Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2023 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27const struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
 
  47{
  48	struct ieee80211_rate *bitrates;
  49	u32 mandatory_rates = 0;
  50	enum ieee80211_rate_flags mandatory_flag;
  51	int i;
  52
  53	if (WARN_ON(!sband))
  54		return 1;
  55
  56	if (sband->band == NL80211_BAND_2GHZ)
  57		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  58	else
 
 
 
 
  59		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 
  60
  61	bitrates = sband->bitrates;
  62	for (i = 0; i < sband->n_bitrates; i++)
  63		if (bitrates[i].flags & mandatory_flag)
  64			mandatory_rates |= BIT(i);
  65	return mandatory_rates;
  66}
  67EXPORT_SYMBOL(ieee80211_mandatory_rates);
  68
  69u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  70{
  71	/* see 802.11 17.3.8.3.2 and Annex J
  72	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  73	if (chan <= 0)
  74		return 0; /* not supported */
  75	switch (band) {
  76	case NL80211_BAND_2GHZ:
  77	case NL80211_BAND_LC:
  78		if (chan == 14)
  79			return MHZ_TO_KHZ(2484);
  80		else if (chan < 14)
  81			return MHZ_TO_KHZ(2407 + chan * 5);
  82		break;
  83	case NL80211_BAND_5GHZ:
  84		if (chan >= 182 && chan <= 196)
  85			return MHZ_TO_KHZ(4000 + chan * 5);
  86		else
  87			return MHZ_TO_KHZ(5000 + chan * 5);
  88		break;
  89	case NL80211_BAND_6GHZ:
  90		/* see 802.11ax D6.1 27.3.23.2 */
  91		if (chan == 2)
  92			return MHZ_TO_KHZ(5935);
  93		if (chan <= 233)
  94			return MHZ_TO_KHZ(5950 + chan * 5);
  95		break;
  96	case NL80211_BAND_60GHZ:
  97		if (chan < 7)
  98			return MHZ_TO_KHZ(56160 + chan * 2160);
  99		break;
 100	case NL80211_BAND_S1GHZ:
 101		return 902000 + chan * 500;
 102	default:
 103		;
 104	}
 105	return 0; /* not supported */
 106}
 107EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 108
 109enum nl80211_chan_width
 110ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
 111{
 112	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
 113		return NL80211_CHAN_WIDTH_20_NOHT;
 114
 115	/*S1G defines a single allowed channel width per channel.
 116	 * Extract that width here.
 117	 */
 118	if (chan->flags & IEEE80211_CHAN_1MHZ)
 119		return NL80211_CHAN_WIDTH_1;
 120	else if (chan->flags & IEEE80211_CHAN_2MHZ)
 121		return NL80211_CHAN_WIDTH_2;
 122	else if (chan->flags & IEEE80211_CHAN_4MHZ)
 123		return NL80211_CHAN_WIDTH_4;
 124	else if (chan->flags & IEEE80211_CHAN_8MHZ)
 125		return NL80211_CHAN_WIDTH_8;
 126	else if (chan->flags & IEEE80211_CHAN_16MHZ)
 127		return NL80211_CHAN_WIDTH_16;
 128
 129	pr_err("unknown channel width for channel at %dKHz?\n",
 130	       ieee80211_channel_to_khz(chan));
 131
 132	return NL80211_CHAN_WIDTH_1;
 133}
 134EXPORT_SYMBOL(ieee80211_s1g_channel_width);
 135
 136int ieee80211_freq_khz_to_channel(u32 freq)
 137{
 138	/* TODO: just handle MHz for now */
 139	freq = KHZ_TO_MHZ(freq);
 140
 141	/* see 802.11 17.3.8.3.2 and Annex J */
 142	if (freq == 2484)
 143		return 14;
 144	else if (freq < 2484)
 145		return (freq - 2407) / 5;
 146	else if (freq >= 4910 && freq <= 4980)
 147		return (freq - 4000) / 5;
 148	else if (freq < 5925)
 149		return (freq - 5000) / 5;
 150	else if (freq == 5935)
 151		return 2;
 152	else if (freq <= 45000) /* DMG band lower limit */
 153		/* see 802.11ax D6.1 27.3.22.2 */
 154		return (freq - 5950) / 5;
 155	else if (freq >= 58320 && freq <= 70200)
 156		return (freq - 56160) / 2160;
 157	else
 158		return 0;
 159}
 160EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 161
 162struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 163						    u32 freq)
 164{
 165	enum nl80211_band band;
 166	struct ieee80211_supported_band *sband;
 167	int i;
 168
 169	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 170		sband = wiphy->bands[band];
 171
 172		if (!sband)
 173			continue;
 174
 175		for (i = 0; i < sband->n_channels; i++) {
 176			struct ieee80211_channel *chan = &sband->channels[i];
 177
 178			if (ieee80211_channel_to_khz(chan) == freq)
 179				return chan;
 180		}
 181	}
 182
 183	return NULL;
 184}
 185EXPORT_SYMBOL(ieee80211_get_channel_khz);
 186
 187static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 
 188{
 189	int i, want;
 190
 191	switch (sband->band) {
 192	case NL80211_BAND_5GHZ:
 193	case NL80211_BAND_6GHZ:
 194		want = 3;
 195		for (i = 0; i < sband->n_bitrates; i++) {
 196			if (sband->bitrates[i].bitrate == 60 ||
 197			    sband->bitrates[i].bitrate == 120 ||
 198			    sband->bitrates[i].bitrate == 240) {
 199				sband->bitrates[i].flags |=
 200					IEEE80211_RATE_MANDATORY_A;
 201				want--;
 202			}
 203		}
 204		WARN_ON(want);
 205		break;
 206	case NL80211_BAND_2GHZ:
 207	case NL80211_BAND_LC:
 208		want = 7;
 209		for (i = 0; i < sband->n_bitrates; i++) {
 210			switch (sband->bitrates[i].bitrate) {
 211			case 10:
 212			case 20:
 213			case 55:
 214			case 110:
 215				sband->bitrates[i].flags |=
 216					IEEE80211_RATE_MANDATORY_B |
 217					IEEE80211_RATE_MANDATORY_G;
 218				want--;
 219				break;
 220			case 60:
 221			case 120:
 222			case 240:
 
 
 
 
 223				sband->bitrates[i].flags |=
 224					IEEE80211_RATE_MANDATORY_G;
 225				want--;
 226				fallthrough;
 227			default:
 
 
 
 
 228				sband->bitrates[i].flags |=
 229					IEEE80211_RATE_ERP_G;
 230				break;
 231			}
 232		}
 233		WARN_ON(want != 0 && want != 3);
 234		break;
 235	case NL80211_BAND_60GHZ:
 236		/* check for mandatory HT MCS 1..4 */
 237		WARN_ON(!sband->ht_cap.ht_supported);
 238		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 239		break;
 240	case NL80211_BAND_S1GHZ:
 241		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 242		 * mandatory is ok.
 243		 */
 244		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 245		break;
 246	case NUM_NL80211_BANDS:
 247	default:
 248		WARN_ON(1);
 249		break;
 250	}
 251}
 252
 253void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 254{
 255	enum nl80211_band band;
 256
 257	for (band = 0; band < NUM_NL80211_BANDS; band++)
 258		if (wiphy->bands[band])
 259			set_mandatory_flags_band(wiphy->bands[band]);
 260}
 261
 262bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 263{
 264	int i;
 265	for (i = 0; i < wiphy->n_cipher_suites; i++)
 266		if (cipher == wiphy->cipher_suites[i])
 267			return true;
 268	return false;
 269}
 270
 271static bool
 272cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
 273{
 274	struct wiphy *wiphy = &rdev->wiphy;
 275	int i;
 276
 277	for (i = 0; i < wiphy->n_cipher_suites; i++) {
 278		switch (wiphy->cipher_suites[i]) {
 279		case WLAN_CIPHER_SUITE_AES_CMAC:
 280		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 281		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 282		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 283			return true;
 284		}
 285	}
 286
 287	return false;
 288}
 289
 290bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
 291			    int key_idx, bool pairwise)
 292{
 293	int max_key_idx;
 294
 295	if (pairwise)
 296		max_key_idx = 3;
 297	else if (wiphy_ext_feature_isset(&rdev->wiphy,
 298					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 299		 wiphy_ext_feature_isset(&rdev->wiphy,
 300					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 301		max_key_idx = 7;
 302	else if (cfg80211_igtk_cipher_supported(rdev))
 303		max_key_idx = 5;
 304	else
 305		max_key_idx = 3;
 306
 307	if (key_idx < 0 || key_idx > max_key_idx)
 308		return false;
 309
 310	return true;
 311}
 312
 313int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 314				   struct key_params *params, int key_idx,
 315				   bool pairwise, const u8 *mac_addr)
 316{
 317	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
 318		return -EINVAL;
 319
 320	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 321		return -EINVAL;
 322
 323	if (pairwise && !mac_addr)
 324		return -EINVAL;
 325
 326	switch (params->cipher) {
 327	case WLAN_CIPHER_SUITE_TKIP:
 328		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 329		if ((pairwise && key_idx) ||
 330		    params->mode != NL80211_KEY_RX_TX)
 331			return -EINVAL;
 332		break;
 333	case WLAN_CIPHER_SUITE_CCMP:
 334	case WLAN_CIPHER_SUITE_CCMP_256:
 335	case WLAN_CIPHER_SUITE_GCMP:
 336	case WLAN_CIPHER_SUITE_GCMP_256:
 337		/* IEEE802.11-2016 allows only 0 and - when supporting
 338		 * Extended Key ID - 1 as index for pairwise keys.
 339		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 340		 * the driver supports Extended Key ID.
 341		 * @NL80211_KEY_SET_TX can't be set when installing and
 342		 * validating a key.
 343		 */
 344		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 345		    params->mode == NL80211_KEY_SET_TX)
 346			return -EINVAL;
 347		if (wiphy_ext_feature_isset(&rdev->wiphy,
 348					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 349			if (pairwise && (key_idx < 0 || key_idx > 1))
 350				return -EINVAL;
 351		} else if (pairwise && key_idx) {
 352			return -EINVAL;
 353		}
 354		break;
 355	case WLAN_CIPHER_SUITE_AES_CMAC:
 356	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 357	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 358	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 359		/* Disallow BIP (group-only) cipher as pairwise cipher */
 360		if (pairwise)
 361			return -EINVAL;
 362		if (key_idx < 4)
 363			return -EINVAL;
 364		break;
 365	case WLAN_CIPHER_SUITE_WEP40:
 366	case WLAN_CIPHER_SUITE_WEP104:
 367		if (key_idx > 3)
 368			return -EINVAL;
 369		break;
 370	default:
 371		break;
 372	}
 373
 374	switch (params->cipher) {
 375	case WLAN_CIPHER_SUITE_WEP40:
 376		if (params->key_len != WLAN_KEY_LEN_WEP40)
 377			return -EINVAL;
 378		break;
 379	case WLAN_CIPHER_SUITE_TKIP:
 380		if (params->key_len != WLAN_KEY_LEN_TKIP)
 381			return -EINVAL;
 382		break;
 383	case WLAN_CIPHER_SUITE_CCMP:
 384		if (params->key_len != WLAN_KEY_LEN_CCMP)
 385			return -EINVAL;
 386		break;
 387	case WLAN_CIPHER_SUITE_CCMP_256:
 388		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 389			return -EINVAL;
 390		break;
 391	case WLAN_CIPHER_SUITE_GCMP:
 392		if (params->key_len != WLAN_KEY_LEN_GCMP)
 393			return -EINVAL;
 394		break;
 395	case WLAN_CIPHER_SUITE_GCMP_256:
 396		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 397			return -EINVAL;
 398		break;
 399	case WLAN_CIPHER_SUITE_WEP104:
 400		if (params->key_len != WLAN_KEY_LEN_WEP104)
 401			return -EINVAL;
 402		break;
 403	case WLAN_CIPHER_SUITE_AES_CMAC:
 404		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 405			return -EINVAL;
 406		break;
 407	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 408		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 409			return -EINVAL;
 410		break;
 411	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 412		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 413			return -EINVAL;
 414		break;
 415	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 416		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 417			return -EINVAL;
 418		break;
 419	default:
 420		/*
 421		 * We don't know anything about this algorithm,
 422		 * allow using it -- but the driver must check
 423		 * all parameters! We still check below whether
 424		 * or not the driver supports this algorithm,
 425		 * of course.
 426		 */
 427		break;
 428	}
 429
 430	if (params->seq) {
 431		switch (params->cipher) {
 432		case WLAN_CIPHER_SUITE_WEP40:
 433		case WLAN_CIPHER_SUITE_WEP104:
 434			/* These ciphers do not use key sequence */
 435			return -EINVAL;
 436		case WLAN_CIPHER_SUITE_TKIP:
 437		case WLAN_CIPHER_SUITE_CCMP:
 438		case WLAN_CIPHER_SUITE_CCMP_256:
 439		case WLAN_CIPHER_SUITE_GCMP:
 440		case WLAN_CIPHER_SUITE_GCMP_256:
 441		case WLAN_CIPHER_SUITE_AES_CMAC:
 442		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 443		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 444		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 445			if (params->seq_len != 6)
 446				return -EINVAL;
 447			break;
 448		}
 449	}
 450
 451	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 452		return -EINVAL;
 453
 454	return 0;
 455}
 456
 457unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 458{
 459	unsigned int hdrlen = 24;
 460
 461	if (ieee80211_is_ext(fc)) {
 462		hdrlen = 4;
 463		goto out;
 464	}
 465
 466	if (ieee80211_is_data(fc)) {
 467		if (ieee80211_has_a4(fc))
 468			hdrlen = 30;
 469		if (ieee80211_is_data_qos(fc)) {
 470			hdrlen += IEEE80211_QOS_CTL_LEN;
 471			if (ieee80211_has_order(fc))
 472				hdrlen += IEEE80211_HT_CTL_LEN;
 473		}
 474		goto out;
 475	}
 476
 477	if (ieee80211_is_mgmt(fc)) {
 478		if (ieee80211_has_order(fc))
 479			hdrlen += IEEE80211_HT_CTL_LEN;
 480		goto out;
 481	}
 482
 483	if (ieee80211_is_ctl(fc)) {
 484		/*
 485		 * ACK and CTS are 10 bytes, all others 16. To see how
 486		 * to get this condition consider
 487		 *   subtype mask:   0b0000000011110000 (0x00F0)
 488		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 489		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 490		 *   bits that matter:         ^^^      (0x00E0)
 491		 *   value of those: 0b0000000011000000 (0x00C0)
 492		 */
 493		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 494			hdrlen = 10;
 495		else
 496			hdrlen = 16;
 497	}
 498out:
 499	return hdrlen;
 500}
 501EXPORT_SYMBOL(ieee80211_hdrlen);
 502
 503unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 504{
 505	const struct ieee80211_hdr *hdr =
 506			(const struct ieee80211_hdr *)skb->data;
 507	unsigned int hdrlen;
 508
 509	if (unlikely(skb->len < 10))
 510		return 0;
 511	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 512	if (unlikely(hdrlen > skb->len))
 513		return 0;
 514	return hdrlen;
 515}
 516EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 517
 518static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 519{
 520	int ae = flags & MESH_FLAGS_AE;
 521	/* 802.11-2012, 8.2.4.7.3 */
 522	switch (ae) {
 523	default:
 524	case 0:
 525		return 6;
 526	case MESH_FLAGS_AE_A4:
 527		return 12;
 528	case MESH_FLAGS_AE_A5_A6:
 529		return 18;
 530	}
 531}
 532
 533unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 534{
 535	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 536}
 537EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 538
 539bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
 540{
 541	const __be16 *hdr_proto = hdr + ETH_ALEN;
 542
 543	if (!(ether_addr_equal(hdr, rfc1042_header) &&
 544	      *hdr_proto != htons(ETH_P_AARP) &&
 545	      *hdr_proto != htons(ETH_P_IPX)) &&
 546	    !ether_addr_equal(hdr, bridge_tunnel_header))
 547		return false;
 548
 549	*proto = *hdr_proto;
 550
 551	return true;
 552}
 553EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
 554
 555int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
 556{
 557	const void *mesh_addr;
 558	struct {
 559		struct ethhdr eth;
 560		u8 flags;
 561	} payload;
 562	int hdrlen;
 563	int ret;
 564
 565	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
 566	if (ret)
 567		return ret;
 568
 569	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
 570
 571	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
 572		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
 573						   &payload.eth.h_proto)))
 574		hdrlen += ETH_ALEN + 2;
 575	else if (!pskb_may_pull(skb, hdrlen))
 576		return -EINVAL;
 577	else
 578		payload.eth.h_proto = htons(skb->len - hdrlen);
 579
 580	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
 581	switch (payload.flags & MESH_FLAGS_AE) {
 582	case MESH_FLAGS_AE_A4:
 583		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
 584		break;
 585	case MESH_FLAGS_AE_A5_A6:
 586		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
 587		break;
 588	default:
 589		break;
 590	}
 591
 592	pskb_pull(skb, hdrlen - sizeof(payload.eth));
 593	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
 594
 595	return 0;
 596}
 597EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
 598
 599int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 600				  const u8 *addr, enum nl80211_iftype iftype,
 601				  u8 data_offset, bool is_amsdu)
 602{
 603	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 604	struct {
 605		u8 hdr[ETH_ALEN] __aligned(2);
 606		__be16 proto;
 607	} payload;
 608	struct ethhdr tmp;
 609	u16 hdrlen;
 
