Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/acpi.h>
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
 
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
 
 
 
 
 
 
 
  36#include <uapi/linux/sched/types.h>
 
 
 
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
 
 
 
 
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
 
 
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 
 
 
 
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_message *msg)
 316{
 
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if (spi_valid_txbuf(msg, xfer))
 332		u64_stats_add(&stats->bytes_tx, xfer->len);
 333	if (spi_valid_rxbuf(msg, xfer))
 334		u64_stats_add(&stats->bytes_rx, xfer->len);
 335
 336	u64_stats_update_end(&stats->syncp);
 337	put_cpu();
 
 
 
 
 
 
 
 338}
 
 339
 340/*
 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 342 * and the sysfs version makes coldplug work too.
 343 */
 344static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 345{
 346	while (id->name[0]) {
 347		if (!strcmp(name, id->name))
 348			return id;
 349		id++;
 350	}
 351	return NULL;
 352}
 353
 354const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 355{
 356	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 357
 358	return spi_match_id(sdrv->id_table, sdev->modalias);
 359}
 360EXPORT_SYMBOL_GPL(spi_get_device_id);
 361
 362const void *spi_get_device_match_data(const struct spi_device *sdev)
 363{
 364	const void *match;
 365
 366	match = device_get_match_data(&sdev->dev);
 367	if (match)
 368		return match;
 369
 370	return (const void *)spi_get_device_id(sdev)->driver_data;
 371}
 372EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 373
 374static int spi_match_device(struct device *dev, const struct device_driver *drv)
 375{
 376	const struct spi_device	*spi = to_spi_device(dev);
 377	const struct spi_driver	*sdrv = to_spi_driver(drv);
 378
 379	/* Check override first, and if set, only use the named driver */
 380	if (spi->driver_override)
 381		return strcmp(spi->driver_override, drv->name) == 0;
 382
 383	/* Attempt an OF style match */
 384	if (of_driver_match_device(dev, drv))
 385		return 1;
 386
 387	/* Then try ACPI */
 388	if (acpi_driver_match_device(dev, drv))
 389		return 1;
 390
 391	if (sdrv->id_table)
 392		return !!spi_match_id(sdrv->id_table, spi->modalias);
 393
 394	return strcmp(spi->modalias, drv->name) == 0;
 395}
 396
 397static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 398{
 399	const struct spi_device		*spi = to_spi_device(dev);
 400	int rc;
 401
 402	rc = acpi_device_uevent_modalias(dev, env);
 403	if (rc != -ENODEV)
 404		return rc;
 405
 406	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 407}
 408
 409static int spi_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 410{
 411	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 412	struct spi_device		*spi = to_spi_device(dev);
 413	int ret;
 414
 415	ret = of_clk_set_defaults(dev->of_node, false);
 416	if (ret)
 417		return ret;
 418
 419	if (dev->of_node) {
 420		spi->irq = of_irq_get(dev->of_node, 0);
 421		if (spi->irq == -EPROBE_DEFER)
 422			return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n");
 423		if (spi->irq < 0)
 424			spi->irq = 0;
 425	}
 426
 427	if (has_acpi_companion(dev) && spi->irq < 0) {
 428		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
 429
 430		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
 431		if (spi->irq == -EPROBE_DEFER)
 432			return -EPROBE_DEFER;
 433		if (spi->irq < 0)
 434			spi->irq = 0;
 435	}
 436
 437	ret = dev_pm_domain_attach(dev, true);
 438	if (ret)
 439		return ret;
 440
 441	if (sdrv->probe) {
 442		ret = sdrv->probe(spi);
 443		if (ret)
 444			dev_pm_domain_detach(dev, true);
 445	}
 446
 447	return ret;
 448}
 449
 450static void spi_remove(struct device *dev)
 451{
 452	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 453
 454	if (sdrv->remove)
 455		sdrv->remove(to_spi_device(dev));
 456
 457	dev_pm_domain_detach(dev, true);
 
 
 458}
 459
 460static void spi_shutdown(struct device *dev)
 461{
 462	if (dev->driver) {
 463		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 464
 465		if (sdrv->shutdown)
 466			sdrv->shutdown(to_spi_device(dev));
 467	}
 468}
 469
 470const struct bus_type spi_bus_type = {
 471	.name		= "spi",
 472	.dev_groups	= spi_dev_groups,
 473	.match		= spi_match_device,
 474	.uevent		= spi_uevent,
 475	.probe		= spi_probe,
 476	.remove		= spi_remove,
 477	.shutdown	= spi_shutdown,
 478};
 479EXPORT_SYMBOL_GPL(spi_bus_type);
 480
 481/**
 482 * __spi_register_driver - register a SPI driver
 483 * @owner: owner module of the driver to register
 484 * @sdrv: the driver to register
 485 * Context: can sleep
 486 *
 487 * Return: zero on success, else a negative error code.
 488 */
 489int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 490{
 491	sdrv->driver.owner = owner;
 492	sdrv->driver.bus = &spi_bus_type;
 493
 494	/*
 495	 * For Really Good Reasons we use spi: modaliases not of:
 496	 * modaliases for DT so module autoloading won't work if we
 497	 * don't have a spi_device_id as well as a compatible string.
 498	 */
 499	if (sdrv->driver.of_match_table) {
 500		const struct of_device_id *of_id;
 501
 502		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 503		     of_id++) {
 504			const char *of_name;
 505
 506			/* Strip off any vendor prefix */
 507			of_name = strnchr(of_id->compatible,
 508					  sizeof(of_id->compatible), ',');
 509			if (of_name)
 510				of_name++;
 511			else
 512				of_name = of_id->compatible;
 513
 514			if (sdrv->id_table) {
 515				const struct spi_device_id *spi_id;
 516
 517				spi_id = spi_match_id(sdrv->id_table, of_name);
 518				if (spi_id)
 519					continue;
 520			} else {
 521				if (strcmp(sdrv->driver.name, of_name) == 0)
 522					continue;
 523			}
 524
 525			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 526				sdrv->driver.name, of_id->compatible);
 527		}
 528	}
 529
 530	return driver_register(&sdrv->driver);
 531}
 532EXPORT_SYMBOL_GPL(__spi_register_driver);
 533
 534/*-------------------------------------------------------------------------*/
 535
 536/*
 537 * SPI devices should normally not be created by SPI device drivers; that
 538 * would make them board-specific.  Similarly with SPI controller drivers.
 539 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 540 * with other readonly (flashable) information about mainboard devices.
 541 */
 542
 543struct boardinfo {
 544	struct list_head	list;
 545	struct spi_board_info	board_info;
 546};
 547
 548static LIST_HEAD(board_list);
 549static LIST_HEAD(spi_controller_list);
 550
 551/*
 552 * Used to protect add/del operation for board_info list and
 553 * spi_controller list, and their matching process also used
 554 * to protect object of type struct idr.
 555 */
 556static DEFINE_MUTEX(board_lock);
 557
 558/**
 559 * spi_alloc_device - Allocate a new SPI device
 560 * @ctlr: Controller to which device is connected
 561 * Context: can sleep
 562 *
 563 * Allows a driver to allocate and initialize a spi_device without
 564 * registering it immediately.  This allows a driver to directly
 565 * fill the spi_device with device parameters before calling
 566 * spi_add_device() on it.
 567 *
 568 * Caller is responsible to call spi_add_device() on the returned
 569 * spi_device structure to add it to the SPI controller.  If the caller
 570 * needs to discard the spi_device without adding it, then it should
 571 * call spi_dev_put() on it.
 572 *
 573 * Return: a pointer to the new device, or NULL.
 574 */
 575struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 576{
 577	struct spi_device	*spi;
 578
 579	if (!spi_controller_get(ctlr))
 580		return NULL;
 581
 582	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 583	if (!spi) {
 584		spi_controller_put(ctlr);
 585		return NULL;
 586	}
 587
 588	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 589	if (!spi->pcpu_statistics) {
 590		kfree(spi);
 591		spi_controller_put(ctlr);
 592		return NULL;
 593	}
 594
 595	spi->controller = ctlr;
 596	spi->dev.parent = &ctlr->dev;
 597	spi->dev.bus = &spi_bus_type;
 598	spi->dev.release = spidev_release;
 599	spi->mode = ctlr->buswidth_override_bits;
 
 
 600
 601	device_initialize(&spi->dev);
 602	return spi;
 603}
 604EXPORT_SYMBOL_GPL(spi_alloc_device);
 605
 606static void spi_dev_set_name(struct spi_device *spi)
 607{
 608	struct device *dev = &spi->dev;
 609	struct fwnode_handle *fwnode = dev_fwnode(dev);
 610
 611	if (is_acpi_device_node(fwnode)) {
 612		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
 613		return;
 614	}
 615
 616	if (is_software_node(fwnode)) {
 617		dev_set_name(dev, "spi-%pfwP", fwnode);
 618		return;
 619	}
 620
 621	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 622		     spi_get_chipselect(spi, 0));
 623}
 624
 625/*
 626 * Zero(0) is a valid physical CS value and can be located at any
 627 * logical CS in the spi->chip_select[]. If all the physical CS
 628 * are initialized to 0 then It would be difficult to differentiate
 629 * between a valid physical CS 0 & an unused logical CS whose physical
 630 * CS can be 0. As a solution to this issue initialize all the CS to -1.
 631 * Now all the unused logical CS will have -1 physical CS value & can be
 632 * ignored while performing physical CS validity checks.
 633 */
 634#define SPI_INVALID_CS		((s8)-1)
 635
 636static inline bool is_valid_cs(s8 chip_select)
 637{
 638	return chip_select != SPI_INVALID_CS;
 639}
 640
 641static inline int spi_dev_check_cs(struct device *dev,
 642				   struct spi_device *spi, u8 idx,
 643				   struct spi_device *new_spi, u8 new_idx)
 644{
 645	u8 cs, cs_new;
 646	u8 idx_new;
 647
 648	cs = spi_get_chipselect(spi, idx);
 649	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
 650		cs_new = spi_get_chipselect(new_spi, idx_new);
 651		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
 652			dev_err(dev, "chipselect %u already in use\n", cs_new);
 653			return -EBUSY;
 654		}
 655	}
 656	return 0;
 657}
 658
 659static int spi_dev_check(struct device *dev, void *data)
 660{
 661	struct spi_device *spi = to_spi_device(dev);
 662	struct spi_device *new_spi = data;
 663	int status, idx;
 664
 665	if (spi->controller == new_spi->controller) {
 666		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 667			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
 668			if (status)
 669				return status;
 670		}
 671	}
 672	return 0;
 673}
 674
 675static void spi_cleanup(struct spi_device *spi)
 676{
 677	if (spi->controller->cleanup)
 678		spi->controller->cleanup(spi);
 679}
 680
 681static int __spi_add_device(struct spi_device *spi)
 
 
 
 682{
 
 683	struct spi_controller *ctlr = spi->controller;
 684	struct device *dev = ctlr->dev.parent;
 685	int status, idx;
 686	u8 cs;
 687
 688	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 689		/* Chipselects are numbered 0..max; validate. */
 690		cs = spi_get_chipselect(spi, idx);
 691		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
 692			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 693				ctlr->num_chipselect);
 694			return -EINVAL;
 695		}
 696	}
 697
 698	/*
 699	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 700	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 701	 */
 702	if (!spi_controller_is_target(ctlr)) {
 703		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 704			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
 705			if (status)
 706				return status;
 707		}
 708	}
 709
 710	/* Set the bus ID string */
 711	spi_dev_set_name(spi);
 712
 713	/*
 714	 * We need to make sure there's no other device with this
 715	 * chipselect **BEFORE** we call setup(), else we'll trash
 716	 * its configuration.
 717	 */
 718	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 719	if (status)
 720		return status;
 721
 722	/* Controller may unregister concurrently */
 723	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 724	    !device_is_registered(&ctlr->dev)) {
 725		return -ENODEV;
 
 726	}
 727
 728	if (ctlr->cs_gpiods) {
 729		u8 cs;
 730
 731		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 732			cs = spi_get_chipselect(spi, idx);
 733			if (is_valid_cs(cs))
 734				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 735		}
 736	}
 737
 738	/*
 739	 * Drivers may modify this initial i/o setup, but will
 740	 * normally rely on the device being setup.  Devices
 741	 * using SPI_CS_HIGH can't coexist well otherwise...
 742	 */
 743	status = spi_setup(spi);
 744	if (status < 0) {
 745		dev_err(dev, "can't setup %s, status %d\n",
 746				dev_name(&spi->dev), status);
 747		return status;
 748	}
 749
 750	/* Device may be bound to an active driver when this returns */
 751	status = device_add(&spi->dev);
 752	if (status < 0) {
 753		dev_err(dev, "can't add %s, status %d\n",
 754				dev_name(&spi->dev), status);
 755		spi_cleanup(spi);
 756	} else {
 757		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 758	}
 759
 760	return status;
 761}
 762
 763/**
 764 * spi_add_device - Add spi_device allocated with spi_alloc_device
 765 * @spi: spi_device to register
 766 *
 767 * Companion function to spi_alloc_device.  Devices allocated with
 768 * spi_alloc_device can be added onto the SPI bus with this function.
 769 *
 770 * Return: 0 on success; negative errno on failure
 771 */
 772int spi_add_device(struct spi_device *spi)
 773{
 774	struct spi_controller *ctlr = spi->controller;
 775	int status;
 776
 777	/* Set the bus ID string */
 778	spi_dev_set_name(spi);
 779
 780	mutex_lock(&ctlr->add_lock);
 781	status = __spi_add_device(spi);
 782	mutex_unlock(&ctlr->add_lock);
 783	return status;
 784}
 785EXPORT_SYMBOL_GPL(spi_add_device);
 786
 787static void spi_set_all_cs_unused(struct spi_device *spi)
 788{
 789	u8 idx;
 790
 791	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 792		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
 793}
 794
 795/**
 796 * spi_new_device - instantiate one new SPI device
 797 * @ctlr: Controller to which device is connected
 798 * @chip: Describes the SPI device
 799 * Context: can sleep
 800 *
 801 * On typical mainboards, this is purely internal; and it's not needed
 802 * after board init creates the hard-wired devices.  Some development
 803 * platforms may not be able to use spi_register_board_info though, and
 804 * this is exported so that for example a USB or parport based adapter
 805 * driver could add devices (which it would learn about out-of-band).
 806 *
 807 * Return: the new device, or NULL.
 808 */
 809struct spi_device *spi_new_device(struct spi_controller *ctlr,
 810				  struct spi_board_info *chip)
 811{
 812	struct spi_device	*proxy;
 813	int			status;
 814
 815	/*
 816	 * NOTE:  caller did any chip->bus_num checks necessary.
 817	 *
 818	 * Also, unless we change the return value convention to use
 819	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 820	 * suggests syslogged diagnostics are best here (ugh).
 821	 */
 822
 823	proxy = spi_alloc_device(ctlr);
 824	if (!proxy)
 825		return NULL;
 826
 827	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 828
 829	/* Use provided chip-select for proxy device */
 830	spi_set_all_cs_unused(proxy);
 831	spi_set_chipselect(proxy, 0, chip->chip_select);
 832
 833	proxy->max_speed_hz = chip->max_speed_hz;
 834	proxy->mode = chip->mode;
 835	proxy->irq = chip->irq;
 836	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 837	proxy->dev.platform_data = (void *) chip->platform_data;
 838	proxy->controller_data = chip->controller_data;
 839	proxy->controller_state = NULL;
 840	/*
 841	 * By default spi->chip_select[0] will hold the physical CS number,
 842	 * so set bit 0 in spi->cs_index_mask.
 843	 */
 844	proxy->cs_index_mask = BIT(0);
 845
 846	if (chip->swnode) {
 847		status = device_add_software_node(&proxy->dev, chip->swnode);
 848		if (status) {
 849			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 
 850				chip->modalias, status);
 851			goto err_dev_put;
 852		}
 853	}
 854
 855	status = spi_add_device(proxy);
 856	if (status < 0)
 857		goto err_dev_put;
 858
 859	return proxy;
 860
 
 
 
 861err_dev_put:
 862	device_remove_software_node(&proxy->dev);
 863	spi_dev_put(proxy);
 864	return NULL;
 865}
 866EXPORT_SYMBOL_GPL(spi_new_device);
 867
 868/**
 869 * spi_unregister_device - unregister a single SPI device
 870 * @spi: spi_device to unregister
 871 *
 872 * Start making the passed SPI device vanish. Normally this would be handled
 873 * by spi_unregister_controller().
 874 */
 875void spi_unregister_device(struct spi_device *spi)
 876{
 877	if (!spi)
 878		return;
 879
 880	if (spi->dev.of_node) {
 881		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 882		of_node_put(spi->dev.of_node);
 883	}
 884	if (ACPI_COMPANION(&spi->dev))
 885		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 886	device_remove_software_node(&spi->dev);
 887	device_del(&spi->dev);
 888	spi_cleanup(spi);
 889	put_device(&spi->dev);
 890}
 891EXPORT_SYMBOL_GPL(spi_unregister_device);
 892
 893static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 894					      struct spi_board_info *bi)
 895{
 896	struct spi_device *dev;
 897
 898	if (ctlr->bus_num != bi->bus_num)
 899		return;
 900
 901	dev = spi_new_device(ctlr, bi);
 902	if (!dev)
 903		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 904			bi->modalias);
 905}
 906
 907/**
 908 * spi_register_board_info - register SPI devices for a given board
 909 * @info: array of chip descriptors
 910 * @n: how many descriptors are provided
 911 * Context: can sleep
 912 *
 913 * Board-specific early init code calls this (probably during arch_initcall)
 914 * with segments of the SPI device table.  Any device nodes are created later,
 915 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 916 * this table of devices forever, so that reloading a controller driver will
 917 * not make Linux forget about these hard-wired devices.
 918 *
 919 * Other code can also call this, e.g. a particular add-on board might provide
 920 * SPI devices through its expansion connector, so code initializing that board
 921 * would naturally declare its SPI devices.
 922 *
 923 * The board info passed can safely be __initdata ... but be careful of
 924 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 925 *
 926 * Return: zero on success, else a negative error code.
 927 */
 928int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 929{
 930	struct boardinfo *bi;
 931	int i;
 932
 933	if (!n)
 934		return 0;
 935
 936	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 937	if (!bi)
 938		return -ENOMEM;
 939
 940	for (i = 0; i < n; i++, bi++, info++) {
 941		struct spi_controller *ctlr;
 942
 943		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 944
 945		mutex_lock(&board_lock);
 946		list_add_tail(&bi->list, &board_list);
 947		list_for_each_entry(ctlr, &spi_controller_list, list)
 948			spi_match_controller_to_boardinfo(ctlr,
 949							  &bi->board_info);
 950		mutex_unlock(&board_lock);
 951	}
 952
 953	return 0;
 954}
 955
 956/*-------------------------------------------------------------------------*/
 957
 958/* Core methods for SPI resource management */
 959
 960/**
 961 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 962 *                 during the processing of a spi_message while using
 963 *                 spi_transfer_one
 964 * @spi:     the SPI device for which we allocate memory
 965 * @release: the release code to execute for this resource
 966 * @size:    size to alloc and return
 967 * @gfp:     GFP allocation flags
 968 *
 969 * Return: the pointer to the allocated data
 970 *
 971 * This may get enhanced in the future to allocate from a memory pool
 972 * of the @spi_device or @spi_controller to avoid repeated allocations.
 973 */
 974static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 975			   size_t size, gfp_t gfp)
 976{
 977	struct spi_res *sres;
 978
 979	sres = kzalloc(sizeof(*sres) + size, gfp);
 980	if (!sres)
 981		return NULL;
 982
 983	INIT_LIST_HEAD(&sres->entry);
 984	sres->release = release;
 985
 986	return sres->data;
 987}
 988
 989/**
 990 * spi_res_free - free an SPI resource
 991 * @res: pointer to the custom data of a resource
 992 */
 993static void spi_res_free(void *res)
 994{
 995	struct spi_res *sres = container_of(res, struct spi_res, data);
 996
 997	WARN_ON(!list_empty(&sres->entry));
 998	kfree(sres);
 999}
1000
1001/**
1002 * spi_res_add - add a spi_res to the spi_message
1003 * @message: the SPI message
1004 * @res:     the spi_resource
1005 */
1006static void spi_res_add(struct spi_message *message, void *res)
1007{
1008	struct spi_res *sres = container_of(res, struct spi_res, data);
1009
1010	WARN_ON(!list_empty(&sres->entry));
1011	list_add_tail(&sres->entry, &message->resources);
1012}
1013
1014/**
1015 * spi_res_release - release all SPI resources for this message
1016 * @ctlr:  the @spi_controller
1017 * @message: the @spi_message
1018 */
1019static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1020{
1021	struct spi_res *res, *tmp;
1022
1023	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1024		if (res->release)
1025			res->release(ctlr, message, res->data);
1026
1027		list_del(&res->entry);
1028
1029		kfree(res);
1030	}
1031}
1032
1033/*-------------------------------------------------------------------------*/
1034#define spi_for_each_valid_cs(spi, idx)				\
1035	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1036		if (!(spi->cs_index_mask & BIT(idx))) {} else
1037
1038static inline bool spi_is_last_cs(struct spi_device *spi)
1039{
1040	u8 idx;
1041	bool last = false;
1042
1043	spi_for_each_valid_cs(spi, idx) {
1044		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1045			last = true;
1046	}
1047	return last;
1048}
1049
1050static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1051{
1052	/*
1053	 * Historically ACPI has no means of the GPIO polarity and
1054	 * thus the SPISerialBus() resource defines it on the per-chip
1055	 * basis. In order to avoid a chain of negations, the GPIO
1056	 * polarity is considered being Active High. Even for the cases
1057	 * when _DSD() is involved (in the updated versions of ACPI)
1058	 * the GPIO CS polarity must be defined Active High to avoid
1059	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1060	 * into account.
1061	 */
1062	if (has_acpi_companion(&spi->dev))
1063		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1064	else
1065		/* Polarity handled by GPIO library */
1066		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1067
1068	if (activate)
1069		spi_delay_exec(&spi->cs_setup, NULL);
1070	else
1071		spi_delay_exec(&spi->cs_inactive, NULL);
1072}
1073
1074static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1075{
1076	bool activate = enable;
1077	u8 idx;
1078
1079	/*
1080	 * Avoid calling into the driver (or doing delays) if the chip select
1081	 * isn't actually changing from the last time this was called.
1082	 */
1083	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1084			spi_is_last_cs(spi)) ||
1085		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1086			!spi_is_last_cs(spi))) &&
1087	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1088		return;
1089
1090	trace_spi_set_cs(spi, activate);
1091
1092	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1093	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1094		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1095	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1096
1097	if (spi->mode & SPI_CS_HIGH)
1098		enable = !enable;
1099
1100	/*
1101	 * Handle chip select delays for GPIO based CS or controllers without
1102	 * programmable chip select timing.
1103	 */
1104	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1105		spi_delay_exec(&spi->cs_hold, NULL);
1106
1107	if (spi_is_csgpiod(spi)) {
1108		if (!(spi->mode & SPI_NO_CS)) {
1109			spi_for_each_valid_cs(spi, idx) {
1110				if (spi_get_csgpiod(spi, idx))
1111					spi_toggle_csgpiod(spi, idx, enable, activate);
1112			}
 
1113		}
1114		/* Some SPI masters need both GPIO CS & slave_select */
1115		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1116		    spi->controller->set_cs)
1117			spi->controller->set_cs(spi, !enable);
1118	} else if (spi->controller->set_cs) {
1119		spi->controller->set_cs(spi, !enable);
1120	}
1121
1122	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1123		if (activate)
1124			spi_delay_exec(&spi->cs_setup, NULL);
1125		else
1126			spi_delay_exec(&spi->cs_inactive, NULL);
1127	}
1128}
1129
1130#ifdef CONFIG_HAS_DMA
1131static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1132			     struct sg_table *sgt, void *buf, size_t len,
1133			     enum dma_data_direction dir, unsigned long attrs)
1134{
1135	const bool vmalloced_buf = is_vmalloc_addr(buf);
1136	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1137#ifdef CONFIG_HIGHMEM
1138	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1139				(unsigned long)buf < (PKMAP_BASE +
1140					(LAST_PKMAP * PAGE_SIZE)));
1141#else
1142	const bool kmap_buf = false;
1143#endif
1144	int desc_len;
1145	int sgs;
1146	struct page *vm_page;
1147	struct scatterlist *sg;
1148	void *sg_buf;
1149	size_t min;
1150	int i, ret;
1151
1152	if (vmalloced_buf || kmap_buf) {
1153		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1154		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1155	} else if (virt_addr_valid(buf)) {
1156		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1157		sgs = DIV_ROUND_UP(len, desc_len);
1158	} else {
1159		return -EINVAL;
1160	}
1161
1162	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1163	if (ret != 0)
1164		return ret;
1165
1166	sg = &sgt->sgl[0];
1167	for (i = 0; i < sgs; i++) {
1168
1169		if (vmalloced_buf || kmap_buf) {
1170			/*
1171			 * Next scatterlist entry size is the minimum between
1172			 * the desc_len and the remaining buffer length that
1173			 * fits in a page.
1174			 */
1175			min = min_t(size_t, desc_len,
1176				    min_t(size_t, len,
1177					  PAGE_SIZE - offset_in_page(buf)));
1178			if (vmalloced_buf)
1179				vm_page = vmalloc_to_page(buf);
1180			else
1181				vm_page = kmap_to_page(buf);
1182			if (!vm_page) {
1183				sg_free_table(sgt);
1184				return -ENOMEM;
1185			}
1186			sg_set_page(sg, vm_page,
1187				    min, offset_in_page(buf));
1188		} else {
1189			min = min_t(size_t, len, desc_len);
1190			sg_buf = buf;
1191			sg_set_buf(sg, sg_buf, min);
1192		}
1193
1194		buf += min;
1195		len -= min;
1196		sg = sg_next(sg);
1197	}
1198
1199	ret = dma_map_sgtable(dev, sgt, dir, attrs);
 
 
1200	if (ret < 0) {
1201		sg_free_table(sgt);
1202		return ret;
1203	}
1204
1205	return 0;
1206}
1207
1208int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1209		struct sg_table *sgt, void *buf, size_t len,
1210		enum dma_data_direction dir)
1211{
1212	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1213}
1214
1215static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1216				struct device *dev, struct sg_table *sgt,
1217				enum dma_data_direction dir,
1218				unsigned long attrs)
1219{
1220	dma_unmap_sgtable(dev, sgt, dir, attrs);
1221	sg_free_table(sgt);
1222	sgt->orig_nents = 0;
1223	sgt->nents = 0;
1224}
1225
1226void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1227		   struct sg_table *sgt, enum dma_data_direction dir)
1228{
1229	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
 
 
 
1230}
1231
1232static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1233{
1234	struct device *tx_dev, *rx_dev;
1235	struct spi_transfer *xfer;
1236	int ret;
1237
1238	if (!ctlr->can_dma)
1239		return 0;
1240
1241	if (ctlr->dma_tx)
1242		tx_dev = ctlr->dma_tx->device->dev;
1243	else if (ctlr->dma_map_dev)
1244		tx_dev = ctlr->dma_map_dev;
1245	else
1246		tx_dev = ctlr->dev.parent;
1247
1248	if (ctlr->dma_rx)
1249		rx_dev = ctlr->dma_rx->device->dev;
1250	else if (ctlr->dma_map_dev)
1251		rx_dev = ctlr->dma_map_dev;
1252	else
1253		rx_dev = ctlr->dev.parent;
1254
1255	ret = -ENOMSG;
1256	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1257		/* The sync is done before each transfer. */
1258		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1259
1260		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1261			continue;
1262
1263		if (xfer->tx_buf != NULL) {
1264			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1265						(void *)xfer->tx_buf,
1266						xfer->len, DMA_TO_DEVICE,
1267						attrs);
1268			if (ret != 0)
1269				return ret;
1270
1271			xfer->tx_sg_mapped = true;
1272		}
1273
1274		if (xfer->rx_buf != NULL) {
1275			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1276						xfer->rx_buf, xfer->len,
1277						DMA_FROM_DEVICE, attrs);
1278			if (ret != 0) {
1279				spi_unmap_buf_attrs(ctlr, tx_dev,
1280						&xfer->tx_sg, DMA_TO_DEVICE,
1281						attrs);
1282
1283				return ret;
1284			}
1285
1286			xfer->rx_sg_mapped = true;
1287		}
1288	}
1289	/* No transfer has been mapped, bail out with success */
1290	if (ret)
1291		return 0;
1292
1293	ctlr->cur_rx_dma_dev = rx_dev;
1294	ctlr->cur_tx_dma_dev = tx_dev;
1295
1296	return 0;
1297}
1298
1299static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1300{
1301	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1302	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1303	struct spi_transfer *xfer;
 
1304
1305	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1306		/* The sync has already been done after each transfer. */
1307		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1308
1309		if (xfer->rx_sg_mapped)
1310			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1311					    DMA_FROM_DEVICE, attrs);
1312		xfer->rx_sg_mapped = false;
1313
1314		if (xfer->tx_sg_mapped)
1315			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1316					    DMA_TO_DEVICE, attrs);
1317		xfer->tx_sg_mapped = false;
1318	}
1319
1320	return 0;
1321}
 
 
1322
1323static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1324				    struct spi_transfer *xfer)
1325{
1326	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1327	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1328
1329	if (xfer->tx_sg_mapped)
1330		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1331	if (xfer->rx_sg_mapped)
1332		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333}
1334
1335static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1336				 struct spi_transfer *xfer)
1337{
1338	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1339	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1340
1341	if (xfer->rx_sg_mapped)
1342		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1343	if (xfer->tx_sg_mapped)
1344		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1345}
1346#else /* !CONFIG_HAS_DMA */
1347static inline int __spi_map_msg(struct spi_controller *ctlr,
1348				struct spi_message *msg)
1349{
1350	return 0;
1351}
1352
1353static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1354				  struct spi_message *msg)
1355{
1356	return 0;
1357}
1358
1359static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1360				    struct spi_transfer *xfer)
1361{
1362}
1363
1364static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1365				 struct spi_transfer *xfer)
1366{
1367}
1368#endif /* !CONFIG_HAS_DMA */
1369
1370static inline int spi_unmap_msg(struct spi_controller *ctlr,
1371				struct spi_message *msg)
1372{
1373	struct spi_transfer *xfer;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376		/*
1377		 * Restore the original value of tx_buf or rx_buf if they are
1378		 * NULL.
1379		 */
1380		if (xfer->tx_buf == ctlr->dummy_tx)
1381			xfer->tx_buf = NULL;
1382		if (xfer->rx_buf == ctlr->dummy_rx)
1383			xfer->rx_buf = NULL;
1384	}
1385
1386	return __spi_unmap_msg(ctlr, msg);
1387}
1388
1389static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1390{
1391	struct spi_transfer *xfer;
1392	void *tmp;
1393	unsigned int max_tx, max_rx;
1394
1395	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1396		&& !(msg->spi->mode & SPI_3WIRE)) {
1397		max_tx = 0;
1398		max_rx = 0;
1399
1400		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1401			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1402			    !xfer->tx_buf)
1403				max_tx = max(xfer->len, max_tx);
1404			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1405			    !xfer->rx_buf)
1406				max_rx = max(xfer->len, max_rx);
1407		}
1408
1409		if (max_tx) {
1410			tmp = krealloc(ctlr->dummy_tx, max_tx,
1411				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1412			if (!tmp)
1413				return -ENOMEM;
1414			ctlr->dummy_tx = tmp;
 
