Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27const struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47{
48 struct ieee80211_rate *bitrates;
49 u32 mandatory_rates = 0;
50 enum ieee80211_rate_flags mandatory_flag;
51 int i;
52
53 if (WARN_ON(!sband))
54 return 1;
55
56 if (sband->band == NL80211_BAND_2GHZ)
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 else
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66}
67EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70{
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 case NL80211_BAND_LC:
78 if (chan == 14)
79 return MHZ_TO_KHZ(2484);
80 else if (chan < 14)
81 return MHZ_TO_KHZ(2407 + chan * 5);
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return MHZ_TO_KHZ(4000 + chan * 5);
86 else
87 return MHZ_TO_KHZ(5000 + chan * 5);
88 break;
89 case NL80211_BAND_6GHZ:
90 /* see 802.11ax D6.1 27.3.23.2 */
91 if (chan == 2)
92 return MHZ_TO_KHZ(5935);
93 if (chan <= 233)
94 return MHZ_TO_KHZ(5950 + chan * 5);
95 break;
96 case NL80211_BAND_60GHZ:
97 if (chan < 7)
98 return MHZ_TO_KHZ(56160 + chan * 2160);
99 break;
100 case NL80211_BAND_S1GHZ:
101 return 902000 + chan * 500;
102 default:
103 ;
104 }
105 return 0; /* not supported */
106}
107EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108
109enum nl80211_chan_width
110ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111{
112 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 return NL80211_CHAN_WIDTH_20_NOHT;
114
115 /*S1G defines a single allowed channel width per channel.
116 * Extract that width here.
117 */
118 if (chan->flags & IEEE80211_CHAN_1MHZ)
119 return NL80211_CHAN_WIDTH_1;
120 else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 return NL80211_CHAN_WIDTH_2;
122 else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 return NL80211_CHAN_WIDTH_4;
124 else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 return NL80211_CHAN_WIDTH_8;
126 else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 return NL80211_CHAN_WIDTH_16;
128
129 pr_err("unknown channel width for channel at %dKHz?\n",
130 ieee80211_channel_to_khz(chan));
131
132 return NL80211_CHAN_WIDTH_1;
133}
134EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135
136int ieee80211_freq_khz_to_channel(u32 freq)
137{
138 /* TODO: just handle MHz for now */
139 freq = KHZ_TO_MHZ(freq);
140
141 /* see 802.11 17.3.8.3.2 and Annex J */
142 if (freq == 2484)
143 return 14;
144 else if (freq < 2484)
145 return (freq - 2407) / 5;
146 else if (freq >= 4910 && freq <= 4980)
147 return (freq - 4000) / 5;
148 else if (freq < 5925)
149 return (freq - 5000) / 5;
150 else if (freq == 5935)
151 return 2;
152 else if (freq <= 45000) /* DMG band lower limit */
153 /* see 802.11ax D6.1 27.3.22.2 */
154 return (freq - 5950) / 5;
155 else if (freq >= 58320 && freq <= 70200)
156 return (freq - 56160) / 2160;
157 else
158 return 0;
159}
160EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161
162struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 u32 freq)
164{
165 enum nl80211_band band;
166 struct ieee80211_supported_band *sband;
167 int i;
168
169 for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 sband = wiphy->bands[band];
171
172 if (!sband)
173 continue;
174
175 for (i = 0; i < sband->n_channels; i++) {
176 struct ieee80211_channel *chan = &sband->channels[i];
177
178 if (ieee80211_channel_to_khz(chan) == freq)
179 return chan;
180 }
181 }
182
183 return NULL;
184}
185EXPORT_SYMBOL(ieee80211_get_channel_khz);
186
187static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188{
189 int i, want;
190
191 switch (sband->band) {
192 case NL80211_BAND_5GHZ:
193 case NL80211_BAND_6GHZ:
194 want = 3;
195 for (i = 0; i < sband->n_bitrates; i++) {
196 if (sband->bitrates[i].bitrate == 60 ||
197 sband->bitrates[i].bitrate == 120 ||
198 sband->bitrates[i].bitrate == 240) {
199 sband->bitrates[i].flags |=
200 IEEE80211_RATE_MANDATORY_A;
201 want--;
202 }
203 }
204 WARN_ON(want);
205 break;
206 case NL80211_BAND_2GHZ:
207 case NL80211_BAND_LC:
208 want = 7;
209 for (i = 0; i < sband->n_bitrates; i++) {
210 switch (sband->bitrates[i].bitrate) {
211 case 10:
212 case 20:
213 case 55:
214 case 110:
215 sband->bitrates[i].flags |=
216 IEEE80211_RATE_MANDATORY_B |
217 IEEE80211_RATE_MANDATORY_G;
218 want--;
219 break;
220 case 60:
221 case 120:
222 case 240:
223 sband->bitrates[i].flags |=
224 IEEE80211_RATE_MANDATORY_G;
225 want--;
226 fallthrough;
227 default:
228 sband->bitrates[i].flags |=
229 IEEE80211_RATE_ERP_G;
230 break;
231 }
232 }
233 WARN_ON(want != 0 && want != 3);
234 break;
235 case NL80211_BAND_60GHZ:
236 /* check for mandatory HT MCS 1..4 */
237 WARN_ON(!sband->ht_cap.ht_supported);
238 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 break;
240 case NL80211_BAND_S1GHZ:
241 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 * mandatory is ok.
243 */
244 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 break;
246 case NUM_NL80211_BANDS:
247 default:
248 WARN_ON(1);
249 break;
250 }
251}
252
253void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254{
255 enum nl80211_band band;
256
257 for (band = 0; band < NUM_NL80211_BANDS; band++)
258 if (wiphy->bands[band])
259 set_mandatory_flags_band(wiphy->bands[band]);
260}
261
262bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263{
264 int i;
265 for (i = 0; i < wiphy->n_cipher_suites; i++)
266 if (cipher == wiphy->cipher_suites[i])
267 return true;
268 return false;
269}
270
271static bool
272cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273{
274 struct wiphy *wiphy = &rdev->wiphy;
275 int i;
276
277 for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 switch (wiphy->cipher_suites[i]) {
279 case WLAN_CIPHER_SUITE_AES_CMAC:
280 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 return true;
284 }
285 }
286
287 return false;
288}
289
290bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 int key_idx, bool pairwise)
292{
293 int max_key_idx;
294
295 if (pairwise)
296 max_key_idx = 3;
297 else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 wiphy_ext_feature_isset(&rdev->wiphy,
300 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 max_key_idx = 7;
302 else if (cfg80211_igtk_cipher_supported(rdev))
303 max_key_idx = 5;
304 else
305 max_key_idx = 3;
306
307 if (key_idx < 0 || key_idx > max_key_idx)
308 return false;
309
310 return true;
311}
312
313int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 struct key_params *params, int key_idx,
315 bool pairwise, const u8 *mac_addr)
316{
317 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 return -EINVAL;
319
320 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 return -EINVAL;
322
323 if (pairwise && !mac_addr)
324 return -EINVAL;
325
326 switch (params->cipher) {
327 case WLAN_CIPHER_SUITE_TKIP:
328 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 if ((pairwise && key_idx) ||
330 params->mode != NL80211_KEY_RX_TX)
331 return -EINVAL;
332 break;
333 case WLAN_CIPHER_SUITE_CCMP:
334 case WLAN_CIPHER_SUITE_CCMP_256:
335 case WLAN_CIPHER_SUITE_GCMP:
336 case WLAN_CIPHER_SUITE_GCMP_256:
337 /* IEEE802.11-2016 allows only 0 and - when supporting
338 * Extended Key ID - 1 as index for pairwise keys.
339 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 * the driver supports Extended Key ID.
341 * @NL80211_KEY_SET_TX can't be set when installing and
342 * validating a key.
343 */
344 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 params->mode == NL80211_KEY_SET_TX)
346 return -EINVAL;
347 if (wiphy_ext_feature_isset(&rdev->wiphy,
348 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 if (pairwise && (key_idx < 0 || key_idx > 1))
350 return -EINVAL;
351 } else if (pairwise && key_idx) {
352 return -EINVAL;
353 }
354 break;
355 case WLAN_CIPHER_SUITE_AES_CMAC:
356 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 /* Disallow BIP (group-only) cipher as pairwise cipher */
360 if (pairwise)
361 return -EINVAL;
362 if (key_idx < 4)
363 return -EINVAL;
364 break;
365 case WLAN_CIPHER_SUITE_WEP40:
366 case WLAN_CIPHER_SUITE_WEP104:
367 if (key_idx > 3)
368 return -EINVAL;
369 break;
370 default:
371 break;
372 }
373
374 switch (params->cipher) {
375 case WLAN_CIPHER_SUITE_WEP40:
376 if (params->key_len != WLAN_KEY_LEN_WEP40)
377 return -EINVAL;
378 break;
379 case WLAN_CIPHER_SUITE_TKIP:
380 if (params->key_len != WLAN_KEY_LEN_TKIP)
381 return -EINVAL;
382 break;
383 case WLAN_CIPHER_SUITE_CCMP:
384 if (params->key_len != WLAN_KEY_LEN_CCMP)
385 return -EINVAL;
386 break;
387 case WLAN_CIPHER_SUITE_CCMP_256:
388 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 return -EINVAL;
390 break;
391 case WLAN_CIPHER_SUITE_GCMP:
392 if (params->key_len != WLAN_KEY_LEN_GCMP)
393 return -EINVAL;
394 break;
395 case WLAN_CIPHER_SUITE_GCMP_256:
396 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 return -EINVAL;
398 break;
399 case WLAN_CIPHER_SUITE_WEP104:
400 if (params->key_len != WLAN_KEY_LEN_WEP104)
401 return -EINVAL;
402 break;
403 case WLAN_CIPHER_SUITE_AES_CMAC:
404 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 return -EINVAL;
406 break;
407 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 return -EINVAL;
410 break;
411 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 return -EINVAL;
414 break;
415 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 return -EINVAL;
418 break;
419 default:
420 /*
421 * We don't know anything about this algorithm,
422 * allow using it -- but the driver must check
423 * all parameters! We still check below whether
424 * or not the driver supports this algorithm,
425 * of course.
426 */
427 break;
428 }
429
430 if (params->seq) {
431 switch (params->cipher) {
432 case WLAN_CIPHER_SUITE_WEP40:
433 case WLAN_CIPHER_SUITE_WEP104:
434 /* These ciphers do not use key sequence */
435 return -EINVAL;
436 case WLAN_CIPHER_SUITE_TKIP:
437 case WLAN_CIPHER_SUITE_CCMP:
438 case WLAN_CIPHER_SUITE_CCMP_256:
439 case WLAN_CIPHER_SUITE_GCMP:
440 case WLAN_CIPHER_SUITE_GCMP_256:
441 case WLAN_CIPHER_SUITE_AES_CMAC:
442 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 if (params->seq_len != 6)
446 return -EINVAL;
447 break;
448 }
449 }
450
451 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 return -EINVAL;
453
454 return 0;
455}
456
457unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458{
459 unsigned int hdrlen = 24;
460
461 if (ieee80211_is_ext(fc)) {
462 hdrlen = 4;
463 goto out;
464 }
465
466 if (ieee80211_is_data(fc)) {
467 if (ieee80211_has_a4(fc))
468 hdrlen = 30;
469 if (ieee80211_is_data_qos(fc)) {
470 hdrlen += IEEE80211_QOS_CTL_LEN;
471 if (ieee80211_has_order(fc))
472 hdrlen += IEEE80211_HT_CTL_LEN;
473 }
474 goto out;
475 }
476
477 if (ieee80211_is_mgmt(fc)) {
478 if (ieee80211_has_order(fc))
479 hdrlen += IEEE80211_HT_CTL_LEN;
480 goto out;
481 }
482
483 if (ieee80211_is_ctl(fc)) {
484 /*
485 * ACK and CTS are 10 bytes, all others 16. To see how
486 * to get this condition consider
487 * subtype mask: 0b0000000011110000 (0x00F0)
488 * ACK subtype: 0b0000000011010000 (0x00D0)
489 * CTS subtype: 0b0000000011000000 (0x00C0)
490 * bits that matter: ^^^ (0x00E0)
491 * value of those: 0b0000000011000000 (0x00C0)
492 */
493 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 hdrlen = 10;
495 else
496 hdrlen = 16;
497 }
498out:
499 return hdrlen;
500}
501EXPORT_SYMBOL(ieee80211_hdrlen);
502
503unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504{
505 const struct ieee80211_hdr *hdr =
506 (const struct ieee80211_hdr *)skb->data;
507 unsigned int hdrlen;
508
509 if (unlikely(skb->len < 10))
510 return 0;
511 hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 if (unlikely(hdrlen > skb->len))
513 return 0;
514 return hdrlen;
515}
516EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517
518static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519{
520 int ae = flags & MESH_FLAGS_AE;
521 /* 802.11-2012, 8.2.4.7.3 */
522 switch (ae) {
523 default:
524 case 0:
525 return 6;
526 case MESH_FLAGS_AE_A4:
527 return 12;
528 case MESH_FLAGS_AE_A5_A6:
529 return 18;
530 }
531}
532
533unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534{
535 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536}
537EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538
539bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540{
541 const __be16 *hdr_proto = hdr + ETH_ALEN;
542
543 if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 *hdr_proto != htons(ETH_P_AARP) &&
545 *hdr_proto != htons(ETH_P_IPX)) &&
546 !ether_addr_equal(hdr, bridge_tunnel_header))
547 return false;
548
549 *proto = *hdr_proto;
550
551 return true;
552}
553EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554
555int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556{
557 const void *mesh_addr;
558 struct {
559 struct ethhdr eth;
560 u8 flags;
561 } payload;
562 int hdrlen;
563 int ret;
564
565 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 if (ret)
567 return ret;
568
569 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570
571 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 &payload.eth.h_proto)))
574 hdrlen += ETH_ALEN + 2;
575 else if (!pskb_may_pull(skb, hdrlen))
576 return -EINVAL;
577 else
578 payload.eth.h_proto = htons(skb->len - hdrlen);
579
580 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 switch (payload.flags & MESH_FLAGS_AE) {
582 case MESH_FLAGS_AE_A4:
583 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 break;
585 case MESH_FLAGS_AE_A5_A6:
586 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 break;
588 default:
589 break;
590 }
591
592 pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594
595 return 0;
596}
597EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598
599int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 const u8 *addr, enum nl80211_iftype iftype,
601 u8 data_offset, bool is_amsdu)
602{
603 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 struct {
605 u8 hdr[ETH_ALEN] __aligned(2);
606 __be16 proto;
607 } payload;
608 struct ethhdr tmp;
609 u16 hdrlen;
610
611 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 return -1;
613
614 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 if (skb->len < hdrlen)
616 return -1;
617
618 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 * header
620 * IEEE 802.11 address fields:
621 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 * 0 0 DA SA BSSID n/a
623 * 0 1 DA BSSID SA n/a
624 * 1 0 BSSID SA DA n/a
625 * 1 1 RA TA DA SA
626 */
627 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629
630 switch (hdr->frame_control &
631 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 case cpu_to_le16(IEEE80211_FCTL_TODS):
633 if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 iftype != NL80211_IFTYPE_AP_VLAN &&
635 iftype != NL80211_IFTYPE_P2P_GO))
636 return -1;
637 break;
638 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 iftype != NL80211_IFTYPE_AP_VLAN &&
641 iftype != NL80211_IFTYPE_STATION))
642 return -1;
643 break;
644 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 if ((iftype != NL80211_IFTYPE_STATION &&
646 iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 iftype != NL80211_IFTYPE_MESH_POINT) ||
648 (is_multicast_ether_addr(tmp.h_dest) &&
649 ether_addr_equal(tmp.h_source, addr)))
650 return -1;
651 break;
652 case cpu_to_le16(0):
653 if (iftype != NL80211_IFTYPE_ADHOC &&
654 iftype != NL80211_IFTYPE_STATION &&
655 iftype != NL80211_IFTYPE_OCB)
656 return -1;
657 break;
658 }
659
660 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 /* remove RFC1042 or Bridge-Tunnel encapsulation */
664 hdrlen += ETH_ALEN + 2;
665 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 } else {
667 tmp.h_proto = htons(skb->len - hdrlen);
668 }
669
670 pskb_pull(skb, hdrlen);
671
672 if (!ehdr)
673 ehdr = skb_push(skb, sizeof(struct ethhdr));
674 memcpy(ehdr, &tmp, sizeof(tmp));
675
676 return 0;
677}
678EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679
680static void
681__frame_add_frag(struct sk_buff *skb, struct page *page,
682 void *ptr, int len, int size)
683{
684 struct skb_shared_info *sh = skb_shinfo(skb);
685 int page_offset;
686
687 get_page(page);
688 page_offset = ptr - page_address(page);
689 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690}
691
692static void
693__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 int offset, int len)
695{
696 struct skb_shared_info *sh = skb_shinfo(skb);
697 const skb_frag_t *frag = &sh->frags[0];
698 struct page *frag_page;
699 void *frag_ptr;
700 int frag_len, frag_size;
701 int head_size = skb->len - skb->data_len;
702 int cur_len;
703
704 frag_page = virt_to_head_page(skb->head);
705 frag_ptr = skb->data;
706 frag_size = head_size;
707
708 while (offset >= frag_size) {
709 offset -= frag_size;
710 frag_page = skb_frag_page(frag);
711 frag_ptr = skb_frag_address(frag);
712 frag_size = skb_frag_size(frag);
713 frag++;
714 }
715
716 frag_ptr += offset;
717 frag_len = frag_size - offset;
718
719 cur_len = min(len, frag_len);
720
721 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 len -= cur_len;
723
724 while (len > 0) {
725 frag_len = skb_frag_size(frag);
726 cur_len = min(len, frag_len);
727 __frame_add_frag(frame, skb_frag_page(frag),
728 skb_frag_address(frag), cur_len, frag_len);
729 len -= cur_len;
730 frag++;
731 }
732}
733
734static struct sk_buff *
735__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 int offset, int len, bool reuse_frag,
737 int min_len)
738{
739 struct sk_buff *frame;
740 int cur_len = len;
741
742 if (skb->len - offset < len)
743 return NULL;
744
745 /*
746 * When reusing fragments, copy some data to the head to simplify
747 * ethernet header handling and speed up protocol header processing
748 * in the stack later.
749 */
750 if (reuse_frag)
751 cur_len = min_t(int, len, min_len);
752
753 /*
754 * Allocate and reserve two bytes more for payload
755 * alignment since sizeof(struct ethhdr) is 14.
