Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 *
   8 *  X86-64 port
   9 *	Andi Kleen.
  10 *
  11 *	CPU hotplug support - ashok.raj@intel.com
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of process handling..
  16 */
  17
  18#include <linux/cpu.h>
  19#include <linux/errno.h>
  20#include <linux/sched.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/fs.h>
  24#include <linux/kernel.h>
  25#include <linux/mm.h>
  26#include <linux/elfcore.h>
  27#include <linux/smp.h>
  28#include <linux/slab.h>
  29#include <linux/user.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/export.h>
  33#include <linux/ptrace.h>
  34#include <linux/notifier.h>
  35#include <linux/kprobes.h>
  36#include <linux/kdebug.h>
  37#include <linux/prctl.h>
  38#include <linux/uaccess.h>
  39#include <linux/io.h>
  40#include <linux/ftrace.h>
  41#include <linux/syscalls.h>
  42#include <linux/iommu.h>
  43
  44#include <asm/processor.h>
  45#include <asm/pkru.h>
  46#include <asm/fpu/sched.h>
  47#include <asm/mmu_context.h>
  48#include <asm/prctl.h>
  49#include <asm/desc.h>
  50#include <asm/proto.h>
  51#include <asm/ia32.h>
  52#include <asm/debugreg.h>
  53#include <asm/switch_to.h>
  54#include <asm/xen/hypervisor.h>
  55#include <asm/vdso.h>
  56#include <asm/resctrl.h>
  57#include <asm/unistd.h>
  58#include <asm/fsgsbase.h>
  59#include <asm/fred.h>
  60#ifdef CONFIG_IA32_EMULATION
  61/* Not included via unistd.h */
  62#include <asm/unistd_32_ia32.h>
  63#endif
  64
  65#include "process.h"
  66
  67/* Prints also some state that isn't saved in the pt_regs */
  68void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
  69		 const char *log_lvl)
  70{
  71	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
  72	unsigned long d0, d1, d2, d3, d6, d7;
  73	unsigned int fsindex, gsindex;
  74	unsigned int ds, es;
  75
  76	show_iret_regs(regs, log_lvl);
  77
  78	if (regs->orig_ax != -1)
  79		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
  80	else
  81		pr_cont("\n");
  82
  83	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
  84	       log_lvl, regs->ax, regs->bx, regs->cx);
  85	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
  86	       log_lvl, regs->dx, regs->si, regs->di);
  87	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
  88	       log_lvl, regs->bp, regs->r8, regs->r9);
  89	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
  90	       log_lvl, regs->r10, regs->r11, regs->r12);
  91	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
  92	       log_lvl, regs->r13, regs->r14, regs->r15);
  93
  94	if (mode == SHOW_REGS_SHORT)
  95		return;
  96
  97	if (mode == SHOW_REGS_USER) {
  98		rdmsrl(MSR_FS_BASE, fs);
  99		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 100		printk("%sFS:  %016lx GS:  %016lx\n",
 101		       log_lvl, fs, shadowgs);
 102		return;
 103	}
 104
 105	asm("movl %%ds,%0" : "=r" (ds));
 106	asm("movl %%es,%0" : "=r" (es));
 107	asm("movl %%fs,%0" : "=r" (fsindex));
 108	asm("movl %%gs,%0" : "=r" (gsindex));
 109
 110	rdmsrl(MSR_FS_BASE, fs);
 111	rdmsrl(MSR_GS_BASE, gs);
 112	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 113
 114	cr0 = read_cr0();
 115	cr2 = read_cr2();
 116	cr3 = __read_cr3();
 117	cr4 = __read_cr4();
 118
 119	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
 120	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
 121	printk("%sCS:  %04x DS: %04x ES: %04x CR0: %016lx\n",
 122		log_lvl, regs->cs, ds, es, cr0);
 123	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
 124		log_lvl, cr2, cr3, cr4);
 125
 126	get_debugreg(d0, 0);
 127	get_debugreg(d1, 1);
 128	get_debugreg(d2, 2);
 129	get_debugreg(d3, 3);
 130	get_debugreg(d6, 6);
 131	get_debugreg(d7, 7);
 132
 133	/* Only print out debug registers if they are in their non-default state. */
 134	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 135	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
 136		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
 137		       log_lvl, d0, d1, d2);
 138		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
 139		       log_lvl, d3, d6, d7);
 140	}
 141
 142	if (cr4 & X86_CR4_PKE)
 143		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
 144}
 145
 146void release_thread(struct task_struct *dead_task)
 147{
 148	WARN_ON(dead_task->mm);
 149}
 150
 151enum which_selector {
 152	FS,
 153	GS
 154};
 155
 156/*
 157 * Out of line to be protected from kprobes and tracing. If this would be
 158 * traced or probed than any access to a per CPU variable happens with
 159 * the wrong GS.
 160 *
 161 * It is not used on Xen paravirt. When paravirt support is needed, it
 162 * needs to be renamed with native_ prefix.
 163 */
 164static noinstr unsigned long __rdgsbase_inactive(void)
 165{
 166	unsigned long gsbase;
 167
 168	lockdep_assert_irqs_disabled();
 169
 170	/*
 171	 * SWAPGS is no longer needed thus NOT allowed with FRED because
 172	 * FRED transitions ensure that an operating system can _always_
 173	 * operate with its own GS base address:
 174	 * - For events that occur in ring 3, FRED event delivery swaps
 175	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
 176	 * - ERETU (the FRED transition that returns to ring 3) also swaps
 177	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
 178	 *
 179	 * And the operating system can still setup the GS segment for a
 180	 * user thread without the need of loading a user thread GS with:
 181	 * - Using LKGS, available with FRED, to modify other attributes
 182	 *   of the GS segment without compromising its ability always to
 183	 *   operate with its own GS base address.
 184	 * - Accessing the GS segment base address for a user thread as
 185	 *   before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
 186	 *
 187	 * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
 188	 * MSR instead of the GS segment’s descriptor cache. As such, the
 189	 * operating system never changes its runtime GS base address.
 190	 */
 191	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
 192	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
 193		native_swapgs();
 194		gsbase = rdgsbase();
 195		native_swapgs();
 196	} else {
 197		instrumentation_begin();
 198		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 199		instrumentation_end();
 200	}
 201
 202	return gsbase;
 203}
 204
 205/*
 206 * Out of line to be protected from kprobes and tracing. If this would be
 207 * traced or probed than any access to a per CPU variable happens with
 208 * the wrong GS.
 209 *
 210 * It is not used on Xen paravirt. When paravirt support is needed, it
 211 * needs to be renamed with native_ prefix.
 212 */
 213static noinstr void __wrgsbase_inactive(unsigned long gsbase)
 214{
 215	lockdep_assert_irqs_disabled();
 216
 217	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
 218	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
 219		native_swapgs();
 220		wrgsbase(gsbase);
 221		native_swapgs();
 222	} else {
 223		instrumentation_begin();
 224		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 225		instrumentation_end();
 226	}
 227}
 228
 229/*
 230 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
 231 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
 232 * It's forcibly inlined because it'll generate better code and this function
 233 * is hot.
