Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/acpi.h>
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
  36#include <uapi/linux/sched/types.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_message *msg)
 316{
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if (spi_valid_txbuf(msg, xfer))
 
 332		u64_stats_add(&stats->bytes_tx, xfer->len);
 333	if (spi_valid_rxbuf(msg, xfer))
 
 334		u64_stats_add(&stats->bytes_rx, xfer->len);
 335
 336	u64_stats_update_end(&stats->syncp);
 337	put_cpu();
 338}
 339
 340/*
 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 342 * and the sysfs version makes coldplug work too.
 343 */
 344static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 345{
 346	while (id->name[0]) {
 347		if (!strcmp(name, id->name))
 348			return id;
 349		id++;
 350	}
 351	return NULL;
 352}
 353
 354const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 355{
 356	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 357
 358	return spi_match_id(sdrv->id_table, sdev->modalias);
 359}
 360EXPORT_SYMBOL_GPL(spi_get_device_id);
 361
 362const void *spi_get_device_match_data(const struct spi_device *sdev)
 363{
 364	const void *match;
 365
 366	match = device_get_match_data(&sdev->dev);
 367	if (match)
 368		return match;
 369
 370	return (const void *)spi_get_device_id(sdev)->driver_data;
 371}
 372EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 373
 374static int spi_match_device(struct device *dev, const struct device_driver *drv)
 375{
 376	const struct spi_device	*spi = to_spi_device(dev);
 377	const struct spi_driver	*sdrv = to_spi_driver(drv);
 378
 379	/* Check override first, and if set, only use the named driver */
 380	if (spi->driver_override)
 381		return strcmp(spi->driver_override, drv->name) == 0;
 382
 383	/* Attempt an OF style match */
 384	if (of_driver_match_device(dev, drv))
 385		return 1;
 386
 387	/* Then try ACPI */
 388	if (acpi_driver_match_device(dev, drv))
 389		return 1;
 390
 391	if (sdrv->id_table)
 392		return !!spi_match_id(sdrv->id_table, spi->modalias);
 393
 394	return strcmp(spi->modalias, drv->name) == 0;
 395}
 396
 397static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 398{
 399	const struct spi_device		*spi = to_spi_device(dev);
 400	int rc;
 401
 402	rc = acpi_device_uevent_modalias(dev, env);
 403	if (rc != -ENODEV)
 404		return rc;
 405
 406	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 407}
 408
 409static int spi_probe(struct device *dev)
 410{
 411	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 412	struct spi_device		*spi = to_spi_device(dev);
 413	int ret;
 414
 415	ret = of_clk_set_defaults(dev->of_node, false);
 416	if (ret)
 417		return ret;
 418
 419	if (dev->of_node) {
 420		spi->irq = of_irq_get(dev->of_node, 0);
 421		if (spi->irq == -EPROBE_DEFER)
 422			return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n");
 423		if (spi->irq < 0)
 424			spi->irq = 0;
 425	}
 426
 427	if (has_acpi_companion(dev) && spi->irq < 0) {
 428		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
 429
 430		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
 431		if (spi->irq == -EPROBE_DEFER)
 432			return -EPROBE_DEFER;
 433		if (spi->irq < 0)
 434			spi->irq = 0;
 435	}
 436
 437	ret = dev_pm_domain_attach(dev, true);
 438	if (ret)
 439		return ret;
 440
 441	if (sdrv->probe) {
 442		ret = sdrv->probe(spi);
 443		if (ret)
 444			dev_pm_domain_detach(dev, true);
 445	}
 446
 447	return ret;
 448}
 449
 450static void spi_remove(struct device *dev)
 451{
 452	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 453
 454	if (sdrv->remove)
 455		sdrv->remove(to_spi_device(dev));
 456
 457	dev_pm_domain_detach(dev, true);
 458}
 459
 460static void spi_shutdown(struct device *dev)
 461{
 462	if (dev->driver) {
 463		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 464
 465		if (sdrv->shutdown)
 466			sdrv->shutdown(to_spi_device(dev));
 467	}
 468}
 469
 470const struct bus_type spi_bus_type = {
 471	.name		= "spi",
 472	.dev_groups	= spi_dev_groups,
 473	.match		= spi_match_device,
 474	.uevent		= spi_uevent,
 475	.probe		= spi_probe,
 476	.remove		= spi_remove,
 477	.shutdown	= spi_shutdown,
 478};
 479EXPORT_SYMBOL_GPL(spi_bus_type);
 480
 481/**
 482 * __spi_register_driver - register a SPI driver
 483 * @owner: owner module of the driver to register
 484 * @sdrv: the driver to register
 485 * Context: can sleep
 486 *
 487 * Return: zero on success, else a negative error code.
 488 */
 489int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 490{
 491	sdrv->driver.owner = owner;
 492	sdrv->driver.bus = &spi_bus_type;
 493
 494	/*
 495	 * For Really Good Reasons we use spi: modaliases not of:
 496	 * modaliases for DT so module autoloading won't work if we
 497	 * don't have a spi_device_id as well as a compatible string.
 498	 */
 499	if (sdrv->driver.of_match_table) {
 500		const struct of_device_id *of_id;
 501
 502		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 503		     of_id++) {
 504			const char *of_name;
 505
 506			/* Strip off any vendor prefix */
 507			of_name = strnchr(of_id->compatible,
 508					  sizeof(of_id->compatible), ',');
 509			if (of_name)
 510				of_name++;
 511			else
 512				of_name = of_id->compatible;
 513
 514			if (sdrv->id_table) {
 515				const struct spi_device_id *spi_id;
 516
 517				spi_id = spi_match_id(sdrv->id_table, of_name);
 518				if (spi_id)
 519					continue;
 520			} else {
 521				if (strcmp(sdrv->driver.name, of_name) == 0)
 522					continue;
 523			}
 524
 525			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 526				sdrv->driver.name, of_id->compatible);
 527		}
 528	}
 529
 530	return driver_register(&sdrv->driver);
 531}
 532EXPORT_SYMBOL_GPL(__spi_register_driver);
 533
 534/*-------------------------------------------------------------------------*/
 535
 536/*
 537 * SPI devices should normally not be created by SPI device drivers; that
 538 * would make them board-specific.  Similarly with SPI controller drivers.
 539 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 540 * with other readonly (flashable) information about mainboard devices.
 541 */
 542
 543struct boardinfo {
 544	struct list_head	list;
 545	struct spi_board_info	board_info;
 546};
 547
 548static LIST_HEAD(board_list);
 549static LIST_HEAD(spi_controller_list);
 550
 551/*
 552 * Used to protect add/del operation for board_info list and
 553 * spi_controller list, and their matching process also used
 554 * to protect object of type struct idr.
 555 */
 556static DEFINE_MUTEX(board_lock);
 557
 558/**
 559 * spi_alloc_device - Allocate a new SPI device
 560 * @ctlr: Controller to which device is connected
 561 * Context: can sleep
 562 *
 563 * Allows a driver to allocate and initialize a spi_device without
 564 * registering it immediately.  This allows a driver to directly
 565 * fill the spi_device with device parameters before calling
 566 * spi_add_device() on it.
 567 *
 568 * Caller is responsible to call spi_add_device() on the returned
 569 * spi_device structure to add it to the SPI controller.  If the caller
 570 * needs to discard the spi_device without adding it, then it should
 571 * call spi_dev_put() on it.
 572 *
 573 * Return: a pointer to the new device, or NULL.
 574 */
 575struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 576{
 577	struct spi_device	*spi;
 578
 579	if (!spi_controller_get(ctlr))
 580		return NULL;
 581
 582	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 583	if (!spi) {
 584		spi_controller_put(ctlr);
 585		return NULL;
 586	}
 587
 588	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 589	if (!spi->pcpu_statistics) {
 590		kfree(spi);
 591		spi_controller_put(ctlr);
 592		return NULL;
 593	}
 594
 595	spi->controller = ctlr;
 596	spi->dev.parent = &ctlr->dev;
 597	spi->dev.bus = &spi_bus_type;
 598	spi->dev.release = spidev_release;
 599	spi->mode = ctlr->buswidth_override_bits;
 600
 601	device_initialize(&spi->dev);
 602	return spi;
 603}
 604EXPORT_SYMBOL_GPL(spi_alloc_device);
 605
 606static void spi_dev_set_name(struct spi_device *spi)
 607{
 608	struct device *dev = &spi->dev;
 609	struct fwnode_handle *fwnode = dev_fwnode(dev);
 610
 611	if (is_acpi_device_node(fwnode)) {
 612		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
 613		return;
 614	}
 615
 616	if (is_software_node(fwnode)) {
 617		dev_set_name(dev, "spi-%pfwP", fwnode);
 618		return;
 619	}
 620
 621	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 622		     spi_get_chipselect(spi, 0));
 623}
 624
 625/*
 626 * Zero(0) is a valid physical CS value and can be located at any
 627 * logical CS in the spi->chip_select[]. If all the physical CS
 628 * are initialized to 0 then It would be difficult to differentiate
 629 * between a valid physical CS 0 & an unused logical CS whose physical
 630 * CS can be 0. As a solution to this issue initialize all the CS to -1.
 631 * Now all the unused logical CS will have -1 physical CS value & can be
 632 * ignored while performing physical CS validity checks.
 633 */
 634#define SPI_INVALID_CS		((s8)-1)
 635
 636static inline bool is_valid_cs(s8 chip_select)
 637{
 638	return chip_select != SPI_INVALID_CS;
 639}
 640
 641static inline int spi_dev_check_cs(struct device *dev,
 642				   struct spi_device *spi, u8 idx,
 643				   struct spi_device *new_spi, u8 new_idx)
 644{
 645	u8 cs, cs_new;
 646	u8 idx_new;
 647
 648	cs = spi_get_chipselect(spi, idx);
 649	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
 650		cs_new = spi_get_chipselect(new_spi, idx_new);
 651		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
 652			dev_err(dev, "chipselect %u already in use\n", cs_new);
 653			return -EBUSY;
 654		}
 655	}
 656	return 0;
 657}
 658
 659static int spi_dev_check(struct device *dev, void *data)
 660{
 661	struct spi_device *spi = to_spi_device(dev);
 662	struct spi_device *new_spi = data;
 663	int status, idx;
 664
 665	if (spi->controller == new_spi->controller) {
 666		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 667			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
 668			if (status)
 669				return status;
 670		}
 671	}
 672	return 0;
 673}
 674
 675static void spi_cleanup(struct spi_device *spi)
 676{
 677	if (spi->controller->cleanup)
 678		spi->controller->cleanup(spi);
 679}
 680
 681static int __spi_add_device(struct spi_device *spi)
 682{
 683	struct spi_controller *ctlr = spi->controller;
 684	struct device *dev = ctlr->dev.parent;
 685	int status, idx;
 686	u8 cs;
 687
 688	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 689		/* Chipselects are numbered 0..max; validate. */
 690		cs = spi_get_chipselect(spi, idx);
 691		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
 692			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 693				ctlr->num_chipselect);
 694			return -EINVAL;
 695		}
 696	}
 697
 698	/*
 699	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 700	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 701	 */
 702	if (!spi_controller_is_target(ctlr)) {
 703		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 704			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
 705			if (status)
 706				return status;
 707		}
 708	}
 709
 710	/* Set the bus ID string */
 711	spi_dev_set_name(spi);
 712
 713	/*
 714	 * We need to make sure there's no other device with this
 715	 * chipselect **BEFORE** we call setup(), else we'll trash
 716	 * its configuration.
 717	 */
 718	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 719	if (status)
 720		return status;
 721
 722	/* Controller may unregister concurrently */
 723	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 724	    !device_is_registered(&ctlr->dev)) {
 725		return -ENODEV;
 726	}
 727
 728	if (ctlr->cs_gpiods) {
 729		u8 cs;
 730
 731		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 732			cs = spi_get_chipselect(spi, idx);
 733			if (is_valid_cs(cs))
 734				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 735		}
 736	}
 737
 738	/*
 739	 * Drivers may modify this initial i/o setup, but will
 740	 * normally rely on the device being setup.  Devices
 741	 * using SPI_CS_HIGH can't coexist well otherwise...
 742	 */
 743	status = spi_setup(spi);
 744	if (status < 0) {
 745		dev_err(dev, "can't setup %s, status %d\n",
 746				dev_name(&spi->dev), status);
 747		return status;
 748	}
 749
 750	/* Device may be bound to an active driver when this returns */
 751	status = device_add(&spi->dev);
 752	if (status < 0) {
 753		dev_err(dev, "can't add %s, status %d\n",
 754				dev_name(&spi->dev), status);
 755		spi_cleanup(spi);
 756	} else {
 757		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 758	}
 759
 760	return status;
 761}
 762
 763/**
 764 * spi_add_device - Add spi_device allocated with spi_alloc_device
 765 * @spi: spi_device to register
 766 *
 767 * Companion function to spi_alloc_device.  Devices allocated with
 768 * spi_alloc_device can be added onto the SPI bus with this function.
 769 *
 770 * Return: 0 on success; negative errno on failure
 771 */
 772int spi_add_device(struct spi_device *spi)
 773{
 774	struct spi_controller *ctlr = spi->controller;
 775	int status;
 776
 777	/* Set the bus ID string */
 778	spi_dev_set_name(spi);
 779
 780	mutex_lock(&ctlr->add_lock);
 781	status = __spi_add_device(spi);
 782	mutex_unlock(&ctlr->add_lock);
 783	return status;
 784}
 785EXPORT_SYMBOL_GPL(spi_add_device);
 786
 787static void spi_set_all_cs_unused(struct spi_device *spi)
 788{
 789	u8 idx;
 790
 791	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 792		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
 793}
 794
 795/**
 796 * spi_new_device - instantiate one new SPI device
 797 * @ctlr: Controller to which device is connected
 798 * @chip: Describes the SPI device
 799 * Context: can sleep
 800 *
 801 * On typical mainboards, this is purely internal; and it's not needed
 802 * after board init creates the hard-wired devices.  Some development
 803 * platforms may not be able to use spi_register_board_info though, and
 804 * this is exported so that for example a USB or parport based adapter
 805 * driver could add devices (which it would learn about out-of-band).
 806 *
 807 * Return: the new device, or NULL.
 808 */
 809struct spi_device *spi_new_device(struct spi_controller *ctlr,
 810				  struct spi_board_info *chip)
 811{
 812	struct spi_device	*proxy;
 813	int			status;
 814
 815	/*
 816	 * NOTE:  caller did any chip->bus_num checks necessary.
 817	 *
 818	 * Also, unless we change the return value convention to use
 819	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 820	 * suggests syslogged diagnostics are best here (ugh).
 821	 */
 822
 823	proxy = spi_alloc_device(ctlr);
 824	if (!proxy)
 825		return NULL;
 826
 827	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 828
 829	/* Use provided chip-select for proxy device */
 830	spi_set_all_cs_unused(proxy);
 831	spi_set_chipselect(proxy, 0, chip->chip_select);
 832
 833	proxy->max_speed_hz = chip->max_speed_hz;
 834	proxy->mode = chip->mode;
 835	proxy->irq = chip->irq;
 836	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 837	proxy->dev.platform_data = (void *) chip->platform_data;
 838	proxy->controller_data = chip->controller_data;
 839	proxy->controller_state = NULL;
 840	/*
 841	 * By default spi->chip_select[0] will hold the physical CS number,
 842	 * so set bit 0 in spi->cs_index_mask.
 
 
 
 
 843	 */
 844	proxy->cs_index_mask = BIT(0);
 845
 846	if (chip->swnode) {
 847		status = device_add_software_node(&proxy->dev, chip->swnode);
 848		if (status) {
 849			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 850				chip->modalias, status);
 851			goto err_dev_put;
 852		}
 853	}
 854
 855	status = spi_add_device(proxy);
 856	if (status < 0)
 857		goto err_dev_put;
 858
 859	return proxy;
 860
 861err_dev_put:
 862	device_remove_software_node(&proxy->dev);
 863	spi_dev_put(proxy);
 864	return NULL;
 865}
 866EXPORT_SYMBOL_GPL(spi_new_device);
 867
 868/**
 869 * spi_unregister_device - unregister a single SPI device
 870 * @spi: spi_device to unregister
 871 *
 872 * Start making the passed SPI device vanish. Normally this would be handled
 873 * by spi_unregister_controller().
 874 */
 875void spi_unregister_device(struct spi_device *spi)
 876{
 877	if (!spi)
 878		return;
 879
 880	if (spi->dev.of_node) {
 881		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 882		of_node_put(spi->dev.of_node);
 883	}
 884	if (ACPI_COMPANION(&spi->dev))
 885		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 886	device_remove_software_node(&spi->dev);
 887	device_del(&spi->dev);
 888	spi_cleanup(spi);
 889	put_device(&spi->dev);
 890}
 891EXPORT_SYMBOL_GPL(spi_unregister_device);
 892
 893static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 894					      struct spi_board_info *bi)
 895{
 896	struct spi_device *dev;
 897
 898	if (ctlr->bus_num != bi->bus_num)
 899		return;
 900
 901	dev = spi_new_device(ctlr, bi);
 902	if (!dev)
 903		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 904			bi->modalias);
 905}
 906
 907/**
 908 * spi_register_board_info - register SPI devices for a given board
 909 * @info: array of chip descriptors
 910 * @n: how many descriptors are provided
 911 * Context: can sleep
 912 *
 913 * Board-specific early init code calls this (probably during arch_initcall)
 914 * with segments of the SPI device table.  Any device nodes are created later,
 915 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 916 * this table of devices forever, so that reloading a controller driver will
 917 * not make Linux forget about these hard-wired devices.
 918 *
 919 * Other code can also call this, e.g. a particular add-on board might provide
 920 * SPI devices through its expansion connector, so code initializing that board
 921 * would naturally declare its SPI devices.
 922 *
 923 * The board info passed can safely be __initdata ... but be careful of
 924 * any embedded pointers (platform_data, etc), they're copied as-is.
 925 *
 926 * Return: zero on success, else a negative error code.
 927 */
 928int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 929{
 930	struct boardinfo *bi;
 931	int i;
 932
 933	if (!n)
 934		return 0;
 935
 936	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 937	if (!bi)
 938		return -ENOMEM;
 939
 940	for (i = 0; i < n; i++, bi++, info++) {
 941		struct spi_controller *ctlr;
 942
 943		memcpy(&bi->board_info, info, sizeof(*info));
 944
 945		mutex_lock(&board_lock);
 946		list_add_tail(&bi->list, &board_list);
 947		list_for_each_entry(ctlr, &spi_controller_list, list)
 948			spi_match_controller_to_boardinfo(ctlr,
 949							  &bi->board_info);
 950		mutex_unlock(&board_lock);
 951	}
 952
 953	return 0;
 954}
 955
 956/*-------------------------------------------------------------------------*/
 957
 958/* Core methods for SPI resource management */
 959
 960/**
 961 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 962 *                 during the processing of a spi_message while using
 963 *                 spi_transfer_one
 964 * @spi:     the SPI device for which we allocate memory
 965 * @release: the release code to execute for this resource
 966 * @size:    size to alloc and return
 967 * @gfp:     GFP allocation flags
 968 *
 969 * Return: the pointer to the allocated data
 970 *
 971 * This may get enhanced in the future to allocate from a memory pool
 972 * of the @spi_device or @spi_controller to avoid repeated allocations.
 973 */
 974static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 975			   size_t size, gfp_t gfp)
 976{
 977	struct spi_res *sres;
 978
 979	sres = kzalloc(sizeof(*sres) + size, gfp);
 980	if (!sres)
 981		return NULL;
 982
 983	INIT_LIST_HEAD(&sres->entry);
 984	sres->release = release;
 985
 986	return sres->data;
 987}
 988
 989/**
 990 * spi_res_free - free an SPI resource
 991 * @res: pointer to the custom data of a resource
 992 */
 993static void spi_res_free(void *res)
 994{
 995	struct spi_res *sres = container_of(res, struct spi_res, data);
 996
 
 
 
 997	WARN_ON(!list_empty(&sres->entry));
 998	kfree(sres);
 999}
1000
1001/**
1002 * spi_res_add - add a spi_res to the spi_message
1003 * @message: the SPI message
1004 * @res:     the spi_resource
1005 */
1006static void spi_res_add(struct spi_message *message, void *res)
1007{
1008	struct spi_res *sres = container_of(res, struct spi_res, data);
1009
1010	WARN_ON(!list_empty(&sres->entry));
1011	list_add_tail(&sres->entry, &message->resources);
1012}
1013
1014/**
1015 * spi_res_release - release all SPI resources for this message
1016 * @ctlr:  the @spi_controller
1017 * @message: the @spi_message
1018 */
1019static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1020{
1021	struct spi_res *res, *tmp;
1022
1023	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1024		if (res->release)
1025			res->release(ctlr, message, res->data);
1026
1027		list_del(&res->entry);
1028
1029		kfree(res);
1030	}
1031}
1032
1033/*-------------------------------------------------------------------------*/
1034#define spi_for_each_valid_cs(spi, idx)				\
1035	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1036		if (!(spi->cs_index_mask & BIT(idx))) {} else
1037
1038static inline bool spi_is_last_cs(struct spi_device *spi)
1039{
1040	u8 idx;
1041	bool last = false;
1042
1043	spi_for_each_valid_cs(spi, idx) {
1044		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1045			last = true;
 
 
1046	}
1047	return last;
1048}
1049
1050static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1051{
1052	/*
1053	 * Historically ACPI has no means of the GPIO polarity and
1054	 * thus the SPISerialBus() resource defines it on the per-chip
1055	 * basis. In order to avoid a chain of negations, the GPIO
1056	 * polarity is considered being Active High. Even for the cases
1057	 * when _DSD() is involved (in the updated versions of ACPI)
1058	 * the GPIO CS polarity must be defined Active High to avoid
1059	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1060	 * into account.
1061	 */
1062	if (has_acpi_companion(&spi->dev))
1063		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1064	else
1065		/* Polarity handled by GPIO library */
1066		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1067
1068	if (activate)
1069		spi_delay_exec(&spi->cs_setup, NULL);
1070	else
1071		spi_delay_exec(&spi->cs_inactive, NULL);
1072}
1073
1074static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1075{
1076	bool activate = enable;
1077	u8 idx;
1078
1079	/*
1080	 * Avoid calling into the driver (or doing delays) if the chip select
1081	 * isn't actually changing from the last time this was called.
1082	 */
1083	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1084			spi_is_last_cs(spi)) ||
1085		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1086			!spi_is_last_cs(spi))) &&
1087	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1088		return;
1089
1090	trace_spi_set_cs(spi, activate);
1091
1092	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1093	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1094		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1095	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1096
1097	if (spi->mode & SPI_CS_HIGH)
1098		enable = !enable;
1099
1100	/*
1101	 * Handle chip select delays for GPIO based CS or controllers without
1102	 * programmable chip select timing.
1103	 */
1104	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1105		spi_delay_exec(&spi->cs_hold, NULL);
1106
1107	if (spi_is_csgpiod(spi)) {
1108		if (!(spi->mode & SPI_NO_CS)) {
1109			spi_for_each_valid_cs(spi, idx) {
1110				if (spi_get_csgpiod(spi, idx))
1111					spi_toggle_csgpiod(spi, idx, enable, activate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112			}
1113		}
1114		/* Some SPI masters need both GPIO CS & slave_select */
1115		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1116		    spi->controller->set_cs)
1117			spi->controller->set_cs(spi, !enable);
1118	} else if (spi->controller->set_cs) {
1119		spi->controller->set_cs(spi, !enable);
1120	}
1121
1122	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1123		if (activate)
1124			spi_delay_exec(&spi->cs_setup, NULL);
1125		else
1126			spi_delay_exec(&spi->cs_inactive, NULL);
1127	}
1128}
1129
1130#ifdef CONFIG_HAS_DMA
1131static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1132			     struct sg_table *sgt, void *buf, size_t len,
1133			     enum dma_data_direction dir, unsigned long attrs)
1134{
1135	const bool vmalloced_buf = is_vmalloc_addr(buf);
1136	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1137#ifdef CONFIG_HIGHMEM
1138	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1139				(unsigned long)buf < (PKMAP_BASE +
1140					(LAST_PKMAP * PAGE_SIZE)));
1141#else
1142	const bool kmap_buf = false;
1143#endif
1144	int desc_len;
1145	int sgs;
1146	struct page *vm_page;
1147	struct scatterlist *sg;
1148	void *sg_buf;
1149	size_t min;
1150	int i, ret;
1151
1152	if (vmalloced_buf || kmap_buf) {
1153		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1154		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1155	} else if (virt_addr_valid(buf)) {
1156		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1157		sgs = DIV_ROUND_UP(len, desc_len);
1158	} else {
1159		return -EINVAL;
1160	}
1161
1162	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1163	if (ret != 0)
1164		return ret;
1165
1166	sg = &sgt->sgl[0];
1167	for (i = 0; i < sgs; i++) {
1168
1169		if (vmalloced_buf || kmap_buf) {
1170			/*
1171			 * Next scatterlist entry size is the minimum between
1172			 * the desc_len and the remaining buffer length that
1173			 * fits in a page.
1174			 */
1175			min = min_t(size_t, desc_len,
1176				    min_t(size_t, len,
1177					  PAGE_SIZE - offset_in_page(buf)));
1178			if (vmalloced_buf)
1179				vm_page = vmalloc_to_page(buf);
1180			else
1181				vm_page = kmap_to_page(buf);
1182			if (!vm_page) {
1183				sg_free_table(sgt);
1184				return -ENOMEM;
1185			}
1186			sg_set_page(sg, vm_page,
1187				    min, offset_in_page(buf));
1188		} else {
1189			min = min_t(size_t, len, desc_len);
1190			sg_buf = buf;
1191			sg_set_buf(sg, sg_buf, min);
1192		}
1193
1194		buf += min;
1195		len -= min;
1196		sg = sg_next(sg);
1197	}
1198
1199	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1200	if (ret < 0) {
1201		sg_free_table(sgt);
1202		return ret;
1203	}
1204
1205	return 0;
1206}
1207
1208int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1209		struct sg_table *sgt, void *buf, size_t len,
1210		enum dma_data_direction dir)
1211{
1212	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1213}
1214
1215static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1216				struct device *dev, struct sg_table *sgt,
1217				enum dma_data_direction dir,
1218				unsigned long attrs)
1219{
1220	dma_unmap_sgtable(dev, sgt, dir, attrs);
1221	sg_free_table(sgt);
1222	sgt->orig_nents = 0;
1223	sgt->nents = 0;
 
 
1224}
1225
1226void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1227		   struct sg_table *sgt, enum dma_data_direction dir)
1228{
1229	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1230}
1231
1232static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1233{
1234	struct device *tx_dev, *rx_dev;
1235	struct spi_transfer *xfer;
1236	int ret;
1237
1238	if (!ctlr->can_dma)
1239		return 0;
1240
1241	if (ctlr->dma_tx)
1242		tx_dev = ctlr->dma_tx->device->dev;
1243	else if (ctlr->dma_map_dev)
1244		tx_dev = ctlr->dma_map_dev;
1245	else
1246		tx_dev = ctlr->dev.parent;
1247
1248	if (ctlr->dma_rx)
1249		rx_dev = ctlr->dma_rx->device->dev;
1250	else if (ctlr->dma_map_dev)
1251		rx_dev = ctlr->dma_map_dev;
1252	else
1253		rx_dev = ctlr->dev.parent;
1254
1255	ret = -ENOMSG;
1256	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1257		/* The sync is done before each transfer. */
1258		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1259
1260		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1261			continue;
1262
1263		if (xfer->tx_buf != NULL) {
1264			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1265						(void *)xfer->tx_buf,
1266						xfer->len, DMA_TO_DEVICE,
1267						attrs);
1268			if (ret != 0)
1269				return ret;
1270
1271			xfer->tx_sg_mapped = true;
1272		}
1273
1274		if (xfer->rx_buf != NULL) {
1275			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1276						xfer->rx_buf, xfer->len,
1277						DMA_FROM_DEVICE, attrs);
1278			if (ret != 0) {
1279				spi_unmap_buf_attrs(ctlr, tx_dev,
1280						&xfer->tx_sg, DMA_TO_DEVICE,
1281						attrs);
1282
1283				return ret;
1284			}
1285
1286			xfer->rx_sg_mapped = true;
1287		}
1288	}
1289	/* No transfer has been mapped, bail out with success */
1290	if (ret)
1291		return 0;
1292
1293	ctlr->cur_rx_dma_dev = rx_dev;
1294	ctlr->cur_tx_dma_dev = tx_dev;
 
1295
1296	return 0;
1297}
1298
1299static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1300{
1301	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1302	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1303	struct spi_transfer *xfer;
1304
 
 
 
1305	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1306		/* The sync has already been done after each transfer. */
1307		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1308
1309		if (xfer->rx_sg_mapped)
1310			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1311					    DMA_FROM_DEVICE, attrs);
1312		xfer->rx_sg_mapped = false;
1313
1314		if (xfer->tx_sg_mapped)
1315			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1316					    DMA_TO_DEVICE, attrs);
1317		xfer->tx_sg_mapped = false;
1318	}
1319
 
 
1320	return 0;
1321}
1322
1323static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1324				    struct spi_transfer *xfer)
1325{
1326	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1327	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1328
1329	if (xfer->tx_sg_mapped)
 
 
 
1330		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1331	if (xfer->rx_sg_mapped)
1332		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333}
1334
1335static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1336				 struct spi_transfer *xfer)
1337{
1338	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1339	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1340
1341	if (xfer->rx_sg_mapped)
 
 
 
