Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27const struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47{
48 struct ieee80211_rate *bitrates;
49 u32 mandatory_rates = 0;
50 enum ieee80211_rate_flags mandatory_flag;
51 int i;
52
53 if (WARN_ON(!sband))
54 return 1;
55
56 if (sband->band == NL80211_BAND_2GHZ)
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 else
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66}
67EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70{
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 case NL80211_BAND_LC:
78 if (chan == 14)
79 return MHZ_TO_KHZ(2484);
80 else if (chan < 14)
81 return MHZ_TO_KHZ(2407 + chan * 5);
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return MHZ_TO_KHZ(4000 + chan * 5);
86 else
87 return MHZ_TO_KHZ(5000 + chan * 5);
88 break;
89 case NL80211_BAND_6GHZ:
90 /* see 802.11ax D6.1 27.3.23.2 */
91 if (chan == 2)
92 return MHZ_TO_KHZ(5935);
93 if (chan <= 233)
94 return MHZ_TO_KHZ(5950 + chan * 5);
95 break;
96 case NL80211_BAND_60GHZ:
97 if (chan < 7)
98 return MHZ_TO_KHZ(56160 + chan * 2160);
99 break;
100 case NL80211_BAND_S1GHZ:
101 return 902000 + chan * 500;
102 default:
103 ;
104 }
105 return 0; /* not supported */
106}
107EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108
109enum nl80211_chan_width
110ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111{
112 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 return NL80211_CHAN_WIDTH_20_NOHT;
114
115 /*S1G defines a single allowed channel width per channel.
116 * Extract that width here.
117 */
118 if (chan->flags & IEEE80211_CHAN_1MHZ)
119 return NL80211_CHAN_WIDTH_1;
120 else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 return NL80211_CHAN_WIDTH_2;
122 else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 return NL80211_CHAN_WIDTH_4;
124 else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 return NL80211_CHAN_WIDTH_8;
126 else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 return NL80211_CHAN_WIDTH_16;
128
129 pr_err("unknown channel width for channel at %dKHz?\n",
130 ieee80211_channel_to_khz(chan));
131
132 return NL80211_CHAN_WIDTH_1;
133}
134EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135
136int ieee80211_freq_khz_to_channel(u32 freq)
137{
138 /* TODO: just handle MHz for now */
139 freq = KHZ_TO_MHZ(freq);
140
141 /* see 802.11 17.3.8.3.2 and Annex J */
142 if (freq == 2484)
143 return 14;
144 else if (freq < 2484)
145 return (freq - 2407) / 5;
146 else if (freq >= 4910 && freq <= 4980)
147 return (freq - 4000) / 5;
148 else if (freq < 5925)
149 return (freq - 5000) / 5;
150 else if (freq == 5935)
151 return 2;
152 else if (freq <= 45000) /* DMG band lower limit */
153 /* see 802.11ax D6.1 27.3.22.2 */
154 return (freq - 5950) / 5;
155 else if (freq >= 58320 && freq <= 70200)
156 return (freq - 56160) / 2160;
157 else
158 return 0;
159}
160EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161
162struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 u32 freq)
164{
165 enum nl80211_band band;
166 struct ieee80211_supported_band *sband;
167 int i;
168
169 for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 sband = wiphy->bands[band];
171
172 if (!sband)
173 continue;
174
175 for (i = 0; i < sband->n_channels; i++) {
176 struct ieee80211_channel *chan = &sband->channels[i];
177
178 if (ieee80211_channel_to_khz(chan) == freq)
179 return chan;
180 }
181 }
182
183 return NULL;
184}
185EXPORT_SYMBOL(ieee80211_get_channel_khz);
186
187static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188{
189 int i, want;
190
191 switch (sband->band) {
192 case NL80211_BAND_5GHZ:
193 case NL80211_BAND_6GHZ:
194 want = 3;
195 for (i = 0; i < sband->n_bitrates; i++) {
196 if (sband->bitrates[i].bitrate == 60 ||
197 sband->bitrates[i].bitrate == 120 ||
198 sband->bitrates[i].bitrate == 240) {
199 sband->bitrates[i].flags |=
200 IEEE80211_RATE_MANDATORY_A;
201 want--;
202 }
203 }
204 WARN_ON(want);
205 break;
206 case NL80211_BAND_2GHZ:
207 case NL80211_BAND_LC:
208 want = 7;
209 for (i = 0; i < sband->n_bitrates; i++) {
210 switch (sband->bitrates[i].bitrate) {
211 case 10:
212 case 20:
213 case 55:
214 case 110:
215 sband->bitrates[i].flags |=
216 IEEE80211_RATE_MANDATORY_B |
217 IEEE80211_RATE_MANDATORY_G;
218 want--;
219 break;
220 case 60:
221 case 120:
222 case 240:
223 sband->bitrates[i].flags |=
224 IEEE80211_RATE_MANDATORY_G;
225 want--;
226 fallthrough;
227 default:
228 sband->bitrates[i].flags |=
229 IEEE80211_RATE_ERP_G;
230 break;
231 }
232 }
233 WARN_ON(want != 0 && want != 3);
234 break;
235 case NL80211_BAND_60GHZ:
236 /* check for mandatory HT MCS 1..4 */
237 WARN_ON(!sband->ht_cap.ht_supported);
238 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 break;
240 case NL80211_BAND_S1GHZ:
241 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 * mandatory is ok.
243 */
244 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 break;
246 case NUM_NL80211_BANDS:
247 default:
248 WARN_ON(1);
249 break;
250 }
251}
252
253void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254{
255 enum nl80211_band band;
256
257 for (band = 0; band < NUM_NL80211_BANDS; band++)
258 if (wiphy->bands[band])
259 set_mandatory_flags_band(wiphy->bands[band]);
260}
261
262bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263{
264 int i;
265 for (i = 0; i < wiphy->n_cipher_suites; i++)
266 if (cipher == wiphy->cipher_suites[i])
267 return true;
268 return false;
269}
270
271static bool
272cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273{
274 struct wiphy *wiphy = &rdev->wiphy;
275 int i;
276
277 for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 switch (wiphy->cipher_suites[i]) {
279 case WLAN_CIPHER_SUITE_AES_CMAC:
280 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 return true;
284 }
285 }
286
287 return false;
288}
289
290bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 int key_idx, bool pairwise)
292{
293 int max_key_idx;
294
295 if (pairwise)
296 max_key_idx = 3;
297 else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 wiphy_ext_feature_isset(&rdev->wiphy,
300 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 max_key_idx = 7;
302 else if (cfg80211_igtk_cipher_supported(rdev))
303 max_key_idx = 5;
304 else
305 max_key_idx = 3;
306
307 if (key_idx < 0 || key_idx > max_key_idx)
308 return false;
309
310 return true;
311}
312
313int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 struct key_params *params, int key_idx,
315 bool pairwise, const u8 *mac_addr)
316{
317 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 return -EINVAL;
319
320 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 return -EINVAL;
322
323 if (pairwise && !mac_addr)
324 return -EINVAL;
325
326 switch (params->cipher) {
327 case WLAN_CIPHER_SUITE_TKIP:
328 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 if ((pairwise && key_idx) ||
330 params->mode != NL80211_KEY_RX_TX)
331 return -EINVAL;
332 break;
333 case WLAN_CIPHER_SUITE_CCMP:
334 case WLAN_CIPHER_SUITE_CCMP_256:
335 case WLAN_CIPHER_SUITE_GCMP:
336 case WLAN_CIPHER_SUITE_GCMP_256:
337 /* IEEE802.11-2016 allows only 0 and - when supporting
338 * Extended Key ID - 1 as index for pairwise keys.
339 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 * the driver supports Extended Key ID.
341 * @NL80211_KEY_SET_TX can't be set when installing and
342 * validating a key.
343 */
344 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 params->mode == NL80211_KEY_SET_TX)
346 return -EINVAL;
347 if (wiphy_ext_feature_isset(&rdev->wiphy,
348 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 if (pairwise && (key_idx < 0 || key_idx > 1))
350 return -EINVAL;
351 } else if (pairwise && key_idx) {
352 return -EINVAL;
353 }
354 break;
355 case WLAN_CIPHER_SUITE_AES_CMAC:
356 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 /* Disallow BIP (group-only) cipher as pairwise cipher */
360 if (pairwise)
361 return -EINVAL;
362 if (key_idx < 4)
363 return -EINVAL;
364 break;
365 case WLAN_CIPHER_SUITE_WEP40:
366 case WLAN_CIPHER_SUITE_WEP104:
367 if (key_idx > 3)
368 return -EINVAL;
369 break;
370 default:
371 break;
372 }
373
374 switch (params->cipher) {
375 case WLAN_CIPHER_SUITE_WEP40:
376 if (params->key_len != WLAN_KEY_LEN_WEP40)
377 return -EINVAL;
378 break;
379 case WLAN_CIPHER_SUITE_TKIP:
380 if (params->key_len != WLAN_KEY_LEN_TKIP)
381 return -EINVAL;
382 break;
383 case WLAN_CIPHER_SUITE_CCMP:
384 if (params->key_len != WLAN_KEY_LEN_CCMP)
385 return -EINVAL;
386 break;
387 case WLAN_CIPHER_SUITE_CCMP_256:
388 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 return -EINVAL;
390 break;
391 case WLAN_CIPHER_SUITE_GCMP:
392 if (params->key_len != WLAN_KEY_LEN_GCMP)
393 return -EINVAL;
394 break;
395 case WLAN_CIPHER_SUITE_GCMP_256:
396 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 return -EINVAL;
398 break;
399 case WLAN_CIPHER_SUITE_WEP104:
400 if (params->key_len != WLAN_KEY_LEN_WEP104)
401 return -EINVAL;
402 break;
403 case WLAN_CIPHER_SUITE_AES_CMAC:
404 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 return -EINVAL;
406 break;
407 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 return -EINVAL;
410 break;
411 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 return -EINVAL;
414 break;
415 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 return -EINVAL;
418 break;
419 default:
420 /*
421 * We don't know anything about this algorithm,
422 * allow using it -- but the driver must check
423 * all parameters! We still check below whether
424 * or not the driver supports this algorithm,
425 * of course.
426 */
427 break;
428 }
429
430 if (params->seq) {
431 switch (params->cipher) {
432 case WLAN_CIPHER_SUITE_WEP40:
433 case WLAN_CIPHER_SUITE_WEP104:
434 /* These ciphers do not use key sequence */
435 return -EINVAL;
436 case WLAN_CIPHER_SUITE_TKIP:
437 case WLAN_CIPHER_SUITE_CCMP:
438 case WLAN_CIPHER_SUITE_CCMP_256:
439 case WLAN_CIPHER_SUITE_GCMP:
440 case WLAN_CIPHER_SUITE_GCMP_256:
441 case WLAN_CIPHER_SUITE_AES_CMAC:
442 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 if (params->seq_len != 6)
446 return -EINVAL;
447 break;
448 }
449 }
450
451 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 return -EINVAL;
453
454 return 0;
455}
456
457unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458{
459 unsigned int hdrlen = 24;
460
461 if (ieee80211_is_ext(fc)) {
462 hdrlen = 4;
463 goto out;
464 }
465
466 if (ieee80211_is_data(fc)) {
467 if (ieee80211_has_a4(fc))
468 hdrlen = 30;
469 if (ieee80211_is_data_qos(fc)) {
470 hdrlen += IEEE80211_QOS_CTL_LEN;
471 if (ieee80211_has_order(fc))
472 hdrlen += IEEE80211_HT_CTL_LEN;
473 }
474 goto out;
475 }
476
477 if (ieee80211_is_mgmt(fc)) {
478 if (ieee80211_has_order(fc))
479 hdrlen += IEEE80211_HT_CTL_LEN;
480 goto out;
481 }
482
483 if (ieee80211_is_ctl(fc)) {
484 /*
485 * ACK and CTS are 10 bytes, all others 16. To see how
486 * to get this condition consider
487 * subtype mask: 0b0000000011110000 (0x00F0)
488 * ACK subtype: 0b0000000011010000 (0x00D0)
489 * CTS subtype: 0b0000000011000000 (0x00C0)
490 * bits that matter: ^^^ (0x00E0)
491 * value of those: 0b0000000011000000 (0x00C0)
492 */
493 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 hdrlen = 10;
495 else
496 hdrlen = 16;
497 }
498out:
499 return hdrlen;
500}
501EXPORT_SYMBOL(ieee80211_hdrlen);
502
503unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504{
505 const struct ieee80211_hdr *hdr =
506 (const struct ieee80211_hdr *)skb->data;
507 unsigned int hdrlen;
508
509 if (unlikely(skb->len < 10))
510 return 0;
511 hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 if (unlikely(hdrlen > skb->len))
513 return 0;
514 return hdrlen;
515}
516EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517
518static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519{
520 int ae = flags & MESH_FLAGS_AE;
521 /* 802.11-2012, 8.2.4.7.3 */
522 switch (ae) {
523 default:
524 case 0:
525 return 6;
526 case MESH_FLAGS_AE_A4:
527 return 12;
528 case MESH_FLAGS_AE_A5_A6:
529 return 18;
530 }
531}
532
533unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534{
535 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536}
537EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538
539bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540{
541 const __be16 *hdr_proto = hdr + ETH_ALEN;
542
543 if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 *hdr_proto != htons(ETH_P_AARP) &&
545 *hdr_proto != htons(ETH_P_IPX)) &&
546 !ether_addr_equal(hdr, bridge_tunnel_header))
547 return false;
548
549 *proto = *hdr_proto;
550
551 return true;
552}
553EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554
555int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556{
557 const void *mesh_addr;
558 struct {
559 struct ethhdr eth;
560 u8 flags;
561 } payload;
562 int hdrlen;
563 int ret;
564
565 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 if (ret)
567 return ret;
568
569 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570
571 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 &payload.eth.h_proto)))
574 hdrlen += ETH_ALEN + 2;
575 else if (!pskb_may_pull(skb, hdrlen))
576 return -EINVAL;
577 else
578 payload.eth.h_proto = htons(skb->len - hdrlen);
579
580 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 switch (payload.flags & MESH_FLAGS_AE) {
582 case MESH_FLAGS_AE_A4:
583 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 break;
585 case MESH_FLAGS_AE_A5_A6:
586 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 break;
588 default:
589 break;
590 }
591
592 pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594
595 return 0;
596}
597EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598
599int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 const u8 *addr, enum nl80211_iftype iftype,
601 u8 data_offset, bool is_amsdu)
602{
603 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 struct {
605 u8 hdr[ETH_ALEN] __aligned(2);
606 __be16 proto;
607 } payload;
608 struct ethhdr tmp;
609 u16 hdrlen;
610
611 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 return -1;
613
614 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 if (skb->len < hdrlen)
616 return -1;
617
618 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 * header
620 * IEEE 802.11 address fields:
621 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 * 0 0 DA SA BSSID n/a
623 * 0 1 DA BSSID SA n/a
624 * 1 0 BSSID SA DA n/a
625 * 1 1 RA TA DA SA
626 */
627 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629
630 switch (hdr->frame_control &
631 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 case cpu_to_le16(IEEE80211_FCTL_TODS):
633 if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 iftype != NL80211_IFTYPE_AP_VLAN &&
635 iftype != NL80211_IFTYPE_P2P_GO))
636 return -1;
637 break;
638 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 iftype != NL80211_IFTYPE_AP_VLAN &&
641 iftype != NL80211_IFTYPE_STATION))
642 return -1;
643 break;
644 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 if ((iftype != NL80211_IFTYPE_STATION &&
646 iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 iftype != NL80211_IFTYPE_MESH_POINT) ||
648 (is_multicast_ether_addr(tmp.h_dest) &&
649 ether_addr_equal(tmp.h_source, addr)))
650 return -1;
651 break;
652 case cpu_to_le16(0):
653 if (iftype != NL80211_IFTYPE_ADHOC &&
654 iftype != NL80211_IFTYPE_STATION &&
655 iftype != NL80211_IFTYPE_OCB)
656 return -1;
657 break;
658 }
659
660 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 /* remove RFC1042 or Bridge-Tunnel encapsulation */
664 hdrlen += ETH_ALEN + 2;
665 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 } else {
667 tmp.h_proto = htons(skb->len - hdrlen);
668 }
669
670 pskb_pull(skb, hdrlen);
671
672 if (!ehdr)
673 ehdr = skb_push(skb, sizeof(struct ethhdr));
674 memcpy(ehdr, &tmp, sizeof(tmp));
675
676 return 0;
677}
678EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679
680static void
681__frame_add_frag(struct sk_buff *skb, struct page *page,
682 void *ptr, int len, int size)
683{
684 struct skb_shared_info *sh = skb_shinfo(skb);
685 int page_offset;
686
687 get_page(page);
688 page_offset = ptr - page_address(page);
689 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690}
691
692static void
693__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 int offset, int len)
695{
696 struct skb_shared_info *sh = skb_shinfo(skb);
697 const skb_frag_t *frag = &sh->frags[0];
698 struct page *frag_page;
699 void *frag_ptr;
700 int frag_len, frag_size;
701 int head_size = skb->len - skb->data_len;
702 int cur_len;
703
704 frag_page = virt_to_head_page(skb->head);
705 frag_ptr = skb->data;
706 frag_size = head_size;
707
708 while (offset >= frag_size) {
709 offset -= frag_size;
710 frag_page = skb_frag_page(frag);
711 frag_ptr = skb_frag_address(frag);
712 frag_size = skb_frag_size(frag);
713 frag++;
714 }
715
716 frag_ptr += offset;
717 frag_len = frag_size - offset;
718
719 cur_len = min(len, frag_len);
720
721 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 len -= cur_len;
723
724 while (len > 0) {
725 frag_len = skb_frag_size(frag);
726 cur_len = min(len, frag_len);
727 __frame_add_frag(frame, skb_frag_page(frag),
728 skb_frag_address(frag), cur_len, frag_len);
729 len -= cur_len;
730 frag++;
731 }
732}
733
734static struct sk_buff *
735__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 int offset, int len, bool reuse_frag,
737 int min_len)
738{
739 struct sk_buff *frame;
740 int cur_len = len;
741
742 if (skb->len - offset < len)
743 return NULL;
744
745 /*
746 * When reusing fragments, copy some data to the head to simplify
747 * ethernet header handling and speed up protocol header processing
748 * in the stack later.
