Linux Audio

Check our new training course

Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
  20#include <asm/sections.h>
  21#include <asm/bug.h>
  22#include <asm/page.h>
  23#include <asm/uv.h>
  24
  25extern pgd_t swapper_pg_dir[];
  26extern void paging_init(void);
  27extern unsigned long s390_invalid_asce;
  28
  29enum {
  30	PG_DIRECT_MAP_4K = 0,
  31	PG_DIRECT_MAP_1M,
  32	PG_DIRECT_MAP_2G,
  33	PG_DIRECT_MAP_MAX
  34};
  35
  36extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  37
  38static inline void update_page_count(int level, long count)
  39{
  40	if (IS_ENABLED(CONFIG_PROC_FS))
  41		atomic_long_add(count, &direct_pages_count[level]);
  42}
  43
  44struct seq_file;
  45void arch_report_meminfo(struct seq_file *m);
  46
  47/*
  48 * The S390 doesn't have any external MMU info: the kernel page
  49 * tables contain all the necessary information.
  50 */
  51#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  53
  54/*
  55 * ZERO_PAGE is a global shared page that is always zero; used
  56 * for zero-mapped memory areas etc..
  57 */
  58
  59extern unsigned long empty_zero_page;
  60extern unsigned long zero_page_mask;
  61
  62#define ZERO_PAGE(vaddr) \
  63	(virt_to_page((void *)(empty_zero_page + \
  64	 (((unsigned long)(vaddr)) &zero_page_mask))))
  65#define __HAVE_COLOR_ZERO_PAGE
  66
  67/* TODO: s390 cannot support io_remap_pfn_range... */
  68
 
 
  69#define pte_ERROR(e) \
  70	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
  71#define pmd_ERROR(e) \
  72	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
  73#define pud_ERROR(e) \
  74	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
  75#define p4d_ERROR(e) \
  76	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
  77#define pgd_ERROR(e) \
  78	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
  79
  80/*
  81 * The vmalloc and module area will always be on the topmost area of the
  82 * kernel mapping. 512GB are reserved for vmalloc by default.
  83 * At the top of the vmalloc area a 2GB area is reserved where modules
  84 * will reside. That makes sure that inter module branches always
  85 * happen without trampolines and in addition the placement within a
  86 * 2GB frame is branch prediction unit friendly.
  87 */
  88extern unsigned long __bootdata_preserved(VMALLOC_START);
  89extern unsigned long __bootdata_preserved(VMALLOC_END);
  90#define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
  91extern struct page *__bootdata_preserved(vmemmap);
  92extern unsigned long __bootdata_preserved(vmemmap_size);
  93
  94#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  95
  96extern unsigned long __bootdata_preserved(MODULES_VADDR);
  97extern unsigned long __bootdata_preserved(MODULES_END);
  98#define MODULES_VADDR	MODULES_VADDR
  99#define MODULES_END	MODULES_END
 100#define MODULES_LEN	(1UL << 31)
 101
 102static inline int is_module_addr(void *addr)
 103{
 104	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 105	if (addr < (void *)MODULES_VADDR)
 106		return 0;
 107	if (addr > (void *)MODULES_END)
 108		return 0;
 109	return 1;
 110}
 111
 112/*
 113 * A 64 bit pagetable entry of S390 has following format:
 114 * |			 PFRA			      |0IPC|  OS  |
 115 * 0000000000111111111122222222223333333333444444444455555555556666
 116 * 0123456789012345678901234567890123456789012345678901234567890123
 117 *
 118 * I Page-Invalid Bit:    Page is not available for address-translation
 119 * P Page-Protection Bit: Store access not possible for page
 120 * C Change-bit override: HW is not required to set change bit
 121 *
 122 * A 64 bit segmenttable entry of S390 has following format:
 123 * |        P-table origin                              |      TT
 124 * 0000000000111111111122222222223333333333444444444455555555556666
 125 * 0123456789012345678901234567890123456789012345678901234567890123
 126 *
 127 * I Segment-Invalid Bit:    Segment is not available for address-translation
 128 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 129 * P Page-Protection Bit: Store access not possible for page
 130 * TT Type 00
 131 *
 132 * A 64 bit region table entry of S390 has following format:
 133 * |        S-table origin                             |   TF  TTTL
 134 * 0000000000111111111122222222223333333333444444444455555555556666
 135 * 0123456789012345678901234567890123456789012345678901234567890123
 136 *
 137 * I Segment-Invalid Bit:    Segment is not available for address-translation
 138 * TT Type 01
 139 * TF
 140 * TL Table length
 141 *
 142 * The 64 bit regiontable origin of S390 has following format:
 143 * |      region table origon                          |       DTTL
 144 * 0000000000111111111122222222223333333333444444444455555555556666
 145 * 0123456789012345678901234567890123456789012345678901234567890123
 146 *
 147 * X Space-Switch event:
 148 * G Segment-Invalid Bit:  
 149 * P Private-Space Bit:    
 150 * S Storage-Alteration:
 151 * R Real space
 152 * TL Table-Length:
 153 *
 154 * A storage key has the following format:
 155 * | ACC |F|R|C|0|
 156 *  0   3 4 5 6 7
 157 * ACC: access key
 158 * F  : fetch protection bit
 159 * R  : referenced bit
 160 * C  : changed bit
 161 */
 162
 163/* Hardware bits in the page table entry */
 164#define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
 165#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
 166#define _PAGE_INVALID	0x400		/* HW invalid bit    */
 167#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
 168
 169/* Software bits in the page table entry */
 170#define _PAGE_PRESENT	0x001		/* SW pte present bit */
 171#define _PAGE_YOUNG	0x004		/* SW pte young bit */
 172#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
 173#define _PAGE_READ	0x010		/* SW pte read bit */
 174#define _PAGE_WRITE	0x020		/* SW pte write bit */
 175#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
 176#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
 177
 178#ifdef CONFIG_MEM_SOFT_DIRTY
 179#define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
 180#else
 181#define _PAGE_SOFT_DIRTY 0x000
 182#endif
 183
 184#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
 185
 186/* Set of bits not changed in pte_modify */
 187#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 188				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 189
 190/*
 191 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 192 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 193 * distinguish present from not-present ptes. It is changed only with the page
 194 * table lock held.
 195 *
 196 * The following table gives the different possible bit combinations for
 197 * the pte hardware and software bits in the last 12 bits of a pte
 198 * (. unassigned bit, x don't care, t swap type):
 199 *
 200 *				842100000000
 201 *				000084210000
 202 *				000000008421
 203 *				.IR.uswrdy.p
 204 * empty			.10.00000000
 205 * swap				.11..ttttt.0
 206 * prot-none, clean, old	.11.xx0000.1
 207 * prot-none, clean, young	.11.xx0001.1
 208 * prot-none, dirty, old	.11.xx0010.1
 209 * prot-none, dirty, young	.11.xx0011.1
 210 * read-only, clean, old	.11.xx0100.1
 211 * read-only, clean, young	.01.xx0101.1
 212 * read-only, dirty, old	.11.xx0110.1
 213 * read-only, dirty, young	.01.xx0111.1
 214 * read-write, clean, old	.11.xx1100.1
 215 * read-write, clean, young	.01.xx1101.1
 216 * read-write, dirty, old	.10.xx1110.1
 217 * read-write, dirty, young	.00.xx1111.1
 218 * HW-bits: R read-only, I invalid
 219 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 220 *	    u unused, l large
 221 *
 222 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 223 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 224 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 225 */
 226
 227/* Bits in the segment/region table address-space-control-element */
 228#define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
 229#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 230#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 231#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
 232#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
 233#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
 234#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
 235#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
 236#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
 237#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
 238#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
 239
 240/* Bits in the region table entry */
 241#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
 242#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
 243#define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
 244#define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
 245#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
 246#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
 247#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
 248#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
 249#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
 250#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
 251
 252#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 253#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 254#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 255#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 256#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 257#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 258
 259#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
 260#define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
 261#define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
 262#define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
 263#define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
 264#define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
 265
 266#ifdef CONFIG_MEM_SOFT_DIRTY
 267#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 268#else
 269#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 270#endif
 271
 272#define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
 
 273
 274/* Bits in the segment table entry */
 275#define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
 
 276#define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
 277#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
 278#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
 279#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
 280#define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
 281#define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
 282#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
 283#define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
 284
 285#define _SEGMENT_ENTRY		(0)
 286#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
 287
 288#define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
 289#define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
 290#define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
 291#define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
 292#define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
 293
 294#ifdef CONFIG_MEM_SOFT_DIRTY
 295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 296#else
 297#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 298#endif
 299
 300#define _CRST_ENTRIES	2048	/* number of region/segment table entries */
 301#define _PAGE_ENTRIES	256	/* number of page table entries	*/
 302
 303#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 304#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 305
 306#define _REGION1_SHIFT	53
 307#define _REGION2_SHIFT	42
 308#define _REGION3_SHIFT	31
 309#define _SEGMENT_SHIFT	20
 310
 311#define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
 312#define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
 313#define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
 314#define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
 315#define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
 316
 317#define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
 318#define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
 319#define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
 320#define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
 321
 322#define _REGION1_MASK	(~(_REGION1_SIZE - 1))
 323#define _REGION2_MASK	(~(_REGION2_SIZE - 1))
 324#define _REGION3_MASK	(~(_REGION3_SIZE - 1))
 325#define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
 326
 327#define PMD_SHIFT	_SEGMENT_SHIFT
 328#define PUD_SHIFT	_REGION3_SHIFT
 329#define P4D_SHIFT	_REGION2_SHIFT
 330#define PGDIR_SHIFT	_REGION1_SHIFT
 331
 332#define PMD_SIZE	_SEGMENT_SIZE
 333#define PUD_SIZE	_REGION3_SIZE
 334#define P4D_SIZE	_REGION2_SIZE
 335#define PGDIR_SIZE	_REGION1_SIZE
 336
 337#define PMD_MASK	_SEGMENT_MASK
 338#define PUD_MASK	_REGION3_MASK
 339#define P4D_MASK	_REGION2_MASK
 340#define PGDIR_MASK	_REGION1_MASK
 341
 342#define PTRS_PER_PTE	_PAGE_ENTRIES
 343#define PTRS_PER_PMD	_CRST_ENTRIES
 344#define PTRS_PER_PUD	_CRST_ENTRIES
 345#define PTRS_PER_P4D	_CRST_ENTRIES
 346#define PTRS_PER_PGD	_CRST_ENTRIES
 347
 
