Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2023 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27const struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
 
  47{
  48	struct ieee80211_rate *bitrates;
  49	u32 mandatory_rates = 0;
  50	enum ieee80211_rate_flags mandatory_flag;
  51	int i;
  52
  53	if (WARN_ON(!sband))
  54		return 1;
  55
  56	if (sband->band == NL80211_BAND_2GHZ)
  57		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  58	else
 
 
 
 
  59		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 
  60
  61	bitrates = sband->bitrates;
  62	for (i = 0; i < sband->n_bitrates; i++)
  63		if (bitrates[i].flags & mandatory_flag)
  64			mandatory_rates |= BIT(i);
  65	return mandatory_rates;
  66}
  67EXPORT_SYMBOL(ieee80211_mandatory_rates);
  68
  69u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  70{
  71	/* see 802.11 17.3.8.3.2 and Annex J
  72	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  73	if (chan <= 0)
  74		return 0; /* not supported */
  75	switch (band) {
  76	case NL80211_BAND_2GHZ:
  77	case NL80211_BAND_LC:
  78		if (chan == 14)
  79			return MHZ_TO_KHZ(2484);
  80		else if (chan < 14)
  81			return MHZ_TO_KHZ(2407 + chan * 5);
  82		break;
  83	case NL80211_BAND_5GHZ:
  84		if (chan >= 182 && chan <= 196)
  85			return MHZ_TO_KHZ(4000 + chan * 5);
  86		else
  87			return MHZ_TO_KHZ(5000 + chan * 5);
  88		break;
  89	case NL80211_BAND_6GHZ:
  90		/* see 802.11ax D6.1 27.3.23.2 */
  91		if (chan == 2)
  92			return MHZ_TO_KHZ(5935);
  93		if (chan <= 233)
  94			return MHZ_TO_KHZ(5950 + chan * 5);
  95		break;
  96	case NL80211_BAND_60GHZ:
  97		if (chan < 7)
  98			return MHZ_TO_KHZ(56160 + chan * 2160);
  99		break;
 100	case NL80211_BAND_S1GHZ:
 101		return 902000 + chan * 500;
 102	default:
 103		;
 104	}
 105	return 0; /* not supported */
 106}
 107EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 108
 109enum nl80211_chan_width
 110ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
 111{
 112	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
 113		return NL80211_CHAN_WIDTH_20_NOHT;
 114
 115	/*S1G defines a single allowed channel width per channel.
 116	 * Extract that width here.
 117	 */
 118	if (chan->flags & IEEE80211_CHAN_1MHZ)
 119		return NL80211_CHAN_WIDTH_1;
 120	else if (chan->flags & IEEE80211_CHAN_2MHZ)
 121		return NL80211_CHAN_WIDTH_2;
 122	else if (chan->flags & IEEE80211_CHAN_4MHZ)
 123		return NL80211_CHAN_WIDTH_4;
 124	else if (chan->flags & IEEE80211_CHAN_8MHZ)
 125		return NL80211_CHAN_WIDTH_8;
 126	else if (chan->flags & IEEE80211_CHAN_16MHZ)
 127		return NL80211_CHAN_WIDTH_16;
 128
 129	pr_err("unknown channel width for channel at %dKHz?\n",
 130	       ieee80211_channel_to_khz(chan));
 131
 132	return NL80211_CHAN_WIDTH_1;
 133}
 134EXPORT_SYMBOL(ieee80211_s1g_channel_width);
 135
 136int ieee80211_freq_khz_to_channel(u32 freq)
 137{
 138	/* TODO: just handle MHz for now */
 139	freq = KHZ_TO_MHZ(freq);
 140
 141	/* see 802.11 17.3.8.3.2 and Annex J */
 142	if (freq == 2484)
 143		return 14;
 144	else if (freq < 2484)
 145		return (freq - 2407) / 5;
 146	else if (freq >= 4910 && freq <= 4980)
 147		return (freq - 4000) / 5;
 148	else if (freq < 5925)
 149		return (freq - 5000) / 5;
 150	else if (freq == 5935)
 151		return 2;
 152	else if (freq <= 45000) /* DMG band lower limit */
 153		/* see 802.11ax D6.1 27.3.22.2 */
 154		return (freq - 5950) / 5;
 155	else if (freq >= 58320 && freq <= 70200)
 156		return (freq - 56160) / 2160;
 157	else
 158		return 0;
 159}
 160EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 161
 162struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 163						    u32 freq)
 164{
 165	enum nl80211_band band;
 166	struct ieee80211_supported_band *sband;
 167	int i;
 168
 169	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 170		sband = wiphy->bands[band];
 171
 172		if (!sband)
 173			continue;
 174
 175		for (i = 0; i < sband->n_channels; i++) {
 176			struct ieee80211_channel *chan = &sband->channels[i];
 177
 178			if (ieee80211_channel_to_khz(chan) == freq)
 179				return chan;
 180		}
 181	}
 182
 183	return NULL;
 184}
 185EXPORT_SYMBOL(ieee80211_get_channel_khz);
 186
 187static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 188{
 189	int i, want;
 190
 191	switch (sband->band) {
 192	case NL80211_BAND_5GHZ:
 193	case NL80211_BAND_6GHZ:
 194		want = 3;
 195		for (i = 0; i < sband->n_bitrates; i++) {
 196			if (sband->bitrates[i].bitrate == 60 ||
 197			    sband->bitrates[i].bitrate == 120 ||
 198			    sband->bitrates[i].bitrate == 240) {
 199				sband->bitrates[i].flags |=
 200					IEEE80211_RATE_MANDATORY_A;
 201				want--;
 202			}
 203		}
 204		WARN_ON(want);
 205		break;
 206	case NL80211_BAND_2GHZ:
 207	case NL80211_BAND_LC:
 208		want = 7;
 209		for (i = 0; i < sband->n_bitrates; i++) {
 210			switch (sband->bitrates[i].bitrate) {
 211			case 10:
 212			case 20:
 213			case 55:
 214			case 110:
 215				sband->bitrates[i].flags |=
 216					IEEE80211_RATE_MANDATORY_B |
 217					IEEE80211_RATE_MANDATORY_G;
 218				want--;
 219				break;
 220			case 60:
 221			case 120:
 222			case 240:
 223				sband->bitrates[i].flags |=
 224					IEEE80211_RATE_MANDATORY_G;
 225				want--;
 226				fallthrough;
 227			default:
 228				sband->bitrates[i].flags |=
 229					IEEE80211_RATE_ERP_G;
 230				break;
 231			}
 232		}
 233		WARN_ON(want != 0 && want != 3);
 234		break;
 235	case NL80211_BAND_60GHZ:
 236		/* check for mandatory HT MCS 1..4 */
 237		WARN_ON(!sband->ht_cap.ht_supported);
 238		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 239		break;
 240	case NL80211_BAND_S1GHZ:
 241		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 242		 * mandatory is ok.
 243		 */
 244		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 245		break;
 246	case NUM_NL80211_BANDS:
 247	default:
 248		WARN_ON(1);
 249		break;
 250	}
 251}
 252
 253void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 254{
 255	enum nl80211_band band;
 256
 257	for (band = 0; band < NUM_NL80211_BANDS; band++)
 258		if (wiphy->bands[band])
 259			set_mandatory_flags_band(wiphy->bands[band]);
 260}
 261
 262bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 263{
 264	int i;
 265	for (i = 0; i < wiphy->n_cipher_suites; i++)
 266		if (cipher == wiphy->cipher_suites[i])
 267			return true;
 268	return false;
 269}
 270
 271static bool
 272cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
 273{
 274	struct wiphy *wiphy = &rdev->wiphy;
 275	int i;
 276
 277	for (i = 0; i < wiphy->n_cipher_suites; i++) {
 278		switch (wiphy->cipher_suites[i]) {
 279		case WLAN_CIPHER_SUITE_AES_CMAC:
 280		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 281		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 282		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 283			return true;
 284		}
 285	}
 286
 287	return false;
 288}
 289
 290bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
 291			    int key_idx, bool pairwise)
 292{
 293	int max_key_idx;
 294
 295	if (pairwise)
 296		max_key_idx = 3;
 297	else if (wiphy_ext_feature_isset(&rdev->wiphy,
 298					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 299		 wiphy_ext_feature_isset(&rdev->wiphy,
 300					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 301		max_key_idx = 7;
 302	else if (cfg80211_igtk_cipher_supported(rdev))
 303		max_key_idx = 5;
 304	else
 305		max_key_idx = 3;
 306
 307	if (key_idx < 0 || key_idx > max_key_idx)
 308		return false;
 309
 310	return true;
 311}
 312
 313int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 314				   struct key_params *params, int key_idx,
 315				   bool pairwise, const u8 *mac_addr)
 316{
 317	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
 
 
 
 
 
 
 
 318		return -EINVAL;
 319
 320	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 321		return -EINVAL;
 322
 323	if (pairwise && !mac_addr)
 324		return -EINVAL;
 325
 326	switch (params->cipher) {
 327	case WLAN_CIPHER_SUITE_TKIP:
 328		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 329		if ((pairwise && key_idx) ||
 330		    params->mode != NL80211_KEY_RX_TX)
 331			return -EINVAL;
 332		break;
 333	case WLAN_CIPHER_SUITE_CCMP:
 334	case WLAN_CIPHER_SUITE_CCMP_256:
 335	case WLAN_CIPHER_SUITE_GCMP:
 336	case WLAN_CIPHER_SUITE_GCMP_256:
 337		/* IEEE802.11-2016 allows only 0 and - when supporting
 338		 * Extended Key ID - 1 as index for pairwise keys.
 339		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 340		 * the driver supports Extended Key ID.
 341		 * @NL80211_KEY_SET_TX can't be set when installing and
 342		 * validating a key.
 343		 */
 344		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 345		    params->mode == NL80211_KEY_SET_TX)
 346			return -EINVAL;
 347		if (wiphy_ext_feature_isset(&rdev->wiphy,
 348					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 349			if (pairwise && (key_idx < 0 || key_idx > 1))
 350				return -EINVAL;
 351		} else if (pairwise && key_idx) {
 352			return -EINVAL;
 353		}
 354		break;
 355	case WLAN_CIPHER_SUITE_AES_CMAC:
 356	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 357	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 358	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 359		/* Disallow BIP (group-only) cipher as pairwise cipher */
 360		if (pairwise)
 361			return -EINVAL;
 362		if (key_idx < 4)
 363			return -EINVAL;
 364		break;
 365	case WLAN_CIPHER_SUITE_WEP40:
 366	case WLAN_CIPHER_SUITE_WEP104:
 367		if (key_idx > 3)
 368			return -EINVAL;
 369		break;
 370	default:
 371		break;
 372	}
 373
 374	switch (params->cipher) {
 375	case WLAN_CIPHER_SUITE_WEP40:
 376		if (params->key_len != WLAN_KEY_LEN_WEP40)
 377			return -EINVAL;
 378		break;
 379	case WLAN_CIPHER_SUITE_TKIP:
 380		if (params->key_len != WLAN_KEY_LEN_TKIP)
 381			return -EINVAL;
 382		break;
 383	case WLAN_CIPHER_SUITE_CCMP:
 384		if (params->key_len != WLAN_KEY_LEN_CCMP)
 385			return -EINVAL;
 386		break;
 387	case WLAN_CIPHER_SUITE_CCMP_256:
 388		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 389			return -EINVAL;
 390		break;
 391	case WLAN_CIPHER_SUITE_GCMP:
 392		if (params->key_len != WLAN_KEY_LEN_GCMP)
 393			return -EINVAL;
 394		break;
 395	case WLAN_CIPHER_SUITE_GCMP_256:
 396		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 397			return -EINVAL;
 398		break;
 399	case WLAN_CIPHER_SUITE_WEP104:
 400		if (params->key_len != WLAN_KEY_LEN_WEP104)
 401			return -EINVAL;
 402		break;
 403	case WLAN_CIPHER_SUITE_AES_CMAC:
 404		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 405			return -EINVAL;
 406		break;
 407	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 408		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 409			return -EINVAL;
 410		break;
 411	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 412		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 413			return -EINVAL;
 414		break;
 415	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 416		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 417			return -EINVAL;
 418		break;
 419	default:
 420		/*
 421		 * We don't know anything about this algorithm,
 422		 * allow using it -- but the driver must check
 423		 * all parameters! We still check below whether
 424		 * or not the driver supports this algorithm,
 425		 * of course.
 426		 */
 427		break;
 428	}
 429
 430	if (params->seq) {
 431		switch (params->cipher) {
 432		case WLAN_CIPHER_SUITE_WEP40:
 433		case WLAN_CIPHER_SUITE_WEP104:
 434			/* These ciphers do not use key sequence */
 435			return -EINVAL;
 436		case WLAN_CIPHER_SUITE_TKIP:
 437		case WLAN_CIPHER_SUITE_CCMP:
 438		case WLAN_CIPHER_SUITE_CCMP_256:
 439		case WLAN_CIPHER_SUITE_GCMP:
 440		case WLAN_CIPHER_SUITE_GCMP_256:
 441		case WLAN_CIPHER_SUITE_AES_CMAC:
 442		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 443		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 444		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 445			if (params->seq_len != 6)
 446				return -EINVAL;
 447			break;
 448		}
 449	}
 450
 451	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 452		return -EINVAL;
 453
 454	return 0;
 455}
 456
 457unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 458{
 459	unsigned int hdrlen = 24;
 460
 461	if (ieee80211_is_ext(fc)) {
 462		hdrlen = 4;
 463		goto out;
 464	}
 465
 466	if (ieee80211_is_data(fc)) {
 467		if (ieee80211_has_a4(fc))
 468			hdrlen = 30;
 469		if (ieee80211_is_data_qos(fc)) {
 470			hdrlen += IEEE80211_QOS_CTL_LEN;
 471			if (ieee80211_has_order(fc))
 472				hdrlen += IEEE80211_HT_CTL_LEN;
 473		}
 474		goto out;
 475	}
 476
 477	if (ieee80211_is_mgmt(fc)) {
 478		if (ieee80211_has_order(fc))
 479			hdrlen += IEEE80211_HT_CTL_LEN;
 480		goto out;
 481	}
 482
 483	if (ieee80211_is_ctl(fc)) {
 484		/*
 485		 * ACK and CTS are 10 bytes, all others 16. To see how
 486		 * to get this condition consider
 487		 *   subtype mask:   0b0000000011110000 (0x00F0)
 488		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 489		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 490		 *   bits that matter:         ^^^      (0x00E0)
 491		 *   value of those: 0b0000000011000000 (0x00C0)
 492		 */
 493		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 494			hdrlen = 10;
 495		else
 496			hdrlen = 16;
 497	}
 498out:
 499	return hdrlen;
 500}
 501EXPORT_SYMBOL(ieee80211_hdrlen);
 502
 503unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 504{
 505	const struct ieee80211_hdr *hdr =
 506			(const struct ieee80211_hdr *)skb->data;
 507	unsigned int hdrlen;
 508
 509	if (unlikely(skb->len < 10))
 510		return 0;
 511	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 512	if (unlikely(hdrlen > skb->len))
 513		return 0;
 514	return hdrlen;
 515}
 516EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 517
 518static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 519{
 520	int ae = flags & MESH_FLAGS_AE;
 521	/* 802.11-2012, 8.2.4.7.3 */
 522	switch (ae) {
 523	default:
 524	case 0:
 525		return 6;
 526	case MESH_FLAGS_AE_A4:
 527		return 12;
 528	case MESH_FLAGS_AE_A5_A6:
 529		return 18;
 530	}
 531}
 532
 533unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 534{
 535	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 536}
 537EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 538
 539bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
 540{
 541	const __be16 *hdr_proto = hdr + ETH_ALEN;
 542
 543	if (!(ether_addr_equal(hdr, rfc1042_header) &&
 544	      *hdr_proto != htons(ETH_P_AARP) &&
 545	      *hdr_proto != htons(ETH_P_IPX)) &&
 546	    !ether_addr_equal(hdr, bridge_tunnel_header))
 547		return false;
 548
 549	*proto = *hdr_proto;
 550
 551	return true;
 552}
 553EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
 554
 555int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
 556{
 557	const void *mesh_addr;
 558	struct {
 559		struct ethhdr eth;
 560		u8 flags;
 561	} payload;
 562	int hdrlen;
 563	int ret;
 564
 565	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
 566	if (ret)
 567		return ret;
 568
 569	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
 570
 571	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
 572		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
 573						   &payload.eth.h_proto)))
 574		hdrlen += ETH_ALEN + 2;
 575	else if (!pskb_may_pull(skb, hdrlen))
 576		return -EINVAL;
 577	else
 578		payload.eth.h_proto = htons(skb->len - hdrlen);
 579
 580	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
 581	switch (payload.flags & MESH_FLAGS_AE) {
 582	case MESH_FLAGS_AE_A4:
 583		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
 584		break;
 585	case MESH_FLAGS_AE_A5_A6:
 586		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
 587		break;
 588	default:
 589		break;
 590	}
 591
 592	pskb_pull(skb, hdrlen - sizeof(payload.eth));
 593	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
 594
 595	return 0;
 596}
 597EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
 598
 599int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 600				  const u8 *addr, enum nl80211_iftype iftype,
 601				  u8 data_offset, bool is_amsdu)
 602{
 603	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 604	struct {
 605		u8 hdr[ETH_ALEN] __aligned(2);
 606		__be16 proto;
 607	} payload;
 608	struct ethhdr tmp;
 609	u16 hdrlen;
 
 610
 611	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 612		return -1;
 613
 614	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 615	if (skb->len < hdrlen)
 616		return -1;
 617
 618	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 619	 * header
 620	 * IEEE 802.11 address fields:
 621	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 622	 *   0     0   DA    SA    BSSID n/a
 623	 *   0     1   DA    BSSID SA    n/a
 624	 *   1     0   BSSID SA    DA    n/a
 625	 *   1     1   RA    TA    DA    SA
 626	 */
 627	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 628	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 629
 
 
 
 
 
 630	switch (hdr->frame_control &
 631		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 632	case cpu_to_le16(IEEE80211_FCTL_TODS):
 633		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 634			     iftype != NL80211_IFTYPE_AP_VLAN &&
 635			     iftype != NL80211_IFTYPE_P2P_GO))
 636			return -1;
 637		break;
 638	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 639		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
 
