Linux Audio

Check our new training course

Loading...
   1/*
   2 *  include/asm-s390/pgtable.h
   3 *
   4 *  S390 version
   5 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   7 *               Ulrich Weigand (weigand@de.ibm.com)
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   9 *
  10 *  Derived from "include/asm-i386/pgtable.h"
  11 */
  12
  13#ifndef _ASM_S390_PGTABLE_H
  14#define _ASM_S390_PGTABLE_H
  15
  16/*
  17 * The Linux memory management assumes a three-level page table setup. For
  18 * s390 31 bit we "fold" the mid level into the top-level page table, so
  19 * that we physically have the same two-level page table as the s390 mmu
  20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  21 * the hardware provides (region first and region second tables are not
  22 * used).
  23 *
  24 * The "pgd_xxx()" functions are trivial for a folded two-level
  25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  26 * into the pgd entry)
  27 *
  28 * This file contains the functions and defines necessary to modify and use
  29 * the S390 page table tree.
  30 */
  31#ifndef __ASSEMBLY__
  32#include <linux/sched.h>
  33#include <linux/mm_types.h>
  34#include <asm/bug.h>
  35#include <asm/page.h>
  36
  37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  38extern void paging_init(void);
  39extern void vmem_map_init(void);
  40extern void fault_init(void);
  41
  42/*
  43 * The S390 doesn't have any external MMU info: the kernel page
  44 * tables contain all the necessary information.
  45 */
  46#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  47
  48/*
  49 * ZERO_PAGE is a global shared page that is always zero; used
  50 * for zero-mapped memory areas etc..
  51 */
  52
  53extern unsigned long empty_zero_page;
  54extern unsigned long zero_page_mask;
  55
  56#define ZERO_PAGE(vaddr) \
  57	(virt_to_page((void *)(empty_zero_page + \
  58	 (((unsigned long)(vaddr)) &zero_page_mask))))
  59
  60#define is_zero_pfn is_zero_pfn
  61static inline int is_zero_pfn(unsigned long pfn)
  62{
  63	extern unsigned long zero_pfn;
  64	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
  65	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
  66}
  67
  68#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
  69
  70#endif /* !__ASSEMBLY__ */
  71
  72/*
  73 * PMD_SHIFT determines the size of the area a second-level page
  74 * table can map
  75 * PGDIR_SHIFT determines what a third-level page table entry can map
  76 */
  77#ifndef CONFIG_64BIT
  78# define PMD_SHIFT	20
  79# define PUD_SHIFT	20
  80# define PGDIR_SHIFT	20
  81#else /* CONFIG_64BIT */
  82# define PMD_SHIFT	20
  83# define PUD_SHIFT	31
  84# define PGDIR_SHIFT	42
  85#endif /* CONFIG_64BIT */
  86
  87#define PMD_SIZE        (1UL << PMD_SHIFT)
  88#define PMD_MASK        (~(PMD_SIZE-1))
  89#define PUD_SIZE	(1UL << PUD_SHIFT)
  90#define PUD_MASK	(~(PUD_SIZE-1))
  91#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
  92#define PGDIR_MASK	(~(PGDIR_SIZE-1))
  93
  94/*
  95 * entries per page directory level: the S390 is two-level, so
  96 * we don't really have any PMD directory physically.
  97 * for S390 segment-table entries are combined to one PGD
  98 * that leads to 1024 pte per pgd
  99 */
 100#define PTRS_PER_PTE	256
 101#ifndef CONFIG_64BIT
 102#define PTRS_PER_PMD	1
 103#define PTRS_PER_PUD	1
 104#else /* CONFIG_64BIT */
 105#define PTRS_PER_PMD	2048
 106#define PTRS_PER_PUD	2048
 107#endif /* CONFIG_64BIT */
 108#define PTRS_PER_PGD	2048
 109
 110#define FIRST_USER_ADDRESS  0
 111
 112#define pte_ERROR(e) \
 113	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 114#define pmd_ERROR(e) \
 115	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 116#define pud_ERROR(e) \
 117	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 118#define pgd_ERROR(e) \
 119	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 120
 121#ifndef __ASSEMBLY__
 122/*
 123 * The vmalloc area will always be on the topmost area of the kernel
 124 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
 125 * which should be enough for any sane case.
 126 * By putting vmalloc at the top, we maximise the gap between physical
 127 * memory and vmalloc to catch misplaced memory accesses. As a side
 128 * effect, this also makes sure that 64 bit module code cannot be used
 129 * as system call address.
