy(cmd_hist[cmd_head], cmd_cur,
1373					CMD_BUFLEN);
1374			}
1375
1376			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1377			if (cmd_head == cmd_tail)
1378				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1379		}
1380
1381		cmdptr = cmd_head;
1382		diag = kdb_parse(cmdbuf);
1383		if (diag == KDB_NOTFOUND) {
1384			drop_newline(cmdbuf);
1385			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1386			diag = 0;
1387		}
1388		if (diag == KDB_CMD_GO
1389		 || diag == KDB_CMD_CPU
1390		 || diag == KDB_CMD_SS
1391		 || diag == KDB_CMD_KGDB)
1392			break;
1393
1394		if (diag)
1395			kdb_cmderror(diag);
1396	}
1397	KDB_DEBUG_STATE("kdb_local 9", diag);
1398	return diag;
1399}
1400
1401
1402/*
1403 * kdb_print_state - Print the state data for the current processor
1404 *	for debugging.
1405 * Inputs:
1406 *	text		Identifies the debug point
1407 *	value		Any integer value to be printed, e.g. reason code.
1408 */
1409void kdb_print_state(const char *text, int value)
1410{
1411	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1412		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1413		   kdb_state);
1414}
1415
1416/*
1417 * kdb_main_loop - After initial setup and assignment of the
1418 *	controlling cpu, all cpus are in this loop.  One cpu is in
1419 *	control and will issue the kdb prompt, the others will spin
1420 *	until 'go' or cpu switch.
1421 *
1422 *	To get a consistent view of the kernel stacks for all
1423 *	processes, this routine is invoked from the main kdb code via
1424 *	an architecture specific routine.  kdba_main_loop is
1425 *	responsible for making the kernel stacks consistent for all
1426 *	processes, there should be no difference between a blocked
1427 *	process and a running process as far as kdb is concerned.
1428 * Inputs:
1429 *	reason		The reason KDB was invoked
1430 *	error		The hardware-defined error code
1431 *	reason2		kdb's current reason code.
1432 *			Initially error but can change
1433 *			according to kdb state.
1434 *	db_result	Result code from break or debug point.
1435 *	regs		The exception frame at time of fault/breakpoint.
1436 *			should always be valid.
1437 * Returns:
1438 *	0	KDB was invoked for an event which it wasn't responsible
1439 *	1	KDB handled the event for which it was invoked.
1440 */
1441int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1442	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1443{
1444	int result = 1;
1445	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1446	while (1) {
1447		/*
1448		 * All processors except the one that is in control
1449		 * will spin here.
1450		 */
1451		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1452		while (KDB_STATE(HOLD_CPU)) {
1453			/* state KDB is turned off by kdb_cpu to see if the
1454			 * other cpus are still live, each cpu in this loop
1455			 * turns it back on.
1456			 */
1457			if (!KDB_STATE(KDB))
1458				KDB_STATE_SET(KDB);
1459		}
1460
1461		KDB_STATE_CLEAR(SUPPRESS);
1462		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1463		if (KDB_STATE(LEAVING))
1464			break;	/* Another cpu said 'go' */
1465		/* Still using kdb, this processor is in control */
1466		result = kdb_local(reason2, error, regs, db_result);
1467		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1468
1469		if (result == KDB_CMD_CPU)
1470			break;
1471
1472		if (result == KDB_CMD_SS) {
1473			KDB_STATE_SET(DOING_SS);
1474			break;
1475		}
1476
1477		if (result == KDB_CMD_KGDB) {
1478			if (!KDB_STATE(DOING_KGDB))
1479				kdb_printf("Entering please attach debugger "
1480					   "or use $D#44+ or $3#33\n");
1481			break;
1482		}
1483		if (result && result != 1 && result != KDB_CMD_GO)
1484			kdb_printf("\nUnexpected kdb_local return code %d\n",
1485				   result);
1486		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1487		break;
1488	}
1489	if (KDB_STATE(DOING_SS))
1490		KDB_STATE_CLEAR(SSBPT);
1491
1492	/* Clean up any keyboard devices before leaving */
1493	kdb_kbd_cleanup_state();
1494
1495	return result;
1496}
1497
1498/*
1499 * kdb_mdr - This function implements the guts of the 'mdr', memory
1500 * read command.
1501 *	mdr  <addr arg>,<byte count>
1502 * Inputs:
1503 *	addr	Start address
1504 *	count	Number of bytes
1505 * Returns:
1506 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1507 */
1508static int kdb_mdr(unsigned long addr, unsigned int count)
1509{
1510	unsigned char c;
1511	while (count--) {
1512		if (kdb_getarea(c, addr))
1513			return 0;
1514		kdb_printf("%02x", c);
1515		addr++;
1516	}
1517	kdb_printf("\n");
1518	return 0;
1519}
1520
1521/*
1522 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1523 *	'md8' 'mdr' and 'mds' commands.
1524 *
1525 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1526 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1527 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1528 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1529 *	mdr  <addr arg>,<byte count>
1530 */
1531static void kdb_md_line(const char *fmtstr, unsigned long addr,
1532			int symbolic, int nosect, int bytesperword,
1533			int num, int repeat, int phys)
1534{
1535	/* print just one line of data */
1536	kdb_symtab_t symtab;
1537	char cbuf[32];
1538	char *c = cbuf;
1539	int i;
1540	int j;
1541	unsigned long word;
1542
1543	memset(cbuf, '\0', sizeof(cbuf));
1544	if (phys)
1545		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1546	else
1547		kdb_printf(kdb_machreg_fmt0 " ", addr);
1548
1549	for (i = 0; i < num && repeat--; i++) {
1550		if (phys) {
1551			if (kdb_getphysword(&word, addr, bytesperword))
1552				break;
1553		} else if (kdb_getword(&word, addr, bytesperword))
1554			break;
1555		kdb_printf(fmtstr, word);
1556		if (symbolic)
1557			kdbnearsym(word, &symtab);
1558		else
1559			memset(&symtab, 0, sizeof(symtab));
1560		if (symtab.sym_name) {
1561			kdb_symbol_print(word, &symtab, 0);
1562			if (!nosect) {
1563				kdb_printf("\n");
1564				kdb_printf("                       %s %s "
1565					   kdb_machreg_fmt " "
1566					   kdb_machreg_fmt " "
1567					   kdb_machreg_fmt, symtab.mod_name,
1568					   symtab.sec_name, symtab.sec_start,
1569					   symtab.sym_start, symtab.sym_end);
1570			}
1571			addr += bytesperword;
1572		} else {
1573			union {
1574				u64 word;
1575				unsigned char c[8];
1576			} wc;
1577			unsigned char *cp;
1578#ifdef	__BIG_ENDIAN
1579			cp = wc.c + 8 - bytesperword;
1580#else
1581			cp = wc.c;
1582#endif
1583			wc.word = word;
1584#define printable_char(c) \
1585	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1586			for (j = 0; j < bytesperword; j++)
1587				*c++ = printable_char(*cp++);
1588			addr += bytesperword;
1589#undef printable_char
1590		}
1591	}
1592	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1593		   " ", cbuf);
1594}
1595
1596static int kdb_md(int argc, const char **argv)
1597{
1598	static unsigned long last_addr;
1599	static int last_radix, last_bytesperword, last_repeat;
1600	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1601	int nosect = 0;
1602	char fmtchar, fmtstr[64];
1603	unsigned long addr;
1604	unsigned long word;
1605	long offset = 0;
1606	int symbolic = 0;
1607	int valid = 0;
1608	int phys = 0;
1609	int raw = 0;
1610
1611	kdbgetintenv("MDCOUNT", &mdcount);
1612	kdbgetintenv("RADIX", &radix);
1613	kdbgetintenv("BYTESPERWORD", &bytesperword);
1614
1615	/* Assume 'md <addr>' and start with environment values */
1616	repeat = mdcount * 16 / bytesperword;
1617
1618	if (strcmp(argv[0], "mdr") == 0) {
1619		if (argc == 2 || (argc == 0 && last_addr != 0))
1620			valid = raw = 1;
1621		else
1622			return KDB_ARGCOUNT;
1623	} else if (isdigit(argv[0][2])) {
1624		bytesperword = (int)(argv[0][2] - '0');
1625		if (bytesperword == 0) {
1626			bytesperword = last_bytesperword;
1627			if (bytesperword == 0)
1628				bytesperword = 4;
1629		}
1630		last_bytesperword = bytesperword;
1631		repeat = mdcount * 16 / bytesperword;
1632		if (!argv[0][3])
1633			valid = 1;
1634		else if (argv[0][3] == 'c' && argv[0][4]) {
1635			char *p;
1636			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1637			mdcount = ((repeat * bytesperword) + 15) / 16;
1638			valid = !*p;
1639		}
1640		last_repeat = repeat;
1641	} else if (strcmp(argv[0], "md") == 0)
1642		valid = 1;
1643	else if (strcmp(argv[0], "mds") == 0)
1644		valid = 1;
1645	else if (strcmp(argv[0], "mdp") == 0) {
1646		phys = valid = 1;
1647	}
1648	if (!valid)
1649		return KDB_NOTFOUND;
1650
1651	if (argc == 0) {
1652		if (last_addr == 0)
1653			return KDB_ARGCOUNT;
1654		addr = last_addr;
1655		radix = last_radix;
1656		bytesperword = last_bytesperword;
1657		repeat = last_repeat;
1658		if (raw)
1659			mdcount = repeat;
1660		else
1661			mdcount = ((repeat * bytesperword) + 15) / 16;
1662	}
1663
1664	if (argc) {
1665		unsigned long val;
1666		int diag, nextarg = 1;
1667		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1668				     &offset, NULL);
1669		if (diag)
1670			return diag;
1671		if (argc > nextarg+2)
1672			return KDB_ARGCOUNT;
1673
1674		if (argc >= nextarg) {
1675			diag = kdbgetularg(argv[nextarg], &val);
1676			if (!diag) {
1677				mdcount = (int) val;
1678				if (raw)
1679					repeat = mdcount;
1680				else
1681					repeat = mdcount * 16 / bytesperword;
1682			}
1683		}
1684		if (argc >= nextarg+1) {
1685			diag = kdbgetularg(argv[nextarg+1], &val);
1686			if (!diag)
1687				radix = (int) val;
1688		}
1689	}
1690
1691	if (strcmp(argv[0], "mdr") == 0) {
1692		int ret;
1693		last_addr = addr;
1694		ret = kdb_mdr(addr, mdcount);
1695		last_addr += mdcount;
1696		last_repeat = mdcount;
1697		last_bytesperword = bytesperword; // to make REPEAT happy
1698		return ret;
1699	}
1700
1701	switch (radix) {
1702	case 10:
1703		fmtchar = 'd';
1704		break;
1705	case 16:
1706		fmtchar = 'x';
1707		break;
1708	case 8:
1709		fmtchar = 'o';
1710		break;
1711	default:
1712		return KDB_BADRADIX;
1713	}
1714
1715	last_radix = radix;
1716
1717	if (bytesperword > KDB_WORD_SIZE)
1718		return KDB_BADWIDTH;
1719
1720	switch (bytesperword) {
1721	case 8:
1722		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1723		break;
1724	case 4:
1725		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1726		break;
1727	case 2:
1728		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1729		break;
1730	case 1:
1731		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1732		break;
1733	default:
1734		return KDB_BADWIDTH;
1735	}
1736
1737	last_repeat = repeat;
1738	last_bytesperword = bytesperword;
1739
1740	if (strcmp(argv[0], "mds") == 0) {
1741		symbolic = 1;
1742		/* Do not save these changes as last_*, they are temporary mds
1743		 * overrides.
1744		 */
1745		bytesperword = KDB_WORD_SIZE;
1746		repeat = mdcount;
1747		kdbgetintenv("NOSECT", &nosect);
1748	}
1749
1750	/* Round address down modulo BYTESPERWORD */
1751
1752	addr &= ~(bytesperword-1);
1753
1754	while (repeat > 0) {
1755		unsigned long a;
1756		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1757
1758		if (KDB_FLAG(CMD_INTERRUPT))
1759			return 0;
1760		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1761			if (phys) {
1762				if (kdb_getphysword(&word, a, bytesperword)
1763						|| word)
1764					break;
1765			} else if (kdb_getword(&word, a, bytesperword) || word)
1766				break;
1767		}
1768		n = min(num, repeat);
1769		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1770			    num, repeat, phys);
1771		addr += bytesperword * n;
1772		repeat -= n;
1773		z = (z + num - 1) / num;
1774		if (z > 2) {
1775			int s = num * (z-2);
1776			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1777				   " zero suppressed\n",
1778				addr, addr + bytesperword * s - 1);
1779			addr += bytesperword * s;
1780			repeat -= s;
1781		}
1782	}
1783	last_addr = addr;
1784
1785	return 0;
1786}
1787
1788/*
1789 * kdb_mm - This function implements the 'mm' command.
1790 *	mm address-expression new-value
1791 * Remarks:
1792 *	mm works on machine words, mmW works on bytes.
1793 */
1794static int kdb_mm(int argc, const char **argv)
1795{
1796	int diag;
1797	unsigned long addr;
1798	long offset = 0;
1799	unsigned long contents;
1800	int nextarg;
1801	int width;
1802
1803	if (argv[0][2] && !isdigit(argv[0][2]))
1804		return KDB_NOTFOUND;
1805
1806	if (argc < 2)
1807		return KDB_ARGCOUNT;
1808
1809	nextarg = 1;
1810	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1811	if (diag)
1812		return diag;
1813
1814	if (nextarg > argc)
1815		return KDB_ARGCOUNT;
1816	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1817	if (diag)
1818		return diag;
1819
1820	if (nextarg != argc + 1)
1821		return KDB_ARGCOUNT;
1822
1823	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1824	diag = kdb_putword(addr, contents, width);
1825	if (diag)
1826		return diag;
1827
1828	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1829
1830	return 0;
1831}
1832
1833/*
1834 * kdb_go - This function implements the 'go' command.
1835 *	go [address-expression]
1836 */
1837static int kdb_go(int argc, const char **argv)
1838{
1839	unsigned long addr;
1840	int diag;
1841	int nextarg;
1842	long offset;
1843
1844	if (raw_smp_processor_id() != kdb_initial_cpu) {
1845		kdb_printf("go must execute on the entry cpu, "
1846			   "please use \"cpu %d\" and then execute go\n",
1847			   kdb_initial_cpu);
1848		return KDB_BADCPUNUM;
1849	}
1850	if (argc == 1) {
1851		nextarg = 1;
1852		diag = kdbgetaddrarg(argc, argv, &nextarg,
1853				     &addr, &offset, NULL);
1854		if (diag)
1855			return diag;
1856	} else if (argc) {
1857		return KDB_ARGCOUNT;
1858	}
1859
1860	diag = KDB_CMD_GO;
1861	if (KDB_FLAG(CATASTROPHIC)) {
1862		kdb_printf("Catastrophic error detected\n");
1863		kdb_printf("kdb_continue_catastrophic=%d, ",
1864			kdb_continue_catastrophic);
1865		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1866			kdb_printf("type go a second time if you really want "
1867				   "to continue\n");
1868			return 0;
1869		}
1870		if (kdb_continue_catastrophic == 2) {
1871			kdb_printf("forcing reboot\n");
1872			kdb_reboot(0, NULL);
1873		}
1874		kdb_printf("attempting to continue\n");
1875	}
1876	return diag;
1877}
1878
1879/*
1880 * kdb_rd - This function implements the 'rd' command.
1881 */
1882static int kdb_rd(int argc, const char **argv)
1883{
1884	int len = kdb_check_regs();
1885#if DBG_MAX_REG_NUM > 0
1886	int i;
1887	char *rname;
1888	int rsize;
1889	u64 reg64;
1890	u32 reg32;
1891	u16 reg16;
1892	u8 reg8;
1893
1894	if (len)
1895		return len;
1896
1897	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1898		rsize = dbg_reg_def[i].size * 2;
1899		if (rsize > 16)
1900			rsize = 2;
1901		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1902			len = 0;
1903			kdb_printf("\n");
1904		}
1905		if (len)
1906			len += kdb_printf("  ");
1907		switch(dbg_reg_def[i].size * 8) {
1908		case 8:
1909			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1910			if (!rname)
1911				break;
1912			len += kdb_printf("%s: %02x", rname, reg8);
1913			break;
1914		case 16:
1915			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1916			if (!rname)
1917				break;
1918			len += kdb_printf("%s: %04x", rname, reg16);
1919			break;
1920		case 32:
1921			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1922			if (!rname)
1923				break;
1924			len += kdb_printf("%s: %08x", rname, reg32);
1925			break;
1926		case 64:
1927			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1928			if (!rname)
1929				break;
1930			len += kdb_printf("%s: %016llx", rname, reg64);
1931			break;
1932		default:
1933			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1934		}
1935	}
1936	kdb_printf("\n");
1937#else
1938	if (len)
1939		return len;
1940
1941	kdb_dumpregs(kdb_current_regs);
1942#endif
1943	return 0;
1944}
1945
1946/*
1947 * kdb_rm - This function implements the 'rm' (register modify)  command.
1948 *	rm register-name new-contents
1949 * Remarks:
1950 *	Allows register modification with the same restrictions as gdb
1951 */
1952static int kdb_rm(int argc, const char **argv)
1953{
1954#if DBG_MAX_REG_NUM > 0
1955	int diag;
1956	const char *rname;
1957	int i;
1958	u64 reg64;
1959	u32 reg32;
1960	u16 reg16;
1961	u8 reg8;
1962
1963	if (argc != 2)
1964		return KDB_ARGCOUNT;
1965	/*
1966	 * Allow presence or absence of leading '%' symbol.
1967	 */
1968	rname = argv[1];
1969	if (*rname == '%')
1970		rname++;
1971
1972	diag = kdbgetu64arg(argv[2], &reg64);
1973	if (diag)
1974		return diag;
1975
1976	diag = kdb_check_regs();
1977	if (diag)
1978		return diag;
1979
1980	diag = KDB_BADREG;
1981	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1982		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1983			diag = 0;
1984			break;
1985		}
1986	}
1987	if (!diag) {
1988		switch(dbg_reg_def[i].size * 8) {
1989		case 8:
1990			reg8 = reg64;
1991			dbg_set_reg(i, &reg8, kdb_current_regs);
1992			break;
1993		case 16:
1994			reg16 = reg64;
1995			dbg_set_reg(i, &reg16, kdb_current_regs);
1996			break;
1997		case 32:
1998			reg32 = reg64;
1999			dbg_set_reg(i, &reg32, kdb_current_regs);
2000			break;
2001		case 64:
2002			dbg_set_reg(i, &reg64, kdb_current_regs);
2003			break;
2004		}
2005	}
2006	return diag;
2007#else
2008	kdb_printf("ERROR: Register set currently not implemented\n");
2009    return 0;
2010#endif
2011}
2012
2013#if defined(CONFIG_MAGIC_SYSRQ)
2014/*
2015 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2016 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
2017 *		sr <magic-sysrq-code>
2018 */
2019static int kdb_sr(int argc, const char **argv)
2020{
2021	bool check_mask =
2022	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2023
2024	if (argc != 1)
2025		return KDB_ARGCOUNT;
2026
2027	kdb_trap_printk++;
2028	__handle_sysrq(*argv[1], check_mask);
2029	kdb_trap_printk--;
2030
2031	return 0;
2032}
2033#endif	/* CONFIG_MAGIC_SYSRQ */
2034
2035/*
2036 * kdb_ef - This function implements the 'regs' (display exception
2037 *	frame) command.  This command takes an address and expects to
2038 *	find an exception frame at that address, formats and prints
2039 *	it.
2040 *		regs address-expression
2041 * Remarks:
2042 *	Not done yet.
2043 */
2044static int kdb_ef(int argc, const char **argv)
2045{
2046	int diag;
2047	unsigned long addr;
2048	long offset;
2049	int nextarg;
2050
2051	if (argc != 1)
2052		return KDB_ARGCOUNT;
2053
2054	nextarg = 1;
2055	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2056	if (diag)
2057		return diag;
2058	show_regs((struct pt_regs *)addr);
2059	return 0;
2060}
2061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062/*
2063 * kdb_env - This function implements the 'env' command.  Display the
2064 *	current environment variables.
2065 */
2066
2067static int kdb_env(int argc, const char **argv)
2068{
2069	kdb_printenv();
 