1342		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1343	if (xfer->tx_sg_mapped)
1344		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1345}
1346#else /* !CONFIG_HAS_DMA */
1347static inline int __spi_map_msg(struct spi_controller *ctlr,
1348				struct spi_message *msg)
1349{
1350	return 0;
1351}
1352
1353static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1354				  struct spi_message *msg)
1355{
1356	return 0;
1357}
1358
1359static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1360				    struct spi_transfer *xfer)
1361{
1362}
1363
1364static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1365				 struct spi_transfer *xfer)
1366{
1367}
1368#endif /* !CONFIG_HAS_DMA */
1369
1370static inline int spi_unmap_msg(struct spi_controller *ctlr,
1371				struct spi_message *msg)
1372{
1373	struct spi_transfer *xfer;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376		/*
1377		 * Restore the original value of tx_buf or rx_buf if they are
1378		 * NULL.
1379		 */
1380		if (xfer->tx_buf == ctlr->dummy_tx)
1381			xfer->tx_buf = NULL;
1382		if (xfer->rx_buf == ctlr->dummy_rx)
1383			xfer->rx_buf = NULL;
1384	}
1385
1386	return __spi_unmap_msg(ctlr, msg);
1387}
1388
1389static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1390{
1391	struct spi_transfer *xfer;
1392	void *tmp;
1393	unsigned int max_tx, max_rx;
1394
1395	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1396		&& !(msg->spi->mode & SPI_3WIRE)) {
1397		max_tx = 0;
1398		max_rx = 0;
1399
1400		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1401			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1402			    !xfer->tx_buf)
1403				max_tx = max(xfer->len, max_tx);
1404			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1405			    !xfer->rx_buf)
1406				max_rx = max(xfer->len, max_rx);
1407		}
1408
1409		if (max_tx) {
1410			tmp = krealloc(ctlr->dummy_tx, max_tx,
1411				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1412			if (!tmp)
1413				return -ENOMEM;
1414			ctlr->dummy_tx = tmp;
1415		}
1416
1417		if (max_rx) {
1418			tmp = krealloc(ctlr->dummy_rx, max_rx,
1419				       GFP_KERNEL | GFP_DMA);
1420			if (!tmp)
1421				return -ENOMEM;
1422			ctlr->dummy_rx = tmp;
1423		}
1424
1425		if (max_tx || max_rx) {
1426			list_for_each_entry(xfer, &msg->transfers,
1427					    transfer_list) {
1428				if (!xfer->len)
1429					continue;
1430				if (!xfer->tx_buf)
1431					xfer->tx_buf = ctlr->dummy_tx;
1432				if (!xfer->rx_buf)
1433					xfer->rx_buf = ctlr->dummy_rx;
1434			}
1435		}
1436	}
1437
1438	return __spi_map_msg(ctlr, msg);
1439}
1440
1441static int spi_transfer_wait(struct spi_controller *ctlr,
1442			     struct spi_message *msg,
1443			     struct spi_transfer *xfer)
1444{
1445	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1446	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1447	u32 speed_hz = xfer->speed_hz;
1448	unsigned long long ms;
1449
1450	if (spi_controller_is_target(ctlr)) {
1451		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1452			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1453			return -EINTR;
1454		}
1455	} else {
1456		if (!speed_hz)
1457			speed_hz = 100000;
1458
1459		/*
1460		 * For each byte we wait for 8 cycles of the SPI clock.
1461		 * Since speed is defined in Hz and we want milliseconds,
1462		 * use respective multiplier, but before the division,
1463		 * otherwise we may get 0 for short transfers.
1464		 */
1465		ms = 8LL * MSEC_PER_SEC * xfer->len;
1466		do_div(ms, speed_hz);
1467
1468		/*
1469		 * Increase it twice and add 200 ms tolerance, use
1470		 * predefined maximum in case of overflow.
1471		 */
1472		ms += ms + 200;
1473		if (ms > UINT_MAX)
1474			ms = UINT_MAX;
1475
1476		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1477						 msecs_to_jiffies(ms));
1478
1479		if (ms == 0) {
1480			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1481			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1482			dev_err(&msg->spi->dev,
1483				"SPI transfer timed out\n");
1484			return -ETIMEDOUT;
1485		}
1486
1487		if (xfer->error & SPI_TRANS_FAIL_IO)
1488			return -EIO;
1489	}
1490
1491	return 0;
1492}
1493
1494static void _spi_transfer_delay_ns(u32 ns)
1495{
1496	if (!ns)
1497		return;
1498	if (ns <= NSEC_PER_USEC) {
1499		ndelay(ns);
1500	} else {
1501		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1502
1503		if (us <= 10)
1504			udelay(us);
1505		else
1506			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1507	}
1508}
1509
1510int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1511{
1512	u32 delay = _delay->value;
1513	u32 unit = _delay->unit;
1514	u32 hz;
1515
1516	if (!delay)
1517		return 0;
1518
1519	switch (unit) {
1520	case SPI_DELAY_UNIT_USECS:
1521		delay *= NSEC_PER_USEC;
1522		break;
1523	case SPI_DELAY_UNIT_NSECS:
1524		/* Nothing to do here */
1525		break;
1526	case SPI_DELAY_UNIT_SCK:
1527		/* Clock cycles need to be obtained from spi_transfer */
1528		if (!xfer)
1529			return -EINVAL;
1530		/*
1531		 * If there is unknown effective speed, approximate it
1532		 * by underestimating with half of the requested Hz.
1533		 */
1534		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1535		if (!hz)
1536			return -EINVAL;
1537
1538		/* Convert delay to nanoseconds */
1539		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1540		break;
1541	default:
1542		return -EINVAL;
1543	}
1544
1545	return delay;
1546}
1547EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1548
1549int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1550{
1551	int delay;
1552
1553	might_sleep();
1554
1555	if (!_delay)
1556		return -EINVAL;
1557
1558	delay = spi_delay_to_ns(_delay, xfer);
1559	if (delay < 0)
1560		return delay;
1561
1562	_spi_transfer_delay_ns(delay);
1563
1564	return 0;
1565}
1566EXPORT_SYMBOL_GPL(spi_delay_exec);
1567
1568static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1569					  struct spi_transfer *xfer)
1570{
1571	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1572	u32 delay = xfer->cs_change_delay.value;
1573	u32 unit = xfer->cs_change_delay.unit;
1574	int ret;
1575
1576	/* Return early on "fast" mode - for everything but USECS */
1577	if (!delay) {
1578		if (unit == SPI_DELAY_UNIT_USECS)
1579			_spi_transfer_delay_ns(default_delay_ns);
1580		return;
1581	}
1582
1583	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1584	if (ret) {
1585		dev_err_once(&msg->spi->dev,
1586			     "Use of unsupported delay unit %i, using default of %luus\n",
1587			     unit, default_delay_ns / NSEC_PER_USEC);
1588		_spi_transfer_delay_ns(default_delay_ns);
1589	}
1590}
1591
1592void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1593						  struct spi_transfer *xfer)
1594{
1595	_spi_transfer_cs_change_delay(msg, xfer);
1596}
1597EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1598
1599/*
1600 * spi_transfer_one_message - Default implementation of transfer_one_message()
1601 *
1602 * This is a standard implementation of transfer_one_message() for
1603 * drivers which implement a transfer_one() operation.  It provides
1604 * standard handling of delays and chip select management.
1605 */
1606static int spi_transfer_one_message(struct spi_controller *ctlr,
1607				    struct spi_message *msg)
1608{
1609	struct spi_transfer *xfer;
1610	bool keep_cs = false;
1611	int ret = 0;
1612	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1613	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1614
1615	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1616	spi_set_cs(msg->spi, !xfer->cs_off, false);
1617
1618	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1619	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1620
1621	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1622		trace_spi_transfer_start(msg, xfer);
1623
1624		spi_statistics_add_transfer_stats(statm, xfer, msg);
1625		spi_statistics_add_transfer_stats(stats, xfer, msg);
1626
1627		if (!ctlr->ptp_sts_supported) {
1628			xfer->ptp_sts_word_pre = 0;
1629			ptp_read_system_prets(xfer->ptp_sts);
1630		}
1631
1632		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1633			reinit_completion(&ctlr->xfer_completion);
1634
1635fallback_pio:
1636			spi_dma_sync_for_device(ctlr, xfer);
1637			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1638			if (ret < 0) {
1639				spi_dma_sync_for_cpu(ctlr, xfer);
1640
1641				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1642				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1643					__spi_unmap_msg(ctlr, msg);
1644					ctlr->fallback = true;
1645					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1646					goto fallback_pio;
1647				}
1648
1649				SPI_STATISTICS_INCREMENT_FIELD(statm,
1650							       errors);
1651				SPI_STATISTICS_INCREMENT_FIELD(stats,
1652							       errors);
1653				dev_err(&msg->spi->dev,
1654					"SPI transfer failed: %d\n", ret);
1655				goto out;
1656			}
1657
1658			if (ret > 0) {
1659				ret = spi_transfer_wait(ctlr, msg, xfer);
1660				if (ret < 0)
1661					msg->status = ret;
1662			}
1663
1664			spi_dma_sync_for_cpu(ctlr, xfer);
1665		} else {
1666			if (xfer->len)
1667				dev_err(&msg->spi->dev,
1668					"Bufferless transfer has length %u\n",
1669					xfer->len);
1670		}
1671
1672		if (!ctlr->ptp_sts_supported) {
1673			ptp_read_system_postts(xfer->ptp_sts);
1674			xfer->ptp_sts_word_post = xfer->len;
1675		}
1676
1677		trace_spi_transfer_stop(msg, xfer);
1678
1679		if (msg->status != -EINPROGRESS)
1680			goto out;
1681
1682		spi_transfer_delay_exec(xfer);
1683
1684		if (xfer->cs_change) {
1685			if (list_is_last(&xfer->transfer_list,
1686					 &msg->transfers)) {
1687				keep_cs = true;
1688			} else {
1689				if (!xfer->cs_off)
1690					spi_set_cs(msg->spi, false, false);
1691				_spi_transfer_cs_change_delay(msg, xfer);
1692				if (!list_next_entry(xfer, transfer_list)->cs_off)
1693					spi_set_cs(msg->spi, true, false);
1694			}
1695		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1696			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1697			spi_set_cs(msg->spi, xfer->cs_off, false);
1698		}
1699
1700		msg->actual_length += xfer->len;
1701	}
1702
1703out:
1704	if (ret != 0 || !keep_cs)
1705		spi_set_cs(msg->spi, false, false);
1706
1707	if (msg->status == -EINPROGRESS)
1708		msg->status = ret;
1709
1710	if (msg->status && ctlr->handle_err)
1711		ctlr->handle_err(ctlr, msg);
1712
1713	spi_finalize_current_message(ctlr);
1714
1715	return ret;
1716}
1717
1718/**
1719 * spi_finalize_current_transfer - report completion of a transfer
1720 * @ctlr: the controller reporting completion
1721 *
1722 * Called by SPI drivers using the core transfer_one_message()
1723 * implementation to notify it that the current interrupt driven
1724 * transfer has finished and the next one may be scheduled.
1725 */
1726void spi_finalize_current_transfer(struct spi_controller *ctlr)
1727{
1728	complete(&ctlr->xfer_completion);
1729}
1730EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1731
1732static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1733{
1734	if (ctlr->auto_runtime_pm) {
1735		pm_runtime_mark_last_busy(ctlr->dev.parent);
1736		pm_runtime_put_autosuspend(ctlr->dev.parent);
1737	}
1738}
1739
1740static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1741		struct spi_message *msg, bool was_busy)
1742{
1743	struct spi_transfer *xfer;
1744	int ret;
1745
1746	if (!was_busy && ctlr->auto_runtime_pm) {
1747		ret = pm_runtime_get_sync(ctlr->dev.parent);
1748		if (ret < 0) {
1749			pm_runtime_put_noidle(ctlr->dev.parent);
1750			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1751				ret);
1752
1753			msg->status = ret;
1754			spi_finalize_current_message(ctlr);
1755
1756			return ret;
1757		}
1758	}
1759
1760	if (!was_busy)
1761		trace_spi_controller_busy(ctlr);
1762
1763	if (!was_busy && ctlr->prepare_transfer_hardware) {
1764		ret = ctlr->prepare_transfer_hardware(ctlr);
1765		if (ret) {
1766			dev_err(&ctlr->dev,
1767				"failed to prepare transfer hardware: %d\n",
1768				ret);
1769
1770			if (ctlr->auto_runtime_pm)
1771				pm_runtime_put(ctlr->dev.parent);
1772
1773			msg->status = ret;
1774			spi_finalize_current_message(ctlr);
1775
1776			return ret;
1777		}
1778	}
1779
1780	trace_spi_message_start(msg);
1781
1782	if (ctlr->prepare_message) {
1783		ret = ctlr->prepare_message(ctlr, msg);
1784		if (ret) {
1785			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1786				ret);
1787			msg->status = ret;
1788			spi_finalize_current_message(ctlr);
1789			return ret;
1790		}
1791		msg->prepared = true;
1792	}
1793
1794	ret = spi_map_msg(ctlr, msg);
1795	if (ret) {
1796		msg->status = ret;
1797		spi_finalize_current_message(ctlr);
1798		return ret;
1799	}
1800
1801	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1802		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1803			xfer->ptp_sts_word_pre = 0;
1804			ptp_read_system_prets(xfer->ptp_sts);
1805		}
1806	}
1807
1808	/*
1809	 * Drivers implementation of transfer_one_message() must arrange for
1810	 * spi_finalize_current_message() to get called. Most drivers will do
1811	 * this in the calling context, but some don't. For those cases, a
1812	 * completion is used to guarantee that this function does not return
1813	 * until spi_finalize_current_message() is done accessing
1814	 * ctlr->cur_msg.
1815	 * Use of the following two flags enable to opportunistically skip the
1816	 * use of the completion since its use involves expensive spin locks.
1817	 * In case of a race with the context that calls
1818	 * spi_finalize_current_message() the completion will always be used,
1819	 * due to strict ordering of these flags using barriers.
1820	 */
1821	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1822	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1823	reinit_completion(&ctlr->cur_msg_completion);
1824	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1825
1826	ret = ctlr->transfer_one_message(ctlr, msg);
1827	if (ret) {
1828		dev_err(&ctlr->dev,
1829			"failed to transfer one message from queue\n");
1830		return ret;
1831	}
1832
1833	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1834	smp_mb(); /* See spi_finalize_current_message()... */
1835	if (READ_ONCE(ctlr->cur_msg_incomplete))
1836		wait_for_completion(&ctlr->cur_msg_completion);
1837
1838	return 0;
1839}
1840
1841/**
1842 * __spi_pump_messages - function which processes SPI message queue
1843 * @ctlr: controller to process queue for
1844 * @in_kthread: true if we are in the context of the message pump thread
1845 *
1846 * This function checks if there is any SPI message in the queue that
1847 * needs processing and if so call out to the driver to initialize hardware
1848 * and transfer each message.
1849 *
1850 * Note that it is called both from the kthread itself and also from
1851 * inside spi_sync(); the queue extraction handling at the top of the
1852 * function should deal with this safely.
1853 */
1854static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1855{
1856	struct spi_message *msg;
1857	bool was_busy = false;
1858	unsigned long flags;
1859	int ret;
1860
1861	/* Take the I/O mutex */
1862	mutex_lock(&ctlr->io_mutex);
1863
1864	/* Lock queue */
1865	spin_lock_irqsave(&ctlr->queue_lock, flags);
1866
1867	/* Make sure we are not already running a message */
1868	if (ctlr->cur_msg)
1869		goto out_unlock;
1870
1871	/* Check if the queue is idle */
1872	if (list_empty(&ctlr->queue) || !ctlr->running) {
1873		if (!ctlr->busy)
1874			goto out_unlock;
1875
1876		/* Defer any non-atomic teardown to the thread */
1877		if (!in_kthread) {
1878			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1879			    !ctlr->unprepare_transfer_hardware) {
1880				spi_idle_runtime_pm(ctlr);
1881				ctlr->busy = false;
1882				ctlr->queue_empty = true;
1883				trace_spi_controller_idle(ctlr);
1884			} else {
1885				kthread_queue_work(ctlr->kworker,
1886						   &ctlr->pump_messages);
1887			}
1888			goto out_unlock;
1889		}
1890
1891		ctlr->busy = false;
1892		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893
1894		kfree(ctlr->dummy_rx);
1895		ctlr->dummy_rx = NULL;
1896		kfree(ctlr->dummy_tx);
1897		ctlr->dummy_tx = NULL;
1898		if (ctlr->unprepare_transfer_hardware &&
1899		    ctlr->unprepare_transfer_hardware(ctlr))
1900			dev_err(&ctlr->dev,
1901				"failed to unprepare transfer hardware\n");
1902		spi_idle_runtime_pm(ctlr);
1903		trace_spi_controller_idle(ctlr);
1904
1905		spin_lock_irqsave(&ctlr->queue_lock, flags);
1906		ctlr->queue_empty = true;
1907		goto out_unlock;
1908	}
1909
1910	/* Extract head of queue */
1911	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1912	ctlr->cur_msg = msg;
1913
1914	list_del_init(&msg->queue);
1915	if (ctlr->busy)
1916		was_busy = true;
1917	else
1918		ctlr->busy = true;
1919	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1920
1921	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1922	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1923
1924	ctlr->cur_msg = NULL;
1925	ctlr->fallback = false;
1926
1927	mutex_unlock(&ctlr->io_mutex);
1928
1929	/* Prod the scheduler in case transfer_one() was busy waiting */
1930	if (!ret)
1931		cond_resched();
1932	return;
1933
1934out_unlock:
1935	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1936	mutex_unlock(&ctlr->io_mutex);
1937}
1938
1939/**
1940 * spi_pump_messages - kthread work function which processes spi message queue
1941 * @work: pointer to kthread work struct contained in the controller struct
1942 */
1943static void spi_pump_messages(struct kthread_work *work)
1944{
1945	struct spi_controller *ctlr =
1946		container_of(work, struct spi_controller, pump_messages);
1947
1948	__spi_pump_messages(ctlr, true);
1949}
1950
1951/**
1952 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1953 * @ctlr: Pointer to the spi_controller structure of the driver
1954 * @xfer: Pointer to the transfer being timestamped
1955 * @progress: How many words (not bytes) have been transferred so far
1956 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1957 *	      transfer, for less jitter in time measurement. Only compatible
1958 *	      with PIO drivers. If true, must follow up with
1959 *	      spi_take_timestamp_post or otherwise system will crash.
1960 *	      WARNING: for fully predictable results, the CPU frequency must
1961 *	      also be under control (governor).
1962 *
1963 * This is a helper for drivers to collect the beginning of the TX timestamp
1964 * for the requested byte from the SPI transfer. The frequency with which this
1965 * function must be called (once per word, once for the whole transfer, once
1966 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1967 * greater than or equal to the requested byte at the time of the call. The
1968 * timestamp is only taken once, at the first such call. It is assumed that
1969 * the driver advances its @tx buffer pointer monotonically.
1970 */
1971void spi_take_timestamp_pre(struct spi_controller *ctlr,
1972			    struct spi_transfer *xfer,
1973			    size_t progress, bool irqs_off)
1974{
1975	if (!xfer->ptp_sts)
1976		return;
1977
1978	if (xfer->timestamped)
1979		return;
1980
1981	if (progress > xfer->ptp_sts_word_pre)
1982		return;
1983
1984	/* Capture the resolution of the timestamp */
1985	xfer->ptp_sts_word_pre = progress;
1986
1987	if (irqs_off) {
1988		local_irq_save(ctlr->irq_flags);
1989		preempt_disable();
1990	}
1991
1992	ptp_read_system_prets(xfer->ptp_sts);
1993}
1994EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1995
1996/**
1997 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1998 * @ctlr: Pointer to the spi_controller structure of the driver
1999 * @xfer: Pointer to the transfer being timestamped
2000 * @progress: How many words (not bytes) have been transferred so far
2001 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2002 *
2003 * This is a helper for drivers to collect the end of the TX timestamp for
2004 * the requested byte from the SPI transfer. Can be called with an arbitrary
2005 * frequency: only the first call where @tx exceeds or is equal to the
2006 * requested word will be timestamped.
2007 */
2008void spi_take_timestamp_post(struct spi_controller *ctlr,
2009			     struct spi_transfer *xfer,
2010			     size_t progress, bool irqs_off)
2011{
2012	if (!xfer->ptp_sts)
2013		return;
2014
2015	if (xfer->timestamped)
2016		return;
2017
2018	if (progress < xfer->ptp_sts_word_post)
2019		return;
2020
2021	ptp_read_system_postts(xfer->ptp_sts);
2022
2023	if (irqs_off) {
2024		local_irq_restore(ctlr->irq_flags);
2025		preempt_enable();
2026	}
2027
2028	/* Capture the resolution of the timestamp */
2029	xfer->ptp_sts_word_post = progress;
2030
2031	xfer->timestamped = 1;
2032}
2033EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2034
2035/**
2036 * spi_set_thread_rt - set the controller to pump at realtime priority
2037 * @ctlr: controller to boost priority of
2038 *
2039 * This can be called because the controller requested realtime priority
2040 * (by setting the ->rt value before calling spi_register_controller()) or
2041 * because a device on the bus said that its transfers needed realtime
2042 * priority.
2043 *
2044 * NOTE: at the moment if any device on a bus says it needs realtime then
2045 * the thread will be at realtime priority for all transfers on that
2046 * controller.  If this eventually becomes a problem we may see if we can
2047 * find a way to boost the priority only temporarily during relevant
2048 * transfers.
2049 */
2050static void spi_set_thread_rt(struct spi_controller *ctlr)
2051{
2052	dev_info(&ctlr->dev,
2053		"will run message pump with realtime priority\n");
2054	sched_set_fifo(ctlr->kworker->task);
2055}
2056
2057static int spi_init_queue(struct spi_controller *ctlr)
2058{
2059	ctlr->running = false;
2060	ctlr->busy = false;
2061	ctlr->queue_empty = true;
2062
2063	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2064	if (IS_ERR(ctlr->kworker)) {
2065		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2066		return PTR_ERR(ctlr->kworker);
2067	}
2068
2069	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2070
2071	/*
2072	 * Controller config will indicate if this controller should run the
2073	 * message pump with high (realtime) priority to reduce the transfer
2074	 * latency on the bus by minimising the delay between a transfer
2075	 * request and the scheduling of the message pump thread. Without this
2076	 * setting the message pump thread will remain at default priority.
2077	 */
2078	if (ctlr->rt)
2079		spi_set_thread_rt(ctlr);
2080
2081	return 0;
2082}
2083
2084/**
2085 * spi_get_next_queued_message() - called by driver to check for queued
2086 * messages
2087 * @ctlr: the controller to check for queued messages
2088 *
2089 * If there are more messages in the queue, the next message is returned from
2090 * this call.
2091 *
2092 * Return: the next message in the queue, else NULL if the queue is empty.
2093 */
2094struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2095{
2096	struct spi_message *next;
2097	unsigned long flags;
2098
2099	/* Get a pointer to the next message, if any */
2100	spin_lock_irqsave(&ctlr->queue_lock, flags);
2101	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2102					queue);
2103	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104
2105	return next;
2106}
2107EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2108
2109/*
2110 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2111 *                            and spi_maybe_unoptimize_message()
2112 * @msg: the message to unoptimize
2113 *
2114 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2115 * core should use spi_maybe_unoptimize_message() rather than calling this
2116 * function directly.
2117 *
2118 * It is not valid to call this on a message that is not currently optimized.
2119 */
2120static void __spi_unoptimize_message(struct spi_message *msg)
2121{
2122	struct spi_controller *ctlr = msg->spi->controller;
2123
2124	if (ctlr->unoptimize_message)
2125		ctlr->unoptimize_message(msg);
2126
2127	spi_res_release(ctlr, msg);
2128
2129	msg->optimized = false;
2130	msg->opt_state = NULL;
2131}
2132
2133/*
2134 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2135 * @msg: the message to unoptimize
2136 *
2137 * This function is used to unoptimize a message if and only if it was
2138 * optimized by the core (via spi_maybe_optimize_message()).
2139 */
2140static void spi_maybe_unoptimize_message(struct spi_message *msg)
2141{
2142	if (!msg->pre_optimized && msg->optimized &&
2143	    !msg->spi->controller->defer_optimize_message)
2144		__spi_unoptimize_message(msg);
2145}
2146
2147/**
2148 * spi_finalize_current_message() - the current message is complete
2149 * @ctlr: the controller to return the message to
2150 *
2151 * Called by the driver to notify the core that the message in the front of the
2152 * queue is complete and can be removed from the queue.
2153 */
2154void spi_finalize_current_message(struct spi_controller *ctlr)
2155{
2156	struct spi_transfer *xfer;
2157	struct spi_message *mesg;
2158	int ret;
2159
2160	mesg = ctlr->cur_msg;
2161
2162	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2163		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2164			ptp_read_system_postts(xfer->ptp_sts);
2165			xfer->ptp_sts_word_post = xfer->len;
2166		}
2167	}
2168
2169	if (unlikely(ctlr->ptp_sts_supported))
2170		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2171			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2172
2173	spi_unmap_msg(ctlr, mesg);
2174
2175	if (mesg->prepared && ctlr->unprepare_message) {
2176		ret = ctlr->unprepare_message(ctlr, mesg);
2177		if (ret) {
2178			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2179				ret);
2180		}
2181	}
2182
2183	mesg->prepared = false;
2184
2185	spi_maybe_unoptimize_message(mesg);
2186
2187	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2188	smp_mb(); /* See __spi_pump_transfer_message()... */
2189	if (READ_ONCE(ctlr->cur_msg_need_completion))
2190		complete(&ctlr->cur_msg_completion);
2191
2192	trace_spi_message_done(mesg);
2193
2194	mesg->state = NULL;
2195	if (mesg->complete)
2196		mesg->complete(mesg->context);
2197}
2198EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2199
2200static int spi_start_queue(struct spi_controller *ctlr)
2201{
2202	unsigned long flags;
2203
2204	spin_lock_irqsave(&ctlr->queue_lock, flags);
2205
2206	if (ctlr->running || ctlr->busy) {
2207		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2208		return -EBUSY;
2209	}
2210
2211	ctlr->running = true;
2212	ctlr->cur_msg = NULL;
2213	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2214
2215	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2216
2217	return 0;
2218}
2219
2220static int spi_stop_queue(struct spi_controller *ctlr)
2221{
2222	unsigned int limit = 500;
2223	unsigned long flags;
 
 
 
 
2224
2225	/*
2226	 * This is a bit lame, but is optimized for the common execution path.
2227	 * A wait_queue on the ctlr->busy could be used, but then the common
2228	 * execution path (pump_messages) would be required to call wake_up or
2229	 * friends on every SPI message. Do this instead.
2230	 */
2231	do {
2232		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2234			ctlr->running = false;
2235			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2236			return 0;
2237		}
2238		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2239		usleep_range(10000, 11000);
2240	} while (--limit);
 
 
 
 
 
 
2241
2242	return -EBUSY;
 
 
2243}
2244
2245static int spi_destroy_queue(struct spi_controller *ctlr)
2246{
2247	int ret;
2248
2249	ret = spi_stop_queue(ctlr);
2250
2251	/*
2252	 * kthread_flush_worker will block until all work is done.
2253	 * If the reason that stop_queue timed out is that the work will never
2254	 * finish, then it does no good to call flush/stop thread, so
2255	 * return anyway.
2256	 */
2257	if (ret) {
2258		dev_err(&ctlr->dev, "problem destroying queue\n");
2259		return ret;
2260	}
2261
2262	kthread_destroy_worker(ctlr->kworker);
2263
2264	return 0;
2265}
2266
2267static int __spi_queued_transfer(struct spi_device *spi,
2268				 struct spi_message *msg,
2269				 bool need_pump)
2270{
2271	struct spi_controller *ctlr = spi->controller;
2272	unsigned long flags;
2273
2274	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276	if (!ctlr->running) {
2277		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278		return -ESHUTDOWN;
2279	}
2280	msg->actual_length = 0;
2281	msg->status = -EINPROGRESS;
2282
2283	list_add_tail(&msg->queue, &ctlr->queue);
2284	ctlr->queue_empty = false;
2285	if (!ctlr->busy && need_pump)
2286		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289	return 0;
2290}
2291
2292/**
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2296 *
2297 * Return: zero on success, else a negative error code.
2298 */
2299static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300{
2301	return __spi_queued_transfer(spi, msg, true);
2302}
2303
2304static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305{
2306	int ret;
2307
2308	ctlr->transfer = spi_queued_transfer;
2309	if (!ctlr->transfer_one_message)
2310		ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312	/* Initialize and start queue */
2313	ret = spi_init_queue(ctlr);
2314	if (ret) {
2315		dev_err(&ctlr->dev, "problem initializing queue\n");
2316		goto err_init_queue;
2317	}
2318	ctlr->queued = true;
2319	ret = spi_start_queue(ctlr);
2320	if (ret) {
2321		dev_err(&ctlr->dev, "problem starting queue\n");
2322		goto err_start_queue;
2323	}
2324
2325	return 0;
2326
2327err_start_queue:
2328	spi_destroy_queue(ctlr);
2329err_init_queue:
2330	return ret;
2331}
2332
2333/**
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2335 *		     context
2336 * @ctlr: controller to process queue for
2337 *
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2342 */
2343void spi_flush_queue(struct spi_controller *ctlr)
2344{
2345	if (ctlr->transfer == spi_queued_transfer)
2346		__spi_pump_messages(ctlr, false);
2347}
2348
2349/*-------------------------------------------------------------------------*/
2350
2351#if defined(CONFIG_OF)
2352static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353				     struct spi_delay *delay, const char *prop)
2354{
2355	u32 value;
2356
2357	if (!of_property_read_u32(nc, prop, &value)) {
2358		if (value > U16_MAX) {
2359			delay->value = DIV_ROUND_UP(value, 1000);
2360			delay->unit = SPI_DELAY_UNIT_USECS;
2361		} else {
2362			delay->value = value;
2363			delay->unit = SPI_DELAY_UNIT_NSECS;
2364		}
2365	}
2366}
2367
2368static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369			   struct device_node *nc)
2370{
2371	u32 value, cs[SPI_CS_CNT_MAX];
2372	int rc, idx;
2373
2374	/* Mode (clock phase/polarity/etc.) */
2375	if (of_property_read_bool(nc, "spi-cpha"))
2376		spi->mode |= SPI_CPHA;
2377	if (of_property_read_bool(nc, "spi-cpol"))
2378		spi->mode |= SPI_CPOL;
2379	if (of_property_read_bool(nc, "spi-3wire"))
2380		spi->mode |= SPI_3WIRE;
2381	if (of_property_read_bool(nc, "spi-lsb-first"))
2382		spi->mode |= SPI_LSB_FIRST;
2383	if (of_property_read_bool(nc, "spi-cs-high"))
2384		spi->mode |= SPI_CS_HIGH;
2385
2386	/* Device DUAL/QUAD mode */
2387	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388		switch (value) {
2389		case 0:
2390			spi->mode |= SPI_NO_TX;
2391			break;
2392		case 1:
2393			break;
2394		case 2:
2395			spi->mode |= SPI_TX_DUAL;
2396			break;
2397		case 4:
2398			spi->mode |= SPI_TX_QUAD;
2399			break;
2400		case 8:
2401			spi->mode |= SPI_TX_OCTAL;
2402			break;
2403		default:
2404			dev_warn(&ctlr->dev,
2405				"spi-tx-bus-width %d not supported\n",
2406				value);
2407			break;
2408		}
2409	}
2410
2411	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412		switch (value) {
2413		case 0:
2414			spi->mode |= SPI_NO_RX;
2415			break;
2416		case 1:
2417			break;
2418		case 2:
2419			spi->mode |= SPI_RX_DUAL;
2420			break;
2421		case 4:
2422			spi->mode |= SPI_RX_QUAD;
2423			break;
2424		case 8:
2425			spi->mode |= SPI_RX_OCTAL;
2426			break;
2427		default:
2428			dev_warn(&ctlr->dev,
2429				"spi-rx-bus-width %d not supported\n",
2430				value);
2431			break;
2432		}
2433	}
2434
2435	if (spi_controller_is_target(ctlr)) {
2436		if (!of_node_name_eq(nc, "slave")) {
2437			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438				nc);
2439			return -EINVAL;
2440		}
2441		return 0;
2442	}
2443
2444	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446		return -EINVAL;
2447	}
2448
2449	spi_set_all_cs_unused(spi);
2450
2451	/* Device address */
2452	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453						 SPI_CS_CNT_MAX);
2454	if (rc < 0) {
2455		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456			nc, rc);
2457		return rc;
2458	}
2459	if (rc > ctlr->num_chipselect) {
2460		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461			nc, rc);
2462		return rc;
2463	}
2464	if ((of_property_present(nc, "parallel-memories")) &&
2465	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467		return -EINVAL;
2468	}
2469	for (idx = 0; idx < rc; idx++)
2470		spi_set_chipselect(spi, idx, cs[idx]);
2471
2472	/*
2473	 * By default spi->chip_select[0] will hold the physical CS number,
2474	 * so set bit 0 in spi->cs_index_mask.
2475	 */
2476	spi->cs_index_mask = BIT(0);
2477
2478	/* Device speed */
2479	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480		spi->max_speed_hz = value;
2481
2482	/* Device CS delays */
2483	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487	return 0;
2488}
2489
2490static struct spi_device *
2491of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492{
2493	struct spi_device *spi;
2494	int rc;
2495
2496	/* Alloc an spi_device */
2497	spi = spi_alloc_device(ctlr);
2498	if (!spi) {
2499		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500		rc = -ENOMEM;
2501		goto err_out;
2502	}
2503
2504	/* Select device driver */
2505	rc = of_alias_from_compatible(nc, spi->modalias,
2506				      sizeof(spi->modalias));
2507	if (rc < 0) {
2508		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509		goto err_out;
2510	}
2511
2512	rc = of_spi_parse_dt(ctlr, spi, nc);
2513	if (rc)
2514		goto err_out;
2515
2516	/* Store a pointer to the node in the device structure */
2517	of_node_get(nc);
2518
2519	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521	/* Register the new device */
2522	rc = spi_add_device(spi);
2523	if (rc) {
2524		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525		goto err_of_node_put;
2526	}
2527
2528	return spi;
2529
2530err_of_node_put:
2531	of_node_put(nc);
2532err_out:
2533	spi_dev_put(spi);
2534	return ERR_PTR(rc);
2535}
2536
2537/**
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr:	Pointer to spi_controller device
2540 *
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2543 */
2544static void of_register_spi_devices(struct spi_controller *ctlr)
2545{
2546	struct spi_device *spi;
2547	struct device_node *nc;
2548
2549	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551			continue;
2552		spi = of_register_spi_device(ctlr, nc);
2553		if (IS_ERR(spi)) {
2554			dev_warn(&ctlr->dev,
2555				 "Failed to create SPI device for %pOF\n", nc);
2556			of_node_clear_flag(nc, OF_POPULATED);
2557		}
2558	}
2559}
2560#else
2561static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562#endif
2563
2564/**
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi:         Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2568 *
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2571 *
2572 * This may only be called from main SPI device's probe routine.
2573 *
2574 * Return: 0 on success; negative errno on failure
2575 */
2576struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577					     u8 chip_select)
2578{
2579	struct spi_controller *ctlr = spi->controller;
2580	struct spi_device *ancillary;
2581	int rc;
2582
2583	/* Alloc an spi_device */
2584	ancillary = spi_alloc_device(ctlr);
2585	if (!ancillary) {
2586		rc = -ENOMEM;
2587		goto err_out;
2588	}
2589
2590	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592	/* Use provided chip-select for ancillary device */
2593	spi_set_all_cs_unused(ancillary);
2594	spi_set_chipselect(ancillary, 0, chip_select);
2595
2596	/* Take over SPI mode/speed from SPI main device */
2597	ancillary->max_speed_hz = spi->max_speed_hz;
2598	ancillary->mode = spi->mode;
2599	/*
2600	 * By default spi->chip_select[0] will hold the physical CS number,
2601	 * so set bit 0 in spi->cs_index_mask.
2602	 */
2603	ancillary->cs_index_mask = BIT(0);
2604
2605	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607	/* Register the new device */
2608	rc = __spi_add_device(ancillary);
2609	if (rc) {
2610		dev_err(&spi->dev, "failed to register ancillary device\n");
2611		goto err_out;
2612	}
2613
2614	return ancillary;
2615
2616err_out:
2617	spi_dev_put(ancillary);
2618	return ERR_PTR(rc);
2619}
2620EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622#ifdef CONFIG_ACPI
2623struct acpi_spi_lookup {
2624	struct spi_controller 	*ctlr;
2625	u32			max_speed_hz;
2626	u32			mode;
2627	int			irq;
2628	u8			bits_per_word;
2629	u8			chip_select;
2630	int			n;
2631	int			index;
2632};
2633
2634static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635{
2636	struct acpi_resource_spi_serialbus *sb;
2637	int *count = data;
2638
2639	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640		return 1;
2641
2642	sb = &ares->data.spi_serial_bus;
2643	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644		return 1;
2645
2646	*count = *count + 1;
2647
2648	return 1;
2649}
2650
2651/**
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev:	ACPI device
2654 *
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2657 */
2658int acpi_spi_count_resources(struct acpi_device *adev)
2659{
2660	LIST_HEAD(r);
2661	int count = 0;
2662	int ret;
2663
2664	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665	if (ret < 0)
2666		return ret;
2667
2668	acpi_dev_free_resource_list(&r);
2669
2670	return count;
2671}
2672EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675					    struct acpi_spi_lookup *lookup)
2676{
2677	const union acpi_object *obj;
2678
2679	if (!x86_apple_machine)
2680		return;
2681
2682	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683	    && obj->buffer.length >= 4)
2684		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687	    && obj->buffer.length == 8)
2688		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692		lookup->mode |= SPI_LSB_FIRST;
2693
2694	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696		lookup->mode |= SPI_CPOL;
2697
2698	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700		lookup->mode |= SPI_CPHA;
2701}
2702
2703static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704{
2705	struct acpi_spi_lookup *lookup = data;
2706	struct spi_controller *ctlr = lookup->ctlr;
2707
2708	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709		struct acpi_resource_spi_serialbus *sb;
2710		acpi_handle parent_handle;
2711		acpi_status status;
2712
2713		sb = &ares->data.spi_serial_bus;
2714		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717				return 1;
2718
2719			status = acpi_get_handle(NULL,
2720						 sb->resource_source.string_ptr,
2721						 &parent_handle);
2722
2723			if (ACPI_FAILURE(status))
2724				return -ENODEV;
2725
2726			if (ctlr) {
2727				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2728					return -ENODEV;
2729			} else {
2730				struct acpi_device *adev;
2731
2732				adev = acpi_fetch_acpi_dev(parent_handle);
2733				if (!adev)
2734					return -ENODEV;
2735
2736				ctlr = acpi_spi_find_controller_by_adev(adev);
2737				if (!ctlr)
2738					return -EPROBE_DEFER;
2739
2740				lookup->ctlr = ctlr;
2741			}
2742
2743			/*
2744			 * ACPI DeviceSelection numbering is handled by the
2745			 * host controller driver in Windows and can vary
2746			 * from driver to driver. In Linux we always expect
2747			 * 0 .. max - 1 so we need to ask the driver to
2748			 * translate between the two schemes.
2749			 */
2750			if (ctlr->fw_translate_cs) {
2751				int cs = ctlr->fw_translate_cs(ctlr,
2752						sb->device_selection);
2753				if (cs < 0)
2754					return cs;
2755				lookup->chip_select = cs;
2756			} else {
2757				lookup->chip_select = sb->device_selection;
2758			}
2759
2760			lookup->max_speed_hz = sb->connection_speed;
2761			lookup->bits_per_word = sb->data_bit_length;
2762
2763			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764				lookup->mode |= SPI_CPHA;
2765			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766				lookup->mode |= SPI_CPOL;
2767			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768				lookup->mode |= SPI_CS_HIGH;
2769		}
2770	} else if (lookup->irq < 0) {
2771		struct resource r;
2772
2773		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774			lookup->irq = r.start;
2775	}
2776
2777	/* Always tell the ACPI core to skip this resource */
2778	return 1;
2779}
2780
2781/**
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2786 *
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2789 *
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2794 *
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2796 */
2797struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798					 struct acpi_device *adev,
2799					 int index)
2800{
2801	acpi_handle parent_handle = NULL;
2802	struct list_head resource_list;
2803	struct acpi_spi_lookup lookup = {};
2804	struct spi_device *spi;
2805	int ret;
2806
2807	if (!ctlr && index == -1)
2808		return ERR_PTR(-EINVAL);
2809
2810	lookup.ctlr		= ctlr;
2811	lookup.irq		= -1;
2812	lookup.index		= index;
2813	lookup.n		= 0;
2814
2815	INIT_LIST_HEAD(&resource_list);
2816	ret = acpi_dev_get_resources(adev, &resource_list,
2817				     acpi_spi_add_resource, &lookup);
2818	acpi_dev_free_resource_list(&resource_list);
2819
2820	if (ret < 0)
2821		/* Found SPI in _CRS but it points to another controller */
2822		return ERR_PTR(ret);
2823
2824	if (!lookup.max_speed_hz &&
2825	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2827		/* Apple does not use _CRS but nested devices for SPI slaves */
2828		acpi_spi_parse_apple_properties(adev, &lookup);
2829	}
2830
2831	if (!lookup.max_speed_hz)
2832		return ERR_PTR(-ENODEV);
2833
2834	spi = spi_alloc_device(lookup.ctlr);
2835	if (!spi) {
2836		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837			dev_name(&adev->dev));
2838		return ERR_PTR(-ENOMEM);
2839	}
2840
2841	spi_set_all_cs_unused(spi);
2842	spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844	ACPI_COMPANION_SET(&spi->dev, adev);
2845	spi->max_speed_hz	= lookup.max_speed_hz;
2846	spi->mode		|= lookup.mode;
2847	spi->irq		= lookup.irq;
2848	spi->bits_per_word	= lookup.bits_per_word;
2849	/*
2850	 * By default spi->chip_select[0] will hold the physical CS number,
2851	 * so set bit 0 in spi->cs_index_mask.
2852	 */
2853	spi->cs_index_mask	= BIT(0);
2854
2855	return spi;
2856}
2857EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858
2859static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860					    struct acpi_device *adev)
2861{
2862	struct spi_device *spi;
2863
2864	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865	    acpi_device_enumerated(adev))
2866		return AE_OK;
2867
2868	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869	if (IS_ERR(spi)) {
2870		if (PTR_ERR(spi) == -ENOMEM)
2871			return AE_NO_MEMORY;
2872		else
2873			return AE_OK;
2874	}
2875
2876	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877			  sizeof(spi->modalias));
2878
 