 234 */
 235static __always_inline void save_base_legacy(struct task_struct *prev_p,
 236					     unsigned short selector,
 237					     enum which_selector which)
 238{
 239	if (likely(selector == 0)) {
 240		/*
 241		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
 242		 * be the pre-existing saved base or it could be zero.  On AMD
 243		 * (with X86_BUG_NULL_SEG), the segment base could be almost
 244		 * anything.
 245		 *
 246		 * This branch is very hot (it's hit twice on almost every
 247		 * context switch between 64-bit programs), and avoiding
 248		 * the RDMSR helps a lot, so we just assume that whatever
 249		 * value is already saved is correct.  This matches historical
 250		 * Linux behavior, so it won't break existing applications.
 251		 *
 252		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
 253		 * report that the base is zero, it needs to actually be zero:
 254		 * see the corresponding logic in load_seg_legacy.
 255		 */
 256	} else {
 257		/*
 258		 * If the selector is 1, 2, or 3, then the base is zero on
 259		 * !X86_BUG_NULL_SEG CPUs and could be anything on
 260		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
 261		 * has never attempted to preserve the base across context
 262		 * switches.
 263		 *
 264		 * If selector > 3, then it refers to a real segment, and
 265		 * saving the base isn't necessary.
 266		 */
 267		if (which == FS)
 268			prev_p->thread.fsbase = 0;
 269		else
 270			prev_p->thread.gsbase = 0;
 271	}
 272}
 273
 274static __always_inline void save_fsgs(struct task_struct *task)
 275{
 276	savesegment(fs, task->thread.fsindex);
 277	savesegment(gs, task->thread.gsindex);
 278	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 279		/*
 280		 * If FSGSBASE is enabled, we can't make any useful guesses
 281		 * about the base, and user code expects us to save the current
 282		 * value.  Fortunately, reading the base directly is efficient.
 283		 */
 284		task->thread.fsbase = rdfsbase();
 285		task->thread.gsbase = __rdgsbase_inactive();
 286	} else {
 287		save_base_legacy(task, task->thread.fsindex, FS);
 288		save_base_legacy(task, task->thread.gsindex, GS);
 289	}
 290}
 291
 292/*
 293 * While a process is running,current->thread.fsbase and current->thread.gsbase
 294 * may not match the corresponding CPU registers (see save_base_legacy()).
 295 */
 296void current_save_fsgs(void)
 297{
 298	unsigned long flags;
 299
 300	/* Interrupts need to be off for FSGSBASE */
 301	local_irq_save(flags);
 302	save_fsgs(current);
 303	local_irq_restore(flags);
 304}
 305#if IS_ENABLED(CONFIG_KVM)
 306EXPORT_SYMBOL_GPL(current_save_fsgs);
 307#endif
 308
 309static __always_inline void loadseg(enum which_selector which,
 310				    unsigned short sel)
 311{
 312	if (which == FS)
 313		loadsegment(fs, sel);
 314	else
 315		load_gs_index(sel);
 316}
 317
 318static __always_inline void load_seg_legacy(unsigned short prev_index,
 319					    unsigned long prev_base,
 320					    unsigned short next_index,
 321					    unsigned long next_base,
 322					    enum which_selector which)
 323{
 324	if (likely(next_index <= 3)) {
 325		/*
 326		 * The next task is using 64-bit TLS, is not using this
 327		 * segment at all, or is having fun with arcane CPU features.
 328		 */
 329		if (next_base == 0) {
 330			/*
 331			 * Nasty case: on AMD CPUs, we need to forcibly zero
 332			 * the base.
 333			 */
 334			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
 335				loadseg(which, __USER_DS);
 336				loadseg(which, next_index);
 337			} else {
 338				/*
 339				 * We could try to exhaustively detect cases
 340				 * under which we can skip the segment load,
 341				 * but there's really only one case that matters
 342				 * for performance: if both the previous and
 343				 * next states are fully zeroed, we can skip
 344				 * the load.
 345				 *
 346				 * (This assumes that prev_base == 0 has no
 347				 * false positives.  This is the case on
 348				 * Intel-style CPUs.)
 349				 */
 350				if (likely(prev_index | next_index | prev_base))
 351					loadseg(which, next_index);
 352			}
 353		} else {
 354			if (prev_index != next_index)
 355				loadseg(which, next_index);
 356			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
 357			       next_base);
 358		}
 359	} else {
 360		/*
 361		 * The next task is using a real segment.  Loading the selector
 362		 * is sufficient.
 363		 */
 364		loadseg(which, next_index);
 365	}
 366}
 367
 368/*
 369 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
 370 * is not XSTATE managed on context switch because that would require a
 371 * lookup in the task's FPU xsave buffer and require to keep that updated
 372 * in various places.
 373 */
 374static __always_inline void x86_pkru_load(struct thread_struct *prev,
 375					  struct thread_struct *next)
 376{
 377	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 378		return;
 379
 380	/* Stash the prev task's value: */
 381	prev->pkru = rdpkru();
 382
 383	/*
 384	 * PKRU writes are slightly expensive.  Avoid them when not
 385	 * strictly necessary:
 386	 */
 387	if (prev->pkru != next->pkru)
 388		wrpkru(next->pkru);
 389}
 390
 391static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
 392					      struct thread_struct *next)
 393{
 394	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 395		/* Update the FS and GS selectors if they could have changed. */
 396		if (unlikely(prev->fsindex || next->fsindex))
 397			loadseg(FS, next->fsindex);
 398		if (unlikely(prev->gsindex || next->gsindex))
 399			loadseg(GS, next->gsindex);
 400
 401		/* Update the bases. */
 402		wrfsbase(next->fsbase);
 403		__wrgsbase_inactive(next->gsbase);
 404	} else {
 405		load_seg_legacy(prev->fsindex, prev->fsbase,
 406				next->fsindex, next->fsbase, FS);
 407		load_seg_legacy(prev->gsindex, prev->gsbase,
 408				next->gsindex, next->gsbase, GS);
 409	}
 410}
 411
 412unsigned long x86_fsgsbase_read_task(struct task_struct *task,
 413				     unsigned short selector)
 414{
 415	unsigned short idx = selector >> 3;
 416	unsigned long base;
 417
 418	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
 419		if (unlikely(idx >= GDT_ENTRIES))
 420			return 0;
 421
 422		/*
 423		 * There are no user segments in the GDT with nonzero bases
 424		 * other than the TLS segments.
 425		 */
 426		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
 427			return 0;
 428
 429		idx -= GDT_ENTRY_TLS_MIN;
 430		base = get_desc_base(&task->thread.tls_array[idx]);
 431	} else {
 432#ifdef CONFIG_MODIFY_LDT_SYSCALL
 433		struct ldt_struct *ldt;
 434
 435		/*
 436		 * If performance here mattered, we could protect the LDT
 437		 * with RCU.  This is a slow path, though, so we can just
 438		 * take the mutex.