 610
 611	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 612		return -1;
 613
 614	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 615	if (skb->len < hdrlen)
 616		return -1;
 617
 618	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 619	 * header
 620	 * IEEE 802.11 address fields:
 621	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 622	 *   0     0   DA    SA    BSSID n/a
 623	 *   0     1   DA    BSSID SA    n/a
 624	 *   1     0   BSSID SA    DA    n/a
 625	 *   1     1   RA    TA    DA    SA
 626	 */
 627	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 628	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 629
 
 
 
 630	switch (hdr->frame_control &
 631		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 632	case cpu_to_le16(IEEE80211_FCTL_TODS):
 633		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 634			     iftype != NL80211_IFTYPE_AP_VLAN &&
 635			     iftype != NL80211_IFTYPE_P2P_GO))
 636			return -1;
 637		break;
 638	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 639		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
 
 640			     iftype != NL80211_IFTYPE_AP_VLAN &&
 641			     iftype != NL80211_IFTYPE_STATION))
 642			return -1;
 
 
 
 
 
 
 
 
 
 
 643		break;
 644	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 645		if ((iftype != NL80211_IFTYPE_STATION &&
 646		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 647		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 648		    (is_multicast_ether_addr(tmp.h_dest) &&
 649		     ether_addr_equal(tmp.h_source, addr)))
 650			return -1;
 
 
 
 
 
 
 
 
 
 651		break;
 652	case cpu_to_le16(0):
 653		if (iftype != NL80211_IFTYPE_ADHOC &&
 654		    iftype != NL80211_IFTYPE_STATION &&
 655		    iftype != NL80211_IFTYPE_OCB)
 656				return -1;
 657		break;
 658	}
 659
 660	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
 661		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
 662		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
 663		/* remove RFC1042 or Bridge-Tunnel encapsulation */
 
 
 
 
 
 664		hdrlen += ETH_ALEN + 2;
 665		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
 666	} else {
 667		tmp.h_proto = htons(skb->len - hdrlen);
 668	}
 669
 670	pskb_pull(skb, hdrlen);
 671
 672	if (!ehdr)
 673		ehdr = skb_push(skb, sizeof(struct ethhdr));
 674	memcpy(ehdr, &tmp, sizeof(tmp));
 675
 676	return 0;
 677}
 678EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679
 680static void
 681__frame_add_frag(struct sk_buff *skb, struct page *page,
 682		 void *ptr, int len, int size)
 683{
 684	struct skb_shared_info *sh = skb_shinfo(skb);
 685	int page_offset;
 686
 687	get_page(page);
 688	page_offset = ptr - page_address(page);
 689	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 690}
 691
 692static void
 693__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 694			    int offset, int len)
 695{
 696	struct skb_shared_info *sh = skb_shinfo(skb);
 697	const skb_frag_t *frag = &sh->frags[0];
 698	struct page *frag_page;
 699	void *frag_ptr;
 700	int frag_len, frag_size;
 701	int head_size = skb->len - skb->data_len;
 702	int cur_len;
 703
 704	frag_page = virt_to_head_page(skb->head);
 705	frag_ptr = skb->data;
 706	frag_size = head_size;
 707
 708	while (offset >= frag_size) {
 709		offset -= frag_size;
 
 710		frag_page = skb_frag_page(frag);
 711		frag_ptr = skb_frag_address(frag);
 712		frag_size = skb_frag_size(frag);
 713		frag++;
 714	}
 715
 716	frag_ptr += offset;
 717	frag_len = frag_size - offset;
 718
 719	cur_len = min(len, frag_len);
 720
 721	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 722	len -= cur_len;
 723
 724	while (len > 0) {
 
 725		frag_len = skb_frag_size(frag);
 726		cur_len = min(len, frag_len);
 727		__frame_add_frag(frame, skb_frag_page(frag),
 728				 skb_frag_address(frag), cur_len, frag_len);
 729		len -= cur_len;
 730		frag++;
 731	}
 732}
 733
 734static struct sk_buff *
 735__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 736		       int offset, int len, bool reuse_frag,
 737		       int min_len)
 738{
 739	struct sk_buff *frame;
 740	int cur_len = len;
 741
 742	if (skb->len - offset < len)
 743		return NULL;
 744
 745	/*
 746	 * When reusing fragments, copy some data to the head to simplify
 747	 * ethernet header handling and speed up protocol header processing
 748	 * in the stack later.
 749	 */
 750	if (reuse_frag)
 751		cur_len = min_t(int, len, min_len);
 752
 753	/*
 754	 * Allocate and reserve two bytes more for payload
 755	 * alignment since sizeof(struct ethhdr) is 14.
 756	 */
 757	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 758	if (!frame)
 759		return NULL;
 760
 761	frame->priority = skb->priority;
 762	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 763	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 764
 765	len -= cur_len;
 766	if (!len)
 767		return frame;
 768
 769	offset += cur_len;
 770	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 771
 772	return frame;
 773}
 774
 775static u16
 776ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
 777{
 778	__le16 *field_le = field;
 779	__be16 *field_be = field;
 780	u16 len;
 781
 782	if (hdr_type >= 2)
 783		len = le16_to_cpu(*field_le);
 784	else
 785		len = be16_to_cpu(*field_be);
 786	if (hdr_type)
 787		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
 788
 789	return len;
 790}
 791
 792bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
 793{
 794	int offset = 0, subframe_len, padding;
 795
 796	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
 797		int remaining = skb->len - offset;
 798		struct {
 799		    __be16 len;
 800		    u8 mesh_flags;
 801		} hdr;
 802		u16 len;
 803
 804		if (sizeof(hdr) > remaining)
 805			return false;
 806
 807		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
 808			return false;
 809
 810		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
 811						      mesh_hdr);
 812		subframe_len = sizeof(struct ethhdr) + len;
 813		padding = (4 - subframe_len) & 0x3;
 814
 815		if (subframe_len > remaining)
 816			return false;
 817	}
 818
 819	return true;
 820}
 821EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
 822
 823void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 824			      const u8 *addr, enum nl80211_iftype iftype,
 825			      const unsigned int extra_headroom,
 826			      const u8 *check_da, const u8 *check_sa,
 827			      u8 mesh_control)
 828{
 829	unsigned int hlen = ALIGN(extra_headroom, 4);
 830	struct sk_buff *frame = NULL;
 831	int offset = 0;
 832	struct {
 833		struct ethhdr eth;
 834		uint8_t flags;
 835	} hdr;
 836	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 837	bool reuse_skb = false;
 838	bool last = false;
 839	int copy_len = sizeof(hdr.eth);
 840
 841	if (iftype == NL80211_IFTYPE_MESH_POINT)
 842		copy_len = sizeof(hdr);
 
 
 
 843
 844	while (!last) {
 845		int remaining = skb->len - offset;
 846		unsigned int subframe_len;
 847		int len, mesh_len = 0;
 848		u8 padding;
 849
 850		if (copy_len > remaining)
 851			goto purge;
 852
 853		skb_copy_bits(skb, offset, &hdr, copy_len);
 854		if (iftype == NL80211_IFTYPE_MESH_POINT)
 855			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
 856		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
 857						      mesh_control);
 858		subframe_len = sizeof(struct ethhdr) + len;
 859		padding = (4 - subframe_len) & 0x3;
 860
 861		/* the last MSDU has no padding */
 
 862		if (subframe_len > remaining)
 863			goto purge;
 864		/* mitigate A-MSDU aggregation injection attacks */
 865		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
 866			goto purge;
 867
 868		offset += sizeof(struct ethhdr);
 869		last = remaining <= subframe_len + padding;
 870
 871		/* FIXME: should we really accept multicast DA? */
 872		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
 873		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
 874		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
 875			offset += len + padding;
 876			continue;
 877		}
 878
 879		/* reuse skb for the last subframe */
 
 880		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 881			skb_pull(skb, offset);
 882			frame = skb;
 883			reuse_skb = true;
 884		} else {
 885			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 886						       reuse_frag, 32 + mesh_len);
 887			if (!frame)
 888				goto purge;
 889
 890			offset += len + padding;
 891		}
 892
 893		skb_reset_network_header(frame);
 894		frame->dev = skb->dev;
 895		frame->priority = skb->priority;
 896
 897		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
 898			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
 
 
 
 
 899			skb_pull(frame, ETH_ALEN + 2);
 
 900
 901		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
 902		__skb_queue_tail(list, frame);
 903	}
 904
 905	if (!reuse_skb)
 906		dev_kfree_skb(skb);
 907
 908	return;
 909
 910 purge:
 911	__skb_queue_purge(list);
 
 912	dev_kfree_skb(skb);
 913}
 914EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 915
 916/* Given a data frame determine the 802.1p/1d tag to use. */
 917unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 918				    struct cfg80211_qos_map *qos_map)
 919{
 920	unsigned int dscp;
 921	unsigned char vlan_priority;
 922	unsigned int ret;
 923
 924	/* skb->priority values from 256->263 are magic values to
 925	 * directly indicate a specific 802.1d priority.  This is used
 926	 * to allow 802.1d priority to be passed directly in from VLAN
 927	 * tags, etc.
 928	 */
 929	if (skb->priority >= 256 && skb->priority <= 263) {
 930		ret = skb->priority - 256;
 931		goto out;
 932	}
 933
 934	if (skb_vlan_tag_present(skb)) {
 935		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 936			>> VLAN_PRIO_SHIFT;
 937		if (vlan_priority > 0) {
 938			ret = vlan_priority;
 939			goto out;
 940		}
 941	}
 942
 943	switch (skb->protocol) {
 944	case htons(ETH_P_IP):
 945		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 946		break;
 947	case htons(ETH_P_IPV6):
 948		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 949		break;
 950	case htons(ETH_P_MPLS_UC):
 951	case htons(ETH_P_MPLS_MC): {
 952		struct mpls_label mpls_tmp, *mpls;
 953
 954		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 955					  sizeof(*mpls), &mpls_tmp);
 956		if (!mpls)
 957			return 0;
 958
 959		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 960			>> MPLS_LS_TC_SHIFT;
 961		goto out;
 962	}
 963	case htons(ETH_P_80221):
 964		/* 802.21 is always network control traffic */
 965		return 7;
 966	default:
 967		return 0;
 968	}
 969
 970	if (qos_map) {
 971		unsigned int i, tmp_dscp = dscp >> 2;
 972
 973		for (i = 0; i < qos_map->num_des; i++) {
 974			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 975				ret = qos_map->dscp_exception[i].up;
 976				goto out;
 977			}
 978		}
 979
 980		for (i = 0; i < 8; i++) {
 981			if (tmp_dscp >= qos_map->up[i].low &&
 982			    tmp_dscp <= qos_map->up[i].high) {
 983				ret = i;
 984				goto out;
 985			}
 986		}
 987	}
 988
 989	/* The default mapping as defined Section 2.3 in RFC8325: The three
 990	 * Most Significant Bits (MSBs) of the DSCP are used as the
 991	 * corresponding L2 markings.
 992	 */
 993	ret = dscp >> 5;
 994
 995	/* Handle specific DSCP values for which the default mapping (as
 996	 * described above) doesn't adhere to the intended usage of the DSCP
 997	 * value. See section 4 in RFC8325. Specifically, for the following
 998	 * Diffserv Service Classes no update is needed:
 999	 * - Standard: DF
1000	 * - Low Priority Data: CS1
1001	 * - Multimedia Conferencing: AF41, AF42, AF43
1002	 * - Network Control Traffic: CS7
1003	 * - Real-Time Interactive: CS4
1004	 * - Signaling: CS5
1005	 */
1006	switch (dscp >> 2) {
1007	case 10:
1008	case 12:
1009	case 14:
1010		/* High throughput data: AF11, AF12, AF13 */
1011		ret = 0;
1012		break;
1013	case 16:
1014		/* Operations, Administration, and Maintenance and Provisioning:
1015		 * CS2
1016		 */
1017		ret = 0;
1018		break;
1019	case 18:
1020	case 20:
1021	case 22:
1022		/* Low latency data: AF21, AF22, AF23 */
1023		ret = 3;
1024		break;
1025	case 24:
1026		/* Broadcasting video: CS3 */
1027		ret = 4;
1028		break;
1029	case 26:
1030	case 28:
1031	case 30:
1032		/* Multimedia Streaming: AF31, AF32, AF33 */
1033		ret = 4;
1034		break;
1035	case 44:
1036		/* Voice Admit: VA */
1037		ret = 6;
1038		break;
1039	case 46:
1040		/* Telephony traffic: EF */
1041		ret = 6;
1042		break;
1043	case 48:
1044		/* Network Control Traffic: CS6 */
1045		ret = 7;
1046		break;
1047	}
1048out:
1049	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1050}
1051EXPORT_SYMBOL(cfg80211_classify8021d);
1052
1053const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1054{
1055	const struct cfg80211_bss_ies *ies;
1056
1057	ies = rcu_dereference(bss->ies);
1058	if (!ies)
1059		return NULL;
1060
1061	return cfg80211_find_elem(id, ies->data, ies->len);
1062}
1063EXPORT_SYMBOL(ieee80211_bss_get_elem);
1064
1065void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1066{
1067	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1068	struct net_device *dev = wdev->netdev;
1069	int i;
1070
1071	if (!wdev->connect_keys)
1072		return;
1073
1074	for (i = 0; i < 4; i++) {
1075		if (!wdev->connect_keys->params[i].cipher)
1076			continue;
1077		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1078				 &wdev->connect_keys->params[i])) {
1079			netdev_err(dev, "failed to set key %d\n", i);
1080			continue;
1081		}
1082		if (wdev->connect_keys->def == i &&
1083		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1084			netdev_err(dev, "failed to set defkey %d\n", i);
1085			continue;
1086		}
 
 
 
1087	}
1088
1089	kfree_sensitive(wdev->connect_keys);
1090	wdev->connect_keys = NULL;
1091}
1092
1093void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1094{
1095	struct cfg80211_event *ev;
1096	unsigned long flags;
 
1097
1098	spin_lock_irqsave(&wdev->event_lock, flags);
1099	while (!list_empty(&wdev->event_list)) {
1100		ev = list_first_entry(&wdev->event_list,
1101				      struct cfg80211_event, list);
1102		list_del(&ev->list);
1103		spin_unlock_irqrestore(&wdev->event_lock, flags);
1104
 
1105		switch (ev->type) {
1106		case EVENT_CONNECT_RESULT:
 
 
1107			__cfg80211_connect_result(
1108				wdev->netdev,
1109				&ev->cr,
1110				ev->cr.status == WLAN_STATUS_SUCCESS);
 
 
 
1111			break;
1112		case EVENT_ROAMED:
1113			__cfg80211_roamed(wdev, &ev->rm);
 
 
1114			break;
1115		case EVENT_DISCONNECTED:
1116			__cfg80211_disconnected(wdev->netdev,
1117						ev->dc.ie, ev->dc.ie_len,
1118						ev->dc.reason,
1119						!ev->dc.locally_generated);
1120			break;
1121		case EVENT_IBSS_JOINED:
1122			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1123					       ev->ij.channel);
1124			break;
1125		case EVENT_STOPPED:
1126			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1127			break;
1128		case EVENT_PORT_AUTHORIZED:
1129			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1130						   ev->pa.td_bitmap,
1131						   ev->pa.td_bitmap_len);
1132			break;
1133		}
 
1134
1135		kfree(ev);
1136
1137		spin_lock_irqsave(&wdev->event_lock, flags);
1138	}
1139	spin_unlock_irqrestore(&wdev->event_lock, flags);
1140}
1141
1142void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1143{
1144	struct wireless_dev *wdev;
1145
1146	lockdep_assert_held(&rdev->wiphy.mtx);
1147
1148	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1149		cfg80211_process_wdev_events(wdev);
1150}
1151
1152int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1153			  struct net_device *dev, enum nl80211_iftype ntype,
1154			  struct vif_params *params)
1155{
1156	int err;
1157	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1158
1159	lockdep_assert_held(&rdev->wiphy.mtx);
1160
1161	/* don't support changing VLANs, you just re-create them */
1162	if (otype == NL80211_IFTYPE_AP_VLAN)
1163		return -EOPNOTSUPP;
1164
1165	/* cannot change into P2P device or NAN */
1166	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1167	    ntype == NL80211_IFTYPE_NAN)
1168		return -EOPNOTSUPP;
1169
1170	if (!rdev->ops->change_virtual_intf ||
1171	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1172		return -EOPNOTSUPP;
1173
1174	if (ntype != otype) {
1175		/* if it's part of a bridge, reject changing type to station/ibss */
1176		if (netif_is_bridge_port(dev) &&
1177		    (ntype == NL80211_IFTYPE_ADHOC ||
1178		     ntype == NL80211_IFTYPE_STATION ||
1179		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1180			return -EBUSY;
1181
 