749 */
750 if (reuse_frag)
751 cur_len = min_t(int, len, min_len);
752
753 /*
754 * Allocate and reserve two bytes more for payload
755 * alignment since sizeof(struct ethhdr) is 14.
756 */
757 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 if (!frame)
759 return NULL;
760
761 frame->priority = skb->priority;
762 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764
765 len -= cur_len;
766 if (!len)
767 return frame;
768
769 offset += cur_len;
770 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771
772 return frame;
773}
774
775static u16
776ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777{
778 __le16 *field_le = field;
779 __be16 *field_be = field;
780 u16 len;
781
782 if (hdr_type >= 2)
783 len = le16_to_cpu(*field_le);
784 else
785 len = be16_to_cpu(*field_be);
786 if (hdr_type)
787 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788
789 return len;
790}
791
792bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793{
794 int offset = 0, subframe_len, padding;
795
796 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 int remaining = skb->len - offset;
798 struct {
799 __be16 len;
800 u8 mesh_flags;
801 } hdr;
802 u16 len;
803
804 if (sizeof(hdr) > remaining)
805 return false;
806
807 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 return false;
809
810 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 mesh_hdr);
812 subframe_len = sizeof(struct ethhdr) + len;
813 padding = (4 - subframe_len) & 0x3;
814
815 if (subframe_len > remaining)
816 return false;
817 }
818
819 return true;
820}
821EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822
823void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
824 const u8 *addr, enum nl80211_iftype iftype,
825 const unsigned int extra_headroom,
826 const u8 *check_da, const u8 *check_sa,
827 u8 mesh_control)
828{
829 unsigned int hlen = ALIGN(extra_headroom, 4);
830 struct sk_buff *frame = NULL;
831 int offset = 0;
832 struct {
833 struct ethhdr eth;
834 uint8_t flags;
835 } hdr;
836 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
837 bool reuse_skb = false;
838 bool last = false;
839 int copy_len = sizeof(hdr.eth);
840
841 if (iftype == NL80211_IFTYPE_MESH_POINT)
842 copy_len = sizeof(hdr);
843
844 while (!last) {
845 int remaining = skb->len - offset;
846 unsigned int subframe_len;
847 int len, mesh_len = 0;
848 u8 padding;
849
850 if (copy_len > remaining)
851 goto purge;
852
853 skb_copy_bits(skb, offset, &hdr, copy_len);
854 if (iftype == NL80211_IFTYPE_MESH_POINT)
855 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
856 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
857 mesh_control);
858 subframe_len = sizeof(struct ethhdr) + len;
859 padding = (4 - subframe_len) & 0x3;
860
861 /* the last MSDU has no padding */
862 if (subframe_len > remaining)
863 goto purge;
864 /* mitigate A-MSDU aggregation injection attacks */
865 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866 goto purge;
867
868 offset += sizeof(struct ethhdr);
869 last = remaining <= subframe_len + padding;
870
871 /* FIXME: should we really accept multicast DA? */
872 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875 offset += len + padding;
876 continue;
877 }
878
879 /* reuse skb for the last subframe */
880 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881 skb_pull(skb, offset);
882 frame = skb;
883 reuse_skb = true;
884 } else {
885 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886 reuse_frag, 32 + mesh_len);
887 if (!frame)
888 goto purge;
889
890 offset += len + padding;
891 }
892
893 skb_reset_network_header(frame);
894 frame->dev = skb->dev;
895 frame->priority = skb->priority;
896
897 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899 skb_pull(frame, ETH_ALEN + 2);
900
901 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902 __skb_queue_tail(list, frame);
903 }
904
905 if (!reuse_skb)
906 dev_kfree_skb(skb);
907
908 return;
909
910 purge:
911 __skb_queue_purge(list);
912 dev_kfree_skb(skb);
913}
914EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915
916/* Given a data frame determine the 802.1p/1d tag to use. */
917unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918 struct cfg80211_qos_map *qos_map)
919{
920 unsigned int dscp;
921 unsigned char vlan_priority;
922 unsigned int ret;
923
924 /* skb->priority values from 256->263 are magic values to
925 * directly indicate a specific 802.1d priority. This is used
926 * to allow 802.1d priority to be passed directly in from VLAN
927 * tags, etc.
928 */
929 if (skb->priority >= 256 && skb->priority <= 263) {
930 ret = skb->priority - 256;
931 goto out;
932 }
933
934 if (skb_vlan_tag_present(skb)) {
935 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936 >> VLAN_PRIO_SHIFT;
937 if (vlan_priority > 0) {
938 ret = vlan_priority;
939 goto out;
940 }
941 }
942
943 switch (skb->protocol) {
944 case htons(ETH_P_IP):
945 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946 break;
947 case htons(ETH_P_IPV6):
948 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949 break;
950 case htons(ETH_P_MPLS_UC):
951 case htons(ETH_P_MPLS_MC): {
952 struct mpls_label mpls_tmp, *mpls;
953
954 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955 sizeof(*mpls), &mpls_tmp);
956 if (!mpls)
957 return 0;
958
959 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960 >> MPLS_LS_TC_SHIFT;
961 goto out;
962 }
963 case htons(ETH_P_80221):
964 /* 802.21 is always network control traffic */
965 return 7;
966 default:
967 return 0;
968 }
969
970 if (qos_map) {
971 unsigned int i, tmp_dscp = dscp >> 2;
972
973 for (i = 0; i < qos_map->num_des; i++) {
974 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975 ret = qos_map->dscp_exception[i].up;
976 goto out;
977 }
978 }
979
980 for (i = 0; i < 8; i++) {
981 if (tmp_dscp >= qos_map->up[i].low &&
982 tmp_dscp <= qos_map->up[i].high) {
983 ret = i;
984 goto out;
985 }
986 }
987 }
988
989 /* The default mapping as defined Section 2.3 in RFC8325: The three
990 * Most Significant Bits (MSBs) of the DSCP are used as the
991 * corresponding L2 markings.
992 */
993 ret = dscp >> 5;
994
995 /* Handle specific DSCP values for which the default mapping (as
996 * described above) doesn't adhere to the intended usage of the DSCP
997 * value. See section 4 in RFC8325. Specifically, for the following
998 * Diffserv Service Classes no update is needed:
999 * - Standard: DF
1000 * - Low Priority Data: CS1
1001 * - Multimedia Conferencing: AF41, AF42, AF43
1002 * - Network Control Traffic: CS7
1003 * - Real-Time Interactive: CS4
1004 * - Signaling: CS5
1005 */
1006 switch (dscp >> 2) {
1007 case 10:
1008 case 12:
1009 case 14:
1010 /* High throughput data: AF11, AF12, AF13 */
1011 ret = 0;
1012 break;
1013 case 16:
1014 /* Operations, Administration, and Maintenance and Provisioning:
1015 * CS2
1016 */
1017 ret = 0;
1018 break;
1019 case 18:
1020 case 20:
1021 case 22:
1022 /* Low latency data: AF21, AF22, AF23 */
1023 ret = 3;
1024 break;
1025 case 24:
1026 /* Broadcasting video: CS3 */
1027 ret = 4;
1028 break;
1029 case 26:
1030 case 28:
1031 case 30:
1032 /* Multimedia Streaming: AF31, AF32, AF33 */
1033 ret = 4;
1034 break;
1035 case 44:
1036 /* Voice Admit: VA */
1037 ret = 6;
1038 break;
1039 case 46:
1040 /* Telephony traffic: EF */
1041 ret = 6;
1042 break;
1043 case 48:
1044 /* Network Control Traffic: CS6 */
1045 ret = 7;
1046 break;
1047 }
1048out:
1049 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1050}
1051EXPORT_SYMBOL(cfg80211_classify8021d);
1052
1053const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1054{
1055 const struct cfg80211_bss_ies *ies;
1056
1057 ies = rcu_dereference(bss->ies);
1058 if (!ies)
1059 return NULL;
1060
1061 return cfg80211_find_elem(id, ies->data, ies->len);
1062}
1063EXPORT_SYMBOL(ieee80211_bss_get_elem);
1064
1065void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1066{
1067 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1068 struct net_device *dev = wdev->netdev;
1069 int i;
1070
1071 if (!wdev->connect_keys)
1072 return;
1073
1074 for (i = 0; i < 4; i++) {
1075 if (!wdev->connect_keys->params[i].cipher)
1076 continue;
1077 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1078 &wdev->connect_keys->params[i])) {
1079 netdev_err(dev, "failed to set key %d\n", i);
1080 continue;
1081 }
1082 if (wdev->connect_keys->def == i &&
1083 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1084 netdev_err(dev, "failed to set defkey %d\n", i);
1085 continue;
1086 }
1087 }
1088
1089 kfree_sensitive(wdev->connect_keys);
1090 wdev->connect_keys = NULL;
1091}
1092
1093void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1094{
1095 struct cfg80211_event *ev;
1096 unsigned long flags;
1097
1098 spin_lock_irqsave(&wdev->event_lock, flags);
1099 while (!list_empty(&wdev->event_list)) {
1100 ev = list_first_entry(&wdev->event_list,
1101 struct cfg80211_event, list);
1102 list_del(&ev->list);
1103 spin_unlock_irqrestore(&wdev->event_lock, flags);
1104
1105 switch (ev->type) {
1106 case EVENT_CONNECT_RESULT:
1107 __cfg80211_connect_result(
1108 wdev->netdev,
1109 &ev->cr,
1110 ev->cr.status == WLAN_STATUS_SUCCESS);
1111 break;
1112 case EVENT_ROAMED:
1113 __cfg80211_roamed(wdev, &ev->rm);
1114 break;
1115 case EVENT_DISCONNECTED:
1116 __cfg80211_disconnected(wdev->netdev,
1117 ev->dc.ie, ev->dc.ie_len,
1118 ev->dc.reason,
1119 !ev->dc.locally_generated);
1120 break;
1121 case EVENT_IBSS_JOINED:
1122 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1123 ev->ij.channel);
1124 break;
1125 case EVENT_STOPPED:
1126 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1127 break;
1128 case EVENT_PORT_AUTHORIZED:
1129 __cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1130 ev->pa.td_bitmap,
1131 ev->pa.td_bitmap_len);
1132 break;
1133 }
1134
1135 kfree(ev);
1136
1137 spin_lock_irqsave(&wdev->event_lock, flags);
1138 }
1139 spin_unlock_irqrestore(&wdev->event_lock, flags);
1140}
1141
1142void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1143{
1144 struct wireless_dev *wdev;
1145
1146 lockdep_assert_held(&rdev->wiphy.mtx);
1147
1148 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1149 cfg80211_process_wdev_events(wdev);
1150}
1151
1152int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1153 struct net_device *dev, enum nl80211_iftype ntype,
1154 struct vif_params *params)
1155{
1156 int err;
1157 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1158
1159 lockdep_assert_held(&rdev->wiphy.mtx);
1160
1161 /* don't support changing VLANs, you just re-create them */
1162 if (otype == NL80211_IFTYPE_AP_VLAN)
1163 return -EOPNOTSUPP;
1164
1165 /* cannot change into P2P device or NAN */
1166 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1167 ntype == NL80211_IFTYPE_NAN)
1168 return -EOPNOTSUPP;
1169
1170 if (!rdev->ops->change_virtual_intf ||
1171 !(rdev->wiphy.interface_modes & (1 << ntype)))
1172 return -EOPNOTSUPP;
1173
1174 if (ntype != otype) {
1175 /* if it's part of a bridge, reject changing type to station/ibss */
1176 if (netif_is_bridge_port(dev) &&
1177 (ntype == NL80211_IFTYPE_ADHOC ||
1178 ntype == NL80211_IFTYPE_STATION ||
1179 ntype == NL80211_IFTYPE_P2P_CLIENT))
1180 return -EBUSY;
1181
1182 dev->ieee80211_ptr->use_4addr = false;
1183 rdev_set_qos_map(rdev, dev, NULL);
1184
1185 switch (otype) {
1186 case NL80211_IFTYPE_AP:
1187 case NL80211_IFTYPE_P2P_GO:
1188 cfg80211_stop_ap(rdev, dev, -1, true);
1189 break;
1190 case NL80211_IFTYPE_ADHOC:
1191 cfg80211_leave_ibss(rdev, dev, false);
1192 break;
1193 case NL80211_IFTYPE_STATION:
1194 case NL80211_IFTYPE_P2P_CLIENT:
1195 cfg80211_disconnect(rdev, dev,
1196 WLAN_REASON_DEAUTH_LEAVING, true);
1197 break;
1198 case NL80211_IFTYPE_MESH_POINT:
1199 /* mesh should be handled? */
1200 break;
1201 case NL80211_IFTYPE_OCB:
1202 cfg80211_leave_ocb(rdev, dev);
1203 break;
1204 default:
1205 break;
1206 }
1207
1208 cfg80211_process_rdev_events(rdev);
1209 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210
1211 memset(&dev->ieee80211_ptr->u, 0,
1212 sizeof(dev->ieee80211_ptr->u));
1213 memset(&dev->ieee80211_ptr->links, 0,
1214 sizeof(dev->ieee80211_ptr->links));
1215 }
1216
1217 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218
1219 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220
1221 if (!err && params && params->use_4addr != -1)
1222 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223
1224 if (!err) {
1225 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226 switch (ntype) {
1227 case NL80211_IFTYPE_STATION:
1228 if (dev->ieee80211_ptr->use_4addr)
1229 break;
1230 fallthrough;
1231 case NL80211_IFTYPE_OCB:
1232 case NL80211_IFTYPE_P2P_CLIENT:
1233 case NL80211_IFTYPE_ADHOC:
1234 dev->priv_flags |= IFF_DONT_BRIDGE;
1235 break;
1236 case NL80211_IFTYPE_P2P_GO:
1237 case NL80211_IFTYPE_AP:
1238 case NL80211_IFTYPE_AP_VLAN:
1239 case NL80211_IFTYPE_MESH_POINT:
1240 /* bridging OK */
1241 break;
1242 case NL80211_IFTYPE_MONITOR:
1243 /* monitor can't bridge anyway */
1244 break;
1245 case NL80211_IFTYPE_UNSPECIFIED:
1246 case NUM_NL80211_IFTYPES:
1247 /* not happening */
1248 break;
1249 case NL80211_IFTYPE_P2P_DEVICE:
1250 case NL80211_IFTYPE_WDS:
1251 case NL80211_IFTYPE_NAN:
1252 WARN_ON(1);
1253 break;
1254 }
1255 }
1256
1257 if (!err && ntype != otype && netif_running(dev)) {
1258 cfg80211_update_iface_num(rdev, ntype, 1);
1259 cfg80211_update_iface_num(rdev, otype, -1);
1260 }
1261
1262 return err;
1263}
1264
1265static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266{
1267 int modulation, streams, bitrate;
1268
1269 /* the formula below does only work for MCS values smaller than 32 */
1270 if (WARN_ON_ONCE(rate->mcs >= 32))
1271 return 0;
1272
1273 modulation = rate->mcs & 7;
1274 streams = (rate->mcs >> 3) + 1;
1275
1276 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277
1278 if (modulation < 4)
1279 bitrate *= (modulation + 1);
1280 else if (modulation == 4)
1281 bitrate *= (modulation + 2);
1282 else
1283 bitrate *= (modulation + 3);
1284
1285 bitrate *= streams;
1286
1287 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288 bitrate = (bitrate / 9) * 10;
1289
1290 /* do NOT round down here */
1291 return (bitrate + 50000) / 100000;
1292}
1293
1294static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295{
1296 static const u32 __mcs2bitrate[] = {
1297 /* control PHY */
1298 [0] = 275,
1299 /* SC PHY */
1300 [1] = 3850,
1301 [2] = 7700,
1302 [3] = 9625,
1303 [4] = 11550,
1304 [5] = 12512, /* 1251.25 mbps */
1305 [6] = 15400,
1306 [7] = 19250,
1307 [8] = 23100,
1308 [9] = 25025,
1309 [10] = 30800,
1310 [11] = 38500,
1311 [12] = 46200,
1312 /* OFDM PHY */
1313 [13] = 6930,
1314 [14] = 8662, /* 866.25 mbps */
1315 [15] = 13860,
1316 [16] = 17325,
1317 [17] = 20790,
1318 [18] = 27720,
1319 [19] = 34650,
1320 [20] = 41580,
1321 [21] = 45045,
1322 [22] = 51975,
1323 [23] = 62370,
1324 [24] = 67568, /* 6756.75 mbps */
1325 /* LP-SC PHY */
1326 [25] = 6260,
1327 [26] = 8340,
1328 [27] = 11120,
1329 [28] = 12510,
1330 [29] = 16680,
1331 [30] = 22240,
1332 [31] = 25030,
1333 };
1334
1335 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336 return 0;
1337
1338 return __mcs2bitrate[rate->mcs];
1339}
1340
1341static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342{
1343 static const u32 __mcs2bitrate[] = {
1344 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345 [7 - 6] = 50050, /* MCS 12.1 */
1346 [8 - 6] = 53900,
1347 [9 - 6] = 57750,
1348 [10 - 6] = 63900,
1349 [11 - 6] = 75075,
