Linux Audio

Check our new training course

Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
  20#include <asm/sections.h>
  21#include <asm/bug.h>
  22#include <asm/page.h>
  23#include <asm/uv.h>
  24
  25extern pgd_t swapper_pg_dir[];
  26extern void paging_init(void);
  27extern unsigned long s390_invalid_asce;
  28
  29enum {
  30	PG_DIRECT_MAP_4K = 0,
  31	PG_DIRECT_MAP_1M,
  32	PG_DIRECT_MAP_2G,
  33	PG_DIRECT_MAP_MAX
  34};
  35
  36extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  37
  38static inline void update_page_count(int level, long count)
  39{
  40	if (IS_ENABLED(CONFIG_PROC_FS))
  41		atomic_long_add(count, &direct_pages_count[level]);
  42}
  43
  44struct seq_file;
  45void arch_report_meminfo(struct seq_file *m);
  46
  47/*
  48 * The S390 doesn't have any external MMU info: the kernel page
  49 * tables contain all the necessary information.
  50 */
  51#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  53
  54/*
  55 * ZERO_PAGE is a global shared page that is always zero; used
  56 * for zero-mapped memory areas etc..
  57 */
  58
  59extern unsigned long empty_zero_page;
  60extern unsigned long zero_page_mask;
  61
  62#define ZERO_PAGE(vaddr) \
  63	(virt_to_page((void *)(empty_zero_page + \
  64	 (((unsigned long)(vaddr)) &zero_page_mask))))
  65#define __HAVE_COLOR_ZERO_PAGE
  66
  67/* TODO: s390 cannot support io_remap_pfn_range... */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69#define pte_ERROR(e) \
  70	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
  71#define pmd_ERROR(e) \
  72	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
  73#define pud_ERROR(e) \
  74	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
  75#define p4d_ERROR(e) \
  76	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
  77#define pgd_ERROR(e) \
  78	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
  79
 
  80/*
  81 * The vmalloc and module area will always be on the topmost area of the
  82 * kernel mapping. 512GB are reserved for vmalloc by default.
  83 * At the top of the vmalloc area a 2GB area is reserved where modules
  84 * will reside. That makes sure that inter module branches always
  85 * happen without trampolines and in addition the placement within a
  86 * 2GB frame is branch prediction unit friendly.
  87 */
  88extern unsigned long __bootdata_preserved(VMALLOC_START);
  89extern unsigned long __bootdata_preserved(VMALLOC_END);
  90#define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
  91extern struct page *__bootdata_preserved(vmemmap);
  92extern unsigned long __bootdata_preserved(vmemmap_size);
  93
  94#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  95
  96extern unsigned long __bootdata_preserved(MODULES_VADDR);
  97extern unsigned long __bootdata_preserved(MODULES_END);
 
  98#define MODULES_VADDR	MODULES_VADDR
  99#define MODULES_END	MODULES_END
 100#define MODULES_LEN	(1UL << 31)
 101
 102static inline int is_module_addr(void *addr)
 103{
 104	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 105	if (addr < (void *)MODULES_VADDR)
 106		return 0;
 107	if (addr > (void *)MODULES_END)
 108		return 0;
 109	return 1;
 110}
 111
 112/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113 * A 64 bit pagetable entry of S390 has following format:
 114 * |			 PFRA			      |0IPC|  OS  |
 115 * 0000000000111111111122222222223333333333444444444455555555556666
 116 * 0123456789012345678901234567890123456789012345678901234567890123
 117 *
 118 * I Page-Invalid Bit:    Page is not available for address-translation
 119 * P Page-Protection Bit: Store access not possible for page
 120 * C Change-bit override: HW is not required to set change bit
 121 *
 122 * A 64 bit segmenttable entry of S390 has following format:
 123 * |        P-table origin                              |      TT
 124 * 0000000000111111111122222222223333333333444444444455555555556666
 125 * 0123456789012345678901234567890123456789012345678901234567890123
 126 *
 127 * I Segment-Invalid Bit:    Segment is not available for address-translation
 128 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 129 * P Page-Protection Bit: Store access not possible for page
 130 * TT Type 00
 131 *
 132 * A 64 bit region table entry of S390 has following format:
 133 * |        S-table origin                             |   TF  TTTL
 134 * 0000000000111111111122222222223333333333444444444455555555556666
 135 * 0123456789012345678901234567890123456789012345678901234567890123
 136 *
 137 * I Segment-Invalid Bit:    Segment is not available for address-translation
 138 * TT Type 01
 139 * TF
 140 * TL Table length
 141 *
 142 * The 64 bit regiontable origin of S390 has following format:
 143 * |      region table origon                          |       DTTL
 144 * 0000000000111111111122222222223333333333444444444455555555556666
 145 * 0123456789012345678901234567890123456789012345678901234567890123
 146 *
 147 * X Space-Switch event:
 148 * G Segment-Invalid Bit:  
 149 * P Private-Space Bit:    
 150 * S Storage-Alteration:
 151 * R Real space
 152 * TL Table-Length:
 153 *
 154 * A storage key has the following format:
 155 * | ACC |F|R|C|0|
 156 *  0   3 4 5 6 7
 157 * ACC: access key
 158 * F  : fetch protection bit
 159 * R  : referenced bit
 160 * C  : changed bit
 161 */
 162
 163/* Hardware bits in the page table entry */
 164#define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
 165#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
 166#define _PAGE_INVALID	0x400		/* HW invalid bit    */
 167#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
 168
 169/* Software bits in the page table entry */
 170#define _PAGE_PRESENT	0x001		/* SW pte present bit */
 
 171#define _PAGE_YOUNG	0x004		/* SW pte young bit */
 172#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
 173#define _PAGE_READ	0x010		/* SW pte read bit */
 174#define _PAGE_WRITE	0x020		/* SW pte write bit */
 175#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
 176#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
 177
 178#ifdef CONFIG_MEM_SOFT_DIRTY
 179#define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
 180#else
 181#define _PAGE_SOFT_DIRTY 0x000
 182#endif
 183
 184#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
 185
 186/* Set of bits not changed in pte_modify */
 187#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 188				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 189
 190/*
 191 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 192 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 193 * distinguish present from not-present ptes. It is changed only with the page
 194 * table lock held.
 195 *
 196 * The following table gives the different possible bit combinations for
 197 * the pte hardware and software bits in the last 12 bits of a pte
 198 * (. unassigned bit, x don't care, t swap type):
 199 *
 200 *				842100000000
 201 *				000084210000
 202 *				000000008421
 203 *				.IR.uswrdy.p
 204 * empty			.10.00000000
 205 * swap				.11..ttttt.0
 206 * prot-none, clean, old	.11.xx0000.1
 207 * prot-none, clean, young	.11.xx0001.1
 208 * prot-none, dirty, old	.11.xx0010.1
 209 * prot-none, dirty, young	.11.xx0011.1
 210 * read-only, clean, old	.11.xx0100.1
 211 * read-only, clean, young	.01.xx0101.1
 212 * read-only, dirty, old	.11.xx0110.1
 213 * read-only, dirty, young	.01.xx0111.1
 214 * read-write, clean, old	.11.xx1100.1
 215 * read-write, clean, young	.01.xx1101.1
 216 * read-write, dirty, old	.10.xx1110.1
 217 * read-write, dirty, young	.00.xx1111.1
 218 * HW-bits: R read-only, I invalid
 219 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 220 *	    u unused, l large
 221 *
 222 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 223 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 224 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225 */
 226
 
 
 
 
 
 
 
 
 
 
 
 
 227/* Bits in the segment/region table address-space-control-element */
 228#define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
 229#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 230#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 231#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
 232#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
 233#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
 234#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
 235#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
 236#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
 237#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
 238#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
 239
 240/* Bits in the region table entry */
 241#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
 242#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
 243#define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
 244#define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
 245#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
 246#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
 247#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
 248#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
 249#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
 250#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
 251
 252#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 253#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 254#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 255#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 256#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 257#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 258
 259#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
 260#define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
 261#define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
 262#define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
 263#define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
 264#define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
 265
 266#ifdef CONFIG_MEM_SOFT_DIRTY
 267#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 268#else
 269#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 270#endif
 271
 272#define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
 273
 274/* Bits in the segment table entry */
 275#define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
 276#define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
 277#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
 278#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
 279#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
 280#define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
 281#define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
 282#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
 283#define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
 284
 285#define _SEGMENT_ENTRY		(0)
 286#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
 287
 288#define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
 289#define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
 290#define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
 291#define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
 292#define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
 293
 294#ifdef CONFIG_MEM_SOFT_DIRTY
 295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 296#else
 297#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 298#endif
 299
 300#define _CRST_ENTRIES	2048	/* number of region/segment table entries */
 301#define _PAGE_ENTRIES	256	/* number of page table entries	*/
 302
 303#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 304#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 305
 306#define _REGION1_SHIFT	53
 307#define _REGION2_SHIFT	42
 308#define _REGION3_SHIFT	31
 309#define _SEGMENT_SHIFT	20
 310
 311#define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
 312#define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
 313#define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
 314#define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
 315#define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
 316
 317#define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
 318#define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
 319#define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
 320#define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
 321
 322#define _REGION1_MASK	(~(_REGION1_SIZE - 1))
 323#define _REGION2_MASK	(~(_REGION2_SIZE - 1))
 324#define _REGION3_MASK	(~(_REGION3_SIZE - 1))
 325#define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
 326
 327#define PMD_SHIFT	_SEGMENT_SHIFT
 328#define PUD_SHIFT	_REGION3_SHIFT
 329#define P4D_SHIFT	_REGION2_SHIFT
 330#define PGDIR_SHIFT	_REGION1_SHIFT
 331
 332#define PMD_SIZE	_SEGMENT_SIZE
 333#define PUD_SIZE	_REGION3_SIZE
 334#define P4D_SIZE	_REGION2_SIZE
 335#define PGDIR_SIZE	_REGION1_SIZE
 336
 337#define PMD_MASK	_SEGMENT_MASK
 338#define PUD_MASK	_REGION3_MASK
 339#define P4D_MASK	_REGION2_MASK
 340#define PGDIR_MASK	_REGION1_MASK
 341
 342#define PTRS_PER_PTE	_PAGE_ENTRIES
 343#define PTRS_PER_PMD	_CRST_ENTRIES
 344#define PTRS_PER_PUD	_CRST_ENTRIES
 345#define PTRS_PER_P4D	_CRST_ENTRIES
 346#define PTRS_PER_PGD	_CRST_ENTRIES
 347
 348/*
 349 * Segment table and region3 table entry encoding
 350 * (R = read-only, I = invalid, y = young bit):
 351 *				dy..R...I...wr
 352 * prot-none, clean, old	00..1...1...00
 353 * prot-none, clean, young	01..1...1...00
 354 * prot-none, dirty, old	10..1...1...00
 355 * prot-none, dirty, young	11..1...1...00
 356 * read-only, clean, old	00..1...1...01
 357 * read-only, clean, young	01..1...0...01
 358 * read-only, dirty, old	10..1...1...01
 359 * read-only, dirty, young	11..1...0...01
 360 * read-write, clean, old	00..1...1...11
 361 * read-write, clean, young	01..1...0...11
 362 * read-write, dirty, old	10..0...1...11
 363 * read-write, dirty, young	11..0...0...11
 364 * The segment table origin is used to distinguish empty (origin==0) from
 365 * read-write, old segment table entries (origin!=0)
 366 * HW-bits: R read-only, I invalid
 367 * SW-bits: y young, d dirty, r read, w write
 368 */
 369
 
 
 
 
 
 
 370/* Page status table bits for virtualization */
 371#define PGSTE_ACC_BITS	0xf000000000000000UL
 372#define PGSTE_FP_BIT	0x0800000000000000UL
 373#define PGSTE_PCL_BIT	0x0080000000000000UL
 374#define PGSTE_HR_BIT	0x0040000000000000UL
 375#define PGSTE_HC_BIT	0x0020000000000000UL
 376#define PGSTE_GR_BIT	0x0004000000000000UL
 377#define PGSTE_GC_BIT	0x0002000000000000UL
 378#define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
 379#define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
 380#define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
 381
 382/* Guest Page State used for virtualization */
 383#define _PGSTE_GPS_ZERO			0x0000000080000000UL
 384#define _PGSTE_GPS_NODAT		0x0000000040000000UL
 385#define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
 386#define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
 387#define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
 388#define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
 389#define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
 390
 391/*
 392 * A user page table pointer has the space-switch-event bit, the
 393 * private-space-control bit and the storage-alteration-event-control
 394 * bit set. A kernel page table pointer doesn't need them.
 395 */
 396#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 397				 _ASCE_ALT_EVENT)
 398
 399/*
 400 * Page protection definitions.
 401 */
 402#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 403#define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 404				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 405#define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 406				 _PAGE_INVALID | _PAGE_PROTECT)
 407#define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 408				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 409#define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 410				 _PAGE_INVALID | _PAGE_PROTECT)
 411
 412#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 413				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 414#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 415				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 416#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 417				 _PAGE_PROTECT | _PAGE_NOEXEC)
 418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 419				  _PAGE_YOUNG |	_PAGE_DIRTY)
 420
 421/*
 422 * On s390 the page table entry has an invalid bit and a read-only bit.
 423 * Read permission implies execute permission and write permission
 424 * implies read permission.
 425 */
 426         /*xwr*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427
 428/*
 429 * Segment entry (large page) protection definitions.
 430 */
 431#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
 