1182		dev->ieee80211_ptr->use_4addr = false;
 
 
1183		rdev_set_qos_map(rdev, dev, NULL);
 
1184
1185		switch (otype) {
1186		case NL80211_IFTYPE_AP:
1187		case NL80211_IFTYPE_P2P_GO:
1188			cfg80211_stop_ap(rdev, dev, -1, true);
1189			break;
1190		case NL80211_IFTYPE_ADHOC:
1191			cfg80211_leave_ibss(rdev, dev, false);
1192			break;
1193		case NL80211_IFTYPE_STATION:
1194		case NL80211_IFTYPE_P2P_CLIENT:
 
1195			cfg80211_disconnect(rdev, dev,
1196					    WLAN_REASON_DEAUTH_LEAVING, true);
 
1197			break;
1198		case NL80211_IFTYPE_MESH_POINT:
1199			/* mesh should be handled? */
1200			break;
1201		case NL80211_IFTYPE_OCB:
1202			cfg80211_leave_ocb(rdev, dev);
1203			break;
1204		default:
1205			break;
1206		}
1207
1208		cfg80211_process_rdev_events(rdev);
1209		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210
1211		memset(&dev->ieee80211_ptr->u, 0,
1212		       sizeof(dev->ieee80211_ptr->u));
1213		memset(&dev->ieee80211_ptr->links, 0,
1214		       sizeof(dev->ieee80211_ptr->links));
1215	}
1216
1217	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218
1219	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220
1221	if (!err && params && params->use_4addr != -1)
1222		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223
1224	if (!err) {
1225		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226		switch (ntype) {
1227		case NL80211_IFTYPE_STATION:
1228			if (dev->ieee80211_ptr->use_4addr)
1229				break;
1230			fallthrough;
1231		case NL80211_IFTYPE_OCB:
1232		case NL80211_IFTYPE_P2P_CLIENT:
1233		case NL80211_IFTYPE_ADHOC:
1234			dev->priv_flags |= IFF_DONT_BRIDGE;
1235			break;
1236		case NL80211_IFTYPE_P2P_GO:
1237		case NL80211_IFTYPE_AP:
1238		case NL80211_IFTYPE_AP_VLAN:
 
1239		case NL80211_IFTYPE_MESH_POINT:
1240			/* bridging OK */
1241			break;
1242		case NL80211_IFTYPE_MONITOR:
1243			/* monitor can't bridge anyway */
1244			break;
1245		case NL80211_IFTYPE_UNSPECIFIED:
1246		case NUM_NL80211_IFTYPES:
1247			/* not happening */
1248			break;
1249		case NL80211_IFTYPE_P2P_DEVICE:
1250		case NL80211_IFTYPE_WDS:
1251		case NL80211_IFTYPE_NAN:
1252			WARN_ON(1);
1253			break;
1254		}
1255	}
1256
1257	if (!err && ntype != otype && netif_running(dev)) {
1258		cfg80211_update_iface_num(rdev, ntype, 1);
1259		cfg80211_update_iface_num(rdev, otype, -1);
1260	}
1261
1262	return err;
1263}
1264
1265static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266{
1267	int modulation, streams, bitrate;
1268
1269	/* the formula below does only work for MCS values smaller than 32 */
1270	if (WARN_ON_ONCE(rate->mcs >= 32))
1271		return 0;
1272
1273	modulation = rate->mcs & 7;
1274	streams = (rate->mcs >> 3) + 1;
1275
1276	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277
1278	if (modulation < 4)
1279		bitrate *= (modulation + 1);
1280	else if (modulation == 4)
1281		bitrate *= (modulation + 2);
1282	else
1283		bitrate *= (modulation + 3);
1284
1285	bitrate *= streams;
1286
1287	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288		bitrate = (bitrate / 9) * 10;
1289
1290	/* do NOT round down here */
1291	return (bitrate + 50000) / 100000;
1292}
1293
1294static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295{
1296	static const u32 __mcs2bitrate[] = {
1297		/* control PHY */
1298		[0] =   275,
1299		/* SC PHY */
1300		[1] =  3850,
1301		[2] =  7700,
1302		[3] =  9625,
1303		[4] = 11550,
1304		[5] = 12512, /* 1251.25 mbps */
1305		[6] = 15400,
1306		[7] = 19250,
1307		[8] = 23100,
1308		[9] = 25025,
1309		[10] = 30800,
1310		[11] = 38500,
1311		[12] = 46200,
1312		/* OFDM PHY */
1313		[13] =  6930,
1314		[14] =  8662, /* 866.25 mbps */
1315		[15] = 13860,
1316		[16] = 17325,
1317		[17] = 20790,
1318		[18] = 27720,
1319		[19] = 34650,
1320		[20] = 41580,
1321		[21] = 45045,
1322		[22] = 51975,
1323		[23] = 62370,
1324		[24] = 67568, /* 6756.75 mbps */
1325		/* LP-SC PHY */
1326		[25] =  6260,
1327		[26] =  8340,
1328		[27] = 11120,
1329		[28] = 12510,
1330		[29] = 16680,
1331		[30] = 22240,
1332		[31] = 25030,
1333	};
1334
1335	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336		return 0;
1337
1338	return __mcs2bitrate[rate->mcs];
1339}
1340
1341static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342{
1343	static const u32 __mcs2bitrate[] = {
1344		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345		[7 - 6] = 50050, /* MCS 12.1 */
1346		[8 - 6] = 53900,
1347		[9 - 6] = 57750,
1348		[10 - 6] = 63900,
1349		[11 - 6] = 75075,
1350		[12 - 6] = 80850,
1351	};
1352
1353	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355		return 0;
1356
1357	return __mcs2bitrate[rate->mcs - 6];
1358}
1359
1360static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361{
1362	static const u32 __mcs2bitrate[] = {
1363		/* control PHY */
1364		[0] =   275,
1365		/* SC PHY */
1366		[1] =  3850,
1367		[2] =  7700,
1368		[3] =  9625,
1369		[4] = 11550,
1370		[5] = 12512, /* 1251.25 mbps */
1371		[6] = 13475,
1372		[7] = 15400,
1373		[8] = 19250,
1374		[9] = 23100,
1375		[10] = 25025,
1376		[11] = 26950,
1377		[12] = 30800,
1378		[13] = 38500,
1379		[14] = 46200,
1380		[15] = 50050,
1381		[16] = 53900,
1382		[17] = 57750,
1383		[18] = 69300,
1384		[19] = 75075,
1385		[20] = 80850,
1386	};
1387
1388	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389		return 0;
1390
1391	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392}
1393
1394static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395{
1396	static const u32 base[4][12] = {
1397		{   6500000,
1398		   13000000,
1399		   19500000,
1400		   26000000,
1401		   39000000,
1402		   52000000,
1403		   58500000,
1404		   65000000,
1405		   78000000,
1406		/* not in the spec, but some devices use this: */
1407		   86700000,
1408		   97500000,
1409		  108300000,
1410		},
1411		{  13500000,
1412		   27000000,
1413		   40500000,
1414		   54000000,
1415		   81000000,
1416		  108000000,
1417		  121500000,
1418		  135000000,
1419		  162000000,
1420		  180000000,
1421		  202500000,
1422		  225000000,
1423		},
1424		{  29300000,
1425		   58500000,
1426		   87800000,
1427		  117000000,
1428		  175500000,
1429		  234000000,
1430		  263300000,
1431		  292500000,
1432		  351000000,
1433		  390000000,
1434		  438800000,
1435		  487500000,
1436		},
1437		{  58500000,
1438		  117000000,
1439		  175500000,
1440		  234000000,
1441		  351000000,
1442		  468000000,
1443		  526500000,
1444		  585000000,
1445		  702000000,
1446		  780000000,
1447		  877500000,
1448		  975000000,
1449		},
1450	};
1451	u32 bitrate;
1452	int idx;
1453
1454	if (rate->mcs > 11)
1455		goto warn;
1456
1457	switch (rate->bw) {
1458	case RATE_INFO_BW_160:
1459		idx = 3;
1460		break;
1461	case RATE_INFO_BW_80:
1462		idx = 2;
1463		break;
1464	case RATE_INFO_BW_40:
1465		idx = 1;
1466		break;
1467	case RATE_INFO_BW_5:
1468	case RATE_INFO_BW_10:
1469	default:
1470		goto warn;
 
1471	case RATE_INFO_BW_20:
1472		idx = 0;
1473	}
1474
1475	bitrate = base[idx][rate->mcs];
1476	bitrate *= rate->nss;
1477
1478	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479		bitrate = (bitrate / 9) * 10;
1480
1481	/* do NOT round down here */
1482	return (bitrate + 50000) / 100000;
1483 warn:
1484	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485		  rate->bw, rate->mcs, rate->nss);
1486	return 0;
1487}
1488
1489static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490{
1491#define SCALE 6144
1492	u32 mcs_divisors[14] = {
1493		102399, /* 16.666666... */
1494		 51201, /*  8.333333... */
1495		 34134, /*  5.555555... */
1496		 25599, /*  4.166666... */
1497		 17067, /*  2.777777... */
1498		 12801, /*  2.083333... */
1499		 11377, /*  1.851725... */
1500		 10239, /*  1.666666... */
1501		  8532, /*  1.388888... */
1502		  7680, /*  1.250000... */
1503		  6828, /*  1.111111... */
1504		  6144, /*  1.000000... */
1505		  5690, /*  0.926106... */
1506		  5120, /*  0.833333... */
1507	};
1508	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1510	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1511	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1512	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1513	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1514	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1515	u64 tmp;
1516	u32 result;
1517
1518	if (WARN_ON_ONCE(rate->mcs > 13))
1519		return 0;
1520
1521	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522		return 0;
1523	if (WARN_ON_ONCE(rate->he_ru_alloc >
1524			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525		return 0;
1526	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527		return 0;
1528
1529	if (rate->bw == RATE_INFO_BW_160 ||
1530	    (rate->bw == RATE_INFO_BW_HE_RU &&
1531	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532		result = rates_160M[rate->he_gi];
1533	else if (rate->bw == RATE_INFO_BW_80 ||
1534		 (rate->bw == RATE_INFO_BW_HE_RU &&
1535		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536		result = rates_996[rate->he_gi];
1537	else if (rate->bw == RATE_INFO_BW_40 ||
1538		 (rate->bw == RATE_INFO_BW_HE_RU &&
1539		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540		result = rates_484[rate->he_gi];
1541	else if (rate->bw == RATE_INFO_BW_20 ||
1542		 (rate->bw == RATE_INFO_BW_HE_RU &&
1543		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544		result = rates_242[rate->he_gi];
1545	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547		result = rates_106[rate->he_gi];
1548	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550		result = rates_52[rate->he_gi];
1551	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553		result = rates_26[rate->he_gi];
1554	else {
1555		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556		     rate->bw, rate->he_ru_alloc);
1557		return 0;
1558	}
1559
1560	/* now scale to the appropriate MCS */
1561	tmp = result;
1562	tmp *= SCALE;
1563	do_div(tmp, mcs_divisors[rate->mcs]);
1564	result = tmp;
1565
1566	/* and take NSS, DCM into account */
1567	result = (result * rate->nss) / 8;
1568	if (rate->he_dcm)
1569		result /= 2;
1570
1571	return result / 10000;
1572}
1573
1574static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1575{
1576#define SCALE 6144
1577	static const u32 mcs_divisors[16] = {
1578		102399, /* 16.666666... */
1579		 51201, /*  8.333333... */
1580		 34134, /*  5.555555... */
1581		 25599, /*  4.166666... */
1582		 17067, /*  2.777777... */
1583		 12801, /*  2.083333... */
1584		 11377, /*  1.851725... */
1585		 10239, /*  1.666666... */
1586		  8532, /*  1.388888... */
1587		  7680, /*  1.250000... */
1588		  6828, /*  1.111111... */
1589		  6144, /*  1.000000... */
1590		  5690, /*  0.926106... */
1591		  5120, /*  0.833333... */
1592		409600, /* 66.666666... */
1593		204800, /* 33.333333... */
1594	};
1595	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1596	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1597	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1598	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1599	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1600	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1601	u64 tmp;
1602	u32 result;
1603
1604	if (WARN_ON_ONCE(rate->mcs > 15))
1605		return 0;
1606	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1607		return 0;
1608	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1609			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1610		return 0;
1611	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1612		return 0;
1613
1614	/* Bandwidth checks for MCS 14 */
1615	if (rate->mcs == 14) {
1616		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1617		     rate->bw != RATE_INFO_BW_80 &&
1618		     rate->bw != RATE_INFO_BW_160 &&
1619		     rate->bw != RATE_INFO_BW_320) ||
1620		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1621		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1622		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1623		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1624			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1625			     rate->bw, rate->eht_ru_alloc);
1626			return 0;
1627		}
1628	}
1629
1630	if (rate->bw == RATE_INFO_BW_320 ||
1631	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1632	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1633		result = 4 * rates_996[rate->eht_gi];
1634	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1635		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1636		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1637	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1639		result = 3 * rates_996[rate->eht_gi];
1640	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1641		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1642		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1643	else if (rate->bw == RATE_INFO_BW_160 ||
1644		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1645		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1646		result = 2 * rates_996[rate->eht_gi];
1647	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1648		 rate->eht_ru_alloc ==
1649		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1650		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1651			 + rates_242[rate->eht_gi];
1652	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1653		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1654		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1655	else if (rate->bw == RATE_INFO_BW_80 ||
1656		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1657		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1658		result = rates_996[rate->eht_gi];
1659	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1660		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1661		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1662	else if (rate->bw == RATE_INFO_BW_40 ||
1663		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1664		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1665		result = rates_484[rate->eht_gi];
1666	else if (rate->bw == RATE_INFO_BW_20 ||
1667		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1668		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1669		result = rates_242[rate->eht_gi];
1670	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1671		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1672		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1673	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1675		result = rates_106[rate->eht_gi];
1676	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1677		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1678		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1679	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1680		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1681		result = rates_52[rate->eht_gi];
1682	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1684		result = rates_26[rate->eht_gi];
1685	else {
1686		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1687		     rate->bw, rate->eht_ru_alloc);
1688		return 0;
1689	}
1690
1691	/* now scale to the appropriate MCS */
1692	tmp = result;
1693	tmp *= SCALE;
1694	do_div(tmp, mcs_divisors[rate->mcs]);
1695
1696	/* and take NSS */
1697	tmp *= rate->nss;
1698	do_div(tmp, 8);
1699
1700	result = tmp;
1701
1702	return result / 10000;
1703}
1704
1705static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1706{
1707	/* For 1, 2, 4, 8 and 16 MHz channels */
1708	static const u32 base[5][11] = {
1709		{  300000,
1710		   600000,
1711		   900000,
1712		  1200000,
1713		  1800000,
1714		  2400000,
1715		  2700000,
1716		  3000000,
1717		  3600000,
1718		  4000000,
1719		  /* MCS 10 supported in 1 MHz only */
1720		  150000,
1721		},
1722		{  650000,
1723		  1300000,
1724		  1950000,
1725		  2600000,
1726		  3900000,
1727		  5200000,
1728		  5850000,
1729		  6500000,
1730		  7800000,
1731		  /* MCS 9 not valid */
1732		},
1733		{  1350000,
1734		   2700000,
1735		   4050000,
1736		   5400000,
1737		   8100000,
1738		  10800000,
1739		  12150000,
1740		  13500000,
1741		  16200000,
1742		  18000000,
1743		},
1744		{  2925000,
1745		   5850000,
1746		   8775000,
1747		  11700000,
1748		  17550000,
1749		  23400000,
1750		  26325000,
1751		  29250000,
1752		  35100000,
1753		  39000000,
1754		},
1755		{  8580000,
1756		  11700000,
1757		  17550000,
1758		  23400000,
1759		  35100000,
1760		  46800000,
1761		  52650000,
1762		  58500000,
1763		  70200000,
1764		  78000000,
1765		},
1766	};
1767	u32 bitrate;
1768	/* default is 1 MHz index */
1769	int idx = 0;
1770
1771	if (rate->mcs >= 11)
1772		goto warn;
1773
1774	switch (rate->bw) {
1775	case RATE_INFO_BW_16:
1776		idx = 4;
1777		break;
1778	case RATE_INFO_BW_8:
1779		idx = 3;
1780		break;
1781	case RATE_INFO_BW_4:
1782		idx = 2;
1783		break;
1784	case RATE_INFO_BW_2:
1785		idx = 1;
1786		break;
1787	case RATE_INFO_BW_1:
1788		idx = 0;
1789		break;
1790	case RATE_INFO_BW_5:
1791	case RATE_INFO_BW_10:
1792	case RATE_INFO_BW_20:
1793	case RATE_INFO_BW_40:
1794	case RATE_INFO_BW_80:
1795	case RATE_INFO_BW_160:
1796	default:
1797		goto warn;
1798	}
1799
1800	bitrate = base[idx][rate->mcs];
1801	bitrate *= rate->nss;
1802
1803	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1804		bitrate = (bitrate / 9) * 10;
 
