Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
 
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
 
  12#include <linux/falloc.h>
 
  13#include <linux/writeback.h>
 
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
  20#include "ctree.h"
  21#include "direct-io.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "btrfs_inode.h"
 
  25#include "tree-log.h"
  26#include "locking.h"
 
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31#include "subpage.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "extent-tree.h"
  35#include "file-item.h"
  36#include "ioctl.h"
  37#include "file.h"
  38#include "super.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40/*
  41 * Helper to fault in page and copy.  This should go away and be replaced with
  42 * calls into generic code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43 */
  44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  45					 struct folio *folio, struct iov_iter *i)
 
  46{
  47	size_t copied = 0;
  48	size_t total_copied = 0;
  49	int offset = offset_in_page(pos);
 
  50
  51	while (write_bytes > 0) {
  52		size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
 
 
  53		/*
  54		 * Copy data from userspace to the current page
  55		 */
  56		copied = copy_folio_from_iter_atomic(folio, offset, count, i);
  57
  58		/* Flush processor's dcache for this page */
  59		flush_dcache_folio(folio);
  60
  61		/*
  62		 * if we get a partial write, we can end up with
  63		 * partially up to date page.  These add
  64		 * a lot of complexity, so make sure they don't
  65		 * happen by forcing this copy to be retried.
  66		 *
  67		 * The rest of the btrfs_file_write code will fall
  68		 * back to page at a time copies after we return 0.
  69		 */
  70		if (unlikely(copied < count)) {
  71			if (!folio_test_uptodate(folio)) {
  72				iov_iter_revert(i, copied);
  73				copied = 0;
  74			}
  75			if (!copied)
  76				break;
  77		}
  78
 
  79		write_bytes -= copied;
  80		total_copied += copied;
  81		offset += copied;
 
 
 
 
 
 
 
 
 
 
  82	}
  83	return total_copied;
  84}
  85
  86/*
  87 * Unlock folio after btrfs_file_write() is done with it.
  88 */
  89static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
  90			     u64 pos, u64 copied)
  91{
  92	u64 block_start = round_down(pos, fs_info->sectorsize);
  93	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
  94
  95	ASSERT(block_len <= U32_MAX);
  96	/*
  97	 * Folio checked is some magic around finding folios that have been
  98	 * modified without going through btrfs_dirty_folio().  Clear it here.
  99	 * There should be no need to mark the pages accessed as
 100	 * prepare_one_folio() should have marked them accessed in
 101	 * prepare_one_folio() via find_or_create_page()
 102	 */
 103	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
 104	folio_unlock(folio);
 105	folio_put(folio);
 106}
 107
 108/*
 109 * After btrfs_copy_from_user(), update the following things for delalloc:
 110 * - Mark newly dirtied folio as DELALLOC in the io tree.
 111 *   Used to advise which range is to be written back.
 112 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
 113 * - Update inode size for past EOF write
 
 114 */
 115int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
 116		      size_t write_bytes, struct extent_state **cached, bool noreserve)
 
 
 117{
 118	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 119	int ret = 0;
 120	u64 num_bytes;
 121	u64 start_pos;
 122	u64 end_of_last_block;
 123	u64 end_pos = pos + write_bytes;
 124	loff_t isize = i_size_read(&inode->vfs_inode);
 125	unsigned int extra_bits = 0;
 126
 127	if (write_bytes == 0)
 128		return 0;
 129
 130	if (noreserve)
 131		extra_bits |= EXTENT_NORESERVE;
 132
 133	start_pos = round_down(pos, fs_info->sectorsize);
 134	num_bytes = round_up(write_bytes + pos - start_pos,
 135			     fs_info->sectorsize);
 136	ASSERT(num_bytes <= U32_MAX);
 137	ASSERT(folio_pos(folio) <= pos &&
 138	       folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
 139
 140	end_of_last_block = start_pos + num_bytes - 1;
 141
 142	/*
 143	 * The pages may have already been dirty, clear out old accounting so
 144	 * we can set things up properly
 145	 */
 146	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 147			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 148			 cached);
 149
 150	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 151					extra_bits, cached);
 152	if (ret)
 153		return ret;
 154
 155	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
 156	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
 157	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
 158
 159	/*
 160	 * we've only changed i_size in ram, and we haven't updated
 161	 * the disk i_size.  There is no need to log the inode
 162	 * at this time.
 163	 */
 164	if (end_pos > isize)
 165		i_size_write(&inode->vfs_inode, end_pos);
 166	return 0;
 167}
 168
 169/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 * this is very complex, but the basic idea is to drop all extents
 171 * in the range start - end.  hint_block is filled in with a block number
 172 * that would be a good hint to the block allocator for this file.
 173 *
 174 * If an extent intersects the range but is not entirely inside the range
 175 * it is either truncated or split.  Anything entirely inside the range
 176 * is deleted from the tree.
 177 *
 178 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 179 * to deal with that. We set the field 'bytes_found' of the arguments structure
 180 * with the number of allocated bytes found in the target range, so that the
 181 * caller can update the inode's number of bytes in an atomic way when
 182 * replacing extents in a range to avoid races with stat(2).
 183 */
 184int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 185		       struct btrfs_root *root, struct btrfs_inode *inode,
 186		       struct btrfs_drop_extents_args *args)
 
 
 
 
 187{
 188	struct btrfs_fs_info *fs_info = root->fs_info;
 189	struct extent_buffer *leaf;
 190	struct btrfs_file_extent_item *fi;
 191	struct btrfs_key key;
 192	struct btrfs_key new_key;
 193	u64 ino = btrfs_ino(inode);
 194	u64 search_start = args->start;
 195	u64 disk_bytenr = 0;
 196	u64 num_bytes = 0;
 197	u64 extent_offset = 0;
 198	u64 extent_end = 0;
 199	u64 last_end = args->start;
 200	int del_nr = 0;
 201	int del_slot = 0;
 202	int extent_type;
 203	int recow;
 204	int ret;
 205	int modify_tree = -1;
 206	int update_refs;
 207	int found = 0;
 208	struct btrfs_path *path = args->path;
 209
 210	args->bytes_found = 0;
 211	args->extent_inserted = false;
 212
 213	/* Must always have a path if ->replace_extent is true */
 214	ASSERT(!(args->replace_extent && !args->path));
 215
 216	if (!path) {
 217		path = btrfs_alloc_path();
 218		if (!path) {
 219			ret = -ENOMEM;
 220			goto out;
 221		}
 222	}
 223
 224	if (args->drop_cache)
 225		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 226
 227	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
 228		modify_tree = 0;
 229
 230	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
 
 231	while (1) {
 232		recow = 0;
 233		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 234					       search_start, modify_tree);
 235		if (ret < 0)
 236			break;
 237		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 238			leaf = path->nodes[0];
 239			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 240			if (key.objectid == ino &&
 241			    key.type == BTRFS_EXTENT_DATA_KEY)
 242				path->slots[0]--;
 243		}
 244		ret = 0;
 
 245next_slot:
 246		leaf = path->nodes[0];
 247		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 248			BUG_ON(del_nr > 0);
 249			ret = btrfs_next_leaf(root, path);
 250			if (ret < 0)
 251				break;
 252			if (ret > 0) {
 253				ret = 0;
 254				break;
 255			}
 
 256			leaf = path->nodes[0];
 257			recow = 1;
 258		}
 259
 260		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 261
 262		if (key.objectid > ino)
 263			break;
 264		if (WARN_ON_ONCE(key.objectid < ino) ||
 265		    key.type < BTRFS_EXTENT_DATA_KEY) {
 266			ASSERT(del_nr == 0);
 267			path->slots[0]++;
 268			goto next_slot;
 269		}
 270		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 271			break;
 272
 273		fi = btrfs_item_ptr(leaf, path->slots[0],
 274				    struct btrfs_file_extent_item);
 275		extent_type = btrfs_file_extent_type(leaf, fi);
 276
 277		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 278		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 279			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 280			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 281			extent_offset = btrfs_file_extent_offset(leaf, fi);
 282			extent_end = key.offset +
 283				btrfs_file_extent_num_bytes(leaf, fi);
 284		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 285			extent_end = key.offset +
 286				btrfs_file_extent_ram_bytes(leaf, fi);
 
 287		} else {
 288			/* can't happen */
 289			BUG();
 290		}
 291
 292		/*
 293		 * Don't skip extent items representing 0 byte lengths. They
 294		 * used to be created (bug) if while punching holes we hit
 295		 * -ENOSPC condition. So if we find one here, just ensure we
 296		 * delete it, otherwise we would insert a new file extent item
 297		 * with the same key (offset) as that 0 bytes length file
 298		 * extent item in the call to setup_items_for_insert() later
 299		 * in this function.
 300		 */
 301		if (extent_end == key.offset && extent_end >= search_start) {
 302			last_end = extent_end;
 303			goto delete_extent_item;
 304		}
 305
 306		if (extent_end <= search_start) {
 307			path->slots[0]++;
 308			goto next_slot;
 309		}
 310
 311		found = 1;
 312		search_start = max(key.offset, args->start);
 313		if (recow || !modify_tree) {
 314			modify_tree = -1;
 315			btrfs_release_path(path);
 316			continue;
 317		}
 318
 319		/*
 320		 *     | - range to drop - |
 321		 *  | -------- extent -------- |
 322		 */
 323		if (args->start > key.offset && args->end < extent_end) {
 324			BUG_ON(del_nr > 0);
 325			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 326				ret = -EOPNOTSUPP;
 327				break;
 328			}
 329
 330			memcpy(&new_key, &key, sizeof(new_key));
 331			new_key.offset = args->start;
 332			ret = btrfs_duplicate_item(trans, root, path,
 333						   &new_key);
 334			if (ret == -EAGAIN) {
 335				btrfs_release_path(path);
 336				continue;
 337			}
 338			if (ret < 0)
 339				break;
 340
 341			leaf = path->nodes[0];
 342			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 343					    struct btrfs_file_extent_item);
 344			btrfs_set_file_extent_num_bytes(leaf, fi,
 345							args->start - key.offset);
 346
 347			fi = btrfs_item_ptr(leaf, path->slots[0],
 348					    struct btrfs_file_extent_item);
 349
 350			extent_offset += args->start - key.offset;
 351			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 352			btrfs_set_file_extent_num_bytes(leaf, fi,
 353							extent_end - args->start);
 354			btrfs_mark_buffer_dirty(trans, leaf);
 355
 356			if (update_refs && disk_bytenr > 0) {
 357				struct btrfs_ref ref = {
 358					.action = BTRFS_ADD_DELAYED_REF,
 359					.bytenr = disk_bytenr,
 360					.num_bytes = num_bytes,
 361					.parent = 0,
 362					.owning_root = btrfs_root_id(root),
 363					.ref_root = btrfs_root_id(root),
 364				};
 365				btrfs_init_data_ref(&ref, new_key.objectid,
 366						    args->start - extent_offset,
 367						    0, false);
 368				ret = btrfs_inc_extent_ref(trans, &ref);
 369				if (ret) {
 370					btrfs_abort_transaction(trans, ret);
 371					break;
 372				}
 373			}
 374			key.offset = args->start;
 375		}
 376		/*
 377		 * From here on out we will have actually dropped something, so
 378		 * last_end can be updated.
 379		 */
 380		last_end = extent_end;
 381
 382		/*
 383		 *  | ---- range to drop ----- |
 384		 *      | -------- extent -------- |
 385		 */
 386		if (args->start <= key.offset && args->end < extent_end) {
 387			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 388				ret = -EOPNOTSUPP;
 389				break;
 390			}
 391
 392			memcpy(&new_key, &key, sizeof(new_key));
 393			new_key.offset = args->end;
 394			btrfs_set_item_key_safe(trans, path, &new_key);
 395
 396			extent_offset += args->end - key.offset;
 397			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 398			btrfs_set_file_extent_num_bytes(leaf, fi,
 399							extent_end - args->end);
 400			btrfs_mark_buffer_dirty(trans, leaf);
 401			if (update_refs && disk_bytenr > 0)
 402				args->bytes_found += args->end - key.offset;
 403			break;
 404		}
 405
 406		search_start = extent_end;
 407		/*
 408		 *       | ---- range to drop ----- |
 409		 *  | -------- extent -------- |
 410		 */
 411		if (args->start > key.offset && args->end >= extent_end) {
 412			BUG_ON(del_nr > 0);
 413			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 414				ret = -EOPNOTSUPP;
 415				break;
 416			}
 417
 418			btrfs_set_file_extent_num_bytes(leaf, fi,
 419							args->start - key.offset);
 420			btrfs_mark_buffer_dirty(trans, leaf);
 421			if (update_refs && disk_bytenr > 0)
 422				args->bytes_found += extent_end - args->start;
 423			if (args->end == extent_end)
 424				break;
 425
 426			path->slots[0]++;
 427			goto next_slot;
 428		}
 429
 430		/*
 431		 *  | ---- range to drop ----- |
 432		 *    | ------ extent ------ |
 433		 */
 434		if (args->start <= key.offset && args->end >= extent_end) {
 435delete_extent_item:
 436			if (del_nr == 0) {
 437				del_slot = path->slots[0];
 438				del_nr = 1;
 439			} else {
 440				BUG_ON(del_slot + del_nr != path->slots[0]);
 441				del_nr++;
 442			}
 443
 444			if (update_refs &&
 445			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 446				args->bytes_found += extent_end - key.offset;
 
 447				extent_end = ALIGN(extent_end,
 448						   fs_info->sectorsize);
 449			} else if (update_refs && disk_bytenr > 0) {
 450				struct btrfs_ref ref = {
 451					.action = BTRFS_DROP_DELAYED_REF,
 452					.bytenr = disk_bytenr,
 453					.num_bytes = num_bytes,
 454					.parent = 0,
 455					.owning_root = btrfs_root_id(root),
 456					.ref_root = btrfs_root_id(root),
 457				};
 458				btrfs_init_data_ref(&ref, key.objectid,
 459						    key.offset - extent_offset,
 460						    0, false);
 461				ret = btrfs_free_extent(trans, &ref);
 462				if (ret) {
 463					btrfs_abort_transaction(trans, ret);
 464					break;
 465				}
 466				args->bytes_found += extent_end - key.offset;
 467			}
 468
 469			if (args->end == extent_end)
 470				break;
 471
 472			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 473				path->slots[0]++;
 474				goto next_slot;
 475			}
 476
 477			ret = btrfs_del_items(trans, root, path, del_slot,
 478					      del_nr);
 479			if (ret) {
 480				btrfs_abort_transaction(trans, ret);
 481				break;
 482			}
 483
 484			del_nr = 0;
 485			del_slot = 0;
 486
 487			btrfs_release_path(path);
 488			continue;
 489		}
 490
 491		BUG();
 492	}
 493
 494	if (!ret && del_nr > 0) {
 495		/*
 496		 * Set path->slots[0] to first slot, so that after the delete
 497		 * if items are move off from our leaf to its immediate left or
 498		 * right neighbor leafs, we end up with a correct and adjusted
 499		 * path->slots[0] for our insertion (if args->replace_extent).
 500		 */
 501		path->slots[0] = del_slot;
 502		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 503		if (ret)
 504			btrfs_abort_transaction(trans, ret);
 505	}
 506
 507	leaf = path->nodes[0];
 508	/*
 509	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 510	 * which case it unlocked our path, so check path->locks[0] matches a
 511	 * write lock.
 512	 */
 513	if (!ret && args->replace_extent &&
 514	    path->locks[0] == BTRFS_WRITE_LOCK &&
 515	    btrfs_leaf_free_space(leaf) >=
 516	    sizeof(struct btrfs_item) + args->extent_item_size) {
 
 517
 518		key.objectid = ino;
 519		key.type = BTRFS_EXTENT_DATA_KEY;
 520		key.offset = args->start;
 521		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 522			struct btrfs_key slot_key;
 523
 524			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 525			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 526				path->slots[0]++;
 527		}
 528		btrfs_setup_item_for_insert(trans, root, path, &key,
 529					    args->extent_item_size);
 530		args->extent_inserted = true;
 
 
 
 531	}
 532
 533	if (!args->path)
 534		btrfs_free_path(path);
 535	else if (!args->extent_inserted)
 536		btrfs_release_path(path);
 537out:
 538	args->drop_end = found ? min(args->end, last_end) : args->end;
 
 
 539
 
 
 
 
 
 
 
 
 
 
 
 
 
 540	return ret;
 541}
 542
 543static int extent_mergeable(struct extent_buffer *leaf, int slot,
 544			    u64 objectid, u64 bytenr, u64 orig_offset,
 545			    u64 *start, u64 *end)
 546{
 547	struct btrfs_file_extent_item *fi;
 548	struct btrfs_key key;
 549	u64 extent_end;
 550
 551	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 552		return 0;
 553
 554	btrfs_item_key_to_cpu(leaf, &key, slot);
 555	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 556		return 0;
 557
 558	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 559	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 560	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 561	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 562	    btrfs_file_extent_compression(leaf, fi) ||
 563	    btrfs_file_extent_encryption(leaf, fi) ||
 564	    btrfs_file_extent_other_encoding(leaf, fi))
 565		return 0;
 566
 567	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 568	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 569		return 0;
 570
 571	*start = key.offset;
 572	*end = extent_end;
 573	return 1;
 574}
 575
 576/*
 577 * Mark extent in the range start - end as written.
 578 *
 579 * This changes extent type from 'pre-allocated' to 'regular'. If only
 580 * part of extent is marked as written, the extent will be split into
 581 * two or three.
 582 */
 583int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 584			      struct btrfs_inode *inode, u64 start, u64 end)
 585{
 586	struct btrfs_root *root = inode->root;
 587	struct extent_buffer *leaf;
 588	struct btrfs_path *path;
 589	struct btrfs_file_extent_item *fi;
 590	struct btrfs_ref ref = { 0 };
 591	struct btrfs_key key;
 592	struct btrfs_key new_key;
 593	u64 bytenr;
 594	u64 num_bytes;
 595	u64 extent_end;
 596	u64 orig_offset;
 597	u64 other_start;
 598	u64 other_end;
 599	u64 split;
 600	int del_nr = 0;
 601	int del_slot = 0;
 602	int recow;
 603	int ret = 0;
 604	u64 ino = btrfs_ino(inode);
 605
 606	path = btrfs_alloc_path();
 607	if (!path)
 608		return -ENOMEM;
 609again:
 610	recow = 0;
 611	split = start;
 612	key.objectid = ino;
 613	key.type = BTRFS_EXTENT_DATA_KEY;
 614	key.offset = split;
 615
 616	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 617	if (ret < 0)
 618		goto out;
 619	if (ret > 0 && path->slots[0] > 0)
 620		path->slots[0]--;
 621
 622	leaf = path->nodes[0];
 623	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 624	if (key.objectid != ino ||
 625	    key.type != BTRFS_EXTENT_DATA_KEY) {
 626		ret = -EINVAL;
 627		btrfs_abort_transaction(trans, ret);
 628		goto out;
 629	}
 630	fi = btrfs_item_ptr(leaf, path->slots[0],
 631			    struct btrfs_file_extent_item);
 632	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 633		ret = -EINVAL;
 634		btrfs_abort_transaction(trans, ret);
 635		goto out;
 636	}
 637	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 638	if (key.offset > start || extent_end < end) {
 639		ret = -EINVAL;
 640		btrfs_abort_transaction(trans, ret);
 641		goto out;
 642	}
 643
 644	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 645	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 646	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 647	memcpy(&new_key, &key, sizeof(new_key));
 648
 649	if (start == key.offset && end < extent_end) {
 650		other_start = 0;
 651		other_end = start;
 652		if (extent_mergeable(leaf, path->slots[0] - 1,
 653				     ino, bytenr, orig_offset,
 654				     &other_start, &other_end)) {
 655			new_key.offset = end;
 656			btrfs_set_item_key_safe(trans, path, &new_key);
 657			fi = btrfs_item_ptr(leaf, path->slots[0],
 658					    struct btrfs_file_extent_item);
 659			btrfs_set_file_extent_generation(leaf, fi,
 660							 trans->transid);
 661			btrfs_set_file_extent_num_bytes(leaf, fi,
 662							extent_end - end);
 663			btrfs_set_file_extent_offset(leaf, fi,
 664						     end - orig_offset);
 665			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 666					    struct btrfs_file_extent_item);
 667			btrfs_set_file_extent_generation(leaf, fi,
 668							 trans->transid);
 669			btrfs_set_file_extent_num_bytes(leaf, fi,
 670							end - other_start);
 671			btrfs_mark_buffer_dirty(trans, leaf);
 672			goto out;
 673		}
 674	}
 675
 676	if (start > key.offset && end == extent_end) {
 677		other_start = end;
 678		other_end = 0;
 679		if (extent_mergeable(leaf, path->slots[0] + 1,
 680				     ino, bytenr, orig_offset,
 681				     &other_start, &other_end)) {
 682			fi = btrfs_item_ptr(leaf, path->slots[0],
 683					    struct btrfs_file_extent_item);
 684			btrfs_set_file_extent_num_bytes(leaf, fi,
 685							start - key.offset);
 686			btrfs_set_file_extent_generation(leaf, fi,
 687							 trans->transid);
 688			path->slots[0]++;
 689			new_key.offset = start;
 690			btrfs_set_item_key_safe(trans, path, &new_key);
 691
 692			fi = btrfs_item_ptr(leaf, path->slots[0],
 693					    struct btrfs_file_extent_item);
 694			btrfs_set_file_extent_generation(leaf, fi,
 695							 trans->transid);
 696			btrfs_set_file_extent_num_bytes(leaf, fi,
 697							other_end - start);
 698			btrfs_set_file_extent_offset(leaf, fi,
 699						     start - orig_offset);
 700			btrfs_mark_buffer_dirty(trans, leaf);
 701			goto out;
 702		}
 703	}
 704
 705	while (start > key.offset || end < extent_end) {
 706		if (key.offset == start)
 707			split = end;
 708
 709		new_key.offset = split;
 710		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 711		if (ret == -EAGAIN) {
 712			btrfs_release_path(path);
 713			goto again;
 714		}
 715		if (ret < 0) {
 716			btrfs_abort_transaction(trans, ret);
 717			goto out;
 718		}
 719
 720		leaf = path->nodes[0];
 721		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 722				    struct btrfs_file_extent_item);
 723		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 724		btrfs_set_file_extent_num_bytes(leaf, fi,
 725						split - key.offset);
 726
 727		fi = btrfs_item_ptr(leaf, path->slots[0],
 728				    struct btrfs_file_extent_item);
 729
 730		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 731		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 732		btrfs_set_file_extent_num_bytes(leaf, fi,
 733						extent_end - split);
 734		btrfs_mark_buffer_dirty(trans, leaf);
 735
 736		ref.action = BTRFS_ADD_DELAYED_REF;
 737		ref.bytenr = bytenr;
 738		ref.num_bytes = num_bytes;
 739		ref.parent = 0;
 740		ref.owning_root = btrfs_root_id(root);
 741		ref.ref_root = btrfs_root_id(root);
 742		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 743		ret = btrfs_inc_extent_ref(trans, &ref);
 744		if (ret) {
 745			btrfs_abort_transaction(trans, ret);
 746			goto out;
 747		}
 748
 749		if (split == start) {
 750			key.offset = start;
 751		} else {
 752			if (start != key.offset) {
 753				ret = -EINVAL;
 754				btrfs_abort_transaction(trans, ret);
 755				goto out;
 756			}
 757			path->slots[0]--;
 758			extent_end = end;
 759		}
 760		recow = 1;
 761	}
 762
 763	other_start = end;
 764	other_end = 0;
 765
 766	ref.action = BTRFS_DROP_DELAYED_REF;
 767	ref.bytenr = bytenr;
 768	ref.num_bytes = num_bytes;
 769	ref.parent = 0;
 770	ref.owning_root = btrfs_root_id(root);
 771	ref.ref_root = btrfs_root_id(root);
 772	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 773	if (extent_mergeable(leaf, path->slots[0] + 1,
 774			     ino, bytenr, orig_offset,
 775			     &other_start, &other_end)) {
 776		if (recow) {
 777			btrfs_release_path(path);
 778			goto again;
 779		}
 780		extent_end = other_end;
 781		del_slot = path->slots[0] + 1;
 782		del_nr++;
 783		ret = btrfs_free_extent(trans, &ref);
 784		if (ret) {
 785			btrfs_abort_transaction(trans, ret);
 786			goto out;
 787		}
 788	}
 789	other_start = 0;
 790	other_end = start;
 791	if (extent_mergeable(leaf, path->slots[0] - 1,
 792			     ino, bytenr, orig_offset,
 793			     &other_start, &other_end)) {
 794		if (recow) {
 795			btrfs_release_path(path);
 796			goto again;
 797		}
 798		key.offset = other_start;
 799		del_slot = path->slots[0];
 800		del_nr++;
 801		ret = btrfs_free_extent(trans, &ref);
 802		if (ret) {
 803			btrfs_abort_transaction(trans, ret);
 804			goto out;
 805		}
 806	}
 807	if (del_nr == 0) {
 808		fi = btrfs_item_ptr(leaf, path->slots[0],
 809			   struct btrfs_file_extent_item);
 810		btrfs_set_file_extent_type(leaf, fi,
 811					   BTRFS_FILE_EXTENT_REG);
 812		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 813		btrfs_mark_buffer_dirty(trans, leaf);
 814	} else {
 815		fi = btrfs_item_ptr(leaf, del_slot - 1,
 816			   struct btrfs_file_extent_item);
 817		btrfs_set_file_extent_type(leaf, fi,
 818					   BTRFS_FILE_EXTENT_REG);
 819		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 820		btrfs_set_file_extent_num_bytes(leaf, fi,
 821						extent_end - key.offset);
 822		btrfs_mark_buffer_dirty(trans, leaf);
 823
 824		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 825		if (ret < 0) {
 826			btrfs_abort_transaction(trans, ret);
 827			goto out;
 828		}
 829	}
 830out:
 831	btrfs_free_path(path);
 832	return ret;
 833}
 834
 835/*
 836 * On error return an unlocked folio and the error value
 837 * On success return a locked folio and 0
 838 */
 839static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
 840				  u64 len, bool force_uptodate)
 
