Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
  20#include "ctree.h"
  21#include "direct-io.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "btrfs_inode.h"
 
  25#include "tree-log.h"
  26#include "locking.h"
 
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31#include "subpage.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "extent-tree.h"
  35#include "file-item.h"
  36#include "ioctl.h"
  37#include "file.h"
  38#include "super.h"
  39
 
  40/*
  41 * Helper to fault in page and copy.  This should go away and be replaced with
  42 * calls into generic code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43 */
  44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  45					 struct folio *folio, struct iov_iter *i)
 
  46{
  47	size_t copied = 0;
  48	size_t total_copied = 0;
 
  49	int offset = offset_in_page(pos);
  50
  51	while (write_bytes > 0) {
  52		size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
 
 
  53		/*
  54		 * Copy data from userspace to the current page
  55		 */
  56		copied = copy_folio_from_iter_atomic(folio, offset, count, i);
  57
  58		/* Flush processor's dcache for this page */
  59		flush_dcache_folio(folio);
  60
  61		/*
  62		 * if we get a partial write, we can end up with
  63		 * partially up to date page.  These add
  64		 * a lot of complexity, so make sure they don't
  65		 * happen by forcing this copy to be retried.
  66		 *
  67		 * The rest of the btrfs_file_write code will fall
  68		 * back to page at a time copies after we return 0.
  69		 */
  70		if (unlikely(copied < count)) {
  71			if (!folio_test_uptodate(folio)) {
  72				iov_iter_revert(i, copied);
  73				copied = 0;
  74			}
  75			if (!copied)
  76				break;
  77		}
  78
 
  79		write_bytes -= copied;
  80		total_copied += copied;
  81		offset += copied;
 
 
 
 
 
 
 
 
 
 
  82	}
  83	return total_copied;
  84}
  85
  86/*
  87 * Unlock folio after btrfs_file_write() is done with it.
  88 */
  89static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
  90			     u64 pos, u64 copied)
  91{
  92	u64 block_start = round_down(pos, fs_info->sectorsize);
  93	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
 
 
 
 
 
 
 
 
 
 
 
  94
  95	ASSERT(block_len <= U32_MAX);
  96	/*
  97	 * Folio checked is some magic around finding folios that have been
  98	 * modified without going through btrfs_dirty_folio().  Clear it here.
  99	 * There should be no need to mark the pages accessed as
 100	 * prepare_one_folio() should have marked them accessed in
 101	 * prepare_one_folio() via find_or_create_page()
 102	 */
 103	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
 104	folio_unlock(folio);
 105	folio_put(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106}
 107
 108/*
 109 * After btrfs_copy_from_user(), update the following things for delalloc:
 110 * - Mark newly dirtied folio as DELALLOC in the io tree.
 111 *   Used to advise which range is to be written back.
 112 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
 113 * - Update inode size for past EOF write
 
 114 */
 115int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
 116		      size_t write_bytes, struct extent_state **cached, bool noreserve)
 
 117{
 118	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 119	int ret = 0;
 
 120	u64 num_bytes;
 121	u64 start_pos;
 122	u64 end_of_last_block;
 123	u64 end_pos = pos + write_bytes;
 124	loff_t isize = i_size_read(&inode->vfs_inode);
 125	unsigned int extra_bits = 0;
 126
 127	if (write_bytes == 0)
 128		return 0;
 129
 130	if (noreserve)
 131		extra_bits |= EXTENT_NORESERVE;
 132
 133	start_pos = round_down(pos, fs_info->sectorsize);
 134	num_bytes = round_up(write_bytes + pos - start_pos,
 135			     fs_info->sectorsize);
 136	ASSERT(num_bytes <= U32_MAX);
 137	ASSERT(folio_pos(folio) <= pos &&
 138	       folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
 139
 140	end_of_last_block = start_pos + num_bytes - 1;
 141
 142	/*
 143	 * The pages may have already been dirty, clear out old accounting so
 144	 * we can set things up properly
 145	 */
 146	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 147			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 148			 cached);
 149
 150	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151					extra_bits, cached);
 152	if (ret)
 153		return ret;
 154
 155	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
 156	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
 157	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
 
 
 
 158
 159	/*
 160	 * we've only changed i_size in ram, and we haven't updated
 161	 * the disk i_size.  There is no need to log the inode
 162	 * at this time.
 163	 */
 164	if (end_pos > isize)
 165		i_size_write(&inode->vfs_inode, end_pos);
 166	return 0;
 167}
 168
 169/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 * this is very complex, but the basic idea is to drop all extents
 171 * in the range start - end.  hint_block is filled in with a block number
 172 * that would be a good hint to the block allocator for this file.
 173 *
 174 * If an extent intersects the range but is not entirely inside the range
 175 * it is either truncated or split.  Anything entirely inside the range
 176 * is deleted from the tree.
 177 *
 178 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 179 * to deal with that. We set the field 'bytes_found' of the arguments structure
 180 * with the number of allocated bytes found in the target range, so that the
 181 * caller can update the inode's number of bytes in an atomic way when
 182 * replacing extents in a range to avoid races with stat(2).
 183 */
 184int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 185		       struct btrfs_root *root, struct btrfs_inode *inode,
 186		       struct btrfs_drop_extents_args *args)
 
 
 
 
 187{
 188	struct btrfs_fs_info *fs_info = root->fs_info;
 189	struct extent_buffer *leaf;
 190	struct btrfs_file_extent_item *fi;
 
 191	struct btrfs_key key;
 192	struct btrfs_key new_key;
 
 193	u64 ino = btrfs_ino(inode);
 194	u64 search_start = args->start;
 195	u64 disk_bytenr = 0;
 196	u64 num_bytes = 0;
 197	u64 extent_offset = 0;
 198	u64 extent_end = 0;
 199	u64 last_end = args->start;
 200	int del_nr = 0;
 201	int del_slot = 0;
 202	int extent_type;
 203	int recow;
 204	int ret;
 205	int modify_tree = -1;
 206	int update_refs;
 207	int found = 0;
 208	struct btrfs_path *path = args->path;
 209
 210	args->bytes_found = 0;
 211	args->extent_inserted = false;
 212
 213	/* Must always have a path if ->replace_extent is true */
 214	ASSERT(!(args->replace_extent && !args->path));
 215
 216	if (!path) {
 217		path = btrfs_alloc_path();
 218		if (!path) {
 219			ret = -ENOMEM;
 220			goto out;
 221		}
 222	}
 223
 224	if (args->drop_cache)
 225		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 226
 227	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
 228		modify_tree = 0;
 229
 230	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
 
 231	while (1) {
 232		recow = 0;
 233		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 234					       search_start, modify_tree);
 235		if (ret < 0)
 236			break;
 237		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 238			leaf = path->nodes[0];
 239			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 240			if (key.objectid == ino &&
 241			    key.type == BTRFS_EXTENT_DATA_KEY)
 242				path->slots[0]--;
 243		}
 244		ret = 0;
 
 245next_slot:
 246		leaf = path->nodes[0];
 247		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 248			BUG_ON(del_nr > 0);
 249			ret = btrfs_next_leaf(root, path);
 250			if (ret < 0)
 251				break;
 252			if (ret > 0) {
 253				ret = 0;
 254				break;
 255			}
 
 256			leaf = path->nodes[0];
 257			recow = 1;
 258		}
 259
 260		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 261
 262		if (key.objectid > ino)
 263			break;
 264		if (WARN_ON_ONCE(key.objectid < ino) ||
 265		    key.type < BTRFS_EXTENT_DATA_KEY) {
 266			ASSERT(del_nr == 0);
 267			path->slots[0]++;
 268			goto next_slot;
 269		}
 270		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 271			break;
 272
 273		fi = btrfs_item_ptr(leaf, path->slots[0],
 274				    struct btrfs_file_extent_item);
 275		extent_type = btrfs_file_extent_type(leaf, fi);
 276
 277		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 278		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 279			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 280			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 281			extent_offset = btrfs_file_extent_offset(leaf, fi);
 282			extent_end = key.offset +
 283				btrfs_file_extent_num_bytes(leaf, fi);
 284		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 285			extent_end = key.offset +
 286				btrfs_file_extent_ram_bytes(leaf, fi);
 287		} else {
 288			/* can't happen */
 289			BUG();
 290		}
 291
 292		/*
 293		 * Don't skip extent items representing 0 byte lengths. They
 294		 * used to be created (bug) if while punching holes we hit
 295		 * -ENOSPC condition. So if we find one here, just ensure we
 296		 * delete it, otherwise we would insert a new file extent item
 297		 * with the same key (offset) as that 0 bytes length file
 298		 * extent item in the call to setup_items_for_insert() later
 299		 * in this function.
 300		 */
 301		if (extent_end == key.offset && extent_end >= search_start) {
 302			last_end = extent_end;
 303			goto delete_extent_item;
 304		}
 305
 306		if (extent_end <= search_start) {
 307			path->slots[0]++;
 308			goto next_slot;
 309		}
 310
 311		found = 1;
 312		search_start = max(key.offset, args->start);
 313		if (recow || !modify_tree) {
 314			modify_tree = -1;
 315			btrfs_release_path(path);
 316			continue;
 317		}
 318
 319		/*
 320		 *     | - range to drop - |
 321		 *  | -------- extent -------- |
 322		 */
 323		if (args->start > key.offset && args->end < extent_end) {
 324			BUG_ON(del_nr > 0);
 325			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 326				ret = -EOPNOTSUPP;
 327				break;
 328			}
 329
 330			memcpy(&new_key, &key, sizeof(new_key));
 331			new_key.offset = args->start;
 332			ret = btrfs_duplicate_item(trans, root, path,
 333						   &new_key);
 334			if (ret == -EAGAIN) {
 335				btrfs_release_path(path);
 336				continue;
 337			}
 338			if (ret < 0)
 339				break;
 340
 341			leaf = path->nodes[0];
 342			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 343					    struct btrfs_file_extent_item);
 344			btrfs_set_file_extent_num_bytes(leaf, fi,
 345							args->start - key.offset);
 346
 347			fi = btrfs_item_ptr(leaf, path->slots[0],
 348					    struct btrfs_file_extent_item);
 349
 350			extent_offset += args->start - key.offset;
 351			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 352			btrfs_set_file_extent_num_bytes(leaf, fi,
 353							extent_end - args->start);
 354			btrfs_mark_buffer_dirty(trans, leaf);
 355
 356			if (update_refs && disk_bytenr > 0) {
 357				struct btrfs_ref ref = {
 358					.action = BTRFS_ADD_DELAYED_REF,
 359					.bytenr = disk_bytenr,
 360					.num_bytes = num_bytes,
 361					.parent = 0,
 362					.owning_root = btrfs_root_id(root),
 363					.ref_root = btrfs_root_id(root),
 364				};
 365				btrfs_init_data_ref(&ref, new_key.objectid,
 366						    args->start - extent_offset,
 367						    0, false);
 368				ret = btrfs_inc_extent_ref(trans, &ref);
 369				if (ret) {
 370					btrfs_abort_transaction(trans, ret);
 371					break;
 372				}
 373			}
 374			key.offset = args->start;
 375		}
 376		/*
 377		 * From here on out we will have actually dropped something, so
 378		 * last_end can be updated.
 379		 */
 380		last_end = extent_end;
 381
 382		/*
 383		 *  | ---- range to drop ----- |
 384		 *      | -------- extent -------- |
 385		 */
 386		if (args->start <= key.offset && args->end < extent_end) {
 387			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 388				ret = -EOPNOTSUPP;
 389				break;
 390			}
 391
 392			memcpy(&new_key, &key, sizeof(new_key));
 393			new_key.offset = args->end;
 394			btrfs_set_item_key_safe(trans, path, &new_key);
 395
 396			extent_offset += args->end - key.offset;
 397			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 398			btrfs_set_file_extent_num_bytes(leaf, fi,
 399							extent_end - args->end);
 400			btrfs_mark_buffer_dirty(trans, leaf);
 401			if (update_refs && disk_bytenr > 0)
 402				args->bytes_found += args->end - key.offset;
 403			break;
 404		}
 405
 406		search_start = extent_end;
 407		/*
 408		 *       | ---- range to drop ----- |
 409		 *  | -------- extent -------- |
 410		 */
 411		if (args->start > key.offset && args->end >= extent_end) {
 412			BUG_ON(del_nr > 0);
 413			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 414				ret = -EOPNOTSUPP;
 415				break;
 416			}
 417
 418			btrfs_set_file_extent_num_bytes(leaf, fi,
 419							args->start - key.offset);
 420			btrfs_mark_buffer_dirty(trans, leaf);
 421			if (update_refs && disk_bytenr > 0)
 422				args->bytes_found += extent_end - args->start;
 423			if (args->end == extent_end)
 424				break;
 425
 426			path->slots[0]++;
 427			goto next_slot;
 428		}
 429
 430		/*
 431		 *  | ---- range to drop ----- |
 432		 *    | ------ extent ------ |
 433		 */
 434		if (args->start <= key.offset && args->end >= extent_end) {
 435delete_extent_item:
 436			if (del_nr == 0) {
 437				del_slot = path->slots[0];
 438				del_nr = 1;
 439			} else {
 440				BUG_ON(del_slot + del_nr != path->slots[0]);
 441				del_nr++;
 442			}
 443
 444			if (update_refs &&
 445			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 446				args->bytes_found += extent_end - key.offset;
 
 447				extent_end = ALIGN(extent_end,
 448						   fs_info->sectorsize);
 449			} else if (update_refs && disk_bytenr > 0) {
 450				struct btrfs_ref ref = {
 451					.action = BTRFS_DROP_DELAYED_REF,
 452					.bytenr = disk_bytenr,
 453					.num_bytes = num_bytes,
 454					.parent = 0,
 455					.owning_root = btrfs_root_id(root),
 456					.ref_root = btrfs_root_id(root),
 457				};
 458				btrfs_init_data_ref(&ref, key.objectid,
 459						    key.offset - extent_offset,
 460						    0, false);
 461				ret = btrfs_free_extent(trans, &ref);
 462				if (ret) {
 463					btrfs_abort_transaction(trans, ret);
 464					break;
 465				}
 466				args->bytes_found += extent_end - key.offset;
 467			}
 468
 469			if (args->end == extent_end)
 470				break;
 471
 472			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 473				path->slots[0]++;
 474				goto next_slot;
 475			}
 476
 477			ret = btrfs_del_items(trans, root, path, del_slot,
 478					      del_nr);
 479			if (ret) {
 480				btrfs_abort_transaction(trans, ret);
 481				break;
 482			}
 483
 484			del_nr = 0;
 485			del_slot = 0;
 486
 487			btrfs_release_path(path);
 488			continue;
 489		}
 490
 491		BUG();
 492	}
 493
 494	if (!ret && del_nr > 0) {
 495		/*
 496		 * Set path->slots[0] to first slot, so that after the delete
 497		 * if items are move off from our leaf to its immediate left or
 498		 * right neighbor leafs, we end up with a correct and adjusted
 499		 * path->slots[0] for our insertion (if args->replace_extent).
 500		 */
 501		path->slots[0] = del_slot;
 502		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 503		if (ret)
 504			btrfs_abort_transaction(trans, ret);
 505	}
 506
 507	leaf = path->nodes[0];
 508	/*
 509	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 510	 * which case it unlocked our path, so check path->locks[0] matches a
 511	 * write lock.
 512	 */
 513	if (!ret && args->replace_extent &&
 514	    path->locks[0] == BTRFS_WRITE_LOCK &&
 
 515	    btrfs_leaf_free_space(leaf) >=
 516	    sizeof(struct btrfs_item) + args->extent_item_size) {
 517
 518		key.objectid = ino;
 519		key.type = BTRFS_EXTENT_DATA_KEY;
 520		key.offset = args->start;
 521		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 522			struct btrfs_key slot_key;
 523
 524			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 525			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 526				path->slots[0]++;
 527		}
 528		btrfs_setup_item_for_insert(trans, root, path, &key,
 529					    args->extent_item_size);
 530		args->extent_inserted = true;
 
 
 
 531	}
 532
 533	if (!args->path)
 534		btrfs_free_path(path);
 535	else if (!args->extent_inserted)
 536		btrfs_release_path(path);
 537out:
 538	args->drop_end = found ? min(args->end, last_end) : args->end;
 
 
 
 
 
 
 
 
 
 539
 
 
 
 
 
 
 540	return ret;
 541}
 542
 543static int extent_mergeable(struct extent_buffer *leaf, int slot,
 544			    u64 objectid, u64 bytenr, u64 orig_offset,
 545			    u64 *start, u64 *end)
 546{
 547	struct btrfs_file_extent_item *fi;
 548	struct btrfs_key key;
 549	u64 extent_end;
 550
 551	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 552		return 0;
 553
 554	btrfs_item_key_to_cpu(leaf, &key, slot);
 555	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 556		return 0;
 557
 558	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 559	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 560	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 561	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 562	    btrfs_file_extent_compression(leaf, fi) ||
 563	    btrfs_file_extent_encryption(leaf, fi) ||
 564	    btrfs_file_extent_other_encoding(leaf, fi))
 565		return 0;
 566
 567	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 568	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 569		return 0;
 570
 571	*start = key.offset;
 572	*end = extent_end;
 573	return 1;
 574}
 575
 576/*
 577 * Mark extent in the range start - end as written.
 578 *
 579 * This changes extent type from 'pre-allocated' to 'regular'. If only
 580 * part of extent is marked as written, the extent will be split into
 581 * two or three.
 582 */
 583int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 584			      struct btrfs_inode *inode, u64 start, u64 end)
 585{
 
 586	struct btrfs_root *root = inode->root;
 587	struct extent_buffer *leaf;
 588	struct btrfs_path *path;
 589	struct btrfs_file_extent_item *fi;
 590	struct btrfs_ref ref = { 0 };
 591	struct btrfs_key key;
 592	struct btrfs_key new_key;
 593	u64 bytenr;
 594	u64 num_bytes;
 595	u64 extent_end;
 596	u64 orig_offset;
 597	u64 other_start;
 598	u64 other_end;
 599	u64 split;
 600	int del_nr = 0;
 601	int del_slot = 0;
 602	int recow;
 603	int ret = 0;
 604	u64 ino = btrfs_ino(inode);
 605
 606	path = btrfs_alloc_path();
 607	if (!path)
 608		return -ENOMEM;
 609again:
 610	recow = 0;
 611	split = start;
 612	key.objectid = ino;
 613	key.type = BTRFS_EXTENT_DATA_KEY;
 614	key.offset = split;
 615
 616	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 617	if (ret < 0)
 618		goto out;
 619	if (ret > 0 && path->slots[0] > 0)
 620		path->slots[0]--;
 621
 622	leaf = path->nodes[0];
 623	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 624	if (key.objectid != ino ||
 625	    key.type != BTRFS_EXTENT_DATA_KEY) {
 626		ret = -EINVAL;
 627		btrfs_abort_transaction(trans, ret);
 628		goto out;
 629	}
 630	fi = btrfs_item_ptr(leaf, path->slots[0],
 631			    struct btrfs_file_extent_item);
 632	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 633		ret = -EINVAL;
 634		btrfs_abort_transaction(trans, ret);
 635		goto out;
 636	}
 637	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 638	if (key.offset > start || extent_end < end) {
 639		ret = -EINVAL;
 640		btrfs_abort_transaction(trans, ret);
 641		goto out;
 642	}
 643
 644	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 645	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 646	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 647	memcpy(&new_key, &key, sizeof(new_key));
 648
 649	if (start == key.offset && end < extent_end) {
 650		other_start = 0;
 651		other_end = start;
 652		if (extent_mergeable(leaf, path->slots[0] - 1,
 653				     ino, bytenr, orig_offset,
 654				     &other_start, &other_end)) {
 655			new_key.offset = end;
 656			btrfs_set_item_key_safe(trans, path, &new_key);
 657			fi = btrfs_item_ptr(leaf, path->slots[0],
 658					    struct btrfs_file_extent_item);
 659			btrfs_set_file_extent_generation(leaf, fi,
 660							 trans->transid);
 661			btrfs_set_file_extent_num_bytes(leaf, fi,
 662							extent_end - end);
 663			btrfs_set_file_extent_offset(leaf, fi,
 664						     end - orig_offset);
 665			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 666					    struct btrfs_file_extent_item);
 667			btrfs_set_file_extent_generation(leaf, fi,
 668							 trans->transid);
 669			btrfs_set_file_extent_num_bytes(leaf, fi,
 670							end - other_start);
 671			btrfs_mark_buffer_dirty(trans, leaf);
 672			goto out;
 673		}
 674	}
 675
 676	if (start > key.offset && end == extent_end) {
 677		other_start = end;
 678		other_end = 0;
 679		if (extent_mergeable(leaf, path->slots[0] + 1,
 680				     ino, bytenr, orig_offset,
 681				     &other_start, &other_end)) {
 682			fi = btrfs_item_ptr(leaf, path->slots[0],
 683					    struct btrfs_file_extent_item);
 684			btrfs_set_file_extent_num_bytes(leaf, fi,
 685							start - key.offset);
 686			btrfs_set_file_extent_generation(leaf, fi,
 687							 trans->transid);
 688			path->slots[0]++;
 689			new_key.offset = start;
 690			btrfs_set_item_key_safe(trans, path, &new_key);
 691
 692			fi = btrfs_item_ptr(leaf, path->slots[0],
 693					    struct btrfs_file_extent_item);
 694			btrfs_set_file_extent_generation(leaf, fi,
 695							 trans->transid);
 696			btrfs_set_file_extent_num_bytes(leaf, fi,
 697							other_end - start);
 698			btrfs_set_file_extent_offset(leaf, fi,
 699						     start - orig_offset);
 700			btrfs_mark_buffer_dirty(trans, leaf);
 701			goto out;
 702		}
 703	}
 704
 705	while (start > key.offset || end < extent_end) {
 706		if (key.offset == start)
 707			split = end;
 708
 709		new_key.offset = split;
 710		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 711		if (ret == -EAGAIN) {
 712			btrfs_release_path(path);
 713			goto again;
 714		}
 715		if (ret < 0) {
 716			btrfs_abort_transaction(trans, ret);
 717			goto out;
 718		}
 719
 720		leaf = path->nodes[0];
 721		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 722				    struct btrfs_file_extent_item);
 723		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 724		btrfs_set_file_extent_num_bytes(leaf, fi,
 725						split - key.offset);
 726
 727		fi = btrfs_item_ptr(leaf, path->slots[0],
 728				    struct btrfs_file_extent_item);
 729
 730		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 731		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 732		btrfs_set_file_extent_num_bytes(leaf, fi,
 733						extent_end - split);
 734		btrfs_mark_buffer_dirty(trans, leaf);
 735
 736		ref.action = BTRFS_ADD_DELAYED_REF;
 737		ref.bytenr = bytenr;
 738		ref.num_bytes = num_bytes;
 739		ref.parent = 0;
 740		ref.owning_root = btrfs_root_id(root);
 741		ref.ref_root = btrfs_root_id(root);
 742		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 743		ret = btrfs_inc_extent_ref(trans, &ref);
 744		if (ret) {
 745			btrfs_abort_transaction(trans, ret);
 746			goto out;
 747		}
 748
 749		if (split == start) {
 750			key.offset = start;
 751		} else {
 752			if (start != key.offset) {
 753				ret = -EINVAL;
 754				btrfs_abort_transaction(trans, ret);
 755				goto out;
 756			}
 757			path->slots[0]--;
 758			extent_end = end;
 759		}
 760		recow = 1;
 761	}
 762
 763	other_start = end;
 764	other_end = 0;
 765
 766	ref.action = BTRFS_DROP_DELAYED_REF;
 767	ref.bytenr = bytenr;
 768	ref.num_bytes = num_bytes;
 769	ref.parent = 0;
 770	ref.owning_root = btrfs_root_id(root);
 771	ref.ref_root = btrfs_root_id(root);
 772	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 773	if (extent_mergeable(leaf, path->slots[0] + 1,
 774			     ino, bytenr, orig_offset,
 775			     &other_start, &other_end)) {
 776		if (recow) {
 777			btrfs_release_path(path);
 778			goto again;
 779		}
 780		extent_end = other_end;
 781		del_slot = path->slots[0] + 1;
 782		del_nr++;
 783		ret = btrfs_free_extent(trans, &ref);
 784		if (ret) {
 785			btrfs_abort_transaction(trans, ret);
 786			goto out;
 787		}
 788	}
 789	other_start = 0;
 790	other_end = start;
 791	if (extent_mergeable(leaf, path->slots[0] - 1,
 792			     ino, bytenr, orig_offset,
 793			     &other_start, &other_end)) {
 794		if (recow) {
 795			btrfs_release_path(path);
 796			goto again;
 797		}
 798		key.offset = other_start;
 799		del_slot = path->slots[0];
 800		del_nr++;
 801		ret = btrfs_free_extent(trans, &ref);
 802		if (ret) {
 803			btrfs_abort_transaction(trans, ret);
 804			goto out;
 805		}
 806	}
 807	if (del_nr == 0) {
 808		fi = btrfs_item_ptr(leaf, path->slots[0],
 809			   struct btrfs_file_extent_item);
 810		btrfs_set_file_extent_type(leaf, fi,
 811					   BTRFS_FILE_EXTENT_REG);
 812		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 813		btrfs_mark_buffer_dirty(trans, leaf);
 814	} else {
 815		fi = btrfs_item_ptr(leaf, del_slot - 1,
 816			   struct btrfs_file_extent_item);
 817		btrfs_set_file_extent_type(leaf, fi,
 818					   BTRFS_FILE_EXTENT_REG);
 819		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 820		btrfs_set_file_extent_num_bytes(leaf, fi,
 821						extent_end - key.offset);
 822		btrfs_mark_buffer_dirty(trans, leaf);
 823
 824		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 825		if (ret < 0) {
 826			btrfs_abort_transaction(trans, ret);
 827			goto out;
 828		}
 829	}
 830out:
 831	btrfs_free_path(path);
 832	return ret;
 833}
 834
 835/*
 836 * On error return an unlocked folio and the error value
 837 * On success return a locked folio and 0
 838 */
 839static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
 840				  u64 len, bool force_uptodate)
 
 841{
 842	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
 843	u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
 844	int ret = 0;
 845
 846	if (folio_test_uptodate(folio))
 847		return 0;
 848
 849	if (!force_uptodate &&
 850	    IS_ALIGNED(clamp_start, PAGE_SIZE) &&
 851	    IS_ALIGNED(clamp_end, PAGE_SIZE))
 852		return 0;
 853
 854	ret = btrfs_read_folio(NULL, folio);
 855	if (ret)
 856		return ret;
 857	folio_lock(folio);
 858	if (!folio_test_uptodate(folio)) {
 859		folio_unlock(folio);
 860		return -EIO;
 861	}
 862
 863	/*
 864	 * Since btrfs_read_folio() will unlock the folio before it returns,
 865	 * there is a window where btrfs_release_folio() can be called to
 866	 * release the page.  Here we check both inode mapping and page
 867	 * private to make sure the page was not released.
 868	 *
 869	 * The private flag check is essential for subpage as we need to store
 870	 * extra bitmap using folio private.
 871	 */
 872	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
 873		folio_unlock(folio);
 874		return -EAGAIN;
 875	}
 876	return 0;
 877}
 878
 879static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 880{
 881	gfp_t gfp;
 882
 883	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 884	if (nowait) {
 885		gfp &= ~__GFP_DIRECT_RECLAIM;
 886		gfp |= GFP_NOWAIT;
 887	}
 888
 889	return gfp;
 890}
 891
 892/*
 893 * Get folio into the page cache and lock it.
 894 */
 895static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
 896				      loff_t pos, size_t write_bytes,
 897				      bool force_uptodate, bool nowait)
 898{
 
 899	unsigned long index = pos >> PAGE_SHIFT;
 900	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 901	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
 902	struct folio *folio;
 903	int ret = 0;
 904
 
 905again:
 906	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
 907	if (IS_ERR(folio)) {
 908		if (nowait)
 909			ret = -EAGAIN;
 910		else
 911			ret = PTR_ERR(folio);
 912		return ret;
 913	}
 914	folio_wait_writeback(folio);
 915	/* Only support page sized folio yet. */
 916	ASSERT(folio_order(folio) == 0);
 917	ret = set_folio_extent_mapped(folio);
 918	if (ret < 0) {
 919		folio_unlock(folio);
 920		folio_put(folio);
 921		return ret;
 922	}
 923	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
 924	if (ret) {
 925		/* The folio is already unlocked. */
 926		folio_put(folio);
 927		if (!nowait && ret == -EAGAIN) {
 928			ret = 0;
 929			goto again;
 930		}
 931		return ret;
 932	}
 933	*folio_ret = folio;
 934	return 0;
 
 
 
 
 
 
 
 
 935}
 936
 937/*
 938 * Locks the extent and properly waits for data=ordered extents to finish
 939 * before allowing the folios to be modified if need.
 940 *
 941 * Return:
 942 * 1 - the extent is locked
 943 * 0 - the extent is not locked, and everything is OK
 944 * -EAGAIN - need to prepare the folios again
 
 945 */
 946static noinline int
 947lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
 948				loff_t pos, size_t write_bytes,
 949				u64 *lockstart, u64 *lockend, bool nowait,
 
 950				struct extent_state **cached_state)
 951{
 952	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 953	u64 start_pos;
 954	u64 last_pos;
 
 955	int ret = 0;
 956
 957	start_pos = round_down(pos, fs_info->sectorsize);
 958	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 
 
 959
 960	if (start_pos < inode->vfs_inode.i_size) {
 961		struct btrfs_ordered_extent *ordered;
 962
 963		if (nowait) {
 964			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
 965					     cached_state)) {
 966				folio_unlock(folio);
 967				folio_put(folio);
 968				return -EAGAIN;
 969			}
 970		} else {
 971			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
 972		}
 973
 974		ordered = btrfs_lookup_ordered_range(inode, start_pos,
 975						     last_pos - start_pos + 1);
 976		if (ordered &&
 977		    ordered->file_offset + ordered->num_bytes > start_pos &&
 978		    ordered->file_offset <= last_pos) {
 979			unlock_extent(&inode->io_tree, start_pos, last_pos,
 980				      cached_state);
 981			folio_unlock(folio);
 982			folio_put(folio);
 983			btrfs_start_ordered_extent(ordered);
 
 
 
 984			btrfs_put_ordered_extent(ordered);
 985			return -EAGAIN;
 986		}
 987		if (ordered)
 988			btrfs_put_ordered_extent(ordered);
 989
 990		*lockstart = start_pos;
 991		*lockend = last_pos;
 992		ret = 1;
 993	}
 994
 995	/*
 996	 * We should be called after prepare_one_folio() which should have locked
 997	 * all pages in the range.
 
