Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/sections.h>
21#include <asm/bug.h>
22#include <asm/page.h>
23#include <asm/uv.h>
24
25extern pgd_t swapper_pg_dir[];
26extern void paging_init(void);
27extern unsigned long s390_invalid_asce;
28
29enum {
30 PG_DIRECT_MAP_4K = 0,
31 PG_DIRECT_MAP_1M,
32 PG_DIRECT_MAP_2G,
33 PG_DIRECT_MAP_MAX
34};
35
36extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37
38static inline void update_page_count(int level, long count)
39{
40 if (IS_ENABLED(CONFIG_PROC_FS))
41 atomic_long_add(count, &direct_pages_count[level]);
42}
43
44struct seq_file;
45void arch_report_meminfo(struct seq_file *m);
46
47/*
48 * The S390 doesn't have any external MMU info: the kernel page
49 * tables contain all the necessary information.
50 */
51#define update_mmu_cache(vma, address, ptep) do { } while (0)
52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54/*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59extern unsigned long empty_zero_page;
60extern unsigned long zero_page_mask;
61
62#define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65#define __HAVE_COLOR_ZERO_PAGE
66
67/* TODO: s390 cannot support io_remap_pfn_range... */
68
69#define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71#define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73#define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75#define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77#define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80/*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88extern unsigned long __bootdata_preserved(VMALLOC_START);
89extern unsigned long __bootdata_preserved(VMALLOC_END);
90#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91extern struct page *__bootdata_preserved(vmemmap);
92extern unsigned long __bootdata_preserved(vmemmap_size);
93
94#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96extern unsigned long __bootdata_preserved(MODULES_VADDR);
97extern unsigned long __bootdata_preserved(MODULES_END);
98#define MODULES_VADDR MODULES_VADDR
99#define MODULES_END MODULES_END
100#define MODULES_LEN (1UL << 31)
101
102static inline int is_module_addr(void *addr)
103{
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
106 return 0;
107 if (addr > (void *)MODULES_END)
108 return 0;
109 return 1;
110}
111
112/*
113 * A 64 bit pagetable entry of S390 has following format:
114 * | PFRA |0IPC| OS |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit: Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 * 0 3 4 5 6 7
157 * ACC: access key
158 * F : fetch protection bit
159 * R : referenced bit
160 * C : changed bit
161 */
162
163/* Hardware bits in the page table entry */
164#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165#define _PAGE_PROTECT 0x200 /* HW read-only bit */
166#define _PAGE_INVALID 0x400 /* HW invalid bit */
167#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
168
169/* Software bits in the page table entry */
170#define _PAGE_PRESENT 0x001 /* SW pte present bit */
171#define _PAGE_YOUNG 0x004 /* SW pte young bit */
172#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173#define _PAGE_READ 0x010 /* SW pte read bit */
174#define _PAGE_WRITE 0x020 /* SW pte write bit */
175#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
177
178#ifdef CONFIG_MEM_SOFT_DIRTY
179#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
180#else
181#define _PAGE_SOFT_DIRTY 0x000
182#endif
183
184#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
185
186/* Set of bits not changed in pte_modify */
187#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189
190/*
191 * handle_pte_fault uses pte_present and pte_none to find out the pte type
192 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
193 * distinguish present from not-present ptes. It is changed only with the page
194 * table lock held.
195 *
196 * The following table gives the different possible bit combinations for
197 * the pte hardware and software bits in the last 12 bits of a pte
198 * (. unassigned bit, x don't care, t swap type):
199 *
200 * 842100000000
201 * 000084210000
202 * 000000008421
203 * .IR.uswrdy.p
204 * empty .10.00000000
205 * swap .11..ttttt.0
206 * prot-none, clean, old .11.xx0000.1
207 * prot-none, clean, young .11.xx0001.1
208 * prot-none, dirty, old .11.xx0010.1
209 * prot-none, dirty, young .11.xx0011.1
210 * read-only, clean, old .11.xx0100.1
211 * read-only, clean, young .01.xx0101.1
212 * read-only, dirty, old .11.xx0110.1
213 * read-only, dirty, young .01.xx0111.1
214 * read-write, clean, old .11.xx1100.1
215 * read-write, clean, young .01.xx1101.1
216 * read-write, dirty, old .10.xx1110.1
217 * read-write, dirty, young .00.xx1111.1
218 * HW-bits: R read-only, I invalid
219 * SW-bits: p present, y young, d dirty, r read, w write, s special,
220 * u unused, l large
221 *
222 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
223 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
224 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
225 */
226
227/* Bits in the segment/region table address-space-control-element */
228#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
229#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
230#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
231#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
232#define _ASCE_REAL_SPACE 0x20 /* real space control */
233#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
234#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
235#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
236#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
237#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
238#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
239
240/* Bits in the region table entry */
241#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
242#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
243#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
244#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
245#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
246#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
247#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
248#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
249#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
250#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
251
252#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
253#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
254#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
255#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
256#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
257#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
258
259#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
260#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
261#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
262#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
263#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
264#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
265
266#ifdef CONFIG_MEM_SOFT_DIRTY
267#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
268#else
269#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
270#endif
271
272#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
273
274/* Bits in the segment table entry */
275#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
276#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
277#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
278#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
279#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
280#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
281#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
282#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
283#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
284
285#define _SEGMENT_ENTRY (0)
286#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
287
288#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
289#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
290#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
291#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
292#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
293
294#ifdef CONFIG_MEM_SOFT_DIRTY
295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296#else
297#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298#endif
299
300#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
301#define _PAGE_ENTRIES 256 /* number of page table entries */
302
303#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
304#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
305
306#define _REGION1_SHIFT 53
307#define _REGION2_SHIFT 42
308#define _REGION3_SHIFT 31
309#define _SEGMENT_SHIFT 20
310
311#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
312#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
313#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
314#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
315#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
316
317#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
318#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
319#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
320#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
321
322#define _REGION1_MASK (~(_REGION1_SIZE - 1))
323#define _REGION2_MASK (~(_REGION2_SIZE - 1))
324#define _REGION3_MASK (~(_REGION3_SIZE - 1))
325#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
326
327#define PMD_SHIFT _SEGMENT_SHIFT
328#define PUD_SHIFT _REGION3_SHIFT
329#define P4D_SHIFT _REGION2_SHIFT
330#define PGDIR_SHIFT _REGION1_SHIFT
331
332#define PMD_SIZE _SEGMENT_SIZE
333#define PUD_SIZE _REGION3_SIZE
334#define P4D_SIZE _REGION2_SIZE
335#define PGDIR_SIZE _REGION1_SIZE
336
337#define PMD_MASK _SEGMENT_MASK
338#define PUD_MASK _REGION3_MASK
339#define P4D_MASK _REGION2_MASK
340#define PGDIR_MASK _REGION1_MASK
341
342#define PTRS_PER_PTE _PAGE_ENTRIES
343#define PTRS_PER_PMD _CRST_ENTRIES
344#define PTRS_PER_PUD _CRST_ENTRIES
345#define PTRS_PER_P4D _CRST_ENTRIES
346#define PTRS_PER_PGD _CRST_ENTRIES
347
348/*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370/* Page status table bits for virtualization */
371#define PGSTE_ACC_BITS 0xf000000000000000UL
372#define PGSTE_FP_BIT 0x0800000000000000UL
373#define PGSTE_PCL_BIT 0x0080000000000000UL
374#define PGSTE_HR_BIT 0x0040000000000000UL
375#define PGSTE_HC_BIT 0x0020000000000000UL
376#define PGSTE_GR_BIT 0x0004000000000000UL
377#define PGSTE_GC_BIT 0x0002000000000000UL
378#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382/* Guest Page State used for virtualization */
383#define _PGSTE_GPS_ZERO 0x0000000080000000UL
384#define _PGSTE_GPS_NODAT 0x0000000040000000UL
385#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391/*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399/*
400 * Page protection definitions.
401 */
402#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421/*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427
428/*
429 * Segment entry (large page) protection definitions.
430 */
431#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
432 _SEGMENT_ENTRY_PROTECT)
433#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
434 _SEGMENT_ENTRY_READ | \
435 _SEGMENT_ENTRY_NOEXEC)
436#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
437 _SEGMENT_ENTRY_READ)
438#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
439 _SEGMENT_ENTRY_WRITE | \
440 _SEGMENT_ENTRY_NOEXEC)
441#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
442 _SEGMENT_ENTRY_WRITE)
443#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
444 _SEGMENT_ENTRY_LARGE | \
445 _SEGMENT_ENTRY_READ | \
446 _SEGMENT_ENTRY_WRITE | \
447 _SEGMENT_ENTRY_YOUNG | \
448 _SEGMENT_ENTRY_DIRTY | \
449 _SEGMENT_ENTRY_NOEXEC)
450#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
451 _SEGMENT_ENTRY_LARGE | \
452 _SEGMENT_ENTRY_READ | \
453 _SEGMENT_ENTRY_YOUNG | \
454 _SEGMENT_ENTRY_PROTECT | \
455 _SEGMENT_ENTRY_NOEXEC)
456#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
457 _SEGMENT_ENTRY_LARGE | \
458 _SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE | \
460 _SEGMENT_ENTRY_YOUNG | \
461 _SEGMENT_ENTRY_DIRTY)
462
463/*
464 * Region3 entry (large page) protection definitions.