1415		}
1416
1417		if (max_rx) {
1418			tmp = krealloc(ctlr->dummy_rx, max_rx,
1419				       GFP_KERNEL | GFP_DMA);
1420			if (!tmp)
1421				return -ENOMEM;
1422			ctlr->dummy_rx = tmp;
1423		}
1424
1425		if (max_tx || max_rx) {
1426			list_for_each_entry(xfer, &msg->transfers,
1427					    transfer_list) {
1428				if (!xfer->len)
1429					continue;
1430				if (!xfer->tx_buf)
1431					xfer->tx_buf = ctlr->dummy_tx;
1432				if (!xfer->rx_buf)
1433					xfer->rx_buf = ctlr->dummy_rx;
1434			}
1435		}
1436	}
1437
1438	return __spi_map_msg(ctlr, msg);
1439}
1440
1441static int spi_transfer_wait(struct spi_controller *ctlr,
1442			     struct spi_message *msg,
1443			     struct spi_transfer *xfer)
1444{
1445	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1446	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1447	u32 speed_hz = xfer->speed_hz;
1448	unsigned long long ms;
1449
1450	if (spi_controller_is_target(ctlr)) {
1451		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1452			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1453			return -EINTR;
1454		}
1455	} else {
1456		if (!speed_hz)
1457			speed_hz = 100000;
1458
1459		/*
1460		 * For each byte we wait for 8 cycles of the SPI clock.
1461		 * Since speed is defined in Hz and we want milliseconds,
1462		 * use respective multiplier, but before the division,
1463		 * otherwise we may get 0 for short transfers.
1464		 */
1465		ms = 8LL * MSEC_PER_SEC * xfer->len;
1466		do_div(ms, speed_hz);
1467
1468		/*
1469		 * Increase it twice and add 200 ms tolerance, use
1470		 * predefined maximum in case of overflow.
1471		 */
1472		ms += ms + 200;
1473		if (ms > UINT_MAX)
1474			ms = UINT_MAX;
1475
1476		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1477						 msecs_to_jiffies(ms));
1478
1479		if (ms == 0) {
1480			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1481			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1482			dev_err(&msg->spi->dev,
1483				"SPI transfer timed out\n");
1484			return -ETIMEDOUT;
1485		}
1486
1487		if (xfer->error & SPI_TRANS_FAIL_IO)
1488			return -EIO;
1489	}
1490
1491	return 0;
1492}
1493
1494static void _spi_transfer_delay_ns(u32 ns)
1495{
1496	if (!ns)
1497		return;
1498	if (ns <= NSEC_PER_USEC) {
1499		ndelay(ns);
1500	} else {
1501		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1502
1503		if (us <= 10)
1504			udelay(us);
1505		else
1506			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1507	}
1508}
1509
1510int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
 
1511{
1512	u32 delay = _delay->value;
1513	u32 unit = _delay->unit;
1514	u32 hz;
1515
1516	if (!delay)
1517		return 0;
 
1518
1519	switch (unit) {
1520	case SPI_DELAY_UNIT_USECS:
1521		delay *= NSEC_PER_USEC;
 
 
 
 
1522		break;
1523	case SPI_DELAY_UNIT_NSECS:
1524		/* Nothing to do here */
1525		break;
1526	case SPI_DELAY_UNIT_SCK:
1527		/* Clock cycles need to be obtained from spi_transfer */
1528		if (!xfer)
1529			return -EINVAL;
1530		/*
1531		 * If there is unknown effective speed, approximate it
1532		 * by underestimating with half of the requested Hz.
1533		 */
1534		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1535		if (!hz)
1536			return -EINVAL;
1537
1538		/* Convert delay to nanoseconds */
1539		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1540		break;
1541	default:
1542		return -EINVAL;
1543	}
1544
1545	return delay;
1546}
1547EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1548
1549int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1550{
1551	int delay;
1552
1553	might_sleep();
1554
1555	if (!_delay)
1556		return -EINVAL;
1557
1558	delay = spi_delay_to_ns(_delay, xfer);
1559	if (delay < 0)
1560		return delay;
1561
1562	_spi_transfer_delay_ns(delay);
1563
1564	return 0;
1565}
1566EXPORT_SYMBOL_GPL(spi_delay_exec);
1567
1568static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1569					  struct spi_transfer *xfer)
1570{
1571	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1572	u32 delay = xfer->cs_change_delay.value;
1573	u32 unit = xfer->cs_change_delay.unit;
1574	int ret;
1575
1576	/* Return early on "fast" mode - for everything but USECS */
1577	if (!delay) {
1578		if (unit == SPI_DELAY_UNIT_USECS)
1579			_spi_transfer_delay_ns(default_delay_ns);
1580		return;
1581	}
1582
1583	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1584	if (ret) {
1585		dev_err_once(&msg->spi->dev,
1586			     "Use of unsupported delay unit %i, using default of %luus\n",
1587			     unit, default_delay_ns / NSEC_PER_USEC);
1588		_spi_transfer_delay_ns(default_delay_ns);
1589	}
 
 
1590}
1591
1592void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1593						  struct spi_transfer *xfer)
1594{
1595	_spi_transfer_cs_change_delay(msg, xfer);
1596}
1597EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1598
1599/*
1600 * spi_transfer_one_message - Default implementation of transfer_one_message()
1601 *
1602 * This is a standard implementation of transfer_one_message() for
1603 * drivers which implement a transfer_one() operation.  It provides
1604 * standard handling of delays and chip select management.
1605 */
1606static int spi_transfer_one_message(struct spi_controller *ctlr,
1607				    struct spi_message *msg)
1608{
1609	struct spi_transfer *xfer;
1610	bool keep_cs = false;
1611	int ret = 0;
1612	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1613	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1614
1615	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1616	spi_set_cs(msg->spi, !xfer->cs_off, false);
1617
1618	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1619	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1620
1621	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1622		trace_spi_transfer_start(msg, xfer);
1623
1624		spi_statistics_add_transfer_stats(statm, xfer, msg);
1625		spi_statistics_add_transfer_stats(stats, xfer, msg);
1626
1627		if (!ctlr->ptp_sts_supported) {
1628			xfer->ptp_sts_word_pre = 0;
1629			ptp_read_system_prets(xfer->ptp_sts);
1630		}
1631
1632		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1633			reinit_completion(&ctlr->xfer_completion);
1634
1635fallback_pio:
1636			spi_dma_sync_for_device(ctlr, xfer);
1637			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1638			if (ret < 0) {
1639				spi_dma_sync_for_cpu(ctlr, xfer);
1640
1641				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1642				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1643					__spi_unmap_msg(ctlr, msg);
1644					ctlr->fallback = true;
1645					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1646					goto fallback_pio;
1647				}
1648
1649				SPI_STATISTICS_INCREMENT_FIELD(statm,
1650							       errors);
1651				SPI_STATISTICS_INCREMENT_FIELD(stats,
1652							       errors);
1653				dev_err(&msg->spi->dev,
1654					"SPI transfer failed: %d\n", ret);
1655				goto out;
1656			}
1657
1658			if (ret > 0) {
1659				ret = spi_transfer_wait(ctlr, msg, xfer);
1660				if (ret < 0)
1661					msg->status = ret;
1662			}
1663
1664			spi_dma_sync_for_cpu(ctlr, xfer);
1665		} else {
1666			if (xfer->len)
1667				dev_err(&msg->spi->dev,
1668					"Bufferless transfer has length %u\n",
1669					xfer->len);
1670		}
1671
1672		if (!ctlr->ptp_sts_supported) {
1673			ptp_read_system_postts(xfer->ptp_sts);
1674			xfer->ptp_sts_word_post = xfer->len;
1675		}
1676
1677		trace_spi_transfer_stop(msg, xfer);
1678
1679		if (msg->status != -EINPROGRESS)
1680			goto out;
1681
1682		spi_transfer_delay_exec(xfer);
 
1683
1684		if (xfer->cs_change) {
1685			if (list_is_last(&xfer->transfer_list,
1686					 &msg->transfers)) {
1687				keep_cs = true;
1688			} else {
1689				if (!xfer->cs_off)
1690					spi_set_cs(msg->spi, false, false);
1691				_spi_transfer_cs_change_delay(msg, xfer);
1692				if (!list_next_entry(xfer, transfer_list)->cs_off)
1693					spi_set_cs(msg->spi, true, false);
1694			}
1695		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1696			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1697			spi_set_cs(msg->spi, xfer->cs_off, false);
1698		}
1699
1700		msg->actual_length += xfer->len;
1701	}
1702
1703out:
1704	if (ret != 0 || !keep_cs)
1705		spi_set_cs(msg->spi, false, false);
1706
1707	if (msg->status == -EINPROGRESS)
1708		msg->status = ret;
1709
1710	if (msg->status && ctlr->handle_err)
1711		ctlr->handle_err(ctlr, msg);
1712
 
 
1713	spi_finalize_current_message(ctlr);
1714
1715	return ret;
1716}
1717
1718/**
1719 * spi_finalize_current_transfer - report completion of a transfer
1720 * @ctlr: the controller reporting completion
1721 *
1722 * Called by SPI drivers using the core transfer_one_message()
1723 * implementation to notify it that the current interrupt driven
1724 * transfer has finished and the next one may be scheduled.
1725 */
1726void spi_finalize_current_transfer(struct spi_controller *ctlr)
1727{
1728	complete(&ctlr->xfer_completion);
1729}
1730EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1731
1732static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1733{
1734	if (ctlr->auto_runtime_pm) {
1735		pm_runtime_mark_last_busy(ctlr->dev.parent);
1736		pm_runtime_put_autosuspend(ctlr->dev.parent);
1737	}
1738}
1739
1740static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1741		struct spi_message *msg, bool was_busy)
1742{
1743	struct spi_transfer *xfer;
1744	int ret;
1745
1746	if (!was_busy && ctlr->auto_runtime_pm) {
1747		ret = pm_runtime_get_sync(ctlr->dev.parent);
1748		if (ret < 0) {
1749			pm_runtime_put_noidle(ctlr->dev.parent);
1750			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1751				ret);
1752
1753			msg->status = ret;
1754			spi_finalize_current_message(ctlr);
1755
1756			return ret;
1757		}
1758	}
1759
1760	if (!was_busy)
1761		trace_spi_controller_busy(ctlr);
1762
1763	if (!was_busy && ctlr->prepare_transfer_hardware) {
1764		ret = ctlr->prepare_transfer_hardware(ctlr);
1765		if (ret) {
1766			dev_err(&ctlr->dev,
1767				"failed to prepare transfer hardware: %d\n",
1768				ret);
1769
1770			if (ctlr->auto_runtime_pm)
1771				pm_runtime_put(ctlr->dev.parent);
1772
1773			msg->status = ret;
1774			spi_finalize_current_message(ctlr);
1775
1776			return ret;
1777		}
1778	}
1779
1780	trace_spi_message_start(msg);
1781
1782	if (ctlr->prepare_message) {
1783		ret = ctlr->prepare_message(ctlr, msg);
1784		if (ret) {
1785			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1786				ret);
1787			msg->status = ret;
1788			spi_finalize_current_message(ctlr);
1789			return ret;
1790		}
1791		msg->prepared = true;
1792	}
1793
1794	ret = spi_map_msg(ctlr, msg);
1795	if (ret) {
1796		msg->status = ret;
1797		spi_finalize_current_message(ctlr);
1798		return ret;
1799	}
1800
1801	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1802		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1803			xfer->ptp_sts_word_pre = 0;
1804			ptp_read_system_prets(xfer->ptp_sts);
1805		}
1806	}
1807
1808	/*
1809	 * Drivers implementation of transfer_one_message() must arrange for
1810	 * spi_finalize_current_message() to get called. Most drivers will do
1811	 * this in the calling context, but some don't. For those cases, a
1812	 * completion is used to guarantee that this function does not return
1813	 * until spi_finalize_current_message() is done accessing
1814	 * ctlr->cur_msg.
1815	 * Use of the following two flags enable to opportunistically skip the
1816	 * use of the completion since its use involves expensive spin locks.
1817	 * In case of a race with the context that calls
1818	 * spi_finalize_current_message() the completion will always be used,
1819	 * due to strict ordering of these flags using barriers.
1820	 */
1821	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1822	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1823	reinit_completion(&ctlr->cur_msg_completion);
1824	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1825
1826	ret = ctlr->transfer_one_message(ctlr, msg);
1827	if (ret) {
1828		dev_err(&ctlr->dev,
1829			"failed to transfer one message from queue\n");
1830		return ret;
1831	}
1832
1833	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1834	smp_mb(); /* See spi_finalize_current_message()... */
1835	if (READ_ONCE(ctlr->cur_msg_incomplete))
1836		wait_for_completion(&ctlr->cur_msg_completion);
1837
1838	return 0;
1839}
1840
1841/**
1842 * __spi_pump_messages - function which processes SPI message queue
1843 * @ctlr: controller to process queue for
1844 * @in_kthread: true if we are in the context of the message pump thread
1845 *
1846 * This function checks if there is any SPI message in the queue that
1847 * needs processing and if so call out to the driver to initialize hardware
1848 * and transfer each message.
1849 *
1850 * Note that it is called both from the kthread itself and also from
1851 * inside spi_sync(); the queue extraction handling at the top of the
1852 * function should deal with this safely.
1853 */
1854static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1855{
1856	struct spi_message *msg;
1857	bool was_busy = false;
1858	unsigned long flags;
1859	int ret;
1860
1861	/* Take the I/O mutex */
1862	mutex_lock(&ctlr->io_mutex);
1863
1864	/* Lock queue */
1865	spin_lock_irqsave(&ctlr->queue_lock, flags);
1866
1867	/* Make sure we are not already running a message */
1868	if (ctlr->cur_msg)
1869		goto out_unlock;
 
 
 
 
 
 
 
 
 
1870
1871	/* Check if the queue is idle */
1872	if (list_empty(&ctlr->queue) || !ctlr->running) {
1873		if (!ctlr->busy)
1874			goto out_unlock;
 
 
1875
1876		/* Defer any non-atomic teardown to the thread */
1877		if (!in_kthread) {
1878			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1879			    !ctlr->unprepare_transfer_hardware) {
1880				spi_idle_runtime_pm(ctlr);
1881				ctlr->busy = false;
1882				ctlr->queue_empty = true;
1883				trace_spi_controller_idle(ctlr);
1884			} else {
1885				kthread_queue_work(ctlr->kworker,
1886						   &ctlr->pump_messages);
1887			}
1888			goto out_unlock;
1889		}
1890
1891		ctlr->busy = false;
 
1892		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893
1894		kfree(ctlr->dummy_rx);
1895		ctlr->dummy_rx = NULL;
1896		kfree(ctlr->dummy_tx);
1897		ctlr->dummy_tx = NULL;
1898		if (ctlr->unprepare_transfer_hardware &&
1899		    ctlr->unprepare_transfer_hardware(ctlr))
1900			dev_err(&ctlr->dev,
1901				"failed to unprepare transfer hardware\n");
1902		spi_idle_runtime_pm(ctlr);
 
 
 
1903		trace_spi_controller_idle(ctlr);
1904
1905		spin_lock_irqsave(&ctlr->queue_lock, flags);
1906		ctlr->queue_empty = true;
1907		goto out_unlock;
 
1908	}
1909
1910	/* Extract head of queue */
1911	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1912	ctlr->cur_msg = msg;
1913
1914	list_del_init(&msg->queue);
1915	if (ctlr->busy)
1916		was_busy = true;
1917	else
1918		ctlr->busy = true;
1919	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1920
1921	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1922	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1923
1924	ctlr->cur_msg = NULL;
1925	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927	mutex_unlock(&ctlr->io_mutex);
1928
1929	/* Prod the scheduler in case transfer_one() was busy waiting */
1930	if (!ret)
1931		cond_resched();
1932	return;
1933
1934out_unlock:
1935	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1936	mutex_unlock(&ctlr->io_mutex);
1937}
1938
1939/**
1940 * spi_pump_messages - kthread work function which processes spi message queue
1941 * @work: pointer to kthread work struct contained in the controller struct
1942 */
1943static void spi_pump_messages(struct kthread_work *work)
1944{
1945	struct spi_controller *ctlr =
1946		container_of(work, struct spi_controller, pump_messages);
1947
1948	__spi_pump_messages(ctlr, true);
1949}
1950
1951/**
1952 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1953 * @ctlr: Pointer to the spi_controller structure of the driver
1954 * @xfer: Pointer to the transfer being timestamped
1955 * @progress: How many words (not bytes) have been transferred so far
1956 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1957 *	      transfer, for less jitter in time measurement. Only compatible
1958 *	      with PIO drivers. If true, must follow up with
1959 *	      spi_take_timestamp_post or otherwise system will crash.
1960 *	      WARNING: for fully predictable results, the CPU frequency must
1961 *	      also be under control (governor).
1962 *
1963 * This is a helper for drivers to collect the beginning of the TX timestamp
1964 * for the requested byte from the SPI transfer. The frequency with which this
1965 * function must be called (once per word, once for the whole transfer, once
1966 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1967 * greater than or equal to the requested byte at the time of the call. The
1968 * timestamp is only taken once, at the first such call. It is assumed that
1969 * the driver advances its @tx buffer pointer monotonically.
1970 */
1971void spi_take_timestamp_pre(struct spi_controller *ctlr,
1972			    struct spi_transfer *xfer,
1973			    size_t progress, bool irqs_off)
1974{
1975	if (!xfer->ptp_sts)
1976		return;
1977
1978	if (xfer->timestamped)
1979		return;
1980
1981	if (progress > xfer->ptp_sts_word_pre)
1982		return;
1983
1984	/* Capture the resolution of the timestamp */
1985	xfer->ptp_sts_word_pre = progress;
1986
1987	if (irqs_off) {
1988		local_irq_save(ctlr->irq_flags);
1989		preempt_disable();
1990	}
1991
1992	ptp_read_system_prets(xfer->ptp_sts);
1993}
1994EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1995
1996/**
1997 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1998 * @ctlr: Pointer to the spi_controller structure of the driver
1999 * @xfer: Pointer to the transfer being timestamped
2000 * @progress: How many words (not bytes) have been transferred so far
2001 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2002 *
2003 * This is a helper for drivers to collect the end of the TX timestamp for
2004 * the requested byte from the SPI transfer. Can be called with an arbitrary
2005 * frequency: only the first call where @tx exceeds or is equal to the
2006 * requested word will be timestamped.
2007 */
2008void spi_take_timestamp_post(struct spi_controller *ctlr,
2009			     struct spi_transfer *xfer,
2010			     size_t progress, bool irqs_off)
2011{
2012	if (!xfer->ptp_sts)
2013		return;
2014
2015	if (xfer->timestamped)
2016		return;
2017
2018	if (progress < xfer->ptp_sts_word_post)
2019		return;
2020
2021	ptp_read_system_postts(xfer->ptp_sts);
2022
2023	if (irqs_off) {
2024		local_irq_restore(ctlr->irq_flags);
2025		preempt_enable();
2026	}
2027
2028	/* Capture the resolution of the timestamp */
2029	xfer->ptp_sts_word_post = progress;
2030
2031	xfer->timestamped = 1;
2032}
2033EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2034
2035/**
2036 * spi_set_thread_rt - set the controller to pump at realtime priority
2037 * @ctlr: controller to boost priority of
2038 *
2039 * This can be called because the controller requested realtime priority
2040 * (by setting the ->rt value before calling spi_register_controller()) or
2041 * because a device on the bus said that its transfers needed realtime
2042 * priority.
2043 *
2044 * NOTE: at the moment if any device on a bus says it needs realtime then
2045 * the thread will be at realtime priority for all transfers on that
2046 * controller.  If this eventually becomes a problem we may see if we can
2047 * find a way to boost the priority only temporarily during relevant
2048 * transfers.
2049 */
2050static void spi_set_thread_rt(struct spi_controller *ctlr)
2051{
 
 
2052	dev_info(&ctlr->dev,
2053		"will run message pump with realtime priority\n");
2054	sched_set_fifo(ctlr->kworker->task);
2055}
2056
2057static int spi_init_queue(struct spi_controller *ctlr)
2058{
2059	ctlr->running = false;
2060	ctlr->busy = false;
2061	ctlr->queue_empty = true;
2062
2063	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2064	if (IS_ERR(ctlr->kworker)) {
2065		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2066		return PTR_ERR(ctlr->kworker);
 
 
2067	}
2068
2069	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2070
2071	/*
2072	 * Controller config will indicate if this controller should run the
2073	 * message pump with high (realtime) priority to reduce the transfer
2074	 * latency on the bus by minimising the delay between a transfer
2075	 * request and the scheduling of the message pump thread. Without this
2076	 * setting the message pump thread will remain at default priority.
2077	 */
2078	if (ctlr->rt)
2079		spi_set_thread_rt(ctlr);
2080
2081	return 0;
2082}
2083
2084/**
2085 * spi_get_next_queued_message() - called by driver to check for queued
2086 * messages
2087 * @ctlr: the controller to check for queued messages
2088 *
2089 * If there are more messages in the queue, the next message is returned from
2090 * this call.
2091 *
2092 * Return: the next message in the queue, else NULL if the queue is empty.
2093 */
2094struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2095{
2096	struct spi_message *next;
2097	unsigned long flags;
2098
2099	/* Get a pointer to the next message, if any */
2100	spin_lock_irqsave(&ctlr->queue_lock, flags);
2101	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2102					queue);
2103	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104
2105	return next;
2106}
2107EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2108
2109/*
2110 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2111 *                            and spi_maybe_unoptimize_message()
2112 * @msg: the message to unoptimize
2113 *
2114 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2115 * core should use spi_maybe_unoptimize_message() rather than calling this
2116 * function directly.
2117 *
2118 * It is not valid to call this on a message that is not currently optimized.
2119 */
2120static void __spi_unoptimize_message(struct spi_message *msg)
2121{
2122	struct spi_controller *ctlr = msg->spi->controller;
2123
2124	if (ctlr->unoptimize_message)
2125		ctlr->unoptimize_message(msg);
2126
2127	spi_res_release(ctlr, msg);
2128
2129	msg->optimized = false;
2130	msg->opt_state = NULL;
2131}
2132
2133/*
2134 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2135 * @msg: the message to unoptimize
2136 *
2137 * This function is used to unoptimize a message if and only if it was
2138 * optimized by the core (via spi_maybe_optimize_message()).
2139 */
2140static void spi_maybe_unoptimize_message(struct spi_message *msg)
2141{
2142	if (!msg->pre_optimized && msg->optimized &&
2143	    !msg->spi->controller->defer_optimize_message)
2144		__spi_unoptimize_message(msg);
2145}
2146
2147/**
2148 * spi_finalize_current_message() - the current message is complete
2149 * @ctlr: the controller to return the message to
2150 *
2151 * Called by the driver to notify the core that the message in the front of the
2152 * queue is complete and can be removed from the queue.
2153 */
2154void spi_finalize_current_message(struct spi_controller *ctlr)
2155{
2156	struct spi_transfer *xfer;
2157	struct spi_message *mesg;
 
2158	int ret;
2159
 
2160	mesg = ctlr->cur_msg;
2161
2162	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2163		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2164			ptp_read_system_postts(xfer->ptp_sts);
2165			xfer->ptp_sts_word_post = xfer->len;
2166		}
2167	}
2168
2169	if (unlikely(ctlr->ptp_sts_supported))
2170		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2171			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2172
2173	spi_unmap_msg(ctlr, mesg);
2174
2175	if (mesg->prepared && ctlr->unprepare_message) {
2176		ret = ctlr->unprepare_message(ctlr, mesg);
2177		if (ret) {
2178			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2179				ret);
2180		}
2181	}
2182
2183	mesg->prepared = false;
2184
2185	spi_maybe_unoptimize_message(mesg);
2186
2187	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2188	smp_mb(); /* See __spi_pump_transfer_message()... */
2189	if (READ_ONCE(ctlr->cur_msg_need_completion))
2190		complete(&ctlr->cur_msg_completion);
2191
2192	trace_spi_message_done(mesg);
2193
2194	mesg->state = NULL;
2195	if (mesg->complete)
2196		mesg->complete(mesg->context);
2197}
2198EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2199
2200static int spi_start_queue(struct spi_controller *ctlr)
2201{
2202	unsigned long flags;
2203
2204	spin_lock_irqsave(&ctlr->queue_lock, flags);
2205
2206	if (ctlr->running || ctlr->busy) {
2207		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2208		return -EBUSY;
2209	}
2210
2211	ctlr->running = true;
2212	ctlr->cur_msg = NULL;
2213	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2214
2215	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2216
2217	return 0;
2218}
2219
2220static int spi_stop_queue(struct spi_controller *ctlr)
2221{
2222	unsigned int limit = 500;
2223	unsigned long flags;
 
 
 
 
2224
2225	/*
2226	 * This is a bit lame, but is optimized for the common execution path.
2227	 * A wait_queue on the ctlr->busy could be used, but then the common
2228	 * execution path (pump_messages) would be required to call wake_up or
2229	 * friends on every SPI message. Do this instead.
2230	 */
2231	do {
2232		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2234			ctlr->running = false;
2235			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2236			return 0;
2237		}
2238		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2239		usleep_range(10000, 11000);
2240	} while (--limit);
 
2241
2242	return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
2243}
2244
2245static int spi_destroy_queue(struct spi_controller *ctlr)
2246{
2247	int ret;
2248
2249	ret = spi_stop_queue(ctlr);
2250
2251	/*
2252	 * kthread_flush_worker will block until all work is done.
2253	 * If the reason that stop_queue timed out is that the work will never
2254	 * finish, then it does no good to call flush/stop thread, so
2255	 * return anyway.
2256	 */
2257	if (ret) {
2258		dev_err(&ctlr->dev, "problem destroying queue\n");
2259		return ret;
2260	}
2261
2262	kthread_destroy_worker(ctlr->kworker);
 
2263
2264	return 0;
2265}
2266
2267static int __spi_queued_transfer(struct spi_device *spi,
2268				 struct spi_message *msg,
2269				 bool need_pump)
2270{
2271	struct spi_controller *ctlr = spi->controller;
2272	unsigned long flags;
2273
2274	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276	if (!ctlr->running) {
2277		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278		return -ESHUTDOWN;
2279	}
2280	msg->actual_length = 0;
2281	msg->status = -EINPROGRESS;
2282
2283	list_add_tail(&msg->queue, &ctlr->queue);
2284	ctlr->queue_empty = false;
2285	if (!ctlr->busy && need_pump)
2286		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289	return 0;
2290}
2291
2292/**
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2296 *
2297 * Return: zero on success, else a negative error code.
2298 */
2299static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300{
2301	return __spi_queued_transfer(spi, msg, true);
2302}
2303
2304static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305{
2306	int ret;
2307
2308	ctlr->transfer = spi_queued_transfer;
2309	if (!ctlr->transfer_one_message)
2310		ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312	/* Initialize and start queue */
2313	ret = spi_init_queue(ctlr);
2314	if (ret) {
2315		dev_err(&ctlr->dev, "problem initializing queue\n");
2316		goto err_init_queue;
2317	}
2318	ctlr->queued = true;
2319	ret = spi_start_queue(ctlr);
2320	if (ret) {
2321		dev_err(&ctlr->dev, "problem starting queue\n");
2322		goto err_start_queue;
2323	}
2324
2325	return 0;
2326
2327err_start_queue:
2328	spi_destroy_queue(ctlr);
2329err_init_queue:
2330	return ret;
2331}
2332
2333/**
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2335 *		     context
2336 * @ctlr: controller to process queue for
2337 *
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2342 */
2343void spi_flush_queue(struct spi_controller *ctlr)
2344{
2345	if (ctlr->transfer == spi_queued_transfer)
2346		__spi_pump_messages(ctlr, false);
2347}
2348
2349/*-------------------------------------------------------------------------*/
2350
2351#if defined(CONFIG_OF)
2352static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353				     struct spi_delay *delay, const char *prop)
2354{
2355	u32 value;
2356
2357	if (!of_property_read_u32(nc, prop, &value)) {
2358		if (value > U16_MAX) {
2359			delay->value = DIV_ROUND_UP(value, 1000);
2360			delay->unit = SPI_DELAY_UNIT_USECS;
2361		} else {
2362			delay->value = value;
2363			delay->unit = SPI_DELAY_UNIT_NSECS;
2364		}
2365	}
2366}
2367
2368static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369			   struct device_node *nc)
2370{
2371	u32 value, cs[SPI_CS_CNT_MAX];
2372	int rc, idx;
2373
2374	/* Mode (clock phase/polarity/etc.) */
2375	if (of_property_read_bool(nc, "spi-cpha"))
2376		spi->mode |= SPI_CPHA;
2377	if (of_property_read_bool(nc, "spi-cpol"))
2378		spi->mode |= SPI_CPOL;
2379	if (of_property_read_bool(nc, "spi-3wire"))
2380		spi->mode |= SPI_3WIRE;
2381	if (of_property_read_bool(nc, "spi-lsb-first"))
2382		spi->mode |= SPI_LSB_FIRST;
2383	if (of_property_read_bool(nc, "spi-cs-high"))
 
 
 
 
 
 
 
 
2384		spi->mode |= SPI_CS_HIGH;
2385
2386	/* Device DUAL/QUAD mode */
2387	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388		switch (value) {
2389		case 0:
2390			spi->mode |= SPI_NO_TX;
2391			break;
2392		case 1:
2393			break;
2394		case 2:
2395			spi->mode |= SPI_TX_DUAL;
2396			break;
2397		case 4:
2398			spi->mode |= SPI_TX_QUAD;
2399			break;
2400		case 8:
2401			spi->mode |= SPI_TX_OCTAL;
2402			break;
2403		default:
2404			dev_warn(&ctlr->dev,
2405				"spi-tx-bus-width %d not supported\n",
2406				value);
2407			break;
2408		}
2409	}
2410
2411	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412		switch (value) {
2413		case 0:
2414			spi->mode |= SPI_NO_RX;
2415			break;
2416		case 1:
2417			break;
2418		case 2:
2419			spi->mode |= SPI_RX_DUAL;
2420			break;
2421		case 4:
2422			spi->mode |= SPI_RX_QUAD;
2423			break;
2424		case 8:
2425			spi->mode |= SPI_RX_OCTAL;
2426			break;
2427		default:
2428			dev_warn(&ctlr->dev,
2429				"spi-rx-bus-width %d not supported\n",
2430				value);
2431			break;
2432		}
2433	}
2434
2435	if (spi_controller_is_target(ctlr)) {
2436		if (!of_node_name_eq(nc, "slave")) {
2437			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438				nc);
2439			return -EINVAL;
2440		}
2441		return 0;
2442	}
2443
2444	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446		return -EINVAL;
2447	}
2448
2449	spi_set_all_cs_unused(spi);
2450
2451	/* Device address */
2452	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453						 SPI_CS_CNT_MAX);
2454	if (rc < 0) {
2455		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456			nc, rc);
2457		return rc;
2458	}
2459	if (rc > ctlr->num_chipselect) {
2460		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461			nc, rc);
2462		return rc;
2463	}
2464	if ((of_property_present(nc, "parallel-memories")) &&
2465	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467		return -EINVAL;
2468	}
2469	for (idx = 0; idx < rc; idx++)
2470		spi_set_chipselect(spi, idx, cs[idx]);
2471
2472	/*
2473	 * By default spi->chip_select[0] will hold the physical CS number,
2474	 * so set bit 0 in spi->cs_index_mask.
2475	 */
2476	spi->cs_index_mask = BIT(0);
2477
2478	/* Device speed */
2479	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480		spi->max_speed_hz = value;
2481
2482	/* Device CS delays */
2483	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487	return 0;
2488}
2489
2490static struct spi_device *
2491of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492{
2493	struct spi_device *spi;
2494	int rc;
2495
2496	/* Alloc an spi_device */
2497	spi = spi_alloc_device(ctlr);
2498	if (!spi) {
2499		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500		rc = -ENOMEM;
2501		goto err_out;
2502	}
2503
2504	/* Select device driver */
2505	rc = of_alias_from_compatible(nc, spi->modalias,
2506				      sizeof(spi->modalias));
2507	if (rc < 0) {
2508		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509		goto err_out;
2510	}
2511
2512	rc = of_spi_parse_dt(ctlr, spi, nc);
2513	if (rc)
2514		goto err_out;
2515
2516	/* Store a pointer to the node in the device structure */
2517	of_node_get(nc);
2518
2519	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521	/* Register the new device */
2522	rc = spi_add_device(spi);
2523	if (rc) {
2524		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525		goto err_of_node_put;
2526	}
2527
2528	return spi;
2529
2530err_of_node_put:
2531	of_node_put(nc);
2532err_out:
2533	spi_dev_put(spi);
2534	return ERR_PTR(rc);
2535}
2536
2537/**
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr:	Pointer to spi_controller device
2540 *
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2543 */
2544static void of_register_spi_devices(struct spi_controller *ctlr)
2545{
2546	struct spi_device *spi;
2547	struct device_node *nc;
2548
 
