Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include <linux/fsverity.h>
  20#include "ctree.h"
  21#include "direct-io.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "btrfs_inode.h"
 
  25#include "tree-log.h"
  26#include "locking.h"
 
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31#include "subpage.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "extent-tree.h"
  35#include "file-item.h"
  36#include "ioctl.h"
  37#include "file.h"
  38#include "super.h"
  39
 
  40/*
  41 * Helper to fault in page and copy.  This should go away and be replaced with
  42 * calls into generic code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43 */
  44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  45					 struct folio *folio, struct iov_iter *i)
 
  46{
  47	size_t copied = 0;
  48	size_t total_copied = 0;
 
  49	int offset = offset_in_page(pos);
  50
  51	while (write_bytes > 0) {
  52		size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
 
 
  53		/*
  54		 * Copy data from userspace to the current page
  55		 */
  56		copied = copy_folio_from_iter_atomic(folio, offset, count, i);
  57
  58		/* Flush processor's dcache for this page */
  59		flush_dcache_folio(folio);
  60
  61		/*
  62		 * if we get a partial write, we can end up with
  63		 * partially up to date page.  These add
  64		 * a lot of complexity, so make sure they don't
  65		 * happen by forcing this copy to be retried.
  66		 *
  67		 * The rest of the btrfs_file_write code will fall
  68		 * back to page at a time copies after we return 0.
  69		 */
  70		if (unlikely(copied < count)) {
  71			if (!folio_test_uptodate(folio)) {
  72				iov_iter_revert(i, copied);
  73				copied = 0;
  74			}
  75			if (!copied)
  76				break;
  77		}
  78
  79		write_bytes -= copied;
  80		total_copied += copied;
  81		offset += copied;
 
 
 
 
  82	}
  83	return total_copied;
  84}
  85
  86/*
  87 * Unlock folio after btrfs_file_write() is done with it.
  88 */
  89static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
  90			     u64 pos, u64 copied)
  91{
  92	u64 block_start = round_down(pos, fs_info->sectorsize);
  93	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
  94
  95	ASSERT(block_len <= U32_MAX);
  96	/*
  97	 * Folio checked is some magic around finding folios that have been
  98	 * modified without going through btrfs_dirty_folio().  Clear it here.
  99	 * There should be no need to mark the pages accessed as
 100	 * prepare_one_folio() should have marked them accessed in
 101	 * prepare_one_folio() via find_or_create_page()
 102	 */
 103	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
 104	folio_unlock(folio);
 105	folio_put(folio);
 106}
 107
 108/*
 109 * After btrfs_copy_from_user(), update the following things for delalloc:
 110 * - Mark newly dirtied folio as DELALLOC in the io tree.
 111 *   Used to advise which range is to be written back.
 112 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
 113 * - Update inode size for past EOF write
 114 */
 115int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
 116		      size_t write_bytes, struct extent_state **cached, bool noreserve)
 
 117{
 118	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 119	int ret = 0;
 
 120	u64 num_bytes;
 121	u64 start_pos;
 122	u64 end_of_last_block;
 123	u64 end_pos = pos + write_bytes;
 124	loff_t isize = i_size_read(&inode->vfs_inode);
 125	unsigned int extra_bits = 0;
 126
 127	if (write_bytes == 0)
 128		return 0;
 129
 130	if (noreserve)
 131		extra_bits |= EXTENT_NORESERVE;
 132
 133	start_pos = round_down(pos, fs_info->sectorsize);
 134	num_bytes = round_up(write_bytes + pos - start_pos,
 135			     fs_info->sectorsize);
 136	ASSERT(num_bytes <= U32_MAX);
 137	ASSERT(folio_pos(folio) <= pos &&
 138	       folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
 139
 140	end_of_last_block = start_pos + num_bytes - 1;
 141
 142	/*
 143	 * The pages may have already been dirty, clear out old accounting so
 144	 * we can set things up properly
 145	 */
 146	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 147			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 148			 cached);
 149
 150	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 151					extra_bits, cached);
 152	if (ret)
 153		return ret;
 154
 155	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
 156	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
 157	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
 
 
 
 
 158
 159	/*
 160	 * we've only changed i_size in ram, and we haven't updated
 161	 * the disk i_size.  There is no need to log the inode
 162	 * at this time.
 163	 */
 164	if (end_pos > isize)
 165		i_size_write(&inode->vfs_inode, end_pos);
 166	return 0;
 167}
 168
 169/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 * this is very complex, but the basic idea is to drop all extents
 171 * in the range start - end.  hint_block is filled in with a block number
 172 * that would be a good hint to the block allocator for this file.
 173 *
 174 * If an extent intersects the range but is not entirely inside the range
 175 * it is either truncated or split.  Anything entirely inside the range
 176 * is deleted from the tree.
 177 *
 178 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 179 * to deal with that. We set the field 'bytes_found' of the arguments structure
 180 * with the number of allocated bytes found in the target range, so that the
 181 * caller can update the inode's number of bytes in an atomic way when
 182 * replacing extents in a range to avoid races with stat(2).
 183 */
 184int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 185		       struct btrfs_root *root, struct btrfs_inode *inode,
 186		       struct btrfs_drop_extents_args *args)
 187{
 188	struct btrfs_fs_info *fs_info = root->fs_info;
 189	struct extent_buffer *leaf;
 190	struct btrfs_file_extent_item *fi;
 
 191	struct btrfs_key key;
 192	struct btrfs_key new_key;
 193	u64 ino = btrfs_ino(inode);
 194	u64 search_start = args->start;
 195	u64 disk_bytenr = 0;
 196	u64 num_bytes = 0;
 197	u64 extent_offset = 0;
 198	u64 extent_end = 0;
 199	u64 last_end = args->start;
 200	int del_nr = 0;
 201	int del_slot = 0;
 202	int extent_type;
 203	int recow;
 204	int ret;
 205	int modify_tree = -1;
 206	int update_refs;
 207	int found = 0;
 
 208	struct btrfs_path *path = args->path;
 209
 210	args->bytes_found = 0;
 211	args->extent_inserted = false;
 212
 213	/* Must always have a path if ->replace_extent is true */
 214	ASSERT(!(args->replace_extent && !args->path));
 215
 216	if (!path) {
 217		path = btrfs_alloc_path();
 218		if (!path) {
 219			ret = -ENOMEM;
 220			goto out;
 221		}
 222	}
 223
 224	if (args->drop_cache)
 225		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 226
 227	if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent)
 228		modify_tree = 0;
 229
 230	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
 231	while (1) {
 232		recow = 0;
 233		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 234					       search_start, modify_tree);
 235		if (ret < 0)
 236			break;
 237		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 238			leaf = path->nodes[0];
 239			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 240			if (key.objectid == ino &&
 241			    key.type == BTRFS_EXTENT_DATA_KEY)
 242				path->slots[0]--;
 243		}
 244		ret = 0;
 
 245next_slot:
 246		leaf = path->nodes[0];
 247		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 248			BUG_ON(del_nr > 0);
 249			ret = btrfs_next_leaf(root, path);
 250			if (ret < 0)
 251				break;
 252			if (ret > 0) {
 253				ret = 0;
 254				break;
 255			}
 
 256			leaf = path->nodes[0];
 257			recow = 1;
 258		}
 259
 260		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 261
 262		if (key.objectid > ino)
 263			break;
 264		if (WARN_ON_ONCE(key.objectid < ino) ||
 265		    key.type < BTRFS_EXTENT_DATA_KEY) {
 266			ASSERT(del_nr == 0);
 267			path->slots[0]++;
 268			goto next_slot;
 269		}
 270		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 271			break;
 272
 273		fi = btrfs_item_ptr(leaf, path->slots[0],
 274				    struct btrfs_file_extent_item);
 275		extent_type = btrfs_file_extent_type(leaf, fi);
 276
 277		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 278		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 279			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 280			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 281			extent_offset = btrfs_file_extent_offset(leaf, fi);
 282			extent_end = key.offset +
 283				btrfs_file_extent_num_bytes(leaf, fi);
 284		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 285			extent_end = key.offset +
 286				btrfs_file_extent_ram_bytes(leaf, fi);
 287		} else {
 288			/* can't happen */
 289			BUG();
 290		}
 291
 292		/*
 293		 * Don't skip extent items representing 0 byte lengths. They
 294		 * used to be created (bug) if while punching holes we hit
 295		 * -ENOSPC condition. So if we find one here, just ensure we
 296		 * delete it, otherwise we would insert a new file extent item
 297		 * with the same key (offset) as that 0 bytes length file
 298		 * extent item in the call to setup_items_for_insert() later
 299		 * in this function.
 300		 */
 301		if (extent_end == key.offset && extent_end >= search_start) {
 302			last_end = extent_end;
 303			goto delete_extent_item;
 304		}
 305
 306		if (extent_end <= search_start) {
 307			path->slots[0]++;
 308			goto next_slot;
 309		}
 310
 311		found = 1;
 312		search_start = max(key.offset, args->start);
 313		if (recow || !modify_tree) {
 314			modify_tree = -1;
 315			btrfs_release_path(path);
 316			continue;
 317		}
 318
 319		/*
 320		 *     | - range to drop - |
 321		 *  | -------- extent -------- |
 322		 */
 323		if (args->start > key.offset && args->end < extent_end) {
 324			BUG_ON(del_nr > 0);
 325			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 326				ret = -EOPNOTSUPP;
 327				break;
 328			}
 329
 330			memcpy(&new_key, &key, sizeof(new_key));
 331			new_key.offset = args->start;
 332			ret = btrfs_duplicate_item(trans, root, path,
 333						   &new_key);
 334			if (ret == -EAGAIN) {
 335				btrfs_release_path(path);
 336				continue;
 337			}
 338			if (ret < 0)
 339				break;
 340
 341			leaf = path->nodes[0];
 342			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 343					    struct btrfs_file_extent_item);
 344			btrfs_set_file_extent_num_bytes(leaf, fi,
 345							args->start - key.offset);
 346
 347			fi = btrfs_item_ptr(leaf, path->slots[0],
 348					    struct btrfs_file_extent_item);
 349
 350			extent_offset += args->start - key.offset;
 351			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 352			btrfs_set_file_extent_num_bytes(leaf, fi,
 353							extent_end - args->start);
 354			btrfs_mark_buffer_dirty(trans, leaf);
 355
 356			if (update_refs && disk_bytenr > 0) {
 357				struct btrfs_ref ref = {
 358					.action = BTRFS_ADD_DELAYED_REF,
 359					.bytenr = disk_bytenr,
 360					.num_bytes = num_bytes,
 361					.parent = 0,
 362					.owning_root = btrfs_root_id(root),
 363					.ref_root = btrfs_root_id(root),
 364				};
 365				btrfs_init_data_ref(&ref, new_key.objectid,
 366						    args->start - extent_offset,
 367						    0, false);
 368				ret = btrfs_inc_extent_ref(trans, &ref);
 369				if (ret) {
 370					btrfs_abort_transaction(trans, ret);
 371					break;
 372				}
 373			}
 374			key.offset = args->start;
 375		}
 376		/*
 377		 * From here on out we will have actually dropped something, so
 378		 * last_end can be updated.
 379		 */
 380		last_end = extent_end;
 381
 382		/*
 383		 *  | ---- range to drop ----- |
 384		 *      | -------- extent -------- |
 385		 */
 386		if (args->start <= key.offset && args->end < extent_end) {
 387			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 388				ret = -EOPNOTSUPP;
 389				break;
 390			}
 391
 392			memcpy(&new_key, &key, sizeof(new_key));
 393			new_key.offset = args->end;
 394			btrfs_set_item_key_safe(trans, path, &new_key);
 395
 396			extent_offset += args->end - key.offset;
 397			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 398			btrfs_set_file_extent_num_bytes(leaf, fi,
 399							extent_end - args->end);
 400			btrfs_mark_buffer_dirty(trans, leaf);
 401			if (update_refs && disk_bytenr > 0)
 402				args->bytes_found += args->end - key.offset;
 403			break;
 404		}
 405
 406		search_start = extent_end;
 407		/*
 408		 *       | ---- range to drop ----- |
 409		 *  | -------- extent -------- |
 410		 */
 411		if (args->start > key.offset && args->end >= extent_end) {
 412			BUG_ON(del_nr > 0);
 413			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 414				ret = -EOPNOTSUPP;
 415				break;
 416			}
 417
 418			btrfs_set_file_extent_num_bytes(leaf, fi,
 419							args->start - key.offset);
 420			btrfs_mark_buffer_dirty(trans, leaf);
 421			if (update_refs && disk_bytenr > 0)
 422				args->bytes_found += extent_end - args->start;
 423			if (args->end == extent_end)
 424				break;
 425
 426			path->slots[0]++;
 427			goto next_slot;
 428		}
 429
 430		/*
 431		 *  | ---- range to drop ----- |
 432		 *    | ------ extent ------ |
 433		 */
 434		if (args->start <= key.offset && args->end >= extent_end) {
 435delete_extent_item:
 436			if (del_nr == 0) {
 437				del_slot = path->slots[0];
 438				del_nr = 1;
 439			} else {
 440				BUG_ON(del_slot + del_nr != path->slots[0]);
 441				del_nr++;
 442			}
 443
 444			if (update_refs &&
 445			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 446				args->bytes_found += extent_end - key.offset;
 447				extent_end = ALIGN(extent_end,
 448						   fs_info->sectorsize);
 449			} else if (update_refs && disk_bytenr > 0) {
 450				struct btrfs_ref ref = {
 451					.action = BTRFS_DROP_DELAYED_REF,
 452					.bytenr = disk_bytenr,
 453					.num_bytes = num_bytes,
 454					.parent = 0,
 455					.owning_root = btrfs_root_id(root),
 456					.ref_root = btrfs_root_id(root),
 457				};
 458				btrfs_init_data_ref(&ref, key.objectid,
 459						    key.offset - extent_offset,
 460						    0, false);
 461				ret = btrfs_free_extent(trans, &ref);
 462				if (ret) {
 463					btrfs_abort_transaction(trans, ret);
 464					break;
 465				}
 466				args->bytes_found += extent_end - key.offset;
 467			}
 468
 469			if (args->end == extent_end)
 470				break;
 471
 472			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 473				path->slots[0]++;
 474				goto next_slot;
 475			}
 476
 477			ret = btrfs_del_items(trans, root, path, del_slot,
 478					      del_nr);
 479			if (ret) {
 480				btrfs_abort_transaction(trans, ret);
 481				break;
 482			}
 483
 484			del_nr = 0;
 485			del_slot = 0;
 486
 487			btrfs_release_path(path);
 488			continue;
 489		}
 490
 491		BUG();
 492	}
 493
 494	if (!ret && del_nr > 0) {
 495		/*
 496		 * Set path->slots[0] to first slot, so that after the delete
 497		 * if items are move off from our leaf to its immediate left or
 498		 * right neighbor leafs, we end up with a correct and adjusted
 499		 * path->slots[0] for our insertion (if args->replace_extent).
 500		 */
 501		path->slots[0] = del_slot;
 502		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 503		if (ret)
 504			btrfs_abort_transaction(trans, ret);
 505	}
 506
 507	leaf = path->nodes[0];
 508	/*
 509	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 510	 * which case it unlocked our path, so check path->locks[0] matches a
 511	 * write lock.
 512	 */
 513	if (!ret && args->replace_extent &&
 514	    path->locks[0] == BTRFS_WRITE_LOCK &&
 515	    btrfs_leaf_free_space(leaf) >=
 516	    sizeof(struct btrfs_item) + args->extent_item_size) {
 517
 518		key.objectid = ino;
 519		key.type = BTRFS_EXTENT_DATA_KEY;
 520		key.offset = args->start;
 521		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 522			struct btrfs_key slot_key;
 523
 524			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 525			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 526				path->slots[0]++;
 527		}
 528		btrfs_setup_item_for_insert(trans, root, path, &key,
 529					    args->extent_item_size);
 530		args->extent_inserted = true;
 531	}
 532
 533	if (!args->path)
 534		btrfs_free_path(path);
 535	else if (!args->extent_inserted)
 536		btrfs_release_path(path);
 537out:
 538	args->drop_end = found ? min(args->end, last_end) : args->end;
 539
 540	return ret;
 541}
 542
 543static int extent_mergeable(struct extent_buffer *leaf, int slot,
 544			    u64 objectid, u64 bytenr, u64 orig_offset,
 545			    u64 *start, u64 *end)
 546{
 547	struct btrfs_file_extent_item *fi;
 548	struct btrfs_key key;
 549	u64 extent_end;
 550
 551	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 552		return 0;
 553
 554	btrfs_item_key_to_cpu(leaf, &key, slot);
 555	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 556		return 0;
 557
 558	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 559	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 560	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 561	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 562	    btrfs_file_extent_compression(leaf, fi) ||
 563	    btrfs_file_extent_encryption(leaf, fi) ||
 564	    btrfs_file_extent_other_encoding(leaf, fi))
 565		return 0;
 566
 567	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 568	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 569		return 0;
 570
 571	*start = key.offset;
 572	*end = extent_end;
 573	return 1;
 574}
 575
 576/*
 577 * Mark extent in the range start - end as written.
 578 *
 579 * This changes extent type from 'pre-allocated' to 'regular'. If only
 580 * part of extent is marked as written, the extent will be split into
 581 * two or three.
 582 */
 583int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 584			      struct btrfs_inode *inode, u64 start, u64 end)
 585{
 
 586	struct btrfs_root *root = inode->root;
 587	struct extent_buffer *leaf;
 588	struct btrfs_path *path;
 589	struct btrfs_file_extent_item *fi;
 590	struct btrfs_ref ref = { 0 };
 591	struct btrfs_key key;
 592	struct btrfs_key new_key;
 593	u64 bytenr;
 594	u64 num_bytes;
 595	u64 extent_end;
 596	u64 orig_offset;
 597	u64 other_start;
 598	u64 other_end;
 599	u64 split;
 600	int del_nr = 0;
 601	int del_slot = 0;
 602	int recow;
 603	int ret = 0;
 604	u64 ino = btrfs_ino(inode);
 605
 606	path = btrfs_alloc_path();
 607	if (!path)
 608		return -ENOMEM;
 609again:
 610	recow = 0;
 611	split = start;
 612	key.objectid = ino;
 613	key.type = BTRFS_EXTENT_DATA_KEY;
 614	key.offset = split;
 615
 616	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 617	if (ret < 0)
 618		goto out;
 619	if (ret > 0 && path->slots[0] > 0)
 620		path->slots[0]--;
 621
 622	leaf = path->nodes[0];
 623	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 624	if (key.objectid != ino ||
 625	    key.type != BTRFS_EXTENT_DATA_KEY) {
 626		ret = -EINVAL;
 627		btrfs_abort_transaction(trans, ret);
 628		goto out;
 629	}
 630	fi = btrfs_item_ptr(leaf, path->slots[0],
 631			    struct btrfs_file_extent_item);
 632	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 633		ret = -EINVAL;
 634		btrfs_abort_transaction(trans, ret);
 635		goto out;
 636	}
 637	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 638	if (key.offset > start || extent_end < end) {
 639		ret = -EINVAL;
 640		btrfs_abort_transaction(trans, ret);
 641		goto out;
 642	}
 643
 644	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 645	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 646	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 647	memcpy(&new_key, &key, sizeof(new_key));
 648
 649	if (start == key.offset && end < extent_end) {
 650		other_start = 0;
 651		other_end = start;
 652		if (extent_mergeable(leaf, path->slots[0] - 1,
 653				     ino, bytenr, orig_offset,
 654				     &other_start, &other_end)) {
 655			new_key.offset = end;
 656			btrfs_set_item_key_safe(trans, path, &new_key);
 657			fi = btrfs_item_ptr(leaf, path->slots[0],
 658					    struct btrfs_file_extent_item);
 659			btrfs_set_file_extent_generation(leaf, fi,
 660							 trans->transid);
 661			btrfs_set_file_extent_num_bytes(leaf, fi,
 662							extent_end - end);
 663			btrfs_set_file_extent_offset(leaf, fi,
 664						     end - orig_offset);
 665			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 666					    struct btrfs_file_extent_item);
 667			btrfs_set_file_extent_generation(leaf, fi,
 668							 trans->transid);
 669			btrfs_set_file_extent_num_bytes(leaf, fi,
 670							end - other_start);
 671			btrfs_mark_buffer_dirty(trans, leaf);
 672			goto out;
 673		}
 674	}
 675
 676	if (start > key.offset && end == extent_end) {
 677		other_start = end;
 678		other_end = 0;
 679		if (extent_mergeable(leaf, path->slots[0] + 1,
 680				     ino, bytenr, orig_offset,
 681				     &other_start, &other_end)) {
 682			fi = btrfs_item_ptr(leaf, path->slots[0],
 683					    struct btrfs_file_extent_item);
 684			btrfs_set_file_extent_num_bytes(leaf, fi,
 685							start - key.offset);
 686			btrfs_set_file_extent_generation(leaf, fi,
 687							 trans->transid);
 688			path->slots[0]++;
 689			new_key.offset = start;
 690			btrfs_set_item_key_safe(trans, path, &new_key);
 691
 692			fi = btrfs_item_ptr(leaf, path->slots[0],
 693					    struct btrfs_file_extent_item);
 694			btrfs_set_file_extent_generation(leaf, fi,
 695							 trans->transid);
 696			btrfs_set_file_extent_num_bytes(leaf, fi,
 697							other_end - start);
 698			btrfs_set_file_extent_offset(leaf, fi,
 699						     start - orig_offset);
 700			btrfs_mark_buffer_dirty(trans, leaf);
 701			goto out;
 702		}
 703	}
 704
 705	while (start > key.offset || end < extent_end) {
 706		if (key.offset == start)
 707			split = end;
 708
 709		new_key.offset = split;
 710		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 711		if (ret == -EAGAIN) {
 712			btrfs_release_path(path);
 713			goto again;
 714		}
 715		if (ret < 0) {
 716			btrfs_abort_transaction(trans, ret);
 717			goto out;
 718		}
 719
 720		leaf = path->nodes[0];
 721		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 722				    struct btrfs_file_extent_item);
 723		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 724		btrfs_set_file_extent_num_bytes(leaf, fi,
 725						split - key.offset);
 726
 727		fi = btrfs_item_ptr(leaf, path->slots[0],
 728				    struct btrfs_file_extent_item);
 729
 730		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 731		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 732		btrfs_set_file_extent_num_bytes(leaf, fi,
 733						extent_end - split);
 734		btrfs_mark_buffer_dirty(trans, leaf);
 735
 736		ref.action = BTRFS_ADD_DELAYED_REF;
 737		ref.bytenr = bytenr;
 738		ref.num_bytes = num_bytes;
 739		ref.parent = 0;
 740		ref.owning_root = btrfs_root_id(root);
 741		ref.ref_root = btrfs_root_id(root);
 742		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 743		ret = btrfs_inc_extent_ref(trans, &ref);
 744		if (ret) {
 745			btrfs_abort_transaction(trans, ret);
 746			goto out;
 747		}
 748
 749		if (split == start) {
 750			key.offset = start;
 751		} else {
 752			if (start != key.offset) {
 753				ret = -EINVAL;
 754				btrfs_abort_transaction(trans, ret);
 755				goto out;
 756			}
 757			path->slots[0]--;
 758			extent_end = end;
 759		}
 760		recow = 1;
 761	}
 762
 763	other_start = end;
 764	other_end = 0;
 765
 766	ref.action = BTRFS_DROP_DELAYED_REF;
 767	ref.bytenr = bytenr;
 768	ref.num_bytes = num_bytes;
 769	ref.parent = 0;
 770	ref.owning_root = btrfs_root_id(root);
 771	ref.ref_root = btrfs_root_id(root);
 772	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 773	if (extent_mergeable(leaf, path->slots[0] + 1,
 774			     ino, bytenr, orig_offset,
 775			     &other_start, &other_end)) {
 776		if (recow) {
 777			btrfs_release_path(path);
 778			goto again;
 779		}
 780		extent_end = other_end;
 781		del_slot = path->slots[0] + 1;
 782		del_nr++;
 783		ret = btrfs_free_extent(trans, &ref);
 784		if (ret) {
 785			btrfs_abort_transaction(trans, ret);
 786			goto out;
 787		}
 788	}
 789	other_start = 0;
 790	other_end = start;
 791	if (extent_mergeable(leaf, path->slots[0] - 1,
 792			     ino, bytenr, orig_offset,
 793			     &other_start, &other_end)) {
 794		if (recow) {
 795			btrfs_release_path(path);
 796			goto again;
 797		}
 798		key.offset = other_start;
 799		del_slot = path->slots[0];
 800		del_nr++;
 801		ret = btrfs_free_extent(trans, &ref);
 802		if (ret) {
 803			btrfs_abort_transaction(trans, ret);
 804			goto out;
 805		}
 806	}
 807	if (del_nr == 0) {
 808		fi = btrfs_item_ptr(leaf, path->slots[0],
 809			   struct btrfs_file_extent_item);
 810		btrfs_set_file_extent_type(leaf, fi,
 811					   BTRFS_FILE_EXTENT_REG);
 812		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 813		btrfs_mark_buffer_dirty(trans, leaf);
 814	} else {
 815		fi = btrfs_item_ptr(leaf, del_slot - 1,
 816			   struct btrfs_file_extent_item);
 817		btrfs_set_file_extent_type(leaf, fi,
 818					   BTRFS_FILE_EXTENT_REG);
 819		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 820		btrfs_set_file_extent_num_bytes(leaf, fi,
 821						extent_end - key.offset);
 822		btrfs_mark_buffer_dirty(trans, leaf);
 823
 824		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 825		if (ret < 0) {
 826			btrfs_abort_transaction(trans, ret);
 827			goto out;
 828		}
 829	}
 830out:
 831	btrfs_free_path(path);
 832	return ret;
 833}
 834
 835/*
 836 * On error return an unlocked folio and the error value
 837 * On success return a locked folio and 0
 838 */
 839static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
 840				  u64 len, bool force_uptodate)
 
 841{
 842	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
 843	u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
 844	int ret = 0;
 845
 846	if (folio_test_uptodate(folio))
 847		return 0;
 848
 849	if (!force_uptodate &&
 850	    IS_ALIGNED(clamp_start, PAGE_SIZE) &&
 851	    IS_ALIGNED(clamp_end, PAGE_SIZE))
 852		return 0;
 853
 854	ret = btrfs_read_folio(NULL, folio);
 855	if (ret)
 856		return ret;
 857	folio_lock(folio);
 858	if (!folio_test_uptodate(folio)) {
 859		folio_unlock(folio);
 860		return -EIO;
 861	}
 862
 863	/*
 864	 * Since btrfs_read_folio() will unlock the folio before it returns,
 865	 * there is a window where btrfs_release_folio() can be called to
 866	 * release the page.  Here we check both inode mapping and page
 867	 * private to make sure the page was not released.
 868	 *
 869	 * The private flag check is essential for subpage as we need to store
 870	 * extra bitmap using folio private.
 871	 */
 872	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
 873		folio_unlock(folio);
 874		return -EAGAIN;
 875	}
 876	return 0;
 877}
 878
 879static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 880{
 881	gfp_t gfp;
 882
 883	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 884	if (nowait) {
 885		gfp &= ~__GFP_DIRECT_RECLAIM;
 886		gfp |= GFP_NOWAIT;
 887	}
 888
 889	return gfp;
 890}
 891
 892/*
 893 * Get folio into the page cache and lock it.
 894 */
 895static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
 896				      loff_t pos, size_t write_bytes,
 897				      bool force_uptodate, bool nowait)
 898{
 
 899	unsigned long index = pos >> PAGE_SHIFT;
 900	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 901	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
 902	struct folio *folio;
 903	int ret = 0;
 904
 
 905again:
 906	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
 907	if (IS_ERR(folio)) {
 908		if (nowait)
 909			ret = -EAGAIN;
 910		else
 911			ret = PTR_ERR(folio);
 912		return ret;
 913	}
 914	folio_wait_writeback(folio);
 915	/* Only support page sized folio yet. */
 916	ASSERT(folio_order(folio) == 0);
 917	ret = set_folio_extent_mapped(folio);
 918	if (ret < 0) {
 919		folio_unlock(folio);
 920		folio_put(folio);
 921		return ret;
 922	}
 923	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
 924	if (ret) {
 925		/* The folio is already unlocked. */
 926		folio_put(folio);
 927		if (!nowait && ret == -EAGAIN) {
 928			ret = 0;
 929			goto again;
 
 
 
 
 930		}
 931		return ret;
 932	}
 933	*folio_ret = folio;
 934	return 0;
 
