Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2023 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27const struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
 
  47{
  48	struct ieee80211_rate *bitrates;
  49	u32 mandatory_rates = 0;
  50	enum ieee80211_rate_flags mandatory_flag;
  51	int i;
  52
  53	if (WARN_ON(!sband))
  54		return 1;
  55
  56	if (sband->band == NL80211_BAND_2GHZ)
  57		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  58	else
 
 
 
 
  59		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 
  60
  61	bitrates = sband->bitrates;
  62	for (i = 0; i < sband->n_bitrates; i++)
  63		if (bitrates[i].flags & mandatory_flag)
  64			mandatory_rates |= BIT(i);
  65	return mandatory_rates;
  66}
  67EXPORT_SYMBOL(ieee80211_mandatory_rates);
  68
  69u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  70{
  71	/* see 802.11 17.3.8.3.2 and Annex J
  72	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  73	if (chan <= 0)
  74		return 0; /* not supported */
  75	switch (band) {
  76	case NL80211_BAND_2GHZ:
  77	case NL80211_BAND_LC:
  78		if (chan == 14)
  79			return MHZ_TO_KHZ(2484);
  80		else if (chan < 14)
  81			return MHZ_TO_KHZ(2407 + chan * 5);
  82		break;
  83	case NL80211_BAND_5GHZ:
  84		if (chan >= 182 && chan <= 196)
  85			return MHZ_TO_KHZ(4000 + chan * 5);
  86		else
  87			return MHZ_TO_KHZ(5000 + chan * 5);
  88		break;
  89	case NL80211_BAND_6GHZ:
  90		/* see 802.11ax D6.1 27.3.23.2 */
  91		if (chan == 2)
  92			return MHZ_TO_KHZ(5935);
  93		if (chan <= 233)
  94			return MHZ_TO_KHZ(5950 + chan * 5);
  95		break;
  96	case NL80211_BAND_60GHZ:
  97		if (chan < 7)
  98			return MHZ_TO_KHZ(56160 + chan * 2160);
  99		break;
 100	case NL80211_BAND_S1GHZ:
 101		return 902000 + chan * 500;
 102	default:
 103		;
 104	}
 105	return 0; /* not supported */
 106}
 107EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 108
 109enum nl80211_chan_width
 110ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
 111{
 112	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
 113		return NL80211_CHAN_WIDTH_20_NOHT;
 114
 115	/*S1G defines a single allowed channel width per channel.
 116	 * Extract that width here.
 117	 */
 118	if (chan->flags & IEEE80211_CHAN_1MHZ)
 119		return NL80211_CHAN_WIDTH_1;
 120	else if (chan->flags & IEEE80211_CHAN_2MHZ)
 121		return NL80211_CHAN_WIDTH_2;
 122	else if (chan->flags & IEEE80211_CHAN_4MHZ)
 123		return NL80211_CHAN_WIDTH_4;
 124	else if (chan->flags & IEEE80211_CHAN_8MHZ)
 125		return NL80211_CHAN_WIDTH_8;
 126	else if (chan->flags & IEEE80211_CHAN_16MHZ)
 127		return NL80211_CHAN_WIDTH_16;
 128
 129	pr_err("unknown channel width for channel at %dKHz?\n",
 130	       ieee80211_channel_to_khz(chan));
 131
 132	return NL80211_CHAN_WIDTH_1;
 133}
 134EXPORT_SYMBOL(ieee80211_s1g_channel_width);
 135
 136int ieee80211_freq_khz_to_channel(u32 freq)
 137{
 138	/* TODO: just handle MHz for now */
 139	freq = KHZ_TO_MHZ(freq);
 140
 141	/* see 802.11 17.3.8.3.2 and Annex J */
 142	if (freq == 2484)
 143		return 14;
 144	else if (freq < 2484)
 145		return (freq - 2407) / 5;
 146	else if (freq >= 4910 && freq <= 4980)
 147		return (freq - 4000) / 5;
 148	else if (freq < 5925)
 149		return (freq - 5000) / 5;
 150	else if (freq == 5935)
 151		return 2;
 152	else if (freq <= 45000) /* DMG band lower limit */
 153		/* see 802.11ax D6.1 27.3.22.2 */
 154		return (freq - 5950) / 5;
 155	else if (freq >= 58320 && freq <= 70200)
 156		return (freq - 56160) / 2160;
 157	else
 158		return 0;
 159}
 160EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 161
 162struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 163						    u32 freq)
 164{
 165	enum nl80211_band band;
 166	struct ieee80211_supported_band *sband;
 167	int i;
 168
 169	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 170		sband = wiphy->bands[band];
 171
 172		if (!sband)
 173			continue;
 174
 175		for (i = 0; i < sband->n_channels; i++) {
 176			struct ieee80211_channel *chan = &sband->channels[i];
 177
 178			if (ieee80211_channel_to_khz(chan) == freq)
 179				return chan;
 180		}
 181	}
 182
 183	return NULL;
 184}
 185EXPORT_SYMBOL(ieee80211_get_channel_khz);
 186
 187static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 188{
 189	int i, want;
 190
 191	switch (sband->band) {
 192	case NL80211_BAND_5GHZ:
 193	case NL80211_BAND_6GHZ:
 194		want = 3;
 195		for (i = 0; i < sband->n_bitrates; i++) {
 196			if (sband->bitrates[i].bitrate == 60 ||
 197			    sband->bitrates[i].bitrate == 120 ||
 198			    sband->bitrates[i].bitrate == 240) {
 199				sband->bitrates[i].flags |=
 200					IEEE80211_RATE_MANDATORY_A;
 201				want--;
 202			}
 203		}
 204		WARN_ON(want);
 205		break;
 206	case NL80211_BAND_2GHZ:
 207	case NL80211_BAND_LC:
 208		want = 7;
 209		for (i = 0; i < sband->n_bitrates; i++) {
 210			switch (sband->bitrates[i].bitrate) {
 211			case 10:
 212			case 20:
 213			case 55:
 214			case 110:
 215				sband->bitrates[i].flags |=
 216					IEEE80211_RATE_MANDATORY_B |
 217					IEEE80211_RATE_MANDATORY_G;
 218				want--;
 219				break;
 220			case 60:
 221			case 120:
 222			case 240:
 223				sband->bitrates[i].flags |=
 224					IEEE80211_RATE_MANDATORY_G;
 225				want--;
 226				fallthrough;
 227			default:
 228				sband->bitrates[i].flags |=
 229					IEEE80211_RATE_ERP_G;
 230				break;
 231			}
 232		}
 233		WARN_ON(want != 0 && want != 3);
 234		break;
 235	case NL80211_BAND_60GHZ:
 236		/* check for mandatory HT MCS 1..4 */
 237		WARN_ON(!sband->ht_cap.ht_supported);
 238		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 239		break;
 240	case NL80211_BAND_S1GHZ:
 241		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 242		 * mandatory is ok.
 243		 */
 244		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 245		break;
 246	case NUM_NL80211_BANDS:
 247	default:
 248		WARN_ON(1);
 249		break;
 250	}
 251}
 252
 253void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 254{
 255	enum nl80211_band band;
 256
 257	for (band = 0; band < NUM_NL80211_BANDS; band++)
 258		if (wiphy->bands[band])
 259			set_mandatory_flags_band(wiphy->bands[band]);
 260}
 261
 262bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 263{
 264	int i;
 265	for (i = 0; i < wiphy->n_cipher_suites; i++)
 266		if (cipher == wiphy->cipher_suites[i])
 267			return true;
 268	return false;
 269}
 270
 271static bool
 272cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
 273{
 274	struct wiphy *wiphy = &rdev->wiphy;
 275	int i;
 276
 277	for (i = 0; i < wiphy->n_cipher_suites; i++) {
 278		switch (wiphy->cipher_suites[i]) {
 279		case WLAN_CIPHER_SUITE_AES_CMAC:
 280		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 281		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 282		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 283			return true;
 284		}
 285	}
 286
 287	return false;
 288}
 289
 290bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
 291			    int key_idx, bool pairwise)
 292{
 293	int max_key_idx;
 294
 295	if (pairwise)
 296		max_key_idx = 3;
 297	else if (wiphy_ext_feature_isset(&rdev->wiphy,
 298					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 299		 wiphy_ext_feature_isset(&rdev->wiphy,
 300					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 301		max_key_idx = 7;
 302	else if (cfg80211_igtk_cipher_supported(rdev))
 303		max_key_idx = 5;
 304	else
 305		max_key_idx = 3;
 306
 307	if (key_idx < 0 || key_idx > max_key_idx)
 308		return false;
 309
 310	return true;
 311}
 312
 313int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 314				   struct key_params *params, int key_idx,
 315				   bool pairwise, const u8 *mac_addr)
 316{
 317	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
 318		return -EINVAL;
 319
 320	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 321		return -EINVAL;
 322
 323	if (pairwise && !mac_addr)
 324		return -EINVAL;
 325
 326	switch (params->cipher) {
 327	case WLAN_CIPHER_SUITE_TKIP:
 328		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 329		if ((pairwise && key_idx) ||
 330		    params->mode != NL80211_KEY_RX_TX)
 331			return -EINVAL;
 332		break;
 333	case WLAN_CIPHER_SUITE_CCMP:
 334	case WLAN_CIPHER_SUITE_CCMP_256:
 335	case WLAN_CIPHER_SUITE_GCMP:
 336	case WLAN_CIPHER_SUITE_GCMP_256:
 337		/* IEEE802.11-2016 allows only 0 and - when supporting
 338		 * Extended Key ID - 1 as index for pairwise keys.
 339		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 340		 * the driver supports Extended Key ID.
 341		 * @NL80211_KEY_SET_TX can't be set when installing and
 342		 * validating a key.
 343		 */
 344		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 345		    params->mode == NL80211_KEY_SET_TX)
 346			return -EINVAL;
 347		if (wiphy_ext_feature_isset(&rdev->wiphy,
 348					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 349			if (pairwise && (key_idx < 0 || key_idx > 1))
 350				return -EINVAL;
 351		} else if (pairwise && key_idx) {
 352			return -EINVAL;
 353		}
 354		break;
 355	case WLAN_CIPHER_SUITE_AES_CMAC:
 356	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 357	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 358	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 359		/* Disallow BIP (group-only) cipher as pairwise cipher */
 360		if (pairwise)
 361			return -EINVAL;
 362		if (key_idx < 4)
 363			return -EINVAL;
 364		break;
 365	case WLAN_CIPHER_SUITE_WEP40:
 366	case WLAN_CIPHER_SUITE_WEP104:
 367		if (key_idx > 3)
 368			return -EINVAL;
 369		break;
 370	default:
 371		break;
 372	}
 373
 374	switch (params->cipher) {
 375	case WLAN_CIPHER_SUITE_WEP40:
 376		if (params->key_len != WLAN_KEY_LEN_WEP40)
 377			return -EINVAL;
 378		break;
 379	case WLAN_CIPHER_SUITE_TKIP:
 380		if (params->key_len != WLAN_KEY_LEN_TKIP)
 381			return -EINVAL;
 382		break;
 383	case WLAN_CIPHER_SUITE_CCMP:
 384		if (params->key_len != WLAN_KEY_LEN_CCMP)
 385			return -EINVAL;
 386		break;
 387	case WLAN_CIPHER_SUITE_CCMP_256:
 388		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 389			return -EINVAL;
 390		break;
 391	case WLAN_CIPHER_SUITE_GCMP:
 392		if (params->key_len != WLAN_KEY_LEN_GCMP)
 393			return -EINVAL;
 394		break;
 395	case WLAN_CIPHER_SUITE_GCMP_256:
 396		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 397			return -EINVAL;
 398		break;
 399	case WLAN_CIPHER_SUITE_WEP104:
 400		if (params->key_len != WLAN_KEY_LEN_WEP104)
 401			return -EINVAL;
 402		break;
 403	case WLAN_CIPHER_SUITE_AES_CMAC:
 404		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 405			return -EINVAL;
 406		break;
 407	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 408		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 409			return -EINVAL;
 410		break;
 411	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 412		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 413			return -EINVAL;
 414		break;
 415	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 416		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 417			return -EINVAL;
 418		break;
 419	default:
 420		/*
 421		 * We don't know anything about this algorithm,
 422		 * allow using it -- but the driver must check
 423		 * all parameters! We still check below whether
 424		 * or not the driver supports this algorithm,
 425		 * of course.
 426		 */
 427		break;
 428	}
 429
 430	if (params->seq) {
 431		switch (params->cipher) {
 432		case WLAN_CIPHER_SUITE_WEP40:
 433		case WLAN_CIPHER_SUITE_WEP104:
 434			/* These ciphers do not use key sequence */
 435			return -EINVAL;
 436		case WLAN_CIPHER_SUITE_TKIP:
 437		case WLAN_CIPHER_SUITE_CCMP:
 438		case WLAN_CIPHER_SUITE_CCMP_256:
 439		case WLAN_CIPHER_SUITE_GCMP:
 440		case WLAN_CIPHER_SUITE_GCMP_256:
 441		case WLAN_CIPHER_SUITE_AES_CMAC:
 442		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 443		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 444		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 445			if (params->seq_len != 6)
 446				return -EINVAL;
 447			break;
 448		}
 449	}
 450
 451	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 452		return -EINVAL;
 453
 454	return 0;
 455}
 456
 457unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 458{
 459	unsigned int hdrlen = 24;
 460
 461	if (ieee80211_is_ext(fc)) {
 462		hdrlen = 4;
 463		goto out;
 464	}
 465
 466	if (ieee80211_is_data(fc)) {
 467		if (ieee80211_has_a4(fc))
 468			hdrlen = 30;
 469		if (ieee80211_is_data_qos(fc)) {
 470			hdrlen += IEEE80211_QOS_CTL_LEN;
 471			if (ieee80211_has_order(fc))
 472				hdrlen += IEEE80211_HT_CTL_LEN;
 473		}
 474		goto out;
 475	}
 476
 477	if (ieee80211_is_mgmt(fc)) {
 478		if (ieee80211_has_order(fc))
 479			hdrlen += IEEE80211_HT_CTL_LEN;
 480		goto out;
 481	}
 482
 483	if (ieee80211_is_ctl(fc)) {
 484		/*
 485		 * ACK and CTS are 10 bytes, all others 16. To see how
 486		 * to get this condition consider
 487		 *   subtype mask:   0b0000000011110000 (0x00F0)
 488		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 489		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 490		 *   bits that matter:         ^^^      (0x00E0)
 491		 *   value of those: 0b0000000011000000 (0x00C0)
 492		 */
 493		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 494			hdrlen = 10;
 495		else
 496			hdrlen = 16;
 497	}
 498out:
 499	return hdrlen;
 500}
 501EXPORT_SYMBOL(ieee80211_hdrlen);
 502
 503unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 504{
 505	const struct ieee80211_hdr *hdr =
 506			(const struct ieee80211_hdr *)skb->data;
 507	unsigned int hdrlen;
 508
 509	if (unlikely(skb->len < 10))
 510		return 0;
 511	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 512	if (unlikely(hdrlen > skb->len))
 513		return 0;
 514	return hdrlen;
 515}
 516EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 517
 518static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 519{
 520	int ae = flags & MESH_FLAGS_AE;
 521	/* 802.11-2012, 8.2.4.7.3 */
 522	switch (ae) {
 523	default:
 524	case 0:
 525		return 6;
 526	case MESH_FLAGS_AE_A4:
 527		return 12;
 528	case MESH_FLAGS_AE_A5_A6:
 529		return 18;
 530	}
 531}
 532
 533unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 534{
 535	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 536}
 537EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 538
 539bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
 540{
 541	const __be16 *hdr_proto = hdr + ETH_ALEN;
 542
 543	if (!(ether_addr_equal(hdr, rfc1042_header) &&
 544	      *hdr_proto != htons(ETH_P_AARP) &&
 545	      *hdr_proto != htons(ETH_P_IPX)) &&
 546	    !ether_addr_equal(hdr, bridge_tunnel_header))
 547		return false;
 548
 549	*proto = *hdr_proto;
 550
 551	return true;
 552}
 553EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
 554
 555int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
 556{
 557	const void *mesh_addr;
 558	struct {
 559		struct ethhdr eth;
 560		u8 flags;
 561	} payload;
 562	int hdrlen;
 563	int ret;
 564
 565	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
 566	if (ret)
 567		return ret;
 568
 569	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
 570
 571	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
 572		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
 573						   &payload.eth.h_proto)))
 574		hdrlen += ETH_ALEN + 2;
 575	else if (!pskb_may_pull(skb, hdrlen))
 576		return -EINVAL;
 577	else
 578		payload.eth.h_proto = htons(skb->len - hdrlen);
 579
 580	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
 581	switch (payload.flags & MESH_FLAGS_AE) {
 582	case MESH_FLAGS_AE_A4:
 583		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
 584		break;
 585	case MESH_FLAGS_AE_A5_A6:
 586		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
 587		break;
 588	default:
 589		break;
 590	}
 591
 592	pskb_pull(skb, hdrlen - sizeof(payload.eth));
 593	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
 594
 595	return 0;
 596}
 597EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
 598
 599int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 600				  const u8 *addr, enum nl80211_iftype iftype,
 601				  u8 data_offset, bool is_amsdu)
 602{
 603	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 604	struct {
 605		u8 hdr[ETH_ALEN] __aligned(2);
 606		__be16 proto;
 607	} payload;
 608	struct ethhdr tmp;
 609	u16 hdrlen;
 
 610
 611	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 612		return -1;
 613
 614	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 615	if (skb->len < hdrlen)
 616		return -1;
 617
 618	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 619	 * header
 620	 * IEEE 802.11 address fields:
 621	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 622	 *   0     0   DA    SA    BSSID n/a
 623	 *   0     1   DA    BSSID SA    n/a
 624	 *   1     0   BSSID SA    DA    n/a
 625	 *   1     1   RA    TA    DA    SA
 626	 */
 627	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 628	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 629
 
 
 
 
 
 630	switch (hdr->frame_control &
 631		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 632	case cpu_to_le16(IEEE80211_FCTL_TODS):
 633		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 634			     iftype != NL80211_IFTYPE_AP_VLAN &&
 635			     iftype != NL80211_IFTYPE_P2P_GO))
 636			return -1;
 637		break;
 638	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 639		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
 