 
 
2549	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551			continue;
2552		spi = of_register_spi_device(ctlr, nc);
2553		if (IS_ERR(spi)) {
2554			dev_warn(&ctlr->dev,
2555				 "Failed to create SPI device for %pOF\n", nc);
2556			of_node_clear_flag(nc, OF_POPULATED);
2557		}
2558	}
2559}
2560#else
2561static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562#endif
2563
2564/**
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi:         Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2568 *
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2571 *
2572 * This may only be called from main SPI device's probe routine.
2573 *
2574 * Return: 0 on success; negative errno on failure
2575 */
2576struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577					     u8 chip_select)
2578{
2579	struct spi_controller *ctlr = spi->controller;
2580	struct spi_device *ancillary;
2581	int rc;
2582
2583	/* Alloc an spi_device */
2584	ancillary = spi_alloc_device(ctlr);
2585	if (!ancillary) {
2586		rc = -ENOMEM;
2587		goto err_out;
2588	}
2589
2590	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592	/* Use provided chip-select for ancillary device */
2593	spi_set_all_cs_unused(ancillary);
2594	spi_set_chipselect(ancillary, 0, chip_select);
2595
2596	/* Take over SPI mode/speed from SPI main device */
2597	ancillary->max_speed_hz = spi->max_speed_hz;
2598	ancillary->mode = spi->mode;
2599	/*
2600	 * By default spi->chip_select[0] will hold the physical CS number,
2601	 * so set bit 0 in spi->cs_index_mask.
2602	 */
2603	ancillary->cs_index_mask = BIT(0);
2604
2605	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607	/* Register the new device */
2608	rc = __spi_add_device(ancillary);
2609	if (rc) {
2610		dev_err(&spi->dev, "failed to register ancillary device\n");
2611		goto err_out;
2612	}
2613
2614	return ancillary;
2615
2616err_out:
2617	spi_dev_put(ancillary);
2618	return ERR_PTR(rc);
2619}
2620EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622#ifdef CONFIG_ACPI
2623struct acpi_spi_lookup {
2624	struct spi_controller 	*ctlr;
2625	u32			max_speed_hz;
2626	u32			mode;
2627	int			irq;
2628	u8			bits_per_word;
2629	u8			chip_select;
2630	int			n;
2631	int			index;
2632};
2633
2634static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635{
2636	struct acpi_resource_spi_serialbus *sb;
2637	int *count = data;
2638
2639	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640		return 1;
2641
2642	sb = &ares->data.spi_serial_bus;
2643	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644		return 1;
2645
2646	*count = *count + 1;
2647
2648	return 1;
2649}
2650
2651/**
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev:	ACPI device
2654 *
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2657 */
2658int acpi_spi_count_resources(struct acpi_device *adev)
2659{
2660	LIST_HEAD(r);
2661	int count = 0;
2662	int ret;
2663
2664	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665	if (ret < 0)
2666		return ret;
2667
2668	acpi_dev_free_resource_list(&r);
2669
2670	return count;
2671}
2672EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675					    struct acpi_spi_lookup *lookup)
2676{
2677	const union acpi_object *obj;
2678
2679	if (!x86_apple_machine)
2680		return;
2681
2682	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683	    && obj->buffer.length >= 4)
2684		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687	    && obj->buffer.length == 8)
2688		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692		lookup->mode |= SPI_LSB_FIRST;
2693
2694	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696		lookup->mode |= SPI_CPOL;
2697
2698	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700		lookup->mode |= SPI_CPHA;
2701}
2702
2703static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704{
2705	struct acpi_spi_lookup *lookup = data;
2706	struct spi_controller *ctlr = lookup->ctlr;
2707
2708	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709		struct acpi_resource_spi_serialbus *sb;
2710		acpi_handle parent_handle;
2711		acpi_status status;
2712
2713		sb = &ares->data.spi_serial_bus;
2714		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717				return 1;
2718
2719			status = acpi_get_handle(NULL,
2720						 sb->resource_source.string_ptr,
2721						 &parent_handle);
2722
2723			if (ACPI_FAILURE(status))
 
2724				return -ENODEV;
2725
2726			if (ctlr) {
2727				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2728					return -ENODEV;
2729			} else {
2730				struct acpi_device *adev;
2731
2732				adev = acpi_fetch_acpi_dev(parent_handle);
2733				if (!adev)
2734					return -ENODEV;
2735
2736				ctlr = acpi_spi_find_controller_by_adev(adev);
2737				if (!ctlr)
2738					return -EPROBE_DEFER;
2739
2740				lookup->ctlr = ctlr;
2741			}
2742
2743			/*
2744			 * ACPI DeviceSelection numbering is handled by the
2745			 * host controller driver in Windows and can vary
2746			 * from driver to driver. In Linux we always expect
2747			 * 0 .. max - 1 so we need to ask the driver to
2748			 * translate between the two schemes.
2749			 */
2750			if (ctlr->fw_translate_cs) {
2751				int cs = ctlr->fw_translate_cs(ctlr,
2752						sb->device_selection);
2753				if (cs < 0)
2754					return cs;
2755				lookup->chip_select = cs;
2756			} else {
2757				lookup->chip_select = sb->device_selection;
2758			}
2759
2760			lookup->max_speed_hz = sb->connection_speed;
2761			lookup->bits_per_word = sb->data_bit_length;
2762
2763			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764				lookup->mode |= SPI_CPHA;
2765			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766				lookup->mode |= SPI_CPOL;
2767			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768				lookup->mode |= SPI_CS_HIGH;
2769		}
2770	} else if (lookup->irq < 0) {
2771		struct resource r;
2772
2773		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774			lookup->irq = r.start;
2775	}
2776
2777	/* Always tell the ACPI core to skip this resource */
2778	return 1;
2779}
2780
2781/**
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2786 *
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2789 *
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2794 *
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2796 */
2797struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798					 struct acpi_device *adev,
2799					 int index)
2800{
2801	acpi_handle parent_handle = NULL;
2802	struct list_head resource_list;
2803	struct acpi_spi_lookup lookup = {};
2804	struct spi_device *spi;
2805	int ret;
2806
2807	if (!ctlr && index == -1)
2808		return ERR_PTR(-EINVAL);
 
2809
2810	lookup.ctlr		= ctlr;
2811	lookup.irq		= -1;
2812	lookup.index		= index;
2813	lookup.n		= 0;
2814
2815	INIT_LIST_HEAD(&resource_list);
2816	ret = acpi_dev_get_resources(adev, &resource_list,
2817				     acpi_spi_add_resource, &lookup);
2818	acpi_dev_free_resource_list(&resource_list);
2819
2820	if (ret < 0)
2821		/* Found SPI in _CRS but it points to another controller */
2822		return ERR_PTR(ret);
2823
2824	if (!lookup.max_speed_hz &&
2825	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2827		/* Apple does not use _CRS but nested devices for SPI slaves */
2828		acpi_spi_parse_apple_properties(adev, &lookup);
2829	}
2830
2831	if (!lookup.max_speed_hz)
2832		return ERR_PTR(-ENODEV);
2833
2834	spi = spi_alloc_device(lookup.ctlr);
2835	if (!spi) {
2836		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837			dev_name(&adev->dev));
2838		return ERR_PTR(-ENOMEM);
2839	}
2840
2841	spi_set_all_cs_unused(spi);
2842	spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844	ACPI_COMPANION_SET(&spi->dev, adev);
2845	spi->max_speed_hz	= lookup.max_speed_hz;
2846	spi->mode		|= lookup.mode;
2847	spi->irq		= lookup.irq;
2848	spi->bits_per_word	= lookup.bits_per_word;
2849	/*
2850	 * By default spi->chip_select[0] will hold the physical CS number,
2851	 * so set bit 0 in spi->cs_index_mask.
2852	 */
2853	spi->cs_index_mask	= BIT(0);
2854
2855	return spi;
2856}
2857EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858
2859static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860					    struct acpi_device *adev)
2861{
2862	struct spi_device *spi;
2863
2864	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865	    acpi_device_enumerated(adev))
2866		return AE_OK;
2867
2868	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869	if (IS_ERR(spi)) {
2870		if (PTR_ERR(spi) == -ENOMEM)
2871			return AE_NO_MEMORY;
2872		else
2873			return AE_OK;
2874	}
2875
2876	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877			  sizeof(spi->modalias));
2878
 
 
 
2879	acpi_device_set_enumerated(adev);
2880
2881	adev->power.flags.ignore_parent = true;
2882	if (spi_add_device(spi)) {
2883		adev->power.flags.ignore_parent = false;
2884		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2885			dev_name(&adev->dev));
2886		spi_dev_put(spi);
2887	}
2888
2889	return AE_OK;
2890}
2891
2892static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2893				       void *data, void **return_value)
2894{
2895	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2896	struct spi_controller *ctlr = data;
 
2897
2898	if (!adev)
2899		return AE_OK;
2900
2901	return acpi_register_spi_device(ctlr, adev);
2902}
2903
2904#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2905
2906static void acpi_register_spi_devices(struct spi_controller *ctlr)
2907{
2908	acpi_status status;
2909	acpi_handle handle;
2910
2911	handle = ACPI_HANDLE(ctlr->dev.parent);
2912	if (!handle)
2913		return;
2914
2915	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2916				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2917				     acpi_spi_add_device, NULL, ctlr, NULL);
2918	if (ACPI_FAILURE(status))
2919		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2920}
2921#else
2922static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2923#endif /* CONFIG_ACPI */
2924
2925static void spi_controller_release(struct device *dev)
2926{
2927	struct spi_controller *ctlr;
2928
2929	ctlr = container_of(dev, struct spi_controller, dev);
2930	kfree(ctlr);
2931}
2932
2933static const struct class spi_master_class = {
2934	.name		= "spi_master",
 
2935	.dev_release	= spi_controller_release,
2936	.dev_groups	= spi_master_groups,
2937};
2938
2939#ifdef CONFIG_SPI_SLAVE
2940/**
2941 * spi_target_abort - abort the ongoing transfer request on an SPI slave
2942 *		     controller
2943 * @spi: device used for the current transfer
2944 */
2945int spi_target_abort(struct spi_device *spi)
2946{
2947	struct spi_controller *ctlr = spi->controller;
2948
2949	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2950		return ctlr->target_abort(ctlr);
2951
2952	return -ENOTSUPP;
2953}
2954EXPORT_SYMBOL_GPL(spi_target_abort);
 
 
 
 
 
2955
2956static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2957			  char *buf)
2958{
2959	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2960						   dev);
2961	struct device *child;
2962
2963	child = device_find_any_child(&ctlr->dev);
2964	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
 
2965}
2966
2967static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2968			   const char *buf, size_t count)
2969{
2970	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2971						   dev);
2972	struct spi_device *spi;
2973	struct device *child;
2974	char name[32];
2975	int rc;
2976
2977	rc = sscanf(buf, "%31s", name);
2978	if (rc != 1 || !name[0])
2979		return -EINVAL;
2980
2981	child = device_find_any_child(&ctlr->dev);
2982	if (child) {
2983		/* Remove registered slave */
2984		device_unregister(child);
2985		put_device(child);
2986	}
2987
2988	if (strcmp(name, "(null)")) {
2989		/* Register new slave */
2990		spi = spi_alloc_device(ctlr);
2991		if (!spi)
2992			return -ENOMEM;
2993
2994		strscpy(spi->modalias, name, sizeof(spi->modalias));
2995
2996		rc = spi_add_device(spi);
2997		if (rc) {
2998			spi_dev_put(spi);
2999			return rc;
3000		}
3001	}
3002
3003	return count;
3004}
3005
3006static DEVICE_ATTR_RW(slave);
3007
3008static struct attribute *spi_slave_attrs[] = {
3009	&dev_attr_slave.attr,
3010	NULL,
3011};
3012
3013static const struct attribute_group spi_slave_group = {
3014	.attrs = spi_slave_attrs,
3015};
3016
3017static const struct attribute_group *spi_slave_groups[] = {
3018	&spi_controller_statistics_group,
3019	&spi_slave_group,
3020	NULL,
3021};
3022
3023static const struct class spi_slave_class = {
3024	.name		= "spi_slave",
 
3025	.dev_release	= spi_controller_release,
3026	.dev_groups	= spi_slave_groups,
3027};
3028#else
3029extern struct class spi_slave_class;	/* dummy */
3030#endif
3031
3032/**
3033 * __spi_alloc_controller - allocate an SPI master or slave controller
3034 * @dev: the controller, possibly using the platform_bus
3035 * @size: how much zeroed driver-private data to allocate; the pointer to this
3036 *	memory is in the driver_data field of the returned device, accessible
3037 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3038 *	drivers granting DMA access to portions of their private data need to
3039 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3040 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3041 *	slave (true) controller
3042 * Context: can sleep
3043 *
3044 * This call is used only by SPI controller drivers, which are the
3045 * only ones directly touching chip registers.  It's how they allocate
3046 * an spi_controller structure, prior to calling spi_register_controller().
3047 *
3048 * This must be called from context that can sleep.
3049 *
3050 * The caller is responsible for assigning the bus number and initializing the
3051 * controller's methods before calling spi_register_controller(); and (after
3052 * errors adding the device) calling spi_controller_put() to prevent a memory
3053 * leak.
3054 *
3055 * Return: the SPI controller structure on success, else NULL.
3056 */
3057struct spi_controller *__spi_alloc_controller(struct device *dev,
3058					      unsigned int size, bool slave)
3059{
3060	struct spi_controller	*ctlr;
3061	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3062
3063	if (!dev)
3064		return NULL;
3065
3066	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3067	if (!ctlr)
3068		return NULL;
3069
3070	device_initialize(&ctlr->dev);
3071	INIT_LIST_HEAD(&ctlr->queue);
3072	spin_lock_init(&ctlr->queue_lock);
3073	spin_lock_init(&ctlr->bus_lock_spinlock);
3074	mutex_init(&ctlr->bus_lock_mutex);
3075	mutex_init(&ctlr->io_mutex);
3076	mutex_init(&ctlr->add_lock);
3077	ctlr->bus_num = -1;
3078	ctlr->num_chipselect = 1;
3079	ctlr->slave = slave;
3080	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3081		ctlr->dev.class = &spi_slave_class;
3082	else
3083		ctlr->dev.class = &spi_master_class;
3084	ctlr->dev.parent = dev;
3085	pm_suspend_ignore_children(&ctlr->dev, true);
3086	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3087
3088	return ctlr;
3089}
3090EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3091
3092static void devm_spi_release_controller(struct device *dev, void *ctlr)
 
3093{
3094	spi_controller_put(*(struct spi_controller **)ctlr);
3095}
3096
3097/**
3098 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3099 * @dev: physical device of SPI controller
3100 * @size: how much zeroed driver-private data to allocate
3101 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3102 * Context: can sleep
3103 *
3104 * Allocate an SPI controller and automatically release a reference on it
3105 * when @dev is unbound from its driver.  Drivers are thus relieved from
3106 * having to call spi_controller_put().
3107 *
3108 * The arguments to this function are identical to __spi_alloc_controller().
3109 *
3110 * Return: the SPI controller structure on success, else NULL.
3111 */
3112struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3113						   unsigned int size,
3114						   bool slave)
3115{
3116	struct spi_controller **ptr, *ctlr;
3117
3118	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3119			   GFP_KERNEL);
3120	if (!ptr)
3121		return NULL;
3122
3123	ctlr = __spi_alloc_controller(dev, size, slave);
3124	if (ctlr) {
3125		ctlr->devm_allocated = true;
3126		*ptr = ctlr;
3127		devres_add(dev, ptr);
3128	} else {
3129		devres_free(ptr);
3130	}
3131
3132	return ctlr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133}
3134EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3135
3136/**
3137 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3138 * @ctlr: The SPI master to grab GPIO descriptors for
3139 */
3140static int spi_get_gpio_descs(struct spi_controller *ctlr)
3141{
3142	int nb, i;
3143	struct gpio_desc **cs;
3144	struct device *dev = &ctlr->dev;
3145	unsigned long native_cs_mask = 0;
3146	unsigned int num_cs_gpios = 0;
3147
3148	nb = gpiod_count(dev, "cs");
3149	if (nb < 0) {
3150		/* No GPIOs at all is fine, else return the error */
3151		if (nb == -ENOENT)
3152			return 0;
3153		return nb;
3154	}
3155
3156	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3157
 
 
 
 
 
 
3158	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3159			  GFP_KERNEL);
3160	if (!cs)
3161		return -ENOMEM;
3162	ctlr->cs_gpiods = cs;
3163
3164	for (i = 0; i < nb; i++) {
3165		/*
3166		 * Most chipselects are active low, the inverted
3167		 * semantics are handled by special quirks in gpiolib,
3168		 * so initializing them GPIOD_OUT_LOW here means
3169		 * "unasserted", in most cases this will drive the physical
3170		 * line high.
3171		 */
3172		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3173						      GPIOD_OUT_LOW);
3174		if (IS_ERR(cs[i]))
3175			return PTR_ERR(cs[i]);
3176
3177		if (cs[i]) {
3178			/*
3179			 * If we find a CS GPIO, name it after the device and
3180			 * chip select line.
3181			 */
3182			char *gpioname;
3183
3184			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3185						  dev_name(dev), i);
3186			if (!gpioname)
3187				return -ENOMEM;
3188			gpiod_set_consumer_name(cs[i], gpioname);
3189			num_cs_gpios++;
3190			continue;
3191		}
3192
3193		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3194			dev_err(dev, "Invalid native chip select %d\n", i);
3195			return -EINVAL;
3196		}
3197		native_cs_mask |= BIT(i);
3198	}
3199
3200	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3201
3202	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3203	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3204		dev_err(dev, "No unused native chip select available\n");
3205		return -EINVAL;
3206	}
3207
3208	return 0;
3209}
3210
3211static int spi_controller_check_ops(struct spi_controller *ctlr)
3212{
3213	/*
3214	 * The controller may implement only the high-level SPI-memory like
3215	 * operations if it does not support regular SPI transfers, and this is
3216	 * valid use case.
3217	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3218	 * one of the ->transfer_xxx() method be implemented.
3219	 */
3220	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3221		if (!ctlr->transfer && !ctlr->transfer_one &&
3222		   !ctlr->transfer_one_message) {
3223			return -EINVAL;
3224		}
 
 
3225	}
3226
3227	return 0;
3228}
3229
3230/* Allocate dynamic bus number using Linux idr */
3231static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3232{
3233	int id;
3234
3235	mutex_lock(&board_lock);
3236	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3237	mutex_unlock(&board_lock);
3238	if (WARN(id < 0, "couldn't get idr"))
3239		return id == -ENOSPC ? -EBUSY : id;
3240	ctlr->bus_num = id;
3241	return 0;
3242}
3243
3244/**
3245 * spi_register_controller - register SPI host or target controller
3246 * @ctlr: initialized controller, originally from spi_alloc_host() or
3247 *	spi_alloc_target()
3248 * Context: can sleep
3249 *
3250 * SPI controllers connect to their drivers using some non-SPI bus,
3251 * such as the platform bus.  The final stage of probe() in that code
3252 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3253 *
3254 * SPI controllers use board specific (often SOC specific) bus numbers,
3255 * and board-specific addressing for SPI devices combines those numbers
3256 * with chip select numbers.  Since SPI does not directly support dynamic
3257 * device identification, boards need configuration tables telling which
3258 * chip is at which address.
3259 *
3260 * This must be called from context that can sleep.  It returns zero on
3261 * success, else a negative error code (dropping the controller's refcount).
3262 * After a successful return, the caller is responsible for calling
3263 * spi_unregister_controller().
3264 *
3265 * Return: zero on success, else a negative error code.
3266 */
3267int spi_register_controller(struct spi_controller *ctlr)
3268{
3269	struct device		*dev = ctlr->dev.parent;
3270	struct boardinfo	*bi;
3271	int			first_dynamic;
3272	int			status;
3273	int			idx;
3274
3275	if (!dev)
3276		return -ENODEV;
3277
3278	/*
3279	 * Make sure all necessary hooks are implemented before registering
3280	 * the SPI controller.
3281	 */
3282	status = spi_controller_check_ops(ctlr);
3283	if (status)
3284		return status;
3285
3286	if (ctlr->bus_num < 0)
3287		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3288	if (ctlr->bus_num >= 0) {
3289		/* Devices with a fixed bus num must check-in with the num */
3290		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3291		if (status)
3292			return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293	}
3294	if (ctlr->bus_num < 0) {
3295		first_dynamic = of_alias_get_highest_id("spi");
3296		if (first_dynamic < 0)
3297			first_dynamic = 0;
3298		else
3299			first_dynamic++;
3300
3301		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3302		if (status)
3303			return status;
 
 
 
 
3304	}
 
 
 
 
 
3305	ctlr->bus_lock_flag = 0;
3306	init_completion(&ctlr->xfer_completion);
3307	init_completion(&ctlr->cur_msg_completion);
3308	if (!ctlr->max_dma_len)
3309		ctlr->max_dma_len = INT_MAX;
3310
3311	/*
3312	 * Register the device, then userspace will see it.
3313	 * Registration fails if the bus ID is in use.
3314	 */
3315	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3316
3317	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3318		status = spi_get_gpio_descs(ctlr);
3319		if (status)
3320			goto free_bus_id;
3321		/*
3322		 * A controller using GPIO descriptors always
3323		 * supports SPI_CS_HIGH if need be.
3324		 */
3325		ctlr->mode_bits |= SPI_CS_HIGH;
 
 
 
 
 
 
 
3326	}
3327
3328	/*
3329	 * Even if it's just one always-selected device, there must
3330	 * be at least one chipselect.
3331	 */
3332	if (!ctlr->num_chipselect) {
3333		status = -EINVAL;
3334		goto free_bus_id;
3335	}
3336
3337	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3338	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3339		ctlr->last_cs[idx] = SPI_INVALID_CS;
3340
3341	status = device_add(&ctlr->dev);
3342	if (status < 0)
3343		goto free_bus_id;
 
 
 
 
 
3344	dev_dbg(dev, "registered %s %s\n",
3345			spi_controller_is_target(ctlr) ? "target" : "host",
3346			dev_name(&ctlr->dev));
3347
3348	/*
3349	 * If we're using a queued driver, start the queue. Note that we don't
3350	 * need the queueing logic if the driver is only supporting high-level
3351	 * memory operations.
3352	 */
3353	if (ctlr->transfer) {
3354		dev_info(dev, "controller is unqueued, this is deprecated\n");
3355	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3356		status = spi_controller_initialize_queue(ctlr);
3357		if (status) {
3358			device_del(&ctlr->dev);
3359			goto free_bus_id;
 
 
 
 
3360		}
3361	}
3362	/* Add statistics */
3363	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3364	if (!ctlr->pcpu_statistics) {
3365		dev_err(dev, "Error allocating per-cpu statistics\n");
3366		status = -ENOMEM;
3367		goto destroy_queue;
3368	}
3369
3370	mutex_lock(&board_lock);
3371	list_add_tail(&ctlr->list, &spi_controller_list);
3372	list_for_each_entry(bi, &board_list, list)
3373		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3374	mutex_unlock(&board_lock);
3375
3376	/* Register devices from the device tree and ACPI */
3377	of_register_spi_devices(ctlr);
3378	acpi_register_spi_devices(ctlr);
3379	return status;
3380
3381destroy_queue:
3382	spi_destroy_queue(ctlr);
3383free_bus_id:
3384	mutex_lock(&board_lock);
3385	idr_remove(&spi_master_idr, ctlr->bus_num);
3386	mutex_unlock(&board_lock);
3387	return status;
3388}
3389EXPORT_SYMBOL_GPL(spi_register_controller);
3390
3391static void devm_spi_unregister(struct device *dev, void *res)
3392{
3393	spi_unregister_controller(*(struct spi_controller **)res);
3394}
3395
3396/**
3397 * devm_spi_register_controller - register managed SPI host or target
3398 *	controller
3399 * @dev:    device managing SPI controller
3400 * @ctlr: initialized controller, originally from spi_alloc_host() or
3401 *	spi_alloc_target()
3402 * Context: can sleep
3403 *
3404 * Register a SPI device as with spi_register_controller() which will
3405 * automatically be unregistered and freed.
3406 *
3407 * Return: zero on success, else a negative error code.
3408 */
3409int devm_spi_register_controller(struct device *dev,
3410				 struct spi_controller *ctlr)
3411{
3412	struct spi_controller **ptr;
3413	int ret;
3414
3415	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3416	if (!ptr)
3417		return -ENOMEM;
3418
3419	ret = spi_register_controller(ctlr);
3420	if (!ret) {
3421		*ptr = ctlr;
3422		devres_add(dev, ptr);
3423	} else {
3424		devres_free(ptr);
3425	}
3426
3427	return ret;
3428}
3429EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3430
3431static int __unregister(struct device *dev, void *null)
3432{
3433	spi_unregister_device(to_spi_device(dev));
3434	return 0;
3435}
3436
3437/**
3438 * spi_unregister_controller - unregister SPI master or slave controller
3439 * @ctlr: the controller being unregistered
3440 * Context: can sleep
3441 *
3442 * This call is used only by SPI controller drivers, which are the
3443 * only ones directly touching chip registers.
3444 *
3445 * This must be called from context that can sleep.
3446 *
3447 * Note that this function also drops a reference to the controller.
3448 */
3449void spi_unregister_controller(struct spi_controller *ctlr)
3450{
3451	struct spi_controller *found;
3452	int id = ctlr->bus_num;
3453
3454	/* Prevent addition of new devices, unregister existing ones */
3455	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3456		mutex_lock(&ctlr->add_lock);
3457
3458	device_for_each_child(&ctlr->dev, NULL, __unregister);
3459
3460	/* First make sure that this controller was ever added */
3461	mutex_lock(&board_lock);
3462	found = idr_find(&spi_master_idr, id);
3463	mutex_unlock(&board_lock);
3464	if (ctlr->queued) {
3465		if (spi_destroy_queue(ctlr))
3466			dev_err(&ctlr->dev, "queue remove failed\n");
3467	}
3468	mutex_lock(&board_lock);
3469	list_del(&ctlr->list);
3470	mutex_unlock(&board_lock);
3471
3472	device_del(&ctlr->dev);
3473
3474	/* Free bus id */
3475	mutex_lock(&board_lock);
3476	if (found == ctlr)
3477		idr_remove(&spi_master_idr, id);
3478	mutex_unlock(&board_lock);
 
 
3479
3480	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3481		mutex_unlock(&ctlr->add_lock);
 
3482
3483	/*
3484	 * Release the last reference on the controller if its driver
3485	 * has not yet been converted to devm_spi_alloc_host/target().
3486	 */
3487	if (!ctlr->devm_allocated)
3488		put_device(&ctlr->dev);
 
 
 
3489}
3490EXPORT_SYMBOL_GPL(spi_unregister_controller);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3491
3492static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3493{
3494	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
 
 
 
 
3495}
3496
3497static inline void __spi_mark_suspended(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
3498{
3499	mutex_lock(&ctlr->bus_lock_mutex);
3500	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3501	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
 
 
 
 
3502}
 
 
 
 
 
3503
3504static inline void __spi_mark_resumed(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3505{
3506	mutex_lock(&ctlr->bus_lock_mutex);
3507	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3508	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
 
 
 
 
 
3509}
 
3510
3511int spi_controller_suspend(struct spi_controller *ctlr)
 
 
 
 
 
3512{
3513	int ret = 0;
3514
3515	/* Basically no-ops for non-queued controllers */
3516	if (ctlr->queued) {
3517		ret = spi_stop_queue(ctlr);
3518		if (ret)
3519			dev_err(&ctlr->dev, "queue stop failed\n");
3520	}
3521
3522	__spi_mark_suspended(ctlr);
3523	return ret;
3524}
3525EXPORT_SYMBOL_GPL(spi_controller_suspend);
3526
3527int spi_controller_resume(struct spi_controller *ctlr)
 
 
 
 
 
3528{
3529	int ret = 0;
 
 
 
 
 
3530
3531	__spi_mark_resumed(ctlr);
 
 
 
 
 
 
 
3532
3533	if (ctlr->queued) {
3534		ret = spi_start_queue(ctlr);
3535		if (ret)
3536			dev_err(&ctlr->dev, "queue restart failed\n");
 
 
 
3537	}
3538	return ret;
3539}
3540EXPORT_SYMBOL_GPL(spi_controller_resume);
3541
3542/*-------------------------------------------------------------------------*/
3543
3544/* Core methods for spi_message alterations */
3545
3546static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3547					    struct spi_message *msg,
3548					    void *res)
3549{
3550	struct spi_replaced_transfers *rxfer = res;
3551	size_t i;
3552
3553	/* Call extra callback if requested */
3554	if (rxfer->release)
3555		rxfer->release(ctlr, msg, res);
3556
3557	/* Insert replaced transfers back into the message */
3558	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3559
3560	/* Remove the formerly inserted entries */
3561	for (i = 0; i < rxfer->inserted; i++)
3562		list_del(&rxfer->inserted_transfers[i].transfer_list);
3563}
3564
3565/**
3566 * spi_replace_transfers - replace transfers with several transfers
3567 *                         and register change with spi_message.resources
3568 * @msg:           the spi_message we work upon
3569 * @xfer_first:    the first spi_transfer we want to replace
3570 * @remove:        number of transfers to remove
3571 * @insert:        the number of transfers we want to insert instead
3572 * @release:       extra release code necessary in some circumstances
3573 * @extradatasize: extra data to allocate (with alignment guarantees
3574 *                 of struct @spi_transfer)
3575 * @gfp:           gfp flags
3576 *
3577 * Returns: pointer to @spi_replaced_transfers,
3578 *          PTR_ERR(...) in case of errors.
3579 */
3580static struct spi_replaced_transfers *spi_replace_transfers(
3581	struct spi_message *msg,
3582	struct spi_transfer *xfer_first,
3583	size_t remove,
3584	size_t insert,
3585	spi_replaced_release_t release,
3586	size_t extradatasize,
3587	gfp_t gfp)
3588{
3589	struct spi_replaced_transfers *rxfer;
3590	struct spi_transfer *xfer;
3591	size_t i;
3592
3593	/* Allocate the structure using spi_res */
3594	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3595			      struct_size(rxfer, inserted_transfers, insert)
3596			      + extradatasize,
3597			      gfp);
3598	if (!rxfer)
3599		return ERR_PTR(-ENOMEM);
3600
3601	/* The release code to invoke before running the generic release */
3602	rxfer->release = release;
3603
3604	/* Assign extradata */
3605	if (extradatasize)
3606		rxfer->extradata =
3607			&rxfer->inserted_transfers[insert];
3608
3609	/* Init the replaced_transfers list */
3610	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3611
3612	/*
3613	 * Assign the list_entry after which we should reinsert
3614	 * the @replaced_transfers - it may be spi_message.messages!
3615	 */
3616	rxfer->replaced_after = xfer_first->transfer_list.prev;
3617
3618	/* Remove the requested number of transfers */
3619	for (i = 0; i < remove; i++) {
3620		/*
3621		 * If the entry after replaced_after it is msg->transfers
3622		 * then we have been requested to remove more transfers
3623		 * than are in the list.
3624		 */
3625		if (rxfer->replaced_after->next == &msg->transfers) {
3626			dev_err(&msg->spi->dev,
3627				"requested to remove more spi_transfers than are available\n");
3628			/* Insert replaced transfers back into the message */
3629			list_splice(&rxfer->replaced_transfers,
3630				    rxfer->replaced_after);
3631
3632			/* Free the spi_replace_transfer structure... */
3633			spi_res_free(rxfer);
3634
3635			/* ...and return with an error */
3636			return ERR_PTR(-EINVAL);
3637		}
3638
3639		/*
3640		 * Remove the entry after replaced_after from list of
3641		 * transfers and add it to list of replaced_transfers.
3642		 */
3643		list_move_tail(rxfer->replaced_after->next,
3644			       &rxfer->replaced_transfers);
3645	}
3646
3647	/*
3648	 * Create copy of the given xfer with identical settings
3649	 * based on the first transfer to get removed.
3650	 */
3651	for (i = 0; i < insert; i++) {
3652		/* We need to run in reverse order */
3653		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3654
3655		/* Copy all spi_transfer data */
3656		memcpy(xfer, xfer_first, sizeof(*xfer));
3657
3658		/* Add to list */
3659		list_add(&xfer->transfer_list, rxfer->replaced_after);
3660
3661		/* Clear cs_change and delay for all but the last */
3662		if (i) {
3663			xfer->cs_change = false;
3664			xfer->delay.value = 0;
3665		}
3666	}
3667
3668	/* Set up inserted... */
3669	rxfer->inserted = insert;
3670
3671	/* ...and register it with spi_res/spi_message */
3672	spi_res_add(msg, rxfer);
3673
3674	return rxfer;
3675}
 
3676
3677static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3678					struct spi_message *msg,
3679					struct spi_transfer **xferp,
3680					size_t maxsize)
 
3681{
3682	struct spi_transfer *xfer = *xferp, *xfers;
3683	struct spi_replaced_transfers *srt;
3684	size_t offset;
3685	size_t count, i;
3686
3687	/* Calculate how many we have to replace */
3688	count = DIV_ROUND_UP(xfer->len, maxsize);
3689
3690	/* Create replacement */
3691	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3692	if (IS_ERR(srt))
3693		return PTR_ERR(srt);
3694	xfers = srt->inserted_transfers;
3695
3696	/*
3697	 * Now handle each of those newly inserted spi_transfers.
3698	 * Note that the replacements spi_transfers all are preset
3699	 * to the same values as *xferp, so tx_buf, rx_buf and len
3700	 * are all identical (as well as most others)
3701	 * so we just have to fix up len and the pointers.
 