 439		 */
 440		mutex_lock(&task->mm->context.lock);
 441		ldt = task->mm->context.ldt;
 442		if (unlikely(!ldt || idx >= ldt->nr_entries))
 443			base = 0;
 444		else
 445			base = get_desc_base(ldt->entries + idx);
 446		mutex_unlock(&task->mm->context.lock);
 447#else
 448		base = 0;
 449#endif
 450	}
 451
 452	return base;
 453}
 454
 455unsigned long x86_gsbase_read_cpu_inactive(void)
 456{
 457	unsigned long gsbase;
 458
 459	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 460		unsigned long flags;
 461
 462		local_irq_save(flags);
 463		gsbase = __rdgsbase_inactive();
 464		local_irq_restore(flags);
 465	} else {
 466		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 467	}
 468
 469	return gsbase;
 470}
 471
 472void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
 473{
 474	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 475		unsigned long flags;
 476
 477		local_irq_save(flags);
 478		__wrgsbase_inactive(gsbase);
 479		local_irq_restore(flags);
 480	} else {
 481		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 482	}
 483}
 484
 485unsigned long x86_fsbase_read_task(struct task_struct *task)
 486{
 487	unsigned long fsbase;
 488
 489	if (task == current)
 490		fsbase = x86_fsbase_read_cpu();
 491	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 492		 (task->thread.fsindex == 0))
 493		fsbase = task->thread.fsbase;
 494	else
 495		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
 496
 497	return fsbase;
 498}
 499
 500unsigned long x86_gsbase_read_task(struct task_struct *task)
 501{
 502	unsigned long gsbase;
 503
 504	if (task == current)
 505		gsbase = x86_gsbase_read_cpu_inactive();
 506	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 507		 (task->thread.gsindex == 0))
 508		gsbase = task->thread.gsbase;
 509	else
 510		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
 511
 512	return gsbase;
 513}
 514
 515void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
 516{
 517	WARN_ON_ONCE(task == current);
 518
 519	task->thread.fsbase = fsbase;
 520}
 521
 522void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
 523{
 524	WARN_ON_ONCE(task == current);
 525
 526	task->thread.gsbase = gsbase;
 527}
 528
 529static void
 530start_thread_common(struct pt_regs *regs, unsigned long new_ip,
 531		    unsigned long new_sp,
 532		    u16 _cs, u16 _ss, u16 _ds)
 533{
 534	WARN_ON_ONCE(regs != current_pt_regs());
 535
 536	if (static_cpu_has(X86_BUG_NULL_SEG)) {
 537		/* Loading zero below won't clear the base. */
 538		loadsegment(fs, __USER_DS);
 539		load_gs_index(__USER_DS);
 540	}
 541
 542	reset_thread_features();
 543
 544	loadsegment(fs, 0);
 545	loadsegment(es, _ds);
 546	loadsegment(ds, _ds);
 547	load_gs_index(0);
 548
 549	regs->ip	= new_ip;
 550	regs->sp	= new_sp;
 551	regs->csx	= _cs;
 552	regs->ssx	= _ss;
 553	/*
 554	 * Allow single-step trap and NMI when starting a new task, thus
 555	 * once the new task enters user space, single-step trap and NMI
 556	 * are both enabled immediately.
 557	 *
 558	 * Entering a new task is logically speaking a return from a
 559	 * system call (exec, fork, clone, etc.). As such, if ptrace
 560	 * enables single stepping a single step exception should be
 561	 * allowed to trigger immediately upon entering user space.
 562	 * This is not optional.
 563	 *
 564	 * NMI should *never* be disabled in user space. As such, this
 565	 * is an optional, opportunistic way to catch errors.
 566	 *
 567	 * Paranoia: High-order 48 bits above the lowest 16 bit SS are
 568	 * discarded by the legacy IRET instruction on all Intel, AMD,
 569	 * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
 570	 * even when FRED is not enabled. But we choose the safer side
 571	 * to use these bits only when FRED is enabled.
 572	 */
 573	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
 574		regs->fred_ss.swevent	= true;
 575		regs->fred_ss.nmi	= true;
 576	}
 577
 578	regs->flags	= X86_EFLAGS_IF | X86_EFLAGS_FIXED;
 579}
 580
 581void
 582start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 583{
 584	start_thread_common(regs, new_ip, new_sp,
 585			    __USER_CS, __USER_DS, 0);
 586}
 587EXPORT_SYMBOL_GPL(start_thread);
 588
 589#ifdef CONFIG_COMPAT
 590void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
 591{
 592	start_thread_common(regs, new_ip, new_sp,
 593			    x32 ? __USER_CS : __USER32_CS,
 594			    __USER_DS, __USER_DS);
 595}
 596#endif
 597
 598/*
 599 *	switch_to(x,y) should switch tasks from x to y.
 600 *
 601 * This could still be optimized:
 602 * - fold all the options into a flag word and test it with a single test.
 603 * - could test fs/gs bitsliced
 604 *
 605 * Kprobes not supported here. Set the probe on schedule instead.
 606 * Function graph tracer not supported too.
 607 */
 608__no_kmsan_checks
 609__visible __notrace_funcgraph struct task_struct *
 610__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 611{
 612	struct thread_struct *prev = &prev_p->thread;
 613	struct thread_struct *next = &next_p->thread;
 
 614	int cpu = smp_processor_id();
 615
 616	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
 617		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
 618
 619	if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
 620		switch_fpu_prepare(prev_p, cpu);
 621
 622	/* We must save %fs and %gs before load_TLS() because
 623	 * %fs and %gs may be cleared by load_TLS().
 624	 *
 625	 * (e.g. xen_load_tls())
 626	 */
 627	save_fsgs(prev_p);
 628
 629	/*
 630	 * Load TLS before restoring any segments so that segment loads
 631	 * reference the correct GDT entries.
 632	 */
 633	load_TLS(next, cpu);
 634
 635	/*
 636	 * Leave lazy mode, flushing any hypercalls made here.  This
 637	 * must be done after loading TLS entries in the GDT but before
 638	 * loading segments that might reference them.
 639	 */
 640	arch_end_context_switch(next_p);
 641
 642	/* Switch DS and ES.
 643	 *
 644	 * Reading them only returns the selectors, but writing them (if
 645	 * nonzero) loads the full descriptor from the GDT or LDT.  The
 646	 * LDT for next is loaded in switch_mm, and the GDT is loaded
 647	 * above.
 648	 *
 649	 * We therefore need to write new values to the segment
 650	 * registers on every context switch unless both the new and old
 651	 * values are zero.
 652	 *
 653	 * Note that we don't need to do anything for CS and SS, as
 654	 * those are saved and restored as part of pt_regs.
 655	 */
 656	savesegment(es, prev->es);
 657	if (unlikely(next->es | prev->es))
 658		loadsegment(es, next->es);
 659
 660	savesegment(ds, prev->ds);
 661	if (unlikely(next->ds | prev->ds))
 662		loadsegment(ds, next->ds);
 663
 664	x86_fsgsbase_load(prev, next);
 665
 666	x86_pkru_load(prev, next);
 667
 668	/*
 669	 * Switch the PDA and FPU contexts.
 670	 */
 671	raw_cpu_write(pcpu_hot.current_task, next_p);
 672	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
 673
 674	switch_fpu_finish(next_p);
 675
 676	/* Reload sp0. */
 677	update_task_stack(next_p);
 678
 679	switch_to_extra(prev_p, next_p);
 680
 681	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
 682		/*
 683		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
 684		 * does not update the cached descriptor.  As a result, if we
 685		 * do SYSRET while SS is NULL, we'll end up in user mode with
 686		 * SS apparently equal to __USER_DS but actually unusable.