 640			     iftype != NL80211_IFTYPE_AP_VLAN &&
 641			     iftype != NL80211_IFTYPE_STATION))
 642			return -1;
 
 
 
 
 
 
 
 
 
 
 643		break;
 644	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 645		if ((iftype != NL80211_IFTYPE_STATION &&
 646		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 647		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 648		    (is_multicast_ether_addr(tmp.h_dest) &&
 649		     ether_addr_equal(tmp.h_source, addr)))
 650			return -1;
 
 
 
 
 
 
 
 
 
 651		break;
 652	case cpu_to_le16(0):
 653		if (iftype != NL80211_IFTYPE_ADHOC &&
 654		    iftype != NL80211_IFTYPE_STATION &&
 655		    iftype != NL80211_IFTYPE_OCB)
 656				return -1;
 657		break;
 658	}
 659
 660	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
 661		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
 662		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
 663		/* remove RFC1042 or Bridge-Tunnel encapsulation */
 
 
 
 
 
 664		hdrlen += ETH_ALEN + 2;
 665		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
 666	} else {
 667		tmp.h_proto = htons(skb->len - hdrlen);
 668	}
 669
 670	pskb_pull(skb, hdrlen);
 671
 672	if (!ehdr)
 673		ehdr = skb_push(skb, sizeof(struct ethhdr));
 674	memcpy(ehdr, &tmp, sizeof(tmp));
 675
 676	return 0;
 677}
 678EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 679
 680static void
 681__frame_add_frag(struct sk_buff *skb, struct page *page,
 682		 void *ptr, int len, int size)
 683{
 684	struct skb_shared_info *sh = skb_shinfo(skb);
 685	int page_offset;
 686
 687	get_page(page);
 688	page_offset = ptr - page_address(page);
 689	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 690}
 691
 692static void
 693__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 694			    int offset, int len)
 695{
 696	struct skb_shared_info *sh = skb_shinfo(skb);
 697	const skb_frag_t *frag = &sh->frags[0];
 698	struct page *frag_page;
 699	void *frag_ptr;
 700	int frag_len, frag_size;
 701	int head_size = skb->len - skb->data_len;
 702	int cur_len;
 703
 704	frag_page = virt_to_head_page(skb->head);
 705	frag_ptr = skb->data;
 706	frag_size = head_size;
 707
 708	while (offset >= frag_size) {
 709		offset -= frag_size;
 710		frag_page = skb_frag_page(frag);
 711		frag_ptr = skb_frag_address(frag);
 712		frag_size = skb_frag_size(frag);
 713		frag++;
 714	}
 715
 716	frag_ptr += offset;
 717	frag_len = frag_size - offset;
 718
 719	cur_len = min(len, frag_len);
 720
 721	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 722	len -= cur_len;
 723
 724	while (len > 0) {
 725		frag_len = skb_frag_size(frag);
 726		cur_len = min(len, frag_len);
 727		__frame_add_frag(frame, skb_frag_page(frag),
 728				 skb_frag_address(frag), cur_len, frag_len);
 729		len -= cur_len;
 730		frag++;
 731	}
 732}
 733
 734static struct sk_buff *
 735__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 736		       int offset, int len, bool reuse_frag,
 737		       int min_len)
 738{
 739	struct sk_buff *frame;
 740	int cur_len = len;
 741
 742	if (skb->len - offset < len)
 743		return NULL;
 744
 745	/*
 746	 * When reusing fragments, copy some data to the head to simplify
 747	 * ethernet header handling and speed up protocol header processing
 748	 * in the stack later.
 749	 */
 750	if (reuse_frag)
 751		cur_len = min_t(int, len, min_len);
 752
 753	/*
 754	 * Allocate and reserve two bytes more for payload
 755	 * alignment since sizeof(struct ethhdr) is 14.
 756	 */
 757	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 758	if (!frame)
 759		return NULL;
 760
 761	frame->priority = skb->priority;
 762	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 763	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 764
 765	len -= cur_len;
 766	if (!len)
 767		return frame;
 768
 769	offset += cur_len;
 770	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 771
 772	return frame;
 773}
 774
 775static u16
 776ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
 777{
 778	__le16 *field_le = field;
 779	__be16 *field_be = field;
 780	u16 len;
 781
 782	if (hdr_type >= 2)
 783		len = le16_to_cpu(*field_le);
 784	else
 785		len = be16_to_cpu(*field_be);
 786	if (hdr_type)
 787		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
 788
 789	return len;
 790}
 791
 792bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
 793{
 794	int offset = 0, subframe_len, padding;
 795
 796	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
 797		int remaining = skb->len - offset;
 798		struct {
 799		    __be16 len;
 800		    u8 mesh_flags;
 801		} hdr;
 802		u16 len;
 803
 804		if (sizeof(hdr) > remaining)
 805			return false;
 806
 807		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
 808			return false;
 809
 810		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
 811						      mesh_hdr);
 812		subframe_len = sizeof(struct ethhdr) + len;
 813		padding = (4 - subframe_len) & 0x3;
 814
 815		if (subframe_len > remaining)
 816			return false;
 817	}
 818
 819	return true;
 820}
 821EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
 822
 823void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 824			      const u8 *addr, enum nl80211_iftype iftype,
 825			      const unsigned int extra_headroom,
 826			      const u8 *check_da, const u8 *check_sa,
 827			      u8 mesh_control)
 828{
 829	unsigned int hlen = ALIGN(extra_headroom, 4);
 830	struct sk_buff *frame = NULL;
 831	int offset = 0;
 832	struct {
 833		struct ethhdr eth;
 834		uint8_t flags;
 835	} hdr;
 836	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 837	bool reuse_skb = false;
 838	bool last = false;
 839	int copy_len = sizeof(hdr.eth);
 840
 841	if (iftype == NL80211_IFTYPE_MESH_POINT)
 842		copy_len = sizeof(hdr);
 843
 844	while (!last) {
 845		int remaining = skb->len - offset;
 846		unsigned int subframe_len;
 847		int len, mesh_len = 0;
 848		u8 padding;
 849
 850		if (copy_len > remaining)
 851			goto purge;
 852
 853		skb_copy_bits(skb, offset, &hdr, copy_len);
 854		if (iftype == NL80211_IFTYPE_MESH_POINT)
 855			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
 856		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
 857						      mesh_control);
 858		subframe_len = sizeof(struct ethhdr) + len;
 859		padding = (4 - subframe_len) & 0x3;
 860
 861		/* the last MSDU has no padding */
 
 862		if (subframe_len > remaining)
 863			goto purge;
 864		/* mitigate A-MSDU aggregation injection attacks */
 865		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
 866			goto purge;
 867
 868		offset += sizeof(struct ethhdr);
 869		last = remaining <= subframe_len + padding;
 870
 871		/* FIXME: should we really accept multicast DA? */
 872		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
 873		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
 874		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
 875			offset += len + padding;
 876			continue;
 877		}
 878
 879		/* reuse skb for the last subframe */
 880		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 881			skb_pull(skb, offset);
 882			frame = skb;
 883			reuse_skb = true;
 884		} else {
 885			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 886						       reuse_frag, 32 + mesh_len);
 887			if (!frame)
 888				goto purge;
 889
 890			offset += len + padding;
 891		}
 892
 893		skb_reset_network_header(frame);
 894		frame->dev = skb->dev;
 895		frame->priority = skb->priority;
 896
 897		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
 898			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
 
 
 
 
 899			skb_pull(frame, ETH_ALEN + 2);
 
 900
 901		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
 902		__skb_queue_tail(list, frame);
 903	}
 904
 905	if (!reuse_skb)
 906		dev_kfree_skb(skb);
 907
 908	return;
 909
 910 purge:
 911	__skb_queue_purge(list);
 912	dev_kfree_skb(skb);
 913}
 914EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 915
 916/* Given a data frame determine the 802.1p/1d tag to use. */
 917unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 918				    struct cfg80211_qos_map *qos_map)
 919{
 920	unsigned int dscp;
 921	unsigned char vlan_priority;
 922	unsigned int ret;
 923
 924	/* skb->priority values from 256->263 are magic values to
 925	 * directly indicate a specific 802.1d priority.  This is used
 926	 * to allow 802.1d priority to be passed directly in from VLAN
 927	 * tags, etc.
 928	 */
 929	if (skb->priority >= 256 && skb->priority <= 263) {
 930		ret = skb->priority - 256;
 931		goto out;
 932	}
 933
 934	if (skb_vlan_tag_present(skb)) {
 935		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 936			>> VLAN_PRIO_SHIFT;
 937		if (vlan_priority > 0) {
 938			ret = vlan_priority;
 939			goto out;
 940		}
 941	}
 942
 943	switch (skb->protocol) {
 944	case htons(ETH_P_IP):
 945		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 946		break;
 947	case htons(ETH_P_IPV6):
 948		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 949		break;
 950	case htons(ETH_P_MPLS_UC):
 951	case htons(ETH_P_MPLS_MC): {
 952		struct mpls_label mpls_tmp, *mpls;
 953
 954		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 955					  sizeof(*mpls), &mpls_tmp);
 956		if (!mpls)
 957			return 0;
 958
 959		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 960			>> MPLS_LS_TC_SHIFT;
 961		goto out;
 962	}
 963	case htons(ETH_P_80221):
 964		/* 802.21 is always network control traffic */
 965		return 7;
 966	default:
 967		return 0;
 968	}
 969
 970	if (qos_map) {
 971		unsigned int i, tmp_dscp = dscp >> 2;
 972
 973		for (i = 0; i < qos_map->num_des; i++) {
 974			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 975				ret = qos_map->dscp_exception[i].up;
 976				goto out;
 977			}
 978		}
 979
 980		for (i = 0; i < 8; i++) {
 981			if (tmp_dscp >= qos_map->up[i].low &&
 982			    tmp_dscp <= qos_map->up[i].high) {
 983				ret = i;
 984				goto out;
 985			}
 986		}
 987	}
 988
 989	/* The default mapping as defined Section 2.3 in RFC8325: The three
 990	 * Most Significant Bits (MSBs) of the DSCP are used as the
 991	 * corresponding L2 markings.
 992	 */
 993	ret = dscp >> 5;
 994
 995	/* Handle specific DSCP values for which the default mapping (as
 996	 * described above) doesn't adhere to the intended usage of the DSCP
 997	 * value. See section 4 in RFC8325. Specifically, for the following
 998	 * Diffserv Service Classes no update is needed:
 999	 * - Standard: DF
1000	 * - Low Priority Data: CS1
1001	 * - Multimedia Conferencing: AF41, AF42, AF43
1002	 * - Network Control Traffic: CS7
1003	 * - Real-Time Interactive: CS4
1004	 * - Signaling: CS5
1005	 */
1006	switch (dscp >> 2) {
1007	case 10:
1008	case 12:
1009	case 14:
1010		/* High throughput data: AF11, AF12, AF13 */
1011		ret = 0;
1012		break;
1013	case 16:
1014		/* Operations, Administration, and Maintenance and Provisioning:
1015		 * CS2
1016		 */
1017		ret = 0;
1018		break;
1019	case 18:
1020	case 20:
1021	case 22:
1022		/* Low latency data: AF21, AF22, AF23 */
1023		ret = 3;
1024		break;
1025	case 24:
1026		/* Broadcasting video: CS3 */
1027		ret = 4;
1028		break;
1029	case 26:
1030	case 28:
1031	case 30:
1032		/* Multimedia Streaming: AF31, AF32, AF33 */
1033		ret = 4;
1034		break;
1035	case 44:
1036		/* Voice Admit: VA */
1037		ret = 6;
1038		break;
1039	case 46:
1040		/* Telephony traffic: EF */
1041		ret = 6;
1042		break;
1043	case 48:
1044		/* Network Control Traffic: CS6 */
1045		ret = 7;
1046		break;
1047	}
1048out:
1049	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1050}
1051EXPORT_SYMBOL(cfg80211_classify8021d);
1052
1053const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1054{
1055	const struct cfg80211_bss_ies *ies;
1056
1057	ies = rcu_dereference(bss->ies);
1058	if (!ies)
1059		return NULL;
1060
1061	return cfg80211_find_elem(id, ies->data, ies->len);
1062}
1063EXPORT_SYMBOL(ieee80211_bss_get_elem);
1064
1065void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1066{
1067	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1068	struct net_device *dev = wdev->netdev;
1069	int i;
1070
1071	if (!wdev->connect_keys)
1072		return;
1073
1074	for (i = 0; i < 4; i++) {
1075		if (!wdev->connect_keys->params[i].cipher)
1076			continue;
1077		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1078				 &wdev->connect_keys->params[i])) {
1079			netdev_err(dev, "failed to set key %d\n", i);
1080			continue;
1081		}
1082		if (wdev->connect_keys->def == i &&
1083		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1084			netdev_err(dev, "failed to set defkey %d\n", i);
1085			continue;
1086		}
1087	}
1088
1089	kfree_sensitive(wdev->connect_keys);
1090	wdev->connect_keys = NULL;
1091}
1092
1093void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1094{
1095	struct cfg80211_event *ev;
1096	unsigned long flags;
1097
1098	spin_lock_irqsave(&wdev->event_lock, flags);
1099	while (!list_empty(&wdev->event_list)) {
1100		ev = list_first_entry(&wdev->event_list,
1101				      struct cfg80211_event, list);
1102		list_del(&ev->list);
1103		spin_unlock_irqrestore(&wdev->event_lock, flags);
1104
 
1105		switch (ev->type) {
1106		case EVENT_CONNECT_RESULT:
1107			__cfg80211_connect_result(
1108				wdev->netdev,
1109				&ev->cr,
1110				ev->cr.status == WLAN_STATUS_SUCCESS);
1111			break;
1112		case EVENT_ROAMED:
1113			__cfg80211_roamed(wdev, &ev->rm);
1114			break;
1115		case EVENT_DISCONNECTED:
1116			__cfg80211_disconnected(wdev->netdev,
1117						ev->dc.ie, ev->dc.ie_len,
1118						ev->dc.reason,
1119						!ev->dc.locally_generated);
1120			break;
1121		case EVENT_IBSS_JOINED:
1122			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1123					       ev->ij.channel);
1124			break;
1125		case EVENT_STOPPED:
1126			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1127			break;
1128		case EVENT_PORT_AUTHORIZED:
1129			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1130						   ev->pa.td_bitmap,
1131						   ev->pa.td_bitmap_len);
1132			break;
1133		}
 
1134
1135		kfree(ev);
1136
1137		spin_lock_irqsave(&wdev->event_lock, flags);
1138	}
1139	spin_unlock_irqrestore(&wdev->event_lock, flags);
1140}
1141
1142void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1143{
1144	struct wireless_dev *wdev;
1145
1146	lockdep_assert_held(&rdev->wiphy.mtx);
1147
1148	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1149		cfg80211_process_wdev_events(wdev);
1150}
1151
1152int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1153			  struct net_device *dev, enum nl80211_iftype ntype,
1154			  struct vif_params *params)
1155{
1156	int err;
1157	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1158
1159	lockdep_assert_held(&rdev->wiphy.mtx);
1160
1161	/* don't support changing VLANs, you just re-create them */
1162	if (otype == NL80211_IFTYPE_AP_VLAN)
1163		return -EOPNOTSUPP;
1164
1165	/* cannot change into P2P device or NAN */
1166	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1167	    ntype == NL80211_IFTYPE_NAN)
1168		return -EOPNOTSUPP;
1169
1170	if (!rdev->ops->change_virtual_intf ||
1171	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1172		return -EOPNOTSUPP;
1173
1174	if (ntype != otype) {
1175		/* if it's part of a bridge, reject changing type to station/ibss */
1176		if (netif_is_bridge_port(dev) &&
1177		    (ntype == NL80211_IFTYPE_ADHOC ||
1178		     ntype == NL80211_IFTYPE_STATION ||
1179		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1180			return -EBUSY;
1181
 
1182		dev->ieee80211_ptr->use_4addr = false;
 
 
1183		rdev_set_qos_map(rdev, dev, NULL);
 
1184
1185		switch (otype) {
1186		case NL80211_IFTYPE_AP:
1187		case NL80211_IFTYPE_P2P_GO:
1188			cfg80211_stop_ap(rdev, dev, -1, true);
1189			break;
1190		case NL80211_IFTYPE_ADHOC:
1191			cfg80211_leave_ibss(rdev, dev, false);
1192			break;
1193		case NL80211_IFTYPE_STATION:
1194		case NL80211_IFTYPE_P2P_CLIENT:
 
1195			cfg80211_disconnect(rdev, dev,
1196					    WLAN_REASON_DEAUTH_LEAVING, true);
 
1197			break;
1198		case NL80211_IFTYPE_MESH_POINT:
1199			/* mesh should be handled? */
1200			break;
1201		case NL80211_IFTYPE_OCB:
1202			cfg80211_leave_ocb(rdev, dev);
1203			break;
1204		default:
1205			break;
1206		}
1207
1208		cfg80211_process_rdev_events(rdev);
1209		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210
1211		memset(&dev->ieee80211_ptr->u, 0,
1212		       sizeof(dev->ieee80211_ptr->u));
1213		memset(&dev->ieee80211_ptr->links, 0,
1214		       sizeof(dev->ieee80211_ptr->links));
1215	}
1216
1217	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218
1219	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220
1221	if (!err && params && params->use_4addr != -1)
1222		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223
1224	if (!err) {
1225		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226		switch (ntype) {
1227		case NL80211_IFTYPE_STATION:
1228			if (dev->ieee80211_ptr->use_4addr)
1229				break;
1230			fallthrough;
1231		case NL80211_IFTYPE_OCB:
1232		case NL80211_IFTYPE_P2P_CLIENT:
1233		case NL80211_IFTYPE_ADHOC:
1234			dev->priv_flags |= IFF_DONT_BRIDGE;
1235			break;
1236		case NL80211_IFTYPE_P2P_GO:
1237		case NL80211_IFTYPE_AP:
1238		case NL80211_IFTYPE_AP_VLAN:
 
