Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
 
 
 
 
 
 
 
 
 
 
 
   6
   7#include <linux/acpi.h>
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
 
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
  36#include <uapi/linux/sched/types.h>
 
 
 
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
 
 
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 
 
 
 
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_message *msg)
 316{
 
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if (spi_valid_txbuf(msg, xfer))
 332		u64_stats_add(&stats->bytes_tx, xfer->len);
 333	if (spi_valid_rxbuf(msg, xfer))
 334		u64_stats_add(&stats->bytes_rx, xfer->len);
 335
 336	u64_stats_update_end(&stats->syncp);
 337	put_cpu();
 338}
 
 339
 340/*
 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 342 * and the sysfs version makes coldplug work too.
 343 */
 344static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 345{
 346	while (id->name[0]) {
 347		if (!strcmp(name, id->name))
 348			return id;
 349		id++;
 350	}
 351	return NULL;
 352}
 353
 354const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 355{
 356	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 357
 358	return spi_match_id(sdrv->id_table, sdev->modalias);
 359}
 360EXPORT_SYMBOL_GPL(spi_get_device_id);
 361
 362const void *spi_get_device_match_data(const struct spi_device *sdev)
 363{
 364	const void *match;
 365
 366	match = device_get_match_data(&sdev->dev);
 367	if (match)
 368		return match;
 369
 370	return (const void *)spi_get_device_id(sdev)->driver_data;
 371}
 372EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 373
 374static int spi_match_device(struct device *dev, const struct device_driver *drv)
 375{
 376	const struct spi_device	*spi = to_spi_device(dev);
 377	const struct spi_driver	*sdrv = to_spi_driver(drv);
 378
 379	/* Check override first, and if set, only use the named driver */
 380	if (spi->driver_override)
 381		return strcmp(spi->driver_override, drv->name) == 0;
 382
 383	/* Attempt an OF style match */
 384	if (of_driver_match_device(dev, drv))
 385		return 1;
 386
 387	/* Then try ACPI */
 388	if (acpi_driver_match_device(dev, drv))
 389		return 1;
 390
 391	if (sdrv->id_table)
 392		return !!spi_match_id(sdrv->id_table, spi->modalias);
 393
 394	return strcmp(spi->modalias, drv->name) == 0;
 395}
 396
 397static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 398{
 399	const struct spi_device		*spi = to_spi_device(dev);
 400	int rc;
 401
 402	rc = acpi_device_uevent_modalias(dev, env);
 403	if (rc != -ENODEV)
 404		return rc;
 405
 406	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 
 407}
 408
 409static int spi_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 410{
 411	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 412	struct spi_device		*spi = to_spi_device(dev);
 413	int ret;
 414
 415	ret = of_clk_set_defaults(dev->of_node, false);
 416	if (ret)
 417		return ret;
 418
 419	if (dev->of_node) {
 420		spi->irq = of_irq_get(dev->of_node, 0);
 421		if (spi->irq == -EPROBE_DEFER)
 422			return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n");
 423		if (spi->irq < 0)
 424			spi->irq = 0;
 425	}
 426
 427	if (has_acpi_companion(dev) && spi->irq < 0) {
 428		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
 429
 430		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
 431		if (spi->irq == -EPROBE_DEFER)
 432			return -EPROBE_DEFER;
 433		if (spi->irq < 0)
 434			spi->irq = 0;
 435	}
 436
 437	ret = dev_pm_domain_attach(dev, true);
 438	if (ret)
 439		return ret;
 440
 441	if (sdrv->probe) {
 442		ret = sdrv->probe(spi);
 443		if (ret)
 444			dev_pm_domain_detach(dev, true);
 445	}
 446
 447	return ret;
 448}
 449
 450static void spi_remove(struct device *dev)
 451{
 452	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 453
 454	if (sdrv->remove)
 455		sdrv->remove(to_spi_device(dev));
 456
 457	dev_pm_domain_detach(dev, true);
 
 
 458}
 459
 460static void spi_shutdown(struct device *dev)
 461{
 462	if (dev->driver) {
 463		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 464
 465		if (sdrv->shutdown)
 466			sdrv->shutdown(to_spi_device(dev));
 467	}
 468}
 469
 470const struct bus_type spi_bus_type = {
 471	.name		= "spi",
 472	.dev_groups	= spi_dev_groups,
 473	.match		= spi_match_device,
 474	.uevent		= spi_uevent,
 475	.probe		= spi_probe,
 476	.remove		= spi_remove,
 477	.shutdown	= spi_shutdown,
 478};
 479EXPORT_SYMBOL_GPL(spi_bus_type);
 480
 481/**
 482 * __spi_register_driver - register a SPI driver
 483 * @owner: owner module of the driver to register
 484 * @sdrv: the driver to register
 485 * Context: can sleep
 486 *
 487 * Return: zero on success, else a negative error code.
 488 */
 489int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 490{
 491	sdrv->driver.owner = owner;
 492	sdrv->driver.bus = &spi_bus_type;
 493
 494	/*
 495	 * For Really Good Reasons we use spi: modaliases not of:
 496	 * modaliases for DT so module autoloading won't work if we
 497	 * don't have a spi_device_id as well as a compatible string.
 498	 */
 499	if (sdrv->driver.of_match_table) {
 500		const struct of_device_id *of_id;
 501
 502		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 503		     of_id++) {
 504			const char *of_name;
 505
 506			/* Strip off any vendor prefix */
 507			of_name = strnchr(of_id->compatible,
 508					  sizeof(of_id->compatible), ',');
 509			if (of_name)
 510				of_name++;
 511			else
 512				of_name = of_id->compatible;
 513
 514			if (sdrv->id_table) {
 515				const struct spi_device_id *spi_id;
 516
 517				spi_id = spi_match_id(sdrv->id_table, of_name);
 518				if (spi_id)
 519					continue;
 520			} else {
 521				if (strcmp(sdrv->driver.name, of_name) == 0)
 522					continue;
 523			}
 524
 525			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 526				sdrv->driver.name, of_id->compatible);
 527		}
 528	}
 529
 530	return driver_register(&sdrv->driver);
 531}
 532EXPORT_SYMBOL_GPL(__spi_register_driver);
 533
 534/*-------------------------------------------------------------------------*/
 535
 536/*
 537 * SPI devices should normally not be created by SPI device drivers; that
 538 * would make them board-specific.  Similarly with SPI controller drivers.
 539 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 540 * with other readonly (flashable) information about mainboard devices.
 541 */
 542
 543struct boardinfo {
 544	struct list_head	list;
 545	struct spi_board_info	board_info;
 546};
 547
 548static LIST_HEAD(board_list);
 549static LIST_HEAD(spi_controller_list);
 550
 551/*
 552 * Used to protect add/del operation for board_info list and
 553 * spi_controller list, and their matching process also used
 554 * to protect object of type struct idr.
 555 */
 556static DEFINE_MUTEX(board_lock);
 557
 558/**
 559 * spi_alloc_device - Allocate a new SPI device
 560 * @ctlr: Controller to which device is connected
 561 * Context: can sleep
 562 *
 563 * Allows a driver to allocate and initialize a spi_device without
 564 * registering it immediately.  This allows a driver to directly
 565 * fill the spi_device with device parameters before calling
 566 * spi_add_device() on it.
 567 *
 568 * Caller is responsible to call spi_add_device() on the returned
 569 * spi_device structure to add it to the SPI controller.  If the caller
 570 * needs to discard the spi_device without adding it, then it should
 571 * call spi_dev_put() on it.
 572 *
 573 * Return: a pointer to the new device, or NULL.
 574 */
 575struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 576{
 577	struct spi_device	*spi;
 578
 579	if (!spi_controller_get(ctlr))
 580		return NULL;
 581
 582	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 583	if (!spi) {
 584		spi_controller_put(ctlr);
 585		return NULL;
 586	}
 587
 588	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 589	if (!spi->pcpu_statistics) {
 590		kfree(spi);
 591		spi_controller_put(ctlr);
 592		return NULL;
 593	}
 594
 595	spi->controller = ctlr;
 596	spi->dev.parent = &ctlr->dev;
 597	spi->dev.bus = &spi_bus_type;
 598	spi->dev.release = spidev_release;
 599	spi->mode = ctlr->buswidth_override_bits;
 
 
 600
 601	device_initialize(&spi->dev);
 602	return spi;
 603}
 604EXPORT_SYMBOL_GPL(spi_alloc_device);
 605
 606static void spi_dev_set_name(struct spi_device *spi)
 607{
 608	struct device *dev = &spi->dev;
 609	struct fwnode_handle *fwnode = dev_fwnode(dev);
 610
 611	if (is_acpi_device_node(fwnode)) {
 612		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
 613		return;
 614	}
 615
 616	if (is_software_node(fwnode)) {
 617		dev_set_name(dev, "spi-%pfwP", fwnode);
 618		return;
 619	}
 620
 621	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 622		     spi_get_chipselect(spi, 0));
 623}
 624
 625/*
 626 * Zero(0) is a valid physical CS value and can be located at any
 627 * logical CS in the spi->chip_select[]. If all the physical CS
 628 * are initialized to 0 then It would be difficult to differentiate
 629 * between a valid physical CS 0 & an unused logical CS whose physical
 630 * CS can be 0. As a solution to this issue initialize all the CS to -1.
 631 * Now all the unused logical CS will have -1 physical CS value & can be
 632 * ignored while performing physical CS validity checks.
 633 */
 634#define SPI_INVALID_CS		((s8)-1)
 635
 636static inline bool is_valid_cs(s8 chip_select)
 637{
 638	return chip_select != SPI_INVALID_CS;
 639}
 640
 641static inline int spi_dev_check_cs(struct device *dev,
 642				   struct spi_device *spi, u8 idx,
 643				   struct spi_device *new_spi, u8 new_idx)
 644{
 645	u8 cs, cs_new;
 646	u8 idx_new;
 647
 648	cs = spi_get_chipselect(spi, idx);
 649	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
 650		cs_new = spi_get_chipselect(new_spi, idx_new);
 651		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
 652			dev_err(dev, "chipselect %u already in use\n", cs_new);
 653			return -EBUSY;
 654		}
 655	}
 656	return 0;
 657}
 658
 659static int spi_dev_check(struct device *dev, void *data)
 660{
 661	struct spi_device *spi = to_spi_device(dev);
 662	struct spi_device *new_spi = data;
 663	int status, idx;
 664
 665	if (spi->controller == new_spi->controller) {
 666		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 667			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
 668			if (status)
 669				return status;
 670		}
 671	}
 672	return 0;
 673}
 674
 675static void spi_cleanup(struct spi_device *spi)
 676{
 677	if (spi->controller->cleanup)
 678		spi->controller->cleanup(spi);
 679}
 680
 681static int __spi_add_device(struct spi_device *spi)
 
 
 
 682{
 683	struct spi_controller *ctlr = spi->controller;
 684	struct device *dev = ctlr->dev.parent;
 685	int status, idx;
 686	u8 cs;
 687
 688	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 689		/* Chipselects are numbered 0..max; validate. */
 690		cs = spi_get_chipselect(spi, idx);
 691		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
 692			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 693				ctlr->num_chipselect);
 694			return -EINVAL;
 695		}
 696	}
 697
 698	/*
 699	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 700	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 701	 */
 702	if (!spi_controller_is_target(ctlr)) {
 703		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 704			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
 705			if (status)
 706				return status;
 707		}
 708	}
 709
 710	/* Set the bus ID string */
 711	spi_dev_set_name(spi);
 712
 713	/*
 714	 * We need to make sure there's no other device with this
 715	 * chipselect **BEFORE** we call setup(), else we'll trash
 716	 * its configuration.
 717	 */
 718	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 719	if (status)
 720		return status;
 721
 722	/* Controller may unregister concurrently */
 723	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 724	    !device_is_registered(&ctlr->dev)) {
 725		return -ENODEV;
 
 726	}
 727
 728	if (ctlr->cs_gpiods) {
 729		u8 cs;
 730
 731		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 732			cs = spi_get_chipselect(spi, idx);
 733			if (is_valid_cs(cs))
 734				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 735		}
 736	}
 737
 738	/*
 739	 * Drivers may modify this initial i/o setup, but will
 740	 * normally rely on the device being setup.  Devices
 741	 * using SPI_CS_HIGH can't coexist well otherwise...
 742	 */
 743	status = spi_setup(spi);
 744	if (status < 0) {
 745		dev_err(dev, "can't setup %s, status %d\n",
 746				dev_name(&spi->dev), status);
 747		return status;
 748	}
 749
 750	/* Device may be bound to an active driver when this returns */
 751	status = device_add(&spi->dev);
 752	if (status < 0) {
 753		dev_err(dev, "can't add %s, status %d\n",
 754				dev_name(&spi->dev), status);
 755		spi_cleanup(spi);
 756	} else {
 757		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 758	}
 759
 760	return status;
 761}
 762
 763/**
 764 * spi_add_device - Add spi_device allocated with spi_alloc_device
 765 * @spi: spi_device to register
 766 *
 767 * Companion function to spi_alloc_device.  Devices allocated with
 768 * spi_alloc_device can be added onto the SPI bus with this function.
 769 *
 770 * Return: 0 on success; negative errno on failure
 771 */
 772int spi_add_device(struct spi_device *spi)
 773{
 774	struct spi_controller *ctlr = spi->controller;
 775	int status;
 776
 777	/* Set the bus ID string */
 778	spi_dev_set_name(spi);
 779
 780	mutex_lock(&ctlr->add_lock);
 781	status = __spi_add_device(spi);
 782	mutex_unlock(&ctlr->add_lock);
 783	return status;
 784}
 785EXPORT_SYMBOL_GPL(spi_add_device);
 786
 787static void spi_set_all_cs_unused(struct spi_device *spi)
 788{
 789	u8 idx;
 790
 791	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 792		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
 793}
 794
 795/**
 796 * spi_new_device - instantiate one new SPI device
 797 * @ctlr: Controller to which device is connected
 798 * @chip: Describes the SPI device
 799 * Context: can sleep
 800 *
 801 * On typical mainboards, this is purely internal; and it's not needed
 802 * after board init creates the hard-wired devices.  Some development
 803 * platforms may not be able to use spi_register_board_info though, and
 804 * this is exported so that for example a USB or parport based adapter
 805 * driver could add devices (which it would learn about out-of-band).
 806 *
 807 * Return: the new device, or NULL.
 808 */
 809struct spi_device *spi_new_device(struct spi_controller *ctlr,
 810				  struct spi_board_info *chip)
 811{
 812	struct spi_device	*proxy;
 813	int			status;
 814
 815	/*
 816	 * NOTE:  caller did any chip->bus_num checks necessary.
 817	 *
 818	 * Also, unless we change the return value convention to use
 819	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 820	 * suggests syslogged diagnostics are best here (ugh).
 821	 */
 822
 823	proxy = spi_alloc_device(ctlr);
 824	if (!proxy)
 825		return NULL;
 826
 827	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 828
 829	/* Use provided chip-select for proxy device */
 830	spi_set_all_cs_unused(proxy);
 831	spi_set_chipselect(proxy, 0, chip->chip_select);
 832
 833	proxy->max_speed_hz = chip->max_speed_hz;
 834	proxy->mode = chip->mode;
 835	proxy->irq = chip->irq;
 836	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 837	proxy->dev.platform_data = (void *) chip->platform_data;
 838	proxy->controller_data = chip->controller_data;
 839	proxy->controller_state = NULL;
 840	/*
 841	 * By default spi->chip_select[0] will hold the physical CS number,
 842	 * so set bit 0 in spi->cs_index_mask.
 843	 */
 844	proxy->cs_index_mask = BIT(0);
 845
 846	if (chip->swnode) {
 847		status = device_add_software_node(&proxy->dev, chip->swnode);
 848		if (status) {
 849			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 850				chip->modalias, status);
 851			goto err_dev_put;
 852		}
 853	}
 854
 855	status = spi_add_device(proxy);
 856	if (status < 0)
 857		goto err_dev_put;
 
 
 858
 859	return proxy;
 860
 861err_dev_put:
 862	device_remove_software_node(&proxy->dev);
 863	spi_dev_put(proxy);
 864	return NULL;
 865}
 866EXPORT_SYMBOL_GPL(spi_new_device);
 867
 868/**
 869 * spi_unregister_device - unregister a single SPI device
 870 * @spi: spi_device to unregister
 871 *
 872 * Start making the passed SPI device vanish. Normally this would be handled
 873 * by spi_unregister_controller().
 874 */
 875void spi_unregister_device(struct spi_device *spi)
 876{
 877	if (!spi)
 878		return;
 879
 880	if (spi->dev.of_node) {
 881		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 882		of_node_put(spi->dev.of_node);
 883	}
 884	if (ACPI_COMPANION(&spi->dev))
 885		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 886	device_remove_software_node(&spi->dev);
 887	device_del(&spi->dev);
 888	spi_cleanup(spi);
 889	put_device(&spi->dev);
 890}
 891EXPORT_SYMBOL_GPL(spi_unregister_device);
 892
 893static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 894					      struct spi_board_info *bi)
 895{
 896	struct spi_device *dev;
 897
 898	if (ctlr->bus_num != bi->bus_num)
 899		return;
 900
 901	dev = spi_new_device(ctlr, bi);
 902	if (!dev)
 903		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 904			bi->modalias);
 905}
 906
 907/**
 908 * spi_register_board_info - register SPI devices for a given board
 909 * @info: array of chip descriptors
 910 * @n: how many descriptors are provided
 911 * Context: can sleep
 912 *
 913 * Board-specific early init code calls this (probably during arch_initcall)
 914 * with segments of the SPI device table.  Any device nodes are created later,
 915 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 916 * this table of devices forever, so that reloading a controller driver will
 917 * not make Linux forget about these hard-wired devices.
 918 *
 919 * Other code can also call this, e.g. a particular add-on board might provide
 920 * SPI devices through its expansion connector, so code initializing that board
 921 * would naturally declare its SPI devices.
 922 *
 923 * The board info passed can safely be __initdata ... but be careful of
 924 * any embedded pointers (platform_data, etc), they're copied as-is.
 925 *
 926 * Return: zero on success, else a negative error code.
 927 */
 928int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 929{
 930	struct boardinfo *bi;
 931	int i;
 932
 933	if (!n)
 934		return 0;
 935
 936	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 937	if (!bi)
 938		return -ENOMEM;
 939
 940	for (i = 0; i < n; i++, bi++, info++) {
 941		struct spi_controller *ctlr;
 942
 943		memcpy(&bi->board_info, info, sizeof(*info));
 944
 945		mutex_lock(&board_lock);
 946		list_add_tail(&bi->list, &board_list);
 947		list_for_each_entry(ctlr, &spi_controller_list, list)
 948			spi_match_controller_to_boardinfo(ctlr,
 949							  &bi->board_info);
 950		mutex_unlock(&board_lock);
 951	}
 952
 953	return 0;
 954}
 955
 956/*-------------------------------------------------------------------------*/
 957
 958/* Core methods for SPI resource management */
 959
 960/**
 961 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 962 *                 during the processing of a spi_message while using
 963 *                 spi_transfer_one
 964 * @spi:     the SPI device for which we allocate memory
 965 * @release: the release code to execute for this resource
 966 * @size:    size to alloc and return
 967 * @gfp:     GFP allocation flags
 968 *
 969 * Return: the pointer to the allocated data
 970 *
 971 * This may get enhanced in the future to allocate from a memory pool
 972 * of the @spi_device or @spi_controller to avoid repeated allocations.
 973 */
 974static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 975			   size_t size, gfp_t gfp)
 976{
 977	struct spi_res *sres;
 978
 979	sres = kzalloc(sizeof(*sres) + size, gfp);
 980	if (!sres)
 981		return NULL;
 982
 983	INIT_LIST_HEAD(&sres->entry);
 984	sres->release = release;
 985
 986	return sres->data;
 987}
 988
 989/**
 990 * spi_res_free - free an SPI resource
 991 * @res: pointer to the custom data of a resource
 992 */
 993static void spi_res_free(void *res)
 994{
 995	struct spi_res *sres = container_of(res, struct spi_res, data);
 996
 997	WARN_ON(!list_empty(&sres->entry));
 998	kfree(sres);
 999}
1000
1001/**
1002 * spi_res_add - add a spi_res to the spi_message
1003 * @message: the SPI message
1004 * @res:     the spi_resource
1005 */
1006static void spi_res_add(struct spi_message *message, void *res)
1007{
1008	struct spi_res *sres = container_of(res, struct spi_res, data);
1009
1010	WARN_ON(!list_empty(&sres->entry));
1011	list_add_tail(&sres->entry, &message->resources);
1012}
1013
1014/**
1015 * spi_res_release - release all SPI resources for this message
1016 * @ctlr:  the @spi_controller
1017 * @message: the @spi_message
1018 */
1019static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1020{
1021	struct spi_res *res, *tmp;
1022
1023	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1024		if (res->release)
1025			res->release(ctlr, message, res->data);
1026
1027		list_del(&res->entry);
1028
1029		kfree(res);
1030	}
1031}
1032
1033/*-------------------------------------------------------------------------*/
1034#define spi_for_each_valid_cs(spi, idx)				\
1035	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1036		if (!(spi->cs_index_mask & BIT(idx))) {} else
1037
1038static inline bool spi_is_last_cs(struct spi_device *spi)
1039{
1040	u8 idx;
1041	bool last = false;
1042
1043	spi_for_each_valid_cs(spi, idx) {
1044		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1045			last = true;
1046	}
1047	return last;
1048}
1049
1050static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1051{
1052	/*
1053	 * Historically ACPI has no means of the GPIO polarity and
1054	 * thus the SPISerialBus() resource defines it on the per-chip
1055	 * basis. In order to avoid a chain of negations, the GPIO
1056	 * polarity is considered being Active High. Even for the cases
1057	 * when _DSD() is involved (in the updated versions of ACPI)
1058	 * the GPIO CS polarity must be defined Active High to avoid
1059	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1060	 * into account.
1061	 */
1062	if (has_acpi_companion(&spi->dev))
1063		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1064	else
1065		/* Polarity handled by GPIO library */
1066		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1067
1068	if (activate)
1069		spi_delay_exec(&spi->cs_setup, NULL);
1070	else
1071		spi_delay_exec(&spi->cs_inactive, NULL);
1072}
1073
1074static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1075{
1076	bool activate = enable;
1077	u8 idx;
1078
1079	/*
1080	 * Avoid calling into the driver (or doing delays) if the chip select
1081	 * isn't actually changing from the last time this was called.
1082	 */
1083	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1084			spi_is_last_cs(spi)) ||
1085		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1086			!spi_is_last_cs(spi))) &&
1087	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1088		return;
1089
1090	trace_spi_set_cs(spi, activate);
1091
1092	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1093	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1094		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1095	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1096
1097	if (spi->mode & SPI_CS_HIGH)
1098		enable = !enable;
1099
1100	/*
1101	 * Handle chip select delays for GPIO based CS or controllers without
1102	 * programmable chip select timing.
1103	 */
1104	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1105		spi_delay_exec(&spi->cs_hold, NULL);
1106
1107	if (spi_is_csgpiod(spi)) {
1108		if (!(spi->mode & SPI_NO_CS)) {
1109			spi_for_each_valid_cs(spi, idx) {
1110				if (spi_get_csgpiod(spi, idx))
1111					spi_toggle_csgpiod(spi, idx, enable, activate);
1112			}
1113		}
1114		/* Some SPI masters need both GPIO CS & slave_select */
1115		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1116		    spi->controller->set_cs)
1117			spi->controller->set_cs(spi, !enable);
1118	} else if (spi->controller->set_cs) {
1119		spi->controller->set_cs(spi, !enable);
1120	}
1121
1122	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1123		if (activate)
1124			spi_delay_exec(&spi->cs_setup, NULL);
1125		else
1126			spi_delay_exec(&spi->cs_inactive, NULL);
1127	}
1128}
1129
1130#ifdef CONFIG_HAS_DMA
1131static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1132			     struct sg_table *sgt, void *buf, size_t len,
1133			     enum dma_data_direction dir, unsigned long attrs)
1134{
1135	const bool vmalloced_buf = is_vmalloc_addr(buf);
1136	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1137#ifdef CONFIG_HIGHMEM
1138	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1139				(unsigned long)buf < (PKMAP_BASE +
1140					(LAST_PKMAP * PAGE_SIZE)));
1141#else
1142	const bool kmap_buf = false;
1143#endif
1144	int desc_len;
1145	int sgs;
1146	struct page *vm_page;
1147	struct scatterlist *sg;
1148	void *sg_buf;
1149	size_t min;
1150	int i, ret;
1151
1152	if (vmalloced_buf || kmap_buf) {
1153		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1154		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1155	} else if (virt_addr_valid(buf)) {
1156		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1157		sgs = DIV_ROUND_UP(len, desc_len);
1158	} else {
1159		return -EINVAL;
 
1160	}
1161
1162	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1163	if (ret != 0)
1164		return ret;
1165
1166	sg = &sgt->sgl[0];
1167	for (i = 0; i < sgs; i++) {
1168
1169		if (vmalloced_buf || kmap_buf) {
1170			/*
1171			 * Next scatterlist entry size is the minimum between
1172			 * the desc_len and the remaining buffer length that
1173			 * fits in a page.
1174			 */
1175			min = min_t(size_t, desc_len,
1176				    min_t(size_t, len,
1177					  PAGE_SIZE - offset_in_page(buf)));
1178			if (vmalloced_buf)
1179				vm_page = vmalloc_to_page(buf);
1180			else
1181				vm_page = kmap_to_page(buf);
1182			if (!vm_page) {
1183				sg_free_table(sgt);
1184				return -ENOMEM;
1185			}
1186			sg_set_page(sg, vm_page,
1187				    min, offset_in_page(buf));
1188		} else {
1189			min = min_t(size_t, len, desc_len);
1190			sg_buf = buf;
1191			sg_set_buf(sg, sg_buf, min);
1192		}
1193
1194		buf += min;
1195		len -= min;
1196		sg = sg_next(sg);
1197	}
1198
1199	ret = dma_map_sgtable(dev, sgt, dir, attrs);
 
 
1200	if (ret < 0) {
1201		sg_free_table(sgt);
1202		return ret;
1203	}
1204
1205	return 0;
1206}
1207
1208int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1209		struct sg_table *sgt, void *buf, size_t len,
1210		enum dma_data_direction dir)
1211{
1212	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1213}
1214
1215static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1216				struct device *dev, struct sg_table *sgt,
1217				enum dma_data_direction dir,
1218				unsigned long attrs)
1219{
1220	dma_unmap_sgtable(dev, sgt, dir, attrs);
1221	sg_free_table(sgt);
1222	sgt->orig_nents = 0;
1223	sgt->nents = 0;
1224}
1225
1226void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1227		   struct sg_table *sgt, enum dma_data_direction dir)
1228{
1229	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
 
 
 
1230}
1231
1232static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1233{
1234	struct device *tx_dev, *rx_dev;
1235	struct spi_transfer *xfer;
1236	int ret;
1237
1238	if (!ctlr->can_dma)
1239		return 0;
1240
1241	if (ctlr->dma_tx)
1242		tx_dev = ctlr->dma_tx->device->dev;
1243	else if (ctlr->dma_map_dev)
1244		tx_dev = ctlr->dma_map_dev;
1245	else
1246		tx_dev = ctlr->dev.parent;
1247
1248	if (ctlr->dma_rx)
1249		rx_dev = ctlr->dma_rx->device->dev;
1250	else if (ctlr->dma_map_dev)
1251		rx_dev = ctlr->dma_map_dev;
1252	else
1253		rx_dev = ctlr->dev.parent;
1254
1255	ret = -ENOMSG;
1256	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1257		/* The sync is done before each transfer. */
1258		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1259
1260		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1261			continue;
1262
1263		if (xfer->tx_buf != NULL) {
1264			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1265						(void *)xfer->tx_buf,
1266						xfer->len, DMA_TO_DEVICE,
1267						attrs);
1268			if (ret != 0)
1269				return ret;
1270
1271			xfer->tx_sg_mapped = true;
1272		}
1273
1274		if (xfer->rx_buf != NULL) {
1275			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1276						xfer->rx_buf, xfer->len,
1277						DMA_FROM_DEVICE, attrs);
1278			if (ret != 0) {
1279				spi_unmap_buf_attrs(ctlr, tx_dev,
1280						&xfer->tx_sg, DMA_TO_DEVICE,
1281						attrs);
1282
1283				return ret;
1284			}
1285
1286			xfer->rx_sg_mapped = true;
1287		}
1288	}
1289	/* No transfer has been mapped, bail out with success */
1290	if (ret)
1291		return 0;
1292
1293	ctlr->cur_rx_dma_dev = rx_dev;
1294	ctlr->cur_tx_dma_dev = tx_dev;
1295
1296	return 0;
1297}
1298
1299static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1300{
1301	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1302	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1303	struct spi_transfer *xfer;
 
1304
1305	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1306		/* The sync has already been done after each transfer. */
1307		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1308
1309		if (xfer->rx_sg_mapped)
1310			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1311					    DMA_FROM_DEVICE, attrs);
1312		xfer->rx_sg_mapped = false;
1313
1314		if (xfer->tx_sg_mapped)
1315			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1316					    DMA_TO_DEVICE, attrs);
1317		xfer->tx_sg_mapped = false;
1318	}
1319
1320	return 0;
1321}
 