 
 
 
 
2070
2071	if (KDB_DEBUG(MASK))
2072		kdb_printf("KDBDEBUG=0x%x\n",
2073			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2074
2075	return 0;
2076}
2077
2078#ifdef CONFIG_PRINTK
2079/*
2080 * kdb_dmesg - This function implements the 'dmesg' command to display
2081 *	the contents of the syslog buffer.
2082 *		dmesg [lines] [adjust]
2083 */
2084static int kdb_dmesg(int argc, const char **argv)
2085{
2086	int diag;
2087	int logging;
2088	int lines = 0;
2089	int adjust = 0;
2090	int n = 0;
2091	int skip = 0;
2092	struct kmsg_dump_iter iter;
2093	size_t len;
2094	char buf[201];
2095
2096	if (argc > 2)
2097		return KDB_ARGCOUNT;
2098	if (argc) {
2099		char *cp;
2100		lines = simple_strtol(argv[1], &cp, 0);
2101		if (*cp)
2102			lines = 0;
2103		if (argc > 1) {
2104			adjust = simple_strtoul(argv[2], &cp, 0);
2105			if (*cp || adjust < 0)
2106				adjust = 0;
2107		}
2108	}
2109
2110	/* disable LOGGING if set */
2111	diag = kdbgetintenv("LOGGING", &logging);
2112	if (!diag && logging) {
2113		const char *setargs[] = { "set", "LOGGING", "0" };
2114		kdb_set(2, setargs);
2115	}
2116
2117	kmsg_dump_rewind(&iter);
2118	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2119		n++;
2120
2121	if (lines < 0) {
2122		if (adjust >= n)
2123			kdb_printf("buffer only contains %d lines, nothing "
2124				   "printed\n", n);
2125		else if (adjust - lines >= n)
2126			kdb_printf("buffer only contains %d lines, last %d "
2127				   "lines printed\n", n, n - adjust);
2128		skip = adjust;
2129		lines = abs(lines);
2130	} else if (lines > 0) {
2131		skip = n - lines - adjust;
2132		lines = abs(lines);
2133		if (adjust >= n) {
2134			kdb_printf("buffer only contains %d lines, "
2135				   "nothing printed\n", n);
2136			skip = n;
2137		} else if (skip < 0) {
2138			lines += skip;
2139			skip = 0;
2140			kdb_printf("buffer only contains %d lines, first "
2141				   "%d lines printed\n", n, lines);
2142		}
2143	} else {
2144		lines = n;
2145	}
2146
2147	if (skip >= n || skip < 0)
2148		return 0;
2149
2150	kmsg_dump_rewind(&iter);
2151	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2152		if (skip) {
2153			skip--;
2154			continue;
2155		}
2156		if (!lines--)
2157			break;
2158		if (KDB_FLAG(CMD_INTERRUPT))
2159			return 0;
2160
2161		kdb_printf("%.*s\n", (int)len - 1, buf);
2162	}
2163
2164	return 0;
2165}
2166#endif /* CONFIG_PRINTK */
2167
2168/* Make sure we balance enable/disable calls, must disable first. */
2169static atomic_t kdb_nmi_disabled;
2170
2171static int kdb_disable_nmi(int argc, const char *argv[])
2172{
2173	if (atomic_read(&kdb_nmi_disabled))
2174		return 0;
2175	atomic_set(&kdb_nmi_disabled, 1);
2176	arch_kgdb_ops.enable_nmi(0);
2177	return 0;
2178}
2179
2180static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2181{
2182	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2183		return -EINVAL;
2184	arch_kgdb_ops.enable_nmi(1);
2185	return 0;
2186}
2187
2188static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2189	.set = kdb_param_enable_nmi,
2190};
2191module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2192
2193/*
2194 * kdb_cpu - This function implements the 'cpu' command.
2195 *	cpu	[<cpunum>]
2196 * Returns:
2197 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2198 */
2199static void kdb_cpu_status(void)
2200{
2201	int i, start_cpu, first_print = 1;
2202	char state, prev_state = '?';
2203
2204	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2205	kdb_printf("Available cpus: ");
2206	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2207		if (!cpu_online(i)) {
2208			state = 'F';	/* cpu is offline */
2209		} else if (!kgdb_info[i].enter_kgdb) {
2210			state = 'D';	/* cpu is online but unresponsive */
2211		} else {
2212			state = ' ';	/* cpu is responding to kdb */
2213			if (kdb_task_state_char(KDB_TSK(i)) == '-')
2214				state = '-';	/* idle task */
2215		}
2216		if (state != prev_state) {
2217			if (prev_state != '?') {
2218				if (!first_print)
2219					kdb_printf(", ");
2220				first_print = 0;
2221				kdb_printf("%d", start_cpu);
2222				if (start_cpu < i-1)
2223					kdb_printf("-%d", i-1);
2224				if (prev_state != ' ')
2225					kdb_printf("(%c)", prev_state);
2226			}
2227			prev_state = state;
2228			start_cpu = i;
2229		}
2230	}
2231	/* print the trailing cpus, ignoring them if they are all offline */
2232	if (prev_state != 'F') {
2233		if (!first_print)
2234			kdb_printf(", ");
2235		kdb_printf("%d", start_cpu);
2236		if (start_cpu < i-1)
2237			kdb_printf("-%d", i-1);
2238		if (prev_state != ' ')
2239			kdb_printf("(%c)", prev_state);
2240	}
2241	kdb_printf("\n");
2242}
2243
2244static int kdb_cpu(int argc, const char **argv)
2245{
2246	unsigned long cpunum;
2247	int diag;
2248
2249	if (argc == 0) {
2250		kdb_cpu_status();
2251		return 0;
2252	}
2253
2254	if (argc != 1)
2255		return KDB_ARGCOUNT;
2256
2257	diag = kdbgetularg(argv[1], &cpunum);
2258	if (diag)
2259		return diag;
2260
2261	/*
2262	 * Validate cpunum
2263	 */
2264	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2265		return KDB_BADCPUNUM;
2266
2267	dbg_switch_cpu = cpunum;
2268
2269	/*
2270	 * Switch to other cpu
2271	 */
2272	return KDB_CMD_CPU;
2273}
2274
2275/* The user may not realize that ps/bta with no parameters does not print idle
2276 * or sleeping system daemon processes, so tell them how many were suppressed.
2277 */
2278void kdb_ps_suppressed(void)
2279{
2280	int idle = 0, daemon = 0;
 
 
2281	unsigned long cpu;
2282	const struct task_struct *p, *g;
2283	for_each_online_cpu(cpu) {
2284		p = kdb_curr_task(cpu);
2285		if (kdb_task_state(p, "-"))
2286			++idle;
2287	}
2288	for_each_process_thread(g, p) {
2289		if (kdb_task_state(p, "ims"))
2290			++daemon;
2291	}
2292	if (idle || daemon) {
2293		if (idle)
2294			kdb_printf("%d idle process%s (state -)%s\n",
2295				   idle, idle == 1 ? "" : "es",
2296				   daemon ? " and " : "");
2297		if (daemon)
2298			kdb_printf("%d sleeping system daemon (state [ims]) "
2299				   "process%s", daemon,
2300				   daemon == 1 ? "" : "es");
2301		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2302	}
2303}
2304
 
 
 
 
 
2305void kdb_ps1(const struct task_struct *p)
2306{
2307	int cpu;
2308	unsigned long tmp;
2309
2310	if (!p ||
2311	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%px)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
2333/*
2334 * kdb_ps - This function implements the 'ps' command which shows a
2335 *	    list of the active processes.
2336 *
2337 * ps [<state_chars>]   Show processes, optionally selecting only those whose
2338 *                      state character is found in <state_chars>.
2339 */
2340static int kdb_ps(int argc, const char **argv)
2341{
2342	struct task_struct *g, *p;
2343	const char *mask;
2344	unsigned long cpu;
2345
2346	if (argc == 0)
2347		kdb_ps_suppressed();
2348	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2349		(int)(2*sizeof(void *))+2, "Task Addr",
2350		(int)(2*sizeof(void *))+2, "Thread");
2351	mask = argc ? argv[1] : kdbgetenv("PS");
2352	/* Run the active tasks first */
2353	for_each_online_cpu(cpu) {
2354		if (KDB_FLAG(CMD_INTERRUPT))
2355			return 0;
2356		p = kdb_curr_task(cpu);
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	}
2360	kdb_printf("\n");
2361	/* Now the real tasks */
2362	for_each_process_thread(g, p) {
2363		if (KDB_FLAG(CMD_INTERRUPT))
2364			return 0;
2365		if (kdb_task_state(p, mask))
2366			kdb_ps1(p);
2367	}
2368
2369	return 0;
2370}
2371
2372/*
2373 * kdb_pid - This function implements the 'pid' command which switches
2374 *	the currently active process.
2375 *		pid [<pid> | R]
2376 */
2377static int kdb_pid(int argc, const char **argv)
2378{
2379	struct task_struct *p;
2380	unsigned long val;
2381	int diag;
2382
2383	if (argc > 1)
2384		return KDB_ARGCOUNT;
2385
2386	if (argc) {
2387		if (strcmp(argv[1], "R") == 0) {
2388			p = KDB_TSK(kdb_initial_cpu);
2389		} else {
2390			diag = kdbgetularg(argv[1], &val);
2391			if (diag)
2392				return KDB_BADINT;
2393
2394			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2395			if (!p) {
2396				kdb_printf("No task with pid=%d\n", (pid_t)val);
2397				return 0;
2398			}
2399		}
2400		kdb_set_current_task(p);
2401	}
2402	kdb_printf("KDB current process is %s(pid=%d)\n",
2403		   kdb_current_task->comm,
2404		   kdb_current_task->pid);
2405
2406	return 0;
2407}
2408
2409static int kdb_kgdb(int argc, const char **argv)
2410{
2411	return KDB_CMD_KGDB;
2412}
2413
2414/*
2415 * kdb_help - This function implements the 'help' and '?' commands.
2416 */
2417static int kdb_help(int argc, const char **argv)
2418{
2419	kdbtab_t *kt;
 
2420
2421	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2422	kdb_printf("-----------------------------"
2423		   "-----------------------------\n");
2424	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2425		char *space = "";
2426		if (KDB_FLAG(CMD_INTERRUPT))
2427			return 0;
2428		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2429			continue;
2430		if (strlen(kt->usage) > 20)
 
 
2431			space = "\n                                    ";
2432		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2433			   kt->usage, space, kt->help);
2434	}
2435	return 0;
2436}
2437
2438/*
2439 * kdb_kill - This function implements the 'kill' commands.
2440 */
2441static int kdb_kill(int argc, const char **argv)
2442{
2443	long sig, pid;
2444	char *endp;
2445	struct task_struct *p;
2446
2447	if (argc != 2)
2448		return KDB_ARGCOUNT;
2449
2450	sig = simple_strtol(argv[1], &endp, 0);
2451	if (*endp)
2452		return KDB_BADINT;
2453	if ((sig >= 0) || !valid_signal(-sig)) {
2454		kdb_printf("Invalid signal parameter.<-signal>\n");
2455		return 0;
2456	}
2457	sig = -sig;
2458
2459	pid = simple_strtol(argv[2], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if (pid <= 0) {
2463		kdb_printf("Process ID must be large than 0.\n");
2464		return 0;
2465	}
2466
2467	/* Find the process. */
2468	p = find_task_by_pid_ns(pid, &init_pid_ns);
2469	if (!p) {
2470		kdb_printf("The specified process isn't found.\n");
2471		return 0;
2472	}
2473	p = p->group_leader;
2474	kdb_send_sig(p, sig);
2475	return 0;
2476}
2477
2478/*
2479 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2480 * I cannot call that code directly from kdb, it has an unconditional
2481 * cli()/sti() and calls routines that take locks which can stop the debugger.
2482 */
2483static void kdb_sysinfo(struct sysinfo *val)
2484{
2485	u64 uptime = ktime_get_mono_fast_ns();
2486
2487	memset(val, 0, sizeof(*val));
2488	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2489	val->loads[0] = avenrun[0];
2490	val->loads[1] = avenrun[1];
2491	val->loads[2] = avenrun[2];
2492	val->procs = nr_threads-1;
2493	si_meminfo(val);
2494
2495	return;
2496}
2497
2498/*
2499 * kdb_summary - This function implements the 'summary' command.
2500 */
2501static int kdb_summary(int argc, const char **argv)
2502{
2503	time64_t now;
 
