Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14/*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18#include <linux/cpu.h>
19#include <linux/errno.h>
20#include <linux/sched.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/fs.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/elfcore.h>
27#include <linux/smp.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/export.h>
33#include <linux/ptrace.h>
34#include <linux/notifier.h>
35#include <linux/kprobes.h>
36#include <linux/kdebug.h>
37#include <linux/prctl.h>
38#include <linux/uaccess.h>
39#include <linux/io.h>
40#include <linux/ftrace.h>
41#include <linux/syscalls.h>
42#include <linux/iommu.h>
43
44#include <asm/processor.h>
45#include <asm/pkru.h>
46#include <asm/fpu/sched.h>
47#include <asm/mmu_context.h>
48#include <asm/prctl.h>
49#include <asm/desc.h>
50#include <asm/proto.h>
51#include <asm/ia32.h>
52#include <asm/debugreg.h>
53#include <asm/switch_to.h>
54#include <asm/xen/hypervisor.h>
55#include <asm/vdso.h>
56#include <asm/resctrl.h>
57#include <asm/unistd.h>
58#include <asm/fsgsbase.h>
59#include <asm/fred.h>
60#ifdef CONFIG_IA32_EMULATION
61/* Not included via unistd.h */
62#include <asm/unistd_32_ia32.h>
63#endif
64
65#include "process.h"
66
67/* Prints also some state that isn't saved in the pt_regs */
68void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
69 const char *log_lvl)
70{
71 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
72 unsigned long d0, d1, d2, d3, d6, d7;
73 unsigned int fsindex, gsindex;
74 unsigned int ds, es;
75
76 show_iret_regs(regs, log_lvl);
77
78 if (regs->orig_ax != -1)
79 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
80 else
81 pr_cont("\n");
82
83 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
84 log_lvl, regs->ax, regs->bx, regs->cx);
85 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
86 log_lvl, regs->dx, regs->si, regs->di);
87 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
88 log_lvl, regs->bp, regs->r8, regs->r9);
89 printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
90 log_lvl, regs->r10, regs->r11, regs->r12);
91 printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
92 log_lvl, regs->r13, regs->r14, regs->r15);
93
94 if (mode == SHOW_REGS_SHORT)
95 return;
96
97 if (mode == SHOW_REGS_USER) {
98 rdmsrl(MSR_FS_BASE, fs);
99 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
100 printk("%sFS: %016lx GS: %016lx\n",
101 log_lvl, fs, shadowgs);
102 return;
103 }
104
105 asm("movl %%ds,%0" : "=r" (ds));
106 asm("movl %%es,%0" : "=r" (es));
107 asm("movl %%fs,%0" : "=r" (fsindex));
108 asm("movl %%gs,%0" : "=r" (gsindex));
109
110 rdmsrl(MSR_FS_BASE, fs);
111 rdmsrl(MSR_GS_BASE, gs);
112 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
113
114 cr0 = read_cr0();
115 cr2 = read_cr2();
116 cr3 = __read_cr3();
117 cr4 = __read_cr4();
118
119 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
120 log_lvl, fs, fsindex, gs, gsindex, shadowgs);
121 printk("%sCS: %04x DS: %04x ES: %04x CR0: %016lx\n",
122 log_lvl, regs->cs, ds, es, cr0);
123 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
124 log_lvl, cr2, cr3, cr4);
125
126 get_debugreg(d0, 0);
127 get_debugreg(d1, 1);
128 get_debugreg(d2, 2);
129 get_debugreg(d3, 3);
130 get_debugreg(d6, 6);
131 get_debugreg(d7, 7);
132
133 /* Only print out debug registers if they are in their non-default state. */
134 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
135 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
136 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
137 log_lvl, d0, d1, d2);
138 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
139 log_lvl, d3, d6, d7);
140 }
141
142 if (cr4 & X86_CR4_PKE)
143 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
144}
145
146void release_thread(struct task_struct *dead_task)
147{
148 WARN_ON(dead_task->mm);
149}
150
151enum which_selector {
152 FS,
153 GS
154};
155
156/*
157 * Out of line to be protected from kprobes and tracing. If this would be
158 * traced or probed than any access to a per CPU variable happens with
159 * the wrong GS.
160 *
161 * It is not used on Xen paravirt. When paravirt support is needed, it
162 * needs to be renamed with native_ prefix.