 687		 *
 688		 * The straightforward workaround would be to fix it up just
 689		 * before SYSRET, but that would slow down the system call
 690		 * fast paths.  Instead, we ensure that SS is never NULL in
 691		 * system call context.  We do this by replacing NULL SS
 692		 * selectors at every context switch.  SYSCALL sets up a valid
 693		 * SS, so the only way to get NULL is to re-enter the kernel
 694		 * from CPL 3 through an interrupt.  Since that can't happen
 695		 * in the same task as a running syscall, we are guaranteed to
 696		 * context switch between every interrupt vector entry and a
 697		 * subsequent SYSRET.
 698		 *
 699		 * We read SS first because SS reads are much faster than
 700		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
 701		 * it previously had a different non-NULL value.
 702		 */
 703		unsigned short ss_sel;
 704		savesegment(ss, ss_sel);
 705		if (ss_sel != __KERNEL_DS)
 706			loadsegment(ss, __KERNEL_DS);
 707	}
 708
 709	/* Load the Intel cache allocation PQR MSR. */
 710	resctrl_sched_in(next_p);
 711
 712	return prev_p;
 713}
 714
 715void set_personality_64bit(void)
 716{
 717	/* inherit personality from parent */
 718
 719	/* Make sure to be in 64bit mode */
 720	clear_thread_flag(TIF_ADDR32);
 721	/* Pretend that this comes from a 64bit execve */
 722	task_pt_regs(current)->orig_ax = __NR_execve;
 723	current_thread_info()->status &= ~TS_COMPAT;
 724	if (current->mm)
 725		__set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
 726
 727	/* TBD: overwrites user setup. Should have two bits.
 728	   But 64bit processes have always behaved this way,
 729	   so it's not too bad. The main problem is just that
 730	   32bit children are affected again. */
 731	current->personality &= ~READ_IMPLIES_EXEC;
 732}
 733
 734static void __set_personality_x32(void)
 735{
 736#ifdef CONFIG_X86_X32_ABI
 737	if (current->mm)
 738		current->mm->context.flags = 0;
 739
 740	current->personality &= ~READ_IMPLIES_EXEC;
 741	/*
 742	 * in_32bit_syscall() uses the presence of the x32 syscall bit
 743	 * flag to determine compat status.  The x86 mmap() code relies on
 744	 * the syscall bitness so set x32 syscall bit right here to make
 745	 * in_32bit_syscall() work during exec().
 746	 *
 747	 * Pretend to come from a x32 execve.
 748	 */
 749	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
 750	current_thread_info()->status &= ~TS_COMPAT;
 751#endif
 752}
 753
 754static void __set_personality_ia32(void)
 755{
 756#ifdef CONFIG_IA32_EMULATION
 757	if (current->mm) {
 758		/*
 759		 * uprobes applied to this MM need to know this and
 760		 * cannot use user_64bit_mode() at that time.
 761		 */
 762		__set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
 763	}
 764
 765	current->personality |= force_personality32;
 766	/* Prepare the first "return" to user space */
 767	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
 768	current_thread_info()->status |= TS_COMPAT;
 769#endif
 770}
 771
 772void set_personality_ia32(bool x32)
 773{
 774	/* Make sure to be in 32bit mode */
 775	set_thread_flag(TIF_ADDR32);
 776
 777	if (x32)
 778		__set_personality_x32();
 779	else
 780		__set_personality_ia32();
 781}
 782EXPORT_SYMBOL_GPL(set_personality_ia32);
 783
 784#ifdef CONFIG_CHECKPOINT_RESTORE
 785static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
 786{
 787	int ret;
 788
 789	ret = map_vdso_once(image, addr);
 790	if (ret)
 791		return ret;
 792
 793	return (long)image->size;
 794}
 795#endif
 796
 797#ifdef CONFIG_ADDRESS_MASKING
 798
 799#define LAM_U57_BITS 6
 800
 801static void enable_lam_func(void *__mm)
 802{
 803	struct mm_struct *mm = __mm;
 804	unsigned long lam;
 805
 806	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
 807		lam = mm_lam_cr3_mask(mm);
 808		write_cr3(__read_cr3() | lam);
 809		cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
 810	}
 811}
 812
 813static void mm_enable_lam(struct mm_struct *mm)
 814{
 815	mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
 816	mm->context.untag_mask =  ~GENMASK(62, 57);
 817
 818	/*
 819	 * Even though the process must still be single-threaded at this
 820	 * point, kernel threads may be using the mm.  IPI those kernel
 821	 * threads if they exist.
 822	 */
 823	on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
 824	set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
 825}
 826
 827static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
 828{
 829	if (!cpu_feature_enabled(X86_FEATURE_LAM))
 830		return -ENODEV;
 831
 832	/* PTRACE_ARCH_PRCTL */
 833	if (current->mm != mm)
 834		return -EINVAL;
 835
 836	if (mm_valid_pasid(mm) &&
 837	    !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
 838		return -EINVAL;
 839
 840	if (mmap_write_lock_killable(mm))
 841		return -EINTR;
 842
 843	/*
 844	 * MM_CONTEXT_LOCK_LAM is set on clone.  Prevent LAM from
 845	 * being enabled unless the process is single threaded:
 846	 */
 847	if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
 848		mmap_write_unlock(mm);
 849		return -EBUSY;
 850	}
 851
 852	if (!nr_bits || nr_bits > LAM_U57_BITS) {
 
 
 
 
 
 
 853		mmap_write_unlock(mm);
 854		return -EINVAL;
 855	}
 856
 857	mm_enable_lam(mm);
 
 
 858
 859	mmap_write_unlock(mm);
 860
 861	return 0;
 862}
 863#endif
 864
 865long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
 866{
 867	int ret = 0;
 868
 869	switch (option) {
 870	case ARCH_SET_GS: {
 871		if (unlikely(arg2 >= TASK_SIZE_MAX))
 872			return -EPERM;
 873
 874		preempt_disable();
 875		/*
 876		 * ARCH_SET_GS has always overwritten the index
 877		 * and the base. Zero is the most sensible value
 878		 * to put in the index, and is the only value that
 879		 * makes any sense if FSGSBASE is unavailable.
 880		 */
 881		if (task == current) {
 882			loadseg(GS, 0);
 883			x86_gsbase_write_cpu_inactive(arg2);
 884
 885			/*
 886			 * On non-FSGSBASE systems, save_base_legacy() expects
 887			 * that we also fill in thread.gsbase.
 888			 */
 889			task->thread.gsbase = arg2;
 890
 891		} else {
 892			task->thread.gsindex = 0;
 893			x86_gsbase_write_task(task, arg2);
 894		}
 895		preempt_enable();
 896		break;
 897	}
 898	case ARCH_SET_FS: {
 899		/*
 900		 * Not strictly needed for %fs, but do it for symmetry
 901		 * with %gs
 902		 */
 903		if (unlikely(arg2 >= TASK_SIZE_MAX))
 904			return -EPERM;
 905
 906		preempt_disable();
 907		/*
 908		 * Set the selector to 0 for the same reason
 909		 * as %gs above.
 910		 */
 911		if (task == current) {
 912			loadseg(FS, 0);
 913			x86_fsbase_write_cpu(arg2);
 914
 915			/*
 916			 * On non-FSGSBASE systems, save_base_legacy() expects
 917			 * that we also fill in thread.fsbase.