756 */
757 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 if (!frame)
759 return NULL;
760
761 frame->priority = skb->priority;
762 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764
765 len -= cur_len;
766 if (!len)
767 return frame;
768
769 offset += cur_len;
770 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771
772 return frame;
773}
774
775static u16
776ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777{
778 __le16 *field_le = field;
779 __be16 *field_be = field;
780 u16 len;
781
782 if (hdr_type >= 2)
783 len = le16_to_cpu(*field_le);
784 else
785 len = be16_to_cpu(*field_be);
786 if (hdr_type)
787 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788
789 return len;
790}
791
792bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793{
794 int offset = 0, subframe_len, padding;
795
796 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 int remaining = skb->len - offset;
798 struct {
799 __be16 len;
800 u8 mesh_flags;
801 } hdr;
802 u16 len;
803
804 if (sizeof(hdr) > remaining)
805 return false;
806
807 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 return false;
809
810 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 mesh_hdr);
812 subframe_len = sizeof(struct ethhdr) + len;
813 padding = (4 - subframe_len) & 0x3;
814
815 if (subframe_len > remaining)
816 return false;
817 }
818
819 return true;
820}
821EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822
823void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
824 const u8 *addr, enum nl80211_iftype iftype,
825 const unsigned int extra_headroom,
826 const u8 *check_da, const u8 *check_sa,
827 u8 mesh_control)
828{
829 unsigned int hlen = ALIGN(extra_headroom, 4);
830 struct sk_buff *frame = NULL;
831 int offset = 0;
832 struct {
833 struct ethhdr eth;
834 uint8_t flags;
835 } hdr;
836 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
837 bool reuse_skb = false;
838 bool last = false;
839 int copy_len = sizeof(hdr.eth);
840
841 if (iftype == NL80211_IFTYPE_MESH_POINT)
842 copy_len = sizeof(hdr);
843
844 while (!last) {
845 int remaining = skb->len - offset;
846 unsigned int subframe_len;
847 int len, mesh_len = 0;
848 u8 padding;
849
850 if (copy_len > remaining)
851 goto purge;
852
853 skb_copy_bits(skb, offset, &hdr, copy_len);
854 if (iftype == NL80211_IFTYPE_MESH_POINT)
855 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
856 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
857 mesh_control);
858 subframe_len = sizeof(struct ethhdr) + len;
859 padding = (4 - subframe_len) & 0x3;
860
861 /* the last MSDU has no padding */
862 if (subframe_len > remaining)
863 goto purge;
864 /* mitigate A-MSDU aggregation injection attacks */
865 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866 goto purge;
867
868 offset += sizeof(struct ethhdr);
869 last = remaining <= subframe_len + padding;
870
871 /* FIXME: should we really accept multicast DA? */
872 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875 offset += len + padding;
876 continue;
877 }
878
879 /* reuse skb for the last subframe */
880 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881 skb_pull(skb, offset);
882 frame = skb;
883 reuse_skb = true;
884 } else {
885 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886 reuse_frag, 32 + mesh_len);
887 if (!frame)
888 goto purge;
889
890 offset += len + padding;
891 }
892
893 skb_reset_network_header(frame);
894 frame->dev = skb->dev;
895 frame->priority = skb->priority;
896
897 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899 skb_pull(frame, ETH_ALEN + 2);
900
901 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902 __skb_queue_tail(list, frame);
903 }
904
905 if (!reuse_skb)
906 dev_kfree_skb(skb);
907
908 return;
909
910 purge:
911 __skb_queue_purge(list);
912 dev_kfree_skb(skb);
913}
914EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915
916/* Given a data frame determine the 802.1p/1d tag to use. */
917unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918 struct cfg80211_qos_map *qos_map)
919{
920 unsigned int dscp;
921 unsigned char vlan_priority;
922 unsigned int ret;
923
924 /* skb->priority values from 256->263 are magic values to
925 * directly indicate a specific 802.1d priority. This is used
926 * to allow 802.1d priority to be passed directly in from VLAN
927 * tags, etc.
928 */
929 if (skb->priority >= 256 && skb->priority <= 263) {
930 ret = skb->priority - 256;
931 goto out;
932 }
933
934 if (skb_vlan_tag_present(skb)) {
935 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936 >> VLAN_PRIO_SHIFT;
937 if (vlan_priority > 0) {
938 ret = vlan_priority;
939 goto out;
940 }
941 }
942
943 switch (skb->protocol) {
944 case htons(ETH_P_IP):
945 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946 break;
947 case htons(ETH_P_IPV6):
948 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949 break;
950 case htons(ETH_P_MPLS_UC):
951 case htons(ETH_P_MPLS_MC): {
952 struct mpls_label mpls_tmp, *mpls;
953
954 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955 sizeof(*mpls), &mpls_tmp);
956 if (!mpls)
957 return 0;
958
959 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960 >> MPLS_LS_TC_SHIFT;
961 goto out;
962 }
963 case htons(ETH_P_80221):
964 /* 802.21 is always network control traffic */
965 return 7;
966 default:
967 return 0;
968 }
969
970 if (qos_map) {
971 unsigned int i, tmp_dscp = dscp >> 2;
972
973 for (i = 0; i < qos_map->num_des; i++) {
974 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975 ret = qos_map->dscp_exception[i].up;
976 goto out;
977 }
978 }
979
980 for (i = 0; i < 8; i++) {
981 if (tmp_dscp >= qos_map->up[i].low &&
982 tmp_dscp <= qos_map->up[i].high) {
983 ret = i;
984 goto out;
985 }
986 }
987 }
988
989 /* The default mapping as defined Section 2.3 in RFC8325: The three
990 * Most Significant Bits (MSBs) of the DSCP are used as the
991 * corresponding L2 markings.
992 */
993 ret = dscp >> 5;
994
995 /* Handle specific DSCP values for which the default mapping (as
996 * described above) doesn't adhere to the intended usage of the DSCP
997 * value. See section 4 in RFC8325. Specifically, for the following
998 * Diffserv Service Classes no update is needed:
999 * - Standard: DF
1000 * - Low Priority Data: CS1
1001 * - Multimedia Conferencing: AF41, AF42, AF43
1002 * - Network Control Traffic: CS7
1003 * - Real-Time Interactive: CS4
1004 * - Signaling: CS5
1005 */
1006 switch (dscp >> 2) {
1007 case 10:
1008 case 12:
1009 case 14:
1010 /* High throughput data: AF11, AF12, AF13 */
1011 ret = 0;
1012 break;
1013 case 16:
1014 /* Operations, Administration, and Maintenance and Provisioning:
1015 * CS2
1016 */
1017 ret = 0;
1018 break;
1019 case 18:
1020 case 20:
1021 case 22:
1022 /* Low latency data: AF21, AF22, AF23 */
1023 ret = 3;
1024 break;
1025 case 24:
1026 /* Broadcasting video: CS3 */
1027 ret = 4;
1028 break;
1029 case 26:
1030 case 28:
1031 case 30:
1032 /* Multimedia Streaming: AF31, AF32, AF33 */
1033 ret = 4;
1034 break;
1035 case 44:
1036 /* Voice Admit: VA */
1037 ret = 6;
1038 break;
1039 case 46:
1040 /* Telephony traffic: EF */
1041 ret = 6;
1042 break;
1043 case 48:
1044 /* Network Control Traffic: CS6 */
1045 ret = 7;
1046 break;
1047 }
1048out:
1049 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1050}
1051EXPORT_SYMBOL(cfg80211_classify8021d);
1052
1053const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1054{
1055 const struct cfg80211_bss_ies *ies;
1056
1057 ies = rcu_dereference(bss->ies);
1058 if (!ies)
1059 return NULL;
1060
1061 return cfg80211_find_elem(id, ies->data, ies->len);
1062}
1063EXPORT_SYMBOL(ieee80211_bss_get_elem);
1064
1065void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1066{
1067 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1068 struct net_device *dev = wdev->netdev;
1069 int i;
1070
1071 if (!wdev->connect_keys)
1072 return;
1073
1074 for (i = 0; i < 4; i++) {
1075 if (!wdev->connect_keys->params[i].cipher)
1076 continue;
1077 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1078 &wdev->connect_keys->params[i])) {
1079 netdev_err(dev, "failed to set key %d\n", i);
1080 continue;
1081 }
1082 if (wdev->connect_keys->def == i &&
1083 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1084 netdev_err(dev, "failed to set defkey %d\n", i);
1085 continue;
1086 }
1087 }
1088
1089 kfree_sensitive(wdev->connect_keys);
1090 wdev->connect_keys = NULL;
1091}
1092
1093void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1094{
1095 struct cfg80211_event *ev;
1096 unsigned long flags;
1097
1098 spin_lock_irqsave(&wdev->event_lock, flags);
1099 while (!list_empty(&wdev->event_list)) {
1100 ev = list_first_entry(&wdev->event_list,
1101 struct cfg80211_event, list);
1102 list_del(&ev->list);
1103 spin_unlock_irqrestore(&wdev->event_lock, flags);
1104
1105 switch (ev->type) {
1106 case EVENT_CONNECT_RESULT:
1107 __cfg80211_connect_result(
1108 wdev->netdev,
1109 &ev->cr,
1110 ev->cr.status == WLAN_STATUS_SUCCESS);
1111 break;
1112 case EVENT_ROAMED:
1113 __cfg80211_roamed(wdev, &ev->rm);
1114 break;
1115 case EVENT_DISCONNECTED:
1116 __cfg80211_disconnected(wdev->netdev,
1117 ev->dc.ie, ev->dc.ie_len,
1118 ev->dc.reason,
1119 !ev->dc.locally_generated);
1120 break;
1121 case EVENT_IBSS_JOINED:
1122 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1123 ev->ij.channel);
1124 break;
1125 case EVENT_STOPPED:
1126 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1127 break;
1128 case EVENT_PORT_AUTHORIZED:
1129 __cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1130 ev->pa.td_bitmap,
1131 ev->pa.td_bitmap_len);
1132 break;
1133 }
1134
1135 kfree(ev);
1136
1137 spin_lock_irqsave(&wdev->event_lock, flags);
1138 }
1139 spin_unlock_irqrestore(&wdev->event_lock, flags);
1140}
1141
1142void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1143{
1144 struct wireless_dev *wdev;
1145
1146 lockdep_assert_held(&rdev->wiphy.mtx);
1147
1148 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1149 cfg80211_process_wdev_events(wdev);
1150}
1151
1152int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1153 struct net_device *dev, enum nl80211_iftype ntype,
1154 struct vif_params *params)
1155{
1156 int err;
1157 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1158
1159 lockdep_assert_held(&rdev->wiphy.mtx);
1160
1161 /* don't support changing VLANs, you just re-create them */
1162 if (otype == NL80211_IFTYPE_AP_VLAN)
1163 return -EOPNOTSUPP;
1164
1165 /* cannot change into P2P device or NAN */
1166 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1167 ntype == NL80211_IFTYPE_NAN)
1168 return -EOPNOTSUPP;
1169
1170 if (!rdev->ops->change_virtual_intf ||
1171 !(rdev->wiphy.interface_modes & (1 << ntype)))
1172 return -EOPNOTSUPP;
1173
1174 if (ntype != otype) {
1175 /* if it's part of a bridge, reject changing type to station/ibss */
1176 if (netif_is_bridge_port(dev) &&
1177 (ntype == NL80211_IFTYPE_ADHOC ||
1178 ntype == NL80211_IFTYPE_STATION ||
1179 ntype == NL80211_IFTYPE_P2P_CLIENT))
1180 return -EBUSY;
1181
1182 dev->ieee80211_ptr->use_4addr = false;
1183 rdev_set_qos_map(rdev, dev, NULL);
1184
1185 switch (otype) {
1186 case NL80211_IFTYPE_AP:
1187 case NL80211_IFTYPE_P2P_GO:
1188 cfg80211_stop_ap(rdev, dev, -1, true);
1189 break;
1190 case NL80211_IFTYPE_ADHOC:
1191 cfg80211_leave_ibss(rdev, dev, false);
1192 break;
1193 case NL80211_IFTYPE_STATION:
1194 case NL80211_IFTYPE_P2P_CLIENT:
1195 cfg80211_disconnect(rdev, dev,
1196 WLAN_REASON_DEAUTH_LEAVING, true);
1197 break;
1198 case NL80211_IFTYPE_MESH_POINT:
1199 /* mesh should be handled? */
1200 break;
1201 case NL80211_IFTYPE_OCB:
1202 cfg80211_leave_ocb(rdev, dev);
1203 break;
1204 default:
1205 break;
1206 }
1207
1208 cfg80211_process_rdev_events(rdev);
1209 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210
1211 memset(&dev->ieee80211_ptr->u, 0,
1212 sizeof(dev->ieee80211_ptr->u));
1213 memset(&dev->ieee80211_ptr->links, 0,
1214 sizeof(dev->ieee80211_ptr->links));
1215 }
1216
1217 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218
1219 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220
1221 if (!err && params && params->use_4addr != -1)
1222 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223
1224 if (!err) {
1225 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226 switch (ntype) {
1227 case NL80211_IFTYPE_STATION:
1228 if (dev->ieee80211_ptr->use_4addr)
1229 break;
1230 fallthrough;
1231 case NL80211_IFTYPE_OCB:
1232 case NL80211_IFTYPE_P2P_CLIENT:
1233 case NL80211_IFTYPE_ADHOC:
1234 dev->priv_flags |= IFF_DONT_BRIDGE;
1235 break;
1236 case NL80211_IFTYPE_P2P_GO:
1237 case NL80211_IFTYPE_AP:
1238 case NL80211_IFTYPE_AP_VLAN:
1239 case NL80211_IFTYPE_MESH_POINT:
1240 /* bridging OK */
1241 break;
1242 case NL80211_IFTYPE_MONITOR:
1243 /* monitor can't bridge anyway */
1244 break;
1245 case NL80211_IFTYPE_UNSPECIFIED:
1246 case NUM_NL80211_IFTYPES:
1247 /* not happening */
1248 break;
1249 case NL80211_IFTYPE_P2P_DEVICE:
1250 case NL80211_IFTYPE_WDS:
1251 case NL80211_IFTYPE_NAN:
1252 WARN_ON(1);
1253 break;
1254 }
1255 }
1256
1257 if (!err && ntype != otype && netif_running(dev)) {
1258 cfg80211_update_iface_num(rdev, ntype, 1);
1259 cfg80211_update_iface_num(rdev, otype, -1);
1260 }
1261
1262 return err;
1263}
1264
1265static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266{
1267 int modulation, streams, bitrate;
1268
1269 /* the formula below does only work for MCS values smaller than 32 */
1270 if (WARN_ON_ONCE(rate->mcs >= 32))
1271 return 0;
1272
1273 modulation = rate->mcs & 7;
1274 streams = (rate->mcs >> 3) + 1;
1275
1276 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277
1278 if (modulation < 4)
1279 bitrate *= (modulation + 1);
1280 else if (modulation == 4)
1281 bitrate *= (modulation + 2);
1282 else
1283 bitrate *= (modulation + 3);
1284
1285 bitrate *= streams;
1286
1287 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288 bitrate = (bitrate / 9) * 10;
1289
1290 /* do NOT round down here */
1291 return (bitrate + 50000) / 100000;
1292}
1293
1294static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295{
1296 static const u32 __mcs2bitrate[] = {
1297 /* control PHY */
1298 [0] = 275,
1299 /* SC PHY */
1300 [1] = 3850,
1301 [2] = 7700,
1302 [3] = 9625,
1303 [4] = 11550,
1304 [5] = 12512, /* 1251.25 mbps */
1305 [6] = 15400,
1306 [7] = 19250,
1307 [8] = 23100,
1308 [9] = 25025,
1309 [10] = 30800,
1310 [11] = 38500,
1311 [12] = 46200,
1312 /* OFDM PHY */
1313 [13] = 6930,
1314 [14] = 8662, /* 866.25 mbps */
1315 [15] = 13860,
1316 [16] = 17325,
1317 [17] = 20790,
1318 [18] = 27720,
1319 [19] = 34650,
1320 [20] = 41580,
1321 [21] = 45045,
1322 [22] = 51975,
1323 [23] = 62370,
1324 [24] = 67568, /* 6756.75 mbps */
1325 /* LP-SC PHY */
1326 [25] = 6260,
1327 [26] = 8340,
1328 [27] = 11120,
1329 [28] = 12510,
1330 [29] = 16680,
1331 [30] = 22240,
1332 [31] = 25030,
1333 };
1334
1335 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336 return 0;
1337
1338 return __mcs2bitrate[rate->mcs];
1339}
1340
1341static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342{
1343 static const u32 __mcs2bitrate[] = {
1344 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345 [7 - 6] = 50050, /* MCS 12.1 */
1346 [8 - 6] = 53900,
1347 [9 - 6] = 57750,
1348 [10 - 6] = 63900,
1349 [11 - 6] = 75075,
1350 [12 - 6] = 80850,
1351 };
1352
1353 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355 return 0;
1356
1357 return __mcs2bitrate[rate->mcs - 6];
1358}
1359
1360static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361{
1362 static const u32 __mcs2bitrate[] = {
1363 /* control PHY */
1364 [0] = 275,
1365 /* SC PHY */
1366 [1] = 3850,
1367 [2] = 7700,
1368 [3] = 9625,
1369 [4] = 11550,
1370 [5] = 12512, /* 1251.25 mbps */
1371 [6] = 13475,
1372 [7] = 15400,
1373 [8] = 19250,
1374 [9] = 23100,
1375 [10] = 25025,
1376 [11] = 26950,
1377 [12] = 30800,
1378 [13] = 38500,
1379 [14] = 46200,
1380 [15] = 50050,
1381 [16] = 53900,
1382 [17] = 57750,
1383 [18] = 69300,
1384 [19] = 75075,
1385 [20] = 80850,
1386 };
1387
1388 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389 return 0;
1390
1391 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392}
1393
1394static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395{
1396 static const u32 base[4][12] = {
1397 { 6500000,
1398 13000000,
1399 19500000,
1400 26000000,
1401 39000000,
1402 52000000,
1403 58500000,
1404 65000000,
1405 78000000,
1406 /* not in the spec, but some devices use this: */
1407 86700000,
1408 97500000,
1409 108300000,
1410 },
1411 { 13500000,
1412 27000000,
1413 40500000,
1414 54000000,
1415 81000000,
1416 108000000,
1417 121500000,
1418 135000000,
1419 162000000,
1420 180000000,
1421 202500000,
1422 225000000,
1423 },
1424 { 29300000,
1425 58500000,
1426 87800000,
1427 117000000,
1428 175500000,
1429 234000000,
1430 263300000,
1431 292500000,
1432 351000000,
1433 390000000,
1434 438800000,
1435 487500000,
1436 },
1437 { 58500000,
1438 117000000,
1439 175500000,
1440 234000000,
1441 351000000,
1442 468000000,
1443 526500000,
1444 585000000,
1445 702000000,
1446 780000000,
1447 877500000,
1448 975000000,
1449 },
1450 };
1451 u32 bitrate;
1452 int idx;
1453
1454 if (rate->mcs > 11)
1455 goto warn;
1456
1457 switch (rate->bw) {
1458 case RATE_INFO_BW_160:
1459 idx = 3;
1460 break;
1461 case RATE_INFO_BW_80:
1462 idx = 2;
1463 break;
1464 case RATE_INFO_BW_40:
1465 idx = 1;
1466 break;
1467 case RATE_INFO_BW_5:
1468 case RATE_INFO_BW_10:
1469 default:
1470 goto warn;
1471 case RATE_INFO_BW_20:
1472 idx = 0;
1473 }
1474
1475 bitrate = base[idx][rate->mcs];
1476 bitrate *= rate->nss;
1477
1478 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479 bitrate = (bitrate / 9) * 10;
1480
1481 /* do NOT round down here */
1482 return (bitrate + 50000) / 100000;
1483 warn:
1484 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485 rate->bw, rate->mcs, rate->nss);
1486 return 0;
1487}
1488
1489static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490{
1491#define SCALE 6144
1492 u32 mcs_divisors[14] = {
1493 102399, /* 16.666666... */
1494 51201, /* 8.333333... */
1495 34134, /* 5.555555... */
1496 25599, /* 4.166666... */
1497 17067, /* 2.777777... */
1498 12801, /* 2.083333... */
1499 11377, /* 1.851725... */
1500 10239, /* 1.666666... */
1501 8532, /* 1.388888... */
1502 7680, /* 1.250000... */
1503 6828, /* 1.111111... */
1504 6144, /* 1.000000... */
1505 5690, /* 0.926106... */
1506 5120, /* 0.833333... */
1507 };
1508 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509 u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1510 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1511 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1512 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1513 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1514 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1515 u64 tmp;
1516 u32 result;
1517
1518 if (WARN_ON_ONCE(rate->mcs > 13))
1519 return 0;
1520
1521 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522 return 0;
1523 if (WARN_ON_ONCE(rate->he_ru_alloc >
1524 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525 return 0;
1526 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527 return 0;
1528
1529 if (rate->bw == RATE_INFO_BW_160 ||
1530 (rate->bw == RATE_INFO_BW_HE_RU &&
1531 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532 result = rates_160M[rate->he_gi];
1533 else if (rate->bw == RATE_INFO_BW_80 ||
1534 (rate->bw == RATE_INFO_BW_HE_RU &&
1535 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536 result = rates_996[rate->he_gi];
1537 else if (rate->bw == RATE_INFO_BW_40 ||
1538 (rate->bw == RATE_INFO_BW_HE_RU &&
1539 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540 result = rates_484[rate->he_gi];
1541 else if (rate->bw == RATE_INFO_BW_20 ||
1542 (rate->bw == RATE_INFO_BW_HE_RU &&
1543 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544 result = rates_242[rate->he_gi];
1545 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547 result = rates_106[rate->he_gi];
1548 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550 result = rates_52[rate->he_gi];
1551 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553 result = rates_26[rate->he_gi];
1554 else {
1555 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556 rate->bw, rate->he_ru_alloc);
1557 return 0;
1558 }
1559
1560 /* now scale to the appropriate MCS */
1561 tmp = result;
1562 tmp *= SCALE;
1563 do_div(tmp, mcs_divisors[rate->mcs]);
1564 result = tmp;
1565
1566 /* and take NSS, DCM into account */
1567 result = (result * rate->nss) / 8;
1568 if (rate->he_dcm)
1569 result /= 2;
1570
1571 return result / 10000;
1572}
1573
1574static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1575{
1576#define SCALE 6144
1577 static const u32 mcs_divisors[16] = {
1578 102399, /* 16.666666... */
1579 51201, /* 8.333333... */
1580 34134, /* 5.555555... */
1581 25599, /* 4.166666... */
1582 17067, /* 2.777777... */
1583 12801, /* 2.083333... */
1584 11377, /* 1.851725... */
1585 10239, /* 1.666666... */
1586 8532, /* 1.388888... */
1587 7680, /* 1.250000... */
1588 6828, /* 1.111111... */
1589 6144, /* 1.000000... */
1590 5690, /* 0.926106... */
1591 5120, /* 0.833333... */
1592 409600, /* 66.666666... */