2504	struct sysinfo val;
2505
2506	if (argc)
2507		return KDB_ARGCOUNT;
2508
2509	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2510	kdb_printf("release    %s\n", init_uts_ns.name.release);
2511	kdb_printf("version    %s\n", init_uts_ns.name.version);
2512	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2513	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2514	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2515
2516	now = __ktime_get_real_seconds();
2517	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
 
 
 
 
 
 
2518	kdb_sysinfo(&val);
2519	kdb_printf("uptime     ");
2520	if (val.uptime > (24*60*60)) {
2521		int days = val.uptime / (24*60*60);
2522		val.uptime %= (24*60*60);
2523		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2524	}
2525	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2526
2527	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2528		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2529		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2530		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2531
2532	/* Display in kilobytes */
2533#define K(x) ((x) << (PAGE_SHIFT - 10))
2534	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2535		   "Buffers:        %8lu kB\n",
2536		   K(val.totalram), K(val.freeram), K(val.bufferram));
2537	return 0;
2538}
2539
2540/*
2541 * kdb_per_cpu - This function implements the 'per_cpu' command.
2542 */
2543static int kdb_per_cpu(int argc, const char **argv)
2544{
2545	char fmtstr[64];
2546	int cpu, diag, nextarg = 1;
2547	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2548
2549	if (argc < 1 || argc > 3)
2550		return KDB_ARGCOUNT;
2551
2552	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2553	if (diag)
2554		return diag;
2555
2556	if (argc >= 2) {
2557		diag = kdbgetularg(argv[2], &bytesperword);
2558		if (diag)
2559			return diag;
2560	}
2561	if (!bytesperword)
2562		bytesperword = KDB_WORD_SIZE;
2563	else if (bytesperword > KDB_WORD_SIZE)
2564		return KDB_BADWIDTH;
2565	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2566	if (argc >= 3) {
2567		diag = kdbgetularg(argv[3], &whichcpu);
2568		if (diag)
2569			return diag;
2570		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2571			kdb_printf("cpu %ld is not online\n", whichcpu);
2572			return KDB_BADCPUNUM;
2573		}
2574	}
2575
2576	/* Most architectures use __per_cpu_offset[cpu], some use
2577	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2578	 */
2579#ifdef	__per_cpu_offset
2580#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2581#else
2582#ifdef	CONFIG_SMP
2583#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2584#else
2585#define KDB_PCU(cpu) 0
2586#endif
2587#endif
2588	for_each_online_cpu(cpu) {
2589		if (KDB_FLAG(CMD_INTERRUPT))
2590			return 0;
2591
2592		if (whichcpu != ~0UL && whichcpu != cpu)
2593			continue;
2594		addr = symaddr + KDB_PCU(cpu);
2595		diag = kdb_getword(&val, addr, bytesperword);
2596		if (diag) {
2597			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2598				   "read, diag=%d\n", cpu, addr, diag);
2599			continue;
2600		}
2601		kdb_printf("%5d ", cpu);
2602		kdb_md_line(fmtstr, addr,
2603			bytesperword == KDB_WORD_SIZE,
2604			1, bytesperword, 1, 1, 0);
2605	}
2606#undef KDB_PCU
2607	return 0;
2608}
2609
2610/*
2611 * display help for the use of cmd | grep pattern
2612 */
2613static int kdb_grep_help(int argc, const char **argv)
2614{
2615	kdb_printf("Usage of  cmd args | grep pattern:\n");
2616	kdb_printf("  Any command's output may be filtered through an ");
2617	kdb_printf("emulated 'pipe'.\n");
2618	kdb_printf("  'grep' is just a key word.\n");
2619	kdb_printf("  The pattern may include a very limited set of "
2620		   "metacharacters:\n");
2621	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2622	kdb_printf("  And if there are spaces in the pattern, you may "
2623		   "quote it:\n");
2624	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2625		   " or \"^pat tern$\"\n");
2626	return 0;
2627}
2628
2629/**
2630 * kdb_register() - This function is used to register a kernel debugger
2631 *                  command.
2632 * @cmd: pointer to kdb command
2633 *
2634 * Note that it's the job of the caller to keep the memory for the cmd
2635 * allocated until unregister is called.
 
 
 
 
2636 */
2637int kdb_register(kdbtab_t *cmd)
 
 
 
 
 
 
2638{
 
2639	kdbtab_t *kp;
2640
2641	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2642		if (strcmp(kp->name, cmd->name) == 0) {
2643			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2644				   cmd->name, cmd->func, cmd->help);
 
 
 
2645			return 1;
2646		}
2647	}
2648
2649	list_add_tail(&cmd->list_node, &kdb_cmds_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650	return 0;
2651}
2652EXPORT_SYMBOL_GPL(kdb_register);
 
2653
2654/**
2655 * kdb_register_table() - This function is used to register a kdb command
2656 *                        table.
2657 * @kp: pointer to kdb command table
2658 * @len: length of kdb command table
 
 
 
 
 
 
2659 */
2660void kdb_register_table(kdbtab_t *kp, size_t len)
 
 
 
 
2661{
2662	while (len--) {
2663		list_add_tail(&kp->list_node, &kdb_cmds_head);
2664		kp++;
2665	}
2666}
 
2667
2668/**
2669 * kdb_unregister() - This function is used to unregister a kernel debugger
2670 *                    command. It is generally called when a module which
2671 *                    implements kdb command is unloaded.
2672 * @cmd: pointer to kdb command
 
 
 
2673 */
2674void kdb_unregister(kdbtab_t *cmd)
2675{
2676	list_del(&cmd->list_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677}
2678EXPORT_SYMBOL_GPL(kdb_unregister);
2679
2680static kdbtab_t maintab[] = {
2681	{	.name = "md",
2682		.func = kdb_md,
2683		.usage = "<vaddr>",
2684		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2685		.minlen = 1,
2686		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2687	},
2688	{	.name = "mdr",
2689		.func = kdb_md,
2690		.usage = "<vaddr> <bytes>",
2691		.help = "Display Raw Memory",
2692		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2693	},
2694	{	.name = "mdp",
2695		.func = kdb_md,
2696		.usage = "<paddr> <bytes>",
2697		.help = "Display Physical Memory",
2698		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2699	},
2700	{	.name = "mds",
2701		.func = kdb_md,
2702		.usage = "<vaddr>",
2703		.help = "Display Memory Symbolically",
2704		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2705	},
2706	{	.name = "mm",
2707		.func = kdb_mm,
2708		.usage = "<vaddr> <contents>",
2709		.help = "Modify Memory Contents",
2710		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2711	},
2712	{	.name = "go",
2713		.func = kdb_go,
2714		.usage = "[<vaddr>]",
2715		.help = "Continue Execution",
2716		.minlen = 1,
2717		.flags = KDB_ENABLE_REG_WRITE |
2718			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2719	},
2720	{	.name = "rd",
2721		.func = kdb_rd,
2722		.usage = "",
2723		.help = "Display Registers",
2724		.flags = KDB_ENABLE_REG_READ,
2725	},
2726	{	.name = "rm",
2727		.func = kdb_rm,
2728		.usage = "<reg> <contents>",
2729		.help = "Modify Registers",
2730		.flags = KDB_ENABLE_REG_WRITE,
2731	},
2732	{	.name = "ef",
2733		.func = kdb_ef,
2734		.usage = "<vaddr>",
2735		.help = "Display exception frame",
2736		.flags = KDB_ENABLE_MEM_READ,
2737	},
2738	{	.name = "bt",
2739		.func = kdb_bt,
2740		.usage = "[<vaddr>]",
2741		.help = "Stack traceback",
2742		.minlen = 1,
2743		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2744	},
2745	{	.name = "btp",
2746		.func = kdb_bt,
2747		.usage = "<pid>",
2748		.help = "Display stack for process <pid>",
2749		.flags = KDB_ENABLE_INSPECT,
2750	},
2751	{	.name = "bta",
2752		.func = kdb_bt,
2753		.usage = "[<state_chars>|A]",
2754		.help = "Backtrace all processes whose state matches",
2755		.flags = KDB_ENABLE_INSPECT,
2756	},
2757	{	.name = "btc",
2758		.func = kdb_bt,
2759		.usage = "",
2760		.help = "Backtrace current process on each cpu",
2761		.flags = KDB_ENABLE_INSPECT,
2762	},
2763	{	.name = "btt",
2764		.func = kdb_bt,
2765		.usage = "<vaddr>",
2766		.help = "Backtrace process given its struct task address",
2767		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2768	},
2769	{	.name = "env",
2770		.func = kdb_env,
2771		.usage = "",
2772		.help = "Show environment variables",
2773		.flags = KDB_ENABLE_ALWAYS_SAFE,
2774	},
2775	{	.name = "set",
2776		.func = kdb_set,
2777		.usage = "",
2778		.help = "Set environment variables",
2779		.flags = KDB_ENABLE_ALWAYS_SAFE,
2780	},
2781	{	.name = "help",
2782		.func = kdb_help,
2783		.usage = "",
2784		.help = "Display Help Message",
2785		.minlen = 1,
2786		.flags = KDB_ENABLE_ALWAYS_SAFE,
2787	},
2788	{	.name = "?",
2789		.func = kdb_help,
2790		.usage = "",
2791		.help = "Display Help Message",
2792		.flags = KDB_ENABLE_ALWAYS_SAFE,
2793	},
2794	{	.name = "cpu",
2795		.func = kdb_cpu,
2796		.usage = "<cpunum>",
2797		.help = "Switch to new cpu",
2798		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2799	},
2800	{	.name = "kgdb",
2801		.func = kdb_kgdb,
2802		.usage = "",
2803		.help = "Enter kgdb mode",
2804		.flags = 0,
2805	},
2806	{	.name = "ps",
2807		.func = kdb_ps,
2808		.usage = "[<state_chars>|A]",
2809		.help = "Display active task list",
2810		.flags = KDB_ENABLE_INSPECT,
2811	},
2812	{	.name = "pid",
2813		.func = kdb_pid,
2814		.usage = "<pidnum>",
2815		.help = "Switch to another task",
2816		.flags = KDB_ENABLE_INSPECT,
2817	},
2818	{	.name = "reboot",
2819		.func = kdb_reboot,
2820		.usage = "",
2821		.help = "Reboot the machine immediately",
2822		.flags = KDB_ENABLE_REBOOT,
2823	},
2824#if defined(CONFIG_MODULES)
2825	{	.name = "lsmod",
2826		.func = kdb_lsmod,
2827		.usage = "",
2828		.help = "List loaded kernel modules",
2829		.flags = KDB_ENABLE_INSPECT,
2830	},
2831#endif
2832#if defined(CONFIG_MAGIC_SYSRQ)
2833	{	.name = "sr",
2834		.func = kdb_sr,
2835		.usage = "<key>",
2836		.help = "Magic SysRq key",
2837		.flags = KDB_ENABLE_ALWAYS_SAFE,
2838	},
2839#endif
2840#if defined(CONFIG_PRINTK)
2841	{	.name = "dmesg",
2842		.func = kdb_dmesg,
2843		.usage = "[lines]",
2844		.help = "Display syslog buffer",
2845		.flags = KDB_ENABLE_ALWAYS_SAFE,
2846	},
2847#endif
2848	{	.name = "defcmd",
2849		.func = kdb_defcmd,
2850		.usage = "name \"usage\" \"help\"",
2851		.help = "Define a set of commands, down to endefcmd",
2852		/*
2853		 * Macros are always safe because when executed each
2854		 * internal command re-enters kdb_parse() and is safety
2855		 * checked individually.
2856		 */
2857		.flags = KDB_ENABLE_ALWAYS_SAFE,
2858	},
2859	{	.name = "kill",
2860		.func = kdb_kill,
2861		.usage = "<-signal> <pid>",
2862		.help = "Send a signal to a process",
2863		.flags = KDB_ENABLE_SIGNAL,
2864	},
2865	{	.name = "summary",
2866		.func = kdb_summary,
2867		.usage = "",
2868		.help = "Summarize the system",
2869		.minlen = 4,
2870		.flags = KDB_ENABLE_ALWAYS_SAFE,
2871	},
2872	{	.name = "per_cpu",
2873		.func = kdb_per_cpu,
2874		.usage = "<sym> [<bytes>] [<cpu>]",
2875		.help = "Display per_cpu variables",
2876		.minlen = 3,
2877		.flags = KDB_ENABLE_MEM_READ,
2878	},
2879	{	.name = "grephelp",
2880		.func = kdb_grep_help,
2881		.usage = "",
2882		.help = "Display help on | grep",
2883		.flags = KDB_ENABLE_ALWAYS_SAFE,
2884	},
2885};
2886
2887static kdbtab_t nmicmd = {
2888	.name = "disable_nmi",
2889	.func = kdb_disable_nmi,
2890	.usage = "",
2891	.help = "Disable NMI entry to KDB",
2892	.flags = KDB_ENABLE_ALWAYS_SAFE,
2893};
2894
2895/* Initialize the kdb command table. */
2896static void __init kdb_inittab(void)
2897{
2898	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2899	if (arch_kgdb_ops.enable_nmi)
2900		kdb_register_table(&nmicmd, 1);
2901}
2902
2903/* Execute any commands defined in kdb_cmds.  */
2904static void __init kdb_cmd_init(void)
2905{
2906	int i, diag;
2907	for (i = 0; kdb_cmds[i]; ++i) {
2908		diag = kdb_parse(kdb_cmds[i]);
2909		if (diag)
2910			kdb_printf("kdb command %s failed, kdb diag %d\n",
2911				kdb_cmds[i], diag);
2912	}
2913	if (defcmd_in_progress) {
2914		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2915		kdb_parse("endefcmd");
2916	}
2917}
2918
2919/* Initialize kdb_printf, breakpoint tables and kdb state */
2920void __init kdb_init(int lvl)
2921{
2922	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2923	int i;
2924
2925	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2926		return;
2927	for (i = kdb_init_lvl; i < lvl; i++) {
2928		switch (i) {
2929		case KDB_NOT_INITIALIZED:
2930			kdb_inittab();		/* Initialize Command Table */
2931			kdb_initbptab();	/* Initialize Breakpoints */
2932			break;
2933		case KDB_INIT_EARLY:
2934			kdb_cmd_init();		/* Build kdb_cmds tables */
2935			break;
2936		}
2937	}
2938	kdb_init_lvl = lvl;
2939}
v5.4
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/notifier.h>
  37#include <linux/interrupt.h>
  38#include <linux/delay.h>
  39#include <linux/nmi.h>
  40#include <linux/time.h>
  41#include <linux/ptrace.h>
  42#include <linux/sysctl.h>
  43#include <linux/cpu.h>
  44#include <linux/kdebug.h>
  45#include <linux/proc_fs.h>
  46#include <linux/uaccess.h>
  47#include <linux/slab.h>
 