1350 [12 - 6] = 80850,
1351 };
1352
1353 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355 return 0;
1356
1357 return __mcs2bitrate[rate->mcs - 6];
1358}
1359
1360static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361{
1362 static const u32 __mcs2bitrate[] = {
1363 /* control PHY */
1364 [0] = 275,
1365 /* SC PHY */
1366 [1] = 3850,
1367 [2] = 7700,
1368 [3] = 9625,
1369 [4] = 11550,
1370 [5] = 12512, /* 1251.25 mbps */
1371 [6] = 13475,
1372 [7] = 15400,
1373 [8] = 19250,
1374 [9] = 23100,
1375 [10] = 25025,
1376 [11] = 26950,
1377 [12] = 30800,
1378 [13] = 38500,
1379 [14] = 46200,
1380 [15] = 50050,
1381 [16] = 53900,
1382 [17] = 57750,
1383 [18] = 69300,
1384 [19] = 75075,
1385 [20] = 80850,
1386 };
1387
1388 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389 return 0;
1390
1391 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392}
1393
1394static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395{
1396 static const u32 base[4][12] = {
1397 { 6500000,
1398 13000000,
1399 19500000,
1400 26000000,
1401 39000000,
1402 52000000,
1403 58500000,
1404 65000000,
1405 78000000,
1406 /* not in the spec, but some devices use this: */
1407 86700000,
1408 97500000,
1409 108300000,
1410 },
1411 { 13500000,
1412 27000000,
1413 40500000,
1414 54000000,
1415 81000000,
1416 108000000,
1417 121500000,
1418 135000000,
1419 162000000,
1420 180000000,
1421 202500000,
1422 225000000,
1423 },
1424 { 29300000,
1425 58500000,
1426 87800000,
1427 117000000,
1428 175500000,
1429 234000000,
1430 263300000,
1431 292500000,
1432 351000000,
1433 390000000,
1434 438800000,
1435 487500000,
1436 },
1437 { 58500000,
1438 117000000,
1439 175500000,
1440 234000000,
1441 351000000,
1442 468000000,
1443 526500000,
1444 585000000,
1445 702000000,
1446 780000000,
1447 877500000,
1448 975000000,
1449 },
1450 };
1451 u32 bitrate;
1452 int idx;
1453
1454 if (rate->mcs > 11)
1455 goto warn;
1456
1457 switch (rate->bw) {
1458 case RATE_INFO_BW_160:
1459 idx = 3;
1460 break;
1461 case RATE_INFO_BW_80:
1462 idx = 2;
1463 break;
1464 case RATE_INFO_BW_40:
1465 idx = 1;
1466 break;
1467 case RATE_INFO_BW_5:
1468 case RATE_INFO_BW_10:
1469 default:
1470 goto warn;
1471 case RATE_INFO_BW_20:
1472 idx = 0;
1473 }
1474
1475 bitrate = base[idx][rate->mcs];
1476 bitrate *= rate->nss;
1477
1478 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479 bitrate = (bitrate / 9) * 10;
1480
1481 /* do NOT round down here */
1482 return (bitrate + 50000) / 100000;
1483 warn:
1484 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485 rate->bw, rate->mcs, rate->nss);
1486 return 0;
1487}
1488
1489static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490{
1491#define SCALE 6144
1492 u32 mcs_divisors[14] = {
1493 102399, /* 16.666666... */
1494 51201, /* 8.333333... */
1495 34134, /* 5.555555... */
1496 25599, /* 4.166666... */
1497 17067, /* 2.777777... */
1498 12801, /* 2.083333... */
1499 11377, /* 1.851725... */
1500 10239, /* 1.666666... */
1501 8532, /* 1.388888... */
1502 7680, /* 1.250000... */
1503 6828, /* 1.111111... */
1504 6144, /* 1.000000... */
1505 5690, /* 0.926106... */
1506 5120, /* 0.833333... */
1507 };
1508 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509 u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1510 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1511 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1512 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1513 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1514 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1515 u64 tmp;
1516 u32 result;
1517
1518 if (WARN_ON_ONCE(rate->mcs > 13))
1519 return 0;
1520
1521 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522 return 0;
1523 if (WARN_ON_ONCE(rate->he_ru_alloc >
1524 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525 return 0;
1526 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527 return 0;
1528
1529 if (rate->bw == RATE_INFO_BW_160 ||
1530 (rate->bw == RATE_INFO_BW_HE_RU &&
1531 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532 result = rates_160M[rate->he_gi];
1533 else if (rate->bw == RATE_INFO_BW_80 ||
1534 (rate->bw == RATE_INFO_BW_HE_RU &&
1535 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536 result = rates_996[rate->he_gi];
1537 else if (rate->bw == RATE_INFO_BW_40 ||
1538 (rate->bw == RATE_INFO_BW_HE_RU &&
1539 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540 result = rates_484[rate->he_gi];
1541 else if (rate->bw == RATE_INFO_BW_20 ||
1542 (rate->bw == RATE_INFO_BW_HE_RU &&
1543 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544 result = rates_242[rate->he_gi];
1545 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547 result = rates_106[rate->he_gi];
1548 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550 result = rates_52[rate->he_gi];
1551 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553 result = rates_26[rate->he_gi];
1554 else {
1555 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556 rate->bw, rate->he_ru_alloc);
1557 return 0;
1558 }
1559
1560 /* now scale to the appropriate MCS */
1561 tmp = result;
1562 tmp *= SCALE;
1563 do_div(tmp, mcs_divisors[rate->mcs]);
1564 result = tmp;
1565
1566 /* and take NSS, DCM into account */
1567 result = (result * rate->nss) / 8;
1568 if (rate->he_dcm)
1569 result /= 2;
1570
1571 return result / 10000;
1572}
1573
1574static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1575{
1576#define SCALE 6144
1577 static const u32 mcs_divisors[16] = {
1578 102399, /* 16.666666... */
1579 51201, /* 8.333333... */
1580 34134, /* 5.555555... */
1581 25599, /* 4.166666... */
1582 17067, /* 2.777777... */
1583 12801, /* 2.083333... */
1584 11377, /* 1.851725... */
1585 10239, /* 1.666666... */
1586 8532, /* 1.388888... */
1587 7680, /* 1.250000... */
1588 6828, /* 1.111111... */
1589 6144, /* 1.000000... */
1590 5690, /* 0.926106... */
1591 5120, /* 0.833333... */
1592 409600, /* 66.666666... */
1593 204800, /* 33.333333... */
1594 };
1595 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1596 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1597 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1598 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1599 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1600 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1601 u64 tmp;
1602 u32 result;
1603
1604 if (WARN_ON_ONCE(rate->mcs > 15))
1605 return 0;
1606 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1607 return 0;
1608 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1609 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1610 return 0;
1611 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1612 return 0;
1613
1614 /* Bandwidth checks for MCS 14 */
1615 if (rate->mcs == 14) {
1616 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1617 rate->bw != RATE_INFO_BW_80 &&
1618 rate->bw != RATE_INFO_BW_160 &&
1619 rate->bw != RATE_INFO_BW_320) ||
1620 (rate->bw == RATE_INFO_BW_EHT_RU &&
1621 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1622 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1623 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1624 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1625 rate->bw, rate->eht_ru_alloc);
1626 return 0;
1627 }
1628 }
1629
1630 if (rate->bw == RATE_INFO_BW_320 ||
1631 (rate->bw == RATE_INFO_BW_EHT_RU &&
1632 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1633 result = 4 * rates_996[rate->eht_gi];
1634 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1635 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1636 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1637 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1639 result = 3 * rates_996[rate->eht_gi];
1640 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1641 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1642 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1643 else if (rate->bw == RATE_INFO_BW_160 ||
1644 (rate->bw == RATE_INFO_BW_EHT_RU &&
1645 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1646 result = 2 * rates_996[rate->eht_gi];
1647 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1648 rate->eht_ru_alloc ==
1649 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1650 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1651 + rates_242[rate->eht_gi];
1652 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1653 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1654 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1655 else if (rate->bw == RATE_INFO_BW_80 ||
1656 (rate->bw == RATE_INFO_BW_EHT_RU &&
1657 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1658 result = rates_996[rate->eht_gi];
1659 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1660 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1661 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1662 else if (rate->bw == RATE_INFO_BW_40 ||
1663 (rate->bw == RATE_INFO_BW_EHT_RU &&
1664 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1665 result = rates_484[rate->eht_gi];
1666 else if (rate->bw == RATE_INFO_BW_20 ||
1667 (rate->bw == RATE_INFO_BW_EHT_RU &&
1668 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1669 result = rates_242[rate->eht_gi];
1670 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1671 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1672 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1673 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1675 result = rates_106[rate->eht_gi];
1676 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1677 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1678 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1679 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1680 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1681 result = rates_52[rate->eht_gi];
1682 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1684 result = rates_26[rate->eht_gi];
1685 else {
1686 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1687 rate->bw, rate->eht_ru_alloc);
1688 return 0;
1689 }
1690
1691 /* now scale to the appropriate MCS */
1692 tmp = result;
1693 tmp *= SCALE;
1694 do_div(tmp, mcs_divisors[rate->mcs]);
1695
1696 /* and take NSS */
1697 tmp *= rate->nss;
1698 do_div(tmp, 8);
1699
1700 result = tmp;
1701
1702 return result / 10000;
1703}
1704
1705static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1706{
1707 /* For 1, 2, 4, 8 and 16 MHz channels */
1708 static const u32 base[5][11] = {
1709 { 300000,
1710 600000,
1711 900000,
1712 1200000,
1713 1800000,
1714 2400000,
1715 2700000,
1716 3000000,
1717 3600000,
1718 4000000,
1719 /* MCS 10 supported in 1 MHz only */
1720 150000,
1721 },
1722 { 650000,
1723 1300000,
1724 1950000,
1725 2600000,
1726 3900000,
1727 5200000,
1728 5850000,
1729 6500000,
1730 7800000,
1731 /* MCS 9 not valid */
1732 },
1733 { 1350000,
1734 2700000,
1735 4050000,
1736 5400000,
1737 8100000,
1738 10800000,
1739 12150000,
1740 13500000,
1741 16200000,
1742 18000000,
1743 },
1744 { 2925000,
1745 5850000,
1746 8775000,
1747 11700000,
1748 17550000,
1749 23400000,
1750 26325000,
1751 29250000,
1752 35100000,
1753 39000000,
1754 },
1755 { 8580000,
1756 11700000,
1757 17550000,
1758 23400000,
1759 35100000,
1760 46800000,
1761 52650000,
1762 58500000,
1763 70200000,
1764 78000000,
1765 },
1766 };
1767 u32 bitrate;
1768 /* default is 1 MHz index */
1769 int idx = 0;
1770
1771 if (rate->mcs >= 11)
1772 goto warn;
1773
1774 switch (rate->bw) {
1775 case RATE_INFO_BW_16:
1776 idx = 4;
1777 break;
1778 case RATE_INFO_BW_8:
1779 idx = 3;
1780 break;
1781 case RATE_INFO_BW_4:
1782 idx = 2;
1783 break;
1784 case RATE_INFO_BW_2:
1785 idx = 1;
1786 break;
1787 case RATE_INFO_BW_1:
1788 idx = 0;
1789 break;
1790 case RATE_INFO_BW_5:
1791 case RATE_INFO_BW_10:
1792 case RATE_INFO_BW_20:
1793 case RATE_INFO_BW_40:
1794 case RATE_INFO_BW_80:
1795 case RATE_INFO_BW_160:
1796 default:
1797 goto warn;
1798 }
1799
1800 bitrate = base[idx][rate->mcs];
1801 bitrate *= rate->nss;
1802
1803 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1804 bitrate = (bitrate / 9) * 10;
1805 /* do NOT round down here */
1806 return (bitrate + 50000) / 100000;
1807warn:
1808 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1809 rate->bw, rate->mcs, rate->nss);
1810 return 0;
1811}
1812
1813u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1814{
1815 if (rate->flags & RATE_INFO_FLAGS_MCS)
1816 return cfg80211_calculate_bitrate_ht(rate);
1817 if (rate->flags & RATE_INFO_FLAGS_DMG)
1818 return cfg80211_calculate_bitrate_dmg(rate);
1819 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1820 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1821 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1822 return cfg80211_calculate_bitrate_edmg(rate);
1823 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1824 return cfg80211_calculate_bitrate_vht(rate);
1825 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1826 return cfg80211_calculate_bitrate_he(rate);
1827 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1828 return cfg80211_calculate_bitrate_eht(rate);
1829 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1830 return cfg80211_calculate_bitrate_s1g(rate);
1831
1832 return rate->legacy;
1833}
1834EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1835
1836int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1837 enum ieee80211_p2p_attr_id attr,
1838 u8 *buf, unsigned int bufsize)
1839{
1840 u8 *out = buf;
1841 u16 attr_remaining = 0;
1842 bool desired_attr = false;
1843 u16 desired_len = 0;
1844
1845 while (len > 0) {
1846 unsigned int iedatalen;
1847 unsigned int copy;
1848 const u8 *iedata;
1849
1850 if (len < 2)
1851 return -EILSEQ;
1852 iedatalen = ies[1];
1853 if (iedatalen + 2 > len)
1854 return -EILSEQ;
1855
1856 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1857 goto cont;
1858
1859 if (iedatalen < 4)
1860 goto cont;
1861
1862 iedata = ies + 2;
1863
1864 /* check WFA OUI, P2P subtype */
1865 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1866 iedata[2] != 0x9a || iedata[3] != 0x09)
1867 goto cont;
1868
1869 iedatalen -= 4;
1870 iedata += 4;
1871
1872 /* check attribute continuation into this IE */
1873 copy = min_t(unsigned int, attr_remaining, iedatalen);
1874 if (copy && desired_attr) {
1875 desired_len += copy;
1876 if (out) {
1877 memcpy(out, iedata, min(bufsize, copy));
1878 out += min(bufsize, copy);
1879 bufsize -= min(bufsize, copy);
1880 }
1881
1882
1883 if (copy == attr_remaining)
1884 return desired_len;
1885 }
1886
1887 attr_remaining -= copy;
1888 if (attr_remaining)
1889 goto cont;
1890
1891 iedatalen -= copy;
1892 iedata += copy;
1893
1894 while (iedatalen > 0) {
1895 u16 attr_len;
1896
1897 /* P2P attribute ID & size must fit */
1898 if (iedatalen < 3)
1899 return -EILSEQ;
1900 desired_attr = iedata[0] == attr;
1901 attr_len = get_unaligned_le16(iedata + 1);
1902 iedatalen -= 3;
1903 iedata += 3;
1904
1905 copy = min_t(unsigned int, attr_len, iedatalen);
1906
1907 if (desired_attr) {
1908 desired_len += copy;
1909 if (out) {
1910 memcpy(out, iedata, min(bufsize, copy));
1911 out += min(bufsize, copy);
1912 bufsize -= min(bufsize, copy);
1913 }
1914
1915 if (copy == attr_len)
1916 return desired_len;
1917 }
1918
1919 iedata += copy;
1920 iedatalen -= copy;
1921 attr_remaining = attr_len - copy;
1922 }
1923
1924 cont:
1925 len -= ies[1] + 2;
1926 ies += ies[1] + 2;
1927 }
1928
1929 if (attr_remaining && desired_attr)