 
1322
1323static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1324				    struct spi_transfer *xfer)
1325{
1326	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1327	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1328
1329	if (xfer->tx_sg_mapped)
1330		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1331	if (xfer->rx_sg_mapped)
1332		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333}
1334
1335static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1336				 struct spi_transfer *xfer)
1337{
1338	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1339	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1340
1341	if (xfer->rx_sg_mapped)
1342		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1343	if (xfer->tx_sg_mapped)
1344		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1345}
1346#else /* !CONFIG_HAS_DMA */
1347static inline int __spi_map_msg(struct spi_controller *ctlr,
1348				struct spi_message *msg)
1349{
1350	return 0;
1351}
1352
1353static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1354				  struct spi_message *msg)
1355{
1356	return 0;
1357}
1358
1359static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1360				    struct spi_transfer *xfer)
1361{
1362}
1363
1364static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1365				 struct spi_transfer *xfer)
1366{
1367}
1368#endif /* !CONFIG_HAS_DMA */
1369
1370static inline int spi_unmap_msg(struct spi_controller *ctlr,
1371				struct spi_message *msg)
1372{
1373	struct spi_transfer *xfer;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376		/*
1377		 * Restore the original value of tx_buf or rx_buf if they are
1378		 * NULL.
1379		 */
1380		if (xfer->tx_buf == ctlr->dummy_tx)
1381			xfer->tx_buf = NULL;
1382		if (xfer->rx_buf == ctlr->dummy_rx)
1383			xfer->rx_buf = NULL;
1384	}
1385
1386	return __spi_unmap_msg(ctlr, msg);
1387}
1388
1389static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1390{
1391	struct spi_transfer *xfer;
1392	void *tmp;
1393	unsigned int max_tx, max_rx;
1394
1395	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1396		&& !(msg->spi->mode & SPI_3WIRE)) {
1397		max_tx = 0;
1398		max_rx = 0;
1399
1400		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1401			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1402			    !xfer->tx_buf)
1403				max_tx = max(xfer->len, max_tx);
1404			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1405			    !xfer->rx_buf)
1406				max_rx = max(xfer->len, max_rx);
1407		}
1408
1409		if (max_tx) {
1410			tmp = krealloc(ctlr->dummy_tx, max_tx,
1411				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1412			if (!tmp)
1413				return -ENOMEM;
1414			ctlr->dummy_tx = tmp;
 
1415		}
1416
1417		if (max_rx) {
1418			tmp = krealloc(ctlr->dummy_rx, max_rx,
1419				       GFP_KERNEL | GFP_DMA);
1420			if (!tmp)
1421				return -ENOMEM;
1422			ctlr->dummy_rx = tmp;
1423		}
1424
1425		if (max_tx || max_rx) {
1426			list_for_each_entry(xfer, &msg->transfers,
1427					    transfer_list) {
1428				if (!xfer->len)
1429					continue;
1430				if (!xfer->tx_buf)
1431					xfer->tx_buf = ctlr->dummy_tx;
1432				if (!xfer->rx_buf)
1433					xfer->rx_buf = ctlr->dummy_rx;
1434			}
1435		}
1436	}
1437
1438	return __spi_map_msg(ctlr, msg);
1439}
1440
1441static int spi_transfer_wait(struct spi_controller *ctlr,
1442			     struct spi_message *msg,
1443			     struct spi_transfer *xfer)
1444{
1445	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1446	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1447	u32 speed_hz = xfer->speed_hz;
1448	unsigned long long ms;
1449
1450	if (spi_controller_is_target(ctlr)) {
1451		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1452			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1453			return -EINTR;
1454		}
1455	} else {
1456		if (!speed_hz)
1457			speed_hz = 100000;
1458
1459		/*
1460		 * For each byte we wait for 8 cycles of the SPI clock.
1461		 * Since speed is defined in Hz and we want milliseconds,
1462		 * use respective multiplier, but before the division,
1463		 * otherwise we may get 0 for short transfers.
1464		 */
1465		ms = 8LL * MSEC_PER_SEC * xfer->len;
1466		do_div(ms, speed_hz);
1467
1468		/*
1469		 * Increase it twice and add 200 ms tolerance, use
1470		 * predefined maximum in case of overflow.
1471		 */
1472		ms += ms + 200;
1473		if (ms > UINT_MAX)
1474			ms = UINT_MAX;
1475
1476		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1477						 msecs_to_jiffies(ms));
1478
1479		if (ms == 0) {
1480			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1481			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1482			dev_err(&msg->spi->dev,
1483				"SPI transfer timed out\n");
1484			return -ETIMEDOUT;
1485		}
1486
1487		if (xfer->error & SPI_TRANS_FAIL_IO)
1488			return -EIO;
1489	}
1490
1491	return 0;
1492}
1493
1494static void _spi_transfer_delay_ns(u32 ns)
1495{
1496	if (!ns)
1497		return;
1498	if (ns <= NSEC_PER_USEC) {
1499		ndelay(ns);
1500	} else {
1501		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1502
1503		if (us <= 10)
1504			udelay(us);
1505		else
1506			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1507	}
1508}
1509
1510int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1511{
1512	u32 delay = _delay->value;
1513	u32 unit = _delay->unit;
1514	u32 hz;
1515
1516	if (!delay)
1517		return 0;
1518
1519	switch (unit) {
1520	case SPI_DELAY_UNIT_USECS:
1521		delay *= NSEC_PER_USEC;
1522		break;
1523	case SPI_DELAY_UNIT_NSECS:
1524		/* Nothing to do here */
1525		break;
1526	case SPI_DELAY_UNIT_SCK:
1527		/* Clock cycles need to be obtained from spi_transfer */
1528		if (!xfer)
1529			return -EINVAL;
1530		/*
1531		 * If there is unknown effective speed, approximate it
1532		 * by underestimating with half of the requested Hz.
1533		 */
1534		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1535		if (!hz)
1536			return -EINVAL;
1537
1538		/* Convert delay to nanoseconds */
1539		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1540		break;
1541	default:
1542		return -EINVAL;
1543	}
1544
1545	return delay;
1546}
1547EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1548
1549int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1550{
1551	int delay;
1552
1553	might_sleep();
1554
1555	if (!_delay)
1556		return -EINVAL;
1557
1558	delay = spi_delay_to_ns(_delay, xfer);
1559	if (delay < 0)
1560		return delay;
1561
1562	_spi_transfer_delay_ns(delay);
1563
1564	return 0;
1565}
1566EXPORT_SYMBOL_GPL(spi_delay_exec);
1567
1568static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1569					  struct spi_transfer *xfer)
1570{
1571	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1572	u32 delay = xfer->cs_change_delay.value;
1573	u32 unit = xfer->cs_change_delay.unit;
1574	int ret;
1575
1576	/* Return early on "fast" mode - for everything but USECS */
1577	if (!delay) {
1578		if (unit == SPI_DELAY_UNIT_USECS)
1579			_spi_transfer_delay_ns(default_delay_ns);
1580		return;
1581	}
1582
1583	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1584	if (ret) {
1585		dev_err_once(&msg->spi->dev,
1586			     "Use of unsupported delay unit %i, using default of %luus\n",
1587			     unit, default_delay_ns / NSEC_PER_USEC);
1588		_spi_transfer_delay_ns(default_delay_ns);
1589	}
1590}
1591
1592void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1593						  struct spi_transfer *xfer)
1594{
1595	_spi_transfer_cs_change_delay(msg, xfer);
1596}
1597EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1598
1599/*
1600 * spi_transfer_one_message - Default implementation of transfer_one_message()
1601 *
1602 * This is a standard implementation of transfer_one_message() for
1603 * drivers which implement a transfer_one() operation.  It provides
1604 * standard handling of delays and chip select management.
1605 */
1606static int spi_transfer_one_message(struct spi_controller *ctlr,
1607				    struct spi_message *msg)
1608{
1609	struct spi_transfer *xfer;
1610	bool keep_cs = false;
1611	int ret = 0;
1612	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1613	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
 
1614
1615	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1616	spi_set_cs(msg->spi, !xfer->cs_off, false);
1617
1618	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1619	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1620
1621	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1622		trace_spi_transfer_start(msg, xfer);
1623
1624		spi_statistics_add_transfer_stats(statm, xfer, msg);
1625		spi_statistics_add_transfer_stats(stats, xfer, msg);
1626
1627		if (!ctlr->ptp_sts_supported) {
1628			xfer->ptp_sts_word_pre = 0;
1629			ptp_read_system_prets(xfer->ptp_sts);
1630		}
1631
1632		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1633			reinit_completion(&ctlr->xfer_completion);
1634
1635fallback_pio:
1636			spi_dma_sync_for_device(ctlr, xfer);
1637			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1638			if (ret < 0) {
1639				spi_dma_sync_for_cpu(ctlr, xfer);
1640
1641				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1642				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1643					__spi_unmap_msg(ctlr, msg);
1644					ctlr->fallback = true;
1645					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1646					goto fallback_pio;
1647				}
1648
1649				SPI_STATISTICS_INCREMENT_FIELD(statm,
1650							       errors);
1651				SPI_STATISTICS_INCREMENT_FIELD(stats,
1652							       errors);
1653				dev_err(&msg->spi->dev,
1654					"SPI transfer failed: %d\n", ret);
1655				goto out;
1656			}
1657
1658			if (ret > 0) {
1659				ret = spi_transfer_wait(ctlr, msg, xfer);
1660				if (ret < 0)
1661					msg->status = ret;
 
 
 
1662			}
1663
1664			spi_dma_sync_for_cpu(ctlr, xfer);
 
 
 
 
 
 
 
 
1665		} else {
1666			if (xfer->len)
1667				dev_err(&msg->spi->dev,
1668					"Bufferless transfer has length %u\n",
1669					xfer->len);
1670		}
1671
1672		if (!ctlr->ptp_sts_supported) {
1673			ptp_read_system_postts(xfer->ptp_sts);
1674			xfer->ptp_sts_word_post = xfer->len;
1675		}
1676
1677		trace_spi_transfer_stop(msg, xfer);
1678
1679		if (msg->status != -EINPROGRESS)
1680			goto out;
1681
1682		spi_transfer_delay_exec(xfer);
 
1683
1684		if (xfer->cs_change) {
1685			if (list_is_last(&xfer->transfer_list,
1686					 &msg->transfers)) {
1687				keep_cs = true;
1688			} else {
1689				if (!xfer->cs_off)
1690					spi_set_cs(msg->spi, false, false);
1691				_spi_transfer_cs_change_delay(msg, xfer);
1692				if (!list_next_entry(xfer, transfer_list)->cs_off)
1693					spi_set_cs(msg->spi, true, false);
1694			}
1695		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1696			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1697			spi_set_cs(msg->spi, xfer->cs_off, false);
1698		}
1699
1700		msg->actual_length += xfer->len;
1701	}
1702
1703out:
1704	if (ret != 0 || !keep_cs)
1705		spi_set_cs(msg->spi, false, false);
1706
1707	if (msg->status == -EINPROGRESS)
1708		msg->status = ret;
1709
1710	if (msg->status && ctlr->handle_err)
1711		ctlr->handle_err(ctlr, msg);
 
 
1712
1713	spi_finalize_current_message(ctlr);
1714
1715	return ret;
1716}
1717
1718/**
1719 * spi_finalize_current_transfer - report completion of a transfer
1720 * @ctlr: the controller reporting completion
1721 *
1722 * Called by SPI drivers using the core transfer_one_message()
1723 * implementation to notify it that the current interrupt driven
1724 * transfer has finished and the next one may be scheduled.
1725 */
1726void spi_finalize_current_transfer(struct spi_controller *ctlr)
1727{
1728	complete(&ctlr->xfer_completion);
1729}
1730EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1731
1732static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1733{
1734	if (ctlr->auto_runtime_pm) {
1735		pm_runtime_mark_last_busy(ctlr->dev.parent);
1736		pm_runtime_put_autosuspend(ctlr->dev.parent);
1737	}
1738}
1739
1740static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1741		struct spi_message *msg, bool was_busy)
1742{
1743	struct spi_transfer *xfer;
1744	int ret;
1745
1746	if (!was_busy && ctlr->auto_runtime_pm) {
1747		ret = pm_runtime_get_sync(ctlr->dev.parent);
1748		if (ret < 0) {
1749			pm_runtime_put_noidle(ctlr->dev.parent);
1750			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1751				ret);
1752
1753			msg->status = ret;
1754			spi_finalize_current_message(ctlr);
1755
1756			return ret;
1757		}
1758	}
1759
1760	if (!was_busy)
1761		trace_spi_controller_busy(ctlr);
1762
1763	if (!was_busy && ctlr->prepare_transfer_hardware) {
1764		ret = ctlr->prepare_transfer_hardware(ctlr);
1765		if (ret) {
1766			dev_err(&ctlr->dev,
1767				"failed to prepare transfer hardware: %d\n",
1768				ret);
1769
1770			if (ctlr->auto_runtime_pm)
1771				pm_runtime_put(ctlr->dev.parent);
1772
1773			msg->status = ret;
1774			spi_finalize_current_message(ctlr);
1775
1776			return ret;
1777		}
1778	}
1779
1780	trace_spi_message_start(msg);
1781
1782	if (ctlr->prepare_message) {
1783		ret = ctlr->prepare_message(ctlr, msg);
1784		if (ret) {
1785			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1786				ret);
1787			msg->status = ret;
1788			spi_finalize_current_message(ctlr);
1789			return ret;
1790		}
1791		msg->prepared = true;
1792	}
1793
1794	ret = spi_map_msg(ctlr, msg);
1795	if (ret) {
1796		msg->status = ret;
1797		spi_finalize_current_message(ctlr);
1798		return ret;
1799	}
1800
1801	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1802		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1803			xfer->ptp_sts_word_pre = 0;
1804			ptp_read_system_prets(xfer->ptp_sts);
1805		}
1806	}
1807
1808	/*
1809	 * Drivers implementation of transfer_one_message() must arrange for
1810	 * spi_finalize_current_message() to get called. Most drivers will do
1811	 * this in the calling context, but some don't. For those cases, a
1812	 * completion is used to guarantee that this function does not return
1813	 * until spi_finalize_current_message() is done accessing
1814	 * ctlr->cur_msg.
1815	 * Use of the following two flags enable to opportunistically skip the
1816	 * use of the completion since its use involves expensive spin locks.
1817	 * In case of a race with the context that calls
1818	 * spi_finalize_current_message() the completion will always be used,
1819	 * due to strict ordering of these flags using barriers.
1820	 */
1821	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1822	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1823	reinit_completion(&ctlr->cur_msg_completion);
1824	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1825
1826	ret = ctlr->transfer_one_message(ctlr, msg);
1827	if (ret) {
1828		dev_err(&ctlr->dev,
1829			"failed to transfer one message from queue\n");
1830		return ret;
1831	}
1832
1833	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1834	smp_mb(); /* See spi_finalize_current_message()... */
1835	if (READ_ONCE(ctlr->cur_msg_incomplete))
1836		wait_for_completion(&ctlr->cur_msg_completion);
1837
1838	return 0;
1839}
1840
1841/**
1842 * __spi_pump_messages - function which processes SPI message queue
1843 * @ctlr: controller to process queue for
1844 * @in_kthread: true if we are in the context of the message pump thread
 
1845 *
1846 * This function checks if there is any SPI message in the queue that
1847 * needs processing and if so call out to the driver to initialize hardware
1848 * and transfer each message.
1849 *
1850 * Note that it is called both from the kthread itself and also from
1851 * inside spi_sync(); the queue extraction handling at the top of the
1852 * function should deal with this safely.
1853 */
1854static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
 
1855{
1856	struct spi_message *msg;
1857	bool was_busy = false;
1858	unsigned long flags;
 
1859	int ret;
1860
1861	/* Take the I/O mutex */
1862	mutex_lock(&ctlr->io_mutex);
1863
1864	/* Lock queue */
1865	spin_lock_irqsave(&ctlr->queue_lock, flags);
1866
1867	/* Make sure we are not already running a message */
1868	if (ctlr->cur_msg)
1869		goto out_unlock;
 
 
1870
1871	/* Check if the queue is idle */
1872	if (list_empty(&ctlr->queue) || !ctlr->running) {
1873		if (!ctlr->busy)
1874			goto out_unlock;
 
 
1875
1876		/* Defer any non-atomic teardown to the thread */
1877		if (!in_kthread) {
1878			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1879			    !ctlr->unprepare_transfer_hardware) {
1880				spi_idle_runtime_pm(ctlr);
1881				ctlr->busy = false;
1882				ctlr->queue_empty = true;
1883				trace_spi_controller_idle(ctlr);
1884			} else {
1885				kthread_queue_work(ctlr->kworker,
1886						   &ctlr->pump_messages);
1887			}
1888			goto out_unlock;
1889		}
1890
1891		ctlr->busy = false;
1892		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893
1894		kfree(ctlr->dummy_rx);
1895		ctlr->dummy_rx = NULL;
1896		kfree(ctlr->dummy_tx);
1897		ctlr->dummy_tx = NULL;
1898		if (ctlr->unprepare_transfer_hardware &&
1899		    ctlr->unprepare_transfer_hardware(ctlr))
1900			dev_err(&ctlr->dev,
 
 
 
 
 
 
 
 
 
1901				"failed to unprepare transfer hardware\n");
1902		spi_idle_runtime_pm(ctlr);
1903		trace_spi_controller_idle(ctlr);
1904
1905		spin_lock_irqsave(&ctlr->queue_lock, flags);
1906		ctlr->queue_empty = true;
1907		goto out_unlock;
 
 
 
 
1908	}
1909
1910	/* Extract head of queue */
1911	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1912	ctlr->cur_msg = msg;
1913
1914	list_del_init(&msg->queue);
1915	if (ctlr->busy)
1916		was_busy = true;
1917	else
1918		ctlr->busy = true;
1919	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1920
1921	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1922	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1923
1924	ctlr->cur_msg = NULL;
1925	ctlr->fallback = false;
1926
1927	mutex_unlock(&ctlr->io_mutex);
1928
1929	/* Prod the scheduler in case transfer_one() was busy waiting */
1930	if (!ret)
1931		cond_resched();
1932	return;
1933
1934out_unlock:
1935	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1936	mutex_unlock(&ctlr->io_mutex);
1937}
1938
1939/**
1940 * spi_pump_messages - kthread work function which processes spi message queue
1941 * @work: pointer to kthread work struct contained in the controller struct
1942 */
1943static void spi_pump_messages(struct kthread_work *work)
1944{
1945	struct spi_controller *ctlr =
1946		container_of(work, struct spi_controller, pump_messages);
1947
1948	__spi_pump_messages(ctlr, true);
1949}
1950
1951/**
1952 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1953 * @ctlr: Pointer to the spi_controller structure of the driver
1954 * @xfer: Pointer to the transfer being timestamped
1955 * @progress: How many words (not bytes) have been transferred so far
1956 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1957 *	      transfer, for less jitter in time measurement. Only compatible
1958 *	      with PIO drivers. If true, must follow up with
1959 *	      spi_take_timestamp_post or otherwise system will crash.
1960 *	      WARNING: for fully predictable results, the CPU frequency must
1961 *	      also be under control (governor).
1962 *
1963 * This is a helper for drivers to collect the beginning of the TX timestamp
1964 * for the requested byte from the SPI transfer. The frequency with which this
1965 * function must be called (once per word, once for the whole transfer, once
1966 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1967 * greater than or equal to the requested byte at the time of the call. The
1968 * timestamp is only taken once, at the first such call. It is assumed that
1969 * the driver advances its @tx buffer pointer monotonically.
1970 */
1971void spi_take_timestamp_pre(struct spi_controller *ctlr,
1972			    struct spi_transfer *xfer,
1973			    size_t progress, bool irqs_off)
1974{
1975	if (!xfer->ptp_sts)
1976		return;
1977
1978	if (xfer->timestamped)
1979		return;
1980
1981	if (progress > xfer->ptp_sts_word_pre)
1982		return;
1983
1984	/* Capture the resolution of the timestamp */
1985	xfer->ptp_sts_word_pre = progress;
 
 
 
1986
1987	if (irqs_off) {
1988		local_irq_save(ctlr->irq_flags);
1989		preempt_disable();
 
1990	}
1991
1992	ptp_read_system_prets(xfer->ptp_sts);
1993}
1994EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1995
1996/**
1997 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1998 * @ctlr: Pointer to the spi_controller structure of the driver
1999 * @xfer: Pointer to the transfer being timestamped
2000 * @progress: How many words (not bytes) have been transferred so far
2001 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2002 *
2003 * This is a helper for drivers to collect the end of the TX timestamp for
2004 * the requested byte from the SPI transfer. Can be called with an arbitrary
2005 * frequency: only the first call where @tx exceeds or is equal to the
2006 * requested word will be timestamped.
2007 */
2008void spi_take_timestamp_post(struct spi_controller *ctlr,
2009			     struct spi_transfer *xfer,
2010			     size_t progress, bool irqs_off)
2011{
2012	if (!xfer->ptp_sts)
2013		return;
2014
2015	if (xfer->timestamped)
2016		return;
2017
2018	if (progress < xfer->ptp_sts_word_post)
2019		return;
 
 
 
 
 
 
 
 
 
2020
2021	ptp_read_system_postts(xfer->ptp_sts);
 
 
 
 
 
2022
2023	if (irqs_off) {
2024		local_irq_restore(ctlr->irq_flags);
2025		preempt_enable();
 
 
2026	}
2027
2028	/* Capture the resolution of the timestamp */
2029	xfer->ptp_sts_word_post = progress;
 
2030
2031	xfer->timestamped = 1;
 
 
2032}
2033EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2034
2035/**
2036 * spi_set_thread_rt - set the controller to pump at realtime priority
2037 * @ctlr: controller to boost priority of
2038 *
2039 * This can be called because the controller requested realtime priority
2040 * (by setting the ->rt value before calling spi_register_controller()) or
2041 * because a device on the bus said that its transfers needed realtime
2042 * priority.
2043 *
2044 * NOTE: at the moment if any device on a bus says it needs realtime then
2045 * the thread will be at realtime priority for all transfers on that
2046 * controller.  If this eventually becomes a problem we may see if we can
2047 * find a way to boost the priority only temporarily during relevant
2048 * transfers.
2049 */
2050static void spi_set_thread_rt(struct spi_controller *ctlr)
2051{
2052	dev_info(&ctlr->dev,
2053		"will run message pump with realtime priority\n");
2054	sched_set_fifo(ctlr->kworker->task);
 
2055}
2056
2057static int spi_init_queue(struct spi_controller *ctlr)
2058{
2059	ctlr->running = false;
2060	ctlr->busy = false;
2061	ctlr->queue_empty = true;
2062
2063	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2064	if (IS_ERR(ctlr->kworker)) {
2065		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2066		return PTR_ERR(ctlr->kworker);
2067	}
2068
2069	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
 
 
 
 
 
 
 
 
2070
2071	/*
2072	 * Controller config will indicate if this controller should run the
2073	 * message pump with high (realtime) priority to reduce the transfer
2074	 * latency on the bus by minimising the delay between a transfer
2075	 * request and the scheduling of the message pump thread. Without this
2076	 * setting the message pump thread will remain at default priority.
2077	 */
2078	if (ctlr->rt)
2079		spi_set_thread_rt(ctlr);
 
 
 
2080
2081	return 0;
2082}
2083
2084/**
2085 * spi_get_next_queued_message() - called by driver to check for queued
2086 * messages
2087 * @ctlr: the controller to check for queued messages
2088 *
2089 * If there are more messages in the queue, the next message is returned from
2090 * this call.
2091 *
2092 * Return: the next message in the queue, else NULL if the queue is empty.
2093 */
2094struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2095{
2096	struct spi_message *next;
2097	unsigned long flags;
2098
2099	/* Get a pointer to the next message, if any */
2100	spin_lock_irqsave(&ctlr->queue_lock, flags);
2101	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2102					queue);
2103	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104
2105	return next;
2106}
2107EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2108
2109/*
2110 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2111 *                            and spi_maybe_unoptimize_message()
2112 * @msg: the message to unoptimize
2113 *
2114 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2115 * core should use spi_maybe_unoptimize_message() rather than calling this
2116 * function directly.
2117 *
2118 * It is not valid to call this on a message that is not currently optimized.
2119 */
2120static void __spi_unoptimize_message(struct spi_message *msg)
2121{
2122	struct spi_controller *ctlr = msg->spi->controller;
2123
2124	if (ctlr->unoptimize_message)
2125		ctlr->unoptimize_message(msg);
2126
2127	spi_res_release(ctlr, msg);
2128
2129	msg->optimized = false;
2130	msg->opt_state = NULL;
2131}
2132
2133/*
2134 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2135 * @msg: the message to unoptimize
2136 *
2137 * This function is used to unoptimize a message if and only if it was
2138 * optimized by the core (via spi_maybe_optimize_message()).
2139 */
2140static void spi_maybe_unoptimize_message(struct spi_message *msg)
2141{
2142	if (!msg->pre_optimized && msg->optimized &&
2143	    !msg->spi->controller->defer_optimize_message)
2144		__spi_unoptimize_message(msg);
2145}
2146
2147/**
2148 * spi_finalize_current_message() - the current message is complete
2149 * @ctlr: the controller to return the message to
2150 *
2151 * Called by the driver to notify the core that the message in the front of the
2152 * queue is complete and can be removed from the queue.
2153 */
2154void spi_finalize_current_message(struct spi_controller *ctlr)
2155{
2156	struct spi_transfer *xfer;
2157	struct spi_message *mesg;
 
2158	int ret;
2159
2160	mesg = ctlr->cur_msg;
 
 
2161
2162	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2163		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2164			ptp_read_system_postts(xfer->ptp_sts);
2165			xfer->ptp_sts_word_post = xfer->len;
2166		}
2167	}
2168
2169	if (unlikely(ctlr->ptp_sts_supported))
2170		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2171			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2172
2173	spi_unmap_msg(ctlr, mesg);
2174
2175	if (mesg->prepared && ctlr->unprepare_message) {
2176		ret = ctlr->unprepare_message(ctlr, mesg);
2177		if (ret) {
2178			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2179				ret);
2180		}
2181	}
2182
2183	mesg->prepared = false;
2184
2185	spi_maybe_unoptimize_message(mesg);
2186
2187	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2188	smp_mb(); /* See __spi_pump_transfer_message()... */
2189	if (READ_ONCE(ctlr->cur_msg_need_completion))
2190		complete(&ctlr->cur_msg_completion);
2191
2192	trace_spi_message_done(mesg);
2193
2194	mesg->state = NULL;
2195	if (mesg->complete)
2196		mesg->complete(mesg->context);
2197}
2198EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2199
2200static int spi_start_queue(struct spi_controller *ctlr)
2201{
2202	unsigned long flags;
2203
2204	spin_lock_irqsave(&ctlr->queue_lock, flags);
2205
2206	if (ctlr->running || ctlr->busy) {
2207		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2208		return -EBUSY;
2209	}
2210
2211	ctlr->running = true;
2212	ctlr->cur_msg = NULL;
2213	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2214
2215	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2216
2217	return 0;
2218}
2219
2220static int spi_stop_queue(struct spi_controller *ctlr)
2221{
2222	unsigned int limit = 500;
2223	unsigned long flags;
 
 
 
 
2224
2225	/*
2226	 * This is a bit lame, but is optimized for the common execution path.
2227	 * A wait_queue on the ctlr->busy could be used, but then the common
2228	 * execution path (pump_messages) would be required to call wake_up or
2229	 * friends on every SPI message. Do this instead.
2230	 */
2231	do {
2232		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2234			ctlr->running = false;
2235			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2236			return 0;
2237		}
2238		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2239		usleep_range(10000, 11000);
2240	} while (--limit);
 
2241
2242	return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
2243}
2244
2245static int spi_destroy_queue(struct spi_controller *ctlr)
2246{
2247	int ret;
2248
2249	ret = spi_stop_queue(ctlr);
2250
2251	/*
2252	 * kthread_flush_worker will block until all work is done.
2253	 * If the reason that stop_queue timed out is that the work will never
2254	 * finish, then it does no good to call flush/stop thread, so
2255	 * return anyway.
2256	 */
2257	if (ret) {
2258		dev_err(&ctlr->dev, "problem destroying queue\n");
2259		return ret;
2260	}
2261
2262	kthread_destroy_worker(ctlr->kworker);
 