 
 
2879	acpi_device_set_enumerated(adev);
2880
2881	adev->power.flags.ignore_parent = true;
2882	if (spi_add_device(spi)) {
2883		adev->power.flags.ignore_parent = false;
2884		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2885			dev_name(&adev->dev));
2886		spi_dev_put(spi);
2887	}
2888
2889	return AE_OK;
2890}
2891
2892static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2893				       void *data, void **return_value)
2894{
2895	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2896	struct spi_controller *ctlr = data;
2897
2898	if (!adev)
2899		return AE_OK;
2900
2901	return acpi_register_spi_device(ctlr, adev);
2902}
2903
2904#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2905
2906static void acpi_register_spi_devices(struct spi_controller *ctlr)
2907{
2908	acpi_status status;
2909	acpi_handle handle;
2910
2911	handle = ACPI_HANDLE(ctlr->dev.parent);
2912	if (!handle)
2913		return;
2914
2915	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2916				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2917				     acpi_spi_add_device, NULL, ctlr, NULL);
2918	if (ACPI_FAILURE(status))
2919		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2920}
2921#else
2922static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2923#endif /* CONFIG_ACPI */
2924
2925static void spi_controller_release(struct device *dev)
2926{
2927	struct spi_controller *ctlr;
2928
2929	ctlr = container_of(dev, struct spi_controller, dev);
2930	kfree(ctlr);
2931}
2932
2933static const struct class spi_master_class = {
2934	.name		= "spi_master",
2935	.dev_release	= spi_controller_release,
2936	.dev_groups	= spi_master_groups,
2937};
2938
2939#ifdef CONFIG_SPI_SLAVE
2940/**
2941 * spi_target_abort - abort the ongoing transfer request on an SPI slave
2942 *		     controller
2943 * @spi: device used for the current transfer
2944 */
 
 
 
 
 
 
 
 
 
 
 
2945int spi_target_abort(struct spi_device *spi)
2946{
2947	struct spi_controller *ctlr = spi->controller;
2948
2949	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2950		return ctlr->target_abort(ctlr);
2951
2952	return -ENOTSUPP;
2953}
2954EXPORT_SYMBOL_GPL(spi_target_abort);
2955
2956static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2957			  char *buf)
2958{
2959	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2960						   dev);
2961	struct device *child;
2962
2963	child = device_find_any_child(&ctlr->dev);
2964	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2965}
2966
2967static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2968			   const char *buf, size_t count)
2969{
2970	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2971						   dev);
2972	struct spi_device *spi;
2973	struct device *child;
2974	char name[32];
2975	int rc;
2976
2977	rc = sscanf(buf, "%31s", name);
2978	if (rc != 1 || !name[0])
2979		return -EINVAL;
2980
2981	child = device_find_any_child(&ctlr->dev);
2982	if (child) {
2983		/* Remove registered slave */
2984		device_unregister(child);
2985		put_device(child);
2986	}
2987
2988	if (strcmp(name, "(null)")) {
2989		/* Register new slave */
2990		spi = spi_alloc_device(ctlr);
2991		if (!spi)
2992			return -ENOMEM;
2993
2994		strscpy(spi->modalias, name, sizeof(spi->modalias));
2995
2996		rc = spi_add_device(spi);
2997		if (rc) {
2998			spi_dev_put(spi);
2999			return rc;
3000		}
3001	}
3002
3003	return count;
3004}
3005
3006static DEVICE_ATTR_RW(slave);
3007
3008static struct attribute *spi_slave_attrs[] = {
3009	&dev_attr_slave.attr,
3010	NULL,
3011};
3012
3013static const struct attribute_group spi_slave_group = {
3014	.attrs = spi_slave_attrs,
3015};
3016
3017static const struct attribute_group *spi_slave_groups[] = {
3018	&spi_controller_statistics_group,
3019	&spi_slave_group,
3020	NULL,
3021};
3022
3023static const struct class spi_slave_class = {
3024	.name		= "spi_slave",
3025	.dev_release	= spi_controller_release,
3026	.dev_groups	= spi_slave_groups,
3027};
3028#else
3029extern struct class spi_slave_class;	/* dummy */
3030#endif
3031
3032/**
3033 * __spi_alloc_controller - allocate an SPI master or slave controller
3034 * @dev: the controller, possibly using the platform_bus
3035 * @size: how much zeroed driver-private data to allocate; the pointer to this
3036 *	memory is in the driver_data field of the returned device, accessible
3037 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3038 *	drivers granting DMA access to portions of their private data need to
3039 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3040 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3041 *	slave (true) controller
3042 * Context: can sleep
3043 *
3044 * This call is used only by SPI controller drivers, which are the
3045 * only ones directly touching chip registers.  It's how they allocate
3046 * an spi_controller structure, prior to calling spi_register_controller().
3047 *
3048 * This must be called from context that can sleep.
3049 *
3050 * The caller is responsible for assigning the bus number and initializing the
3051 * controller's methods before calling spi_register_controller(); and (after
3052 * errors adding the device) calling spi_controller_put() to prevent a memory
3053 * leak.
3054 *
3055 * Return: the SPI controller structure on success, else NULL.
3056 */
3057struct spi_controller *__spi_alloc_controller(struct device *dev,
3058					      unsigned int size, bool slave)
3059{
3060	struct spi_controller	*ctlr;
3061	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3062
3063	if (!dev)
3064		return NULL;
3065
3066	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3067	if (!ctlr)
3068		return NULL;
3069
3070	device_initialize(&ctlr->dev);
3071	INIT_LIST_HEAD(&ctlr->queue);
3072	spin_lock_init(&ctlr->queue_lock);
3073	spin_lock_init(&ctlr->bus_lock_spinlock);
3074	mutex_init(&ctlr->bus_lock_mutex);
3075	mutex_init(&ctlr->io_mutex);
3076	mutex_init(&ctlr->add_lock);
3077	ctlr->bus_num = -1;
3078	ctlr->num_chipselect = 1;
3079	ctlr->slave = slave;
3080	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3081		ctlr->dev.class = &spi_slave_class;
3082	else
3083		ctlr->dev.class = &spi_master_class;
3084	ctlr->dev.parent = dev;
3085	pm_suspend_ignore_children(&ctlr->dev, true);
3086	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3087
3088	return ctlr;
3089}
3090EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3091
3092static void devm_spi_release_controller(struct device *dev, void *ctlr)
3093{
3094	spi_controller_put(*(struct spi_controller **)ctlr);
3095}
3096
3097/**
3098 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3099 * @dev: physical device of SPI controller
3100 * @size: how much zeroed driver-private data to allocate
3101 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3102 * Context: can sleep
3103 *
3104 * Allocate an SPI controller and automatically release a reference on it
3105 * when @dev is unbound from its driver.  Drivers are thus relieved from
3106 * having to call spi_controller_put().
3107 *
3108 * The arguments to this function are identical to __spi_alloc_controller().
3109 *
3110 * Return: the SPI controller structure on success, else NULL.
3111 */
3112struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3113						   unsigned int size,
3114						   bool slave)
3115{
3116	struct spi_controller **ptr, *ctlr;
3117
3118	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3119			   GFP_KERNEL);
3120	if (!ptr)
3121		return NULL;
3122
3123	ctlr = __spi_alloc_controller(dev, size, slave);
3124	if (ctlr) {
3125		ctlr->devm_allocated = true;
3126		*ptr = ctlr;
3127		devres_add(dev, ptr);
3128	} else {
3129		devres_free(ptr);
3130	}
3131
3132	return ctlr;
3133}
3134EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3135
3136/**
3137 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3138 * @ctlr: The SPI master to grab GPIO descriptors for
3139 */
3140static int spi_get_gpio_descs(struct spi_controller *ctlr)
3141{
3142	int nb, i;
3143	struct gpio_desc **cs;
3144	struct device *dev = &ctlr->dev;
3145	unsigned long native_cs_mask = 0;
3146	unsigned int num_cs_gpios = 0;
3147
3148	nb = gpiod_count(dev, "cs");
3149	if (nb < 0) {
3150		/* No GPIOs at all is fine, else return the error */
3151		if (nb == -ENOENT)
3152			return 0;
3153		return nb;
3154	}
3155
3156	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3157
3158	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3159			  GFP_KERNEL);
3160	if (!cs)
3161		return -ENOMEM;
3162	ctlr->cs_gpiods = cs;
3163
3164	for (i = 0; i < nb; i++) {
3165		/*
3166		 * Most chipselects are active low, the inverted
3167		 * semantics are handled by special quirks in gpiolib,
3168		 * so initializing them GPIOD_OUT_LOW here means
3169		 * "unasserted", in most cases this will drive the physical
3170		 * line high.
3171		 */
3172		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3173						      GPIOD_OUT_LOW);
3174		if (IS_ERR(cs[i]))
3175			return PTR_ERR(cs[i]);
3176
3177		if (cs[i]) {
3178			/*
3179			 * If we find a CS GPIO, name it after the device and
3180			 * chip select line.
3181			 */
3182			char *gpioname;
3183
3184			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3185						  dev_name(dev), i);
3186			if (!gpioname)
3187				return -ENOMEM;
3188			gpiod_set_consumer_name(cs[i], gpioname);
3189			num_cs_gpios++;
3190			continue;
3191		}
3192
3193		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3194			dev_err(dev, "Invalid native chip select %d\n", i);
3195			return -EINVAL;
3196		}
3197		native_cs_mask |= BIT(i);
3198	}
3199
3200	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3201
3202	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3203	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3204		dev_err(dev, "No unused native chip select available\n");
3205		return -EINVAL;
3206	}
3207
3208	return 0;
3209}
3210
3211static int spi_controller_check_ops(struct spi_controller *ctlr)
3212{
3213	/*
3214	 * The controller may implement only the high-level SPI-memory like
3215	 * operations if it does not support regular SPI transfers, and this is
3216	 * valid use case.
3217	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3218	 * one of the ->transfer_xxx() method be implemented.
3219	 */
3220	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3221		if (!ctlr->transfer && !ctlr->transfer_one &&
3222		   !ctlr->transfer_one_message) {
3223			return -EINVAL;
3224		}
3225	}
3226
3227	return 0;
3228}
3229
3230/* Allocate dynamic bus number using Linux idr */
3231static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3232{
3233	int id;
3234
3235	mutex_lock(&board_lock);
3236	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3237	mutex_unlock(&board_lock);
3238	if (WARN(id < 0, "couldn't get idr"))
3239		return id == -ENOSPC ? -EBUSY : id;
3240	ctlr->bus_num = id;
3241	return 0;
3242}
3243
3244/**
3245 * spi_register_controller - register SPI host or target controller
3246 * @ctlr: initialized controller, originally from spi_alloc_host() or
3247 *	spi_alloc_target()
3248 * Context: can sleep
3249 *
3250 * SPI controllers connect to their drivers using some non-SPI bus,
3251 * such as the platform bus.  The final stage of probe() in that code
3252 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3253 *
3254 * SPI controllers use board specific (often SOC specific) bus numbers,
3255 * and board-specific addressing for SPI devices combines those numbers
3256 * with chip select numbers.  Since SPI does not directly support dynamic
3257 * device identification, boards need configuration tables telling which
3258 * chip is at which address.
3259 *
3260 * This must be called from context that can sleep.  It returns zero on
3261 * success, else a negative error code (dropping the controller's refcount).
3262 * After a successful return, the caller is responsible for calling
3263 * spi_unregister_controller().
3264 *
3265 * Return: zero on success, else a negative error code.
3266 */
3267int spi_register_controller(struct spi_controller *ctlr)
3268{
3269	struct device		*dev = ctlr->dev.parent;
3270	struct boardinfo	*bi;
3271	int			first_dynamic;
3272	int			status;
3273	int			idx;
3274
3275	if (!dev)
3276		return -ENODEV;
3277
3278	/*
3279	 * Make sure all necessary hooks are implemented before registering
3280	 * the SPI controller.
3281	 */
3282	status = spi_controller_check_ops(ctlr);
3283	if (status)
3284		return status;
3285
3286	if (ctlr->bus_num < 0)
3287		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3288	if (ctlr->bus_num >= 0) {
3289		/* Devices with a fixed bus num must check-in with the num */
3290		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3291		if (status)
3292			return status;
3293	}
3294	if (ctlr->bus_num < 0) {
3295		first_dynamic = of_alias_get_highest_id("spi");
3296		if (first_dynamic < 0)
3297			first_dynamic = 0;
3298		else
3299			first_dynamic++;
3300
3301		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3302		if (status)
3303			return status;
3304	}
3305	ctlr->bus_lock_flag = 0;
3306	init_completion(&ctlr->xfer_completion);
3307	init_completion(&ctlr->cur_msg_completion);
3308	if (!ctlr->max_dma_len)
3309		ctlr->max_dma_len = INT_MAX;
3310
3311	/*
3312	 * Register the device, then userspace will see it.
3313	 * Registration fails if the bus ID is in use.
3314	 */
3315	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3316
3317	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3318		status = spi_get_gpio_descs(ctlr);
3319		if (status)
3320			goto free_bus_id;
3321		/*
3322		 * A controller using GPIO descriptors always
3323		 * supports SPI_CS_HIGH if need be.
3324		 */
3325		ctlr->mode_bits |= SPI_CS_HIGH;
3326	}
3327
3328	/*
3329	 * Even if it's just one always-selected device, there must
3330	 * be at least one chipselect.
3331	 */
3332	if (!ctlr->num_chipselect) {
3333		status = -EINVAL;
3334		goto free_bus_id;
3335	}
3336
3337	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3338	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3339		ctlr->last_cs[idx] = SPI_INVALID_CS;
3340
3341	status = device_add(&ctlr->dev);
3342	if (status < 0)
3343		goto free_bus_id;
3344	dev_dbg(dev, "registered %s %s\n",
3345			spi_controller_is_target(ctlr) ? "target" : "host",
3346			dev_name(&ctlr->dev));
3347
3348	/*
3349	 * If we're using a queued driver, start the queue. Note that we don't
3350	 * need the queueing logic if the driver is only supporting high-level
3351	 * memory operations.
3352	 */
3353	if (ctlr->transfer) {
3354		dev_info(dev, "controller is unqueued, this is deprecated\n");
3355	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3356		status = spi_controller_initialize_queue(ctlr);
3357		if (status) {
3358			device_del(&ctlr->dev);
3359			goto free_bus_id;
3360		}
3361	}
3362	/* Add statistics */
3363	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3364	if (!ctlr->pcpu_statistics) {
3365		dev_err(dev, "Error allocating per-cpu statistics\n");
3366		status = -ENOMEM;
3367		goto destroy_queue;
3368	}
3369
3370	mutex_lock(&board_lock);
3371	list_add_tail(&ctlr->list, &spi_controller_list);
3372	list_for_each_entry(bi, &board_list, list)
3373		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3374	mutex_unlock(&board_lock);
3375
3376	/* Register devices from the device tree and ACPI */
3377	of_register_spi_devices(ctlr);
3378	acpi_register_spi_devices(ctlr);
3379	return status;
3380
3381destroy_queue:
3382	spi_destroy_queue(ctlr);
3383free_bus_id:
3384	mutex_lock(&board_lock);
3385	idr_remove(&spi_master_idr, ctlr->bus_num);
3386	mutex_unlock(&board_lock);
3387	return status;
3388}
3389EXPORT_SYMBOL_GPL(spi_register_controller);
3390
3391static void devm_spi_unregister(struct device *dev, void *res)
3392{
3393	spi_unregister_controller(*(struct spi_controller **)res);
3394}
3395
3396/**
3397 * devm_spi_register_controller - register managed SPI host or target
3398 *	controller
3399 * @dev:    device managing SPI controller
3400 * @ctlr: initialized controller, originally from spi_alloc_host() or
3401 *	spi_alloc_target()
3402 * Context: can sleep
3403 *
3404 * Register a SPI device as with spi_register_controller() which will
3405 * automatically be unregistered and freed.
3406 *
3407 * Return: zero on success, else a negative error code.
3408 */
3409int devm_spi_register_controller(struct device *dev,
3410				 struct spi_controller *ctlr)
3411{
3412	struct spi_controller **ptr;
3413	int ret;
3414
3415	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3416	if (!ptr)
3417		return -ENOMEM;
3418
3419	ret = spi_register_controller(ctlr);
3420	if (!ret) {
3421		*ptr = ctlr;
3422		devres_add(dev, ptr);
3423	} else {
3424		devres_free(ptr);
3425	}
3426
3427	return ret;
3428}
3429EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3430
3431static int __unregister(struct device *dev, void *null)
3432{
3433	spi_unregister_device(to_spi_device(dev));
3434	return 0;
3435}
3436
3437/**
3438 * spi_unregister_controller - unregister SPI master or slave controller
3439 * @ctlr: the controller being unregistered
3440 * Context: can sleep
3441 *
3442 * This call is used only by SPI controller drivers, which are the
3443 * only ones directly touching chip registers.
3444 *
3445 * This must be called from context that can sleep.
3446 *
3447 * Note that this function also drops a reference to the controller.
3448 */
3449void spi_unregister_controller(struct spi_controller *ctlr)
3450{
3451	struct spi_controller *found;
3452	int id = ctlr->bus_num;
3453
3454	/* Prevent addition of new devices, unregister existing ones */
3455	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3456		mutex_lock(&ctlr->add_lock);
3457
3458	device_for_each_child(&ctlr->dev, NULL, __unregister);
3459
3460	/* First make sure that this controller was ever added */
3461	mutex_lock(&board_lock);
3462	found = idr_find(&spi_master_idr, id);
3463	mutex_unlock(&board_lock);
3464	if (ctlr->queued) {
3465		if (spi_destroy_queue(ctlr))
3466			dev_err(&ctlr->dev, "queue remove failed\n");
3467	}
3468	mutex_lock(&board_lock);
3469	list_del(&ctlr->list);
3470	mutex_unlock(&board_lock);
3471
3472	device_del(&ctlr->dev);
3473
3474	/* Free bus id */
3475	mutex_lock(&board_lock);
3476	if (found == ctlr)
3477		idr_remove(&spi_master_idr, id);
3478	mutex_unlock(&board_lock);
3479
3480	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3481		mutex_unlock(&ctlr->add_lock);
3482
3483	/*
3484	 * Release the last reference on the controller if its driver
3485	 * has not yet been converted to devm_spi_alloc_host/target().
3486	 */
3487	if (!ctlr->devm_allocated)
3488		put_device(&ctlr->dev);
3489}
3490EXPORT_SYMBOL_GPL(spi_unregister_controller);
3491
3492static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3493{
3494	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3495}
3496
3497static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3498{
3499	mutex_lock(&ctlr->bus_lock_mutex);
3500	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3501	mutex_unlock(&ctlr->bus_lock_mutex);
3502}
3503
3504static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3505{
3506	mutex_lock(&ctlr->bus_lock_mutex);
3507	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3508	mutex_unlock(&ctlr->bus_lock_mutex);
3509}
3510
3511int spi_controller_suspend(struct spi_controller *ctlr)
3512{
3513	int ret = 0;
3514
3515	/* Basically no-ops for non-queued controllers */
3516	if (ctlr->queued) {
3517		ret = spi_stop_queue(ctlr);
3518		if (ret)
3519			dev_err(&ctlr->dev, "queue stop failed\n");
3520	}
3521
3522	__spi_mark_suspended(ctlr);
3523	return ret;
3524}
3525EXPORT_SYMBOL_GPL(spi_controller_suspend);
3526
3527int spi_controller_resume(struct spi_controller *ctlr)
3528{
3529	int ret = 0;
3530
3531	__spi_mark_resumed(ctlr);
3532
3533	if (ctlr->queued) {
3534		ret = spi_start_queue(ctlr);
3535		if (ret)
3536			dev_err(&ctlr->dev, "queue restart failed\n");
3537	}
3538	return ret;
3539}
3540EXPORT_SYMBOL_GPL(spi_controller_resume);
3541
3542/*-------------------------------------------------------------------------*/
3543
3544/* Core methods for spi_message alterations */
3545
3546static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3547					    struct spi_message *msg,
3548					    void *res)
3549{
3550	struct spi_replaced_transfers *rxfer = res;
3551	size_t i;
3552
3553	/* Call extra callback if requested */
3554	if (rxfer->release)
3555		rxfer->release(ctlr, msg, res);
3556
3557	/* Insert replaced transfers back into the message */
3558	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3559
3560	/* Remove the formerly inserted entries */
3561	for (i = 0; i < rxfer->inserted; i++)
3562		list_del(&rxfer->inserted_transfers[i].transfer_list);
3563}
3564
3565/**
3566 * spi_replace_transfers - replace transfers with several transfers
3567 *                         and register change with spi_message.resources
3568 * @msg:           the spi_message we work upon
3569 * @xfer_first:    the first spi_transfer we want to replace
3570 * @remove:        number of transfers to remove
3571 * @insert:        the number of transfers we want to insert instead
3572 * @release:       extra release code necessary in some circumstances
3573 * @extradatasize: extra data to allocate (with alignment guarantees
3574 *                 of struct @spi_transfer)
3575 * @gfp:           gfp flags
3576 *
3577 * Returns: pointer to @spi_replaced_transfers,
3578 *          PTR_ERR(...) in case of errors.
3579 */
3580static struct spi_replaced_transfers *spi_replace_transfers(
3581	struct spi_message *msg,
3582	struct spi_transfer *xfer_first,
3583	size_t remove,
3584	size_t insert,
3585	spi_replaced_release_t release,
3586	size_t extradatasize,
3587	gfp_t gfp)
3588{
3589	struct spi_replaced_transfers *rxfer;
3590	struct spi_transfer *xfer;
3591	size_t i;
3592
3593	/* Allocate the structure using spi_res */
3594	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3595			      struct_size(rxfer, inserted_transfers, insert)
3596			      + extradatasize,
3597			      gfp);
3598	if (!rxfer)
3599		return ERR_PTR(-ENOMEM);
3600
3601	/* The release code to invoke before running the generic release */
3602	rxfer->release = release;
3603
3604	/* Assign extradata */
3605	if (extradatasize)
3606		rxfer->extradata =
3607			&rxfer->inserted_transfers[insert];
3608
3609	/* Init the replaced_transfers list */
3610	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3611
3612	/*
3613	 * Assign the list_entry after which we should reinsert
3614	 * the @replaced_transfers - it may be spi_message.messages!
3615	 */
3616	rxfer->replaced_after = xfer_first->transfer_list.prev;
3617
3618	/* Remove the requested number of transfers */
3619	for (i = 0; i < remove; i++) {
3620		/*
3621		 * If the entry after replaced_after it is msg->transfers
3622		 * then we have been requested to remove more transfers
3623		 * than are in the list.
3624		 */
3625		if (rxfer->replaced_after->next == &msg->transfers) {
3626			dev_err(&msg->spi->dev,
3627				"requested to remove more spi_transfers than are available\n");
3628			/* Insert replaced transfers back into the message */
3629			list_splice(&rxfer->replaced_transfers,
3630				    rxfer->replaced_after);
3631
3632			/* Free the spi_replace_transfer structure... */
3633			spi_res_free(rxfer);
3634
3635			/* ...and return with an error */
3636			return ERR_PTR(-EINVAL);
3637		}
3638
3639		/*
3640		 * Remove the entry after replaced_after from list of
3641		 * transfers and add it to list of replaced_transfers.
3642		 */
3643		list_move_tail(rxfer->replaced_after->next,
3644			       &rxfer->replaced_transfers);
3645	}
3646
3647	/*
3648	 * Create copy of the given xfer with identical settings
3649	 * based on the first transfer to get removed.
3650	 */
3651	for (i = 0; i < insert; i++) {
3652		/* We need to run in reverse order */
3653		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3654
3655		/* Copy all spi_transfer data */
3656		memcpy(xfer, xfer_first, sizeof(*xfer));
3657
3658		/* Add to list */
3659		list_add(&xfer->transfer_list, rxfer->replaced_after);
3660
3661		/* Clear cs_change and delay for all but the last */
3662		if (i) {
3663			xfer->cs_change = false;
3664			xfer->delay.value = 0;
3665		}
3666	}
3667
3668	/* Set up inserted... */
3669	rxfer->inserted = insert;
3670
3671	/* ...and register it with spi_res/spi_message */
3672	spi_res_add(msg, rxfer);
3673
3674	return rxfer;
3675}
3676
3677static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3678					struct spi_message *msg,
3679					struct spi_transfer **xferp,
3680					size_t maxsize)
3681{
3682	struct spi_transfer *xfer = *xferp, *xfers;
3683	struct spi_replaced_transfers *srt;
3684	size_t offset;
3685	size_t count, i;
3686
3687	/* Calculate how many we have to replace */
3688	count = DIV_ROUND_UP(xfer->len, maxsize);
3689
3690	/* Create replacement */
3691	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3692	if (IS_ERR(srt))
3693		return PTR_ERR(srt);
3694	xfers = srt->inserted_transfers;
3695
3696	/*
3697	 * Now handle each of those newly inserted spi_transfers.
3698	 * Note that the replacements spi_transfers all are preset
3699	 * to the same values as *xferp, so tx_buf, rx_buf and len
3700	 * are all identical (as well as most others)
3701	 * so we just have to fix up len and the pointers.
 