 
 
 
 
 
 
 
 
 
 998	 */
 999	WARN_ON(!folio_test_locked(folio));
 
 
 
1000
1001	return ret;
1002}
1003
1004/*
1005 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1006 *
1007 * @pos:         File offset.
1008 * @write_bytes: The length to write, will be updated to the nocow writeable
1009 *               range.
1010 *
1011 * This function will flush ordered extents in the range to ensure proper
1012 * nocow checks.
1013 *
1014 * Return:
1015 * > 0          If we can nocow, and updates @write_bytes.
1016 *  0           If we can't do a nocow write.
1017 * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1018 *              root is in progress.
1019 * < 0          If an error happened.
1020 *
1021 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1022 */
1023int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1024			   size_t *write_bytes, bool nowait)
1025{
1026	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1027	struct btrfs_root *root = inode->root;
1028	struct extent_state *cached_state = NULL;
1029	u64 lockstart, lockend;
1030	u64 num_bytes;
1031	int ret;
1032
1033	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1034		return 0;
1035
1036	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1037		return -EAGAIN;
1038
1039	lockstart = round_down(pos, fs_info->sectorsize);
1040	lockend = round_up(pos + *write_bytes,
1041			   fs_info->sectorsize) - 1;
1042	num_bytes = lockend - lockstart + 1;
1043
1044	if (nowait) {
1045		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1046						  &cached_state)) {
1047			btrfs_drew_write_unlock(&root->snapshot_lock);
1048			return -EAGAIN;
 
 
 
 
 
 
 
1049		}
1050	} else {
1051		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1052						   &cached_state);
1053	}
 
1054	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1055			       NULL, nowait, false);
1056	if (ret <= 0)
1057		btrfs_drew_write_unlock(&root->snapshot_lock);
1058	else
 
 
1059		*write_bytes = min_t(size_t, *write_bytes ,
1060				     num_bytes - pos + lockstart);
1061	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
 
 
1062
1063	return ret;
1064}
1065
1066void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
 
1067{
1068	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1069}
1070
1071int btrfs_write_check(struct kiocb *iocb, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	struct file *file = iocb->ki_filp;
1074	struct inode *inode = file_inode(file);
1075	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1076	loff_t pos = iocb->ki_pos;
1077	int ret;
1078	loff_t oldsize;
1079
1080	/*
1081	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1082	 * prealloc flags, as without those flags we always have to COW. We will
1083	 * later check if we can really COW into the target range (using
1084	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1085	 */
1086	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1087	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1088		return -EAGAIN;
1089
1090	ret = file_remove_privs(file);
1091	if (ret)
1092		return ret;
1093
1094	/*
1095	 * We reserve space for updating the inode when we reserve space for the
1096	 * extent we are going to write, so we will enospc out there.  We don't
1097	 * need to start yet another transaction to update the inode as we will
1098	 * update the inode when we finish writing whatever data we write.
1099	 */
1100	if (!IS_NOCMTIME(inode)) {
1101		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1102		inode_inc_iversion(inode);
1103	}
1104
1105	oldsize = i_size_read(inode);
1106	if (pos > oldsize) {
1107		/* Expand hole size to cover write data, preventing empty gap */
1108		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1109
1110		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1111		if (ret)
1112			return ret;
1113	}
1114
1115	return 0;
 
 
1116}
1117
1118ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
 
1119{
1120	struct file *file = iocb->ki_filp;
1121	loff_t pos;
1122	struct inode *inode = file_inode(file);
1123	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 
1124	struct extent_changeset *data_reserved = NULL;
1125	u64 release_bytes = 0;
1126	u64 lockstart;
1127	u64 lockend;
1128	size_t num_written = 0;
1129	ssize_t ret;
1130	loff_t old_isize;
1131	unsigned int ilock_flags = 0;
1132	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1133	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1134	bool only_release_metadata = false;
 
1135
1136	if (nowait)
1137		ilock_flags |= BTRFS_ILOCK_TRY;
1138
1139	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1140	if (ret < 0)
1141		return ret;
1142
1143	/*
1144	 * We can only trust the isize with inode lock held, or it can race with
1145	 * other buffered writes and cause incorrect call of
1146	 * pagecache_isize_extended() to overwrite existing data.
1147	 */
1148	old_isize = i_size_read(inode);
1149
1150	ret = generic_write_checks(iocb, i);
1151	if (ret <= 0)
1152		goto out;
1153
1154	ret = btrfs_write_check(iocb, ret);
1155	if (ret < 0)
1156		goto out;
1157
1158	pos = iocb->ki_pos;
1159	while (iov_iter_count(i) > 0) {
1160		struct extent_state *cached_state = NULL;
1161		size_t offset = offset_in_page(pos);
1162		size_t sector_offset;
1163		size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
 
 
 
 
1164		size_t reserve_bytes;
 
1165		size_t copied;
1166		size_t dirty_sectors;
1167		size_t num_sectors;
1168		struct folio *folio = NULL;
1169		int extents_locked;
1170		bool force_page_uptodate = false;
 
1171
1172		/*
1173		 * Fault pages before locking them in prepare_one_folio()
1174		 * to avoid recursive lock
1175		 */
1176		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1177			ret = -EFAULT;
1178			break;
1179		}
1180
1181		only_release_metadata = false;
1182		sector_offset = pos & (fs_info->sectorsize - 1);
 
 
1183
1184		extent_changeset_release(data_reserved);
1185		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1186						  &data_reserved, pos,
1187						  write_bytes, nowait);
1188		if (ret < 0) {
1189			int can_nocow;
1190
1191			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1192				ret = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
1193				break;
1194			}
1195
1196			/*
1197			 * If we don't have to COW at the offset, reserve
1198			 * metadata only. write_bytes may get smaller than
1199			 * requested here.
1200			 */
1201			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1202							   &write_bytes, nowait);
1203			if (can_nocow < 0)
1204				ret = can_nocow;
1205			if (can_nocow > 0)
1206				ret = 0;
1207			if (ret)
1208				break;
1209			only_release_metadata = true;
1210		}
1211
1212		reserve_bytes = round_up(write_bytes + sector_offset,
1213					 fs_info->sectorsize);
1214		WARN_ON(reserve_bytes == 0);
1215		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1216						      reserve_bytes,
1217						      reserve_bytes, nowait);
1218		if (ret) {
1219			if (!only_release_metadata)
1220				btrfs_free_reserved_data_space(BTRFS_I(inode),
1221						data_reserved, pos,
1222						write_bytes);
1223			else
1224				btrfs_check_nocow_unlock(BTRFS_I(inode));
1225
1226			if (nowait && ret == -ENOSPC)
1227				ret = -EAGAIN;
1228			break;
1229		}
1230
1231		release_bytes = reserve_bytes;
1232again:
1233		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1234		if (ret) {
1235			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1236			break;
1237		}
1238
1239		ret = prepare_one_folio(inode, &folio, pos, write_bytes,
1240					force_page_uptodate, false);
1241		if (ret) {
1242			btrfs_delalloc_release_extents(BTRFS_I(inode),
1243						       reserve_bytes);
1244			break;
1245		}
1246
1247		extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
1248						folio, pos, write_bytes, &lockstart,
1249						&lockend, nowait, &cached_state);
 
1250		if (extents_locked < 0) {
1251			if (!nowait && extents_locked == -EAGAIN)
1252				goto again;
1253
1254			btrfs_delalloc_release_extents(BTRFS_I(inode),
1255						       reserve_bytes);
1256			ret = extents_locked;
1257			break;
1258		}
1259
1260		copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
1261
1262		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1263		dirty_sectors = round_up(copied + sector_offset,
1264					fs_info->sectorsize);
1265		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1266
 
 
 
 
 
 
 
1267		if (copied == 0) {
1268			force_page_uptodate = true;
1269			dirty_sectors = 0;
 
1270		} else {
1271			force_page_uptodate = false;
 
 
1272		}
1273
1274		if (num_sectors > dirty_sectors) {
1275			/* release everything except the sectors we dirtied */
1276			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
 
1277			if (only_release_metadata) {
1278				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1279							release_bytes, true);
1280			} else {
1281				u64 release_start = round_up(pos + copied,
1282							     fs_info->sectorsize);
 
 
 
1283				btrfs_delalloc_release_space(BTRFS_I(inode),
1284						data_reserved, release_start,
1285						release_bytes, true);
1286			}
1287		}
1288
1289		release_bytes = round_up(copied + sector_offset,
1290					fs_info->sectorsize);
1291
1292		ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
1293					&cached_state, only_release_metadata);
 
 
1294
1295		/*
1296		 * If we have not locked the extent range, because the range's
1297		 * start offset is >= i_size, we might still have a non-NULL
1298		 * cached extent state, acquired while marking the extent range
1299		 * as delalloc through btrfs_dirty_page(). Therefore free any
1300		 * possible cached extent state to avoid a memory leak.
1301		 */
1302		if (extents_locked)
1303			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1304				      lockend, &cached_state);
1305		else
1306			free_extent_state(cached_state);
1307
1308		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1309		if (ret) {
1310			btrfs_drop_folio(fs_info, folio, pos, copied);
1311			break;
1312		}
1313
1314		release_bytes = 0;
1315		if (only_release_metadata)
1316			btrfs_check_nocow_unlock(BTRFS_I(inode));
1317
1318		btrfs_drop_folio(fs_info, folio, pos, copied);
 
 
 
 
 
 
 
 
 
 
 
1319
1320		cond_resched();
1321
 
 
1322		pos += copied;
1323		num_written += copied;
1324	}
1325
 
 
1326	if (release_bytes) {
1327		if (only_release_metadata) {
1328			btrfs_check_nocow_unlock(BTRFS_I(inode));
1329			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1330					release_bytes, true);
1331		} else {
1332			btrfs_delalloc_release_space(BTRFS_I(inode),
1333					data_reserved,
1334					round_down(pos, fs_info->sectorsize),
1335					release_bytes, true);
1336		}
1337	}
1338
1339	extent_changeset_free(data_reserved);
1340	if (num_written > 0) {
1341		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1342		iocb->ki_pos += num_written;
1343	}
1344out:
1345	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1346	return num_written ? num_written : ret;
1347}
1348
1349static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1350			const struct btrfs_ioctl_encoded_io_args *encoded)
1351{
1352	struct file *file = iocb->ki_filp;
1353	struct inode *inode = file_inode(file);
1354	loff_t count;
1355	ssize_t ret;
 
 
 
1356
1357	btrfs_inode_lock(BTRFS_I(inode), 0);
1358	count = encoded->len;
1359	ret = generic_write_checks_count(iocb, &count);
1360	if (ret == 0 && count != encoded->len) {
1361		/*
1362		 * The write got truncated by generic_write_checks_count(). We
1363		 * can't do a partial encoded write.
1364		 */
1365		ret = -EFBIG;
 
1366	}
1367	if (ret || encoded->len == 0)
 
 
 
 
 
 
1368		goto out;
1369
1370	ret = btrfs_write_check(iocb, encoded->len);
1371	if (ret < 0)
1372		goto out;
1373
1374	ret = btrfs_do_encoded_write(iocb, from, encoded);
 
 
1375out:
1376	btrfs_inode_unlock(BTRFS_I(inode), 0);
1377	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378}
1379
1380ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1381			    const struct btrfs_ioctl_encoded_io_args *encoded)
1382{
1383	struct file *file = iocb->ki_filp;
1384	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1385	ssize_t num_written, num_sync;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386
1387	/*
1388	 * If the fs flips readonly due to some impossible error, although we
1389	 * have opened a file as writable, we have to stop this write operation
1390	 * to ensure consistency.
 
1391	 */
1392	if (BTRFS_FS_ERROR(inode->root->fs_info))
1393		return -EROFS;
 
 
 
1394
1395	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1396		return -EOPNOTSUPP;
 
 
 
 
 
1397
1398	if (encoded) {
1399		num_written = btrfs_encoded_write(iocb, from, encoded);
1400		num_sync = encoded->len;
1401	} else if (iocb->ki_flags & IOCB_DIRECT) {
1402		num_written = btrfs_direct_write(iocb, from);
1403		num_sync = num_written;
1404	} else {
1405		num_written = btrfs_buffered_write(iocb, from);
1406		num_sync = num_written;
 
 
 
 
1407	}
1408
1409	btrfs_set_inode_last_sub_trans(inode);
 
1410
1411	if (num_sync > 0) {
1412		num_sync = generic_write_sync(iocb, num_sync);
1413		if (num_sync < 0)
1414			num_written = num_sync;
 
 
 
 
 
1415	}
1416
1417	return num_written;
1418}
1419
1420static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1421{
1422	return btrfs_do_write_iter(iocb, from, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1423}
1424
1425int btrfs_release_file(struct inode *inode, struct file *filp)
1426{
1427	struct btrfs_file_private *private = filp->private_data;
1428
1429	if (private) {
1430		kfree(private->filldir_buf);
1431		free_extent_state(private->llseek_cached_state);
1432		kfree(private);
1433		filp->private_data = NULL;
1434	}
1435
1436	/*
1437	 * Set by setattr when we are about to truncate a file from a non-zero
1438	 * size to a zero size.  This tries to flush down new bytes that may
1439	 * have been written if the application were using truncate to replace
1440	 * a file in place.
1441	 */
1442	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1443			       &BTRFS_I(inode)->runtime_flags))
1444			filemap_flush(inode->i_mapping);
1445	return 0;
1446}
1447
1448static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1449{
1450	int ret;
1451	struct blk_plug plug;
1452
1453	/*
1454	 * This is only called in fsync, which would do synchronous writes, so
1455	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1456	 * multiple disks using raid profile, a large IO can be split to
1457	 * several segments of stripe length (currently 64K).
1458	 */
1459	blk_start_plug(&plug);
 
1460	ret = btrfs_fdatawrite_range(inode, start, end);
 
1461	blk_finish_plug(&plug);
1462
1463	return ret;
1464}
1465
1466static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1467{
1468	struct btrfs_inode *inode = ctx->inode;
1469	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470
1471	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1472	    list_empty(&ctx->ordered_extents))
1473		return true;
1474
1475	/*
1476	 * If we are doing a fast fsync we can not bail out if the inode's
1477	 * last_trans is <= then the last committed transaction, because we only
1478	 * update the last_trans of the inode during ordered extent completion,
1479	 * and for a fast fsync we don't wait for that, we only wait for the
1480	 * writeback to complete.
1481	 */
1482	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1483	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1484	     list_empty(&ctx->ordered_extents)))
1485		return true;
1486
1487	return false;
1488}
1489
1490/*
1491 * fsync call for both files and directories.  This logs the inode into
1492 * the tree log instead of forcing full commits whenever possible.
1493 *
1494 * It needs to call filemap_fdatawait so that all ordered extent updates are
1495 * in the metadata btree are up to date for copying to the log.
1496 *
1497 * It drops the inode mutex before doing the tree log commit.  This is an
1498 * important optimization for directories because holding the mutex prevents
1499 * new operations on the dir while we write to disk.
1500 */
1501int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1502{
1503	struct dentry *dentry = file_dentry(file);
1504	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1505	struct btrfs_root *root = inode->root;
1506	struct btrfs_fs_info *fs_info = root->fs_info;
1507	struct btrfs_trans_handle *trans;
1508	struct btrfs_log_ctx ctx;
1509	int ret = 0, err;
1510	u64 len;
1511	bool full_sync;
1512	bool skip_ilock = false;
1513
1514	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1515		skip_ilock = true;
1516		current->journal_info = NULL;
1517		btrfs_assert_inode_locked(inode);
1518	}
1519
1520	trace_btrfs_sync_file(file, datasync);
1521
1522	btrfs_init_log_ctx(&ctx, inode);
1523
1524	/*
1525	 * Always set the range to a full range, otherwise we can get into
1526	 * several problems, from missing file extent items to represent holes
1527	 * when not using the NO_HOLES feature, to log tree corruption due to
1528	 * races between hole detection during logging and completion of ordered
1529	 * extents outside the range, to missing checksums due to ordered extents
1530	 * for which we flushed only a subset of their pages.
1531	 */
1532	start = 0;
1533	end = LLONG_MAX;
1534	len = (u64)LLONG_MAX + 1;
1535
1536	/*
1537	 * We write the dirty pages in the range and wait until they complete
1538	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1539	 * multi-task, and make the performance up.  See
1540	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1541	 */
1542	ret = start_ordered_ops(inode, start, end);
1543	if (ret)
1544		goto out;
1545
1546	if (skip_ilock)
1547		down_write(&inode->i_mmap_lock);
1548	else
1549		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
 
 
 
 
1550
1551	atomic_inc(&root->log_batch);
1552
1553	/*
1554	 * Before we acquired the inode's lock and the mmap lock, someone may
1555	 * have dirtied more pages in the target range. We need to make sure
1556	 * that writeback for any such pages does not start while we are logging
1557	 * the inode, because if it does, any of the following might happen when
1558	 * we are not doing a full inode sync:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559	 *
1560	 * 1) We log an extent after its writeback finishes but before its
1561	 *    checksums are added to the csum tree, leading to -EIO errors
1562	 *    when attempting to read the extent after a log replay.
1563	 *
1564	 * 2) We can end up logging an extent before its writeback finishes.
1565	 *    Therefore after the log replay we will have a file extent item
1566	 *    pointing to an unwritten extent (and no data checksums as well).
1567	 *
1568	 * So trigger writeback for any eventual new dirty pages and then we
1569	 * wait for all ordered extents to complete below.
1570	 */
1571	ret = start_ordered_ops(inode, start, end);
1572	if (ret) {
1573		if (skip_ilock)
1574			up_write(&inode->i_mmap_lock);
1575		else
1576			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1577		goto out;
1578	}
1579
1580	/*
1581	 * Always check for the full sync flag while holding the inode's lock,
1582	 * to avoid races with other tasks. The flag must be either set all the
1583	 * time during logging or always off all the time while logging.
1584	 * We check the flag here after starting delalloc above, because when
1585	 * running delalloc the full sync flag may be set if we need to drop
1586	 * extra extent map ranges due to temporary memory allocation failures.
1587	 */
1588	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1589
1590	/*
1591	 * We have to do this here to avoid the priority inversion of waiting on
1592	 * IO of a lower priority task while holding a transaction open.
1593	 *
1594	 * For a full fsync we wait for the ordered extents to complete while
1595	 * for a fast fsync we wait just for writeback to complete, and then
1596	 * attach the ordered extents to the transaction so that a transaction
1597	 * commit waits for their completion, to avoid data loss if we fsync,
1598	 * the current transaction commits before the ordered extents complete
1599	 * and a power failure happens right after that.
1600	 *
1601	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1602	 * logical address recorded in the ordered extent may change. We need
1603	 * to wait for the IO to stabilize the logical address.
1604	 */
1605	if (full_sync || btrfs_is_zoned(fs_info)) {
1606		ret = btrfs_wait_ordered_range(inode, start, len);
1607		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1608	} else {
1609		/*
1610		 * Get our ordered extents as soon as possible to avoid doing
1611		 * checksum lookups in the csum tree, and use instead the
1612		 * checksums attached to the ordered extents.
1613		 */
1614		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1615		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1616		if (ret)
1617			goto out_release_extents;
1618
1619		/*
1620		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1621		 * starting and waiting for writeback, because for buffered IO
1622		 * it may have been set during the end IO callback
1623		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1624		 * case an error happened and we need to wait for ordered
1625		 * extents to complete so that any extent maps that point to
1626		 * unwritten locations are dropped and we don't log them.
1627		 */
1628		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1629			ret = btrfs_wait_ordered_range(inode, start, len);
1630	}
1631
1632	if (ret)
1633		goto out_release_extents;
1634
1635	atomic_inc(&root->log_batch);
1636
1637	if (skip_inode_logging(&ctx)) {
 
 
1638		/*
1639		 * We've had everything committed since the last time we were
1640		 * modified so clear this flag in case it was set for whatever
1641		 * reason, it's no longer relevant.
1642		 */
1643		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 
1644		/*
1645		 * An ordered extent might have started before and completed
1646		 * already with io errors, in which case the inode was not
1647		 * updated and we end up here. So check the inode's mapping
1648		 * for any errors that might have happened since we last
1649		 * checked called fsync.
1650		 */
1651		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1652		goto out_release_extents;
 
 
1653	}
1654
1655	btrfs_init_log_ctx_scratch_eb(&ctx);
1656
1657	/*
1658	 * We use start here because we will need to wait on the IO to complete
1659	 * in btrfs_sync_log, which could require joining a transaction (for
1660	 * example checking cross references in the nocow path).  If we use join
1661	 * here we could get into a situation where we're waiting on IO to
1662	 * happen that is blocked on a transaction trying to commit.  With start
1663	 * we inc the extwriter counter, so we wait for all extwriters to exit
1664	 * before we start blocking joiners.  This comment is to keep somebody
1665	 * from thinking they are super smart and changing this to
1666	 * btrfs_join_transaction *cough*Josef*cough*.
1667	 */
1668	trans = btrfs_start_transaction(root, 0);
1669	if (IS_ERR(trans)) {
1670		ret = PTR_ERR(trans);
1671		goto out_release_extents;
 
 
1672	}
1673	trans->in_fsync = true;
1674
1675	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1676	/*
1677	 * Scratch eb no longer needed, release before syncing log or commit
1678	 * transaction, to avoid holding unnecessary memory during such long
1679	 * operations.
1680	 */
1681	if (ctx.scratch_eb) {
1682		free_extent_buffer(ctx.scratch_eb);
1683		ctx.scratch_eb = NULL;
1684	}
1685	btrfs_release_log_ctx_extents(&ctx);
1686	if (ret < 0) {
1687		/* Fallthrough and commit/free transaction. */
1688		ret = BTRFS_LOG_FORCE_COMMIT;
1689	}
1690
1691	/* we've logged all the items and now have a consistent
1692	 * version of the file in the log.  It is possible that
1693	 * someone will come in and modify the file, but that's
1694	 * fine because the log is consistent on disk, and we
1695	 * have references to all of the file's extents
1696	 *
1697	 * It is possible that someone will come in and log the
1698	 * file again, but that will end up using the synchronization
1699	 * inside btrfs_sync_log to keep things safe.
1700	 */
1701	if (skip_ilock)
1702		up_write(&inode->i_mmap_lock);
1703	else
1704		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1705
1706	if (ret == BTRFS_NO_LOG_SYNC) {
1707		ret = btrfs_end_transaction(trans);
1708		goto out;
1709	}
1710
1711	/* We successfully logged the inode, attempt to sync the log. */
1712	if (!ret) {
1713		ret = btrfs_sync_log(trans, root, &ctx);
1714		if (!ret) {
1715			ret = btrfs_end_transaction(trans);
1716			goto out;
 
 
 