2263
2264	return 0;
2265}
2266
2267static int __spi_queued_transfer(struct spi_device *spi,
2268				 struct spi_message *msg,
2269				 bool need_pump)
2270{
2271	struct spi_controller *ctlr = spi->controller;
2272	unsigned long flags;
2273
2274	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276	if (!ctlr->running) {
2277		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278		return -ESHUTDOWN;
2279	}
2280	msg->actual_length = 0;
2281	msg->status = -EINPROGRESS;
2282
2283	list_add_tail(&msg->queue, &ctlr->queue);
2284	ctlr->queue_empty = false;
2285	if (!ctlr->busy && need_pump)
2286		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289	return 0;
2290}
2291
2292/**
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2296 *
2297 * Return: zero on success, else a negative error code.
2298 */
2299static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300{
2301	return __spi_queued_transfer(spi, msg, true);
2302}
2303
2304static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305{
2306	int ret;
2307
2308	ctlr->transfer = spi_queued_transfer;
2309	if (!ctlr->transfer_one_message)
2310		ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312	/* Initialize and start queue */
2313	ret = spi_init_queue(ctlr);
2314	if (ret) {
2315		dev_err(&ctlr->dev, "problem initializing queue\n");
2316		goto err_init_queue;
2317	}
2318	ctlr->queued = true;
2319	ret = spi_start_queue(ctlr);
2320	if (ret) {
2321		dev_err(&ctlr->dev, "problem starting queue\n");
2322		goto err_start_queue;
2323	}
2324
2325	return 0;
2326
2327err_start_queue:
2328	spi_destroy_queue(ctlr);
2329err_init_queue:
2330	return ret;
2331}
2332
2333/**
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2335 *		     context
2336 * @ctlr: controller to process queue for
2337 *
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2342 */
2343void spi_flush_queue(struct spi_controller *ctlr)
2344{
2345	if (ctlr->transfer == spi_queued_transfer)
2346		__spi_pump_messages(ctlr, false);
2347}
2348
2349/*-------------------------------------------------------------------------*/
2350
2351#if defined(CONFIG_OF)
2352static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353				     struct spi_delay *delay, const char *prop)
2354{
 
 
2355	u32 value;
2356
2357	if (!of_property_read_u32(nc, prop, &value)) {
2358		if (value > U16_MAX) {
2359			delay->value = DIV_ROUND_UP(value, 1000);
2360			delay->unit = SPI_DELAY_UNIT_USECS;
2361		} else {
2362			delay->value = value;
2363			delay->unit = SPI_DELAY_UNIT_NSECS;
2364		}
2365	}
2366}
2367
2368static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369			   struct device_node *nc)
2370{
2371	u32 value, cs[SPI_CS_CNT_MAX];
2372	int rc, idx;
 
 
 
 
 
 
 
 
 
 
 
 
2373
2374	/* Mode (clock phase/polarity/etc.) */
2375	if (of_property_read_bool(nc, "spi-cpha"))
2376		spi->mode |= SPI_CPHA;
2377	if (of_property_read_bool(nc, "spi-cpol"))
2378		spi->mode |= SPI_CPOL;
2379	if (of_property_read_bool(nc, "spi-3wire"))
 
 
2380		spi->mode |= SPI_3WIRE;
2381	if (of_property_read_bool(nc, "spi-lsb-first"))
2382		spi->mode |= SPI_LSB_FIRST;
2383	if (of_property_read_bool(nc, "spi-cs-high"))
2384		spi->mode |= SPI_CS_HIGH;
2385
2386	/* Device DUAL/QUAD mode */
2387	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388		switch (value) {
2389		case 0:
2390			spi->mode |= SPI_NO_TX;
2391			break;
2392		case 1:
2393			break;
2394		case 2:
2395			spi->mode |= SPI_TX_DUAL;
2396			break;
2397		case 4:
2398			spi->mode |= SPI_TX_QUAD;
2399			break;
2400		case 8:
2401			spi->mode |= SPI_TX_OCTAL;
2402			break;
2403		default:
2404			dev_warn(&ctlr->dev,
2405				"spi-tx-bus-width %d not supported\n",
2406				value);
2407			break;
2408		}
2409	}
2410
2411	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412		switch (value) {
2413		case 0:
2414			spi->mode |= SPI_NO_RX;
2415			break;
2416		case 1:
2417			break;
2418		case 2:
2419			spi->mode |= SPI_RX_DUAL;
2420			break;
2421		case 4:
2422			spi->mode |= SPI_RX_QUAD;
2423			break;
2424		case 8:
2425			spi->mode |= SPI_RX_OCTAL;
2426			break;
2427		default:
2428			dev_warn(&ctlr->dev,
2429				"spi-rx-bus-width %d not supported\n",
2430				value);
2431			break;
2432		}
2433	}
2434
2435	if (spi_controller_is_target(ctlr)) {
2436		if (!of_node_name_eq(nc, "slave")) {
2437			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438				nc);
2439			return -EINVAL;
2440		}
2441		return 0;
2442	}
2443
2444	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446		return -EINVAL;
2447	}
2448
2449	spi_set_all_cs_unused(spi);
2450
2451	/* Device address */
2452	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453						 SPI_CS_CNT_MAX);
2454	if (rc < 0) {
2455		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456			nc, rc);
2457		return rc;
2458	}
2459	if (rc > ctlr->num_chipselect) {
2460		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461			nc, rc);
2462		return rc;
2463	}
2464	if ((of_property_present(nc, "parallel-memories")) &&
2465	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467		return -EINVAL;
2468	}
2469	for (idx = 0; idx < rc; idx++)
2470		spi_set_chipselect(spi, idx, cs[idx]);
2471
2472	/*
2473	 * By default spi->chip_select[0] will hold the physical CS number,
2474	 * so set bit 0 in spi->cs_index_mask.
2475	 */
2476	spi->cs_index_mask = BIT(0);
2477
2478	/* Device speed */
2479	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480		spi->max_speed_hz = value;
2481
2482	/* Device CS delays */
2483	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487	return 0;
2488}
2489
2490static struct spi_device *
2491of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492{
2493	struct spi_device *spi;
2494	int rc;
2495
2496	/* Alloc an spi_device */
2497	spi = spi_alloc_device(ctlr);
2498	if (!spi) {
2499		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500		rc = -ENOMEM;
2501		goto err_out;
2502	}
2503
2504	/* Select device driver */
2505	rc = of_alias_from_compatible(nc, spi->modalias,
2506				      sizeof(spi->modalias));
2507	if (rc < 0) {
2508		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509		goto err_out;
2510	}
2511
2512	rc = of_spi_parse_dt(ctlr, spi, nc);
2513	if (rc)
2514		goto err_out;
2515
2516	/* Store a pointer to the node in the device structure */
2517	of_node_get(nc);
2518
2519	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521	/* Register the new device */
2522	rc = spi_add_device(spi);
2523	if (rc) {
2524		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525		goto err_of_node_put;
 
2526	}
2527
2528	return spi;
2529
2530err_of_node_put:
2531	of_node_put(nc);
2532err_out:
2533	spi_dev_put(spi);
2534	return ERR_PTR(rc);
2535}
2536
2537/**
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr:	Pointer to spi_controller device
2540 *
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2543 */
2544static void of_register_spi_devices(struct spi_controller *ctlr)
2545{
2546	struct spi_device *spi;
2547	struct device_node *nc;
2548
2549	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
 
 
 
2550		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551			continue;
2552		spi = of_register_spi_device(ctlr, nc);
2553		if (IS_ERR(spi)) {
2554			dev_warn(&ctlr->dev,
2555				 "Failed to create SPI device for %pOF\n", nc);
2556			of_node_clear_flag(nc, OF_POPULATED);
2557		}
2558	}
2559}
2560#else
2561static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562#endif
2563
2564/**
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi:         Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2568 *
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2571 *
2572 * This may only be called from main SPI device's probe routine.
2573 *
2574 * Return: 0 on success; negative errno on failure
2575 */
2576struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577					     u8 chip_select)
2578{
2579	struct spi_controller *ctlr = spi->controller;
2580	struct spi_device *ancillary;
2581	int rc;
2582
2583	/* Alloc an spi_device */
2584	ancillary = spi_alloc_device(ctlr);
2585	if (!ancillary) {
2586		rc = -ENOMEM;
2587		goto err_out;
2588	}
2589
2590	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592	/* Use provided chip-select for ancillary device */
2593	spi_set_all_cs_unused(ancillary);
2594	spi_set_chipselect(ancillary, 0, chip_select);
2595
2596	/* Take over SPI mode/speed from SPI main device */
2597	ancillary->max_speed_hz = spi->max_speed_hz;
2598	ancillary->mode = spi->mode;
2599	/*
2600	 * By default spi->chip_select[0] will hold the physical CS number,
2601	 * so set bit 0 in spi->cs_index_mask.
2602	 */
2603	ancillary->cs_index_mask = BIT(0);
2604
2605	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607	/* Register the new device */
2608	rc = __spi_add_device(ancillary);
2609	if (rc) {
2610		dev_err(&spi->dev, "failed to register ancillary device\n");
2611		goto err_out;
2612	}
2613
2614	return ancillary;
2615
2616err_out:
2617	spi_dev_put(ancillary);
2618	return ERR_PTR(rc);
2619}
2620EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622#ifdef CONFIG_ACPI
2623struct acpi_spi_lookup {
2624	struct spi_controller 	*ctlr;
2625	u32			max_speed_hz;
2626	u32			mode;
2627	int			irq;
2628	u8			bits_per_word;
2629	u8			chip_select;
2630	int			n;
2631	int			index;
2632};
2633
2634static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635{
2636	struct acpi_resource_spi_serialbus *sb;
2637	int *count = data;
2638
2639	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640		return 1;
2641
2642	sb = &ares->data.spi_serial_bus;
2643	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644		return 1;
2645
2646	*count = *count + 1;
2647
2648	return 1;
2649}
2650
2651/**
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev:	ACPI device
2654 *
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2657 */
2658int acpi_spi_count_resources(struct acpi_device *adev)
2659{
2660	LIST_HEAD(r);
2661	int count = 0;
2662	int ret;
2663
2664	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665	if (ret < 0)
2666		return ret;
2667
2668	acpi_dev_free_resource_list(&r);
2669
2670	return count;
2671}
2672EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675					    struct acpi_spi_lookup *lookup)
2676{
2677	const union acpi_object *obj;
2678
2679	if (!x86_apple_machine)
2680		return;
2681
2682	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683	    && obj->buffer.length >= 4)
2684		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687	    && obj->buffer.length == 8)
2688		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692		lookup->mode |= SPI_LSB_FIRST;
2693
2694	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696		lookup->mode |= SPI_CPOL;
2697
2698	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700		lookup->mode |= SPI_CPHA;
2701}
2702
2703static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704{
2705	struct acpi_spi_lookup *lookup = data;
2706	struct spi_controller *ctlr = lookup->ctlr;
2707
2708	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709		struct acpi_resource_spi_serialbus *sb;
2710		acpi_handle parent_handle;
2711		acpi_status status;
2712
2713		sb = &ares->data.spi_serial_bus;
2714		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717				return 1;
2718
2719			status = acpi_get_handle(NULL,
2720						 sb->resource_source.string_ptr,
2721						 &parent_handle);
2722
2723			if (ACPI_FAILURE(status))
2724				return -ENODEV;
2725
2726			if (ctlr) {
2727				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2728					return -ENODEV;
2729			} else {
2730				struct acpi_device *adev;
2731
2732				adev = acpi_fetch_acpi_dev(parent_handle);
2733				if (!adev)
2734					return -ENODEV;
2735
2736				ctlr = acpi_spi_find_controller_by_adev(adev);
2737				if (!ctlr)
2738					return -EPROBE_DEFER;
2739
2740				lookup->ctlr = ctlr;
2741			}
2742
2743			/*
2744			 * ACPI DeviceSelection numbering is handled by the
2745			 * host controller driver in Windows and can vary
2746			 * from driver to driver. In Linux we always expect
2747			 * 0 .. max - 1 so we need to ask the driver to
2748			 * translate between the two schemes.
2749			 */
2750			if (ctlr->fw_translate_cs) {
2751				int cs = ctlr->fw_translate_cs(ctlr,
2752						sb->device_selection);
2753				if (cs < 0)
2754					return cs;
2755				lookup->chip_select = cs;
2756			} else {
2757				lookup->chip_select = sb->device_selection;
2758			}
2759
2760			lookup->max_speed_hz = sb->connection_speed;
2761			lookup->bits_per_word = sb->data_bit_length;
2762
2763			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764				lookup->mode |= SPI_CPHA;
2765			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766				lookup->mode |= SPI_CPOL;
2767			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768				lookup->mode |= SPI_CS_HIGH;
2769		}
2770	} else if (lookup->irq < 0) {
2771		struct resource r;
2772
2773		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774			lookup->irq = r.start;
2775	}
2776
2777	/* Always tell the ACPI core to skip this resource */
2778	return 1;
2779}
2780
2781/**
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2786 *
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2789 *
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2794 *
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2796 */
2797struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798					 struct acpi_device *adev,
2799					 int index)
2800{
2801	acpi_handle parent_handle = NULL;
2802	struct list_head resource_list;
2803	struct acpi_spi_lookup lookup = {};
2804	struct spi_device *spi;
2805	int ret;
2806
2807	if (!ctlr && index == -1)
2808		return ERR_PTR(-EINVAL);
2809
2810	lookup.ctlr		= ctlr;
2811	lookup.irq		= -1;
2812	lookup.index		= index;
2813	lookup.n		= 0;
2814
2815	INIT_LIST_HEAD(&resource_list);
2816	ret = acpi_dev_get_resources(adev, &resource_list,
2817				     acpi_spi_add_resource, &lookup);
2818	acpi_dev_free_resource_list(&resource_list);
2819
2820	if (ret < 0)
2821		/* Found SPI in _CRS but it points to another controller */
2822		return ERR_PTR(ret);
2823
2824	if (!lookup.max_speed_hz &&
2825	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2827		/* Apple does not use _CRS but nested devices for SPI slaves */
2828		acpi_spi_parse_apple_properties(adev, &lookup);
2829	}
2830
2831	if (!lookup.max_speed_hz)
2832		return ERR_PTR(-ENODEV);
2833
2834	spi = spi_alloc_device(lookup.ctlr);
2835	if (!spi) {
2836		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837			dev_name(&adev->dev));
2838		return ERR_PTR(-ENOMEM);
2839	}
2840
2841	spi_set_all_cs_unused(spi);
2842	spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844	ACPI_COMPANION_SET(&spi->dev, adev);
2845	spi->max_speed_hz	= lookup.max_speed_hz;
2846	spi->mode		|= lookup.mode;
2847	spi->irq		= lookup.irq;
2848	spi->bits_per_word	= lookup.bits_per_word;
2849	/*
2850	 * By default spi->chip_select[0] will hold the physical CS number,
2851	 * so set bit 0 in spi->cs_index_mask.
2852	 */
2853	spi->cs_index_mask	= BIT(0);
2854
2855	return spi;
2856}
2857EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858
2859static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860					    struct acpi_device *adev)
2861{
2862	struct spi_device *spi;
2863
2864	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865	    acpi_device_enumerated(adev))
2866		return AE_OK;
2867
2868	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869	if (IS_ERR(spi)) {
2870		if (PTR_ERR(spi) == -ENOMEM)
2871			return AE_NO_MEMORY;
2872		else
2873			return AE_OK;
2874	}
2875
2876	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877			  sizeof(spi->modalias));
2878
2879	acpi_device_set_enumerated(adev);
2880
2881	adev->power.flags.ignore_parent = true;
 
2882	if (spi_add_device(spi)) {
2883		adev->power.flags.ignore_parent = false;
2884		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2885			dev_name(&adev->dev));
2886		spi_dev_put(spi);
2887	}
2888
2889	return AE_OK;
2890}
2891
2892static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2893				       void *data, void **return_value)
2894{
2895	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2896	struct spi_controller *ctlr = data;
2897
2898	if (!adev)
2899		return AE_OK;
2900
2901	return acpi_register_spi_device(ctlr, adev);
2902}
2903
2904#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2905
2906static void acpi_register_spi_devices(struct spi_controller *ctlr)
2907{
2908	acpi_status status;
2909	acpi_handle handle;
2910
2911	handle = ACPI_HANDLE(ctlr->dev.parent);
2912	if (!handle)
2913		return;
2914
2915	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2916				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2917				     acpi_spi_add_device, NULL, ctlr, NULL);
2918	if (ACPI_FAILURE(status))
2919		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2920}
2921#else
2922static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2923#endif /* CONFIG_ACPI */
2924
2925static void spi_controller_release(struct device *dev)
2926{
2927	struct spi_controller *ctlr;
2928
2929	ctlr = container_of(dev, struct spi_controller, dev);
2930	kfree(ctlr);
2931}
2932
2933static const struct class spi_master_class = {
2934	.name		= "spi_master",
2935	.dev_release	= spi_controller_release,
 
2936	.dev_groups	= spi_master_groups,
2937};
2938
2939#ifdef CONFIG_SPI_SLAVE
2940/**
2941 * spi_target_abort - abort the ongoing transfer request on an SPI slave
2942 *		     controller
2943 * @spi: device used for the current transfer
2944 */
2945int spi_target_abort(struct spi_device *spi)
2946{
2947	struct spi_controller *ctlr = spi->controller;
2948
2949	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2950		return ctlr->target_abort(ctlr);
2951
2952	return -ENOTSUPP;
2953}
2954EXPORT_SYMBOL_GPL(spi_target_abort);
2955
2956static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2957			  char *buf)
2958{
2959	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2960						   dev);
2961	struct device *child;
2962
2963	child = device_find_any_child(&ctlr->dev);
2964	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2965}
2966
2967static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2968			   const char *buf, size_t count)
2969{
2970	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2971						   dev);
2972	struct spi_device *spi;
2973	struct device *child;
2974	char name[32];
2975	int rc;
2976
2977	rc = sscanf(buf, "%31s", name);
2978	if (rc != 1 || !name[0])
2979		return -EINVAL;
2980
2981	child = device_find_any_child(&ctlr->dev);
2982	if (child) {
2983		/* Remove registered slave */
2984		device_unregister(child);
2985		put_device(child);
2986	}
2987
2988	if (strcmp(name, "(null)")) {
2989		/* Register new slave */
2990		spi = spi_alloc_device(ctlr);
2991		if (!spi)
2992			return -ENOMEM;
2993
2994		strscpy(spi->modalias, name, sizeof(spi->modalias));
2995
2996		rc = spi_add_device(spi);
2997		if (rc) {
2998			spi_dev_put(spi);
2999			return rc;
3000		}
3001	}
3002
3003	return count;
3004}
3005
3006static DEVICE_ATTR_RW(slave);
3007
3008static struct attribute *spi_slave_attrs[] = {
3009	&dev_attr_slave.attr,
3010	NULL,
3011};
3012
3013static const struct attribute_group spi_slave_group = {
3014	.attrs = spi_slave_attrs,
3015};
3016
3017static const struct attribute_group *spi_slave_groups[] = {
3018	&spi_controller_statistics_group,
3019	&spi_slave_group,
3020	NULL,
3021};
3022
3023static const struct class spi_slave_class = {
3024	.name		= "spi_slave",
3025	.dev_release	= spi_controller_release,
3026	.dev_groups	= spi_slave_groups,
3027};
3028#else
3029extern struct class spi_slave_class;	/* dummy */
3030#endif
3031
3032/**
3033 * __spi_alloc_controller - allocate an SPI master or slave controller
3034 * @dev: the controller, possibly using the platform_bus
3035 * @size: how much zeroed driver-private data to allocate; the pointer to this
3036 *	memory is in the driver_data field of the returned device, accessible
3037 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3038 *	drivers granting DMA access to portions of their private data need to
3039 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3040 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3041 *	slave (true) controller
3042 * Context: can sleep
3043 *
3044 * This call is used only by SPI controller drivers, which are the
3045 * only ones directly touching chip registers.  It's how they allocate
3046 * an spi_controller structure, prior to calling spi_register_controller().
3047 *
3048 * This must be called from context that can sleep.
3049 *
3050 * The caller is responsible for assigning the bus number and initializing the
3051 * controller's methods before calling spi_register_controller(); and (after
3052 * errors adding the device) calling spi_controller_put() to prevent a memory
3053 * leak.
3054 *
3055 * Return: the SPI controller structure on success, else NULL.
3056 */
3057struct spi_controller *__spi_alloc_controller(struct device *dev,
3058					      unsigned int size, bool slave)
3059{
3060	struct spi_controller	*ctlr;
3061	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3062
3063	if (!dev)
3064		return NULL;
3065
3066	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3067	if (!ctlr)
3068		return NULL;
3069
3070	device_initialize(&ctlr->dev);
3071	INIT_LIST_HEAD(&ctlr->queue);
3072	spin_lock_init(&ctlr->queue_lock);
3073	spin_lock_init(&ctlr->bus_lock_spinlock);
3074	mutex_init(&ctlr->bus_lock_mutex);
3075	mutex_init(&ctlr->io_mutex);
3076	mutex_init(&ctlr->add_lock);
3077	ctlr->bus_num = -1;
3078	ctlr->num_chipselect = 1;
3079	ctlr->slave = slave;
3080	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3081		ctlr->dev.class = &spi_slave_class;
3082	else
3083		ctlr->dev.class = &spi_master_class;
3084	ctlr->dev.parent = dev;
3085	pm_suspend_ignore_children(&ctlr->dev, true);
3086	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3087
3088	return ctlr;
3089}
3090EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3091
3092static void devm_spi_release_controller(struct device *dev, void *ctlr)
3093{
3094	spi_controller_put(*(struct spi_controller **)ctlr);
3095}
 
3096
3097/**
3098 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3099 * @dev: physical device of SPI controller
3100 * @size: how much zeroed driver-private data to allocate
3101 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3102 * Context: can sleep
3103 *
3104 * Allocate an SPI controller and automatically release a reference on it
3105 * when @dev is unbound from its driver.  Drivers are thus relieved from
3106 * having to call spi_controller_put().
3107 *
3108 * The arguments to this function are identical to __spi_alloc_controller().
3109 *
3110 * Return: the SPI controller structure on success, else NULL.
3111 */
3112struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3113						   unsigned int size,
3114						   bool slave)
3115{
3116	struct spi_controller **ptr, *ctlr;
 
3117
3118	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3119			   GFP_KERNEL);
3120	if (!ptr)
3121		return NULL;
3122
3123	ctlr = __spi_alloc_controller(dev, size, slave);
3124	if (ctlr) {
3125		ctlr->devm_allocated = true;
3126		*ptr = ctlr;
3127		devres_add(dev, ptr);
3128	} else {
3129		devres_free(ptr);
3130	}
3131
3132	return ctlr;
3133}
3134EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3135
3136/**
3137 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3138 * @ctlr: The SPI master to grab GPIO descriptors for
3139 */
3140static int spi_get_gpio_descs(struct spi_controller *ctlr)
3141{
3142	int nb, i;
3143	struct gpio_desc **cs;
3144	struct device *dev = &ctlr->dev;
3145	unsigned long native_cs_mask = 0;
3146	unsigned int num_cs_gpios = 0;
3147
3148	nb = gpiod_count(dev, "cs");
3149	if (nb < 0) {
3150		/* No GPIOs at all is fine, else return the error */
3151		if (nb == -ENOENT)
3152			return 0;
3153		return nb;
3154	}
3155
3156	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3157
3158	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
 
3159			  GFP_KERNEL);
3160	if (!cs)
3161		return -ENOMEM;
3162	ctlr->cs_gpiods = cs;
3163
3164	for (i = 0; i < nb; i++) {
3165		/*
3166		 * Most chipselects are active low, the inverted
3167		 * semantics are handled by special quirks in gpiolib,
3168		 * so initializing them GPIOD_OUT_LOW here means
3169		 * "unasserted", in most cases this will drive the physical
3170		 * line high.
3171		 */
3172		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3173						      GPIOD_OUT_LOW);
3174		if (IS_ERR(cs[i]))
3175			return PTR_ERR(cs[i]);
3176
3177		if (cs[i]) {
3178			/*
3179			 * If we find a CS GPIO, name it after the device and
3180			 * chip select line.
3181			 */
3182			char *gpioname;
3183
3184			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3185						  dev_name(dev), i);
3186			if (!gpioname)
3187				return -ENOMEM;
3188			gpiod_set_consumer_name(cs[i], gpioname);
3189			num_cs_gpios++;
3190			continue;
3191		}
3192
3193		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3194			dev_err(dev, "Invalid native chip select %d\n", i);
3195			return -EINVAL;
3196		}
3197		native_cs_mask |= BIT(i);
3198	}
3199
3200	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3201
3202	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3203	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3204		dev_err(dev, "No unused native chip select available\n");
3205		return -EINVAL;
3206	}
3207
3208	return 0;
3209}
3210
3211static int spi_controller_check_ops(struct spi_controller *ctlr)
3212{
3213	/*
3214	 * The controller may implement only the high-level SPI-memory like
3215	 * operations if it does not support regular SPI transfers, and this is
3216	 * valid use case.
3217	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3218	 * one of the ->transfer_xxx() method be implemented.
3219	 */
3220	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3221		if (!ctlr->transfer && !ctlr->transfer_one &&
3222		   !ctlr->transfer_one_message) {
3223			return -EINVAL;
3224		}
3225	}
3226
3227	return 0;
3228}
3229
3230/* Allocate dynamic bus number using Linux idr */
3231static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3232{
3233	int id;
3234
3235	mutex_lock(&board_lock);
3236	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3237	mutex_unlock(&board_lock);
3238	if (WARN(id < 0, "couldn't get idr"))
3239		return id == -ENOSPC ? -EBUSY : id;
3240	ctlr->bus_num = id;
3241	return 0;
3242}
 
3243
3244/**
3245 * spi_register_controller - register SPI host or target controller
3246 * @ctlr: initialized controller, originally from spi_alloc_host() or
3247 *	spi_alloc_target()
3248 * Context: can sleep
3249 *
3250 * SPI controllers connect to their drivers using some non-SPI bus,
3251 * such as the platform bus.  The final stage of probe() in that code
3252 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3253 *
3254 * SPI controllers use board specific (often SOC specific) bus numbers,
3255 * and board-specific addressing for SPI devices combines those numbers
3256 * with chip select numbers.  Since SPI does not directly support dynamic
3257 * device identification, boards need configuration tables telling which
3258 * chip is at which address.
3259 *
3260 * This must be called from context that can sleep.  It returns zero on
3261 * success, else a negative error code (dropping the controller's refcount).
3262 * After a successful return, the caller is responsible for calling
3263 * spi_unregister_controller().
3264 *
3265 * Return: zero on success, else a negative error code.
3266 */
3267int spi_register_controller(struct spi_controller *ctlr)
3268{
3269	struct device		*dev = ctlr->dev.parent;
 
3270	struct boardinfo	*bi;
3271	int			first_dynamic;
3272	int			status;
3273	int			idx;
3274
3275	if (!dev)
3276		return -ENODEV;
3277
3278	/*
3279	 * Make sure all necessary hooks are implemented before registering
3280	 * the SPI controller.
3281	 */
3282	status = spi_controller_check_ops(ctlr);
3283	if (status)
3284		return status;
3285
3286	if (ctlr->bus_num < 0)
3287		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3288	if (ctlr->bus_num >= 0) {
3289		/* Devices with a fixed bus num must check-in with the num */
3290		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3291		if (status)
3292			return status;
3293	}
3294	if (ctlr->bus_num < 0) {
3295		first_dynamic = of_alias_get_highest_id("spi");
3296		if (first_dynamic < 0)
3297			first_dynamic = 0;
3298		else
3299			first_dynamic++;
3300
3301		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3302		if (status)
3303			return status;
3304	}
3305	ctlr->bus_lock_flag = 0;
3306	init_completion(&ctlr->xfer_completion);
3307	init_completion(&ctlr->cur_msg_completion);
3308	if (!ctlr->max_dma_len)
3309		ctlr->max_dma_len = INT_MAX;
3310
3311	/*
3312	 * Register the device, then userspace will see it.
3313	 * Registration fails if the bus ID is in use.
3314	 */
3315	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
 
3316
3317	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3318		status = spi_get_gpio_descs(ctlr);
3319		if (status)
3320			goto free_bus_id;
3321		/*
3322		 * A controller using GPIO descriptors always
3323		 * supports SPI_CS_HIGH if need be.
3324		 */
3325		ctlr->mode_bits |= SPI_CS_HIGH;
3326	}
3327
3328	/*
3329	 * Even if it's just one always-selected device, there must
3330	 * be at least one chipselect.
3331	 */
3332	if (!ctlr->num_chipselect) {
3333		status = -EINVAL;
3334		goto free_bus_id;
3335	}
3336
3337	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3338	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3339		ctlr->last_cs[idx] = SPI_INVALID_CS;
3340
3341	status = device_add(&ctlr->dev);
3342	if (status < 0)
3343		goto free_bus_id;
3344	dev_dbg(dev, "registered %s %s\n",
3345			spi_controller_is_target(ctlr) ? "target" : "host",
3346			dev_name(&ctlr->dev));
3347
3348	/*
3349	 * If we're using a queued driver, start the queue. Note that we don't
3350	 * need the queueing logic if the driver is only supporting high-level
3351	 * memory operations.
3352	 */
3353	if (ctlr->transfer) {
3354		dev_info(dev, "controller is unqueued, this is deprecated\n");
3355	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3356		status = spi_controller_initialize_queue(ctlr);
 
 
 
 
 
 
 