1593 204800, /* 33.333333... */
1594 };
1595 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1596 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1597 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1598 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1599 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1600 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1601 u64 tmp;
1602 u32 result;
1603
1604 if (WARN_ON_ONCE(rate->mcs > 15))
1605 return 0;
1606 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1607 return 0;
1608 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1609 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1610 return 0;
1611 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1612 return 0;
1613
1614 /* Bandwidth checks for MCS 14 */
1615 if (rate->mcs == 14) {
1616 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1617 rate->bw != RATE_INFO_BW_80 &&
1618 rate->bw != RATE_INFO_BW_160 &&
1619 rate->bw != RATE_INFO_BW_320) ||
1620 (rate->bw == RATE_INFO_BW_EHT_RU &&
1621 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1622 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1623 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1624 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1625 rate->bw, rate->eht_ru_alloc);
1626 return 0;
1627 }
1628 }
1629
1630 if (rate->bw == RATE_INFO_BW_320 ||
1631 (rate->bw == RATE_INFO_BW_EHT_RU &&
1632 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1633 result = 4 * rates_996[rate->eht_gi];
1634 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1635 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1636 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1637 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1639 result = 3 * rates_996[rate->eht_gi];
1640 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1641 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1642 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1643 else if (rate->bw == RATE_INFO_BW_160 ||
1644 (rate->bw == RATE_INFO_BW_EHT_RU &&
1645 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1646 result = 2 * rates_996[rate->eht_gi];
1647 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1648 rate->eht_ru_alloc ==
1649 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1650 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1651 + rates_242[rate->eht_gi];
1652 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1653 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1654 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1655 else if (rate->bw == RATE_INFO_BW_80 ||
1656 (rate->bw == RATE_INFO_BW_EHT_RU &&
1657 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1658 result = rates_996[rate->eht_gi];
1659 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1660 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1661 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1662 else if (rate->bw == RATE_INFO_BW_40 ||
1663 (rate->bw == RATE_INFO_BW_EHT_RU &&
1664 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1665 result = rates_484[rate->eht_gi];
1666 else if (rate->bw == RATE_INFO_BW_20 ||
1667 (rate->bw == RATE_INFO_BW_EHT_RU &&
1668 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1669 result = rates_242[rate->eht_gi];
1670 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1671 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1672 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1673 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1675 result = rates_106[rate->eht_gi];
1676 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1677 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1678 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1679 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1680 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1681 result = rates_52[rate->eht_gi];
1682 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1684 result = rates_26[rate->eht_gi];
1685 else {
1686 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1687 rate->bw, rate->eht_ru_alloc);
1688 return 0;
1689 }
1690
1691 /* now scale to the appropriate MCS */
1692 tmp = result;
1693 tmp *= SCALE;
1694 do_div(tmp, mcs_divisors[rate->mcs]);
1695
1696 /* and take NSS */
1697 tmp *= rate->nss;
1698 do_div(tmp, 8);
1699
1700 result = tmp;
1701
1702 return result / 10000;
1703}
1704
1705static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1706{
1707 /* For 1, 2, 4, 8 and 16 MHz channels */
1708 static const u32 base[5][11] = {
1709 { 300000,
1710 600000,
1711 900000,
1712 1200000,
1713 1800000,
1714 2400000,
1715 2700000,
1716 3000000,
1717 3600000,
1718 4000000,
1719 /* MCS 10 supported in 1 MHz only */
1720 150000,
1721 },
1722 { 650000,
1723 1300000,
1724 1950000,
1725 2600000,
1726 3900000,
1727 5200000,
1728 5850000,
1729 6500000,
1730 7800000,
1731 /* MCS 9 not valid */
1732 },
1733 { 1350000,
1734 2700000,
1735 4050000,
1736 5400000,
1737 8100000,
1738 10800000,
1739 12150000,
1740 13500000,
1741 16200000,
1742 18000000,
1743 },
1744 { 2925000,
1745 5850000,
1746 8775000,
1747 11700000,
1748 17550000,
1749 23400000,
1750 26325000,
1751 29250000,
1752 35100000,
1753 39000000,
1754 },
1755 { 8580000,
1756 11700000,
1757 17550000,
1758 23400000,
1759 35100000,
1760 46800000,
1761 52650000,
1762 58500000,
1763 70200000,
1764 78000000,
1765 },
1766 };
1767 u32 bitrate;
1768 /* default is 1 MHz index */
1769 int idx = 0;
1770
1771 if (rate->mcs >= 11)
1772 goto warn;
1773
1774 switch (rate->bw) {
1775 case RATE_INFO_BW_16:
1776 idx = 4;
1777 break;
1778 case RATE_INFO_BW_8:
1779 idx = 3;
1780 break;
1781 case RATE_INFO_BW_4:
1782 idx = 2;
1783 break;
1784 case RATE_INFO_BW_2:
1785 idx = 1;
1786 break;
1787 case RATE_INFO_BW_1:
1788 idx = 0;
1789 break;
1790 case RATE_INFO_BW_5:
1791 case RATE_INFO_BW_10:
1792 case RATE_INFO_BW_20:
1793 case RATE_INFO_BW_40:
1794 case RATE_INFO_BW_80:
1795 case RATE_INFO_BW_160:
1796 default:
1797 goto warn;
1798 }
1799
1800 bitrate = base[idx][rate->mcs];
1801 bitrate *= rate->nss;
1802
1803 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1804 bitrate = (bitrate / 9) * 10;
1805 /* do NOT round down here */
1806 return (bitrate + 50000) / 100000;
1807warn:
1808 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1809 rate->bw, rate->mcs, rate->nss);
1810 return 0;
1811}
1812
1813u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1814{
1815 if (rate->flags & RATE_INFO_FLAGS_MCS)
1816 return cfg80211_calculate_bitrate_ht(rate);
1817 if (rate->flags & RATE_INFO_FLAGS_DMG)
1818 return cfg80211_calculate_bitrate_dmg(rate);
1819 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1820 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1821 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1822 return cfg80211_calculate_bitrate_edmg(rate);
1823 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1824 return cfg80211_calculate_bitrate_vht(rate);
1825 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1826 return cfg80211_calculate_bitrate_he(rate);
1827 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1828 return cfg80211_calculate_bitrate_eht(rate);
1829 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1830 return cfg80211_calculate_bitrate_s1g(rate);
1831
1832 return rate->legacy;
1833}
1834EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1835
1836int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1837 enum ieee80211_p2p_attr_id attr,
1838 u8 *buf, unsigned int bufsize)
1839{
1840 u8 *out = buf;
1841 u16 attr_remaining = 0;
1842 bool desired_attr = false;
1843 u16 desired_len = 0;
1844
1845 while (len > 0) {
1846 unsigned int iedatalen;
1847 unsigned int copy;
1848 const u8 *iedata;
1849
1850 if (len < 2)
1851 return -EILSEQ;
1852 iedatalen = ies[1];
1853 if (iedatalen + 2 > len)
1854 return -EILSEQ;
1855
1856 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1857 goto cont;
1858
1859 if (iedatalen < 4)
1860 goto cont;
1861
1862 iedata = ies + 2;
1863
1864 /* check WFA OUI, P2P subtype */
1865 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1866 iedata[2] != 0x9a || iedata[3] != 0x09)
1867 goto cont;
1868
1869 iedatalen -= 4;
1870 iedata += 4;
1871
1872 /* check attribute continuation into this IE */
1873 copy = min_t(unsigned int, attr_remaining, iedatalen);
1874 if (copy && desired_attr) {
1875 desired_len += copy;
1876 if (out) {
1877 memcpy(out, iedata, min(bufsize, copy));
1878 out += min(bufsize, copy);
1879 bufsize -= min(bufsize, copy);
1880 }
1881
1882
1883 if (copy == attr_remaining)
1884 return desired_len;
1885 }
1886
1887 attr_remaining -= copy;
1888 if (attr_remaining)
1889 goto cont;
1890
1891 iedatalen -= copy;
1892 iedata += copy;
1893
1894 while (iedatalen > 0) {
1895 u16 attr_len;
1896
1897 /* P2P attribute ID & size must fit */
1898 if (iedatalen < 3)
1899 return -EILSEQ;
1900 desired_attr = iedata[0] == attr;
1901 attr_len = get_unaligned_le16(iedata + 1);
1902 iedatalen -= 3;
1903 iedata += 3;
1904
1905 copy = min_t(unsigned int, attr_len, iedatalen);
1906
1907 if (desired_attr) {
1908 desired_len += copy;
1909 if (out) {
1910 memcpy(out, iedata, min(bufsize, copy));
1911 out += min(bufsize, copy);
1912 bufsize -= min(bufsize, copy);
1913 }
1914
1915 if (copy == attr_len)
1916 return desired_len;
1917 }
1918
1919 iedata += copy;
1920 iedatalen -= copy;
1921 attr_remaining = attr_len - copy;
1922 }
1923
1924 cont:
1925 len -= ies[1] + 2;
1926 ies += ies[1] + 2;
1927 }
1928
1929 if (attr_remaining && desired_attr)
1930 return -EILSEQ;
1931
1932 return -ENOENT;
1933}
1934EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1935
1936static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1937{
1938 int i;
1939
1940 /* Make sure array values are legal */
1941 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1942 return false;
1943
1944 i = 0;
1945 while (i < n_ids) {
1946 if (ids[i] == WLAN_EID_EXTENSION) {
1947 if (id_ext && (ids[i + 1] == id))
1948 return true;
1949
1950 i += 2;
1951 continue;
1952 }
1953
1954 if (ids[i] == id && !id_ext)
1955 return true;
1956
1957 i++;
1958 }
1959 return false;
1960}
1961
1962static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1963{
1964 /* we assume a validly formed IEs buffer */
1965 u8 len = ies[pos + 1];
1966
1967 pos += 2 + len;
1968
1969 /* the IE itself must have 255 bytes for fragments to follow */
1970 if (len < 255)
1971 return pos;
1972
1973 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1974 len = ies[pos + 1];
1975 pos += 2 + len;
1976 }
1977
1978 return pos;
1979}
1980
1981size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1982 const u8 *ids, int n_ids,
1983 const u8 *after_ric, int n_after_ric,
1984 size_t offset)
1985{
1986 size_t pos = offset;
1987
1988 while (pos < ielen) {
1989 u8 ext = 0;
1990
1991 if (ies[pos] == WLAN_EID_EXTENSION)
1992 ext = 2;
1993 if ((pos + ext) >= ielen)
1994 break;
1995
1996 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1997 ies[pos] == WLAN_EID_EXTENSION))
1998 break;
1999
2000 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2001 pos = skip_ie(ies, ielen, pos);
2002
2003 while (pos < ielen) {
2004 if (ies[pos] == WLAN_EID_EXTENSION)
2005 ext = 2;
2006 else
2007 ext = 0;
2008
2009 if ((pos + ext) >= ielen)
2010 break;
2011
2012 if (!ieee80211_id_in_list(after_ric,
2013 n_after_ric,
2014 ies[pos + ext],
2015 ext == 2))
2016 pos = skip_ie(ies, ielen, pos);
2017 else
2018 break;
2019 }
2020 } else {
2021 pos = skip_ie(ies, ielen, pos);
2022 }
2023 }
2024
2025 return pos;
2026}
2027EXPORT_SYMBOL(ieee80211_ie_split_ric);
2028
2029void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2030{
2031 unsigned int elem_len;
2032
2033 if (!len_pos)
2034 return;
2035
2036 elem_len = skb->data + skb->len - len_pos - 1;
2037
2038 while (elem_len > 255) {
2039 /* this one is 255 */
2040 *len_pos = 255;
2041 /* remaining data gets smaller */
2042 elem_len -= 255;
2043 /* make space for the fragment ID/len in SKB */
2044 skb_put(skb, 2);
2045 /* shift back the remaining data to place fragment ID/len */
2046 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2047 /* place the fragment ID */
2048 len_pos += 255 + 1;
2049 *len_pos = frag_id;
2050 /* and point to fragment length to update later */
2051 len_pos++;
2052 }
2053
2054 *len_pos = elem_len;
2055}
2056EXPORT_SYMBOL(ieee80211_fragment_element);
2057
2058bool ieee80211_operating_class_to_band(u8 operating_class,
2059 enum nl80211_band *band)
2060{
2061 switch (operating_class) {
2062 case 112:
2063 case 115 ... 127:
2064 case 128 ... 130:
2065 *band = NL80211_BAND_5GHZ;
2066 return true;
2067 case 131 ... 135:
2068 case 137:
2069 *band = NL80211_BAND_6GHZ;
2070 return true;
2071 case 81:
2072 case 82:
2073 case 83:
2074 case 84:
2075 *band = NL80211_BAND_2GHZ;
2076 return true;
2077 case 180:
2078 *band = NL80211_BAND_60GHZ;
2079 return true;
2080 }
2081
2082 return false;
2083}
2084EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2085
2086bool ieee80211_operating_class_to_chandef(u8 operating_class,
2087 struct ieee80211_channel *chan,
2088 struct cfg80211_chan_def *chandef)
2089{
2090 u32 control_freq, offset = 0;
2091 enum nl80211_band band;
2092
2093 if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2094 !chan || band != chan->band)
2095 return false;
2096
2097 control_freq = chan->center_freq;
2098 chandef->chan = chan;
2099
2100 if (control_freq >= 5955)
2101 offset = control_freq - 5955;
2102 else if (control_freq >= 5745)
2103 offset = control_freq - 5745;
2104 else if (control_freq >= 5180)
2105 offset = control_freq - 5180;
2106 offset /= 20;
2107
2108 switch (operating_class) {
2109 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */
2110 case 82: /* 2 GHz band; 20 MHz; channel 14 */
2111 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2112 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2113 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2114 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2115 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2116 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2117 case 136: /* 6 GHz band; 20 MHz; channel 2 */
2118 chandef->center_freq1 = control_freq;
2119 chandef->width = NL80211_CHAN_WIDTH_20;
2120 return true;
2121 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */
2122 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2123 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2124 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2125 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2126 chandef->center_freq1 = control_freq + 10;
2127 chandef->width = NL80211_CHAN_WIDTH_40;
2128 return true;
2129 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */
2130 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2131 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2132 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2133 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2134 chandef->center_freq1 = control_freq - 10;
2135 chandef->width = NL80211_CHAN_WIDTH_40;
2136 return true;
2137 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2138 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2139 chandef->width = NL80211_CHAN_WIDTH_40;
2140 return true;
2141 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2142 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2143 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2144 chandef->width = NL80211_CHAN_WIDTH_80;
2145 return true;
2146 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2147 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2148 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2149 chandef->width = NL80211_CHAN_WIDTH_160;
2150 return true;
2151 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2152 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2153 /* The center_freq2 of 80+80 MHz is unknown */
2154 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2155 /* 320-1 or 320-2 channelization is unknown */
2156 default:
2157 return false;
2158 }
2159}
2160EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2161
2162bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2163 u8 *op_class)
2164{
2165 u8 vht_opclass;
2166 u32 freq = chandef->center_freq1;
2167
2168 if (freq >= 2412 && freq <= 2472) {
2169 if (chandef->width > NL80211_CHAN_WIDTH_40)
2170 return false;
2171
2172 /* 2.407 GHz, channels 1..13 */
2173 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2174 if (freq > chandef->chan->center_freq)
2175 *op_class = 83; /* HT40+ */
2176 else
2177 *op_class = 84; /* HT40- */
2178 } else {
2179 *op_class = 81;
2180 }
2181
2182 return true;
2183 }
2184
2185 if (freq == 2484) {
2186 /* channel 14 is only for IEEE 802.11b */
2187 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2188 return false;
2189
2190 *op_class = 82; /* channel 14 */
2191 return true;
2192 }
2193
2194 switch (chandef->width) {
2195 case NL80211_CHAN_WIDTH_80:
2196 vht_opclass = 128;
2197 break;
2198 case NL80211_CHAN_WIDTH_160:
2199 vht_opclass = 129;
2200 break;
2201 case NL80211_CHAN_WIDTH_80P80:
2202 vht_opclass = 130;
2203 break;
2204 case NL80211_CHAN_WIDTH_10:
2205 case NL80211_CHAN_WIDTH_5:
2206 return false; /* unsupported for now */
2207 default:
2208 vht_opclass = 0;
2209 break;
2210 }
2211
2212 /* 5 GHz, channels 36..48 */
2213 if (freq >= 5180 && freq <= 5240) {
2214 if (vht_opclass) {
2215 *op_class = vht_opclass;
2216 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2217 if (freq > chandef->chan->center_freq)
2218 *op_class = 116;
2219 else
2220 *op_class = 117;
2221 } else {
2222 *op_class = 115;
2223 }
2224
2225 return true;
2226 }
2227
2228 /* 5 GHz, channels 52..64 */
2229 if (freq >= 5260 && freq <= 5320) {
2230 if (vht_opclass) {
2231 *op_class = vht_opclass;
2232 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2233 if (freq > chandef->chan->center_freq)
2234 *op_class = 119;
2235 else
2236 *op_class = 120;
2237 } else {
2238 *op_class = 118;
2239 }
2240
2241 return true;
2242 }
2243
2244 /* 5 GHz, channels 100..144 */
2245 if (freq >= 5500 && freq <= 5720) {
2246 if (vht_opclass) {
2247 *op_class = vht_opclass;
2248 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2249 if (freq > chandef->chan->center_freq)
2250 *op_class = 122;
2251 else
2252 *op_class = 123;
2253 } else {
2254 *op_class = 121;
2255 }
2256
2257 return true;
2258 }
2259
2260 /* 5 GHz, channels 149..169 */
2261 if (freq >= 5745 && freq <= 5845) {
2262 if (vht_opclass) {
2263 *op_class = vht_opclass;
2264 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265 if (freq > chandef->chan->center_freq)
2266 *op_class = 126;
2267 else
2268 *op_class = 127;
2269 } else if (freq <= 5805) {
2270 *op_class = 124;
2271 } else {
2272 *op_class = 125;
2273 }
2274
2275 return true;
2276 }
2277
2278 /* 56.16 GHz, channel 1..4 */
2279 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2280 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2281 return false;
2282
2283 *op_class = 180;
2284 return true;
2285 }
2286
2287 /* not supported yet */
2288 return false;
2289}
2290EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2291
2292static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2293{
2294 switch (wdev->iftype) {
2295 case NL80211_IFTYPE_AP:
2296 case NL80211_IFTYPE_P2P_GO:
2297 WARN_ON(wdev->valid_links);
2298 return wdev->links[0].ap.beacon_interval;
2299 case NL80211_IFTYPE_MESH_POINT:
2300 return wdev->u.mesh.beacon_interval;
2301 case NL80211_IFTYPE_ADHOC:
2302 return wdev->u.ibss.beacon_interval;
2303 default:
2304 break;
2305 }
2306
2307 return 0;
2308}
2309
2310static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2311 u32 *beacon_int_gcd,
2312 bool *beacon_int_different,
2313 int radio_idx)
2314{
2315 struct cfg80211_registered_device *rdev;
2316 struct wireless_dev *wdev;
2317
2318 *beacon_int_gcd = 0;
2319 *beacon_int_different = false;
2320
2321 rdev = wiphy_to_rdev(wiphy);
2322 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2323 int wdev_bi;
2324
2325 /* this feature isn't supported with MLO */
2326 if (wdev->valid_links)
2327 continue;
2328
2329 /* skip wdevs not active on the given wiphy radio */
2330 if (radio_idx >= 0 &&
2331 !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2332 continue;
2333
2334 wdev_bi = cfg80211_wdev_bi(wdev);
2335
2336 if (!wdev_bi)
2337 continue;
2338
2339 if (!*beacon_int_gcd) {
2340 *beacon_int_gcd = wdev_bi;
2341 continue;
2342 }
2343
2344 if (wdev_bi == *beacon_int_gcd)
2345 continue;
2346
2347 *beacon_int_different = true;
2348 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2349 }
2350
2351 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2352 if (*beacon_int_gcd)
2353 *beacon_int_different = true;
2354 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2355 }
2356}
2357
2358int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2359 enum nl80211_iftype iftype, u32 beacon_int)
2360{
2361 /*
2362 * This is just a basic pre-condition check; if interface combinations
2363 * are possible the driver must already be checking those with a call
2364 * to cfg80211_check_combinations(), in which case we'll validate more
2365 * through the cfg80211_calculate_bi_data() call and code in
2366 * cfg80211_iter_combinations().