 
 
3702	 */
3703
3704	/*
3705	 * The first transfer just needs the length modified, so we
3706	 * run it outside the loop.
3707	 */
3708	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3709
3710	/* All the others need rx_buf/tx_buf also set */
3711	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3712		/* Update rx_buf, tx_buf and DMA */
3713		if (xfers[i].rx_buf)
3714			xfers[i].rx_buf += offset;
 
 
3715		if (xfers[i].tx_buf)
3716			xfers[i].tx_buf += offset;
 
 
3717
3718		/* Update length */
3719		xfers[i].len = min(maxsize, xfers[i].len - offset);
3720	}
3721
3722	/*
3723	 * We set up xferp to the last entry we have inserted,
3724	 * so that we skip those already split transfers.
3725	 */
3726	*xferp = &xfers[count - 1];
3727
3728	/* Increment statistics counters */
3729	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3730				       transfers_split_maxsize);
3731	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3732				       transfers_split_maxsize);
3733
3734	return 0;
3735}
3736
3737/**
3738 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3739 *                               when an individual transfer exceeds a
3740 *                               certain size
3741 * @ctlr:    the @spi_controller for this transfer
3742 * @msg:   the @spi_message to transform
3743 * @maxsize:  the maximum when to apply this
3744 *
3745 * This function allocates resources that are automatically freed during the
3746 * spi message unoptimize phase so this function should only be called from
3747 * optimize_message callbacks.
3748 *
3749 * Return: status of transformation
3750 */
3751int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3752				struct spi_message *msg,
3753				size_t maxsize)
 
3754{
3755	struct spi_transfer *xfer;
3756	int ret;
3757
3758	/*
3759	 * Iterate over the transfer_list,
3760	 * but note that xfer is advanced to the last transfer inserted
3761	 * to avoid checking sizes again unnecessarily (also xfer does
3762	 * potentially belong to a different list by the time the
3763	 * replacement has happened).
3764	 */
3765	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3766		if (xfer->len > maxsize) {
3767			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3768							   maxsize);
3769			if (ret)
3770				return ret;
3771		}
3772	}
3773
3774	return 0;
3775}
3776EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3777
3778
3779/**
3780 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3781 *                                when an individual transfer exceeds a
3782 *                                certain number of SPI words
3783 * @ctlr:     the @spi_controller for this transfer
3784 * @msg:      the @spi_message to transform
3785 * @maxwords: the number of words to limit each transfer to
3786 *
3787 * This function allocates resources that are automatically freed during the
3788 * spi message unoptimize phase so this function should only be called from
3789 * optimize_message callbacks.
3790 *
3791 * Return: status of transformation
3792 */
3793int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3794				 struct spi_message *msg,
3795				 size_t maxwords)
3796{
3797	struct spi_transfer *xfer;
3798
3799	/*
3800	 * Iterate over the transfer_list,
3801	 * but note that xfer is advanced to the last transfer inserted
3802	 * to avoid checking sizes again unnecessarily (also xfer does
3803	 * potentially belong to a different list by the time the
3804	 * replacement has happened).
3805	 */
3806	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3807		size_t maxsize;
3808		int ret;
3809
3810		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3811		if (xfer->len > maxsize) {
3812			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3813							   maxsize);
3814			if (ret)
3815				return ret;
3816		}
3817	}
3818
3819	return 0;
3820}
3821EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3822
3823/*-------------------------------------------------------------------------*/
3824
3825/*
3826 * Core methods for SPI controller protocol drivers. Some of the
3827 * other core methods are currently defined as inline functions.
3828 */
3829
3830static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3831					u8 bits_per_word)
3832{
3833	if (ctlr->bits_per_word_mask) {
3834		/* Only 32 bits fit in the mask */
3835		if (bits_per_word > 32)
3836			return -EINVAL;
3837		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3838			return -EINVAL;
3839	}
3840
3841	return 0;
3842}
3843
3844/**
3845 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3846 * @spi: the device that requires specific CS timing configuration
3847 *
3848 * Return: zero on success, else a negative error code.
3849 */
3850static int spi_set_cs_timing(struct spi_device *spi)
3851{
3852	struct device *parent = spi->controller->dev.parent;
3853	int status = 0;
3854
3855	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3856		if (spi->controller->auto_runtime_pm) {
3857			status = pm_runtime_get_sync(parent);
3858			if (status < 0) {
3859				pm_runtime_put_noidle(parent);
3860				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3861					status);
3862				return status;
3863			}
3864
3865			status = spi->controller->set_cs_timing(spi);
3866			pm_runtime_mark_last_busy(parent);
3867			pm_runtime_put_autosuspend(parent);
3868		} else {
3869			status = spi->controller->set_cs_timing(spi);
3870		}
3871	}
3872	return status;
3873}
3874
3875/**
3876 * spi_setup - setup SPI mode and clock rate
3877 * @spi: the device whose settings are being modified
3878 * Context: can sleep, and no requests are queued to the device
3879 *
3880 * SPI protocol drivers may need to update the transfer mode if the
3881 * device doesn't work with its default.  They may likewise need
3882 * to update clock rates or word sizes from initial values.  This function
3883 * changes those settings, and must be called from a context that can sleep.
3884 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3885 * effect the next time the device is selected and data is transferred to
3886 * or from it.  When this function returns, the SPI device is deselected.
3887 *
3888 * Note that this call will fail if the protocol driver specifies an option
3889 * that the underlying controller or its driver does not support.  For
3890 * example, not all hardware supports wire transfers using nine bit words,
3891 * LSB-first wire encoding, or active-high chipselects.
3892 *
3893 * Return: zero on success, else a negative error code.
3894 */
3895int spi_setup(struct spi_device *spi)
3896{
3897	unsigned	bad_bits, ugly_bits;
3898	int		status;
3899
3900	/*
3901	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3902	 * are set at the same time.
3903	 */
3904	if ((hweight_long(spi->mode &
3905		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3906	    (hweight_long(spi->mode &
3907		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3908		dev_err(&spi->dev,
3909		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3910		return -EINVAL;
3911	}
3912	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3913	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3914		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3915		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3916		return -EINVAL;
3917	/* Check against conflicting MOSI idle configuration */
3918	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3919		dev_err(&spi->dev,
3920			"setup: MOSI configured to idle low and high at the same time.\n");
3921		return -EINVAL;
3922	}
3923	/*
3924	 * Help drivers fail *cleanly* when they need options
3925	 * that aren't supported with their current controller.
3926	 * SPI_CS_WORD has a fallback software implementation,
3927	 * so it is ignored here.
3928	 */
3929	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3930				 SPI_NO_TX | SPI_NO_RX);
 
 
 
 
3931	ugly_bits = bad_bits &
3932		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3933		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3934	if (ugly_bits) {
3935		dev_warn(&spi->dev,
3936			 "setup: ignoring unsupported mode bits %x\n",
3937			 ugly_bits);
3938		spi->mode &= ~ugly_bits;
3939		bad_bits &= ~ugly_bits;
3940	}
3941	if (bad_bits) {
3942		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3943			bad_bits);
3944		return -EINVAL;
3945	}
3946
3947	if (!spi->bits_per_word) {
3948		spi->bits_per_word = 8;
3949	} else {
3950		/*
3951		 * Some controllers may not support the default 8 bits-per-word
3952		 * so only perform the check when this is explicitly provided.
3953		 */
3954		status = __spi_validate_bits_per_word(spi->controller,
3955						      spi->bits_per_word);
3956		if (status)
3957			return status;
3958	}
3959
3960	if (spi->controller->max_speed_hz &&
3961	    (!spi->max_speed_hz ||
3962	     spi->max_speed_hz > spi->controller->max_speed_hz))
3963		spi->max_speed_hz = spi->controller->max_speed_hz;
3964
3965	mutex_lock(&spi->controller->io_mutex);
3966
3967	if (spi->controller->setup) {
3968		status = spi->controller->setup(spi);
3969		if (status) {
3970			mutex_unlock(&spi->controller->io_mutex);
3971			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3972				status);
3973			return status;
3974		}
3975	}
3976
3977	status = spi_set_cs_timing(spi);
3978	if (status) {
3979		mutex_unlock(&spi->controller->io_mutex);
3980		return status;
3981	}
3982
3983	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3984		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3985		if (status < 0) {
3986			mutex_unlock(&spi->controller->io_mutex);
3987			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3988				status);
3989			return status;
3990		}
3991
3992		/*
3993		 * We do not want to return positive value from pm_runtime_get,
3994		 * there are many instances of devices calling spi_setup() and
3995		 * checking for a non-zero return value instead of a negative
3996		 * return value.
3997		 */
3998		status = 0;
3999
4000		spi_set_cs(spi, false, true);
4001		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4002		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4003	} else {
4004		spi_set_cs(spi, false, true);
4005	}
4006
4007	mutex_unlock(&spi->controller->io_mutex);
4008
4009	if (spi->rt && !spi->controller->rt) {
4010		spi->controller->rt = true;
4011		spi_set_thread_rt(spi->controller);
4012	}
4013
4014	trace_spi_setup(spi, status);
4015
4016	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4017			spi->mode & SPI_MODE_X_MASK,
4018			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4019			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4020			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4021			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4022			spi->bits_per_word, spi->max_speed_hz,
4023			status);
4024
4025	return status;
4026}
4027EXPORT_SYMBOL_GPL(spi_setup);
4028
4029static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4030				       struct spi_device *spi)
 
 
 
 
 
 
 
4031{
4032	int delay1, delay2;
4033
4034	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4035	if (delay1 < 0)
4036		return delay1;
4037
4038	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4039	if (delay2 < 0)
4040		return delay2;
4041
4042	if (delay1 < delay2)
4043		memcpy(&xfer->word_delay, &spi->word_delay,
4044		       sizeof(xfer->word_delay));
4045
4046	return 0;
4047}
 
4048
4049static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4050{
4051	struct spi_controller *ctlr = spi->controller;
4052	struct spi_transfer *xfer;
4053	int w_size;
4054
4055	if (list_empty(&message->transfers))
4056		return -EINVAL;
4057
4058	message->spi = spi;
 
 
 
 
 
 
 
 
 
 
4059
4060	/*
4061	 * Half-duplex links include original MicroWire, and ones with
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4062	 * only one data pin like SPI_3WIRE (switches direction) or where
4063	 * either MOSI or MISO is missing.  They can also be caused by
4064	 * software limitations.
4065	 */
4066	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4067	    (spi->mode & SPI_3WIRE)) {
4068		unsigned flags = ctlr->flags;
4069
4070		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4071			if (xfer->rx_buf && xfer->tx_buf)
4072				return -EINVAL;
4073			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4074				return -EINVAL;
4075			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4076				return -EINVAL;
4077		}
4078	}
4079
4080	/*
4081	 * Set transfer bits_per_word and max speed as spi device default if
4082	 * it is not set for this transfer.
4083	 * Set transfer tx_nbits and rx_nbits as single transfer default
4084	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4085	 * Ensure transfer word_delay is at least as long as that required by
4086	 * device itself.
4087	 */
4088	message->frame_length = 0;
4089	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4090		xfer->effective_speed_hz = 0;
4091		message->frame_length += xfer->len;
4092		if (!xfer->bits_per_word)
4093			xfer->bits_per_word = spi->bits_per_word;
4094
4095		if (!xfer->speed_hz)
4096			xfer->speed_hz = spi->max_speed_hz;
4097
4098		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4099			xfer->speed_hz = ctlr->max_speed_hz;
4100
4101		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4102			return -EINVAL;
4103
4104		/*
4105		 * SPI transfer length should be multiple of SPI word size
4106		 * where SPI word size should be power-of-two multiple.
4107		 */
4108		if (xfer->bits_per_word <= 8)
4109			w_size = 1;
4110		else if (xfer->bits_per_word <= 16)
4111			w_size = 2;
4112		else
4113			w_size = 4;
4114
4115		/* No partial transfers accepted */
4116		if (xfer->len % w_size)
4117			return -EINVAL;
4118
4119		if (xfer->speed_hz && ctlr->min_speed_hz &&
4120		    xfer->speed_hz < ctlr->min_speed_hz)
4121			return -EINVAL;
4122
4123		if (xfer->tx_buf && !xfer->tx_nbits)
4124			xfer->tx_nbits = SPI_NBITS_SINGLE;
4125		if (xfer->rx_buf && !xfer->rx_nbits)
4126			xfer->rx_nbits = SPI_NBITS_SINGLE;
4127		/*
4128		 * Check transfer tx/rx_nbits:
4129		 * 1. check the value matches one of single, dual and quad
4130		 * 2. check tx/rx_nbits match the mode in spi_device
4131		 */
4132		if (xfer->tx_buf) {
4133			if (spi->mode & SPI_NO_TX)
4134				return -EINVAL;
4135			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4136				xfer->tx_nbits != SPI_NBITS_DUAL &&
4137				xfer->tx_nbits != SPI_NBITS_QUAD &&
4138				xfer->tx_nbits != SPI_NBITS_OCTAL)
4139				return -EINVAL;
4140			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4141				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4142				return -EINVAL;
4143			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4144				!(spi->mode & SPI_TX_QUAD))
4145				return -EINVAL;
4146		}
4147		/* Check transfer rx_nbits */
4148		if (xfer->rx_buf) {
4149			if (spi->mode & SPI_NO_RX)
4150				return -EINVAL;
4151			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4152				xfer->rx_nbits != SPI_NBITS_DUAL &&
4153				xfer->rx_nbits != SPI_NBITS_QUAD &&
4154				xfer->rx_nbits != SPI_NBITS_OCTAL)
4155				return -EINVAL;
4156			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4157				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4158				return -EINVAL;
4159			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4160				!(spi->mode & SPI_RX_QUAD))
4161				return -EINVAL;
4162		}
4163
4164		if (_spi_xfer_word_delay_update(xfer, spi))
4165			return -EINVAL;
4166	}
4167
4168	message->status = -EINPROGRESS;
4169
4170	return 0;
4171}
4172
4173/*
4174 * spi_split_transfers - generic handling of transfer splitting
4175 * @msg: the message to split
4176 *
4177 * Under certain conditions, a SPI controller may not support arbitrary
4178 * transfer sizes or other features required by a peripheral. This function
4179 * will split the transfers in the message into smaller transfers that are
4180 * supported by the controller.
4181 *
4182 * Controllers with special requirements not covered here can also split
4183 * transfers in the optimize_message() callback.
4184 *
4185 * Context: can sleep
4186 * Return: zero on success, else a negative error code
4187 */
4188static int spi_split_transfers(struct spi_message *msg)
4189{
4190	struct spi_controller *ctlr = msg->spi->controller;
4191	struct spi_transfer *xfer;
4192	int ret;
4193
4194	/*
4195	 * If an SPI controller does not support toggling the CS line on each
4196	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4197	 * for the CS line, we can emulate the CS-per-word hardware function by
4198	 * splitting transfers into one-word transfers and ensuring that
4199	 * cs_change is set for each transfer.
4200	 */
4201	if ((msg->spi->mode & SPI_CS_WORD) &&
4202	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4203		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4204		if (ret)
4205			return ret;
4206
4207		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4208			/* Don't change cs_change on the last entry in the list */
4209			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4210				break;
4211
4212			xfer->cs_change = 1;
4213		}
4214	} else {
4215		ret = spi_split_transfers_maxsize(ctlr, msg,
4216						  spi_max_transfer_size(msg->spi));
4217		if (ret)
4218			return ret;
4219	}
4220
4221	return 0;
4222}
4223
4224/*
4225 * __spi_optimize_message - shared implementation for spi_optimize_message()
4226 *                          and spi_maybe_optimize_message()
4227 * @spi: the device that will be used for the message
4228 * @msg: the message to optimize
4229 *
4230 * Peripheral drivers will call spi_optimize_message() and the spi core will
4231 * call spi_maybe_optimize_message() instead of calling this directly.
4232 *
4233 * It is not valid to call this on a message that has already been optimized.
4234 *
4235 * Return: zero on success, else a negative error code
4236 */
4237static int __spi_optimize_message(struct spi_device *spi,
4238				  struct spi_message *msg)
4239{
4240	struct spi_controller *ctlr = spi->controller;
4241	int ret;
4242
4243	ret = __spi_validate(spi, msg);
4244	if (ret)
4245		return ret;
4246
4247	ret = spi_split_transfers(msg);
4248	if (ret)
4249		return ret;
4250
4251	if (ctlr->optimize_message) {
4252		ret = ctlr->optimize_message(msg);
4253		if (ret) {
4254			spi_res_release(ctlr, msg);
4255			return ret;
4256		}
4257	}
4258
4259	msg->optimized = true;
4260
4261	return 0;
4262}
4263
4264/*
4265 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4266 * @spi: the device that will be used for the message
4267 * @msg: the message to optimize
4268 * Return: zero on success, else a negative error code
4269 */
4270static int spi_maybe_optimize_message(struct spi_device *spi,
4271				      struct spi_message *msg)
4272{
4273	if (spi->controller->defer_optimize_message) {
4274		msg->spi = spi;
4275		return 0;
4276	}
4277
4278	if (msg->pre_optimized)
4279		return 0;
4280
4281	return __spi_optimize_message(spi, msg);
4282}
4283
4284/**
4285 * spi_optimize_message - do any one-time validation and setup for a SPI message
4286 * @spi: the device that will be used for the message
4287 * @msg: the message to optimize
4288 *
4289 * Peripheral drivers that reuse the same message repeatedly may call this to
4290 * perform as much message prep as possible once, rather than repeating it each
4291 * time a message transfer is performed to improve throughput and reduce CPU
4292 * usage.
4293 *
4294 * Once a message has been optimized, it cannot be modified with the exception
4295 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296 * only the data in the memory it points to).
4297 *
4298 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299 * to avoid leaking resources.
4300 *
4301 * Context: can sleep
4302 * Return: zero on success, else a negative error code
4303 */
4304int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305{
4306	int ret;
4307
4308	/*
4309	 * Pre-optimization is not supported and optimization is deferred e.g.
4310	 * when using spi-mux.
4311	 */
4312	if (spi->controller->defer_optimize_message)
4313		return 0;
4314
4315	ret = __spi_optimize_message(spi, msg);
4316	if (ret)
4317		return ret;
4318
4319	/*
4320	 * This flag indicates that the peripheral driver called spi_optimize_message()
4321	 * and therefore we shouldn't unoptimize message automatically when finalizing
4322	 * the message but rather wait until spi_unoptimize_message() is called
4323	 * by the peripheral driver.
4324	 */
4325	msg->pre_optimized = true;
4326
4327	return 0;
4328}
4329EXPORT_SYMBOL_GPL(spi_optimize_message);
4330
4331/**
4332 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4333 * @msg: the message to unoptimize
4334 *
4335 * Calls to this function must be balanced with calls to spi_optimize_message().
4336 *
4337 * Context: can sleep
4338 */
4339void spi_unoptimize_message(struct spi_message *msg)
4340{
4341	if (msg->spi->controller->defer_optimize_message)
4342		return;
4343
4344	__spi_unoptimize_message(msg);
4345	msg->pre_optimized = false;
4346}
4347EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4348
4349static int __spi_async(struct spi_device *spi, struct spi_message *message)
4350{
4351	struct spi_controller *ctlr = spi->controller;
4352	struct spi_transfer *xfer;
4353
4354	/*
4355	 * Some controllers do not support doing regular SPI transfers. Return
4356	 * ENOTSUPP when this is the case.
4357	 */
4358	if (!ctlr->transfer)
4359		return -ENOTSUPP;
4360
4361	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4363
4364	trace_spi_message_submit(message);
 
4365
4366	if (!ctlr->ptp_sts_supported) {
4367		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368			xfer->ptp_sts_word_pre = 0;
4369			ptp_read_system_prets(xfer->ptp_sts);
4370		}
4371	}
4372
4373	return ctlr->transfer(spi, message);
4374}
4375
4376static void devm_spi_unoptimize_message(void *msg)
4377{
4378	spi_unoptimize_message(msg);
4379}
4380
4381/**
4382 * devm_spi_optimize_message - managed version of spi_optimize_message()
4383 * @dev: the device that manages @msg (usually @spi->dev)
4384 * @spi: the device that will be used for the message
4385 * @msg: the message to optimize
4386 * Return: zero on success, else a negative error code
4387 *
4388 * spi_unoptimize_message() will automatically be called when the device is
4389 * removed.
4390 */
4391int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4392			      struct spi_message *msg)
4393{
4394	int ret;
4395
4396	ret = spi_optimize_message(spi, msg);
4397	if (ret)
4398		return ret;
4399
4400	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4401}
4402EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4403
4404/**
4405 * spi_async - asynchronous SPI transfer
4406 * @spi: device with which data will be exchanged
4407 * @message: describes the data transfers, including completion callback
4408 * Context: any (IRQs may be blocked, etc)
4409 *
4410 * This call may be used in_irq and other contexts which can't sleep,
4411 * as well as from task contexts which can sleep.
4412 *
4413 * The completion callback is invoked in a context which can't sleep.
4414 * Before that invocation, the value of message->status is undefined.
4415 * When the callback is issued, message->status holds either zero (to
4416 * indicate complete success) or a negative error code.  After that
4417 * callback returns, the driver which issued the transfer request may
4418 * deallocate the associated memory; it's no longer in use by any SPI
4419 * core or controller driver code.
4420 *
4421 * Note that although all messages to a spi_device are handled in
4422 * FIFO order, messages may go to different devices in other orders.
4423 * Some device might be higher priority, or have various "hard" access
4424 * time requirements, for example.
4425 *
4426 * On detection of any fault during the transfer, processing of
4427 * the entire message is aborted, and the device is deselected.
4428 * Until returning from the associated message completion callback,
4429 * no other spi_message queued to that device will be processed.
4430 * (This rule applies equally to all the synchronous transfer calls,
4431 * which are wrappers around this core asynchronous primitive.)
4432 *
4433 * Return: zero on success, else a negative error code.
4434 */
4435int spi_async(struct spi_device *spi, struct spi_message *message)
4436{
4437	struct spi_controller *ctlr = spi->controller;
4438	int ret;
4439	unsigned long flags;
4440
4441	ret = spi_maybe_optimize_message(spi, message);
4442	if (ret)
4443		return ret;
4444
4445	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4446
4447	if (ctlr->bus_lock_flag)
4448		ret = -EBUSY;
4449	else
4450		ret = __spi_async(spi, message);
4451
4452	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4453
4454	return ret;
4455}
4456EXPORT_SYMBOL_GPL(spi_async);
4457
4458static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4459{
4460	bool was_busy;
4461	int ret;
 
4462
4463	mutex_lock(&ctlr->io_mutex);
 
 
4464
4465	was_busy = ctlr->busy;
4466
4467	ctlr->cur_msg = msg;
4468	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4469	if (ret)
4470		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4471	ctlr->cur_msg = NULL;
4472	ctlr->fallback = false;
4473
4474	if (!was_busy) {
4475		kfree(ctlr->dummy_rx);
4476		ctlr->dummy_rx = NULL;
4477		kfree(ctlr->dummy_tx);
4478		ctlr->dummy_tx = NULL;
4479		if (ctlr->unprepare_transfer_hardware &&
4480		    ctlr->unprepare_transfer_hardware(ctlr))
4481			dev_err(&ctlr->dev,
4482				"failed to unprepare transfer hardware\n");
4483		spi_idle_runtime_pm(ctlr);
4484	}
4485
4486	mutex_unlock(&ctlr->io_mutex);
4487}
 
4488
4489/*-------------------------------------------------------------------------*/
4490
4491/*
4492 * Utility methods for SPI protocol drivers, layered on
4493 * top of the core.  Some other utility methods are defined as
4494 * inline functions.
4495 */
4496
4497static void spi_complete(void *arg)
4498{
4499	complete(arg);
4500}
4501
4502static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4503{
4504	DECLARE_COMPLETION_ONSTACK(done);
4505	unsigned long flags;
4506	int status;
4507	struct spi_controller *ctlr = spi->controller;
 
4508
4509	if (__spi_check_suspended(ctlr)) {
4510		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4511		return -ESHUTDOWN;
4512	}
4513
4514	status = spi_maybe_optimize_message(spi, message);
4515	if (status)
4516		return status;
4517
4518	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4519	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
 
 
 
 
4520
4521	/*
4522	 * Checking queue_empty here only guarantees async/sync message
4523	 * ordering when coming from the same context. It does not need to
4524	 * guard against reentrancy from a different context. The io_mutex
4525	 * will catch those cases.
4526	 */
4527	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4528		message->actual_length = 0;
4529		message->status = -EINPROGRESS;
4530
4531		trace_spi_message_submit(message);
4532
4533		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4534		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4535
4536		__spi_transfer_message_noqueue(ctlr, message);
4537
4538		return message->status;
 
 
4539	}
4540
4541	/*
4542	 * There are messages in the async queue that could have originated
4543	 * from the same context, so we need to preserve ordering.
4544	 * Therefor we send the message to the async queue and wait until they
4545	 * are completed.
4546	 */
4547	message->complete = spi_complete;
4548	message->context = &done;
4549
4550	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4551	status = __spi_async(spi, message);
4552	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4553
4554	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
4555		wait_for_completion(&done);
4556		status = message->status;
4557	}
4558	message->complete = NULL;
4559	message->context = NULL;
4560
4561	return status;
4562}
4563
4564/**
4565 * spi_sync - blocking/synchronous SPI data transfers
4566 * @spi: device with which data will be exchanged
4567 * @message: describes the data transfers
4568 * Context: can sleep
4569 *
4570 * This call may only be used from a context that may sleep.  The sleep
4571 * is non-interruptible, and has no timeout.  Low-overhead controller
4572 * drivers may DMA directly into and out of the message buffers.
4573 *
4574 * Note that the SPI device's chip select is active during the message,
4575 * and then is normally disabled between messages.  Drivers for some
4576 * frequently-used devices may want to minimize costs of selecting a chip,
4577 * by leaving it selected in anticipation that the next message will go
4578 * to the same chip.  (That may increase power usage.)
4579 *
4580 * Also, the caller is guaranteeing that the memory associated with the
4581 * message will not be freed before this call returns.
4582 *
4583 * Return: zero on success, else a negative error code.
4584 */
4585int spi_sync(struct spi_device *spi, struct spi_message *message)
4586{
4587	int ret;
4588
4589	mutex_lock(&spi->controller->bus_lock_mutex);
4590	ret = __spi_sync(spi, message);
4591	mutex_unlock(&spi->controller->bus_lock_mutex);
4592
4593	return ret;
4594}
4595EXPORT_SYMBOL_GPL(spi_sync);
4596
4597/**
4598 * spi_sync_locked - version of spi_sync with exclusive bus usage
4599 * @spi: device with which data will be exchanged
4600 * @message: describes the data transfers
4601 * Context: can sleep
4602 *
4603 * This call may only be used from a context that may sleep.  The sleep
4604 * is non-interruptible, and has no timeout.  Low-overhead controller
4605 * drivers may DMA directly into and out of the message buffers.
4606 *
4607 * This call should be used by drivers that require exclusive access to the
4608 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4609 * be released by a spi_bus_unlock call when the exclusive access is over.
4610 *
4611 * Return: zero on success, else a negative error code.
4612 */
4613int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4614{
4615	return __spi_sync(spi, message);
4616}
4617EXPORT_SYMBOL_GPL(spi_sync_locked);
4618
4619/**
4620 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4621 * @ctlr: SPI bus master that should be locked for exclusive bus access
4622 * Context: can sleep
4623 *
4624 * This call may only be used from a context that may sleep.  The sleep
4625 * is non-interruptible, and has no timeout.
4626 *
4627 * This call should be used by drivers that require exclusive access to the
4628 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4629 * exclusive access is over. Data transfer must be done by spi_sync_locked
4630 * and spi_async_locked calls when the SPI bus lock is held.
4631 *
4632 * Return: always zero.
4633 */
4634int spi_bus_lock(struct spi_controller *ctlr)
4635{
4636	unsigned long flags;
4637
4638	mutex_lock(&ctlr->bus_lock_mutex);
4639
4640	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4641	ctlr->bus_lock_flag = 1;
4642	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4643
4644	/* Mutex remains locked until spi_bus_unlock() is called */
4645
4646	return 0;
4647}
4648EXPORT_SYMBOL_GPL(spi_bus_lock);
4649
4650/**
4651 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4652 * @ctlr: SPI bus master that was locked for exclusive bus access
4653 * Context: can sleep
4654 *
4655 * This call may only be used from a context that may sleep.  The sleep
4656 * is non-interruptible, and has no timeout.
4657 *
4658 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4659 * call.
4660 *
4661 * Return: always zero.
4662 */
4663int spi_bus_unlock(struct spi_controller *ctlr)
4664{
4665	ctlr->bus_lock_flag = 0;
4666
4667	mutex_unlock(&ctlr->bus_lock_mutex);
4668
4669	return 0;
4670}
4671EXPORT_SYMBOL_GPL(spi_bus_unlock);
4672
4673/* Portable code must never pass more than 32 bytes */
4674#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4675
4676static u8	*buf;
4677
4678/**
4679 * spi_write_then_read - SPI synchronous write followed by read
4680 * @spi: device with which data will be exchanged
4681 * @txbuf: data to be written (need not be DMA-safe)
4682 * @n_tx: size of txbuf, in bytes
4683 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4684 * @n_rx: size of rxbuf, in bytes
4685 * Context: can sleep
4686 *
4687 * This performs a half duplex MicroWire style transaction with the
4688 * device, sending txbuf and then reading rxbuf.  The return value
4689 * is zero for success, else a negative errno status code.
4690 * This call may only be used from a context that may sleep.
4691 *
4692 * Parameters to this routine are always copied using a small buffer.
 