 841{
 842	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
 843	u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
 844	int ret = 0;
 845
 846	if (folio_test_uptodate(folio))
 847		return 0;
 848
 849	if (!force_uptodate &&
 850	    IS_ALIGNED(clamp_start, PAGE_SIZE) &&
 851	    IS_ALIGNED(clamp_end, PAGE_SIZE))
 852		return 0;
 853
 854	ret = btrfs_read_folio(NULL, folio);
 855	if (ret)
 856		return ret;
 857	folio_lock(folio);
 858	if (!folio_test_uptodate(folio)) {
 859		folio_unlock(folio);
 860		return -EIO;
 861	}
 862
 863	/*
 864	 * Since btrfs_read_folio() will unlock the folio before it returns,
 865	 * there is a window where btrfs_release_folio() can be called to
 866	 * release the page.  Here we check both inode mapping and page
 867	 * private to make sure the page was not released.
 868	 *
 869	 * The private flag check is essential for subpage as we need to store
 870	 * extra bitmap using folio private.
 871	 */
 872	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
 873		folio_unlock(folio);
 874		return -EAGAIN;
 875	}
 876	return 0;
 877}
 878
 879static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 880{
 881	gfp_t gfp;
 882
 883	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 884	if (nowait) {
 885		gfp &= ~__GFP_DIRECT_RECLAIM;
 886		gfp |= GFP_NOWAIT;
 887	}
 888
 889	return gfp;
 890}
 891
 892/*
 893 * Get folio into the page cache and lock it.
 894 */
 895static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
 896				      loff_t pos, size_t write_bytes,
 897				      bool force_uptodate, bool nowait)
 898{
 
 899	unsigned long index = pos >> PAGE_SHIFT;
 900	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 901	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
 902	struct folio *folio;
 903	int ret = 0;
 904
 
 905again:
 906	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
 907	if (IS_ERR(folio)) {
 908		if (nowait)
 909			ret = -EAGAIN;
 910		else
 911			ret = PTR_ERR(folio);
 912		return ret;
 913	}
 914	folio_wait_writeback(folio);
 915	/* Only support page sized folio yet. */
 916	ASSERT(folio_order(folio) == 0);
 917	ret = set_folio_extent_mapped(folio);
 918	if (ret < 0) {
 919		folio_unlock(folio);
 920		folio_put(folio);
 921		return ret;
 922	}
 923	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
 924	if (ret) {
 925		/* The folio is already unlocked. */
 926		folio_put(folio);
 927		if (!nowait && ret == -EAGAIN) {
 928			ret = 0;
 929			goto again;
 930		}
 931		return ret;
 932	}
 933	*folio_ret = folio;
 934	return 0;
 
 
 
 
 
 
 
 
 935}
 936
 937/*
 938 * Locks the extent and properly waits for data=ordered extents to finish
 939 * before allowing the folios to be modified if need.
 940 *
 941 * Return:
 942 * 1 - the extent is locked
 943 * 0 - the extent is not locked, and everything is OK
 944 * -EAGAIN - need to prepare the folios again
 
 945 */
 946static noinline int
 947lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
 948				loff_t pos, size_t write_bytes,
 949				u64 *lockstart, u64 *lockend, bool nowait,
 
 950				struct extent_state **cached_state)
 951{
 952	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 953	u64 start_pos;
 954	u64 last_pos;
 
 955	int ret = 0;
 956
 957	start_pos = round_down(pos, fs_info->sectorsize);
 958	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 
 959
 960	if (start_pos < inode->vfs_inode.i_size) {
 961		struct btrfs_ordered_extent *ordered;
 962
 963		if (nowait) {
 964			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
 965					     cached_state)) {
 966				folio_unlock(folio);
 967				folio_put(folio);
 968				return -EAGAIN;
 969			}
 970		} else {
 971			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
 972		}
 973
 974		ordered = btrfs_lookup_ordered_range(inode, start_pos,
 975						     last_pos - start_pos + 1);
 976		if (ordered &&
 977		    ordered->file_offset + ordered->num_bytes > start_pos &&
 978		    ordered->file_offset <= last_pos) {
 979			unlock_extent(&inode->io_tree, start_pos, last_pos,
 980				      cached_state);
 981			folio_unlock(folio);
 982			folio_put(folio);
 983			btrfs_start_ordered_extent(ordered);
 
 
 
 984			btrfs_put_ordered_extent(ordered);
 985			return -EAGAIN;
 986		}
 987		if (ordered)
 988			btrfs_put_ordered_extent(ordered);
 989
 
 
 
 
 990		*lockstart = start_pos;
 991		*lockend = last_pos;
 992		ret = 1;
 993	}
 994
 995	/*
 996	 * We should be called after prepare_one_folio() which should have locked
 997	 * all pages in the range.
 998	 */
 999	WARN_ON(!folio_test_locked(folio));
 
1000
1001	return ret;
1002}
1003
1004/*
1005 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1006 *
1007 * @pos:         File offset.
1008 * @write_bytes: The length to write, will be updated to the nocow writeable
1009 *               range.
1010 *
1011 * This function will flush ordered extents in the range to ensure proper
1012 * nocow checks.
1013 *
1014 * Return:
1015 * > 0          If we can nocow, and updates @write_bytes.
1016 *  0           If we can't do a nocow write.
1017 * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1018 *              root is in progress.
1019 * < 0          If an error happened.
1020 *
1021 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1022 */
1023int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1024			   size_t *write_bytes, bool nowait)
1025{
1026	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1027	struct btrfs_root *root = inode->root;
1028	struct extent_state *cached_state = NULL;
1029	u64 lockstart, lockend;
1030	u64 num_bytes;
1031	int ret;
1032
1033	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1034		return 0;
 
1035
1036	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1037		return -EAGAIN;
1038
1039	lockstart = round_down(pos, fs_info->sectorsize);
1040	lockend = round_up(pos + *write_bytes,
1041			   fs_info->sectorsize) - 1;
1042	num_bytes = lockend - lockstart + 1;
1043
1044	if (nowait) {
1045		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1046						  &cached_state)) {
1047			btrfs_drew_write_unlock(&root->snapshot_lock);
1048			return -EAGAIN;
1049		}
1050	} else {
1051		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1052						   &cached_state);
1053	}
1054	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1055			       NULL, nowait, false);
1056	if (ret <= 0)
1057		btrfs_drew_write_unlock(&root->snapshot_lock);
1058	else
 
 
1059		*write_bytes = min_t(size_t, *write_bytes ,
1060				     num_bytes - pos + lockstart);
1061	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1062
1063	return ret;
1064}
1065
1066void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1067{
1068	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1069}
1070
1071int btrfs_write_check(struct kiocb *iocb, size_t count)
1072{
1073	struct file *file = iocb->ki_filp;
1074	struct inode *inode = file_inode(file);
1075	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1076	loff_t pos = iocb->ki_pos;
1077	int ret;
1078	loff_t oldsize;
1079
1080	/*
1081	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1082	 * prealloc flags, as without those flags we always have to COW. We will
1083	 * later check if we can really COW into the target range (using
1084	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1085	 */
1086	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1087	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1088		return -EAGAIN;
1089
1090	ret = file_remove_privs(file);
1091	if (ret)
1092		return ret;
1093
1094	/*
1095	 * We reserve space for updating the inode when we reserve space for the
1096	 * extent we are going to write, so we will enospc out there.  We don't
1097	 * need to start yet another transaction to update the inode as we will
1098	 * update the inode when we finish writing whatever data we write.
1099	 */
1100	if (!IS_NOCMTIME(inode)) {
1101		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1102		inode_inc_iversion(inode);
1103	}
1104
1105	oldsize = i_size_read(inode);
1106	if (pos > oldsize) {
1107		/* Expand hole size to cover write data, preventing empty gap */
1108		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1109
1110		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1111		if (ret)
1112			return ret;
1113	}
1114
1115	return 0;
1116}
1117
1118ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
 
 
1119{
1120	struct file *file = iocb->ki_filp;
1121	loff_t pos;
1122	struct inode *inode = file_inode(file);
1123	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1124	struct extent_changeset *data_reserved = NULL;
 
1125	u64 release_bytes = 0;
1126	u64 lockstart;
1127	u64 lockend;
1128	size_t num_written = 0;
1129	ssize_t ret;
1130	loff_t old_isize;
1131	unsigned int ilock_flags = 0;
1132	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1133	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1134	bool only_release_metadata = false;
 
 
1135
1136	if (nowait)
1137		ilock_flags |= BTRFS_ILOCK_TRY;
1138
1139	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1140	if (ret < 0)
1141		return ret;
1142
1143	/*
1144	 * We can only trust the isize with inode lock held, or it can race with
1145	 * other buffered writes and cause incorrect call of
1146	 * pagecache_isize_extended() to overwrite existing data.
1147	 */
1148	old_isize = i_size_read(inode);
1149
1150	ret = generic_write_checks(iocb, i);
1151	if (ret <= 0)
1152		goto out;
1153
1154	ret = btrfs_write_check(iocb, ret);
1155	if (ret < 0)
1156		goto out;
1157
1158	pos = iocb->ki_pos;
1159	while (iov_iter_count(i) > 0) {
1160		struct extent_state *cached_state = NULL;
1161		size_t offset = offset_in_page(pos);
1162		size_t sector_offset;
1163		size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
 
 
 
 
1164		size_t reserve_bytes;
 
1165		size_t copied;
1166		size_t dirty_sectors;
1167		size_t num_sectors;
1168		struct folio *folio = NULL;
1169		int extents_locked;
1170		bool force_page_uptodate = false;
1171
1172		/*
1173		 * Fault pages before locking them in prepare_one_folio()
1174		 * to avoid recursive lock
1175		 */
1176		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1177			ret = -EFAULT;
1178			break;
1179		}
1180
1181		only_release_metadata = false;
1182		sector_offset = pos & (fs_info->sectorsize - 1);
1183
1184		extent_changeset_release(data_reserved);
1185		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1186						  &data_reserved, pos,
1187						  write_bytes, nowait);
1188		if (ret < 0) {
1189			int can_nocow;
1190
1191			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1192				ret = -EAGAIN;
1193				break;
1194			}
1195
 
 
 
1196			/*
1197			 * If we don't have to COW at the offset, reserve
1198			 * metadata only. write_bytes may get smaller than
1199			 * requested here.
1200			 */
1201			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1202							   &write_bytes, nowait);
1203			if (can_nocow < 0)
1204				ret = can_nocow;
1205			if (can_nocow > 0)
1206				ret = 0;
1207			if (ret)
1208				break;
1209			only_release_metadata = true;
 
 
 
 
 
 
 
 
 
1210		}
1211
1212		reserve_bytes = round_up(write_bytes + sector_offset,
1213					 fs_info->sectorsize);
1214		WARN_ON(reserve_bytes == 0);
1215		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1216						      reserve_bytes,
1217						      reserve_bytes, nowait);
1218		if (ret) {
1219			if (!only_release_metadata)
1220				btrfs_free_reserved_data_space(BTRFS_I(inode),
1221						data_reserved, pos,
1222						write_bytes);
1223			else
1224				btrfs_check_nocow_unlock(BTRFS_I(inode));
1225
1226			if (nowait && ret == -ENOSPC)
1227				ret = -EAGAIN;
1228			break;
1229		}
1230
1231		release_bytes = reserve_bytes;
 
1232again:
1233		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1234		if (ret) {
1235			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1236			break;
1237		}
1238
1239		ret = prepare_one_folio(inode, &folio, pos, write_bytes,
1240					force_page_uptodate, false);
1241		if (ret) {
1242			btrfs_delalloc_release_extents(BTRFS_I(inode),
1243						       reserve_bytes);
1244			break;
1245		}
1246
1247		extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
1248						folio, pos, write_bytes, &lockstart,
1249						&lockend, nowait, &cached_state);
1250		if (extents_locked < 0) {
1251			if (!nowait && extents_locked == -EAGAIN)
1252				goto again;
1253
1254			btrfs_delalloc_release_extents(BTRFS_I(inode),
1255						       reserve_bytes);
1256			ret = extents_locked;
1257			break;
 
 
 
1258		}
1259
1260		copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
1261
1262		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1263		dirty_sectors = round_up(copied + sector_offset,
1264					fs_info->sectorsize);
1265		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
 
 
1266
1267		if (copied == 0) {
1268			force_page_uptodate = true;
1269			dirty_sectors = 0;
1270		} else {
1271			force_page_uptodate = false;
 
 
1272		}
1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274		if (num_sectors > dirty_sectors) {
1275			/* release everything except the sectors we dirtied */
1276			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
 
 
 
 
 
1277			if (only_release_metadata) {
1278				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1279							release_bytes, true);
1280			} else {
1281				u64 release_start = round_up(pos + copied,
1282							     fs_info->sectorsize);
1283				btrfs_delalloc_release_space(BTRFS_I(inode),
1284						data_reserved, release_start,
1285						release_bytes, true);
 
1286			}
1287		}
1288
1289		release_bytes = round_up(copied + sector_offset,
1290					fs_info->sectorsize);
1291
1292		ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
1293					&cached_state, only_release_metadata);
1294
1295		/*
1296		 * If we have not locked the extent range, because the range's
1297		 * start offset is >= i_size, we might still have a non-NULL
1298		 * cached extent state, acquired while marking the extent range
1299		 * as delalloc through btrfs_dirty_page(). Therefore free any
1300		 * possible cached extent state to avoid a memory leak.
1301		 */
1302		if (extents_locked)
1303			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1304				      lockend, &cached_state);
1305		else
1306			free_extent_state(cached_state);
1307
1308		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
 
 
 
 
 
 
 
1309		if (ret) {
1310			btrfs_drop_folio(fs_info, folio, pos, copied);
1311			break;
1312		}
1313
1314		release_bytes = 0;
1315		if (only_release_metadata)
1316			btrfs_check_nocow_unlock(BTRFS_I(inode));
 
 
 
 
 
 
 
 
 
 
1317
1318		btrfs_drop_folio(fs_info, folio, pos, copied);
1319
1320		cond_resched();
1321
 
 
 
 
1322		pos += copied;
1323		num_written += copied;
1324	}
1325
 
 
1326	if (release_bytes) {
1327		if (only_release_metadata) {
1328			btrfs_check_nocow_unlock(BTRFS_I(inode));
1329			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1330					release_bytes, true);
1331		} else {
1332			btrfs_delalloc_release_space(BTRFS_I(inode),
1333					data_reserved,
1334					round_down(pos, fs_info->sectorsize),
1335					release_bytes, true);
1336		}
1337	}
1338
1339	extent_changeset_free(data_reserved);
1340	if (num_written > 0) {
1341		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1342		iocb->ki_pos += num_written;
1343	}
1344out:
1345	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1346	return num_written ? num_written : ret;
1347}
1348
1349static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1350			const struct btrfs_ioctl_encoded_io_args *encoded)
 
1351{
1352	struct file *file = iocb->ki_filp;
1353	struct inode *inode = file_inode(file);
1354	loff_t count;
1355	ssize_t ret;
 
 
1356
1357	btrfs_inode_lock(BTRFS_I(inode), 0);
1358	count = encoded->len;
1359	ret = generic_write_checks_count(iocb, &count);
1360	if (ret == 0 && count != encoded->len) {
1361		/*
1362		 * The write got truncated by generic_write_checks_count(). We
1363		 * can't do a partial encoded write.
1364		 */
1365		ret = -EFBIG;
 
1366	}
1367	if (ret || encoded->len == 0)
 
 
 
 
 
 
1368		goto out;
1369
1370	ret = btrfs_write_check(iocb, encoded->len);
1371	if (ret < 0)
1372		goto out;
1373
1374	ret = btrfs_do_encoded_write(iocb, from, encoded);
 
 
1375out:
1376	btrfs_inode_unlock(BTRFS_I(inode), 0);
1377	return ret;
1378}
1379
1380ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1381			    const struct btrfs_ioctl_encoded_io_args *encoded)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382{
1383	struct file *file = iocb->ki_filp;
1384	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1385	ssize_t num_written, num_sync;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386
1387	/*
1388	 * If the fs flips readonly due to some impossible error, although we
1389	 * have opened a file as writable, we have to stop this write operation
1390	 * to ensure consistency.
 
1391	 */
1392	if (BTRFS_FS_ERROR(inode->root->fs_info))
1393		return -EROFS;
 
 
 
1394
1395	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1396		return -EOPNOTSUPP;
 
 
 
 
 
1397
1398	if (encoded) {
1399		num_written = btrfs_encoded_write(iocb, from, encoded);
1400		num_sync = encoded->len;
1401	} else if (iocb->ki_flags & IOCB_DIRECT) {
1402		num_written = btrfs_direct_write(iocb, from);
1403		num_sync = num_written;
1404	} else {
1405		num_written = btrfs_buffered_write(iocb, from);
1406		num_sync = num_written;
 
 
 
 
 
1407	}
1408
1409	btrfs_set_inode_last_sub_trans(inode);
 
1410
1411	if (num_sync > 0) {
1412		num_sync = generic_write_sync(iocb, num_sync);
1413		if (num_sync < 0)
1414			num_written = num_sync;
 
 
 
 
 
1415	}
1416
1417	return num_written;
1418}
1419
1420static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1421{
1422	return btrfs_do_write_iter(iocb, from, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423}
1424
1425int btrfs_release_file(struct inode *inode, struct file *filp)
1426{
1427	struct btrfs_file_private *private = filp->private_data;
1428
1429	if (private) {
1430		kfree(private->filldir_buf);
1431		free_extent_state(private->llseek_cached_state);
1432		kfree(private);
1433		filp->private_data = NULL;
1434	}
1435
1436	/*
1437	 * Set by setattr when we are about to truncate a file from a non-zero
1438	 * size to a zero size.  This tries to flush down new bytes that may
1439	 * have been written if the application were using truncate to replace
1440	 * a file in place.
1441	 */
1442	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1443			       &BTRFS_I(inode)->runtime_flags))
1444			filemap_flush(inode->i_mapping);
1445	return 0;
1446}
1447
1448static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1449{
1450	int ret;
1451	struct blk_plug plug;
1452
1453	/*
1454	 * This is only called in fsync, which would do synchronous writes, so
1455	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1456	 * multiple disks using raid profile, a large IO can be split to
1457	 * several segments of stripe length (currently 64K).
1458	 */
1459	blk_start_plug(&plug);
1460	ret = btrfs_fdatawrite_range(inode, start, end);
1461	blk_finish_plug(&plug);
1462
1463	return ret;
1464}
1465
1466static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1467{
1468	struct btrfs_inode *inode = ctx->inode;
1469	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470
1471	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1472	    list_empty(&ctx->ordered_extents))
1473		return true;
1474
1475	/*
1476	 * If we are doing a fast fsync we can not bail out if the inode's
1477	 * last_trans is <= then the last committed transaction, because we only
1478	 * update the last_trans of the inode during ordered extent completion,
1479	 * and for a fast fsync we don't wait for that, we only wait for the
1480	 * writeback to complete.
1481	 */
1482	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1483	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1484	     list_empty(&ctx->ordered_extents)))
1485		return true;
1486
1487	return false;
1488}
1489
1490/*
1491 * fsync call for both files and directories.  This logs the inode into
1492 * the tree log instead of forcing full commits whenever possible.
1493 *
1494 * It needs to call filemap_fdatawait so that all ordered extent updates are
1495 * in the metadata btree are up to date for copying to the log.
1496 *
1497 * It drops the inode mutex before doing the tree log commit.  This is an
1498 * important optimization for directories because holding the mutex prevents
1499 * new operations on the dir while we write to disk.
1500 */
1501int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1502{
1503	struct dentry *dentry = file_dentry(file);
1504	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1505	struct btrfs_root *root = inode->root;
1506	struct btrfs_fs_info *fs_info = root->fs_info;
1507	struct btrfs_trans_handle *trans;
1508	struct btrfs_log_ctx ctx;
1509	int ret = 0, err;
 
1510	u64 len;
1511	bool full_sync;
1512	bool skip_ilock = false;
1513
1514	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1515		skip_ilock = true;
1516		current->journal_info = NULL;
1517		btrfs_assert_inode_locked(inode);
1518	}
1519
1520	trace_btrfs_sync_file(file, datasync);
1521
1522	btrfs_init_log_ctx(&ctx, inode);
1523
1524	/*
1525	 * Always set the range to a full range, otherwise we can get into
1526	 * several problems, from missing file extent items to represent holes
1527	 * when not using the NO_HOLES feature, to log tree corruption due to
1528	 * races between hole detection during logging and completion of ordered
1529	 * extents outside the range, to missing checksums due to ordered extents
1530	 * for which we flushed only a subset of their pages.
1531	 */
1532	start = 0;
1533	end = LLONG_MAX;
1534	len = (u64)LLONG_MAX + 1;
1535
1536	/*
1537	 * We write the dirty pages in the range and wait until they complete
1538	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1539	 * multi-task, and make the performance up.  See
1540	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1541	 */
1542	ret = start_ordered_ops(inode, start, end);
1543	if (ret)
1544		goto out;
1545
1546	if (skip_ilock)
1547		down_write(&inode->i_mmap_lock);
1548	else
1549		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1550
 
1551	atomic_inc(&root->log_batch);
1552
1553	/*
1554	 * Before we acquired the inode's lock and the mmap lock, someone may
1555	 * have dirtied more pages in the target range. We need to make sure
1556	 * that writeback for any such pages does not start while we are logging
1557	 * the inode, because if it does, any of the following might happen when
1558	 * we are not doing a full inode sync:
1559	 *
1560	 * 1) We log an extent after its writeback finishes but before its
1561	 *    checksums are added to the csum tree, leading to -EIO errors
1562	 *    when attempting to read the extent after a log replay.
1563	 *
1564	 * 2) We can end up logging an extent before its writeback finishes.
1565	 *    Therefore after the log replay we will have a file extent item
1566	 *    pointing to an unwritten extent (and no data checksums as well).
1567	 *
1568	 * So trigger writeback for any eventual new dirty pages and then we
1569	 * wait for all ordered extents to complete below.
1570	 */
1571	ret = start_ordered_ops(inode, start, end);
1572	if (ret) {
1573		if (skip_ilock)
1574			up_write(&inode->i_mmap_lock);
1575		else
1576			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1577		goto out;
1578	}
1579
1580	/*
1581	 * Always check for the full sync flag while holding the inode's lock,
1582	 * to avoid races with other tasks. The flag must be either set all the
1583	 * time during logging or always off all the time while logging.
1584	 * We check the flag here after starting delalloc above, because when
1585	 * running delalloc the full sync flag may be set if we need to drop
1586	 * extra extent map ranges due to temporary memory allocation failures.
1587	 */
1588	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1589
1590	/*
1591	 * We have to do this here to avoid the priority inversion of waiting on
1592	 * IO of a lower priority task while holding a transaction open.
1593	 *
1594	 * For a full fsync we wait for the ordered extents to complete while
1595	 * for a fast fsync we wait just for writeback to complete, and then
1596	 * attach the ordered extents to the transaction so that a transaction
1597	 * commit waits for their completion, to avoid data loss if we fsync,
1598	 * the current transaction commits before the ordered extents complete
1599	 * and a power failure happens right after that.
1600	 *
1601	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1602	 * logical address recorded in the ordered extent may change. We need
1603	 * to wait for the IO to stabilize the logical address.
1604	 */
1605	if (full_sync || btrfs_is_zoned(fs_info)) {
1606		ret = btrfs_wait_ordered_range(inode, start, len);
1607		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1608	} else {
1609		/*
1610		 * Get our ordered extents as soon as possible to avoid doing
1611		 * checksum lookups in the csum tree, and use instead the
1612		 * checksums attached to the ordered extents.
 