1717		}
1718	}
1719
1720	/*
1721	 * At this point we need to commit the transaction because we had
1722	 * btrfs_need_log_full_commit() or some other error.
1723	 *
1724	 * If we didn't do a full sync we have to stop the trans handle, wait on
1725	 * the ordered extents, start it again and commit the transaction.  If
1726	 * we attempt to wait on the ordered extents here we could deadlock with
1727	 * something like fallocate() that is holding the extent lock trying to
1728	 * start a transaction while some other thread is trying to commit the
1729	 * transaction while we (fsync) are currently holding the transaction
1730	 * open.
1731	 */
1732	if (!full_sync) {
1733		ret = btrfs_end_transaction(trans);
1734		if (ret)
1735			goto out;
1736		ret = btrfs_wait_ordered_range(inode, start, len);
1737		if (ret)
1738			goto out;
1739
1740		/*
1741		 * This is safe to use here because we're only interested in
1742		 * making sure the transaction that had the ordered extents is
1743		 * committed.  We aren't waiting on anything past this point,
1744		 * we're purely getting the transaction and committing it.
1745		 */
1746		trans = btrfs_attach_transaction_barrier(root);
1747		if (IS_ERR(trans)) {
1748			ret = PTR_ERR(trans);
1749
1750			/*
1751			 * We committed the transaction and there's no currently
1752			 * running transaction, this means everything we care
1753			 * about made it to disk and we are done.
1754			 */
1755			if (ret == -ENOENT)
1756				ret = 0;
1757			goto out;
1758		}
1759	}
1760
1761	ret = btrfs_commit_transaction(trans);
1762out:
1763	free_extent_buffer(ctx.scratch_eb);
1764	ASSERT(list_empty(&ctx.list));
1765	ASSERT(list_empty(&ctx.conflict_inodes));
1766	err = file_check_and_advance_wb_err(file);
1767	if (!ret)
1768		ret = err;
1769	return ret > 0 ? -EIO : ret;
1770
1771out_release_extents:
1772	btrfs_release_log_ctx_extents(&ctx);
1773	if (skip_ilock)
1774		up_write(&inode->i_mmap_lock);
1775	else
1776		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1777	goto out;
1778}
1779
1780/*
1781 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1782 * called from a page fault handler when a page is first dirtied. Hence we must
1783 * be careful to check for EOF conditions here. We set the page up correctly
1784 * for a written page which means we get ENOSPC checking when writing into
1785 * holes and correct delalloc and unwritten extent mapping on filesystems that
1786 * support these features.
1787 *
1788 * We are not allowed to take the i_mutex here so we have to play games to
1789 * protect against truncate races as the page could now be beyond EOF.  Because
1790 * truncate_setsize() writes the inode size before removing pages, once we have
1791 * the page lock we can determine safely if the page is beyond EOF. If it is not
1792 * beyond EOF, then the page is guaranteed safe against truncation until we
1793 * unlock the page.
1794 */
1795static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1796{
1797	struct page *page = vmf->page;
1798	struct folio *folio = page_folio(page);
1799	struct inode *inode = file_inode(vmf->vma->vm_file);
1800	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1801	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1802	struct btrfs_ordered_extent *ordered;
1803	struct extent_state *cached_state = NULL;
1804	struct extent_changeset *data_reserved = NULL;
1805	unsigned long zero_start;
1806	loff_t size;
1807	vm_fault_t ret;
1808	int ret2;
1809	int reserved = 0;
1810	u64 reserved_space;
1811	u64 page_start;
1812	u64 page_end;
1813	u64 end;
1814
1815	ASSERT(folio_order(folio) == 0);
1816
1817	reserved_space = PAGE_SIZE;
1818
1819	sb_start_pagefault(inode->i_sb);
1820	page_start = folio_pos(folio);
1821	page_end = page_start + folio_size(folio) - 1;
1822	end = page_end;
1823
1824	/*
1825	 * Reserving delalloc space after obtaining the page lock can lead to
1826	 * deadlock. For example, if a dirty page is locked by this function
1827	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1828	 * dirty page write out, then the btrfs_writepages() function could
1829	 * end up waiting indefinitely to get a lock on the page currently
1830	 * being processed by btrfs_page_mkwrite() function.
1831	 */
1832	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1833					    page_start, reserved_space);
1834	if (!ret2) {
1835		ret2 = file_update_time(vmf->vma->vm_file);
1836		reserved = 1;
1837	}
1838	if (ret2) {
1839		ret = vmf_error(ret2);
1840		if (reserved)
1841			goto out;
1842		goto out_noreserve;
1843	}
1844
1845	/* Make the VM retry the fault. */
1846	ret = VM_FAULT_NOPAGE;
1847again:
1848	down_read(&BTRFS_I(inode)->i_mmap_lock);
1849	folio_lock(folio);
1850	size = i_size_read(inode);
1851
1852	if ((folio->mapping != inode->i_mapping) ||
1853	    (page_start >= size)) {
1854		/* Page got truncated out from underneath us. */
1855		goto out_unlock;
1856	}
1857	folio_wait_writeback(folio);
1858
1859	lock_extent(io_tree, page_start, page_end, &cached_state);
1860	ret2 = set_folio_extent_mapped(folio);
1861	if (ret2 < 0) {
1862		ret = vmf_error(ret2);
1863		unlock_extent(io_tree, page_start, page_end, &cached_state);
1864		goto out_unlock;
1865	}
1866
1867	/*
1868	 * We can't set the delalloc bits if there are pending ordered
1869	 * extents.  Drop our locks and wait for them to finish.
1870	 */
1871	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1872	if (ordered) {
1873		unlock_extent(io_tree, page_start, page_end, &cached_state);
1874		folio_unlock(folio);
1875		up_read(&BTRFS_I(inode)->i_mmap_lock);
1876		btrfs_start_ordered_extent(ordered);
1877		btrfs_put_ordered_extent(ordered);
1878		goto again;
1879	}
1880
1881	if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1882		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1883		if (reserved_space < PAGE_SIZE) {
1884			end = page_start + reserved_space - 1;
1885			btrfs_delalloc_release_space(BTRFS_I(inode),
1886					data_reserved, page_start,
1887					PAGE_SIZE - reserved_space, true);
1888		}
1889	}
1890
1891	/*
1892	 * page_mkwrite gets called when the page is firstly dirtied after it's
1893	 * faulted in, but write(2) could also dirty a page and set delalloc
1894	 * bits, thus in this case for space account reason, we still need to
1895	 * clear any delalloc bits within this page range since we have to
1896	 * reserve data&meta space before lock_page() (see above comments).
1897	 */
1898	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1899			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1900			  EXTENT_DEFRAG, &cached_state);
1901
1902	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1903					&cached_state);
1904	if (ret2) {
1905		unlock_extent(io_tree, page_start, page_end, &cached_state);
1906		ret = VM_FAULT_SIGBUS;
1907		goto out_unlock;
1908	}
1909
1910	/* Page is wholly or partially inside EOF. */
1911	if (page_start + folio_size(folio) > size)
1912		zero_start = offset_in_folio(folio, size);
1913	else
1914		zero_start = PAGE_SIZE;
1915
1916	if (zero_start != PAGE_SIZE)
1917		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1918
1919	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
1920	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1921	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1922
1923	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1924
1925	unlock_extent(io_tree, page_start, page_end, &cached_state);
1926	up_read(&BTRFS_I(inode)->i_mmap_lock);
1927
1928	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1929	sb_end_pagefault(inode->i_sb);
1930	extent_changeset_free(data_reserved);
1931	return VM_FAULT_LOCKED;
1932
1933out_unlock:
1934	folio_unlock(folio);
1935	up_read(&BTRFS_I(inode)->i_mmap_lock);
1936out:
1937	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1938	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1939				     reserved_space, (ret != 0));
1940out_noreserve:
1941	sb_end_pagefault(inode->i_sb);
1942	extent_changeset_free(data_reserved);
1943	return ret;
1944}
1945
1946static const struct vm_operations_struct btrfs_file_vm_ops = {
1947	.fault		= filemap_fault,
1948	.map_pages	= filemap_map_pages,
1949	.page_mkwrite	= btrfs_page_mkwrite,
1950};
1951
1952static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1953{
1954	struct address_space *mapping = filp->f_mapping;
1955
1956	if (!mapping->a_ops->read_folio)
1957		return -ENOEXEC;
1958
1959	file_accessed(filp);
1960	vma->vm_ops = &btrfs_file_vm_ops;
1961
1962	return 0;
1963}
1964
1965static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1966			  int slot, u64 start, u64 end)
1967{
1968	struct btrfs_file_extent_item *fi;
1969	struct btrfs_key key;
1970
1971	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1972		return 0;
1973
1974	btrfs_item_key_to_cpu(leaf, &key, slot);
1975	if (key.objectid != btrfs_ino(inode) ||
1976	    key.type != BTRFS_EXTENT_DATA_KEY)
1977		return 0;
1978
1979	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1980
1981	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1982		return 0;
1983
1984	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1985		return 0;
1986
1987	if (key.offset == end)
1988		return 1;
1989	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1990		return 1;
1991	return 0;
1992}
1993
1994static int fill_holes(struct btrfs_trans_handle *trans,
1995		struct btrfs_inode *inode,
1996		struct btrfs_path *path, u64 offset, u64 end)
1997{
1998	struct btrfs_fs_info *fs_info = trans->fs_info;
1999	struct btrfs_root *root = inode->root;
2000	struct extent_buffer *leaf;
2001	struct btrfs_file_extent_item *fi;
2002	struct extent_map *hole_em;
 
2003	struct btrfs_key key;
2004	int ret;
2005
2006	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2007		goto out;
2008
2009	key.objectid = btrfs_ino(inode);
2010	key.type = BTRFS_EXTENT_DATA_KEY;
2011	key.offset = offset;
2012
2013	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2014	if (ret <= 0) {
2015		/*
2016		 * We should have dropped this offset, so if we find it then
2017		 * something has gone horribly wrong.
2018		 */
2019		if (ret == 0)
2020			ret = -EINVAL;
2021		return ret;
2022	}
2023
2024	leaf = path->nodes[0];
2025	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2026		u64 num_bytes;
2027
2028		path->slots[0]--;
2029		fi = btrfs_item_ptr(leaf, path->slots[0],
2030				    struct btrfs_file_extent_item);
2031		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2032			end - offset;
2033		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2034		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2035		btrfs_set_file_extent_offset(leaf, fi, 0);
2036		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2037		btrfs_mark_buffer_dirty(trans, leaf);
2038		goto out;
2039	}
2040
2041	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2042		u64 num_bytes;
2043
2044		key.offset = offset;
2045		btrfs_set_item_key_safe(trans, path, &key);
2046		fi = btrfs_item_ptr(leaf, path->slots[0],
2047				    struct btrfs_file_extent_item);
2048		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2049			offset;
2050		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2051		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2052		btrfs_set_file_extent_offset(leaf, fi, 0);
2053		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2054		btrfs_mark_buffer_dirty(trans, leaf);
2055		goto out;
2056	}
2057	btrfs_release_path(path);
2058
2059	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2060				       end - offset);
2061	if (ret)
2062		return ret;
2063
2064out:
2065	btrfs_release_path(path);
2066
2067	hole_em = alloc_extent_map();
2068	if (!hole_em) {
2069		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2070		btrfs_set_inode_full_sync(inode);
2071	} else {
2072		hole_em->start = offset;
2073		hole_em->len = end - offset;
2074		hole_em->ram_bytes = hole_em->len;
 
2075
2076		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2077		hole_em->disk_num_bytes = 0;
 
 
2078		hole_em->generation = trans->transid;
2079
2080		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
 
 
 
 
 
2081		free_extent_map(hole_em);
2082		if (ret)
2083			btrfs_set_inode_full_sync(inode);
 
2084	}
2085
2086	return 0;
2087}
2088
2089/*
2090 * Find a hole extent on given inode and change start/len to the end of hole
2091 * extent.(hole/vacuum extent whose em->start <= start &&
2092 *	   em->start + em->len > start)
2093 * When a hole extent is found, return 1 and modify start/len.
2094 */
2095static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2096{
2097	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2098	struct extent_map *em;
2099	int ret = 0;
2100
2101	em = btrfs_get_extent(inode, NULL,
2102			      round_down(*start, fs_info->sectorsize),
2103			      round_up(*len, fs_info->sectorsize));
2104	if (IS_ERR(em))
2105		return PTR_ERR(em);
2106
2107	/* Hole or vacuum extent(only exists in no-hole mode) */
2108	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2109		ret = 1;
2110		*len = em->start + em->len > *start + *len ?
2111		       0 : *start + *len - em->start - em->len;
2112		*start = em->start + em->len;
2113	}
2114	free_extent_map(em);
2115	return ret;
2116}
2117
2118static void btrfs_punch_hole_lock_range(struct inode *inode,
2119					const u64 lockstart,
2120					const u64 lockend,
2121					struct extent_state **cached_state)
2122{
2123	/*
2124	 * For subpage case, if the range is not at page boundary, we could
2125	 * have pages at the leading/tailing part of the range.
2126	 * This could lead to dead loop since filemap_range_has_page()
2127	 * will always return true.
2128	 * So here we need to do extra page alignment for
2129	 * filemap_range_has_page().
2130	 */
2131	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2132	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2133
2134	while (1) {
 
 
 
2135		truncate_pagecache_range(inode, lockstart, lockend);
2136
2137		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2138			    cached_state);
2139		/*
2140		 * We can't have ordered extents in the range, nor dirty/writeback
2141		 * pages, because we have locked the inode's VFS lock in exclusive
2142		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2143		 * we have flushed all delalloc in the range and we have waited
2144		 * for any ordered extents in the range to complete.
2145		 * We can race with anyone reading pages from this range, so after
2146		 * locking the range check if we have pages in the range, and if
2147		 * we do, unlock the range and retry.
2148		 */
2149		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2150					    page_lockend))
 
 
2151			break;
2152
2153		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2154			      cached_state);
 
 
 
 
 
 
2155	}
2156
2157	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2158}
2159
2160static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2161				     struct btrfs_inode *inode,
2162				     struct btrfs_path *path,
2163				     struct btrfs_replace_extent_info *extent_info,
2164				     const u64 replace_len,
2165				     const u64 bytes_to_drop)
2166{
2167	struct btrfs_fs_info *fs_info = trans->fs_info;
2168	struct btrfs_root *root = inode->root;
2169	struct btrfs_file_extent_item *extent;
2170	struct extent_buffer *leaf;
2171	struct btrfs_key key;
2172	int slot;
 
 
2173	int ret;
2174
2175	if (replace_len == 0)
2176		return 0;
2177
2178	if (extent_info->disk_offset == 0 &&
2179	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2180		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2181		return 0;
2182	}
2183
2184	key.objectid = btrfs_ino(inode);
2185	key.type = BTRFS_EXTENT_DATA_KEY;
2186	key.offset = extent_info->file_offset;
2187	ret = btrfs_insert_empty_item(trans, root, path, &key,
2188				      sizeof(struct btrfs_file_extent_item));
2189	if (ret)
2190		return ret;
2191	leaf = path->nodes[0];
2192	slot = path->slots[0];
2193	write_extent_buffer(leaf, extent_info->extent_buf,
2194			    btrfs_item_ptr_offset(leaf, slot),
2195			    sizeof(struct btrfs_file_extent_item));
2196	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2197	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2198	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2199	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2200	if (extent_info->is_new_extent)
2201		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2202	btrfs_mark_buffer_dirty(trans, leaf);
2203	btrfs_release_path(path);
2204
2205	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2206						replace_len);
2207	if (ret)
2208		return ret;
2209
2210	/* If it's a hole, nothing more needs to be done. */
2211	if (extent_info->disk_offset == 0) {
2212		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2213		return 0;
2214	}
2215
2216	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2217
2218	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2219		key.objectid = extent_info->disk_offset;
2220		key.type = BTRFS_EXTENT_ITEM_KEY;
2221		key.offset = extent_info->disk_len;
2222		ret = btrfs_alloc_reserved_file_extent(trans, root,
2223						       btrfs_ino(inode),
2224						       extent_info->file_offset,
2225						       extent_info->qgroup_reserved,
2226						       &key);
2227	} else {
2228		struct btrfs_ref ref = {
2229			.action = BTRFS_ADD_DELAYED_REF,
2230			.bytenr = extent_info->disk_offset,
2231			.num_bytes = extent_info->disk_len,
2232			.owning_root = btrfs_root_id(root),
2233			.ref_root = btrfs_root_id(root),
2234		};
2235		u64 ref_offset;
2236
2237		ref_offset = extent_info->file_offset - extent_info->data_offset;
2238		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2239		ret = btrfs_inc_extent_ref(trans, &ref);
2240	}
2241
2242	extent_info->insertions++;
2243
2244	return ret;
2245}
2246
2247/*
2248 * The respective range must have been previously locked, as well as the inode.
2249 * The end offset is inclusive (last byte of the range).
2250 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2251 * the file range with an extent.
2252 * When not punching a hole, we don't want to end up in a state where we dropped
2253 * extents without inserting a new one, so we must abort the transaction to avoid
2254 * a corruption.
2255 */
2256int btrfs_replace_file_extents(struct btrfs_inode *inode,
2257			       struct btrfs_path *path, const u64 start,
2258			       const u64 end,
2259			       struct btrfs_replace_extent_info *extent_info,
2260			       struct btrfs_trans_handle **trans_out)
2261{
2262	struct btrfs_drop_extents_args drop_args = { 0 };
2263	struct btrfs_root *root = inode->root;
2264	struct btrfs_fs_info *fs_info = root->fs_info;
2265	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2266	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
 
2267	struct btrfs_trans_handle *trans = NULL;
2268	struct btrfs_block_rsv *rsv;
2269	unsigned int rsv_count;
2270	u64 cur_offset;
 
2271	u64 len = end - start;
2272	int ret = 0;
2273
2274	if (end <= start)
2275		return -EINVAL;
2276
2277	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2278	if (!rsv) {
2279		ret = -ENOMEM;
2280		goto out;
2281	}
2282	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2283	rsv->failfast = true;
2284
2285	/*
2286	 * 1 - update the inode
2287	 * 1 - removing the extents in the range
2288	 * 1 - adding the hole extent if no_holes isn't set or if we are
2289	 *     replacing the range with a new extent
2290	 */
2291	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2292		rsv_count = 3;
2293	else
2294		rsv_count = 2;
2295
2296	trans = btrfs_start_transaction(root, rsv_count);
2297	if (IS_ERR(trans)) {
2298		ret = PTR_ERR(trans);
2299		trans = NULL;
2300		goto out_free;
2301	}
2302
2303	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2304				      min_size, false);
2305	if (WARN_ON(ret))
2306		goto out_trans;
2307	trans->block_rsv = rsv;
2308
2309	cur_offset = start;
2310	drop_args.path = path;
2311	drop_args.end = end + 1;
2312	drop_args.drop_cache = true;
2313	while (cur_offset < end) {
2314		drop_args.start = cur_offset;
2315		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2316		/* If we are punching a hole decrement the inode's byte count */
2317		if (!extent_info)
2318			btrfs_update_inode_bytes(inode, 0,
2319						 drop_args.bytes_found);
2320		if (ret != -ENOSPC) {
2321			/*
2322			 * The only time we don't want to abort is if we are
2323			 * attempting to clone a partial inline extent, in which
2324			 * case we'll get EOPNOTSUPP.  However if we aren't
2325			 * clone we need to abort no matter what, because if we
2326			 * got EOPNOTSUPP via prealloc then we messed up and
2327			 * need to abort.
2328			 */
2329			if (ret &&
2330			    (ret != -EOPNOTSUPP ||
2331			     (extent_info && extent_info->is_new_extent)))
2332				btrfs_abort_transaction(trans, ret);
2333			break;
2334		}
2335
2336		trans->block_rsv = &fs_info->trans_block_rsv;
2337
2338		if (!extent_info && cur_offset < drop_args.drop_end &&
2339		    cur_offset < ino_size) {
2340			ret = fill_holes(trans, inode, path, cur_offset,
2341					 drop_args.drop_end);
2342			if (ret) {
2343				/*
2344				 * If we failed then we didn't insert our hole
2345				 * entries for the area we dropped, so now the
2346				 * fs is corrupted, so we must abort the
2347				 * transaction.
2348				 */
2349				btrfs_abort_transaction(trans, ret);
2350				break;
2351			}
2352		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2353			/*
2354			 * We are past the i_size here, but since we didn't
2355			 * insert holes we need to clear the mapped area so we
2356			 * know to not set disk_i_size in this area until a new
2357			 * file extent is inserted here.
2358			 */
2359			ret = btrfs_inode_clear_file_extent_range(inode,
2360					cur_offset,
2361					drop_args.drop_end - cur_offset);
2362			if (ret) {
2363				/*
2364				 * We couldn't clear our area, so we could
2365				 * presumably adjust up and corrupt the fs, so
2366				 * we need to abort.
2367				 */
2368				btrfs_abort_transaction(trans, ret);
2369				break;
2370			}
2371		}
2372
2373		if (extent_info &&
2374		    drop_args.drop_end > extent_info->file_offset) {
2375			u64 replace_len = drop_args.drop_end -
2376					  extent_info->file_offset;
2377
2378			ret = btrfs_insert_replace_extent(trans, inode,	path,
2379					extent_info, replace_len,
2380					drop_args.bytes_found);
2381			if (ret) {
2382				btrfs_abort_transaction(trans, ret);
2383				break;
2384			}
2385			extent_info->data_len -= replace_len;
2386			extent_info->data_offset += replace_len;
2387			extent_info->file_offset += replace_len;
2388		}
2389
2390		/*
2391		 * We are releasing our handle on the transaction, balance the
2392		 * dirty pages of the btree inode and flush delayed items, and
2393		 * then get a new transaction handle, which may now point to a
2394		 * new transaction in case someone else may have committed the
2395		 * transaction we used to replace/drop file extent items. So
2396		 * bump the inode's iversion and update mtime and ctime except
2397		 * if we are called from a dedupe context. This is because a
2398		 * power failure/crash may happen after the transaction is
2399		 * committed and before we finish replacing/dropping all the
2400		 * file extent items we need.
2401		 */
2402		inode_inc_iversion(&inode->vfs_inode);
2403
2404		if (!extent_info || extent_info->update_times)
2405			inode_set_mtime_to_ts(&inode->vfs_inode,
2406					      inode_set_ctime_current(&inode->vfs_inode));
2407
2408		ret = btrfs_update_inode(trans, inode);
2409		if (ret)
2410			break;
2411
2412		btrfs_end_transaction(trans);
2413		btrfs_btree_balance_dirty(fs_info);
2414
2415		trans = btrfs_start_transaction(root, rsv_count);
2416		if (IS_ERR(trans)) {
2417			ret = PTR_ERR(trans);
2418			trans = NULL;
2419			break;
2420		}
2421
2422		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2423					      rsv, min_size, false);
2424		if (WARN_ON(ret))
2425			break;
2426		trans->block_rsv = rsv;
2427
2428		cur_offset = drop_args.drop_end;
2429		len = end - cur_offset;
2430		if (!extent_info && len) {
2431			ret = find_first_non_hole(inode, &cur_offset, &len);
2432			if (unlikely(ret < 0))
2433				break;
2434			if (ret && !len) {
2435				ret = 0;
2436				break;
2437			}
2438		}
2439	}
2440
2441	/*
2442	 * If we were cloning, force the next fsync to be a full one since we
2443	 * we replaced (or just dropped in the case of cloning holes when
2444	 * NO_HOLES is enabled) file extent items and did not setup new extent
2445	 * maps for the replacement extents (or holes).
2446	 */
2447	if (extent_info && !extent_info->is_new_extent)
2448		btrfs_set_inode_full_sync(inode);
 
 
 
2449
2450	if (ret)
2451		goto out_trans;
2452
2453	trans->block_rsv = &fs_info->trans_block_rsv;
2454	/*
2455	 * If we are using the NO_HOLES feature we might have had already an
2456	 * hole that overlaps a part of the region [lockstart, lockend] and
2457	 * ends at (or beyond) lockend. Since we have no file extent items to
2458	 * represent holes, drop_end can be less than lockend and so we must
2459	 * make sure we have an extent map representing the existing hole (the
2460	 * call to __btrfs_drop_extents() might have dropped the existing extent
2461	 * map representing the existing hole), otherwise the fast fsync path
2462	 * will not record the existence of the hole region
2463	 * [existing_hole_start, lockend].
2464	 */
2465	if (drop_args.drop_end <= end)
2466		drop_args.drop_end = end + 1;
2467	/*
2468	 * Don't insert file hole extent item if it's for a range beyond eof
2469	 * (because it's useless) or if it represents a 0 bytes range (when
2470	 * cur_offset == drop_end).
2471	 */
2472	if (!extent_info && cur_offset < ino_size &&
2473	    cur_offset < drop_args.drop_end) {
2474		ret = fill_holes(trans, inode, path, cur_offset,
2475				 drop_args.drop_end);
2476		if (ret) {
2477			/* Same comment as above. */
2478			btrfs_abort_transaction(trans, ret);
2479			goto out_trans;
2480		}
2481	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2482		/* See the comment in the loop above for the reasoning here. */
2483		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2484					drop_args.drop_end - cur_offset);
2485		if (ret) {
2486			btrfs_abort_transaction(trans, ret);
2487			goto out_trans;
2488		}
2489
2490	}
2491	if (extent_info) {
2492		ret = btrfs_insert_replace_extent(trans, inode, path,
2493				extent_info, extent_info->data_len,
2494				drop_args.bytes_found);
2495		if (ret) {
2496			btrfs_abort_transaction(trans, ret);
2497			goto out_trans;
2498		}
2499	}
2500
2501out_trans:
2502	if (!trans)
2503		goto out_free;
2504
2505	trans->block_rsv = &fs_info->trans_block_rsv;
2506	if (ret)
2507		btrfs_end_transaction(trans);
2508	else
2509		*trans_out = trans;
2510out_free:
2511	btrfs_free_block_rsv(fs_info, rsv);
2512out:
2513	return ret;
2514}
2515
2516static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2517{
2518	struct inode *inode = file_inode(file);
2519	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2520	struct btrfs_root *root = BTRFS_I(inode)->root;
2521	struct extent_state *cached_state = NULL;
2522	struct btrfs_path *path;
2523	struct btrfs_trans_handle *trans = NULL;
2524	u64 lockstart;
2525	u64 lockend;
2526	u64 tail_start;
2527	u64 tail_len;
2528	u64 orig_start = offset;
2529	int ret = 0;
2530	bool same_block;
2531	u64 ino_size;
2532	bool truncated_block = false;
2533	bool updated_inode = false;
2534
2535	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2536
2537	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2538	if (ret)
2539		goto out_only_mutex;
2540
 
2541	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2542	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2543	if (ret < 0)
2544		goto out_only_mutex;
2545	if (ret && !len) {
2546		/* Already in a large hole */
2547		ret = 0;
2548		goto out_only_mutex;
2549	}
2550
2551	ret = file_modified(file);
2552	if (ret)
2553		goto out_only_mutex;
2554
2555	lockstart = round_up(offset, fs_info->sectorsize);
2556	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2557	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2558		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2559	/*
2560	 * We needn't truncate any block which is beyond the end of the file
2561	 * because we are sure there is no data there.
2562	 */
2563	/*
2564	 * Only do this if we are in the same block and we aren't doing the
2565	 * entire block.
2566	 */
2567	if (same_block && len < fs_info->sectorsize) {
2568		if (offset < ino_size) {
2569			truncated_block = true;
2570			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2571						   0);
2572		} else {
2573			ret = 0;
2574		}
2575		goto out_only_mutex;
2576	}
2577
2578	/* zero back part of the first block */
2579	if (offset < ino_size) {
2580		truncated_block = true;
2581		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2582		if (ret) {
2583			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2584			return ret;
2585		}
2586	}
2587
2588	/* Check the aligned pages after the first unaligned page,
2589	 * if offset != orig_start, which means the first unaligned page
2590	 * including several following pages are already in holes,
2591	 * the extra check can be skipped */
2592	if (offset == orig_start) {
2593		/* after truncate page, check hole again */
2594		len = offset + len - lockstart;
2595		offset = lockstart;
2596		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2597		if (ret < 0)
2598			goto out_only_mutex;
2599		if (ret && !len) {
2600			ret = 0;
2601			goto out_only_mutex;
2602		}
2603		lockstart = offset;
2604	}
2605
2606	/* Check the tail unaligned part is in a hole */
2607	tail_start = lockend + 1;
2608	tail_len = offset + len - tail_start;
2609	if (tail_len) {
2610		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2611		if (unlikely(ret < 0))
2612			goto out_only_mutex;
2613		if (!ret) {
2614			/* zero the front end of the last page */
2615			if (tail_start + tail_len < ino_size) {
2616				truncated_block = true;
2617				ret = btrfs_truncate_block(BTRFS_I(inode),
2618							tail_start + tail_len,
2619							0, 1);
2620				if (ret)
2621					goto out_only_mutex;
2622			}
2623		}
2624	}
2625
2626	if (lockend < lockstart) {
2627		ret = 0;
2628		goto out_only_mutex;
2629	}
2630
2631	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
 
 
 
2632
2633	path = btrfs_alloc_path();
2634	if (!path) {
2635		ret = -ENOMEM;
2636		goto out;
2637	}
2638
2639	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2640					 lockend, NULL, &trans);
2641	btrfs_free_path(path);
2642	if (ret)
2643		goto out;
2644
2645	ASSERT(trans != NULL);
2646	inode_inc_iversion(inode);
2647	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2648	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2649	updated_inode = true;
2650	btrfs_end_transaction(trans);
2651	btrfs_btree_balance_dirty(fs_info);
2652out:
2653	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2654		      &cached_state);
2655out_only_mutex:
2656	if (!updated_inode && truncated_block && !ret) {
2657		/*
2658		 * If we only end up zeroing part of a page, we still need to
2659		 * update the inode item, so that all the time fields are
2660		 * updated as well as the necessary btrfs inode in memory fields
2661		 * for detecting, at fsync time, if the inode isn't yet in the
2662		 * log tree or it's there but not up to date.
2663		 */
2664		struct timespec64 now = inode_set_ctime_current(inode);
2665
2666		inode_inc_iversion(inode);
2667		inode_set_mtime_to_ts(inode, now);
 
2668		trans = btrfs_start_transaction(root, 1);
2669		if (IS_ERR(trans)) {
2670			ret = PTR_ERR(trans);
2671		} else {
2672			int ret2;
2673
2674			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2675			ret2 = btrfs_end_transaction(trans);
2676			if (!ret)
2677				ret = ret2;
2678		}
2679	}
2680	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2681	return ret;
2682}
2683
2684/* Helper structure to record which range is already reserved */
2685struct falloc_range {
2686	struct list_head list;
2687	u64 start;
2688	u64 len;
2689};
2690
2691/*
2692 * Helper function to add falloc range
2693 *
2694 * Caller should have locked the larger range of extent containing
2695 * [start, len)
2696 */
2697static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2698{
 
2699	struct falloc_range *range = NULL;
2700
2701	if (!list_empty(head)) {
2702		/*
2703		 * As fallocate iterates by bytenr order, we only need to check
2704		 * the last range.
2705		 */
2706		range = list_last_entry(head, struct falloc_range, list);
2707		if (range->start + range->len == start) {
2708			range->len += len;
2709			return 0;
2710		}
2711	}
2712
 
 
 
 
 
 
 
 
 
