Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
 
  20#include "ctree.h"
  21#include "direct-io.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "btrfs_inode.h"
 
  25#include "tree-log.h"
  26#include "locking.h"
 
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31#include "subpage.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "extent-tree.h"
  35#include "file-item.h"
  36#include "ioctl.h"
  37#include "file.h"
  38#include "super.h"
  39
  40/*
  41 * Helper to fault in page and copy.  This should go away and be replaced with
  42 * calls into generic code.
  43 */
  44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  45					 struct folio *folio, struct iov_iter *i)
 
  46{
  47	size_t copied = 0;
  48	size_t total_copied = 0;
 
  49	int offset = offset_in_page(pos);
  50
  51	while (write_bytes > 0) {
  52		size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
 
 
  53		/*
  54		 * Copy data from userspace to the current page
  55		 */
  56		copied = copy_folio_from_iter_atomic(folio, offset, count, i);
  57
  58		/* Flush processor's dcache for this page */
  59		flush_dcache_folio(folio);
  60
  61		/*
  62		 * if we get a partial write, we can end up with
  63		 * partially up to date page.  These add
  64		 * a lot of complexity, so make sure they don't
  65		 * happen by forcing this copy to be retried.
  66		 *
  67		 * The rest of the btrfs_file_write code will fall
  68		 * back to page at a time copies after we return 0.
  69		 */
  70		if (unlikely(copied < count)) {
  71			if (!folio_test_uptodate(folio)) {
  72				iov_iter_revert(i, copied);
  73				copied = 0;
  74			}
  75			if (!copied)
  76				break;
  77		}
  78
  79		write_bytes -= copied;
  80		total_copied += copied;
  81		offset += copied;
 
 
 
 
  82	}
  83	return total_copied;
  84}
  85
  86/*
  87 * Unlock folio after btrfs_file_write() is done with it.
  88 */
  89static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
 
  90			     u64 pos, u64 copied)
  91{
 
  92	u64 block_start = round_down(pos, fs_info->sectorsize);
  93	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
  94
  95	ASSERT(block_len <= U32_MAX);
  96	/*
  97	 * Folio checked is some magic around finding folios that have been
  98	 * modified without going through btrfs_dirty_folio().  Clear it here.
  99	 * There should be no need to mark the pages accessed as
 100	 * prepare_one_folio() should have marked them accessed in
 101	 * prepare_one_folio() via find_or_create_page()
 102	 */
 103	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
 104	folio_unlock(folio);
 105	folio_put(folio);
 
 
 106}
 107
 108/*
 109 * After btrfs_copy_from_user(), update the following things for delalloc:
 110 * - Mark newly dirtied folio as DELALLOC in the io tree.
 111 *   Used to advise which range is to be written back.
 112 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
 113 * - Update inode size for past EOF write
 114 */
 115int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
 116		      size_t write_bytes, struct extent_state **cached, bool noreserve)
 
 117{
 118	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 119	int ret = 0;
 
 120	u64 num_bytes;
 121	u64 start_pos;
 122	u64 end_of_last_block;
 123	u64 end_pos = pos + write_bytes;
 124	loff_t isize = i_size_read(&inode->vfs_inode);
 125	unsigned int extra_bits = 0;
 126
 127	if (write_bytes == 0)
 128		return 0;
 129
 130	if (noreserve)
 131		extra_bits |= EXTENT_NORESERVE;
 132
 133	start_pos = round_down(pos, fs_info->sectorsize);
 134	num_bytes = round_up(write_bytes + pos - start_pos,
 135			     fs_info->sectorsize);
 136	ASSERT(num_bytes <= U32_MAX);
 137	ASSERT(folio_pos(folio) <= pos &&
 138	       folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
 139
 140	end_of_last_block = start_pos + num_bytes - 1;
 141
 142	/*
 143	 * The pages may have already been dirty, clear out old accounting so
 144	 * we can set things up properly
 145	 */
 146	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 147			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 148			 cached);
 149
 150	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 151					extra_bits, cached);
 152	if (ret)
 153		return ret;
 154
 155	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
 156	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
 157	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
 
 
 
 
 
 
 
 158
 159	/*
 160	 * we've only changed i_size in ram, and we haven't updated
 161	 * the disk i_size.  There is no need to log the inode
 162	 * at this time.
 163	 */
 164	if (end_pos > isize)
 165		i_size_write(&inode->vfs_inode, end_pos);
 166	return 0;
 167}
 168
 169/*
 170 * this is very complex, but the basic idea is to drop all extents
 171 * in the range start - end.  hint_block is filled in with a block number
 172 * that would be a good hint to the block allocator for this file.
 173 *
 174 * If an extent intersects the range but is not entirely inside the range
 175 * it is either truncated or split.  Anything entirely inside the range
 176 * is deleted from the tree.
 177 *
 178 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 179 * to deal with that. We set the field 'bytes_found' of the arguments structure
 180 * with the number of allocated bytes found in the target range, so that the
 181 * caller can update the inode's number of bytes in an atomic way when
 182 * replacing extents in a range to avoid races with stat(2).
 183 */
 184int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 185		       struct btrfs_root *root, struct btrfs_inode *inode,
 186		       struct btrfs_drop_extents_args *args)
 187{
 188	struct btrfs_fs_info *fs_info = root->fs_info;
 189	struct extent_buffer *leaf;
 190	struct btrfs_file_extent_item *fi;
 
 191	struct btrfs_key key;
 192	struct btrfs_key new_key;
 193	u64 ino = btrfs_ino(inode);
 194	u64 search_start = args->start;
 195	u64 disk_bytenr = 0;
 196	u64 num_bytes = 0;
 197	u64 extent_offset = 0;
 198	u64 extent_end = 0;
 199	u64 last_end = args->start;
 200	int del_nr = 0;
 201	int del_slot = 0;
 202	int extent_type;
 203	int recow;
 204	int ret;
 205	int modify_tree = -1;
 206	int update_refs;
 207	int found = 0;
 208	struct btrfs_path *path = args->path;
 209
 210	args->bytes_found = 0;
 211	args->extent_inserted = false;
 212
 213	/* Must always have a path if ->replace_extent is true */
 214	ASSERT(!(args->replace_extent && !args->path));
 215
 216	if (!path) {
 217		path = btrfs_alloc_path();
 218		if (!path) {
 219			ret = -ENOMEM;
 220			goto out;
 221		}
 222	}
 223
 224	if (args->drop_cache)
 225		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 226
 227	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
 228		modify_tree = 0;
 229
 230	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
 231	while (1) {
 232		recow = 0;
 233		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 234					       search_start, modify_tree);
 235		if (ret < 0)
 236			break;
 237		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 238			leaf = path->nodes[0];
 239			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 240			if (key.objectid == ino &&
 241			    key.type == BTRFS_EXTENT_DATA_KEY)
 242				path->slots[0]--;
 243		}
 244		ret = 0;
 245next_slot:
 246		leaf = path->nodes[0];
 247		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 248			BUG_ON(del_nr > 0);
 249			ret = btrfs_next_leaf(root, path);
 250			if (ret < 0)
 251				break;
 252			if (ret > 0) {
 253				ret = 0;
 254				break;
 255			}
 256			leaf = path->nodes[0];
 257			recow = 1;
 258		}
 259
 260		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 261
 262		if (key.objectid > ino)
 263			break;
 264		if (WARN_ON_ONCE(key.objectid < ino) ||
 265		    key.type < BTRFS_EXTENT_DATA_KEY) {
 266			ASSERT(del_nr == 0);
 267			path->slots[0]++;
 268			goto next_slot;
 269		}
 270		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 271			break;
 272
 273		fi = btrfs_item_ptr(leaf, path->slots[0],
 274				    struct btrfs_file_extent_item);
 275		extent_type = btrfs_file_extent_type(leaf, fi);
 276
 277		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 278		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 279			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 280			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 281			extent_offset = btrfs_file_extent_offset(leaf, fi);
 282			extent_end = key.offset +
 283				btrfs_file_extent_num_bytes(leaf, fi);
 284		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 285			extent_end = key.offset +
 286				btrfs_file_extent_ram_bytes(leaf, fi);
 287		} else {
 288			/* can't happen */
 289			BUG();
 290		}
 291
 292		/*
 293		 * Don't skip extent items representing 0 byte lengths. They
 294		 * used to be created (bug) if while punching holes we hit
 295		 * -ENOSPC condition. So if we find one here, just ensure we
 296		 * delete it, otherwise we would insert a new file extent item
 297		 * with the same key (offset) as that 0 bytes length file
 298		 * extent item in the call to setup_items_for_insert() later
 299		 * in this function.
 300		 */
 301		if (extent_end == key.offset && extent_end >= search_start) {
 302			last_end = extent_end;
 303			goto delete_extent_item;
 304		}
 305
 306		if (extent_end <= search_start) {
 307			path->slots[0]++;
 308			goto next_slot;
 309		}
 310
 311		found = 1;
 312		search_start = max(key.offset, args->start);
 313		if (recow || !modify_tree) {
 314			modify_tree = -1;
 315			btrfs_release_path(path);
 316			continue;
 317		}
 318
 319		/*
 320		 *     | - range to drop - |
 321		 *  | -------- extent -------- |
 322		 */
 323		if (args->start > key.offset && args->end < extent_end) {
 324			BUG_ON(del_nr > 0);
 325			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 326				ret = -EOPNOTSUPP;
 327				break;
 328			}
 329
 330			memcpy(&new_key, &key, sizeof(new_key));
 331			new_key.offset = args->start;
 332			ret = btrfs_duplicate_item(trans, root, path,
 333						   &new_key);
 334			if (ret == -EAGAIN) {
 335				btrfs_release_path(path);
 336				continue;
 337			}
 338			if (ret < 0)
 339				break;
 340
 341			leaf = path->nodes[0];
 342			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 343					    struct btrfs_file_extent_item);
 344			btrfs_set_file_extent_num_bytes(leaf, fi,
 345							args->start - key.offset);
 346
 347			fi = btrfs_item_ptr(leaf, path->slots[0],
 348					    struct btrfs_file_extent_item);
 349
 350			extent_offset += args->start - key.offset;
 351			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 352			btrfs_set_file_extent_num_bytes(leaf, fi,
 353							extent_end - args->start);
 354			btrfs_mark_buffer_dirty(trans, leaf);
 355
 356			if (update_refs && disk_bytenr > 0) {
 357				struct btrfs_ref ref = {
 358					.action = BTRFS_ADD_DELAYED_REF,
 359					.bytenr = disk_bytenr,
 360					.num_bytes = num_bytes,
 361					.parent = 0,
 362					.owning_root = btrfs_root_id(root),
 363					.ref_root = btrfs_root_id(root),
 364				};
 365				btrfs_init_data_ref(&ref, new_key.objectid,
 366						    args->start - extent_offset,
 367						    0, false);
 368				ret = btrfs_inc_extent_ref(trans, &ref);
 369				if (ret) {
 370					btrfs_abort_transaction(trans, ret);
 371					break;
 372				}
 373			}
 374			key.offset = args->start;
 375		}
 376		/*
 377		 * From here on out we will have actually dropped something, so
 378		 * last_end can be updated.
 379		 */
 380		last_end = extent_end;
 381
 382		/*
 383		 *  | ---- range to drop ----- |
 384		 *      | -------- extent -------- |
 385		 */
 386		if (args->start <= key.offset && args->end < extent_end) {
 387			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 388				ret = -EOPNOTSUPP;
 389				break;
 390			}
 391
 392			memcpy(&new_key, &key, sizeof(new_key));
 393			new_key.offset = args->end;
 394			btrfs_set_item_key_safe(trans, path, &new_key);
 395
 396			extent_offset += args->end - key.offset;
 397			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 398			btrfs_set_file_extent_num_bytes(leaf, fi,
 399							extent_end - args->end);
 400			btrfs_mark_buffer_dirty(trans, leaf);
 401			if (update_refs && disk_bytenr > 0)
 402				args->bytes_found += args->end - key.offset;
 403			break;
 404		}
 405
 406		search_start = extent_end;
 407		/*
 408		 *       | ---- range to drop ----- |
 409		 *  | -------- extent -------- |
 410		 */
 411		if (args->start > key.offset && args->end >= extent_end) {
 412			BUG_ON(del_nr > 0);
 413			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 414				ret = -EOPNOTSUPP;
 415				break;
 416			}
 417
 418			btrfs_set_file_extent_num_bytes(leaf, fi,
 419							args->start - key.offset);
 420			btrfs_mark_buffer_dirty(trans, leaf);
 421			if (update_refs && disk_bytenr > 0)
 422				args->bytes_found += extent_end - args->start;
 423			if (args->end == extent_end)
 424				break;
 425
 426			path->slots[0]++;
 427			goto next_slot;
 428		}
 429
 430		/*
 431		 *  | ---- range to drop ----- |
 432		 *    | ------ extent ------ |
 433		 */
 434		if (args->start <= key.offset && args->end >= extent_end) {
 435delete_extent_item:
 436			if (del_nr == 0) {
 437				del_slot = path->slots[0];
 438				del_nr = 1;
 439			} else {
 440				BUG_ON(del_slot + del_nr != path->slots[0]);
 441				del_nr++;
 442			}
 443
 444			if (update_refs &&
 445			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 446				args->bytes_found += extent_end - key.offset;
 447				extent_end = ALIGN(extent_end,
 448						   fs_info->sectorsize);
 449			} else if (update_refs && disk_bytenr > 0) {
 450				struct btrfs_ref ref = {
 451					.action = BTRFS_DROP_DELAYED_REF,
 452					.bytenr = disk_bytenr,
 453					.num_bytes = num_bytes,
 454					.parent = 0,
 455					.owning_root = btrfs_root_id(root),
 456					.ref_root = btrfs_root_id(root),
 457				};
 458				btrfs_init_data_ref(&ref, key.objectid,
 459						    key.offset - extent_offset,
 460						    0, false);
 461				ret = btrfs_free_extent(trans, &ref);
 462				if (ret) {
 463					btrfs_abort_transaction(trans, ret);
 464					break;
 465				}
 466				args->bytes_found += extent_end - key.offset;
 467			}
 468
 469			if (args->end == extent_end)
 470				break;
 471
 472			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 473				path->slots[0]++;
 474				goto next_slot;
 475			}
 476
 477			ret = btrfs_del_items(trans, root, path, del_slot,
 478					      del_nr);
 479			if (ret) {
 480				btrfs_abort_transaction(trans, ret);
 481				break;
 482			}
 483
 484			del_nr = 0;
 485			del_slot = 0;
 486
 487			btrfs_release_path(path);
 488			continue;
 489		}
 490
 491		BUG();
 492	}
 493
 494	if (!ret && del_nr > 0) {
 495		/*
 496		 * Set path->slots[0] to first slot, so that after the delete
 497		 * if items are move off from our leaf to its immediate left or
 498		 * right neighbor leafs, we end up with a correct and adjusted
 499		 * path->slots[0] for our insertion (if args->replace_extent).
 500		 */
 501		path->slots[0] = del_slot;
 502		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 503		if (ret)
 504			btrfs_abort_transaction(trans, ret);
 505	}
 506
 507	leaf = path->nodes[0];
 508	/*
 509	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 510	 * which case it unlocked our path, so check path->locks[0] matches a
 511	 * write lock.
 512	 */
 513	if (!ret && args->replace_extent &&
 514	    path->locks[0] == BTRFS_WRITE_LOCK &&
 515	    btrfs_leaf_free_space(leaf) >=
 516	    sizeof(struct btrfs_item) + args->extent_item_size) {
 517
 518		key.objectid = ino;
 519		key.type = BTRFS_EXTENT_DATA_KEY;
 520		key.offset = args->start;
 521		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 522			struct btrfs_key slot_key;
 523
 524			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 525			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 526				path->slots[0]++;
 527		}
 528		btrfs_setup_item_for_insert(trans, root, path, &key,
 529					    args->extent_item_size);
 530		args->extent_inserted = true;
 531	}
 532
 533	if (!args->path)
 534		btrfs_free_path(path);
 535	else if (!args->extent_inserted)
 536		btrfs_release_path(path);
 537out:
 538	args->drop_end = found ? min(args->end, last_end) : args->end;
 539
 540	return ret;
 541}
 542
 543static int extent_mergeable(struct extent_buffer *leaf, int slot,
 544			    u64 objectid, u64 bytenr, u64 orig_offset,
 545			    u64 *start, u64 *end)
 546{
 547	struct btrfs_file_extent_item *fi;
 548	struct btrfs_key key;
 549	u64 extent_end;
 550
 551	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 552		return 0;
 553
 554	btrfs_item_key_to_cpu(leaf, &key, slot);
 555	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 556		return 0;
 557
 558	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 559	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 560	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 561	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 562	    btrfs_file_extent_compression(leaf, fi) ||
 563	    btrfs_file_extent_encryption(leaf, fi) ||
 564	    btrfs_file_extent_other_encoding(leaf, fi))
 565		return 0;
 566
 567	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 568	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 569		return 0;
 570
 571	*start = key.offset;
 572	*end = extent_end;
 573	return 1;
 574}
 575
 576/*
 577 * Mark extent in the range start - end as written.
 578 *
 579 * This changes extent type from 'pre-allocated' to 'regular'. If only
 580 * part of extent is marked as written, the extent will be split into
 581 * two or three.
 582 */
 583int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 584			      struct btrfs_inode *inode, u64 start, u64 end)
 585{
 586	struct btrfs_root *root = inode->root;
 587	struct extent_buffer *leaf;
 588	struct btrfs_path *path;
 589	struct btrfs_file_extent_item *fi;
 590	struct btrfs_ref ref = { 0 };
 591	struct btrfs_key key;
 592	struct btrfs_key new_key;
 593	u64 bytenr;
 594	u64 num_bytes;
 595	u64 extent_end;
 596	u64 orig_offset;
 597	u64 other_start;
 598	u64 other_end;
 599	u64 split;
 600	int del_nr = 0;
 601	int del_slot = 0;
 602	int recow;
 603	int ret = 0;
 604	u64 ino = btrfs_ino(inode);
 605
 606	path = btrfs_alloc_path();
 607	if (!path)
 608		return -ENOMEM;
 609again:
 610	recow = 0;
 611	split = start;
 612	key.objectid = ino;
 613	key.type = BTRFS_EXTENT_DATA_KEY;
 614	key.offset = split;
 615
 616	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 617	if (ret < 0)
 618		goto out;
 619	if (ret > 0 && path->slots[0] > 0)
 620		path->slots[0]--;
 621
 622	leaf = path->nodes[0];
 623	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 624	if (key.objectid != ino ||
 625	    key.type != BTRFS_EXTENT_DATA_KEY) {
 626		ret = -EINVAL;
 627		btrfs_abort_transaction(trans, ret);
 628		goto out;
 629	}
 630	fi = btrfs_item_ptr(leaf, path->slots[0],
 631			    struct btrfs_file_extent_item);
 632	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 633		ret = -EINVAL;
 634		btrfs_abort_transaction(trans, ret);
 635		goto out;
 636	}
 637	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 638	if (key.offset > start || extent_end < end) {
 639		ret = -EINVAL;
 640		btrfs_abort_transaction(trans, ret);
 641		goto out;
 642	}
 643
 644	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 645	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 646	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 647	memcpy(&new_key, &key, sizeof(new_key));
 648
 649	if (start == key.offset && end < extent_end) {
 650		other_start = 0;
 651		other_end = start;
 652		if (extent_mergeable(leaf, path->slots[0] - 1,
 653				     ino, bytenr, orig_offset,
 654				     &other_start, &other_end)) {
 655			new_key.offset = end;
 656			btrfs_set_item_key_safe(trans, path, &new_key);
 657			fi = btrfs_item_ptr(leaf, path->slots[0],
 658					    struct btrfs_file_extent_item);
 659			btrfs_set_file_extent_generation(leaf, fi,
 660							 trans->transid);
 661			btrfs_set_file_extent_num_bytes(leaf, fi,
 662							extent_end - end);
 663			btrfs_set_file_extent_offset(leaf, fi,
 664						     end - orig_offset);
 665			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 666					    struct btrfs_file_extent_item);
 667			btrfs_set_file_extent_generation(leaf, fi,
 668							 trans->transid);
 669			btrfs_set_file_extent_num_bytes(leaf, fi,
 670							end - other_start);
 671			btrfs_mark_buffer_dirty(trans, leaf);
 672			goto out;
 673		}
 674	}
 675
 676	if (start > key.offset && end == extent_end) {
 677		other_start = end;
 678		other_end = 0;
 679		if (extent_mergeable(leaf, path->slots[0] + 1,
 680				     ino, bytenr, orig_offset,
 681				     &other_start, &other_end)) {
 682			fi = btrfs_item_ptr(leaf, path->slots[0],
 683					    struct btrfs_file_extent_item);
 684			btrfs_set_file_extent_num_bytes(leaf, fi,
 685							start - key.offset);
 686			btrfs_set_file_extent_generation(leaf, fi,
 687							 trans->transid);
 688			path->slots[0]++;
 689			new_key.offset = start;
 690			btrfs_set_item_key_safe(trans, path, &new_key);
 691
 692			fi = btrfs_item_ptr(leaf, path->slots[0],
 693					    struct btrfs_file_extent_item);
 694			btrfs_set_file_extent_generation(leaf, fi,
 695							 trans->transid);
 696			btrfs_set_file_extent_num_bytes(leaf, fi,
 697							other_end - start);
 698			btrfs_set_file_extent_offset(leaf, fi,
 699						     start - orig_offset);
 700			btrfs_mark_buffer_dirty(trans, leaf);
 701			goto out;
 702		}
 703	}
 704
 705	while (start > key.offset || end < extent_end) {
 706		if (key.offset == start)
 707			split = end;
 708
 709		new_key.offset = split;
 710		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 711		if (ret == -EAGAIN) {
 712			btrfs_release_path(path);
 713			goto again;
 714		}
 715		if (ret < 0) {
 716			btrfs_abort_transaction(trans, ret);
 717			goto out;
 718		}
 719
 720		leaf = path->nodes[0];
 721		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 722				    struct btrfs_file_extent_item);
 723		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 724		btrfs_set_file_extent_num_bytes(leaf, fi,
 725						split - key.offset);
 726
 727		fi = btrfs_item_ptr(leaf, path->slots[0],
 728				    struct btrfs_file_extent_item);
 729
 730		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 731		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 732		btrfs_set_file_extent_num_bytes(leaf, fi,
 733						extent_end - split);
 734		btrfs_mark_buffer_dirty(trans, leaf);
 735
 736		ref.action = BTRFS_ADD_DELAYED_REF;
 737		ref.bytenr = bytenr;
 738		ref.num_bytes = num_bytes;
 739		ref.parent = 0;
 740		ref.owning_root = btrfs_root_id(root);
 741		ref.ref_root = btrfs_root_id(root);
 742		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 743		ret = btrfs_inc_extent_ref(trans, &ref);
 744		if (ret) {
 745			btrfs_abort_transaction(trans, ret);
 746			goto out;
 747		}
 748
 749		if (split == start) {
 750			key.offset = start;
 751		} else {
 752			if (start != key.offset) {
 753				ret = -EINVAL;
 754				btrfs_abort_transaction(trans, ret);
 755				goto out;
 756			}
 757			path->slots[0]--;
 758			extent_end = end;
 759		}
 760		recow = 1;
 761	}
 762
 763	other_start = end;
 764	other_end = 0;
 765
 766	ref.action = BTRFS_DROP_DELAYED_REF;
 767	ref.bytenr = bytenr;
 768	ref.num_bytes = num_bytes;
 769	ref.parent = 0;
 770	ref.owning_root = btrfs_root_id(root);
 771	ref.ref_root = btrfs_root_id(root);
 772	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 773	if (extent_mergeable(leaf, path->slots[0] + 1,
 774			     ino, bytenr, orig_offset,
 775			     &other_start, &other_end)) {
 776		if (recow) {
 777			btrfs_release_path(path);
 778			goto again;
 779		}
 780		extent_end = other_end;
 781		del_slot = path->slots[0] + 1;
 782		del_nr++;
 783		ret = btrfs_free_extent(trans, &ref);
 784		if (ret) {
 785			btrfs_abort_transaction(trans, ret);
 786			goto out;
 787		}
 788	}
 789	other_start = 0;
 790	other_end = start;
 791	if (extent_mergeable(leaf, path->slots[0] - 1,
 792			     ino, bytenr, orig_offset,
 793			     &other_start, &other_end)) {
 794		if (recow) {
 795			btrfs_release_path(path);
 796			goto again;
 797		}
 798		key.offset = other_start;
 799		del_slot = path->slots[0];
 800		del_nr++;
 801		ret = btrfs_free_extent(trans, &ref);
 802		if (ret) {
 803			btrfs_abort_transaction(trans, ret);
 804			goto out;
 805		}
 806	}
 807	if (del_nr == 0) {
 808		fi = btrfs_item_ptr(leaf, path->slots[0],
 809			   struct btrfs_file_extent_item);
 810		btrfs_set_file_extent_type(leaf, fi,
 811					   BTRFS_FILE_EXTENT_REG);
 812		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 813		btrfs_mark_buffer_dirty(trans, leaf);
 814	} else {
 815		fi = btrfs_item_ptr(leaf, del_slot - 1,
 816			   struct btrfs_file_extent_item);
 817		btrfs_set_file_extent_type(leaf, fi,
 818					   BTRFS_FILE_EXTENT_REG);
 819		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 820		btrfs_set_file_extent_num_bytes(leaf, fi,
 821						extent_end - key.offset);
 822		btrfs_mark_buffer_dirty(trans, leaf);
 823
 824		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 825		if (ret < 0) {
 826			btrfs_abort_transaction(trans, ret);
 827			goto out;
 828		}
 829	}
 830out:
 831	btrfs_free_path(path);
 832	return ret;
 833}
 834
 835/*
 836 * On error return an unlocked folio and the error value
 837 * On success return a locked folio and 0
 838 */
 839static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
 840				  u64 len, bool force_uptodate)
 
 841{
 842	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
 843	u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
 844	int ret = 0;
 845
 846	if (folio_test_uptodate(folio))
 847		return 0;
 848
 849	if (!force_uptodate &&
 850	    IS_ALIGNED(clamp_start, PAGE_SIZE) &&
 851	    IS_ALIGNED(clamp_end, PAGE_SIZE))
 852		return 0;
 853
 854	ret = btrfs_read_folio(NULL, folio);
 855	if (ret)
 856		return ret;
 857	folio_lock(folio);
 858	if (!folio_test_uptodate(folio)) {
 859		folio_unlock(folio);
 860		return -EIO;
 861	}
 862
 863	/*
 864	 * Since btrfs_read_folio() will unlock the folio before it returns,
 865	 * there is a window where btrfs_release_folio() can be called to
 866	 * release the page.  Here we check both inode mapping and page
 867	 * private to make sure the page was not released.
 868	 *
 869	 * The private flag check is essential for subpage as we need to store
 870	 * extra bitmap using folio private.
 871	 */
 872	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
 873		folio_unlock(folio);
 874		return -EAGAIN;
 
 
 875	}
 876	return 0;
 877}
 878
 
 
 
 
 
 
 
 
 
 
 879static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 880{
 881	gfp_t gfp;
 882
 883	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 884	if (nowait) {
 885		gfp &= ~__GFP_DIRECT_RECLAIM;
 886		gfp |= GFP_NOWAIT;
 887	}
 888
 889	return gfp;
 890}
 891
 892/*
 893 * Get folio into the page cache and lock it.
 894 */
 895static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
 896				      loff_t pos, size_t write_bytes,
 897				      bool force_uptodate, bool nowait)
 
 898{
 
 899	unsigned long index = pos >> PAGE_SHIFT;
 900	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 901	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
 902	struct folio *folio;
 903	int ret = 0;
 904
 
 905again:
 906	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
 907	if (IS_ERR(folio)) {
 908		if (nowait)
 909			ret = -EAGAIN;
 910		else
 911			ret = PTR_ERR(folio);
 912		return ret;
 913	}
 914	folio_wait_writeback(folio);
 915	/* Only support page sized folio yet. */
 916	ASSERT(folio_order(folio) == 0);
 917	ret = set_folio_extent_mapped(folio);
 918	if (ret < 0) {
 919		folio_unlock(folio);
 920		folio_put(folio);
 921		return ret;
 922	}
 923	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
 924	if (ret) {
 925		/* The folio is already unlocked. */
 926		folio_put(folio);
 927		if (!nowait && ret == -EAGAIN) {
 928			ret = 0;
 929			goto again;
 930		}
 931		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	}
 933	*folio_ret = folio;
 934	return 0;
 
 
 
 
 
 
 
 
 935}
 936
 937/*
 938 * Locks the extent and properly waits for data=ordered extents to finish
 939 * before allowing the folios to be modified if need.
 940 *
 941 * Return:
 942 * 1 - the extent is locked
 943 * 0 - the extent is not locked, and everything is OK
 944 * -EAGAIN - need to prepare the folios again
 
 945 */
 946static noinline int
 947lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
 948				loff_t pos, size_t write_bytes,
 
 949				u64 *lockstart, u64 *lockend, bool nowait,
 950				struct extent_state **cached_state)
 951{
 952	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 953	u64 start_pos;
 954	u64 last_pos;
 