 640			     iftype != NL80211_IFTYPE_AP_VLAN &&
 641			     iftype != NL80211_IFTYPE_STATION))
 642			return -1;
 
 
 
 
 
 
 
 
 
 
 643		break;
 644	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 645		if ((iftype != NL80211_IFTYPE_STATION &&
 646		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 647		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 648		    (is_multicast_ether_addr(tmp.h_dest) &&
 649		     ether_addr_equal(tmp.h_source, addr)))
 650			return -1;
 
 
 
 
 
 
 
 
 
 651		break;
 652	case cpu_to_le16(0):
 653		if (iftype != NL80211_IFTYPE_ADHOC &&
 654		    iftype != NL80211_IFTYPE_STATION &&
 655		    iftype != NL80211_IFTYPE_OCB)
 656				return -1;
 657		break;
 658	}
 659
 660	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
 661		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
 662		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
 663		/* remove RFC1042 or Bridge-Tunnel encapsulation */
 
 
 
 
 
 664		hdrlen += ETH_ALEN + 2;
 665		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
 666	} else {
 667		tmp.h_proto = htons(skb->len - hdrlen);
 668	}
 669
 670	pskb_pull(skb, hdrlen);
 671
 672	if (!ehdr)
 673		ehdr = skb_push(skb, sizeof(struct ethhdr));
 674	memcpy(ehdr, &tmp, sizeof(tmp));
 675
 676	return 0;
 677}
 678EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 679
 680static void
 681__frame_add_frag(struct sk_buff *skb, struct page *page,
 682		 void *ptr, int len, int size)
 683{
 684	struct skb_shared_info *sh = skb_shinfo(skb);
 685	int page_offset;
 686
 687	get_page(page);
 688	page_offset = ptr - page_address(page);
 689	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 690}
 691
 692static void
 693__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 694			    int offset, int len)
 695{
 696	struct skb_shared_info *sh = skb_shinfo(skb);
 697	const skb_frag_t *frag = &sh->frags[0];
 698	struct page *frag_page;
 699	void *frag_ptr;
 700	int frag_len, frag_size;
 701	int head_size = skb->len - skb->data_len;
 702	int cur_len;
 703
 704	frag_page = virt_to_head_page(skb->head);
 705	frag_ptr = skb->data;
 706	frag_size = head_size;
 707
 708	while (offset >= frag_size) {
 709		offset -= frag_size;
 710		frag_page = skb_frag_page(frag);
 711		frag_ptr = skb_frag_address(frag);
 712		frag_size = skb_frag_size(frag);
 713		frag++;
 714	}
 715
 716	frag_ptr += offset;
 717	frag_len = frag_size - offset;
 718
 719	cur_len = min(len, frag_len);
 720
 721	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 722	len -= cur_len;
 723
 724	while (len > 0) {
 725		frag_len = skb_frag_size(frag);
 726		cur_len = min(len, frag_len);
 727		__frame_add_frag(frame, skb_frag_page(frag),
 728				 skb_frag_address(frag), cur_len, frag_len);
 729		len -= cur_len;
 730		frag++;
 731	}
 732}
 733
 734static struct sk_buff *
 735__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 736		       int offset, int len, bool reuse_frag,
 737		       int min_len)
 738{
 739	struct sk_buff *frame;
 740	int cur_len = len;
 741
 742	if (skb->len - offset < len)
 743		return NULL;
 744
 745	/*
 746	 * When reusing fragments, copy some data to the head to simplify
 747	 * ethernet header handling and speed up protocol header processing
 748	 * in the stack later.
 749	 */
 750	if (reuse_frag)
 751		cur_len = min_t(int, len, min_len);
 752
 753	/*
 754	 * Allocate and reserve two bytes more for payload
 755	 * alignment since sizeof(struct ethhdr) is 14.
 756	 */
 757	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 758	if (!frame)
 759		return NULL;
 760
 761	frame->priority = skb->priority;
 762	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 763	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 764
 765	len -= cur_len;
 766	if (!len)
 767		return frame;
 768
 769	offset += cur_len;
 770	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 771
 772	return frame;
 773}
 774
 775static u16
 776ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
 777{
 778	__le16 *field_le = field;
 779	__be16 *field_be = field;
 780	u16 len;
 781
 782	if (hdr_type >= 2)
 783		len = le16_to_cpu(*field_le);
 784	else
 785		len = be16_to_cpu(*field_be);
 786	if (hdr_type)
 787		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
 788
 789	return len;
 790}
 791
 792bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
 793{
 794	int offset = 0, subframe_len, padding;
 795
 796	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
 797		int remaining = skb->len - offset;
 798		struct {
 799		    __be16 len;
 800		    u8 mesh_flags;
 801		} hdr;
 802		u16 len;
 803
 804		if (sizeof(hdr) > remaining)
 805			return false;
 806
 807		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
 808			return false;
 809
 810		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
 811						      mesh_hdr);
 812		subframe_len = sizeof(struct ethhdr) + len;
 813		padding = (4 - subframe_len) & 0x3;
 814
 815		if (subframe_len > remaining)
 816			return false;
 817	}
 818
 819	return true;
 820}
 821EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
 822
 823void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 824			      const u8 *addr, enum nl80211_iftype iftype,
 825			      const unsigned int extra_headroom,
 826			      const u8 *check_da, const u8 *check_sa,
 827			      u8 mesh_control)
 828{
 829	unsigned int hlen = ALIGN(extra_headroom, 4);
 830	struct sk_buff *frame = NULL;
 831	int offset = 0;
 832	struct {
 833		struct ethhdr eth;
 834		uint8_t flags;
 835	} hdr;
 836	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 837	bool reuse_skb = false;
 838	bool last = false;
 839	int copy_len = sizeof(hdr.eth);
 840
 841	if (iftype == NL80211_IFTYPE_MESH_POINT)
 842		copy_len = sizeof(hdr);
 843
 844	while (!last) {
 845		int remaining = skb->len - offset;
 846		unsigned int subframe_len;
 847		int len, mesh_len = 0;
 848		u8 padding;
 849
 850		if (copy_len > remaining)
 851			goto purge;
 852
 853		skb_copy_bits(skb, offset, &hdr, copy_len);
 854		if (iftype == NL80211_IFTYPE_MESH_POINT)
 855			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
 856		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
 857						      mesh_control);
 858		subframe_len = sizeof(struct ethhdr) + len;
 859		padding = (4 - subframe_len) & 0x3;
 860
 861		/* the last MSDU has no padding */
 
 862		if (subframe_len > remaining)
 863			goto purge;
 864		/* mitigate A-MSDU aggregation injection attacks */
 865		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
 866			goto purge;
 867
 868		offset += sizeof(struct ethhdr);
 869		last = remaining <= subframe_len + padding;
 870
 871		/* FIXME: should we really accept multicast DA? */
 872		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
 873		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
 874		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
 875			offset += len + padding;
 876			continue;
 877		}
 878
 879		/* reuse skb for the last subframe */
 880		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 881			skb_pull(skb, offset);
 882			frame = skb;
 883			reuse_skb = true;
 884		} else {
 885			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 886						       reuse_frag, 32 + mesh_len);
 887			if (!frame)
 888				goto purge;
 889
 890			offset += len + padding;
 891		}
 892
 893		skb_reset_network_header(frame);
 894		frame->dev = skb->dev;
 895		frame->priority = skb->priority;
 896
 897		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
 898			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
 
 
 
 
 899			skb_pull(frame, ETH_ALEN + 2);
 
 900
 901		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
 902		__skb_queue_tail(list, frame);
 903	}
 904
 905	if (!reuse_skb)
 906		dev_kfree_skb(skb);
 907
 908	return;
 909
 910 purge:
 911	__skb_queue_purge(list);
 912	dev_kfree_skb(skb);
 913}
 914EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 915
 916/* Given a data frame determine the 802.1p/1d tag to use. */
 917unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 918				    struct cfg80211_qos_map *qos_map)
 919{
 920	unsigned int dscp;
 921	unsigned char vlan_priority;
 922	unsigned int ret;
 923
 924	/* skb->priority values from 256->263 are magic values to
 925	 * directly indicate a specific 802.1d priority.  This is used
 926	 * to allow 802.1d priority to be passed directly in from VLAN
 927	 * tags, etc.
 928	 */
 929	if (skb->priority >= 256 && skb->priority <= 263) {
 930		ret = skb->priority - 256;
 931		goto out;
 932	}
 933
 934	if (skb_vlan_tag_present(skb)) {
 935		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 936			>> VLAN_PRIO_SHIFT;
 937		if (vlan_priority > 0) {
 938			ret = vlan_priority;
 939			goto out;
 940		}
 941	}
 942
 943	switch (skb->protocol) {
 944	case htons(ETH_P_IP):
 945		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 946		break;
 947	case htons(ETH_P_IPV6):
 948		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 949		break;
 950	case htons(ETH_P_MPLS_UC):
 951	case htons(ETH_P_MPLS_MC): {
 952		struct mpls_label mpls_tmp, *mpls;
 953
 954		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 955					  sizeof(*mpls), &mpls_tmp);
 956		if (!mpls)
 957			return 0;
 958
 959		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 960			>> MPLS_LS_TC_SHIFT;
 961		goto out;
 962	}
 963	case htons(ETH_P_80221):
 964		/* 802.21 is always network control traffic */
 965		return 7;
 966	default:
 967		return 0;
 968	}
 969
 970	if (qos_map) {
 971		unsigned int i, tmp_dscp = dscp >> 2;
 972
 973		for (i = 0; i < qos_map->num_des; i++) {
 974			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 975				ret = qos_map->dscp_exception[i].up;
 976				goto out;
 977			}
 978		}
 979
 980		for (i = 0; i < 8; i++) {
 981			if (tmp_dscp >= qos_map->up[i].low &&
 982			    tmp_dscp <= qos_map->up[i].high) {
 983				ret = i;
 984				goto out;
 985			}
 986		}
 987	}
 988
 989	/* The default mapping as defined Section 2.3 in RFC8325: The three
 990	 * Most Significant Bits (MSBs) of the DSCP are used as the
 991	 * corresponding L2 markings.
 992	 */
 993	ret = dscp >> 5;
 994
 995	/* Handle specific DSCP values for which the default mapping (as
 996	 * described above) doesn't adhere to the intended usage of the DSCP
 997	 * value. See section 4 in RFC8325. Specifically, for the following
 998	 * Diffserv Service Classes no update is needed:
 999	 * - Standard: DF
1000	 * - Low Priority Data: CS1
1001	 * - Multimedia Conferencing: AF41, AF42, AF43
1002	 * - Network Control Traffic: CS7
1003	 * - Real-Time Interactive: CS4
1004	 * - Signaling: CS5
1005	 */
1006	switch (dscp >> 2) {
1007	case 10:
1008	case 12:
1009	case 14:
1010		/* High throughput data: AF11, AF12, AF13 */
1011		ret = 0;
1012		break;
1013	case 16:
1014		/* Operations, Administration, and Maintenance and Provisioning:
1015		 * CS2
1016		 */
1017		ret = 0;
1018		break;
1019	case 18:
1020	case 20:
1021	case 22:
1022		/* Low latency data: AF21, AF22, AF23 */
1023		ret = 3;
1024		break;
1025	case 24:
1026		/* Broadcasting video: CS3 */
1027		ret = 4;
1028		break;
1029	case 26:
1030	case 28:
1031	case 30:
1032		/* Multimedia Streaming: AF31, AF32, AF33 */
1033		ret = 4;
1034		break;
1035	case 44:
1036		/* Voice Admit: VA */
1037		ret = 6;
1038		break;
1039	case 46:
1040		/* Telephony traffic: EF */
1041		ret = 6;
1042		break;
1043	case 48:
1044		/* Network Control Traffic: CS6 */
1045		ret = 7;
1046		break;
1047	}
1048out:
1049	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1050}
1051EXPORT_SYMBOL(cfg80211_classify8021d);
1052
1053const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1054{
1055	const struct cfg80211_bss_ies *ies;
1056
1057	ies = rcu_dereference(bss->ies);
1058	if (!ies)
1059		return NULL;
1060
1061	return cfg80211_find_elem(id, ies->data, ies->len);
1062}
1063EXPORT_SYMBOL(ieee80211_bss_get_elem);
1064
1065void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1066{
1067	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1068	struct net_device *dev = wdev->netdev;
1069	int i;
1070
1071	if (!wdev->connect_keys)
1072		return;
1073
1074	for (i = 0; i < 4; i++) {
1075		if (!wdev->connect_keys->params[i].cipher)
1076			continue;
1077		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1078				 &wdev->connect_keys->params[i])) {
1079			netdev_err(dev, "failed to set key %d\n", i);
1080			continue;
1081		}
1082		if (wdev->connect_keys->def == i &&
1083		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1084			netdev_err(dev, "failed to set defkey %d\n", i);
1085			continue;
1086		}
1087	}
1088
1089	kfree_sensitive(wdev->connect_keys);
1090	wdev->connect_keys = NULL;
1091}
1092
1093void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1094{
1095	struct cfg80211_event *ev;
1096	unsigned long flags;
1097
1098	spin_lock_irqsave(&wdev->event_lock, flags);
1099	while (!list_empty(&wdev->event_list)) {
1100		ev = list_first_entry(&wdev->event_list,
1101				      struct cfg80211_event, list);
1102		list_del(&ev->list);
1103		spin_unlock_irqrestore(&wdev->event_lock, flags);
1104
 
1105		switch (ev->type) {
1106		case EVENT_CONNECT_RESULT:
1107			__cfg80211_connect_result(
1108				wdev->netdev,
1109				&ev->cr,
1110				ev->cr.status == WLAN_STATUS_SUCCESS);
1111			break;
1112		case EVENT_ROAMED:
1113			__cfg80211_roamed(wdev, &ev->rm);
1114			break;
1115		case EVENT_DISCONNECTED:
1116			__cfg80211_disconnected(wdev->netdev,
1117						ev->dc.ie, ev->dc.ie_len,
1118						ev->dc.reason,
1119						!ev->dc.locally_generated);
1120			break;
1121		case EVENT_IBSS_JOINED:
1122			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1123					       ev->ij.channel);
1124			break;
1125		case EVENT_STOPPED:
1126			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1127			break;
1128		case EVENT_PORT_AUTHORIZED:
1129			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1130						   ev->pa.td_bitmap,
1131						   ev->pa.td_bitmap_len);
1132			break;
1133		}
 
1134
1135		kfree(ev);
1136
1137		spin_lock_irqsave(&wdev->event_lock, flags);
1138	}
1139	spin_unlock_irqrestore(&wdev->event_lock, flags);
1140}
1141
1142void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1143{
1144	struct wireless_dev *wdev;
1145
1146	lockdep_assert_held(&rdev->wiphy.mtx);
1147
1148	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1149		cfg80211_process_wdev_events(wdev);
1150}
1151
1152int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1153			  struct net_device *dev, enum nl80211_iftype ntype,
1154			  struct vif_params *params)
1155{
1156	int err;
1157	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1158
1159	lockdep_assert_held(&rdev->wiphy.mtx);
1160
1161	/* don't support changing VLANs, you just re-create them */
1162	if (otype == NL80211_IFTYPE_AP_VLAN)
1163		return -EOPNOTSUPP;
1164
1165	/* cannot change into P2P device or NAN */
1166	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1167	    ntype == NL80211_IFTYPE_NAN)
1168		return -EOPNOTSUPP;
1169
1170	if (!rdev->ops->change_virtual_intf ||
1171	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1172		return -EOPNOTSUPP;
1173
1174	if (ntype != otype) {
1175		/* if it's part of a bridge, reject changing type to station/ibss */
1176		if (netif_is_bridge_port(dev) &&
1177		    (ntype == NL80211_IFTYPE_ADHOC ||
1178		     ntype == NL80211_IFTYPE_STATION ||
1179		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1180			return -EBUSY;
1181
 
1182		dev->ieee80211_ptr->use_4addr = false;
 
 
1183		rdev_set_qos_map(rdev, dev, NULL);
 
1184
1185		switch (otype) {
1186		case NL80211_IFTYPE_AP:
1187		case NL80211_IFTYPE_P2P_GO:
1188			cfg80211_stop_ap(rdev, dev, -1, true);
1189			break;
1190		case NL80211_IFTYPE_ADHOC:
1191			cfg80211_leave_ibss(rdev, dev, false);
1192			break;
1193		case NL80211_IFTYPE_STATION:
1194		case NL80211_IFTYPE_P2P_CLIENT:
 
1195			cfg80211_disconnect(rdev, dev,
1196					    WLAN_REASON_DEAUTH_LEAVING, true);
 
1197			break;
1198		case NL80211_IFTYPE_MESH_POINT:
1199			/* mesh should be handled? */
1200			break;
1201		case NL80211_IFTYPE_OCB:
1202			cfg80211_leave_ocb(rdev, dev);
1203			break;
1204		default:
1205			break;
1206		}
1207
1208		cfg80211_process_rdev_events(rdev);
1209		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210
1211		memset(&dev->ieee80211_ptr->u, 0,
1212		       sizeof(dev->ieee80211_ptr->u));
1213		memset(&dev->ieee80211_ptr->links, 0,
1214		       sizeof(dev->ieee80211_ptr->links));
1215	}
1216
1217	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218
1219	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220
1221	if (!err && params && params->use_4addr != -1)
1222		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223
1224	if (!err) {
1225		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226		switch (ntype) {
1227		case NL80211_IFTYPE_STATION:
1228			if (dev->ieee80211_ptr->use_4addr)
1229				break;
1230			fallthrough;
1231		case NL80211_IFTYPE_OCB:
1232		case NL80211_IFTYPE_P2P_CLIENT:
1233		case NL80211_IFTYPE_ADHOC:
1234			dev->priv_flags |= IFF_DONT_BRIDGE;
1235			break;
1236		case NL80211_IFTYPE_P2P_GO:
1237		case NL80211_IFTYPE_AP:
1238		case NL80211_IFTYPE_AP_VLAN:
 