 130 */
 131extern unsigned long VMALLOC_START;
 132extern unsigned long VMALLOC_END;
 133extern struct page *vmemmap;
 134
 135#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 136
 137/*
 138 * A 31 bit pagetable entry of S390 has following format:
 139 *  |   PFRA          |    |  OS  |
 140 * 0                   0IP0
 141 * 00000000001111111111222222222233
 142 * 01234567890123456789012345678901
 143 *
 144 * I Page-Invalid Bit:    Page is not available for address-translation
 145 * P Page-Protection Bit: Store access not possible for page
 146 *
 147 * A 31 bit segmenttable entry of S390 has following format:
 148 *  |   P-table origin      |  |PTL
 149 * 0                         IC
 150 * 00000000001111111111222222222233
 151 * 01234567890123456789012345678901
 152 *
 153 * I Segment-Invalid Bit:    Segment is not available for address-translation
 154 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 155 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 156 *
 157 * The 31 bit segmenttable origin of S390 has following format:
 158 *
 159 *  |S-table origin   |     | STL |
 160 * X                   **GPS
 161 * 00000000001111111111222222222233
 162 * 01234567890123456789012345678901
 163 *
 164 * X Space-Switch event:
 165 * G Segment-Invalid Bit:     *
 166 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 167 * S Storage-Alteration:
 168 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 169 *
 170 * A 64 bit pagetable entry of S390 has following format:
 171 * |			 PFRA			      |0IPC|  OS  |
 172 * 0000000000111111111122222222223333333333444444444455555555556666
 173 * 0123456789012345678901234567890123456789012345678901234567890123
 174 *
 175 * I Page-Invalid Bit:    Page is not available for address-translation
 176 * P Page-Protection Bit: Store access not possible for page
 177 * C Change-bit override: HW is not required to set change bit
 178 *
 179 * A 64 bit segmenttable entry of S390 has following format:
 180 * |        P-table origin                              |      TT
 181 * 0000000000111111111122222222223333333333444444444455555555556666
 182 * 0123456789012345678901234567890123456789012345678901234567890123
 183 *
 184 * I Segment-Invalid Bit:    Segment is not available for address-translation
 185 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 186 * P Page-Protection Bit: Store access not possible for page
 187 * TT Type 00
 188 *
 189 * A 64 bit region table entry of S390 has following format:
 190 * |        S-table origin                             |   TF  TTTL
 191 * 0000000000111111111122222222223333333333444444444455555555556666
 192 * 0123456789012345678901234567890123456789012345678901234567890123
 193 *
 194 * I Segment-Invalid Bit:    Segment is not available for address-translation
 195 * TT Type 01
 196 * TF
 197 * TL Table length
 198 *
 199 * The 64 bit regiontable origin of S390 has following format:
 200 * |      region table origon                          |       DTTL
 201 * 0000000000111111111122222222223333333333444444444455555555556666
 202 * 0123456789012345678901234567890123456789012345678901234567890123
 203 *
 204 * X Space-Switch event:
 205 * G Segment-Invalid Bit:  
 206 * P Private-Space Bit:    
 207 * S Storage-Alteration:
 208 * R Real space
 209 * TL Table-Length:
 210 *
 211 * A storage key has the following format:
 212 * | ACC |F|R|C|0|
 213 *  0   3 4 5 6 7
 214 * ACC: access key
 215 * F  : fetch protection bit
 216 * R  : referenced bit
 217 * C  : changed bit
 218 */
 219
 220/* Hardware bits in the page table entry */
 221#define _PAGE_CO	0x100		/* HW Change-bit override */
 222#define _PAGE_RO	0x200		/* HW read-only bit  */
 223#define _PAGE_INVALID	0x400		/* HW invalid bit    */
 224
 225/* Software bits in the page table entry */
 226#define _PAGE_SWT	0x001		/* SW pte type bit t */
 227#define _PAGE_SWX	0x002		/* SW pte type bit x */
 228#define _PAGE_SWC	0x004		/* SW pte changed bit (for KVM) */
 229#define _PAGE_SWR	0x008		/* SW pte referenced bit (for KVM) */
 230#define _PAGE_SPECIAL	0x010		/* SW associated with special page */
 231#define __HAVE_ARCH_PTE_SPECIAL
 232
 233/* Set of bits not changed in pte_modify */
 234#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR)
 235
 236/* Six different types of pages. */
 237#define _PAGE_TYPE_EMPTY	0x400
 238#define _PAGE_TYPE_NONE		0x401
 239#define _PAGE_TYPE_SWAP		0x403
 240#define _PAGE_TYPE_FILE		0x601	/* bit 0x002 is used for offset !! */
 241#define _PAGE_TYPE_RO		0x200
 242#define _PAGE_TYPE_RW		0x000
 243
 244/*
 245 * Only four types for huge pages, using the invalid bit and protection bit
 246 * of a segment table entry.
 247 */
 248#define _HPAGE_TYPE_EMPTY	0x020	/* _SEGMENT_ENTRY_INV */
 249#define _HPAGE_TYPE_NONE	0x220
 250#define _HPAGE_TYPE_RO		0x200	/* _SEGMENT_ENTRY_RO  */
 251#define _HPAGE_TYPE_RW		0x000
 252
 253/*
 254 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 255 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 256 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 257 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 258 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 259 * This change is done while holding the lock, but the intermediate step
 260 * of a previously valid pte with the hw invalid bit set can be observed by
 261 * handle_pte_fault. That makes it necessary that all valid pte types with
 262 * the hw invalid bit set must be distinguishable from the four pte types
 263 * empty, none, swap and file.