1805	/* do NOT round down here */
1806	return (bitrate + 50000) / 100000;
1807warn:
1808	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1809		  rate->bw, rate->mcs, rate->nss);
1810	return 0;
1811}
1812
1813u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1814{
1815	if (rate->flags & RATE_INFO_FLAGS_MCS)
1816		return cfg80211_calculate_bitrate_ht(rate);
1817	if (rate->flags & RATE_INFO_FLAGS_DMG)
1818		return cfg80211_calculate_bitrate_dmg(rate);
1819	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1820		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1821	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1822		return cfg80211_calculate_bitrate_edmg(rate);
1823	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1824		return cfg80211_calculate_bitrate_vht(rate);
1825	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1826		return cfg80211_calculate_bitrate_he(rate);
1827	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1828		return cfg80211_calculate_bitrate_eht(rate);
1829	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1830		return cfg80211_calculate_bitrate_s1g(rate);
1831
1832	return rate->legacy;
1833}
1834EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1835
1836int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1837			  enum ieee80211_p2p_attr_id attr,
1838			  u8 *buf, unsigned int bufsize)
1839{
1840	u8 *out = buf;
1841	u16 attr_remaining = 0;
1842	bool desired_attr = false;
1843	u16 desired_len = 0;
1844
1845	while (len > 0) {
1846		unsigned int iedatalen;
1847		unsigned int copy;
1848		const u8 *iedata;
1849
1850		if (len < 2)
1851			return -EILSEQ;
1852		iedatalen = ies[1];
1853		if (iedatalen + 2 > len)
1854			return -EILSEQ;
1855
1856		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1857			goto cont;
1858
1859		if (iedatalen < 4)
1860			goto cont;
1861
1862		iedata = ies + 2;
1863
1864		/* check WFA OUI, P2P subtype */
1865		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1866		    iedata[2] != 0x9a || iedata[3] != 0x09)
1867			goto cont;
1868
1869		iedatalen -= 4;
1870		iedata += 4;
1871
1872		/* check attribute continuation into this IE */
1873		copy = min_t(unsigned int, attr_remaining, iedatalen);
1874		if (copy && desired_attr) {
1875			desired_len += copy;
1876			if (out) {
1877				memcpy(out, iedata, min(bufsize, copy));
1878				out += min(bufsize, copy);
1879				bufsize -= min(bufsize, copy);
1880			}
1881
1882
1883			if (copy == attr_remaining)
1884				return desired_len;
1885		}
1886
1887		attr_remaining -= copy;
1888		if (attr_remaining)
1889			goto cont;
1890
1891		iedatalen -= copy;
1892		iedata += copy;
1893
1894		while (iedatalen > 0) {
1895			u16 attr_len;
1896
1897			/* P2P attribute ID & size must fit */
1898			if (iedatalen < 3)
1899				return -EILSEQ;
1900			desired_attr = iedata[0] == attr;
1901			attr_len = get_unaligned_le16(iedata + 1);
1902			iedatalen -= 3;
1903			iedata += 3;
1904
1905			copy = min_t(unsigned int, attr_len, iedatalen);
1906
1907			if (desired_attr) {
1908				desired_len += copy;
1909				if (out) {
1910					memcpy(out, iedata, min(bufsize, copy));
1911					out += min(bufsize, copy);
1912					bufsize -= min(bufsize, copy);
1913				}
1914
1915				if (copy == attr_len)
1916					return desired_len;
1917			}
1918
1919			iedata += copy;
1920			iedatalen -= copy;
1921			attr_remaining = attr_len - copy;
1922		}
1923
1924 cont:
1925		len -= ies[1] + 2;
1926		ies += ies[1] + 2;
1927	}
1928
1929	if (attr_remaining && desired_attr)
1930		return -EILSEQ;
1931
1932	return -ENOENT;
1933}
1934EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1935
1936static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1937{
1938	int i;
1939
1940	/* Make sure array values are legal */
1941	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1942		return false;
1943
1944	i = 0;
1945	while (i < n_ids) {
1946		if (ids[i] == WLAN_EID_EXTENSION) {
1947			if (id_ext && (ids[i + 1] == id))
1948				return true;
1949
1950			i += 2;
1951			continue;
1952		}
1953
1954		if (ids[i] == id && !id_ext)
1955			return true;
1956
1957		i++;
1958	}
1959	return false;
1960}
1961
1962static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1963{
1964	/* we assume a validly formed IEs buffer */
1965	u8 len = ies[pos + 1];
1966
1967	pos += 2 + len;
1968
1969	/* the IE itself must have 255 bytes for fragments to follow */
1970	if (len < 255)
1971		return pos;
1972
1973	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1974		len = ies[pos + 1];
1975		pos += 2 + len;
1976	}
1977
1978	return pos;
1979}
1980
1981size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1982			      const u8 *ids, int n_ids,
1983			      const u8 *after_ric, int n_after_ric,
1984			      size_t offset)
1985{
1986	size_t pos = offset;
1987
1988	while (pos < ielen) {
1989		u8 ext = 0;
1990
1991		if (ies[pos] == WLAN_EID_EXTENSION)
1992			ext = 2;
1993		if ((pos + ext) >= ielen)
1994			break;
1995
1996		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1997					  ies[pos] == WLAN_EID_EXTENSION))
1998			break;
1999
2000		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2001			pos = skip_ie(ies, ielen, pos);
2002
2003			while (pos < ielen) {
2004				if (ies[pos] == WLAN_EID_EXTENSION)
2005					ext = 2;
2006				else
2007					ext = 0;
2008
2009				if ((pos + ext) >= ielen)
2010					break;
2011
2012				if (!ieee80211_id_in_list(after_ric,
2013							  n_after_ric,
2014							  ies[pos + ext],
2015							  ext == 2))
2016					pos = skip_ie(ies, ielen, pos);
2017				else
2018					break;
2019			}
2020		} else {
2021			pos = skip_ie(ies, ielen, pos);
2022		}
2023	}
2024
2025	return pos;
2026}
2027EXPORT_SYMBOL(ieee80211_ie_split_ric);
2028
2029void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2030{
2031	unsigned int elem_len;
2032
2033	if (!len_pos)
2034		return;
2035
2036	elem_len = skb->data + skb->len - len_pos - 1;
2037
2038	while (elem_len > 255) {
2039		/* this one is 255 */
2040		*len_pos = 255;
2041		/* remaining data gets smaller */
2042		elem_len -= 255;
2043		/* make space for the fragment ID/len in SKB */
2044		skb_put(skb, 2);
2045		/* shift back the remaining data to place fragment ID/len */
2046		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2047		/* place the fragment ID */
2048		len_pos += 255 + 1;
2049		*len_pos = frag_id;
2050		/* and point to fragment length to update later */
2051		len_pos++;
2052	}
2053
2054	*len_pos = elem_len;
2055}
2056EXPORT_SYMBOL(ieee80211_fragment_element);
2057
2058bool ieee80211_operating_class_to_band(u8 operating_class,
2059				       enum nl80211_band *band)
2060{
2061	switch (operating_class) {
2062	case 112:
2063	case 115 ... 127:
2064	case 128 ... 130:
2065		*band = NL80211_BAND_5GHZ;
2066		return true;
2067	case 131 ... 135:
2068	case 137:
2069		*band = NL80211_BAND_6GHZ;
2070		return true;
2071	case 81:
2072	case 82:
2073	case 83:
2074	case 84:
2075		*band = NL80211_BAND_2GHZ;
2076		return true;
2077	case 180:
2078		*band = NL80211_BAND_60GHZ;
2079		return true;
2080	}
2081
2082	return false;
2083}
2084EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2085
2086bool ieee80211_operating_class_to_chandef(u8 operating_class,
2087					  struct ieee80211_channel *chan,
2088					  struct cfg80211_chan_def *chandef)
2089{
2090	u32 control_freq, offset = 0;
2091	enum nl80211_band band;
2092
2093	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2094	    !chan || band != chan->band)
2095		return false;
2096
2097	control_freq = chan->center_freq;
2098	chandef->chan = chan;
2099
2100	if (control_freq >= 5955)
2101		offset = control_freq - 5955;
2102	else if (control_freq >= 5745)
2103		offset = control_freq - 5745;
2104	else if (control_freq >= 5180)
2105		offset = control_freq - 5180;
2106	offset /= 20;
2107
2108	switch (operating_class) {
2109	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2110	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2111	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2112	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2113	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2114	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2115	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2116	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2117	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2118		chandef->center_freq1 = control_freq;
2119		chandef->width = NL80211_CHAN_WIDTH_20;
2120		return true;
2121	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2122	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2123	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2124	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2125	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2126		chandef->center_freq1 = control_freq + 10;
2127		chandef->width = NL80211_CHAN_WIDTH_40;
2128		return true;
2129	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2130	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2131	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2132	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2133	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2134		chandef->center_freq1 = control_freq - 10;
2135		chandef->width = NL80211_CHAN_WIDTH_40;
2136		return true;
2137	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2138		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2139		chandef->width = NL80211_CHAN_WIDTH_40;
2140		return true;
2141	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2142	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2143		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2144		chandef->width = NL80211_CHAN_WIDTH_80;
2145		return true;
2146	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2147	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2148		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2149		chandef->width = NL80211_CHAN_WIDTH_160;
2150		return true;
2151	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2152	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2153		  /* The center_freq2 of 80+80 MHz is unknown */
2154	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2155		  /* 320-1 or 320-2 channelization is unknown */
2156	default:
2157		return false;
2158	}
2159}
2160EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2161
2162bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2163					  u8 *op_class)
2164{
2165	u8 vht_opclass;
2166	u32 freq = chandef->center_freq1;
2167
2168	if (freq >= 2412 && freq <= 2472) {
2169		if (chandef->width > NL80211_CHAN_WIDTH_40)
2170			return false;
2171
2172		/* 2.407 GHz, channels 1..13 */
2173		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2174			if (freq > chandef->chan->center_freq)
2175				*op_class = 83; /* HT40+ */
2176			else
2177				*op_class = 84; /* HT40- */
2178		} else {
2179			*op_class = 81;
2180		}
2181
2182		return true;
2183	}
2184
2185	if (freq == 2484) {
2186		/* channel 14 is only for IEEE 802.11b */
2187		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2188			return false;
2189
2190		*op_class = 82; /* channel 14 */
2191		return true;
2192	}
2193
2194	switch (chandef->width) {
2195	case NL80211_CHAN_WIDTH_80:
2196		vht_opclass = 128;
2197		break;
2198	case NL80211_CHAN_WIDTH_160:
2199		vht_opclass = 129;
2200		break;
2201	case NL80211_CHAN_WIDTH_80P80:
2202		vht_opclass = 130;
2203		break;
2204	case NL80211_CHAN_WIDTH_10:
2205	case NL80211_CHAN_WIDTH_5:
2206		return false; /* unsupported for now */
2207	default:
2208		vht_opclass = 0;
2209		break;
2210	}
2211
2212	/* 5 GHz, channels 36..48 */
2213	if (freq >= 5180 && freq <= 5240) {
2214		if (vht_opclass) {
2215			*op_class = vht_opclass;
2216		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2217			if (freq > chandef->chan->center_freq)
2218				*op_class = 116;
2219			else
2220				*op_class = 117;
2221		} else {
2222			*op_class = 115;
2223		}
2224
2225		return true;
2226	}
2227
2228	/* 5 GHz, channels 52..64 */
2229	if (freq >= 5260 && freq <= 5320) {
2230		if (vht_opclass) {
2231			*op_class = vht_opclass;
2232		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2233			if (freq > chandef->chan->center_freq)
2234				*op_class = 119;
2235			else
2236				*op_class = 120;
2237		} else {
2238			*op_class = 118;
2239		}
2240
2241		return true;
2242	}
2243
2244	/* 5 GHz, channels 100..144 */
2245	if (freq >= 5500 && freq <= 5720) {
2246		if (vht_opclass) {
2247			*op_class = vht_opclass;
2248		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2249			if (freq > chandef->chan->center_freq)
2250				*op_class = 122;
2251			else
2252				*op_class = 123;
2253		} else {
2254			*op_class = 121;
2255		}
2256
2257		return true;
2258	}
2259
2260	/* 5 GHz, channels 149..169 */
2261	if (freq >= 5745 && freq <= 5845) {
2262		if (vht_opclass) {
2263			*op_class = vht_opclass;
2264		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265			if (freq > chandef->chan->center_freq)
2266				*op_class = 126;
2267			else
2268				*op_class = 127;
2269		} else if (freq <= 5805) {
2270			*op_class = 124;
2271		} else {
2272			*op_class = 125;
2273		}
2274
2275		return true;
2276	}
2277
2278	/* 56.16 GHz, channel 1..4 */
2279	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2280		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2281			return false;
2282
2283		*op_class = 180;
2284		return true;
2285	}
2286
2287	/* not supported yet */
2288	return false;
2289}
2290EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2291
2292static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2293{
2294	switch (wdev->iftype) {
2295	case NL80211_IFTYPE_AP:
2296	case NL80211_IFTYPE_P2P_GO:
2297		WARN_ON(wdev->valid_links);
2298		return wdev->links[0].ap.beacon_interval;
2299	case NL80211_IFTYPE_MESH_POINT:
2300		return wdev->u.mesh.beacon_interval;
2301	case NL80211_IFTYPE_ADHOC:
2302		return wdev->u.ibss.beacon_interval;
2303	default:
2304		break;
2305	}
2306
2307	return 0;
2308}
2309
2310static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2311				       u32 *beacon_int_gcd,
2312				       bool *beacon_int_different,
2313				       int radio_idx)
2314{
2315	struct cfg80211_registered_device *rdev;
2316	struct wireless_dev *wdev;
 
2317
2318	*beacon_int_gcd = 0;
2319	*beacon_int_different = false;
2320
2321	rdev = wiphy_to_rdev(wiphy);
2322	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2323		int wdev_bi;
2324
2325		/* this feature isn't supported with MLO */
2326		if (wdev->valid_links)
2327			continue;
2328
2329		/* skip wdevs not active on the given wiphy radio */
2330		if (radio_idx >= 0 &&
2331		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2332			continue;
2333
2334		wdev_bi = cfg80211_wdev_bi(wdev);
2335
2336		if (!wdev_bi)
2337			continue;
2338
2339		if (!*beacon_int_gcd) {
2340			*beacon_int_gcd = wdev_bi;
2341			continue;
 
 
 
2342		}
2343
2344		if (wdev_bi == *beacon_int_gcd)
2345			continue;
2346
2347		*beacon_int_different = true;
2348		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2349	}
2350
2351	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2352		if (*beacon_int_gcd)
2353			*beacon_int_different = true;
2354		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2355	}
2356}
2357
2358int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2359				 enum nl80211_iftype iftype, u32 beacon_int)
2360{
2361	/*
2362	 * This is just a basic pre-condition check; if interface combinations
2363	 * are possible the driver must already be checking those with a call
2364	 * to cfg80211_check_combinations(), in which case we'll validate more
2365	 * through the cfg80211_calculate_bi_data() call and code in
2366	 * cfg80211_iter_combinations().
2367	 */
2368
2369	if (beacon_int < 10 || beacon_int > 10000)
2370		return -EINVAL;
2371
2372	return 0;
2373}
2374
2375int cfg80211_iter_combinations(struct wiphy *wiphy,
2376			       struct iface_combination_params *params,
 
 
2377			       void (*iter)(const struct ieee80211_iface_combination *c,
2378					    void *data),
2379			       void *data)
2380{
2381	const struct wiphy_radio *radio = NULL;
2382	const struct ieee80211_iface_combination *c, *cs;
2383	const struct ieee80211_regdomain *regdom;
2384	enum nl80211_dfs_regions region = 0;
2385	int i, j, n, iftype;
2386	int num_interfaces = 0;
2387	u32 used_iftypes = 0;
2388	u32 beacon_int_gcd;
2389	bool beacon_int_different;
2390
2391	if (params->radio_idx >= 0)
2392		radio = &wiphy->radio[params->radio_idx];
2393
2394	/*
2395	 * This is a bit strange, since the iteration used to rely only on
2396	 * the data given by the driver, but here it now relies on context,
2397	 * in form of the currently operating interfaces.
2398	 * This is OK for all current users, and saves us from having to
2399	 * push the GCD calculations into all the drivers.
2400	 * In the future, this should probably rely more on data that's in
2401	 * cfg80211 already - the only thing not would appear to be any new
2402	 * interfaces (while being brought up) and channel/radar data.
2403	 */
2404	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2405				   &beacon_int_gcd, &beacon_int_different,
2406				   params->radio_idx);
2407
2408	if (params->radar_detect) {
2409		rcu_read_lock();
2410		regdom = rcu_dereference(cfg80211_regdomain);
2411		if (regdom)
2412			region = regdom->dfs_region;
2413		rcu_read_unlock();
2414	}
2415
2416	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2417		num_interfaces += params->iftype_num[iftype];
2418		if (params->iftype_num[iftype] > 0 &&
2419		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2420			used_iftypes |= BIT(iftype);
2421	}
2422
2423	if (radio) {
2424		cs = radio->iface_combinations;
2425		n = radio->n_iface_combinations;
2426	} else {
2427		cs = wiphy->iface_combinations;
2428		n = wiphy->n_iface_combinations;
2429	}
2430	for (i = 0; i < n; i++) {
2431		struct ieee80211_iface_limit *limits;
2432		u32 all_iftypes = 0;
2433
2434		c = &cs[i];
 