1239		case NL80211_IFTYPE_MESH_POINT:
1240			/* bridging OK */
1241			break;
1242		case NL80211_IFTYPE_MONITOR:
1243			/* monitor can't bridge anyway */
1244			break;
1245		case NL80211_IFTYPE_UNSPECIFIED:
1246		case NUM_NL80211_IFTYPES:
1247			/* not happening */
1248			break;
1249		case NL80211_IFTYPE_P2P_DEVICE:
1250		case NL80211_IFTYPE_WDS:
1251		case NL80211_IFTYPE_NAN:
1252			WARN_ON(1);
1253			break;
1254		}
1255	}
1256
1257	if (!err && ntype != otype && netif_running(dev)) {
1258		cfg80211_update_iface_num(rdev, ntype, 1);
1259		cfg80211_update_iface_num(rdev, otype, -1);
1260	}
1261
1262	return err;
1263}
1264
1265static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266{
1267	int modulation, streams, bitrate;
1268
1269	/* the formula below does only work for MCS values smaller than 32 */
1270	if (WARN_ON_ONCE(rate->mcs >= 32))
1271		return 0;
1272
1273	modulation = rate->mcs & 7;
1274	streams = (rate->mcs >> 3) + 1;
1275
1276	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277
1278	if (modulation < 4)
1279		bitrate *= (modulation + 1);
1280	else if (modulation == 4)
1281		bitrate *= (modulation + 2);
1282	else
1283		bitrate *= (modulation + 3);
1284
1285	bitrate *= streams;
1286
1287	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288		bitrate = (bitrate / 9) * 10;
1289
1290	/* do NOT round down here */
1291	return (bitrate + 50000) / 100000;
1292}
1293
1294static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295{
1296	static const u32 __mcs2bitrate[] = {
1297		/* control PHY */
1298		[0] =   275,
1299		/* SC PHY */
1300		[1] =  3850,
1301		[2] =  7700,
1302		[3] =  9625,
1303		[4] = 11550,
1304		[5] = 12512, /* 1251.25 mbps */
1305		[6] = 15400,
1306		[7] = 19250,
1307		[8] = 23100,
1308		[9] = 25025,
1309		[10] = 30800,
1310		[11] = 38500,
1311		[12] = 46200,
1312		/* OFDM PHY */
1313		[13] =  6930,
1314		[14] =  8662, /* 866.25 mbps */
1315		[15] = 13860,
1316		[16] = 17325,
1317		[17] = 20790,
1318		[18] = 27720,
1319		[19] = 34650,
1320		[20] = 41580,
1321		[21] = 45045,
1322		[22] = 51975,
1323		[23] = 62370,
1324		[24] = 67568, /* 6756.75 mbps */
1325		/* LP-SC PHY */
1326		[25] =  6260,
1327		[26] =  8340,
1328		[27] = 11120,
1329		[28] = 12510,
1330		[29] = 16680,
1331		[30] = 22240,
1332		[31] = 25030,
1333	};
1334
1335	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336		return 0;
1337
1338	return __mcs2bitrate[rate->mcs];
1339}
1340
1341static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342{
1343	static const u32 __mcs2bitrate[] = {
1344		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345		[7 - 6] = 50050, /* MCS 12.1 */
1346		[8 - 6] = 53900,
1347		[9 - 6] = 57750,
1348		[10 - 6] = 63900,
1349		[11 - 6] = 75075,
1350		[12 - 6] = 80850,
1351	};
1352
1353	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355		return 0;
1356
1357	return __mcs2bitrate[rate->mcs - 6];
1358}
1359
1360static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361{
1362	static const u32 __mcs2bitrate[] = {
1363		/* control PHY */
1364		[0] =   275,
1365		/* SC PHY */
1366		[1] =  3850,
1367		[2] =  7700,
1368		[3] =  9625,
1369		[4] = 11550,
1370		[5] = 12512, /* 1251.25 mbps */
1371		[6] = 13475,
1372		[7] = 15400,
1373		[8] = 19250,
1374		[9] = 23100,
1375		[10] = 25025,
1376		[11] = 26950,
1377		[12] = 30800,
1378		[13] = 38500,
1379		[14] = 46200,
1380		[15] = 50050,
1381		[16] = 53900,
1382		[17] = 57750,
1383		[18] = 69300,
1384		[19] = 75075,
1385		[20] = 80850,
1386	};
1387
1388	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389		return 0;
1390
1391	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392}
1393
1394static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395{
1396	static const u32 base[4][12] = {
1397		{   6500000,
1398		   13000000,
1399		   19500000,
1400		   26000000,
1401		   39000000,
1402		   52000000,
1403		   58500000,
1404		   65000000,
1405		   78000000,
1406		/* not in the spec, but some devices use this: */
1407		   86700000,
1408		   97500000,
1409		  108300000,
1410		},
1411		{  13500000,
1412		   27000000,
1413		   40500000,
1414		   54000000,
1415		   81000000,
1416		  108000000,
1417		  121500000,
1418		  135000000,
1419		  162000000,
1420		  180000000,
1421		  202500000,
1422		  225000000,
1423		},
1424		{  29300000,
1425		   58500000,
1426		   87800000,
1427		  117000000,
1428		  175500000,
1429		  234000000,
1430		  263300000,
1431		  292500000,
1432		  351000000,
1433		  390000000,
1434		  438800000,
1435		  487500000,
1436		},
1437		{  58500000,
1438		  117000000,
1439		  175500000,
1440		  234000000,
1441		  351000000,
1442		  468000000,
1443		  526500000,
1444		  585000000,
1445		  702000000,
1446		  780000000,
1447		  877500000,
1448		  975000000,
1449		},
1450	};
1451	u32 bitrate;
1452	int idx;
1453
1454	if (rate->mcs > 11)
1455		goto warn;
1456
1457	switch (rate->bw) {
1458	case RATE_INFO_BW_160:
1459		idx = 3;
1460		break;
1461	case RATE_INFO_BW_80:
1462		idx = 2;
1463		break;
1464	case RATE_INFO_BW_40:
1465		idx = 1;
1466		break;
1467	case RATE_INFO_BW_5:
1468	case RATE_INFO_BW_10:
1469	default:
1470		goto warn;
1471	case RATE_INFO_BW_20:
1472		idx = 0;
1473	}
1474
1475	bitrate = base[idx][rate->mcs];
1476	bitrate *= rate->nss;
1477
1478	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479		bitrate = (bitrate / 9) * 10;
1480
1481	/* do NOT round down here */
1482	return (bitrate + 50000) / 100000;
1483 warn:
1484	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485		  rate->bw, rate->mcs, rate->nss);
1486	return 0;
1487}
1488
1489static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490{
1491#define SCALE 6144
1492	u32 mcs_divisors[14] = {
1493		102399, /* 16.666666... */
1494		 51201, /*  8.333333... */
1495		 34134, /*  5.555555... */
1496		 25599, /*  4.166666... */
1497		 17067, /*  2.777777... */
1498		 12801, /*  2.083333... */
1499		 11377, /*  1.851725... */
1500		 10239, /*  1.666666... */
1501		  8532, /*  1.388888... */
1502		  7680, /*  1.250000... */
1503		  6828, /*  1.111111... */
1504		  6144, /*  1.000000... */
1505		  5690, /*  0.926106... */
1506		  5120, /*  0.833333... */
1507	};
1508	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1510	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1511	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1512	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1513	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1514	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1515	u64 tmp;
1516	u32 result;
1517
1518	if (WARN_ON_ONCE(rate->mcs > 13))
1519		return 0;
1520
1521	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522		return 0;
1523	if (WARN_ON_ONCE(rate->he_ru_alloc >
1524			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525		return 0;
1526	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527		return 0;
1528
1529	if (rate->bw == RATE_INFO_BW_160 ||
1530	    (rate->bw == RATE_INFO_BW_HE_RU &&
1531	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532		result = rates_160M[rate->he_gi];
1533	else if (rate->bw == RATE_INFO_BW_80 ||
1534		 (rate->bw == RATE_INFO_BW_HE_RU &&
1535		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536		result = rates_996[rate->he_gi];
1537	else if (rate->bw == RATE_INFO_BW_40 ||
1538		 (rate->bw == RATE_INFO_BW_HE_RU &&
1539		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540		result = rates_484[rate->he_gi];
1541	else if (rate->bw == RATE_INFO_BW_20 ||
1542		 (rate->bw == RATE_INFO_BW_HE_RU &&
1543		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544		result = rates_242[rate->he_gi];
1545	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547		result = rates_106[rate->he_gi];
1548	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550		result = rates_52[rate->he_gi];
1551	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553		result = rates_26[rate->he_gi];
1554	else {
1555		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556		     rate->bw, rate->he_ru_alloc);
1557		return 0;
1558	}
1559
1560	/* now scale to the appropriate MCS */
1561	tmp = result;
1562	tmp *= SCALE;
1563	do_div(tmp, mcs_divisors[rate->mcs]);
1564	result = tmp;
1565
1566	/* and take NSS, DCM into account */
1567	result = (result * rate->nss) / 8;
1568	if (rate->he_dcm)
1569		result /= 2;
1570
1571	return result / 10000;
1572}
1573
1574static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1575{
1576#define SCALE 6144
1577	static const u32 mcs_divisors[16] = {
1578		102399, /* 16.666666... */
1579		 51201, /*  8.333333... */
1580		 34134, /*  5.555555... */
1581		 25599, /*  4.166666... */
1582		 17067, /*  2.777777... */
1583		 12801, /*  2.083333... */
1584		 11377, /*  1.851725... */
1585		 10239, /*  1.666666... */
1586		  8532, /*  1.388888... */
1587		  7680, /*  1.250000... */
1588		  6828, /*  1.111111... */
1589		  6144, /*  1.000000... */
1590		  5690, /*  0.926106... */
1591		  5120, /*  0.833333... */
1592		409600, /* 66.666666... */
1593		204800, /* 33.333333... */
1594	};
1595	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1596	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1597	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1598	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1599	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1600	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1601	u64 tmp;
1602	u32 result;
1603
1604	if (WARN_ON_ONCE(rate->mcs > 15))
1605		return 0;
1606	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1607		return 0;
1608	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1609			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1610		return 0;
1611	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1612		return 0;
1613
1614	/* Bandwidth checks for MCS 14 */
1615	if (rate->mcs == 14) {
1616		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1617		     rate->bw != RATE_INFO_BW_80 &&
1618		     rate->bw != RATE_INFO_BW_160 &&
1619		     rate->bw != RATE_INFO_BW_320) ||
1620		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1621		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1622		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1623		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1624			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1625			     rate->bw, rate->eht_ru_alloc);
1626			return 0;
1627		}
1628	}
1629
1630	if (rate->bw == RATE_INFO_BW_320 ||
1631	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1632	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1633		result = 4 * rates_996[rate->eht_gi];
1634	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1635		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1636		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1637	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1639		result = 3 * rates_996[rate->eht_gi];
1640	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1641		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1642		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1643	else if (rate->bw == RATE_INFO_BW_160 ||
1644		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1645		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1646		result = 2 * rates_996[rate->eht_gi];
1647	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1648		 rate->eht_ru_alloc ==
1649		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1650		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1651			 + rates_242[rate->eht_gi];
1652	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1653		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1654		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1655	else if (rate->bw == RATE_INFO_BW_80 ||
1656		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1657		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1658		result = rates_996[rate->eht_gi];
1659	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1660		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1661		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1662	else if (rate->bw == RATE_INFO_BW_40 ||
1663		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1664		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1665		result = rates_484[rate->eht_gi];
1666	else if (rate->bw == RATE_INFO_BW_20 ||
1667		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1668		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1669		result = rates_242[rate->eht_gi];
1670	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1671		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1672		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1673	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1675		result = rates_106[rate->eht_gi];
1676	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1677		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1678		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1679	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1680		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1681		result = rates_52[rate->eht_gi];
1682	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1684		result = rates_26[rate->eht_gi];
1685	else {
1686		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1687		     rate->bw, rate->eht_ru_alloc);
1688		return 0;
1689	}
1690
1691	/* now scale to the appropriate MCS */
1692	tmp = result;
1693	tmp *= SCALE;
1694	do_div(tmp, mcs_divisors[rate->mcs]);
1695
1696	/* and take NSS */
1697	tmp *= rate->nss;
1698	do_div(tmp, 8);
1699
1700	result = tmp;
1701
1702	return result / 10000;
1703}
1704
1705static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1706{
1707	/* For 1, 2, 4, 8 and 16 MHz channels */
1708	static const u32 base[5][11] = {
1709		{  300000,
1710		   600000,
1711		   900000,
1712		  1200000,
1713		  1800000,
1714		  2400000,
1715		  2700000,
1716		  3000000,
1717		  3600000,
1718		  4000000,
1719		  /* MCS 10 supported in 1 MHz only */
1720		  150000,
1721		},
1722		{  650000,
1723		  1300000,
1724		  1950000,
1725		  2600000,
1726		  3900000,
1727		  5200000,
1728		  5850000,
1729		  6500000,
1730		  7800000,
1731		  /* MCS 9 not valid */
1732		},
1733		{  1350000,
1734		   2700000,
1735		   4050000,
1736		   5400000,
1737		   8100000,
1738		  10800000,
1739		  12150000,
1740		  13500000,
1741		  16200000,
1742		  18000000,
1743		},
1744		{  2925000,
1745		   5850000,
1746		   8775000,
1747		  11700000,
1748		  17550000,
1749		  23400000,
1750		  26325000,
1751		  29250000,
1752		  35100000,
1753		  39000000,
1754		},
1755		{  8580000,
1756		  11700000,
1757		  17550000,
1758		  23400000,
1759		  35100000,
1760		  46800000,
1761		  52650000,
1762		  58500000,
1763		  70200000,
1764		  78000000,
1765		},
1766	};
1767	u32 bitrate;
1768	/* default is 1 MHz index */
1769	int idx = 0;
1770
1771	if (rate->mcs >= 11)
1772		goto warn;
1773
1774	switch (rate->bw) {
1775	case RATE_INFO_BW_16:
1776		idx = 4;
1777		break;
1778	case RATE_INFO_BW_8:
1779		idx = 3;
1780		break;
1781	case RATE_INFO_BW_4:
1782		idx = 2;
1783		break;
1784	case RATE_INFO_BW_2:
1785		idx = 1;
1786		break;
1787	case RATE_INFO_BW_1:
1788		idx = 0;
1789		break;
1790	case RATE_INFO_BW_5:
1791	case RATE_INFO_BW_10:
1792	case RATE_INFO_BW_20:
1793	case RATE_INFO_BW_40:
1794	case RATE_INFO_BW_80:
1795	case RATE_INFO_BW_160:
1796	default:
1797		goto warn;
1798	}
1799
1800	bitrate = base[idx][rate->mcs];
1801	bitrate *= rate->nss;
1802
1803	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1804		bitrate = (bitrate / 9) * 10;
1805	/* do NOT round down here */
1806	return (bitrate + 50000) / 100000;
1807warn:
1808	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1809		  rate->bw, rate->mcs, rate->nss);
1810	return 0;
1811}
1812
1813u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1814{
1815	if (rate->flags & RATE_INFO_FLAGS_MCS)
1816		return cfg80211_calculate_bitrate_ht(rate);
1817	if (rate->flags & RATE_INFO_FLAGS_DMG)
1818		return cfg80211_calculate_bitrate_dmg(rate);
1819	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1820		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1821	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1822		return cfg80211_calculate_bitrate_edmg(rate);
1823	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1824		return cfg80211_calculate_bitrate_vht(rate);
1825	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1826		return cfg80211_calculate_bitrate_he(rate);
1827	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1828		return cfg80211_calculate_bitrate_eht(rate);
1829	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1830		return cfg80211_calculate_bitrate_s1g(rate);
1831
1832	return rate->legacy;
1833}
1834EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1835
1836int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1837			  enum ieee80211_p2p_attr_id attr,
1838			  u8 *buf, unsigned int bufsize)
1839{
1840	u8 *out = buf;
1841	u16 attr_remaining = 0;
1842	bool desired_attr = false;
1843	u16 desired_len = 0;
1844
1845	while (len > 0) {
1846		unsigned int iedatalen;
1847		unsigned int copy;
1848		const u8 *iedata;
1849
1850		if (len < 2)
1851			return -EILSEQ;
1852		iedatalen = ies[1];
1853		if (iedatalen + 2 > len)
1854			return -EILSEQ;
1855
1856		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1857			goto cont;
1858
1859		if (iedatalen < 4)
1860			goto cont;
1861
1862		iedata = ies + 2;
1863
1864		/* check WFA OUI, P2P subtype */
1865		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1866		    iedata[2] != 0x9a || iedata[3] != 0x09)
1867			goto cont;
1868
1869		iedatalen -= 4;
1870		iedata += 4;
1871
1872		/* check attribute continuation into this IE */
1873		copy = min_t(unsigned int, attr_remaining, iedatalen);
1874		if (copy && desired_attr) {
1875			desired_len += copy;
1876			if (out) {
1877				memcpy(out, iedata, min(bufsize, copy));
1878				out += min(bufsize, copy);
1879				bufsize -= min(bufsize, copy);
1880			}
1881
1882
1883			if (copy == attr_remaining)
1884				return desired_len;
1885		}
1886
1887		attr_remaining -= copy;
1888		if (attr_remaining)
1889			goto cont;
1890
1891		iedatalen -= copy;
1892		iedata += copy;
1893
1894		while (iedatalen > 0) {
1895			u16 attr_len;
1896
1897			/* P2P attribute ID & size must fit */
1898			if (iedatalen < 3)
1899				return -EILSEQ;
1900			desired_attr = iedata[0] == attr;
1901			attr_len = get_unaligned_le16(iedata + 1);
1902			iedatalen -= 3;
1903			iedata += 3;
1904
1905			copy = min_t(unsigned int, attr_len, iedatalen);
1906
1907			if (desired_attr) {
1908				desired_len += copy;
1909				if (out) {
1910					memcpy(out, iedata, min(bufsize, copy));
1911					out += min(bufsize, copy);
1912					bufsize -= min(bufsize, copy);
1913				}
1914
1915				if (copy == attr_len)
1916					return desired_len;
1917			}
1918
1919			iedata += copy;
1920			iedatalen -= copy;
1921			attr_remaining = attr_len - copy;
1922		}
1923
1924 cont:
1925		len -= ies[1] + 2;
1926		ies += ies[1] + 2;
1927	}
1928
1929	if (attr_remaining && desired_attr)
1930		return -EILSEQ;
1931
1932	return -ENOENT;
1933}
1934EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1935
1936static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1937{
1938	int i;
1939
1940	/* Make sure array values are legal */
1941	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1942		return false;
1943
1944	i = 0;
1945	while (i < n_ids) {
1946		if (ids[i] == WLAN_EID_EXTENSION) {
1947			if (id_ext && (ids[i + 1] == id))
1948				return true;
1949
1950			i += 2;
1951			continue;
1952		}
1953
1954		if (ids[i] == id && !id_ext)
1955			return true;
1956
1957		i++;
1958	}
1959	return false;
1960}
1961
1962static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1963{
1964	/* we assume a validly formed IEs buffer */
1965	u8 len = ies[pos + 1];
1966
1967	pos += 2 + len;
1968
1969	/* the IE itself must have 255 bytes for fragments to follow */
1970	if (len < 255)
1971		return pos;
1972
1973	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1974		len = ies[pos + 1];
1975		pos += 2 + len;
1976	}
1977
1978	return pos;
1979}
1980
1981size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1982			      const u8 *ids, int n_ids,
1983			      const u8 *after_ric, int n_after_ric,
1984			      size_t offset)
1985{
1986	size_t pos = offset;
1987
1988	while (pos < ielen) {
1989		u8 ext = 0;
1990
1991		if (ies[pos] == WLAN_EID_EXTENSION)
1992			ext = 2;
1993		if ((pos + ext) >= ielen)
1994			break;
1995
1996		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1997					  ies[pos] == WLAN_EID_EXTENSION))
1998			break;
1999
2000		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2001			pos = skip_ie(ies, ielen, pos);
2002
2003			while (pos < ielen) {
2004				if (ies[pos] == WLAN_EID_EXTENSION)
2005					ext = 2;
2006				else
2007					ext = 0;
2008
2009				if ((pos + ext) >= ielen)
2010					break;
2011
2012				if (!ieee80211_id_in_list(after_ric,
2013							  n_after_ric,
2014							  ies[pos + ext],
2015							  ext == 2))
2016					pos = skip_ie(ies, ielen, pos);
2017				else
2018					break;
2019			}
2020		} else {
2021			pos = skip_ie(ies, ielen, pos);
2022		}
2023	}
2024
2025	return pos;
2026}
2027EXPORT_SYMBOL(ieee80211_ie_split_ric);
2028
2029void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2030{
2031	unsigned int elem_len;
2032
2033	if (!len_pos)
2034		return;
2035
2036	elem_len = skb->data + skb->len - len_pos - 1;
2037
2038	while (elem_len > 255) {
2039		/* this one is 255 */
2040		*len_pos = 255;
2041		/* remaining data gets smaller */
2042		elem_len -= 255;
2043		/* make space for the fragment ID/len in SKB */
2044		skb_put(skb, 2);
2045		/* shift back the remaining data to place fragment ID/len */
2046		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2047		/* place the fragment ID */
2048		len_pos += 255 + 1;
2049		*len_pos = frag_id;
2050		/* and point to fragment length to update later */
2051		len_pos++;
2052	}
2053
2054	*len_pos = elem_len;
2055}
2056EXPORT_SYMBOL(ieee80211_fragment_element);
2057
2058bool ieee80211_operating_class_to_band(u8 operating_class,
2059				       enum nl80211_band *band)
2060{
2061	switch (operating_class) {
2062	case 112:
2063	case 115 ... 127:
2064	case 128 ... 130:
2065		*band = NL80211_BAND_5GHZ;
2066		return true;
2067	case 131 ... 135:
2068	case 137:
2069		*band = NL80211_BAND_6GHZ;
2070		return true;
2071	case 81:
2072	case 82:
2073	case 83:
2074	case 84:
2075		*band = NL80211_BAND_2GHZ;
2076		return true;
2077	case 180:
2078		*band = NL80211_BAND_60GHZ;
2079		return true;
2080	}
2081
2082	return false;
2083}
2084EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2085
2086bool ieee80211_operating_class_to_chandef(u8 operating_class,
2087					  struct ieee80211_channel *chan,
2088					  struct cfg80211_chan_def *chandef)
2089{
2090	u32 control_freq, offset = 0;
2091	enum nl80211_band band;
2092
2093	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2094	    !chan || band != chan->band)
2095		return false;
2096
2097	control_freq = chan->center_freq;
2098	chandef->chan = chan;
2099
2100	if (control_freq >= 5955)
2101		offset = control_freq - 5955;
2102	else if (control_freq >= 5745)
2103		offset = control_freq - 5745;
2104	else if (control_freq >= 5180)
2105		offset = control_freq - 5180;
2106	offset /= 20;
2107
2108	switch (operating_class) {
2109	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2110	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2111	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2112	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2113	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2114	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2115	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2116	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2117	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2118		chandef->center_freq1 = control_freq;
2119		chandef->width = NL80211_CHAN_WIDTH_20;
2120		return true;
2121	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2122	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2123	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2124	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2125	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2126		chandef->center_freq1 = control_freq + 10;
2127		chandef->width = NL80211_CHAN_WIDTH_40;
2128		return true;
2129	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2130	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2131	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2132	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2133	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2134		chandef->center_freq1 = control_freq - 10;
2135		chandef->width = NL80211_CHAN_WIDTH_40;
2136		return true;
2137	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2138		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2139		chandef->width = NL80211_CHAN_WIDTH_40;
2140		return true;
2141	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2142	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2143		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2144		chandef->width = NL80211_CHAN_WIDTH_80;
2145		return true;
2146	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2147	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2148		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2149		chandef->width = NL80211_CHAN_WIDTH_160;
2150		return true;
2151	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2152	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2153		  /* The center_freq2 of 80+80 MHz is unknown */
2154	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2155		  /* 320-1 or 320-2 channelization is unknown */
2156	default:
2157		return false;
2158	}
2159}
2160EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2161
2162bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2163					  u8 *op_class)
2164{
2165	u8 vht_opclass;
2166	u32 freq = chandef->center_freq1;
2167
2168	if (freq >= 2412 && freq <= 2472) {
2169		if (chandef->width > NL80211_CHAN_WIDTH_40)
2170			return false;
2171
2172		/* 2.407 GHz, channels 1..13 */
2173		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2174			if (freq > chandef->chan->center_freq)
2175				*op_class = 83; /* HT40+ */
2176			else
2177				*op_class = 84; /* HT40- */
2178		} else {
2179			*op_class = 81;
2180		}
2181
2182		return true;
2183	}
2184
2185	if (freq == 2484) {
2186		/* channel 14 is only for IEEE 802.11b */
2187		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2188			return false;
2189
2190		*op_class = 82; /* channel 14 */
2191		return true;
2192	}
2193
2194	switch (chandef->width) {
2195	case NL80211_CHAN_WIDTH_80:
2196		vht_opclass = 128;
2197		break;
2198	case NL80211_CHAN_WIDTH_160:
2199		vht_opclass = 129;
2200		break;
2201	case NL80211_CHAN_WIDTH_80P80:
2202		vht_opclass = 130;
2203		break;
2204	case NL80211_CHAN_WIDTH_10:
2205	case NL80211_CHAN_WIDTH_5:
2206		return false; /* unsupported for now */
2207	default:
2208		vht_opclass = 0;
2209		break;
2210	}
2211
2212	/* 5 GHz, channels 36..48 */
2213	if (freq >= 5180 && freq <= 5240) {
2214		if (vht_opclass) {
2215			*op_class = vht_opclass;
2216		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2217			if (freq > chandef->chan->center_freq)
2218				*op_class = 116;
2219			else
2220				*op_class = 117;
2221		} else {
2222			*op_class = 115;
2223		}
2224
2225		return true;
2226	}
2227
2228	/* 5 GHz, channels 52..64 */
2229	if (freq >= 5260 && freq <= 5320) {
2230		if (vht_opclass) {
2231			*op_class = vht_opclass;
2232		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2233			if (freq > chandef->chan->center_freq)
2234				*op_class = 119;
2235			else
2236				*op_class = 120;
2237		} else {
2238			*op_class = 118;
2239		}
2240
2241		return true;
2242	}
2243
2244	/* 5 GHz, channels 100..144 */
2245	if (freq >= 5500 && freq <= 5720) {
2246		if (vht_opclass) {
2247			*op_class = vht_opclass;
2248		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2249			if (freq > chandef->chan->center_freq)
2250				*op_class = 122;
2251			else
2252				*op_class = 123;
2253		} else {
2254			*op_class = 121;
2255		}
2256
2257		return true;
2258	}
2259
2260	/* 5 GHz, channels 149..169 */
2261	if (freq >= 5745 && freq <= 5845) {
2262		if (vht_opclass) {
2263			*op_class = vht_opclass;
2264		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265			if (freq > chandef->chan->center_freq)
2266				*op_class = 126;
2267			else
2268				*op_class = 127;
2269		} else if (freq <= 5805) {
2270			*op_class = 124;
2271		} else {
2272			*op_class = 125;
2273		}
2274
2275		return true;
2276	}
2277
2278	/* 56.16 GHz, channel 1..4 */
2279	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2280		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2281			return false;
2282
2283		*op_class = 180;
2284		return true;
2285	}
2286
2287	/* not supported yet */
2288	return false;
2289}
2290EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2291
2292static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2293{
2294	switch (wdev->iftype) {
2295	case NL80211_IFTYPE_AP:
2296	case NL80211_IFTYPE_P2P_GO:
2297		WARN_ON(wdev->valid_links);
2298		return wdev->links[0].ap.beacon_interval;
2299	case NL80211_IFTYPE_MESH_POINT:
2300		return wdev->u.mesh.beacon_interval;
2301	case NL80211_IFTYPE_ADHOC:
2302		return wdev->u.ibss.beacon_interval;
2303	default:
2304		break;
2305	}
2306
2307	return 0;
2308}
2309
2310static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2311				       u32 *beacon_int_gcd,
2312				       bool *beacon_int_different,
2313				       int radio_idx)
2314{
2315	struct cfg80211_registered_device *rdev;
2316	struct wireless_dev *wdev;
2317
2318	*beacon_int_gcd = 0;
2319	*beacon_int_different = false;
2320
2321	rdev = wiphy_to_rdev(wiphy);
2322	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2323		int wdev_bi;
2324
2325		/* this feature isn't supported with MLO */
2326		if (wdev->valid_links)
2327			continue;
2328
2329		/* skip wdevs not active on the given wiphy radio */
2330		if (radio_idx >= 0 &&
2331		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2332			continue;
2333
2334		wdev_bi = cfg80211_wdev_bi(wdev);
2335
2336		if (!wdev_bi)
2337			continue;
2338
2339		if (!*beacon_int_gcd) {
2340			*beacon_int_gcd = wdev_bi;
2341			continue;
2342		}
2343
2344		if (wdev_bi == *beacon_int_gcd)
2345			continue;
2346
2347		*beacon_int_different = true;
2348		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2349	}
2350
2351	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2352		if (*beacon_int_gcd)
2353			*beacon_int_different = true;
2354		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2355	}
2356}
2357
2358int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2359				 enum nl80211_iftype iftype, u32 beacon_int)
2360{
2361	/*
2362	 * This is just a basic pre-condition check; if interface combinations
2363	 * are possible the driver must already be checking those with a call
2364	 * to cfg80211_check_combinations(), in which case we'll validate more
2365	 * through the cfg80211_calculate_bi_data() call and code in
2366	 * cfg80211_iter_combinations().
2367	 */
2368
2369	if (beacon_int < 10 || beacon_int > 10000)
2370		return -EINVAL;
2371
2372	return 0;
2373}
2374
2375int cfg80211_iter_combinations(struct wiphy *wiphy,
2376			       struct iface_combination_params *params,
2377			       void (*iter)(const struct ieee80211_iface_combination *c,
2378					    void *data),
2379			       void *data)
2380{
2381	const struct wiphy_radio *radio = NULL;
2382	const struct ieee80211_iface_combination *c, *cs;
2383	const struct ieee80211_regdomain *regdom;
2384	enum nl80211_dfs_regions region = 0;
2385	int i, j, n, iftype;
2386	int num_interfaces = 0;
2387	u32 used_iftypes = 0;
2388	u32 beacon_int_gcd;
2389	bool beacon_int_different;
2390
2391	if (params->radio_idx >= 0)
2392		radio = &wiphy->radio[params->radio_idx];
2393
2394	/*
2395	 * This is a bit strange, since the iteration used to rely only on
2396	 * the data given by the driver, but here it now relies on context,
2397	 * in form of the currently operating interfaces.
2398	 * This is OK for all current users, and saves us from having to
2399	 * push the GCD calculations into all the drivers.
2400	 * In the future, this should probably rely more on data that's in
2401	 * cfg80211 already - the only thing not would appear to be any new
2402	 * interfaces (while being brought up) and channel/radar data.
2403	 */
2404	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2405				   &beacon_int_gcd, &beacon_int_different,
2406				   params->radio_idx);
2407
2408	if (params->radar_detect) {
2409		rcu_read_lock();
2410		regdom = rcu_dereference(cfg80211_regdomain);
2411		if (regdom)
2412			region = regdom->dfs_region;
2413		rcu_read_unlock();
2414	}
2415
2416	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2417		num_interfaces += params->iftype_num[iftype];
2418		if (params->iftype_num[iftype] > 0 &&
2419		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2420			used_iftypes |= BIT(iftype);
2421	}
2422
2423	if (radio) {
2424		cs = radio->iface_combinations;
2425		n = radio->n_iface_combinations;
2426	} else {
2427		cs = wiphy->iface_combinations;
2428		n = wiphy->n_iface_combinations;
2429	}
2430	for (i = 0; i < n; i++) {
2431		struct ieee80211_iface_limit *limits;
2432		u32 all_iftypes = 0;
2433
2434		c = &cs[i];
 