 918			 */
 919			task->thread.fsbase = arg2;
 920		} else {
 921			task->thread.fsindex = 0;
 922			x86_fsbase_write_task(task, arg2);
 923		}
 924		preempt_enable();
 925		break;
 926	}
 927	case ARCH_GET_FS: {
 928		unsigned long base = x86_fsbase_read_task(task);
 929
 930		ret = put_user(base, (unsigned long __user *)arg2);
 931		break;
 932	}
 933	case ARCH_GET_GS: {
 934		unsigned long base = x86_gsbase_read_task(task);
 935
 936		ret = put_user(base, (unsigned long __user *)arg2);
 937		break;
 938	}
 939
 940#ifdef CONFIG_CHECKPOINT_RESTORE
 941# ifdef CONFIG_X86_X32_ABI
 942	case ARCH_MAP_VDSO_X32:
 943		return prctl_map_vdso(&vdso_image_x32, arg2);
 944# endif
 945# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
 946	case ARCH_MAP_VDSO_32:
 947		return prctl_map_vdso(&vdso_image_32, arg2);
 948# endif
 949	case ARCH_MAP_VDSO_64:
 950		return prctl_map_vdso(&vdso_image_64, arg2);
 951#endif
 952#ifdef CONFIG_ADDRESS_MASKING
 953	case ARCH_GET_UNTAG_MASK:
 954		return put_user(task->mm->context.untag_mask,
 955				(unsigned long __user *)arg2);
 956	case ARCH_ENABLE_TAGGED_ADDR:
 957		return prctl_enable_tagged_addr(task->mm, arg2);
 958	case ARCH_FORCE_TAGGED_SVA:
 959		if (current != task)
 960			return -EINVAL;
 961		set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
 962		return 0;
 963	case ARCH_GET_MAX_TAG_BITS:
 964		if (!cpu_feature_enabled(X86_FEATURE_LAM))
 965			return put_user(0, (unsigned long __user *)arg2);
 966		else
 967			return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
 968#endif
 969	case ARCH_SHSTK_ENABLE:
 970	case ARCH_SHSTK_DISABLE:
 971	case ARCH_SHSTK_LOCK:
 972	case ARCH_SHSTK_UNLOCK:
 973	case ARCH_SHSTK_STATUS:
 974		return shstk_prctl(task, option, arg2);
 975	default:
 976		ret = -EINVAL;
 977		break;
 978	}
 979
 980	return ret;
 981}
 982
 983SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 984{
 985	long ret;
 986
 987	ret = do_arch_prctl_64(current, option, arg2);
 988	if (ret == -EINVAL)
 989		ret = do_arch_prctl_common(option, arg2);
 990
 991	return ret;
 992}
 993
 994#ifdef CONFIG_IA32_EMULATION
 995COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 996{
 997	return do_arch_prctl_common(option, arg2);
 998}
 999#endif
1000
1001unsigned long KSTK_ESP(struct task_struct *task)
1002{
1003	return task_pt_regs(task)->sp;
1004}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42#include <linux/iommu.h>
 43
 44#include <asm/processor.h>
 45#include <asm/pkru.h>
 46#include <asm/fpu/sched.h>
 47#include <asm/mmu_context.h>
 48#include <asm/prctl.h>
 49#include <asm/desc.h>
 50#include <asm/proto.h>
 51#include <asm/ia32.h>
 52#include <asm/debugreg.h>
 53#include <asm/switch_to.h>
 54#include <asm/xen/hypervisor.h>
 55#include <asm/vdso.h>
 56#include <asm/resctrl.h>
 57#include <asm/unistd.h>
 58#include <asm/fsgsbase.h>
 
 59#ifdef CONFIG_IA32_EMULATION
 60/* Not included via unistd.h */
 61#include <asm/unistd_32_ia32.h>
 62#endif
 63
 64#include "process.h"
 65
 66/* Prints also some state that isn't saved in the pt_regs */
 67void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 68		 const char *log_lvl)
 69{
 70	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 71	unsigned long d0, d1, d2, d3, d6, d7;
 72	unsigned int fsindex, gsindex;
 73	unsigned int ds, es;
 74
 75	show_iret_regs(regs, log_lvl);
 76
 77	if (regs->orig_ax != -1)
 78		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 79	else
 80		pr_cont("\n");
 81
 82	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 83	       log_lvl, regs->ax, regs->bx, regs->cx);
 84	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 85	       log_lvl, regs->dx, regs->si, regs->di);
 86	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 87	       log_lvl, regs->bp, regs->r8, regs->r9);
 88	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 89	       log_lvl, regs->r10, regs->r11, regs->r12);
 90	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 91	       log_lvl, regs->r13, regs->r14, regs->r15);
 92
 93	if (mode == SHOW_REGS_SHORT)
 94		return;
 95
 96	if (mode == SHOW_REGS_USER) {
 97		rdmsrl(MSR_FS_BASE, fs);
 98		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 99		printk("%sFS:  %016lx GS:  %016lx\n",
100		       log_lvl, fs, shadowgs);
101		return;
102	}
103
104	asm("movl %%ds,%0" : "=r" (ds));
105	asm("movl %%es,%0" : "=r" (es));
106	asm("movl %%fs,%0" : "=r" (fsindex));
107	asm("movl %%gs,%0" : "=r" (gsindex));
108
109	rdmsrl(MSR_FS_BASE, fs);
110	rdmsrl(MSR_GS_BASE, gs);
111	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
112
113	cr0 = read_cr0();
114	cr2 = read_cr2();
115	cr3 = __read_cr3();
116	cr4 = __read_cr4();
117
118	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
119	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
120	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
121		log_lvl, regs->cs, ds, es, cr0);
122	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
123		log_lvl, cr2, cr3, cr4);
124
125	get_debugreg(d0, 0);
126	get_debugreg(d1, 1);
127	get_debugreg(d2, 2);
128	get_debugreg(d3, 3);
129	get_debugreg(d6, 6);
130	get_debugreg(d7, 7);
131
132	/* Only print out debug registers if they are in their non-default state. */
133	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
134	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
135		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
136		       log_lvl, d0, d1, d2);
137		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
138		       log_lvl, d3, d6, d7);
139	}
140
141	if (cpu_feature_enabled(X86_FEATURE_OSPKE))
142		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
143}
144
145void release_thread(struct task_struct *dead_task)
146{
147	WARN_ON(dead_task->mm);
148}
149
150enum which_selector {
151	FS,
152	GS
153};
154
155/*
156 * Out of line to be protected from kprobes and tracing. If this would be
157 * traced or probed than any access to a per CPU variable happens with
158 * the wrong GS.
159 *
160 * It is not used on Xen paravirt. When paravirt support is needed, it
161 * needs to be renamed with native_ prefix.
162 */
163static noinstr unsigned long __rdgsbase_inactive(void)
164{
165	unsigned long gsbase;
166
167	lockdep_assert_irqs_disabled();
168
169	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170		native_swapgs();
171		gsbase = rdgsbase();
172		native_swapgs();
173	} else {
174		instrumentation_begin();
175		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
176		instrumentation_end();
177	}
178
179	return gsbase;
180}
181
182/*
183 * Out of line to be protected from kprobes and tracing. If this would be
184 * traced or probed than any access to a per CPU variable happens with
185 * the wrong GS.
186 *
187 * It is not used on Xen paravirt. When paravirt support is needed, it
188 * needs to be renamed with native_ prefix.