1930 return -EILSEQ;
1931
1932 return -ENOENT;
1933}
1934EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1935
1936static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1937{
1938 int i;
1939
1940 /* Make sure array values are legal */
1941 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1942 return false;
1943
1944 i = 0;
1945 while (i < n_ids) {
1946 if (ids[i] == WLAN_EID_EXTENSION) {
1947 if (id_ext && (ids[i + 1] == id))
1948 return true;
1949
1950 i += 2;
1951 continue;
1952 }
1953
1954 if (ids[i] == id && !id_ext)
1955 return true;
1956
1957 i++;
1958 }
1959 return false;
1960}
1961
1962static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1963{
1964 /* we assume a validly formed IEs buffer */
1965 u8 len = ies[pos + 1];
1966
1967 pos += 2 + len;
1968
1969 /* the IE itself must have 255 bytes for fragments to follow */
1970 if (len < 255)
1971 return pos;
1972
1973 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1974 len = ies[pos + 1];
1975 pos += 2 + len;
1976 }
1977
1978 return pos;
1979}
1980
1981size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1982 const u8 *ids, int n_ids,
1983 const u8 *after_ric, int n_after_ric,
1984 size_t offset)
1985{
1986 size_t pos = offset;
1987
1988 while (pos < ielen) {
1989 u8 ext = 0;
1990
1991 if (ies[pos] == WLAN_EID_EXTENSION)
1992 ext = 2;
1993 if ((pos + ext) >= ielen)
1994 break;
1995
1996 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1997 ies[pos] == WLAN_EID_EXTENSION))
1998 break;
1999
2000 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2001 pos = skip_ie(ies, ielen, pos);
2002
2003 while (pos < ielen) {
2004 if (ies[pos] == WLAN_EID_EXTENSION)
2005 ext = 2;
2006 else
2007 ext = 0;
2008
2009 if ((pos + ext) >= ielen)
2010 break;
2011
2012 if (!ieee80211_id_in_list(after_ric,
2013 n_after_ric,
2014 ies[pos + ext],
2015 ext == 2))
2016 pos = skip_ie(ies, ielen, pos);
2017 else
2018 break;
2019 }
2020 } else {
2021 pos = skip_ie(ies, ielen, pos);
2022 }
2023 }
2024
2025 return pos;
2026}
2027EXPORT_SYMBOL(ieee80211_ie_split_ric);
2028
2029void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2030{
2031 unsigned int elem_len;
2032
2033 if (!len_pos)
2034 return;
2035
2036 elem_len = skb->data + skb->len - len_pos - 1;
2037
2038 while (elem_len > 255) {
2039 /* this one is 255 */
2040 *len_pos = 255;
2041 /* remaining data gets smaller */
2042 elem_len -= 255;
2043 /* make space for the fragment ID/len in SKB */
2044 skb_put(skb, 2);
2045 /* shift back the remaining data to place fragment ID/len */
2046 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2047 /* place the fragment ID */
2048 len_pos += 255 + 1;
2049 *len_pos = frag_id;
2050 /* and point to fragment length to update later */
2051 len_pos++;
2052 }
2053
2054 *len_pos = elem_len;
2055}
2056EXPORT_SYMBOL(ieee80211_fragment_element);
2057
2058bool ieee80211_operating_class_to_band(u8 operating_class,
2059 enum nl80211_band *band)
2060{
2061 switch (operating_class) {
2062 case 112:
2063 case 115 ... 127:
2064 case 128 ... 130:
2065 *band = NL80211_BAND_5GHZ;
2066 return true;
2067 case 131 ... 135:
2068 case 137:
2069 *band = NL80211_BAND_6GHZ;
2070 return true;
2071 case 81:
2072 case 82:
2073 case 83:
2074 case 84:
2075 *band = NL80211_BAND_2GHZ;
2076 return true;
2077 case 180:
2078 *band = NL80211_BAND_60GHZ;
2079 return true;
2080 }
2081
2082 return false;
2083}
2084EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2085
2086bool ieee80211_operating_class_to_chandef(u8 operating_class,
2087 struct ieee80211_channel *chan,
2088 struct cfg80211_chan_def *chandef)
2089{
2090 u32 control_freq, offset = 0;
2091 enum nl80211_band band;
2092
2093 if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2094 !chan || band != chan->band)
2095 return false;
2096
2097 control_freq = chan->center_freq;
2098 chandef->chan = chan;
2099
2100 if (control_freq >= 5955)
2101 offset = control_freq - 5955;
2102 else if (control_freq >= 5745)
2103 offset = control_freq - 5745;
2104 else if (control_freq >= 5180)
2105 offset = control_freq - 5180;
2106 offset /= 20;
2107
2108 switch (operating_class) {
2109 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */
2110 case 82: /* 2 GHz band; 20 MHz; channel 14 */
2111 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2112 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2113 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2114 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2115 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2116 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2117 case 136: /* 6 GHz band; 20 MHz; channel 2 */
2118 chandef->center_freq1 = control_freq;
2119 chandef->width = NL80211_CHAN_WIDTH_20;
2120 return true;
2121 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */
2122 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2123 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2124 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2125 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2126 chandef->center_freq1 = control_freq + 10;
2127 chandef->width = NL80211_CHAN_WIDTH_40;
2128 return true;
2129 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */
2130 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2131 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2132 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2133 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2134 chandef->center_freq1 = control_freq - 10;
2135 chandef->width = NL80211_CHAN_WIDTH_40;
2136 return true;
2137 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2138 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2139 chandef->width = NL80211_CHAN_WIDTH_40;
2140 return true;
2141 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2142 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2143 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2144 chandef->width = NL80211_CHAN_WIDTH_80;
2145 return true;
2146 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2147 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2148 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2149 chandef->width = NL80211_CHAN_WIDTH_160;
2150 return true;
2151 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2152 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2153 /* The center_freq2 of 80+80 MHz is unknown */
2154 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2155 /* 320-1 or 320-2 channelization is unknown */
2156 default:
2157 return false;
2158 }
2159}
2160EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2161
2162bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2163 u8 *op_class)
2164{
2165 u8 vht_opclass;
2166 u32 freq = chandef->center_freq1;
2167
2168 if (freq >= 2412 && freq <= 2472) {
2169 if (chandef->width > NL80211_CHAN_WIDTH_40)
2170 return false;
2171
2172 /* 2.407 GHz, channels 1..13 */
2173 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2174 if (freq > chandef->chan->center_freq)
2175 *op_class = 83; /* HT40+ */
2176 else
2177 *op_class = 84; /* HT40- */
2178 } else {
2179 *op_class = 81;
2180 }
2181
2182 return true;
2183 }
2184
2185 if (freq == 2484) {
2186 /* channel 14 is only for IEEE 802.11b */
2187 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2188 return false;
2189
2190 *op_class = 82; /* channel 14 */
2191 return true;
2192 }
2193
2194 switch (chandef->width) {
2195 case NL80211_CHAN_WIDTH_80:
2196 vht_opclass = 128;
2197 break;
2198 case NL80211_CHAN_WIDTH_160:
2199 vht_opclass = 129;
2200 break;
2201 case NL80211_CHAN_WIDTH_80P80:
2202 vht_opclass = 130;
2203 break;
2204 case NL80211_CHAN_WIDTH_10:
2205 case NL80211_CHAN_WIDTH_5:
2206 return false; /* unsupported for now */
2207 default:
2208 vht_opclass = 0;
2209 break;
2210 }
2211
2212 /* 5 GHz, channels 36..48 */
2213 if (freq >= 5180 && freq <= 5240) {
2214 if (vht_opclass) {
2215 *op_class = vht_opclass;
2216 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2217 if (freq > chandef->chan->center_freq)
2218 *op_class = 116;
2219 else
2220 *op_class = 117;
2221 } else {
2222 *op_class = 115;
2223 }
2224
2225 return true;
2226 }
2227
2228 /* 5 GHz, channels 52..64 */
2229 if (freq >= 5260 && freq <= 5320) {
2230 if (vht_opclass) {
2231 *op_class = vht_opclass;
2232 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2233 if (freq > chandef->chan->center_freq)
2234 *op_class = 119;
2235 else
2236 *op_class = 120;
2237 } else {
2238 *op_class = 118;
2239 }
2240
2241 return true;
2242 }
2243
2244 /* 5 GHz, channels 100..144 */
2245 if (freq >= 5500 && freq <= 5720) {
2246 if (vht_opclass) {
2247 *op_class = vht_opclass;
2248 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2249 if (freq > chandef->chan->center_freq)
2250 *op_class = 122;
2251 else
2252 *op_class = 123;
2253 } else {
2254 *op_class = 121;
2255 }
2256
2257 return true;
2258 }
2259
2260 /* 5 GHz, channels 149..169 */
2261 if (freq >= 5745 && freq <= 5845) {
2262 if (vht_opclass) {
2263 *op_class = vht_opclass;
2264 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265 if (freq > chandef->chan->center_freq)
2266 *op_class = 126;
2267 else
2268 *op_class = 127;
2269 } else if (freq <= 5805) {
2270 *op_class = 124;
2271 } else {
2272 *op_class = 125;
2273 }
2274
2275 return true;
2276 }
2277
2278 /* 56.16 GHz, channel 1..4 */
2279 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2280 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2281 return false;
2282
2283 *op_class = 180;
2284 return true;
2285 }
2286
2287 /* not supported yet */
2288 return false;
2289}
2290EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2291
2292static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2293{
2294 switch (wdev->iftype) {
2295 case NL80211_IFTYPE_AP:
2296 case NL80211_IFTYPE_P2P_GO:
2297 WARN_ON(wdev->valid_links);
2298 return wdev->links[0].ap.beacon_interval;
2299 case NL80211_IFTYPE_MESH_POINT:
2300 return wdev->u.mesh.beacon_interval;
2301 case NL80211_IFTYPE_ADHOC:
2302 return wdev->u.ibss.beacon_interval;
2303 default:
2304 break;
2305 }
2306
2307 return 0;
2308}
2309
2310static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2311 u32 *beacon_int_gcd,
2312 bool *beacon_int_different,
2313 int radio_idx)
2314{
2315 struct cfg80211_registered_device *rdev;
2316 struct wireless_dev *wdev;
2317
2318 *beacon_int_gcd = 0;
2319 *beacon_int_different = false;
2320
2321 rdev = wiphy_to_rdev(wiphy);
2322 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2323 int wdev_bi;
2324
2325 /* this feature isn't supported with MLO */
2326 if (wdev->valid_links)
2327 continue;
2328
2329 /* skip wdevs not active on the given wiphy radio */
2330 if (radio_idx >= 0 &&
2331 !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2332 continue;
2333
2334 wdev_bi = cfg80211_wdev_bi(wdev);
2335
2336 if (!wdev_bi)
2337 continue;
2338
2339 if (!*beacon_int_gcd) {
2340 *beacon_int_gcd = wdev_bi;
2341 continue;
2342 }
2343
2344 if (wdev_bi == *beacon_int_gcd)
2345 continue;
2346
2347 *beacon_int_different = true;
2348 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2349 }
2350
2351 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2352 if (*beacon_int_gcd)
2353 *beacon_int_different = true;
2354 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2355 }
2356}
2357
2358int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2359 enum nl80211_iftype iftype, u32 beacon_int)
2360{
2361 /*
2362 * This is just a basic pre-condition check; if interface combinations
2363 * are possible the driver must already be checking those with a call
2364 * to cfg80211_check_combinations(), in which case we'll validate more
2365 * through the cfg80211_calculate_bi_data() call and code in
2366 * cfg80211_iter_combinations().
2367 */
2368
2369 if (beacon_int < 10 || beacon_int > 10000)
2370 return -EINVAL;
2371
2372 return 0;
2373}
2374
2375int cfg80211_iter_combinations(struct wiphy *wiphy,
2376 struct iface_combination_params *params,
2377 void (*iter)(const struct ieee80211_iface_combination *c,
2378 void *data),
2379 void *data)
2380{
2381 const struct wiphy_radio *radio = NULL;
2382 const struct ieee80211_iface_combination *c, *cs;
2383 const struct ieee80211_regdomain *regdom;
2384 enum nl80211_dfs_regions region = 0;
2385 int i, j, n, iftype;
2386 int num_interfaces = 0;
2387 u32 used_iftypes = 0;
2388 u32 beacon_int_gcd;
2389 bool beacon_int_different;
2390
2391 if (params->radio_idx >= 0)
2392 radio = &wiphy->radio[params->radio_idx];
2393
2394 /*
2395 * This is a bit strange, since the iteration used to rely only on
2396 * the data given by the driver, but here it now relies on context,
2397 * in form of the currently operating interfaces.
2398 * This is OK for all current users, and saves us from having to
2399 * push the GCD calculations into all the drivers.
2400 * In the future, this should probably rely more on data that's in
2401 * cfg80211 already - the only thing not would appear to be any new
2402 * interfaces (while being brought up) and channel/radar data.
2403 */
2404 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2405 &beacon_int_gcd, &beacon_int_different,
2406 params->radio_idx);
2407
2408 if (params->radar_detect) {
2409 rcu_read_lock();
2410 regdom = rcu_dereference(cfg80211_regdomain);
2411 if (regdom)
2412 region = regdom->dfs_region;
2413 rcu_read_unlock();
2414 }
2415
2416 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2417 num_interfaces += params->iftype_num[iftype];
2418 if (params->iftype_num[iftype] > 0 &&
2419 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2420 used_iftypes |= BIT(iftype);
2421 }
2422
2423 if (radio) {
2424 cs = radio->iface_combinations;
2425 n = radio->n_iface_combinations;
2426 } else {
2427 cs = wiphy->iface_combinations;
2428 n = wiphy->n_iface_combinations;
2429 }
2430 for (i = 0; i < n; i++) {
2431 struct ieee80211_iface_limit *limits;
2432 u32 all_iftypes = 0;
2433
2434 c = &cs[i];
2435 if (num_interfaces > c->max_interfaces)
2436 continue;
2437 if (params->num_different_channels > c->num_different_channels)
2438 continue;
2439
2440 limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2441 GFP_KERNEL);
2442 if (!limits)
2443 return -ENOMEM;
2444
2445 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2446 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2447 continue;
2448 for (j = 0; j < c->n_limits; j++) {
2449 all_iftypes |= limits[j].types;
2450 if (!(limits[j].types & BIT(iftype)))
2451 continue;
2452 if (limits[j].max < params->iftype_num[iftype])
2453 goto cont;
2454 limits[j].max -= params->iftype_num[iftype];
2455 }
2456 }
2457
2458 if (params->radar_detect !=
2459 (c->radar_detect_widths & params->radar_detect))
2460 goto cont;
2461
2462 if (params->radar_detect && c->radar_detect_regions &&
2463 !(c->radar_detect_regions & BIT(region)))
2464 goto cont;
2465
2466 /* Finally check that all iftypes that we're currently
2467 * using are actually part of this combination. If they
2468 * aren't then we can't use this combination and have
2469 * to continue to the next.
2470 */
2471 if ((all_iftypes & used_iftypes) != used_iftypes)
2472 goto cont;
2473
2474 if (beacon_int_gcd) {
2475 if (c->beacon_int_min_gcd &&
2476 beacon_int_gcd < c->beacon_int_min_gcd)
2477 goto cont;
2478 if (!c->beacon_int_min_gcd && beacon_int_different)
2479 goto cont;
2480 }
2481
2482 /* This combination covered all interface types and
2483 * supported the requested numbers, so we're good.