465 */
466
467#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
468 _REGION3_ENTRY_LARGE | \
469 _REGION3_ENTRY_READ | \
470 _REGION3_ENTRY_WRITE | \
471 _REGION3_ENTRY_YOUNG | \
472 _REGION3_ENTRY_DIRTY | \
473 _REGION_ENTRY_NOEXEC)
474#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
475 _REGION3_ENTRY_LARGE | \
476 _REGION3_ENTRY_READ | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION_ENTRY_PROTECT | \
479 _REGION_ENTRY_NOEXEC)
480
481static inline bool mm_p4d_folded(struct mm_struct *mm)
482{
483 return mm->context.asce_limit <= _REGION1_SIZE;
484}
485#define mm_p4d_folded(mm) mm_p4d_folded(mm)
486
487static inline bool mm_pud_folded(struct mm_struct *mm)
488{
489 return mm->context.asce_limit <= _REGION2_SIZE;
490}
491#define mm_pud_folded(mm) mm_pud_folded(mm)
492
493static inline bool mm_pmd_folded(struct mm_struct *mm)
494{
495 return mm->context.asce_limit <= _REGION3_SIZE;
496}
497#define mm_pmd_folded(mm) mm_pmd_folded(mm)
498
499static inline int mm_has_pgste(struct mm_struct *mm)
500{
501#ifdef CONFIG_PGSTE
502 if (unlikely(mm->context.has_pgste))
503 return 1;
504#endif
505 return 0;
506}
507
508static inline int mm_is_protected(struct mm_struct *mm)
509{
510#ifdef CONFIG_PGSTE
511 if (unlikely(atomic_read(&mm->context.protected_count)))
512 return 1;
513#endif
514 return 0;
515}
516
517static inline int mm_alloc_pgste(struct mm_struct *mm)
518{
519#ifdef CONFIG_PGSTE
520 if (unlikely(mm->context.alloc_pgste))
521 return 1;
522#endif
523 return 0;
524}
525
526static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
527{
528 return __pte(pte_val(pte) & ~pgprot_val(prot));
529}
530
531static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
532{
533 return __pte(pte_val(pte) | pgprot_val(prot));
534}
535
536static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
537{
538 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
539}
540
541static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
542{
543 return __pmd(pmd_val(pmd) | pgprot_val(prot));
544}
545
546static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
547{
548 return __pud(pud_val(pud) & ~pgprot_val(prot));
549}
550
551static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
552{
553 return __pud(pud_val(pud) | pgprot_val(prot));
554}
555
556/*
557 * In the case that a guest uses storage keys
558 * faults should no longer be backed by zero pages
559 */
560#define mm_forbids_zeropage mm_has_pgste
561static inline int mm_uses_skeys(struct mm_struct *mm)
562{
563#ifdef CONFIG_PGSTE
564 if (mm->context.uses_skeys)
565 return 1;
566#endif
567 return 0;
568}
569
570static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
571{
572 union register_pair r1 = { .even = old, .odd = new, };
573 unsigned long address = (unsigned long)ptr | 1;
574
575 asm volatile(
576 " csp %[r1],%[address]"
577 : [r1] "+&d" (r1.pair), "+m" (*ptr)
578 : [address] "d" (address)
579 : "cc");
580}
581
582static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
583{
584 union register_pair r1 = { .even = old, .odd = new, };
585 unsigned long address = (unsigned long)ptr | 1;
586
587 asm volatile(
588 " cspg %[r1],%[address]"
589 : [r1] "+&d" (r1.pair), "+m" (*ptr)
590 : [address] "d" (address)
591 : "cc");
592}
593
594#define CRDTE_DTT_PAGE 0x00UL
595#define CRDTE_DTT_SEGMENT 0x10UL
596#define CRDTE_DTT_REGION3 0x14UL
597#define CRDTE_DTT_REGION2 0x18UL
598#define CRDTE_DTT_REGION1 0x1cUL
599
600static inline void crdte(unsigned long old, unsigned long new,
601 unsigned long *table, unsigned long dtt,
602 unsigned long address, unsigned long asce)
603{
604 union register_pair r1 = { .even = old, .odd = new, };
605 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
606
607 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
608 : [r1] "+&d" (r1.pair)
609 : [r2] "d" (r2.pair), [asce] "a" (asce)
610 : "memory", "cc");
611}
612
613/*
614 * pgd/p4d/pud/pmd/pte query functions
615 */
616static inline int pgd_folded(pgd_t pgd)
617{
618 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
619}
620
621static inline int pgd_present(pgd_t pgd)
622{
623 if (pgd_folded(pgd))
624 return 1;
625 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
626}
627
628static inline int pgd_none(pgd_t pgd)
629{
630 if (pgd_folded(pgd))
631 return 0;
632 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
633}
634
635static inline int pgd_bad(pgd_t pgd)
636{
637 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
638 return 0;
639 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
640}
641
642static inline unsigned long pgd_pfn(pgd_t pgd)
643{
644 unsigned long origin_mask;
645
646 origin_mask = _REGION_ENTRY_ORIGIN;
647 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
648}
649
650static inline int p4d_folded(p4d_t p4d)
651{
652 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
653}
654
655static inline int p4d_present(p4d_t p4d)
656{
657 if (p4d_folded(p4d))
658 return 1;
659 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
660}
661
662static inline int p4d_none(p4d_t p4d)
663{
664 if (p4d_folded(p4d))
665 return 0;
666 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
667}
668
669static inline unsigned long p4d_pfn(p4d_t p4d)
670{
671 unsigned long origin_mask;
672
673 origin_mask = _REGION_ENTRY_ORIGIN;
674 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
675}
676
677static inline int pud_folded(pud_t pud)
678{
679 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
680}
681
682static inline int pud_present(pud_t pud)
683{
684 if (pud_folded(pud))
685 return 1;
686 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
687}
688
689static inline int pud_none(pud_t pud)
690{
691 if (pud_folded(pud))
692 return 0;
693 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
694}
695
696#define pud_leaf pud_large
697static inline int pud_large(pud_t pud)
698{
699 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
700 return 0;
701 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
702}
703
704#define pmd_leaf pmd_large
705static inline int pmd_large(pmd_t pmd)
706{
707 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
708}
709
710static inline int pmd_bad(pmd_t pmd)
711{
712 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
713 return 1;
714 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
715}
716
717static inline int pud_bad(pud_t pud)
718{
719 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
720
721 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
722 return 1;
723 if (type < _REGION_ENTRY_TYPE_R3)
724 return 0;
725 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
726}
727
728static inline int p4d_bad(p4d_t p4d)
729{
730 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
731
732 if (type > _REGION_ENTRY_TYPE_R2)
733 return 1;
734 if (type < _REGION_ENTRY_TYPE_R2)
735 return 0;
736 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
737}
738
739static inline int pmd_present(pmd_t pmd)
740{
741 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
742}
743
744static inline int pmd_none(pmd_t pmd)
745{
746 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
747}
748
749#define pmd_write pmd_write
750static inline int pmd_write(pmd_t pmd)
751{
752 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
753}
754
755#define pud_write pud_write
756static inline int pud_write(pud_t pud)
757{
758 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
759}
760
761static inline int pmd_dirty(pmd_t pmd)
762{
763 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764}
765
766#define pmd_young pmd_young
767static inline int pmd_young(pmd_t pmd)
768{
769 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
770}
771
772static inline int pte_present(pte_t pte)
773{
774 /* Bit pattern: (pte & 0x001) == 0x001 */
775 return (pte_val(pte) & _PAGE_PRESENT) != 0;
776}
777
778static inline int pte_none(pte_t pte)
779{
780 /* Bit pattern: pte == 0x400 */
781 return pte_val(pte) == _PAGE_INVALID;
782}
783
784static inline int pte_swap(pte_t pte)
785{
786 /* Bit pattern: (pte & 0x201) == 0x200 */
787 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
788 == _PAGE_PROTECT;
789}
790
791static inline int pte_special(pte_t pte)
792{
793 return (pte_val(pte) & _PAGE_SPECIAL);
794}
795
796#define __HAVE_ARCH_PTE_SAME
797static inline int pte_same(pte_t a, pte_t b)
798{
799 return pte_val(a) == pte_val(b);
800}
801
802#ifdef CONFIG_NUMA_BALANCING
803static inline int pte_protnone(pte_t pte)
804{
805 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
806}
807
808static inline int pmd_protnone(pmd_t pmd)
809{
810 /* pmd_large(pmd) implies pmd_present(pmd) */
811 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
812}
813#endif
814
815#define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
816static inline int pte_swp_exclusive(pte_t pte)
817{
818 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
819}
820
821static inline pte_t pte_swp_mkexclusive(pte_t pte)
822{
823 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
824}
825
826static inline pte_t pte_swp_clear_exclusive(pte_t pte)
827{
828 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
829}
830
831static inline int pte_soft_dirty(pte_t pte)
832{
833 return pte_val(pte) & _PAGE_SOFT_DIRTY;
834}
835#define pte_swp_soft_dirty pte_soft_dirty
836
837static inline pte_t pte_mksoft_dirty(pte_t pte)
838{
839 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
840}
841#define pte_swp_mksoft_dirty pte_mksoft_dirty
842
843static inline pte_t pte_clear_soft_dirty(pte_t pte)
844{
845 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
846}
847#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
848
849static inline int pmd_soft_dirty(pmd_t pmd)
850{
851 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
852}
853
854static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
855{
856 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
857}
858
859static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
860{
861 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
862}
863
864/*
865 * query functions pte_write/pte_dirty/pte_young only work if
866 * pte_present() is true. Undefined behaviour if not..