4693 * Performance-sensitive or bulk transfer code should instead use
4694 * spi_{async,sync}() calls with DMA-safe buffers.
4695 *
4696 * Return: zero on success, else a negative error code.
4697 */
4698int spi_write_then_read(struct spi_device *spi,
4699		const void *txbuf, unsigned n_tx,
4700		void *rxbuf, unsigned n_rx)
4701{
4702	static DEFINE_MUTEX(lock);
4703
4704	int			status;
4705	struct spi_message	message;
4706	struct spi_transfer	x[2];
4707	u8			*local_buf;
4708
4709	/*
4710	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4711	 * copying here, (as a pure convenience thing), but we can
4712	 * keep heap costs out of the hot path unless someone else is
4713	 * using the pre-allocated buffer or the transfer is too large.
4714	 */
4715	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4716		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4717				    GFP_KERNEL | GFP_DMA);
4718		if (!local_buf)
4719			return -ENOMEM;
4720	} else {
4721		local_buf = buf;
4722	}
4723
4724	spi_message_init(&message);
4725	memset(x, 0, sizeof(x));
4726	if (n_tx) {
4727		x[0].len = n_tx;
4728		spi_message_add_tail(&x[0], &message);
4729	}
4730	if (n_rx) {
4731		x[1].len = n_rx;
4732		spi_message_add_tail(&x[1], &message);
4733	}
4734
4735	memcpy(local_buf, txbuf, n_tx);
4736	x[0].tx_buf = local_buf;
4737	x[1].rx_buf = local_buf + n_tx;
4738
4739	/* Do the I/O */
4740	status = spi_sync(spi, &message);
4741	if (status == 0)
4742		memcpy(rxbuf, x[1].rx_buf, n_rx);
4743
4744	if (x[0].tx_buf == buf)
4745		mutex_unlock(&lock);
4746	else
4747		kfree(local_buf);
4748
4749	return status;
4750}
4751EXPORT_SYMBOL_GPL(spi_write_then_read);
4752
4753/*-------------------------------------------------------------------------*/
4754
4755#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4756/* Must call put_device() when done with returned spi_device device */
4757static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4758{
4759	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4760
4761	return dev ? to_spi_device(dev) : NULL;
4762}
 
 
4763
4764/* The spi controllers are not using spi_bus, so we find it with another way */
 
4765static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4766{
4767	struct device *dev;
4768
4769	dev = class_find_device_by_of_node(&spi_master_class, node);
4770	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4771		dev = class_find_device_by_of_node(&spi_slave_class, node);
4772	if (!dev)
4773		return NULL;
4774
4775	/* Reference got in class_find_device */
4776	return container_of(dev, struct spi_controller, dev);
4777}
4778
4779static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4780			 void *arg)
4781{
4782	struct of_reconfig_data *rd = arg;
4783	struct spi_controller *ctlr;
4784	struct spi_device *spi;
4785
4786	switch (of_reconfig_get_state_change(action, arg)) {
4787	case OF_RECONFIG_CHANGE_ADD:
4788		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4789		if (ctlr == NULL)
4790			return NOTIFY_OK;	/* Not for us */
4791
4792		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4793			put_device(&ctlr->dev);
4794			return NOTIFY_OK;
4795		}
4796
4797		/*
4798		 * Clear the flag before adding the device so that fw_devlink
4799		 * doesn't skip adding consumers to this device.
4800		 */
4801		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4802		spi = of_register_spi_device(ctlr, rd->dn);
4803		put_device(&ctlr->dev);
4804
4805		if (IS_ERR(spi)) {
4806			pr_err("%s: failed to create for '%pOF'\n",
4807					__func__, rd->dn);
4808			of_node_clear_flag(rd->dn, OF_POPULATED);
4809			return notifier_from_errno(PTR_ERR(spi));
4810		}
4811		break;
4812
4813	case OF_RECONFIG_CHANGE_REMOVE:
4814		/* Already depopulated? */
4815		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4816			return NOTIFY_OK;
4817
4818		/* Find our device by node */
4819		spi = of_find_spi_device_by_node(rd->dn);
4820		if (spi == NULL)
4821			return NOTIFY_OK;	/* No? not meant for us */
4822
4823		/* Unregister takes one ref away */
4824		spi_unregister_device(spi);
4825
4826		/* And put the reference of the find */
4827		put_device(&spi->dev);
4828		break;
4829	}
4830
4831	return NOTIFY_OK;
4832}
4833
4834static struct notifier_block spi_of_notifier = {
4835	.notifier_call = of_spi_notify,
4836};
4837#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4838extern struct notifier_block spi_of_notifier;
4839#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4840
4841#if IS_ENABLED(CONFIG_ACPI)
4842static int spi_acpi_controller_match(struct device *dev, const void *data)
4843{
4844	return ACPI_COMPANION(dev->parent) == data;
4845}
4846
4847struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4848{
4849	struct device *dev;
4850
4851	dev = class_find_device(&spi_master_class, NULL, adev,
4852				spi_acpi_controller_match);
4853	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4854		dev = class_find_device(&spi_slave_class, NULL, adev,
4855					spi_acpi_controller_match);
4856	if (!dev)
4857		return NULL;
4858
4859	return container_of(dev, struct spi_controller, dev);
4860}
4861EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4862
4863static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4864{
4865	struct device *dev;
4866
4867	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4868	return to_spi_device(dev);
4869}
4870
4871static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4872			   void *arg)
4873{
4874	struct acpi_device *adev = arg;
4875	struct spi_controller *ctlr;
4876	struct spi_device *spi;
4877
4878	switch (value) {
4879	case ACPI_RECONFIG_DEVICE_ADD:
4880		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4881		if (!ctlr)
4882			break;
4883
4884		acpi_register_spi_device(ctlr, adev);
4885		put_device(&ctlr->dev);
4886		break;
4887	case ACPI_RECONFIG_DEVICE_REMOVE:
4888		if (!acpi_device_enumerated(adev))
4889			break;
4890
4891		spi = acpi_spi_find_device_by_adev(adev);
4892		if (!spi)
4893			break;
4894
4895		spi_unregister_device(spi);
4896		put_device(&spi->dev);
4897		break;
4898	}
4899
4900	return NOTIFY_OK;
4901}
4902
4903static struct notifier_block spi_acpi_notifier = {
4904	.notifier_call = acpi_spi_notify,
4905};
4906#else
4907extern struct notifier_block spi_acpi_notifier;
4908#endif
4909
4910static int __init spi_init(void)
4911{
4912	int	status;
4913
4914	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4915	if (!buf) {
4916		status = -ENOMEM;
4917		goto err0;
4918	}
4919
4920	status = bus_register(&spi_bus_type);
4921	if (status < 0)
4922		goto err1;
4923
4924	status = class_register(&spi_master_class);
4925	if (status < 0)
4926		goto err2;
4927
4928	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4929		status = class_register(&spi_slave_class);
4930		if (status < 0)
4931			goto err3;
4932	}
4933
4934	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4935		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4936	if (IS_ENABLED(CONFIG_ACPI))
4937		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4938
4939	return 0;
4940
4941err3:
4942	class_unregister(&spi_master_class);
4943err2:
4944	bus_unregister(&spi_bus_type);
4945err1:
4946	kfree(buf);
4947	buf = NULL;
4948err0:
4949	return status;
4950}
4951
4952/*
4953 * A board_info is normally registered in arch_initcall(),
4954 * but even essential drivers wait till later.
4955 *
4956 * REVISIT only boardinfo really needs static linking. The rest (device and
4957 * driver registration) _could_ be dynamically linked (modular) ... Costs
4958 * include needing to have boardinfo data structures be much more public.
4959 */
4960postcore_initcall(spi_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
 
 
 
   8#include <linux/device.h>
 
 
 
 
 
 
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
 
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
 
 
 
 
 
 
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	/* spi controllers may cleanup for released devices */
  51	if (spi->controller->cleanup)
  52		spi->controller->cleanup(spi);
  53
  54	spi_controller_put(spi->controller);
  55	kfree(spi->driver_override);
 
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static ssize_t driver_override_store(struct device *dev,
  74				     struct device_attribute *a,
  75				     const char *buf, size_t count)
  76{
  77	struct spi_device *spi = to_spi_device(dev);
  78	const char *end = memchr(buf, '\n', count);
  79	const size_t len = end ? end - buf : count;
  80	const char *driver_override, *old;
  81
  82	/* We need to keep extra room for a newline when displaying value */
  83	if (len >= (PAGE_SIZE - 1))
  84		return -EINVAL;
  85
  86	driver_override = kstrndup(buf, len, GFP_KERNEL);
  87	if (!driver_override)
  88		return -ENOMEM;
  89
  90	device_lock(dev);
  91	old = spi->driver_override;
  92	if (len) {
  93		spi->driver_override = driver_override;
  94	} else {
  95		/* Emptry string, disable driver override */
  96		spi->driver_override = NULL;
  97		kfree(driver_override);
  98	}
  99	device_unlock(dev);
 100	kfree(old);
 101
 102	return count;
 103}
 104
 105static ssize_t driver_override_show(struct device *dev,
 106				    struct device_attribute *a, char *buf)
 107{
 108	const struct spi_device *spi = to_spi_device(dev);
 109	ssize_t len;
 110
 111	device_lock(dev);
 112	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 113	device_unlock(dev);
 114	return len;
 115}
 116static DEVICE_ATTR_RW(driver_override);
 117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118#define SPI_STATISTICS_ATTRS(field, file)				\
 119static ssize_t spi_controller_##field##_show(struct device *dev,	\
 120					     struct device_attribute *attr, \
 121					     char *buf)			\
 122{									\
 123	struct spi_controller *ctlr = container_of(dev,			\
 124					 struct spi_controller, dev);	\
 125	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 126}									\
 127static struct device_attribute dev_attr_spi_controller_##field = {	\
 128	.attr = { .name = file, .mode = 0444 },				\
 129	.show = spi_controller_##field##_show,				\
 130};									\
 131static ssize_t spi_device_##field##_show(struct device *dev,		\
 132					 struct device_attribute *attr,	\
 133					char *buf)			\
 134{									\
 135	struct spi_device *spi = to_spi_device(dev);			\
 136	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 137}									\
 138static struct device_attribute dev_attr_spi_device_##field = {		\
 139	.attr = { .name = file, .mode = 0444 },				\
 140	.show = spi_device_##field##_show,				\
 141}
 142
 143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 145					    char *buf)			\
 146{									\
 147	unsigned long flags;						\
 148	ssize_t len;							\
 149	spin_lock_irqsave(&stat->lock, flags);				\
 150	len = sprintf(buf, format_string, stat->field);			\
 151	spin_unlock_irqrestore(&stat->lock, flags);			\
 152	return len;							\
 153}									\
 154SPI_STATISTICS_ATTRS(name, file)
 155
 156#define SPI_STATISTICS_SHOW(field, format_string)			\
 157	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 158				 field, format_string)
 159
 160SPI_STATISTICS_SHOW(messages, "%lu");
 161SPI_STATISTICS_SHOW(transfers, "%lu");
 162SPI_STATISTICS_SHOW(errors, "%lu");
 163SPI_STATISTICS_SHOW(timedout, "%lu");
 164
 165SPI_STATISTICS_SHOW(spi_sync, "%lu");
 166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 167SPI_STATISTICS_SHOW(spi_async, "%lu");
 168
 169SPI_STATISTICS_SHOW(bytes, "%llu");
 170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 172
 173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 174	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 175				 "transfer_bytes_histo_" number,	\
 176				 transfer_bytes_histo[index],  "%lu")
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 194
 195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 196
 197static struct attribute *spi_dev_attrs[] = {
 198	&dev_attr_modalias.attr,
 199	&dev_attr_driver_override.attr,
 200	NULL,
 201};
 202
 203static const struct attribute_group spi_dev_group = {
 204	.attrs  = spi_dev_attrs,
 205};
 206
 207static struct attribute *spi_device_statistics_attrs[] = {
 208	&dev_attr_spi_device_messages.attr,
 209	&dev_attr_spi_device_transfers.attr,
 210	&dev_attr_spi_device_errors.attr,
 211	&dev_attr_spi_device_timedout.attr,
 212	&dev_attr_spi_device_spi_sync.attr,
 213	&dev_attr_spi_device_spi_sync_immediate.attr,
 214	&dev_attr_spi_device_spi_async.attr,
 215	&dev_attr_spi_device_bytes.attr,
 216	&dev_attr_spi_device_bytes_rx.attr,
 217	&dev_attr_spi_device_bytes_tx.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 231	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 232	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 233	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 234	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 235	&dev_attr_spi_device_transfers_split_maxsize.attr,
 236	NULL,
 237};
 238
 239static const struct attribute_group spi_device_statistics_group = {
 240	.name  = "statistics",
 241	.attrs  = spi_device_statistics_attrs,
 242};
 243
 244static const struct attribute_group *spi_dev_groups[] = {
 245	&spi_dev_group,
 246	&spi_device_statistics_group,
 247	NULL,
 248};
 249
 250static struct attribute *spi_controller_statistics_attrs[] = {
 251	&dev_attr_spi_controller_messages.attr,
 252	&dev_attr_spi_controller_transfers.attr,
 253	&dev_attr_spi_controller_errors.attr,
 254	&dev_attr_spi_controller_timedout.attr,
 255	&dev_attr_spi_controller_spi_sync.attr,
 256	&dev_attr_spi_controller_spi_sync_immediate.attr,
 257	&dev_attr_spi_controller_spi_async.attr,
 258	&dev_attr_spi_controller_bytes.attr,
 259	&dev_attr_spi_controller_bytes_rx.attr,
 260	&dev_attr_spi_controller_bytes_tx.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 274	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 275	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 276	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 277	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 278	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 279	NULL,
 280};
 281
 282static const struct attribute_group spi_controller_statistics_group = {
 283	.name  = "statistics",
 284	.attrs  = spi_controller_statistics_attrs,
 285};
 286
 287static const struct attribute_group *spi_master_groups[] = {
 288	&spi_controller_statistics_group,
 289	NULL,
 290};
 291
 292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 293				       struct spi_transfer *xfer,
 294				       struct spi_controller *ctlr)
 295{
 296	unsigned long flags;
 297	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
 298
 299	if (l2len < 0)
 300		l2len = 0;
 301
 302	spin_lock_irqsave(&stats->lock, flags);
 303
 304	stats->transfers++;
 305	stats->transfer_bytes_histo[l2len]++;
 
 
 
 
 
 
 
 
 306
 307	stats->bytes += xfer->len;
 308	if ((xfer->tx_buf) &&
 309	    (xfer->tx_buf != ctlr->dummy_tx))
 310		stats->bytes_tx += xfer->len;
 311	if ((xfer->rx_buf) &&
 312	    (xfer->rx_buf != ctlr->dummy_rx))
 313		stats->bytes_rx += xfer->len;
 314
 315	spin_unlock_irqrestore(&stats->lock, flags);
 316}
 317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 318
 319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 320 * and the sysfs version makes coldplug work too.
 321 */
 322
 323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 324						const struct spi_device *sdev)
 325{
 326	while (id->name[0]) {
 327		if (!strcmp(sdev->modalias, id->name))
 328			return id;
 329		id++;
 330	}
 331	return NULL;
 332}
 333
 334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 335{
 336	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 337
 338	return spi_match_id(sdrv->id_table, sdev);
 339}
 340EXPORT_SYMBOL_GPL(spi_get_device_id);
 341
 342static int spi_match_device(struct device *dev, struct device_driver *drv)
 
 
 
 
 
 
 
 
 
 
 
 
 343{
 344	const struct spi_device	*spi = to_spi_device(dev);
 345	const struct spi_driver	*sdrv = to_spi_driver(drv);
 346
 347	/* Check override first, and if set, only use the named driver */
 348	if (spi->driver_override)
 349		return strcmp(spi->driver_override, drv->name) == 0;
 350
 351	/* Attempt an OF style match */
 352	if (of_driver_match_device(dev, drv))
 353		return 1;
 354
 355	/* Then try ACPI */
 356	if (acpi_driver_match_device(dev, drv))
 357		return 1;
 358
 359	if (sdrv->id_table)
 360		return !!spi_match_id(sdrv->id_table, spi);
 361
 362	return strcmp(spi->modalias, drv->name) == 0;
 363}
 364
 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 366{
 367	const struct spi_device		*spi = to_spi_device(dev);
 368	int rc;
 369
 370	rc = acpi_device_uevent_modalias(dev, env);
 371	if (rc != -ENODEV)
 372		return rc;
 373
 374	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 375}
 376
 377struct bus_type spi_bus_type = {
 378	.name		= "spi",
 379	.dev_groups	= spi_dev_groups,
 380	.match		= spi_match_device,
 381	.uevent		= spi_uevent,
 382};
 383EXPORT_SYMBOL_GPL(spi_bus_type);
 384
 385
 386static int spi_drv_probe(struct device *dev)
 387{
 388	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 389	struct spi_device		*spi = to_spi_device(dev);
 390	int ret;
 391
 392	ret = of_clk_set_defaults(dev->of_node, false);
 393	if (ret)
 394		return ret;
 395
 396	if (dev->of_node) {
 397		spi->irq = of_irq_get(dev->of_node, 0);
 398		if (spi->irq == -EPROBE_DEFER)
 
 
 
 
 
 
 
 
 
 
 399			return -EPROBE_DEFER;
 400		if (spi->irq < 0)
 401			spi->irq = 0;
 402	}
 403
 404	ret = dev_pm_domain_attach(dev, true);
 405	if (ret)
 406		return ret;
 407
 408	ret = sdrv->probe(spi);
 409	if (ret)
 410		dev_pm_domain_detach(dev, true);
 
 
 411
 412	return ret;
 413}
 414
 415static int spi_drv_remove(struct device *dev)
 416{
 417	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 418	int ret;
 419
 420	ret = sdrv->remove(to_spi_device(dev));
 
 
 421	dev_pm_domain_detach(dev, true);
 422
 423	return ret;
 424}
 425
 426static void spi_drv_shutdown(struct device *dev)
 427{
 428	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 429
 430	sdrv->shutdown(to_spi_device(dev));
 
 
 431}
 432
 
 
 
 
 
 
 
 
 
 
 
 433/**
 434 * __spi_register_driver - register a SPI driver
 435 * @owner: owner module of the driver to register
 436 * @sdrv: the driver to register
 437 * Context: can sleep
 438 *
 439 * Return: zero on success, else a negative error code.
 440 */
 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 442{
 443	sdrv->driver.owner = owner;
 444	sdrv->driver.bus = &spi_bus_type;
 445	if (sdrv->probe)
 446		sdrv->driver.probe = spi_drv_probe;
 447	if (sdrv->remove)
 448		sdrv->driver.remove = spi_drv_remove;
 449	if (sdrv->shutdown)
 450		sdrv->driver.shutdown = spi_drv_shutdown;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451	return driver_register(&sdrv->driver);
 452}
 453EXPORT_SYMBOL_GPL(__spi_register_driver);
 454
 455/*-------------------------------------------------------------------------*/
 456
 457/* SPI devices should normally not be created by SPI device drivers; that
 
 458 * would make them board-specific.  Similarly with SPI controller drivers.
 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 460 * with other readonly (flashable) information about mainboard devices.
 461 */
 462
 463struct boardinfo {
 464	struct list_head	list;
 465	struct spi_board_info	board_info;
 466};
 467
 468static LIST_HEAD(board_list);
 469static LIST_HEAD(spi_controller_list);
 470
 471/*
 472 * Used to protect add/del opertion for board_info list and
 473 * spi_controller list, and their matching process
 474 * also used to protect object of type struct idr
 475 */
 476static DEFINE_MUTEX(board_lock);
 477
 478/**
 479 * spi_alloc_device - Allocate a new SPI device
 480 * @ctlr: Controller to which device is connected
 481 * Context: can sleep
 482 *
 483 * Allows a driver to allocate and initialize a spi_device without
 484 * registering it immediately.  This allows a driver to directly
 485 * fill the spi_device with device parameters before calling
 486 * spi_add_device() on it.
 487 *
 488 * Caller is responsible to call spi_add_device() on the returned
 489 * spi_device structure to add it to the SPI controller.  If the caller
 490 * needs to discard the spi_device without adding it, then it should
 491 * call spi_dev_put() on it.
 492 *
 493 * Return: a pointer to the new device, or NULL.
 494 */
 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 496{
 497	struct spi_device	*spi;
 498
 499	if (!spi_controller_get(ctlr))
 500		return NULL;
 501
 502	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 503	if (!spi) {
 504		spi_controller_put(ctlr);
 505		return NULL;
 506	}
 507
 508	spi->master = spi->controller = ctlr;
 
 
 
 
 
 
 
 509	spi->dev.parent = &ctlr->dev;
 510	spi->dev.bus = &spi_bus_type;
 511	spi->dev.release = spidev_release;
 512	spi->cs_gpio = -ENOENT;
 513
 514	spin_lock_init(&spi->statistics.lock);
 515
 516	device_initialize(&spi->dev);
 517	return spi;
 518}
 519EXPORT_SYMBOL_GPL(spi_alloc_device);
 520
 521static void spi_dev_set_name(struct spi_device *spi)
 522{
 523	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 
 
 
 
 
 
 524
 525	if (adev) {
 526		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 527		return;
 528	}
 529
 530	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 531		     spi->chip_select);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532}
 533
 534static int spi_dev_check(struct device *dev, void *data)
 535{
 536	struct spi_device *spi = to_spi_device(dev);
 537	struct spi_device *new_spi = data;
 
 538
 539	if (spi->controller == new_spi->controller &&
 540	    spi->chip_select == new_spi->chip_select)
 541		return -EBUSY;
 
 
 
 
 542	return 0;
 543}
 544
 545/**
 546 * spi_add_device - Add spi_device allocated with spi_alloc_device
 547 * @spi: spi_device to register
 548 *
 549 * Companion function to spi_alloc_device.  Devices allocated with
 550 * spi_alloc_device can be added onto the spi bus with this function.
 551 *
 552 * Return: 0 on success; negative errno on failure
 553 */
 554int spi_add_device(struct spi_device *spi)
 555{
 556	static DEFINE_MUTEX(spi_add_lock);
 557	struct spi_controller *ctlr = spi->controller;
 558	struct device *dev = ctlr->dev.parent;
 559	int status;
 
 
 
 
 
 
 
 
 
 
 
 560
 561	/* Chipselects are numbered 0..max; validate. */
 562	if (spi->chip_select >= ctlr->num_chipselect) {
 563		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 564			ctlr->num_chipselect);
 565		return -EINVAL;
 
 
 
 
 
 566	}
 567
 568	/* Set the bus ID string */
 569	spi_dev_set_name(spi);
 570
 571	/* We need to make sure there's no other device with this
 
 572	 * chipselect **BEFORE** we call setup(), else we'll trash
 573	 * its configuration.  Lock against concurrent add() calls.
 574	 */
 575	mutex_lock(&spi_add_lock);
 
 
 576
 577	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 578	if (status) {
 579		dev_err(dev, "chipselect %d already in use\n",
 580				spi->chip_select);
 581		goto done;
 582	}
 583
 584	/* Descriptors take precedence */
 585	if (ctlr->cs_gpiods)
 586		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 587	else if (ctlr->cs_gpios)
 588		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 
 
 
 
 589
 590	/* Drivers may modify this initial i/o setup, but will
 
 591	 * normally rely on the device being setup.  Devices
 592	 * using SPI_CS_HIGH can't coexist well otherwise...
 593	 */
 594	status = spi_setup(spi);
 595	if (status < 0) {
 596		dev_err(dev, "can't setup %s, status %d\n",
 597				dev_name(&spi->dev), status);
 598		goto done;
 599	}
 600
 601	/* Device may be bound to an active driver when this returns */
 602	status = device_add(&spi->dev);
 603	if (status < 0)
 604		dev_err(dev, "can't add %s, status %d\n",
 605				dev_name(&spi->dev), status);
 606	else
 
 607		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608
 609done:
 610	mutex_unlock(&spi_add_lock);
 
 611	return status;
 612}
 613EXPORT_SYMBOL_GPL(spi_add_device);
 614
 
 
 
 
 
 
 
 
 615/**
 616 * spi_new_device - instantiate one new SPI device
 617 * @ctlr: Controller to which device is connected
 618 * @chip: Describes the SPI device
 619 * Context: can sleep
 620 *
 621 * On typical mainboards, this is purely internal; and it's not needed
 622 * after board init creates the hard-wired devices.  Some development
 623 * platforms may not be able to use spi_register_board_info though, and
 624 * this is exported so that for example a USB or parport based adapter
 625 * driver could add devices (which it would learn about out-of-band).
 626 *
 627 * Return: the new device, or NULL.
 628 */
 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
 630				  struct spi_board_info *chip)
 631{
 632	struct spi_device	*proxy;
 633	int			status;
 634
 635	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 636	 *
 637	 * Also, unless we change the return value convention to use
 638	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 639	 * suggests syslogged diagnostics are best here (ugh).
 640	 */
 641
 642	proxy = spi_alloc_device(ctlr);
 643	if (!proxy)
 644		return NULL;
 645
 646	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 647
 648	proxy->chip_select = chip->chip_select;
 
 
 
 649	proxy->max_speed_hz = chip->max_speed_hz;
 650	proxy->mode = chip->mode;
 651	proxy->irq = chip->irq;
 652	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 653	proxy->dev.platform_data = (void *) chip->platform_data;
 654	proxy->controller_data = chip->controller_data;
 655	proxy->controller_state = NULL;
 
 
 
 
 
 656
 657	if (chip->properties) {
 658		status = device_add_properties(&proxy->dev, chip->properties);
 659		if (status) {
 660			dev_err(&ctlr->dev,
 661				"failed to add properties to '%s': %d\n",
 662				chip->modalias, status);
 663			goto err_dev_put;
 664		}
 665	}
 666
 667	status = spi_add_device(proxy);
 668	if (status < 0)
 669		goto err_remove_props;
 670
 671	return proxy;
 672
 673err_remove_props:
 674	if (chip->properties)
 675		device_remove_properties(&proxy->dev);
 676err_dev_put:
 
 677	spi_dev_put(proxy);
 678	return NULL;
 679}
 680EXPORT_SYMBOL_GPL(spi_new_device);
 681
 682/**
 683 * spi_unregister_device - unregister a single SPI device
 684 * @spi: spi_device to unregister
 685 *
 686 * Start making the passed SPI device vanish. Normally this would be handled
 687 * by spi_unregister_controller().
 688 */
 689void spi_unregister_device(struct spi_device *spi)
 690{
 691	if (!spi)
 692		return;
 693
 694	if (spi->dev.of_node) {
 695		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 696		of_node_put(spi->dev.of_node);
 697	}
 698	if (ACPI_COMPANION(&spi->dev))
 699		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 700	device_unregister(&spi->dev);
 
 
 
 701}
 702EXPORT_SYMBOL_GPL(spi_unregister_device);
 703
 704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 705					      struct spi_board_info *bi)
 706{
 707	struct spi_device *dev;
 708
 709	if (ctlr->bus_num != bi->bus_num)
 710		return;
 711
 712	dev = spi_new_device(ctlr, bi);
 713	if (!dev)
 714		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 715			bi->modalias);
 716}
 717
 718/**
 719 * spi_register_board_info - register SPI devices for a given board
 720 * @info: array of chip descriptors
 721 * @n: how many descriptors are provided
 722 * Context: can sleep
 723 *
 724 * Board-specific early init code calls this (probably during arch_initcall)
 725 * with segments of the SPI device table.  Any device nodes are created later,
 726 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 727 * this table of devices forever, so that reloading a controller driver will
 728 * not make Linux forget about these hard-wired devices.
 729 *
 730 * Other code can also call this, e.g. a particular add-on board might provide
 731 * SPI devices through its expansion connector, so code initializing that board
 732 * would naturally declare its SPI devices.
 733 *
 734 * The board info passed can safely be __initdata ... but be careful of
 735 * any embedded pointers (platform_data, etc), they're copied as-is.
 736 * Device properties are deep-copied though.
 737 *
 738 * Return: zero on success, else a negative error code.
 739 */
 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 741{
 742	struct boardinfo *bi;
 743	int i;
 744
 745	if (!n)
 746		return 0;
 747
 748	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 749	if (!bi)
 750		return -ENOMEM;
 751
 752	for (i = 0; i < n; i++, bi++, info++) {
 753		struct spi_controller *ctlr;
 754
 755		memcpy(&bi->board_info, info, sizeof(*info));
 756		if (info->properties) {
 757			bi->board_info.properties =
 758					property_entries_dup(info->properties);
 759			if (IS_ERR(bi->board_info.properties))
 760				return PTR_ERR(bi->board_info.properties);
 761		}
 762
 763		mutex_lock(&board_lock);
 764		list_add_tail(&bi->list, &board_list);
 765		list_for_each_entry(ctlr, &spi_controller_list, list)
 766			spi_match_controller_to_boardinfo(ctlr,
 767							  &bi->board_info);
 768		mutex_unlock(&board_lock);
 769	}
 770
 771	return 0;
 772}
 773
 774/*-------------------------------------------------------------------------*/
 775
 776static void spi_set_cs(struct spi_device *spi, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778	if (spi->mode & SPI_CS_HIGH)
 779		enable = !enable;
 780
 781	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 782		/*
 783		 * Honour the SPI_NO_CS flag and invert the enable line, as
 784		 * active low is default for SPI. Execution paths that handle
 785		 * polarity inversion in gpiolib (such as device tree) will
 786		 * enforce active high using the SPI_CS_HIGH resulting in a
 787		 * double inversion through the code above.
 788		 */
 789		if (!(spi->mode & SPI_NO_CS)) {
 790			if (spi->cs_gpiod)
 791				gpiod_set_value_cansleep(spi->cs_gpiod,
 792							 !enable);
 793			else
 794				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 795		}
 796		/* Some SPI masters need both GPIO CS & slave_select */
 797		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 798		    spi->controller->set_cs)
 799			spi->controller->set_cs(spi, !enable);
 800	} else if (spi->controller->set_cs) {
 801		spi->controller->set_cs(spi, !enable);
 802	}
 