163 */
164static noinstr unsigned long __rdgsbase_inactive(void)
165{
166 unsigned long gsbase;
167
168 lockdep_assert_irqs_disabled();
169
170 /*
171 * SWAPGS is no longer needed thus NOT allowed with FRED because
172 * FRED transitions ensure that an operating system can _always_
173 * operate with its own GS base address:
174 * - For events that occur in ring 3, FRED event delivery swaps
175 * the GS base address with the IA32_KERNEL_GS_BASE MSR.
176 * - ERETU (the FRED transition that returns to ring 3) also swaps
177 * the GS base address with the IA32_KERNEL_GS_BASE MSR.
178 *
179 * And the operating system can still setup the GS segment for a
180 * user thread without the need of loading a user thread GS with:
181 * - Using LKGS, available with FRED, to modify other attributes
182 * of the GS segment without compromising its ability always to
183 * operate with its own GS base address.
184 * - Accessing the GS segment base address for a user thread as
185 * before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
186 *
187 * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
188 * MSR instead of the GS segment’s descriptor cache. As such, the
189 * operating system never changes its runtime GS base address.
190 */
191 if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
192 !cpu_feature_enabled(X86_FEATURE_XENPV)) {
193 native_swapgs();
194 gsbase = rdgsbase();
195 native_swapgs();
196 } else {
197 instrumentation_begin();
198 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
199 instrumentation_end();
200 }
201
202 return gsbase;
203}
204
205/*
206 * Out of line to be protected from kprobes and tracing. If this would be
207 * traced or probed than any access to a per CPU variable happens with
208 * the wrong GS.
209 *
210 * It is not used on Xen paravirt. When paravirt support is needed, it
211 * needs to be renamed with native_ prefix.
212 */
213static noinstr void __wrgsbase_inactive(unsigned long gsbase)
214{
215 lockdep_assert_irqs_disabled();
216
217 if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
218 !cpu_feature_enabled(X86_FEATURE_XENPV)) {
219 native_swapgs();
220 wrgsbase(gsbase);
221 native_swapgs();
222 } else {
223 instrumentation_begin();
224 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
225 instrumentation_end();
226 }
227}
228
229/*
230 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
231 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
232 * It's forcibly inlined because it'll generate better code and this function
233 * is hot.
234 */
235static __always_inline void save_base_legacy(struct task_struct *prev_p,
236 unsigned short selector,
237 enum which_selector which)
238{
239 if (likely(selector == 0)) {
240 /*
241 * On Intel (without X86_BUG_NULL_SEG), the segment base could
242 * be the pre-existing saved base or it could be zero. On AMD
243 * (with X86_BUG_NULL_SEG), the segment base could be almost
244 * anything.
245 *
246 * This branch is very hot (it's hit twice on almost every
247 * context switch between 64-bit programs), and avoiding
248 * the RDMSR helps a lot, so we just assume that whatever
249 * value is already saved is correct. This matches historical
250 * Linux behavior, so it won't break existing applications.
251 *
252 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
253 * report that the base is zero, it needs to actually be zero:
254 * see the corresponding logic in load_seg_legacy.
255 */
256 } else {
257 /*
258 * If the selector is 1, 2, or 3, then the base is zero on
259 * !X86_BUG_NULL_SEG CPUs and could be anything on
260 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
261 * has never attempted to preserve the base across context
262 * switches.
263 *
264 * If selector > 3, then it refers to a real segment, and
265 * saving the base isn't necessary.
266 */
267 if (which == FS)
268 prev_p->thread.fsbase = 0;
269 else
270 prev_p->thread.gsbase = 0;
271 }
272}
273
274static __always_inline void save_fsgs(struct task_struct *task)
275{
276 savesegment(fs, task->thread.fsindex);
277 savesegment(gs, task->thread.gsindex);
278 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
279 /*
280 * If FSGSBASE is enabled, we can't make any useful guesses
281 * about the base, and user code expects us to save the current
282 * value. Fortunately, reading the base directly is efficient.
283 */
284 task->thread.fsbase = rdfsbase();
285 task->thread.gsbase = __rdgsbase_inactive();
286 } else {
287 save_base_legacy(task, task->thread.fsindex, FS);
288 save_base_legacy(task, task->thread.gsindex, GS);
289 }
290}
291
292/*
293 * While a process is running,current->thread.fsbase and current->thread.gsbase
294 * may not match the corresponding CPU registers (see save_base_legacy()).