189 */
190static noinstr void __wrgsbase_inactive(unsigned long gsbase)
191{
192	lockdep_assert_irqs_disabled();
193
194	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
 
195		native_swapgs();
196		wrgsbase(gsbase);
197		native_swapgs();
198	} else {
199		instrumentation_begin();
200		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
201		instrumentation_end();
202	}
203}
204
205/*
206 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
207 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
208 * It's forcibly inlined because it'll generate better code and this function
209 * is hot.
210 */
211static __always_inline void save_base_legacy(struct task_struct *prev_p,
212					     unsigned short selector,
213					     enum which_selector which)
214{
215	if (likely(selector == 0)) {
216		/*
217		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
218		 * be the pre-existing saved base or it could be zero.  On AMD
219		 * (with X86_BUG_NULL_SEG), the segment base could be almost
220		 * anything.
221		 *
222		 * This branch is very hot (it's hit twice on almost every
223		 * context switch between 64-bit programs), and avoiding
224		 * the RDMSR helps a lot, so we just assume that whatever
225		 * value is already saved is correct.  This matches historical
226		 * Linux behavior, so it won't break existing applications.
227		 *
228		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
229		 * report that the base is zero, it needs to actually be zero:
230		 * see the corresponding logic in load_seg_legacy.
231		 */
232	} else {
233		/*
234		 * If the selector is 1, 2, or 3, then the base is zero on
235		 * !X86_BUG_NULL_SEG CPUs and could be anything on
236		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
237		 * has never attempted to preserve the base across context
238		 * switches.
239		 *
240		 * If selector > 3, then it refers to a real segment, and
241		 * saving the base isn't necessary.
242		 */
243		if (which == FS)
244			prev_p->thread.fsbase = 0;
245		else
246			prev_p->thread.gsbase = 0;
247	}
248}
249
250static __always_inline void save_fsgs(struct task_struct *task)
251{
252	savesegment(fs, task->thread.fsindex);
253	savesegment(gs, task->thread.gsindex);
254	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
255		/*
256		 * If FSGSBASE is enabled, we can't make any useful guesses
257		 * about the base, and user code expects us to save the current
258		 * value.  Fortunately, reading the base directly is efficient.
259		 */
260		task->thread.fsbase = rdfsbase();
261		task->thread.gsbase = __rdgsbase_inactive();
262	} else {
263		save_base_legacy(task, task->thread.fsindex, FS);
264		save_base_legacy(task, task->thread.gsindex, GS);
265	}
266}
267
268/*
269 * While a process is running,current->thread.fsbase and current->thread.gsbase
270 * may not match the corresponding CPU registers (see save_base_legacy()).
271 */
272void current_save_fsgs(void)
273{
274	unsigned long flags;
275
276	/* Interrupts need to be off for FSGSBASE */
277	local_irq_save(flags);
278	save_fsgs(current);
279	local_irq_restore(flags);
280}
281#if IS_ENABLED(CONFIG_KVM)
282EXPORT_SYMBOL_GPL(current_save_fsgs);
283#endif
284
285static __always_inline void loadseg(enum which_selector which,
286				    unsigned short sel)
287{
288	if (which == FS)
289		loadsegment(fs, sel);
290	else
291		load_gs_index(sel);
292}
293
294static __always_inline void load_seg_legacy(unsigned short prev_index,
295					    unsigned long prev_base,
296					    unsigned short next_index,
297					    unsigned long next_base,
298					    enum which_selector which)
299{
300	if (likely(next_index <= 3)) {
301		/*
302		 * The next task is using 64-bit TLS, is not using this
303		 * segment at all, or is having fun with arcane CPU features.
304		 */
305		if (next_base == 0) {
306			/*
307			 * Nasty case: on AMD CPUs, we need to forcibly zero
308			 * the base.
309			 */
310			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
311				loadseg(which, __USER_DS);
312				loadseg(which, next_index);
313			} else {
314				/*
315				 * We could try to exhaustively detect cases
316				 * under which we can skip the segment load,
317				 * but there's really only one case that matters
318				 * for performance: if both the previous and
319				 * next states are fully zeroed, we can skip
320				 * the load.
321				 *
322				 * (This assumes that prev_base == 0 has no
323				 * false positives.  This is the case on
324				 * Intel-style CPUs.)
325				 */
326				if (likely(prev_index | next_index | prev_base))
327					loadseg(which, next_index);
328			}
329		} else {
330			if (prev_index != next_index)
331				loadseg(which, next_index);
332			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
333			       next_base);
334		}
335	} else {
336		/*
337		 * The next task is using a real segment.  Loading the selector
338		 * is sufficient.
339		 */
340		loadseg(which, next_index);
341	}
342}
343
344/*
345 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
346 * is not XSTATE managed on context switch because that would require a
347 * lookup in the task's FPU xsave buffer and require to keep that updated
348 * in various places.
349 */
350static __always_inline void x86_pkru_load(struct thread_struct *prev,
351					  struct thread_struct *next)
352{
353	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
354		return;
355
356	/* Stash the prev task's value: */
357	prev->pkru = rdpkru();
358
359	/*
360	 * PKRU writes are slightly expensive.  Avoid them when not
361	 * strictly necessary:
362	 */
363	if (prev->pkru != next->pkru)
364		wrpkru(next->pkru);
365}
366
367static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
368					      struct thread_struct *next)
369{
370	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
371		/* Update the FS and GS selectors if they could have changed. */
372		if (unlikely(prev->fsindex || next->fsindex))
373			loadseg(FS, next->fsindex);
374		if (unlikely(prev->gsindex || next->gsindex))
375			loadseg(GS, next->gsindex);
376
377		/* Update the bases. */
378		wrfsbase(next->fsbase);
379		__wrgsbase_inactive(next->gsbase);
380	} else {
381		load_seg_legacy(prev->fsindex, prev->fsbase,
382				next->fsindex, next->fsbase, FS);
383		load_seg_legacy(prev->gsindex, prev->gsbase,
384				next->gsindex, next->gsbase, GS);
385	}
386}
387
388unsigned long x86_fsgsbase_read_task(struct task_struct *task,
389				     unsigned short selector)
390{
391	unsigned short idx = selector >> 3;
392	unsigned long base;
393
394	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
395		if (unlikely(idx >= GDT_ENTRIES))
396			return 0;
397
398		/*
399		 * There are no user segments in the GDT with nonzero bases
400		 * other than the TLS segments.
401		 */
402		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
403			return 0;
404
405		idx -= GDT_ENTRY_TLS_MIN;
406		base = get_desc_base(&task->thread.tls_array[idx]);
407	} else {
408#ifdef CONFIG_MODIFY_LDT_SYSCALL
409		struct ldt_struct *ldt;
410
411		/*
412		 * If performance here mattered, we could protect the LDT
413		 * with RCU.  This is a slow path, though, so we can just
414		 * take the mutex.