1613		 */
1614		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1615		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1616		if (ret)
1617			goto out_release_extents;
1618
1619		/*
1620		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1621		 * starting and waiting for writeback, because for buffered IO
1622		 * it may have been set during the end IO callback
1623		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1624		 * case an error happened and we need to wait for ordered
1625		 * extents to complete so that any extent maps that point to
1626		 * unwritten locations are dropped and we don't log them.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627		 */
1628		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1629			ret = btrfs_wait_ordered_range(inode, start, len);
 
 
 
1630	}
1631
1632	if (ret)
1633		goto out_release_extents;
1634
1635	atomic_inc(&root->log_batch);
1636
1637	if (skip_inode_logging(&ctx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638		/*
1639		 * We've had everything committed since the last time we were
1640		 * modified so clear this flag in case it was set for whatever
1641		 * reason, it's no longer relevant.
1642		 */
1643		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1644		/*
1645		 * An ordered extent might have started before and completed
1646		 * already with io errors, in which case the inode was not
1647		 * updated and we end up here. So check the inode's mapping
1648		 * for any errors that might have happened since we last
1649		 * checked called fsync.
1650		 */
1651		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1652		goto out_release_extents;
1653	}
1654
1655	btrfs_init_log_ctx_scratch_eb(&ctx);
 
 
 
 
1656
1657	/*
1658	 * We use start here because we will need to wait on the IO to complete
1659	 * in btrfs_sync_log, which could require joining a transaction (for
1660	 * example checking cross references in the nocow path).  If we use join
1661	 * here we could get into a situation where we're waiting on IO to
1662	 * happen that is blocked on a transaction trying to commit.  With start
1663	 * we inc the extwriter counter, so we wait for all extwriters to exit
1664	 * before we start blocking joiners.  This comment is to keep somebody
1665	 * from thinking they are super smart and changing this to
1666	 * btrfs_join_transaction *cough*Josef*cough*.
1667	 */
1668	trans = btrfs_start_transaction(root, 0);
1669	if (IS_ERR(trans)) {
1670		ret = PTR_ERR(trans);
1671		goto out_release_extents;
 
1672	}
1673	trans->in_fsync = true;
1674
1675	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1676	/*
1677	 * Scratch eb no longer needed, release before syncing log or commit
1678	 * transaction, to avoid holding unnecessary memory during such long
1679	 * operations.
1680	 */
1681	if (ctx.scratch_eb) {
1682		free_extent_buffer(ctx.scratch_eb);
1683		ctx.scratch_eb = NULL;
1684	}
1685	btrfs_release_log_ctx_extents(&ctx);
1686	if (ret < 0) {
1687		/* Fallthrough and commit/free transaction. */
1688		ret = BTRFS_LOG_FORCE_COMMIT;
1689	}
1690
1691	/* we've logged all the items and now have a consistent
1692	 * version of the file in the log.  It is possible that
1693	 * someone will come in and modify the file, but that's
1694	 * fine because the log is consistent on disk, and we
1695	 * have references to all of the file's extents
1696	 *
1697	 * It is possible that someone will come in and log the
1698	 * file again, but that will end up using the synchronization
1699	 * inside btrfs_sync_log to keep things safe.
1700	 */
1701	if (skip_ilock)
1702		up_write(&inode->i_mmap_lock);
1703	else
1704		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1705
1706	if (ret == BTRFS_NO_LOG_SYNC) {
1707		ret = btrfs_end_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708		goto out;
1709	}
1710
1711	/* We successfully logged the inode, attempt to sync the log. */
1712	if (!ret) {
1713		ret = btrfs_sync_log(trans, root, &ctx);
1714		if (!ret) {
1715			ret = btrfs_end_transaction(trans);
1716			goto out;
 
 
 
1717		}
1718	}
1719
1720	/*
1721	 * At this point we need to commit the transaction because we had
1722	 * btrfs_need_log_full_commit() or some other error.
1723	 *
1724	 * If we didn't do a full sync we have to stop the trans handle, wait on
1725	 * the ordered extents, start it again and commit the transaction.  If
1726	 * we attempt to wait on the ordered extents here we could deadlock with
1727	 * something like fallocate() that is holding the extent lock trying to
1728	 * start a transaction while some other thread is trying to commit the
1729	 * transaction while we (fsync) are currently holding the transaction
1730	 * open.
1731	 */
1732	if (!full_sync) {
1733		ret = btrfs_end_transaction(trans);
1734		if (ret)
1735			goto out;
1736		ret = btrfs_wait_ordered_range(inode, start, len);
1737		if (ret)
1738			goto out;
1739
1740		/*
1741		 * This is safe to use here because we're only interested in
1742		 * making sure the transaction that had the ordered extents is
1743		 * committed.  We aren't waiting on anything past this point,
1744		 * we're purely getting the transaction and committing it.
1745		 */
1746		trans = btrfs_attach_transaction_barrier(root);
1747		if (IS_ERR(trans)) {
1748			ret = PTR_ERR(trans);
1749
1750			/*
1751			 * We committed the transaction and there's no currently
1752			 * running transaction, this means everything we care
1753			 * about made it to disk and we are done.
1754			 */
1755			if (ret == -ENOENT)
1756				ret = 0;
1757			goto out;
1758		}
 
 
 
1759	}
1760
1761	ret = btrfs_commit_transaction(trans);
1762out:
1763	free_extent_buffer(ctx.scratch_eb);
1764	ASSERT(list_empty(&ctx.list));
1765	ASSERT(list_empty(&ctx.conflict_inodes));
1766	err = file_check_and_advance_wb_err(file);
1767	if (!ret)
1768		ret = err;
1769	return ret > 0 ? -EIO : ret;
1770
1771out_release_extents:
1772	btrfs_release_log_ctx_extents(&ctx);
1773	if (skip_ilock)
1774		up_write(&inode->i_mmap_lock);
1775	else
1776		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1777	goto out;
1778}
1779
1780/*
1781 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1782 * called from a page fault handler when a page is first dirtied. Hence we must
1783 * be careful to check for EOF conditions here. We set the page up correctly
1784 * for a written page which means we get ENOSPC checking when writing into
1785 * holes and correct delalloc and unwritten extent mapping on filesystems that
1786 * support these features.
1787 *
1788 * We are not allowed to take the i_mutex here so we have to play games to
1789 * protect against truncate races as the page could now be beyond EOF.  Because
1790 * truncate_setsize() writes the inode size before removing pages, once we have
1791 * the page lock we can determine safely if the page is beyond EOF. If it is not
1792 * beyond EOF, then the page is guaranteed safe against truncation until we
1793 * unlock the page.
1794 */
1795static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1796{
1797	struct page *page = vmf->page;
1798	struct folio *folio = page_folio(page);
1799	struct inode *inode = file_inode(vmf->vma->vm_file);
1800	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1801	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1802	struct btrfs_ordered_extent *ordered;
1803	struct extent_state *cached_state = NULL;
1804	struct extent_changeset *data_reserved = NULL;
1805	unsigned long zero_start;
1806	loff_t size;
1807	vm_fault_t ret;
1808	int ret2;
1809	int reserved = 0;
1810	u64 reserved_space;
1811	u64 page_start;
1812	u64 page_end;
1813	u64 end;
1814
1815	ASSERT(folio_order(folio) == 0);
1816
1817	reserved_space = PAGE_SIZE;
1818
1819	sb_start_pagefault(inode->i_sb);
1820	page_start = folio_pos(folio);
1821	page_end = page_start + folio_size(folio) - 1;
1822	end = page_end;
1823
1824	/*
1825	 * Reserving delalloc space after obtaining the page lock can lead to
1826	 * deadlock. For example, if a dirty page is locked by this function
1827	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1828	 * dirty page write out, then the btrfs_writepages() function could
1829	 * end up waiting indefinitely to get a lock on the page currently
1830	 * being processed by btrfs_page_mkwrite() function.
1831	 */
1832	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1833					    page_start, reserved_space);
1834	if (!ret2) {
1835		ret2 = file_update_time(vmf->vma->vm_file);
1836		reserved = 1;
1837	}
1838	if (ret2) {
1839		ret = vmf_error(ret2);
1840		if (reserved)
1841			goto out;
1842		goto out_noreserve;
1843	}
1844
1845	/* Make the VM retry the fault. */
1846	ret = VM_FAULT_NOPAGE;
1847again:
1848	down_read(&BTRFS_I(inode)->i_mmap_lock);
1849	folio_lock(folio);
1850	size = i_size_read(inode);
1851
1852	if ((folio->mapping != inode->i_mapping) ||
1853	    (page_start >= size)) {
1854		/* Page got truncated out from underneath us. */
1855		goto out_unlock;
1856	}
1857	folio_wait_writeback(folio);
1858
1859	lock_extent(io_tree, page_start, page_end, &cached_state);
1860	ret2 = set_folio_extent_mapped(folio);
1861	if (ret2 < 0) {
1862		ret = vmf_error(ret2);
1863		unlock_extent(io_tree, page_start, page_end, &cached_state);
1864		goto out_unlock;
1865	}
1866
1867	/*
1868	 * We can't set the delalloc bits if there are pending ordered
1869	 * extents.  Drop our locks and wait for them to finish.
1870	 */
1871	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1872	if (ordered) {
1873		unlock_extent(io_tree, page_start, page_end, &cached_state);
1874		folio_unlock(folio);
1875		up_read(&BTRFS_I(inode)->i_mmap_lock);
1876		btrfs_start_ordered_extent(ordered);
1877		btrfs_put_ordered_extent(ordered);
1878		goto again;
1879	}
1880
1881	if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1882		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1883		if (reserved_space < PAGE_SIZE) {
1884			end = page_start + reserved_space - 1;
1885			btrfs_delalloc_release_space(BTRFS_I(inode),
1886					data_reserved, page_start,
1887					PAGE_SIZE - reserved_space, true);
1888		}
1889	}
1890
1891	/*
1892	 * page_mkwrite gets called when the page is firstly dirtied after it's
1893	 * faulted in, but write(2) could also dirty a page and set delalloc
1894	 * bits, thus in this case for space account reason, we still need to
1895	 * clear any delalloc bits within this page range since we have to
1896	 * reserve data&meta space before lock_page() (see above comments).
1897	 */
1898	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1899			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1900			  EXTENT_DEFRAG, &cached_state);
1901
1902	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1903					&cached_state);
1904	if (ret2) {
1905		unlock_extent(io_tree, page_start, page_end, &cached_state);
1906		ret = VM_FAULT_SIGBUS;
1907		goto out_unlock;
1908	}
1909
1910	/* Page is wholly or partially inside EOF. */
1911	if (page_start + folio_size(folio) > size)
1912		zero_start = offset_in_folio(folio, size);
1913	else
1914		zero_start = PAGE_SIZE;
1915
1916	if (zero_start != PAGE_SIZE)
1917		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1918
1919	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
1920	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1921	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1922
1923	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1924
1925	unlock_extent(io_tree, page_start, page_end, &cached_state);
1926	up_read(&BTRFS_I(inode)->i_mmap_lock);
1927
1928	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1929	sb_end_pagefault(inode->i_sb);
1930	extent_changeset_free(data_reserved);
1931	return VM_FAULT_LOCKED;
1932
1933out_unlock:
1934	folio_unlock(folio);
1935	up_read(&BTRFS_I(inode)->i_mmap_lock);
1936out:
1937	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1938	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1939				     reserved_space, (ret != 0));
1940out_noreserve:
1941	sb_end_pagefault(inode->i_sb);
1942	extent_changeset_free(data_reserved);
1943	return ret;
1944}
1945
1946static const struct vm_operations_struct btrfs_file_vm_ops = {
1947	.fault		= filemap_fault,
1948	.map_pages	= filemap_map_pages,
1949	.page_mkwrite	= btrfs_page_mkwrite,
1950};
1951
1952static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1953{
1954	struct address_space *mapping = filp->f_mapping;
1955
1956	if (!mapping->a_ops->read_folio)
1957		return -ENOEXEC;
1958
1959	file_accessed(filp);
1960	vma->vm_ops = &btrfs_file_vm_ops;
1961
1962	return 0;
1963}
1964
1965static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1966			  int slot, u64 start, u64 end)
1967{
1968	struct btrfs_file_extent_item *fi;
1969	struct btrfs_key key;
1970
1971	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1972		return 0;
1973
1974	btrfs_item_key_to_cpu(leaf, &key, slot);
1975	if (key.objectid != btrfs_ino(inode) ||
1976	    key.type != BTRFS_EXTENT_DATA_KEY)
1977		return 0;
1978
1979	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1980
1981	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1982		return 0;
1983
1984	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1985		return 0;
1986
1987	if (key.offset == end)
1988		return 1;
1989	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1990		return 1;
1991	return 0;
1992}
1993
1994static int fill_holes(struct btrfs_trans_handle *trans,
1995		struct btrfs_inode *inode,
1996		struct btrfs_path *path, u64 offset, u64 end)
1997{
1998	struct btrfs_fs_info *fs_info = trans->fs_info;
1999	struct btrfs_root *root = inode->root;
2000	struct extent_buffer *leaf;
2001	struct btrfs_file_extent_item *fi;
2002	struct extent_map *hole_em;
 
2003	struct btrfs_key key;
2004	int ret;
2005
2006	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2007		goto out;
2008
2009	key.objectid = btrfs_ino(inode);
2010	key.type = BTRFS_EXTENT_DATA_KEY;
2011	key.offset = offset;
2012
2013	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2014	if (ret <= 0) {
2015		/*
2016		 * We should have dropped this offset, so if we find it then
2017		 * something has gone horribly wrong.
2018		 */
2019		if (ret == 0)
2020			ret = -EINVAL;
2021		return ret;
2022	}
2023
2024	leaf = path->nodes[0];
2025	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2026		u64 num_bytes;
2027
2028		path->slots[0]--;
2029		fi = btrfs_item_ptr(leaf, path->slots[0],
2030				    struct btrfs_file_extent_item);
2031		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2032			end - offset;
2033		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2034		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2035		btrfs_set_file_extent_offset(leaf, fi, 0);
2036		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2037		btrfs_mark_buffer_dirty(trans, leaf);
2038		goto out;
2039	}
2040
2041	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2042		u64 num_bytes;
2043
2044		key.offset = offset;
2045		btrfs_set_item_key_safe(trans, path, &key);
2046		fi = btrfs_item_ptr(leaf, path->slots[0],
2047				    struct btrfs_file_extent_item);
2048		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2049			offset;
2050		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2051		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2052		btrfs_set_file_extent_offset(leaf, fi, 0);
2053		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2054		btrfs_mark_buffer_dirty(trans, leaf);
2055		goto out;
2056	}
2057	btrfs_release_path(path);
2058
2059	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2060				       end - offset);
 
2061	if (ret)
2062		return ret;
2063
2064out:
2065	btrfs_release_path(path);
2066
2067	hole_em = alloc_extent_map();
2068	if (!hole_em) {
2069		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2070		btrfs_set_inode_full_sync(inode);
 
2071	} else {
2072		hole_em->start = offset;
2073		hole_em->len = end - offset;
2074		hole_em->ram_bytes = hole_em->len;
 
2075
2076		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2077		hole_em->disk_num_bytes = 0;
 
 
 
2078		hole_em->generation = trans->transid;
2079
2080		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
 
 
 
 
 
2081		free_extent_map(hole_em);
2082		if (ret)
2083			btrfs_set_inode_full_sync(inode);
 
2084	}
2085
2086	return 0;
2087}
2088
2089/*
2090 * Find a hole extent on given inode and change start/len to the end of hole
2091 * extent.(hole/vacuum extent whose em->start <= start &&
2092 *	   em->start + em->len > start)
2093 * When a hole extent is found, return 1 and modify start/len.
2094 */
2095static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2096{
2097	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2098	struct extent_map *em;
2099	int ret = 0;
2100
2101	em = btrfs_get_extent(inode, NULL,
2102			      round_down(*start, fs_info->sectorsize),
2103			      round_up(*len, fs_info->sectorsize));
2104	if (IS_ERR(em))
2105		return PTR_ERR(em);
 
 
 
2106
2107	/* Hole or vacuum extent(only exists in no-hole mode) */
2108	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2109		ret = 1;
2110		*len = em->start + em->len > *start + *len ?
2111		       0 : *start + *len - em->start - em->len;
2112		*start = em->start + em->len;
2113	}
2114	free_extent_map(em);
2115	return ret;
2116}
2117
2118static void btrfs_punch_hole_lock_range(struct inode *inode,
2119					const u64 lockstart,
2120					const u64 lockend,
2121					struct extent_state **cached_state)
2122{
2123	/*
2124	 * For subpage case, if the range is not at page boundary, we could
2125	 * have pages at the leading/tailing part of the range.
2126	 * This could lead to dead loop since filemap_range_has_page()
2127	 * will always return true.
2128	 * So here we need to do extra page alignment for
2129	 * filemap_range_has_page().
2130	 */
2131	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2132	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2133
2134	while (1) {
2135		truncate_pagecache_range(inode, lockstart, lockend);
2136
2137		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2138			    cached_state);
2139		/*
2140		 * We can't have ordered extents in the range, nor dirty/writeback
2141		 * pages, because we have locked the inode's VFS lock in exclusive
2142		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2143		 * we have flushed all delalloc in the range and we have waited
2144		 * for any ordered extents in the range to complete.
2145		 * We can race with anyone reading pages from this range, so after
2146		 * locking the range check if we have pages in the range, and if
2147		 * we do, unlock the range and retry.
2148		 */
2149		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2150					    page_lockend))
2151			break;
2152
2153		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2154			      cached_state);
2155	}
2156
2157	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2158}
2159
2160static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2161				     struct btrfs_inode *inode,
2162				     struct btrfs_path *path,
2163				     struct btrfs_replace_extent_info *extent_info,
2164				     const u64 replace_len,
2165				     const u64 bytes_to_drop)
2166{
2167	struct btrfs_fs_info *fs_info = trans->fs_info;
2168	struct btrfs_root *root = inode->root;
2169	struct btrfs_file_extent_item *extent;
2170	struct extent_buffer *leaf;
2171	struct btrfs_key key;
2172	int slot;
2173	int ret;
2174
2175	if (replace_len == 0)
2176		return 0;
2177
2178	if (extent_info->disk_offset == 0 &&
2179	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2180		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2181		return 0;
2182	}
2183
2184	key.objectid = btrfs_ino(inode);
2185	key.type = BTRFS_EXTENT_DATA_KEY;
2186	key.offset = extent_info->file_offset;
2187	ret = btrfs_insert_empty_item(trans, root, path, &key,
2188				      sizeof(struct btrfs_file_extent_item));
2189	if (ret)
2190		return ret;
2191	leaf = path->nodes[0];
2192	slot = path->slots[0];
2193	write_extent_buffer(leaf, extent_info->extent_buf,
2194			    btrfs_item_ptr_offset(leaf, slot),
2195			    sizeof(struct btrfs_file_extent_item));
2196	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2197	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2198	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2199	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2200	if (extent_info->is_new_extent)
2201		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2202	btrfs_mark_buffer_dirty(trans, leaf);
2203	btrfs_release_path(path);
2204
2205	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2206						replace_len);
2207	if (ret)
2208		return ret;
2209
2210	/* If it's a hole, nothing more needs to be done. */
2211	if (extent_info->disk_offset == 0) {
2212		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2213		return 0;
2214	}
2215
2216	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2217
2218	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2219		key.objectid = extent_info->disk_offset;
2220		key.type = BTRFS_EXTENT_ITEM_KEY;
2221		key.offset = extent_info->disk_len;
2222		ret = btrfs_alloc_reserved_file_extent(trans, root,
2223						       btrfs_ino(inode),
2224						       extent_info->file_offset,
2225						       extent_info->qgroup_reserved,
2226						       &key);
2227	} else {
2228		struct btrfs_ref ref = {
2229			.action = BTRFS_ADD_DELAYED_REF,
2230			.bytenr = extent_info->disk_offset,
2231			.num_bytes = extent_info->disk_len,
2232			.owning_root = btrfs_root_id(root),
2233			.ref_root = btrfs_root_id(root),
2234		};
2235		u64 ref_offset;
2236
2237		ref_offset = extent_info->file_offset - extent_info->data_offset;
2238		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2239		ret = btrfs_inc_extent_ref(trans, &ref);
2240	}
2241
2242	extent_info->insertions++;
2243
2244	return ret;
2245}
2246
2247/*
2248 * The respective range must have been previously locked, as well as the inode.
2249 * The end offset is inclusive (last byte of the range).
2250 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2251 * the file range with an extent.
2252 * When not punching a hole, we don't want to end up in a state where we dropped
2253 * extents without inserting a new one, so we must abort the transaction to avoid
2254 * a corruption.
2255 */
2256int btrfs_replace_file_extents(struct btrfs_inode *inode,
2257			       struct btrfs_path *path, const u64 start,
2258			       const u64 end,
2259			       struct btrfs_replace_extent_info *extent_info,
2260			       struct btrfs_trans_handle **trans_out)
2261{
2262	struct btrfs_drop_extents_args drop_args = { 0 };
2263	struct btrfs_root *root = inode->root;
2264	struct btrfs_fs_info *fs_info = root->fs_info;
2265	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2266	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2267	struct btrfs_trans_handle *trans = NULL;
2268	struct btrfs_block_rsv *rsv;
2269	unsigned int rsv_count;
2270	u64 cur_offset;
2271	u64 len = end - start;
2272	int ret = 0;
2273
2274	if (end <= start)
2275		return -EINVAL;
2276
2277	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2278	if (!rsv) {
2279		ret = -ENOMEM;
2280		goto out;
2281	}
2282	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2283	rsv->failfast = true;
2284
2285	/*
2286	 * 1 - update the inode
2287	 * 1 - removing the extents in the range
2288	 * 1 - adding the hole extent if no_holes isn't set or if we are
2289	 *     replacing the range with a new extent
2290	 */
2291	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2292		rsv_count = 3;
2293	else
2294		rsv_count = 2;
2295
2296	trans = btrfs_start_transaction(root, rsv_count);
2297	if (IS_ERR(trans)) {
2298		ret = PTR_ERR(trans);
2299		trans = NULL;
2300		goto out_free;
2301	}
2302
2303	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2304				      min_size, false);
2305	if (WARN_ON(ret))
2306		goto out_trans;
2307	trans->block_rsv = rsv;
2308
2309	cur_offset = start;
2310	drop_args.path = path;
2311	drop_args.end = end + 1;
2312	drop_args.drop_cache = true;
2313	while (cur_offset < end) {
2314		drop_args.start = cur_offset;
2315		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2316		/* If we are punching a hole decrement the inode's byte count */
2317		if (!extent_info)
2318			btrfs_update_inode_bytes(inode, 0,
2319						 drop_args.bytes_found);
2320		if (ret != -ENOSPC) {
2321			/*
2322			 * The only time we don't want to abort is if we are
2323			 * attempting to clone a partial inline extent, in which
2324			 * case we'll get EOPNOTSUPP.  However if we aren't
2325			 * clone we need to abort no matter what, because if we
2326			 * got EOPNOTSUPP via prealloc then we messed up and
2327			 * need to abort.
2328			 */
2329			if (ret &&
2330			    (ret != -EOPNOTSUPP ||
2331			     (extent_info && extent_info->is_new_extent)))
2332				btrfs_abort_transaction(trans, ret);
2333			break;
2334		}
2335
2336		trans->block_rsv = &fs_info->trans_block_rsv;
2337
2338		if (!extent_info && cur_offset < drop_args.drop_end &&
2339		    cur_offset < ino_size) {
2340			ret = fill_holes(trans, inode, path, cur_offset,
2341					 drop_args.drop_end);
2342			if (ret) {
2343				/*
2344				 * If we failed then we didn't insert our hole
2345				 * entries for the area we dropped, so now the
2346				 * fs is corrupted, so we must abort the
2347				 * transaction.
2348				 */
2349				btrfs_abort_transaction(trans, ret);
2350				break;
2351			}
2352		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2353			/*
2354			 * We are past the i_size here, but since we didn't
2355			 * insert holes we need to clear the mapped area so we
2356			 * know to not set disk_i_size in this area until a new
2357			 * file extent is inserted here.
2358			 */
2359			ret = btrfs_inode_clear_file_extent_range(inode,
2360					cur_offset,
2361					drop_args.drop_end - cur_offset);
2362			if (ret) {
2363				/*
2364				 * We couldn't clear our area, so we could
2365				 * presumably adjust up and corrupt the fs, so
2366				 * we need to abort.
2367				 */
2368				btrfs_abort_transaction(trans, ret);
2369				break;
2370			}
2371		}
2372
2373		if (extent_info &&
2374		    drop_args.drop_end > extent_info->file_offset) {
2375			u64 replace_len = drop_args.drop_end -
2376					  extent_info->file_offset;
2377
2378			ret = btrfs_insert_replace_extent(trans, inode,	path,
2379					extent_info, replace_len,
2380					drop_args.bytes_found);
2381			if (ret) {
2382				btrfs_abort_transaction(trans, ret);
2383				break;
2384			}
2385			extent_info->data_len -= replace_len;
2386			extent_info->data_offset += replace_len;
2387			extent_info->file_offset += replace_len;
2388		}
2389
2390		/*
2391		 * We are releasing our handle on the transaction, balance the
2392		 * dirty pages of the btree inode and flush delayed items, and
2393		 * then get a new transaction handle, which may now point to a
2394		 * new transaction in case someone else may have committed the
2395		 * transaction we used to replace/drop file extent items. So
2396		 * bump the inode's iversion and update mtime and ctime except
2397		 * if we are called from a dedupe context. This is because a
2398		 * power failure/crash may happen after the transaction is
2399		 * committed and before we finish replacing/dropping all the
2400		 * file extent items we need.
2401		 */
2402		inode_inc_iversion(&inode->vfs_inode);
2403
2404		if (!extent_info || extent_info->update_times)
2405			inode_set_mtime_to_ts(&inode->vfs_inode,
2406					      inode_set_ctime_current(&inode->vfs_inode));
2407
2408		ret = btrfs_update_inode(trans, inode);
2409		if (ret)
2410			break;
2411
2412		btrfs_end_transaction(trans);
2413		btrfs_btree_balance_dirty(fs_info);
2414
2415		trans = btrfs_start_transaction(root, rsv_count);
2416		if (IS_ERR(trans)) {
2417			ret = PTR_ERR(trans);
2418			trans = NULL;
2419			break;
2420		}
2421
2422		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2423					      rsv, min_size, false);
2424		if (WARN_ON(ret))
2425			break;
2426		trans->block_rsv = rsv;
2427
2428		cur_offset = drop_args.drop_end;
2429		len = end - cur_offset;
2430		if (!extent_info && len) {
2431			ret = find_first_non_hole(inode, &cur_offset, &len);
2432			if (unlikely(ret < 0))
2433				break;
2434			if (ret && !len) {
2435				ret = 0;
2436				break;
2437			}
2438		}
2439	}
2440
2441	/*
2442	 * If we were cloning, force the next fsync to be a full one since we
2443	 * we replaced (or just dropped in the case of cloning holes when
2444	 * NO_HOLES is enabled) file extent items and did not setup new extent
2445	 * maps for the replacement extents (or holes).
2446	 */
2447	if (extent_info && !extent_info->is_new_extent)
2448		btrfs_set_inode_full_sync(inode);
2449
2450	if (ret)
2451		goto out_trans;
2452
2453	trans->block_rsv = &fs_info->trans_block_rsv;
2454	/*
2455	 * If we are using the NO_HOLES feature we might have had already an
2456	 * hole that overlaps a part of the region [lockstart, lockend] and
2457	 * ends at (or beyond) lockend. Since we have no file extent items to
2458	 * represent holes, drop_end can be less than lockend and so we must
2459	 * make sure we have an extent map representing the existing hole (the
2460	 * call to __btrfs_drop_extents() might have dropped the existing extent
2461	 * map representing the existing hole), otherwise the fast fsync path
2462	 * will not record the existence of the hole region
2463	 * [existing_hole_start, lockend].
2464	 */
2465	if (drop_args.drop_end <= end)
2466		drop_args.drop_end = end + 1;
2467	/*
2468	 * Don't insert file hole extent item if it's for a range beyond eof
2469	 * (because it's useless) or if it represents a 0 bytes range (when
2470	 * cur_offset == drop_end).
2471	 */
2472	if (!extent_info && cur_offset < ino_size &&
2473	    cur_offset < drop_args.drop_end) {
2474		ret = fill_holes(trans, inode, path, cur_offset,
2475				 drop_args.drop_end);
2476		if (ret) {
2477			/* Same comment as above. */
2478			btrfs_abort_transaction(trans, ret);
2479			goto out_trans;
2480		}
2481	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2482		/* See the comment in the loop above for the reasoning here. */
2483		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2484					drop_args.drop_end - cur_offset);
2485		if (ret) {
2486			btrfs_abort_transaction(trans, ret);
2487			goto out_trans;
2488		}
2489
2490	}
2491	if (extent_info) {
2492		ret = btrfs_insert_replace_extent(trans, inode, path,
2493				extent_info, extent_info->data_len,
2494				drop_args.bytes_found);
2495		if (ret) {
2496			btrfs_abort_transaction(trans, ret);
2497			goto out_trans;
2498		}
2499	}
2500
2501out_trans:
2502	if (!trans)
2503		goto out_free;
2504
2505	trans->block_rsv = &fs_info->trans_block_rsv;
2506	if (ret)
2507		btrfs_end_transaction(trans);
2508	else
2509		*trans_out = trans;
2510out_free:
2511	btrfs_free_block_rsv(fs_info, rsv);
2512out:
2513	return ret;
2514}
2515
2516static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2517{
2518	struct inode *inode = file_inode(file);
2519	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2520	struct btrfs_root *root = BTRFS_I(inode)->root;
2521	struct extent_state *cached_state = NULL;
2522	struct btrfs_path *path;
2523	struct btrfs_trans_handle *trans = NULL;
 