867 */
868static inline int pte_write(pte_t pte)
869{
870 return (pte_val(pte) & _PAGE_WRITE) != 0;
871}
872
873static inline int pte_dirty(pte_t pte)
874{
875 return (pte_val(pte) & _PAGE_DIRTY) != 0;
876}
877
878static inline int pte_young(pte_t pte)
879{
880 return (pte_val(pte) & _PAGE_YOUNG) != 0;
881}
882
883#define __HAVE_ARCH_PTE_UNUSED
884static inline int pte_unused(pte_t pte)
885{
886 return pte_val(pte) & _PAGE_UNUSED;
887}
888
889/*
890 * Extract the pgprot value from the given pte while at the same time making it
891 * usable for kernel address space mappings where fault driven dirty and
892 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
893 * must not be set.
894 */
895static inline pgprot_t pte_pgprot(pte_t pte)
896{
897 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
898
899 if (pte_write(pte))
900 pte_flags |= pgprot_val(PAGE_KERNEL);
901 else
902 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
903 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
904
905 return __pgprot(pte_flags);
906}
907
908/*
909 * pgd/pmd/pte modification functions
910 */
911
912static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
913{
914 WRITE_ONCE(*pgdp, pgd);
915}
916
917static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
918{
919 WRITE_ONCE(*p4dp, p4d);
920}
921
922static inline void set_pud(pud_t *pudp, pud_t pud)
923{
924 WRITE_ONCE(*pudp, pud);
925}
926
927static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
928{
929 WRITE_ONCE(*pmdp, pmd);
930}
931
932static inline void set_pte(pte_t *ptep, pte_t pte)
933{
934 WRITE_ONCE(*ptep, pte);
935}
936
937static inline void pgd_clear(pgd_t *pgd)
938{
939 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
940 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
941}
942
943static inline void p4d_clear(p4d_t *p4d)
944{
945 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
946 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
947}
948
949static inline void pud_clear(pud_t *pud)
950{
951 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
952 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
953}
954
955static inline void pmd_clear(pmd_t *pmdp)
956{
957 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
958}
959
960static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
961{
962 set_pte(ptep, __pte(_PAGE_INVALID));
963}
964
965/*
966 * The following pte modification functions only work if
967 * pte_present() is true. Undefined behaviour if not..
968 */
969static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
970{
971 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
972 pte = set_pte_bit(pte, newprot);
973 /*
974 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
975 * has the invalid bit set, clear it again for readable, young pages
976 */
977 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
978 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
979 /*
980 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
981 * protection bit set, clear it again for writable, dirty pages
982 */
983 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
984 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
985 return pte;
986}
987
988static inline pte_t pte_wrprotect(pte_t pte)
989{
990 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
991 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
992}
993
994static inline pte_t pte_mkwrite(pte_t pte)
995{
996 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
997 if (pte_val(pte) & _PAGE_DIRTY)
998 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
999 return pte;
1000}
1001
1002static inline pte_t pte_mkclean(pte_t pte)
1003{
1004 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1005 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1006}
1007
1008static inline pte_t pte_mkdirty(pte_t pte)
1009{
1010 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1011 if (pte_val(pte) & _PAGE_WRITE)
1012 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013 return pte;
1014}
1015
1016static inline pte_t pte_mkold(pte_t pte)
1017{
1018 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1019 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1020}
1021
1022static inline pte_t pte_mkyoung(pte_t pte)
1023{
1024 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1025 if (pte_val(pte) & _PAGE_READ)
1026 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1027 return pte;
1028}
1029
1030static inline pte_t pte_mkspecial(pte_t pte)
1031{
1032 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1033}
1034
1035#ifdef CONFIG_HUGETLB_PAGE
1036static inline pte_t pte_mkhuge(pte_t pte)
1037{
1038 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1039}
1040#endif
1041
1042#define IPTE_GLOBAL 0
1043#define IPTE_LOCAL 1
1044
1045#define IPTE_NODAT 0x400
1046#define IPTE_GUEST_ASCE 0x800
1047
1048static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1049 unsigned long opt, unsigned long asce,
1050 int local)
1051{
1052 unsigned long pto = __pa(ptep);
1053
1054 if (__builtin_constant_p(opt) && opt == 0) {
1055 /* Invalidation + TLB flush for the pte */
1056 asm volatile(
1057 " ipte %[r1],%[r2],0,%[m4]"
1058 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1059 [m4] "i" (local));
1060 return;
1061 }
1062
1063 /* Invalidate ptes with options + TLB flush of the ptes */
1064 opt = opt | (asce & _ASCE_ORIGIN);
1065 asm volatile(
1066 " ipte %[r1],%[r2],%[r3],%[m4]"
1067 : [r2] "+a" (address), [r3] "+a" (opt)
1068 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1069}
1070
1071static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1072 pte_t *ptep, int local)
1073{
1074 unsigned long pto = __pa(ptep);
1075
1076 /* Invalidate a range of ptes + TLB flush of the ptes */
1077 do {
1078 asm volatile(
1079 " ipte %[r1],%[r2],%[r3],%[m4]"
1080 : [r2] "+a" (address), [r3] "+a" (nr)
1081 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1082 } while (nr != 255);
1083}
1084
1085/*
1086 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1087 * both clear the TLB for the unmapped pte. The reason is that
1088 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1089 * to modify an active pte. The sequence is
1090 * 1) ptep_get_and_clear
1091 * 2) set_pte_at
1092 * 3) flush_tlb_range
1093 * On s390 the tlb needs to get flushed with the modification of the pte
1094 * if the pte is active. The only way how this can be implemented is to
1095 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1096 * is a nop.
1097 */
1098pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1099pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1100
1101#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1102static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1103 unsigned long addr, pte_t *ptep)
1104{
1105 pte_t pte = *ptep;
1106
1107 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1108 return pte_young(pte);
1109}
1110
1111#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1112static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1113 unsigned long address, pte_t *ptep)
1114{
1115 return ptep_test_and_clear_young(vma, address, ptep);
1116}
1117
1118#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1119static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1120 unsigned long addr, pte_t *ptep)
1121{
1122 pte_t res;
1123
1124 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1125 /* At this point the reference through the mapping is still present */
1126 if (mm_is_protected(mm) && pte_present(res))
1127 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1128 return res;
1129}
1130
1131#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1132pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1133void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1134 pte_t *, pte_t, pte_t);
1135
1136#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1137static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1138 unsigned long addr, pte_t *ptep)
1139{
1140 pte_t res;
1141
1142 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1143 /* At this point the reference through the mapping is still present */
1144 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1145 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1146 return res;
1147}
1148
1149/*
1150 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1151 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1152 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1153 * cannot be accessed while the batched unmap is running. In this case
1154 * full==1 and a simple pte_clear is enough. See tlb.h.
1155 */
1156#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1157static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1158 unsigned long addr,
1159 pte_t *ptep, int full)
1160{
1161 pte_t res;
1162
1163 if (full) {
1164 res = *ptep;
1165 set_pte(ptep, __pte(_PAGE_INVALID));
1166 } else {
1167 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1168 }
1169 /* Nothing to do */
1170 if (!mm_is_protected(mm) || !pte_present(res))
1171 return res;
1172 /*
1173 * At this point the reference through the mapping is still present.
1174 * The notifier should have destroyed all protected vCPUs at this
1175 * point, so the destroy should be successful.
1176 */
1177 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1178 return res;
1179 /*
1180 * If something went wrong and the page could not be destroyed, or
1181 * if this is not a mm teardown, the slower export is used as
1182 * fallback instead.
1183 */
1184 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1185 return res;
1186}
1187
1188#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1189static inline void ptep_set_wrprotect(struct mm_struct *mm,
1190 unsigned long addr, pte_t *ptep)
1191{
1192 pte_t pte = *ptep;
1193
1194 if (pte_write(pte))
1195 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1196}
1197
1198#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1199static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1200 unsigned long addr, pte_t *ptep,
1201 pte_t entry, int dirty)
1202{
1203 if (pte_same(*ptep, entry))
1204 return 0;
1205 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1206 return 1;
1207}
1208
1209/*
1210 * Additional functions to handle KVM guest page tables
1211 */
1212void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1213 pte_t *ptep, pte_t entry);
1214void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1215void ptep_notify(struct mm_struct *mm, unsigned long addr,
1216 pte_t *ptep, unsigned long bits);
1217int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1218 pte_t *ptep, int prot, unsigned long bit);
1219void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1220 pte_t *ptep , int reset);
1221void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1222int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1223 pte_t *sptep, pte_t *tptep, pte_t pte);
1224void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1225
1226bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1227 pte_t *ptep);
1228int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1229 unsigned char key, bool nq);
1230int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1231 unsigned char key, unsigned char *oldkey,
1232 bool nq, bool mr, bool mc);
1233int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1234int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1235 unsigned char *key);
1236
1237int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1238 unsigned long bits, unsigned long value);
1239int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1240int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1241 unsigned long *oldpte, unsigned long *oldpgste);
1242void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1243void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1244void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1245void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1246
1247#define pgprot_writecombine pgprot_writecombine
1248pgprot_t pgprot_writecombine(pgprot_t prot);
1249
1250#define pgprot_writethrough pgprot_writethrough
1251pgprot_t pgprot_writethrough(pgprot_t prot);
1252
1253/*
1254 * Certain architectures need to do special things when PTEs
1255 * within a page table are directly modified. Thus, the following
1256 * hook is made available.
1257 */
1258static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1259 pte_t *ptep, pte_t entry)
1260{
1261 if (pte_present(entry))
1262 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1263 if (mm_has_pgste(mm))
1264 ptep_set_pte_at(mm, addr, ptep, entry);
1265 else
1266 set_pte(ptep, entry);
1267}
1268
1269/*
1270 * Conversion functions: convert a page and protection to a page entry,
1271 * and a page entry and page directory to the page they refer to.