 
 
 
 
 
 
 
 935}
 936
 937/*
 938 * Locks the extent and properly waits for data=ordered extents to finish
 939 * before allowing the folios to be modified if need.
 940 *
 941 * Return:
 942 * 1 - the extent is locked
 943 * 0 - the extent is not locked, and everything is OK
 944 * -EAGAIN - need to prepare the folios again
 
 945 */
 946static noinline int
 947lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
 948				loff_t pos, size_t write_bytes,
 949				u64 *lockstart, u64 *lockend, bool nowait,
 
 950				struct extent_state **cached_state)
 951{
 952	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 953	u64 start_pos;
 954	u64 last_pos;
 
 955	int ret = 0;
 956
 957	start_pos = round_down(pos, fs_info->sectorsize);
 958	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 959
 960	if (start_pos < inode->vfs_inode.i_size) {
 961		struct btrfs_ordered_extent *ordered;
 962
 963		if (nowait) {
 964			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
 965					     cached_state)) {
 966				folio_unlock(folio);
 967				folio_put(folio);
 968				return -EAGAIN;
 969			}
 970		} else {
 971			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
 972		}
 973
 974		ordered = btrfs_lookup_ordered_range(inode, start_pos,
 975						     last_pos - start_pos + 1);
 976		if (ordered &&
 977		    ordered->file_offset + ordered->num_bytes > start_pos &&
 978		    ordered->file_offset <= last_pos) {
 979			unlock_extent(&inode->io_tree, start_pos, last_pos,
 980				      cached_state);
 981			folio_unlock(folio);
 982			folio_put(folio);
 983			btrfs_start_ordered_extent(ordered);
 
 
 984			btrfs_put_ordered_extent(ordered);
 985			return -EAGAIN;
 986		}
 987		if (ordered)
 988			btrfs_put_ordered_extent(ordered);
 989
 990		*lockstart = start_pos;
 991		*lockend = last_pos;
 992		ret = 1;
 993	}
 994
 995	/*
 996	 * We should be called after prepare_one_folio() which should have locked
 997	 * all pages in the range.
 998	 */
 999	WARN_ON(!folio_test_locked(folio));
 
1000
1001	return ret;
1002}
1003
1004/*
1005 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1006 *
1007 * @pos:         File offset.
1008 * @write_bytes: The length to write, will be updated to the nocow writeable
1009 *               range.
1010 *
1011 * This function will flush ordered extents in the range to ensure proper
1012 * nocow checks.
1013 *
1014 * Return:
1015 * > 0          If we can nocow, and updates @write_bytes.
1016 *  0           If we can't do a nocow write.
1017 * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1018 *              root is in progress.
1019 * < 0          If an error happened.
1020 *
1021 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1022 */
1023int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1024			   size_t *write_bytes, bool nowait)
1025{
1026	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1027	struct btrfs_root *root = inode->root;
1028	struct extent_state *cached_state = NULL;
1029	u64 lockstart, lockend;
1030	u64 num_bytes;
1031	int ret;
1032
1033	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1034		return 0;
1035
1036	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1037		return -EAGAIN;
1038
1039	lockstart = round_down(pos, fs_info->sectorsize);
1040	lockend = round_up(pos + *write_bytes,
1041			   fs_info->sectorsize) - 1;
1042	num_bytes = lockend - lockstart + 1;
1043
1044	if (nowait) {
1045		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1046						  &cached_state)) {
1047			btrfs_drew_write_unlock(&root->snapshot_lock);
1048			return -EAGAIN;
 
 
 
 
 
 
 
1049		}
1050	} else {
1051		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1052						   &cached_state);
1053	}
 
1054	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1055			       NULL, nowait, false);
1056	if (ret <= 0)
1057		btrfs_drew_write_unlock(&root->snapshot_lock);
1058	else
 
 
1059		*write_bytes = min_t(size_t, *write_bytes ,
1060				     num_bytes - pos + lockstart);
1061	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
 
 
1062
1063	return ret;
1064}
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1067{
1068	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1069}
1070
1071int btrfs_write_check(struct kiocb *iocb, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	struct file *file = iocb->ki_filp;
1074	struct inode *inode = file_inode(file);
1075	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1076	loff_t pos = iocb->ki_pos;
1077	int ret;
1078	loff_t oldsize;
 
1079
1080	/*
1081	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1082	 * prealloc flags, as without those flags we always have to COW. We will
1083	 * later check if we can really COW into the target range (using
1084	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1085	 */
1086	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1087	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1088		return -EAGAIN;
 
 
 
 
 
1089
 
1090	ret = file_remove_privs(file);
1091	if (ret)
1092		return ret;
1093
1094	/*
1095	 * We reserve space for updating the inode when we reserve space for the
1096	 * extent we are going to write, so we will enospc out there.  We don't
1097	 * need to start yet another transaction to update the inode as we will
1098	 * update the inode when we finish writing whatever data we write.
1099	 */
1100	if (!IS_NOCMTIME(inode)) {
1101		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1102		inode_inc_iversion(inode);
1103	}
1104
 
1105	oldsize = i_size_read(inode);
1106	if (pos > oldsize) {
1107		/* Expand hole size to cover write data, preventing empty gap */
1108		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1109
1110		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1111		if (ret)
 
1112			return ret;
 
1113	}
1114
1115	return 0;
1116}
1117
1118ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
 
1119{
1120	struct file *file = iocb->ki_filp;
1121	loff_t pos;
1122	struct inode *inode = file_inode(file);
1123	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 
1124	struct extent_changeset *data_reserved = NULL;
1125	u64 release_bytes = 0;
1126	u64 lockstart;
1127	u64 lockend;
1128	size_t num_written = 0;
 
1129	ssize_t ret;
1130	loff_t old_isize;
1131	unsigned int ilock_flags = 0;
1132	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1133	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1134	bool only_release_metadata = false;
 
 
 
1135
1136	if (nowait)
1137		ilock_flags |= BTRFS_ILOCK_TRY;
1138
1139	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1140	if (ret < 0)
1141		return ret;
1142
1143	/*
1144	 * We can only trust the isize with inode lock held, or it can race with
1145	 * other buffered writes and cause incorrect call of
1146	 * pagecache_isize_extended() to overwrite existing data.
1147	 */
1148	old_isize = i_size_read(inode);
1149
1150	ret = generic_write_checks(iocb, i);
1151	if (ret <= 0)
1152		goto out;
1153
1154	ret = btrfs_write_check(iocb, ret);
1155	if (ret < 0)
1156		goto out;
1157
1158	pos = iocb->ki_pos;
 
 
 
 
 
 
 
 
 
 
1159	while (iov_iter_count(i) > 0) {
1160		struct extent_state *cached_state = NULL;
1161		size_t offset = offset_in_page(pos);
1162		size_t sector_offset;
1163		size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
 
 
 
1164		size_t reserve_bytes;
 
1165		size_t copied;
1166		size_t dirty_sectors;
1167		size_t num_sectors;
1168		struct folio *folio = NULL;
1169		int extents_locked;
1170		bool force_page_uptodate = false;
1171
1172		/*
1173		 * Fault pages before locking them in prepare_one_folio()
1174		 * to avoid recursive lock
1175		 */
1176		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1177			ret = -EFAULT;
1178			break;
1179		}
1180
1181		only_release_metadata = false;
1182		sector_offset = pos & (fs_info->sectorsize - 1);
1183
1184		extent_changeset_release(data_reserved);
1185		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1186						  &data_reserved, pos,
1187						  write_bytes, nowait);
1188		if (ret < 0) {
1189			int can_nocow;
1190
1191			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1192				ret = -EAGAIN;
1193				break;
1194			}
1195
1196			/*
1197			 * If we don't have to COW at the offset, reserve
1198			 * metadata only. write_bytes may get smaller than
1199			 * requested here.
1200			 */
1201			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1202							   &write_bytes, nowait);
1203			if (can_nocow < 0)
1204				ret = can_nocow;
1205			if (can_nocow > 0)
1206				ret = 0;
1207			if (ret)
1208				break;
1209			only_release_metadata = true;
1210		}
1211
 
 
1212		reserve_bytes = round_up(write_bytes + sector_offset,
1213					 fs_info->sectorsize);
1214		WARN_ON(reserve_bytes == 0);
1215		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1216						      reserve_bytes,
1217						      reserve_bytes, nowait);
1218		if (ret) {
1219			if (!only_release_metadata)
1220				btrfs_free_reserved_data_space(BTRFS_I(inode),
1221						data_reserved, pos,
1222						write_bytes);
1223			else
1224				btrfs_check_nocow_unlock(BTRFS_I(inode));
1225
1226			if (nowait && ret == -ENOSPC)
1227				ret = -EAGAIN;
1228			break;
1229		}
1230
1231		release_bytes = reserve_bytes;
1232again:
1233		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1234		if (ret) {
1235			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1236			break;
1237		}
1238
1239		ret = prepare_one_folio(inode, &folio, pos, write_bytes,
1240					force_page_uptodate, false);
1241		if (ret) {
1242			btrfs_delalloc_release_extents(BTRFS_I(inode),
1243						       reserve_bytes);
1244			break;
1245		}
1246
1247		extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
1248						folio, pos, write_bytes, &lockstart,
1249						&lockend, nowait, &cached_state);
 
1250		if (extents_locked < 0) {
1251			if (!nowait && extents_locked == -EAGAIN)
1252				goto again;
1253
1254			btrfs_delalloc_release_extents(BTRFS_I(inode),
1255						       reserve_bytes);
1256			ret = extents_locked;
1257			break;
1258		}
1259
1260		copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
1261
1262		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1263		dirty_sectors = round_up(copied + sector_offset,
1264					fs_info->sectorsize);
1265		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1266
 
 
 
 
 
 
 
1267		if (copied == 0) {
1268			force_page_uptodate = true;
1269			dirty_sectors = 0;
 
1270		} else {
1271			force_page_uptodate = false;
 
 
1272		}
1273
1274		if (num_sectors > dirty_sectors) {
1275			/* release everything except the sectors we dirtied */
1276			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1277			if (only_release_metadata) {
1278				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1279							release_bytes, true);
1280			} else {
1281				u64 release_start = round_up(pos + copied,
1282							     fs_info->sectorsize);
 
 
 
1283				btrfs_delalloc_release_space(BTRFS_I(inode),
1284						data_reserved, release_start,
1285						release_bytes, true);
1286			}
1287		}
1288
1289		release_bytes = round_up(copied + sector_offset,
1290					fs_info->sectorsize);
1291
1292		ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
 
1293					&cached_state, only_release_metadata);
1294
1295		/*
1296		 * If we have not locked the extent range, because the range's
1297		 * start offset is >= i_size, we might still have a non-NULL
1298		 * cached extent state, acquired while marking the extent range
1299		 * as delalloc through btrfs_dirty_page(). Therefore free any
1300		 * possible cached extent state to avoid a memory leak.
1301		 */
1302		if (extents_locked)
1303			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1304				      lockend, &cached_state);
1305		else
1306			free_extent_state(cached_state);
1307
1308		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1309		if (ret) {
1310			btrfs_drop_folio(fs_info, folio, pos, copied);
1311			break;
1312		}
1313
1314		release_bytes = 0;
1315		if (only_release_metadata)
1316			btrfs_check_nocow_unlock(BTRFS_I(inode));
1317
1318		btrfs_drop_folio(fs_info, folio, pos, copied);
1319
1320		cond_resched();
1321
 
 
1322		pos += copied;
1323		num_written += copied;
1324	}
1325
 
 
1326	if (release_bytes) {
1327		if (only_release_metadata) {
1328			btrfs_check_nocow_unlock(BTRFS_I(inode));
1329			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1330					release_bytes, true);
1331		} else {
1332			btrfs_delalloc_release_space(BTRFS_I(inode),
1333					data_reserved,
1334					round_down(pos, fs_info->sectorsize),
1335					release_bytes, true);
1336		}
1337	}
1338
1339	extent_changeset_free(data_reserved);
1340	if (num_written > 0) {
1341		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1342		iocb->ki_pos += num_written;
1343	}
1344out:
1345	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1346	return num_written ? num_written : ret;
1347}
1348
1349static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1350			const struct btrfs_ioctl_encoded_io_args *encoded)
 
 
 
 
 
 
 
 
 
 
 
 
 
1351{
1352	struct file *file = iocb->ki_filp;
1353	struct inode *inode = file_inode(file);
1354	loff_t count;
1355	ssize_t ret;
 
 
 
 
 
 
1356
1357	btrfs_inode_lock(BTRFS_I(inode), 0);
1358	count = encoded->len;
1359	ret = generic_write_checks_count(iocb, &count);
1360	if (ret == 0 && count != encoded->len) {
1361		/*
1362		 * The write got truncated by generic_write_checks_count(). We
1363		 * can't do a partial encoded write.
1364		 */
1365		ret = -EFBIG;
1366	}
1367	if (ret || encoded->len == 0)
 
 
 
 
 
 
 
 
 
 
1368		goto out;
 
1369
1370	ret = btrfs_write_check(iocb, encoded->len);
1371	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372		goto out;
 
1373
1374	ret = btrfs_do_encoded_write(iocb, from, encoded);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375out:
1376	btrfs_inode_unlock(BTRFS_I(inode), 0);
1377	return ret;
1378}
1379
1380ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1381			    const struct btrfs_ioctl_encoded_io_args *encoded)
1382{
1383	struct file *file = iocb->ki_filp;
1384	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1385	ssize_t num_written, num_sync;
 
1386
1387	/*
1388	 * If the fs flips readonly due to some impossible error, although we
1389	 * have opened a file as writable, we have to stop this write operation
1390	 * to ensure consistency.
1391	 */
1392	if (BTRFS_FS_ERROR(inode->root->fs_info))
1393		return -EROFS;
1394
1395	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
 
1396		return -EOPNOTSUPP;
1397
1398	if (encoded) {
1399		num_written = btrfs_encoded_write(iocb, from, encoded);
1400		num_sync = encoded->len;
1401	} else if (iocb->ki_flags & IOCB_DIRECT) {
1402		num_written = btrfs_direct_write(iocb, from);
1403		num_sync = num_written;
1404	} else {
1405		num_written = btrfs_buffered_write(iocb, from);
1406		num_sync = num_written;
1407	}
1408
1409	btrfs_set_inode_last_sub_trans(inode);
1410
1411	if (num_sync > 0) {
1412		num_sync = generic_write_sync(iocb, num_sync);
1413		if (num_sync < 0)
1414			num_written = num_sync;
1415	}
1416
1417	return num_written;
1418}
1419
1420static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1421{
1422	return btrfs_do_write_iter(iocb, from, NULL);
1423}
1424
1425int btrfs_release_file(struct inode *inode, struct file *filp)
1426{
1427	struct btrfs_file_private *private = filp->private_data;
1428
1429	if (private) {
1430		kfree(private->filldir_buf);
1431		free_extent_state(private->llseek_cached_state);
1432		kfree(private);
1433		filp->private_data = NULL;
1434	}
1435
1436	/*
1437	 * Set by setattr when we are about to truncate a file from a non-zero
1438	 * size to a zero size.  This tries to flush down new bytes that may
1439	 * have been written if the application were using truncate to replace
1440	 * a file in place.
1441	 */
1442	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1443			       &BTRFS_I(inode)->runtime_flags))
1444			filemap_flush(inode->i_mapping);
1445	return 0;
1446}
1447
1448static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1449{
1450	int ret;
1451	struct blk_plug plug;
1452
1453	/*
1454	 * This is only called in fsync, which would do synchronous writes, so
1455	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1456	 * multiple disks using raid profile, a large IO can be split to
1457	 * several segments of stripe length (currently 64K).
1458	 */
1459	blk_start_plug(&plug);
 
1460	ret = btrfs_fdatawrite_range(inode, start, end);
 
1461	blk_finish_plug(&plug);
1462
1463	return ret;
1464}
1465
1466static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1467{
1468	struct btrfs_inode *inode = ctx->inode;
1469	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1470
1471	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1472	    list_empty(&ctx->ordered_extents))
1473		return true;
1474
1475	/*
1476	 * If we are doing a fast fsync we can not bail out if the inode's
1477	 * last_trans is <= then the last committed transaction, because we only
1478	 * update the last_trans of the inode during ordered extent completion,
1479	 * and for a fast fsync we don't wait for that, we only wait for the
1480	 * writeback to complete.
1481	 */
1482	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1483	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1484	     list_empty(&ctx->ordered_extents)))
1485		return true;
1486
1487	return false;
1488}
1489
1490/*
1491 * fsync call for both files and directories.  This logs the inode into
1492 * the tree log instead of forcing full commits whenever possible.
1493 *
1494 * It needs to call filemap_fdatawait so that all ordered extent updates are
1495 * in the metadata btree are up to date for copying to the log.
1496 *
1497 * It drops the inode mutex before doing the tree log commit.  This is an
1498 * important optimization for directories because holding the mutex prevents
1499 * new operations on the dir while we write to disk.
1500 */
1501int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1502{
1503	struct dentry *dentry = file_dentry(file);
1504	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1505	struct btrfs_root *root = inode->root;
1506	struct btrfs_fs_info *fs_info = root->fs_info;
1507	struct btrfs_trans_handle *trans;
1508	struct btrfs_log_ctx ctx;
1509	int ret = 0, err;
1510	u64 len;
1511	bool full_sync;
1512	bool skip_ilock = false;
1513
1514	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1515		skip_ilock = true;
1516		current->journal_info = NULL;
1517		btrfs_assert_inode_locked(inode);
1518	}
1519
1520	trace_btrfs_sync_file(file, datasync);
1521
1522	btrfs_init_log_ctx(&ctx, inode);
1523
1524	/*
1525	 * Always set the range to a full range, otherwise we can get into
1526	 * several problems, from missing file extent items to represent holes
1527	 * when not using the NO_HOLES feature, to log tree corruption due to
1528	 * races between hole detection during logging and completion of ordered
1529	 * extents outside the range, to missing checksums due to ordered extents
1530	 * for which we flushed only a subset of their pages.
1531	 */
1532	start = 0;
1533	end = LLONG_MAX;
1534	len = (u64)LLONG_MAX + 1;
1535
1536	/*
1537	 * We write the dirty pages in the range and wait until they complete
1538	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1539	 * multi-task, and make the performance up.  See
1540	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1541	 */
1542	ret = start_ordered_ops(inode, start, end);
1543	if (ret)
1544		goto out;
1545
1546	if (skip_ilock)
1547		down_write(&inode->i_mmap_lock);
1548	else
1549		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1550
1551	atomic_inc(&root->log_batch);
1552
1553	/*
 
 
 
 
 
 
 
 
1554	 * Before we acquired the inode's lock and the mmap lock, someone may
1555	 * have dirtied more pages in the target range. We need to make sure
1556	 * that writeback for any such pages does not start while we are logging
1557	 * the inode, because if it does, any of the following might happen when
1558	 * we are not doing a full inode sync:
1559	 *
1560	 * 1) We log an extent after its writeback finishes but before its
1561	 *    checksums are added to the csum tree, leading to -EIO errors
1562	 *    when attempting to read the extent after a log replay.
1563	 *
1564	 * 2) We can end up logging an extent before its writeback finishes.
1565	 *    Therefore after the log replay we will have a file extent item
1566	 *    pointing to an unwritten extent (and no data checksums as well).
1567	 *
1568	 * So trigger writeback for any eventual new dirty pages and then we
1569	 * wait for all ordered extents to complete below.
1570	 */
1571	ret = start_ordered_ops(inode, start, end);
1572	if (ret) {
1573		if (skip_ilock)
1574			up_write(&inode->i_mmap_lock);
1575		else
1576			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1577		goto out;
1578	}
1579
1580	/*
1581	 * Always check for the full sync flag while holding the inode's lock,
1582	 * to avoid races with other tasks. The flag must be either set all the
1583	 * time during logging or always off all the time while logging.
1584	 * We check the flag here after starting delalloc above, because when
1585	 * running delalloc the full sync flag may be set if we need to drop
1586	 * extra extent map ranges due to temporary memory allocation failures.
1587	 */
1588	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1589
1590	/*
1591	 * We have to do this here to avoid the priority inversion of waiting on
1592	 * IO of a lower priority task while holding a transaction open.
1593	 *
1594	 * For a full fsync we wait for the ordered extents to complete while
1595	 * for a fast fsync we wait just for writeback to complete, and then
1596	 * attach the ordered extents to the transaction so that a transaction
1597	 * commit waits for their completion, to avoid data loss if we fsync,
1598	 * the current transaction commits before the ordered extents complete
1599	 * and a power failure happens right after that.
1600	 *
1601	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1602	 * logical address recorded in the ordered extent may change. We need
1603	 * to wait for the IO to stabilize the logical address.
1604	 */
1605	if (full_sync || btrfs_is_zoned(fs_info)) {
1606		ret = btrfs_wait_ordered_range(inode, start, len);
1607		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1608	} else {
1609		/*
1610		 * Get our ordered extents as soon as possible to avoid doing
1611		 * checksum lookups in the csum tree, and use instead the
1612		 * checksums attached to the ordered extents.
1613		 */
1614		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1615		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1616		if (ret)
1617			goto out_release_extents;
1618
1619		/*
1620		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1621		 * starting and waiting for writeback, because for buffered IO
1622		 * it may have been set during the end IO callback
1623		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1624		 * case an error happened and we need to wait for ordered
1625		 * extents to complete so that any extent maps that point to
1626		 * unwritten locations are dropped and we don't log them.
1627		 */
1628		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1629			ret = btrfs_wait_ordered_range(inode, start, len);
1630	}
1631
1632	if (ret)
1633		goto out_release_extents;
1634
1635	atomic_inc(&root->log_batch);
1636
 
1637	if (skip_inode_logging(&ctx)) {
1638		/*
1639		 * We've had everything committed since the last time we were
1640		 * modified so clear this flag in case it was set for whatever
1641		 * reason, it's no longer relevant.
1642		 */
1643		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 
1644		/*
1645		 * An ordered extent might have started before and completed
1646		 * already with io errors, in which case the inode was not
1647		 * updated and we end up here. So check the inode's mapping
1648		 * for any errors that might have happened since we last
1649		 * checked called fsync.
1650		 */
1651		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1652		goto out_release_extents;
1653	}
1654
1655	btrfs_init_log_ctx_scratch_eb(&ctx);
1656
1657	/*
1658	 * We use start here because we will need to wait on the IO to complete
1659	 * in btrfs_sync_log, which could require joining a transaction (for
1660	 * example checking cross references in the nocow path).  If we use join
1661	 * here we could get into a situation where we're waiting on IO to
1662	 * happen that is blocked on a transaction trying to commit.  With start
1663	 * we inc the extwriter counter, so we wait for all extwriters to exit
1664	 * before we start blocking joiners.  This comment is to keep somebody
1665	 * from thinking they are super smart and changing this to
1666	 * btrfs_join_transaction *cough*Josef*cough*.
1667	 */
1668	trans = btrfs_start_transaction(root, 0);
1669	if (IS_ERR(trans)) {
1670		ret = PTR_ERR(trans);
1671		goto out_release_extents;
1672	}
1673	trans->in_fsync = true;
1674
1675	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1676	/*
1677	 * Scratch eb no longer needed, release before syncing log or commit
1678	 * transaction, to avoid holding unnecessary memory during such long
1679	 * operations.
1680	 */
1681	if (ctx.scratch_eb) {
1682		free_extent_buffer(ctx.scratch_eb);
1683		ctx.scratch_eb = NULL;
1684	}
1685	btrfs_release_log_ctx_extents(&ctx);
1686	if (ret < 0) {
1687		/* Fallthrough and commit/free transaction. */
1688		ret = BTRFS_LOG_FORCE_COMMIT;
1689	}
1690
1691	/* we've logged all the items and now have a consistent
1692	 * version of the file in the log.  It is possible that
1693	 * someone will come in and modify the file, but that's
1694	 * fine because the log is consistent on disk, and we
1695	 * have references to all of the file's extents
1696	 *
1697	 * It is possible that someone will come in and log the
1698	 * file again, but that will end up using the synchronization
1699	 * inside btrfs_sync_log to keep things safe.
1700	 */
1701	if (skip_ilock)
1702		up_write(&inode->i_mmap_lock);
1703	else
1704		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1705
1706	if (ret == BTRFS_NO_LOG_SYNC) {
1707		ret = btrfs_end_transaction(trans);
1708		goto out;
1709	}
1710
1711	/* We successfully logged the inode, attempt to sync the log. */
1712	if (!ret) {
1713		ret = btrfs_sync_log(trans, root, &ctx);
1714		if (!ret) {
1715			ret = btrfs_end_transaction(trans);
1716			goto out;
 
 
 
1717		}
1718	}
1719
1720	/*
1721	 * At this point we need to commit the transaction because we had
1722	 * btrfs_need_log_full_commit() or some other error.
1723	 *
1724	 * If we didn't do a full sync we have to stop the trans handle, wait on
1725	 * the ordered extents, start it again and commit the transaction.  If
1726	 * we attempt to wait on the ordered extents here we could deadlock with
1727	 * something like fallocate() that is holding the extent lock trying to
1728	 * start a transaction while some other thread is trying to commit the
1729	 * transaction while we (fsync) are currently holding the transaction
1730	 * open.
1731	 */
1732	if (!full_sync) {
1733		ret = btrfs_end_transaction(trans);
1734		if (ret)
1735			goto out;
1736		ret = btrfs_wait_ordered_range(inode, start, len);
1737		if (ret)
1738			goto out;
1739
1740		/*
1741		 * This is safe to use here because we're only interested in
1742		 * making sure the transaction that had the ordered extents is
1743		 * committed.  We aren't waiting on anything past this point,
1744		 * we're purely getting the transaction and committing it.
1745		 */
1746		trans = btrfs_attach_transaction_barrier(root);
1747		if (IS_ERR(trans)) {
1748			ret = PTR_ERR(trans);
1749
1750			/*
1751			 * We committed the transaction and there's no currently
1752			 * running transaction, this means everything we care
1753			 * about made it to disk and we are done.
1754			 */
1755			if (ret == -ENOENT)
1756				ret = 0;
1757			goto out;
1758		}
 
 
 
