Linux Audio

Check our new training course

Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
 
 
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
  20#include <asm/sections.h>
  21#include <asm/bug.h>
  22#include <asm/page.h>
  23#include <asm/uv.h>
  24
  25extern pgd_t swapper_pg_dir[];
  26extern void paging_init(void);
  27extern unsigned long s390_invalid_asce;
  28
  29enum {
  30	PG_DIRECT_MAP_4K = 0,
  31	PG_DIRECT_MAP_1M,
  32	PG_DIRECT_MAP_2G,
  33	PG_DIRECT_MAP_MAX
  34};
  35
  36extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  37
  38static inline void update_page_count(int level, long count)
  39{
  40	if (IS_ENABLED(CONFIG_PROC_FS))
  41		atomic_long_add(count, &direct_pages_count[level]);
  42}
  43
  44struct seq_file;
  45void arch_report_meminfo(struct seq_file *m);
  46
  47/*
  48 * The S390 doesn't have any external MMU info: the kernel page
  49 * tables contain all the necessary information.
  50 */
  51#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  53
  54/*
  55 * ZERO_PAGE is a global shared page that is always zero; used
  56 * for zero-mapped memory areas etc..
  57 */
  58
  59extern unsigned long empty_zero_page;
  60extern unsigned long zero_page_mask;
  61
  62#define ZERO_PAGE(vaddr) \
  63	(virt_to_page((void *)(empty_zero_page + \
  64	 (((unsigned long)(vaddr)) &zero_page_mask))))
  65#define __HAVE_COLOR_ZERO_PAGE
  66
  67/* TODO: s390 cannot support io_remap_pfn_range... */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69#define pte_ERROR(e) \
  70	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
  71#define pmd_ERROR(e) \
  72	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
  73#define pud_ERROR(e) \
  74	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
  75#define p4d_ERROR(e) \
  76	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
  77#define pgd_ERROR(e) \
  78	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
  79
  80/*
  81 * The vmalloc and module area will always be on the topmost area of the
  82 * kernel mapping. 512GB are reserved for vmalloc by default.
  83 * At the top of the vmalloc area a 2GB area is reserved where modules
  84 * will reside. That makes sure that inter module branches always
  85 * happen without trampolines and in addition the placement within a
  86 * 2GB frame is branch prediction unit friendly.
  87 */
  88extern unsigned long __bootdata_preserved(VMALLOC_START);
  89extern unsigned long __bootdata_preserved(VMALLOC_END);
  90#define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
  91extern struct page *__bootdata_preserved(vmemmap);
  92extern unsigned long __bootdata_preserved(vmemmap_size);
  93
  94#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  95
  96extern unsigned long __bootdata_preserved(MODULES_VADDR);
  97extern unsigned long __bootdata_preserved(MODULES_END);
  98#define MODULES_VADDR	MODULES_VADDR
  99#define MODULES_END	MODULES_END
 100#define MODULES_LEN	(1UL << 31)
 101
 102static inline int is_module_addr(void *addr)
 103{
 104	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 105	if (addr < (void *)MODULES_VADDR)
 106		return 0;
 107	if (addr > (void *)MODULES_END)
 108		return 0;
 109	return 1;
 110}
 111
 
 112/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113 * A 64 bit pagetable entry of S390 has following format:
 114 * |			 PFRA			      |0IPC|  OS  |
 115 * 0000000000111111111122222222223333333333444444444455555555556666
 116 * 0123456789012345678901234567890123456789012345678901234567890123
 117 *
 118 * I Page-Invalid Bit:    Page is not available for address-translation
 119 * P Page-Protection Bit: Store access not possible for page
 120 * C Change-bit override: HW is not required to set change bit
 121 *
 122 * A 64 bit segmenttable entry of S390 has following format:
 123 * |        P-table origin                              |      TT
 124 * 0000000000111111111122222222223333333333444444444455555555556666
 125 * 0123456789012345678901234567890123456789012345678901234567890123
 126 *
 127 * I Segment-Invalid Bit:    Segment is not available for address-translation
 128 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 129 * P Page-Protection Bit: Store access not possible for page
 130 * TT Type 00
 131 *
 132 * A 64 bit region table entry of S390 has following format:
 133 * |        S-table origin                             |   TF  TTTL
 134 * 0000000000111111111122222222223333333333444444444455555555556666
 135 * 0123456789012345678901234567890123456789012345678901234567890123
 136 *
 137 * I Segment-Invalid Bit:    Segment is not available for address-translation
 138 * TT Type 01
 139 * TF
 140 * TL Table length
 141 *
 142 * The 64 bit regiontable origin of S390 has following format:
 143 * |      region table origon                          |       DTTL
 144 * 0000000000111111111122222222223333333333444444444455555555556666
 145 * 0123456789012345678901234567890123456789012345678901234567890123
 146 *
 147 * X Space-Switch event:
 148 * G Segment-Invalid Bit:  
 149 * P Private-Space Bit:    
 150 * S Storage-Alteration:
 151 * R Real space
 152 * TL Table-Length:
 153 *
 154 * A storage key has the following format:
 155 * | ACC |F|R|C|0|
 156 *  0   3 4 5 6 7
 157 * ACC: access key
 158 * F  : fetch protection bit
 159 * R  : referenced bit
 160 * C  : changed bit
 161 */
 162
 163/* Hardware bits in the page table entry */
 164#define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
 165#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
 166#define _PAGE_INVALID	0x400		/* HW invalid bit    */
 167#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
 168
 169/* Software bits in the page table entry */
 170#define _PAGE_PRESENT	0x001		/* SW pte present bit */
 171#define _PAGE_YOUNG	0x004		/* SW pte young bit */
 172#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
 173#define _PAGE_READ	0x010		/* SW pte read bit */
 174#define _PAGE_WRITE	0x020		/* SW pte write bit */
 175#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
 176#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
 177
 178#ifdef CONFIG_MEM_SOFT_DIRTY
 179#define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
 180#else
 181#define _PAGE_SOFT_DIRTY 0x000
 182#endif
 183
 184#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
 185
 186/* Set of bits not changed in pte_modify */
 187#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 188				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 189
 190/*
 191 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 192 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 193 * distinguish present from not-present ptes. It is changed only with the page
 194 * table lock held.
 195 *
 196 * The following table gives the different possible bit combinations for
 197 * the pte hardware and software bits in the last 12 bits of a pte
 198 * (. unassigned bit, x don't care, t swap type):
 199 *
 200 *				842100000000
 201 *				000084210000
 202 *				000000008421
 203 *				.IR.uswrdy.p
 204 * empty			.10.00000000
 205 * swap				.11..ttttt.0
 206 * prot-none, clean, old	.11.xx0000.1
 207 * prot-none, clean, young	.11.xx0001.1
 208 * prot-none, dirty, old	.11.xx0010.1
 209 * prot-none, dirty, young	.11.xx0011.1
 210 * read-only, clean, old	.11.xx0100.1
 211 * read-only, clean, young	.01.xx0101.1
 212 * read-only, dirty, old	.11.xx0110.1
 213 * read-only, dirty, young	.01.xx0111.1
 214 * read-write, clean, old	.11.xx1100.1
 215 * read-write, clean, young	.01.xx1101.1
 216 * read-write, dirty, old	.10.xx1110.1
 217 * read-write, dirty, young	.00.xx1111.1
 218 * HW-bits: R read-only, I invalid
 219 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 220 *	    u unused, l large
 221 *
 222 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 223 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 224 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 
 
 
 
 
 