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65int kdb_flags;
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
  76EXPORT_SYMBOL(kdb_current_task);
  77struct pt_regs *kdb_current_regs;
  78
  79const char *kdb_diemsg;
  80static int kdb_go_count;
  81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  82static unsigned int kdb_continue_catastrophic =
  83	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  84#else
  85static unsigned int kdb_continue_catastrophic;
  86#endif
  87
  88/* kdb_commands describes the available commands. */
  89static kdbtab_t *kdb_commands;
  90#define KDB_BASE_CMD_MAX 50
  91static int kdb_max_commands = KDB_BASE_CMD_MAX;
  92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  93#define for_each_kdbcmd(cmd, num)					\
  94	for ((cmd) = kdb_base_commands, (num) = 0;			\
  95	     num < kdb_max_commands;					\
  96	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  97
  98typedef struct _kdbmsg {
  99	int	km_diag;	/* kdb diagnostic */
 100	char	*km_msg;	/* Corresponding message text */
 101} kdbmsg_t;
 102
 103#define KDBMSG(msgnum, text) \
 104	{ KDB_##msgnum, text }
 105
 106static kdbmsg_t kdbmsgs[] = {
 107	KDBMSG(NOTFOUND, "Command Not Found"),
 108	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 109	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 110	       "8 is only allowed on 64 bit systems"),
 111	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 112	KDBMSG(NOTENV, "Cannot find environment variable"),
 113	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 114	KDBMSG(NOTIMP, "Command not implemented"),
 115	KDBMSG(ENVFULL, "Environment full"),
 116	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 117	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 118#ifdef CONFIG_CPU_XSCALE
 119	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 120#else
 121	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 122#endif
 123	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 124	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 125	KDBMSG(BADMODE, "Invalid IDMODE"),
 126	KDBMSG(BADINT, "Illegal numeric value"),
 127	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 128	KDBMSG(BADREG, "Invalid register name"),
 129	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 130	KDBMSG(BADLENGTH, "Invalid length field"),
 131	KDBMSG(NOBP, "No Breakpoint exists"),
 132	KDBMSG(BADADDR, "Invalid address"),
 133	KDBMSG(NOPERM, "Permission denied"),
 134};
 135#undef KDBMSG
 136
 137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 138
 139
 140/*
 141 * Initial environment.   This is all kept static and local to
 142 * this file.   We don't want to rely on the memory allocation
 143 * mechanisms in the kernel, so we use a very limited allocate-only
 144 * heap for new and altered environment variables.  The entire
 145 * environment is limited to a fixed number of entries (add more
 146 * to __env[] if required) and a fixed amount of heap (add more to
 147 * KDB_ENVBUFSIZE if required).
 148 */
 149
 150static char *__env[] = {
 151#if defined(CONFIG_SMP)
 152 "PROMPT=[%d]kdb> ",
 153#else
 154 "PROMPT=kdb> ",
 155#endif
 156 "MOREPROMPT=more> ",
 157 "RADIX=16",
 158 "MDCOUNT=8",			/* lines of md output */
 159 KDB_PLATFORM_ENV,
 160 "DTABCOUNT=30",
 161 "NOSECT=1",
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184 (char *)0,
 185 (char *)0,
 186};
 187
 188static const int __nenv = ARRAY_SIZE(__env);
 189
 190struct task_struct *kdb_curr_task(int cpu)
 191{
 192	struct task_struct *p = curr_task(cpu);
 193#ifdef	_TIF_MCA_INIT
 194	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 195		p = krp->p;
 196#endif
 197	return p;
 198}
 199
 200/*
 201 * Check whether the flags of the current command and the permissions
 202 * of the kdb console has allow a command to be run.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203 */
 204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205				   bool no_args)
 206{
 207	/* permissions comes from userspace so needs massaging slightly */
 208	permissions &= KDB_ENABLE_MASK;
 209	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 210
 211	/* some commands change group when launched with no arguments */
 212	if (no_args)
 213		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 214
 215	flags |= KDB_ENABLE_ALL;
 216
 217	return permissions & flags;
 218}
 219
 220/*
 221 * kdbgetenv - This function will return the character string value of
 222 *	an environment variable.
 223 * Parameters:
 224 *	match	A character string representing an environment variable.
 225 * Returns:
 226 *	NULL	No environment variable matches 'match'
 227 *	char*	Pointer to string value of environment variable.
 228 */
 229char *kdbgetenv(const char *match)
 230{
 231	char **ep = __env;
 232	int matchlen = strlen(match);
 233	int i;
 234
 235	for (i = 0; i < __nenv; i++) {
 236		char *e = *ep++;
 237
 238		if (!e)
 239			continue;
 240
 241		if ((strncmp(match, e, matchlen) == 0)
 242		 && ((e[matchlen] == '\0')
 243		   || (e[matchlen] == '='))) {
 244			char *cp = strchr(e, '=');
 245			return cp ? ++cp : "";
 246		}
 247	}
 248	return NULL;
 249}
 250
 251/*
 252 * kdballocenv - This function is used to allocate bytes for
 253 *	environment entries.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long representation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 * Remarks:
 261 *	We use a static environment buffer (envbuffer) to hold the values
 262 *	of dynamically generated environment variables (see kdb_set).  Buffer
 263 *	space once allocated is never free'd, so over time, the amount of space
 264 *	(currently 512 bytes) will be exhausted if env variables are changed
 265 *	frequently.
 266 */
 267static char *kdballocenv(size_t bytes)
 268{
 269#define	KDB_ENVBUFSIZE	512
 270	static char envbuffer[KDB_ENVBUFSIZE];
 271	static int envbufsize;
 272	char *ep = NULL;
 273
 274	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 275		ep = &envbuffer[envbufsize];
 276		envbufsize += bytes;
 277	}
 278	return ep;
 279}
 280
 281/*
 282 * kdbgetulenv - This function will return the value of an unsigned
 283 *	long-valued environment variable.
 284 * Parameters:
 285 *	match	A character string representing a numeric value
 286 * Outputs:
 287 *	*value  the unsigned long represntation of the env variable 'match'
 288 * Returns:
 289 *	Zero on success, a kdb diagnostic on failure.
 290 */
 291static int kdbgetulenv(const char *match, unsigned long *value)
 292{
 293	char *ep;
 294
 295	ep = kdbgetenv(match);
 296	if (!ep)
 297		return KDB_NOTENV;
 298	if (strlen(ep) == 0)
 299		return KDB_NOENVVALUE;
 300
 301	*value = simple_strtoul(ep, NULL, 0);
 302
 303	return 0;
 304}
 305
 306/*
 307 * kdbgetintenv - This function will return the value of an
 308 *	integer-valued environment variable.
 309 * Parameters:
 310 *	match	A character string representing an integer-valued env variable
 311 * Outputs:
 312 *	*value  the integer representation of the environment variable 'match'
 313 * Returns:
 314 *	Zero on success, a kdb diagnostic on failure.
 315 */
 316int kdbgetintenv(const char *match, int *value)
 317{
 318	unsigned long val;
 319	int diag;
 320
 321	diag = kdbgetulenv(match, &val);
 322	if (!diag)
 323		*value = (int) val;
 324	return diag;
 325}
 326
 327/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328 * kdbgetularg - This function will convert a numeric string into an
 329 *	unsigned long value.
 330 * Parameters:
 331 *	arg	A character string representing a numeric value
 332 * Outputs:
 333 *	*value  the unsigned long represntation of arg.
 334 * Returns:
 335 *	Zero on success, a kdb diagnostic on failure.
 336 */
 337int kdbgetularg(const char *arg, unsigned long *value)
 338{
 339	char *endp;
 340	unsigned long val;
 341
 342	val = simple_strtoul(arg, &endp, 0);
 343
 344	if (endp == arg) {
 345		/*
 346		 * Also try base 16, for us folks too lazy to type the
 347		 * leading 0x...
 348		 */
 349		val = simple_strtoul(arg, &endp, 16);
 350		if (endp == arg)
 351			return KDB_BADINT;
 352	}
 353
 354	*value = val;
 355
 356	return 0;
 357}
 358
 359int kdbgetu64arg(const char *arg, u64 *value)
 360{
 361	char *endp;
 362	u64 val;
 363
 364	val = simple_strtoull(arg, &endp, 0);
 365
 366	if (endp == arg) {
 367
 368		val = simple_strtoull(arg, &endp, 16);
 369		if (endp == arg)
 370			return KDB_BADINT;
 371	}
 372
 373	*value = val;
 374
 375	return 0;
 376}
 377
 378/*
 379 * kdb_set - This function implements the 'set' command.  Alter an
 380 *	existing environment variable or create a new one.
 381 */
 382int kdb_set(int argc, const char **argv)
 383{
 384	int i;
 385	char *ep;
 386	size_t varlen, vallen;
 387
 388	/*
 389	 * we can be invoked two ways:
 390	 *   set var=value    argv[1]="var", argv[2]="value"
 391	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 392	 * - if the latter, shift 'em down.
 393	 */
 394	if (argc == 3) {
 395		argv[2] = argv[3];
 396		argc--;
 397	}
 398
 399	if (argc != 2)
 400		return KDB_ARGCOUNT;
 401
 402	/*
 
 
 
 
 
 
 
 403	 * Check for internal variables
 404	 */
 405	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 406		unsigned int debugflags;
 407		char *cp;
 408
 409		debugflags = simple_strtoul(argv[2], &cp, 0);
 410		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 411			kdb_printf("kdb: illegal debug flags '%s'\n",
 412				    argv[2]);
 413			return 0;
 414		}
 415		kdb_flags = (kdb_flags &
 416			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 417			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 418
 419		return 0;
 420	}
 421
 422	/*
 423	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 424	 * name, argv[2] = value.
 425	 */
 426	varlen = strlen(argv[1]);
 427	vallen = strlen(argv[2]);
 428	ep = kdballocenv(varlen + vallen + 2);
 429	if (ep == (char *)0)
 430		return KDB_ENVBUFFULL;
 431
 432	sprintf(ep, "%s=%s", argv[1], argv[2]);
 433
 434	ep[varlen+vallen+1] = '\0';
 435
 436	for (i = 0; i < __nenv; i++) {
 437		if (__env[i]
 438		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 439		   && ((__env[i][varlen] == '\0')
 440		    || (__env[i][varlen] == '=')))) {
 441			__env[i] = ep;
 442			return 0;
 443		}
 444	}
 445
 446	/*
 447	 * Wasn't existing variable.  Fit into slot.
 448	 */
 449	for (i = 0; i < __nenv-1; i++) {
 450		if (__env[i] == (char *)0) {
 451			__env[i] = ep;
 452			return 0;
 453		}
 454	}
 455
 456	return KDB_ENVFULL;
 457}
 458
 459static int kdb_check_regs(void)
 460{
 461	if (!kdb_current_regs) {
 462		kdb_printf("No current kdb registers."
 463			   "  You may need to select another task\n");
 464		return KDB_BADREG;
 465	}
 466	return 0;
 467}
 468
 469/*
 470 * kdbgetaddrarg - This function is responsible for parsing an
 471 *	address-expression and returning the value of the expression,
 472 *	symbol name, and offset to the caller.
 473 *
 474 *	The argument may consist of a numeric value (decimal or
 475 *	hexidecimal), a symbol name, a register name (preceded by the
 476 *	percent sign), an environment variable with a numeric value
 477 *	(preceded by a dollar sign) or a simple arithmetic expression
 478 *	consisting of a symbol name, +/-, and a numeric constant value
 479 *	(offset).
 480 * Parameters:
 481 *	argc	- count of arguments in argv
 482 *	argv	- argument vector
 483 *	*nextarg - index to next unparsed argument in argv[]
 484 *	regs	- Register state at time of KDB entry
 485 * Outputs:
 486 *	*value	- receives the value of the address-expression
 487 *	*offset - receives the offset specified, if any
 488 *	*name   - receives the symbol name, if any
 489 *	*nextarg - index to next unparsed argument in argv[]
 490 * Returns:
 491 *	zero is returned on success, a kdb diagnostic code is
 492 *      returned on error.
 493 */
 494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 495		  unsigned long *value,  long *offset,
 496		  char **name)
 497{
 498	unsigned long addr;
 499	unsigned long off = 0;
 500	int positive;
 501	int diag;
 502	int found = 0;
 503	char *symname;
 504	char symbol = '\0';
 505	char *cp;
 506	kdb_symtab_t symtab;
 507
 508	/*
 509	 * If the enable flags prohibit both arbitrary memory access
 510	 * and flow control then there are no reasonable grounds to
 511	 * provide symbol lookup.
 512	 */
 513	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 514			     kdb_cmd_enabled, false))
 515		return KDB_NOPERM;
 516
 517	/*
 518	 * Process arguments which follow the following syntax:
 519	 *
 520	 *  symbol | numeric-address [+/- numeric-offset]
 521	 *  %register
 522	 *  $environment-variable
 523	 */
 524
 525	if (*nextarg > argc)
 526		return KDB_ARGCOUNT;
 527
 528	symname = (char *)argv[*nextarg];
 529
 530	/*
 531	 * If there is no whitespace between the symbol
 532	 * or address and the '+' or '-' symbols, we
 533	 * remember the character and replace it with a
 534	 * null so the symbol/value can be properly parsed
 535	 */
 536	cp = strpbrk(symname, "+-");
 537	if (cp != NULL) {
 538		symbol = *cp;
 539		*cp++ = '\0';
 540	}
 541
 542	if (symname[0] == '$') {
 543		diag = kdbgetulenv(&symname[1], &addr);
 544		if (diag)
 545			return diag;
 546	} else if (symname[0] == '%') {
 547		diag = kdb_check_regs();
 548		if (diag)
 549			return diag;
 550		/* Implement register values with % at a later time as it is
 551		 * arch optional.
 552		 */
 553		return KDB_NOTIMP;
 554	} else {
 555		found = kdbgetsymval(symname, &symtab);
 556		if (found) {
 557			addr = symtab.sym_start;
 558		} else {
 559			diag = kdbgetularg(argv[*nextarg], &addr);
 560			if (diag)
 561				return diag;
 562		}
 563	}
 564
 565	if (!found)
 566		found = kdbnearsym(addr, &symtab);
 567
 568	(*nextarg)++;
 569
 570	if (name)
 571		*name = symname;
 572	if (value)
 573		*value = addr;
 574	if (offset && name && *name)
 575		*offset = addr - symtab.sym_start;
 576
 577	if ((*nextarg > argc)
 578	 && (symbol == '\0'))
 579		return 0;
 580
 581	/*
 582	 * check for +/- and offset
 583	 */
 584
 585	if (symbol == '\0') {
 586		if ((argv[*nextarg][0] != '+')
 587		 && (argv[*nextarg][0] != '-')) {
 588			/*
 589			 * Not our argument.  Return.
 590			 */
 591			return 0;
 592		} else {
 593			positive = (argv[*nextarg][0] == '+');
 594			(*nextarg)++;
 595		}
 596	} else
 597		positive = (symbol == '+');
 598
 599	/*
 600	 * Now there must be an offset!
 601	 */
 602	if ((*nextarg > argc)
 603	 && (symbol == '\0')) {
 604		return KDB_INVADDRFMT;
 605	}
 606
 607	if (!symbol) {
 608		cp = (char *)argv[*nextarg];
 609		(*nextarg)++;
 610	}
 611
 612	diag = kdbgetularg(cp, &off);
 613	if (diag)
 614		return diag;
 615
 616	if (!positive)
 617		off = -off;
 618
 619	if (offset)
 620		*offset += off;
 621
 622	if (value)
 623		*value += off;
 624
 625	return 0;
 626}
 627
 628static void kdb_cmderror(int diag)
 629{
 630	int i;
 631
 632	if (diag >= 0) {
 633		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 634		return;
 635	}
 636
 637	for (i = 0; i < __nkdb_err; i++) {
 638		if (kdbmsgs[i].km_diag == diag) {
 639			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 640			return;
 641		}
 642	}
 643
 644	kdb_printf("Unknown diag %d\n", -diag);
 645}
 646
 647/*
 648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 649 *	command which defines one command as a set of other commands,
 650 *	terminated by endefcmd.  kdb_defcmd processes the initial
 651 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 652 *	the following commands until 'endefcmd'.
 653 * Inputs:
 654 *	argc	argument count
 655 *	argv	argument vector
 656 * Returns:
 657 *	zero for success, a kdb diagnostic if error
 658 */
 659struct defcmd_set {
 660	int count;
 661	bool usable;
 662	char *name;
 663	char *usage;
 664	char *help;
 665	char **command;
 
 666};
 667static struct defcmd_set *defcmd_set;
 668static int defcmd_set_count;
 669static bool defcmd_in_progress;
 670
 671/* Forward references */
 672static int kdb_exec_defcmd(int argc, const char **argv);
 673
 674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 675{
 676	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 677	char **save_command = s->command;
 
 
 
 678	if (strcmp(argv0, "endefcmd") == 0) {
 679		defcmd_in_progress = false;
 680		if (!s->count)
 681			s->usable = false;
 682		if (s->usable)
 683			/* macros are always safe because when executed each
 684			 * internal command re-enters kdb_parse() and is
 685			 * safety checked individually.
 686			 */
 687			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 688					   s->help, 0,
 689					   KDB_ENABLE_ALWAYS_SAFE);
 690		return 0;
 691	}
 692	if (!s->usable)
 693		return KDB_NOTIMP;
 694	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 695	if (!s->command) {
 696		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 697			   cmdstr);
 698		s->usable = false;
 699		return KDB_NOTIMP;
 700	}
 701	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 702	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 703	kfree(save_command);
 
 704	return 0;
 705}
 706
 707static int kdb_defcmd(int argc, const char **argv)
 708{
 709	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 
 710	if (defcmd_in_progress) {
 711		kdb_printf("kdb: nested defcmd detected, assuming missing "
 712			   "endefcmd\n");
 713		kdb_defcmd2("endefcmd", "endefcmd");
 714	}
 715	if (argc == 0) {
 716		int i;
 717		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 718			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 719				   s->usage, s->help);
 720			for (i = 0; i < s->count; ++i)
 721				kdb_printf("%s", s->command[i]);
 722			kdb_printf("endefcmd\n");
 