 
 432				 _SEGMENT_ENTRY_PROTECT)
 433#define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 434				 _SEGMENT_ENTRY_READ | \
 435				 _SEGMENT_ENTRY_NOEXEC)
 436#define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
 437				 _SEGMENT_ENTRY_READ)
 438#define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
 439				 _SEGMENT_ENTRY_WRITE | \
 440				 _SEGMENT_ENTRY_NOEXEC)
 441#define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
 442				 _SEGMENT_ENTRY_WRITE)
 443#define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
 444				 _SEGMENT_ENTRY_LARGE |	\
 445				 _SEGMENT_ENTRY_READ |	\
 446				 _SEGMENT_ENTRY_WRITE | \
 447				 _SEGMENT_ENTRY_YOUNG | \
 448				 _SEGMENT_ENTRY_DIRTY | \
 449				 _SEGMENT_ENTRY_NOEXEC)
 450#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
 451				 _SEGMENT_ENTRY_LARGE |	\
 452				 _SEGMENT_ENTRY_READ |	\
 453				 _SEGMENT_ENTRY_YOUNG |	\
 454				 _SEGMENT_ENTRY_PROTECT | \
 455				 _SEGMENT_ENTRY_NOEXEC)
 456#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
 457				 _SEGMENT_ENTRY_LARGE |	\
 458				 _SEGMENT_ENTRY_READ |	\
 459				 _SEGMENT_ENTRY_WRITE | \
 460				 _SEGMENT_ENTRY_YOUNG |	\
 461				 _SEGMENT_ENTRY_DIRTY)
 462
 463/*
 464 * Region3 entry (large page) protection definitions.
 465 */
 466
 467#define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
 468				 _REGION3_ENTRY_LARGE |	 \
 469				 _REGION3_ENTRY_READ |	 \
 470				 _REGION3_ENTRY_WRITE |	 \
 471				 _REGION3_ENTRY_YOUNG |	 \
 472				 _REGION3_ENTRY_DIRTY | \
 473				 _REGION_ENTRY_NOEXEC)
 474#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 475				   _REGION3_ENTRY_LARGE |  \
 476				   _REGION3_ENTRY_READ |   \
 477				   _REGION3_ENTRY_YOUNG |  \
 478				   _REGION_ENTRY_PROTECT | \
 479				   _REGION_ENTRY_NOEXEC)
 480
 481static inline bool mm_p4d_folded(struct mm_struct *mm)
 482{
 483	return mm->context.asce_limit <= _REGION1_SIZE;
 484}
 485#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 486
 487static inline bool mm_pud_folded(struct mm_struct *mm)
 488{
 489	return mm->context.asce_limit <= _REGION2_SIZE;
 490}
 491#define mm_pud_folded(mm) mm_pud_folded(mm)
 492
 493static inline bool mm_pmd_folded(struct mm_struct *mm)
 494{
 495	return mm->context.asce_limit <= _REGION3_SIZE;
 496}
 497#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 498
 499static inline int mm_has_pgste(struct mm_struct *mm)
 500{
 501#ifdef CONFIG_PGSTE
 502	if (unlikely(mm->context.has_pgste))
 503		return 1;
 504#endif
 505	return 0;
 506}
 507
 508static inline int mm_is_protected(struct mm_struct *mm)
 509{
 510#ifdef CONFIG_PGSTE
 511	if (unlikely(atomic_read(&mm->context.protected_count)))
 512		return 1;
 513#endif
 514	return 0;
 515}
 516
 517static inline int mm_alloc_pgste(struct mm_struct *mm)
 518{
 519#ifdef CONFIG_PGSTE
 520	if (unlikely(mm->context.alloc_pgste))
 521		return 1;
 522#endif
 523	return 0;
 524}
 525
 526static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
 527{
 528	return __pte(pte_val(pte) & ~pgprot_val(prot));
 529}
 530
 531static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
 532{
 533	return __pte(pte_val(pte) | pgprot_val(prot));
 534}
 535
 536static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
 537{
 538	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
 539}
 540
 541static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
 542{
 543	return __pmd(pmd_val(pmd) | pgprot_val(prot));
 544}
 545
 546static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
 547{
 548	return __pud(pud_val(pud) & ~pgprot_val(prot));
 549}
 550
 551static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
 552{
 553	return __pud(pud_val(pud) | pgprot_val(prot));
 554}
 555
 556/*
 557 * In the case that a guest uses storage keys
 558 * faults should no longer be backed by zero pages
 559 */
 560#define mm_forbids_zeropage mm_has_pgste
 561static inline int mm_uses_skeys(struct mm_struct *mm)
 562{
 563#ifdef CONFIG_PGSTE
 564	if (mm->context.uses_skeys)
 565		return 1;
 566#endif
 567	return 0;
 568}
 569
 570static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 571{
 572	union register_pair r1 = { .even = old, .odd = new, };
 573	unsigned long address = (unsigned long)ptr | 1;
 574
 575	asm volatile(
 576		"	csp	%[r1],%[address]"
 577		: [r1] "+&d" (r1.pair), "+m" (*ptr)
 578		: [address] "d" (address)
 579		: "cc");
 580}
 581
 582static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 583{
 584	union register_pair r1 = { .even = old, .odd = new, };
 585	unsigned long address = (unsigned long)ptr | 1;
 586
 587	asm volatile(
 588		"	cspg	%[r1],%[address]"
 589		: [r1] "+&d" (r1.pair), "+m" (*ptr)
 590		: [address] "d" (address)
 591		: "cc");
 592}
 593
 594#define CRDTE_DTT_PAGE		0x00UL
 595#define CRDTE_DTT_SEGMENT	0x10UL
 596#define CRDTE_DTT_REGION3	0x14UL
 597#define CRDTE_DTT_REGION2	0x18UL
 598#define CRDTE_DTT_REGION1	0x1cUL
 599
 600static inline void crdte(unsigned long old, unsigned long new,
 601			 unsigned long *table, unsigned long dtt,
 602			 unsigned long address, unsigned long asce)
 603{
 604	union register_pair r1 = { .even = old, .odd = new, };
 605	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
 606
 607	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
 608		     : [r1] "+&d" (r1.pair)
 609		     : [r2] "d" (r2.pair), [asce] "a" (asce)
 610		     : "memory", "cc");
 611}
 612
 613/*
 614 * pgd/p4d/pud/pmd/pte query functions
 615 */
 616static inline int pgd_folded(pgd_t pgd)
 617{
 618	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 619}
 620
 621static inline int pgd_present(pgd_t pgd)
 622{
 623	if (pgd_folded(pgd))
 624		return 1;
 625	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 626}
 627
 628static inline int pgd_none(pgd_t pgd)
 629{
 630	if (pgd_folded(pgd))
 631		return 0;
 632	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 633}
 634
 635static inline int pgd_bad(pgd_t pgd)
 636{
 637	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 638		return 0;
 639	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 640}
 641
 642static inline unsigned long pgd_pfn(pgd_t pgd)
 643{
 644	unsigned long origin_mask;
 645
 646	origin_mask = _REGION_ENTRY_ORIGIN;
 647	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 648}
 649
 650static inline int p4d_folded(p4d_t p4d)
 651{
 652	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 653}
 654
 655static inline int p4d_present(p4d_t p4d)
 656{
 657	if (p4d_folded(p4d))
 658		return 1;
 659	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 660}
 661
 662static inline int p4d_none(p4d_t p4d)
 663{
 664	if (p4d_folded(p4d))
 665		return 0;
 666	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 667}
 668
 669static inline unsigned long p4d_pfn(p4d_t p4d)
 670{
 671	unsigned long origin_mask;
 672
 673	origin_mask = _REGION_ENTRY_ORIGIN;
 674	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 675}
 676
 677static inline int pud_folded(pud_t pud)
 678{
 679	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 680}
 681
 682static inline int pud_present(pud_t pud)
 683{
 684	if (pud_folded(pud))
 685		return 1;
 686	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 687}
 688
 689static inline int pud_none(pud_t pud)
 690{
 691	if (pud_folded(pud))
 692		return 0;
 693	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 694}
 695
 696#define pud_leaf	pud_large
 697static inline int pud_large(pud_t pud)
 698{
 699	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 700		return 0;
 701	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 702}
 703
 704#define pmd_leaf	pmd_large
 705static inline int pmd_large(pmd_t pmd)
 706{
 707	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 
 
 
 
 
 
 
 
 708}
 709
 710static inline int pmd_bad(pmd_t pmd)
 711{
 712	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
 713		return 1;
 714	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 715}
 716
 717static inline int pud_bad(pud_t pud)
 718{
 719	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 720
 721	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
 722		return 1;
 723	if (type < _REGION_ENTRY_TYPE_R3)
 724		return 0;
 725	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 726}
 727
 728static inline int p4d_bad(p4d_t p4d)
 729{
 730	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 731
 732	if (type > _REGION_ENTRY_TYPE_R2)
 733		return 1;
 734	if (type < _REGION_ENTRY_TYPE_R2)
 735		return 0;
 736	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 737}
 738
 739static inline int pmd_present(pmd_t pmd)
 740{
 741	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 
 
 
 
 742}
 743
 744static inline int pmd_none(pmd_t pmd)
 745{
 746	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 
 747}
 748
 749#define pmd_write pmd_write
 750static inline int pmd_write(pmd_t pmd)
 751{
 752	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 
 
 
 
 753}
 754
 755#define pud_write pud_write
 756static inline int pud_write(pud_t pud)
 757{
 758	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
 759}
 
 
 
 
 
 
 
 760
 761static inline int pmd_dirty(pmd_t pmd)
 
 762{
 763	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 
 
 764}
 765
 766#define pmd_young pmd_young
 767static inline int pmd_young(pmd_t pmd)
 768{
 769	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 
 
 
 
 
 
 
 770}
 771
 772static inline int pte_present(pte_t pte)
 773{
 774	/* Bit pattern: (pte & 0x001) == 0x001 */
 775	return (pte_val(pte) & _PAGE_PRESENT) != 0;
 776}
 777
 778static inline int pte_none(pte_t pte)
 779{
 780	/* Bit pattern: pte == 0x400 */
 781	return pte_val(pte) == _PAGE_INVALID;
 782}
 783
 784static inline int pte_swap(pte_t pte)
 785{
 786	/* Bit pattern: (pte & 0x201) == 0x200 */
 787	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 788		== _PAGE_PROTECT;
 
 
 
 
 
 
 
 
 789}
 790
 791static inline int pte_special(pte_t pte)
 792{
 793	return (pte_val(pte) & _PAGE_SPECIAL);
 794}
 795
 796#define __HAVE_ARCH_PTE_SAME
 797static inline int pte_same(pte_t a, pte_t b)
 798{
 799	return pte_val(a) == pte_val(b);
 800}
 801
 802#ifdef CONFIG_NUMA_BALANCING
 803static inline int pte_protnone(pte_t pte)
 804{
 805	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 806}
 
 807
 808static inline int pmd_protnone(pmd_t pmd)
 809{
 810	/* pmd_large(pmd) implies pmd_present(pmd) */
 811	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 812}
 
 
 
 
 
 813#endif
 
 
 814
 815#define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
 816static inline int pte_swp_exclusive(pte_t pte)
 817{
 818	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
 
 
 
 
 
 
 
 
 819}
 820
 821static inline pte_t pte_swp_mkexclusive(pte_t pte)
 822{
 823	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
 
 
 
 
 824}
 825
 826static inline pte_t pte_swp_clear_exclusive(pte_t pte)
 827{
 828	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
 
 
 829}
 830
 831static inline int pte_soft_dirty(pte_t pte)
 832{
 833	return pte_val(pte) & _PAGE_SOFT_DIRTY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834}
 835#define pte_swp_soft_dirty pte_soft_dirty
 836
 837static inline pte_t pte_mksoft_dirty(pte_t pte)
 838{
 839	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
 
 
 
 
 
 
 
 840}
 841#define pte_swp_mksoft_dirty pte_mksoft_dirty
 842
 843static inline pte_t pte_clear_soft_dirty(pte_t pte)
 844{
 845	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846}
 847#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 848
 849static inline int pmd_soft_dirty(pmd_t pmd)
 850{
 851	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 
 
 
 
 
 
 
 
 
 
 852}
 853
 854static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855{
 856	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
 
 
 
 
 
 
 857}
 858
 859static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 
 
 
 
 
 
 860{
 861	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
 
 
 
 
 
 
 
 
 
 
 