2367 */
2368
2369 if (beacon_int < 10 || beacon_int > 10000)
2370 return -EINVAL;
2371
2372 return 0;
2373}
2374
2375int cfg80211_iter_combinations(struct wiphy *wiphy,
2376 struct iface_combination_params *params,
2377 void (*iter)(const struct ieee80211_iface_combination *c,
2378 void *data),
2379 void *data)
2380{
2381 const struct wiphy_radio *radio = NULL;
2382 const struct ieee80211_iface_combination *c, *cs;
2383 const struct ieee80211_regdomain *regdom;
2384 enum nl80211_dfs_regions region = 0;
2385 int i, j, n, iftype;
2386 int num_interfaces = 0;
2387 u32 used_iftypes = 0;
2388 u32 beacon_int_gcd;
2389 bool beacon_int_different;
2390
2391 if (params->radio_idx >= 0)
2392 radio = &wiphy->radio[params->radio_idx];
2393
2394 /*
2395 * This is a bit strange, since the iteration used to rely only on
2396 * the data given by the driver, but here it now relies on context,
2397 * in form of the currently operating interfaces.
2398 * This is OK for all current users, and saves us from having to
2399 * push the GCD calculations into all the drivers.
2400 * In the future, this should probably rely more on data that's in
2401 * cfg80211 already - the only thing not would appear to be any new
2402 * interfaces (while being brought up) and channel/radar data.
2403 */
2404 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2405 &beacon_int_gcd, &beacon_int_different,
2406 params->radio_idx);
2407
2408 if (params->radar_detect) {
2409 rcu_read_lock();
2410 regdom = rcu_dereference(cfg80211_regdomain);
2411 if (regdom)
2412 region = regdom->dfs_region;
2413 rcu_read_unlock();
2414 }
2415
2416 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2417 num_interfaces += params->iftype_num[iftype];
2418 if (params->iftype_num[iftype] > 0 &&
2419 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2420 used_iftypes |= BIT(iftype);
2421 }
2422
2423 if (radio) {
2424 cs = radio->iface_combinations;
2425 n = radio->n_iface_combinations;
2426 } else {
2427 cs = wiphy->iface_combinations;
2428 n = wiphy->n_iface_combinations;
2429 }
2430 for (i = 0; i < n; i++) {
2431 struct ieee80211_iface_limit *limits;
2432 u32 all_iftypes = 0;
2433
2434 c = &cs[i];
2435 if (num_interfaces > c->max_interfaces)
2436 continue;
2437 if (params->num_different_channels > c->num_different_channels)
2438 continue;
2439
2440 limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2441 GFP_KERNEL);
2442 if (!limits)
2443 return -ENOMEM;
2444
2445 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2446 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2447 continue;
2448 for (j = 0; j < c->n_limits; j++) {
2449 all_iftypes |= limits[j].types;
2450 if (!(limits[j].types & BIT(iftype)))
2451 continue;
2452 if (limits[j].max < params->iftype_num[iftype])
2453 goto cont;
2454 limits[j].max -= params->iftype_num[iftype];
2455 }
2456 }
2457
2458 if (params->radar_detect !=
2459 (c->radar_detect_widths & params->radar_detect))
2460 goto cont;
2461
2462 if (params->radar_detect && c->radar_detect_regions &&
2463 !(c->radar_detect_regions & BIT(region)))
2464 goto cont;
2465
2466 /* Finally check that all iftypes that we're currently
2467 * using are actually part of this combination. If they
2468 * aren't then we can't use this combination and have
2469 * to continue to the next.
2470 */
2471 if ((all_iftypes & used_iftypes) != used_iftypes)
2472 goto cont;
2473
2474 if (beacon_int_gcd) {
2475 if (c->beacon_int_min_gcd &&
2476 beacon_int_gcd < c->beacon_int_min_gcd)
2477 goto cont;
2478 if (!c->beacon_int_min_gcd && beacon_int_different)
2479 goto cont;
2480 }
2481
2482 /* This combination covered all interface types and
2483 * supported the requested numbers, so we're good.
2484 */
2485
2486 (*iter)(c, data);
2487 cont:
2488 kfree(limits);
2489 }
2490
2491 return 0;
2492}
2493EXPORT_SYMBOL(cfg80211_iter_combinations);
2494
2495static void
2496cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2497 void *data)
2498{
2499 int *num = data;
2500 (*num)++;
2501}
2502
2503int cfg80211_check_combinations(struct wiphy *wiphy,
2504 struct iface_combination_params *params)
2505{
2506 int err, num = 0;
2507
2508 err = cfg80211_iter_combinations(wiphy, params,
2509 cfg80211_iter_sum_ifcombs, &num);
2510 if (err)
2511 return err;
2512 if (num == 0)
2513 return -EBUSY;
2514
2515 return 0;
2516}
2517EXPORT_SYMBOL(cfg80211_check_combinations);
2518
2519int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2520 const u8 *rates, unsigned int n_rates,
2521 u32 *mask)
2522{
2523 int i, j;
2524
2525 if (!sband)
2526 return -EINVAL;
2527
2528 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2529 return -EINVAL;
2530
2531 *mask = 0;
2532
2533 for (i = 0; i < n_rates; i++) {
2534 int rate = (rates[i] & 0x7f) * 5;
2535 bool found = false;
2536
2537 for (j = 0; j < sband->n_bitrates; j++) {
2538 if (sband->bitrates[j].bitrate == rate) {
2539 found = true;
2540 *mask |= BIT(j);
2541 break;
2542 }
2543 }
2544 if (!found)
2545 return -EINVAL;
2546 }
2547
2548 /*
2549 * mask must have at least one bit set here since we
2550 * didn't accept a 0-length rates array nor allowed
2551 * entries in the array that didn't exist
2552 */
2553
2554 return 0;
2555}
2556
2557unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2558{
2559 enum nl80211_band band;
2560 unsigned int n_channels = 0;
2561
2562 for (band = 0; band < NUM_NL80211_BANDS; band++)
2563 if (wiphy->bands[band])
2564 n_channels += wiphy->bands[band]->n_channels;
2565
2566 return n_channels;
2567}
2568EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2569
2570int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2571 struct station_info *sinfo)
2572{
2573 struct cfg80211_registered_device *rdev;
2574 struct wireless_dev *wdev;
2575 int ret;
2576
2577 wdev = dev->ieee80211_ptr;
2578 if (!wdev)
2579 return -EOPNOTSUPP;
2580
2581 rdev = wiphy_to_rdev(wdev->wiphy);
2582 if (!rdev->ops->get_station)
2583 return -EOPNOTSUPP;
2584
2585 memset(sinfo, 0, sizeof(*sinfo));
2586
2587 wiphy_lock(&rdev->wiphy);
2588 ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2589 wiphy_unlock(&rdev->wiphy);
2590
2591 return ret;
2592}
2593EXPORT_SYMBOL(cfg80211_get_station);
2594
2595void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2596{
2597 int i;
2598
2599 if (!f)
2600 return;
2601
2602 kfree(f->serv_spec_info);
2603 kfree(f->srf_bf);
2604 kfree(f->srf_macs);
2605 for (i = 0; i < f->num_rx_filters; i++)
2606 kfree(f->rx_filters[i].filter);
2607
2608 for (i = 0; i < f->num_tx_filters; i++)
2609 kfree(f->tx_filters[i].filter);
2610
2611 kfree(f->rx_filters);
2612 kfree(f->tx_filters);
2613 kfree(f);
2614}
2615EXPORT_SYMBOL(cfg80211_free_nan_func);
2616
2617bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2618 u32 center_freq_khz, u32 bw_khz)
2619{
2620 u32 start_freq_khz, end_freq_khz;
2621
2622 start_freq_khz = center_freq_khz - (bw_khz / 2);
2623 end_freq_khz = center_freq_khz + (bw_khz / 2);
2624
2625 if (start_freq_khz >= freq_range->start_freq_khz &&
2626 end_freq_khz <= freq_range->end_freq_khz)
2627 return true;
2628
2629 return false;
2630}
2631
2632int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2633{
2634 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2635 sizeof(*(sinfo->pertid)),
2636 gfp);
2637 if (!sinfo->pertid)
2638 return -ENOMEM;
2639
2640 return 0;
2641}
2642EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2643
2644/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2645/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2646const unsigned char rfc1042_header[] __aligned(2) =
2647 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2648EXPORT_SYMBOL(rfc1042_header);
2649
2650/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2651const unsigned char bridge_tunnel_header[] __aligned(2) =
2652 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2653EXPORT_SYMBOL(bridge_tunnel_header);
2654
2655/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2656struct iapp_layer2_update {
2657 u8 da[ETH_ALEN]; /* broadcast */
2658 u8 sa[ETH_ALEN]; /* STA addr */
2659 __be16 len; /* 6 */
2660 u8 dsap; /* 0 */
2661 u8 ssap; /* 0 */
2662 u8 control;
2663 u8 xid_info[3];
2664} __packed;
2665
2666void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2667{
2668 struct iapp_layer2_update *msg;
2669 struct sk_buff *skb;
2670
2671 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2672 * bridge devices */
2673
2674 skb = dev_alloc_skb(sizeof(*msg));
2675 if (!skb)
2676 return;
2677 msg = skb_put(skb, sizeof(*msg));
2678
2679 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2680 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2681
2682 eth_broadcast_addr(msg->da);
2683 ether_addr_copy(msg->sa, addr);
2684 msg->len = htons(6);
2685 msg->dsap = 0;
2686 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2687 msg->control = 0xaf; /* XID response lsb.1111F101.
2688 * F=0 (no poll command; unsolicited frame) */
2689 msg->xid_info[0] = 0x81; /* XID format identifier */
2690 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2691 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2692
2693 skb->dev = dev;
2694 skb->protocol = eth_type_trans(skb, dev);
2695 memset(skb->cb, 0, sizeof(skb->cb));
2696 netif_rx(skb);
2697}
2698EXPORT_SYMBOL(cfg80211_send_layer2_update);
2699
2700int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2701 enum ieee80211_vht_chanwidth bw,
2702 int mcs, bool ext_nss_bw_capable,
2703 unsigned int max_vht_nss)
2704{
2705 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2706 int ext_nss_bw;
2707 int supp_width;
2708 int i, mcs_encoding;
2709
2710 if (map == 0xffff)
2711 return 0;
2712
2713 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2714 return 0;
2715 if (mcs <= 7)
2716 mcs_encoding = 0;
2717 else if (mcs == 8)
2718 mcs_encoding = 1;
2719 else
2720 mcs_encoding = 2;
2721
2722 if (!max_vht_nss) {
2723 /* find max_vht_nss for the given MCS */
2724 for (i = 7; i >= 0; i--) {
2725 int supp = (map >> (2 * i)) & 3;
2726
2727 if (supp == 3)
2728 continue;
2729
2730 if (supp >= mcs_encoding) {
2731 max_vht_nss = i + 1;
2732 break;
2733 }
2734 }
2735 }
2736
2737 if (!(cap->supp_mcs.tx_mcs_map &
2738 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2739 return max_vht_nss;
2740
2741 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2742 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2743 supp_width = le32_get_bits(cap->vht_cap_info,
2744 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2745
2746 /* if not capable, treat ext_nss_bw as 0 */
2747 if (!ext_nss_bw_capable)
2748 ext_nss_bw = 0;
2749
2750 /* This is invalid */
2751 if (supp_width == 3)
2752 return 0;
2753
2754 /* This is an invalid combination so pretend nothing is supported */
2755 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2756 return 0;
2757
2758 /*
2759 * Cover all the special cases according to IEEE 802.11-2016
2760 * Table 9-250. All other cases are either factor of 1 or not
2761 * valid/supported.