 
 
 
 
 
 
 723		}
 724		return 0;
 725	}
 726	if (argc != 3)
 727		return KDB_ARGCOUNT;
 728	if (in_dbg_master()) {
 729		kdb_printf("Command only available during kdb_init()\n");
 730		return KDB_NOTIMP;
 731	}
 732	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 733				   GFP_KDB);
 734	if (!defcmd_set)
 735		goto fail_defcmd;
 736	memcpy(defcmd_set, save_defcmd_set,
 737	       defcmd_set_count * sizeof(*defcmd_set));
 738	s = defcmd_set + defcmd_set_count;
 739	memset(s, 0, sizeof(*s));
 740	s->usable = true;
 741	s->name = kdb_strdup(argv[1], GFP_KDB);
 742	if (!s->name)
 743		goto fail_name;
 744	s->usage = kdb_strdup(argv[2], GFP_KDB);
 745	if (!s->usage)
 746		goto fail_usage;
 747	s->help = kdb_strdup(argv[3], GFP_KDB);
 748	if (!s->help)
 749		goto fail_help;
 750	if (s->usage[0] == '"') {
 751		strcpy(s->usage, argv[2]+1);
 752		s->usage[strlen(s->usage)-1] = '\0';
 753	}
 754	if (s->help[0] == '"') {
 755		strcpy(s->help, argv[3]+1);
 756		s->help[strlen(s->help)-1] = '\0';
 757	}
 758	++defcmd_set_count;
 
 759	defcmd_in_progress = true;
 760	kfree(save_defcmd_set);
 761	return 0;
 762fail_help:
 763	kfree(s->usage);
 764fail_usage:
 765	kfree(s->name);
 766fail_name:
 767	kfree(defcmd_set);
 768fail_defcmd:
 769	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 770	defcmd_set = save_defcmd_set;
 771	return KDB_NOTIMP;
 772}
 773
 774/*
 775 * kdb_exec_defcmd - Execute the set of commands associated with this
 776 *	defcmd name.
 777 * Inputs:
 778 *	argc	argument count
 779 *	argv	argument vector
 780 * Returns:
 781 *	zero for success, a kdb diagnostic if error
 782 */
 783static int kdb_exec_defcmd(int argc, const char **argv)
 784{
 785	int i, ret;
 786	struct defcmd_set *s;
 
 
 
 787	if (argc != 0)
 788		return KDB_ARGCOUNT;
 789	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 790		if (strcmp(s->name, argv[0]) == 0)
 
 791			break;
 792	}
 793	if (i == defcmd_set_count) {
 794		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 795			   argv[0]);
 796		return KDB_NOTIMP;
 797	}
 798	for (i = 0; i < s->count; ++i) {
 799		/* Recursive use of kdb_parse, do not use argv after
 800		 * this point */
 
 
 801		argv = NULL;
 802		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 803		ret = kdb_parse(s->command[i]);
 804		if (ret)
 805			return ret;
 806	}
 807	return 0;
 808}
 809
 810/* Command history */
 811#define KDB_CMD_HISTORY_COUNT	32
 812#define CMD_BUFLEN		200	/* kdb_printf: max printline
 813					 * size == 256 */
 814static unsigned int cmd_head, cmd_tail;
 815static unsigned int cmdptr;
 816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 817static char cmd_cur[CMD_BUFLEN];
 818
 819/*
 820 * The "str" argument may point to something like  | grep xyz
 821 */
 822static void parse_grep(const char *str)
 823{
 824	int	len;
 825	char	*cp = (char *)str, *cp2;
 826
 827	/* sanity check: we should have been called with the \ first */
 828	if (*cp != '|')
 829		return;
 830	cp++;
 831	while (isspace(*cp))
 832		cp++;
 833	if (!str_has_prefix(cp, "grep ")) {
 834		kdb_printf("invalid 'pipe', see grephelp\n");
 835		return;
 836	}
 837	cp += 5;
 838	while (isspace(*cp))
 839		cp++;
 840	cp2 = strchr(cp, '\n');
 841	if (cp2)
 842		*cp2 = '\0'; /* remove the trailing newline */
 843	len = strlen(cp);
 844	if (len == 0) {
 845		kdb_printf("invalid 'pipe', see grephelp\n");
 846		return;
 847	}
 848	/* now cp points to a nonzero length search string */
 849	if (*cp == '"') {
 850		/* allow it be "x y z" by removing the "'s - there must
 851		   be two of them */
 852		cp++;
 853		cp2 = strchr(cp, '"');
 854		if (!cp2) {
 855			kdb_printf("invalid quoted string, see grephelp\n");
 856			return;
 857		}
 858		*cp2 = '\0'; /* end the string where the 2nd " was */
 859	}
 860	kdb_grep_leading = 0;
 861	if (*cp == '^') {
 862		kdb_grep_leading = 1;
 863		cp++;
 864	}
 865	len = strlen(cp);
 866	kdb_grep_trailing = 0;
 867	if (*(cp+len-1) == '$') {
 868		kdb_grep_trailing = 1;
 869		*(cp+len-1) = '\0';
 870	}
 871	len = strlen(cp);
 872	if (!len)
 873		return;
 874	if (len >= KDB_GREP_STRLEN) {
 875		kdb_printf("search string too long\n");
 876		return;
 877	}
 878	strcpy(kdb_grep_string, cp);
 879	kdb_grepping_flag++;
 880	return;
 881}
 882
 883/*
 884 * kdb_parse - Parse the command line, search the command table for a
 885 *	matching command and invoke the command function.  This
 886 *	function may be called recursively, if it is, the second call
 887 *	will overwrite argv and cbuf.  It is the caller's
 888 *	responsibility to save their argv if they recursively call
 889 *	kdb_parse().
 890 * Parameters:
 891 *      cmdstr	The input command line to be parsed.
 892 *	regs	The registers at the time kdb was entered.
 893 * Returns:
 894 *	Zero for success, a kdb diagnostic if failure.
 895 * Remarks:
 896 *	Limited to 20 tokens.
 897 *
 898 *	Real rudimentary tokenization. Basically only whitespace
 899 *	is considered a token delimeter (but special consideration
 900 *	is taken of the '=' sign as used by the 'set' command).
 901 *
 902 *	The algorithm used to tokenize the input string relies on
 903 *	there being at least one whitespace (or otherwise useless)
 904 *	character between tokens as the character immediately following
 905 *	the token is altered in-place to a null-byte to terminate the
 906 *	token string.
 907 */
 908
 909#define MAXARGC	20
 910
 911int kdb_parse(const char *cmdstr)
 912{
 913	static char *argv[MAXARGC];
 914	static int argc;
 915	static char cbuf[CMD_BUFLEN+2];
 916	char *cp;
 917	char *cpp, quoted;
 918	kdbtab_t *tp;
 919	int i, escaped, ignore_errors = 0, check_grep = 0;
 920
 921	/*
 922	 * First tokenize the command string.
 923	 */
 924	cp = (char *)cmdstr;
 925
 926	if (KDB_FLAG(CMD_INTERRUPT)) {
 927		/* Previous command was interrupted, newline must not
 928		 * repeat the command */
 929		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 930		KDB_STATE_SET(PAGER);
 931		argc = 0;	/* no repeat */
 932	}
 933
 934	if (*cp != '\n' && *cp != '\0') {
 935		argc = 0;
 936		cpp = cbuf;
 937		while (*cp) {
 938			/* skip whitespace */
 939			while (isspace(*cp))
 940				cp++;
 941			if ((*cp == '\0') || (*cp == '\n') ||
 942			    (*cp == '#' && !defcmd_in_progress))
 943				break;
 944			/* special case: check for | grep pattern */
 945			if (*cp == '|') {
 946				check_grep++;
 947				break;
 948			}
 949			if (cpp >= cbuf + CMD_BUFLEN) {
 950				kdb_printf("kdb_parse: command buffer "
 951					   "overflow, command ignored\n%s\n",
 952					   cmdstr);
 953				return KDB_NOTFOUND;
 954			}
 955			if (argc >= MAXARGC - 1) {
 956				kdb_printf("kdb_parse: too many arguments, "
 957					   "command ignored\n%s\n", cmdstr);
 958				return KDB_NOTFOUND;
 959			}
 960			argv[argc++] = cpp;
 961			escaped = 0;
 962			quoted = '\0';
 963			/* Copy to next unquoted and unescaped
 964			 * whitespace or '=' */
 965			while (*cp && *cp != '\n' &&
 966			       (escaped || quoted || !isspace(*cp))) {
 967				if (cpp >= cbuf + CMD_BUFLEN)
 968					break;
 969				if (escaped) {
 970					escaped = 0;
 971					*cpp++ = *cp++;
 972					continue;
 973				}
 974				if (*cp == '\\') {
 975					escaped = 1;
 976					++cp;
 977					continue;
 978				}
 979				if (*cp == quoted)
 980					quoted = '\0';
 981				else if (*cp == '\'' || *cp == '"')
 982					quoted = *cp;
 983				*cpp = *cp++;
 984				if (*cpp == '=' && !quoted)
 985					break;
 986				++cpp;
 987			}
 988			*cpp++ = '\0';	/* Squash a ws or '=' character */
 989		}
 990	}
 991	if (!argc)
 992		return 0;
 993	if (check_grep)
 994		parse_grep(cp);
 995	if (defcmd_in_progress) {
 996		int result = kdb_defcmd2(cmdstr, argv[0]);
 997		if (!defcmd_in_progress) {
 998			argc = 0;	/* avoid repeat on endefcmd */
 999			*(argv[0]) = '\0';
1000		}
1001		return result;
1002	}
1003	if (argv[0][0] == '-' && argv[0][1] &&
1004	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1005		ignore_errors = 1;
1006		++argv[0];
1007	}
1008
1009	for_each_kdbcmd(tp, i) {
1010		if (tp->cmd_name) {
1011			/*
1012			 * If this command is allowed to be abbreviated,
1013			 * check to see if this is it.
1014			 */
 
 
1015
1016			if (tp->cmd_minlen
1017			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018				if (strncmp(argv[0],
1019					    tp->cmd_name,
1020					    tp->cmd_minlen) == 0) {
1021					break;
1022				}
1023			}
1024
1025			if (strcmp(argv[0], tp->cmd_name) == 0)
1026				break;
1027		}
1028	}
1029
1030	/*
1031	 * If we don't find a command by this name, see if the first
1032	 * few characters of this match any of the known commands.
1033	 * e.g., md1c20 should match md.
1034	 */
1035	if (i == kdb_max_commands) {
1036		for_each_kdbcmd(tp, i) {
1037			if (tp->cmd_name) {
1038				if (strncmp(argv[0],
1039					    tp->cmd_name,
1040					    strlen(tp->cmd_name)) == 0) {
1041					break;
1042				}
1043			}
1044		}
1045	}
1046
1047	if (i < kdb_max_commands) {
1048		int result;
1049
1050		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051			return KDB_NOPERM;
1052
1053		KDB_STATE_SET(CMD);
1054		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055		if (result && ignore_errors && result > KDB_CMD_GO)
1056			result = 0;
1057		KDB_STATE_CLEAR(CMD);
1058
1059		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060			return result;
1061
1062		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063		if (argv[argc])
1064			*(argv[argc]) = '\0';
1065		return result;
1066	}
1067
1068	/*
1069	 * If the input with which we were presented does not
1070	 * map to an existing command, attempt to parse it as an
1071	 * address argument and display the result.   Useful for
1072	 * obtaining the address of a variable, or the nearest symbol
1073	 * to an address contained in a register.
1074	 */
1075	{
1076		unsigned long value;
1077		char *name = NULL;
1078		long offset;
1079		int nextarg = 0;
1080
1081		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082				  &value, &offset, &name)) {
1083			return KDB_NOTFOUND;
1084		}
1085
1086		kdb_printf("%s = ", argv[0]);
1087		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088		kdb_printf("\n");
1089		return 0;
1090	}
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P	16
1097#define CTRL_N	14
1098
1099	/* initial situation */
1100	if (cmd_head == cmd_tail)
1101		return 0;
1102	switch (*cmd) {
1103	case CTRL_P:
1104		if (cmdptr != cmd_tail)
1105			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1107		return 1;
1108	case CTRL_N:
1109		if (cmdptr != cmd_head)
1110			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112		return 1;
1113	}
1114	return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1119 *	the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123	emergency_restart();
1124	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125	while (1)
1126		cpu_relax();
1127	/* NOTREACHED */
1128	return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133	int old_lvl = console_loglevel;
1134	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135	kdb_trap_printk++;
1136	show_regs(regs);
1137	kdb_trap_printk--;
1138	kdb_printf("\n");
1139	console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144	kdb_current_task = p;
1145
1146	if (kdb_task_has_cpu(p)) {
1147		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148		return;
1149	}
1150	kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155	size_t len = strlen(buf);
1156
1157	if (len == 0)
1158		return;
1159	if (*(buf + len - 1) == '\n')
1160		*(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb.  This routine is invoked on a
1165 *	specific processor, it is not global.  The main kdb() routine
1166 *	ensures that only one processor at a time is in this routine.
1167 *	This code is called with the real reason code on the first
1168 *	entry to a kdb session, thereafter it is called with reason
1169 *	SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 *	reason		The reason KDB was invoked
1172 *	error		The hardware-defined error code
1173 *	regs		The exception frame at time of fault/breakpoint.
1174 *	db_result	Result code from the break or debug point.
1175 * Returns:
1176 *	0	KDB was invoked for an event which it wasn't responsible
1177 *	1	KDB handled the event for which it was invoked.
1178 *	KDB_CMD_GO	User typed 'go'.
1179 *	KDB_CMD_CPU	User switched to another cpu.
1180 *	KDB_CMD_SS	Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183		     kdb_dbtrap_t db_result)
1184{
1185	char *cmdbuf;
1186	int diag;
1187	struct task_struct *kdb_current =
1188		kdb_curr_task(raw_smp_processor_id());
1189
1190	KDB_DEBUG_STATE("kdb_local 1", reason);
 
 
 