 225 */
 226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227/* Bits in the segment/region table address-space-control-element */
 228#define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
 229#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 230#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 231#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
 232#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
 233#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
 234#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
 235#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
 236#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
 237#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
 238#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
 239
 240/* Bits in the region table entry */
 241#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
 242#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
 243#define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
 244#define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
 245#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
 246#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
 247#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
 248#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
 249#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
 250#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
 251
 252#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 253#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 254#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 255#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 256#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 257#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 258
 259#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
 260#define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
 261#define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
 262#define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
 263#define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
 264#define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
 265
 266#ifdef CONFIG_MEM_SOFT_DIRTY
 267#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 268#else
 269#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 270#endif
 271
 272#define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
 273
 274/* Bits in the segment table entry */
 275#define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
 276#define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
 277#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
 278#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
 279#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
 280#define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
 281#define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
 282#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
 283#define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
 284
 285#define _SEGMENT_ENTRY		(0)
 286#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
 287
 288#define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
 289#define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
 290#define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
 291#define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
 292#define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
 293
 294#ifdef CONFIG_MEM_SOFT_DIRTY
 295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 296#else
 297#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 298#endif
 299
 300#define _CRST_ENTRIES	2048	/* number of region/segment table entries */
 301#define _PAGE_ENTRIES	256	/* number of page table entries	*/
 302
 303#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 304#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 305
 306#define _REGION1_SHIFT	53
 307#define _REGION2_SHIFT	42
 308#define _REGION3_SHIFT	31
 309#define _SEGMENT_SHIFT	20
 310
 311#define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
 312#define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
 313#define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
 314#define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
 315#define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
 316
 317#define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
 318#define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
 319#define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
 320#define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
 321
 322#define _REGION1_MASK	(~(_REGION1_SIZE - 1))
 323#define _REGION2_MASK	(~(_REGION2_SIZE - 1))
 324#define _REGION3_MASK	(~(_REGION3_SIZE - 1))
 325#define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
 326
 327#define PMD_SHIFT	_SEGMENT_SHIFT
 328#define PUD_SHIFT	_REGION3_SHIFT
 329#define P4D_SHIFT	_REGION2_SHIFT
 330#define PGDIR_SHIFT	_REGION1_SHIFT
 331
 332#define PMD_SIZE	_SEGMENT_SIZE
 333#define PUD_SIZE	_REGION3_SIZE
 334#define P4D_SIZE	_REGION2_SIZE
 335#define PGDIR_SIZE	_REGION1_SIZE
 336
 337#define PMD_MASK	_SEGMENT_MASK
 338#define PUD_MASK	_REGION3_MASK
 339#define P4D_MASK	_REGION2_MASK
 340#define PGDIR_MASK	_REGION1_MASK
 341
 342#define PTRS_PER_PTE	_PAGE_ENTRIES
 343#define PTRS_PER_PMD	_CRST_ENTRIES
 344#define PTRS_PER_PUD	_CRST_ENTRIES
 345#define PTRS_PER_P4D	_CRST_ENTRIES
 346#define PTRS_PER_PGD	_CRST_ENTRIES
 347
 348/*
 349 * Segment table and region3 table entry encoding
 350 * (R = read-only, I = invalid, y = young bit):
 351 *				dy..R...I...wr
 352 * prot-none, clean, old	00..1...1...00
 353 * prot-none, clean, young	01..1...1...00
 354 * prot-none, dirty, old	10..1...1...00
 355 * prot-none, dirty, young	11..1...1...00
 356 * read-only, clean, old	00..1...1...01
 357 * read-only, clean, young	01..1...0...01
 358 * read-only, dirty, old	10..1...1...01
 359 * read-only, dirty, young	11..1...0...01
 360 * read-write, clean, old	00..1...1...11
 361 * read-write, clean, young	01..1...0...11
 362 * read-write, dirty, old	10..0...1...11
 363 * read-write, dirty, young	11..0...0...11
 364 * The segment table origin is used to distinguish empty (origin==0) from
 365 * read-write, old segment table entries (origin!=0)
 366 * HW-bits: R read-only, I invalid
 367 * SW-bits: y young, d dirty, r read, w write
 368 */
 369
 370/* Page status table bits for virtualization */
 371#define PGSTE_ACC_BITS	0xf000000000000000UL
 372#define PGSTE_FP_BIT	0x0800000000000000UL
 373#define PGSTE_PCL_BIT	0x0080000000000000UL
 374#define PGSTE_HR_BIT	0x0040000000000000UL
 375#define PGSTE_HC_BIT	0x0020000000000000UL
 376#define PGSTE_GR_BIT	0x0004000000000000UL
 377#define PGSTE_GC_BIT	0x0002000000000000UL
 378#define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
 379#define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
 380#define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
 381
 382/* Guest Page State used for virtualization */
 383#define _PGSTE_GPS_ZERO			0x0000000080000000UL
 384#define _PGSTE_GPS_NODAT		0x0000000040000000UL
 385#define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
 386#define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
 387#define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
 388#define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
 389#define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
 390
 391/*
 392 * A user page table pointer has the space-switch-event bit, the
 393 * private-space-control bit and the storage-alteration-event-control
 394 * bit set. A kernel page table pointer doesn't need them.
 395 */
 396#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 397				 _ASCE_ALT_EVENT)
 398
 399/*
 400 * Page protection definitions.
 401 */
 402#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 403#define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 404				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 405#define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 406				 _PAGE_INVALID | _PAGE_PROTECT)
 407#define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 408				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 409#define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 410				 _PAGE_INVALID | _PAGE_PROTECT)
 411
 412#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 413				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 414#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 415				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 416#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 417				 _PAGE_PROTECT | _PAGE_NOEXEC)
 418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 419				  _PAGE_YOUNG |	_PAGE_DIRTY)
 420
 421/*
 422 * On s390 the page table entry has an invalid bit and a read-only bit.
 423 * Read permission implies execute permission and write permission
 424 * implies read permission.
 425 */
 426         /*xwr*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427
 428/*
 429 * Segment entry (large page) protection definitions.
 430 */
 431#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
 432				 _SEGMENT_ENTRY_PROTECT)
 433#define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 434				 _SEGMENT_ENTRY_READ | \
 435				 _SEGMENT_ENTRY_NOEXEC)
 436#define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 437				 _SEGMENT_ENTRY_READ)
 438#define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
 439				 _SEGMENT_ENTRY_WRITE | \
 440				 _SEGMENT_ENTRY_NOEXEC)
 441#define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
 442				 _SEGMENT_ENTRY_WRITE)
 443#define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
 444				 _SEGMENT_ENTRY_LARGE |	\
 445				 _SEGMENT_ENTRY_READ |	\
 446				 _SEGMENT_ENTRY_WRITE | \
 447				 _SEGMENT_ENTRY_YOUNG | \
 448				 _SEGMENT_ENTRY_DIRTY | \
 449				 _SEGMENT_ENTRY_NOEXEC)
 450#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
 451				 _SEGMENT_ENTRY_LARGE |	\
 452				 _SEGMENT_ENTRY_READ |	\
 453				 _SEGMENT_ENTRY_YOUNG |	\
 454				 _SEGMENT_ENTRY_PROTECT | \
 455				 _SEGMENT_ENTRY_NOEXEC)
 456#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
 457				 _SEGMENT_ENTRY_LARGE |	\
 458				 _SEGMENT_ENTRY_READ |	\
 459				 _SEGMENT_ENTRY_WRITE | \
 460				 _SEGMENT_ENTRY_YOUNG |	\
 461				 _SEGMENT_ENTRY_DIRTY)
 462
 463/*
 464 * Region3 entry (large page) protection definitions.
 465 */
 466
 467#define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
 468				 _REGION3_ENTRY_LARGE |	 \
 469				 _REGION3_ENTRY_READ |	 \
 470				 _REGION3_ENTRY_WRITE |	 \
 471				 _REGION3_ENTRY_YOUNG |	 \
 472				 _REGION3_ENTRY_DIRTY | \
 473				 _REGION_ENTRY_NOEXEC)
 474#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 475				   _REGION3_ENTRY_LARGE |  \
 476				   _REGION3_ENTRY_READ |   \
 477				   _REGION3_ENTRY_YOUNG |  \
 478				   _REGION_ENTRY_PROTECT | \
 479				   _REGION_ENTRY_NOEXEC)
 480
 481static inline bool mm_p4d_folded(struct mm_struct *mm)
 482{
 483	return mm->context.asce_limit <= _REGION1_SIZE;
 484}
 485#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 486
 487static inline bool mm_pud_folded(struct mm_struct *mm)
 488{
 489	return mm->context.asce_limit <= _REGION2_SIZE;
 490}
 491#define mm_pud_folded(mm) mm_pud_folded(mm)
 492
 493static inline bool mm_pmd_folded(struct mm_struct *mm)
 494{
 495	return mm->context.asce_limit <= _REGION3_SIZE;
 
 496}
 497#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 498
 499static inline int mm_has_pgste(struct mm_struct *mm)
 500{
 501#ifdef CONFIG_PGSTE
 502	if (unlikely(mm->context.has_pgste))
 503		return 1;
 504#endif
 505	return 0;
 506}
 507
 508static inline int mm_is_protected(struct mm_struct *mm)
 509{
 510#ifdef CONFIG_PGSTE
 511	if (unlikely(atomic_read(&mm->context.protected_count)))
 512		return 1;
 513#endif
 514	return 0;
 515}
 516
 517static inline int mm_alloc_pgste(struct mm_struct *mm)
 518{
 519#ifdef CONFIG_PGSTE
 520	if (unlikely(mm->context.alloc_pgste))
 521		return 1;
 522#endif
 523	return 0;
 524}
 525
 526static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
 527{
 528	return __pte(pte_val(pte) & ~pgprot_val(prot));
 529}
 530
 531static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
 532{
 533	return __pte(pte_val(pte) | pgprot_val(prot));
 534}
 535
 536static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
 537{
 538	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
 539}
 540
 541static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
 542{
 543	return __pmd(pmd_val(pmd) | pgprot_val(prot));
 544}
 545
 546static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
 547{
 548	return __pud(pud_val(pud) & ~pgprot_val(prot));
 549}
 550
 551static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
 552{
 553	return __pud(pud_val(pud) | pgprot_val(prot));
 554}
 555
 556/*
 557 * In the case that a guest uses storage keys
 558 * faults should no longer be backed by zero pages
 559 */
 560#define mm_forbids_zeropage mm_has_pgste
 561static inline int mm_uses_skeys(struct mm_struct *mm)
 562{
 563#ifdef CONFIG_PGSTE
 564	if (mm->context.uses_skeys)
 565		return 1;
 566#endif
 567	return 0;
 568}
 569
 570static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 571{
 572	union register_pair r1 = { .even = old, .odd = new, };
 573	unsigned long address = (unsigned long)ptr | 1;
 574
 575	asm volatile(
 576		"	csp	%[r1],%[address]"
 577		: [r1] "+&d" (r1.pair), "+m" (*ptr)
 578		: [address] "d" (address)
 579		: "cc");
 580}
 581
 582static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 583{
 584	union register_pair r1 = { .even = old, .odd = new, };
 585	unsigned long address = (unsigned long)ptr | 1;
 586
 587	asm volatile(
 588		"	cspg	%[r1],%[address]"
 589		: [r1] "+&d" (r1.pair), "+m" (*ptr)
 590		: [address] "d" (address)
 591		: "cc");
 592}
 593
 594#define CRDTE_DTT_PAGE		0x00UL
 595#define CRDTE_DTT_SEGMENT	0x10UL
 596#define CRDTE_DTT_REGION3	0x14UL
 597#define CRDTE_DTT_REGION2	0x18UL
 598#define CRDTE_DTT_REGION1	0x1cUL
 599
 600static inline void crdte(unsigned long old, unsigned long new,
 601			 unsigned long *table, unsigned long dtt,
 602			 unsigned long address, unsigned long asce)
 603{
 604	union register_pair r1 = { .even = old, .odd = new, };
 605	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
 606
 607	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
 608		     : [r1] "+&d" (r1.pair)
 609		     : [r2] "d" (r2.pair), [asce] "a" (asce)
 610		     : "memory", "cc");
 611}
 612
 613/*
 614 * pgd/p4d/pud/pmd/pte query functions
 615 */
 616static inline int pgd_folded(pgd_t pgd)
 617{
 618	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 619}
 620
 621static inline int pgd_present(pgd_t pgd)
 622{
 623	if (pgd_folded(pgd))
 624		return 1;
 625	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 626}
 627
 628static inline int pgd_none(pgd_t pgd)
 629{
 630	if (pgd_folded(pgd))
 631		return 0;
 632	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 633}
 634
 635static inline int pgd_bad(pgd_t pgd)
 636{
 637	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 638		return 0;
 639	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 640}
 641
 642static inline unsigned long pgd_pfn(pgd_t pgd)
 643{
 644	unsigned long origin_mask;
 645
 646	origin_mask = _REGION_ENTRY_ORIGIN;
 647	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 648}
 649
 650static inline int p4d_folded(p4d_t p4d)
 651{
 652	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 653}
 654
 655static inline int p4d_present(p4d_t p4d)
 656{
 657	if (p4d_folded(p4d))
 658		return 1;
 659	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 660}
 661
 662static inline int p4d_none(p4d_t p4d)
 663{
 664	if (p4d_folded(p4d))
 665		return 0;
 666	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 667}
 668
 669static inline unsigned long p4d_pfn(p4d_t p4d)
 670{
 671	unsigned long origin_mask;
 672
 673	origin_mask = _REGION_ENTRY_ORIGIN;
 674	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 675}
 676
 677static inline int pud_folded(pud_t pud)
 678{
 679	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 680}
 681
 682static inline int pud_present(pud_t pud)
 683{
 684	if (pud_folded(pud))
 685		return 1;
 686	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 687}
 688
 689static inline int pud_none(pud_t pud)
 690{
 691	if (pud_folded(pud))
 692		return 0;
 693	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 694}
 695
 696#define pud_leaf	pud_large
 697static inline int pud_large(pud_t pud)
 698{
 699	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 700		return 0;
 701	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 702}
 703
 704#define pmd_leaf	pmd_large
 705static inline int pmd_large(pmd_t pmd)
 706{
 707	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 708}
 709
 710static inline int pmd_bad(pmd_t pmd)
 711{
 712	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
 713		return 1;
 714	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 715}
 716
 717static inline int pud_bad(pud_t pud)
 718{
 719	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 720
 721	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
 722		return 1;
 723	if (type < _REGION_ENTRY_TYPE_R3)
 724		return 0;
 725	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 
 