2762 */
2763 switch (bw) {
2764 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2765 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2766 if ((supp_width == 1 || supp_width == 2) &&
2767 ext_nss_bw == 3)
2768 return 2 * max_vht_nss;
2769 break;
2770 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2771 if (supp_width == 0 &&
2772 (ext_nss_bw == 1 || ext_nss_bw == 2))
2773 return max_vht_nss / 2;
2774 if (supp_width == 0 &&
2775 ext_nss_bw == 3)
2776 return (3 * max_vht_nss) / 4;
2777 if (supp_width == 1 &&
2778 ext_nss_bw == 3)
2779 return 2 * max_vht_nss;
2780 break;
2781 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2782 if (supp_width == 0 && ext_nss_bw == 1)
2783 return 0; /* not possible */
2784 if (supp_width == 0 &&
2785 ext_nss_bw == 2)
2786 return max_vht_nss / 2;
2787 if (supp_width == 0 &&
2788 ext_nss_bw == 3)
2789 return (3 * max_vht_nss) / 4;
2790 if (supp_width == 1 &&
2791 ext_nss_bw == 0)
2792 return 0; /* not possible */
2793 if (supp_width == 1 &&
2794 ext_nss_bw == 1)
2795 return max_vht_nss / 2;
2796 if (supp_width == 1 &&
2797 ext_nss_bw == 2)
2798 return (3 * max_vht_nss) / 4;
2799 break;
2800 }
2801
2802 /* not covered or invalid combination received */
2803 return max_vht_nss;
2804}
2805EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2806
2807bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2808 bool is_4addr, u8 check_swif)
2809
2810{
2811 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2812
2813 switch (check_swif) {
2814 case 0:
2815 if (is_vlan && is_4addr)
2816 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2817 return wiphy->interface_modes & BIT(iftype);
2818 case 1:
2819 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2820 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2821 return wiphy->software_iftypes & BIT(iftype);
2822 default:
2823 break;
2824 }
2825
2826 return false;
2827}
2828EXPORT_SYMBOL(cfg80211_iftype_allowed);
2829
2830void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2831{
2832 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2833
2834 lockdep_assert_wiphy(wdev->wiphy);
2835
2836 switch (wdev->iftype) {
2837 case NL80211_IFTYPE_AP:
2838 case NL80211_IFTYPE_P2P_GO:
2839 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2840 break;
2841 default:
2842 /* per-link not relevant */
2843 break;
2844 }
2845
2846 rdev_del_intf_link(rdev, wdev, link_id);
2847
2848 wdev->valid_links &= ~BIT(link_id);
2849 eth_zero_addr(wdev->links[link_id].addr);
2850}
2851
2852void cfg80211_remove_links(struct wireless_dev *wdev)
2853{
2854 unsigned int link_id;
2855
2856 /*
2857 * links are controlled by upper layers (userspace/cfg)
2858 * only for AP mode, so only remove them here for AP
2859 */
2860 if (wdev->iftype != NL80211_IFTYPE_AP)
2861 return;
2862
2863 if (wdev->valid_links) {
2864 for_each_valid_link(wdev, link_id)
2865 cfg80211_remove_link(wdev, link_id);
2866 }
2867}
2868
2869int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2870 struct wireless_dev *wdev)
2871{
2872 cfg80211_remove_links(wdev);
2873
2874 return rdev_del_virtual_intf(rdev, wdev);
2875}
2876
2877const struct wiphy_iftype_ext_capab *
2878cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2879{
2880 int i;
2881
2882 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2883 if (wiphy->iftype_ext_capab[i].iftype == type)
2884 return &wiphy->iftype_ext_capab[i];
2885 }
2886
2887 return NULL;
2888}
2889EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2890
2891static bool
2892ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2893 u32 freq, u32 width)
2894{
2895 const struct wiphy_radio_freq_range *r;
2896 int i;
2897
2898 for (i = 0; i < radio->n_freq_range; i++) {
2899 r = &radio->freq_range[i];
2900 if (freq - width / 2 >= r->start_freq &&
2901 freq + width / 2 <= r->end_freq)
2902 return true;
2903 }
2904
2905 return false;
2906}
2907
2908bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2909 const struct cfg80211_chan_def *chandef)
2910{
2911 u32 freq, width;
2912
2913 freq = ieee80211_chandef_to_khz(chandef);
2914 width = nl80211_chan_width_to_mhz(chandef->width);
2915 if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2916 return false;
2917
2918 freq = MHZ_TO_KHZ(chandef->center_freq2);
2919 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2920 return false;
2921
2922 return true;
2923}
2924EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2925
2926bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2927 struct ieee80211_channel *chan)
2928{
2929 struct wiphy *wiphy = wdev->wiphy;
2930 const struct wiphy_radio *radio;
2931 struct cfg80211_chan_def chandef;
2932 u32 radio_mask;
2933 int i;
2934
2935 radio_mask = wdev->radio_mask;
2936 if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2937 return true;
2938
2939 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2940 for (i = 0; i < wiphy->n_radio; i++) {
2941 if (!(radio_mask & BIT(i)))
2942 continue;
2943
2944 radio = &wiphy->radio[i];
2945 if (!cfg80211_radio_chandef_valid(radio, &chandef))
2946 continue;
2947
2948 return true;
2949 }
2950
2951 return false;
2952}
2953EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27const struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47{
48 struct ieee80211_rate *bitrates;
49 u32 mandatory_rates = 0;
50 enum ieee80211_rate_flags mandatory_flag;
51 int i;
52
53 if (WARN_ON(!sband))
54 return 1;
55
56 if (sband->band == NL80211_BAND_2GHZ)
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 else
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66}
67EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70{
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 case NL80211_BAND_LC:
78 if (chan == 14)
79 return MHZ_TO_KHZ(2484);
80 else if (chan < 14)
81 return MHZ_TO_KHZ(2407 + chan * 5);
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return MHZ_TO_KHZ(4000 + chan * 5);
86 else
87 return MHZ_TO_KHZ(5000 + chan * 5);
88 break;
89 case NL80211_BAND_6GHZ:
90 /* see 802.11ax D6.1 27.3.23.2 */
91 if (chan == 2)
92 return MHZ_TO_KHZ(5935);
93 if (chan <= 233)
94 return MHZ_TO_KHZ(5950 + chan * 5);
95 break;
96 case NL80211_BAND_60GHZ:
97 if (chan < 7)
98 return MHZ_TO_KHZ(56160 + chan * 2160);
99 break;
100 case NL80211_BAND_S1GHZ:
101 return 902000 + chan * 500;
102 default:
103 ;
104 }
105 return 0; /* not supported */
106}
107EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108
109enum nl80211_chan_width
110ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111{
112 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 return NL80211_CHAN_WIDTH_20_NOHT;
114
115 /*S1G defines a single allowed channel width per channel.
116 * Extract that width here.
117 */
118 if (chan->flags & IEEE80211_CHAN_1MHZ)
119 return NL80211_CHAN_WIDTH_1;
120 else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 return NL80211_CHAN_WIDTH_2;
122 else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 return NL80211_CHAN_WIDTH_4;
124 else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 return NL80211_CHAN_WIDTH_8;
126 else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 return NL80211_CHAN_WIDTH_16;
128
129 pr_err("unknown channel width for channel at %dKHz?\n",
130 ieee80211_channel_to_khz(chan));
131
132 return NL80211_CHAN_WIDTH_1;
133}
134EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135
136int ieee80211_freq_khz_to_channel(u32 freq)
137{
138 /* TODO: just handle MHz for now */
139 freq = KHZ_TO_MHZ(freq);
140
141 /* see 802.11 17.3.8.3.2 and Annex J */
142 if (freq == 2484)
143 return 14;
144 else if (freq < 2484)
145 return (freq - 2407) / 5;
146 else if (freq >= 4910 && freq <= 4980)
147 return (freq - 4000) / 5;
148 else if (freq < 5925)
149 return (freq - 5000) / 5;
150 else if (freq == 5935)
151 return 2;
152 else if (freq <= 45000) /* DMG band lower limit */
153 /* see 802.11ax D6.1 27.3.22.2 */
154 return (freq - 5950) / 5;
155 else if (freq >= 58320 && freq <= 70200)
156 return (freq - 56160) / 2160;
157 else
158 return 0;
159}
160EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161
162struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 u32 freq)
164{
165 enum nl80211_band band;
166 struct ieee80211_supported_band *sband;
167 int i;
168
169 for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 sband = wiphy->bands[band];
171
172 if (!sband)
173 continue;
174
175 for (i = 0; i < sband->n_channels; i++) {
176 struct ieee80211_channel *chan = &sband->channels[i];
177
178 if (ieee80211_channel_to_khz(chan) == freq)
179 return chan;
180 }
181 }
182
183 return NULL;
184}
185EXPORT_SYMBOL(ieee80211_get_channel_khz);
186
187static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188{
189 int i, want;
190
191 switch (sband->band) {
192 case NL80211_BAND_5GHZ:
193 case NL80211_BAND_6GHZ:
194 want = 3;
195 for (i = 0; i < sband->n_bitrates; i++) {
196 if (sband->bitrates[i].bitrate == 60 ||
197 sband->bitrates[i].bitrate == 120 ||
198 sband->bitrates[i].bitrate == 240) {
199 sband->bitrates[i].flags |=
200 IEEE80211_RATE_MANDATORY_A;
201 want--;
202 }
203 }
204 WARN_ON(want);
205 break;
206 case NL80211_BAND_2GHZ:
207 case NL80211_BAND_LC:
208 want = 7;
209 for (i = 0; i < sband->n_bitrates; i++) {
210 switch (sband->bitrates[i].bitrate) {
211 case 10:
212 case 20:
213 case 55:
214 case 110:
215 sband->bitrates[i].flags |=
216 IEEE80211_RATE_MANDATORY_B |
217 IEEE80211_RATE_MANDATORY_G;
218 want--;
219 break;
220 case 60:
221 case 120:
222 case 240:
223 sband->bitrates[i].flags |=
224 IEEE80211_RATE_MANDATORY_G;
225 want--;
226 fallthrough;
227 default:
228 sband->bitrates[i].flags |=
229 IEEE80211_RATE_ERP_G;
230 break;
231 }
232 }
233 WARN_ON(want != 0 && want != 3);
234 break;
235 case NL80211_BAND_60GHZ:
236 /* check for mandatory HT MCS 1..4 */
237 WARN_ON(!sband->ht_cap.ht_supported);
238 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 break;
240 case NL80211_BAND_S1GHZ:
241 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 * mandatory is ok.
243 */
244 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 break;
246 case NUM_NL80211_BANDS:
247 default:
248 WARN_ON(1);
249 break;
250 }
251}
252
253void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254{
255 enum nl80211_band band;
256
257 for (band = 0; band < NUM_NL80211_BANDS; band++)
258 if (wiphy->bands[band])
259 set_mandatory_flags_band(wiphy->bands[band]);
260}
261
262bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263{
264 int i;
265 for (i = 0; i < wiphy->n_cipher_suites; i++)
266 if (cipher == wiphy->cipher_suites[i])
267 return true;
268 return false;
269}
270
271static bool
272cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273{
274 struct wiphy *wiphy = &rdev->wiphy;
275 int i;
276
277 for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 switch (wiphy->cipher_suites[i]) {
279 case WLAN_CIPHER_SUITE_AES_CMAC:
280 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 return true;
284 }
285 }
286
287 return false;
288}
289
290bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 int key_idx, bool pairwise)
292{
293 int max_key_idx;
294
295 if (pairwise)
296 max_key_idx = 3;
297 else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 wiphy_ext_feature_isset(&rdev->wiphy,
300 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 max_key_idx = 7;
302 else if (cfg80211_igtk_cipher_supported(rdev))
303 max_key_idx = 5;
304 else
305 max_key_idx = 3;
306
307 if (key_idx < 0 || key_idx > max_key_idx)
308 return false;
309
310 return true;
311}
312
313int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 struct key_params *params, int key_idx,
315 bool pairwise, const u8 *mac_addr)
316{
317 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 return -EINVAL;
319
320 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 return -EINVAL;
322
323 if (pairwise && !mac_addr)
324 return -EINVAL;
325
326 switch (params->cipher) {
327 case WLAN_CIPHER_SUITE_TKIP:
328 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 if ((pairwise && key_idx) ||
330 params->mode != NL80211_KEY_RX_TX)
331 return -EINVAL;
332 break;
333 case WLAN_CIPHER_SUITE_CCMP:
334 case WLAN_CIPHER_SUITE_CCMP_256:
335 case WLAN_CIPHER_SUITE_GCMP:
336 case WLAN_CIPHER_SUITE_GCMP_256:
337 /* IEEE802.11-2016 allows only 0 and - when supporting
338 * Extended Key ID - 1 as index for pairwise keys.
339 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 * the driver supports Extended Key ID.
341 * @NL80211_KEY_SET_TX can't be set when installing and
342 * validating a key.
343 */
344 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 params->mode == NL80211_KEY_SET_TX)
346 return -EINVAL;
347 if (wiphy_ext_feature_isset(&rdev->wiphy,
348 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 if (pairwise && (key_idx < 0 || key_idx > 1))
350 return -EINVAL;
351 } else if (pairwise && key_idx) {
352 return -EINVAL;
353 }
354 break;
355 case WLAN_CIPHER_SUITE_AES_CMAC:
356 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 /* Disallow BIP (group-only) cipher as pairwise cipher */
360 if (pairwise)
361 return -EINVAL;
362 if (key_idx < 4)
363 return -EINVAL;
364 break;
365 case WLAN_CIPHER_SUITE_WEP40:
366 case WLAN_CIPHER_SUITE_WEP104:
367 if (key_idx > 3)
368 return -EINVAL;
369 break;
370 default:
371 break;
372 }
373
374 switch (params->cipher) {
375 case WLAN_CIPHER_SUITE_WEP40:
376 if (params->key_len != WLAN_KEY_LEN_WEP40)
377 return -EINVAL;
378 break;
379 case WLAN_CIPHER_SUITE_TKIP:
380 if (params->key_len != WLAN_KEY_LEN_TKIP)
381 return -EINVAL;
382 break;
383 case WLAN_CIPHER_SUITE_CCMP:
384 if (params->key_len != WLAN_KEY_LEN_CCMP)
385 return -EINVAL;
386 break;
387 case WLAN_CIPHER_SUITE_CCMP_256:
388 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 return -EINVAL;
390 break;
391 case WLAN_CIPHER_SUITE_GCMP:
392 if (params->key_len != WLAN_KEY_LEN_GCMP)
393 return -EINVAL;
394 break;
395 case WLAN_CIPHER_SUITE_GCMP_256:
396 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 return -EINVAL;
398 break;
399 case WLAN_CIPHER_SUITE_WEP104:
400 if (params->key_len != WLAN_KEY_LEN_WEP104)
401 return -EINVAL;
402 break;
403 case WLAN_CIPHER_SUITE_AES_CMAC:
404 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 return -EINVAL;
406 break;
407 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 return -EINVAL;
410 break;
411 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 return -EINVAL;
414 break;
415 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 return -EINVAL;
418 break;
419 default:
420 /*
421 * We don't know anything about this algorithm,
422 * allow using it -- but the driver must check
423 * all parameters! We still check below whether
424 * or not the driver supports this algorithm,
425 * of course.
426 */
427 break;
428 }
429
430 if (params->seq) {
431 switch (params->cipher) {
432 case WLAN_CIPHER_SUITE_WEP40:
433 case WLAN_CIPHER_SUITE_WEP104:
434 /* These ciphers do not use key sequence */
435 return -EINVAL;
436 case WLAN_CIPHER_SUITE_TKIP:
437 case WLAN_CIPHER_SUITE_CCMP:
438 case WLAN_CIPHER_SUITE_CCMP_256:
439 case WLAN_CIPHER_SUITE_GCMP:
440 case WLAN_CIPHER_SUITE_GCMP_256:
441 case WLAN_CIPHER_SUITE_AES_CMAC:
442 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 if (params->seq_len != 6)
446 return -EINVAL;
447 break;
448 }
449 }
450
451 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 return -EINVAL;
453
454 return 0;
455}
456
457unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458{
459 unsigned int hdrlen = 24;
460
461 if (ieee80211_is_ext(fc)) {
462 hdrlen = 4;
463 goto out;
464 }
465
466 if (ieee80211_is_data(fc)) {
467 if (ieee80211_has_a4(fc))
468 hdrlen = 30;
469 if (ieee80211_is_data_qos(fc)) {
470 hdrlen += IEEE80211_QOS_CTL_LEN;
471 if (ieee80211_has_order(fc))
472 hdrlen += IEEE80211_HT_CTL_LEN;
473 }
474 goto out;
475 }
476
477 if (ieee80211_is_mgmt(fc)) {
478 if (ieee80211_has_order(fc))
479 hdrlen += IEEE80211_HT_CTL_LEN;
480 goto out;
481 }
482
483 if (ieee80211_is_ctl(fc)) {
484 /*
485 * ACK and CTS are 10 bytes, all others 16. To see how
486 * to get this condition consider
487 * subtype mask: 0b0000000011110000 (0x00F0)
488 * ACK subtype: 0b0000000011010000 (0x00D0)
489 * CTS subtype: 0b0000000011000000 (0x00C0)
490 * bits that matter: ^^^ (0x00E0)
491 * value of those: 0b0000000011000000 (0x00C0)
492 */
493 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 hdrlen = 10;
495 else
496 hdrlen = 16;
497 }
498out:
499 return hdrlen;
500}
501EXPORT_SYMBOL(ieee80211_hdrlen);
502
503unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504{
505 const struct ieee80211_hdr *hdr =
506 (const struct ieee80211_hdr *)skb->data;
507 unsigned int hdrlen;
508
509 if (unlikely(skb->len < 10))
510 return 0;
511 hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 if (unlikely(hdrlen > skb->len))
513 return 0;
514 return hdrlen;
515}
516EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517
518static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519{
520 int ae = flags & MESH_FLAGS_AE;
521 /* 802.11-2012, 8.2.4.7.3 */
522 switch (ae) {
523 default:
524 case 0:
525 return 6;
526 case MESH_FLAGS_AE_A4:
527 return 12;
528 case MESH_FLAGS_AE_A5_A6:
529 return 18;
530 }
531}
532
533unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534{
535 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536}
537EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538
539bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540{
541 const __be16 *hdr_proto = hdr + ETH_ALEN;
542
543 if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 *hdr_proto != htons(ETH_P_AARP) &&
545 *hdr_proto != htons(ETH_P_IPX)) &&
546 !ether_addr_equal(hdr, bridge_tunnel_header))
547 return false;
548
549 *proto = *hdr_proto;
550
551 return true;
552}
553EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554
555int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556{
557 const void *mesh_addr;
558 struct {
559 struct ethhdr eth;
560 u8 flags;
561 } payload;
562 int hdrlen;
563 int ret;
564
565 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 if (ret)
567 return ret;
568
569 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570
571 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 &payload.eth.h_proto)))
574 hdrlen += ETH_ALEN + 2;
575 else if (!pskb_may_pull(skb, hdrlen))
576 return -EINVAL;
577 else
578 payload.eth.h_proto = htons(skb->len - hdrlen);
579
580 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 switch (payload.flags & MESH_FLAGS_AE) {
582 case MESH_FLAGS_AE_A4:
583 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 break;
585 case MESH_FLAGS_AE_A5_A6:
586 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 break;
588 default:
589 break;
590 }
591
592 pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594
595 return 0;
596}
597EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598
599int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 const u8 *addr, enum nl80211_iftype iftype,
601 u8 data_offset, bool is_amsdu)
602{
603 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 struct {
605 u8 hdr[ETH_ALEN] __aligned(2);
606 __be16 proto;
607 } payload;
608 struct ethhdr tmp;
609 u16 hdrlen;
610
611 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 return -1;
613
614 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 if (skb->len < hdrlen)
616 return -1;
617
618 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 * header
620 * IEEE 802.11 address fields:
621 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 * 0 0 DA SA BSSID n/a
623 * 0 1 DA BSSID SA n/a
624 * 1 0 BSSID SA DA n/a
625 * 1 1 RA TA DA SA
626 */
627 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629
630 switch (hdr->frame_control &
631 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 case cpu_to_le16(IEEE80211_FCTL_TODS):
633 if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 iftype != NL80211_IFTYPE_AP_VLAN &&
635 iftype != NL80211_IFTYPE_P2P_GO))
636 return -1;
637 break;
638 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 iftype != NL80211_IFTYPE_AP_VLAN &&
641 iftype != NL80211_IFTYPE_STATION))
642 return -1;
643 break;
644 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 if ((iftype != NL80211_IFTYPE_STATION &&
646 iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 iftype != NL80211_IFTYPE_MESH_POINT) ||
648 (is_multicast_ether_addr(tmp.h_dest) &&
649 ether_addr_equal(tmp.h_source, addr)))
650 return -1;
651 break;
652 case cpu_to_le16(0):
653 if (iftype != NL80211_IFTYPE_ADHOC &&
654 iftype != NL80211_IFTYPE_STATION &&
655 iftype != NL80211_IFTYPE_OCB)
656 return -1;
657 break;
658 }
659
660 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 /* remove RFC1042 or Bridge-Tunnel encapsulation */
664 hdrlen += ETH_ALEN + 2;
665 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 } else {
667 tmp.h_proto = htons(skb->len - hdrlen);
668 }
669
670 pskb_pull(skb, hdrlen);
671
672 if (!ehdr)
673 ehdr = skb_push(skb, sizeof(struct ethhdr));
674 memcpy(ehdr, &tmp, sizeof(tmp));
675
676 return 0;
677}
678EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679
680static void
681__frame_add_frag(struct sk_buff *skb, struct page *page,
682 void *ptr, int len, int size)
683{
684 struct skb_shared_info *sh = skb_shinfo(skb);
685 int page_offset;
686
687 get_page(page);
688 page_offset = ptr - page_address(page);
689 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690}
691
692static void
693__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 int offset, int len)
695{
696 struct skb_shared_info *sh = skb_shinfo(skb);
697 const skb_frag_t *frag = &sh->frags[0];
698 struct page *frag_page;
699 void *frag_ptr;
700 int frag_len, frag_size;
701 int head_size = skb->len - skb->data_len;
702 int cur_len;
703
704 frag_page = virt_to_head_page(skb->head);
705 frag_ptr = skb->data;
706 frag_size = head_size;
707
708 while (offset >= frag_size) {
709 offset -= frag_size;
710 frag_page = skb_frag_page(frag);
711 frag_ptr = skb_frag_address(frag);
712 frag_size = skb_frag_size(frag);
713 frag++;
714 }
715
716 frag_ptr += offset;
717 frag_len = frag_size - offset;
718
719 cur_len = min(len, frag_len);
720
721 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 len -= cur_len;
723
724 while (len > 0) {
725 frag_len = skb_frag_size(frag);
726 cur_len = min(len, frag_len);
727 __frame_add_frag(frame, skb_frag_page(frag),
728 skb_frag_address(frag), cur_len, frag_len);
729 len -= cur_len;
730 frag++;
731 }
732}
733
734static struct sk_buff *
735__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 int offset, int len, bool reuse_frag,
737 int min_len)
738{
739 struct sk_buff *frame;
740 int cur_len = len;
741
742 if (skb->len - offset < len)
743 return NULL;
744
745 /*
746 * When reusing framents, copy some data to the head to simplify
747 * ethernet header handling and speed up protocol header processing
748 * in the stack later.