 264 *
 265 *			irxt  ipte  irxt
 266 * _PAGE_TYPE_EMPTY	1000   ->   1000
 267 * _PAGE_TYPE_NONE	1001   ->   1001
 268 * _PAGE_TYPE_SWAP	1011   ->   1011
 269 * _PAGE_TYPE_FILE	11?1   ->   11?1
 270 * _PAGE_TYPE_RO	0100   ->   1100
 271 * _PAGE_TYPE_RW	0000   ->   1000
 272 *
 273 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 274 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 275 * pte_file is true for bits combinations 1101, 1111
 276 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 277 */
 278
 279#ifndef CONFIG_64BIT
 280
 281/* Bits in the segment table address-space-control-element */
 282#define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
 283#define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
 284#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 285#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 286#define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
 287
 288/* Bits in the segment table entry */
 289#define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
 290#define _SEGMENT_ENTRY_RO	0x200	/* page protection bit		    */
 291#define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
 292#define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
 293#define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
 294
 295#define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
 296#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
 297
 298/* Page status table bits for virtualization */
 299#define RCP_ACC_BITS	0xf0000000UL
 300#define RCP_FP_BIT	0x08000000UL
 301#define RCP_PCL_BIT	0x00800000UL
 302#define RCP_HR_BIT	0x00400000UL
 303#define RCP_HC_BIT	0x00200000UL
 304#define RCP_GR_BIT	0x00040000UL
 305#define RCP_GC_BIT	0x00020000UL
 306
 307/* User dirty / referenced bit for KVM's migration feature */
 308#define KVM_UR_BIT	0x00008000UL
 309#define KVM_UC_BIT	0x00004000UL
 310
 311#else /* CONFIG_64BIT */
 312
 313/* Bits in the segment/region table address-space-control-element */
 314#define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
 315#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 316#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 317#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
 318#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
 319#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
 320#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
 321#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
 322#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
 323#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
 324#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
 325
 326/* Bits in the region table entry */
 327#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
 328#define _REGION_ENTRY_INV	0x20	/* invalid region table entry	    */
 329#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
 330#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
 331#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
 332#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
 333#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
 334
 335#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 336#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
 337#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 338#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
 339#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 340#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
 341
 342/* Bits in the segment table entry */
 343#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
 344#define _SEGMENT_ENTRY_RO	0x200	/* page protection bit		    */
 345#define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
 346
 347#define _SEGMENT_ENTRY		(0)
 348#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
 349
 350#define _SEGMENT_ENTRY_LARGE	0x400	/* STE-format control, large page   */
 351#define _SEGMENT_ENTRY_CO	0x100	/* change-recording override   */
 352
 353/* Page status table bits for virtualization */
 354#define RCP_ACC_BITS	0xf000000000000000UL
 355#define RCP_FP_BIT	0x0800000000000000UL
 356#define RCP_PCL_BIT	0x0080000000000000UL
 357#define RCP_HR_BIT	0x0040000000000000UL
 358#define RCP_HC_BIT	0x0020000000000000UL
 359#define RCP_GR_BIT	0x0004000000000000UL
 360#define RCP_GC_BIT	0x0002000000000000UL
 361
 362/* User dirty / referenced bit for KVM's migration feature */
 363#define KVM_UR_BIT	0x0000800000000000UL
 364#define KVM_UC_BIT	0x0000400000000000UL
 365
 366#endif /* CONFIG_64BIT */
 367
 368/*
 369 * A user page table pointer has the space-switch-event bit, the
 370 * private-space-control bit and the storage-alteration-event-control
 371 * bit set. A kernel page table pointer doesn't need them.
 372 */
 373#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 374				 _ASCE_ALT_EVENT)
 375
 376/*
 377 * Page protection definitions.
 378 */
 379#define PAGE_NONE	__pgprot(_PAGE_TYPE_NONE)
 380#define PAGE_RO		__pgprot(_PAGE_TYPE_RO)
 381#define PAGE_RW		__pgprot(_PAGE_TYPE_RW)
 382
 383#define PAGE_KERNEL	PAGE_RW
 384#define PAGE_COPY	PAGE_RO
 385
 386/*
 387 * On s390 the page table entry has an invalid bit and a read-only bit.
 388 * Read permission implies execute permission and write permission
 389 * implies read permission.