 726}
 727
 728static inline int p4d_bad(p4d_t p4d)
 729{
 730	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 731
 732	if (type > _REGION_ENTRY_TYPE_R2)
 733		return 1;
 734	if (type < _REGION_ENTRY_TYPE_R2)
 735		return 0;
 736	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 737}
 738
 739static inline int pmd_present(pmd_t pmd)
 740{
 741	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 742}
 743
 744static inline int pmd_none(pmd_t pmd)
 745{
 746	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 747}
 748
 749#define pmd_write pmd_write
 750static inline int pmd_write(pmd_t pmd)
 751{
 752	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 753}
 754
 755#define pud_write pud_write
 756static inline int pud_write(pud_t pud)
 757{
 758	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
 759}
 760
 761static inline int pmd_dirty(pmd_t pmd)
 762{
 763	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 
 764}
 765
 766#define pmd_young pmd_young
 767static inline int pmd_young(pmd_t pmd)
 768{
 769	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 770}
 771
 772static inline int pte_present(pte_t pte)
 773{
 774	/* Bit pattern: (pte & 0x001) == 0x001 */
 775	return (pte_val(pte) & _PAGE_PRESENT) != 0;
 
 
 776}
 777
 778static inline int pte_none(pte_t pte)
 779{
 780	/* Bit pattern: pte == 0x400 */
 781	return pte_val(pte) == _PAGE_INVALID;
 782}
 783
 784static inline int pte_swap(pte_t pte)
 785{
 786	/* Bit pattern: (pte & 0x201) == 0x200 */
 787	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 788		== _PAGE_PROTECT;
 789}
 790
 791static inline int pte_special(pte_t pte)
 792{
 793	return (pte_val(pte) & _PAGE_SPECIAL);
 794}
 795
 796#define __HAVE_ARCH_PTE_SAME
 797static inline int pte_same(pte_t a, pte_t b)
 798{
 799	return pte_val(a) == pte_val(b);
 800}
 801
 802#ifdef CONFIG_NUMA_BALANCING
 803static inline int pte_protnone(pte_t pte)
 804{
 805	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 806}
 
 807
 808static inline int pmd_protnone(pmd_t pmd)
 809{
 810	/* pmd_large(pmd) implies pmd_present(pmd) */
 811	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 812}
 
 
 
 
 
 813#endif
 814
 815#define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
 816static inline int pte_swp_exclusive(pte_t pte)
 817{
 818	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
 819}
 820
 821static inline pte_t pte_swp_mkexclusive(pte_t pte)
 822{
 823	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
 
 
 
 
 
 
 
 824}
 825
 826static inline pte_t pte_swp_clear_exclusive(pte_t pte)
 827{
 828	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
 829}
 
 830
 831static inline int pte_soft_dirty(pte_t pte)
 832{
 833	return pte_val(pte) & _PAGE_SOFT_DIRTY;
 834}
 835#define pte_swp_soft_dirty pte_soft_dirty
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836
 837static inline pte_t pte_mksoft_dirty(pte_t pte)
 838{
 839	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
 840}
 841#define pte_swp_mksoft_dirty pte_mksoft_dirty
 842
 843static inline pte_t pte_clear_soft_dirty(pte_t pte)
 844{
 845	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
 846}
 847#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 848
 849static inline int pmd_soft_dirty(pmd_t pmd)
 850{
 851	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 852}
 
 
 
 
 
 
 853
 854static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 855{
 856	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
 857}
 858
 859static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 860{
 861	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
 862}
 
 863
 864/*
 865 * query functions pte_write/pte_dirty/pte_young only work if
 866 * pte_present() is true. Undefined behaviour if not..
 867 */
 868static inline int pte_write(pte_t pte)
 869{
 870	return (pte_val(pte) & _PAGE_WRITE) != 0;
 
 871}
 872
 873static inline int pte_dirty(pte_t pte)
 874{
 875	return (pte_val(pte) & _PAGE_DIRTY) != 0;
 876}
 
 
 
 
 
 
 
 
 
 
 877
 878static inline int pte_young(pte_t pte)
 879{
 880	return (pte_val(pte) & _PAGE_YOUNG) != 0;
 881}
 
 
 
 
 
 882
 883#define __HAVE_ARCH_PTE_UNUSED
 884static inline int pte_unused(pte_t pte)
 885{
 886	return pte_val(pte) & _PAGE_UNUSED;
 887}
 
 
 
 
 
 
 
 
 
 
 
 
 
 888
 889/*
 890 * Extract the pgprot value from the given pte while at the same time making it
 891 * usable for kernel address space mappings where fault driven dirty and
 892 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
 893 * must not be set.
 894 */
 895static inline pgprot_t pte_pgprot(pte_t pte)
 
 896{
 897	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
 898
 899	if (pte_write(pte))
 900		pte_flags |= pgprot_val(PAGE_KERNEL);
 901	else
 902		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
 903	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
 904
 905	return __pgprot(pte_flags);
 906}
 907
 908/*
 909 * pgd/pmd/pte modification functions
 
 910 */
 911
 912static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
 913{
 914	WRITE_ONCE(*pgdp, pgd);
 915}
 916
 917static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
 918{
 919	WRITE_ONCE(*p4dp, p4d);
 920}
 921
 922static inline void set_pud(pud_t *pudp, pud_t pud)
 923{
 924	WRITE_ONCE(*pudp, pud);
 
 
 
 
 925}
 926
 927static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
 928{
 929	WRITE_ONCE(*pmdp, pmd);
 
 
 
 
 930}
 931
 932static inline void set_pte(pte_t *ptep, pte_t pte)
 933{
 934	WRITE_ONCE(*ptep, pte);
 935}
 936
 937static inline void pgd_clear(pgd_t *pgd)
 938{
 939	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 940		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
 941}
 942
 943static inline void p4d_clear(p4d_t *p4d)
 944{
 945	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 946		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
 947}
 948
 949static inline void pud_clear(pud_t *pud)
 950{
 
 951	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 952		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
 
 953}
 954
 955static inline void pmd_clear(pmd_t *pmdp)
 956{
 957	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
 958}
 959
 960static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 961{
 962	set_pte(ptep, __pte(_PAGE_INVALID));
 963}
 964
 965/*
 966 * The following pte modification functions only work if
 967 * pte_present() is true. Undefined behaviour if not..
 968 */
 969static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 970{
 971	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
 972	pte = set_pte_bit(pte, newprot);
 973	/*
 974	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 975	 * has the invalid bit set, clear it again for readable, young pages
 976	 */
 977	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 978		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
 979	/*
 980	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 981	 * protection bit set, clear it again for writable, dirty pages
 982	 */
 983	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 984		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 985	return pte;
 986}
 987
 988static inline pte_t pte_wrprotect(pte_t pte)
 989{
 990	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
 991	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 
 
 992}
 993
 994static inline pte_t pte_mkwrite(pte_t pte)
 995{
 996	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
 997	if (pte_val(pte) & _PAGE_DIRTY)
 998		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 999	return pte;
1000}
1001
1002static inline pte_t pte_mkclean(pte_t pte)
1003{
1004	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1005	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 
 
1006}
1007
1008static inline pte_t pte_mkdirty(pte_t pte)
1009{
1010	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1011	if (pte_val(pte) & _PAGE_WRITE)
1012		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013	return pte;
1014}
1015
1016static inline pte_t pte_mkold(pte_t pte)
1017{
1018	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1019	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
 
 
1020}
1021
1022static inline pte_t pte_mkyoung(pte_t pte)
1023{
1024	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1025	if (pte_val(pte) & _PAGE_READ)
1026		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1027	return pte;
1028}
1029
1030static inline pte_t pte_mkspecial(pte_t pte)
1031{
1032	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
 
1033}
1034
1035#ifdef CONFIG_HUGETLB_PAGE
1036static inline pte_t pte_mkhuge(pte_t pte)
1037{
1038	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039}
1040#endif
1041
1042#define IPTE_GLOBAL	0
1043#define	IPTE_LOCAL	1
 
 
 
 
 
 
1044
1045#define IPTE_NODAT	0x400
1046#define IPTE_GUEST_ASCE	0x800
 
 
 
 
 
 
 
 
1047
1048static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1049					unsigned long opt, unsigned long asce,
1050					int local)
 
 
1051{
1052	unsigned long pto = __pa(ptep);
 
1053
1054	if (__builtin_constant_p(opt) && opt == 0) {
1055		/* Invalidation + TLB flush for the pte */
1056		asm volatile(
1057			"	ipte	%[r1],%[r2],0,%[m4]"
1058			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1059			  [m4] "i" (local));
1060		return;
1061	}
 
 
 
 
 
 
 
 
 
1062
1063	/* Invalidate ptes with options + TLB flush of the ptes */
1064	opt = opt | (asce & _ASCE_ORIGIN);
1065	asm volatile(
1066		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1067		: [r2] "+a" (address), [r3] "+a" (opt)
1068		: [r1] "a" (pto), [m4] "i" (local) : "memory");
 
 
 
1069}
1070
1071static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1072					      pte_t *ptep, int local)
 
1073{
1074	unsigned long pto = __pa(ptep);
 
 
 
 
 
1075
1076	/* Invalidate a range of ptes + TLB flush of the ptes */
1077	do {
 
 
 
 
 
 
 
 
1078		asm volatile(
1079			"	ipte %[r1],%[r2],%[r3],%[m4]"
1080			: [r2] "+a" (address), [r3] "+a" (nr)
1081			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1082	} while (nr != 255);
1083}
1084
1085/*
1086 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1087 * both clear the TLB for the unmapped pte. The reason is that
1088 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1089 * to modify an active pte. The sequence is
1090 *   1) ptep_get_and_clear
1091 *   2) set_pte_at
1092 *   3) flush_tlb_range
1093 * On s390 the tlb needs to get flushed with the modification of the pte
1094 * if the pte is active. The only way how this can be implemented is to
1095 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1096 * is a nop.
1097 */
1098pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1099pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1100
1101#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1102static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1103					    unsigned long addr, pte_t *ptep)
1104{
1105	pte_t pte = *ptep;
 
1106
1107	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1108	return pte_young(pte);
1109}
1110
1111#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1112static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1113					 unsigned long address, pte_t *ptep)
1114{
1115	return ptep_test_and_clear_young(vma, address, ptep);
 
 
 
 
 
1116}
1117
1118#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1119static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1120				       unsigned long addr, pte_t *ptep)
 
1121{
1122	pte_t res;
 
 
 
 
1123
1124	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1125	/* At this point the reference through the mapping is still present */
1126	if (mm_is_protected(mm) && pte_present(res))
1127		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1128	return res;
1129}
1130
1131#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1132pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1133void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1134			     pte_t *, pte_t, pte_t);
 
 
 
 
1135
1136#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1137static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1138				     unsigned long addr, pte_t *ptep)
1139{
1140	pte_t res;
 
 
 
 
1141
1142	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1143	/* At this point the reference through the mapping is still present */
1144	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1145		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1146	return res;
 
 
 
 
1147}
1148
1149/*
1150 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1151 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1152 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1153 * cannot be accessed while the batched unmap is running. In this case
1154 * full==1 and a simple pte_clear is enough. See tlb.h.
1155 */
1156#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1157static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1158					    unsigned long addr,
1159					    pte_t *ptep, int full)
1160{
1161	pte_t res;
 
 
 
 
1162
1163	if (full) {
1164		res = *ptep;
1165		set_pte(ptep, __pte(_PAGE_INVALID));
1166	} else {
1167		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
 