 955	int ret = 0;
 956
 957	start_pos = round_down(pos, fs_info->sectorsize);
 958	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 959
 960	if (start_pos < inode->vfs_inode.i_size) {
 961		struct btrfs_ordered_extent *ordered;
 962
 963		if (nowait) {
 964			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
 965					     cached_state)) {
 966				folio_unlock(folio);
 967				folio_put(folio);
 
 
 
 
 968				return -EAGAIN;
 969			}
 970		} else {
 971			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
 972		}
 973
 974		ordered = btrfs_lookup_ordered_range(inode, start_pos,
 975						     last_pos - start_pos + 1);
 976		if (ordered &&
 977		    ordered->file_offset + ordered->num_bytes > start_pos &&
 978		    ordered->file_offset <= last_pos) {
 979			unlock_extent(&inode->io_tree, start_pos, last_pos,
 980				      cached_state);
 981			folio_unlock(folio);
 982			folio_put(folio);
 
 
 983			btrfs_start_ordered_extent(ordered);
 984			btrfs_put_ordered_extent(ordered);
 985			return -EAGAIN;
 986		}
 987		if (ordered)
 988			btrfs_put_ordered_extent(ordered);
 989
 990		*lockstart = start_pos;
 991		*lockend = last_pos;
 992		ret = 1;
 993	}
 994
 995	/*
 996	 * We should be called after prepare_one_folio() which should have locked
 997	 * all pages in the range.
 998	 */
 999	WARN_ON(!folio_test_locked(folio));
 
1000
1001	return ret;
1002}
1003
1004/*
1005 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1006 *
1007 * @pos:         File offset.
1008 * @write_bytes: The length to write, will be updated to the nocow writeable
1009 *               range.
1010 *
1011 * This function will flush ordered extents in the range to ensure proper
1012 * nocow checks.
1013 *
1014 * Return:
1015 * > 0          If we can nocow, and updates @write_bytes.
1016 *  0           If we can't do a nocow write.
1017 * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1018 *              root is in progress.
1019 * < 0          If an error happened.
1020 *
1021 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1022 */
1023int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1024			   size_t *write_bytes, bool nowait)
1025{
1026	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1027	struct btrfs_root *root = inode->root;
1028	struct extent_state *cached_state = NULL;
1029	u64 lockstart, lockend;
1030	u64 num_bytes;
1031	int ret;
1032
1033	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1034		return 0;
1035
1036	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1037		return -EAGAIN;
1038
1039	lockstart = round_down(pos, fs_info->sectorsize);
1040	lockend = round_up(pos + *write_bytes,
1041			   fs_info->sectorsize) - 1;
1042	num_bytes = lockend - lockstart + 1;
1043
1044	if (nowait) {
1045		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1046						  &cached_state)) {
1047			btrfs_drew_write_unlock(&root->snapshot_lock);
1048			return -EAGAIN;
1049		}
1050	} else {
1051		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1052						   &cached_state);
1053	}
1054	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1055			       NULL, nowait, false);
1056	if (ret <= 0)
1057		btrfs_drew_write_unlock(&root->snapshot_lock);
1058	else
1059		*write_bytes = min_t(size_t, *write_bytes ,
1060				     num_bytes - pos + lockstart);
1061	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1062
1063	return ret;
1064}
1065
1066void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1067{
1068	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1069}
1070
1071int btrfs_write_check(struct kiocb *iocb, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	struct file *file = iocb->ki_filp;
1074	struct inode *inode = file_inode(file);
1075	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1076	loff_t pos = iocb->ki_pos;
1077	int ret;
1078	loff_t oldsize;
 
1079
1080	/*
1081	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1082	 * prealloc flags, as without those flags we always have to COW. We will
1083	 * later check if we can really COW into the target range (using
1084	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1085	 */
1086	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1087	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1088		return -EAGAIN;
1089
1090	ret = file_remove_privs(file);
1091	if (ret)
1092		return ret;
1093
1094	/*
1095	 * We reserve space for updating the inode when we reserve space for the
1096	 * extent we are going to write, so we will enospc out there.  We don't
1097	 * need to start yet another transaction to update the inode as we will
1098	 * update the inode when we finish writing whatever data we write.
1099	 */
1100	if (!IS_NOCMTIME(inode)) {
1101		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1102		inode_inc_iversion(inode);
1103	}
1104
 
1105	oldsize = i_size_read(inode);
1106	if (pos > oldsize) {
1107		/* Expand hole size to cover write data, preventing empty gap */
1108		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1109
1110		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1111		if (ret)
1112			return ret;
1113	}
1114
1115	return 0;
1116}
1117
1118ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
 
1119{
1120	struct file *file = iocb->ki_filp;
1121	loff_t pos;
1122	struct inode *inode = file_inode(file);
1123	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 
1124	struct extent_changeset *data_reserved = NULL;
1125	u64 release_bytes = 0;
1126	u64 lockstart;
1127	u64 lockend;
1128	size_t num_written = 0;
 
1129	ssize_t ret;
1130	loff_t old_isize;
 
 
1131	unsigned int ilock_flags = 0;
1132	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1133	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1134	bool only_release_metadata = false;
1135
1136	if (nowait)
1137		ilock_flags |= BTRFS_ILOCK_TRY;
1138
1139	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1140	if (ret < 0)
1141		return ret;
1142
1143	/*
1144	 * We can only trust the isize with inode lock held, or it can race with
1145	 * other buffered writes and cause incorrect call of
1146	 * pagecache_isize_extended() to overwrite existing data.
1147	 */
1148	old_isize = i_size_read(inode);
1149
1150	ret = generic_write_checks(iocb, i);
1151	if (ret <= 0)
1152		goto out;
1153
1154	ret = btrfs_write_check(iocb, ret);
1155	if (ret < 0)
1156		goto out;
1157
1158	pos = iocb->ki_pos;
 
 
 
 
 
 
 
 
 
 
1159	while (iov_iter_count(i) > 0) {
1160		struct extent_state *cached_state = NULL;
1161		size_t offset = offset_in_page(pos);
1162		size_t sector_offset;
1163		size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
 
 
 
1164		size_t reserve_bytes;
 
1165		size_t copied;
1166		size_t dirty_sectors;
1167		size_t num_sectors;
1168		struct folio *folio = NULL;
1169		int extents_locked;
1170		bool force_page_uptodate = false;
1171
1172		/*
1173		 * Fault pages before locking them in prepare_one_folio()
1174		 * to avoid recursive lock
1175		 */
1176		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1177			ret = -EFAULT;
1178			break;
1179		}
1180
1181		only_release_metadata = false;
1182		sector_offset = pos & (fs_info->sectorsize - 1);
1183
1184		extent_changeset_release(data_reserved);
1185		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1186						  &data_reserved, pos,
1187						  write_bytes, nowait);
1188		if (ret < 0) {
1189			int can_nocow;
1190
1191			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1192				ret = -EAGAIN;
1193				break;
1194			}
1195
1196			/*
1197			 * If we don't have to COW at the offset, reserve
1198			 * metadata only. write_bytes may get smaller than
1199			 * requested here.
1200			 */
1201			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1202							   &write_bytes, nowait);
1203			if (can_nocow < 0)
1204				ret = can_nocow;
1205			if (can_nocow > 0)
1206				ret = 0;
1207			if (ret)
1208				break;
1209			only_release_metadata = true;
1210		}
1211
 
 
1212		reserve_bytes = round_up(write_bytes + sector_offset,
1213					 fs_info->sectorsize);
1214		WARN_ON(reserve_bytes == 0);
1215		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1216						      reserve_bytes,
1217						      reserve_bytes, nowait);
1218		if (ret) {
1219			if (!only_release_metadata)
1220				btrfs_free_reserved_data_space(BTRFS_I(inode),
1221						data_reserved, pos,
1222						write_bytes);
1223			else
1224				btrfs_check_nocow_unlock(BTRFS_I(inode));
1225
1226			if (nowait && ret == -ENOSPC)
1227				ret = -EAGAIN;
1228			break;
1229		}
1230
1231		release_bytes = reserve_bytes;
1232again:
1233		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1234		if (ret) {
1235			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1236			break;
1237		}
1238
1239		ret = prepare_one_folio(inode, &folio, pos, write_bytes,
1240					force_page_uptodate, false);
 
 
 
 
 
1241		if (ret) {
1242			btrfs_delalloc_release_extents(BTRFS_I(inode),
1243						       reserve_bytes);
1244			break;
1245		}
1246
1247		extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
1248						folio, pos, write_bytes, &lockstart,
1249						&lockend, nowait, &cached_state);
 
1250		if (extents_locked < 0) {
1251			if (!nowait && extents_locked == -EAGAIN)
1252				goto again;
1253
1254			btrfs_delalloc_release_extents(BTRFS_I(inode),
1255						       reserve_bytes);
1256			ret = extents_locked;
1257			break;
1258		}
1259
1260		copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
1261
1262		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1263		dirty_sectors = round_up(copied + sector_offset,
1264					fs_info->sectorsize);
1265		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1266
 
 
 
 
 
 
 
1267		if (copied == 0) {
1268			force_page_uptodate = true;
1269			dirty_sectors = 0;
 
1270		} else {
1271			force_page_uptodate = false;
 
 
1272		}
1273
1274		if (num_sectors > dirty_sectors) {
1275			/* release everything except the sectors we dirtied */
1276			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1277			if (only_release_metadata) {
1278				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1279							release_bytes, true);
1280			} else {
1281				u64 release_start = round_up(pos + copied,
1282							     fs_info->sectorsize);
 
 
 
1283				btrfs_delalloc_release_space(BTRFS_I(inode),
1284						data_reserved, release_start,
1285						release_bytes, true);
1286			}
1287		}
1288
1289		release_bytes = round_up(copied + sector_offset,
1290					fs_info->sectorsize);
1291
1292		ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
 
1293					&cached_state, only_release_metadata);
1294
1295		/*
1296		 * If we have not locked the extent range, because the range's
1297		 * start offset is >= i_size, we might still have a non-NULL
1298		 * cached extent state, acquired while marking the extent range
1299		 * as delalloc through btrfs_dirty_page(). Therefore free any
1300		 * possible cached extent state to avoid a memory leak.
1301		 */
1302		if (extents_locked)
1303			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1304				      lockend, &cached_state);
1305		else
1306			free_extent_state(cached_state);
1307
1308		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1309		if (ret) {
1310			btrfs_drop_folio(fs_info, folio, pos, copied);
1311			break;
1312		}
1313
1314		release_bytes = 0;
1315		if (only_release_metadata)
1316			btrfs_check_nocow_unlock(BTRFS_I(inode));
1317
1318		btrfs_drop_folio(fs_info, folio, pos, copied);
1319
1320		cond_resched();
1321
1322		pos += copied;
1323		num_written += copied;
1324	}
1325
 
 
1326	if (release_bytes) {
1327		if (only_release_metadata) {
1328			btrfs_check_nocow_unlock(BTRFS_I(inode));
1329			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1330					release_bytes, true);
1331		} else {
1332			btrfs_delalloc_release_space(BTRFS_I(inode),
1333					data_reserved,
1334					round_down(pos, fs_info->sectorsize),
1335					release_bytes, true);
1336		}
1337	}
1338
1339	extent_changeset_free(data_reserved);
1340	if (num_written > 0) {
1341		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1342		iocb->ki_pos += num_written;
1343	}
1344out:
1345	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1346	return num_written ? num_written : ret;
1347}
1348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1350			const struct btrfs_ioctl_encoded_io_args *encoded)
1351{
1352	struct file *file = iocb->ki_filp;
1353	struct inode *inode = file_inode(file);
1354	loff_t count;
1355	ssize_t ret;
1356
1357	btrfs_inode_lock(BTRFS_I(inode), 0);
1358	count = encoded->len;
1359	ret = generic_write_checks_count(iocb, &count);
1360	if (ret == 0 && count != encoded->len) {
1361		/*
1362		 * The write got truncated by generic_write_checks_count(). We
1363		 * can't do a partial encoded write.
1364		 */
1365		ret = -EFBIG;
1366	}
1367	if (ret || encoded->len == 0)
1368		goto out;
1369
1370	ret = btrfs_write_check(iocb, encoded->len);
1371	if (ret < 0)
1372		goto out;
1373
1374	ret = btrfs_do_encoded_write(iocb, from, encoded);
1375out:
1376	btrfs_inode_unlock(BTRFS_I(inode), 0);
1377	return ret;
1378}
1379
1380ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1381			    const struct btrfs_ioctl_encoded_io_args *encoded)
1382{
1383	struct file *file = iocb->ki_filp;
1384	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1385	ssize_t num_written, num_sync;
1386
1387	/*
1388	 * If the fs flips readonly due to some impossible error, although we
1389	 * have opened a file as writable, we have to stop this write operation
1390	 * to ensure consistency.
1391	 */
1392	if (BTRFS_FS_ERROR(inode->root->fs_info))
1393		return -EROFS;
1394
1395	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1396		return -EOPNOTSUPP;
1397
1398	if (encoded) {
1399		num_written = btrfs_encoded_write(iocb, from, encoded);
1400		num_sync = encoded->len;
1401	} else if (iocb->ki_flags & IOCB_DIRECT) {
1402		num_written = btrfs_direct_write(iocb, from);
1403		num_sync = num_written;
1404	} else {
1405		num_written = btrfs_buffered_write(iocb, from);
1406		num_sync = num_written;
1407	}
1408
1409	btrfs_set_inode_last_sub_trans(inode);
1410
1411	if (num_sync > 0) {
1412		num_sync = generic_write_sync(iocb, num_sync);
1413		if (num_sync < 0)
1414			num_written = num_sync;
1415	}
1416
1417	return num_written;
1418}
1419
1420static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1421{
1422	return btrfs_do_write_iter(iocb, from, NULL);
1423}
1424
1425int btrfs_release_file(struct inode *inode, struct file *filp)
1426{
1427	struct btrfs_file_private *private = filp->private_data;
1428
1429	if (private) {
1430		kfree(private->filldir_buf);
1431		free_extent_state(private->llseek_cached_state);
1432		kfree(private);
1433		filp->private_data = NULL;
1434	}
1435
1436	/*
1437	 * Set by setattr when we are about to truncate a file from a non-zero
1438	 * size to a zero size.  This tries to flush down new bytes that may
1439	 * have been written if the application were using truncate to replace
1440	 * a file in place.
1441	 */
1442	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1443			       &BTRFS_I(inode)->runtime_flags))
1444			filemap_flush(inode->i_mapping);
1445	return 0;
1446}
1447
1448static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1449{
1450	int ret;
1451	struct blk_plug plug;
1452
1453	/*
1454	 * This is only called in fsync, which would do synchronous writes, so
1455	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1456	 * multiple disks using raid profile, a large IO can be split to
1457	 * several segments of stripe length (currently 64K).
1458	 */
1459	blk_start_plug(&plug);
1460	ret = btrfs_fdatawrite_range(inode, start, end);
1461	blk_finish_plug(&plug);
1462
1463	return ret;
1464}
1465
1466static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1467{
1468	struct btrfs_inode *inode = ctx->inode;
1469	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470
1471	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1472	    list_empty(&ctx->ordered_extents))
1473		return true;
1474
1475	/*
1476	 * If we are doing a fast fsync we can not bail out if the inode's
1477	 * last_trans is <= then the last committed transaction, because we only
1478	 * update the last_trans of the inode during ordered extent completion,
1479	 * and for a fast fsync we don't wait for that, we only wait for the
1480	 * writeback to complete.
1481	 */
1482	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1483	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1484	     list_empty(&ctx->ordered_extents)))
1485		return true;
1486
1487	return false;
1488}
1489
1490/*
1491 * fsync call for both files and directories.  This logs the inode into
1492 * the tree log instead of forcing full commits whenever possible.
1493 *
1494 * It needs to call filemap_fdatawait so that all ordered extent updates are
1495 * in the metadata btree are up to date for copying to the log.
1496 *
1497 * It drops the inode mutex before doing the tree log commit.  This is an
1498 * important optimization for directories because holding the mutex prevents
1499 * new operations on the dir while we write to disk.
1500 */
1501int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1502{
1503	struct dentry *dentry = file_dentry(file);
1504	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1505	struct btrfs_root *root = inode->root;
1506	struct btrfs_fs_info *fs_info = root->fs_info;
1507	struct btrfs_trans_handle *trans;
1508	struct btrfs_log_ctx ctx;
1509	int ret = 0, err;
1510	u64 len;
1511	bool full_sync;
1512	bool skip_ilock = false;
1513
1514	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1515		skip_ilock = true;
1516		current->journal_info = NULL;
1517		btrfs_assert_inode_locked(inode);
1518	}
1519
1520	trace_btrfs_sync_file(file, datasync);
1521
1522	btrfs_init_log_ctx(&ctx, inode);
1523
1524	/*
1525	 * Always set the range to a full range, otherwise we can get into
1526	 * several problems, from missing file extent items to represent holes
1527	 * when not using the NO_HOLES feature, to log tree corruption due to
1528	 * races between hole detection during logging and completion of ordered
1529	 * extents outside the range, to missing checksums due to ordered extents
1530	 * for which we flushed only a subset of their pages.
1531	 */
1532	start = 0;
1533	end = LLONG_MAX;
1534	len = (u64)LLONG_MAX + 1;
1535
1536	/*
1537	 * We write the dirty pages in the range and wait until they complete
1538	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1539	 * multi-task, and make the performance up.  See
1540	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1541	 */
1542	ret = start_ordered_ops(inode, start, end);
1543	if (ret)
1544		goto out;
1545
1546	if (skip_ilock)
1547		down_write(&inode->i_mmap_lock);
1548	else
1549		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1550
1551	atomic_inc(&root->log_batch);
1552
1553	/*
1554	 * Before we acquired the inode's lock and the mmap lock, someone may
1555	 * have dirtied more pages in the target range. We need to make sure
1556	 * that writeback for any such pages does not start while we are logging
1557	 * the inode, because if it does, any of the following might happen when
1558	 * we are not doing a full inode sync:
1559	 *
1560	 * 1) We log an extent after its writeback finishes but before its
1561	 *    checksums are added to the csum tree, leading to -EIO errors
1562	 *    when attempting to read the extent after a log replay.
1563	 *
1564	 * 2) We can end up logging an extent before its writeback finishes.
1565	 *    Therefore after the log replay we will have a file extent item
1566	 *    pointing to an unwritten extent (and no data checksums as well).
1567	 *
1568	 * So trigger writeback for any eventual new dirty pages and then we
1569	 * wait for all ordered extents to complete below.
1570	 */
1571	ret = start_ordered_ops(inode, start, end);
1572	if (ret) {
1573		if (skip_ilock)
1574			up_write(&inode->i_mmap_lock);
1575		else
1576			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1577		goto out;
1578	}
1579
1580	/*
1581	 * Always check for the full sync flag while holding the inode's lock,
1582	 * to avoid races with other tasks. The flag must be either set all the
1583	 * time during logging or always off all the time while logging.
1584	 * We check the flag here after starting delalloc above, because when
1585	 * running delalloc the full sync flag may be set if we need to drop
1586	 * extra extent map ranges due to temporary memory allocation failures.
1587	 */
1588	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 
1589
1590	/*
1591	 * We have to do this here to avoid the priority inversion of waiting on
1592	 * IO of a lower priority task while holding a transaction open.
1593	 *
1594	 * For a full fsync we wait for the ordered extents to complete while
1595	 * for a fast fsync we wait just for writeback to complete, and then
1596	 * attach the ordered extents to the transaction so that a transaction
1597	 * commit waits for their completion, to avoid data loss if we fsync,
1598	 * the current transaction commits before the ordered extents complete
1599	 * and a power failure happens right after that.
1600	 *
1601	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1602	 * logical address recorded in the ordered extent may change. We need
1603	 * to wait for the IO to stabilize the logical address.
1604	 */
1605	if (full_sync || btrfs_is_zoned(fs_info)) {
1606		ret = btrfs_wait_ordered_range(inode, start, len);
1607		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1608	} else {
1609		/*
1610		 * Get our ordered extents as soon as possible to avoid doing
1611		 * checksum lookups in the csum tree, and use instead the
1612		 * checksums attached to the ordered extents.
1613		 */
1614		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1615		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1616		if (ret)
1617			goto out_release_extents;
1618
1619		/*
1620		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1621		 * starting and waiting for writeback, because for buffered IO
1622		 * it may have been set during the end IO callback
1623		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1624		 * case an error happened and we need to wait for ordered
1625		 * extents to complete so that any extent maps that point to
1626		 * unwritten locations are dropped and we don't log them.
1627		 */
1628		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1629			ret = btrfs_wait_ordered_range(inode, start, len);
1630	}
1631
1632	if (ret)
1633		goto out_release_extents;
1634
1635	atomic_inc(&root->log_batch);
1636
1637	if (skip_inode_logging(&ctx)) {
1638		/*
1639		 * We've had everything committed since the last time we were
1640		 * modified so clear this flag in case it was set for whatever
1641		 * reason, it's no longer relevant.
1642		 */
1643		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 
1644		/*
1645		 * An ordered extent might have started before and completed
1646		 * already with io errors, in which case the inode was not
1647		 * updated and we end up here. So check the inode's mapping
1648		 * for any errors that might have happened since we last
1649		 * checked called fsync.
1650		 */
1651		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1652		goto out_release_extents;
1653	}
1654
1655	btrfs_init_log_ctx_scratch_eb(&ctx);
1656
1657	/*
1658	 * We use start here because we will need to wait on the IO to complete
1659	 * in btrfs_sync_log, which could require joining a transaction (for
1660	 * example checking cross references in the nocow path).  If we use join
1661	 * here we could get into a situation where we're waiting on IO to
1662	 * happen that is blocked on a transaction trying to commit.  With start
1663	 * we inc the extwriter counter, so we wait for all extwriters to exit
1664	 * before we start blocking joiners.  This comment is to keep somebody
1665	 * from thinking they are super smart and changing this to
1666	 * btrfs_join_transaction *cough*Josef*cough*.
1667	 */
1668	trans = btrfs_start_transaction(root, 0);
1669	if (IS_ERR(trans)) {
1670		ret = PTR_ERR(trans);
1671		goto out_release_extents;
1672	}
1673	trans->in_fsync = true;
1674
1675	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1676	/*
1677	 * Scratch eb no longer needed, release before syncing log or commit
1678	 * transaction, to avoid holding unnecessary memory during such long
1679	 * operations.
1680	 */
1681	if (ctx.scratch_eb) {
1682		free_extent_buffer(ctx.scratch_eb);
1683		ctx.scratch_eb = NULL;
1684	}
1685	btrfs_release_log_ctx_extents(&ctx);
1686	if (ret < 0) {
1687		/* Fallthrough and commit/free transaction. */
1688		ret = BTRFS_LOG_FORCE_COMMIT;
1689	}
1690
1691	/* we've logged all the items and now have a consistent
1692	 * version of the file in the log.  It is possible that
1693	 * someone will come in and modify the file, but that's
1694	 * fine because the log is consistent on disk, and we
1695	 * have references to all of the file's extents
1696	 *
1697	 * It is possible that someone will come in and log the
1698	 * file again, but that will end up using the synchronization
1699	 * inside btrfs_sync_log to keep things safe.
1700	 */
1701	if (skip_ilock)
1702		up_write(&inode->i_mmap_lock);
1703	else
1704		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1705
1706	if (ret == BTRFS_NO_LOG_SYNC) {
1707		ret = btrfs_end_transaction(trans);
1708		goto out;
1709	}
1710
1711	/* We successfully logged the inode, attempt to sync the log. */
1712	if (!ret) {
1713		ret = btrfs_sync_log(trans, root, &ctx);
1714		if (!ret) {
1715			ret = btrfs_end_transaction(trans);
1716			goto out;
1717		}
1718	}
1719
1720	/*
1721	 * At this point we need to commit the transaction because we had
1722	 * btrfs_need_log_full_commit() or some other error.
1723	 *
1724	 * If we didn't do a full sync we have to stop the trans handle, wait on
1725	 * the ordered extents, start it again and commit the transaction.  If
1726	 * we attempt to wait on the ordered extents here we could deadlock with
1727	 * something like fallocate() that is holding the extent lock trying to
1728	 * start a transaction while some other thread is trying to commit the
1729	 * transaction while we (fsync) are currently holding the transaction
1730	 * open.
1731	 */
1732	if (!full_sync) {
1733		ret = btrfs_end_transaction(trans);
1734		if (ret)
1735			goto out;
1736		ret = btrfs_wait_ordered_range(inode, start, len);
1737		if (ret)
1738			goto out;
1739
1740		/*
1741		 * This is safe to use here because we're only interested in
1742		 * making sure the transaction that had the ordered extents is
1743		 * committed.  We aren't waiting on anything past this point,
1744		 * we're purely getting the transaction and committing it.
1745		 */
1746		trans = btrfs_attach_transaction_barrier(root);
1747		if (IS_ERR(trans)) {
1748			ret = PTR_ERR(trans);
1749
1750			/*
1751			 * We committed the transaction and there's no currently
1752			 * running transaction, this means everything we care
1753			 * about made it to disk and we are done.
1754			 */
1755			if (ret == -ENOENT)
1756				ret = 0;
1757			goto out;
1758		}
1759	}
1760
1761	ret = btrfs_commit_transaction(trans);
1762out:
1763	free_extent_buffer(ctx.scratch_eb);
1764	ASSERT(list_empty(&ctx.list));
1765	ASSERT(list_empty(&ctx.conflict_inodes));
1766	err = file_check_and_advance_wb_err(file);
1767	if (!ret)
1768		ret = err;
1769	return ret > 0 ? -EIO : ret;
1770
1771out_release_extents:
1772	btrfs_release_log_ctx_extents(&ctx);
1773	if (skip_ilock)
1774		up_write(&inode->i_mmap_lock);
1775	else
1776		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1777	goto out;
1778}
1779
1780/*
1781 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1782 * called from a page fault handler when a page is first dirtied. Hence we must
1783 * be careful to check for EOF conditions here. We set the page up correctly
1784 * for a written page which means we get ENOSPC checking when writing into
1785 * holes and correct delalloc and unwritten extent mapping on filesystems that
1786 * support these features.
1787 *
1788 * We are not allowed to take the i_mutex here so we have to play games to
1789 * protect against truncate races as the page could now be beyond EOF.  Because
1790 * truncate_setsize() writes the inode size before removing pages, once we have
1791 * the page lock we can determine safely if the page is beyond EOF. If it is not
1792 * beyond EOF, then the page is guaranteed safe against truncation until we
1793 * unlock the page.
1794 */
1795static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1796{
1797	struct page *page = vmf->page;
1798	struct folio *folio = page_folio(page);
1799	struct inode *inode = file_inode(vmf->vma->vm_file);
1800	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1801	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1802	struct btrfs_ordered_extent *ordered;
1803	struct extent_state *cached_state = NULL;
1804	struct extent_changeset *data_reserved = NULL;
1805	unsigned long zero_start;
1806	loff_t size;
1807	vm_fault_t ret;
1808	int ret2;
1809	int reserved = 0;
1810	u64 reserved_space;
1811	u64 page_start;
1812	u64 page_end;
1813	u64 end;
1814
1815	ASSERT(folio_order(folio) == 0);
1816
1817	reserved_space = PAGE_SIZE;
1818
1819	sb_start_pagefault(inode->i_sb);
1820	page_start = folio_pos(folio);
1821	page_end = page_start + folio_size(folio) - 1;
1822	end = page_end;
1823
1824	/*
1825	 * Reserving delalloc space after obtaining the page lock can lead to
1826	 * deadlock. For example, if a dirty page is locked by this function
1827	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1828	 * dirty page write out, then the btrfs_writepages() function could
1829	 * end up waiting indefinitely to get a lock on the page currently
1830	 * being processed by btrfs_page_mkwrite() function.
1831	 */
1832	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1833					    page_start, reserved_space);
1834	if (!ret2) {
1835		ret2 = file_update_time(vmf->vma->vm_file);
1836		reserved = 1;
1837	}
1838	if (ret2) {
1839		ret = vmf_error(ret2);
1840		if (reserved)
1841			goto out;
1842		goto out_noreserve;
1843	}
1844
1845	/* Make the VM retry the fault. */
1846	ret = VM_FAULT_NOPAGE;
1847again:
1848	down_read(&BTRFS_I(inode)->i_mmap_lock);
1849	folio_lock(folio);
1850	size = i_size_read(inode);
1851
1852	if ((folio->mapping != inode->i_mapping) ||
1853	    (page_start >= size)) {
1854		/* Page got truncated out from underneath us. */
1855		goto out_unlock;
1856	}
1857	folio_wait_writeback(folio);
1858
1859	lock_extent(io_tree, page_start, page_end, &cached_state);
1860	ret2 = set_folio_extent_mapped(folio);
1861	if (ret2 < 0) {
1862		ret = vmf_error(ret2);
1863		unlock_extent(io_tree, page_start, page_end, &cached_state);
1864		goto out_unlock;
1865	}
1866
1867	/*
1868	 * We can't set the delalloc bits if there are pending ordered
1869	 * extents.  Drop our locks and wait for them to finish.
1870	 */
1871	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1872	if (ordered) {
1873		unlock_extent(io_tree, page_start, page_end, &cached_state);
1874		folio_unlock(folio);
1875		up_read(&BTRFS_I(inode)->i_mmap_lock);
1876		btrfs_start_ordered_extent(ordered);
1877		btrfs_put_ordered_extent(ordered);
1878		goto again;
1879	}
1880
1881	if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1882		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1883		if (reserved_space < PAGE_SIZE) {
1884			end = page_start + reserved_space - 1;
1885			btrfs_delalloc_release_space(BTRFS_I(inode),
1886					data_reserved, page_start,
1887					PAGE_SIZE - reserved_space, true);
1888		}
1889	}
1890
1891	/*
1892	 * page_mkwrite gets called when the page is firstly dirtied after it's
1893	 * faulted in, but write(2) could also dirty a page and set delalloc
1894	 * bits, thus in this case for space account reason, we still need to
1895	 * clear any delalloc bits within this page range since we have to
1896	 * reserve data&meta space before lock_page() (see above comments).
1897	 */
1898	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1899			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1900			  EXTENT_DEFRAG, &cached_state);
1901
1902	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1903					&cached_state);
1904	if (ret2) {
1905		unlock_extent(io_tree, page_start, page_end, &cached_state);
1906		ret = VM_FAULT_SIGBUS;
1907		goto out_unlock;
1908	}
1909
1910	/* Page is wholly or partially inside EOF. */
1911	if (page_start + folio_size(folio) > size)
1912		zero_start = offset_in_folio(folio, size);
1913	else
1914		zero_start = PAGE_SIZE;
1915
1916	if (zero_start != PAGE_SIZE)
1917		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1918
1919	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
1920	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1921	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1922
1923	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1924
1925	unlock_extent(io_tree, page_start, page_end, &cached_state);
1926	up_read(&BTRFS_I(inode)->i_mmap_lock);
1927
1928	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1929	sb_end_pagefault(inode->i_sb);
1930	extent_changeset_free(data_reserved);
1931	return VM_FAULT_LOCKED;
1932
1933out_unlock:
1934	folio_unlock(folio);
1935	up_read(&BTRFS_I(inode)->i_mmap_lock);
1936out:
1937	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1938	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1939				     reserved_space, (ret != 0));
1940out_noreserve:
1941	sb_end_pagefault(inode->i_sb);
1942	extent_changeset_free(data_reserved);
1943	return ret;
1944}
1945
1946static const struct vm_operations_struct btrfs_file_vm_ops = {
1947	.fault		= filemap_fault,
1948	.map_pages	= filemap_map_pages,
1949	.page_mkwrite	= btrfs_page_mkwrite,
1950};
1951
1952static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1953{
1954	struct address_space *mapping = filp->f_mapping;
1955
1956	if (!mapping->a_ops->read_folio)
1957		return -ENOEXEC;
1958
1959	file_accessed(filp);
1960	vma->vm_ops = &btrfs_file_vm_ops;
1961
1962	return 0;
1963}
1964
1965static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1966			  int slot, u64 start, u64 end)
1967{
1968	struct btrfs_file_extent_item *fi;
1969	struct btrfs_key key;
1970
1971	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1972		return 0;
1973
1974	btrfs_item_key_to_cpu(leaf, &key, slot);
1975	if (key.objectid != btrfs_ino(inode) ||
1976	    key.type != BTRFS_EXTENT_DATA_KEY)
1977		return 0;
1978
1979	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1980
1981	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1982		return 0;
1983
1984	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1985		return 0;
1986
1987	if (key.offset == end)
1988		return 1;
1989	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1990		return 1;
1991	return 0;
1992}
1993
1994static int fill_holes(struct btrfs_trans_handle *trans,
1995		struct btrfs_inode *inode,
1996		struct btrfs_path *path, u64 offset, u64 end)
1997{
1998	struct btrfs_fs_info *fs_info = trans->fs_info;
1999	struct btrfs_root *root = inode->root;
2000	struct extent_buffer *leaf;
2001	struct btrfs_file_extent_item *fi;
2002	struct extent_map *hole_em;
2003	struct btrfs_key key;
2004	int ret;
2005
2006	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2007		goto out;
2008
2009	key.objectid = btrfs_ino(inode);
2010	key.type = BTRFS_EXTENT_DATA_KEY;
2011	key.offset = offset;
2012
2013	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2014	if (ret <= 0) {
2015		/*
2016		 * We should have dropped this offset, so if we find it then
2017		 * something has gone horribly wrong.
2018		 */
2019		if (ret == 0)
2020			ret = -EINVAL;
2021		return ret;
2022	}
2023
2024	leaf = path->nodes[0];
2025	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2026		u64 num_bytes;
2027
2028		path->slots[0]--;
2029		fi = btrfs_item_ptr(leaf, path->slots[0],
2030				    struct btrfs_file_extent_item);
2031		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2032			end - offset;
2033		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2034		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2035		btrfs_set_file_extent_offset(leaf, fi, 0);
2036		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2037		btrfs_mark_buffer_dirty(trans, leaf);
2038		goto out;
2039	}
2040
2041	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2042		u64 num_bytes;
2043
2044		key.offset = offset;
2045		btrfs_set_item_key_safe(trans, path, &key);
2046		fi = btrfs_item_ptr(leaf, path->slots[0],
2047				    struct btrfs_file_extent_item);
2048		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2049			offset;
2050		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2051		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2052		btrfs_set_file_extent_offset(leaf, fi, 0);
2053		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2054		btrfs_mark_buffer_dirty(trans, leaf);
2055		goto out;
2056	}
2057	btrfs_release_path(path);
2058
2059	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2060				       end - offset);
2061	if (ret)
2062		return ret;
2063
2064out:
2065	btrfs_release_path(path);
2066
2067	hole_em = alloc_extent_map();
2068	if (!hole_em) {
2069		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2070		btrfs_set_inode_full_sync(inode);
2071	} else {
2072		hole_em->start = offset;
2073		hole_em->len = end - offset;
2074		hole_em->ram_bytes = hole_em->len;
 