 
 862}
 863
 864/*
 865 * query functions pte_write/pte_dirty/pte_young only work if
 866 * pte_present() is true. Undefined behaviour if not..
 867 */
 868static inline int pte_write(pte_t pte)
 869{
 870	return (pte_val(pte) & _PAGE_WRITE) != 0;
 871}
 872
 873static inline int pte_dirty(pte_t pte)
 874{
 875	return (pte_val(pte) & _PAGE_DIRTY) != 0;
 876}
 877
 878static inline int pte_young(pte_t pte)
 879{
 880	return (pte_val(pte) & _PAGE_YOUNG) != 0;
 881}
 882
 883#define __HAVE_ARCH_PTE_UNUSED
 884static inline int pte_unused(pte_t pte)
 885{
 886	return pte_val(pte) & _PAGE_UNUSED;
 887}
 888
 889/*
 890 * Extract the pgprot value from the given pte while at the same time making it
 891 * usable for kernel address space mappings where fault driven dirty and
 892 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
 893 * must not be set.
 894 */
 895static inline pgprot_t pte_pgprot(pte_t pte)
 896{
 897	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
 898
 899	if (pte_write(pte))
 900		pte_flags |= pgprot_val(PAGE_KERNEL);
 901	else
 902		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
 903	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
 904
 905	return __pgprot(pte_flags);
 906}
 907
 908/*
 909 * pgd/pmd/pte modification functions
 910 */
 911
 912static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
 913{
 914	WRITE_ONCE(*pgdp, pgd);
 915}
 916
 917static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
 918{
 919	WRITE_ONCE(*p4dp, p4d);
 920}
 921
 922static inline void set_pud(pud_t *pudp, pud_t pud)
 923{
 924	WRITE_ONCE(*pudp, pud);
 925}
 926
 927static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
 928{
 929	WRITE_ONCE(*pmdp, pmd);
 930}
 931
 932static inline void set_pte(pte_t *ptep, pte_t pte)
 933{
 934	WRITE_ONCE(*ptep, pte);
 935}
 936
 937static inline void pgd_clear(pgd_t *pgd)
 938{
 939	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 940		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
 941}
 942
 943static inline void p4d_clear(p4d_t *p4d)
 944{
 945	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 946		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
 947}
 948
 949static inline void pud_clear(pud_t *pud)
 950{
 
 951	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 952		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
 
 953}
 954
 955static inline void pmd_clear(pmd_t *pmdp)
 956{
 957	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
 958}
 959
 960static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 961{
 962	set_pte(ptep, __pte(_PAGE_INVALID));
 963}
 964
 965/*
 966 * The following pte modification functions only work if
 967 * pte_present() is true. Undefined behaviour if not..
 968 */
 969static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 970{
 971	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
 972	pte = set_pte_bit(pte, newprot);
 973	/*
 974	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 975	 * has the invalid bit set, clear it again for readable, young pages
 976	 */
 977	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 978		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
 979	/*
 980	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 981	 * protection bit set, clear it again for writable, dirty pages
 982	 */
 983	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 984		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 985	return pte;
 986}
 987
 988static inline pte_t pte_wrprotect(pte_t pte)
 989{
 990	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
 991	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 
 992}
 993
 994static inline pte_t pte_mkwrite(pte_t pte)
 995{
 996	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
 997	if (pte_val(pte) & _PAGE_DIRTY)
 998		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 999	return pte;
1000}
1001
1002static inline pte_t pte_mkclean(pte_t pte)
1003{
1004	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1005	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
 
1006}
1007
1008static inline pte_t pte_mkdirty(pte_t pte)
1009{
1010	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1011	if (pte_val(pte) & _PAGE_WRITE)
1012		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013	return pte;
1014}
1015
1016static inline pte_t pte_mkold(pte_t pte)
1017{
1018	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1019	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
 
1020}
1021
1022static inline pte_t pte_mkyoung(pte_t pte)
1023{
1024	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1025	if (pte_val(pte) & _PAGE_READ)
1026		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1027	return pte;
1028}
1029
1030static inline pte_t pte_mkspecial(pte_t pte)
1031{
1032	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
 
1033}
1034
1035#ifdef CONFIG_HUGETLB_PAGE
1036static inline pte_t pte_mkhuge(pte_t pte)
1037{
1038	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
 
1039}
1040#endif
1041
1042#define IPTE_GLOBAL	0
1043#define	IPTE_LOCAL	1
 
 
 
 
 
 
1044
1045#define IPTE_NODAT	0x400
1046#define IPTE_GUEST_ASCE	0x800
 
 
 
 
 
 
 
 
1047
1048static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1049					unsigned long opt, unsigned long asce,
1050					int local)
 
 
1051{
1052	unsigned long pto = __pa(ptep);
 
1053
1054	if (__builtin_constant_p(opt) && opt == 0) {
1055		/* Invalidation + TLB flush for the pte */
1056		asm volatile(
1057			"	ipte	%[r1],%[r2],0,%[m4]"
1058			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1059			  [m4] "i" (local));
1060		return;
1061	}
 
 
1062
1063	/* Invalidate ptes with options + TLB flush of the ptes */
1064	opt = opt | (asce & _ASCE_ORIGIN);
 
 
 
 
 
 
 
1065	asm volatile(
1066		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1067		: [r2] "+a" (address), [r3] "+a" (opt)
1068		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1069}
1070
1071static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1072					      pte_t *ptep, int local)
1073{
1074	unsigned long pto = __pa(ptep);
1075
1076	/* Invalidate a range of ptes + TLB flush of the ptes */
1077	do {
1078		asm volatile(
1079			"	ipte %[r1],%[r2],%[r3],%[m4]"
1080			: [r2] "+a" (address), [r3] "+a" (nr)
1081			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1082	} while (nr != 255);
1083}
1084
1085/*
1086 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1087 * both clear the TLB for the unmapped pte. The reason is that
1088 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1089 * to modify an active pte. The sequence is
1090 *   1) ptep_get_and_clear
1091 *   2) set_pte_at
1092 *   3) flush_tlb_range
1093 * On s390 the tlb needs to get flushed with the modification of the pte
1094 * if the pte is active. The only way how this can be implemented is to
1095 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1096 * is a nop.
1097 */
1098pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1099pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100
1101#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1102static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1103					    unsigned long addr, pte_t *ptep)
1104{
1105	pte_t pte = *ptep;
 
 
 
 
 
 
 
1106
1107	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1108	return pte_young(pte);
 
 
 
 
 
 
 
 
 
 
1109}
1110
1111#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1112static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1113					 unsigned long address, pte_t *ptep)
1114{
1115	return ptep_test_and_clear_young(vma, address, ptep);
1116}
1117
 
 
 
 
 
 
 
 
 
 
 
 
 
1118#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1119static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1120				       unsigned long addr, pte_t *ptep)
1121{
1122	pte_t res;
 
1123
1124	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1125	/* At this point the reference through the mapping is still present */
1126	if (mm_is_protected(mm) && pte_present(res))
1127		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1128	return res;
 
 
 
 
 
 
 
 
 
1129}
1130
1131#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1132pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1133void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1134			     pte_t *, pte_t, pte_t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135
1136#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1137static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1138				     unsigned long addr, pte_t *ptep)
1139{
1140	pte_t res;
 
 
 
 
 
 
1141
1142	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1143	/* At this point the reference through the mapping is still present */
1144	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1145		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1146	return res;
 
 
 
 
 
 
 
1147}
1148
1149/*
1150 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1151 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1152 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1153 * cannot be accessed while the batched unmap is running. In this case
1154 * full==1 and a simple pte_clear is enough. See tlb.h.
1155 */
1156#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1157static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1158					    unsigned long addr,
1159					    pte_t *ptep, int full)
1160{
1161	pte_t res;
 
1162
1163	if (full) {
1164		res = *ptep;
1165		set_pte(ptep, __pte(_PAGE_INVALID));
1166	} else {
1167		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1168	}
1169	/* Nothing to do */
1170	if (!mm_is_protected(mm) || !pte_present(res))
1171		return res;
1172	/*
1173	 * At this point the reference through the mapping is still present.
1174	 * The notifier should have destroyed all protected vCPUs at this
1175	 * point, so the destroy should be successful.
1176	 */
1177	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1178		return res;
1179	/*
1180	 * If something went wrong and the page could not be destroyed, or
1181	 * if this is not a mm teardown, the slower export is used as
1182	 * fallback instead.
1183	 */
1184	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1185	return res;
1186}
1187
1188#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1189static inline void ptep_set_wrprotect(struct mm_struct *mm,
1190				      unsigned long addr, pte_t *ptep)
1191{
 
1192	pte_t pte = *ptep;
1193
1194	if (pte_write(pte))
1195		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196}
1197
1198#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1199static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1200					unsigned long addr, pte_t *ptep,
1201					pte_t entry, int dirty)
1202{
 
 
1203	if (pte_same(*ptep, entry))
1204		return 0;
1205	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1206	return 1;
1207}
1208
1209/*
1210 * Additional functions to handle KVM guest page tables
1211 */
1212void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1213		     pte_t *ptep, pte_t entry);
1214void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1215void ptep_notify(struct mm_struct *mm, unsigned long addr,
1216		 pte_t *ptep, unsigned long bits);
1217int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1218		    pte_t *ptep, int prot, unsigned long bit);
1219void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1220		     pte_t *ptep , int reset);
1221void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1222int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1223		    pte_t *sptep, pte_t *tptep, pte_t pte);
1224void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1225
1226bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1227			    pte_t *ptep);
1228int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1229			  unsigned char key, bool nq);
1230int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1231			       unsigned char key, unsigned char *oldkey,
1232			       bool nq, bool mr, bool mc);
1233int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1234int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1235			  unsigned char *key);
1236
1237int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1238				unsigned long bits, unsigned long value);
1239int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1240int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1241			unsigned long *oldpte, unsigned long *oldpgste);
1242void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1243void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1244void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1245void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1246
1247#define pgprot_writecombine	pgprot_writecombine
1248pgprot_t pgprot_writecombine(pgprot_t prot);
1249
1250#define pgprot_writethrough	pgprot_writethrough
1251pgprot_t pgprot_writethrough(pgprot_t prot);
1252
1253/*
1254 * Certain architectures need to do special things when PTEs
1255 * within a page table are directly modified.  Thus, the following
1256 * hook is made available.
1257 */
1258static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1259			      pte_t *ptep, pte_t entry)
1260{
1261	if (pte_present(entry))
1262		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1263	if (mm_has_pgste(mm))
1264		ptep_set_pte_at(mm, addr, ptep, entry);
1265	else
1266		set_pte(ptep, entry);
1267}
1268
1269/*
1270 * Conversion functions: convert a page and protection to a page entry,
1271 * and a page entry and page directory to the page they refer to.
1272 */
1273static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1274{
1275	pte_t __pte;
1276
1277	__pte = __pte(physpage | pgprot_val(pgprot));
1278	if (!MACHINE_HAS_NX)
1279		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1280	return pte_mkyoung(__pte);
1281}
1282
1283static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1284{
1285	unsigned long physpage = page_to_phys(page);
1286	pte_t __pte = mk_pte_phys(physpage, pgprot);
1287
1288	if (pte_write(__pte) && PageDirty(page))
1289		__pte = pte_mkdirty(__pte);
1290	return __pte;
1291}
1292
1293#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1294#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1295#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1296#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 
1297
1298#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1299#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1300
1301static inline unsigned long pmd_deref(pmd_t pmd)
1302{
1303	unsigned long origin_mask;
1304
1305	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1306	if (pmd_large(pmd))
1307		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1308	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1309}
1310
1311static inline unsigned long pmd_pfn(pmd_t pmd)
1312{
1313	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1314}
1315
1316static inline unsigned long pud_deref(pud_t pud)
1317{
1318	unsigned long origin_mask;
1319
1320	origin_mask = _REGION_ENTRY_ORIGIN;
1321	if (pud_large(pud))
1322		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1323	return (unsigned long)__va(pud_val(pud) & origin_mask);
1324}
1325
1326static inline unsigned long pud_pfn(pud_t pud)
1327{
1328	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1329}
1330
1331/*
1332 * The pgd_offset function *always* adds the index for the top-level
1333 * region/segment table. This is done to get a sequence like the
1334 * following to work:
1335 *	pgdp = pgd_offset(current->mm, addr);
1336 *	pgd = READ_ONCE(*pgdp);
1337 *	p4dp = p4d_offset(&pgd, addr);
1338 *	...
1339 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1340 * only add an index if they dereferenced the pointer.
1341 */
1342static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1343{
1344	unsigned long rste;
1345	unsigned int shift;
1346
1347	/* Get the first entry of the top level table */
1348	rste = pgd_val(*pgd);
1349	/* Pick up the shift from the table type of the first entry */
1350	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1351	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1352}
1353
1354#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1355
1356static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1357{
1358	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1359		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1360	return (p4d_t *) pgdp;
1361}
1362#define p4d_offset_lockless p4d_offset_lockless
1363
1364static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1365{
1366	return p4d_offset_lockless(pgdp, *pgdp, address);
1367}
1368
1369static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1370{
1371	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1372		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1373	return (pud_t *) p4dp;
1374}
1375#define pud_offset_lockless pud_offset_lockless
1376
1377static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1378{
1379	return pud_offset_lockless(p4dp, *p4dp, address);
1380}
1381#define pud_offset pud_offset
1382
1383static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1384{
1385	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1386		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1387	return (pmd_t *) pudp;
 