 
2713	range = kmalloc(sizeof(*range), GFP_KERNEL);
2714	if (!range)
2715		return -ENOMEM;
2716	range->start = start;
2717	range->len = len;
2718	list_add_tail(&range->list, head);
2719	return 0;
2720}
2721
2722static int btrfs_fallocate_update_isize(struct inode *inode,
2723					const u64 end,
2724					const int mode)
2725{
2726	struct btrfs_trans_handle *trans;
2727	struct btrfs_root *root = BTRFS_I(inode)->root;
2728	int ret;
2729	int ret2;
2730
2731	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2732		return 0;
2733
2734	trans = btrfs_start_transaction(root, 1);
2735	if (IS_ERR(trans))
2736		return PTR_ERR(trans);
2737
2738	inode_set_ctime_current(inode);
2739	i_size_write(inode, end);
2740	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2741	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2742	ret2 = btrfs_end_transaction(trans);
2743
2744	return ret ? ret : ret2;
2745}
2746
2747enum {
2748	RANGE_BOUNDARY_WRITTEN_EXTENT,
2749	RANGE_BOUNDARY_PREALLOC_EXTENT,
2750	RANGE_BOUNDARY_HOLE,
2751};
2752
2753static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2754						 u64 offset)
2755{
2756	const u64 sectorsize = inode->root->fs_info->sectorsize;
2757	struct extent_map *em;
2758	int ret;
2759
2760	offset = round_down(offset, sectorsize);
2761	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2762	if (IS_ERR(em))
2763		return PTR_ERR(em);
2764
2765	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2766		ret = RANGE_BOUNDARY_HOLE;
2767	else if (em->flags & EXTENT_FLAG_PREALLOC)
2768		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2769	else
2770		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2771
2772	free_extent_map(em);
2773	return ret;
2774}
2775
2776static int btrfs_zero_range(struct inode *inode,
2777			    loff_t offset,
2778			    loff_t len,
2779			    const int mode)
2780{
2781	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2782	struct extent_map *em;
2783	struct extent_changeset *data_reserved = NULL;
2784	int ret;
2785	u64 alloc_hint = 0;
2786	const u64 sectorsize = fs_info->sectorsize;
2787	u64 alloc_start = round_down(offset, sectorsize);
2788	u64 alloc_end = round_up(offset + len, sectorsize);
2789	u64 bytes_to_reserve = 0;
2790	bool space_reserved = false;
2791
2792	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
 
 
2793			      alloc_end - alloc_start);
2794	if (IS_ERR(em)) {
2795		ret = PTR_ERR(em);
2796		goto out;
2797	}
2798
2799	/*
2800	 * Avoid hole punching and extent allocation for some cases. More cases
2801	 * could be considered, but these are unlikely common and we keep things
2802	 * as simple as possible for now. Also, intentionally, if the target
2803	 * range contains one or more prealloc extents together with regular
2804	 * extents and holes, we drop all the existing extents and allocate a
2805	 * new prealloc extent, so that we get a larger contiguous disk extent.
2806	 */
2807	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
 
2808		const u64 em_end = em->start + em->len;
2809
2810		if (em_end >= offset + len) {
2811			/*
2812			 * The whole range is already a prealloc extent,
2813			 * do nothing except updating the inode's i_size if
2814			 * needed.
2815			 */
2816			free_extent_map(em);
2817			ret = btrfs_fallocate_update_isize(inode, offset + len,
2818							   mode);
2819			goto out;
2820		}
2821		/*
2822		 * Part of the range is already a prealloc extent, so operate
2823		 * only on the remaining part of the range.
2824		 */
2825		alloc_start = em_end;
2826		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2827		len = offset + len - alloc_start;
2828		offset = alloc_start;
2829		alloc_hint = extent_map_block_start(em) + em->len;
2830	}
2831	free_extent_map(em);
2832
2833	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2834	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2835		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
 
2836		if (IS_ERR(em)) {
2837			ret = PTR_ERR(em);
2838			goto out;
2839		}
2840
2841		if (em->flags & EXTENT_FLAG_PREALLOC) {
2842			free_extent_map(em);
2843			ret = btrfs_fallocate_update_isize(inode, offset + len,
2844							   mode);
2845			goto out;
2846		}
2847		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2848			free_extent_map(em);
2849			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2850						   0);
2851			if (!ret)
2852				ret = btrfs_fallocate_update_isize(inode,
2853								   offset + len,
2854								   mode);
2855			return ret;
2856		}
2857		free_extent_map(em);
2858		alloc_start = round_down(offset, sectorsize);
2859		alloc_end = alloc_start + sectorsize;
2860		goto reserve_space;
2861	}
2862
2863	alloc_start = round_up(offset, sectorsize);
2864	alloc_end = round_down(offset + len, sectorsize);
2865
2866	/*
2867	 * For unaligned ranges, check the pages at the boundaries, they might
2868	 * map to an extent, in which case we need to partially zero them, or
2869	 * they might map to a hole, in which case we need our allocation range
2870	 * to cover them.
2871	 */
2872	if (!IS_ALIGNED(offset, sectorsize)) {
2873		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2874							    offset);
2875		if (ret < 0)
2876			goto out;
2877		if (ret == RANGE_BOUNDARY_HOLE) {
2878			alloc_start = round_down(offset, sectorsize);
2879			ret = 0;
2880		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2881			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2882			if (ret)
2883				goto out;
2884		} else {
2885			ret = 0;
2886		}
2887	}
2888
2889	if (!IS_ALIGNED(offset + len, sectorsize)) {
2890		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2891							    offset + len);
2892		if (ret < 0)
2893			goto out;
2894		if (ret == RANGE_BOUNDARY_HOLE) {
2895			alloc_end = round_up(offset + len, sectorsize);
2896			ret = 0;
2897		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2898			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2899						   0, 1);
2900			if (ret)
2901				goto out;
2902		} else {
2903			ret = 0;
2904		}
2905	}
2906
2907reserve_space:
2908	if (alloc_start < alloc_end) {
2909		struct extent_state *cached_state = NULL;
2910		const u64 lockstart = alloc_start;
2911		const u64 lockend = alloc_end - 1;
2912
2913		bytes_to_reserve = alloc_end - alloc_start;
2914		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2915						      bytes_to_reserve);
2916		if (ret < 0)
2917			goto out;
2918		space_reserved = true;
2919		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920					    &cached_state);
 
 
2921		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2922						alloc_start, bytes_to_reserve);
2923		if (ret) {
2924			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2925				      lockend, &cached_state);
2926			goto out;
2927		}
2928		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2929						alloc_end - alloc_start,
2930						fs_info->sectorsize,
2931						offset + len, &alloc_hint);
2932		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2933			      &cached_state);
2934		/* btrfs_prealloc_file_range releases reserved space on error */
2935		if (ret) {
2936			space_reserved = false;
2937			goto out;
2938		}
2939	}
2940	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2941 out:
2942	if (ret && space_reserved)
2943		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2944					       alloc_start, bytes_to_reserve);
2945	extent_changeset_free(data_reserved);
2946
2947	return ret;
2948}
2949
2950static long btrfs_fallocate(struct file *file, int mode,
2951			    loff_t offset, loff_t len)
2952{
2953	struct inode *inode = file_inode(file);
2954	struct extent_state *cached_state = NULL;
2955	struct extent_changeset *data_reserved = NULL;
2956	struct falloc_range *range;
2957	struct falloc_range *tmp;
2958	LIST_HEAD(reserve_list);
2959	u64 cur_offset;
2960	u64 last_byte;
2961	u64 alloc_start;
2962	u64 alloc_end;
2963	u64 alloc_hint = 0;
2964	u64 locked_end;
2965	u64 actual_end = 0;
2966	u64 data_space_needed = 0;
2967	u64 data_space_reserved = 0;
2968	u64 qgroup_reserved = 0;
2969	struct extent_map *em;
2970	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2971	int ret;
2972
2973	/* Do not allow fallocate in ZONED mode */
2974	if (btrfs_is_zoned(inode_to_fs_info(inode)))
2975		return -EOPNOTSUPP;
2976
2977	alloc_start = round_down(offset, blocksize);
2978	alloc_end = round_up(offset + len, blocksize);
2979	cur_offset = alloc_start;
2980
2981	/* Make sure we aren't being give some crap mode */
2982	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2983		     FALLOC_FL_ZERO_RANGE))
2984		return -EOPNOTSUPP;
2985
2986	if (mode & FALLOC_FL_PUNCH_HOLE)
2987		return btrfs_punch_hole(file, offset, len);
 
 
 
 
 
 
 
 
 
 
 
 
2988
2989	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2990
2991	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2992		ret = inode_newsize_ok(inode, offset + len);
2993		if (ret)
2994			goto out;
2995	}
2996
2997	ret = file_modified(file);
2998	if (ret)
2999		goto out;
3000
3001	/*
3002	 * TODO: Move these two operations after we have checked
3003	 * accurate reserved space, or fallocate can still fail but
3004	 * with page truncated or size expanded.
3005	 *
3006	 * But that's a minor problem and won't do much harm BTW.
3007	 */
3008	if (alloc_start > inode->i_size) {
3009		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3010					alloc_start);
3011		if (ret)
3012			goto out;
3013	} else if (offset + len > inode->i_size) {
3014		/*
3015		 * If we are fallocating from the end of the file onward we
3016		 * need to zero out the end of the block if i_size lands in the
3017		 * middle of a block.
3018		 */
3019		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3020		if (ret)
3021			goto out;
3022	}
3023
3024	/*
3025	 * We have locked the inode at the VFS level (in exclusive mode) and we
3026	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3027	 * locking the file range, flush all dealloc in the range and wait for
3028	 * all ordered extents in the range to complete. After this we can lock
3029	 * the file range and, due to the previous locking we did, we know there
3030	 * can't be more delalloc or ordered extents in the range.
3031	 */
3032	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3033				       alloc_end - alloc_start);
3034	if (ret)
3035		goto out;
3036
3037	if (mode & FALLOC_FL_ZERO_RANGE) {
3038		ret = btrfs_zero_range(inode, offset, len, mode);
3039		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3040		return ret;
3041	}
3042
3043	locked_end = alloc_end - 1;
3044	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3045		    &cached_state);
 
 
 
 
 
 
 
3046
3047	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048
3049	/* First, check if we exceed the qgroup limit */
 
3050	while (cur_offset < alloc_end) {
3051		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3052				      alloc_end - cur_offset);
3053		if (IS_ERR(em)) {
3054			ret = PTR_ERR(em);
3055			break;
3056		}
3057		last_byte = min(extent_map_end(em), alloc_end);
3058		actual_end = min_t(u64, extent_map_end(em), offset + len);
3059		last_byte = ALIGN(last_byte, blocksize);
3060		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3061		    (cur_offset >= inode->i_size &&
3062		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3063			const u64 range_len = last_byte - cur_offset;
3064
3065			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3066			if (ret < 0) {
3067				free_extent_map(em);
3068				break;
3069			}
3070			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3071					&data_reserved, cur_offset, range_len);
 
3072			if (ret < 0) {
 
3073				free_extent_map(em);
3074				break;
3075			}
3076			qgroup_reserved += range_len;
3077			data_space_needed += range_len;
 
 
 
 
 
 
 
3078		}
3079		free_extent_map(em);
3080		cur_offset = last_byte;
3081	}
3082
3083	if (!ret && data_space_needed > 0) {
3084		/*
3085		 * We are safe to reserve space here as we can't have delalloc
3086		 * in the range, see above.
3087		 */
3088		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3089						      data_space_needed);
3090		if (!ret)
3091			data_space_reserved = data_space_needed;
3092	}
3093
3094	/*
3095	 * If ret is still 0, means we're OK to fallocate.
3096	 * Or just cleanup the list and exit.
3097	 */
3098	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3099		if (!ret) {
3100			ret = btrfs_prealloc_file_range(inode, mode,
3101					range->start,
3102					range->len, blocksize,
3103					offset + len, &alloc_hint);
3104			/*
3105			 * btrfs_prealloc_file_range() releases space even
3106			 * if it returns an error.
3107			 */
3108			data_space_reserved -= range->len;
3109			qgroup_reserved -= range->len;
3110		} else if (data_space_reserved > 0) {
3111			btrfs_free_reserved_data_space(BTRFS_I(inode),
3112					       data_reserved, range->start,
3113					       range->len);
3114			data_space_reserved -= range->len;
3115			qgroup_reserved -= range->len;
3116		} else if (qgroup_reserved > 0) {
3117			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3118					       range->start, range->len, NULL);
3119			qgroup_reserved -= range->len;
3120		}
3121		list_del(&range->list);
3122		kfree(range);
3123	}
3124	if (ret < 0)
3125		goto out_unlock;
3126
3127	/*
3128	 * We didn't need to allocate any more space, but we still extended the
3129	 * size of the file so we need to update i_size and the inode item.
3130	 */
3131	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3132out_unlock:
3133	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3134		      &cached_state);
3135out:
3136	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 
 
 
 
3137	extent_changeset_free(data_reserved);
3138	return ret;
3139}
3140
3141/*
3142 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3143 * that has unflushed and/or flushing delalloc. There might be other adjacent
3144 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3145 * looping while it gets adjacent subranges, and merging them together.
3146 */
3147static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3148				   struct extent_state **cached_state,
3149				   bool *search_io_tree,
3150				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3151{
3152	u64 len = end + 1 - start;
3153	u64 delalloc_len = 0;
3154	struct btrfs_ordered_extent *oe;
3155	u64 oe_start;
3156	u64 oe_end;
3157
3158	/*
3159	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3160	 * means we have delalloc (dirty pages) for which writeback has not
3161	 * started yet.
3162	 */
3163	if (*search_io_tree) {
3164		spin_lock(&inode->lock);
3165		if (inode->delalloc_bytes > 0) {
3166			spin_unlock(&inode->lock);
3167			*delalloc_start_ret = start;
3168			delalloc_len = count_range_bits(&inode->io_tree,
3169							delalloc_start_ret, end,
3170							len, EXTENT_DELALLOC, 1,
3171							cached_state);
3172		} else {
3173			spin_unlock(&inode->lock);
3174		}
3175	}
3176
3177	if (delalloc_len > 0) {
3178		/*
3179		 * If delalloc was found then *delalloc_start_ret has a sector size
3180		 * aligned value (rounded down).
3181		 */
3182		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3183
3184		if (*delalloc_start_ret == start) {
3185			/* Delalloc for the whole range, nothing more to do. */
3186			if (*delalloc_end_ret == end)
3187				return true;
3188			/* Else trim our search range for ordered extents. */
3189			start = *delalloc_end_ret + 1;
3190			len = end + 1 - start;
3191		}
3192	} else {
3193		/* No delalloc, future calls don't need to search again. */
3194		*search_io_tree = false;
3195	}
3196
3197	/*
3198	 * Now also check if there's any ordered extent in the range.
3199	 * We do this because:
3200	 *
3201	 * 1) When delalloc is flushed, the file range is locked, we clear the
3202	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3203	 *    an ordered extent for the write. So we might just have been called
3204	 *    after delalloc is flushed and before the ordered extent completes
3205	 *    and inserts the new file extent item in the subvolume's btree;
3206	 *
3207	 * 2) We may have an ordered extent created by flushing delalloc for a
3208	 *    subrange that starts before the subrange we found marked with
3209	 *    EXTENT_DELALLOC in the io tree.
3210	 *
3211	 * We could also use the extent map tree to find such delalloc that is
3212	 * being flushed, but using the ordered extents tree is more efficient
3213	 * because it's usually much smaller as ordered extents are removed from
3214	 * the tree once they complete. With the extent maps, we mau have them
3215	 * in the extent map tree for a very long time, and they were either
3216	 * created by previous writes or loaded by read operations.
3217	 */
3218	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3219	if (!oe)
3220		return (delalloc_len > 0);
3221
3222	/* The ordered extent may span beyond our search range. */
3223	oe_start = max(oe->file_offset, start);
3224	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3225
3226	btrfs_put_ordered_extent(oe);
3227
3228	/* Don't have unflushed delalloc, return the ordered extent range. */
3229	if (delalloc_len == 0) {
3230		*delalloc_start_ret = oe_start;
3231		*delalloc_end_ret = oe_end;
3232		return true;
3233	}
3234
3235	/*
3236	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3237	 * If the ranges are adjacent returned a combined range, otherwise
3238	 * return the leftmost range.
3239	 */
3240	if (oe_start < *delalloc_start_ret) {
3241		if (oe_end < *delalloc_start_ret)
3242			*delalloc_end_ret = oe_end;
3243		*delalloc_start_ret = oe_start;
3244	} else if (*delalloc_end_ret + 1 == oe_start) {
3245		*delalloc_end_ret = oe_end;
3246	}
3247
3248	return true;
3249}
3250
3251/*
3252 * Check if there's delalloc in a given range.
3253 *
3254 * @inode:               The inode.
3255 * @start:               The start offset of the range. It does not need to be
3256 *                       sector size aligned.
3257 * @end:                 The end offset (inclusive value) of the search range.
3258 *                       It does not need to be sector size aligned.
3259 * @cached_state:        Extent state record used for speeding up delalloc
3260 *                       searches in the inode's io_tree. Can be NULL.
3261 * @delalloc_start_ret:  Output argument, set to the start offset of the
3262 *                       subrange found with delalloc (may not be sector size
3263 *                       aligned).
3264 * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3265 *                       of the subrange found with delalloc.
3266 *
3267 * Returns true if a subrange with delalloc is found within the given range, and
3268 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3269 * end offsets of the subrange.
3270 */
3271bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3272				  struct extent_state **cached_state,
3273				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3274{
3275	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3276	u64 prev_delalloc_end = 0;
3277	bool search_io_tree = true;
3278	bool ret = false;
3279
3280	while (cur_offset <= end) {
3281		u64 delalloc_start;
3282		u64 delalloc_end;
3283		bool delalloc;
3284
3285		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3286						  cached_state, &search_io_tree,
3287						  &delalloc_start,
3288						  &delalloc_end);
3289		if (!delalloc)
3290			break;
3291
3292		if (prev_delalloc_end == 0) {
3293			/* First subrange found. */
3294			*delalloc_start_ret = max(delalloc_start, start);
3295			*delalloc_end_ret = delalloc_end;
3296			ret = true;
3297		} else if (delalloc_start == prev_delalloc_end + 1) {
3298			/* Subrange adjacent to the previous one, merge them. */
3299			*delalloc_end_ret = delalloc_end;
3300		} else {
3301			/* Subrange not adjacent to the previous one, exit. */
3302			break;
3303		}
3304
3305		prev_delalloc_end = delalloc_end;
3306		cur_offset = delalloc_end + 1;
3307		cond_resched();
3308	}
3309
3310	return ret;
3311}
3312
3313/*
3314 * Check if there's a hole or delalloc range in a range representing a hole (or
3315 * prealloc extent) found in the inode's subvolume btree.
3316 *
3317 * @inode:      The inode.
3318 * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3319 * @start:      Start offset of the hole region. It does not need to be sector
3320 *              size aligned.
3321 * @end:        End offset (inclusive value) of the hole region. It does not
3322 *              need to be sector size aligned.
3323 * @start_ret:  Return parameter, used to set the start of the subrange in the
3324 *              hole that matches the search criteria (seek mode), if such
3325 *              subrange is found (return value of the function is true).
3326 *              The value returned here may not be sector size aligned.
3327 *
3328 * Returns true if a subrange matching the given seek mode is found, and if one
3329 * is found, it updates @start_ret with the start of the subrange.
3330 */
3331static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3332					struct extent_state **cached_state,
3333					u64 start, u64 end, u64 *start_ret)
3334{
3335	u64 delalloc_start;
3336	u64 delalloc_end;
3337	bool delalloc;
3338
3339	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3340						&delalloc_start, &delalloc_end);
3341	if (delalloc && whence == SEEK_DATA) {
3342		*start_ret = delalloc_start;
3343		return true;
3344	}
3345
3346	if (delalloc && whence == SEEK_HOLE) {
3347		/*
3348		 * We found delalloc but it starts after out start offset. So we
3349		 * have a hole between our start offset and the delalloc start.
3350		 */
3351		if (start < delalloc_start) {
3352			*start_ret = start;
3353			return true;
3354		}
3355		/*
3356		 * Delalloc range starts at our start offset.
3357		 * If the delalloc range's length is smaller than our range,
3358		 * then it means we have a hole that starts where the delalloc
3359		 * subrange ends.
3360		 */
3361		if (delalloc_end < end) {
3362			*start_ret = delalloc_end + 1;
3363			return true;
3364		}
3365
3366		/* There's delalloc for the whole range. */
3367		return false;
3368	}
3369
3370	if (!delalloc && whence == SEEK_HOLE) {
3371		*start_ret = start;
3372		return true;
3373	}
3374
3375	/*
3376	 * No delalloc in the range and we are seeking for data. The caller has
3377	 * to iterate to the next extent item in the subvolume btree.
3378	 */
3379	return false;
3380}
3381
3382static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3383{
3384	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3385	struct btrfs_file_private *private;
3386	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3387	struct extent_state *cached_state = NULL;
3388	struct extent_state **delalloc_cached_state;
3389	const loff_t i_size = i_size_read(&inode->vfs_inode);
3390	const u64 ino = btrfs_ino(inode);
3391	struct btrfs_root *root = inode->root;
3392	struct btrfs_path *path;
3393	struct btrfs_key key;
3394	u64 last_extent_end;
3395	u64 lockstart;
3396	u64 lockend;
3397	u64 start;
3398	int ret;
3399	bool found = false;
3400
3401	if (i_size == 0 || offset >= i_size)
3402		return -ENXIO;
3403
3404	/*
3405	 * Quick path. If the inode has no prealloc extents and its number of
3406	 * bytes used matches its i_size, then it can not have holes.
3407	 */
3408	if (whence == SEEK_HOLE &&
3409	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3410	    inode_get_bytes(&inode->vfs_inode) == i_size)
3411		return i_size;
3412
3413	spin_lock(&inode->lock);
3414	private = file->private_data;
3415	spin_unlock(&inode->lock);
3416
3417	if (private && private->owner_task != current) {
3418		/*
3419		 * Not allocated by us, don't use it as its cached state is used
3420		 * by the task that allocated it and we don't want neither to
3421		 * mess with it nor get incorrect results because it reflects an
3422		 * invalid state for the current task.
3423		 */
3424		private = NULL;
3425	} else if (!private) {
3426		private = kzalloc(sizeof(*private), GFP_KERNEL);
3427		/*
3428		 * No worries if memory allocation failed.
3429		 * The private structure is used only for speeding up multiple
3430		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3431		 * so everything will still be correct.
3432		 */
3433		if (private) {
3434			bool free = false;
3435
3436			private->owner_task = current;
3437
3438			spin_lock(&inode->lock);
3439			if (file->private_data)
3440				free = true;
3441			else
3442				file->private_data = private;
3443			spin_unlock(&inode->lock);
3444
3445			if (free) {
3446				kfree(private);
3447				private = NULL;
3448			}
3449		}
3450	}
3451
3452	if (private)
3453		delalloc_cached_state = &private->llseek_cached_state;
3454	else
3455		delalloc_cached_state = NULL;
3456
3457	/*
3458	 * offset can be negative, in this case we start finding DATA/HOLE from
3459	 * the very start of the file.
3460	 */
3461	start = max_t(loff_t, 0, offset);
3462
3463	lockstart = round_down(start, fs_info->sectorsize);
3464	lockend = round_up(i_size, fs_info->sectorsize);
3465	if (lockend <= lockstart)
3466		lockend = lockstart + fs_info->sectorsize;
3467	lockend--;
 
3468
3469	path = btrfs_alloc_path();
3470	if (!path)
3471		return -ENOMEM;
3472	path->reada = READA_FORWARD;
3473
3474	key.objectid = ino;
3475	key.type = BTRFS_EXTENT_DATA_KEY;
3476	key.offset = start;
3477
3478	last_extent_end = lockstart;
3479
3480	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3481
3482	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483	if (ret < 0) {
3484		goto out;
3485	} else if (ret > 0 && path->slots[0] > 0) {
3486		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3487		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3488			path->slots[0]--;
3489	}
3490
3491	while (start < i_size) {
3492		struct extent_buffer *leaf = path->nodes[0];
3493		struct btrfs_file_extent_item *extent;
3494		u64 extent_end;
3495		u8 type;
3496
3497		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3498			ret = btrfs_next_leaf(root, path);
3499			if (ret < 0)
3500				goto out;
3501			else if (ret > 0)
3502				break;
3503
3504			leaf = path->nodes[0];
3505		}
3506
3507		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3508		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3509			break;
3510
3511		extent_end = btrfs_file_extent_end(path);
3512
3513		/*
3514		 * In the first iteration we may have a slot that points to an
3515		 * extent that ends before our start offset, so skip it.
3516		 */
3517		if (extent_end <= start) {
3518			path->slots[0]++;
3519			continue;
3520		}
3521
3522		/* We have an implicit hole, NO_HOLES feature is likely set. */
3523		if (last_extent_end < key.offset) {
3524			u64 search_start = last_extent_end;
3525			u64 found_start;
3526
3527			/*
3528			 * First iteration, @start matches @offset and it's
3529			 * within the hole.
3530			 */
3531			if (start == offset)
3532				search_start = offset;
3533
3534			found = find_desired_extent_in_hole(inode, whence,
3535							    delalloc_cached_state,
3536							    search_start,
3537							    key.offset - 1,
3538							    &found_start);
3539			if (found) {
3540				start = found_start;
3541				break;
3542			}
3543			/*
3544			 * Didn't find data or a hole (due to delalloc) in the
3545			 * implicit hole range, so need to analyze the extent.
3546			 */
3547		}
3548
3549		extent = btrfs_item_ptr(leaf, path->slots[0],
3550					struct btrfs_file_extent_item);
3551		type = btrfs_file_extent_type(leaf, extent);
3552
3553		/*
3554		 * Can't access the extent's disk_bytenr field if this is an
3555		 * inline extent, since at that offset, it's where the extent
3556		 * data starts.
3557		 */
3558		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3559		    (type == BTRFS_FILE_EXTENT_REG &&
3560		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3561			/*
3562			 * Explicit hole or prealloc extent, search for delalloc.
3563			 * A prealloc extent is treated like a hole.
3564			 */
3565			u64 search_start = key.offset;
3566			u64 found_start;
3567
3568			/*
3569			 * First iteration, @start matches @offset and it's
3570			 * within the hole.
3571			 */
3572			if (start == offset)
3573				search_start = offset;
3574
3575			found = find_desired_extent_in_hole(inode, whence,
3576							    delalloc_cached_state,
3577							    search_start,
3578							    extent_end - 1,
3579							    &found_start);
3580			if (found) {
3581				start = found_start;
3582				break;
3583			}
3584			/*
3585			 * Didn't find data or a hole (due to delalloc) in the
3586			 * implicit hole range, so need to analyze the next
3587			 * extent item.
3588			 */
3589		} else {
3590			/*
3591			 * Found a regular or inline extent.
3592			 * If we are seeking for data, adjust the start offset
3593			 * and stop, we're done.
3594			 */
3595			if (whence == SEEK_DATA) {
3596				start = max_t(u64, key.offset, offset);
3597				found = true;
3598				break;
3599			}
3600			/*
3601			 * Else, we are seeking for a hole, check the next file
3602			 * extent item.
3603			 */
3604		}
3605
3606		start = extent_end;
3607		last_extent_end = extent_end;
3608		path->slots[0]++;
3609		if (fatal_signal_pending(current)) {
3610			ret = -EINTR;
3611			goto out;
3612		}
3613		cond_resched();
3614	}
3615
3616	/* We have an implicit hole from the last extent found up to i_size. */
3617	if (!found && start < i_size) {
3618		found = find_desired_extent_in_hole(inode, whence,
3619						    delalloc_cached_state, start,
3620						    i_size - 1, &start);
3621		if (!found)
3622			start = i_size;
 