1272 */
1273static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1274{
1275 pte_t __pte;
1276
1277 __pte = __pte(physpage | pgprot_val(pgprot));
1278 if (!MACHINE_HAS_NX)
1279 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1280 return pte_mkyoung(__pte);
1281}
1282
1283static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1284{
1285 unsigned long physpage = page_to_phys(page);
1286 pte_t __pte = mk_pte_phys(physpage, pgprot);
1287
1288 if (pte_write(__pte) && PageDirty(page))
1289 __pte = pte_mkdirty(__pte);
1290 return __pte;
1291}
1292
1293#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1294#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1295#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1296#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1297
1298#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1299#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1300
1301static inline unsigned long pmd_deref(pmd_t pmd)
1302{
1303 unsigned long origin_mask;
1304
1305 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1306 if (pmd_large(pmd))
1307 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1308 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1309}
1310
1311static inline unsigned long pmd_pfn(pmd_t pmd)
1312{
1313 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1314}
1315
1316static inline unsigned long pud_deref(pud_t pud)
1317{
1318 unsigned long origin_mask;
1319
1320 origin_mask = _REGION_ENTRY_ORIGIN;
1321 if (pud_large(pud))
1322 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1323 return (unsigned long)__va(pud_val(pud) & origin_mask);
1324}
1325
1326static inline unsigned long pud_pfn(pud_t pud)
1327{
1328 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1329}
1330
1331/*
1332 * The pgd_offset function *always* adds the index for the top-level
1333 * region/segment table. This is done to get a sequence like the
1334 * following to work:
1335 * pgdp = pgd_offset(current->mm, addr);
1336 * pgd = READ_ONCE(*pgdp);
1337 * p4dp = p4d_offset(&pgd, addr);
1338 * ...
1339 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1340 * only add an index if they dereferenced the pointer.
1341 */
1342static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1343{
1344 unsigned long rste;
1345 unsigned int shift;
1346
1347 /* Get the first entry of the top level table */
1348 rste = pgd_val(*pgd);
1349 /* Pick up the shift from the table type of the first entry */
1350 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1351 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1352}
1353
1354#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1355
1356static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1357{
1358 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1359 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1360 return (p4d_t *) pgdp;
1361}
1362#define p4d_offset_lockless p4d_offset_lockless
1363
1364static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1365{
1366 return p4d_offset_lockless(pgdp, *pgdp, address);
1367}
1368
1369static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1370{
1371 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1372 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1373 return (pud_t *) p4dp;
1374}
1375#define pud_offset_lockless pud_offset_lockless
1376
1377static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1378{
1379 return pud_offset_lockless(p4dp, *p4dp, address);
1380}
1381#define pud_offset pud_offset
1382
1383static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1384{
1385 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1386 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1387 return (pmd_t *) pudp;
1388}
1389#define pmd_offset_lockless pmd_offset_lockless
1390
1391static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1392{
1393 return pmd_offset_lockless(pudp, *pudp, address);
1394}
1395#define pmd_offset pmd_offset
1396
1397static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1398{
1399 return (unsigned long) pmd_deref(pmd);
1400}
1401
1402static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1403{
1404 return end <= current->mm->context.asce_limit;
1405}
1406#define gup_fast_permitted gup_fast_permitted
1407
1408#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1409#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1410#define pte_page(x) pfn_to_page(pte_pfn(x))
1411
1412#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1413#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1414#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1415#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1416
1417static inline pmd_t pmd_wrprotect(pmd_t pmd)
1418{
1419 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1420 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1421}
1422
1423static inline pmd_t pmd_mkwrite(pmd_t pmd)
1424{
1425 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1426 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1427 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1428 return pmd;
1429}
1430
1431static inline pmd_t pmd_mkclean(pmd_t pmd)
1432{
1433 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1434 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1435}
1436
1437static inline pmd_t pmd_mkdirty(pmd_t pmd)
1438{
1439 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1440 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1441 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1442 return pmd;
1443}
1444
1445static inline pud_t pud_wrprotect(pud_t pud)
1446{
1447 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1448 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1449}
1450
1451static inline pud_t pud_mkwrite(pud_t pud)
1452{
1453 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1454 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1455 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1456 return pud;
1457}
1458
1459static inline pud_t pud_mkclean(pud_t pud)
1460{
1461 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1462 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1463}
1464
1465static inline pud_t pud_mkdirty(pud_t pud)
1466{
1467 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1468 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1469 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1470 return pud;
1471}
1472
1473#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1474static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1475{
1476 /*
1477 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1478 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1479 */
1480 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1481 return pgprot_val(SEGMENT_NONE);
1482 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1483 return pgprot_val(SEGMENT_RO);
1484 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1485 return pgprot_val(SEGMENT_RX);
1486 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1487 return pgprot_val(SEGMENT_RW);
1488 return pgprot_val(SEGMENT_RWX);
1489}
1490
1491static inline pmd_t pmd_mkyoung(pmd_t pmd)
1492{
1493 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1494 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1495 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1496 return pmd;
1497}
1498
1499static inline pmd_t pmd_mkold(pmd_t pmd)
1500{
1501 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1502 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1503}
1504
1505static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1506{
1507 unsigned long mask;
1508
1509 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1510 mask |= _SEGMENT_ENTRY_DIRTY;
1511 mask |= _SEGMENT_ENTRY_YOUNG;
1512 mask |= _SEGMENT_ENTRY_LARGE;
1513 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1514 pmd = __pmd(pmd_val(pmd) & mask);
1515 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1516 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1517 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1518 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1519 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1520 return pmd;
1521}
1522
1523static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1524{
1525 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1526}
1527
1528#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1529
1530static inline void __pmdp_csp(pmd_t *pmdp)
1531{
1532 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1533 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1534}
1535
1536#define IDTE_GLOBAL 0
1537#define IDTE_LOCAL 1
1538
1539#define IDTE_PTOA 0x0800
1540#define IDTE_NODAT 0x1000
1541#define IDTE_GUEST_ASCE 0x2000
1542
1543static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1544 unsigned long opt, unsigned long asce,
1545 int local)
1546{
1547 unsigned long sto;
1548
1549 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1550 if (__builtin_constant_p(opt) && opt == 0) {
1551 /* flush without guest asce */
1552 asm volatile(
1553 " idte %[r1],0,%[r2],%[m4]"
1554 : "+m" (*pmdp)
1555 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1556 [m4] "i" (local)
1557 : "cc" );
1558 } else {
1559 /* flush with guest asce */
1560 asm volatile(
1561 " idte %[r1],%[r3],%[r2],%[m4]"
1562 : "+m" (*pmdp)
1563 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1564 [r3] "a" (asce), [m4] "i" (local)
1565 : "cc" );
1566 }
1567}
1568
1569static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1570 unsigned long opt, unsigned long asce,
1571 int local)
1572{
1573 unsigned long r3o;
1574
1575 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1576 r3o |= _ASCE_TYPE_REGION3;
1577 if (__builtin_constant_p(opt) && opt == 0) {
1578 /* flush without guest asce */
1579 asm volatile(
1580 " idte %[r1],0,%[r2],%[m4]"
1581 : "+m" (*pudp)
1582 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1583 [m4] "i" (local)
1584 : "cc");
1585 } else {
1586 /* flush with guest asce */
1587 asm volatile(
1588 " idte %[r1],%[r3],%[r2],%[m4]"
1589 : "+m" (*pudp)
1590 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1591 [r3] "a" (asce), [m4] "i" (local)
1592 : "cc" );
1593 }
1594}
1595
1596pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1597pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1598pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1599
1600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601
1602#define __HAVE_ARCH_PGTABLE_DEPOSIT
1603void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1604 pgtable_t pgtable);
1605
1606#define __HAVE_ARCH_PGTABLE_WITHDRAW
1607pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1608
1609#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1610static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1611 unsigned long addr, pmd_t *pmdp,
1612 pmd_t entry, int dirty)
1613{
1614 VM_BUG_ON(addr & ~HPAGE_MASK);
1615
1616 entry = pmd_mkyoung(entry);
1617 if (dirty)
1618 entry = pmd_mkdirty(entry);
1619 if (pmd_val(*pmdp) == pmd_val(entry))
1620 return 0;
1621 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1622 return 1;
1623}
1624
1625#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1626static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1627 unsigned long addr, pmd_t *pmdp)
1628{
1629 pmd_t pmd = *pmdp;
1630
1631 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1632 return pmd_young(pmd);
1633}
1634
1635#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1636static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1637 unsigned long addr, pmd_t *pmdp)
1638{
1639 VM_BUG_ON(addr & ~HPAGE_MASK);
1640 return pmdp_test_and_clear_young(vma, addr, pmdp);
1641}
1642
1643static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1644 pmd_t *pmdp, pmd_t entry)
1645{
1646 if (!MACHINE_HAS_NX)
1647 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1648 set_pmd(pmdp, entry);
1649}
1650
1651static inline pmd_t pmd_mkhuge(pmd_t pmd)
1652{
1653 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1654 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1655 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1656}
1657
1658#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1659static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1660 unsigned long addr, pmd_t *pmdp)
1661{
1662 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1663}
1664
1665#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1666static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1667 unsigned long addr,
1668 pmd_t *pmdp, int full)
1669{
1670 if (full) {
1671 pmd_t pmd = *pmdp;
1672 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1673 return pmd;
1674 }
1675 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1676}
1677
1678#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1679static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1680 unsigned long addr, pmd_t *pmdp)
1681{
1682 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1683}
1684
1685#define __HAVE_ARCH_PMDP_INVALIDATE
1686static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1687 unsigned long addr, pmd_t *pmdp)
1688{
1689 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1690
1691 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1692}
1693
1694#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1695static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1696 unsigned long addr, pmd_t *pmdp)
1697{
1698 pmd_t pmd = *pmdp;
1699
1700 if (pmd_write(pmd))
1701 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1702}
1703
1704static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1705 unsigned long address,
1706 pmd_t *pmdp)
1707{
1708 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1709}
1710#define pmdp_collapse_flush pmdp_collapse_flush
1711
1712#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1713#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1714
1715static inline int pmd_trans_huge(pmd_t pmd)
1716{
1717 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1718}
1719
1720#define has_transparent_hugepage has_transparent_hugepage
1721static inline int has_transparent_hugepage(void)
1722{
1723 return MACHINE_HAS_EDAT1 ? 1 : 0;
1724}
1725#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1726
1727/*
1728 * 64 bit swap entry format:
1729 * A page-table entry has some bits we have to treat in a special way.