1239		case NL80211_IFTYPE_MESH_POINT:
1240			/* bridging OK */
1241			break;
1242		case NL80211_IFTYPE_MONITOR:
1243			/* monitor can't bridge anyway */
1244			break;
1245		case NL80211_IFTYPE_UNSPECIFIED:
1246		case NUM_NL80211_IFTYPES:
1247			/* not happening */
1248			break;
1249		case NL80211_IFTYPE_P2P_DEVICE:
1250		case NL80211_IFTYPE_WDS:
1251		case NL80211_IFTYPE_NAN:
1252			WARN_ON(1);
1253			break;
1254		}
1255	}
1256
1257	if (!err && ntype != otype && netif_running(dev)) {
1258		cfg80211_update_iface_num(rdev, ntype, 1);
1259		cfg80211_update_iface_num(rdev, otype, -1);
1260	}
1261
1262	return err;
1263}
1264
1265static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266{
1267	int modulation, streams, bitrate;
1268
1269	/* the formula below does only work for MCS values smaller than 32 */
1270	if (WARN_ON_ONCE(rate->mcs >= 32))
1271		return 0;
1272
1273	modulation = rate->mcs & 7;
1274	streams = (rate->mcs >> 3) + 1;
1275
1276	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277
1278	if (modulation < 4)
1279		bitrate *= (modulation + 1);
1280	else if (modulation == 4)
1281		bitrate *= (modulation + 2);
1282	else
1283		bitrate *= (modulation + 3);
1284
1285	bitrate *= streams;
1286
1287	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288		bitrate = (bitrate / 9) * 10;
1289
1290	/* do NOT round down here */
1291	return (bitrate + 50000) / 100000;
1292}
1293
1294static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295{
1296	static const u32 __mcs2bitrate[] = {
1297		/* control PHY */
1298		[0] =   275,
1299		/* SC PHY */
1300		[1] =  3850,
1301		[2] =  7700,
1302		[3] =  9625,
1303		[4] = 11550,
1304		[5] = 12512, /* 1251.25 mbps */
1305		[6] = 15400,
1306		[7] = 19250,
1307		[8] = 23100,
1308		[9] = 25025,
1309		[10] = 30800,
1310		[11] = 38500,
1311		[12] = 46200,
1312		/* OFDM PHY */
1313		[13] =  6930,
1314		[14] =  8662, /* 866.25 mbps */
1315		[15] = 13860,
1316		[16] = 17325,
1317		[17] = 20790,
1318		[18] = 27720,
1319		[19] = 34650,
1320		[20] = 41580,
1321		[21] = 45045,
1322		[22] = 51975,
1323		[23] = 62370,
1324		[24] = 67568, /* 6756.75 mbps */
1325		/* LP-SC PHY */
1326		[25] =  6260,
1327		[26] =  8340,
1328		[27] = 11120,
1329		[28] = 12510,
1330		[29] = 16680,
1331		[30] = 22240,
1332		[31] = 25030,
1333	};
1334
1335	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336		return 0;
1337
1338	return __mcs2bitrate[rate->mcs];
1339}
1340
1341static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342{
1343	static const u32 __mcs2bitrate[] = {
1344		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345		[7 - 6] = 50050, /* MCS 12.1 */
1346		[8 - 6] = 53900,
1347		[9 - 6] = 57750,
1348		[10 - 6] = 63900,
1349		[11 - 6] = 75075,
1350		[12 - 6] = 80850,
1351	};
1352
1353	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355		return 0;
1356
1357	return __mcs2bitrate[rate->mcs - 6];
1358}
1359
1360static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361{
1362	static const u32 __mcs2bitrate[] = {
1363		/* control PHY */
1364		[0] =   275,
1365		/* SC PHY */
1366		[1] =  3850,
1367		[2] =  7700,
1368		[3] =  9625,
1369		[4] = 11550,
1370		[5] = 12512, /* 1251.25 mbps */
1371		[6] = 13475,
1372		[7] = 15400,
1373		[8] = 19250,
1374		[9] = 23100,
1375		[10] = 25025,
1376		[11] = 26950,
1377		[12] = 30800,
1378		[13] = 38500,
1379		[14] = 46200,
1380		[15] = 50050,
1381		[16] = 53900,
1382		[17] = 57750,
1383		[18] = 69300,
1384		[19] = 75075,
1385		[20] = 80850,
1386	};
1387
1388	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389		return 0;
1390
1391	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392}
1393
1394static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395{
1396	static const u32 base[4][12] = {
1397		{   6500000,
1398		   13000000,
1399		   19500000,
1400		   26000000,
1401		   39000000,
1402		   52000000,
1403		   58500000,
1404		   65000000,
1405		   78000000,
1406		/* not in the spec, but some devices use this: */
1407		   86700000,
1408		   97500000,
1409		  108300000,
1410		},
1411		{  13500000,
1412		   27000000,
1413		   40500000,
1414		   54000000,
1415		   81000000,
1416		  108000000,
1417		  121500000,
1418		  135000000,
1419		  162000000,
1420		  180000000,
1421		  202500000,
1422		  225000000,
1423		},
1424		{  29300000,
1425		   58500000,
1426		   87800000,
1427		  117000000,
1428		  175500000,
1429		  234000000,
1430		  263300000,
1431		  292500000,
1432		  351000000,
1433		  390000000,
1434		  438800000,
1435		  487500000,
1436		},
1437		{  58500000,
1438		  117000000,
1439		  175500000,
1440		  234000000,
1441		  351000000,
1442		  468000000,
1443		  526500000,
1444		  585000000,
1445		  702000000,
1446		  780000000,
1447		  877500000,
1448		  975000000,
1449		},
1450	};
1451	u32 bitrate;
1452	int idx;
1453
1454	if (rate->mcs > 11)
1455		goto warn;
1456
1457	switch (rate->bw) {
1458	case RATE_INFO_BW_160:
1459		idx = 3;
1460		break;
1461	case RATE_INFO_BW_80:
1462		idx = 2;
1463		break;
1464	case RATE_INFO_BW_40:
1465		idx = 1;
1466		break;
1467	case RATE_INFO_BW_5:
1468	case RATE_INFO_BW_10:
1469	default:
1470		goto warn;
1471	case RATE_INFO_BW_20:
1472		idx = 0;
1473	}
1474
1475	bitrate = base[idx][rate->mcs];
1476	bitrate *= rate->nss;
1477
1478	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479		bitrate = (bitrate / 9) * 10;
1480
1481	/* do NOT round down here */
1482	return (bitrate + 50000) / 100000;
1483 warn:
1484	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485		  rate->bw, rate->mcs, rate->nss);
1486	return 0;
1487}
1488
1489static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490{
1491#define SCALE 6144
1492	u32 mcs_divisors[14] = {
1493		102399, /* 16.666666... */
1494		 51201, /*  8.333333... */
1495		 34134, /*  5.555555... */
1496		 25599, /*  4.166666... */
1497		 17067, /*  2.777777... */
1498		 12801, /*  2.083333... */
1499		 11377, /*  1.851725... */
1500		 10239, /*  1.666666... */
1501		  8532, /*  1.388888... */
1502		  7680, /*  1.250000... */
1503		  6828, /*  1.111111... */
1504		  6144, /*  1.000000... */
1505		  5690, /*  0.926106... */
1506		  5120, /*  0.833333... */
1507	};
1508	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1510	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1511	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1512	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1513	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1514	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1515	u64 tmp;
1516	u32 result;
1517
1518	if (WARN_ON_ONCE(rate->mcs > 13))
1519		return 0;
1520
1521	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522		return 0;
1523	if (WARN_ON_ONCE(rate->he_ru_alloc >
1524			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525		return 0;
1526	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527		return 0;
1528
1529	if (rate->bw == RATE_INFO_BW_160 ||
1530	    (rate->bw == RATE_INFO_BW_HE_RU &&
1531	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532		result = rates_160M[rate->he_gi];
1533	else if (rate->bw == RATE_INFO_BW_80 ||
1534		 (rate->bw == RATE_INFO_BW_HE_RU &&
1535		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536		result = rates_996[rate->he_gi];
1537	else if (rate->bw == RATE_INFO_BW_40 ||
1538		 (rate->bw == RATE_INFO_BW_HE_RU &&
1539		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540		result = rates_484[rate->he_gi];
1541	else if (rate->bw == RATE_INFO_BW_20 ||
1542		 (rate->bw == RATE_INFO_BW_HE_RU &&
1543		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544		result = rates_242[rate->he_gi];
1545	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547		result = rates_106[rate->he_gi];
1548	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550		result = rates_52[rate->he_gi];
1551	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553		result = rates_26[rate->he_gi];
1554	else {
1555		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556		     rate->bw, rate->he_ru_alloc);
1557		return 0;
1558	}
1559
1560	/* now scale to the appropriate MCS */
1561	tmp = result;
1562	tmp *= SCALE;
1563	do_div(tmp, mcs_divisors[rate->mcs]);
1564	result = tmp;
1565
1566	/* and take NSS, DCM into account */
1567	result = (result * rate->nss) / 8;
1568	if (rate->he_dcm)
1569		result /= 2;
1570
1571	return result / 10000;
1572}
1573
1574static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1575{
1576#define SCALE 6144
1577	static const u32 mcs_divisors[16] = {
1578		102399, /* 16.666666... */
1579		 51201, /*  8.333333... */
1580		 34134, /*  5.555555... */
1581		 25599, /*  4.166666... */
1582		 17067, /*  2.777777... */
1583		 12801, /*  2.083333... */
1584		 11377, /*  1.851725... */
1585		 10239, /*  1.666666... */
1586		  8532, /*  1.388888... */
1587		  7680, /*  1.250000... */
1588		  6828, /*  1.111111... */
1589		  6144, /*  1.000000... */
1590		  5690, /*  0.926106... */
1591		  5120, /*  0.833333... */
1592		409600, /* 66.666666... */
1593		204800, /* 33.333333... */
1594	};
1595	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1596	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1597	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1598	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1599	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1600	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1601	u64 tmp;
1602	u32 result;
1603
1604	if (WARN_ON_ONCE(rate->mcs > 15))
1605		return 0;
1606	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1607		return 0;
1608	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1609			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1610		return 0;
1611	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1612		return 0;
1613
1614	/* Bandwidth checks for MCS 14 */
1615	if (rate->mcs == 14) {
1616		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1617		     rate->bw != RATE_INFO_BW_80 &&
1618		     rate->bw != RATE_INFO_BW_160 &&
1619		     rate->bw != RATE_INFO_BW_320) ||
1620		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1621		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1622		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1623		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1624			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1625			     rate->bw, rate->eht_ru_alloc);
1626			return 0;
1627		}
1628	}
1629
1630	if (rate->bw == RATE_INFO_BW_320 ||
1631	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1632	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1633		result = 4 * rates_996[rate->eht_gi];
1634	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1635		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1636		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1637	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1639		result = 3 * rates_996[rate->eht_gi];
1640	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1641		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1642		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1643	else if (rate->bw == RATE_INFO_BW_160 ||
1644		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1645		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1646		result = 2 * rates_996[rate->eht_gi];
1647	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1648		 rate->eht_ru_alloc ==
1649		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1650		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1651			 + rates_242[rate->eht_gi];
1652	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1653		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1654		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1655	else if (rate->bw == RATE_INFO_BW_80 ||
1656		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1657		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1658		result = rates_996[rate->eht_gi];
1659	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1660		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1661		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1662	else if (rate->bw == RATE_INFO_BW_40 ||
1663		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1664		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1665		result = rates_484[rate->eht_gi];
1666	else if (rate->bw == RATE_INFO_BW_20 ||
1667		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1668		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1669		result = rates_242[rate->eht_gi];
1670	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1671		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1672		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1673	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1675		result = rates_106[rate->eht_gi];
1676	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1677		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1678		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1679	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1680		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1681		result = rates_52[rate->eht_gi];
1682	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1684		result = rates_26[rate->eht_gi];
1685	else {
1686		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1687		     rate->bw, rate->eht_ru_alloc);
1688		return 0;
1689	}
1690
1691	/* now scale to the appropriate MCS */
1692	tmp = result;
1693	tmp *= SCALE;
1694	do_div(tmp, mcs_divisors[rate->mcs]);
1695
1696	/* and take NSS */
1697	tmp *= rate->nss;
1698	do_div(tmp, 8);
1699
1700	result = tmp;
1701
1702	return result / 10000;
1703}
1704
1705static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1706{
1707	/* For 1, 2, 4, 8 and 16 MHz channels */
1708	static const u32 base[5][11] = {
1709		{  300000,
1710		   600000,
1711		   900000,
1712		  1200000,
1713		  1800000,
1714		  2400000,
1715		  2700000,
1716		  3000000,
1717		  3600000,
1718		  4000000,
1719		  /* MCS 10 supported in 1 MHz only */
1720		  150000,
1721		},
1722		{  650000,
1723		  1300000,
1724		  1950000,
1725		  2600000,
1726		  3900000,
1727		  5200000,
1728		  5850000,
1729		  6500000,
1730		  7800000,
1731		  /* MCS 9 not valid */
1732		},
1733		{  1350000,
1734		   2700000,
1735		   4050000,
1736		   5400000,
1737		   8100000,
1738		  10800000,
1739		  12150000,
1740		  13500000,
1741		  16200000,
1742		  18000000,
1743		},
1744		{  2925000,
1745		   5850000,
1746		   8775000,
1747		  11700000,
1748		  17550000,
1749		  23400000,
1750		  26325000,
1751		  29250000,
1752		  35100000,
1753		  39000000,
1754		},
1755		{  8580000,
1756		  11700000,
1757		  17550000,
1758		  23400000,
1759		  35100000,
1760		  46800000,
1761		  52650000,
1762		  58500000,
1763		  70200000,
1764		  78000000,
1765		},
1766	};
1767	u32 bitrate;
1768	/* default is 1 MHz index */
1769	int idx = 0;
1770
1771	if (rate->mcs >= 11)
1772		goto warn;
1773
1774	switch (rate->bw) {
1775	case RATE_INFO_BW_16:
1776		idx = 4;
1777		break;
1778	case RATE_INFO_BW_8:
1779		idx = 3;
1780		break;
1781	case RATE_INFO_BW_4:
1782		idx = 2;
1783		break;
1784	case RATE_INFO_BW_2:
1785		idx = 1;
1786		break;
1787	case RATE_INFO_BW_1:
1788		idx = 0;
1789		break;
1790	case RATE_INFO_BW_5:
1791	case RATE_INFO_BW_10:
1792	case RATE_INFO_BW_20:
1793	case RATE_INFO_BW_40:
1794	case RATE_INFO_BW_80:
1795	case RATE_INFO_BW_160:
1796	default:
1797		goto warn;
1798	}
1799
1800	bitrate = base[idx][rate->mcs];
1801	bitrate *= rate->nss;
1802
1803	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1804		bitrate = (bitrate / 9) * 10;
1805	/* do NOT round down here */
1806	return (bitrate + 50000) / 100000;
1807warn:
1808	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1809		  rate->bw, rate->mcs, rate->nss);
1810	return 0;
1811}
1812
1813u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1814{
1815	if (rate->flags & RATE_INFO_FLAGS_MCS)
1816		return cfg80211_calculate_bitrate_ht(rate);
1817	if (rate->flags & RATE_INFO_FLAGS_DMG)
1818		return cfg80211_calculate_bitrate_dmg(rate);
1819	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1820		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1821	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1822		return cfg80211_calculate_bitrate_edmg(rate);
1823	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1824		return cfg80211_calculate_bitrate_vht(rate);
1825	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1826		return cfg80211_calculate_bitrate_he(rate);
1827	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1828		return cfg80211_calculate_bitrate_eht(rate);
1829	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1830		return cfg80211_calculate_bitrate_s1g(rate);
1831
1832	return rate->legacy;
1833}
1834EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1835
1836int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1837			  enum ieee80211_p2p_attr_id attr,
1838			  u8 *buf, unsigned int bufsize)
1839{
1840	u8 *out = buf;
1841	u16 attr_remaining = 0;
1842	bool desired_attr = false;
1843	u16 desired_len = 0;
1844
1845	while (len > 0) {
1846		unsigned int iedatalen;
1847		unsigned int copy;
1848		const u8 *iedata;
1849
1850		if (len < 2)
1851			return -EILSEQ;
1852		iedatalen = ies[1];
1853		if (iedatalen + 2 > len)
1854			return -EILSEQ;
1855
1856		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1857			goto cont;
1858
1859		if (iedatalen < 4)
1860			goto cont;
1861
1862		iedata = ies + 2;
1863
1864		/* check WFA OUI, P2P subtype */
1865		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1866		    iedata[2] != 0x9a || iedata[3] != 0x09)
1867			goto cont;
1868
1869		iedatalen -= 4;
1870		iedata += 4;
1871
1872		/* check attribute continuation into this IE */
1873		copy = min_t(unsigned int, attr_remaining, iedatalen);
1874		if (copy && desired_attr) {
1875			desired_len += copy;
1876			if (out) {
1877				memcpy(out, iedata, min(bufsize, copy));
1878				out += min(bufsize, copy);
1879				bufsize -= min(bufsize, copy);
1880			}
1881
1882
1883			if (copy == attr_remaining)
1884				return desired_len;
1885		}
1886
1887		attr_remaining -= copy;
1888		if (attr_remaining)
1889			goto cont;
1890
1891		iedatalen -= copy;
1892		iedata += copy;
1893
1894		while (iedatalen > 0) {
1895			u16 attr_len;
1896
1897			/* P2P attribute ID & size must fit */
1898			if (iedatalen < 3)
1899				return -EILSEQ;
1900			desired_attr = iedata[0] == attr;
1901			attr_len = get_unaligned_le16(iedata + 1);
1902			iedatalen -= 3;
1903			iedata += 3;
1904
1905			copy = min_t(unsigned int, attr_len, iedatalen);
1906
1907			if (desired_attr) {
1908				desired_len += copy;
1909				if (out) {
1910					memcpy(out, iedata, min(bufsize, copy));
1911					out += min(bufsize, copy);
1912					bufsize -= min(bufsize, copy);
1913				}
1914
1915				if (copy == attr_len)
1916					return desired_len;
1917			}
1918
1919			iedata += copy;
1920			iedatalen -= copy;
1921			attr_remaining = attr_len - copy;
1922		}
1923
1924 cont:
1925		len -= ies[1] + 2;
1926		ies += ies[1] + 2;
1927	}
1928
1929	if (attr_remaining && desired_attr)
1930		return -EILSEQ;
1931
1932	return -ENOENT;
1933}
1934EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1935
1936static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1937{
1938	int i;
1939
1940	/* Make sure array values are legal */
1941	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1942		return false;
1943
1944	i = 0;
1945	while (i < n_ids) {
1946		if (ids[i] == WLAN_EID_EXTENSION) {
1947			if (id_ext && (ids[i + 1] == id))
1948				return true;
1949
1950			i += 2;
1951			continue;
1952		}
1953
1954		if (ids[i] == id && !id_ext)
1955			return true;
1956
1957		i++;
1958	}
1959	return false;
1960}
1961
1962static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1963{
1964	/* we assume a validly formed IEs buffer */
1965	u8 len = ies[pos + 1];
1966
1967	pos += 2 + len;
1968
1969	/* the IE itself must have 255 bytes for fragments to follow */
1970	if (len < 255)
1971		return pos;
1972
1973	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1974		len = ies[pos + 1];
1975		pos += 2 + len;
1976	}
1977
1978	return pos;
1979}
1980
1981size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1982			      const u8 *ids, int n_ids,
1983			      const u8 *after_ric, int n_after_ric,
1984			      size_t offset)
1985{
1986	size_t pos = offset;
1987
1988	while (pos < ielen) {
1989		u8 ext = 0;
1990
1991		if (ies[pos] == WLAN_EID_EXTENSION)
1992			ext = 2;
1993		if ((pos + ext) >= ielen)
1994			break;
1995
1996		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1997					  ies[pos] == WLAN_EID_EXTENSION))
1998			break;
1999
2000		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2001			pos = skip_ie(ies, ielen, pos);
2002
2003			while (pos < ielen) {
2004				if (ies[pos] == WLAN_EID_EXTENSION)
2005					ext = 2;
2006				else
2007					ext = 0;
2008
2009				if ((pos + ext) >= ielen)
2010					break;
2011
2012				if (!ieee80211_id_in_list(after_ric,
2013							  n_after_ric,
2014							  ies[pos + ext],
2015							  ext == 2))
2016					pos = skip_ie(ies, ielen, pos);
2017				else
2018					break;
2019			}
2020		} else {
2021			pos = skip_ie(ies, ielen, pos);
2022		}
2023	}
2024
2025	return pos;
2026}
2027EXPORT_SYMBOL(ieee80211_ie_split_ric);
2028
2029void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2030{
2031	unsigned int elem_len;
2032
2033	if (!len_pos)
2034		return;
2035
2036	elem_len = skb->data + skb->len - len_pos - 1;
2037
2038	while (elem_len > 255) {
2039		/* this one is 255 */
2040		*len_pos = 255;
2041		/* remaining data gets smaller */
2042		elem_len -= 255;
2043		/* make space for the fragment ID/len in SKB */
2044		skb_put(skb, 2);
2045		/* shift back the remaining data to place fragment ID/len */
2046		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2047		/* place the fragment ID */
2048		len_pos += 255 + 1;
2049		*len_pos = frag_id;
2050		/* and point to fragment length to update later */
2051		len_pos++;
2052	}
2053
2054	*len_pos = elem_len;
2055}
2056EXPORT_SYMBOL(ieee80211_fragment_element);
2057
2058bool ieee80211_operating_class_to_band(u8 operating_class,
2059				       enum nl80211_band *band)
2060{
2061	switch (operating_class) {
2062	case 112:
2063	case 115 ... 127:
2064	case 128 ... 130:
2065		*band = NL80211_BAND_5GHZ;
2066		return true;
2067	case 131 ... 135:
2068	case 137:
2069		*band = NL80211_BAND_6GHZ;
2070		return true;
2071	case 81:
2072	case 82:
2073	case 83:
2074	case 84:
2075		*band = NL80211_BAND_2GHZ;
2076		return true;
2077	case 180:
2078		*band = NL80211_BAND_60GHZ;
2079		return true;
2080	}
2081
2082	return false;
2083}
2084EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2085
2086bool ieee80211_operating_class_to_chandef(u8 operating_class,
2087					  struct ieee80211_channel *chan,
2088					  struct cfg80211_chan_def *chandef)
2089{
2090	u32 control_freq, offset = 0;
2091	enum nl80211_band band;
2092
2093	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2094	    !chan || band != chan->band)
2095		return false;
2096
2097	control_freq = chan->center_freq;
2098	chandef->chan = chan;
2099
2100	if (control_freq >= 5955)
2101		offset = control_freq - 5955;
2102	else if (control_freq >= 5745)
2103		offset = control_freq - 5745;
2104	else if (control_freq >= 5180)
2105		offset = control_freq - 5180;
2106	offset /= 20;
2107
2108	switch (operating_class) {
2109	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2110	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2111	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2112	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2113	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2114	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2115	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2116	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2117	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2118		chandef->center_freq1 = control_freq;
2119		chandef->width = NL80211_CHAN_WIDTH_20;
2120		return true;
2121	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2122	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2123	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2124	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2125	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2126		chandef->center_freq1 = control_freq + 10;
2127		chandef->width = NL80211_CHAN_WIDTH_40;
2128		return true;
2129	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2130	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2131	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2132	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2133	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2134		chandef->center_freq1 = control_freq - 10;
2135		chandef->width = NL80211_CHAN_WIDTH_40;
2136		return true;
2137	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2138		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2139		chandef->width = NL80211_CHAN_WIDTH_40;
2140		return true;
2141	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2142	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2143		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2144		chandef->width = NL80211_CHAN_WIDTH_80;
2145		return true;
2146	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2147	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2148		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2149		chandef->width = NL80211_CHAN_WIDTH_160;
2150		return true;
2151	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2152	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2153		  /* The center_freq2 of 80+80 MHz is unknown */
2154	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2155		  /* 320-1 or 320-2 channelization is unknown */
2156	default:
2157		return false;
2158	}
2159}
2160EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2161
2162bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2163					  u8 *op_class)
2164{
2165	u8 vht_opclass;
2166	u32 freq = chandef->center_freq1;
2167
2168	if (freq >= 2412 && freq <= 2472) {
2169		if (chandef->width > NL80211_CHAN_WIDTH_40)
2170			return false;
2171
2172		/* 2.407 GHz, channels 1..13 */
2173		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2174			if (freq > chandef->chan->center_freq)
2175				*op_class = 83; /* HT40+ */
2176			else
2177				*op_class = 84; /* HT40- */
2178		} else {
2179			*op_class = 81;
2180		}
2181
2182		return true;
2183	}
2184
2185	if (freq == 2484) {
2186		/* channel 14 is only for IEEE 802.11b */
2187		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2188			return false;
2189
2190		*op_class = 82; /* channel 14 */
2191		return true;
2192	}
2193
2194	switch (chandef->width) {
2195	case NL80211_CHAN_WIDTH_80:
2196		vht_opclass = 128;
2197		break;
2198	case NL80211_CHAN_WIDTH_160:
2199		vht_opclass = 129;
2200		break;
2201	case NL80211_CHAN_WIDTH_80P80:
2202		vht_opclass = 130;
2203		break;
2204	case NL80211_CHAN_WIDTH_10:
2205	case NL80211_CHAN_WIDTH_5:
2206		return false; /* unsupported for now */
2207	default:
2208		vht_opclass = 0;
2209		break;
2210	}
2211
2212	/* 5 GHz, channels 36..48 */
2213	if (freq >= 5180 && freq <= 5240) {
2214		if (vht_opclass) {
2215			*op_class = vht_opclass;
2216		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2217			if (freq > chandef->chan->center_freq)
2218				*op_class = 116;
2219			else
2220				*op_class = 117;
2221		} else {
2222			*op_class = 115;
2223		}
2224
2225		return true;
2226	}
2227
2228	/* 5 GHz, channels 52..64 */
2229	if (freq >= 5260 && freq <= 5320) {
2230		if (vht_opclass) {
2231			*op_class = vht_opclass;
2232		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2233			if (freq > chandef->chan->center_freq)
2234				*op_class = 119;
2235			else
2236				*op_class = 120;
2237		} else {
2238			*op_class = 118;
2239		}
2240
2241		return true;
2242	}
2243
2244	/* 5 GHz, channels 100..144 */
2245	if (freq >= 5500 && freq <= 5720) {
2246		if (vht_opclass) {
2247			*op_class = vht_opclass;
2248		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2249			if (freq > chandef->chan->center_freq)
2250				*op_class = 122;
2251			else
2252				*op_class = 123;
2253		} else {
2254			*op_class = 121;
2255		}
2256
2257		return true;
2258	}
2259
2260	/* 5 GHz, channels 149..169 */
2261	if (freq >= 5745 && freq <= 5845) {
2262		if (vht_opclass) {
2263			*op_class = vht_opclass;
2264		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265			if (freq > chandef->chan->center_freq)
2266				*op_class = 126;
2267			else
2268				*op_class = 127;
2269		} else if (freq <= 5805) {
2270			*op_class = 124;
2271		} else {
2272			*op_class = 125;
2273		}
2274
2275		return true;
2276	}
2277
2278	/* 56.16 GHz, channel 1..4 */
2279	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2280		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2281			return false;
2282
2283		*op_class = 180;
2284		return true;
2285	}
2286
2287	/* not supported yet */
2288	return false;
2289}
2290EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2291
2292static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2293{
2294	switch (wdev->iftype) {
2295	case NL80211_IFTYPE_AP:
2296	case NL80211_IFTYPE_P2P_GO:
2297		WARN_ON(wdev->valid_links);
2298		return wdev->links[0].ap.beacon_interval;
2299	case NL80211_IFTYPE_MESH_POINT:
2300		return wdev->u.mesh.beacon_interval;
2301	case NL80211_IFTYPE_ADHOC:
2302		return wdev->u.ibss.beacon_interval;
2303	default:
2304		break;
2305	}
2306
2307	return 0;
2308}
2309
2310static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2311				       u32 *beacon_int_gcd,
2312				       bool *beacon_int_different,
2313				       int radio_idx)
2314{
2315	struct cfg80211_registered_device *rdev;
2316	struct wireless_dev *wdev;
2317
2318	*beacon_int_gcd = 0;
2319	*beacon_int_different = false;
2320
2321	rdev = wiphy_to_rdev(wiphy);
2322	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2323		int wdev_bi;
2324
2325		/* this feature isn't supported with MLO */
2326		if (wdev->valid_links)
2327			continue;
2328
2329		/* skip wdevs not active on the given wiphy radio */
2330		if (radio_idx >= 0 &&
2331		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2332			continue;
2333
2334		wdev_bi = cfg80211_wdev_bi(wdev);
2335
2336		if (!wdev_bi)
2337			continue;
2338
2339		if (!*beacon_int_gcd) {
2340			*beacon_int_gcd = wdev_bi;
2341			continue;
2342		}
2343
2344		if (wdev_bi == *beacon_int_gcd)
2345			continue;
2346
2347		*beacon_int_different = true;
2348		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2349	}
2350
2351	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2352		if (*beacon_int_gcd)
2353			*beacon_int_different = true;
2354		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2355	}
2356}
2357
2358int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2359				 enum nl80211_iftype iftype, u32 beacon_int)
2360{
2361	/*
2362	 * This is just a basic pre-condition check; if interface combinations
2363	 * are possible the driver must already be checking those with a call
2364	 * to cfg80211_check_combinations(), in which case we'll validate more
2365	 * through the cfg80211_calculate_bi_data() call and code in
2366	 * cfg80211_iter_combinations().
2367	 */
2368
2369	if (beacon_int < 10 || beacon_int > 10000)
2370		return -EINVAL;
2371
2372	return 0;
2373}
2374
2375int cfg80211_iter_combinations(struct wiphy *wiphy,
2376			       struct iface_combination_params *params,
2377			       void (*iter)(const struct ieee80211_iface_combination *c,
2378					    void *data),
2379			       void *data)
2380{
2381	const struct wiphy_radio *radio = NULL;
2382	const struct ieee80211_iface_combination *c, *cs;
2383	const struct ieee80211_regdomain *regdom;
2384	enum nl80211_dfs_regions region = 0;
2385	int i, j, n, iftype;
2386	int num_interfaces = 0;
2387	u32 used_iftypes = 0;
2388	u32 beacon_int_gcd;
2389	bool beacon_int_different;
2390
2391	if (params->radio_idx >= 0)
2392		radio = &wiphy->radio[params->radio_idx];
2393
2394	/*
2395	 * This is a bit strange, since the iteration used to rely only on
2396	 * the data given by the driver, but here it now relies on context,
2397	 * in form of the currently operating interfaces.
2398	 * This is OK for all current users, and saves us from having to
2399	 * push the GCD calculations into all the drivers.
2400	 * In the future, this should probably rely more on data that's in
2401	 * cfg80211 already - the only thing not would appear to be any new
2402	 * interfaces (while being brought up) and channel/radar data.
2403	 */
2404	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2405				   &beacon_int_gcd, &beacon_int_different,
2406				   params->radio_idx);
2407
2408	if (params->radar_detect) {
2409		rcu_read_lock();
2410		regdom = rcu_dereference(cfg80211_regdomain);
2411		if (regdom)
2412			region = regdom->dfs_region;
2413		rcu_read_unlock();
2414	}
2415
2416	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2417		num_interfaces += params->iftype_num[iftype];
2418		if (params->iftype_num[iftype] > 0 &&
2419		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2420			used_iftypes |= BIT(iftype);
2421	}
2422
2423	if (radio) {
2424		cs = radio->iface_combinations;
2425		n = radio->n_iface_combinations;
2426	} else {
2427		cs = wiphy->iface_combinations;
2428		n = wiphy->n_iface_combinations;
2429	}
2430	for (i = 0; i < n; i++) {
2431		struct ieee80211_iface_limit *limits;
2432		u32 all_iftypes = 0;
2433
2434		c = &cs[i];
 