 
 348/*
 349 * Segment table and region3 table entry encoding
 350 * (R = read-only, I = invalid, y = young bit):
 351 *				dy..R...I...wr
 352 * prot-none, clean, old	00..1...1...00
 353 * prot-none, clean, young	01..1...1...00
 354 * prot-none, dirty, old	10..1...1...00
 355 * prot-none, dirty, young	11..1...1...00
 356 * read-only, clean, old	00..1...1...01
 357 * read-only, clean, young	01..1...0...01
 358 * read-only, dirty, old	10..1...1...01
 359 * read-only, dirty, young	11..1...0...01
 360 * read-write, clean, old	00..1...1...11
 361 * read-write, clean, young	01..1...0...11
 362 * read-write, dirty, old	10..0...1...11
 363 * read-write, dirty, young	11..0...0...11
 364 * The segment table origin is used to distinguish empty (origin==0) from
 365 * read-write, old segment table entries (origin!=0)
 366 * HW-bits: R read-only, I invalid
 367 * SW-bits: y young, d dirty, r read, w write
 368 */
 369
 370/* Page status table bits for virtualization */
 371#define PGSTE_ACC_BITS	0xf000000000000000UL
 372#define PGSTE_FP_BIT	0x0800000000000000UL
 373#define PGSTE_PCL_BIT	0x0080000000000000UL
 374#define PGSTE_HR_BIT	0x0040000000000000UL
 375#define PGSTE_HC_BIT	0x0020000000000000UL
 376#define PGSTE_GR_BIT	0x0004000000000000UL
 377#define PGSTE_GC_BIT	0x0002000000000000UL
 378#define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
 379#define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
 380#define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
 381
 382/* Guest Page State used for virtualization */
 383#define _PGSTE_GPS_ZERO			0x0000000080000000UL
 384#define _PGSTE_GPS_NODAT		0x0000000040000000UL
 385#define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
 386#define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
 387#define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
 388#define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
 389#define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
 390
 391/*
 392 * A user page table pointer has the space-switch-event bit, the
 393 * private-space-control bit and the storage-alteration-event-control
 394 * bit set. A kernel page table pointer doesn't need them.
 395 */
 396#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 397				 _ASCE_ALT_EVENT)
 398
 399/*
 400 * Page protection definitions.
 401 */
 402#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 403#define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 404				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 405#define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 406				 _PAGE_INVALID | _PAGE_PROTECT)
 407#define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 408				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 409#define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 410				 _PAGE_INVALID | _PAGE_PROTECT)
 411
 412#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 413				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 414#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 415				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 416#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 417				 _PAGE_PROTECT | _PAGE_NOEXEC)
 418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 419				  _PAGE_YOUNG |	_PAGE_DIRTY)
 420
 421/*
 422 * On s390 the page table entry has an invalid bit and a read-only bit.
 423 * Read permission implies execute permission and write permission
 424 * implies read permission.
 425 */
 426         /*xwr*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427
 428/*
 429 * Segment entry (large page) protection definitions.
 430 */
 431#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
 432				 _SEGMENT_ENTRY_PROTECT)
 433#define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 434				 _SEGMENT_ENTRY_READ | \
 435				 _SEGMENT_ENTRY_NOEXEC)
 436#define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 437				 _SEGMENT_ENTRY_READ)
 438#define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
 439				 _SEGMENT_ENTRY_WRITE | \
 440				 _SEGMENT_ENTRY_NOEXEC)
 441#define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
 442				 _SEGMENT_ENTRY_WRITE)
 443#define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
 444				 _SEGMENT_ENTRY_LARGE |	\
 445				 _SEGMENT_ENTRY_READ |	\
 446				 _SEGMENT_ENTRY_WRITE | \
 447				 _SEGMENT_ENTRY_YOUNG | \
 448				 _SEGMENT_ENTRY_DIRTY | \
 449				 _SEGMENT_ENTRY_NOEXEC)
 450#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
 451				 _SEGMENT_ENTRY_LARGE |	\
 452				 _SEGMENT_ENTRY_READ |	\
 453				 _SEGMENT_ENTRY_YOUNG |	\
 454				 _SEGMENT_ENTRY_PROTECT | \
 455				 _SEGMENT_ENTRY_NOEXEC)
 456#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
 457				 _SEGMENT_ENTRY_LARGE |	\
 458				 _SEGMENT_ENTRY_READ |	\
 459				 _SEGMENT_ENTRY_WRITE | \
 460				 _SEGMENT_ENTRY_YOUNG |	\
 461				 _SEGMENT_ENTRY_DIRTY)
 462
 463/*
 464 * Region3 entry (large page) protection definitions.
 465 */
 466
 467#define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
 468				 _REGION3_ENTRY_LARGE |	 \
 469				 _REGION3_ENTRY_READ |	 \
 470				 _REGION3_ENTRY_WRITE |	 \
 471				 _REGION3_ENTRY_YOUNG |	 \
 472				 _REGION3_ENTRY_DIRTY | \
 473				 _REGION_ENTRY_NOEXEC)
 474#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 475				   _REGION3_ENTRY_LARGE |  \
 476				   _REGION3_ENTRY_READ |   \
 477				   _REGION3_ENTRY_YOUNG |  \
 478				   _REGION_ENTRY_PROTECT | \
 479				   _REGION_ENTRY_NOEXEC)
 480
 481static inline bool mm_p4d_folded(struct mm_struct *mm)
 482{
 483	return mm->context.asce_limit <= _REGION1_SIZE;
 484}
 485#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 486
 487static inline bool mm_pud_folded(struct mm_struct *mm)
 488{
 489	return mm->context.asce_limit <= _REGION2_SIZE;
 490}
 491#define mm_pud_folded(mm) mm_pud_folded(mm)
 492
 493static inline bool mm_pmd_folded(struct mm_struct *mm)
 494{
 495	return mm->context.asce_limit <= _REGION3_SIZE;
 496}
 497#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 498
 499static inline int mm_has_pgste(struct mm_struct *mm)
 500{
 501#ifdef CONFIG_PGSTE
 502	if (unlikely(mm->context.has_pgste))
 503		return 1;
 504#endif
 505	return 0;
 506}
 507
 508static inline int mm_is_protected(struct mm_struct *mm)
 509{
 510#ifdef CONFIG_PGSTE
 511	if (unlikely(atomic_read(&mm->context.protected_count)))
 512		return 1;
 513#endif
 514	return 0;
 515}
 516
 517static inline int mm_alloc_pgste(struct mm_struct *mm)
 518{
 519#ifdef CONFIG_PGSTE
 520	if (unlikely(mm->context.alloc_pgste))
 521		return 1;
 522#endif
 523	return 0;
 524}
 525
 526static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
 527{
 528	return __pte(pte_val(pte) & ~pgprot_val(prot));
 529}
 530
 531static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
 532{
 533	return __pte(pte_val(pte) | pgprot_val(prot));
 534}
 535
 536static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
 537{
 538	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
 539}
 540
 541static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
 542{
 543	return __pmd(pmd_val(pmd) | pgprot_val(prot));
 544}
 545
 546static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
 547{
 548	return __pud(pud_val(pud) & ~pgprot_val(prot));
 549}
 550
 551static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
 552{
 553	return __pud(pud_val(pud) | pgprot_val(prot));
 554}
 555
 556/*
 557 * In the case that a guest uses storage keys
 558 * faults should no longer be backed by zero pages
 559 */
 560#define mm_forbids_zeropage mm_has_pgste
 561static inline int mm_uses_skeys(struct mm_struct *mm)
 562{
 563#ifdef CONFIG_PGSTE
 564	if (mm->context.uses_skeys)
 565		return 1;
 566#endif
 567	return 0;
 568}
 569
 570static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 571{
 572	union register_pair r1 = { .even = old, .odd = new, };
 
 573	unsigned long address = (unsigned long)ptr | 1;
 574
 575	asm volatile(
 576		"	csp	%[r1],%[address]"
 577		: [r1] "+&d" (r1.pair), "+m" (*ptr)
 578		: [address] "d" (address)
 579		: "cc");
 580}
 581
 582static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 583{
 584	union register_pair r1 = { .even = old, .odd = new, };
 
 585	unsigned long address = (unsigned long)ptr | 1;
 586
 587	asm volatile(
 588		"	cspg	%[r1],%[address]"
 589		: [r1] "+&d" (r1.pair), "+m" (*ptr)
 590		: [address] "d" (address)
 591		: "cc");
 592}
 593
 594#define CRDTE_DTT_PAGE		0x00UL
 595#define CRDTE_DTT_SEGMENT	0x10UL
 596#define CRDTE_DTT_REGION3	0x14UL
 597#define CRDTE_DTT_REGION2	0x18UL
 598#define CRDTE_DTT_REGION1	0x1cUL
 599
 600static inline void crdte(unsigned long old, unsigned long new,
 601			 unsigned long *table, unsigned long dtt,
 602			 unsigned long address, unsigned long asce)
 603{
 604	union register_pair r1 = { .even = old, .odd = new, };
 605	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
 606
 607	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
 608		     : [r1] "+&d" (r1.pair)
 609		     : [r2] "d" (r2.pair), [asce] "a" (asce)
 
 
 610		     : "memory", "cc");
 611}
 612
 613/*
 614 * pgd/p4d/pud/pmd/pte query functions
 615 */
 616static inline int pgd_folded(pgd_t pgd)
 617{
 618	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 619}
 620
 621static inline int pgd_present(pgd_t pgd)
 622{
 623	if (pgd_folded(pgd))
 624		return 1;
 625	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 626}
 627
 628static inline int pgd_none(pgd_t pgd)
 629{
 630	if (pgd_folded(pgd))
 631		return 0;
 632	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 633}
 634
 635static inline int pgd_bad(pgd_t pgd)
 636{
 637	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 638		return 0;
 639	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 640}
 641
 642static inline unsigned long pgd_pfn(pgd_t pgd)
 643{
 644	unsigned long origin_mask;
 645
 646	origin_mask = _REGION_ENTRY_ORIGIN;
 647	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 648}
 649
 650static inline int p4d_folded(p4d_t p4d)
 651{
 652	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 653}
 654
 655static inline int p4d_present(p4d_t p4d)
 656{
 657	if (p4d_folded(p4d))
 658		return 1;
 659	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 660}
 661
 662static inline int p4d_none(p4d_t p4d)
 663{
 664	if (p4d_folded(p4d))
 665		return 0;
 666	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 667}
 668
 669static inline unsigned long p4d_pfn(p4d_t p4d)
 670{
 671	unsigned long origin_mask;
 672
 673	origin_mask = _REGION_ENTRY_ORIGIN;
 674	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 675}
 676
 677static inline int pud_folded(pud_t pud)
 678{
 679	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 680}
 681
 682static inline int pud_present(pud_t pud)
 683{
 684	if (pud_folded(pud))
 685		return 1;
 686	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 687}
 688
 689static inline int pud_none(pud_t pud)
 690{
 691	if (pud_folded(pud))
 692		return 0;
 693	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 694}
 695
 696#define pud_leaf	pud_large
 697static inline int pud_large(pud_t pud)
 698{
 699	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 700		return 0;
 701	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 702}
 703
 704#define pmd_leaf	pmd_large
 
 
 
 
 
 
 
 
 
 705static inline int pmd_large(pmd_t pmd)
 706{
 707	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 708}
 709
 710static inline int pmd_bad(pmd_t pmd)
 711{
 712	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
 713		return 1;
 
 
 714	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 715}
 716
 717static inline int pud_bad(pud_t pud)
 718{
 719	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 720
 721	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
 722		return 1;
 723	if (type < _REGION_ENTRY_TYPE_R3)
 724		return 0;
 
 
 725	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 726}
 727
 728static inline int p4d_bad(p4d_t p4d)
 729{
 730	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 731
 732	if (type > _REGION_ENTRY_TYPE_R2)
 733		return 1;
 734	if (type < _REGION_ENTRY_TYPE_R2)
 735		return 0;
 736	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 737}
 738
 739static inline int pmd_present(pmd_t pmd)
 740{
 741	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 742}
 743
 744static inline int pmd_none(pmd_t pmd)
 745{
 746	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 747}
 748
 749#define pmd_write pmd_write
 750static inline int pmd_write(pmd_t pmd)
 751{
 752	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 
 
 
 
 
 753}
 754
 755#define pud_write pud_write
 756static inline int pud_write(pud_t pud)
 757{
 758	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
 759}
 760
 761static inline int pmd_dirty(pmd_t pmd)
 762{
 763	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 
 
 
 764}
 765
 766#define pmd_young pmd_young
 767static inline int pmd_young(pmd_t pmd)
 768{
 769	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 
 