2524	u64 lockstart;
2525	u64 lockend;
2526	u64 tail_start;
2527	u64 tail_len;
2528	u64 orig_start = offset;
 
 
 
2529	int ret = 0;
 
 
2530	bool same_block;
 
2531	u64 ino_size;
2532	bool truncated_block = false;
2533	bool updated_inode = false;
2534
2535	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2536
2537	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2538	if (ret)
2539		goto out_only_mutex;
2540
2541	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2542	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
 
2543	if (ret < 0)
2544		goto out_only_mutex;
2545	if (ret && !len) {
2546		/* Already in a large hole */
2547		ret = 0;
2548		goto out_only_mutex;
2549	}
2550
2551	ret = file_modified(file);
2552	if (ret)
2553		goto out_only_mutex;
2554
2555	lockstart = round_up(offset, fs_info->sectorsize);
2556	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2557	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2558		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2559	/*
2560	 * We needn't truncate any block which is beyond the end of the file
2561	 * because we are sure there is no data there.
2562	 */
2563	/*
2564	 * Only do this if we are in the same block and we aren't doing the
2565	 * entire block.
2566	 */
2567	if (same_block && len < fs_info->sectorsize) {
2568		if (offset < ino_size) {
2569			truncated_block = true;
2570			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2571						   0);
2572		} else {
2573			ret = 0;
2574		}
2575		goto out_only_mutex;
2576	}
2577
2578	/* zero back part of the first block */
2579	if (offset < ino_size) {
2580		truncated_block = true;
2581		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2582		if (ret) {
2583			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2584			return ret;
2585		}
2586	}
2587
2588	/* Check the aligned pages after the first unaligned page,
2589	 * if offset != orig_start, which means the first unaligned page
2590	 * including several following pages are already in holes,
2591	 * the extra check can be skipped */
2592	if (offset == orig_start) {
2593		/* after truncate page, check hole again */
2594		len = offset + len - lockstart;
2595		offset = lockstart;
2596		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2597		if (ret < 0)
2598			goto out_only_mutex;
2599		if (ret && !len) {
2600			ret = 0;
2601			goto out_only_mutex;
2602		}
2603		lockstart = offset;
2604	}
2605
2606	/* Check the tail unaligned part is in a hole */
2607	tail_start = lockend + 1;
2608	tail_len = offset + len - tail_start;
2609	if (tail_len) {
2610		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2611		if (unlikely(ret < 0))
2612			goto out_only_mutex;
2613		if (!ret) {
2614			/* zero the front end of the last page */
2615			if (tail_start + tail_len < ino_size) {
2616				truncated_block = true;
2617				ret = btrfs_truncate_block(BTRFS_I(inode),
2618							tail_start + tail_len,
2619							0, 1);
2620				if (ret)
2621					goto out_only_mutex;
2622			}
2623		}
2624	}
2625
2626	if (lockend < lockstart) {
2627		ret = 0;
2628		goto out_only_mutex;
2629	}
2630
2631	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2632
2633	path = btrfs_alloc_path();
2634	if (!path) {
2635		ret = -ENOMEM;
2636		goto out;
2637	}
2638
2639	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2640					 lockend, NULL, &trans);
2641	btrfs_free_path(path);
2642	if (ret)
2643		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644
2645	ASSERT(trans != NULL);
2646	inode_inc_iversion(inode);
2647	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2648	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 
 
2649	updated_inode = true;
2650	btrfs_end_transaction(trans);
2651	btrfs_btree_balance_dirty(fs_info);
 
 
 
2652out:
2653	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2654		      &cached_state);
2655out_only_mutex:
2656	if (!updated_inode && truncated_block && !ret) {
2657		/*
2658		 * If we only end up zeroing part of a page, we still need to
2659		 * update the inode item, so that all the time fields are
2660		 * updated as well as the necessary btrfs inode in memory fields
2661		 * for detecting, at fsync time, if the inode isn't yet in the
2662		 * log tree or it's there but not up to date.
2663		 */
2664		struct timespec64 now = inode_set_ctime_current(inode);
2665
2666		inode_inc_iversion(inode);
2667		inode_set_mtime_to_ts(inode, now);
2668		trans = btrfs_start_transaction(root, 1);
2669		if (IS_ERR(trans)) {
2670			ret = PTR_ERR(trans);
2671		} else {
2672			int ret2;
2673
2674			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2675			ret2 = btrfs_end_transaction(trans);
2676			if (!ret)
2677				ret = ret2;
2678		}
2679	}
2680	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2681	return ret;
 
 
2682}
2683
2684/* Helper structure to record which range is already reserved */
2685struct falloc_range {
2686	struct list_head list;
2687	u64 start;
2688	u64 len;
2689};
2690
2691/*
2692 * Helper function to add falloc range
2693 *
2694 * Caller should have locked the larger range of extent containing
2695 * [start, len)
2696 */
2697static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2698{
 
2699	struct falloc_range *range = NULL;
2700
2701	if (!list_empty(head)) {
2702		/*
2703		 * As fallocate iterates by bytenr order, we only need to check
2704		 * the last range.
2705		 */
2706		range = list_last_entry(head, struct falloc_range, list);
2707		if (range->start + range->len == start) {
2708			range->len += len;
2709			return 0;
2710		}
2711	}
2712
 
 
 
 
 
 
 
 
 
 
2713	range = kmalloc(sizeof(*range), GFP_KERNEL);
2714	if (!range)
2715		return -ENOMEM;
2716	range->start = start;
2717	range->len = len;
2718	list_add_tail(&range->list, head);
2719	return 0;
2720}
2721
2722static int btrfs_fallocate_update_isize(struct inode *inode,
2723					const u64 end,
2724					const int mode)
2725{
2726	struct btrfs_trans_handle *trans;
2727	struct btrfs_root *root = BTRFS_I(inode)->root;
2728	int ret;
2729	int ret2;
2730
2731	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2732		return 0;
2733
2734	trans = btrfs_start_transaction(root, 1);
2735	if (IS_ERR(trans))
2736		return PTR_ERR(trans);
2737
2738	inode_set_ctime_current(inode);
2739	i_size_write(inode, end);
2740	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2741	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2742	ret2 = btrfs_end_transaction(trans);
2743
2744	return ret ? ret : ret2;
2745}
2746
2747enum {
2748	RANGE_BOUNDARY_WRITTEN_EXTENT,
2749	RANGE_BOUNDARY_PREALLOC_EXTENT,
2750	RANGE_BOUNDARY_HOLE,
2751};
2752
2753static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2754						 u64 offset)
2755{
2756	const u64 sectorsize = inode->root->fs_info->sectorsize;
2757	struct extent_map *em;
2758	int ret;
2759
2760	offset = round_down(offset, sectorsize);
2761	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2762	if (IS_ERR(em))
2763		return PTR_ERR(em);
2764
2765	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2766		ret = RANGE_BOUNDARY_HOLE;
2767	else if (em->flags & EXTENT_FLAG_PREALLOC)
2768		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2769	else
2770		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2771
2772	free_extent_map(em);
2773	return ret;
2774}
2775
2776static int btrfs_zero_range(struct inode *inode,
2777			    loff_t offset,
2778			    loff_t len,
2779			    const int mode)
2780{
2781	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2782	struct extent_map *em;
2783	struct extent_changeset *data_reserved = NULL;
2784	int ret;
2785	u64 alloc_hint = 0;
2786	const u64 sectorsize = fs_info->sectorsize;
2787	u64 alloc_start = round_down(offset, sectorsize);
2788	u64 alloc_end = round_up(offset + len, sectorsize);
2789	u64 bytes_to_reserve = 0;
2790	bool space_reserved = false;
2791
2792	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2793			      alloc_end - alloc_start);
2794	if (IS_ERR(em)) {
2795		ret = PTR_ERR(em);
2796		goto out;
2797	}
2798
2799	/*
2800	 * Avoid hole punching and extent allocation for some cases. More cases
2801	 * could be considered, but these are unlikely common and we keep things
2802	 * as simple as possible for now. Also, intentionally, if the target
2803	 * range contains one or more prealloc extents together with regular
2804	 * extents and holes, we drop all the existing extents and allocate a
2805	 * new prealloc extent, so that we get a larger contiguous disk extent.
2806	 */
2807	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2808		const u64 em_end = em->start + em->len;
2809
2810		if (em_end >= offset + len) {
2811			/*
2812			 * The whole range is already a prealloc extent,
2813			 * do nothing except updating the inode's i_size if
2814			 * needed.
2815			 */
2816			free_extent_map(em);
2817			ret = btrfs_fallocate_update_isize(inode, offset + len,
2818							   mode);
2819			goto out;
2820		}
2821		/*
2822		 * Part of the range is already a prealloc extent, so operate
2823		 * only on the remaining part of the range.
2824		 */
2825		alloc_start = em_end;
2826		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2827		len = offset + len - alloc_start;
2828		offset = alloc_start;
2829		alloc_hint = extent_map_block_start(em) + em->len;
2830	}
2831	free_extent_map(em);
2832
2833	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2834	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2835		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2836		if (IS_ERR(em)) {
2837			ret = PTR_ERR(em);
2838			goto out;
2839		}
2840
2841		if (em->flags & EXTENT_FLAG_PREALLOC) {
2842			free_extent_map(em);
2843			ret = btrfs_fallocate_update_isize(inode, offset + len,
2844							   mode);
2845			goto out;
2846		}
2847		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2848			free_extent_map(em);
2849			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2850						   0);
2851			if (!ret)
2852				ret = btrfs_fallocate_update_isize(inode,
2853								   offset + len,
2854								   mode);
2855			return ret;
2856		}
2857		free_extent_map(em);
2858		alloc_start = round_down(offset, sectorsize);
2859		alloc_end = alloc_start + sectorsize;
2860		goto reserve_space;
2861	}
2862
2863	alloc_start = round_up(offset, sectorsize);
2864	alloc_end = round_down(offset + len, sectorsize);
2865
2866	/*
2867	 * For unaligned ranges, check the pages at the boundaries, they might
2868	 * map to an extent, in which case we need to partially zero them, or
2869	 * they might map to a hole, in which case we need our allocation range
2870	 * to cover them.
2871	 */
2872	if (!IS_ALIGNED(offset, sectorsize)) {
2873		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2874							    offset);
2875		if (ret < 0)
2876			goto out;
2877		if (ret == RANGE_BOUNDARY_HOLE) {
2878			alloc_start = round_down(offset, sectorsize);
2879			ret = 0;
2880		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2881			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2882			if (ret)
2883				goto out;
2884		} else {
2885			ret = 0;
2886		}
2887	}
2888
2889	if (!IS_ALIGNED(offset + len, sectorsize)) {
2890		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2891							    offset + len);
2892		if (ret < 0)
2893			goto out;
2894		if (ret == RANGE_BOUNDARY_HOLE) {
2895			alloc_end = round_up(offset + len, sectorsize);
2896			ret = 0;
2897		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2898			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2899						   0, 1);
2900			if (ret)
2901				goto out;
2902		} else {
2903			ret = 0;
2904		}
2905	}
2906
2907reserve_space:
2908	if (alloc_start < alloc_end) {
2909		struct extent_state *cached_state = NULL;
2910		const u64 lockstart = alloc_start;
2911		const u64 lockend = alloc_end - 1;
2912
2913		bytes_to_reserve = alloc_end - alloc_start;
2914		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2915						      bytes_to_reserve);
2916		if (ret < 0)
2917			goto out;
2918		space_reserved = true;
2919		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920					    &cached_state);
2921		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2922						alloc_start, bytes_to_reserve);
2923		if (ret) {
2924			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2925				      lockend, &cached_state);
2926			goto out;
2927		}
2928		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2929						alloc_end - alloc_start,
2930						fs_info->sectorsize,
2931						offset + len, &alloc_hint);
2932		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2933			      &cached_state);
2934		/* btrfs_prealloc_file_range releases reserved space on error */
2935		if (ret) {
2936			space_reserved = false;
2937			goto out;
2938		}
2939	}
2940	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2941 out:
2942	if (ret && space_reserved)
2943		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2944					       alloc_start, bytes_to_reserve);
2945	extent_changeset_free(data_reserved);
2946
2947	return ret;
2948}
2949
2950static long btrfs_fallocate(struct file *file, int mode,
2951			    loff_t offset, loff_t len)
2952{
2953	struct inode *inode = file_inode(file);
2954	struct extent_state *cached_state = NULL;
2955	struct extent_changeset *data_reserved = NULL;
2956	struct falloc_range *range;
2957	struct falloc_range *tmp;
2958	LIST_HEAD(reserve_list);
2959	u64 cur_offset;
2960	u64 last_byte;
2961	u64 alloc_start;
2962	u64 alloc_end;
2963	u64 alloc_hint = 0;
2964	u64 locked_end;
2965	u64 actual_end = 0;
2966	u64 data_space_needed = 0;
2967	u64 data_space_reserved = 0;
2968	u64 qgroup_reserved = 0;
2969	struct extent_map *em;
2970	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2971	int ret;
2972
2973	/* Do not allow fallocate in ZONED mode */
2974	if (btrfs_is_zoned(inode_to_fs_info(inode)))
2975		return -EOPNOTSUPP;
2976
2977	alloc_start = round_down(offset, blocksize);
2978	alloc_end = round_up(offset + len, blocksize);
2979	cur_offset = alloc_start;
2980
2981	/* Make sure we aren't being give some crap mode */
2982	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2983		     FALLOC_FL_ZERO_RANGE))
2984		return -EOPNOTSUPP;
2985
2986	if (mode & FALLOC_FL_PUNCH_HOLE)
2987		return btrfs_punch_hole(file, offset, len);
2988
2989	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 
 
 
 
 
 
 
 
 
2990
2991	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2992		ret = inode_newsize_ok(inode, offset + len);
2993		if (ret)
2994			goto out;
2995	}
2996
2997	ret = file_modified(file);
2998	if (ret)
2999		goto out;
3000
3001	/*
3002	 * TODO: Move these two operations after we have checked
3003	 * accurate reserved space, or fallocate can still fail but
3004	 * with page truncated or size expanded.
3005	 *
3006	 * But that's a minor problem and won't do much harm BTW.
3007	 */
3008	if (alloc_start > inode->i_size) {
3009		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3010					alloc_start);
3011		if (ret)
3012			goto out;
3013	} else if (offset + len > inode->i_size) {
3014		/*
3015		 * If we are fallocating from the end of the file onward we
3016		 * need to zero out the end of the block if i_size lands in the
3017		 * middle of a block.
3018		 */
3019		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3020		if (ret)
3021			goto out;
3022	}
3023
3024	/*
3025	 * We have locked the inode at the VFS level (in exclusive mode) and we
3026	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3027	 * locking the file range, flush all dealloc in the range and wait for
3028	 * all ordered extents in the range to complete. After this we can lock
3029	 * the file range and, due to the previous locking we did, we know there
3030	 * can't be more delalloc or ordered extents in the range.
3031	 */
3032	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3033				       alloc_end - alloc_start);
3034	if (ret)
3035		goto out;
3036
3037	if (mode & FALLOC_FL_ZERO_RANGE) {
3038		ret = btrfs_zero_range(inode, offset, len, mode);
3039		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3040		return ret;
3041	}
3042
3043	locked_end = alloc_end - 1;
3044	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3045		    &cached_state);
3046
3047	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048
3049	/* First, check if we exceed the qgroup limit */
3050	while (cur_offset < alloc_end) {
3051		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3052				      alloc_end - cur_offset);
3053		if (IS_ERR(em)) {
3054			ret = PTR_ERR(em);
 
 
 
 
 
3055			break;
3056		}
3057		last_byte = min(extent_map_end(em), alloc_end);
3058		actual_end = min_t(u64, extent_map_end(em), offset + len);
3059		last_byte = ALIGN(last_byte, blocksize);
3060		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3061		    (cur_offset >= inode->i_size &&
3062		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3063			const u64 range_len = last_byte - cur_offset;
3064
3065			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3066			if (ret < 0) {
3067				free_extent_map(em);
3068				break;
3069			}
3070			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3071					&data_reserved, cur_offset, range_len);
3072			if (ret < 0) {
3073				free_extent_map(em);
3074				break;
3075			}
3076			qgroup_reserved += range_len;
3077			data_space_needed += range_len;
3078		}
3079		free_extent_map(em);
3080		cur_offset = last_byte;
3081	}
3082
3083	if (!ret && data_space_needed > 0) {
3084		/*
3085		 * We are safe to reserve space here as we can't have delalloc
3086		 * in the range, see above.
3087		 */
3088		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3089						      data_space_needed);
3090		if (!ret)
3091			data_space_reserved = data_space_needed;
3092	}
3093
3094	/*
3095	 * If ret is still 0, means we're OK to fallocate.
3096	 * Or just cleanup the list and exit.
3097	 */
3098	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3099		if (!ret) {
3100			ret = btrfs_prealloc_file_range(inode, mode,
3101					range->start,
3102					range->len, blocksize,
3103					offset + len, &alloc_hint);
3104			/*
3105			 * btrfs_prealloc_file_range() releases space even
3106			 * if it returns an error.
3107			 */
3108			data_space_reserved -= range->len;
3109			qgroup_reserved -= range->len;
3110		} else if (data_space_reserved > 0) {
3111			btrfs_free_reserved_data_space(BTRFS_I(inode),
3112					       data_reserved, range->start,
3113					       range->len);
3114			data_space_reserved -= range->len;
3115			qgroup_reserved -= range->len;
3116		} else if (qgroup_reserved > 0) {
3117			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3118					       range->start, range->len, NULL);
3119			qgroup_reserved -= range->len;
3120		}
3121		list_del(&range->list);
3122		kfree(range);
3123	}
3124	if (ret < 0)
3125		goto out_unlock;
3126
3127	/*
3128	 * We didn't need to allocate any more space, but we still extended the
3129	 * size of the file so we need to update i_size and the inode item.
3130	 */
3131	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3132out_unlock:
3133	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3134		      &cached_state);
3135out:
3136	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3137	extent_changeset_free(data_reserved);
3138	return ret;
3139}
3140
3141/*
3142 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3143 * that has unflushed and/or flushing delalloc. There might be other adjacent
3144 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3145 * looping while it gets adjacent subranges, and merging them together.
3146 */
3147static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3148				   struct extent_state **cached_state,
3149				   bool *search_io_tree,
3150				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3151{
3152	u64 len = end + 1 - start;
3153	u64 delalloc_len = 0;
3154	struct btrfs_ordered_extent *oe;
3155	u64 oe_start;
3156	u64 oe_end;
3157
3158	/*
3159	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3160	 * means we have delalloc (dirty pages) for which writeback has not
3161	 * started yet.
3162	 */
3163	if (*search_io_tree) {
3164		spin_lock(&inode->lock);
3165		if (inode->delalloc_bytes > 0) {
3166			spin_unlock(&inode->lock);
3167			*delalloc_start_ret = start;
3168			delalloc_len = count_range_bits(&inode->io_tree,
3169							delalloc_start_ret, end,
3170							len, EXTENT_DELALLOC, 1,
3171							cached_state);
3172		} else {
3173			spin_unlock(&inode->lock);
3174		}
3175	}
3176
3177	if (delalloc_len > 0) {
3178		/*
3179		 * If delalloc was found then *delalloc_start_ret has a sector size
3180		 * aligned value (rounded down).
 
3181		 */
3182		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3183
3184		if (*delalloc_start_ret == start) {
3185			/* Delalloc for the whole range, nothing more to do. */
3186			if (*delalloc_end_ret == end)
3187				return true;
3188			/* Else trim our search range for ordered extents. */
3189			start = *delalloc_end_ret + 1;
3190			len = end + 1 - start;
3191		}
3192	} else {
3193		/* No delalloc, future calls don't need to search again. */
3194		*search_io_tree = false;
3195	}
3196
3197	/*
3198	 * Now also check if there's any ordered extent in the range.
3199	 * We do this because:
3200	 *
3201	 * 1) When delalloc is flushed, the file range is locked, we clear the
3202	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3203	 *    an ordered extent for the write. So we might just have been called
3204	 *    after delalloc is flushed and before the ordered extent completes
3205	 *    and inserts the new file extent item in the subvolume's btree;
3206	 *
3207	 * 2) We may have an ordered extent created by flushing delalloc for a
3208	 *    subrange that starts before the subrange we found marked with
3209	 *    EXTENT_DELALLOC in the io tree.
3210	 *
3211	 * We could also use the extent map tree to find such delalloc that is
3212	 * being flushed, but using the ordered extents tree is more efficient
3213	 * because it's usually much smaller as ordered extents are removed from
3214	 * the tree once they complete. With the extent maps, we mau have them
3215	 * in the extent map tree for a very long time, and they were either
3216	 * created by previous writes or loaded by read operations.
3217	 */
3218	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3219	if (!oe)
3220		return (delalloc_len > 0);
3221
3222	/* The ordered extent may span beyond our search range. */
3223	oe_start = max(oe->file_offset, start);
3224	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3225
3226	btrfs_put_ordered_extent(oe);
3227
3228	/* Don't have unflushed delalloc, return the ordered extent range. */
3229	if (delalloc_len == 0) {
3230		*delalloc_start_ret = oe_start;
3231		*delalloc_end_ret = oe_end;
3232		return true;
3233	}
3234
3235	/*
3236	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3237	 * If the ranges are adjacent returned a combined range, otherwise
3238	 * return the leftmost range.
3239	 */
3240	if (oe_start < *delalloc_start_ret) {
3241		if (oe_end < *delalloc_start_ret)
3242			*delalloc_end_ret = oe_end;
3243		*delalloc_start_ret = oe_start;
3244	} else if (*delalloc_end_ret + 1 == oe_start) {
3245		*delalloc_end_ret = oe_end;
3246	}
3247
3248	return true;
3249}
3250
3251/*
3252 * Check if there's delalloc in a given range.
3253 *
3254 * @inode:               The inode.
3255 * @start:               The start offset of the range. It does not need to be
3256 *                       sector size aligned.
3257 * @end:                 The end offset (inclusive value) of the search range.
3258 *                       It does not need to be sector size aligned.
3259 * @cached_state:        Extent state record used for speeding up delalloc
3260 *                       searches in the inode's io_tree. Can be NULL.
3261 * @delalloc_start_ret:  Output argument, set to the start offset of the
3262 *                       subrange found with delalloc (may not be sector size
3263 *                       aligned).
3264 * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3265 *                       of the subrange found with delalloc.
3266 *
3267 * Returns true if a subrange with delalloc is found within the given range, and
3268 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3269 * end offsets of the subrange.
3270 */
3271bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3272				  struct extent_state **cached_state,
3273				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3274{
3275	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3276	u64 prev_delalloc_end = 0;
3277	bool search_io_tree = true;
3278	bool ret = false;
3279
3280	while (cur_offset <= end) {
3281		u64 delalloc_start;
3282		u64 delalloc_end;
3283		bool delalloc;
3284
3285		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3286						  cached_state, &search_io_tree,
3287						  &delalloc_start,
3288						  &delalloc_end);
3289		if (!delalloc)
3290			break;
3291
3292		if (prev_delalloc_end == 0) {
3293			/* First subrange found. */
3294			*delalloc_start_ret = max(delalloc_start, start);
3295			*delalloc_end_ret = delalloc_end;
3296			ret = true;
3297		} else if (delalloc_start == prev_delalloc_end + 1) {
3298			/* Subrange adjacent to the previous one, merge them. */
3299			*delalloc_end_ret = delalloc_end;
3300		} else {
3301			/* Subrange not adjacent to the previous one, exit. */
3302			break;
3303		}
3304
3305		prev_delalloc_end = delalloc_end;
3306		cur_offset = delalloc_end + 1;
3307		cond_resched();
3308	}
3309
3310	return ret;
3311}
3312
3313/*
3314 * Check if there's a hole or delalloc range in a range representing a hole (or
3315 * prealloc extent) found in the inode's subvolume btree.
3316 *
3317 * @inode:      The inode.
3318 * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3319 * @start:      Start offset of the hole region. It does not need to be sector
3320 *              size aligned.
3321 * @end:        End offset (inclusive value) of the hole region. It does not
3322 *              need to be sector size aligned.
3323 * @start_ret:  Return parameter, used to set the start of the subrange in the
3324 *              hole that matches the search criteria (seek mode), if such
3325 *              subrange is found (return value of the function is true).
3326 *              The value returned here may not be sector size aligned.
3327 *
3328 * Returns true if a subrange matching the given seek mode is found, and if one
3329 * is found, it updates @start_ret with the start of the subrange.
3330 */
3331static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3332					struct extent_state **cached_state,
3333					u64 start, u64 end, u64 *start_ret)
3334{
3335	u64 delalloc_start;
3336	u64 delalloc_end;
3337	bool delalloc;
3338
3339	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3340						&delalloc_start, &delalloc_end);
3341	if (delalloc && whence == SEEK_DATA) {
3342		*start_ret = delalloc_start;
3343		return true;
3344	}
3345
3346	if (delalloc && whence == SEEK_HOLE) {
3347		/*
3348		 * We found delalloc but it starts after out start offset. So we
3349		 * have a hole between our start offset and the delalloc start.
3350		 */
3351		if (start < delalloc_start) {
3352			*start_ret = start;
3353			return true;
3354		}
3355		/*
3356		 * Delalloc range starts at our start offset.
3357		 * If the delalloc range's length is smaller than our range,
3358		 * then it means we have a hole that starts where the delalloc
3359		 * subrange ends.
3360		 */
3361		if (delalloc_end < end) {
3362			*start_ret = delalloc_end + 1;
3363			return true;
3364		}
3365
3366		/* There's delalloc for the whole range. */
3367		return false;
3368	}
3369
3370	if (!delalloc && whence == SEEK_HOLE) {
3371		*start_ret = start;
3372		return true;
3373	}
3374
3375	/*
3376	 * No delalloc in the range and we are seeking for data. The caller has
3377	 * to iterate to the next extent item in the subvolume btree.
3378	 */
3379	return false;
 