1388}
1389#define pmd_offset_lockless pmd_offset_lockless
1390
1391static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1392{
1393	return pmd_offset_lockless(pudp, *pudp, address);
1394}
1395#define pmd_offset pmd_offset
1396
1397static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1398{
1399	return (unsigned long) pmd_deref(pmd);
1400}
1401
1402static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1403{
1404	return end <= current->mm->context.asce_limit;
1405}
1406#define gup_fast_permitted gup_fast_permitted
1407
1408#define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1409#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1410#define pte_page(x) pfn_to_page(pte_pfn(x))
1411
1412#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1413#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1414#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1415#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1416
1417static inline pmd_t pmd_wrprotect(pmd_t pmd)
1418{
1419	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1420	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1421}
1422
1423static inline pmd_t pmd_mkwrite(pmd_t pmd)
1424{
1425	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1426	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1427		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1428	return pmd;
1429}
1430
1431static inline pmd_t pmd_mkclean(pmd_t pmd)
1432{
1433	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1434	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1435}
1436
1437static inline pmd_t pmd_mkdirty(pmd_t pmd)
1438{
1439	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1440	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1441		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1442	return pmd;
1443}
1444
1445static inline pud_t pud_wrprotect(pud_t pud)
1446{
1447	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1448	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1449}
1450
1451static inline pud_t pud_mkwrite(pud_t pud)
1452{
1453	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1454	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1455		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1456	return pud;
1457}
1458
1459static inline pud_t pud_mkclean(pud_t pud)
1460{
1461	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1462	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1463}
1464
1465static inline pud_t pud_mkdirty(pud_t pud)
1466{
1467	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1468	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1469		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1470	return pud;
1471}
1472
1473#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1474static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1475{
1476	/*
1477	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1478	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1479	 */
1480	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1481		return pgprot_val(SEGMENT_NONE);
1482	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1483		return pgprot_val(SEGMENT_RO);
1484	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1485		return pgprot_val(SEGMENT_RX);
1486	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1487		return pgprot_val(SEGMENT_RW);
1488	return pgprot_val(SEGMENT_RWX);
1489}
1490
1491static inline pmd_t pmd_mkyoung(pmd_t pmd)
1492{
1493	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1494	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1495		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
 
 
 
 
 
1496	return pmd;
1497}
1498
1499static inline pmd_t pmd_mkold(pmd_t pmd)
1500{
1501	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1502	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
 
 
 
 
 
 
 
1503}
1504
1505static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1506{
1507	unsigned long mask;
1508
1509	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1510	mask |= _SEGMENT_ENTRY_DIRTY;
1511	mask |= _SEGMENT_ENTRY_YOUNG;
1512	mask |=	_SEGMENT_ENTRY_LARGE;
1513	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1514	pmd = __pmd(pmd_val(pmd) & mask);
1515	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1516	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1517		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1518	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1519		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1520	return pmd;
1521}
1522
1523static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1524{
1525	return __pmd(physpage + massage_pgprot_pmd(pgprot));
 
 
1526}
1527
 
 
 
 
 
 
 
1528#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1529
1530static inline void __pmdp_csp(pmd_t *pmdp)
1531{
1532	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1533	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
 
 
 
 
 
 
 
1534}
1535
1536#define IDTE_GLOBAL	0
1537#define IDTE_LOCAL	1
 
1538
1539#define IDTE_PTOA	0x0800
1540#define IDTE_NODAT	0x1000
1541#define IDTE_GUEST_ASCE	0x2000
 
 
 
 
1542
1543static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1544					unsigned long opt, unsigned long asce,
1545					int local)
1546{
1547	unsigned long sto;
1548
1549	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1550	if (__builtin_constant_p(opt) && opt == 0) {
1551		/* flush without guest asce */
1552		asm volatile(
1553			"	idte	%[r1],0,%[r2],%[m4]"
1554			: "+m" (*pmdp)
1555			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1556			  [m4] "i" (local)
1557			: "cc" );
1558	} else {
1559		/* flush with guest asce */
1560		asm volatile(
1561			"	idte	%[r1],%[r3],%[r2],%[m4]"
1562			: "+m" (*pmdp)
1563			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1564			  [r3] "a" (asce), [m4] "i" (local)
1565			: "cc" );
1566	}
1567}
1568
1569static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1570					unsigned long opt, unsigned long asce,
1571					int local)
1572{
1573	unsigned long r3o;
1574
1575	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1576	r3o |= _ASCE_TYPE_REGION3;
1577	if (__builtin_constant_p(opt) && opt == 0) {
1578		/* flush without guest asce */
1579		asm volatile(
1580			"	idte	%[r1],0,%[r2],%[m4]"
1581			: "+m" (*pudp)
1582			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1583			  [m4] "i" (local)
1584			: "cc");
1585	} else {
1586		/* flush with guest asce */
1587		asm volatile(
1588			"	idte	%[r1],%[r3],%[r2],%[m4]"
1589			: "+m" (*pudp)
1590			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1591			  [r3] "a" (asce), [m4] "i" (local)
1592			: "cc" );
1593	}
 
 
 
 
 
 
 
 
1594}
1595
1596pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1597pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1598pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599
1600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601
1602#define __HAVE_ARCH_PGTABLE_DEPOSIT
1603void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1604				pgtable_t pgtable);
1605
1606#define __HAVE_ARCH_PGTABLE_WITHDRAW
1607pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1608
1609#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1610static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1611					unsigned long addr, pmd_t *pmdp,
1612					pmd_t entry, int dirty)
1613{
1614	VM_BUG_ON(addr & ~HPAGE_MASK);
1615
1616	entry = pmd_mkyoung(entry);
1617	if (dirty)
1618		entry = pmd_mkdirty(entry);
1619	if (pmd_val(*pmdp) == pmd_val(entry))
1620		return 0;
1621	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1622	return 1;
1623}
1624
1625#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1626static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1627					    unsigned long addr, pmd_t *pmdp)
1628{
1629	pmd_t pmd = *pmdp;
1630
1631	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1632	return pmd_young(pmd);
1633}
1634
1635#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1636static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1637					 unsigned long addr, pmd_t *pmdp)
1638{
1639	VM_BUG_ON(addr & ~HPAGE_MASK);
1640	return pmdp_test_and_clear_young(vma, addr, pmdp);
1641}
1642
1643static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1644			      pmd_t *pmdp, pmd_t entry)
1645{
1646	if (!MACHINE_HAS_NX)
1647		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1648	set_pmd(pmdp, entry);
 
1649}
1650
1651static inline pmd_t pmd_mkhuge(pmd_t pmd)
1652{
1653	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1654	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1655	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1656}
1657
1658#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1659static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1660					    unsigned long addr, pmd_t *pmdp)
1661{
1662	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
 
 
 
 
 
1663}
1664
1665#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1666static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1667						 unsigned long addr,
1668						 pmd_t *pmdp, int full)
1669{
1670	if (full) {
1671		pmd_t pmd = *pmdp;
1672		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1673		return pmd;
1674	}
1675	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1676}
1677
1678#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1679static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1680					  unsigned long addr, pmd_t *pmdp)
1681{
1682	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1683}
1684
1685#define __HAVE_ARCH_PMDP_INVALIDATE
1686static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1687				   unsigned long addr, pmd_t *pmdp)
1688{
1689	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1690
1691	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1692}
1693
1694#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1695static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1696				      unsigned long addr, pmd_t *pmdp)
1697{
1698	pmd_t pmd = *pmdp;
1699
1700	if (pmd_write(pmd))
1701		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1702}
1703
1704static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1705					unsigned long address,
1706					pmd_t *pmdp)
1707{
1708	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1709}
1710#define pmdp_collapse_flush pmdp_collapse_flush
1711
1712#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1713#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1714
1715static inline int pmd_trans_huge(pmd_t pmd)
1716{
1717	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1718}
1719
1720#define has_transparent_hugepage has_transparent_hugepage
1721static inline int has_transparent_hugepage(void)
1722{
1723	return MACHINE_HAS_EDAT1 ? 1 : 0;
 
 
 
 
 
1724}
1725#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1726
1727/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728 * 64 bit swap entry format:
1729 * A page-table entry has some bits we have to treat in a special way.
1730 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1731 * as invalid.
1732 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1733 * |			  offset			|E11XX|type |S0|
1734 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1735 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1736 *
1737 * Bits 0-51 store the offset.
1738 * Bit 52 (E) is used to remember PG_anon_exclusive.
1739 * Bits 57-61 store the type.
1740 * Bit 62 (S) is used for softdirty tracking.
1741 * Bits 55 and 56 (X) are unused.
1742 */
1743
1744#define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1745#define __SWP_OFFSET_SHIFT	12
1746#define __SWP_TYPE_MASK		((1UL << 5) - 1)
1747#define __SWP_TYPE_SHIFT	2
1748
1749static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1750{
1751	unsigned long pteval;
1752
1753	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1754	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1755	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1756	return __pte(pteval);
1757}
1758
1759static inline unsigned long __swp_type(swp_entry_t entry)
1760{
1761	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1762}
1763
1764static inline unsigned long __swp_offset(swp_entry_t entry)
1765{
1766	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1767}
1768
1769static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1770{
1771	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1772}
1773
1774#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1775#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777extern int vmem_add_mapping(unsigned long start, unsigned long size);
1778extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1779extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1780extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1781extern void vmem_unmap_4k_page(unsigned long addr);
1782extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1783extern int s390_enable_sie(void);
1784extern int s390_enable_skey(void);
1785extern void s390_reset_cmma(struct mm_struct *mm);
1786
1787/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1788#define HAVE_ARCH_UNMAPPED_AREA
1789#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 
 
1790
1791#define pmd_pgtable(pmd) \
1792	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1793
1794#endif /* _S390_PAGE_H */
v3.15
 
   1/*
   2 *  S390 version
   3 *    Copyright IBM Corp. 1999, 2000
   4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   5 *               Ulrich Weigand (weigand@de.ibm.com)
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *
   8 *  Derived from "include/asm-i386/pgtable.h"
   9 */
  10
  11#ifndef _ASM_S390_PGTABLE_H
  12#define _ASM_S390_PGTABLE_H
  13
  14/*
  15 * The Linux memory management assumes a three-level page table setup. For
  16 * s390 31 bit we "fold" the mid level into the top-level page table, so
  17 * that we physically have the same two-level page table as the s390 mmu
  18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  19 * the hardware provides (region first and region second tables are not
  20 * used).
  21 *
  22 * The "pgd_xxx()" functions are trivial for a folded two-level
  23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  24 * into the pgd entry)
  25 *
  26 * This file contains the functions and defines necessary to modify and use
  27 * the S390 page table tree.
  28 */
  29#ifndef __ASSEMBLY__
  30#include <linux/sched.h>
  31#include <linux/mm_types.h>
  32#include <linux/page-flags.h>
 
 
 
  33#include <asm/bug.h>
  34#include <asm/page.h>
 
  35
  36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  37extern void paging_init(void);
  38extern void vmem_map_init(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40/*
  41 * The S390 doesn't have any external MMU info: the kernel page
  42 * tables contain all the necessary information.
  43 */
  44#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  46
  47/*
  48 * ZERO_PAGE is a global shared page that is always zero; used
  49 * for zero-mapped memory areas etc..
  50 */
  51
  52extern unsigned long empty_zero_page;
  53extern unsigned long zero_page_mask;
  54
  55#define ZERO_PAGE(vaddr) \
  56	(virt_to_page((void *)(empty_zero_page + \
  57	 (((unsigned long)(vaddr)) &zero_page_mask))))
  58#define __HAVE_COLOR_ZERO_PAGE
  59
  60/* TODO: s390 cannot support io_remap_pfn_range... */
  61#endif /* !__ASSEMBLY__ */
  62
  63/*
  64 * PMD_SHIFT determines the size of the area a second-level page
  65 * table can map
  66 * PGDIR_SHIFT determines what a third-level page table entry can map
  67 */
  68#ifndef CONFIG_64BIT
  69# define PMD_SHIFT	20
  70# define PUD_SHIFT	20
  71# define PGDIR_SHIFT	20
  72#else /* CONFIG_64BIT */
  73# define PMD_SHIFT	20
  74# define PUD_SHIFT	31
  75# define PGDIR_SHIFT	42
  76#endif /* CONFIG_64BIT */
  77
  78#define PMD_SIZE        (1UL << PMD_SHIFT)
  79#define PMD_MASK        (~(PMD_SIZE-1))
  80#define PUD_SIZE	(1UL << PUD_SHIFT)
  81#define PUD_MASK	(~(PUD_SIZE-1))
  82#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
  83#define PGDIR_MASK	(~(PGDIR_SIZE-1))
  84
  85/*
  86 * entries per page directory level: the S390 is two-level, so
  87 * we don't really have any PMD directory physically.
  88 * for S390 segment-table entries are combined to one PGD
  89 * that leads to 1024 pte per pgd
  90 */
  91#define PTRS_PER_PTE	256
  92#ifndef CONFIG_64BIT
  93#define PTRS_PER_PMD	1
  94#define PTRS_PER_PUD	1
  95#else /* CONFIG_64BIT */
  96#define PTRS_PER_PMD	2048
  97#define PTRS_PER_PUD	2048
  98#endif /* CONFIG_64BIT */
  99#define PTRS_PER_PGD	2048
 100
 101#define FIRST_USER_ADDRESS  0
 102
 103#define pte_ERROR(e) \
 104	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 105#define pmd_ERROR(e) \
 106	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 107#define pud_ERROR(e) \
 108	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 
 