415		 */
416		mutex_lock(&task->mm->context.lock);
417		ldt = task->mm->context.ldt;
418		if (unlikely(!ldt || idx >= ldt->nr_entries))
419			base = 0;
420		else
421			base = get_desc_base(ldt->entries + idx);
422		mutex_unlock(&task->mm->context.lock);
423#else
424		base = 0;
425#endif
426	}
427
428	return base;
429}
430
431unsigned long x86_gsbase_read_cpu_inactive(void)
432{
433	unsigned long gsbase;
434
435	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
436		unsigned long flags;
437
438		local_irq_save(flags);
439		gsbase = __rdgsbase_inactive();
440		local_irq_restore(flags);
441	} else {
442		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
443	}
444
445	return gsbase;
446}
447
448void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
449{
450	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
451		unsigned long flags;
452
453		local_irq_save(flags);
454		__wrgsbase_inactive(gsbase);
455		local_irq_restore(flags);
456	} else {
457		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
458	}
459}
460
461unsigned long x86_fsbase_read_task(struct task_struct *task)
462{
463	unsigned long fsbase;
464
465	if (task == current)
466		fsbase = x86_fsbase_read_cpu();
467	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
468		 (task->thread.fsindex == 0))
469		fsbase = task->thread.fsbase;
470	else
471		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
472
473	return fsbase;
474}
475
476unsigned long x86_gsbase_read_task(struct task_struct *task)
477{
478	unsigned long gsbase;
479
480	if (task == current)
481		gsbase = x86_gsbase_read_cpu_inactive();
482	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
483		 (task->thread.gsindex == 0))
484		gsbase = task->thread.gsbase;
485	else
486		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
487
488	return gsbase;
489}
490
491void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
492{
493	WARN_ON_ONCE(task == current);
494
495	task->thread.fsbase = fsbase;
496}
497
498void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
499{
500	WARN_ON_ONCE(task == current);
501
502	task->thread.gsbase = gsbase;
503}
504
505static void
506start_thread_common(struct pt_regs *regs, unsigned long new_ip,
507		    unsigned long new_sp,
508		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
509{
510	WARN_ON_ONCE(regs != current_pt_regs());
511
512	if (static_cpu_has(X86_BUG_NULL_SEG)) {
513		/* Loading zero below won't clear the base. */
514		loadsegment(fs, __USER_DS);
515		load_gs_index(__USER_DS);
516	}
517
518	reset_thread_features();
519
520	loadsegment(fs, 0);
521	loadsegment(es, _ds);
522	loadsegment(ds, _ds);
523	load_gs_index(0);
524
525	regs->ip		= new_ip;
526	regs->sp		= new_sp;
527	regs->cs		= _cs;
528	regs->ss		= _ss;
529	regs->flags		= X86_EFLAGS_IF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530}
531
532void
533start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
534{
535	start_thread_common(regs, new_ip, new_sp,
536			    __USER_CS, __USER_DS, 0);
537}
538EXPORT_SYMBOL_GPL(start_thread);
539
540#ifdef CONFIG_COMPAT
541void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
542{
543	start_thread_common(regs, new_ip, new_sp,
544			    x32 ? __USER_CS : __USER32_CS,
545			    __USER_DS, __USER_DS);
546}
547#endif
548
549/*
550 *	switch_to(x,y) should switch tasks from x to y.
551 *
552 * This could still be optimized:
553 * - fold all the options into a flag word and test it with a single test.
554 * - could test fs/gs bitsliced
555 *
556 * Kprobes not supported here. Set the probe on schedule instead.
557 * Function graph tracer not supported too.
558 */
559__no_kmsan_checks
560__visible __notrace_funcgraph struct task_struct *
561__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
562{
563	struct thread_struct *prev = &prev_p->thread;
564	struct thread_struct *next = &next_p->thread;
565	struct fpu *prev_fpu = &prev->fpu;
566	int cpu = smp_processor_id();
567
568	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
569		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
570
571	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
572		switch_fpu_prepare(prev_fpu, cpu);
573
574	/* We must save %fs and %gs before load_TLS() because
575	 * %fs and %gs may be cleared by load_TLS().
576	 *
577	 * (e.g. xen_load_tls())
578	 */
579	save_fsgs(prev_p);
580
581	/*
582	 * Load TLS before restoring any segments so that segment loads
583	 * reference the correct GDT entries.
584	 */
585	load_TLS(next, cpu);
586
587	/*
588	 * Leave lazy mode, flushing any hypercalls made here.  This
589	 * must be done after loading TLS entries in the GDT but before
590	 * loading segments that might reference them.
591	 */
592	arch_end_context_switch(next_p);
593
594	/* Switch DS and ES.
595	 *
596	 * Reading them only returns the selectors, but writing them (if
597	 * nonzero) loads the full descriptor from the GDT or LDT.  The
598	 * LDT for next is loaded in switch_mm, and the GDT is loaded
599	 * above.
600	 *
601	 * We therefore need to write new values to the segment
602	 * registers on every context switch unless both the new and old
603	 * values are zero.
604	 *
605	 * Note that we don't need to do anything for CS and SS, as
606	 * those are saved and restored as part of pt_regs.
607	 */
608	savesegment(es, prev->es);
609	if (unlikely(next->es | prev->es))
610		loadsegment(es, next->es);
611
612	savesegment(ds, prev->ds);
613	if (unlikely(next->ds | prev->ds))
614		loadsegment(ds, next->ds);
615
616	x86_fsgsbase_load(prev, next);
617
618	x86_pkru_load(prev, next);
619
620	/*
621	 * Switch the PDA and FPU contexts.
622	 */
623	raw_cpu_write(pcpu_hot.current_task, next_p);
624	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
625
626	switch_fpu_finish();
627
628	/* Reload sp0. */
629	update_task_stack(next_p);
630
631	switch_to_extra(prev_p, next_p);
632
633	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
634		/*
635		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
636		 * does not update the cached descriptor.  As a result, if we
637		 * do SYSRET while SS is NULL, we'll end up in user mode with
638		 * SS apparently equal to __USER_DS but actually unusable.
639		 *
640		 * The straightforward workaround would be to fix it up just
641		 * before SYSRET, but that would slow down the system call
642		 * fast paths.  Instead, we ensure that SS is never NULL in
643		 * system call context.  We do this by replacing NULL SS
644		 * selectors at every context switch.  SYSCALL sets up a valid
645		 * SS, so the only way to get NULL is to re-enter the kernel
646		 * from CPL 3 through an interrupt.  Since that can't happen
647		 * in the same task as a running syscall, we are guaranteed to
648		 * context switch between every interrupt vector entry and a
649		 * subsequent SYSRET.
650		 *
651		 * We read SS first because SS reads are much faster than
652		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
653		 * it previously had a different non-NULL value.
654		 */
655		unsigned short ss_sel;
656		savesegment(ss, ss_sel);
657		if (ss_sel != __KERNEL_DS)
658			loadsegment(ss, __KERNEL_DS);
659	}
660
661	/* Load the Intel cache allocation PQR MSR. */
662	resctrl_sched_in(next_p);
663
664	return prev_p;
665}
666
667void set_personality_64bit(void)
668{
669	/* inherit personality from parent */
670
671	/* Make sure to be in 64bit mode */
672	clear_thread_flag(TIF_ADDR32);
673	/* Pretend that this comes from a 64bit execve */
674	task_pt_regs(current)->orig_ax = __NR_execve;
675	current_thread_info()->status &= ~TS_COMPAT;
676	if (current->mm)
677		__set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
678
679	/* TBD: overwrites user setup. Should have two bits.