 
3357		if (status) {
3358			device_del(&ctlr->dev);
3359			goto free_bus_id;
3360		}
3361	}
3362	/* Add statistics */
3363	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3364	if (!ctlr->pcpu_statistics) {
3365		dev_err(dev, "Error allocating per-cpu statistics\n");
3366		status = -ENOMEM;
3367		goto destroy_queue;
3368	}
3369
3370	mutex_lock(&board_lock);
3371	list_add_tail(&ctlr->list, &spi_controller_list);
3372	list_for_each_entry(bi, &board_list, list)
3373		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3374	mutex_unlock(&board_lock);
3375
3376	/* Register devices from the device tree and ACPI */
3377	of_register_spi_devices(ctlr);
3378	acpi_register_spi_devices(ctlr);
3379	return status;
3380
3381destroy_queue:
3382	spi_destroy_queue(ctlr);
3383free_bus_id:
3384	mutex_lock(&board_lock);
3385	idr_remove(&spi_master_idr, ctlr->bus_num);
3386	mutex_unlock(&board_lock);
3387	return status;
3388}
3389EXPORT_SYMBOL_GPL(spi_register_controller);
3390
3391static void devm_spi_unregister(struct device *dev, void *res)
3392{
3393	spi_unregister_controller(*(struct spi_controller **)res);
3394}
3395
3396/**
3397 * devm_spi_register_controller - register managed SPI host or target
3398 *	controller
3399 * @dev:    device managing SPI controller
3400 * @ctlr: initialized controller, originally from spi_alloc_host() or
3401 *	spi_alloc_target()
3402 * Context: can sleep
3403 *
3404 * Register a SPI device as with spi_register_controller() which will
3405 * automatically be unregistered and freed.
3406 *
3407 * Return: zero on success, else a negative error code.
3408 */
3409int devm_spi_register_controller(struct device *dev,
3410				 struct spi_controller *ctlr)
3411{
3412	struct spi_controller **ptr;
3413	int ret;
3414
3415	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3416	if (!ptr)
3417		return -ENOMEM;
3418
3419	ret = spi_register_controller(ctlr);
3420	if (!ret) {
3421		*ptr = ctlr;
3422		devres_add(dev, ptr);
3423	} else {
3424		devres_free(ptr);
3425	}
3426
3427	return ret;
3428}
3429EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3430
3431static int __unregister(struct device *dev, void *null)
3432{
3433	spi_unregister_device(to_spi_device(dev));
3434	return 0;
3435}
3436
3437/**
3438 * spi_unregister_controller - unregister SPI master or slave controller
3439 * @ctlr: the controller being unregistered
3440 * Context: can sleep
3441 *
3442 * This call is used only by SPI controller drivers, which are the
3443 * only ones directly touching chip registers.
3444 *
3445 * This must be called from context that can sleep.
3446 *
3447 * Note that this function also drops a reference to the controller.
3448 */
3449void spi_unregister_controller(struct spi_controller *ctlr)
3450{
3451	struct spi_controller *found;
3452	int id = ctlr->bus_num;
3453
3454	/* Prevent addition of new devices, unregister existing ones */
3455	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3456		mutex_lock(&ctlr->add_lock);
3457
3458	device_for_each_child(&ctlr->dev, NULL, __unregister);
3459
3460	/* First make sure that this controller was ever added */
3461	mutex_lock(&board_lock);
3462	found = idr_find(&spi_master_idr, id);
3463	mutex_unlock(&board_lock);
3464	if (ctlr->queued) {
3465		if (spi_destroy_queue(ctlr))
3466			dev_err(&ctlr->dev, "queue remove failed\n");
3467	}
 
3468	mutex_lock(&board_lock);
3469	list_del(&ctlr->list);
3470	mutex_unlock(&board_lock);
3471
3472	device_del(&ctlr->dev);
 
 
 
3473
3474	/* Free bus id */
3475	mutex_lock(&board_lock);
3476	if (found == ctlr)
3477		idr_remove(&spi_master_idr, id);
3478	mutex_unlock(&board_lock);
3479
3480	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3481		mutex_unlock(&ctlr->add_lock);
 
3482
3483	/*
3484	 * Release the last reference on the controller if its driver
3485	 * has not yet been converted to devm_spi_alloc_host/target().
3486	 */
3487	if (!ctlr->devm_allocated)
3488		put_device(&ctlr->dev);
3489}
3490EXPORT_SYMBOL_GPL(spi_unregister_controller);
3491
3492static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3493{
3494	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
 
 
 
 
 
 
 
 
 
3495}
 
3496
3497static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3498{
3499	mutex_lock(&ctlr->bus_lock_mutex);
3500	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3501	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
3502}
3503
3504static inline void __spi_mark_resumed(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
3505{
3506	mutex_lock(&ctlr->bus_lock_mutex);
3507	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3508	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
 
 
 
 
3509}
 
 
 
 
 
3510
3511int spi_controller_suspend(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3512{
3513	int ret = 0;
3514
3515	/* Basically no-ops for non-queued controllers */
3516	if (ctlr->queued) {
3517		ret = spi_stop_queue(ctlr);
3518		if (ret)
3519			dev_err(&ctlr->dev, "queue stop failed\n");
3520	}
3521
3522	__spi_mark_suspended(ctlr);
3523	return ret;
 
 
3524}
3525EXPORT_SYMBOL_GPL(spi_controller_suspend);
3526
3527int spi_controller_resume(struct spi_controller *ctlr)
 
 
 
 
 
3528{
3529	int ret = 0;
 
 
 
3530
3531	__spi_mark_resumed(ctlr);
 
 
 
3532
3533	if (ctlr->queued) {
3534		ret = spi_start_queue(ctlr);
3535		if (ret)
3536			dev_err(&ctlr->dev, "queue restart failed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3537	}
3538	return ret;
3539}
3540EXPORT_SYMBOL_GPL(spi_controller_resume);
3541
3542/*-------------------------------------------------------------------------*/
3543
3544/* Core methods for spi_message alterations */
3545
3546static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3547					    struct spi_message *msg,
3548					    void *res)
3549{
3550	struct spi_replaced_transfers *rxfer = res;
3551	size_t i;
3552
3553	/* Call extra callback if requested */
3554	if (rxfer->release)
3555		rxfer->release(ctlr, msg, res);
3556
3557	/* Insert replaced transfers back into the message */
3558	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3559
3560	/* Remove the formerly inserted entries */
3561	for (i = 0; i < rxfer->inserted; i++)
3562		list_del(&rxfer->inserted_transfers[i].transfer_list);
3563}
3564
3565/**
3566 * spi_replace_transfers - replace transfers with several transfers
3567 *                         and register change with spi_message.resources
3568 * @msg:           the spi_message we work upon
3569 * @xfer_first:    the first spi_transfer we want to replace
3570 * @remove:        number of transfers to remove
3571 * @insert:        the number of transfers we want to insert instead
3572 * @release:       extra release code necessary in some circumstances
3573 * @extradatasize: extra data to allocate (with alignment guarantees
3574 *                 of struct @spi_transfer)
3575 * @gfp:           gfp flags
3576 *
3577 * Returns: pointer to @spi_replaced_transfers,
3578 *          PTR_ERR(...) in case of errors.
3579 */
3580static struct spi_replaced_transfers *spi_replace_transfers(
3581	struct spi_message *msg,
3582	struct spi_transfer *xfer_first,
3583	size_t remove,
3584	size_t insert,
3585	spi_replaced_release_t release,
3586	size_t extradatasize,
3587	gfp_t gfp)
3588{
3589	struct spi_replaced_transfers *rxfer;
3590	struct spi_transfer *xfer;
3591	size_t i;
3592
3593	/* Allocate the structure using spi_res */
3594	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3595			      struct_size(rxfer, inserted_transfers, insert)
 
3596			      + extradatasize,
3597			      gfp);
3598	if (!rxfer)
3599		return ERR_PTR(-ENOMEM);
3600
3601	/* The release code to invoke before running the generic release */
3602	rxfer->release = release;
3603
3604	/* Assign extradata */
3605	if (extradatasize)
3606		rxfer->extradata =
3607			&rxfer->inserted_transfers[insert];
3608
3609	/* Init the replaced_transfers list */
3610	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3611
3612	/*
3613	 * Assign the list_entry after which we should reinsert
3614	 * the @replaced_transfers - it may be spi_message.messages!
3615	 */
3616	rxfer->replaced_after = xfer_first->transfer_list.prev;
3617
3618	/* Remove the requested number of transfers */
3619	for (i = 0; i < remove; i++) {
3620		/*
3621		 * If the entry after replaced_after it is msg->transfers
3622		 * then we have been requested to remove more transfers
3623		 * than are in the list.
3624		 */
3625		if (rxfer->replaced_after->next == &msg->transfers) {
3626			dev_err(&msg->spi->dev,
3627				"requested to remove more spi_transfers than are available\n");
3628			/* Insert replaced transfers back into the message */
3629			list_splice(&rxfer->replaced_transfers,
3630				    rxfer->replaced_after);
3631
3632			/* Free the spi_replace_transfer structure... */
3633			spi_res_free(rxfer);
3634
3635			/* ...and return with an error */
3636			return ERR_PTR(-EINVAL);
3637		}
3638
3639		/*
3640		 * Remove the entry after replaced_after from list of
3641		 * transfers and add it to list of replaced_transfers.
3642		 */
3643		list_move_tail(rxfer->replaced_after->next,
3644			       &rxfer->replaced_transfers);
3645	}
3646
3647	/*
3648	 * Create copy of the given xfer with identical settings
3649	 * based on the first transfer to get removed.
3650	 */
3651	for (i = 0; i < insert; i++) {
3652		/* We need to run in reverse order */
3653		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3654
3655		/* Copy all spi_transfer data */
3656		memcpy(xfer, xfer_first, sizeof(*xfer));
3657
3658		/* Add to list */
3659		list_add(&xfer->transfer_list, rxfer->replaced_after);
3660
3661		/* Clear cs_change and delay for all but the last */
3662		if (i) {
3663			xfer->cs_change = false;
3664			xfer->delay.value = 0;
3665		}
3666	}
3667
3668	/* Set up inserted... */
3669	rxfer->inserted = insert;
3670
3671	/* ...and register it with spi_res/spi_message */
3672	spi_res_add(msg, rxfer);
3673
3674	return rxfer;
3675}
 
3676
3677static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3678					struct spi_message *msg,
3679					struct spi_transfer **xferp,
3680					size_t maxsize)
 
3681{
3682	struct spi_transfer *xfer = *xferp, *xfers;
3683	struct spi_replaced_transfers *srt;
3684	size_t offset;
3685	size_t count, i;
3686
3687	/* Calculate how many we have to replace */
 
 
 
 
 
3688	count = DIV_ROUND_UP(xfer->len, maxsize);
3689
3690	/* Create replacement */
3691	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3692	if (IS_ERR(srt))
3693		return PTR_ERR(srt);
3694	xfers = srt->inserted_transfers;
3695
3696	/*
3697	 * Now handle each of those newly inserted spi_transfers.
3698	 * Note that the replacements spi_transfers all are preset
3699	 * to the same values as *xferp, so tx_buf, rx_buf and len
3700	 * are all identical (as well as most others)
3701	 * so we just have to fix up len and the pointers.
 
 
 
3702	 */
3703
3704	/*
3705	 * The first transfer just needs the length modified, so we
3706	 * run it outside the loop.
3707	 */
3708	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3709
3710	/* All the others need rx_buf/tx_buf also set */
3711	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3712		/* Update rx_buf, tx_buf and DMA */
3713		if (xfers[i].rx_buf)
3714			xfers[i].rx_buf += offset;
 
 
3715		if (xfers[i].tx_buf)
3716			xfers[i].tx_buf += offset;
 
 
3717
3718		/* Update length */
3719		xfers[i].len = min(maxsize, xfers[i].len - offset);
3720	}
3721
3722	/*
3723	 * We set up xferp to the last entry we have inserted,
3724	 * so that we skip those already split transfers.
3725	 */
3726	*xferp = &xfers[count - 1];
3727
3728	/* Increment statistics counters */
3729	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3730				       transfers_split_maxsize);
3731	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3732				       transfers_split_maxsize);
3733
3734	return 0;
3735}
3736
3737/**
3738 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3739 *                               when an individual transfer exceeds a
3740 *                               certain size
3741 * @ctlr:    the @spi_controller for this transfer
3742 * @msg:   the @spi_message to transform
3743 * @maxsize:  the maximum when to apply this
3744 *
3745 * This function allocates resources that are automatically freed during the
3746 * spi message unoptimize phase so this function should only be called from
3747 * optimize_message callbacks.
3748 *
3749 * Return: status of transformation
3750 */
3751int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3752				struct spi_message *msg,
3753				size_t maxsize)
 
3754{
3755	struct spi_transfer *xfer;
3756	int ret;
3757
3758	/*
3759	 * Iterate over the transfer_list,
3760	 * but note that xfer is advanced to the last transfer inserted
3761	 * to avoid checking sizes again unnecessarily (also xfer does
3762	 * potentially belong to a different list by the time the
3763	 * replacement has happened).
3764	 */
3765	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3766		if (xfer->len > maxsize) {
3767			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3768							   maxsize);
3769			if (ret)
3770				return ret;
3771		}
3772	}
3773
3774	return 0;
3775}
3776EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3777
3778
3779/**
3780 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3781 *                                when an individual transfer exceeds a
3782 *                                certain number of SPI words
3783 * @ctlr:     the @spi_controller for this transfer
3784 * @msg:      the @spi_message to transform
3785 * @maxwords: the number of words to limit each transfer to
3786 *
3787 * This function allocates resources that are automatically freed during the
3788 * spi message unoptimize phase so this function should only be called from
3789 * optimize_message callbacks.
3790 *
3791 * Return: status of transformation
3792 */
3793int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3794				 struct spi_message *msg,
3795				 size_t maxwords)
3796{
3797	struct spi_transfer *xfer;
3798
3799	/*
3800	 * Iterate over the transfer_list,
3801	 * but note that xfer is advanced to the last transfer inserted
3802	 * to avoid checking sizes again unnecessarily (also xfer does
3803	 * potentially belong to a different list by the time the
3804	 * replacement has happened).
3805	 */
3806	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3807		size_t maxsize;
3808		int ret;
3809
3810		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3811		if (xfer->len > maxsize) {
3812			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3813							   maxsize);
3814			if (ret)
3815				return ret;
3816		}
3817	}
3818
3819	return 0;
3820}
3821EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3822
3823/*-------------------------------------------------------------------------*/
3824
3825/*
3826 * Core methods for SPI controller protocol drivers. Some of the
3827 * other core methods are currently defined as inline functions.
3828 */
3829
3830static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3831					u8 bits_per_word)
3832{
3833	if (ctlr->bits_per_word_mask) {
3834		/* Only 32 bits fit in the mask */
3835		if (bits_per_word > 32)
3836			return -EINVAL;
3837		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
 
3838			return -EINVAL;
3839	}
3840
3841	return 0;
3842}
3843
3844/**
3845 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3846 * @spi: the device that requires specific CS timing configuration
3847 *
3848 * Return: zero on success, else a negative error code.
3849 */
3850static int spi_set_cs_timing(struct spi_device *spi)
3851{
3852	struct device *parent = spi->controller->dev.parent;
3853	int status = 0;
3854
3855	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3856		if (spi->controller->auto_runtime_pm) {
3857			status = pm_runtime_get_sync(parent);
3858			if (status < 0) {
3859				pm_runtime_put_noidle(parent);
3860				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3861					status);
3862				return status;
3863			}
3864
3865			status = spi->controller->set_cs_timing(spi);
3866			pm_runtime_mark_last_busy(parent);
3867			pm_runtime_put_autosuspend(parent);
3868		} else {
3869			status = spi->controller->set_cs_timing(spi);
3870		}
3871	}
3872	return status;
3873}
3874
3875/**
3876 * spi_setup - setup SPI mode and clock rate
3877 * @spi: the device whose settings are being modified
3878 * Context: can sleep, and no requests are queued to the device
3879 *
3880 * SPI protocol drivers may need to update the transfer mode if the
3881 * device doesn't work with its default.  They may likewise need
3882 * to update clock rates or word sizes from initial values.  This function
3883 * changes those settings, and must be called from a context that can sleep.
3884 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3885 * effect the next time the device is selected and data is transferred to
3886 * or from it.  When this function returns, the SPI device is deselected.
3887 *
3888 * Note that this call will fail if the protocol driver specifies an option
3889 * that the underlying controller or its driver does not support.  For
3890 * example, not all hardware supports wire transfers using nine bit words,
3891 * LSB-first wire encoding, or active-high chipselects.
3892 *
3893 * Return: zero on success, else a negative error code.
3894 */
3895int spi_setup(struct spi_device *spi)
3896{
3897	unsigned	bad_bits, ugly_bits;
3898	int		status;
3899
3900	/*
3901	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3902	 * are set at the same time.
3903	 */
3904	if ((hweight_long(spi->mode &
3905		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3906	    (hweight_long(spi->mode &
3907		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3908		dev_err(&spi->dev,
3909		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3910		return -EINVAL;
3911	}
3912	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3913	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3914		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3915		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3916		return -EINVAL;
3917	/* Check against conflicting MOSI idle configuration */
3918	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3919		dev_err(&spi->dev,
3920			"setup: MOSI configured to idle low and high at the same time.\n");
3921		return -EINVAL;
3922	}
3923	/*
3924	 * Help drivers fail *cleanly* when they need options
3925	 * that aren't supported with their current controller.
3926	 * SPI_CS_WORD has a fallback software implementation,
3927	 * so it is ignored here.
3928	 */
3929	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3930				 SPI_NO_TX | SPI_NO_RX);
3931	ugly_bits = bad_bits &
3932		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3933		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3934	if (ugly_bits) {
3935		dev_warn(&spi->dev,
3936			 "setup: ignoring unsupported mode bits %x\n",
3937			 ugly_bits);
3938		spi->mode &= ~ugly_bits;
3939		bad_bits &= ~ugly_bits;
3940	}
3941	if (bad_bits) {
3942		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3943			bad_bits);
3944		return -EINVAL;
3945	}
3946
3947	if (!spi->bits_per_word) {
3948		spi->bits_per_word = 8;
3949	} else {
3950		/*
3951		 * Some controllers may not support the default 8 bits-per-word
3952		 * so only perform the check when this is explicitly provided.
3953		 */
3954		status = __spi_validate_bits_per_word(spi->controller,
3955						      spi->bits_per_word);
3956		if (status)
3957			return status;
3958	}
3959
3960	if (spi->controller->max_speed_hz &&
3961	    (!spi->max_speed_hz ||
3962	     spi->max_speed_hz > spi->controller->max_speed_hz))
3963		spi->max_speed_hz = spi->controller->max_speed_hz;
3964
3965	mutex_lock(&spi->controller->io_mutex);
3966
3967	if (spi->controller->setup) {
3968		status = spi->controller->setup(spi);
3969		if (status) {
3970			mutex_unlock(&spi->controller->io_mutex);
3971			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3972				status);
3973			return status;
3974		}
3975	}
3976
3977	status = spi_set_cs_timing(spi);
3978	if (status) {
3979		mutex_unlock(&spi->controller->io_mutex);
3980		return status;
3981	}
3982
3983	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3984		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3985		if (status < 0) {
3986			mutex_unlock(&spi->controller->io_mutex);
3987			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3988				status);
3989			return status;
3990		}
3991
3992		/*
3993		 * We do not want to return positive value from pm_runtime_get,
3994		 * there are many instances of devices calling spi_setup() and
3995		 * checking for a non-zero return value instead of a negative
3996		 * return value.
3997		 */
3998		status = 0;
3999
4000		spi_set_cs(spi, false, true);
4001		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4002		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4003	} else {
4004		spi_set_cs(spi, false, true);
4005	}
4006
4007	mutex_unlock(&spi->controller->io_mutex);
4008
4009	if (spi->rt && !spi->controller->rt) {
4010		spi->controller->rt = true;
4011		spi_set_thread_rt(spi->controller);
4012	}
4013
4014	trace_spi_setup(spi, status);
4015
4016	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4017			spi->mode & SPI_MODE_X_MASK,
4018			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4019			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4020			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4021			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4022			spi->bits_per_word, spi->max_speed_hz,
4023			status);
4024
4025	return status;
4026}
4027EXPORT_SYMBOL_GPL(spi_setup);
4028
4029static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4030				       struct spi_device *spi)
4031{
4032	int delay1, delay2;
4033
4034	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4035	if (delay1 < 0)
4036		return delay1;
4037
4038	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4039	if (delay2 < 0)
4040		return delay2;
4041
4042	if (delay1 < delay2)
4043		memcpy(&xfer->word_delay, &spi->word_delay,
4044		       sizeof(xfer->word_delay));
4045
4046	return 0;
4047}
4048
4049static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4050{
4051	struct spi_controller *ctlr = spi->controller;
4052	struct spi_transfer *xfer;
4053	int w_size;
4054
4055	if (list_empty(&message->transfers))
4056		return -EINVAL;
4057
4058	message->spi = spi;
4059
4060	/*
4061	 * Half-duplex links include original MicroWire, and ones with
4062	 * only one data pin like SPI_3WIRE (switches direction) or where
4063	 * either MOSI or MISO is missing.  They can also be caused by
4064	 * software limitations.
4065	 */
4066	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4067	    (spi->mode & SPI_3WIRE)) {
4068		unsigned flags = ctlr->flags;
4069
4070		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4071			if (xfer->rx_buf && xfer->tx_buf)
4072				return -EINVAL;
4073			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4074				return -EINVAL;
4075			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4076				return -EINVAL;
4077		}
4078	}
4079
4080	/*
4081	 * Set transfer bits_per_word and max speed as spi device default if
4082	 * it is not set for this transfer.
4083	 * Set transfer tx_nbits and rx_nbits as single transfer default
4084	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4085	 * Ensure transfer word_delay is at least as long as that required by
4086	 * device itself.
4087	 */
4088	message->frame_length = 0;
4089	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4090		xfer->effective_speed_hz = 0;
4091		message->frame_length += xfer->len;
4092		if (!xfer->bits_per_word)
4093			xfer->bits_per_word = spi->bits_per_word;
4094
4095		if (!xfer->speed_hz)
4096			xfer->speed_hz = spi->max_speed_hz;
 
 
4097
4098		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4099			xfer->speed_hz = ctlr->max_speed_hz;
 
4100
4101		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4102			return -EINVAL;
4103
4104		/*
4105		 * SPI transfer length should be multiple of SPI word size
4106		 * where SPI word size should be power-of-two multiple.
4107		 */
4108		if (xfer->bits_per_word <= 8)
4109			w_size = 1;
4110		else if (xfer->bits_per_word <= 16)
4111			w_size = 2;
4112		else
4113			w_size = 4;
4114
4115		/* No partial transfers accepted */
4116		if (xfer->len % w_size)
4117			return -EINVAL;
4118
4119		if (xfer->speed_hz && ctlr->min_speed_hz &&
4120		    xfer->speed_hz < ctlr->min_speed_hz)
4121			return -EINVAL;
4122
4123		if (xfer->tx_buf && !xfer->tx_nbits)
4124			xfer->tx_nbits = SPI_NBITS_SINGLE;
4125		if (xfer->rx_buf && !xfer->rx_nbits)
4126			xfer->rx_nbits = SPI_NBITS_SINGLE;
4127		/*
4128		 * Check transfer tx/rx_nbits:
4129		 * 1. check the value matches one of single, dual and quad
4130		 * 2. check tx/rx_nbits match the mode in spi_device
4131		 */
4132		if (xfer->tx_buf) {
4133			if (spi->mode & SPI_NO_TX)
4134				return -EINVAL;
4135			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4136				xfer->tx_nbits != SPI_NBITS_DUAL &&
4137				xfer->tx_nbits != SPI_NBITS_QUAD &&
4138				xfer->tx_nbits != SPI_NBITS_OCTAL)
4139				return -EINVAL;
4140			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4141				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4142				return -EINVAL;
4143			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4144				!(spi->mode & SPI_TX_QUAD))
4145				return -EINVAL;
4146		}
4147		/* Check transfer rx_nbits */
4148		if (xfer->rx_buf) {
4149			if (spi->mode & SPI_NO_RX)
4150				return -EINVAL;
4151			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4152				xfer->rx_nbits != SPI_NBITS_DUAL &&
4153				xfer->rx_nbits != SPI_NBITS_QUAD &&
4154				xfer->rx_nbits != SPI_NBITS_OCTAL)
4155				return -EINVAL;
4156			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4157				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4158				return -EINVAL;
4159			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4160				!(spi->mode & SPI_RX_QUAD))
4161				return -EINVAL;
4162		}
4163
4164		if (_spi_xfer_word_delay_update(xfer, spi))
4165			return -EINVAL;
4166	}
4167
4168	message->status = -EINPROGRESS;
4169
4170	return 0;
4171}
4172
4173/*
4174 * spi_split_transfers - generic handling of transfer splitting
4175 * @msg: the message to split
4176 *
4177 * Under certain conditions, a SPI controller may not support arbitrary
4178 * transfer sizes or other features required by a peripheral. This function
4179 * will split the transfers in the message into smaller transfers that are
4180 * supported by the controller.
4181 *
4182 * Controllers with special requirements not covered here can also split
4183 * transfers in the optimize_message() callback.
4184 *
4185 * Context: can sleep
4186 * Return: zero on success, else a negative error code
4187 */
4188static int spi_split_transfers(struct spi_message *msg)
4189{
4190	struct spi_controller *ctlr = msg->spi->controller;
4191	struct spi_transfer *xfer;
4192	int ret;
4193
4194	/*
4195	 * If an SPI controller does not support toggling the CS line on each
4196	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4197	 * for the CS line, we can emulate the CS-per-word hardware function by
4198	 * splitting transfers into one-word transfers and ensuring that
4199	 * cs_change is set for each transfer.
4200	 */
4201	if ((msg->spi->mode & SPI_CS_WORD) &&
4202	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4203		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4204		if (ret)
4205			return ret;
4206
4207		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4208			/* Don't change cs_change on the last entry in the list */
4209			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4210				break;
4211
4212			xfer->cs_change = 1;
4213		}
4214	} else {
4215		ret = spi_split_transfers_maxsize(ctlr, msg,
4216						  spi_max_transfer_size(msg->spi));
4217		if (ret)
4218			return ret;
4219	}
4220
4221	return 0;
4222}
4223
4224/*
4225 * __spi_optimize_message - shared implementation for spi_optimize_message()
4226 *                          and spi_maybe_optimize_message()
4227 * @spi: the device that will be used for the message
4228 * @msg: the message to optimize
4229 *
4230 * Peripheral drivers will call spi_optimize_message() and the spi core will
4231 * call spi_maybe_optimize_message() instead of calling this directly.
4232 *
4233 * It is not valid to call this on a message that has already been optimized.
 
 
 
 
 
 
4234 *
4235 * Return: zero on success, else a negative error code
4236 */
4237static int __spi_optimize_message(struct spi_device *spi,
4238				  struct spi_message *msg)
4239{
4240	struct spi_controller *ctlr = spi->controller;
4241	int ret;
4242
4243	ret = __spi_validate(spi, msg);
4244	if (ret)
4245		return ret;
4246
4247	ret = spi_split_transfers(msg);
4248	if (ret)
4249		return ret;
4250
4251	if (ctlr->optimize_message) {
4252		ret = ctlr->optimize_message(msg);
4253		if (ret) {
4254			spi_res_release(ctlr, msg);
4255			return ret;
4256		}
4257	}
4258
4259	msg->optimized = true;
4260
4261	return 0;
4262}
4263
4264/*
4265 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4266 * @spi: the device that will be used for the message
4267 * @msg: the message to optimize
4268 * Return: zero on success, else a negative error code
4269 */
4270static int spi_maybe_optimize_message(struct spi_device *spi,
4271				      struct spi_message *msg)
4272{
4273	if (spi->controller->defer_optimize_message) {
4274		msg->spi = spi;
4275		return 0;
4276	}
4277
4278	if (msg->pre_optimized)
4279		return 0;
4280
4281	return __spi_optimize_message(spi, msg);
4282}
4283
4284/**
4285 * spi_optimize_message - do any one-time validation and setup for a SPI message
4286 * @spi: the device that will be used for the message
4287 * @msg: the message to optimize
4288 *
4289 * Peripheral drivers that reuse the same message repeatedly may call this to
4290 * perform as much message prep as possible once, rather than repeating it each
4291 * time a message transfer is performed to improve throughput and reduce CPU
4292 * usage.
4293 *
4294 * Once a message has been optimized, it cannot be modified with the exception
4295 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296 * only the data in the memory it points to).
4297 *
4298 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299 * to avoid leaking resources.
 