 
3623	}
3624
3625out:
3626	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3627	btrfs_free_path(path);
3628
3629	if (ret < 0)
3630		return ret;
3631
3632	if (whence == SEEK_DATA && start >= i_size)
3633		return -ENXIO;
3634
3635	return min_t(loff_t, start, i_size);
3636}
3637
3638static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3639{
3640	struct inode *inode = file->f_mapping->host;
3641
3642	switch (whence) {
3643	default:
3644		return generic_file_llseek(file, offset, whence);
3645	case SEEK_DATA:
3646	case SEEK_HOLE:
3647		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3648		offset = find_desired_extent(file, offset, whence);
3649		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3650		break;
3651	}
3652
3653	if (offset < 0)
3654		return offset;
3655
3656	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3657}
3658
3659static int btrfs_file_open(struct inode *inode, struct file *filp)
3660{
3661	int ret;
3662
3663	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3664
3665	ret = fsverity_file_open(inode, filp);
3666	if (ret)
3667		return ret;
3668	return generic_file_open(inode, filp);
3669}
3670
3671static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3672{
3673	ssize_t ret = 0;
3674
3675	if (iocb->ki_flags & IOCB_DIRECT) {
3676		ret = btrfs_direct_read(iocb, to);
3677		if (ret < 0 || !iov_iter_count(to) ||
3678		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3679			return ret;
3680	}
3681
3682	return filemap_read(iocb, to, ret);
3683}
3684
3685const struct file_operations btrfs_file_operations = {
3686	.llseek		= btrfs_file_llseek,
3687	.read_iter      = btrfs_file_read_iter,
3688	.splice_read	= filemap_splice_read,
3689	.write_iter	= btrfs_file_write_iter,
3690	.splice_write	= iter_file_splice_write,
3691	.mmap		= btrfs_file_mmap,
3692	.open		= btrfs_file_open,
3693	.release	= btrfs_release_file,
3694	.get_unmapped_area = thp_get_unmapped_area,
3695	.fsync		= btrfs_sync_file,
3696	.fallocate	= btrfs_fallocate,
3697	.unlocked_ioctl	= btrfs_ioctl,
3698#ifdef CONFIG_COMPAT
3699	.compat_ioctl	= btrfs_compat_ioctl,
3700#endif
3701	.remap_file_range = btrfs_remap_file_range,
3702	.uring_cmd	= btrfs_uring_cmd,
3703	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3704};
3705
3706int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3707{
3708	struct address_space *mapping = inode->vfs_inode.i_mapping;
3709	int ret;
3710
3711	/*
3712	 * So with compression we will find and lock a dirty page and clear the
3713	 * first one as dirty, setup an async extent, and immediately return
3714	 * with the entire range locked but with nobody actually marked with
3715	 * writeback.  So we can't just filemap_write_and_wait_range() and
3716	 * expect it to work since it will just kick off a thread to do the
3717	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3718	 * since it will wait on the page lock, which won't be unlocked until
3719	 * after the pages have been marked as writeback and so we're good to go
3720	 * from there.  We have to do this otherwise we'll miss the ordered
3721	 * extents and that results in badness.  Please Josef, do not think you
3722	 * know better and pull this out at some point in the future, it is
3723	 * right and you are wrong.
3724	 */
3725	ret = filemap_fdatawrite_range(mapping, start, end);
3726	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3727		ret = filemap_fdatawrite_range(mapping, start, end);
 
3728
3729	return ret;
3730}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
 
  19#include "ctree.h"
 
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
 
 
 
 
 
 
 
 
  31
  32static struct kmem_cache *btrfs_inode_defrag_cachep;
  33/*
  34 * when auto defrag is enabled we
  35 * queue up these defrag structs to remember which
  36 * inodes need defragging passes
  37 */
  38struct inode_defrag {
  39	struct rb_node rb_node;
  40	/* objectid */
  41	u64 ino;
  42	/*
  43	 * transid where the defrag was added, we search for
  44	 * extents newer than this
  45	 */
  46	u64 transid;
  47
  48	/* root objectid */
  49	u64 root;
  50
  51	/* last offset we were able to defrag */
  52	u64 last_offset;
  53
  54	/* if we've wrapped around back to zero once already */
  55	int cycled;
  56};
  57
  58static int __compare_inode_defrag(struct inode_defrag *defrag1,
  59				  struct inode_defrag *defrag2)
  60{
  61	if (defrag1->root > defrag2->root)
  62		return 1;
  63	else if (defrag1->root < defrag2->root)
  64		return -1;
  65	else if (defrag1->ino > defrag2->ino)
  66		return 1;
  67	else if (defrag1->ino < defrag2->ino)
  68		return -1;
  69	else
  70		return 0;
  71}
  72
  73/* pop a record for an inode into the defrag tree.  The lock
  74 * must be held already
  75 *
  76 * If you're inserting a record for an older transid than an
  77 * existing record, the transid already in the tree is lowered
  78 *
  79 * If an existing record is found the defrag item you
  80 * pass in is freed
  81 */
  82static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  83				    struct inode_defrag *defrag)
  84{
  85	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  86	struct inode_defrag *entry;
  87	struct rb_node **p;
  88	struct rb_node *parent = NULL;
  89	int ret;
  90
  91	p = &fs_info->defrag_inodes.rb_node;
  92	while (*p) {
  93		parent = *p;
  94		entry = rb_entry(parent, struct inode_defrag, rb_node);
  95
  96		ret = __compare_inode_defrag(defrag, entry);
  97		if (ret < 0)
  98			p = &parent->rb_left;
  99		else if (ret > 0)
 100			p = &parent->rb_right;
 101		else {
 102			/* if we're reinserting an entry for
 103			 * an old defrag run, make sure to
 104			 * lower the transid of our existing record
 105			 */
 106			if (defrag->transid < entry->transid)
 107				entry->transid = defrag->transid;
 108			if (defrag->last_offset > entry->last_offset)
 109				entry->last_offset = defrag->last_offset;
 110			return -EEXIST;
 111		}
 112	}
 113	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 114	rb_link_node(&defrag->rb_node, parent, p);
 115	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 116	return 0;
 117}
 118
 119static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 120{
 121	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 122		return 0;
 123
 124	if (btrfs_fs_closing(fs_info))
 125		return 0;
 126
 127	return 1;
 128}
 129
 130/*
 131 * insert a defrag record for this inode if auto defrag is
 132 * enabled
 133 */
 134int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 135			   struct btrfs_inode *inode)
 136{
 137	struct btrfs_root *root = inode->root;
 138	struct btrfs_fs_info *fs_info = root->fs_info;
 139	struct inode_defrag *defrag;
 140	u64 transid;
 141	int ret;
 142
 143	if (!__need_auto_defrag(fs_info))
 144		return 0;
 145
 146	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 147		return 0;
 148
 149	if (trans)
 150		transid = trans->transid;
 151	else
 152		transid = inode->root->last_trans;
 153
 154	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 155	if (!defrag)
 156		return -ENOMEM;
 157
 158	defrag->ino = btrfs_ino(inode);
 159	defrag->transid = transid;
 160	defrag->root = root->root_key.objectid;
 161
 162	spin_lock(&fs_info->defrag_inodes_lock);
 163	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 164		/*
 165		 * If we set IN_DEFRAG flag and evict the inode from memory,
 166		 * and then re-read this inode, this new inode doesn't have
 167		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 168		 */
 169		ret = __btrfs_add_inode_defrag(inode, defrag);
 170		if (ret)
 171			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 172	} else {
 173		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 174	}
 175	spin_unlock(&fs_info->defrag_inodes_lock);
 176	return 0;
 177}
 178
 179/*
 180 * Requeue the defrag object. If there is a defrag object that points to
 181 * the same inode in the tree, we will merge them together (by
 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 183 */
 184static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 185				       struct inode_defrag *defrag)
 186{
 187	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 188	int ret;
 189
 190	if (!__need_auto_defrag(fs_info))
 191		goto out;
 192
 193	/*
 194	 * Here we don't check the IN_DEFRAG flag, because we need merge
 195	 * them together.
 196	 */
 197	spin_lock(&fs_info->defrag_inodes_lock);
 198	ret = __btrfs_add_inode_defrag(inode, defrag);
 199	spin_unlock(&fs_info->defrag_inodes_lock);
 200	if (ret)
 201		goto out;
 202	return;
 203out:
 204	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 205}
 206
 207/*
 208 * pick the defragable inode that we want, if it doesn't exist, we will get
 209 * the next one.
 210 */
 211static struct inode_defrag *
 212btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 213{
 214	struct inode_defrag *entry = NULL;
 215	struct inode_defrag tmp;
 216	struct rb_node *p;
 217	struct rb_node *parent = NULL;
 218	int ret;
 219
 220	tmp.ino = ino;
 221	tmp.root = root;
 222
 223	spin_lock(&fs_info->defrag_inodes_lock);
 224	p = fs_info->defrag_inodes.rb_node;
 225	while (p) {
 226		parent = p;
 227		entry = rb_entry(parent, struct inode_defrag, rb_node);
 228
 229		ret = __compare_inode_defrag(&tmp, entry);
 230		if (ret < 0)
 231			p = parent->rb_left;
 232		else if (ret > 0)
 233			p = parent->rb_right;
 234		else
 235			goto out;
 236	}
 237
 238	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 239		parent = rb_next(parent);
 240		if (parent)
 241			entry = rb_entry(parent, struct inode_defrag, rb_node);
 242		else
 243			entry = NULL;
 244	}
 245out:
 246	if (entry)
 247		rb_erase(parent, &fs_info->defrag_inodes);
 248	spin_unlock(&fs_info->defrag_inodes_lock);
 249	return entry;
 250}
 251
 252void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 253{
 254	struct inode_defrag *defrag;
 255	struct rb_node *node;
 256
 257	spin_lock(&fs_info->defrag_inodes_lock);
 258	node = rb_first(&fs_info->defrag_inodes);
 259	while (node) {
 260		rb_erase(node, &fs_info->defrag_inodes);
 261		defrag = rb_entry(node, struct inode_defrag, rb_node);
 262		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 263
 264		cond_resched_lock(&fs_info->defrag_inodes_lock);
 265
 266		node = rb_first(&fs_info->defrag_inodes);
 267	}
 268	spin_unlock(&fs_info->defrag_inodes_lock);
 269}
 270
 271#define BTRFS_DEFRAG_BATCH	1024
 272
 273static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 274				    struct inode_defrag *defrag)
 275{
 276	struct btrfs_root *inode_root;
 277	struct inode *inode;
 278	struct btrfs_ioctl_defrag_range_args range;
 279	int num_defrag;
 280	int ret;
 281
 282	/* get the inode */
 283	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 284	if (IS_ERR(inode_root)) {
 285		ret = PTR_ERR(inode_root);
 286		goto cleanup;
 287	}
 288
 289	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 290	btrfs_put_root(inode_root);
 291	if (IS_ERR(inode)) {
 292		ret = PTR_ERR(inode);
 293		goto cleanup;
 294	}
 295
 296	/* do a chunk of defrag */
 297	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 298	memset(&range, 0, sizeof(range));
 299	range.len = (u64)-1;
 300	range.start = defrag->last_offset;
 301
 302	sb_start_write(fs_info->sb);
 303	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 304				       BTRFS_DEFRAG_BATCH);
 305	sb_end_write(fs_info->sb);
 306	/*
 307	 * if we filled the whole defrag batch, there
 308	 * must be more work to do.  Queue this defrag
 309	 * again
 310	 */
 311	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 312		defrag->last_offset = range.start;
 313		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 314	} else if (defrag->last_offset && !defrag->cycled) {
 315		/*
 316		 * we didn't fill our defrag batch, but
 317		 * we didn't start at zero.  Make sure we loop
 318		 * around to the start of the file.
 319		 */
 320		defrag->last_offset = 0;
 321		defrag->cycled = 1;
 322		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 323	} else {
 324		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 325	}
 326
 327	iput(inode);
 328	return 0;
 329cleanup:
 330	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 331	return ret;
 332}
 333
 334/*
 335 * run through the list of inodes in the FS that need
 336 * defragging
 337 */
 338int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 339{
 340	struct inode_defrag *defrag;
 341	u64 first_ino = 0;
 342	u64 root_objectid = 0;
 343
 344	atomic_inc(&fs_info->defrag_running);
 345	while (1) {
 346		/* Pause the auto defragger. */
 347		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 348			     &fs_info->fs_state))
 349			break;
 350
 351		if (!__need_auto_defrag(fs_info))
 352			break;
 353
 354		/* find an inode to defrag */
 355		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 356						 first_ino);
 357		if (!defrag) {
 358			if (root_objectid || first_ino) {
 359				root_objectid = 0;
 360				first_ino = 0;
 361				continue;
 362			} else {
 363				break;
 364			}
 365		}
 366
 367		first_ino = defrag->ino + 1;
 368		root_objectid = defrag->root;
 369
 370		__btrfs_run_defrag_inode(fs_info, defrag);
 371	}
 372	atomic_dec(&fs_info->defrag_running);
 373
 374	/*
 375	 * during unmount, we use the transaction_wait queue to
 376	 * wait for the defragger to stop
 377	 */
 378	wake_up(&fs_info->transaction_wait);
 379	return 0;
 380}
 381
 382/* simple helper to fault in pages and copy.  This should go away
 383 * and be replaced with calls into generic code.
 384 */
 385static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 386					 struct page **prepared_pages,
 387					 struct iov_iter *i)
 388{
 389	size_t copied = 0;
 390	size_t total_copied = 0;
 391	int pg = 0;
 392	int offset = offset_in_page(pos);
 393
 394	while (write_bytes > 0) {
 395		size_t count = min_t(size_t,
 396				     PAGE_SIZE - offset, write_bytes);
 397		struct page *page = prepared_pages[pg];
 398		/*
 399		 * Copy data from userspace to the current page
 400		 */
 401		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 402
 403		/* Flush processor's dcache for this page */
 404		flush_dcache_page(page);
 405
 406		/*
 407		 * if we get a partial write, we can end up with
 408		 * partially up to date pages.  These add
 409		 * a lot of complexity, so make sure they don't
 410		 * happen by forcing this copy to be retried.
 411		 *
 412		 * The rest of the btrfs_file_write code will fall
 413		 * back to page at a time copies after we return 0.
 414		 */
 415		if (!PageUptodate(page) && copied < count)
 416			copied = 0;
 
 
 
 
 
 
 417
 418		iov_iter_advance(i, copied);
 419		write_bytes -= copied;
 420		total_copied += copied;
 421
 422		/* Return to btrfs_file_write_iter to fault page */
 423		if (unlikely(copied == 0))
 424			break;
 425
 426		if (copied < PAGE_SIZE - offset) {
 427			offset += copied;
 428		} else {
 429			pg++;
 430			offset = 0;
 431		}
 432	}
 433	return total_copied;
 434}
 435
 436/*
 437 * unlocks pages after btrfs_file_write is done with them
 438 */
 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 
 440{
 441	size_t i;
 442	for (i = 0; i < num_pages; i++) {
 443		/* page checked is some magic around finding pages that
 444		 * have been modified without going through btrfs_set_page_dirty
 445		 * clear it here. There should be no need to mark the pages
 446		 * accessed as prepare_pages should have marked them accessed
 447		 * in prepare_pages via find_or_create_page()
 448		 */
 449		ClearPageChecked(pages[i]);
 450		unlock_page(pages[i]);
 451		put_page(pages[i]);
 452	}
 453}
 454
 455static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 456					 const u64 start,
 457					 const u64 len,
 458					 struct extent_state **cached_state)
 459{
 460	u64 search_start = start;
 461	const u64 end = start + len - 1;
 462
 463	while (search_start < end) {
 464		const u64 search_len = end - search_start + 1;
 465		struct extent_map *em;
 466		u64 em_len;
 467		int ret = 0;
 468
 469		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
 470		if (IS_ERR(em))
 471			return PTR_ERR(em);
 472
 473		if (em->block_start != EXTENT_MAP_HOLE)
 474			goto next;
 475
 476		em_len = em->len;
 477		if (em->start < search_start)
 478			em_len -= search_start - em->start;
 479		if (em_len > search_len)
 480			em_len = search_len;
 481
 482		ret = set_extent_bit(&inode->io_tree, search_start,
 483				     search_start + em_len - 1,
 484				     EXTENT_DELALLOC_NEW,
 485				     NULL, cached_state, GFP_NOFS);
 486next:
 487		search_start = extent_map_end(em);
 488		free_extent_map(em);
 489		if (ret)
 490			return ret;
 491	}
 492	return 0;
 493}
 494
 495/*
 496 * after copy_from_user, pages need to be dirtied and we need to make
 497 * sure holes are created between the current EOF and the start of
 498 * any next extents (if required).
 499 *
 500 * this also makes the decision about creating an inline extent vs
 501 * doing real data extents, marking pages dirty and delalloc as required.
 502 */
 503int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 504		      size_t num_pages, loff_t pos, size_t write_bytes,
 505		      struct extent_state **cached)
 506{
 507	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 508	int err = 0;
 509	int i;
 510	u64 num_bytes;
 511	u64 start_pos;
 512	u64 end_of_last_block;
 513	u64 end_pos = pos + write_bytes;
 514	loff_t isize = i_size_read(&inode->vfs_inode);
 515	unsigned int extra_bits = 0;
 516
 517	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 
 
 
 
 
 
 518	num_bytes = round_up(write_bytes + pos - start_pos,
 519			     fs_info->sectorsize);
 
 
 
 520
 521	end_of_last_block = start_pos + num_bytes - 1;
 522
 523	/*
 524	 * The pages may have already been dirty, clear out old accounting so
 525	 * we can set things up properly
 526	 */
 527	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 528			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 529			 0, 0, cached);
 530
 531	if (!btrfs_is_free_space_inode(inode)) {
 532		if (start_pos >= isize &&
 533		    !(inode->flags & BTRFS_INODE_PREALLOC)) {
 534			/*
 535			 * There can't be any extents following eof in this case
 536			 * so just set the delalloc new bit for the range
 537			 * directly.
 538			 */
 539			extra_bits |= EXTENT_DELALLOC_NEW;
 540		} else {
 541			err = btrfs_find_new_delalloc_bytes(inode, start_pos,
 542							    num_bytes, cached);
 543			if (err)
 544				return err;
 545		}
 546	}
 547
 548	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 549					extra_bits, cached);
 550	if (err)
 551		return err;
 552
 553	for (i = 0; i < num_pages; i++) {
 554		struct page *p = pages[i];
 555		SetPageUptodate(p);
 556		ClearPageChecked(p);
 557		set_page_dirty(p);
 558	}
 559
 560	/*
 561	 * we've only changed i_size in ram, and we haven't updated
 562	 * the disk i_size.  There is no need to log the inode
 563	 * at this time.
 564	 */
 565	if (end_pos > isize)
 566		i_size_write(&inode->vfs_inode, end_pos);
 567	return 0;
 568}
 569
 570/*
 571 * this drops all the extents in the cache that intersect the range
 572 * [start, end].  Existing extents are split as required.
 573 */
 574void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 575			     int skip_pinned)
 576{
 577	struct extent_map *em;
 578	struct extent_map *split = NULL;
 579	struct extent_map *split2 = NULL;
 580	struct extent_map_tree *em_tree = &inode->extent_tree;
 581	u64 len = end - start + 1;
 582	u64 gen;
 583	int ret;
 584	int testend = 1;
 585	unsigned long flags;
 586	int compressed = 0;
 587	bool modified;
 588
 589	WARN_ON(end < start);
 590	if (end == (u64)-1) {
 591		len = (u64)-1;
 592		testend = 0;
 593	}
 594	while (1) {
 595		int no_splits = 0;
 596
 597		modified = false;
 598		if (!split)
 599			split = alloc_extent_map();
 600		if (!split2)
 601			split2 = alloc_extent_map();
 602		if (!split || !split2)
 603			no_splits = 1;
 604
 605		write_lock(&em_tree->lock);
 606		em = lookup_extent_mapping(em_tree, start, len);
 607		if (!em) {
 608			write_unlock(&em_tree->lock);
 609			break;
 610		}
 611		flags = em->flags;
 612		gen = em->generation;
 613		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 614			if (testend && em->start + em->len >= start + len) {
 615				free_extent_map(em);
 616				write_unlock(&em_tree->lock);
 617				break;
 618			}
 619			start = em->start + em->len;
 620			if (testend)
 621				len = start + len - (em->start + em->len);
 622			free_extent_map(em);
 623			write_unlock(&em_tree->lock);
 624			continue;
 625		}
 626		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 627		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 628		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 629		modified = !list_empty(&em->list);
 630		if (no_splits)
 631			goto next;
 632
 633		if (em->start < start) {
 634			split->start = em->start;
 635			split->len = start - em->start;
 636
 637			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 638				split->orig_start = em->orig_start;
 639				split->block_start = em->block_start;
 640
 641				if (compressed)
 642					split->block_len = em->block_len;
 643				else
 644					split->block_len = split->len;
 645				split->orig_block_len = max(split->block_len,
 646						em->orig_block_len);
 647				split->ram_bytes = em->ram_bytes;
 648			} else {
 649				split->orig_start = split->start;
 650				split->block_len = 0;
 651				split->block_start = em->block_start;
 652				split->orig_block_len = 0;
 653				split->ram_bytes = split->len;
 654			}
 655
 656			split->generation = gen;
 657			split->flags = flags;
 658			split->compress_type = em->compress_type;
 659			replace_extent_mapping(em_tree, em, split, modified);
 660			free_extent_map(split);
 661			split = split2;
 662			split2 = NULL;
 663		}
 664		if (testend && em->start + em->len > start + len) {
 665			u64 diff = start + len - em->start;
 666
 667			split->start = start + len;
 668			split->len = em->start + em->len - (start + len);
 669			split->flags = flags;
 670			split->compress_type = em->compress_type;
 671			split->generation = gen;
 672
 673			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 674				split->orig_block_len = max(em->block_len,
 675						    em->orig_block_len);
 676
 677				split->ram_bytes = em->ram_bytes;
 678				if (compressed) {
 679					split->block_len = em->block_len;
 680					split->block_start = em->block_start;
 681					split->orig_start = em->orig_start;
 682				} else {
 683					split->block_len = split->len;
 684					split->block_start = em->block_start
 685						+ diff;
 686					split->orig_start = em->orig_start;
 687				}
 688			} else {
 689				split->ram_bytes = split->len;
 690				split->orig_start = split->start;
 691				split->block_len = 0;
 692				split->block_start = em->block_start;
 693				split->orig_block_len = 0;
 694			}
 695
 696			if (extent_map_in_tree(em)) {
 697				replace_extent_mapping(em_tree, em, split,
 698						       modified);
 699			} else {
 700				ret = add_extent_mapping(em_tree, split,
 701							 modified);
 702				ASSERT(ret == 0); /* Logic error */
 703			}
 704			free_extent_map(split);
 705			split = NULL;
 706		}
 707next:
 708		if (extent_map_in_tree(em))
 709			remove_extent_mapping(em_tree, em);
 710		write_unlock(&em_tree->lock);
 711
 712		/* once for us */
 713		free_extent_map(em);
 714		/* once for the tree*/
 715		free_extent_map(em);
 716	}
 717	if (split)
 718		free_extent_map(split);
 719	if (split2)
 720		free_extent_map(split2);
 721}
 722
 723/*
 724 * this is very complex, but the basic idea is to drop all extents
 725 * in the range start - end.  hint_block is filled in with a block number
 726 * that would be a good hint to the block allocator for this file.
 727 *
 728 * If an extent intersects the range but is not entirely inside the range
 729 * it is either truncated or split.  Anything entirely inside the range
 730 * is deleted from the tree.
 
 
 
 
 
 
 731 */
 732int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 733			 struct btrfs_root *root, struct btrfs_inode *inode,
 734			 struct btrfs_path *path, u64 start, u64 end,
 735			 u64 *drop_end, int drop_cache,
 736			 int replace_extent,
 737			 u32 extent_item_size,
 738			 int *key_inserted)
 739{
 740	struct btrfs_fs_info *fs_info = root->fs_info;
 741	struct extent_buffer *leaf;
 742	struct btrfs_file_extent_item *fi;
 743	struct btrfs_ref ref = { 0 };
 744	struct btrfs_key key;
 745	struct btrfs_key new_key;
 746	struct inode *vfs_inode = &inode->vfs_inode;
 747	u64 ino = btrfs_ino(inode);
 748	u64 search_start = start;
 749	u64 disk_bytenr = 0;
 750	u64 num_bytes = 0;
 751	u64 extent_offset = 0;
 752	u64 extent_end = 0;
 753	u64 last_end = start;
 754	int del_nr = 0;
 755	int del_slot = 0;
 756	int extent_type;
 757	int recow;
 758	int ret;
 759	int modify_tree = -1;
 760	int update_refs;
 761	int found = 0;
 762	int leafs_visited = 0;
 
 
 
 
 
 
 763
 764	if (drop_cache)
 765		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 
 
 
 
 
 766
 767	if (start >= inode->disk_i_size && !replace_extent)
 
 
 
 768		modify_tree = 0;
 769
 770	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 771		       root == fs_info->tree_root);
 772	while (1) {
 773		recow = 0;
 774		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 775					       search_start, modify_tree);
 776		if (ret < 0)
 777			break;
 778		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 779			leaf = path->nodes[0];
 780			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 781			if (key.objectid == ino &&
 782			    key.type == BTRFS_EXTENT_DATA_KEY)
 783				path->slots[0]--;
 784		}
 785		ret = 0;
 786		leafs_visited++;
 787next_slot:
 788		leaf = path->nodes[0];
 789		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 790			BUG_ON(del_nr > 0);
 791			ret = btrfs_next_leaf(root, path);
 792			if (ret < 0)
 793				break;
 794			if (ret > 0) {
 795				ret = 0;
 796				break;
 797			}
 798			leafs_visited++;
 799			leaf = path->nodes[0];
 800			recow = 1;
 801		}
 802
 803		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 804
 805		if (key.objectid > ino)
 806			break;
 807		if (WARN_ON_ONCE(key.objectid < ino) ||
 808		    key.type < BTRFS_EXTENT_DATA_KEY) {
 809			ASSERT(del_nr == 0);
 810			path->slots[0]++;
 811			goto next_slot;
 812		}
 813		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 814			break;
 815
 816		fi = btrfs_item_ptr(leaf, path->slots[0],
 817				    struct btrfs_file_extent_item);
 818		extent_type = btrfs_file_extent_type(leaf, fi);
 819
 820		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 821		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 822			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 823			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 824			extent_offset = btrfs_file_extent_offset(leaf, fi);
 825			extent_end = key.offset +
 826				btrfs_file_extent_num_bytes(leaf, fi);
 827		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 828			extent_end = key.offset +
 829				btrfs_file_extent_ram_bytes(leaf, fi);
 830		} else {
 831			/* can't happen */
 832			BUG();
 833		}
 834
 835		/*
 836		 * Don't skip extent items representing 0 byte lengths. They
 837		 * used to be created (bug) if while punching holes we hit
 838		 * -ENOSPC condition. So if we find one here, just ensure we
 839		 * delete it, otherwise we would insert a new file extent item
 840		 * with the same key (offset) as that 0 bytes length file
 841		 * extent item in the call to setup_items_for_insert() later
 842		 * in this function.
 843		 */
 844		if (extent_end == key.offset && extent_end >= search_start) {
 845			last_end = extent_end;
 846			goto delete_extent_item;
 847		}
 848
 849		if (extent_end <= search_start) {
 850			path->slots[0]++;
 851			goto next_slot;
 852		}
 853
 854		found = 1;
 855		search_start = max(key.offset, start);
 856		if (recow || !modify_tree) {
 857			modify_tree = -1;
 858			btrfs_release_path(path);
 859			continue;
 860		}
 861
 862		/*
 863		 *     | - range to drop - |
 864		 *  | -------- extent -------- |
 865		 */
 866		if (start > key.offset && end < extent_end) {
 867			BUG_ON(del_nr > 0);
 868			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 869				ret = -EOPNOTSUPP;
 870				break;
 871			}
 872
 873			memcpy(&new_key, &key, sizeof(new_key));
 874			new_key.offset = start;
 875			ret = btrfs_duplicate_item(trans, root, path,
 876						   &new_key);
 877			if (ret == -EAGAIN) {
 878				btrfs_release_path(path);
 879				continue;
 880			}
 881			if (ret < 0)
 882				break;
 883
 884			leaf = path->nodes[0];
 885			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 886					    struct btrfs_file_extent_item);
 887			btrfs_set_file_extent_num_bytes(leaf, fi,
 888							start - key.offset);
 889
 890			fi = btrfs_item_ptr(leaf, path->slots[0],
 891					    struct btrfs_file_extent_item);
 892
 893			extent_offset += start - key.offset;
 894			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 895			btrfs_set_file_extent_num_bytes(leaf, fi,
 896							extent_end - start);
 897			btrfs_mark_buffer_dirty(leaf);
 898
 899			if (update_refs && disk_bytenr > 0) {
 900				btrfs_init_generic_ref(&ref,
 901						BTRFS_ADD_DELAYED_REF,
 902						disk_bytenr, num_bytes, 0);
 903				btrfs_init_data_ref(&ref,
 904						root->root_key.objectid,
 905						new_key.objectid,
 906						start - extent_offset);
 