 
 
1168	}
1169	/* Nothing to do */
1170	if (!mm_is_protected(mm) || !pte_present(res))
1171		return res;
1172	/*
1173	 * At this point the reference through the mapping is still present.
1174	 * The notifier should have destroyed all protected vCPUs at this
1175	 * point, so the destroy should be successful.
1176	 */
1177	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1178		return res;
1179	/*
1180	 * If something went wrong and the page could not be destroyed, or
1181	 * if this is not a mm teardown, the slower export is used as
1182	 * fallback instead.
1183	 */
1184	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1185	return res;
1186}
1187
1188#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1189static inline void ptep_set_wrprotect(struct mm_struct *mm,
1190				      unsigned long addr, pte_t *ptep)
1191{
 
1192	pte_t pte = *ptep;
1193
1194	if (pte_write(pte))
1195		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
 
 
 
 
 
 
 
 
 
 
 
1196}
1197
1198#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1199static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1200					unsigned long addr, pte_t *ptep,
1201					pte_t entry, int dirty)
1202{
 
 
1203	if (pte_same(*ptep, entry))
1204		return 0;
1205	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1206	return 1;
1207}
1208
1209/*
1210 * Additional functions to handle KVM guest page tables
1211 */
1212void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1213		     pte_t *ptep, pte_t entry);
1214void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1215void ptep_notify(struct mm_struct *mm, unsigned long addr,
1216		 pte_t *ptep, unsigned long bits);
1217int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1218		    pte_t *ptep, int prot, unsigned long bit);
1219void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1220		     pte_t *ptep , int reset);
1221void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1222int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1223		    pte_t *sptep, pte_t *tptep, pte_t pte);
1224void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1225
1226bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1227			    pte_t *ptep);
1228int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1229			  unsigned char key, bool nq);
1230int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1231			       unsigned char key, unsigned char *oldkey,
1232			       bool nq, bool mr, bool mc);
1233int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1234int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1235			  unsigned char *key);
1236
1237int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1238				unsigned long bits, unsigned long value);
1239int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1240int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1241			unsigned long *oldpte, unsigned long *oldpgste);
1242void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1243void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1244void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1245void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1246
1247#define pgprot_writecombine	pgprot_writecombine
1248pgprot_t pgprot_writecombine(pgprot_t prot);
1249
1250#define pgprot_writethrough	pgprot_writethrough
1251pgprot_t pgprot_writethrough(pgprot_t prot);
1252
1253/*
1254 * Certain architectures need to do special things when PTEs
1255 * within a page table are directly modified.  Thus, the following
1256 * hook is made available.
1257 */
1258static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1259			      pte_t *ptep, pte_t entry)
1260{
1261	if (pte_present(entry))
1262		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1263	if (mm_has_pgste(mm))
1264		ptep_set_pte_at(mm, addr, ptep, entry);
1265	else
1266		set_pte(ptep, entry);
1267}
1268
1269/*
1270 * Conversion functions: convert a page and protection to a page entry,
1271 * and a page entry and page directory to the page they refer to.
1272 */
1273static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1274{
1275	pte_t __pte;
1276
1277	__pte = __pte(physpage | pgprot_val(pgprot));
1278	if (!MACHINE_HAS_NX)
1279		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1280	return pte_mkyoung(__pte);
1281}
1282
1283static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1284{
1285	unsigned long physpage = page_to_phys(page);
1286	pte_t __pte = mk_pte_phys(physpage, pgprot);
1287
1288	if (pte_write(__pte) && PageDirty(page))
1289		__pte = pte_mkdirty(__pte);
1290	return __pte;
1291}
1292
1293#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1294#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1295#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1296#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 
1297
1298#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1299#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1300
1301static inline unsigned long pmd_deref(pmd_t pmd)
1302{
1303	unsigned long origin_mask;
1304
1305	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1306	if (pmd_large(pmd))
1307		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1308	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1309}
1310
1311static inline unsigned long pmd_pfn(pmd_t pmd)
1312{
1313	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1314}
1315
1316static inline unsigned long pud_deref(pud_t pud)
1317{
1318	unsigned long origin_mask;
1319
1320	origin_mask = _REGION_ENTRY_ORIGIN;
1321	if (pud_large(pud))
1322		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1323	return (unsigned long)__va(pud_val(pud) & origin_mask);
1324}
1325
1326static inline unsigned long pud_pfn(pud_t pud)
1327{
1328	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1329}
1330
1331/*
1332 * The pgd_offset function *always* adds the index for the top-level
1333 * region/segment table. This is done to get a sequence like the
1334 * following to work:
1335 *	pgdp = pgd_offset(current->mm, addr);
1336 *	pgd = READ_ONCE(*pgdp);
1337 *	p4dp = p4d_offset(&pgd, addr);
1338 *	...
1339 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1340 * only add an index if they dereferenced the pointer.
1341 */
1342static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1343{
1344	unsigned long rste;
1345	unsigned int shift;
1346
1347	/* Get the first entry of the top level table */
1348	rste = pgd_val(*pgd);
1349	/* Pick up the shift from the table type of the first entry */
1350	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1351	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1352}
1353
1354#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1355
1356static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1357{
1358	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1359		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1360	return (p4d_t *) pgdp;
1361}
1362#define p4d_offset_lockless p4d_offset_lockless
1363
1364static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1365{
1366	return p4d_offset_lockless(pgdp, *pgdp, address);
1367}
1368
1369static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1370{
1371	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1372		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1373	return (pud_t *) p4dp;
1374}
1375#define pud_offset_lockless pud_offset_lockless
1376
1377static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1378{
1379	return pud_offset_lockless(p4dp, *p4dp, address);
1380}
1381#define pud_offset pud_offset
1382
1383static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1384{
1385	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1386		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1387	return (pmd_t *) pudp;
 
1388}
1389#define pmd_offset_lockless pmd_offset_lockless
1390
1391static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1392{
1393	return pmd_offset_lockless(pudp, *pudp, address);
1394}
1395#define pmd_offset pmd_offset
1396
1397static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1398{
1399	return (unsigned long) pmd_deref(pmd);
1400}
1401
1402static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1403{
1404	return end <= current->mm->context.asce_limit;
1405}
1406#define gup_fast_permitted gup_fast_permitted
1407
1408#define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1409#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1410#define pte_page(x) pfn_to_page(pte_pfn(x))
1411
1412#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1413#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1414#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1415#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1416
1417static inline pmd_t pmd_wrprotect(pmd_t pmd)
1418{
1419	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1420	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1421}
1422
1423static inline pmd_t pmd_mkwrite(pmd_t pmd)
1424{
1425	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1426	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1427		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1428	return pmd;
1429}
1430
1431static inline pmd_t pmd_mkclean(pmd_t pmd)
1432{
1433	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1434	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1435}
1436
1437static inline pmd_t pmd_mkdirty(pmd_t pmd)
1438{
1439	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1440	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1441		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1442	return pmd;
1443}
1444
1445static inline pud_t pud_wrprotect(pud_t pud)
1446{
1447	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1448	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1449}
1450
1451static inline pud_t pud_mkwrite(pud_t pud)
1452{
1453	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1454	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1455		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1456	return pud;
1457}
1458
1459static inline pud_t pud_mkclean(pud_t pud)
1460{
1461	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1462	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1463}
1464
1465static inline pud_t pud_mkdirty(pud_t pud)
1466{
1467	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1468	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1469		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1470	return pud;
1471}
1472
1473#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1474static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1475{
1476	/*
1477	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1478	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1479	 */
1480	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1481		return pgprot_val(SEGMENT_NONE);
1482	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1483		return pgprot_val(SEGMENT_RO);
1484	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1485		return pgprot_val(SEGMENT_RX);
1486	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1487		return pgprot_val(SEGMENT_RW);
1488	return pgprot_val(SEGMENT_RWX);
1489}
1490
1491static inline pmd_t pmd_mkyoung(pmd_t pmd)
1492{
1493	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1494	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1495		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1496	return pmd;
1497}
1498
1499static inline pmd_t pmd_mkold(pmd_t pmd)
1500{
1501	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1502	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1503}
1504
1505static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1506{
1507	unsigned long mask;
1508
1509	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1510	mask |= _SEGMENT_ENTRY_DIRTY;
1511	mask |= _SEGMENT_ENTRY_YOUNG;
1512	mask |=	_SEGMENT_ENTRY_LARGE;
1513	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1514	pmd = __pmd(pmd_val(pmd) & mask);
1515	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1516	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1517		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1518	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1519		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1520	return pmd;
1521}
1522
1523static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1524{
1525	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1526}
1527
1528#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1529
1530static inline void __pmdp_csp(pmd_t *pmdp)
1531{
1532	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1533	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1534}
1535
1536#define IDTE_GLOBAL	0
1537#define IDTE_LOCAL	1
1538
1539#define IDTE_PTOA	0x0800
1540#define IDTE_NODAT	0x1000
1541#define IDTE_GUEST_ASCE	0x2000
1542
1543static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1544					unsigned long opt, unsigned long asce,
1545					int local)
1546{
1547	unsigned long sto;
1548
1549	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1550	if (__builtin_constant_p(opt) && opt == 0) {
1551		/* flush without guest asce */
1552		asm volatile(
1553			"	idte	%[r1],0,%[r2],%[m4]"
1554			: "+m" (*pmdp)
1555			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1556			  [m4] "i" (local)
1557			: "cc" );
1558	} else {
1559		/* flush with guest asce */
1560		asm volatile(
1561			"	idte	%[r1],%[r3],%[r2],%[m4]"
1562			: "+m" (*pmdp)
1563			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1564			  [r3] "a" (asce), [m4] "i" (local)
1565			: "cc" );
1566	}
1567}
1568
1569static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1570					unsigned long opt, unsigned long asce,
1571					int local)
1572{
1573	unsigned long r3o;
1574
1575	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1576	r3o |= _ASCE_TYPE_REGION3;
1577	if (__builtin_constant_p(opt) && opt == 0) {
1578		/* flush without guest asce */
1579		asm volatile(
1580			"	idte	%[r1],0,%[r2],%[m4]"
1581			: "+m" (*pudp)
1582			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1583			  [m4] "i" (local)
1584			: "cc");
1585	} else {
1586		/* flush with guest asce */
1587		asm volatile(
1588			"	idte	%[r1],%[r3],%[r2],%[m4]"
1589			: "+m" (*pudp)
1590			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1591			  [r3] "a" (asce), [m4] "i" (local)
1592			: "cc" );
1593	}
1594}
1595
1596pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1597pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1598pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1599
1600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601
1602#define __HAVE_ARCH_PGTABLE_DEPOSIT
1603void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1604				pgtable_t pgtable);
1605
1606#define __HAVE_ARCH_PGTABLE_WITHDRAW
1607pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1608
1609#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1610static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1611					unsigned long addr, pmd_t *pmdp,
1612					pmd_t entry, int dirty)
1613{
1614	VM_BUG_ON(addr & ~HPAGE_MASK);
1615
1616	entry = pmd_mkyoung(entry);
1617	if (dirty)
1618		entry = pmd_mkdirty(entry);
1619	if (pmd_val(*pmdp) == pmd_val(entry))
1620		return 0;
1621	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1622	return 1;
1623}
1624
1625#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1626static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1627					    unsigned long addr, pmd_t *pmdp)
1628{
1629	pmd_t pmd = *pmdp;
1630
1631	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1632	return pmd_young(pmd);
1633}
1634
1635#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1636static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1637					 unsigned long addr, pmd_t *pmdp)
1638{
1639	VM_BUG_ON(addr & ~HPAGE_MASK);
1640	return pmdp_test_and_clear_young(vma, addr, pmdp);
1641}
1642
1643static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1644			      pmd_t *pmdp, pmd_t entry)
1645{
1646	if (!MACHINE_HAS_NX)
1647		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1648	set_pmd(pmdp, entry);
1649}
1650
1651static inline pmd_t pmd_mkhuge(pmd_t pmd)
1652{
1653	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1654	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1655	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1656}
1657
1658#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1659static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1660					    unsigned long addr, pmd_t *pmdp)
1661{
1662	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1663}
1664
1665#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1666static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1667						 unsigned long addr,
1668						 pmd_t *pmdp, int full)
1669{
1670	if (full) {
1671		pmd_t pmd = *pmdp;
1672		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1673		return pmd;
1674	}
1675	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1676}
1677
1678#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1679static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1680					  unsigned long addr, pmd_t *pmdp)
1681{
1682	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1683}
1684
1685#define __HAVE_ARCH_PMDP_INVALIDATE
1686static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1687				   unsigned long addr, pmd_t *pmdp)
1688{
1689	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1690
1691	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1692}
1693
1694#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1695static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1696				      unsigned long addr, pmd_t *pmdp)
1697{
1698	pmd_t pmd = *pmdp;
1699
1700	if (pmd_write(pmd))
1701		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1702}
1703
1704static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1705					unsigned long address,
1706					pmd_t *pmdp)
1707{
1708	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1709}
1710#define pmdp_collapse_flush pmdp_collapse_flush
1711
1712#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1713#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1714
1715static inline int pmd_trans_huge(pmd_t pmd)
1716{
1717	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1718}
1719
1720#define has_transparent_hugepage has_transparent_hugepage
1721static inline int has_transparent_hugepage(void)
1722{
1723	return MACHINE_HAS_EDAT1 ? 1 : 0;
1724}
1725#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1726
1727/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728 * 64 bit swap entry format:
1729 * A page-table entry has some bits we have to treat in a special way.
1730 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1731 * as invalid.
1732 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1733 * |			  offset			|E11XX|type |S0|
1734 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1735 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1736 *
1737 * Bits 0-51 store the offset.
1738 * Bit 52 (E) is used to remember PG_anon_exclusive.
1739 * Bits 57-61 store the type.
1740 * Bit 62 (S) is used for softdirty tracking.
1741 * Bits 55 and 56 (X) are unused.
1742 */
1743
1744#define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1745#define __SWP_OFFSET_SHIFT	12
1746#define __SWP_TYPE_MASK		((1UL << 5) - 1)
1747#define __SWP_TYPE_SHIFT	2
1748
 