 
 
 
4300 *
4301 * Context: can sleep
4302 * Return: zero on success, else a negative error code
4303 */
4304int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305{
 
4306	int ret;
 
4307
4308	/*
4309	 * Pre-optimization is not supported and optimization is deferred e.g.
4310	 * when using spi-mux.
4311	 */
4312	if (spi->controller->defer_optimize_message)
4313		return 0;
4314
4315	ret = __spi_optimize_message(spi, msg);
4316	if (ret)
4317		return ret;
4318
4319	/*
4320	 * This flag indicates that the peripheral driver called spi_optimize_message()
4321	 * and therefore we shouldn't unoptimize message automatically when finalizing
4322	 * the message but rather wait until spi_unoptimize_message() is called
4323	 * by the peripheral driver.
4324	 */
4325	msg->pre_optimized = true;
4326
4327	return 0;
4328}
4329EXPORT_SYMBOL_GPL(spi_optimize_message);
4330
4331/**
4332 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4333 * @msg: the message to unoptimize
4334 *
4335 * Calls to this function must be balanced with calls to spi_optimize_message().
4336 *
4337 * Context: can sleep
4338 */
4339void spi_unoptimize_message(struct spi_message *msg)
4340{
4341	if (msg->spi->controller->defer_optimize_message)
4342		return;
4343
4344	__spi_unoptimize_message(msg);
4345	msg->pre_optimized = false;
4346}
4347EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4348
4349static int __spi_async(struct spi_device *spi, struct spi_message *message)
4350{
4351	struct spi_controller *ctlr = spi->controller;
4352	struct spi_transfer *xfer;
4353
4354	/*
4355	 * Some controllers do not support doing regular SPI transfers. Return
4356	 * ENOTSUPP when this is the case.
4357	 */
4358	if (!ctlr->transfer)
4359		return -ENOTSUPP;
4360
4361	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4363
4364	trace_spi_message_submit(message);
4365
4366	if (!ctlr->ptp_sts_supported) {
4367		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368			xfer->ptp_sts_word_pre = 0;
4369			ptp_read_system_prets(xfer->ptp_sts);
4370		}
4371	}
4372
4373	return ctlr->transfer(spi, message);
4374}
4375
4376static void devm_spi_unoptimize_message(void *msg)
4377{
4378	spi_unoptimize_message(msg);
4379}
4380
4381/**
4382 * devm_spi_optimize_message - managed version of spi_optimize_message()
4383 * @dev: the device that manages @msg (usually @spi->dev)
4384 * @spi: the device that will be used for the message
4385 * @msg: the message to optimize
4386 * Return: zero on success, else a negative error code
4387 *
4388 * spi_unoptimize_message() will automatically be called when the device is
4389 * removed.
4390 */
4391int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4392			      struct spi_message *msg)
4393{
4394	int ret;
4395
4396	ret = spi_optimize_message(spi, msg);
4397	if (ret)
4398		return ret;
4399
4400	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4401}
4402EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4403
4404/**
4405 * spi_async - asynchronous SPI transfer
4406 * @spi: device with which data will be exchanged
4407 * @message: describes the data transfers, including completion callback
4408 * Context: any (IRQs may be blocked, etc)
4409 *
4410 * This call may be used in_irq and other contexts which can't sleep,
4411 * as well as from task contexts which can sleep.
4412 *
4413 * The completion callback is invoked in a context which can't sleep.
4414 * Before that invocation, the value of message->status is undefined.
4415 * When the callback is issued, message->status holds either zero (to
4416 * indicate complete success) or a negative error code.  After that
4417 * callback returns, the driver which issued the transfer request may
4418 * deallocate the associated memory; it's no longer in use by any SPI
4419 * core or controller driver code.
4420 *
4421 * Note that although all messages to a spi_device are handled in
4422 * FIFO order, messages may go to different devices in other orders.
4423 * Some device might be higher priority, or have various "hard" access
4424 * time requirements, for example.
4425 *
4426 * On detection of any fault during the transfer, processing of
4427 * the entire message is aborted, and the device is deselected.
4428 * Until returning from the associated message completion callback,
4429 * no other spi_message queued to that device will be processed.
4430 * (This rule applies equally to all the synchronous transfer calls,
4431 * which are wrappers around this core asynchronous primitive.)
4432 *
4433 * Return: zero on success, else a negative error code.
4434 */
4435int spi_async(struct spi_device *spi, struct spi_message *message)
4436{
4437	struct spi_controller *ctlr = spi->controller;
4438	int ret;
4439	unsigned long flags;
4440
4441	ret = spi_maybe_optimize_message(spi, message);
4442	if (ret)
4443		return ret;
4444
4445	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4446
4447	if (ctlr->bus_lock_flag)
4448		ret = -EBUSY;
4449	else
4450		ret = __spi_async(spi, message);
4451
4452	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4453
4454	return ret;
 
4455}
4456EXPORT_SYMBOL_GPL(spi_async);
 
 
 
 
4457
4458static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4459{
4460	bool was_busy;
4461	int ret;
4462
4463	mutex_lock(&ctlr->io_mutex);
4464
4465	was_busy = ctlr->busy;
 
 
 
 
 
 
 
 
 
 
 
4466
4467	ctlr->cur_msg = msg;
4468	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4469	if (ret)
4470		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4471	ctlr->cur_msg = NULL;
4472	ctlr->fallback = false;
4473
4474	if (!was_busy) {
4475		kfree(ctlr->dummy_rx);
4476		ctlr->dummy_rx = NULL;
4477		kfree(ctlr->dummy_tx);
4478		ctlr->dummy_tx = NULL;
4479		if (ctlr->unprepare_transfer_hardware &&
4480		    ctlr->unprepare_transfer_hardware(ctlr))
4481			dev_err(&ctlr->dev,
4482				"failed to unprepare transfer hardware\n");
4483		spi_idle_runtime_pm(ctlr);
4484	}
 
 
 
 
 
4485
4486	mutex_unlock(&ctlr->io_mutex);
4487}
 
4488
4489/*-------------------------------------------------------------------------*/
4490
4491/*
4492 * Utility methods for SPI protocol drivers, layered on
4493 * top of the core.  Some other utility methods are defined as
4494 * inline functions.
4495 */
4496
4497static void spi_complete(void *arg)
4498{
4499	complete(arg);
4500}
4501
4502static int __spi_sync(struct spi_device *spi, struct spi_message *message)
 
4503{
4504	DECLARE_COMPLETION_ONSTACK(done);
4505	unsigned long flags;
4506	int status;
4507	struct spi_controller *ctlr = spi->controller;
4508
4509	if (__spi_check_suspended(ctlr)) {
4510		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4511		return -ESHUTDOWN;
4512	}
4513
4514	status = spi_maybe_optimize_message(spi, message);
4515	if (status)
4516		return status;
4517
4518	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4519	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
 
4520
4521	/*
4522	 * Checking queue_empty here only guarantees async/sync message
4523	 * ordering when coming from the same context. It does not need to
4524	 * guard against reentrancy from a different context. The io_mutex
4525	 * will catch those cases.
 
 
 
 
 
4526	 */
4527	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4528		message->actual_length = 0;
4529		message->status = -EINPROGRESS;
4530
4531		trace_spi_message_submit(message);
4532
4533		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4534		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4535
4536		__spi_transfer_message_noqueue(ctlr, message);
4537
4538		return message->status;
4539	}
4540
4541	/*
4542	 * There are messages in the async queue that could have originated
4543	 * from the same context, so we need to preserve ordering.
4544	 * Therefor we send the message to the async queue and wait until they
4545	 * are completed.
4546	 */
4547	message->complete = spi_complete;
4548	message->context = &done;
4549
4550	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4551	status = __spi_async(spi, message);
4552	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4553
4554	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
4555		wait_for_completion(&done);
4556		status = message->status;
4557	}
4558	message->complete = NULL;
4559	message->context = NULL;
4560
4561	return status;
4562}
4563
4564/**
4565 * spi_sync - blocking/synchronous SPI data transfers
4566 * @spi: device with which data will be exchanged
4567 * @message: describes the data transfers
4568 * Context: can sleep
4569 *
4570 * This call may only be used from a context that may sleep.  The sleep
4571 * is non-interruptible, and has no timeout.  Low-overhead controller
4572 * drivers may DMA directly into and out of the message buffers.
4573 *
4574 * Note that the SPI device's chip select is active during the message,
4575 * and then is normally disabled between messages.  Drivers for some
4576 * frequently-used devices may want to minimize costs of selecting a chip,
4577 * by leaving it selected in anticipation that the next message will go
4578 * to the same chip.  (That may increase power usage.)
4579 *
4580 * Also, the caller is guaranteeing that the memory associated with the
4581 * message will not be freed before this call returns.
4582 *
4583 * Return: zero on success, else a negative error code.
4584 */
4585int spi_sync(struct spi_device *spi, struct spi_message *message)
4586{
4587	int ret;
4588
4589	mutex_lock(&spi->controller->bus_lock_mutex);
4590	ret = __spi_sync(spi, message);
4591	mutex_unlock(&spi->controller->bus_lock_mutex);
4592
4593	return ret;
4594}
4595EXPORT_SYMBOL_GPL(spi_sync);
4596
4597/**
4598 * spi_sync_locked - version of spi_sync with exclusive bus usage
4599 * @spi: device with which data will be exchanged
4600 * @message: describes the data transfers
4601 * Context: can sleep
4602 *
4603 * This call may only be used from a context that may sleep.  The sleep
4604 * is non-interruptible, and has no timeout.  Low-overhead controller
4605 * drivers may DMA directly into and out of the message buffers.
4606 *
4607 * This call should be used by drivers that require exclusive access to the
4608 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4609 * be released by a spi_bus_unlock call when the exclusive access is over.
4610 *
4611 * Return: zero on success, else a negative error code.
4612 */
4613int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4614{
4615	return __spi_sync(spi, message);
4616}
4617EXPORT_SYMBOL_GPL(spi_sync_locked);
4618
4619/**
4620 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4621 * @ctlr: SPI bus master that should be locked for exclusive bus access
4622 * Context: can sleep
4623 *
4624 * This call may only be used from a context that may sleep.  The sleep
4625 * is non-interruptible, and has no timeout.
4626 *
4627 * This call should be used by drivers that require exclusive access to the
4628 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4629 * exclusive access is over. Data transfer must be done by spi_sync_locked
4630 * and spi_async_locked calls when the SPI bus lock is held.
4631 *
4632 * Return: always zero.
4633 */
4634int spi_bus_lock(struct spi_controller *ctlr)
4635{
4636	unsigned long flags;
4637
4638	mutex_lock(&ctlr->bus_lock_mutex);
4639
4640	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4641	ctlr->bus_lock_flag = 1;
4642	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4643
4644	/* Mutex remains locked until spi_bus_unlock() is called */
4645
4646	return 0;
4647}
4648EXPORT_SYMBOL_GPL(spi_bus_lock);
4649
4650/**
4651 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4652 * @ctlr: SPI bus master that was locked for exclusive bus access
4653 * Context: can sleep
4654 *
4655 * This call may only be used from a context that may sleep.  The sleep
4656 * is non-interruptible, and has no timeout.
4657 *
4658 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4659 * call.
4660 *
4661 * Return: always zero.
4662 */
4663int spi_bus_unlock(struct spi_controller *ctlr)
4664{
4665	ctlr->bus_lock_flag = 0;
4666
4667	mutex_unlock(&ctlr->bus_lock_mutex);
4668
4669	return 0;
4670}
4671EXPORT_SYMBOL_GPL(spi_bus_unlock);
4672
4673/* Portable code must never pass more than 32 bytes */
4674#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4675
4676static u8	*buf;
4677
4678/**
4679 * spi_write_then_read - SPI synchronous write followed by read
4680 * @spi: device with which data will be exchanged
4681 * @txbuf: data to be written (need not be DMA-safe)
4682 * @n_tx: size of txbuf, in bytes
4683 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4684 * @n_rx: size of rxbuf, in bytes
4685 * Context: can sleep
4686 *
4687 * This performs a half duplex MicroWire style transaction with the
4688 * device, sending txbuf and then reading rxbuf.  The return value
4689 * is zero for success, else a negative errno status code.
4690 * This call may only be used from a context that may sleep.
4691 *
4692 * Parameters to this routine are always copied using a small buffer.
 
4693 * Performance-sensitive or bulk transfer code should instead use
4694 * spi_{async,sync}() calls with DMA-safe buffers.
4695 *
4696 * Return: zero on success, else a negative error code.
4697 */
4698int spi_write_then_read(struct spi_device *spi,
4699		const void *txbuf, unsigned n_tx,
4700		void *rxbuf, unsigned n_rx)
4701{
4702	static DEFINE_MUTEX(lock);
4703
4704	int			status;
4705	struct spi_message	message;
4706	struct spi_transfer	x[2];
4707	u8			*local_buf;
4708
4709	/*
4710	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4711	 * copying here, (as a pure convenience thing), but we can
4712	 * keep heap costs out of the hot path unless someone else is
4713	 * using the pre-allocated buffer or the transfer is too large.
4714	 */
4715	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4716		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4717				    GFP_KERNEL | GFP_DMA);
4718		if (!local_buf)
4719			return -ENOMEM;
4720	} else {
4721		local_buf = buf;
4722	}
4723
4724	spi_message_init(&message);
4725	memset(x, 0, sizeof(x));
4726	if (n_tx) {
4727		x[0].len = n_tx;
4728		spi_message_add_tail(&x[0], &message);
4729	}
4730	if (n_rx) {
4731		x[1].len = n_rx;
4732		spi_message_add_tail(&x[1], &message);
4733	}
4734
4735	memcpy(local_buf, txbuf, n_tx);
4736	x[0].tx_buf = local_buf;
4737	x[1].rx_buf = local_buf + n_tx;
4738
4739	/* Do the I/O */
4740	status = spi_sync(spi, &message);
4741	if (status == 0)
4742		memcpy(rxbuf, x[1].rx_buf, n_rx);
4743
4744	if (x[0].tx_buf == buf)
4745		mutex_unlock(&lock);
4746	else
4747		kfree(local_buf);
4748
4749	return status;
4750}
4751EXPORT_SYMBOL_GPL(spi_write_then_read);
4752
4753/*-------------------------------------------------------------------------*/
4754
4755#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4756/* Must call put_device() when done with returned spi_device device */
4757static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4758{
4759	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
 
4760
 
 
 
 
 
4761	return dev ? to_spi_device(dev) : NULL;
4762}
4763
4764/* The spi controllers are not using spi_bus, so we find it with another way */
4765static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
 
 
 
 
 
4766{
4767	struct device *dev;
4768
4769	dev = class_find_device_by_of_node(&spi_master_class, node);
4770	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4771		dev = class_find_device_by_of_node(&spi_slave_class, node);
4772	if (!dev)
4773		return NULL;
4774
4775	/* Reference got in class_find_device */
4776	return container_of(dev, struct spi_controller, dev);
4777}
4778
4779static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4780			 void *arg)
4781{
4782	struct of_reconfig_data *rd = arg;
4783	struct spi_controller *ctlr;
4784	struct spi_device *spi;
4785
4786	switch (of_reconfig_get_state_change(action, arg)) {
4787	case OF_RECONFIG_CHANGE_ADD:
4788		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4789		if (ctlr == NULL)
4790			return NOTIFY_OK;	/* Not for us */
4791
4792		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4793			put_device(&ctlr->dev);
4794			return NOTIFY_OK;
4795		}
4796
4797		/*
4798		 * Clear the flag before adding the device so that fw_devlink
4799		 * doesn't skip adding consumers to this device.
4800		 */
4801		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4802		spi = of_register_spi_device(ctlr, rd->dn);
4803		put_device(&ctlr->dev);
4804
4805		if (IS_ERR(spi)) {
4806			pr_err("%s: failed to create for '%pOF'\n",
4807					__func__, rd->dn);
4808			of_node_clear_flag(rd->dn, OF_POPULATED);
4809			return notifier_from_errno(PTR_ERR(spi));
4810		}
4811		break;
4812
4813	case OF_RECONFIG_CHANGE_REMOVE:
4814		/* Already depopulated? */
4815		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4816			return NOTIFY_OK;
4817
4818		/* Find our device by node */
4819		spi = of_find_spi_device_by_node(rd->dn);
4820		if (spi == NULL)
4821			return NOTIFY_OK;	/* No? not meant for us */
4822
4823		/* Unregister takes one ref away */
4824		spi_unregister_device(spi);
4825
4826		/* And put the reference of the find */
4827		put_device(&spi->dev);
4828		break;
4829	}
4830
4831	return NOTIFY_OK;
4832}
4833
4834static struct notifier_block spi_of_notifier = {
4835	.notifier_call = of_spi_notify,
4836};
4837#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4838extern struct notifier_block spi_of_notifier;
4839#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4840
4841#if IS_ENABLED(CONFIG_ACPI)
4842static int spi_acpi_controller_match(struct device *dev, const void *data)
4843{
4844	return ACPI_COMPANION(dev->parent) == data;
4845}
4846
4847struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4848{
4849	struct device *dev;
4850
4851	dev = class_find_device(&spi_master_class, NULL, adev,
4852				spi_acpi_controller_match);
4853	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4854		dev = class_find_device(&spi_slave_class, NULL, adev,
4855					spi_acpi_controller_match);
4856	if (!dev)
4857		return NULL;
4858
4859	return container_of(dev, struct spi_controller, dev);
4860}
4861EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4862
4863static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4864{
4865	struct device *dev;
4866
4867	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4868	return to_spi_device(dev);
4869}
4870
4871static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4872			   void *arg)
4873{
4874	struct acpi_device *adev = arg;
4875	struct spi_controller *ctlr;
4876	struct spi_device *spi;
4877
4878	switch (value) {
4879	case ACPI_RECONFIG_DEVICE_ADD:
4880		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4881		if (!ctlr)
4882			break;
4883
4884		acpi_register_spi_device(ctlr, adev);
4885		put_device(&ctlr->dev);
4886		break;
4887	case ACPI_RECONFIG_DEVICE_REMOVE:
4888		if (!acpi_device_enumerated(adev))
4889			break;
4890
4891		spi = acpi_spi_find_device_by_adev(adev);
4892		if (!spi)
4893			break;
4894
4895		spi_unregister_device(spi);
4896		put_device(&spi->dev);
4897		break;
4898	}
4899
4900	return NOTIFY_OK;
4901}
4902
4903static struct notifier_block spi_acpi_notifier = {
4904	.notifier_call = acpi_spi_notify,
4905};
4906#else
4907extern struct notifier_block spi_acpi_notifier;
4908#endif
4909
4910static int __init spi_init(void)
4911{
4912	int	status;
4913
4914	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4915	if (!buf) {
4916		status = -ENOMEM;
4917		goto err0;
4918	}
4919
4920	status = bus_register(&spi_bus_type);
4921	if (status < 0)
4922		goto err1;
4923
4924	status = class_register(&spi_master_class);
4925	if (status < 0)
4926		goto err2;
4927
4928	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4929		status = class_register(&spi_slave_class);
4930		if (status < 0)
4931			goto err3;
4932	}
4933
4934	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4935		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4936	if (IS_ENABLED(CONFIG_ACPI))
4937		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4938
4939	return 0;
4940
4941err3:
4942	class_unregister(&spi_master_class);
4943err2:
4944	bus_unregister(&spi_bus_type);
4945err1:
4946	kfree(buf);
4947	buf = NULL;
4948err0:
4949	return status;
4950}
4951
4952/*
4953 * A board_info is normally registered in arch_initcall(),
4954 * but even essential drivers wait till later.
4955 *
4956 * REVISIT only boardinfo really needs static linking. The rest (device and
4957 * driver registration) _could_ be dynamically linked (modular) ... Costs
4958 * include needing to have boardinfo data structures be much more public.
4959 */
4960postcore_initcall(spi_init);
v4.6
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
 
 
 
  19#include <linux/device.h>
 
 
 
 
 
 
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
 
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
 
 
 
 
 
 
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/export.h>
  35#include <linux/sched/rt.h>
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38#include <linux/ioport.h>
  39#include <linux/acpi.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/spi.h>
 
 
 
 
 
 
  43
  44static void spidev_release(struct device *dev)
  45{
  46	struct spi_device	*spi = to_spi_device(dev);
  47
  48	/* spi masters may cleanup for released devices */
  49	if (spi->master->cleanup)
  50		spi->master->cleanup(spi);
  51
  52	spi_master_put(spi->master);
  53	kfree(spi);
  54}
  55
  56static ssize_t
  57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  58{
  59	const struct spi_device	*spi = to_spi_device(dev);
  60	int len;
  61
  62	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  63	if (len != -ENODEV)
  64		return len;
  65
  66	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  67}
  68static DEVICE_ATTR_RO(modalias);
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70#define SPI_STATISTICS_ATTRS(field, file)				\
  71static ssize_t spi_master_##field##_show(struct device *dev,		\
  72					 struct device_attribute *attr,	\
  73					 char *buf)			\
  74{									\
  75	struct spi_master *master = container_of(dev,			\
  76						 struct spi_master, dev); \
  77	return spi_statistics_##field##_show(&master->statistics, buf);	\
  78}									\
  79static struct device_attribute dev_attr_spi_master_##field = {		\
  80	.attr = { .name = file, .mode = S_IRUGO },			\
  81	.show = spi_master_##field##_show,				\
  82};									\
  83static ssize_t spi_device_##field##_show(struct device *dev,		\
  84					 struct device_attribute *attr,	\
  85					char *buf)			\
  86{									\
  87	struct spi_device *spi = to_spi_device(dev);			\
  88	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  89}									\
  90static struct device_attribute dev_attr_spi_device_##field = {		\
  91	.attr = { .name = file, .mode = S_IRUGO },			\
  92	.show = spi_device_##field##_show,				\
  93}
  94
  95#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
  96static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  97					    char *buf)			\
  98{									\
  99	unsigned long flags;						\
 100	ssize_t len;							\
 101	spin_lock_irqsave(&stat->lock, flags);				\
 102	len = sprintf(buf, format_string, stat->field);			\
 103	spin_unlock_irqrestore(&stat->lock, flags);			\
 104	return len;							\
 105}									\
 106SPI_STATISTICS_ATTRS(name, file)
 107
 108#define SPI_STATISTICS_SHOW(field, format_string)			\
 109	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 110				 field, format_string)
 111
 112SPI_STATISTICS_SHOW(messages, "%lu");
 113SPI_STATISTICS_SHOW(transfers, "%lu");
 114SPI_STATISTICS_SHOW(errors, "%lu");
 115SPI_STATISTICS_SHOW(timedout, "%lu");
 116
 117SPI_STATISTICS_SHOW(spi_sync, "%lu");
 118SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 119SPI_STATISTICS_SHOW(spi_async, "%lu");
 120
 121SPI_STATISTICS_SHOW(bytes, "%llu");
 122SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 123SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 124
 125#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 126	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 127				 "transfer_bytes_histo_" number,	\
 128				 transfer_bytes_histo[index],  "%lu")
 129SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 130SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 131SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 146
 147SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 148
 149static struct attribute *spi_dev_attrs[] = {
 150	&dev_attr_modalias.attr,
 
 151	NULL,
 152};
 153
 154static const struct attribute_group spi_dev_group = {
 155	.attrs  = spi_dev_attrs,
 156};
 157
 158static struct attribute *spi_device_statistics_attrs[] = {
 159	&dev_attr_spi_device_messages.attr,
 160	&dev_attr_spi_device_transfers.attr,
 161	&dev_attr_spi_device_errors.attr,
 162	&dev_attr_spi_device_timedout.attr,
 163	&dev_attr_spi_device_spi_sync.attr,
 164	&dev_attr_spi_device_spi_sync_immediate.attr,
 165	&dev_attr_spi_device_spi_async.attr,
 166	&dev_attr_spi_device_bytes.attr,
 167	&dev_attr_spi_device_bytes_rx.attr,
 168	&dev_attr_spi_device_bytes_tx.attr,
 169	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 170	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 171	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 172	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 173	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 174	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 175	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 186	&dev_attr_spi_device_transfers_split_maxsize.attr,
 187	NULL,
 188};
 189
 190static const struct attribute_group spi_device_statistics_group = {
 191	.name  = "statistics",
 192	.attrs  = spi_device_statistics_attrs,
 193};
 194
 195static const struct attribute_group *spi_dev_groups[] = {
 196	&spi_dev_group,
 197	&spi_device_statistics_group,
 198	NULL,
 199};
 200
 201static struct attribute *spi_master_statistics_attrs[] = {
 202	&dev_attr_spi_master_messages.attr,
 203	&dev_attr_spi_master_transfers.attr,
 204	&dev_attr_spi_master_errors.attr,
 205	&dev_attr_spi_master_timedout.attr,
 206	&dev_attr_spi_master_spi_sync.attr,
 207	&dev_attr_spi_master_spi_sync_immediate.attr,
 208	&dev_attr_spi_master_spi_async.attr,
 209	&dev_attr_spi_master_bytes.attr,
 210	&dev_attr_spi_master_bytes_rx.attr,
 211	&dev_attr_spi_master_bytes_tx.attr,
 212	&dev_attr_spi_master_transfer_bytes_histo0.attr,
 213	&dev_attr_spi_master_transfer_bytes_histo1.attr,
 214	&dev_attr_spi_master_transfer_bytes_histo2.attr,
 215	&dev_attr_spi_master_transfer_bytes_histo3.attr,
 216	&dev_attr_spi_master_transfer_bytes_histo4.attr,
 217	&dev_attr_spi_master_transfer_bytes_histo5.attr,
 218	&dev_attr_spi_master_transfer_bytes_histo6.attr,
 219	&dev_attr_spi_master_transfer_bytes_histo7.attr,
 220	&dev_attr_spi_master_transfer_bytes_histo8.attr,
 221	&dev_attr_spi_master_transfer_bytes_histo9.attr,
 222	&dev_attr_spi_master_transfer_bytes_histo10.attr,
 223	&dev_attr_spi_master_transfer_bytes_histo11.attr,
 224	&dev_attr_spi_master_transfer_bytes_histo12.attr,
 225	&dev_attr_spi_master_transfer_bytes_histo13.attr,
 226	&dev_attr_spi_master_transfer_bytes_histo14.attr,
 227	&dev_attr_spi_master_transfer_bytes_histo15.attr,
 228	&dev_attr_spi_master_transfer_bytes_histo16.attr,
 229	&dev_attr_spi_master_transfers_split_maxsize.attr,
 230	NULL,
 231};
 232
 233static const struct attribute_group spi_master_statistics_group = {
 234	.name  = "statistics",
 235	.attrs  = spi_master_statistics_attrs,
 236};
 237
 238static const struct attribute_group *spi_master_groups[] = {
 239	&spi_master_statistics_group,
 240	NULL,
 241};
 242
 243void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 244				       struct spi_transfer *xfer,
 245				       struct spi_master *master)
 246{
 247	unsigned long flags;
 248	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
 249
 250	if (l2len < 0)
 251		l2len = 0;
 252
 253	spin_lock_irqsave(&stats->lock, flags);
 254
 255	stats->transfers++;
 256	stats->transfer_bytes_histo[l2len]++;
 257
 258	stats->bytes += xfer->len;
 259	if ((xfer->tx_buf) &&
 260	    (xfer->tx_buf != master->dummy_tx))
 261		stats->bytes_tx += xfer->len;
 262	if ((xfer->rx_buf) &&
 263	    (xfer->rx_buf != master->dummy_rx))
 264		stats->bytes_rx += xfer->len;
 265
 266	spin_unlock_irqrestore(&stats->lock, flags);
 
 267}
 268EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 269
 270/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 271 * and the sysfs version makes coldplug work too.
 272 */
 273
 274static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 275						const struct spi_device *sdev)
 276{
 277	while (id->name[0]) {
 278		if (!strcmp(sdev->modalias, id->name))
 279			return id;
 280		id++;
 281	}
 282	return NULL;
 283}
 284
 285const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 286{
 287	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 288
 289	return spi_match_id(sdrv->id_table, sdev);
 290}
 291EXPORT_SYMBOL_GPL(spi_get_device_id);
 292
 293static int spi_match_device(struct device *dev, struct device_driver *drv)
 
 
 
 
 
 
 
 
 
 
 
 
 294{
 295	const struct spi_device	*spi = to_spi_device(dev);
 296	const struct spi_driver	*sdrv = to_spi_driver(drv);
 297
 
 
 
 
 298	/* Attempt an OF style match */
 299	if (of_driver_match_device(dev, drv))
 300		return 1;
 301
 302	/* Then try ACPI */
 303	if (acpi_driver_match_device(dev, drv))
 304		return 1;
 305
 306	if (sdrv->id_table)
 307		return !!spi_match_id(sdrv->id_table, spi);
 308
 309	return strcmp(spi->modalias, drv->name) == 0;
 310}
 311
 312static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 313{
 314	const struct spi_device		*spi = to_spi_device(dev);
 315	int rc;
 316
 317	rc = acpi_device_uevent_modalias(dev, env);
 318	if (rc != -ENODEV)
 319		return rc;
 320
 321	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 322	return 0;
 323}
 324
 325struct bus_type spi_bus_type = {
 326	.name		= "spi",
 327	.dev_groups	= spi_dev_groups,
 328	.match		= spi_match_device,
 329	.uevent		= spi_uevent,
 330};
 331EXPORT_SYMBOL_GPL(spi_bus_type);
 332
 333
 334static int spi_drv_probe(struct device *dev)
 335{
 336	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 337	struct spi_device		*spi = to_spi_device(dev);
 338	int ret;
 339
 340	ret = of_clk_set_defaults(dev->of_node, false);
 341	if (ret)
 342		return ret;
 343
 344	if (dev->of_node) {
 345		spi->irq = of_irq_get(dev->of_node, 0);
 346		if (spi->irq == -EPROBE_DEFER)
 
 
 
 
 
 
 
 
 
 
 347			return -EPROBE_DEFER;
 348		if (spi->irq < 0)
 349			spi->irq = 0;
 350	}
 351
 352	ret = dev_pm_domain_attach(dev, true);
 353	if (ret != -EPROBE_DEFER) {
 
 
 
 354		ret = sdrv->probe(spi);
 355		if (ret)
 356			dev_pm_domain_detach(dev, true);
 357	}
 358
 359	return ret;
 360}
 361
 362static int spi_drv_remove(struct device *dev)
 363{
 364	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 365	int ret;
 366
 367	ret = sdrv->remove(to_spi_device(dev));
 
 
 368	dev_pm_domain_detach(dev, true);
 369
 370	return ret;
 371}
 372
 373static void spi_drv_shutdown(struct device *dev)
 374{
 375	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 376
 377	sdrv->shutdown(to_spi_device(dev));
 
 
 378}
 379
 
 
 
 
 
 
 
 
 
 
 
 380/**
 381 * __spi_register_driver - register a SPI driver
 382 * @owner: owner module of the driver to register
 383 * @sdrv: the driver to register
 384 * Context: can sleep
 385 *
 386 * Return: zero on success, else a negative error code.
 387 */
 388int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 389{
 390	sdrv->driver.owner = owner;
 391	sdrv->driver.bus = &spi_bus_type;
 392	if (sdrv->probe)
 393		sdrv->driver.probe = spi_drv_probe;
 394	if (sdrv->remove)
 395		sdrv->driver.remove = spi_drv_remove;
 396	if (sdrv->shutdown)
 397		sdrv->driver.shutdown = spi_drv_shutdown;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398	return driver_register(&sdrv->driver);
 399}
 400EXPORT_SYMBOL_GPL(__spi_register_driver);
 401
 402/*-------------------------------------------------------------------------*/
 403
 404/* SPI devices should normally not be created by SPI device drivers; that
 405 * would make them board-specific.  Similarly with SPI master drivers.
 