1730 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1731 * as invalid.
1732 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1733 * | offset |E11XX|type |S0|
1734 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1735 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1736 *
1737 * Bits 0-51 store the offset.
1738 * Bit 52 (E) is used to remember PG_anon_exclusive.
1739 * Bits 57-61 store the type.
1740 * Bit 62 (S) is used for softdirty tracking.
1741 * Bits 55 and 56 (X) are unused.
1742 */
1743
1744#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1745#define __SWP_OFFSET_SHIFT 12
1746#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1747#define __SWP_TYPE_SHIFT 2
1748
1749static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1750{
1751 unsigned long pteval;
1752
1753 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1754 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1755 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1756 return __pte(pteval);
1757}
1758
1759static inline unsigned long __swp_type(swp_entry_t entry)
1760{
1761 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1762}
1763
1764static inline unsigned long __swp_offset(swp_entry_t entry)
1765{
1766 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1767}
1768
1769static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1770{
1771 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1772}
1773
1774#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1775#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1776
1777extern int vmem_add_mapping(unsigned long start, unsigned long size);
1778extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1779extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1780extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1781extern void vmem_unmap_4k_page(unsigned long addr);
1782extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1783extern int s390_enable_sie(void);
1784extern int s390_enable_skey(void);
1785extern void s390_reset_cmma(struct mm_struct *mm);
1786
1787/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1788#define HAVE_ARCH_UNMAPPED_AREA
1789#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1790
1791#define pmd_pgtable(pmd) \
1792 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1793
1794#endif /* _S390_PAGE_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22
23extern pgd_t swapper_pg_dir[];
24extern void paging_init(void);
25
26enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31};
32
33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
35static inline void update_page_count(int level, long count)
36{
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39}
40
41struct seq_file;
42void arch_report_meminfo(struct seq_file *m);
43
44/*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48#define update_mmu_cache(vma, address, ptep) do { } while (0)
49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51/*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56extern unsigned long empty_zero_page;
57extern unsigned long zero_page_mask;
58
59#define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62#define __HAVE_COLOR_ZERO_PAGE
63
64/* TODO: s390 cannot support io_remap_pfn_range... */
65
66#define FIRST_USER_ADDRESS 0UL
67
68#define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70#define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72#define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74#define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76#define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79/*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87extern unsigned long VMALLOC_START;
88extern unsigned long VMALLOC_END;
89#define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
90extern struct page *vmemmap;
91
92#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93
94extern unsigned long MODULES_VADDR;
95extern unsigned long MODULES_END;
96#define MODULES_VADDR MODULES_VADDR
97#define MODULES_END MODULES_END
98#define MODULES_LEN (1UL << 31)
99
100static inline int is_module_addr(void *addr)
101{
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108}
109
110/*
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
159 */
160
161/* Hardware bits in the page table entry */
162#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163#define _PAGE_PROTECT 0x200 /* HW read-only bit */
164#define _PAGE_INVALID 0x400 /* HW invalid bit */
165#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166
167/* Software bits in the page table entry */
168#define _PAGE_PRESENT 0x001 /* SW pte present bit */
169#define _PAGE_YOUNG 0x004 /* SW pte young bit */
170#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171#define _PAGE_READ 0x010 /* SW pte read bit */
172#define _PAGE_WRITE 0x020 /* SW pte write bit */
173#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175
176#ifdef CONFIG_MEM_SOFT_DIRTY
177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178#else
179#define _PAGE_SOFT_DIRTY 0x000
180#endif
181
182/* Set of bits not changed in pte_modify */
183#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185
186/*
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
191 *
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
195 *
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
217 *
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221 */
222
223/* Bits in the segment/region table address-space-control-element */
224#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228#define _ASCE_REAL_SPACE 0x20 /* real space control */
229#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235
236/* Bits in the region table entry */
237#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
243#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247
248#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254
255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261
262#ifdef CONFIG_MEM_SOFT_DIRTY
263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264#else
265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266#endif
267
268#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270
271/* Bits in the segment table entry */
272#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282
283#define _SEGMENT_ENTRY (0)
284#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292#ifdef CONFIG_MEM_SOFT_DIRTY
293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294#else
295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296#endif
297
298#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299#define _PAGE_ENTRIES 256 /* number of page table entries */
300
301#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304#define _REGION1_SHIFT 53
305#define _REGION2_SHIFT 42
306#define _REGION3_SHIFT 31
307#define _SEGMENT_SHIFT 20
308
309#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320#define _REGION1_MASK (~(_REGION1_SIZE - 1))
321#define _REGION2_MASK (~(_REGION2_SIZE - 1))
322#define _REGION3_MASK (~(_REGION3_SIZE - 1))
323#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325#define PMD_SHIFT _SEGMENT_SHIFT
326#define PUD_SHIFT _REGION3_SHIFT
327#define P4D_SHIFT _REGION2_SHIFT
328#define PGDIR_SHIFT _REGION1_SHIFT
329
330#define PMD_SIZE _SEGMENT_SIZE
331#define PUD_SIZE _REGION3_SIZE
332#define P4D_SIZE _REGION2_SIZE
333#define PGDIR_SIZE _REGION1_SIZE
334
335#define PMD_MASK _SEGMENT_MASK
336#define PUD_MASK _REGION3_MASK
337#define P4D_MASK _REGION2_MASK
338#define PGDIR_MASK _REGION1_MASK
339
340#define PTRS_PER_PTE _PAGE_ENTRIES
341#define PTRS_PER_PMD _CRST_ENTRIES
342#define PTRS_PER_PUD _CRST_ENTRIES
343#define PTRS_PER_P4D _CRST_ENTRIES
344#define PTRS_PER_PGD _CRST_ENTRIES
345
346#define MAX_PTRS_PER_P4D PTRS_PER_P4D
347
348/*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370/* Page status table bits for virtualization */
371#define PGSTE_ACC_BITS 0xf000000000000000UL
372#define PGSTE_FP_BIT 0x0800000000000000UL
373#define PGSTE_PCL_BIT 0x0080000000000000UL
374#define PGSTE_HR_BIT 0x0040000000000000UL
375#define PGSTE_HC_BIT 0x0020000000000000UL
376#define PGSTE_GR_BIT 0x0004000000000000UL
377#define PGSTE_GC_BIT 0x0002000000000000UL
378#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382/* Guest Page State used for virtualization */
383#define _PGSTE_GPS_ZERO 0x0000000080000000UL
384#define _PGSTE_GPS_NODAT 0x0000000040000000UL
385#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391/*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399/*
400 * Page protection definitions.
401 */
402#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421/*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427#define __P000 PAGE_NONE
428#define __P001 PAGE_RO
429#define __P010 PAGE_RO
430#define __P011 PAGE_RO
431#define __P100 PAGE_RX
432#define __P101 PAGE_RX
433#define __P110 PAGE_RX
434#define __P111 PAGE_RX
435
436#define __S000 PAGE_NONE
437#define __S001 PAGE_RO
438#define __S010 PAGE_RW
439#define __S011 PAGE_RW
440#define __S100 PAGE_RX
441#define __S101 PAGE_RX
442#define __S110 PAGE_RWX
443#define __S111 PAGE_RWX
444
445/*
446 * Segment entry (large page) protection definitions.
447 */
448#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_PROTECT)
450#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_NOEXEC)
453#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
454 _SEGMENT_ENTRY_READ)
455#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
456 _SEGMENT_ENTRY_WRITE | \
457 _SEGMENT_ENTRY_NOEXEC)
458#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE)
460#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
461 _SEGMENT_ENTRY_LARGE | \
462 _SEGMENT_ENTRY_READ | \
463 _SEGMENT_ENTRY_WRITE | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_DIRTY | \
466 _SEGMENT_ENTRY_NOEXEC)
467#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
468 _SEGMENT_ENTRY_LARGE | \
469 _SEGMENT_ENTRY_READ | \
470 _SEGMENT_ENTRY_YOUNG | \
471 _SEGMENT_ENTRY_PROTECT | \
472 _SEGMENT_ENTRY_NOEXEC)
473#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
474 _SEGMENT_ENTRY_LARGE | \
475 _SEGMENT_ENTRY_READ | \
476 _SEGMENT_ENTRY_WRITE | \
477 _SEGMENT_ENTRY_YOUNG | \
478 _SEGMENT_ENTRY_DIRTY)
479
480/*
481 * Region3 entry (large page) protection definitions.