 390 */
 391         /*xwr*/
 392#define __P000	PAGE_NONE
 393#define __P001	PAGE_RO
 394#define __P010	PAGE_RO
 395#define __P011	PAGE_RO
 396#define __P100	PAGE_RO
 397#define __P101	PAGE_RO
 398#define __P110	PAGE_RO
 399#define __P111	PAGE_RO
 400
 401#define __S000	PAGE_NONE
 402#define __S001	PAGE_RO
 403#define __S010	PAGE_RW
 404#define __S011	PAGE_RW
 405#define __S100	PAGE_RO
 406#define __S101	PAGE_RO
 407#define __S110	PAGE_RW
 408#define __S111	PAGE_RW
 409
 410static inline int mm_exclusive(struct mm_struct *mm)
 411{
 412	return likely(mm == current->active_mm &&
 413		      atomic_read(&mm->context.attach_count) <= 1);
 414}
 415
 416static inline int mm_has_pgste(struct mm_struct *mm)
 417{
 418#ifdef CONFIG_PGSTE
 419	if (unlikely(mm->context.has_pgste))
 420		return 1;
 421#endif
 422	return 0;
 423}
 424/*
 425 * pgd/pmd/pte query functions
 426 */
 427#ifndef CONFIG_64BIT
 428
 429static inline int pgd_present(pgd_t pgd) { return 1; }
 430static inline int pgd_none(pgd_t pgd)    { return 0; }
 431static inline int pgd_bad(pgd_t pgd)     { return 0; }
 432
 433static inline int pud_present(pud_t pud) { return 1; }
 434static inline int pud_none(pud_t pud)	 { return 0; }
 435static inline int pud_bad(pud_t pud)	 { return 0; }
 436
 437#else /* CONFIG_64BIT */
 438
 439static inline int pgd_present(pgd_t pgd)
 440{
 441	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 442		return 1;
 443	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 444}
 445
 446static inline int pgd_none(pgd_t pgd)
 447{
 448	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 449		return 0;
 450	return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
 451}
 452
 453static inline int pgd_bad(pgd_t pgd)
 454{
 455	/*
 456	 * With dynamic page table levels the pgd can be a region table
 457	 * entry or a segment table entry. Check for the bit that are
 458	 * invalid for either table entry.
 459	 */
 460	unsigned long mask =
 461		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 462		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 463	return (pgd_val(pgd) & mask) != 0;
 464}
 465
 466static inline int pud_present(pud_t pud)
 467{
 468	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 469		return 1;
 470	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 471}
 472
 473static inline int pud_none(pud_t pud)
 474{
 475	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 476		return 0;
 477	return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
 478}
 479
 480static inline int pud_bad(pud_t pud)
 481{
 482	/*
 483	 * With dynamic page table levels the pud can be a region table
 484	 * entry or a segment table entry. Check for the bit that are
 485	 * invalid for either table entry.
 486	 */
 487	unsigned long mask =
 488		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 489		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 490	return (pud_val(pud) & mask) != 0;
 491}
 492
 493#endif /* CONFIG_64BIT */
 494
 495static inline int pmd_present(pmd_t pmd)
 496{
 497	return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
 498}
 499
 500static inline int pmd_none(pmd_t pmd)
 501{
 502	return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
 503}
 504
 505static inline int pmd_bad(pmd_t pmd)
 506{
 507	unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
 508	return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
 509}
 510
 511static inline int pte_none(pte_t pte)
 512{
 513	return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
 514}
 515
 516static inline int pte_present(pte_t pte)
 517{
 518	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
 519	return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
 520		(!(pte_val(pte) & _PAGE_INVALID) &&
 521		 !(pte_val(pte) & _PAGE_SWT));
 522}
 523
 524static inline int pte_file(pte_t pte)
 525{
 526	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
 527	return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
 528}
 529
 530static inline int pte_special(pte_t pte)
 531{
 532	return (pte_val(pte) & _PAGE_SPECIAL);
 533}
 534
 535#define __HAVE_ARCH_PTE_SAME
 536static inline int pte_same(pte_t a, pte_t b)
 537{
 538	return pte_val(a) == pte_val(b);
 539}
 540
 541static inline pgste_t pgste_get_lock(pte_t *ptep)
 542{
 543	unsigned long new = 0;
 544#ifdef CONFIG_PGSTE
 545	unsigned long old;
 546
 547	preempt_disable();
 548	asm(
 549		"	lg	%0,%2\n"
 550		"0:	lgr	%1,%0\n"
 551		"	nihh	%0,0xff7f\n"	/* clear RCP_PCL_BIT in old */
 552		"	oihh	%1,0x0080\n"	/* set RCP_PCL_BIT in new */
 553		"	csg	%0,%1,%2\n"
 554		"	jl	0b\n"
 555		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 556		: "Q" (ptep[PTRS_PER_PTE]) : "cc");
 557#endif
 558	return __pgste(new);
 559}
 560
 561static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 562{
 563#ifdef CONFIG_PGSTE
 564	asm(
 565		"	nihh	%1,0xff7f\n"	/* clear RCP_PCL_BIT */
 566		"	stg	%1,%0\n"
 567		: "=Q" (ptep[PTRS_PER_PTE])
 568		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