 
 
 
 907				ret = btrfs_inc_extent_ref(trans, &ref);
 908				BUG_ON(ret); /* -ENOMEM */
 
 
 
 909			}
 910			key.offset = start;
 911		}
 912		/*
 913		 * From here on out we will have actually dropped something, so
 914		 * last_end can be updated.
 915		 */
 916		last_end = extent_end;
 917
 918		/*
 919		 *  | ---- range to drop ----- |
 920		 *      | -------- extent -------- |
 921		 */
 922		if (start <= key.offset && end < extent_end) {
 923			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 924				ret = -EOPNOTSUPP;
 925				break;
 926			}
 927
 928			memcpy(&new_key, &key, sizeof(new_key));
 929			new_key.offset = end;
 930			btrfs_set_item_key_safe(fs_info, path, &new_key);
 931
 932			extent_offset += end - key.offset;
 933			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 934			btrfs_set_file_extent_num_bytes(leaf, fi,
 935							extent_end - end);
 936			btrfs_mark_buffer_dirty(leaf);
 937			if (update_refs && disk_bytenr > 0)
 938				inode_sub_bytes(vfs_inode, end - key.offset);
 939			break;
 940		}
 941
 942		search_start = extent_end;
 943		/*
 944		 *       | ---- range to drop ----- |
 945		 *  | -------- extent -------- |
 946		 */
 947		if (start > key.offset && end >= extent_end) {
 948			BUG_ON(del_nr > 0);
 949			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 950				ret = -EOPNOTSUPP;
 951				break;
 952			}
 953
 954			btrfs_set_file_extent_num_bytes(leaf, fi,
 955							start - key.offset);
 956			btrfs_mark_buffer_dirty(leaf);
 957			if (update_refs && disk_bytenr > 0)
 958				inode_sub_bytes(vfs_inode, extent_end - start);
 959			if (end == extent_end)
 960				break;
 961
 962			path->slots[0]++;
 963			goto next_slot;
 964		}
 965
 966		/*
 967		 *  | ---- range to drop ----- |
 968		 *    | ------ extent ------ |
 969		 */
 970		if (start <= key.offset && end >= extent_end) {
 971delete_extent_item:
 972			if (del_nr == 0) {
 973				del_slot = path->slots[0];
 974				del_nr = 1;
 975			} else {
 976				BUG_ON(del_slot + del_nr != path->slots[0]);
 977				del_nr++;
 978			}
 979
 980			if (update_refs &&
 981			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 982				inode_sub_bytes(vfs_inode,
 983						extent_end - key.offset);
 984				extent_end = ALIGN(extent_end,
 985						   fs_info->sectorsize);
 986			} else if (update_refs && disk_bytenr > 0) {
 987				btrfs_init_generic_ref(&ref,
 988						BTRFS_DROP_DELAYED_REF,
 989						disk_bytenr, num_bytes, 0);
 990				btrfs_init_data_ref(&ref,
 991						root->root_key.objectid,
 992						key.objectid,
 993						key.offset - extent_offset);
 
 
 
 
 994				ret = btrfs_free_extent(trans, &ref);
 995				BUG_ON(ret); /* -ENOMEM */
 996				inode_sub_bytes(vfs_inode,
 997						extent_end - key.offset);
 
 
 998			}
 999
1000			if (end == extent_end)
1001				break;
1002
1003			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004				path->slots[0]++;
1005				goto next_slot;
1006			}
1007
1008			ret = btrfs_del_items(trans, root, path, del_slot,
1009					      del_nr);
1010			if (ret) {
1011				btrfs_abort_transaction(trans, ret);
1012				break;
1013			}
1014
1015			del_nr = 0;
1016			del_slot = 0;
1017
1018			btrfs_release_path(path);
1019			continue;
1020		}
1021
1022		BUG();
1023	}
1024
1025	if (!ret && del_nr > 0) {
1026		/*
1027		 * Set path->slots[0] to first slot, so that after the delete
1028		 * if items are move off from our leaf to its immediate left or
1029		 * right neighbor leafs, we end up with a correct and adjusted
1030		 * path->slots[0] for our insertion (if replace_extent != 0).
1031		 */
1032		path->slots[0] = del_slot;
1033		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034		if (ret)
1035			btrfs_abort_transaction(trans, ret);
1036	}
1037
1038	leaf = path->nodes[0];
1039	/*
1040	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041	 * which case it unlocked our path, so check path->locks[0] matches a
1042	 * write lock.
1043	 */
1044	if (!ret && replace_extent && leafs_visited == 1 &&
1045	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1047	    btrfs_leaf_free_space(leaf) >=
1048	    sizeof(struct btrfs_item) + extent_item_size) {
1049
1050		key.objectid = ino;
1051		key.type = BTRFS_EXTENT_DATA_KEY;
1052		key.offset = start;
1053		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054			struct btrfs_key slot_key;
1055
1056			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058				path->slots[0]++;
1059		}
1060		setup_items_for_insert(root, path, &key,
1061				       &extent_item_size,
1062				       extent_item_size,
1063				       sizeof(struct btrfs_item) +
1064				       extent_item_size, 1);
1065		*key_inserted = 1;
1066	}
1067
1068	if (!replace_extent || !(*key_inserted))
 
 
1069		btrfs_release_path(path);
1070	if (drop_end)
1071		*drop_end = found ? min(end, last_end) : end;
1072	return ret;
1073}
1074
1075int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076		       struct btrfs_root *root, struct inode *inode, u64 start,
1077		       u64 end, int drop_cache)
1078{
1079	struct btrfs_path *path;
1080	int ret;
1081
1082	path = btrfs_alloc_path();
1083	if (!path)
1084		return -ENOMEM;
1085	ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1086				   end, NULL, drop_cache, 0, 0, NULL);
1087	btrfs_free_path(path);
1088	return ret;
1089}
1090
1091static int extent_mergeable(struct extent_buffer *leaf, int slot,
1092			    u64 objectid, u64 bytenr, u64 orig_offset,
1093			    u64 *start, u64 *end)
1094{
1095	struct btrfs_file_extent_item *fi;
1096	struct btrfs_key key;
1097	u64 extent_end;
1098
1099	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100		return 0;
1101
1102	btrfs_item_key_to_cpu(leaf, &key, slot);
1103	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104		return 0;
1105
1106	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1109	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1110	    btrfs_file_extent_compression(leaf, fi) ||
1111	    btrfs_file_extent_encryption(leaf, fi) ||
1112	    btrfs_file_extent_other_encoding(leaf, fi))
1113		return 0;
1114
1115	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117		return 0;
1118
1119	*start = key.offset;
1120	*end = extent_end;
1121	return 1;
1122}
1123
1124/*
1125 * Mark extent in the range start - end as written.
1126 *
1127 * This changes extent type from 'pre-allocated' to 'regular'. If only
1128 * part of extent is marked as written, the extent will be split into
1129 * two or three.
1130 */
1131int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1132			      struct btrfs_inode *inode, u64 start, u64 end)
1133{
1134	struct btrfs_fs_info *fs_info = trans->fs_info;
1135	struct btrfs_root *root = inode->root;
1136	struct extent_buffer *leaf;
1137	struct btrfs_path *path;
1138	struct btrfs_file_extent_item *fi;
1139	struct btrfs_ref ref = { 0 };
1140	struct btrfs_key key;
1141	struct btrfs_key new_key;
1142	u64 bytenr;
1143	u64 num_bytes;
1144	u64 extent_end;
1145	u64 orig_offset;
1146	u64 other_start;
1147	u64 other_end;
1148	u64 split;
1149	int del_nr = 0;
1150	int del_slot = 0;
1151	int recow;
1152	int ret;
1153	u64 ino = btrfs_ino(inode);
1154
1155	path = btrfs_alloc_path();
1156	if (!path)
1157		return -ENOMEM;
1158again:
1159	recow = 0;
1160	split = start;
1161	key.objectid = ino;
1162	key.type = BTRFS_EXTENT_DATA_KEY;
1163	key.offset = split;
1164
1165	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1166	if (ret < 0)
1167		goto out;
1168	if (ret > 0 && path->slots[0] > 0)
1169		path->slots[0]--;
1170
1171	leaf = path->nodes[0];
1172	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173	if (key.objectid != ino ||
1174	    key.type != BTRFS_EXTENT_DATA_KEY) {
1175		ret = -EINVAL;
1176		btrfs_abort_transaction(trans, ret);
1177		goto out;
1178	}
1179	fi = btrfs_item_ptr(leaf, path->slots[0],
1180			    struct btrfs_file_extent_item);
1181	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182		ret = -EINVAL;
1183		btrfs_abort_transaction(trans, ret);
1184		goto out;
1185	}
1186	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1187	if (key.offset > start || extent_end < end) {
1188		ret = -EINVAL;
1189		btrfs_abort_transaction(trans, ret);
1190		goto out;
1191	}
1192
1193	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1195	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1196	memcpy(&new_key, &key, sizeof(new_key));
1197
1198	if (start == key.offset && end < extent_end) {
1199		other_start = 0;
1200		other_end = start;
1201		if (extent_mergeable(leaf, path->slots[0] - 1,
1202				     ino, bytenr, orig_offset,
1203				     &other_start, &other_end)) {
1204			new_key.offset = end;
1205			btrfs_set_item_key_safe(fs_info, path, &new_key);
1206			fi = btrfs_item_ptr(leaf, path->slots[0],
1207					    struct btrfs_file_extent_item);
1208			btrfs_set_file_extent_generation(leaf, fi,
1209							 trans->transid);
1210			btrfs_set_file_extent_num_bytes(leaf, fi,
1211							extent_end - end);
1212			btrfs_set_file_extent_offset(leaf, fi,
1213						     end - orig_offset);
1214			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215					    struct btrfs_file_extent_item);
1216			btrfs_set_file_extent_generation(leaf, fi,
1217							 trans->transid);
1218			btrfs_set_file_extent_num_bytes(leaf, fi,
1219							end - other_start);
1220			btrfs_mark_buffer_dirty(leaf);
1221			goto out;
1222		}
1223	}
1224
1225	if (start > key.offset && end == extent_end) {
1226		other_start = end;
1227		other_end = 0;
1228		if (extent_mergeable(leaf, path->slots[0] + 1,
1229				     ino, bytenr, orig_offset,
1230				     &other_start, &other_end)) {
1231			fi = btrfs_item_ptr(leaf, path->slots[0],
1232					    struct btrfs_file_extent_item);
1233			btrfs_set_file_extent_num_bytes(leaf, fi,
1234							start - key.offset);
1235			btrfs_set_file_extent_generation(leaf, fi,
1236							 trans->transid);
1237			path->slots[0]++;
1238			new_key.offset = start;
1239			btrfs_set_item_key_safe(fs_info, path, &new_key);
1240
1241			fi = btrfs_item_ptr(leaf, path->slots[0],
1242					    struct btrfs_file_extent_item);
1243			btrfs_set_file_extent_generation(leaf, fi,
1244							 trans->transid);
1245			btrfs_set_file_extent_num_bytes(leaf, fi,
1246							other_end - start);
1247			btrfs_set_file_extent_offset(leaf, fi,
1248						     start - orig_offset);
1249			btrfs_mark_buffer_dirty(leaf);
1250			goto out;
1251		}
1252	}
1253
1254	while (start > key.offset || end < extent_end) {
1255		if (key.offset == start)
1256			split = end;
1257
1258		new_key.offset = split;
1259		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260		if (ret == -EAGAIN) {
1261			btrfs_release_path(path);
1262			goto again;
1263		}
1264		if (ret < 0) {
1265			btrfs_abort_transaction(trans, ret);
1266			goto out;
1267		}
1268
1269		leaf = path->nodes[0];
1270		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1271				    struct btrfs_file_extent_item);
1272		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1273		btrfs_set_file_extent_num_bytes(leaf, fi,
1274						split - key.offset);
1275
1276		fi = btrfs_item_ptr(leaf, path->slots[0],
1277				    struct btrfs_file_extent_item);
1278
1279		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1280		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281		btrfs_set_file_extent_num_bytes(leaf, fi,
1282						extent_end - split);
1283		btrfs_mark_buffer_dirty(leaf);
1284
1285		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286				       num_bytes, 0);
1287		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288				    orig_offset);
 
 
 
1289		ret = btrfs_inc_extent_ref(trans, &ref);
1290		if (ret) {
1291			btrfs_abort_transaction(trans, ret);
1292			goto out;
1293		}
1294
1295		if (split == start) {
1296			key.offset = start;
1297		} else {
1298			if (start != key.offset) {
1299				ret = -EINVAL;
1300				btrfs_abort_transaction(trans, ret);
1301				goto out;
1302			}
1303			path->slots[0]--;
1304			extent_end = end;
1305		}
1306		recow = 1;
1307	}
1308
1309	other_start = end;
1310	other_end = 0;
1311	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312			       num_bytes, 0);
1313	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
 
 
 
 
 
1314	if (extent_mergeable(leaf, path->slots[0] + 1,
1315			     ino, bytenr, orig_offset,
1316			     &other_start, &other_end)) {
1317		if (recow) {
1318			btrfs_release_path(path);
1319			goto again;
1320		}
1321		extent_end = other_end;
1322		del_slot = path->slots[0] + 1;
1323		del_nr++;
1324		ret = btrfs_free_extent(trans, &ref);
1325		if (ret) {
1326			btrfs_abort_transaction(trans, ret);
1327			goto out;
1328		}
1329	}
1330	other_start = 0;
1331	other_end = start;
1332	if (extent_mergeable(leaf, path->slots[0] - 1,
1333			     ino, bytenr, orig_offset,
1334			     &other_start, &other_end)) {
1335		if (recow) {
1336			btrfs_release_path(path);
1337			goto again;
1338		}
1339		key.offset = other_start;
1340		del_slot = path->slots[0];
1341		del_nr++;
1342		ret = btrfs_free_extent(trans, &ref);
1343		if (ret) {
1344			btrfs_abort_transaction(trans, ret);
1345			goto out;
1346		}
1347	}
1348	if (del_nr == 0) {
1349		fi = btrfs_item_ptr(leaf, path->slots[0],
1350			   struct btrfs_file_extent_item);
1351		btrfs_set_file_extent_type(leaf, fi,
1352					   BTRFS_FILE_EXTENT_REG);
1353		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354		btrfs_mark_buffer_dirty(leaf);
1355	} else {
1356		fi = btrfs_item_ptr(leaf, del_slot - 1,
1357			   struct btrfs_file_extent_item);
1358		btrfs_set_file_extent_type(leaf, fi,
1359					   BTRFS_FILE_EXTENT_REG);
1360		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361		btrfs_set_file_extent_num_bytes(leaf, fi,
1362						extent_end - key.offset);
1363		btrfs_mark_buffer_dirty(leaf);
1364
1365		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366		if (ret < 0) {
1367			btrfs_abort_transaction(trans, ret);
1368			goto out;
1369		}
1370	}
1371out:
1372	btrfs_free_path(path);
1373	return 0;
1374}
1375
1376/*
1377 * on error we return an unlocked page and the error value
1378 * on success we return a locked page and 0
1379 */
1380static int prepare_uptodate_page(struct inode *inode,
1381				 struct page *page, u64 pos,
1382				 bool force_uptodate)
1383{
 
 
1384	int ret = 0;
1385
1386	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387	    !PageUptodate(page)) {
1388		ret = btrfs_readpage(NULL, page);
1389		if (ret)
1390			return ret;
1391		lock_page(page);
1392		if (!PageUptodate(page)) {
1393			unlock_page(page);
1394			return -EIO;
1395		}
1396		if (page->mapping != inode->i_mapping) {
1397			unlock_page(page);
1398			return -EAGAIN;
1399		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400	}
1401	return 0;
1402}
1403
 
 
 
 
 
 
 
 
 
 
 
 
 
1404/*
1405 * this just gets pages into the page cache and locks them down.
1406 */
1407static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408				  size_t num_pages, loff_t pos,
1409				  size_t write_bytes, bool force_uptodate)
1410{
1411	int i;
1412	unsigned long index = pos >> PAGE_SHIFT;
1413	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414	int err = 0;
1415	int faili;
 
1416
1417	for (i = 0; i < num_pages; i++) {
1418again:
1419		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420					       mask | __GFP_WRITE);
1421		if (!pages[i]) {
1422			faili = i - 1;
1423			err = -ENOMEM;
1424			goto fail;
1425		}
1426
1427		if (i == 0)
1428			err = prepare_uptodate_page(inode, pages[i], pos,
1429						    force_uptodate);
1430		if (!err && i == num_pages - 1)
1431			err = prepare_uptodate_page(inode, pages[i],
1432						    pos + write_bytes, false);
1433		if (err) {
1434			put_page(pages[i]);
1435			if (err == -EAGAIN) {
1436				err = 0;
1437				goto again;
1438			}
1439			faili = i - 1;
1440			goto fail;
 
 
1441		}
1442		wait_on_page_writeback(pages[i]);
1443	}
1444
1445	return 0;
1446fail:
1447	while (faili >= 0) {
1448		unlock_page(pages[faili]);
1449		put_page(pages[faili]);
1450		faili--;
1451	}
1452	return err;
1453
1454}
1455
1456/*
1457 * This function locks the extent and properly waits for data=ordered extents
1458 * to finish before allowing the pages to be modified if need.
1459 *
1460 * The return value:
1461 * 1 - the extent is locked
1462 * 0 - the extent is not locked, and everything is OK
1463 * -EAGAIN - need re-prepare the pages
1464 * the other < 0 number - Something wrong happens
1465 */
1466static noinline int
1467lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468				size_t num_pages, loff_t pos,
1469				size_t write_bytes,
1470				u64 *lockstart, u64 *lockend,
1471				struct extent_state **cached_state)
1472{
1473	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474	u64 start_pos;
1475	u64 last_pos;
1476	int i;
1477	int ret = 0;
1478
1479	start_pos = round_down(pos, fs_info->sectorsize);
1480	last_pos = start_pos
1481		+ round_up(pos + write_bytes - start_pos,
1482			   fs_info->sectorsize) - 1;
1483
1484	if (start_pos < inode->vfs_inode.i_size) {
1485		struct btrfs_ordered_extent *ordered;
1486
1487		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488				cached_state);
 
 
 
 
 
 
 
 
 
1489		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490						     last_pos - start_pos + 1);
1491		if (ordered &&
1492		    ordered->file_offset + ordered->num_bytes > start_pos &&
1493		    ordered->file_offset <= last_pos) {
1494			unlock_extent_cached(&inode->io_tree, start_pos,
1495					last_pos, cached_state);
1496			for (i = 0; i < num_pages; i++) {
1497				unlock_page(pages[i]);
1498				put_page(pages[i]);
1499			}
1500			btrfs_start_ordered_extent(&inode->vfs_inode,
1501					ordered, 1);
1502			btrfs_put_ordered_extent(ordered);
1503			return -EAGAIN;
1504		}
1505		if (ordered)
1506			btrfs_put_ordered_extent(ordered);
1507
1508		*lockstart = start_pos;
1509		*lockend = last_pos;
1510		ret = 1;
1511	}
1512
1513	/*
1514	 * It's possible the pages are dirty right now, but we don't want
1515	 * to clean them yet because copy_from_user may catch a page fault
1516	 * and we might have to fall back to one page at a time.  If that
1517	 * happens, we'll unlock these pages and we'd have a window where
1518	 * reclaim could sneak in and drop the once-dirty page on the floor
1519	 * without writing it.
1520	 *
1521	 * We have the pages locked and the extent range locked, so there's
1522	 * no way someone can start IO on any dirty pages in this range.
1523	 *
1524	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1525	 * delalloc bits and dirty the pages as required.
1526	 */
1527	for (i = 0; i < num_pages; i++) {
1528		set_page_extent_mapped(pages[i]);
1529		WARN_ON(!PageLocked(pages[i]));
1530	}
1531
1532	return ret;
1533}
1534
1535static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536			   size_t *write_bytes, bool nowait)
1537{
1538	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1539	struct btrfs_root *root = inode->root;
 
1540	u64 lockstart, lockend;
1541	u64 num_bytes;
1542	int ret;
1543
1544	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1545		return 0;
1546
1547	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1548		return -EAGAIN;
1549
1550	lockstart = round_down(pos, fs_info->sectorsize);
1551	lockend = round_up(pos + *write_bytes,
1552			   fs_info->sectorsize) - 1;
1553	num_bytes = lockend - lockstart + 1;
1554
1555	if (nowait) {
1556		struct btrfs_ordered_extent *ordered;
1557
1558		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1559			return -EAGAIN;
1560
1561		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1562						     num_bytes);
1563		if (ordered) {
1564			btrfs_put_ordered_extent(ordered);
1565			ret = -EAGAIN;
1566			goto out_unlock;
1567		}
1568	} else {
1569		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1570						   lockend, NULL);
1571	}
1572
1573	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1574			NULL, NULL, NULL, false);
1575	if (ret <= 0) {
1576		ret = 0;
1577		if (!nowait)
1578			btrfs_drew_write_unlock(&root->snapshot_lock);
1579	} else {
1580		*write_bytes = min_t(size_t, *write_bytes ,
1581				     num_bytes - pos + lockstart);
1582	}
1583out_unlock:
1584	unlock_extent(&inode->io_tree, lockstart, lockend);
1585
1586	return ret;
1587}
1588
1589static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1590			      size_t *write_bytes)
1591{
1592	return check_can_nocow(inode, pos, write_bytes, true);
1593}
1594
1595/*
1596 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1597 *
1598 * @pos:	 File offset
1599 * @write_bytes: The length to write, will be updated to the nocow writeable
1600 *		 range
1601 *
1602 * This function will flush ordered extents in the range to ensure proper
1603 * nocow checks.
1604 *
1605 * Return:
1606 * >0		and update @write_bytes if we can do nocow write
1607 *  0		if we can't do nocow write
1608 * -EAGAIN	if we can't get the needed lock or there are ordered extents
1609 * 		for * (nowait == true) case
1610 * <0		if other error happened
1611 *
1612 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1613 */
1614int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1615			   size_t *write_bytes)
1616{
1617	return check_can_nocow(inode, pos, write_bytes, false);
1618}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1621{
1622	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1623}
1624
1625static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1626					       struct iov_iter *i)
1627{
1628	struct file *file = iocb->ki_filp;
1629	loff_t pos = iocb->ki_pos;
1630	struct inode *inode = file_inode(file);
1631	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1632	struct page **pages = NULL;
1633	struct extent_changeset *data_reserved = NULL;
1634	u64 release_bytes = 0;
1635	u64 lockstart;
1636	u64 lockend;
1637	size_t num_written = 0;
1638	int nrptrs;
1639	int ret = 0;
 
 
 
1640	bool only_release_metadata = false;
1641	bool force_page_uptodate = false;
1642
1643	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1644			PAGE_SIZE / (sizeof(struct page *)));
1645	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1646	nrptrs = max(nrptrs, 8);
1647	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1648	if (!pages)
1649		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650
 
1651	while (iov_iter_count(i) > 0) {
1652		struct extent_state *cached_state = NULL;
1653		size_t offset = offset_in_page(pos);
1654		size_t sector_offset;
1655		size_t write_bytes = min(iov_iter_count(i),
1656					 nrptrs * (size_t)PAGE_SIZE -
1657					 offset);
1658		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1659						PAGE_SIZE);
1660		size_t reserve_bytes;
1661		size_t dirty_pages;
1662		size_t copied;
1663		size_t dirty_sectors;
1664		size_t num_sectors;
 
1665		int extents_locked;
1666
1667		WARN_ON(num_pages > nrptrs);
1668
1669		/*
1670		 * Fault pages before locking them in prepare_pages
1671		 * to avoid recursive lock
1672		 */
1673		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1674			ret = -EFAULT;
1675			break;
1676		}
1677
1678		only_release_metadata = false;
1679		sector_offset = pos & (fs_info->sectorsize - 1);
1680		reserve_bytes = round_up(write_bytes + sector_offset,
1681				fs_info->sectorsize);
1682
1683		extent_changeset_release(data_reserved);
1684		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1685						  &data_reserved, pos,
1686						  write_bytes);
1687		if (ret < 0) {
1688			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1689						   &write_bytes) > 0) {
1690				/*
1691				 * For nodata cow case, no need to reserve
1692				 * data space.
1693				 */
1694				only_release_metadata = true;
1695				/*
1696				 * our prealloc extent may be smaller than
1697				 * write_bytes, so scale down.
1698				 */
1699				num_pages = DIV_ROUND_UP(write_bytes + offset,
1700							 PAGE_SIZE);
1701				reserve_bytes = round_up(write_bytes +
1702							 sector_offset,
1703							 fs_info->sectorsize);
1704			} else {
1705				break;
1706			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707		}
1708
 
 
1709		WARN_ON(reserve_bytes == 0);
1710		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1711				reserve_bytes);
 
1712		if (ret) {
1713			if (!only_release_metadata)
1714				btrfs_free_reserved_data_space(BTRFS_I(inode),
1715						data_reserved, pos,
1716						write_bytes);
1717			else
1718				btrfs_check_nocow_unlock(BTRFS_I(inode));
 
 
 
1719			break;
1720		}
1721
1722		release_bytes = reserve_bytes;
1723again:
1724		/*
1725		 * This is going to setup the pages array with the number of
1726		 * pages we want, so we don't really need to worry about the
1727		 * contents of pages from loop to loop
1728		 */
1729		ret = prepare_pages(inode, pages, num_pages,
1730				    pos, write_bytes,
1731				    force_page_uptodate);
1732		if (ret) {
1733			btrfs_delalloc_release_extents(BTRFS_I(inode),
1734						       reserve_bytes);
1735			break;
1736		}
1737
1738		extents_locked = lock_and_cleanup_extent_if_need(
1739				BTRFS_I(inode), pages,
1740				num_pages, pos, write_bytes, &lockstart,
1741				&lockend, &cached_state);
1742		if (extents_locked < 0) {
1743			if (extents_locked == -EAGAIN)
1744				goto again;
 
1745			btrfs_delalloc_release_extents(BTRFS_I(inode),
1746						       reserve_bytes);
1747			ret = extents_locked;
1748			break;
1749		}
1750
1751		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1752
1753		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1754		dirty_sectors = round_up(copied + sector_offset,
1755					fs_info->sectorsize);
1756		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1757
1758		/*
1759		 * if we have trouble faulting in the pages, fall
1760		 * back to one page at a time
1761		 */
1762		if (copied < write_bytes)
1763			nrptrs = 1;
1764
1765		if (copied == 0) {
1766			force_page_uptodate = true;
1767			dirty_sectors = 0;
1768			dirty_pages = 0;
1769		} else {
1770			force_page_uptodate = false;
1771			dirty_pages = DIV_ROUND_UP(copied + offset,
1772						   PAGE_SIZE);
1773		}
1774
1775		if (num_sectors > dirty_sectors) {
1776			/* release everything except the sectors we dirtied */
1777			release_bytes -= dirty_sectors <<
1778						fs_info->sb->s_blocksize_bits;
1779			if (only_release_metadata) {
1780				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1781							release_bytes, true);
1782			} else {
1783				u64 __pos;
1784
1785				__pos = round_down(pos,
1786						   fs_info->sectorsize) +
1787					(dirty_pages << PAGE_SHIFT);
1788				btrfs_delalloc_release_space(BTRFS_I(inode),
1789						data_reserved, __pos,
1790						release_bytes, true);
1791			}
1792		}
1793
1794		release_bytes = round_up(copied + sector_offset,
1795					fs_info->sectorsize);
1796
1797		if (copied > 0)
1798			ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1799						dirty_pages, pos, copied,
1800						&cached_state);
1801
1802		/*
1803		 * If we have not locked the extent range, because the range's
1804		 * start offset is >= i_size, we might still have a non-NULL
1805		 * cached extent state, acquired while marking the extent range
1806		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1807		 * possible cached extent state to avoid a memory leak.
1808		 */
1809		if (extents_locked)
1810			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1811					     lockstart, lockend, &cached_state);
1812		else
1813			free_extent_state(cached_state);
1814
1815		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1816		if (ret) {
1817			btrfs_drop_pages(pages, num_pages);
1818			break;
1819		}
1820
1821		release_bytes = 0;
1822		if (only_release_metadata)
1823			btrfs_check_nocow_unlock(BTRFS_I(inode));
1824
1825		if (only_release_metadata && copied > 0) {
1826			lockstart = round_down(pos,
1827					       fs_info->sectorsize);
1828			lockend = round_up(pos + copied,
1829					   fs_info->sectorsize) - 1;
1830
1831			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1832				       lockend, EXTENT_NORESERVE, NULL,
1833				       NULL, GFP_NOFS);
1834		}
1835
1836		btrfs_drop_pages(pages, num_pages);
1837
1838		cond_resched();
1839
1840		balance_dirty_pages_ratelimited(inode->i_mapping);
1841
1842		pos += copied;
1843		num_written += copied;
1844	}
1845
1846	kfree(pages);
1847
1848	if (release_bytes) {
1849		if (only_release_metadata) {
1850			btrfs_check_nocow_unlock(BTRFS_I(inode));
1851			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1852					release_bytes, true);
1853		} else {
1854			btrfs_delalloc_release_space(BTRFS_I(inode),
1855					data_reserved,
1856					round_down(pos, fs_info->sectorsize),
1857					release_bytes, true);
1858		}
1859	}
1860
1861	extent_changeset_free(data_reserved);
 