482 */
483
484#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
485 _REGION3_ENTRY_LARGE | \
486 _REGION3_ENTRY_READ | \
487 _REGION3_ENTRY_WRITE | \
488 _REGION3_ENTRY_YOUNG | \
489 _REGION3_ENTRY_DIRTY | \
490 _REGION_ENTRY_NOEXEC)
491#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 _REGION3_ENTRY_LARGE | \
493 _REGION3_ENTRY_READ | \
494 _REGION3_ENTRY_YOUNG | \
495 _REGION_ENTRY_PROTECT | \
496 _REGION_ENTRY_NOEXEC)
497
498static inline bool mm_p4d_folded(struct mm_struct *mm)
499{
500 return mm->context.asce_limit <= _REGION1_SIZE;
501}
502#define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
504static inline bool mm_pud_folded(struct mm_struct *mm)
505{
506 return mm->context.asce_limit <= _REGION2_SIZE;
507}
508#define mm_pud_folded(mm) mm_pud_folded(mm)
509
510static inline bool mm_pmd_folded(struct mm_struct *mm)
511{
512 return mm->context.asce_limit <= _REGION3_SIZE;
513}
514#define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
516static inline int mm_has_pgste(struct mm_struct *mm)
517{
518#ifdef CONFIG_PGSTE
519 if (unlikely(mm->context.has_pgste))
520 return 1;
521#endif
522 return 0;
523}
524
525static inline int mm_alloc_pgste(struct mm_struct *mm)
526{
527#ifdef CONFIG_PGSTE
528 if (unlikely(mm->context.alloc_pgste))
529 return 1;
530#endif
531 return 0;
532}
533
534/*
535 * In the case that a guest uses storage keys
536 * faults should no longer be backed by zero pages
537 */
538#define mm_forbids_zeropage mm_has_pgste
539static inline int mm_uses_skeys(struct mm_struct *mm)
540{
541#ifdef CONFIG_PGSTE
542 if (mm->context.uses_skeys)
543 return 1;
544#endif
545 return 0;
546}
547
548static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
549{
550 register unsigned long reg2 asm("2") = old;
551 register unsigned long reg3 asm("3") = new;
552 unsigned long address = (unsigned long)ptr | 1;
553
554 asm volatile(
555 " csp %0,%3"
556 : "+d" (reg2), "+m" (*ptr)
557 : "d" (reg3), "d" (address)
558 : "cc");
559}
560
561static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
562{
563 register unsigned long reg2 asm("2") = old;
564 register unsigned long reg3 asm("3") = new;
565 unsigned long address = (unsigned long)ptr | 1;
566
567 asm volatile(
568 " .insn rre,0xb98a0000,%0,%3"
569 : "+d" (reg2), "+m" (*ptr)
570 : "d" (reg3), "d" (address)
571 : "cc");
572}
573
574#define CRDTE_DTT_PAGE 0x00UL
575#define CRDTE_DTT_SEGMENT 0x10UL
576#define CRDTE_DTT_REGION3 0x14UL
577#define CRDTE_DTT_REGION2 0x18UL
578#define CRDTE_DTT_REGION1 0x1cUL
579
580static inline void crdte(unsigned long old, unsigned long new,
581 unsigned long table, unsigned long dtt,
582 unsigned long address, unsigned long asce)
583{
584 register unsigned long reg2 asm("2") = old;
585 register unsigned long reg3 asm("3") = new;
586 register unsigned long reg4 asm("4") = table | dtt;
587 register unsigned long reg5 asm("5") = address;
588
589 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
590 : "+d" (reg2)
591 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
592 : "memory", "cc");
593}
594
595/*
596 * pgd/p4d/pud/pmd/pte query functions
597 */
598static inline int pgd_folded(pgd_t pgd)
599{
600 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
601}
602
603static inline int pgd_present(pgd_t pgd)
604{
605 if (pgd_folded(pgd))
606 return 1;
607 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
608}
609
610static inline int pgd_none(pgd_t pgd)
611{
612 if (pgd_folded(pgd))
613 return 0;
614 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
615}
616
617static inline int pgd_bad(pgd_t pgd)
618{
619 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
620 return 0;
621 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
622}
623
624static inline unsigned long pgd_pfn(pgd_t pgd)
625{
626 unsigned long origin_mask;
627
628 origin_mask = _REGION_ENTRY_ORIGIN;
629 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
630}
631
632static inline int p4d_folded(p4d_t p4d)
633{
634 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
635}
636
637static inline int p4d_present(p4d_t p4d)
638{
639 if (p4d_folded(p4d))
640 return 1;
641 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
642}
643
644static inline int p4d_none(p4d_t p4d)
645{
646 if (p4d_folded(p4d))
647 return 0;
648 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
649}
650
651static inline unsigned long p4d_pfn(p4d_t p4d)
652{
653 unsigned long origin_mask;
654
655 origin_mask = _REGION_ENTRY_ORIGIN;
656 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
657}
658
659static inline int pud_folded(pud_t pud)
660{
661 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
662}
663
664static inline int pud_present(pud_t pud)
665{
666 if (pud_folded(pud))
667 return 1;
668 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
669}
670
671static inline int pud_none(pud_t pud)
672{
673 if (pud_folded(pud))
674 return 0;
675 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
676}
677
678static inline int pud_large(pud_t pud)
679{
680 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
681 return 0;
682 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
683}
684
685static inline unsigned long pud_pfn(pud_t pud)
686{
687 unsigned long origin_mask;
688
689 origin_mask = _REGION_ENTRY_ORIGIN;
690 if (pud_large(pud))
691 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
692 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
693}
694
695static inline int pmd_large(pmd_t pmd)
696{
697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
698}
699
700static inline int pmd_bad(pmd_t pmd)
701{
702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
703 return 1;
704 if (pmd_large(pmd))
705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
706 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
707}
708
709static inline int pud_bad(pud_t pud)
710{
711 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
712
713 if (type > _REGION_ENTRY_TYPE_R3)
714 return 1;
715 if (type < _REGION_ENTRY_TYPE_R3)
716 return 0;
717 if (pud_large(pud))
718 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
719 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
720}
721
722static inline int p4d_bad(p4d_t p4d)
723{
724 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
725
726 if (type > _REGION_ENTRY_TYPE_R2)
727 return 1;
728 if (type < _REGION_ENTRY_TYPE_R2)
729 return 0;
730 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
731}
732
733static inline int pmd_present(pmd_t pmd)
734{
735 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
736}
737
738static inline int pmd_none(pmd_t pmd)
739{
740 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
741}
742
743static inline unsigned long pmd_pfn(pmd_t pmd)
744{
745 unsigned long origin_mask;
746
747 origin_mask = _SEGMENT_ENTRY_ORIGIN;
748 if (pmd_large(pmd))
749 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
750 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
751}
752
753#define pmd_write pmd_write
754static inline int pmd_write(pmd_t pmd)
755{
756 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
757}
758
759static inline int pmd_dirty(pmd_t pmd)
760{
761 int dirty = 1;
762 if (pmd_large(pmd))
763 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764 return dirty;
765}
766
767static inline int pmd_young(pmd_t pmd)
768{
769 int young = 1;
770 if (pmd_large(pmd))
771 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
772 return young;
773}
774
775static inline int pte_present(pte_t pte)
776{
777 /* Bit pattern: (pte & 0x001) == 0x001 */
778 return (pte_val(pte) & _PAGE_PRESENT) != 0;
779}
780
781static inline int pte_none(pte_t pte)
782{
783 /* Bit pattern: pte == 0x400 */
784 return pte_val(pte) == _PAGE_INVALID;
785}
786
787static inline int pte_swap(pte_t pte)
788{
789 /* Bit pattern: (pte & 0x201) == 0x200 */
790 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
791 == _PAGE_PROTECT;
792}
793
794static inline int pte_special(pte_t pte)
795{
796 return (pte_val(pte) & _PAGE_SPECIAL);
797}
798
799#define __HAVE_ARCH_PTE_SAME
800static inline int pte_same(pte_t a, pte_t b)
801{
802 return pte_val(a) == pte_val(b);
803}
804
805#ifdef CONFIG_NUMA_BALANCING
806static inline int pte_protnone(pte_t pte)
807{
808 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
809}
810
811static inline int pmd_protnone(pmd_t pmd)
812{
813 /* pmd_large(pmd) implies pmd_present(pmd) */
814 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
815}
816#endif
817
818static inline int pte_soft_dirty(pte_t pte)
819{
820 return pte_val(pte) & _PAGE_SOFT_DIRTY;
821}
822#define pte_swp_soft_dirty pte_soft_dirty
823
824static inline pte_t pte_mksoft_dirty(pte_t pte)
825{
826 pte_val(pte) |= _PAGE_SOFT_DIRTY;
827 return pte;
828}
829#define pte_swp_mksoft_dirty pte_mksoft_dirty
830
831static inline pte_t pte_clear_soft_dirty(pte_t pte)
832{
833 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
834 return pte;
835}
836#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
837
838static inline int pmd_soft_dirty(pmd_t pmd)
839{
840 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
841}
842
843static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
844{
845 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
846 return pmd;
847}
848
849static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
850{
851 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
852 return pmd;
853}
854
855/*
856 * query functions pte_write/pte_dirty/pte_young only work if
857 * pte_present() is true. Undefined behaviour if not..