2075
2076		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2077		hole_em->disk_num_bytes = 0;
 
2078		hole_em->generation = trans->transid;
2079
2080		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2081		free_extent_map(hole_em);
2082		if (ret)
2083			btrfs_set_inode_full_sync(inode);
2084	}
2085
2086	return 0;
2087}
2088
2089/*
2090 * Find a hole extent on given inode and change start/len to the end of hole
2091 * extent.(hole/vacuum extent whose em->start <= start &&
2092 *	   em->start + em->len > start)
2093 * When a hole extent is found, return 1 and modify start/len.
2094 */
2095static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2096{
2097	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2098	struct extent_map *em;
2099	int ret = 0;
2100
2101	em = btrfs_get_extent(inode, NULL,
2102			      round_down(*start, fs_info->sectorsize),
2103			      round_up(*len, fs_info->sectorsize));
2104	if (IS_ERR(em))
2105		return PTR_ERR(em);
2106
2107	/* Hole or vacuum extent(only exists in no-hole mode) */
2108	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2109		ret = 1;
2110		*len = em->start + em->len > *start + *len ?
2111		       0 : *start + *len - em->start - em->len;
2112		*start = em->start + em->len;
2113	}
2114	free_extent_map(em);
2115	return ret;
2116}
2117
2118static void btrfs_punch_hole_lock_range(struct inode *inode,
2119					const u64 lockstart,
2120					const u64 lockend,
2121					struct extent_state **cached_state)
2122{
2123	/*
2124	 * For subpage case, if the range is not at page boundary, we could
2125	 * have pages at the leading/tailing part of the range.
2126	 * This could lead to dead loop since filemap_range_has_page()
2127	 * will always return true.
2128	 * So here we need to do extra page alignment for
2129	 * filemap_range_has_page().
2130	 */
2131	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2132	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2133
2134	while (1) {
2135		truncate_pagecache_range(inode, lockstart, lockend);
2136
2137		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2138			    cached_state);
2139		/*
2140		 * We can't have ordered extents in the range, nor dirty/writeback
2141		 * pages, because we have locked the inode's VFS lock in exclusive
2142		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2143		 * we have flushed all delalloc in the range and we have waited
2144		 * for any ordered extents in the range to complete.
2145		 * We can race with anyone reading pages from this range, so after
2146		 * locking the range check if we have pages in the range, and if
2147		 * we do, unlock the range and retry.
2148		 */
2149		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2150					    page_lockend))
2151			break;
2152
2153		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2154			      cached_state);
2155	}
2156
2157	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2158}
2159
2160static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2161				     struct btrfs_inode *inode,
2162				     struct btrfs_path *path,
2163				     struct btrfs_replace_extent_info *extent_info,
2164				     const u64 replace_len,
2165				     const u64 bytes_to_drop)
2166{
2167	struct btrfs_fs_info *fs_info = trans->fs_info;
2168	struct btrfs_root *root = inode->root;
2169	struct btrfs_file_extent_item *extent;
2170	struct extent_buffer *leaf;
2171	struct btrfs_key key;
2172	int slot;
 
2173	int ret;
2174
2175	if (replace_len == 0)
2176		return 0;
2177
2178	if (extent_info->disk_offset == 0 &&
2179	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2180		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2181		return 0;
2182	}
2183
2184	key.objectid = btrfs_ino(inode);
2185	key.type = BTRFS_EXTENT_DATA_KEY;
2186	key.offset = extent_info->file_offset;
2187	ret = btrfs_insert_empty_item(trans, root, path, &key,
2188				      sizeof(struct btrfs_file_extent_item));
2189	if (ret)
2190		return ret;
2191	leaf = path->nodes[0];
2192	slot = path->slots[0];
2193	write_extent_buffer(leaf, extent_info->extent_buf,
2194			    btrfs_item_ptr_offset(leaf, slot),
2195			    sizeof(struct btrfs_file_extent_item));
2196	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2197	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2198	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2199	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2200	if (extent_info->is_new_extent)
2201		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2202	btrfs_mark_buffer_dirty(trans, leaf);
2203	btrfs_release_path(path);
2204
2205	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2206						replace_len);
2207	if (ret)
2208		return ret;
2209
2210	/* If it's a hole, nothing more needs to be done. */
2211	if (extent_info->disk_offset == 0) {
2212		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2213		return 0;
2214	}
2215
2216	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2217
2218	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2219		key.objectid = extent_info->disk_offset;
2220		key.type = BTRFS_EXTENT_ITEM_KEY;
2221		key.offset = extent_info->disk_len;
2222		ret = btrfs_alloc_reserved_file_extent(trans, root,
2223						       btrfs_ino(inode),
2224						       extent_info->file_offset,
2225						       extent_info->qgroup_reserved,
2226						       &key);
2227	} else {
2228		struct btrfs_ref ref = {
2229			.action = BTRFS_ADD_DELAYED_REF,
2230			.bytenr = extent_info->disk_offset,
2231			.num_bytes = extent_info->disk_len,
2232			.owning_root = btrfs_root_id(root),
2233			.ref_root = btrfs_root_id(root),
2234		};
2235		u64 ref_offset;
2236
 
 
 
 
2237		ref_offset = extent_info->file_offset - extent_info->data_offset;
2238		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
 
2239		ret = btrfs_inc_extent_ref(trans, &ref);
2240	}
2241
2242	extent_info->insertions++;
2243
2244	return ret;
2245}
2246
2247/*
2248 * The respective range must have been previously locked, as well as the inode.
2249 * The end offset is inclusive (last byte of the range).
2250 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2251 * the file range with an extent.
2252 * When not punching a hole, we don't want to end up in a state where we dropped
2253 * extents without inserting a new one, so we must abort the transaction to avoid
2254 * a corruption.
2255 */
2256int btrfs_replace_file_extents(struct btrfs_inode *inode,
2257			       struct btrfs_path *path, const u64 start,
2258			       const u64 end,
2259			       struct btrfs_replace_extent_info *extent_info,
2260			       struct btrfs_trans_handle **trans_out)
2261{
2262	struct btrfs_drop_extents_args drop_args = { 0 };
2263	struct btrfs_root *root = inode->root;
2264	struct btrfs_fs_info *fs_info = root->fs_info;
2265	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2266	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2267	struct btrfs_trans_handle *trans = NULL;
2268	struct btrfs_block_rsv *rsv;
2269	unsigned int rsv_count;
2270	u64 cur_offset;
2271	u64 len = end - start;
2272	int ret = 0;
2273
2274	if (end <= start)
2275		return -EINVAL;
2276
2277	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2278	if (!rsv) {
2279		ret = -ENOMEM;
2280		goto out;
2281	}
2282	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2283	rsv->failfast = true;
2284
2285	/*
2286	 * 1 - update the inode
2287	 * 1 - removing the extents in the range
2288	 * 1 - adding the hole extent if no_holes isn't set or if we are
2289	 *     replacing the range with a new extent
2290	 */
2291	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2292		rsv_count = 3;
2293	else
2294		rsv_count = 2;
2295
2296	trans = btrfs_start_transaction(root, rsv_count);
2297	if (IS_ERR(trans)) {
2298		ret = PTR_ERR(trans);
2299		trans = NULL;
2300		goto out_free;
2301	}
2302
2303	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2304				      min_size, false);
2305	if (WARN_ON(ret))
2306		goto out_trans;
2307	trans->block_rsv = rsv;
2308
2309	cur_offset = start;
2310	drop_args.path = path;
2311	drop_args.end = end + 1;
2312	drop_args.drop_cache = true;
2313	while (cur_offset < end) {
2314		drop_args.start = cur_offset;
2315		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2316		/* If we are punching a hole decrement the inode's byte count */
2317		if (!extent_info)
2318			btrfs_update_inode_bytes(inode, 0,
2319						 drop_args.bytes_found);
2320		if (ret != -ENOSPC) {
2321			/*
2322			 * The only time we don't want to abort is if we are
2323			 * attempting to clone a partial inline extent, in which
2324			 * case we'll get EOPNOTSUPP.  However if we aren't
2325			 * clone we need to abort no matter what, because if we
2326			 * got EOPNOTSUPP via prealloc then we messed up and
2327			 * need to abort.
2328			 */
2329			if (ret &&
2330			    (ret != -EOPNOTSUPP ||
2331			     (extent_info && extent_info->is_new_extent)))
2332				btrfs_abort_transaction(trans, ret);
2333			break;
2334		}
2335
2336		trans->block_rsv = &fs_info->trans_block_rsv;
2337
2338		if (!extent_info && cur_offset < drop_args.drop_end &&
2339		    cur_offset < ino_size) {
2340			ret = fill_holes(trans, inode, path, cur_offset,
2341					 drop_args.drop_end);
2342			if (ret) {
2343				/*
2344				 * If we failed then we didn't insert our hole
2345				 * entries for the area we dropped, so now the
2346				 * fs is corrupted, so we must abort the
2347				 * transaction.
2348				 */
2349				btrfs_abort_transaction(trans, ret);
2350				break;
2351			}
2352		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2353			/*
2354			 * We are past the i_size here, but since we didn't
2355			 * insert holes we need to clear the mapped area so we
2356			 * know to not set disk_i_size in this area until a new
2357			 * file extent is inserted here.
2358			 */
2359			ret = btrfs_inode_clear_file_extent_range(inode,
2360					cur_offset,
2361					drop_args.drop_end - cur_offset);
2362			if (ret) {
2363				/*
2364				 * We couldn't clear our area, so we could
2365				 * presumably adjust up and corrupt the fs, so
2366				 * we need to abort.
2367				 */
2368				btrfs_abort_transaction(trans, ret);
2369				break;
2370			}
2371		}
2372
2373		if (extent_info &&
2374		    drop_args.drop_end > extent_info->file_offset) {
2375			u64 replace_len = drop_args.drop_end -
2376					  extent_info->file_offset;
2377
2378			ret = btrfs_insert_replace_extent(trans, inode,	path,
2379					extent_info, replace_len,
2380					drop_args.bytes_found);
2381			if (ret) {
2382				btrfs_abort_transaction(trans, ret);
2383				break;
2384			}
2385			extent_info->data_len -= replace_len;
2386			extent_info->data_offset += replace_len;
2387			extent_info->file_offset += replace_len;
2388		}
2389
2390		/*
2391		 * We are releasing our handle on the transaction, balance the
2392		 * dirty pages of the btree inode and flush delayed items, and
2393		 * then get a new transaction handle, which may now point to a
2394		 * new transaction in case someone else may have committed the
2395		 * transaction we used to replace/drop file extent items. So
2396		 * bump the inode's iversion and update mtime and ctime except
2397		 * if we are called from a dedupe context. This is because a
2398		 * power failure/crash may happen after the transaction is
2399		 * committed and before we finish replacing/dropping all the
2400		 * file extent items we need.
2401		 */
2402		inode_inc_iversion(&inode->vfs_inode);
2403
2404		if (!extent_info || extent_info->update_times)
2405			inode_set_mtime_to_ts(&inode->vfs_inode,
2406					      inode_set_ctime_current(&inode->vfs_inode));
2407
2408		ret = btrfs_update_inode(trans, inode);
2409		if (ret)
2410			break;
2411
2412		btrfs_end_transaction(trans);
2413		btrfs_btree_balance_dirty(fs_info);
2414
2415		trans = btrfs_start_transaction(root, rsv_count);
2416		if (IS_ERR(trans)) {
2417			ret = PTR_ERR(trans);
2418			trans = NULL;
2419			break;
2420		}
2421
2422		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2423					      rsv, min_size, false);
2424		if (WARN_ON(ret))
2425			break;
2426		trans->block_rsv = rsv;
2427
2428		cur_offset = drop_args.drop_end;
2429		len = end - cur_offset;
2430		if (!extent_info && len) {
2431			ret = find_first_non_hole(inode, &cur_offset, &len);
2432			if (unlikely(ret < 0))
2433				break;
2434			if (ret && !len) {
2435				ret = 0;
2436				break;
2437			}
2438		}
2439	}
2440
2441	/*
2442	 * If we were cloning, force the next fsync to be a full one since we
2443	 * we replaced (or just dropped in the case of cloning holes when
2444	 * NO_HOLES is enabled) file extent items and did not setup new extent
2445	 * maps for the replacement extents (or holes).
2446	 */
2447	if (extent_info && !extent_info->is_new_extent)
2448		btrfs_set_inode_full_sync(inode);
2449
2450	if (ret)
2451		goto out_trans;
2452
2453	trans->block_rsv = &fs_info->trans_block_rsv;
2454	/*
2455	 * If we are using the NO_HOLES feature we might have had already an
2456	 * hole that overlaps a part of the region [lockstart, lockend] and
2457	 * ends at (or beyond) lockend. Since we have no file extent items to
2458	 * represent holes, drop_end can be less than lockend and so we must
2459	 * make sure we have an extent map representing the existing hole (the
2460	 * call to __btrfs_drop_extents() might have dropped the existing extent
2461	 * map representing the existing hole), otherwise the fast fsync path
2462	 * will not record the existence of the hole region
2463	 * [existing_hole_start, lockend].
2464	 */
2465	if (drop_args.drop_end <= end)
2466		drop_args.drop_end = end + 1;
2467	/*
2468	 * Don't insert file hole extent item if it's for a range beyond eof
2469	 * (because it's useless) or if it represents a 0 bytes range (when
2470	 * cur_offset == drop_end).
2471	 */
2472	if (!extent_info && cur_offset < ino_size &&
2473	    cur_offset < drop_args.drop_end) {
2474		ret = fill_holes(trans, inode, path, cur_offset,
2475				 drop_args.drop_end);
2476		if (ret) {
2477			/* Same comment as above. */
2478			btrfs_abort_transaction(trans, ret);
2479			goto out_trans;
2480		}
2481	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2482		/* See the comment in the loop above for the reasoning here. */
2483		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2484					drop_args.drop_end - cur_offset);
2485		if (ret) {
2486			btrfs_abort_transaction(trans, ret);
2487			goto out_trans;
2488		}
2489
2490	}
2491	if (extent_info) {
2492		ret = btrfs_insert_replace_extent(trans, inode, path,
2493				extent_info, extent_info->data_len,
2494				drop_args.bytes_found);
2495		if (ret) {
2496			btrfs_abort_transaction(trans, ret);
2497			goto out_trans;
2498		}
2499	}
2500
2501out_trans:
2502	if (!trans)
2503		goto out_free;
2504
2505	trans->block_rsv = &fs_info->trans_block_rsv;
2506	if (ret)
2507		btrfs_end_transaction(trans);
2508	else
2509		*trans_out = trans;
2510out_free:
2511	btrfs_free_block_rsv(fs_info, rsv);
2512out:
2513	return ret;
2514}
2515
2516static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2517{
2518	struct inode *inode = file_inode(file);
2519	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2520	struct btrfs_root *root = BTRFS_I(inode)->root;
2521	struct extent_state *cached_state = NULL;
2522	struct btrfs_path *path;
2523	struct btrfs_trans_handle *trans = NULL;
2524	u64 lockstart;
2525	u64 lockend;
2526	u64 tail_start;
2527	u64 tail_len;
2528	u64 orig_start = offset;
2529	int ret = 0;
2530	bool same_block;
2531	u64 ino_size;
2532	bool truncated_block = false;
2533	bool updated_inode = false;
2534
2535	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2536
2537	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2538	if (ret)
2539		goto out_only_mutex;
2540
2541	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2542	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2543	if (ret < 0)
2544		goto out_only_mutex;
2545	if (ret && !len) {
2546		/* Already in a large hole */
2547		ret = 0;
2548		goto out_only_mutex;
2549	}
2550
2551	ret = file_modified(file);
2552	if (ret)
2553		goto out_only_mutex;
2554
2555	lockstart = round_up(offset, fs_info->sectorsize);
2556	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2557	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2558		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2559	/*
2560	 * We needn't truncate any block which is beyond the end of the file
2561	 * because we are sure there is no data there.
2562	 */
2563	/*
2564	 * Only do this if we are in the same block and we aren't doing the
2565	 * entire block.
2566	 */
2567	if (same_block && len < fs_info->sectorsize) {
2568		if (offset < ino_size) {
2569			truncated_block = true;
2570			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2571						   0);
2572		} else {
2573			ret = 0;
2574		}
2575		goto out_only_mutex;
2576	}
2577
2578	/* zero back part of the first block */
2579	if (offset < ino_size) {
2580		truncated_block = true;
2581		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2582		if (ret) {
2583			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2584			return ret;
2585		}
2586	}
2587
2588	/* Check the aligned pages after the first unaligned page,
2589	 * if offset != orig_start, which means the first unaligned page
2590	 * including several following pages are already in holes,
2591	 * the extra check can be skipped */
2592	if (offset == orig_start) {
2593		/* after truncate page, check hole again */
2594		len = offset + len - lockstart;
2595		offset = lockstart;
2596		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2597		if (ret < 0)
2598			goto out_only_mutex;
2599		if (ret && !len) {
2600			ret = 0;
2601			goto out_only_mutex;
2602		}
2603		lockstart = offset;
2604	}
2605
2606	/* Check the tail unaligned part is in a hole */
2607	tail_start = lockend + 1;
2608	tail_len = offset + len - tail_start;
2609	if (tail_len) {
2610		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2611		if (unlikely(ret < 0))
2612			goto out_only_mutex;
2613		if (!ret) {
2614			/* zero the front end of the last page */
2615			if (tail_start + tail_len < ino_size) {
2616				truncated_block = true;
2617				ret = btrfs_truncate_block(BTRFS_I(inode),
2618							tail_start + tail_len,
2619							0, 1);
2620				if (ret)
2621					goto out_only_mutex;
2622			}
2623		}
2624	}
2625
2626	if (lockend < lockstart) {
2627		ret = 0;
2628		goto out_only_mutex;
2629	}
2630
2631	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2632
2633	path = btrfs_alloc_path();
2634	if (!path) {
2635		ret = -ENOMEM;
2636		goto out;
2637	}
2638
2639	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2640					 lockend, NULL, &trans);
2641	btrfs_free_path(path);
2642	if (ret)
2643		goto out;
2644
2645	ASSERT(trans != NULL);
2646	inode_inc_iversion(inode);
2647	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2648	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2649	updated_inode = true;
2650	btrfs_end_transaction(trans);
2651	btrfs_btree_balance_dirty(fs_info);
2652out:
2653	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2654		      &cached_state);
2655out_only_mutex:
2656	if (!updated_inode && truncated_block && !ret) {
2657		/*
2658		 * If we only end up zeroing part of a page, we still need to
2659		 * update the inode item, so that all the time fields are
2660		 * updated as well as the necessary btrfs inode in memory fields
2661		 * for detecting, at fsync time, if the inode isn't yet in the
2662		 * log tree or it's there but not up to date.
2663		 */
2664		struct timespec64 now = inode_set_ctime_current(inode);
2665
2666		inode_inc_iversion(inode);
2667		inode_set_mtime_to_ts(inode, now);
2668		trans = btrfs_start_transaction(root, 1);
2669		if (IS_ERR(trans)) {
2670			ret = PTR_ERR(trans);
2671		} else {
2672			int ret2;
2673
2674			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2675			ret2 = btrfs_end_transaction(trans);
2676			if (!ret)
2677				ret = ret2;
2678		}
2679	}
2680	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2681	return ret;
2682}
2683
2684/* Helper structure to record which range is already reserved */
2685struct falloc_range {
2686	struct list_head list;
2687	u64 start;
2688	u64 len;
2689};
2690
2691/*
2692 * Helper function to add falloc range
2693 *
2694 * Caller should have locked the larger range of extent containing
2695 * [start, len)
2696 */
2697static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2698{
2699	struct falloc_range *range = NULL;
2700
2701	if (!list_empty(head)) {
2702		/*
2703		 * As fallocate iterates by bytenr order, we only need to check
2704		 * the last range.
2705		 */
2706		range = list_last_entry(head, struct falloc_range, list);
2707		if (range->start + range->len == start) {
2708			range->len += len;
2709			return 0;
2710		}
2711	}
2712
2713	range = kmalloc(sizeof(*range), GFP_KERNEL);
2714	if (!range)
2715		return -ENOMEM;
2716	range->start = start;
2717	range->len = len;
2718	list_add_tail(&range->list, head);
2719	return 0;
2720}
2721
2722static int btrfs_fallocate_update_isize(struct inode *inode,
2723					const u64 end,
2724					const int mode)
2725{
2726	struct btrfs_trans_handle *trans;
2727	struct btrfs_root *root = BTRFS_I(inode)->root;
2728	int ret;
2729	int ret2;
2730
2731	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2732		return 0;
2733
2734	trans = btrfs_start_transaction(root, 1);
2735	if (IS_ERR(trans))
2736		return PTR_ERR(trans);
2737
2738	inode_set_ctime_current(inode);
2739	i_size_write(inode, end);
2740	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2741	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2742	ret2 = btrfs_end_transaction(trans);
2743
2744	return ret ? ret : ret2;
2745}
2746
2747enum {
2748	RANGE_BOUNDARY_WRITTEN_EXTENT,
2749	RANGE_BOUNDARY_PREALLOC_EXTENT,
2750	RANGE_BOUNDARY_HOLE,
2751};
2752
2753static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2754						 u64 offset)
2755{
2756	const u64 sectorsize = inode->root->fs_info->sectorsize;
2757	struct extent_map *em;
2758	int ret;
2759
2760	offset = round_down(offset, sectorsize);
2761	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2762	if (IS_ERR(em))
2763		return PTR_ERR(em);
2764
2765	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2766		ret = RANGE_BOUNDARY_HOLE;
2767	else if (em->flags & EXTENT_FLAG_PREALLOC)
2768		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2769	else
2770		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2771
2772	free_extent_map(em);
2773	return ret;
2774}
2775
2776static int btrfs_zero_range(struct inode *inode,
2777			    loff_t offset,
2778			    loff_t len,
2779			    const int mode)
2780{
2781	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2782	struct extent_map *em;
2783	struct extent_changeset *data_reserved = NULL;
2784	int ret;
2785	u64 alloc_hint = 0;
2786	const u64 sectorsize = fs_info->sectorsize;
2787	u64 alloc_start = round_down(offset, sectorsize);
2788	u64 alloc_end = round_up(offset + len, sectorsize);
2789	u64 bytes_to_reserve = 0;
2790	bool space_reserved = false;
2791
2792	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2793			      alloc_end - alloc_start);
2794	if (IS_ERR(em)) {
2795		ret = PTR_ERR(em);
2796		goto out;
2797	}
2798
2799	/*
2800	 * Avoid hole punching and extent allocation for some cases. More cases
2801	 * could be considered, but these are unlikely common and we keep things
2802	 * as simple as possible for now. Also, intentionally, if the target
2803	 * range contains one or more prealloc extents together with regular
2804	 * extents and holes, we drop all the existing extents and allocate a
2805	 * new prealloc extent, so that we get a larger contiguous disk extent.
2806	 */
2807	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2808		const u64 em_end = em->start + em->len;
2809
2810		if (em_end >= offset + len) {
2811			/*
2812			 * The whole range is already a prealloc extent,
2813			 * do nothing except updating the inode's i_size if
2814			 * needed.
2815			 */
2816			free_extent_map(em);
2817			ret = btrfs_fallocate_update_isize(inode, offset + len,
2818							   mode);
2819			goto out;
2820		}
2821		/*
2822		 * Part of the range is already a prealloc extent, so operate
2823		 * only on the remaining part of the range.
2824		 */
2825		alloc_start = em_end;
2826		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2827		len = offset + len - alloc_start;
2828		offset = alloc_start;
2829		alloc_hint = extent_map_block_start(em) + em->len;
2830	}
2831	free_extent_map(em);
2832
2833	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2834	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2835		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
 