749 */
750 if (reuse_frag)
751 cur_len = min_t(int, len, min_len);
752
753 /*
754 * Allocate and reserve two bytes more for payload
755 * alignment since sizeof(struct ethhdr) is 14.
756 */
757 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 if (!frame)
759 return NULL;
760
761 frame->priority = skb->priority;
762 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764
765 len -= cur_len;
766 if (!len)
767 return frame;
768
769 offset += cur_len;
770 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771
772 return frame;
773}
774
775static u16
776ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777{
778 __le16 *field_le = field;
779 __be16 *field_be = field;
780 u16 len;
781
782 if (hdr_type >= 2)
783 len = le16_to_cpu(*field_le);
784 else
785 len = be16_to_cpu(*field_be);
786 if (hdr_type)
787 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788
789 return len;
790}
791
792bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793{
794 int offset = 0, remaining, subframe_len, padding;
795
796 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 struct {
798 __be16 len;
799 u8 mesh_flags;
800 } hdr;
801 u16 len;
802
803 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
804 return false;
805
806 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
807 mesh_hdr);
808 subframe_len = sizeof(struct ethhdr) + len;
809 padding = (4 - subframe_len) & 0x3;
810 remaining = skb->len - offset;
811
812 if (subframe_len > remaining)
813 return false;
814 }
815
816 return true;
817}
818EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
819
820void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
821 const u8 *addr, enum nl80211_iftype iftype,
822 const unsigned int extra_headroom,
823 const u8 *check_da, const u8 *check_sa,
824 u8 mesh_control)
825{
826 unsigned int hlen = ALIGN(extra_headroom, 4);
827 struct sk_buff *frame = NULL;
828 int offset = 0, remaining;
829 struct {
830 struct ethhdr eth;
831 uint8_t flags;
832 } hdr;
833 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
834 bool reuse_skb = false;
835 bool last = false;
836 int copy_len = sizeof(hdr.eth);
837
838 if (iftype == NL80211_IFTYPE_MESH_POINT)
839 copy_len = sizeof(hdr);
840
841 while (!last) {
842 unsigned int subframe_len;
843 int len, mesh_len = 0;
844 u8 padding;
845
846 skb_copy_bits(skb, offset, &hdr, copy_len);
847 if (iftype == NL80211_IFTYPE_MESH_POINT)
848 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
849 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
850 mesh_control);
851 subframe_len = sizeof(struct ethhdr) + len;
852 padding = (4 - subframe_len) & 0x3;
853
854 /* the last MSDU has no padding */
855 remaining = skb->len - offset;
856 if (subframe_len > remaining)
857 goto purge;
858 /* mitigate A-MSDU aggregation injection attacks */
859 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
860 goto purge;
861
862 offset += sizeof(struct ethhdr);
863 last = remaining <= subframe_len + padding;
864
865 /* FIXME: should we really accept multicast DA? */
866 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
867 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
868 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
869 offset += len + padding;
870 continue;
871 }
872
873 /* reuse skb for the last subframe */
874 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
875 skb_pull(skb, offset);
876 frame = skb;
877 reuse_skb = true;
878 } else {
879 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
880 reuse_frag, 32 + mesh_len);
881 if (!frame)
882 goto purge;
883
884 offset += len + padding;
885 }
886
887 skb_reset_network_header(frame);
888 frame->dev = skb->dev;
889 frame->priority = skb->priority;
890
891 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
892 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
893 skb_pull(frame, ETH_ALEN + 2);
894
895 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
896 __skb_queue_tail(list, frame);
897 }
898
899 if (!reuse_skb)
900 dev_kfree_skb(skb);
901
902 return;
903
904 purge:
905 __skb_queue_purge(list);
906 dev_kfree_skb(skb);
907}
908EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
909
910/* Given a data frame determine the 802.1p/1d tag to use. */
911unsigned int cfg80211_classify8021d(struct sk_buff *skb,
912 struct cfg80211_qos_map *qos_map)
913{
914 unsigned int dscp;
915 unsigned char vlan_priority;
916 unsigned int ret;
917
918 /* skb->priority values from 256->263 are magic values to
919 * directly indicate a specific 802.1d priority. This is used
920 * to allow 802.1d priority to be passed directly in from VLAN
921 * tags, etc.
922 */
923 if (skb->priority >= 256 && skb->priority <= 263) {
924 ret = skb->priority - 256;
925 goto out;
926 }
927
928 if (skb_vlan_tag_present(skb)) {
929 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
930 >> VLAN_PRIO_SHIFT;
931 if (vlan_priority > 0) {
932 ret = vlan_priority;
933 goto out;
934 }
935 }
936
937 switch (skb->protocol) {
938 case htons(ETH_P_IP):
939 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
940 break;
941 case htons(ETH_P_IPV6):
942 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
943 break;
944 case htons(ETH_P_MPLS_UC):
945 case htons(ETH_P_MPLS_MC): {
946 struct mpls_label mpls_tmp, *mpls;
947
948 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
949 sizeof(*mpls), &mpls_tmp);
950 if (!mpls)
951 return 0;
952
953 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
954 >> MPLS_LS_TC_SHIFT;
955 goto out;
956 }
957 case htons(ETH_P_80221):
958 /* 802.21 is always network control traffic */
959 return 7;
960 default:
961 return 0;
962 }
963
964 if (qos_map) {
965 unsigned int i, tmp_dscp = dscp >> 2;
966
967 for (i = 0; i < qos_map->num_des; i++) {
968 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
969 ret = qos_map->dscp_exception[i].up;
970 goto out;
971 }
972 }
973
974 for (i = 0; i < 8; i++) {
975 if (tmp_dscp >= qos_map->up[i].low &&
976 tmp_dscp <= qos_map->up[i].high) {
977 ret = i;
978 goto out;
979 }
980 }
981 }
982
983 /* The default mapping as defined Section 2.3 in RFC8325: The three
984 * Most Significant Bits (MSBs) of the DSCP are used as the
985 * corresponding L2 markings.
986 */
987 ret = dscp >> 5;
988
989 /* Handle specific DSCP values for which the default mapping (as
990 * described above) doesn't adhere to the intended usage of the DSCP
991 * value. See section 4 in RFC8325. Specifically, for the following
992 * Diffserv Service Classes no update is needed:
993 * - Standard: DF
994 * - Low Priority Data: CS1
995 * - Multimedia Streaming: AF31, AF32, AF33
996 * - Multimedia Conferencing: AF41, AF42, AF43
997 * - Network Control Traffic: CS7
998 * - Real-Time Interactive: CS4
999 */
1000 switch (dscp >> 2) {
1001 case 10:
1002 case 12:
1003 case 14:
1004 /* High throughput data: AF11, AF12, AF13 */
1005 ret = 0;
1006 break;
1007 case 16:
1008 /* Operations, Administration, and Maintenance and Provisioning:
1009 * CS2
1010 */
1011 ret = 0;
1012 break;
1013 case 18:
1014 case 20:
1015 case 22:
1016 /* Low latency data: AF21, AF22, AF23 */
1017 ret = 3;
1018 break;
1019 case 24:
1020 /* Broadcasting video: CS3 */
1021 ret = 4;
1022 break;
1023 case 40:
1024 /* Signaling: CS5 */
1025 ret = 5;
1026 break;
1027 case 44:
1028 /* Voice Admit: VA */
1029 ret = 6;
1030 break;
1031 case 46:
1032 /* Telephony traffic: EF */
1033 ret = 6;
1034 break;
1035 case 48:
1036 /* Network Control Traffic: CS6 */
1037 ret = 7;
1038 break;
1039 }
1040out:
1041 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1042}
1043EXPORT_SYMBOL(cfg80211_classify8021d);
1044
1045const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1046{
1047 const struct cfg80211_bss_ies *ies;
1048
1049 ies = rcu_dereference(bss->ies);
1050 if (!ies)
1051 return NULL;
1052
1053 return cfg80211_find_elem(id, ies->data, ies->len);
1054}
1055EXPORT_SYMBOL(ieee80211_bss_get_elem);
1056
1057void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1058{
1059 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1060 struct net_device *dev = wdev->netdev;
1061 int i;
1062
1063 if (!wdev->connect_keys)
1064 return;
1065
1066 for (i = 0; i < 4; i++) {
1067 if (!wdev->connect_keys->params[i].cipher)
1068 continue;
1069 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1070 &wdev->connect_keys->params[i])) {
1071 netdev_err(dev, "failed to set key %d\n", i);
1072 continue;
1073 }
1074 if (wdev->connect_keys->def == i &&
1075 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1076 netdev_err(dev, "failed to set defkey %d\n", i);
1077 continue;
1078 }
1079 }
1080
1081 kfree_sensitive(wdev->connect_keys);
1082 wdev->connect_keys = NULL;
1083}
1084
1085void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1086{
1087 struct cfg80211_event *ev;
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&wdev->event_lock, flags);
1091 while (!list_empty(&wdev->event_list)) {
1092 ev = list_first_entry(&wdev->event_list,
1093 struct cfg80211_event, list);
1094 list_del(&ev->list);
1095 spin_unlock_irqrestore(&wdev->event_lock, flags);
1096
1097 switch (ev->type) {
1098 case EVENT_CONNECT_RESULT:
1099 __cfg80211_connect_result(
1100 wdev->netdev,
1101 &ev->cr,
1102 ev->cr.status == WLAN_STATUS_SUCCESS);
1103 break;
1104 case EVENT_ROAMED:
1105 __cfg80211_roamed(wdev, &ev->rm);
1106 break;
1107 case EVENT_DISCONNECTED:
1108 __cfg80211_disconnected(wdev->netdev,
1109 ev->dc.ie, ev->dc.ie_len,
1110 ev->dc.reason,
1111 !ev->dc.locally_generated);
1112 break;
1113 case EVENT_IBSS_JOINED:
1114 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1115 ev->ij.channel);
1116 break;
1117 case EVENT_STOPPED:
1118 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1119 break;
1120 case EVENT_PORT_AUTHORIZED:
1121 __cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1122 ev->pa.td_bitmap,
1123 ev->pa.td_bitmap_len);
1124 break;
1125 }
1126
1127 kfree(ev);
1128
1129 spin_lock_irqsave(&wdev->event_lock, flags);
1130 }
1131 spin_unlock_irqrestore(&wdev->event_lock, flags);
1132}
1133
1134void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1135{
1136 struct wireless_dev *wdev;
1137
1138 lockdep_assert_held(&rdev->wiphy.mtx);
1139
1140 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1141 cfg80211_process_wdev_events(wdev);
1142}
1143
1144int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1145 struct net_device *dev, enum nl80211_iftype ntype,
1146 struct vif_params *params)
1147{
1148 int err;
1149 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1150
1151 lockdep_assert_held(&rdev->wiphy.mtx);
1152
1153 /* don't support changing VLANs, you just re-create them */
1154 if (otype == NL80211_IFTYPE_AP_VLAN)
1155 return -EOPNOTSUPP;
1156
1157 /* cannot change into P2P device or NAN */
1158 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1159 ntype == NL80211_IFTYPE_NAN)
1160 return -EOPNOTSUPP;
1161
1162 if (!rdev->ops->change_virtual_intf ||
1163 !(rdev->wiphy.interface_modes & (1 << ntype)))
1164 return -EOPNOTSUPP;
1165
1166 if (ntype != otype) {
1167 /* if it's part of a bridge, reject changing type to station/ibss */
1168 if (netif_is_bridge_port(dev) &&
1169 (ntype == NL80211_IFTYPE_ADHOC ||
1170 ntype == NL80211_IFTYPE_STATION ||
1171 ntype == NL80211_IFTYPE_P2P_CLIENT))
1172 return -EBUSY;
1173
1174 dev->ieee80211_ptr->use_4addr = false;
1175 rdev_set_qos_map(rdev, dev, NULL);
1176
1177 switch (otype) {
1178 case NL80211_IFTYPE_AP:
1179 case NL80211_IFTYPE_P2P_GO:
1180 cfg80211_stop_ap(rdev, dev, -1, true);
1181 break;
1182 case NL80211_IFTYPE_ADHOC:
1183 cfg80211_leave_ibss(rdev, dev, false);
1184 break;
1185 case NL80211_IFTYPE_STATION:
1186 case NL80211_IFTYPE_P2P_CLIENT:
1187 cfg80211_disconnect(rdev, dev,
1188 WLAN_REASON_DEAUTH_LEAVING, true);
1189 break;
1190 case NL80211_IFTYPE_MESH_POINT:
1191 /* mesh should be handled? */
1192 break;
1193 case NL80211_IFTYPE_OCB:
1194 cfg80211_leave_ocb(rdev, dev);
1195 break;
1196 default:
1197 break;
1198 }
1199
1200 cfg80211_process_rdev_events(rdev);
1201 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1202
1203 memset(&dev->ieee80211_ptr->u, 0,
1204 sizeof(dev->ieee80211_ptr->u));
1205 memset(&dev->ieee80211_ptr->links, 0,
1206 sizeof(dev->ieee80211_ptr->links));
1207 }
1208
1209 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1210
1211 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1212
1213 if (!err && params && params->use_4addr != -1)
1214 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1215
1216 if (!err) {
1217 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1218 switch (ntype) {
1219 case NL80211_IFTYPE_STATION:
1220 if (dev->ieee80211_ptr->use_4addr)
1221 break;
1222 fallthrough;
1223 case NL80211_IFTYPE_OCB:
1224 case NL80211_IFTYPE_P2P_CLIENT:
1225 case NL80211_IFTYPE_ADHOC:
1226 dev->priv_flags |= IFF_DONT_BRIDGE;
1227 break;
1228 case NL80211_IFTYPE_P2P_GO:
1229 case NL80211_IFTYPE_AP:
1230 case NL80211_IFTYPE_AP_VLAN:
1231 case NL80211_IFTYPE_MESH_POINT:
1232 /* bridging OK */
1233 break;
1234 case NL80211_IFTYPE_MONITOR:
1235 /* monitor can't bridge anyway */
1236 break;
1237 case NL80211_IFTYPE_UNSPECIFIED:
1238 case NUM_NL80211_IFTYPES:
1239 /* not happening */
1240 break;
1241 case NL80211_IFTYPE_P2P_DEVICE:
1242 case NL80211_IFTYPE_WDS:
1243 case NL80211_IFTYPE_NAN:
1244 WARN_ON(1);
1245 break;
1246 }
1247 }
1248
1249 if (!err && ntype != otype && netif_running(dev)) {
1250 cfg80211_update_iface_num(rdev, ntype, 1);
1251 cfg80211_update_iface_num(rdev, otype, -1);
1252 }
1253
1254 return err;
1255}
1256
1257static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1258{
1259 int modulation, streams, bitrate;
1260
1261 /* the formula below does only work for MCS values smaller than 32 */
1262 if (WARN_ON_ONCE(rate->mcs >= 32))
1263 return 0;
1264
1265 modulation = rate->mcs & 7;
1266 streams = (rate->mcs >> 3) + 1;
1267
1268 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1269
1270 if (modulation < 4)
1271 bitrate *= (modulation + 1);
1272 else if (modulation == 4)
1273 bitrate *= (modulation + 2);
1274 else
1275 bitrate *= (modulation + 3);
1276
1277 bitrate *= streams;
1278
1279 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1280 bitrate = (bitrate / 9) * 10;
1281
1282 /* do NOT round down here */
1283 return (bitrate + 50000) / 100000;
1284}
1285
1286static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1287{
1288 static const u32 __mcs2bitrate[] = {
1289 /* control PHY */
1290 [0] = 275,
1291 /* SC PHY */
1292 [1] = 3850,
1293 [2] = 7700,
1294 [3] = 9625,
1295 [4] = 11550,
1296 [5] = 12512, /* 1251.25 mbps */
1297 [6] = 15400,
1298 [7] = 19250,
1299 [8] = 23100,
1300 [9] = 25025,
1301 [10] = 30800,
1302 [11] = 38500,
1303 [12] = 46200,
1304 /* OFDM PHY */
1305 [13] = 6930,
1306 [14] = 8662, /* 866.25 mbps */
1307 [15] = 13860,
1308 [16] = 17325,
1309 [17] = 20790,
1310 [18] = 27720,
1311 [19] = 34650,
1312 [20] = 41580,
1313 [21] = 45045,
1314 [22] = 51975,
1315 [23] = 62370,
1316 [24] = 67568, /* 6756.75 mbps */
1317 /* LP-SC PHY */
1318 [25] = 6260,
1319 [26] = 8340,
1320 [27] = 11120,
1321 [28] = 12510,
1322 [29] = 16680,
1323 [30] = 22240,
1324 [31] = 25030,
1325 };
1326
1327 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1328 return 0;
1329
1330 return __mcs2bitrate[rate->mcs];
1331}
1332
1333static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1334{
1335 static const u32 __mcs2bitrate[] = {
1336 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1337 [7 - 6] = 50050, /* MCS 12.1 */
1338 [8 - 6] = 53900,
1339 [9 - 6] = 57750,
1340 [10 - 6] = 63900,
1341 [11 - 6] = 75075,
1342 [12 - 6] = 80850,
1343 };
1344
1345 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1346 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1347 return 0;
1348
1349 return __mcs2bitrate[rate->mcs - 6];
1350}
1351
1352static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1353{
1354 static const u32 __mcs2bitrate[] = {
1355 /* control PHY */
1356 [0] = 275,
1357 /* SC PHY */
1358 [1] = 3850,
1359 [2] = 7700,
1360 [3] = 9625,
1361 [4] = 11550,
1362 [5] = 12512, /* 1251.25 mbps */
1363 [6] = 13475,
1364 [7] = 15400,
1365 [8] = 19250,
1366 [9] = 23100,
1367 [10] = 25025,
1368 [11] = 26950,
1369 [12] = 30800,
1370 [13] = 38500,
1371 [14] = 46200,
1372 [15] = 50050,
1373 [16] = 53900,
1374 [17] = 57750,
1375 [18] = 69300,
1376 [19] = 75075,
1377 [20] = 80850,
1378 };
1379
1380 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1381 return 0;
1382
1383 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1384}
1385
1386static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1387{
1388 static const u32 base[4][12] = {
1389 { 6500000,
1390 13000000,
1391 19500000,
1392 26000000,
1393 39000000,
1394 52000000,
1395 58500000,
1396 65000000,
1397 78000000,
1398 /* not in the spec, but some devices use this: */
1399 86700000,
1400 97500000,
1401 108300000,
1402 },
1403 { 13500000,
1404 27000000,
1405 40500000,
1406 54000000,
1407 81000000,
1408 108000000,
1409 121500000,
1410 135000000,
1411 162000000,
1412 180000000,
1413 202500000,
1414 225000000,
1415 },
1416 { 29300000,
1417 58500000,
1418 87800000,
1419 117000000,
1420 175500000,
1421 234000000,
1422 263300000,
1423 292500000,
1424 351000000,
1425 390000000,
1426 438800000,
1427 487500000,
1428 },
1429 { 58500000,
1430 117000000,
1431 175500000,
1432 234000000,
1433 351000000,
1434 468000000,
1435 526500000,
1436 585000000,
1437 702000000,
1438 780000000,
1439 877500000,
1440 975000000,
1441 },
1442 };
1443 u32 bitrate;
1444 int idx;
1445
1446 if (rate->mcs > 11)
1447 goto warn;
1448
1449 switch (rate->bw) {
1450 case RATE_INFO_BW_160:
1451 idx = 3;
1452 break;
1453 case RATE_INFO_BW_80:
1454 idx = 2;
1455 break;
1456 case RATE_INFO_BW_40:
1457 idx = 1;
1458 break;
1459 case RATE_INFO_BW_5:
1460 case RATE_INFO_BW_10:
1461 default:
1462 goto warn;
1463 case RATE_INFO_BW_20:
1464 idx = 0;
1465 }
1466
1467 bitrate = base[idx][rate->mcs];
1468 bitrate *= rate->nss;
1469
1470 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1471 bitrate = (bitrate / 9) * 10;
1472
1473 /* do NOT round down here */
1474 return (bitrate + 50000) / 100000;
1475 warn:
1476 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1477 rate->bw, rate->mcs, rate->nss);
1478 return 0;
1479}
1480
1481static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1482{
1483#define SCALE 6144
1484 u32 mcs_divisors[14] = {
1485 102399, /* 16.666666... */
1486 51201, /* 8.333333... */
1487 34134, /* 5.555555... */
1488 25599, /* 4.166666... */
1489 17067, /* 2.777777... */
1490 12801, /* 2.083333... */
1491 11377, /* 1.851725... */
1492 10239, /* 1.666666... */
1493 8532, /* 1.388888... */
1494 7680, /* 1.250000... */
1495 6828, /* 1.111111... */
1496 6144, /* 1.000000... */
1497 5690, /* 0.926106... */
1498 5120, /* 0.833333... */
1499 };
1500 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1501 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1502 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1503 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1504 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1505 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1506 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1507 u64 tmp;
1508 u32 result;
1509
1510 if (WARN_ON_ONCE(rate->mcs > 13))
1511 return 0;
1512
1513 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1514 return 0;
1515 if (WARN_ON_ONCE(rate->he_ru_alloc >
1516 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1517 return 0;
1518 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1519 return 0;
1520
1521 if (rate->bw == RATE_INFO_BW_160)
1522 result = rates_160M[rate->he_gi];
1523 else if (rate->bw == RATE_INFO_BW_80 ||
1524 (rate->bw == RATE_INFO_BW_HE_RU &&
1525 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1526 result = rates_969[rate->he_gi];
1527 else if (rate->bw == RATE_INFO_BW_40 ||