858 */
859static inline int pte_write(pte_t pte)
860{
861 return (pte_val(pte) & _PAGE_WRITE) != 0;
862}
863
864static inline int pte_dirty(pte_t pte)
865{
866 return (pte_val(pte) & _PAGE_DIRTY) != 0;
867}
868
869static inline int pte_young(pte_t pte)
870{
871 return (pte_val(pte) & _PAGE_YOUNG) != 0;
872}
873
874#define __HAVE_ARCH_PTE_UNUSED
875static inline int pte_unused(pte_t pte)
876{
877 return pte_val(pte) & _PAGE_UNUSED;
878}
879
880/*
881 * pgd/pmd/pte modification functions
882 */
883
884static inline void pgd_clear(pgd_t *pgd)
885{
886 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
888}
889
890static inline void p4d_clear(p4d_t *p4d)
891{
892 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
894}
895
896static inline void pud_clear(pud_t *pud)
897{
898 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
900}
901
902static inline void pmd_clear(pmd_t *pmdp)
903{
904 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
905}
906
907static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908{
909 pte_val(*ptep) = _PAGE_INVALID;
910}
911
912/*
913 * The following pte modification functions only work if
914 * pte_present() is true. Undefined behaviour if not..
915 */
916static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917{
918 pte_val(pte) &= _PAGE_CHG_MASK;
919 pte_val(pte) |= pgprot_val(newprot);
920 /*
921 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 * has the invalid bit set, clear it again for readable, young pages
923 */
924 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 pte_val(pte) &= ~_PAGE_INVALID;
926 /*
927 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 * protection bit set, clear it again for writable, dirty pages
929 */
930 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 pte_val(pte) &= ~_PAGE_PROTECT;
932 return pte;
933}
934
935static inline pte_t pte_wrprotect(pte_t pte)
936{
937 pte_val(pte) &= ~_PAGE_WRITE;
938 pte_val(pte) |= _PAGE_PROTECT;
939 return pte;
940}
941
942static inline pte_t pte_mkwrite(pte_t pte)
943{
944 pte_val(pte) |= _PAGE_WRITE;
945 if (pte_val(pte) & _PAGE_DIRTY)
946 pte_val(pte) &= ~_PAGE_PROTECT;
947 return pte;
948}
949
950static inline pte_t pte_mkclean(pte_t pte)
951{
952 pte_val(pte) &= ~_PAGE_DIRTY;
953 pte_val(pte) |= _PAGE_PROTECT;
954 return pte;
955}
956
957static inline pte_t pte_mkdirty(pte_t pte)
958{
959 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 if (pte_val(pte) & _PAGE_WRITE)
961 pte_val(pte) &= ~_PAGE_PROTECT;
962 return pte;
963}
964
965static inline pte_t pte_mkold(pte_t pte)
966{
967 pte_val(pte) &= ~_PAGE_YOUNG;
968 pte_val(pte) |= _PAGE_INVALID;
969 return pte;
970}
971
972static inline pte_t pte_mkyoung(pte_t pte)
973{
974 pte_val(pte) |= _PAGE_YOUNG;
975 if (pte_val(pte) & _PAGE_READ)
976 pte_val(pte) &= ~_PAGE_INVALID;
977 return pte;
978}
979
980static inline pte_t pte_mkspecial(pte_t pte)
981{
982 pte_val(pte) |= _PAGE_SPECIAL;
983 return pte;
984}
985
986#ifdef CONFIG_HUGETLB_PAGE
987static inline pte_t pte_mkhuge(pte_t pte)
988{
989 pte_val(pte) |= _PAGE_LARGE;
990 return pte;
991}
992#endif
993
994#define IPTE_GLOBAL 0
995#define IPTE_LOCAL 1
996
997#define IPTE_NODAT 0x400
998#define IPTE_GUEST_ASCE 0x800
999
1000static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 unsigned long opt, unsigned long asce,
1002 int local)
1003{
1004 unsigned long pto = (unsigned long) ptep;
1005
1006 if (__builtin_constant_p(opt) && opt == 0) {
1007 /* Invalidation + TLB flush for the pte */
1008 asm volatile(
1009 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011 [m4] "i" (local));
1012 return;
1013 }
1014
1015 /* Invalidate ptes with options + TLB flush of the ptes */
1016 opt = opt | (asce & _ASCE_ORIGIN);
1017 asm volatile(
1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 : [r2] "+a" (address), [r3] "+a" (opt)
1020 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1021}
1022
1023static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 pte_t *ptep, int local)
1025{
1026 unsigned long pto = (unsigned long) ptep;
1027
1028 /* Invalidate a range of ptes + TLB flush of the ptes */
1029 do {
1030 asm volatile(
1031 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 : [r2] "+a" (address), [r3] "+a" (nr)
1033 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 } while (nr != 255);
1035}
1036
1037/*
1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039 * both clear the TLB for the unmapped pte. The reason is that
1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041 * to modify an active pte. The sequence is
1042 * 1) ptep_get_and_clear
1043 * 2) set_pte_at
1044 * 3) flush_tlb_range
1045 * On s390 the tlb needs to get flushed with the modification of the pte
1046 * if the pte is active. The only way how this can be implemented is to
1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048 * is a nop.
1049 */
1050pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052
1053#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1054static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *ptep)
1056{
1057 pte_t pte = *ptep;
1058
1059 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 return pte_young(pte);
1061}
1062
1063#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1064static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pte_t *ptep)
1066{
1067 return ptep_test_and_clear_young(vma, address, ptep);
1068}
1069
1070#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1071static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 unsigned long addr, pte_t *ptep)
1073{
1074 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1075}
1076
1077#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1078pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1079void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1080 pte_t *, pte_t, pte_t);
1081
1082#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1083static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1084 unsigned long addr, pte_t *ptep)
1085{
1086 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1087}
1088
1089/*
1090 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1091 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1092 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1093 * cannot be accessed while the batched unmap is running. In this case
1094 * full==1 and a simple pte_clear is enough. See tlb.h.
1095 */
1096#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1097static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1098 unsigned long addr,
1099 pte_t *ptep, int full)
1100{
1101 if (full) {
1102 pte_t pte = *ptep;
1103 *ptep = __pte(_PAGE_INVALID);
1104 return pte;
1105 }
1106 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1107}
1108
1109#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1110static inline void ptep_set_wrprotect(struct mm_struct *mm,
1111 unsigned long addr, pte_t *ptep)
1112{
1113 pte_t pte = *ptep;
1114
1115 if (pte_write(pte))
1116 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1117}
1118
1119#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1120static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1121 unsigned long addr, pte_t *ptep,
1122 pte_t entry, int dirty)
1123{
1124 if (pte_same(*ptep, entry))
1125 return 0;
1126 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1127 return 1;
1128}
1129
1130/*
1131 * Additional functions to handle KVM guest page tables
1132 */
1133void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1134 pte_t *ptep, pte_t entry);
1135void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1136void ptep_notify(struct mm_struct *mm, unsigned long addr,
1137 pte_t *ptep, unsigned long bits);
1138int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1139 pte_t *ptep, int prot, unsigned long bit);
1140void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1141 pte_t *ptep , int reset);
1142void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1143int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1144 pte_t *sptep, pte_t *tptep, pte_t pte);
1145void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1146
1147bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1148 pte_t *ptep);
1149int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1150 unsigned char key, bool nq);
1151int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152 unsigned char key, unsigned char *oldkey,
1153 bool nq, bool mr, bool mc);
1154int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1155int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1156 unsigned char *key);
1157
1158int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1159 unsigned long bits, unsigned long value);
1160int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1161int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1162 unsigned long *oldpte, unsigned long *oldpgste);
1163void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1164void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1165void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1166void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1167
1168/*
1169 * Certain architectures need to do special things when PTEs
1170 * within a page table are directly modified. Thus, the following
1171 * hook is made available.
1172 */
1173static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1174 pte_t *ptep, pte_t entry)
1175{
1176 if (!MACHINE_HAS_NX)
1177 pte_val(entry) &= ~_PAGE_NOEXEC;
1178 if (pte_present(entry))
1179 pte_val(entry) &= ~_PAGE_UNUSED;
1180 if (mm_has_pgste(mm))
1181 ptep_set_pte_at(mm, addr, ptep, entry);
1182 else
1183 *ptep = entry;
1184}
1185
1186/*
1187 * Conversion functions: convert a page and protection to a page entry,
1188 * and a page entry and page directory to the page they refer to.
1189 */
1190static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1191{
1192 pte_t __pte;
1193 pte_val(__pte) = physpage + pgprot_val(pgprot);
1194 return pte_mkyoung(__pte);
1195}
1196
1197static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1198{
1199 unsigned long physpage = page_to_phys(page);
1200 pte_t __pte = mk_pte_phys(physpage, pgprot);
1201
1202 if (pte_write(__pte) && PageDirty(page))
1203 __pte = pte_mkdirty(__pte);
1204 return __pte;
1205}
1206
1207#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1208#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1209#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1210#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1211#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1212
1213#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1214#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1215#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1216#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1217
1218/*
1219 * The pgd_offset function *always* adds the index for the top-level
1220 * region/segment table. This is done to get a sequence like the
1221 * following to work:
1222 * pgdp = pgd_offset(current->mm, addr);
1223 * pgd = READ_ONCE(*pgdp);
1224 * p4dp = p4d_offset(&pgd, addr);
1225 * ...
1226 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1227 * only add an index if they dereferenced the pointer.