 109#define pgd_ERROR(e) \
 110	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 111
 112#ifndef __ASSEMBLY__
 113/*
 114 * The vmalloc and module area will always be on the topmost area of the kernel
 115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
 116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
 117 * modules will reside. That makes sure that inter module branches always
 118 * happen without trampolines and in addition the placement within a 2GB frame
 119 * is branch prediction unit friendly.
 120 */
 121extern unsigned long VMALLOC_START;
 122extern unsigned long VMALLOC_END;
 123extern struct page *vmemmap;
 
 
 124
 125#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 126
 127#ifdef CONFIG_64BIT
 128extern unsigned long MODULES_VADDR;
 129extern unsigned long MODULES_END;
 130#define MODULES_VADDR	MODULES_VADDR
 131#define MODULES_END	MODULES_END
 132#define MODULES_LEN	(1UL << 31)
 133#endif
 
 
 
 
 
 
 
 
 
 134
 135/*
 136 * A 31 bit pagetable entry of S390 has following format:
 137 *  |   PFRA          |    |  OS  |
 138 * 0                   0IP0
 139 * 00000000001111111111222222222233
 140 * 01234567890123456789012345678901
 141 *
 142 * I Page-Invalid Bit:    Page is not available for address-translation
 143 * P Page-Protection Bit: Store access not possible for page
 144 *
 145 * A 31 bit segmenttable entry of S390 has following format:
 146 *  |   P-table origin      |  |PTL
 147 * 0                         IC
 148 * 00000000001111111111222222222233
 149 * 01234567890123456789012345678901
 150 *
 151 * I Segment-Invalid Bit:    Segment is not available for address-translation
 152 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 153 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 154 *
 155 * The 31 bit segmenttable origin of S390 has following format:
 156 *
 157 *  |S-table origin   |     | STL |
 158 * X                   **GPS
 159 * 00000000001111111111222222222233
 160 * 01234567890123456789012345678901
 161 *
 162 * X Space-Switch event:
 163 * G Segment-Invalid Bit:     *
 164 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 165 * S Storage-Alteration:
 166 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 167 *
 168 * A 64 bit pagetable entry of S390 has following format:
 169 * |			 PFRA			      |0IPC|  OS  |
 170 * 0000000000111111111122222222223333333333444444444455555555556666
 171 * 0123456789012345678901234567890123456789012345678901234567890123
 172 *
 173 * I Page-Invalid Bit:    Page is not available for address-translation
 174 * P Page-Protection Bit: Store access not possible for page
 175 * C Change-bit override: HW is not required to set change bit
 176 *
 177 * A 64 bit segmenttable entry of S390 has following format:
 178 * |        P-table origin                              |      TT
 179 * 0000000000111111111122222222223333333333444444444455555555556666
 180 * 0123456789012345678901234567890123456789012345678901234567890123
 181 *
 182 * I Segment-Invalid Bit:    Segment is not available for address-translation
 183 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 184 * P Page-Protection Bit: Store access not possible for page
 185 * TT Type 00
 186 *
 187 * A 64 bit region table entry of S390 has following format:
 188 * |        S-table origin                             |   TF  TTTL
 189 * 0000000000111111111122222222223333333333444444444455555555556666
 190 * 0123456789012345678901234567890123456789012345678901234567890123
 191 *
 192 * I Segment-Invalid Bit:    Segment is not available for address-translation
 193 * TT Type 01
 194 * TF
 195 * TL Table length
 196 *
 197 * The 64 bit regiontable origin of S390 has following format:
 198 * |      region table origon                          |       DTTL
 199 * 0000000000111111111122222222223333333333444444444455555555556666
 200 * 0123456789012345678901234567890123456789012345678901234567890123
 201 *
 202 * X Space-Switch event:
 203 * G Segment-Invalid Bit:  
 204 * P Private-Space Bit:    
 205 * S Storage-Alteration:
 206 * R Real space
 207 * TL Table-Length:
 208 *
 209 * A storage key has the following format:
 210 * | ACC |F|R|C|0|
 211 *  0   3 4 5 6 7
 212 * ACC: access key
 213 * F  : fetch protection bit
 214 * R  : referenced bit
 215 * C  : changed bit
 216 */
 217
 218/* Hardware bits in the page table entry */
 219#define _PAGE_CO	0x100		/* HW Change-bit override */
 220#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
 221#define _PAGE_INVALID	0x400		/* HW invalid bit    */
 222#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
 223
 224/* Software bits in the page table entry */
 225#define _PAGE_PRESENT	0x001		/* SW pte present bit */
 226#define _PAGE_TYPE	0x002		/* SW pte type bit */
 227#define _PAGE_YOUNG	0x004		/* SW pte young bit */
 228#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
 229#define _PAGE_READ	0x010		/* SW pte read bit */
 230#define _PAGE_WRITE	0x020		/* SW pte write bit */
 231#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
 232#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
 233#define __HAVE_ARCH_PTE_SPECIAL
 
 
 
 
 
 
 
 234
 235/* Set of bits not changed in pte_modify */
 236#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
 237				 _PAGE_DIRTY | _PAGE_YOUNG)
 238
 239/*
 240 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
 241 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
 242 * is used to distinguish present from not-present ptes. It is changed only
 243 * with the page table lock held.
 244 *
 245 * The following table gives the different possible bit combinations for
 246 * the pte hardware and software bits in the last 12 bits of a pte:
 
 247 *
 248 *				842100000000
 249 *				000084210000
 250 *				000000008421
 251 *				.IR...wrdytp
 252 * empty			.10...000000
 253 * swap				.10...xxxx10
 254 * file				.11...xxxxx0
 255 * prot-none, clean, old	.11...000001
 256 * prot-none, clean, young	.11...000101
 257 * prot-none, dirty, old	.10...001001
 258 * prot-none, dirty, young	.10...001101
 259 * read-only, clean, old	.11...010001
 260 * read-only, clean, young	.01...010101
 261 * read-only, dirty, old	.11...011001
 262 * read-only, dirty, young	.01...011101
 263 * read-write, clean, old	.11...110001
 264 * read-write, clean, young	.01...110101
 265 * read-write, dirty, old	.10...111001
 266 * read-write, dirty, young	.00...111101
 267 *
 268 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
 269 * pte_none    is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
 270 * pte_file    is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
 271 * pte_swap    is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
 272 */
 273
 274#ifndef CONFIG_64BIT
 275
 276/* Bits in the segment table address-space-control-element */
 277#define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
 278#define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
 279#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 280#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 281#define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
 282
 283/* Bits in the segment table entry */
 284#define _SEGMENT_ENTRY_BITS	0x7fffffffUL	/* Valid segment table bits */
 285#define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
 286#define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
 287#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
 288#define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
 289#define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
 290#define _SEGMENT_ENTRY_NONE	_SEGMENT_ENTRY_PROTECT
 291
 292#define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
 293#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
 294
 295/*
 296 * Segment table entry encoding (I = invalid, R = read-only bit):
 297 *		..R...I.....
 298 * prot-none	..1...1.....
 299 * read-only	..1...0.....
 300 * read-write	..0...0.....
 301 * empty	..0...1.....
 302 */
 303
 304/* Page status table bits for virtualization */
 305#define PGSTE_ACC_BITS	0xf0000000UL
 306#define PGSTE_FP_BIT	0x08000000UL
 307#define PGSTE_PCL_BIT	0x00800000UL
 308#define PGSTE_HR_BIT	0x00400000UL
 309#define PGSTE_HC_BIT	0x00200000UL
 310#define PGSTE_GR_BIT	0x00040000UL
 311#define PGSTE_GC_BIT	0x00020000UL
 312#define PGSTE_IN_BIT	0x00008000UL	/* IPTE notify bit */
 313
 314#else /* CONFIG_64BIT */
 315
 316/* Bits in the segment/region table address-space-control-element */
 317#define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
 318#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
 319#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
 320#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
 321#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
 322#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
 323#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
 324#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
 325#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
 326#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
 327#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
 328
 329/* Bits in the region table entry */
 330#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
 331#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
 
 
 332#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
 333#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
 334#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
 335#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
 336#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
 337#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
 338
 339#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 340#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 341#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 342#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 343#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 344#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 345
 346#define _REGION3_ENTRY_LARGE	0x400	/* RTTE-format control, large page  */
 347#define _REGION3_ENTRY_RO	0x200	/* page protection bit		    */
 348#define _REGION3_ENTRY_CO	0x100	/* change-recording override	    */
 
 
 
 
 
 
 
 
 
 
 
 349
 350/* Bits in the segment table entry */
 351#define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
 352#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL
 
 353#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
 354#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
 355#define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
 
 356#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
 
 357
 358#define _SEGMENT_ENTRY		(0)
 359#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
 360
 361#define _SEGMENT_ENTRY_LARGE	0x400	/* STE-format control, large page   */
 362#define _SEGMENT_ENTRY_CO	0x100	/* change-recording override   */
 363#define _SEGMENT_ENTRY_SPLIT	0x001	/* THP splitting bit */
 364#define _SEGMENT_ENTRY_YOUNG	0x002	/* SW segment young bit */
 365#define _SEGMENT_ENTRY_NONE	_SEGMENT_ENTRY_YOUNG
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367/*
 368 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
 369 *			..R...I...y.
 370 * prot-none, old	..0...1...1.
 371 * prot-none, young	..1...1...1.
 372 * read-only, old	..1...1...0.
 373 * read-only, young	..1...0...1.
 374 * read-write, old	..0...1...0.
 375 * read-write, young	..0...0...1.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376 * The segment table origin is used to distinguish empty (origin==0) from
 377 * read-write, old segment table entries (origin!=0)
 
 
 378 */
 379
 380#define _SEGMENT_ENTRY_SPLIT_BIT 0	/* THP splitting bit number */
 381
 382/* Set of bits not changed in pmd_modify */
 383#define _SEGMENT_CHG_MASK	(_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
 384				 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
 385
 386/* Page status table bits for virtualization */
 387#define PGSTE_ACC_BITS	0xf000000000000000UL
 388#define PGSTE_FP_BIT	0x0800000000000000UL
 389#define PGSTE_PCL_BIT	0x0080000000000000UL
 390#define PGSTE_HR_BIT	0x0040000000000000UL
 391#define PGSTE_HC_BIT	0x0020000000000000UL
 392#define PGSTE_GR_BIT	0x0004000000000000UL
 393#define PGSTE_GC_BIT	0x0002000000000000UL
 394#define PGSTE_IN_BIT	0x0000800000000000UL	/* IPTE notify bit */
 395
 396#endif /* CONFIG_64BIT */
 397
 398/* Guest Page State used for virtualization */
 399#define _PGSTE_GPS_ZERO		0x0000000080000000UL
 400#define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
 401#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
 402#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
 
 
 
 403
 404/*
 405 * A user page table pointer has the space-switch-event bit, the
 406 * private-space-control bit and the storage-alteration-event-control
 407 * bit set. A kernel page table pointer doesn't need them.
 408 */
 409#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 410				 _ASCE_ALT_EVENT)
 411
 412/*
 413 * Page protection definitions.
 414 */
 415#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID)
 416#define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
 
 
 417				 _PAGE_INVALID | _PAGE_PROTECT)
 418#define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 
 
 419				 _PAGE_INVALID | _PAGE_PROTECT)
 420
 421#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 422				 _PAGE_YOUNG | _PAGE_DIRTY)
 423#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 424				 _PAGE_YOUNG | _PAGE_DIRTY)
 425#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 426				 _PAGE_PROTECT)
 