2435		if (num_interfaces > c->max_interfaces)
2436			continue;
2437		if (params->num_different_channels > c->num_different_channels)
2438			continue;
2439
2440		limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2441				       GFP_KERNEL);
2442		if (!limits)
2443			return -ENOMEM;
2444
2445		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2446			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2447				continue;
2448			for (j = 0; j < c->n_limits; j++) {
2449				all_iftypes |= limits[j].types;
2450				if (!(limits[j].types & BIT(iftype)))
2451					continue;
2452				if (limits[j].max < params->iftype_num[iftype])
2453					goto cont;
2454				limits[j].max -= params->iftype_num[iftype];
2455			}
2456		}
2457
2458		if (params->radar_detect !=
2459			(c->radar_detect_widths & params->radar_detect))
2460			goto cont;
2461
2462		if (params->radar_detect && c->radar_detect_regions &&
2463		    !(c->radar_detect_regions & BIT(region)))
2464			goto cont;
2465
2466		/* Finally check that all iftypes that we're currently
2467		 * using are actually part of this combination. If they
2468		 * aren't then we can't use this combination and have
2469		 * to continue to the next.
2470		 */
2471		if ((all_iftypes & used_iftypes) != used_iftypes)
2472			goto cont;
2473
2474		if (beacon_int_gcd) {
2475			if (c->beacon_int_min_gcd &&
2476			    beacon_int_gcd < c->beacon_int_min_gcd)
2477				goto cont;
2478			if (!c->beacon_int_min_gcd && beacon_int_different)
2479				goto cont;
2480		}
2481
2482		/* This combination covered all interface types and
2483		 * supported the requested numbers, so we're good.
2484		 */
2485
2486		(*iter)(c, data);
2487 cont:
2488		kfree(limits);
2489	}
2490
2491	return 0;
2492}
2493EXPORT_SYMBOL(cfg80211_iter_combinations);
2494
2495static void
2496cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2497			  void *data)
2498{
2499	int *num = data;
2500	(*num)++;
2501}
2502
2503int cfg80211_check_combinations(struct wiphy *wiphy,
2504				struct iface_combination_params *params)
2505{
2506	int err, num = 0;
2507
2508	err = cfg80211_iter_combinations(wiphy, params,
2509					 cfg80211_iter_sum_ifcombs, &num);
2510	if (err)
2511		return err;
2512	if (num == 0)
2513		return -EBUSY;
2514
2515	return 0;
2516}
2517EXPORT_SYMBOL(cfg80211_check_combinations);
2518
2519int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2520			   const u8 *rates, unsigned int n_rates,
2521			   u32 *mask)
2522{
2523	int i, j;
2524
2525	if (!sband)
2526		return -EINVAL;
2527
2528	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2529		return -EINVAL;
2530
2531	*mask = 0;
2532
2533	for (i = 0; i < n_rates; i++) {
2534		int rate = (rates[i] & 0x7f) * 5;
2535		bool found = false;
2536
2537		for (j = 0; j < sband->n_bitrates; j++) {
2538			if (sband->bitrates[j].bitrate == rate) {
2539				found = true;
2540				*mask |= BIT(j);
2541				break;
2542			}
2543		}
2544		if (!found)
2545			return -EINVAL;
2546	}
2547
2548	/*
2549	 * mask must have at least one bit set here since we
2550	 * didn't accept a 0-length rates array nor allowed
2551	 * entries in the array that didn't exist
2552	 */
2553
2554	return 0;
2555}
2556
2557unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2558{
2559	enum nl80211_band band;
2560	unsigned int n_channels = 0;
2561
2562	for (band = 0; band < NUM_NL80211_BANDS; band++)
2563		if (wiphy->bands[band])
2564			n_channels += wiphy->bands[band]->n_channels;
2565
2566	return n_channels;
2567}
2568EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2569
2570int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2571			 struct station_info *sinfo)
2572{
2573	struct cfg80211_registered_device *rdev;
2574	struct wireless_dev *wdev;
2575	int ret;
2576
2577	wdev = dev->ieee80211_ptr;
2578	if (!wdev)
2579		return -EOPNOTSUPP;
2580
2581	rdev = wiphy_to_rdev(wdev->wiphy);
2582	if (!rdev->ops->get_station)
2583		return -EOPNOTSUPP;
2584
2585	memset(sinfo, 0, sizeof(*sinfo));
2586
2587	wiphy_lock(&rdev->wiphy);
2588	ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2589	wiphy_unlock(&rdev->wiphy);
2590
2591	return ret;
2592}
2593EXPORT_SYMBOL(cfg80211_get_station);
2594
2595void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2596{
2597	int i;
2598
2599	if (!f)
2600		return;
2601
2602	kfree(f->serv_spec_info);
2603	kfree(f->srf_bf);
2604	kfree(f->srf_macs);
2605	for (i = 0; i < f->num_rx_filters; i++)
2606		kfree(f->rx_filters[i].filter);
2607
2608	for (i = 0; i < f->num_tx_filters; i++)
2609		kfree(f->tx_filters[i].filter);
2610
2611	kfree(f->rx_filters);
2612	kfree(f->tx_filters);
2613	kfree(f);
2614}
2615EXPORT_SYMBOL(cfg80211_free_nan_func);
2616
2617bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2618				u32 center_freq_khz, u32 bw_khz)
2619{
2620	u32 start_freq_khz, end_freq_khz;
2621
2622	start_freq_khz = center_freq_khz - (bw_khz / 2);
2623	end_freq_khz = center_freq_khz + (bw_khz / 2);
2624
2625	if (start_freq_khz >= freq_range->start_freq_khz &&
2626	    end_freq_khz <= freq_range->end_freq_khz)
2627		return true;
2628
2629	return false;
2630}
2631
2632int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2633{
2634	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2635				sizeof(*(sinfo->pertid)),
2636				gfp);
2637	if (!sinfo->pertid)
2638		return -ENOMEM;
2639
2640	return 0;
2641}
2642EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2643
2644/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2645/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2646const unsigned char rfc1042_header[] __aligned(2) =
2647	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2648EXPORT_SYMBOL(rfc1042_header);
2649
2650/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2651const unsigned char bridge_tunnel_header[] __aligned(2) =
2652	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2653EXPORT_SYMBOL(bridge_tunnel_header);
2654
2655/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2656struct iapp_layer2_update {
2657	u8 da[ETH_ALEN];	/* broadcast */
2658	u8 sa[ETH_ALEN];	/* STA addr */
2659	__be16 len;		/* 6 */
2660	u8 dsap;		/* 0 */
2661	u8 ssap;		/* 0 */
2662	u8 control;
2663	u8 xid_info[3];
2664} __packed;
2665
2666void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2667{
2668	struct iapp_layer2_update *msg;
2669	struct sk_buff *skb;
2670
2671	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2672	 * bridge devices */
2673
2674	skb = dev_alloc_skb(sizeof(*msg));
2675	if (!skb)
2676		return;
2677	msg = skb_put(skb, sizeof(*msg));
2678
2679	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2680	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2681
2682	eth_broadcast_addr(msg->da);
2683	ether_addr_copy(msg->sa, addr);
2684	msg->len = htons(6);
2685	msg->dsap = 0;
2686	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2687	msg->control = 0xaf;	/* XID response lsb.1111F101.
2688				 * F=0 (no poll command; unsolicited frame) */
2689	msg->xid_info[0] = 0x81;	/* XID format identifier */
2690	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2691	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2692
2693	skb->dev = dev;
2694	skb->protocol = eth_type_trans(skb, dev);
2695	memset(skb->cb, 0, sizeof(skb->cb));
2696	netif_rx(skb);
2697}
2698EXPORT_SYMBOL(cfg80211_send_layer2_update);
2699
2700int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2701			      enum ieee80211_vht_chanwidth bw,
2702			      int mcs, bool ext_nss_bw_capable,
2703			      unsigned int max_vht_nss)
2704{
2705	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2706	int ext_nss_bw;
2707	int supp_width;
2708	int i, mcs_encoding;
2709
2710	if (map == 0xffff)
2711		return 0;
2712
2713	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2714		return 0;
2715	if (mcs <= 7)
2716		mcs_encoding = 0;
2717	else if (mcs == 8)
2718		mcs_encoding = 1;
2719	else
2720		mcs_encoding = 2;
2721
2722	if (!max_vht_nss) {
2723		/* find max_vht_nss for the given MCS */
2724		for (i = 7; i >= 0; i--) {
2725			int supp = (map >> (2 * i)) & 3;
2726
2727			if (supp == 3)
2728				continue;
2729
2730			if (supp >= mcs_encoding) {
2731				max_vht_nss = i + 1;
2732				break;
2733			}
2734		}
2735	}
2736
2737	if (!(cap->supp_mcs.tx_mcs_map &
2738			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2739		return max_vht_nss;
2740
2741	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2742				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2743	supp_width = le32_get_bits(cap->vht_cap_info,
2744				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2745
2746	/* if not capable, treat ext_nss_bw as 0 */
2747	if (!ext_nss_bw_capable)
2748		ext_nss_bw = 0;
2749
2750	/* This is invalid */
2751	if (supp_width == 3)
2752		return 0;
2753
2754	/* This is an invalid combination so pretend nothing is supported */
2755	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2756		return 0;
2757
2758	/*
2759	 * Cover all the special cases according to IEEE 802.11-2016
2760	 * Table 9-250. All other cases are either factor of 1 or not
2761	 * valid/supported.
2762	 */
2763	switch (bw) {
2764	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2765	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2766		if ((supp_width == 1 || supp_width == 2) &&
2767		    ext_nss_bw == 3)
2768			return 2 * max_vht_nss;
2769		break;
2770	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2771		if (supp_width == 0 &&
2772		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2773			return max_vht_nss / 2;
2774		if (supp_width == 0 &&
2775		    ext_nss_bw == 3)
2776			return (3 * max_vht_nss) / 4;
2777		if (supp_width == 1 &&
2778		    ext_nss_bw == 3)
2779			return 2 * max_vht_nss;
2780		break;
2781	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2782		if (supp_width == 0 && ext_nss_bw == 1)
2783			return 0; /* not possible */
2784		if (supp_width == 0 &&
2785		    ext_nss_bw == 2)
2786			return max_vht_nss / 2;
2787		if (supp_width == 0 &&
2788		    ext_nss_bw == 3)
2789			return (3 * max_vht_nss) / 4;
2790		if (supp_width == 1 &&
2791		    ext_nss_bw == 0)
2792			return 0; /* not possible */
2793		if (supp_width == 1 &&
2794		    ext_nss_bw == 1)
2795			return max_vht_nss / 2;
2796		if (supp_width == 1 &&
2797		    ext_nss_bw == 2)
2798			return (3 * max_vht_nss) / 4;
2799		break;
2800	}
2801
2802	/* not covered or invalid combination received */
2803	return max_vht_nss;
2804}
2805EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2806
2807bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2808			     bool is_4addr, u8 check_swif)
2809
2810{
2811	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2812
2813	switch (check_swif) {
2814	case 0:
2815		if (is_vlan && is_4addr)
2816			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2817		return wiphy->interface_modes & BIT(iftype);
2818	case 1:
2819		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2820			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2821		return wiphy->software_iftypes & BIT(iftype);
2822	default:
2823		break;
2824	}
2825
2826	return false;
2827}
2828EXPORT_SYMBOL(cfg80211_iftype_allowed);
2829
2830void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2831{
2832	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2833
2834	lockdep_assert_wiphy(wdev->wiphy);
2835
2836	switch (wdev->iftype) {
2837	case NL80211_IFTYPE_AP:
2838	case NL80211_IFTYPE_P2P_GO:
2839		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2840		break;
2841	default:
2842		/* per-link not relevant */
2843		break;
2844	}
2845
2846	rdev_del_intf_link(rdev, wdev, link_id);
2847
2848	wdev->valid_links &= ~BIT(link_id);
2849	eth_zero_addr(wdev->links[link_id].addr);
2850}
2851
2852void cfg80211_remove_links(struct wireless_dev *wdev)
2853{
2854	unsigned int link_id;
2855
2856	/*
2857	 * links are controlled by upper layers (userspace/cfg)
2858	 * only for AP mode, so only remove them here for AP
2859	 */
2860	if (wdev->iftype != NL80211_IFTYPE_AP)
2861		return;
2862
2863	if (wdev->valid_links) {
2864		for_each_valid_link(wdev, link_id)
2865			cfg80211_remove_link(wdev, link_id);
2866	}
2867}
2868
2869int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2870				 struct wireless_dev *wdev)
2871{
2872	cfg80211_remove_links(wdev);
2873
2874	return rdev_del_virtual_intf(rdev, wdev);
2875}
2876
2877const struct wiphy_iftype_ext_capab *
2878cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2879{
2880	int i;
2881
2882	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2883		if (wiphy->iftype_ext_capab[i].iftype == type)
2884			return &wiphy->iftype_ext_capab[i];
2885	}
2886
2887	return NULL;
2888}
2889EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2890
2891static bool
2892ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2893				 u32 freq, u32 width)
2894{
2895	const struct wiphy_radio_freq_range *r;
2896	int i;
2897
2898	for (i = 0; i < radio->n_freq_range; i++) {
2899		r = &radio->freq_range[i];
2900		if (freq - width / 2 >= r->start_freq &&
2901		    freq + width / 2 <= r->end_freq)
2902			return true;
2903	}
2904
2905	return false;
2906}
2907
2908bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2909				  const struct cfg80211_chan_def *chandef)
2910{
2911	u32 freq, width;
2912
2913	freq = ieee80211_chandef_to_khz(chandef);
2914	width = nl80211_chan_width_to_mhz(chandef->width);
2915	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2916		return false;
2917
2918	freq = MHZ_TO_KHZ(chandef->center_freq2);
2919	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2920		return false;
2921
2922	return true;
2923}
2924EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2925
2926bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2927				   struct ieee80211_channel *chan)
2928{
2929	struct wiphy *wiphy = wdev->wiphy;
2930	const struct wiphy_radio *radio;
2931	struct cfg80211_chan_def chandef;
2932	u32 radio_mask;
2933	int i;
2934
2935	radio_mask = wdev->radio_mask;
2936	if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2937		return true;
2938
2939	cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2940	for (i = 0; i < wiphy->n_radio; i++) {
2941		if (!(radio_mask & BIT(i)))
2942			continue;
2943
2944		radio = &wiphy->radio[i];
2945		if (!cfg80211_radio_chandef_valid(radio, &chandef))
2946			continue;
2947
2948		return true;
2949	}
2950
2951	return false;
2952}
2953EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2020 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47			      enum nl80211_bss_scan_width scan_width)
  48{
  49	struct ieee80211_rate *bitrates;
  50	u32 mandatory_rates = 0;
  51	enum ieee80211_rate_flags mandatory_flag;
  52	int i;
  53
  54	if (WARN_ON(!sband))
  55		return 1;
  56
  57	if (sband->band == NL80211_BAND_2GHZ) {
  58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61		else
  62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63	} else {
  64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65	}
  66
  67	bitrates = sband->bitrates;
  68	for (i = 0; i < sband->n_bitrates; i++)
  69		if (bitrates[i].flags & mandatory_flag)
  70			mandatory_rates |= BIT(i);
  71	return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  76{
  77	/* see 802.11 17.3.8.3.2 and Annex J
  78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79	if (chan <= 0)
  80		return 0; /* not supported */
  81	switch (band) {
  82	case NL80211_BAND_2GHZ:
 