 
 
3702	 */
3703
3704	/*
3705	 * The first transfer just needs the length modified, so we
3706	 * run it outside the loop.
3707	 */
3708	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3709
3710	/* All the others need rx_buf/tx_buf also set */
3711	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3712		/* Update rx_buf, tx_buf and DMA */
3713		if (xfers[i].rx_buf)
3714			xfers[i].rx_buf += offset;
 
 
3715		if (xfers[i].tx_buf)
3716			xfers[i].tx_buf += offset;
 
 
3717
3718		/* Update length */
3719		xfers[i].len = min(maxsize, xfers[i].len - offset);
3720	}
3721
3722	/*
3723	 * We set up xferp to the last entry we have inserted,
3724	 * so that we skip those already split transfers.
3725	 */
3726	*xferp = &xfers[count - 1];
3727
3728	/* Increment statistics counters */
3729	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3730				       transfers_split_maxsize);
3731	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3732				       transfers_split_maxsize);
3733
3734	return 0;
3735}
3736
3737/**
3738 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3739 *                               when an individual transfer exceeds a
3740 *                               certain size
3741 * @ctlr:    the @spi_controller for this transfer
3742 * @msg:   the @spi_message to transform
3743 * @maxsize:  the maximum when to apply this
3744 *
3745 * This function allocates resources that are automatically freed during the
3746 * spi message unoptimize phase so this function should only be called from
3747 * optimize_message callbacks.
3748 *
3749 * Return: status of transformation
3750 */
3751int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3752				struct spi_message *msg,
3753				size_t maxsize)
3754{
3755	struct spi_transfer *xfer;
3756	int ret;
3757
3758	/*
3759	 * Iterate over the transfer_list,
3760	 * but note that xfer is advanced to the last transfer inserted
3761	 * to avoid checking sizes again unnecessarily (also xfer does
3762	 * potentially belong to a different list by the time the
3763	 * replacement has happened).
3764	 */
3765	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3766		if (xfer->len > maxsize) {
3767			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3768							   maxsize);
3769			if (ret)
3770				return ret;
3771		}
3772	}
3773
3774	return 0;
3775}
3776EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3777
3778
3779/**
3780 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3781 *                                when an individual transfer exceeds a
3782 *                                certain number of SPI words
3783 * @ctlr:     the @spi_controller for this transfer
3784 * @msg:      the @spi_message to transform
3785 * @maxwords: the number of words to limit each transfer to
3786 *
3787 * This function allocates resources that are automatically freed during the
3788 * spi message unoptimize phase so this function should only be called from
3789 * optimize_message callbacks.
3790 *
3791 * Return: status of transformation
3792 */
3793int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3794				 struct spi_message *msg,
3795				 size_t maxwords)
3796{
3797	struct spi_transfer *xfer;
3798
3799	/*
3800	 * Iterate over the transfer_list,
3801	 * but note that xfer is advanced to the last transfer inserted
3802	 * to avoid checking sizes again unnecessarily (also xfer does
3803	 * potentially belong to a different list by the time the
3804	 * replacement has happened).
3805	 */
3806	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3807		size_t maxsize;
3808		int ret;
3809
3810		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3811		if (xfer->len > maxsize) {
3812			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3813							   maxsize);
3814			if (ret)
3815				return ret;
3816		}
3817	}
3818
3819	return 0;
3820}
3821EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3822
3823/*-------------------------------------------------------------------------*/
3824
3825/*
3826 * Core methods for SPI controller protocol drivers. Some of the
3827 * other core methods are currently defined as inline functions.
3828 */
3829
3830static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3831					u8 bits_per_word)
3832{
3833	if (ctlr->bits_per_word_mask) {
3834		/* Only 32 bits fit in the mask */
3835		if (bits_per_word > 32)
3836			return -EINVAL;
3837		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3838			return -EINVAL;
3839	}
3840
3841	return 0;
3842}
3843
3844/**
3845 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3846 * @spi: the device that requires specific CS timing configuration
3847 *
3848 * Return: zero on success, else a negative error code.
3849 */
3850static int spi_set_cs_timing(struct spi_device *spi)
3851{
3852	struct device *parent = spi->controller->dev.parent;
3853	int status = 0;
3854
3855	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3856		if (spi->controller->auto_runtime_pm) {
3857			status = pm_runtime_get_sync(parent);
3858			if (status < 0) {
3859				pm_runtime_put_noidle(parent);
3860				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3861					status);
3862				return status;
3863			}
3864
3865			status = spi->controller->set_cs_timing(spi);
3866			pm_runtime_mark_last_busy(parent);
3867			pm_runtime_put_autosuspend(parent);
3868		} else {
3869			status = spi->controller->set_cs_timing(spi);
3870		}
3871	}
3872	return status;
3873}
3874
3875/**
3876 * spi_setup - setup SPI mode and clock rate
3877 * @spi: the device whose settings are being modified
3878 * Context: can sleep, and no requests are queued to the device
3879 *
3880 * SPI protocol drivers may need to update the transfer mode if the
3881 * device doesn't work with its default.  They may likewise need
3882 * to update clock rates or word sizes from initial values.  This function
3883 * changes those settings, and must be called from a context that can sleep.
3884 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3885 * effect the next time the device is selected and data is transferred to
3886 * or from it.  When this function returns, the SPI device is deselected.
3887 *
3888 * Note that this call will fail if the protocol driver specifies an option
3889 * that the underlying controller or its driver does not support.  For
3890 * example, not all hardware supports wire transfers using nine bit words,
3891 * LSB-first wire encoding, or active-high chipselects.
3892 *
3893 * Return: zero on success, else a negative error code.
3894 */
3895int spi_setup(struct spi_device *spi)
3896{
3897	unsigned	bad_bits, ugly_bits;
3898	int		status;
3899
3900	/*
3901	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3902	 * are set at the same time.
3903	 */
3904	if ((hweight_long(spi->mode &
3905		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3906	    (hweight_long(spi->mode &
3907		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3908		dev_err(&spi->dev,
3909		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3910		return -EINVAL;
3911	}
3912	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3913	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3914		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3915		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3916		return -EINVAL;
3917	/* Check against conflicting MOSI idle configuration */
3918	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3919		dev_err(&spi->dev,
3920			"setup: MOSI configured to idle low and high at the same time.\n");
3921		return -EINVAL;
3922	}
3923	/*
3924	 * Help drivers fail *cleanly* when they need options
3925	 * that aren't supported with their current controller.
3926	 * SPI_CS_WORD has a fallback software implementation,
3927	 * so it is ignored here.
3928	 */
3929	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3930				 SPI_NO_TX | SPI_NO_RX);
3931	ugly_bits = bad_bits &
3932		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3933		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3934	if (ugly_bits) {
3935		dev_warn(&spi->dev,
3936			 "setup: ignoring unsupported mode bits %x\n",
3937			 ugly_bits);
3938		spi->mode &= ~ugly_bits;
3939		bad_bits &= ~ugly_bits;
3940	}
3941	if (bad_bits) {
3942		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3943			bad_bits);
3944		return -EINVAL;
3945	}
3946
3947	if (!spi->bits_per_word) {
3948		spi->bits_per_word = 8;
3949	} else {
3950		/*
3951		 * Some controllers may not support the default 8 bits-per-word
3952		 * so only perform the check when this is explicitly provided.
3953		 */
3954		status = __spi_validate_bits_per_word(spi->controller,
3955						      spi->bits_per_word);
3956		if (status)
3957			return status;
3958	}
3959
3960	if (spi->controller->max_speed_hz &&
3961	    (!spi->max_speed_hz ||
3962	     spi->max_speed_hz > spi->controller->max_speed_hz))
3963		spi->max_speed_hz = spi->controller->max_speed_hz;
3964
3965	mutex_lock(&spi->controller->io_mutex);
3966
3967	if (spi->controller->setup) {
3968		status = spi->controller->setup(spi);
3969		if (status) {
3970			mutex_unlock(&spi->controller->io_mutex);
3971			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3972				status);
3973			return status;
3974		}
3975	}
3976
3977	status = spi_set_cs_timing(spi);
3978	if (status) {
3979		mutex_unlock(&spi->controller->io_mutex);
3980		return status;
3981	}
3982
3983	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3984		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3985		if (status < 0) {
3986			mutex_unlock(&spi->controller->io_mutex);
3987			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3988				status);
3989			return status;
3990		}
3991
3992		/*
3993		 * We do not want to return positive value from pm_runtime_get,
3994		 * there are many instances of devices calling spi_setup() and
3995		 * checking for a non-zero return value instead of a negative
3996		 * return value.
3997		 */
3998		status = 0;
3999
4000		spi_set_cs(spi, false, true);
4001		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4002		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4003	} else {
4004		spi_set_cs(spi, false, true);
4005	}
4006
4007	mutex_unlock(&spi->controller->io_mutex);
4008
4009	if (spi->rt && !spi->controller->rt) {
4010		spi->controller->rt = true;
4011		spi_set_thread_rt(spi->controller);
4012	}
4013
4014	trace_spi_setup(spi, status);
4015
4016	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4017			spi->mode & SPI_MODE_X_MASK,
4018			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4019			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4020			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4021			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4022			spi->bits_per_word, spi->max_speed_hz,
4023			status);
4024
4025	return status;
4026}
4027EXPORT_SYMBOL_GPL(spi_setup);
4028
4029static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4030				       struct spi_device *spi)
4031{
4032	int delay1, delay2;
4033
4034	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4035	if (delay1 < 0)
4036		return delay1;
4037
4038	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4039	if (delay2 < 0)
4040		return delay2;
4041
4042	if (delay1 < delay2)
4043		memcpy(&xfer->word_delay, &spi->word_delay,
4044		       sizeof(xfer->word_delay));
4045
4046	return 0;
4047}
4048
4049static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4050{
4051	struct spi_controller *ctlr = spi->controller;
4052	struct spi_transfer *xfer;
4053	int w_size;
4054
4055	if (list_empty(&message->transfers))
4056		return -EINVAL;
4057
4058	message->spi = spi;
4059
4060	/*
4061	 * Half-duplex links include original MicroWire, and ones with
4062	 * only one data pin like SPI_3WIRE (switches direction) or where
4063	 * either MOSI or MISO is missing.  They can also be caused by
4064	 * software limitations.
4065	 */
4066	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4067	    (spi->mode & SPI_3WIRE)) {
4068		unsigned flags = ctlr->flags;
4069
4070		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4071			if (xfer->rx_buf && xfer->tx_buf)
4072				return -EINVAL;
4073			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4074				return -EINVAL;
4075			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4076				return -EINVAL;
4077		}
4078	}
4079
4080	/*
4081	 * Set transfer bits_per_word and max speed as spi device default if
4082	 * it is not set for this transfer.
4083	 * Set transfer tx_nbits and rx_nbits as single transfer default
4084	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4085	 * Ensure transfer word_delay is at least as long as that required by
4086	 * device itself.
4087	 */
4088	message->frame_length = 0;
4089	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4090		xfer->effective_speed_hz = 0;
4091		message->frame_length += xfer->len;
4092		if (!xfer->bits_per_word)
4093			xfer->bits_per_word = spi->bits_per_word;
4094
4095		if (!xfer->speed_hz)
4096			xfer->speed_hz = spi->max_speed_hz;
4097
4098		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4099			xfer->speed_hz = ctlr->max_speed_hz;
4100
4101		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4102			return -EINVAL;
4103
4104		/*
4105		 * SPI transfer length should be multiple of SPI word size
4106		 * where SPI word size should be power-of-two multiple.
4107		 */
4108		if (xfer->bits_per_word <= 8)
4109			w_size = 1;
4110		else if (xfer->bits_per_word <= 16)
4111			w_size = 2;
4112		else
4113			w_size = 4;
4114
4115		/* No partial transfers accepted */
4116		if (xfer->len % w_size)
4117			return -EINVAL;
4118
4119		if (xfer->speed_hz && ctlr->min_speed_hz &&
4120		    xfer->speed_hz < ctlr->min_speed_hz)
4121			return -EINVAL;
4122
4123		if (xfer->tx_buf && !xfer->tx_nbits)
4124			xfer->tx_nbits = SPI_NBITS_SINGLE;
4125		if (xfer->rx_buf && !xfer->rx_nbits)
4126			xfer->rx_nbits = SPI_NBITS_SINGLE;
4127		/*
4128		 * Check transfer tx/rx_nbits:
4129		 * 1. check the value matches one of single, dual and quad
4130		 * 2. check tx/rx_nbits match the mode in spi_device
4131		 */
4132		if (xfer->tx_buf) {
4133			if (spi->mode & SPI_NO_TX)
4134				return -EINVAL;
4135			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4136				xfer->tx_nbits != SPI_NBITS_DUAL &&
4137				xfer->tx_nbits != SPI_NBITS_QUAD &&
4138				xfer->tx_nbits != SPI_NBITS_OCTAL)
4139				return -EINVAL;
4140			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4141				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4142				return -EINVAL;
4143			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4144				!(spi->mode & SPI_TX_QUAD))
4145				return -EINVAL;
4146		}
4147		/* Check transfer rx_nbits */
4148		if (xfer->rx_buf) {
4149			if (spi->mode & SPI_NO_RX)
4150				return -EINVAL;
4151			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4152				xfer->rx_nbits != SPI_NBITS_DUAL &&
4153				xfer->rx_nbits != SPI_NBITS_QUAD &&
4154				xfer->rx_nbits != SPI_NBITS_OCTAL)
4155				return -EINVAL;
4156			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4157				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4158				return -EINVAL;
4159			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4160				!(spi->mode & SPI_RX_QUAD))
4161				return -EINVAL;
4162		}
4163
4164		if (_spi_xfer_word_delay_update(xfer, spi))
4165			return -EINVAL;
4166	}
4167
4168	message->status = -EINPROGRESS;
4169
4170	return 0;
4171}
4172
4173/*
4174 * spi_split_transfers - generic handling of transfer splitting
4175 * @msg: the message to split
4176 *
4177 * Under certain conditions, a SPI controller may not support arbitrary
4178 * transfer sizes or other features required by a peripheral. This function
4179 * will split the transfers in the message into smaller transfers that are
4180 * supported by the controller.
4181 *
4182 * Controllers with special requirements not covered here can also split
4183 * transfers in the optimize_message() callback.
4184 *
4185 * Context: can sleep
4186 * Return: zero on success, else a negative error code
4187 */
4188static int spi_split_transfers(struct spi_message *msg)
4189{
4190	struct spi_controller *ctlr = msg->spi->controller;
4191	struct spi_transfer *xfer;
4192	int ret;
4193
4194	/*
4195	 * If an SPI controller does not support toggling the CS line on each
4196	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4197	 * for the CS line, we can emulate the CS-per-word hardware function by
4198	 * splitting transfers into one-word transfers and ensuring that
4199	 * cs_change is set for each transfer.
4200	 */
4201	if ((msg->spi->mode & SPI_CS_WORD) &&
4202	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4203		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4204		if (ret)
4205			return ret;
4206
4207		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4208			/* Don't change cs_change on the last entry in the list */
4209			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4210				break;
4211
4212			xfer->cs_change = 1;
4213		}
4214	} else {
4215		ret = spi_split_transfers_maxsize(ctlr, msg,
4216						  spi_max_transfer_size(msg->spi));
4217		if (ret)
4218			return ret;
4219	}
4220
4221	return 0;
4222}
4223
4224/*
4225 * __spi_optimize_message - shared implementation for spi_optimize_message()
4226 *                          and spi_maybe_optimize_message()
4227 * @spi: the device that will be used for the message
4228 * @msg: the message to optimize
4229 *
4230 * Peripheral drivers will call spi_optimize_message() and the spi core will
4231 * call spi_maybe_optimize_message() instead of calling this directly.
4232 *
4233 * It is not valid to call this on a message that has already been optimized.
4234 *
4235 * Return: zero on success, else a negative error code
4236 */
4237static int __spi_optimize_message(struct spi_device *spi,
4238				  struct spi_message *msg)
4239{
4240	struct spi_controller *ctlr = spi->controller;
4241	int ret;
4242
4243	ret = __spi_validate(spi, msg);
4244	if (ret)
4245		return ret;
4246
4247	ret = spi_split_transfers(msg);
4248	if (ret)
4249		return ret;
4250
4251	if (ctlr->optimize_message) {
4252		ret = ctlr->optimize_message(msg);
4253		if (ret) {
4254			spi_res_release(ctlr, msg);
4255			return ret;
4256		}
4257	}
4258
4259	msg->optimized = true;
4260
4261	return 0;
4262}
4263
4264/*
4265 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4266 * @spi: the device that will be used for the message
4267 * @msg: the message to optimize
4268 * Return: zero on success, else a negative error code
4269 */
4270static int spi_maybe_optimize_message(struct spi_device *spi,
4271				      struct spi_message *msg)
4272{
4273	if (spi->controller->defer_optimize_message) {
4274		msg->spi = spi;
4275		return 0;
4276	}
4277
4278	if (msg->pre_optimized)
4279		return 0;
4280
4281	return __spi_optimize_message(spi, msg);
4282}
4283
4284/**
4285 * spi_optimize_message - do any one-time validation and setup for a SPI message
4286 * @spi: the device that will be used for the message
4287 * @msg: the message to optimize
4288 *
4289 * Peripheral drivers that reuse the same message repeatedly may call this to
4290 * perform as much message prep as possible once, rather than repeating it each
4291 * time a message transfer is performed to improve throughput and reduce CPU
4292 * usage.
4293 *
4294 * Once a message has been optimized, it cannot be modified with the exception
4295 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296 * only the data in the memory it points to).
4297 *
4298 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299 * to avoid leaking resources.
4300 *
4301 * Context: can sleep
4302 * Return: zero on success, else a negative error code
4303 */
4304int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305{
4306	int ret;
4307
4308	/*
4309	 * Pre-optimization is not supported and optimization is deferred e.g.
4310	 * when using spi-mux.
4311	 */
4312	if (spi->controller->defer_optimize_message)
4313		return 0;
4314
4315	ret = __spi_optimize_message(spi, msg);
4316	if (ret)
4317		return ret;
4318
4319	/*
4320	 * This flag indicates that the peripheral driver called spi_optimize_message()
4321	 * and therefore we shouldn't unoptimize message automatically when finalizing
4322	 * the message but rather wait until spi_unoptimize_message() is called
4323	 * by the peripheral driver.
4324	 */
4325	msg->pre_optimized = true;
4326
4327	return 0;
4328}
4329EXPORT_SYMBOL_GPL(spi_optimize_message);
4330
4331/**
4332 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4333 * @msg: the message to unoptimize
4334 *
4335 * Calls to this function must be balanced with calls to spi_optimize_message().
4336 *
4337 * Context: can sleep
4338 */
4339void spi_unoptimize_message(struct spi_message *msg)
4340{
4341	if (msg->spi->controller->defer_optimize_message)
4342		return;
4343
4344	__spi_unoptimize_message(msg);
4345	msg->pre_optimized = false;
4346}
4347EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4348
4349static int __spi_async(struct spi_device *spi, struct spi_message *message)
4350{
4351	struct spi_controller *ctlr = spi->controller;
4352	struct spi_transfer *xfer;
4353
4354	/*
4355	 * Some controllers do not support doing regular SPI transfers. Return
4356	 * ENOTSUPP when this is the case.
4357	 */
4358	if (!ctlr->transfer)
4359		return -ENOTSUPP;
4360
4361	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4363
4364	trace_spi_message_submit(message);
4365
4366	if (!ctlr->ptp_sts_supported) {
4367		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368			xfer->ptp_sts_word_pre = 0;
4369			ptp_read_system_prets(xfer->ptp_sts);
4370		}
4371	}
4372
4373	return ctlr->transfer(spi, message);
4374}
4375
4376static void devm_spi_unoptimize_message(void *msg)
4377{
4378	spi_unoptimize_message(msg);
4379}
4380
4381/**
4382 * devm_spi_optimize_message - managed version of spi_optimize_message()
4383 * @dev: the device that manages @msg (usually @spi->dev)
4384 * @spi: the device that will be used for the message
4385 * @msg: the message to optimize
4386 * Return: zero on success, else a negative error code
4387 *
4388 * spi_unoptimize_message() will automatically be called when the device is
4389 * removed.
4390 */
4391int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4392			      struct spi_message *msg)
4393{
4394	int ret;
4395
4396	ret = spi_optimize_message(spi, msg);
4397	if (ret)
4398		return ret;
4399
4400	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4401}
4402EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4403
4404/**
4405 * spi_async - asynchronous SPI transfer
4406 * @spi: device with which data will be exchanged
4407 * @message: describes the data transfers, including completion callback
4408 * Context: any (IRQs may be blocked, etc)
4409 *
4410 * This call may be used in_irq and other contexts which can't sleep,
4411 * as well as from task contexts which can sleep.
4412 *
4413 * The completion callback is invoked in a context which can't sleep.
4414 * Before that invocation, the value of message->status is undefined.
4415 * When the callback is issued, message->status holds either zero (to
4416 * indicate complete success) or a negative error code.  After that
4417 * callback returns, the driver which issued the transfer request may
4418 * deallocate the associated memory; it's no longer in use by any SPI
4419 * core or controller driver code.
4420 *
4421 * Note that although all messages to a spi_device are handled in
4422 * FIFO order, messages may go to different devices in other orders.
4423 * Some device might be higher priority, or have various "hard" access
4424 * time requirements, for example.
4425 *
4426 * On detection of any fault during the transfer, processing of
4427 * the entire message is aborted, and the device is deselected.
4428 * Until returning from the associated message completion callback,
4429 * no other spi_message queued to that device will be processed.
4430 * (This rule applies equally to all the synchronous transfer calls,
4431 * which are wrappers around this core asynchronous primitive.)
4432 *
4433 * Return: zero on success, else a negative error code.
4434 */
4435int spi_async(struct spi_device *spi, struct spi_message *message)
4436{
4437	struct spi_controller *ctlr = spi->controller;
4438	int ret;
4439	unsigned long flags;
4440
4441	ret = spi_maybe_optimize_message(spi, message);
4442	if (ret)
4443		return ret;
4444
4445	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4446
4447	if (ctlr->bus_lock_flag)
4448		ret = -EBUSY;
4449	else
4450		ret = __spi_async(spi, message);
4451
4452	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
 
 
4453
4454	return ret;
4455}
4456EXPORT_SYMBOL_GPL(spi_async);
4457
4458static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4459{
4460	bool was_busy;
4461	int ret;
4462
4463	mutex_lock(&ctlr->io_mutex);
4464
4465	was_busy = ctlr->busy;
4466
4467	ctlr->cur_msg = msg;
4468	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4469	if (ret)
4470		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4471	ctlr->cur_msg = NULL;
4472	ctlr->fallback = false;
4473
4474	if (!was_busy) {
4475		kfree(ctlr->dummy_rx);
4476		ctlr->dummy_rx = NULL;
4477		kfree(ctlr->dummy_tx);
4478		ctlr->dummy_tx = NULL;
4479		if (ctlr->unprepare_transfer_hardware &&
4480		    ctlr->unprepare_transfer_hardware(ctlr))
4481			dev_err(&ctlr->dev,
4482				"failed to unprepare transfer hardware\n");
4483		spi_idle_runtime_pm(ctlr);
4484	}
4485
4486	mutex_unlock(&ctlr->io_mutex);
4487}
4488
4489/*-------------------------------------------------------------------------*/
4490
4491/*
4492 * Utility methods for SPI protocol drivers, layered on
4493 * top of the core.  Some other utility methods are defined as
4494 * inline functions.
4495 */
4496
4497static void spi_complete(void *arg)
4498{
4499	complete(arg);
4500}
4501
4502static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4503{
4504	DECLARE_COMPLETION_ONSTACK(done);
4505	unsigned long flags;
4506	int status;
4507	struct spi_controller *ctlr = spi->controller;
4508
4509	if (__spi_check_suspended(ctlr)) {
4510		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4511		return -ESHUTDOWN;
4512	}
4513
4514	status = spi_maybe_optimize_message(spi, message);
4515	if (status)
4516		return status;
4517
4518	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4519	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4520
4521	/*
4522	 * Checking queue_empty here only guarantees async/sync message
4523	 * ordering when coming from the same context. It does not need to
4524	 * guard against reentrancy from a different context. The io_mutex
4525	 * will catch those cases.
4526	 */
4527	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4528		message->actual_length = 0;
4529		message->status = -EINPROGRESS;
4530
4531		trace_spi_message_submit(message);
4532
4533		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4534		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4535
4536		__spi_transfer_message_noqueue(ctlr, message);
4537
4538		return message->status;
4539	}
4540
4541	/*
4542	 * There are messages in the async queue that could have originated
4543	 * from the same context, so we need to preserve ordering.
4544	 * Therefor we send the message to the async queue and wait until they
4545	 * are completed.
4546	 */
4547	message->complete = spi_complete;
4548	message->context = &done;
4549
4550	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4551	status = __spi_async(spi, message);
4552	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4553
4554	if (status == 0) {
4555		wait_for_completion(&done);
4556		status = message->status;
4557	}
4558	message->complete = NULL;
4559	message->context = NULL;
4560
4561	return status;
4562}
4563
4564/**
4565 * spi_sync - blocking/synchronous SPI data transfers
4566 * @spi: device with which data will be exchanged
4567 * @message: describes the data transfers
4568 * Context: can sleep
4569 *
4570 * This call may only be used from a context that may sleep.  The sleep
4571 * is non-interruptible, and has no timeout.  Low-overhead controller
4572 * drivers may DMA directly into and out of the message buffers.
4573 *
4574 * Note that the SPI device's chip select is active during the message,
4575 * and then is normally disabled between messages.  Drivers for some
4576 * frequently-used devices may want to minimize costs of selecting a chip,
4577 * by leaving it selected in anticipation that the next message will go
4578 * to the same chip.  (That may increase power usage.)
4579 *
4580 * Also, the caller is guaranteeing that the memory associated with the
4581 * message will not be freed before this call returns.
4582 *
4583 * Return: zero on success, else a negative error code.
4584 */
4585int spi_sync(struct spi_device *spi, struct spi_message *message)
4586{
4587	int ret;
4588
4589	mutex_lock(&spi->controller->bus_lock_mutex);
4590	ret = __spi_sync(spi, message);
4591	mutex_unlock(&spi->controller->bus_lock_mutex);
4592
4593	return ret;
4594}
4595EXPORT_SYMBOL_GPL(spi_sync);
4596
4597/**
4598 * spi_sync_locked - version of spi_sync with exclusive bus usage
4599 * @spi: device with which data will be exchanged
4600 * @message: describes the data transfers
4601 * Context: can sleep
4602 *
4603 * This call may only be used from a context that may sleep.  The sleep
4604 * is non-interruptible, and has no timeout.  Low-overhead controller
4605 * drivers may DMA directly into and out of the message buffers.
4606 *
4607 * This call should be used by drivers that require exclusive access to the
4608 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4609 * be released by a spi_bus_unlock call when the exclusive access is over.
4610 *
4611 * Return: zero on success, else a negative error code.
4612 */
4613int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4614{
4615	return __spi_sync(spi, message);
4616}
4617EXPORT_SYMBOL_GPL(spi_sync_locked);
4618
4619/**
4620 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4621 * @ctlr: SPI bus master that should be locked for exclusive bus access
4622 * Context: can sleep
4623 *
4624 * This call may only be used from a context that may sleep.  The sleep
4625 * is non-interruptible, and has no timeout.
4626 *
4627 * This call should be used by drivers that require exclusive access to the
4628 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4629 * exclusive access is over. Data transfer must be done by spi_sync_locked
4630 * and spi_async_locked calls when the SPI bus lock is held.
4631 *
4632 * Return: always zero.
4633 */
4634int spi_bus_lock(struct spi_controller *ctlr)
4635{
4636	unsigned long flags;
4637
4638	mutex_lock(&ctlr->bus_lock_mutex);
4639
4640	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4641	ctlr->bus_lock_flag = 1;
4642	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4643
4644	/* Mutex remains locked until spi_bus_unlock() is called */
4645
4646	return 0;
4647}
4648EXPORT_SYMBOL_GPL(spi_bus_lock);
4649
4650/**
4651 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4652 * @ctlr: SPI bus master that was locked for exclusive bus access
4653 * Context: can sleep
4654 *
4655 * This call may only be used from a context that may sleep.  The sleep
4656 * is non-interruptible, and has no timeout.
4657 *
4658 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4659 * call.
4660 *
4661 * Return: always zero.
4662 */
4663int spi_bus_unlock(struct spi_controller *ctlr)
4664{
4665	ctlr->bus_lock_flag = 0;
4666
4667	mutex_unlock(&ctlr->bus_lock_mutex);
4668
4669	return 0;
4670}
4671EXPORT_SYMBOL_GPL(spi_bus_unlock);
4672
4673/* Portable code must never pass more than 32 bytes */
4674#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4675
4676static u8	*buf;
4677
4678/**
4679 * spi_write_then_read - SPI synchronous write followed by read
4680 * @spi: device with which data will be exchanged
4681 * @txbuf: data to be written (need not be DMA-safe)
4682 * @n_tx: size of txbuf, in bytes
4683 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4684 * @n_rx: size of rxbuf, in bytes
4685 * Context: can sleep
4686 *
4687 * This performs a half duplex MicroWire style transaction with the
4688 * device, sending txbuf and then reading rxbuf.  The return value
4689 * is zero for success, else a negative errno status code.
4690 * This call may only be used from a context that may sleep.
4691 *
4692 * Parameters to this routine are always copied using a small buffer.
4693 * Performance-sensitive or bulk transfer code should instead use
4694 * spi_{async,sync}() calls with DMA-safe buffers.
4695 *
4696 * Return: zero on success, else a negative error code.
4697 */
4698int spi_write_then_read(struct spi_device *spi,
4699		const void *txbuf, unsigned n_tx,
4700		void *rxbuf, unsigned n_rx)
4701{
4702	static DEFINE_MUTEX(lock);
4703
4704	int			status;
4705	struct spi_message	message;
4706	struct spi_transfer	x[2];
4707	u8			*local_buf;
4708
4709	/*
4710	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4711	 * copying here, (as a pure convenience thing), but we can
4712	 * keep heap costs out of the hot path unless someone else is
4713	 * using the pre-allocated buffer or the transfer is too large.
4714	 */
4715	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4716		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4717				    GFP_KERNEL | GFP_DMA);
4718		if (!local_buf)
4719			return -ENOMEM;
4720	} else {
4721		local_buf = buf;
4722	}
4723
4724	spi_message_init(&message);
4725	memset(x, 0, sizeof(x));
4726	if (n_tx) {
4727		x[0].len = n_tx;
4728		spi_message_add_tail(&x[0], &message);
4729	}
4730	if (n_rx) {
4731		x[1].len = n_rx;
4732		spi_message_add_tail(&x[1], &message);
4733	}
4734
4735	memcpy(local_buf, txbuf, n_tx);
4736	x[0].tx_buf = local_buf;
4737	x[1].rx_buf = local_buf + n_tx;
4738
4739	/* Do the I/O */
4740	status = spi_sync(spi, &message);
4741	if (status == 0)
4742		memcpy(rxbuf, x[1].rx_buf, n_rx);
4743
4744	if (x[0].tx_buf == buf)
4745		mutex_unlock(&lock);
4746	else
4747		kfree(local_buf);
4748
4749	return status;
4750}
4751EXPORT_SYMBOL_GPL(spi_write_then_read);
4752
4753/*-------------------------------------------------------------------------*/
4754
4755#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4756/* Must call put_device() when done with returned spi_device device */
4757static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4758{
4759	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4760
4761	return dev ? to_spi_device(dev) : NULL;
4762}
4763
4764/* The spi controllers are not using spi_bus, so we find it with another way */
4765static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4766{
4767	struct device *dev;
4768
4769	dev = class_find_device_by_of_node(&spi_master_class, node);
4770	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4771		dev = class_find_device_by_of_node(&spi_slave_class, node);
4772	if (!dev)
4773		return NULL;
4774
4775	/* Reference got in class_find_device */
4776	return container_of(dev, struct spi_controller, dev);
4777}
4778
4779static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4780			 void *arg)
4781{
4782	struct of_reconfig_data *rd = arg;
4783	struct spi_controller *ctlr;
4784	struct spi_device *spi;
4785
4786	switch (of_reconfig_get_state_change(action, arg)) {
4787	case OF_RECONFIG_CHANGE_ADD:
4788		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4789		if (ctlr == NULL)
4790			return NOTIFY_OK;	/* Not for us */
4791
4792		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4793			put_device(&ctlr->dev);
4794			return NOTIFY_OK;
4795		}
4796
4797		/*
4798		 * Clear the flag before adding the device so that fw_devlink
4799		 * doesn't skip adding consumers to this device.
4800		 */
4801		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4802		spi = of_register_spi_device(ctlr, rd->dn);
4803		put_device(&ctlr->dev);
4804
4805		if (IS_ERR(spi)) {
4806			pr_err("%s: failed to create for '%pOF'\n",
4807					__func__, rd->dn);
4808			of_node_clear_flag(rd->dn, OF_POPULATED);
4809			return notifier_from_errno(PTR_ERR(spi));
4810		}
4811		break;
4812
4813	case OF_RECONFIG_CHANGE_REMOVE:
4814		/* Already depopulated? */
4815		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4816			return NOTIFY_OK;
4817
4818		/* Find our device by node */
4819		spi = of_find_spi_device_by_node(rd->dn);
4820		if (spi == NULL)
4821			return NOTIFY_OK;	/* No? not meant for us */
4822
4823		/* Unregister takes one ref away */
4824		spi_unregister_device(spi);
4825
4826		/* And put the reference of the find */
4827		put_device(&spi->dev);
4828		break;
4829	}
4830
4831	return NOTIFY_OK;
4832}
4833
4834static struct notifier_block spi_of_notifier = {
4835	.notifier_call = of_spi_notify,
4836};
4837#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4838extern struct notifier_block spi_of_notifier;
4839#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4840
4841#if IS_ENABLED(CONFIG_ACPI)
4842static int spi_acpi_controller_match(struct device *dev, const void *data)
4843{
4844	return ACPI_COMPANION(dev->parent) == data;
4845}
4846
4847struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4848{
4849	struct device *dev;
4850
4851	dev = class_find_device(&spi_master_class, NULL, adev,
4852				spi_acpi_controller_match);
4853	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4854		dev = class_find_device(&spi_slave_class, NULL, adev,
4855					spi_acpi_controller_match);
4856	if (!dev)
4857		return NULL;
4858
4859	return container_of(dev, struct spi_controller, dev);
4860}
4861EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4862
4863static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4864{
4865	struct device *dev;
4866
4867	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4868	return to_spi_device(dev);
4869}
4870
4871static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4872			   void *arg)
4873{
4874	struct acpi_device *adev = arg;
4875	struct spi_controller *ctlr;
4876	struct spi_device *spi;
4877
4878	switch (value) {
4879	case ACPI_RECONFIG_DEVICE_ADD:
4880		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4881		if (!ctlr)
4882			break;
4883
4884		acpi_register_spi_device(ctlr, adev);
4885		put_device(&ctlr->dev);
4886		break;
4887	case ACPI_RECONFIG_DEVICE_REMOVE:
4888		if (!acpi_device_enumerated(adev))
4889			break;
4890
4891		spi = acpi_spi_find_device_by_adev(adev);
4892		if (!spi)
4893			break;
4894
4895		spi_unregister_device(spi);
4896		put_device(&spi->dev);
4897		break;
4898	}
4899
4900	return NOTIFY_OK;
4901}
4902
4903static struct notifier_block spi_acpi_notifier = {
4904	.notifier_call = acpi_spi_notify,
4905};
4906#else
4907extern struct notifier_block spi_acpi_notifier;
4908#endif
4909
4910static int __init spi_init(void)
4911{
4912	int	status;
4913
4914	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4915	if (!buf) {
4916		status = -ENOMEM;
4917		goto err0;
4918	}
4919
4920	status = bus_register(&spi_bus_type);
4921	if (status < 0)
4922		goto err1;
4923
4924	status = class_register(&spi_master_class);
4925	if (status < 0)
4926		goto err2;
4927
4928	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4929		status = class_register(&spi_slave_class);
4930		if (status < 0)
4931			goto err3;
4932	}
4933
4934	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4935		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4936	if (IS_ENABLED(CONFIG_ACPI))
4937		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4938
4939	return 0;
4940
4941err3:
4942	class_unregister(&spi_master_class);
4943err2:
4944	bus_unregister(&spi_bus_type);
4945err1:
4946	kfree(buf);
4947	buf = NULL;
4948err0:
4949	return status;
4950}
4951
4952/*
4953 * A board_info is normally registered in arch_initcall(),
4954 * but even essential drivers wait till later.
4955 *
4956 * REVISIT only boardinfo really needs static linking. The rest (device and
4957 * driver registration) _could_ be dynamically linked (modular) ... Costs
4958 * include needing to have boardinfo data structures be much more public.
4959 */
4960postcore_initcall(spi_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/acpi.h>
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
  36#include <uapi/linux/sched/types.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_controller *ctlr)
 316{
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if ((xfer->tx_buf) &&
 332	    (xfer->tx_buf != ctlr->dummy_tx))
 333		u64_stats_add(&stats->bytes_tx, xfer->len);
 334	if ((xfer->rx_buf) &&
 335	    (xfer->rx_buf != ctlr->dummy_rx))
 336		u64_stats_add(&stats->bytes_rx, xfer->len);
 337
 338	u64_stats_update_end(&stats->syncp);
 339	put_cpu();
 340}
 341
 342/*
 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 344 * and the sysfs version makes coldplug work too.
 345 */
 346static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 347{
 348	while (id->name[0]) {
 349		if (!strcmp(name, id->name))
 350			return id;
 351		id++;
 352	}
 353	return NULL;
 354}
 355
 356const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 357{
 358	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 359
 360	return spi_match_id(sdrv->id_table, sdev->modalias);
 361}
 362EXPORT_SYMBOL_GPL(spi_get_device_id);
 363
 364const void *spi_get_device_match_data(const struct spi_device *sdev)
 365{
 366	const void *match;
 367
 368	match = device_get_match_data(&sdev->dev);
 369	if (match)
 370		return match;
 371
 372	return (const void *)spi_get_device_id(sdev)->driver_data;
 373}
 374EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 375
 376static int spi_match_device(struct device *dev, struct device_driver *drv)
 377{
 378	const struct spi_device	*spi = to_spi_device(dev);
 379	const struct spi_driver	*sdrv = to_spi_driver(drv);
 380
 381	/* Check override first, and if set, only use the named driver */
 382	if (spi->driver_override)
 383		return strcmp(spi->driver_override, drv->name) == 0;
 384
 385	/* Attempt an OF style match */
 386	if (of_driver_match_device(dev, drv))
 387		return 1;
 388
 389	/* Then try ACPI */
 390	if (acpi_driver_match_device(dev, drv))
 391		return 1;
 392
 393	if (sdrv->id_table)
 394		return !!spi_match_id(sdrv->id_table, spi->modalias);
 395
 396	return strcmp(spi->modalias, drv->name) == 0;
 397}
 398
 399static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 400{
 401	const struct spi_device		*spi = to_spi_device(dev);
 402	int rc;
 403
 404	rc = acpi_device_uevent_modalias(dev, env);
 405	if (rc != -ENODEV)
 406		return rc;
 407
 408	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 409}
 410
 411static int spi_probe(struct device *dev)
 412{
 413	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 414	struct spi_device		*spi = to_spi_device(dev);
 415	int ret;
 416
 417	ret = of_clk_set_defaults(dev->of_node, false);
 418	if (ret)
 419		return ret;
 420
 421	if (dev->of_node) {
 422		spi->irq = of_irq_get(dev->of_node, 0);
 423		if (spi->irq == -EPROBE_DEFER)
 