1749static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1750{
1751	unsigned long pteval;
1752
1753	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1754	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1755	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1756	return __pte(pteval);
1757}
1758
1759static inline unsigned long __swp_type(swp_entry_t entry)
1760{
1761	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1762}
1763
1764static inline unsigned long __swp_offset(swp_entry_t entry)
1765{
1766	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1767}
1768
1769static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1770{
1771	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1772}
1773
1774#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1775#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777extern int vmem_add_mapping(unsigned long start, unsigned long size);
1778extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1779extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1780extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1781extern void vmem_unmap_4k_page(unsigned long addr);
1782extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1783extern int s390_enable_sie(void);
1784extern int s390_enable_skey(void);
1785extern void s390_reset_cmma(struct mm_struct *mm);
1786
1787/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1788#define HAVE_ARCH_UNMAPPED_AREA
1789#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 
1790
1791#define pmd_pgtable(pmd) \
1792	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1793
1794#endif /* _S390_PAGE_H */
v3.1
 
   1/*
   2 *  include/asm-s390/pgtable.h
   3 *
   4 *  S390 version
   5 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   7 *               Ulrich Weigand (weigand@de.ibm.com)
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   9 *
  10 *  Derived from "include/asm-i386/pgtable.h"
  11 */
  12
  13#ifndef _ASM_S390_PGTABLE_H
  14#define _ASM_S390_PGTABLE_H
  15
  16/*
  17 * The Linux memory management assumes a three-level page table setup. For
  18 * s390 31 bit we "fold" the mid level into the top-level page table, so
  19 * that we physically have the same two-level page table as the s390 mmu
  20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  21 * the hardware provides (region first and region second tables are not
  22 * used).
  23 *
  24 * The "pgd_xxx()" functions are trivial for a folded two-level
  25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  26 * into the pgd entry)
  27 *
  28 * This file contains the functions and defines necessary to modify and use
  29 * the S390 page table tree.
  30 */
  31#ifndef __ASSEMBLY__
  32#include <linux/sched.h>
  33#include <linux/mm_types.h>
 
 
 
 
  34#include <asm/bug.h>
  35#include <asm/page.h>
 
  36
  37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  38extern void paging_init(void);
  39extern void vmem_map_init(void);
  40extern void fault_init(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41
  42/*
  43 * The S390 doesn't have any external MMU info: the kernel page
  44 * tables contain all the necessary information.
  45 */
  46#define update_mmu_cache(vma, address, ptep)     do { } while (0)
 
  47
  48/*
  49 * ZERO_PAGE is a global shared page that is always zero; used
  50 * for zero-mapped memory areas etc..
  51 */
  52
  53extern unsigned long empty_zero_page;
  54extern unsigned long zero_page_mask;
  55
  56#define ZERO_PAGE(vaddr) \
  57	(virt_to_page((void *)(empty_zero_page + \
  58	 (((unsigned long)(vaddr)) &zero_page_mask))))
 
  59
  60#define is_zero_pfn is_zero_pfn
  61static inline int is_zero_pfn(unsigned long pfn)
  62{
  63	extern unsigned long zero_pfn;
  64	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
  65	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
  66}
  67
  68#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
  69
  70#endif /* !__ASSEMBLY__ */
  71
  72/*
  73 * PMD_SHIFT determines the size of the area a second-level page
  74 * table can map
  75 * PGDIR_SHIFT determines what a third-level page table entry can map
  76 */
  77#ifndef __s390x__
  78# define PMD_SHIFT	20
  79# define PUD_SHIFT	20
  80# define PGDIR_SHIFT	20
  81#else /* __s390x__ */
  82# define PMD_SHIFT	20
  83# define PUD_SHIFT	31
  84# define PGDIR_SHIFT	42
  85#endif /* __s390x__ */
  86
  87#define PMD_SIZE        (1UL << PMD_SHIFT)
  88#define PMD_MASK        (~(PMD_SIZE-1))
  89#define PUD_SIZE	(1UL << PUD_SHIFT)
  90#define PUD_MASK	(~(PUD_SIZE-1))
  91#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
  92#define PGDIR_MASK	(~(PGDIR_SIZE-1))
  93
  94/*
  95 * entries per page directory level: the S390 is two-level, so
  96 * we don't really have any PMD directory physically.
  97 * for S390 segment-table entries are combined to one PGD
  98 * that leads to 1024 pte per pgd
  99 */
 100#define PTRS_PER_PTE	256
 101#ifndef __s390x__
 102#define PTRS_PER_PMD	1
 103#define PTRS_PER_PUD	1
 104#else /* __s390x__ */
 105#define PTRS_PER_PMD	2048
 106#define PTRS_PER_PUD	2048
 107#endif /* __s390x__ */
 108#define PTRS_PER_PGD	2048
 109
 110#define FIRST_USER_ADDRESS  0
 111
 112#define pte_ERROR(e) \
 113	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 114#define pmd_ERROR(e) \
 115	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 116#define pud_ERROR(e) \
 117	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 
 
 118#define pgd_ERROR(e) \
 119	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120
 121#ifndef __ASSEMBLY__
 122/*
 123 * The vmalloc area will always be on the topmost area of the kernel
 124 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
 125 * which should be enough for any sane case.
 126 * By putting vmalloc at the top, we maximise the gap between physical
 127 * memory and vmalloc to catch misplaced memory accesses. As a side
 128 * effect, this also makes sure that 64 bit module code cannot be used
 129 * as system call address.
 130 */
 131
 132extern unsigned long VMALLOC_START;
 133
 134#ifndef __s390x__
 135#define VMALLOC_SIZE	(96UL << 20)
 136#define VMALLOC_END	0x7e000000UL
 137#define VMEM_MAP_END	0x80000000UL
 138#else /* __s390x__ */
 139#define VMALLOC_SIZE	(128UL << 30)
 140#define VMALLOC_END	0x3e000000000UL
 141#define VMEM_MAP_END	0x40000000000UL
 142#endif /* __s390x__ */
 143
 144/*
 145 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
 146 * mapping. This needs to be calculated at compile time since the size of the
 147 * VMEM_MAP is static but the size of struct page can change.
 148 */
 149#define VMEM_MAX_PAGES	((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
 150#define VMEM_MAX_PFN	min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
 151#define VMEM_MAX_PHYS	((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
 152#define vmemmap		((struct page *) VMALLOC_END)
 153
 154/*
 155 * A 31 bit pagetable entry of S390 has following format:
 156 *  |   PFRA          |    |  OS  |
 157 * 0                   0IP0
 158 * 00000000001111111111222222222233
 159 * 01234567890123456789012345678901
 160 *
 161 * I Page-Invalid Bit:    Page is not available for address-translation
 162 * P Page-Protection Bit: Store access not possible for page
 163 *
 164 * A 31 bit segmenttable entry of S390 has following format:
 165 *  |   P-table origin      |  |PTL
 166 * 0                         IC
 167 * 00000000001111111111222222222233
 168 * 01234567890123456789012345678901
 169 *
 170 * I Segment-Invalid Bit:    Segment is not available for address-translation
 171 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 172 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 173 *
 174 * The 31 bit segmenttable origin of S390 has following format:
 175 *
 176 *  |S-table origin   |     | STL |
 177 * X                   **GPS
 178 * 00000000001111111111222222222233
 179 * 01234567890123456789012345678901
 180 *
 181 * X Space-Switch event:
 182 * G Segment-Invalid Bit:     *
 183 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 184 * S Storage-Alteration:
 185 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 186 *
 187 * A 64 bit pagetable entry of S390 has following format:
 188 * |			 PFRA			      |0IPC|  OS  |
 189 * 0000000000111111111122222222223333333333444444444455555555556666
 190 * 0123456789012345678901234567890123456789012345678901234567890123
 191 *
 192 * I Page-Invalid Bit:    Page is not available for address-translation
 193 * P Page-Protection Bit: Store access not possible for page
 194 * C Change-bit override: HW is not required to set change bit
 195 *
 196 * A 64 bit segmenttable entry of S390 has following format:
 197 * |        P-table origin                              |      TT
 198 * 0000000000111111111122222222223333333333444444444455555555556666
 199 * 0123456789012345678901234567890123456789012345678901234567890123
 200 *
 201 * I Segment-Invalid Bit:    Segment is not available for address-translation
 202 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 203 * P Page-Protection Bit: Store access not possible for page
 204 * TT Type 00
 205 *
 206 * A 64 bit region table entry of S390 has following format:
 207 * |        S-table origin                             |   TF  TTTL
 208 * 0000000000111111111122222222223333333333444444444455555555556666
 209 * 0123456789012345678901234567890123456789012345678901234567890123
 210 *
 211 * I Segment-Invalid Bit:    Segment is not available for address-translation
 212 * TT Type 01
 213 * TF
 214 * TL Table length
 215 *
 216 * The 64 bit regiontable origin of S390 has following format:
 217 * |      region table origon                          |       DTTL
 218 * 0000000000111111111122222222223333333333444444444455555555556666
 219 * 0123456789012345678901234567890123456789012345678901234567890123
 220 *
 221 * X Space-Switch event:
 222 * G Segment-Invalid Bit:  
 223 * P Private-Space Bit:    
 224 * S Storage-Alteration:
 225 * R Real space
 226 * TL Table-Length:
 227 *
 228 * A storage key has the following format:
 229 * | ACC |F|R|C|0|
 230 *  0   3 4 5 6 7
 231 * ACC: access key
 232 * F  : fetch protection bit
 233 * R  : referenced bit
 234 * C  : changed bit
 235 */
 236
 237/* Hardware bits in the page table entry */
 238#define _PAGE_CO	0x100		/* HW Change-bit override */
 239#define _PAGE_RO	0x200		/* HW read-only bit  */
 240#define _PAGE_INVALID	0x400		/* HW invalid bit    */
 