2435		if (num_interfaces > c->max_interfaces)
2436			continue;
2437		if (params->num_different_channels > c->num_different_channels)
2438			continue;
2439
2440		limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2441				       GFP_KERNEL);
2442		if (!limits)
2443			return -ENOMEM;
2444
2445		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2446			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2447				continue;
2448			for (j = 0; j < c->n_limits; j++) {
2449				all_iftypes |= limits[j].types;
2450				if (!(limits[j].types & BIT(iftype)))
2451					continue;
2452				if (limits[j].max < params->iftype_num[iftype])
2453					goto cont;
2454				limits[j].max -= params->iftype_num[iftype];
2455			}
2456		}
2457
2458		if (params->radar_detect !=
2459			(c->radar_detect_widths & params->radar_detect))
2460			goto cont;
2461
2462		if (params->radar_detect && c->radar_detect_regions &&
2463		    !(c->radar_detect_regions & BIT(region)))
2464			goto cont;
2465
2466		/* Finally check that all iftypes that we're currently
2467		 * using are actually part of this combination. If they
2468		 * aren't then we can't use this combination and have
2469		 * to continue to the next.
2470		 */
2471		if ((all_iftypes & used_iftypes) != used_iftypes)
2472			goto cont;
2473
2474		if (beacon_int_gcd) {
2475			if (c->beacon_int_min_gcd &&
2476			    beacon_int_gcd < c->beacon_int_min_gcd)
2477				goto cont;
2478			if (!c->beacon_int_min_gcd && beacon_int_different)
2479				goto cont;
2480		}
2481
2482		/* This combination covered all interface types and
2483		 * supported the requested numbers, so we're good.
2484		 */
2485
2486		(*iter)(c, data);
2487 cont:
2488		kfree(limits);
2489	}
2490
2491	return 0;
2492}
2493EXPORT_SYMBOL(cfg80211_iter_combinations);
2494
2495static void
2496cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2497			  void *data)
2498{
2499	int *num = data;
2500	(*num)++;
2501}
2502
2503int cfg80211_check_combinations(struct wiphy *wiphy,
2504				struct iface_combination_params *params)
 
 
2505{
2506	int err, num = 0;
2507
2508	err = cfg80211_iter_combinations(wiphy, params,
 
2509					 cfg80211_iter_sum_ifcombs, &num);
2510	if (err)
2511		return err;
2512	if (num == 0)
2513		return -EBUSY;
2514
2515	return 0;
2516}
2517EXPORT_SYMBOL(cfg80211_check_combinations);
2518
2519int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2520			   const u8 *rates, unsigned int n_rates,
2521			   u32 *mask)
2522{
2523	int i, j;
2524
2525	if (!sband)
2526		return -EINVAL;
2527
2528	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2529		return -EINVAL;
2530
2531	*mask = 0;
2532
2533	for (i = 0; i < n_rates; i++) {
2534		int rate = (rates[i] & 0x7f) * 5;
2535		bool found = false;
2536
2537		for (j = 0; j < sband->n_bitrates; j++) {
2538			if (sband->bitrates[j].bitrate == rate) {
2539				found = true;
2540				*mask |= BIT(j);
2541				break;
2542			}
2543		}
2544		if (!found)
2545			return -EINVAL;
2546	}
2547
2548	/*
2549	 * mask must have at least one bit set here since we
2550	 * didn't accept a 0-length rates array nor allowed
2551	 * entries in the array that didn't exist
2552	 */
2553
2554	return 0;
2555}
2556
2557unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2558{
2559	enum nl80211_band band;
2560	unsigned int n_channels = 0;
2561
2562	for (band = 0; band < NUM_NL80211_BANDS; band++)
2563		if (wiphy->bands[band])
2564			n_channels += wiphy->bands[band]->n_channels;
2565
2566	return n_channels;
2567}
2568EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2569
2570int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2571			 struct station_info *sinfo)
2572{
2573	struct cfg80211_registered_device *rdev;
2574	struct wireless_dev *wdev;
2575	int ret;
2576
2577	wdev = dev->ieee80211_ptr;
2578	if (!wdev)
2579		return -EOPNOTSUPP;
2580
2581	rdev = wiphy_to_rdev(wdev->wiphy);
2582	if (!rdev->ops->get_station)
2583		return -EOPNOTSUPP;
2584
2585	memset(sinfo, 0, sizeof(*sinfo));
2586
2587	wiphy_lock(&rdev->wiphy);
2588	ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2589	wiphy_unlock(&rdev->wiphy);
2590
2591	return ret;
2592}
2593EXPORT_SYMBOL(cfg80211_get_station);
2594
2595void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2596{
2597	int i;
2598
2599	if (!f)
2600		return;
2601
2602	kfree(f->serv_spec_info);
2603	kfree(f->srf_bf);
2604	kfree(f->srf_macs);
2605	for (i = 0; i < f->num_rx_filters; i++)
2606		kfree(f->rx_filters[i].filter);
2607
2608	for (i = 0; i < f->num_tx_filters; i++)
2609		kfree(f->tx_filters[i].filter);
2610
2611	kfree(f->rx_filters);
2612	kfree(f->tx_filters);
2613	kfree(f);
2614}
2615EXPORT_SYMBOL(cfg80211_free_nan_func);
2616
2617bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2618				u32 center_freq_khz, u32 bw_khz)
2619{
2620	u32 start_freq_khz, end_freq_khz;
2621
2622	start_freq_khz = center_freq_khz - (bw_khz / 2);
2623	end_freq_khz = center_freq_khz + (bw_khz / 2);
2624
2625	if (start_freq_khz >= freq_range->start_freq_khz &&
2626	    end_freq_khz <= freq_range->end_freq_khz)
2627		return true;
2628
2629	return false;
2630}
2631
2632int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2633{
2634	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2635				sizeof(*(sinfo->pertid)),
2636				gfp);
2637	if (!sinfo->pertid)
2638		return -ENOMEM;
2639
2640	return 0;
2641}
2642EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2643
2644/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2645/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2646const unsigned char rfc1042_header[] __aligned(2) =
2647	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2648EXPORT_SYMBOL(rfc1042_header);
2649
2650/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2651const unsigned char bridge_tunnel_header[] __aligned(2) =
2652	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2653EXPORT_SYMBOL(bridge_tunnel_header);
2654
2655/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2656struct iapp_layer2_update {
2657	u8 da[ETH_ALEN];	/* broadcast */
2658	u8 sa[ETH_ALEN];	/* STA addr */
2659	__be16 len;		/* 6 */
2660	u8 dsap;		/* 0 */
2661	u8 ssap;		/* 0 */
2662	u8 control;
2663	u8 xid_info[3];
2664} __packed;
2665
2666void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2667{
2668	struct iapp_layer2_update *msg;
2669	struct sk_buff *skb;
2670
2671	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2672	 * bridge devices */
2673
2674	skb = dev_alloc_skb(sizeof(*msg));
2675	if (!skb)
2676		return;
2677	msg = skb_put(skb, sizeof(*msg));
2678
2679	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2680	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2681
2682	eth_broadcast_addr(msg->da);
2683	ether_addr_copy(msg->sa, addr);
2684	msg->len = htons(6);
2685	msg->dsap = 0;
2686	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2687	msg->control = 0xaf;	/* XID response lsb.1111F101.
2688				 * F=0 (no poll command; unsolicited frame) */
2689	msg->xid_info[0] = 0x81;	/* XID format identifier */
2690	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2691	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2692
2693	skb->dev = dev;
2694	skb->protocol = eth_type_trans(skb, dev);
2695	memset(skb->cb, 0, sizeof(skb->cb));
2696	netif_rx(skb);
2697}
2698EXPORT_SYMBOL(cfg80211_send_layer2_update);
2699
2700int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2701			      enum ieee80211_vht_chanwidth bw,
2702			      int mcs, bool ext_nss_bw_capable,
2703			      unsigned int max_vht_nss)
2704{
2705	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2706	int ext_nss_bw;
2707	int supp_width;
2708	int i, mcs_encoding;
2709
2710	if (map == 0xffff)
2711		return 0;
2712
2713	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2714		return 0;
2715	if (mcs <= 7)
2716		mcs_encoding = 0;
2717	else if (mcs == 8)
2718		mcs_encoding = 1;
2719	else
2720		mcs_encoding = 2;
2721
2722	if (!max_vht_nss) {
2723		/* find max_vht_nss for the given MCS */
2724		for (i = 7; i >= 0; i--) {
2725			int supp = (map >> (2 * i)) & 3;
2726
2727			if (supp == 3)
2728				continue;
2729
2730			if (supp >= mcs_encoding) {
2731				max_vht_nss = i + 1;
2732				break;
2733			}
2734		}
2735	}
2736
2737	if (!(cap->supp_mcs.tx_mcs_map &
2738			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2739		return max_vht_nss;
2740
2741	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2742				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2743	supp_width = le32_get_bits(cap->vht_cap_info,
2744				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2745
2746	/* if not capable, treat ext_nss_bw as 0 */
2747	if (!ext_nss_bw_capable)
2748		ext_nss_bw = 0;
2749
2750	/* This is invalid */
2751	if (supp_width == 3)
2752		return 0;
2753
2754	/* This is an invalid combination so pretend nothing is supported */
2755	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2756		return 0;
2757
2758	/*
2759	 * Cover all the special cases according to IEEE 802.11-2016
2760	 * Table 9-250. All other cases are either factor of 1 or not
2761	 * valid/supported.
2762	 */
2763	switch (bw) {
2764	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2765	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2766		if ((supp_width == 1 || supp_width == 2) &&
2767		    ext_nss_bw == 3)
2768			return 2 * max_vht_nss;
2769		break;
2770	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2771		if (supp_width == 0 &&
2772		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2773			return max_vht_nss / 2;
2774		if (supp_width == 0 &&
2775		    ext_nss_bw == 3)
2776			return (3 * max_vht_nss) / 4;
2777		if (supp_width == 1 &&
2778		    ext_nss_bw == 3)
2779			return 2 * max_vht_nss;
2780		break;
2781	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2782		if (supp_width == 0 && ext_nss_bw == 1)
2783			return 0; /* not possible */
2784		if (supp_width == 0 &&
2785		    ext_nss_bw == 2)
2786			return max_vht_nss / 2;
2787		if (supp_width == 0 &&
2788		    ext_nss_bw == 3)
2789			return (3 * max_vht_nss) / 4;
2790		if (supp_width == 1 &&
2791		    ext_nss_bw == 0)
2792			return 0; /* not possible */
2793		if (supp_width == 1 &&
2794		    ext_nss_bw == 1)
2795			return max_vht_nss / 2;
2796		if (supp_width == 1 &&
2797		    ext_nss_bw == 2)
2798			return (3 * max_vht_nss) / 4;
2799		break;
2800	}
2801
2802	/* not covered or invalid combination received */
2803	return max_vht_nss;
2804}
2805EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2806
2807bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2808			     bool is_4addr, u8 check_swif)
2809
2810{
2811	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2812
2813	switch (check_swif) {
2814	case 0:
2815		if (is_vlan && is_4addr)
2816			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2817		return wiphy->interface_modes & BIT(iftype);
2818	case 1:
2819		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2820			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2821		return wiphy->software_iftypes & BIT(iftype);
2822	default:
2823		break;
2824	}
2825
2826	return false;
2827}
2828EXPORT_SYMBOL(cfg80211_iftype_allowed);
2829
2830void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2831{
2832	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2833
2834	lockdep_assert_wiphy(wdev->wiphy);
2835
2836	switch (wdev->iftype) {
2837	case NL80211_IFTYPE_AP:
2838	case NL80211_IFTYPE_P2P_GO:
2839		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2840		break;
2841	default:
2842		/* per-link not relevant */
2843		break;
2844	}
2845
2846	rdev_del_intf_link(rdev, wdev, link_id);
2847
2848	wdev->valid_links &= ~BIT(link_id);
2849	eth_zero_addr(wdev->links[link_id].addr);
2850}
2851
2852void cfg80211_remove_links(struct wireless_dev *wdev)
2853{
2854	unsigned int link_id;
2855
2856	/*
2857	 * links are controlled by upper layers (userspace/cfg)
2858	 * only for AP mode, so only remove them here for AP
2859	 */
2860	if (wdev->iftype != NL80211_IFTYPE_AP)
2861		return;
2862
2863	if (wdev->valid_links) {
2864		for_each_valid_link(wdev, link_id)
2865			cfg80211_remove_link(wdev, link_id);
2866	}
2867}
2868
2869int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2870				 struct wireless_dev *wdev)
2871{
2872	cfg80211_remove_links(wdev);
2873
2874	return rdev_del_virtual_intf(rdev, wdev);
2875}
2876
2877const struct wiphy_iftype_ext_capab *
2878cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2879{
2880	int i;
2881
2882	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2883		if (wiphy->iftype_ext_capab[i].iftype == type)
2884			return &wiphy->iftype_ext_capab[i];
2885	}
2886
2887	return NULL;
2888}
2889EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2890
2891static bool
2892ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2893				 u32 freq, u32 width)
2894{
2895	const struct wiphy_radio_freq_range *r;
2896	int i;
2897
2898	for (i = 0; i < radio->n_freq_range; i++) {
2899		r = &radio->freq_range[i];
2900		if (freq - width / 2 >= r->start_freq &&
2901		    freq + width / 2 <= r->end_freq)
2902			return true;
2903	}
2904
2905	return false;
2906}
2907
2908bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2909				  const struct cfg80211_chan_def *chandef)
2910{
2911	u32 freq, width;
2912
2913	freq = ieee80211_chandef_to_khz(chandef);
2914	width = nl80211_chan_width_to_mhz(chandef->width);
2915	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2916		return false;
2917
2918	freq = MHZ_TO_KHZ(chandef->center_freq2);
2919	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2920		return false;
2921
2922	return true;
2923}
2924EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2925
2926bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2927				   struct ieee80211_channel *chan)
2928{
2929	struct wiphy *wiphy = wdev->wiphy;
2930	const struct wiphy_radio *radio;
2931	struct cfg80211_chan_def chandef;
2932	u32 radio_mask;
2933	int i;
2934
2935	radio_mask = wdev->radio_mask;
2936	if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2937		return true;
2938
2939	cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2940	for (i = 0; i < wiphy->n_radio; i++) {
2941		if (!(radio_mask & BIT(i)))
2942			continue;
2943
2944		radio = &wiphy->radio[i];
2945		if (!cfg80211_radio_chandef_valid(radio, &chandef))
2946			continue;
2947
2948		return true;
2949	}
2950
2951	return false;
2952}
2953EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
v4.6
 
   1/*
   2 * Wireless utility functions
   3 *
   4 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2013-2014  Intel Mobile Communications GmbH
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/bitops.h>
   9#include <linux/etherdevice.h>
  10#include <linux/slab.h>
 
  11#include <net/cfg80211.h>
  12#include <net/ip.h>
  13#include <net/dsfield.h>
  14#include <linux/if_vlan.h>
  15#include <linux/mpls.h>
 
 
 
  16#include "core.h"
  17#include "rdev-ops.h"
  18
  19
  20struct ieee80211_rate *
  21ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  22			    u32 basic_rates, int bitrate)
  23{
  24	struct ieee80211_rate *result = &sband->bitrates[0];
  25	int i;
  26
  27	for (i = 0; i < sband->n_bitrates; i++) {
  28		if (!(basic_rates & BIT(i)))
  29			continue;
  30		if (sband->bitrates[i].bitrate > bitrate)
  31			continue;
  32		result = &sband->bitrates[i];
  33	}
  34
  35	return result;
  36}
  37EXPORT_SYMBOL(ieee80211_get_response_rate);
  38
  39u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  40			      enum nl80211_bss_scan_width scan_width)
  41{
  42	struct ieee80211_rate *bitrates;
  43	u32 mandatory_rates = 0;
  44	enum ieee80211_rate_flags mandatory_flag;
  45	int i;
  46
  47	if (WARN_ON(!sband))
  48		return 1;
  49
  50	if (sband->band == IEEE80211_BAND_2GHZ) {
  51		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  52		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  53			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  54		else
  55			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  56	} else {
  57		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  58	}
  59
  60	bitrates = sband->bitrates;
  61	for (i = 0; i < sband->n_bitrates; i++)
  62		if (bitrates[i].flags & mandatory_flag)
  63			mandatory_rates |= BIT(i);
  64	return mandatory_rates;
  65}
  66EXPORT_SYMBOL(ieee80211_mandatory_rates);
  67
  68int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
  69{
  70	/* see 802.11 17.3.8.3.2 and Annex J
  71	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  72	if (chan <= 0)
  73		return 0; /* not supported */
  74	switch (band) {
  75	case IEEE80211_BAND_2GHZ:
 