2836		if (IS_ERR(em)) {
2837			ret = PTR_ERR(em);
2838			goto out;
2839		}
2840
2841		if (em->flags & EXTENT_FLAG_PREALLOC) {
2842			free_extent_map(em);
2843			ret = btrfs_fallocate_update_isize(inode, offset + len,
2844							   mode);
2845			goto out;
2846		}
2847		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2848			free_extent_map(em);
2849			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2850						   0);
2851			if (!ret)
2852				ret = btrfs_fallocate_update_isize(inode,
2853								   offset + len,
2854								   mode);
2855			return ret;
2856		}
2857		free_extent_map(em);
2858		alloc_start = round_down(offset, sectorsize);
2859		alloc_end = alloc_start + sectorsize;
2860		goto reserve_space;
2861	}
2862
2863	alloc_start = round_up(offset, sectorsize);
2864	alloc_end = round_down(offset + len, sectorsize);
2865
2866	/*
2867	 * For unaligned ranges, check the pages at the boundaries, they might
2868	 * map to an extent, in which case we need to partially zero them, or
2869	 * they might map to a hole, in which case we need our allocation range
2870	 * to cover them.
2871	 */
2872	if (!IS_ALIGNED(offset, sectorsize)) {
2873		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2874							    offset);
2875		if (ret < 0)
2876			goto out;
2877		if (ret == RANGE_BOUNDARY_HOLE) {
2878			alloc_start = round_down(offset, sectorsize);
2879			ret = 0;
2880		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2881			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2882			if (ret)
2883				goto out;
2884		} else {
2885			ret = 0;
2886		}
2887	}
2888
2889	if (!IS_ALIGNED(offset + len, sectorsize)) {
2890		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2891							    offset + len);
2892		if (ret < 0)
2893			goto out;
2894		if (ret == RANGE_BOUNDARY_HOLE) {
2895			alloc_end = round_up(offset + len, sectorsize);
2896			ret = 0;
2897		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2898			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2899						   0, 1);
2900			if (ret)
2901				goto out;
2902		} else {
2903			ret = 0;
2904		}
2905	}
2906
2907reserve_space:
2908	if (alloc_start < alloc_end) {
2909		struct extent_state *cached_state = NULL;
2910		const u64 lockstart = alloc_start;
2911		const u64 lockend = alloc_end - 1;
2912
2913		bytes_to_reserve = alloc_end - alloc_start;
2914		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2915						      bytes_to_reserve);
2916		if (ret < 0)
2917			goto out;
2918		space_reserved = true;
2919		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920					    &cached_state);
2921		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2922						alloc_start, bytes_to_reserve);
2923		if (ret) {
2924			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2925				      lockend, &cached_state);
2926			goto out;
2927		}
2928		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2929						alloc_end - alloc_start,
2930						fs_info->sectorsize,
2931						offset + len, &alloc_hint);
2932		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2933			      &cached_state);
2934		/* btrfs_prealloc_file_range releases reserved space on error */
2935		if (ret) {
2936			space_reserved = false;
2937			goto out;
2938		}
2939	}
2940	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2941 out:
2942	if (ret && space_reserved)
2943		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2944					       alloc_start, bytes_to_reserve);
2945	extent_changeset_free(data_reserved);
2946
2947	return ret;
2948}
2949
2950static long btrfs_fallocate(struct file *file, int mode,
2951			    loff_t offset, loff_t len)
2952{
2953	struct inode *inode = file_inode(file);
2954	struct extent_state *cached_state = NULL;
2955	struct extent_changeset *data_reserved = NULL;
2956	struct falloc_range *range;
2957	struct falloc_range *tmp;
2958	LIST_HEAD(reserve_list);
2959	u64 cur_offset;
2960	u64 last_byte;
2961	u64 alloc_start;
2962	u64 alloc_end;
2963	u64 alloc_hint = 0;
2964	u64 locked_end;
2965	u64 actual_end = 0;
2966	u64 data_space_needed = 0;
2967	u64 data_space_reserved = 0;
2968	u64 qgroup_reserved = 0;
2969	struct extent_map *em;
2970	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2971	int ret;
2972
2973	/* Do not allow fallocate in ZONED mode */
2974	if (btrfs_is_zoned(inode_to_fs_info(inode)))
2975		return -EOPNOTSUPP;
2976
2977	alloc_start = round_down(offset, blocksize);
2978	alloc_end = round_up(offset + len, blocksize);
2979	cur_offset = alloc_start;
2980
2981	/* Make sure we aren't being give some crap mode */
2982	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2983		     FALLOC_FL_ZERO_RANGE))
2984		return -EOPNOTSUPP;
2985
2986	if (mode & FALLOC_FL_PUNCH_HOLE)
2987		return btrfs_punch_hole(file, offset, len);
2988
2989	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2990
2991	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2992		ret = inode_newsize_ok(inode, offset + len);
2993		if (ret)
2994			goto out;
2995	}
2996
2997	ret = file_modified(file);
2998	if (ret)
2999		goto out;
3000
3001	/*
3002	 * TODO: Move these two operations after we have checked
3003	 * accurate reserved space, or fallocate can still fail but
3004	 * with page truncated or size expanded.
3005	 *
3006	 * But that's a minor problem and won't do much harm BTW.
3007	 */
3008	if (alloc_start > inode->i_size) {
3009		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3010					alloc_start);
3011		if (ret)
3012			goto out;
3013	} else if (offset + len > inode->i_size) {
3014		/*
3015		 * If we are fallocating from the end of the file onward we
3016		 * need to zero out the end of the block if i_size lands in the
3017		 * middle of a block.
3018		 */
3019		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3020		if (ret)
3021			goto out;
3022	}
3023
3024	/*
3025	 * We have locked the inode at the VFS level (in exclusive mode) and we
3026	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3027	 * locking the file range, flush all dealloc in the range and wait for
3028	 * all ordered extents in the range to complete. After this we can lock
3029	 * the file range and, due to the previous locking we did, we know there
3030	 * can't be more delalloc or ordered extents in the range.
3031	 */
3032	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3033				       alloc_end - alloc_start);
3034	if (ret)
3035		goto out;
3036
3037	if (mode & FALLOC_FL_ZERO_RANGE) {
3038		ret = btrfs_zero_range(inode, offset, len, mode);
3039		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3040		return ret;
3041	}
3042
3043	locked_end = alloc_end - 1;
3044	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3045		    &cached_state);
3046
3047	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3048
3049	/* First, check if we exceed the qgroup limit */
3050	while (cur_offset < alloc_end) {
3051		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3052				      alloc_end - cur_offset);
3053		if (IS_ERR(em)) {
3054			ret = PTR_ERR(em);
3055			break;
3056		}
3057		last_byte = min(extent_map_end(em), alloc_end);
3058		actual_end = min_t(u64, extent_map_end(em), offset + len);
3059		last_byte = ALIGN(last_byte, blocksize);
3060		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3061		    (cur_offset >= inode->i_size &&
3062		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3063			const u64 range_len = last_byte - cur_offset;
3064
3065			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3066			if (ret < 0) {
3067				free_extent_map(em);
3068				break;
3069			}
3070			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3071					&data_reserved, cur_offset, range_len);
3072			if (ret < 0) {
3073				free_extent_map(em);
3074				break;
3075			}
3076			qgroup_reserved += range_len;
3077			data_space_needed += range_len;
3078		}
3079		free_extent_map(em);
3080		cur_offset = last_byte;
3081	}
3082
3083	if (!ret && data_space_needed > 0) {
3084		/*
3085		 * We are safe to reserve space here as we can't have delalloc
3086		 * in the range, see above.
3087		 */
3088		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3089						      data_space_needed);
3090		if (!ret)
3091			data_space_reserved = data_space_needed;
3092	}
3093
3094	/*
3095	 * If ret is still 0, means we're OK to fallocate.
3096	 * Or just cleanup the list and exit.
3097	 */
3098	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3099		if (!ret) {
3100			ret = btrfs_prealloc_file_range(inode, mode,
3101					range->start,
3102					range->len, blocksize,
3103					offset + len, &alloc_hint);
3104			/*
3105			 * btrfs_prealloc_file_range() releases space even
3106			 * if it returns an error.
3107			 */
3108			data_space_reserved -= range->len;
3109			qgroup_reserved -= range->len;
3110		} else if (data_space_reserved > 0) {
3111			btrfs_free_reserved_data_space(BTRFS_I(inode),
3112					       data_reserved, range->start,
3113					       range->len);
3114			data_space_reserved -= range->len;
3115			qgroup_reserved -= range->len;
3116		} else if (qgroup_reserved > 0) {
3117			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3118					       range->start, range->len, NULL);
3119			qgroup_reserved -= range->len;
3120		}
3121		list_del(&range->list);
3122		kfree(range);
3123	}
3124	if (ret < 0)
3125		goto out_unlock;
3126
3127	/*
3128	 * We didn't need to allocate any more space, but we still extended the
3129	 * size of the file so we need to update i_size and the inode item.
3130	 */
3131	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3132out_unlock:
3133	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3134		      &cached_state);
3135out:
3136	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3137	extent_changeset_free(data_reserved);
3138	return ret;
3139}
3140
3141/*
3142 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3143 * that has unflushed and/or flushing delalloc. There might be other adjacent
3144 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3145 * looping while it gets adjacent subranges, and merging them together.
3146 */
3147static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3148				   struct extent_state **cached_state,
3149				   bool *search_io_tree,
3150				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3151{
3152	u64 len = end + 1 - start;
3153	u64 delalloc_len = 0;
3154	struct btrfs_ordered_extent *oe;
3155	u64 oe_start;
3156	u64 oe_end;
3157
3158	/*
3159	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3160	 * means we have delalloc (dirty pages) for which writeback has not
3161	 * started yet.
3162	 */
3163	if (*search_io_tree) {
3164		spin_lock(&inode->lock);
3165		if (inode->delalloc_bytes > 0) {
3166			spin_unlock(&inode->lock);
3167			*delalloc_start_ret = start;
3168			delalloc_len = count_range_bits(&inode->io_tree,
3169							delalloc_start_ret, end,
3170							len, EXTENT_DELALLOC, 1,
3171							cached_state);
3172		} else {
3173			spin_unlock(&inode->lock);
3174		}
3175	}
3176
3177	if (delalloc_len > 0) {
3178		/*
3179		 * If delalloc was found then *delalloc_start_ret has a sector size
3180		 * aligned value (rounded down).
3181		 */
3182		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3183
3184		if (*delalloc_start_ret == start) {
3185			/* Delalloc for the whole range, nothing more to do. */
3186			if (*delalloc_end_ret == end)
3187				return true;
3188			/* Else trim our search range for ordered extents. */
3189			start = *delalloc_end_ret + 1;
3190			len = end + 1 - start;
3191		}
3192	} else {
3193		/* No delalloc, future calls don't need to search again. */
3194		*search_io_tree = false;
3195	}
3196
3197	/*
3198	 * Now also check if there's any ordered extent in the range.
3199	 * We do this because:
3200	 *
3201	 * 1) When delalloc is flushed, the file range is locked, we clear the
3202	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3203	 *    an ordered extent for the write. So we might just have been called
3204	 *    after delalloc is flushed and before the ordered extent completes
3205	 *    and inserts the new file extent item in the subvolume's btree;
3206	 *
3207	 * 2) We may have an ordered extent created by flushing delalloc for a
3208	 *    subrange that starts before the subrange we found marked with
3209	 *    EXTENT_DELALLOC in the io tree.
3210	 *
3211	 * We could also use the extent map tree to find such delalloc that is
3212	 * being flushed, but using the ordered extents tree is more efficient
3213	 * because it's usually much smaller as ordered extents are removed from
3214	 * the tree once they complete. With the extent maps, we mau have them
3215	 * in the extent map tree for a very long time, and they were either
3216	 * created by previous writes or loaded by read operations.
3217	 */
3218	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3219	if (!oe)
3220		return (delalloc_len > 0);
3221
3222	/* The ordered extent may span beyond our search range. */
3223	oe_start = max(oe->file_offset, start);
3224	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3225
3226	btrfs_put_ordered_extent(oe);
3227
3228	/* Don't have unflushed delalloc, return the ordered extent range. */
3229	if (delalloc_len == 0) {
3230		*delalloc_start_ret = oe_start;
3231		*delalloc_end_ret = oe_end;
3232		return true;
3233	}
3234
3235	/*
3236	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3237	 * If the ranges are adjacent returned a combined range, otherwise
3238	 * return the leftmost range.
3239	 */
3240	if (oe_start < *delalloc_start_ret) {
3241		if (oe_end < *delalloc_start_ret)
3242			*delalloc_end_ret = oe_end;
3243		*delalloc_start_ret = oe_start;
3244	} else if (*delalloc_end_ret + 1 == oe_start) {
3245		*delalloc_end_ret = oe_end;
3246	}
3247
3248	return true;
3249}
3250
3251/*
3252 * Check if there's delalloc in a given range.
3253 *
3254 * @inode:               The inode.
3255 * @start:               The start offset of the range. It does not need to be
3256 *                       sector size aligned.
3257 * @end:                 The end offset (inclusive value) of the search range.
3258 *                       It does not need to be sector size aligned.
3259 * @cached_state:        Extent state record used for speeding up delalloc
3260 *                       searches in the inode's io_tree. Can be NULL.
3261 * @delalloc_start_ret:  Output argument, set to the start offset of the
3262 *                       subrange found with delalloc (may not be sector size
3263 *                       aligned).
3264 * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3265 *                       of the subrange found with delalloc.
3266 *
3267 * Returns true if a subrange with delalloc is found within the given range, and
3268 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3269 * end offsets of the subrange.
3270 */
3271bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3272				  struct extent_state **cached_state,
3273				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3274{
3275	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3276	u64 prev_delalloc_end = 0;
3277	bool search_io_tree = true;
3278	bool ret = false;
3279
3280	while (cur_offset <= end) {
3281		u64 delalloc_start;
3282		u64 delalloc_end;
3283		bool delalloc;
3284
3285		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3286						  cached_state, &search_io_tree,
3287						  &delalloc_start,
3288						  &delalloc_end);
3289		if (!delalloc)
3290			break;
3291
3292		if (prev_delalloc_end == 0) {
3293			/* First subrange found. */
3294			*delalloc_start_ret = max(delalloc_start, start);
3295			*delalloc_end_ret = delalloc_end;
3296			ret = true;
3297		} else if (delalloc_start == prev_delalloc_end + 1) {
3298			/* Subrange adjacent to the previous one, merge them. */
3299			*delalloc_end_ret = delalloc_end;
3300		} else {
3301			/* Subrange not adjacent to the previous one, exit. */
3302			break;
3303		}
3304
3305		prev_delalloc_end = delalloc_end;
3306		cur_offset = delalloc_end + 1;
3307		cond_resched();
3308	}
3309
3310	return ret;
3311}
3312
3313/*
3314 * Check if there's a hole or delalloc range in a range representing a hole (or
3315 * prealloc extent) found in the inode's subvolume btree.
3316 *
3317 * @inode:      The inode.
3318 * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3319 * @start:      Start offset of the hole region. It does not need to be sector
3320 *              size aligned.
3321 * @end:        End offset (inclusive value) of the hole region. It does not
3322 *              need to be sector size aligned.
3323 * @start_ret:  Return parameter, used to set the start of the subrange in the
3324 *              hole that matches the search criteria (seek mode), if such
3325 *              subrange is found (return value of the function is true).
3326 *              The value returned here may not be sector size aligned.
3327 *
3328 * Returns true if a subrange matching the given seek mode is found, and if one
3329 * is found, it updates @start_ret with the start of the subrange.
3330 */
3331static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3332					struct extent_state **cached_state,
3333					u64 start, u64 end, u64 *start_ret)
3334{
3335	u64 delalloc_start;
3336	u64 delalloc_end;
3337	bool delalloc;
3338
3339	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3340						&delalloc_start, &delalloc_end);
3341	if (delalloc && whence == SEEK_DATA) {
3342		*start_ret = delalloc_start;
3343		return true;
3344	}
3345
3346	if (delalloc && whence == SEEK_HOLE) {
3347		/*
3348		 * We found delalloc but it starts after out start offset. So we
3349		 * have a hole between our start offset and the delalloc start.
3350		 */
3351		if (start < delalloc_start) {
3352			*start_ret = start;
3353			return true;
3354		}
3355		/*
3356		 * Delalloc range starts at our start offset.
3357		 * If the delalloc range's length is smaller than our range,
3358		 * then it means we have a hole that starts where the delalloc
3359		 * subrange ends.
3360		 */
3361		if (delalloc_end < end) {
3362			*start_ret = delalloc_end + 1;
3363			return true;
3364		}
3365
3366		/* There's delalloc for the whole range. */
3367		return false;
3368	}
3369
3370	if (!delalloc && whence == SEEK_HOLE) {
3371		*start_ret = start;
3372		return true;
3373	}
3374
3375	/*
3376	 * No delalloc in the range and we are seeking for data. The caller has
3377	 * to iterate to the next extent item in the subvolume btree.
3378	 */
3379	return false;
3380}
3381
3382static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3383{
3384	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3385	struct btrfs_file_private *private;
3386	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3387	struct extent_state *cached_state = NULL;
3388	struct extent_state **delalloc_cached_state;
3389	const loff_t i_size = i_size_read(&inode->vfs_inode);
3390	const u64 ino = btrfs_ino(inode);
3391	struct btrfs_root *root = inode->root;
3392	struct btrfs_path *path;
3393	struct btrfs_key key;
3394	u64 last_extent_end;
3395	u64 lockstart;
3396	u64 lockend;
3397	u64 start;
3398	int ret;
3399	bool found = false;
3400
3401	if (i_size == 0 || offset >= i_size)
3402		return -ENXIO;
3403
3404	/*
3405	 * Quick path. If the inode has no prealloc extents and its number of
3406	 * bytes used matches its i_size, then it can not have holes.
3407	 */
3408	if (whence == SEEK_HOLE &&
3409	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3410	    inode_get_bytes(&inode->vfs_inode) == i_size)
3411		return i_size;
3412
3413	spin_lock(&inode->lock);
3414	private = file->private_data;
3415	spin_unlock(&inode->lock);
3416
3417	if (private && private->owner_task != current) {
3418		/*
3419		 * Not allocated by us, don't use it as its cached state is used
3420		 * by the task that allocated it and we don't want neither to
3421		 * mess with it nor get incorrect results because it reflects an
3422		 * invalid state for the current task.
3423		 */
3424		private = NULL;
3425	} else if (!private) {
3426		private = kzalloc(sizeof(*private), GFP_KERNEL);
3427		/*
3428		 * No worries if memory allocation failed.
3429		 * The private structure is used only for speeding up multiple
3430		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3431		 * so everything will still be correct.
3432		 */
3433		if (private) {
3434			bool free = false;
3435
3436			private->owner_task = current;
3437
3438			spin_lock(&inode->lock);
3439			if (file->private_data)
3440				free = true;
3441			else
3442				file->private_data = private;
3443			spin_unlock(&inode->lock);
3444
3445			if (free) {
3446				kfree(private);
3447				private = NULL;
3448			}
3449		}
3450	}
3451
3452	if (private)
3453		delalloc_cached_state = &private->llseek_cached_state;
3454	else
3455		delalloc_cached_state = NULL;
3456
3457	/*
3458	 * offset can be negative, in this case we start finding DATA/HOLE from
3459	 * the very start of the file.
3460	 */
3461	start = max_t(loff_t, 0, offset);
3462
3463	lockstart = round_down(start, fs_info->sectorsize);
3464	lockend = round_up(i_size, fs_info->sectorsize);
3465	if (lockend <= lockstart)
3466		lockend = lockstart + fs_info->sectorsize;
3467	lockend--;
3468
3469	path = btrfs_alloc_path();
3470	if (!path)
3471		return -ENOMEM;
3472	path->reada = READA_FORWARD;
3473
3474	key.objectid = ino;
3475	key.type = BTRFS_EXTENT_DATA_KEY;
3476	key.offset = start;
3477
3478	last_extent_end = lockstart;
3479
3480	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3481
3482	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483	if (ret < 0) {
3484		goto out;
3485	} else if (ret > 0 && path->slots[0] > 0) {
3486		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3487		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3488			path->slots[0]--;
3489	}
3490
3491	while (start < i_size) {
3492		struct extent_buffer *leaf = path->nodes[0];
3493		struct btrfs_file_extent_item *extent;
3494		u64 extent_end;
3495		u8 type;
3496
3497		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3498			ret = btrfs_next_leaf(root, path);
3499			if (ret < 0)
3500				goto out;
3501			else if (ret > 0)
3502				break;
3503
3504			leaf = path->nodes[0];
3505		}
3506
3507		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3508		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3509			break;
3510
3511		extent_end = btrfs_file_extent_end(path);
3512
3513		/*
3514		 * In the first iteration we may have a slot that points to an
3515		 * extent that ends before our start offset, so skip it.
3516		 */
3517		if (extent_end <= start) {
3518			path->slots[0]++;
3519			continue;
3520		}
3521
3522		/* We have an implicit hole, NO_HOLES feature is likely set. */
3523		if (last_extent_end < key.offset) {
3524			u64 search_start = last_extent_end;
3525			u64 found_start;
3526
3527			/*
3528			 * First iteration, @start matches @offset and it's
3529			 * within the hole.
3530			 */
3531			if (start == offset)
3532				search_start = offset;
3533
3534			found = find_desired_extent_in_hole(inode, whence,
3535							    delalloc_cached_state,
3536							    search_start,
3537							    key.offset - 1,
3538							    &found_start);
3539			if (found) {
3540				start = found_start;
3541				break;
3542			}
3543			/*
3544			 * Didn't find data or a hole (due to delalloc) in the
3545			 * implicit hole range, so need to analyze the extent.
3546			 */
3547		}
3548
3549		extent = btrfs_item_ptr(leaf, path->slots[0],
3550					struct btrfs_file_extent_item);
3551		type = btrfs_file_extent_type(leaf, extent);
3552
3553		/*
3554		 * Can't access the extent's disk_bytenr field if this is an
3555		 * inline extent, since at that offset, it's where the extent
3556		 * data starts.
3557		 */
3558		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3559		    (type == BTRFS_FILE_EXTENT_REG &&
3560		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3561			/*
3562			 * Explicit hole or prealloc extent, search for delalloc.
3563			 * A prealloc extent is treated like a hole.
3564			 */
3565			u64 search_start = key.offset;
3566			u64 found_start;
3567
3568			/*
3569			 * First iteration, @start matches @offset and it's
3570			 * within the hole.
3571			 */
3572			if (start == offset)
3573				search_start = offset;
3574
3575			found = find_desired_extent_in_hole(inode, whence,
3576							    delalloc_cached_state,
3577							    search_start,
3578							    extent_end - 1,
3579							    &found_start);
3580			if (found) {
3581				start = found_start;
3582				break;
3583			}
3584			/*
3585			 * Didn't find data or a hole (due to delalloc) in the
3586			 * implicit hole range, so need to analyze the next
3587			 * extent item.
3588			 */
3589		} else {
3590			/*
3591			 * Found a regular or inline extent.
3592			 * If we are seeking for data, adjust the start offset
3593			 * and stop, we're done.
3594			 */
3595			if (whence == SEEK_DATA) {
3596				start = max_t(u64, key.offset, offset);
3597				found = true;
3598				break;
3599			}
3600			/*
3601			 * Else, we are seeking for a hole, check the next file
3602			 * extent item.
3603			 */
3604		}
3605
3606		start = extent_end;
3607		last_extent_end = extent_end;
3608		path->slots[0]++;
3609		if (fatal_signal_pending(current)) {
3610			ret = -EINTR;
3611			goto out;
3612		}
3613		cond_resched();
3614	}
3615
3616	/* We have an implicit hole from the last extent found up to i_size. */
3617	if (!found && start < i_size) {
3618		found = find_desired_extent_in_hole(inode, whence,
3619						    delalloc_cached_state, start,
3620						    i_size - 1, &start);
3621		if (!found)
3622			start = i_size;
3623	}
3624
3625out:
3626	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3627	btrfs_free_path(path);
3628
3629	if (ret < 0)
3630		return ret;
3631
3632	if (whence == SEEK_DATA && start >= i_size)
3633		return -ENXIO;
3634
3635	return min_t(loff_t, start, i_size);
3636}
3637
3638static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3639{
3640	struct inode *inode = file->f_mapping->host;
3641
3642	switch (whence) {
3643	default:
3644		return generic_file_llseek(file, offset, whence);
3645	case SEEK_DATA:
3646	case SEEK_HOLE:
3647		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3648		offset = find_desired_extent(file, offset, whence);
3649		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3650		break;
3651	}
3652
3653	if (offset < 0)
3654		return offset;
3655
3656	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3657}
3658
3659static int btrfs_file_open(struct inode *inode, struct file *filp)
3660{
3661	int ret;
3662
3663	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
 
3664
3665	ret = fsverity_file_open(inode, filp);
3666	if (ret)
3667		return ret;
3668	return generic_file_open(inode, filp);
3669}
3670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3672{
3673	ssize_t ret = 0;
3674
3675	if (iocb->ki_flags & IOCB_DIRECT) {
3676		ret = btrfs_direct_read(iocb, to);
3677		if (ret < 0 || !iov_iter_count(to) ||
3678		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3679			return ret;
3680	}
3681
3682	return filemap_read(iocb, to, ret);
3683}
3684
3685const struct file_operations btrfs_file_operations = {
3686	.llseek		= btrfs_file_llseek,
3687	.read_iter      = btrfs_file_read_iter,
3688	.splice_read	= filemap_splice_read,
3689	.write_iter	= btrfs_file_write_iter,
3690	.splice_write	= iter_file_splice_write,
3691	.mmap		= btrfs_file_mmap,
3692	.open		= btrfs_file_open,
3693	.release	= btrfs_release_file,
3694	.get_unmapped_area = thp_get_unmapped_area,
3695	.fsync		= btrfs_sync_file,
3696	.fallocate	= btrfs_fallocate,
3697	.unlocked_ioctl	= btrfs_ioctl,
3698#ifdef CONFIG_COMPAT
3699	.compat_ioctl	= btrfs_compat_ioctl,
3700#endif
3701	.remap_file_range = btrfs_remap_file_range,
3702	.uring_cmd	= btrfs_uring_cmd,
3703	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3704};
3705
3706int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3707{
3708	struct address_space *mapping = inode->vfs_inode.i_mapping;
3709	int ret;
3710
3711	/*
3712	 * So with compression we will find and lock a dirty page and clear the
3713	 * first one as dirty, setup an async extent, and immediately return
3714	 * with the entire range locked but with nobody actually marked with
3715	 * writeback.  So we can't just filemap_write_and_wait_range() and
3716	 * expect it to work since it will just kick off a thread to do the
3717	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3718	 * since it will wait on the page lock, which won't be unlocked until
3719	 * after the pages have been marked as writeback and so we're good to go
3720	 * from there.  We have to do this otherwise we'll miss the ordered
3721	 * extents and that results in badness.  Please Josef, do not think you
3722	 * know better and pull this out at some point in the future, it is
3723	 * right and you are wrong.
3724	 */
3725	ret = filemap_fdatawrite_range(mapping, start, end);
3726	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3727		ret = filemap_fdatawrite_range(mapping, start, end);
 
3728
3729	return ret;
3730}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
  20#include <linux/iomap.h>
  21#include "ctree.h"
 
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "btrfs_inode.h"
  25#include "print-tree.h"
  26#include "tree-log.h"
  27#include "locking.h"
  28#include "volumes.h"
  29#include "qgroup.h"
  30#include "compression.h"
  31#include "delalloc-space.h"
  32#include "reflink.h"
  33#include "subpage.h"
  34#include "fs.h"
  35#include "accessors.h"
  36#include "extent-tree.h"
  37#include "file-item.h"
  38#include "ioctl.h"
  39#include "file.h"
  40#include "super.h"
  41
  42/* simple helper to fault in pages and copy.  This should go away
  43 * and be replaced with calls into generic code.
 