 
 770}
 771
 772static inline int pte_present(pte_t pte)
 773{
 774	/* Bit pattern: (pte & 0x001) == 0x001 */
 775	return (pte_val(pte) & _PAGE_PRESENT) != 0;
 776}
 777
 778static inline int pte_none(pte_t pte)
 779{
 780	/* Bit pattern: pte == 0x400 */
 781	return pte_val(pte) == _PAGE_INVALID;
 782}
 783
 784static inline int pte_swap(pte_t pte)
 785{
 786	/* Bit pattern: (pte & 0x201) == 0x200 */
 787	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 788		== _PAGE_PROTECT;
 789}
 790
 791static inline int pte_special(pte_t pte)
 792{
 793	return (pte_val(pte) & _PAGE_SPECIAL);
 794}
 795
 796#define __HAVE_ARCH_PTE_SAME
 797static inline int pte_same(pte_t a, pte_t b)
 798{
 799	return pte_val(a) == pte_val(b);
 800}
 801
 802#ifdef CONFIG_NUMA_BALANCING
 803static inline int pte_protnone(pte_t pte)
 804{
 805	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 806}
 807
 808static inline int pmd_protnone(pmd_t pmd)
 809{
 810	/* pmd_large(pmd) implies pmd_present(pmd) */
 811	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 812}
 813#endif
 814
 815#define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
 816static inline int pte_swp_exclusive(pte_t pte)
 817{
 818	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
 819}
 820
 821static inline pte_t pte_swp_mkexclusive(pte_t pte)
 822{
 823	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
 824}
 825
 826static inline pte_t pte_swp_clear_exclusive(pte_t pte)
 827{
 828	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
 829}
 830
 831static inline int pte_soft_dirty(pte_t pte)
 832{
 833	return pte_val(pte) & _PAGE_SOFT_DIRTY;
 834}
 835#define pte_swp_soft_dirty pte_soft_dirty
 836
 837static inline pte_t pte_mksoft_dirty(pte_t pte)
 838{
 839	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
 
 840}
 841#define pte_swp_mksoft_dirty pte_mksoft_dirty
 842
 843static inline pte_t pte_clear_soft_dirty(pte_t pte)
 844{
 845	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
 
 846}
 847#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 848
 849static inline int pmd_soft_dirty(pmd_t pmd)
 850{
 851	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 852}
 853
 854static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 855{
 856	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
 
 857}
 858
 859static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 860{
 861	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
 
 862}
 863
 864/*
 865 * query functions pte_write/pte_dirty/pte_young only work if
 866 * pte_present() is true. Undefined behaviour if not..
 867 */
 868static inline int pte_write(pte_t pte)
 869{
 870	return (pte_val(pte) & _PAGE_WRITE) != 0;
 871}
 872
 873static inline int pte_dirty(pte_t pte)
 874{
 875	return (pte_val(pte) & _PAGE_DIRTY) != 0;
 876}
 877
 878static inline int pte_young(pte_t pte)
 879{
 880	return (pte_val(pte) & _PAGE_YOUNG) != 0;
 881}
 882
 883#define __HAVE_ARCH_PTE_UNUSED
 884static inline int pte_unused(pte_t pte)
 885{
 886	return pte_val(pte) & _PAGE_UNUSED;
 887}
 888
 889/*
 890 * Extract the pgprot value from the given pte while at the same time making it
 891 * usable for kernel address space mappings where fault driven dirty and
 892 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
 893 * must not be set.
 894 */
 895static inline pgprot_t pte_pgprot(pte_t pte)
 896{
 897	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
 898
 899	if (pte_write(pte))
 900		pte_flags |= pgprot_val(PAGE_KERNEL);
 901	else
 902		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
 903	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
 904
 905	return __pgprot(pte_flags);
 906}
 907
 908/*
 909 * pgd/pmd/pte modification functions
 910 */
 911
 912static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
 913{
 914	WRITE_ONCE(*pgdp, pgd);
 915}
 916
 917static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
 918{
 919	WRITE_ONCE(*p4dp, p4d);
 920}
 921
 922static inline void set_pud(pud_t *pudp, pud_t pud)
 923{
 924	WRITE_ONCE(*pudp, pud);
 925}
 926
 927static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
 928{
 929	WRITE_ONCE(*pmdp, pmd);
 930}
 931
 932static inline void set_pte(pte_t *ptep, pte_t pte)
 933{
 934	WRITE_ONCE(*ptep, pte);
 935}
 936
 937static inline void pgd_clear(pgd_t *pgd)
 938{
 939	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 940		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
 941}
 942
 943static inline void p4d_clear(p4d_t *p4d)
 944{
 945	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 946		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
 947}
 948
 949static inline void pud_clear(pud_t *pud)
 950{
 951	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 952		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
 953}
 954
 955static inline void pmd_clear(pmd_t *pmdp)
 956{
 957	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
 958}
 959
 960static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 961{
 962	set_pte(ptep, __pte(_PAGE_INVALID));
 963}
 964
 965/*
 966 * The following pte modification functions only work if
 967 * pte_present() is true. Undefined behaviour if not..
 968 */
 969static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 970{
 971	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
 972	pte = set_pte_bit(pte, newprot);
 973	/*
 974	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 975	 * has the invalid bit set, clear it again for readable, young pages
 976	 */
 977	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 978		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
 979	/*
 980	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 981	 * protection bit set, clear it again for writable, dirty pages
 982	 */
 983	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 984		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 985	return pte;
 986}
 987
 988static inline pte_t pte_wrprotect(pte_t pte)
 989{
 990	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
 991	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 
 992}
 993
 994static inline pte_t pte_mkwrite(pte_t pte)
 995{
 996	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
 997	if (pte_val(pte) & _PAGE_DIRTY)
 998		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 999	return pte;
1000}
1001
1002static inline pte_t pte_mkclean(pte_t pte)
1003{
1004	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1005	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 
1006}
1007
1008static inline pte_t pte_mkdirty(pte_t pte)
1009{
1010	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1011	if (pte_val(pte) & _PAGE_WRITE)
1012		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013	return pte;
1014}
1015
1016static inline pte_t pte_mkold(pte_t pte)
1017{
1018	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1019	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
 
1020}
1021
1022static inline pte_t pte_mkyoung(pte_t pte)
1023{
1024	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1025	if (pte_val(pte) & _PAGE_READ)
1026		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1027	return pte;
1028}
1029
1030static inline pte_t pte_mkspecial(pte_t pte)
1031{
1032	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
 
1033}
1034
1035#ifdef CONFIG_HUGETLB_PAGE
1036static inline pte_t pte_mkhuge(pte_t pte)
1037{
1038	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
 
1039}
1040#endif
1041
1042#define IPTE_GLOBAL	0
1043#define	IPTE_LOCAL	1
1044
1045#define IPTE_NODAT	0x400
1046#define IPTE_GUEST_ASCE	0x800
1047
1048static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1049					unsigned long opt, unsigned long asce,
1050					int local)
1051{
1052	unsigned long pto = __pa(ptep);
1053
1054	if (__builtin_constant_p(opt) && opt == 0) {
1055		/* Invalidation + TLB flush for the pte */
1056		asm volatile(
1057			"	ipte	%[r1],%[r2],0,%[m4]"
1058			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1059			  [m4] "i" (local));
1060		return;
1061	}
1062
1063	/* Invalidate ptes with options + TLB flush of the ptes */
1064	opt = opt | (asce & _ASCE_ORIGIN);
1065	asm volatile(
1066		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1067		: [r2] "+a" (address), [r3] "+a" (opt)
1068		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1069}
1070
1071static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1072					      pte_t *ptep, int local)
1073{
1074	unsigned long pto = __pa(ptep);
1075
1076	/* Invalidate a range of ptes + TLB flush of the ptes */
1077	do {
1078		asm volatile(
1079			"	ipte %[r1],%[r2],%[r3],%[m4]"
1080			: [r2] "+a" (address), [r3] "+a" (nr)
1081			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1082	} while (nr != 255);
1083}
1084
1085/*
1086 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1087 * both clear the TLB for the unmapped pte. The reason is that
1088 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1089 * to modify an active pte. The sequence is
1090 *   1) ptep_get_and_clear
1091 *   2) set_pte_at
1092 *   3) flush_tlb_range
1093 * On s390 the tlb needs to get flushed with the modification of the pte
1094 * if the pte is active. The only way how this can be implemented is to
1095 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1096 * is a nop.
1097 */
1098pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1099pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1100
1101#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1102static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1103					    unsigned long addr, pte_t *ptep)
1104{
1105	pte_t pte = *ptep;
1106
1107	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1108	return pte_young(pte);
1109}
1110
1111#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1112static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1113					 unsigned long address, pte_t *ptep)
1114{
1115	return ptep_test_and_clear_young(vma, address, ptep);
1116}
1117
1118#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1119static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1120				       unsigned long addr, pte_t *ptep)
1121{
1122	pte_t res;
1123
1124	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1125	/* At this point the reference through the mapping is still present */
1126	if (mm_is_protected(mm) && pte_present(res))
1127		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1128	return res;
1129}
1130
1131#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1132pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1133void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1134			     pte_t *, pte_t, pte_t);
1135
1136#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1137static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1138				     unsigned long addr, pte_t *ptep)
1139{
1140	pte_t res;
1141
1142	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1143	/* At this point the reference through the mapping is still present */
1144	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1145		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1146	return res;
1147}
1148
1149/*
1150 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1151 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1152 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1153 * cannot be accessed while the batched unmap is running. In this case
1154 * full==1 and a simple pte_clear is enough. See tlb.h.
1155 */
1156#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1157static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1158					    unsigned long addr,
1159					    pte_t *ptep, int full)
1160{
1161	pte_t res;
1162
1163	if (full) {
1164		res = *ptep;
1165		set_pte(ptep, __pte(_PAGE_INVALID));
1166	} else {
1167		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1168	}
1169	/* Nothing to do */
1170	if (!mm_is_protected(mm) || !pte_present(res))
1171		return res;
1172	/*
1173	 * At this point the reference through the mapping is still present.
1174	 * The notifier should have destroyed all protected vCPUs at this
1175	 * point, so the destroy should be successful.
1176	 */
1177	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1178		return res;
1179	/*
1180	 * If something went wrong and the page could not be destroyed, or
1181	 * if this is not a mm teardown, the slower export is used as
1182	 * fallback instead.
1183	 */
1184	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1185	return res;
1186}
1187
1188#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1189static inline void ptep_set_wrprotect(struct mm_struct *mm,
1190				      unsigned long addr, pte_t *ptep)
1191{
1192	pte_t pte = *ptep;
1193
1194	if (pte_write(pte))
1195		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1196}
1197
1198#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1199static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1200					unsigned long addr, pte_t *ptep,
1201					pte_t entry, int dirty)
1202{
1203	if (pte_same(*ptep, entry))
1204		return 0;
1205	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1206	return 1;
1207}
1208
1209/*
1210 * Additional functions to handle KVM guest page tables
1211 */
1212void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1213		     pte_t *ptep, pte_t entry);
1214void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1215void ptep_notify(struct mm_struct *mm, unsigned long addr,
1216		 pte_t *ptep, unsigned long bits);
1217int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1218		    pte_t *ptep, int prot, unsigned long bit);
1219void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1220		     pte_t *ptep , int reset);
1221void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1222int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1223		    pte_t *sptep, pte_t *tptep, pte_t pte);
1224void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1225
1226bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1227			    pte_t *ptep);
1228int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1229			  unsigned char key, bool nq);
1230int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1231			       unsigned char key, unsigned char *oldkey,
1232			       bool nq, bool mr, bool mc);
1233int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1234int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1235			  unsigned char *key);
1236
1237int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1238				unsigned long bits, unsigned long value);
1239int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1240int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1241			unsigned long *oldpte, unsigned long *oldpgste);
1242void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1243void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1244void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1245void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1246
1247#define pgprot_writecombine	pgprot_writecombine
1248pgprot_t pgprot_writecombine(pgprot_t prot);
1249
1250#define pgprot_writethrough	pgprot_writethrough
1251pgprot_t pgprot_writethrough(pgprot_t prot);
1252
1253/*
1254 * Certain architectures need to do special things when PTEs
1255 * within a page table are directly modified.  Thus, the following
1256 * hook is made available.
1257 */
1258static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1259			      pte_t *ptep, pte_t entry)
1260{
 