 569	preempt_enable();
 570#endif
 571}
 572
 573static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
 574{
 575#ifdef CONFIG_PGSTE
 576	unsigned long address, bits;
 577	unsigned char skey;
 578
 579	if (!pte_present(*ptep))
 580		return pgste;
 581	address = pte_val(*ptep) & PAGE_MASK;
 582	skey = page_get_storage_key(address);
 583	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 584	/* Clear page changed & referenced bit in the storage key */
 585	if (bits & _PAGE_CHANGED)
 586		page_set_storage_key(address, skey ^ bits, 1);
 587	else if (bits)
 588		page_reset_referenced(address);
 589	/* Transfer page changed & referenced bit to guest bits in pgste */
 590	pgste_val(pgste) |= bits << 48;		/* RCP_GR_BIT & RCP_GC_BIT */
 591	/* Get host changed & referenced bits from pgste */
 592	bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
 593	/* Clear host bits in pgste. */
 594	pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
 595	pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
 596	/* Copy page access key and fetch protection bit to pgste */
 597	pgste_val(pgste) |=
 598		(unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 599	/* Transfer changed and referenced to kvm user bits */
 600	pgste_val(pgste) |= bits << 45;		/* KVM_UR_BIT & KVM_UC_BIT */
 601	/* Transfer changed & referenced to pte sofware bits */
 602	pte_val(*ptep) |= bits << 1;		/* _PAGE_SWR & _PAGE_SWC */
 603#endif
 604	return pgste;
 605
 606}
 607
 608static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
 609{
 610#ifdef CONFIG_PGSTE
 611	int young;
 612
 613	if (!pte_present(*ptep))
 614		return pgste;
 615	young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
 616	/* Transfer page referenced bit to pte software bit (host view) */
 617	if (young || (pgste_val(pgste) & RCP_HR_BIT))
 618		pte_val(*ptep) |= _PAGE_SWR;
 619	/* Clear host referenced bit in pgste. */
 620	pgste_val(pgste) &= ~RCP_HR_BIT;
 621	/* Transfer page referenced bit to guest bit in pgste */
 622	pgste_val(pgste) |= (unsigned long) young << 50; /* set RCP_GR_BIT */
 623#endif
 624	return pgste;
 625
 626}
 627
 628static inline void pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
 629{
 630#ifdef CONFIG_PGSTE
 631	unsigned long address;
 632	unsigned long okey, nkey;
 633
 634	if (!pte_present(entry))
 635		return;
 636	address = pte_val(entry) & PAGE_MASK;
 637	okey = nkey = page_get_storage_key(address);
 638	nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
 639	/* Set page access key and fetch protection bit from pgste */
 640	nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
 641	if (okey != nkey)
 642		page_set_storage_key(address, nkey, 1);
 643#endif
 644}
 645
 646/**
 647 * struct gmap_struct - guest address space
 648 * @mm: pointer to the parent mm_struct
 649 * @table: pointer to the page directory
 650 * @asce: address space control element for gmap page table
 651 * @crst_list: list of all crst tables used in the guest address space
 652 */
 653struct gmap {
 654	struct list_head list;
 655	struct mm_struct *mm;
 656	unsigned long *table;
 657	unsigned long asce;
 658	struct list_head crst_list;
 659};
 660
 661/**
 662 * struct gmap_rmap - reverse mapping for segment table entries
 663 * @next: pointer to the next gmap_rmap structure in the list
 664 * @entry: pointer to a segment table entry
 665 */
 666struct gmap_rmap {
 667	struct list_head list;
 668	unsigned long *entry;
 669};
 670
 671/**
 672 * struct gmap_pgtable - gmap information attached to a page table
 673 * @vmaddr: address of the 1MB segment in the process virtual memory
 674 * @mapper: list of segment table entries maping a page table
 675 */
 676struct gmap_pgtable {
 677	unsigned long vmaddr;
 678	struct list_head mapper;
 679};
 680
 681struct gmap *gmap_alloc(struct mm_struct *mm);
 682void gmap_free(struct gmap *gmap);
 683void gmap_enable(struct gmap *gmap);
 684void gmap_disable(struct gmap *gmap);
 685int gmap_map_segment(struct gmap *gmap, unsigned long from,
 686		     unsigned long to, unsigned long length);
 687int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 688unsigned long __gmap_fault(unsigned long address, struct gmap *);
 689unsigned long gmap_fault(unsigned long address, struct gmap *);
 690void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
 691
 692/*
 693 * Certain architectures need to do special things when PTEs
 694 * within a page table are directly modified.  Thus, the following
 695 * hook is made available.
 696 */
 697static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 698			      pte_t *ptep, pte_t entry)
 699{
 700	pgste_t pgste;
 701
 702	if (mm_has_pgste(mm)) {
 703		pgste = pgste_get_lock(ptep);
 704		pgste_set_pte(ptep, pgste, entry);
 705		*ptep = entry;
 706		pgste_set_unlock(ptep, pgste);
 707	} else
 708		*ptep = entry;
 709}
 710
 711/*
 712 * query functions pte_write/pte_dirty/pte_young only work if
 713 * pte_present() is true. Undefined behaviour if not..