1528 (rate->bw == RATE_INFO_BW_HE_RU &&
1529 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1530 result = rates_484[rate->he_gi];
1531 else if (rate->bw == RATE_INFO_BW_20 ||
1532 (rate->bw == RATE_INFO_BW_HE_RU &&
1533 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1534 result = rates_242[rate->he_gi];
1535 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1536 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1537 result = rates_106[rate->he_gi];
1538 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1539 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1540 result = rates_52[rate->he_gi];
1541 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1542 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1543 result = rates_26[rate->he_gi];
1544 else {
1545 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1546 rate->bw, rate->he_ru_alloc);
1547 return 0;
1548 }
1549
1550 /* now scale to the appropriate MCS */
1551 tmp = result;
1552 tmp *= SCALE;
1553 do_div(tmp, mcs_divisors[rate->mcs]);
1554 result = tmp;
1555
1556 /* and take NSS, DCM into account */
1557 result = (result * rate->nss) / 8;
1558 if (rate->he_dcm)
1559 result /= 2;
1560
1561 return result / 10000;
1562}
1563
1564static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1565{
1566#define SCALE 6144
1567 static const u32 mcs_divisors[16] = {
1568 102399, /* 16.666666... */
1569 51201, /* 8.333333... */
1570 34134, /* 5.555555... */
1571 25599, /* 4.166666... */
1572 17067, /* 2.777777... */
1573 12801, /* 2.083333... */
1574 11377, /* 1.851725... */
1575 10239, /* 1.666666... */
1576 8532, /* 1.388888... */
1577 7680, /* 1.250000... */
1578 6828, /* 1.111111... */
1579 6144, /* 1.000000... */
1580 5690, /* 0.926106... */
1581 5120, /* 0.833333... */
1582 409600, /* 66.666666... */
1583 204800, /* 33.333333... */
1584 };
1585 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1586 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1587 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1588 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1589 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1590 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1591 u64 tmp;
1592 u32 result;
1593
1594 if (WARN_ON_ONCE(rate->mcs > 15))
1595 return 0;
1596 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1597 return 0;
1598 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1599 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1600 return 0;
1601 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1602 return 0;
1603
1604 /* Bandwidth checks for MCS 14 */
1605 if (rate->mcs == 14) {
1606 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1607 rate->bw != RATE_INFO_BW_80 &&
1608 rate->bw != RATE_INFO_BW_160 &&
1609 rate->bw != RATE_INFO_BW_320) ||
1610 (rate->bw == RATE_INFO_BW_EHT_RU &&
1611 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1612 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1613 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1614 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1615 rate->bw, rate->eht_ru_alloc);
1616 return 0;
1617 }
1618 }
1619
1620 if (rate->bw == RATE_INFO_BW_320 ||
1621 (rate->bw == RATE_INFO_BW_EHT_RU &&
1622 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1623 result = 4 * rates_996[rate->eht_gi];
1624 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1625 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1626 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1627 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1628 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1629 result = 3 * rates_996[rate->eht_gi];
1630 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1631 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1632 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1633 else if (rate->bw == RATE_INFO_BW_160 ||
1634 (rate->bw == RATE_INFO_BW_EHT_RU &&
1635 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1636 result = 2 * rates_996[rate->eht_gi];
1637 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638 rate->eht_ru_alloc ==
1639 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1640 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1641 + rates_242[rate->eht_gi];
1642 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1643 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1644 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1645 else if (rate->bw == RATE_INFO_BW_80 ||
1646 (rate->bw == RATE_INFO_BW_EHT_RU &&
1647 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1648 result = rates_996[rate->eht_gi];
1649 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1650 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1651 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1652 else if (rate->bw == RATE_INFO_BW_40 ||
1653 (rate->bw == RATE_INFO_BW_EHT_RU &&
1654 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1655 result = rates_484[rate->eht_gi];
1656 else if (rate->bw == RATE_INFO_BW_20 ||
1657 (rate->bw == RATE_INFO_BW_EHT_RU &&
1658 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1659 result = rates_242[rate->eht_gi];
1660 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1661 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1662 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1663 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1664 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1665 result = rates_106[rate->eht_gi];
1666 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1667 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1668 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1669 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1670 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1671 result = rates_52[rate->eht_gi];
1672 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1673 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1674 result = rates_26[rate->eht_gi];
1675 else {
1676 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1677 rate->bw, rate->eht_ru_alloc);
1678 return 0;
1679 }
1680
1681 /* now scale to the appropriate MCS */
1682 tmp = result;
1683 tmp *= SCALE;
1684 do_div(tmp, mcs_divisors[rate->mcs]);
1685
1686 /* and take NSS */
1687 tmp *= rate->nss;
1688 do_div(tmp, 8);
1689
1690 result = tmp;
1691
1692 return result / 10000;
1693}
1694
1695static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1696{
1697 /* For 1, 2, 4, 8 and 16 MHz channels */
1698 static const u32 base[5][11] = {
1699 { 300000,
1700 600000,
1701 900000,
1702 1200000,
1703 1800000,
1704 2400000,
1705 2700000,
1706 3000000,
1707 3600000,
1708 4000000,
1709 /* MCS 10 supported in 1 MHz only */
1710 150000,
1711 },
1712 { 650000,
1713 1300000,
1714 1950000,
1715 2600000,
1716 3900000,
1717 5200000,
1718 5850000,
1719 6500000,
1720 7800000,
1721 /* MCS 9 not valid */
1722 },
1723 { 1350000,
1724 2700000,
1725 4050000,
1726 5400000,
1727 8100000,
1728 10800000,
1729 12150000,
1730 13500000,
1731 16200000,
1732 18000000,
1733 },
1734 { 2925000,
1735 5850000,
1736 8775000,
1737 11700000,
1738 17550000,
1739 23400000,
1740 26325000,
1741 29250000,
1742 35100000,
1743 39000000,
1744 },
1745 { 8580000,
1746 11700000,
1747 17550000,
1748 23400000,
1749 35100000,
1750 46800000,
1751 52650000,
1752 58500000,
1753 70200000,
1754 78000000,
1755 },
1756 };
1757 u32 bitrate;
1758 /* default is 1 MHz index */
1759 int idx = 0;
1760
1761 if (rate->mcs >= 11)
1762 goto warn;
1763
1764 switch (rate->bw) {
1765 case RATE_INFO_BW_16:
1766 idx = 4;
1767 break;
1768 case RATE_INFO_BW_8:
1769 idx = 3;
1770 break;
1771 case RATE_INFO_BW_4:
1772 idx = 2;
1773 break;
1774 case RATE_INFO_BW_2:
1775 idx = 1;
1776 break;
1777 case RATE_INFO_BW_1:
1778 idx = 0;
1779 break;
1780 case RATE_INFO_BW_5:
1781 case RATE_INFO_BW_10:
1782 case RATE_INFO_BW_20:
1783 case RATE_INFO_BW_40:
1784 case RATE_INFO_BW_80:
1785 case RATE_INFO_BW_160:
1786 default:
1787 goto warn;
1788 }
1789
1790 bitrate = base[idx][rate->mcs];
1791 bitrate *= rate->nss;
1792
1793 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1794 bitrate = (bitrate / 9) * 10;
1795 /* do NOT round down here */
1796 return (bitrate + 50000) / 100000;
1797warn:
1798 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1799 rate->bw, rate->mcs, rate->nss);
1800 return 0;
1801}
1802
1803u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1804{
1805 if (rate->flags & RATE_INFO_FLAGS_MCS)
1806 return cfg80211_calculate_bitrate_ht(rate);
1807 if (rate->flags & RATE_INFO_FLAGS_DMG)
1808 return cfg80211_calculate_bitrate_dmg(rate);
1809 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1810 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1811 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1812 return cfg80211_calculate_bitrate_edmg(rate);
1813 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1814 return cfg80211_calculate_bitrate_vht(rate);
1815 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1816 return cfg80211_calculate_bitrate_he(rate);
1817 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1818 return cfg80211_calculate_bitrate_eht(rate);
1819 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1820 return cfg80211_calculate_bitrate_s1g(rate);
1821
1822 return rate->legacy;
1823}
1824EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1825
1826int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1827 enum ieee80211_p2p_attr_id attr,
1828 u8 *buf, unsigned int bufsize)
1829{
1830 u8 *out = buf;
1831 u16 attr_remaining = 0;
1832 bool desired_attr = false;
1833 u16 desired_len = 0;
1834
1835 while (len > 0) {
1836 unsigned int iedatalen;
1837 unsigned int copy;
1838 const u8 *iedata;
1839
1840 if (len < 2)
1841 return -EILSEQ;
1842 iedatalen = ies[1];
1843 if (iedatalen + 2 > len)
1844 return -EILSEQ;
1845
1846 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1847 goto cont;
1848
1849 if (iedatalen < 4)
1850 goto cont;
1851
1852 iedata = ies + 2;
1853
1854 /* check WFA OUI, P2P subtype */
1855 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1856 iedata[2] != 0x9a || iedata[3] != 0x09)
1857 goto cont;
1858
1859 iedatalen -= 4;
1860 iedata += 4;
1861
1862 /* check attribute continuation into this IE */
1863 copy = min_t(unsigned int, attr_remaining, iedatalen);
1864 if (copy && desired_attr) {
1865 desired_len += copy;
1866 if (out) {
1867 memcpy(out, iedata, min(bufsize, copy));
1868 out += min(bufsize, copy);
1869 bufsize -= min(bufsize, copy);
1870 }
1871
1872
1873 if (copy == attr_remaining)
1874 return desired_len;
1875 }
1876
1877 attr_remaining -= copy;
1878 if (attr_remaining)
1879 goto cont;
1880
1881 iedatalen -= copy;
1882 iedata += copy;
1883
1884 while (iedatalen > 0) {
1885 u16 attr_len;
1886
1887 /* P2P attribute ID & size must fit */
1888 if (iedatalen < 3)
1889 return -EILSEQ;
1890 desired_attr = iedata[0] == attr;
1891 attr_len = get_unaligned_le16(iedata + 1);
1892 iedatalen -= 3;
1893 iedata += 3;
1894
1895 copy = min_t(unsigned int, attr_len, iedatalen);
1896
1897 if (desired_attr) {
1898 desired_len += copy;
1899 if (out) {
1900 memcpy(out, iedata, min(bufsize, copy));
1901 out += min(bufsize, copy);
1902 bufsize -= min(bufsize, copy);
1903 }
1904
1905 if (copy == attr_len)
1906 return desired_len;
1907 }
1908
1909 iedata += copy;
1910 iedatalen -= copy;
1911 attr_remaining = attr_len - copy;
1912 }
1913
1914 cont:
1915 len -= ies[1] + 2;
1916 ies += ies[1] + 2;
1917 }
1918
1919 if (attr_remaining && desired_attr)
1920 return -EILSEQ;
1921
1922 return -ENOENT;
1923}
1924EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1925
1926static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1927{
1928 int i;
1929
1930 /* Make sure array values are legal */
1931 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1932 return false;
1933
1934 i = 0;
1935 while (i < n_ids) {
1936 if (ids[i] == WLAN_EID_EXTENSION) {
1937 if (id_ext && (ids[i + 1] == id))
1938 return true;
1939
1940 i += 2;
1941 continue;
1942 }
1943
1944 if (ids[i] == id && !id_ext)
1945 return true;
1946
1947 i++;
1948 }
1949 return false;
1950}
1951
1952static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1953{
1954 /* we assume a validly formed IEs buffer */
1955 u8 len = ies[pos + 1];
1956
1957 pos += 2 + len;
1958
1959 /* the IE itself must have 255 bytes for fragments to follow */
1960 if (len < 255)
1961 return pos;
1962
1963 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1964 len = ies[pos + 1];
1965 pos += 2 + len;
1966 }
1967
1968 return pos;
1969}
1970
1971size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1972 const u8 *ids, int n_ids,
1973 const u8 *after_ric, int n_after_ric,
1974 size_t offset)
1975{
1976 size_t pos = offset;
1977
1978 while (pos < ielen) {
1979 u8 ext = 0;
1980
1981 if (ies[pos] == WLAN_EID_EXTENSION)
1982 ext = 2;
1983 if ((pos + ext) >= ielen)
1984 break;
1985
1986 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1987 ies[pos] == WLAN_EID_EXTENSION))
1988 break;
1989
1990 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1991 pos = skip_ie(ies, ielen, pos);
1992
1993 while (pos < ielen) {
1994 if (ies[pos] == WLAN_EID_EXTENSION)
1995 ext = 2;
1996 else
1997 ext = 0;
1998
1999 if ((pos + ext) >= ielen)
2000 break;
2001
2002 if (!ieee80211_id_in_list(after_ric,
2003 n_after_ric,
2004 ies[pos + ext],
2005 ext == 2))
2006 pos = skip_ie(ies, ielen, pos);
2007 else
2008 break;
2009 }
2010 } else {
2011 pos = skip_ie(ies, ielen, pos);
2012 }
2013 }
2014
2015 return pos;
2016}
2017EXPORT_SYMBOL(ieee80211_ie_split_ric);
2018
2019void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2020{
2021 unsigned int elem_len;
2022
2023 if (!len_pos)
2024 return;
2025
2026 elem_len = skb->data + skb->len - len_pos - 1;
2027
2028 while (elem_len > 255) {
2029 /* this one is 255 */
2030 *len_pos = 255;
2031 /* remaining data gets smaller */
2032 elem_len -= 255;
2033 /* make space for the fragment ID/len in SKB */
2034 skb_put(skb, 2);
2035 /* shift back the remaining data to place fragment ID/len */
2036 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2037 /* place the fragment ID */
2038 len_pos += 255 + 1;
2039 *len_pos = frag_id;
2040 /* and point to fragment length to update later */
2041 len_pos++;
2042 }
2043
2044 *len_pos = elem_len;
2045}
2046EXPORT_SYMBOL(ieee80211_fragment_element);
2047
2048bool ieee80211_operating_class_to_band(u8 operating_class,
2049 enum nl80211_band *band)
2050{
2051 switch (operating_class) {
2052 case 112:
2053 case 115 ... 127:
2054 case 128 ... 130:
2055 *band = NL80211_BAND_5GHZ;
2056 return true;
2057 case 131 ... 135:
2058 case 137:
2059 *band = NL80211_BAND_6GHZ;
2060 return true;
2061 case 81:
2062 case 82:
2063 case 83:
2064 case 84:
2065 *band = NL80211_BAND_2GHZ;
2066 return true;
2067 case 180:
2068 *band = NL80211_BAND_60GHZ;
2069 return true;
2070 }
2071
2072 return false;
2073}
2074EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2075
2076bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2077 u8 *op_class)
2078{
2079 u8 vht_opclass;
2080 u32 freq = chandef->center_freq1;
2081
2082 if (freq >= 2412 && freq <= 2472) {
2083 if (chandef->width > NL80211_CHAN_WIDTH_40)
2084 return false;
2085
2086 /* 2.407 GHz, channels 1..13 */
2087 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2088 if (freq > chandef->chan->center_freq)
2089 *op_class = 83; /* HT40+ */
2090 else
2091 *op_class = 84; /* HT40- */
2092 } else {
2093 *op_class = 81;
2094 }
2095
2096 return true;
2097 }
2098
2099 if (freq == 2484) {
2100 /* channel 14 is only for IEEE 802.11b */
2101 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2102 return false;
2103
2104 *op_class = 82; /* channel 14 */
2105 return true;
2106 }
2107
2108 switch (chandef->width) {
2109 case NL80211_CHAN_WIDTH_80:
2110 vht_opclass = 128;
2111 break;
2112 case NL80211_CHAN_WIDTH_160:
2113 vht_opclass = 129;
2114 break;
2115 case NL80211_CHAN_WIDTH_80P80:
2116 vht_opclass = 130;
2117 break;
2118 case NL80211_CHAN_WIDTH_10:
2119 case NL80211_CHAN_WIDTH_5:
2120 return false; /* unsupported for now */
2121 default:
2122 vht_opclass = 0;
2123 break;
2124 }
2125
2126 /* 5 GHz, channels 36..48 */
2127 if (freq >= 5180 && freq <= 5240) {
2128 if (vht_opclass) {
2129 *op_class = vht_opclass;
2130 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2131 if (freq > chandef->chan->center_freq)
2132 *op_class = 116;
2133 else
2134 *op_class = 117;
2135 } else {
2136 *op_class = 115;
2137 }
2138
2139 return true;
2140 }
2141
2142 /* 5 GHz, channels 52..64 */
2143 if (freq >= 5260 && freq <= 5320) {
2144 if (vht_opclass) {
2145 *op_class = vht_opclass;
2146 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2147 if (freq > chandef->chan->center_freq)
2148 *op_class = 119;
2149 else
2150 *op_class = 120;
2151 } else {
2152 *op_class = 118;
2153 }
2154
2155 return true;
2156 }
2157
2158 /* 5 GHz, channels 100..144 */
2159 if (freq >= 5500 && freq <= 5720) {
2160 if (vht_opclass) {
2161 *op_class = vht_opclass;
2162 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2163 if (freq > chandef->chan->center_freq)
2164 *op_class = 122;
2165 else
2166 *op_class = 123;
2167 } else {
2168 *op_class = 121;
2169 }
2170
2171 return true;
2172 }
2173
2174 /* 5 GHz, channels 149..169 */
2175 if (freq >= 5745 && freq <= 5845) {
2176 if (vht_opclass) {
2177 *op_class = vht_opclass;
2178 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2179 if (freq > chandef->chan->center_freq)
2180 *op_class = 126;
2181 else
2182 *op_class = 127;
2183 } else if (freq <= 5805) {
2184 *op_class = 124;
2185 } else {
2186 *op_class = 125;
2187 }
2188
2189 return true;
2190 }
2191
2192 /* 56.16 GHz, channel 1..4 */
2193 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2194 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2195 return false;
2196
2197 *op_class = 180;
2198 return true;
2199 }
2200
2201 /* not supported yet */
2202 return false;
2203}
2204EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2205
2206static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2207{
2208 switch (wdev->iftype) {
2209 case NL80211_IFTYPE_AP:
2210 case NL80211_IFTYPE_P2P_GO:
2211 WARN_ON(wdev->valid_links);
2212 return wdev->links[0].ap.beacon_interval;
2213 case NL80211_IFTYPE_MESH_POINT:
2214 return wdev->u.mesh.beacon_interval;
2215 case NL80211_IFTYPE_ADHOC:
2216 return wdev->u.ibss.beacon_interval;
2217 default:
2218 break;
2219 }
2220
2221 return 0;
2222}
2223
2224static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2225 u32 *beacon_int_gcd,
2226 bool *beacon_int_different)
2227{
2228 struct wireless_dev *wdev;
2229
2230 *beacon_int_gcd = 0;
2231 *beacon_int_different = false;
2232
2233 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2234 int wdev_bi;
2235
2236 /* this feature isn't supported with MLO */
2237 if (wdev->valid_links)
2238 continue;
2239
2240 wdev_bi = cfg80211_wdev_bi(wdev);
2241
2242 if (!wdev_bi)
2243 continue;
2244
2245 if (!*beacon_int_gcd) {
2246 *beacon_int_gcd = wdev_bi;
2247 continue;
2248 }
2249
2250 if (wdev_bi == *beacon_int_gcd)
2251 continue;
2252
2253 *beacon_int_different = true;
2254 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2255 }
2256
2257 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2258 if (*beacon_int_gcd)
2259 *beacon_int_different = true;
2260 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2261 }
2262}
2263
2264int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2265 enum nl80211_iftype iftype, u32 beacon_int)
2266{
2267 /*
2268 * This is just a basic pre-condition check; if interface combinations
2269 * are possible the driver must already be checking those with a call
2270 * to cfg80211_check_combinations(), in which case we'll validate more
2271 * through the cfg80211_calculate_bi_data() call and code in
2272 * cfg80211_iter_combinations().