 
 427
 428/*
 429 * On s390 the page table entry has an invalid bit and a read-only bit.
 430 * Read permission implies execute permission and write permission
 431 * implies read permission.
 432 */
 433         /*xwr*/
 434#define __P000	PAGE_NONE
 435#define __P001	PAGE_READ
 436#define __P010	PAGE_READ
 437#define __P011	PAGE_READ
 438#define __P100	PAGE_READ
 439#define __P101	PAGE_READ
 440#define __P110	PAGE_READ
 441#define __P111	PAGE_READ
 442
 443#define __S000	PAGE_NONE
 444#define __S001	PAGE_READ
 445#define __S010	PAGE_WRITE
 446#define __S011	PAGE_WRITE
 447#define __S100	PAGE_READ
 448#define __S101	PAGE_READ
 449#define __S110	PAGE_WRITE
 450#define __S111	PAGE_WRITE
 451
 452/*
 453 * Segment entry (large page) protection definitions.
 454 */
 455#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
 456				 _SEGMENT_ENTRY_NONE)
 457#define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_INVALID | \
 458				 _SEGMENT_ENTRY_PROTECT)
 459#define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_INVALID)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 461static inline int mm_has_pgste(struct mm_struct *mm)
 462{
 463#ifdef CONFIG_PGSTE
 464	if (unlikely(mm->context.has_pgste))
 465		return 1;
 466#endif
 467	return 0;
 468}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469/*
 470 * pgd/pmd/pte query functions
 
 471 */
 472#ifndef CONFIG_64BIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474static inline int pgd_present(pgd_t pgd) { return 1; }
 475static inline int pgd_none(pgd_t pgd)    { return 0; }
 476static inline int pgd_bad(pgd_t pgd)     { return 0; }
 
 
 
 477
 478static inline int pud_present(pud_t pud) { return 1; }
 479static inline int pud_none(pud_t pud)	 { return 0; }
 480static inline int pud_large(pud_t pud)	 { return 0; }
 481static inline int pud_bad(pud_t pud)	 { return 0; }
 482
 483#else /* CONFIG_64BIT */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 485static inline int pgd_present(pgd_t pgd)
 486{
 487	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 488		return 1;
 489	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 490}
 491
 492static inline int pgd_none(pgd_t pgd)
 493{
 494	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 495		return 0;
 496	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 497}
 498
 499static inline int pgd_bad(pgd_t pgd)
 500{
 501	/*
 502	 * With dynamic page table levels the pgd can be a region table
 503	 * entry or a segment table entry. Check for the bit that are
 504	 * invalid for either table entry.
 505	 */
 506	unsigned long mask =
 507		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 508		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 509	return (pgd_val(pgd) & mask) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510}
 511
 512static inline int pud_present(pud_t pud)
 513{
 514	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 515		return 1;
 516	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 517}
 518
 519static inline int pud_none(pud_t pud)
 520{
 521	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 522		return 0;
 523	return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
 524}
 525
 
 526static inline int pud_large(pud_t pud)
 527{
 528	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 529		return 0;
 530	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 531}
 532
 533static inline int pud_bad(pud_t pud)
 
 534{
 535	/*
 536	 * With dynamic page table levels the pud can be a region table
 537	 * entry or a segment table entry. Check for the bit that are
 538	 * invalid for either table entry.
 539	 */
 540	unsigned long mask =
 541		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 542		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 543	return (pud_val(pud) & mask) != 0;
 544}
 545
 546#endif /* CONFIG_64BIT */
 
 
 
 
 
 547
 548static inline int pmd_present(pmd_t pmd)
 549{
 550	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
 
 
 
 
 
 
 551}
 552
 553static inline int pmd_none(pmd_t pmd)
 554{
 555	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
 
 
 
 
 
 
 556}
 557
 558static inline int pmd_large(pmd_t pmd)
 559{
 560#ifdef CONFIG_64BIT
 561	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 562#else
 563	return 0;
 564#endif
 565}
 566
 567static inline int pmd_prot_none(pmd_t pmd)
 568{
 569	return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) &&
 570		(pmd_val(pmd) & _SEGMENT_ENTRY_NONE);
 571}
 572
 573static inline int pmd_bad(pmd_t pmd)
 
 574{
 575#ifdef CONFIG_64BIT
 576	if (pmd_large(pmd))
 577		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 578#endif
 579	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 580}
 581
 582#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 583extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 584				 unsigned long addr, pmd_t *pmdp);
 585
 586#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 587extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 588				 unsigned long address, pmd_t *pmdp,
 589				 pmd_t entry, int dirty);
 590
 591#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 592extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 593				  unsigned long address, pmd_t *pmdp);
 594
 595#define __HAVE_ARCH_PMD_WRITE
 596static inline int pmd_write(pmd_t pmd)
 597{
 598	if (pmd_prot_none(pmd))
 599		return 0;
 600	return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
 601}
 602
 
 603static inline int pmd_young(pmd_t pmd)
 604{
 605	int young = 0;
 606#ifdef CONFIG_64BIT
 607	if (pmd_prot_none(pmd))
 608		young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0;
 609	else
 610		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 611#endif
 612	return young;
 613}
 614
 615static inline int pte_present(pte_t pte)
 616{
 617	/* Bit pattern: (pte & 0x001) == 0x001 */
 618	return (pte_val(pte) & _PAGE_PRESENT) != 0;
 619}
 620
 621static inline int pte_none(pte_t pte)
 622{
 623	/* Bit pattern: pte == 0x400 */
 624	return pte_val(pte) == _PAGE_INVALID;
 625}
 626
 627static inline int pte_swap(pte_t pte)
 628{
 629	/* Bit pattern: (pte & 0x603) == 0x402 */
 630	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
 631				_PAGE_TYPE | _PAGE_PRESENT))
 632		== (_PAGE_INVALID | _PAGE_TYPE);
 633}
 634
 635static inline int pte_file(pte_t pte)
 636{
 637	/* Bit pattern: (pte & 0x601) == 0x600 */
 638	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
 639		== (_PAGE_INVALID | _PAGE_PROTECT);
 640}
 641
 642static inline int pte_special(pte_t pte)
 643{
 644	return (pte_val(pte) & _PAGE_SPECIAL);
 645}
 646
 647#define __HAVE_ARCH_PTE_SAME
 648static inline int pte_same(pte_t a, pte_t b)
 649{
 650	return pte_val(a) == pte_val(b);
 651}
 652
 653static inline pgste_t pgste_get_lock(pte_t *ptep)
 
 654{
 655	unsigned long new = 0;
 656#ifdef CONFIG_PGSTE
 657	unsigned long old;
 658
 659	preempt_disable();
 660	asm(
 661		"	lg	%0,%2\n"
 662		"0:	lgr	%1,%0\n"
 663		"	nihh	%0,0xff7f\n"	/* clear PCL bit in old */
 664		"	oihh	%1,0x0080\n"	/* set PCL bit in new */
 665		"	csg	%0,%1,%2\n"
 666		"	jl	0b\n"
 667		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 668		: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
 669#endif
 670	return __pgste(new);
 671}
 672
 673static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 
 674{
 675#ifdef CONFIG_PGSTE
 676	asm(
 677		"	nihh	%1,0xff7f\n"	/* clear PCL bit */
 678		"	stg	%1,%0\n"
 679		: "=Q" (ptep[PTRS_PER_PTE])
 680		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
 681		: "cc", "memory");
 682	preempt_enable();
 683#endif
 684}
 685
 686static inline pgste_t pgste_get(pte_t *ptep)
 687{
 688	unsigned long pgste = 0;
 689#ifdef CONFIG_PGSTE
 690	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
 691#endif
 692	return __pgste(pgste);
 693}
 694
 695static inline void pgste_set(pte_t *ptep, pgste_t pgste)
 696{
 697#ifdef CONFIG_PGSTE
 698	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
 699#endif
 700}
 701
 702static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
 703{
 704#ifdef CONFIG_PGSTE
 705	unsigned long address, bits, skey;
 706
 707	if (pte_val(*ptep) & _PAGE_INVALID)
 708		return pgste;
 709	address = pte_val(*ptep) & PAGE_MASK;
 710	skey = (unsigned long) page_get_storage_key(address);
 711	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 712	if (!(pgste_val(pgste) & PGSTE_HC_BIT) && (bits & _PAGE_CHANGED)) {
 713		/* Transfer dirty + referenced bit to host bits in pgste */
 714		pgste_val(pgste) |= bits << 52;
 715		page_set_storage_key(address, skey ^ bits, 0);
 716	} else if (!(pgste_val(pgste) & PGSTE_HR_BIT) &&
 717		   (bits & _PAGE_REFERENCED)) {
 718		/* Transfer referenced bit to host bit in pgste */
 719		pgste_val(pgste) |= PGSTE_HR_BIT;
 720		page_reset_referenced(address);
 721	}
 722	/* Transfer page changed & referenced bit to guest bits in pgste */
 723	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
 724	/* Copy page access key and fetch protection bit to pgste */
 725	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
 726	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 727#endif
 728	return pgste;
 729
 730}
 
 731
 732static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
 733{
 734#ifdef CONFIG_PGSTE
 735	if (pte_val(*ptep) & _PAGE_INVALID)
 736		return pgste;
 737	/* Get referenced bit from storage key */
 738	if (page_reset_referenced(pte_val(*ptep) & PAGE_MASK))
 739		pgste_val(pgste) |= PGSTE_HR_BIT | PGSTE_GR_BIT;
 740#endif
 741	return pgste;
 742}
 
 743
 744static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
 745{
 746#ifdef CONFIG_PGSTE
 747	unsigned long address;
 748	unsigned long nkey;
 749
 750	if (pte_val(entry) & _PAGE_INVALID)
 751		return;
 752	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
 753	address = pte_val(entry) & PAGE_MASK;
 754	/*
 755	 * Set page access key and fetch protection bit from pgste.
 756	 * The guest C/R information is still in the PGSTE, set real
 757	 * key C/R to 0.
 758	 */
 759	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
 760	page_set_storage_key(address, nkey, 0);
 761#endif
 762}
 
 763
 764static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
 765{
 766	if (!MACHINE_HAS_ESOP &&
 767	    (pte_val(entry) & _PAGE_PRESENT) &&
 768	    (pte_val(entry) & _PAGE_WRITE)) {
 769		/*
 770		 * Without enhanced suppression-on-protection force
 771		 * the dirty bit on for all writable ptes.
 772		 */
 773		pte_val(entry) |= _PAGE_DIRTY;
 774		pte_val(entry) &= ~_PAGE_PROTECT;
 775	}
 776	*ptep = entry;
 777}
 778
 779/**
 780 * struct gmap_struct - guest address space
 781 * @mm: pointer to the parent mm_struct
 782 * @table: pointer to the page directory
 783 * @asce: address space control element for gmap page table
 784 * @crst_list: list of all crst tables used in the guest address space
 785 * @pfault_enabled: defines if pfaults are applicable for the guest
 786 */
 787struct gmap {
 788	struct list_head list;
 789	struct mm_struct *mm;
 790	unsigned long *table;
 791	unsigned long asce;
 792	void *private;
 793	struct list_head crst_list;
 794	bool pfault_enabled;
 795};
 796
 797/**
 798 * struct gmap_rmap - reverse mapping for segment table entries
 799 * @gmap: pointer to the gmap_struct
 800 * @entry: pointer to a segment table entry
 801 * @vmaddr: virtual address in the guest address space
 802 */
 803struct gmap_rmap {
 804	struct list_head list;
 805	struct gmap *gmap;
 806	unsigned long *entry;
 807	unsigned long vmaddr;
 808};
 809
 810/**
 811 * struct gmap_pgtable - gmap information attached to a page table
 812 * @vmaddr: address of the 1MB segment in the process virtual memory
 813 * @mapper: list of segment table entries mapping a page table
 814 */
 815struct gmap_pgtable {
 816	unsigned long vmaddr;
 817	struct list_head mapper;
 818};
 819
 820/**
 821 * struct gmap_notifier - notify function block for page invalidation
 822 * @notifier_call: address of callback function
 823 */
 824struct gmap_notifier {
 825	struct list_head list;
 826	void (*notifier_call)(struct gmap *gmap, unsigned long address);
 827};
 828
 829struct gmap *gmap_alloc(struct mm_struct *mm);
 830void gmap_free(struct gmap *gmap);
 831void gmap_enable(struct gmap *gmap);
 832void gmap_disable(struct gmap *gmap);
 833int gmap_map_segment(struct gmap *gmap, unsigned long from,
 834		     unsigned long to, unsigned long len);
 835int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 836unsigned long __gmap_translate(unsigned long address, struct gmap *);
 837unsigned long gmap_translate(unsigned long address, struct gmap *);
 838unsigned long __gmap_fault(unsigned long address, struct gmap *);
 839unsigned long gmap_fault(unsigned long address, struct gmap *);
 840void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
 841void __gmap_zap(unsigned long address, struct gmap *);
 842
 843void gmap_register_ipte_notifier(struct gmap_notifier *);
 844void gmap_unregister_ipte_notifier(struct gmap_notifier *);
 845int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
 846void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
 847
 848static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
 849					pte_t *ptep, pgste_t pgste)
 850{
 851#ifdef CONFIG_PGSTE
 852	if (pgste_val(pgste) & PGSTE_IN_BIT) {
 853		pgste_val(pgste) &= ~PGSTE_IN_BIT;
 854		gmap_do_ipte_notify(mm, ptep);
 855	}
 856#endif
 857	return pgste;
 858}
 859
 860/*
 861 * Certain architectures need to do special things when PTEs
 862 * within a page table are directly modified.  Thus, the following
 863 * hook is made available.
 864 */
 865static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 866			      pte_t *ptep, pte_t entry)
 867{
 868	pgste_t pgste;
 869
 870	if (mm_has_pgste(mm)) {
 871		pgste = pgste_get_lock(ptep);
 872		pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
 873		pgste_set_key(ptep, pgste, entry);
 874		pgste_set_pte(ptep, entry);
 875		pgste_set_unlock(ptep, pgste);
 876	} else {
 877		if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
 878			pte_val(entry) |= _PAGE_CO;
 879		*ptep = entry;
 880	}
 881}
 882
 883/*
 884 * query functions pte_write/pte_dirty/pte_young only work if
 885 * pte_present() is true. Undefined behaviour if not..
 886 */
 887static inline int pte_write(pte_t pte)
 888{
 889	return (pte_val(pte) & _PAGE_WRITE) != 0;
 890}
 891
 892static inline int pte_dirty(pte_t pte)
 893{
 894	return (pte_val(pte) & _PAGE_DIRTY) != 0;
 895}
 896
 897static inline int pte_young(pte_t pte)
 898{
 899	return (pte_val(pte) & _PAGE_YOUNG) != 0;
 900}
 901
 902#define __HAVE_ARCH_PTE_UNUSED
 903static inline int pte_unused(pte_t pte)
 904{
 905	return pte_val(pte) & _PAGE_UNUSED;
 906}
 907
 908/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909 * pgd/pmd/pte modification functions
 910 */
 911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912static inline void pgd_clear(pgd_t *pgd)
 913{
 914#ifdef CONFIG_64BIT
 915	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 916		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 917#endif
 