 241
 242/* Software bits in the page table entry */
 243#define _PAGE_SWT	0x001		/* SW pte type bit t */
 244#define _PAGE_SWX	0x002		/* SW pte type bit x */
 245#define _PAGE_SWC	0x004		/* SW pte changed bit (for KVM) */
 246#define _PAGE_SWR	0x008		/* SW pte referenced bit (for KVM) */
 247#define _PAGE_SPECIAL	0x010		/* SW associated with special page */
 248#define __HAVE_ARCH_PTE_SPECIAL
 
 
 
 
 
 
 
 
 
 249
 250/* Set of bits not changed in pte_modify */
 251#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR)
 
 252
 253/* Six different types of pages. */
 254#define _PAGE_TYPE_EMPTY	0x400
 255#define _PAGE_TYPE_NONE		0x401
 256#define _PAGE_TYPE_SWAP		0x403
 257#define _PAGE_TYPE_FILE		0x601	/* bit 0x002 is used for offset !! */
 258#define _PAGE_TYPE_RO		0x200
 259#define _PAGE_TYPE_RW		0x000
 260
 261/*
 262 * Only four types for huge pages, using the invalid bit and protection bit
 263 * of a segment table entry.
 264 */
 265#define _HPAGE_TYPE_EMPTY	0x020	/* _SEGMENT_ENTRY_INV */
 266#define _HPAGE_TYPE_NONE	0x220
 267#define _HPAGE_TYPE_RO		0x200	/* _SEGMENT_ENTRY_RO  */
 268#define _HPAGE_TYPE_RW		0x000
 269
 270/*
 271 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 272 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 273 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 274 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 275 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 276 * This change is done while holding the lock, but the intermediate step
 277 * of a previously valid pte with the hw invalid bit set can be observed by
 278 * handle_pte_fault. That makes it necessary that all valid pte types with
 279 * the hw invalid bit set must be distinguishable from the four pte types
 280 * empty, none, swap and file.
 281 *
 282 *			irxt  ipte  irxt
 283 * _PAGE_TYPE_EMPTY	1000   ->   1000
 284 * _PAGE_TYPE_NONE	1001   ->   1001
 285 * _PAGE_TYPE_SWAP	1011   ->   1011
 286 * _PAGE_TYPE_FILE	11?1   ->   11?1
 287 * _PAGE_TYPE_RO	0100   ->   1100
 288 * _PAGE_TYPE_RW	0000   ->   1000
 289 *
 290 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 291 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 292 * pte_file is true for bits combinations 1101, 1111
 293 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 294 */
 295
 296#ifndef __s390x__
 297
 298/* Bits in the segment table address-space-control-element */
 299#define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
 300#define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
 301#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 302#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 303#define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
 304
 305/* Bits in the segment table entry */
 306#define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
 307#define _SEGMENT_ENTRY_RO	0x200	/* page protection bit		    */
 308#define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
 309#define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
 310#define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
 311
 312#define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
 313#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
 314
 315/* Page status table bits for virtualization */
 316#define RCP_ACC_BITS	0xf0000000UL
 317#define RCP_FP_BIT	0x08000000UL
 318#define RCP_PCL_BIT	0x00800000UL
 319#define RCP_HR_BIT	0x00400000UL
 320#define RCP_HC_BIT	0x00200000UL
 321#define RCP_GR_BIT	0x00040000UL
 322#define RCP_GC_BIT	0x00020000UL
 323
 324/* User dirty / referenced bit for KVM's migration feature */
 325#define KVM_UR_BIT	0x00008000UL
 326#define KVM_UC_BIT	0x00004000UL
 327
 328#else /* __s390x__ */
 329
 330/* Bits in the segment/region table address-space-control-element */
 331#define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
 332#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 333#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 334#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
 335#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
 336#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
 337#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
 338#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
 339#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
 340#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
 341#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
 342
 343/* Bits in the region table entry */
 344#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
 345#define _REGION_ENTRY_INV	0x20	/* invalid region table entry	    */
 346#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
 
 
 
 347#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
 348#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
 349#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
 350#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
 351
 352#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 353#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
 354#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 355#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
 356#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 357#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358
 359/* Bits in the segment table entry */
 360#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
 361#define _SEGMENT_ENTRY_RO	0x200	/* page protection bit		    */
 362#define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
 
 
 
 
 
 
 363
 364#define _SEGMENT_ENTRY		(0)
 365#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
 
 
 
 
 
 
 366
 367#define _SEGMENT_ENTRY_LARGE	0x400	/* STE-format control, large page   */
 368#define _SEGMENT_ENTRY_CO	0x100	/* change-recording override   */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369
 370/* Page status table bits for virtualization */
 371#define RCP_ACC_BITS	0xf000000000000000UL
 372#define RCP_FP_BIT	0x0800000000000000UL
 373#define RCP_PCL_BIT	0x0080000000000000UL
 374#define RCP_HR_BIT	0x0040000000000000UL
 375#define RCP_HC_BIT	0x0020000000000000UL
 376#define RCP_GR_BIT	0x0004000000000000UL
 377#define RCP_GC_BIT	0x0002000000000000UL
 378
 379/* User dirty / referenced bit for KVM's migration feature */
 380#define KVM_UR_BIT	0x0000800000000000UL
 381#define KVM_UC_BIT	0x0000400000000000UL
 382
 383#endif /* __s390x__ */
 
 
 
 
 
 
 384
 385/*
 386 * A user page table pointer has the space-switch-event bit, the
 387 * private-space-control bit and the storage-alteration-event-control
 388 * bit set. A kernel page table pointer doesn't need them.
 389 */
 390#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 391				 _ASCE_ALT_EVENT)
 392
 393/*
 394 * Page protection definitions.
 395 */
 396#define PAGE_NONE	__pgprot(_PAGE_TYPE_NONE)
 397#define PAGE_RO		__pgprot(_PAGE_TYPE_RO)
 398#define PAGE_RW		__pgprot(_PAGE_TYPE_RW)
 399
 400#define PAGE_KERNEL	PAGE_RW
 401#define PAGE_COPY	PAGE_RO
 
 
 
 
 
 
 
 
 
 
 
 
 402
 403/*
 404 * On s390 the page table entry has an invalid bit and a read-only bit.
 405 * Read permission implies execute permission and write permission
 406 * implies read permission.
 407 */
 408         /*xwr*/
 409#define __P000	PAGE_NONE
 410#define __P001	PAGE_RO
 411#define __P010	PAGE_RO
 412#define __P011	PAGE_RO
 413#define __P100	PAGE_RO
 414#define __P101	PAGE_RO
 415#define __P110	PAGE_RO
 416#define __P111	PAGE_RO
 417
 418#define __S000	PAGE_NONE
 419#define __S001	PAGE_RO
 420#define __S010	PAGE_RW
 421#define __S011	PAGE_RW
 422#define __S100	PAGE_RO
 423#define __S101	PAGE_RO
 424#define __S110	PAGE_RW
 425#define __S111	PAGE_RW
 426
 427static inline int mm_exclusive(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428{
 429	return likely(mm == current->active_mm &&
 430		      atomic_read(&mm->context.attach_count) <= 1);
 431}
 
 432
 433static inline int mm_has_pgste(struct mm_struct *mm)
 434{
 435#ifdef CONFIG_PGSTE
 436	if (unlikely(mm->context.has_pgste))
 437		return 1;
 438#endif
 439	return 0;
 440}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441/*
 442 * pgd/pmd/pte query functions
 
 443 */
 444#ifndef __s390x__
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445
 446static inline int pgd_present(pgd_t pgd) { return 1; }
 447static inline int pgd_none(pgd_t pgd)    { return 0; }
 448static inline int pgd_bad(pgd_t pgd)     { return 0; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449
 450static inline int pud_present(pud_t pud) { return 1; }
 451static inline int pud_none(pud_t pud)	 { return 0; }
 452static inline int pud_bad(pud_t pud)	 { return 0; }
 
 
 453
 454#else /* __s390x__ */
 
 
 
 
 
 
 455
 456static inline int pgd_present(pgd_t pgd)
 457{
 458	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 459		return 1;
 460	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 461}
 462
 463static inline int pgd_none(pgd_t pgd)
 464{
 465	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 466		return 0;
 467	return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
 468}
 469
 470static inline int pgd_bad(pgd_t pgd)
 471{
 472	/*
 473	 * With dynamic page table levels the pgd can be a region table
 474	 * entry or a segment table entry. Check for the bit that are
 475	 * invalid for either table entry.
 476	 */
 477	unsigned long mask =
 478		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 479		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 480	return (pgd_val(pgd) & mask) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481}
 482
 483static inline int pud_present(pud_t pud)
 484{
 485	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 486		return 1;
 487	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 488}
 489
 490static inline int pud_none(pud_t pud)
 491{
 492	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 
 
 
 
 
 
 
 
 493		return 0;
 494	return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 495}
 496
 497static inline int pud_bad(pud_t pud)
 498{
 499	/*
 500	 * With dynamic page table levels the pud can be a region table
 501	 * entry or a segment table entry. Check for the bit that are
 502	 * invalid for either table entry.
 503	 */
 504	unsigned long mask =
 505		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 506		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 507	return (pud_val(pud) & mask) != 0;
 508}
 509
 510#endif /* __s390x__ */
 
 
 
 
 
 
 
 
 
 511
 512static inline int pmd_present(pmd_t pmd)
 513{
 514	return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
 515}
 516
 517static inline int pmd_none(pmd_t pmd)
 518{
 519	return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
 520}
 521
 522static inline int pmd_bad(pmd_t pmd)
 