 714 */
 715static inline int pte_write(pte_t pte)
 716{
 717	return (pte_val(pte) & _PAGE_RO) == 0;
 718}
 719
 720static inline int pte_dirty(pte_t pte)
 721{
 722#ifdef CONFIG_PGSTE
 723	if (pte_val(pte) & _PAGE_SWC)
 724		return 1;
 725#endif
 726	return 0;
 727}
 728
 729static inline int pte_young(pte_t pte)
 730{
 731#ifdef CONFIG_PGSTE
 732	if (pte_val(pte) & _PAGE_SWR)
 733		return 1;
 734#endif
 735	return 0;
 736}
 737
 738/*
 739 * pgd/pmd/pte modification functions
 740 */
 741
 742static inline void pgd_clear(pgd_t *pgd)
 743{
 744#ifdef CONFIG_64BIT
 745	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 746		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 747#endif
 748}
 749
 750static inline void pud_clear(pud_t *pud)
 751{
 752#ifdef CONFIG_64BIT
 753	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 754		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 755#endif
 756}
 757
 758static inline void pmd_clear(pmd_t *pmdp)
 759{
 760	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 761}
 762
 763static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 764{
 765	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 766}
 767
 768/*
 769 * The following pte modification functions only work if
 770 * pte_present() is true. Undefined behaviour if not..
 771 */
 772static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 773{
 774	pte_val(pte) &= _PAGE_CHG_MASK;
 775	pte_val(pte) |= pgprot_val(newprot);
 776	return pte;
 777}
 778
 779static inline pte_t pte_wrprotect(pte_t pte)
 780{
 781	/* Do not clobber _PAGE_TYPE_NONE pages!  */
 782	if (!(pte_val(pte) & _PAGE_INVALID))
 783		pte_val(pte) |= _PAGE_RO;
 784	return pte;
 785}
 786
 787static inline pte_t pte_mkwrite(pte_t pte)
 788{
 789	pte_val(pte) &= ~_PAGE_RO;
 790	return pte;
 791}
 792
 793static inline pte_t pte_mkclean(pte_t pte)
 794{
 795#ifdef CONFIG_PGSTE
 796	pte_val(pte) &= ~_PAGE_SWC;
 797#endif
 798	return pte;
 799}
 800
 801static inline pte_t pte_mkdirty(pte_t pte)
 802{
 803	return pte;
 804}
 805
 806static inline pte_t pte_mkold(pte_t pte)
 807{
 808#ifdef CONFIG_PGSTE
 809	pte_val(pte) &= ~_PAGE_SWR;
 810#endif
 811	return pte;
 812}
 813
 814static inline pte_t pte_mkyoung(pte_t pte)
 815{
 816	return pte;
 817}
 818
 819static inline pte_t pte_mkspecial(pte_t pte)
 820{
 821	pte_val(pte) |= _PAGE_SPECIAL;
 822	return pte;
 823}
 824
 825#ifdef CONFIG_HUGETLB_PAGE
 826static inline pte_t pte_mkhuge(pte_t pte)
 827{
 828	/*
 829	 * PROT_NONE needs to be remapped from the pte type to the ste type.
 830	 * The HW invalid bit is also different for pte and ste. The pte
 831	 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
 832	 * bit, so we don't have to clear it.
 833	 */
 834	if (pte_val(pte) & _PAGE_INVALID) {
 835		if (pte_val(pte) & _PAGE_SWT)
 836			pte_val(pte) |= _HPAGE_TYPE_NONE;
 837		pte_val(pte) |= _SEGMENT_ENTRY_INV;
 838	}
 839	/*
 840	 * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
 841	 * table entry.
 842	 */
 843	pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX);
 844	/*
 845	 * Also set the change-override bit because we don't need dirty bit
 846	 * tracking for hugetlbfs pages.
 847	 */
 848	pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
 849	return pte;
 850}
 851#endif
 852
 853/*
 854 * Get (and clear) the user dirty bit for a pte.
 855 */
 856static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
 857						 pte_t *ptep)
 858{
 859	pgste_t pgste;
 860	int dirty = 0;
 861
 862	if (mm_has_pgste(mm)) {
 863		pgste = pgste_get_lock(ptep);
 864		pgste = pgste_update_all(ptep, pgste);
 865		dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
 866		pgste_val(pgste) &= ~KVM_UC_BIT;
 867		pgste_set_unlock(ptep, pgste);
 868		return dirty;
 869	}
 870	return dirty;
 871}
 872
 873/*
 874 * Get (and clear) the user referenced bit for a pte.