 
 
 
 
 
 
 
3380}
3381
3382static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3383{
3384	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3385	struct btrfs_file_private *private;
3386	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3387	struct extent_state *cached_state = NULL;
3388	struct extent_state **delalloc_cached_state;
3389	const loff_t i_size = i_size_read(&inode->vfs_inode);
3390	const u64 ino = btrfs_ino(inode);
3391	struct btrfs_root *root = inode->root;
3392	struct btrfs_path *path;
3393	struct btrfs_key key;
3394	u64 last_extent_end;
3395	u64 lockstart;
3396	u64 lockend;
3397	u64 start;
3398	int ret;
3399	bool found = false;
3400
3401	if (i_size == 0 || offset >= i_size)
3402		return -ENXIO;
3403
3404	/*
3405	 * Quick path. If the inode has no prealloc extents and its number of
3406	 * bytes used matches its i_size, then it can not have holes.
3407	 */
3408	if (whence == SEEK_HOLE &&
3409	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3410	    inode_get_bytes(&inode->vfs_inode) == i_size)
3411		return i_size;
3412
3413	spin_lock(&inode->lock);
3414	private = file->private_data;
3415	spin_unlock(&inode->lock);
3416
3417	if (private && private->owner_task != current) {
3418		/*
3419		 * Not allocated by us, don't use it as its cached state is used
3420		 * by the task that allocated it and we don't want neither to
3421		 * mess with it nor get incorrect results because it reflects an
3422		 * invalid state for the current task.
3423		 */
3424		private = NULL;
3425	} else if (!private) {
3426		private = kzalloc(sizeof(*private), GFP_KERNEL);
3427		/*
3428		 * No worries if memory allocation failed.
3429		 * The private structure is used only for speeding up multiple
3430		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3431		 * so everything will still be correct.
3432		 */
3433		if (private) {
3434			bool free = false;
3435
3436			private->owner_task = current;
3437
3438			spin_lock(&inode->lock);
3439			if (file->private_data)
3440				free = true;
3441			else
3442				file->private_data = private;
3443			spin_unlock(&inode->lock);
3444
3445			if (free) {
3446				kfree(private);
3447				private = NULL;
3448			}
3449		}
3450	}
3451
3452	if (private)
3453		delalloc_cached_state = &private->llseek_cached_state;
3454	else
3455		delalloc_cached_state = NULL;
3456
3457	/*
3458	 * offset can be negative, in this case we start finding DATA/HOLE from
3459	 * the very start of the file.
3460	 */
3461	start = max_t(loff_t, 0, offset);
3462
3463	lockstart = round_down(start, fs_info->sectorsize);
3464	lockend = round_up(i_size, fs_info->sectorsize);
3465	if (lockend <= lockstart)
3466		lockend = lockstart + fs_info->sectorsize;
3467	lockend--;
 
3468
3469	path = btrfs_alloc_path();
3470	if (!path)
3471		return -ENOMEM;
3472	path->reada = READA_FORWARD;
3473
3474	key.objectid = ino;
3475	key.type = BTRFS_EXTENT_DATA_KEY;
3476	key.offset = start;
3477
3478	last_extent_end = lockstart;
3479
3480	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3481
3482	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483	if (ret < 0) {
3484		goto out;
3485	} else if (ret > 0 && path->slots[0] > 0) {
3486		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3487		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3488			path->slots[0]--;
3489	}
3490
3491	while (start < i_size) {
3492		struct extent_buffer *leaf = path->nodes[0];
3493		struct btrfs_file_extent_item *extent;
3494		u64 extent_end;
3495		u8 type;
3496
3497		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3498			ret = btrfs_next_leaf(root, path);
3499			if (ret < 0)
3500				goto out;
3501			else if (ret > 0)
3502				break;
3503
3504			leaf = path->nodes[0];
3505		}
3506
3507		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3508		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3509			break;
3510
3511		extent_end = btrfs_file_extent_end(path);
3512
3513		/*
3514		 * In the first iteration we may have a slot that points to an
3515		 * extent that ends before our start offset, so skip it.
3516		 */
3517		if (extent_end <= start) {
3518			path->slots[0]++;
3519			continue;
3520		}
3521
3522		/* We have an implicit hole, NO_HOLES feature is likely set. */
3523		if (last_extent_end < key.offset) {
3524			u64 search_start = last_extent_end;
3525			u64 found_start;
3526
3527			/*
3528			 * First iteration, @start matches @offset and it's
3529			 * within the hole.
3530			 */
3531			if (start == offset)
3532				search_start = offset;
3533
3534			found = find_desired_extent_in_hole(inode, whence,
3535							    delalloc_cached_state,
3536							    search_start,
3537							    key.offset - 1,
3538							    &found_start);
3539			if (found) {
3540				start = found_start;
3541				break;
3542			}
3543			/*
3544			 * Didn't find data or a hole (due to delalloc) in the
3545			 * implicit hole range, so need to analyze the extent.
3546			 */
3547		}
3548
3549		extent = btrfs_item_ptr(leaf, path->slots[0],
3550					struct btrfs_file_extent_item);
3551		type = btrfs_file_extent_type(leaf, extent);
3552
3553		/*
3554		 * Can't access the extent's disk_bytenr field if this is an
3555		 * inline extent, since at that offset, it's where the extent
3556		 * data starts.
3557		 */
3558		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3559		    (type == BTRFS_FILE_EXTENT_REG &&
3560		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3561			/*
3562			 * Explicit hole or prealloc extent, search for delalloc.
3563			 * A prealloc extent is treated like a hole.
3564			 */
3565			u64 search_start = key.offset;
3566			u64 found_start;
3567
3568			/*
3569			 * First iteration, @start matches @offset and it's
3570			 * within the hole.
3571			 */
3572			if (start == offset)
3573				search_start = offset;
3574
3575			found = find_desired_extent_in_hole(inode, whence,
3576							    delalloc_cached_state,
3577							    search_start,
3578							    extent_end - 1,
3579							    &found_start);
3580			if (found) {
3581				start = found_start;
3582				break;
3583			}
3584			/*
3585			 * Didn't find data or a hole (due to delalloc) in the
3586			 * implicit hole range, so need to analyze the next
3587			 * extent item.
3588			 */
3589		} else {
3590			/*
3591			 * Found a regular or inline extent.
3592			 * If we are seeking for data, adjust the start offset
3593			 * and stop, we're done.
3594			 */
3595			if (whence == SEEK_DATA) {
3596				start = max_t(u64, key.offset, offset);
3597				found = true;
3598				break;
3599			}
3600			/*
3601			 * Else, we are seeking for a hole, check the next file
3602			 * extent item.
3603			 */
3604		}
3605
3606		start = extent_end;
3607		last_extent_end = extent_end;
3608		path->slots[0]++;
3609		if (fatal_signal_pending(current)) {
3610			ret = -EINTR;
3611			goto out;
3612		}
3613		cond_resched();
3614	}
3615
3616	/* We have an implicit hole from the last extent found up to i_size. */
3617	if (!found && start < i_size) {
3618		found = find_desired_extent_in_hole(inode, whence,
3619						    delalloc_cached_state, start,
3620						    i_size - 1, &start);
3621		if (!found)
3622			start = i_size;
3623	}
3624
3625out:
3626	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3627	btrfs_free_path(path);
3628
3629	if (ret < 0)
3630		return ret;
3631
3632	if (whence == SEEK_DATA && start >= i_size)
3633		return -ENXIO;
3634
3635	return min_t(loff_t, start, i_size);
3636}
3637
3638static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3639{
3640	struct inode *inode = file->f_mapping->host;
 
3641
 
3642	switch (whence) {
3643	default:
3644		return generic_file_llseek(file, offset, whence);
 
 
3645	case SEEK_DATA:
3646	case SEEK_HOLE:
3647		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3648		offset = find_desired_extent(file, offset, whence);
3649		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3650		break;
3651	}
3652
3653	if (offset < 0)
3654		return offset;
3655
3656	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3657}
3658
3659static int btrfs_file_open(struct inode *inode, struct file *filp)
3660{
3661	int ret;
3662
3663	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3664
3665	ret = fsverity_file_open(inode, filp);
3666	if (ret)
3667		return ret;
3668	return generic_file_open(inode, filp);
3669}
3670
3671static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3672{
3673	ssize_t ret = 0;
3674
3675	if (iocb->ki_flags & IOCB_DIRECT) {
3676		ret = btrfs_direct_read(iocb, to);
3677		if (ret < 0 || !iov_iter_count(to) ||
3678		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3679			return ret;
 
3680	}
3681
3682	return filemap_read(iocb, to, ret);
 
 
 
3683}
3684
3685const struct file_operations btrfs_file_operations = {
3686	.llseek		= btrfs_file_llseek,
3687	.read_iter      = btrfs_file_read_iter,
3688	.splice_read	= filemap_splice_read,
3689	.write_iter	= btrfs_file_write_iter,
3690	.splice_write	= iter_file_splice_write,
3691	.mmap		= btrfs_file_mmap,
3692	.open		= btrfs_file_open,
3693	.release	= btrfs_release_file,
3694	.get_unmapped_area = thp_get_unmapped_area,
3695	.fsync		= btrfs_sync_file,
3696	.fallocate	= btrfs_fallocate,
3697	.unlocked_ioctl	= btrfs_ioctl,
3698#ifdef CONFIG_COMPAT
3699	.compat_ioctl	= btrfs_compat_ioctl,
3700#endif
3701	.remap_file_range = btrfs_remap_file_range,
3702	.uring_cmd	= btrfs_uring_cmd,
3703	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3704};
3705
3706int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3707{
3708	struct address_space *mapping = inode->vfs_inode.i_mapping;
3709	int ret;
3710
3711	/*
3712	 * So with compression we will find and lock a dirty page and clear the
3713	 * first one as dirty, setup an async extent, and immediately return
3714	 * with the entire range locked but with nobody actually marked with
3715	 * writeback.  So we can't just filemap_write_and_wait_range() and
3716	 * expect it to work since it will just kick off a thread to do the
3717	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3718	 * since it will wait on the page lock, which won't be unlocked until
3719	 * after the pages have been marked as writeback and so we're good to go
3720	 * from there.  We have to do this otherwise we'll miss the ordered
3721	 * extents and that results in badness.  Please Josef, do not think you
3722	 * know better and pull this out at some point in the future, it is
3723	 * right and you are wrong.
3724	 */
3725	ret = filemap_fdatawrite_range(mapping, start, end);
3726	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3727		ret = filemap_fdatawrite_range(mapping, start, end);
 
3728
3729	return ret;
3730}
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
  33#include <linux/btrfs.h>
  34#include <linux/uio.h>
 
 
  35#include "ctree.h"
 
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "volumes.h"
  43#include "qgroup.h"
  44#include "compression.h"
  45
  46static struct kmem_cache *btrfs_inode_defrag_cachep;
  47/*
  48 * when auto defrag is enabled we
  49 * queue up these defrag structs to remember which
  50 * inodes need defragging passes
  51 */
  52struct inode_defrag {
  53	struct rb_node rb_node;
  54	/* objectid */
  55	u64 ino;
  56	/*
  57	 * transid where the defrag was added, we search for
  58	 * extents newer than this
  59	 */
  60	u64 transid;
  61
  62	/* root objectid */
  63	u64 root;
  64
  65	/* last offset we were able to defrag */
  66	u64 last_offset;
  67
  68	/* if we've wrapped around back to zero once already */
  69	int cycled;
  70};
  71
  72static int __compare_inode_defrag(struct inode_defrag *defrag1,
  73				  struct inode_defrag *defrag2)
  74{
  75	if (defrag1->root > defrag2->root)
  76		return 1;
  77	else if (defrag1->root < defrag2->root)
  78		return -1;
  79	else if (defrag1->ino > defrag2->ino)
  80		return 1;
  81	else if (defrag1->ino < defrag2->ino)
  82		return -1;
  83	else
  84		return 0;
  85}
  86
  87/* pop a record for an inode into the defrag tree.  The lock
  88 * must be held already
  89 *
  90 * If you're inserting a record for an older transid than an
  91 * existing record, the transid already in the tree is lowered
  92 *
  93 * If an existing record is found the defrag item you
  94 * pass in is freed
  95 */
  96static int __btrfs_add_inode_defrag(struct inode *inode,
  97				    struct inode_defrag *defrag)
  98{
  99	struct btrfs_root *root = BTRFS_I(inode)->root;
 100	struct inode_defrag *entry;
 101	struct rb_node **p;
 102	struct rb_node *parent = NULL;
 103	int ret;
 104
 105	p = &root->fs_info->defrag_inodes.rb_node;
 106	while (*p) {
 107		parent = *p;
 108		entry = rb_entry(parent, struct inode_defrag, rb_node);
 109
 110		ret = __compare_inode_defrag(defrag, entry);
 111		if (ret < 0)
 112			p = &parent->rb_left;
 113		else if (ret > 0)
 114			p = &parent->rb_right;
 115		else {
 116			/* if we're reinserting an entry for
 117			 * an old defrag run, make sure to
 118			 * lower the transid of our existing record
 119			 */
 120			if (defrag->transid < entry->transid)
 121				entry->transid = defrag->transid;
 122			if (defrag->last_offset > entry->last_offset)
 123				entry->last_offset = defrag->last_offset;
 124			return -EEXIST;
 125		}
 126	}
 127	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 128	rb_link_node(&defrag->rb_node, parent, p);
 129	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 130	return 0;
 131}
 132
 133static inline int __need_auto_defrag(struct btrfs_root *root)
 134{
 135	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 136		return 0;
 137
 138	if (btrfs_fs_closing(root->fs_info))
 139		return 0;
 140
 141	return 1;
 142}
 143
 144/*
 145 * insert a defrag record for this inode if auto defrag is
 146 * enabled
 147 */
 148int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 149			   struct inode *inode)
 150{
 151	struct btrfs_root *root = BTRFS_I(inode)->root;
 152	struct inode_defrag *defrag;
 153	u64 transid;
 154	int ret;
 155
 156	if (!__need_auto_defrag(root))
 157		return 0;
 158
 159	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 160		return 0;
 161
 162	if (trans)
 163		transid = trans->transid;
 164	else
 165		transid = BTRFS_I(inode)->root->last_trans;
 166
 167	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168	if (!defrag)
 169		return -ENOMEM;
 170
 171	defrag->ino = btrfs_ino(inode);
 172	defrag->transid = transid;
 173	defrag->root = root->root_key.objectid;
 174
 175	spin_lock(&root->fs_info->defrag_inodes_lock);
 176	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 177		/*
 178		 * If we set IN_DEFRAG flag and evict the inode from memory,
 179		 * and then re-read this inode, this new inode doesn't have
 180		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181		 */
 182		ret = __btrfs_add_inode_defrag(inode, defrag);
 183		if (ret)
 184			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185	} else {
 186		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187	}
 188	spin_unlock(&root->fs_info->defrag_inodes_lock);
 189	return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct inode *inode,
 198				       struct inode_defrag *defrag)
 199{
 200	struct btrfs_root *root = BTRFS_I(inode)->root;
 201	int ret;
 202
 203	if (!__need_auto_defrag(root))
 204		goto out;
 205
 206	/*
 207	 * Here we don't check the IN_DEFRAG flag, because we need merge
 208	 * them together.
 209	 */
 210	spin_lock(&root->fs_info->defrag_inodes_lock);
 211	ret = __btrfs_add_inode_defrag(inode, defrag);
 212	spin_unlock(&root->fs_info->defrag_inodes_lock);
 213	if (ret)
 214		goto out;
 215	return;
 216out:
 217	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227	struct inode_defrag *entry = NULL;
 228	struct inode_defrag tmp;
 229	struct rb_node *p;
 230	struct rb_node *parent = NULL;
 231	int ret;
 232
 233	tmp.ino = ino;
 234	tmp.root = root;
 235
 236	spin_lock(&fs_info->defrag_inodes_lock);
 237	p = fs_info->defrag_inodes.rb_node;
 238	while (p) {
 239		parent = p;
 240		entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242		ret = __compare_inode_defrag(&tmp, entry);
 243		if (ret < 0)
 244			p = parent->rb_left;
 245		else if (ret > 0)
 246			p = parent->rb_right;
 247		else
 248			goto out;
 249	}
 250
 251	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252		parent = rb_next(parent);
 253		if (parent)
 254			entry = rb_entry(parent, struct inode_defrag, rb_node);
 255		else
 256			entry = NULL;
 257	}
 258out:
 259	if (entry)
 260		rb_erase(parent, &fs_info->defrag_inodes);
 261	spin_unlock(&fs_info->defrag_inodes_lock);
 262	return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267	struct inode_defrag *defrag;
 268	struct rb_node *node;
 269
 270	spin_lock(&fs_info->defrag_inodes_lock);
 271	node = rb_first(&fs_info->defrag_inodes);
 272	while (node) {
 273		rb_erase(node, &fs_info->defrag_inodes);
 274		defrag = rb_entry(node, struct inode_defrag, rb_node);
 275		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277		cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279		node = rb_first(&fs_info->defrag_inodes);
 280	}
 281	spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH	1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287				    struct inode_defrag *defrag)
 288{
 289	struct btrfs_root *inode_root;
 290	struct inode *inode;
 291	struct btrfs_key key;
 292	struct btrfs_ioctl_defrag_range_args range;
 293	int num_defrag;
 294	int index;
 295	int ret;
 296
 297	/* get the inode */
 298	key.objectid = defrag->root;
 299	key.type = BTRFS_ROOT_ITEM_KEY;
 300	key.offset = (u64)-1;
 301
 302	index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305	if (IS_ERR(inode_root)) {
 306		ret = PTR_ERR(inode_root);
 307		goto cleanup;
 308	}
 309
 310	key.objectid = defrag->ino;
 311	key.type = BTRFS_INODE_ITEM_KEY;
 312	key.offset = 0;
 313	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314	if (IS_ERR(inode)) {
 315		ret = PTR_ERR(inode);
 316		goto cleanup;
 317	}
 318	srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320	/* do a chunk of defrag */
 321	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322	memset(&range, 0, sizeof(range));
 323	range.len = (u64)-1;
 324	range.start = defrag->last_offset;
 325
 326	sb_start_write(fs_info->sb);
 327	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328				       BTRFS_DEFRAG_BATCH);
 329	sb_end_write(fs_info->sb);
 330	/*
 331	 * if we filled the whole defrag batch, there
 332	 * must be more work to do.  Queue this defrag
 333	 * again
 334	 */
 335	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336		defrag->last_offset = range.start;
 337		btrfs_requeue_inode_defrag(inode, defrag);
 338	} else if (defrag->last_offset && !defrag->cycled) {
 339		/*
 340		 * we didn't fill our defrag batch, but
 341		 * we didn't start at zero.  Make sure we loop
 342		 * around to the start of the file.
 343		 */
 344		defrag->last_offset = 0;
 345		defrag->cycled = 1;
 346		btrfs_requeue_inode_defrag(inode, defrag);
 347	} else {
 348		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349	}
 350
 351	iput(inode);
 352	return 0;
 353cleanup:
 354	srcu_read_unlock(&fs_info->subvol_srcu, index);
 355	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356	return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365	struct inode_defrag *defrag;
 366	u64 first_ino = 0;
 367	u64 root_objectid = 0;
 368
 369	atomic_inc(&fs_info->defrag_running);
 370	while (1) {
 371		/* Pause the auto defragger. */
 372		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373			     &fs_info->fs_state))
 374			break;
 375
 376		if (!__need_auto_defrag(fs_info->tree_root))
 377			break;
 378
 379		/* find an inode to defrag */
 380		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381						 first_ino);
 382		if (!defrag) {
 383			if (root_objectid || first_ino) {
 384				root_objectid = 0;
 385				first_ino = 0;
 386				continue;
 387			} else {
 388				break;
 389			}
 390		}
 391
 392		first_ino = defrag->ino + 1;
 393		root_objectid = defrag->root;
 394
 395		__btrfs_run_defrag_inode(fs_info, defrag);
 396	}
 397	atomic_dec(&fs_info->defrag_running);
 398
 399	/*
 400	 * during unmount, we use the transaction_wait queue to
 401	 * wait for the defragger to stop
 402	 */
 403	wake_up(&fs_info->transaction_wait);
 404	return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411					 struct page **prepared_pages,
 412					 struct iov_iter *i)
 413{
 414	size_t copied = 0;
 415	size_t total_copied = 0;
 416	int pg = 0;
 417	int offset = pos & (PAGE_SIZE - 1);
 418
 419	while (write_bytes > 0) {
 420		size_t count = min_t(size_t,
 421				     PAGE_SIZE - offset, write_bytes);
 422		struct page *page = prepared_pages[pg];
 423		/*
 424		 * Copy data from userspace to the current page
 425		 */
 426		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428		/* Flush processor's dcache for this page */
 429		flush_dcache_page(page);
 430
 431		/*
 432		 * if we get a partial write, we can end up with
 433		 * partially up to date pages.  These add
 434		 * a lot of complexity, so make sure they don't
 435		 * happen by forcing this copy to be retried.
 436		 *
 437		 * The rest of the btrfs_file_write code will fall
 438		 * back to page at a time copies after we return 0.
 439		 */
 440		if (!PageUptodate(page) && copied < count)
 441			copied = 0;
 
 
 
 
 
 
 442
 443		iov_iter_advance(i, copied);
 444		write_bytes -= copied;
 445		total_copied += copied;
 446
 447		/* Return to btrfs_file_write_iter to fault page */
 448		if (unlikely(copied == 0))
 449			break;
 450
 451		if (copied < PAGE_SIZE - offset) {
 452			offset += copied;
 453		} else {
 454			pg++;
 455			offset = 0;
 456		}
 457	}
 458	return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 
 465{
 466	size_t i;
 467	for (i = 0; i < num_pages; i++) {
 468		/* page checked is some magic around finding pages that
 469		 * have been modified without going through btrfs_set_page_dirty
 470		 * clear it here. There should be no need to mark the pages
 471		 * accessed as prepare_pages should have marked them accessed
 472		 * in prepare_pages via find_or_create_page()
 473		 */
 474		ClearPageChecked(pages[i]);
 475		unlock_page(pages[i]);
 476		put_page(pages[i]);
 477	}
 
 
 478}
 479
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 489			     struct page **pages, size_t num_pages,
 490			     loff_t pos, size_t write_bytes,
 491			     struct extent_state **cached)
 492{
 493	int err = 0;
 494	int i;
 495	u64 num_bytes;
 496	u64 start_pos;
 497	u64 end_of_last_block;
 498	u64 end_pos = pos + write_bytes;
 499	loff_t isize = i_size_read(inode);
 
 500
 501	start_pos = pos & ~((u64)root->sectorsize - 1);
 502	num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
 
 
 
 
 
 
 
 
 
 
 503
 504	end_of_last_block = start_pos + num_bytes - 1;
 505	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 506					cached);
 507	if (err)
 508		return err;
 509
 510	for (i = 0; i < num_pages; i++) {
 511		struct page *p = pages[i];
 512		SetPageUptodate(p);
 513		ClearPageChecked(p);
 514		set_page_dirty(p);
 515	}
 
 
 
 
 