2484 */
2485
2486 (*iter)(c, data);
2487 cont:
2488 kfree(limits);
2489 }
2490
2491 return 0;
2492}
2493EXPORT_SYMBOL(cfg80211_iter_combinations);
2494
2495static void
2496cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2497 void *data)
2498{
2499 int *num = data;
2500 (*num)++;
2501}
2502
2503int cfg80211_check_combinations(struct wiphy *wiphy,
2504 struct iface_combination_params *params)
2505{
2506 int err, num = 0;
2507
2508 err = cfg80211_iter_combinations(wiphy, params,
2509 cfg80211_iter_sum_ifcombs, &num);
2510 if (err)
2511 return err;
2512 if (num == 0)
2513 return -EBUSY;
2514
2515 return 0;
2516}
2517EXPORT_SYMBOL(cfg80211_check_combinations);
2518
2519int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2520 const u8 *rates, unsigned int n_rates,
2521 u32 *mask)
2522{
2523 int i, j;
2524
2525 if (!sband)
2526 return -EINVAL;
2527
2528 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2529 return -EINVAL;
2530
2531 *mask = 0;
2532
2533 for (i = 0; i < n_rates; i++) {
2534 int rate = (rates[i] & 0x7f) * 5;
2535 bool found = false;
2536
2537 for (j = 0; j < sband->n_bitrates; j++) {
2538 if (sband->bitrates[j].bitrate == rate) {
2539 found = true;
2540 *mask |= BIT(j);
2541 break;
2542 }
2543 }
2544 if (!found)
2545 return -EINVAL;
2546 }
2547
2548 /*
2549 * mask must have at least one bit set here since we
2550 * didn't accept a 0-length rates array nor allowed
2551 * entries in the array that didn't exist
2552 */
2553
2554 return 0;
2555}
2556
2557unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2558{
2559 enum nl80211_band band;
2560 unsigned int n_channels = 0;
2561
2562 for (band = 0; band < NUM_NL80211_BANDS; band++)
2563 if (wiphy->bands[band])
2564 n_channels += wiphy->bands[band]->n_channels;
2565
2566 return n_channels;
2567}
2568EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2569
2570int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2571 struct station_info *sinfo)
2572{
2573 struct cfg80211_registered_device *rdev;
2574 struct wireless_dev *wdev;
2575 int ret;
2576
2577 wdev = dev->ieee80211_ptr;
2578 if (!wdev)
2579 return -EOPNOTSUPP;
2580
2581 rdev = wiphy_to_rdev(wdev->wiphy);
2582 if (!rdev->ops->get_station)
2583 return -EOPNOTSUPP;
2584
2585 memset(sinfo, 0, sizeof(*sinfo));
2586
2587 wiphy_lock(&rdev->wiphy);
2588 ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2589 wiphy_unlock(&rdev->wiphy);
2590
2591 return ret;
2592}
2593EXPORT_SYMBOL(cfg80211_get_station);
2594
2595void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2596{
2597 int i;
2598
2599 if (!f)
2600 return;
2601
2602 kfree(f->serv_spec_info);
2603 kfree(f->srf_bf);
2604 kfree(f->srf_macs);
2605 for (i = 0; i < f->num_rx_filters; i++)
2606 kfree(f->rx_filters[i].filter);
2607
2608 for (i = 0; i < f->num_tx_filters; i++)
2609 kfree(f->tx_filters[i].filter);
2610
2611 kfree(f->rx_filters);
2612 kfree(f->tx_filters);
2613 kfree(f);
2614}
2615EXPORT_SYMBOL(cfg80211_free_nan_func);
2616
2617bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2618 u32 center_freq_khz, u32 bw_khz)
2619{
2620 u32 start_freq_khz, end_freq_khz;
2621
2622 start_freq_khz = center_freq_khz - (bw_khz / 2);
2623 end_freq_khz = center_freq_khz + (bw_khz / 2);
2624
2625 if (start_freq_khz >= freq_range->start_freq_khz &&
2626 end_freq_khz <= freq_range->end_freq_khz)
2627 return true;
2628
2629 return false;
2630}
2631
2632int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2633{
2634 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2635 sizeof(*(sinfo->pertid)),
2636 gfp);
2637 if (!sinfo->pertid)
2638 return -ENOMEM;
2639
2640 return 0;
2641}
2642EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2643
2644/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2645/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2646const unsigned char rfc1042_header[] __aligned(2) =
2647 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2648EXPORT_SYMBOL(rfc1042_header);
2649
2650/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2651const unsigned char bridge_tunnel_header[] __aligned(2) =
2652 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2653EXPORT_SYMBOL(bridge_tunnel_header);
2654
2655/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2656struct iapp_layer2_update {
2657 u8 da[ETH_ALEN]; /* broadcast */
2658 u8 sa[ETH_ALEN]; /* STA addr */
2659 __be16 len; /* 6 */
2660 u8 dsap; /* 0 */
2661 u8 ssap; /* 0 */
2662 u8 control;
2663 u8 xid_info[3];
2664} __packed;
2665
2666void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2667{
2668 struct iapp_layer2_update *msg;
2669 struct sk_buff *skb;
2670
2671 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2672 * bridge devices */
2673
2674 skb = dev_alloc_skb(sizeof(*msg));
2675 if (!skb)
2676 return;
2677 msg = skb_put(skb, sizeof(*msg));
2678
2679 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2680 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2681
2682 eth_broadcast_addr(msg->da);
2683 ether_addr_copy(msg->sa, addr);
2684 msg->len = htons(6);
2685 msg->dsap = 0;
2686 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2687 msg->control = 0xaf; /* XID response lsb.1111F101.
2688 * F=0 (no poll command; unsolicited frame) */
2689 msg->xid_info[0] = 0x81; /* XID format identifier */
2690 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2691 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2692
2693 skb->dev = dev;
2694 skb->protocol = eth_type_trans(skb, dev);
2695 memset(skb->cb, 0, sizeof(skb->cb));
2696 netif_rx(skb);
2697}
2698EXPORT_SYMBOL(cfg80211_send_layer2_update);
2699
2700int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2701 enum ieee80211_vht_chanwidth bw,
2702 int mcs, bool ext_nss_bw_capable,
2703 unsigned int max_vht_nss)
2704{
2705 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2706 int ext_nss_bw;
2707 int supp_width;
2708 int i, mcs_encoding;
2709
2710 if (map == 0xffff)
2711 return 0;
2712
2713 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2714 return 0;
2715 if (mcs <= 7)
2716 mcs_encoding = 0;
2717 else if (mcs == 8)
2718 mcs_encoding = 1;
2719 else
2720 mcs_encoding = 2;
2721
2722 if (!max_vht_nss) {
2723 /* find max_vht_nss for the given MCS */
2724 for (i = 7; i >= 0; i--) {
2725 int supp = (map >> (2 * i)) & 3;
2726
2727 if (supp == 3)
2728 continue;
2729
2730 if (supp >= mcs_encoding) {
2731 max_vht_nss = i + 1;
2732 break;
2733 }
2734 }
2735 }
2736
2737 if (!(cap->supp_mcs.tx_mcs_map &
2738 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2739 return max_vht_nss;
2740
2741 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2742 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2743 supp_width = le32_get_bits(cap->vht_cap_info,
2744 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2745
2746 /* if not capable, treat ext_nss_bw as 0 */
2747 if (!ext_nss_bw_capable)
2748 ext_nss_bw = 0;
2749
2750 /* This is invalid */
2751 if (supp_width == 3)
2752 return 0;
2753
2754 /* This is an invalid combination so pretend nothing is supported */
2755 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2756 return 0;
2757
2758 /*
2759 * Cover all the special cases according to IEEE 802.11-2016
2760 * Table 9-250. All other cases are either factor of 1 or not
2761 * valid/supported.
2762 */
2763 switch (bw) {
2764 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2765 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2766 if ((supp_width == 1 || supp_width == 2) &&
2767 ext_nss_bw == 3)
2768 return 2 * max_vht_nss;
2769 break;
2770 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2771 if (supp_width == 0 &&
2772 (ext_nss_bw == 1 || ext_nss_bw == 2))
2773 return max_vht_nss / 2;
2774 if (supp_width == 0 &&
2775 ext_nss_bw == 3)
2776 return (3 * max_vht_nss) / 4;
2777 if (supp_width == 1 &&
2778 ext_nss_bw == 3)
2779 return 2 * max_vht_nss;
2780 break;
2781 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2782 if (supp_width == 0 && ext_nss_bw == 1)
2783 return 0; /* not possible */
2784 if (supp_width == 0 &&
2785 ext_nss_bw == 2)
2786 return max_vht_nss / 2;
2787 if (supp_width == 0 &&
2788 ext_nss_bw == 3)
2789 return (3 * max_vht_nss) / 4;
2790 if (supp_width == 1 &&
2791 ext_nss_bw == 0)
2792 return 0; /* not possible */
2793 if (supp_width == 1 &&
2794 ext_nss_bw == 1)
2795 return max_vht_nss / 2;
2796 if (supp_width == 1 &&
2797 ext_nss_bw == 2)
2798 return (3 * max_vht_nss) / 4;
2799 break;
2800 }
2801
2802 /* not covered or invalid combination received */
2803 return max_vht_nss;
2804}
2805EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2806
2807bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2808 bool is_4addr, u8 check_swif)
2809
2810{
2811 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2812
2813 switch (check_swif) {
2814 case 0:
2815 if (is_vlan && is_4addr)
2816 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2817 return wiphy->interface_modes & BIT(iftype);
2818 case 1:
2819 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2820 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2821 return wiphy->software_iftypes & BIT(iftype);
2822 default:
2823 break;
2824 }
2825
2826 return false;
2827}
2828EXPORT_SYMBOL(cfg80211_iftype_allowed);
2829
2830void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2831{
2832 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2833
2834 lockdep_assert_wiphy(wdev->wiphy);
2835
2836 switch (wdev->iftype) {
2837 case NL80211_IFTYPE_AP:
2838 case NL80211_IFTYPE_P2P_GO:
2839 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2840 break;
2841 default:
2842 /* per-link not relevant */
2843 break;
2844 }
2845
2846 rdev_del_intf_link(rdev, wdev, link_id);
2847
2848 wdev->valid_links &= ~BIT(link_id);
2849 eth_zero_addr(wdev->links[link_id].addr);
2850}
2851
2852void cfg80211_remove_links(struct wireless_dev *wdev)
2853{
2854 unsigned int link_id;
2855
2856 /*
2857 * links are controlled by upper layers (userspace/cfg)
2858 * only for AP mode, so only remove them here for AP
2859 */
2860 if (wdev->iftype != NL80211_IFTYPE_AP)
2861 return;
2862
2863 if (wdev->valid_links) {
2864 for_each_valid_link(wdev, link_id)
2865 cfg80211_remove_link(wdev, link_id);
2866 }
2867}
2868
2869int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2870 struct wireless_dev *wdev)
2871{
2872 cfg80211_remove_links(wdev);
2873
2874 return rdev_del_virtual_intf(rdev, wdev);
2875}
2876
2877const struct wiphy_iftype_ext_capab *
2878cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2879{
2880 int i;
2881
2882 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2883 if (wiphy->iftype_ext_capab[i].iftype == type)
2884 return &wiphy->iftype_ext_capab[i];
2885 }
2886
2887 return NULL;
2888}
2889EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2890
2891static bool
2892ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2893 u32 freq, u32 width)
2894{
2895 const struct wiphy_radio_freq_range *r;
2896 int i;
2897
2898 for (i = 0; i < radio->n_freq_range; i++) {
2899 r = &radio->freq_range[i];
2900 if (freq - width / 2 >= r->start_freq &&
2901 freq + width / 2 <= r->end_freq)
2902 return true;
2903 }
2904
2905 return false;
2906}
2907
2908bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2909 const struct cfg80211_chan_def *chandef)
2910{
2911 u32 freq, width;
2912
2913 freq = ieee80211_chandef_to_khz(chandef);
2914 width = nl80211_chan_width_to_mhz(chandef->width);
2915 if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2916 return false;
2917
2918 freq = MHZ_TO_KHZ(chandef->center_freq2);
2919 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2920 return false;
2921
2922 return true;
2923}
2924EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2925
2926bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2927 struct ieee80211_channel *chan)
2928{
2929 struct wiphy *wiphy = wdev->wiphy;
2930 const struct wiphy_radio *radio;
2931 struct cfg80211_chan_def chandef;
2932 u32 radio_mask;
2933 int i;
2934
2935 radio_mask = wdev->radio_mask;
2936 if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2937 return true;
2938
2939 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2940 for (i = 0; i < wiphy->n_radio; i++) {
2941 if (!(radio_mask & BIT(i)))
2942 continue;
2943
2944 radio = &wiphy->radio[i];
2945 if (!cfg80211_radio_chandef_valid(radio, &chandef))
2946 continue;
2947
2948 return true;
2949 }
2950
2951 return false;
2952}
2953EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48{
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72}
73EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76{
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return 2484;
85 else if (chan < 14)
86 return 2407 + chan * 5;
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return 4000 + chan * 5;
91 else
92 return 5000 + chan * 5;
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D4.1 27.3.22.2 */
96 if (chan <= 253)
97 return 5940 + chan * 5;
98 break;
99 case NL80211_BAND_60GHZ:
100 if (chan < 7)
101 return 56160 + chan * 2160;
102 break;
103 default:
104 ;
105 }
106 return 0; /* not supported */
107}
108EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109
110int ieee80211_frequency_to_channel(int freq)
111{
112 /* see 802.11 17.3.8.3.2 and Annex J */
113 if (freq == 2484)
114 return 14;
115 else if (freq < 2484)
116 return (freq - 2407) / 5;
117 else if (freq >= 4910 && freq <= 4980)
118 return (freq - 4000) / 5;
119 else if (freq < 5945)
120 return (freq - 5000) / 5;
121 else if (freq <= 45000) /* DMG band lower limit */
122 /* see 802.11ax D4.1 27.3.22.2 */
123 return (freq - 5940) / 5;
124 else if (freq >= 58320 && freq <= 70200)
125 return (freq - 56160) / 2160;
126 else
127 return 0;
128}
129EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130
131struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132{
133 enum nl80211_band band;
134 struct ieee80211_supported_band *sband;
135 int i;
136
137 for (band = 0; band < NUM_NL80211_BANDS; band++) {
138 sband = wiphy->bands[band];
139
140 if (!sband)
141 continue;
142
143 for (i = 0; i < sband->n_channels; i++) {
144 if (sband->channels[i].center_freq == freq)
145 return &sband->channels[i];
146 }
147 }
148
149 return NULL;
150}
151EXPORT_SYMBOL(ieee80211_get_channel);
152
153static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154{
155 int i, want;
156
157 switch (sband->band) {
158 case NL80211_BAND_5GHZ:
159 case NL80211_BAND_6GHZ:
160 want = 3;
161 for (i = 0; i < sband->n_bitrates; i++) {
162 if (sband->bitrates[i].bitrate == 60 ||
163 sband->bitrates[i].bitrate == 120 ||
164 sband->bitrates[i].bitrate == 240) {
165 sband->bitrates[i].flags |=
166 IEEE80211_RATE_MANDATORY_A;
167 want--;
168 }
169 }
170 WARN_ON(want);
171 break;
172 case NL80211_BAND_2GHZ:
173 want = 7;
174 for (i = 0; i < sband->n_bitrates; i++) {
175 switch (sband->bitrates[i].bitrate) {
176 case 10:
177 case 20:
178 case 55:
179 case 110:
180 sband->bitrates[i].flags |=
181 IEEE80211_RATE_MANDATORY_B |
182 IEEE80211_RATE_MANDATORY_G;
183 want--;
184 break;
185 case 60:
186 case 120:
187 case 240:
188 sband->bitrates[i].flags |=
189 IEEE80211_RATE_MANDATORY_G;
190 want--;
191 /* fall through */
192 default:
193 sband->bitrates[i].flags |=
194 IEEE80211_RATE_ERP_G;
195 break;
196 }
197 }
198 WARN_ON(want != 0 && want != 3);
199 break;
200 case NL80211_BAND_60GHZ:
201 /* check for mandatory HT MCS 1..4 */
202 WARN_ON(!sband->ht_cap.ht_supported);
203 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204 break;
205 case NUM_NL80211_BANDS:
206 default:
207 WARN_ON(1);
208 break;
209 }
210}
211
212void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213{
214 enum nl80211_band band;
215
216 for (band = 0; band < NUM_NL80211_BANDS; band++)
217 if (wiphy->bands[band])
218 set_mandatory_flags_band(wiphy->bands[band]);
219}
220
221bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222{
223 int i;
224 for (i = 0; i < wiphy->n_cipher_suites; i++)
225 if (cipher == wiphy->cipher_suites[i])
226 return true;
227 return false;
228}
229
230int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231 struct key_params *params, int key_idx,
232 bool pairwise, const u8 *mac_addr)
233{
234 if (key_idx < 0 || key_idx > 5)
235 return -EINVAL;
236
237 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
238 return -EINVAL;
239
240 if (pairwise && !mac_addr)
241 return -EINVAL;
242
243 switch (params->cipher) {
244 case WLAN_CIPHER_SUITE_TKIP:
245 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
246 if ((pairwise && key_idx) ||
247 params->mode != NL80211_KEY_RX_TX)
248 return -EINVAL;
249 break;
250 case WLAN_CIPHER_SUITE_CCMP:
251 case WLAN_CIPHER_SUITE_CCMP_256:
252 case WLAN_CIPHER_SUITE_GCMP:
253 case WLAN_CIPHER_SUITE_GCMP_256:
254 /* IEEE802.11-2016 allows only 0 and - when supporting
255 * Extended Key ID - 1 as index for pairwise keys.
256 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
257 * the driver supports Extended Key ID.
258 * @NL80211_KEY_SET_TX can't be set when installing and
259 * validating a key.
260 */
261 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
262 params->mode == NL80211_KEY_SET_TX)
263 return -EINVAL;
264 if (wiphy_ext_feature_isset(&rdev->wiphy,
265 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
266 if (pairwise && (key_idx < 0 || key_idx > 1))
267 return -EINVAL;
268 } else if (pairwise && key_idx) {
269 return -EINVAL;
270 }
271 break;
272 case WLAN_CIPHER_SUITE_AES_CMAC:
273 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
274 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
275 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
276 /* Disallow BIP (group-only) cipher as pairwise cipher */
277 if (pairwise)
278 return -EINVAL;
279 if (key_idx < 4)
280 return -EINVAL;
281 break;
282 case WLAN_CIPHER_SUITE_WEP40:
283 case WLAN_CIPHER_SUITE_WEP104:
284 if (key_idx > 3)
285 return -EINVAL;
286 default:
287 break;
288 }
289
290 switch (params->cipher) {
291 case WLAN_CIPHER_SUITE_WEP40:
292 if (params->key_len != WLAN_KEY_LEN_WEP40)
293 return -EINVAL;
294 break;
295 case WLAN_CIPHER_SUITE_TKIP:
296 if (params->key_len != WLAN_KEY_LEN_TKIP)
297 return -EINVAL;
298 break;
299 case WLAN_CIPHER_SUITE_CCMP:
300 if (params->key_len != WLAN_KEY_LEN_CCMP)
301 return -EINVAL;
302 break;
303 case WLAN_CIPHER_SUITE_CCMP_256:
304 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
305 return -EINVAL;
306 break;
307 case WLAN_CIPHER_SUITE_GCMP:
308 if (params->key_len != WLAN_KEY_LEN_GCMP)
309 return -EINVAL;
310 break;
311 case WLAN_CIPHER_SUITE_GCMP_256:
312 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
313 return -EINVAL;
314 break;
315 case WLAN_CIPHER_SUITE_WEP104:
316 if (params->key_len != WLAN_KEY_LEN_WEP104)
317 return -EINVAL;
318 break;
319 case WLAN_CIPHER_SUITE_AES_CMAC:
320 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
321 return -EINVAL;
322 break;
323 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
324 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
325 return -EINVAL;
326 break;
327 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
328 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
329 return -EINVAL;
330 break;
331 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
333 return -EINVAL;
334 break;
335 default:
336 /*
337 * We don't know anything about this algorithm,
338 * allow using it -- but the driver must check
339 * all parameters! We still check below whether
340 * or not the driver supports this algorithm,
341 * of course.