2435		if (num_interfaces > c->max_interfaces)
2436			continue;
2437		if (params->num_different_channels > c->num_different_channels)
2438			continue;
2439
2440		limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2441				       GFP_KERNEL);
2442		if (!limits)
2443			return -ENOMEM;
2444
2445		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2446			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2447				continue;
2448			for (j = 0; j < c->n_limits; j++) {
2449				all_iftypes |= limits[j].types;
2450				if (!(limits[j].types & BIT(iftype)))
2451					continue;
2452				if (limits[j].max < params->iftype_num[iftype])
2453					goto cont;
2454				limits[j].max -= params->iftype_num[iftype];
2455			}
2456		}
2457
2458		if (params->radar_detect !=
2459			(c->radar_detect_widths & params->radar_detect))
2460			goto cont;
2461
2462		if (params->radar_detect && c->radar_detect_regions &&
2463		    !(c->radar_detect_regions & BIT(region)))
2464			goto cont;
2465
2466		/* Finally check that all iftypes that we're currently
2467		 * using are actually part of this combination. If they
2468		 * aren't then we can't use this combination and have
2469		 * to continue to the next.
2470		 */
2471		if ((all_iftypes & used_iftypes) != used_iftypes)
2472			goto cont;
2473
2474		if (beacon_int_gcd) {
2475			if (c->beacon_int_min_gcd &&
2476			    beacon_int_gcd < c->beacon_int_min_gcd)
2477				goto cont;
2478			if (!c->beacon_int_min_gcd && beacon_int_different)
2479				goto cont;
2480		}
2481
2482		/* This combination covered all interface types and
2483		 * supported the requested numbers, so we're good.
2484		 */
2485
2486		(*iter)(c, data);
2487 cont:
2488		kfree(limits);
2489	}
2490
2491	return 0;
2492}
2493EXPORT_SYMBOL(cfg80211_iter_combinations);
2494
2495static void
2496cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2497			  void *data)
2498{
2499	int *num = data;
2500	(*num)++;
2501}
2502
2503int cfg80211_check_combinations(struct wiphy *wiphy,
2504				struct iface_combination_params *params)
2505{
2506	int err, num = 0;
2507
2508	err = cfg80211_iter_combinations(wiphy, params,
2509					 cfg80211_iter_sum_ifcombs, &num);
2510	if (err)
2511		return err;
2512	if (num == 0)
2513		return -EBUSY;
2514
2515	return 0;
2516}
2517EXPORT_SYMBOL(cfg80211_check_combinations);
2518
2519int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2520			   const u8 *rates, unsigned int n_rates,
2521			   u32 *mask)
2522{
2523	int i, j;
2524
2525	if (!sband)
2526		return -EINVAL;
2527
2528	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2529		return -EINVAL;
2530
2531	*mask = 0;
2532
2533	for (i = 0; i < n_rates; i++) {
2534		int rate = (rates[i] & 0x7f) * 5;
2535		bool found = false;
2536
2537		for (j = 0; j < sband->n_bitrates; j++) {
2538			if (sband->bitrates[j].bitrate == rate) {
2539				found = true;
2540				*mask |= BIT(j);
2541				break;
2542			}
2543		}
2544		if (!found)
2545			return -EINVAL;
2546	}
2547
2548	/*
2549	 * mask must have at least one bit set here since we
2550	 * didn't accept a 0-length rates array nor allowed
2551	 * entries in the array that didn't exist
2552	 */
2553
2554	return 0;
2555}
2556
2557unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2558{
2559	enum nl80211_band band;
2560	unsigned int n_channels = 0;
2561
2562	for (band = 0; band < NUM_NL80211_BANDS; band++)
2563		if (wiphy->bands[band])
2564			n_channels += wiphy->bands[band]->n_channels;
2565
2566	return n_channels;
2567}
2568EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2569
2570int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2571			 struct station_info *sinfo)
2572{
2573	struct cfg80211_registered_device *rdev;
2574	struct wireless_dev *wdev;
2575	int ret;
2576
2577	wdev = dev->ieee80211_ptr;
2578	if (!wdev)
2579		return -EOPNOTSUPP;
2580
2581	rdev = wiphy_to_rdev(wdev->wiphy);
2582	if (!rdev->ops->get_station)
2583		return -EOPNOTSUPP;
2584
2585	memset(sinfo, 0, sizeof(*sinfo));
2586
2587	wiphy_lock(&rdev->wiphy);
2588	ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2589	wiphy_unlock(&rdev->wiphy);
2590
2591	return ret;
2592}
2593EXPORT_SYMBOL(cfg80211_get_station);
2594
2595void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2596{
2597	int i;
2598
2599	if (!f)
2600		return;
2601
2602	kfree(f->serv_spec_info);
2603	kfree(f->srf_bf);
2604	kfree(f->srf_macs);
2605	for (i = 0; i < f->num_rx_filters; i++)
2606		kfree(f->rx_filters[i].filter);
2607
2608	for (i = 0; i < f->num_tx_filters; i++)
2609		kfree(f->tx_filters[i].filter);
2610
2611	kfree(f->rx_filters);
2612	kfree(f->tx_filters);
2613	kfree(f);
2614}
2615EXPORT_SYMBOL(cfg80211_free_nan_func);
2616
2617bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2618				u32 center_freq_khz, u32 bw_khz)
2619{
2620	u32 start_freq_khz, end_freq_khz;
2621
2622	start_freq_khz = center_freq_khz - (bw_khz / 2);
2623	end_freq_khz = center_freq_khz + (bw_khz / 2);
2624
2625	if (start_freq_khz >= freq_range->start_freq_khz &&
2626	    end_freq_khz <= freq_range->end_freq_khz)
2627		return true;
2628
2629	return false;
2630}
2631
2632int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2633{
2634	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2635				sizeof(*(sinfo->pertid)),
2636				gfp);
2637	if (!sinfo->pertid)
2638		return -ENOMEM;
2639
2640	return 0;
2641}
2642EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2643
2644/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2645/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2646const unsigned char rfc1042_header[] __aligned(2) =
2647	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2648EXPORT_SYMBOL(rfc1042_header);
2649
2650/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2651const unsigned char bridge_tunnel_header[] __aligned(2) =
2652	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2653EXPORT_SYMBOL(bridge_tunnel_header);
2654
2655/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2656struct iapp_layer2_update {
2657	u8 da[ETH_ALEN];	/* broadcast */
2658	u8 sa[ETH_ALEN];	/* STA addr */
2659	__be16 len;		/* 6 */
2660	u8 dsap;		/* 0 */
2661	u8 ssap;		/* 0 */
2662	u8 control;
2663	u8 xid_info[3];
2664} __packed;
2665
2666void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2667{
2668	struct iapp_layer2_update *msg;
2669	struct sk_buff *skb;
2670
2671	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2672	 * bridge devices */
2673
2674	skb = dev_alloc_skb(sizeof(*msg));
2675	if (!skb)
2676		return;
2677	msg = skb_put(skb, sizeof(*msg));
2678
2679	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2680	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2681
2682	eth_broadcast_addr(msg->da);
2683	ether_addr_copy(msg->sa, addr);
2684	msg->len = htons(6);
2685	msg->dsap = 0;
2686	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2687	msg->control = 0xaf;	/* XID response lsb.1111F101.
2688				 * F=0 (no poll command; unsolicited frame) */
2689	msg->xid_info[0] = 0x81;	/* XID format identifier */
2690	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2691	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2692
2693	skb->dev = dev;
2694	skb->protocol = eth_type_trans(skb, dev);
2695	memset(skb->cb, 0, sizeof(skb->cb));
2696	netif_rx(skb);
2697}
2698EXPORT_SYMBOL(cfg80211_send_layer2_update);
2699
2700int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2701			      enum ieee80211_vht_chanwidth bw,
2702			      int mcs, bool ext_nss_bw_capable,
2703			      unsigned int max_vht_nss)
2704{
2705	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
 