295 */
296void current_save_fsgs(void)
297{
298 unsigned long flags;
299
300 /* Interrupts need to be off for FSGSBASE */
301 local_irq_save(flags);
302 save_fsgs(current);
303 local_irq_restore(flags);
304}
305#if IS_ENABLED(CONFIG_KVM)
306EXPORT_SYMBOL_GPL(current_save_fsgs);
307#endif
308
309static __always_inline void loadseg(enum which_selector which,
310 unsigned short sel)
311{
312 if (which == FS)
313 loadsegment(fs, sel);
314 else
315 load_gs_index(sel);
316}
317
318static __always_inline void load_seg_legacy(unsigned short prev_index,
319 unsigned long prev_base,
320 unsigned short next_index,
321 unsigned long next_base,
322 enum which_selector which)
323{
324 if (likely(next_index <= 3)) {
325 /*
326 * The next task is using 64-bit TLS, is not using this
327 * segment at all, or is having fun with arcane CPU features.
328 */
329 if (next_base == 0) {
330 /*
331 * Nasty case: on AMD CPUs, we need to forcibly zero
332 * the base.
333 */
334 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
335 loadseg(which, __USER_DS);
336 loadseg(which, next_index);
337 } else {
338 /*
339 * We could try to exhaustively detect cases
340 * under which we can skip the segment load,
341 * but there's really only one case that matters
342 * for performance: if both the previous and
343 * next states are fully zeroed, we can skip
344 * the load.
345 *
346 * (This assumes that prev_base == 0 has no
347 * false positives. This is the case on
348 * Intel-style CPUs.)
349 */
350 if (likely(prev_index | next_index | prev_base))
351 loadseg(which, next_index);
352 }
353 } else {
354 if (prev_index != next_index)
355 loadseg(which, next_index);
356 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
357 next_base);
358 }
359 } else {
360 /*
361 * The next task is using a real segment. Loading the selector
362 * is sufficient.
363 */
364 loadseg(which, next_index);
365 }
366}
367
368/*
369 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
370 * is not XSTATE managed on context switch because that would require a
371 * lookup in the task's FPU xsave buffer and require to keep that updated
372 * in various places.
373 */
374static __always_inline void x86_pkru_load(struct thread_struct *prev,
375 struct thread_struct *next)
376{
377 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
378 return;
379
380 /* Stash the prev task's value: */
381 prev->pkru = rdpkru();
382
383 /*
384 * PKRU writes are slightly expensive. Avoid them when not
385 * strictly necessary:
386 */
387 if (prev->pkru != next->pkru)
388 wrpkru(next->pkru);
389}
390
391static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
392 struct thread_struct *next)
393{
394 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
395 /* Update the FS and GS selectors if they could have changed. */
396 if (unlikely(prev->fsindex || next->fsindex))
397 loadseg(FS, next->fsindex);
398 if (unlikely(prev->gsindex || next->gsindex))
399 loadseg(GS, next->gsindex);
400
401 /* Update the bases. */
402 wrfsbase(next->fsbase);
403 __wrgsbase_inactive(next->gsbase);
404 } else {
405 load_seg_legacy(prev->fsindex, prev->fsbase,
406 next->fsindex, next->fsbase, FS);
407 load_seg_legacy(prev->gsindex, prev->gsbase,
408 next->gsindex, next->gsbase, GS);
409 }
410}
411
412unsigned long x86_fsgsbase_read_task(struct task_struct *task,
413 unsigned short selector)
414{
415 unsigned short idx = selector >> 3;
416 unsigned long base;
417
418 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
419 if (unlikely(idx >= GDT_ENTRIES))
420 return 0;
421
422 /*
423 * There are no user segments in the GDT with nonzero bases
424 * other than the TLS segments.
425 */
426 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
427 return 0;
428
429 idx -= GDT_ENTRY_TLS_MIN;
430 base = get_desc_base(&task->thread.tls_array[idx]);
431 } else {
432#ifdef CONFIG_MODIFY_LDT_SYSCALL
433 struct ldt_struct *ldt;
434
435 /*
436 * If performance here mattered, we could protect the LDT
437 * with RCU. This is a slow path, though, so we can just
438 * take the mutex.