 
 
 
 918}
 919
 920static inline void pud_clear(pud_t *pud)
 921{
 922#ifdef CONFIG_64BIT
 923	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 924		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 925#endif
 926}
 927
 928static inline void pmd_clear(pmd_t *pmdp)
 929{
 930	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
 931}
 932
 933static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 934{
 935	pte_val(*ptep) = _PAGE_INVALID;
 936}
 937
 938/*
 939 * The following pte modification functions only work if
 940 * pte_present() is true. Undefined behaviour if not..
 941 */
 942static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 943{
 944	pte_val(pte) &= _PAGE_CHG_MASK;
 945	pte_val(pte) |= pgprot_val(newprot);
 946	/*
 947	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
 948	 * invalid bit set, clear it again for readable, young pages
 949	 */
 950	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 951		pte_val(pte) &= ~_PAGE_INVALID;
 952	/*
 953	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
 954	 * bit set, clear it again for writable, dirty pages
 955	 */
 956	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 957		pte_val(pte) &= ~_PAGE_PROTECT;
 958	return pte;
 959}
 960
 961static inline pte_t pte_wrprotect(pte_t pte)
 962{
 963	pte_val(pte) &= ~_PAGE_WRITE;
 964	pte_val(pte) |= _PAGE_PROTECT;
 965	return pte;
 966}
 967
 968static inline pte_t pte_mkwrite(pte_t pte)
 969{
 970	pte_val(pte) |= _PAGE_WRITE;
 971	if (pte_val(pte) & _PAGE_DIRTY)
 972		pte_val(pte) &= ~_PAGE_PROTECT;
 973	return pte;
 974}
 975
 976static inline pte_t pte_mkclean(pte_t pte)
 977{
 978	pte_val(pte) &= ~_PAGE_DIRTY;
 979	pte_val(pte) |= _PAGE_PROTECT;
 980	return pte;
 981}
 982
 983static inline pte_t pte_mkdirty(pte_t pte)
 984{
 985	pte_val(pte) |= _PAGE_DIRTY;
 986	if (pte_val(pte) & _PAGE_WRITE)
 987		pte_val(pte) &= ~_PAGE_PROTECT;
 988	return pte;
 989}
 990
 991static inline pte_t pte_mkold(pte_t pte)
 992{
 993	pte_val(pte) &= ~_PAGE_YOUNG;
 994	pte_val(pte) |= _PAGE_INVALID;
 995	return pte;
 996}
 997
 998static inline pte_t pte_mkyoung(pte_t pte)
 999{
1000	pte_val(pte) |= _PAGE_YOUNG;
1001	if (pte_val(pte) & _PAGE_READ)
1002		pte_val(pte) &= ~_PAGE_INVALID;
1003	return pte;
1004}
1005
1006static inline pte_t pte_mkspecial(pte_t pte)
1007{
1008	pte_val(pte) |= _PAGE_SPECIAL;
1009	return pte;
1010}
1011
1012#ifdef CONFIG_HUGETLB_PAGE
1013static inline pte_t pte_mkhuge(pte_t pte)
1014{
1015	pte_val(pte) |= _PAGE_LARGE;
1016	return pte;
1017}
1018#endif
1019
1020/*
1021 * Get (and clear) the user dirty bit for a pte.
1022 */
1023static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1024						 pte_t *ptep)
1025{
1026	pgste_t pgste;
1027	int dirty = 0;
1028
1029	if (mm_has_pgste(mm)) {
1030		pgste = pgste_get_lock(ptep);
1031		pgste = pgste_update_all(ptep, pgste);
1032		dirty = !!(pgste_val(pgste) & PGSTE_HC_BIT);
1033		pgste_val(pgste) &= ~PGSTE_HC_BIT;
1034		pgste_set_unlock(ptep, pgste);
1035		return dirty;
1036	}
1037	return dirty;
1038}
1039
1040/*
1041 * Get (and clear) the user referenced bit for a pte.
1042 */
1043static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
1044						 pte_t *ptep)
1045{
1046	pgste_t pgste;
1047	int young = 0;
1048
1049	if (mm_has_pgste(mm)) {
1050		pgste = pgste_get_lock(ptep);
1051		pgste = pgste_update_young(ptep, pgste);
1052		young = !!(pgste_val(pgste) & PGSTE_HR_BIT);
1053		pgste_val(pgste) &= ~PGSTE_HR_BIT;
1054		pgste_set_unlock(ptep, pgste);
 
1055	}
1056	return young;
1057}
1058
1059static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1060{
1061	unsigned long pto = (unsigned long) ptep;
1062
1063#ifndef CONFIG_64BIT
1064	/* pto in ESA mode must point to the start of the segment table */
1065	pto &= 0x7ffffc00;
1066#endif
1067	/* Invalidation + global TLB flush for the pte */
1068	asm volatile(
1069		"	ipte	%2,%3"
1070		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071}
1072
1073static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1074{
1075	unsigned long pto = (unsigned long) ptep;
1076
1077#ifndef CONFIG_64BIT
1078	/* pto in ESA mode must point to the start of the segment table */
1079	pto &= 0x7ffffc00;
1080#endif
1081	/* Invalidation + local TLB flush for the pte */
1082	asm volatile(
1083		"	.insn rrf,0xb2210000,%2,%3,0,1"
1084		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1085}
1086
1087static inline void ptep_flush_direct(struct mm_struct *mm,
1088				     unsigned long address, pte_t *ptep)
1089{
1090	int active, count;
1091
1092	if (pte_val(*ptep) & _PAGE_INVALID)
1093		return;
1094	active = (mm == current->active_mm) ? 1 : 0;
1095	count = atomic_add_return(0x10000, &mm->context.attach_count);
1096	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1097	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1098		__ptep_ipte_local(address, ptep);
1099	else
1100		__ptep_ipte(address, ptep);
1101	atomic_sub(0x10000, &mm->context.attach_count);
1102}
1103
1104static inline void ptep_flush_lazy(struct mm_struct *mm,
1105				   unsigned long address, pte_t *ptep)
1106{
1107	int active, count;
1108
1109	if (pte_val(*ptep) & _PAGE_INVALID)
1110		return;
1111	active = (mm == current->active_mm) ? 1 : 0;
1112	count = atomic_add_return(0x10000, &mm->context.attach_count);
1113	if ((count & 0xffff) <= active) {
1114		pte_val(*ptep) |= _PAGE_INVALID;
1115		mm->context.flush_mm = 1;
1116	} else
1117		__ptep_ipte(address, ptep);
1118	atomic_sub(0x10000, &mm->context.attach_count);
1119}
1120
1121#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1122static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1123					    unsigned long addr, pte_t *ptep)
1124{
1125	pgste_t pgste;
1126	pte_t pte;
1127	int young;
1128
1129	if (mm_has_pgste(vma->vm_mm)) {
1130		pgste = pgste_get_lock(ptep);
1131		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1132	}
1133
1134	pte = *ptep;
1135	ptep_flush_direct(vma->vm_mm, addr, ptep);
1136	young = pte_young(pte);
1137	pte = pte_mkold(pte);
1138
1139	if (mm_has_pgste(vma->vm_mm)) {
1140		pgste_set_pte(ptep, pte);
1141		pgste_set_unlock(ptep, pgste);
1142	} else
1143		*ptep = pte;
1144
1145	return young;
1146}
1147
1148#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1149static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1150					 unsigned long address, pte_t *ptep)
1151{
1152	return ptep_test_and_clear_young(vma, address, ptep);
1153}
1154
1155/*
1156 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1157 * both clear the TLB for the unmapped pte. The reason is that
1158 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1159 * to modify an active pte. The sequence is
1160 *   1) ptep_get_and_clear
1161 *   2) set_pte_at
1162 *   3) flush_tlb_range
1163 * On s390 the tlb needs to get flushed with the modification of the pte
1164 * if the pte is active. The only way how this can be implemented is to
1165 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1166 * is a nop.
1167 */
1168#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1169static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1170				       unsigned long address, pte_t *ptep)
1171{
1172	pgste_t pgste;
1173	pte_t pte;
1174
1175	if (mm_has_pgste(mm)) {
1176		pgste = pgste_get_lock(ptep);
1177		pgste = pgste_ipte_notify(mm, ptep, pgste);
1178	}
1179
1180	pte = *ptep;
1181	ptep_flush_lazy(mm, address, ptep);
1182	pte_val(*ptep) = _PAGE_INVALID;
1183
1184	if (mm_has_pgste(mm)) {
1185		pgste = pgste_update_all(&pte, pgste);
1186		pgste_set_unlock(ptep, pgste);
1187	}
1188	return pte;
1189}
1190
1191#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1192static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1193					   unsigned long address,
1194					   pte_t *ptep)
1195{
1196	pgste_t pgste;
1197	pte_t pte;
1198
1199	if (mm_has_pgste(mm)) {
1200		pgste = pgste_get_lock(ptep);
1201		pgste_ipte_notify(mm, ptep, pgste);
1202	}
1203
1204	pte = *ptep;
1205	ptep_flush_lazy(mm, address, ptep);
1206
1207	if (mm_has_pgste(mm)) {
1208		pgste = pgste_update_all(&pte, pgste);
1209		pgste_set(ptep, pgste);
1210	}
1211	return pte;
1212}
1213
1214static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1215					   unsigned long address,
1216					   pte_t *ptep, pte_t pte)
1217{
1218	pgste_t pgste;
1219
1220	if (mm_has_pgste(mm)) {
1221		pgste = pgste_get(ptep);
1222		pgste_set_key(ptep, pgste, pte);
1223		pgste_set_pte(ptep, pte);
1224		pgste_set_unlock(ptep, pgste);
1225	} else
1226		*ptep = pte;
1227}
1228
1229#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1230static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1231				     unsigned long address, pte_t *ptep)
1232{
1233	pgste_t pgste;
1234	pte_t pte;
1235
1236	if (mm_has_pgste(vma->vm_mm)) {
1237		pgste = pgste_get_lock(ptep);
1238		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1239	}
1240
1241	pte = *ptep;
1242	ptep_flush_direct(vma->vm_mm, address, ptep);
1243	pte_val(*ptep) = _PAGE_INVALID;
1244
1245	if (mm_has_pgste(vma->vm_mm)) {
1246		if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1247		    _PGSTE_GPS_USAGE_UNUSED)
1248			pte_val(pte) |= _PAGE_UNUSED;
1249		pgste = pgste_update_all(&pte, pgste);
1250		pgste_set_unlock(ptep, pgste);
1251	}
1252	return pte;
1253}
1254
1255/*
1256 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1257 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1258 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1259 * cannot be accessed while the batched unmap is running. In this case
1260 * full==1 and a simple pte_clear is enough. See tlb.h.
1261 */
1262#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1263static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1264					    unsigned long address,
1265					    pte_t *ptep, int full)
1266{
1267	pgste_t pgste;
1268	pte_t pte;
1269
1270	if (!full && mm_has_pgste(mm)) {
1271		pgste = pgste_get_lock(ptep);
1272		pgste = pgste_ipte_notify(mm, ptep, pgste);
 