 
1261	if (pte_present(entry))
1262		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1263	if (mm_has_pgste(mm))
1264		ptep_set_pte_at(mm, addr, ptep, entry);
1265	else
1266		set_pte(ptep, entry);
1267}
1268
1269/*
1270 * Conversion functions: convert a page and protection to a page entry,
1271 * and a page entry and page directory to the page they refer to.
1272 */
1273static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1274{
1275	pte_t __pte;
1276
1277	__pte = __pte(physpage | pgprot_val(pgprot));
1278	if (!MACHINE_HAS_NX)
1279		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1280	return pte_mkyoung(__pte);
1281}
1282
1283static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1284{
1285	unsigned long physpage = page_to_phys(page);
1286	pte_t __pte = mk_pte_phys(physpage, pgprot);
1287
1288	if (pte_write(__pte) && PageDirty(page))
1289		__pte = pte_mkdirty(__pte);
1290	return __pte;
1291}
1292
1293#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1294#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1295#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1296#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 
1297
1298#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1299#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1300
1301static inline unsigned long pmd_deref(pmd_t pmd)
1302{
1303	unsigned long origin_mask;
1304
1305	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1306	if (pmd_large(pmd))
1307		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1308	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1309}
1310
1311static inline unsigned long pmd_pfn(pmd_t pmd)
1312{
1313	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1314}
1315
1316static inline unsigned long pud_deref(pud_t pud)
1317{
1318	unsigned long origin_mask;
1319
1320	origin_mask = _REGION_ENTRY_ORIGIN;
1321	if (pud_large(pud))
1322		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1323	return (unsigned long)__va(pud_val(pud) & origin_mask);
1324}
1325
1326static inline unsigned long pud_pfn(pud_t pud)
1327{
1328	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1329}
1330
1331/*
1332 * The pgd_offset function *always* adds the index for the top-level
1333 * region/segment table. This is done to get a sequence like the
1334 * following to work:
1335 *	pgdp = pgd_offset(current->mm, addr);
1336 *	pgd = READ_ONCE(*pgdp);
1337 *	p4dp = p4d_offset(&pgd, addr);
1338 *	...
1339 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1340 * only add an index if they dereferenced the pointer.
1341 */
1342static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1343{
1344	unsigned long rste;
1345	unsigned int shift;
1346
1347	/* Get the first entry of the top level table */
1348	rste = pgd_val(*pgd);
1349	/* Pick up the shift from the table type of the first entry */
1350	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1351	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1352}
1353
1354#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
 
1355
1356static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1357{
1358	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1359		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1360	return (p4d_t *) pgdp;
1361}
1362#define p4d_offset_lockless p4d_offset_lockless
1363
1364static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1365{
1366	return p4d_offset_lockless(pgdp, *pgdp, address);
 
 
1367}
1368
1369static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1370{
1371	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1372		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1373	return (pud_t *) p4dp;
1374}
1375#define pud_offset_lockless pud_offset_lockless
1376
1377static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1378{
1379	return pud_offset_lockless(p4dp, *p4dp, address);
 
 
1380}
1381#define pud_offset pud_offset
1382
1383static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1384{
1385	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1386		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1387	return (pmd_t *) pudp;
1388}
1389#define pmd_offset_lockless pmd_offset_lockless
1390
1391static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1392{
1393	return pmd_offset_lockless(pudp, *pudp, address);
1394}
1395#define pmd_offset pmd_offset
1396
1397static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1398{
1399	return (unsigned long) pmd_deref(pmd);
1400}
1401
1402static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1403{
1404	return end <= current->mm->context.asce_limit;
1405}
1406#define gup_fast_permitted gup_fast_permitted
1407
1408#define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1409#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1410#define pte_page(x) pfn_to_page(pte_pfn(x))
1411
1412#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1413#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1414#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1415#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1416
1417static inline pmd_t pmd_wrprotect(pmd_t pmd)
1418{
1419	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1420	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
 
1421}
1422
1423static inline pmd_t pmd_mkwrite(pmd_t pmd)
1424{
1425	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1426	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1427		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
 
1428	return pmd;
1429}
1430
1431static inline pmd_t pmd_mkclean(pmd_t pmd)
1432{
1433	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1434	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
 
 
 
1435}
1436
1437static inline pmd_t pmd_mkdirty(pmd_t pmd)
1438{
1439	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1440	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1441		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
 
 
 
1442	return pmd;
1443}
1444
1445static inline pud_t pud_wrprotect(pud_t pud)
1446{
1447	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1448	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
 
1449}
1450
1451static inline pud_t pud_mkwrite(pud_t pud)
1452{
1453	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1454	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1455		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
 
1456	return pud;
1457}
1458
1459static inline pud_t pud_mkclean(pud_t pud)
1460{
1461	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1462	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
 
 
 
1463}
1464
1465static inline pud_t pud_mkdirty(pud_t pud)
1466{
1467	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1468	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1469		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
 
 
 
1470	return pud;
1471}
1472
1473#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1474static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1475{
1476	/*
1477	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1478	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1479	 */
1480	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1481		return pgprot_val(SEGMENT_NONE);
1482	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1483		return pgprot_val(SEGMENT_RO);
1484	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1485		return pgprot_val(SEGMENT_RX);
1486	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1487		return pgprot_val(SEGMENT_RW);
1488	return pgprot_val(SEGMENT_RWX);
1489}
1490
1491static inline pmd_t pmd_mkyoung(pmd_t pmd)
1492{
1493	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1494	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1495		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
 
 
1496	return pmd;
1497}
1498
1499static inline pmd_t pmd_mkold(pmd_t pmd)
1500{
1501	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1502	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
 
 
 
1503}
1504
1505static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1506{
1507	unsigned long mask;
1508
1509	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1510	mask |= _SEGMENT_ENTRY_DIRTY;
1511	mask |= _SEGMENT_ENTRY_YOUNG;
1512	mask |=	_SEGMENT_ENTRY_LARGE;
1513	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1514	pmd = __pmd(pmd_val(pmd) & mask);
1515	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1516	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1517		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1518	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1519		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1520	return pmd;
1521}
1522
1523static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1524{
1525	return __pmd(physpage + massage_pgprot_pmd(pgprot));
 
 
1526}
1527
1528#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1529
1530static inline void __pmdp_csp(pmd_t *pmdp)
1531{
1532	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1533	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1534}
1535
1536#define IDTE_GLOBAL	0
1537#define IDTE_LOCAL	1
1538
1539#define IDTE_PTOA	0x0800
1540#define IDTE_NODAT	0x1000
1541#define IDTE_GUEST_ASCE	0x2000
1542
1543static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1544					unsigned long opt, unsigned long asce,
1545					int local)
1546{
1547	unsigned long sto;
1548
1549	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1550	if (__builtin_constant_p(opt) && opt == 0) {
1551		/* flush without guest asce */
1552		asm volatile(
1553			"	idte	%[r1],0,%[r2],%[m4]"
1554			: "+m" (*pmdp)
1555			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1556			  [m4] "i" (local)
1557			: "cc" );
1558	} else {
1559		/* flush with guest asce */
1560		asm volatile(
1561			"	idte	%[r1],%[r3],%[r2],%[m4]"
1562			: "+m" (*pmdp)
1563			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1564			  [r3] "a" (asce), [m4] "i" (local)
1565			: "cc" );
1566	}
1567}
1568
1569static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1570					unsigned long opt, unsigned long asce,
1571					int local)
1572{
1573	unsigned long r3o;
1574
1575	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1576	r3o |= _ASCE_TYPE_REGION3;
1577	if (__builtin_constant_p(opt) && opt == 0) {
1578		/* flush without guest asce */
1579		asm volatile(
1580			"	idte	%[r1],0,%[r2],%[m4]"
1581			: "+m" (*pudp)
1582			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1583			  [m4] "i" (local)
1584			: "cc");
1585	} else {
1586		/* flush with guest asce */
1587		asm volatile(
1588			"	idte	%[r1],%[r3],%[r2],%[m4]"
1589			: "+m" (*pudp)
1590			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1591			  [r3] "a" (asce), [m4] "i" (local)
1592			: "cc" );
1593	}
1594}
1595
1596pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1597pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1598pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1599
1600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601
1602#define __HAVE_ARCH_PGTABLE_DEPOSIT
1603void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1604				pgtable_t pgtable);
1605
1606#define __HAVE_ARCH_PGTABLE_WITHDRAW
1607pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1608
1609#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1610static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1611					unsigned long addr, pmd_t *pmdp,
1612					pmd_t entry, int dirty)
1613{
1614	VM_BUG_ON(addr & ~HPAGE_MASK);
1615
1616	entry = pmd_mkyoung(entry);
1617	if (dirty)
1618		entry = pmd_mkdirty(entry);
1619	if (pmd_val(*pmdp) == pmd_val(entry))
1620		return 0;
1621	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1622	return 1;
1623}
1624
1625#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1626static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1627					    unsigned long addr, pmd_t *pmdp)
1628{
1629	pmd_t pmd = *pmdp;
1630
1631	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1632	return pmd_young(pmd);
1633}
1634
1635#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1636static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1637					 unsigned long addr, pmd_t *pmdp)
1638{
1639	VM_BUG_ON(addr & ~HPAGE_MASK);
1640	return pmdp_test_and_clear_young(vma, addr, pmdp);
1641}
1642
1643static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1644			      pmd_t *pmdp, pmd_t entry)
1645{
1646	if (!MACHINE_HAS_NX)
1647		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1648	set_pmd(pmdp, entry);
1649}
1650
1651static inline pmd_t pmd_mkhuge(pmd_t pmd)
1652{
1653	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1654	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1655	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
 
1656}
1657
1658#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1659static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1660					    unsigned long addr, pmd_t *pmdp)
1661{
1662	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1663}
1664
1665#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1666static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1667						 unsigned long addr,
1668						 pmd_t *pmdp, int full)
1669{
1670	if (full) {
1671		pmd_t pmd = *pmdp;
1672		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1673		return pmd;
1674	}
1675	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1676}
1677
1678#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1679static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1680					  unsigned long addr, pmd_t *pmdp)
1681{
1682	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1683}
1684
1685#define __HAVE_ARCH_PMDP_INVALIDATE
1686static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1687				   unsigned long addr, pmd_t *pmdp)
1688{
1689	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1690
1691	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1692}
1693
1694#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1695static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1696				      unsigned long addr, pmd_t *pmdp)
1697{
1698	pmd_t pmd = *pmdp;
1699
1700	if (pmd_write(pmd))
1701		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1702}
1703
1704static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1705					unsigned long address,
1706					pmd_t *pmdp)
1707{
1708	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1709}
1710#define pmdp_collapse_flush pmdp_collapse_flush
1711
1712#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1713#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1714
1715static inline int pmd_trans_huge(pmd_t pmd)
1716{
1717	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1718}
1719
1720#define has_transparent_hugepage has_transparent_hugepage
1721static inline int has_transparent_hugepage(void)
1722{
1723	return MACHINE_HAS_EDAT1 ? 1 : 0;
1724}
1725#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1726
1727/*
1728 * 64 bit swap entry format:
1729 * A page-table entry has some bits we have to treat in a special way.
1730 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1731 * as invalid.
 