1759	}
1760
1761	ret = btrfs_commit_transaction(trans);
1762out:
1763	free_extent_buffer(ctx.scratch_eb);
1764	ASSERT(list_empty(&ctx.list));
1765	ASSERT(list_empty(&ctx.conflict_inodes));
1766	err = file_check_and_advance_wb_err(file);
1767	if (!ret)
1768		ret = err;
1769	return ret > 0 ? -EIO : ret;
1770
1771out_release_extents:
1772	btrfs_release_log_ctx_extents(&ctx);
1773	if (skip_ilock)
1774		up_write(&inode->i_mmap_lock);
1775	else
1776		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1777	goto out;
1778}
1779
1780/*
1781 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1782 * called from a page fault handler when a page is first dirtied. Hence we must
1783 * be careful to check for EOF conditions here. We set the page up correctly
1784 * for a written page which means we get ENOSPC checking when writing into
1785 * holes and correct delalloc and unwritten extent mapping on filesystems that
1786 * support these features.
1787 *
1788 * We are not allowed to take the i_mutex here so we have to play games to
1789 * protect against truncate races as the page could now be beyond EOF.  Because
1790 * truncate_setsize() writes the inode size before removing pages, once we have
1791 * the page lock we can determine safely if the page is beyond EOF. If it is not
1792 * beyond EOF, then the page is guaranteed safe against truncation until we
1793 * unlock the page.
1794 */
1795static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1796{
1797	struct page *page = vmf->page;
1798	struct folio *folio = page_folio(page);
1799	struct inode *inode = file_inode(vmf->vma->vm_file);
1800	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1801	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1802	struct btrfs_ordered_extent *ordered;
1803	struct extent_state *cached_state = NULL;
1804	struct extent_changeset *data_reserved = NULL;
1805	unsigned long zero_start;
1806	loff_t size;
1807	vm_fault_t ret;
1808	int ret2;
1809	int reserved = 0;
1810	u64 reserved_space;
1811	u64 page_start;
1812	u64 page_end;
1813	u64 end;
1814
1815	ASSERT(folio_order(folio) == 0);
1816
1817	reserved_space = PAGE_SIZE;
1818
1819	sb_start_pagefault(inode->i_sb);
1820	page_start = folio_pos(folio);
1821	page_end = page_start + folio_size(folio) - 1;
1822	end = page_end;
1823
1824	/*
1825	 * Reserving delalloc space after obtaining the page lock can lead to
1826	 * deadlock. For example, if a dirty page is locked by this function
1827	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1828	 * dirty page write out, then the btrfs_writepages() function could
1829	 * end up waiting indefinitely to get a lock on the page currently
1830	 * being processed by btrfs_page_mkwrite() function.
1831	 */
1832	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1833					    page_start, reserved_space);
1834	if (!ret2) {
1835		ret2 = file_update_time(vmf->vma->vm_file);
1836		reserved = 1;
1837	}
1838	if (ret2) {
1839		ret = vmf_error(ret2);
1840		if (reserved)
1841			goto out;
1842		goto out_noreserve;
1843	}
1844
1845	/* Make the VM retry the fault. */
1846	ret = VM_FAULT_NOPAGE;
1847again:
1848	down_read(&BTRFS_I(inode)->i_mmap_lock);
1849	folio_lock(folio);
1850	size = i_size_read(inode);
1851
1852	if ((folio->mapping != inode->i_mapping) ||
1853	    (page_start >= size)) {
1854		/* Page got truncated out from underneath us. */
1855		goto out_unlock;
1856	}
1857	folio_wait_writeback(folio);
1858
1859	lock_extent(io_tree, page_start, page_end, &cached_state);
1860	ret2 = set_folio_extent_mapped(folio);
1861	if (ret2 < 0) {
1862		ret = vmf_error(ret2);
1863		unlock_extent(io_tree, page_start, page_end, &cached_state);
1864		goto out_unlock;
1865	}
1866
1867	/*
1868	 * We can't set the delalloc bits if there are pending ordered
1869	 * extents.  Drop our locks and wait for them to finish.
1870	 */
1871	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1872	if (ordered) {
1873		unlock_extent(io_tree, page_start, page_end, &cached_state);
1874		folio_unlock(folio);
1875		up_read(&BTRFS_I(inode)->i_mmap_lock);
1876		btrfs_start_ordered_extent(ordered);
1877		btrfs_put_ordered_extent(ordered);
1878		goto again;
1879	}
1880
1881	if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1882		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1883		if (reserved_space < PAGE_SIZE) {
1884			end = page_start + reserved_space - 1;
1885			btrfs_delalloc_release_space(BTRFS_I(inode),
1886					data_reserved, page_start,
1887					PAGE_SIZE - reserved_space, true);
1888		}
1889	}
1890
1891	/*
1892	 * page_mkwrite gets called when the page is firstly dirtied after it's
1893	 * faulted in, but write(2) could also dirty a page and set delalloc
1894	 * bits, thus in this case for space account reason, we still need to
1895	 * clear any delalloc bits within this page range since we have to
1896	 * reserve data&meta space before lock_page() (see above comments).
1897	 */
1898	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1899			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1900			  EXTENT_DEFRAG, &cached_state);
1901
1902	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1903					&cached_state);
1904	if (ret2) {
1905		unlock_extent(io_tree, page_start, page_end, &cached_state);
1906		ret = VM_FAULT_SIGBUS;
1907		goto out_unlock;
1908	}
1909
1910	/* Page is wholly or partially inside EOF. */
1911	if (page_start + folio_size(folio) > size)
1912		zero_start = offset_in_folio(folio, size);
1913	else
1914		zero_start = PAGE_SIZE;
1915
1916	if (zero_start != PAGE_SIZE)
1917		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1918
1919	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
1920	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1921	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1922
1923	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1924
1925	unlock_extent(io_tree, page_start, page_end, &cached_state);
1926	up_read(&BTRFS_I(inode)->i_mmap_lock);
1927
1928	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1929	sb_end_pagefault(inode->i_sb);
1930	extent_changeset_free(data_reserved);
1931	return VM_FAULT_LOCKED;
1932
1933out_unlock:
1934	folio_unlock(folio);
1935	up_read(&BTRFS_I(inode)->i_mmap_lock);
1936out:
1937	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1938	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1939				     reserved_space, (ret != 0));
1940out_noreserve:
1941	sb_end_pagefault(inode->i_sb);
1942	extent_changeset_free(data_reserved);
1943	return ret;
1944}
1945
1946static const struct vm_operations_struct btrfs_file_vm_ops = {
1947	.fault		= filemap_fault,
1948	.map_pages	= filemap_map_pages,
1949	.page_mkwrite	= btrfs_page_mkwrite,
1950};
1951
1952static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1953{
1954	struct address_space *mapping = filp->f_mapping;
1955
1956	if (!mapping->a_ops->read_folio)
1957		return -ENOEXEC;
1958
1959	file_accessed(filp);
1960	vma->vm_ops = &btrfs_file_vm_ops;
1961
1962	return 0;
1963}
1964
1965static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1966			  int slot, u64 start, u64 end)
1967{
1968	struct btrfs_file_extent_item *fi;
1969	struct btrfs_key key;
1970
1971	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1972		return 0;
1973
1974	btrfs_item_key_to_cpu(leaf, &key, slot);
1975	if (key.objectid != btrfs_ino(inode) ||
1976	    key.type != BTRFS_EXTENT_DATA_KEY)
1977		return 0;
1978
1979	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1980
1981	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1982		return 0;
1983
1984	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1985		return 0;
1986
1987	if (key.offset == end)
1988		return 1;
1989	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1990		return 1;
1991	return 0;
1992}
1993
1994static int fill_holes(struct btrfs_trans_handle *trans,
1995		struct btrfs_inode *inode,
1996		struct btrfs_path *path, u64 offset, u64 end)
1997{
1998	struct btrfs_fs_info *fs_info = trans->fs_info;
1999	struct btrfs_root *root = inode->root;
2000	struct extent_buffer *leaf;
2001	struct btrfs_file_extent_item *fi;
2002	struct extent_map *hole_em;
 
2003	struct btrfs_key key;
2004	int ret;
2005
2006	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2007		goto out;
2008
2009	key.objectid = btrfs_ino(inode);
2010	key.type = BTRFS_EXTENT_DATA_KEY;
2011	key.offset = offset;
2012
2013	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2014	if (ret <= 0) {
2015		/*
2016		 * We should have dropped this offset, so if we find it then
2017		 * something has gone horribly wrong.
2018		 */
2019		if (ret == 0)
2020			ret = -EINVAL;
2021		return ret;
2022	}
2023
2024	leaf = path->nodes[0];
2025	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2026		u64 num_bytes;
2027
2028		path->slots[0]--;
2029		fi = btrfs_item_ptr(leaf, path->slots[0],
2030				    struct btrfs_file_extent_item);
2031		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2032			end - offset;
2033		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2034		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2035		btrfs_set_file_extent_offset(leaf, fi, 0);
2036		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2037		btrfs_mark_buffer_dirty(trans, leaf);
2038		goto out;
2039	}
2040
2041	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2042		u64 num_bytes;
2043
2044		key.offset = offset;
2045		btrfs_set_item_key_safe(trans, path, &key);
2046		fi = btrfs_item_ptr(leaf, path->slots[0],
2047				    struct btrfs_file_extent_item);
2048		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2049			offset;
2050		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2051		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2052		btrfs_set_file_extent_offset(leaf, fi, 0);
2053		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2054		btrfs_mark_buffer_dirty(trans, leaf);
2055		goto out;
2056	}
2057	btrfs_release_path(path);
2058
2059	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2060				       end - offset);
2061	if (ret)
2062		return ret;
2063
2064out:
2065	btrfs_release_path(path);
2066
2067	hole_em = alloc_extent_map();
2068	if (!hole_em) {
2069		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2070		btrfs_set_inode_full_sync(inode);
2071	} else {
2072		hole_em->start = offset;
2073		hole_em->len = end - offset;
2074		hole_em->ram_bytes = hole_em->len;
 
2075
2076		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2077		hole_em->disk_num_bytes = 0;
 
 
2078		hole_em->generation = trans->transid;
2079
2080		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
 
 
 
 
 
2081		free_extent_map(hole_em);
2082		if (ret)
2083			btrfs_set_inode_full_sync(inode);
 
2084	}
2085
2086	return 0;
2087}
2088
2089/*
2090 * Find a hole extent on given inode and change start/len to the end of hole
2091 * extent.(hole/vacuum extent whose em->start <= start &&
2092 *	   em->start + em->len > start)
2093 * When a hole extent is found, return 1 and modify start/len.
2094 */
2095static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2096{
2097	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2098	struct extent_map *em;
2099	int ret = 0;
2100
2101	em = btrfs_get_extent(inode, NULL,
2102			      round_down(*start, fs_info->sectorsize),
2103			      round_up(*len, fs_info->sectorsize));
2104	if (IS_ERR(em))
2105		return PTR_ERR(em);
2106
2107	/* Hole or vacuum extent(only exists in no-hole mode) */
2108	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2109		ret = 1;
2110		*len = em->start + em->len > *start + *len ?
2111		       0 : *start + *len - em->start - em->len;
2112		*start = em->start + em->len;
2113	}
2114	free_extent_map(em);
2115	return ret;
2116}
2117
2118static void btrfs_punch_hole_lock_range(struct inode *inode,
2119					const u64 lockstart,
2120					const u64 lockend,
2121					struct extent_state **cached_state)
2122{
2123	/*
2124	 * For subpage case, if the range is not at page boundary, we could
2125	 * have pages at the leading/tailing part of the range.
2126	 * This could lead to dead loop since filemap_range_has_page()
2127	 * will always return true.
2128	 * So here we need to do extra page alignment for
2129	 * filemap_range_has_page().
2130	 */
2131	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2132	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2133
2134	while (1) {
 
 
 
2135		truncate_pagecache_range(inode, lockstart, lockend);
2136
2137		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2138			    cached_state);
2139		/*
2140		 * We can't have ordered extents in the range, nor dirty/writeback
2141		 * pages, because we have locked the inode's VFS lock in exclusive
2142		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2143		 * we have flushed all delalloc in the range and we have waited
2144		 * for any ordered extents in the range to complete.
2145		 * We can race with anyone reading pages from this range, so after
2146		 * locking the range check if we have pages in the range, and if
2147		 * we do, unlock the range and retry.
2148		 */
2149		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2150					    page_lockend))
 
 
 
2151			break;
2152
2153		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2154			      cached_state);
 
 
 
 
 
 
2155	}
2156
2157	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2158}
2159
2160static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2161				     struct btrfs_inode *inode,
2162				     struct btrfs_path *path,
2163				     struct btrfs_replace_extent_info *extent_info,
2164				     const u64 replace_len,
2165				     const u64 bytes_to_drop)
2166{
2167	struct btrfs_fs_info *fs_info = trans->fs_info;
2168	struct btrfs_root *root = inode->root;
2169	struct btrfs_file_extent_item *extent;
2170	struct extent_buffer *leaf;
2171	struct btrfs_key key;
2172	int slot;
 
2173	int ret;
2174
2175	if (replace_len == 0)
2176		return 0;
2177
2178	if (extent_info->disk_offset == 0 &&
2179	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2180		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2181		return 0;
2182	}
2183
2184	key.objectid = btrfs_ino(inode);
2185	key.type = BTRFS_EXTENT_DATA_KEY;
2186	key.offset = extent_info->file_offset;
2187	ret = btrfs_insert_empty_item(trans, root, path, &key,
2188				      sizeof(struct btrfs_file_extent_item));
2189	if (ret)
2190		return ret;
2191	leaf = path->nodes[0];
2192	slot = path->slots[0];
2193	write_extent_buffer(leaf, extent_info->extent_buf,
2194			    btrfs_item_ptr_offset(leaf, slot),
2195			    sizeof(struct btrfs_file_extent_item));
2196	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2197	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2198	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2199	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2200	if (extent_info->is_new_extent)
2201		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2202	btrfs_mark_buffer_dirty(trans, leaf);
2203	btrfs_release_path(path);
2204
2205	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2206						replace_len);
2207	if (ret)
2208		return ret;
2209
2210	/* If it's a hole, nothing more needs to be done. */
2211	if (extent_info->disk_offset == 0) {
2212		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2213		return 0;
2214	}
2215
2216	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2217
2218	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2219		key.objectid = extent_info->disk_offset;
2220		key.type = BTRFS_EXTENT_ITEM_KEY;
2221		key.offset = extent_info->disk_len;
2222		ret = btrfs_alloc_reserved_file_extent(trans, root,
2223						       btrfs_ino(inode),
2224						       extent_info->file_offset,
2225						       extent_info->qgroup_reserved,
2226						       &key);
2227	} else {
2228		struct btrfs_ref ref = {
2229			.action = BTRFS_ADD_DELAYED_REF,
2230			.bytenr = extent_info->disk_offset,
2231			.num_bytes = extent_info->disk_len,
2232			.owning_root = btrfs_root_id(root),
2233			.ref_root = btrfs_root_id(root),
2234		};
2235		u64 ref_offset;
2236
 
 
 
2237		ref_offset = extent_info->file_offset - extent_info->data_offset;
2238		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
 
2239		ret = btrfs_inc_extent_ref(trans, &ref);
2240	}
2241
2242	extent_info->insertions++;
2243
2244	return ret;
2245}
2246
2247/*
2248 * The respective range must have been previously locked, as well as the inode.
2249 * The end offset is inclusive (last byte of the range).
2250 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2251 * the file range with an extent.
2252 * When not punching a hole, we don't want to end up in a state where we dropped
2253 * extents without inserting a new one, so we must abort the transaction to avoid
2254 * a corruption.
2255 */
2256int btrfs_replace_file_extents(struct btrfs_inode *inode,
2257			       struct btrfs_path *path, const u64 start,
2258			       const u64 end,
2259			       struct btrfs_replace_extent_info *extent_info,
2260			       struct btrfs_trans_handle **trans_out)
2261{
2262	struct btrfs_drop_extents_args drop_args = { 0 };
2263	struct btrfs_root *root = inode->root;
2264	struct btrfs_fs_info *fs_info = root->fs_info;
2265	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2266	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2267	struct btrfs_trans_handle *trans = NULL;
2268	struct btrfs_block_rsv *rsv;
2269	unsigned int rsv_count;
2270	u64 cur_offset;
2271	u64 len = end - start;
2272	int ret = 0;
2273
2274	if (end <= start)
2275		return -EINVAL;
2276
2277	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2278	if (!rsv) {
2279		ret = -ENOMEM;
2280		goto out;
2281	}
2282	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2283	rsv->failfast = true;
2284
2285	/*
2286	 * 1 - update the inode
2287	 * 1 - removing the extents in the range
2288	 * 1 - adding the hole extent if no_holes isn't set or if we are
2289	 *     replacing the range with a new extent
2290	 */
2291	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2292		rsv_count = 3;
2293	else
2294		rsv_count = 2;
2295
2296	trans = btrfs_start_transaction(root, rsv_count);
2297	if (IS_ERR(trans)) {
2298		ret = PTR_ERR(trans);
2299		trans = NULL;
2300		goto out_free;
2301	}
2302
2303	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2304				      min_size, false);
2305	if (WARN_ON(ret))
2306		goto out_trans;
2307	trans->block_rsv = rsv;
2308
2309	cur_offset = start;
2310	drop_args.path = path;
2311	drop_args.end = end + 1;
2312	drop_args.drop_cache = true;
2313	while (cur_offset < end) {
2314		drop_args.start = cur_offset;
2315		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2316		/* If we are punching a hole decrement the inode's byte count */
2317		if (!extent_info)
2318			btrfs_update_inode_bytes(inode, 0,
2319						 drop_args.bytes_found);
2320		if (ret != -ENOSPC) {
2321			/*
2322			 * The only time we don't want to abort is if we are
2323			 * attempting to clone a partial inline extent, in which
2324			 * case we'll get EOPNOTSUPP.  However if we aren't
2325			 * clone we need to abort no matter what, because if we
2326			 * got EOPNOTSUPP via prealloc then we messed up and
2327			 * need to abort.
2328			 */
2329			if (ret &&
2330			    (ret != -EOPNOTSUPP ||
2331			     (extent_info && extent_info->is_new_extent)))
2332				btrfs_abort_transaction(trans, ret);
2333			break;
2334		}
2335
2336		trans->block_rsv = &fs_info->trans_block_rsv;
2337
2338		if (!extent_info && cur_offset < drop_args.drop_end &&
2339		    cur_offset < ino_size) {
2340			ret = fill_holes(trans, inode, path, cur_offset,
2341					 drop_args.drop_end);
2342			if (ret) {
2343				/*
2344				 * If we failed then we didn't insert our hole
2345				 * entries for the area we dropped, so now the
2346				 * fs is corrupted, so we must abort the
2347				 * transaction.
2348				 */
2349				btrfs_abort_transaction(trans, ret);
2350				break;
2351			}
2352		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2353			/*
2354			 * We are past the i_size here, but since we didn't
2355			 * insert holes we need to clear the mapped area so we
2356			 * know to not set disk_i_size in this area until a new
2357			 * file extent is inserted here.
2358			 */
2359			ret = btrfs_inode_clear_file_extent_range(inode,
2360					cur_offset,
2361					drop_args.drop_end - cur_offset);
2362			if (ret) {
2363				/*
2364				 * We couldn't clear our area, so we could
2365				 * presumably adjust up and corrupt the fs, so
2366				 * we need to abort.
2367				 */
2368				btrfs_abort_transaction(trans, ret);
2369				break;
2370			}
2371		}
2372
2373		if (extent_info &&
2374		    drop_args.drop_end > extent_info->file_offset) {
2375			u64 replace_len = drop_args.drop_end -
2376					  extent_info->file_offset;
2377
2378			ret = btrfs_insert_replace_extent(trans, inode,	path,
2379					extent_info, replace_len,
2380					drop_args.bytes_found);
2381			if (ret) {
2382				btrfs_abort_transaction(trans, ret);
2383				break;
2384			}
2385			extent_info->data_len -= replace_len;
2386			extent_info->data_offset += replace_len;
2387			extent_info->file_offset += replace_len;
2388		}
2389
2390		/*
2391		 * We are releasing our handle on the transaction, balance the
2392		 * dirty pages of the btree inode and flush delayed items, and
2393		 * then get a new transaction handle, which may now point to a
2394		 * new transaction in case someone else may have committed the
2395		 * transaction we used to replace/drop file extent items. So
2396		 * bump the inode's iversion and update mtime and ctime except
2397		 * if we are called from a dedupe context. This is because a
2398		 * power failure/crash may happen after the transaction is
2399		 * committed and before we finish replacing/dropping all the
2400		 * file extent items we need.
2401		 */
2402		inode_inc_iversion(&inode->vfs_inode);
2403
2404		if (!extent_info || extent_info->update_times)
2405			inode_set_mtime_to_ts(&inode->vfs_inode,
2406					      inode_set_ctime_current(&inode->vfs_inode));
2407
2408		ret = btrfs_update_inode(trans, inode);
2409		if (ret)
2410			break;
2411
2412		btrfs_end_transaction(trans);
2413		btrfs_btree_balance_dirty(fs_info);
2414
2415		trans = btrfs_start_transaction(root, rsv_count);
2416		if (IS_ERR(trans)) {
2417			ret = PTR_ERR(trans);
2418			trans = NULL;
2419			break;
2420		}
2421
2422		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2423					      rsv, min_size, false);
2424		if (WARN_ON(ret))
2425			break;
2426		trans->block_rsv = rsv;
2427
2428		cur_offset = drop_args.drop_end;
2429		len = end - cur_offset;
2430		if (!extent_info && len) {
2431			ret = find_first_non_hole(inode, &cur_offset, &len);
2432			if (unlikely(ret < 0))
2433				break;
2434			if (ret && !len) {
2435				ret = 0;
2436				break;
2437			}
2438		}
2439	}
2440
2441	/*
2442	 * If we were cloning, force the next fsync to be a full one since we
2443	 * we replaced (or just dropped in the case of cloning holes when
2444	 * NO_HOLES is enabled) file extent items and did not setup new extent
2445	 * maps for the replacement extents (or holes).
2446	 */
2447	if (extent_info && !extent_info->is_new_extent)
2448		btrfs_set_inode_full_sync(inode);
2449
2450	if (ret)
2451		goto out_trans;
2452
2453	trans->block_rsv = &fs_info->trans_block_rsv;
2454	/*
2455	 * If we are using the NO_HOLES feature we might have had already an
2456	 * hole that overlaps a part of the region [lockstart, lockend] and
2457	 * ends at (or beyond) lockend. Since we have no file extent items to
2458	 * represent holes, drop_end can be less than lockend and so we must
2459	 * make sure we have an extent map representing the existing hole (the
2460	 * call to __btrfs_drop_extents() might have dropped the existing extent
2461	 * map representing the existing hole), otherwise the fast fsync path
2462	 * will not record the existence of the hole region
2463	 * [existing_hole_start, lockend].
2464	 */
2465	if (drop_args.drop_end <= end)
2466		drop_args.drop_end = end + 1;
2467	/*
2468	 * Don't insert file hole extent item if it's for a range beyond eof
2469	 * (because it's useless) or if it represents a 0 bytes range (when
2470	 * cur_offset == drop_end).
2471	 */
2472	if (!extent_info && cur_offset < ino_size &&
2473	    cur_offset < drop_args.drop_end) {
2474		ret = fill_holes(trans, inode, path, cur_offset,
2475				 drop_args.drop_end);
2476		if (ret) {
2477			/* Same comment as above. */
2478			btrfs_abort_transaction(trans, ret);
2479			goto out_trans;
2480		}
2481	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2482		/* See the comment in the loop above for the reasoning here. */
2483		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2484					drop_args.drop_end - cur_offset);
2485		if (ret) {
2486			btrfs_abort_transaction(trans, ret);
2487			goto out_trans;
2488		}
2489
2490	}
2491	if (extent_info) {
2492		ret = btrfs_insert_replace_extent(trans, inode, path,
2493				extent_info, extent_info->data_len,
2494				drop_args.bytes_found);
2495		if (ret) {
2496			btrfs_abort_transaction(trans, ret);
2497			goto out_trans;
2498		}
2499	}
2500
2501out_trans:
2502	if (!trans)
2503		goto out_free;
2504
2505	trans->block_rsv = &fs_info->trans_block_rsv;
2506	if (ret)
2507		btrfs_end_transaction(trans);
2508	else
2509		*trans_out = trans;
2510out_free:
2511	btrfs_free_block_rsv(fs_info, rsv);
2512out:
2513	return ret;
2514}
2515
2516static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2517{
2518	struct inode *inode = file_inode(file);
2519	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2520	struct btrfs_root *root = BTRFS_I(inode)->root;
2521	struct extent_state *cached_state = NULL;
2522	struct btrfs_path *path;
2523	struct btrfs_trans_handle *trans = NULL;
2524	u64 lockstart;
2525	u64 lockend;
2526	u64 tail_start;
2527	u64 tail_len;
2528	u64 orig_start = offset;
2529	int ret = 0;
2530	bool same_block;
2531	u64 ino_size;
2532	bool truncated_block = false;
2533	bool updated_inode = false;
2534
2535	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2536
2537	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2538	if (ret)
2539		goto out_only_mutex;
2540
 
2541	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2542	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2543	if (ret < 0)
2544		goto out_only_mutex;
2545	if (ret && !len) {
2546		/* Already in a large hole */
2547		ret = 0;
2548		goto out_only_mutex;
2549	}
2550
2551	ret = file_modified(file);
2552	if (ret)
2553		goto out_only_mutex;
2554
2555	lockstart = round_up(offset, fs_info->sectorsize);
2556	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2557	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2558		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2559	/*
2560	 * We needn't truncate any block which is beyond the end of the file
2561	 * because we are sure there is no data there.
2562	 */
2563	/*
2564	 * Only do this if we are in the same block and we aren't doing the
2565	 * entire block.
2566	 */
2567	if (same_block && len < fs_info->sectorsize) {
2568		if (offset < ino_size) {
2569			truncated_block = true;
2570			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2571						   0);
2572		} else {
2573			ret = 0;
2574		}
2575		goto out_only_mutex;
2576	}
2577
2578	/* zero back part of the first block */
2579	if (offset < ino_size) {
2580		truncated_block = true;
2581		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2582		if (ret) {
2583			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2584			return ret;
2585		}
2586	}
2587
2588	/* Check the aligned pages after the first unaligned page,
2589	 * if offset != orig_start, which means the first unaligned page
2590	 * including several following pages are already in holes,
2591	 * the extra check can be skipped */
2592	if (offset == orig_start) {
2593		/* after truncate page, check hole again */
2594		len = offset + len - lockstart;
2595		offset = lockstart;
2596		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2597		if (ret < 0)
2598			goto out_only_mutex;
2599		if (ret && !len) {
2600			ret = 0;
2601			goto out_only_mutex;
2602		}
2603		lockstart = offset;
2604	}
2605
2606	/* Check the tail unaligned part is in a hole */
2607	tail_start = lockend + 1;
2608	tail_len = offset + len - tail_start;
2609	if (tail_len) {
2610		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2611		if (unlikely(ret < 0))
2612			goto out_only_mutex;
2613		if (!ret) {
2614			/* zero the front end of the last page */
2615			if (tail_start + tail_len < ino_size) {
2616				truncated_block = true;
2617				ret = btrfs_truncate_block(BTRFS_I(inode),
2618							tail_start + tail_len,
2619							0, 1);
2620				if (ret)
2621					goto out_only_mutex;
2622			}
2623		}
2624	}
2625
2626	if (lockend < lockstart) {
2627		ret = 0;
2628		goto out_only_mutex;
2629	}
2630
2631	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
 
 
 
2632
2633	path = btrfs_alloc_path();
2634	if (!path) {
2635		ret = -ENOMEM;
2636		goto out;
2637	}
2638
2639	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2640					 lockend, NULL, &trans);
2641	btrfs_free_path(path);
2642	if (ret)
2643		goto out;
2644
2645	ASSERT(trans != NULL);
2646	inode_inc_iversion(inode);
2647	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2648	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2649	updated_inode = true;
2650	btrfs_end_transaction(trans);
2651	btrfs_btree_balance_dirty(fs_info);
2652out:
2653	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2654		      &cached_state);
2655out_only_mutex:
2656	if (!updated_inode && truncated_block && !ret) {
2657		/*
2658		 * If we only end up zeroing part of a page, we still need to
2659		 * update the inode item, so that all the time fields are
2660		 * updated as well as the necessary btrfs inode in memory fields
2661		 * for detecting, at fsync time, if the inode isn't yet in the
2662		 * log tree or it's there but not up to date.
2663		 */
2664		struct timespec64 now = inode_set_ctime_current(inode);
2665
2666		inode_inc_iversion(inode);
2667		inode_set_mtime_to_ts(inode, now);
 
2668		trans = btrfs_start_transaction(root, 1);
2669		if (IS_ERR(trans)) {
2670			ret = PTR_ERR(trans);
2671		} else {
2672			int ret2;
2673
2674			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2675			ret2 = btrfs_end_transaction(trans);
2676			if (!ret)
2677				ret = ret2;
2678		}
2679	}
2680	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2681	return ret;
2682}
2683
2684/* Helper structure to record which range is already reserved */
2685struct falloc_range {
2686	struct list_head list;
2687	u64 start;
2688	u64 len;
2689};
2690
2691/*
2692 * Helper function to add falloc range
2693 *
2694 * Caller should have locked the larger range of extent containing
2695 * [start, len)
2696 */
2697static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2698{
2699	struct falloc_range *range = NULL;
2700
2701	if (!list_empty(head)) {
2702		/*
2703		 * As fallocate iterates by bytenr order, we only need to check
2704		 * the last range.
2705		 */
2706		range = list_last_entry(head, struct falloc_range, list);
2707		if (range->start + range->len == start) {
2708			range->len += len;
2709			return 0;
2710		}
2711	}
2712
2713	range = kmalloc(sizeof(*range), GFP_KERNEL);
2714	if (!range)
2715		return -ENOMEM;
2716	range->start = start;
2717	range->len = len;
2718	list_add_tail(&range->list, head);
2719	return 0;
2720}
2721
2722static int btrfs_fallocate_update_isize(struct inode *inode,
2723					const u64 end,
2724					const int mode)
2725{
2726	struct btrfs_trans_handle *trans;
2727	struct btrfs_root *root = BTRFS_I(inode)->root;
2728	int ret;
2729	int ret2;
2730
2731	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2732		return 0;
2733
2734	trans = btrfs_start_transaction(root, 1);
2735	if (IS_ERR(trans))
2736		return PTR_ERR(trans);
2737
2738	inode_set_ctime_current(inode);
2739	i_size_write(inode, end);
2740	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2741	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2742	ret2 = btrfs_end_transaction(trans);
2743
2744	return ret ? ret : ret2;
2745}
2746
2747enum {
2748	RANGE_BOUNDARY_WRITTEN_EXTENT,
2749	RANGE_BOUNDARY_PREALLOC_EXTENT,
2750	RANGE_BOUNDARY_HOLE,
2751};
2752
2753static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2754						 u64 offset)
2755{
2756	const u64 sectorsize = inode->root->fs_info->sectorsize;
2757	struct extent_map *em;
2758	int ret;
2759
2760	offset = round_down(offset, sectorsize);
2761	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2762	if (IS_ERR(em))
2763		return PTR_ERR(em);
2764
2765	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2766		ret = RANGE_BOUNDARY_HOLE;
2767	else if (em->flags & EXTENT_FLAG_PREALLOC)
2768		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2769	else
2770		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2771
2772	free_extent_map(em);
2773	return ret;
2774}
2775
2776static int btrfs_zero_range(struct inode *inode,
2777			    loff_t offset,
2778			    loff_t len,
2779			    const int mode)
2780{
2781	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2782	struct extent_map *em;
2783	struct extent_changeset *data_reserved = NULL;
2784	int ret;
2785	u64 alloc_hint = 0;
2786	const u64 sectorsize = fs_info->sectorsize;
2787	u64 alloc_start = round_down(offset, sectorsize);
2788	u64 alloc_end = round_up(offset + len, sectorsize);
2789	u64 bytes_to_reserve = 0;
2790	bool space_reserved = false;
2791
2792	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
 