 
 
 
 
 
 
 
 
 
 
 
 523{
 524	unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
 525	return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
 526}
 527
 528static inline int pte_none(pte_t pte)
 
 529{
 530	return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
 531}
 532
 533static inline int pte_present(pte_t pte)
 534{
 535	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
 536	return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
 537		(!(pte_val(pte) & _PAGE_INVALID) &&
 538		 !(pte_val(pte) & _PAGE_SWT));
 539}
 540
 541static inline int pte_file(pte_t pte)
 542{
 543	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
 544	return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
 
 
 
 
 
 
 
 545}
 546
 547static inline int pte_special(pte_t pte)
 548{
 549	return (pte_val(pte) & _PAGE_SPECIAL);
 550}
 551
 552#define __HAVE_ARCH_PTE_SAME
 553static inline int pte_same(pte_t a, pte_t b)
 554{
 555	return pte_val(a) == pte_val(b);
 556}
 557
 558static inline pgste_t pgste_get_lock(pte_t *ptep)
 
 559{
 560	unsigned long new = 0;
 561#ifdef CONFIG_PGSTE
 562	unsigned long old;
 563
 564	preempt_disable();
 565	asm(
 566		"	lg	%0,%2\n"
 567		"0:	lgr	%1,%0\n"
 568		"	nihh	%0,0xff7f\n"	/* clear RCP_PCL_BIT in old */
 569		"	oihh	%1,0x0080\n"	/* set RCP_PCL_BIT in new */
 570		"	csg	%0,%1,%2\n"
 571		"	jl	0b\n"
 572		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 573		: "Q" (ptep[PTRS_PER_PTE]) : "cc");
 574#endif
 575	return __pgste(new);
 
 
 
 
 576}
 577
 578static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 579{
 580#ifdef CONFIG_PGSTE
 581	asm(
 582		"	nihh	%1,0xff7f\n"	/* clear RCP_PCL_BIT */
 583		"	stg	%1,%0\n"
 584		: "=Q" (ptep[PTRS_PER_PTE])
 585		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
 586	preempt_enable();
 587#endif
 588}
 589
 590static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
 591{
 592#ifdef CONFIG_PGSTE
 593	unsigned long address, bits;
 594	unsigned char skey;
 595
 596	address = pte_val(*ptep) & PAGE_MASK;
 597	skey = page_get_storage_key(address);
 598	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 599	/* Clear page changed & referenced bit in the storage key */
 600	if (bits) {
 601		skey ^= bits;
 602		page_set_storage_key(address, skey, 1);
 603	}
 604	/* Transfer page changed & referenced bit to guest bits in pgste */
 605	pgste_val(pgste) |= bits << 48;		/* RCP_GR_BIT & RCP_GC_BIT */
 606	/* Get host changed & referenced bits from pgste */
 607	bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
 608	/* Clear host bits in pgste. */
 609	pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
 610	pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
 611	/* Copy page access key and fetch protection bit to pgste */
 612	pgste_val(pgste) |=
 613		(unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 614	/* Transfer changed and referenced to kvm user bits */
 615	pgste_val(pgste) |= bits << 45;		/* KVM_UR_BIT & KVM_UC_BIT */
 616	/* Transfer changed & referenced to pte sofware bits */
 617	pte_val(*ptep) |= bits << 1;		/* _PAGE_SWR & _PAGE_SWC */
 618#endif
 619	return pgste;
 620
 
 
 
 621}
 
 622
 623static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
 624{
 625#ifdef CONFIG_PGSTE
 626	int young;
 
 627
 628	young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
 629	/* Transfer page referenced bit to pte software bit (host view) */
 630	if (young || (pgste_val(pgste) & RCP_HR_BIT))
 631		pte_val(*ptep) |= _PAGE_SWR;
 632	/* Clear host referenced bit in pgste. */
 633	pgste_val(pgste) &= ~RCP_HR_BIT;
 634	/* Transfer page referenced bit to guest bit in pgste */
 635	pgste_val(pgste) |= (unsigned long) young << 50; /* set RCP_GR_BIT */
 636#endif
 637	return pgste;
 638
 
 
 
 639}
 640
 641static inline void pgste_set_pte(pte_t *ptep, pgste_t pgste)
 642{
 643#ifdef CONFIG_PGSTE
 644	unsigned long address;
 645	unsigned long okey, nkey;
 646
 647	address = pte_val(*ptep) & PAGE_MASK;
 648	okey = nkey = page_get_storage_key(address);
 649	nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
 650	/* Set page access key and fetch protection bit from pgste */
 651	nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
 652	if (okey != nkey)
 653		page_set_storage_key(address, nkey, 1);
 654#endif
 655}
 656
 657/**
 658 * struct gmap_struct - guest address space
 659 * @mm: pointer to the parent mm_struct
 660 * @table: pointer to the page directory
 661 * @asce: address space control element for gmap page table
 662 * @crst_list: list of all crst tables used in the guest address space
 663 */
 664struct gmap {
 665	struct list_head list;
 666	struct mm_struct *mm;
 667	unsigned long *table;
 668	unsigned long asce;
 669	struct list_head crst_list;
 670};
 671
 672/**
 673 * struct gmap_rmap - reverse mapping for segment table entries
 674 * @next: pointer to the next gmap_rmap structure in the list
 675 * @entry: pointer to a segment table entry
 676 */
 677struct gmap_rmap {
 678	struct list_head list;
 679	unsigned long *entry;
 680};
 681
 682/**
 683 * struct gmap_pgtable - gmap information attached to a page table
 684 * @vmaddr: address of the 1MB segment in the process virtual memory
 685 * @mapper: list of segment table entries maping a page table
 686 */
 687struct gmap_pgtable {
 688	unsigned long vmaddr;
 689	struct list_head mapper;
 690};
 691
 692struct gmap *gmap_alloc(struct mm_struct *mm);
 693void gmap_free(struct gmap *gmap);
 694void gmap_enable(struct gmap *gmap);
 695void gmap_disable(struct gmap *gmap);
 696int gmap_map_segment(struct gmap *gmap, unsigned long from,
 697		     unsigned long to, unsigned long length);
 698int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 699unsigned long gmap_fault(unsigned long address, struct gmap *);
 700
 701/*
 702 * Certain architectures need to do special things when PTEs
 703 * within a page table are directly modified.  Thus, the following
 704 * hook is made available.
 
 705 */
 706static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 707			      pte_t *ptep, pte_t entry)
 708{
 709	pgste_t pgste;
 710
 711	if (mm_has_pgste(mm)) {
 712		pgste = pgste_get_lock(ptep);
 713		pgste_set_pte(ptep, pgste);
 714		*ptep = entry;
 715		pgste_set_unlock(ptep, pgste);
 716	} else
 717		*ptep = entry;
 718}
 719
 720/*
 721 * query functions pte_write/pte_dirty/pte_young only work if
 722 * pte_present() is true. Undefined behaviour if not..
 723 */
 724static inline int pte_write(pte_t pte)
 
 
 
 
 
 
 725{
 726	return (pte_val(pte) & _PAGE_RO) == 0;
 727}
 728
 729static inline int pte_dirty(pte_t pte)
 730{
 731#ifdef CONFIG_PGSTE
 732	if (pte_val(pte) & _PAGE_SWC)
 733		return 1;
 734#endif
 735	return 0;
 736}
 737
 738static inline int pte_young(pte_t pte)
 739{
 740#ifdef CONFIG_PGSTE
 741	if (pte_val(pte) & _PAGE_SWR)
 742		return 1;
 743#endif
 744	return 0;
 745}
 746
 747/*
 748 * pgd/pmd/pte modification functions
 749 */
 
 750
 751static inline void pgd_clear(pgd_t *pgd)
 752{
 753#ifdef __s390x__
 754	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 755		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 756#endif
 
 
 
 
 757}
 758
 759static inline void pud_clear(pud_t *pud)
 760{
 761#ifdef __s390x__
 762	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 763		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 764#endif
 765}
 766
 767static inline void pmd_clear(pmd_t *pmdp)
 768{
 769	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 770}
 771
 772static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 773{
 774	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 775}
 776
 777/*
 778 * The following pte modification functions only work if
 779 * pte_present() is true. Undefined behaviour if not..
 780 */
 781static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 782{
 783	pte_val(pte) &= _PAGE_CHG_MASK;
 784	pte_val(pte) |= pgprot_val(newprot);
 
 
 
 
 
 
 
 
 
 
 
 
 785	return pte;
 786}
 787
 788static inline pte_t pte_wrprotect(pte_t pte)
 789{
 790	/* Do not clobber _PAGE_TYPE_NONE pages!  */
 791	if (!(pte_val(pte) & _PAGE_INVALID))
 792		pte_val(pte) |= _PAGE_RO;
 793	return pte;
 794}
 795
 796static inline pte_t pte_mkwrite(pte_t pte)
 797{
 798	pte_val(pte) &= ~_PAGE_RO;
 
 
 799	return pte;
 800}
 801
 802static inline pte_t pte_mkclean(pte_t pte)
 803{
 804#ifdef CONFIG_PGSTE
 805	pte_val(pte) &= ~_PAGE_SWC;
 806#endif
 807	return pte;
 808}
 809
 810static inline pte_t pte_mkdirty(pte_t pte)
 811{
 
 
 
 812	return pte;
 813}
 814
 815static inline pte_t pte_mkold(pte_t pte)
 816{
 817#ifdef CONFIG_PGSTE
 818	pte_val(pte) &= ~_PAGE_SWR;
 819#endif
 820	return pte;
 821}
 822
 823static inline pte_t pte_mkyoung(pte_t pte)
 824{
 
 
 
 825	return pte;
 826}
 827
 828static inline pte_t pte_mkspecial(pte_t pte)
 829{
 830	pte_val(pte) |= _PAGE_SPECIAL;
 831	return pte;
 832}
 833
 834#ifdef CONFIG_HUGETLB_PAGE
 835static inline pte_t pte_mkhuge(pte_t pte)
 836{
 837	/*
 838	 * PROT_NONE needs to be remapped from the pte type to the ste type.
 839	 * The HW invalid bit is also different for pte and ste. The pte
 840	 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
 841	 * bit, so we don't have to clear it.
 842	 */
 843	if (pte_val(pte) & _PAGE_INVALID) {
 844		if (pte_val(pte) & _PAGE_SWT)
 845			pte_val(pte) |= _HPAGE_TYPE_NONE;
 846		pte_val(pte) |= _SEGMENT_ENTRY_INV;
 847	}
 848	/*
 849	 * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
 850	 * table entry.
 851	 */
 852	pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX);
 853	/*
 854	 * Also set the change-override bit because we don't need dirty bit
 855	 * tracking for hugetlbfs pages.
 856	 */
 857	pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
 858	return pte;
 859}
 860#endif
 861
 862/*
 863 * Get (and clear) the user dirty bit for a pte.
 864 */
 865static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
 866						 pte_t *ptep)
 867{
 868	pgste_t pgste;
 869	int dirty = 0;
 870
 871	if (mm_has_pgste(mm)) {
 872		pgste = pgste_get_lock(ptep);
 873		pgste = pgste_update_all(ptep, pgste);
 874		dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
 875		pgste_val(pgste) &= ~KVM_UC_BIT;
 876		pgste_set_unlock(ptep, pgste);
 877		return dirty;
 878	}
 879	return dirty;
 880}
 881
 882/*
 883 * Get (and clear) the user referenced bit for a pte.
 884 */
 885static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
 886						 pte_t *ptep)
 887{
 888	pgste_t pgste;
 889	int young = 0;
 890
 891	if (mm_has_pgste(mm)) {
 892		pgste = pgste_get_lock(ptep);
 893		pgste = pgste_update_young(ptep, pgste);
 894		young = !!(pgste_val(pgste) & KVM_UR_BIT);
 895		pgste_val(pgste) &= ~KVM_UR_BIT;
 896		pgste_set_unlock(ptep, pgste);
 