  44 */
  45static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  46					 struct page **prepared_pages,
  47					 struct iov_iter *i)
  48{
  49	size_t copied = 0;
  50	size_t total_copied = 0;
  51	int pg = 0;
  52	int offset = offset_in_page(pos);
  53
  54	while (write_bytes > 0) {
  55		size_t count = min_t(size_t,
  56				     PAGE_SIZE - offset, write_bytes);
  57		struct page *page = prepared_pages[pg];
  58		/*
  59		 * Copy data from userspace to the current page
  60		 */
  61		copied = copy_page_from_iter_atomic(page, offset, count, i);
  62
  63		/* Flush processor's dcache for this page */
  64		flush_dcache_page(page);
  65
  66		/*
  67		 * if we get a partial write, we can end up with
  68		 * partially up to date pages.  These add
  69		 * a lot of complexity, so make sure they don't
  70		 * happen by forcing this copy to be retried.
  71		 *
  72		 * The rest of the btrfs_file_write code will fall
  73		 * back to page at a time copies after we return 0.
  74		 */
  75		if (unlikely(copied < count)) {
  76			if (!PageUptodate(page)) {
  77				iov_iter_revert(i, copied);
  78				copied = 0;
  79			}
  80			if (!copied)
  81				break;
  82		}
  83
  84		write_bytes -= copied;
  85		total_copied += copied;
  86		offset += copied;
  87		if (offset == PAGE_SIZE) {
  88			pg++;
  89			offset = 0;
  90		}
  91	}
  92	return total_copied;
  93}
  94
  95/*
  96 * unlocks pages after btrfs_file_write is done with them
  97 */
  98static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
  99			     struct page **pages, size_t num_pages,
 100			     u64 pos, u64 copied)
 101{
 102	size_t i;
 103	u64 block_start = round_down(pos, fs_info->sectorsize);
 104	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
 105
 106	ASSERT(block_len <= U32_MAX);
 107	for (i = 0; i < num_pages; i++) {
 108		/* page checked is some magic around finding pages that
 109		 * have been modified without going through btrfs_set_page_dirty
 110		 * clear it here. There should be no need to mark the pages
 111		 * accessed as prepare_pages should have marked them accessed
 112		 * in prepare_pages via find_or_create_page()
 113		 */
 114		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
 115						block_start, block_len);
 116		unlock_page(pages[i]);
 117		put_page(pages[i]);
 118	}
 119}
 120
 121/*
 122 * After btrfs_copy_from_user(), update the following things for delalloc:
 123 * - Mark newly dirtied pages as DELALLOC in the io tree.
 124 *   Used to advise which range is to be written back.
 125 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
 126 * - Update inode size for past EOF write
 127 */
 128int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 129		      size_t num_pages, loff_t pos, size_t write_bytes,
 130		      struct extent_state **cached, bool noreserve)
 131{
 132	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 133	int err = 0;
 134	int i;
 135	u64 num_bytes;
 136	u64 start_pos;
 137	u64 end_of_last_block;
 138	u64 end_pos = pos + write_bytes;
 139	loff_t isize = i_size_read(&inode->vfs_inode);
 140	unsigned int extra_bits = 0;
 141
 142	if (write_bytes == 0)
 143		return 0;
 144
 145	if (noreserve)
 146		extra_bits |= EXTENT_NORESERVE;
 147
 148	start_pos = round_down(pos, fs_info->sectorsize);
 149	num_bytes = round_up(write_bytes + pos - start_pos,
 150			     fs_info->sectorsize);
 151	ASSERT(num_bytes <= U32_MAX);
 
 
 152
 153	end_of_last_block = start_pos + num_bytes - 1;
 154
 155	/*
 156	 * The pages may have already been dirty, clear out old accounting so
 157	 * we can set things up properly
 158	 */
 159	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 160			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 161			 cached);
 162
 163	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 164					extra_bits, cached);
 165	if (err)
 166		return err;
 167
 168	for (i = 0; i < num_pages; i++) {
 169		struct page *p = pages[i];
 170
 171		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
 172					       start_pos, num_bytes);
 173		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
 174						start_pos, num_bytes);
 175		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
 176					    start_pos, num_bytes);
 177	}
 178
 179	/*
 180	 * we've only changed i_size in ram, and we haven't updated
 181	 * the disk i_size.  There is no need to log the inode
 182	 * at this time.
 183	 */
 184	if (end_pos > isize)
 185		i_size_write(&inode->vfs_inode, end_pos);
 186	return 0;
 187}
 188
 189/*
 190 * this is very complex, but the basic idea is to drop all extents
 191 * in the range start - end.  hint_block is filled in with a block number
 192 * that would be a good hint to the block allocator for this file.
 193 *
 194 * If an extent intersects the range but is not entirely inside the range
 195 * it is either truncated or split.  Anything entirely inside the range
 196 * is deleted from the tree.
 197 *
 198 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 199 * to deal with that. We set the field 'bytes_found' of the arguments structure
 200 * with the number of allocated bytes found in the target range, so that the
 201 * caller can update the inode's number of bytes in an atomic way when
 202 * replacing extents in a range to avoid races with stat(2).
 203 */
 204int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 205		       struct btrfs_root *root, struct btrfs_inode *inode,
 206		       struct btrfs_drop_extents_args *args)
 207{
 208	struct btrfs_fs_info *fs_info = root->fs_info;
 209	struct extent_buffer *leaf;
 210	struct btrfs_file_extent_item *fi;
 211	struct btrfs_ref ref = { 0 };
 212	struct btrfs_key key;
 213	struct btrfs_key new_key;
 214	u64 ino = btrfs_ino(inode);
 215	u64 search_start = args->start;
 216	u64 disk_bytenr = 0;
 217	u64 num_bytes = 0;
 218	u64 extent_offset = 0;
 219	u64 extent_end = 0;
 220	u64 last_end = args->start;
 221	int del_nr = 0;
 222	int del_slot = 0;
 223	int extent_type;
 224	int recow;
 225	int ret;
 226	int modify_tree = -1;
 227	int update_refs;
 228	int found = 0;
 229	struct btrfs_path *path = args->path;
 230
 231	args->bytes_found = 0;
 232	args->extent_inserted = false;
 233
 234	/* Must always have a path if ->replace_extent is true */
 235	ASSERT(!(args->replace_extent && !args->path));
 236
 237	if (!path) {
 238		path = btrfs_alloc_path();
 239		if (!path) {
 240			ret = -ENOMEM;
 241			goto out;
 242		}
 243	}
 244
 245	if (args->drop_cache)
 246		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 247
 248	if (args->start >= inode->disk_i_size && !args->replace_extent)
 249		modify_tree = 0;
 250
 251	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 252	while (1) {
 253		recow = 0;
 254		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 255					       search_start, modify_tree);
 256		if (ret < 0)
 257			break;
 258		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 259			leaf = path->nodes[0];
 260			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 261			if (key.objectid == ino &&
 262			    key.type == BTRFS_EXTENT_DATA_KEY)
 263				path->slots[0]--;
 264		}
 265		ret = 0;
 266next_slot:
 267		leaf = path->nodes[0];
 268		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 269			BUG_ON(del_nr > 0);
 270			ret = btrfs_next_leaf(root, path);
 271			if (ret < 0)
 272				break;
 273			if (ret > 0) {
 274				ret = 0;
 275				break;
 276			}
 277			leaf = path->nodes[0];
 278			recow = 1;
 279		}
 280
 281		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 282
 283		if (key.objectid > ino)
 284			break;
 285		if (WARN_ON_ONCE(key.objectid < ino) ||
 286		    key.type < BTRFS_EXTENT_DATA_KEY) {
 287			ASSERT(del_nr == 0);
 288			path->slots[0]++;
 289			goto next_slot;
 290		}
 291		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 292			break;
 293
 294		fi = btrfs_item_ptr(leaf, path->slots[0],
 295				    struct btrfs_file_extent_item);
 296		extent_type = btrfs_file_extent_type(leaf, fi);
 297
 298		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 299		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 300			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 301			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 302			extent_offset = btrfs_file_extent_offset(leaf, fi);
 303			extent_end = key.offset +
 304				btrfs_file_extent_num_bytes(leaf, fi);
 305		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 306			extent_end = key.offset +
 307				btrfs_file_extent_ram_bytes(leaf, fi);
 308		} else {
 309			/* can't happen */
 310			BUG();
 311		}
 312
 313		/*
 314		 * Don't skip extent items representing 0 byte lengths. They
 315		 * used to be created (bug) if while punching holes we hit
 316		 * -ENOSPC condition. So if we find one here, just ensure we
 317		 * delete it, otherwise we would insert a new file extent item
 318		 * with the same key (offset) as that 0 bytes length file
 319		 * extent item in the call to setup_items_for_insert() later
 320		 * in this function.
 321		 */
 322		if (extent_end == key.offset && extent_end >= search_start) {
 323			last_end = extent_end;
 324			goto delete_extent_item;
 325		}
 326
 327		if (extent_end <= search_start) {
 328			path->slots[0]++;
 329			goto next_slot;
 330		}
 331
 332		found = 1;
 333		search_start = max(key.offset, args->start);
 334		if (recow || !modify_tree) {
 335			modify_tree = -1;
 336			btrfs_release_path(path);
 337			continue;
 338		}
 339
 340		/*
 341		 *     | - range to drop - |
 342		 *  | -------- extent -------- |
 343		 */
 344		if (args->start > key.offset && args->end < extent_end) {
 345			BUG_ON(del_nr > 0);
 346			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 347				ret = -EOPNOTSUPP;
 348				break;
 349			}
 350
 351			memcpy(&new_key, &key, sizeof(new_key));
 352			new_key.offset = args->start;
 353			ret = btrfs_duplicate_item(trans, root, path,
 354						   &new_key);
 355			if (ret == -EAGAIN) {
 356				btrfs_release_path(path);
 357				continue;
 358			}
 359			if (ret < 0)
 360				break;
 361
 362			leaf = path->nodes[0];
 363			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 364					    struct btrfs_file_extent_item);
 365			btrfs_set_file_extent_num_bytes(leaf, fi,
 366							args->start - key.offset);
 367
 368			fi = btrfs_item_ptr(leaf, path->slots[0],
 369					    struct btrfs_file_extent_item);
 370
 371			extent_offset += args->start - key.offset;
 372			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 373			btrfs_set_file_extent_num_bytes(leaf, fi,
 374							extent_end - args->start);
 375			btrfs_mark_buffer_dirty(trans, leaf);
 376
 377			if (update_refs && disk_bytenr > 0) {
 378				btrfs_init_generic_ref(&ref,
 379						BTRFS_ADD_DELAYED_REF,
 380						disk_bytenr, num_bytes, 0,
 381						root->root_key.objectid);
 382				btrfs_init_data_ref(&ref,
 383						root->root_key.objectid,
 384						new_key.objectid,
 385						args->start - extent_offset,
 386						0, false);
 
 
 387				ret = btrfs_inc_extent_ref(trans, &ref);
 388				if (ret) {
 389					btrfs_abort_transaction(trans, ret);
 390					break;
 391				}
 392			}
 393			key.offset = args->start;
 394		}
 395		/*
 396		 * From here on out we will have actually dropped something, so
 397		 * last_end can be updated.
 398		 */
 399		last_end = extent_end;
 400
 401		/*
 402		 *  | ---- range to drop ----- |
 403		 *      | -------- extent -------- |
 404		 */
 405		if (args->start <= key.offset && args->end < extent_end) {
 406			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 407				ret = -EOPNOTSUPP;
 408				break;
 409			}
 410
 411			memcpy(&new_key, &key, sizeof(new_key));
 412			new_key.offset = args->end;
 413			btrfs_set_item_key_safe(trans, path, &new_key);
 414
 415			extent_offset += args->end - key.offset;
 416			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 417			btrfs_set_file_extent_num_bytes(leaf, fi,
 418							extent_end - args->end);
 419			btrfs_mark_buffer_dirty(trans, leaf);
 420			if (update_refs && disk_bytenr > 0)
 421				args->bytes_found += args->end - key.offset;
 422			break;
 423		}
 424
 425		search_start = extent_end;
 426		/*
 427		 *       | ---- range to drop ----- |
 428		 *  | -------- extent -------- |
 429		 */
 430		if (args->start > key.offset && args->end >= extent_end) {
 431			BUG_ON(del_nr > 0);
 432			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 433				ret = -EOPNOTSUPP;
 434				break;
 435			}
 436
 437			btrfs_set_file_extent_num_bytes(leaf, fi,
 438							args->start - key.offset);
 439			btrfs_mark_buffer_dirty(trans, leaf);
 440			if (update_refs && disk_bytenr > 0)
 441				args->bytes_found += extent_end - args->start;
 442			if (args->end == extent_end)
 443				break;
 444
 445			path->slots[0]++;
 446			goto next_slot;
 447		}
 448
 449		/*
 450		 *  | ---- range to drop ----- |
 451		 *    | ------ extent ------ |
 452		 */
 453		if (args->start <= key.offset && args->end >= extent_end) {
 454delete_extent_item:
 455			if (del_nr == 0) {
 456				del_slot = path->slots[0];
 457				del_nr = 1;
 458			} else {
 459				BUG_ON(del_slot + del_nr != path->slots[0]);
 460				del_nr++;
 461			}
 462
 463			if (update_refs &&
 464			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 465				args->bytes_found += extent_end - key.offset;
 466				extent_end = ALIGN(extent_end,
 467						   fs_info->sectorsize);
 468			} else if (update_refs && disk_bytenr > 0) {
 469				btrfs_init_generic_ref(&ref,
 470						BTRFS_DROP_DELAYED_REF,
 471						disk_bytenr, num_bytes, 0,
 472						root->root_key.objectid);
 473				btrfs_init_data_ref(&ref,
 474						root->root_key.objectid,
 475						key.objectid,
 476						key.offset - extent_offset, 0,
 477						false);
 
 
 478				ret = btrfs_free_extent(trans, &ref);
 479				if (ret) {
 480					btrfs_abort_transaction(trans, ret);
 481					break;
 482				}
 483				args->bytes_found += extent_end - key.offset;
 484			}
 485
 486			if (args->end == extent_end)
 487				break;
 488
 489			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 490				path->slots[0]++;
 491				goto next_slot;
 492			}
 493
 494			ret = btrfs_del_items(trans, root, path, del_slot,
 495					      del_nr);
 496			if (ret) {
 497				btrfs_abort_transaction(trans, ret);
 498				break;
 499			}
 500
 501			del_nr = 0;
 502			del_slot = 0;
 503
 504			btrfs_release_path(path);
 505			continue;
 506		}
 507
 508		BUG();
 509	}
 510
 511	if (!ret && del_nr > 0) {
 512		/*
 513		 * Set path->slots[0] to first slot, so that after the delete
 514		 * if items are move off from our leaf to its immediate left or
 515		 * right neighbor leafs, we end up with a correct and adjusted
 516		 * path->slots[0] for our insertion (if args->replace_extent).
 517		 */
 518		path->slots[0] = del_slot;
 519		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 520		if (ret)
 521			btrfs_abort_transaction(trans, ret);
 522	}
 523
 524	leaf = path->nodes[0];
 525	/*
 526	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 527	 * which case it unlocked our path, so check path->locks[0] matches a
 528	 * write lock.
 529	 */
 530	if (!ret && args->replace_extent &&
 531	    path->locks[0] == BTRFS_WRITE_LOCK &&
 532	    btrfs_leaf_free_space(leaf) >=
 533	    sizeof(struct btrfs_item) + args->extent_item_size) {
 534
 535		key.objectid = ino;
 536		key.type = BTRFS_EXTENT_DATA_KEY;
 537		key.offset = args->start;
 538		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 539			struct btrfs_key slot_key;
 540
 541			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 542			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 543				path->slots[0]++;
 544		}
 545		btrfs_setup_item_for_insert(trans, root, path, &key,
 546					    args->extent_item_size);
 547		args->extent_inserted = true;
 548	}
 549
 550	if (!args->path)
 551		btrfs_free_path(path);
 552	else if (!args->extent_inserted)
 553		btrfs_release_path(path);
 554out:
 555	args->drop_end = found ? min(args->end, last_end) : args->end;
 556
 557	return ret;
 558}
 559
 560static int extent_mergeable(struct extent_buffer *leaf, int slot,
 561			    u64 objectid, u64 bytenr, u64 orig_offset,
 562			    u64 *start, u64 *end)
 563{
 564	struct btrfs_file_extent_item *fi;
 565	struct btrfs_key key;
 566	u64 extent_end;
 567
 568	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 569		return 0;
 570
 571	btrfs_item_key_to_cpu(leaf, &key, slot);
 572	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 573		return 0;
 574
 575	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 576	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 577	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 578	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 579	    btrfs_file_extent_compression(leaf, fi) ||
 580	    btrfs_file_extent_encryption(leaf, fi) ||
 581	    btrfs_file_extent_other_encoding(leaf, fi))
 582		return 0;
 583
 584	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 585	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 586		return 0;
 587
 588	*start = key.offset;
 589	*end = extent_end;
 590	return 1;
 591}
 592
 593/*
 594 * Mark extent in the range start - end as written.
 595 *
 596 * This changes extent type from 'pre-allocated' to 'regular'. If only
 597 * part of extent is marked as written, the extent will be split into
 598 * two or three.
 599 */
 600int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 601			      struct btrfs_inode *inode, u64 start, u64 end)
 602{
 603	struct btrfs_root *root = inode->root;
 604	struct extent_buffer *leaf;
 605	struct btrfs_path *path;
 606	struct btrfs_file_extent_item *fi;
 607	struct btrfs_ref ref = { 0 };
 608	struct btrfs_key key;
 609	struct btrfs_key new_key;
 610	u64 bytenr;
 611	u64 num_bytes;
 612	u64 extent_end;
 613	u64 orig_offset;
 614	u64 other_start;
 615	u64 other_end;
 616	u64 split;
 617	int del_nr = 0;
 618	int del_slot = 0;
 619	int recow;
 620	int ret = 0;
 621	u64 ino = btrfs_ino(inode);
 622
 623	path = btrfs_alloc_path();
 624	if (!path)
 625		return -ENOMEM;
 626again:
 627	recow = 0;
 628	split = start;
 629	key.objectid = ino;
 630	key.type = BTRFS_EXTENT_DATA_KEY;
 631	key.offset = split;
 632
 633	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 634	if (ret < 0)
 635		goto out;
 636	if (ret > 0 && path->slots[0] > 0)
 637		path->slots[0]--;
 638
 639	leaf = path->nodes[0];
 640	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 641	if (key.objectid != ino ||
 642	    key.type != BTRFS_EXTENT_DATA_KEY) {
 643		ret = -EINVAL;
 644		btrfs_abort_transaction(trans, ret);
 645		goto out;
 646	}
 647	fi = btrfs_item_ptr(leaf, path->slots[0],
 648			    struct btrfs_file_extent_item);
 649	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 650		ret = -EINVAL;
 651		btrfs_abort_transaction(trans, ret);
 652		goto out;
 653	}
 654	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 655	if (key.offset > start || extent_end < end) {
 656		ret = -EINVAL;
 657		btrfs_abort_transaction(trans, ret);
 658		goto out;
 659	}
 660
 661	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 662	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 663	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 664	memcpy(&new_key, &key, sizeof(new_key));
 665
 666	if (start == key.offset && end < extent_end) {
 667		other_start = 0;
 668		other_end = start;
 669		if (extent_mergeable(leaf, path->slots[0] - 1,
 670				     ino, bytenr, orig_offset,
 671				     &other_start, &other_end)) {
 672			new_key.offset = end;
 673			btrfs_set_item_key_safe(trans, path, &new_key);
 674			fi = btrfs_item_ptr(leaf, path->slots[0],
 675					    struct btrfs_file_extent_item);
 676			btrfs_set_file_extent_generation(leaf, fi,
 677							 trans->transid);
 678			btrfs_set_file_extent_num_bytes(leaf, fi,
 679							extent_end - end);
 680			btrfs_set_file_extent_offset(leaf, fi,
 681						     end - orig_offset);
 682			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 683					    struct btrfs_file_extent_item);
 684			btrfs_set_file_extent_generation(leaf, fi,
 685							 trans->transid);
 686			btrfs_set_file_extent_num_bytes(leaf, fi,
 687							end - other_start);
 688			btrfs_mark_buffer_dirty(trans, leaf);
 689			goto out;
 690		}
 691	}
 692
 693	if (start > key.offset && end == extent_end) {
 694		other_start = end;
 695		other_end = 0;
 696		if (extent_mergeable(leaf, path->slots[0] + 1,
 697				     ino, bytenr, orig_offset,
 698				     &other_start, &other_end)) {
 699			fi = btrfs_item_ptr(leaf, path->slots[0],
 700					    struct btrfs_file_extent_item);
 701			btrfs_set_file_extent_num_bytes(leaf, fi,
 702							start - key.offset);
 703			btrfs_set_file_extent_generation(leaf, fi,
 704							 trans->transid);
 705			path->slots[0]++;
 706			new_key.offset = start;
 707			btrfs_set_item_key_safe(trans, path, &new_key);
 708
 709			fi = btrfs_item_ptr(leaf, path->slots[0],
 710					    struct btrfs_file_extent_item);
 711			btrfs_set_file_extent_generation(leaf, fi,
 712							 trans->transid);
 713			btrfs_set_file_extent_num_bytes(leaf, fi,
 714							other_end - start);
 715			btrfs_set_file_extent_offset(leaf, fi,
 716						     start - orig_offset);
 717			btrfs_mark_buffer_dirty(trans, leaf);
 718			goto out;
 719		}
 720	}
 721
 722	while (start > key.offset || end < extent_end) {
 723		if (key.offset == start)
 724			split = end;
 725
 726		new_key.offset = split;
 727		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 728		if (ret == -EAGAIN) {
 729			btrfs_release_path(path);
 730			goto again;
 731		}
 732		if (ret < 0) {
 733			btrfs_abort_transaction(trans, ret);
 734			goto out;
 735		}
 736
 737		leaf = path->nodes[0];
 738		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 739				    struct btrfs_file_extent_item);
 740		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 741		btrfs_set_file_extent_num_bytes(leaf, fi,
 742						split - key.offset);
 743
 744		fi = btrfs_item_ptr(leaf, path->slots[0],
 745				    struct btrfs_file_extent_item);
 746
 747		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 748		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 749		btrfs_set_file_extent_num_bytes(leaf, fi,
 750						extent_end - split);
 751		btrfs_mark_buffer_dirty(trans, leaf);
 752
 753		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
 754				       num_bytes, 0, root->root_key.objectid);
 755		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
 756				    orig_offset, 0, false);
 
 
 
 757		ret = btrfs_inc_extent_ref(trans, &ref);
 758		if (ret) {
 759			btrfs_abort_transaction(trans, ret);
 760			goto out;
 761		}
 762
 763		if (split == start) {
 764			key.offset = start;
 765		} else {
 766			if (start != key.offset) {
 767				ret = -EINVAL;
 768				btrfs_abort_transaction(trans, ret);
 769				goto out;
 770			}
 771			path->slots[0]--;
 772			extent_end = end;
 773		}
 774		recow = 1;
 775	}
 776
 777	other_start = end;
 778	other_end = 0;
 779	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
 780			       num_bytes, 0, root->root_key.objectid);
 781	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
 782			    0, false);
 
 
 
 
 783	if (extent_mergeable(leaf, path->slots[0] + 1,
 784			     ino, bytenr, orig_offset,
 785			     &other_start, &other_end)) {
 786		if (recow) {
 787			btrfs_release_path(path);
 788			goto again;
 789		}
 790		extent_end = other_end;
 791		del_slot = path->slots[0] + 1;
 792		del_nr++;
 793		ret = btrfs_free_extent(trans, &ref);
 794		if (ret) {
 795			btrfs_abort_transaction(trans, ret);
 796			goto out;
 797		}
 798	}
 799	other_start = 0;
 800	other_end = start;
 801	if (extent_mergeable(leaf, path->slots[0] - 1,
 802			     ino, bytenr, orig_offset,
 803			     &other_start, &other_end)) {
 804		if (recow) {
 805			btrfs_release_path(path);
 806			goto again;
 807		}
 808		key.offset = other_start;
 809		del_slot = path->slots[0];
 810		del_nr++;
 811		ret = btrfs_free_extent(trans, &ref);
 812		if (ret) {
 813			btrfs_abort_transaction(trans, ret);
 814			goto out;
 815		}
 816	}
 817	if (del_nr == 0) {
 818		fi = btrfs_item_ptr(leaf, path->slots[0],
 819			   struct btrfs_file_extent_item);
 820		btrfs_set_file_extent_type(leaf, fi,
 821					   BTRFS_FILE_EXTENT_REG);
 822		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 823		btrfs_mark_buffer_dirty(trans, leaf);
 824	} else {
 825		fi = btrfs_item_ptr(leaf, del_slot - 1,
 826			   struct btrfs_file_extent_item);
 827		btrfs_set_file_extent_type(leaf, fi,
 828					   BTRFS_FILE_EXTENT_REG);
 829		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 830		btrfs_set_file_extent_num_bytes(leaf, fi,
 831						extent_end - key.offset);
 832		btrfs_mark_buffer_dirty(trans, leaf);
 833
 834		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 835		if (ret < 0) {
 836			btrfs_abort_transaction(trans, ret);
 837			goto out;
 838		}
 839	}
 840out:
 841	btrfs_free_path(path);
 842	return ret;
 843}
 844
 845/*
 846 * on error we return an unlocked page and the error value
 847 * on success we return a locked page and 0
 848 */
 849static int prepare_uptodate_page(struct inode *inode,
 850				 struct page *page, u64 pos,
 851				 bool force_uptodate)
 852{
 853	struct folio *folio = page_folio(page);
 
 854	int ret = 0;
 855
 856	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
 857	    !PageUptodate(page)) {
 858		ret = btrfs_read_folio(NULL, folio);
 859		if (ret)
 860			return ret;
 861		lock_page(page);
 862		if (!PageUptodate(page)) {
 863			unlock_page(page);
 864			return -EIO;
 865		}
 
 
 
 
 
 
 866
 867		/*
 868		 * Since btrfs_read_folio() will unlock the folio before it
 869		 * returns, there is a window where btrfs_release_folio() can be
 870		 * called to release the page.  Here we check both inode
 871		 * mapping and PagePrivate() to make sure the page was not
 872		 * released.
 873		 *
 874		 * The private flag check is essential for subpage as we need
 875		 * to store extra bitmap using folio private.
 876		 */
 877		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
 878			unlock_page(page);
 879			return -EAGAIN;
 880		}
 881	}
 882	return 0;
 883}
 884
 885static fgf_t get_prepare_fgp_flags(bool nowait)
 886{
 887	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
 888
 889	if (nowait)
 890		fgp_flags |= FGP_NOWAIT;
 891
 892	return fgp_flags;
 893}
 894
 895static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 896{
 897	gfp_t gfp;
 898
 899	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 900	if (nowait) {
 901		gfp &= ~__GFP_DIRECT_RECLAIM;
 902		gfp |= GFP_NOWAIT;
 903	}
 904
 905	return gfp;
 906}
 907
 908/*
 909 * this just gets pages into the page cache and locks them down.
 910 */
 911static noinline int prepare_pages(struct inode *inode, struct page **pages,
 912				  size_t num_pages, loff_t pos,
 913				  size_t write_bytes, bool force_uptodate,
 914				  bool nowait)
 915{
 916	int i;
 917	unsigned long index = pos >> PAGE_SHIFT;
 918	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 919	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
 920	int err = 0;
 921	int faili;
 922
 923	for (i = 0; i < num_pages; i++) {
 924again:
 925		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
 926					      fgp_flags, mask | __GFP_WRITE);
 927		if (!pages[i]) {
 928			faili = i - 1;
 929			if (nowait)
 930				err = -EAGAIN;
 931			else
 932				err = -ENOMEM;
 933			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		}
 935
 936		err = set_page_extent_mapped(pages[i]);
 937		if (err < 0) {
 938			faili = i;
 939			goto fail;
 940		}
 941
 942		if (i == 0)
 943			err = prepare_uptodate_page(inode, pages[i], pos,
 944						    force_uptodate);
 945		if (!err && i == num_pages - 1)
 946			err = prepare_uptodate_page(inode, pages[i],
 947						    pos + write_bytes, false);
 948		if (err) {
 949			put_page(pages[i]);
 950			if (!nowait && err == -EAGAIN) {
 951				err = 0;
 952				goto again;
 953			}
 954			faili = i - 1;
 955			goto fail;
 956		}
 957		wait_on_page_writeback(pages[i]);
 958	}
 959
 960	return 0;
 961fail:
 962	while (faili >= 0) {
 963		unlock_page(pages[faili]);
 964		put_page(pages[faili]);
 965		faili--;
 966	}
 967	return err;
 968
 969}
 970
 971/*
 972 * This function locks the extent and properly waits for data=ordered extents
 973 * to finish before allowing the pages to be modified if need.
 974 *
 975 * The return value:
 976 * 1 - the extent is locked
 977 * 0 - the extent is not locked, and everything is OK
 978 * -EAGAIN - need re-prepare the pages
 979 * the other < 0 number - Something wrong happens
 980 */
 981static noinline int
 982lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
 983				size_t num_pages, loff_t pos,
 984				size_t write_bytes,
 985				u64 *lockstart, u64 *lockend, bool nowait,
 986				struct extent_state **cached_state)
 987{
 988	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 989	u64 start_pos;
 990	u64 last_pos;
 991	int i;
 992	int ret = 0;
 993
 994	start_pos = round_down(pos, fs_info->sectorsize);
 995	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 996
 997	if (start_pos < inode->vfs_inode.i_size) {
 998		struct btrfs_ordered_extent *ordered;
 999
1000		if (nowait) {
1001			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1002					     cached_state)) {
1003				for (i = 0; i < num_pages; i++) {
1004					unlock_page(pages[i]);
1005					put_page(pages[i]);
1006					pages[i] = NULL;
1007				}
1008
1009				return -EAGAIN;
1010			}
1011		} else {
1012			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1013		}
1014
1015		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1016						     last_pos - start_pos + 1);
1017		if (ordered &&
1018		    ordered->file_offset + ordered->num_bytes > start_pos &&
1019		    ordered->file_offset <= last_pos) {
1020			unlock_extent(&inode->io_tree, start_pos, last_pos,
1021				      cached_state);
1022			for (i = 0; i < num_pages; i++) {
1023				unlock_page(pages[i]);
1024				put_page(pages[i]);
1025			}
1026			btrfs_start_ordered_extent(ordered);
1027			btrfs_put_ordered_extent(ordered);
1028			return -EAGAIN;
1029		}
1030		if (ordered)
1031			btrfs_put_ordered_extent(ordered);
1032
1033		*lockstart = start_pos;
1034		*lockend = last_pos;
1035		ret = 1;
1036	}
1037
1038	/*
1039	 * We should be called after prepare_pages() which should have locked
1040	 * all pages in the range.
1041	 */
1042	for (i = 0; i < num_pages; i++)
1043		WARN_ON(!PageLocked(pages[i]));
1044
1045	return ret;
1046}
1047
1048/*
1049 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1050 *
1051 * @pos:         File offset.
1052 * @write_bytes: The length to write, will be updated to the nocow writeable
1053 *               range.
1054 *
1055 * This function will flush ordered extents in the range to ensure proper
1056 * nocow checks.
1057 *
1058 * Return:
1059 * > 0          If we can nocow, and updates @write_bytes.
1060 *  0           If we can't do a nocow write.
1061 * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1062 *              root is in progress.
1063 * < 0          If an error happened.
1064 *
1065 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1066 */
1067int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1068			   size_t *write_bytes, bool nowait)
1069{
1070	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1071	struct btrfs_root *root = inode->root;
1072	struct extent_state *cached_state = NULL;
1073	u64 lockstart, lockend;
1074	u64 num_bytes;
1075	int ret;
1076
1077	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1078		return 0;
1079
1080	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1081		return -EAGAIN;
1082
1083	lockstart = round_down(pos, fs_info->sectorsize);
1084	lockend = round_up(pos + *write_bytes,
1085			   fs_info->sectorsize) - 1;
1086	num_bytes = lockend - lockstart + 1;
1087
1088	if (nowait) {
1089		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1090						  &cached_state)) {
1091			btrfs_drew_write_unlock(&root->snapshot_lock);
1092			return -EAGAIN;
1093		}
1094	} else {
1095		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1096						   &cached_state);
1097	}
1098	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1099			NULL, NULL, NULL, nowait, false);
1100	if (ret <= 0)
1101		btrfs_drew_write_unlock(&root->snapshot_lock);
1102	else
1103		*write_bytes = min_t(size_t, *write_bytes ,
1104				     num_bytes - pos + lockstart);
1105	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1106
1107	return ret;
1108}
1109
1110void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1111{
1112	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1113}
1114
1115static void update_time_for_write(struct inode *inode)
1116{
1117	struct timespec64 now, ts;
1118
1119	if (IS_NOCMTIME(inode))
1120		return;
1121
1122	now = current_time(inode);
1123	ts = inode_get_mtime(inode);
1124	if (!timespec64_equal(&ts, &now))
1125		inode_set_mtime_to_ts(inode, now);
1126
1127	ts = inode_get_ctime(inode);
1128	if (!timespec64_equal(&ts, &now))
1129		inode_set_ctime_to_ts(inode, now);
1130
1131	if (IS_I_VERSION(inode))
1132		inode_inc_iversion(inode);
1133}
1134
1135static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1136			     size_t count)
1137{
1138	struct file *file = iocb->ki_filp;
1139	struct inode *inode = file_inode(file);
1140	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1141	loff_t pos = iocb->ki_pos;
1142	int ret;
1143	loff_t oldsize;
1144	loff_t start_pos;
1145
1146	/*
1147	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1148	 * prealloc flags, as without those flags we always have to COW. We will
1149	 * later check if we can really COW into the target range (using
1150	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1151	 */
1152	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1153	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1154		return -EAGAIN;
1155
1156	ret = file_remove_privs(file);
1157	if (ret)
1158		return ret;
1159
1160	/*
1161	 * We reserve space for updating the inode when we reserve space for the
1162	 * extent we are going to write, so we will enospc out there.  We don't
1163	 * need to start yet another transaction to update the inode as we will
1164	 * update the inode when we finish writing whatever data we write.
1165	 */
1166	update_time_for_write(inode);
 