342 */
343 break;
344 }
345
346 if (params->seq) {
347 switch (params->cipher) {
348 case WLAN_CIPHER_SUITE_WEP40:
349 case WLAN_CIPHER_SUITE_WEP104:
350 /* These ciphers do not use key sequence */
351 return -EINVAL;
352 case WLAN_CIPHER_SUITE_TKIP:
353 case WLAN_CIPHER_SUITE_CCMP:
354 case WLAN_CIPHER_SUITE_CCMP_256:
355 case WLAN_CIPHER_SUITE_GCMP:
356 case WLAN_CIPHER_SUITE_GCMP_256:
357 case WLAN_CIPHER_SUITE_AES_CMAC:
358 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
359 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
360 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
361 if (params->seq_len != 6)
362 return -EINVAL;
363 break;
364 }
365 }
366
367 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
368 return -EINVAL;
369
370 return 0;
371}
372
373unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
374{
375 unsigned int hdrlen = 24;
376
377 if (ieee80211_is_data(fc)) {
378 if (ieee80211_has_a4(fc))
379 hdrlen = 30;
380 if (ieee80211_is_data_qos(fc)) {
381 hdrlen += IEEE80211_QOS_CTL_LEN;
382 if (ieee80211_has_order(fc))
383 hdrlen += IEEE80211_HT_CTL_LEN;
384 }
385 goto out;
386 }
387
388 if (ieee80211_is_mgmt(fc)) {
389 if (ieee80211_has_order(fc))
390 hdrlen += IEEE80211_HT_CTL_LEN;
391 goto out;
392 }
393
394 if (ieee80211_is_ctl(fc)) {
395 /*
396 * ACK and CTS are 10 bytes, all others 16. To see how
397 * to get this condition consider
398 * subtype mask: 0b0000000011110000 (0x00F0)
399 * ACK subtype: 0b0000000011010000 (0x00D0)
400 * CTS subtype: 0b0000000011000000 (0x00C0)
401 * bits that matter: ^^^ (0x00E0)
402 * value of those: 0b0000000011000000 (0x00C0)
403 */
404 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
405 hdrlen = 10;
406 else
407 hdrlen = 16;
408 }
409out:
410 return hdrlen;
411}
412EXPORT_SYMBOL(ieee80211_hdrlen);
413
414unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
415{
416 const struct ieee80211_hdr *hdr =
417 (const struct ieee80211_hdr *)skb->data;
418 unsigned int hdrlen;
419
420 if (unlikely(skb->len < 10))
421 return 0;
422 hdrlen = ieee80211_hdrlen(hdr->frame_control);
423 if (unlikely(hdrlen > skb->len))
424 return 0;
425 return hdrlen;
426}
427EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
428
429static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
430{
431 int ae = flags & MESH_FLAGS_AE;
432 /* 802.11-2012, 8.2.4.7.3 */
433 switch (ae) {
434 default:
435 case 0:
436 return 6;
437 case MESH_FLAGS_AE_A4:
438 return 12;
439 case MESH_FLAGS_AE_A5_A6:
440 return 18;
441 }
442}
443
444unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
445{
446 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
447}
448EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
449
450int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
451 const u8 *addr, enum nl80211_iftype iftype,
452 u8 data_offset)
453{
454 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
455 struct {
456 u8 hdr[ETH_ALEN] __aligned(2);
457 __be16 proto;
458 } payload;
459 struct ethhdr tmp;
460 u16 hdrlen;
461 u8 mesh_flags = 0;
462
463 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
464 return -1;
465
466 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
467 if (skb->len < hdrlen + 8)
468 return -1;
469
470 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
471 * header
472 * IEEE 802.11 address fields:
473 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
474 * 0 0 DA SA BSSID n/a
475 * 0 1 DA BSSID SA n/a
476 * 1 0 BSSID SA DA n/a
477 * 1 1 RA TA DA SA
478 */
479 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
480 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
481
482 if (iftype == NL80211_IFTYPE_MESH_POINT)
483 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
484
485 mesh_flags &= MESH_FLAGS_AE;
486
487 switch (hdr->frame_control &
488 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
489 case cpu_to_le16(IEEE80211_FCTL_TODS):
490 if (unlikely(iftype != NL80211_IFTYPE_AP &&
491 iftype != NL80211_IFTYPE_AP_VLAN &&
492 iftype != NL80211_IFTYPE_P2P_GO))
493 return -1;
494 break;
495 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
496 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
497 iftype != NL80211_IFTYPE_MESH_POINT &&
498 iftype != NL80211_IFTYPE_AP_VLAN &&
499 iftype != NL80211_IFTYPE_STATION))
500 return -1;
501 if (iftype == NL80211_IFTYPE_MESH_POINT) {
502 if (mesh_flags == MESH_FLAGS_AE_A4)
503 return -1;
504 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
505 skb_copy_bits(skb, hdrlen +
506 offsetof(struct ieee80211s_hdr, eaddr1),
507 tmp.h_dest, 2 * ETH_ALEN);
508 }
509 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
510 }
511 break;
512 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
513 if ((iftype != NL80211_IFTYPE_STATION &&
514 iftype != NL80211_IFTYPE_P2P_CLIENT &&
515 iftype != NL80211_IFTYPE_MESH_POINT) ||
516 (is_multicast_ether_addr(tmp.h_dest) &&
517 ether_addr_equal(tmp.h_source, addr)))
518 return -1;
519 if (iftype == NL80211_IFTYPE_MESH_POINT) {
520 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
521 return -1;
522 if (mesh_flags == MESH_FLAGS_AE_A4)
523 skb_copy_bits(skb, hdrlen +
524 offsetof(struct ieee80211s_hdr, eaddr1),
525 tmp.h_source, ETH_ALEN);
526 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
527 }
528 break;
529 case cpu_to_le16(0):
530 if (iftype != NL80211_IFTYPE_ADHOC &&
531 iftype != NL80211_IFTYPE_STATION &&
532 iftype != NL80211_IFTYPE_OCB)
533 return -1;
534 break;
535 }
536
537 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
538 tmp.h_proto = payload.proto;
539
540 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
541 tmp.h_proto != htons(ETH_P_AARP) &&
542 tmp.h_proto != htons(ETH_P_IPX)) ||
543 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
544 /* remove RFC1042 or Bridge-Tunnel encapsulation and
545 * replace EtherType */
546 hdrlen += ETH_ALEN + 2;
547 else
548 tmp.h_proto = htons(skb->len - hdrlen);
549
550 pskb_pull(skb, hdrlen);
551
552 if (!ehdr)
553 ehdr = skb_push(skb, sizeof(struct ethhdr));
554 memcpy(ehdr, &tmp, sizeof(tmp));
555
556 return 0;
557}
558EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
559
560static void
561__frame_add_frag(struct sk_buff *skb, struct page *page,
562 void *ptr, int len, int size)
563{
564 struct skb_shared_info *sh = skb_shinfo(skb);
565 int page_offset;
566
567 page_ref_inc(page);
568 page_offset = ptr - page_address(page);
569 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
570}
571
572static void
573__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
574 int offset, int len)
575{
576 struct skb_shared_info *sh = skb_shinfo(skb);
577 const skb_frag_t *frag = &sh->frags[0];
578 struct page *frag_page;
579 void *frag_ptr;
580 int frag_len, frag_size;
581 int head_size = skb->len - skb->data_len;
582 int cur_len;
583
584 frag_page = virt_to_head_page(skb->head);
585 frag_ptr = skb->data;
586 frag_size = head_size;
587
588 while (offset >= frag_size) {
589 offset -= frag_size;
590 frag_page = skb_frag_page(frag);
591 frag_ptr = skb_frag_address(frag);
592 frag_size = skb_frag_size(frag);
593 frag++;
594 }
595
596 frag_ptr += offset;
597 frag_len = frag_size - offset;
598
599 cur_len = min(len, frag_len);
600
601 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
602 len -= cur_len;
603
604 while (len > 0) {
605 frag_len = skb_frag_size(frag);
606 cur_len = min(len, frag_len);
607 __frame_add_frag(frame, skb_frag_page(frag),
608 skb_frag_address(frag), cur_len, frag_len);
609 len -= cur_len;
610 frag++;
611 }
612}
613
614static struct sk_buff *
615__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
616 int offset, int len, bool reuse_frag)
617{
618 struct sk_buff *frame;
619 int cur_len = len;
620
621 if (skb->len - offset < len)
622 return NULL;
623
624 /*
625 * When reusing framents, copy some data to the head to simplify
626 * ethernet header handling and speed up protocol header processing
627 * in the stack later.
628 */
629 if (reuse_frag)
630 cur_len = min_t(int, len, 32);
631
632 /*
633 * Allocate and reserve two bytes more for payload
634 * alignment since sizeof(struct ethhdr) is 14.
635 */
636 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
637 if (!frame)
638 return NULL;
639
640 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
641 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
642
643 len -= cur_len;
644 if (!len)
645 return frame;
646
647 offset += cur_len;
648 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
649
650 return frame;
651}
652
653void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
654 const u8 *addr, enum nl80211_iftype iftype,
655 const unsigned int extra_headroom,
656 const u8 *check_da, const u8 *check_sa)
657{
658 unsigned int hlen = ALIGN(extra_headroom, 4);
659 struct sk_buff *frame = NULL;
660 u16 ethertype;
661 u8 *payload;
662 int offset = 0, remaining;
663 struct ethhdr eth;
664 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
665 bool reuse_skb = false;
666 bool last = false;
667
668 while (!last) {
669 unsigned int subframe_len;
670 int len;
671 u8 padding;
672
673 skb_copy_bits(skb, offset, ð, sizeof(eth));
674 len = ntohs(eth.h_proto);
675 subframe_len = sizeof(struct ethhdr) + len;
676 padding = (4 - subframe_len) & 0x3;
677
678 /* the last MSDU has no padding */
679 remaining = skb->len - offset;
680 if (subframe_len > remaining)
681 goto purge;
682
683 offset += sizeof(struct ethhdr);
684 last = remaining <= subframe_len + padding;
685
686 /* FIXME: should we really accept multicast DA? */
687 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
688 !ether_addr_equal(check_da, eth.h_dest)) ||
689 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
690 offset += len + padding;
691 continue;
692 }
693
694 /* reuse skb for the last subframe */
695 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
696 skb_pull(skb, offset);
697 frame = skb;
698 reuse_skb = true;
699 } else {
700 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
701 reuse_frag);
702 if (!frame)
703 goto purge;
704
705 offset += len + padding;
706 }
707
708 skb_reset_network_header(frame);
709 frame->dev = skb->dev;
710 frame->priority = skb->priority;
711
712 payload = frame->data;
713 ethertype = (payload[6] << 8) | payload[7];
714 if (likely((ether_addr_equal(payload, rfc1042_header) &&
715 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
716 ether_addr_equal(payload, bridge_tunnel_header))) {
717 eth.h_proto = htons(ethertype);
718 skb_pull(frame, ETH_ALEN + 2);
719 }
720
721 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
722 __skb_queue_tail(list, frame);
723 }
724
725 if (!reuse_skb)
726 dev_kfree_skb(skb);
727
728 return;
729
730 purge:
731 __skb_queue_purge(list);
732 dev_kfree_skb(skb);
733}
734EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
735
736/* Given a data frame determine the 802.1p/1d tag to use. */
737unsigned int cfg80211_classify8021d(struct sk_buff *skb,
738 struct cfg80211_qos_map *qos_map)
739{
740 unsigned int dscp;
741 unsigned char vlan_priority;
742 unsigned int ret;
743
744 /* skb->priority values from 256->263 are magic values to
745 * directly indicate a specific 802.1d priority. This is used
746 * to allow 802.1d priority to be passed directly in from VLAN
747 * tags, etc.
748 */
749 if (skb->priority >= 256 && skb->priority <= 263) {
750 ret = skb->priority - 256;
751 goto out;
752 }
753
754 if (skb_vlan_tag_present(skb)) {
755 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
756 >> VLAN_PRIO_SHIFT;
757 if (vlan_priority > 0) {
758 ret = vlan_priority;
759 goto out;
760 }
761 }
762
763 switch (skb->protocol) {
764 case htons(ETH_P_IP):
765 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
766 break;
767 case htons(ETH_P_IPV6):
768 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
769 break;
770 case htons(ETH_P_MPLS_UC):
771 case htons(ETH_P_MPLS_MC): {
772 struct mpls_label mpls_tmp, *mpls;
773
774 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
775 sizeof(*mpls), &mpls_tmp);
776 if (!mpls)
777 return 0;
778
779 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
780 >> MPLS_LS_TC_SHIFT;
781 goto out;
782 }
783 case htons(ETH_P_80221):
784 /* 802.21 is always network control traffic */
785 return 7;
786 default:
787 return 0;
788 }
789
790 if (qos_map) {
791 unsigned int i, tmp_dscp = dscp >> 2;
792
793 for (i = 0; i < qos_map->num_des; i++) {
794 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
795 ret = qos_map->dscp_exception[i].up;
796 goto out;
797 }
798 }
799
800 for (i = 0; i < 8; i++) {
801 if (tmp_dscp >= qos_map->up[i].low &&
802 tmp_dscp <= qos_map->up[i].high) {
803 ret = i;
804 goto out;
805 }
806 }
807 }
808
809 ret = dscp >> 5;
810out:
811 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
812}
813EXPORT_SYMBOL(cfg80211_classify8021d);
814
815const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
816{
817 const struct cfg80211_bss_ies *ies;
818
819 ies = rcu_dereference(bss->ies);
820 if (!ies)
821 return NULL;
822
823 return cfg80211_find_elem(id, ies->data, ies->len);
824}
825EXPORT_SYMBOL(ieee80211_bss_get_elem);
826
827void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
828{
829 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
830 struct net_device *dev = wdev->netdev;
831 int i;
832
833 if (!wdev->connect_keys)
834 return;
835
836 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
837 if (!wdev->connect_keys->params[i].cipher)
838 continue;
839 if (rdev_add_key(rdev, dev, i, false, NULL,
840 &wdev->connect_keys->params[i])) {
841 netdev_err(dev, "failed to set key %d\n", i);
842 continue;
843 }
844 if (wdev->connect_keys->def == i &&
845 rdev_set_default_key(rdev, dev, i, true, true)) {
846 netdev_err(dev, "failed to set defkey %d\n", i);
847 continue;
848 }
849 }
850
851 kzfree(wdev->connect_keys);
852 wdev->connect_keys = NULL;
853}
854
855void cfg80211_process_wdev_events(struct wireless_dev *wdev)
856{
857 struct cfg80211_event *ev;
858 unsigned long flags;
859
860 spin_lock_irqsave(&wdev->event_lock, flags);
861 while (!list_empty(&wdev->event_list)) {
862 ev = list_first_entry(&wdev->event_list,
863 struct cfg80211_event, list);
864 list_del(&ev->list);
865 spin_unlock_irqrestore(&wdev->event_lock, flags);
866
867 wdev_lock(wdev);
868 switch (ev->type) {
869 case EVENT_CONNECT_RESULT:
870 __cfg80211_connect_result(
871 wdev->netdev,
872 &ev->cr,
873 ev->cr.status == WLAN_STATUS_SUCCESS);
874 break;
875 case EVENT_ROAMED:
876 __cfg80211_roamed(wdev, &ev->rm);
877 break;
878 case EVENT_DISCONNECTED:
879 __cfg80211_disconnected(wdev->netdev,
880 ev->dc.ie, ev->dc.ie_len,
881 ev->dc.reason,
882 !ev->dc.locally_generated);
883 break;
884 case EVENT_IBSS_JOINED:
885 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
886 ev->ij.channel);
887 break;
888 case EVENT_STOPPED:
889 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
890 break;
891 case EVENT_PORT_AUTHORIZED:
892 __cfg80211_port_authorized(wdev, ev->pa.bssid);
893 break;
894 }
895 wdev_unlock(wdev);
896
897 kfree(ev);
898
899 spin_lock_irqsave(&wdev->event_lock, flags);
900 }
901 spin_unlock_irqrestore(&wdev->event_lock, flags);
902}
903
904void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
905{
906 struct wireless_dev *wdev;
907
908 ASSERT_RTNL();
909
910 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
911 cfg80211_process_wdev_events(wdev);
912}
913
914int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
915 struct net_device *dev, enum nl80211_iftype ntype,
916 struct vif_params *params)
917{
918 int err;
919 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
920
921 ASSERT_RTNL();
922
923 /* don't support changing VLANs, you just re-create them */
924 if (otype == NL80211_IFTYPE_AP_VLAN)
925 return -EOPNOTSUPP;
926
927 /* cannot change into P2P device or NAN */
928 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
929 ntype == NL80211_IFTYPE_NAN)
930 return -EOPNOTSUPP;
931
932 if (!rdev->ops->change_virtual_intf ||
933 !(rdev->wiphy.interface_modes & (1 << ntype)))
934 return -EOPNOTSUPP;
935
936 /* if it's part of a bridge, reject changing type to station/ibss */
937 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
938 (ntype == NL80211_IFTYPE_ADHOC ||
939 ntype == NL80211_IFTYPE_STATION ||
940 ntype == NL80211_IFTYPE_P2P_CLIENT))
941 return -EBUSY;
942
943 if (ntype != otype) {
944 dev->ieee80211_ptr->use_4addr = false;
945 dev->ieee80211_ptr->mesh_id_up_len = 0;
946 wdev_lock(dev->ieee80211_ptr);
947 rdev_set_qos_map(rdev, dev, NULL);
948 wdev_unlock(dev->ieee80211_ptr);
949
950 switch (otype) {
951 case NL80211_IFTYPE_AP:
952 cfg80211_stop_ap(rdev, dev, true);
953 break;
954 case NL80211_IFTYPE_ADHOC:
955 cfg80211_leave_ibss(rdev, dev, false);
956 break;
957 case NL80211_IFTYPE_STATION:
958 case NL80211_IFTYPE_P2P_CLIENT:
959 wdev_lock(dev->ieee80211_ptr);
960 cfg80211_disconnect(rdev, dev,
961 WLAN_REASON_DEAUTH_LEAVING, true);
962 wdev_unlock(dev->ieee80211_ptr);
963 break;
964 case NL80211_IFTYPE_MESH_POINT:
965 /* mesh should be handled? */
966 break;
967 default:
968 break;
969 }
970
971 cfg80211_process_rdev_events(rdev);
972 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
973 }
974
975 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
976
977 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
978
979 if (!err && params && params->use_4addr != -1)
980 dev->ieee80211_ptr->use_4addr = params->use_4addr;
981
982 if (!err) {
983 dev->priv_flags &= ~IFF_DONT_BRIDGE;
984 switch (ntype) {
985 case NL80211_IFTYPE_STATION:
986 if (dev->ieee80211_ptr->use_4addr)
987 break;
988 /* fall through */
989 case NL80211_IFTYPE_OCB:
990 case NL80211_IFTYPE_P2P_CLIENT:
991 case NL80211_IFTYPE_ADHOC:
992 dev->priv_flags |= IFF_DONT_BRIDGE;
993 break;
994 case NL80211_IFTYPE_P2P_GO:
995 case NL80211_IFTYPE_AP:
996 case NL80211_IFTYPE_AP_VLAN:
997 case NL80211_IFTYPE_WDS:
998 case NL80211_IFTYPE_MESH_POINT:
999 /* bridging OK */
1000 break;
1001 case NL80211_IFTYPE_MONITOR:
1002 /* monitor can't bridge anyway */
1003 break;
1004 case NL80211_IFTYPE_UNSPECIFIED:
1005 case NUM_NL80211_IFTYPES:
1006 /* not happening */
1007 break;
1008 case NL80211_IFTYPE_P2P_DEVICE:
1009 case NL80211_IFTYPE_NAN:
1010 WARN_ON(1);
1011 break;
1012 }
1013 }
1014
1015 if (!err && ntype != otype && netif_running(dev)) {
1016 cfg80211_update_iface_num(rdev, ntype, 1);
1017 cfg80211_update_iface_num(rdev, otype, -1);
1018 }
1019
1020 return err;
1021}
1022
1023static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1024{
1025 int modulation, streams, bitrate;
1026
1027 /* the formula below does only work for MCS values smaller than 32 */
1028 if (WARN_ON_ONCE(rate->mcs >= 32))
1029 return 0;
1030
1031 modulation = rate->mcs & 7;
1032 streams = (rate->mcs >> 3) + 1;
1033
1034 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1035
1036 if (modulation < 4)
1037 bitrate *= (modulation + 1);
1038 else if (modulation == 4)
1039 bitrate *= (modulation + 2);
1040 else
1041 bitrate *= (modulation + 3);
1042
1043 bitrate *= streams;
1044
1045 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1046 bitrate = (bitrate / 9) * 10;
1047
1048 /* do NOT round down here */
1049 return (bitrate + 50000) / 100000;
1050}
1051
1052static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1053{
1054 static const u32 __mcs2bitrate[] = {
1055 /* control PHY */
1056 [0] = 275,
1057 /* SC PHY */
1058 [1] = 3850,
1059 [2] = 7700,
1060 [3] = 9625,
1061 [4] = 11550,
1062 [5] = 12512, /* 1251.25 mbps */
1063 [6] = 15400,
1064 [7] = 19250,
1065 [8] = 23100,
1066 [9] = 25025,
1067 [10] = 30800,
1068 [11] = 38500,
1069 [12] = 46200,
1070 /* OFDM PHY */
1071 [13] = 6930,
1072 [14] = 8662, /* 866.25 mbps */
1073 [15] = 13860,
1074 [16] = 17325,
1075 [17] = 20790,
1076 [18] = 27720,
1077 [19] = 34650,
1078 [20] = 41580,
1079 [21] = 45045,
1080 [22] = 51975,
1081 [23] = 62370,
1082 [24] = 67568, /* 6756.75 mbps */
1083 /* LP-SC PHY */
1084 [25] = 6260,
1085 [26] = 8340,
1086 [27] = 11120,
1087 [28] = 12510,
1088 [29] = 16680,
1089 [30] = 22240,
1090 [31] = 25030,
1091 };
1092
1093 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1094 return 0;
1095
1096 return __mcs2bitrate[rate->mcs];
1097}
1098
1099static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1100{
1101 static const u32 __mcs2bitrate[] = {
1102 /* control PHY */
1103 [0] = 275,
1104 /* SC PHY */
1105 [1] = 3850,
1106 [2] = 7700,
1107 [3] = 9625,
1108 [4] = 11550,
1109 [5] = 12512, /* 1251.25 mbps */
1110 [6] = 13475,
1111 [7] = 15400,
1112 [8] = 19250,
1113 [9] = 23100,
1114 [10] = 25025,
1115 [11] = 26950,
1116 [12] = 30800,
1117 [13] = 38500,
1118 [14] = 46200,
1119 [15] = 50050,
1120 [16] = 53900,
1121 [17] = 57750,
1122 [18] = 69300,
1123 [19] = 75075,
1124 [20] = 80850,
1125 };
1126
1127 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1128 return 0;
1129
1130 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1131}
1132
1133static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1134{
1135 static const u32 base[4][10] = {
1136 { 6500000,
1137 13000000,
1138 19500000,
1139 26000000,
1140 39000000,
1141 52000000,
1142 58500000,
1143 65000000,
1144 78000000,
1145 /* not in the spec, but some devices use this: */
1146 86500000,
1147 },
1148 { 13500000,
1149 27000000,
1150 40500000,
1151 54000000,
1152 81000000,
1153 108000000,
1154 121500000,
1155 135000000,
1156 162000000,
1157 180000000,
1158 },
1159 { 29300000,
1160 58500000,
1161 87800000,
1162 117000000,
1163 175500000,
1164 234000000,
1165 263300000,
1166 292500000,
1167 351000000,
1168 390000000,
1169 },
1170 { 58500000,
1171 117000000,
1172 175500000,
1173 234000000,
1174 351000000,
1175 468000000,
1176 526500000,
1177 585000000,
1178 702000000,
1179 780000000,
1180 },
1181 };
1182 u32 bitrate;
1183 int idx;
1184
1185 if (rate->mcs > 9)
1186 goto warn;
1187
1188 switch (rate->bw) {
1189 case RATE_INFO_BW_160:
1190 idx = 3;
1191 break;
1192 case RATE_INFO_BW_80:
1193 idx = 2;
1194 break;
1195 case RATE_INFO_BW_40:
1196 idx = 1;
1197 break;
1198 case RATE_INFO_BW_5:
1199 case RATE_INFO_BW_10:
1200 default:
1201 goto warn;
1202 case RATE_INFO_BW_20:
1203 idx = 0;
1204 }
1205
1206 bitrate = base[idx][rate->mcs];
1207 bitrate *= rate->nss;
1208
1209 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1210 bitrate = (bitrate / 9) * 10;
1211
1212 /* do NOT round down here */
1213 return (bitrate + 50000) / 100000;
1214 warn:
1215 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1216 rate->bw, rate->mcs, rate->nss);
1217 return 0;
1218}
1219
1220static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1221{
1222#define SCALE 2048
1223 u16 mcs_divisors[12] = {
1224 34133, /* 16.666666... */
1225 17067, /* 8.333333... */
1226 11378, /* 5.555555... */
1227 8533, /* 4.166666... */
1228 5689, /* 2.777777... */
1229 4267, /* 2.083333... */
1230 3923, /* 1.851851... */
1231 3413, /* 1.666666... */
1232 2844, /* 1.388888... */
1233 2560, /* 1.250000... */
1234 2276, /* 1.111111... */
1235 2048, /* 1.000000... */
1236 };
1237 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1238 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1239 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1240 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1241 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1242 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1243 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1244 u64 tmp;
1245 u32 result;
1246
1247 if (WARN_ON_ONCE(rate->mcs > 11))
1248 return 0;
1249
1250 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1251 return 0;
1252 if (WARN_ON_ONCE(rate->he_ru_alloc >
1253 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1254 return 0;
1255 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1256 return 0;
1257
1258 if (rate->bw == RATE_INFO_BW_160)
1259 result = rates_160M[rate->he_gi];
1260 else if (rate->bw == RATE_INFO_BW_80 ||
1261 (rate->bw == RATE_INFO_BW_HE_RU &&
1262 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1263 result = rates_969[rate->he_gi];
1264 else if (rate->bw == RATE_INFO_BW_40 ||
1265 (rate->bw == RATE_INFO_BW_HE_RU &&
1266 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1267 result = rates_484[rate->he_gi];
1268 else if (rate->bw == RATE_INFO_BW_20 ||
1269 (rate->bw == RATE_INFO_BW_HE_RU &&
1270 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1271 result = rates_242[rate->he_gi];
1272 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1274 result = rates_106[rate->he_gi];
1275 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1276 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1277 result = rates_52[rate->he_gi];
1278 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1279 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1280 result = rates_26[rate->he_gi];
1281 else {
1282 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1283 rate->bw, rate->he_ru_alloc);
1284 return 0;
1285 }
1286
1287 /* now scale to the appropriate MCS */
1288 tmp = result;
1289 tmp *= SCALE;
1290 do_div(tmp, mcs_divisors[rate->mcs]);
1291 result = tmp;
1292
1293 /* and take NSS, DCM into account */
1294 result = (result * rate->nss) / 8;
1295 if (rate->he_dcm)
1296 result /= 2;
1297
1298 return result / 10000;
1299}
1300
1301u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1302{
1303 if (rate->flags & RATE_INFO_FLAGS_MCS)
1304 return cfg80211_calculate_bitrate_ht(rate);
1305 if (rate->flags & RATE_INFO_FLAGS_DMG)
1306 return cfg80211_calculate_bitrate_dmg(rate);
1307 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1308 return cfg80211_calculate_bitrate_edmg(rate);
1309 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1310 return cfg80211_calculate_bitrate_vht(rate);
1311 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1312 return cfg80211_calculate_bitrate_he(rate);
1313
1314 return rate->legacy;
1315}
1316EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1317
1318int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1319 enum ieee80211_p2p_attr_id attr,
1320 u8 *buf, unsigned int bufsize)
1321{
1322 u8 *out = buf;
1323 u16 attr_remaining = 0;
1324 bool desired_attr = false;
1325 u16 desired_len = 0;
1326
1327 while (len > 0) {
1328 unsigned int iedatalen;
1329 unsigned int copy;
1330 const u8 *iedata;
1331
1332 if (len < 2)
1333 return -EILSEQ;
1334 iedatalen = ies[1];
1335 if (iedatalen + 2 > len)
1336 return -EILSEQ;
1337
1338 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1339 goto cont;
1340
1341 if (iedatalen < 4)
1342 goto cont;
1343
1344 iedata = ies + 2;
1345
1346 /* check WFA OUI, P2P subtype */
1347 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1348 iedata[2] != 0x9a || iedata[3] != 0x09)
1349 goto cont;
1350
1351 iedatalen -= 4;
1352 iedata += 4;
1353
1354 /* check attribute continuation into this IE */
1355 copy = min_t(unsigned int, attr_remaining, iedatalen);
1356 if (copy && desired_attr) {
1357 desired_len += copy;
1358 if (out) {
1359 memcpy(out, iedata, min(bufsize, copy));
1360 out += min(bufsize, copy);
1361 bufsize -= min(bufsize, copy);
1362 }
1363
1364
1365 if (copy == attr_remaining)
1366 return desired_len;
1367 }
1368
1369 attr_remaining -= copy;
1370 if (attr_remaining)
1371 goto cont;
1372
1373 iedatalen -= copy;
1374 iedata += copy;
1375
1376 while (iedatalen > 0) {
1377 u16 attr_len;
1378
1379 /* P2P attribute ID & size must fit */
1380 if (iedatalen < 3)
1381 return -EILSEQ;
1382 desired_attr = iedata[0] == attr;
1383 attr_len = get_unaligned_le16(iedata + 1);
1384 iedatalen -= 3;
1385 iedata += 3;
1386
1387 copy = min_t(unsigned int, attr_len, iedatalen);
1388
1389 if (desired_attr) {
1390 desired_len += copy;
1391 if (out) {
1392 memcpy(out, iedata, min(bufsize, copy));
1393 out += min(bufsize, copy);
1394 bufsize -= min(bufsize, copy);
1395 }
1396
1397 if (copy == attr_len)
1398 return desired_len;
1399 }
1400
1401 iedata += copy;
1402 iedatalen -= copy;
1403 attr_remaining = attr_len - copy;
1404 }
1405
1406 cont:
1407 len -= ies[1] + 2;
1408 ies += ies[1] + 2;
1409 }
1410
1411 if (attr_remaining && desired_attr)
1412 return -EILSEQ;
1413
1414 return -ENOENT;
1415}
1416EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1417
1418static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1419{
1420 int i;
1421
1422 /* Make sure array values are legal */
1423 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1424 return false;
1425
1426 i = 0;
1427 while (i < n_ids) {
1428 if (ids[i] == WLAN_EID_EXTENSION) {
1429 if (id_ext && (ids[i + 1] == id))
1430 return true;
1431
1432 i += 2;
1433 continue;
1434 }
1435
1436 if (ids[i] == id && !id_ext)
1437 return true;
1438
1439 i++;
1440 }
1441 return false;
1442}
1443
1444static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1445{
1446 /* we assume a validly formed IEs buffer */
1447 u8 len = ies[pos + 1];
1448
1449 pos += 2 + len;
1450
1451 /* the IE itself must have 255 bytes for fragments to follow */
1452 if (len < 255)
1453 return pos;
1454
1455 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1456 len = ies[pos + 1];
1457 pos += 2 + len;
1458 }
1459
1460 return pos;
1461}
1462
1463size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1464 const u8 *ids, int n_ids,
1465 const u8 *after_ric, int n_after_ric,
1466 size_t offset)
1467{
1468 size_t pos = offset;
1469
1470 while (pos < ielen) {
1471 u8 ext = 0;
1472
1473 if (ies[pos] == WLAN_EID_EXTENSION)
1474 ext = 2;
1475 if ((pos + ext) >= ielen)
1476 break;
1477
1478 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1479 ies[pos] == WLAN_EID_EXTENSION))
1480 break;
1481
1482 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1483 pos = skip_ie(ies, ielen, pos);
1484
1485 while (pos < ielen) {
1486 if (ies[pos] == WLAN_EID_EXTENSION)
1487 ext = 2;
1488 else
1489 ext = 0;
1490
1491 if ((pos + ext) >= ielen)
1492 break;
1493
1494 if (!ieee80211_id_in_list(after_ric,
1495 n_after_ric,
1496 ies[pos + ext],
1497 ext == 2))
1498 pos = skip_ie(ies, ielen, pos);
1499 else
1500 break;
1501 }
1502 } else {
1503 pos = skip_ie(ies, ielen, pos);
1504 }
1505 }
1506
1507 return pos;
1508}
1509EXPORT_SYMBOL(ieee80211_ie_split_ric);
1510
1511bool ieee80211_operating_class_to_band(u8 operating_class,
1512 enum nl80211_band *band)
1513{
1514 switch (operating_class) {
1515 case 112:
1516 case 115 ... 127:
1517 case 128 ... 130:
1518 *band = NL80211_BAND_5GHZ;
1519 return true;
1520 case 131 ... 135:
1521 *band = NL80211_BAND_6GHZ;
1522 return true;
1523 case 81:
1524 case 82:
1525 case 83:
1526 case 84:
1527 *band = NL80211_BAND_2GHZ;
1528 return true;
1529 case 180:
1530 *band = NL80211_BAND_60GHZ;
1531 return true;
1532 }
1533
1534 return false;
1535}
1536EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1537
1538bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1539 u8 *op_class)
1540{
1541 u8 vht_opclass;
1542 u32 freq = chandef->center_freq1;
1543
1544 if (freq >= 2412 && freq <= 2472) {
1545 if (chandef->width > NL80211_CHAN_WIDTH_40)
1546 return false;
1547
1548 /* 2.407 GHz, channels 1..13 */
1549 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550 if (freq > chandef->chan->center_freq)
1551 *op_class = 83; /* HT40+ */
1552 else
1553 *op_class = 84; /* HT40- */
1554 } else {
1555 *op_class = 81;
1556 }
1557
1558 return true;
1559 }
1560
1561 if (freq == 2484) {
1562 /* channel 14 is only for IEEE 802.11b */
1563 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1564 return false;
1565
1566 *op_class = 82; /* channel 14 */
1567 return true;
1568 }
1569
1570 switch (chandef->width) {
1571 case NL80211_CHAN_WIDTH_80:
1572 vht_opclass = 128;
1573 break;
1574 case NL80211_CHAN_WIDTH_160:
1575 vht_opclass = 129;
1576 break;
1577 case NL80211_CHAN_WIDTH_80P80:
1578 vht_opclass = 130;
1579 break;
1580 case NL80211_CHAN_WIDTH_10:
1581 case NL80211_CHAN_WIDTH_5:
1582 return false; /* unsupported for now */
1583 default:
1584 vht_opclass = 0;
1585 break;
1586 }
1587
1588 /* 5 GHz, channels 36..48 */
1589 if (freq >= 5180 && freq <= 5240) {
1590 if (vht_opclass) {
1591 *op_class = vht_opclass;
1592 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1593 if (freq > chandef->chan->center_freq)
1594 *op_class = 116;
1595 else
1596 *op_class = 117;
1597 } else {
1598 *op_class = 115;
1599 }
1600
1601 return true;
1602 }
1603
1604 /* 5 GHz, channels 52..64 */
1605 if (freq >= 5260 && freq <= 5320) {
1606 if (vht_opclass) {
1607 *op_class = vht_opclass;
1608 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1609 if (freq > chandef->chan->center_freq)
1610 *op_class = 119;
1611 else
1612 *op_class = 120;
1613 } else {
1614 *op_class = 118;
1615 }
1616
1617 return true;
1618 }
1619
1620 /* 5 GHz, channels 100..144 */
1621 if (freq >= 5500 && freq <= 5720) {
1622 if (vht_opclass) {
1623 *op_class = vht_opclass;
1624 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1625 if (freq > chandef->chan->center_freq)
1626 *op_class = 122;
1627 else
1628 *op_class = 123;
1629 } else {
1630 *op_class = 121;
1631 }
1632
1633 return true;
1634 }
1635
1636 /* 5 GHz, channels 149..169 */
1637 if (freq >= 5745 && freq <= 5845) {
1638 if (vht_opclass) {
1639 *op_class = vht_opclass;
1640 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1641 if (freq > chandef->chan->center_freq)
1642 *op_class = 126;
1643 else
1644 *op_class = 127;
1645 } else if (freq <= 5805) {
1646 *op_class = 124;
1647 } else {
1648 *op_class = 125;
1649 }
1650
1651 return true;
1652 }
1653
1654 /* 56.16 GHz, channel 1..4 */
1655 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1656 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1657 return false;
1658
1659 *op_class = 180;
1660 return true;
1661 }
1662
1663 /* not supported yet */
1664 return false;
1665}
1666EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1667
1668static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1669 u32 *beacon_int_gcd,
1670 bool *beacon_int_different)
1671{
1672 struct wireless_dev *wdev;
1673
1674 *beacon_int_gcd = 0;
1675 *beacon_int_different = false;
1676
1677 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1678 if (!wdev->beacon_interval)
1679 continue;
1680
1681 if (!*beacon_int_gcd) {
1682 *beacon_int_gcd = wdev->beacon_interval;
1683 continue;
1684 }
1685
1686 if (wdev->beacon_interval == *beacon_int_gcd)
1687 continue;
1688
1689 *beacon_int_different = true;
1690 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1691 }
1692
1693 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1694 if (*beacon_int_gcd)
1695 *beacon_int_different = true;
1696 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1697 }
1698}
1699
1700int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1701 enum nl80211_iftype iftype, u32 beacon_int)
1702{
1703 /*
1704 * This is just a basic pre-condition check; if interface combinations
1705 * are possible the driver must already be checking those with a call
1706 * to cfg80211_check_combinations(), in which case we'll validate more
1707 * through the cfg80211_calculate_bi_data() call and code in
1708 * cfg80211_iter_combinations().