2706	int ext_nss_bw;
2707	int supp_width;
2708	int i, mcs_encoding;
2709
2710	if (map == 0xffff)
2711		return 0;
2712
2713	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2714		return 0;
2715	if (mcs <= 7)
2716		mcs_encoding = 0;
2717	else if (mcs == 8)
2718		mcs_encoding = 1;
2719	else
2720		mcs_encoding = 2;
2721
2722	if (!max_vht_nss) {
2723		/* find max_vht_nss for the given MCS */
2724		for (i = 7; i >= 0; i--) {
2725			int supp = (map >> (2 * i)) & 3;
2726
2727			if (supp == 3)
2728				continue;
2729
2730			if (supp >= mcs_encoding) {
2731				max_vht_nss = i + 1;
2732				break;
2733			}
2734		}
2735	}
2736
2737	if (!(cap->supp_mcs.tx_mcs_map &
2738			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2739		return max_vht_nss;
2740
2741	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2742				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2743	supp_width = le32_get_bits(cap->vht_cap_info,
2744				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2745
2746	/* if not capable, treat ext_nss_bw as 0 */
2747	if (!ext_nss_bw_capable)
2748		ext_nss_bw = 0;
2749
2750	/* This is invalid */
2751	if (supp_width == 3)
2752		return 0;
2753
2754	/* This is an invalid combination so pretend nothing is supported */
2755	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2756		return 0;
2757
2758	/*
2759	 * Cover all the special cases according to IEEE 802.11-2016
2760	 * Table 9-250. All other cases are either factor of 1 or not
2761	 * valid/supported.
2762	 */
2763	switch (bw) {
2764	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2765	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2766		if ((supp_width == 1 || supp_width == 2) &&
2767		    ext_nss_bw == 3)
2768			return 2 * max_vht_nss;
2769		break;
2770	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2771		if (supp_width == 0 &&
2772		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2773			return max_vht_nss / 2;
2774		if (supp_width == 0 &&
2775		    ext_nss_bw == 3)
2776			return (3 * max_vht_nss) / 4;
2777		if (supp_width == 1 &&
2778		    ext_nss_bw == 3)
2779			return 2 * max_vht_nss;
2780		break;
2781	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2782		if (supp_width == 0 && ext_nss_bw == 1)
2783			return 0; /* not possible */
2784		if (supp_width == 0 &&
2785		    ext_nss_bw == 2)
2786			return max_vht_nss / 2;
2787		if (supp_width == 0 &&
2788		    ext_nss_bw == 3)
2789			return (3 * max_vht_nss) / 4;
2790		if (supp_width == 1 &&
2791		    ext_nss_bw == 0)
2792			return 0; /* not possible */
2793		if (supp_width == 1 &&
2794		    ext_nss_bw == 1)
2795			return max_vht_nss / 2;
2796		if (supp_width == 1 &&
2797		    ext_nss_bw == 2)
2798			return (3 * max_vht_nss) / 4;
2799		break;
2800	}
2801
2802	/* not covered or invalid combination received */
2803	return max_vht_nss;
2804}
2805EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2806
2807bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2808			     bool is_4addr, u8 check_swif)
2809
2810{
2811	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2812
2813	switch (check_swif) {
2814	case 0:
2815		if (is_vlan && is_4addr)
2816			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2817		return wiphy->interface_modes & BIT(iftype);
2818	case 1:
2819		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2820			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2821		return wiphy->software_iftypes & BIT(iftype);
2822	default:
2823		break;
2824	}
2825
2826	return false;
2827}
2828EXPORT_SYMBOL(cfg80211_iftype_allowed);
2829
2830void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2831{
2832	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2833
2834	lockdep_assert_wiphy(wdev->wiphy);
2835
2836	switch (wdev->iftype) {
2837	case NL80211_IFTYPE_AP:
2838	case NL80211_IFTYPE_P2P_GO:
2839		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2840		break;
2841	default:
2842		/* per-link not relevant */
2843		break;
2844	}
2845
2846	rdev_del_intf_link(rdev, wdev, link_id);
2847
2848	wdev->valid_links &= ~BIT(link_id);
2849	eth_zero_addr(wdev->links[link_id].addr);
2850}
2851
2852void cfg80211_remove_links(struct wireless_dev *wdev)
2853{
2854	unsigned int link_id;
2855
2856	/*
2857	 * links are controlled by upper layers (userspace/cfg)
2858	 * only for AP mode, so only remove them here for AP
2859	 */
2860	if (wdev->iftype != NL80211_IFTYPE_AP)
2861		return;
2862
2863	if (wdev->valid_links) {
2864		for_each_valid_link(wdev, link_id)
2865			cfg80211_remove_link(wdev, link_id);
2866	}
2867}
2868
2869int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2870				 struct wireless_dev *wdev)
2871{
2872	cfg80211_remove_links(wdev);
2873
2874	return rdev_del_virtual_intf(rdev, wdev);
2875}
2876
2877const struct wiphy_iftype_ext_capab *
2878cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2879{
2880	int i;
2881
2882	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2883		if (wiphy->iftype_ext_capab[i].iftype == type)
2884			return &wiphy->iftype_ext_capab[i];
2885	}
2886
2887	return NULL;
2888}
2889EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2890
2891static bool
2892ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2893				 u32 freq, u32 width)
2894{
2895	const struct wiphy_radio_freq_range *r;
2896	int i;
2897
2898	for (i = 0; i < radio->n_freq_range; i++) {
2899		r = &radio->freq_range[i];
2900		if (freq - width / 2 >= r->start_freq &&
2901		    freq + width / 2 <= r->end_freq)
2902			return true;
2903	}
2904
2905	return false;
2906}
2907
2908bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2909				  const struct cfg80211_chan_def *chandef)
2910{
2911	u32 freq, width;
2912
2913	freq = ieee80211_chandef_to_khz(chandef);
2914	width = nl80211_chan_width_to_mhz(chandef->width);
2915	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2916		return false;
2917
2918	freq = MHZ_TO_KHZ(chandef->center_freq2);
2919	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2920		return false;
2921
2922	return true;
2923}
2924EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2925
2926bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2927				   struct ieee80211_channel *chan)
2928{
2929	struct wiphy *wiphy = wdev->wiphy;
2930	const struct wiphy_radio *radio;
2931	struct cfg80211_chan_def chandef;
2932	u32 radio_mask;
2933	int i;
2934
2935	radio_mask = wdev->radio_mask;
2936	if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2937		return true;
2938
2939	cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2940	for (i = 0; i < wiphy->n_radio; i++) {
2941		if (!(radio_mask & BIT(i)))
2942			continue;
2943
2944		radio = &wiphy->radio[i];
2945		if (!cfg80211_radio_chandef_valid(radio, &chandef))
2946			continue;
2947
2948		return true;
2949	}
2950
2951	return false;
2952}
2953EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2019 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47			      enum nl80211_bss_scan_width scan_width)
  48{
  49	struct ieee80211_rate *bitrates;
  50	u32 mandatory_rates = 0;
  51	enum ieee80211_rate_flags mandatory_flag;
  52	int i;
  53
  54	if (WARN_ON(!sband))
  55		return 1;
  56
  57	if (sband->band == NL80211_BAND_2GHZ) {
  58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61		else
  62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63	} else {
  64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65	}
  66
  67	bitrates = sband->bitrates;
  68	for (i = 0; i < sband->n_bitrates; i++)
  69		if (bitrates[i].flags & mandatory_flag)
  70			mandatory_rates |= BIT(i);
  71	return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  76{
  77	/* see 802.11 17.3.8.3.2 and Annex J
  78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79	if (chan <= 0)
  80		return 0; /* not supported */
  81	switch (band) {
  82	case NL80211_BAND_2GHZ:
 
  83		if (chan == 14)
  84			return 2484;
  85		else if (chan < 14)
  86			return 2407 + chan * 5;
  87		break;
  88	case NL80211_BAND_5GHZ:
  89		if (chan >= 182 && chan <= 196)
  90			return 4000 + chan * 5;
  91		else
  92			return 5000 + chan * 5;
  93		break;
  94	case NL80211_BAND_6GHZ:
  95		/* see 802.11ax D4.1 27.3.22.2 */
  96		if (chan <= 253)
  97			return 5940 + chan * 5;
 
 
  98		break;
  99	case NL80211_BAND_60GHZ:
 100		if (chan < 7)
 101			return 56160 + chan * 2160;
 102		break;
 
 
 103	default:
 104		;
 105	}
 106	return 0; /* not supported */
 107}
 108EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 109
 110int ieee80211_frequency_to_channel(int freq)
 
 111{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112	/* see 802.11 17.3.8.3.2 and Annex J */
 113	if (freq == 2484)
 114		return 14;
 115	else if (freq < 2484)
 116		return (freq - 2407) / 5;
 117	else if (freq >= 4910 && freq <= 4980)
 118		return (freq - 4000) / 5;
 119	else if (freq < 5945)
 120		return (freq - 5000) / 5;
 
 
 121	else if (freq <= 45000) /* DMG band lower limit */
 122		/* see 802.11ax D4.1 27.3.22.2 */
 123		return (freq - 5940) / 5;
 124	else if (freq >= 58320 && freq <= 70200)
 125		return (freq - 56160) / 2160;
 126	else
 127		return 0;
 128}
 129EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 130
 131struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
 
 132{
 133	enum nl80211_band band;
 134	struct ieee80211_supported_band *sband;
 135	int i;
 136
 137	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 138		sband = wiphy->bands[band];
 139
 140		if (!sband)
 141			continue;
 142
 143		for (i = 0; i < sband->n_channels; i++) {
 144			if (sband->channels[i].center_freq == freq)
 145				return &sband->channels[i];
 
 
 146		}
 147	}
 148
 149	return NULL;
 150}
 151EXPORT_SYMBOL(ieee80211_get_channel);
 152
 153static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 154{
 155	int i, want;
 156
 157	switch (sband->band) {
 158	case NL80211_BAND_5GHZ:
 159	case NL80211_BAND_6GHZ:
 160		want = 3;
 161		for (i = 0; i < sband->n_bitrates; i++) {
 162			if (sband->bitrates[i].bitrate == 60 ||
 163			    sband->bitrates[i].bitrate == 120 ||
 164			    sband->bitrates[i].bitrate == 240) {
 165				sband->bitrates[i].flags |=
 166					IEEE80211_RATE_MANDATORY_A;
 167				want--;
 168			}
 169		}
 170		WARN_ON(want);
 171		break;
 172	case NL80211_BAND_2GHZ:
 
 173		want = 7;
 174		for (i = 0; i < sband->n_bitrates; i++) {
 175			switch (sband->bitrates[i].bitrate) {
 176			case 10:
 177			case 20:
 178			case 55:
 179			case 110:
 180				sband->bitrates[i].flags |=
 181					IEEE80211_RATE_MANDATORY_B |
 182					IEEE80211_RATE_MANDATORY_G;
 183				want--;
 184				break;
 185			case 60:
 186			case 120:
 187			case 240:
 188				sband->bitrates[i].flags |=
 189					IEEE80211_RATE_MANDATORY_G;
 190				want--;
 191				/* fall through */
 192			default:
 193				sband->bitrates[i].flags |=
 194					IEEE80211_RATE_ERP_G;
 195				break;
 196			}
 197		}
 198		WARN_ON(want != 0 && want != 3);
 199		break;
 200	case NL80211_BAND_60GHZ:
 201		/* check for mandatory HT MCS 1..4 */
 202		WARN_ON(!sband->ht_cap.ht_supported);
 203		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 204		break;
 
 
 
 
 
 
 205	case NUM_NL80211_BANDS:
 206	default:
 207		WARN_ON(1);
 208		break;
 209	}
 210}
 211
 212void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 213{
 214	enum nl80211_band band;
 215
 216	for (band = 0; band < NUM_NL80211_BANDS; band++)
 217		if (wiphy->bands[band])
 218			set_mandatory_flags_band(wiphy->bands[band]);
 219}
 220
 221bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 222{
 223	int i;
 224	for (i = 0; i < wiphy->n_cipher_suites; i++)
 225		if (cipher == wiphy->cipher_suites[i])
 226			return true;
 227	return false;
 228}
 229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 231				   struct key_params *params, int key_idx,
 232				   bool pairwise, const u8 *mac_addr)
 233{
 234	if (key_idx < 0 || key_idx > 5)
 235		return -EINVAL;
 236
 237	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 238		return -EINVAL;
 239
 240	if (pairwise && !mac_addr)
 241		return -EINVAL;
 242
 243	switch (params->cipher) {
 244	case WLAN_CIPHER_SUITE_TKIP:
 245		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 246		if ((pairwise && key_idx) ||
 247		    params->mode != NL80211_KEY_RX_TX)
 248			return -EINVAL;
 249		break;
 250	case WLAN_CIPHER_SUITE_CCMP:
 251	case WLAN_CIPHER_SUITE_CCMP_256:
 252	case WLAN_CIPHER_SUITE_GCMP:
 253	case WLAN_CIPHER_SUITE_GCMP_256:
 254		/* IEEE802.11-2016 allows only 0 and - when supporting
 255		 * Extended Key ID - 1 as index for pairwise keys.
 256		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 257		 * the driver supports Extended Key ID.
 258		 * @NL80211_KEY_SET_TX can't be set when installing and
 259		 * validating a key.
 260		 */
 261		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 262		    params->mode == NL80211_KEY_SET_TX)
 263			return -EINVAL;
 264		if (wiphy_ext_feature_isset(&rdev->wiphy,
 265					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 266			if (pairwise && (key_idx < 0 || key_idx > 1))
 267				return -EINVAL;
 268		} else if (pairwise && key_idx) {
 269			return -EINVAL;
 270		}
 271		break;
 272	case WLAN_CIPHER_SUITE_AES_CMAC:
 273	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 274	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 275	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 276		/* Disallow BIP (group-only) cipher as pairwise cipher */
 277		if (pairwise)
 278			return -EINVAL;
 279		if (key_idx < 4)
 280			return -EINVAL;
 281		break;
 282	case WLAN_CIPHER_SUITE_WEP40:
 283	case WLAN_CIPHER_SUITE_WEP104:
 284		if (key_idx > 3)
 285			return -EINVAL;
 