 
 516
 517	/*
 518	 * we've only changed i_size in ram, and we haven't updated
 519	 * the disk i_size.  There is no need to log the inode
 520	 * at this time.
 521	 */
 522	if (end_pos > isize)
 523		i_size_write(inode, end_pos);
 524	return 0;
 525}
 526
 527/*
 528 * this drops all the extents in the cache that intersect the range
 529 * [start, end].  Existing extents are split as required.
 530 */
 531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 532			     int skip_pinned)
 533{
 534	struct extent_map *em;
 535	struct extent_map *split = NULL;
 536	struct extent_map *split2 = NULL;
 537	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 538	u64 len = end - start + 1;
 539	u64 gen;
 540	int ret;
 541	int testend = 1;
 542	unsigned long flags;
 543	int compressed = 0;
 544	bool modified;
 545
 546	WARN_ON(end < start);
 547	if (end == (u64)-1) {
 548		len = (u64)-1;
 549		testend = 0;
 550	}
 551	while (1) {
 552		int no_splits = 0;
 553
 554		modified = false;
 555		if (!split)
 556			split = alloc_extent_map();
 557		if (!split2)
 558			split2 = alloc_extent_map();
 559		if (!split || !split2)
 560			no_splits = 1;
 561
 562		write_lock(&em_tree->lock);
 563		em = lookup_extent_mapping(em_tree, start, len);
 564		if (!em) {
 565			write_unlock(&em_tree->lock);
 566			break;
 567		}
 568		flags = em->flags;
 569		gen = em->generation;
 570		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 571			if (testend && em->start + em->len >= start + len) {
 572				free_extent_map(em);
 573				write_unlock(&em_tree->lock);
 574				break;
 575			}
 576			start = em->start + em->len;
 577			if (testend)
 578				len = start + len - (em->start + em->len);
 579			free_extent_map(em);
 580			write_unlock(&em_tree->lock);
 581			continue;
 582		}
 583		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 584		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 585		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 586		modified = !list_empty(&em->list);
 587		if (no_splits)
 588			goto next;
 589
 590		if (em->start < start) {
 591			split->start = em->start;
 592			split->len = start - em->start;
 593
 594			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 595				split->orig_start = em->orig_start;
 596				split->block_start = em->block_start;
 597
 598				if (compressed)
 599					split->block_len = em->block_len;
 600				else
 601					split->block_len = split->len;
 602				split->orig_block_len = max(split->block_len,
 603						em->orig_block_len);
 604				split->ram_bytes = em->ram_bytes;
 605			} else {
 606				split->orig_start = split->start;
 607				split->block_len = 0;
 608				split->block_start = em->block_start;
 609				split->orig_block_len = 0;
 610				split->ram_bytes = split->len;
 611			}
 612
 613			split->generation = gen;
 614			split->bdev = em->bdev;
 615			split->flags = flags;
 616			split->compress_type = em->compress_type;
 617			replace_extent_mapping(em_tree, em, split, modified);
 618			free_extent_map(split);
 619			split = split2;
 620			split2 = NULL;
 621		}
 622		if (testend && em->start + em->len > start + len) {
 623			u64 diff = start + len - em->start;
 624
 625			split->start = start + len;
 626			split->len = em->start + em->len - (start + len);
 627			split->bdev = em->bdev;
 628			split->flags = flags;
 629			split->compress_type = em->compress_type;
 630			split->generation = gen;
 631
 632			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 633				split->orig_block_len = max(em->block_len,
 634						    em->orig_block_len);
 635
 636				split->ram_bytes = em->ram_bytes;
 637				if (compressed) {
 638					split->block_len = em->block_len;
 639					split->block_start = em->block_start;
 640					split->orig_start = em->orig_start;
 641				} else {
 642					split->block_len = split->len;
 643					split->block_start = em->block_start
 644						+ diff;
 645					split->orig_start = em->orig_start;
 646				}
 647			} else {
 648				split->ram_bytes = split->len;
 649				split->orig_start = split->start;
 650				split->block_len = 0;
 651				split->block_start = em->block_start;
 652				split->orig_block_len = 0;
 653			}
 654
 655			if (extent_map_in_tree(em)) {
 656				replace_extent_mapping(em_tree, em, split,
 657						       modified);
 658			} else {
 659				ret = add_extent_mapping(em_tree, split,
 660							 modified);
 661				ASSERT(ret == 0); /* Logic error */
 662			}
 663			free_extent_map(split);
 664			split = NULL;
 665		}
 666next:
 667		if (extent_map_in_tree(em))
 668			remove_extent_mapping(em_tree, em);
 669		write_unlock(&em_tree->lock);
 670
 671		/* once for us */
 672		free_extent_map(em);
 673		/* once for the tree*/
 674		free_extent_map(em);
 675	}
 676	if (split)
 677		free_extent_map(split);
 678	if (split2)
 679		free_extent_map(split2);
 680}
 681
 682/*
 683 * this is very complex, but the basic idea is to drop all extents
 684 * in the range start - end.  hint_block is filled in with a block number
 685 * that would be a good hint to the block allocator for this file.
 686 *
 687 * If an extent intersects the range but is not entirely inside the range
 688 * it is either truncated or split.  Anything entirely inside the range
 689 * is deleted from the tree.
 
 
 
 
 
 
 690 */
 691int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 692			 struct btrfs_root *root, struct inode *inode,
 693			 struct btrfs_path *path, u64 start, u64 end,
 694			 u64 *drop_end, int drop_cache,
 695			 int replace_extent,
 696			 u32 extent_item_size,
 697			 int *key_inserted)
 698{
 
 699	struct extent_buffer *leaf;
 700	struct btrfs_file_extent_item *fi;
 701	struct btrfs_key key;
 702	struct btrfs_key new_key;
 703	u64 ino = btrfs_ino(inode);
 704	u64 search_start = start;
 705	u64 disk_bytenr = 0;
 706	u64 num_bytes = 0;
 707	u64 extent_offset = 0;
 708	u64 extent_end = 0;
 
 709	int del_nr = 0;
 710	int del_slot = 0;
 711	int extent_type;
 712	int recow;
 713	int ret;
 714	int modify_tree = -1;
 715	int update_refs;
 716	int found = 0;
 717	int leafs_visited = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718
 719	if (drop_cache)
 720		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 721
 722	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 723		modify_tree = 0;
 724
 725	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 726		       root == root->fs_info->tree_root);
 727	while (1) {
 728		recow = 0;
 729		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 730					       search_start, modify_tree);
 731		if (ret < 0)
 732			break;
 733		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 734			leaf = path->nodes[0];
 735			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 736			if (key.objectid == ino &&
 737			    key.type == BTRFS_EXTENT_DATA_KEY)
 738				path->slots[0]--;
 739		}
 740		ret = 0;
 741		leafs_visited++;
 742next_slot:
 743		leaf = path->nodes[0];
 744		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 745			BUG_ON(del_nr > 0);
 746			ret = btrfs_next_leaf(root, path);
 747			if (ret < 0)
 748				break;
 749			if (ret > 0) {
 750				ret = 0;
 751				break;
 752			}
 753			leafs_visited++;
 754			leaf = path->nodes[0];
 755			recow = 1;
 756		}
 757
 758		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 759
 760		if (key.objectid > ino)
 761			break;
 762		if (WARN_ON_ONCE(key.objectid < ino) ||
 763		    key.type < BTRFS_EXTENT_DATA_KEY) {
 764			ASSERT(del_nr == 0);
 765			path->slots[0]++;
 766			goto next_slot;
 767		}
 768		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 769			break;
 770
 771		fi = btrfs_item_ptr(leaf, path->slots[0],
 772				    struct btrfs_file_extent_item);
 773		extent_type = btrfs_file_extent_type(leaf, fi);
 774
 775		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 776		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 777			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 778			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 779			extent_offset = btrfs_file_extent_offset(leaf, fi);
 780			extent_end = key.offset +
 781				btrfs_file_extent_num_bytes(leaf, fi);
 782		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 783			extent_end = key.offset +
 784				btrfs_file_extent_inline_len(leaf,
 785						     path->slots[0], fi);
 786		} else {
 787			/* can't happen */
 788			BUG();
 789		}
 790
 791		/*
 792		 * Don't skip extent items representing 0 byte lengths. They
 793		 * used to be created (bug) if while punching holes we hit
 794		 * -ENOSPC condition. So if we find one here, just ensure we
 795		 * delete it, otherwise we would insert a new file extent item
 796		 * with the same key (offset) as that 0 bytes length file
 797		 * extent item in the call to setup_items_for_insert() later
 798		 * in this function.
 799		 */
 800		if (extent_end == key.offset && extent_end >= search_start)
 
 801			goto delete_extent_item;
 
 802
 803		if (extent_end <= search_start) {
 804			path->slots[0]++;
 805			goto next_slot;
 806		}
 807
 808		found = 1;
 809		search_start = max(key.offset, start);
 810		if (recow || !modify_tree) {
 811			modify_tree = -1;
 812			btrfs_release_path(path);
 813			continue;
 814		}
 815
 816		/*
 817		 *     | - range to drop - |
 818		 *  | -------- extent -------- |
 819		 */
 820		if (start > key.offset && end < extent_end) {
 821			BUG_ON(del_nr > 0);
 822			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 823				ret = -EOPNOTSUPP;
 824				break;
 825			}
 826
 827			memcpy(&new_key, &key, sizeof(new_key));
 828			new_key.offset = start;
 829			ret = btrfs_duplicate_item(trans, root, path,
 830						   &new_key);
 831			if (ret == -EAGAIN) {
 832				btrfs_release_path(path);
 833				continue;
 834			}
 835			if (ret < 0)
 836				break;
 837
 838			leaf = path->nodes[0];
 839			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 840					    struct btrfs_file_extent_item);
 841			btrfs_set_file_extent_num_bytes(leaf, fi,
 842							start - key.offset);
 843
 844			fi = btrfs_item_ptr(leaf, path->slots[0],
 845					    struct btrfs_file_extent_item);
 846
 847			extent_offset += start - key.offset;
 848			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 849			btrfs_set_file_extent_num_bytes(leaf, fi,
 850							extent_end - start);
 851			btrfs_mark_buffer_dirty(leaf);
 852
 853			if (update_refs && disk_bytenr > 0) {
 854				ret = btrfs_inc_extent_ref(trans, root,
 855						disk_bytenr, num_bytes, 0,
 856						root->root_key.objectid,
 857						new_key.objectid,
 858						start - extent_offset);
 859				BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 
 
 
 
 
 860			}
 861			key.offset = start;
 862		}
 863		/*
 
 
 
 
 
 
 864		 *  | ---- range to drop ----- |
 865		 *      | -------- extent -------- |
 866		 */
 867		if (start <= key.offset && end < extent_end) {
 868			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 869				ret = -EOPNOTSUPP;
 870				break;
 871			}
 872
 873			memcpy(&new_key, &key, sizeof(new_key));
 874			new_key.offset = end;
 875			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 876
 877			extent_offset += end - key.offset;
 878			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 879			btrfs_set_file_extent_num_bytes(leaf, fi,
 880							extent_end - end);
 881			btrfs_mark_buffer_dirty(leaf);
 882			if (update_refs && disk_bytenr > 0)
 883				inode_sub_bytes(inode, end - key.offset);
 884			break;
 885		}
 886
 887		search_start = extent_end;
 888		/*
 889		 *       | ---- range to drop ----- |
 890		 *  | -------- extent -------- |
 891		 */
 892		if (start > key.offset && end >= extent_end) {
 893			BUG_ON(del_nr > 0);
 894			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 895				ret = -EOPNOTSUPP;
 896				break;
 897			}
 898
 899			btrfs_set_file_extent_num_bytes(leaf, fi,
 900							start - key.offset);
 901			btrfs_mark_buffer_dirty(leaf);
 902			if (update_refs && disk_bytenr > 0)
 903				inode_sub_bytes(inode, extent_end - start);
 904			if (end == extent_end)
 905				break;
 906
 907			path->slots[0]++;
 908			goto next_slot;
 909		}
 910
 911		/*
 912		 *  | ---- range to drop ----- |
 913		 *    | ------ extent ------ |
 914		 */
 915		if (start <= key.offset && end >= extent_end) {
 916delete_extent_item:
 917			if (del_nr == 0) {
 918				del_slot = path->slots[0];
 919				del_nr = 1;
 920			} else {
 921				BUG_ON(del_slot + del_nr != path->slots[0]);
 922				del_nr++;
 923			}
 924
 925			if (update_refs &&
 926			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 927				inode_sub_bytes(inode,
 928						extent_end - key.offset);
 929				extent_end = ALIGN(extent_end,
 930						   root->sectorsize);
 931			} else if (update_refs && disk_bytenr > 0) {
 932				ret = btrfs_free_extent(trans, root,
 933						disk_bytenr, num_bytes, 0,
 934						root->root_key.objectid,
 935						key.objectid, key.offset -
 936						extent_offset);
 937				BUG_ON(ret); /* -ENOMEM */
 938				inode_sub_bytes(inode,
 939						extent_end - key.offset);
 
 
 
 
 
 
 
 
 
 940			}
 941
 942			if (end == extent_end)
 943				break;
 944
 945			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 946				path->slots[0]++;
 947				goto next_slot;
 948			}
 949
 950			ret = btrfs_del_items(trans, root, path, del_slot,
 951					      del_nr);
 952			if (ret) {
 953				btrfs_abort_transaction(trans, root, ret);
 954				break;
 955			}
 956
 957			del_nr = 0;
 958			del_slot = 0;
 959
 960			btrfs_release_path(path);
 961			continue;
 962		}
 963
 964		BUG_ON(1);
 965	}
 966
 967	if (!ret && del_nr > 0) {
 968		/*
 969		 * Set path->slots[0] to first slot, so that after the delete
 970		 * if items are move off from our leaf to its immediate left or
 971		 * right neighbor leafs, we end up with a correct and adjusted
 972		 * path->slots[0] for our insertion (if replace_extent != 0).
 973		 */
 974		path->slots[0] = del_slot;
 975		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 976		if (ret)
 977			btrfs_abort_transaction(trans, root, ret);
 978	}
 979
 980	leaf = path->nodes[0];
 981	/*
 982	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 983	 * which case it unlocked our path, so check path->locks[0] matches a
 984	 * write lock.
 985	 */
 986	if (!ret && replace_extent && leafs_visited == 1 &&
 987	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 988	     path->locks[0] == BTRFS_WRITE_LOCK) &&
 989	    btrfs_leaf_free_space(root, leaf) >=
 990	    sizeof(struct btrfs_item) + extent_item_size) {
 991
 992		key.objectid = ino;
 993		key.type = BTRFS_EXTENT_DATA_KEY;
 994		key.offset = start;
 995		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 996			struct btrfs_key slot_key;
 997
 998			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 999			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000				path->slots[0]++;
1001		}
1002		setup_items_for_insert(root, path, &key,
1003				       &extent_item_size,
1004				       extent_item_size,
1005				       sizeof(struct btrfs_item) +
1006				       extent_item_size, 1);
1007		*key_inserted = 1;
1008	}
1009
1010	if (!replace_extent || !(*key_inserted))
 
 
1011		btrfs_release_path(path);
1012	if (drop_end)
1013		*drop_end = found ? min(end, extent_end) : end;
1014	return ret;
1015}
1016
1017int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018		       struct btrfs_root *root, struct inode *inode, u64 start,
1019		       u64 end, int drop_cache)
1020{
1021	struct btrfs_path *path;
1022	int ret;
1023
1024	path = btrfs_alloc_path();
1025	if (!path)
1026		return -ENOMEM;
1027	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028				   drop_cache, 0, 0, NULL);
1029	btrfs_free_path(path);
1030	return ret;
1031}
1032
1033static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034			    u64 objectid, u64 bytenr, u64 orig_offset,
1035			    u64 *start, u64 *end)
1036{
1037	struct btrfs_file_extent_item *fi;
1038	struct btrfs_key key;
1039	u64 extent_end;
1040
1041	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042		return 0;
1043
1044	btrfs_item_key_to_cpu(leaf, &key, slot);
1045	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046		return 0;
1047
1048	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052	    btrfs_file_extent_compression(leaf, fi) ||
1053	    btrfs_file_extent_encryption(leaf, fi) ||
1054	    btrfs_file_extent_other_encoding(leaf, fi))
1055		return 0;
1056
1057	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059		return 0;
1060
1061	*start = key.offset;
1062	*end = extent_end;
1063	return 1;
1064}
1065
1066/*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
1073int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074			      struct inode *inode, u64 start, u64 end)
1075{
1076	struct btrfs_root *root = BTRFS_I(inode)->root;
1077	struct extent_buffer *leaf;
1078	struct btrfs_path *path;
1079	struct btrfs_file_extent_item *fi;
 
1080	struct btrfs_key key;
1081	struct btrfs_key new_key;
1082	u64 bytenr;
1083	u64 num_bytes;
1084	u64 extent_end;
1085	u64 orig_offset;
1086	u64 other_start;
1087	u64 other_end;
1088	u64 split;
1089	int del_nr = 0;
1090	int del_slot = 0;
1091	int recow;
1092	int ret;
1093	u64 ino = btrfs_ino(inode);
1094
1095	path = btrfs_alloc_path();
1096	if (!path)
1097		return -ENOMEM;
1098again:
1099	recow = 0;
1100	split = start;
1101	key.objectid = ino;
1102	key.type = BTRFS_EXTENT_DATA_KEY;
1103	key.offset = split;
1104
1105	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106	if (ret < 0)
1107		goto out;
1108	if (ret > 0 && path->slots[0] > 0)
1109		path->slots[0]--;
1110
1111	leaf = path->nodes[0];
1112	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 
1114	fi = btrfs_item_ptr(leaf, path->slots[0],
1115			    struct btrfs_file_extent_item);
1116	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117	       BTRFS_FILE_EXTENT_PREALLOC);
 
 
 
1118	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119	BUG_ON(key.offset > start || extent_end < end);
 
 
 
 
1120
1121	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124	memcpy(&new_key, &key, sizeof(new_key));
1125
1126	if (start == key.offset && end < extent_end) {
1127		other_start = 0;
1128		other_end = start;
1129		if (extent_mergeable(leaf, path->slots[0] - 1,
1130				     ino, bytenr, orig_offset,
1131				     &other_start, &other_end)) {
1132			new_key.offset = end;
1133			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134			fi = btrfs_item_ptr(leaf, path->slots[0],
1135					    struct btrfs_file_extent_item);
1136			btrfs_set_file_extent_generation(leaf, fi,
1137							 trans->transid);
1138			btrfs_set_file_extent_num_bytes(leaf, fi,
1139							extent_end - end);
1140			btrfs_set_file_extent_offset(leaf, fi,
1141						     end - orig_offset);
1142			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143					    struct btrfs_file_extent_item);
1144			btrfs_set_file_extent_generation(leaf, fi,
1145							 trans->transid);
1146			btrfs_set_file_extent_num_bytes(leaf, fi,
1147							end - other_start);
1148			btrfs_mark_buffer_dirty(leaf);
1149			goto out;
1150		}
1151	}
1152
1153	if (start > key.offset && end == extent_end) {
1154		other_start = end;
1155		other_end = 0;
1156		if (extent_mergeable(leaf, path->slots[0] + 1,
1157				     ino, bytenr, orig_offset,
1158				     &other_start, &other_end)) {
1159			fi = btrfs_item_ptr(leaf, path->slots[0],
1160					    struct btrfs_file_extent_item);
1161			btrfs_set_file_extent_num_bytes(leaf, fi,
1162							start - key.offset);
1163			btrfs_set_file_extent_generation(leaf, fi,
1164							 trans->transid);
1165			path->slots[0]++;
1166			new_key.offset = start;
1167			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168
1169			fi = btrfs_item_ptr(leaf, path->slots[0],
1170					    struct btrfs_file_extent_item);
1171			btrfs_set_file_extent_generation(leaf, fi,
1172							 trans->transid);
1173			btrfs_set_file_extent_num_bytes(leaf, fi,
1174							other_end - start);
1175			btrfs_set_file_extent_offset(leaf, fi,
1176						     start - orig_offset);
1177			btrfs_mark_buffer_dirty(leaf);
1178			goto out;
1179		}
1180	}
1181
1182	while (start > key.offset || end < extent_end) {
1183		if (key.offset == start)
1184			split = end;
1185
1186		new_key.offset = split;
1187		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188		if (ret == -EAGAIN) {
1189			btrfs_release_path(path);
1190			goto again;
1191		}
1192		if (ret < 0) {
1193			btrfs_abort_transaction(trans, root, ret);
1194			goto out;
1195		}
1196
1197		leaf = path->nodes[0];
1198		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199				    struct btrfs_file_extent_item);
1200		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201		btrfs_set_file_extent_num_bytes(leaf, fi,
1202						split - key.offset);
1203
1204		fi = btrfs_item_ptr(leaf, path->slots[0],
1205				    struct btrfs_file_extent_item);
1206
1207		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209		btrfs_set_file_extent_num_bytes(leaf, fi,
1210						extent_end - split);
1211		btrfs_mark_buffer_dirty(leaf);
1212
1213		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214					   root->root_key.objectid,
1215					   ino, orig_offset);
1216		BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 
 
 
1217
1218		if (split == start) {
1219			key.offset = start;
1220		} else {
1221			BUG_ON(start != key.offset);
 
 
 
 
1222			path->slots[0]--;
1223			extent_end = end;
1224		}
1225		recow = 1;
1226	}
1227
1228	other_start = end;
1229	other_end = 0;
 
 
 
 
 
 
 
 
1230	if (extent_mergeable(leaf, path->slots[0] + 1,
1231			     ino, bytenr, orig_offset,
1232			     &other_start, &other_end)) {
1233		if (recow) {
1234			btrfs_release_path(path);
1235			goto again;
1236		}
1237		extent_end = other_end;
1238		del_slot = path->slots[0] + 1;
1239		del_nr++;
1240		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241					0, root->root_key.objectid,
1242					ino, orig_offset);
1243		BUG_ON(ret); /* -ENOMEM */
 
1244	}
1245	other_start = 0;
1246	other_end = start;
1247	if (extent_mergeable(leaf, path->slots[0] - 1,
1248			     ino, bytenr, orig_offset,
1249			     &other_start, &other_end)) {
1250		if (recow) {
1251			btrfs_release_path(path);
1252			goto again;
1253		}
1254		key.offset = other_start;
1255		del_slot = path->slots[0];
1256		del_nr++;
1257		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258					0, root->root_key.objectid,
1259					ino, orig_offset);
1260		BUG_ON(ret); /* -ENOMEM */
 
1261	}
1262	if (del_nr == 0) {
1263		fi = btrfs_item_ptr(leaf, path->slots[0],
1264			   struct btrfs_file_extent_item);
1265		btrfs_set_file_extent_type(leaf, fi,
1266					   BTRFS_FILE_EXTENT_REG);
1267		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268		btrfs_mark_buffer_dirty(leaf);
1269	} else {
1270		fi = btrfs_item_ptr(leaf, del_slot - 1,
1271			   struct btrfs_file_extent_item);
1272		btrfs_set_file_extent_type(leaf, fi,
1273					   BTRFS_FILE_EXTENT_REG);
1274		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275		btrfs_set_file_extent_num_bytes(leaf, fi,
1276						extent_end - key.offset);
1277		btrfs_mark_buffer_dirty(leaf);
1278
1279		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280		if (ret < 0) {
1281			btrfs_abort_transaction(trans, root, ret);
1282			goto out;
1283		}
1284	}
1285out:
1286	btrfs_free_path(path);
1287	return 0;
1288}
1289
1290/*
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1293 */
1294static int prepare_uptodate_page(struct inode *inode,
1295				 struct page *page, u64 pos,
1296				 bool force_uptodate)
1297{
 
 
1298	int ret = 0;
1299
1300	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301	    !PageUptodate(page)) {
1302		ret = btrfs_readpage(NULL, page);
1303		if (ret)
1304			return ret;
1305		lock_page(page);
1306		if (!PageUptodate(page)) {
1307			unlock_page(page);
1308			return -EIO;
1309		}
1310		if (page->mapping != inode->i_mapping) {
1311			unlock_page(page);
1312			return -EAGAIN;
1313		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314	}
1315	return 0;
1316}
1317
 
 
 
 
 
 
 
 
 
 
 
 
 
1318/*
1319 * this just gets pages into the page cache and locks them down.
1320 */
1321static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322				  size_t num_pages, loff_t pos,
1323				  size_t write_bytes, bool force_uptodate)
1324{
1325	int i;
1326	unsigned long index = pos >> PAGE_SHIFT;
1327	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328	int err = 0;
1329	int faili;
 
1330
1331	for (i = 0; i < num_pages; i++) {
1332again:
1333		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334					       mask | __GFP_WRITE);
1335		if (!pages[i]) {
1336			faili = i - 1;
1337			err = -ENOMEM;
1338			goto fail;
1339		}
1340
1341		if (i == 0)
1342			err = prepare_uptodate_page(inode, pages[i], pos,
1343						    force_uptodate);
1344		if (!err && i == num_pages - 1)
1345			err = prepare_uptodate_page(inode, pages[i],
1346						    pos + write_bytes, false);
1347		if (err) {
1348			put_page(pages[i]);
1349			if (err == -EAGAIN) {
1350				err = 0;
1351				goto again;
1352			}
1353			faili = i - 1;
1354			goto fail;
 
 
1355		}
1356		wait_on_page_writeback(pages[i]);
1357	}
1358
1359	return 0;
1360fail:
1361	while (faili >= 0) {
1362		unlock_page(pages[faili]);
1363		put_page(pages[faili]);
1364		faili--;
1365	}
1366	return err;
1367
1368}
1369
1370/*
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1373 *
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1379 */
1380static noinline int
1381lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382				size_t num_pages, loff_t pos,
1383				size_t write_bytes,
1384				u64 *lockstart, u64 *lockend,
1385				struct extent_state **cached_state)
1386{
1387	struct btrfs_root *root = BTRFS_I(inode)->root;
1388	u64 start_pos;
1389	u64 last_pos;
1390	int i;
1391	int ret = 0;
1392
1393	start_pos = round_down(pos, root->sectorsize);
1394	last_pos = start_pos
1395		+ round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1396
1397	if (start_pos < inode->i_size) {
1398		struct btrfs_ordered_extent *ordered;
1399		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400				 start_pos, last_pos, cached_state);
 
 
 
 
 
 
 
 
 