  76		if (chan == 14)
  77			return 2484;
  78		else if (chan < 14)
  79			return 2407 + chan * 5;
  80		break;
  81	case IEEE80211_BAND_5GHZ:
  82		if (chan >= 182 && chan <= 196)
  83			return 4000 + chan * 5;
  84		else
  85			return 5000 + chan * 5;
  86		break;
  87	case IEEE80211_BAND_60GHZ:
  88		if (chan < 5)
  89			return 56160 + chan * 2160;
 
 
 
 
 
 
 
  90		break;
 
 
  91	default:
  92		;
  93	}
  94	return 0; /* not supported */
  95}
  96EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98int ieee80211_frequency_to_channel(int freq)
  99{
 
 
 
 100	/* see 802.11 17.3.8.3.2 and Annex J */
 101	if (freq == 2484)
 102		return 14;
 103	else if (freq < 2484)
 104		return (freq - 2407) / 5;
 105	else if (freq >= 4910 && freq <= 4980)
 106		return (freq - 4000) / 5;
 
 
 
 
 107	else if (freq <= 45000) /* DMG band lower limit */
 108		return (freq - 5000) / 5;
 109	else if (freq >= 58320 && freq <= 64800)
 
 110		return (freq - 56160) / 2160;
 111	else
 112		return 0;
 113}
 114EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 115
 116struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
 117						  int freq)
 118{
 119	enum ieee80211_band band;
 120	struct ieee80211_supported_band *sband;
 121	int i;
 122
 123	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
 124		sband = wiphy->bands[band];
 125
 126		if (!sband)
 127			continue;
 128
 129		for (i = 0; i < sband->n_channels; i++) {
 130			if (sband->channels[i].center_freq == freq)
 131				return &sband->channels[i];
 
 
 132		}
 133	}
 134
 135	return NULL;
 136}
 137EXPORT_SYMBOL(__ieee80211_get_channel);
 138
 139static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
 140				     enum ieee80211_band band)
 141{
 142	int i, want;
 143
 144	switch (band) {
 145	case IEEE80211_BAND_5GHZ:
 
 146		want = 3;
 147		for (i = 0; i < sband->n_bitrates; i++) {
 148			if (sband->bitrates[i].bitrate == 60 ||
 149			    sband->bitrates[i].bitrate == 120 ||
 150			    sband->bitrates[i].bitrate == 240) {
 151				sband->bitrates[i].flags |=
 152					IEEE80211_RATE_MANDATORY_A;
 153				want--;
 154			}
 155		}
 156		WARN_ON(want);
 157		break;
 158	case IEEE80211_BAND_2GHZ:
 
 159		want = 7;
 160		for (i = 0; i < sband->n_bitrates; i++) {
 161			if (sband->bitrates[i].bitrate == 10) {
 
 
 
 
 162				sband->bitrates[i].flags |=
 163					IEEE80211_RATE_MANDATORY_B |
 164					IEEE80211_RATE_MANDATORY_G;
 165				want--;
 166			}
 167
 168			if (sband->bitrates[i].bitrate == 20 ||
 169			    sband->bitrates[i].bitrate == 55 ||
 170			    sband->bitrates[i].bitrate == 110 ||
 171			    sband->bitrates[i].bitrate == 60 ||
 172			    sband->bitrates[i].bitrate == 120 ||
 173			    sband->bitrates[i].bitrate == 240) {
 174				sband->bitrates[i].flags |=
 175					IEEE80211_RATE_MANDATORY_G;
 176				want--;
 177			}
 178
 179			if (sband->bitrates[i].bitrate != 10 &&
 180			    sband->bitrates[i].bitrate != 20 &&
 181			    sband->bitrates[i].bitrate != 55 &&
 182			    sband->bitrates[i].bitrate != 110)
 183				sband->bitrates[i].flags |=
 184					IEEE80211_RATE_ERP_G;
 
 
 185		}
 186		WARN_ON(want != 0 && want != 3 && want != 6);
 187		break;
 188	case IEEE80211_BAND_60GHZ:
 189		/* check for mandatory HT MCS 1..4 */
 190		WARN_ON(!sband->ht_cap.ht_supported);
 191		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 192		break;
 193	case IEEE80211_NUM_BANDS:
 
 
 
 
 
 
 
 194		WARN_ON(1);
 195		break;
 196	}
 197}
 198
 199void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 200{
 201	enum ieee80211_band band;
 202
 203	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
 204		if (wiphy->bands[band])
 205			set_mandatory_flags_band(wiphy->bands[band], band);
 206}
 207
 208bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 209{
 210	int i;
 211	for (i = 0; i < wiphy->n_cipher_suites; i++)
 212		if (cipher == wiphy->cipher_suites[i])
 213			return true;
 214	return false;
 215}
 216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 218				   struct key_params *params, int key_idx,
 219				   bool pairwise, const u8 *mac_addr)
 220{
 221	if (key_idx > 5)
 222		return -EINVAL;
 223
 224	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 225		return -EINVAL;
 226
 227	if (pairwise && !mac_addr)
 228		return -EINVAL;
 229
 230	switch (params->cipher) {
 231	case WLAN_CIPHER_SUITE_TKIP:
 
 
 
 
 
 232	case WLAN_CIPHER_SUITE_CCMP:
 233	case WLAN_CIPHER_SUITE_CCMP_256:
 234	case WLAN_CIPHER_SUITE_GCMP:
 235	case WLAN_CIPHER_SUITE_GCMP_256:
 236		/* Disallow pairwise keys with non-zero index unless it's WEP
 237		 * or a vendor specific cipher (because current deployments use
 238		 * pairwise WEP keys with non-zero indices and for vendor
 239		 * specific ciphers this should be validated in the driver or
 240		 * hardware level - but 802.11i clearly specifies to use zero)
 
 241		 */
 242		if (pairwise && key_idx)
 
 
 
 
 
 
 
 243			return -EINVAL;
 
 244		break;
 245	case WLAN_CIPHER_SUITE_AES_CMAC:
 246	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 247	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 248	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 249		/* Disallow BIP (group-only) cipher as pairwise cipher */
 250		if (pairwise)
 251			return -EINVAL;
 
 
 
 
 
 
 
 252		break;
 253	default:
 254		break;
 255	}
 256
 257	switch (params->cipher) {
 258	case WLAN_CIPHER_SUITE_WEP40:
 259		if (params->key_len != WLAN_KEY_LEN_WEP40)
 260			return -EINVAL;
 261		break;
 262	case WLAN_CIPHER_SUITE_TKIP:
 263		if (params->key_len != WLAN_KEY_LEN_TKIP)
 264			return -EINVAL;
 265		break;
 266	case WLAN_CIPHER_SUITE_CCMP:
 267		if (params->key_len != WLAN_KEY_LEN_CCMP)
 268			return -EINVAL;
 269		break;
 270	case WLAN_CIPHER_SUITE_CCMP_256:
 271		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 272			return -EINVAL;
 273		break;
 274	case WLAN_CIPHER_SUITE_GCMP:
 275		if (params->key_len != WLAN_KEY_LEN_GCMP)
 276			return -EINVAL;
 277		break;
 278	case WLAN_CIPHER_SUITE_GCMP_256:
 279		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 280			return -EINVAL;
 281		break;
 282	case WLAN_CIPHER_SUITE_WEP104:
 283		if (params->key_len != WLAN_KEY_LEN_WEP104)
 284			return -EINVAL;
 285		break;
 286	case WLAN_CIPHER_SUITE_AES_CMAC:
 287		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 288			return -EINVAL;
 289		break;
 290	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 291		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 292			return -EINVAL;
 293		break;
 294	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 295		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 296			return -EINVAL;
 297		break;
 298	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 299		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 300			return -EINVAL;
 301		break;
 302	default:
 303		/*
 304		 * We don't know anything about this algorithm,
 305		 * allow using it -- but the driver must check
 306		 * all parameters! We still check below whether
 307		 * or not the driver supports this algorithm,
 308		 * of course.
 309		 */
 310		break;
 311	}
 312
 313	if (params->seq) {
 314		switch (params->cipher) {
 315		case WLAN_CIPHER_SUITE_WEP40:
 316		case WLAN_CIPHER_SUITE_WEP104:
 317			/* These ciphers do not use key sequence */
 318			return -EINVAL;
 319		case WLAN_CIPHER_SUITE_TKIP:
 320		case WLAN_CIPHER_SUITE_CCMP:
 321		case WLAN_CIPHER_SUITE_CCMP_256:
 322		case WLAN_CIPHER_SUITE_GCMP:
 323		case WLAN_CIPHER_SUITE_GCMP_256:
 324		case WLAN_CIPHER_SUITE_AES_CMAC:
 325		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 326		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 327		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 328			if (params->seq_len != 6)
 329				return -EINVAL;
 330			break;
 331		}
 332	}
 333
 334	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 335		return -EINVAL;
 336
 337	return 0;
 338}
 339
 340unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 341{
 342	unsigned int hdrlen = 24;
 343
 
 
 
 
 
 344	if (ieee80211_is_data(fc)) {
 345		if (ieee80211_has_a4(fc))
 346			hdrlen = 30;
 347		if (ieee80211_is_data_qos(fc)) {
 348			hdrlen += IEEE80211_QOS_CTL_LEN;
 349			if (ieee80211_has_order(fc))
 350				hdrlen += IEEE80211_HT_CTL_LEN;
 351		}
 352		goto out;
 353	}
 354
 355	if (ieee80211_is_mgmt(fc)) {
 356		if (ieee80211_has_order(fc))
 357			hdrlen += IEEE80211_HT_CTL_LEN;
 358		goto out;
 359	}
 360
 361	if (ieee80211_is_ctl(fc)) {
 362		/*
 363		 * ACK and CTS are 10 bytes, all others 16. To see how
 364		 * to get this condition consider
 365		 *   subtype mask:   0b0000000011110000 (0x00F0)
 366		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 367		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 368		 *   bits that matter:         ^^^      (0x00E0)
 369		 *   value of those: 0b0000000011000000 (0x00C0)
 370		 */
 371		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 372			hdrlen = 10;
 373		else
 374			hdrlen = 16;
 375	}
 376out:
 377	return hdrlen;
 378}
 379EXPORT_SYMBOL(ieee80211_hdrlen);
 380
 381unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 382{
 383	const struct ieee80211_hdr *hdr =
 384			(const struct ieee80211_hdr *)skb->data;
 385	unsigned int hdrlen;
 386
 387	if (unlikely(skb->len < 10))
 388		return 0;
 389	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 390	if (unlikely(hdrlen > skb->len))
 391		return 0;
 392	return hdrlen;
 393}
 394EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 395
 396static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 397{
 398	int ae = flags & MESH_FLAGS_AE;
 399	/* 802.11-2012, 8.2.4.7.3 */
 400	switch (ae) {
 401	default:
 402	case 0:
 403		return 6;
 404	case MESH_FLAGS_AE_A4:
 405		return 12;
 406	case MESH_FLAGS_AE_A5_A6:
 407		return 18;
 408	}
 409}
 410
 411unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 412{
 413	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 414}
 415EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 416
 417static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
 418				    const u8 *addr, enum nl80211_iftype iftype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419{
 420	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 421	struct {
 422		u8 hdr[ETH_ALEN] __aligned(2);
 423		__be16 proto;
 424	} payload;
 425	struct ethhdr tmp;
 426	u16 hdrlen;
 427	u8 mesh_flags = 0;
 428
 429	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 430		return -1;
 431
 432	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 433	if (skb->len < hdrlen + 8)
 434		return -1;
 435
 436	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 437	 * header
 438	 * IEEE 802.11 address fields:
 439	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 440	 *   0     0   DA    SA    BSSID n/a
 441	 *   0     1   DA    BSSID SA    n/a
 442	 *   1     0   BSSID SA    DA    n/a
 443	 *   1     1   RA    TA    DA    SA
 444	 */
 445	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 446	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 447
 448	if (iftype == NL80211_IFTYPE_MESH_POINT)
 449		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 450
 451	switch (hdr->frame_control &
 452		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 453	case cpu_to_le16(IEEE80211_FCTL_TODS):
 454		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 455			     iftype != NL80211_IFTYPE_AP_VLAN &&
 456			     iftype != NL80211_IFTYPE_P2P_GO))
 457			return -1;
 458		break;
 459	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 460		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 461			     iftype != NL80211_IFTYPE_MESH_POINT &&
 462			     iftype != NL80211_IFTYPE_AP_VLAN &&
 463			     iftype != NL80211_IFTYPE_STATION))
 464			return -1;
 465		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 466			if (mesh_flags & MESH_FLAGS_AE_A4)
 467				return -1;
 468			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
 469				skb_copy_bits(skb, hdrlen +
 470					offsetof(struct ieee80211s_hdr, eaddr1),
 471					tmp.h_dest, 2 * ETH_ALEN);
 472			}
 473			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 474		}
 475		break;
 476	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 477		if ((iftype != NL80211_IFTYPE_STATION &&
 478		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 479		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 480		    (is_multicast_ether_addr(tmp.h_dest) &&
 481		     ether_addr_equal(tmp.h_source, addr)))
 482			return -1;
 483		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 484			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
 485				return -1;
 486			if (mesh_flags & MESH_FLAGS_AE_A4)
 487				skb_copy_bits(skb, hdrlen +
 488					offsetof(struct ieee80211s_hdr, eaddr1),
 489					tmp.h_source, ETH_ALEN);
 490			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 491		}
 492		break;
 493	case cpu_to_le16(0):
 494		if (iftype != NL80211_IFTYPE_ADHOC &&
 495		    iftype != NL80211_IFTYPE_STATION &&
 496		    iftype != NL80211_IFTYPE_OCB)
 497				return -1;
 498		break;
 499	}
 500
 501	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 502	tmp.h_proto = payload.proto;
 503
 504	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 505		    tmp.h_proto != htons(ETH_P_AARP) &&
 506		    tmp.h_proto != htons(ETH_P_IPX)) ||
 507		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 508		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 509		 * replace EtherType */
 510		hdrlen += ETH_ALEN + 2;
 511	else
 512		tmp.h_proto = htons(skb->len);
 
 
 513
 514	pskb_pull(skb, hdrlen);
 515
 516	if (!ehdr)
 517		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 518	memcpy(ehdr, &tmp, sizeof(tmp));
 519
 520	return 0;
 521}
 522
 523int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
 524			   enum nl80211_iftype iftype)
 525{
 526	return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
 527}
 528EXPORT_SYMBOL(ieee80211_data_to_8023);
 529
 530int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
 531			     enum nl80211_iftype iftype,
 532			     const u8 *bssid, bool qos)
 533{
 534	struct ieee80211_hdr hdr;
 535	u16 hdrlen, ethertype;
 536	__le16 fc;
 537	const u8 *encaps_data;
 538	int encaps_len, skip_header_bytes;
 539	int nh_pos, h_pos;
 540	int head_need;
 541
 542	if (unlikely(skb->len < ETH_HLEN))
 543		return -EINVAL;
 544
 545	nh_pos = skb_network_header(skb) - skb->data;
 546	h_pos = skb_transport_header(skb) - skb->data;
 547
 548	/* convert Ethernet header to proper 802.11 header (based on
 549	 * operation mode) */
 550	ethertype = (skb->data[12] << 8) | skb->data[13];
 551	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
 552
 553	switch (iftype) {
 554	case NL80211_IFTYPE_AP:
 555	case NL80211_IFTYPE_AP_VLAN:
 556	case NL80211_IFTYPE_P2P_GO:
 557		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
 558		/* DA BSSID SA */
 559		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 560		memcpy(hdr.addr2, addr, ETH_ALEN);
 561		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
 562		hdrlen = 24;
 563		break;
 564	case NL80211_IFTYPE_STATION:
 565	case NL80211_IFTYPE_P2P_CLIENT:
 566		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
 567		/* BSSID SA DA */
 568		memcpy(hdr.addr1, bssid, ETH_ALEN);
 569		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 570		memcpy(hdr.addr3, skb->data, ETH_ALEN);
 571		hdrlen = 24;
 572		break;
 573	case NL80211_IFTYPE_OCB:
 574	case NL80211_IFTYPE_ADHOC:
 575		/* DA SA BSSID */
 576		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 577		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 578		memcpy(hdr.addr3, bssid, ETH_ALEN);
 579		hdrlen = 24;
 580		break;
 581	default:
 582		return -EOPNOTSUPP;
 583	}
 584
 585	if (qos) {
 586		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
 587		hdrlen += 2;
 588	}
 589
 590	hdr.frame_control = fc;
 591	hdr.duration_id = 0;
 592	hdr.seq_ctrl = 0;
 593
 594	skip_header_bytes = ETH_HLEN;
 595	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
 596		encaps_data = bridge_tunnel_header;
 597		encaps_len = sizeof(bridge_tunnel_header);
 598		skip_header_bytes -= 2;
 599	} else if (ethertype >= ETH_P_802_3_MIN) {
 600		encaps_data = rfc1042_header;
 601		encaps_len = sizeof(rfc1042_header);
 602		skip_header_bytes -= 2;
 603	} else {
 604		encaps_data = NULL;
 605		encaps_len = 0;
 606	}
 607
 608	skb_pull(skb, skip_header_bytes);
 609	nh_pos -= skip_header_bytes;
 610	h_pos -= skip_header_bytes;
 611
 612	head_need = hdrlen + encaps_len - skb_headroom(skb);
 613
 614	if (head_need > 0 || skb_cloned(skb)) {
 615		head_need = max(head_need, 0);
 616		if (head_need)
 617			skb_orphan(skb);
 618
 619		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
 620			return -ENOMEM;
 621
 622		skb->truesize += head_need;
 623	}
 624
 625	if (encaps_data) {
 626		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
 627		nh_pos += encaps_len;
 628		h_pos += encaps_len;
 629	}
 630
 631	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
 632
 633	nh_pos += hdrlen;
 634	h_pos += hdrlen;
 635
 636	/* Update skb pointers to various headers since this modified frame
 637	 * is going to go through Linux networking code that may potentially
 638	 * need things like pointer to IP header. */
 639	skb_reset_mac_header(skb);
 640	skb_set_network_header(skb, nh_pos);
 641	skb_set_transport_header(skb, h_pos);
 642
 643	return 0;
 644}
 645EXPORT_SYMBOL(ieee80211_data_from_8023);
 646
 647static void
 648__frame_add_frag(struct sk_buff *skb, struct page *page,
 649		 void *ptr, int len, int size)
 650{
 651	struct skb_shared_info *sh = skb_shinfo(skb);
 652	int page_offset;
 653
 654	atomic_inc(&page->_count);
 655	page_offset = ptr - page_address(page);
 656	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 657}
 658
 659static void
 660__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 661			    int offset, int len)
 662{
 663	struct skb_shared_info *sh = skb_shinfo(skb);
 664	const skb_frag_t *frag = &sh->frags[-1];
 665	struct page *frag_page;
 666	void *frag_ptr;
 667	int frag_len, frag_size;
 668	int head_size = skb->len - skb->data_len;
 669	int cur_len;
 670
 671	frag_page = virt_to_head_page(skb->head);
 672	frag_ptr = skb->data;
 673	frag_size = head_size;
 674
 675	while (offset >= frag_size) {
 676		offset -= frag_size;
 677		frag++;
 678		frag_page = skb_frag_page(frag);
 679		frag_ptr = skb_frag_address(frag);
 680		frag_size = skb_frag_size(frag);
 