 406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 407 * with other readonly (flashable) information about mainboard devices.
 408 */
 409
 410struct boardinfo {
 411	struct list_head	list;
 412	struct spi_board_info	board_info;
 413};
 414
 415static LIST_HEAD(board_list);
 416static LIST_HEAD(spi_master_list);
 417
 418/*
 419 * Used to protect add/del opertion for board_info list and
 420 * spi_master list, and their matching process
 
 421 */
 422static DEFINE_MUTEX(board_lock);
 423
 424/**
 425 * spi_alloc_device - Allocate a new SPI device
 426 * @master: Controller to which device is connected
 427 * Context: can sleep
 428 *
 429 * Allows a driver to allocate and initialize a spi_device without
 430 * registering it immediately.  This allows a driver to directly
 431 * fill the spi_device with device parameters before calling
 432 * spi_add_device() on it.
 433 *
 434 * Caller is responsible to call spi_add_device() on the returned
 435 * spi_device structure to add it to the SPI master.  If the caller
 436 * needs to discard the spi_device without adding it, then it should
 437 * call spi_dev_put() on it.
 438 *
 439 * Return: a pointer to the new device, or NULL.
 440 */
 441struct spi_device *spi_alloc_device(struct spi_master *master)
 442{
 443	struct spi_device	*spi;
 444
 445	if (!spi_master_get(master))
 446		return NULL;
 447
 448	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 449	if (!spi) {
 450		spi_master_put(master);
 451		return NULL;
 452	}
 453
 454	spi->master = master;
 455	spi->dev.parent = &master->dev;
 
 
 
 
 
 
 
 456	spi->dev.bus = &spi_bus_type;
 457	spi->dev.release = spidev_release;
 458	spi->cs_gpio = -ENOENT;
 459
 460	spin_lock_init(&spi->statistics.lock);
 461
 462	device_initialize(&spi->dev);
 463	return spi;
 464}
 465EXPORT_SYMBOL_GPL(spi_alloc_device);
 466
 467static void spi_dev_set_name(struct spi_device *spi)
 468{
 469	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 
 470
 471	if (adev) {
 472		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 473		return;
 474	}
 475
 476	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 477		     spi->chip_select);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480static int spi_dev_check(struct device *dev, void *data)
 481{
 482	struct spi_device *spi = to_spi_device(dev);
 483	struct spi_device *new_spi = data;
 
 484
 485	if (spi->master == new_spi->master &&
 486	    spi->chip_select == new_spi->chip_select)
 487		return -EBUSY;
 
 
 
 
 488	return 0;
 489}
 490
 491/**
 492 * spi_add_device - Add spi_device allocated with spi_alloc_device
 493 * @spi: spi_device to register
 494 *
 495 * Companion function to spi_alloc_device.  Devices allocated with
 496 * spi_alloc_device can be added onto the spi bus with this function.
 497 *
 498 * Return: 0 on success; negative errno on failure
 499 */
 500int spi_add_device(struct spi_device *spi)
 501{
 502	static DEFINE_MUTEX(spi_add_lock);
 503	struct spi_master *master = spi->master;
 504	struct device *dev = master->dev.parent;
 505	int status;
 
 
 
 
 
 
 
 
 
 
 506
 507	/* Chipselects are numbered 0..max; validate. */
 508	if (spi->chip_select >= master->num_chipselect) {
 509		dev_err(dev, "cs%d >= max %d\n",
 510			spi->chip_select,
 511			master->num_chipselect);
 512		return -EINVAL;
 
 
 
 
 513	}
 514
 515	/* Set the bus ID string */
 516	spi_dev_set_name(spi);
 517
 518	/* We need to make sure there's no other device with this
 
 519	 * chipselect **BEFORE** we call setup(), else we'll trash
 520	 * its configuration.  Lock against concurrent add() calls.
 521	 */
 522	mutex_lock(&spi_add_lock);
 
 
 523
 524	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 525	if (status) {
 526		dev_err(dev, "chipselect %d already in use\n",
 527				spi->chip_select);
 528		goto done;
 529	}
 530
 531	if (master->cs_gpios)
 532		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 533
 534	/* Drivers may modify this initial i/o setup, but will
 
 
 
 
 
 
 
 
 535	 * normally rely on the device being setup.  Devices
 536	 * using SPI_CS_HIGH can't coexist well otherwise...
 537	 */
 538	status = spi_setup(spi);
 539	if (status < 0) {
 540		dev_err(dev, "can't setup %s, status %d\n",
 541				dev_name(&spi->dev), status);
 542		goto done;
 543	}
 544
 545	/* Device may be bound to an active driver when this returns */
 546	status = device_add(&spi->dev);
 547	if (status < 0)
 548		dev_err(dev, "can't add %s, status %d\n",
 549				dev_name(&spi->dev), status);
 550	else
 
 551		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 553done:
 554	mutex_unlock(&spi_add_lock);
 
 
 
 
 555	return status;
 556}
 557EXPORT_SYMBOL_GPL(spi_add_device);
 558
 
 
 
 
 
 
 
 
 559/**
 560 * spi_new_device - instantiate one new SPI device
 561 * @master: Controller to which device is connected
 562 * @chip: Describes the SPI device
 563 * Context: can sleep
 564 *
 565 * On typical mainboards, this is purely internal; and it's not needed
 566 * after board init creates the hard-wired devices.  Some development
 567 * platforms may not be able to use spi_register_board_info though, and
 568 * this is exported so that for example a USB or parport based adapter
 569 * driver could add devices (which it would learn about out-of-band).
 570 *
 571 * Return: the new device, or NULL.
 572 */
 573struct spi_device *spi_new_device(struct spi_master *master,
 574				  struct spi_board_info *chip)
 575{
 576	struct spi_device	*proxy;
 577	int			status;
 578
 579	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 580	 *
 581	 * Also, unless we change the return value convention to use
 582	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 583	 * suggests syslogged diagnostics are best here (ugh).
 584	 */
 585
 586	proxy = spi_alloc_device(master);
 587	if (!proxy)
 588		return NULL;
 589
 590	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 591
 592	proxy->chip_select = chip->chip_select;
 
 
 
 593	proxy->max_speed_hz = chip->max_speed_hz;
 594	proxy->mode = chip->mode;
 595	proxy->irq = chip->irq;
 596	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 597	proxy->dev.platform_data = (void *) chip->platform_data;
 598	proxy->controller_data = chip->controller_data;
 599	proxy->controller_state = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601	status = spi_add_device(proxy);
 602	if (status < 0) {
 603		spi_dev_put(proxy);
 604		return NULL;
 605	}
 606
 607	return proxy;
 
 
 
 
 
 608}
 609EXPORT_SYMBOL_GPL(spi_new_device);
 610
 611/**
 612 * spi_unregister_device - unregister a single SPI device
 613 * @spi: spi_device to unregister
 614 *
 615 * Start making the passed SPI device vanish. Normally this would be handled
 616 * by spi_unregister_master().
 617 */
 618void spi_unregister_device(struct spi_device *spi)
 619{
 620	if (!spi)
 621		return;
 622
 623	if (spi->dev.of_node)
 624		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 625	device_unregister(&spi->dev);
 
 
 
 
 
 
 
 626}
 627EXPORT_SYMBOL_GPL(spi_unregister_device);
 628
 629static void spi_match_master_to_boardinfo(struct spi_master *master,
 630				struct spi_board_info *bi)
 631{
 632	struct spi_device *dev;
 633
 634	if (master->bus_num != bi->bus_num)
 635		return;
 636
 637	dev = spi_new_device(master, bi);
 638	if (!dev)
 639		dev_err(master->dev.parent, "can't create new device for %s\n",
 640			bi->modalias);
 641}
 642
 643/**
 644 * spi_register_board_info - register SPI devices for a given board
 645 * @info: array of chip descriptors
 646 * @n: how many descriptors are provided
 647 * Context: can sleep
 648 *
 649 * Board-specific early init code calls this (probably during arch_initcall)
 650 * with segments of the SPI device table.  Any device nodes are created later,
 651 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 652 * this table of devices forever, so that reloading a controller driver will
 653 * not make Linux forget about these hard-wired devices.
 654 *
 655 * Other code can also call this, e.g. a particular add-on board might provide
 656 * SPI devices through its expansion connector, so code initializing that board
 657 * would naturally declare its SPI devices.
 658 *
 659 * The board info passed can safely be __initdata ... but be careful of
 660 * any embedded pointers (platform_data, etc), they're copied as-is.
 661 *
 662 * Return: zero on success, else a negative error code.
 663 */
 664int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 665{
 666	struct boardinfo *bi;
 667	int i;
 668
 669	if (!n)
 670		return -EINVAL;
 671
 672	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 673	if (!bi)
 674		return -ENOMEM;
 675
 676	for (i = 0; i < n; i++, bi++, info++) {
 677		struct spi_master *master;
 678
 679		memcpy(&bi->board_info, info, sizeof(*info));
 
 680		mutex_lock(&board_lock);
 681		list_add_tail(&bi->list, &board_list);
 682		list_for_each_entry(master, &spi_master_list, list)
 683			spi_match_master_to_boardinfo(master, &bi->board_info);
 
 684		mutex_unlock(&board_lock);
 685	}
 686
 687	return 0;
 688}
 689
 690/*-------------------------------------------------------------------------*/
 691
 692static void spi_set_cs(struct spi_device *spi, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694	if (spi->mode & SPI_CS_HIGH)
 695		enable = !enable;
 696
 697	if (gpio_is_valid(spi->cs_gpio))
 698		gpio_set_value(spi->cs_gpio, !enable);
 699	else if (spi->master->set_cs)
 700		spi->master->set_cs(spi, !enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701}
 702
 703#ifdef CONFIG_HAS_DMA
 704static int spi_map_buf(struct spi_master *master, struct device *dev,
 705		       struct sg_table *sgt, void *buf, size_t len,
 706		       enum dma_data_direction dir)
 707{
 708	const bool vmalloced_buf = is_vmalloc_addr(buf);
 709	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 
 
 
 
 
 
 
 710	int desc_len;
 711	int sgs;
 712	struct page *vm_page;
 
 713	void *sg_buf;
 714	size_t min;
 715	int i, ret;
 716
 717	if (vmalloced_buf) {
 718		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 719		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 
 
 
 720	} else {
 721		desc_len = min_t(int, max_seg_size, master->max_dma_len);
 722		sgs = DIV_ROUND_UP(len, desc_len);
 723	}
 724
 725	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 726	if (ret != 0)
 727		return ret;
 728
 
 729	for (i = 0; i < sgs; i++) {
 730
 731		if (vmalloced_buf) {
 732			min = min_t(size_t,
 733				    len, desc_len - offset_in_page(buf));
 734			vm_page = vmalloc_to_page(buf);
 
 
 
 
 
 
 
 
 
 735			if (!vm_page) {
 736				sg_free_table(sgt);
 737				return -ENOMEM;
 738			}
 739			sg_set_page(&sgt->sgl[i], vm_page,
 740				    min, offset_in_page(buf));
 741		} else {
 742			min = min_t(size_t, len, desc_len);
 743			sg_buf = buf;
 744			sg_set_buf(&sgt->sgl[i], sg_buf, min);
 745		}
 746
 747		buf += min;
 748		len -= min;
 
 749	}
 750
 751	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 752	if (!ret)
 753		ret = -ENOMEM;
 754	if (ret < 0) {
 755		sg_free_table(sgt);
 756		return ret;
 757	}
 758
 759	sgt->nents = ret;
 
 
 
 
 
 
 
 
 760
 761	return 0;
 
 
 
 
 
 
 
 
 762}
 763
 764static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 765			  struct sg_table *sgt, enum dma_data_direction dir)
 766{
 767	if (sgt->orig_nents) {
 768		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 769		sg_free_table(sgt);
 770	}
 771}
 772
 773static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 774{
 775	struct device *tx_dev, *rx_dev;
 776	struct spi_transfer *xfer;
 777	int ret;
 778
 779	if (!master->can_dma)
 780		return 0;
 781
 782	if (master->dma_tx)
 783		tx_dev = master->dma_tx->device->dev;
 
 
 784	else
 785		tx_dev = &master->dev;
 786
 787	if (master->dma_rx)
 788		rx_dev = master->dma_rx->device->dev;
 
 
 789	else
 790		rx_dev = &master->dev;
 791
 
 792	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 793		if (!master->can_dma(master, msg->spi, xfer))
 
 
 
 794			continue;
 795
 796		if (xfer->tx_buf != NULL) {
 797			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 798					  (void *)xfer->tx_buf, xfer->len,
 799					  DMA_TO_DEVICE);
 
 800			if (ret != 0)
 801				return ret;
 
 
 802		}
 803
 804		if (xfer->rx_buf != NULL) {
 805			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 806					  xfer->rx_buf, xfer->len,
 807					  DMA_FROM_DEVICE);
 808			if (ret != 0) {
 809				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 810					      DMA_TO_DEVICE);
 
 
 811				return ret;
 812			}
 
 
 813		}
 814	}
 
 
 
 815
 816	master->cur_msg_mapped = true;
 
 817
 818	return 0;
 819}
 820
 821static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 822{
 
 
 823	struct spi_transfer *xfer;
 824	struct device *tx_dev, *rx_dev;
 825
 826	if (!master->cur_msg_mapped || !master->can_dma)
 827		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 828
 829	if (master->dma_tx)
 830		tx_dev = master->dma_tx->device->dev;
 831	else
 832		tx_dev = &master->dev;
 833
 834	if (master->dma_rx)
 835		rx_dev = master->dma_rx->device->dev;
 836	else
 837		rx_dev = &master->dev;
 
 838
 839	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 840		if (!master->can_dma(master, msg->spi, xfer))
 841			continue;
 
 
 842
 843		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 844		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 845	}
 
 
 846
 847	return 0;
 
 
 
 848}
 849#else /* !CONFIG_HAS_DMA */
 850static inline int __spi_map_msg(struct spi_master *master,
 851				struct spi_message *msg)
 852{
 853	return 0;
 854}
 855
 856static inline int __spi_unmap_msg(struct spi_master *master,
 857				  struct spi_message *msg)
 858{
 859	return 0;
 860}
 
 
 
 
 
 
 
 
 
 
 861#endif /* !CONFIG_HAS_DMA */
 862
 863static inline int spi_unmap_msg(struct spi_master *master,
 864				struct spi_message *msg)
 865{
 866	struct spi_transfer *xfer;
 867
 868	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 869		/*
 870		 * Restore the original value of tx_buf or rx_buf if they are
 871		 * NULL.
 872		 */
 873		if (xfer->tx_buf == master->dummy_tx)
 874			xfer->tx_buf = NULL;
 875		if (xfer->rx_buf == master->dummy_rx)
 876			xfer->rx_buf = NULL;
 877	}
 878
 879	return __spi_unmap_msg(master, msg);
 880}
 881
 882static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 883{
 884	struct spi_transfer *xfer;
 885	void *tmp;
 886	unsigned int max_tx, max_rx;
 887
 888	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 
 889		max_tx = 0;
 890		max_rx = 0;
 891
 892		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 893			if ((master->flags & SPI_MASTER_MUST_TX) &&
 894			    !xfer->tx_buf)
 895				max_tx = max(xfer->len, max_tx);
 896			if ((master->flags & SPI_MASTER_MUST_RX) &&
 897			    !xfer->rx_buf)
 898				max_rx = max(xfer->len, max_rx);
 899		}
 900
 901		if (max_tx) {
 902			tmp = krealloc(master->dummy_tx, max_tx,
 903				       GFP_KERNEL | GFP_DMA);
 904			if (!tmp)
 905				return -ENOMEM;
 906			master->dummy_tx = tmp;
 907			memset(tmp, 0, max_tx);
 908		}
 909
 910		if (max_rx) {
 911			tmp = krealloc(master->dummy_rx, max_rx,
 912				       GFP_KERNEL | GFP_DMA);
 913			if (!tmp)
 914				return -ENOMEM;
 915			master->dummy_rx = tmp;
 916		}
 917
 918		if (max_tx || max_rx) {
 919			list_for_each_entry(xfer, &msg->transfers,
 920					    transfer_list) {
 
 
 921				if (!xfer->tx_buf)
 922					xfer->tx_buf = master->dummy_tx;
 923				if (!xfer->rx_buf)
 924					xfer->rx_buf = master->dummy_rx;
 925			}
 926		}
 927	}
 928
 929	return __spi_map_msg(master, msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932/*
 933 * spi_transfer_one_message - Default implementation of transfer_one_message()
 934 *
 935 * This is a standard implementation of transfer_one_message() for
 936 * drivers which impelment a transfer_one() operation.  It provides
 937 * standard handling of delays and chip select management.
 938 */
 939static int spi_transfer_one_message(struct spi_master *master,
 940				    struct spi_message *msg)
 941{
 942	struct spi_transfer *xfer;
 943	bool keep_cs = false;
 944	int ret = 0;
 945	unsigned long ms = 1;
 946	struct spi_statistics *statm = &master->statistics;
 947	struct spi_statistics *stats = &msg->spi->statistics;
 948
 949	spi_set_cs(msg->spi, true);
 
 950
 951	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
 952	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
 953
 954	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 955		trace_spi_transfer_start(msg, xfer);
 956
 957		spi_statistics_add_transfer_stats(statm, xfer, master);
 958		spi_statistics_add_transfer_stats(stats, xfer, master);
 
 
 
 
 
 959
 960		if (xfer->tx_buf || xfer->rx_buf) {
 961			reinit_completion(&master->xfer_completion);
 962
 963			ret = master->transfer_one(master, msg->spi, xfer);
 
 
 964			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
 965				SPI_STATISTICS_INCREMENT_FIELD(statm,
 966							       errors);
 967				SPI_STATISTICS_INCREMENT_FIELD(stats,
 968							       errors);
 969				dev_err(&msg->spi->dev,
 970					"SPI transfer failed: %d\n", ret);
 971				goto out;
 972			}
 973
 974			if (ret > 0) {
 975				ret = 0;
 976				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 977				ms += ms + 100; /* some tolerance */
 978
 979				ms = wait_for_completion_timeout(&master->xfer_completion,
 980								 msecs_to_jiffies(ms));
 981			}
 982
 983			if (ms == 0) {
 984				SPI_STATISTICS_INCREMENT_FIELD(statm,
 985							       timedout);
 986				SPI_STATISTICS_INCREMENT_FIELD(stats,
 987							       timedout);
 988				dev_err(&msg->spi->dev,
 989					"SPI transfer timed out\n");
 990				msg->status = -ETIMEDOUT;
 991			}
 992		} else {
 993			if (xfer->len)
 994				dev_err(&msg->spi->dev,
 995					"Bufferless transfer has length %u\n",
 996					xfer->len);
 997		}
 998
 
 
 
 
 
 999		trace_spi_transfer_stop(msg, xfer);
1000
1001		if (msg->status != -EINPROGRESS)
1002			goto out;
1003
1004		if (xfer->delay_usecs)
1005			udelay(xfer->delay_usecs);
1006
1007		if (xfer->cs_change) {
1008			if (list_is_last(&xfer->transfer_list,
1009					 &msg->transfers)) {
1010				keep_cs = true;
1011			} else {
1012				spi_set_cs(msg->spi, false);
1013				udelay(10);
1014				spi_set_cs(msg->spi, true);
 
 
1015			}
 
 
 
1016		}
1017
1018		msg->actual_length += xfer->len;
1019	}
1020
1021out:
1022	if (ret != 0 || !keep_cs)
1023		spi_set_cs(msg->spi, false);
1024
1025	if (msg->status == -EINPROGRESS)
1026		msg->status = ret;
1027
1028	if (msg->status && master->handle_err)
1029		master->handle_err(master, msg);
1030
1031	spi_res_release(master, msg);
1032
1033	spi_finalize_current_message(master);
1034
1035	return ret;
1036}
1037
1038/**
1039 * spi_finalize_current_transfer - report completion of a transfer
1040 * @master: the master reporting completion
1041 *
1042 * Called by SPI drivers using the core transfer_one_message()
1043 * implementation to notify it that the current interrupt driven
1044 * transfer has finished and the next one may be scheduled.
1045 */
1046void spi_finalize_current_transfer(struct spi_master *master)
1047{
1048	complete(&master->xfer_completion);
1049}
1050EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052/**
1053 * __spi_pump_messages - function which processes spi message queue
1054 * @master: master to process queue for
1055 * @in_kthread: true if we are in the context of the message pump thread
1056 * @bus_locked: true if the bus mutex is held when calling this function
1057 *
1058 * This function checks if there is any spi message in the queue that
1059 * needs processing and if so call out to the driver to initialize hardware
1060 * and transfer each message.
1061 *
1062 * Note that it is called both from the kthread itself and also from
1063 * inside spi_sync(); the queue extraction handling at the top of the
1064 * function should deal with this safely.
1065 */
1066static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1067				bool bus_locked)
1068{
 
 
1069	unsigned long flags;
1070	bool was_busy = false;
1071	int ret;
1072
 
 
 
1073	/* Lock queue */
1074	spin_lock_irqsave(&master->queue_lock, flags);
1075
1076	/* Make sure we are not already running a message */
1077	if (master->cur_msg) {
1078		spin_unlock_irqrestore(&master->queue_lock, flags);
1079		return;
1080	}
1081
1082	/* If another context is idling the device then defer */
1083	if (master->idling) {
1084		queue_kthread_work(&master->kworker, &master->pump_messages);
1085		spin_unlock_irqrestore(&master->queue_lock, flags);
1086		return;
1087	}
1088
1089	/* Check if the queue is idle */
1090	if (list_empty(&master->queue) || !master->running) {
1091		if (!master->busy) {
1092			spin_unlock_irqrestore(&master->queue_lock, flags);
1093			return;
 
 
 
 
 
 
 
 
1094		}
1095
1096		/* Only do teardown in the thread */
1097		if (!in_kthread) {
1098			queue_kthread_work(&master->kworker,
1099					   &master->pump_messages);
1100			spin_unlock_irqrestore(&master->queue_lock, flags);
1101			return;
1102		}
1103
1104		master->busy = false;
1105		master->idling = true;
1106		spin_unlock_irqrestore(&master->queue_lock, flags);
1107
1108		kfree(master->dummy_rx);
1109		master->dummy_rx = NULL;
1110		kfree(master->dummy_tx);
1111		master->dummy_tx = NULL;
1112		if (master->unprepare_transfer_hardware &&
1113		    master->unprepare_transfer_hardware(master))
1114			dev_err(&master->dev,
1115				"failed to unprepare transfer hardware\n");
1116		if (master->auto_runtime_pm) {
1117			pm_runtime_mark_last_busy(master->dev.parent);
1118			pm_runtime_put_autosuspend(master->dev.parent);
1119		}
1120		trace_spi_master_idle(master);
1121
1122		spin_lock_irqsave(&master->queue_lock, flags);
1123		master->idling = false;
1124		spin_unlock_irqrestore(&master->queue_lock, flags);
1125		return;
1126	}
1127
1128	/* Extract head of queue */
1129	master->cur_msg =
1130		list_first_entry(&master->queue, struct spi_message, queue);
1131
1132	list_del_init(&master->cur_msg->queue);
1133	if (master->busy)
1134		was_busy = true;
1135	else
1136		master->busy = true;
1137	spin_unlock_irqrestore(&master->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139	if (!was_busy && master->auto_runtime_pm) {
1140		ret = pm_runtime_get_sync(master->dev.parent);
1141		if (ret < 0) {
1142			dev_err(&master->dev, "Failed to power device: %d\n",
1143				ret);
1144			return;
1145		}
1146	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148	if (!was_busy)
1149		trace_spi_master_busy(master);
1150
1151	if (!was_busy && master->prepare_transfer_hardware) {
1152		ret = master->prepare_transfer_hardware(master);
1153		if (ret) {
1154			dev_err(&master->dev,
1155				"failed to prepare transfer hardware\n");
1156
1157			if (master->auto_runtime_pm)
1158				pm_runtime_put(master->dev.parent);
1159			return;
1160		}
1161	}
1162
1163	if (!bus_locked)
1164		mutex_lock(&master->bus_lock_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165
1166	trace_spi_message_start(master->cur_msg);
 
1167
1168	if (master->prepare_message) {
1169		ret = master->prepare_message(master, master->cur_msg);
1170		if (ret) {
1171			dev_err(&master->dev,
1172				"failed to prepare message: %d\n", ret);
1173			master->cur_msg->status = ret;
1174			spi_finalize_current_message(master);
1175			goto out;
1176		}
1177		master->cur_msg_prepared = true;
1178	}
1179
1180	ret = spi_map_msg(master, master->cur_msg);
1181	if (ret) {
1182		master->cur_msg->status = ret;
1183		spi_finalize_current_message(master);
1184		goto out;
1185	}
1186
1187	ret = master->transfer_one_message(master, master->cur_msg);
1188	if (ret) {
1189		dev_err(&master->dev,
1190			"failed to transfer one message from queue\n");
1191		goto out;
1192	}
1193
1194out:
1195	if (!bus_locked)
1196		mutex_unlock(&master->bus_lock_mutex);
1197
1198	/* Prod the scheduler in case transfer_one() was busy waiting */
1199	if (!ret)
1200		cond_resched();
1201}
 
1202
1203/**
1204 * spi_pump_messages - kthread work function which processes spi message queue
1205 * @work: pointer to kthread work struct contained in the master struct
 
 
 
 
 
 
 
 
 
 
 
1206 */
1207static void spi_pump_messages(struct kthread_work *work)
1208{
1209	struct spi_master *master =
1210		container_of(work, struct spi_master, pump_messages);
1211
1212	__spi_pump_messages(master, true, master->bus_lock_flag);
1213}
1214
1215static int spi_init_queue(struct spi_master *master)
1216{
1217	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 
 
1218
1219	master->running = false;
1220	master->busy = false;
 
 
 
1221
1222	init_kthread_worker(&master->kworker);
1223	master->kworker_task = kthread_run(kthread_worker_fn,
1224					   &master->kworker, "%s",
1225					   dev_name(&master->dev));
1226	if (IS_ERR(master->kworker_task)) {
1227		dev_err(&master->dev, "failed to create message pump task\n");
1228		return PTR_ERR(master->kworker_task);
1229	}
1230	init_kthread_work(&master->pump_messages, spi_pump_messages);
1231
1232	/*
1233	 * Master config will indicate if this controller should run the
1234	 * message pump with high (realtime) priority to reduce the transfer
1235	 * latency on the bus by minimising the delay between a transfer
1236	 * request and the scheduling of the message pump thread. Without this
1237	 * setting the message pump thread will remain at default priority.
1238	 */
1239	if (master->rt) {
1240		dev_info(&master->dev,
1241			"will run message pump with realtime priority\n");
1242		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1243	}
1244
1245	return 0;
1246}
1247
1248/**
1249 * spi_get_next_queued_message() - called by driver to check for queued
1250 * messages
1251 * @master: the master to check for queued messages
1252 *
1253 * If there are more messages in the queue, the next message is returned from
1254 * this call.
1255 *
1256 * Return: the next message in the queue, else NULL if the queue is empty.
1257 */
1258struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1259{
1260	struct spi_message *next;
1261	unsigned long flags;
1262
1263	/* get a pointer to the next message, if any */
1264	spin_lock_irqsave(&master->queue_lock, flags);
1265	next = list_first_entry_or_null(&master->queue, struct spi_message,
1266					queue);
1267	spin_unlock_irqrestore(&master->queue_lock, flags);
1268
1269	return next;
1270}
1271EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273/**
1274 * spi_finalize_current_message() - the current message is complete
1275 * @master: the master to return the message to
1276 *
1277 * Called by the driver to notify the core that the message in the front of the
1278 * queue is complete and can be removed from the queue.
1279 */
1280void spi_finalize_current_message(struct spi_master *master)
1281{
 
1282	struct spi_message *mesg;
1283	unsigned long flags;
1284	int ret;
1285
1286	spin_lock_irqsave(&master->queue_lock, flags);
1287	mesg = master->cur_msg;
1288	spin_unlock_irqrestore(&master->queue_lock, flags);
1289
1290	spi_unmap_msg(master, mesg);
 
 
 
 
 
1291
1292	if (master->cur_msg_prepared && master->unprepare_message) {
1293		ret = master->unprepare_message(master, mesg);
 