 286	default:
 287		break;
 288	}
 289
 290	switch (params->cipher) {
 291	case WLAN_CIPHER_SUITE_WEP40:
 292		if (params->key_len != WLAN_KEY_LEN_WEP40)
 293			return -EINVAL;
 294		break;
 295	case WLAN_CIPHER_SUITE_TKIP:
 296		if (params->key_len != WLAN_KEY_LEN_TKIP)
 297			return -EINVAL;
 298		break;
 299	case WLAN_CIPHER_SUITE_CCMP:
 300		if (params->key_len != WLAN_KEY_LEN_CCMP)
 301			return -EINVAL;
 302		break;
 303	case WLAN_CIPHER_SUITE_CCMP_256:
 304		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 305			return -EINVAL;
 306		break;
 307	case WLAN_CIPHER_SUITE_GCMP:
 308		if (params->key_len != WLAN_KEY_LEN_GCMP)
 309			return -EINVAL;
 310		break;
 311	case WLAN_CIPHER_SUITE_GCMP_256:
 312		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 313			return -EINVAL;
 314		break;
 315	case WLAN_CIPHER_SUITE_WEP104:
 316		if (params->key_len != WLAN_KEY_LEN_WEP104)
 317			return -EINVAL;
 318		break;
 319	case WLAN_CIPHER_SUITE_AES_CMAC:
 320		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 321			return -EINVAL;
 322		break;
 323	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 324		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 325			return -EINVAL;
 326		break;
 327	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 328		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 329			return -EINVAL;
 330		break;
 331	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 332		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 333			return -EINVAL;
 334		break;
 335	default:
 336		/*
 337		 * We don't know anything about this algorithm,
 338		 * allow using it -- but the driver must check
 339		 * all parameters! We still check below whether
 340		 * or not the driver supports this algorithm,
 341		 * of course.
 342		 */
 343		break;
 344	}
 345
 346	if (params->seq) {
 347		switch (params->cipher) {
 348		case WLAN_CIPHER_SUITE_WEP40:
 349		case WLAN_CIPHER_SUITE_WEP104:
 350			/* These ciphers do not use key sequence */
 351			return -EINVAL;
 352		case WLAN_CIPHER_SUITE_TKIP:
 353		case WLAN_CIPHER_SUITE_CCMP:
 354		case WLAN_CIPHER_SUITE_CCMP_256:
 355		case WLAN_CIPHER_SUITE_GCMP:
 356		case WLAN_CIPHER_SUITE_GCMP_256:
 357		case WLAN_CIPHER_SUITE_AES_CMAC:
 358		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 359		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 360		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 361			if (params->seq_len != 6)
 362				return -EINVAL;
 363			break;
 364		}
 365	}
 366
 367	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 368		return -EINVAL;
 369
 370	return 0;
 371}
 372
 373unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 374{
 375	unsigned int hdrlen = 24;
 376
 
 
 
 
 
 377	if (ieee80211_is_data(fc)) {
 378		if (ieee80211_has_a4(fc))
 379			hdrlen = 30;
 380		if (ieee80211_is_data_qos(fc)) {
 381			hdrlen += IEEE80211_QOS_CTL_LEN;
 382			if (ieee80211_has_order(fc))
 383				hdrlen += IEEE80211_HT_CTL_LEN;
 384		}
 385		goto out;
 386	}
 387
 388	if (ieee80211_is_mgmt(fc)) {
 389		if (ieee80211_has_order(fc))
 390			hdrlen += IEEE80211_HT_CTL_LEN;
 391		goto out;
 392	}
 393
 394	if (ieee80211_is_ctl(fc)) {
 395		/*
 396		 * ACK and CTS are 10 bytes, all others 16. To see how
 397		 * to get this condition consider
 398		 *   subtype mask:   0b0000000011110000 (0x00F0)
 399		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 400		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 401		 *   bits that matter:         ^^^      (0x00E0)
 402		 *   value of those: 0b0000000011000000 (0x00C0)
 403		 */
 404		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 405			hdrlen = 10;
 406		else
 407			hdrlen = 16;
 408	}
 409out:
 410	return hdrlen;
 411}
 412EXPORT_SYMBOL(ieee80211_hdrlen);
 413
 414unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 415{
 416	const struct ieee80211_hdr *hdr =
 417			(const struct ieee80211_hdr *)skb->data;
 418	unsigned int hdrlen;
 419
 420	if (unlikely(skb->len < 10))
 421		return 0;
 422	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 423	if (unlikely(hdrlen > skb->len))
 424		return 0;
 425	return hdrlen;
 426}
 427EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 428
 429static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 430{
 431	int ae = flags & MESH_FLAGS_AE;
 432	/* 802.11-2012, 8.2.4.7.3 */
 433	switch (ae) {
 434	default:
 435	case 0:
 436		return 6;
 437	case MESH_FLAGS_AE_A4:
 438		return 12;
 439	case MESH_FLAGS_AE_A5_A6:
 440		return 18;
 441	}
 442}
 443
 444unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 445{
 446	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 447}
 448EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 451				  const u8 *addr, enum nl80211_iftype iftype,
 452				  u8 data_offset)
 453{
 454	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 455	struct {
 456		u8 hdr[ETH_ALEN] __aligned(2);
 457		__be16 proto;
 458	} payload;
 459	struct ethhdr tmp;
 460	u16 hdrlen;
 461	u8 mesh_flags = 0;
 462
 463	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 464		return -1;
 465
 466	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 467	if (skb->len < hdrlen + 8)
 468		return -1;
 469
 470	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 471	 * header
 472	 * IEEE 802.11 address fields:
 473	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 474	 *   0     0   DA    SA    BSSID n/a
 475	 *   0     1   DA    BSSID SA    n/a
 476	 *   1     0   BSSID SA    DA    n/a
 477	 *   1     1   RA    TA    DA    SA
 478	 */
 479	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 480	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 481
 482	if (iftype == NL80211_IFTYPE_MESH_POINT)
 483		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 484
 485	mesh_flags &= MESH_FLAGS_AE;
 486
 487	switch (hdr->frame_control &
 488		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 489	case cpu_to_le16(IEEE80211_FCTL_TODS):
 490		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 491			     iftype != NL80211_IFTYPE_AP_VLAN &&
 492			     iftype != NL80211_IFTYPE_P2P_GO))
 493			return -1;
 494		break;
 495	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 496		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 497			     iftype != NL80211_IFTYPE_MESH_POINT &&
 498			     iftype != NL80211_IFTYPE_AP_VLAN &&
 499			     iftype != NL80211_IFTYPE_STATION))
 500			return -1;
 501		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 502			if (mesh_flags == MESH_FLAGS_AE_A4)
 503				return -1;
 504			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 505				skb_copy_bits(skb, hdrlen +
 506					offsetof(struct ieee80211s_hdr, eaddr1),
 507					tmp.h_dest, 2 * ETH_ALEN);
 508			}
 509			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 510		}
 511		break;
 512	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 513		if ((iftype != NL80211_IFTYPE_STATION &&
 514		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 515		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 516		    (is_multicast_ether_addr(tmp.h_dest) &&
 517		     ether_addr_equal(tmp.h_source, addr)))
 518			return -1;
 519		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 520			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 521				return -1;
 522			if (mesh_flags == MESH_FLAGS_AE_A4)
 523				skb_copy_bits(skb, hdrlen +
 524					offsetof(struct ieee80211s_hdr, eaddr1),
 525					tmp.h_source, ETH_ALEN);
 526			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 527		}
 528		break;
 529	case cpu_to_le16(0):
 530		if (iftype != NL80211_IFTYPE_ADHOC &&
 531		    iftype != NL80211_IFTYPE_STATION &&
 532		    iftype != NL80211_IFTYPE_OCB)
 533				return -1;
 534		break;
 535	}
 536
 537	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 538	tmp.h_proto = payload.proto;
 539
 540	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 541		    tmp.h_proto != htons(ETH_P_AARP) &&
 542		    tmp.h_proto != htons(ETH_P_IPX)) ||
 543		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 544		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 545		 * replace EtherType */
 546		hdrlen += ETH_ALEN + 2;
 547	else
 
 548		tmp.h_proto = htons(skb->len - hdrlen);
 
 549
 550	pskb_pull(skb, hdrlen);
 551
 552	if (!ehdr)
 553		ehdr = skb_push(skb, sizeof(struct ethhdr));
 554	memcpy(ehdr, &tmp, sizeof(tmp));
 555
 556	return 0;
 557}
 558EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 559
 560static void
 561__frame_add_frag(struct sk_buff *skb, struct page *page,
 562		 void *ptr, int len, int size)
 563{
 564	struct skb_shared_info *sh = skb_shinfo(skb);
 565	int page_offset;
 566
 567	page_ref_inc(page);
 568	page_offset = ptr - page_address(page);
 569	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 570}
 571
 572static void
 573__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 574			    int offset, int len)
 575{
 576	struct skb_shared_info *sh = skb_shinfo(skb);
 577	const skb_frag_t *frag = &sh->frags[0];
 578	struct page *frag_page;
 579	void *frag_ptr;
 580	int frag_len, frag_size;
 581	int head_size = skb->len - skb->data_len;
 582	int cur_len;
 583
 584	frag_page = virt_to_head_page(skb->head);
 585	frag_ptr = skb->data;
 586	frag_size = head_size;
 587
 588	while (offset >= frag_size) {
 589		offset -= frag_size;
 590		frag_page = skb_frag_page(frag);
 591		frag_ptr = skb_frag_address(frag);
 592		frag_size = skb_frag_size(frag);
 593		frag++;
 594	}
 595
 596	frag_ptr += offset;
 597	frag_len = frag_size - offset;
 598
 599	cur_len = min(len, frag_len);
 600
 601	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 602	len -= cur_len;
 603
 604	while (len > 0) {
 605		frag_len = skb_frag_size(frag);
 606		cur_len = min(len, frag_len);
 607		__frame_add_frag(frame, skb_frag_page(frag),
 608				 skb_frag_address(frag), cur_len, frag_len);
 609		len -= cur_len;
 610		frag++;
 611	}
 612}
 613
 614static struct sk_buff *
 615__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 616		       int offset, int len, bool reuse_frag)
 
 617{
 618	struct sk_buff *frame;
 619	int cur_len = len;
 620
 621	if (skb->len - offset < len)
 622		return NULL;
 623
 624	/*
 625	 * When reusing framents, copy some data to the head to simplify
 626	 * ethernet header handling and speed up protocol header processing
 627	 * in the stack later.
 628	 */
 629	if (reuse_frag)
 630		cur_len = min_t(int, len, 32);
 631
 632	/*
 633	 * Allocate and reserve two bytes more for payload
 634	 * alignment since sizeof(struct ethhdr) is 14.
 635	 */
 636	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 637	if (!frame)
 638		return NULL;
 639
 
 640	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 641	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 642
 643	len -= cur_len;
 644	if (!len)
 645		return frame;
 646
 647	offset += cur_len;
 648	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 649
 650	return frame;
 651}
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 654			      const u8 *addr, enum nl80211_iftype iftype,
 655			      const unsigned int extra_headroom,
 656			      const u8 *check_da, const u8 *check_sa)
 
 657{
 658	unsigned int hlen = ALIGN(extra_headroom, 4);
 659	struct sk_buff *frame = NULL;
 660	u16 ethertype;
 661	u8 *payload;
 662	int offset = 0, remaining;
 663	struct ethhdr eth;
 
 664	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 665	bool reuse_skb = false;
 666	bool last = false;
 
 
 
 
 667
 668	while (!last) {
 
 669		unsigned int subframe_len;
 670		int len;
 671		u8 padding;
 672
 673		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 674		len = ntohs(eth.h_proto);
 
 
 
 
 
 
 675		subframe_len = sizeof(struct ethhdr) + len;
 676		padding = (4 - subframe_len) & 0x3;
 677
 678		/* the last MSDU has no padding */
 679		remaining = skb->len - offset;
 680		if (subframe_len > remaining)
 681			goto purge;
 
 
 
 682
 683		offset += sizeof(struct ethhdr);
 684		last = remaining <= subframe_len + padding;
 685
 686		/* FIXME: should we really accept multicast DA? */
 687		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 688		     !ether_addr_equal(check_da, eth.h_dest)) ||
 689		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 690			offset += len + padding;
 691			continue;
 692		}
 693
 694		/* reuse skb for the last subframe */
 695		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 696			skb_pull(skb, offset);
 697			frame = skb;
 698			reuse_skb = true;
 699		} else {
 700			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 701						       reuse_frag);
 702			if (!frame)
 703				goto purge;
 704
 705			offset += len + padding;
 706		}
 707
 708		skb_reset_network_header(frame);
 709		frame->dev = skb->dev;
 710		frame->priority = skb->priority;
 711
 712		payload = frame->data;
 713		ethertype = (payload[6] << 8) | payload[7];
 714		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 715			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 716			   ether_addr_equal(payload, bridge_tunnel_header))) {
 717			eth.h_proto = htons(ethertype);
 718			skb_pull(frame, ETH_ALEN + 2);
 719		}
 720
 721		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 722		__skb_queue_tail(list, frame);
 723	}
 724
 725	if (!reuse_skb)
 726		dev_kfree_skb(skb);
 727
 728	return;
 729
 730 purge:
 731	__skb_queue_purge(list);
 732	dev_kfree_skb(skb);
 733}
 734EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 735
 736/* Given a data frame determine the 802.1p/1d tag to use. */
 737unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 738				    struct cfg80211_qos_map *qos_map)
 739{
 740	unsigned int dscp;
 741	unsigned char vlan_priority;
 742	unsigned int ret;
 743
 744	/* skb->priority values from 256->263 are magic values to
 745	 * directly indicate a specific 802.1d priority.  This is used
 746	 * to allow 802.1d priority to be passed directly in from VLAN
 747	 * tags, etc.
 748	 */
 749	if (skb->priority >= 256 && skb->priority <= 263) {
 750		ret = skb->priority - 256;
 751		goto out;
 752	}
 753
 754	if (skb_vlan_tag_present(skb)) {
 755		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 756			>> VLAN_PRIO_SHIFT;
 757		if (vlan_priority > 0) {
 758			ret = vlan_priority;
 759			goto out;
 760		}
 761	}
 762
 763	switch (skb->protocol) {
 764	case htons(ETH_P_IP):
 765		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 766		break;
 767	case htons(ETH_P_IPV6):
 768		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 769		break;
 770	case htons(ETH_P_MPLS_UC):
 771	case htons(ETH_P_MPLS_MC): {
 772		struct mpls_label mpls_tmp, *mpls;
 773
 774		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 775					  sizeof(*mpls), &mpls_tmp);
 776		if (!mpls)
 777			return 0;
 778
 779		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 780			>> MPLS_LS_TC_SHIFT;
 781		goto out;
 782	}
 783	case htons(ETH_P_80221):
 784		/* 802.21 is always network control traffic */
 785		return 7;
 786	default:
 787		return 0;
 788	}
 789
 790	if (qos_map) {
 791		unsigned int i, tmp_dscp = dscp >> 2;
 792
 793		for (i = 0; i < qos_map->num_des; i++) {
 794			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 795				ret = qos_map->dscp_exception[i].up;
 796				goto out;
 797			}
 798		}
 799
 800		for (i = 0; i < 8; i++) {
 801			if (tmp_dscp >= qos_map->up[i].low &&
 802			    tmp_dscp <= qos_map->up[i].high) {
 803				ret = i;
 804				goto out;
 805			}
 806		}
 807	}
 808
 
 
 
 
 809	ret = dscp >> 5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810out:
 811	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 812}
 813EXPORT_SYMBOL(cfg80211_classify8021d);
 814
 815const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 816{
 817	const struct cfg80211_bss_ies *ies;
 818
 819	ies = rcu_dereference(bss->ies);
 820	if (!ies)
 821		return NULL;
 822
 823	return cfg80211_find_elem(id, ies->data, ies->len);
 824}
 825EXPORT_SYMBOL(ieee80211_bss_get_elem);
 826
 827void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 828{
 829	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 830	struct net_device *dev = wdev->netdev;
 831	int i;
 832
 833	if (!wdev->connect_keys)
 834		return;
 835
 836	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 837		if (!wdev->connect_keys->params[i].cipher)
 838			continue;
 839		if (rdev_add_key(rdev, dev, i, false, NULL,
 840				 &wdev->connect_keys->params[i])) {
 841			netdev_err(dev, "failed to set key %d\n", i);
 842			continue;
 843		}
 844		if (wdev->connect_keys->def == i &&
 845		    rdev_set_default_key(rdev, dev, i, true, true)) {
 846			netdev_err(dev, "failed to set defkey %d\n", i);
 847			continue;
 848		}
 849	}
 850
 851	kzfree(wdev->connect_keys);
 852	wdev->connect_keys = NULL;
 853}
 854
 855void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 856{
 857	struct cfg80211_event *ev;
 858	unsigned long flags;
 859
 860	spin_lock_irqsave(&wdev->event_lock, flags);
 861	while (!list_empty(&wdev->event_list)) {
 862		ev = list_first_entry(&wdev->event_list,
 863				      struct cfg80211_event, list);
 864		list_del(&ev->list);
 865		spin_unlock_irqrestore(&wdev->event_lock, flags);
 866
 867		wdev_lock(wdev);
 868		switch (ev->type) {
 869		case EVENT_CONNECT_RESULT:
 870			__cfg80211_connect_result(
 871				wdev->netdev,
 872				&ev->cr,
 873				ev->cr.status == WLAN_STATUS_SUCCESS);
 874			break;
 875		case EVENT_ROAMED:
 876			__cfg80211_roamed(wdev, &ev->rm);
 877			break;
 878		case EVENT_DISCONNECTED:
 879			__cfg80211_disconnected(wdev->netdev,
 880						ev->dc.ie, ev->dc.ie_len,
 881						ev->dc.reason,
 882						!ev->dc.locally_generated);
 883			break;
 884		case EVENT_IBSS_JOINED:
 885			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 886					       ev->ij.channel);
 887			break;
 888		case EVENT_STOPPED:
 889			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 890			break;
 891		case EVENT_PORT_AUTHORIZED:
 892			__cfg80211_port_authorized(wdev, ev->pa.bssid);
 