  83		if (chan == 14)
  84			return MHZ_TO_KHZ(2484);
  85		else if (chan < 14)
  86			return MHZ_TO_KHZ(2407 + chan * 5);
  87		break;
  88	case NL80211_BAND_5GHZ:
  89		if (chan >= 182 && chan <= 196)
  90			return MHZ_TO_KHZ(4000 + chan * 5);
  91		else
  92			return MHZ_TO_KHZ(5000 + chan * 5);
  93		break;
  94	case NL80211_BAND_6GHZ:
  95		/* see 802.11ax D6.1 27.3.23.2 */
  96		if (chan == 2)
  97			return MHZ_TO_KHZ(5935);
  98		if (chan <= 233)
  99			return MHZ_TO_KHZ(5950 + chan * 5);
 100		break;
 101	case NL80211_BAND_60GHZ:
 102		if (chan < 7)
 103			return MHZ_TO_KHZ(56160 + chan * 2160);
 104		break;
 105	case NL80211_BAND_S1GHZ:
 106		return 902000 + chan * 500;
 107	default:
 108		;
 109	}
 110	return 0; /* not supported */
 111}
 112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114int ieee80211_freq_khz_to_channel(u32 freq)
 115{
 116	/* TODO: just handle MHz for now */
 117	freq = KHZ_TO_MHZ(freq);
 118
 119	/* see 802.11 17.3.8.3.2 and Annex J */
 120	if (freq == 2484)
 121		return 14;
 122	else if (freq < 2484)
 123		return (freq - 2407) / 5;
 124	else if (freq >= 4910 && freq <= 4980)
 125		return (freq - 4000) / 5;
 126	else if (freq < 5925)
 127		return (freq - 5000) / 5;
 128	else if (freq == 5935)
 129		return 2;
 130	else if (freq <= 45000) /* DMG band lower limit */
 131		/* see 802.11ax D6.1 27.3.22.2 */
 132		return (freq - 5950) / 5;
 133	else if (freq >= 58320 && freq <= 70200)
 134		return (freq - 56160) / 2160;
 135	else
 136		return 0;
 137}
 138EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 139
 140struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 141						    u32 freq)
 142{
 143	enum nl80211_band band;
 144	struct ieee80211_supported_band *sband;
 145	int i;
 146
 147	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 148		sband = wiphy->bands[band];
 149
 150		if (!sband)
 151			continue;
 152
 153		for (i = 0; i < sband->n_channels; i++) {
 154			struct ieee80211_channel *chan = &sband->channels[i];
 155
 156			if (ieee80211_channel_to_khz(chan) == freq)
 157				return chan;
 158		}
 159	}
 160
 161	return NULL;
 162}
 163EXPORT_SYMBOL(ieee80211_get_channel_khz);
 164
 165static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 166{
 167	int i, want;
 168
 169	switch (sband->band) {
 170	case NL80211_BAND_5GHZ:
 171	case NL80211_BAND_6GHZ:
 172		want = 3;
 173		for (i = 0; i < sband->n_bitrates; i++) {
 174			if (sband->bitrates[i].bitrate == 60 ||
 175			    sband->bitrates[i].bitrate == 120 ||
 176			    sband->bitrates[i].bitrate == 240) {
 177				sband->bitrates[i].flags |=
 178					IEEE80211_RATE_MANDATORY_A;
 179				want--;
 180			}
 181		}
 182		WARN_ON(want);
 183		break;
 184	case NL80211_BAND_2GHZ:
 
 185		want = 7;
 186		for (i = 0; i < sband->n_bitrates; i++) {
 187			switch (sband->bitrates[i].bitrate) {
 188			case 10:
 189			case 20:
 190			case 55:
 191			case 110:
 192				sband->bitrates[i].flags |=
 193					IEEE80211_RATE_MANDATORY_B |
 194					IEEE80211_RATE_MANDATORY_G;
 195				want--;
 196				break;
 197			case 60:
 198			case 120:
 199			case 240:
 200				sband->bitrates[i].flags |=
 201					IEEE80211_RATE_MANDATORY_G;
 202				want--;
 203				fallthrough;
 204			default:
 205				sband->bitrates[i].flags |=
 206					IEEE80211_RATE_ERP_G;
 207				break;
 208			}
 209		}
 210		WARN_ON(want != 0 && want != 3);
 211		break;
 212	case NL80211_BAND_60GHZ:
 213		/* check for mandatory HT MCS 1..4 */
 214		WARN_ON(!sband->ht_cap.ht_supported);
 215		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 216		break;
 217	case NL80211_BAND_S1GHZ:
 218		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 219		 * mandatory is ok.
 220		 */
 221		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 222		break;
 223	case NUM_NL80211_BANDS:
 224	default:
 225		WARN_ON(1);
 226		break;
 227	}
 228}
 229
 230void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 231{
 232	enum nl80211_band band;
 233
 234	for (band = 0; band < NUM_NL80211_BANDS; band++)
 235		if (wiphy->bands[band])
 236			set_mandatory_flags_band(wiphy->bands[band]);
 237}
 238
 239bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 240{
 241	int i;
 242	for (i = 0; i < wiphy->n_cipher_suites; i++)
 243		if (cipher == wiphy->cipher_suites[i])
 244			return true;
 245	return false;
 246}
 247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 249				   struct key_params *params, int key_idx,
 250				   bool pairwise, const u8 *mac_addr)
 251{
 252	int max_key_idx = 5;
 253
 254	if (wiphy_ext_feature_isset(&rdev->wiphy,
 255				    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 256	    wiphy_ext_feature_isset(&rdev->wiphy,
 257				    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 258		max_key_idx = 7;
 259	if (key_idx < 0 || key_idx > max_key_idx)
 260		return -EINVAL;
 261
 262	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 263		return -EINVAL;
 264
 265	if (pairwise && !mac_addr)
 266		return -EINVAL;
 267
 268	switch (params->cipher) {
 269	case WLAN_CIPHER_SUITE_TKIP:
 270		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 271		if ((pairwise && key_idx) ||
 272		    params->mode != NL80211_KEY_RX_TX)
 273			return -EINVAL;
 274		break;
 275	case WLAN_CIPHER_SUITE_CCMP:
 276	case WLAN_CIPHER_SUITE_CCMP_256:
 277	case WLAN_CIPHER_SUITE_GCMP:
 278	case WLAN_CIPHER_SUITE_GCMP_256:
 279		/* IEEE802.11-2016 allows only 0 and - when supporting
 280		 * Extended Key ID - 1 as index for pairwise keys.
 281		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 282		 * the driver supports Extended Key ID.
 283		 * @NL80211_KEY_SET_TX can't be set when installing and
 284		 * validating a key.
 285		 */
 286		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 287		    params->mode == NL80211_KEY_SET_TX)
 288			return -EINVAL;
 289		if (wiphy_ext_feature_isset(&rdev->wiphy,
 290					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 291			if (pairwise && (key_idx < 0 || key_idx > 1))
 292				return -EINVAL;
 293		} else if (pairwise && key_idx) {
 294			return -EINVAL;
 295		}
 296		break;
 297	case WLAN_CIPHER_SUITE_AES_CMAC:
 298	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 299	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 300	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 301		/* Disallow BIP (group-only) cipher as pairwise cipher */
 302		if (pairwise)
 303			return -EINVAL;
 304		if (key_idx < 4)
 305			return -EINVAL;
 306		break;
 307	case WLAN_CIPHER_SUITE_WEP40:
 308	case WLAN_CIPHER_SUITE_WEP104:
 309		if (key_idx > 3)
 310			return -EINVAL;
 