 
2793			      alloc_end - alloc_start);
2794	if (IS_ERR(em)) {
2795		ret = PTR_ERR(em);
2796		goto out;
2797	}
2798
2799	/*
2800	 * Avoid hole punching and extent allocation for some cases. More cases
2801	 * could be considered, but these are unlikely common and we keep things
2802	 * as simple as possible for now. Also, intentionally, if the target
2803	 * range contains one or more prealloc extents together with regular
2804	 * extents and holes, we drop all the existing extents and allocate a
2805	 * new prealloc extent, so that we get a larger contiguous disk extent.
2806	 */
2807	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
 
2808		const u64 em_end = em->start + em->len;
2809
2810		if (em_end >= offset + len) {
2811			/*
2812			 * The whole range is already a prealloc extent,
2813			 * do nothing except updating the inode's i_size if
2814			 * needed.
2815			 */
2816			free_extent_map(em);
2817			ret = btrfs_fallocate_update_isize(inode, offset + len,
2818							   mode);
2819			goto out;
2820		}
2821		/*
2822		 * Part of the range is already a prealloc extent, so operate
2823		 * only on the remaining part of the range.
2824		 */
2825		alloc_start = em_end;
2826		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2827		len = offset + len - alloc_start;
2828		offset = alloc_start;
2829		alloc_hint = extent_map_block_start(em) + em->len;
2830	}
2831	free_extent_map(em);
2832
2833	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2834	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2835		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
 
2836		if (IS_ERR(em)) {
2837			ret = PTR_ERR(em);
2838			goto out;
2839		}
2840
2841		if (em->flags & EXTENT_FLAG_PREALLOC) {
2842			free_extent_map(em);
2843			ret = btrfs_fallocate_update_isize(inode, offset + len,
2844							   mode);
2845			goto out;
2846		}
2847		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2848			free_extent_map(em);
2849			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2850						   0);
2851			if (!ret)
2852				ret = btrfs_fallocate_update_isize(inode,
2853								   offset + len,
2854								   mode);
2855			return ret;
2856		}
2857		free_extent_map(em);
2858		alloc_start = round_down(offset, sectorsize);
2859		alloc_end = alloc_start + sectorsize;
2860		goto reserve_space;
2861	}
2862
2863	alloc_start = round_up(offset, sectorsize);
2864	alloc_end = round_down(offset + len, sectorsize);
2865
2866	/*
2867	 * For unaligned ranges, check the pages at the boundaries, they might
2868	 * map to an extent, in which case we need to partially zero them, or
2869	 * they might map to a hole, in which case we need our allocation range
2870	 * to cover them.
2871	 */
2872	if (!IS_ALIGNED(offset, sectorsize)) {
2873		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2874							    offset);
2875		if (ret < 0)
2876			goto out;
2877		if (ret == RANGE_BOUNDARY_HOLE) {
2878			alloc_start = round_down(offset, sectorsize);
2879			ret = 0;
2880		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2881			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2882			if (ret)
2883				goto out;
2884		} else {
2885			ret = 0;
2886		}
2887	}
2888
2889	if (!IS_ALIGNED(offset + len, sectorsize)) {
2890		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2891							    offset + len);
2892		if (ret < 0)
2893			goto out;
2894		if (ret == RANGE_BOUNDARY_HOLE) {
2895			alloc_end = round_up(offset + len, sectorsize);
2896			ret = 0;
2897		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2898			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2899						   0, 1);
2900			if (ret)
2901				goto out;
2902		} else {
2903			ret = 0;
2904		}
2905	}
2906
2907reserve_space:
2908	if (alloc_start < alloc_end) {
2909		struct extent_state *cached_state = NULL;
2910		const u64 lockstart = alloc_start;
2911		const u64 lockend = alloc_end - 1;
2912
2913		bytes_to_reserve = alloc_end - alloc_start;
2914		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2915						      bytes_to_reserve);
2916		if (ret < 0)
2917			goto out;
2918		space_reserved = true;
2919		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920					    &cached_state);
 
 
2921		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2922						alloc_start, bytes_to_reserve);
2923		if (ret) {
2924			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2925				      lockend, &cached_state);
2926			goto out;
2927		}
2928		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2929						alloc_end - alloc_start,
2930						fs_info->sectorsize,
2931						offset + len, &alloc_hint);
2932		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2933			      &cached_state);
2934		/* btrfs_prealloc_file_range releases reserved space on error */
2935		if (ret) {
2936			space_reserved = false;
2937			goto out;
2938		}
2939	}
2940	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2941 out:
2942	if (ret && space_reserved)
2943		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2944					       alloc_start, bytes_to_reserve);
2945	extent_changeset_free(data_reserved);
2946
2947	return ret;
2948}
2949
2950static long btrfs_fallocate(struct file *file, int mode,
2951			    loff_t offset, loff_t len)
2952{
2953	struct inode *inode = file_inode(file);
2954	struct extent_state *cached_state = NULL;
2955	struct extent_changeset *data_reserved = NULL;
2956	struct falloc_range *range;
2957	struct falloc_range *tmp;
2958	LIST_HEAD(reserve_list);
2959	u64 cur_offset;
2960	u64 last_byte;
2961	u64 alloc_start;
2962	u64 alloc_end;
2963	u64 alloc_hint = 0;
2964	u64 locked_end;
2965	u64 actual_end = 0;
2966	u64 data_space_needed = 0;
2967	u64 data_space_reserved = 0;
2968	u64 qgroup_reserved = 0;
2969	struct extent_map *em;
2970	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2971	int ret;
2972
2973	/* Do not allow fallocate in ZONED mode */
2974	if (btrfs_is_zoned(inode_to_fs_info(inode)))
2975		return -EOPNOTSUPP;
2976
2977	alloc_start = round_down(offset, blocksize);
2978	alloc_end = round_up(offset + len, blocksize);
2979	cur_offset = alloc_start;
2980
2981	/* Make sure we aren't being give some crap mode */
2982	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2983		     FALLOC_FL_ZERO_RANGE))
2984		return -EOPNOTSUPP;
2985
2986	if (mode & FALLOC_FL_PUNCH_HOLE)
2987		return btrfs_punch_hole(file, offset, len);
 
 
 
 
 
 
 
 
 
 
 
 
2988
2989	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2990
2991	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2992		ret = inode_newsize_ok(inode, offset + len);
2993		if (ret)
2994			goto out;
2995	}
2996
2997	ret = file_modified(file);
2998	if (ret)
2999		goto out;
3000
3001	/*
3002	 * TODO: Move these two operations after we have checked
3003	 * accurate reserved space, or fallocate can still fail but
3004	 * with page truncated or size expanded.
3005	 *
3006	 * But that's a minor problem and won't do much harm BTW.
3007	 */
3008	if (alloc_start > inode->i_size) {
3009		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3010					alloc_start);
3011		if (ret)
3012			goto out;
3013	} else if (offset + len > inode->i_size) {
3014		/*
3015		 * If we are fallocating from the end of the file onward we
3016		 * need to zero out the end of the block if i_size lands in the
3017		 * middle of a block.
3018		 */
3019		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3020		if (ret)
3021			goto out;
3022	}
3023
3024	/*
3025	 * We have locked the inode at the VFS level (in exclusive mode) and we
3026	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3027	 * locking the file range, flush all dealloc in the range and wait for
3028	 * all ordered extents in the range to complete. After this we can lock
3029	 * the file range and, due to the previous locking we did, we know there
3030	 * can't be more delalloc or ordered extents in the range.
3031	 */
3032	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3033				       alloc_end - alloc_start);
3034	if (ret)
3035		goto out;
3036
3037	if (mode & FALLOC_FL_ZERO_RANGE) {
3038		ret = btrfs_zero_range(inode, offset, len, mode);
3039		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3040		return ret;
3041	}
3042
3043	locked_end = alloc_end - 1;
3044	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3045		    &cached_state);
3046
3047	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048
3049	/* First, check if we exceed the qgroup limit */
 
3050	while (cur_offset < alloc_end) {
3051		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3052				      alloc_end - cur_offset);
3053		if (IS_ERR(em)) {
3054			ret = PTR_ERR(em);
3055			break;
3056		}
3057		last_byte = min(extent_map_end(em), alloc_end);
3058		actual_end = min_t(u64, extent_map_end(em), offset + len);
3059		last_byte = ALIGN(last_byte, blocksize);
3060		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3061		    (cur_offset >= inode->i_size &&
3062		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3063			const u64 range_len = last_byte - cur_offset;
3064
3065			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3066			if (ret < 0) {
3067				free_extent_map(em);
3068				break;
3069			}
3070			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3071					&data_reserved, cur_offset, range_len);
 
3072			if (ret < 0) {
 
3073				free_extent_map(em);
3074				break;
3075			}
3076			qgroup_reserved += range_len;
3077			data_space_needed += range_len;
 
 
 
 
 
 
 
3078		}
3079		free_extent_map(em);
3080		cur_offset = last_byte;
3081	}
3082
3083	if (!ret && data_space_needed > 0) {
3084		/*
3085		 * We are safe to reserve space here as we can't have delalloc
3086		 * in the range, see above.
3087		 */
3088		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3089						      data_space_needed);
3090		if (!ret)
3091			data_space_reserved = data_space_needed;
3092	}
3093
3094	/*
3095	 * If ret is still 0, means we're OK to fallocate.
3096	 * Or just cleanup the list and exit.
3097	 */
3098	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3099		if (!ret) {
3100			ret = btrfs_prealloc_file_range(inode, mode,
3101					range->start,
3102					range->len, blocksize,
3103					offset + len, &alloc_hint);
3104			/*
3105			 * btrfs_prealloc_file_range() releases space even
3106			 * if it returns an error.
3107			 */
3108			data_space_reserved -= range->len;
3109			qgroup_reserved -= range->len;
3110		} else if (data_space_reserved > 0) {
3111			btrfs_free_reserved_data_space(BTRFS_I(inode),
3112					       data_reserved, range->start,
3113					       range->len);
3114			data_space_reserved -= range->len;
3115			qgroup_reserved -= range->len;
3116		} else if (qgroup_reserved > 0) {
3117			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3118					       range->start, range->len, NULL);
3119			qgroup_reserved -= range->len;
3120		}
3121		list_del(&range->list);
3122		kfree(range);
3123	}
3124	if (ret < 0)
3125		goto out_unlock;
3126
3127	/*
3128	 * We didn't need to allocate any more space, but we still extended the
3129	 * size of the file so we need to update i_size and the inode item.
3130	 */
3131	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3132out_unlock:
3133	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3134		      &cached_state);
3135out:
3136	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 
 
 
 
3137	extent_changeset_free(data_reserved);
3138	return ret;
3139}
3140
3141/*
3142 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3143 * that has unflushed and/or flushing delalloc. There might be other adjacent
3144 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3145 * looping while it gets adjacent subranges, and merging them together.
3146 */
3147static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3148				   struct extent_state **cached_state,
3149				   bool *search_io_tree,
3150				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3151{
3152	u64 len = end + 1 - start;
3153	u64 delalloc_len = 0;
3154	struct btrfs_ordered_extent *oe;
3155	u64 oe_start;
3156	u64 oe_end;
3157
3158	/*
3159	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3160	 * means we have delalloc (dirty pages) for which writeback has not
3161	 * started yet.
3162	 */
3163	if (*search_io_tree) {
3164		spin_lock(&inode->lock);
3165		if (inode->delalloc_bytes > 0) {
3166			spin_unlock(&inode->lock);
3167			*delalloc_start_ret = start;
3168			delalloc_len = count_range_bits(&inode->io_tree,
3169							delalloc_start_ret, end,
3170							len, EXTENT_DELALLOC, 1,
3171							cached_state);
3172		} else {
3173			spin_unlock(&inode->lock);
3174		}
3175	}
3176
3177	if (delalloc_len > 0) {
3178		/*
3179		 * If delalloc was found then *delalloc_start_ret has a sector size
3180		 * aligned value (rounded down).
3181		 */
3182		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3183
3184		if (*delalloc_start_ret == start) {
3185			/* Delalloc for the whole range, nothing more to do. */
3186			if (*delalloc_end_ret == end)
3187				return true;
3188			/* Else trim our search range for ordered extents. */
3189			start = *delalloc_end_ret + 1;
3190			len = end + 1 - start;
3191		}
3192	} else {
3193		/* No delalloc, future calls don't need to search again. */
3194		*search_io_tree = false;
3195	}
3196
3197	/*
3198	 * Now also check if there's any ordered extent in the range.
3199	 * We do this because:
3200	 *
3201	 * 1) When delalloc is flushed, the file range is locked, we clear the
3202	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3203	 *    an ordered extent for the write. So we might just have been called
3204	 *    after delalloc is flushed and before the ordered extent completes
3205	 *    and inserts the new file extent item in the subvolume's btree;
3206	 *
3207	 * 2) We may have an ordered extent created by flushing delalloc for a
3208	 *    subrange that starts before the subrange we found marked with
3209	 *    EXTENT_DELALLOC in the io tree.
3210	 *
3211	 * We could also use the extent map tree to find such delalloc that is
3212	 * being flushed, but using the ordered extents tree is more efficient
3213	 * because it's usually much smaller as ordered extents are removed from
3214	 * the tree once they complete. With the extent maps, we mau have them
3215	 * in the extent map tree for a very long time, and they were either
3216	 * created by previous writes or loaded by read operations.
3217	 */
3218	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3219	if (!oe)
3220		return (delalloc_len > 0);
3221
3222	/* The ordered extent may span beyond our search range. */
3223	oe_start = max(oe->file_offset, start);
3224	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3225
3226	btrfs_put_ordered_extent(oe);
3227
3228	/* Don't have unflushed delalloc, return the ordered extent range. */
3229	if (delalloc_len == 0) {
3230		*delalloc_start_ret = oe_start;
3231		*delalloc_end_ret = oe_end;
3232		return true;
3233	}
3234
3235	/*
3236	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3237	 * If the ranges are adjacent returned a combined range, otherwise
3238	 * return the leftmost range.
3239	 */
3240	if (oe_start < *delalloc_start_ret) {
3241		if (oe_end < *delalloc_start_ret)
3242			*delalloc_end_ret = oe_end;
3243		*delalloc_start_ret = oe_start;
3244	} else if (*delalloc_end_ret + 1 == oe_start) {
3245		*delalloc_end_ret = oe_end;
3246	}
3247
3248	return true;
3249}
3250
3251/*
3252 * Check if there's delalloc in a given range.
3253 *
3254 * @inode:               The inode.
3255 * @start:               The start offset of the range. It does not need to be
3256 *                       sector size aligned.
3257 * @end:                 The end offset (inclusive value) of the search range.
3258 *                       It does not need to be sector size aligned.
3259 * @cached_state:        Extent state record used for speeding up delalloc
3260 *                       searches in the inode's io_tree. Can be NULL.
3261 * @delalloc_start_ret:  Output argument, set to the start offset of the
3262 *                       subrange found with delalloc (may not be sector size
3263 *                       aligned).
3264 * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3265 *                       of the subrange found with delalloc.
3266 *
3267 * Returns true if a subrange with delalloc is found within the given range, and
3268 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3269 * end offsets of the subrange.
3270 */
3271bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3272				  struct extent_state **cached_state,
3273				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3274{
3275	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3276	u64 prev_delalloc_end = 0;
3277	bool search_io_tree = true;
3278	bool ret = false;
3279
3280	while (cur_offset <= end) {
3281		u64 delalloc_start;
3282		u64 delalloc_end;
3283		bool delalloc;
3284
3285		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3286						  cached_state, &search_io_tree,
3287						  &delalloc_start,
3288						  &delalloc_end);
3289		if (!delalloc)
3290			break;
3291
3292		if (prev_delalloc_end == 0) {
3293			/* First subrange found. */
3294			*delalloc_start_ret = max(delalloc_start, start);
3295			*delalloc_end_ret = delalloc_end;
3296			ret = true;
3297		} else if (delalloc_start == prev_delalloc_end + 1) {
3298			/* Subrange adjacent to the previous one, merge them. */
3299			*delalloc_end_ret = delalloc_end;
3300		} else {
3301			/* Subrange not adjacent to the previous one, exit. */
3302			break;
3303		}
3304
3305		prev_delalloc_end = delalloc_end;
3306		cur_offset = delalloc_end + 1;
3307		cond_resched();
3308	}
3309
3310	return ret;
3311}
3312
3313/*
3314 * Check if there's a hole or delalloc range in a range representing a hole (or
3315 * prealloc extent) found in the inode's subvolume btree.
3316 *
3317 * @inode:      The inode.
3318 * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3319 * @start:      Start offset of the hole region. It does not need to be sector
3320 *              size aligned.
3321 * @end:        End offset (inclusive value) of the hole region. It does not
3322 *              need to be sector size aligned.
3323 * @start_ret:  Return parameter, used to set the start of the subrange in the
3324 *              hole that matches the search criteria (seek mode), if such
3325 *              subrange is found (return value of the function is true).
3326 *              The value returned here may not be sector size aligned.
3327 *
3328 * Returns true if a subrange matching the given seek mode is found, and if one
3329 * is found, it updates @start_ret with the start of the subrange.
3330 */
3331static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3332					struct extent_state **cached_state,
3333					u64 start, u64 end, u64 *start_ret)
3334{
3335	u64 delalloc_start;
3336	u64 delalloc_end;
3337	bool delalloc;
3338
3339	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3340						&delalloc_start, &delalloc_end);
3341	if (delalloc && whence == SEEK_DATA) {
3342		*start_ret = delalloc_start;
3343		return true;
3344	}
3345
3346	if (delalloc && whence == SEEK_HOLE) {
3347		/*
3348		 * We found delalloc but it starts after out start offset. So we
3349		 * have a hole between our start offset and the delalloc start.
3350		 */
3351		if (start < delalloc_start) {
3352			*start_ret = start;
3353			return true;
3354		}
3355		/*
3356		 * Delalloc range starts at our start offset.
3357		 * If the delalloc range's length is smaller than our range,
3358		 * then it means we have a hole that starts where the delalloc
3359		 * subrange ends.
3360		 */
3361		if (delalloc_end < end) {
3362			*start_ret = delalloc_end + 1;
3363			return true;
3364		}
3365
3366		/* There's delalloc for the whole range. */
3367		return false;
3368	}
3369
3370	if (!delalloc && whence == SEEK_HOLE) {
3371		*start_ret = start;
3372		return true;
3373	}
3374
3375	/*
3376	 * No delalloc in the range and we are seeking for data. The caller has
3377	 * to iterate to the next extent item in the subvolume btree.
3378	 */
3379	return false;
3380}
3381
3382static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3383{
3384	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3385	struct btrfs_file_private *private;
3386	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 
3387	struct extent_state *cached_state = NULL;
3388	struct extent_state **delalloc_cached_state;
3389	const loff_t i_size = i_size_read(&inode->vfs_inode);
3390	const u64 ino = btrfs_ino(inode);
3391	struct btrfs_root *root = inode->root;
3392	struct btrfs_path *path;
3393	struct btrfs_key key;
3394	u64 last_extent_end;
3395	u64 lockstart;
3396	u64 lockend;
3397	u64 start;
3398	int ret;
3399	bool found = false;
3400
3401	if (i_size == 0 || offset >= i_size)
3402		return -ENXIO;
3403
3404	/*
3405	 * Quick path. If the inode has no prealloc extents and its number of
3406	 * bytes used matches its i_size, then it can not have holes.
3407	 */
3408	if (whence == SEEK_HOLE &&
3409	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3410	    inode_get_bytes(&inode->vfs_inode) == i_size)
3411		return i_size;
3412
3413	spin_lock(&inode->lock);
3414	private = file->private_data;
3415	spin_unlock(&inode->lock);
3416
3417	if (private && private->owner_task != current) {
3418		/*
3419		 * Not allocated by us, don't use it as its cached state is used
3420		 * by the task that allocated it and we don't want neither to
3421		 * mess with it nor get incorrect results because it reflects an
3422		 * invalid state for the current task.
3423		 */
3424		private = NULL;
3425	} else if (!private) {
3426		private = kzalloc(sizeof(*private), GFP_KERNEL);
3427		/*
3428		 * No worries if memory allocation failed.
3429		 * The private structure is used only for speeding up multiple
3430		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3431		 * so everything will still be correct.
3432		 */
3433		if (private) {
3434			bool free = false;
3435
3436			private->owner_task = current;
3437
3438			spin_lock(&inode->lock);
3439			if (file->private_data)
3440				free = true;
3441			else
3442				file->private_data = private;
3443			spin_unlock(&inode->lock);
3444
3445			if (free) {
3446				kfree(private);
3447				private = NULL;
3448			}
3449		}
3450	}
3451
3452	if (private)
3453		delalloc_cached_state = &private->llseek_cached_state;
3454	else
3455		delalloc_cached_state = NULL;
3456
3457	/*
3458	 * offset can be negative, in this case we start finding DATA/HOLE from
3459	 * the very start of the file.
3460	 */
3461	start = max_t(loff_t, 0, offset);
3462
3463	lockstart = round_down(start, fs_info->sectorsize);
3464	lockend = round_up(i_size, fs_info->sectorsize);
3465	if (lockend <= lockstart)
3466		lockend = lockstart + fs_info->sectorsize;
3467	lockend--;
 
3468
3469	path = btrfs_alloc_path();
3470	if (!path)
3471		return -ENOMEM;
3472	path->reada = READA_FORWARD;
3473
3474	key.objectid = ino;
3475	key.type = BTRFS_EXTENT_DATA_KEY;
3476	key.offset = start;
3477
3478	last_extent_end = lockstart;
3479
3480	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3481
3482	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483	if (ret < 0) {
3484		goto out;
3485	} else if (ret > 0 && path->slots[0] > 0) {
3486		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3487		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3488			path->slots[0]--;
3489	}
3490
3491	while (start < i_size) {
3492		struct extent_buffer *leaf = path->nodes[0];
3493		struct btrfs_file_extent_item *extent;
3494		u64 extent_end;
3495		u8 type;
3496
3497		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3498			ret = btrfs_next_leaf(root, path);
3499			if (ret < 0)
3500				goto out;
3501			else if (ret > 0)
3502				break;
3503
3504			leaf = path->nodes[0];
3505		}
3506
3507		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3508		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3509			break;
3510
3511		extent_end = btrfs_file_extent_end(path);
3512
3513		/*
3514		 * In the first iteration we may have a slot that points to an
3515		 * extent that ends before our start offset, so skip it.
3516		 */
3517		if (extent_end <= start) {
3518			path->slots[0]++;
3519			continue;
3520		}
3521
3522		/* We have an implicit hole, NO_HOLES feature is likely set. */
3523		if (last_extent_end < key.offset) {
3524			u64 search_start = last_extent_end;
3525			u64 found_start;
3526
3527			/*
3528			 * First iteration, @start matches @offset and it's
3529			 * within the hole.
3530			 */
3531			if (start == offset)
3532				search_start = offset;
3533
3534			found = find_desired_extent_in_hole(inode, whence,
3535							    delalloc_cached_state,
3536							    search_start,
3537							    key.offset - 1,
3538							    &found_start);
3539			if (found) {
3540				start = found_start;
3541				break;
3542			}
3543			/*
3544			 * Didn't find data or a hole (due to delalloc) in the
3545			 * implicit hole range, so need to analyze the extent.
3546			 */
3547		}
3548
3549		extent = btrfs_item_ptr(leaf, path->slots[0],
3550					struct btrfs_file_extent_item);
3551		type = btrfs_file_extent_type(leaf, extent);
3552
3553		/*
3554		 * Can't access the extent's disk_bytenr field if this is an
3555		 * inline extent, since at that offset, it's where the extent
3556		 * data starts.
3557		 */
3558		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3559		    (type == BTRFS_FILE_EXTENT_REG &&
3560		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3561			/*
3562			 * Explicit hole or prealloc extent, search for delalloc.
3563			 * A prealloc extent is treated like a hole.
3564			 */
3565			u64 search_start = key.offset;
3566			u64 found_start;
3567
3568			/*
3569			 * First iteration, @start matches @offset and it's
3570			 * within the hole.
3571			 */
3572			if (start == offset)
3573				search_start = offset;
3574
3575			found = find_desired_extent_in_hole(inode, whence,
3576							    delalloc_cached_state,
3577							    search_start,
3578							    extent_end - 1,
3579							    &found_start);
3580			if (found) {
3581				start = found_start;
3582				break;
3583			}
3584			/*
3585			 * Didn't find data or a hole (due to delalloc) in the
3586			 * implicit hole range, so need to analyze the next
3587			 * extent item.
3588			 */
3589		} else {
3590			/*
3591			 * Found a regular or inline extent.
3592			 * If we are seeking for data, adjust the start offset
3593			 * and stop, we're done.
3594			 */
3595			if (whence == SEEK_DATA) {
3596				start = max_t(u64, key.offset, offset);
3597				found = true;
3598				break;
3599			}
3600			/*
3601			 * Else, we are seeking for a hole, check the next file
3602			 * extent item.
3603			 */
3604		}
3605
3606		start = extent_end;
3607		last_extent_end = extent_end;
3608		path->slots[0]++;
3609		if (fatal_signal_pending(current)) {
3610			ret = -EINTR;
3611			goto out;
3612		}
3613		cond_resched();
3614	}
3615
3616	/* We have an implicit hole from the last extent found up to i_size. */
3617	if (!found && start < i_size) {
3618		found = find_desired_extent_in_hole(inode, whence,
3619						    delalloc_cached_state, start,
3620						    i_size - 1, &start);
3621		if (!found)
3622			start = i_size;
 
 
3623	}
3624
3625out:
3626	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3627	btrfs_free_path(path);
3628
3629	if (ret < 0)
3630		return ret;
3631
3632	if (whence == SEEK_DATA && start >= i_size)
3633		return -ENXIO;
3634
3635	return min_t(loff_t, start, i_size);
3636}
3637
3638static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3639{
3640	struct inode *inode = file->f_mapping->host;
3641
3642	switch (whence) {
3643	default:
3644		return generic_file_llseek(file, offset, whence);
3645	case SEEK_DATA:
3646	case SEEK_HOLE:
3647		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3648		offset = find_desired_extent(file, offset, whence);
3649		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3650		break;
3651	}
3652
3653	if (offset < 0)
3654		return offset;
3655
3656	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3657}
3658
3659static int btrfs_file_open(struct inode *inode, struct file *filp)
3660{
3661	int ret;
 
 
3662
3663	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
 
 
 