 
 893			break;
 894		}
 895		wdev_unlock(wdev);
 896
 897		kfree(ev);
 898
 899		spin_lock_irqsave(&wdev->event_lock, flags);
 900	}
 901	spin_unlock_irqrestore(&wdev->event_lock, flags);
 902}
 903
 904void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 905{
 906	struct wireless_dev *wdev;
 907
 908	ASSERT_RTNL();
 909
 910	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 911		cfg80211_process_wdev_events(wdev);
 912}
 913
 914int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 915			  struct net_device *dev, enum nl80211_iftype ntype,
 916			  struct vif_params *params)
 917{
 918	int err;
 919	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 920
 921	ASSERT_RTNL();
 922
 923	/* don't support changing VLANs, you just re-create them */
 924	if (otype == NL80211_IFTYPE_AP_VLAN)
 925		return -EOPNOTSUPP;
 926
 927	/* cannot change into P2P device or NAN */
 928	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 929	    ntype == NL80211_IFTYPE_NAN)
 930		return -EOPNOTSUPP;
 931
 932	if (!rdev->ops->change_virtual_intf ||
 933	    !(rdev->wiphy.interface_modes & (1 << ntype)))
 934		return -EOPNOTSUPP;
 935
 936	/* if it's part of a bridge, reject changing type to station/ibss */
 937	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
 938	    (ntype == NL80211_IFTYPE_ADHOC ||
 939	     ntype == NL80211_IFTYPE_STATION ||
 940	     ntype == NL80211_IFTYPE_P2P_CLIENT))
 941		return -EBUSY;
 
 942
 943	if (ntype != otype) {
 944		dev->ieee80211_ptr->use_4addr = false;
 945		dev->ieee80211_ptr->mesh_id_up_len = 0;
 946		wdev_lock(dev->ieee80211_ptr);
 947		rdev_set_qos_map(rdev, dev, NULL);
 948		wdev_unlock(dev->ieee80211_ptr);
 949
 950		switch (otype) {
 951		case NL80211_IFTYPE_AP:
 952			cfg80211_stop_ap(rdev, dev, true);
 
 953			break;
 954		case NL80211_IFTYPE_ADHOC:
 955			cfg80211_leave_ibss(rdev, dev, false);
 956			break;
 957		case NL80211_IFTYPE_STATION:
 958		case NL80211_IFTYPE_P2P_CLIENT:
 959			wdev_lock(dev->ieee80211_ptr);
 960			cfg80211_disconnect(rdev, dev,
 961					    WLAN_REASON_DEAUTH_LEAVING, true);
 962			wdev_unlock(dev->ieee80211_ptr);
 963			break;
 964		case NL80211_IFTYPE_MESH_POINT:
 965			/* mesh should be handled? */
 966			break;
 
 
 
 967		default:
 968			break;
 969		}
 970
 971		cfg80211_process_rdev_events(rdev);
 972		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 
 
 
 
 
 973	}
 974
 975	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
 976
 977	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
 978
 979	if (!err && params && params->use_4addr != -1)
 980		dev->ieee80211_ptr->use_4addr = params->use_4addr;
 981
 982	if (!err) {
 983		dev->priv_flags &= ~IFF_DONT_BRIDGE;
 984		switch (ntype) {
 985		case NL80211_IFTYPE_STATION:
 986			if (dev->ieee80211_ptr->use_4addr)
 987				break;
 988			/* fall through */
 989		case NL80211_IFTYPE_OCB:
 990		case NL80211_IFTYPE_P2P_CLIENT:
 991		case NL80211_IFTYPE_ADHOC:
 992			dev->priv_flags |= IFF_DONT_BRIDGE;
 993			break;
 994		case NL80211_IFTYPE_P2P_GO:
 995		case NL80211_IFTYPE_AP:
 996		case NL80211_IFTYPE_AP_VLAN:
 997		case NL80211_IFTYPE_WDS:
 998		case NL80211_IFTYPE_MESH_POINT:
 999			/* bridging OK */
1000			break;
1001		case NL80211_IFTYPE_MONITOR:
1002			/* monitor can't bridge anyway */
1003			break;
1004		case NL80211_IFTYPE_UNSPECIFIED:
1005		case NUM_NL80211_IFTYPES:
1006			/* not happening */
1007			break;
1008		case NL80211_IFTYPE_P2P_DEVICE:
 
1009		case NL80211_IFTYPE_NAN:
1010			WARN_ON(1);
1011			break;
1012		}
1013	}
1014
1015	if (!err && ntype != otype && netif_running(dev)) {
1016		cfg80211_update_iface_num(rdev, ntype, 1);
1017		cfg80211_update_iface_num(rdev, otype, -1);
1018	}
1019
1020	return err;
1021}
1022
1023static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1024{
1025	int modulation, streams, bitrate;
1026
1027	/* the formula below does only work for MCS values smaller than 32 */
1028	if (WARN_ON_ONCE(rate->mcs >= 32))
1029		return 0;
1030
1031	modulation = rate->mcs & 7;
1032	streams = (rate->mcs >> 3) + 1;
1033
1034	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1035
1036	if (modulation < 4)
1037		bitrate *= (modulation + 1);
1038	else if (modulation == 4)
1039		bitrate *= (modulation + 2);
1040	else
1041		bitrate *= (modulation + 3);
1042
1043	bitrate *= streams;
1044
1045	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1046		bitrate = (bitrate / 9) * 10;
1047
1048	/* do NOT round down here */
1049	return (bitrate + 50000) / 100000;
1050}
1051
1052static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1053{
1054	static const u32 __mcs2bitrate[] = {
1055		/* control PHY */
1056		[0] =   275,
1057		/* SC PHY */
1058		[1] =  3850,
1059		[2] =  7700,
1060		[3] =  9625,
1061		[4] = 11550,
1062		[5] = 12512, /* 1251.25 mbps */
1063		[6] = 15400,
1064		[7] = 19250,
1065		[8] = 23100,
1066		[9] = 25025,
1067		[10] = 30800,
1068		[11] = 38500,
1069		[12] = 46200,
1070		/* OFDM PHY */
1071		[13] =  6930,
1072		[14] =  8662, /* 866.25 mbps */
1073		[15] = 13860,
1074		[16] = 17325,
1075		[17] = 20790,
1076		[18] = 27720,
1077		[19] = 34650,
1078		[20] = 41580,
1079		[21] = 45045,
1080		[22] = 51975,
1081		[23] = 62370,
1082		[24] = 67568, /* 6756.75 mbps */
1083		/* LP-SC PHY */
1084		[25] =  6260,
1085		[26] =  8340,
1086		[27] = 11120,
1087		[28] = 12510,
1088		[29] = 16680,
1089		[30] = 22240,
1090		[31] = 25030,
1091	};
1092
1093	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1094		return 0;
1095
1096	return __mcs2bitrate[rate->mcs];
1097}
1098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1100{
1101	static const u32 __mcs2bitrate[] = {
1102		/* control PHY */
1103		[0] =   275,
1104		/* SC PHY */
1105		[1] =  3850,
1106		[2] =  7700,
1107		[3] =  9625,
1108		[4] = 11550,
1109		[5] = 12512, /* 1251.25 mbps */
1110		[6] = 13475,
1111		[7] = 15400,
1112		[8] = 19250,
1113		[9] = 23100,
1114		[10] = 25025,
1115		[11] = 26950,
1116		[12] = 30800,
1117		[13] = 38500,
1118		[14] = 46200,
1119		[15] = 50050,
1120		[16] = 53900,
1121		[17] = 57750,
1122		[18] = 69300,
1123		[19] = 75075,
1124		[20] = 80850,
1125	};
1126
1127	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1128		return 0;
1129
1130	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1131}
1132
1133static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1134{
1135	static const u32 base[4][10] = {
1136		{   6500000,
1137		   13000000,
1138		   19500000,
1139		   26000000,
1140		   39000000,
1141		   52000000,
1142		   58500000,
1143		   65000000,
1144		   78000000,
1145		/* not in the spec, but some devices use this: */
1146		   86500000,
 
 
1147		},
1148		{  13500000,
1149		   27000000,
1150		   40500000,
1151		   54000000,
1152		   81000000,
1153		  108000000,
1154		  121500000,
1155		  135000000,
1156		  162000000,
1157		  180000000,
 
 
1158		},
1159		{  29300000,
1160		   58500000,
1161		   87800000,
1162		  117000000,
1163		  175500000,
1164		  234000000,
1165		  263300000,
1166		  292500000,
1167		  351000000,
1168		  390000000,
 
 
1169		},
1170		{  58500000,
1171		  117000000,
1172		  175500000,
1173		  234000000,
1174		  351000000,
1175		  468000000,
1176		  526500000,
1177		  585000000,
1178		  702000000,
1179		  780000000,
 
 
1180		},
1181	};
1182	u32 bitrate;
1183	int idx;
1184
1185	if (rate->mcs > 9)
1186		goto warn;
1187
1188	switch (rate->bw) {
1189	case RATE_INFO_BW_160:
1190		idx = 3;
1191		break;
1192	case RATE_INFO_BW_80:
1193		idx = 2;
1194		break;
1195	case RATE_INFO_BW_40:
1196		idx = 1;
1197		break;
1198	case RATE_INFO_BW_5:
1199	case RATE_INFO_BW_10:
1200	default:
1201		goto warn;
1202	case RATE_INFO_BW_20:
1203		idx = 0;
1204	}
1205
1206	bitrate = base[idx][rate->mcs];
1207	bitrate *= rate->nss;
1208
1209	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1210		bitrate = (bitrate / 9) * 10;
1211
1212	/* do NOT round down here */
1213	return (bitrate + 50000) / 100000;
1214 warn:
1215	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1216		  rate->bw, rate->mcs, rate->nss);
1217	return 0;
1218}
1219
1220static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1221{
1222#define SCALE 2048
1223	u16 mcs_divisors[12] = {
1224		34133, /* 16.666666... */
1225		17067, /*  8.333333... */
1226		11378, /*  5.555555... */
1227		 8533, /*  4.166666... */
1228		 5689, /*  2.777777... */
1229		 4267, /*  2.083333... */
1230		 3923, /*  1.851851... */
1231		 3413, /*  1.666666... */
1232		 2844, /*  1.388888... */
1233		 2560, /*  1.250000... */
1234		 2276, /*  1.111111... */
1235		 2048, /*  1.000000... */
 
 
1236	};
1237	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1238	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1239	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1240	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1241	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1242	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1243	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1244	u64 tmp;
1245	u32 result;
1246
1247	if (WARN_ON_ONCE(rate->mcs > 11))
1248		return 0;
1249
1250	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1251		return 0;
1252	if (WARN_ON_ONCE(rate->he_ru_alloc >
1253			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1254		return 0;
1255	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1256		return 0;
1257
1258	if (rate->bw == RATE_INFO_BW_160)
 
 
1259		result = rates_160M[rate->he_gi];
1260	else if (rate->bw == RATE_INFO_BW_80 ||
1261		 (rate->bw == RATE_INFO_BW_HE_RU &&
1262		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1263		result = rates_969[rate->he_gi];
1264	else if (rate->bw == RATE_INFO_BW_40 ||
1265		 (rate->bw == RATE_INFO_BW_HE_RU &&
1266		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1267		result = rates_484[rate->he_gi];
1268	else if (rate->bw == RATE_INFO_BW_20 ||
1269		 (rate->bw == RATE_INFO_BW_HE_RU &&
1270		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1271		result = rates_242[rate->he_gi];
1272	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1274		result = rates_106[rate->he_gi];
1275	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1276		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1277		result = rates_52[rate->he_gi];
1278	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1279		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1280		result = rates_26[rate->he_gi];
1281	else {
1282		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1283		     rate->bw, rate->he_ru_alloc);
1284		return 0;
1285	}
1286
1287	/* now scale to the appropriate MCS */
1288	tmp = result;
1289	tmp *= SCALE;
1290	do_div(tmp, mcs_divisors[rate->mcs]);
1291	result = tmp;
1292
1293	/* and take NSS, DCM into account */
1294	result = (result * rate->nss) / 8;
1295	if (rate->he_dcm)
1296		result /= 2;
1297
1298	return result / 10000;
1299}
1300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1302{
1303	if (rate->flags & RATE_INFO_FLAGS_MCS)
1304		return cfg80211_calculate_bitrate_ht(rate);
1305	if (rate->flags & RATE_INFO_FLAGS_DMG)
1306		return cfg80211_calculate_bitrate_dmg(rate);
 
 
1307	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1308		return cfg80211_calculate_bitrate_edmg(rate);
1309	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1310		return cfg80211_calculate_bitrate_vht(rate);
1311	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1312		return cfg80211_calculate_bitrate_he(rate);
 
 
 
 
1313
1314	return rate->legacy;
1315}
1316EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1317
1318int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1319			  enum ieee80211_p2p_attr_id attr,
1320			  u8 *buf, unsigned int bufsize)
1321{
1322	u8 *out = buf;
1323	u16 attr_remaining = 0;
1324	bool desired_attr = false;
1325	u16 desired_len = 0;
1326
1327	while (len > 0) {
1328		unsigned int iedatalen;
1329		unsigned int copy;
1330		const u8 *iedata;
1331
1332		if (len < 2)
1333			return -EILSEQ;
1334		iedatalen = ies[1];
1335		if (iedatalen + 2 > len)
1336			return -EILSEQ;
1337
1338		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1339			goto cont;
1340
1341		if (iedatalen < 4)
1342			goto cont;
1343
1344		iedata = ies + 2;
1345
1346		/* check WFA OUI, P2P subtype */
1347		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1348		    iedata[2] != 0x9a || iedata[3] != 0x09)
1349			goto cont;
1350
1351		iedatalen -= 4;
1352		iedata += 4;
1353
1354		/* check attribute continuation into this IE */
1355		copy = min_t(unsigned int, attr_remaining, iedatalen);
1356		if (copy && desired_attr) {
1357			desired_len += copy;
1358			if (out) {
1359				memcpy(out, iedata, min(bufsize, copy));
1360				out += min(bufsize, copy);
1361				bufsize -= min(bufsize, copy);
1362			}
1363
1364
1365			if (copy == attr_remaining)
1366				return desired_len;
1367		}
1368
1369		attr_remaining -= copy;
1370		if (attr_remaining)
1371			goto cont;
1372
1373		iedatalen -= copy;
1374		iedata += copy;
1375
1376		while (iedatalen > 0) {
1377			u16 attr_len;
1378
1379			/* P2P attribute ID & size must fit */
1380			if (iedatalen < 3)
1381				return -EILSEQ;
1382			desired_attr = iedata[0] == attr;
1383			attr_len = get_unaligned_le16(iedata + 1);
1384			iedatalen -= 3;
1385			iedata += 3;
1386
1387			copy = min_t(unsigned int, attr_len, iedatalen);
1388
1389			if (desired_attr) {
1390				desired_len += copy;
1391				if (out) {
1392					memcpy(out, iedata, min(bufsize, copy));
1393					out += min(bufsize, copy);
1394					bufsize -= min(bufsize, copy);
1395				}
1396
1397				if (copy == attr_len)
1398					return desired_len;
1399			}
1400
1401			iedata += copy;
1402			iedatalen -= copy;
1403			attr_remaining = attr_len - copy;
1404		}
1405
1406 cont:
1407		len -= ies[1] + 2;
1408		ies += ies[1] + 2;
1409	}
1410
1411	if (attr_remaining && desired_attr)
1412		return -EILSEQ;
1413
1414	return -ENOENT;
1415}
1416EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1417
1418static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1419{
1420	int i;
1421
1422	/* Make sure array values are legal */
1423	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1424		return false;
1425
1426	i = 0;
1427	while (i < n_ids) {
1428		if (ids[i] == WLAN_EID_EXTENSION) {
1429			if (id_ext && (ids[i + 1] == id))
1430				return true;
1431
1432			i += 2;
1433			continue;
1434		}
1435
1436		if (ids[i] == id && !id_ext)
1437			return true;
1438
1439		i++;
1440	}
1441	return false;
1442}
1443
1444static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1445{
1446	/* we assume a validly formed IEs buffer */
1447	u8 len = ies[pos + 1];
1448
1449	pos += 2 + len;
1450
1451	/* the IE itself must have 255 bytes for fragments to follow */
1452	if (len < 255)
1453		return pos;
1454
1455	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1456		len = ies[pos + 1];
1457		pos += 2 + len;
1458	}
1459
1460	return pos;
1461}
1462
1463size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1464			      const u8 *ids, int n_ids,
1465			      const u8 *after_ric, int n_after_ric,
1466			      size_t offset)
1467{
1468	size_t pos = offset;
1469
1470	while (pos < ielen) {
1471		u8 ext = 0;
1472
1473		if (ies[pos] == WLAN_EID_EXTENSION)
1474			ext = 2;
1475		if ((pos + ext) >= ielen)
1476			break;
1477
1478		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1479					  ies[pos] == WLAN_EID_EXTENSION))
1480			break;
1481
1482		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1483			pos = skip_ie(ies, ielen, pos);
1484
1485			while (pos < ielen) {
1486				if (ies[pos] == WLAN_EID_EXTENSION)
1487					ext = 2;
1488				else
1489					ext = 0;
1490
1491				if ((pos + ext) >= ielen)
1492					break;
1493
1494				if (!ieee80211_id_in_list(after_ric,
1495							  n_after_ric,
1496							  ies[pos + ext],
1497							  ext == 2))
1498					pos = skip_ie(ies, ielen, pos);
1499				else
1500					break;
1501			}
1502		} else {
1503			pos = skip_ie(ies, ielen, pos);
1504		}
1505	}
1506
1507	return pos;
1508}
1509EXPORT_SYMBOL(ieee80211_ie_split_ric);
1510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511bool ieee80211_operating_class_to_band(u8 operating_class,
1512				       enum nl80211_band *band)
1513{
1514	switch (operating_class) {
1515	case 112:
1516	case 115 ... 127:
1517	case 128 ... 130:
1518		*band = NL80211_BAND_5GHZ;
1519		return true;
1520	case 131 ... 135:
 