 311	default:
 312		break;
 313	}
 314
 315	switch (params->cipher) {
 316	case WLAN_CIPHER_SUITE_WEP40:
 317		if (params->key_len != WLAN_KEY_LEN_WEP40)
 318			return -EINVAL;
 319		break;
 320	case WLAN_CIPHER_SUITE_TKIP:
 321		if (params->key_len != WLAN_KEY_LEN_TKIP)
 322			return -EINVAL;
 323		break;
 324	case WLAN_CIPHER_SUITE_CCMP:
 325		if (params->key_len != WLAN_KEY_LEN_CCMP)
 326			return -EINVAL;
 327		break;
 328	case WLAN_CIPHER_SUITE_CCMP_256:
 329		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 330			return -EINVAL;
 331		break;
 332	case WLAN_CIPHER_SUITE_GCMP:
 333		if (params->key_len != WLAN_KEY_LEN_GCMP)
 334			return -EINVAL;
 335		break;
 336	case WLAN_CIPHER_SUITE_GCMP_256:
 337		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 338			return -EINVAL;
 339		break;
 340	case WLAN_CIPHER_SUITE_WEP104:
 341		if (params->key_len != WLAN_KEY_LEN_WEP104)
 342			return -EINVAL;
 343		break;
 344	case WLAN_CIPHER_SUITE_AES_CMAC:
 345		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 346			return -EINVAL;
 347		break;
 348	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 349		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 350			return -EINVAL;
 351		break;
 352	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 353		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 354			return -EINVAL;
 355		break;
 356	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 357		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 358			return -EINVAL;
 359		break;
 360	default:
 361		/*
 362		 * We don't know anything about this algorithm,
 363		 * allow using it -- but the driver must check
 364		 * all parameters! We still check below whether
 365		 * or not the driver supports this algorithm,
 366		 * of course.
 367		 */
 368		break;
 369	}
 370
 371	if (params->seq) {
 372		switch (params->cipher) {
 373		case WLAN_CIPHER_SUITE_WEP40:
 374		case WLAN_CIPHER_SUITE_WEP104:
 375			/* These ciphers do not use key sequence */
 376			return -EINVAL;
 377		case WLAN_CIPHER_SUITE_TKIP:
 378		case WLAN_CIPHER_SUITE_CCMP:
 379		case WLAN_CIPHER_SUITE_CCMP_256:
 380		case WLAN_CIPHER_SUITE_GCMP:
 381		case WLAN_CIPHER_SUITE_GCMP_256:
 382		case WLAN_CIPHER_SUITE_AES_CMAC:
 383		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 384		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 385		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 386			if (params->seq_len != 6)
 387				return -EINVAL;
 388			break;
 389		}
 390	}
 391
 392	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 393		return -EINVAL;
 394
 395	return 0;
 396}
 397
 398unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 399{
 400	unsigned int hdrlen = 24;
 401
 
 
 
 
 
 402	if (ieee80211_is_data(fc)) {
 403		if (ieee80211_has_a4(fc))
 404			hdrlen = 30;
 405		if (ieee80211_is_data_qos(fc)) {
 406			hdrlen += IEEE80211_QOS_CTL_LEN;
 407			if (ieee80211_has_order(fc))
 408				hdrlen += IEEE80211_HT_CTL_LEN;
 409		}
 410		goto out;
 411	}
 412
 413	if (ieee80211_is_mgmt(fc)) {
 414		if (ieee80211_has_order(fc))
 415			hdrlen += IEEE80211_HT_CTL_LEN;
 416		goto out;
 417	}
 418
 419	if (ieee80211_is_ctl(fc)) {
 420		/*
 421		 * ACK and CTS are 10 bytes, all others 16. To see how
 422		 * to get this condition consider
 423		 *   subtype mask:   0b0000000011110000 (0x00F0)
 424		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 425		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 426		 *   bits that matter:         ^^^      (0x00E0)
 427		 *   value of those: 0b0000000011000000 (0x00C0)
 428		 */
 429		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 430			hdrlen = 10;
 431		else
 432			hdrlen = 16;
 433	}
 434out:
 435	return hdrlen;
 436}
 437EXPORT_SYMBOL(ieee80211_hdrlen);
 438
 439unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 440{
 441	const struct ieee80211_hdr *hdr =
 442			(const struct ieee80211_hdr *)skb->data;
 443	unsigned int hdrlen;
 444
 445	if (unlikely(skb->len < 10))
 446		return 0;
 447	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 448	if (unlikely(hdrlen > skb->len))
 449		return 0;
 450	return hdrlen;
 451}
 452EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 453
 454static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 455{
 456	int ae = flags & MESH_FLAGS_AE;
 457	/* 802.11-2012, 8.2.4.7.3 */
 458	switch (ae) {
 459	default:
 460	case 0:
 461		return 6;
 462	case MESH_FLAGS_AE_A4:
 463		return 12;
 464	case MESH_FLAGS_AE_A5_A6:
 465		return 18;
 466	}
 467}
 468
 469unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 470{
 471	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 472}
 473EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 476				  const u8 *addr, enum nl80211_iftype iftype,
 477				  u8 data_offset)
 478{
 479	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 480	struct {
 481		u8 hdr[ETH_ALEN] __aligned(2);
 482		__be16 proto;
 483	} payload;
 484	struct ethhdr tmp;
 485	u16 hdrlen;
 486	u8 mesh_flags = 0;
 487
 488	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 489		return -1;
 490
 491	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 492	if (skb->len < hdrlen + 8)
 493		return -1;
 494
 495	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 496	 * header
 497	 * IEEE 802.11 address fields:
 498	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 499	 *   0     0   DA    SA    BSSID n/a
 500	 *   0     1   DA    BSSID SA    n/a
 501	 *   1     0   BSSID SA    DA    n/a
 502	 *   1     1   RA    TA    DA    SA
 503	 */
 504	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 505	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 506
 507	if (iftype == NL80211_IFTYPE_MESH_POINT)
 508		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 509
 510	mesh_flags &= MESH_FLAGS_AE;
 511
 512	switch (hdr->frame_control &
 513		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 514	case cpu_to_le16(IEEE80211_FCTL_TODS):
 515		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 516			     iftype != NL80211_IFTYPE_AP_VLAN &&
 517			     iftype != NL80211_IFTYPE_P2P_GO))
 518			return -1;
 519		break;
 520	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 521		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 522			     iftype != NL80211_IFTYPE_MESH_POINT &&
 523			     iftype != NL80211_IFTYPE_AP_VLAN &&
 524			     iftype != NL80211_IFTYPE_STATION))
 525			return -1;
 526		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 527			if (mesh_flags == MESH_FLAGS_AE_A4)
 528				return -1;
 529			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 530				skb_copy_bits(skb, hdrlen +
 531					offsetof(struct ieee80211s_hdr, eaddr1),
 532					tmp.h_dest, 2 * ETH_ALEN);
 533			}
 534			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 535		}
 536		break;
 537	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 538		if ((iftype != NL80211_IFTYPE_STATION &&
 539		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 540		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 541		    (is_multicast_ether_addr(tmp.h_dest) &&
 542		     ether_addr_equal(tmp.h_source, addr)))
 543			return -1;
 544		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 545			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 546				return -1;
 547			if (mesh_flags == MESH_FLAGS_AE_A4)
 548				skb_copy_bits(skb, hdrlen +
 549					offsetof(struct ieee80211s_hdr, eaddr1),
 550					tmp.h_source, ETH_ALEN);
 551			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 552		}
 553		break;
 554	case cpu_to_le16(0):
 555		if (iftype != NL80211_IFTYPE_ADHOC &&
 556		    iftype != NL80211_IFTYPE_STATION &&
 557		    iftype != NL80211_IFTYPE_OCB)
 558				return -1;
 559		break;
 560	}
 561
 562	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 563	tmp.h_proto = payload.proto;
 564
 565	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 566		    tmp.h_proto != htons(ETH_P_AARP) &&
 567		    tmp.h_proto != htons(ETH_P_IPX)) ||
 568		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 569		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 570		 * replace EtherType */
 571		hdrlen += ETH_ALEN + 2;
 572	else
 
 573		tmp.h_proto = htons(skb->len - hdrlen);
 
 574
 575	pskb_pull(skb, hdrlen);
 576
 577	if (!ehdr)
 578		ehdr = skb_push(skb, sizeof(struct ethhdr));
 579	memcpy(ehdr, &tmp, sizeof(tmp));
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 584
 585static void
 586__frame_add_frag(struct sk_buff *skb, struct page *page,
 587		 void *ptr, int len, int size)
 588{
 589	struct skb_shared_info *sh = skb_shinfo(skb);
 590	int page_offset;
 591
 592	get_page(page);
 593	page_offset = ptr - page_address(page);
 594	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 595}
 596
 597static void
 598__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 599			    int offset, int len)
 600{
 601	struct skb_shared_info *sh = skb_shinfo(skb);
 602	const skb_frag_t *frag = &sh->frags[0];
 603	struct page *frag_page;
 604	void *frag_ptr;
 605	int frag_len, frag_size;
 606	int head_size = skb->len - skb->data_len;
 607	int cur_len;
 608
 609	frag_page = virt_to_head_page(skb->head);
 610	frag_ptr = skb->data;
 611	frag_size = head_size;
 612
 613	while (offset >= frag_size) {
 614		offset -= frag_size;
 615		frag_page = skb_frag_page(frag);
 616		frag_ptr = skb_frag_address(frag);
 617		frag_size = skb_frag_size(frag);
 618		frag++;
 619	}
 620
 621	frag_ptr += offset;
 622	frag_len = frag_size - offset;
 623
 624	cur_len = min(len, frag_len);
 625
 626	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 627	len -= cur_len;
 628
 629	while (len > 0) {
 630		frag_len = skb_frag_size(frag);
 631		cur_len = min(len, frag_len);
 632		__frame_add_frag(frame, skb_frag_page(frag),
 633				 skb_frag_address(frag), cur_len, frag_len);
 634		len -= cur_len;
 635		frag++;
 636	}
 637}
 638
 639static struct sk_buff *
 640__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 641		       int offset, int len, bool reuse_frag)
 
 642{
 643	struct sk_buff *frame;
 644	int cur_len = len;
 645
 646	if (skb->len - offset < len)
 647		return NULL;
 648
 649	/*
 650	 * When reusing framents, copy some data to the head to simplify
 651	 * ethernet header handling and speed up protocol header processing
 652	 * in the stack later.
 653	 */
 654	if (reuse_frag)
 655		cur_len = min_t(int, len, 32);
 656
 657	/*
 658	 * Allocate and reserve two bytes more for payload
 659	 * alignment since sizeof(struct ethhdr) is 14.
 660	 */
 661	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 662	if (!frame)
 663		return NULL;
 664
 
 665	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 666	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 667
 668	len -= cur_len;
 669	if (!len)
 670		return frame;
 671
 672	offset += cur_len;
 673	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 674
 675	return frame;
 676}
 677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 679			      const u8 *addr, enum nl80211_iftype iftype,
 680			      const unsigned int extra_headroom,
 681			      const u8 *check_da, const u8 *check_sa)
 
 682{
 683	unsigned int hlen = ALIGN(extra_headroom, 4);
 684	struct sk_buff *frame = NULL;
 685	u16 ethertype;
 686	u8 *payload;
 687	int offset = 0, remaining;
 688	struct ethhdr eth;
 
 689	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 690	bool reuse_skb = false;
 691	bool last = false;
 
 
 
 
 692
 693	while (!last) {
 
 694		unsigned int subframe_len;
 695		int len;
 696		u8 padding;
 697
 698		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 699		len = ntohs(eth.h_proto);
 
 
 
 
 
 
 700		subframe_len = sizeof(struct ethhdr) + len;
 701		padding = (4 - subframe_len) & 0x3;
 702
 703		/* the last MSDU has no padding */
 704		remaining = skb->len - offset;
 705		if (subframe_len > remaining)
 706			goto purge;
 
 
 
 707
 708		offset += sizeof(struct ethhdr);
 709		last = remaining <= subframe_len + padding;
 710
 711		/* FIXME: should we really accept multicast DA? */
 712		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 713		     !ether_addr_equal(check_da, eth.h_dest)) ||
 714		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 715			offset += len + padding;
 716			continue;
 717		}
 718
 719		/* reuse skb for the last subframe */
 720		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 721			skb_pull(skb, offset);
 722			frame = skb;
 723			reuse_skb = true;
 724		} else {
 725			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 726						       reuse_frag);
 727			if (!frame)
 728				goto purge;
 729
 730			offset += len + padding;
 731		}
 732
 733		skb_reset_network_header(frame);
 734		frame->dev = skb->dev;
 735		frame->priority = skb->priority;
 736
 737		payload = frame->data;
 738		ethertype = (payload[6] << 8) | payload[7];
 739		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 740			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 741			   ether_addr_equal(payload, bridge_tunnel_header))) {
 742			eth.h_proto = htons(ethertype);
 743			skb_pull(frame, ETH_ALEN + 2);
 744		}
 745
 746		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 747		__skb_queue_tail(list, frame);
 748	}
 749
 750	if (!reuse_skb)
 751		dev_kfree_skb(skb);
 752
 753	return;
 754
 755 purge:
 756	__skb_queue_purge(list);
 757	dev_kfree_skb(skb);
 758}
 759EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 760
 761/* Given a data frame determine the 802.1p/1d tag to use. */
 762unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 763				    struct cfg80211_qos_map *qos_map)
 764{
 765	unsigned int dscp;
 766	unsigned char vlan_priority;
 767	unsigned int ret;
 768
 769	/* skb->priority values from 256->263 are magic values to
 770	 * directly indicate a specific 802.1d priority.  This is used
 771	 * to allow 802.1d priority to be passed directly in from VLAN
 772	 * tags, etc.
 773	 */
 774	if (skb->priority >= 256 && skb->priority <= 263) {
 775		ret = skb->priority - 256;
 776		goto out;
 777	}
 778
 779	if (skb_vlan_tag_present(skb)) {
 780		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 781			>> VLAN_PRIO_SHIFT;
 782		if (vlan_priority > 0) {
 783			ret = vlan_priority;
 784			goto out;
 785		}
 786	}
 787
 788	switch (skb->protocol) {
 789	case htons(ETH_P_IP):
 790		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 791		break;
 792	case htons(ETH_P_IPV6):
 793		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 794		break;
 795	case htons(ETH_P_MPLS_UC):
 796	case htons(ETH_P_MPLS_MC): {
 797		struct mpls_label mpls_tmp, *mpls;
 798
 799		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 800					  sizeof(*mpls), &mpls_tmp);
 801		if (!mpls)
 802			return 0;
 803
 804		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 805			>> MPLS_LS_TC_SHIFT;
 806		goto out;
 807	}
 808	case htons(ETH_P_80221):
 809		/* 802.21 is always network control traffic */
 810		return 7;
 811	default:
 812		return 0;
 813	}
 814
 815	if (qos_map) {
 816		unsigned int i, tmp_dscp = dscp >> 2;
 817
 818		for (i = 0; i < qos_map->num_des; i++) {
 819			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 820				ret = qos_map->dscp_exception[i].up;
 821				goto out;
 822			}
 823		}
 824
 825		for (i = 0; i < 8; i++) {
 826			if (tmp_dscp >= qos_map->up[i].low &&
 827			    tmp_dscp <= qos_map->up[i].high) {
 828				ret = i;
 829				goto out;
 830			}
 831		}
 832	}
 833
 
 
 
 
 834	ret = dscp >> 5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835out:
 836	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 837}
 838EXPORT_SYMBOL(cfg80211_classify8021d);
 839
 840const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 841{
 842	const struct cfg80211_bss_ies *ies;
 843
 844	ies = rcu_dereference(bss->ies);
 845	if (!ies)
 846		return NULL;
 847
 848	return cfg80211_find_elem(id, ies->data, ies->len);
 849}
 850EXPORT_SYMBOL(ieee80211_bss_get_elem);
 851
 852void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 853{
 854	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 855	struct net_device *dev = wdev->netdev;
 856	int i;
 857
 858	if (!wdev->connect_keys)
 859		return;
 860
 861	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 862		if (!wdev->connect_keys->params[i].cipher)
 863			continue;
 864		if (rdev_add_key(rdev, dev, i, false, NULL,
 865				 &wdev->connect_keys->params[i])) {
 866			netdev_err(dev, "failed to set key %d\n", i);
 867			continue;
 868		}
 869		if (wdev->connect_keys->def == i &&
 870		    rdev_set_default_key(rdev, dev, i, true, true)) {
 871			netdev_err(dev, "failed to set defkey %d\n", i);
 872			continue;
 873		}
 874	}
 875
 876	kfree_sensitive(wdev->connect_keys);
 877	wdev->connect_keys = NULL;
 878}
 879
 880void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 881{
 882	struct cfg80211_event *ev;
 883	unsigned long flags;
 884
 885	spin_lock_irqsave(&wdev->event_lock, flags);
 886	while (!list_empty(&wdev->event_list)) {
 887		ev = list_first_entry(&wdev->event_list,
 888				      struct cfg80211_event, list);
 889		list_del(&ev->list);
 890		spin_unlock_irqrestore(&wdev->event_lock, flags);
 891
 892		wdev_lock(wdev);
 893		switch (ev->type) {
 894		case EVENT_CONNECT_RESULT:
 895			__cfg80211_connect_result(
 896				wdev->netdev,
 897				&ev->cr,
 898				ev->cr.status == WLAN_STATUS_SUCCESS);
 899			break;
 900		case EVENT_ROAMED:
 901			__cfg80211_roamed(wdev, &ev->rm);
 902			break;
 903		case EVENT_DISCONNECTED:
 904			__cfg80211_disconnected(wdev->netdev,
 905						ev->dc.ie, ev->dc.ie_len,
 906						ev->dc.reason,
 907						!ev->dc.locally_generated);
 908			break;
 909		case EVENT_IBSS_JOINED:
 910			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 911					       ev->ij.channel);
 912			break;
 913		case EVENT_STOPPED:
 914			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 915			break;
 916		case EVENT_PORT_AUTHORIZED:
 917			__cfg80211_port_authorized(wdev, ev->pa.bssid);
 