 
 
 
 
 
 
 
 
 
 424			return -EPROBE_DEFER;
 425		if (spi->irq < 0)
 426			spi->irq = 0;
 427	}
 428
 429	ret = dev_pm_domain_attach(dev, true);
 430	if (ret)
 431		return ret;
 432
 433	if (sdrv->probe) {
 434		ret = sdrv->probe(spi);
 435		if (ret)
 436			dev_pm_domain_detach(dev, true);
 437	}
 438
 439	return ret;
 440}
 441
 442static void spi_remove(struct device *dev)
 443{
 444	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 445
 446	if (sdrv->remove)
 447		sdrv->remove(to_spi_device(dev));
 448
 449	dev_pm_domain_detach(dev, true);
 450}
 451
 452static void spi_shutdown(struct device *dev)
 453{
 454	if (dev->driver) {
 455		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 456
 457		if (sdrv->shutdown)
 458			sdrv->shutdown(to_spi_device(dev));
 459	}
 460}
 461
 462const struct bus_type spi_bus_type = {
 463	.name		= "spi",
 464	.dev_groups	= spi_dev_groups,
 465	.match		= spi_match_device,
 466	.uevent		= spi_uevent,
 467	.probe		= spi_probe,
 468	.remove		= spi_remove,
 469	.shutdown	= spi_shutdown,
 470};
 471EXPORT_SYMBOL_GPL(spi_bus_type);
 472
 473/**
 474 * __spi_register_driver - register a SPI driver
 475 * @owner: owner module of the driver to register
 476 * @sdrv: the driver to register
 477 * Context: can sleep
 478 *
 479 * Return: zero on success, else a negative error code.
 480 */
 481int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 482{
 483	sdrv->driver.owner = owner;
 484	sdrv->driver.bus = &spi_bus_type;
 485
 486	/*
 487	 * For Really Good Reasons we use spi: modaliases not of:
 488	 * modaliases for DT so module autoloading won't work if we
 489	 * don't have a spi_device_id as well as a compatible string.
 490	 */
 491	if (sdrv->driver.of_match_table) {
 492		const struct of_device_id *of_id;
 493
 494		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 495		     of_id++) {
 496			const char *of_name;
 497
 498			/* Strip off any vendor prefix */
 499			of_name = strnchr(of_id->compatible,
 500					  sizeof(of_id->compatible), ',');
 501			if (of_name)
 502				of_name++;
 503			else
 504				of_name = of_id->compatible;
 505
 506			if (sdrv->id_table) {
 507				const struct spi_device_id *spi_id;
 508
 509				spi_id = spi_match_id(sdrv->id_table, of_name);
 510				if (spi_id)
 511					continue;
 512			} else {
 513				if (strcmp(sdrv->driver.name, of_name) == 0)
 514					continue;
 515			}
 516
 517			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 518				sdrv->driver.name, of_id->compatible);
 519		}
 520	}
 521
 522	return driver_register(&sdrv->driver);
 523}
 524EXPORT_SYMBOL_GPL(__spi_register_driver);
 525
 526/*-------------------------------------------------------------------------*/
 527
 528/*
 529 * SPI devices should normally not be created by SPI device drivers; that
 530 * would make them board-specific.  Similarly with SPI controller drivers.
 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 532 * with other readonly (flashable) information about mainboard devices.
 533 */
 534
 535struct boardinfo {
 536	struct list_head	list;
 537	struct spi_board_info	board_info;
 538};
 539
 540static LIST_HEAD(board_list);
 541static LIST_HEAD(spi_controller_list);
 542
 543/*
 544 * Used to protect add/del operation for board_info list and
 545 * spi_controller list, and their matching process also used
 546 * to protect object of type struct idr.
 547 */
 548static DEFINE_MUTEX(board_lock);
 549
 550/**
 551 * spi_alloc_device - Allocate a new SPI device
 552 * @ctlr: Controller to which device is connected
 553 * Context: can sleep
 554 *
 555 * Allows a driver to allocate and initialize a spi_device without
 556 * registering it immediately.  This allows a driver to directly
 557 * fill the spi_device with device parameters before calling
 558 * spi_add_device() on it.
 559 *
 560 * Caller is responsible to call spi_add_device() on the returned
 561 * spi_device structure to add it to the SPI controller.  If the caller
 562 * needs to discard the spi_device without adding it, then it should
 563 * call spi_dev_put() on it.
 564 *
 565 * Return: a pointer to the new device, or NULL.
 566 */
 567struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 568{
 569	struct spi_device	*spi;
 570
 571	if (!spi_controller_get(ctlr))
 572		return NULL;
 573
 574	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 575	if (!spi) {
 576		spi_controller_put(ctlr);
 577		return NULL;
 578	}
 579
 580	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 581	if (!spi->pcpu_statistics) {
 582		kfree(spi);
 583		spi_controller_put(ctlr);
 584		return NULL;
 585	}
 586
 587	spi->controller = ctlr;
 588	spi->dev.parent = &ctlr->dev;
 589	spi->dev.bus = &spi_bus_type;
 590	spi->dev.release = spidev_release;
 591	spi->mode = ctlr->buswidth_override_bits;
 592
 593	device_initialize(&spi->dev);
 594	return spi;
 595}
 596EXPORT_SYMBOL_GPL(spi_alloc_device);
 597
 598static void spi_dev_set_name(struct spi_device *spi)
 599{
 600	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 
 601
 602	if (adev) {
 603		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 
 
 
 
 
 604		return;
 605	}
 606
 607	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 608		     spi_get_chipselect(spi, 0));
 609}
 610
 611/*
 612 * Zero(0) is a valid physical CS value and can be located at any
 613 * logical CS in the spi->chip_select[]. If all the physical CS
 614 * are initialized to 0 then It would be difficult to differentiate
 615 * between a valid physical CS 0 & an unused logical CS whose physical
 616 * CS can be 0. As a solution to this issue initialize all the CS to -1.
 617 * Now all the unused logical CS will have -1 physical CS value & can be
 618 * ignored while performing physical CS validity checks.
 619 */
 620#define SPI_INVALID_CS		((s8)-1)
 621
 622static inline bool is_valid_cs(s8 chip_select)
 623{
 624	return chip_select != SPI_INVALID_CS;
 625}
 626
 627static inline int spi_dev_check_cs(struct device *dev,
 628				   struct spi_device *spi, u8 idx,
 629				   struct spi_device *new_spi, u8 new_idx)
 630{
 631	u8 cs, cs_new;
 632	u8 idx_new;
 633
 634	cs = spi_get_chipselect(spi, idx);
 635	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
 636		cs_new = spi_get_chipselect(new_spi, idx_new);
 637		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
 638			dev_err(dev, "chipselect %u already in use\n", cs_new);
 639			return -EBUSY;
 640		}
 641	}
 642	return 0;
 643}
 644
 645static int spi_dev_check(struct device *dev, void *data)
 646{
 647	struct spi_device *spi = to_spi_device(dev);
 648	struct spi_device *new_spi = data;
 649	int status, idx;
 650
 651	if (spi->controller == new_spi->controller) {
 652		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 653			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
 654			if (status)
 655				return status;
 656		}
 657	}
 658	return 0;
 659}
 660
 661static void spi_cleanup(struct spi_device *spi)
 662{
 663	if (spi->controller->cleanup)
 664		spi->controller->cleanup(spi);
 665}
 666
 667static int __spi_add_device(struct spi_device *spi)
 668{
 669	struct spi_controller *ctlr = spi->controller;
 670	struct device *dev = ctlr->dev.parent;
 671	int status, idx;
 672	u8 cs;
 673
 674	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 675		/* Chipselects are numbered 0..max; validate. */
 676		cs = spi_get_chipselect(spi, idx);
 677		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
 678			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 679				ctlr->num_chipselect);
 680			return -EINVAL;
 681		}
 682	}
 683
 684	/*
 685	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 686	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 687	 */
 688	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 689		status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
 690		if (status)
 691			return status;
 
 
 692	}
 693
 694	/* Set the bus ID string */
 695	spi_dev_set_name(spi);
 696
 697	/*
 698	 * We need to make sure there's no other device with this
 699	 * chipselect **BEFORE** we call setup(), else we'll trash
 700	 * its configuration.
 701	 */
 702	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 703	if (status)
 704		return status;
 705
 706	/* Controller may unregister concurrently */
 707	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 708	    !device_is_registered(&ctlr->dev)) {
 709		return -ENODEV;
 710	}
 711
 712	if (ctlr->cs_gpiods) {
 713		u8 cs;
 714
 715		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 716			cs = spi_get_chipselect(spi, idx);
 717			if (is_valid_cs(cs))
 718				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 719		}
 720	}
 721
 722	/*
 723	 * Drivers may modify this initial i/o setup, but will
 724	 * normally rely on the device being setup.  Devices
 725	 * using SPI_CS_HIGH can't coexist well otherwise...
 726	 */
 727	status = spi_setup(spi);
 728	if (status < 0) {
 729		dev_err(dev, "can't setup %s, status %d\n",
 730				dev_name(&spi->dev), status);
 731		return status;
 732	}
 733
 734	/* Device may be bound to an active driver when this returns */
 735	status = device_add(&spi->dev);
 736	if (status < 0) {
 737		dev_err(dev, "can't add %s, status %d\n",
 738				dev_name(&spi->dev), status);
 739		spi_cleanup(spi);
 740	} else {
 741		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 742	}
 743
 744	return status;
 745}
 746
 747/**
 748 * spi_add_device - Add spi_device allocated with spi_alloc_device
 749 * @spi: spi_device to register
 750 *
 751 * Companion function to spi_alloc_device.  Devices allocated with
 752 * spi_alloc_device can be added onto the SPI bus with this function.
 753 *
 754 * Return: 0 on success; negative errno on failure
 755 */
 756int spi_add_device(struct spi_device *spi)
 757{
 758	struct spi_controller *ctlr = spi->controller;
 759	int status;
 760
 761	/* Set the bus ID string */
 762	spi_dev_set_name(spi);
 763
 764	mutex_lock(&ctlr->add_lock);
 765	status = __spi_add_device(spi);
 766	mutex_unlock(&ctlr->add_lock);
 767	return status;
 768}
 769EXPORT_SYMBOL_GPL(spi_add_device);
 770
 771static void spi_set_all_cs_unused(struct spi_device *spi)
 772{
 773	u8 idx;
 774
 775	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 776		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
 777}
 778
 779/**
 780 * spi_new_device - instantiate one new SPI device
 781 * @ctlr: Controller to which device is connected
 782 * @chip: Describes the SPI device
 783 * Context: can sleep
 784 *
 785 * On typical mainboards, this is purely internal; and it's not needed
 786 * after board init creates the hard-wired devices.  Some development
 787 * platforms may not be able to use spi_register_board_info though, and
 788 * this is exported so that for example a USB or parport based adapter
 789 * driver could add devices (which it would learn about out-of-band).
 790 *
 791 * Return: the new device, or NULL.
 792 */
 793struct spi_device *spi_new_device(struct spi_controller *ctlr,
 794				  struct spi_board_info *chip)
 795{
 796	struct spi_device	*proxy;
 797	int			status;
 798
 799	/*
 800	 * NOTE:  caller did any chip->bus_num checks necessary.
 801	 *
 802	 * Also, unless we change the return value convention to use
 803	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 804	 * suggests syslogged diagnostics are best here (ugh).
 805	 */
 806
 807	proxy = spi_alloc_device(ctlr);
 808	if (!proxy)
 809		return NULL;
 810
 811	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 812
 813	/* Use provided chip-select for proxy device */
 814	spi_set_all_cs_unused(proxy);
 815	spi_set_chipselect(proxy, 0, chip->chip_select);
 816
 817	proxy->max_speed_hz = chip->max_speed_hz;
 818	proxy->mode = chip->mode;
 819	proxy->irq = chip->irq;
 820	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 821	proxy->dev.platform_data = (void *) chip->platform_data;
 822	proxy->controller_data = chip->controller_data;
 823	proxy->controller_state = NULL;
 824	/*
 825	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
 826	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
 827	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
 828	 * spi->chip_select[0] will give the physical CS.
 829	 * By default spi->chip_select[0] will hold the physical CS number so, set
 830	 * spi->cs_index_mask as 0x01.
 831	 */
 832	proxy->cs_index_mask = 0x01;
 833
 834	if (chip->swnode) {
 835		status = device_add_software_node(&proxy->dev, chip->swnode);
 836		if (status) {
 837			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 838				chip->modalias, status);
 839			goto err_dev_put;
 840		}
 841	}
 842
 843	status = spi_add_device(proxy);
 844	if (status < 0)
 845		goto err_dev_put;
 846
 847	return proxy;
 848
 849err_dev_put:
 850	device_remove_software_node(&proxy->dev);
 851	spi_dev_put(proxy);
 852	return NULL;
 853}
 854EXPORT_SYMBOL_GPL(spi_new_device);
 855
 856/**
 857 * spi_unregister_device - unregister a single SPI device
 858 * @spi: spi_device to unregister
 859 *
 860 * Start making the passed SPI device vanish. Normally this would be handled
 861 * by spi_unregister_controller().
 862 */
 863void spi_unregister_device(struct spi_device *spi)
 864{
 865	if (!spi)
 866		return;
 867
 868	if (spi->dev.of_node) {
 869		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 870		of_node_put(spi->dev.of_node);
 871	}
 872	if (ACPI_COMPANION(&spi->dev))
 873		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 874	device_remove_software_node(&spi->dev);
 875	device_del(&spi->dev);
 876	spi_cleanup(spi);
 877	put_device(&spi->dev);
 878}
 879EXPORT_SYMBOL_GPL(spi_unregister_device);
 880
 881static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 882					      struct spi_board_info *bi)
 883{
 884	struct spi_device *dev;
 885
 886	if (ctlr->bus_num != bi->bus_num)
 887		return;
 888
 889	dev = spi_new_device(ctlr, bi);
 890	if (!dev)
 891		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 892			bi->modalias);
 893}
 894
 895/**
 896 * spi_register_board_info - register SPI devices for a given board
 897 * @info: array of chip descriptors
 898 * @n: how many descriptors are provided
 899 * Context: can sleep
 900 *
 901 * Board-specific early init code calls this (probably during arch_initcall)
 902 * with segments of the SPI device table.  Any device nodes are created later,
 903 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 904 * this table of devices forever, so that reloading a controller driver will
 905 * not make Linux forget about these hard-wired devices.
 906 *
 907 * Other code can also call this, e.g. a particular add-on board might provide
 908 * SPI devices through its expansion connector, so code initializing that board
 909 * would naturally declare its SPI devices.
 910 *
 911 * The board info passed can safely be __initdata ... but be careful of
 912 * any embedded pointers (platform_data, etc), they're copied as-is.
 913 *
 914 * Return: zero on success, else a negative error code.
 915 */
 916int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 917{
 918	struct boardinfo *bi;
 919	int i;
 920
 921	if (!n)
 922		return 0;
 923
 924	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 925	if (!bi)
 926		return -ENOMEM;
 927
 928	for (i = 0; i < n; i++, bi++, info++) {
 929		struct spi_controller *ctlr;
 930
 931		memcpy(&bi->board_info, info, sizeof(*info));
 932
 933		mutex_lock(&board_lock);
 934		list_add_tail(&bi->list, &board_list);
 935		list_for_each_entry(ctlr, &spi_controller_list, list)
 936			spi_match_controller_to_boardinfo(ctlr,
 937							  &bi->board_info);
 938		mutex_unlock(&board_lock);
 939	}
 940
 941	return 0;
 942}
 943
 944/*-------------------------------------------------------------------------*/
 945
 946/* Core methods for SPI resource management */
 947
 948/**
 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 950 *                 during the processing of a spi_message while using
 951 *                 spi_transfer_one
 952 * @spi:     the SPI device for which we allocate memory
 953 * @release: the release code to execute for this resource
 954 * @size:    size to alloc and return
 955 * @gfp:     GFP allocation flags
 956 *
 957 * Return: the pointer to the allocated data
 958 *
 959 * This may get enhanced in the future to allocate from a memory pool
 960 * of the @spi_device or @spi_controller to avoid repeated allocations.
 961 */
 962static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 963			   size_t size, gfp_t gfp)
 964{
 965	struct spi_res *sres;
 966
 967	sres = kzalloc(sizeof(*sres) + size, gfp);
 968	if (!sres)
 969		return NULL;
 970
 971	INIT_LIST_HEAD(&sres->entry);
 972	sres->release = release;
 973
 974	return sres->data;
 975}
 976
 977/**
 978 * spi_res_free - free an SPI resource
 979 * @res: pointer to the custom data of a resource
 980 */
 981static void spi_res_free(void *res)
 982{
 983	struct spi_res *sres = container_of(res, struct spi_res, data);
 984
 985	if (!res)
 986		return;
 987
 988	WARN_ON(!list_empty(&sres->entry));
 989	kfree(sres);
 990}
 991
 992/**
 993 * spi_res_add - add a spi_res to the spi_message
 994 * @message: the SPI message
 995 * @res:     the spi_resource
 996 */
 997static void spi_res_add(struct spi_message *message, void *res)
 998{
 999	struct spi_res *sres = container_of(res, struct spi_res, data);
1000
1001	WARN_ON(!list_empty(&sres->entry));
1002	list_add_tail(&sres->entry, &message->resources);
1003}
1004
1005/**
1006 * spi_res_release - release all SPI resources for this message
1007 * @ctlr:  the @spi_controller
1008 * @message: the @spi_message
1009 */
1010static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011{
1012	struct spi_res *res, *tmp;
1013
1014	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015		if (res->release)
1016			res->release(ctlr, message, res->data);
1017
1018		list_del(&res->entry);
1019
1020		kfree(res);
1021	}
1022}
1023
1024/*-------------------------------------------------------------------------*/
 
 
 
 
1025static inline bool spi_is_last_cs(struct spi_device *spi)
1026{
1027	u8 idx;
1028	bool last = false;
1029
1030	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031		if (spi->cs_index_mask & BIT(idx)) {
1032			if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033				last = true;
1034		}
1035	}
1036	return last;
1037}
1038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039
1040static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041{
1042	bool activate = enable;
1043	u8 idx;
1044
1045	/*
1046	 * Avoid calling into the driver (or doing delays) if the chip select
1047	 * isn't actually changing from the last time this was called.
1048	 */
1049	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050			spi_is_last_cs(spi)) ||
1051		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052			!spi_is_last_cs(spi))) &&
1053	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054		return;
1055
1056	trace_spi_set_cs(spi, activate);
1057
1058	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062
1063	if (spi->mode & SPI_CS_HIGH)
1064		enable = !enable;
1065
1066	/*
1067	 * Handle chip select delays for GPIO based CS or controllers without
1068	 * programmable chip select timing.
1069	 */
1070	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1071		spi_delay_exec(&spi->cs_hold, NULL);
1072
1073	if (spi_is_csgpiod(spi)) {
1074		if (!(spi->mode & SPI_NO_CS)) {
1075			/*
1076			 * Historically ACPI has no means of the GPIO polarity and
1077			 * thus the SPISerialBus() resource defines it on the per-chip
1078			 * basis. In order to avoid a chain of negations, the GPIO
1079			 * polarity is considered being Active High. Even for the cases
1080			 * when _DSD() is involved (in the updated versions of ACPI)
1081			 * the GPIO CS polarity must be defined Active High to avoid
1082			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1083			 * into account.
1084			 */
1085			for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1086				if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1087					if (has_acpi_companion(&spi->dev))
1088						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1089									 !enable);
1090					else
1091						/* Polarity handled by GPIO library */
1092						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1093									 activate);
1094
1095					if (activate)
1096						spi_delay_exec(&spi->cs_setup, NULL);
1097					else
1098						spi_delay_exec(&spi->cs_inactive, NULL);
1099				}
1100			}
1101		}
1102		/* Some SPI masters need both GPIO CS & slave_select */
1103		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1104		    spi->controller->set_cs)
1105			spi->controller->set_cs(spi, !enable);
1106	} else if (spi->controller->set_cs) {
1107		spi->controller->set_cs(spi, !enable);
1108	}
1109
1110	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1111		if (activate)
1112			spi_delay_exec(&spi->cs_setup, NULL);
1113		else
1114			spi_delay_exec(&spi->cs_inactive, NULL);
1115	}
1116}
1117
1118#ifdef CONFIG_HAS_DMA
1119static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1120			     struct sg_table *sgt, void *buf, size_t len,
1121			     enum dma_data_direction dir, unsigned long attrs)
1122{
1123	const bool vmalloced_buf = is_vmalloc_addr(buf);
1124	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1125#ifdef CONFIG_HIGHMEM
1126	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1127				(unsigned long)buf < (PKMAP_BASE +
1128					(LAST_PKMAP * PAGE_SIZE)));
1129#else
1130	const bool kmap_buf = false;
1131#endif
1132	int desc_len;
1133	int sgs;
1134	struct page *vm_page;
1135	struct scatterlist *sg;
1136	void *sg_buf;
1137	size_t min;
1138	int i, ret;
1139
1140	if (vmalloced_buf || kmap_buf) {
1141		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1142		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1143	} else if (virt_addr_valid(buf)) {
1144		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1145		sgs = DIV_ROUND_UP(len, desc_len);
1146	} else {
1147		return -EINVAL;
1148	}
1149
1150	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1151	if (ret != 0)
1152		return ret;
1153
1154	sg = &sgt->sgl[0];
1155	for (i = 0; i < sgs; i++) {
1156
1157		if (vmalloced_buf || kmap_buf) {
1158			/*
1159			 * Next scatterlist entry size is the minimum between
1160			 * the desc_len and the remaining buffer length that
1161			 * fits in a page.
1162			 */
1163			min = min_t(size_t, desc_len,
1164				    min_t(size_t, len,
1165					  PAGE_SIZE - offset_in_page(buf)));
1166			if (vmalloced_buf)
1167				vm_page = vmalloc_to_page(buf);
1168			else
1169				vm_page = kmap_to_page(buf);
1170			if (!vm_page) {
1171				sg_free_table(sgt);
1172				return -ENOMEM;
1173			}
1174			sg_set_page(sg, vm_page,
1175				    min, offset_in_page(buf));
1176		} else {
1177			min = min_t(size_t, len, desc_len);
1178			sg_buf = buf;
1179			sg_set_buf(sg, sg_buf, min);
1180		}
1181
1182		buf += min;
1183		len -= min;
1184		sg = sg_next(sg);
1185	}
1186
1187	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1188	if (ret < 0) {
1189		sg_free_table(sgt);
1190		return ret;
1191	}
1192
1193	return 0;
1194}
1195
1196int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1197		struct sg_table *sgt, void *buf, size_t len,
1198		enum dma_data_direction dir)
1199{
1200	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1201}
1202
1203static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1204				struct device *dev, struct sg_table *sgt,
1205				enum dma_data_direction dir,
1206				unsigned long attrs)
1207{
1208	if (sgt->orig_nents) {
1209		dma_unmap_sgtable(dev, sgt, dir, attrs);
1210		sg_free_table(sgt);
1211		sgt->orig_nents = 0;
1212		sgt->nents = 0;
1213	}
1214}
1215
1216void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1217		   struct sg_table *sgt, enum dma_data_direction dir)
1218{
1219	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1220}
1221
1222static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223{
1224	struct device *tx_dev, *rx_dev;
1225	struct spi_transfer *xfer;
1226	int ret;
1227
1228	if (!ctlr->can_dma)
1229		return 0;
1230
1231	if (ctlr->dma_tx)
1232		tx_dev = ctlr->dma_tx->device->dev;
1233	else if (ctlr->dma_map_dev)
1234		tx_dev = ctlr->dma_map_dev;
1235	else
1236		tx_dev = ctlr->dev.parent;
1237
1238	if (ctlr->dma_rx)
1239		rx_dev = ctlr->dma_rx->device->dev;
1240	else if (ctlr->dma_map_dev)
1241		rx_dev = ctlr->dma_map_dev;
1242	else
1243		rx_dev = ctlr->dev.parent;
1244
1245	ret = -ENOMSG;
1246	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1247		/* The sync is done before each transfer. */
1248		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1249
1250		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1251			continue;
1252
1253		if (xfer->tx_buf != NULL) {
1254			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1255						(void *)xfer->tx_buf,
1256						xfer->len, DMA_TO_DEVICE,
1257						attrs);
1258			if (ret != 0)
1259				return ret;
 
 
1260		}
1261
1262		if (xfer->rx_buf != NULL) {
1263			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1264						xfer->rx_buf, xfer->len,
1265						DMA_FROM_DEVICE, attrs);
1266			if (ret != 0) {
1267				spi_unmap_buf_attrs(ctlr, tx_dev,
1268						&xfer->tx_sg, DMA_TO_DEVICE,
1269						attrs);
1270
1271				return ret;
1272			}
 
 
1273		}
1274	}
1275	/* No transfer has been mapped, bail out with success */
1276	if (ret)
1277		return 0;
1278
1279	ctlr->cur_rx_dma_dev = rx_dev;
1280	ctlr->cur_tx_dma_dev = tx_dev;
1281	ctlr->cur_msg_mapped = true;
1282
1283	return 0;
1284}
1285
1286static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1287{
1288	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1289	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1290	struct spi_transfer *xfer;
1291
1292	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1293		return 0;
1294
1295	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1296		/* The sync has already been done after each transfer. */
1297		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1298
1299		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1300			continue;
1301
1302		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1303				    DMA_FROM_DEVICE, attrs);
1304		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1305				    DMA_TO_DEVICE, attrs);
 