 
 
1732 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1733 * |			  offset			|E11XX|type |S0|
 
 
 
1734 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1735 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1736 *
1737 * Bits 0-51 store the offset.
1738 * Bit 52 (E) is used to remember PG_anon_exclusive.
1739 * Bits 57-61 store the type.
1740 * Bit 62 (S) is used for softdirty tracking.
1741 * Bits 55 and 56 (X) are unused.
1742 */
1743
1744#define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1745#define __SWP_OFFSET_SHIFT	12
1746#define __SWP_TYPE_MASK		((1UL << 5) - 1)
1747#define __SWP_TYPE_SHIFT	2
1748
1749static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1750{
1751	unsigned long pteval;
1752
1753	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1754	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1755	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1756	return __pte(pteval);
1757}
1758
1759static inline unsigned long __swp_type(swp_entry_t entry)
1760{
1761	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1762}
1763
1764static inline unsigned long __swp_offset(swp_entry_t entry)
1765{
1766	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1767}
1768
1769static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1770{
1771	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1772}
1773
1774#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1775#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1776
 
 
1777extern int vmem_add_mapping(unsigned long start, unsigned long size);
1778extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1779extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1780extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1781extern void vmem_unmap_4k_page(unsigned long addr);
1782extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1783extern int s390_enable_sie(void);
1784extern int s390_enable_skey(void);
1785extern void s390_reset_cmma(struct mm_struct *mm);
1786
1787/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1788#define HAVE_ARCH_UNMAPPED_AREA
1789#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1790
1791#define pmd_pgtable(pmd) \
1792	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1793
1794#endif /* _S390_PAGE_H */
v5.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
 
  20#include <asm/bug.h>
  21#include <asm/page.h>
 
  22
  23extern pgd_t swapper_pg_dir[];
  24extern void paging_init(void);
 
  25
  26enum {
  27	PG_DIRECT_MAP_4K = 0,
  28	PG_DIRECT_MAP_1M,
  29	PG_DIRECT_MAP_2G,
  30	PG_DIRECT_MAP_MAX
  31};
  32
  33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  34
  35static inline void update_page_count(int level, long count)
  36{
  37	if (IS_ENABLED(CONFIG_PROC_FS))
  38		atomic_long_add(count, &direct_pages_count[level]);
  39}
  40
  41struct seq_file;
  42void arch_report_meminfo(struct seq_file *m);
  43
  44/*
  45 * The S390 doesn't have any external MMU info: the kernel page
  46 * tables contain all the necessary information.
  47 */
  48#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  50
  51/*
  52 * ZERO_PAGE is a global shared page that is always zero; used
  53 * for zero-mapped memory areas etc..
  54 */
  55
  56extern unsigned long empty_zero_page;
  57extern unsigned long zero_page_mask;
  58
  59#define ZERO_PAGE(vaddr) \
  60	(virt_to_page((void *)(empty_zero_page + \
  61	 (((unsigned long)(vaddr)) &zero_page_mask))))
  62#define __HAVE_COLOR_ZERO_PAGE
  63
  64/* TODO: s390 cannot support io_remap_pfn_range... */
  65
  66#define FIRST_USER_ADDRESS  0UL
  67
  68#define pte_ERROR(e) \
  69	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  70#define pmd_ERROR(e) \
  71	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  72#define pud_ERROR(e) \
  73	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  74#define p4d_ERROR(e) \
  75	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
  76#define pgd_ERROR(e) \
  77	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  78
  79/*
  80 * The vmalloc and module area will always be on the topmost area of the
  81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  83 * modules will reside. That makes sure that inter module branches always
  84 * happen without trampolines and in addition the placement within a 2GB frame
  85 * is branch prediction unit friendly.
  86 */
  87extern unsigned long VMALLOC_START;
  88extern unsigned long VMALLOC_END;
  89#define VMALLOC_DEFAULT_SIZE	((128UL << 30) - MODULES_LEN)
  90extern struct page *vmemmap;
 
  91
  92#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  93
  94extern unsigned long MODULES_VADDR;
  95extern unsigned long MODULES_END;
  96#define MODULES_VADDR	MODULES_VADDR
  97#define MODULES_END	MODULES_END
  98#define MODULES_LEN	(1UL << 31)
  99
 100static inline int is_module_addr(void *addr)
 101{
 102	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 103	if (addr < (void *)MODULES_VADDR)
 104		return 0;
 105	if (addr > (void *)MODULES_END)
 106		return 0;
 107	return 1;
 108}
 109
 110/*
 111 * A 64 bit pagetable entry of S390 has following format:
 112 * |			 PFRA			      |0IPC|  OS  |
 113 * 0000000000111111111122222222223333333333444444444455555555556666
 114 * 0123456789012345678901234567890123456789012345678901234567890123
 115 *
 116 * I Page-Invalid Bit:    Page is not available for address-translation
 117 * P Page-Protection Bit: Store access not possible for page
 118 * C Change-bit override: HW is not required to set change bit
 119 *
 120 * A 64 bit segmenttable entry of S390 has following format:
 121 * |        P-table origin                              |      TT
 122 * 0000000000111111111122222222223333333333444444444455555555556666
 123 * 0123456789012345678901234567890123456789012345678901234567890123
 124 *
 125 * I Segment-Invalid Bit:    Segment is not available for address-translation
 126 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 127 * P Page-Protection Bit: Store access not possible for page
 128 * TT Type 00
 129 *
 130 * A 64 bit region table entry of S390 has following format:
 131 * |        S-table origin                             |   TF  TTTL
 132 * 0000000000111111111122222222223333333333444444444455555555556666
 133 * 0123456789012345678901234567890123456789012345678901234567890123
 134 *
 135 * I Segment-Invalid Bit:    Segment is not available for address-translation
 136 * TT Type 01
 137 * TF
 138 * TL Table length
 139 *
 140 * The 64 bit regiontable origin of S390 has following format:
 141 * |      region table origon                          |       DTTL
 142 * 0000000000111111111122222222223333333333444444444455555555556666
 143 * 0123456789012345678901234567890123456789012345678901234567890123
 144 *
 145 * X Space-Switch event:
 146 * G Segment-Invalid Bit:  
 147 * P Private-Space Bit:    
 148 * S Storage-Alteration:
 149 * R Real space
 150 * TL Table-Length:
 151 *
 152 * A storage key has the following format:
 153 * | ACC |F|R|C|0|
 154 *  0   3 4 5 6 7
 155 * ACC: access key
 156 * F  : fetch protection bit
 157 * R  : referenced bit
 158 * C  : changed bit
 159 */
 160
 161/* Hardware bits in the page table entry */
 162#define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
 163#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
 164#define _PAGE_INVALID	0x400		/* HW invalid bit    */
 165#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
 166
 167/* Software bits in the page table entry */
 168#define _PAGE_PRESENT	0x001		/* SW pte present bit */
 169#define _PAGE_YOUNG	0x004		/* SW pte young bit */
 170#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
 171#define _PAGE_READ	0x010		/* SW pte read bit */
 172#define _PAGE_WRITE	0x020		/* SW pte write bit */
 173#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
 174#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
 175
 176#ifdef CONFIG_MEM_SOFT_DIRTY
 177#define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
 178#else
 179#define _PAGE_SOFT_DIRTY 0x000
 180#endif
 181
 