 
 918			break;
 919		}
 920		wdev_unlock(wdev);
 921
 922		kfree(ev);
 923
 924		spin_lock_irqsave(&wdev->event_lock, flags);
 925	}
 926	spin_unlock_irqrestore(&wdev->event_lock, flags);
 927}
 928
 929void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 930{
 931	struct wireless_dev *wdev;
 932
 933	ASSERT_RTNL();
 934
 935	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 936		cfg80211_process_wdev_events(wdev);
 937}
 938
 939int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 940			  struct net_device *dev, enum nl80211_iftype ntype,
 941			  struct vif_params *params)
 942{
 943	int err;
 944	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 945
 946	ASSERT_RTNL();
 947
 948	/* don't support changing VLANs, you just re-create them */
 949	if (otype == NL80211_IFTYPE_AP_VLAN)
 950		return -EOPNOTSUPP;
 951
 952	/* cannot change into P2P device or NAN */
 953	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 954	    ntype == NL80211_IFTYPE_NAN)
 955		return -EOPNOTSUPP;
 956
 957	if (!rdev->ops->change_virtual_intf ||
 958	    !(rdev->wiphy.interface_modes & (1 << ntype)))
 959		return -EOPNOTSUPP;
 960
 961	/* if it's part of a bridge, reject changing type to station/ibss */
 962	if (netif_is_bridge_port(dev) &&
 963	    (ntype == NL80211_IFTYPE_ADHOC ||
 964	     ntype == NL80211_IFTYPE_STATION ||
 965	     ntype == NL80211_IFTYPE_P2P_CLIENT))
 966		return -EBUSY;
 
 967
 968	if (ntype != otype) {
 969		dev->ieee80211_ptr->use_4addr = false;
 970		dev->ieee80211_ptr->mesh_id_up_len = 0;
 971		wdev_lock(dev->ieee80211_ptr);
 972		rdev_set_qos_map(rdev, dev, NULL);
 973		wdev_unlock(dev->ieee80211_ptr);
 974
 975		switch (otype) {
 976		case NL80211_IFTYPE_AP:
 977			cfg80211_stop_ap(rdev, dev, true);
 
 978			break;
 979		case NL80211_IFTYPE_ADHOC:
 980			cfg80211_leave_ibss(rdev, dev, false);
 981			break;
 982		case NL80211_IFTYPE_STATION:
 983		case NL80211_IFTYPE_P2P_CLIENT:
 984			wdev_lock(dev->ieee80211_ptr);
 985			cfg80211_disconnect(rdev, dev,
 986					    WLAN_REASON_DEAUTH_LEAVING, true);
 987			wdev_unlock(dev->ieee80211_ptr);
 988			break;
 989		case NL80211_IFTYPE_MESH_POINT:
 990			/* mesh should be handled? */
 991			break;
 
 
 
 992		default:
 993			break;
 994		}
 995
 996		cfg80211_process_rdev_events(rdev);
 997		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 
 
 
 
 
 998	}
 999
1000	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1001
1002	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1003
1004	if (!err && params && params->use_4addr != -1)
1005		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1006
1007	if (!err) {
1008		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1009		switch (ntype) {
1010		case NL80211_IFTYPE_STATION:
1011			if (dev->ieee80211_ptr->use_4addr)
1012				break;
1013			fallthrough;
1014		case NL80211_IFTYPE_OCB:
1015		case NL80211_IFTYPE_P2P_CLIENT:
1016		case NL80211_IFTYPE_ADHOC:
1017			dev->priv_flags |= IFF_DONT_BRIDGE;
1018			break;
1019		case NL80211_IFTYPE_P2P_GO:
1020		case NL80211_IFTYPE_AP:
1021		case NL80211_IFTYPE_AP_VLAN:
1022		case NL80211_IFTYPE_WDS:
1023		case NL80211_IFTYPE_MESH_POINT:
1024			/* bridging OK */
1025			break;
1026		case NL80211_IFTYPE_MONITOR:
1027			/* monitor can't bridge anyway */
1028			break;
1029		case NL80211_IFTYPE_UNSPECIFIED:
1030		case NUM_NL80211_IFTYPES:
1031			/* not happening */
1032			break;
1033		case NL80211_IFTYPE_P2P_DEVICE:
 
1034		case NL80211_IFTYPE_NAN:
1035			WARN_ON(1);
1036			break;
1037		}
1038	}
1039
1040	if (!err && ntype != otype && netif_running(dev)) {
1041		cfg80211_update_iface_num(rdev, ntype, 1);
1042		cfg80211_update_iface_num(rdev, otype, -1);
1043	}
1044
1045	return err;
1046}
1047
1048static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1049{
1050	int modulation, streams, bitrate;
1051
1052	/* the formula below does only work for MCS values smaller than 32 */
1053	if (WARN_ON_ONCE(rate->mcs >= 32))
1054		return 0;
1055
1056	modulation = rate->mcs & 7;
1057	streams = (rate->mcs >> 3) + 1;
1058
1059	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1060
1061	if (modulation < 4)
1062		bitrate *= (modulation + 1);
1063	else if (modulation == 4)
1064		bitrate *= (modulation + 2);
1065	else
1066		bitrate *= (modulation + 3);
1067
1068	bitrate *= streams;
1069
1070	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1071		bitrate = (bitrate / 9) * 10;
1072
1073	/* do NOT round down here */
1074	return (bitrate + 50000) / 100000;
1075}
1076
1077static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1078{
1079	static const u32 __mcs2bitrate[] = {
1080		/* control PHY */
1081		[0] =   275,
1082		/* SC PHY */
1083		[1] =  3850,
1084		[2] =  7700,
1085		[3] =  9625,
1086		[4] = 11550,
1087		[5] = 12512, /* 1251.25 mbps */
1088		[6] = 15400,
1089		[7] = 19250,
1090		[8] = 23100,
1091		[9] = 25025,
1092		[10] = 30800,
1093		[11] = 38500,
1094		[12] = 46200,
1095		/* OFDM PHY */
1096		[13] =  6930,
1097		[14] =  8662, /* 866.25 mbps */
1098		[15] = 13860,
1099		[16] = 17325,
1100		[17] = 20790,
1101		[18] = 27720,
1102		[19] = 34650,
1103		[20] = 41580,
1104		[21] = 45045,
1105		[22] = 51975,
1106		[23] = 62370,
1107		[24] = 67568, /* 6756.75 mbps */
1108		/* LP-SC PHY */
1109		[25] =  6260,
1110		[26] =  8340,
1111		[27] = 11120,
1112		[28] = 12510,
1113		[29] = 16680,
1114		[30] = 22240,
1115		[31] = 25030,
1116	};
1117
1118	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1119		return 0;
1120
1121	return __mcs2bitrate[rate->mcs];
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1125{
1126	static const u32 __mcs2bitrate[] = {
1127		/* control PHY */
1128		[0] =   275,
1129		/* SC PHY */
1130		[1] =  3850,
1131		[2] =  7700,
1132		[3] =  9625,
1133		[4] = 11550,
1134		[5] = 12512, /* 1251.25 mbps */
1135		[6] = 13475,
1136		[7] = 15400,
1137		[8] = 19250,
1138		[9] = 23100,
1139		[10] = 25025,
1140		[11] = 26950,
1141		[12] = 30800,
1142		[13] = 38500,
1143		[14] = 46200,
1144		[15] = 50050,
1145		[16] = 53900,
1146		[17] = 57750,
1147		[18] = 69300,
1148		[19] = 75075,
1149		[20] = 80850,
1150	};
1151
1152	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1153		return 0;
1154
1155	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1156}
1157
1158static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1159{
1160	static const u32 base[4][10] = {
1161		{   6500000,
1162		   13000000,
1163		   19500000,
1164		   26000000,
1165		   39000000,
1166		   52000000,
1167		   58500000,
1168		   65000000,
1169		   78000000,
1170		/* not in the spec, but some devices use this: */
1171		   86500000,
 
 
1172		},
1173		{  13500000,
1174		   27000000,
1175		   40500000,
1176		   54000000,
1177		   81000000,
1178		  108000000,
1179		  121500000,
1180		  135000000,
1181		  162000000,
1182		  180000000,
 
 
1183		},
1184		{  29300000,
1185		   58500000,
1186		   87800000,
1187		  117000000,
1188		  175500000,
1189		  234000000,
1190		  263300000,
1191		  292500000,
1192		  351000000,
1193		  390000000,
 
 
1194		},
1195		{  58500000,
1196		  117000000,
1197		  175500000,
1198		  234000000,
1199		  351000000,
1200		  468000000,
1201		  526500000,
1202		  585000000,
1203		  702000000,
1204		  780000000,
 
 
1205		},
1206	};
1207	u32 bitrate;
1208	int idx;
1209
1210	if (rate->mcs > 9)
1211		goto warn;
1212
1213	switch (rate->bw) {
1214	case RATE_INFO_BW_160:
1215		idx = 3;
1216		break;
1217	case RATE_INFO_BW_80:
1218		idx = 2;
1219		break;
1220	case RATE_INFO_BW_40:
1221		idx = 1;
1222		break;
1223	case RATE_INFO_BW_5:
1224	case RATE_INFO_BW_10:
1225	default:
1226		goto warn;
1227	case RATE_INFO_BW_20:
1228		idx = 0;
1229	}
1230
1231	bitrate = base[idx][rate->mcs];
1232	bitrate *= rate->nss;
1233
1234	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1235		bitrate = (bitrate / 9) * 10;
1236
1237	/* do NOT round down here */
1238	return (bitrate + 50000) / 100000;
1239 warn:
1240	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1241		  rate->bw, rate->mcs, rate->nss);
1242	return 0;
1243}
1244
1245static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1246{
1247#define SCALE 2048
1248	u16 mcs_divisors[12] = {
1249		34133, /* 16.666666... */
1250		17067, /*  8.333333... */
1251		11378, /*  5.555555... */
1252		 8533, /*  4.166666... */
1253		 5689, /*  2.777777... */
1254		 4267, /*  2.083333... */
1255		 3923, /*  1.851851... */
1256		 3413, /*  1.666666... */
1257		 2844, /*  1.388888... */
1258		 2560, /*  1.250000... */
1259		 2276, /*  1.111111... */
1260		 2048, /*  1.000000... */
 
 
1261	};
1262	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1263	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1264	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1265	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1266	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1267	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1268	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1269	u64 tmp;
1270	u32 result;
1271
1272	if (WARN_ON_ONCE(rate->mcs > 11))
1273		return 0;
1274
1275	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1276		return 0;
1277	if (WARN_ON_ONCE(rate->he_ru_alloc >
1278			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1279		return 0;
1280	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1281		return 0;
1282
1283	if (rate->bw == RATE_INFO_BW_160)
 
 
1284		result = rates_160M[rate->he_gi];
1285	else if (rate->bw == RATE_INFO_BW_80 ||
1286		 (rate->bw == RATE_INFO_BW_HE_RU &&
1287		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1288		result = rates_969[rate->he_gi];
1289	else if (rate->bw == RATE_INFO_BW_40 ||
1290		 (rate->bw == RATE_INFO_BW_HE_RU &&
1291		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1292		result = rates_484[rate->he_gi];
1293	else if (rate->bw == RATE_INFO_BW_20 ||
1294		 (rate->bw == RATE_INFO_BW_HE_RU &&
1295		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1296		result = rates_242[rate->he_gi];
1297	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1298		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1299		result = rates_106[rate->he_gi];
1300	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1301		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1302		result = rates_52[rate->he_gi];
1303	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1304		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1305		result = rates_26[rate->he_gi];
1306	else {
1307		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1308		     rate->bw, rate->he_ru_alloc);
1309		return 0;
1310	}
1311
1312	/* now scale to the appropriate MCS */
1313	tmp = result;
1314	tmp *= SCALE;
1315	do_div(tmp, mcs_divisors[rate->mcs]);
1316	result = tmp;
1317
1318	/* and take NSS, DCM into account */
1319	result = (result * rate->nss) / 8;
1320	if (rate->he_dcm)
1321		result /= 2;
1322
1323	return result / 10000;
1324}
1325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1327{
1328	if (rate->flags & RATE_INFO_FLAGS_MCS)
1329		return cfg80211_calculate_bitrate_ht(rate);
1330	if (rate->flags & RATE_INFO_FLAGS_DMG)
1331		return cfg80211_calculate_bitrate_dmg(rate);
 
 
1332	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1333		return cfg80211_calculate_bitrate_edmg(rate);
1334	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1335		return cfg80211_calculate_bitrate_vht(rate);
1336	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1337		return cfg80211_calculate_bitrate_he(rate);
 
 
 
 
1338
1339	return rate->legacy;
1340}
1341EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1342
1343int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1344			  enum ieee80211_p2p_attr_id attr,
1345			  u8 *buf, unsigned int bufsize)
1346{
1347	u8 *out = buf;
1348	u16 attr_remaining = 0;
1349	bool desired_attr = false;
1350	u16 desired_len = 0;
1351
1352	while (len > 0) {
1353		unsigned int iedatalen;
1354		unsigned int copy;
1355		const u8 *iedata;
1356
1357		if (len < 2)
1358			return -EILSEQ;
1359		iedatalen = ies[1];
1360		if (iedatalen + 2 > len)
1361			return -EILSEQ;
1362
1363		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1364			goto cont;
1365
1366		if (iedatalen < 4)
1367			goto cont;
1368
1369		iedata = ies + 2;
1370
1371		/* check WFA OUI, P2P subtype */
1372		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1373		    iedata[2] != 0x9a || iedata[3] != 0x09)
1374			goto cont;
1375
1376		iedatalen -= 4;
1377		iedata += 4;
1378
1379		/* check attribute continuation into this IE */
1380		copy = min_t(unsigned int, attr_remaining, iedatalen);
1381		if (copy && desired_attr) {
1382			desired_len += copy;
1383			if (out) {
1384				memcpy(out, iedata, min(bufsize, copy));
1385				out += min(bufsize, copy);
1386				bufsize -= min(bufsize, copy);
1387			}
1388
1389
1390			if (copy == attr_remaining)
1391				return desired_len;
1392		}
1393
1394		attr_remaining -= copy;
1395		if (attr_remaining)
1396			goto cont;
1397
1398		iedatalen -= copy;
1399		iedata += copy;
1400
1401		while (iedatalen > 0) {
1402			u16 attr_len;
1403
1404			/* P2P attribute ID & size must fit */
1405			if (iedatalen < 3)
1406				return -EILSEQ;
1407			desired_attr = iedata[0] == attr;
1408			attr_len = get_unaligned_le16(iedata + 1);
1409			iedatalen -= 3;
1410			iedata += 3;
1411
1412			copy = min_t(unsigned int, attr_len, iedatalen);
1413
1414			if (desired_attr) {
1415				desired_len += copy;
1416				if (out) {
1417					memcpy(out, iedata, min(bufsize, copy));
1418					out += min(bufsize, copy);
1419					bufsize -= min(bufsize, copy);
1420				}
1421
1422				if (copy == attr_len)
1423					return desired_len;
1424			}
1425
1426			iedata += copy;
1427			iedatalen -= copy;
1428			attr_remaining = attr_len - copy;
1429		}
1430
1431 cont:
1432		len -= ies[1] + 2;
1433		ies += ies[1] + 2;
1434	}
1435
1436	if (attr_remaining && desired_attr)
1437		return -EILSEQ;
1438
1439	return -ENOENT;
1440}
1441EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1442
1443static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1444{
1445	int i;
1446
1447	/* Make sure array values are legal */
1448	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1449		return false;
1450
1451	i = 0;
1452	while (i < n_ids) {
1453		if (ids[i] == WLAN_EID_EXTENSION) {
1454			if (id_ext && (ids[i + 1] == id))
1455				return true;
1456
1457			i += 2;
1458			continue;
1459		}
1460
1461		if (ids[i] == id && !id_ext)
1462			return true;
1463
1464		i++;
1465	}
1466	return false;
1467}
1468
1469static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1470{
1471	/* we assume a validly formed IEs buffer */
1472	u8 len = ies[pos + 1];
1473
1474	pos += 2 + len;
1475
1476	/* the IE itself must have 255 bytes for fragments to follow */
1477	if (len < 255)
1478		return pos;
1479
1480	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1481		len = ies[pos + 1];
1482		pos += 2 + len;
1483	}
1484
1485	return pos;
1486}
1487
1488size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1489			      const u8 *ids, int n_ids,
1490			      const u8 *after_ric, int n_after_ric,
1491			      size_t offset)
1492{
1493	size_t pos = offset;
1494
1495	while (pos < ielen) {
1496		u8 ext = 0;
1497
1498		if (ies[pos] == WLAN_EID_EXTENSION)
1499			ext = 2;
1500		if ((pos + ext) >= ielen)
1501			break;
1502
1503		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1504					  ies[pos] == WLAN_EID_EXTENSION))
1505			break;
1506
1507		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1508			pos = skip_ie(ies, ielen, pos);
1509
1510			while (pos < ielen) {
1511				if (ies[pos] == WLAN_EID_EXTENSION)
1512					ext = 2;
1513				else
1514					ext = 0;
1515
1516				if ((pos + ext) >= ielen)
1517					break;
1518
1519				if (!ieee80211_id_in_list(after_ric,
1520							  n_after_ric,
1521							  ies[pos + ext],
1522							  ext == 2))
1523					pos = skip_ie(ies, ielen, pos);
1524				else
1525					break;
1526			}
1527		} else {
1528			pos = skip_ie(ies, ielen, pos);
1529		}
1530	}
1531
1532	return pos;
1533}
1534EXPORT_SYMBOL(ieee80211_ie_split_ric);
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536bool ieee80211_operating_class_to_band(u8 operating_class,
1537				       enum nl80211_band *band)
1538{
1539	switch (operating_class) {
1540	case 112:
1541	case 115 ... 127:
1542	case 128 ... 130:
1543		*band = NL80211_BAND_5GHZ;
1544		return true;
1545	case 131 ... 135:
 