 
3664
3665	ret = fsverity_file_open(inode, filp);
3666	if (ret)
3667		return ret;
3668	return generic_file_open(inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3672{
3673	ssize_t ret = 0;
3674
3675	if (iocb->ki_flags & IOCB_DIRECT) {
3676		ret = btrfs_direct_read(iocb, to);
3677		if (ret < 0 || !iov_iter_count(to) ||
3678		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3679			return ret;
3680	}
3681
3682	return filemap_read(iocb, to, ret);
3683}
3684
3685const struct file_operations btrfs_file_operations = {
3686	.llseek		= btrfs_file_llseek,
3687	.read_iter      = btrfs_file_read_iter,
3688	.splice_read	= filemap_splice_read,
3689	.write_iter	= btrfs_file_write_iter,
3690	.splice_write	= iter_file_splice_write,
3691	.mmap		= btrfs_file_mmap,
3692	.open		= btrfs_file_open,
3693	.release	= btrfs_release_file,
3694	.get_unmapped_area = thp_get_unmapped_area,
3695	.fsync		= btrfs_sync_file,
3696	.fallocate	= btrfs_fallocate,
3697	.unlocked_ioctl	= btrfs_ioctl,
3698#ifdef CONFIG_COMPAT
3699	.compat_ioctl	= btrfs_compat_ioctl,
3700#endif
3701	.remap_file_range = btrfs_remap_file_range,
3702	.uring_cmd	= btrfs_uring_cmd,
3703	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3704};
3705
3706int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3707{
3708	struct address_space *mapping = inode->vfs_inode.i_mapping;
3709	int ret;
3710
3711	/*
3712	 * So with compression we will find and lock a dirty page and clear the
3713	 * first one as dirty, setup an async extent, and immediately return
3714	 * with the entire range locked but with nobody actually marked with
3715	 * writeback.  So we can't just filemap_write_and_wait_range() and
3716	 * expect it to work since it will just kick off a thread to do the
3717	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3718	 * since it will wait on the page lock, which won't be unlocked until
3719	 * after the pages have been marked as writeback and so we're good to go
3720	 * from there.  We have to do this otherwise we'll miss the ordered
3721	 * extents and that results in badness.  Please Josef, do not think you
3722	 * know better and pull this out at some point in the future, it is
3723	 * right and you are wrong.
3724	 */
3725	ret = filemap_fdatawrite_range(mapping, start, end);
3726	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3727		ret = filemap_fdatawrite_range(mapping, start, end);
 
3728
3729	return ret;
3730}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
 
  19#include "ctree.h"
 
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31#include "subpage.h"
 
 
 
 
 
 
 
  32
  33static struct kmem_cache *btrfs_inode_defrag_cachep;
  34/*
  35 * when auto defrag is enabled we
  36 * queue up these defrag structs to remember which
  37 * inodes need defragging passes
  38 */
  39struct inode_defrag {
  40	struct rb_node rb_node;
  41	/* objectid */
  42	u64 ino;
  43	/*
  44	 * transid where the defrag was added, we search for
  45	 * extents newer than this
  46	 */
  47	u64 transid;
  48
  49	/* root objectid */
  50	u64 root;
  51
  52	/* last offset we were able to defrag */
  53	u64 last_offset;
  54
  55	/* if we've wrapped around back to zero once already */
  56	int cycled;
  57};
  58
  59static int __compare_inode_defrag(struct inode_defrag *defrag1,
  60				  struct inode_defrag *defrag2)
  61{
  62	if (defrag1->root > defrag2->root)
  63		return 1;
  64	else if (defrag1->root < defrag2->root)
  65		return -1;
  66	else if (defrag1->ino > defrag2->ino)
  67		return 1;
  68	else if (defrag1->ino < defrag2->ino)
  69		return -1;
  70	else
  71		return 0;
  72}
  73
  74/* pop a record for an inode into the defrag tree.  The lock
  75 * must be held already
  76 *
  77 * If you're inserting a record for an older transid than an
  78 * existing record, the transid already in the tree is lowered
  79 *
  80 * If an existing record is found the defrag item you
  81 * pass in is freed
  82 */
  83static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  84				    struct inode_defrag *defrag)
  85{
  86	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  87	struct inode_defrag *entry;
  88	struct rb_node **p;
  89	struct rb_node *parent = NULL;
  90	int ret;
  91
  92	p = &fs_info->defrag_inodes.rb_node;
  93	while (*p) {
  94		parent = *p;
  95		entry = rb_entry(parent, struct inode_defrag, rb_node);
  96
  97		ret = __compare_inode_defrag(defrag, entry);
  98		if (ret < 0)
  99			p = &parent->rb_left;
 100		else if (ret > 0)
 101			p = &parent->rb_right;
 102		else {
 103			/* if we're reinserting an entry for
 104			 * an old defrag run, make sure to
 105			 * lower the transid of our existing record
 106			 */
 107			if (defrag->transid < entry->transid)
 108				entry->transid = defrag->transid;
 109			if (defrag->last_offset > entry->last_offset)
 110				entry->last_offset = defrag->last_offset;
 111			return -EEXIST;
 112		}
 113	}
 114	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 115	rb_link_node(&defrag->rb_node, parent, p);
 116	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 117	return 0;
 118}
 119
 120static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 121{
 122	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 123		return 0;
 124
 125	if (btrfs_fs_closing(fs_info))
 126		return 0;
 127
 128	return 1;
 129}
 130
 131/*
 132 * insert a defrag record for this inode if auto defrag is
 133 * enabled
 134 */
 135int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 136			   struct btrfs_inode *inode)
 137{
 138	struct btrfs_root *root = inode->root;
 139	struct btrfs_fs_info *fs_info = root->fs_info;
 140	struct inode_defrag *defrag;
 141	u64 transid;
 142	int ret;
 143
 144	if (!__need_auto_defrag(fs_info))
 145		return 0;
 146
 147	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 148		return 0;
 149
 150	if (trans)
 151		transid = trans->transid;
 152	else
 153		transid = inode->root->last_trans;
 154
 155	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 156	if (!defrag)
 157		return -ENOMEM;
 158
 159	defrag->ino = btrfs_ino(inode);
 160	defrag->transid = transid;
 161	defrag->root = root->root_key.objectid;
 162
 163	spin_lock(&fs_info->defrag_inodes_lock);
 164	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 165		/*
 166		 * If we set IN_DEFRAG flag and evict the inode from memory,
 167		 * and then re-read this inode, this new inode doesn't have
 168		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 169		 */
 170		ret = __btrfs_add_inode_defrag(inode, defrag);
 171		if (ret)
 172			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 173	} else {
 174		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 175	}
 176	spin_unlock(&fs_info->defrag_inodes_lock);
 177	return 0;
 178}
 179
 180/*
 181 * Requeue the defrag object. If there is a defrag object that points to
 182 * the same inode in the tree, we will merge them together (by
 183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 184 */
 185static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 186				       struct inode_defrag *defrag)
 187{
 188	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 189	int ret;
 190
 191	if (!__need_auto_defrag(fs_info))
 192		goto out;
 193
 194	/*
 195	 * Here we don't check the IN_DEFRAG flag, because we need merge
 196	 * them together.
 197	 */
 198	spin_lock(&fs_info->defrag_inodes_lock);
 199	ret = __btrfs_add_inode_defrag(inode, defrag);
 200	spin_unlock(&fs_info->defrag_inodes_lock);
 201	if (ret)
 202		goto out;
 203	return;
 204out:
 205	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 206}
 207
 208/*
 209 * pick the defragable inode that we want, if it doesn't exist, we will get
 210 * the next one.
 211 */
 212static struct inode_defrag *
 213btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 214{
 215	struct inode_defrag *entry = NULL;
 216	struct inode_defrag tmp;
 217	struct rb_node *p;
 218	struct rb_node *parent = NULL;
 219	int ret;
 220
 221	tmp.ino = ino;
 222	tmp.root = root;
 223
 224	spin_lock(&fs_info->defrag_inodes_lock);
 225	p = fs_info->defrag_inodes.rb_node;
 226	while (p) {
 227		parent = p;
 228		entry = rb_entry(parent, struct inode_defrag, rb_node);
 229
 230		ret = __compare_inode_defrag(&tmp, entry);
 231		if (ret < 0)
 232			p = parent->rb_left;
 233		else if (ret > 0)
 234			p = parent->rb_right;
 235		else
 236			goto out;
 237	}
 238
 239	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 240		parent = rb_next(parent);
 241		if (parent)
 242			entry = rb_entry(parent, struct inode_defrag, rb_node);
 243		else
 244			entry = NULL;
 245	}
 246out:
 247	if (entry)
 248		rb_erase(parent, &fs_info->defrag_inodes);
 249	spin_unlock(&fs_info->defrag_inodes_lock);
 250	return entry;
 251}
 252
 253void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 254{
 255	struct inode_defrag *defrag;
 256	struct rb_node *node;
 257
 258	spin_lock(&fs_info->defrag_inodes_lock);
 259	node = rb_first(&fs_info->defrag_inodes);
 260	while (node) {
 261		rb_erase(node, &fs_info->defrag_inodes);
 262		defrag = rb_entry(node, struct inode_defrag, rb_node);
 263		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 264
 265		cond_resched_lock(&fs_info->defrag_inodes_lock);
 266
 267		node = rb_first(&fs_info->defrag_inodes);
 268	}
 269	spin_unlock(&fs_info->defrag_inodes_lock);
 270}
 271
 272#define BTRFS_DEFRAG_BATCH	1024
 273
 274static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 275				    struct inode_defrag *defrag)
 276{
 277	struct btrfs_root *inode_root;
 278	struct inode *inode;
 279	struct btrfs_ioctl_defrag_range_args range;
 280	int num_defrag;
 281	int ret;
 282
 283	/* get the inode */
 284	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 285	if (IS_ERR(inode_root)) {
 286		ret = PTR_ERR(inode_root);
 287		goto cleanup;
 288	}
 289
 290	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 291	btrfs_put_root(inode_root);
 292	if (IS_ERR(inode)) {
 293		ret = PTR_ERR(inode);
 294		goto cleanup;
 295	}
 296
 297	/* do a chunk of defrag */
 298	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 299	memset(&range, 0, sizeof(range));
 300	range.len = (u64)-1;
 301	range.start = defrag->last_offset;
 302
 303	sb_start_write(fs_info->sb);
 304	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 305				       BTRFS_DEFRAG_BATCH);
 306	sb_end_write(fs_info->sb);
 307	/*
 308	 * if we filled the whole defrag batch, there
 309	 * must be more work to do.  Queue this defrag
 310	 * again
 311	 */
 312	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 313		defrag->last_offset = range.start;
 314		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 315	} else if (defrag->last_offset && !defrag->cycled) {
 316		/*
 317		 * we didn't fill our defrag batch, but
 318		 * we didn't start at zero.  Make sure we loop
 319		 * around to the start of the file.
 320		 */
 321		defrag->last_offset = 0;
 322		defrag->cycled = 1;
 323		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 324	} else {
 325		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 326	}
 327
 328	iput(inode);
 329	return 0;
 330cleanup:
 331	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 332	return ret;
 333}
 334
 335/*
 336 * run through the list of inodes in the FS that need
 337 * defragging
 338 */
 339int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 340{
 341	struct inode_defrag *defrag;
 342	u64 first_ino = 0;
 343	u64 root_objectid = 0;
 344
 345	atomic_inc(&fs_info->defrag_running);
 346	while (1) {
 347		/* Pause the auto defragger. */
 348		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 349			     &fs_info->fs_state))
 350			break;
 351
 352		if (!__need_auto_defrag(fs_info))
 353			break;
 354
 355		/* find an inode to defrag */
 356		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 357						 first_ino);
 358		if (!defrag) {
 359			if (root_objectid || first_ino) {
 360				root_objectid = 0;
 361				first_ino = 0;
 362				continue;
 363			} else {
 364				break;
 365			}
 366		}
 367
 368		first_ino = defrag->ino + 1;
 369		root_objectid = defrag->root;
 370
 371		__btrfs_run_defrag_inode(fs_info, defrag);
 372	}
 373	atomic_dec(&fs_info->defrag_running);
 374
 375	/*
 376	 * during unmount, we use the transaction_wait queue to
 377	 * wait for the defragger to stop
 378	 */
 379	wake_up(&fs_info->transaction_wait);
 380	return 0;
 381}
 382
 383/* simple helper to fault in pages and copy.  This should go away
 384 * and be replaced with calls into generic code.
 385 */
 386static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 387					 struct page **prepared_pages,
 388					 struct iov_iter *i)
 389{
 390	size_t copied = 0;
 391	size_t total_copied = 0;
 392	int pg = 0;
 393	int offset = offset_in_page(pos);
 394
 395	while (write_bytes > 0) {
 396		size_t count = min_t(size_t,
 397				     PAGE_SIZE - offset, write_bytes);
 398		struct page *page = prepared_pages[pg];
 399		/*
 400		 * Copy data from userspace to the current page
 401		 */
 402		copied = copy_page_from_iter_atomic(page, offset, count, i);
 403
 404		/* Flush processor's dcache for this page */
 405		flush_dcache_page(page);
 406
 407		/*
 408		 * if we get a partial write, we can end up with
 409		 * partially up to date pages.  These add
 410		 * a lot of complexity, so make sure they don't
 411		 * happen by forcing this copy to be retried.
 412		 *
 413		 * The rest of the btrfs_file_write code will fall
 414		 * back to page at a time copies after we return 0.
 415		 */
 416		if (unlikely(copied < count)) {
 417			if (!PageUptodate(page)) {
 418				iov_iter_revert(i, copied);
 419				copied = 0;
 420			}
 421			if (!copied)
 422				break;
 423		}
 424
 425		write_bytes -= copied;
 426		total_copied += copied;
 427		offset += copied;
 428		if (offset == PAGE_SIZE) {
 429			pg++;
 430			offset = 0;
 431		}
 432	}
 433	return total_copied;
 434}
 435
 436/*
 437 * unlocks pages after btrfs_file_write is done with them
 438 */
 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 
 440{
 441	size_t i;
 442	for (i = 0; i < num_pages; i++) {
 443		/* page checked is some magic around finding pages that
 444		 * have been modified without going through btrfs_set_page_dirty
 445		 * clear it here. There should be no need to mark the pages
 446		 * accessed as prepare_pages should have marked them accessed
 447		 * in prepare_pages via find_or_create_page()
 448		 */
 449		ClearPageChecked(pages[i]);
 450		unlock_page(pages[i]);
 451		put_page(pages[i]);
 452	}
 
 
 453}
 454
 455/*
 456 * After btrfs_copy_from_user(), update the following things for delalloc:
 457 * - Mark newly dirtied pages as DELALLOC in the io tree.
 458 *   Used to advise which range is to be written back.
 459 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
 460 * - Update inode size for past EOF write
 461 */
 462int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 463		      size_t num_pages, loff_t pos, size_t write_bytes,
 464		      struct extent_state **cached, bool noreserve)
 465{
 466	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 467	int err = 0;
 468	int i;
 469	u64 num_bytes;
 470	u64 start_pos;
 471	u64 end_of_last_block;
 472	u64 end_pos = pos + write_bytes;
 473	loff_t isize = i_size_read(&inode->vfs_inode);
 474	unsigned int extra_bits = 0;
 475
 476	if (write_bytes == 0)
 477		return 0;
 478
 479	if (noreserve)
 480		extra_bits |= EXTENT_NORESERVE;
 481
 482	start_pos = round_down(pos, fs_info->sectorsize);
 483	num_bytes = round_up(write_bytes + pos - start_pos,
 484			     fs_info->sectorsize);
 485	ASSERT(num_bytes <= U32_MAX);
 
 
 486
 487	end_of_last_block = start_pos + num_bytes - 1;
 488
 489	/*
 490	 * The pages may have already been dirty, clear out old accounting so
 491	 * we can set things up properly
 492	 */
 493	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 494			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 495			 0, 0, cached);
 496
 497	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 498					extra_bits, cached);
 499	if (err)
 500		return err;
 501
 502	for (i = 0; i < num_pages; i++) {
 503		struct page *p = pages[i];
 504
 505		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
 506		ClearPageChecked(p);
 507		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
 508	}
 509
 510	/*
 511	 * we've only changed i_size in ram, and we haven't updated
 512	 * the disk i_size.  There is no need to log the inode
 513	 * at this time.
 514	 */
 515	if (end_pos > isize)
 516		i_size_write(&inode->vfs_inode, end_pos);
 517	return 0;
 518}
 519
 520/*
 521 * this drops all the extents in the cache that intersect the range
 522 * [start, end].  Existing extents are split as required.
 523 */
 524void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 525			     int skip_pinned)
 526{
 527	struct extent_map *em;
 528	struct extent_map *split = NULL;
 529	struct extent_map *split2 = NULL;
 530	struct extent_map_tree *em_tree = &inode->extent_tree;
 531	u64 len = end - start + 1;
 532	u64 gen;
 533	int ret;
 534	int testend = 1;
 535	unsigned long flags;
 536	int compressed = 0;
 537	bool modified;
 538
 539	WARN_ON(end < start);
 540	if (end == (u64)-1) {
 541		len = (u64)-1;
 542		testend = 0;
 543	}
 544	while (1) {
 545		int no_splits = 0;
 546
 547		modified = false;
 548		if (!split)
 549			split = alloc_extent_map();
 550		if (!split2)
 551			split2 = alloc_extent_map();
 552		if (!split || !split2)
 553			no_splits = 1;
 554
 555		write_lock(&em_tree->lock);
 556		em = lookup_extent_mapping(em_tree, start, len);
 557		if (!em) {
 558			write_unlock(&em_tree->lock);
 559			break;
 560		}
 561		flags = em->flags;
 562		gen = em->generation;
 563		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 564			if (testend && em->start + em->len >= start + len) {
 565				free_extent_map(em);
 566				write_unlock(&em_tree->lock);
 567				break;
 568			}
 569			start = em->start + em->len;
 570			if (testend)
 571				len = start + len - (em->start + em->len);
 572			free_extent_map(em);
 573			write_unlock(&em_tree->lock);
 574			continue;
 575		}
 576		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 577		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 578		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 579		modified = !list_empty(&em->list);
 580		if (no_splits)
 581			goto next;
 582
 583		if (em->start < start) {
 584			split->start = em->start;
 585			split->len = start - em->start;
 586
 587			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 588				split->orig_start = em->orig_start;
 589				split->block_start = em->block_start;
 590
 591				if (compressed)
 592					split->block_len = em->block_len;
 593				else
 594					split->block_len = split->len;
 595				split->orig_block_len = max(split->block_len,
 596						em->orig_block_len);
 597				split->ram_bytes = em->ram_bytes;
 598			} else {
 599				split->orig_start = split->start;
 600				split->block_len = 0;
 601				split->block_start = em->block_start;
 602				split->orig_block_len = 0;
 603				split->ram_bytes = split->len;
 604			}
 605
 606			split->generation = gen;
 607			split->flags = flags;
 608			split->compress_type = em->compress_type;
 609			replace_extent_mapping(em_tree, em, split, modified);
 610			free_extent_map(split);
 611			split = split2;
 612			split2 = NULL;
 613		}
 614		if (testend && em->start + em->len > start + len) {
 615			u64 diff = start + len - em->start;
 616
 617			split->start = start + len;
 618			split->len = em->start + em->len - (start + len);
 619			split->flags = flags;
 620			split->compress_type = em->compress_type;
 621			split->generation = gen;
 622
 623			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 624				split->orig_block_len = max(em->block_len,
 625						    em->orig_block_len);
 626
 627				split->ram_bytes = em->ram_bytes;
 628				if (compressed) {
 629					split->block_len = em->block_len;
 630					split->block_start = em->block_start;
 631					split->orig_start = em->orig_start;
 632				} else {
 633					split->block_len = split->len;
 634					split->block_start = em->block_start
 635						+ diff;
 636					split->orig_start = em->orig_start;
 637				}
 638			} else {
 639				split->ram_bytes = split->len;
 640				split->orig_start = split->start;
 641				split->block_len = 0;
 642				split->block_start = em->block_start;
 643				split->orig_block_len = 0;
 644			}
 645
 646			if (extent_map_in_tree(em)) {
 647				replace_extent_mapping(em_tree, em, split,
 648						       modified);
 649			} else {
 650				ret = add_extent_mapping(em_tree, split,
 651							 modified);
 652				ASSERT(ret == 0); /* Logic error */
 653			}
 654			free_extent_map(split);
 655			split = NULL;
 656		}
 657next:
 658		if (extent_map_in_tree(em))
 659			remove_extent_mapping(em_tree, em);
 660		write_unlock(&em_tree->lock);
 661
 662		/* once for us */
 663		free_extent_map(em);
 664		/* once for the tree*/
 665		free_extent_map(em);
 666	}
 667	if (split)
 668		free_extent_map(split);
 669	if (split2)
 670		free_extent_map(split2);
 671}
 672
 673/*
 674 * this is very complex, but the basic idea is to drop all extents
 675 * in the range start - end.  hint_block is filled in with a block number
 676 * that would be a good hint to the block allocator for this file.
 677 *
 678 * If an extent intersects the range but is not entirely inside the range
 679 * it is either truncated or split.  Anything entirely inside the range
 680 * is deleted from the tree.
 681 *
 682 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 683 * to deal with that. We set the field 'bytes_found' of the arguments structure
 684 * with the number of allocated bytes found in the target range, so that the
 685 * caller can update the inode's number of bytes in an atomic way when
 686 * replacing extents in a range to avoid races with stat(2).
 687 */
 688int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 689		       struct btrfs_root *root, struct btrfs_inode *inode,
 690		       struct btrfs_drop_extents_args *args)
 691{
 692	struct btrfs_fs_info *fs_info = root->fs_info;
 693	struct extent_buffer *leaf;
 694	struct btrfs_file_extent_item *fi;
 695	struct btrfs_ref ref = { 0 };
 696	struct btrfs_key key;
 697	struct btrfs_key new_key;
 698	u64 ino = btrfs_ino(inode);
 699	u64 search_start = args->start;
 700	u64 disk_bytenr = 0;
 701	u64 num_bytes = 0;
 702	u64 extent_offset = 0;
 703	u64 extent_end = 0;
 704	u64 last_end = args->start;
 705	int del_nr = 0;
 706	int del_slot = 0;
 707	int extent_type;
 708	int recow;
 709	int ret;
 710	int modify_tree = -1;
 711	int update_refs;
 712	int found = 0;
 713	int leafs_visited = 0;
 714	struct btrfs_path *path = args->path;
 715
 716	args->bytes_found = 0;
 717	args->extent_inserted = false;
 718
 719	/* Must always have a path if ->replace_extent is true */
 720	ASSERT(!(args->replace_extent && !args->path));
 721
 722	if (!path) {
 723		path = btrfs_alloc_path();
 724		if (!path) {
 725			ret = -ENOMEM;
 726			goto out;
 727		}
 728	}
 729
 730	if (args->drop_cache)
 731		btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
 732
 733	if (args->start >= inode->disk_i_size && !args->replace_extent)
 734		modify_tree = 0;
 735
 736	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 737	while (1) {
 738		recow = 0;
 739		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 740					       search_start, modify_tree);
 741		if (ret < 0)
 742			break;
 743		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 744			leaf = path->nodes[0];
 745			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 746			if (key.objectid == ino &&
 747			    key.type == BTRFS_EXTENT_DATA_KEY)
 748				path->slots[0]--;
 749		}
 750		ret = 0;
 751		leafs_visited++;
 752next_slot:
 753		leaf = path->nodes[0];
 754		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 755			BUG_ON(del_nr > 0);
 756			ret = btrfs_next_leaf(root, path);
 757			if (ret < 0)
 758				break;
 759			if (ret > 0) {
 760				ret = 0;
 761				break;
 762			}
 763			leafs_visited++;
 764			leaf = path->nodes[0];
 765			recow = 1;
 766		}
 767
 768		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 769
 770		if (key.objectid > ino)
 771			break;
 772		if (WARN_ON_ONCE(key.objectid < ino) ||
 773		    key.type < BTRFS_EXTENT_DATA_KEY) {
 774			ASSERT(del_nr == 0);
 775			path->slots[0]++;
 776			goto next_slot;
 777		}
 778		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 779			break;
 780
 781		fi = btrfs_item_ptr(leaf, path->slots[0],
 782				    struct btrfs_file_extent_item);
 783		extent_type = btrfs_file_extent_type(leaf, fi);
 784
 785		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 786		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 787			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 788			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 789			extent_offset = btrfs_file_extent_offset(leaf, fi);
 790			extent_end = key.offset +
 791				btrfs_file_extent_num_bytes(leaf, fi);
 792		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 793			extent_end = key.offset +
 794				btrfs_file_extent_ram_bytes(leaf, fi);
 795		} else {
 796			/* can't happen */
 797			BUG();
 798		}
 799
 800		/*
 801		 * Don't skip extent items representing 0 byte lengths. They
 802		 * used to be created (bug) if while punching holes we hit
 803		 * -ENOSPC condition. So if we find one here, just ensure we
 804		 * delete it, otherwise we would insert a new file extent item
 805		 * with the same key (offset) as that 0 bytes length file
 806		 * extent item in the call to setup_items_for_insert() later
 807		 * in this function.
 808		 */
 809		if (extent_end == key.offset && extent_end >= search_start) {
 810			last_end = extent_end;
 811			goto delete_extent_item;
 812		}
 813
 814		if (extent_end <= search_start) {
 815			path->slots[0]++;
 816			goto next_slot;
 817		}
 818
 819		found = 1;
 820		search_start = max(key.offset, args->start);
 821		if (recow || !modify_tree) {
 822			modify_tree = -1;
 823			btrfs_release_path(path);
 824			continue;
 825		}
 826
 827		/*
 828		 *     | - range to drop - |
 829		 *  | -------- extent -------- |
 830		 */
 831		if (args->start > key.offset && args->end < extent_end) {
 832			BUG_ON(del_nr > 0);
 833			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 834				ret = -EOPNOTSUPP;
 835				break;
 836			}
 837
 838			memcpy(&new_key, &key, sizeof(new_key));
 839			new_key.offset = args->start;
 840			ret = btrfs_duplicate_item(trans, root, path,
 841						   &new_key);
 842			if (ret == -EAGAIN) {
 843				btrfs_release_path(path);
 844				continue;
 845			}
 846			if (ret < 0)
 847				break;
 848
 849			leaf = path->nodes[0];
 850			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 851					    struct btrfs_file_extent_item);
 852			btrfs_set_file_extent_num_bytes(leaf, fi,
 853							args->start - key.offset);
 854
 855			fi = btrfs_item_ptr(leaf, path->slots[0],
 856					    struct btrfs_file_extent_item);
 857
 858			extent_offset += args->start - key.offset;
 859			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 860			btrfs_set_file_extent_num_bytes(leaf, fi,
 861							extent_end - args->start);
 862			btrfs_mark_buffer_dirty(leaf);
 863
 864			if (update_refs && disk_bytenr > 0) {
 865				btrfs_init_generic_ref(&ref,
 866						BTRFS_ADD_DELAYED_REF,
 867						disk_bytenr, num_bytes, 0);
 868				btrfs_init_data_ref(&ref,
 869						root->root_key.objectid,
 870						new_key.objectid,
 871						args->start - extent_offset);
 
 
 
 
 872				ret = btrfs_inc_extent_ref(trans, &ref);
 873				BUG_ON(ret); /* -ENOMEM */
 
 
 
 874			}
 875			key.offset = args->start;
 876		}
 877		/*
 878		 * From here on out we will have actually dropped something, so
 879		 * last_end can be updated.
 880		 */
 881		last_end = extent_end;
 882
 883		/*
 884		 *  | ---- range to drop ----- |
 885		 *      | -------- extent -------- |
 886		 */
 887		if (args->start <= key.offset && args->end < extent_end) {
 888			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 889				ret = -EOPNOTSUPP;
 890				break;
 891			}
 892
 893			memcpy(&new_key, &key, sizeof(new_key));
 894			new_key.offset = args->end;
 895			btrfs_set_item_key_safe(fs_info, path, &new_key);
 896
 897			extent_offset += args->end - key.offset;
 898			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 899			btrfs_set_file_extent_num_bytes(leaf, fi,
 900							extent_end - args->end);
 901			btrfs_mark_buffer_dirty(leaf);
 902			if (update_refs && disk_bytenr > 0)
 903				args->bytes_found += args->end - key.offset;
 904			break;
 905		}
 906
 907		search_start = extent_end;
 908		/*
 909		 *       | ---- range to drop ----- |
 910		 *  | -------- extent -------- |
 911		 */
 912		if (args->start > key.offset && args->end >= extent_end) {
 913			BUG_ON(del_nr > 0);
 914			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 915				ret = -EOPNOTSUPP;
 916				break;
 917			}
 918
 919			btrfs_set_file_extent_num_bytes(leaf, fi,
 920							args->start - key.offset);
 921			btrfs_mark_buffer_dirty(leaf);
 922			if (update_refs && disk_bytenr > 0)
 923				args->bytes_found += extent_end - args->start;
 924			if (args->end == extent_end)
 925				break;
 926
 927			path->slots[0]++;
 928			goto next_slot;
 929		}
 930
 931		/*
 932		 *  | ---- range to drop ----- |
 933		 *    | ------ extent ------ |
 934		 */
 935		if (args->start <= key.offset && args->end >= extent_end) {
 936delete_extent_item:
 937			if (del_nr == 0) {
 938				del_slot = path->slots[0];
 939				del_nr = 1;
 940			} else {
 941				BUG_ON(del_slot + del_nr != path->slots[0]);
 942				del_nr++;
 943			}
 944
 945			if (update_refs &&
 946			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 947				args->bytes_found += extent_end - key.offset;
 948				extent_end = ALIGN(extent_end,
 949						   fs_info->sectorsize);
 950			} else if (update_refs && disk_bytenr > 0) {
 951				btrfs_init_generic_ref(&ref,
 952						BTRFS_DROP_DELAYED_REF,
 953						disk_bytenr, num_bytes, 0);
 954				btrfs_init_data_ref(&ref,
 955						root->root_key.objectid,
 956						key.objectid,
 957						key.offset - extent_offset);
 