 681	}
 682
 683	frag_ptr += offset;
 684	frag_len = frag_size - offset;
 685
 686	cur_len = min(len, frag_len);
 687
 688	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 689	len -= cur_len;
 690
 691	while (len > 0) {
 692		frag++;
 693		frag_len = skb_frag_size(frag);
 694		cur_len = min(len, frag_len);
 695		__frame_add_frag(frame, skb_frag_page(frag),
 696				 skb_frag_address(frag), cur_len, frag_len);
 697		len -= cur_len;
 
 698	}
 699}
 700
 701static struct sk_buff *
 702__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 703		       int offset, int len, bool reuse_frag)
 
 704{
 705	struct sk_buff *frame;
 706	int cur_len = len;
 707
 708	if (skb->len - offset < len)
 709		return NULL;
 710
 711	/*
 712	 * When reusing framents, copy some data to the head to simplify
 713	 * ethernet header handling and speed up protocol header processing
 714	 * in the stack later.
 715	 */
 716	if (reuse_frag)
 717		cur_len = min_t(int, len, 32);
 718
 719	/*
 720	 * Allocate and reserve two bytes more for payload
 721	 * alignment since sizeof(struct ethhdr) is 14.
 722	 */
 723	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 
 
 724
 
 725	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 726	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 727
 728	len -= cur_len;
 729	if (!len)
 730		return frame;
 731
 732	offset += cur_len;
 733	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 734
 735	return frame;
 736}
 737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 739			      const u8 *addr, enum nl80211_iftype iftype,
 740			      const unsigned int extra_headroom,
 741			      bool has_80211_header)
 
 742{
 743	unsigned int hlen = ALIGN(extra_headroom, 4);
 744	struct sk_buff *frame = NULL;
 745	u16 ethertype;
 746	u8 *payload;
 747	int offset = 0, remaining, err;
 748	struct ethhdr eth;
 
 749	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 750	bool reuse_skb = false;
 751	bool last = false;
 
 752
 753	if (has_80211_header) {
 754		err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
 755		if (err)
 756			goto out;
 757	}
 758
 759	while (!last) {
 
 760		unsigned int subframe_len;
 761		int len;
 762		u8 padding;
 763
 764		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 765		len = ntohs(eth.h_proto);
 
 
 
 
 
 
 766		subframe_len = sizeof(struct ethhdr) + len;
 767		padding = (4 - subframe_len) & 0x3;
 768
 769		/* the last MSDU has no padding */
 770		remaining = skb->len - offset;
 771		if (subframe_len > remaining)
 772			goto purge;
 
 
 
 773
 774		offset += sizeof(struct ethhdr);
 
 
 
 
 
 
 
 
 
 
 775		/* reuse skb for the last subframe */
 776		last = remaining <= subframe_len + padding;
 777		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 778			skb_pull(skb, offset);
 779			frame = skb;
 780			reuse_skb = true;
 781		} else {
 782			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 783						       reuse_frag);
 784			if (!frame)
 785				goto purge;
 786
 787			offset += len + padding;
 788		}
 789
 790		skb_reset_network_header(frame);
 791		frame->dev = skb->dev;
 792		frame->priority = skb->priority;
 793
 794		payload = frame->data;
 795		ethertype = (payload[6] << 8) | payload[7];
 796		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 797			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 798			   ether_addr_equal(payload, bridge_tunnel_header))) {
 799			eth.h_proto = htons(ethertype);
 800			skb_pull(frame, ETH_ALEN + 2);
 801		}
 802
 803		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 804		__skb_queue_tail(list, frame);
 805	}
 806
 807	if (!reuse_skb)
 808		dev_kfree_skb(skb);
 809
 810	return;
 811
 812 purge:
 813	__skb_queue_purge(list);
 814 out:
 815	dev_kfree_skb(skb);
 816}
 817EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 818
 819/* Given a data frame determine the 802.1p/1d tag to use. */
 820unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 821				    struct cfg80211_qos_map *qos_map)
 822{
 823	unsigned int dscp;
 824	unsigned char vlan_priority;
 
 825
 826	/* skb->priority values from 256->263 are magic values to
 827	 * directly indicate a specific 802.1d priority.  This is used
 828	 * to allow 802.1d priority to be passed directly in from VLAN
 829	 * tags, etc.
 830	 */
 831	if (skb->priority >= 256 && skb->priority <= 263)
 832		return skb->priority - 256;
 
 
 833
 834	if (skb_vlan_tag_present(skb)) {
 835		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 836			>> VLAN_PRIO_SHIFT;
 837		if (vlan_priority > 0)
 838			return vlan_priority;
 
 
 839	}
 840
 841	switch (skb->protocol) {
 842	case htons(ETH_P_IP):
 843		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 844		break;
 845	case htons(ETH_P_IPV6):
 846		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 847		break;
 848	case htons(ETH_P_MPLS_UC):
 849	case htons(ETH_P_MPLS_MC): {
 850		struct mpls_label mpls_tmp, *mpls;
 851
 852		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 853					  sizeof(*mpls), &mpls_tmp);
 854		if (!mpls)
 855			return 0;
 856
 857		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 858			>> MPLS_LS_TC_SHIFT;
 
 859	}
 860	case htons(ETH_P_80221):
 861		/* 802.21 is always network control traffic */
 862		return 7;
 863	default:
 864		return 0;
 865	}
 866
 867	if (qos_map) {
 868		unsigned int i, tmp_dscp = dscp >> 2;
 869
 870		for (i = 0; i < qos_map->num_des; i++) {
 871			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
 872				return qos_map->dscp_exception[i].up;
 
 
 873		}
 874
 875		for (i = 0; i < 8; i++) {
 876			if (tmp_dscp >= qos_map->up[i].low &&
 877			    tmp_dscp <= qos_map->up[i].high)
 878				return i;
 
 
 879		}
 880	}
 881
 882	return dscp >> 5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884EXPORT_SYMBOL(cfg80211_classify8021d);
 885
 886const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
 887{
 888	const struct cfg80211_bss_ies *ies;
 889
 890	ies = rcu_dereference(bss->ies);
 891	if (!ies)
 892		return NULL;
 893
 894	return cfg80211_find_ie(ie, ies->data, ies->len);
 895}
 896EXPORT_SYMBOL(ieee80211_bss_get_ie);
 897
 898void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 899{
 900	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 901	struct net_device *dev = wdev->netdev;
 902	int i;
 903
 904	if (!wdev->connect_keys)
 905		return;
 906
 907	for (i = 0; i < 6; i++) {
 908		if (!wdev->connect_keys->params[i].cipher)
 909			continue;
 910		if (rdev_add_key(rdev, dev, i, false, NULL,
 911				 &wdev->connect_keys->params[i])) {
 912			netdev_err(dev, "failed to set key %d\n", i);
 913			continue;
 914		}
 915		if (wdev->connect_keys->def == i)
 916			if (rdev_set_default_key(rdev, dev, i, true, true)) {
 917				netdev_err(dev, "failed to set defkey %d\n", i);
 918				continue;
 919			}
 920		if (wdev->connect_keys->defmgmt == i)
 921			if (rdev_set_default_mgmt_key(rdev, dev, i))
 922				netdev_err(dev, "failed to set mgtdef %d\n", i);
 923	}
 924
 925	kzfree(wdev->connect_keys);
 926	wdev->connect_keys = NULL;
 927}
 928
 929void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 930{
 931	struct cfg80211_event *ev;
 932	unsigned long flags;
 933	const u8 *bssid = NULL;
 934
 935	spin_lock_irqsave(&wdev->event_lock, flags);
 936	while (!list_empty(&wdev->event_list)) {
 937		ev = list_first_entry(&wdev->event_list,
 938				      struct cfg80211_event, list);
 939		list_del(&ev->list);
 940		spin_unlock_irqrestore(&wdev->event_lock, flags);
 941
 942		wdev_lock(wdev);
 943		switch (ev->type) {
 944		case EVENT_CONNECT_RESULT:
 945			if (!is_zero_ether_addr(ev->cr.bssid))
 946				bssid = ev->cr.bssid;
 947			__cfg80211_connect_result(
 948				wdev->netdev, bssid,
 949				ev->cr.req_ie, ev->cr.req_ie_len,
 950				ev->cr.resp_ie, ev->cr.resp_ie_len,
 951				ev->cr.status,
 952				ev->cr.status == WLAN_STATUS_SUCCESS,
 953				NULL);
 954			break;
 955		case EVENT_ROAMED:
 956			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
 957					  ev->rm.req_ie_len, ev->rm.resp_ie,
 958					  ev->rm.resp_ie_len);
 959			break;
 960		case EVENT_DISCONNECTED:
 961			__cfg80211_disconnected(wdev->netdev,
 962						ev->dc.ie, ev->dc.ie_len,
 963						ev->dc.reason,
 964						!ev->dc.locally_generated);
 965			break;
 966		case EVENT_IBSS_JOINED:
 967			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 968					       ev->ij.channel);
 969			break;
 970		case EVENT_STOPPED:
 971			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 
 
 
 
 
 972			break;
 973		}
 974		wdev_unlock(wdev);
 975
 976		kfree(ev);
 977
 978		spin_lock_irqsave(&wdev->event_lock, flags);
 979	}
 980	spin_unlock_irqrestore(&wdev->event_lock, flags);
 981}
 982
 983void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 984{
 985	struct wireless_dev *wdev;
 986
 987	ASSERT_RTNL();
 988
 989	list_for_each_entry(wdev, &rdev->wdev_list, list)
 990		cfg80211_process_wdev_events(wdev);
 991}
 992
 993int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 994			  struct net_device *dev, enum nl80211_iftype ntype,
 995			  u32 *flags, struct vif_params *params)
 996{
 997	int err;
 998	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 999
1000	ASSERT_RTNL();
1001
1002	/* don't support changing VLANs, you just re-create them */
1003	if (otype == NL80211_IFTYPE_AP_VLAN)
1004		return -EOPNOTSUPP;
1005
1006	/* cannot change into P2P device type */
1007	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
 
1008		return -EOPNOTSUPP;
1009
1010	if (!rdev->ops->change_virtual_intf ||
1011	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1012		return -EOPNOTSUPP;
1013
1014	/* if it's part of a bridge, reject changing type to station/ibss */
1015	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1016	    (ntype == NL80211_IFTYPE_ADHOC ||
1017	     ntype == NL80211_IFTYPE_STATION ||
1018	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1019		return -EBUSY;
 
1020
1021	if (ntype != otype) {
1022		dev->ieee80211_ptr->use_4addr = false;
1023		dev->ieee80211_ptr->mesh_id_up_len = 0;
1024		wdev_lock(dev->ieee80211_ptr);
1025		rdev_set_qos_map(rdev, dev, NULL);
1026		wdev_unlock(dev->ieee80211_ptr);
1027
1028		switch (otype) {
1029		case NL80211_IFTYPE_AP:
1030			cfg80211_stop_ap(rdev, dev, true);
 
1031			break;
1032		case NL80211_IFTYPE_ADHOC:
1033			cfg80211_leave_ibss(rdev, dev, false);
1034			break;
1035		case NL80211_IFTYPE_STATION:
1036		case NL80211_IFTYPE_P2P_CLIENT:
1037			wdev_lock(dev->ieee80211_ptr);
1038			cfg80211_disconnect(rdev, dev,
1039					    WLAN_REASON_DEAUTH_LEAVING, true);
1040			wdev_unlock(dev->ieee80211_ptr);
1041			break;
1042		case NL80211_IFTYPE_MESH_POINT:
1043			/* mesh should be handled? */
1044			break;
 
 
 
1045		default:
1046			break;
1047		}
1048
1049		cfg80211_process_rdev_events(rdev);
 
 
 
 
 
 
1050	}
1051
1052	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1053
1054	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1055
1056	if (!err && params && params->use_4addr != -1)
1057		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1058
1059	if (!err) {
1060		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1061		switch (ntype) {
1062		case NL80211_IFTYPE_STATION:
1063			if (dev->ieee80211_ptr->use_4addr)
1064				break;
1065			/* fall through */
1066		case NL80211_IFTYPE_OCB:
1067		case NL80211_IFTYPE_P2P_CLIENT:
1068		case NL80211_IFTYPE_ADHOC:
1069			dev->priv_flags |= IFF_DONT_BRIDGE;
1070			break;
1071		case NL80211_IFTYPE_P2P_GO:
1072		case NL80211_IFTYPE_AP:
1073		case NL80211_IFTYPE_AP_VLAN:
1074		case NL80211_IFTYPE_WDS:
1075		case NL80211_IFTYPE_MESH_POINT:
1076			/* bridging OK */
1077			break;
1078		case NL80211_IFTYPE_MONITOR:
1079			/* monitor can't bridge anyway */
1080			break;
1081		case NL80211_IFTYPE_UNSPECIFIED:
1082		case NUM_NL80211_IFTYPES:
1083			/* not happening */
1084			break;
1085		case NL80211_IFTYPE_P2P_DEVICE:
 
 
1086			WARN_ON(1);
1087			break;
1088		}
1089	}
1090
1091	if (!err && ntype != otype && netif_running(dev)) {
1092		cfg80211_update_iface_num(rdev, ntype, 1);
1093		cfg80211_update_iface_num(rdev, otype, -1);
1094	}
1095
1096	return err;
1097}
1098
1099static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100{
1101	static const u32 __mcs2bitrate[] = {
1102		/* control PHY */
1103		[0] =   275,
1104		/* SC PHY */
1105		[1] =  3850,
1106		[2] =  7700,
1107		[3] =  9625,
1108		[4] = 11550,
1109		[5] = 12512, /* 1251.25 mbps */
1110		[6] = 15400,
1111		[7] = 19250,
1112		[8] = 23100,
1113		[9] = 25025,
1114		[10] = 30800,
1115		[11] = 38500,
1116		[12] = 46200,
1117		/* OFDM PHY */
1118		[13] =  6930,
1119		[14] =  8662, /* 866.25 mbps */
1120		[15] = 13860,
1121		[16] = 17325,
1122		[17] = 20790,
1123		[18] = 27720,
1124		[19] = 34650,
1125		[20] = 41580,
1126		[21] = 45045,
1127		[22] = 51975,
1128		[23] = 62370,
1129		[24] = 67568, /* 6756.75 mbps */
1130		/* LP-SC PHY */
1131		[25] =  6260,
1132		[26] =  8340,
1133		[27] = 11120,
1134		[28] = 12510,
1135		[29] = 16680,
1136		[30] = 22240,
1137		[31] = 25030,
1138	};
1139
1140	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1141		return 0;
1142
1143	return __mcs2bitrate[rate->mcs];
1144}
1145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1147{
1148	static const u32 base[4][10] = {
1149		{   6500000,
1150		   13000000,
1151		   19500000,
1152		   26000000,
1153		   39000000,
1154		   52000000,
1155		   58500000,
1156		   65000000,
1157		   78000000,
1158		   0,
 