1191	kdb_go_count = 0;
1192	if (reason == KDB_REASON_DEBUG) {
1193		/* special case below */
1194	} else {
1195		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1196			   kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198		kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200	}
1201
1202	switch (reason) {
1203	case KDB_REASON_DEBUG:
1204	{
1205		/*
1206		 * If re-entering kdb after a single step
1207		 * command, don't print the message.
1208		 */
1209		switch (db_result) {
1210		case KDB_DB_BPT:
1211			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1212				   kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214			kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217				   instruction_pointer(regs));
1218			break;
1219		case KDB_DB_SS:
1220			break;
1221		case KDB_DB_SSBPT:
1222			KDB_DEBUG_STATE("kdb_local 4", reason);
1223			return 1;	/* kdba_db_trap did the work */
1224		default:
1225			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226				   db_result);
1227			break;
1228		}
1229
1230	}
1231		break;
1232	case KDB_REASON_ENTER:
1233		if (KDB_STATE(KEYBOARD))
1234			kdb_printf("due to Keyboard Entry\n");
1235		else
1236			kdb_printf("due to KDB_ENTER()\n");
1237		break;
1238	case KDB_REASON_KEYBOARD:
1239		KDB_STATE_SET(KEYBOARD);
1240		kdb_printf("due to Keyboard Entry\n");
1241		break;
1242	case KDB_REASON_ENTER_SLAVE:
1243		/* drop through, slaves only get released via cpu switch */
1244	case KDB_REASON_SWITCH:
1245		kdb_printf("due to cpu switch\n");
1246		break;
1247	case KDB_REASON_OOPS:
1248		kdb_printf("Oops: %s\n", kdb_diemsg);
1249		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250			   instruction_pointer(regs));
1251		kdb_dumpregs(regs);
1252		break;
1253	case KDB_REASON_SYSTEM_NMI:
1254		kdb_printf("due to System NonMaskable Interrupt\n");
1255		break;
1256	case KDB_REASON_NMI:
1257		kdb_printf("due to NonMaskable Interrupt @ "
1258			   kdb_machreg_fmt "\n",
1259			   instruction_pointer(regs));
1260		break;
1261	case KDB_REASON_SSTEP:
1262	case KDB_REASON_BREAK:
1263		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264			   reason == KDB_REASON_BREAK ?
1265			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1266		/*
1267		 * Determine if this breakpoint is one that we
1268		 * are interested in.
1269		 */
1270		if (db_result != KDB_DB_BPT) {
1271			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272				   db_result);
1273			KDB_DEBUG_STATE("kdb_local 6", reason);
1274			return 0;	/* Not for us, dismiss it */
1275		}
1276		break;
1277	case KDB_REASON_RECURSE:
1278		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279			   instruction_pointer(regs));
1280		break;
1281	default:
1282		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283		KDB_DEBUG_STATE("kdb_local 8", reason);
1284		return 0;	/* Not for us, dismiss it */
1285	}
1286
1287	while (1) {
1288		/*
1289		 * Initialize pager context.
1290		 */
1291		kdb_nextline = 1;
1292		KDB_STATE_CLEAR(SUPPRESS);
1293		kdb_grepping_flag = 0;
1294		/* ensure the old search does not leak into '/' commands */
1295		kdb_grep_string[0] = '\0';
1296
1297		cmdbuf = cmd_cur;
1298		*cmdbuf = '\0';
1299		*(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304			 raw_smp_processor_id());
1305#else
1306		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308		if (defcmd_in_progress)
1309			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311		/*
1312		 * Fetch command from keyboard
1313		 */
1314		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315		if (*cmdbuf != '\n') {
1316			if (*cmdbuf < 32) {
1317				if (cmdptr == cmd_head) {
1318					strncpy(cmd_hist[cmd_head], cmd_cur,
1319						CMD_BUFLEN);
1320					*(cmd_hist[cmd_head] +
1321					  strlen(cmd_hist[cmd_head])-1) = '\0';
1322				}
1323				if (!handle_ctrl_cmd(cmdbuf))
1324					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325				cmdbuf = cmd_cur;
1326				goto do_full_getstr;
1327			} else {
1328				strncpy(cmd_hist[cmd_head], cmd_cur,
1329					CMD_BUFLEN);
1330			}
1331
1332			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333			if (cmd_head == cmd_tail)
1334				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335		}
1336
1337		cmdptr = cmd_head;
1338		diag = kdb_parse(cmdbuf);
1339		if (diag == KDB_NOTFOUND) {
1340			drop_newline(cmdbuf);
1341			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342			diag = 0;
1343		}
1344		if (diag == KDB_CMD_GO
1345		 || diag == KDB_CMD_CPU
1346		 || diag == KDB_CMD_SS
1347		 || diag == KDB_CMD_KGDB)
1348			break;
1349
1350		if (diag)
1351			kdb_cmderror(diag);
1352	}
1353	KDB_DEBUG_STATE("kdb_local 9", diag);
1354	return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 *	for debugging.
1361 * Inputs:
1362 *	text		Identifies the debug point
1363 *	value		Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369		   kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 *	controlling cpu, all cpus are in this loop.  One cpu is in
1375 *	control and will issue the kdb prompt, the others will spin
1376 *	until 'go' or cpu switch.
1377 *
1378 *	To get a consistent view of the kernel stacks for all
1379 *	processes, this routine is invoked from the main kdb code via
1380 *	an architecture specific routine.  kdba_main_loop is
1381 *	responsible for making the kernel stacks consistent for all
1382 *	processes, there should be no difference between a blocked
1383 *	process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 *	reason		The reason KDB was invoked
1386 *	error		The hardware-defined error code
1387 *	reason2		kdb's current reason code.
1388 *			Initially error but can change
1389 *			according to kdb state.
1390 *	db_result	Result code from break or debug point.
1391 *	regs		The exception frame at time of fault/breakpoint.
1392 *			should always be valid.
1393 * Returns:
1394 *	0	KDB was invoked for an event which it wasn't responsible
1395 *	1	KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400	int result = 1;
1401	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1402	while (1) {
1403		/*
1404		 * All processors except the one that is in control
1405		 * will spin here.
1406		 */
1407		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408		while (KDB_STATE(HOLD_CPU)) {
1409			/* state KDB is turned off by kdb_cpu to see if the
1410			 * other cpus are still live, each cpu in this loop
1411			 * turns it back on.
1412			 */
1413			if (!KDB_STATE(KDB))
1414				KDB_STATE_SET(KDB);
1415		}
1416
1417		KDB_STATE_CLEAR(SUPPRESS);
1418		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419		if (KDB_STATE(LEAVING))
1420			break;	/* Another cpu said 'go' */
1421		/* Still using kdb, this processor is in control */
1422		result = kdb_local(reason2, error, regs, db_result);
1423		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425		if (result == KDB_CMD_CPU)
1426			break;
1427
1428		if (result == KDB_CMD_SS) {
1429			KDB_STATE_SET(DOING_SS);
1430			break;
1431		}
1432
1433		if (result == KDB_CMD_KGDB) {
1434			if (!KDB_STATE(DOING_KGDB))
1435				kdb_printf("Entering please attach debugger "
1436					   "or use $D#44+ or $3#33\n");
1437			break;
1438		}
1439		if (result && result != 1 && result != KDB_CMD_GO)
1440			kdb_printf("\nUnexpected kdb_local return code %d\n",
1441				   result);
1442		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443		break;
1444	}
1445	if (KDB_STATE(DOING_SS))
1446		KDB_STATE_CLEAR(SSBPT);
1447
1448	/* Clean up any keyboard devices before leaving */
1449	kdb_kbd_cleanup_state();
1450
1451	return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 *	mdr  <addr arg>,<byte count>
1458 * Inputs:
1459 *	addr	Start address
1460 *	count	Number of bytes
1461 * Returns:
1462 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466	unsigned char c;
1467	while (count--) {
1468		if (kdb_getarea(c, addr))
1469			return 0;
1470		kdb_printf("%02x", c);
1471		addr++;
1472	}
1473	kdb_printf("\n");
1474	return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 *	'md8' 'mdr' and 'mds' commands.
1480 *
1481 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1482 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1483 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1484 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1485 *	mdr  <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488			int symbolic, int nosect, int bytesperword,
1489			int num, int repeat, int phys)
1490{
1491	/* print just one line of data */
1492	kdb_symtab_t symtab;
1493	char cbuf[32];
1494	char *c = cbuf;
1495	int i;
1496	int j;
1497	unsigned long word;
1498
1499	memset(cbuf, '\0', sizeof(cbuf));
1500	if (phys)
1501		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1502	else
1503		kdb_printf(kdb_machreg_fmt0 " ", addr);
1504
1505	for (i = 0; i < num && repeat--; i++) {
1506		if (phys) {
1507			if (kdb_getphysword(&word, addr, bytesperword))
1508				break;
1509		} else if (kdb_getword(&word, addr, bytesperword))
1510			break;
1511		kdb_printf(fmtstr, word);
1512		if (symbolic)
1513			kdbnearsym(word, &symtab);
1514		else
1515			memset(&symtab, 0, sizeof(symtab));
1516		if (symtab.sym_name) {
1517			kdb_symbol_print(word, &symtab, 0);
1518			if (!nosect) {
1519				kdb_printf("\n");
1520				kdb_printf("                       %s %s "
1521					   kdb_machreg_fmt " "
1522					   kdb_machreg_fmt " "
1523					   kdb_machreg_fmt, symtab.mod_name,
1524					   symtab.sec_name, symtab.sec_start,
1525					   symtab.sym_start, symtab.sym_end);
1526			}
1527			addr += bytesperword;
1528		} else {
1529			union {
1530				u64 word;
1531				unsigned char c[8];
1532			} wc;
1533			unsigned char *cp;
1534#ifdef	__BIG_ENDIAN
1535			cp = wc.c + 8 - bytesperword;
1536#else
1537			cp = wc.c;
1538#endif
1539			wc.word = word;
1540#define printable_char(c) \
1541	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1542			for (j = 0; j < bytesperword; j++)
1543				*c++ = printable_char(*cp++);
1544			addr += bytesperword;
1545#undef printable_char
1546		}
1547	}
1548	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1549		   " ", cbuf);
1550}
1551
1552static int kdb_md(int argc, const char **argv)
1553{
1554	static unsigned long last_addr;
1555	static int last_radix, last_bytesperword, last_repeat;
1556	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1557	int nosect = 0;
1558	char fmtchar, fmtstr[64];
1559	unsigned long addr;
1560	unsigned long word;
1561	long offset = 0;
1562	int symbolic = 0;
1563	int valid = 0;
1564	int phys = 0;
1565	int raw = 0;
1566
1567	kdbgetintenv("MDCOUNT", &mdcount);
1568	kdbgetintenv("RADIX", &radix);
1569	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571	/* Assume 'md <addr>' and start with environment values */
1572	repeat = mdcount * 16 / bytesperword;
1573
1574	if (strcmp(argv[0], "mdr") == 0) {
1575		if (argc == 2 || (argc == 0 && last_addr != 0))
1576			valid = raw = 1;
1577		else
1578			return KDB_ARGCOUNT;
1579	} else if (isdigit(argv[0][2])) {
1580		bytesperword = (int)(argv[0][2] - '0');
1581		if (bytesperword == 0) {
1582			bytesperword = last_bytesperword;
1583			if (bytesperword == 0)
1584				bytesperword = 4;
1585		}
1586		last_bytesperword = bytesperword;
1587		repeat = mdcount * 16 / bytesperword;
1588		if (!argv[0][3])
1589			valid = 1;
1590		else if (argv[0][3] == 'c' && argv[0][4]) {
1591			char *p;
1592			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593			mdcount = ((repeat * bytesperword) + 15) / 16;
1594			valid = !*p;
1595		}
1596		last_repeat = repeat;
1597	} else if (strcmp(argv[0], "md") == 0)
1598		valid = 1;
1599	else if (strcmp(argv[0], "mds") == 0)
1600		valid = 1;
1601	else if (strcmp(argv[0], "mdp") == 0) {
1602		phys = valid = 1;
1603	}
1604	if (!valid)
1605		return KDB_NOTFOUND;
1606
1607	if (argc == 0) {
1608		if (last_addr == 0)
1609			return KDB_ARGCOUNT;
1610		addr = last_addr;
1611		radix = last_radix;
1612		bytesperword = last_bytesperword;
1613		repeat = last_repeat;
1614		if (raw)
1615			mdcount = repeat;
1616		else
1617			mdcount = ((repeat * bytesperword) + 15) / 16;
1618	}
1619
1620	if (argc) {
1621		unsigned long val;
1622		int diag, nextarg = 1;
1623		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1624				     &offset, NULL);
1625		if (diag)
1626			return diag;
1627		if (argc > nextarg+2)
1628			return KDB_ARGCOUNT;
1629
1630		if (argc >= nextarg) {
1631			diag = kdbgetularg(argv[nextarg], &val);
1632			if (!diag) {
1633				mdcount = (int) val;
1634				if (raw)
1635					repeat = mdcount;
1636				else
1637					repeat = mdcount * 16 / bytesperword;
1638			}
1639		}
1640		if (argc >= nextarg+1) {
1641			diag = kdbgetularg(argv[nextarg+1], &val);
1642			if (!diag)
1643				radix = (int) val;
1644		}
1645	}
1646
1647	if (strcmp(argv[0], "mdr") == 0) {
1648		int ret;
1649		last_addr = addr;
1650		ret = kdb_mdr(addr, mdcount);
1651		last_addr += mdcount;
1652		last_repeat = mdcount;
1653		last_bytesperword = bytesperword; // to make REPEAT happy
1654		return ret;
1655	}
1656
1657	switch (radix) {
1658	case 10:
1659		fmtchar = 'd';
1660		break;
1661	case 16:
1662		fmtchar = 'x';
1663		break;
1664	case 8:
1665		fmtchar = 'o';
1666		break;
1667	default:
1668		return KDB_BADRADIX;
1669	}
1670
1671	last_radix = radix;
1672
1673	if (bytesperword > KDB_WORD_SIZE)
1674		return KDB_BADWIDTH;
1675
1676	switch (bytesperword) {
1677	case 8:
1678		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1679		break;
1680	case 4:
1681		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1682		break;
1683	case 2:
1684		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1685		break;
1686	case 1:
1687		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1688		break;
1689	default:
1690		return KDB_BADWIDTH;
1691	}
1692
1693	last_repeat = repeat;
1694	last_bytesperword = bytesperword;
1695
1696	if (strcmp(argv[0], "mds") == 0) {
1697		symbolic = 1;
1698		/* Do not save these changes as last_*, they are temporary mds
1699		 * overrides.
1700		 */
1701		bytesperword = KDB_WORD_SIZE;
1702		repeat = mdcount;
1703		kdbgetintenv("NOSECT", &nosect);
1704	}
1705
1706	/* Round address down modulo BYTESPERWORD */
1707
1708	addr &= ~(bytesperword-1);
1709
1710	while (repeat > 0) {
1711		unsigned long a;
1712		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1713
1714		if (KDB_FLAG(CMD_INTERRUPT))
1715			return 0;
1716		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1717			if (phys) {
1718				if (kdb_getphysword(&word, a, bytesperword)
1719						|| word)
1720					break;
1721			} else if (kdb_getword(&word, a, bytesperword) || word)
1722				break;
1723		}
1724		n = min(num, repeat);
1725		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1726			    num, repeat, phys);
1727		addr += bytesperword * n;
1728		repeat -= n;
1729		z = (z + num - 1) / num;
1730		if (z > 2) {
1731			int s = num * (z-2);
1732			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1733				   " zero suppressed\n",
1734				addr, addr + bytesperword * s - 1);
1735			addr += bytesperword * s;
1736			repeat -= s;
1737		}
1738	}
1739	last_addr = addr;
1740
1741	return 0;
1742}
1743
1744/*
1745 * kdb_mm - This function implements the 'mm' command.
1746 *	mm address-expression new-value
1747 * Remarks:
1748 *	mm works on machine words, mmW works on bytes.
1749 */
1750static int kdb_mm(int argc, const char **argv)