 
 
 
 958				ret = btrfs_free_extent(trans, &ref);
 959				BUG_ON(ret); /* -ENOMEM */
 
 
 
 960				args->bytes_found += extent_end - key.offset;
 961			}
 962
 963			if (args->end == extent_end)
 964				break;
 965
 966			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 967				path->slots[0]++;
 968				goto next_slot;
 969			}
 970
 971			ret = btrfs_del_items(trans, root, path, del_slot,
 972					      del_nr);
 973			if (ret) {
 974				btrfs_abort_transaction(trans, ret);
 975				break;
 976			}
 977
 978			del_nr = 0;
 979			del_slot = 0;
 980
 981			btrfs_release_path(path);
 982			continue;
 983		}
 984
 985		BUG();
 986	}
 987
 988	if (!ret && del_nr > 0) {
 989		/*
 990		 * Set path->slots[0] to first slot, so that after the delete
 991		 * if items are move off from our leaf to its immediate left or
 992		 * right neighbor leafs, we end up with a correct and adjusted
 993		 * path->slots[0] for our insertion (if args->replace_extent).
 994		 */
 995		path->slots[0] = del_slot;
 996		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 997		if (ret)
 998			btrfs_abort_transaction(trans, ret);
 999	}
1000
1001	leaf = path->nodes[0];
1002	/*
1003	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1004	 * which case it unlocked our path, so check path->locks[0] matches a
1005	 * write lock.
1006	 */
1007	if (!ret && args->replace_extent && leafs_visited == 1 &&
1008	    path->locks[0] == BTRFS_WRITE_LOCK &&
1009	    btrfs_leaf_free_space(leaf) >=
1010	    sizeof(struct btrfs_item) + args->extent_item_size) {
1011
1012		key.objectid = ino;
1013		key.type = BTRFS_EXTENT_DATA_KEY;
1014		key.offset = args->start;
1015		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1016			struct btrfs_key slot_key;
1017
1018			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1019			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1020				path->slots[0]++;
1021		}
1022		setup_items_for_insert(root, path, &key,
1023				       &args->extent_item_size, 1);
1024		args->extent_inserted = true;
1025	}
1026
1027	if (!args->path)
1028		btrfs_free_path(path);
1029	else if (!args->extent_inserted)
1030		btrfs_release_path(path);
1031out:
1032	args->drop_end = found ? min(args->end, last_end) : args->end;
1033
1034	return ret;
1035}
1036
1037static int extent_mergeable(struct extent_buffer *leaf, int slot,
1038			    u64 objectid, u64 bytenr, u64 orig_offset,
1039			    u64 *start, u64 *end)
1040{
1041	struct btrfs_file_extent_item *fi;
1042	struct btrfs_key key;
1043	u64 extent_end;
1044
1045	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1046		return 0;
1047
1048	btrfs_item_key_to_cpu(leaf, &key, slot);
1049	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1050		return 0;
1051
1052	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1053	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1054	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1055	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1056	    btrfs_file_extent_compression(leaf, fi) ||
1057	    btrfs_file_extent_encryption(leaf, fi) ||
1058	    btrfs_file_extent_other_encoding(leaf, fi))
1059		return 0;
1060
1061	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1062	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1063		return 0;
1064
1065	*start = key.offset;
1066	*end = extent_end;
1067	return 1;
1068}
1069
1070/*
1071 * Mark extent in the range start - end as written.
1072 *
1073 * This changes extent type from 'pre-allocated' to 'regular'. If only
1074 * part of extent is marked as written, the extent will be split into
1075 * two or three.
1076 */
1077int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1078			      struct btrfs_inode *inode, u64 start, u64 end)
1079{
1080	struct btrfs_fs_info *fs_info = trans->fs_info;
1081	struct btrfs_root *root = inode->root;
1082	struct extent_buffer *leaf;
1083	struct btrfs_path *path;
1084	struct btrfs_file_extent_item *fi;
1085	struct btrfs_ref ref = { 0 };
1086	struct btrfs_key key;
1087	struct btrfs_key new_key;
1088	u64 bytenr;
1089	u64 num_bytes;
1090	u64 extent_end;
1091	u64 orig_offset;
1092	u64 other_start;
1093	u64 other_end;
1094	u64 split;
1095	int del_nr = 0;
1096	int del_slot = 0;
1097	int recow;
1098	int ret = 0;
1099	u64 ino = btrfs_ino(inode);
1100
1101	path = btrfs_alloc_path();
1102	if (!path)
1103		return -ENOMEM;
1104again:
1105	recow = 0;
1106	split = start;
1107	key.objectid = ino;
1108	key.type = BTRFS_EXTENT_DATA_KEY;
1109	key.offset = split;
1110
1111	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1112	if (ret < 0)
1113		goto out;
1114	if (ret > 0 && path->slots[0] > 0)
1115		path->slots[0]--;
1116
1117	leaf = path->nodes[0];
1118	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1119	if (key.objectid != ino ||
1120	    key.type != BTRFS_EXTENT_DATA_KEY) {
1121		ret = -EINVAL;
1122		btrfs_abort_transaction(trans, ret);
1123		goto out;
1124	}
1125	fi = btrfs_item_ptr(leaf, path->slots[0],
1126			    struct btrfs_file_extent_item);
1127	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1128		ret = -EINVAL;
1129		btrfs_abort_transaction(trans, ret);
1130		goto out;
1131	}
1132	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1133	if (key.offset > start || extent_end < end) {
1134		ret = -EINVAL;
1135		btrfs_abort_transaction(trans, ret);
1136		goto out;
1137	}
1138
1139	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1140	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1141	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1142	memcpy(&new_key, &key, sizeof(new_key));
1143
1144	if (start == key.offset && end < extent_end) {
1145		other_start = 0;
1146		other_end = start;
1147		if (extent_mergeable(leaf, path->slots[0] - 1,
1148				     ino, bytenr, orig_offset,
1149				     &other_start, &other_end)) {
1150			new_key.offset = end;
1151			btrfs_set_item_key_safe(fs_info, path, &new_key);
1152			fi = btrfs_item_ptr(leaf, path->slots[0],
1153					    struct btrfs_file_extent_item);
1154			btrfs_set_file_extent_generation(leaf, fi,
1155							 trans->transid);
1156			btrfs_set_file_extent_num_bytes(leaf, fi,
1157							extent_end - end);
1158			btrfs_set_file_extent_offset(leaf, fi,
1159						     end - orig_offset);
1160			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1161					    struct btrfs_file_extent_item);
1162			btrfs_set_file_extent_generation(leaf, fi,
1163							 trans->transid);
1164			btrfs_set_file_extent_num_bytes(leaf, fi,
1165							end - other_start);
1166			btrfs_mark_buffer_dirty(leaf);
1167			goto out;
1168		}
1169	}
1170
1171	if (start > key.offset && end == extent_end) {
1172		other_start = end;
1173		other_end = 0;
1174		if (extent_mergeable(leaf, path->slots[0] + 1,
1175				     ino, bytenr, orig_offset,
1176				     &other_start, &other_end)) {
1177			fi = btrfs_item_ptr(leaf, path->slots[0],
1178					    struct btrfs_file_extent_item);
1179			btrfs_set_file_extent_num_bytes(leaf, fi,
1180							start - key.offset);
1181			btrfs_set_file_extent_generation(leaf, fi,
1182							 trans->transid);
1183			path->slots[0]++;
1184			new_key.offset = start;
1185			btrfs_set_item_key_safe(fs_info, path, &new_key);
1186
1187			fi = btrfs_item_ptr(leaf, path->slots[0],
1188					    struct btrfs_file_extent_item);
1189			btrfs_set_file_extent_generation(leaf, fi,
1190							 trans->transid);
1191			btrfs_set_file_extent_num_bytes(leaf, fi,
1192							other_end - start);
1193			btrfs_set_file_extent_offset(leaf, fi,
1194						     start - orig_offset);
1195			btrfs_mark_buffer_dirty(leaf);
1196			goto out;
1197		}
1198	}
1199
1200	while (start > key.offset || end < extent_end) {
1201		if (key.offset == start)
1202			split = end;
1203
1204		new_key.offset = split;
1205		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1206		if (ret == -EAGAIN) {
1207			btrfs_release_path(path);
1208			goto again;
1209		}
1210		if (ret < 0) {
1211			btrfs_abort_transaction(trans, ret);
1212			goto out;
1213		}
1214
1215		leaf = path->nodes[0];
1216		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1217				    struct btrfs_file_extent_item);
1218		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1219		btrfs_set_file_extent_num_bytes(leaf, fi,
1220						split - key.offset);
1221
1222		fi = btrfs_item_ptr(leaf, path->slots[0],
1223				    struct btrfs_file_extent_item);
1224
1225		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1226		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1227		btrfs_set_file_extent_num_bytes(leaf, fi,
1228						extent_end - split);
1229		btrfs_mark_buffer_dirty(leaf);
1230
1231		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1232				       num_bytes, 0);
1233		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1234				    orig_offset);
 
 
 
1235		ret = btrfs_inc_extent_ref(trans, &ref);
1236		if (ret) {
1237			btrfs_abort_transaction(trans, ret);
1238			goto out;
1239		}
1240
1241		if (split == start) {
1242			key.offset = start;
1243		} else {
1244			if (start != key.offset) {
1245				ret = -EINVAL;
1246				btrfs_abort_transaction(trans, ret);
1247				goto out;
1248			}
1249			path->slots[0]--;
1250			extent_end = end;
1251		}
1252		recow = 1;
1253	}
1254
1255	other_start = end;
1256	other_end = 0;
1257	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1258			       num_bytes, 0);
1259	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
 
 
 
 
 
1260	if (extent_mergeable(leaf, path->slots[0] + 1,
1261			     ino, bytenr, orig_offset,
1262			     &other_start, &other_end)) {
1263		if (recow) {
1264			btrfs_release_path(path);
1265			goto again;
1266		}
1267		extent_end = other_end;
1268		del_slot = path->slots[0] + 1;
1269		del_nr++;
1270		ret = btrfs_free_extent(trans, &ref);
1271		if (ret) {
1272			btrfs_abort_transaction(trans, ret);
1273			goto out;
1274		}
1275	}
1276	other_start = 0;
1277	other_end = start;
1278	if (extent_mergeable(leaf, path->slots[0] - 1,
1279			     ino, bytenr, orig_offset,
1280			     &other_start, &other_end)) {
1281		if (recow) {
1282			btrfs_release_path(path);
1283			goto again;
1284		}
1285		key.offset = other_start;
1286		del_slot = path->slots[0];
1287		del_nr++;
1288		ret = btrfs_free_extent(trans, &ref);
1289		if (ret) {
1290			btrfs_abort_transaction(trans, ret);
1291			goto out;
1292		}
1293	}
1294	if (del_nr == 0) {
1295		fi = btrfs_item_ptr(leaf, path->slots[0],
1296			   struct btrfs_file_extent_item);
1297		btrfs_set_file_extent_type(leaf, fi,
1298					   BTRFS_FILE_EXTENT_REG);
1299		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300		btrfs_mark_buffer_dirty(leaf);
1301	} else {
1302		fi = btrfs_item_ptr(leaf, del_slot - 1,
1303			   struct btrfs_file_extent_item);
1304		btrfs_set_file_extent_type(leaf, fi,
1305					   BTRFS_FILE_EXTENT_REG);
1306		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1307		btrfs_set_file_extent_num_bytes(leaf, fi,
1308						extent_end - key.offset);
1309		btrfs_mark_buffer_dirty(leaf);
1310
1311		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1312		if (ret < 0) {
1313			btrfs_abort_transaction(trans, ret);
1314			goto out;
1315		}
1316	}
1317out:
1318	btrfs_free_path(path);
1319	return ret;
1320}
1321
1322/*
1323 * on error we return an unlocked page and the error value
1324 * on success we return a locked page and 0
1325 */
1326static int prepare_uptodate_page(struct inode *inode,
1327				 struct page *page, u64 pos,
1328				 bool force_uptodate)
1329{
 
 
1330	int ret = 0;
1331
1332	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1333	    !PageUptodate(page)) {
1334		ret = btrfs_readpage(NULL, page);
1335		if (ret)
1336			return ret;
1337		lock_page(page);
1338		if (!PageUptodate(page)) {
1339			unlock_page(page);
1340			return -EIO;
1341		}
1342		if (page->mapping != inode->i_mapping) {
1343			unlock_page(page);
1344			return -EAGAIN;
1345		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	}
1347	return 0;
1348}
1349
 
 
 
 
 
 
 
 
 
 
 
 
 
1350/*
1351 * this just gets pages into the page cache and locks them down.
1352 */
1353static noinline int prepare_pages(struct inode *inode, struct page **pages,
1354				  size_t num_pages, loff_t pos,
1355				  size_t write_bytes, bool force_uptodate)
1356{
1357	int i;
1358	unsigned long index = pos >> PAGE_SHIFT;
1359	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1360	int err = 0;
1361	int faili;
 
1362
1363	for (i = 0; i < num_pages; i++) {
1364again:
1365		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1366					       mask | __GFP_WRITE);
1367		if (!pages[i]) {
1368			faili = i - 1;
1369			err = -ENOMEM;
1370			goto fail;
1371		}
1372
1373		err = set_page_extent_mapped(pages[i]);
1374		if (err < 0) {
1375			faili = i;
1376			goto fail;
1377		}
1378
1379		if (i == 0)
1380			err = prepare_uptodate_page(inode, pages[i], pos,
1381						    force_uptodate);
1382		if (!err && i == num_pages - 1)
1383			err = prepare_uptodate_page(inode, pages[i],
1384						    pos + write_bytes, false);
1385		if (err) {
1386			put_page(pages[i]);
1387			if (err == -EAGAIN) {
1388				err = 0;
1389				goto again;
1390			}
1391			faili = i - 1;
1392			goto fail;
1393		}
1394		wait_on_page_writeback(pages[i]);
1395	}
1396
1397	return 0;
1398fail:
1399	while (faili >= 0) {
1400		unlock_page(pages[faili]);
1401		put_page(pages[faili]);
1402		faili--;
1403	}
1404	return err;
1405
1406}
1407
1408/*
1409 * This function locks the extent and properly waits for data=ordered extents
1410 * to finish before allowing the pages to be modified if need.
1411 *
1412 * The return value:
1413 * 1 - the extent is locked
1414 * 0 - the extent is not locked, and everything is OK
1415 * -EAGAIN - need re-prepare the pages
1416 * the other < 0 number - Something wrong happens
1417 */
1418static noinline int
1419lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1420				size_t num_pages, loff_t pos,
1421				size_t write_bytes,
1422				u64 *lockstart, u64 *lockend,
1423				struct extent_state **cached_state)
1424{
1425	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1426	u64 start_pos;
1427	u64 last_pos;
1428	int i;
1429	int ret = 0;
1430
1431	start_pos = round_down(pos, fs_info->sectorsize);
1432	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1433
1434	if (start_pos < inode->vfs_inode.i_size) {
1435		struct btrfs_ordered_extent *ordered;
1436
1437		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1438				cached_state);
 
 
 
 
 
 
 
 
 
1439		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1440						     last_pos - start_pos + 1);
1441		if (ordered &&
1442		    ordered->file_offset + ordered->num_bytes > start_pos &&
1443		    ordered->file_offset <= last_pos) {
1444			unlock_extent_cached(&inode->io_tree, start_pos,
1445					last_pos, cached_state);
1446			for (i = 0; i < num_pages; i++) {
1447				unlock_page(pages[i]);
1448				put_page(pages[i]);
1449			}
1450			btrfs_start_ordered_extent(ordered, 1);
1451			btrfs_put_ordered_extent(ordered);
1452			return -EAGAIN;
1453		}
1454		if (ordered)
1455			btrfs_put_ordered_extent(ordered);
1456
1457		*lockstart = start_pos;
1458		*lockend = last_pos;
1459		ret = 1;
1460	}
1461
1462	/*
1463	 * We should be called after prepare_pages() which should have locked
1464	 * all pages in the range.
1465	 */
1466	for (i = 0; i < num_pages; i++)
1467		WARN_ON(!PageLocked(pages[i]));
1468
1469	return ret;
1470}
1471
1472static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473			   size_t *write_bytes, bool nowait)
1474{
1475	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1476	struct btrfs_root *root = inode->root;
 
1477	u64 lockstart, lockend;
1478	u64 num_bytes;
1479	int ret;
1480
1481	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1482		return 0;
1483
1484	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1485		return -EAGAIN;
1486
1487	lockstart = round_down(pos, fs_info->sectorsize);
1488	lockend = round_up(pos + *write_bytes,
1489			   fs_info->sectorsize) - 1;
1490	num_bytes = lockend - lockstart + 1;
1491
1492	if (nowait) {
1493		struct btrfs_ordered_extent *ordered;
1494
1495		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1496			return -EAGAIN;
1497
1498		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1499						     num_bytes);
1500		if (ordered) {
1501			btrfs_put_ordered_extent(ordered);
1502			ret = -EAGAIN;
1503			goto out_unlock;
1504		}
1505	} else {
1506		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1507						   lockend, NULL);
1508	}
1509
1510	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1511			NULL, NULL, NULL, false);
1512	if (ret <= 0) {
1513		ret = 0;
1514		if (!nowait)
1515			btrfs_drew_write_unlock(&root->snapshot_lock);
1516	} else {
1517		*write_bytes = min_t(size_t, *write_bytes ,
1518				     num_bytes - pos + lockstart);
1519	}
1520out_unlock:
1521	unlock_extent(&inode->io_tree, lockstart, lockend);
1522
1523	return ret;
1524}
1525
1526static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1527			      size_t *write_bytes)
1528{
1529	return check_can_nocow(inode, pos, write_bytes, true);
1530}
1531
1532/*
1533 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1534 *
1535 * @pos:	 File offset
1536 * @write_bytes: The length to write, will be updated to the nocow writeable
1537 *		 range
1538 *
1539 * This function will flush ordered extents in the range to ensure proper
1540 * nocow checks.
1541 *
1542 * Return:
1543 * >0		and update @write_bytes if we can do nocow write
1544 *  0		if we can't do nocow write
1545 * -EAGAIN	if we can't get the needed lock or there are ordered extents
1546 * 		for * (nowait == true) case
1547 * <0		if other error happened
1548 *
1549 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1550 */
1551int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1552			   size_t *write_bytes)
1553{
1554	return check_can_nocow(inode, pos, write_bytes, false);
1555}
1556
1557void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1558{
1559	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1560}
1561
1562static void update_time_for_write(struct inode *inode)
1563{
1564	struct timespec64 now;
1565
1566	if (IS_NOCMTIME(inode))
1567		return;
1568
1569	now = current_time(inode);
1570	if (!timespec64_equal(&inode->i_mtime, &now))
1571		inode->i_mtime = now;
1572
1573	if (!timespec64_equal(&inode->i_ctime, &now))
1574		inode->i_ctime = now;
1575
1576	if (IS_I_VERSION(inode))
1577		inode_inc_iversion(inode);
1578}
1579
1580static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1581			     size_t count)
1582{
1583	struct file *file = iocb->ki_filp;
1584	struct inode *inode = file_inode(file);
1585	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1586	loff_t pos = iocb->ki_pos;
1587	int ret;
1588	loff_t oldsize;
1589	loff_t start_pos;
1590
1591	if (iocb->ki_flags & IOCB_NOWAIT) {
1592		size_t nocow_bytes = count;
1593
1594		/* We will allocate space in case nodatacow is not set, so bail */
1595		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1596			return -EAGAIN;
1597		/*
1598		 * There are holes in the range or parts of the range that must
1599		 * be COWed (shared extents, RO block groups, etc), so just bail
1600		 * out.
1601		 */
1602		if (nocow_bytes < count)
1603			return -EAGAIN;
1604	}
1605
1606	current->backing_dev_info = inode_to_bdi(inode);
1607	ret = file_remove_privs(file);
1608	if (ret)
1609		return ret;
1610
1611	/*
1612	 * We reserve space for updating the inode when we reserve space for the
1613	 * extent we are going to write, so we will enospc out there.  We don't
1614	 * need to start yet another transaction to update the inode as we will
1615	 * update the inode when we finish writing whatever data we write.
1616	 */
1617	update_time_for_write(inode);
 
 
 
1618
1619	start_pos = round_down(pos, fs_info->sectorsize);
1620	oldsize = i_size_read(inode);
1621	if (start_pos > oldsize) {
1622		/* Expand hole size to cover write data, preventing empty gap */
1623		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1624
1625		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1626		if (ret) {
1627			current->backing_dev_info = NULL;
1628			return ret;
1629		}
1630	}
1631
1632	return 0;
1633}
1634
1635static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1636					       struct iov_iter *i)
1637{
1638	struct file *file = iocb->ki_filp;
1639	loff_t pos;
1640	struct inode *inode = file_inode(file);
1641	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1642	struct page **pages = NULL;
1643	struct extent_changeset *data_reserved = NULL;
1644	u64 release_bytes = 0;
1645	u64 lockstart;
1646	u64 lockend;
1647	size_t num_written = 0;
1648	int nrptrs;
1649	ssize_t ret;
 
 
 
 
1650	bool only_release_metadata = false;
1651	bool force_page_uptodate = false;
1652	loff_t old_isize = i_size_read(inode);
1653	unsigned int ilock_flags = 0;
1654
1655	if (iocb->ki_flags & IOCB_NOWAIT)
1656		ilock_flags |= BTRFS_ILOCK_TRY;
1657
1658	ret = btrfs_inode_lock(inode, ilock_flags);
1659	if (ret < 0)
1660		return ret;
1661
 
 
 
 
 
 
 
1662	ret = generic_write_checks(iocb, i);
1663	if (ret <= 0)
1664		goto out;
1665
1666	ret = btrfs_write_check(iocb, i, ret);
1667	if (ret < 0)
1668		goto out;
1669
1670	pos = iocb->ki_pos;
1671	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1672			PAGE_SIZE / (sizeof(struct page *)));
1673	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1674	nrptrs = max(nrptrs, 8);
1675	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1676	if (!pages) {
1677		ret = -ENOMEM;
1678		goto out;
1679	}
1680
1681	while (iov_iter_count(i) > 0) {
1682		struct extent_state *cached_state = NULL;
1683		size_t offset = offset_in_page(pos);
1684		size_t sector_offset;
1685		size_t write_bytes = min(iov_iter_count(i),
1686					 nrptrs * (size_t)PAGE_SIZE -
1687					 offset);
1688		size_t num_pages;
1689		size_t reserve_bytes;
1690		size_t dirty_pages;
1691		size_t copied;
1692		size_t dirty_sectors;
1693		size_t num_sectors;
 
1694		int extents_locked;
 
1695
1696		/*
1697		 * Fault pages before locking them in prepare_pages
1698		 * to avoid recursive lock
1699		 */
1700		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1701			ret = -EFAULT;
1702			break;
1703		}
1704
1705		only_release_metadata = false;
1706		sector_offset = pos & (fs_info->sectorsize - 1);
1707
1708		extent_changeset_release(data_reserved);
1709		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1710						  &data_reserved, pos,
1711						  write_bytes);
1712		if (ret < 0) {
 
 
 
 
 
 
 
1713			/*
1714			 * If we don't have to COW at the offset, reserve
1715			 * metadata only. write_bytes may get smaller than
1716			 * requested here.
1717			 */
1718			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1719						   &write_bytes) > 0)
1720				only_release_metadata = true;
1721			else
 
 
 
1722				break;
 
1723		}
1724
1725		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1726		WARN_ON(num_pages > nrptrs);
1727		reserve_bytes = round_up(write_bytes + sector_offset,
1728					 fs_info->sectorsize);
1729		WARN_ON(reserve_bytes == 0);
1730		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1731				reserve_bytes);
 
1732		if (ret) {
1733			if (!only_release_metadata)
1734				btrfs_free_reserved_data_space(BTRFS_I(inode),
1735						data_reserved, pos,
1736						write_bytes);
1737			else
1738				btrfs_check_nocow_unlock(BTRFS_I(inode));
 
 
 
1739			break;
1740		}
1741
1742		release_bytes = reserve_bytes;
1743again:
1744		/*
1745		 * This is going to setup the pages array with the number of
1746		 * pages we want, so we don't really need to worry about the
1747		 * contents of pages from loop to loop
1748		 */
1749		ret = prepare_pages(inode, pages, num_pages,
1750				    pos, write_bytes,
1751				    force_page_uptodate);
1752		if (ret) {
1753			btrfs_delalloc_release_extents(BTRFS_I(inode),
1754						       reserve_bytes);
1755			break;
1756		}
1757
1758		extents_locked = lock_and_cleanup_extent_if_need(
1759				BTRFS_I(inode), pages,
1760				num_pages, pos, write_bytes, &lockstart,
1761				&lockend, &cached_state);
1762		if (extents_locked < 0) {
1763			if (extents_locked == -EAGAIN)
1764				goto again;
 