1709 */
1710
1711 if (beacon_int < 10 || beacon_int > 10000)
1712 return -EINVAL;
1713
1714 return 0;
1715}
1716
1717int cfg80211_iter_combinations(struct wiphy *wiphy,
1718 struct iface_combination_params *params,
1719 void (*iter)(const struct ieee80211_iface_combination *c,
1720 void *data),
1721 void *data)
1722{
1723 const struct ieee80211_regdomain *regdom;
1724 enum nl80211_dfs_regions region = 0;
1725 int i, j, iftype;
1726 int num_interfaces = 0;
1727 u32 used_iftypes = 0;
1728 u32 beacon_int_gcd;
1729 bool beacon_int_different;
1730
1731 /*
1732 * This is a bit strange, since the iteration used to rely only on
1733 * the data given by the driver, but here it now relies on context,
1734 * in form of the currently operating interfaces.
1735 * This is OK for all current users, and saves us from having to
1736 * push the GCD calculations into all the drivers.
1737 * In the future, this should probably rely more on data that's in
1738 * cfg80211 already - the only thing not would appear to be any new
1739 * interfaces (while being brought up) and channel/radar data.
1740 */
1741 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1742 &beacon_int_gcd, &beacon_int_different);
1743
1744 if (params->radar_detect) {
1745 rcu_read_lock();
1746 regdom = rcu_dereference(cfg80211_regdomain);
1747 if (regdom)
1748 region = regdom->dfs_region;
1749 rcu_read_unlock();
1750 }
1751
1752 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1753 num_interfaces += params->iftype_num[iftype];
1754 if (params->iftype_num[iftype] > 0 &&
1755 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1756 used_iftypes |= BIT(iftype);
1757 }
1758
1759 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1760 const struct ieee80211_iface_combination *c;
1761 struct ieee80211_iface_limit *limits;
1762 u32 all_iftypes = 0;
1763
1764 c = &wiphy->iface_combinations[i];
1765
1766 if (num_interfaces > c->max_interfaces)
1767 continue;
1768 if (params->num_different_channels > c->num_different_channels)
1769 continue;
1770
1771 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1772 GFP_KERNEL);
1773 if (!limits)
1774 return -ENOMEM;
1775
1776 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1777 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1778 continue;
1779 for (j = 0; j < c->n_limits; j++) {
1780 all_iftypes |= limits[j].types;
1781 if (!(limits[j].types & BIT(iftype)))
1782 continue;
1783 if (limits[j].max < params->iftype_num[iftype])
1784 goto cont;
1785 limits[j].max -= params->iftype_num[iftype];
1786 }
1787 }
1788
1789 if (params->radar_detect !=
1790 (c->radar_detect_widths & params->radar_detect))
1791 goto cont;
1792
1793 if (params->radar_detect && c->radar_detect_regions &&
1794 !(c->radar_detect_regions & BIT(region)))
1795 goto cont;
1796
1797 /* Finally check that all iftypes that we're currently
1798 * using are actually part of this combination. If they
1799 * aren't then we can't use this combination and have
1800 * to continue to the next.
1801 */
1802 if ((all_iftypes & used_iftypes) != used_iftypes)
1803 goto cont;
1804
1805 if (beacon_int_gcd) {
1806 if (c->beacon_int_min_gcd &&
1807 beacon_int_gcd < c->beacon_int_min_gcd)
1808 goto cont;
1809 if (!c->beacon_int_min_gcd && beacon_int_different)
1810 goto cont;
1811 }
1812
1813 /* This combination covered all interface types and
1814 * supported the requested numbers, so we're good.
1815 */
1816
1817 (*iter)(c, data);
1818 cont:
1819 kfree(limits);
1820 }
1821
1822 return 0;
1823}
1824EXPORT_SYMBOL(cfg80211_iter_combinations);
1825
1826static void
1827cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1828 void *data)
1829{
1830 int *num = data;
1831 (*num)++;
1832}
1833
1834int cfg80211_check_combinations(struct wiphy *wiphy,
1835 struct iface_combination_params *params)
1836{
1837 int err, num = 0;
1838
1839 err = cfg80211_iter_combinations(wiphy, params,
1840 cfg80211_iter_sum_ifcombs, &num);
1841 if (err)
1842 return err;
1843 if (num == 0)
1844 return -EBUSY;
1845
1846 return 0;
1847}
1848EXPORT_SYMBOL(cfg80211_check_combinations);
1849
1850int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1851 const u8 *rates, unsigned int n_rates,
1852 u32 *mask)
1853{
1854 int i, j;
1855
1856 if (!sband)
1857 return -EINVAL;
1858
1859 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1860 return -EINVAL;
1861
1862 *mask = 0;
1863
1864 for (i = 0; i < n_rates; i++) {
1865 int rate = (rates[i] & 0x7f) * 5;
1866 bool found = false;
1867
1868 for (j = 0; j < sband->n_bitrates; j++) {
1869 if (sband->bitrates[j].bitrate == rate) {
1870 found = true;
1871 *mask |= BIT(j);
1872 break;
1873 }
1874 }
1875 if (!found)
1876 return -EINVAL;
1877 }
1878
1879 /*
1880 * mask must have at least one bit set here since we
1881 * didn't accept a 0-length rates array nor allowed
1882 * entries in the array that didn't exist
1883 */
1884
1885 return 0;
1886}
1887
1888unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1889{
1890 enum nl80211_band band;
1891 unsigned int n_channels = 0;
1892
1893 for (band = 0; band < NUM_NL80211_BANDS; band++)
1894 if (wiphy->bands[band])
1895 n_channels += wiphy->bands[band]->n_channels;
1896
1897 return n_channels;
1898}
1899EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1900
1901int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1902 struct station_info *sinfo)
1903{
1904 struct cfg80211_registered_device *rdev;
1905 struct wireless_dev *wdev;
1906
1907 wdev = dev->ieee80211_ptr;
1908 if (!wdev)
1909 return -EOPNOTSUPP;
1910
1911 rdev = wiphy_to_rdev(wdev->wiphy);
1912 if (!rdev->ops->get_station)
1913 return -EOPNOTSUPP;
1914
1915 memset(sinfo, 0, sizeof(*sinfo));
1916
1917 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1918}
1919EXPORT_SYMBOL(cfg80211_get_station);
1920
1921void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1922{
1923 int i;
1924
1925 if (!f)
1926 return;
1927
1928 kfree(f->serv_spec_info);
1929 kfree(f->srf_bf);
1930 kfree(f->srf_macs);
1931 for (i = 0; i < f->num_rx_filters; i++)
1932 kfree(f->rx_filters[i].filter);
1933
1934 for (i = 0; i < f->num_tx_filters; i++)
1935 kfree(f->tx_filters[i].filter);
1936
1937 kfree(f->rx_filters);
1938 kfree(f->tx_filters);
1939 kfree(f);
1940}
1941EXPORT_SYMBOL(cfg80211_free_nan_func);
1942
1943bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1944 u32 center_freq_khz, u32 bw_khz)
1945{
1946 u32 start_freq_khz, end_freq_khz;
1947
1948 start_freq_khz = center_freq_khz - (bw_khz / 2);
1949 end_freq_khz = center_freq_khz + (bw_khz / 2);
1950
1951 if (start_freq_khz >= freq_range->start_freq_khz &&
1952 end_freq_khz <= freq_range->end_freq_khz)
1953 return true;
1954
1955 return false;
1956}
1957
1958int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1959{
1960 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1961 sizeof(*(sinfo->pertid)),
1962 gfp);
1963 if (!sinfo->pertid)
1964 return -ENOMEM;
1965
1966 return 0;
1967}
1968EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1969
1970/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1971/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1972const unsigned char rfc1042_header[] __aligned(2) =
1973 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1974EXPORT_SYMBOL(rfc1042_header);
1975
1976/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1977const unsigned char bridge_tunnel_header[] __aligned(2) =
1978 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1979EXPORT_SYMBOL(bridge_tunnel_header);
1980
1981/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1982struct iapp_layer2_update {
1983 u8 da[ETH_ALEN]; /* broadcast */
1984 u8 sa[ETH_ALEN]; /* STA addr */
1985 __be16 len; /* 6 */
1986 u8 dsap; /* 0 */
1987 u8 ssap; /* 0 */
1988 u8 control;
1989 u8 xid_info[3];
1990} __packed;
1991
1992void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1993{
1994 struct iapp_layer2_update *msg;
1995 struct sk_buff *skb;
1996
1997 /* Send Level 2 Update Frame to update forwarding tables in layer 2
1998 * bridge devices */
1999
2000 skb = dev_alloc_skb(sizeof(*msg));
2001 if (!skb)
2002 return;
2003 msg = skb_put(skb, sizeof(*msg));
2004
2005 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2006 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2007
2008 eth_broadcast_addr(msg->da);
2009 ether_addr_copy(msg->sa, addr);
2010 msg->len = htons(6);
2011 msg->dsap = 0;
2012 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2013 msg->control = 0xaf; /* XID response lsb.1111F101.
2014 * F=0 (no poll command; unsolicited frame) */
2015 msg->xid_info[0] = 0x81; /* XID format identifier */
2016 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2017 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2018
2019 skb->dev = dev;
2020 skb->protocol = eth_type_trans(skb, dev);
2021 memset(skb->cb, 0, sizeof(skb->cb));
2022 netif_rx_ni(skb);
2023}
2024EXPORT_SYMBOL(cfg80211_send_layer2_update);
2025
2026int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2027 enum ieee80211_vht_chanwidth bw,
2028 int mcs, bool ext_nss_bw_capable)
2029{
2030 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2031 int max_vht_nss = 0;
2032 int ext_nss_bw;
2033 int supp_width;
2034 int i, mcs_encoding;
2035
2036 if (map == 0xffff)
2037 return 0;
2038
2039 if (WARN_ON(mcs > 9))
2040 return 0;
2041 if (mcs <= 7)
2042 mcs_encoding = 0;
2043 else if (mcs == 8)
2044 mcs_encoding = 1;
2045 else
2046 mcs_encoding = 2;
2047
2048 /* find max_vht_nss for the given MCS */
2049 for (i = 7; i >= 0; i--) {
2050 int supp = (map >> (2 * i)) & 3;
2051
2052 if (supp == 3)
2053 continue;
2054
2055 if (supp >= mcs_encoding) {
2056 max_vht_nss = i + 1;
2057 break;
2058 }
2059 }
2060
2061 if (!(cap->supp_mcs.tx_mcs_map &
2062 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2063 return max_vht_nss;
2064
2065 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2066 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2067 supp_width = le32_get_bits(cap->vht_cap_info,
2068 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2069
2070 /* if not capable, treat ext_nss_bw as 0 */
2071 if (!ext_nss_bw_capable)
2072 ext_nss_bw = 0;
2073
2074 /* This is invalid */
2075 if (supp_width == 3)
2076 return 0;
2077
2078 /* This is an invalid combination so pretend nothing is supported */
2079 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2080 return 0;
2081
2082 /*
2083 * Cover all the special cases according to IEEE 802.11-2016
2084 * Table 9-250. All other cases are either factor of 1 or not
2085 * valid/supported.
2086 */
2087 switch (bw) {
2088 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2089 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2090 if ((supp_width == 1 || supp_width == 2) &&
2091 ext_nss_bw == 3)
2092 return 2 * max_vht_nss;
2093 break;
2094 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2095 if (supp_width == 0 &&
2096 (ext_nss_bw == 1 || ext_nss_bw == 2))
2097 return max_vht_nss / 2;
2098 if (supp_width == 0 &&
2099 ext_nss_bw == 3)
2100 return (3 * max_vht_nss) / 4;
2101 if (supp_width == 1 &&
2102 ext_nss_bw == 3)
2103 return 2 * max_vht_nss;
2104 break;
2105 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2106 if (supp_width == 0 && ext_nss_bw == 1)
2107 return 0; /* not possible */
2108 if (supp_width == 0 &&
2109 ext_nss_bw == 2)
2110 return max_vht_nss / 2;
2111 if (supp_width == 0 &&
2112 ext_nss_bw == 3)
2113 return (3 * max_vht_nss) / 4;
2114 if (supp_width == 1 &&
2115 ext_nss_bw == 0)
2116 return 0; /* not possible */
2117 if (supp_width == 1 &&
2118 ext_nss_bw == 1)
2119 return max_vht_nss / 2;
2120 if (supp_width == 1 &&
2121 ext_nss_bw == 2)
2122 return (3 * max_vht_nss) / 4;
2123 break;
2124 }
2125
2126 /* not covered or invalid combination received */
2127 return max_vht_nss;
2128}
2129EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2130
2131bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2132 bool is_4addr, u8 check_swif)
2133
2134{
2135 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2136
2137 switch (check_swif) {
2138 case 0:
2139 if (is_vlan && is_4addr)
2140 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2141 return wiphy->interface_modes & BIT(iftype);
2142 case 1:
2143 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2144 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2145 return wiphy->software_iftypes & BIT(iftype);
2146 default:
2147 break;
2148 }
2149
2150 return false;
2151}
2152EXPORT_SYMBOL(cfg80211_iftype_allowed);