 
 
 
 
 
1294		if (ret) {
1295			dev_err(&master->dev,
1296				"failed to unprepare message: %d\n", ret);
1297		}
1298	}
1299
1300	spin_lock_irqsave(&master->queue_lock, flags);
1301	master->cur_msg = NULL;
1302	master->cur_msg_prepared = false;
1303	queue_kthread_work(&master->kworker, &master->pump_messages);
1304	spin_unlock_irqrestore(&master->queue_lock, flags);
 
 
 
1305
1306	trace_spi_message_done(mesg);
1307
1308	mesg->state = NULL;
1309	if (mesg->complete)
1310		mesg->complete(mesg->context);
1311}
1312EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1313
1314static int spi_start_queue(struct spi_master *master)
1315{
1316	unsigned long flags;
1317
1318	spin_lock_irqsave(&master->queue_lock, flags);
1319
1320	if (master->running || master->busy) {
1321		spin_unlock_irqrestore(&master->queue_lock, flags);
1322		return -EBUSY;
1323	}
1324
1325	master->running = true;
1326	master->cur_msg = NULL;
1327	spin_unlock_irqrestore(&master->queue_lock, flags);
1328
1329	queue_kthread_work(&master->kworker, &master->pump_messages);
1330
1331	return 0;
1332}
1333
1334static int spi_stop_queue(struct spi_master *master)
1335{
 
1336	unsigned long flags;
1337	unsigned limit = 500;
1338	int ret = 0;
1339
1340	spin_lock_irqsave(&master->queue_lock, flags);
1341
1342	/*
1343	 * This is a bit lame, but is optimized for the common execution path.
1344	 * A wait_queue on the master->busy could be used, but then the common
1345	 * execution path (pump_messages) would be required to call wake_up or
1346	 * friends on every SPI message. Do this instead.
1347	 */
1348	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1349		spin_unlock_irqrestore(&master->queue_lock, flags);
 
 
 
 
 
 
1350		usleep_range(10000, 11000);
1351		spin_lock_irqsave(&master->queue_lock, flags);
1352	}
1353
1354	if (!list_empty(&master->queue) || master->busy)
1355		ret = -EBUSY;
1356	else
1357		master->running = false;
1358
1359	spin_unlock_irqrestore(&master->queue_lock, flags);
1360
1361	if (ret) {
1362		dev_warn(&master->dev,
1363			 "could not stop message queue\n");
1364		return ret;
1365	}
1366	return ret;
1367}
1368
1369static int spi_destroy_queue(struct spi_master *master)
1370{
1371	int ret;
1372
1373	ret = spi_stop_queue(master);
1374
1375	/*
1376	 * flush_kthread_worker will block until all work is done.
1377	 * If the reason that stop_queue timed out is that the work will never
1378	 * finish, then it does no good to call flush/stop thread, so
1379	 * return anyway.
1380	 */
1381	if (ret) {
1382		dev_err(&master->dev, "problem destroying queue\n");
1383		return ret;
1384	}
1385
1386	flush_kthread_worker(&master->kworker);
1387	kthread_stop(master->kworker_task);
1388
1389	return 0;
1390}
1391
1392static int __spi_queued_transfer(struct spi_device *spi,
1393				 struct spi_message *msg,
1394				 bool need_pump)
1395{
1396	struct spi_master *master = spi->master;
1397	unsigned long flags;
1398
1399	spin_lock_irqsave(&master->queue_lock, flags);
1400
1401	if (!master->running) {
1402		spin_unlock_irqrestore(&master->queue_lock, flags);
1403		return -ESHUTDOWN;
1404	}
1405	msg->actual_length = 0;
1406	msg->status = -EINPROGRESS;
1407
1408	list_add_tail(&msg->queue, &master->queue);
1409	if (!master->busy && need_pump)
1410		queue_kthread_work(&master->kworker, &master->pump_messages);
 
1411
1412	spin_unlock_irqrestore(&master->queue_lock, flags);
1413	return 0;
1414}
1415
1416/**
1417 * spi_queued_transfer - transfer function for queued transfers
1418 * @spi: spi device which is requesting transfer
1419 * @msg: spi message which is to handled is queued to driver queue
1420 *
1421 * Return: zero on success, else a negative error code.
1422 */
1423static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1424{
1425	return __spi_queued_transfer(spi, msg, true);
1426}
1427
1428static int spi_master_initialize_queue(struct spi_master *master)
1429{
1430	int ret;
1431
1432	master->transfer = spi_queued_transfer;
1433	if (!master->transfer_one_message)
1434		master->transfer_one_message = spi_transfer_one_message;
1435
1436	/* Initialize and start queue */
1437	ret = spi_init_queue(master);
1438	if (ret) {
1439		dev_err(&master->dev, "problem initializing queue\n");
1440		goto err_init_queue;
1441	}
1442	master->queued = true;
1443	ret = spi_start_queue(master);
1444	if (ret) {
1445		dev_err(&master->dev, "problem starting queue\n");
1446		goto err_start_queue;
1447	}
1448
1449	return 0;
1450
1451err_start_queue:
1452	spi_destroy_queue(master);
1453err_init_queue:
1454	return ret;
1455}
1456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457/*-------------------------------------------------------------------------*/
1458
1459#if defined(CONFIG_OF)
1460static struct spi_device *
1461of_register_spi_device(struct spi_master *master, struct device_node *nc)
1462{
1463	struct spi_device *spi;
1464	int rc;
1465	u32 value;
1466
1467	/* Alloc an spi_device */
1468	spi = spi_alloc_device(master);
1469	if (!spi) {
1470		dev_err(&master->dev, "spi_device alloc error for %s\n",
1471			nc->full_name);
1472		rc = -ENOMEM;
1473		goto err_out;
 
1474	}
 
1475
1476	/* Select device driver */
1477	rc = of_modalias_node(nc, spi->modalias,
1478				sizeof(spi->modalias));
1479	if (rc < 0) {
1480		dev_err(&master->dev, "cannot find modalias for %s\n",
1481			nc->full_name);
1482		goto err_out;
1483	}
1484
1485	/* Device address */
1486	rc = of_property_read_u32(nc, "reg", &value);
1487	if (rc) {
1488		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1489			nc->full_name, rc);
1490		goto err_out;
1491	}
1492	spi->chip_select = value;
1493
1494	/* Mode (clock phase/polarity/etc.) */
1495	if (of_find_property(nc, "spi-cpha", NULL))
1496		spi->mode |= SPI_CPHA;
1497	if (of_find_property(nc, "spi-cpol", NULL))
1498		spi->mode |= SPI_CPOL;
1499	if (of_find_property(nc, "spi-cs-high", NULL))
1500		spi->mode |= SPI_CS_HIGH;
1501	if (of_find_property(nc, "spi-3wire", NULL))
1502		spi->mode |= SPI_3WIRE;
1503	if (of_find_property(nc, "spi-lsb-first", NULL))
1504		spi->mode |= SPI_LSB_FIRST;
 
 
1505
1506	/* Device DUAL/QUAD mode */
1507	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1508		switch (value) {
 
 
 
1509		case 1:
1510			break;
1511		case 2:
1512			spi->mode |= SPI_TX_DUAL;
1513			break;
1514		case 4:
1515			spi->mode |= SPI_TX_QUAD;
1516			break;
 
 
 
1517		default:
1518			dev_warn(&master->dev,
1519				"spi-tx-bus-width %d not supported\n",
1520				value);
1521			break;
1522		}
1523	}
1524
1525	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1526		switch (value) {
 
 
 
1527		case 1:
1528			break;
1529		case 2:
1530			spi->mode |= SPI_RX_DUAL;
1531			break;
1532		case 4:
1533			spi->mode |= SPI_RX_QUAD;
1534			break;
 
 
 
1535		default:
1536			dev_warn(&master->dev,
1537				"spi-rx-bus-width %d not supported\n",
1538				value);
1539			break;
1540		}
1541	}
1542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543	/* Device speed */
1544	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1545	if (rc) {
1546		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1547			nc->full_name, rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548		goto err_out;
1549	}
1550	spi->max_speed_hz = value;
 
 
 
1551
1552	/* Store a pointer to the node in the device structure */
1553	of_node_get(nc);
1554	spi->dev.of_node = nc;
 
1555
1556	/* Register the new device */
1557	rc = spi_add_device(spi);
1558	if (rc) {
1559		dev_err(&master->dev, "spi_device register error %s\n",
1560			nc->full_name);
1561		goto err_out;
1562	}
1563
1564	return spi;
1565
 
 
1566err_out:
1567	spi_dev_put(spi);
1568	return ERR_PTR(rc);
1569}
1570
1571/**
1572 * of_register_spi_devices() - Register child devices onto the SPI bus
1573 * @master:	Pointer to spi_master device
1574 *
1575 * Registers an spi_device for each child node of master node which has a 'reg'
1576 * property.
1577 */
1578static void of_register_spi_devices(struct spi_master *master)
1579{
1580	struct spi_device *spi;
1581	struct device_node *nc;
1582
1583	if (!master->dev.of_node)
1584		return;
1585
1586	for_each_available_child_of_node(master->dev.of_node, nc) {
1587		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1588			continue;
1589		spi = of_register_spi_device(master, nc);
1590		if (IS_ERR(spi))
1591			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1592				nc->full_name);
 
 
1593	}
1594}
1595#else
1596static void of_register_spi_devices(struct spi_master *master) { }
1597#endif
1598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599#ifdef CONFIG_ACPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1601{
1602	struct spi_device *spi = data;
1603	struct spi_master *master = spi->master;
1604
1605	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1606		struct acpi_resource_spi_serialbus *sb;
 
 
1607
1608		sb = &ares->data.spi_serial_bus;
1609		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610			/*
1611			 * ACPI DeviceSelection numbering is handled by the
1612			 * host controller driver in Windows and can vary
1613			 * from driver to driver. In Linux we always expect
1614			 * 0 .. max - 1 so we need to ask the driver to
1615			 * translate between the two schemes.
1616			 */
1617			if (master->fw_translate_cs) {
1618				int cs = master->fw_translate_cs(master,
1619						sb->device_selection);
1620				if (cs < 0)
1621					return cs;
1622				spi->chip_select = cs;
1623			} else {
1624				spi->chip_select = sb->device_selection;
1625			}
1626
1627			spi->max_speed_hz = sb->connection_speed;
 
1628
1629			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1630				spi->mode |= SPI_CPHA;
1631			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1632				spi->mode |= SPI_CPOL;
1633			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1634				spi->mode |= SPI_CS_HIGH;
1635		}
1636	} else if (spi->irq < 0) {
1637		struct resource r;
1638
1639		if (acpi_dev_resource_interrupt(ares, 0, &r))
1640			spi->irq = r.start;
1641	}
1642
1643	/* Always tell the ACPI core to skip this resource */
1644	return 1;
1645}
1646
1647static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1648				       void *data, void **return_value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649{
1650	struct spi_master *master = data;
1651	struct list_head resource_list;
1652	struct acpi_device *adev;
1653	struct spi_device *spi;
1654	int ret;
1655
1656	if (acpi_bus_get_device(handle, &adev))
1657		return AE_OK;
1658	if (acpi_bus_get_status(adev) || !adev->status.present)
1659		return AE_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661	spi = spi_alloc_device(master);
1662	if (!spi) {
1663		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1664			dev_name(&adev->dev));
1665		return AE_NO_MEMORY;
1666	}
1667
 
 
 
1668	ACPI_COMPANION_SET(&spi->dev, adev);
1669	spi->irq = -1;
 
 
 
 
 
 
 
 
 
 
 
 
1670
1671	INIT_LIST_HEAD(&resource_list);
1672	ret = acpi_dev_get_resources(adev, &resource_list,
1673				     acpi_spi_add_resource, spi);
1674	acpi_dev_free_resource_list(&resource_list);
1675
1676	if (ret < 0 || !spi->max_speed_hz) {
1677		spi_dev_put(spi);
1678		return AE_OK;
 
 
 
 
 
 
 
1679	}
1680
1681	if (spi->irq < 0)
1682		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
 
 
1683
1684	adev->power.flags.ignore_parent = true;
1685	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1686	if (spi_add_device(spi)) {
1687		adev->power.flags.ignore_parent = false;
1688		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1689			dev_name(&adev->dev));
1690		spi_dev_put(spi);
1691	}
1692
1693	return AE_OK;
1694}
1695
1696static void acpi_register_spi_devices(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697{
1698	acpi_status status;
1699	acpi_handle handle;
1700
1701	handle = ACPI_HANDLE(master->dev.parent);
1702	if (!handle)
1703		return;
1704
1705	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1706				     acpi_spi_add_device, NULL,
1707				     master, NULL);
1708	if (ACPI_FAILURE(status))
1709		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1710}
1711#else
1712static inline void acpi_register_spi_devices(struct spi_master *master) {}
1713#endif /* CONFIG_ACPI */
1714
1715static void spi_master_release(struct device *dev)
1716{
1717	struct spi_master *master;
1718
1719	master = container_of(dev, struct spi_master, dev);
1720	kfree(master);
1721}
1722
1723static struct class spi_master_class = {
1724	.name		= "spi_master",
1725	.owner		= THIS_MODULE,
1726	.dev_release	= spi_master_release,
1727	.dev_groups	= spi_master_groups,
1728};
1729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730
1731/**
1732 * spi_alloc_master - allocate SPI master controller
1733 * @dev: the controller, possibly using the platform_bus
1734 * @size: how much zeroed driver-private data to allocate; the pointer to this
1735 *	memory is in the driver_data field of the returned device,
1736 *	accessible with spi_master_get_devdata().
 
 
 
 
1737 * Context: can sleep
1738 *
1739 * This call is used only by SPI master controller drivers, which are the
1740 * only ones directly touching chip registers.  It's how they allocate
1741 * an spi_master structure, prior to calling spi_register_master().
1742 *
1743 * This must be called from context that can sleep.
1744 *
1745 * The caller is responsible for assigning the bus number and initializing
1746 * the master's methods before calling spi_register_master(); and (after errors
1747 * adding the device) calling spi_master_put() to prevent a memory leak.
 
1748 *
1749 * Return: the SPI master structure on success, else NULL.
1750 */
1751struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 
1752{
1753	struct spi_master	*master;
 
1754
1755	if (!dev)
1756		return NULL;
1757
1758	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1759	if (!master)
1760		return NULL;
1761
1762	device_initialize(&master->dev);
1763	master->bus_num = -1;
1764	master->num_chipselect = 1;
1765	master->dev.class = &spi_master_class;
1766	master->dev.parent = dev;
1767	spi_master_set_devdata(master, &master[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768
1769	return master;
 
 
1770}
1771EXPORT_SYMBOL_GPL(spi_alloc_master);
1772
1773#ifdef CONFIG_OF
1774static int of_spi_register_master(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775{
1776	int nb, i, *cs;
1777	struct device_node *np = master->dev.of_node;
1778
1779	if (!np)
1780		return 0;
 
 
1781
1782	nb = of_gpio_named_count(np, "cs-gpios");
1783	master->num_chipselect = max_t(int, nb, master->num_chipselect);
 
 
 
 
 
 
1784
1785	/* Return error only for an incorrectly formed cs-gpios property */
1786	if (nb == 0 || nb == -ENOENT)
1787		return 0;
1788	else if (nb < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789		return nb;
 
 
 
1790
1791	cs = devm_kzalloc(&master->dev,
1792			  sizeof(int) * master->num_chipselect,
1793			  GFP_KERNEL);
1794	master->cs_gpios = cs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795
1796	if (!master->cs_gpios)
1797		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798
1799	for (i = 0; i < master->num_chipselect; i++)
1800		cs[i] = -ENOENT;
1801
1802	for (i = 0; i < nb; i++)
1803		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
 
 
 
 
 
 
 
 
 
 
 
 
 
1804
1805	return 0;
1806}
1807#else
1808static int of_spi_register_master(struct spi_master *master)
 
1809{
 
 
 
 
 
 
 
 
1810	return 0;
1811}
1812#endif
1813
1814/**
1815 * spi_register_master - register SPI master controller
1816 * @master: initialized master, originally from spi_alloc_master()
 
1817 * Context: can sleep
1818 *
1819 * SPI master controllers connect to their drivers using some non-SPI bus,
1820 * such as the platform bus.  The final stage of probe() in that code
1821 * includes calling spi_register_master() to hook up to this SPI bus glue.
1822 *
1823 * SPI controllers use board specific (often SOC specific) bus numbers,
1824 * and board-specific addressing for SPI devices combines those numbers
1825 * with chip select numbers.  Since SPI does not directly support dynamic
1826 * device identification, boards need configuration tables telling which
1827 * chip is at which address.
1828 *
1829 * This must be called from context that can sleep.  It returns zero on
1830 * success, else a negative error code (dropping the master's refcount).
1831 * After a successful return, the caller is responsible for calling
1832 * spi_unregister_master().
1833 *
1834 * Return: zero on success, else a negative error code.
1835 */
1836int spi_register_master(struct spi_master *master)
1837{
1838	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1839	struct device		*dev = master->dev.parent;
1840	struct boardinfo	*bi;
1841	int			status = -ENODEV;
1842	int			dynamic = 0;
 
1843
1844	if (!dev)
1845		return -ENODEV;
1846
1847	status = of_spi_register_master(master);
 
 
 
 
1848	if (status)
1849		return status;
1850
1851	/* even if it's just one always-selected device, there must
1852	 * be at least one chipselect
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853	 */
1854	if (master->num_chipselect == 0)
1855		return -EINVAL;
1856
1857	if ((master->bus_num < 0) && master->dev.of_node)
1858		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
 
 
 
 
 
 
 
 
1859
1860	/* convention:  dynamically assigned bus IDs count down from the max */
1861	if (master->bus_num < 0) {
1862		/* FIXME switch to an IDR based scheme, something like
1863		 * I2C now uses, so we can't run out of "dynamic" IDs
1864		 */
1865		master->bus_num = atomic_dec_return(&dyn_bus_id);
1866		dynamic = 1;
1867	}
1868
1869	INIT_LIST_HEAD(&master->queue);
1870	spin_lock_init(&master->queue_lock);
1871	spin_lock_init(&master->bus_lock_spinlock);
1872	mutex_init(&master->bus_lock_mutex);
1873	master->bus_lock_flag = 0;
1874	init_completion(&master->xfer_completion);
1875	if (!master->max_dma_len)
1876		master->max_dma_len = INT_MAX;
 
 
1877
1878	/* register the device, then userspace will see it.
1879	 * registration fails if the bus ID is in use.
 
 
1880	 */
1881	dev_set_name(&master->dev, "spi%u", master->bus_num);
1882	status = device_add(&master->dev);
1883	if (status < 0)
1884		goto done;
1885	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1886			dynamic ? " (dynamic)" : "");
1887
1888	/* If we're using a queued driver, start the queue */
1889	if (master->transfer)
1890		dev_info(dev, "master is unqueued, this is deprecated\n");
1891	else {
1892		status = spi_master_initialize_queue(master);
1893		if (status) {
1894			device_del(&master->dev);
1895			goto done;
1896		}
1897	}
1898	/* add statistics */
1899	spin_lock_init(&master->statistics.lock);
 
 
 
 
 
1900
1901	mutex_lock(&board_lock);
1902	list_add_tail(&master->list, &spi_master_list);
1903	list_for_each_entry(bi, &board_list, list)
1904		spi_match_master_to_boardinfo(master, &bi->board_info);
1905	mutex_unlock(&board_lock);
1906
1907	/* Register devices from the device tree and ACPI */
1908	of_register_spi_devices(master);
1909	acpi_register_spi_devices(master);
1910done:
 
 
 
 
 
 
 
1911	return status;
1912}
1913EXPORT_SYMBOL_GPL(spi_register_master);
1914
1915static void devm_spi_unregister(struct device *dev, void *res)
1916{
1917	spi_unregister_master(*(struct spi_master **)res);
1918}
1919
1920/**
1921 * dev_spi_register_master - register managed SPI master controller
1922 * @dev:    device managing SPI master
1923 * @master: initialized master, originally from spi_alloc_master()
 
 
1924 * Context: can sleep
1925 *
1926 * Register a SPI device as with spi_register_master() which will
1927 * automatically be unregister
1928 *
1929 * Return: zero on success, else a negative error code.
1930 */
1931int devm_spi_register_master(struct device *dev, struct spi_master *master)
 
1932{
1933	struct spi_master **ptr;
1934	int ret;
1935
1936	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1937	if (!ptr)
1938		return -ENOMEM;
1939
1940	ret = spi_register_master(master);
1941	if (!ret) {
1942		*ptr = master;
1943		devres_add(dev, ptr);
1944	} else {
1945		devres_free(ptr);
1946	}
1947
1948	return ret;
1949}
1950EXPORT_SYMBOL_GPL(devm_spi_register_master);
1951
1952static int __unregister(struct device *dev, void *null)
1953{
1954	spi_unregister_device(to_spi_device(dev));
1955	return 0;
1956}
1957
1958/**
1959 * spi_unregister_master - unregister SPI master controller
1960 * @master: the master being unregistered
1961 * Context: can sleep
1962 *
1963 * This call is used only by SPI master controller drivers, which are the
1964 * only ones directly touching chip registers.
1965 *
1966 * This must be called from context that can sleep.
 
 
1967 */
1968void spi_unregister_master(struct spi_master *master)
1969{
1970	int dummy;
 
 
 
 
 
1971
1972	if (master->queued) {
1973		if (spi_destroy_queue(master))
1974			dev_err(&master->dev, "queue remove failed\n");
 
 
 
 
 
 
1975	}
1976
1977	mutex_lock(&board_lock);
1978	list_del(&master->list);
1979	mutex_unlock(&board_lock);
1980
1981	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1982	device_unregister(&master->dev);
1983}
1984EXPORT_SYMBOL_GPL(spi_unregister_master);
1985
1986int spi_master_suspend(struct spi_master *master)
1987{
1988	int ret;
 
 
1989
1990	/* Basically no-ops for non-queued masters */
1991	if (!master->queued)
1992		return 0;
1993
1994	ret = spi_stop_queue(master);
1995	if (ret)
1996		dev_err(&master->dev, "queue stop failed\n");
1997
1998	return ret;
 
1999}
2000EXPORT_SYMBOL_GPL(spi_master_suspend);
2001
2002int spi_master_resume(struct spi_master *master)
2003{
2004	int ret;
2005
2006	if (!master->queued)
2007		return 0;
2008
2009	ret = spi_start_queue(master);
2010	if (ret)
2011		dev_err(&master->dev, "queue restart failed\n");
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(spi_master_resume);
2016
2017static int __spi_master_match(struct device *dev, const void *data)
2018{
2019	struct spi_master *m;
2020	const u16 *bus_num = data;
2021
2022	m = container_of(dev, struct spi_master, dev);
2023	return m->bus_num == *bus_num;
2024}
2025
2026/**
2027 * spi_busnum_to_master - look up master associated with bus_num
2028 * @bus_num: the master's bus number
2029 * Context: can sleep
2030 *
2031 * This call may be used with devices that are registered after
2032 * arch init time.  It returns a refcounted pointer to the relevant
2033 * spi_master (which the caller must release), or NULL if there is
2034 * no such master registered.
2035 *
2036 * Return: the SPI master structure on success, else NULL.
2037 */
2038struct spi_master *spi_busnum_to_master(u16 bus_num)
2039{
2040	struct device		*dev;
2041	struct spi_master	*master = NULL;
2042
2043	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2044				__spi_master_match);
2045	if (dev)
2046		master = container_of(dev, struct spi_master, dev);
2047	/* reference got in class_find_device */
2048	return master;
2049}
2050EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2051
2052/*-------------------------------------------------------------------------*/
2053
2054/* Core methods for SPI resource management */
2055
2056/**
2057 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2058 *                 during the processing of a spi_message while using
2059 *                 spi_transfer_one
2060 * @spi:     the spi device for which we allocate memory
2061 * @release: the release code to execute for this resource
2062 * @size:    size to alloc and return
2063 * @gfp:     GFP allocation flags
2064 *
2065 * Return: the pointer to the allocated data
2066 *
2067 * This may get enhanced in the future to allocate from a memory pool
2068 * of the @spi_device or @spi_master to avoid repeated allocations.
2069 */
2070void *spi_res_alloc(struct spi_device *spi,
2071		    spi_res_release_t release,
2072		    size_t size, gfp_t gfp)
2073{
2074	struct spi_res *sres;
2075
2076	sres = kzalloc(sizeof(*sres) + size, gfp);
2077	if (!sres)
2078		return NULL;
 
 
 
2079
2080	INIT_LIST_HEAD(&sres->entry);
2081	sres->release = release;
2082
2083	return sres->data;
2084}
2085EXPORT_SYMBOL_GPL(spi_res_alloc);
2086
2087/**
2088 * spi_res_free - free an spi resource
2089 * @res: pointer to the custom data of a resource
2090 *
2091 */
2092void spi_res_free(void *res)
2093{
2094	struct spi_res *sres = container_of(res, struct spi_res, data);
2095
2096	if (!res)
2097		return;
2098
2099	WARN_ON(!list_empty(&sres->entry));
2100	kfree(sres);
2101}
2102EXPORT_SYMBOL_GPL(spi_res_free);
2103
2104/**
2105 * spi_res_add - add a spi_res to the spi_message
2106 * @message: the spi message
2107 * @res:     the spi_resource
2108 */
2109void spi_res_add(struct spi_message *message, void *res)
2110{
2111	struct spi_res *sres = container_of(res, struct spi_res, data);
2112
2113	WARN_ON(!list_empty(&sres->entry));
2114	list_add_tail(&sres->entry, &message->resources);
2115}
2116EXPORT_SYMBOL_GPL(spi_res_add);
2117
2118/**
2119 * spi_res_release - release all spi resources for this message
2120 * @master:  the @spi_master
2121 * @message: the @spi_message
2122 */
2123void spi_res_release(struct spi_master *master,
2124		     struct spi_message *message)
2125{
2126	struct spi_res *res;
2127
2128	while (!list_empty(&message->resources)) {
2129		res = list_last_entry(&message->resources,
2130				      struct spi_res, entry);
2131
2132		if (res->release)
2133			res->release(master, message, res->data);
2134
2135		list_del(&res->entry);
2136
2137		kfree(res);
2138	}
 
2139}
2140EXPORT_SYMBOL_GPL(spi_res_release);
2141
2142/*-------------------------------------------------------------------------*/
2143
2144/* Core methods for spi_message alterations */
2145
2146static void __spi_replace_transfers_release(struct spi_master *master,
2147					    struct spi_message *msg,
2148					    void *res)
2149{
2150	struct spi_replaced_transfers *rxfer = res;
2151	size_t i;
2152
2153	/* call extra callback if requested */
2154	if (rxfer->release)
2155		rxfer->release(master, msg, res);
2156
2157	/* insert replaced transfers back into the message */
2158	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2159
2160	/* remove the formerly inserted entries */
2161	for (i = 0; i < rxfer->inserted; i++)
2162		list_del(&rxfer->inserted_transfers[i].transfer_list);
2163}
2164
2165/**
2166 * spi_replace_transfers - replace transfers with several transfers
2167 *                         and register change with spi_message.resources
2168 * @msg:           the spi_message we work upon
2169 * @xfer_first:    the first spi_transfer we want to replace
2170 * @remove:        number of transfers to remove
2171 * @insert:        the number of transfers we want to insert instead
2172 * @release:       extra release code necessary in some circumstances
2173 * @extradatasize: extra data to allocate (with alignment guarantees
2174 *                 of struct @spi_transfer)
2175 * @gfp:           gfp flags
2176 *
2177 * Returns: pointer to @spi_replaced_transfers,
2178 *          PTR_ERR(...) in case of errors.
2179 */
2180struct spi_replaced_transfers *spi_replace_transfers(
2181	struct spi_message *msg,
2182	struct spi_transfer *xfer_first,
2183	size_t remove,
2184	size_t insert,
2185	spi_replaced_release_t release,
2186	size_t extradatasize,
2187	gfp_t gfp)
2188{
2189	struct spi_replaced_transfers *rxfer;
2190	struct spi_transfer *xfer;
2191	size_t i;
2192
2193	/* allocate the structure using spi_res */
2194	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2195			      insert * sizeof(struct spi_transfer)
2196			      + sizeof(struct spi_replaced_transfers)
2197			      + extradatasize,
2198			      gfp);
2199	if (!rxfer)
2200		return ERR_PTR(-ENOMEM);
2201
2202	/* the release code to invoke before running the generic release */
2203	rxfer->release = release;
2204
2205	/* assign extradata */
2206	if (extradatasize)
2207		rxfer->extradata =
2208			&rxfer->inserted_transfers[insert];
2209
2210	/* init the replaced_transfers list */
2211	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2212
2213	/* assign the list_entry after which we should reinsert
 
2214	 * the @replaced_transfers - it may be spi_message.messages!
2215	 */
2216	rxfer->replaced_after = xfer_first->transfer_list.prev;
2217
2218	/* remove the requested number of transfers */
2219	for (i = 0; i < remove; i++) {
2220		/* if the entry after replaced_after it is msg->transfers
 