 
1273	}
1274
1275	pte = *ptep;
1276	if (!full)
1277		ptep_flush_lazy(mm, address, ptep);
1278	pte_val(*ptep) = _PAGE_INVALID;
1279
1280	if (!full && mm_has_pgste(mm)) {
1281		pgste = pgste_update_all(&pte, pgste);
1282		pgste_set_unlock(ptep, pgste);
1283	}
1284	return pte;
 
 
 
 
 
 
1285}
1286
1287#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1288static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1289				       unsigned long address, pte_t *ptep)
1290{
1291	pgste_t pgste;
1292	pte_t pte = *ptep;
1293
1294	if (pte_write(pte)) {
1295		if (mm_has_pgste(mm)) {
1296			pgste = pgste_get_lock(ptep);
1297			pgste = pgste_ipte_notify(mm, ptep, pgste);
1298		}
1299
1300		ptep_flush_lazy(mm, address, ptep);
1301		pte = pte_wrprotect(pte);
1302
1303		if (mm_has_pgste(mm)) {
1304			pgste_set_pte(ptep, pte);
1305			pgste_set_unlock(ptep, pgste);
1306		} else
1307			*ptep = pte;
1308	}
1309	return pte;
1310}
1311
1312#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1313static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1314					unsigned long address, pte_t *ptep,
1315					pte_t entry, int dirty)
1316{
1317	pgste_t pgste;
1318
1319	if (pte_same(*ptep, entry))
1320		return 0;
1321	if (mm_has_pgste(vma->vm_mm)) {
1322		pgste = pgste_get_lock(ptep);
1323		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1324	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325
1326	ptep_flush_direct(vma->vm_mm, address, ptep);
 
1327
1328	if (mm_has_pgste(vma->vm_mm)) {
1329		pgste_set_pte(ptep, entry);
1330		pgste_set_unlock(ptep, pgste);
1331	} else
1332		*ptep = entry;
1333	return 1;
 
 
 
 
 
 
 
 
1334}
1335
1336/*
1337 * Conversion functions: convert a page and protection to a page entry,
1338 * and a page entry and page directory to the page they refer to.
1339 */
1340static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1341{
1342	pte_t __pte;
1343	pte_val(__pte) = physpage + pgprot_val(pgprot);
 
 
 
1344	return pte_mkyoung(__pte);
1345}
1346
1347static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1348{
1349	unsigned long physpage = page_to_phys(page);
1350	pte_t __pte = mk_pte_phys(physpage, pgprot);
1351
1352	if (pte_write(__pte) && PageDirty(page))
1353		__pte = pte_mkdirty(__pte);
1354	return __pte;
1355}
1356
1357#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 
1358#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1359#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1360#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1361
1362#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1363#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364
1365#ifndef CONFIG_64BIT
1366
1367#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1368#define pud_deref(pmd) ({ BUG(); 0UL; })
1369#define pgd_deref(pmd) ({ BUG(); 0UL; })
 
 
 
 
1370
1371#define pud_offset(pgd, address) ((pud_t *) pgd)
1372#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
 
 
1373
1374#else /* CONFIG_64BIT */
 
 
 
 
 
 
1375
1376#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1377#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1378#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
 
 
1379
1380static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1381{
1382	pud_t *pud = (pud_t *) pgd;
1383	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1384		pud = (pud_t *) pgd_deref(*pgd);
1385	return pud  + pud_index(address);
1386}
 
1387
1388static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1389{
1390	pmd_t *pmd = (pmd_t *) pud;
1391	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1392		pmd = (pmd_t *) pud_deref(*pud);
1393	return pmd + pmd_index(address);
 
 
 
1394}
1395
1396#endif /* CONFIG_64BIT */
 
 
 
 
1397
1398#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1399#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1400#define pte_page(x) pfn_to_page(pte_pfn(x))
1401
1402#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404/* Find an entry in the lowest level page table.. */
1405#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1406#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1407#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1408#define pte_unmap(pte) do { } while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1411static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1412{
1413	/*
1414	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1415	 * Convert to segment table entry format.
1416	 */
1417	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1418		return pgprot_val(SEGMENT_NONE);
1419	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1420		return pgprot_val(SEGMENT_READ);
1421	return pgprot_val(SEGMENT_WRITE);
 
 
 
 
1422}
1423
1424static inline pmd_t pmd_mkyoung(pmd_t pmd)
1425{
1426#ifdef CONFIG_64BIT
1427	if (pmd_prot_none(pmd)) {
1428		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1429	} else {
1430		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1431		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1432	}
1433#endif
1434	return pmd;
1435}
1436
1437static inline pmd_t pmd_mkold(pmd_t pmd)
1438{
1439#ifdef CONFIG_64BIT
1440	if (pmd_prot_none(pmd)) {
1441		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1442	} else {
1443		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1444		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1445	}
1446#endif
1447	return pmd;
1448}
1449
1450static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1451{
1452	int young;
1453
1454	young = pmd_young(pmd);
1455	pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1456	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1457	if (young)
1458		pmd = pmd_mkyoung(pmd);
 
 
 
 
 
 
1459	return pmd;
1460}
1461
1462static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1463{
1464	pmd_t __pmd;
1465	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1466	return pmd_mkyoung(__pmd);
1467}
1468
1469static inline pmd_t pmd_mkwrite(pmd_t pmd)
1470{
1471	/* Do not clobber PROT_NONE segments! */
1472	if (!pmd_prot_none(pmd))
1473		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1474	return pmd;
1475}
1476#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1477
1478static inline void __pmdp_csp(pmd_t *pmdp)
1479{
1480	register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1481	register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1482					       _SEGMENT_ENTRY_INVALID;
1483	register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1484
1485	asm volatile(
1486		"	csp %1,%3"
1487		: "=m" (*pmdp)
1488		: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1489}
1490
1491static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1492{
1493	unsigned long sto;
1494
1495	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1496	asm volatile(
1497		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1498		: "=m" (*pmdp)
1499		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1500		: "cc" );
1501}
1502
1503static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
 
 
1504{
1505	unsigned long sto;
1506
1507	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1508	asm volatile(
1509		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1510		: "=m" (*pmdp)
1511		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1512		: "cc" );
 
 
 
 
 
 
 
 
 
 
 
 
1513}
1514
1515static inline void pmdp_flush_direct(struct mm_struct *mm,
1516				     unsigned long address, pmd_t *pmdp)
1517{
1518	int active, count;
1519
1520	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1521		return;
1522	if (!MACHINE_HAS_IDTE) {
1523		__pmdp_csp(pmdp);
1524		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525	}
1526	active = (mm == current->active_mm) ? 1 : 0;
1527	count = atomic_add_return(0x10000, &mm->context.attach_count);
1528	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1529	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1530		__pmdp_idte_local(address, pmdp);
1531	else
1532		__pmdp_idte(address, pmdp);
1533	atomic_sub(0x10000, &mm->context.attach_count);
1534}
1535
1536static inline void pmdp_flush_lazy(struct mm_struct *mm,
1537				   unsigned long address, pmd_t *pmdp)
1538{
1539	int active, count;
1540
1541	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1542		return;
1543	active = (mm == current->active_mm) ? 1 : 0;
1544	count = atomic_add_return(0x10000, &mm->context.attach_count);
1545	if ((count & 0xffff) <= active) {
1546		pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1547		mm->context.flush_mm = 1;
1548	} else if (MACHINE_HAS_IDTE)
1549		__pmdp_idte(address, pmdp);
1550	else
1551		__pmdp_csp(pmdp);
1552	atomic_sub(0x10000, &mm->context.attach_count);
1553}
1554
1555#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1556
1557#define __HAVE_ARCH_PGTABLE_DEPOSIT
1558extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1559				       pgtable_t pgtable);
1560
1561#define __HAVE_ARCH_PGTABLE_WITHDRAW
1562extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1563
1564static inline int pmd_trans_splitting(pmd_t pmd)
1565{
1566	return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
 
 
 
 
 
 
 
 
 
 
 
1567}
1568
1569static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1570			      pmd_t *pmdp, pmd_t entry)
 
1571{
1572	if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
1573		pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1574	*pmdp = entry;
 
1575}
1576
1577static inline pmd_t pmd_mkhuge(pmd_t pmd)
 
 
1578{
1579	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1580	return pmd;
1581}
1582
1583static inline pmd_t pmd_wrprotect(pmd_t pmd)
 
1584{
1585	/* Do not clobber PROT_NONE segments! */
1586	if (!pmd_prot_none(pmd))
1587		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1588	return pmd;
1589}
1590
1591static inline pmd_t pmd_mkdirty(pmd_t pmd)
1592{
1593	/* No dirty bit in the segment table entry. */
1594	return pmd;
 
1595}
1596
1597#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1598static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1599					    unsigned long address, pmd_t *pmdp)
1600{
1601	pmd_t pmd;
1602
1603	pmd = *pmdp;
1604	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1605	*pmdp = pmd_mkold(pmd);
1606	return pmd_young(pmd);
1607}
1608
1609#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1610static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1611				       unsigned long address, pmd_t *pmdp)
 
1612{
1613	pmd_t pmd = *pmdp;
1614
1615	pmdp_flush_direct(mm, address, pmdp);
1616	pmd_clear(pmdp);
1617	return pmd;
 
1618}
1619
1620#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1621static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1622				     unsigned long address, pmd_t *pmdp)
1623{
1624	return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1625}
1626
1627#define __HAVE_ARCH_PMDP_INVALIDATE
1628static inline void pmdp_invalidate(struct vm_area_struct *vma,
1629				   unsigned long address, pmd_t *pmdp)
1630{
1631	pmdp_flush_direct(vma->vm_mm, address, pmdp);
 
 
1632}
1633
1634#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1635static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1636				      unsigned long address, pmd_t *pmdp)
1637{
1638	pmd_t pmd = *pmdp;
1639
1640	if (pmd_write(pmd)) {
1641		pmdp_flush_direct(mm, address, pmdp);
1642		set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1643	}
 
 
 
 
 
1644}
 
1645
1646#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1647#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1648
1649static inline int pmd_trans_huge(pmd_t pmd)
1650{
1651	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1652}
1653
 
1654static inline int has_transparent_hugepage(void)
1655{
1656	return MACHINE_HAS_HPAGE ? 1 : 0;
1657}
1658
1659static inline unsigned long pmd_pfn(pmd_t pmd)
1660{
1661	return pmd_val(pmd) >> PAGE_SHIFT;
1662}
1663#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1664
1665/*
1666 * 31 bit swap entry format:
1667 * A page-table entry has some bits we have to treat in a special way.
1668 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1669 * exception will occur instead of a page translation exception. The
1670 * specifiation exception has the bad habit not to store necessary
1671 * information in the lowcore.
1672 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1673 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1674 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1675 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1676 * plus 24 for the offset.
1677 * 0|     offset        |0110|o|type |00|
1678 * 0 0000000001111111111 2222 2 22222 33
1679 * 0 1234567890123456789 0123 4 56789 01
1680 *
1681 * 64 bit swap entry format:
1682 * A page-table entry has some bits we have to treat in a special way.
1683 * Bits 52 and bit 55 have to be zero, otherwise an specification
1684 * exception will occur instead of a page translation exception. The
1685 * specifiation exception has the bad habit not to store necessary
1686 * information in the lowcore.
1687 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1688 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1689 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1690 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1691 * plus 56 for the offset.
1692 * |                      offset                        |0110|o|type |00|
1693 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1694 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1695 */
1696#ifndef CONFIG_64BIT
1697#define __SWP_OFFSET_MASK (~0UL >> 12)
1698#else
1699#define __SWP_OFFSET_MASK (~0UL >> 11)
1700#endif
 
1701static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1702{
1703	pte_t pte;
1704	offset &= __SWP_OFFSET_MASK;
1705	pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1706		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1707	return pte;
 
 
 
 
 
 
 
 
 
 
 
1708}
1709
1710#define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1711#define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1712#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
 
1713
1714#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1715#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1716
1717#ifndef CONFIG_64BIT
1718# define PTE_FILE_MAX_BITS	26
1719#else /* CONFIG_64BIT */
1720# define PTE_FILE_MAX_BITS	59
1721#endif /* CONFIG_64BIT */
1722
1723#define pte_to_pgoff(__pte) \
1724	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1725
1726#define pgoff_to_pte(__off) \
1727	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1728		   | _PAGE_INVALID | _PAGE_PROTECT })
1729
1730#endif /* !__ASSEMBLY__ */
1731
1732#define kern_addr_valid(addr)   (1)
1733
1734extern int vmem_add_mapping(unsigned long start, unsigned long size);
1735extern int vmem_remove_mapping(unsigned long start, unsigned long size);
 
 
 
 
1736extern int s390_enable_sie(void);
 
 
1737
1738/*
1739 * No page table caches to initialise
1740 */
1741static inline void pgtable_cache_init(void) { }
1742static inline void check_pgt_cache(void) { }
1743
1744#include <asm-generic/pgtable.h>
 
1745
1746#endif /* _S390_PAGE_H */