 
1306	}
1307
1308	ctlr->cur_msg_mapped = false;
1309
1310	return 0;
1311}
1312
1313static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1314				    struct spi_transfer *xfer)
1315{
1316	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1317	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1318
1319	if (!ctlr->cur_msg_mapped)
1320		return;
1321
1322	if (xfer->tx_sg.orig_nents)
1323		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1324	if (xfer->rx_sg.orig_nents)
1325		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1326}
1327
1328static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1329				 struct spi_transfer *xfer)
1330{
1331	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1332	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1333
1334	if (!ctlr->cur_msg_mapped)
1335		return;
1336
1337	if (xfer->rx_sg.orig_nents)
1338		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1339	if (xfer->tx_sg.orig_nents)
1340		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1341}
1342#else /* !CONFIG_HAS_DMA */
1343static inline int __spi_map_msg(struct spi_controller *ctlr,
1344				struct spi_message *msg)
1345{
1346	return 0;
1347}
1348
1349static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1350				  struct spi_message *msg)
1351{
1352	return 0;
1353}
1354
1355static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1356				    struct spi_transfer *xfer)
1357{
1358}
1359
1360static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1361				 struct spi_transfer *xfer)
1362{
1363}
1364#endif /* !CONFIG_HAS_DMA */
1365
1366static inline int spi_unmap_msg(struct spi_controller *ctlr,
1367				struct spi_message *msg)
1368{
1369	struct spi_transfer *xfer;
1370
1371	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1372		/*
1373		 * Restore the original value of tx_buf or rx_buf if they are
1374		 * NULL.
1375		 */
1376		if (xfer->tx_buf == ctlr->dummy_tx)
1377			xfer->tx_buf = NULL;
1378		if (xfer->rx_buf == ctlr->dummy_rx)
1379			xfer->rx_buf = NULL;
1380	}
1381
1382	return __spi_unmap_msg(ctlr, msg);
1383}
1384
1385static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1386{
1387	struct spi_transfer *xfer;
1388	void *tmp;
1389	unsigned int max_tx, max_rx;
1390
1391	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1392		&& !(msg->spi->mode & SPI_3WIRE)) {
1393		max_tx = 0;
1394		max_rx = 0;
1395
1396		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1397			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1398			    !xfer->tx_buf)
1399				max_tx = max(xfer->len, max_tx);
1400			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1401			    !xfer->rx_buf)
1402				max_rx = max(xfer->len, max_rx);
1403		}
1404
1405		if (max_tx) {
1406			tmp = krealloc(ctlr->dummy_tx, max_tx,
1407				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1408			if (!tmp)
1409				return -ENOMEM;
1410			ctlr->dummy_tx = tmp;
1411		}
1412
1413		if (max_rx) {
1414			tmp = krealloc(ctlr->dummy_rx, max_rx,
1415				       GFP_KERNEL | GFP_DMA);
1416			if (!tmp)
1417				return -ENOMEM;
1418			ctlr->dummy_rx = tmp;
1419		}
1420
1421		if (max_tx || max_rx) {
1422			list_for_each_entry(xfer, &msg->transfers,
1423					    transfer_list) {
1424				if (!xfer->len)
1425					continue;
1426				if (!xfer->tx_buf)
1427					xfer->tx_buf = ctlr->dummy_tx;
1428				if (!xfer->rx_buf)
1429					xfer->rx_buf = ctlr->dummy_rx;
1430			}
1431		}
1432	}
1433
1434	return __spi_map_msg(ctlr, msg);
1435}
1436
1437static int spi_transfer_wait(struct spi_controller *ctlr,
1438			     struct spi_message *msg,
1439			     struct spi_transfer *xfer)
1440{
1441	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1442	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1443	u32 speed_hz = xfer->speed_hz;
1444	unsigned long long ms;
1445
1446	if (spi_controller_is_slave(ctlr)) {
1447		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1448			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1449			return -EINTR;
1450		}
1451	} else {
1452		if (!speed_hz)
1453			speed_hz = 100000;
1454
1455		/*
1456		 * For each byte we wait for 8 cycles of the SPI clock.
1457		 * Since speed is defined in Hz and we want milliseconds,
1458		 * use respective multiplier, but before the division,
1459		 * otherwise we may get 0 for short transfers.
1460		 */
1461		ms = 8LL * MSEC_PER_SEC * xfer->len;
1462		do_div(ms, speed_hz);
1463
1464		/*
1465		 * Increase it twice and add 200 ms tolerance, use
1466		 * predefined maximum in case of overflow.
1467		 */
1468		ms += ms + 200;
1469		if (ms > UINT_MAX)
1470			ms = UINT_MAX;
1471
1472		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1473						 msecs_to_jiffies(ms));
1474
1475		if (ms == 0) {
1476			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1477			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1478			dev_err(&msg->spi->dev,
1479				"SPI transfer timed out\n");
1480			return -ETIMEDOUT;
1481		}
1482
1483		if (xfer->error & SPI_TRANS_FAIL_IO)
1484			return -EIO;
1485	}
1486
1487	return 0;
1488}
1489
1490static void _spi_transfer_delay_ns(u32 ns)
1491{
1492	if (!ns)
1493		return;
1494	if (ns <= NSEC_PER_USEC) {
1495		ndelay(ns);
1496	} else {
1497		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1498
1499		if (us <= 10)
1500			udelay(us);
1501		else
1502			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1503	}
1504}
1505
1506int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1507{
1508	u32 delay = _delay->value;
1509	u32 unit = _delay->unit;
1510	u32 hz;
1511
1512	if (!delay)
1513		return 0;
1514
1515	switch (unit) {
1516	case SPI_DELAY_UNIT_USECS:
1517		delay *= NSEC_PER_USEC;
1518		break;
1519	case SPI_DELAY_UNIT_NSECS:
1520		/* Nothing to do here */
1521		break;
1522	case SPI_DELAY_UNIT_SCK:
1523		/* Clock cycles need to be obtained from spi_transfer */
1524		if (!xfer)
1525			return -EINVAL;
1526		/*
1527		 * If there is unknown effective speed, approximate it
1528		 * by underestimating with half of the requested Hz.
1529		 */
1530		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1531		if (!hz)
1532			return -EINVAL;
1533
1534		/* Convert delay to nanoseconds */
1535		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1536		break;
1537	default:
1538		return -EINVAL;
1539	}
1540
1541	return delay;
1542}
1543EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1544
1545int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1546{
1547	int delay;
1548
1549	might_sleep();
1550
1551	if (!_delay)
1552		return -EINVAL;
1553
1554	delay = spi_delay_to_ns(_delay, xfer);
1555	if (delay < 0)
1556		return delay;
1557
1558	_spi_transfer_delay_ns(delay);
1559
1560	return 0;
1561}
1562EXPORT_SYMBOL_GPL(spi_delay_exec);
1563
1564static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1565					  struct spi_transfer *xfer)
1566{
1567	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1568	u32 delay = xfer->cs_change_delay.value;
1569	u32 unit = xfer->cs_change_delay.unit;
1570	int ret;
1571
1572	/* Return early on "fast" mode - for everything but USECS */
1573	if (!delay) {
1574		if (unit == SPI_DELAY_UNIT_USECS)
1575			_spi_transfer_delay_ns(default_delay_ns);
1576		return;
1577	}
1578
1579	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1580	if (ret) {
1581		dev_err_once(&msg->spi->dev,
1582			     "Use of unsupported delay unit %i, using default of %luus\n",
1583			     unit, default_delay_ns / NSEC_PER_USEC);
1584		_spi_transfer_delay_ns(default_delay_ns);
1585	}
1586}
1587
1588void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1589						  struct spi_transfer *xfer)
1590{
1591	_spi_transfer_cs_change_delay(msg, xfer);
1592}
1593EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1594
1595/*
1596 * spi_transfer_one_message - Default implementation of transfer_one_message()
1597 *
1598 * This is a standard implementation of transfer_one_message() for
1599 * drivers which implement a transfer_one() operation.  It provides
1600 * standard handling of delays and chip select management.
1601 */
1602static int spi_transfer_one_message(struct spi_controller *ctlr,
1603				    struct spi_message *msg)
1604{
1605	struct spi_transfer *xfer;
1606	bool keep_cs = false;
1607	int ret = 0;
1608	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1609	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1610
1611	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1612	spi_set_cs(msg->spi, !xfer->cs_off, false);
1613
1614	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1615	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1616
1617	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1618		trace_spi_transfer_start(msg, xfer);
1619
1620		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1621		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1622
1623		if (!ctlr->ptp_sts_supported) {
1624			xfer->ptp_sts_word_pre = 0;
1625			ptp_read_system_prets(xfer->ptp_sts);
1626		}
1627
1628		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1629			reinit_completion(&ctlr->xfer_completion);
1630
1631fallback_pio:
1632			spi_dma_sync_for_device(ctlr, xfer);
1633			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1634			if (ret < 0) {
1635				spi_dma_sync_for_cpu(ctlr, xfer);
1636
1637				if (ctlr->cur_msg_mapped &&
1638				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1639					__spi_unmap_msg(ctlr, msg);
1640					ctlr->fallback = true;
1641					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1642					goto fallback_pio;
1643				}
1644
1645				SPI_STATISTICS_INCREMENT_FIELD(statm,
1646							       errors);
1647				SPI_STATISTICS_INCREMENT_FIELD(stats,
1648							       errors);
1649				dev_err(&msg->spi->dev,
1650					"SPI transfer failed: %d\n", ret);
1651				goto out;
1652			}
1653
1654			if (ret > 0) {
1655				ret = spi_transfer_wait(ctlr, msg, xfer);
1656				if (ret < 0)
1657					msg->status = ret;
1658			}
1659
1660			spi_dma_sync_for_cpu(ctlr, xfer);
1661		} else {
1662			if (xfer->len)
1663				dev_err(&msg->spi->dev,
1664					"Bufferless transfer has length %u\n",
1665					xfer->len);
1666		}
1667
1668		if (!ctlr->ptp_sts_supported) {
1669			ptp_read_system_postts(xfer->ptp_sts);
1670			xfer->ptp_sts_word_post = xfer->len;
1671		}
1672
1673		trace_spi_transfer_stop(msg, xfer);
1674
1675		if (msg->status != -EINPROGRESS)
1676			goto out;
1677
1678		spi_transfer_delay_exec(xfer);
1679
1680		if (xfer->cs_change) {
1681			if (list_is_last(&xfer->transfer_list,
1682					 &msg->transfers)) {
1683				keep_cs = true;
1684			} else {
1685				if (!xfer->cs_off)
1686					spi_set_cs(msg->spi, false, false);
1687				_spi_transfer_cs_change_delay(msg, xfer);
1688				if (!list_next_entry(xfer, transfer_list)->cs_off)
1689					spi_set_cs(msg->spi, true, false);
1690			}
1691		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1692			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1693			spi_set_cs(msg->spi, xfer->cs_off, false);
1694		}
1695
1696		msg->actual_length += xfer->len;
1697	}
1698
1699out:
1700	if (ret != 0 || !keep_cs)
1701		spi_set_cs(msg->spi, false, false);
1702
1703	if (msg->status == -EINPROGRESS)
1704		msg->status = ret;
1705
1706	if (msg->status && ctlr->handle_err)
1707		ctlr->handle_err(ctlr, msg);
1708
1709	spi_finalize_current_message(ctlr);
1710
1711	return ret;
1712}
1713
1714/**
1715 * spi_finalize_current_transfer - report completion of a transfer
1716 * @ctlr: the controller reporting completion
1717 *
1718 * Called by SPI drivers using the core transfer_one_message()
1719 * implementation to notify it that the current interrupt driven
1720 * transfer has finished and the next one may be scheduled.
1721 */
1722void spi_finalize_current_transfer(struct spi_controller *ctlr)
1723{
1724	complete(&ctlr->xfer_completion);
1725}
1726EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1727
1728static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1729{
1730	if (ctlr->auto_runtime_pm) {
1731		pm_runtime_mark_last_busy(ctlr->dev.parent);
1732		pm_runtime_put_autosuspend(ctlr->dev.parent);
1733	}
1734}
1735
1736static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1737		struct spi_message *msg, bool was_busy)
1738{
1739	struct spi_transfer *xfer;
1740	int ret;
1741
1742	if (!was_busy && ctlr->auto_runtime_pm) {
1743		ret = pm_runtime_get_sync(ctlr->dev.parent);
1744		if (ret < 0) {
1745			pm_runtime_put_noidle(ctlr->dev.parent);
1746			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1747				ret);
1748
1749			msg->status = ret;
1750			spi_finalize_current_message(ctlr);
1751
1752			return ret;
1753		}
1754	}
1755
1756	if (!was_busy)
1757		trace_spi_controller_busy(ctlr);
1758
1759	if (!was_busy && ctlr->prepare_transfer_hardware) {
1760		ret = ctlr->prepare_transfer_hardware(ctlr);
1761		if (ret) {
1762			dev_err(&ctlr->dev,
1763				"failed to prepare transfer hardware: %d\n",
1764				ret);
1765
1766			if (ctlr->auto_runtime_pm)
1767				pm_runtime_put(ctlr->dev.parent);
1768
1769			msg->status = ret;
1770			spi_finalize_current_message(ctlr);
1771
1772			return ret;
1773		}
1774	}
1775
1776	trace_spi_message_start(msg);
1777
1778	if (ctlr->prepare_message) {
1779		ret = ctlr->prepare_message(ctlr, msg);
1780		if (ret) {
1781			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1782				ret);
1783			msg->status = ret;
1784			spi_finalize_current_message(ctlr);
1785			return ret;
1786		}
1787		msg->prepared = true;
1788	}
1789
1790	ret = spi_map_msg(ctlr, msg);
1791	if (ret) {
1792		msg->status = ret;
1793		spi_finalize_current_message(ctlr);
1794		return ret;
1795	}
1796
1797	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1798		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1799			xfer->ptp_sts_word_pre = 0;
1800			ptp_read_system_prets(xfer->ptp_sts);
1801		}
1802	}
1803
1804	/*
1805	 * Drivers implementation of transfer_one_message() must arrange for
1806	 * spi_finalize_current_message() to get called. Most drivers will do
1807	 * this in the calling context, but some don't. For those cases, a
1808	 * completion is used to guarantee that this function does not return
1809	 * until spi_finalize_current_message() is done accessing
1810	 * ctlr->cur_msg.
1811	 * Use of the following two flags enable to opportunistically skip the
1812	 * use of the completion since its use involves expensive spin locks.
1813	 * In case of a race with the context that calls
1814	 * spi_finalize_current_message() the completion will always be used,
1815	 * due to strict ordering of these flags using barriers.
1816	 */
1817	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1818	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1819	reinit_completion(&ctlr->cur_msg_completion);
1820	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1821
1822	ret = ctlr->transfer_one_message(ctlr, msg);
1823	if (ret) {
1824		dev_err(&ctlr->dev,
1825			"failed to transfer one message from queue\n");
1826		return ret;
1827	}
1828
1829	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1830	smp_mb(); /* See spi_finalize_current_message()... */
1831	if (READ_ONCE(ctlr->cur_msg_incomplete))
1832		wait_for_completion(&ctlr->cur_msg_completion);
1833
1834	return 0;
1835}
1836
1837/**
1838 * __spi_pump_messages - function which processes SPI message queue
1839 * @ctlr: controller to process queue for
1840 * @in_kthread: true if we are in the context of the message pump thread
1841 *
1842 * This function checks if there is any SPI message in the queue that
1843 * needs processing and if so call out to the driver to initialize hardware
1844 * and transfer each message.
1845 *
1846 * Note that it is called both from the kthread itself and also from
1847 * inside spi_sync(); the queue extraction handling at the top of the
1848 * function should deal with this safely.
1849 */
1850static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1851{
1852	struct spi_message *msg;
1853	bool was_busy = false;
1854	unsigned long flags;
1855	int ret;
1856
1857	/* Take the I/O mutex */
1858	mutex_lock(&ctlr->io_mutex);
1859
1860	/* Lock queue */
1861	spin_lock_irqsave(&ctlr->queue_lock, flags);
1862
1863	/* Make sure we are not already running a message */
1864	if (ctlr->cur_msg)
1865		goto out_unlock;
1866
1867	/* Check if the queue is idle */
1868	if (list_empty(&ctlr->queue) || !ctlr->running) {
1869		if (!ctlr->busy)
1870			goto out_unlock;
1871
1872		/* Defer any non-atomic teardown to the thread */
1873		if (!in_kthread) {
1874			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1875			    !ctlr->unprepare_transfer_hardware) {
1876				spi_idle_runtime_pm(ctlr);
1877				ctlr->busy = false;
1878				ctlr->queue_empty = true;
1879				trace_spi_controller_idle(ctlr);
1880			} else {
1881				kthread_queue_work(ctlr->kworker,
1882						   &ctlr->pump_messages);
1883			}
1884			goto out_unlock;
1885		}
1886
1887		ctlr->busy = false;
1888		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1889
1890		kfree(ctlr->dummy_rx);
1891		ctlr->dummy_rx = NULL;
1892		kfree(ctlr->dummy_tx);
1893		ctlr->dummy_tx = NULL;
1894		if (ctlr->unprepare_transfer_hardware &&
1895		    ctlr->unprepare_transfer_hardware(ctlr))
1896			dev_err(&ctlr->dev,
1897				"failed to unprepare transfer hardware\n");
1898		spi_idle_runtime_pm(ctlr);
1899		trace_spi_controller_idle(ctlr);
1900
1901		spin_lock_irqsave(&ctlr->queue_lock, flags);
1902		ctlr->queue_empty = true;
1903		goto out_unlock;
1904	}
1905
1906	/* Extract head of queue */
1907	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1908	ctlr->cur_msg = msg;
1909
1910	list_del_init(&msg->queue);
1911	if (ctlr->busy)
1912		was_busy = true;
1913	else
1914		ctlr->busy = true;
1915	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1916
1917	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1918	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1919
1920	ctlr->cur_msg = NULL;
1921	ctlr->fallback = false;
1922
1923	mutex_unlock(&ctlr->io_mutex);
1924
1925	/* Prod the scheduler in case transfer_one() was busy waiting */
1926	if (!ret)
1927		cond_resched();
1928	return;
1929
1930out_unlock:
1931	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1932	mutex_unlock(&ctlr->io_mutex);
1933}
1934
1935/**
1936 * spi_pump_messages - kthread work function which processes spi message queue
1937 * @work: pointer to kthread work struct contained in the controller struct
1938 */
1939static void spi_pump_messages(struct kthread_work *work)
1940{
1941	struct spi_controller *ctlr =
1942		container_of(work, struct spi_controller, pump_messages);
1943
1944	__spi_pump_messages(ctlr, true);
1945}
1946
1947/**
1948 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1949 * @ctlr: Pointer to the spi_controller structure of the driver
1950 * @xfer: Pointer to the transfer being timestamped
1951 * @progress: How many words (not bytes) have been transferred so far
1952 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1953 *	      transfer, for less jitter in time measurement. Only compatible
1954 *	      with PIO drivers. If true, must follow up with
1955 *	      spi_take_timestamp_post or otherwise system will crash.
1956 *	      WARNING: for fully predictable results, the CPU frequency must
1957 *	      also be under control (governor).
1958 *
1959 * This is a helper for drivers to collect the beginning of the TX timestamp
1960 * for the requested byte from the SPI transfer. The frequency with which this
1961 * function must be called (once per word, once for the whole transfer, once
1962 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1963 * greater than or equal to the requested byte at the time of the call. The
1964 * timestamp is only taken once, at the first such call. It is assumed that
1965 * the driver advances its @tx buffer pointer monotonically.
1966 */
1967void spi_take_timestamp_pre(struct spi_controller *ctlr,
1968			    struct spi_transfer *xfer,
1969			    size_t progress, bool irqs_off)
1970{
1971	if (!xfer->ptp_sts)
1972		return;
1973
1974	if (xfer->timestamped)
1975		return;
1976
1977	if (progress > xfer->ptp_sts_word_pre)
1978		return;
1979
1980	/* Capture the resolution of the timestamp */
1981	xfer->ptp_sts_word_pre = progress;
1982
1983	if (irqs_off) {
1984		local_irq_save(ctlr->irq_flags);
1985		preempt_disable();
1986	}
1987
1988	ptp_read_system_prets(xfer->ptp_sts);
1989}
1990EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1991
1992/**
1993 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1994 * @ctlr: Pointer to the spi_controller structure of the driver
1995 * @xfer: Pointer to the transfer being timestamped
1996 * @progress: How many words (not bytes) have been transferred so far
1997 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1998 *
1999 * This is a helper for drivers to collect the end of the TX timestamp for
2000 * the requested byte from the SPI transfer. Can be called with an arbitrary
2001 * frequency: only the first call where @tx exceeds or is equal to the
2002 * requested word will be timestamped.
2003 */
2004void spi_take_timestamp_post(struct spi_controller *ctlr,
2005			     struct spi_transfer *xfer,
2006			     size_t progress, bool irqs_off)
2007{
2008	if (!xfer->ptp_sts)
2009		return;
2010
2011	if (xfer->timestamped)
2012		return;
2013
2014	if (progress < xfer->ptp_sts_word_post)
2015		return;
2016
2017	ptp_read_system_postts(xfer->ptp_sts);
2018
2019	if (irqs_off) {
2020		local_irq_restore(ctlr->irq_flags);
2021		preempt_enable();
2022	}
2023
2024	/* Capture the resolution of the timestamp */
2025	xfer->ptp_sts_word_post = progress;
2026
2027	xfer->timestamped = 1;
2028}
2029EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2030
2031/**
2032 * spi_set_thread_rt - set the controller to pump at realtime priority
2033 * @ctlr: controller to boost priority of
2034 *
2035 * This can be called because the controller requested realtime priority
2036 * (by setting the ->rt value before calling spi_register_controller()) or
2037 * because a device on the bus said that its transfers needed realtime
2038 * priority.
2039 *
2040 * NOTE: at the moment if any device on a bus says it needs realtime then
2041 * the thread will be at realtime priority for all transfers on that
2042 * controller.  If this eventually becomes a problem we may see if we can
2043 * find a way to boost the priority only temporarily during relevant
2044 * transfers.
2045 */
2046static void spi_set_thread_rt(struct spi_controller *ctlr)
2047{
2048	dev_info(&ctlr->dev,
2049		"will run message pump with realtime priority\n");
2050	sched_set_fifo(ctlr->kworker->task);
2051}
2052
2053static int spi_init_queue(struct spi_controller *ctlr)
2054{
2055	ctlr->running = false;
2056	ctlr->busy = false;
2057	ctlr->queue_empty = true;
2058
2059	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2060	if (IS_ERR(ctlr->kworker)) {
2061		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2062		return PTR_ERR(ctlr->kworker);
2063	}
2064
2065	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2066
2067	/*
2068	 * Controller config will indicate if this controller should run the
2069	 * message pump with high (realtime) priority to reduce the transfer
2070	 * latency on the bus by minimising the delay between a transfer
2071	 * request and the scheduling of the message pump thread. Without this
2072	 * setting the message pump thread will remain at default priority.
2073	 */
2074	if (ctlr->rt)
2075		spi_set_thread_rt(ctlr);
2076
2077	return 0;
2078}
2079
2080/**
2081 * spi_get_next_queued_message() - called by driver to check for queued
2082 * messages
2083 * @ctlr: the controller to check for queued messages
2084 *
2085 * If there are more messages in the queue, the next message is returned from
2086 * this call.
2087 *
2088 * Return: the next message in the queue, else NULL if the queue is empty.
2089 */
2090struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2091{
2092	struct spi_message *next;
2093	unsigned long flags;
2094
2095	/* Get a pointer to the next message, if any */
2096	spin_lock_irqsave(&ctlr->queue_lock, flags);
2097	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2098					queue);
2099	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2100
2101	return next;
2102}
2103EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2104
2105/*
2106 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2107 *                            and spi_maybe_unoptimize_message()
2108 * @msg: the message to unoptimize
2109 *
2110 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2111 * core should use spi_maybe_unoptimize_message() rather than calling this
2112 * function directly.
2113 *
2114 * It is not valid to call this on a message that is not currently optimized.
2115 */
2116static void __spi_unoptimize_message(struct spi_message *msg)
2117{
2118	struct spi_controller *ctlr = msg->spi->controller;
2119
2120	if (ctlr->unoptimize_message)
2121		ctlr->unoptimize_message(msg);
2122
2123	spi_res_release(ctlr, msg);
2124
2125	msg->optimized = false;
2126	msg->opt_state = NULL;
2127}
2128
2129/*
2130 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2131 * @msg: the message to unoptimize
2132 *
2133 * This function is used to unoptimize a message if and only if it was
2134 * optimized by the core (via spi_maybe_optimize_message()).
2135 */
2136static void spi_maybe_unoptimize_message(struct spi_message *msg)
2137{
2138	if (!msg->pre_optimized && msg->optimized)
 
2139		__spi_unoptimize_message(msg);
2140}
2141
2142/**
2143 * spi_finalize_current_message() - the current message is complete
2144 * @ctlr: the controller to return the message to
2145 *
2146 * Called by the driver to notify the core that the message in the front of the
2147 * queue is complete and can be removed from the queue.
2148 */
2149void spi_finalize_current_message(struct spi_controller *ctlr)
2150{
2151	struct spi_transfer *xfer;
2152	struct spi_message *mesg;
2153	int ret;
2154
2155	mesg = ctlr->cur_msg;
2156
2157	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2158		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2159			ptp_read_system_postts(xfer->ptp_sts);
2160			xfer->ptp_sts_word_post = xfer->len;
2161		}
2162	}
2163
2164	if (unlikely(ctlr->ptp_sts_supported))
2165		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2166			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2167
2168	spi_unmap_msg(ctlr, mesg);
2169
2170	if (mesg->prepared && ctlr->unprepare_message) {
2171		ret = ctlr->unprepare_message(ctlr, mesg);
2172		if (ret) {
2173			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2174				ret);
2175		}
2176	}
2177
2178	mesg->prepared = false;
2179
2180	spi_maybe_unoptimize_message(mesg);
2181
2182	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2183	smp_mb(); /* See __spi_pump_transfer_message()... */
2184	if (READ_ONCE(ctlr->cur_msg_need_completion))
2185		complete(&ctlr->cur_msg_completion);
2186
2187	trace_spi_message_done(mesg);
2188
2189	mesg->state = NULL;
2190	if (mesg->complete)
2191		mesg->complete(mesg->context);
2192}
2193EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2194
2195static int spi_start_queue(struct spi_controller *ctlr)
2196{
2197	unsigned long flags;
2198
2199	spin_lock_irqsave(&ctlr->queue_lock, flags);
2200
2201	if (ctlr->running || ctlr->busy) {
2202		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2203		return -EBUSY;
2204	}
2205
2206	ctlr->running = true;
2207	ctlr->cur_msg = NULL;
2208	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2209
2210	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2211
2212	return 0;
2213}
2214
2215static int spi_stop_queue(struct spi_controller *ctlr)
2216{
 
2217	unsigned long flags;
2218	unsigned limit = 500;
2219	int ret = 0;
2220
2221	spin_lock_irqsave(&ctlr->queue_lock, flags);
2222
2223	/*
2224	 * This is a bit lame, but is optimized for the common execution path.
2225	 * A wait_queue on the ctlr->busy could be used, but then the common
2226	 * execution path (pump_messages) would be required to call wake_up or
2227	 * friends on every SPI message. Do this instead.
2228	 */
2229	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
 
 
 
 
 