 875 */
 876static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
 877						 pte_t *ptep)
 878{
 879	pgste_t pgste;
 880	int young = 0;
 881
 882	if (mm_has_pgste(mm)) {
 883		pgste = pgste_get_lock(ptep);
 884		pgste = pgste_update_young(ptep, pgste);
 885		young = !!(pgste_val(pgste) & KVM_UR_BIT);
 886		pgste_val(pgste) &= ~KVM_UR_BIT;
 887		pgste_set_unlock(ptep, pgste);
 888	}
 889	return young;
 890}
 891
 892#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 893static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 894					    unsigned long addr, pte_t *ptep)
 895{
 896	pgste_t pgste;
 897	pte_t pte;
 898
 899	if (mm_has_pgste(vma->vm_mm)) {
 900		pgste = pgste_get_lock(ptep);
 901		pgste = pgste_update_young(ptep, pgste);
 902		pte = *ptep;
 903		*ptep = pte_mkold(pte);
 904		pgste_set_unlock(ptep, pgste);
 905		return pte_young(pte);
 906	}
 907	return 0;
 908}
 909
 910#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 911static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 912					 unsigned long address, pte_t *ptep)
 913{
 914	/* No need to flush TLB
 915	 * On s390 reference bits are in storage key and never in TLB
 916	 * With virtualization we handle the reference bit, without we
 917	 * we can simply return */
 918	return ptep_test_and_clear_young(vma, address, ptep);
 919}
 920
 921static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
 922{
 923	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
 924#ifndef CONFIG_64BIT
 925		/* pto must point to the start of the segment table */
 926		pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
 927#else
 928		/* ipte in zarch mode can do the math */
 929		pte_t *pto = ptep;
 930#endif
 931		asm volatile(
 932			"	ipte	%2,%3"
 933			: "=m" (*ptep) : "m" (*ptep),
 934			  "a" (pto), "a" (address));
 935	}
 936}
 937
 938/*
 939 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
 940 * both clear the TLB for the unmapped pte. The reason is that
 941 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
 942 * to modify an active pte. The sequence is
 943 *   1) ptep_get_and_clear
 944 *   2) set_pte_at
 945 *   3) flush_tlb_range
 946 * On s390 the tlb needs to get flushed with the modification of the pte
 947 * if the pte is active. The only way how this can be implemented is to
 948 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
 949 * is a nop.
 950 */
 951#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 952static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 953				       unsigned long address, pte_t *ptep)
 954{
 955	pgste_t pgste;
 956	pte_t pte;
 957
 958	mm->context.flush_mm = 1;
 959	if (mm_has_pgste(mm))
 960		pgste = pgste_get_lock(ptep);
 961
 962	pte = *ptep;
 963	if (!mm_exclusive(mm))
 964		__ptep_ipte(address, ptep);
 965	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 966
 967	if (mm_has_pgste(mm)) {
 968		pgste = pgste_update_all(&pte, pgste);
 969		pgste_set_unlock(ptep, pgste);
 970	}
 971	return pte;
 972}
 973
 974#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 975static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
 976					   unsigned long address,
 977					   pte_t *ptep)
 978{
 979	pte_t pte;
 980
 981	mm->context.flush_mm = 1;
 982	if (mm_has_pgste(mm))
 983		pgste_get_lock(ptep);
 984
 985	pte = *ptep;
 986	if (!mm_exclusive(mm))
 987		__ptep_ipte(address, ptep);
 988	return pte;
 989}
 990
 991static inline void ptep_modify_prot_commit(struct mm_struct *mm,
 992					   unsigned long address,
 993					   pte_t *ptep, pte_t pte)
 994{
 995	*ptep = pte;
 996	if (mm_has_pgste(mm))
 997		pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
 998}
 999
1000#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1001static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1002				     unsigned long address, pte_t *ptep)
1003{
1004	pgste_t pgste;
1005	pte_t pte;
1006
1007	if (mm_has_pgste(vma->vm_mm))
1008		pgste = pgste_get_lock(ptep);
1009
1010	pte = *ptep;
1011	__ptep_ipte(address, ptep);
1012	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1013
1014	if (mm_has_pgste(vma->vm_mm)) {
1015		pgste = pgste_update_all(&pte, pgste);
1016		pgste_set_unlock(ptep, pgste);
1017	}
1018	return pte;
1019}
1020
1021/*
1022 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1023 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1024 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1025 * cannot be accessed while the batched unmap is running. In this case
1026 * full==1 and a simple pte_clear is enough. See tlb.h.
1027 */
1028#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1029static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1030					    unsigned long address,
1031					    pte_t *ptep, int full)
1032{
1033	pgste_t pgste;
1034	pte_t pte;
1035
1036	if (mm_has_pgste(mm))
1037		pgste = pgste_get_lock(ptep);
1038
1039	pte = *ptep;
1040	if (!full)
1041		__ptep_ipte(address, ptep);
1042	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1043
1044	if (mm_has_pgste(mm)) {
1045		pgste = pgste_update_all(&pte, pgste);
1046		pgste_set_unlock(ptep, pgste);
1047	}
1048	return pte;
1049}
1050
1051#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1052static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1053				       unsigned long address, pte_t *ptep)
1054{
1055	pgste_t pgste;
1056	pte_t pte = *ptep;
1057
1058	if (pte_write(pte)) {
1059		mm->context.flush_mm = 1;
1060		if (mm_has_pgste(mm))
1061			pgste = pgste_get_lock(ptep);
1062
1063		if (!mm_exclusive(mm))
1064			__ptep_ipte(address, ptep);
1065		*ptep = pte_wrprotect(pte);
1066
1067		if (mm_has_pgste(mm))
1068			pgste_set_unlock(ptep, pgste);
1069	}
1070	return pte;
1071}
1072
1073#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1074static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1075					unsigned long address, pte_t *ptep,
1076					pte_t entry, int dirty)
1077{
1078	pgste_t pgste;
1079
1080	if (pte_same(*ptep, entry))
1081		return 0;
1082	if (mm_has_pgste(vma->vm_mm))
1083		pgste = pgste_get_lock(ptep);
1084
1085	__ptep_ipte(address, ptep);
1086	*ptep = entry;
1087
1088	if (mm_has_pgste(vma->vm_mm))
1089		pgste_set_unlock(ptep, pgste);
1090	return 1;
1091}
1092
1093/*
1094 * Conversion functions: convert a page and protection to a page entry,
1095 * and a page entry and page directory to the page they refer to.