 
1401		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402						     last_pos - start_pos + 1);
1403		if (ordered &&
1404		    ordered->file_offset + ordered->len > start_pos &&
1405		    ordered->file_offset <= last_pos) {
1406			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407					     start_pos, last_pos,
1408					     cached_state, GFP_NOFS);
1409			for (i = 0; i < num_pages; i++) {
1410				unlock_page(pages[i]);
1411				put_page(pages[i]);
1412			}
1413			btrfs_start_ordered_extent(inode, ordered, 1);
1414			btrfs_put_ordered_extent(ordered);
1415			return -EAGAIN;
1416		}
1417		if (ordered)
1418			btrfs_put_ordered_extent(ordered);
1419
1420		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423				  0, 0, cached_state, GFP_NOFS);
1424		*lockstart = start_pos;
1425		*lockend = last_pos;
1426		ret = 1;
1427	}
1428
1429	for (i = 0; i < num_pages; i++) {
1430		if (clear_page_dirty_for_io(pages[i]))
1431			account_page_redirty(pages[i]);
1432		set_page_extent_mapped(pages[i]);
1433		WARN_ON(!PageLocked(pages[i]));
1434	}
1435
1436	return ret;
1437}
1438
1439static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440				    size_t *write_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441{
1442	struct btrfs_root *root = BTRFS_I(inode)->root;
1443	struct btrfs_ordered_extent *ordered;
 
1444	u64 lockstart, lockend;
1445	u64 num_bytes;
1446	int ret;
1447
1448	ret = btrfs_start_write_no_snapshoting(root);
1449	if (!ret)
1450		return -ENOSPC;
1451
1452	lockstart = round_down(pos, root->sectorsize);
1453	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1454
1455	while (1) {
1456		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458						     lockend - lockstart + 1);
1459		if (!ordered) {
1460			break;
 
 
 
 
1461		}
1462		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463		btrfs_start_ordered_extent(inode, ordered, 1);
1464		btrfs_put_ordered_extent(ordered);
1465	}
1466
1467	num_bytes = lockend - lockstart + 1;
1468	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469	if (ret <= 0) {
1470		ret = 0;
1471		btrfs_end_write_no_snapshoting(root);
1472	} else {
1473		*write_bytes = min_t(size_t, *write_bytes ,
1474				     num_bytes - pos + lockstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475	}
1476
1477	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
 
 
 
 
 
 
 
 
1478
1479	return ret;
1480}
1481
1482static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483					       struct iov_iter *i,
1484					       loff_t pos)
1485{
 
 
1486	struct inode *inode = file_inode(file);
1487	struct btrfs_root *root = BTRFS_I(inode)->root;
1488	struct page **pages = NULL;
1489	struct extent_state *cached_state = NULL;
1490	u64 release_bytes = 0;
1491	u64 lockstart;
1492	u64 lockend;
1493	size_t num_written = 0;
1494	int nrptrs;
1495	int ret = 0;
 
 
 
1496	bool only_release_metadata = false;
1497	bool force_page_uptodate = false;
1498	bool need_unlock;
1499
1500	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501			PAGE_SIZE / (sizeof(struct page *)));
1502	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503	nrptrs = max(nrptrs, 8);
1504	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505	if (!pages)
1506		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507
 
1508	while (iov_iter_count(i) > 0) {
1509		size_t offset = pos & (PAGE_SIZE - 1);
 
1510		size_t sector_offset;
1511		size_t write_bytes = min(iov_iter_count(i),
1512					 nrptrs * (size_t)PAGE_SIZE -
1513					 offset);
1514		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515						PAGE_SIZE);
1516		size_t reserve_bytes;
1517		size_t dirty_pages;
1518		size_t copied;
1519		size_t dirty_sectors;
1520		size_t num_sectors;
1521
1522		WARN_ON(num_pages > nrptrs);
 
1523
1524		/*
1525		 * Fault pages before locking them in prepare_pages
1526		 * to avoid recursive lock
1527		 */
1528		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529			ret = -EFAULT;
1530			break;
1531		}
1532
1533		sector_offset = pos & (root->sectorsize - 1);
1534		reserve_bytes = round_up(write_bytes + sector_offset,
1535				root->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
1536
1537		if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1538					      BTRFS_INODE_PREALLOC)) &&
1539		    check_can_nocow(inode, pos, &write_bytes) > 0) {
1540			/*
1541			 * For nodata cow case, no need to reserve
1542			 * data space.
 
1543			 */
 
 
 
 
 
 
 
 
1544			only_release_metadata = true;
1545			/*
1546			 * our prealloc extent may be smaller than
1547			 * write_bytes, so scale down.
1548			 */
1549			num_pages = DIV_ROUND_UP(write_bytes + offset,
1550						 PAGE_SIZE);
1551			reserve_bytes = round_up(write_bytes + sector_offset,
1552					root->sectorsize);
1553			goto reserve_metadata;
1554		}
1555
1556		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1557		if (ret < 0)
1558			break;
1559
1560reserve_metadata:
1561		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1562		if (ret) {
1563			if (!only_release_metadata)
1564				btrfs_free_reserved_data_space(inode, pos,
1565							       write_bytes);
 
1566			else
1567				btrfs_end_write_no_snapshoting(root);
 
 
 
1568			break;
1569		}
1570
1571		release_bytes = reserve_bytes;
1572		need_unlock = false;
1573again:
1574		/*
1575		 * This is going to setup the pages array with the number of
1576		 * pages we want, so we don't really need to worry about the
1577		 * contents of pages from loop to loop
1578		 */
1579		ret = prepare_pages(inode, pages, num_pages,
1580				    pos, write_bytes,
1581				    force_page_uptodate);
1582		if (ret)
 
 
1583			break;
 
1584
1585		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586						pos, write_bytes, &lockstart,
1587						&lockend, &cached_state);
1588		if (ret < 0) {
1589			if (ret == -EAGAIN)
1590				goto again;
 
 
 
 
1591			break;
1592		} else if (ret > 0) {
1593			need_unlock = true;
1594			ret = 0;
1595		}
1596
1597		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1598
1599		/*
1600		 * if we have trouble faulting in the pages, fall
1601		 * back to one page at a time
1602		 */
1603		if (copied < write_bytes)
1604			nrptrs = 1;
1605
1606		if (copied == 0) {
1607			force_page_uptodate = true;
1608			dirty_pages = 0;
1609		} else {
1610			force_page_uptodate = false;
1611			dirty_pages = DIV_ROUND_UP(copied + offset,
1612						   PAGE_SIZE);
1613		}
1614
1615		/*
1616		 * If we had a short copy we need to release the excess delaloc
1617		 * bytes we reserved.  We need to increment outstanding_extents
1618		 * because btrfs_delalloc_release_space will decrement it, but
1619		 * we still have an outstanding extent for the chunk we actually
1620		 * managed to copy.
1621		 */
1622		num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1623						reserve_bytes);
1624		dirty_sectors = round_up(copied + sector_offset,
1625					root->sectorsize);
1626		dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1627						dirty_sectors);
1628
1629		if (num_sectors > dirty_sectors) {
1630			release_bytes = (write_bytes - copied)
1631				& ~((u64)root->sectorsize - 1);
1632			if (copied > 0) {
1633				spin_lock(&BTRFS_I(inode)->lock);
1634				BTRFS_I(inode)->outstanding_extents++;
1635				spin_unlock(&BTRFS_I(inode)->lock);
1636			}
1637			if (only_release_metadata) {
1638				btrfs_delalloc_release_metadata(inode,
1639								release_bytes);
1640			} else {
1641				u64 __pos;
1642
1643				__pos = round_down(pos, root->sectorsize) +
1644					(dirty_pages << PAGE_SHIFT);
1645				btrfs_delalloc_release_space(inode, __pos,
1646							     release_bytes);
1647			}
1648		}
1649
1650		release_bytes = round_up(copied + sector_offset,
1651					root->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652
1653		if (copied > 0)
1654			ret = btrfs_dirty_pages(root, inode, pages,
1655						dirty_pages, pos, copied,
1656						NULL);
1657		if (need_unlock)
1658			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1659					     lockstart, lockend, &cached_state,
1660					     GFP_NOFS);
1661		if (ret) {
1662			btrfs_drop_pages(pages, num_pages);
1663			break;
1664		}
1665
1666		release_bytes = 0;
1667		if (only_release_metadata)
1668			btrfs_end_write_no_snapshoting(root);
1669
1670		if (only_release_metadata && copied > 0) {
1671			lockstart = round_down(pos, root->sectorsize);
1672			lockend = round_up(pos + copied, root->sectorsize) - 1;
1673
1674			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1675				       lockend, EXTENT_NORESERVE, NULL,
1676				       NULL, GFP_NOFS);
1677			only_release_metadata = false;
1678		}
1679
1680		btrfs_drop_pages(pages, num_pages);
1681
1682		cond_resched();
1683
1684		balance_dirty_pages_ratelimited(inode->i_mapping);
1685		if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1686			btrfs_btree_balance_dirty(root);
1687
1688		pos += copied;
1689		num_written += copied;
1690	}
1691
1692	kfree(pages);
1693
1694	if (release_bytes) {
1695		if (only_release_metadata) {
1696			btrfs_end_write_no_snapshoting(root);
1697			btrfs_delalloc_release_metadata(inode, release_bytes);
 
1698		} else {
1699			btrfs_delalloc_release_space(inode, pos, release_bytes);
 
 
 
1700		}
1701	}
1702
 
 
 
 
 
 
 
1703	return num_written ? num_written : ret;
1704}
1705
1706static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1707				    struct iov_iter *from,
1708				    loff_t pos)
1709{
1710	struct file *file = iocb->ki_filp;
1711	struct inode *inode = file_inode(file);
1712	ssize_t written;
1713	ssize_t written_buffered;
1714	loff_t endbyte;
1715	int err;
1716
1717	written = generic_file_direct_write(iocb, from, pos);
1718
1719	if (written < 0 || !iov_iter_count(from))
1720		return written;
1721
1722	pos += written;
1723	written_buffered = __btrfs_buffered_write(file, from, pos);
1724	if (written_buffered < 0) {
1725		err = written_buffered;
1726		goto out;
1727	}
1728	/*
1729	 * Ensure all data is persisted. We want the next direct IO read to be
1730	 * able to read what was just written.
1731	 */
1732	endbyte = pos + written_buffered - 1;
1733	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1734	if (err)
1735		goto out;
1736	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1737	if (err)
 
1738		goto out;
1739	written += written_buffered;
1740	iocb->ki_pos = pos + written_buffered;
1741	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1742				 endbyte >> PAGE_SHIFT);
1743out:
1744	return written ? written : err;
 
1745}
1746
1747static void update_time_for_write(struct inode *inode)
1748{
1749	struct timespec now;
1750
1751	if (IS_NOCMTIME(inode))
1752		return;
1753
1754	now = current_fs_time(inode->i_sb);
1755	if (!timespec_equal(&inode->i_mtime, &now))
1756		inode->i_mtime = now;
1757
1758	if (!timespec_equal(&inode->i_ctime, &now))
1759		inode->i_ctime = now;
1760
1761	if (IS_I_VERSION(inode))
1762		inode_inc_iversion(inode);
1763}
1764
1765static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1766				    struct iov_iter *from)
1767{
1768	struct file *file = iocb->ki_filp;
1769	struct inode *inode = file_inode(file);
1770	struct btrfs_root *root = BTRFS_I(inode)->root;
1771	u64 start_pos;
1772	u64 end_pos;
1773	ssize_t num_written = 0;
1774	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1775	ssize_t err;
1776	loff_t pos;
1777	size_t count;
1778	loff_t oldsize;
1779	int clean_page = 0;
1780
1781	inode_lock(inode);
1782	err = generic_write_checks(iocb, from);
1783	if (err <= 0) {
1784		inode_unlock(inode);
1785		return err;
1786	}
1787
1788	current->backing_dev_info = inode_to_bdi(inode);
1789	err = file_remove_privs(file);
1790	if (err) {
1791		inode_unlock(inode);
1792		goto out;
1793	}
1794
1795	/*
1796	 * If BTRFS flips readonly due to some impossible error
1797	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1798	 * although we have opened a file as writable, we have
1799	 * to stop this write operation to ensure FS consistency.
1800	 */
1801	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1802		inode_unlock(inode);
1803		err = -EROFS;
1804		goto out;
1805	}
1806
1807	/*
1808	 * We reserve space for updating the inode when we reserve space for the
1809	 * extent we are going to write, so we will enospc out there.  We don't
1810	 * need to start yet another transaction to update the inode as we will
1811	 * update the inode when we finish writing whatever data we write.
1812	 */
1813	update_time_for_write(inode);
1814
1815	pos = iocb->ki_pos;
1816	count = iov_iter_count(from);
1817	start_pos = round_down(pos, root->sectorsize);
1818	oldsize = i_size_read(inode);
1819	if (start_pos > oldsize) {
1820		/* Expand hole size to cover write data, preventing empty gap */
1821		end_pos = round_up(pos + count, root->sectorsize);
1822		err = btrfs_cont_expand(inode, oldsize, end_pos);
1823		if (err) {
1824			inode_unlock(inode);
1825			goto out;
1826		}
1827		if (start_pos > round_up(oldsize, root->sectorsize))
1828			clean_page = 1;
1829	}
1830
1831	if (sync)
1832		atomic_inc(&BTRFS_I(inode)->sync_writers);
1833
1834	if (iocb->ki_flags & IOCB_DIRECT) {
1835		num_written = __btrfs_direct_write(iocb, from, pos);
1836	} else {
1837		num_written = __btrfs_buffered_write(file, from, pos);
1838		if (num_written > 0)
1839			iocb->ki_pos = pos + num_written;
1840		if (clean_page)
1841			pagecache_isize_extended(inode, oldsize,
1842						i_size_read(inode));
1843	}
1844
1845	inode_unlock(inode);
 
1846
1847	/*
1848	 * We also have to set last_sub_trans to the current log transid,
1849	 * otherwise subsequent syncs to a file that's been synced in this
1850	 * transaction will appear to have already occurred.
1851	 */
1852	spin_lock(&BTRFS_I(inode)->lock);
1853	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1854	spin_unlock(&BTRFS_I(inode)->lock);
1855	if (num_written > 0) {
1856		err = generic_write_sync(file, pos, num_written);
1857		if (err < 0)
1858			num_written = err;
1859	}
1860
1861	if (sync)
1862		atomic_dec(&BTRFS_I(inode)->sync_writers);
1863out:
1864	current->backing_dev_info = NULL;
1865	return num_written ? num_written : err;
1866}
1867
1868int btrfs_release_file(struct inode *inode, struct file *filp)
1869{
1870	if (filp->private_data)
1871		btrfs_ioctl_trans_end(filp);
 
 
 
 
 
 
 
1872	/*
1873	 * ordered_data_close is set by settattr when we are about to truncate
1874	 * a file from a non-zero size to a zero size.  This tries to
1875	 * flush down new bytes that may have been written if the
1876	 * application were using truncate to replace a file in place.
1877	 */
1878	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1879			       &BTRFS_I(inode)->runtime_flags))
1880			filemap_flush(inode->i_mapping);
1881	return 0;
1882}
1883
1884static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1885{
1886	int ret;
 
1887
1888	atomic_inc(&BTRFS_I(inode)->sync_writers);
 
 
 
 
 
 
1889	ret = btrfs_fdatawrite_range(inode, start, end);
1890	atomic_dec(&BTRFS_I(inode)->sync_writers);
1891
1892	return ret;
1893}
1894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895/*
1896 * fsync call for both files and directories.  This logs the inode into
1897 * the tree log instead of forcing full commits whenever possible.
1898 *
1899 * It needs to call filemap_fdatawait so that all ordered extent updates are
1900 * in the metadata btree are up to date for copying to the log.
1901 *
1902 * It drops the inode mutex before doing the tree log commit.  This is an
1903 * important optimization for directories because holding the mutex prevents
1904 * new operations on the dir while we write to disk.
1905 */
1906int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1907{
1908	struct dentry *dentry = file_dentry(file);
1909	struct inode *inode = d_inode(dentry);
1910	struct btrfs_root *root = BTRFS_I(inode)->root;
 
1911	struct btrfs_trans_handle *trans;
1912	struct btrfs_log_ctx ctx;
1913	int ret = 0;
1914	bool full_sync = 0;
1915	u64 len;
 
 
 
 
 
 
 
 
 
 
 
 
1916
1917	/*
1918	 * The range length can be represented by u64, we have to do the typecasts
1919	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1920	 */
1921	len = (u64)end - (u64)start + 1;
1922	trace_btrfs_sync_file(file, datasync);
 
 
 
 
 
1923
1924	/*
1925	 * We write the dirty pages in the range and wait until they complete
1926	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1927	 * multi-task, and make the performance up.  See
1928	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1929	 */
1930	ret = start_ordered_ops(inode, start, end);
1931	if (ret)
1932		return ret;
 
 
 
 
 
1933
1934	inode_lock(inode);
1935	atomic_inc(&root->log_batch);
1936	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1937			     &BTRFS_I(inode)->runtime_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1938	/*
1939	 * We might have have had more pages made dirty after calling
1940	 * start_ordered_ops and before acquiring the inode's i_mutex.
 
 
 
 
1941	 */
1942	if (full_sync) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943		/*
1944		 * For a full sync, we need to make sure any ordered operations
1945		 * start and finish before we start logging the inode, so that
1946		 * all extents are persisted and the respective file extent
1947		 * items are in the fs/subvol btree.
1948		 */
1949		ret = btrfs_wait_ordered_range(inode, start, len);
1950	} else {
 
 
 
1951		/*
1952		 * Start any new ordered operations before starting to log the
1953		 * inode. We will wait for them to finish in btrfs_sync_log().
1954		 *
1955		 * Right before acquiring the inode's mutex, we might have new
1956		 * writes dirtying pages, which won't immediately start the
1957		 * respective ordered operations - that is done through the
1958		 * fill_delalloc callbacks invoked from the writepage and
1959		 * writepages address space operations. So make sure we start
1960		 * all ordered operations before starting to log our inode. Not
1961		 * doing this means that while logging the inode, writeback
1962		 * could start and invoke writepage/writepages, which would call
1963		 * the fill_delalloc callbacks (cow_file_range,
1964		 * submit_compressed_extents). These callbacks add first an
1965		 * extent map to the modified list of extents and then create
1966		 * the respective ordered operation, which means in
1967		 * tree-log.c:btrfs_log_inode() we might capture all existing
1968		 * ordered operations (with btrfs_get_logged_extents()) before
1969		 * the fill_delalloc callback adds its ordered operation, and by
1970		 * the time we visit the modified list of extent maps (with
1971		 * btrfs_log_changed_extents()), we see and process the extent
1972		 * map they created. We then use the extent map to construct a
1973		 * file extent item for logging without waiting for the
1974		 * respective ordered operation to finish - this file extent
1975		 * item points to a disk location that might not have yet been
1976		 * written to, containing random data - so after a crash a log
1977		 * replay will make our inode have file extent items that point
1978		 * to disk locations containing invalid data, as we returned
1979		 * success to userspace without waiting for the respective
1980		 * ordered operation to finish, because it wasn't captured by
1981		 * btrfs_get_logged_extents().
1982		 */
1983		ret = start_ordered_ops(inode, start, end);
1984	}
1985	if (ret) {
1986		inode_unlock(inode);
1987		goto out;
1988	}
 
 
 
 
1989	atomic_inc(&root->log_batch);
1990
1991	/*
1992	 * If the last transaction that changed this file was before the current
1993	 * transaction and we have the full sync flag set in our inode, we can
1994	 * bail out now without any syncing.
1995	 *
1996	 * Note that we can't bail out if the full sync flag isn't set. This is
1997	 * because when the full sync flag is set we start all ordered extents
1998	 * and wait for them to fully complete - when they complete they update
1999	 * the inode's last_trans field through:
2000	 *
2001	 *     btrfs_finish_ordered_io() ->
2002	 *         btrfs_update_inode_fallback() ->
2003	 *             btrfs_update_inode() ->
2004	 *                 btrfs_set_inode_last_trans()
2005	 *
2006	 * So we are sure that last_trans is up to date and can do this check to
2007	 * bail out safely. For the fast path, when the full sync flag is not
2008	 * set in our inode, we can not do it because we start only our ordered
2009	 * extents and don't wait for them to complete (that is when
2010	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2011	 * value might be less than or equals to fs_info->last_trans_committed,
2012	 * and setting a speculative last_trans for an inode when a buffered
2013	 * write is made (such as fs_info->generation + 1 for example) would not
2014	 * be reliable since after setting the value and before fsync is called
2015	 * any number of transactions can start and commit (transaction kthread
2016	 * commits the current transaction periodically), and a transaction
2017	 * commit does not start nor waits for ordered extents to complete.
2018	 */
2019	smp_mb();
2020	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2021	    (full_sync && BTRFS_I(inode)->last_trans <=
2022	     root->fs_info->last_trans_committed) ||
2023	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2024	     BTRFS_I(inode)->last_trans
2025	     <= root->fs_info->last_trans_committed)) {
2026		/*
2027		 * We'v had everything committed since the last time we were
2028		 * modified so clear this flag in case it was set for whatever
2029		 * reason, it's no longer relevant.
2030		 */
2031		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032			  &BTRFS_I(inode)->runtime_flags);
2033		inode_unlock(inode);
2034		goto out;
 
 
 
 
 
 
2035	}
2036
2037	/*
2038	 * ok we haven't committed the transaction yet, lets do a commit
2039	 */
2040	if (file->private_data)
2041		btrfs_ioctl_trans_end(file);
2042
2043	/*
2044	 * We use start here because we will need to wait on the IO to complete
2045	 * in btrfs_sync_log, which could require joining a transaction (for
2046	 * example checking cross references in the nocow path).  If we use join
2047	 * here we could get into a situation where we're waiting on IO to
2048	 * happen that is blocked on a transaction trying to commit.  With start
2049	 * we inc the extwriter counter, so we wait for all extwriters to exit
2050	 * before we start blocking join'ers.  This comment is to keep somebody
2051	 * from thinking they are super smart and changing this to
2052	 * btrfs_join_transaction *cough*Josef*cough*.
2053	 */
2054	trans = btrfs_start_transaction(root, 0);
2055	if (IS_ERR(trans)) {
2056		ret = PTR_ERR(trans);
2057		inode_unlock(inode);
2058		goto out;
2059	}
2060	trans->sync = true;
2061
2062	btrfs_init_log_ctx(&ctx);
2063
2064	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
 
 
 
 
 
 
 
 
2065	if (ret < 0) {
2066		/* Fallthrough and commit/free transaction. */
2067		ret = 1;
2068	}
2069
2070	/* we've logged all the items and now have a consistent
2071	 * version of the file in the log.  It is possible that
2072	 * someone will come in and modify the file, but that's
2073	 * fine because the log is consistent on disk, and we
2074	 * have references to all of the file's extents
2075	 *
2076	 * It is possible that someone will come in and log the
2077	 * file again, but that will end up using the synchronization
2078	 * inside btrfs_sync_log to keep things safe.
2079	 */
2080	inode_unlock(inode);
 
 
 
2081
2082	/*
2083	 * If any of the ordered extents had an error, just return it to user
2084	 * space, so that the application knows some writes didn't succeed and
2085	 * can take proper action (retry for e.g.). Blindly committing the
2086	 * transaction in this case, would fool userspace that everything was
2087	 * successful. And we also want to make sure our log doesn't contain
2088	 * file extent items pointing to extents that weren't fully written to -
2089	 * just like in the non fast fsync path, where we check for the ordered
2090	 * operation's error flag before writing to the log tree and return -EIO
2091	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2092	 * therefore we need to check for errors in the ordered operations,
2093	 * which are indicated by ctx.io_err.
2094	 */
2095	if (ctx.io_err) {
2096		btrfs_end_transaction(trans, root);
2097		ret = ctx.io_err;
2098		goto out;
2099	}
2100
2101	if (ret != BTRFS_NO_LOG_SYNC) {
 
 
2102		if (!ret) {
2103			ret = btrfs_sync_log(trans, root, &ctx);
2104			if (!ret) {
2105				ret = btrfs_end_transaction(trans, root);
2106				goto out;
2107			}
2108		}
2109		if (!full_sync) {
2110			ret = btrfs_wait_ordered_range(inode, start, len);
2111			if (ret) {
2112				btrfs_end_transaction(trans, root);
2113				goto out;
2114			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115		}
2116		ret = btrfs_commit_transaction(trans, root);
2117	} else {
2118		ret = btrfs_end_transaction(trans, root);
2119	}
 
 
2120out:
 
 
 
 
 
 
2121	return ret > 0 ? -EIO : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122}
2123
2124static const struct vm_operations_struct btrfs_file_vm_ops = {
2125	.fault		= filemap_fault,
2126	.map_pages	= filemap_map_pages,
2127	.page_mkwrite	= btrfs_page_mkwrite,
2128};
2129
2130static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2131{
2132	struct address_space *mapping = filp->f_mapping;
2133
2134	if (!mapping->a_ops->readpage)
2135		return -ENOEXEC;
2136
2137	file_accessed(filp);
2138	vma->vm_ops = &btrfs_file_vm_ops;
2139
2140	return 0;
2141}
2142
2143static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2144			  int slot, u64 start, u64 end)
2145{
2146	struct btrfs_file_extent_item *fi;
2147	struct btrfs_key key;
2148
2149	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2150		return 0;
2151
2152	btrfs_item_key_to_cpu(leaf, &key, slot);
2153	if (key.objectid != btrfs_ino(inode) ||
2154	    key.type != BTRFS_EXTENT_DATA_KEY)
2155		return 0;
2156
2157	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2158
2159	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2160		return 0;
2161
2162	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2163		return 0;
2164
2165	if (key.offset == end)
2166		return 1;
2167	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2168		return 1;
2169	return 0;
2170}
2171
2172static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2173		      struct btrfs_path *path, u64 offset, u64 end)
 
2174{
2175	struct btrfs_root *root = BTRFS_I(inode)->root;
 
2176	struct extent_buffer *leaf;
2177	struct btrfs_file_extent_item *fi;
2178	struct extent_map *hole_em;
2179	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180	struct btrfs_key key;
2181	int ret;
2182
2183	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2184		goto out;
2185
2186	key.objectid = btrfs_ino(inode);
2187	key.type = BTRFS_EXTENT_DATA_KEY;
2188	key.offset = offset;
2189
2190	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2191	if (ret < 0)
 