 
 
 
 
 
1862	return num_written ? num_written : ret;
1863}
1864
1865static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
1866{
1867	struct file *file = iocb->ki_filp;
1868	struct inode *inode = file_inode(file);
1869	loff_t pos;
1870	ssize_t written;
1871	ssize_t written_buffered;
1872	loff_t endbyte;
1873	int err;
1874
1875	written = generic_file_direct_write(iocb, from);
1876
1877	if (written < 0 || !iov_iter_count(from))
1878		return written;
1879
1880	pos = iocb->ki_pos;
1881	written_buffered = btrfs_buffered_write(iocb, from);
1882	if (written_buffered < 0) {
1883		err = written_buffered;
1884		goto out;
1885	}
1886	/*
1887	 * Ensure all data is persisted. We want the next direct IO read to be
1888	 * able to read what was just written.
1889	 */
1890	endbyte = pos + written_buffered - 1;
1891	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1892	if (err)
1893		goto out;
1894	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1895	if (err)
 
1896		goto out;
1897	written += written_buffered;
1898	iocb->ki_pos = pos + written_buffered;
1899	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1900				 endbyte >> PAGE_SHIFT);
1901out:
1902	return written ? written : err;
1903}
1904
1905static void update_time_for_write(struct inode *inode)
1906{
1907	struct timespec64 now;
1908
1909	if (IS_NOCMTIME(inode))
1910		return;
1911
1912	now = current_time(inode);
1913	if (!timespec64_equal(&inode->i_mtime, &now))
1914		inode->i_mtime = now;
1915
1916	if (!timespec64_equal(&inode->i_ctime, &now))
1917		inode->i_ctime = now;
1918
1919	if (IS_I_VERSION(inode))
1920		inode_inc_iversion(inode);
1921}
1922
1923static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1924				    struct iov_iter *from)
1925{
1926	struct file *file = iocb->ki_filp;
1927	struct inode *inode = file_inode(file);
1928	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1929	struct btrfs_root *root = BTRFS_I(inode)->root;
1930	u64 start_pos;
1931	u64 end_pos;
1932	ssize_t num_written = 0;
1933	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1934	ssize_t err;
1935	loff_t pos;
1936	size_t count;
1937	loff_t oldsize;
1938	int clean_page = 0;
1939
1940	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1941	    (iocb->ki_flags & IOCB_NOWAIT))
1942		return -EOPNOTSUPP;
1943
1944	if (iocb->ki_flags & IOCB_NOWAIT) {
1945		if (!inode_trylock(inode))
1946			return -EAGAIN;
1947	} else {
1948		inode_lock(inode);
1949	}
1950
1951	err = generic_write_checks(iocb, from);
1952	if (err <= 0) {
1953		inode_unlock(inode);
1954		return err;
1955	}
1956
1957	pos = iocb->ki_pos;
1958	count = iov_iter_count(from);
1959	if (iocb->ki_flags & IOCB_NOWAIT) {
1960		size_t nocow_bytes = count;
1961
1962		/*
1963		 * We will allocate space in case nodatacow is not set,
1964		 * so bail
1965		 */
1966		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1967		    <= 0) {
1968			inode_unlock(inode);
1969			return -EAGAIN;
1970		}
1971		/*
1972		 * There are holes in the range or parts of the range that must
1973		 * be COWed (shared extents, RO block groups, etc), so just bail
1974		 * out.
1975		 */
1976		if (nocow_bytes < count) {
1977			inode_unlock(inode);
1978			return -EAGAIN;
1979		}
1980	}
1981
1982	current->backing_dev_info = inode_to_bdi(inode);
1983	err = file_remove_privs(file);
1984	if (err) {
1985		inode_unlock(inode);
1986		goto out;
1987	}
1988
1989	/*
1990	 * If BTRFS flips readonly due to some impossible error
1991	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1992	 * although we have opened a file as writable, we have
1993	 * to stop this write operation to ensure FS consistency.
1994	 */
1995	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1996		inode_unlock(inode);
1997		err = -EROFS;
1998		goto out;
1999	}
2000
2001	/*
2002	 * We reserve space for updating the inode when we reserve space for the
2003	 * extent we are going to write, so we will enospc out there.  We don't
2004	 * need to start yet another transaction to update the inode as we will
2005	 * update the inode when we finish writing whatever data we write.
2006	 */
2007	update_time_for_write(inode);
2008
2009	start_pos = round_down(pos, fs_info->sectorsize);
2010	oldsize = i_size_read(inode);
2011	if (start_pos > oldsize) {
2012		/* Expand hole size to cover write data, preventing empty gap */
2013		end_pos = round_up(pos + count,
2014				   fs_info->sectorsize);
2015		err = btrfs_cont_expand(inode, oldsize, end_pos);
2016		if (err) {
2017			inode_unlock(inode);
2018			goto out;
2019		}
2020		if (start_pos > round_up(oldsize, fs_info->sectorsize))
2021			clean_page = 1;
2022	}
2023
2024	if (sync)
2025		atomic_inc(&BTRFS_I(inode)->sync_writers);
2026
2027	if (iocb->ki_flags & IOCB_DIRECT) {
2028		num_written = __btrfs_direct_write(iocb, from);
2029	} else {
2030		num_written = btrfs_buffered_write(iocb, from);
2031		if (num_written > 0)
2032			iocb->ki_pos = pos + num_written;
2033		if (clean_page)
2034			pagecache_isize_extended(inode, oldsize,
2035						i_size_read(inode));
2036	}
2037
2038	inode_unlock(inode);
 
2039
2040	/*
2041	 * We also have to set last_sub_trans to the current log transid,
2042	 * otherwise subsequent syncs to a file that's been synced in this
2043	 * transaction will appear to have already occurred.
2044	 */
2045	spin_lock(&BTRFS_I(inode)->lock);
2046	BTRFS_I(inode)->last_sub_trans = root->log_transid;
2047	spin_unlock(&BTRFS_I(inode)->lock);
2048	if (num_written > 0)
2049		num_written = generic_write_sync(iocb, num_written);
2050
2051	if (sync)
2052		atomic_dec(&BTRFS_I(inode)->sync_writers);
2053out:
2054	current->backing_dev_info = NULL;
2055	return num_written ? num_written : err;
2056}
2057
2058int btrfs_release_file(struct inode *inode, struct file *filp)
2059{
2060	struct btrfs_file_private *private = filp->private_data;
2061
2062	if (private && private->filldir_buf)
2063		kfree(private->filldir_buf);
2064	kfree(private);
2065	filp->private_data = NULL;
 
 
2066
2067	/*
2068	 * ordered_data_close is set by setattr when we are about to truncate
2069	 * a file from a non-zero size to a zero size.  This tries to
2070	 * flush down new bytes that may have been written if the
2071	 * application were using truncate to replace a file in place.
2072	 */
2073	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2074			       &BTRFS_I(inode)->runtime_flags))
2075			filemap_flush(inode->i_mapping);
2076	return 0;
2077}
2078
2079static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2080{
2081	int ret;
2082	struct blk_plug plug;
2083
2084	/*
2085	 * This is only called in fsync, which would do synchronous writes, so
2086	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2087	 * multiple disks using raid profile, a large IO can be split to
2088	 * several segments of stripe length (currently 64K).
2089	 */
2090	blk_start_plug(&plug);
2091	atomic_inc(&BTRFS_I(inode)->sync_writers);
2092	ret = btrfs_fdatawrite_range(inode, start, end);
2093	atomic_dec(&BTRFS_I(inode)->sync_writers);
2094	blk_finish_plug(&plug);
2095
2096	return ret;
2097}
2098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099/*
2100 * fsync call for both files and directories.  This logs the inode into
2101 * the tree log instead of forcing full commits whenever possible.
2102 *
2103 * It needs to call filemap_fdatawait so that all ordered extent updates are
2104 * in the metadata btree are up to date for copying to the log.
2105 *
2106 * It drops the inode mutex before doing the tree log commit.  This is an
2107 * important optimization for directories because holding the mutex prevents
2108 * new operations on the dir while we write to disk.
2109 */
2110int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2111{
2112	struct dentry *dentry = file_dentry(file);
2113	struct inode *inode = d_inode(dentry);
2114	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2115	struct btrfs_root *root = BTRFS_I(inode)->root;
2116	struct btrfs_trans_handle *trans;
2117	struct btrfs_log_ctx ctx;
2118	int ret = 0, err;
 
 
 
 
 
 
 
 
 
2119
2120	trace_btrfs_sync_file(file, datasync);
2121
2122	btrfs_init_log_ctx(&ctx, inode);
2123
2124	/*
2125	 * Set the range to full if the NO_HOLES feature is not enabled.
2126	 * This is to avoid missing file extent items representing holes after
2127	 * replaying the log.
2128	 */
2129	if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2130		start = 0;
2131		end = LLONG_MAX;
2132	}
 
 
2133
2134	/*
2135	 * We write the dirty pages in the range and wait until they complete
2136	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2137	 * multi-task, and make the performance up.  See
2138	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2139	 */
2140	ret = start_ordered_ops(inode, start, end);
2141	if (ret)
2142		goto out;
2143
2144	inode_lock(inode);
2145
2146	/*
2147	 * We take the dio_sem here because the tree log stuff can race with
2148	 * lockless dio writes and get an extent map logged for an extent we
2149	 * never waited on.  We need it this high up for lockdep reasons.
2150	 */
2151	down_write(&BTRFS_I(inode)->dio_sem);
2152
2153	atomic_inc(&root->log_batch);
2154
2155	/*
2156	 * If the inode needs a full sync, make sure we use a full range to
2157	 * avoid log tree corruption, due to hole detection racing with ordered
2158	 * extent completion for adjacent ranges and races between logging and
2159	 * completion of ordered extents for adjancent ranges - both races
2160	 * could lead to file extent items in the log with overlapping ranges.
2161	 * Do this while holding the inode lock, to avoid races with other
2162	 * tasks.
2163	 */
2164	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165		     &BTRFS_I(inode)->runtime_flags)) {
2166		start = 0;
2167		end = LLONG_MAX;
2168	}
2169
2170	/*
2171	 * Before we acquired the inode's lock, someone may have dirtied more
2172	 * pages in the target range. We need to make sure that writeback for
2173	 * any such pages does not start while we are logging the inode, because
2174	 * if it does, any of the following might happen when we are not doing a
2175	 * full inode sync:
2176	 *
2177	 * 1) We log an extent after its writeback finishes but before its
2178	 *    checksums are added to the csum tree, leading to -EIO errors
2179	 *    when attempting to read the extent after a log replay.
2180	 *
2181	 * 2) We can end up logging an extent before its writeback finishes.
2182	 *    Therefore after the log replay we will have a file extent item
2183	 *    pointing to an unwritten extent (and no data checksums as well).
2184	 *
2185	 * So trigger writeback for any eventual new dirty pages and then we
2186	 * wait for all ordered extents to complete below.
2187	 */
2188	ret = start_ordered_ops(inode, start, end);
2189	if (ret) {
2190		up_write(&BTRFS_I(inode)->dio_sem);
2191		inode_unlock(inode);
 
 
2192		goto out;
2193	}
2194
2195	/*
 
 
 
 
 
 
 
 
 
 
2196	 * We have to do this here to avoid the priority inversion of waiting on
2197	 * IO of a lower priority task while holding a transaction open.
2198	 *
2199	 * Also, the range length can be represented by u64, we have to do the
2200	 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2201	 */
2202	ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2203	if (ret) {
2204		up_write(&BTRFS_I(inode)->dio_sem);
2205		inode_unlock(inode);
2206		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207	}
 
 
 
 
2208	atomic_inc(&root->log_batch);
2209
2210	smp_mb();
2211	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2212	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2213		/*
2214		 * We've had everything committed since the last time we were
2215		 * modified so clear this flag in case it was set for whatever
2216		 * reason, it's no longer relevant.
2217		 */
2218		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2219			  &BTRFS_I(inode)->runtime_flags);
2220		/*
2221		 * An ordered extent might have started before and completed
2222		 * already with io errors, in which case the inode was not
2223		 * updated and we end up here. So check the inode's mapping
2224		 * for any errors that might have happened since we last
2225		 * checked called fsync.
2226		 */
2227		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2228		up_write(&BTRFS_I(inode)->dio_sem);
2229		inode_unlock(inode);
2230		goto out;
2231	}
2232
 
 
2233	/*
2234	 * We use start here because we will need to wait on the IO to complete
2235	 * in btrfs_sync_log, which could require joining a transaction (for
2236	 * example checking cross references in the nocow path).  If we use join
2237	 * here we could get into a situation where we're waiting on IO to
2238	 * happen that is blocked on a transaction trying to commit.  With start
2239	 * we inc the extwriter counter, so we wait for all extwriters to exit
2240	 * before we start blocking joiners.  This comment is to keep somebody
2241	 * from thinking they are super smart and changing this to
2242	 * btrfs_join_transaction *cough*Josef*cough*.
2243	 */
2244	trans = btrfs_start_transaction(root, 0);
2245	if (IS_ERR(trans)) {
2246		ret = PTR_ERR(trans);
2247		up_write(&BTRFS_I(inode)->dio_sem);
2248		inode_unlock(inode);
2249		goto out;
2250	}
 
2251
2252	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
 
 
 
 
 
 
 
 
 
 
2253	if (ret < 0) {
2254		/* Fallthrough and commit/free transaction. */
2255		ret = 1;
2256	}
2257
2258	/* we've logged all the items and now have a consistent
2259	 * version of the file in the log.  It is possible that
2260	 * someone will come in and modify the file, but that's
2261	 * fine because the log is consistent on disk, and we
2262	 * have references to all of the file's extents
2263	 *
2264	 * It is possible that someone will come in and log the
2265	 * file again, but that will end up using the synchronization
2266	 * inside btrfs_sync_log to keep things safe.
2267	 */
2268	up_write(&BTRFS_I(inode)->dio_sem);
2269	inode_unlock(inode);
 
 
 
 
 
 
 
2270
2271	if (ret != BTRFS_NO_LOG_SYNC) {
 
 
2272		if (!ret) {
2273			ret = btrfs_sync_log(trans, root, &ctx);
2274			if (!ret) {
2275				ret = btrfs_end_transaction(trans);
2276				goto out;
2277			}
2278		}
2279		ret = btrfs_commit_transaction(trans);
2280	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
2281		ret = btrfs_end_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282	}
 
 
2283out:
 
2284	ASSERT(list_empty(&ctx.list));
 
2285	err = file_check_and_advance_wb_err(file);
2286	if (!ret)
2287		ret = err;
2288	return ret > 0 ? -EIO : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289}
2290
2291static const struct vm_operations_struct btrfs_file_vm_ops = {
2292	.fault		= filemap_fault,
2293	.map_pages	= filemap_map_pages,
2294	.page_mkwrite	= btrfs_page_mkwrite,
2295};
2296
2297static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2298{
2299	struct address_space *mapping = filp->f_mapping;
2300
2301	if (!mapping->a_ops->readpage)
2302		return -ENOEXEC;
2303
2304	file_accessed(filp);
2305	vma->vm_ops = &btrfs_file_vm_ops;
2306
2307	return 0;
2308}
2309
2310static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2311			  int slot, u64 start, u64 end)
2312{
2313	struct btrfs_file_extent_item *fi;
2314	struct btrfs_key key;
2315
2316	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2317		return 0;
2318
2319	btrfs_item_key_to_cpu(leaf, &key, slot);
2320	if (key.objectid != btrfs_ino(inode) ||
2321	    key.type != BTRFS_EXTENT_DATA_KEY)
2322		return 0;
2323
2324	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2325
2326	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2327		return 0;
2328
2329	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2330		return 0;
2331
2332	if (key.offset == end)
2333		return 1;
2334	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2335		return 1;
2336	return 0;
2337}
2338
2339static int fill_holes(struct btrfs_trans_handle *trans,
2340		struct btrfs_inode *inode,
2341		struct btrfs_path *path, u64 offset, u64 end)
2342{
2343	struct btrfs_fs_info *fs_info = trans->fs_info;
2344	struct btrfs_root *root = inode->root;
2345	struct extent_buffer *leaf;
2346	struct btrfs_file_extent_item *fi;
2347	struct extent_map *hole_em;
2348	struct extent_map_tree *em_tree = &inode->extent_tree;
2349	struct btrfs_key key;
2350	int ret;
2351
2352	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2353		goto out;
2354
2355	key.objectid = btrfs_ino(inode);
2356	key.type = BTRFS_EXTENT_DATA_KEY;
2357	key.offset = offset;
2358
2359	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360	if (ret <= 0) {
2361		/*
2362		 * We should have dropped this offset, so if we find it then
2363		 * something has gone horribly wrong.
2364		 */
2365		if (ret == 0)
2366			ret = -EINVAL;
2367		return ret;
2368	}
2369
2370	leaf = path->nodes[0];
2371	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2372		u64 num_bytes;
2373
2374		path->slots[0]--;
2375		fi = btrfs_item_ptr(leaf, path->slots[0],
2376				    struct btrfs_file_extent_item);
2377		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2378			end - offset;
2379		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2380		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2381		btrfs_set_file_extent_offset(leaf, fi, 0);
2382		btrfs_mark_buffer_dirty(leaf);
 
2383		goto out;
2384	}
2385
2386	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2387		u64 num_bytes;
2388
2389		key.offset = offset;
2390		btrfs_set_item_key_safe(fs_info, path, &key);
2391		fi = btrfs_item_ptr(leaf, path->slots[0],
2392				    struct btrfs_file_extent_item);
2393		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2394			offset;
2395		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2396		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2397		btrfs_set_file_extent_offset(leaf, fi, 0);
2398		btrfs_mark_buffer_dirty(leaf);
 
2399		goto out;
2400	}
2401	btrfs_release_path(path);
2402
2403	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2404			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2405	if (ret)
2406		return ret;
2407
2408out:
2409	btrfs_release_path(path);
2410
2411	hole_em = alloc_extent_map();
2412	if (!hole_em) {
2413		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2414		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2415	} else {
2416		hole_em->start = offset;
2417		hole_em->len = end - offset;
2418		hole_em->ram_bytes = hole_em->len;
2419		hole_em->orig_start = offset;
2420
2421		hole_em->block_start = EXTENT_MAP_HOLE;
2422		hole_em->block_len = 0;
2423		hole_em->orig_block_len = 0;
2424		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2425		hole_em->generation = trans->transid;
2426
2427		do {
2428			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2429			write_lock(&em_tree->lock);
2430			ret = add_extent_mapping(em_tree, hole_em, 1);
2431			write_unlock(&em_tree->lock);
2432		} while (ret == -EEXIST);
2433		free_extent_map(hole_em);
2434		if (ret)
2435			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2436					&inode->runtime_flags);
2437	}
2438
2439	return 0;
2440}
2441
2442/*
2443 * Find a hole extent on given inode and change start/len to the end of hole
2444 * extent.(hole/vacuum extent whose em->start <= start &&
2445 *	   em->start + em->len > start)
2446 * When a hole extent is found, return 1 and modify start/len.
2447 */
2448static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2449{
2450	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2451	struct extent_map *em;
2452	int ret = 0;
2453
2454	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2455			      round_down(*start, fs_info->sectorsize),
2456			      round_up(*len, fs_info->sectorsize));
2457	if (IS_ERR(em))
2458		return PTR_ERR(em);
2459
2460	/* Hole or vacuum extent(only exists in no-hole mode) */
2461	if (em->block_start == EXTENT_MAP_HOLE) {
2462		ret = 1;
2463		*len = em->start + em->len > *start + *len ?
2464		       0 : *start + *len - em->start - em->len;
2465		*start = em->start + em->len;
2466	}
2467	free_extent_map(em);
2468	return ret;
2469}
2470
2471static int btrfs_punch_hole_lock_range(struct inode *inode,
2472				       const u64 lockstart,
2473				       const u64 lockend,
2474				       struct extent_state **cached_state)
2475{
 
 
 
 
 
 
 
 
 
 
 
2476	while (1) {
2477		struct btrfs_ordered_extent *ordered;
2478		int ret;
2479
2480		truncate_pagecache_range(inode, lockstart, lockend);
2481
2482		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2483				 cached_state);
2484		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2485
2486		/*
2487		 * We need to make sure we have no ordered extents in this range
2488		 * and nobody raced in and read a page in this range, if we did
2489		 * we need to try again.
2490		 */
2491		if ((!ordered ||
2492		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2493		     ordered->file_offset > lockend)) &&
2494		     !filemap_range_has_page(inode->i_mapping,
2495					     lockstart, lockend)) {
2496			if (ordered)
2497				btrfs_put_ordered_extent(ordered);
2498			break;
2499		}
2500		if (ordered)
2501			btrfs_put_ordered_extent(ordered);
2502		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2503				     lockend, cached_state);
2504		ret = btrfs_wait_ordered_range(inode, lockstart,
2505					       lockend - lockstart + 1);
2506		if (ret)
2507			return ret;
2508	}
2509	return 0;
 
2510}
2511
2512static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2513				     struct inode *inode,
2514				     struct btrfs_path *path,
2515				     struct btrfs_clone_extent_info *clone_info,
2516				     const u64 clone_len)
 
2517{
2518	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2519	struct btrfs_root *root = BTRFS_I(inode)->root;
2520	struct btrfs_file_extent_item *extent;
2521	struct extent_buffer *leaf;
2522	struct btrfs_key key;
2523	int slot;
2524	struct btrfs_ref ref = { 0 };
2525	u64 ref_offset;
2526	int ret;
2527
2528	if (clone_len == 0)
2529		return 0;
2530
2531	if (clone_info->disk_offset == 0 &&
2532	    btrfs_fs_incompat(fs_info, NO_HOLES))
 
2533		return 0;
 
2534
2535	key.objectid = btrfs_ino(BTRFS_I(inode));
2536	key.type = BTRFS_EXTENT_DATA_KEY;
2537	key.offset = clone_info->file_offset;
2538	ret = btrfs_insert_empty_item(trans, root, path, &key,
2539				      clone_info->item_size);
2540	if (ret)
2541		return ret;
2542	leaf = path->nodes[0];
2543	slot = path->slots[0];
2544	write_extent_buffer(leaf, clone_info->extent_buf,
2545			    btrfs_item_ptr_offset(leaf, slot),
2546			    clone_info->item_size);
2547	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2548	btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2549	btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2550	btrfs_mark_buffer_dirty(leaf);
 
 
 
2551	btrfs_release_path(path);
2552
2553	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2554			clone_info->file_offset, clone_len);
2555	if (ret)
2556		return ret;
2557
2558	/* If it's a hole, nothing more needs to be done. */
2559	if (clone_info->disk_offset == 0)
 
2560		return 0;
 
 
 
2561
2562	inode_add_bytes(inode, clone_len);
2563	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2564			       clone_info->disk_offset,
2565			       clone_info->disk_len, 0);
2566	ref_offset = clone_info->file_offset - clone_info->data_offset;
2567	btrfs_init_data_ref(&ref, root->root_key.objectid,
2568			    btrfs_ino(BTRFS_I(inode)), ref_offset);
2569	ret = btrfs_inc_extent_ref(trans, &ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570
2571	return ret;
2572}
2573
2574/*
2575 * The respective range must have been previously locked, as well as the inode.
2576 * The end offset is inclusive (last byte of the range).
2577 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2578 * cloning.
2579 * When cloning, we don't want to end up in a state where we dropped extents
2580 * without inserting a new one, so we must abort the transaction to avoid a
2581 * corruption.
2582 */
2583int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2584			   const u64 start, const u64 end,
2585			   struct btrfs_clone_extent_info *clone_info,
2586			   struct btrfs_trans_handle **trans_out)
 
2587{
2588	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
 
2589	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2590	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2591	struct btrfs_root *root = BTRFS_I(inode)->root;
2592	struct btrfs_trans_handle *trans = NULL;
2593	struct btrfs_block_rsv *rsv;
2594	unsigned int rsv_count;
2595	u64 cur_offset;
2596	u64 drop_end;
2597	u64 len = end - start;
2598	int ret = 0;
2599
2600	if (end <= start)
2601		return -EINVAL;
2602
2603	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2604	if (!rsv) {
2605		ret = -ENOMEM;
2606		goto out;
2607	}
2608	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2609	rsv->failfast = 1;
2610
2611	/*
2612	 * 1 - update the inode
2613	 * 1 - removing the extents in the range
2614	 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2615	 *     an extent
2616	 */
2617	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2618		rsv_count = 3;
2619	else
2620		rsv_count = 2;
2621
2622	trans = btrfs_start_transaction(root, rsv_count);
2623	if (IS_ERR(trans)) {
2624		ret = PTR_ERR(trans);
2625		trans = NULL;
2626		goto out_free;
2627	}
2628
2629	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2630				      min_size, false);
2631	BUG_ON(ret);
 
2632	trans->block_rsv = rsv;
2633
2634	cur_offset = start;
 
 
 
2635	while (cur_offset < end) {
2636		ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2637					   cur_offset, end + 1, &drop_end,
2638					   1, 0, 0, NULL);
 
 
 
2639		if (ret != -ENOSPC) {
2640			/*
2641			 * When cloning we want to avoid transaction aborts when
2642			 * nothing was done and we are attempting to clone parts
2643			 * of inline extents, in such cases -EOPNOTSUPP is
2644			 * returned by __btrfs_drop_extents() without having
2645			 * changed anything in the file.
 