 
2230		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2231		usleep_range(10000, 11000);
2232		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233	}
2234
2235	if (!list_empty(&ctlr->queue) || ctlr->busy)
2236		ret = -EBUSY;
2237	else
2238		ctlr->running = false;
2239
2240	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2241
2242	return ret;
2243}
2244
2245static int spi_destroy_queue(struct spi_controller *ctlr)
2246{
2247	int ret;
2248
2249	ret = spi_stop_queue(ctlr);
2250
2251	/*
2252	 * kthread_flush_worker will block until all work is done.
2253	 * If the reason that stop_queue timed out is that the work will never
2254	 * finish, then it does no good to call flush/stop thread, so
2255	 * return anyway.
2256	 */
2257	if (ret) {
2258		dev_err(&ctlr->dev, "problem destroying queue\n");
2259		return ret;
2260	}
2261
2262	kthread_destroy_worker(ctlr->kworker);
2263
2264	return 0;
2265}
2266
2267static int __spi_queued_transfer(struct spi_device *spi,
2268				 struct spi_message *msg,
2269				 bool need_pump)
2270{
2271	struct spi_controller *ctlr = spi->controller;
2272	unsigned long flags;
2273
2274	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276	if (!ctlr->running) {
2277		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278		return -ESHUTDOWN;
2279	}
2280	msg->actual_length = 0;
2281	msg->status = -EINPROGRESS;
2282
2283	list_add_tail(&msg->queue, &ctlr->queue);
2284	ctlr->queue_empty = false;
2285	if (!ctlr->busy && need_pump)
2286		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289	return 0;
2290}
2291
2292/**
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2296 *
2297 * Return: zero on success, else a negative error code.
2298 */
2299static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300{
2301	return __spi_queued_transfer(spi, msg, true);
2302}
2303
2304static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305{
2306	int ret;
2307
2308	ctlr->transfer = spi_queued_transfer;
2309	if (!ctlr->transfer_one_message)
2310		ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312	/* Initialize and start queue */
2313	ret = spi_init_queue(ctlr);
2314	if (ret) {
2315		dev_err(&ctlr->dev, "problem initializing queue\n");
2316		goto err_init_queue;
2317	}
2318	ctlr->queued = true;
2319	ret = spi_start_queue(ctlr);
2320	if (ret) {
2321		dev_err(&ctlr->dev, "problem starting queue\n");
2322		goto err_start_queue;
2323	}
2324
2325	return 0;
2326
2327err_start_queue:
2328	spi_destroy_queue(ctlr);
2329err_init_queue:
2330	return ret;
2331}
2332
2333/**
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2335 *		     context
2336 * @ctlr: controller to process queue for
2337 *
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2342 */
2343void spi_flush_queue(struct spi_controller *ctlr)
2344{
2345	if (ctlr->transfer == spi_queued_transfer)
2346		__spi_pump_messages(ctlr, false);
2347}
2348
2349/*-------------------------------------------------------------------------*/
2350
2351#if defined(CONFIG_OF)
2352static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353				     struct spi_delay *delay, const char *prop)
2354{
2355	u32 value;
2356
2357	if (!of_property_read_u32(nc, prop, &value)) {
2358		if (value > U16_MAX) {
2359			delay->value = DIV_ROUND_UP(value, 1000);
2360			delay->unit = SPI_DELAY_UNIT_USECS;
2361		} else {
2362			delay->value = value;
2363			delay->unit = SPI_DELAY_UNIT_NSECS;
2364		}
2365	}
2366}
2367
2368static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369			   struct device_node *nc)
2370{
2371	u32 value, cs[SPI_CS_CNT_MAX];
2372	int rc, idx;
2373
2374	/* Mode (clock phase/polarity/etc.) */
2375	if (of_property_read_bool(nc, "spi-cpha"))
2376		spi->mode |= SPI_CPHA;
2377	if (of_property_read_bool(nc, "spi-cpol"))
2378		spi->mode |= SPI_CPOL;
2379	if (of_property_read_bool(nc, "spi-3wire"))
2380		spi->mode |= SPI_3WIRE;
2381	if (of_property_read_bool(nc, "spi-lsb-first"))
2382		spi->mode |= SPI_LSB_FIRST;
2383	if (of_property_read_bool(nc, "spi-cs-high"))
2384		spi->mode |= SPI_CS_HIGH;
2385
2386	/* Device DUAL/QUAD mode */
2387	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388		switch (value) {
2389		case 0:
2390			spi->mode |= SPI_NO_TX;
2391			break;
2392		case 1:
2393			break;
2394		case 2:
2395			spi->mode |= SPI_TX_DUAL;
2396			break;
2397		case 4:
2398			spi->mode |= SPI_TX_QUAD;
2399			break;
2400		case 8:
2401			spi->mode |= SPI_TX_OCTAL;
2402			break;
2403		default:
2404			dev_warn(&ctlr->dev,
2405				"spi-tx-bus-width %d not supported\n",
2406				value);
2407			break;
2408		}
2409	}
2410
2411	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412		switch (value) {
2413		case 0:
2414			spi->mode |= SPI_NO_RX;
2415			break;
2416		case 1:
2417			break;
2418		case 2:
2419			spi->mode |= SPI_RX_DUAL;
2420			break;
2421		case 4:
2422			spi->mode |= SPI_RX_QUAD;
2423			break;
2424		case 8:
2425			spi->mode |= SPI_RX_OCTAL;
2426			break;
2427		default:
2428			dev_warn(&ctlr->dev,
2429				"spi-rx-bus-width %d not supported\n",
2430				value);
2431			break;
2432		}
2433	}
2434
2435	if (spi_controller_is_slave(ctlr)) {
2436		if (!of_node_name_eq(nc, "slave")) {
2437			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438				nc);
2439			return -EINVAL;
2440		}
2441		return 0;
2442	}
2443
2444	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446		return -EINVAL;
2447	}
2448
2449	spi_set_all_cs_unused(spi);
2450
2451	/* Device address */
2452	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453						 SPI_CS_CNT_MAX);
2454	if (rc < 0) {
2455		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456			nc, rc);
2457		return rc;
2458	}
2459	if (rc > ctlr->num_chipselect) {
2460		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461			nc, rc);
2462		return rc;
2463	}
2464	if ((of_property_read_bool(nc, "parallel-memories")) &&
2465	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467		return -EINVAL;
2468	}
2469	for (idx = 0; idx < rc; idx++)
2470		spi_set_chipselect(spi, idx, cs[idx]);
2471
2472	/*
2473	 * By default spi->chip_select[0] will hold the physical CS number,
2474	 * so set bit 0 in spi->cs_index_mask.
2475	 */
2476	spi->cs_index_mask = BIT(0);
2477
2478	/* Device speed */
2479	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480		spi->max_speed_hz = value;
2481
2482	/* Device CS delays */
2483	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487	return 0;
2488}
2489
2490static struct spi_device *
2491of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492{
2493	struct spi_device *spi;
2494	int rc;
2495
2496	/* Alloc an spi_device */
2497	spi = spi_alloc_device(ctlr);
2498	if (!spi) {
2499		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500		rc = -ENOMEM;
2501		goto err_out;
2502	}
2503
2504	/* Select device driver */
2505	rc = of_alias_from_compatible(nc, spi->modalias,
2506				      sizeof(spi->modalias));
2507	if (rc < 0) {
2508		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509		goto err_out;
2510	}
2511
2512	rc = of_spi_parse_dt(ctlr, spi, nc);
2513	if (rc)
2514		goto err_out;
2515
2516	/* Store a pointer to the node in the device structure */
2517	of_node_get(nc);
2518
2519	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521	/* Register the new device */
2522	rc = spi_add_device(spi);
2523	if (rc) {
2524		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525		goto err_of_node_put;
2526	}
2527
2528	return spi;
2529
2530err_of_node_put:
2531	of_node_put(nc);
2532err_out:
2533	spi_dev_put(spi);
2534	return ERR_PTR(rc);
2535}
2536
2537/**
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr:	Pointer to spi_controller device
2540 *
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2543 */
2544static void of_register_spi_devices(struct spi_controller *ctlr)
2545{
2546	struct spi_device *spi;
2547	struct device_node *nc;
2548
2549	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551			continue;
2552		spi = of_register_spi_device(ctlr, nc);
2553		if (IS_ERR(spi)) {
2554			dev_warn(&ctlr->dev,
2555				 "Failed to create SPI device for %pOF\n", nc);
2556			of_node_clear_flag(nc, OF_POPULATED);
2557		}
2558	}
2559}
2560#else
2561static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562#endif
2563
2564/**
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi:         Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2568 *
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2571 *
2572 * This may only be called from main SPI device's probe routine.
2573 *
2574 * Return: 0 on success; negative errno on failure
2575 */
2576struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577					     u8 chip_select)
2578{
2579	struct spi_controller *ctlr = spi->controller;
2580	struct spi_device *ancillary;
2581	int rc = 0;
2582
2583	/* Alloc an spi_device */
2584	ancillary = spi_alloc_device(ctlr);
2585	if (!ancillary) {
2586		rc = -ENOMEM;
2587		goto err_out;
2588	}
2589
2590	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592	/* Use provided chip-select for ancillary device */
2593	spi_set_all_cs_unused(ancillary);
2594	spi_set_chipselect(ancillary, 0, chip_select);
2595
2596	/* Take over SPI mode/speed from SPI main device */
2597	ancillary->max_speed_hz = spi->max_speed_hz;
2598	ancillary->mode = spi->mode;
2599	/*
2600	 * By default spi->chip_select[0] will hold the physical CS number,
2601	 * so set bit 0 in spi->cs_index_mask.
2602	 */
2603	ancillary->cs_index_mask = BIT(0);
2604
2605	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607	/* Register the new device */
2608	rc = __spi_add_device(ancillary);
2609	if (rc) {
2610		dev_err(&spi->dev, "failed to register ancillary device\n");
2611		goto err_out;
2612	}
2613
2614	return ancillary;
2615
2616err_out:
2617	spi_dev_put(ancillary);
2618	return ERR_PTR(rc);
2619}
2620EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622#ifdef CONFIG_ACPI
2623struct acpi_spi_lookup {
2624	struct spi_controller 	*ctlr;
2625	u32			max_speed_hz;
2626	u32			mode;
2627	int			irq;
2628	u8			bits_per_word;
2629	u8			chip_select;
2630	int			n;
2631	int			index;
2632};
2633
2634static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635{
2636	struct acpi_resource_spi_serialbus *sb;
2637	int *count = data;
2638
2639	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640		return 1;
2641
2642	sb = &ares->data.spi_serial_bus;
2643	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644		return 1;
2645
2646	*count = *count + 1;
2647
2648	return 1;
2649}
2650
2651/**
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev:	ACPI device
2654 *
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2657 */
2658int acpi_spi_count_resources(struct acpi_device *adev)
2659{
2660	LIST_HEAD(r);
2661	int count = 0;
2662	int ret;
2663
2664	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665	if (ret < 0)
2666		return ret;
2667
2668	acpi_dev_free_resource_list(&r);
2669
2670	return count;
2671}
2672EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675					    struct acpi_spi_lookup *lookup)
2676{
2677	const union acpi_object *obj;
2678
2679	if (!x86_apple_machine)
2680		return;
2681
2682	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683	    && obj->buffer.length >= 4)
2684		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687	    && obj->buffer.length == 8)
2688		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692		lookup->mode |= SPI_LSB_FIRST;
2693
2694	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696		lookup->mode |= SPI_CPOL;
2697
2698	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700		lookup->mode |= SPI_CPHA;
2701}
2702
2703static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704{
2705	struct acpi_spi_lookup *lookup = data;
2706	struct spi_controller *ctlr = lookup->ctlr;
2707
2708	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709		struct acpi_resource_spi_serialbus *sb;
2710		acpi_handle parent_handle;
2711		acpi_status status;
2712
2713		sb = &ares->data.spi_serial_bus;
2714		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717				return 1;
2718
2719			status = acpi_get_handle(NULL,
2720						 sb->resource_source.string_ptr,
2721						 &parent_handle);
2722
2723			if (ACPI_FAILURE(status))
2724				return -ENODEV;
2725
2726			if (ctlr) {
2727				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2728					return -ENODEV;
2729			} else {
2730				struct acpi_device *adev;
2731
2732				adev = acpi_fetch_acpi_dev(parent_handle);
2733				if (!adev)
2734					return -ENODEV;
2735
2736				ctlr = acpi_spi_find_controller_by_adev(adev);
2737				if (!ctlr)
2738					return -EPROBE_DEFER;
2739
2740				lookup->ctlr = ctlr;
2741			}
2742
2743			/*
2744			 * ACPI DeviceSelection numbering is handled by the
2745			 * host controller driver in Windows and can vary
2746			 * from driver to driver. In Linux we always expect
2747			 * 0 .. max - 1 so we need to ask the driver to
2748			 * translate between the two schemes.
2749			 */
2750			if (ctlr->fw_translate_cs) {
2751				int cs = ctlr->fw_translate_cs(ctlr,
2752						sb->device_selection);
2753				if (cs < 0)
2754					return cs;
2755				lookup->chip_select = cs;
2756			} else {
2757				lookup->chip_select = sb->device_selection;
2758			}
2759
2760			lookup->max_speed_hz = sb->connection_speed;
2761			lookup->bits_per_word = sb->data_bit_length;
2762
2763			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764				lookup->mode |= SPI_CPHA;
2765			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766				lookup->mode |= SPI_CPOL;
2767			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768				lookup->mode |= SPI_CS_HIGH;
2769		}
2770	} else if (lookup->irq < 0) {
2771		struct resource r;
2772
2773		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774			lookup->irq = r.start;
2775	}
2776
2777	/* Always tell the ACPI core to skip this resource */
2778	return 1;
2779}
2780
2781/**
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2786 *
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2789 *
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2794 *
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2796 */
2797struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798					 struct acpi_device *adev,
2799					 int index)
2800{
2801	acpi_handle parent_handle = NULL;
2802	struct list_head resource_list;
2803	struct acpi_spi_lookup lookup = {};
2804	struct spi_device *spi;
2805	int ret;
2806
2807	if (!ctlr && index == -1)
2808		return ERR_PTR(-EINVAL);
2809
2810	lookup.ctlr		= ctlr;
2811	lookup.irq		= -1;
2812	lookup.index		= index;
2813	lookup.n		= 0;
2814
2815	INIT_LIST_HEAD(&resource_list);
2816	ret = acpi_dev_get_resources(adev, &resource_list,
2817				     acpi_spi_add_resource, &lookup);
2818	acpi_dev_free_resource_list(&resource_list);
2819
2820	if (ret < 0)
2821		/* Found SPI in _CRS but it points to another controller */
2822		return ERR_PTR(ret);
2823
2824	if (!lookup.max_speed_hz &&
2825	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2827		/* Apple does not use _CRS but nested devices for SPI slaves */
2828		acpi_spi_parse_apple_properties(adev, &lookup);
2829	}
2830
2831	if (!lookup.max_speed_hz)
2832		return ERR_PTR(-ENODEV);
2833
2834	spi = spi_alloc_device(lookup.ctlr);
2835	if (!spi) {
2836		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837			dev_name(&adev->dev));
2838		return ERR_PTR(-ENOMEM);
2839	}
2840
2841	spi_set_all_cs_unused(spi);
2842	spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844	ACPI_COMPANION_SET(&spi->dev, adev);
2845	spi->max_speed_hz	= lookup.max_speed_hz;
2846	spi->mode		|= lookup.mode;
2847	spi->irq		= lookup.irq;
2848	spi->bits_per_word	= lookup.bits_per_word;
2849	/*
2850	 * By default spi->chip_select[0] will hold the physical CS number,
2851	 * so set bit 0 in spi->cs_index_mask.
2852	 */
2853	spi->cs_index_mask	= BIT(0);
2854
2855	return spi;
2856}
2857EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858
2859static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860					    struct acpi_device *adev)
2861{
2862	struct spi_device *spi;
2863
2864	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865	    acpi_device_enumerated(adev))
2866		return AE_OK;
2867
2868	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869	if (IS_ERR(spi)) {
2870		if (PTR_ERR(spi) == -ENOMEM)
2871			return AE_NO_MEMORY;
2872		else
2873			return AE_OK;
2874	}
2875
2876	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877			  sizeof(spi->modalias));
2878
2879	if (spi->irq < 0)
2880		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2881
2882	acpi_device_set_enumerated(adev);
2883
2884	adev->power.flags.ignore_parent = true;
2885	if (spi_add_device(spi)) {
2886		adev->power.flags.ignore_parent = false;
2887		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2888			dev_name(&adev->dev));
2889		spi_dev_put(spi);
2890	}
2891
2892	return AE_OK;
2893}
2894
2895static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2896				       void *data, void **return_value)
2897{
2898	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2899	struct spi_controller *ctlr = data;
2900
2901	if (!adev)
2902		return AE_OK;
2903
2904	return acpi_register_spi_device(ctlr, adev);
2905}
2906
2907#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2908
2909static void acpi_register_spi_devices(struct spi_controller *ctlr)
2910{
2911	acpi_status status;
2912	acpi_handle handle;
2913
2914	handle = ACPI_HANDLE(ctlr->dev.parent);
2915	if (!handle)
2916		return;
2917
2918	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2919				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2920				     acpi_spi_add_device, NULL, ctlr, NULL);
2921	if (ACPI_FAILURE(status))
2922		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2923}
2924#else
2925static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2926#endif /* CONFIG_ACPI */
2927
2928static void spi_controller_release(struct device *dev)
2929{
2930	struct spi_controller *ctlr;
2931
2932	ctlr = container_of(dev, struct spi_controller, dev);
2933	kfree(ctlr);
2934}
2935
2936static struct class spi_master_class = {
2937	.name		= "spi_master",
2938	.dev_release	= spi_controller_release,
2939	.dev_groups	= spi_master_groups,
2940};
2941
2942#ifdef CONFIG_SPI_SLAVE
2943/**
2944 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2945 *		     controller
2946 * @spi: device used for the current transfer
2947 */
2948int spi_slave_abort(struct spi_device *spi)
2949{
2950	struct spi_controller *ctlr = spi->controller;
2951
2952	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2953		return ctlr->slave_abort(ctlr);
2954
2955	return -ENOTSUPP;
2956}
2957EXPORT_SYMBOL_GPL(spi_slave_abort);
2958
2959int spi_target_abort(struct spi_device *spi)
2960{
2961	struct spi_controller *ctlr = spi->controller;
2962
2963	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2964		return ctlr->target_abort(ctlr);
2965
2966	return -ENOTSUPP;
2967}
2968EXPORT_SYMBOL_GPL(spi_target_abort);
2969
2970static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2971			  char *buf)
2972{
2973	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2974						   dev);
2975	struct device *child;
2976
2977	child = device_find_any_child(&ctlr->dev);
2978	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2979}
2980
2981static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2982			   const char *buf, size_t count)
2983{
2984	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2985						   dev);
2986	struct spi_device *spi;
2987	struct device *child;
2988	char name[32];
2989	int rc;
2990
2991	rc = sscanf(buf, "%31s", name);
2992	if (rc != 1 || !name[0])
2993		return -EINVAL;
2994
2995	child = device_find_any_child(&ctlr->dev);
2996	if (child) {
2997		/* Remove registered slave */
2998		device_unregister(child);
2999		put_device(child);
3000	}
3001
3002	if (strcmp(name, "(null)")) {
3003		/* Register new slave */
3004		spi = spi_alloc_device(ctlr);
3005		if (!spi)
3006			return -ENOMEM;
3007
3008		strscpy(spi->modalias, name, sizeof(spi->modalias));
3009
3010		rc = spi_add_device(spi);
3011		if (rc) {
3012			spi_dev_put(spi);
3013			return rc;
3014		}
3015	}
3016
3017	return count;
3018}
3019
3020static DEVICE_ATTR_RW(slave);
3021
3022static struct attribute *spi_slave_attrs[] = {
3023	&dev_attr_slave.attr,
3024	NULL,
3025};
3026
3027static const struct attribute_group spi_slave_group = {
3028	.attrs = spi_slave_attrs,
3029};
3030
3031static const struct attribute_group *spi_slave_groups[] = {
3032	&spi_controller_statistics_group,
3033	&spi_slave_group,
3034	NULL,
3035};
3036
3037static struct class spi_slave_class = {
3038	.name		= "spi_slave",
3039	.dev_release	= spi_controller_release,
3040	.dev_groups	= spi_slave_groups,
3041};
3042#else
3043extern struct class spi_slave_class;	/* dummy */
3044#endif
3045
3046/**
3047 * __spi_alloc_controller - allocate an SPI master or slave controller
3048 * @dev: the controller, possibly using the platform_bus
3049 * @size: how much zeroed driver-private data to allocate; the pointer to this
3050 *	memory is in the driver_data field of the returned device, accessible
3051 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3052 *	drivers granting DMA access to portions of their private data need to
3053 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3054 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3055 *	slave (true) controller
3056 * Context: can sleep
3057 *
3058 * This call is used only by SPI controller drivers, which are the
3059 * only ones directly touching chip registers.  It's how they allocate
3060 * an spi_controller structure, prior to calling spi_register_controller().
3061 *
3062 * This must be called from context that can sleep.
3063 *
3064 * The caller is responsible for assigning the bus number and initializing the
3065 * controller's methods before calling spi_register_controller(); and (after
3066 * errors adding the device) calling spi_controller_put() to prevent a memory
3067 * leak.
3068 *
3069 * Return: the SPI controller structure on success, else NULL.
3070 */
3071struct spi_controller *__spi_alloc_controller(struct device *dev,
3072					      unsigned int size, bool slave)
3073{
3074	struct spi_controller	*ctlr;
3075	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3076
3077	if (!dev)
3078		return NULL;
3079
3080	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3081	if (!ctlr)
3082		return NULL;
3083
3084	device_initialize(&ctlr->dev);
3085	INIT_LIST_HEAD(&ctlr->queue);
3086	spin_lock_init(&ctlr->queue_lock);
3087	spin_lock_init(&ctlr->bus_lock_spinlock);
3088	mutex_init(&ctlr->bus_lock_mutex);
3089	mutex_init(&ctlr->io_mutex);
3090	mutex_init(&ctlr->add_lock);
3091	ctlr->bus_num = -1;
3092	ctlr->num_chipselect = 1;
3093	ctlr->slave = slave;
3094	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3095		ctlr->dev.class = &spi_slave_class;
3096	else
3097		ctlr->dev.class = &spi_master_class;
3098	ctlr->dev.parent = dev;
3099	pm_suspend_ignore_children(&ctlr->dev, true);
3100	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3101
3102	return ctlr;
3103}
3104EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3105
3106static void devm_spi_release_controller(struct device *dev, void *ctlr)
3107{
3108	spi_controller_put(*(struct spi_controller **)ctlr);
3109}
3110
3111/**
3112 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3113 * @dev: physical device of SPI controller
3114 * @size: how much zeroed driver-private data to allocate
3115 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3116 * Context: can sleep
3117 *
3118 * Allocate an SPI controller and automatically release a reference on it
3119 * when @dev is unbound from its driver.  Drivers are thus relieved from
3120 * having to call spi_controller_put().
3121 *
3122 * The arguments to this function are identical to __spi_alloc_controller().
3123 *
3124 * Return: the SPI controller structure on success, else NULL.
3125 */
3126struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3127						   unsigned int size,
3128						   bool slave)
3129{
3130	struct spi_controller **ptr, *ctlr;
3131
3132	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3133			   GFP_KERNEL);
3134	if (!ptr)
3135		return NULL;
3136
3137	ctlr = __spi_alloc_controller(dev, size, slave);
3138	if (ctlr) {
3139		ctlr->devm_allocated = true;
3140		*ptr = ctlr;
3141		devres_add(dev, ptr);
3142	} else {
3143		devres_free(ptr);
3144	}
3145
3146	return ctlr;
3147}
3148EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3149
3150/**
3151 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3152 * @ctlr: The SPI master to grab GPIO descriptors for
3153 */
3154static int spi_get_gpio_descs(struct spi_controller *ctlr)
3155{
3156	int nb, i;
3157	struct gpio_desc **cs;
3158	struct device *dev = &ctlr->dev;
3159	unsigned long native_cs_mask = 0;
3160	unsigned int num_cs_gpios = 0;
3161
3162	nb = gpiod_count(dev, "cs");
3163	if (nb < 0) {
3164		/* No GPIOs at all is fine, else return the error */
3165		if (nb == -ENOENT)
3166			return 0;
3167		return nb;
3168	}
3169
3170	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3171
3172	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3173			  GFP_KERNEL);
3174	if (!cs)
3175		return -ENOMEM;
3176	ctlr->cs_gpiods = cs;
3177
3178	for (i = 0; i < nb; i++) {
3179		/*
3180		 * Most chipselects are active low, the inverted
3181		 * semantics are handled by special quirks in gpiolib,
3182		 * so initializing them GPIOD_OUT_LOW here means
3183		 * "unasserted", in most cases this will drive the physical
3184		 * line high.
3185		 */
3186		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3187						      GPIOD_OUT_LOW);
3188		if (IS_ERR(cs[i]))
3189			return PTR_ERR(cs[i]);
3190
3191		if (cs[i]) {
3192			/*
3193			 * If we find a CS GPIO, name it after the device and
3194			 * chip select line.
3195			 */
3196			char *gpioname;
3197
3198			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3199						  dev_name(dev), i);
3200			if (!gpioname)
3201				return -ENOMEM;
3202			gpiod_set_consumer_name(cs[i], gpioname);
3203			num_cs_gpios++;
3204			continue;
3205		}
3206
3207		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3208			dev_err(dev, "Invalid native chip select %d\n", i);
3209			return -EINVAL;
3210		}
3211		native_cs_mask |= BIT(i);
3212	}
3213
3214	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3215
3216	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3217	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3218		dev_err(dev, "No unused native chip select available\n");
3219		return -EINVAL;
3220	}
3221
3222	return 0;
3223}
3224
3225static int spi_controller_check_ops(struct spi_controller *ctlr)
3226{
3227	/*
3228	 * The controller may implement only the high-level SPI-memory like
3229	 * operations if it does not support regular SPI transfers, and this is
3230	 * valid use case.
3231	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3232	 * one of the ->transfer_xxx() method be implemented.
3233	 */
3234	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3235		if (!ctlr->transfer && !ctlr->transfer_one &&
3236		   !ctlr->transfer_one_message) {
3237			return -EINVAL;
3238		}
3239	}
3240
3241	return 0;
3242}
3243
3244/* Allocate dynamic bus number using Linux idr */
3245static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3246{
3247	int id;
3248
3249	mutex_lock(&board_lock);
3250	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3251	mutex_unlock(&board_lock);
3252	if (WARN(id < 0, "couldn't get idr"))
3253		return id == -ENOSPC ? -EBUSY : id;
3254	ctlr->bus_num = id;
3255	return 0;
3256}
3257
3258/**
3259 * spi_register_controller - register SPI master or slave controller
3260 * @ctlr: initialized master, originally from spi_alloc_master() or
3261 *	spi_alloc_slave()
3262 * Context: can sleep
3263 *
3264 * SPI controllers connect to their drivers using some non-SPI bus,
3265 * such as the platform bus.  The final stage of probe() in that code
3266 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3267 *
3268 * SPI controllers use board specific (often SOC specific) bus numbers,
3269 * and board-specific addressing for SPI devices combines those numbers
3270 * with chip select numbers.  Since SPI does not directly support dynamic
3271 * device identification, boards need configuration tables telling which
3272 * chip is at which address.
3273 *
3274 * This must be called from context that can sleep.  It returns zero on
3275 * success, else a negative error code (dropping the controller's refcount).
3276 * After a successful return, the caller is responsible for calling
3277 * spi_unregister_controller().
3278 *
3279 * Return: zero on success, else a negative error code.
3280 */
3281int spi_register_controller(struct spi_controller *ctlr)
3282{
3283	struct device		*dev = ctlr->dev.parent;
3284	struct boardinfo	*bi;
3285	int			first_dynamic;
3286	int			status;
3287	int			idx;
3288
3289	if (!dev)
3290		return -ENODEV;
3291
3292	/*
3293	 * Make sure all necessary hooks are implemented before registering
3294	 * the SPI controller.
3295	 */
3296	status = spi_controller_check_ops(ctlr);
3297	if (status)
3298		return status;
3299
3300	if (ctlr->bus_num < 0)
3301		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3302	if (ctlr->bus_num >= 0) {
3303		/* Devices with a fixed bus num must check-in with the num */
3304		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3305		if (status)
3306			return status;
3307	}
3308	if (ctlr->bus_num < 0) {
3309		first_dynamic = of_alias_get_highest_id("spi");
3310		if (first_dynamic < 0)
3311			first_dynamic = 0;
3312		else
3313			first_dynamic++;
3314
3315		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3316		if (status)
3317			return status;
3318	}
3319	ctlr->bus_lock_flag = 0;
3320	init_completion(&ctlr->xfer_completion);
3321	init_completion(&ctlr->cur_msg_completion);
3322	if (!ctlr->max_dma_len)
3323		ctlr->max_dma_len = INT_MAX;
3324
3325	/*
3326	 * Register the device, then userspace will see it.
3327	 * Registration fails if the bus ID is in use.
3328	 */
3329	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3330
3331	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3332		status = spi_get_gpio_descs(ctlr);
3333		if (status)
3334			goto free_bus_id;
3335		/*
3336		 * A controller using GPIO descriptors always
3337		 * supports SPI_CS_HIGH if need be.
3338		 */
3339		ctlr->mode_bits |= SPI_CS_HIGH;
3340	}
3341
3342	/*
3343	 * Even if it's just one always-selected device, there must
3344	 * be at least one chipselect.
3345	 */
3346	if (!ctlr->num_chipselect) {
3347		status = -EINVAL;
3348		goto free_bus_id;
3349	}
3350
3351	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3352	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3353		ctlr->last_cs[idx] = SPI_INVALID_CS;
3354
3355	status = device_add(&ctlr->dev);
3356	if (status < 0)
3357		goto free_bus_id;
3358	dev_dbg(dev, "registered %s %s\n",
3359			spi_controller_is_slave(ctlr) ? "slave" : "master",
3360			dev_name(&ctlr->dev));
3361
3362	/*
3363	 * If we're using a queued driver, start the queue. Note that we don't
3364	 * need the queueing logic if the driver is only supporting high-level
3365	 * memory operations.
3366	 */
3367	if (ctlr->transfer) {
3368		dev_info(dev, "controller is unqueued, this is deprecated\n");
3369	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3370		status = spi_controller_initialize_queue(ctlr);
3371		if (status) {
3372			device_del(&ctlr->dev);
3373			goto free_bus_id;
3374		}
3375	}
3376	/* Add statistics */
3377	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3378	if (!ctlr->pcpu_statistics) {
3379		dev_err(dev, "Error allocating per-cpu statistics\n");
3380		status = -ENOMEM;
3381		goto destroy_queue;
3382	}
3383
3384	mutex_lock(&board_lock);
3385	list_add_tail(&ctlr->list, &spi_controller_list);
3386	list_for_each_entry(bi, &board_list, list)
3387		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3388	mutex_unlock(&board_lock);
3389
3390	/* Register devices from the device tree and ACPI */
3391	of_register_spi_devices(ctlr);
3392	acpi_register_spi_devices(ctlr);
3393	return status;
3394
3395destroy_queue:
3396	spi_destroy_queue(ctlr);
3397free_bus_id:
3398	mutex_lock(&board_lock);
3399	idr_remove(&spi_master_idr, ctlr->bus_num);
3400	mutex_unlock(&board_lock);
3401	return status;
3402}
3403EXPORT_SYMBOL_GPL(spi_register_controller);
3404
3405static void devm_spi_unregister(struct device *dev, void *res)
3406{
3407	spi_unregister_controller(*(struct spi_controller **)res);
3408}
3409
3410/**
3411 * devm_spi_register_controller - register managed SPI master or slave
3412 *	controller
3413 * @dev:    device managing SPI controller
3414 * @ctlr: initialized controller, originally from spi_alloc_master() or
3415 *	spi_alloc_slave()
3416 * Context: can sleep
3417 *
3418 * Register a SPI device as with spi_register_controller() which will
3419 * automatically be unregistered and freed.
3420 *
3421 * Return: zero on success, else a negative error code.
3422 */
3423int devm_spi_register_controller(struct device *dev,
3424				 struct spi_controller *ctlr)
3425{
3426	struct spi_controller **ptr;
3427	int ret;
3428
3429	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3430	if (!ptr)
3431		return -ENOMEM;
3432
3433	ret = spi_register_controller(ctlr);
3434	if (!ret) {
3435		*ptr = ctlr;
3436		devres_add(dev, ptr);
3437	} else {
3438		devres_free(ptr);
3439	}
3440
3441	return ret;
3442}
3443EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3444
3445static int __unregister(struct device *dev, void *null)
3446{
3447	spi_unregister_device(to_spi_device(dev));
3448	return 0;
3449}
3450
3451/**
3452 * spi_unregister_controller - unregister SPI master or slave controller
3453 * @ctlr: the controller being unregistered
3454 * Context: can sleep
3455 *
3456 * This call is used only by SPI controller drivers, which are the
3457 * only ones directly touching chip registers.
3458 *
3459 * This must be called from context that can sleep.
3460 *
3461 * Note that this function also drops a reference to the controller.
3462 */
3463void spi_unregister_controller(struct spi_controller *ctlr)
3464{
3465	struct spi_controller *found;
3466	int id = ctlr->bus_num;
3467
3468	/* Prevent addition of new devices, unregister existing ones */
3469	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3470		mutex_lock(&ctlr->add_lock);
3471
3472	device_for_each_child(&ctlr->dev, NULL, __unregister);
3473
3474	/* First make sure that this controller was ever added */
3475	mutex_lock(&board_lock);
3476	found = idr_find(&spi_master_idr, id);
3477	mutex_unlock(&board_lock);
3478	if (ctlr->queued) {
3479		if (spi_destroy_queue(ctlr))
3480			dev_err(&ctlr->dev, "queue remove failed\n");
3481	}
3482	mutex_lock(&board_lock);
3483	list_del(&ctlr->list);
3484	mutex_unlock(&board_lock);
3485
3486	device_del(&ctlr->dev);
3487
3488	/* Free bus id */
3489	mutex_lock(&board_lock);
3490	if (found == ctlr)
3491		idr_remove(&spi_master_idr, id);
3492	mutex_unlock(&board_lock);
3493
3494	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3495		mutex_unlock(&ctlr->add_lock);
3496
3497	/*
3498	 * Release the last reference on the controller if its driver
3499	 * has not yet been converted to devm_spi_alloc_master/slave().
3500	 */
3501	if (!ctlr->devm_allocated)
3502		put_device(&ctlr->dev);
3503}
3504EXPORT_SYMBOL_GPL(spi_unregister_controller);
3505
3506static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3507{
3508	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3509}
3510
3511static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3512{
3513	mutex_lock(&ctlr->bus_lock_mutex);
3514	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3515	mutex_unlock(&ctlr->bus_lock_mutex);
3516}
3517
3518static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3519{
3520	mutex_lock(&ctlr->bus_lock_mutex);
3521	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3522	mutex_unlock(&ctlr->bus_lock_mutex);
3523}
3524
3525int spi_controller_suspend(struct spi_controller *ctlr)
3526{
3527	int ret = 0;
3528
3529	/* Basically no-ops for non-queued controllers */
3530	if (ctlr->queued) {
3531		ret = spi_stop_queue(ctlr);
3532		if (ret)
3533			dev_err(&ctlr->dev, "queue stop failed\n");
3534	}
3535
3536	__spi_mark_suspended(ctlr);
3537	return ret;
3538}
3539EXPORT_SYMBOL_GPL(spi_controller_suspend);
3540
3541int spi_controller_resume(struct spi_controller *ctlr)
3542{
3543	int ret = 0;
3544
3545	__spi_mark_resumed(ctlr);
3546
3547	if (ctlr->queued) {
3548		ret = spi_start_queue(ctlr);
3549		if (ret)
3550			dev_err(&ctlr->dev, "queue restart failed\n");
3551	}
3552	return ret;
3553}
3554EXPORT_SYMBOL_GPL(spi_controller_resume);
3555
3556/*-------------------------------------------------------------------------*/
3557
3558/* Core methods for spi_message alterations */
3559
3560static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3561					    struct spi_message *msg,
3562					    void *res)
3563{
3564	struct spi_replaced_transfers *rxfer = res;
3565	size_t i;
3566
3567	/* Call extra callback if requested */
3568	if (rxfer->release)
3569		rxfer->release(ctlr, msg, res);
3570
3571	/* Insert replaced transfers back into the message */
3572	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3573
3574	/* Remove the formerly inserted entries */
3575	for (i = 0; i < rxfer->inserted; i++)
3576		list_del(&rxfer->inserted_transfers[i].transfer_list);
3577}
3578
3579/**
3580 * spi_replace_transfers - replace transfers with several transfers
3581 *                         and register change with spi_message.resources
3582 * @msg:           the spi_message we work upon
3583 * @xfer_first:    the first spi_transfer we want to replace
3584 * @remove:        number of transfers to remove
3585 * @insert:        the number of transfers we want to insert instead
3586 * @release:       extra release code necessary in some circumstances
3587 * @extradatasize: extra data to allocate (with alignment guarantees
3588 *                 of struct @spi_transfer)
3589 * @gfp:           gfp flags
3590 *
3591 * Returns: pointer to @spi_replaced_transfers,
3592 *          PTR_ERR(...) in case of errors.
3593 */
3594static struct spi_replaced_transfers *spi_replace_transfers(
3595	struct spi_message *msg,
3596	struct spi_transfer *xfer_first,
3597	size_t remove,
3598	size_t insert,
3599	spi_replaced_release_t release,
3600	size_t extradatasize,
3601	gfp_t gfp)
3602{
3603	struct spi_replaced_transfers *rxfer;
3604	struct spi_transfer *xfer;
3605	size_t i;
3606
3607	/* Allocate the structure using spi_res */
3608	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3609			      struct_size(rxfer, inserted_transfers, insert)
3610			      + extradatasize,
3611			      gfp);
3612	if (!rxfer)
3613		return ERR_PTR(-ENOMEM);
3614
3615	/* The release code to invoke before running the generic release */
3616	rxfer->release = release;
3617
3618	/* Assign extradata */
3619	if (extradatasize)
3620		rxfer->extradata =
3621			&rxfer->inserted_transfers[insert];
3622
3623	/* Init the replaced_transfers list */
3624	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3625
3626	/*
3627	 * Assign the list_entry after which we should reinsert
3628	 * the @replaced_transfers - it may be spi_message.messages!
3629	 */
3630	rxfer->replaced_after = xfer_first->transfer_list.prev;
3631
3632	/* Remove the requested number of transfers */
3633	for (i = 0; i < remove; i++) {
3634		/*
3635		 * If the entry after replaced_after it is msg->transfers
3636		 * then we have been requested to remove more transfers
3637		 * than are in the list.
3638		 */
3639		if (rxfer->replaced_after->next == &msg->transfers) {
3640			dev_err(&msg->spi->dev,
3641				"requested to remove more spi_transfers than are available\n");
3642			/* Insert replaced transfers back into the message */
3643			list_splice(&rxfer->replaced_transfers,
3644				    rxfer->replaced_after);
3645
3646			/* Free the spi_replace_transfer structure... */
3647			spi_res_free(rxfer);
3648
3649			/* ...and return with an error */
3650			return ERR_PTR(-EINVAL);
3651		}
3652
3653		/*
3654		 * Remove the entry after replaced_after from list of
3655		 * transfers and add it to list of replaced_transfers.
3656		 */
3657		list_move_tail(rxfer->replaced_after->next,
3658			       &rxfer->replaced_transfers);
3659	}
3660
3661	/*
3662	 * Create copy of the given xfer with identical settings
3663	 * based on the first transfer to get removed.
3664	 */
3665	for (i = 0; i < insert; i++) {
3666		/* We need to run in reverse order */
3667		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3668
3669		/* Copy all spi_transfer data */
3670		memcpy(xfer, xfer_first, sizeof(*xfer));
3671
3672		/* Add to list */
3673		list_add(&xfer->transfer_list, rxfer->replaced_after);
3674
3675		/* Clear cs_change and delay for all but the last */
3676		if (i) {
3677			xfer->cs_change = false;
3678			xfer->delay.value = 0;
3679		}
3680	}
3681
3682	/* Set up inserted... */
3683	rxfer->inserted = insert;
3684
3685	/* ...and register it with spi_res/spi_message */
3686	spi_res_add(msg, rxfer);
3687
3688	return rxfer;
3689}
3690
3691static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3692					struct spi_message *msg,
3693					struct spi_transfer **xferp,
3694					size_t maxsize)
3695{
3696	struct spi_transfer *xfer = *xferp, *xfers;
3697	struct spi_replaced_transfers *srt;
3698	size_t offset;
3699	size_t count, i;
3700
3701	/* Calculate how many we have to replace */
3702	count = DIV_ROUND_UP(xfer->len, maxsize);
3703
3704	/* Create replacement */
3705	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3706	if (IS_ERR(srt))
3707		return PTR_ERR(srt);
3708	xfers = srt->inserted_transfers;
3709
3710	/*
3711	 * Now handle each of those newly inserted spi_transfers.
3712	 * Note that the replacements spi_transfers all are preset
3713	 * to the same values as *xferp, so tx_buf, rx_buf and len
3714	 * are all identical (as well as most others)
3715	 * so we just have to fix up len and the pointers.
3716	 *
3717	 * This also includes support for the depreciated
3718	 * spi_message.is_dma_mapped interface.
3719	 */
3720
3721	/*
3722	 * The first transfer just needs the length modified, so we
3723	 * run it outside the loop.
3724	 */
3725	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3726
3727	/* All the others need rx_buf/tx_buf also set */
3728	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3729		/* Update rx_buf, tx_buf and DMA */
3730		if (xfers[i].rx_buf)
3731			xfers[i].rx_buf += offset;
3732		if (xfers[i].rx_dma)
3733			xfers[i].rx_dma += offset;
3734		if (xfers[i].tx_buf)
3735			xfers[i].tx_buf += offset;
3736		if (xfers[i].tx_dma)
3737			xfers[i].tx_dma += offset;
3738
3739		/* Update length */
3740		xfers[i].len = min(maxsize, xfers[i].len - offset);
3741	}
3742
3743	/*
3744	 * We set up xferp to the last entry we have inserted,
3745	 * so that we skip those already split transfers.
3746	 */
3747	*xferp = &xfers[count - 1];
3748
3749	/* Increment statistics counters */
3750	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3751				       transfers_split_maxsize);
3752	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3753				       transfers_split_maxsize);
3754
3755	return 0;
3756}
3757
3758/**
3759 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3760 *                               when an individual transfer exceeds a
3761 *                               certain size
3762 * @ctlr:    the @spi_controller for this transfer
3763 * @msg:   the @spi_message to transform
3764 * @maxsize:  the maximum when to apply this
3765 *
3766 * This function allocates resources that are automatically freed during the
3767 * spi message unoptimize phase so this function should only be called from
3768 * optimize_message callbacks.
3769 *
3770 * Return: status of transformation
3771 */
3772int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3773				struct spi_message *msg,
3774				size_t maxsize)
3775{
3776	struct spi_transfer *xfer;
3777	int ret;
3778
3779	/*
3780	 * Iterate over the transfer_list,
3781	 * but note that xfer is advanced to the last transfer inserted
3782	 * to avoid checking sizes again unnecessarily (also xfer does
3783	 * potentially belong to a different list by the time the
3784	 * replacement has happened).
3785	 */
3786	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3787		if (xfer->len > maxsize) {
3788			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3789							   maxsize);
3790			if (ret)
3791				return ret;
3792		}
3793	}
3794
3795	return 0;
3796}
3797EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3798
3799
3800/**
3801 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3802 *                                when an individual transfer exceeds a
3803 *                                certain number of SPI words
3804 * @ctlr:     the @spi_controller for this transfer
3805 * @msg:      the @spi_message to transform
3806 * @maxwords: the number of words to limit each transfer to
3807 *
3808 * This function allocates resources that are automatically freed during the
3809 * spi message unoptimize phase so this function should only be called from
3810 * optimize_message callbacks.
3811 *
3812 * Return: status of transformation
3813 */
3814int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3815				 struct spi_message *msg,
3816				 size_t maxwords)
3817{
3818	struct spi_transfer *xfer;
3819
3820	/*
3821	 * Iterate over the transfer_list,
3822	 * but note that xfer is advanced to the last transfer inserted
3823	 * to avoid checking sizes again unnecessarily (also xfer does
3824	 * potentially belong to a different list by the time the
3825	 * replacement has happened).
3826	 */
3827	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3828		size_t maxsize;
3829		int ret;
3830
3831		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3832		if (xfer->len > maxsize) {
3833			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3834							   maxsize);
3835			if (ret)
3836				return ret;
3837		}
3838	}
3839
3840	return 0;
3841}
3842EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3843
3844/*-------------------------------------------------------------------------*/
3845
3846/*
3847 * Core methods for SPI controller protocol drivers. Some of the
3848 * other core methods are currently defined as inline functions.
3849 */
3850
3851static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3852					u8 bits_per_word)
3853{
3854	if (ctlr->bits_per_word_mask) {
3855		/* Only 32 bits fit in the mask */
3856		if (bits_per_word > 32)
3857			return -EINVAL;
3858		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3859			return -EINVAL;
3860	}
3861
3862	return 0;
3863}
3864
3865/**
3866 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3867 * @spi: the device that requires specific CS timing configuration
3868 *
3869 * Return: zero on success, else a negative error code.
3870 */
3871static int spi_set_cs_timing(struct spi_device *spi)
3872{
3873	struct device *parent = spi->controller->dev.parent;
3874	int status = 0;
3875
3876	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3877		if (spi->controller->auto_runtime_pm) {
3878			status = pm_runtime_get_sync(parent);
3879			if (status < 0) {
3880				pm_runtime_put_noidle(parent);
3881				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3882					status);
3883				return status;
3884			}
3885
3886			status = spi->controller->set_cs_timing(spi);
3887			pm_runtime_mark_last_busy(parent);
3888			pm_runtime_put_autosuspend(parent);
3889		} else {
3890			status = spi->controller->set_cs_timing(spi);
3891		}
3892	}
3893	return status;
3894}
3895
3896/**
3897 * spi_setup - setup SPI mode and clock rate
3898 * @spi: the device whose settings are being modified
3899 * Context: can sleep, and no requests are queued to the device
3900 *
3901 * SPI protocol drivers may need to update the transfer mode if the
3902 * device doesn't work with its default.  They may likewise need
3903 * to update clock rates or word sizes from initial values.  This function
3904 * changes those settings, and must be called from a context that can sleep.
3905 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3906 * effect the next time the device is selected and data is transferred to
3907 * or from it.  When this function returns, the SPI device is deselected.
3908 *
3909 * Note that this call will fail if the protocol driver specifies an option
3910 * that the underlying controller or its driver does not support.  For
3911 * example, not all hardware supports wire transfers using nine bit words,
3912 * LSB-first wire encoding, or active-high chipselects.
3913 *
3914 * Return: zero on success, else a negative error code.
3915 */
3916int spi_setup(struct spi_device *spi)
3917{
3918	unsigned	bad_bits, ugly_bits;
3919	int		status = 0;
3920
3921	/*
3922	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3923	 * are set at the same time.
3924	 */
3925	if ((hweight_long(spi->mode &
3926		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3927	    (hweight_long(spi->mode &
3928		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3929		dev_err(&spi->dev,
3930		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3931		return -EINVAL;
3932	}
3933	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3934	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3935		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3936		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3937		return -EINVAL;
 