 
 
1159		},
1160		{  13500000,
1161		   27000000,
1162		   40500000,
1163		   54000000,
1164		   81000000,
1165		  108000000,
1166		  121500000,
1167		  135000000,
1168		  162000000,
1169		  180000000,
 
 
1170		},
1171		{  29300000,
1172		   58500000,
1173		   87800000,
1174		  117000000,
1175		  175500000,
1176		  234000000,
1177		  263300000,
1178		  292500000,
1179		  351000000,
1180		  390000000,
 
 
1181		},
1182		{  58500000,
1183		  117000000,
1184		  175500000,
1185		  234000000,
1186		  351000000,
1187		  468000000,
1188		  526500000,
1189		  585000000,
1190		  702000000,
1191		  780000000,
 
 
1192		},
1193	};
1194	u32 bitrate;
1195	int idx;
1196
1197	if (WARN_ON_ONCE(rate->mcs > 9))
1198		return 0;
1199
1200	switch (rate->bw) {
1201	case RATE_INFO_BW_160:
1202		idx = 3;
1203		break;
1204	case RATE_INFO_BW_80:
1205		idx = 2;
1206		break;
1207	case RATE_INFO_BW_40:
1208		idx = 1;
1209		break;
1210	case RATE_INFO_BW_5:
1211	case RATE_INFO_BW_10:
1212	default:
1213		WARN_ON(1);
1214		/* fall through */
1215	case RATE_INFO_BW_20:
1216		idx = 0;
1217	}
1218
1219	bitrate = base[idx][rate->mcs];
1220	bitrate *= rate->nss;
1221
1222	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1223		bitrate = (bitrate / 9) * 10;
1224
1225	/* do NOT round down here */
1226	return (bitrate + 50000) / 100000;
 
 
 
 
1227}
1228
1229u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1230{
1231	int modulation, streams, bitrate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232
1233	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1234	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1235		return rate->legacy;
1236	if (rate->flags & RATE_INFO_FLAGS_60G)
1237		return cfg80211_calculate_bitrate_60g(rate);
1238	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1239		return cfg80211_calculate_bitrate_vht(rate);
 
 
 
 
 
 
 
 
1240
1241	/* the formula below does only work for MCS values smaller than 32 */
1242	if (WARN_ON_ONCE(rate->mcs >= 32))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243		return 0;
 
1244
1245	modulation = rate->mcs & 7;
1246	streams = (rate->mcs >> 3) + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247
1248	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
 
1249
1250	if (modulation < 4)
1251		bitrate *= (modulation + 1);
1252	else if (modulation == 4)
1253		bitrate *= (modulation + 2);
1254	else
1255		bitrate *= (modulation + 3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	bitrate *= streams;
 
1258
1259	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1260		bitrate = (bitrate / 9) * 10;
1261
1262	/* do NOT round down here */
1263	return (bitrate + 50000) / 100000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264}
1265EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1266
1267int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1268			  enum ieee80211_p2p_attr_id attr,
1269			  u8 *buf, unsigned int bufsize)
1270{
1271	u8 *out = buf;
1272	u16 attr_remaining = 0;
1273	bool desired_attr = false;
1274	u16 desired_len = 0;
1275
1276	while (len > 0) {
1277		unsigned int iedatalen;
1278		unsigned int copy;
1279		const u8 *iedata;
1280
1281		if (len < 2)
1282			return -EILSEQ;
1283		iedatalen = ies[1];
1284		if (iedatalen + 2 > len)
1285			return -EILSEQ;
1286
1287		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1288			goto cont;
1289
1290		if (iedatalen < 4)
1291			goto cont;
1292
1293		iedata = ies + 2;
1294
1295		/* check WFA OUI, P2P subtype */
1296		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1297		    iedata[2] != 0x9a || iedata[3] != 0x09)
1298			goto cont;
1299
1300		iedatalen -= 4;
1301		iedata += 4;
1302
1303		/* check attribute continuation into this IE */
1304		copy = min_t(unsigned int, attr_remaining, iedatalen);
1305		if (copy && desired_attr) {
1306			desired_len += copy;
1307			if (out) {
1308				memcpy(out, iedata, min(bufsize, copy));
1309				out += min(bufsize, copy);
1310				bufsize -= min(bufsize, copy);
1311			}
1312
1313
1314			if (copy == attr_remaining)
1315				return desired_len;
1316		}
1317
1318		attr_remaining -= copy;
1319		if (attr_remaining)
1320			goto cont;
1321
1322		iedatalen -= copy;
1323		iedata += copy;
1324
1325		while (iedatalen > 0) {
1326			u16 attr_len;
1327
1328			/* P2P attribute ID & size must fit */
1329			if (iedatalen < 3)
1330				return -EILSEQ;
1331			desired_attr = iedata[0] == attr;
1332			attr_len = get_unaligned_le16(iedata + 1);
1333			iedatalen -= 3;
1334			iedata += 3;
1335
1336			copy = min_t(unsigned int, attr_len, iedatalen);
1337
1338			if (desired_attr) {
1339				desired_len += copy;
1340				if (out) {
1341					memcpy(out, iedata, min(bufsize, copy));
1342					out += min(bufsize, copy);
1343					bufsize -= min(bufsize, copy);
1344				}
1345
1346				if (copy == attr_len)
1347					return desired_len;
1348			}
1349
1350			iedata += copy;
1351			iedatalen -= copy;
1352			attr_remaining = attr_len - copy;
1353		}
1354
1355 cont:
1356		len -= ies[1] + 2;
1357		ies += ies[1] + 2;
1358	}
1359
1360	if (attr_remaining && desired_attr)
1361		return -EILSEQ;
1362
1363	return -ENOENT;
1364}
1365EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1366
1367static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1368{
1369	int i;
1370
1371	for (i = 0; i < n_ids; i++)
1372		if (ids[i] == id)
 
 
 
 
 
 
 
 
 
 
 
 
 
1373			return true;
 
 
 
1374	return false;
1375}
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1378			      const u8 *ids, int n_ids,
1379			      const u8 *after_ric, int n_after_ric,
1380			      size_t offset)
1381{
1382	size_t pos = offset;
1383
1384	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
 
 
 
 
 
 
 
 
 
 
 
1385		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1386			pos += 2 + ies[pos + 1];
1387
1388			while (pos < ielen &&
1389			       !ieee80211_id_in_list(after_ric, n_after_ric,
1390						     ies[pos]))
1391				pos += 2 + ies[pos + 1];
 
 
 
 
 
 
 
 
 
 
 
 
 
1392		} else {
1393			pos += 2 + ies[pos + 1];
1394		}
1395	}
1396
1397	return pos;
1398}
1399EXPORT_SYMBOL(ieee80211_ie_split_ric);
1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401bool ieee80211_operating_class_to_band(u8 operating_class,
1402				       enum ieee80211_band *band)
1403{
1404	switch (operating_class) {
1405	case 112:
1406	case 115 ... 127:
1407	case 128 ... 130:
1408		*band = IEEE80211_BAND_5GHZ;
 
 
 
 
1409		return true;
1410	case 81:
1411	case 82:
1412	case 83:
1413	case 84:
1414		*band = IEEE80211_BAND_2GHZ;
1415		return true;
1416	case 180:
1417		*band = IEEE80211_BAND_60GHZ;
1418		return true;
1419	}
1420
1421	return false;
1422}
1423EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1426					  u8 *op_class)
1427{
1428	u8 vht_opclass;
1429	u16 freq = chandef->center_freq1;
1430
1431	if (freq >= 2412 && freq <= 2472) {
1432		if (chandef->width > NL80211_CHAN_WIDTH_40)
1433			return false;
1434
1435		/* 2.407 GHz, channels 1..13 */
1436		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1437			if (freq > chandef->chan->center_freq)
1438				*op_class = 83; /* HT40+ */
1439			else
1440				*op_class = 84; /* HT40- */
1441		} else {
1442			*op_class = 81;
1443		}
1444
1445		return true;
1446	}
1447
1448	if (freq == 2484) {
1449		if (chandef->width > NL80211_CHAN_WIDTH_40)
 
1450			return false;
1451
1452		*op_class = 82; /* channel 14 */
1453		return true;
1454	}
1455
1456	switch (chandef->width) {
1457	case NL80211_CHAN_WIDTH_80:
1458		vht_opclass = 128;
1459		break;
1460	case NL80211_CHAN_WIDTH_160:
1461		vht_opclass = 129;
1462		break;
1463	case NL80211_CHAN_WIDTH_80P80:
1464		vht_opclass = 130;
1465		break;
1466	case NL80211_CHAN_WIDTH_10:
1467	case NL80211_CHAN_WIDTH_5:
1468		return false; /* unsupported for now */
1469	default:
1470		vht_opclass = 0;
1471		break;
1472	}
1473
1474	/* 5 GHz, channels 36..48 */
1475	if (freq >= 5180 && freq <= 5240) {
1476		if (vht_opclass) {
1477			*op_class = vht_opclass;
1478		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1479			if (freq > chandef->chan->center_freq)
1480				*op_class = 116;
1481			else
1482				*op_class = 117;
1483		} else {
1484			*op_class = 115;
1485		}
1486
1487		return true;
1488	}
1489
1490	/* 5 GHz, channels 52..64 */
1491	if (freq >= 5260 && freq <= 5320) {
1492		if (vht_opclass) {
1493			*op_class = vht_opclass;
1494		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1495			if (freq > chandef->chan->center_freq)
1496				*op_class = 119;
1497			else
1498				*op_class = 120;
1499		} else {
1500			*op_class = 118;
1501		}
1502
1503		return true;
1504	}
1505
1506	/* 5 GHz, channels 100..144 */
1507	if (freq >= 5500 && freq <= 5720) {
1508		if (vht_opclass) {
1509			*op_class = vht_opclass;
1510		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1511			if (freq > chandef->chan->center_freq)
1512				*op_class = 122;
1513			else
1514				*op_class = 123;
1515		} else {
1516			*op_class = 121;
1517		}
1518
1519		return true;
1520	}
1521
1522	/* 5 GHz, channels 149..169 */
1523	if (freq >= 5745 && freq <= 5845) {
1524		if (vht_opclass) {
1525			*op_class = vht_opclass;
1526		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1527			if (freq > chandef->chan->center_freq)
1528				*op_class = 126;
1529			else
1530				*op_class = 127;
1531		} else if (freq <= 5805) {
1532			*op_class = 124;
1533		} else {
1534			*op_class = 125;
1535		}
1536
1537		return true;
1538	}
1539
1540	/* 56.16 GHz, channel 1..4 */
1541	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1542		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1543			return false;
1544
1545		*op_class = 180;
1546		return true;
1547	}
1548
1549	/* not supported yet */
1550	return false;
1551}
1552EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1553
1554int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1555				 u32 beacon_int)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556{
 
1557	struct wireless_dev *wdev;
1558	int res = 0;
1559
1560	if (!beacon_int)
1561		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
1563	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1564		if (!wdev->beacon_interval)
1565			continue;
1566		if (wdev->beacon_interval != beacon_int) {
1567			res = -EINVAL;
1568			break;
1569		}
 
 
 
 
 
 
1570	}
1571
1572	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573}
1574
1575int cfg80211_iter_combinations(struct wiphy *wiphy,
1576			       const int num_different_channels,
1577			       const u8 radar_detect,
1578			       const int iftype_num[NUM_NL80211_IFTYPES],
1579			       void (*iter)(const struct ieee80211_iface_combination *c,
1580					    void *data),
1581			       void *data)
1582{
 
 
1583	const struct ieee80211_regdomain *regdom;
1584	enum nl80211_dfs_regions region = 0;
1585	int i, j, iftype;
1586	int num_interfaces = 0;
1587	u32 used_iftypes = 0;
 
 
1588
1589	if (radar_detect) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590		rcu_read_lock();
1591		regdom = rcu_dereference(cfg80211_regdomain);
1592		if (regdom)
1593			region = regdom->dfs_region;
1594		rcu_read_unlock();
1595	}
1596
1597	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1598		num_interfaces += iftype_num[iftype];
1599		if (iftype_num[iftype] > 0 &&
1600		    !(wiphy->software_iftypes & BIT(iftype)))
1601			used_iftypes |= BIT(iftype);
1602	}
1603
1604	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1605		const struct ieee80211_iface_combination *c;
 
 
 
 
 
 
1606		struct ieee80211_iface_limit *limits;
1607		u32 all_iftypes = 0;
1608
1609		c = &wiphy->iface_combinations[i];
1610
1611		if (num_interfaces > c->max_interfaces)
1612			continue;
1613		if (num_different_channels > c->num_different_channels)
1614			continue;
1615
1616		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1617				 GFP_KERNEL);
1618		if (!limits)
1619			return -ENOMEM;
1620
1621		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1622			if (wiphy->software_iftypes & BIT(iftype))
1623				continue;
1624			for (j = 0; j < c->n_limits; j++) {
1625				all_iftypes |= limits[j].types;
1626				if (!(limits[j].types & BIT(iftype)))
1627					continue;
1628				if (limits[j].max < iftype_num[iftype])
1629					goto cont;
1630				limits[j].max -= iftype_num[iftype];
1631			}
1632		}
1633
1634		if (radar_detect != (c->radar_detect_widths & radar_detect))
 
1635			goto cont;
1636
1637		if (radar_detect && c->radar_detect_regions &&
1638		    !(c->radar_detect_regions & BIT(region)))
1639			goto cont;
1640
1641		/* Finally check that all iftypes that we're currently
1642		 * using are actually part of this combination. If they
1643		 * aren't then we can't use this combination and have
1644		 * to continue to the next.
1645		 */
1646		if ((all_iftypes & used_iftypes) != used_iftypes)
1647			goto cont;
1648
 
 
 
 
 
 
 
 
1649		/* This combination covered all interface types and
1650		 * supported the requested numbers, so we're good.
1651		 */
1652
1653		(*iter)(c, data);
1654 cont:
1655		kfree(limits);
1656	}
1657
1658	return 0;
1659}
1660EXPORT_SYMBOL(cfg80211_iter_combinations);
1661
1662static void
1663cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1664			  void *data)
1665{
1666	int *num = data;
1667	(*num)++;
1668}
1669
1670int cfg80211_check_combinations(struct wiphy *wiphy,
1671				const int num_different_channels,
1672				const u8 radar_detect,
1673				const int iftype_num[NUM_NL80211_IFTYPES])
1674{
1675	int err, num = 0;
1676
1677	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1678					 radar_detect, iftype_num,
1679					 cfg80211_iter_sum_ifcombs, &num);
1680	if (err)
1681		return err;
1682	if (num == 0)
1683		return -EBUSY;
1684
1685	return 0;
1686}
1687EXPORT_SYMBOL(cfg80211_check_combinations);
1688
1689int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1690			   const u8 *rates, unsigned int n_rates,
1691			   u32 *mask)
1692{
1693	int i, j;
1694
1695	if (!sband)
1696		return -EINVAL;
1697
1698	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1699		return -EINVAL;
1700
1701	*mask = 0;
1702
1703	for (i = 0; i < n_rates; i++) {
1704		int rate = (rates[i] & 0x7f) * 5;
1705		bool found = false;
1706
1707		for (j = 0; j < sband->n_bitrates; j++) {
1708			if (sband->bitrates[j].bitrate == rate) {
1709				found = true;
1710				*mask |= BIT(j);
1711				break;
1712			}
1713		}
1714		if (!found)
1715			return -EINVAL;
1716	}
1717
1718	/*
1719	 * mask must have at least one bit set here since we
1720	 * didn't accept a 0-length rates array nor allowed
1721	 * entries in the array that didn't exist
1722	 */
1723
1724	return 0;
1725}
1726
1727unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1728{
1729	enum ieee80211_band band;
1730	unsigned int n_channels = 0;
1731
1732	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1733		if (wiphy->bands[band])
1734			n_channels += wiphy->bands[band]->n_channels;
1735
1736	return n_channels;
1737}
1738EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1739
1740int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1741			 struct station_info *sinfo)
1742{
1743	struct cfg80211_registered_device *rdev;
1744	struct wireless_dev *wdev;
 
1745
1746	wdev = dev->ieee80211_ptr;
1747	if (!wdev)
1748		return -EOPNOTSUPP;
1749
1750	rdev = wiphy_to_rdev(wdev->wiphy);
1751	if (!rdev->ops->get_station)
1752		return -EOPNOTSUPP;
1753
1754	return rdev_get_station(rdev, dev, mac_addr, sinfo);
 
 
 
 
 
 
1755}
1756EXPORT_SYMBOL(cfg80211_get_station);
1757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1759/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1760const unsigned char rfc1042_header[] __aligned(2) =
1761	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1762EXPORT_SYMBOL(rfc1042_header);
1763
1764/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1765const unsigned char bridge_tunnel_header[] __aligned(2) =
1766	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1767EXPORT_SYMBOL(bridge_tunnel_header);