1096 */
1097static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1098{
1099	pte_t __pte;
1100	pte_val(__pte) = physpage + pgprot_val(pgprot);
1101	return __pte;
1102}
1103
1104static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1105{
1106	unsigned long physpage = page_to_phys(page);
1107
1108	return mk_pte_phys(physpage, pgprot);
1109}
1110
1111#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1112#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1113#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1114#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1115
1116#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1117#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1118
1119#ifndef CONFIG_64BIT
1120
1121#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1122#define pud_deref(pmd) ({ BUG(); 0UL; })
1123#define pgd_deref(pmd) ({ BUG(); 0UL; })
1124
1125#define pud_offset(pgd, address) ((pud_t *) pgd)
1126#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1127
1128#else /* CONFIG_64BIT */
1129
1130#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1131#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1132#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1133
1134static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1135{
1136	pud_t *pud = (pud_t *) pgd;
1137	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1138		pud = (pud_t *) pgd_deref(*pgd);
1139	return pud  + pud_index(address);
1140}
1141
1142static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1143{
1144	pmd_t *pmd = (pmd_t *) pud;
1145	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1146		pmd = (pmd_t *) pud_deref(*pud);
1147	return pmd + pmd_index(address);
1148}
1149
1150#endif /* CONFIG_64BIT */
1151
1152#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1153#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1154#define pte_page(x) pfn_to_page(pte_pfn(x))
1155
1156#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1157
1158/* Find an entry in the lowest level page table.. */
1159#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1160#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1161#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1162#define pte_unmap(pte) do { } while (0)
1163
1164/*
1165 * 31 bit swap entry format:
1166 * A page-table entry has some bits we have to treat in a special way.
1167 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1168 * exception will occur instead of a page translation exception. The
1169 * specifiation exception has the bad habit not to store necessary
1170 * information in the lowcore.
1171 * Bit 21 and bit 22 are the page invalid bit and the page protection
1172 * bit. We set both to indicate a swapped page.
1173 * Bit 30 and 31 are used to distinguish the different page types. For
1174 * a swapped page these bits need to be zero.
1175 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1176 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1177 * plus 24 for the offset.
1178 * 0|     offset        |0110|o|type |00|
1179 * 0 0000000001111111111 2222 2 22222 33
1180 * 0 1234567890123456789 0123 4 56789 01
1181 *
1182 * 64 bit swap entry format:
1183 * A page-table entry has some bits we have to treat in a special way.
1184 * Bits 52 and bit 55 have to be zero, otherwise an specification
1185 * exception will occur instead of a page translation exception. The
1186 * specifiation exception has the bad habit not to store necessary
1187 * information in the lowcore.
1188 * Bit 53 and bit 54 are the page invalid bit and the page protection
1189 * bit. We set both to indicate a swapped page.
1190 * Bit 62 and 63 are used to distinguish the different page types. For
1191 * a swapped page these bits need to be zero.
1192 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1193 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1194 * plus 56 for the offset.
1195 * |                      offset                        |0110|o|type |00|
1196 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1197 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1198 */
1199#ifndef CONFIG_64BIT
1200#define __SWP_OFFSET_MASK (~0UL >> 12)
1201#else
1202#define __SWP_OFFSET_MASK (~0UL >> 11)
1203#endif
1204static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1205{
1206	pte_t pte;
1207	offset &= __SWP_OFFSET_MASK;
1208	pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1209		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1210	return pte;
1211}
1212
1213#define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1214#define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1215#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1216
1217#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1218#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1219
1220#ifndef CONFIG_64BIT
1221# define PTE_FILE_MAX_BITS	26
1222#else /* CONFIG_64BIT */
1223# define PTE_FILE_MAX_BITS	59
1224#endif /* CONFIG_64BIT */
1225
1226#define pte_to_pgoff(__pte) \
1227	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1228
1229#define pgoff_to_pte(__off) \
1230	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1231		   | _PAGE_TYPE_FILE })
1232
1233#endif /* !__ASSEMBLY__ */
1234
1235#define kern_addr_valid(addr)   (1)
1236
1237extern int vmem_add_mapping(unsigned long start, unsigned long size);
1238extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1239extern int s390_enable_sie(void);
1240
1241/*
1242 * No page table caches to initialise
1243 */
1244#define pgtable_cache_init()	do { } while (0)
1245
1246#include <asm-generic/pgtable.h>
1247
1248#endif /* _S390_PAGE_H */