1765			btrfs_delalloc_release_extents(BTRFS_I(inode),
1766						       reserve_bytes);
1767			ret = extents_locked;
1768			break;
1769		}
1770
1771		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1772
1773		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1774		dirty_sectors = round_up(copied + sector_offset,
1775					fs_info->sectorsize);
1776		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1777
1778		/*
1779		 * if we have trouble faulting in the pages, fall
1780		 * back to one page at a time
1781		 */
1782		if (copied < write_bytes)
1783			nrptrs = 1;
1784
1785		if (copied == 0) {
1786			force_page_uptodate = true;
1787			dirty_sectors = 0;
1788			dirty_pages = 0;
1789		} else {
1790			force_page_uptodate = false;
1791			dirty_pages = DIV_ROUND_UP(copied + offset,
1792						   PAGE_SIZE);
1793		}
1794
1795		if (num_sectors > dirty_sectors) {
1796			/* release everything except the sectors we dirtied */
1797			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1798			if (only_release_metadata) {
1799				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1800							release_bytes, true);
1801			} else {
1802				u64 __pos;
1803
1804				__pos = round_down(pos,
1805						   fs_info->sectorsize) +
1806					(dirty_pages << PAGE_SHIFT);
1807				btrfs_delalloc_release_space(BTRFS_I(inode),
1808						data_reserved, __pos,
1809						release_bytes, true);
1810			}
1811		}
1812
1813		release_bytes = round_up(copied + sector_offset,
1814					fs_info->sectorsize);
1815
1816		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1817					dirty_pages, pos, copied,
1818					&cached_state, only_release_metadata);
1819
1820		/*
1821		 * If we have not locked the extent range, because the range's
1822		 * start offset is >= i_size, we might still have a non-NULL
1823		 * cached extent state, acquired while marking the extent range
1824		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1825		 * possible cached extent state to avoid a memory leak.
1826		 */
1827		if (extents_locked)
1828			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1829					     lockstart, lockend, &cached_state);
1830		else
1831			free_extent_state(cached_state);
1832
1833		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1834		if (ret) {
1835			btrfs_drop_pages(pages, num_pages);
1836			break;
1837		}
1838
1839		release_bytes = 0;
1840		if (only_release_metadata)
1841			btrfs_check_nocow_unlock(BTRFS_I(inode));
1842
1843		btrfs_drop_pages(pages, num_pages);
1844
1845		cond_resched();
1846
1847		balance_dirty_pages_ratelimited(inode->i_mapping);
1848
1849		pos += copied;
1850		num_written += copied;
1851	}
1852
1853	kfree(pages);
1854
1855	if (release_bytes) {
1856		if (only_release_metadata) {
1857			btrfs_check_nocow_unlock(BTRFS_I(inode));
1858			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1859					release_bytes, true);
1860		} else {
1861			btrfs_delalloc_release_space(BTRFS_I(inode),
1862					data_reserved,
1863					round_down(pos, fs_info->sectorsize),
1864					release_bytes, true);
1865		}
1866	}
1867
1868	extent_changeset_free(data_reserved);
1869	if (num_written > 0) {
1870		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1871		iocb->ki_pos += num_written;
1872	}
1873out:
1874	btrfs_inode_unlock(inode, ilock_flags);
1875	return num_written ? num_written : ret;
1876}
1877
1878static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1879			       const struct iov_iter *iter, loff_t offset)
1880{
1881	const u32 blocksize_mask = fs_info->sectorsize - 1;
1882
1883	if (offset & blocksize_mask)
1884		return -EINVAL;
1885
1886	if (iov_iter_alignment(iter) & blocksize_mask)
1887		return -EINVAL;
1888
1889	return 0;
1890}
1891
1892static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1893{
1894	struct file *file = iocb->ki_filp;
1895	struct inode *inode = file_inode(file);
1896	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897	loff_t pos;
1898	ssize_t written = 0;
1899	ssize_t written_buffered;
1900	loff_t endbyte;
1901	ssize_t err;
1902	unsigned int ilock_flags = 0;
1903	struct iomap_dio *dio = NULL;
1904
1905	if (iocb->ki_flags & IOCB_NOWAIT)
1906		ilock_flags |= BTRFS_ILOCK_TRY;
1907
1908	/* If the write DIO is within EOF, use a shared lock */
1909	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1910		ilock_flags |= BTRFS_ILOCK_SHARED;
1911
1912relock:
1913	err = btrfs_inode_lock(inode, ilock_flags);
1914	if (err < 0)
1915		return err;
1916
1917	err = generic_write_checks(iocb, from);
1918	if (err <= 0) {
1919		btrfs_inode_unlock(inode, ilock_flags);
1920		return err;
1921	}
1922
1923	err = btrfs_write_check(iocb, from, err);
1924	if (err < 0) {
1925		btrfs_inode_unlock(inode, ilock_flags);
1926		goto out;
1927	}
1928
1929	pos = iocb->ki_pos;
1930	/*
1931	 * Re-check since file size may have changed just before taking the
1932	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1933	 */
1934	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1935	    pos + iov_iter_count(from) > i_size_read(inode)) {
1936		btrfs_inode_unlock(inode, ilock_flags);
1937		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1938		goto relock;
1939	}
1940
1941	if (check_direct_IO(fs_info, from, pos)) {
1942		btrfs_inode_unlock(inode, ilock_flags);
1943		goto buffered;
1944	}
1945
1946	dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1947			     0);
1948
1949	btrfs_inode_unlock(inode, ilock_flags);
1950
1951	if (IS_ERR_OR_NULL(dio)) {
1952		err = PTR_ERR_OR_ZERO(dio);
1953		if (err < 0 && err != -ENOTBLK)
1954			goto out;
1955	} else {
1956		written = iomap_dio_complete(dio);
1957	}
1958
1959	if (written < 0 || !iov_iter_count(from)) {
1960		err = written;
1961		goto out;
1962	}
1963
1964buffered:
1965	pos = iocb->ki_pos;
1966	written_buffered = btrfs_buffered_write(iocb, from);
1967	if (written_buffered < 0) {
1968		err = written_buffered;
1969		goto out;
1970	}
1971	/*
1972	 * Ensure all data is persisted. We want the next direct IO read to be
1973	 * able to read what was just written.
1974	 */
1975	endbyte = pos + written_buffered - 1;
1976	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1977	if (err)
1978		goto out;
1979	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1980	if (err)
1981		goto out;
1982	written += written_buffered;
1983	iocb->ki_pos = pos + written_buffered;
1984	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1985				 endbyte >> PAGE_SHIFT);
1986out:
1987	return written ? written : err;
 
1988}
1989
1990static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1991				    struct iov_iter *from)
1992{
1993	struct file *file = iocb->ki_filp;
1994	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1995	ssize_t num_written = 0;
1996	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1997
1998	/*
1999	 * If the fs flips readonly due to some impossible error, although we
2000	 * have opened a file as writable, we have to stop this write operation
2001	 * to ensure consistency.
2002	 */
2003	if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2004		return -EROFS;
2005
2006	if (!(iocb->ki_flags & IOCB_DIRECT) &&
2007	    (iocb->ki_flags & IOCB_NOWAIT))
2008		return -EOPNOTSUPP;
2009
2010	if (sync)
2011		atomic_inc(&inode->sync_writers);
2012
2013	if (iocb->ki_flags & IOCB_DIRECT)
2014		num_written = btrfs_direct_write(iocb, from);
2015	else
 
2016		num_written = btrfs_buffered_write(iocb, from);
 
 
2017
2018	btrfs_set_inode_last_sub_trans(inode);
2019
2020	if (num_written > 0)
2021		num_written = generic_write_sync(iocb, num_written);
 
 
 
2022
2023	if (sync)
2024		atomic_dec(&inode->sync_writers);
2025
2026	current->backing_dev_info = NULL;
2027	return num_written;
 
2028}
2029
2030int btrfs_release_file(struct inode *inode, struct file *filp)
2031{
2032	struct btrfs_file_private *private = filp->private_data;
2033
2034	if (private && private->filldir_buf)
2035		kfree(private->filldir_buf);
2036	kfree(private);
2037	filp->private_data = NULL;
 
 
2038
2039	/*
2040	 * Set by setattr when we are about to truncate a file from a non-zero
2041	 * size to a zero size.  This tries to flush down new bytes that may
2042	 * have been written if the application were using truncate to replace
2043	 * a file in place.
2044	 */
2045	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2046			       &BTRFS_I(inode)->runtime_flags))
2047			filemap_flush(inode->i_mapping);
2048	return 0;
2049}
2050
2051static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2052{
2053	int ret;
2054	struct blk_plug plug;
2055
2056	/*
2057	 * This is only called in fsync, which would do synchronous writes, so
2058	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2059	 * multiple disks using raid profile, a large IO can be split to
2060	 * several segments of stripe length (currently 64K).
2061	 */
2062	blk_start_plug(&plug);
2063	atomic_inc(&BTRFS_I(inode)->sync_writers);
2064	ret = btrfs_fdatawrite_range(inode, start, end);
2065	atomic_dec(&BTRFS_I(inode)->sync_writers);
2066	blk_finish_plug(&plug);
2067
2068	return ret;
2069}
2070
2071static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2072{
2073	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2074	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2075
2076	if (btrfs_inode_in_log(inode, fs_info->generation) &&
2077	    list_empty(&ctx->ordered_extents))
2078		return true;
2079
2080	/*
2081	 * If we are doing a fast fsync we can not bail out if the inode's
2082	 * last_trans is <= then the last committed transaction, because we only
2083	 * update the last_trans of the inode during ordered extent completion,
2084	 * and for a fast fsync we don't wait for that, we only wait for the
2085	 * writeback to complete.
2086	 */
2087	if (inode->last_trans <= fs_info->last_trans_committed &&
2088	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2089	     list_empty(&ctx->ordered_extents)))
2090		return true;
2091
2092	return false;
2093}
2094
2095/*
2096 * fsync call for both files and directories.  This logs the inode into
2097 * the tree log instead of forcing full commits whenever possible.
2098 *
2099 * It needs to call filemap_fdatawait so that all ordered extent updates are
2100 * in the metadata btree are up to date for copying to the log.
2101 *
2102 * It drops the inode mutex before doing the tree log commit.  This is an
2103 * important optimization for directories because holding the mutex prevents
2104 * new operations on the dir while we write to disk.
2105 */
2106int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2107{
2108	struct dentry *dentry = file_dentry(file);
2109	struct inode *inode = d_inode(dentry);
2110	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2111	struct btrfs_root *root = BTRFS_I(inode)->root;
2112	struct btrfs_trans_handle *trans;
2113	struct btrfs_log_ctx ctx;
2114	int ret = 0, err;
2115	u64 len;
2116	bool full_sync;
 
 
 
 
 
 
 
2117
2118	trace_btrfs_sync_file(file, datasync);
2119
2120	btrfs_init_log_ctx(&ctx, inode);
2121
2122	/*
2123	 * Always set the range to a full range, otherwise we can get into
2124	 * several problems, from missing file extent items to represent holes
2125	 * when not using the NO_HOLES feature, to log tree corruption due to
2126	 * races between hole detection during logging and completion of ordered
2127	 * extents outside the range, to missing checksums due to ordered extents
2128	 * for which we flushed only a subset of their pages.
2129	 */
2130	start = 0;
2131	end = LLONG_MAX;
2132	len = (u64)LLONG_MAX + 1;
2133
2134	/*
2135	 * We write the dirty pages in the range and wait until they complete
2136	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2137	 * multi-task, and make the performance up.  See
2138	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2139	 */
2140	ret = start_ordered_ops(inode, start, end);
2141	if (ret)
2142		goto out;
2143
2144	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
 
 
 
2145
2146	atomic_inc(&root->log_batch);
2147
2148	/*
2149	 * Always check for the full sync flag while holding the inode's lock,
2150	 * to avoid races with other tasks. The flag must be either set all the
2151	 * time during logging or always off all the time while logging.
2152	 */
2153	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2154			     &BTRFS_I(inode)->runtime_flags);
2155
2156	/*
2157	 * Before we acquired the inode's lock and the mmap lock, someone may
2158	 * have dirtied more pages in the target range. We need to make sure
2159	 * that writeback for any such pages does not start while we are logging
2160	 * the inode, because if it does, any of the following might happen when
2161	 * we are not doing a full inode sync:
2162	 *
2163	 * 1) We log an extent after its writeback finishes but before its
2164	 *    checksums are added to the csum tree, leading to -EIO errors
2165	 *    when attempting to read the extent after a log replay.
2166	 *
2167	 * 2) We can end up logging an extent before its writeback finishes.
2168	 *    Therefore after the log replay we will have a file extent item
2169	 *    pointing to an unwritten extent (and no data checksums as well).
2170	 *
2171	 * So trigger writeback for any eventual new dirty pages and then we
2172	 * wait for all ordered extents to complete below.
2173	 */
2174	ret = start_ordered_ops(inode, start, end);
2175	if (ret) {
2176		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
 
 
 
2177		goto out;
2178	}
2179
2180	/*
 
 
 
 
 
 
 
 
 
 
2181	 * We have to do this here to avoid the priority inversion of waiting on
2182	 * IO of a lower priority task while holding a transaction open.
2183	 *
2184	 * For a full fsync we wait for the ordered extents to complete while
2185	 * for a fast fsync we wait just for writeback to complete, and then
2186	 * attach the ordered extents to the transaction so that a transaction
2187	 * commit waits for their completion, to avoid data loss if we fsync,
2188	 * the current transaction commits before the ordered extents complete
2189	 * and a power failure happens right after that.
2190	 *
2191	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2192	 * logical address recorded in the ordered extent may change. We need
2193	 * to wait for the IO to stabilize the logical address.
2194	 */
2195	if (full_sync || btrfs_is_zoned(fs_info)) {
2196		ret = btrfs_wait_ordered_range(inode, start, len);
 
2197	} else {
2198		/*
2199		 * Get our ordered extents as soon as possible to avoid doing
2200		 * checksum lookups in the csum tree, and use instead the
2201		 * checksums attached to the ordered extents.
2202		 */
2203		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2204						      &ctx.ordered_extents);
2205		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
2206	}
2207
2208	if (ret)
2209		goto out_release_extents;
2210
2211	atomic_inc(&root->log_batch);
2212
2213	smp_mb();
2214	if (skip_inode_logging(&ctx)) {
2215		/*
2216		 * We've had everything committed since the last time we were
2217		 * modified so clear this flag in case it was set for whatever
2218		 * reason, it's no longer relevant.
2219		 */
2220		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2221			  &BTRFS_I(inode)->runtime_flags);
2222		/*
2223		 * An ordered extent might have started before and completed
2224		 * already with io errors, in which case the inode was not
2225		 * updated and we end up here. So check the inode's mapping
2226		 * for any errors that might have happened since we last
2227		 * checked called fsync.
2228		 */
2229		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2230		goto out_release_extents;
2231	}
2232
 
 
2233	/*
2234	 * We use start here because we will need to wait on the IO to complete
2235	 * in btrfs_sync_log, which could require joining a transaction (for
2236	 * example checking cross references in the nocow path).  If we use join
2237	 * here we could get into a situation where we're waiting on IO to
2238	 * happen that is blocked on a transaction trying to commit.  With start
2239	 * we inc the extwriter counter, so we wait for all extwriters to exit
2240	 * before we start blocking joiners.  This comment is to keep somebody
2241	 * from thinking they are super smart and changing this to
2242	 * btrfs_join_transaction *cough*Josef*cough*.
2243	 */
2244	trans = btrfs_start_transaction(root, 0);
2245	if (IS_ERR(trans)) {
2246		ret = PTR_ERR(trans);
2247		goto out_release_extents;
2248	}
2249	trans->in_fsync = true;
2250
2251	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
 
 
 
 
 
 
 
 
 
2252	btrfs_release_log_ctx_extents(&ctx);
2253	if (ret < 0) {
2254		/* Fallthrough and commit/free transaction. */
2255		ret = 1;
2256	}
2257
2258	/* we've logged all the items and now have a consistent
2259	 * version of the file in the log.  It is possible that
2260	 * someone will come in and modify the file, but that's
2261	 * fine because the log is consistent on disk, and we
2262	 * have references to all of the file's extents
2263	 *
2264	 * It is possible that someone will come in and log the
2265	 * file again, but that will end up using the synchronization
2266	 * inside btrfs_sync_log to keep things safe.
2267	 */
2268	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
 
 
 
 
 
 
 
 
2269
2270	if (ret != BTRFS_NO_LOG_SYNC) {
 
 
2271		if (!ret) {
2272			ret = btrfs_sync_log(trans, root, &ctx);
2273			if (!ret) {
2274				ret = btrfs_end_transaction(trans);
2275				goto out;
2276			}
2277		}
2278		if (!full_sync) {
2279			ret = btrfs_wait_ordered_range(inode, start, len);
2280			if (ret) {
2281				btrfs_end_transaction(trans);
2282				goto out;
2283			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284		}
2285		ret = btrfs_commit_transaction(trans);
2286	} else {
2287		ret = btrfs_end_transaction(trans);
2288	}
 
 
2289out:
 
2290	ASSERT(list_empty(&ctx.list));
 
2291	err = file_check_and_advance_wb_err(file);
2292	if (!ret)
2293		ret = err;
2294	return ret > 0 ? -EIO : ret;
2295
2296out_release_extents:
2297	btrfs_release_log_ctx_extents(&ctx);
2298	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
 
 
 
2299	goto out;
2300}
2301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302static const struct vm_operations_struct btrfs_file_vm_ops = {
2303	.fault		= filemap_fault,
2304	.map_pages	= filemap_map_pages,
2305	.page_mkwrite	= btrfs_page_mkwrite,
2306};
2307
2308static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2309{
2310	struct address_space *mapping = filp->f_mapping;
2311
2312	if (!mapping->a_ops->readpage)
2313		return -ENOEXEC;
2314
2315	file_accessed(filp);
2316	vma->vm_ops = &btrfs_file_vm_ops;
2317
2318	return 0;
2319}
2320
2321static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2322			  int slot, u64 start, u64 end)
2323{
2324	struct btrfs_file_extent_item *fi;
2325	struct btrfs_key key;
2326
2327	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2328		return 0;
2329
2330	btrfs_item_key_to_cpu(leaf, &key, slot);
2331	if (key.objectid != btrfs_ino(inode) ||
2332	    key.type != BTRFS_EXTENT_DATA_KEY)
2333		return 0;
2334
2335	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2336
2337	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2338		return 0;
2339
2340	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2341		return 0;
2342
2343	if (key.offset == end)
2344		return 1;
2345	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2346		return 1;
2347	return 0;
2348}
2349
2350static int fill_holes(struct btrfs_trans_handle *trans,
2351		struct btrfs_inode *inode,
2352		struct btrfs_path *path, u64 offset, u64 end)
2353{
2354	struct btrfs_fs_info *fs_info = trans->fs_info;
2355	struct btrfs_root *root = inode->root;
2356	struct extent_buffer *leaf;
2357	struct btrfs_file_extent_item *fi;
2358	struct extent_map *hole_em;
2359	struct extent_map_tree *em_tree = &inode->extent_tree;
2360	struct btrfs_key key;
2361	int ret;
2362
2363	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2364		goto out;
2365
2366	key.objectid = btrfs_ino(inode);
2367	key.type = BTRFS_EXTENT_DATA_KEY;
2368	key.offset = offset;
2369
2370	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2371	if (ret <= 0) {
2372		/*
2373		 * We should have dropped this offset, so if we find it then
2374		 * something has gone horribly wrong.
2375		 */
2376		if (ret == 0)
2377			ret = -EINVAL;
2378		return ret;
2379	}
2380
2381	leaf = path->nodes[0];
2382	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2383		u64 num_bytes;
2384
2385		path->slots[0]--;
2386		fi = btrfs_item_ptr(leaf, path->slots[0],
2387				    struct btrfs_file_extent_item);
2388		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2389			end - offset;
2390		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2391		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2392		btrfs_set_file_extent_offset(leaf, fi, 0);
2393		btrfs_mark_buffer_dirty(leaf);
 
2394		goto out;
2395	}
2396
2397	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2398		u64 num_bytes;
2399
2400		key.offset = offset;
2401		btrfs_set_item_key_safe(fs_info, path, &key);
2402		fi = btrfs_item_ptr(leaf, path->slots[0],
2403				    struct btrfs_file_extent_item);
2404		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2405			offset;
2406		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2407		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2408		btrfs_set_file_extent_offset(leaf, fi, 0);
2409		btrfs_mark_buffer_dirty(leaf);
 
2410		goto out;
2411	}
2412	btrfs_release_path(path);
2413
2414	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2415			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2416	if (ret)
2417		return ret;
2418
2419out:
2420	btrfs_release_path(path);
2421
2422	hole_em = alloc_extent_map();
2423	if (!hole_em) {
2424		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2425		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2426	} else {
2427		hole_em->start = offset;
2428		hole_em->len = end - offset;
2429		hole_em->ram_bytes = hole_em->len;
2430		hole_em->orig_start = offset;
2431
2432		hole_em->block_start = EXTENT_MAP_HOLE;
2433		hole_em->block_len = 0;
2434		hole_em->orig_block_len = 0;
2435		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2436		hole_em->generation = trans->transid;
2437
2438		do {
2439			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2440			write_lock(&em_tree->lock);
2441			ret = add_extent_mapping(em_tree, hole_em, 1);
2442			write_unlock(&em_tree->lock);
2443		} while (ret == -EEXIST);
2444		free_extent_map(hole_em);
2445		if (ret)
2446			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2447					&inode->runtime_flags);
2448	}
2449
2450	return 0;
2451}
2452
2453/*
2454 * Find a hole extent on given inode and change start/len to the end of hole
2455 * extent.(hole/vacuum extent whose em->start <= start &&
2456 *	   em->start + em->len > start)
2457 * When a hole extent is found, return 1 and modify start/len.
2458 */
2459static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2460{
2461	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2462	struct extent_map *em;
2463	int ret = 0;
2464
2465	em = btrfs_get_extent(inode, NULL, 0,
2466			      round_down(*start, fs_info->sectorsize),
2467			      round_up(*len, fs_info->sectorsize));
2468	if (IS_ERR(em))
2469		return PTR_ERR(em);
2470
2471	/* Hole or vacuum extent(only exists in no-hole mode) */
2472	if (em->block_start == EXTENT_MAP_HOLE) {
2473		ret = 1;
2474		*len = em->start + em->len > *start + *len ?
2475		       0 : *start + *len - em->start - em->len;
2476		*start = em->start + em->len;
2477	}
2478	free_extent_map(em);
2479	return ret;
2480}
2481
2482static int btrfs_punch_hole_lock_range(struct inode *inode,
2483				       const u64 lockstart,
2484				       const u64 lockend,
2485				       struct extent_state **cached_state)
2486{
2487	/*
2488	 * For subpage case, if the range is not at page boundary, we could
2489	 * have pages at the leading/tailing part of the range.
2490	 * This could lead to dead loop since filemap_range_has_page()
2491	 * will always return true.
2492	 * So here we need to do extra page alignment for
2493	 * filemap_range_has_page().
2494	 */
2495	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2496	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2497
2498	while (1) {
2499		struct btrfs_ordered_extent *ordered;
2500		int ret;
2501
2502		truncate_pagecache_range(inode, lockstart, lockend);
2503
2504		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2505				 cached_state);
2506		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2507							    lockend);
2508
2509		/*
2510		 * We need to make sure we have no ordered extents in this range
2511		 * and nobody raced in and read a page in this range, if we did
2512		 * we need to try again.
2513		 */
2514		if ((!ordered ||
2515		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2516		     ordered->file_offset > lockend)) &&
2517		     !filemap_range_has_page(inode->i_mapping,
2518					     page_lockstart, page_lockend)) {
2519			if (ordered)
2520				btrfs_put_ordered_extent(ordered);
2521			break;
2522		}
2523		if (ordered)
2524			btrfs_put_ordered_extent(ordered);
2525		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2526				     lockend, cached_state);
2527		ret = btrfs_wait_ordered_range(inode, lockstart,
2528					       lockend - lockstart + 1);
2529		if (ret)
2530			return ret;
2531	}
2532	return 0;
 
2533}
2534
2535static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2536				     struct btrfs_inode *inode,
2537				     struct btrfs_path *path,
2538				     struct btrfs_replace_extent_info *extent_info,
2539				     const u64 replace_len,
2540				     const u64 bytes_to_drop)
2541{
2542	struct btrfs_fs_info *fs_info = trans->fs_info;
2543	struct btrfs_root *root = inode->root;
2544	struct btrfs_file_extent_item *extent;
2545	struct extent_buffer *leaf;
2546	struct btrfs_key key;
2547	int slot;
2548	struct btrfs_ref ref = { 0 };
2549	int ret;
2550
2551	if (replace_len == 0)
2552		return 0;
2553
2554	if (extent_info->disk_offset == 0 &&
2555	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2556		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2557		return 0;
2558	}
2559
2560	key.objectid = btrfs_ino(inode);
2561	key.type = BTRFS_EXTENT_DATA_KEY;
2562	key.offset = extent_info->file_offset;
2563	ret = btrfs_insert_empty_item(trans, root, path, &key,
2564				      sizeof(struct btrfs_file_extent_item));
2565	if (ret)
2566		return ret;
2567	leaf = path->nodes[0];
2568	slot = path->slots[0];
2569	write_extent_buffer(leaf, extent_info->extent_buf,
2570			    btrfs_item_ptr_offset(leaf, slot),
2571			    sizeof(struct btrfs_file_extent_item));
2572	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2573	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2574	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2575	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2576	if (extent_info->is_new_extent)
2577		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2578	btrfs_mark_buffer_dirty(leaf);
2579	btrfs_release_path(path);
2580
2581	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2582						replace_len);
2583	if (ret)
2584		return ret;
2585
2586	/* If it's a hole, nothing more needs to be done. */
2587	if (extent_info->disk_offset == 0) {
2588		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2589		return 0;
2590	}
2591
2592	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2593
2594	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2595		key.objectid = extent_info->disk_offset;
2596		key.type = BTRFS_EXTENT_ITEM_KEY;
2597		key.offset = extent_info->disk_len;
2598		ret = btrfs_alloc_reserved_file_extent(trans, root,
2599						       btrfs_ino(inode),
2600						       extent_info->file_offset,
2601						       extent_info->qgroup_reserved,
2602						       &key);
2603	} else {
 
 
 
 
 
 
 
2604		u64 ref_offset;
2605
2606		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2607				       extent_info->disk_offset,
2608				       extent_info->disk_len, 0);
2609		ref_offset = extent_info->file_offset - extent_info->data_offset;
2610		btrfs_init_data_ref(&ref, root->root_key.objectid,
2611				    btrfs_ino(inode), ref_offset);
2612		ret = btrfs_inc_extent_ref(trans, &ref);
2613	}
2614
2615	extent_info->insertions++;
2616
2617	return ret;
2618}
2619
2620/*
2621 * The respective range must have been previously locked, as well as the inode.
2622 * The end offset is inclusive (last byte of the range).
2623 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2624 * the file range with an extent.
2625 * When not punching a hole, we don't want to end up in a state where we dropped
2626 * extents without inserting a new one, so we must abort the transaction to avoid
2627 * a corruption.
2628 */
2629int btrfs_replace_file_extents(struct btrfs_inode *inode,
2630			       struct btrfs_path *path, const u64 start,
2631			       const u64 end,
2632			       struct btrfs_replace_extent_info *extent_info,
2633			       struct btrfs_trans_handle **trans_out)
2634{
2635	struct btrfs_drop_extents_args drop_args = { 0 };
2636	struct btrfs_root *root = inode->root;
2637	struct btrfs_fs_info *fs_info = root->fs_info;
2638	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2639	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2640	struct btrfs_trans_handle *trans = NULL;
2641	struct btrfs_block_rsv *rsv;
2642	unsigned int rsv_count;
2643	u64 cur_offset;
2644	u64 len = end - start;
2645	int ret = 0;
2646
2647	if (end <= start)
2648		return -EINVAL;
2649
2650	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2651	if (!rsv) {
2652		ret = -ENOMEM;
2653		goto out;
2654	}
2655	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2656	rsv->failfast = 1;
2657
2658	/*
2659	 * 1 - update the inode
2660	 * 1 - removing the extents in the range
2661	 * 1 - adding the hole extent if no_holes isn't set or if we are
2662	 *     replacing the range with a new extent
2663	 */
2664	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2665		rsv_count = 3;
2666	else
2667		rsv_count = 2;
2668
2669	trans = btrfs_start_transaction(root, rsv_count);
2670	if (IS_ERR(trans)) {
2671		ret = PTR_ERR(trans);
2672		trans = NULL;
2673		goto out_free;
2674	}
2675
2676	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2677				      min_size, false);
2678	BUG_ON(ret);
 
2679	trans->block_rsv = rsv;
2680
2681	cur_offset = start;
2682	drop_args.path = path;
2683	drop_args.end = end + 1;
2684	drop_args.drop_cache = true;
2685	while (cur_offset < end) {
2686		drop_args.start = cur_offset;
2687		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2688		/* If we are punching a hole decrement the inode's byte count */
2689		if (!extent_info)
2690			btrfs_update_inode_bytes(inode, 0,
2691						 drop_args.bytes_found);
2692		if (ret != -ENOSPC) {
2693			/*
2694			 * The only time we don't want to abort is if we are
2695			 * attempting to clone a partial inline extent, in which
2696			 * case we'll get EOPNOTSUPP.  However if we aren't
2697			 * clone we need to abort no matter what, because if we
2698			 * got EOPNOTSUPP via prealloc then we messed up and
2699			 * need to abort.
2700			 */
2701			if (ret &&
2702			    (ret != -EOPNOTSUPP ||
2703			     (extent_info && extent_info->is_new_extent)))
2704				btrfs_abort_transaction(trans, ret);
2705			break;
2706		}
2707
2708		trans->block_rsv = &fs_info->trans_block_rsv;
2709
2710		if (!extent_info && cur_offset < drop_args.drop_end &&
2711		    cur_offset < ino_size) {
2712			ret = fill_holes(trans, inode, path, cur_offset,
2713					 drop_args.drop_end);
2714			if (ret) {
2715				/*
2716				 * If we failed then we didn't insert our hole
2717				 * entries for the area we dropped, so now the
2718				 * fs is corrupted, so we must abort the
2719				 * transaction.
2720				 */
2721				btrfs_abort_transaction(trans, ret);
2722				break;
2723			}
2724		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2725			/*
2726			 * We are past the i_size here, but since we didn't
2727			 * insert holes we need to clear the mapped area so we
2728			 * know to not set disk_i_size in this area until a new
2729			 * file extent is inserted here.
2730			 */
2731			ret = btrfs_inode_clear_file_extent_range(inode,
2732					cur_offset,
2733					drop_args.drop_end - cur_offset);
2734			if (ret) {
2735				/*
2736				 * We couldn't clear our area, so we could
2737				 * presumably adjust up and corrupt the fs, so
2738				 * we need to abort.
2739				 */
2740				btrfs_abort_transaction(trans, ret);
2741				break;
2742			}
2743		}
2744
2745		if (extent_info &&
2746		    drop_args.drop_end > extent_info->file_offset) {
2747			u64 replace_len = drop_args.drop_end -
2748					  extent_info->file_offset;
2749
2750			ret = btrfs_insert_replace_extent(trans, inode,	path,
2751					extent_info, replace_len,
2752					drop_args.bytes_found);
2753			if (ret) {
2754				btrfs_abort_transaction(trans, ret);
2755				break;
2756			}
2757			extent_info->data_len -= replace_len;
2758			extent_info->data_offset += replace_len;
2759			extent_info->file_offset += replace_len;
2760		}
2761
2762		ret = btrfs_update_inode(trans, root, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763		if (ret)
2764			break;
2765
2766		btrfs_end_transaction(trans);
2767		btrfs_btree_balance_dirty(fs_info);
2768
2769		trans = btrfs_start_transaction(root, rsv_count);
2770		if (IS_ERR(trans)) {
2771			ret = PTR_ERR(trans);
2772			trans = NULL;
2773			break;
2774		}
2775
2776		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2777					      rsv, min_size, false);
2778		BUG_ON(ret);	/* shouldn't happen */
 