 
 182/* Set of bits not changed in pte_modify */
 183#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 184				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 185
 186/*
 187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 189 * distinguish present from not-present ptes. It is changed only with the page
 190 * table lock held.
 191 *
 192 * The following table gives the different possible bit combinations for
 193 * the pte hardware and software bits in the last 12 bits of a pte
 194 * (. unassigned bit, x don't care, t swap type):
 195 *
 196 *				842100000000
 197 *				000084210000
 198 *				000000008421
 199 *				.IR.uswrdy.p
 200 * empty			.10.00000000
 201 * swap				.11..ttttt.0
 202 * prot-none, clean, old	.11.xx0000.1
 203 * prot-none, clean, young	.11.xx0001.1
 204 * prot-none, dirty, old	.11.xx0010.1
 205 * prot-none, dirty, young	.11.xx0011.1
 206 * read-only, clean, old	.11.xx0100.1
 207 * read-only, clean, young	.01.xx0101.1
 208 * read-only, dirty, old	.11.xx0110.1
 209 * read-only, dirty, young	.01.xx0111.1
 210 * read-write, clean, old	.11.xx1100.1
 211 * read-write, clean, young	.01.xx1101.1
 212 * read-write, dirty, old	.10.xx1110.1
 213 * read-write, dirty, young	.00.xx1111.1
 214 * HW-bits: R read-only, I invalid
 215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 216 *	    u unused, l large
 217 *
 218 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 219 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 221 */
 222
 223/* Bits in the segment/region table address-space-control-element */
 224#define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
 225#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 226#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 227#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
 228#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
 229#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
 230#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
 231#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
 232#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
 233#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
 234#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
 235
 236/* Bits in the region table entry */
 237#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
 238#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
 239#define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
 240#define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
 241#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
 242#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
 243#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
 244#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
 245#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
 246#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
 247
 248#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 249#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 250#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 251#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 252#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 253#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 254
 255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
 256#define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
 257#define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
 258#define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
 259#define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
 260#define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
 261
 262#ifdef CONFIG_MEM_SOFT_DIRTY
 263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 264#else
 265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 266#endif
 267
 268#define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
 269#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
 270
 271/* Bits in the segment table entry */
 272#define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
 273#define _SEGMENT_ENTRY_BITS_LARGE		0xfffffffffff0ff33UL
 274#define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
 275#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
 276#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
 277#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
 278#define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
 279#define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
 280#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
 281#define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
 282
 283#define _SEGMENT_ENTRY		(0)
 284#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
 285
 286#define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
 287#define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
 288#define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
 289#define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
 290#define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
 291
 292#ifdef CONFIG_MEM_SOFT_DIRTY
 293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 294#else
 295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 296#endif
 297
 298#define _CRST_ENTRIES	2048	/* number of region/segment table entries */
 299#define _PAGE_ENTRIES	256	/* number of page table entries	*/
 300
 301#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 302#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 303
 304#define _REGION1_SHIFT	53
 305#define _REGION2_SHIFT	42
 306#define _REGION3_SHIFT	31
 307#define _SEGMENT_SHIFT	20
 308
 309#define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
 310#define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
 311#define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
 312#define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
 313#define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
 314
 315#define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
 316#define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
 317#define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
 318#define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
 319
 320#define _REGION1_MASK	(~(_REGION1_SIZE - 1))
 321#define _REGION2_MASK	(~(_REGION2_SIZE - 1))
 322#define _REGION3_MASK	(~(_REGION3_SIZE - 1))
 323#define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
 324
 325#define PMD_SHIFT	_SEGMENT_SHIFT
 326#define PUD_SHIFT	_REGION3_SHIFT
 327#define P4D_SHIFT	_REGION2_SHIFT
 328#define PGDIR_SHIFT	_REGION1_SHIFT
 329
 330#define PMD_SIZE	_SEGMENT_SIZE
 331#define PUD_SIZE	_REGION3_SIZE
 332#define P4D_SIZE	_REGION2_SIZE
 333#define PGDIR_SIZE	_REGION1_SIZE
 334
 335#define PMD_MASK	_SEGMENT_MASK
 336#define PUD_MASK	_REGION3_MASK
 337#define P4D_MASK	_REGION2_MASK
 338#define PGDIR_MASK	_REGION1_MASK
 339
 340#define PTRS_PER_PTE	_PAGE_ENTRIES
 341#define PTRS_PER_PMD	_CRST_ENTRIES
 342#define PTRS_PER_PUD	_CRST_ENTRIES
 343#define PTRS_PER_P4D	_CRST_ENTRIES
 344#define PTRS_PER_PGD	_CRST_ENTRIES
 345
 346#define MAX_PTRS_PER_P4D	PTRS_PER_P4D
 347
 348/*
 349 * Segment table and region3 table entry encoding
 350 * (R = read-only, I = invalid, y = young bit):
 351 *				dy..R...I...wr
 352 * prot-none, clean, old	00..1...1...00
 353 * prot-none, clean, young	01..1...1...00
 354 * prot-none, dirty, old	10..1...1...00
 355 * prot-none, dirty, young	11..1...1...00
 356 * read-only, clean, old	00..1...1...01
 357 * read-only, clean, young	01..1...0...01
 358 * read-only, dirty, old	10..1...1...01
 359 * read-only, dirty, young	11..1...0...01
 360 * read-write, clean, old	00..1...1...11
 361 * read-write, clean, young	01..1...0...11
 362 * read-write, dirty, old	10..0...1...11
 363 * read-write, dirty, young	11..0...0...11
 364 * The segment table origin is used to distinguish empty (origin==0) from
 365 * read-write, old segment table entries (origin!=0)
 366 * HW-bits: R read-only, I invalid
 367 * SW-bits: y young, d dirty, r read, w write
 368 */
 369
 370/* Page status table bits for virtualization */
 371#define PGSTE_ACC_BITS	0xf000000000000000UL
 372#define PGSTE_FP_BIT	0x0800000000000000UL
 373#define PGSTE_PCL_BIT	0x0080000000000000UL
 374#define PGSTE_HR_BIT	0x0040000000000000UL
 375#define PGSTE_HC_BIT	0x0020000000000000UL
 376#define PGSTE_GR_BIT	0x0004000000000000UL
 377#define PGSTE_GC_BIT	0x0002000000000000UL
 378#define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
 379#define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
 380#define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
 381
 382/* Guest Page State used for virtualization */
 383#define _PGSTE_GPS_ZERO			0x0000000080000000UL
 384#define _PGSTE_GPS_NODAT		0x0000000040000000UL
 385#define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
 386#define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
 387#define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
 388#define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
 389#define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
 390
 391/*
 392 * A user page table pointer has the space-switch-event bit, the
 393 * private-space-control bit and the storage-alteration-event-control
 394 * bit set. A kernel page table pointer doesn't need them.
 395 */
 396#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 397				 _ASCE_ALT_EVENT)
 398
 399/*
 400 * Page protection definitions.
 401 */
 402#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 403#define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 404				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 405#define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 406				 _PAGE_INVALID | _PAGE_PROTECT)
 407#define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 408				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 409#define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 410				 _PAGE_INVALID | _PAGE_PROTECT)
 411
 412#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 413				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 414#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 415				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 416#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 417				 _PAGE_PROTECT | _PAGE_NOEXEC)
 418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 419				  _PAGE_YOUNG |	_PAGE_DIRTY)
 420
 421/*
 422 * On s390 the page table entry has an invalid bit and a read-only bit.
 423 * Read permission implies execute permission and write permission
 424 * implies read permission.
 425 */
 426         /*xwr*/
 427#define __P000	PAGE_NONE
 428#define __P001	PAGE_RO
 429#define __P010	PAGE_RO
 430#define __P011	PAGE_RO
 431#define __P100	PAGE_RX
 432#define __P101	PAGE_RX
 433#define __P110	PAGE_RX
 434#define __P111	PAGE_RX
 435
 436#define __S000	PAGE_NONE
 437#define __S001	PAGE_RO
 438#define __S010	PAGE_RW
 439#define __S011	PAGE_RW
 440#define __S100	PAGE_RX
 441#define __S101	PAGE_RX
 442#define __S110	PAGE_RWX
 443#define __S111	PAGE_RWX
 444
 445/*
 446 * Segment entry (large page) protection definitions.
 447 */
 448#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
 449				 _SEGMENT_ENTRY_PROTECT)
 450#define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 451				 _SEGMENT_ENTRY_READ | \
 452				 _SEGMENT_ENTRY_NOEXEC)
 453#define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 454				 _SEGMENT_ENTRY_READ)
 455#define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
 456				 _SEGMENT_ENTRY_WRITE | \
 457				 _SEGMENT_ENTRY_NOEXEC)
 458#define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
 459				 _SEGMENT_ENTRY_WRITE)
 460#define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
 461				 _SEGMENT_ENTRY_LARGE |	\
 462				 _SEGMENT_ENTRY_READ |	\
 463				 _SEGMENT_ENTRY_WRITE | \
 464				 _SEGMENT_ENTRY_YOUNG | \
 465				 _SEGMENT_ENTRY_DIRTY | \
 466				 _SEGMENT_ENTRY_NOEXEC)
 467#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
 468				 _SEGMENT_ENTRY_LARGE |	\
 469				 _SEGMENT_ENTRY_READ |	\
 470				 _SEGMENT_ENTRY_YOUNG |	\
 471				 _SEGMENT_ENTRY_PROTECT | \
 472				 _SEGMENT_ENTRY_NOEXEC)
 473#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
 474				 _SEGMENT_ENTRY_LARGE |	\
 475				 _SEGMENT_ENTRY_READ |	\
 476				 _SEGMENT_ENTRY_WRITE | \
 477				 _SEGMENT_ENTRY_YOUNG |	\
 478				 _SEGMENT_ENTRY_DIRTY)
 479
 480/*
 481 * Region3 entry (large page) protection definitions.
 482 */
 483
 484#define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
 485				 _REGION3_ENTRY_LARGE |	 \
 486				 _REGION3_ENTRY_READ |	 \
 487				 _REGION3_ENTRY_WRITE |	 \
 488				 _REGION3_ENTRY_YOUNG |	 \
 489				 _REGION3_ENTRY_DIRTY | \
 490				 _REGION_ENTRY_NOEXEC)
 491#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 492				   _REGION3_ENTRY_LARGE |  \
 493				   _REGION3_ENTRY_READ |   \
 494				   _REGION3_ENTRY_YOUNG |  \
 495				   _REGION_ENTRY_PROTECT | \
 496				   _REGION_ENTRY_NOEXEC)
 497
 498static inline bool mm_p4d_folded(struct mm_struct *mm)
 499{
 500	return mm->context.asce_limit <= _REGION1_SIZE;
 501}
 502#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 503
 504static inline bool mm_pud_folded(struct mm_struct *mm)
 505{
 506	return mm->context.asce_limit <= _REGION2_SIZE;
 507}
 508#define mm_pud_folded(mm) mm_pud_folded(mm)
 509
 510static inline bool mm_pmd_folded(struct mm_struct *mm)
 511{
 512	return mm->context.asce_limit <= _REGION3_SIZE;
 513}
 514#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 515
 516static inline int mm_has_pgste(struct mm_struct *mm)
 517{
 518#ifdef CONFIG_PGSTE
 519	if (unlikely(mm->context.has_pgste))
 520		return 1;
 521#endif
 522	return 0;
 523}
 524
 
 
 
 
 
 
 
 
 
 525static inline int mm_alloc_pgste(struct mm_struct *mm)
 526{
 527#ifdef CONFIG_PGSTE
 528	if (unlikely(mm->context.alloc_pgste))
 529		return 1;
 530#endif
 531	return 0;
 532}
 533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534/*
 535 * In the case that a guest uses storage keys
 536 * faults should no longer be backed by zero pages
 537 */
 538#define mm_forbids_zeropage mm_has_pgste
 539static inline int mm_uses_skeys(struct mm_struct *mm)
 540{
 541#ifdef CONFIG_PGSTE
 542	if (mm->context.uses_skeys)
 543		return 1;
 544#endif
 545	return 0;
 546}
 547
 548static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 549{
 550	register unsigned long reg2 asm("2") = old;
 551	register unsigned long reg3 asm("3") = new;
 552	unsigned long address = (unsigned long)ptr | 1;
 553
 554	asm volatile(
 555		"	csp	%0,%3"
 556		: "+d" (reg2), "+m" (*ptr)
 557		: "d" (reg3), "d" (address)
 558		: "cc");
 559}
 560
 561static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 562{
 563	register unsigned long reg2 asm("2") = old;
 564	register unsigned long reg3 asm("3") = new;
 565	unsigned long address = (unsigned long)ptr | 1;
 566
 567	asm volatile(
 568		"	.insn	rre,0xb98a0000,%0,%3"
 569		: "+d" (reg2), "+m" (*ptr)
 570		: "d" (reg3), "d" (address)
 571		: "cc");
 572}
 573
 574#define CRDTE_DTT_PAGE		0x00UL
 575#define CRDTE_DTT_SEGMENT	0x10UL
 576#define CRDTE_DTT_REGION3	0x14UL
 577#define CRDTE_DTT_REGION2	0x18UL
 578#define CRDTE_DTT_REGION1	0x1cUL
 579
 580static inline void crdte(unsigned long old, unsigned long new,
 581			 unsigned long table, unsigned long dtt,
 582			 unsigned long address, unsigned long asce)
 583{
 584	register unsigned long reg2 asm("2") = old;
 585	register unsigned long reg3 asm("3") = new;
 586	register unsigned long reg4 asm("4") = table | dtt;
 587	register unsigned long reg5 asm("5") = address;
 588
 589	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
 590		     : "+d" (reg2)
 591		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
 592		     : "memory", "cc");
 593}
 594
 595/*
 596 * pgd/p4d/pud/pmd/pte query functions
 597 */
 598static inline int pgd_folded(pgd_t pgd)
 599{
 600	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 601}
 602
 603static inline int pgd_present(pgd_t pgd)
 604{
 605	if (pgd_folded(pgd))
 606		return 1;
 607	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 608}
 609
 610static inline int pgd_none(pgd_t pgd)
 611{
 612	if (pgd_folded(pgd))
 613		return 0;
 614	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 615}
 616
 617static inline int pgd_bad(pgd_t pgd)
 618{
 619	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 620		return 0;
 621	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 622}
 623
 624static inline unsigned long pgd_pfn(pgd_t pgd)
 625{
 626	unsigned long origin_mask;
 627
 628	origin_mask = _REGION_ENTRY_ORIGIN;
 629	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 630}
 631
 632static inline int p4d_folded(p4d_t p4d)
 633{
 634	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 635}
 636
 637static inline int p4d_present(p4d_t p4d)
 638{
 639	if (p4d_folded(p4d))
 640		return 1;
 641	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 642}
 643
 644static inline int p4d_none(p4d_t p4d)
 645{
 646	if (p4d_folded(p4d))
 647		return 0;
 648	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 649}
 650
 651static inline unsigned long p4d_pfn(p4d_t p4d)
 652{
 653	unsigned long origin_mask;
 654
 655	origin_mask = _REGION_ENTRY_ORIGIN;
 656	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 657}
 658
 659static inline int pud_folded(pud_t pud)
 660{
 661	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 662}
 663
 664static inline int pud_present(pud_t pud)
 665{
 666	if (pud_folded(pud))
 667		return 1;
 668	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 669}
 670
 671static inline int pud_none(pud_t pud)
 672{
 673	if (pud_folded(pud))
 674		return 0;
 675	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 676}
 677
 
 678static inline int pud_large(pud_t pud)
 679{
 680	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 681		return 0;
 682	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 683}
 684
 685static inline unsigned long pud_pfn(pud_t pud)
 686{
 687	unsigned long origin_mask;
 688
 689	origin_mask = _REGION_ENTRY_ORIGIN;
 690	if (pud_large(pud))
 691		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
 692	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
 693}
 694
 695static inline int pmd_large(pmd_t pmd)
 696{
 697	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 698}
 699
 700static inline int pmd_bad(pmd_t pmd)
 701{
 702	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
 703		return 1;
 704	if (pmd_large(pmd))
 705		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 706	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 707}
 708
 709static inline int pud_bad(pud_t pud)
 710{
 711	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 712
 713	if (type > _REGION_ENTRY_TYPE_R3)
 714		return 1;
 715	if (type < _REGION_ENTRY_TYPE_R3)
 716		return 0;
 717	if (pud_large(pud))
 718		return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
 719	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 720}
 721
 722static inline int p4d_bad(p4d_t p4d)
 723{
 724	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 725
 726	if (type > _REGION_ENTRY_TYPE_R2)
 727		return 1;
 728	if (type < _REGION_ENTRY_TYPE_R2)
 729		return 0;
 730	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 731}
 732
 733static inline int pmd_present(pmd_t pmd)
 734{
 735	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 736}
 737
 738static inline int pmd_none(pmd_t pmd)
 739{
 740	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 741}
 742
 743static inline unsigned long pmd_pfn(pmd_t pmd)
 