 
 
1167
1168	start_pos = round_down(pos, fs_info->sectorsize);
1169	oldsize = i_size_read(inode);
1170	if (start_pos > oldsize) {
1171		/* Expand hole size to cover write data, preventing empty gap */
1172		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1173
1174		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1175		if (ret)
1176			return ret;
1177	}
1178
1179	return 0;
1180}
1181
1182static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1183					       struct iov_iter *i)
1184{
1185	struct file *file = iocb->ki_filp;
1186	loff_t pos;
1187	struct inode *inode = file_inode(file);
1188	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1189	struct page **pages = NULL;
1190	struct extent_changeset *data_reserved = NULL;
1191	u64 release_bytes = 0;
1192	u64 lockstart;
1193	u64 lockend;
1194	size_t num_written = 0;
1195	int nrptrs;
1196	ssize_t ret;
1197	bool only_release_metadata = false;
1198	bool force_page_uptodate = false;
1199	loff_t old_isize = i_size_read(inode);
1200	unsigned int ilock_flags = 0;
1201	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1202	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
 
1203
1204	if (nowait)
1205		ilock_flags |= BTRFS_ILOCK_TRY;
1206
1207	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1208	if (ret < 0)
1209		return ret;
1210
 
 
 
 
 
 
 
1211	ret = generic_write_checks(iocb, i);
1212	if (ret <= 0)
1213		goto out;
1214
1215	ret = btrfs_write_check(iocb, i, ret);
1216	if (ret < 0)
1217		goto out;
1218
1219	pos = iocb->ki_pos;
1220	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1221			PAGE_SIZE / (sizeof(struct page *)));
1222	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1223	nrptrs = max(nrptrs, 8);
1224	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1225	if (!pages) {
1226		ret = -ENOMEM;
1227		goto out;
1228	}
1229
1230	while (iov_iter_count(i) > 0) {
1231		struct extent_state *cached_state = NULL;
1232		size_t offset = offset_in_page(pos);
1233		size_t sector_offset;
1234		size_t write_bytes = min(iov_iter_count(i),
1235					 nrptrs * (size_t)PAGE_SIZE -
1236					 offset);
1237		size_t num_pages;
1238		size_t reserve_bytes;
1239		size_t dirty_pages;
1240		size_t copied;
1241		size_t dirty_sectors;
1242		size_t num_sectors;
 
1243		int extents_locked;
 
1244
1245		/*
1246		 * Fault pages before locking them in prepare_pages
1247		 * to avoid recursive lock
1248		 */
1249		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1250			ret = -EFAULT;
1251			break;
1252		}
1253
1254		only_release_metadata = false;
1255		sector_offset = pos & (fs_info->sectorsize - 1);
1256
1257		extent_changeset_release(data_reserved);
1258		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1259						  &data_reserved, pos,
1260						  write_bytes, nowait);
1261		if (ret < 0) {
1262			int can_nocow;
1263
1264			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1265				ret = -EAGAIN;
1266				break;
1267			}
1268
1269			/*
1270			 * If we don't have to COW at the offset, reserve
1271			 * metadata only. write_bytes may get smaller than
1272			 * requested here.
1273			 */
1274			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1275							   &write_bytes, nowait);
1276			if (can_nocow < 0)
1277				ret = can_nocow;
1278			if (can_nocow > 0)
1279				ret = 0;
1280			if (ret)
1281				break;
1282			only_release_metadata = true;
1283		}
1284
1285		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1286		WARN_ON(num_pages > nrptrs);
1287		reserve_bytes = round_up(write_bytes + sector_offset,
1288					 fs_info->sectorsize);
1289		WARN_ON(reserve_bytes == 0);
1290		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1291						      reserve_bytes,
1292						      reserve_bytes, nowait);
1293		if (ret) {
1294			if (!only_release_metadata)
1295				btrfs_free_reserved_data_space(BTRFS_I(inode),
1296						data_reserved, pos,
1297						write_bytes);
1298			else
1299				btrfs_check_nocow_unlock(BTRFS_I(inode));
1300
1301			if (nowait && ret == -ENOSPC)
1302				ret = -EAGAIN;
1303			break;
1304		}
1305
1306		release_bytes = reserve_bytes;
1307again:
1308		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1309		if (ret) {
1310			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1311			break;
1312		}
1313
1314		/*
1315		 * This is going to setup the pages array with the number of
1316		 * pages we want, so we don't really need to worry about the
1317		 * contents of pages from loop to loop
1318		 */
1319		ret = prepare_pages(inode, pages, num_pages,
1320				    pos, write_bytes, force_page_uptodate, false);
1321		if (ret) {
1322			btrfs_delalloc_release_extents(BTRFS_I(inode),
1323						       reserve_bytes);
1324			break;
1325		}
1326
1327		extents_locked = lock_and_cleanup_extent_if_need(
1328				BTRFS_I(inode), pages,
1329				num_pages, pos, write_bytes, &lockstart,
1330				&lockend, nowait, &cached_state);
1331		if (extents_locked < 0) {
1332			if (!nowait && extents_locked == -EAGAIN)
1333				goto again;
1334
1335			btrfs_delalloc_release_extents(BTRFS_I(inode),
1336						       reserve_bytes);
1337			ret = extents_locked;
1338			break;
1339		}
1340
1341		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1342
1343		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1344		dirty_sectors = round_up(copied + sector_offset,
1345					fs_info->sectorsize);
1346		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1347
1348		/*
1349		 * if we have trouble faulting in the pages, fall
1350		 * back to one page at a time
1351		 */
1352		if (copied < write_bytes)
1353			nrptrs = 1;
1354
1355		if (copied == 0) {
1356			force_page_uptodate = true;
1357			dirty_sectors = 0;
1358			dirty_pages = 0;
1359		} else {
1360			force_page_uptodate = false;
1361			dirty_pages = DIV_ROUND_UP(copied + offset,
1362						   PAGE_SIZE);
1363		}
1364
1365		if (num_sectors > dirty_sectors) {
1366			/* release everything except the sectors we dirtied */
1367			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1368			if (only_release_metadata) {
1369				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1370							release_bytes, true);
1371			} else {
1372				u64 __pos;
1373
1374				__pos = round_down(pos,
1375						   fs_info->sectorsize) +
1376					(dirty_pages << PAGE_SHIFT);
1377				btrfs_delalloc_release_space(BTRFS_I(inode),
1378						data_reserved, __pos,
1379						release_bytes, true);
1380			}
1381		}
1382
1383		release_bytes = round_up(copied + sector_offset,
1384					fs_info->sectorsize);
1385
1386		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1387					dirty_pages, pos, copied,
1388					&cached_state, only_release_metadata);
1389
1390		/*
1391		 * If we have not locked the extent range, because the range's
1392		 * start offset is >= i_size, we might still have a non-NULL
1393		 * cached extent state, acquired while marking the extent range
1394		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1395		 * possible cached extent state to avoid a memory leak.
1396		 */
1397		if (extents_locked)
1398			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1399				      lockend, &cached_state);
1400		else
1401			free_extent_state(cached_state);
1402
1403		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1404		if (ret) {
1405			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1406			break;
1407		}
1408
1409		release_bytes = 0;
1410		if (only_release_metadata)
1411			btrfs_check_nocow_unlock(BTRFS_I(inode));
1412
1413		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1414
1415		cond_resched();
1416
1417		pos += copied;
1418		num_written += copied;
1419	}
1420
1421	kfree(pages);
1422
1423	if (release_bytes) {
1424		if (only_release_metadata) {
1425			btrfs_check_nocow_unlock(BTRFS_I(inode));
1426			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1427					release_bytes, true);
1428		} else {
1429			btrfs_delalloc_release_space(BTRFS_I(inode),
1430					data_reserved,
1431					round_down(pos, fs_info->sectorsize),
1432					release_bytes, true);
1433		}
1434	}
1435
1436	extent_changeset_free(data_reserved);
1437	if (num_written > 0) {
1438		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1439		iocb->ki_pos += num_written;
1440	}
1441out:
1442	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1443	return num_written ? num_written : ret;
1444}
1445
1446static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1447			       const struct iov_iter *iter, loff_t offset)
1448{
1449	const u32 blocksize_mask = fs_info->sectorsize - 1;
1450
1451	if (offset & blocksize_mask)
1452		return -EINVAL;
1453
1454	if (iov_iter_alignment(iter) & blocksize_mask)
1455		return -EINVAL;
1456
1457	return 0;
1458}
1459
1460static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1461{
1462	struct file *file = iocb->ki_filp;
1463	struct inode *inode = file_inode(file);
1464	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1465	loff_t pos;
1466	ssize_t written = 0;
1467	ssize_t written_buffered;
1468	size_t prev_left = 0;
1469	loff_t endbyte;
1470	ssize_t err;
1471	unsigned int ilock_flags = 0;
1472	struct iomap_dio *dio;
1473
1474	if (iocb->ki_flags & IOCB_NOWAIT)
1475		ilock_flags |= BTRFS_ILOCK_TRY;
1476
1477	/*
1478	 * If the write DIO is within EOF, use a shared lock and also only if
1479	 * security bits will likely not be dropped by file_remove_privs() called
1480	 * from btrfs_write_check(). Either will need to be rechecked after the
1481	 * lock was acquired.
1482	 */
1483	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1484		ilock_flags |= BTRFS_ILOCK_SHARED;
1485
1486relock:
1487	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1488	if (err < 0)
1489		return err;
1490
1491	/* Shared lock cannot be used with security bits set. */
1492	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1493		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1495		goto relock;
1496	}
1497
1498	err = generic_write_checks(iocb, from);
1499	if (err <= 0) {
1500		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1501		return err;
1502	}
1503
1504	err = btrfs_write_check(iocb, from, err);
1505	if (err < 0) {
1506		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1507		goto out;
1508	}
1509
1510	pos = iocb->ki_pos;
1511	/*
1512	 * Re-check since file size may have changed just before taking the
1513	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1514	 */
1515	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1516	    pos + iov_iter_count(from) > i_size_read(inode)) {
1517		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1518		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1519		goto relock;
1520	}
1521
1522	if (check_direct_IO(fs_info, from, pos)) {
1523		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1524		goto buffered;
1525	}
1526
1527	/*
1528	 * The iov_iter can be mapped to the same file range we are writing to.
1529	 * If that's the case, then we will deadlock in the iomap code, because
1530	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1531	 * an ordered extent, and after that it will fault in the pages that the
1532	 * iov_iter refers to. During the fault in we end up in the readahead
1533	 * pages code (starting at btrfs_readahead()), which will lock the range,
1534	 * find that ordered extent and then wait for it to complete (at
1535	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1536	 * obviously the ordered extent can never complete as we didn't submit
1537	 * yet the respective bio(s). This always happens when the buffer is
1538	 * memory mapped to the same file range, since the iomap DIO code always
1539	 * invalidates pages in the target file range (after starting and waiting
1540	 * for any writeback).
1541	 *
1542	 * So here we disable page faults in the iov_iter and then retry if we
1543	 * got -EFAULT, faulting in the pages before the retry.
1544	 */
1545	from->nofault = true;
1546	dio = btrfs_dio_write(iocb, from, written);
1547	from->nofault = false;
1548
1549	/*
1550	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1551	 * iocb, and that needs to lock the inode. So unlock it before calling
1552	 * iomap_dio_complete() to avoid a deadlock.
1553	 */
1554	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1555
1556	if (IS_ERR_OR_NULL(dio))
1557		err = PTR_ERR_OR_ZERO(dio);
1558	else
1559		err = iomap_dio_complete(dio);
1560
1561	/* No increment (+=) because iomap returns a cumulative value. */
1562	if (err > 0)
1563		written = err;
1564
1565	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1566		const size_t left = iov_iter_count(from);
1567		/*
1568		 * We have more data left to write. Try to fault in as many as
1569		 * possible of the remainder pages and retry. We do this without
1570		 * releasing and locking again the inode, to prevent races with
1571		 * truncate.
1572		 *
1573		 * Also, in case the iov refers to pages in the file range of the
1574		 * file we want to write to (due to a mmap), we could enter an
1575		 * infinite loop if we retry after faulting the pages in, since
1576		 * iomap will invalidate any pages in the range early on, before
1577		 * it tries to fault in the pages of the iov. So we keep track of
1578		 * how much was left of iov in the previous EFAULT and fallback
1579		 * to buffered IO in case we haven't made any progress.
1580		 */
1581		if (left == prev_left) {
1582			err = -ENOTBLK;
1583		} else {
1584			fault_in_iov_iter_readable(from, left);
1585			prev_left = left;
1586			goto relock;
1587		}
1588	}
1589
1590	/*
1591	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1592	 * we must fallback to buffered IO.
1593	 */
1594	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1595		goto out;
1596
1597buffered:
1598	/*
1599	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1600	 * it must retry the operation in a context where blocking is acceptable,
1601	 * because even if we end up not blocking during the buffered IO attempt
1602	 * below, we will block when flushing and waiting for the IO.
1603	 */
1604	if (iocb->ki_flags & IOCB_NOWAIT) {
1605		err = -EAGAIN;
1606		goto out;
1607	}
1608
1609	pos = iocb->ki_pos;
1610	written_buffered = btrfs_buffered_write(iocb, from);
1611	if (written_buffered < 0) {
1612		err = written_buffered;
1613		goto out;
1614	}
1615	/*
1616	 * Ensure all data is persisted. We want the next direct IO read to be
1617	 * able to read what was just written.
1618	 */
1619	endbyte = pos + written_buffered - 1;
1620	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1621	if (err)
1622		goto out;
1623	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1624	if (err)
1625		goto out;
1626	written += written_buffered;
1627	iocb->ki_pos = pos + written_buffered;
1628	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1629				 endbyte >> PAGE_SHIFT);
1630out:
1631	return err < 0 ? err : written;
1632}
1633
1634static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1635			const struct btrfs_ioctl_encoded_io_args *encoded)
1636{
1637	struct file *file = iocb->ki_filp;
1638	struct inode *inode = file_inode(file);
1639	loff_t count;
1640	ssize_t ret;
1641
1642	btrfs_inode_lock(BTRFS_I(inode), 0);
1643	count = encoded->len;
1644	ret = generic_write_checks_count(iocb, &count);
1645	if (ret == 0 && count != encoded->len) {
1646		/*
1647		 * The write got truncated by generic_write_checks_count(). We
1648		 * can't do a partial encoded write.
1649		 */
1650		ret = -EFBIG;
1651	}
1652	if (ret || encoded->len == 0)
1653		goto out;
1654
1655	ret = btrfs_write_check(iocb, from, encoded->len);
1656	if (ret < 0)
1657		goto out;
1658
1659	ret = btrfs_do_encoded_write(iocb, from, encoded);
1660out:
1661	btrfs_inode_unlock(BTRFS_I(inode), 0);
1662	return ret;
1663}
1664
1665ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1666			    const struct btrfs_ioctl_encoded_io_args *encoded)
1667{
1668	struct file *file = iocb->ki_filp;
1669	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1670	ssize_t num_written, num_sync;
1671
1672	/*
1673	 * If the fs flips readonly due to some impossible error, although we
1674	 * have opened a file as writable, we have to stop this write operation
1675	 * to ensure consistency.
1676	 */
1677	if (BTRFS_FS_ERROR(inode->root->fs_info))
1678		return -EROFS;
1679
1680	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1681		return -EOPNOTSUPP;
1682
1683	if (encoded) {
1684		num_written = btrfs_encoded_write(iocb, from, encoded);
1685		num_sync = encoded->len;
1686	} else if (iocb->ki_flags & IOCB_DIRECT) {
1687		num_written = btrfs_direct_write(iocb, from);
1688		num_sync = num_written;
1689	} else {
1690		num_written = btrfs_buffered_write(iocb, from);
1691		num_sync = num_written;
1692	}
1693
1694	btrfs_set_inode_last_sub_trans(inode);
1695
1696	if (num_sync > 0) {
1697		num_sync = generic_write_sync(iocb, num_sync);
1698		if (num_sync < 0)
1699			num_written = num_sync;
1700	}
1701
1702	return num_written;
1703}
1704
1705static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1706{
1707	return btrfs_do_write_iter(iocb, from, NULL);
1708}
1709
1710int btrfs_release_file(struct inode *inode, struct file *filp)
1711{
1712	struct btrfs_file_private *private = filp->private_data;
1713
1714	if (private) {
1715		kfree(private->filldir_buf);
1716		free_extent_state(private->llseek_cached_state);
1717		kfree(private);
1718		filp->private_data = NULL;
1719	}
1720
1721	/*
1722	 * Set by setattr when we are about to truncate a file from a non-zero
1723	 * size to a zero size.  This tries to flush down new bytes that may
1724	 * have been written if the application were using truncate to replace
1725	 * a file in place.
1726	 */
1727	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1728			       &BTRFS_I(inode)->runtime_flags))
1729			filemap_flush(inode->i_mapping);
1730	return 0;
1731}
1732
1733static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1734{
1735	int ret;
1736	struct blk_plug plug;
1737
1738	/*
1739	 * This is only called in fsync, which would do synchronous writes, so
1740	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1741	 * multiple disks using raid profile, a large IO can be split to
1742	 * several segments of stripe length (currently 64K).
1743	 */
1744	blk_start_plug(&plug);
1745	ret = btrfs_fdatawrite_range(inode, start, end);
1746	blk_finish_plug(&plug);
1747
1748	return ret;
1749}
1750
1751static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1752{
1753	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1754	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1755
1756	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1757	    list_empty(&ctx->ordered_extents))
1758		return true;
1759
1760	/*
1761	 * If we are doing a fast fsync we can not bail out if the inode's
1762	 * last_trans is <= then the last committed transaction, because we only
1763	 * update the last_trans of the inode during ordered extent completion,
1764	 * and for a fast fsync we don't wait for that, we only wait for the
1765	 * writeback to complete.
1766	 */
1767	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1768	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1769	     list_empty(&ctx->ordered_extents)))
1770		return true;
1771
1772	return false;
1773}
1774
1775/*
1776 * fsync call for both files and directories.  This logs the inode into
1777 * the tree log instead of forcing full commits whenever possible.
1778 *
1779 * It needs to call filemap_fdatawait so that all ordered extent updates are
1780 * in the metadata btree are up to date for copying to the log.
1781 *
1782 * It drops the inode mutex before doing the tree log commit.  This is an
1783 * important optimization for directories because holding the mutex prevents
1784 * new operations on the dir while we write to disk.
1785 */
1786int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1787{
1788	struct dentry *dentry = file_dentry(file);
1789	struct inode *inode = d_inode(dentry);
1790	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1791	struct btrfs_root *root = BTRFS_I(inode)->root;
1792	struct btrfs_trans_handle *trans;
1793	struct btrfs_log_ctx ctx;
1794	int ret = 0, err;
1795	u64 len;
1796	bool full_sync;
 
 
 
 
 
 
 
1797
1798	trace_btrfs_sync_file(file, datasync);
1799
1800	btrfs_init_log_ctx(&ctx, inode);
1801
1802	/*
1803	 * Always set the range to a full range, otherwise we can get into
1804	 * several problems, from missing file extent items to represent holes
1805	 * when not using the NO_HOLES feature, to log tree corruption due to
1806	 * races between hole detection during logging and completion of ordered
1807	 * extents outside the range, to missing checksums due to ordered extents
1808	 * for which we flushed only a subset of their pages.
1809	 */
1810	start = 0;
1811	end = LLONG_MAX;
1812	len = (u64)LLONG_MAX + 1;
1813
1814	/*
1815	 * We write the dirty pages in the range and wait until they complete
1816	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1817	 * multi-task, and make the performance up.  See
1818	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1819	 */
1820	ret = start_ordered_ops(inode, start, end);
1821	if (ret)
1822		goto out;
1823
1824	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 
 
 
1825
1826	atomic_inc(&root->log_batch);
1827
1828	/*
1829	 * Before we acquired the inode's lock and the mmap lock, someone may
1830	 * have dirtied more pages in the target range. We need to make sure
1831	 * that writeback for any such pages does not start while we are logging
1832	 * the inode, because if it does, any of the following might happen when
1833	 * we are not doing a full inode sync:
1834	 *
1835	 * 1) We log an extent after its writeback finishes but before its
1836	 *    checksums are added to the csum tree, leading to -EIO errors
1837	 *    when attempting to read the extent after a log replay.
1838	 *
1839	 * 2) We can end up logging an extent before its writeback finishes.
1840	 *    Therefore after the log replay we will have a file extent item
1841	 *    pointing to an unwritten extent (and no data checksums as well).
1842	 *
1843	 * So trigger writeback for any eventual new dirty pages and then we
1844	 * wait for all ordered extents to complete below.
1845	 */
1846	ret = start_ordered_ops(inode, start, end);
1847	if (ret) {
1848		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 
 
 
1849		goto out;
1850	}
1851
1852	/*
1853	 * Always check for the full sync flag while holding the inode's lock,
1854	 * to avoid races with other tasks. The flag must be either set all the
1855	 * time during logging or always off all the time while logging.
1856	 * We check the flag here after starting delalloc above, because when
1857	 * running delalloc the full sync flag may be set if we need to drop
1858	 * extra extent map ranges due to temporary memory allocation failures.
1859	 */
1860	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1861			     &BTRFS_I(inode)->runtime_flags);
1862
1863	/*
1864	 * We have to do this here to avoid the priority inversion of waiting on
1865	 * IO of a lower priority task while holding a transaction open.
1866	 *
1867	 * For a full fsync we wait for the ordered extents to complete while
1868	 * for a fast fsync we wait just for writeback to complete, and then
1869	 * attach the ordered extents to the transaction so that a transaction
1870	 * commit waits for their completion, to avoid data loss if we fsync,
1871	 * the current transaction commits before the ordered extents complete
1872	 * and a power failure happens right after that.
1873	 *
1874	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1875	 * logical address recorded in the ordered extent may change. We need
1876	 * to wait for the IO to stabilize the logical address.
1877	 */
1878	if (full_sync || btrfs_is_zoned(fs_info)) {
1879		ret = btrfs_wait_ordered_range(inode, start, len);
 
1880	} else {
1881		/*
1882		 * Get our ordered extents as soon as possible to avoid doing
1883		 * checksum lookups in the csum tree, and use instead the
1884		 * checksums attached to the ordered extents.
1885		 */
1886		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1887						      &ctx.ordered_extents);
1888		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	}
1890
1891	if (ret)
1892		goto out_release_extents;
1893
1894	atomic_inc(&root->log_batch);
1895
1896	if (skip_inode_logging(&ctx)) {
1897		/*
1898		 * We've had everything committed since the last time we were
1899		 * modified so clear this flag in case it was set for whatever
1900		 * reason, it's no longer relevant.
1901		 */
1902		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1903			  &BTRFS_I(inode)->runtime_flags);
1904		/*
1905		 * An ordered extent might have started before and completed
1906		 * already with io errors, in which case the inode was not
1907		 * updated and we end up here. So check the inode's mapping
1908		 * for any errors that might have happened since we last
1909		 * checked called fsync.
1910		 */
1911		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1912		goto out_release_extents;
1913	}
1914
 
 
1915	/*
1916	 * We use start here because we will need to wait on the IO to complete
1917	 * in btrfs_sync_log, which could require joining a transaction (for
1918	 * example checking cross references in the nocow path).  If we use join
1919	 * here we could get into a situation where we're waiting on IO to
1920	 * happen that is blocked on a transaction trying to commit.  With start
1921	 * we inc the extwriter counter, so we wait for all extwriters to exit
1922	 * before we start blocking joiners.  This comment is to keep somebody
1923	 * from thinking they are super smart and changing this to
1924	 * btrfs_join_transaction *cough*Josef*cough*.
1925	 */
1926	trans = btrfs_start_transaction(root, 0);
1927	if (IS_ERR(trans)) {
1928		ret = PTR_ERR(trans);
1929		goto out_release_extents;
1930	}
1931	trans->in_fsync = true;
1932
1933	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
 
 
 
 
 
 
 
 
 
1934	btrfs_release_log_ctx_extents(&ctx);
1935	if (ret < 0) {
1936		/* Fallthrough and commit/free transaction. */
1937		ret = BTRFS_LOG_FORCE_COMMIT;
1938	}
1939
1940	/* we've logged all the items and now have a consistent
1941	 * version of the file in the log.  It is possible that
1942	 * someone will come in and modify the file, but that's
1943	 * fine because the log is consistent on disk, and we
1944	 * have references to all of the file's extents
1945	 *
1946	 * It is possible that someone will come in and log the
1947	 * file again, but that will end up using the synchronization
1948	 * inside btrfs_sync_log to keep things safe.
1949	 */
1950	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 
 