 
 
 
 
 
3938	/*
3939	 * Help drivers fail *cleanly* when they need options
3940	 * that aren't supported with their current controller.
3941	 * SPI_CS_WORD has a fallback software implementation,
3942	 * so it is ignored here.
3943	 */
3944	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3945				 SPI_NO_TX | SPI_NO_RX);
3946	ugly_bits = bad_bits &
3947		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3948		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3949	if (ugly_bits) {
3950		dev_warn(&spi->dev,
3951			 "setup: ignoring unsupported mode bits %x\n",
3952			 ugly_bits);
3953		spi->mode &= ~ugly_bits;
3954		bad_bits &= ~ugly_bits;
3955	}
3956	if (bad_bits) {
3957		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3958			bad_bits);
3959		return -EINVAL;
3960	}
3961
3962	if (!spi->bits_per_word) {
3963		spi->bits_per_word = 8;
3964	} else {
3965		/*
3966		 * Some controllers may not support the default 8 bits-per-word
3967		 * so only perform the check when this is explicitly provided.
3968		 */
3969		status = __spi_validate_bits_per_word(spi->controller,
3970						      spi->bits_per_word);
3971		if (status)
3972			return status;
3973	}
3974
3975	if (spi->controller->max_speed_hz &&
3976	    (!spi->max_speed_hz ||
3977	     spi->max_speed_hz > spi->controller->max_speed_hz))
3978		spi->max_speed_hz = spi->controller->max_speed_hz;
3979
3980	mutex_lock(&spi->controller->io_mutex);
3981
3982	if (spi->controller->setup) {
3983		status = spi->controller->setup(spi);
3984		if (status) {
3985			mutex_unlock(&spi->controller->io_mutex);
3986			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3987				status);
3988			return status;
3989		}
3990	}
3991
3992	status = spi_set_cs_timing(spi);
3993	if (status) {
3994		mutex_unlock(&spi->controller->io_mutex);
3995		return status;
3996	}
3997
3998	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3999		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4000		if (status < 0) {
4001			mutex_unlock(&spi->controller->io_mutex);
4002			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4003				status);
4004			return status;
4005		}
4006
4007		/*
4008		 * We do not want to return positive value from pm_runtime_get,
4009		 * there are many instances of devices calling spi_setup() and
4010		 * checking for a non-zero return value instead of a negative
4011		 * return value.
4012		 */
4013		status = 0;
4014
4015		spi_set_cs(spi, false, true);
4016		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4017		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4018	} else {
4019		spi_set_cs(spi, false, true);
4020	}
4021
4022	mutex_unlock(&spi->controller->io_mutex);
4023
4024	if (spi->rt && !spi->controller->rt) {
4025		spi->controller->rt = true;
4026		spi_set_thread_rt(spi->controller);
4027	}
4028
4029	trace_spi_setup(spi, status);
4030
4031	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4032			spi->mode & SPI_MODE_X_MASK,
4033			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4034			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4035			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4036			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4037			spi->bits_per_word, spi->max_speed_hz,
4038			status);
4039
4040	return status;
4041}
4042EXPORT_SYMBOL_GPL(spi_setup);
4043
4044static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4045				       struct spi_device *spi)
4046{
4047	int delay1, delay2;
4048
4049	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4050	if (delay1 < 0)
4051		return delay1;
4052
4053	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4054	if (delay2 < 0)
4055		return delay2;
4056
4057	if (delay1 < delay2)
4058		memcpy(&xfer->word_delay, &spi->word_delay,
4059		       sizeof(xfer->word_delay));
4060
4061	return 0;
4062}
4063
4064static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4065{
4066	struct spi_controller *ctlr = spi->controller;
4067	struct spi_transfer *xfer;
4068	int w_size;
4069
4070	if (list_empty(&message->transfers))
4071		return -EINVAL;
4072
4073	message->spi = spi;
4074
4075	/*
4076	 * Half-duplex links include original MicroWire, and ones with
4077	 * only one data pin like SPI_3WIRE (switches direction) or where
4078	 * either MOSI or MISO is missing.  They can also be caused by
4079	 * software limitations.
4080	 */
4081	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4082	    (spi->mode & SPI_3WIRE)) {
4083		unsigned flags = ctlr->flags;
4084
4085		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4086			if (xfer->rx_buf && xfer->tx_buf)
4087				return -EINVAL;
4088			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4089				return -EINVAL;
4090			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4091				return -EINVAL;
4092		}
4093	}
4094
4095	/*
4096	 * Set transfer bits_per_word and max speed as spi device default if
4097	 * it is not set for this transfer.
4098	 * Set transfer tx_nbits and rx_nbits as single transfer default
4099	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4100	 * Ensure transfer word_delay is at least as long as that required by
4101	 * device itself.
4102	 */
4103	message->frame_length = 0;
4104	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4105		xfer->effective_speed_hz = 0;
4106		message->frame_length += xfer->len;
4107		if (!xfer->bits_per_word)
4108			xfer->bits_per_word = spi->bits_per_word;
4109
4110		if (!xfer->speed_hz)
4111			xfer->speed_hz = spi->max_speed_hz;
4112
4113		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4114			xfer->speed_hz = ctlr->max_speed_hz;
4115
4116		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4117			return -EINVAL;
4118
4119		/*
4120		 * SPI transfer length should be multiple of SPI word size
4121		 * where SPI word size should be power-of-two multiple.
4122		 */
4123		if (xfer->bits_per_word <= 8)
4124			w_size = 1;
4125		else if (xfer->bits_per_word <= 16)
4126			w_size = 2;
4127		else
4128			w_size = 4;
4129
4130		/* No partial transfers accepted */
4131		if (xfer->len % w_size)
4132			return -EINVAL;
4133
4134		if (xfer->speed_hz && ctlr->min_speed_hz &&
4135		    xfer->speed_hz < ctlr->min_speed_hz)
4136			return -EINVAL;
4137
4138		if (xfer->tx_buf && !xfer->tx_nbits)
4139			xfer->tx_nbits = SPI_NBITS_SINGLE;
4140		if (xfer->rx_buf && !xfer->rx_nbits)
4141			xfer->rx_nbits = SPI_NBITS_SINGLE;
4142		/*
4143		 * Check transfer tx/rx_nbits:
4144		 * 1. check the value matches one of single, dual and quad
4145		 * 2. check tx/rx_nbits match the mode in spi_device
4146		 */
4147		if (xfer->tx_buf) {
4148			if (spi->mode & SPI_NO_TX)
4149				return -EINVAL;
4150			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4151				xfer->tx_nbits != SPI_NBITS_DUAL &&
4152				xfer->tx_nbits != SPI_NBITS_QUAD)
 
4153				return -EINVAL;
4154			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4155				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4156				return -EINVAL;
4157			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4158				!(spi->mode & SPI_TX_QUAD))
4159				return -EINVAL;
4160		}
4161		/* Check transfer rx_nbits */
4162		if (xfer->rx_buf) {
4163			if (spi->mode & SPI_NO_RX)
4164				return -EINVAL;
4165			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4166				xfer->rx_nbits != SPI_NBITS_DUAL &&
4167				xfer->rx_nbits != SPI_NBITS_QUAD)
 
4168				return -EINVAL;
4169			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4170				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4171				return -EINVAL;
4172			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4173				!(spi->mode & SPI_RX_QUAD))
4174				return -EINVAL;
4175		}
4176
4177		if (_spi_xfer_word_delay_update(xfer, spi))
4178			return -EINVAL;
4179	}
4180
4181	message->status = -EINPROGRESS;
4182
4183	return 0;
4184}
4185
4186/*
4187 * spi_split_transfers - generic handling of transfer splitting
4188 * @msg: the message to split
4189 *
4190 * Under certain conditions, a SPI controller may not support arbitrary
4191 * transfer sizes or other features required by a peripheral. This function
4192 * will split the transfers in the message into smaller transfers that are
4193 * supported by the controller.
4194 *
4195 * Controllers with special requirements not covered here can also split
4196 * transfers in the optimize_message() callback.
4197 *
4198 * Context: can sleep
4199 * Return: zero on success, else a negative error code
4200 */
4201static int spi_split_transfers(struct spi_message *msg)
4202{
4203	struct spi_controller *ctlr = msg->spi->controller;
4204	struct spi_transfer *xfer;
4205	int ret;
4206
4207	/*
4208	 * If an SPI controller does not support toggling the CS line on each
4209	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4210	 * for the CS line, we can emulate the CS-per-word hardware function by
4211	 * splitting transfers into one-word transfers and ensuring that
4212	 * cs_change is set for each transfer.
4213	 */
4214	if ((msg->spi->mode & SPI_CS_WORD) &&
4215	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4216		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4217		if (ret)
4218			return ret;
4219
4220		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4221			/* Don't change cs_change on the last entry in the list */
4222			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4223				break;
4224
4225			xfer->cs_change = 1;
4226		}
4227	} else {
4228		ret = spi_split_transfers_maxsize(ctlr, msg,
4229						  spi_max_transfer_size(msg->spi));
4230		if (ret)
4231			return ret;
4232	}
4233
4234	return 0;
4235}
4236
4237/*
4238 * __spi_optimize_message - shared implementation for spi_optimize_message()
4239 *                          and spi_maybe_optimize_message()
4240 * @spi: the device that will be used for the message
4241 * @msg: the message to optimize
4242 *
4243 * Peripheral drivers will call spi_optimize_message() and the spi core will
4244 * call spi_maybe_optimize_message() instead of calling this directly.
4245 *
4246 * It is not valid to call this on a message that has already been optimized.
4247 *
4248 * Return: zero on success, else a negative error code
4249 */
4250static int __spi_optimize_message(struct spi_device *spi,
4251				  struct spi_message *msg)
4252{
4253	struct spi_controller *ctlr = spi->controller;
4254	int ret;
4255
4256	ret = __spi_validate(spi, msg);
4257	if (ret)
4258		return ret;
4259
4260	ret = spi_split_transfers(msg);
4261	if (ret)
4262		return ret;
4263
4264	if (ctlr->optimize_message) {
4265		ret = ctlr->optimize_message(msg);
4266		if (ret) {
4267			spi_res_release(ctlr, msg);
4268			return ret;
4269		}
4270	}
4271
4272	msg->optimized = true;
4273
4274	return 0;
4275}
4276
4277/*
4278 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4279 * @spi: the device that will be used for the message
4280 * @msg: the message to optimize
4281 * Return: zero on success, else a negative error code
4282 */
4283static int spi_maybe_optimize_message(struct spi_device *spi,
4284				      struct spi_message *msg)
4285{
 
 
 
 
 
4286	if (msg->pre_optimized)
4287		return 0;
4288
4289	return __spi_optimize_message(spi, msg);
4290}
4291
4292/**
4293 * spi_optimize_message - do any one-time validation and setup for a SPI message
4294 * @spi: the device that will be used for the message
4295 * @msg: the message to optimize
4296 *
4297 * Peripheral drivers that reuse the same message repeatedly may call this to
4298 * perform as much message prep as possible once, rather than repeating it each
4299 * time a message transfer is performed to improve throughput and reduce CPU
4300 * usage.
4301 *
4302 * Once a message has been optimized, it cannot be modified with the exception
4303 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4304 * only the data in the memory it points to).
4305 *
4306 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4307 * to avoid leaking resources.
4308 *
4309 * Context: can sleep
4310 * Return: zero on success, else a negative error code
4311 */
4312int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4313{
4314	int ret;
4315
 
 
 
 
 
 
 
4316	ret = __spi_optimize_message(spi, msg);
4317	if (ret)
4318		return ret;
4319
4320	/*
4321	 * This flag indicates that the peripheral driver called spi_optimize_message()
4322	 * and therefore we shouldn't unoptimize message automatically when finalizing
4323	 * the message but rather wait until spi_unoptimize_message() is called
4324	 * by the peripheral driver.
4325	 */
4326	msg->pre_optimized = true;
4327
4328	return 0;
4329}
4330EXPORT_SYMBOL_GPL(spi_optimize_message);
4331
4332/**
4333 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4334 * @msg: the message to unoptimize
4335 *
4336 * Calls to this function must be balanced with calls to spi_optimize_message().
4337 *
4338 * Context: can sleep
4339 */
4340void spi_unoptimize_message(struct spi_message *msg)
4341{
 
 
 
4342	__spi_unoptimize_message(msg);
4343	msg->pre_optimized = false;
4344}
4345EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4346
4347static int __spi_async(struct spi_device *spi, struct spi_message *message)
4348{
4349	struct spi_controller *ctlr = spi->controller;
4350	struct spi_transfer *xfer;
4351
4352	/*
4353	 * Some controllers do not support doing regular SPI transfers. Return
4354	 * ENOTSUPP when this is the case.
4355	 */
4356	if (!ctlr->transfer)
4357		return -ENOTSUPP;
4358
4359	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4360	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4361
4362	trace_spi_message_submit(message);
4363
4364	if (!ctlr->ptp_sts_supported) {
4365		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4366			xfer->ptp_sts_word_pre = 0;
4367			ptp_read_system_prets(xfer->ptp_sts);
4368		}
4369	}
4370
4371	return ctlr->transfer(spi, message);
4372}
4373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4374/**
4375 * spi_async - asynchronous SPI transfer
4376 * @spi: device with which data will be exchanged
4377 * @message: describes the data transfers, including completion callback
4378 * Context: any (IRQs may be blocked, etc)
4379 *
4380 * This call may be used in_irq and other contexts which can't sleep,
4381 * as well as from task contexts which can sleep.
4382 *
4383 * The completion callback is invoked in a context which can't sleep.
4384 * Before that invocation, the value of message->status is undefined.
4385 * When the callback is issued, message->status holds either zero (to
4386 * indicate complete success) or a negative error code.  After that
4387 * callback returns, the driver which issued the transfer request may
4388 * deallocate the associated memory; it's no longer in use by any SPI
4389 * core or controller driver code.
4390 *
4391 * Note that although all messages to a spi_device are handled in
4392 * FIFO order, messages may go to different devices in other orders.
4393 * Some device might be higher priority, or have various "hard" access
4394 * time requirements, for example.
4395 *
4396 * On detection of any fault during the transfer, processing of
4397 * the entire message is aborted, and the device is deselected.
4398 * Until returning from the associated message completion callback,
4399 * no other spi_message queued to that device will be processed.
4400 * (This rule applies equally to all the synchronous transfer calls,
4401 * which are wrappers around this core asynchronous primitive.)
4402 *
4403 * Return: zero on success, else a negative error code.
4404 */
4405int spi_async(struct spi_device *spi, struct spi_message *message)
4406{
4407	struct spi_controller *ctlr = spi->controller;
4408	int ret;
4409	unsigned long flags;
4410
4411	ret = spi_maybe_optimize_message(spi, message);
4412	if (ret)
4413		return ret;
4414
4415	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4416
4417	if (ctlr->bus_lock_flag)
4418		ret = -EBUSY;
4419	else
4420		ret = __spi_async(spi, message);
4421
4422	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4423
4424	spi_maybe_unoptimize_message(message);
4425
4426	return ret;
4427}
4428EXPORT_SYMBOL_GPL(spi_async);
4429
4430static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4431{
4432	bool was_busy;
4433	int ret;
4434
4435	mutex_lock(&ctlr->io_mutex);
4436
4437	was_busy = ctlr->busy;
4438
4439	ctlr->cur_msg = msg;
4440	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4441	if (ret)
4442		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4443	ctlr->cur_msg = NULL;
4444	ctlr->fallback = false;
4445
4446	if (!was_busy) {
4447		kfree(ctlr->dummy_rx);
4448		ctlr->dummy_rx = NULL;
4449		kfree(ctlr->dummy_tx);
4450		ctlr->dummy_tx = NULL;
4451		if (ctlr->unprepare_transfer_hardware &&
4452		    ctlr->unprepare_transfer_hardware(ctlr))
4453			dev_err(&ctlr->dev,
4454				"failed to unprepare transfer hardware\n");
4455		spi_idle_runtime_pm(ctlr);
4456	}
4457
4458	mutex_unlock(&ctlr->io_mutex);
4459}
4460
4461/*-------------------------------------------------------------------------*/
4462
4463/*
4464 * Utility methods for SPI protocol drivers, layered on
4465 * top of the core.  Some other utility methods are defined as
4466 * inline functions.
4467 */
4468
4469static void spi_complete(void *arg)
4470{
4471	complete(arg);
4472}
4473
4474static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4475{
4476	DECLARE_COMPLETION_ONSTACK(done);
4477	unsigned long flags;
4478	int status;
4479	struct spi_controller *ctlr = spi->controller;
4480
4481	if (__spi_check_suspended(ctlr)) {
4482		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4483		return -ESHUTDOWN;
4484	}
4485
4486	status = spi_maybe_optimize_message(spi, message);
4487	if (status)
4488		return status;
4489
4490	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4491	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4492
4493	/*
4494	 * Checking queue_empty here only guarantees async/sync message
4495	 * ordering when coming from the same context. It does not need to
4496	 * guard against reentrancy from a different context. The io_mutex
4497	 * will catch those cases.
4498	 */
4499	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4500		message->actual_length = 0;
4501		message->status = -EINPROGRESS;
4502
4503		trace_spi_message_submit(message);
4504
4505		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4506		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4507
4508		__spi_transfer_message_noqueue(ctlr, message);
4509
4510		return message->status;
4511	}
4512
4513	/*
4514	 * There are messages in the async queue that could have originated
4515	 * from the same context, so we need to preserve ordering.
4516	 * Therefor we send the message to the async queue and wait until they
4517	 * are completed.
4518	 */
4519	message->complete = spi_complete;
4520	message->context = &done;
4521
4522	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4523	status = __spi_async(spi, message);
4524	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4525
4526	if (status == 0) {
4527		wait_for_completion(&done);
4528		status = message->status;
4529	}
4530	message->complete = NULL;
4531	message->context = NULL;
4532
4533	return status;
4534}
4535
4536/**
4537 * spi_sync - blocking/synchronous SPI data transfers
4538 * @spi: device with which data will be exchanged
4539 * @message: describes the data transfers
4540 * Context: can sleep
4541 *
4542 * This call may only be used from a context that may sleep.  The sleep
4543 * is non-interruptible, and has no timeout.  Low-overhead controller
4544 * drivers may DMA directly into and out of the message buffers.
4545 *
4546 * Note that the SPI device's chip select is active during the message,
4547 * and then is normally disabled between messages.  Drivers for some
4548 * frequently-used devices may want to minimize costs of selecting a chip,
4549 * by leaving it selected in anticipation that the next message will go
4550 * to the same chip.  (That may increase power usage.)
4551 *
4552 * Also, the caller is guaranteeing that the memory associated with the
4553 * message will not be freed before this call returns.
4554 *
4555 * Return: zero on success, else a negative error code.
4556 */
4557int spi_sync(struct spi_device *spi, struct spi_message *message)
4558{
4559	int ret;
4560
4561	mutex_lock(&spi->controller->bus_lock_mutex);
4562	ret = __spi_sync(spi, message);
4563	mutex_unlock(&spi->controller->bus_lock_mutex);
4564
4565	return ret;
4566}
4567EXPORT_SYMBOL_GPL(spi_sync);
4568
4569/**
4570 * spi_sync_locked - version of spi_sync with exclusive bus usage
4571 * @spi: device with which data will be exchanged
4572 * @message: describes the data transfers
4573 * Context: can sleep
4574 *
4575 * This call may only be used from a context that may sleep.  The sleep
4576 * is non-interruptible, and has no timeout.  Low-overhead controller
4577 * drivers may DMA directly into and out of the message buffers.
4578 *
4579 * This call should be used by drivers that require exclusive access to the
4580 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4581 * be released by a spi_bus_unlock call when the exclusive access is over.
4582 *
4583 * Return: zero on success, else a negative error code.
4584 */
4585int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4586{
4587	return __spi_sync(spi, message);
4588}
4589EXPORT_SYMBOL_GPL(spi_sync_locked);
4590
4591/**
4592 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4593 * @ctlr: SPI bus master that should be locked for exclusive bus access
4594 * Context: can sleep
4595 *
4596 * This call may only be used from a context that may sleep.  The sleep
4597 * is non-interruptible, and has no timeout.
4598 *
4599 * This call should be used by drivers that require exclusive access to the
4600 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4601 * exclusive access is over. Data transfer must be done by spi_sync_locked
4602 * and spi_async_locked calls when the SPI bus lock is held.
4603 *
4604 * Return: always zero.
4605 */
4606int spi_bus_lock(struct spi_controller *ctlr)
4607{
4608	unsigned long flags;
4609
4610	mutex_lock(&ctlr->bus_lock_mutex);
4611
4612	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4613	ctlr->bus_lock_flag = 1;
4614	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4615
4616	/* Mutex remains locked until spi_bus_unlock() is called */
4617
4618	return 0;
4619}
4620EXPORT_SYMBOL_GPL(spi_bus_lock);
4621
4622/**
4623 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4624 * @ctlr: SPI bus master that was locked for exclusive bus access
4625 * Context: can sleep
4626 *
4627 * This call may only be used from a context that may sleep.  The sleep
4628 * is non-interruptible, and has no timeout.
4629 *
4630 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4631 * call.
4632 *
4633 * Return: always zero.
4634 */
4635int spi_bus_unlock(struct spi_controller *ctlr)
4636{
4637	ctlr->bus_lock_flag = 0;
4638
4639	mutex_unlock(&ctlr->bus_lock_mutex);
4640
4641	return 0;
4642}
4643EXPORT_SYMBOL_GPL(spi_bus_unlock);
4644
4645/* Portable code must never pass more than 32 bytes */
4646#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4647
4648static u8	*buf;
4649
4650/**
4651 * spi_write_then_read - SPI synchronous write followed by read
4652 * @spi: device with which data will be exchanged
4653 * @txbuf: data to be written (need not be DMA-safe)
4654 * @n_tx: size of txbuf, in bytes
4655 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4656 * @n_rx: size of rxbuf, in bytes
4657 * Context: can sleep
4658 *
4659 * This performs a half duplex MicroWire style transaction with the
4660 * device, sending txbuf and then reading rxbuf.  The return value
4661 * is zero for success, else a negative errno status code.
4662 * This call may only be used from a context that may sleep.
4663 *
4664 * Parameters to this routine are always copied using a small buffer.
4665 * Performance-sensitive or bulk transfer code should instead use
4666 * spi_{async,sync}() calls with DMA-safe buffers.
4667 *
4668 * Return: zero on success, else a negative error code.
4669 */
4670int spi_write_then_read(struct spi_device *spi,
4671		const void *txbuf, unsigned n_tx,
4672		void *rxbuf, unsigned n_rx)
4673{
4674	static DEFINE_MUTEX(lock);
4675
4676	int			status;
4677	struct spi_message	message;
4678	struct spi_transfer	x[2];
4679	u8			*local_buf;
4680
4681	/*
4682	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4683	 * copying here, (as a pure convenience thing), but we can
4684	 * keep heap costs out of the hot path unless someone else is
4685	 * using the pre-allocated buffer or the transfer is too large.
4686	 */
4687	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4688		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4689				    GFP_KERNEL | GFP_DMA);
4690		if (!local_buf)
4691			return -ENOMEM;
4692	} else {
4693		local_buf = buf;
4694	}
4695
4696	spi_message_init(&message);
4697	memset(x, 0, sizeof(x));
4698	if (n_tx) {
4699		x[0].len = n_tx;
4700		spi_message_add_tail(&x[0], &message);
4701	}
4702	if (n_rx) {
4703		x[1].len = n_rx;
4704		spi_message_add_tail(&x[1], &message);
4705	}
4706
4707	memcpy(local_buf, txbuf, n_tx);
4708	x[0].tx_buf = local_buf;
4709	x[1].rx_buf = local_buf + n_tx;
4710
4711	/* Do the I/O */
4712	status = spi_sync(spi, &message);
4713	if (status == 0)
4714		memcpy(rxbuf, x[1].rx_buf, n_rx);
4715
4716	if (x[0].tx_buf == buf)
4717		mutex_unlock(&lock);
4718	else
4719		kfree(local_buf);
4720
4721	return status;
4722}
4723EXPORT_SYMBOL_GPL(spi_write_then_read);
4724
4725/*-------------------------------------------------------------------------*/
4726
4727#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4728/* Must call put_device() when done with returned spi_device device */
4729static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4730{
4731	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4732
4733	return dev ? to_spi_device(dev) : NULL;
4734}
4735
4736/* The spi controllers are not using spi_bus, so we find it with another way */
4737static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4738{
4739	struct device *dev;
4740
4741	dev = class_find_device_by_of_node(&spi_master_class, node);
4742	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4743		dev = class_find_device_by_of_node(&spi_slave_class, node);
4744	if (!dev)
4745		return NULL;
4746
4747	/* Reference got in class_find_device */
4748	return container_of(dev, struct spi_controller, dev);
4749}
4750
4751static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4752			 void *arg)
4753{
4754	struct of_reconfig_data *rd = arg;
4755	struct spi_controller *ctlr;
4756	struct spi_device *spi;
4757
4758	switch (of_reconfig_get_state_change(action, arg)) {
4759	case OF_RECONFIG_CHANGE_ADD:
4760		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4761		if (ctlr == NULL)
4762			return NOTIFY_OK;	/* Not for us */
4763
4764		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4765			put_device(&ctlr->dev);
4766			return NOTIFY_OK;
4767		}
4768
4769		/*
4770		 * Clear the flag before adding the device so that fw_devlink
4771		 * doesn't skip adding consumers to this device.
4772		 */
4773		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4774		spi = of_register_spi_device(ctlr, rd->dn);
4775		put_device(&ctlr->dev);
4776
4777		if (IS_ERR(spi)) {
4778			pr_err("%s: failed to create for '%pOF'\n",
4779					__func__, rd->dn);
4780			of_node_clear_flag(rd->dn, OF_POPULATED);
4781			return notifier_from_errno(PTR_ERR(spi));
4782		}
4783		break;
4784
4785	case OF_RECONFIG_CHANGE_REMOVE:
4786		/* Already depopulated? */
4787		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4788			return NOTIFY_OK;
4789
4790		/* Find our device by node */
4791		spi = of_find_spi_device_by_node(rd->dn);
4792		if (spi == NULL)
4793			return NOTIFY_OK;	/* No? not meant for us */
4794
4795		/* Unregister takes one ref away */
4796		spi_unregister_device(spi);
4797
4798		/* And put the reference of the find */
4799		put_device(&spi->dev);
4800		break;
4801	}
4802
4803	return NOTIFY_OK;
4804}
4805
4806static struct notifier_block spi_of_notifier = {
4807	.notifier_call = of_spi_notify,
4808};
4809#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4810extern struct notifier_block spi_of_notifier;
4811#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4812
4813#if IS_ENABLED(CONFIG_ACPI)
4814static int spi_acpi_controller_match(struct device *dev, const void *data)
4815{
4816	return ACPI_COMPANION(dev->parent) == data;
4817}
4818
4819struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4820{
4821	struct device *dev;
4822
4823	dev = class_find_device(&spi_master_class, NULL, adev,
4824				spi_acpi_controller_match);
4825	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4826		dev = class_find_device(&spi_slave_class, NULL, adev,
4827					spi_acpi_controller_match);
4828	if (!dev)
4829		return NULL;
4830
4831	return container_of(dev, struct spi_controller, dev);
4832}
4833EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4834
4835static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4836{
4837	struct device *dev;
4838
4839	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4840	return to_spi_device(dev);
4841}
4842
4843static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4844			   void *arg)
4845{
4846	struct acpi_device *adev = arg;
4847	struct spi_controller *ctlr;
4848	struct spi_device *spi;
4849
4850	switch (value) {
4851	case ACPI_RECONFIG_DEVICE_ADD:
4852		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4853		if (!ctlr)
4854			break;
4855
4856		acpi_register_spi_device(ctlr, adev);
4857		put_device(&ctlr->dev);
4858		break;
4859	case ACPI_RECONFIG_DEVICE_REMOVE:
4860		if (!acpi_device_enumerated(adev))
4861			break;
4862
4863		spi = acpi_spi_find_device_by_adev(adev);
4864		if (!spi)
4865			break;
4866
4867		spi_unregister_device(spi);
4868		put_device(&spi->dev);
4869		break;
4870	}
4871
4872	return NOTIFY_OK;
4873}
4874
4875static struct notifier_block spi_acpi_notifier = {
4876	.notifier_call = acpi_spi_notify,
4877};
4878#else
4879extern struct notifier_block spi_acpi_notifier;
4880#endif
4881
4882static int __init spi_init(void)
4883{
4884	int	status;
4885
4886	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4887	if (!buf) {
4888		status = -ENOMEM;
4889		goto err0;
4890	}
4891
4892	status = bus_register(&spi_bus_type);
4893	if (status < 0)
4894		goto err1;
4895
4896	status = class_register(&spi_master_class);
4897	if (status < 0)
4898		goto err2;
4899
4900	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4901		status = class_register(&spi_slave_class);
4902		if (status < 0)
4903			goto err3;
4904	}
4905
4906	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4907		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4908	if (IS_ENABLED(CONFIG_ACPI))
4909		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4910
4911	return 0;
4912
4913err3:
4914	class_unregister(&spi_master_class);
4915err2:
4916	bus_unregister(&spi_bus_type);
4917err1:
4918	kfree(buf);
4919	buf = NULL;
4920err0:
4921	return status;
4922}
4923
4924/*
4925 * A board_info is normally registered in arch_initcall(),
4926 * but even essential drivers wait till later.
4927 *
4928 * REVISIT only boardinfo really needs static linking. The rest (device and
4929 * driver registration) _could_ be dynamically linked (modular) ... Costs
4930 * include needing to have boardinfo data structures be much more public.
4931 */
4932postcore_initcall(spi_init);