1546		*band = NL80211_BAND_6GHZ;
1547		return true;
1548	case 81:
1549	case 82:
1550	case 83:
1551	case 84:
1552		*band = NL80211_BAND_2GHZ;
1553		return true;
1554	case 180:
1555		*band = NL80211_BAND_60GHZ;
1556		return true;
1557	}
1558
1559	return false;
1560}
1561EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1564					  u8 *op_class)
1565{
1566	u8 vht_opclass;
1567	u32 freq = chandef->center_freq1;
1568
1569	if (freq >= 2412 && freq <= 2472) {
1570		if (chandef->width > NL80211_CHAN_WIDTH_40)
1571			return false;
1572
1573		/* 2.407 GHz, channels 1..13 */
1574		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575			if (freq > chandef->chan->center_freq)
1576				*op_class = 83; /* HT40+ */
1577			else
1578				*op_class = 84; /* HT40- */
1579		} else {
1580			*op_class = 81;
1581		}
1582
1583		return true;
1584	}
1585
1586	if (freq == 2484) {
1587		/* channel 14 is only for IEEE 802.11b */
1588		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1589			return false;
1590
1591		*op_class = 82; /* channel 14 */
1592		return true;
1593	}
1594
1595	switch (chandef->width) {
1596	case NL80211_CHAN_WIDTH_80:
1597		vht_opclass = 128;
1598		break;
1599	case NL80211_CHAN_WIDTH_160:
1600		vht_opclass = 129;
1601		break;
1602	case NL80211_CHAN_WIDTH_80P80:
1603		vht_opclass = 130;
1604		break;
1605	case NL80211_CHAN_WIDTH_10:
1606	case NL80211_CHAN_WIDTH_5:
1607		return false; /* unsupported for now */
1608	default:
1609		vht_opclass = 0;
1610		break;
1611	}
1612
1613	/* 5 GHz, channels 36..48 */
1614	if (freq >= 5180 && freq <= 5240) {
1615		if (vht_opclass) {
1616			*op_class = vht_opclass;
1617		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618			if (freq > chandef->chan->center_freq)
1619				*op_class = 116;
1620			else
1621				*op_class = 117;
1622		} else {
1623			*op_class = 115;
1624		}
1625
1626		return true;
1627	}
1628
1629	/* 5 GHz, channels 52..64 */
1630	if (freq >= 5260 && freq <= 5320) {
1631		if (vht_opclass) {
1632			*op_class = vht_opclass;
1633		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634			if (freq > chandef->chan->center_freq)
1635				*op_class = 119;
1636			else
1637				*op_class = 120;
1638		} else {
1639			*op_class = 118;
1640		}
1641
1642		return true;
1643	}
1644
1645	/* 5 GHz, channels 100..144 */
1646	if (freq >= 5500 && freq <= 5720) {
1647		if (vht_opclass) {
1648			*op_class = vht_opclass;
1649		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650			if (freq > chandef->chan->center_freq)
1651				*op_class = 122;
1652			else
1653				*op_class = 123;
1654		} else {
1655			*op_class = 121;
1656		}
1657
1658		return true;
1659	}
1660
1661	/* 5 GHz, channels 149..169 */
1662	if (freq >= 5745 && freq <= 5845) {
1663		if (vht_opclass) {
1664			*op_class = vht_opclass;
1665		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666			if (freq > chandef->chan->center_freq)
1667				*op_class = 126;
1668			else
1669				*op_class = 127;
1670		} else if (freq <= 5805) {
1671			*op_class = 124;
1672		} else {
1673			*op_class = 125;
1674		}
1675
1676		return true;
1677	}
1678
1679	/* 56.16 GHz, channel 1..4 */
1680	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1681		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1682			return false;
1683
1684		*op_class = 180;
1685		return true;
1686	}
1687
1688	/* not supported yet */
1689	return false;
1690}
1691EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1694				       u32 *beacon_int_gcd,
1695				       bool *beacon_int_different)
 
1696{
 
1697	struct wireless_dev *wdev;
1698
1699	*beacon_int_gcd = 0;
1700	*beacon_int_different = false;
1701
 
1702	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1703		if (!wdev->beacon_interval)
 
 
 
 
 
 
 
 
 
 
 
 
 
1704			continue;
1705
1706		if (!*beacon_int_gcd) {
1707			*beacon_int_gcd = wdev->beacon_interval;
1708			continue;
1709		}
1710
1711		if (wdev->beacon_interval == *beacon_int_gcd)
1712			continue;
1713
1714		*beacon_int_different = true;
1715		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1716	}
1717
1718	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1719		if (*beacon_int_gcd)
1720			*beacon_int_different = true;
1721		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1722	}
1723}
1724
1725int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1726				 enum nl80211_iftype iftype, u32 beacon_int)
1727{
1728	/*
1729	 * This is just a basic pre-condition check; if interface combinations
1730	 * are possible the driver must already be checking those with a call
1731	 * to cfg80211_check_combinations(), in which case we'll validate more
1732	 * through the cfg80211_calculate_bi_data() call and code in
1733	 * cfg80211_iter_combinations().
1734	 */
1735
1736	if (beacon_int < 10 || beacon_int > 10000)
1737		return -EINVAL;
1738
1739	return 0;
1740}
1741
1742int cfg80211_iter_combinations(struct wiphy *wiphy,
1743			       struct iface_combination_params *params,
1744			       void (*iter)(const struct ieee80211_iface_combination *c,
1745					    void *data),
1746			       void *data)
1747{
 
 
1748	const struct ieee80211_regdomain *regdom;
1749	enum nl80211_dfs_regions region = 0;
1750	int i, j, iftype;
1751	int num_interfaces = 0;
1752	u32 used_iftypes = 0;
1753	u32 beacon_int_gcd;
1754	bool beacon_int_different;
1755
 
 
 
1756	/*
1757	 * This is a bit strange, since the iteration used to rely only on
1758	 * the data given by the driver, but here it now relies on context,
1759	 * in form of the currently operating interfaces.
1760	 * This is OK for all current users, and saves us from having to
1761	 * push the GCD calculations into all the drivers.
1762	 * In the future, this should probably rely more on data that's in
1763	 * cfg80211 already - the only thing not would appear to be any new
1764	 * interfaces (while being brought up) and channel/radar data.
1765	 */
1766	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1767				   &beacon_int_gcd, &beacon_int_different);
 
1768
1769	if (params->radar_detect) {
1770		rcu_read_lock();
1771		regdom = rcu_dereference(cfg80211_regdomain);
1772		if (regdom)
1773			region = regdom->dfs_region;
1774		rcu_read_unlock();
1775	}
1776
1777	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1778		num_interfaces += params->iftype_num[iftype];
1779		if (params->iftype_num[iftype] > 0 &&
1780		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1781			used_iftypes |= BIT(iftype);
1782	}
1783
1784	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1785		const struct ieee80211_iface_combination *c;
 
 
 
 
 
 
1786		struct ieee80211_iface_limit *limits;
1787		u32 all_iftypes = 0;
1788
1789		c = &wiphy->iface_combinations[i];
1790
1791		if (num_interfaces > c->max_interfaces)
1792			continue;
1793		if (params->num_different_channels > c->num_different_channels)
1794			continue;
1795
1796		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1797				 GFP_KERNEL);
1798		if (!limits)
1799			return -ENOMEM;
1800
1801		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1802			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1803				continue;
1804			for (j = 0; j < c->n_limits; j++) {
1805				all_iftypes |= limits[j].types;
1806				if (!(limits[j].types & BIT(iftype)))
1807					continue;
1808				if (limits[j].max < params->iftype_num[iftype])
1809					goto cont;
1810				limits[j].max -= params->iftype_num[iftype];
1811			}
1812		}
1813
1814		if (params->radar_detect !=
1815			(c->radar_detect_widths & params->radar_detect))
1816			goto cont;
1817
1818		if (params->radar_detect && c->radar_detect_regions &&
1819		    !(c->radar_detect_regions & BIT(region)))
1820			goto cont;
1821
1822		/* Finally check that all iftypes that we're currently
1823		 * using are actually part of this combination. If they
1824		 * aren't then we can't use this combination and have
1825		 * to continue to the next.
1826		 */
1827		if ((all_iftypes & used_iftypes) != used_iftypes)
1828			goto cont;
1829
1830		if (beacon_int_gcd) {
1831			if (c->beacon_int_min_gcd &&
1832			    beacon_int_gcd < c->beacon_int_min_gcd)
1833				goto cont;
1834			if (!c->beacon_int_min_gcd && beacon_int_different)
1835				goto cont;
1836		}
1837
1838		/* This combination covered all interface types and
1839		 * supported the requested numbers, so we're good.
1840		 */
1841
1842		(*iter)(c, data);
1843 cont:
1844		kfree(limits);
1845	}
1846
1847	return 0;
1848}
1849EXPORT_SYMBOL(cfg80211_iter_combinations);
1850
1851static void
1852cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1853			  void *data)
1854{
1855	int *num = data;
1856	(*num)++;
1857}
1858
1859int cfg80211_check_combinations(struct wiphy *wiphy,
1860				struct iface_combination_params *params)
1861{
1862	int err, num = 0;
1863
1864	err = cfg80211_iter_combinations(wiphy, params,
1865					 cfg80211_iter_sum_ifcombs, &num);
1866	if (err)
1867		return err;
1868	if (num == 0)
1869		return -EBUSY;
1870
1871	return 0;
1872}
1873EXPORT_SYMBOL(cfg80211_check_combinations);
1874
1875int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1876			   const u8 *rates, unsigned int n_rates,
1877			   u32 *mask)
1878{
1879	int i, j;
1880
1881	if (!sband)
1882		return -EINVAL;
1883
1884	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1885		return -EINVAL;
1886
1887	*mask = 0;
1888
1889	for (i = 0; i < n_rates; i++) {
1890		int rate = (rates[i] & 0x7f) * 5;
1891		bool found = false;
1892
1893		for (j = 0; j < sband->n_bitrates; j++) {
1894			if (sband->bitrates[j].bitrate == rate) {
1895				found = true;
1896				*mask |= BIT(j);
1897				break;
1898			}
1899		}
1900		if (!found)
1901			return -EINVAL;
1902	}
1903
1904	/*
1905	 * mask must have at least one bit set here since we
1906	 * didn't accept a 0-length rates array nor allowed
1907	 * entries in the array that didn't exist
1908	 */
1909
1910	return 0;
1911}
1912
1913unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1914{
1915	enum nl80211_band band;
1916	unsigned int n_channels = 0;
1917
1918	for (band = 0; band < NUM_NL80211_BANDS; band++)
1919		if (wiphy->bands[band])
1920			n_channels += wiphy->bands[band]->n_channels;
1921
1922	return n_channels;
1923}
1924EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1925
1926int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1927			 struct station_info *sinfo)
1928{
1929	struct cfg80211_registered_device *rdev;
1930	struct wireless_dev *wdev;
 
1931
1932	wdev = dev->ieee80211_ptr;
1933	if (!wdev)
1934		return -EOPNOTSUPP;
1935
1936	rdev = wiphy_to_rdev(wdev->wiphy);
1937	if (!rdev->ops->get_station)
1938		return -EOPNOTSUPP;
1939
1940	memset(sinfo, 0, sizeof(*sinfo));
1941
1942	return rdev_get_station(rdev, dev, mac_addr, sinfo);
 
 
 
 
1943}
1944EXPORT_SYMBOL(cfg80211_get_station);
1945
1946void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1947{
1948	int i;
1949
1950	if (!f)
1951		return;
1952
1953	kfree(f->serv_spec_info);
1954	kfree(f->srf_bf);
1955	kfree(f->srf_macs);
1956	for (i = 0; i < f->num_rx_filters; i++)
1957		kfree(f->rx_filters[i].filter);
1958
1959	for (i = 0; i < f->num_tx_filters; i++)
1960		kfree(f->tx_filters[i].filter);
1961
1962	kfree(f->rx_filters);
1963	kfree(f->tx_filters);
1964	kfree(f);
1965}
1966EXPORT_SYMBOL(cfg80211_free_nan_func);
1967
1968bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1969				u32 center_freq_khz, u32 bw_khz)
1970{
1971	u32 start_freq_khz, end_freq_khz;
1972
1973	start_freq_khz = center_freq_khz - (bw_khz / 2);
1974	end_freq_khz = center_freq_khz + (bw_khz / 2);
1975
1976	if (start_freq_khz >= freq_range->start_freq_khz &&
1977	    end_freq_khz <= freq_range->end_freq_khz)
1978		return true;
1979
1980	return false;
1981}
1982
1983int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1984{
1985	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1986				sizeof(*(sinfo->pertid)),
1987				gfp);
1988	if (!sinfo->pertid)
1989		return -ENOMEM;
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1994
1995/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1996/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1997const unsigned char rfc1042_header[] __aligned(2) =
1998	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1999EXPORT_SYMBOL(rfc1042_header);
2000
2001/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2002const unsigned char bridge_tunnel_header[] __aligned(2) =
2003	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2004EXPORT_SYMBOL(bridge_tunnel_header);
2005
2006/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2007struct iapp_layer2_update {
2008	u8 da[ETH_ALEN];	/* broadcast */
2009	u8 sa[ETH_ALEN];	/* STA addr */
2010	__be16 len;		/* 6 */
2011	u8 dsap;		/* 0 */
2012	u8 ssap;		/* 0 */
2013	u8 control;
2014	u8 xid_info[3];
2015} __packed;
2016
2017void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2018{
2019	struct iapp_layer2_update *msg;
2020	struct sk_buff *skb;
2021
2022	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2023	 * bridge devices */
2024
2025	skb = dev_alloc_skb(sizeof(*msg));
2026	if (!skb)
2027		return;
2028	msg = skb_put(skb, sizeof(*msg));
2029
2030	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2031	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2032
2033	eth_broadcast_addr(msg->da);
2034	ether_addr_copy(msg->sa, addr);
2035	msg->len = htons(6);
2036	msg->dsap = 0;
2037	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2038	msg->control = 0xaf;	/* XID response lsb.1111F101.
2039				 * F=0 (no poll command; unsolicited frame) */
2040	msg->xid_info[0] = 0x81;	/* XID format identifier */
2041	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2042	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2043
2044	skb->dev = dev;
2045	skb->protocol = eth_type_trans(skb, dev);
2046	memset(skb->cb, 0, sizeof(skb->cb));
2047	netif_rx_ni(skb);
2048}
2049EXPORT_SYMBOL(cfg80211_send_layer2_update);
2050
2051int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2052			      enum ieee80211_vht_chanwidth bw,
2053			      int mcs, bool ext_nss_bw_capable,
2054			      unsigned int max_vht_nss)
2055{
2056	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2057	int ext_nss_bw;
2058	int supp_width;
2059	int i, mcs_encoding;
2060
2061	if (map == 0xffff)
2062		return 0;
2063
2064	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2065		return 0;
2066	if (mcs <= 7)
2067		mcs_encoding = 0;
2068	else if (mcs == 8)
2069		mcs_encoding = 1;
2070	else
2071		mcs_encoding = 2;
2072
2073	if (!max_vht_nss) {
2074		/* find max_vht_nss for the given MCS */
2075		for (i = 7; i >= 0; i--) {
2076			int supp = (map >> (2 * i)) & 3;
2077
2078			if (supp == 3)
2079				continue;
2080
2081			if (supp >= mcs_encoding) {
2082				max_vht_nss = i + 1;
2083				break;
2084			}
2085		}
2086	}
2087
2088	if (!(cap->supp_mcs.tx_mcs_map &
2089			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2090		return max_vht_nss;
2091
2092	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2093				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2094	supp_width = le32_get_bits(cap->vht_cap_info,
2095				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2096
2097	/* if not capable, treat ext_nss_bw as 0 */
2098	if (!ext_nss_bw_capable)
2099		ext_nss_bw = 0;
2100
2101	/* This is invalid */
2102	if (supp_width == 3)
2103		return 0;
2104
2105	/* This is an invalid combination so pretend nothing is supported */
2106	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2107		return 0;
2108
2109	/*
2110	 * Cover all the special cases according to IEEE 802.11-2016
2111	 * Table 9-250. All other cases are either factor of 1 or not
2112	 * valid/supported.
2113	 */
2114	switch (bw) {
2115	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2116	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2117		if ((supp_width == 1 || supp_width == 2) &&
2118		    ext_nss_bw == 3)
2119			return 2 * max_vht_nss;
2120		break;
2121	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2122		if (supp_width == 0 &&
2123		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2124			return max_vht_nss / 2;
2125		if (supp_width == 0 &&
2126		    ext_nss_bw == 3)
2127			return (3 * max_vht_nss) / 4;
2128		if (supp_width == 1 &&
2129		    ext_nss_bw == 3)
2130			return 2 * max_vht_nss;
2131		break;
2132	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2133		if (supp_width == 0 && ext_nss_bw == 1)
2134			return 0; /* not possible */
2135		if (supp_width == 0 &&
2136		    ext_nss_bw == 2)
2137			return max_vht_nss / 2;
2138		if (supp_width == 0 &&
2139		    ext_nss_bw == 3)
2140			return (3 * max_vht_nss) / 4;
2141		if (supp_width == 1 &&
2142		    ext_nss_bw == 0)
2143			return 0; /* not possible */
2144		if (supp_width == 1 &&
2145		    ext_nss_bw == 1)
2146			return max_vht_nss / 2;
2147		if (supp_width == 1 &&
2148		    ext_nss_bw == 2)
2149			return (3 * max_vht_nss) / 4;
2150		break;
2151	}
2152
2153	/* not covered or invalid combination received */
2154	return max_vht_nss;
2155}
2156EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2157
2158bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2159			     bool is_4addr, u8 check_swif)
2160
2161{
2162	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2163
2164	switch (check_swif) {
2165	case 0:
2166		if (is_vlan && is_4addr)
2167			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2168		return wiphy->interface_modes & BIT(iftype);
2169	case 1:
2170		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2171			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2172		return wiphy->software_iftypes & BIT(iftype);
2173	default:
2174		break;
2175	}
2176
2177	return false;
2178}
2179EXPORT_SYMBOL(cfg80211_iftype_allowed);