439 */
440 mutex_lock(&task->mm->context.lock);
441 ldt = task->mm->context.ldt;
442 if (unlikely(!ldt || idx >= ldt->nr_entries))
443 base = 0;
444 else
445 base = get_desc_base(ldt->entries + idx);
446 mutex_unlock(&task->mm->context.lock);
447#else
448 base = 0;
449#endif
450 }
451
452 return base;
453}
454
455unsigned long x86_gsbase_read_cpu_inactive(void)
456{
457 unsigned long gsbase;
458
459 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
460 unsigned long flags;
461
462 local_irq_save(flags);
463 gsbase = __rdgsbase_inactive();
464 local_irq_restore(flags);
465 } else {
466 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
467 }
468
469 return gsbase;
470}
471
472void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
473{
474 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
475 unsigned long flags;
476
477 local_irq_save(flags);
478 __wrgsbase_inactive(gsbase);
479 local_irq_restore(flags);
480 } else {
481 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
482 }
483}
484
485unsigned long x86_fsbase_read_task(struct task_struct *task)
486{
487 unsigned long fsbase;
488
489 if (task == current)
490 fsbase = x86_fsbase_read_cpu();
491 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
492 (task->thread.fsindex == 0))
493 fsbase = task->thread.fsbase;
494 else
495 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
496
497 return fsbase;
498}
499
500unsigned long x86_gsbase_read_task(struct task_struct *task)
501{
502 unsigned long gsbase;
503
504 if (task == current)
505 gsbase = x86_gsbase_read_cpu_inactive();
506 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
507 (task->thread.gsindex == 0))
508 gsbase = task->thread.gsbase;
509 else
510 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
511
512 return gsbase;
513}
514
515void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
516{
517 WARN_ON_ONCE(task == current);
518
519 task->thread.fsbase = fsbase;
520}
521
522void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
523{
524 WARN_ON_ONCE(task == current);
525
526 task->thread.gsbase = gsbase;
527}
528
529static void
530start_thread_common(struct pt_regs *regs, unsigned long new_ip,
531 unsigned long new_sp,
532 u16 _cs, u16 _ss, u16 _ds)
533{
534 WARN_ON_ONCE(regs != current_pt_regs());
535
536 if (static_cpu_has(X86_BUG_NULL_SEG)) {
537 /* Loading zero below won't clear the base. */
538 loadsegment(fs, __USER_DS);
539 load_gs_index(__USER_DS);
540 }
541
542 reset_thread_features();
543
544 loadsegment(fs, 0);
545 loadsegment(es, _ds);
546 loadsegment(ds, _ds);
547 load_gs_index(0);
548
549 regs->ip = new_ip;
550 regs->sp = new_sp;
551 regs->csx = _cs;
552 regs->ssx = _ss;
553 /*
554 * Allow single-step trap and NMI when starting a new task, thus
555 * once the new task enters user space, single-step trap and NMI
556 * are both enabled immediately.
557 *
558 * Entering a new task is logically speaking a return from a
559 * system call (exec, fork, clone, etc.). As such, if ptrace
560 * enables single stepping a single step exception should be
561 * allowed to trigger immediately upon entering user space.
562 * This is not optional.
563 *
564 * NMI should *never* be disabled in user space. As such, this
565 * is an optional, opportunistic way to catch errors.
566 *
567 * Paranoia: High-order 48 bits above the lowest 16 bit SS are
568 * discarded by the legacy IRET instruction on all Intel, AMD,
569 * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
570 * even when FRED is not enabled. But we choose the safer side
571 * to use these bits only when FRED is enabled.
572 */
573 if (cpu_feature_enabled(X86_FEATURE_FRED)) {
574 regs->fred_ss.swevent = true;
575 regs->fred_ss.nmi = true;
576 }
577
578 regs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
579}
580
581void
582start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
583{
584 start_thread_common(regs, new_ip, new_sp,
585 __USER_CS, __USER_DS, 0);
586}
587EXPORT_SYMBOL_GPL(start_thread);
588
589#ifdef CONFIG_COMPAT
590void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
591{
592 start_thread_common(regs, new_ip, new_sp,
593 x32 ? __USER_CS : __USER32_CS,
594 __USER_DS, __USER_DS);
595}
596#endif
597
598/*
599 * switch_to(x,y) should switch tasks from x to y.
600 *
601 * This could still be optimized:
602 * - fold all the options into a flag word and test it with a single test.
603 * - could test fs/gs bitsliced
604 *
605 * Kprobes not supported here. Set the probe on schedule instead.
606 * Function graph tracer not supported too.
607 */
608__no_kmsan_checks
609__visible __notrace_funcgraph struct task_struct *
610__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
611{
612 struct thread_struct *prev = &prev_p->thread;
613 struct thread_struct *next = &next_p->thread;
614 int cpu = smp_processor_id();
615
616 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
617 this_cpu_read(pcpu_hot.hardirq_stack_inuse));
618
619 if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
620 switch_fpu_prepare(prev_p, cpu);
621
622 /* We must save %fs and %gs before load_TLS() because
623 * %fs and %gs may be cleared by load_TLS().