 
1951
1952	if (ret == BTRFS_NO_LOG_SYNC) {
1953		ret = btrfs_end_transaction(trans);
1954		goto out;
1955	}
1956
1957	/* We successfully logged the inode, attempt to sync the log. */
1958	if (!ret) {
1959		ret = btrfs_sync_log(trans, root, &ctx);
1960		if (!ret) {
1961			ret = btrfs_end_transaction(trans);
1962			goto out;
1963		}
1964	}
1965
1966	/*
1967	 * At this point we need to commit the transaction because we had
1968	 * btrfs_need_log_full_commit() or some other error.
1969	 *
1970	 * If we didn't do a full sync we have to stop the trans handle, wait on
1971	 * the ordered extents, start it again and commit the transaction.  If
1972	 * we attempt to wait on the ordered extents here we could deadlock with
1973	 * something like fallocate() that is holding the extent lock trying to
1974	 * start a transaction while some other thread is trying to commit the
1975	 * transaction while we (fsync) are currently holding the transaction
1976	 * open.
1977	 */
1978	if (!full_sync) {
1979		ret = btrfs_end_transaction(trans);
1980		if (ret)
1981			goto out;
1982		ret = btrfs_wait_ordered_range(inode, start, len);
1983		if (ret)
1984			goto out;
1985
1986		/*
1987		 * This is safe to use here because we're only interested in
1988		 * making sure the transaction that had the ordered extents is
1989		 * committed.  We aren't waiting on anything past this point,
1990		 * we're purely getting the transaction and committing it.
1991		 */
1992		trans = btrfs_attach_transaction_barrier(root);
1993		if (IS_ERR(trans)) {
1994			ret = PTR_ERR(trans);
1995
1996			/*
1997			 * We committed the transaction and there's no currently
1998			 * running transaction, this means everything we care
1999			 * about made it to disk and we are done.
2000			 */
2001			if (ret == -ENOENT)
2002				ret = 0;
2003			goto out;
2004		}
2005	}
2006
2007	ret = btrfs_commit_transaction(trans);
2008out:
 
2009	ASSERT(list_empty(&ctx.list));
2010	ASSERT(list_empty(&ctx.conflict_inodes));
2011	err = file_check_and_advance_wb_err(file);
2012	if (!ret)
2013		ret = err;
2014	return ret > 0 ? -EIO : ret;
2015
2016out_release_extents:
2017	btrfs_release_log_ctx_extents(&ctx);
2018	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 
 
 
2019	goto out;
2020}
2021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022static const struct vm_operations_struct btrfs_file_vm_ops = {
2023	.fault		= filemap_fault,
2024	.map_pages	= filemap_map_pages,
2025	.page_mkwrite	= btrfs_page_mkwrite,
2026};
2027
2028static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2029{
2030	struct address_space *mapping = filp->f_mapping;
2031
2032	if (!mapping->a_ops->read_folio)
2033		return -ENOEXEC;
2034
2035	file_accessed(filp);
2036	vma->vm_ops = &btrfs_file_vm_ops;
2037
2038	return 0;
2039}
2040
2041static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2042			  int slot, u64 start, u64 end)
2043{
2044	struct btrfs_file_extent_item *fi;
2045	struct btrfs_key key;
2046
2047	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2048		return 0;
2049
2050	btrfs_item_key_to_cpu(leaf, &key, slot);
2051	if (key.objectid != btrfs_ino(inode) ||
2052	    key.type != BTRFS_EXTENT_DATA_KEY)
2053		return 0;
2054
2055	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2056
2057	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2058		return 0;
2059
2060	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2061		return 0;
2062
2063	if (key.offset == end)
2064		return 1;
2065	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2066		return 1;
2067	return 0;
2068}
2069
2070static int fill_holes(struct btrfs_trans_handle *trans,
2071		struct btrfs_inode *inode,
2072		struct btrfs_path *path, u64 offset, u64 end)
2073{
2074	struct btrfs_fs_info *fs_info = trans->fs_info;
2075	struct btrfs_root *root = inode->root;
2076	struct extent_buffer *leaf;
2077	struct btrfs_file_extent_item *fi;
2078	struct extent_map *hole_em;
2079	struct btrfs_key key;
2080	int ret;
2081
2082	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2083		goto out;
2084
2085	key.objectid = btrfs_ino(inode);
2086	key.type = BTRFS_EXTENT_DATA_KEY;
2087	key.offset = offset;
2088
2089	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2090	if (ret <= 0) {
2091		/*
2092		 * We should have dropped this offset, so if we find it then
2093		 * something has gone horribly wrong.
2094		 */
2095		if (ret == 0)
2096			ret = -EINVAL;
2097		return ret;
2098	}
2099
2100	leaf = path->nodes[0];
2101	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2102		u64 num_bytes;
2103
2104		path->slots[0]--;
2105		fi = btrfs_item_ptr(leaf, path->slots[0],
2106				    struct btrfs_file_extent_item);
2107		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2108			end - offset;
2109		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2110		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2111		btrfs_set_file_extent_offset(leaf, fi, 0);
2112		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2113		btrfs_mark_buffer_dirty(trans, leaf);
2114		goto out;
2115	}
2116
2117	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2118		u64 num_bytes;
2119
2120		key.offset = offset;
2121		btrfs_set_item_key_safe(trans, path, &key);
2122		fi = btrfs_item_ptr(leaf, path->slots[0],
2123				    struct btrfs_file_extent_item);
2124		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2125			offset;
2126		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2128		btrfs_set_file_extent_offset(leaf, fi, 0);
2129		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2130		btrfs_mark_buffer_dirty(trans, leaf);
2131		goto out;
2132	}
2133	btrfs_release_path(path);
2134
2135	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2136				       end - offset);
2137	if (ret)
2138		return ret;
2139
2140out:
2141	btrfs_release_path(path);
2142
2143	hole_em = alloc_extent_map();
2144	if (!hole_em) {
2145		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2146		btrfs_set_inode_full_sync(inode);
2147	} else {
2148		hole_em->start = offset;
2149		hole_em->len = end - offset;
2150		hole_em->ram_bytes = hole_em->len;
2151		hole_em->orig_start = offset;
2152
2153		hole_em->block_start = EXTENT_MAP_HOLE;
2154		hole_em->block_len = 0;
2155		hole_em->orig_block_len = 0;
2156		hole_em->generation = trans->transid;
2157
2158		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2159		free_extent_map(hole_em);
2160		if (ret)
2161			btrfs_set_inode_full_sync(inode);
2162	}
2163
2164	return 0;
2165}
2166
2167/*
2168 * Find a hole extent on given inode and change start/len to the end of hole
2169 * extent.(hole/vacuum extent whose em->start <= start &&
2170 *	   em->start + em->len > start)
2171 * When a hole extent is found, return 1 and modify start/len.
2172 */
2173static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2174{
2175	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2176	struct extent_map *em;
2177	int ret = 0;
2178
2179	em = btrfs_get_extent(inode, NULL, 0,
2180			      round_down(*start, fs_info->sectorsize),
2181			      round_up(*len, fs_info->sectorsize));
2182	if (IS_ERR(em))
2183		return PTR_ERR(em);
2184
2185	/* Hole or vacuum extent(only exists in no-hole mode) */
2186	if (em->block_start == EXTENT_MAP_HOLE) {
2187		ret = 1;
2188		*len = em->start + em->len > *start + *len ?
2189		       0 : *start + *len - em->start - em->len;
2190		*start = em->start + em->len;
2191	}
2192	free_extent_map(em);
2193	return ret;
2194}
2195
2196static void btrfs_punch_hole_lock_range(struct inode *inode,
2197					const u64 lockstart,
2198					const u64 lockend,
2199					struct extent_state **cached_state)
2200{
2201	/*
2202	 * For subpage case, if the range is not at page boundary, we could
2203	 * have pages at the leading/tailing part of the range.
2204	 * This could lead to dead loop since filemap_range_has_page()
2205	 * will always return true.
2206	 * So here we need to do extra page alignment for
2207	 * filemap_range_has_page().
2208	 */
2209	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2210	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2211
2212	while (1) {
2213		truncate_pagecache_range(inode, lockstart, lockend);
2214
2215		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2216			    cached_state);
2217		/*
2218		 * We can't have ordered extents in the range, nor dirty/writeback
2219		 * pages, because we have locked the inode's VFS lock in exclusive
2220		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2221		 * we have flushed all delalloc in the range and we have waited
2222		 * for any ordered extents in the range to complete.
2223		 * We can race with anyone reading pages from this range, so after
2224		 * locking the range check if we have pages in the range, and if
2225		 * we do, unlock the range and retry.
2226		 */
2227		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2228					    page_lockend))
2229			break;
2230
2231		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2232			      cached_state);
2233	}
2234
2235	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2236}
2237
2238static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2239				     struct btrfs_inode *inode,
2240				     struct btrfs_path *path,
2241				     struct btrfs_replace_extent_info *extent_info,
2242				     const u64 replace_len,
2243				     const u64 bytes_to_drop)
2244{
2245	struct btrfs_fs_info *fs_info = trans->fs_info;
2246	struct btrfs_root *root = inode->root;
2247	struct btrfs_file_extent_item *extent;
2248	struct extent_buffer *leaf;
2249	struct btrfs_key key;
2250	int slot;
2251	struct btrfs_ref ref = { 0 };
2252	int ret;
2253
2254	if (replace_len == 0)
2255		return 0;
2256
2257	if (extent_info->disk_offset == 0 &&
2258	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2259		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2260		return 0;
2261	}
2262
2263	key.objectid = btrfs_ino(inode);
2264	key.type = BTRFS_EXTENT_DATA_KEY;
2265	key.offset = extent_info->file_offset;
2266	ret = btrfs_insert_empty_item(trans, root, path, &key,
2267				      sizeof(struct btrfs_file_extent_item));
2268	if (ret)
2269		return ret;
2270	leaf = path->nodes[0];
2271	slot = path->slots[0];
2272	write_extent_buffer(leaf, extent_info->extent_buf,
2273			    btrfs_item_ptr_offset(leaf, slot),
2274			    sizeof(struct btrfs_file_extent_item));
2275	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2276	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2277	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2278	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2279	if (extent_info->is_new_extent)
2280		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2281	btrfs_mark_buffer_dirty(trans, leaf);
2282	btrfs_release_path(path);
2283
2284	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2285						replace_len);
2286	if (ret)
2287		return ret;
2288
2289	/* If it's a hole, nothing more needs to be done. */
2290	if (extent_info->disk_offset == 0) {
2291		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2292		return 0;
2293	}
2294
2295	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2296
2297	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2298		key.objectid = extent_info->disk_offset;
2299		key.type = BTRFS_EXTENT_ITEM_KEY;
2300		key.offset = extent_info->disk_len;
2301		ret = btrfs_alloc_reserved_file_extent(trans, root,
2302						       btrfs_ino(inode),
2303						       extent_info->file_offset,
2304						       extent_info->qgroup_reserved,
2305						       &key);
2306	} else {
 
 
 
 
 
 
 
2307		u64 ref_offset;
2308
2309		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2310				       extent_info->disk_offset,
2311				       extent_info->disk_len, 0,
2312				       root->root_key.objectid);
2313		ref_offset = extent_info->file_offset - extent_info->data_offset;
2314		btrfs_init_data_ref(&ref, root->root_key.objectid,
2315				    btrfs_ino(inode), ref_offset, 0, false);
2316		ret = btrfs_inc_extent_ref(trans, &ref);
2317	}
2318
2319	extent_info->insertions++;
2320
2321	return ret;
2322}
2323
2324/*
2325 * The respective range must have been previously locked, as well as the inode.
2326 * The end offset is inclusive (last byte of the range).
2327 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2328 * the file range with an extent.
2329 * When not punching a hole, we don't want to end up in a state where we dropped
2330 * extents without inserting a new one, so we must abort the transaction to avoid
2331 * a corruption.
2332 */
2333int btrfs_replace_file_extents(struct btrfs_inode *inode,
2334			       struct btrfs_path *path, const u64 start,
2335			       const u64 end,
2336			       struct btrfs_replace_extent_info *extent_info,
2337			       struct btrfs_trans_handle **trans_out)
2338{
2339	struct btrfs_drop_extents_args drop_args = { 0 };
2340	struct btrfs_root *root = inode->root;
2341	struct btrfs_fs_info *fs_info = root->fs_info;
2342	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2343	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2344	struct btrfs_trans_handle *trans = NULL;
2345	struct btrfs_block_rsv *rsv;
2346	unsigned int rsv_count;
2347	u64 cur_offset;
2348	u64 len = end - start;
2349	int ret = 0;
2350
2351	if (end <= start)
2352		return -EINVAL;
2353
2354	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2355	if (!rsv) {
2356		ret = -ENOMEM;
2357		goto out;
2358	}
2359	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2360	rsv->failfast = true;
2361
2362	/*
2363	 * 1 - update the inode
2364	 * 1 - removing the extents in the range
2365	 * 1 - adding the hole extent if no_holes isn't set or if we are
2366	 *     replacing the range with a new extent
2367	 */
2368	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2369		rsv_count = 3;
2370	else
2371		rsv_count = 2;
2372
2373	trans = btrfs_start_transaction(root, rsv_count);
2374	if (IS_ERR(trans)) {
2375		ret = PTR_ERR(trans);
2376		trans = NULL;
2377		goto out_free;
2378	}
2379
2380	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2381				      min_size, false);
2382	if (WARN_ON(ret))
2383		goto out_trans;
2384	trans->block_rsv = rsv;
2385
2386	cur_offset = start;
2387	drop_args.path = path;
2388	drop_args.end = end + 1;
2389	drop_args.drop_cache = true;
2390	while (cur_offset < end) {
2391		drop_args.start = cur_offset;
2392		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2393		/* If we are punching a hole decrement the inode's byte count */
2394		if (!extent_info)
2395			btrfs_update_inode_bytes(inode, 0,
2396						 drop_args.bytes_found);
2397		if (ret != -ENOSPC) {
2398			/*
2399			 * The only time we don't want to abort is if we are
2400			 * attempting to clone a partial inline extent, in which
2401			 * case we'll get EOPNOTSUPP.  However if we aren't
2402			 * clone we need to abort no matter what, because if we
2403			 * got EOPNOTSUPP via prealloc then we messed up and
2404			 * need to abort.
2405			 */
2406			if (ret &&
2407			    (ret != -EOPNOTSUPP ||
2408			     (extent_info && extent_info->is_new_extent)))
2409				btrfs_abort_transaction(trans, ret);
2410			break;
2411		}
2412
2413		trans->block_rsv = &fs_info->trans_block_rsv;
2414
2415		if (!extent_info && cur_offset < drop_args.drop_end &&
2416		    cur_offset < ino_size) {
2417			ret = fill_holes(trans, inode, path, cur_offset,
2418					 drop_args.drop_end);
2419			if (ret) {
2420				/*
2421				 * If we failed then we didn't insert our hole
2422				 * entries for the area we dropped, so now the
2423				 * fs is corrupted, so we must abort the
2424				 * transaction.
2425				 */
2426				btrfs_abort_transaction(trans, ret);
2427				break;
2428			}
2429		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2430			/*
2431			 * We are past the i_size here, but since we didn't
2432			 * insert holes we need to clear the mapped area so we
2433			 * know to not set disk_i_size in this area until a new
2434			 * file extent is inserted here.
2435			 */
2436			ret = btrfs_inode_clear_file_extent_range(inode,
2437					cur_offset,
2438					drop_args.drop_end - cur_offset);
2439			if (ret) {
2440				/*
2441				 * We couldn't clear our area, so we could
2442				 * presumably adjust up and corrupt the fs, so
2443				 * we need to abort.
2444				 */
2445				btrfs_abort_transaction(trans, ret);
2446				break;
2447			}
2448		}
2449
2450		if (extent_info &&
2451		    drop_args.drop_end > extent_info->file_offset) {
2452			u64 replace_len = drop_args.drop_end -
2453					  extent_info->file_offset;
2454
2455			ret = btrfs_insert_replace_extent(trans, inode,	path,
2456					extent_info, replace_len,
2457					drop_args.bytes_found);
2458			if (ret) {
2459				btrfs_abort_transaction(trans, ret);
2460				break;
2461			}
2462			extent_info->data_len -= replace_len;
2463			extent_info->data_offset += replace_len;
2464			extent_info->file_offset += replace_len;
2465		}
2466
2467		/*
2468		 * We are releasing our handle on the transaction, balance the
2469		 * dirty pages of the btree inode and flush delayed items, and
2470		 * then get a new transaction handle, which may now point to a
2471		 * new transaction in case someone else may have committed the
2472		 * transaction we used to replace/drop file extent items. So
2473		 * bump the inode's iversion and update mtime and ctime except
2474		 * if we are called from a dedupe context. This is because a
2475		 * power failure/crash may happen after the transaction is
2476		 * committed and before we finish replacing/dropping all the
2477		 * file extent items we need.
2478		 */
2479		inode_inc_iversion(&inode->vfs_inode);
2480
2481		if (!extent_info || extent_info->update_times)
2482			inode_set_mtime_to_ts(&inode->vfs_inode,
2483					      inode_set_ctime_current(&inode->vfs_inode));
2484
2485		ret = btrfs_update_inode(trans, inode);
2486		if (ret)
2487			break;
2488
2489		btrfs_end_transaction(trans);
2490		btrfs_btree_balance_dirty(fs_info);
2491
2492		trans = btrfs_start_transaction(root, rsv_count);
2493		if (IS_ERR(trans)) {
2494			ret = PTR_ERR(trans);
2495			trans = NULL;
2496			break;
2497		}
2498
2499		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2500					      rsv, min_size, false);
2501		if (WARN_ON(ret))
2502			break;
2503		trans->block_rsv = rsv;
2504
2505		cur_offset = drop_args.drop_end;
2506		len = end - cur_offset;
2507		if (!extent_info && len) {
2508			ret = find_first_non_hole(inode, &cur_offset, &len);
2509			if (unlikely(ret < 0))
2510				break;
2511			if (ret && !len) {
2512				ret = 0;
2513				break;
2514			}
2515		}
2516	}
2517
2518	/*
2519	 * If we were cloning, force the next fsync to be a full one since we
2520	 * we replaced (or just dropped in the case of cloning holes when
2521	 * NO_HOLES is enabled) file extent items and did not setup new extent
2522	 * maps for the replacement extents (or holes).
2523	 */
2524	if (extent_info && !extent_info->is_new_extent)
2525		btrfs_set_inode_full_sync(inode);
2526
2527	if (ret)
2528		goto out_trans;
2529
2530	trans->block_rsv = &fs_info->trans_block_rsv;
2531	/*
2532	 * If we are using the NO_HOLES feature we might have had already an
2533	 * hole that overlaps a part of the region [lockstart, lockend] and
2534	 * ends at (or beyond) lockend. Since we have no file extent items to
2535	 * represent holes, drop_end can be less than lockend and so we must
2536	 * make sure we have an extent map representing the existing hole (the
2537	 * call to __btrfs_drop_extents() might have dropped the existing extent
2538	 * map representing the existing hole), otherwise the fast fsync path
2539	 * will not record the existence of the hole region
2540	 * [existing_hole_start, lockend].
2541	 */
2542	if (drop_args.drop_end <= end)
2543		drop_args.drop_end = end + 1;
2544	/*
2545	 * Don't insert file hole extent item if it's for a range beyond eof
2546	 * (because it's useless) or if it represents a 0 bytes range (when
2547	 * cur_offset == drop_end).
2548	 */
2549	if (!extent_info && cur_offset < ino_size &&
2550	    cur_offset < drop_args.drop_end) {
2551		ret = fill_holes(trans, inode, path, cur_offset,
2552				 drop_args.drop_end);
2553		if (ret) {
2554			/* Same comment as above. */
2555			btrfs_abort_transaction(trans, ret);
2556			goto out_trans;
2557		}
2558	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2559		/* See the comment in the loop above for the reasoning here. */
2560		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2561					drop_args.drop_end - cur_offset);
2562		if (ret) {
2563			btrfs_abort_transaction(trans, ret);
2564			goto out_trans;
2565		}
2566
2567	}
2568	if (extent_info) {
2569		ret = btrfs_insert_replace_extent(trans, inode, path,
2570				extent_info, extent_info->data_len,
2571				drop_args.bytes_found);
2572		if (ret) {
2573			btrfs_abort_transaction(trans, ret);
2574			goto out_trans;
2575		}
2576	}
2577
2578out_trans:
2579	if (!trans)
2580		goto out_free;
2581
2582	trans->block_rsv = &fs_info->trans_block_rsv;
2583	if (ret)
2584		btrfs_end_transaction(trans);
2585	else
2586		*trans_out = trans;
2587out_free:
2588	btrfs_free_block_rsv(fs_info, rsv);
2589out:
2590	return ret;
2591}
2592
2593static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2594{
2595	struct inode *inode = file_inode(file);
2596	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2597	struct btrfs_root *root = BTRFS_I(inode)->root;
2598	struct extent_state *cached_state = NULL;
2599	struct btrfs_path *path;
2600	struct btrfs_trans_handle *trans = NULL;
2601	u64 lockstart;
2602	u64 lockend;
2603	u64 tail_start;
2604	u64 tail_len;
2605	u64 orig_start = offset;
2606	int ret = 0;
2607	bool same_block;
2608	u64 ino_size;
2609	bool truncated_block = false;
2610	bool updated_inode = false;
2611
2612	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2613
2614	ret = btrfs_wait_ordered_range(inode, offset, len);
2615	if (ret)
2616		goto out_only_mutex;
2617
2618	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2619	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2620	if (ret < 0)
2621		goto out_only_mutex;
2622	if (ret && !len) {
2623		/* Already in a large hole */
2624		ret = 0;
2625		goto out_only_mutex;
2626	}
2627
2628	ret = file_modified(file);
2629	if (ret)
2630		goto out_only_mutex;
2631
2632	lockstart = round_up(offset, fs_info->sectorsize);
2633	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2634	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2635		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2636	/*
2637	 * We needn't truncate any block which is beyond the end of the file
2638	 * because we are sure there is no data there.
2639	 */
2640	/*
2641	 * Only do this if we are in the same block and we aren't doing the
2642	 * entire block.
2643	 */
2644	if (same_block && len < fs_info->sectorsize) {
2645		if (offset < ino_size) {
2646			truncated_block = true;
2647			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2648						   0);
2649		} else {
2650			ret = 0;
2651		}
2652		goto out_only_mutex;
2653	}
2654
2655	/* zero back part of the first block */
2656	if (offset < ino_size) {
2657		truncated_block = true;
2658		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2659		if (ret) {
2660			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2661			return ret;
2662		}
2663	}
2664
2665	/* Check the aligned pages after the first unaligned page,
2666	 * if offset != orig_start, which means the first unaligned page
2667	 * including several following pages are already in holes,
2668	 * the extra check can be skipped */
2669	if (offset == orig_start) {
2670		/* after truncate page, check hole again */
2671		len = offset + len - lockstart;
2672		offset = lockstart;
2673		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2674		if (ret < 0)
2675			goto out_only_mutex;
2676		if (ret && !len) {
2677			ret = 0;
2678			goto out_only_mutex;
2679		}
2680		lockstart = offset;
2681	}
2682
2683	/* Check the tail unaligned part is in a hole */
2684	tail_start = lockend + 1;
2685	tail_len = offset + len - tail_start;
2686	if (tail_len) {
2687		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2688		if (unlikely(ret < 0))
2689			goto out_only_mutex;
2690		if (!ret) {
2691			/* zero the front end of the last page */
2692			if (tail_start + tail_len < ino_size) {
2693				truncated_block = true;
2694				ret = btrfs_truncate_block(BTRFS_I(inode),
2695							tail_start + tail_len,
2696							0, 1);
2697				if (ret)
2698					goto out_only_mutex;
2699			}
2700		}
2701	}
2702
2703	if (lockend < lockstart) {
2704		ret = 0;
2705		goto out_only_mutex;
2706	}
2707
2708	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2709
2710	path = btrfs_alloc_path();
2711	if (!path) {
2712		ret = -ENOMEM;
2713		goto out;
2714	}
2715
2716	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2717					 lockend, NULL, &trans);
2718	btrfs_free_path(path);
2719	if (ret)
2720		goto out;
2721
2722	ASSERT(trans != NULL);
2723	inode_inc_iversion(inode);
2724	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2725	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2726	updated_inode = true;
2727	btrfs_end_transaction(trans);
2728	btrfs_btree_balance_dirty(fs_info);
2729out:
2730	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2731		      &cached_state);
2732out_only_mutex:
2733	if (!updated_inode && truncated_block && !ret) {
2734		/*
2735		 * If we only end up zeroing part of a page, we still need to
2736		 * update the inode item, so that all the time fields are
2737		 * updated as well as the necessary btrfs inode in memory fields
2738		 * for detecting, at fsync time, if the inode isn't yet in the
2739		 * log tree or it's there but not up to date.
2740		 */
2741		struct timespec64 now = inode_set_ctime_current(inode);
2742
2743		inode_inc_iversion(inode);
2744		inode_set_mtime_to_ts(inode, now);
2745		trans = btrfs_start_transaction(root, 1);
2746		if (IS_ERR(trans)) {
2747			ret = PTR_ERR(trans);
2748		} else {
2749			int ret2;
2750
2751			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2752			ret2 = btrfs_end_transaction(trans);
2753			if (!ret)
2754				ret = ret2;
2755		}
2756	}
2757	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2758	return ret;
2759}
2760
2761/* Helper structure to record which range is already reserved */
2762struct falloc_range {
2763	struct list_head list;
2764	u64 start;
2765	u64 len;
2766};
2767
2768/*
2769 * Helper function to add falloc range
2770 *
2771 * Caller should have locked the larger range of extent containing
2772 * [start, len)
2773 */
2774static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2775{
2776	struct falloc_range *range = NULL;
2777
2778	if (!list_empty(head)) {
2779		/*
2780		 * As fallocate iterates by bytenr order, we only need to check
2781		 * the last range.
2782		 */
2783		range = list_last_entry(head, struct falloc_range, list);
2784		if (range->start + range->len == start) {
2785			range->len += len;
2786			return 0;
2787		}
2788	}
2789
2790	range = kmalloc(sizeof(*range), GFP_KERNEL);
2791	if (!range)
2792		return -ENOMEM;
2793	range->start = start;
2794	range->len = len;
2795	list_add_tail(&range->list, head);
2796	return 0;
2797}
2798
2799static int btrfs_fallocate_update_isize(struct inode *inode,
2800					const u64 end,
2801					const int mode)
2802{
2803	struct btrfs_trans_handle *trans;
2804	struct btrfs_root *root = BTRFS_I(inode)->root;
2805	int ret;
2806	int ret2;
2807
2808	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2809		return 0;
2810
2811	trans = btrfs_start_transaction(root, 1);
2812	if (IS_ERR(trans))
2813		return PTR_ERR(trans);
2814
2815	inode_set_ctime_current(inode);
2816	i_size_write(inode, end);
2817	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2818	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2819	ret2 = btrfs_end_transaction(trans);
2820
2821	return ret ? ret : ret2;
2822}
2823
2824enum {
2825	RANGE_BOUNDARY_WRITTEN_EXTENT,
2826	RANGE_BOUNDARY_PREALLOC_EXTENT,
2827	RANGE_BOUNDARY_HOLE,
2828};
2829
2830static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2831						 u64 offset)
2832{
2833	const u64 sectorsize = inode->root->fs_info->sectorsize;
2834	struct extent_map *em;
2835	int ret;
2836
2837	offset = round_down(offset, sectorsize);
2838	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2839	if (IS_ERR(em))
2840		return PTR_ERR(em);
2841
2842	if (em->block_start == EXTENT_MAP_HOLE)
2843		ret = RANGE_BOUNDARY_HOLE;
2844	else if (em->flags & EXTENT_FLAG_PREALLOC)
2845		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2846	else
2847		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2848
2849	free_extent_map(em);
2850	return ret;
2851}
2852
2853static int btrfs_zero_range(struct inode *inode,
2854			    loff_t offset,
2855			    loff_t len,
2856			    const int mode)
2857{
2858	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2859	struct extent_map *em;
2860	struct extent_changeset *data_reserved = NULL;
2861	int ret;
2862	u64 alloc_hint = 0;
2863	const u64 sectorsize = fs_info->sectorsize;
2864	u64 alloc_start = round_down(offset, sectorsize);
2865	u64 alloc_end = round_up(offset + len, sectorsize);
2866	u64 bytes_to_reserve = 0;
2867	bool space_reserved = false;
2868
2869	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2870			      alloc_end - alloc_start);
2871	if (IS_ERR(em)) {
2872		ret = PTR_ERR(em);
2873		goto out;
2874	}
2875
2876	/*
2877	 * Avoid hole punching and extent allocation for some cases. More cases
2878	 * could be considered, but these are unlikely common and we keep things
2879	 * as simple as possible for now. Also, intentionally, if the target
2880	 * range contains one or more prealloc extents together with regular
2881	 * extents and holes, we drop all the existing extents and allocate a
2882	 * new prealloc extent, so that we get a larger contiguous disk extent.
2883	 */
2884	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2885		const u64 em_end = em->start + em->len;
2886
2887		if (em_end >= offset + len) {
2888			/*
2889			 * The whole range is already a prealloc extent,
2890			 * do nothing except updating the inode's i_size if
2891			 * needed.
2892			 */
2893			free_extent_map(em);
2894			ret = btrfs_fallocate_update_isize(inode, offset + len,
2895							   mode);
2896			goto out;
2897		}
2898		/*
2899		 * Part of the range is already a prealloc extent, so operate
2900		 * only on the remaining part of the range.
2901		 */
2902		alloc_start = em_end;
2903		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2904		len = offset + len - alloc_start;
2905		offset = alloc_start;
2906		alloc_hint = em->block_start + em->len;
2907	}
2908	free_extent_map(em);
2909
2910	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2911	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2912		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2913				      sectorsize);
2914		if (IS_ERR(em)) {
2915			ret = PTR_ERR(em);
2916			goto out;
2917		}
2918
2919		if (em->flags & EXTENT_FLAG_PREALLOC) {
2920			free_extent_map(em);
2921			ret = btrfs_fallocate_update_isize(inode, offset + len,
2922							   mode);
2923			goto out;
2924		}
2925		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2926			free_extent_map(em);
2927			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2928						   0);
2929			if (!ret)
2930				ret = btrfs_fallocate_update_isize(inode,
2931								   offset + len,
2932								   mode);
2933			return ret;
2934		}
2935		free_extent_map(em);
2936		alloc_start = round_down(offset, sectorsize);
2937		alloc_end = alloc_start + sectorsize;
2938		goto reserve_space;
2939	}
2940
2941	alloc_start = round_up(offset, sectorsize);
2942	alloc_end = round_down(offset + len, sectorsize);
2943
2944	/*
2945	 * For unaligned ranges, check the pages at the boundaries, they might
2946	 * map to an extent, in which case we need to partially zero them, or
2947	 * they might map to a hole, in which case we need our allocation range
2948	 * to cover them.
2949	 */
2950	if (!IS_ALIGNED(offset, sectorsize)) {
2951		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2952							    offset);
2953		if (ret < 0)
2954			goto out;
2955		if (ret == RANGE_BOUNDARY_HOLE) {
2956			alloc_start = round_down(offset, sectorsize);
2957			ret = 0;
2958		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2959			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2960			if (ret)
2961				goto out;
2962		} else {
2963			ret = 0;
2964		}
2965	}
2966
2967	if (!IS_ALIGNED(offset + len, sectorsize)) {
2968		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2969							    offset + len);
2970		if (ret < 0)
2971			goto out;
2972		if (ret == RANGE_BOUNDARY_HOLE) {
2973			alloc_end = round_up(offset + len, sectorsize);
2974			ret = 0;
2975		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2976			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2977						   0, 1);
2978			if (ret)
2979				goto out;
2980		} else {
2981			ret = 0;
2982		}
2983	}
2984
2985reserve_space:
2986	if (alloc_start < alloc_end) {
2987		struct extent_state *cached_state = NULL;
2988		const u64 lockstart = alloc_start;
2989		const u64 lockend = alloc_end - 1;
2990
2991		bytes_to_reserve = alloc_end - alloc_start;
2992		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2993						      bytes_to_reserve);
2994		if (ret < 0)
2995			goto out;
2996		space_reserved = true;
2997		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2998					    &cached_state);
2999		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3000						alloc_start, bytes_to_reserve);
3001		if (ret) {
3002			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3003				      lockend, &cached_state);
3004			goto out;
3005		}
3006		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3007						alloc_end - alloc_start,
3008						i_blocksize(inode),
3009						offset + len, &alloc_hint);
3010		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3011			      &cached_state);
3012		/* btrfs_prealloc_file_range releases reserved space on error */
3013		if (ret) {
3014			space_reserved = false;
3015			goto out;
3016		}
3017	}
3018	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3019 out:
3020	if (ret && space_reserved)
3021		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3022					       alloc_start, bytes_to_reserve);
3023	extent_changeset_free(data_reserved);
3024
3025	return ret;
3026}
3027
3028static long btrfs_fallocate(struct file *file, int mode,
3029			    loff_t offset, loff_t len)
3030{
3031	struct inode *inode = file_inode(file);
3032	struct extent_state *cached_state = NULL;
3033	struct extent_changeset *data_reserved = NULL;
3034	struct falloc_range *range;
3035	struct falloc_range *tmp;
3036	LIST_HEAD(reserve_list);
3037	u64 cur_offset;
3038	u64 last_byte;
3039	u64 alloc_start;
3040	u64 alloc_end;
3041	u64 alloc_hint = 0;
3042	u64 locked_end;
3043	u64 actual_end = 0;
3044	u64 data_space_needed = 0;
3045	u64 data_space_reserved = 0;
3046	u64 qgroup_reserved = 0;
3047	struct extent_map *em;
3048	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3049	int ret;
3050
3051	/* Do not allow fallocate in ZONED mode */
3052	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3053		return -EOPNOTSUPP;
3054
3055	alloc_start = round_down(offset, blocksize);
3056	alloc_end = round_up(offset + len, blocksize);
3057	cur_offset = alloc_start;
3058
3059	/* Make sure we aren't being give some crap mode */
3060	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3061		     FALLOC_FL_ZERO_RANGE))
3062		return -EOPNOTSUPP;
3063
3064	if (mode & FALLOC_FL_PUNCH_HOLE)
3065		return btrfs_punch_hole(file, offset, len);
3066
3067	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3068
3069	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3070		ret = inode_newsize_ok(inode, offset + len);
3071		if (ret)
3072			goto out;
3073	}
3074
3075	ret = file_modified(file);
3076	if (ret)
3077		goto out;
3078
3079	/*
3080	 * TODO: Move these two operations after we have checked
3081	 * accurate reserved space, or fallocate can still fail but
3082	 * with page truncated or size expanded.
3083	 *
3084	 * But that's a minor problem and won't do much harm BTW.
3085	 */
3086	if (alloc_start > inode->i_size) {
3087		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3088					alloc_start);
3089		if (ret)
3090			goto out;
3091	} else if (offset + len > inode->i_size) {
3092		/*
3093		 * If we are fallocating from the end of the file onward we
3094		 * need to zero out the end of the block if i_size lands in the
3095		 * middle of a block.
3096		 */
3097		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3098		if (ret)
3099			goto out;
3100	}
3101
3102	/*
3103	 * We have locked the inode at the VFS level (in exclusive mode) and we
3104	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3105	 * locking the file range, flush all dealloc in the range and wait for
3106	 * all ordered extents in the range to complete. After this we can lock
3107	 * the file range and, due to the previous locking we did, we know there
3108	 * can't be more delalloc or ordered extents in the range.
3109	 */
3110	ret = btrfs_wait_ordered_range(inode, alloc_start,
3111				       alloc_end - alloc_start);
3112	if (ret)
3113		goto out;
3114
3115	if (mode & FALLOC_FL_ZERO_RANGE) {
3116		ret = btrfs_zero_range(inode, offset, len, mode);
3117		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3118		return ret;
3119	}
3120
3121	locked_end = alloc_end - 1;
3122	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3123		    &cached_state);
3124
3125	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3126
3127	/* First, check if we exceed the qgroup limit */
3128	while (cur_offset < alloc_end) {
3129		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3130				      alloc_end - cur_offset);
3131		if (IS_ERR(em)) {
3132			ret = PTR_ERR(em);
3133			break;
3134		}
3135		last_byte = min(extent_map_end(em), alloc_end);
3136		actual_end = min_t(u64, extent_map_end(em), offset + len);
3137		last_byte = ALIGN(last_byte, blocksize);
3138		if (em->block_start == EXTENT_MAP_HOLE ||
3139		    (cur_offset >= inode->i_size &&
3140		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3141			const u64 range_len = last_byte - cur_offset;
3142
3143			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3144			if (ret < 0) {
3145				free_extent_map(em);
3146				break;
3147			}
3148			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3149					&data_reserved, cur_offset, range_len);
3150			if (ret < 0) {
3151				free_extent_map(em);
3152				break;
3153			}
3154			qgroup_reserved += range_len;
3155			data_space_needed += range_len;
3156		}
3157		free_extent_map(em);
3158		cur_offset = last_byte;
3159	}
3160
3161	if (!ret && data_space_needed > 0) {
3162		/*
3163		 * We are safe to reserve space here as we can't have delalloc
3164		 * in the range, see above.
3165		 */
3166		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3167						      data_space_needed);
3168		if (!ret)
3169			data_space_reserved = data_space_needed;
3170	}
3171
3172	/*
3173	 * If ret is still 0, means we're OK to fallocate.
3174	 * Or just cleanup the list and exit.
3175	 */
3176	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3177		if (!ret) {
3178			ret = btrfs_prealloc_file_range(inode, mode,
3179					range->start,
3180					range->len, i_blocksize(inode),
3181					offset + len, &alloc_hint);
3182			/*
3183			 * btrfs_prealloc_file_range() releases space even
3184			 * if it returns an error.
3185			 */
3186			data_space_reserved -= range->len;
3187			qgroup_reserved -= range->len;
3188		} else if (data_space_reserved > 0) {
3189			btrfs_free_reserved_data_space(BTRFS_I(inode),
3190					       data_reserved, range->start,
3191					       range->len);
3192			data_space_reserved -= range->len;
3193			qgroup_reserved -= range->len;
3194		} else if (qgroup_reserved > 0) {
3195			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3196					       range->start, range->len, NULL);
3197			qgroup_reserved -= range->len;
3198		}
3199		list_del(&range->list);
3200		kfree(range);
3201	}
3202	if (ret < 0)
3203		goto out_unlock;
3204
3205	/*
3206	 * We didn't need to allocate any more space, but we still extended the
3207	 * size of the file so we need to update i_size and the inode item.
3208	 */
3209	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3210out_unlock:
3211	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3212		      &cached_state);
3213out:
3214	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3215	extent_changeset_free(data_reserved);
3216	return ret;
3217}
3218
3219/*
3220 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3221 * that has unflushed and/or flushing delalloc. There might be other adjacent
3222 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3223 * looping while it gets adjacent subranges, and merging them together.
3224 */
3225static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3226				   struct extent_state **cached_state,
3227				   bool *search_io_tree,
3228				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3229{
3230	u64 len = end + 1 - start;
3231	u64 delalloc_len = 0;
3232	struct btrfs_ordered_extent *oe;
3233	u64 oe_start;
3234	u64 oe_end;
3235
3236	/*
3237	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3238	 * means we have delalloc (dirty pages) for which writeback has not
3239	 * started yet.
3240	 */
3241	if (*search_io_tree) {
3242		spin_lock(&inode->lock);
3243		if (inode->delalloc_bytes > 0) {
3244			spin_unlock(&inode->lock);
3245			*delalloc_start_ret = start;
3246			delalloc_len = count_range_bits(&inode->io_tree,
3247							delalloc_start_ret, end,
3248							len, EXTENT_DELALLOC, 1,
3249							cached_state);
3250		} else {
3251			spin_unlock(&inode->lock);
3252		}
3253	}
3254
3255	if (delalloc_len > 0) {
3256		/*
3257		 * If delalloc was found then *delalloc_start_ret has a sector size
3258		 * aligned value (rounded down).
3259		 */
3260		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3261
3262		if (*delalloc_start_ret == start) {
3263			/* Delalloc for the whole range, nothing more to do. */
3264			if (*delalloc_end_ret == end)
3265				return true;
3266			/* Else trim our search range for ordered extents. */
3267			start = *delalloc_end_ret + 1;
3268			len = end + 1 - start;
3269		}
3270	} else {
3271		/* No delalloc, future calls don't need to search again. */
3272		*search_io_tree = false;
3273	}
3274
3275	/*
3276	 * Now also check if there's any ordered extent in the range.
3277	 * We do this because:
3278	 *
3279	 * 1) When delalloc is flushed, the file range is locked, we clear the
3280	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3281	 *    an ordered extent for the write. So we might just have been called
3282	 *    after delalloc is flushed and before the ordered extent completes
3283	 *    and inserts the new file extent item in the subvolume's btree;
3284	 *
3285	 * 2) We may have an ordered extent created by flushing delalloc for a
3286	 *    subrange that starts before the subrange we found marked with
3287	 *    EXTENT_DELALLOC in the io tree.
3288	 *
3289	 * We could also use the extent map tree to find such delalloc that is
3290	 * being flushed, but using the ordered extents tree is more efficient
3291	 * because it's usually much smaller as ordered extents are removed from
3292	 * the tree once they complete. With the extent maps, we mau have them
3293	 * in the extent map tree for a very long time, and they were either
3294	 * created by previous writes or loaded by read operations.
3295	 */
3296	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3297	if (!oe)
3298		return (delalloc_len > 0);
3299
3300	/* The ordered extent may span beyond our search range. */
3301	oe_start = max(oe->file_offset, start);
3302	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3303
3304	btrfs_put_ordered_extent(oe);
3305
3306	/* Don't have unflushed delalloc, return the ordered extent range. */
3307	if (delalloc_len == 0) {
3308		*delalloc_start_ret = oe_start;
3309		*delalloc_end_ret = oe_end;
3310		return true;
3311	}
3312
3313	/*
3314	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3315	 * If the ranges are adjacent returned a combined range, otherwise
3316	 * return the leftmost range.
3317	 */
3318	if (oe_start < *delalloc_start_ret) {
3319		if (oe_end < *delalloc_start_ret)
3320			*delalloc_end_ret = oe_end;
3321		*delalloc_start_ret = oe_start;
3322	} else if (*delalloc_end_ret + 1 == oe_start) {
3323		*delalloc_end_ret = oe_end;
3324	}
3325
3326	return true;
3327}
3328
3329/*
3330 * Check if there's delalloc in a given range.
3331 *
3332 * @inode:               The inode.
3333 * @start:               The start offset of the range. It does not need to be
3334 *                       sector size aligned.
3335 * @end:                 The end offset (inclusive value) of the search range.
3336 *                       It does not need to be sector size aligned.
3337 * @cached_state:        Extent state record used for speeding up delalloc
3338 *                       searches in the inode's io_tree. Can be NULL.
3339 * @delalloc_start_ret:  Output argument, set to the start offset of the
3340 *                       subrange found with delalloc (may not be sector size
3341 *                       aligned).
3342 * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3343 *                       of the subrange found with delalloc.
3344 *
3345 * Returns true if a subrange with delalloc is found within the given range, and
3346 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3347 * end offsets of the subrange.
3348 */
3349bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3350				  struct extent_state **cached_state,
3351				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3352{
3353	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3354	u64 prev_delalloc_end = 0;
3355	bool search_io_tree = true;
3356	bool ret = false;
3357
3358	while (cur_offset <= end) {
3359		u64 delalloc_start;
3360		u64 delalloc_end;
3361		bool delalloc;
3362
3363		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3364						  cached_state, &search_io_tree,
3365						  &delalloc_start,
3366						  &delalloc_end);
3367		if (!delalloc)
3368			break;
3369
3370		if (prev_delalloc_end == 0) {
3371			/* First subrange found. */
3372			*delalloc_start_ret = max(delalloc_start, start);
3373			*delalloc_end_ret = delalloc_end;
3374			ret = true;
3375		} else if (delalloc_start == prev_delalloc_end + 1) {
3376			/* Subrange adjacent to the previous one, merge them. */
3377			*delalloc_end_ret = delalloc_end;
3378		} else {
3379			/* Subrange not adjacent to the previous one, exit. */
3380			break;
3381		}
3382
3383		prev_delalloc_end = delalloc_end;
3384		cur_offset = delalloc_end + 1;
3385		cond_resched();
3386	}
3387
3388	return ret;
3389}
3390
3391/*
3392 * Check if there's a hole or delalloc range in a range representing a hole (or
3393 * prealloc extent) found in the inode's subvolume btree.
3394 *
3395 * @inode:      The inode.
3396 * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3397 * @start:      Start offset of the hole region. It does not need to be sector
3398 *              size aligned.
3399 * @end:        End offset (inclusive value) of the hole region. It does not
3400 *              need to be sector size aligned.
3401 * @start_ret:  Return parameter, used to set the start of the subrange in the
3402 *              hole that matches the search criteria (seek mode), if such
3403 *              subrange is found (return value of the function is true).
3404 *              The value returned here may not be sector size aligned.
3405 *
3406 * Returns true if a subrange matching the given seek mode is found, and if one
3407 * is found, it updates @start_ret with the start of the subrange.
3408 */
3409static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3410					struct extent_state **cached_state,
3411					u64 start, u64 end, u64 *start_ret)
3412{
3413	u64 delalloc_start;
3414	u64 delalloc_end;
3415	bool delalloc;
3416
3417	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3418						&delalloc_start, &delalloc_end);
3419	if (delalloc && whence == SEEK_DATA) {
3420		*start_ret = delalloc_start;
3421		return true;
3422	}
3423
3424	if (delalloc && whence == SEEK_HOLE) {
3425		/*
3426		 * We found delalloc but it starts after out start offset. So we
3427		 * have a hole between our start offset and the delalloc start.
3428		 */
3429		if (start < delalloc_start) {
3430			*start_ret = start;
3431			return true;
3432		}
3433		/*
3434		 * Delalloc range starts at our start offset.
3435		 * If the delalloc range's length is smaller than our range,
3436		 * then it means we have a hole that starts where the delalloc
3437		 * subrange ends.
3438		 */
3439		if (delalloc_end < end) {
3440			*start_ret = delalloc_end + 1;
3441			return true;
3442		}
3443
3444		/* There's delalloc for the whole range. */
3445		return false;
3446	}
3447
3448	if (!delalloc && whence == SEEK_HOLE) {
3449		*start_ret = start;
3450		return true;
3451	}
3452
3453	/*
3454	 * No delalloc in the range and we are seeking for data. The caller has
3455	 * to iterate to the next extent item in the subvolume btree.
3456	 */
3457	return false;
3458}
3459
3460static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3461{
3462	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3463	struct btrfs_file_private *private = file->private_data;
3464	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3465	struct extent_state *cached_state = NULL;
3466	struct extent_state **delalloc_cached_state;
3467	const loff_t i_size = i_size_read(&inode->vfs_inode);
3468	const u64 ino = btrfs_ino(inode);
3469	struct btrfs_root *root = inode->root;
3470	struct btrfs_path *path;
3471	struct btrfs_key key;
3472	u64 last_extent_end;
3473	u64 lockstart;
3474	u64 lockend;
3475	u64 start;
3476	int ret;
3477	bool found = false;
3478
3479	if (i_size == 0 || offset >= i_size)
3480		return -ENXIO;
3481
3482	/*
3483	 * Quick path. If the inode has no prealloc extents and its number of
3484	 * bytes used matches its i_size, then it can not have holes.
3485	 */
3486	if (whence == SEEK_HOLE &&
3487	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3488	    inode_get_bytes(&inode->vfs_inode) == i_size)
3489		return i_size;
3490
3491	if (!private) {
 