2779		trans->block_rsv = rsv;
2780
2781		cur_offset = drop_args.drop_end;
2782		len = end - cur_offset;
2783		if (!extent_info && len) {
2784			ret = find_first_non_hole(inode, &cur_offset, &len);
2785			if (unlikely(ret < 0))
2786				break;
2787			if (ret && !len) {
2788				ret = 0;
2789				break;
2790			}
2791		}
2792	}
2793
2794	/*
2795	 * If we were cloning, force the next fsync to be a full one since we
2796	 * we replaced (or just dropped in the case of cloning holes when
2797	 * NO_HOLES is enabled) file extent items and did not setup new extent
2798	 * maps for the replacement extents (or holes).
2799	 */
2800	if (extent_info && !extent_info->is_new_extent)
2801		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2802
2803	if (ret)
2804		goto out_trans;
2805
2806	trans->block_rsv = &fs_info->trans_block_rsv;
2807	/*
2808	 * If we are using the NO_HOLES feature we might have had already an
2809	 * hole that overlaps a part of the region [lockstart, lockend] and
2810	 * ends at (or beyond) lockend. Since we have no file extent items to
2811	 * represent holes, drop_end can be less than lockend and so we must
2812	 * make sure we have an extent map representing the existing hole (the
2813	 * call to __btrfs_drop_extents() might have dropped the existing extent
2814	 * map representing the existing hole), otherwise the fast fsync path
2815	 * will not record the existence of the hole region
2816	 * [existing_hole_start, lockend].
2817	 */
2818	if (drop_args.drop_end <= end)
2819		drop_args.drop_end = end + 1;
2820	/*
2821	 * Don't insert file hole extent item if it's for a range beyond eof
2822	 * (because it's useless) or if it represents a 0 bytes range (when
2823	 * cur_offset == drop_end).
2824	 */
2825	if (!extent_info && cur_offset < ino_size &&
2826	    cur_offset < drop_args.drop_end) {
2827		ret = fill_holes(trans, inode, path, cur_offset,
2828				 drop_args.drop_end);
2829		if (ret) {
2830			/* Same comment as above. */
2831			btrfs_abort_transaction(trans, ret);
2832			goto out_trans;
2833		}
2834	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2835		/* See the comment in the loop above for the reasoning here. */
2836		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2837					drop_args.drop_end - cur_offset);
2838		if (ret) {
2839			btrfs_abort_transaction(trans, ret);
2840			goto out_trans;
2841		}
2842
2843	}
2844	if (extent_info) {
2845		ret = btrfs_insert_replace_extent(trans, inode, path,
2846				extent_info, extent_info->data_len,
2847				drop_args.bytes_found);
2848		if (ret) {
2849			btrfs_abort_transaction(trans, ret);
2850			goto out_trans;
2851		}
2852	}
2853
2854out_trans:
2855	if (!trans)
2856		goto out_free;
2857
2858	trans->block_rsv = &fs_info->trans_block_rsv;
2859	if (ret)
2860		btrfs_end_transaction(trans);
2861	else
2862		*trans_out = trans;
2863out_free:
2864	btrfs_free_block_rsv(fs_info, rsv);
2865out:
2866	return ret;
2867}
2868
2869static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2870{
2871	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
2872	struct btrfs_root *root = BTRFS_I(inode)->root;
2873	struct extent_state *cached_state = NULL;
2874	struct btrfs_path *path;
2875	struct btrfs_trans_handle *trans = NULL;
2876	u64 lockstart;
2877	u64 lockend;
2878	u64 tail_start;
2879	u64 tail_len;
2880	u64 orig_start = offset;
2881	int ret = 0;
2882	bool same_block;
2883	u64 ino_size;
2884	bool truncated_block = false;
2885	bool updated_inode = false;
2886
2887	ret = btrfs_wait_ordered_range(inode, offset, len);
 
 
2888	if (ret)
2889		return ret;
2890
2891	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2892	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2893	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2894	if (ret < 0)
2895		goto out_only_mutex;
2896	if (ret && !len) {
2897		/* Already in a large hole */
2898		ret = 0;
2899		goto out_only_mutex;
2900	}
2901
2902	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2903	lockend = round_down(offset + len,
2904			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
 
 
 
2905	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2906		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2907	/*
2908	 * We needn't truncate any block which is beyond the end of the file
2909	 * because we are sure there is no data there.
2910	 */
2911	/*
2912	 * Only do this if we are in the same block and we aren't doing the
2913	 * entire block.
2914	 */
2915	if (same_block && len < fs_info->sectorsize) {
2916		if (offset < ino_size) {
2917			truncated_block = true;
2918			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2919						   0);
2920		} else {
2921			ret = 0;
2922		}
2923		goto out_only_mutex;
2924	}
2925
2926	/* zero back part of the first block */
2927	if (offset < ino_size) {
2928		truncated_block = true;
2929		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2930		if (ret) {
2931			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2932			return ret;
2933		}
2934	}
2935
2936	/* Check the aligned pages after the first unaligned page,
2937	 * if offset != orig_start, which means the first unaligned page
2938	 * including several following pages are already in holes,
2939	 * the extra check can be skipped */
2940	if (offset == orig_start) {
2941		/* after truncate page, check hole again */
2942		len = offset + len - lockstart;
2943		offset = lockstart;
2944		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2945		if (ret < 0)
2946			goto out_only_mutex;
2947		if (ret && !len) {
2948			ret = 0;
2949			goto out_only_mutex;
2950		}
2951		lockstart = offset;
2952	}
2953
2954	/* Check the tail unaligned part is in a hole */
2955	tail_start = lockend + 1;
2956	tail_len = offset + len - tail_start;
2957	if (tail_len) {
2958		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2959		if (unlikely(ret < 0))
2960			goto out_only_mutex;
2961		if (!ret) {
2962			/* zero the front end of the last page */
2963			if (tail_start + tail_len < ino_size) {
2964				truncated_block = true;
2965				ret = btrfs_truncate_block(BTRFS_I(inode),
2966							tail_start + tail_len,
2967							0, 1);
2968				if (ret)
2969					goto out_only_mutex;
2970			}
2971		}
2972	}
2973
2974	if (lockend < lockstart) {
2975		ret = 0;
2976		goto out_only_mutex;
2977	}
2978
2979	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2980					  &cached_state);
2981	if (ret)
2982		goto out_only_mutex;
2983
2984	path = btrfs_alloc_path();
2985	if (!path) {
2986		ret = -ENOMEM;
2987		goto out;
2988	}
2989
2990	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2991					 lockend, NULL, &trans);
2992	btrfs_free_path(path);
2993	if (ret)
2994		goto out;
2995
2996	ASSERT(trans != NULL);
2997	inode_inc_iversion(inode);
2998	inode->i_mtime = inode->i_ctime = current_time(inode);
2999	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3000	updated_inode = true;
3001	btrfs_end_transaction(trans);
3002	btrfs_btree_balance_dirty(fs_info);
3003out:
3004	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3005			     &cached_state);
3006out_only_mutex:
3007	if (!updated_inode && truncated_block && !ret) {
3008		/*
3009		 * If we only end up zeroing part of a page, we still need to
3010		 * update the inode item, so that all the time fields are
3011		 * updated as well as the necessary btrfs inode in memory fields
3012		 * for detecting, at fsync time, if the inode isn't yet in the
3013		 * log tree or it's there but not up to date.
3014		 */
3015		struct timespec64 now = current_time(inode);
3016
3017		inode_inc_iversion(inode);
3018		inode->i_mtime = now;
3019		inode->i_ctime = now;
3020		trans = btrfs_start_transaction(root, 1);
3021		if (IS_ERR(trans)) {
3022			ret = PTR_ERR(trans);
3023		} else {
3024			int ret2;
3025
3026			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3027			ret2 = btrfs_end_transaction(trans);
3028			if (!ret)
3029				ret = ret2;
3030		}
3031	}
3032	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3033	return ret;
3034}
3035
3036/* Helper structure to record which range is already reserved */
3037struct falloc_range {
3038	struct list_head list;
3039	u64 start;
3040	u64 len;
3041};
3042
3043/*
3044 * Helper function to add falloc range
3045 *
3046 * Caller should have locked the larger range of extent containing
3047 * [start, len)
3048 */
3049static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3050{
3051	struct falloc_range *range = NULL;
3052
3053	if (!list_empty(head)) {
3054		/*
3055		 * As fallocate iterates by bytenr order, we only need to check
3056		 * the last range.
3057		 */
3058		range = list_last_entry(head, struct falloc_range, list);
3059		if (range->start + range->len == start) {
3060			range->len += len;
3061			return 0;
3062		}
3063	}
3064
3065	range = kmalloc(sizeof(*range), GFP_KERNEL);
3066	if (!range)
3067		return -ENOMEM;
3068	range->start = start;
3069	range->len = len;
3070	list_add_tail(&range->list, head);
3071	return 0;
3072}
3073
3074static int btrfs_fallocate_update_isize(struct inode *inode,
3075					const u64 end,
3076					const int mode)
3077{
3078	struct btrfs_trans_handle *trans;
3079	struct btrfs_root *root = BTRFS_I(inode)->root;
3080	int ret;
3081	int ret2;
3082
3083	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3084		return 0;
3085
3086	trans = btrfs_start_transaction(root, 1);
3087	if (IS_ERR(trans))
3088		return PTR_ERR(trans);
3089
3090	inode->i_ctime = current_time(inode);
3091	i_size_write(inode, end);
3092	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3093	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3094	ret2 = btrfs_end_transaction(trans);
3095
3096	return ret ? ret : ret2;
3097}
3098
3099enum {
3100	RANGE_BOUNDARY_WRITTEN_EXTENT,
3101	RANGE_BOUNDARY_PREALLOC_EXTENT,
3102	RANGE_BOUNDARY_HOLE,
3103};
3104
3105static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3106						 u64 offset)
3107{
3108	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3109	struct extent_map *em;
3110	int ret;
3111
3112	offset = round_down(offset, sectorsize);
3113	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3114	if (IS_ERR(em))
3115		return PTR_ERR(em);
3116
3117	if (em->block_start == EXTENT_MAP_HOLE)
3118		ret = RANGE_BOUNDARY_HOLE;
3119	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3120		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3121	else
3122		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3123
3124	free_extent_map(em);
3125	return ret;
3126}
3127
3128static int btrfs_zero_range(struct inode *inode,
3129			    loff_t offset,
3130			    loff_t len,
3131			    const int mode)
3132{
3133	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134	struct extent_map *em;
3135	struct extent_changeset *data_reserved = NULL;
3136	int ret;
3137	u64 alloc_hint = 0;
3138	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3139	u64 alloc_start = round_down(offset, sectorsize);
3140	u64 alloc_end = round_up(offset + len, sectorsize);
3141	u64 bytes_to_reserve = 0;
3142	bool space_reserved = false;
3143
3144	inode_dio_wait(inode);
3145
3146	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3147			      alloc_end - alloc_start);
3148	if (IS_ERR(em)) {
3149		ret = PTR_ERR(em);
3150		goto out;
3151	}
3152
3153	/*
3154	 * Avoid hole punching and extent allocation for some cases. More cases
3155	 * could be considered, but these are unlikely common and we keep things
3156	 * as simple as possible for now. Also, intentionally, if the target
3157	 * range contains one or more prealloc extents together with regular
3158	 * extents and holes, we drop all the existing extents and allocate a
3159	 * new prealloc extent, so that we get a larger contiguous disk extent.
3160	 */
3161	if (em->start <= alloc_start &&
3162	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3163		const u64 em_end = em->start + em->len;
3164
3165		if (em_end >= offset + len) {
3166			/*
3167			 * The whole range is already a prealloc extent,
3168			 * do nothing except updating the inode's i_size if
3169			 * needed.
3170			 */
3171			free_extent_map(em);
3172			ret = btrfs_fallocate_update_isize(inode, offset + len,
3173							   mode);
3174			goto out;
3175		}
3176		/*
3177		 * Part of the range is already a prealloc extent, so operate
3178		 * only on the remaining part of the range.
3179		 */
3180		alloc_start = em_end;
3181		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3182		len = offset + len - alloc_start;
3183		offset = alloc_start;
3184		alloc_hint = em->block_start + em->len;
3185	}
3186	free_extent_map(em);
3187
3188	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3189	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3190		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3191				      sectorsize);
3192		if (IS_ERR(em)) {
3193			ret = PTR_ERR(em);
3194			goto out;
3195		}
3196
3197		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3198			free_extent_map(em);
3199			ret = btrfs_fallocate_update_isize(inode, offset + len,
3200							   mode);
3201			goto out;
3202		}
3203		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3204			free_extent_map(em);
3205			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3206						   0);
3207			if (!ret)
3208				ret = btrfs_fallocate_update_isize(inode,
3209								   offset + len,
3210								   mode);
3211			return ret;
3212		}
3213		free_extent_map(em);
3214		alloc_start = round_down(offset, sectorsize);
3215		alloc_end = alloc_start + sectorsize;
3216		goto reserve_space;
3217	}
3218
3219	alloc_start = round_up(offset, sectorsize);
3220	alloc_end = round_down(offset + len, sectorsize);
3221
3222	/*
3223	 * For unaligned ranges, check the pages at the boundaries, they might
3224	 * map to an extent, in which case we need to partially zero them, or
3225	 * they might map to a hole, in which case we need our allocation range
3226	 * to cover them.
3227	 */
3228	if (!IS_ALIGNED(offset, sectorsize)) {
3229		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3230							    offset);
3231		if (ret < 0)
3232			goto out;
3233		if (ret == RANGE_BOUNDARY_HOLE) {
3234			alloc_start = round_down(offset, sectorsize);
3235			ret = 0;
3236		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3237			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3238			if (ret)
3239				goto out;
3240		} else {
3241			ret = 0;
3242		}
3243	}
3244
3245	if (!IS_ALIGNED(offset + len, sectorsize)) {
3246		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3247							    offset + len);
3248		if (ret < 0)
3249			goto out;
3250		if (ret == RANGE_BOUNDARY_HOLE) {
3251			alloc_end = round_up(offset + len, sectorsize);
3252			ret = 0;
3253		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3254			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3255						   0, 1);
3256			if (ret)
3257				goto out;
3258		} else {
3259			ret = 0;
3260		}
3261	}
3262
3263reserve_space:
3264	if (alloc_start < alloc_end) {
3265		struct extent_state *cached_state = NULL;
3266		const u64 lockstart = alloc_start;
3267		const u64 lockend = alloc_end - 1;
3268
3269		bytes_to_reserve = alloc_end - alloc_start;
3270		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3271						      bytes_to_reserve);
3272		if (ret < 0)
3273			goto out;
3274		space_reserved = true;
3275		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3276						  &cached_state);
3277		if (ret)
3278			goto out;
3279		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3280						alloc_start, bytes_to_reserve);
3281		if (ret) {
3282			unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3283					     lockend, &cached_state);
3284			goto out;
3285		}
3286		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3287						alloc_end - alloc_start,
3288						i_blocksize(inode),
3289						offset + len, &alloc_hint);
3290		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3291				     lockend, &cached_state);
3292		/* btrfs_prealloc_file_range releases reserved space on error */
3293		if (ret) {
3294			space_reserved = false;
3295			goto out;
3296		}
3297	}
3298	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3299 out:
3300	if (ret && space_reserved)
3301		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3302					       alloc_start, bytes_to_reserve);
3303	extent_changeset_free(data_reserved);
3304
3305	return ret;
3306}
3307
3308static long btrfs_fallocate(struct file *file, int mode,
3309			    loff_t offset, loff_t len)
3310{
3311	struct inode *inode = file_inode(file);
3312	struct extent_state *cached_state = NULL;
3313	struct extent_changeset *data_reserved = NULL;
3314	struct falloc_range *range;
3315	struct falloc_range *tmp;
3316	struct list_head reserve_list;
3317	u64 cur_offset;
3318	u64 last_byte;
3319	u64 alloc_start;
3320	u64 alloc_end;
3321	u64 alloc_hint = 0;
3322	u64 locked_end;
3323	u64 actual_end = 0;
 
 
 
3324	struct extent_map *em;
3325	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3326	int ret;
3327
3328	/* Do not allow fallocate in ZONED mode */
3329	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3330		return -EOPNOTSUPP;
3331
3332	alloc_start = round_down(offset, blocksize);
3333	alloc_end = round_up(offset + len, blocksize);
3334	cur_offset = alloc_start;
3335
3336	/* Make sure we aren't being give some crap mode */
3337	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3338		     FALLOC_FL_ZERO_RANGE))
3339		return -EOPNOTSUPP;
3340
3341	if (mode & FALLOC_FL_PUNCH_HOLE)
3342		return btrfs_punch_hole(inode, offset, len);
3343
3344	/*
3345	 * Only trigger disk allocation, don't trigger qgroup reserve
3346	 *
3347	 * For qgroup space, it will be checked later.
3348	 */
3349	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3350		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3351						      alloc_end - alloc_start);
3352		if (ret < 0)
3353			return ret;
3354	}
3355
3356	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3357
3358	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3359		ret = inode_newsize_ok(inode, offset + len);
3360		if (ret)
3361			goto out;
3362	}
3363
 
 
 
 
3364	/*
3365	 * TODO: Move these two operations after we have checked
3366	 * accurate reserved space, or fallocate can still fail but
3367	 * with page truncated or size expanded.
3368	 *
3369	 * But that's a minor problem and won't do much harm BTW.
3370	 */
3371	if (alloc_start > inode->i_size) {
3372		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3373					alloc_start);
3374		if (ret)
3375			goto out;
3376	} else if (offset + len > inode->i_size) {
3377		/*
3378		 * If we are fallocating from the end of the file onward we
3379		 * need to zero out the end of the block if i_size lands in the
3380		 * middle of a block.
3381		 */
3382		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3383		if (ret)
3384			goto out;
3385	}
3386
3387	/*
3388	 * wait for ordered IO before we have any locks.  We'll loop again
3389	 * below with the locks held.
 
 
 
 
3390	 */
3391	ret = btrfs_wait_ordered_range(inode, alloc_start,
3392				       alloc_end - alloc_start);
3393	if (ret)
3394		goto out;
3395
3396	if (mode & FALLOC_FL_ZERO_RANGE) {
3397		ret = btrfs_zero_range(inode, offset, len, mode);
3398		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3399		return ret;
3400	}
3401
3402	locked_end = alloc_end - 1;
3403	while (1) {
3404		struct btrfs_ordered_extent *ordered;
3405
3406		/* the extent lock is ordered inside the running
3407		 * transaction
3408		 */
3409		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3410				 locked_end, &cached_state);
3411		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3412							    locked_end);
3413
3414		if (ordered &&
3415		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3416		    ordered->file_offset < alloc_end) {
3417			btrfs_put_ordered_extent(ordered);
3418			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3419					     alloc_start, locked_end,
3420					     &cached_state);
3421			/*
3422			 * we can't wait on the range with the transaction
3423			 * running or with the extent lock held
3424			 */
3425			ret = btrfs_wait_ordered_range(inode, alloc_start,
3426						       alloc_end - alloc_start);
3427			if (ret)
3428				goto out;
3429		} else {
3430			if (ordered)
3431				btrfs_put_ordered_extent(ordered);
3432			break;
3433		}
3434	}
3435
3436	/* First, check if we exceed the qgroup limit */
3437	INIT_LIST_HEAD(&reserve_list);
3438	while (cur_offset < alloc_end) {
3439		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3440				      alloc_end - cur_offset);
3441		if (IS_ERR(em)) {
3442			ret = PTR_ERR(em);
3443			break;
3444		}
3445		last_byte = min(extent_map_end(em), alloc_end);
3446		actual_end = min_t(u64, extent_map_end(em), offset + len);
3447		last_byte = ALIGN(last_byte, blocksize);
3448		if (em->block_start == EXTENT_MAP_HOLE ||
3449		    (cur_offset >= inode->i_size &&
3450		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3451			ret = add_falloc_range(&reserve_list, cur_offset,
3452					       last_byte - cur_offset);
 
3453			if (ret < 0) {
3454				free_extent_map(em);
3455				break;
3456			}
3457			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3458					&data_reserved, cur_offset,
3459					last_byte - cur_offset);
3460			if (ret < 0) {
3461				cur_offset = last_byte;
3462				free_extent_map(em);
3463				break;
3464			}
3465		} else {
3466			/*
3467			 * Do not need to reserve unwritten extent for this
3468			 * range, free reserved data space first, otherwise
3469			 * it'll result in false ENOSPC error.
3470			 */
3471			btrfs_free_reserved_data_space(BTRFS_I(inode),
3472				data_reserved, cur_offset,
3473				last_byte - cur_offset);
3474		}
3475		free_extent_map(em);
3476		cur_offset = last_byte;
3477	}
3478
 
 
 
 
 
 
 
 
 
 
 
3479	/*
3480	 * If ret is still 0, means we're OK to fallocate.
3481	 * Or just cleanup the list and exit.
3482	 */
3483	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3484		if (!ret)
3485			ret = btrfs_prealloc_file_range(inode, mode,
3486					range->start,
3487					range->len, i_blocksize(inode),
3488					offset + len, &alloc_hint);
3489		else
 
 
 
 
 
 
3490			btrfs_free_reserved_data_space(BTRFS_I(inode),
3491					data_reserved, range->start,
3492					range->len);
 
 
 
 
 
 
 
3493		list_del(&range->list);
3494		kfree(range);
3495	}
3496	if (ret < 0)
3497		goto out_unlock;
3498
3499	/*
3500	 * We didn't need to allocate any more space, but we still extended the
3501	 * size of the file so we need to update i_size and the inode item.
3502	 */
3503	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3504out_unlock:
3505	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3506			     &cached_state);
3507out:
3508	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3509	/* Let go of our reservation. */
3510	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3511		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3512				cur_offset, alloc_end - cur_offset);
3513	extent_changeset_free(data_reserved);
3514	return ret;
3515}
3516
3517static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3518				  int whence)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519{
 
 
3520	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3521	struct extent_map *em = NULL;
3522	struct extent_state *cached_state = NULL;
3523	loff_t i_size = inode->vfs_inode.i_size;
 
 
 
 
 
 
3524	u64 lockstart;
3525	u64 lockend;
3526	u64 start;
3527	u64 len;
3528	int ret = 0;
3529
3530	if (i_size == 0 || offset >= i_size)
3531		return -ENXIO;
3532
3533	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3534	 * offset can be negative, in this case we start finding DATA/HOLE from
3535	 * the very start of the file.
3536	 */
3537	start = max_t(loff_t, 0, offset);
3538
3539	lockstart = round_down(start, fs_info->sectorsize);
3540	lockend = round_up(i_size, fs_info->sectorsize);
3541	if (lockend <= lockstart)
3542		lockend = lockstart + fs_info->sectorsize;
3543	lockend--;
3544	len = lockend - lockstart + 1;
3545
3546	lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547
3548	while (start < i_size) {
3549		em = btrfs_get_extent_fiemap(inode, start, len);
3550		if (IS_ERR(em)) {
3551			ret = PTR_ERR(em);
3552			em = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
3553			break;
 
 
 
 
 
 
 
 
 
 
3554		}
3555
3556		if (whence == SEEK_HOLE &&
3557		    (em->block_start == EXTENT_MAP_HOLE ||
3558		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3559			break;
3560		else if (whence == SEEK_DATA &&
3561			   (em->block_start != EXTENT_MAP_HOLE &&
3562			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3563			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3564
3565		start = em->start + em->len;
3566		free_extent_map(em);
3567		em = NULL;
 
 
 
 
3568		cond_resched();
3569	}
3570	free_extent_map(em);
3571	unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3572			     &cached_state);
3573	if (ret) {
3574		offset = ret;
3575	} else {
3576		if (whence == SEEK_DATA && start >= i_size)
3577			offset = -ENXIO;
3578		else
3579			offset = min_t(loff_t, start, i_size);
3580	}
3581
3582	return offset;
 
 
 
 
 
 
 
 
 
 
3583}
3584
3585static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3586{
3587	struct inode *inode = file->f_mapping->host;
3588
3589	switch (whence) {
3590	default:
3591		return generic_file_llseek(file, offset, whence);
3592	case SEEK_DATA:
3593	case SEEK_HOLE:
3594		btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3595		offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3596		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3597		break;
3598	}
3599
3600	if (offset < 0)
3601		return offset;
3602
3603	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3604}
3605
3606static int btrfs_file_open(struct inode *inode, struct file *filp)
3607{
3608	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3609	return generic_file_open(inode, filp);
3610}
3611
3612static int check_direct_read(struct btrfs_fs_info *fs_info,
3613			     const struct iov_iter *iter, loff_t offset)
3614{
3615	int ret;
3616	int i, seg;
3617
3618	ret = check_direct_IO(fs_info, iter, offset);
3619	if (ret < 0)
3620		return ret;
3621
3622	if (!iter_is_iovec(iter))
3623		return 0;
3624
3625	for (seg = 0; seg < iter->nr_segs; seg++)
3626		for (i = seg + 1; i < iter->nr_segs; i++)
3627			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3628				return -EINVAL;
3629	return 0;
3630}
3631
3632static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3633{
3634	struct inode *inode = file_inode(iocb->ki_filp);
3635	ssize_t ret;
3636
3637	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3638		return 0;
3639
3640	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3641	ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3642	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3643	return ret;
3644}
3645
3646static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3647{
3648	ssize_t ret = 0;
3649
3650	if (iocb->ki_flags & IOCB_DIRECT) {
3651		ret = btrfs_direct_read(iocb, to);
3652		if (ret < 0 || !iov_iter_count(to) ||
3653		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3654			return ret;
3655	}
3656
3657	return filemap_read(iocb, to, ret);
3658}
3659
3660const struct file_operations btrfs_file_operations = {
3661	.llseek		= btrfs_file_llseek,
3662	.read_iter      = btrfs_file_read_iter,
3663	.splice_read	= generic_file_splice_read,
3664	.write_iter	= btrfs_file_write_iter,
3665	.splice_write	= iter_file_splice_write,
3666	.mmap		= btrfs_file_mmap,
3667	.open		= btrfs_file_open,
3668	.release	= btrfs_release_file,
 
3669	.fsync		= btrfs_sync_file,
3670	.fallocate	= btrfs_fallocate,
3671	.unlocked_ioctl	= btrfs_ioctl,
3672#ifdef CONFIG_COMPAT
3673	.compat_ioctl	= btrfs_compat_ioctl,
3674#endif
3675	.remap_file_range = btrfs_remap_file_range,
 
 
3676};
3677
3678void __cold btrfs_auto_defrag_exit(void)
3679{
3680	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3681}
3682
3683int __init btrfs_auto_defrag_init(void)
3684{
3685	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3686					sizeof(struct inode_defrag), 0,
3687					SLAB_MEM_SPREAD,
3688					NULL);
3689	if (!btrfs_inode_defrag_cachep)
3690		return -ENOMEM;
3691
3692	return 0;
3693}
3694
3695int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3696{
 
3697	int ret;
3698
3699	/*
3700	 * So with compression we will find and lock a dirty page and clear the
3701	 * first one as dirty, setup an async extent, and immediately return
3702	 * with the entire range locked but with nobody actually marked with
3703	 * writeback.  So we can't just filemap_write_and_wait_range() and
3704	 * expect it to work since it will just kick off a thread to do the
3705	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3706	 * since it will wait on the page lock, which won't be unlocked until
3707	 * after the pages have been marked as writeback and so we're good to go
3708	 * from there.  We have to do this otherwise we'll miss the ordered
3709	 * extents and that results in badness.  Please Josef, do not think you
3710	 * know better and pull this out at some point in the future, it is
3711	 * right and you are wrong.
3712	 */
3713	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3714	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3715			     &BTRFS_I(inode)->runtime_flags))
3716		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3717
3718	return ret;
3719}