 
 
 
 
 
 
 803}
 804
 805#ifdef CONFIG_HAS_DMA
 806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 807		struct sg_table *sgt, void *buf, size_t len,
 808		enum dma_data_direction dir)
 809{
 810	const bool vmalloced_buf = is_vmalloc_addr(buf);
 811	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 812#ifdef CONFIG_HIGHMEM
 813	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 814				(unsigned long)buf < (PKMAP_BASE +
 815					(LAST_PKMAP * PAGE_SIZE)));
 816#else
 817	const bool kmap_buf = false;
 818#endif
 819	int desc_len;
 820	int sgs;
 821	struct page *vm_page;
 822	struct scatterlist *sg;
 823	void *sg_buf;
 824	size_t min;
 825	int i, ret;
 826
 827	if (vmalloced_buf || kmap_buf) {
 828		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 829		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 830	} else if (virt_addr_valid(buf)) {
 831		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 832		sgs = DIV_ROUND_UP(len, desc_len);
 833	} else {
 834		return -EINVAL;
 835	}
 836
 837	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 838	if (ret != 0)
 839		return ret;
 840
 841	sg = &sgt->sgl[0];
 842	for (i = 0; i < sgs; i++) {
 843
 844		if (vmalloced_buf || kmap_buf) {
 845			/*
 846			 * Next scatterlist entry size is the minimum between
 847			 * the desc_len and the remaining buffer length that
 848			 * fits in a page.
 849			 */
 850			min = min_t(size_t, desc_len,
 851				    min_t(size_t, len,
 852					  PAGE_SIZE - offset_in_page(buf)));
 853			if (vmalloced_buf)
 854				vm_page = vmalloc_to_page(buf);
 855			else
 856				vm_page = kmap_to_page(buf);
 857			if (!vm_page) {
 858				sg_free_table(sgt);
 859				return -ENOMEM;
 860			}
 861			sg_set_page(sg, vm_page,
 862				    min, offset_in_page(buf));
 863		} else {
 864			min = min_t(size_t, len, desc_len);
 865			sg_buf = buf;
 866			sg_set_buf(sg, sg_buf, min);
 867		}
 868
 869		buf += min;
 870		len -= min;
 871		sg = sg_next(sg);
 872	}
 873
 874	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 875	if (!ret)
 876		ret = -ENOMEM;
 877	if (ret < 0) {
 878		sg_free_table(sgt);
 879		return ret;
 880	}
 881
 882	sgt->nents = ret;
 
 
 
 
 
 
 
 
 883
 884	return 0;
 
 
 
 
 
 
 
 
 885}
 886
 887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 888		   struct sg_table *sgt, enum dma_data_direction dir)
 889{
 890	if (sgt->orig_nents) {
 891		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 892		sg_free_table(sgt);
 893	}
 894}
 895
 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 897{
 898	struct device *tx_dev, *rx_dev;
 899	struct spi_transfer *xfer;
 900	int ret;
 901
 902	if (!ctlr->can_dma)
 903		return 0;
 904
 905	if (ctlr->dma_tx)
 906		tx_dev = ctlr->dma_tx->device->dev;
 
 
 907	else
 908		tx_dev = ctlr->dev.parent;
 909
 910	if (ctlr->dma_rx)
 911		rx_dev = ctlr->dma_rx->device->dev;
 
 
 912	else
 913		rx_dev = ctlr->dev.parent;
 914
 
 915	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
 
 916		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 917			continue;
 918
 919		if (xfer->tx_buf != NULL) {
 920			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 921					  (void *)xfer->tx_buf, xfer->len,
 922					  DMA_TO_DEVICE);
 
 923			if (ret != 0)
 924				return ret;
 
 
 925		}
 926
 927		if (xfer->rx_buf != NULL) {
 928			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 929					  xfer->rx_buf, xfer->len,
 930					  DMA_FROM_DEVICE);
 931			if (ret != 0) {
 932				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 933					      DMA_TO_DEVICE);
 
 
 934				return ret;
 935			}
 
 
 936		}
 937	}
 
 
 
 938
 939	ctlr->cur_msg_mapped = true;
 
 940
 941	return 0;
 942}
 943
 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 945{
 
 
 946	struct spi_transfer *xfer;
 947	struct device *tx_dev, *rx_dev;
 948
 949	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 950		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 951
 952	if (ctlr->dma_tx)
 953		tx_dev = ctlr->dma_tx->device->dev;
 954	else
 955		tx_dev = ctlr->dev.parent;
 956
 957	if (ctlr->dma_rx)
 958		rx_dev = ctlr->dma_rx->device->dev;
 959	else
 960		rx_dev = ctlr->dev.parent;
 
 961
 962	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 963		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 964			continue;
 
 
 965
 966		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 967		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 968	}
 
 
 969
 970	return 0;
 
 
 
 971}
 972#else /* !CONFIG_HAS_DMA */
 973static inline int __spi_map_msg(struct spi_controller *ctlr,
 974				struct spi_message *msg)
 975{
 976	return 0;
 977}
 978
 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 980				  struct spi_message *msg)
 981{
 982	return 0;
 983}
 
 
 
 
 
 
 
 
 
 
 984#endif /* !CONFIG_HAS_DMA */
 985
 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
 987				struct spi_message *msg)
 988{
 989	struct spi_transfer *xfer;
 990
 991	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 992		/*
 993		 * Restore the original value of tx_buf or rx_buf if they are
 994		 * NULL.
 995		 */
 996		if (xfer->tx_buf == ctlr->dummy_tx)
 997			xfer->tx_buf = NULL;
 998		if (xfer->rx_buf == ctlr->dummy_rx)
 999			xfer->rx_buf = NULL;
1000	}
1001
1002	return __spi_unmap_msg(ctlr, msg);
1003}
1004
1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006{
1007	struct spi_transfer *xfer;
1008	void *tmp;
1009	unsigned int max_tx, max_rx;
1010
1011	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 
1012		max_tx = 0;
1013		max_rx = 0;
1014
1015		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017			    !xfer->tx_buf)
1018				max_tx = max(xfer->len, max_tx);
1019			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020			    !xfer->rx_buf)
1021				max_rx = max(xfer->len, max_rx);
1022		}
1023
1024		if (max_tx) {
1025			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026				       GFP_KERNEL | GFP_DMA);
1027			if (!tmp)
1028				return -ENOMEM;
1029			ctlr->dummy_tx = tmp;
1030			memset(tmp, 0, max_tx);
1031		}
1032
1033		if (max_rx) {
1034			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035				       GFP_KERNEL | GFP_DMA);
1036			if (!tmp)
1037				return -ENOMEM;
1038			ctlr->dummy_rx = tmp;
1039		}
1040
1041		if (max_tx || max_rx) {
1042			list_for_each_entry(xfer, &msg->transfers,
1043					    transfer_list) {
1044				if (!xfer->len)
1045					continue;
1046				if (!xfer->tx_buf)
1047					xfer->tx_buf = ctlr->dummy_tx;
1048				if (!xfer->rx_buf)
1049					xfer->rx_buf = ctlr->dummy_rx;
1050			}
1051		}
1052	}
1053
1054	return __spi_map_msg(ctlr, msg);
1055}
1056
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058			     struct spi_message *msg,
1059			     struct spi_transfer *xfer)
1060{
1061	struct spi_statistics *statm = &ctlr->statistics;
1062	struct spi_statistics *stats = &msg->spi->statistics;
1063	unsigned long long ms = 1;
 
1064
1065	if (spi_controller_is_slave(ctlr)) {
1066		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068			return -EINTR;
1069		}
1070	} else {
1071		ms = 8LL * 1000LL * xfer->len;
1072		do_div(ms, xfer->speed_hz);
1073		ms += ms + 200; /* some tolerance */
 
 
 
 
 
 
 
 
1074
 
 
 
 
 
1075		if (ms > UINT_MAX)
1076			ms = UINT_MAX;
1077
1078		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079						 msecs_to_jiffies(ms));
1080
1081		if (ms == 0) {
1082			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084			dev_err(&msg->spi->dev,
1085				"SPI transfer timed out\n");
1086			return -ETIMEDOUT;
1087		}
 
 
 
1088	}
1089
1090	return 0;
1091}
1092
1093static void _spi_transfer_delay_ns(u32 ns)
1094{
1095	if (!ns)
1096		return;
1097	if (ns <= 1000) {
1098		ndelay(ns);
1099	} else {
1100		u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102		if (us <= 10)
1103			udelay(us);
1104		else
1105			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106	}
1107}
1108
1109static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110					  struct spi_transfer *xfer)
1111{
1112	u32 delay = xfer->cs_change_delay;
1113	u32 unit = xfer->cs_change_delay_unit;
1114	u32 hz;
1115
1116	/* return early on "fast" mode - for everything but USECS */
1117	if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118		return;
1119
1120	switch (unit) {
1121	case SPI_DELAY_UNIT_USECS:
1122		/* for compatibility use default of 10us */
1123		if (!delay)
1124			delay = 10000;
1125		else
1126			delay *= 1000;
1127		break;
1128	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
 
1129		break;
1130	case SPI_DELAY_UNIT_SCK:
1131		/* if there is no effective speed know, then approximate
1132		 * by underestimating with half the requested hz
 
 
 
 
1133		 */
1134		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135		delay *= DIV_ROUND_UP(1000000000, hz);
 
 
 
 
1136		break;
1137	default:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138		dev_err_once(&msg->spi->dev,
1139			     "Use of unsupported delay unit %i, using default of 10us\n",
1140			     xfer->cs_change_delay_unit);
1141		delay = 10000;
1142	}
1143	/* now sleep for the requested amount of time */
1144	_spi_transfer_delay_ns(delay);
1145}
1146
 
 
 
 
 
 
 
1147/*
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1149 *
1150 * This is a standard implementation of transfer_one_message() for
1151 * drivers which implement a transfer_one() operation.  It provides
1152 * standard handling of delays and chip select management.
1153 */
1154static int spi_transfer_one_message(struct spi_controller *ctlr,
1155				    struct spi_message *msg)
1156{
1157	struct spi_transfer *xfer;
1158	bool keep_cs = false;
1159	int ret = 0;
1160	struct spi_statistics *statm = &ctlr->statistics;
1161	struct spi_statistics *stats = &msg->spi->statistics;
1162
1163	spi_set_cs(msg->spi, true);
 
1164
1165	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167
1168	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169		trace_spi_transfer_start(msg, xfer);
1170
1171		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
 
 
 
 
 
1173
1174		if (xfer->tx_buf || xfer->rx_buf) {
1175			reinit_completion(&ctlr->xfer_completion);
1176
 
 
1177			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1179				SPI_STATISTICS_INCREMENT_FIELD(statm,
1180							       errors);
1181				SPI_STATISTICS_INCREMENT_FIELD(stats,
1182							       errors);
1183				dev_err(&msg->spi->dev,
1184					"SPI transfer failed: %d\n", ret);
1185				goto out;
1186			}
1187
1188			if (ret > 0) {
1189				ret = spi_transfer_wait(ctlr, msg, xfer);
1190				if (ret < 0)
1191					msg->status = ret;
1192			}
 
 
1193		} else {
1194			if (xfer->len)
1195				dev_err(&msg->spi->dev,
1196					"Bufferless transfer has length %u\n",
1197					xfer->len);
1198		}
1199
 
 
 
 
 
1200		trace_spi_transfer_stop(msg, xfer);
1201
1202		if (msg->status != -EINPROGRESS)
1203			goto out;
1204
1205		if (xfer->delay_usecs)
1206			_spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207
1208		if (xfer->cs_change) {
1209			if (list_is_last(&xfer->transfer_list,
1210					 &msg->transfers)) {
1211				keep_cs = true;
1212			} else {
1213				spi_set_cs(msg->spi, false);
 
1214				_spi_transfer_cs_change_delay(msg, xfer);
1215				spi_set_cs(msg->spi, true);
 
1216			}
 
 
 
1217		}
1218
1219		msg->actual_length += xfer->len;
1220	}
1221
1222out:
1223	if (ret != 0 || !keep_cs)
1224		spi_set_cs(msg->spi, false);
1225
1226	if (msg->status == -EINPROGRESS)
1227		msg->status = ret;
1228
1229	if (msg->status && ctlr->handle_err)
1230		ctlr->handle_err(ctlr, msg);
1231
1232	spi_res_release(ctlr, msg);
1233
1234	spi_finalize_current_message(ctlr);
1235
1236	return ret;
1237}
1238
1239/**
1240 * spi_finalize_current_transfer - report completion of a transfer
1241 * @ctlr: the controller reporting completion
1242 *
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
1245 * transfer has finished and the next one may be scheduled.
1246 */
1247void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248{
1249	complete(&ctlr->xfer_completion);
1250}
1251EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253/**
1254 * __spi_pump_messages - function which processes spi message queue
1255 * @ctlr: controller to process queue for
1256 * @in_kthread: true if we are in the context of the message pump thread
1257 *
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1261 *
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
1265 */
1266static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267{
1268	struct spi_message *msg;
1269	bool was_busy = false;
1270	unsigned long flags;
1271	int ret;
1272
 
 
 
1273	/* Lock queue */
1274	spin_lock_irqsave(&ctlr->queue_lock, flags);
1275
1276	/* Make sure we are not already running a message */
1277	if (ctlr->cur_msg) {
1278		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1279		return;
1280	}
1281
1282	/* If another context is idling the device then defer */
1283	if (ctlr->idling) {
1284		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1285		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286		return;
1287	}
1288
1289	/* Check if the queue is idle */
1290	if (list_empty(&ctlr->queue) || !ctlr->running) {
1291		if (!ctlr->busy) {
1292			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1293			return;
1294		}
1295
1296		/* Only do teardown in the thread */
1297		if (!in_kthread) {
1298			kthread_queue_work(&ctlr->kworker,
1299					   &ctlr->pump_messages);
1300			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1301			return;
 
 
 
 
 
 
 
1302		}
1303
1304		ctlr->busy = false;
1305		ctlr->idling = true;
1306		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307
1308		kfree(ctlr->dummy_rx);
1309		ctlr->dummy_rx = NULL;
1310		kfree(ctlr->dummy_tx);
1311		ctlr->dummy_tx = NULL;
1312		if (ctlr->unprepare_transfer_hardware &&
1313		    ctlr->unprepare_transfer_hardware(ctlr))
1314			dev_err(&ctlr->dev,
1315				"failed to unprepare transfer hardware\n");
1316		if (ctlr->auto_runtime_pm) {
1317			pm_runtime_mark_last_busy(ctlr->dev.parent);
1318			pm_runtime_put_autosuspend(ctlr->dev.parent);
1319		}
1320		trace_spi_controller_idle(ctlr);
1321
1322		spin_lock_irqsave(&ctlr->queue_lock, flags);
1323		ctlr->idling = false;
1324		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325		return;
1326	}
1327
1328	/* Extract head of queue */
1329	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1330	ctlr->cur_msg = msg;
1331
1332	list_del_init(&msg->queue);
1333	if (ctlr->busy)
1334		was_busy = true;
1335	else
1336		ctlr->busy = true;
1337	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338
1339	mutex_lock(&ctlr->io_mutex);
 
1340
1341	if (!was_busy && ctlr->auto_runtime_pm) {
1342		ret = pm_runtime_get_sync(ctlr->dev.parent);
1343		if (ret < 0) {
1344			pm_runtime_put_noidle(ctlr->dev.parent);
1345			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346				ret);
1347			mutex_unlock(&ctlr->io_mutex);
1348			return;
1349		}
1350	}
1351
1352	if (!was_busy)
1353		trace_spi_controller_busy(ctlr);
1354
1355	if (!was_busy && ctlr->prepare_transfer_hardware) {
1356		ret = ctlr->prepare_transfer_hardware(ctlr);
1357		if (ret) {
1358			dev_err(&ctlr->dev,
1359				"failed to prepare transfer hardware: %d\n",
1360				ret);
1361
1362			if (ctlr->auto_runtime_pm)
1363				pm_runtime_put(ctlr->dev.parent);
1364
1365			msg->status = ret;
1366			spi_finalize_current_message(ctlr);
1367
1368			mutex_unlock(&ctlr->io_mutex);
1369			return;
1370		}
1371	}
1372
1373	trace_spi_message_start(msg);
1374
1375	if (ctlr->prepare_message) {
1376		ret = ctlr->prepare_message(ctlr, msg);
1377		if (ret) {
1378			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379				ret);
1380			msg->status = ret;
1381			spi_finalize_current_message(ctlr);
1382			goto out;
1383		}
1384		ctlr->cur_msg_prepared = true;
1385	}
1386
1387	ret = spi_map_msg(ctlr, msg);
1388	if (ret) {
1389		msg->status = ret;
1390		spi_finalize_current_message(ctlr);
1391		goto out;
1392	}
1393
1394	ret = ctlr->transfer_one_message(ctlr, msg);
1395	if (ret) {
1396		dev_err(&ctlr->dev,
1397			"failed to transfer one message from queue\n");
1398		goto out;
1399	}
1400
1401out:
1402	mutex_unlock(&ctlr->io_mutex);
1403
1404	/* Prod the scheduler in case transfer_one() was busy waiting */
1405	if (!ret)
1406		cond_resched();
 
 
 
 
 
1407}
1408
1409/**
1410 * spi_pump_messages - kthread work function which processes spi message queue
1411 * @work: pointer to kthread work struct contained in the controller struct
1412 */
1413static void spi_pump_messages(struct kthread_work *work)
1414{
1415	struct spi_controller *ctlr =
1416		container_of(work, struct spi_controller, pump_messages);
1417
1418	__spi_pump_messages(ctlr, true);
1419}
1420
1421/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422 * spi_set_thread_rt - set the controller to pump at realtime priority
1423 * @ctlr: controller to boost priority of
1424 *
1425 * This can be called because the controller requested realtime priority
1426 * (by setting the ->rt value before calling spi_register_controller()) or
1427 * because a device on the bus said that its transfers needed realtime
1428 * priority.
1429 *
1430 * NOTE: at the moment if any device on a bus says it needs realtime then
1431 * the thread will be at realtime priority for all transfers on that
1432 * controller.  If this eventually becomes a problem we may see if we can
1433 * find a way to boost the priority only temporarily during relevant
1434 * transfers.
1435 */
1436static void spi_set_thread_rt(struct spi_controller *ctlr)
1437{
1438	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1439
1440	dev_info(&ctlr->dev,
1441		"will run message pump with realtime priority\n");
1442	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1443}
1444
1445static int spi_init_queue(struct spi_controller *ctlr)
1446{
1447	ctlr->running = false;
1448	ctlr->busy = false;
 
1449
1450	kthread_init_worker(&ctlr->kworker);
1451	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1452					 "%s", dev_name(&ctlr->dev));
1453	if (IS_ERR(ctlr->kworker_task)) {
1454		dev_err(&ctlr->dev, "failed to create message pump task\n");
1455		return PTR_ERR(ctlr->kworker_task);
1456	}
 
1457	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1458
1459	/*
1460	 * Controller config will indicate if this controller should run the
1461	 * message pump with high (realtime) priority to reduce the transfer
1462	 * latency on the bus by minimising the delay between a transfer
1463	 * request and the scheduling of the message pump thread. Without this
1464	 * setting the message pump thread will remain at default priority.
1465	 */
1466	if (ctlr->rt)
1467		spi_set_thread_rt(ctlr);
1468
1469	return 0;
1470}
1471
1472/**
1473 * spi_get_next_queued_message() - called by driver to check for queued
1474 * messages
1475 * @ctlr: the controller to check for queued messages
1476 *
1477 * If there are more messages in the queue, the next message is returned from
1478 * this call.
1479 *
1480 * Return: the next message in the queue, else NULL if the queue is empty.
1481 */
1482struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483{
1484	struct spi_message *next;
1485	unsigned long flags;
1486
1487	/* get a pointer to the next message, if any */
1488	spin_lock_irqsave(&ctlr->queue_lock, flags);
1489	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490					queue);
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492
1493	return next;
1494}
1495EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497/**
1498 * spi_finalize_current_message() - the current message is complete
1499 * @ctlr: the controller to return the message to
1500 *
1501 * Called by the driver to notify the core that the message in the front of the
1502 * queue is complete and can be removed from the queue.
1503 */
1504void spi_finalize_current_message(struct spi_controller *ctlr)
1505{
 
1506	struct spi_message *mesg;
1507	unsigned long flags;
1508	int ret;
1509
1510	spin_lock_irqsave(&ctlr->queue_lock, flags);
1511	mesg = ctlr->cur_msg;
1512	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
1513
1514	spi_unmap_msg(ctlr, mesg);
1515
1516	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1517		ret = ctlr->unprepare_message(ctlr, mesg);
1518		if (ret) {
1519			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1520				ret);
1521		}
1522	}
1523
1524	spin_lock_irqsave(&ctlr->queue_lock, flags);
1525	ctlr->cur_msg = NULL;
1526	ctlr->cur_msg_prepared = false;
1527	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1528	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
 
 
1529
1530	trace_spi_message_done(mesg);
1531
1532	mesg->state = NULL;
1533	if (mesg->complete)
1534		mesg->complete(mesg->context);
1535}
1536EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537
1538static int spi_start_queue(struct spi_controller *ctlr)
1539{
1540	unsigned long flags;
1541
1542	spin_lock_irqsave(&ctlr->queue_lock, flags);
1543
1544	if (ctlr->running || ctlr->busy) {
1545		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1546		return -EBUSY;
1547	}
1548
1549	ctlr->running = true;
1550	ctlr->cur_msg = NULL;
1551	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552
1553	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1554
1555	return 0;
1556}
1557
1558static int spi_stop_queue(struct spi_controller *ctlr)
1559{
 
1560	unsigned long flags;
1561	unsigned limit = 500;
1562	int ret = 0;
1563
1564	spin_lock_irqsave(&ctlr->queue_lock, flags);
1565
1566	/*
1567	 * This is a bit lame, but is optimized for the common execution path.
1568	 * A wait_queue on the ctlr->busy could be used, but then the common
1569	 * execution path (pump_messages) would be required to call wake_up or
1570	 * friends on every SPI message. Do this instead.
1571	 */
1572	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
 
 
 
 
 
 
1573		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1574		usleep_range(10000, 11000);
1575		spin_lock_irqsave(&ctlr->queue_lock, flags);
1576	}
1577
1578	if (!list_empty(&ctlr->queue) || ctlr->busy)
1579		ret = -EBUSY;
1580	else
1581		ctlr->running = false;
1582
1583	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584
1585	if (ret) {
1586		dev_warn(&ctlr->dev, "could not stop message queue\n");
1587		return ret;
1588	}
1589	return ret;
1590}
1591
1592static int spi_destroy_queue(struct spi_controller *ctlr)
1593{
1594	int ret;
1595
1596	ret = spi_stop_queue(ctlr);
1597
1598	/*
1599	 * kthread_flush_worker will block until all work is done.
1600	 * If the reason that stop_queue timed out is that the work will never
1601	 * finish, then it does no good to call flush/stop thread, so
1602	 * return anyway.
1603	 */
1604	if (ret) {
1605		dev_err(&ctlr->dev, "problem destroying queue\n");
1606		return ret;
1607	}
1608
1609	kthread_flush_worker(&ctlr->kworker);
1610	kthread_stop(ctlr->kworker_task);
1611
1612	return 0;
1613}
1614
1615static int __spi_queued_transfer(struct spi_device *spi,
1616				 struct spi_message *msg,
1617				 bool need_pump)
1618{
1619	struct spi_controller *ctlr = spi->controller;
1620	unsigned long flags;
1621
1622	spin_lock_irqsave(&ctlr->queue_lock, flags);
1623
1624	if (!ctlr->running) {
1625		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1626		return -ESHUTDOWN;
1627	}
1628	msg->actual_length = 0;
1629	msg->status = -EINPROGRESS;
1630
1631	list_add_tail(&msg->queue, &ctlr->queue);
 
1632	if (!ctlr->busy && need_pump)
1633		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634
1635	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1636	return 0;
1637}
1638
1639/**
1640 * spi_queued_transfer - transfer function for queued transfers
1641 * @spi: spi device which is requesting transfer
1642 * @msg: spi message which is to handled is queued to driver queue
1643 *
1644 * Return: zero on success, else a negative error code.
1645 */
1646static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647{
1648	return __spi_queued_transfer(spi, msg, true);
1649}
1650
1651static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1652{
1653	int ret;
1654
1655	ctlr->transfer = spi_queued_transfer;
1656	if (!ctlr->transfer_one_message)
1657		ctlr->transfer_one_message = spi_transfer_one_message;
1658
1659	/* Initialize and start queue */
1660	ret = spi_init_queue(ctlr);
1661	if (ret) {
1662		dev_err(&ctlr->dev, "problem initializing queue\n");
1663		goto err_init_queue;
1664	}
1665	ctlr->queued = true;
1666	ret = spi_start_queue(ctlr);
1667	if (ret) {
1668		dev_err(&ctlr->dev, "problem starting queue\n");
1669		goto err_start_queue;
1670	}
1671
1672	return 0;
1673
1674err_start_queue:
1675	spi_destroy_queue(ctlr);
1676err_init_queue:
1677	return ret;
1678}
1679
1680/**
1681 * spi_flush_queue - Send all pending messages in the queue from the callers'
1682 *		     context
1683 * @ctlr: controller to process queue for
1684 *
1685 * This should be used when one wants to ensure all pending messages have been
1686 * sent before doing something. Is used by the spi-mem code to make sure SPI
1687 * memory operations do not preempt regular SPI transfers that have been queued
1688 * before the spi-mem operation.
1689 */
1690void spi_flush_queue(struct spi_controller *ctlr)
1691{
1692	if (ctlr->transfer == spi_queued_transfer)
1693		__spi_pump_messages(ctlr, false);
1694}
1695
1696/*-------------------------------------------------------------------------*/
1697
1698#if defined(CONFIG_OF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1700			   struct device_node *nc)
1701{
1702	u32 value;
1703	int rc;
1704
1705	/* Mode (clock phase/polarity/etc.) */
1706	if (of_property_read_bool(nc, "spi-cpha"))
1707		spi->mode |= SPI_CPHA;
1708	if (of_property_read_bool(nc, "spi-cpol"))
1709		spi->mode |= SPI_CPOL;
1710	if (of_property_read_bool(nc, "spi-3wire"))
1711		spi->mode |= SPI_3WIRE;
1712	if (of_property_read_bool(nc, "spi-lsb-first"))
1713		spi->mode |= SPI_LSB_FIRST;
1714
1715	/*
1716	 * For descriptors associated with the device, polarity inversion is
1717	 * handled in the gpiolib, so all chip selects are "active high" in
1718	 * the logical sense, the gpiolib will invert the line if need be.
1719	 */
1720	if (ctlr->use_gpio_descriptors)
1721		spi->mode |= SPI_CS_HIGH;
1722	else if (of_property_read_bool(nc, "spi-cs-high"))
1723		spi->mode |= SPI_CS_HIGH;
1724
1725	/* Device DUAL/QUAD mode */
1726	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1727		switch (value) {
 
 
 
1728		case 1:
1729			break;
1730		case 2:
1731			spi->mode |= SPI_TX_DUAL;
1732			break;
1733		case 4:
1734			spi->mode |= SPI_TX_QUAD;
1735			break;
1736		case 8:
1737			spi->mode |= SPI_TX_OCTAL;
1738			break;
1739		default:
1740			dev_warn(&ctlr->dev,
1741				"spi-tx-bus-width %d not supported\n",
1742				value);
1743			break;
1744		}
1745	}
1746
1747	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1748		switch (value) {
 
 
 
1749		case 1:
1750			break;
1751		case 2:
1752			spi->mode |= SPI_RX_DUAL;
1753			break;
1754		case 4:
1755			spi->mode |= SPI_RX_QUAD;
1756			break;
1757		case 8:
1758			spi->mode |= SPI_RX_OCTAL;
1759			break;
1760		default:
1761			dev_warn(&ctlr->dev,
1762				"spi-rx-bus-width %d not supported\n",
1763				value);
1764			break;
1765		}
1766	}
1767
1768	if (spi_controller_is_slave(ctlr)) {
1769		if (!of_node_name_eq(nc, "slave")) {
1770			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1771				nc);
1772			return -EINVAL;
1773		}
1774		return 0;
1775	}
1776
 
 
 
 
 
 
 
1777	/* Device address */
1778	rc = of_property_read_u32(nc, "reg", &value);
1779	if (rc) {
 
1780		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1781			nc, rc);
1782		return rc;
1783	}
1784	spi->chip_select = value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786	/* Device speed */
1787	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1788	if (rc) {
1789		dev_err(&ctlr->dev,
1790			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1791		return rc;
1792	}
1793	spi->max_speed_hz = value;
1794
1795	return 0;
1796}
1797
1798static struct spi_device *
1799of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1800{
1801	struct spi_device *spi;
1802	int rc;
1803
1804	/* Alloc an spi_device */
1805	spi = spi_alloc_device(ctlr);
1806	if (!spi) {
1807		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1808		rc = -ENOMEM;
1809		goto err_out;
1810	}
1811
1812	/* Select device driver */
1813	rc = of_modalias_node(nc, spi->modalias,
1814				sizeof(spi->modalias));
1815	if (rc < 0) {
1816		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1817		goto err_out;
1818	}
1819
1820	rc = of_spi_parse_dt(ctlr, spi, nc);
1821	if (rc)
1822		goto err_out;
1823
1824	/* Store a pointer to the node in the device structure */
1825	of_node_get(nc);
1826	spi->dev.of_node = nc;
 