 897	}
 898	return young;
 899}
 900
 901#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 902static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 903					    unsigned long addr, pte_t *ptep)
 904{
 905	pgste_t pgste;
 906	pte_t pte;
 907
 908	if (mm_has_pgste(vma->vm_mm)) {
 909		pgste = pgste_get_lock(ptep);
 910		pgste = pgste_update_young(ptep, pgste);
 911		pte = *ptep;
 912		*ptep = pte_mkold(pte);
 913		pgste_set_unlock(ptep, pgste);
 914		return pte_young(pte);
 915	}
 916	return 0;
 917}
 918
 919#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 920static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 921					 unsigned long address, pte_t *ptep)
 922{
 923	/* No need to flush TLB
 924	 * On s390 reference bits are in storage key and never in TLB
 925	 * With virtualization we handle the reference bit, without we
 926	 * we can simply return */
 927	return ptep_test_and_clear_young(vma, address, ptep);
 928}
 929
 930static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
 931{
 932	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
 933#ifndef __s390x__
 934		/* pto must point to the start of the segment table */
 935		pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
 936#else
 937		/* ipte in zarch mode can do the math */
 938		pte_t *pto = ptep;
 939#endif
 940		asm volatile(
 941			"	ipte	%2,%3"
 942			: "=m" (*ptep) : "m" (*ptep),
 943			  "a" (pto), "a" (address));
 944	}
 945}
 946
 947/*
 948 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
 949 * both clear the TLB for the unmapped pte. The reason is that
 950 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
 951 * to modify an active pte. The sequence is
 952 *   1) ptep_get_and_clear
 953 *   2) set_pte_at
 954 *   3) flush_tlb_range
 955 * On s390 the tlb needs to get flushed with the modification of the pte
 956 * if the pte is active. The only way how this can be implemented is to
 957 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
 958 * is a nop.
 959 */
 960#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 961static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 962				       unsigned long address, pte_t *ptep)
 
 
 
 963{
 964	pgste_t pgste;
 965	pte_t pte;
 966
 967	mm->context.flush_mm = 1;
 968	if (mm_has_pgste(mm))
 969		pgste = pgste_get_lock(ptep);
 970
 971	pte = *ptep;
 972	if (!mm_exclusive(mm))
 973		__ptep_ipte(address, ptep);
 974	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 975
 976	if (mm_has_pgste(mm)) {
 977		pgste = pgste_update_all(&pte, pgste);
 978		pgste_set_unlock(ptep, pgste);
 979	}
 980	return pte;
 981}
 982
 983#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 984static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
 985					   unsigned long address,
 986					   pte_t *ptep)
 987{
 988	pte_t pte;
 989
 990	mm->context.flush_mm = 1;
 991	if (mm_has_pgste(mm))
 992		pgste_get_lock(ptep);
 993
 994	pte = *ptep;
 995	if (!mm_exclusive(mm))
 996		__ptep_ipte(address, ptep);
 997	return pte;
 
 998}
 999
1000static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1001					   unsigned long address,
1002					   pte_t *ptep, pte_t pte)
1003{
1004	*ptep = pte;
1005	if (mm_has_pgste(mm))
1006		pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
1007}
1008
1009#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1010static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1011				     unsigned long address, pte_t *ptep)
1012{
1013	pgste_t pgste;
1014	pte_t pte;
1015
1016	if (mm_has_pgste(vma->vm_mm))
1017		pgste = pgste_get_lock(ptep);
1018
1019	pte = *ptep;
1020	__ptep_ipte(address, ptep);
1021	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1022
1023	if (mm_has_pgste(vma->vm_mm)) {
1024		pgste = pgste_update_all(&pte, pgste);
1025		pgste_set_unlock(ptep, pgste);
1026	}
1027	return pte;
1028}
1029
1030/*
1031 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1032 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1033 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1034 * cannot be accessed while the batched unmap is running. In this case
1035 * full==1 and a simple pte_clear is enough. See tlb.h.
1036 */
1037#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1038static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1039					    unsigned long address,
1040					    pte_t *ptep, int full)
1041{
1042	pgste_t pgste;
1043	pte_t pte;
1044
1045	if (mm_has_pgste(mm))
1046		pgste = pgste_get_lock(ptep);
1047
1048	pte = *ptep;
1049	if (!full)
1050		__ptep_ipte(address, ptep);
1051	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1052
1053	if (mm_has_pgste(mm)) {
1054		pgste = pgste_update_all(&pte, pgste);
1055		pgste_set_unlock(ptep, pgste);
1056	}
1057	return pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058}
1059
1060#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1061static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1062				       unsigned long address, pte_t *ptep)
1063{
1064	pgste_t pgste;
1065	pte_t pte = *ptep;
1066
1067	if (pte_write(pte)) {
1068		mm->context.flush_mm = 1;
1069		if (mm_has_pgste(mm))
1070			pgste = pgste_get_lock(ptep);
1071
1072		if (!mm_exclusive(mm))
1073			__ptep_ipte(address, ptep);
1074		*ptep = pte_wrprotect(pte);
1075
1076		if (mm_has_pgste(mm))
1077			pgste_set_unlock(ptep, pgste);
1078	}
1079	return pte;
1080}
1081
1082#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1083static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1084					unsigned long address, pte_t *ptep,
1085					pte_t entry, int dirty)
1086{
1087	pgste_t pgste;
1088
1089	if (pte_same(*ptep, entry))
1090		return 0;
1091	if (mm_has_pgste(vma->vm_mm))
1092		pgste = pgste_get_lock(ptep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093
1094	__ptep_ipte(address, ptep);
1095	*ptep = entry;
1096
1097	if (mm_has_pgste(vma->vm_mm))
1098		pgste_set_unlock(ptep, pgste);
1099	return 1;
 
 
 
 
 
 
 
 
 
 
 
1100}
1101
1102/*
1103 * Conversion functions: convert a page and protection to a page entry,
1104 * and a page entry and page directory to the page they refer to.
1105 */
1106static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1107{
1108	pte_t __pte;
1109	pte_val(__pte) = physpage + pgprot_val(pgprot);
1110	return __pte;
 
 
 
1111}
1112
1113static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1114{
1115	unsigned long physpage = page_to_phys(page);
 
1116
1117	return mk_pte_phys(physpage, pgprot);
 
 
1118}
1119
1120#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 
1121#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1122#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1123#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1124
1125#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1126#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127
1128#ifndef __s390x__
1129
1130#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1131#define pud_deref(pmd) ({ BUG(); 0UL; })
1132#define pgd_deref(pmd) ({ BUG(); 0UL; })
 
 
 
 
1133
1134#define pud_offset(pgd, address) ((pud_t *) pgd)
1135#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
 
 
1136
1137#else /* __s390x__ */
 
 
 
 
 
 
1138
1139#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1140#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1141#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
 
 
1142
1143static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1144{
1145	pud_t *pud = (pud_t *) pgd;
1146	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1147		pud = (pud_t *) pgd_deref(*pgd);
1148	return pud  + pud_index(address);
1149}
 
1150
1151static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1152{
1153	pmd_t *pmd = (pmd_t *) pud;
1154	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1155		pmd = (pmd_t *) pud_deref(*pud);
1156	return pmd + pmd_index(address);
 
 
 
1157}
1158
1159#endif /* __s390x__ */
 
 
 
 
1160
1161#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1162#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1163#define pte_page(x) pfn_to_page(pte_pfn(x))
1164
1165#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166
1167/* Find an entry in the lowest level page table.. */
1168#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1169#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1170#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1171#define pte_unmap(pte) do { } while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173/*
1174 * 31 bit swap entry format:
1175 * A page-table entry has some bits we have to treat in a special way.
1176 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1177 * exception will occur instead of a page translation exception. The
1178 * specifiation exception has the bad habit not to store necessary
1179 * information in the lowcore.
1180 * Bit 21 and bit 22 are the page invalid bit and the page protection
1181 * bit. We set both to indicate a swapped page.
1182 * Bit 30 and 31 are used to distinguish the different page types. For
1183 * a swapped page these bits need to be zero.
1184 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1185 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1186 * plus 24 for the offset.
1187 * 0|     offset        |0110|o|type |00|
1188 * 0 0000000001111111111 2222 2 22222 33
1189 * 0 1234567890123456789 0123 4 56789 01
1190 *
1191 * 64 bit swap entry format:
1192 * A page-table entry has some bits we have to treat in a special way.
1193 * Bits 52 and bit 55 have to be zero, otherwise an specification
1194 * exception will occur instead of a page translation exception. The
1195 * specifiation exception has the bad habit not to store necessary
1196 * information in the lowcore.
1197 * Bit 53 and bit 54 are the page invalid bit and the page protection
1198 * bit. We set both to indicate a swapped page.
1199 * Bit 62 and 63 are used to distinguish the different page types. For
1200 * a swapped page these bits need to be zero.
1201 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1202 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1203 * plus 56 for the offset.
1204 * |                      offset                        |0110|o|type |00|
1205 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1206 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1207 */
1208#ifndef __s390x__
1209#define __SWP_OFFSET_MASK (~0UL >> 12)
1210#else
1211#define __SWP_OFFSET_MASK (~0UL >> 11)
1212#endif
1213static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1214{
1215	pte_t pte;
1216	offset &= __SWP_OFFSET_MASK;
1217	pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1218		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1219	return pte;
 
 
 
 
 
 
 
 
 
 
 
1220}
1221
1222#define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1223#define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1224#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
 
1225
1226#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1227#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1228
1229#ifndef __s390x__
1230# define PTE_FILE_MAX_BITS	26
1231#else /* __s390x__ */
1232# define PTE_FILE_MAX_BITS	59
1233#endif /* __s390x__ */
1234
1235#define pte_to_pgoff(__pte) \
1236	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1237
1238#define pgoff_to_pte(__off) \
1239	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1240		   | _PAGE_TYPE_FILE })
1241
1242#endif /* !__ASSEMBLY__ */
1243
1244#define kern_addr_valid(addr)   (1)
1245
1246extern int vmem_add_mapping(unsigned long start, unsigned long size);
1247extern int vmem_remove_mapping(unsigned long start, unsigned long size);
 
 
 
 
1248extern int s390_enable_sie(void);
 
 
1249
1250/*
1251 * No page table caches to initialise
1252 */
1253#define pgtable_cache_init()	do { } while (0)
1254
1255#include <asm-generic/pgtable.h>
 
1256
1257#endif /* _S390_PAGE_H */