 
 
 
 
 
2192		return ret;
2193	BUG_ON(!ret);
2194
2195	leaf = path->nodes[0];
2196	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2197		u64 num_bytes;
2198
2199		path->slots[0]--;
2200		fi = btrfs_item_ptr(leaf, path->slots[0],
2201				    struct btrfs_file_extent_item);
2202		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2203			end - offset;
2204		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2205		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2206		btrfs_set_file_extent_offset(leaf, fi, 0);
2207		btrfs_mark_buffer_dirty(leaf);
 
2208		goto out;
2209	}
2210
2211	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2212		u64 num_bytes;
2213
2214		key.offset = offset;
2215		btrfs_set_item_key_safe(root->fs_info, path, &key);
2216		fi = btrfs_item_ptr(leaf, path->slots[0],
2217				    struct btrfs_file_extent_item);
2218		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2219			offset;
2220		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2221		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2222		btrfs_set_file_extent_offset(leaf, fi, 0);
2223		btrfs_mark_buffer_dirty(leaf);
 
2224		goto out;
2225	}
2226	btrfs_release_path(path);
2227
2228	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2229				       0, 0, end - offset, 0, end - offset,
2230				       0, 0, 0);
2231	if (ret)
2232		return ret;
2233
2234out:
2235	btrfs_release_path(path);
2236
2237	hole_em = alloc_extent_map();
2238	if (!hole_em) {
2239		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2240		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2241			&BTRFS_I(inode)->runtime_flags);
2242	} else {
2243		hole_em->start = offset;
2244		hole_em->len = end - offset;
2245		hole_em->ram_bytes = hole_em->len;
2246		hole_em->orig_start = offset;
2247
2248		hole_em->block_start = EXTENT_MAP_HOLE;
2249		hole_em->block_len = 0;
2250		hole_em->orig_block_len = 0;
2251		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2252		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2253		hole_em->generation = trans->transid;
2254
2255		do {
2256			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2257			write_lock(&em_tree->lock);
2258			ret = add_extent_mapping(em_tree, hole_em, 1);
2259			write_unlock(&em_tree->lock);
2260		} while (ret == -EEXIST);
2261		free_extent_map(hole_em);
2262		if (ret)
2263			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2264				&BTRFS_I(inode)->runtime_flags);
2265	}
2266
2267	return 0;
2268}
2269
2270/*
2271 * Find a hole extent on given inode and change start/len to the end of hole
2272 * extent.(hole/vacuum extent whose em->start <= start &&
2273 *	   em->start + em->len > start)
2274 * When a hole extent is found, return 1 and modify start/len.
2275 */
2276static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2277{
 
2278	struct extent_map *em;
2279	int ret = 0;
2280
2281	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2282	if (IS_ERR_OR_NULL(em)) {
2283		if (!em)
2284			ret = -ENOMEM;
2285		else
2286			ret = PTR_ERR(em);
2287		return ret;
2288	}
2289
2290	/* Hole or vacuum extent(only exists in no-hole mode) */
2291	if (em->block_start == EXTENT_MAP_HOLE) {
2292		ret = 1;
2293		*len = em->start + em->len > *start + *len ?
2294		       0 : *start + *len - em->start - em->len;
2295		*start = em->start + em->len;
2296	}
2297	free_extent_map(em);
2298	return ret;
2299}
2300
2301static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2303	struct btrfs_root *root = BTRFS_I(inode)->root;
2304	struct extent_state *cached_state = NULL;
2305	struct btrfs_path *path;
2306	struct btrfs_block_rsv *rsv;
2307	struct btrfs_trans_handle *trans;
2308	u64 lockstart;
2309	u64 lockend;
2310	u64 tail_start;
2311	u64 tail_len;
2312	u64 orig_start = offset;
2313	u64 cur_offset;
2314	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2315	u64 drop_end;
2316	int ret = 0;
2317	int err = 0;
2318	unsigned int rsv_count;
2319	bool same_block;
2320	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2321	u64 ino_size;
2322	bool truncated_block = false;
2323	bool updated_inode = false;
2324
2325	ret = btrfs_wait_ordered_range(inode, offset, len);
 
 
2326	if (ret)
2327		return ret;
2328
2329	inode_lock(inode);
2330	ino_size = round_up(inode->i_size, root->sectorsize);
2331	ret = find_first_non_hole(inode, &offset, &len);
2332	if (ret < 0)
2333		goto out_only_mutex;
2334	if (ret && !len) {
2335		/* Already in a large hole */
2336		ret = 0;
2337		goto out_only_mutex;
2338	}
2339
2340	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2341	lockend = round_down(offset + len,
2342			     BTRFS_I(inode)->root->sectorsize) - 1;
2343	same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2344		== (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
 
 
 
2345	/*
2346	 * We needn't truncate any block which is beyond the end of the file
2347	 * because we are sure there is no data there.
2348	 */
2349	/*
2350	 * Only do this if we are in the same block and we aren't doing the
2351	 * entire block.
2352	 */
2353	if (same_block && len < root->sectorsize) {
2354		if (offset < ino_size) {
2355			truncated_block = true;
2356			ret = btrfs_truncate_block(inode, offset, len, 0);
 
2357		} else {
2358			ret = 0;
2359		}
2360		goto out_only_mutex;
2361	}
2362
2363	/* zero back part of the first block */
2364	if (offset < ino_size) {
2365		truncated_block = true;
2366		ret = btrfs_truncate_block(inode, offset, 0, 0);
2367		if (ret) {
2368			inode_unlock(inode);
2369			return ret;
2370		}
2371	}
2372
2373	/* Check the aligned pages after the first unaligned page,
2374	 * if offset != orig_start, which means the first unaligned page
2375	 * including serveral following pages are already in holes,
2376	 * the extra check can be skipped */
2377	if (offset == orig_start) {
2378		/* after truncate page, check hole again */
2379		len = offset + len - lockstart;
2380		offset = lockstart;
2381		ret = find_first_non_hole(inode, &offset, &len);
2382		if (ret < 0)
2383			goto out_only_mutex;
2384		if (ret && !len) {
2385			ret = 0;
2386			goto out_only_mutex;
2387		}
2388		lockstart = offset;
2389	}
2390
2391	/* Check the tail unaligned part is in a hole */
2392	tail_start = lockend + 1;
2393	tail_len = offset + len - tail_start;
2394	if (tail_len) {
2395		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2396		if (unlikely(ret < 0))
2397			goto out_only_mutex;
2398		if (!ret) {
2399			/* zero the front end of the last page */
2400			if (tail_start + tail_len < ino_size) {
2401				truncated_block = true;
2402				ret = btrfs_truncate_block(inode,
2403							tail_start + tail_len,
2404							0, 1);
2405				if (ret)
2406					goto out_only_mutex;
2407			}
2408		}
2409	}
2410
2411	if (lockend < lockstart) {
2412		ret = 0;
2413		goto out_only_mutex;
2414	}
2415
2416	while (1) {
2417		struct btrfs_ordered_extent *ordered;
2418
2419		truncate_pagecache_range(inode, lockstart, lockend);
2420
2421		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422				 &cached_state);
2423		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424
2425		/*
2426		 * We need to make sure we have no ordered extents in this range
2427		 * and nobody raced in and read a page in this range, if we did
2428		 * we need to try again.
2429		 */
2430		if ((!ordered ||
2431		    (ordered->file_offset + ordered->len <= lockstart ||
2432		     ordered->file_offset > lockend)) &&
2433		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2434			if (ordered)
2435				btrfs_put_ordered_extent(ordered);
2436			break;
2437		}
2438		if (ordered)
2439			btrfs_put_ordered_extent(ordered);
2440		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2441				     lockend, &cached_state, GFP_NOFS);
2442		ret = btrfs_wait_ordered_range(inode, lockstart,
2443					       lockend - lockstart + 1);
2444		if (ret) {
2445			inode_unlock(inode);
2446			return ret;
2447		}
2448	}
2449
2450	path = btrfs_alloc_path();
2451	if (!path) {
2452		ret = -ENOMEM;
2453		goto out;
2454	}
2455
2456	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2457	if (!rsv) {
2458		ret = -ENOMEM;
2459		goto out_free;
2460	}
2461	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2462	rsv->failfast = 1;
2463
2464	/*
2465	 * 1 - update the inode
2466	 * 1 - removing the extents in the range
2467	 * 1 - adding the hole extent if no_holes isn't set
2468	 */
2469	rsv_count = no_holes ? 2 : 3;
2470	trans = btrfs_start_transaction(root, rsv_count);
2471	if (IS_ERR(trans)) {
2472		err = PTR_ERR(trans);
2473		goto out_free;
2474	}
2475
2476	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2477				      min_size);
2478	BUG_ON(ret);
2479	trans->block_rsv = rsv;
2480
2481	cur_offset = lockstart;
2482	len = lockend - cur_offset;
2483	while (cur_offset < lockend) {
2484		ret = __btrfs_drop_extents(trans, root, inode, path,
2485					   cur_offset, lockend + 1,
2486					   &drop_end, 1, 0, 0, NULL);
2487		if (ret != -ENOSPC)
2488			break;
2489
2490		trans->block_rsv = &root->fs_info->trans_block_rsv;
2491
2492		if (cur_offset < ino_size) {
2493			ret = fill_holes(trans, inode, path, cur_offset,
2494					 drop_end);
2495			if (ret) {
2496				err = ret;
2497				break;
2498			}
2499		}
2500
2501		cur_offset = drop_end;
2502
2503		ret = btrfs_update_inode(trans, root, inode);
2504		if (ret) {
2505			err = ret;
2506			break;
2507		}
2508
2509		btrfs_end_transaction(trans, root);
2510		btrfs_btree_balance_dirty(root);
2511
2512		trans = btrfs_start_transaction(root, rsv_count);
2513		if (IS_ERR(trans)) {
2514			ret = PTR_ERR(trans);
2515			trans = NULL;
2516			break;
2517		}
2518
2519		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2520					      rsv, min_size);
2521		BUG_ON(ret);	/* shouldn't happen */
2522		trans->block_rsv = rsv;
2523
2524		ret = find_first_non_hole(inode, &cur_offset, &len);
2525		if (unlikely(ret < 0))
2526			break;
2527		if (ret && !len) {
2528			ret = 0;
2529			break;
2530		}
2531	}
2532
2533	if (ret) {
2534		err = ret;
2535		goto out_trans;
2536	}
2537
2538	trans->block_rsv = &root->fs_info->trans_block_rsv;
2539	/*
2540	 * If we are using the NO_HOLES feature we might have had already an
2541	 * hole that overlaps a part of the region [lockstart, lockend] and
2542	 * ends at (or beyond) lockend. Since we have no file extent items to
2543	 * represent holes, drop_end can be less than lockend and so we must
2544	 * make sure we have an extent map representing the existing hole (the
2545	 * call to __btrfs_drop_extents() might have dropped the existing extent
2546	 * map representing the existing hole), otherwise the fast fsync path
2547	 * will not record the existence of the hole region
2548	 * [existing_hole_start, lockend].
2549	 */
2550	if (drop_end <= lockend)
2551		drop_end = lockend + 1;
2552	/*
2553	 * Don't insert file hole extent item if it's for a range beyond eof
2554	 * (because it's useless) or if it represents a 0 bytes range (when
2555	 * cur_offset == drop_end).
2556	 */
2557	if (cur_offset < ino_size && cur_offset < drop_end) {
2558		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2559		if (ret) {
2560			err = ret;
2561			goto out_trans;
2562		}
2563	}
2564
2565out_trans:
2566	if (!trans)
2567		goto out_free;
2568
 
2569	inode_inc_iversion(inode);
2570	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2571
2572	trans->block_rsv = &root->fs_info->trans_block_rsv;
2573	ret = btrfs_update_inode(trans, root, inode);
2574	updated_inode = true;
2575	btrfs_end_transaction(trans, root);
2576	btrfs_btree_balance_dirty(root);
2577out_free:
2578	btrfs_free_path(path);
2579	btrfs_free_block_rsv(root, rsv);
2580out:
2581	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2582			     &cached_state, GFP_NOFS);
2583out_only_mutex:
2584	if (!updated_inode && truncated_block && !ret && !err) {
2585		/*
2586		 * If we only end up zeroing part of a page, we still need to
2587		 * update the inode item, so that all the time fields are
2588		 * updated as well as the necessary btrfs inode in memory fields
2589		 * for detecting, at fsync time, if the inode isn't yet in the
2590		 * log tree or it's there but not up to date.
2591		 */
 
 
 
 
2592		trans = btrfs_start_transaction(root, 1);
2593		if (IS_ERR(trans)) {
2594			err = PTR_ERR(trans);
2595		} else {
2596			err = btrfs_update_inode(trans, root, inode);
2597			ret = btrfs_end_transaction(trans, root);
 
 
 
 
2598		}
2599	}
2600	inode_unlock(inode);
2601	if (ret && !err)
2602		err = ret;
2603	return err;
2604}
2605
2606/* Helper structure to record which range is already reserved */
2607struct falloc_range {
2608	struct list_head list;
2609	u64 start;
2610	u64 len;
2611};
2612
2613/*
2614 * Helper function to add falloc range
2615 *
2616 * Caller should have locked the larger range of extent containing
2617 * [start, len)
2618 */
2619static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2620{
2621	struct falloc_range *prev = NULL;
2622	struct falloc_range *range = NULL;
2623
2624	if (list_empty(head))
2625		goto insert;
 
 
 
 
 
 
 
 
 
2626
2627	/*
2628	 * As fallocate iterate by bytenr order, we only need to check
2629	 * the last range.
2630	 */
2631	prev = list_entry(head->prev, struct falloc_range, list);
2632	if (prev->start + prev->len == start) {
2633		prev->len += len;
2634		return 0;
2635	}
2636insert:
2637	range = kmalloc(sizeof(*range), GFP_KERNEL);
2638	if (!range)
2639		return -ENOMEM;
2640	range->start = start;
2641	range->len = len;
2642	list_add_tail(&range->list, head);
2643	return 0;
2644}
2645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646static long btrfs_fallocate(struct file *file, int mode,
2647			    loff_t offset, loff_t len)
2648{
2649	struct inode *inode = file_inode(file);
2650	struct extent_state *cached_state = NULL;
 
2651	struct falloc_range *range;
2652	struct falloc_range *tmp;
2653	struct list_head reserve_list;
2654	u64 cur_offset;
2655	u64 last_byte;
2656	u64 alloc_start;
2657	u64 alloc_end;
2658	u64 alloc_hint = 0;
2659	u64 locked_end;
2660	u64 actual_end = 0;
 
 
 
2661	struct extent_map *em;
2662	int blocksize = BTRFS_I(inode)->root->sectorsize;
2663	int ret;
2664
 
 
 
 
2665	alloc_start = round_down(offset, blocksize);
2666	alloc_end = round_up(offset + len, blocksize);
 
2667
2668	/* Make sure we aren't being give some crap mode */
2669	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
2670		return -EOPNOTSUPP;
2671
2672	if (mode & FALLOC_FL_PUNCH_HOLE)
2673		return btrfs_punch_hole(inode, offset, len);
2674
2675	/*
2676	 * Only trigger disk allocation, don't trigger qgroup reserve
2677	 *
2678	 * For qgroup space, it will be checked later.
2679	 */
2680	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2681	if (ret < 0)
2682		return ret;
2683
2684	inode_lock(inode);
2685
2686	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2687		ret = inode_newsize_ok(inode, offset + len);
2688		if (ret)
2689			goto out;
2690	}
2691
 
 
 
 
2692	/*
2693	 * TODO: Move these two operations after we have checked
2694	 * accurate reserved space, or fallocate can still fail but
2695	 * with page truncated or size expanded.
2696	 *
2697	 * But that's a minor problem and won't do much harm BTW.
2698	 */
2699	if (alloc_start > inode->i_size) {
2700		ret = btrfs_cont_expand(inode, i_size_read(inode),
2701					alloc_start);
2702		if (ret)
2703			goto out;
2704	} else if (offset + len > inode->i_size) {
2705		/*
2706		 * If we are fallocating from the end of the file onward we
2707		 * need to zero out the end of the block if i_size lands in the
2708		 * middle of a block.
2709		 */
2710		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2711		if (ret)
2712			goto out;
2713	}
2714
2715	/*
2716	 * wait for ordered IO before we have any locks.  We'll loop again
2717	 * below with the locks held.
 
 
 
 
2718	 */
2719	ret = btrfs_wait_ordered_range(inode, alloc_start,
2720				       alloc_end - alloc_start);
2721	if (ret)
2722		goto out;
2723
 
 
 
 
 
 
2724	locked_end = alloc_end - 1;
2725	while (1) {
2726		struct btrfs_ordered_extent *ordered;
2727
2728		/* the extent lock is ordered inside the running
2729		 * transaction
2730		 */
2731		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2732				 locked_end, &cached_state);
2733		ordered = btrfs_lookup_first_ordered_extent(inode,
2734							    alloc_end - 1);
2735		if (ordered &&
2736		    ordered->file_offset + ordered->len > alloc_start &&
2737		    ordered->file_offset < alloc_end) {
2738			btrfs_put_ordered_extent(ordered);
2739			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2740					     alloc_start, locked_end,
2741					     &cached_state, GFP_KERNEL);
2742			/*
2743			 * we can't wait on the range with the transaction
2744			 * running or with the extent lock held
2745			 */
2746			ret = btrfs_wait_ordered_range(inode, alloc_start,
2747						       alloc_end - alloc_start);
2748			if (ret)
2749				goto out;
2750		} else {
2751			if (ordered)
2752				btrfs_put_ordered_extent(ordered);
2753			break;
2754		}
2755	}
2756
2757	/* First, check if we exceed the qgroup limit */
2758	INIT_LIST_HEAD(&reserve_list);
2759	cur_offset = alloc_start;
2760	while (1) {
2761		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2762				      alloc_end - cur_offset, 0);
2763		if (IS_ERR_OR_NULL(em)) {
2764			if (!em)
2765				ret = -ENOMEM;
2766			else
2767				ret = PTR_ERR(em);
2768			break;
2769		}
2770		last_byte = min(extent_map_end(em), alloc_end);
2771		actual_end = min_t(u64, extent_map_end(em), offset + len);
2772		last_byte = ALIGN(last_byte, blocksize);
2773		if (em->block_start == EXTENT_MAP_HOLE ||
2774		    (cur_offset >= inode->i_size &&
2775		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2776			ret = add_falloc_range(&reserve_list, cur_offset,
2777					       last_byte - cur_offset);
 
2778			if (ret < 0) {
2779				free_extent_map(em);
2780				break;
2781			}
2782			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2783					last_byte - cur_offset);
2784			if (ret < 0)
 
2785				break;
 
 
 
2786		}
2787		free_extent_map(em);
2788		cur_offset = last_byte;
2789		if (cur_offset >= alloc_end)
2790			break;
 
 
 
 
 
 
 
 
 
2791	}
2792
2793	/*
2794	 * If ret is still 0, means we're OK to fallocate.
2795	 * Or just cleanup the list and exit.
2796	 */
2797	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2798		if (!ret)
2799			ret = btrfs_prealloc_file_range(inode, mode,
2800					range->start,
2801					range->len, 1 << inode->i_blkbits,
2802					offset + len, &alloc_hint);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803		list_del(&range->list);
2804		kfree(range);
2805	}
2806	if (ret < 0)
2807		goto out_unlock;
2808
2809	if (actual_end > inode->i_size &&
2810	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2811		struct btrfs_trans_handle *trans;
2812		struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813
 
2814		/*
2815		 * We didn't need to allocate any more space, but we
2816		 * still extended the size of the file so we need to
2817		 * update i_size and the inode item.
2818		 */
2819		trans = btrfs_start_transaction(root, 1);
2820		if (IS_ERR(trans)) {
2821			ret = PTR_ERR(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822		} else {
2823			inode->i_ctime = current_fs_time(inode->i_sb);
2824			i_size_write(inode, actual_end);
2825			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2826			ret = btrfs_update_inode(trans, root, inode);
2827			if (ret)
2828				btrfs_end_transaction(trans, root);
2829			else
2830				ret = btrfs_end_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2831		}
 
 
 
2832	}
2833out_unlock:
2834	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2835			     &cached_state, GFP_KERNEL);
2836out:
 
 
2837	/*
2838	 * As we waited the extent range, the data_rsv_map must be empty
2839	 * in the range, as written data range will be released from it.
2840	 * And for prealloacted extent, it will also be released when
2841	 * its metadata is written.
2842	 * So this is completely used as cleanup.
2843	 */
2844	btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2845	inode_unlock(inode);
2846	/* Let go of our reservation. */
2847	btrfs_free_reserved_data_space(inode, alloc_start,
2848				       alloc_end - alloc_start);
2849	return ret;
2850}
2851
2852static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2853{
2854	struct btrfs_root *root = BTRFS_I(inode)->root;
2855	struct extent_map *em = NULL;
 
2856	struct extent_state *cached_state = NULL;
 
 
 
 
 
 
 
2857	u64 lockstart;
2858	u64 lockend;
2859	u64 start;
2860	u64 len;
2861	int ret = 0;
2862
2863	if (inode->i_size == 0)
2864		return -ENXIO;
2865
2866	/*
2867	 * *offset can be negative, in this case we start finding DATA/HOLE from
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868	 * the very start of the file.
2869	 */
2870	start = max_t(loff_t, 0, *offset);
2871
2872	lockstart = round_down(start, root->sectorsize);
2873	lockend = round_up(i_size_read(inode), root->sectorsize);
2874	if (lockend <= lockstart)
2875		lockend = lockstart + root->sectorsize;
2876	lockend--;
2877	len = lockend - lockstart + 1;
2878
2879	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2880			 &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2881
2882	while (start < inode->i_size) {
2883		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2884		if (IS_ERR(em)) {
2885			ret = PTR_ERR(em);
2886			em = NULL;
 
 
 
 
 
 
 
2887			break;
 
 
 
 
 
 
 
 
 
 
2888		}
2889
2890		if (whence == SEEK_HOLE &&
2891		    (em->block_start == EXTENT_MAP_HOLE ||
2892		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2893			break;
2894		else if (whence == SEEK_DATA &&
2895			   (em->block_start != EXTENT_MAP_HOLE &&
2896			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2897			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2898
2899		start = em->start + em->len;
2900		free_extent_map(em);
2901		em = NULL;
 
 
 
 
2902		cond_resched();
2903	}
2904	free_extent_map(em);
2905	if (!ret) {
2906		if (whence == SEEK_DATA && start >= inode->i_size)
2907			ret = -ENXIO;
2908		else
2909			*offset = min_t(loff_t, start, inode->i_size);
 
 
2910	}
2911	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2912			     &cached_state, GFP_NOFS);
2913	return ret;
 
 
 
 
 
 
 
 
 
2914}
2915
2916static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2917{
2918	struct inode *inode = file->f_mapping->host;
2919	int ret;
2920
2921	inode_lock(inode);
2922	switch (whence) {
2923	case SEEK_END:
2924	case SEEK_CUR:
2925		offset = generic_file_llseek(file, offset, whence);
2926		goto out;
2927	case SEEK_DATA:
2928	case SEEK_HOLE:
2929		if (offset >= i_size_read(inode)) {
2930			inode_unlock(inode);
2931			return -ENXIO;
2932		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933
2934		ret = find_desired_extent(inode, &offset, whence);
2935		if (ret) {
2936			inode_unlock(inode);
 
2937			return ret;
2938		}
2939	}
2940
2941	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2942out:
2943	inode_unlock(inode);
2944	return offset;
2945}
2946
2947const struct file_operations btrfs_file_operations = {
2948	.llseek		= btrfs_file_llseek,
2949	.read_iter      = generic_file_read_iter,
2950	.splice_read	= generic_file_splice_read,
2951	.write_iter	= btrfs_file_write_iter,
 
2952	.mmap		= btrfs_file_mmap,
2953	.open		= generic_file_open,
2954	.release	= btrfs_release_file,
 
2955	.fsync		= btrfs_sync_file,
2956	.fallocate	= btrfs_fallocate,
2957	.unlocked_ioctl	= btrfs_ioctl,
2958#ifdef CONFIG_COMPAT
2959	.compat_ioctl	= btrfs_ioctl,
2960#endif
2961	.copy_file_range = btrfs_copy_file_range,
2962	.clone_file_range = btrfs_clone_file_range,
2963	.dedupe_file_range = btrfs_dedupe_file_range,
2964};
2965
2966void btrfs_auto_defrag_exit(void)
2967{
2968	kmem_cache_destroy(btrfs_inode_defrag_cachep);
2969}
2970
2971int btrfs_auto_defrag_init(void)
2972{
2973	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2974					sizeof(struct inode_defrag), 0,
2975					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2976					NULL);
2977	if (!btrfs_inode_defrag_cachep)
2978		return -ENOMEM;
2979
2980	return 0;
2981}
2982
2983int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2984{
 
2985	int ret;
2986
2987	/*
2988	 * So with compression we will find and lock a dirty page and clear the
2989	 * first one as dirty, setup an async extent, and immediately return
2990	 * with the entire range locked but with nobody actually marked with
2991	 * writeback.  So we can't just filemap_write_and_wait_range() and
2992	 * expect it to work since it will just kick off a thread to do the
2993	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2994	 * since it will wait on the page lock, which won't be unlocked until
2995	 * after the pages have been marked as writeback and so we're good to go
2996	 * from there.  We have to do this otherwise we'll miss the ordered
2997	 * extents and that results in badness.  Please Josef, do not think you
2998	 * know better and pull this out at some point in the future, it is
2999	 * right and you are wrong.
3000	 */
3001	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3002	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3003			     &BTRFS_I(inode)->runtime_flags))
3004		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3005
3006	return ret;
3007}