1827
1828	/* Register the new device */
1829	rc = spi_add_device(spi);
1830	if (rc) {
1831		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1832		goto err_of_node_put;
1833	}
1834
1835	return spi;
1836
1837err_of_node_put:
1838	of_node_put(nc);
1839err_out:
1840	spi_dev_put(spi);
1841	return ERR_PTR(rc);
1842}
1843
1844/**
1845 * of_register_spi_devices() - Register child devices onto the SPI bus
1846 * @ctlr:	Pointer to spi_controller device
1847 *
1848 * Registers an spi_device for each child node of controller node which
1849 * represents a valid SPI slave.
1850 */
1851static void of_register_spi_devices(struct spi_controller *ctlr)
1852{
1853	struct spi_device *spi;
1854	struct device_node *nc;
1855
1856	if (!ctlr->dev.of_node)
1857		return;
1858
1859	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1860		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1861			continue;
1862		spi = of_register_spi_device(ctlr, nc);
1863		if (IS_ERR(spi)) {
1864			dev_warn(&ctlr->dev,
1865				 "Failed to create SPI device for %pOF\n", nc);
1866			of_node_clear_flag(nc, OF_POPULATED);
1867		}
1868	}
1869}
1870#else
1871static void of_register_spi_devices(struct spi_controller *ctlr) { }
1872#endif
1873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874#ifdef CONFIG_ACPI
1875struct acpi_spi_lookup {
1876	struct spi_controller 	*ctlr;
1877	u32			max_speed_hz;
1878	u32			mode;
1879	int			irq;
1880	u8			bits_per_word;
1881	u8			chip_select;
 
 
1882};
1883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1884static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1885					    struct acpi_spi_lookup *lookup)
1886{
1887	const union acpi_object *obj;
1888
1889	if (!x86_apple_machine)
1890		return;
1891
1892	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1893	    && obj->buffer.length >= 4)
1894		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1895
1896	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1897	    && obj->buffer.length == 8)
1898		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1899
1900	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1901	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1902		lookup->mode |= SPI_LSB_FIRST;
1903
1904	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1905	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1906		lookup->mode |= SPI_CPOL;
1907
1908	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1909	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1910		lookup->mode |= SPI_CPHA;
1911}
1912
1913static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1914{
1915	struct acpi_spi_lookup *lookup = data;
1916	struct spi_controller *ctlr = lookup->ctlr;
1917
1918	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1919		struct acpi_resource_spi_serialbus *sb;
1920		acpi_handle parent_handle;
1921		acpi_status status;
1922
1923		sb = &ares->data.spi_serial_bus;
1924		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1925
 
 
 
1926			status = acpi_get_handle(NULL,
1927						 sb->resource_source.string_ptr,
1928						 &parent_handle);
1929
1930			if (ACPI_FAILURE(status) ||
1931			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1932				return -ENODEV;
1933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934			/*
1935			 * ACPI DeviceSelection numbering is handled by the
1936			 * host controller driver in Windows and can vary
1937			 * from driver to driver. In Linux we always expect
1938			 * 0 .. max - 1 so we need to ask the driver to
1939			 * translate between the two schemes.
1940			 */
1941			if (ctlr->fw_translate_cs) {
1942				int cs = ctlr->fw_translate_cs(ctlr,
1943						sb->device_selection);
1944				if (cs < 0)
1945					return cs;
1946				lookup->chip_select = cs;
1947			} else {
1948				lookup->chip_select = sb->device_selection;
1949			}
1950
1951			lookup->max_speed_hz = sb->connection_speed;
 
1952
1953			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1954				lookup->mode |= SPI_CPHA;
1955			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1956				lookup->mode |= SPI_CPOL;
1957			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1958				lookup->mode |= SPI_CS_HIGH;
1959		}
1960	} else if (lookup->irq < 0) {
1961		struct resource r;
1962
1963		if (acpi_dev_resource_interrupt(ares, 0, &r))
1964			lookup->irq = r.start;
1965	}
1966
1967	/* Always tell the ACPI core to skip this resource */
1968	return 1;
1969}
1970
1971static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1972					    struct acpi_device *adev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1973{
1974	acpi_handle parent_handle = NULL;
1975	struct list_head resource_list;
1976	struct acpi_spi_lookup lookup = {};
1977	struct spi_device *spi;
1978	int ret;
1979
1980	if (acpi_bus_get_status(adev) || !adev->status.present ||
1981	    acpi_device_enumerated(adev))
1982		return AE_OK;
1983
1984	lookup.ctlr		= ctlr;
1985	lookup.irq		= -1;
 
 
1986
1987	INIT_LIST_HEAD(&resource_list);
1988	ret = acpi_dev_get_resources(adev, &resource_list,
1989				     acpi_spi_add_resource, &lookup);
1990	acpi_dev_free_resource_list(&resource_list);
1991
1992	if (ret < 0)
1993		/* found SPI in _CRS but it points to another controller */
1994		return AE_OK;
1995
1996	if (!lookup.max_speed_hz &&
1997	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1998	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1999		/* Apple does not use _CRS but nested devices for SPI slaves */
2000		acpi_spi_parse_apple_properties(adev, &lookup);
2001	}
2002
2003	if (!lookup.max_speed_hz)
2004		return AE_OK;
2005
2006	spi = spi_alloc_device(ctlr);
2007	if (!spi) {
2008		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2009			dev_name(&adev->dev));
2010		return AE_NO_MEMORY;
2011	}
2012
 
 
 
2013	ACPI_COMPANION_SET(&spi->dev, adev);
2014	spi->max_speed_hz	= lookup.max_speed_hz;
2015	spi->mode		= lookup.mode;
2016	spi->irq		= lookup.irq;
2017	spi->bits_per_word	= lookup.bits_per_word;
2018	spi->chip_select	= lookup.chip_select;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2019
2020	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2021			  sizeof(spi->modalias));
2022
2023	if (spi->irq < 0)
2024		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2025
2026	acpi_device_set_enumerated(adev);
2027
2028	adev->power.flags.ignore_parent = true;
2029	if (spi_add_device(spi)) {
2030		adev->power.flags.ignore_parent = false;
2031		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2032			dev_name(&adev->dev));
2033		spi_dev_put(spi);
2034	}
2035
2036	return AE_OK;
2037}
2038
2039static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2040				       void *data, void **return_value)
2041{
 
2042	struct spi_controller *ctlr = data;
2043	struct acpi_device *adev;
2044
2045	if (acpi_bus_get_device(handle, &adev))
2046		return AE_OK;
2047
2048	return acpi_register_spi_device(ctlr, adev);
2049}
2050
2051#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2052
2053static void acpi_register_spi_devices(struct spi_controller *ctlr)
2054{
2055	acpi_status status;
2056	acpi_handle handle;
2057
2058	handle = ACPI_HANDLE(ctlr->dev.parent);
2059	if (!handle)
2060		return;
2061
2062	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2063				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2064				     acpi_spi_add_device, NULL, ctlr, NULL);
2065	if (ACPI_FAILURE(status))
2066		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2067}
2068#else
2069static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2070#endif /* CONFIG_ACPI */
2071
2072static void spi_controller_release(struct device *dev)
2073{
2074	struct spi_controller *ctlr;
2075
2076	ctlr = container_of(dev, struct spi_controller, dev);
2077	kfree(ctlr);
2078}
2079
2080static struct class spi_master_class = {
2081	.name		= "spi_master",
2082	.owner		= THIS_MODULE,
2083	.dev_release	= spi_controller_release,
2084	.dev_groups	= spi_master_groups,
2085};
2086
2087#ifdef CONFIG_SPI_SLAVE
2088/**
2089 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2090 *		     controller
2091 * @spi: device used for the current transfer
2092 */
2093int spi_slave_abort(struct spi_device *spi)
2094{
2095	struct spi_controller *ctlr = spi->controller;
2096
2097	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2098		return ctlr->slave_abort(ctlr);
2099
2100	return -ENOTSUPP;
2101}
2102EXPORT_SYMBOL_GPL(spi_slave_abort);
2103
2104static int match_true(struct device *dev, void *data)
2105{
2106	return 1;
2107}
2108
2109static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2110			  char *buf)
2111{
2112	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2113						   dev);
2114	struct device *child;
2115
2116	child = device_find_child(&ctlr->dev, NULL, match_true);
2117	return sprintf(buf, "%s\n",
2118		       child ? to_spi_device(child)->modalias : NULL);
2119}
2120
2121static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2122			   const char *buf, size_t count)
2123{
2124	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2125						   dev);
2126	struct spi_device *spi;
2127	struct device *child;
2128	char name[32];
2129	int rc;
2130
2131	rc = sscanf(buf, "%31s", name);
2132	if (rc != 1 || !name[0])
2133		return -EINVAL;
2134
2135	child = device_find_child(&ctlr->dev, NULL, match_true);
2136	if (child) {
2137		/* Remove registered slave */
2138		device_unregister(child);
2139		put_device(child);
2140	}
2141
2142	if (strcmp(name, "(null)")) {
2143		/* Register new slave */
2144		spi = spi_alloc_device(ctlr);
2145		if (!spi)
2146			return -ENOMEM;
2147
2148		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2149
2150		rc = spi_add_device(spi);
2151		if (rc) {
2152			spi_dev_put(spi);
2153			return rc;
2154		}
2155	}
2156
2157	return count;
2158}
2159
2160static DEVICE_ATTR_RW(slave);
2161
2162static struct attribute *spi_slave_attrs[] = {
2163	&dev_attr_slave.attr,
2164	NULL,
2165};
2166
2167static const struct attribute_group spi_slave_group = {
2168	.attrs = spi_slave_attrs,
2169};
2170
2171static const struct attribute_group *spi_slave_groups[] = {
2172	&spi_controller_statistics_group,
2173	&spi_slave_group,
2174	NULL,
2175};
2176
2177static struct class spi_slave_class = {
2178	.name		= "spi_slave",
2179	.owner		= THIS_MODULE,
2180	.dev_release	= spi_controller_release,
2181	.dev_groups	= spi_slave_groups,
2182};
2183#else
2184extern struct class spi_slave_class;	/* dummy */
2185#endif
2186
2187/**
2188 * __spi_alloc_controller - allocate an SPI master or slave controller
2189 * @dev: the controller, possibly using the platform_bus
2190 * @size: how much zeroed driver-private data to allocate; the pointer to this
2191 *	memory is in the driver_data field of the returned device, accessible
2192 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2193 *	drivers granting DMA access to portions of their private data need to
2194 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2195 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2196 *	slave (true) controller
2197 * Context: can sleep
2198 *
2199 * This call is used only by SPI controller drivers, which are the
2200 * only ones directly touching chip registers.  It's how they allocate
2201 * an spi_controller structure, prior to calling spi_register_controller().
2202 *
2203 * This must be called from context that can sleep.
2204 *
2205 * The caller is responsible for assigning the bus number and initializing the
2206 * controller's methods before calling spi_register_controller(); and (after
2207 * errors adding the device) calling spi_controller_put() to prevent a memory
2208 * leak.
2209 *
2210 * Return: the SPI controller structure on success, else NULL.
2211 */
2212struct spi_controller *__spi_alloc_controller(struct device *dev,
2213					      unsigned int size, bool slave)
2214{
2215	struct spi_controller	*ctlr;
2216	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2217
2218	if (!dev)
2219		return NULL;
2220
2221	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2222	if (!ctlr)
2223		return NULL;
2224
2225	device_initialize(&ctlr->dev);
 
 
 
 
 
 
2226	ctlr->bus_num = -1;
2227	ctlr->num_chipselect = 1;
2228	ctlr->slave = slave;
2229	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2230		ctlr->dev.class = &spi_slave_class;
2231	else
2232		ctlr->dev.class = &spi_master_class;
2233	ctlr->dev.parent = dev;
2234	pm_suspend_ignore_children(&ctlr->dev, true);
2235	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2236
2237	return ctlr;
2238}
2239EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2240
2241#ifdef CONFIG_OF
2242static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2243{
2244	int nb, i, *cs;
2245	struct device_node *np = ctlr->dev.of_node;
2246
2247	if (!np)
2248		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249
2250	nb = of_gpio_named_count(np, "cs-gpios");
2251	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
 
 
2252
2253	/* Return error only for an incorrectly formed cs-gpios property */
2254	if (nb == 0 || nb == -ENOENT)
2255		return 0;
2256	else if (nb < 0)
2257		return nb;
 
 
 
2258
2259	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2260			  GFP_KERNEL);
2261	ctlr->cs_gpios = cs;
2262
2263	if (!ctlr->cs_gpios)
2264		return -ENOMEM;
2265
2266	for (i = 0; i < ctlr->num_chipselect; i++)
2267		cs[i] = -ENOENT;
2268
2269	for (i = 0; i < nb; i++)
2270		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2271
2272	return 0;
2273}
2274#else
2275static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2276{
2277	return 0;
2278}
2279#endif
2280
2281/**
2282 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2283 * @ctlr: The SPI master to grab GPIO descriptors for
2284 */
2285static int spi_get_gpio_descs(struct spi_controller *ctlr)
2286{
2287	int nb, i;
2288	struct gpio_desc **cs;
2289	struct device *dev = &ctlr->dev;
 
 
2290
2291	nb = gpiod_count(dev, "cs");
 
 
 
 
 
 
 
2292	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2293
2294	/* No GPIOs at all is fine, else return the error */
2295	if (nb == 0 || nb == -ENOENT)
2296		return 0;
2297	else if (nb < 0)
2298		return nb;
2299
2300	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2301			  GFP_KERNEL);
2302	if (!cs)
2303		return -ENOMEM;
2304	ctlr->cs_gpiods = cs;
2305
2306	for (i = 0; i < nb; i++) {
2307		/*
2308		 * Most chipselects are active low, the inverted
2309		 * semantics are handled by special quirks in gpiolib,
2310		 * so initializing them GPIOD_OUT_LOW here means
2311		 * "unasserted", in most cases this will drive the physical
2312		 * line high.
2313		 */
2314		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2315						      GPIOD_OUT_LOW);
2316		if (IS_ERR(cs[i]))
2317			return PTR_ERR(cs[i]);
2318
2319		if (cs[i]) {
2320			/*
2321			 * If we find a CS GPIO, name it after the device and
2322			 * chip select line.
2323			 */
2324			char *gpioname;
2325
2326			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2327						  dev_name(dev), i);
2328			if (!gpioname)
2329				return -ENOMEM;
2330			gpiod_set_consumer_name(cs[i], gpioname);
 
 
 
 
 
 
 
2331		}
 
 
 
 
 
 
 
 
 
2332	}
2333
2334	return 0;
2335}
2336
2337static int spi_controller_check_ops(struct spi_controller *ctlr)
2338{
2339	/*
2340	 * The controller may implement only the high-level SPI-memory like
2341	 * operations if it does not support regular SPI transfers, and this is
2342	 * valid use case.
2343	 * If ->mem_ops is NULL, we request that at least one of the
2344	 * ->transfer_xxx() method be implemented.
2345	 */
2346	if (ctlr->mem_ops) {
2347		if (!ctlr->mem_ops->exec_op)
 
2348			return -EINVAL;
2349	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2350		   !ctlr->transfer_one_message) {
2351		return -EINVAL;
2352	}
2353
2354	return 0;
2355}
2356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357/**
2358 * spi_register_controller - register SPI master or slave controller
2359 * @ctlr: initialized master, originally from spi_alloc_master() or
2360 *	spi_alloc_slave()
2361 * Context: can sleep
2362 *
2363 * SPI controllers connect to their drivers using some non-SPI bus,
2364 * such as the platform bus.  The final stage of probe() in that code
2365 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2366 *
2367 * SPI controllers use board specific (often SOC specific) bus numbers,
2368 * and board-specific addressing for SPI devices combines those numbers
2369 * with chip select numbers.  Since SPI does not directly support dynamic
2370 * device identification, boards need configuration tables telling which
2371 * chip is at which address.
2372 *
2373 * This must be called from context that can sleep.  It returns zero on
2374 * success, else a negative error code (dropping the controller's refcount).
2375 * After a successful return, the caller is responsible for calling
2376 * spi_unregister_controller().
2377 *
2378 * Return: zero on success, else a negative error code.
2379 */
2380int spi_register_controller(struct spi_controller *ctlr)
2381{
2382	struct device		*dev = ctlr->dev.parent;
2383	struct boardinfo	*bi;
 
2384	int			status;
2385	int			id, first_dynamic;
2386
2387	if (!dev)
2388		return -ENODEV;
2389
2390	/*
2391	 * Make sure all necessary hooks are implemented before registering
2392	 * the SPI controller.
2393	 */
2394	status = spi_controller_check_ops(ctlr);
2395	if (status)
2396		return status;
2397
 
 
2398	if (ctlr->bus_num >= 0) {
2399		/* devices with a fixed bus num must check-in with the num */
2400		mutex_lock(&board_lock);
2401		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2402			ctlr->bus_num + 1, GFP_KERNEL);
2403		mutex_unlock(&board_lock);
2404		if (WARN(id < 0, "couldn't get idr"))
2405			return id == -ENOSPC ? -EBUSY : id;
2406		ctlr->bus_num = id;
2407	} else if (ctlr->dev.of_node) {
2408		/* allocate dynamic bus number using Linux idr */
2409		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2410		if (id >= 0) {
2411			ctlr->bus_num = id;
2412			mutex_lock(&board_lock);
2413			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2414				       ctlr->bus_num + 1, GFP_KERNEL);
2415			mutex_unlock(&board_lock);
2416			if (WARN(id < 0, "couldn't get idr"))
2417				return id == -ENOSPC ? -EBUSY : id;
2418		}
2419	}
2420	if (ctlr->bus_num < 0) {
2421		first_dynamic = of_alias_get_highest_id("spi");
2422		if (first_dynamic < 0)
2423			first_dynamic = 0;
2424		else
2425			first_dynamic++;
2426
2427		mutex_lock(&board_lock);
2428		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2429			       0, GFP_KERNEL);
2430		mutex_unlock(&board_lock);
2431		if (WARN(id < 0, "couldn't get idr"))
2432			return id;
2433		ctlr->bus_num = id;
2434	}
2435	INIT_LIST_HEAD(&ctlr->queue);
2436	spin_lock_init(&ctlr->queue_lock);
2437	spin_lock_init(&ctlr->bus_lock_spinlock);
2438	mutex_init(&ctlr->bus_lock_mutex);
2439	mutex_init(&ctlr->io_mutex);
2440	ctlr->bus_lock_flag = 0;
2441	init_completion(&ctlr->xfer_completion);
 
2442	if (!ctlr->max_dma_len)
2443		ctlr->max_dma_len = INT_MAX;
2444
2445	/* register the device, then userspace will see it.
2446	 * registration fails if the bus ID is in use.
 
2447	 */
2448	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2449
2450	if (!spi_controller_is_slave(ctlr)) {
2451		if (ctlr->use_gpio_descriptors) {
2452			status = spi_get_gpio_descs(ctlr);
2453			if (status)
2454				return status;
2455			/*
2456			 * A controller using GPIO descriptors always
2457			 * supports SPI_CS_HIGH if need be.
2458			 */
2459			ctlr->mode_bits |= SPI_CS_HIGH;
2460		} else {
2461			/* Legacy code path for GPIOs from DT */
2462			status = of_spi_get_gpio_numbers(ctlr);
2463			if (status)
2464				return status;
2465		}
2466	}
2467
2468	/*
2469	 * Even if it's just one always-selected device, there must
2470	 * be at least one chipselect.
2471	 */
2472	if (!ctlr->num_chipselect)
2473		return -EINVAL;
 
 
 
 
 
 
2474
2475	status = device_add(&ctlr->dev);
2476	if (status < 0) {
2477		/* free bus id */
2478		mutex_lock(&board_lock);
2479		idr_remove(&spi_master_idr, ctlr->bus_num);
2480		mutex_unlock(&board_lock);
2481		goto done;
2482	}
2483	dev_dbg(dev, "registered %s %s\n",
2484			spi_controller_is_slave(ctlr) ? "slave" : "master",
2485			dev_name(&ctlr->dev));
2486
2487	/*
2488	 * If we're using a queued driver, start the queue. Note that we don't
2489	 * need the queueing logic if the driver is only supporting high-level
2490	 * memory operations.
2491	 */
2492	if (ctlr->transfer) {
2493		dev_info(dev, "controller is unqueued, this is deprecated\n");
2494	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2495		status = spi_controller_initialize_queue(ctlr);
2496		if (status) {
2497			device_del(&ctlr->dev);
2498			/* free bus id */
2499			mutex_lock(&board_lock);
2500			idr_remove(&spi_master_idr, ctlr->bus_num);
2501			mutex_unlock(&board_lock);
2502			goto done;
2503		}
2504	}
2505	/* add statistics */
2506	spin_lock_init(&ctlr->statistics.lock);
 
 
 
 
 
2507
2508	mutex_lock(&board_lock);
2509	list_add_tail(&ctlr->list, &spi_controller_list);
2510	list_for_each_entry(bi, &board_list, list)
2511		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2512	mutex_unlock(&board_lock);
2513
2514	/* Register devices from the device tree and ACPI */
2515	of_register_spi_devices(ctlr);
2516	acpi_register_spi_devices(ctlr);
2517done:
 
 
 
 
 
 
 
2518	return status;
2519}
2520EXPORT_SYMBOL_GPL(spi_register_controller);
2521
2522static void devm_spi_unregister(struct device *dev, void *res)
2523{
2524	spi_unregister_controller(*(struct spi_controller **)res);
2525}
2526
2527/**
2528 * devm_spi_register_controller - register managed SPI master or slave
2529 *	controller
2530 * @dev:    device managing SPI controller
2531 * @ctlr: initialized controller, originally from spi_alloc_master() or
2532 *	spi_alloc_slave()
2533 * Context: can sleep
2534 *
2535 * Register a SPI device as with spi_register_controller() which will
2536 * automatically be unregistered and freed.
2537 *
2538 * Return: zero on success, else a negative error code.
2539 */
2540int devm_spi_register_controller(struct device *dev,
2541				 struct spi_controller *ctlr)
2542{
2543	struct spi_controller **ptr;
2544	int ret;
2545
2546	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2547	if (!ptr)
2548		return -ENOMEM;
2549
2550	ret = spi_register_controller(ctlr);
2551	if (!ret) {
2552		*ptr = ctlr;
2553		devres_add(dev, ptr);
2554	} else {
2555		devres_free(ptr);
2556	}
2557
2558	return ret;
2559}
2560EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2561
2562static int __unregister(struct device *dev, void *null)
2563{
2564	spi_unregister_device(to_spi_device(dev));
2565	return 0;
2566}
2567
2568/**
2569 * spi_unregister_controller - unregister SPI master or slave controller
2570 * @ctlr: the controller being unregistered
2571 * Context: can sleep
2572 *
2573 * This call is used only by SPI controller drivers, which are the
2574 * only ones directly touching chip registers.
2575 *
2576 * This must be called from context that can sleep.
2577 *
2578 * Note that this function also drops a reference to the controller.
2579 */
2580void spi_unregister_controller(struct spi_controller *ctlr)
2581{
2582	struct spi_controller *found;
2583	int id = ctlr->bus_num;
2584
 
 
 
 
 
 
2585	/* First make sure that this controller was ever added */
2586	mutex_lock(&board_lock);
2587	found = idr_find(&spi_master_idr, id);
2588	mutex_unlock(&board_lock);
2589	if (ctlr->queued) {
2590		if (spi_destroy_queue(ctlr))
2591			dev_err(&ctlr->dev, "queue remove failed\n");
2592	}
2593	mutex_lock(&board_lock);
2594	list_del(&ctlr->list);
2595	mutex_unlock(&board_lock);
2596
2597	device_for_each_child(&ctlr->dev, NULL, __unregister);
2598	device_unregister(&ctlr->dev);
2599	/* free bus id */
2600	mutex_lock(&board_lock);
2601	if (found == ctlr)
2602		idr_remove(&spi_master_idr, id);
2603	mutex_unlock(&board_lock);
2604}
2605EXPORT_SYMBOL_GPL(spi_unregister_controller);
2606
2607int spi_controller_suspend(struct spi_controller *ctlr)
2608{
2609	int ret;
2610
2611	/* Basically no-ops for non-queued controllers */
2612	if (!ctlr->queued)
2613		return 0;
2614
2615	ret = spi_stop_queue(ctlr);
2616	if (ret)
2617		dev_err(&ctlr->dev, "queue stop failed\n");
2618
2619	return ret;
2620}
2621EXPORT_SYMBOL_GPL(spi_controller_suspend);
2622
2623int spi_controller_resume(struct spi_controller *ctlr)
2624{
2625	int ret;
2626
2627	if (!ctlr->queued)
2628		return 0;
2629
2630	ret = spi_start_queue(ctlr);
2631	if (ret)
2632		dev_err(&ctlr->dev, "queue restart failed\n");
2633
2634	return ret;
2635}
2636EXPORT_SYMBOL_GPL(spi_controller_resume);
2637
2638static int __spi_controller_match(struct device *dev, const void *data)
2639{
2640	struct spi_controller *ctlr;
2641	const u16 *bus_num = data;
2642
2643	ctlr = container_of(dev, struct spi_controller, dev);
2644	return ctlr->bus_num == *bus_num;
2645}
2646
2647/**
2648 * spi_busnum_to_master - look up master associated with bus_num
2649 * @bus_num: the master's bus number
2650 * Context: can sleep
2651 *
2652 * This call may be used with devices that are registered after
2653 * arch init time.  It returns a refcounted pointer to the relevant
2654 * spi_controller (which the caller must release), or NULL if there is
2655 * no such master registered.
2656 *
2657 * Return: the SPI master structure on success, else NULL.
2658 */
2659struct spi_controller *spi_busnum_to_master(u16 bus_num)
2660{
2661	struct device		*dev;
2662	struct spi_controller	*ctlr = NULL;
2663
2664	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2665				__spi_controller_match);
2666	if (dev)
2667		ctlr = container_of(dev, struct spi_controller, dev);
2668	/* reference got in class_find_device */
2669	return ctlr;
2670}
2671EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2672
2673/*-------------------------------------------------------------------------*/
2674
2675/* Core methods for SPI resource management */
2676
2677/**
2678 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2679 *                 during the processing of a spi_message while using
2680 *                 spi_transfer_one
2681 * @spi:     the spi device for which we allocate memory
2682 * @release: the release code to execute for this resource
2683 * @size:    size to alloc and return
2684 * @gfp:     GFP allocation flags
2685 *
2686 * Return: the pointer to the allocated data
2687 *
2688 * This may get enhanced in the future to allocate from a memory pool
2689 * of the @spi_device or @spi_controller to avoid repeated allocations.
2690 */
2691void *spi_res_alloc(struct spi_device *spi,
2692		    spi_res_release_t release,
2693		    size_t size, gfp_t gfp)
2694{
2695	struct spi_res *sres;
2696
2697	sres = kzalloc(sizeof(*sres) + size, gfp);
2698	if (!sres)
2699		return NULL;
2700
2701	INIT_LIST_HEAD(&sres->entry);
2702	sres->release = release;
2703
2704	return sres->data;
2705}
2706EXPORT_SYMBOL_GPL(spi_res_alloc);
2707
2708/**
2709 * spi_res_free - free an spi resource
2710 * @res: pointer to the custom data of a resource
2711 *
2712 */
2713void spi_res_free(void *res)
2714{
2715	struct spi_res *sres = container_of(res, struct spi_res, data);
2716
2717	if (!res)
2718		return;
 
 
 
 
2719
2720	WARN_ON(!list_empty(&sres->entry));
2721	kfree(sres);
2722}
2723EXPORT_SYMBOL_GPL(spi_res_free);
2724
2725/**
2726 * spi_res_add - add a spi_res to the spi_message
2727 * @message: the spi message
2728 * @res:     the spi_resource
2729 */
2730void spi_res_add(struct spi_message *message, void *res)
2731{
2732	struct spi_res *sres = container_of(res, struct spi_res, data);
2733
2734	WARN_ON(!list_empty(&sres->entry));
2735	list_add_tail(&sres->entry, &message->resources);
2736}
2737EXPORT_SYMBOL_GPL(spi_res_add);
2738
2739/**
2740 * spi_res_release - release all spi resources for this message
2741 * @ctlr:  the @spi_controller
2742 * @message: the @spi_message
2743 */
2744void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2745{
2746	struct spi_res *res, *tmp;
2747
2748	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2749		if (res->release)
2750			res->release(ctlr, message, res->data);
2751
2752		list_del(&res->entry);
2753
2754		kfree(res);
2755	}
 
2756}
2757EXPORT_SYMBOL_GPL(spi_res_release);
2758
2759/*-------------------------------------------------------------------------*/
2760
2761/* Core methods for spi_message alterations */
2762
2763static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2764					    struct spi_message *msg,
2765					    void *res)
2766{
2767	struct spi_replaced_transfers *rxfer = res;
2768	size_t i;
2769
2770	/* call extra callback if requested */
2771	if (rxfer->release)
2772		rxfer->release(ctlr, msg, res);
2773
2774	/* insert replaced transfers back into the message */
2775	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2776
2777	/* remove the formerly inserted entries */
2778	for (i = 0; i < rxfer->inserted; i++)
2779		list_del(&rxfer->inserted_transfers[i].transfer_list);
2780}
2781
2782/**
2783 * spi_replace_transfers - replace transfers with several transfers
2784 *                         and register change with spi_message.resources
2785 * @msg:           the spi_message we work upon
2786 * @xfer_first:    the first spi_transfer we want to replace
2787 * @remove:        number of transfers to remove
2788 * @insert:        the number of transfers we want to insert instead
2789 * @release:       extra release code necessary in some circumstances
2790 * @extradatasize: extra data to allocate (with alignment guarantees
2791 *                 of struct @spi_transfer)
2792 * @gfp:           gfp flags
2793 *
2794 * Returns: pointer to @spi_replaced_transfers,
2795 *          PTR_ERR(...) in case of errors.
2796 */
2797struct spi_replaced_transfers *spi_replace_transfers(
2798	struct spi_message *msg,
2799	struct spi_transfer *xfer_first,
2800	size_t remove,
2801	size_t insert,
2802	spi_replaced_release_t release,
2803	size_t extradatasize,
2804	gfp_t gfp)
2805{
2806	struct spi_replaced_transfers *rxfer;
2807	struct spi_transfer *xfer;
2808	size_t i;
2809
2810	/* allocate the structure using spi_res */
2811	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2812			      struct_size(rxfer, inserted_transfers, insert)
2813			      + extradatasize,
2814			      gfp);
2815	if (!rxfer)
2816		return ERR_PTR(-ENOMEM);
2817
2818	/* the release code to invoke before running the generic release */
2819	rxfer->release = release;
2820
2821	/* assign extradata */
2822	if (extradatasize)
2823		rxfer->extradata =
2824			&rxfer->inserted_transfers[insert];
2825
2826	/* init the replaced_transfers list */
2827	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2828
2829	/* assign the list_entry after which we should reinsert
 
2830	 * the @replaced_transfers - it may be spi_message.messages!
2831	 */
2832	rxfer->replaced_after = xfer_first->transfer_list.prev;
2833
2834	/* remove the requested number of transfers */
2835	for (i = 0; i < remove; i++) {
2836		/* if the entry after replaced_after it is msg->transfers
 
2837		 * then we have been requested to remove more transfers
2838		 * than are in the list
2839		 */
2840		if (rxfer->replaced_after->next == &msg->transfers) {
2841			dev_err(&msg->spi->dev,
2842				"requested to remove more spi_transfers than are available\n");
2843			/* insert replaced transfers back into the message */
2844			list_splice(&rxfer->replaced_transfers,
2845				    rxfer->replaced_after);
2846
2847			/* free the spi_replace_transfer structure */
2848			spi_res_free(rxfer);
2849
2850			/* and return with an error */
2851			return ERR_PTR(-EINVAL);
2852		}
2853
2854		/* remove the entry after replaced_after from list of
2855		 * transfers and add it to list of replaced_transfers
 