680	   But 64bit processes have always behaved this way,
681	   so it's not too bad. The main problem is just that
682	   32bit children are affected again. */
683	current->personality &= ~READ_IMPLIES_EXEC;
684}
685
686static void __set_personality_x32(void)
687{
688#ifdef CONFIG_X86_X32_ABI
689	if (current->mm)
690		current->mm->context.flags = 0;
691
692	current->personality &= ~READ_IMPLIES_EXEC;
693	/*
694	 * in_32bit_syscall() uses the presence of the x32 syscall bit
695	 * flag to determine compat status.  The x86 mmap() code relies on
696	 * the syscall bitness so set x32 syscall bit right here to make
697	 * in_32bit_syscall() work during exec().
698	 *
699	 * Pretend to come from a x32 execve.
700	 */
701	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
702	current_thread_info()->status &= ~TS_COMPAT;
703#endif
704}
705
706static void __set_personality_ia32(void)
707{
708#ifdef CONFIG_IA32_EMULATION
709	if (current->mm) {
710		/*
711		 * uprobes applied to this MM need to know this and
712		 * cannot use user_64bit_mode() at that time.
713		 */
714		__set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
715	}
716
717	current->personality |= force_personality32;
718	/* Prepare the first "return" to user space */
719	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
720	current_thread_info()->status |= TS_COMPAT;
721#endif
722}
723
724void set_personality_ia32(bool x32)
725{
726	/* Make sure to be in 32bit mode */
727	set_thread_flag(TIF_ADDR32);
728
729	if (x32)
730		__set_personality_x32();
731	else
732		__set_personality_ia32();
733}
734EXPORT_SYMBOL_GPL(set_personality_ia32);
735
736#ifdef CONFIG_CHECKPOINT_RESTORE
737static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
738{
739	int ret;
740
741	ret = map_vdso_once(image, addr);
742	if (ret)
743		return ret;
744
745	return (long)image->size;
746}
747#endif
748
749#ifdef CONFIG_ADDRESS_MASKING
750
751#define LAM_U57_BITS 6
752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
754{
755	if (!cpu_feature_enabled(X86_FEATURE_LAM))
756		return -ENODEV;
757
758	/* PTRACE_ARCH_PRCTL */
759	if (current->mm != mm)
760		return -EINVAL;
761
762	if (mm_valid_pasid(mm) &&
763	    !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
764		return -EINVAL;
765
766	if (mmap_write_lock_killable(mm))
767		return -EINTR;
768
 
 
 
 
769	if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
770		mmap_write_unlock(mm);
771		return -EBUSY;
772	}
773
774	if (!nr_bits) {
775		mmap_write_unlock(mm);
776		return -EINVAL;
777	} else if (nr_bits <= LAM_U57_BITS) {
778		mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
779		mm->context.untag_mask =  ~GENMASK(62, 57);
780	} else {
781		mmap_write_unlock(mm);
782		return -EINVAL;
783	}
784
785	write_cr3(__read_cr3() | mm->context.lam_cr3_mask);
786	set_tlbstate_lam_mode(mm);
787	set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
788
789	mmap_write_unlock(mm);
790
791	return 0;
792}
793#endif
794
795long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
796{
797	int ret = 0;
798
799	switch (option) {
800	case ARCH_SET_GS: {
801		if (unlikely(arg2 >= TASK_SIZE_MAX))
802			return -EPERM;
803
804		preempt_disable();
805		/*
806		 * ARCH_SET_GS has always overwritten the index
807		 * and the base. Zero is the most sensible value
808		 * to put in the index, and is the only value that
809		 * makes any sense if FSGSBASE is unavailable.
810		 */
811		if (task == current) {
812			loadseg(GS, 0);
813			x86_gsbase_write_cpu_inactive(arg2);
814
815			/*
816			 * On non-FSGSBASE systems, save_base_legacy() expects
817			 * that we also fill in thread.gsbase.
818			 */
819			task->thread.gsbase = arg2;
820
821		} else {
822			task->thread.gsindex = 0;
823			x86_gsbase_write_task(task, arg2);
824		}
825		preempt_enable();
826		break;
827	}
828	case ARCH_SET_FS: {
829		/*
830		 * Not strictly needed for %fs, but do it for symmetry
831		 * with %gs
832		 */
833		if (unlikely(arg2 >= TASK_SIZE_MAX))
834			return -EPERM;
835
836		preempt_disable();
837		/*
838		 * Set the selector to 0 for the same reason
839		 * as %gs above.
840		 */
841		if (task == current) {
842			loadseg(FS, 0);
843			x86_fsbase_write_cpu(arg2);
844
845			/*
846			 * On non-FSGSBASE systems, save_base_legacy() expects
847			 * that we also fill in thread.fsbase.
848			 */
849			task->thread.fsbase = arg2;
850		} else {
851			task->thread.fsindex = 0;
852			x86_fsbase_write_task(task, arg2);
853		}
854		preempt_enable();
855		break;
856	}
857	case ARCH_GET_FS: {
858		unsigned long base = x86_fsbase_read_task(task);
859
860		ret = put_user(base, (unsigned long __user *)arg2);
861		break;
862	}
863	case ARCH_GET_GS: {
864		unsigned long base = x86_gsbase_read_task(task);
865
866		ret = put_user(base, (unsigned long __user *)arg2);
867		break;
868	}
869
870#ifdef CONFIG_CHECKPOINT_RESTORE
871# ifdef CONFIG_X86_X32_ABI
872	case ARCH_MAP_VDSO_X32:
873		return prctl_map_vdso(&vdso_image_x32, arg2);
874# endif
875# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
876	case ARCH_MAP_VDSO_32:
877		return prctl_map_vdso(&vdso_image_32, arg2);
878# endif
879	case ARCH_MAP_VDSO_64:
880		return prctl_map_vdso(&vdso_image_64, arg2);
881#endif
882#ifdef CONFIG_ADDRESS_MASKING
883	case ARCH_GET_UNTAG_MASK:
884		return put_user(task->mm->context.untag_mask,
885				(unsigned long __user *)arg2);
886	case ARCH_ENABLE_TAGGED_ADDR:
887		return prctl_enable_tagged_addr(task->mm, arg2);
888	case ARCH_FORCE_TAGGED_SVA:
889		if (current != task)
890			return -EINVAL;
891		set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
892		return 0;
893	case ARCH_GET_MAX_TAG_BITS:
894		if (!cpu_feature_enabled(X86_FEATURE_LAM))
895			return put_user(0, (unsigned long __user *)arg2);
896		else
897			return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
898#endif
899	case ARCH_SHSTK_ENABLE:
900	case ARCH_SHSTK_DISABLE:
901	case ARCH_SHSTK_LOCK:
902	case ARCH_SHSTK_UNLOCK:
903	case ARCH_SHSTK_STATUS:
904		return shstk_prctl(task, option, arg2);
905	default:
906		ret = -EINVAL;
907		break;
908	}
909
910	return ret;
911}
912
913SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
914{
915	long ret;
916
917	ret = do_arch_prctl_64(current, option, arg2);
918	if (ret == -EINVAL)
919		ret = do_arch_prctl_common(option, arg2);
920
921	return ret;
922}
923
924#ifdef CONFIG_IA32_EMULATION
925COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
926{
927	return do_arch_prctl_common(option, arg2);
928}
929#endif
930
931unsigned long KSTK_ESP(struct task_struct *task)
932{
933	return task_pt_regs(task)->sp;
934}