 
 
 
 
 
 
 
 
 
 
 
3492		private = kzalloc(sizeof(*private), GFP_KERNEL);
3493		/*
3494		 * No worries if memory allocation failed.
3495		 * The private structure is used only for speeding up multiple
3496		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3497		 * so everything will still be correct.
3498		 */
3499		file->private_data = private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3500	}
3501
3502	if (private)
3503		delalloc_cached_state = &private->llseek_cached_state;
3504	else
3505		delalloc_cached_state = NULL;
3506
3507	/*
3508	 * offset can be negative, in this case we start finding DATA/HOLE from
3509	 * the very start of the file.
3510	 */
3511	start = max_t(loff_t, 0, offset);
3512
3513	lockstart = round_down(start, fs_info->sectorsize);
3514	lockend = round_up(i_size, fs_info->sectorsize);
3515	if (lockend <= lockstart)
3516		lockend = lockstart + fs_info->sectorsize;
3517	lockend--;
3518
3519	path = btrfs_alloc_path();
3520	if (!path)
3521		return -ENOMEM;
3522	path->reada = READA_FORWARD;
3523
3524	key.objectid = ino;
3525	key.type = BTRFS_EXTENT_DATA_KEY;
3526	key.offset = start;
3527
3528	last_extent_end = lockstart;
3529
3530	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3531
3532	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3533	if (ret < 0) {
3534		goto out;
3535	} else if (ret > 0 && path->slots[0] > 0) {
3536		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3537		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3538			path->slots[0]--;
3539	}
3540
3541	while (start < i_size) {
3542		struct extent_buffer *leaf = path->nodes[0];
3543		struct btrfs_file_extent_item *extent;
3544		u64 extent_end;
3545		u8 type;
3546
3547		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3548			ret = btrfs_next_leaf(root, path);
3549			if (ret < 0)
3550				goto out;
3551			else if (ret > 0)
3552				break;
3553
3554			leaf = path->nodes[0];
3555		}
3556
3557		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3558		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3559			break;
3560
3561		extent_end = btrfs_file_extent_end(path);
3562
3563		/*
3564		 * In the first iteration we may have a slot that points to an
3565		 * extent that ends before our start offset, so skip it.
3566		 */
3567		if (extent_end <= start) {
3568			path->slots[0]++;
3569			continue;
3570		}
3571
3572		/* We have an implicit hole, NO_HOLES feature is likely set. */
3573		if (last_extent_end < key.offset) {
3574			u64 search_start = last_extent_end;
3575			u64 found_start;
3576
3577			/*
3578			 * First iteration, @start matches @offset and it's
3579			 * within the hole.
3580			 */
3581			if (start == offset)
3582				search_start = offset;
3583
3584			found = find_desired_extent_in_hole(inode, whence,
3585							    delalloc_cached_state,
3586							    search_start,
3587							    key.offset - 1,
3588							    &found_start);
3589			if (found) {
3590				start = found_start;
3591				break;
3592			}
3593			/*
3594			 * Didn't find data or a hole (due to delalloc) in the
3595			 * implicit hole range, so need to analyze the extent.
3596			 */
3597		}
3598
3599		extent = btrfs_item_ptr(leaf, path->slots[0],
3600					struct btrfs_file_extent_item);
3601		type = btrfs_file_extent_type(leaf, extent);
3602
3603		/*
3604		 * Can't access the extent's disk_bytenr field if this is an
3605		 * inline extent, since at that offset, it's where the extent
3606		 * data starts.
3607		 */
3608		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3609		    (type == BTRFS_FILE_EXTENT_REG &&
3610		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3611			/*
3612			 * Explicit hole or prealloc extent, search for delalloc.
3613			 * A prealloc extent is treated like a hole.
3614			 */
3615			u64 search_start = key.offset;
3616			u64 found_start;
3617
3618			/*
3619			 * First iteration, @start matches @offset and it's
3620			 * within the hole.
3621			 */
3622			if (start == offset)
3623				search_start = offset;
3624
3625			found = find_desired_extent_in_hole(inode, whence,
3626							    delalloc_cached_state,
3627							    search_start,
3628							    extent_end - 1,
3629							    &found_start);
3630			if (found) {
3631				start = found_start;
3632				break;
3633			}
3634			/*
3635			 * Didn't find data or a hole (due to delalloc) in the
3636			 * implicit hole range, so need to analyze the next
3637			 * extent item.
3638			 */
3639		} else {
3640			/*
3641			 * Found a regular or inline extent.
3642			 * If we are seeking for data, adjust the start offset
3643			 * and stop, we're done.
3644			 */
3645			if (whence == SEEK_DATA) {
3646				start = max_t(u64, key.offset, offset);
3647				found = true;
3648				break;
3649			}
3650			/*
3651			 * Else, we are seeking for a hole, check the next file
3652			 * extent item.
3653			 */
3654		}
3655
3656		start = extent_end;
3657		last_extent_end = extent_end;
3658		path->slots[0]++;
3659		if (fatal_signal_pending(current)) {
3660			ret = -EINTR;
3661			goto out;
3662		}
3663		cond_resched();
3664	}
3665
3666	/* We have an implicit hole from the last extent found up to i_size. */
3667	if (!found && start < i_size) {
3668		found = find_desired_extent_in_hole(inode, whence,
3669						    delalloc_cached_state, start,
3670						    i_size - 1, &start);
3671		if (!found)
3672			start = i_size;
3673	}
3674
3675out:
3676	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3677	btrfs_free_path(path);
3678
3679	if (ret < 0)
3680		return ret;
3681
3682	if (whence == SEEK_DATA && start >= i_size)
3683		return -ENXIO;
3684
3685	return min_t(loff_t, start, i_size);
3686}
3687
3688static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3689{
3690	struct inode *inode = file->f_mapping->host;
3691
3692	switch (whence) {
3693	default:
3694		return generic_file_llseek(file, offset, whence);
3695	case SEEK_DATA:
3696	case SEEK_HOLE:
3697		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3698		offset = find_desired_extent(file, offset, whence);
3699		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3700		break;
3701	}
3702
3703	if (offset < 0)
3704		return offset;
3705
3706	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3707}
3708
3709static int btrfs_file_open(struct inode *inode, struct file *filp)
3710{
3711	int ret;
3712
3713	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3714		        FMODE_CAN_ODIRECT;
3715
3716	ret = fsverity_file_open(inode, filp);
3717	if (ret)
3718		return ret;
3719	return generic_file_open(inode, filp);
3720}
3721
3722static int check_direct_read(struct btrfs_fs_info *fs_info,
3723			     const struct iov_iter *iter, loff_t offset)
3724{
3725	int ret;
3726	int i, seg;
3727
3728	ret = check_direct_IO(fs_info, iter, offset);
3729	if (ret < 0)
3730		return ret;
3731
3732	if (!iter_is_iovec(iter))
3733		return 0;
3734
3735	for (seg = 0; seg < iter->nr_segs; seg++) {
3736		for (i = seg + 1; i < iter->nr_segs; i++) {
3737			const struct iovec *iov1 = iter_iov(iter) + seg;
3738			const struct iovec *iov2 = iter_iov(iter) + i;
3739
3740			if (iov1->iov_base == iov2->iov_base)
3741				return -EINVAL;
3742		}
3743	}
3744	return 0;
3745}
3746
3747static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3748{
3749	struct inode *inode = file_inode(iocb->ki_filp);
3750	size_t prev_left = 0;
3751	ssize_t read = 0;
3752	ssize_t ret;
3753
3754	if (fsverity_active(inode))
3755		return 0;
3756
3757	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3758		return 0;
3759
3760	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3761again:
3762	/*
3763	 * This is similar to what we do for direct IO writes, see the comment
3764	 * at btrfs_direct_write(), but we also disable page faults in addition
3765	 * to disabling them only at the iov_iter level. This is because when
3766	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3767	 * which can still trigger page fault ins despite having set ->nofault
3768	 * to true of our 'to' iov_iter.
3769	 *
3770	 * The difference to direct IO writes is that we deadlock when trying
3771	 * to lock the extent range in the inode's tree during he page reads
3772	 * triggered by the fault in (while for writes it is due to waiting for
3773	 * our own ordered extent). This is because for direct IO reads,
3774	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3775	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3776	 */
3777	pagefault_disable();
3778	to->nofault = true;
3779	ret = btrfs_dio_read(iocb, to, read);
3780	to->nofault = false;
3781	pagefault_enable();
3782
3783	/* No increment (+=) because iomap returns a cumulative value. */
3784	if (ret > 0)
3785		read = ret;
3786
3787	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3788		const size_t left = iov_iter_count(to);
3789
3790		if (left == prev_left) {
3791			/*
3792			 * We didn't make any progress since the last attempt,
3793			 * fallback to a buffered read for the remainder of the
3794			 * range. This is just to avoid any possibility of looping
3795			 * for too long.
3796			 */
3797			ret = read;
3798		} else {
3799			/*
3800			 * We made some progress since the last retry or this is
3801			 * the first time we are retrying. Fault in as many pages
3802			 * as possible and retry.
3803			 */
3804			fault_in_iov_iter_writeable(to, left);
3805			prev_left = left;
3806			goto again;
3807		}
3808	}
3809	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3810	return ret < 0 ? ret : read;
3811}
3812
3813static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3814{
3815	ssize_t ret = 0;
3816
3817	if (iocb->ki_flags & IOCB_DIRECT) {
3818		ret = btrfs_direct_read(iocb, to);
3819		if (ret < 0 || !iov_iter_count(to) ||
3820		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3821			return ret;
3822	}
3823
3824	return filemap_read(iocb, to, ret);
3825}
3826
3827const struct file_operations btrfs_file_operations = {
3828	.llseek		= btrfs_file_llseek,
3829	.read_iter      = btrfs_file_read_iter,
3830	.splice_read	= filemap_splice_read,
3831	.write_iter	= btrfs_file_write_iter,
3832	.splice_write	= iter_file_splice_write,
3833	.mmap		= btrfs_file_mmap,
3834	.open		= btrfs_file_open,
3835	.release	= btrfs_release_file,
3836	.get_unmapped_area = thp_get_unmapped_area,
3837	.fsync		= btrfs_sync_file,
3838	.fallocate	= btrfs_fallocate,
3839	.unlocked_ioctl	= btrfs_ioctl,
3840#ifdef CONFIG_COMPAT
3841	.compat_ioctl	= btrfs_compat_ioctl,
3842#endif
3843	.remap_file_range = btrfs_remap_file_range,
 
 
3844};
3845
3846int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3847{
 
3848	int ret;
3849
3850	/*
3851	 * So with compression we will find and lock a dirty page and clear the
3852	 * first one as dirty, setup an async extent, and immediately return
3853	 * with the entire range locked but with nobody actually marked with
3854	 * writeback.  So we can't just filemap_write_and_wait_range() and
3855	 * expect it to work since it will just kick off a thread to do the
3856	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3857	 * since it will wait on the page lock, which won't be unlocked until
3858	 * after the pages have been marked as writeback and so we're good to go
3859	 * from there.  We have to do this otherwise we'll miss the ordered
3860	 * extents and that results in badness.  Please Josef, do not think you
3861	 * know better and pull this out at some point in the future, it is
3862	 * right and you are wrong.
3863	 */
3864	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3865	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3866			     &BTRFS_I(inode)->runtime_flags))
3867		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3868
3869	return ret;
3870}