2856		 */
2857		list_move_tail(rxfer->replaced_after->next,
2858			       &rxfer->replaced_transfers);
2859	}
2860
2861	/* create copy of the given xfer with identical settings
2862	 * based on the first transfer to get removed
 
2863	 */
2864	for (i = 0; i < insert; i++) {
2865		/* we need to run in reverse order */
2866		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2867
2868		/* copy all spi_transfer data */
2869		memcpy(xfer, xfer_first, sizeof(*xfer));
2870
2871		/* add to list */
2872		list_add(&xfer->transfer_list, rxfer->replaced_after);
2873
2874		/* clear cs_change and delay_usecs for all but the last */
2875		if (i) {
2876			xfer->cs_change = false;
2877			xfer->delay_usecs = 0;
2878		}
2879	}
2880
2881	/* set up inserted */
2882	rxfer->inserted = insert;
2883
2884	/* and register it with spi_res/spi_message */
2885	spi_res_add(msg, rxfer);
2886
2887	return rxfer;
2888}
2889EXPORT_SYMBOL_GPL(spi_replace_transfers);
2890
2891static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2892					struct spi_message *msg,
2893					struct spi_transfer **xferp,
2894					size_t maxsize,
2895					gfp_t gfp)
2896{
2897	struct spi_transfer *xfer = *xferp, *xfers;
2898	struct spi_replaced_transfers *srt;
2899	size_t offset;
2900	size_t count, i;
2901
2902	/* calculate how many we have to replace */
2903	count = DIV_ROUND_UP(xfer->len, maxsize);
2904
2905	/* create replacement */
2906	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2907	if (IS_ERR(srt))
2908		return PTR_ERR(srt);
2909	xfers = srt->inserted_transfers;
2910
2911	/* now handle each of those newly inserted spi_transfers
2912	 * note that the replacements spi_transfers all are preset
 
2913	 * to the same values as *xferp, so tx_buf, rx_buf and len
2914	 * are all identical (as well as most others)
2915	 * so we just have to fix up len and the pointers.
2916	 *
2917	 * this also includes support for the depreciated
2918	 * spi_message.is_dma_mapped interface
2919	 */
2920
2921	/* the first transfer just needs the length modified, so we
2922	 * run it outside the loop
 
2923	 */
2924	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2925
2926	/* all the others need rx_buf/tx_buf also set */
2927	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2928		/* update rx_buf, tx_buf and dma */
2929		if (xfers[i].rx_buf)
2930			xfers[i].rx_buf += offset;
2931		if (xfers[i].rx_dma)
2932			xfers[i].rx_dma += offset;
2933		if (xfers[i].tx_buf)
2934			xfers[i].tx_buf += offset;
2935		if (xfers[i].tx_dma)
2936			xfers[i].tx_dma += offset;
2937
2938		/* update length */
2939		xfers[i].len = min(maxsize, xfers[i].len - offset);
2940	}
2941
2942	/* we set up xferp to the last entry we have inserted,
2943	 * so that we skip those already split transfers
 
2944	 */
2945	*xferp = &xfers[count - 1];
2946
2947	/* increment statistics counters */
2948	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2949				       transfers_split_maxsize);
2950	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2951				       transfers_split_maxsize);
2952
2953	return 0;
2954}
2955
2956/**
2957 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2958 *                              when an individual transfer exceeds a
2959 *                              certain size
2960 * @ctlr:    the @spi_controller for this transfer
2961 * @msg:   the @spi_message to transform
2962 * @maxsize:  the maximum when to apply this
2963 * @gfp: GFP allocation flags
 
 
 
2964 *
2965 * Return: status of transformation
2966 */
2967int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2968				struct spi_message *msg,
2969				size_t maxsize,
2970				gfp_t gfp)
2971{
2972	struct spi_transfer *xfer;
2973	int ret;
2974
2975	/* iterate over the transfer_list,
 
2976	 * but note that xfer is advanced to the last transfer inserted
2977	 * to avoid checking sizes again unnecessarily (also xfer does
2978	 * potentiall belong to a different list by the time the
2979	 * replacement has happened
2980	 */
2981	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2982		if (xfer->len > maxsize) {
2983			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2984							   maxsize, gfp);
2985			if (ret)
2986				return ret;
2987		}
2988	}
2989
2990	return 0;
2991}
2992EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994/*-------------------------------------------------------------------------*/
2995
2996/* Core methods for SPI controller protocol drivers.  Some of the
 
2997 * other core methods are currently defined as inline functions.
2998 */
2999
3000static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3001					u8 bits_per_word)
3002{
3003	if (ctlr->bits_per_word_mask) {
3004		/* Only 32 bits fit in the mask */
3005		if (bits_per_word > 32)
3006			return -EINVAL;
3007		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3008			return -EINVAL;
3009	}
3010
3011	return 0;
3012}
3013
3014/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015 * spi_setup - setup SPI mode and clock rate
3016 * @spi: the device whose settings are being modified
3017 * Context: can sleep, and no requests are queued to the device
3018 *
3019 * SPI protocol drivers may need to update the transfer mode if the
3020 * device doesn't work with its default.  They may likewise need
3021 * to update clock rates or word sizes from initial values.  This function
3022 * changes those settings, and must be called from a context that can sleep.
3023 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3024 * effect the next time the device is selected and data is transferred to
3025 * or from it.  When this function returns, the spi device is deselected.
3026 *
3027 * Note that this call will fail if the protocol driver specifies an option
3028 * that the underlying controller or its driver does not support.  For
3029 * example, not all hardware supports wire transfers using nine bit words,
3030 * LSB-first wire encoding, or active-high chipselects.
3031 *
3032 * Return: zero on success, else a negative error code.
3033 */
3034int spi_setup(struct spi_device *spi)
3035{
3036	unsigned	bad_bits, ugly_bits;
3037	int		status;
3038
3039	/* check mode to prevent that DUAL and QUAD set at the same time
 
 
3040	 */
3041	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3042		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 
 
3043		dev_err(&spi->dev,
3044		"setup: can not select dual and quad at the same time\n");
3045		return -EINVAL;
3046	}
3047	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3048	 */
3049	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3050		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3051		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3052		return -EINVAL;
3053	/* help drivers fail *cleanly* when they need options
3054	 * that aren't supported with their current controller
 
 
 
 
 
 
 
3055	 * SPI_CS_WORD has a fallback software implementation,
3056	 * so it is ignored here.
3057	 */
3058	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3059	/* nothing prevents from working with active-high CS in case if it
3060	 * is driven by GPIO.
3061	 */
3062	if (gpio_is_valid(spi->cs_gpio))
3063		bad_bits &= ~SPI_CS_HIGH;
3064	ugly_bits = bad_bits &
3065		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3066		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3067	if (ugly_bits) {
3068		dev_warn(&spi->dev,
3069			 "setup: ignoring unsupported mode bits %x\n",
3070			 ugly_bits);
3071		spi->mode &= ~ugly_bits;
3072		bad_bits &= ~ugly_bits;
3073	}
3074	if (bad_bits) {
3075		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3076			bad_bits);
3077		return -EINVAL;
3078	}
3079
3080	if (!spi->bits_per_word)
3081		spi->bits_per_word = 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082
3083	status = __spi_validate_bits_per_word(spi->controller,
3084					      spi->bits_per_word);
3085	if (status)
3086		return status;
 
 
 
 
 
 
 
 
 
 
3087
3088	if (!spi->max_speed_hz)
3089		spi->max_speed_hz = spi->controller->max_speed_hz;
 
 
 
 
 
3090
3091	if (spi->controller->setup)
3092		status = spi->controller->setup(spi);
 
 
 
 
3093
3094	spi_set_cs(spi, false);
3095
3096	if (spi->rt && !spi->controller->rt) {
3097		spi->controller->rt = true;
3098		spi_set_thread_rt(spi->controller);
3099	}
3100
3101	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3102			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 
 
3103			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3104			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3105			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3106			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3107			spi->bits_per_word, spi->max_speed_hz,
3108			status);
3109
3110	return status;
3111}
3112EXPORT_SYMBOL_GPL(spi_setup);
3113
3114/**
3115 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3116 * @spi: the device that requires specific CS timing configuration
3117 * @setup: CS setup time in terms of clock count
3118 * @hold: CS hold time in terms of clock count
3119 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3120 */
3121void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3122		       u8 inactive_dly)
3123{
3124	if (spi->controller->set_cs_timing)
3125		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
 
 
 
 
 
 
 
 
 
 
 
 
 
3126}
3127EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3128
3129static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3130{
3131	struct spi_controller *ctlr = spi->controller;
3132	struct spi_transfer *xfer;
3133	int w_size;
3134
3135	if (list_empty(&message->transfers))
3136		return -EINVAL;
3137
3138	/* If an SPI controller does not support toggling the CS line on each
3139	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3140	 * for the CS line, we can emulate the CS-per-word hardware function by
3141	 * splitting transfers into one-word transfers and ensuring that
3142	 * cs_change is set for each transfer.
3143	 */
3144	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3145					  spi->cs_gpiod ||
3146					  gpio_is_valid(spi->cs_gpio))) {
3147		size_t maxsize;
3148		int ret;
3149
3150		maxsize = (spi->bits_per_word + 7) / 8;
3151
3152		/* spi_split_transfers_maxsize() requires message->spi */
3153		message->spi = spi;
3154
3155		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3156						  GFP_KERNEL);
3157		if (ret)
3158			return ret;
3159
3160		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3161			/* don't change cs_change on the last entry in the list */
3162			if (list_is_last(&xfer->transfer_list, &message->transfers))
3163				break;
3164			xfer->cs_change = 1;
3165		}
3166	}
3167
3168	/* Half-duplex links include original MicroWire, and ones with
3169	 * only one data pin like SPI_3WIRE (switches direction) or where
3170	 * either MOSI or MISO is missing.  They can also be caused by
3171	 * software limitations.
3172	 */
3173	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3174	    (spi->mode & SPI_3WIRE)) {
3175		unsigned flags = ctlr->flags;
3176
3177		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3178			if (xfer->rx_buf && xfer->tx_buf)
3179				return -EINVAL;
3180			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3181				return -EINVAL;
3182			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3183				return -EINVAL;
3184		}
3185	}
3186
3187	/**
3188	 * Set transfer bits_per_word and max speed as spi device default if
3189	 * it is not set for this transfer.
3190	 * Set transfer tx_nbits and rx_nbits as single transfer default
3191	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3192	 * Ensure transfer word_delay is at least as long as that required by
3193	 * device itself.
3194	 */
3195	message->frame_length = 0;
3196	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3197		xfer->effective_speed_hz = 0;
3198		message->frame_length += xfer->len;
3199		if (!xfer->bits_per_word)
3200			xfer->bits_per_word = spi->bits_per_word;
3201
3202		if (!xfer->speed_hz)
3203			xfer->speed_hz = spi->max_speed_hz;
3204
3205		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3206			xfer->speed_hz = ctlr->max_speed_hz;
3207
3208		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3209			return -EINVAL;
3210
3211		/*
3212		 * SPI transfer length should be multiple of SPI word size
3213		 * where SPI word size should be power-of-two multiple
3214		 */
3215		if (xfer->bits_per_word <= 8)
3216			w_size = 1;
3217		else if (xfer->bits_per_word <= 16)
3218			w_size = 2;
3219		else
3220			w_size = 4;
3221
3222		/* No partial transfers accepted */
3223		if (xfer->len % w_size)
3224			return -EINVAL;
3225
3226		if (xfer->speed_hz && ctlr->min_speed_hz &&
3227		    xfer->speed_hz < ctlr->min_speed_hz)
3228			return -EINVAL;
3229
3230		if (xfer->tx_buf && !xfer->tx_nbits)
3231			xfer->tx_nbits = SPI_NBITS_SINGLE;
3232		if (xfer->rx_buf && !xfer->rx_nbits)
3233			xfer->rx_nbits = SPI_NBITS_SINGLE;
3234		/* check transfer tx/rx_nbits:
 
3235		 * 1. check the value matches one of single, dual and quad
3236		 * 2. check tx/rx_nbits match the mode in spi_device
3237		 */
3238		if (xfer->tx_buf) {
 
 
3239			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3240				xfer->tx_nbits != SPI_NBITS_DUAL &&
3241				xfer->tx_nbits != SPI_NBITS_QUAD)
 
3242				return -EINVAL;
3243			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3244				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3245				return -EINVAL;
3246			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3247				!(spi->mode & SPI_TX_QUAD))
3248				return -EINVAL;
3249		}
3250		/* check transfer rx_nbits */
3251		if (xfer->rx_buf) {
 
 
3252			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3253				xfer->rx_nbits != SPI_NBITS_DUAL &&
3254				xfer->rx_nbits != SPI_NBITS_QUAD)
 
3255				return -EINVAL;
3256			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3257				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3258				return -EINVAL;
3259			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3260				!(spi->mode & SPI_RX_QUAD))
3261				return -EINVAL;
3262		}
3263
3264		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3265			xfer->word_delay_usecs = spi->word_delay_usecs;
3266	}
3267
3268	message->status = -EINPROGRESS;
3269
3270	return 0;
3271}
3272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3273static int __spi_async(struct spi_device *spi, struct spi_message *message)
3274{
3275	struct spi_controller *ctlr = spi->controller;
 
3276
3277	/*
3278	 * Some controllers do not support doing regular SPI transfers. Return
3279	 * ENOTSUPP when this is the case.
3280	 */
3281	if (!ctlr->transfer)
3282		return -ENOTSUPP;
3283
3284	message->spi = spi;
 
3285
3286	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3287	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3288
3289	trace_spi_message_submit(message);
 
 
 
 
 
3290
3291	return ctlr->transfer(spi, message);
3292}
3293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3294/**
3295 * spi_async - asynchronous SPI transfer
3296 * @spi: device with which data will be exchanged
3297 * @message: describes the data transfers, including completion callback
3298 * Context: any (irqs may be blocked, etc)
3299 *
3300 * This call may be used in_irq and other contexts which can't sleep,
3301 * as well as from task contexts which can sleep.
3302 *
3303 * The completion callback is invoked in a context which can't sleep.
3304 * Before that invocation, the value of message->status is undefined.
3305 * When the callback is issued, message->status holds either zero (to
3306 * indicate complete success) or a negative error code.  After that
3307 * callback returns, the driver which issued the transfer request may
3308 * deallocate the associated memory; it's no longer in use by any SPI
3309 * core or controller driver code.
3310 *
3311 * Note that although all messages to a spi_device are handled in
3312 * FIFO order, messages may go to different devices in other orders.
3313 * Some device might be higher priority, or have various "hard" access
3314 * time requirements, for example.
3315 *
3316 * On detection of any fault during the transfer, processing of
3317 * the entire message is aborted, and the device is deselected.
3318 * Until returning from the associated message completion callback,
3319 * no other spi_message queued to that device will be processed.
3320 * (This rule applies equally to all the synchronous transfer calls,
3321 * which are wrappers around this core asynchronous primitive.)
3322 *
3323 * Return: zero on success, else a negative error code.
3324 */
3325int spi_async(struct spi_device *spi, struct spi_message *message)
3326{
3327	struct spi_controller *ctlr = spi->controller;
3328	int ret;
3329	unsigned long flags;
3330
3331	ret = __spi_validate(spi, message);
3332	if (ret != 0)
3333		return ret;
3334
3335	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3336
3337	if (ctlr->bus_lock_flag)
3338		ret = -EBUSY;
3339	else
3340		ret = __spi_async(spi, message);
3341
3342	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3343
3344	return ret;
3345}
3346EXPORT_SYMBOL_GPL(spi_async);
3347
3348/**
3349 * spi_async_locked - version of spi_async with exclusive bus usage
3350 * @spi: device with which data will be exchanged
3351 * @message: describes the data transfers, including completion callback
3352 * Context: any (irqs may be blocked, etc)
3353 *
3354 * This call may be used in_irq and other contexts which can't sleep,
3355 * as well as from task contexts which can sleep.
3356 *
3357 * The completion callback is invoked in a context which can't sleep.
3358 * Before that invocation, the value of message->status is undefined.
3359 * When the callback is issued, message->status holds either zero (to
3360 * indicate complete success) or a negative error code.  After that
3361 * callback returns, the driver which issued the transfer request may
3362 * deallocate the associated memory; it's no longer in use by any SPI
3363 * core or controller driver code.
3364 *
3365 * Note that although all messages to a spi_device are handled in
3366 * FIFO order, messages may go to different devices in other orders.
3367 * Some device might be higher priority, or have various "hard" access
3368 * time requirements, for example.
3369 *
3370 * On detection of any fault during the transfer, processing of
3371 * the entire message is aborted, and the device is deselected.
3372 * Until returning from the associated message completion callback,
3373 * no other spi_message queued to that device will be processed.
3374 * (This rule applies equally to all the synchronous transfer calls,
3375 * which are wrappers around this core asynchronous primitive.)
3376 *
3377 * Return: zero on success, else a negative error code.
3378 */
3379int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3380{
3381	struct spi_controller *ctlr = spi->controller;
3382	int ret;
3383	unsigned long flags;
3384
3385	ret = __spi_validate(spi, message);
3386	if (ret != 0)
3387		return ret;
3388
3389	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3390
3391	ret = __spi_async(spi, message);
 
 
 
 
 
3392
3393	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3394
3395	return ret;
 
 
 
 
 
 
 
 
3396
 
3397}
3398EXPORT_SYMBOL_GPL(spi_async_locked);
3399
3400/*-------------------------------------------------------------------------*/
3401
3402/* Utility methods for SPI protocol drivers, layered on
 
3403 * top of the core.  Some other utility methods are defined as
3404 * inline functions.
3405 */
3406
3407static void spi_complete(void *arg)
3408{
3409	complete(arg);
3410}
3411
3412static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3413{
3414	DECLARE_COMPLETION_ONSTACK(done);
 
3415	int status;
3416	struct spi_controller *ctlr = spi->controller;
3417	unsigned long flags;
3418
3419	status = __spi_validate(spi, message);
3420	if (status != 0)
 
 
 
 
 
3421		return status;
3422
3423	message->complete = spi_complete;
3424	message->context = &done;
3425	message->spi = spi;
3426
3427	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3428	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3429
3430	/* If we're not using the legacy transfer method then we will
3431	 * try to transfer in the calling context so special case.
3432	 * This code would be less tricky if we could remove the
3433	 * support for driver implemented message queues.
 
3434	 */
3435	if (ctlr->transfer == spi_queued_transfer) {
3436		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
3437
3438		trace_spi_message_submit(message);
3439
3440		status = __spi_queued_transfer(spi, message, false);
 
 
 
3441
3442		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3443	} else {
3444		status = spi_async_locked(spi, message);
3445	}
3446
 
 
 
 
 
 
 
 
 
 
 
 
 
3447	if (status == 0) {
3448		/* Push out the messages in the calling context if we
3449		 * can.
3450		 */
3451		if (ctlr->transfer == spi_queued_transfer) {
3452			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3453						       spi_sync_immediate);
3454			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3455						       spi_sync_immediate);
3456			__spi_pump_messages(ctlr, false);
3457		}
3458
3459		wait_for_completion(&done);
3460		status = message->status;
3461	}
 
3462	message->context = NULL;
 
3463	return status;
3464}
3465
3466/**
3467 * spi_sync - blocking/synchronous SPI data transfers
3468 * @spi: device with which data will be exchanged
3469 * @message: describes the data transfers
3470 * Context: can sleep
3471 *
3472 * This call may only be used from a context that may sleep.  The sleep
3473 * is non-interruptible, and has no timeout.  Low-overhead controller
3474 * drivers may DMA directly into and out of the message buffers.
3475 *
3476 * Note that the SPI device's chip select is active during the message,
3477 * and then is normally disabled between messages.  Drivers for some
3478 * frequently-used devices may want to minimize costs of selecting a chip,
3479 * by leaving it selected in anticipation that the next message will go
3480 * to the same chip.  (That may increase power usage.)
3481 *
3482 * Also, the caller is guaranteeing that the memory associated with the
3483 * message will not be freed before this call returns.
3484 *
3485 * Return: zero on success, else a negative error code.
3486 */
3487int spi_sync(struct spi_device *spi, struct spi_message *message)
3488{
3489	int ret;
3490
3491	mutex_lock(&spi->controller->bus_lock_mutex);
3492	ret = __spi_sync(spi, message);
3493	mutex_unlock(&spi->controller->bus_lock_mutex);
3494
3495	return ret;
3496}
3497EXPORT_SYMBOL_GPL(spi_sync);
3498
3499/**
3500 * spi_sync_locked - version of spi_sync with exclusive bus usage
3501 * @spi: device with which data will be exchanged
3502 * @message: describes the data transfers
3503 * Context: can sleep
3504 *
3505 * This call may only be used from a context that may sleep.  The sleep
3506 * is non-interruptible, and has no timeout.  Low-overhead controller
3507 * drivers may DMA directly into and out of the message buffers.
3508 *
3509 * This call should be used by drivers that require exclusive access to the
3510 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3511 * be released by a spi_bus_unlock call when the exclusive access is over.
3512 *
3513 * Return: zero on success, else a negative error code.
3514 */
3515int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3516{
3517	return __spi_sync(spi, message);
3518}
3519EXPORT_SYMBOL_GPL(spi_sync_locked);
3520
3521/**
3522 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3523 * @ctlr: SPI bus master that should be locked for exclusive bus access
3524 * Context: can sleep
3525 *
3526 * This call may only be used from a context that may sleep.  The sleep
3527 * is non-interruptible, and has no timeout.
3528 *
3529 * This call should be used by drivers that require exclusive access to the
3530 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3531 * exclusive access is over. Data transfer must be done by spi_sync_locked
3532 * and spi_async_locked calls when the SPI bus lock is held.
3533 *
3534 * Return: always zero.
3535 */
3536int spi_bus_lock(struct spi_controller *ctlr)
3537{
3538	unsigned long flags;
3539
3540	mutex_lock(&ctlr->bus_lock_mutex);
3541
3542	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3543	ctlr->bus_lock_flag = 1;
3544	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3545
3546	/* mutex remains locked until spi_bus_unlock is called */
3547
3548	return 0;
3549}
3550EXPORT_SYMBOL_GPL(spi_bus_lock);
3551
3552/**
3553 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3554 * @ctlr: SPI bus master that was locked for exclusive bus access
3555 * Context: can sleep
3556 *
3557 * This call may only be used from a context that may sleep.  The sleep
3558 * is non-interruptible, and has no timeout.
3559 *
3560 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3561 * call.
3562 *
3563 * Return: always zero.
3564 */
3565int spi_bus_unlock(struct spi_controller *ctlr)
3566{
3567	ctlr->bus_lock_flag = 0;
3568
3569	mutex_unlock(&ctlr->bus_lock_mutex);
3570
3571	return 0;
3572}
3573EXPORT_SYMBOL_GPL(spi_bus_unlock);
3574
3575/* portable code must never pass more than 32 bytes */
3576#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3577
3578static u8	*buf;
3579
3580/**
3581 * spi_write_then_read - SPI synchronous write followed by read
3582 * @spi: device with which data will be exchanged
3583 * @txbuf: data to be written (need not be dma-safe)
3584 * @n_tx: size of txbuf, in bytes
3585 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3586 * @n_rx: size of rxbuf, in bytes
3587 * Context: can sleep
3588 *
3589 * This performs a half duplex MicroWire style transaction with the
3590 * device, sending txbuf and then reading rxbuf.  The return value
3591 * is zero for success, else a negative errno status code.
3592 * This call may only be used from a context that may sleep.
3593 *
3594 * Parameters to this routine are always copied using a small buffer;
3595 * portable code should never use this for more than 32 bytes.
3596 * Performance-sensitive or bulk transfer code should instead use
3597 * spi_{async,sync}() calls with dma-safe buffers.
3598 *
3599 * Return: zero on success, else a negative error code.
3600 */
3601int spi_write_then_read(struct spi_device *spi,
3602		const void *txbuf, unsigned n_tx,
3603		void *rxbuf, unsigned n_rx)
3604{
3605	static DEFINE_MUTEX(lock);
3606
3607	int			status;
3608	struct spi_message	message;
3609	struct spi_transfer	x[2];
3610	u8			*local_buf;
3611
3612	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
3613	 * copying here, (as a pure convenience thing), but we can
3614	 * keep heap costs out of the hot path unless someone else is
3615	 * using the pre-allocated buffer or the transfer is too large.
3616	 */
3617	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3618		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3619				    GFP_KERNEL | GFP_DMA);
3620		if (!local_buf)
3621			return -ENOMEM;
3622	} else {
3623		local_buf = buf;
3624	}
3625
3626	spi_message_init(&message);
3627	memset(x, 0, sizeof(x));
3628	if (n_tx) {
3629		x[0].len = n_tx;
3630		spi_message_add_tail(&x[0], &message);
3631	}
3632	if (n_rx) {
3633		x[1].len = n_rx;
3634		spi_message_add_tail(&x[1], &message);
3635	}
3636
3637	memcpy(local_buf, txbuf, n_tx);
3638	x[0].tx_buf = local_buf;
3639	x[1].rx_buf = local_buf + n_tx;
3640
3641	/* do the i/o */
3642	status = spi_sync(spi, &message);
3643	if (status == 0)
3644		memcpy(rxbuf, x[1].rx_buf, n_rx);
3645
3646	if (x[0].tx_buf == buf)
3647		mutex_unlock(&lock);
3648	else
3649		kfree(local_buf);
3650
3651	return status;
3652}
3653EXPORT_SYMBOL_GPL(spi_write_then_read);
3654
3655/*-------------------------------------------------------------------------*/
3656
3657#if IS_ENABLED(CONFIG_OF)
3658/* must call put_device() when done with returned spi_device device */
3659struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3660{
3661	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3662
3663	return dev ? to_spi_device(dev) : NULL;
3664}
3665EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3666#endif /* IS_ENABLED(CONFIG_OF) */
3667
3668#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3669/* the spi controllers are not using spi_bus, so we find it with another way */
3670static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3671{
3672	struct device *dev;
3673
3674	dev = class_find_device_by_of_node(&spi_master_class, node);
3675	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3676		dev = class_find_device_by_of_node(&spi_slave_class, node);
3677	if (!dev)
3678		return NULL;
3679
3680	/* reference got in class_find_device */
3681	return container_of(dev, struct spi_controller, dev);
3682}
3683
3684static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3685			 void *arg)
3686{
3687	struct of_reconfig_data *rd = arg;
3688	struct spi_controller *ctlr;
3689	struct spi_device *spi;
3690
3691	switch (of_reconfig_get_state_change(action, arg)) {
3692	case OF_RECONFIG_CHANGE_ADD:
3693		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3694		if (ctlr == NULL)
3695			return NOTIFY_OK;	/* not for us */
3696
3697		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3698			put_device(&ctlr->dev);
3699			return NOTIFY_OK;
3700		}
3701
 
 
 
 
 
3702		spi = of_register_spi_device(ctlr, rd->dn);
3703		put_device(&ctlr->dev);
3704
3705		if (IS_ERR(spi)) {
3706			pr_err("%s: failed to create for '%pOF'\n",
3707					__func__, rd->dn);
3708			of_node_clear_flag(rd->dn, OF_POPULATED);
3709			return notifier_from_errno(PTR_ERR(spi));
3710		}
3711		break;
3712
3713	case OF_RECONFIG_CHANGE_REMOVE:
3714		/* already depopulated? */
3715		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3716			return NOTIFY_OK;
3717
3718		/* find our device by node */
3719		spi = of_find_spi_device_by_node(rd->dn);
3720		if (spi == NULL)
3721			return NOTIFY_OK;	/* no? not meant for us */
3722
3723		/* unregister takes one ref away */
3724		spi_unregister_device(spi);
3725
3726		/* and put the reference of the find */
3727		put_device(&spi->dev);
3728		break;
3729	}
3730
3731	return NOTIFY_OK;
3732}
3733
3734static struct notifier_block spi_of_notifier = {
3735	.notifier_call = of_spi_notify,
3736};
3737#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3738extern struct notifier_block spi_of_notifier;
3739#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3740
3741#if IS_ENABLED(CONFIG_ACPI)
3742static int spi_acpi_controller_match(struct device *dev, const void *data)
3743{
3744	return ACPI_COMPANION(dev->parent) == data;
3745}
3746
3747static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3748{
3749	struct device *dev;
3750
3751	dev = class_find_device(&spi_master_class, NULL, adev,
3752				spi_acpi_controller_match);
3753	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3754		dev = class_find_device(&spi_slave_class, NULL, adev,
3755					spi_acpi_controller_match);
3756	if (!dev)
3757		return NULL;
3758
3759	return container_of(dev, struct spi_controller, dev);
3760}
 
3761
3762static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3763{
3764	struct device *dev;
3765
3766	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3767	return dev ? to_spi_device(dev) : NULL;
3768}
3769
3770static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3771			   void *arg)
3772{
3773	struct acpi_device *adev = arg;
3774	struct spi_controller *ctlr;
3775	struct spi_device *spi;
3776
3777	switch (value) {
3778	case ACPI_RECONFIG_DEVICE_ADD:
3779		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3780		if (!ctlr)
3781			break;
3782
3783		acpi_register_spi_device(ctlr, adev);
3784		put_device(&ctlr->dev);
3785		break;
3786	case ACPI_RECONFIG_DEVICE_REMOVE:
3787		if (!acpi_device_enumerated(adev))
3788			break;
3789
3790		spi = acpi_spi_find_device_by_adev(adev);
3791		if (!spi)
3792			break;
3793
3794		spi_unregister_device(spi);
3795		put_device(&spi->dev);
3796		break;
3797	}
3798
3799	return NOTIFY_OK;
3800}
3801
3802static struct notifier_block spi_acpi_notifier = {
3803	.notifier_call = acpi_spi_notify,
3804};
3805#else
3806extern struct notifier_block spi_acpi_notifier;
3807#endif
3808
3809static int __init spi_init(void)
3810{
3811	int	status;
3812
3813	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3814	if (!buf) {
3815		status = -ENOMEM;
3816		goto err0;
3817	}
3818
3819	status = bus_register(&spi_bus_type);
3820	if (status < 0)
3821		goto err1;
3822
3823	status = class_register(&spi_master_class);
3824	if (status < 0)
3825		goto err2;
3826
3827	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3828		status = class_register(&spi_slave_class);
3829		if (status < 0)
3830			goto err3;
3831	}
3832
3833	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3834		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3835	if (IS_ENABLED(CONFIG_ACPI))
3836		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3837
3838	return 0;
3839
3840err3:
3841	class_unregister(&spi_master_class);
3842err2:
3843	bus_unregister(&spi_bus_type);
3844err1:
3845	kfree(buf);
3846	buf = NULL;
3847err0:
3848	return status;
3849}
3850
3851/* board_info is normally registered in arch_initcall(),
3852 * but even essential drivers wait till later
 
3853 *
3854 * REVISIT only boardinfo really needs static linking. the rest (device and
3855 * driver registration) _could_ be dynamically linked (modular) ... costs
3856 * include needing to have boardinfo data structures be much more public.
3857 */
3858postcore_initcall(spi_init);