1228 */
1229static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1230{
1231 unsigned long rste;
1232 unsigned int shift;
1233
1234 /* Get the first entry of the top level table */
1235 rste = pgd_val(*pgd);
1236 /* Pick up the shift from the table type of the first entry */
1237 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1238 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1239}
1240
1241#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1242#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1243
1244static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1245{
1246 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1247 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1248 return (p4d_t *) pgd;
1249}
1250
1251static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1252{
1253 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1254 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1255 return (pud_t *) p4d;
1256}
1257
1258static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1259{
1260 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1261 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1262 return (pmd_t *) pud;
1263}
1264
1265static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1266{
1267 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1268}
1269
1270#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1271#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1272
1273static inline void pte_unmap(pte_t *pte) { }
1274
1275static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1276{
1277 return end <= current->mm->context.asce_limit;
1278}
1279#define gup_fast_permitted gup_fast_permitted
1280
1281#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1282#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1283#define pte_page(x) pfn_to_page(pte_pfn(x))
1284
1285#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1286#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1287#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1288#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1289
1290static inline pmd_t pmd_wrprotect(pmd_t pmd)
1291{
1292 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1293 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1294 return pmd;
1295}
1296
1297static inline pmd_t pmd_mkwrite(pmd_t pmd)
1298{
1299 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1300 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1301 return pmd;
1302 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1303 return pmd;
1304}
1305
1306static inline pmd_t pmd_mkclean(pmd_t pmd)
1307{
1308 if (pmd_large(pmd)) {
1309 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1310 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1311 }
1312 return pmd;
1313}
1314
1315static inline pmd_t pmd_mkdirty(pmd_t pmd)
1316{
1317 if (pmd_large(pmd)) {
1318 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1319 _SEGMENT_ENTRY_SOFT_DIRTY;
1320 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1321 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1322 }
1323 return pmd;
1324}
1325
1326static inline pud_t pud_wrprotect(pud_t pud)
1327{
1328 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1329 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1330 return pud;
1331}
1332
1333static inline pud_t pud_mkwrite(pud_t pud)
1334{
1335 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1336 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1337 return pud;
1338 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1339 return pud;
1340}
1341
1342static inline pud_t pud_mkclean(pud_t pud)
1343{
1344 if (pud_large(pud)) {
1345 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1346 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1347 }
1348 return pud;
1349}
1350
1351static inline pud_t pud_mkdirty(pud_t pud)
1352{
1353 if (pud_large(pud)) {
1354 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1355 _REGION3_ENTRY_SOFT_DIRTY;
1356 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1357 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1358 }
1359 return pud;
1360}
1361
1362#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1363static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1364{
1365 /*
1366 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1367 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1368 */
1369 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1370 return pgprot_val(SEGMENT_NONE);
1371 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1372 return pgprot_val(SEGMENT_RO);
1373 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1374 return pgprot_val(SEGMENT_RX);
1375 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1376 return pgprot_val(SEGMENT_RW);
1377 return pgprot_val(SEGMENT_RWX);
1378}
1379
1380static inline pmd_t pmd_mkyoung(pmd_t pmd)
1381{
1382 if (pmd_large(pmd)) {
1383 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1384 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1385 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1386 }
1387 return pmd;
1388}
1389
1390static inline pmd_t pmd_mkold(pmd_t pmd)
1391{
1392 if (pmd_large(pmd)) {
1393 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1394 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1395 }
1396 return pmd;
1397}
1398
1399static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1400{
1401 if (pmd_large(pmd)) {
1402 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1403 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1404 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1405 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1406 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1407 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1408 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1409 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1410 return pmd;
1411 }
1412 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1413 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1414 return pmd;
1415}
1416
1417static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1418{
1419 pmd_t __pmd;
1420 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1421 return __pmd;
1422}
1423
1424#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1425
1426static inline void __pmdp_csp(pmd_t *pmdp)
1427{
1428 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1429 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1430}
1431
1432#define IDTE_GLOBAL 0
1433#define IDTE_LOCAL 1
1434
1435#define IDTE_PTOA 0x0800
1436#define IDTE_NODAT 0x1000
1437#define IDTE_GUEST_ASCE 0x2000
1438
1439static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1440 unsigned long opt, unsigned long asce,
1441 int local)
1442{
1443 unsigned long sto;
1444
1445 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1446 if (__builtin_constant_p(opt) && opt == 0) {
1447 /* flush without guest asce */
1448 asm volatile(
1449 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1450 : "+m" (*pmdp)
1451 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1452 [m4] "i" (local)
1453 : "cc" );
1454 } else {
1455 /* flush with guest asce */
1456 asm volatile(
1457 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1458 : "+m" (*pmdp)
1459 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1460 [r3] "a" (asce), [m4] "i" (local)
1461 : "cc" );
1462 }
1463}
1464
1465static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1466 unsigned long opt, unsigned long asce,
1467 int local)
1468{
1469 unsigned long r3o;
1470
1471 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1472 r3o |= _ASCE_TYPE_REGION3;
1473 if (__builtin_constant_p(opt) && opt == 0) {
1474 /* flush without guest asce */
1475 asm volatile(
1476 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1477 : "+m" (*pudp)
1478 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1479 [m4] "i" (local)
1480 : "cc");
1481 } else {
1482 /* flush with guest asce */
1483 asm volatile(
1484 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1485 : "+m" (*pudp)
1486 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1487 [r3] "a" (asce), [m4] "i" (local)
1488 : "cc" );
1489 }
1490}
1491
1492pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1493pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1494pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1495
1496#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1497
1498#define __HAVE_ARCH_PGTABLE_DEPOSIT
1499void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1500 pgtable_t pgtable);
1501
1502#define __HAVE_ARCH_PGTABLE_WITHDRAW
1503pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1504
1505#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1506static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1507 unsigned long addr, pmd_t *pmdp,
1508 pmd_t entry, int dirty)
1509{
1510 VM_BUG_ON(addr & ~HPAGE_MASK);
1511
1512 entry = pmd_mkyoung(entry);
1513 if (dirty)
1514 entry = pmd_mkdirty(entry);
1515 if (pmd_val(*pmdp) == pmd_val(entry))
1516 return 0;
1517 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1518 return 1;
1519}
1520
1521#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1522static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1523 unsigned long addr, pmd_t *pmdp)
1524{
1525 pmd_t pmd = *pmdp;
1526
1527 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1528 return pmd_young(pmd);
1529}
1530
1531#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1532static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1533 unsigned long addr, pmd_t *pmdp)
1534{
1535 VM_BUG_ON(addr & ~HPAGE_MASK);
1536 return pmdp_test_and_clear_young(vma, addr, pmdp);
1537}
1538
1539static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1540 pmd_t *pmdp, pmd_t entry)
1541{
1542 if (!MACHINE_HAS_NX)
1543 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1544 *pmdp = entry;
1545}
1546
1547static inline pmd_t pmd_mkhuge(pmd_t pmd)
1548{
1549 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1550 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1551 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1552 return pmd;
1553}
1554
1555#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1556static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1557 unsigned long addr, pmd_t *pmdp)
1558{
1559 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1560}
1561
1562#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1563static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1564 unsigned long addr,
1565 pmd_t *pmdp, int full)
1566{
1567 if (full) {
1568 pmd_t pmd = *pmdp;
1569 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1570 return pmd;
1571 }
1572 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1573}
1574
1575#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1576static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1577 unsigned long addr, pmd_t *pmdp)
1578{
1579 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1580}
1581
1582#define __HAVE_ARCH_PMDP_INVALIDATE
1583static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1584 unsigned long addr, pmd_t *pmdp)
1585{
1586 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1587
1588 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1589}
1590
1591#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1592static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1593 unsigned long addr, pmd_t *pmdp)
1594{
1595 pmd_t pmd = *pmdp;
1596
1597 if (pmd_write(pmd))
1598 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1599}
1600
1601static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1602 unsigned long address,
1603 pmd_t *pmdp)
1604{
1605 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1606}
1607#define pmdp_collapse_flush pmdp_collapse_flush
1608
1609#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1610#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1611
1612static inline int pmd_trans_huge(pmd_t pmd)
1613{
1614 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1615}
1616
1617#define has_transparent_hugepage has_transparent_hugepage
1618static inline int has_transparent_hugepage(void)
1619{
1620 return MACHINE_HAS_EDAT1 ? 1 : 0;
1621}
1622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1623
1624/*
1625 * 64 bit swap entry format:
1626 * A page-table entry has some bits we have to treat in a special way.
1627 * Bits 52 and bit 55 have to be zero, otherwise a specification
1628 * exception will occur instead of a page translation exception. The
1629 * specification exception has the bad habit not to store necessary
1630 * information in the lowcore.
1631 * Bits 54 and 63 are used to indicate the page type.
1632 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1633 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1634 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1635 * for the offset.
1636 * | offset |01100|type |00|
1637 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1638 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1639 */
1640
1641#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1642#define __SWP_OFFSET_SHIFT 12
1643#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1644#define __SWP_TYPE_SHIFT 2
1645
1646static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1647{
1648 pte_t pte;
1649
1650 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1651 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1652 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1653 return pte;
1654}
1655
1656static inline unsigned long __swp_type(swp_entry_t entry)
1657{
1658 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1659}
1660
1661static inline unsigned long __swp_offset(swp_entry_t entry)
1662{
1663 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1664}
1665
1666static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1667{
1668 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1669}
1670
1671#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1672#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1673
1674#define kern_addr_valid(addr) (1)
1675
1676extern int vmem_add_mapping(unsigned long start, unsigned long size);
1677extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1678extern int s390_enable_sie(void);
1679extern int s390_enable_skey(void);
1680extern void s390_reset_cmma(struct mm_struct *mm);
1681
1682/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1683#define HAVE_ARCH_UNMAPPED_AREA
1684#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1685
1686#include <asm-generic/pgtable.h>
1687
1688#endif /* _S390_PAGE_H */