2646			 */
2647			if (clone_info && ret && ret != -EOPNOTSUPP)
 
 
2648				btrfs_abort_transaction(trans, ret);
2649			break;
2650		}
2651
2652		trans->block_rsv = &fs_info->trans_block_rsv;
2653
2654		if (!clone_info && cur_offset < drop_end &&
2655		    cur_offset < ino_size) {
2656			ret = fill_holes(trans, BTRFS_I(inode), path,
2657					cur_offset, drop_end);
2658			if (ret) {
2659				/*
2660				 * If we failed then we didn't insert our hole
2661				 * entries for the area we dropped, so now the
2662				 * fs is corrupted, so we must abort the
2663				 * transaction.
2664				 */
2665				btrfs_abort_transaction(trans, ret);
2666				break;
2667			}
2668		} else if (!clone_info && cur_offset < drop_end) {
2669			/*
2670			 * We are past the i_size here, but since we didn't
2671			 * insert holes we need to clear the mapped area so we
2672			 * know to not set disk_i_size in this area until a new
2673			 * file extent is inserted here.
2674			 */
2675			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2676					cur_offset, drop_end - cur_offset);
 
2677			if (ret) {
2678				/*
2679				 * We couldn't clear our area, so we could
2680				 * presumably adjust up and corrupt the fs, so
2681				 * we need to abort.
2682				 */
2683				btrfs_abort_transaction(trans, ret);
2684				break;
2685			}
2686		}
2687
2688		if (clone_info && drop_end > clone_info->file_offset) {
2689			u64 clone_len = drop_end - clone_info->file_offset;
2690
2691			ret = btrfs_insert_clone_extent(trans, inode, path,
2692							clone_info, clone_len);
 
 
 
2693			if (ret) {
2694				btrfs_abort_transaction(trans, ret);
2695				break;
2696			}
2697			clone_info->data_len -= clone_len;
2698			clone_info->data_offset += clone_len;
2699			clone_info->file_offset += clone_len;
2700		}
2701
2702		cur_offset = drop_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703
2704		ret = btrfs_update_inode(trans, root, inode);
2705		if (ret)
2706			break;
2707
2708		btrfs_end_transaction(trans);
2709		btrfs_btree_balance_dirty(fs_info);
2710
2711		trans = btrfs_start_transaction(root, rsv_count);
2712		if (IS_ERR(trans)) {
2713			ret = PTR_ERR(trans);
2714			trans = NULL;
2715			break;
2716		}
2717
2718		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2719					      rsv, min_size, false);
2720		BUG_ON(ret);	/* shouldn't happen */
 
2721		trans->block_rsv = rsv;
2722
2723		if (!clone_info) {
 
 
2724			ret = find_first_non_hole(inode, &cur_offset, &len);
2725			if (unlikely(ret < 0))
2726				break;
2727			if (ret && !len) {
2728				ret = 0;
2729				break;
2730			}
2731		}
2732	}
2733
2734	/*
2735	 * If we were cloning, force the next fsync to be a full one since we
2736	 * we replaced (or just dropped in the case of cloning holes when
2737	 * NO_HOLES is enabled) extents and extent maps.
2738	 * This is for the sake of simplicity, and cloning into files larger
2739	 * than 16Mb would force the full fsync any way (when
2740	 * try_release_extent_mapping() is invoked during page cache truncation.
2741	 */
2742	if (clone_info)
2743		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2744			&BTRFS_I(inode)->runtime_flags);
2745
2746	if (ret)
2747		goto out_trans;
2748
2749	trans->block_rsv = &fs_info->trans_block_rsv;
2750	/*
2751	 * If we are using the NO_HOLES feature we might have had already an
2752	 * hole that overlaps a part of the region [lockstart, lockend] and
2753	 * ends at (or beyond) lockend. Since we have no file extent items to
2754	 * represent holes, drop_end can be less than lockend and so we must
2755	 * make sure we have an extent map representing the existing hole (the
2756	 * call to __btrfs_drop_extents() might have dropped the existing extent
2757	 * map representing the existing hole), otherwise the fast fsync path
2758	 * will not record the existence of the hole region
2759	 * [existing_hole_start, lockend].
2760	 */
2761	if (drop_end <= end)
2762		drop_end = end + 1;
2763	/*
2764	 * Don't insert file hole extent item if it's for a range beyond eof
2765	 * (because it's useless) or if it represents a 0 bytes range (when
2766	 * cur_offset == drop_end).
2767	 */
2768	if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2769		ret = fill_holes(trans, BTRFS_I(inode), path,
2770				cur_offset, drop_end);
 
2771		if (ret) {
2772			/* Same comment as above. */
2773			btrfs_abort_transaction(trans, ret);
2774			goto out_trans;
2775		}
2776	} else if (!clone_info && cur_offset < drop_end) {
2777		/* See the comment in the loop above for the reasoning here. */
2778		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2779					cur_offset, drop_end - cur_offset);
2780		if (ret) {
2781			btrfs_abort_transaction(trans, ret);
2782			goto out_trans;
2783		}
2784
2785	}
2786	if (clone_info) {
2787		ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2788						clone_info->data_len);
 
2789		if (ret) {
2790			btrfs_abort_transaction(trans, ret);
2791			goto out_trans;
2792		}
2793	}
2794
2795out_trans:
2796	if (!trans)
2797		goto out_free;
2798
2799	trans->block_rsv = &fs_info->trans_block_rsv;
2800	if (ret)
2801		btrfs_end_transaction(trans);
2802	else
2803		*trans_out = trans;
2804out_free:
2805	btrfs_free_block_rsv(fs_info, rsv);
2806out:
2807	return ret;
2808}
2809
2810static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2811{
2812	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
2813	struct btrfs_root *root = BTRFS_I(inode)->root;
2814	struct extent_state *cached_state = NULL;
2815	struct btrfs_path *path;
2816	struct btrfs_trans_handle *trans = NULL;
2817	u64 lockstart;
2818	u64 lockend;
2819	u64 tail_start;
2820	u64 tail_len;
2821	u64 orig_start = offset;
2822	int ret = 0;
2823	bool same_block;
2824	u64 ino_size;
2825	bool truncated_block = false;
2826	bool updated_inode = false;
2827
2828	ret = btrfs_wait_ordered_range(inode, offset, len);
 
 
2829	if (ret)
2830		return ret;
2831
2832	inode_lock(inode);
2833	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2834	ret = find_first_non_hole(inode, &offset, &len);
2835	if (ret < 0)
2836		goto out_only_mutex;
2837	if (ret && !len) {
2838		/* Already in a large hole */
2839		ret = 0;
2840		goto out_only_mutex;
2841	}
2842
2843	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2844	lockend = round_down(offset + len,
2845			     btrfs_inode_sectorsize(inode)) - 1;
 
 
 
2846	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2847		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2848	/*
2849	 * We needn't truncate any block which is beyond the end of the file
2850	 * because we are sure there is no data there.
2851	 */
2852	/*
2853	 * Only do this if we are in the same block and we aren't doing the
2854	 * entire block.
2855	 */
2856	if (same_block && len < fs_info->sectorsize) {
2857		if (offset < ino_size) {
2858			truncated_block = true;
2859			ret = btrfs_truncate_block(inode, offset, len, 0);
 
2860		} else {
2861			ret = 0;
2862		}
2863		goto out_only_mutex;
2864	}
2865
2866	/* zero back part of the first block */
2867	if (offset < ino_size) {
2868		truncated_block = true;
2869		ret = btrfs_truncate_block(inode, offset, 0, 0);
2870		if (ret) {
2871			inode_unlock(inode);
2872			return ret;
2873		}
2874	}
2875
2876	/* Check the aligned pages after the first unaligned page,
2877	 * if offset != orig_start, which means the first unaligned page
2878	 * including several following pages are already in holes,
2879	 * the extra check can be skipped */
2880	if (offset == orig_start) {
2881		/* after truncate page, check hole again */
2882		len = offset + len - lockstart;
2883		offset = lockstart;
2884		ret = find_first_non_hole(inode, &offset, &len);
2885		if (ret < 0)
2886			goto out_only_mutex;
2887		if (ret && !len) {
2888			ret = 0;
2889			goto out_only_mutex;
2890		}
2891		lockstart = offset;
2892	}
2893
2894	/* Check the tail unaligned part is in a hole */
2895	tail_start = lockend + 1;
2896	tail_len = offset + len - tail_start;
2897	if (tail_len) {
2898		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2899		if (unlikely(ret < 0))
2900			goto out_only_mutex;
2901		if (!ret) {
2902			/* zero the front end of the last page */
2903			if (tail_start + tail_len < ino_size) {
2904				truncated_block = true;
2905				ret = btrfs_truncate_block(inode,
2906							tail_start + tail_len,
2907							0, 1);
2908				if (ret)
2909					goto out_only_mutex;
2910			}
2911		}
2912	}
2913
2914	if (lockend < lockstart) {
2915		ret = 0;
2916		goto out_only_mutex;
2917	}
2918
2919	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920					  &cached_state);
2921	if (ret)
2922		goto out_only_mutex;
2923
2924	path = btrfs_alloc_path();
2925	if (!path) {
2926		ret = -ENOMEM;
2927		goto out;
2928	}
2929
2930	ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2931				     &trans);
2932	btrfs_free_path(path);
2933	if (ret)
2934		goto out;
2935
2936	ASSERT(trans != NULL);
2937	inode_inc_iversion(inode);
2938	inode->i_mtime = inode->i_ctime = current_time(inode);
2939	ret = btrfs_update_inode(trans, root, inode);
2940	updated_inode = true;
2941	btrfs_end_transaction(trans);
2942	btrfs_btree_balance_dirty(fs_info);
2943out:
2944	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2945			     &cached_state);
2946out_only_mutex:
2947	if (!updated_inode && truncated_block && !ret) {
2948		/*
2949		 * If we only end up zeroing part of a page, we still need to
2950		 * update the inode item, so that all the time fields are
2951		 * updated as well as the necessary btrfs inode in memory fields
2952		 * for detecting, at fsync time, if the inode isn't yet in the
2953		 * log tree or it's there but not up to date.
2954		 */
2955		struct timespec64 now = current_time(inode);
2956
2957		inode_inc_iversion(inode);
2958		inode->i_mtime = now;
2959		inode->i_ctime = now;
2960		trans = btrfs_start_transaction(root, 1);
2961		if (IS_ERR(trans)) {
2962			ret = PTR_ERR(trans);
2963		} else {
2964			int ret2;
2965
2966			ret = btrfs_update_inode(trans, root, inode);
2967			ret2 = btrfs_end_transaction(trans);
2968			if (!ret)
2969				ret = ret2;
2970		}
2971	}
2972	inode_unlock(inode);
2973	return ret;
2974}
2975
2976/* Helper structure to record which range is already reserved */
2977struct falloc_range {
2978	struct list_head list;
2979	u64 start;
2980	u64 len;
2981};
2982
2983/*
2984 * Helper function to add falloc range
2985 *
2986 * Caller should have locked the larger range of extent containing
2987 * [start, len)
2988 */
2989static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2990{
2991	struct falloc_range *prev = NULL;
2992	struct falloc_range *range = NULL;
2993
2994	if (list_empty(head))
2995		goto insert;
 
 
 
 
 
 
 
 
 
2996
2997	/*
2998	 * As fallocate iterate by bytenr order, we only need to check
2999	 * the last range.
3000	 */
3001	prev = list_entry(head->prev, struct falloc_range, list);
3002	if (prev->start + prev->len == start) {
3003		prev->len += len;
3004		return 0;
3005	}
3006insert:
3007	range = kmalloc(sizeof(*range), GFP_KERNEL);
3008	if (!range)
3009		return -ENOMEM;
3010	range->start = start;
3011	range->len = len;
3012	list_add_tail(&range->list, head);
3013	return 0;
3014}
3015
3016static int btrfs_fallocate_update_isize(struct inode *inode,
3017					const u64 end,
3018					const int mode)
3019{
3020	struct btrfs_trans_handle *trans;
3021	struct btrfs_root *root = BTRFS_I(inode)->root;
3022	int ret;
3023	int ret2;
3024
3025	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3026		return 0;
3027
3028	trans = btrfs_start_transaction(root, 1);
3029	if (IS_ERR(trans))
3030		return PTR_ERR(trans);
3031
3032	inode->i_ctime = current_time(inode);
3033	i_size_write(inode, end);
3034	btrfs_inode_safe_disk_i_size_write(inode, 0);
3035	ret = btrfs_update_inode(trans, root, inode);
3036	ret2 = btrfs_end_transaction(trans);
3037
3038	return ret ? ret : ret2;
3039}
3040
3041enum {
3042	RANGE_BOUNDARY_WRITTEN_EXTENT,
3043	RANGE_BOUNDARY_PREALLOC_EXTENT,
3044	RANGE_BOUNDARY_HOLE,
3045};
3046
3047static int btrfs_zero_range_check_range_boundary(struct inode *inode,
3048						 u64 offset)
3049{
3050	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3051	struct extent_map *em;
3052	int ret;
3053
3054	offset = round_down(offset, sectorsize);
3055	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
3056	if (IS_ERR(em))
3057		return PTR_ERR(em);
3058
3059	if (em->block_start == EXTENT_MAP_HOLE)
3060		ret = RANGE_BOUNDARY_HOLE;
3061	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3062		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3063	else
3064		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3065
3066	free_extent_map(em);
3067	return ret;
3068}
3069
3070static int btrfs_zero_range(struct inode *inode,
3071			    loff_t offset,
3072			    loff_t len,
3073			    const int mode)
3074{
3075	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3076	struct extent_map *em;
3077	struct extent_changeset *data_reserved = NULL;
3078	int ret;
3079	u64 alloc_hint = 0;
3080	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3081	u64 alloc_start = round_down(offset, sectorsize);
3082	u64 alloc_end = round_up(offset + len, sectorsize);
3083	u64 bytes_to_reserve = 0;
3084	bool space_reserved = false;
3085
3086	inode_dio_wait(inode);
3087
3088	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3089			      alloc_end - alloc_start);
3090	if (IS_ERR(em)) {
3091		ret = PTR_ERR(em);
3092		goto out;
3093	}
3094
3095	/*
3096	 * Avoid hole punching and extent allocation for some cases. More cases
3097	 * could be considered, but these are unlikely common and we keep things
3098	 * as simple as possible for now. Also, intentionally, if the target
3099	 * range contains one or more prealloc extents together with regular
3100	 * extents and holes, we drop all the existing extents and allocate a
3101	 * new prealloc extent, so that we get a larger contiguous disk extent.
3102	 */
3103	if (em->start <= alloc_start &&
3104	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3105		const u64 em_end = em->start + em->len;
3106
3107		if (em_end >= offset + len) {
3108			/*
3109			 * The whole range is already a prealloc extent,
3110			 * do nothing except updating the inode's i_size if
3111			 * needed.
3112			 */
3113			free_extent_map(em);
3114			ret = btrfs_fallocate_update_isize(inode, offset + len,
3115							   mode);
3116			goto out;
3117		}
3118		/*
3119		 * Part of the range is already a prealloc extent, so operate
3120		 * only on the remaining part of the range.
3121		 */
3122		alloc_start = em_end;
3123		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3124		len = offset + len - alloc_start;
3125		offset = alloc_start;
3126		alloc_hint = em->block_start + em->len;
3127	}
3128	free_extent_map(em);
3129
3130	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3131	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3132		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3133				      sectorsize);
3134		if (IS_ERR(em)) {
3135			ret = PTR_ERR(em);
3136			goto out;
3137		}
3138
3139		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3140			free_extent_map(em);
3141			ret = btrfs_fallocate_update_isize(inode, offset + len,
3142							   mode);
3143			goto out;
3144		}
3145		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3146			free_extent_map(em);
3147			ret = btrfs_truncate_block(inode, offset, len, 0);
 
3148			if (!ret)
3149				ret = btrfs_fallocate_update_isize(inode,
3150								   offset + len,
3151								   mode);
3152			return ret;
3153		}
3154		free_extent_map(em);
3155		alloc_start = round_down(offset, sectorsize);
3156		alloc_end = alloc_start + sectorsize;
3157		goto reserve_space;
3158	}
3159
3160	alloc_start = round_up(offset, sectorsize);
3161	alloc_end = round_down(offset + len, sectorsize);
3162
3163	/*
3164	 * For unaligned ranges, check the pages at the boundaries, they might
3165	 * map to an extent, in which case we need to partially zero them, or
3166	 * they might map to a hole, in which case we need our allocation range
3167	 * to cover them.
3168	 */
3169	if (!IS_ALIGNED(offset, sectorsize)) {
3170		ret = btrfs_zero_range_check_range_boundary(inode, offset);
 
3171		if (ret < 0)
3172			goto out;
3173		if (ret == RANGE_BOUNDARY_HOLE) {
3174			alloc_start = round_down(offset, sectorsize);
3175			ret = 0;
3176		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3177			ret = btrfs_truncate_block(inode, offset, 0, 0);
3178			if (ret)
3179				goto out;
3180		} else {
3181			ret = 0;
3182		}
3183	}
3184
3185	if (!IS_ALIGNED(offset + len, sectorsize)) {
3186		ret = btrfs_zero_range_check_range_boundary(inode,
3187							    offset + len);
3188		if (ret < 0)
3189			goto out;
3190		if (ret == RANGE_BOUNDARY_HOLE) {
3191			alloc_end = round_up(offset + len, sectorsize);
3192			ret = 0;
3193		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3194			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
 
3195			if (ret)
3196				goto out;
3197		} else {
3198			ret = 0;
3199		}
3200	}
3201
3202reserve_space:
3203	if (alloc_start < alloc_end) {
3204		struct extent_state *cached_state = NULL;
3205		const u64 lockstart = alloc_start;
3206		const u64 lockend = alloc_end - 1;
3207
3208		bytes_to_reserve = alloc_end - alloc_start;
3209		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3210						      bytes_to_reserve);
3211		if (ret < 0)
3212			goto out;
3213		space_reserved = true;
3214		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3215						  &cached_state);
3216		if (ret)
3217			goto out;
3218		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3219						alloc_start, bytes_to_reserve);
3220		if (ret)
 
 
3221			goto out;
 
3222		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3223						alloc_end - alloc_start,
3224						i_blocksize(inode),
3225						offset + len, &alloc_hint);
3226		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3227				     lockend, &cached_state);
3228		/* btrfs_prealloc_file_range releases reserved space on error */
3229		if (ret) {
3230			space_reserved = false;
3231			goto out;
3232		}
3233	}
3234	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3235 out:
3236	if (ret && space_reserved)
3237		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3238					       alloc_start, bytes_to_reserve);
3239	extent_changeset_free(data_reserved);
3240
3241	return ret;
3242}
3243
3244static long btrfs_fallocate(struct file *file, int mode,
3245			    loff_t offset, loff_t len)
3246{
3247	struct inode *inode = file_inode(file);
3248	struct extent_state *cached_state = NULL;
3249	struct extent_changeset *data_reserved = NULL;
3250	struct falloc_range *range;
3251	struct falloc_range *tmp;
3252	struct list_head reserve_list;
3253	u64 cur_offset;
3254	u64 last_byte;
3255	u64 alloc_start;
3256	u64 alloc_end;
3257	u64 alloc_hint = 0;
3258	u64 locked_end;
3259	u64 actual_end = 0;
 
 
 
3260	struct extent_map *em;
3261	int blocksize = btrfs_inode_sectorsize(inode);
3262	int ret;
3263
 
 
 
 
3264	alloc_start = round_down(offset, blocksize);
3265	alloc_end = round_up(offset + len, blocksize);
3266	cur_offset = alloc_start;
3267
3268	/* Make sure we aren't being give some crap mode */
3269	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3270		     FALLOC_FL_ZERO_RANGE))
3271		return -EOPNOTSUPP;
3272
3273	if (mode & FALLOC_FL_PUNCH_HOLE)
3274		return btrfs_punch_hole(inode, offset, len);
3275
3276	/*
3277	 * Only trigger disk allocation, don't trigger qgroup reserve
3278	 *
3279	 * For qgroup space, it will be checked later.
3280	 */
3281	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3282		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283						      alloc_end - alloc_start);
3284		if (ret < 0)
3285			return ret;
3286	}
3287
3288	inode_lock(inode);
3289
3290	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3291		ret = inode_newsize_ok(inode, offset + len);
3292		if (ret)
3293			goto out;
3294	}
3295
 
 
 
 
3296	/*
3297	 * TODO: Move these two operations after we have checked
3298	 * accurate reserved space, or fallocate can still fail but
3299	 * with page truncated or size expanded.
3300	 *
3301	 * But that's a minor problem and won't do much harm BTW.
3302	 */
3303	if (alloc_start > inode->i_size) {
3304		ret = btrfs_cont_expand(inode, i_size_read(inode),
3305					alloc_start);
3306		if (ret)
3307			goto out;
3308	} else if (offset + len > inode->i_size) {
3309		/*
3310		 * If we are fallocating from the end of the file onward we
3311		 * need to zero out the end of the block if i_size lands in the
3312		 * middle of a block.
3313		 */
3314		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3315		if (ret)
3316			goto out;
3317	}
3318
3319	/*
3320	 * wait for ordered IO before we have any locks.  We'll loop again
3321	 * below with the locks held.
 
 
 
 
3322	 */
3323	ret = btrfs_wait_ordered_range(inode, alloc_start,
3324				       alloc_end - alloc_start);
3325	if (ret)
3326		goto out;
3327
3328	if (mode & FALLOC_FL_ZERO_RANGE) {
3329		ret = btrfs_zero_range(inode, offset, len, mode);
3330		inode_unlock(inode);
3331		return ret;
3332	}
3333
3334	locked_end = alloc_end - 1;
3335	while (1) {
3336		struct btrfs_ordered_extent *ordered;
3337
3338		/* the extent lock is ordered inside the running
3339		 * transaction
3340		 */
3341		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3342				 locked_end, &cached_state);
3343		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3344
3345		if (ordered &&
3346		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3347		    ordered->file_offset < alloc_end) {
3348			btrfs_put_ordered_extent(ordered);
3349			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3350					     alloc_start, locked_end,
3351					     &cached_state);
3352			/*
3353			 * we can't wait on the range with the transaction
3354			 * running or with the extent lock held
3355			 */
3356			ret = btrfs_wait_ordered_range(inode, alloc_start,
3357						       alloc_end - alloc_start);
3358			if (ret)
3359				goto out;
3360		} else {
3361			if (ordered)
3362				btrfs_put_ordered_extent(ordered);
3363			break;
3364		}
3365	}
3366
3367	/* First, check if we exceed the qgroup limit */
3368	INIT_LIST_HEAD(&reserve_list);
3369	while (cur_offset < alloc_end) {
3370		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3371				      alloc_end - cur_offset);
3372		if (IS_ERR(em)) {
3373			ret = PTR_ERR(em);
3374			break;
3375		}
3376		last_byte = min(extent_map_end(em), alloc_end);
3377		actual_end = min_t(u64, extent_map_end(em), offset + len);
3378		last_byte = ALIGN(last_byte, blocksize);
3379		if (em->block_start == EXTENT_MAP_HOLE ||
3380		    (cur_offset >= inode->i_size &&
3381		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3382			ret = add_falloc_range(&reserve_list, cur_offset,
3383					       last_byte - cur_offset);
 
3384			if (ret < 0) {
3385				free_extent_map(em);
3386				break;
3387			}
3388			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3389					&data_reserved, cur_offset,
3390					last_byte - cur_offset);
3391			if (ret < 0) {
3392				cur_offset = last_byte;
3393				free_extent_map(em);
3394				break;
3395			}
3396		} else {
3397			/*
3398			 * Do not need to reserve unwritten extent for this
3399			 * range, free reserved data space first, otherwise
3400			 * it'll result in false ENOSPC error.
3401			 */
3402			btrfs_free_reserved_data_space(BTRFS_I(inode),
3403				data_reserved, cur_offset,
3404				last_byte - cur_offset);
3405		}
3406		free_extent_map(em);
3407		cur_offset = last_byte;
3408	}
3409
 
 
 
 
 
 
 
 
 
 
 
3410	/*
3411	 * If ret is still 0, means we're OK to fallocate.
3412	 * Or just cleanup the list and exit.
3413	 */
3414	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3415		if (!ret)
3416			ret = btrfs_prealloc_file_range(inode, mode,
3417					range->start,
3418					range->len, i_blocksize(inode),
3419					offset + len, &alloc_hint);
3420		else
 
 
 
 
 
 
3421			btrfs_free_reserved_data_space(BTRFS_I(inode),
3422					data_reserved, range->start,
3423					range->len);
 
 
 
 
 
 
 
3424		list_del(&range->list);
3425		kfree(range);
3426	}
3427	if (ret < 0)
3428		goto out_unlock;
3429
3430	/*
3431	 * We didn't need to allocate any more space, but we still extended the
3432	 * size of the file so we need to update i_size and the inode item.
3433	 */
3434	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3435out_unlock:
3436	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3437			     &cached_state);
3438out:
3439	inode_unlock(inode);
3440	/* Let go of our reservation. */
3441	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3442		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3443				cur_offset, alloc_end - cur_offset);
3444	extent_changeset_free(data_reserved);
3445	return ret;
3446}
3447
3448static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3449				  int whence)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3450{
3451	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3452	struct extent_map *em = NULL;
 
3453	struct extent_state *cached_state = NULL;
3454	loff_t i_size = inode->i_size;
 
 
 
 
 
 
3455	u64 lockstart;
3456	u64 lockend;
3457	u64 start;
3458	u64 len;
3459	int ret = 0;
3460
3461	if (i_size == 0 || offset >= i_size)
3462		return -ENXIO;
3463
3464	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3465	 * offset can be negative, in this case we start finding DATA/HOLE from
3466	 * the very start of the file.
3467	 */
3468	start = max_t(loff_t, 0, offset);
3469
3470	lockstart = round_down(start, fs_info->sectorsize);
3471	lockend = round_up(i_size, fs_info->sectorsize);
3472	if (lockend <= lockstart)
3473		lockend = lockstart + fs_info->sectorsize;
3474	lockend--;
3475	len = lockend - lockstart + 1;
3476
3477	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3478			 &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3479
3480	while (start < i_size) {
3481		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3482		if (IS_ERR(em)) {
3483			ret = PTR_ERR(em);
3484			em = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
3485			break;
 
 
 
 
 
 
 
 
 
 
3486		}
3487
3488		if (whence == SEEK_HOLE &&
3489		    (em->block_start == EXTENT_MAP_HOLE ||
3490		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3491			break;
3492		else if (whence == SEEK_DATA &&
3493			   (em->block_start != EXTENT_MAP_HOLE &&
3494			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3495			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3496
3497		start = em->start + em->len;
3498		free_extent_map(em);
3499		em = NULL;
 
 
 
 
3500		cond_resched();
3501	}
3502	free_extent_map(em);
3503	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3504			     &cached_state);
3505	if (ret) {
3506		offset = ret;
3507	} else {
3508		if (whence == SEEK_DATA && start >= i_size)
3509			offset = -ENXIO;
3510		else
3511			offset = min_t(loff_t, start, i_size);
3512	}
3513
3514	return offset;
 
 
 
 
 
 
 
 
 
 
3515}
3516
3517static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3518{
3519	struct inode *inode = file->f_mapping->host;
3520
3521	switch (whence) {
3522	default:
3523		return generic_file_llseek(file, offset, whence);
3524	case SEEK_DATA:
3525	case SEEK_HOLE:
3526		inode_lock_shared(inode);
3527		offset = find_desired_extent(inode, offset, whence);
3528		inode_unlock_shared(inode);
3529		break;
3530	}
3531
3532	if (offset < 0)
3533		return offset;
3534
3535	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3536}
3537
3538static int btrfs_file_open(struct inode *inode, struct file *filp)
3539{
3540	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
 
 
 
 
 
 
3541	return generic_file_open(inode, filp);
3542}
3543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3544const struct file_operations btrfs_file_operations = {
3545	.llseek		= btrfs_file_llseek,
3546	.read_iter      = generic_file_read_iter,
3547	.splice_read	= generic_file_splice_read,
3548	.write_iter	= btrfs_file_write_iter,
3549	.splice_write	= iter_file_splice_write,
3550	.mmap		= btrfs_file_mmap,
3551	.open		= btrfs_file_open,
3552	.release	= btrfs_release_file,
 
3553	.fsync		= btrfs_sync_file,
3554	.fallocate	= btrfs_fallocate,
3555	.unlocked_ioctl	= btrfs_ioctl,
3556#ifdef CONFIG_COMPAT
3557	.compat_ioctl	= btrfs_compat_ioctl,
3558#endif
3559	.remap_file_range = btrfs_remap_file_range,
 
 
3560};
3561
3562void __cold btrfs_auto_defrag_exit(void)
3563{
3564	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3565}
3566
3567int __init btrfs_auto_defrag_init(void)
3568{
3569	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3570					sizeof(struct inode_defrag), 0,
3571					SLAB_MEM_SPREAD,
3572					NULL);
3573	if (!btrfs_inode_defrag_cachep)
3574		return -ENOMEM;
3575
3576	return 0;
3577}
3578
3579int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3580{
 
3581	int ret;
3582
3583	/*
3584	 * So with compression we will find and lock a dirty page and clear the
3585	 * first one as dirty, setup an async extent, and immediately return
3586	 * with the entire range locked but with nobody actually marked with
3587	 * writeback.  So we can't just filemap_write_and_wait_range() and
3588	 * expect it to work since it will just kick off a thread to do the
3589	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3590	 * since it will wait on the page lock, which won't be unlocked until
3591	 * after the pages have been marked as writeback and so we're good to go
3592	 * from there.  We have to do this otherwise we'll miss the ordered
3593	 * extents and that results in badness.  Please Josef, do not think you
3594	 * know better and pull this out at some point in the future, it is
3595	 * right and you are wrong.
3596	 */
3597	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3598	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3599			     &BTRFS_I(inode)->runtime_flags))
3600		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3601
3602	return ret;
3603}