1521		*band = NL80211_BAND_6GHZ;
1522		return true;
1523	case 81:
1524	case 82:
1525	case 83:
1526	case 84:
1527		*band = NL80211_BAND_2GHZ;
1528		return true;
1529	case 180:
1530		*band = NL80211_BAND_60GHZ;
1531		return true;
1532	}
1533
1534	return false;
1535}
1536EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1539					  u8 *op_class)
1540{
1541	u8 vht_opclass;
1542	u32 freq = chandef->center_freq1;
1543
1544	if (freq >= 2412 && freq <= 2472) {
1545		if (chandef->width > NL80211_CHAN_WIDTH_40)
1546			return false;
1547
1548		/* 2.407 GHz, channels 1..13 */
1549		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550			if (freq > chandef->chan->center_freq)
1551				*op_class = 83; /* HT40+ */
1552			else
1553				*op_class = 84; /* HT40- */
1554		} else {
1555			*op_class = 81;
1556		}
1557
1558		return true;
1559	}
1560
1561	if (freq == 2484) {
1562		/* channel 14 is only for IEEE 802.11b */
1563		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1564			return false;
1565
1566		*op_class = 82; /* channel 14 */
1567		return true;
1568	}
1569
1570	switch (chandef->width) {
1571	case NL80211_CHAN_WIDTH_80:
1572		vht_opclass = 128;
1573		break;
1574	case NL80211_CHAN_WIDTH_160:
1575		vht_opclass = 129;
1576		break;
1577	case NL80211_CHAN_WIDTH_80P80:
1578		vht_opclass = 130;
1579		break;
1580	case NL80211_CHAN_WIDTH_10:
1581	case NL80211_CHAN_WIDTH_5:
1582		return false; /* unsupported for now */
1583	default:
1584		vht_opclass = 0;
1585		break;
1586	}
1587
1588	/* 5 GHz, channels 36..48 */
1589	if (freq >= 5180 && freq <= 5240) {
1590		if (vht_opclass) {
1591			*op_class = vht_opclass;
1592		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1593			if (freq > chandef->chan->center_freq)
1594				*op_class = 116;
1595			else
1596				*op_class = 117;
1597		} else {
1598			*op_class = 115;
1599		}
1600
1601		return true;
1602	}
1603
1604	/* 5 GHz, channels 52..64 */
1605	if (freq >= 5260 && freq <= 5320) {
1606		if (vht_opclass) {
1607			*op_class = vht_opclass;
1608		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1609			if (freq > chandef->chan->center_freq)
1610				*op_class = 119;
1611			else
1612				*op_class = 120;
1613		} else {
1614			*op_class = 118;
1615		}
1616
1617		return true;
1618	}
1619
1620	/* 5 GHz, channels 100..144 */
1621	if (freq >= 5500 && freq <= 5720) {
1622		if (vht_opclass) {
1623			*op_class = vht_opclass;
1624		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1625			if (freq > chandef->chan->center_freq)
1626				*op_class = 122;
1627			else
1628				*op_class = 123;
1629		} else {
1630			*op_class = 121;
1631		}
1632
1633		return true;
1634	}
1635
1636	/* 5 GHz, channels 149..169 */
1637	if (freq >= 5745 && freq <= 5845) {
1638		if (vht_opclass) {
1639			*op_class = vht_opclass;
1640		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1641			if (freq > chandef->chan->center_freq)
1642				*op_class = 126;
1643			else
1644				*op_class = 127;
1645		} else if (freq <= 5805) {
1646			*op_class = 124;
1647		} else {
1648			*op_class = 125;
1649		}
1650
1651		return true;
1652	}
1653
1654	/* 56.16 GHz, channel 1..4 */
1655	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1656		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1657			return false;
1658
1659		*op_class = 180;
1660		return true;
1661	}
1662
1663	/* not supported yet */
1664	return false;
1665}
1666EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1669				       u32 *beacon_int_gcd,
1670				       bool *beacon_int_different)
 
1671{
 
1672	struct wireless_dev *wdev;
1673
1674	*beacon_int_gcd = 0;
1675	*beacon_int_different = false;
1676
 
1677	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1678		if (!wdev->beacon_interval)
 
 
 
 
 
 
 
 
 
 
 
 
 
1679			continue;
1680
1681		if (!*beacon_int_gcd) {
1682			*beacon_int_gcd = wdev->beacon_interval;
1683			continue;
1684		}
1685
1686		if (wdev->beacon_interval == *beacon_int_gcd)
1687			continue;
1688
1689		*beacon_int_different = true;
1690		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1691	}
1692
1693	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1694		if (*beacon_int_gcd)
1695			*beacon_int_different = true;
1696		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1697	}
1698}
1699
1700int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1701				 enum nl80211_iftype iftype, u32 beacon_int)
1702{
1703	/*
1704	 * This is just a basic pre-condition check; if interface combinations
1705	 * are possible the driver must already be checking those with a call
1706	 * to cfg80211_check_combinations(), in which case we'll validate more
1707	 * through the cfg80211_calculate_bi_data() call and code in
1708	 * cfg80211_iter_combinations().
1709	 */
1710
1711	if (beacon_int < 10 || beacon_int > 10000)
1712		return -EINVAL;
1713
1714	return 0;
1715}
1716
1717int cfg80211_iter_combinations(struct wiphy *wiphy,
1718			       struct iface_combination_params *params,
1719			       void (*iter)(const struct ieee80211_iface_combination *c,
1720					    void *data),
1721			       void *data)
1722{
 
 
1723	const struct ieee80211_regdomain *regdom;
1724	enum nl80211_dfs_regions region = 0;
1725	int i, j, iftype;
1726	int num_interfaces = 0;
1727	u32 used_iftypes = 0;
1728	u32 beacon_int_gcd;
1729	bool beacon_int_different;
1730
 
 
 
1731	/*
1732	 * This is a bit strange, since the iteration used to rely only on
1733	 * the data given by the driver, but here it now relies on context,
1734	 * in form of the currently operating interfaces.
1735	 * This is OK for all current users, and saves us from having to
1736	 * push the GCD calculations into all the drivers.
1737	 * In the future, this should probably rely more on data that's in
1738	 * cfg80211 already - the only thing not would appear to be any new
1739	 * interfaces (while being brought up) and channel/radar data.
1740	 */
1741	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1742				   &beacon_int_gcd, &beacon_int_different);
 
1743
1744	if (params->radar_detect) {
1745		rcu_read_lock();
1746		regdom = rcu_dereference(cfg80211_regdomain);
1747		if (regdom)
1748			region = regdom->dfs_region;
1749		rcu_read_unlock();
1750	}
1751
1752	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1753		num_interfaces += params->iftype_num[iftype];
1754		if (params->iftype_num[iftype] > 0 &&
1755		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1756			used_iftypes |= BIT(iftype);
1757	}
1758
1759	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1760		const struct ieee80211_iface_combination *c;
 
 
 
 
 
 
1761		struct ieee80211_iface_limit *limits;
1762		u32 all_iftypes = 0;
1763
1764		c = &wiphy->iface_combinations[i];
1765
1766		if (num_interfaces > c->max_interfaces)
1767			continue;
1768		if (params->num_different_channels > c->num_different_channels)
1769			continue;
1770
1771		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1772				 GFP_KERNEL);
1773		if (!limits)
1774			return -ENOMEM;
1775
1776		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1777			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1778				continue;
1779			for (j = 0; j < c->n_limits; j++) {
1780				all_iftypes |= limits[j].types;
1781				if (!(limits[j].types & BIT(iftype)))
1782					continue;
1783				if (limits[j].max < params->iftype_num[iftype])
1784					goto cont;
1785				limits[j].max -= params->iftype_num[iftype];
1786			}
1787		}
1788
1789		if (params->radar_detect !=
1790			(c->radar_detect_widths & params->radar_detect))
1791			goto cont;
1792
1793		if (params->radar_detect && c->radar_detect_regions &&
1794		    !(c->radar_detect_regions & BIT(region)))
1795			goto cont;
1796
1797		/* Finally check that all iftypes that we're currently
1798		 * using are actually part of this combination. If they
1799		 * aren't then we can't use this combination and have
1800		 * to continue to the next.
1801		 */
1802		if ((all_iftypes & used_iftypes) != used_iftypes)
1803			goto cont;
1804
1805		if (beacon_int_gcd) {
1806			if (c->beacon_int_min_gcd &&
1807			    beacon_int_gcd < c->beacon_int_min_gcd)
1808				goto cont;
1809			if (!c->beacon_int_min_gcd && beacon_int_different)
1810				goto cont;
1811		}
1812
1813		/* This combination covered all interface types and
1814		 * supported the requested numbers, so we're good.
1815		 */
1816
1817		(*iter)(c, data);
1818 cont:
1819		kfree(limits);
1820	}
1821
1822	return 0;
1823}
1824EXPORT_SYMBOL(cfg80211_iter_combinations);
1825
1826static void
1827cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1828			  void *data)
1829{
1830	int *num = data;
1831	(*num)++;
1832}
1833
1834int cfg80211_check_combinations(struct wiphy *wiphy,
1835				struct iface_combination_params *params)
1836{
1837	int err, num = 0;
1838
1839	err = cfg80211_iter_combinations(wiphy, params,
1840					 cfg80211_iter_sum_ifcombs, &num);
1841	if (err)
1842		return err;
1843	if (num == 0)
1844		return -EBUSY;
1845
1846	return 0;
1847}
1848EXPORT_SYMBOL(cfg80211_check_combinations);
1849
1850int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1851			   const u8 *rates, unsigned int n_rates,
1852			   u32 *mask)
1853{
1854	int i, j;
1855
1856	if (!sband)
1857		return -EINVAL;
1858
1859	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1860		return -EINVAL;
1861
1862	*mask = 0;
1863
1864	for (i = 0; i < n_rates; i++) {
1865		int rate = (rates[i] & 0x7f) * 5;
1866		bool found = false;
1867
1868		for (j = 0; j < sband->n_bitrates; j++) {
1869			if (sband->bitrates[j].bitrate == rate) {
1870				found = true;
1871				*mask |= BIT(j);
1872				break;
1873			}
1874		}
1875		if (!found)
1876			return -EINVAL;
1877	}
1878
1879	/*
1880	 * mask must have at least one bit set here since we
1881	 * didn't accept a 0-length rates array nor allowed
1882	 * entries in the array that didn't exist
1883	 */
1884
1885	return 0;
1886}
1887
1888unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1889{
1890	enum nl80211_band band;
1891	unsigned int n_channels = 0;
1892
1893	for (band = 0; band < NUM_NL80211_BANDS; band++)
1894		if (wiphy->bands[band])
1895			n_channels += wiphy->bands[band]->n_channels;
1896
1897	return n_channels;
1898}
1899EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1900
1901int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1902			 struct station_info *sinfo)
1903{
1904	struct cfg80211_registered_device *rdev;
1905	struct wireless_dev *wdev;
 
1906
1907	wdev = dev->ieee80211_ptr;
1908	if (!wdev)
1909		return -EOPNOTSUPP;
1910
1911	rdev = wiphy_to_rdev(wdev->wiphy);
1912	if (!rdev->ops->get_station)
1913		return -EOPNOTSUPP;
1914
1915	memset(sinfo, 0, sizeof(*sinfo));
1916
1917	return rdev_get_station(rdev, dev, mac_addr, sinfo);
 
 
 
 
1918}
1919EXPORT_SYMBOL(cfg80211_get_station);
1920
1921void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1922{
1923	int i;
1924
1925	if (!f)
1926		return;
1927
1928	kfree(f->serv_spec_info);
1929	kfree(f->srf_bf);
1930	kfree(f->srf_macs);
1931	for (i = 0; i < f->num_rx_filters; i++)
1932		kfree(f->rx_filters[i].filter);
1933
1934	for (i = 0; i < f->num_tx_filters; i++)
1935		kfree(f->tx_filters[i].filter);
1936
1937	kfree(f->rx_filters);
1938	kfree(f->tx_filters);
1939	kfree(f);
1940}
1941EXPORT_SYMBOL(cfg80211_free_nan_func);
1942
1943bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1944				u32 center_freq_khz, u32 bw_khz)
1945{
1946	u32 start_freq_khz, end_freq_khz;
1947
1948	start_freq_khz = center_freq_khz - (bw_khz / 2);
1949	end_freq_khz = center_freq_khz + (bw_khz / 2);
1950
1951	if (start_freq_khz >= freq_range->start_freq_khz &&
1952	    end_freq_khz <= freq_range->end_freq_khz)
1953		return true;
1954
1955	return false;
1956}
1957
1958int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1959{
1960	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1961				sizeof(*(sinfo->pertid)),
1962				gfp);
1963	if (!sinfo->pertid)
1964		return -ENOMEM;
1965
1966	return 0;
1967}
1968EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1969
1970/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1971/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1972const unsigned char rfc1042_header[] __aligned(2) =
1973	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1974EXPORT_SYMBOL(rfc1042_header);
1975
1976/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1977const unsigned char bridge_tunnel_header[] __aligned(2) =
1978	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1979EXPORT_SYMBOL(bridge_tunnel_header);
1980
1981/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1982struct iapp_layer2_update {
1983	u8 da[ETH_ALEN];	/* broadcast */
1984	u8 sa[ETH_ALEN];	/* STA addr */
1985	__be16 len;		/* 6 */
1986	u8 dsap;		/* 0 */
1987	u8 ssap;		/* 0 */
1988	u8 control;
1989	u8 xid_info[3];
1990} __packed;
1991
1992void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1993{
1994	struct iapp_layer2_update *msg;
1995	struct sk_buff *skb;
1996
1997	/* Send Level 2 Update Frame to update forwarding tables in layer 2
1998	 * bridge devices */
1999
2000	skb = dev_alloc_skb(sizeof(*msg));
2001	if (!skb)
2002		return;
2003	msg = skb_put(skb, sizeof(*msg));
2004
2005	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2006	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2007
2008	eth_broadcast_addr(msg->da);
2009	ether_addr_copy(msg->sa, addr);
2010	msg->len = htons(6);
2011	msg->dsap = 0;
2012	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2013	msg->control = 0xaf;	/* XID response lsb.1111F101.
2014				 * F=0 (no poll command; unsolicited frame) */
2015	msg->xid_info[0] = 0x81;	/* XID format identifier */
2016	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2017	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2018
2019	skb->dev = dev;
2020	skb->protocol = eth_type_trans(skb, dev);
2021	memset(skb->cb, 0, sizeof(skb->cb));
2022	netif_rx_ni(skb);
2023}
2024EXPORT_SYMBOL(cfg80211_send_layer2_update);
2025
2026int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2027			      enum ieee80211_vht_chanwidth bw,
2028			      int mcs, bool ext_nss_bw_capable)
 
2029{
2030	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2031	int max_vht_nss = 0;
2032	int ext_nss_bw;
2033	int supp_width;
2034	int i, mcs_encoding;
2035
2036	if (map == 0xffff)
2037		return 0;
2038
2039	if (WARN_ON(mcs > 9))
2040		return 0;
2041	if (mcs <= 7)
2042		mcs_encoding = 0;
2043	else if (mcs == 8)
2044		mcs_encoding = 1;
2045	else
2046		mcs_encoding = 2;
2047
2048	/* find max_vht_nss for the given MCS */
2049	for (i = 7; i >= 0; i--) {
2050		int supp = (map >> (2 * i)) & 3;
 
2051
2052		if (supp == 3)
2053			continue;
2054
2055		if (supp >= mcs_encoding) {
2056			max_vht_nss = i + 1;
2057			break;
 
2058		}
2059	}
2060
2061	if (!(cap->supp_mcs.tx_mcs_map &
2062			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2063		return max_vht_nss;
2064
2065	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2066				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2067	supp_width = le32_get_bits(cap->vht_cap_info,
2068				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2069
2070	/* if not capable, treat ext_nss_bw as 0 */
2071	if (!ext_nss_bw_capable)
2072		ext_nss_bw = 0;
2073
2074	/* This is invalid */
2075	if (supp_width == 3)
2076		return 0;
2077
2078	/* This is an invalid combination so pretend nothing is supported */
2079	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2080		return 0;
2081
2082	/*
2083	 * Cover all the special cases according to IEEE 802.11-2016
2084	 * Table 9-250. All other cases are either factor of 1 or not
2085	 * valid/supported.
2086	 */
2087	switch (bw) {
2088	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2089	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2090		if ((supp_width == 1 || supp_width == 2) &&
2091		    ext_nss_bw == 3)
2092			return 2 * max_vht_nss;
2093		break;
2094	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2095		if (supp_width == 0 &&
2096		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2097			return max_vht_nss / 2;
2098		if (supp_width == 0 &&
2099		    ext_nss_bw == 3)
2100			return (3 * max_vht_nss) / 4;
2101		if (supp_width == 1 &&
2102		    ext_nss_bw == 3)
2103			return 2 * max_vht_nss;
2104		break;
2105	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2106		if (supp_width == 0 && ext_nss_bw == 1)
2107			return 0; /* not possible */
2108		if (supp_width == 0 &&
2109		    ext_nss_bw == 2)
2110			return max_vht_nss / 2;
2111		if (supp_width == 0 &&
2112		    ext_nss_bw == 3)
2113			return (3 * max_vht_nss) / 4;
2114		if (supp_width == 1 &&
2115		    ext_nss_bw == 0)
2116			return 0; /* not possible */
2117		if (supp_width == 1 &&
2118		    ext_nss_bw == 1)
2119			return max_vht_nss / 2;
2120		if (supp_width == 1 &&
2121		    ext_nss_bw == 2)
2122			return (3 * max_vht_nss) / 4;
2123		break;
2124	}
2125
2126	/* not covered or invalid combination received */
2127	return max_vht_nss;
2128}
2129EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2130
2131bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2132			     bool is_4addr, u8 check_swif)
2133
2134{
2135	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2136
2137	switch (check_swif) {
2138	case 0:
2139		if (is_vlan && is_4addr)
2140			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2141		return wiphy->interface_modes & BIT(iftype);
2142	case 1:
2143		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2144			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2145		return wiphy->software_iftypes & BIT(iftype);
2146	default:
2147		break;
2148	}
2149
2150	return false;
2151}
2152EXPORT_SYMBOL(cfg80211_iftype_allowed);