1751{
1752	int diag;
1753	unsigned long addr;
1754	long offset = 0;
1755	unsigned long contents;
1756	int nextarg;
1757	int width;
1758
1759	if (argv[0][2] && !isdigit(argv[0][2]))
1760		return KDB_NOTFOUND;
1761
1762	if (argc < 2)
1763		return KDB_ARGCOUNT;
1764
1765	nextarg = 1;
1766	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1767	if (diag)
1768		return diag;
1769
1770	if (nextarg > argc)
1771		return KDB_ARGCOUNT;
1772	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1773	if (diag)
1774		return diag;
1775
1776	if (nextarg != argc + 1)
1777		return KDB_ARGCOUNT;
1778
1779	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1780	diag = kdb_putword(addr, contents, width);
1781	if (diag)
1782		return diag;
1783
1784	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1785
1786	return 0;
1787}
1788
1789/*
1790 * kdb_go - This function implements the 'go' command.
1791 *	go [address-expression]
1792 */
1793static int kdb_go(int argc, const char **argv)
1794{
1795	unsigned long addr;
1796	int diag;
1797	int nextarg;
1798	long offset;
1799
1800	if (raw_smp_processor_id() != kdb_initial_cpu) {
1801		kdb_printf("go must execute on the entry cpu, "
1802			   "please use \"cpu %d\" and then execute go\n",
1803			   kdb_initial_cpu);
1804		return KDB_BADCPUNUM;
1805	}
1806	if (argc == 1) {
1807		nextarg = 1;
1808		diag = kdbgetaddrarg(argc, argv, &nextarg,
1809				     &addr, &offset, NULL);
1810		if (diag)
1811			return diag;
1812	} else if (argc) {
1813		return KDB_ARGCOUNT;
1814	}
1815
1816	diag = KDB_CMD_GO;
1817	if (KDB_FLAG(CATASTROPHIC)) {
1818		kdb_printf("Catastrophic error detected\n");
1819		kdb_printf("kdb_continue_catastrophic=%d, ",
1820			kdb_continue_catastrophic);
1821		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1822			kdb_printf("type go a second time if you really want "
1823				   "to continue\n");
1824			return 0;
1825		}
1826		if (kdb_continue_catastrophic == 2) {
1827			kdb_printf("forcing reboot\n");
1828			kdb_reboot(0, NULL);
1829		}
1830		kdb_printf("attempting to continue\n");
1831	}
1832	return diag;
1833}
1834
1835/*
1836 * kdb_rd - This function implements the 'rd' command.
1837 */
1838static int kdb_rd(int argc, const char **argv)
1839{
1840	int len = kdb_check_regs();
1841#if DBG_MAX_REG_NUM > 0
1842	int i;
1843	char *rname;
1844	int rsize;
1845	u64 reg64;
1846	u32 reg32;
1847	u16 reg16;
1848	u8 reg8;
1849
1850	if (len)
1851		return len;
1852
1853	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1854		rsize = dbg_reg_def[i].size * 2;
1855		if (rsize > 16)
1856			rsize = 2;
1857		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1858			len = 0;
1859			kdb_printf("\n");
1860		}
1861		if (len)
1862			len += kdb_printf("  ");
1863		switch(dbg_reg_def[i].size * 8) {
1864		case 8:
1865			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1866			if (!rname)
1867				break;
1868			len += kdb_printf("%s: %02x", rname, reg8);
1869			break;
1870		case 16:
1871			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1872			if (!rname)
1873				break;
1874			len += kdb_printf("%s: %04x", rname, reg16);
1875			break;
1876		case 32:
1877			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1878			if (!rname)
1879				break;
1880			len += kdb_printf("%s: %08x", rname, reg32);
1881			break;
1882		case 64:
1883			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1884			if (!rname)
1885				break;
1886			len += kdb_printf("%s: %016llx", rname, reg64);
1887			break;
1888		default:
1889			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1890		}
1891	}
1892	kdb_printf("\n");
1893#else
1894	if (len)
1895		return len;
1896
1897	kdb_dumpregs(kdb_current_regs);
1898#endif
1899	return 0;
1900}
1901
1902/*
1903 * kdb_rm - This function implements the 'rm' (register modify)  command.
1904 *	rm register-name new-contents
1905 * Remarks:
1906 *	Allows register modification with the same restrictions as gdb
1907 */
1908static int kdb_rm(int argc, const char **argv)
1909{
1910#if DBG_MAX_REG_NUM > 0
1911	int diag;
1912	const char *rname;
1913	int i;
1914	u64 reg64;
1915	u32 reg32;
1916	u16 reg16;
1917	u8 reg8;
1918
1919	if (argc != 2)
1920		return KDB_ARGCOUNT;
1921	/*
1922	 * Allow presence or absence of leading '%' symbol.
1923	 */
1924	rname = argv[1];
1925	if (*rname == '%')
1926		rname++;
1927
1928	diag = kdbgetu64arg(argv[2], &reg64);
1929	if (diag)
1930		return diag;
1931
1932	diag = kdb_check_regs();
1933	if (diag)
1934		return diag;
1935
1936	diag = KDB_BADREG;
1937	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1938		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1939			diag = 0;
1940			break;
1941		}
1942	}
1943	if (!diag) {
1944		switch(dbg_reg_def[i].size * 8) {
1945		case 8:
1946			reg8 = reg64;
1947			dbg_set_reg(i, &reg8, kdb_current_regs);
1948			break;
1949		case 16:
1950			reg16 = reg64;
1951			dbg_set_reg(i, &reg16, kdb_current_regs);
1952			break;
1953		case 32:
1954			reg32 = reg64;
1955			dbg_set_reg(i, &reg32, kdb_current_regs);
1956			break;
1957		case 64:
1958			dbg_set_reg(i, &reg64, kdb_current_regs);
1959			break;
1960		}
1961	}
1962	return diag;
1963#else
1964	kdb_printf("ERROR: Register set currently not implemented\n");
1965    return 0;
1966#endif
1967}
1968
1969#if defined(CONFIG_MAGIC_SYSRQ)
1970/*
1971 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1972 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1973 *		sr <magic-sysrq-code>
1974 */
1975static int kdb_sr(int argc, const char **argv)
1976{
1977	bool check_mask =
1978	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1979
1980	if (argc != 1)
1981		return KDB_ARGCOUNT;
1982
1983	kdb_trap_printk++;
1984	__handle_sysrq(*argv[1], check_mask);
1985	kdb_trap_printk--;
1986
1987	return 0;
1988}
1989#endif	/* CONFIG_MAGIC_SYSRQ */
1990
1991/*
1992 * kdb_ef - This function implements the 'regs' (display exception
1993 *	frame) command.  This command takes an address and expects to
1994 *	find an exception frame at that address, formats and prints
1995 *	it.
1996 *		regs address-expression
1997 * Remarks:
1998 *	Not done yet.
1999 */
2000static int kdb_ef(int argc, const char **argv)
2001{
2002	int diag;
2003	unsigned long addr;
2004	long offset;
2005	int nextarg;
2006
2007	if (argc != 1)
2008		return KDB_ARGCOUNT;
2009
2010	nextarg = 1;
2011	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2012	if (diag)
2013		return diag;
2014	show_regs((struct pt_regs *)addr);
2015	return 0;
2016}
2017
2018#if defined(CONFIG_MODULES)
2019/*
2020 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2021 *	currently loaded kernel modules.
2022 *	Mostly taken from userland lsmod.
2023 */
2024static int kdb_lsmod(int argc, const char **argv)
2025{
2026	struct module *mod;
2027
2028	if (argc != 0)
2029		return KDB_ARGCOUNT;
2030
2031	kdb_printf("Module                  Size  modstruct     Used by\n");
2032	list_for_each_entry(mod, kdb_modules, list) {
2033		if (mod->state == MODULE_STATE_UNFORMED)
2034			continue;
2035
2036		kdb_printf("%-20s%8u  0x%px ", mod->name,
2037			   mod->core_layout.size, (void *)mod);
2038#ifdef CONFIG_MODULE_UNLOAD
2039		kdb_printf("%4d ", module_refcount(mod));
2040#endif
2041		if (mod->state == MODULE_STATE_GOING)
2042			kdb_printf(" (Unloading)");
2043		else if (mod->state == MODULE_STATE_COMING)
2044			kdb_printf(" (Loading)");
2045		else
2046			kdb_printf(" (Live)");
2047		kdb_printf(" 0x%px", mod->core_layout.base);
2048
2049#ifdef CONFIG_MODULE_UNLOAD
2050		{
2051			struct module_use *use;
2052			kdb_printf(" [ ");
2053			list_for_each_entry(use, &mod->source_list,
2054					    source_list)
2055				kdb_printf("%s ", use->target->name);
2056			kdb_printf("]\n");
2057		}
2058#endif
2059	}
2060
2061	return 0;
2062}
2063
2064#endif	/* CONFIG_MODULES */
2065
2066/*
2067 * kdb_env - This function implements the 'env' command.  Display the
2068 *	current environment variables.
2069 */
2070
2071static int kdb_env(int argc, const char **argv)
2072{
2073	int i;
2074
2075	for (i = 0; i < __nenv; i++) {
2076		if (__env[i])
2077			kdb_printf("%s\n", __env[i]);
2078	}
2079
2080	if (KDB_DEBUG(MASK))
2081		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2082
2083	return 0;
2084}
2085
2086#ifdef CONFIG_PRINTK
2087/*
2088 * kdb_dmesg - This function implements the 'dmesg' command to display
2089 *	the contents of the syslog buffer.
2090 *		dmesg [lines] [adjust]
2091 */
2092static int kdb_dmesg(int argc, const char **argv)
2093{
2094	int diag;
2095	int logging;
2096	int lines = 0;
2097	int adjust = 0;
2098	int n = 0;
2099	int skip = 0;
2100	struct kmsg_dumper dumper = { .active = 1 };
2101	size_t len;
2102	char buf[201];
2103
2104	if (argc > 2)
2105		return KDB_ARGCOUNT;
2106	if (argc) {
2107		char *cp;
2108		lines = simple_strtol(argv[1], &cp, 0);
2109		if (*cp)
2110			lines = 0;
2111		if (argc > 1) {
2112			adjust = simple_strtoul(argv[2], &cp, 0);
2113			if (*cp || adjust < 0)
2114				adjust = 0;
2115		}
2116	}
2117
2118	/* disable LOGGING if set */
2119	diag = kdbgetintenv("LOGGING", &logging);
2120	if (!diag && logging) {
2121		const char *setargs[] = { "set", "LOGGING", "0" };
2122		kdb_set(2, setargs);
2123	}
2124
2125	kmsg_dump_rewind_nolock(&dumper);
2126	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2127		n++;
2128
2129	if (lines < 0) {
2130		if (adjust >= n)
2131			kdb_printf("buffer only contains %d lines, nothing "
2132				   "printed\n", n);
2133		else if (adjust - lines >= n)
2134			kdb_printf("buffer only contains %d lines, last %d "
2135				   "lines printed\n", n, n - adjust);
2136		skip = adjust;
2137		lines = abs(lines);
2138	} else if (lines > 0) {
2139		skip = n - lines - adjust;
2140		lines = abs(lines);
2141		if (adjust >= n) {
2142			kdb_printf("buffer only contains %d lines, "
2143				   "nothing printed\n", n);
2144			skip = n;
2145		} else if (skip < 0) {
2146			lines += skip;
2147			skip = 0;
2148			kdb_printf("buffer only contains %d lines, first "
2149				   "%d lines printed\n", n, lines);
2150		}
2151	} else {
2152		lines = n;
2153	}
2154
2155	if (skip >= n || skip < 0)
2156		return 0;
2157
2158	kmsg_dump_rewind_nolock(&dumper);
2159	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2160		if (skip) {
2161			skip--;
2162			continue;
2163		}
2164		if (!lines--)
2165			break;
2166		if (KDB_FLAG(CMD_INTERRUPT))
2167			return 0;
2168
2169		kdb_printf("%.*s\n", (int)len - 1, buf);
2170	}
2171
2172	return 0;
2173}
2174#endif /* CONFIG_PRINTK */
2175
2176/* Make sure we balance enable/disable calls, must disable first. */
2177static atomic_t kdb_nmi_disabled;
2178
2179static int kdb_disable_nmi(int argc, const char *argv[])
2180{
2181	if (atomic_read(&kdb_nmi_disabled))
2182		return 0;
2183	atomic_set(&kdb_nmi_disabled, 1);
2184	arch_kgdb_ops.enable_nmi(0);
2185	return 0;
2186}
2187
2188static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2189{
2190	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2191		return -EINVAL;
2192	arch_kgdb_ops.enable_nmi(1);
2193	return 0;
2194}
2195
2196static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2197	.set = kdb_param_enable_nmi,
2198};
2199module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2200
2201/*
2202 * kdb_cpu - This function implements the 'cpu' command.
2203 *	cpu	[<cpunum>]
2204 * Returns:
2205 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2206 */
2207static void kdb_cpu_status(void)
2208{
2209	int i, start_cpu, first_print = 1;
2210	char state, prev_state = '?';
2211
2212	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2213	kdb_printf("Available cpus: ");
2214	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2215		if (!cpu_online(i)) {
2216			state = 'F';	/* cpu is offline */
2217		} else if (!kgdb_info[i].enter_kgdb) {
2218			state = 'D';	/* cpu is online but unresponsive */
2219		} else {
2220			state = ' ';	/* cpu is responding to kdb */
2221			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2222				state = 'I';	/* idle task */
2223		}
2224		if (state != prev_state) {
2225			if (prev_state != '?') {
2226				if (!first_print)
2227					kdb_printf(", ");
2228				first_print = 0;
2229				kdb_printf("%d", start_cpu);
2230				if (start_cpu < i-1)
2231					kdb_printf("-%d", i-1);
2232				if (prev_state != ' ')
2233					kdb_printf("(%c)", prev_state);
2234			}
2235			prev_state = state;
2236			start_cpu = i;
2237		}
2238	}
2239	/* print the trailing cpus, ignoring them if they are all offline */
2240	if (prev_state != 'F') {
2241		if (!first_print)
2242			kdb_printf(", ");
2243		kdb_printf("%d", start_cpu);
2244		if (start_cpu < i-1)
2245			kdb_printf("-%d", i-1);
2246		if (prev_state != ' ')
2247			kdb_printf("(%c)", prev_state);
2248	}
2249	kdb_printf("\n");
2250}
2251
2252static int kdb_cpu(int argc, const char **argv)
2253{
2254	unsigned long cpunum;
2255	int diag;
2256
2257	if (argc == 0) {
2258		kdb_cpu_status();
2259		return 0;
2260	}
2261
2262	if (argc != 1)
2263		return KDB_ARGCOUNT;
2264
2265	diag = kdbgetularg(argv[1], &cpunum);
2266	if (diag)
2267		return diag;
2268
2269	/*
2270	 * Validate cpunum
2271	 */
2272	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2273		return KDB_BADCPUNUM;
2274
2275	dbg_switch_cpu = cpunum;
2276
2277	/*
2278	 * Switch to other cpu
2279	 */
2280	return KDB_CMD_CPU;
2281}
2282
2283/* The user may not realize that ps/bta with no parameters does not print idle
2284 * or sleeping system daemon processes, so tell them how many were suppressed.
2285 */
2286void kdb_ps_suppressed(void)
2287{
2288	int idle = 0, daemon = 0;
2289	unsigned long mask_I = kdb_task_state_string("I"),
2290		      mask_M = kdb_task_state_string("M");
2291	unsigned long cpu;
2292	const struct task_struct *p, *g;
2293	for_each_online_cpu(cpu) {
2294		p = kdb_curr_task(cpu);
2295		if (kdb_task_state(p, mask_I))
2296			++idle;
2297	}
2298	kdb_do_each_thread(g, p) {
2299		if (kdb_task_state(p, mask_M))
2300			++daemon;
2301	} kdb_while_each_thread(g, p);
2302	if (idle || daemon) {
2303		if (idle)
2304			kdb_printf("%d idle process%s (state I)%s\n",
2305				   idle, idle == 1 ? "" : "es",
2306				   daemon ? " and " : "");
2307		if (daemon)
2308			kdb_printf("%d sleeping system daemon (state M) "
2309				   "process%s", daemon,
2310				   daemon == 1 ? "" : "es");
2311		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2312	}
2313}
2314
2315/*
2316 * kdb_ps - This function implements the 'ps' command which shows a
2317 *	list of the active processes.
2318 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2319 */
2320void kdb_ps1(const struct task_struct *p)
2321{
2322	int cpu;
2323	unsigned long tmp;
2324
2325	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2326		return;
2327
2328	cpu = kdb_process_cpu(p);
2329	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2330		   (void *)p, p->pid, p->parent->pid,
2331		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2332		   kdb_task_state_char(p),
2333		   (void *)(&p->thread),
2334		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2335		   p->comm);
2336	if (kdb_task_has_cpu(p)) {
2337		if (!KDB_TSK(cpu)) {
2338			kdb_printf("  Error: no saved data for this cpu\n");
2339		} else {
2340			if (KDB_TSK(cpu) != p)
2341				kdb_printf("  Error: does not match running "
2342				   "process table (0x%px)\n", KDB_TSK(cpu));
2343		}
2344	}
2345}
2346
 