2273 */
2274
2275 if (beacon_int < 10 || beacon_int > 10000)
2276 return -EINVAL;
2277
2278 return 0;
2279}
2280
2281int cfg80211_iter_combinations(struct wiphy *wiphy,
2282 struct iface_combination_params *params,
2283 void (*iter)(const struct ieee80211_iface_combination *c,
2284 void *data),
2285 void *data)
2286{
2287 const struct ieee80211_regdomain *regdom;
2288 enum nl80211_dfs_regions region = 0;
2289 int i, j, iftype;
2290 int num_interfaces = 0;
2291 u32 used_iftypes = 0;
2292 u32 beacon_int_gcd;
2293 bool beacon_int_different;
2294
2295 /*
2296 * This is a bit strange, since the iteration used to rely only on
2297 * the data given by the driver, but here it now relies on context,
2298 * in form of the currently operating interfaces.
2299 * This is OK for all current users, and saves us from having to
2300 * push the GCD calculations into all the drivers.
2301 * In the future, this should probably rely more on data that's in
2302 * cfg80211 already - the only thing not would appear to be any new
2303 * interfaces (while being brought up) and channel/radar data.
2304 */
2305 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2306 &beacon_int_gcd, &beacon_int_different);
2307
2308 if (params->radar_detect) {
2309 rcu_read_lock();
2310 regdom = rcu_dereference(cfg80211_regdomain);
2311 if (regdom)
2312 region = regdom->dfs_region;
2313 rcu_read_unlock();
2314 }
2315
2316 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2317 num_interfaces += params->iftype_num[iftype];
2318 if (params->iftype_num[iftype] > 0 &&
2319 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2320 used_iftypes |= BIT(iftype);
2321 }
2322
2323 for (i = 0; i < wiphy->n_iface_combinations; i++) {
2324 const struct ieee80211_iface_combination *c;
2325 struct ieee80211_iface_limit *limits;
2326 u32 all_iftypes = 0;
2327
2328 c = &wiphy->iface_combinations[i];
2329
2330 if (num_interfaces > c->max_interfaces)
2331 continue;
2332 if (params->num_different_channels > c->num_different_channels)
2333 continue;
2334
2335 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2336 GFP_KERNEL);
2337 if (!limits)
2338 return -ENOMEM;
2339
2340 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2341 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2342 continue;
2343 for (j = 0; j < c->n_limits; j++) {
2344 all_iftypes |= limits[j].types;
2345 if (!(limits[j].types & BIT(iftype)))
2346 continue;
2347 if (limits[j].max < params->iftype_num[iftype])
2348 goto cont;
2349 limits[j].max -= params->iftype_num[iftype];
2350 }
2351 }
2352
2353 if (params->radar_detect !=
2354 (c->radar_detect_widths & params->radar_detect))
2355 goto cont;
2356
2357 if (params->radar_detect && c->radar_detect_regions &&
2358 !(c->radar_detect_regions & BIT(region)))
2359 goto cont;
2360
2361 /* Finally check that all iftypes that we're currently
2362 * using are actually part of this combination. If they
2363 * aren't then we can't use this combination and have
2364 * to continue to the next.
2365 */
2366 if ((all_iftypes & used_iftypes) != used_iftypes)
2367 goto cont;
2368
2369 if (beacon_int_gcd) {
2370 if (c->beacon_int_min_gcd &&
2371 beacon_int_gcd < c->beacon_int_min_gcd)
2372 goto cont;
2373 if (!c->beacon_int_min_gcd && beacon_int_different)
2374 goto cont;
2375 }
2376
2377 /* This combination covered all interface types and
2378 * supported the requested numbers, so we're good.
2379 */
2380
2381 (*iter)(c, data);
2382 cont:
2383 kfree(limits);
2384 }
2385
2386 return 0;
2387}
2388EXPORT_SYMBOL(cfg80211_iter_combinations);
2389
2390static void
2391cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2392 void *data)
2393{
2394 int *num = data;
2395 (*num)++;
2396}
2397
2398int cfg80211_check_combinations(struct wiphy *wiphy,
2399 struct iface_combination_params *params)
2400{
2401 int err, num = 0;
2402
2403 err = cfg80211_iter_combinations(wiphy, params,
2404 cfg80211_iter_sum_ifcombs, &num);
2405 if (err)
2406 return err;
2407 if (num == 0)
2408 return -EBUSY;
2409
2410 return 0;
2411}
2412EXPORT_SYMBOL(cfg80211_check_combinations);
2413
2414int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2415 const u8 *rates, unsigned int n_rates,
2416 u32 *mask)
2417{
2418 int i, j;
2419
2420 if (!sband)
2421 return -EINVAL;
2422
2423 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2424 return -EINVAL;
2425
2426 *mask = 0;
2427
2428 for (i = 0; i < n_rates; i++) {
2429 int rate = (rates[i] & 0x7f) * 5;
2430 bool found = false;
2431
2432 for (j = 0; j < sband->n_bitrates; j++) {
2433 if (sband->bitrates[j].bitrate == rate) {
2434 found = true;
2435 *mask |= BIT(j);
2436 break;
2437 }
2438 }
2439 if (!found)
2440 return -EINVAL;
2441 }
2442
2443 /*
2444 * mask must have at least one bit set here since we
2445 * didn't accept a 0-length rates array nor allowed
2446 * entries in the array that didn't exist
2447 */
2448
2449 return 0;
2450}
2451
2452unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2453{
2454 enum nl80211_band band;
2455 unsigned int n_channels = 0;
2456
2457 for (band = 0; band < NUM_NL80211_BANDS; band++)
2458 if (wiphy->bands[band])
2459 n_channels += wiphy->bands[band]->n_channels;
2460
2461 return n_channels;
2462}
2463EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2464
2465int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2466 struct station_info *sinfo)
2467{
2468 struct cfg80211_registered_device *rdev;
2469 struct wireless_dev *wdev;
2470
2471 wdev = dev->ieee80211_ptr;
2472 if (!wdev)
2473 return -EOPNOTSUPP;
2474
2475 rdev = wiphy_to_rdev(wdev->wiphy);
2476 if (!rdev->ops->get_station)
2477 return -EOPNOTSUPP;
2478
2479 memset(sinfo, 0, sizeof(*sinfo));
2480
2481 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2482}
2483EXPORT_SYMBOL(cfg80211_get_station);
2484
2485void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2486{
2487 int i;
2488
2489 if (!f)
2490 return;
2491
2492 kfree(f->serv_spec_info);
2493 kfree(f->srf_bf);
2494 kfree(f->srf_macs);
2495 for (i = 0; i < f->num_rx_filters; i++)
2496 kfree(f->rx_filters[i].filter);
2497
2498 for (i = 0; i < f->num_tx_filters; i++)
2499 kfree(f->tx_filters[i].filter);
2500
2501 kfree(f->rx_filters);
2502 kfree(f->tx_filters);
2503 kfree(f);
2504}
2505EXPORT_SYMBOL(cfg80211_free_nan_func);
2506
2507bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2508 u32 center_freq_khz, u32 bw_khz)
2509{
2510 u32 start_freq_khz, end_freq_khz;
2511
2512 start_freq_khz = center_freq_khz - (bw_khz / 2);
2513 end_freq_khz = center_freq_khz + (bw_khz / 2);
2514
2515 if (start_freq_khz >= freq_range->start_freq_khz &&
2516 end_freq_khz <= freq_range->end_freq_khz)
2517 return true;
2518
2519 return false;
2520}
2521
2522int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2523{
2524 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2525 sizeof(*(sinfo->pertid)),
2526 gfp);
2527 if (!sinfo->pertid)
2528 return -ENOMEM;
2529
2530 return 0;
2531}
2532EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2533
2534/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2535/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2536const unsigned char rfc1042_header[] __aligned(2) =
2537 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2538EXPORT_SYMBOL(rfc1042_header);
2539
2540/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2541const unsigned char bridge_tunnel_header[] __aligned(2) =
2542 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2543EXPORT_SYMBOL(bridge_tunnel_header);
2544
2545/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2546struct iapp_layer2_update {
2547 u8 da[ETH_ALEN]; /* broadcast */
2548 u8 sa[ETH_ALEN]; /* STA addr */
2549 __be16 len; /* 6 */
2550 u8 dsap; /* 0 */
2551 u8 ssap; /* 0 */
2552 u8 control;
2553 u8 xid_info[3];
2554} __packed;
2555
2556void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2557{
2558 struct iapp_layer2_update *msg;
2559 struct sk_buff *skb;
2560
2561 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2562 * bridge devices */
2563
2564 skb = dev_alloc_skb(sizeof(*msg));
2565 if (!skb)
2566 return;
2567 msg = skb_put(skb, sizeof(*msg));
2568
2569 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2570 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2571
2572 eth_broadcast_addr(msg->da);
2573 ether_addr_copy(msg->sa, addr);
2574 msg->len = htons(6);
2575 msg->dsap = 0;
2576 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2577 msg->control = 0xaf; /* XID response lsb.1111F101.
2578 * F=0 (no poll command; unsolicited frame) */
2579 msg->xid_info[0] = 0x81; /* XID format identifier */
2580 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2581 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2582
2583 skb->dev = dev;
2584 skb->protocol = eth_type_trans(skb, dev);
2585 memset(skb->cb, 0, sizeof(skb->cb));
2586 netif_rx(skb);
2587}
2588EXPORT_SYMBOL(cfg80211_send_layer2_update);
2589
2590int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2591 enum ieee80211_vht_chanwidth bw,
2592 int mcs, bool ext_nss_bw_capable,
2593 unsigned int max_vht_nss)
2594{
2595 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2596 int ext_nss_bw;
2597 int supp_width;
2598 int i, mcs_encoding;
2599
2600 if (map == 0xffff)
2601 return 0;
2602
2603 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2604 return 0;
2605 if (mcs <= 7)
2606 mcs_encoding = 0;
2607 else if (mcs == 8)
2608 mcs_encoding = 1;
2609 else
2610 mcs_encoding = 2;
2611
2612 if (!max_vht_nss) {
2613 /* find max_vht_nss for the given MCS */
2614 for (i = 7; i >= 0; i--) {
2615 int supp = (map >> (2 * i)) & 3;
2616
2617 if (supp == 3)
2618 continue;
2619
2620 if (supp >= mcs_encoding) {
2621 max_vht_nss = i + 1;
2622 break;
2623 }
2624 }
2625 }
2626
2627 if (!(cap->supp_mcs.tx_mcs_map &
2628 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2629 return max_vht_nss;
2630
2631 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2632 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2633 supp_width = le32_get_bits(cap->vht_cap_info,
2634 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2635
2636 /* if not capable, treat ext_nss_bw as 0 */
2637 if (!ext_nss_bw_capable)
2638 ext_nss_bw = 0;
2639
2640 /* This is invalid */
2641 if (supp_width == 3)
2642 return 0;
2643
2644 /* This is an invalid combination so pretend nothing is supported */
2645 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2646 return 0;
2647
2648 /*
2649 * Cover all the special cases according to IEEE 802.11-2016
2650 * Table 9-250. All other cases are either factor of 1 or not
2651 * valid/supported.
2652 */
2653 switch (bw) {
2654 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2655 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2656 if ((supp_width == 1 || supp_width == 2) &&
2657 ext_nss_bw == 3)
2658 return 2 * max_vht_nss;
2659 break;
2660 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2661 if (supp_width == 0 &&
2662 (ext_nss_bw == 1 || ext_nss_bw == 2))
2663 return max_vht_nss / 2;
2664 if (supp_width == 0 &&
2665 ext_nss_bw == 3)
2666 return (3 * max_vht_nss) / 4;
2667 if (supp_width == 1 &&
2668 ext_nss_bw == 3)
2669 return 2 * max_vht_nss;
2670 break;
2671 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2672 if (supp_width == 0 && ext_nss_bw == 1)
2673 return 0; /* not possible */
2674 if (supp_width == 0 &&
2675 ext_nss_bw == 2)
2676 return max_vht_nss / 2;
2677 if (supp_width == 0 &&
2678 ext_nss_bw == 3)
2679 return (3 * max_vht_nss) / 4;
2680 if (supp_width == 1 &&
2681 ext_nss_bw == 0)
2682 return 0; /* not possible */
2683 if (supp_width == 1 &&
2684 ext_nss_bw == 1)
2685 return max_vht_nss / 2;
2686 if (supp_width == 1 &&
2687 ext_nss_bw == 2)
2688 return (3 * max_vht_nss) / 4;
2689 break;
2690 }
2691
2692 /* not covered or invalid combination received */
2693 return max_vht_nss;
2694}
2695EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2696
2697bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2698 bool is_4addr, u8 check_swif)
2699
2700{
2701 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2702
2703 switch (check_swif) {
2704 case 0:
2705 if (is_vlan && is_4addr)
2706 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2707 return wiphy->interface_modes & BIT(iftype);
2708 case 1:
2709 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2710 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2711 return wiphy->software_iftypes & BIT(iftype);
2712 default:
2713 break;
2714 }
2715
2716 return false;
2717}
2718EXPORT_SYMBOL(cfg80211_iftype_allowed);
2719
2720void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2721{
2722 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2723
2724 lockdep_assert_wiphy(wdev->wiphy);
2725
2726 switch (wdev->iftype) {
2727 case NL80211_IFTYPE_AP:
2728 case NL80211_IFTYPE_P2P_GO:
2729 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2730 break;
2731 default:
2732 /* per-link not relevant */
2733 break;
2734 }
2735
2736 wdev->valid_links &= ~BIT(link_id);
2737
2738 rdev_del_intf_link(rdev, wdev, link_id);
2739
2740 eth_zero_addr(wdev->links[link_id].addr);
2741}
2742
2743void cfg80211_remove_links(struct wireless_dev *wdev)
2744{
2745 unsigned int link_id;
2746
2747 /*
2748 * links are controlled by upper layers (userspace/cfg)
2749 * only for AP mode, so only remove them here for AP
2750 */
2751 if (wdev->iftype != NL80211_IFTYPE_AP)
2752 return;
2753
2754 if (wdev->valid_links) {
2755 for_each_valid_link(wdev, link_id)
2756 cfg80211_remove_link(wdev, link_id);
2757 }
2758}
2759
2760int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2761 struct wireless_dev *wdev)
2762{
2763 cfg80211_remove_links(wdev);
2764
2765 return rdev_del_virtual_intf(rdev, wdev);
2766}
2767
2768const struct wiphy_iftype_ext_capab *
2769cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2770{
2771 int i;
2772
2773 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2774 if (wiphy->iftype_ext_capab[i].iftype == type)
2775 return &wiphy->iftype_ext_capab[i];
2776 }
2777
2778 return NULL;
2779}
2780EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);