 744{
 745	unsigned long origin_mask;
 746
 747	origin_mask = _SEGMENT_ENTRY_ORIGIN;
 748	if (pmd_large(pmd))
 749		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 750	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 751}
 752
 753#define pmd_write pmd_write
 754static inline int pmd_write(pmd_t pmd)
 755{
 756	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 757}
 758
 759static inline int pmd_dirty(pmd_t pmd)
 760{
 761	int dirty = 1;
 762	if (pmd_large(pmd))
 763		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 764	return dirty;
 765}
 766
 
 767static inline int pmd_young(pmd_t pmd)
 768{
 769	int young = 1;
 770	if (pmd_large(pmd))
 771		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 772	return young;
 773}
 774
 775static inline int pte_present(pte_t pte)
 776{
 777	/* Bit pattern: (pte & 0x001) == 0x001 */
 778	return (pte_val(pte) & _PAGE_PRESENT) != 0;
 779}
 780
 781static inline int pte_none(pte_t pte)
 782{
 783	/* Bit pattern: pte == 0x400 */
 784	return pte_val(pte) == _PAGE_INVALID;
 785}
 786
 787static inline int pte_swap(pte_t pte)
 788{
 789	/* Bit pattern: (pte & 0x201) == 0x200 */
 790	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 791		== _PAGE_PROTECT;
 792}
 793
 794static inline int pte_special(pte_t pte)
 795{
 796	return (pte_val(pte) & _PAGE_SPECIAL);
 797}
 798
 799#define __HAVE_ARCH_PTE_SAME
 800static inline int pte_same(pte_t a, pte_t b)
 801{
 802	return pte_val(a) == pte_val(b);
 803}
 804
 805#ifdef CONFIG_NUMA_BALANCING
 806static inline int pte_protnone(pte_t pte)
 807{
 808	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 809}
 810
 811static inline int pmd_protnone(pmd_t pmd)
 812{
 813	/* pmd_large(pmd) implies pmd_present(pmd) */
 814	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 815}
 816#endif
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818static inline int pte_soft_dirty(pte_t pte)
 819{
 820	return pte_val(pte) & _PAGE_SOFT_DIRTY;
 821}
 822#define pte_swp_soft_dirty pte_soft_dirty
 823
 824static inline pte_t pte_mksoft_dirty(pte_t pte)
 825{
 826	pte_val(pte) |= _PAGE_SOFT_DIRTY;
 827	return pte;
 828}
 829#define pte_swp_mksoft_dirty pte_mksoft_dirty
 830
 831static inline pte_t pte_clear_soft_dirty(pte_t pte)
 832{
 833	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 834	return pte;
 835}
 836#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 837
 838static inline int pmd_soft_dirty(pmd_t pmd)
 839{
 840	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 841}
 842
 843static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 844{
 845	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 846	return pmd;
 847}
 848
 849static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 850{
 851	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 852	return pmd;
 853}
 854
 855/*
 856 * query functions pte_write/pte_dirty/pte_young only work if
 857 * pte_present() is true. Undefined behaviour if not..
 858 */
 859static inline int pte_write(pte_t pte)
 860{
 861	return (pte_val(pte) & _PAGE_WRITE) != 0;
 862}
 863
 864static inline int pte_dirty(pte_t pte)
 865{
 866	return (pte_val(pte) & _PAGE_DIRTY) != 0;
 867}
 868
 869static inline int pte_young(pte_t pte)
 870{
 871	return (pte_val(pte) & _PAGE_YOUNG) != 0;
 872}
 873
 874#define __HAVE_ARCH_PTE_UNUSED
 875static inline int pte_unused(pte_t pte)
 876{
 877	return pte_val(pte) & _PAGE_UNUSED;
 878}
 879
 880/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881 * pgd/pmd/pte modification functions
 882 */
 883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884static inline void pgd_clear(pgd_t *pgd)
 885{
 886	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 887		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
 888}
 889
 890static inline void p4d_clear(p4d_t *p4d)
 891{
 892	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 893		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
 894}
 895
 896static inline void pud_clear(pud_t *pud)
 897{
 898	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 899		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 900}
 901
 902static inline void pmd_clear(pmd_t *pmdp)
 903{
 904	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 905}
 906
 907static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 908{
 909	pte_val(*ptep) = _PAGE_INVALID;
 910}
 911
 912/*
 913 * The following pte modification functions only work if
 914 * pte_present() is true. Undefined behaviour if not..
 915 */
 916static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 917{
 918	pte_val(pte) &= _PAGE_CHG_MASK;
 919	pte_val(pte) |= pgprot_val(newprot);
 920	/*
 921	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 922	 * has the invalid bit set, clear it again for readable, young pages
 923	 */
 924	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 925		pte_val(pte) &= ~_PAGE_INVALID;
 926	/*
 927	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 928	 * protection bit set, clear it again for writable, dirty pages
 929	 */
 930	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 931		pte_val(pte) &= ~_PAGE_PROTECT;
 932	return pte;
 933}
 934
 935static inline pte_t pte_wrprotect(pte_t pte)
 936{
 937	pte_val(pte) &= ~_PAGE_WRITE;
 938	pte_val(pte) |= _PAGE_PROTECT;
 939	return pte;
 940}
 941
 942static inline pte_t pte_mkwrite(pte_t pte)
 943{
 944	pte_val(pte) |= _PAGE_WRITE;
 945	if (pte_val(pte) & _PAGE_DIRTY)
 946		pte_val(pte) &= ~_PAGE_PROTECT;
 947	return pte;
 948}
 949
 950static inline pte_t pte_mkclean(pte_t pte)
 951{
 952	pte_val(pte) &= ~_PAGE_DIRTY;
 953	pte_val(pte) |= _PAGE_PROTECT;
 954	return pte;
 955}
 956
 957static inline pte_t pte_mkdirty(pte_t pte)
 958{
 959	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 960	if (pte_val(pte) & _PAGE_WRITE)
 961		pte_val(pte) &= ~_PAGE_PROTECT;
 962	return pte;
 963}
 964
 965static inline pte_t pte_mkold(pte_t pte)
 966{
 967	pte_val(pte) &= ~_PAGE_YOUNG;
 968	pte_val(pte) |= _PAGE_INVALID;
 969	return pte;
 970}
 971
 972static inline pte_t pte_mkyoung(pte_t pte)
 973{
 974	pte_val(pte) |= _PAGE_YOUNG;
 975	if (pte_val(pte) & _PAGE_READ)
 976		pte_val(pte) &= ~_PAGE_INVALID;
 977	return pte;
 978}
 979
 980static inline pte_t pte_mkspecial(pte_t pte)
 981{
 982	pte_val(pte) |= _PAGE_SPECIAL;
 983	return pte;
 984}
 985
 986#ifdef CONFIG_HUGETLB_PAGE
 987static inline pte_t pte_mkhuge(pte_t pte)
 988{
 989	pte_val(pte) |= _PAGE_LARGE;
 990	return pte;
 991}
 992#endif
 993
 994#define IPTE_GLOBAL	0
 995#define	IPTE_LOCAL	1
 996
 997#define IPTE_NODAT	0x400
 998#define IPTE_GUEST_ASCE	0x800
 999
1000static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001					unsigned long opt, unsigned long asce,
1002					int local)
1003{
1004	unsigned long pto = (unsigned long) ptep;
1005
1006	if (__builtin_constant_p(opt) && opt == 0) {
1007		/* Invalidation + TLB flush for the pte */
1008		asm volatile(
1009			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011			  [m4] "i" (local));
1012		return;
1013	}
1014
1015	/* Invalidate ptes with options + TLB flush of the ptes */
1016	opt = opt | (asce & _ASCE_ORIGIN);
1017	asm volatile(
1018		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019		: [r2] "+a" (address), [r3] "+a" (opt)
1020		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1021}
1022
1023static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024					      pte_t *ptep, int local)
1025{
1026	unsigned long pto = (unsigned long) ptep;
1027
1028	/* Invalidate a range of ptes + TLB flush of the ptes */
1029	do {
1030		asm volatile(
1031			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032			: [r2] "+a" (address), [r3] "+a" (nr)
1033			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1034	} while (nr != 255);
1035}
1036
1037/*
1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039 * both clear the TLB for the unmapped pte. The reason is that
1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041 * to modify an active pte. The sequence is
1042 *   1) ptep_get_and_clear
1043 *   2) set_pte_at
1044 *   3) flush_tlb_range
1045 * On s390 the tlb needs to get flushed with the modification of the pte
1046 * if the pte is active. The only way how this can be implemented is to
1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048 * is a nop.
1049 */
1050pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052
1053#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1054static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055					    unsigned long addr, pte_t *ptep)
1056{
1057	pte_t pte = *ptep;
1058
1059	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060	return pte_young(pte);
1061}
1062
1063#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1064static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065					 unsigned long address, pte_t *ptep)
1066{
1067	return ptep_test_and_clear_young(vma, address, ptep);
1068}
1069
1070#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1071static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072				       unsigned long addr, pte_t *ptep)
1073{
1074	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
 
 
 
 
 
 
1075}
1076
1077#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1078pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1079void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1080			     pte_t *, pte_t, pte_t);
1081
1082#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1083static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1084				     unsigned long addr, pte_t *ptep)
1085{
1086	return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
 
 
 
 
 
 
1087}
1088
1089/*
1090 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1091 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1092 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1093 * cannot be accessed while the batched unmap is running. In this case
1094 * full==1 and a simple pte_clear is enough. See tlb.h.
1095 */
1096#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1097static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1098					    unsigned long addr,
1099					    pte_t *ptep, int full)
1100{
 
 
1101	if (full) {
1102		pte_t pte = *ptep;
1103		*ptep = __pte(_PAGE_INVALID);
1104		return pte;
 
1105	}
1106	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107}
1108
1109#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1110static inline void ptep_set_wrprotect(struct mm_struct *mm,
1111				      unsigned long addr, pte_t *ptep)
1112{
1113	pte_t pte = *ptep;
1114
1115	if (pte_write(pte))
1116		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1117}
1118
1119#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1120static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1121					unsigned long addr, pte_t *ptep,
1122					pte_t entry, int dirty)
1123{
1124	if (pte_same(*ptep, entry))
1125		return 0;
1126	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1127	return 1;
1128}
1129
1130/*
1131 * Additional functions to handle KVM guest page tables
1132 */
1133void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1134		     pte_t *ptep, pte_t entry);
1135void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1136void ptep_notify(struct mm_struct *mm, unsigned long addr,
1137		 pte_t *ptep, unsigned long bits);
1138int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1139		    pte_t *ptep, int prot, unsigned long bit);
1140void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1141		     pte_t *ptep , int reset);
1142void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1143int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1144		    pte_t *sptep, pte_t *tptep, pte_t pte);
1145void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1146
1147bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1148			    pte_t *ptep);
1149int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1150			  unsigned char key, bool nq);
1151int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152			       unsigned char key, unsigned char *oldkey,
1153			       bool nq, bool mr, bool mc);
1154int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1155int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1156			  unsigned char *key);
1157
1158int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1159				unsigned long bits, unsigned long value);
1160int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1161int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1162			unsigned long *oldpte, unsigned long *oldpgste);
1163void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1164void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1165void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1166void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1167
 
 
 
 
 