 
 
 
 
 
 
2347static int kdb_ps(int argc, const char **argv)
2348{
2349	struct task_struct *g, *p;
2350	unsigned long mask, cpu;
 
2351
2352	if (argc == 0)
2353		kdb_ps_suppressed();
2354	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2355		(int)(2*sizeof(void *))+2, "Task Addr",
2356		(int)(2*sizeof(void *))+2, "Thread");
2357	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2358	/* Run the active tasks first */
2359	for_each_online_cpu(cpu) {
2360		if (KDB_FLAG(CMD_INTERRUPT))
2361			return 0;
2362		p = kdb_curr_task(cpu);
2363		if (kdb_task_state(p, mask))
2364			kdb_ps1(p);
2365	}
2366	kdb_printf("\n");
2367	/* Now the real tasks */
2368	kdb_do_each_thread(g, p) {
2369		if (KDB_FLAG(CMD_INTERRUPT))
2370			return 0;
2371		if (kdb_task_state(p, mask))
2372			kdb_ps1(p);
2373	} kdb_while_each_thread(g, p);
2374
2375	return 0;
2376}
2377
2378/*
2379 * kdb_pid - This function implements the 'pid' command which switches
2380 *	the currently active process.
2381 *		pid [<pid> | R]
2382 */
2383static int kdb_pid(int argc, const char **argv)
2384{
2385	struct task_struct *p;
2386	unsigned long val;
2387	int diag;
2388
2389	if (argc > 1)
2390		return KDB_ARGCOUNT;
2391
2392	if (argc) {
2393		if (strcmp(argv[1], "R") == 0) {
2394			p = KDB_TSK(kdb_initial_cpu);
2395		} else {
2396			diag = kdbgetularg(argv[1], &val);
2397			if (diag)
2398				return KDB_BADINT;
2399
2400			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2401			if (!p) {
2402				kdb_printf("No task with pid=%d\n", (pid_t)val);
2403				return 0;
2404			}
2405		}
2406		kdb_set_current_task(p);
2407	}
2408	kdb_printf("KDB current process is %s(pid=%d)\n",
2409		   kdb_current_task->comm,
2410		   kdb_current_task->pid);
2411
2412	return 0;
2413}
2414
2415static int kdb_kgdb(int argc, const char **argv)
2416{
2417	return KDB_CMD_KGDB;
2418}
2419
2420/*
2421 * kdb_help - This function implements the 'help' and '?' commands.
2422 */
2423static int kdb_help(int argc, const char **argv)
2424{
2425	kdbtab_t *kt;
2426	int i;
2427
2428	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2429	kdb_printf("-----------------------------"
2430		   "-----------------------------\n");
2431	for_each_kdbcmd(kt, i) {
2432		char *space = "";
2433		if (KDB_FLAG(CMD_INTERRUPT))
2434			return 0;
2435		if (!kt->cmd_name)
2436			continue;
2437		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2438			continue;
2439		if (strlen(kt->cmd_usage) > 20)
2440			space = "\n                                    ";
2441		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2442			   kt->cmd_usage, space, kt->cmd_help);
2443	}
2444	return 0;
2445}
2446
2447/*
2448 * kdb_kill - This function implements the 'kill' commands.
2449 */
2450static int kdb_kill(int argc, const char **argv)
2451{
2452	long sig, pid;
2453	char *endp;
2454	struct task_struct *p;
2455
2456	if (argc != 2)
2457		return KDB_ARGCOUNT;
2458
2459	sig = simple_strtol(argv[1], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if ((sig >= 0) || !valid_signal(-sig)) {
2463		kdb_printf("Invalid signal parameter.<-signal>\n");
2464		return 0;
2465	}
2466	sig = -sig;
2467
2468	pid = simple_strtol(argv[2], &endp, 0);
2469	if (*endp)
2470		return KDB_BADINT;
2471	if (pid <= 0) {
2472		kdb_printf("Process ID must be large than 0.\n");
2473		return 0;
2474	}
2475
2476	/* Find the process. */
2477	p = find_task_by_pid_ns(pid, &init_pid_ns);
2478	if (!p) {
2479		kdb_printf("The specified process isn't found.\n");
2480		return 0;
2481	}
2482	p = p->group_leader;
2483	kdb_send_sig(p, sig);
2484	return 0;
2485}
2486
2487/*
2488 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2489 * I cannot call that code directly from kdb, it has an unconditional
2490 * cli()/sti() and calls routines that take locks which can stop the debugger.
2491 */
2492static void kdb_sysinfo(struct sysinfo *val)
2493{
2494	u64 uptime = ktime_get_mono_fast_ns();
2495
2496	memset(val, 0, sizeof(*val));
2497	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2498	val->loads[0] = avenrun[0];
2499	val->loads[1] = avenrun[1];
2500	val->loads[2] = avenrun[2];
2501	val->procs = nr_threads-1;
2502	si_meminfo(val);
2503
2504	return;
2505}
2506
2507/*
2508 * kdb_summary - This function implements the 'summary' command.
2509 */
2510static int kdb_summary(int argc, const char **argv)
2511{
2512	time64_t now;
2513	struct tm tm;
2514	struct sysinfo val;
2515
2516	if (argc)
2517		return KDB_ARGCOUNT;
2518
2519	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2520	kdb_printf("release    %s\n", init_uts_ns.name.release);
2521	kdb_printf("version    %s\n", init_uts_ns.name.version);
2522	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2523	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2524	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2525
2526	now = __ktime_get_real_seconds();
2527	time64_to_tm(now, 0, &tm);
2528	kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2529		   "tz_minuteswest %d\n",
2530		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2531		tm.tm_hour, tm.tm_min, tm.tm_sec,
2532		sys_tz.tz_minuteswest);
2533
2534	kdb_sysinfo(&val);
2535	kdb_printf("uptime     ");
2536	if (val.uptime > (24*60*60)) {
2537		int days = val.uptime / (24*60*60);
2538		val.uptime %= (24*60*60);
2539		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2540	}
2541	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2542
2543	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2544		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2545		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2546		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2547
2548	/* Display in kilobytes */
2549#define K(x) ((x) << (PAGE_SHIFT - 10))
2550	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2551		   "Buffers:        %8lu kB\n",
2552		   K(val.totalram), K(val.freeram), K(val.bufferram));
2553	return 0;
2554}
2555
2556/*
2557 * kdb_per_cpu - This function implements the 'per_cpu' command.
2558 */
2559static int kdb_per_cpu(int argc, const char **argv)
2560{
2561	char fmtstr[64];
2562	int cpu, diag, nextarg = 1;
2563	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2564
2565	if (argc < 1 || argc > 3)
2566		return KDB_ARGCOUNT;
2567
2568	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2569	if (diag)
2570		return diag;
2571
2572	if (argc >= 2) {
2573		diag = kdbgetularg(argv[2], &bytesperword);
2574		if (diag)
2575			return diag;
2576	}
2577	if (!bytesperword)
2578		bytesperword = KDB_WORD_SIZE;
2579	else if (bytesperword > KDB_WORD_SIZE)
2580		return KDB_BADWIDTH;
2581	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2582	if (argc >= 3) {
2583		diag = kdbgetularg(argv[3], &whichcpu);
2584		if (diag)
2585			return diag;
2586		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2587			kdb_printf("cpu %ld is not online\n", whichcpu);
2588			return KDB_BADCPUNUM;
2589		}
2590	}
2591
2592	/* Most architectures use __per_cpu_offset[cpu], some use
2593	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2594	 */
2595#ifdef	__per_cpu_offset
2596#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2597#else
2598#ifdef	CONFIG_SMP
2599#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2600#else
2601#define KDB_PCU(cpu) 0
2602#endif
2603#endif
2604	for_each_online_cpu(cpu) {
2605		if (KDB_FLAG(CMD_INTERRUPT))
2606			return 0;
2607
2608		if (whichcpu != ~0UL && whichcpu != cpu)
2609			continue;
2610		addr = symaddr + KDB_PCU(cpu);
2611		diag = kdb_getword(&val, addr, bytesperword);
2612		if (diag) {
2613			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2614				   "read, diag=%d\n", cpu, addr, diag);
2615			continue;
2616		}
2617		kdb_printf("%5d ", cpu);
2618		kdb_md_line(fmtstr, addr,
2619			bytesperword == KDB_WORD_SIZE,
2620			1, bytesperword, 1, 1, 0);
2621	}
2622#undef KDB_PCU
2623	return 0;
2624}
2625
2626/*
2627 * display help for the use of cmd | grep pattern
2628 */
2629static int kdb_grep_help(int argc, const char **argv)
2630{
2631	kdb_printf("Usage of  cmd args | grep pattern:\n");
2632	kdb_printf("  Any command's output may be filtered through an ");
2633	kdb_printf("emulated 'pipe'.\n");
2634	kdb_printf("  'grep' is just a key word.\n");
2635	kdb_printf("  The pattern may include a very limited set of "
2636		   "metacharacters:\n");
2637	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2638	kdb_printf("  And if there are spaces in the pattern, you may "
2639		   "quote it:\n");
2640	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2641		   " or \"^pat tern$\"\n");
2642	return 0;
2643}
2644
2645/*
2646 * kdb_register_flags - This function is used to register a kernel
2647 * 	debugger command.
2648 * Inputs:
2649 *	cmd	Command name
2650 *	func	Function to execute the command
2651 *	usage	A simple usage string showing arguments
2652 *	help	A simple help string describing command
2653 *	repeat	Does the command auto repeat on enter?
2654 * Returns:
2655 *	zero for success, one if a duplicate command.
2656 */
2657#define kdb_command_extend 50	/* arbitrary */
2658int kdb_register_flags(char *cmd,
2659		       kdb_func_t func,
2660		       char *usage,
2661		       char *help,
2662		       short minlen,
2663		       kdb_cmdflags_t flags)
2664{
2665	int i;
2666	kdbtab_t *kp;
2667
2668	/*
2669	 *  Brute force method to determine duplicates
2670	 */
2671	for_each_kdbcmd(kp, i) {
2672		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2673			kdb_printf("Duplicate kdb command registered: "
2674				"%s, func %px help %s\n", cmd, func, help);
2675			return 1;
2676		}
2677	}
2678
2679	/*
2680	 * Insert command into first available location in table
2681	 */
2682	for_each_kdbcmd(kp, i) {
2683		if (kp->cmd_name == NULL)
2684			break;
2685	}
2686
2687	if (i >= kdb_max_commands) {
2688		kdbtab_t *new = kmalloc_array(kdb_max_commands -
2689						KDB_BASE_CMD_MAX +
2690						kdb_command_extend,
2691					      sizeof(*new),
2692					      GFP_KDB);
2693		if (!new) {
2694			kdb_printf("Could not allocate new kdb_command "
2695				   "table\n");
2696			return 1;
2697		}
2698		if (kdb_commands) {
2699			memcpy(new, kdb_commands,
2700			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2701			kfree(kdb_commands);
2702		}
2703		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2704		       kdb_command_extend * sizeof(*new));
2705		kdb_commands = new;
2706		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2707		kdb_max_commands += kdb_command_extend;
2708	}
2709
2710	kp->cmd_name   = cmd;
2711	kp->cmd_func   = func;
2712	kp->cmd_usage  = usage;
2713	kp->cmd_help   = help;
2714	kp->cmd_minlen = minlen;
2715	kp->cmd_flags  = flags;
2716
2717	return 0;
2718}
2719EXPORT_SYMBOL_GPL(kdb_register_flags);
2720
2721
2722/*
2723 * kdb_register - Compatibility register function for commands that do
2724 *	not need to specify a repeat state.  Equivalent to
2725 *	kdb_register_flags with flags set to 0.
2726 * Inputs:
2727 *	cmd	Command name
2728 *	func	Function to execute the command
2729 *	usage	A simple usage string showing arguments
2730 *	help	A simple help string describing command
2731 * Returns:
2732 *	zero for success, one if a duplicate command.
2733 */
2734int kdb_register(char *cmd,
2735	     kdb_func_t func,
2736	     char *usage,
2737	     char *help,
2738	     short minlen)
2739{
2740	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
 
 
2741}
2742EXPORT_SYMBOL_GPL(kdb_register);
2743
2744/*
2745 * kdb_unregister - This function is used to unregister a kernel
2746 *	debugger command.  It is generally called when a module which
2747 *	implements kdb commands is unloaded.
2748 * Inputs:
2749 *	cmd	Command name
2750 * Returns:
2751 *	zero for success, one command not registered.
2752 */
2753int kdb_unregister(char *cmd)
2754{
2755	int i;
2756	kdbtab_t *kp;
2757
2758	/*
2759	 *  find the command.
2760	 */
2761	for_each_kdbcmd(kp, i) {
2762		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2763			kp->cmd_name = NULL;
2764			return 0;
2765		}
2766	}
2767
2768	/* Couldn't find it.  */
2769	return 1;
2770}
2771EXPORT_SYMBOL_GPL(kdb_unregister);
2772
2773/* Initialize the kdb command table. */
2774static void __init kdb_inittab(void)
2775{
2776	int i;
2777	kdbtab_t *kp;
2778
2779	for_each_kdbcmd(kp, i)
2780		kp->cmd_name = NULL;
2781
2782	kdb_register_flags("md", kdb_md, "<vaddr>",
2783	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2784	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2785	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2786	  "Display Raw Memory", 0,
2787	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2788	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2789	  "Display Physical Memory", 0,
2790	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2791	kdb_register_flags("mds", kdb_md, "<vaddr>",
2792	  "Display Memory Symbolically", 0,
2793	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2794	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2795	  "Modify Memory Contents", 0,
2796	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2797	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2798	  "Continue Execution", 1,
2799	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2800	kdb_register_flags("rd", kdb_rd, "",
2801	  "Display Registers", 0,
2802	  KDB_ENABLE_REG_READ);
2803	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2804	  "Modify Registers", 0,
2805	  KDB_ENABLE_REG_WRITE);
2806	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2807	  "Display exception frame", 0,
2808	  KDB_ENABLE_MEM_READ);
2809	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2810	  "Stack traceback", 1,
2811	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2812	kdb_register_flags("btp", kdb_bt, "<pid>",
2813	  "Display stack for process <pid>", 0,
2814	  KDB_ENABLE_INSPECT);
2815	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2816	  "Backtrace all processes matching state flag", 0,
2817	  KDB_ENABLE_INSPECT);
2818	kdb_register_flags("btc", kdb_bt, "",
2819	  "Backtrace current process on each cpu", 0,
2820	  KDB_ENABLE_INSPECT);
2821	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2822	  "Backtrace process given its struct task address", 0,
2823	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2824	kdb_register_flags("env", kdb_env, "",
2825	  "Show environment variables", 0,
2826	  KDB_ENABLE_ALWAYS_SAFE);
2827	kdb_register_flags("set", kdb_set, "",
2828	  "Set environment variables", 0,
2829	  KDB_ENABLE_ALWAYS_SAFE);
2830	kdb_register_flags("help", kdb_help, "",
2831	  "Display Help Message", 1,
2832	  KDB_ENABLE_ALWAYS_SAFE);
2833	kdb_register_flags("?", kdb_help, "",
2834	  "Display Help Message", 0,
2835	  KDB_ENABLE_ALWAYS_SAFE);
2836	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2837	  "Switch to new cpu", 0,
2838	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2839	kdb_register_flags("kgdb", kdb_kgdb, "",
2840	  "Enter kgdb mode", 0, 0);
2841	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2842	  "Display active task list", 0,
2843	  KDB_ENABLE_INSPECT);
2844	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2845	  "Switch to another task", 0,
2846	  KDB_ENABLE_INSPECT);
2847	kdb_register_flags("reboot", kdb_reboot, "",
2848	  "Reboot the machine immediately", 0,
2849	  KDB_ENABLE_REBOOT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2850#if defined(CONFIG_MODULES)
2851	kdb_register_flags("lsmod", kdb_lsmod, "",
2852	  "List loaded kernel modules", 0,
2853	  KDB_ENABLE_INSPECT);
 
 
 
2854#endif
2855#if defined(CONFIG_MAGIC_SYSRQ)
2856	kdb_register_flags("sr", kdb_sr, "<key>",
2857	  "Magic SysRq key", 0,
2858	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2859#endif
2860#if defined(CONFIG_PRINTK)
2861	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2862	  "Display syslog buffer", 0,
2863	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2864#endif
2865	if (arch_kgdb_ops.enable_nmi) {
2866		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2867		  "Disable NMI entry to KDB", 0,
2868		  KDB_ENABLE_ALWAYS_SAFE);
2869	}
2870	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2871	  "Define a set of commands, down to endefcmd", 0,
2872	  KDB_ENABLE_ALWAYS_SAFE);
2873	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2874	  "Send a signal to a process", 0,
2875	  KDB_ENABLE_SIGNAL);
2876	kdb_register_flags("summary", kdb_summary, "",
2877	  "Summarize the system", 4,
2878	  KDB_ENABLE_ALWAYS_SAFE);
2879	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2880	  "Display per_cpu variables", 3,
2881	  KDB_ENABLE_MEM_READ);
2882	kdb_register_flags("grephelp", kdb_grep_help, "",
2883	  "Display help on | grep", 0,
2884	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2885}
2886
2887/* Execute any commands defined in kdb_cmds.  */
2888static void __init kdb_cmd_init(void)
2889{
2890	int i, diag;
2891	for (i = 0; kdb_cmds[i]; ++i) {
2892		diag = kdb_parse(kdb_cmds[i]);
2893		if (diag)
2894			kdb_printf("kdb command %s failed, kdb diag %d\n",
2895				kdb_cmds[i], diag);
2896	}
2897	if (defcmd_in_progress) {
2898		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2899		kdb_parse("endefcmd");
2900	}
2901}
2902
2903/* Initialize kdb_printf, breakpoint tables and kdb state */
2904void __init kdb_init(int lvl)
2905{
2906	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2907	int i;
2908
2909	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2910		return;
2911	for (i = kdb_init_lvl; i < lvl; i++) {
2912		switch (i) {
2913		case KDB_NOT_INITIALIZED:
2914			kdb_inittab();		/* Initialize Command Table */
2915			kdb_initbptab();	/* Initialize Breakpoints */
2916			break;
2917		case KDB_INIT_EARLY:
2918			kdb_cmd_init();		/* Build kdb_cmds tables */
2919			break;
2920		}
2921	}
2922	kdb_init_lvl = lvl;
2923}