2221		 * then we have been requested to remove more transfers
2222		 * than are in the list
2223		 */
2224		if (rxfer->replaced_after->next == &msg->transfers) {
2225			dev_err(&msg->spi->dev,
2226				"requested to remove more spi_transfers than are available\n");
2227			/* insert replaced transfers back into the message */
2228			list_splice(&rxfer->replaced_transfers,
2229				    rxfer->replaced_after);
2230
2231			/* free the spi_replace_transfer structure */
2232			spi_res_free(rxfer);
2233
2234			/* and return with an error */
2235			return ERR_PTR(-EINVAL);
2236		}
2237
2238		/* remove the entry after replaced_after from list of
2239		 * transfers and add it to list of replaced_transfers
 
2240		 */
2241		list_move_tail(rxfer->replaced_after->next,
2242			       &rxfer->replaced_transfers);
2243	}
2244
2245	/* create copy of the given xfer with identical settings
2246	 * based on the first transfer to get removed
 
2247	 */
2248	for (i = 0; i < insert; i++) {
2249		/* we need to run in reverse order */
2250		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2251
2252		/* copy all spi_transfer data */
2253		memcpy(xfer, xfer_first, sizeof(*xfer));
2254
2255		/* add to list */
2256		list_add(&xfer->transfer_list, rxfer->replaced_after);
2257
2258		/* clear cs_change and delay_usecs for all but the last */
2259		if (i) {
2260			xfer->cs_change = false;
2261			xfer->delay_usecs = 0;
2262		}
2263	}
2264
2265	/* set up inserted */
2266	rxfer->inserted = insert;
2267
2268	/* and register it with spi_res/spi_message */
2269	spi_res_add(msg, rxfer);
2270
2271	return rxfer;
2272}
2273EXPORT_SYMBOL_GPL(spi_replace_transfers);
2274
2275static int __spi_split_transfer_maxsize(struct spi_master *master,
2276					struct spi_message *msg,
2277					struct spi_transfer **xferp,
2278					size_t maxsize,
2279					gfp_t gfp)
2280{
2281	struct spi_transfer *xfer = *xferp, *xfers;
2282	struct spi_replaced_transfers *srt;
2283	size_t offset;
2284	size_t count, i;
2285
2286	/* warn once about this fact that we are splitting a transfer */
2287	dev_warn_once(&msg->spi->dev,
2288		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2289		      xfer->len, maxsize);
2290
2291	/* calculate how many we have to replace */
2292	count = DIV_ROUND_UP(xfer->len, maxsize);
2293
2294	/* create replacement */
2295	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2296	if (IS_ERR(srt))
2297		return PTR_ERR(srt);
2298	xfers = srt->inserted_transfers;
2299
2300	/* now handle each of those newly inserted spi_transfers
2301	 * note that the replacements spi_transfers all are preset
 
2302	 * to the same values as *xferp, so tx_buf, rx_buf and len
2303	 * are all identical (as well as most others)
2304	 * so we just have to fix up len and the pointers.
2305	 *
2306	 * this also includes support for the depreciated
2307	 * spi_message.is_dma_mapped interface
2308	 */
2309
2310	/* the first transfer just needs the length modified, so we
2311	 * run it outside the loop
 
2312	 */
2313	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2314
2315	/* all the others need rx_buf/tx_buf also set */
2316	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2317		/* update rx_buf, tx_buf and dma */
2318		if (xfers[i].rx_buf)
2319			xfers[i].rx_buf += offset;
2320		if (xfers[i].rx_dma)
2321			xfers[i].rx_dma += offset;
2322		if (xfers[i].tx_buf)
2323			xfers[i].tx_buf += offset;
2324		if (xfers[i].tx_dma)
2325			xfers[i].tx_dma += offset;
2326
2327		/* update length */
2328		xfers[i].len = min(maxsize, xfers[i].len - offset);
2329	}
2330
2331	/* we set up xferp to the last entry we have inserted,
2332	 * so that we skip those already split transfers
 
2333	 */
2334	*xferp = &xfers[count - 1];
2335
2336	/* increment statistics counters */
2337	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2338				       transfers_split_maxsize);
2339	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2340				       transfers_split_maxsize);
2341
2342	return 0;
2343}
2344
2345/**
2346 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2347 *                              when an individual transfer exceeds a
2348 *                              certain size
2349 * @master:    the @spi_master for this transfer
2350 * @msg:   the @spi_message to transform
2351 * @maxsize:  the maximum when to apply this
2352 * @gfp: GFP allocation flags
 
 
 
2353 *
2354 * Return: status of transformation
2355 */
2356int spi_split_transfers_maxsize(struct spi_master *master,
2357				struct spi_message *msg,
2358				size_t maxsize,
2359				gfp_t gfp)
2360{
2361	struct spi_transfer *xfer;
2362	int ret;
2363
2364	/* iterate over the transfer_list,
 
2365	 * but note that xfer is advanced to the last transfer inserted
2366	 * to avoid checking sizes again unnecessarily (also xfer does
2367	 * potentiall belong to a different list by the time the
2368	 * replacement has happened
2369	 */
2370	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2371		if (xfer->len > maxsize) {
2372			ret = __spi_split_transfer_maxsize(
2373				master, msg, &xfer, maxsize, gfp);
2374			if (ret)
2375				return ret;
2376		}
2377	}
2378
2379	return 0;
2380}
2381EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2383/*-------------------------------------------------------------------------*/
2384
2385/* Core methods for SPI master protocol drivers.  Some of the
 
2386 * other core methods are currently defined as inline functions.
2387 */
2388
2389static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
 
2390{
2391	if (master->bits_per_word_mask) {
2392		/* Only 32 bits fit in the mask */
2393		if (bits_per_word > 32)
2394			return -EINVAL;
2395		if (!(master->bits_per_word_mask &
2396				SPI_BPW_MASK(bits_per_word)))
2397			return -EINVAL;
2398	}
2399
2400	return 0;
2401}
2402
2403/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404 * spi_setup - setup SPI mode and clock rate
2405 * @spi: the device whose settings are being modified
2406 * Context: can sleep, and no requests are queued to the device
2407 *
2408 * SPI protocol drivers may need to update the transfer mode if the
2409 * device doesn't work with its default.  They may likewise need
2410 * to update clock rates or word sizes from initial values.  This function
2411 * changes those settings, and must be called from a context that can sleep.
2412 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2413 * effect the next time the device is selected and data is transferred to
2414 * or from it.  When this function returns, the spi device is deselected.
2415 *
2416 * Note that this call will fail if the protocol driver specifies an option
2417 * that the underlying controller or its driver does not support.  For
2418 * example, not all hardware supports wire transfers using nine bit words,
2419 * LSB-first wire encoding, or active-high chipselects.
2420 *
2421 * Return: zero on success, else a negative error code.
2422 */
2423int spi_setup(struct spi_device *spi)
2424{
2425	unsigned	bad_bits, ugly_bits;
2426	int		status;
2427
2428	/* check mode to prevent that DUAL and QUAD set at the same time
 
 
2429	 */
2430	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2431		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 
 
2432		dev_err(&spi->dev,
2433		"setup: can not select dual and quad at the same time\n");
2434		return -EINVAL;
2435	}
2436	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2437	 */
2438	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2439		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
 
2440		return -EINVAL;
2441	/* help drivers fail *cleanly* when they need options
2442	 * that aren't supported with their current master
 
 
 
 
 
 
 
 
 
2443	 */
2444	bad_bits = spi->mode & ~spi->master->mode_bits;
 
2445	ugly_bits = bad_bits &
2446		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
 
2447	if (ugly_bits) {
2448		dev_warn(&spi->dev,
2449			 "setup: ignoring unsupported mode bits %x\n",
2450			 ugly_bits);
2451		spi->mode &= ~ugly_bits;
2452		bad_bits &= ~ugly_bits;
2453	}
2454	if (bad_bits) {
2455		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2456			bad_bits);
2457		return -EINVAL;
2458	}
2459
2460	if (!spi->bits_per_word)
2461		spi->bits_per_word = 8;
 
 
 
 
 
 
 
 
 
 
2462
2463	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2464	if (status)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465		return status;
 
2466
2467	if (!spi->max_speed_hz)
2468		spi->max_speed_hz = spi->master->max_speed_hz;
 
 
 
 
 
 
2469
2470	if (spi->master->setup)
2471		status = spi->master->setup(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2472
2473	spi_set_cs(spi, false);
 
 
 
 
 
2474
2475	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2476			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2477			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2478			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2479			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2480			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2481			spi->bits_per_word, spi->max_speed_hz,
2482			status);
2483
2484	return status;
2485}
2486EXPORT_SYMBOL_GPL(spi_setup);
2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2488static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2489{
2490	struct spi_master *master = spi->master;
2491	struct spi_transfer *xfer;
2492	int w_size;
2493
2494	if (list_empty(&message->transfers))
2495		return -EINVAL;
2496
2497	/* Half-duplex links include original MicroWire, and ones with
 
 
 
2498	 * only one data pin like SPI_3WIRE (switches direction) or where
2499	 * either MOSI or MISO is missing.  They can also be caused by
2500	 * software limitations.
2501	 */
2502	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2503			|| (spi->mode & SPI_3WIRE)) {
2504		unsigned flags = master->flags;
2505
2506		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2507			if (xfer->rx_buf && xfer->tx_buf)
2508				return -EINVAL;
2509			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2510				return -EINVAL;
2511			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2512				return -EINVAL;
2513		}
2514	}
2515
2516	/**
2517	 * Set transfer bits_per_word and max speed as spi device default if
2518	 * it is not set for this transfer.
2519	 * Set transfer tx_nbits and rx_nbits as single transfer default
2520	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
 
 
2521	 */
2522	message->frame_length = 0;
2523	list_for_each_entry(xfer, &message->transfers, transfer_list) {
 
2524		message->frame_length += xfer->len;
2525		if (!xfer->bits_per_word)
2526			xfer->bits_per_word = spi->bits_per_word;
2527
2528		if (!xfer->speed_hz)
2529			xfer->speed_hz = spi->max_speed_hz;
2530		if (!xfer->speed_hz)
2531			xfer->speed_hz = master->max_speed_hz;
2532
2533		if (master->max_speed_hz &&
2534		    xfer->speed_hz > master->max_speed_hz)
2535			xfer->speed_hz = master->max_speed_hz;
2536
2537		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2538			return -EINVAL;
2539
2540		/*
2541		 * SPI transfer length should be multiple of SPI word size
2542		 * where SPI word size should be power-of-two multiple
2543		 */
2544		if (xfer->bits_per_word <= 8)
2545			w_size = 1;
2546		else if (xfer->bits_per_word <= 16)
2547			w_size = 2;
2548		else
2549			w_size = 4;
2550
2551		/* No partial transfers accepted */
2552		if (xfer->len % w_size)
2553			return -EINVAL;
2554
2555		if (xfer->speed_hz && master->min_speed_hz &&
2556		    xfer->speed_hz < master->min_speed_hz)
2557			return -EINVAL;
2558
2559		if (xfer->tx_buf && !xfer->tx_nbits)
2560			xfer->tx_nbits = SPI_NBITS_SINGLE;
2561		if (xfer->rx_buf && !xfer->rx_nbits)
2562			xfer->rx_nbits = SPI_NBITS_SINGLE;
2563		/* check transfer tx/rx_nbits:
 
2564		 * 1. check the value matches one of single, dual and quad
2565		 * 2. check tx/rx_nbits match the mode in spi_device
2566		 */
2567		if (xfer->tx_buf) {
 
 
2568			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2569				xfer->tx_nbits != SPI_NBITS_DUAL &&
2570				xfer->tx_nbits != SPI_NBITS_QUAD)
 
2571				return -EINVAL;
2572			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2573				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2574				return -EINVAL;
2575			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2576				!(spi->mode & SPI_TX_QUAD))
2577				return -EINVAL;
2578		}
2579		/* check transfer rx_nbits */
2580		if (xfer->rx_buf) {
 
 
2581			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2582				xfer->rx_nbits != SPI_NBITS_DUAL &&
2583				xfer->rx_nbits != SPI_NBITS_QUAD)
 
2584				return -EINVAL;
2585			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2586				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2587				return -EINVAL;
2588			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2589				!(spi->mode & SPI_RX_QUAD))
2590				return -EINVAL;
2591		}
 
 
 
2592	}
2593
2594	message->status = -EINPROGRESS;
2595
2596	return 0;
2597}
2598
2599static int __spi_async(struct spi_device *spi, struct spi_message *message)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600{
2601	struct spi_master *master = spi->master;
 
 
2602
2603	message->spi = spi;
 
 
 
 
 
 
 
 
 
 
 
2604
2605	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2606	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
 
 
2607
2608	trace_spi_message_submit(message);
 
 
 
 
 
 
 
2609
2610	return master->transfer(spi, message);
2611}
2612
2613/**
2614 * spi_async - asynchronous SPI transfer
2615 * @spi: device with which data will be exchanged
2616 * @message: describes the data transfers, including completion callback
2617 * Context: any (irqs may be blocked, etc)
2618 *
2619 * This call may be used in_irq and other contexts which can't sleep,
2620 * as well as from task contexts which can sleep.
2621 *
2622 * The completion callback is invoked in a context which can't sleep.
2623 * Before that invocation, the value of message->status is undefined.
2624 * When the callback is issued, message->status holds either zero (to
2625 * indicate complete success) or a negative error code.  After that
2626 * callback returns, the driver which issued the transfer request may
2627 * deallocate the associated memory; it's no longer in use by any SPI
2628 * core or controller driver code.
2629 *
2630 * Note that although all messages to a spi_device are handled in
2631 * FIFO order, messages may go to different devices in other orders.
2632 * Some device might be higher priority, or have various "hard" access
2633 * time requirements, for example.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634 *
2635 * On detection of any fault during the transfer, processing of
2636 * the entire message is aborted, and the device is deselected.
2637 * Until returning from the associated message completion callback,
2638 * no other spi_message queued to that device will be processed.
2639 * (This rule applies equally to all the synchronous transfer calls,
2640 * which are wrappers around this core asynchronous primitive.)
2641 *
2642 * Return: zero on success, else a negative error code.
 
2643 */
2644int spi_async(struct spi_device *spi, struct spi_message *message)
2645{
2646	struct spi_master *master = spi->master;
2647	int ret;
2648	unsigned long flags;
2649
2650	ret = __spi_validate(spi, message);
2651	if (ret != 0)
 
 
 
 
 
 
 
2652		return ret;
2653
2654	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2655
2656	if (master->bus_lock_flag)
2657		ret = -EBUSY;
2658	else
2659		ret = __spi_async(spi, message);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660
2661	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 
 
2662
2663	return ret;
2664}
2665EXPORT_SYMBOL_GPL(spi_async);
2666
2667/**
2668 * spi_async_locked - version of spi_async with exclusive bus usage
2669 * @spi: device with which data will be exchanged
2670 * @message: describes the data transfers, including completion callback
2671 * Context: any (irqs may be blocked, etc)
2672 *
2673 * This call may be used in_irq and other contexts which can't sleep,
2674 * as well as from task contexts which can sleep.
2675 *
2676 * The completion callback is invoked in a context which can't sleep.
2677 * Before that invocation, the value of message->status is undefined.
2678 * When the callback is issued, message->status holds either zero (to
2679 * indicate complete success) or a negative error code.  After that
2680 * callback returns, the driver which issued the transfer request may
2681 * deallocate the associated memory; it's no longer in use by any SPI
2682 * core or controller driver code.
2683 *
2684 * Note that although all messages to a spi_device are handled in
2685 * FIFO order, messages may go to different devices in other orders.
2686 * Some device might be higher priority, or have various "hard" access
2687 * time requirements, for example.
2688 *
2689 * On detection of any fault during the transfer, processing of
2690 * the entire message is aborted, and the device is deselected.
2691 * Until returning from the associated message completion callback,
2692 * no other spi_message queued to that device will be processed.
2693 * (This rule applies equally to all the synchronous transfer calls,
2694 * which are wrappers around this core asynchronous primitive.)
2695 *
2696 * Return: zero on success, else a negative error code.
2697 */
2698int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2699{
2700	struct spi_master *master = spi->master;
2701	int ret;
2702	unsigned long flags;
2703
2704	ret = __spi_validate(spi, message);
2705	if (ret != 0)
2706		return ret;
2707
2708	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2709
2710	ret = __spi_async(spi, message);
 
 
 
2711
2712	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2713
2714	return ret;
2715
2716}
2717EXPORT_SYMBOL_GPL(spi_async_locked);
2718
2719
2720int spi_flash_read(struct spi_device *spi,
2721		   struct spi_flash_read_message *msg)
2722
 
2723{
2724	struct spi_master *master = spi->master;
2725	int ret;
2726
2727	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2728	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2729	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2730		return -EINVAL;
2731	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2732	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2733	    !(spi->mode & SPI_TX_QUAD))
2734		return -EINVAL;
2735	if (msg->data_nbits == SPI_NBITS_DUAL &&
2736	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2737		return -EINVAL;
2738	if (msg->data_nbits == SPI_NBITS_QUAD &&
2739	    !(spi->mode &  SPI_RX_QUAD))
2740		return -EINVAL;
2741
2742	if (master->auto_runtime_pm) {
2743		ret = pm_runtime_get_sync(master->dev.parent);
2744		if (ret < 0) {
2745			dev_err(&master->dev, "Failed to power device: %d\n",
2746				ret);
2747			return ret;
2748		}
 
 
 
 
 
 
 
 
 
 
2749	}
2750	mutex_lock(&master->bus_lock_mutex);
2751	ret = master->spi_flash_read(spi, msg);
2752	mutex_unlock(&master->bus_lock_mutex);
2753	if (master->auto_runtime_pm)
2754		pm_runtime_put(master->dev.parent);
2755
2756	return ret;
2757}
2758EXPORT_SYMBOL_GPL(spi_flash_read);
2759
2760/*-------------------------------------------------------------------------*/
2761
2762/* Utility methods for SPI master protocol drivers, layered on
 
2763 * top of the core.  Some other utility methods are defined as
2764 * inline functions.
2765 */
2766
2767static void spi_complete(void *arg)
2768{
2769	complete(arg);
2770}
2771
2772static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2773		      int bus_locked)
2774{
2775	DECLARE_COMPLETION_ONSTACK(done);
 
2776	int status;
2777	struct spi_master *master = spi->master;
2778	unsigned long flags;
 
 
 
 
2779
2780	status = __spi_validate(spi, message);
2781	if (status != 0)
2782		return status;
2783
2784	message->complete = spi_complete;
2785	message->context = &done;
2786	message->spi = spi;
2787
2788	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2789	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2790
2791	if (!bus_locked)
2792		mutex_lock(&master->bus_lock_mutex);
2793
2794	/* If we're not using the legacy transfer method then we will
2795	 * try to transfer in the calling context so special case.
2796	 * This code would be less tricky if we could remove the
2797	 * support for driver implemented message queues.
2798	 */
2799	if (master->transfer == spi_queued_transfer) {
2800		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 
2801
2802		trace_spi_message_submit(message);
2803
2804		status = __spi_queued_transfer(spi, message, false);
 
2805
2806		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2807	} else {
2808		status = spi_async_locked(spi, message);
2809	}
2810
2811	if (!bus_locked)
2812		mutex_unlock(&master->bus_lock_mutex);
 
 
 
 
 
 
 
 
 
 
2813
2814	if (status == 0) {
2815		/* Push out the messages in the calling context if we
2816		 * can.
2817		 */
2818		if (master->transfer == spi_queued_transfer) {
2819			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2820						       spi_sync_immediate);
2821			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2822						       spi_sync_immediate);
2823			__spi_pump_messages(master, false, bus_locked);
2824		}
2825
2826		wait_for_completion(&done);
2827		status = message->status;
2828	}
 
2829	message->context = NULL;
 
2830	return status;
2831}
2832
2833/**
2834 * spi_sync - blocking/synchronous SPI data transfers
2835 * @spi: device with which data will be exchanged
2836 * @message: describes the data transfers
2837 * Context: can sleep
2838 *
2839 * This call may only be used from a context that may sleep.  The sleep
2840 * is non-interruptible, and has no timeout.  Low-overhead controller
2841 * drivers may DMA directly into and out of the message buffers.
2842 *
2843 * Note that the SPI device's chip select is active during the message,
2844 * and then is normally disabled between messages.  Drivers for some
2845 * frequently-used devices may want to minimize costs of selecting a chip,
2846 * by leaving it selected in anticipation that the next message will go
2847 * to the same chip.  (That may increase power usage.)
2848 *
2849 * Also, the caller is guaranteeing that the memory associated with the
2850 * message will not be freed before this call returns.
2851 *
2852 * Return: zero on success, else a negative error code.
2853 */
2854int spi_sync(struct spi_device *spi, struct spi_message *message)
2855{
2856	return __spi_sync(spi, message, spi->master->bus_lock_flag);
 
 
 
 
 
 
2857}
2858EXPORT_SYMBOL_GPL(spi_sync);
2859
2860/**
2861 * spi_sync_locked - version of spi_sync with exclusive bus usage
2862 * @spi: device with which data will be exchanged
2863 * @message: describes the data transfers
2864 * Context: can sleep
2865 *
2866 * This call may only be used from a context that may sleep.  The sleep
2867 * is non-interruptible, and has no timeout.  Low-overhead controller
2868 * drivers may DMA directly into and out of the message buffers.
2869 *
2870 * This call should be used by drivers that require exclusive access to the
2871 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2872 * be released by a spi_bus_unlock call when the exclusive access is over.
2873 *
2874 * Return: zero on success, else a negative error code.
2875 */
2876int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2877{
2878	return __spi_sync(spi, message, 1);
2879}
2880EXPORT_SYMBOL_GPL(spi_sync_locked);
2881
2882/**
2883 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2884 * @master: SPI bus master that should be locked for exclusive bus access
2885 * Context: can sleep
2886 *
2887 * This call may only be used from a context that may sleep.  The sleep
2888 * is non-interruptible, and has no timeout.
2889 *
2890 * This call should be used by drivers that require exclusive access to the
2891 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2892 * exclusive access is over. Data transfer must be done by spi_sync_locked
2893 * and spi_async_locked calls when the SPI bus lock is held.
2894 *
2895 * Return: always zero.
2896 */
2897int spi_bus_lock(struct spi_master *master)
2898{
2899	unsigned long flags;
2900
2901	mutex_lock(&master->bus_lock_mutex);
2902
2903	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2904	master->bus_lock_flag = 1;
2905	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2906
2907	/* mutex remains locked until spi_bus_unlock is called */
2908
2909	return 0;
2910}
2911EXPORT_SYMBOL_GPL(spi_bus_lock);
2912
2913/**
2914 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2915 * @master: SPI bus master that was locked for exclusive bus access
2916 * Context: can sleep
2917 *
2918 * This call may only be used from a context that may sleep.  The sleep
2919 * is non-interruptible, and has no timeout.
2920 *
2921 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2922 * call.
2923 *
2924 * Return: always zero.
2925 */
2926int spi_bus_unlock(struct spi_master *master)
2927{
2928	master->bus_lock_flag = 0;
2929
2930	mutex_unlock(&master->bus_lock_mutex);
2931
2932	return 0;
2933}
2934EXPORT_SYMBOL_GPL(spi_bus_unlock);
2935
2936/* portable code must never pass more than 32 bytes */
2937#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2938
2939static u8	*buf;
2940
2941/**
2942 * spi_write_then_read - SPI synchronous write followed by read
2943 * @spi: device with which data will be exchanged
2944 * @txbuf: data to be written (need not be dma-safe)
2945 * @n_tx: size of txbuf, in bytes
2946 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2947 * @n_rx: size of rxbuf, in bytes
2948 * Context: can sleep
2949 *
2950 * This performs a half duplex MicroWire style transaction with the
2951 * device, sending txbuf and then reading rxbuf.  The return value
2952 * is zero for success, else a negative errno status code.
2953 * This call may only be used from a context that may sleep.
2954 *
2955 * Parameters to this routine are always copied using a small buffer;
2956 * portable code should never use this for more than 32 bytes.
2957 * Performance-sensitive or bulk transfer code should instead use
2958 * spi_{async,sync}() calls with dma-safe buffers.
2959 *
2960 * Return: zero on success, else a negative error code.
2961 */
2962int spi_write_then_read(struct spi_device *spi,
2963		const void *txbuf, unsigned n_tx,
2964		void *rxbuf, unsigned n_rx)
2965{
2966	static DEFINE_MUTEX(lock);
2967
2968	int			status;
2969	struct spi_message	message;
2970	struct spi_transfer	x[2];
2971	u8			*local_buf;
2972
2973	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
2974	 * copying here, (as a pure convenience thing), but we can
2975	 * keep heap costs out of the hot path unless someone else is
2976	 * using the pre-allocated buffer or the transfer is too large.
2977	 */
2978	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2979		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2980				    GFP_KERNEL | GFP_DMA);
2981		if (!local_buf)
2982			return -ENOMEM;
2983	} else {
2984		local_buf = buf;
2985	}
2986
2987	spi_message_init(&message);
2988	memset(x, 0, sizeof(x));
2989	if (n_tx) {
2990		x[0].len = n_tx;
2991		spi_message_add_tail(&x[0], &message);
2992	}
2993	if (n_rx) {
2994		x[1].len = n_rx;
2995		spi_message_add_tail(&x[1], &message);
2996	}
2997
2998	memcpy(local_buf, txbuf, n_tx);
2999	x[0].tx_buf = local_buf;
3000	x[1].rx_buf = local_buf + n_tx;
3001
3002	/* do the i/o */
3003	status = spi_sync(spi, &message);
3004	if (status == 0)
3005		memcpy(rxbuf, x[1].rx_buf, n_rx);
3006
3007	if (x[0].tx_buf == buf)
3008		mutex_unlock(&lock);
3009	else
3010		kfree(local_buf);
3011
3012	return status;
3013}
3014EXPORT_SYMBOL_GPL(spi_write_then_read);
3015
3016/*-------------------------------------------------------------------------*/
3017
3018#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3019static int __spi_of_device_match(struct device *dev, void *data)
 
3020{
3021	return dev->of_node == data;
3022}
3023
3024/* must call put_device() when done with returned spi_device device */
3025static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3026{
3027	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3028						__spi_of_device_match);
3029	return dev ? to_spi_device(dev) : NULL;
3030}
3031
3032static int __spi_of_master_match(struct device *dev, const void *data)
3033{
3034	return dev->of_node == data;
3035}
3036
3037/* the spi masters are not using spi_bus, so we find it with another way */
3038static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3039{
3040	struct device *dev;
3041
3042	dev = class_find_device(&spi_master_class, NULL, node,
3043				__spi_of_master_match);
 
3044	if (!dev)
3045		return NULL;
3046
3047	/* reference got in class_find_device */
3048	return container_of(dev, struct spi_master, dev);
3049}
3050
3051static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3052			 void *arg)
3053{
3054	struct of_reconfig_data *rd = arg;
3055	struct spi_master *master;
3056	struct spi_device *spi;
3057
3058	switch (of_reconfig_get_state_change(action, arg)) {
3059	case OF_RECONFIG_CHANGE_ADD:
3060		master = of_find_spi_master_by_node(rd->dn->parent);
3061		if (master == NULL)
3062			return NOTIFY_OK;	/* not for us */
3063
3064		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3065			put_device(&master->dev);
3066			return NOTIFY_OK;
3067		}
3068
3069		spi = of_register_spi_device(master, rd->dn);
3070		put_device(&master->dev);
 
 
 
 
 
3071
3072		if (IS_ERR(spi)) {
3073			pr_err("%s: failed to create for '%s'\n",
3074					__func__, rd->dn->full_name);
 
3075			return notifier_from_errno(PTR_ERR(spi));
3076		}
3077		break;
3078
3079	case OF_RECONFIG_CHANGE_REMOVE:
3080		/* already depopulated? */
3081		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3082			return NOTIFY_OK;
3083
3084		/* find our device by node */
3085		spi = of_find_spi_device_by_node(rd->dn);
3086		if (spi == NULL)
3087			return NOTIFY_OK;	/* no? not meant for us */
3088
3089		/* unregister takes one ref away */
3090		spi_unregister_device(spi);
3091
3092		/* and put the reference of the find */
3093		put_device(&spi->dev);
3094		break;
3095	}
3096
3097	return NOTIFY_OK;
3098}
3099
3100static struct notifier_block spi_of_notifier = {
3101	.notifier_call = of_spi_notify,
3102};
3103#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3104extern struct notifier_block spi_of_notifier;
3105#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3107static int __init spi_init(void)
3108{
3109	int	status;
3110
3111	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3112	if (!buf) {
3113		status = -ENOMEM;
3114		goto err0;
3115	}
3116
3117	status = bus_register(&spi_bus_type);
3118	if (status < 0)
3119		goto err1;
3120
3121	status = class_register(&spi_master_class);
3122	if (status < 0)
3123		goto err2;
3124
 
 
 
 
 
 
3125	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3126		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
 
 
3127
3128	return 0;
3129
 
 
3130err2:
3131	bus_unregister(&spi_bus_type);
3132err1:
3133	kfree(buf);
3134	buf = NULL;
3135err0:
3136	return status;
3137}
3138
3139/* board_info is normally registered in arch_initcall(),
3140 * but even essential drivers wait till later
 
3141 *
3142 * REVISIT only boardinfo really needs static linking. the rest (device and
3143 * driver registration) _could_ be dynamically linked (modular) ... costs
3144 * include needing to have boardinfo data structures be much more public.
3145 */
3146postcore_initcall(spi_init);
3147