 
1168/*
1169 * Certain architectures need to do special things when PTEs
1170 * within a page table are directly modified.  Thus, the following
1171 * hook is made available.
1172 */
1173static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1174			      pte_t *ptep, pte_t entry)
1175{
1176	if (!MACHINE_HAS_NX)
1177		pte_val(entry) &= ~_PAGE_NOEXEC;
1178	if (pte_present(entry))
1179		pte_val(entry) &= ~_PAGE_UNUSED;
1180	if (mm_has_pgste(mm))
1181		ptep_set_pte_at(mm, addr, ptep, entry);
1182	else
1183		*ptep = entry;
1184}
1185
1186/*
1187 * Conversion functions: convert a page and protection to a page entry,
1188 * and a page entry and page directory to the page they refer to.
1189 */
1190static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1191{
1192	pte_t __pte;
1193	pte_val(__pte) = physpage + pgprot_val(pgprot);
 
 
 
1194	return pte_mkyoung(__pte);
1195}
1196
1197static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1198{
1199	unsigned long physpage = page_to_phys(page);
1200	pte_t __pte = mk_pte_phys(physpage, pgprot);
1201
1202	if (pte_write(__pte) && PageDirty(page))
1203		__pte = pte_mkdirty(__pte);
1204	return __pte;
1205}
1206
1207#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1208#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1209#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1210#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1211#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1212
1213#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1214#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1215#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1216#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217
1218/*
1219 * The pgd_offset function *always* adds the index for the top-level
1220 * region/segment table. This is done to get a sequence like the
1221 * following to work:
1222 *	pgdp = pgd_offset(current->mm, addr);
1223 *	pgd = READ_ONCE(*pgdp);
1224 *	p4dp = p4d_offset(&pgd, addr);
1225 *	...
1226 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1227 * only add an index if they dereferenced the pointer.
1228 */
1229static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1230{
1231	unsigned long rste;
1232	unsigned int shift;
1233
1234	/* Get the first entry of the top level table */
1235	rste = pgd_val(*pgd);
1236	/* Pick up the shift from the table type of the first entry */
1237	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1238	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1239}
1240
1241#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1242#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1243
1244static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
 
 
 
 
 
 
 
 
1245{
1246	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1247		return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1248	return (p4d_t *) pgd;
1249}
1250
1251static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1252{
1253	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1254		return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1255	return (pud_t *) p4d;
1256}
 
1257
1258static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1259{
1260	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1261		return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1262	return (pmd_t *) pud;
1263}
 
1264
1265static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1266{
1267	return (pte_t *) pmd_deref(*pmd) + pte_index(address);
 
 
1268}
 
1269
1270#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1271#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
 
 
 
1272
1273static inline void pte_unmap(pte_t *pte) { }
 
 
 
1274
1275static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1276{
1277	return end <= current->mm->context.asce_limit;
1278}
1279#define gup_fast_permitted gup_fast_permitted
1280
1281#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1282#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1283#define pte_page(x) pfn_to_page(pte_pfn(x))
1284
1285#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1286#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1287#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1288#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1289
1290static inline pmd_t pmd_wrprotect(pmd_t pmd)
1291{
1292	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1293	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1294	return pmd;
1295}
1296
1297static inline pmd_t pmd_mkwrite(pmd_t pmd)
1298{
1299	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1300	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1301		return pmd;
1302	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1303	return pmd;
1304}
1305
1306static inline pmd_t pmd_mkclean(pmd_t pmd)
1307{
1308	if (pmd_large(pmd)) {
1309		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1310		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1311	}
1312	return pmd;
1313}
1314
1315static inline pmd_t pmd_mkdirty(pmd_t pmd)
1316{
1317	if (pmd_large(pmd)) {
1318		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1319				_SEGMENT_ENTRY_SOFT_DIRTY;
1320		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1321			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1322	}
1323	return pmd;
1324}
1325
1326static inline pud_t pud_wrprotect(pud_t pud)
1327{
1328	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1329	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1330	return pud;
1331}
1332
1333static inline pud_t pud_mkwrite(pud_t pud)
1334{
1335	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1336	if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1337		return pud;
1338	pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1339	return pud;
1340}
1341
1342static inline pud_t pud_mkclean(pud_t pud)
1343{
1344	if (pud_large(pud)) {
1345		pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1346		pud_val(pud) |= _REGION_ENTRY_PROTECT;
1347	}
1348	return pud;
1349}
1350
1351static inline pud_t pud_mkdirty(pud_t pud)
1352{
1353	if (pud_large(pud)) {
1354		pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1355				_REGION3_ENTRY_SOFT_DIRTY;
1356		if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1357			pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1358	}
1359	return pud;
1360}
1361
1362#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1363static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1364{
1365	/*
1366	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1367	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1368	 */
1369	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1370		return pgprot_val(SEGMENT_NONE);
1371	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1372		return pgprot_val(SEGMENT_RO);
1373	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1374		return pgprot_val(SEGMENT_RX);
1375	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1376		return pgprot_val(SEGMENT_RW);
1377	return pgprot_val(SEGMENT_RWX);
1378}
1379
1380static inline pmd_t pmd_mkyoung(pmd_t pmd)
1381{
1382	if (pmd_large(pmd)) {
1383		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1384		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1385			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1386	}
1387	return pmd;
1388}
1389
1390static inline pmd_t pmd_mkold(pmd_t pmd)
1391{
1392	if (pmd_large(pmd)) {
1393		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1394		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1395	}
1396	return pmd;
1397}
1398
1399static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1400{
1401	if (pmd_large(pmd)) {
1402		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1403			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1404			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1405		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1406		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1407			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1408		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1409			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1410		return pmd;
1411	}
1412	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1413	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1414	return pmd;
1415}
1416
1417static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1418{
1419	pmd_t __pmd;
1420	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1421	return __pmd;
1422}
1423
1424#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1425
1426static inline void __pmdp_csp(pmd_t *pmdp)
1427{
1428	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1429	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1430}
1431
1432#define IDTE_GLOBAL	0
1433#define IDTE_LOCAL	1
1434
1435#define IDTE_PTOA	0x0800
1436#define IDTE_NODAT	0x1000
1437#define IDTE_GUEST_ASCE	0x2000
1438
1439static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1440					unsigned long opt, unsigned long asce,
1441					int local)
1442{
1443	unsigned long sto;
1444
1445	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1446	if (__builtin_constant_p(opt) && opt == 0) {
1447		/* flush without guest asce */
1448		asm volatile(
1449			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1450			: "+m" (*pmdp)
1451			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1452			  [m4] "i" (local)
1453			: "cc" );
1454	} else {
1455		/* flush with guest asce */
1456		asm volatile(
1457			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1458			: "+m" (*pmdp)
1459			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1460			  [r3] "a" (asce), [m4] "i" (local)
1461			: "cc" );
1462	}
1463}
1464
1465static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1466					unsigned long opt, unsigned long asce,
1467					int local)
1468{
1469	unsigned long r3o;
1470
1471	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1472	r3o |= _ASCE_TYPE_REGION3;
1473	if (__builtin_constant_p(opt) && opt == 0) {
1474		/* flush without guest asce */
1475		asm volatile(
1476			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1477			: "+m" (*pudp)
1478			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1479			  [m4] "i" (local)
1480			: "cc");
1481	} else {
1482		/* flush with guest asce */
1483		asm volatile(
1484			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1485			: "+m" (*pudp)
1486			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1487			  [r3] "a" (asce), [m4] "i" (local)
1488			: "cc" );
1489	}
1490}
1491
1492pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1493pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1494pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1495
1496#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1497
1498#define __HAVE_ARCH_PGTABLE_DEPOSIT
1499void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1500				pgtable_t pgtable);
1501
1502#define __HAVE_ARCH_PGTABLE_WITHDRAW
1503pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1504
1505#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1506static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1507					unsigned long addr, pmd_t *pmdp,
1508					pmd_t entry, int dirty)
1509{
1510	VM_BUG_ON(addr & ~HPAGE_MASK);
1511
1512	entry = pmd_mkyoung(entry);
1513	if (dirty)
1514		entry = pmd_mkdirty(entry);
1515	if (pmd_val(*pmdp) == pmd_val(entry))
1516		return 0;
1517	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1518	return 1;
1519}
1520
1521#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1522static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1523					    unsigned long addr, pmd_t *pmdp)
1524{
1525	pmd_t pmd = *pmdp;
1526
1527	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1528	return pmd_young(pmd);
1529}
1530
1531#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1532static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1533					 unsigned long addr, pmd_t *pmdp)
1534{
1535	VM_BUG_ON(addr & ~HPAGE_MASK);
1536	return pmdp_test_and_clear_young(vma, addr, pmdp);
1537}
1538
1539static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1540			      pmd_t *pmdp, pmd_t entry)
1541{
1542	if (!MACHINE_HAS_NX)
1543		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1544	*pmdp = entry;
1545}
1546
1547static inline pmd_t pmd_mkhuge(pmd_t pmd)
1548{
1549	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1550	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1551	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1552	return pmd;
1553}
1554
1555#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1556static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1557					    unsigned long addr, pmd_t *pmdp)
1558{
1559	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1560}
1561
1562#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1563static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1564						 unsigned long addr,
1565						 pmd_t *pmdp, int full)
1566{
1567	if (full) {
1568		pmd_t pmd = *pmdp;
1569		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1570		return pmd;
1571	}
1572	return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1573}
1574
1575#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1576static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1577					  unsigned long addr, pmd_t *pmdp)
1578{
1579	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1580}
1581
1582#define __HAVE_ARCH_PMDP_INVALIDATE
1583static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1584				   unsigned long addr, pmd_t *pmdp)
1585{
1586	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1587
1588	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1589}
1590
1591#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1592static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1593				      unsigned long addr, pmd_t *pmdp)
1594{
1595	pmd_t pmd = *pmdp;
1596
1597	if (pmd_write(pmd))
1598		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1599}
1600
1601static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1602					unsigned long address,
1603					pmd_t *pmdp)
1604{
1605	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1606}
1607#define pmdp_collapse_flush pmdp_collapse_flush
1608
1609#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1610#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1611
1612static inline int pmd_trans_huge(pmd_t pmd)
1613{
1614	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1615}
1616
1617#define has_transparent_hugepage has_transparent_hugepage
1618static inline int has_transparent_hugepage(void)
1619{
1620	return MACHINE_HAS_EDAT1 ? 1 : 0;
1621}
1622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1623
1624/*
1625 * 64 bit swap entry format:
1626 * A page-table entry has some bits we have to treat in a special way.
1627 * Bits 52 and bit 55 have to be zero, otherwise a specification
1628 * exception will occur instead of a page translation exception. The
1629 * specification exception has the bad habit not to store necessary
1630 * information in the lowcore.
1631 * Bits 54 and 63 are used to indicate the page type.
1632 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1633 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1634 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1635 * for the offset.
1636 * |			  offset			|01100|type |00|
1637 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1638 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
 
 
 
 
 
 
1639 */
1640
1641#define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1642#define __SWP_OFFSET_SHIFT	12
1643#define __SWP_TYPE_MASK		((1UL << 5) - 1)
1644#define __SWP_TYPE_SHIFT	2
1645
1646static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1647{
1648	pte_t pte;
1649
1650	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1651	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1652	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1653	return pte;
1654}
1655
1656static inline unsigned long __swp_type(swp_entry_t entry)
1657{
1658	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1659}
1660
1661static inline unsigned long __swp_offset(swp_entry_t entry)
1662{
1663	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1664}
1665
1666static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1667{
1668	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1669}
1670
1671#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1672#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1673
1674#define kern_addr_valid(addr)   (1)
1675
1676extern int vmem_add_mapping(unsigned long start, unsigned long size);
1677extern int vmem_remove_mapping(unsigned long start, unsigned long size);
 
 
 
 
1678extern int s390_enable_sie(void);
1679extern int s390_enable_skey(void);
1680extern void s390_reset_cmma(struct mm_struct *mm);
1681
1682/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1683#define HAVE_ARCH_UNMAPPED_AREA
1684#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1685
1686#include <asm-generic/pgtable.h>
 
1687
1688#endif /* _S390_PAGE_H */