624 *
625 * (e.g. xen_load_tls())
626 */
627 save_fsgs(prev_p);
628
629 /*
630 * Load TLS before restoring any segments so that segment loads
631 * reference the correct GDT entries.
632 */
633 load_TLS(next, cpu);
634
635 /*
636 * Leave lazy mode, flushing any hypercalls made here. This
637 * must be done after loading TLS entries in the GDT but before
638 * loading segments that might reference them.
639 */
640 arch_end_context_switch(next_p);
641
642 /* Switch DS and ES.
643 *
644 * Reading them only returns the selectors, but writing them (if
645 * nonzero) loads the full descriptor from the GDT or LDT. The
646 * LDT for next is loaded in switch_mm, and the GDT is loaded
647 * above.
648 *
649 * We therefore need to write new values to the segment
650 * registers on every context switch unless both the new and old
651 * values are zero.
652 *
653 * Note that we don't need to do anything for CS and SS, as
654 * those are saved and restored as part of pt_regs.
655 */
656 savesegment(es, prev->es);
657 if (unlikely(next->es | prev->es))
658 loadsegment(es, next->es);
659
660 savesegment(ds, prev->ds);
661 if (unlikely(next->ds | prev->ds))
662 loadsegment(ds, next->ds);
663
664 x86_fsgsbase_load(prev, next);
665
666 x86_pkru_load(prev, next);
667
668 /*
669 * Switch the PDA and FPU contexts.
670 */
671 raw_cpu_write(pcpu_hot.current_task, next_p);
672 raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
673
674 switch_fpu_finish(next_p);
675
676 /* Reload sp0. */
677 update_task_stack(next_p);
678
679 switch_to_extra(prev_p, next_p);
680
681 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
682 /*
683 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
684 * does not update the cached descriptor. As a result, if we
685 * do SYSRET while SS is NULL, we'll end up in user mode with
686 * SS apparently equal to __USER_DS but actually unusable.
687 *
688 * The straightforward workaround would be to fix it up just
689 * before SYSRET, but that would slow down the system call
690 * fast paths. Instead, we ensure that SS is never NULL in
691 * system call context. We do this by replacing NULL SS
692 * selectors at every context switch. SYSCALL sets up a valid
693 * SS, so the only way to get NULL is to re-enter the kernel
694 * from CPL 3 through an interrupt. Since that can't happen
695 * in the same task as a running syscall, we are guaranteed to
696 * context switch between every interrupt vector entry and a
697 * subsequent SYSRET.
698 *
699 * We read SS first because SS reads are much faster than
700 * writes. Out of caution, we force SS to __KERNEL_DS even if
701 * it previously had a different non-NULL value.
702 */
703 unsigned short ss_sel;
704 savesegment(ss, ss_sel);
705 if (ss_sel != __KERNEL_DS)
706 loadsegment(ss, __KERNEL_DS);
707 }
708
709 /* Load the Intel cache allocation PQR MSR. */
710 resctrl_sched_in(next_p);
711
712 return prev_p;
713}
714
715void set_personality_64bit(void)
716{
717 /* inherit personality from parent */
718
719 /* Make sure to be in 64bit mode */
720 clear_thread_flag(TIF_ADDR32);
721 /* Pretend that this comes from a 64bit execve */
722 task_pt_regs(current)->orig_ax = __NR_execve;
723 current_thread_info()->status &= ~TS_COMPAT;
724 if (current->mm)
725 __set_bit(MM_CONTEXT_HAS_VSYSCALL, ¤t->mm->context.flags);
726
727 /* TBD: overwrites user setup. Should have two bits.
728 But 64bit processes have always behaved this way,
729 so it's not too bad. The main problem is just that
730 32bit children are affected again. */
731 current->personality &= ~READ_IMPLIES_EXEC;
732}
733
734static void __set_personality_x32(void)
735{
736#ifdef CONFIG_X86_X32_ABI
737 if (current->mm)
738 current->mm->context.flags = 0;
739
740 current->personality &= ~READ_IMPLIES_EXEC;
741 /*
742 * in_32bit_syscall() uses the presence of the x32 syscall bit
743 * flag to determine compat status. The x86 mmap() code relies on
744 * the syscall bitness so set x32 syscall bit right here to make
745 * in_32bit_syscall() work during exec().
746 *
747 * Pretend to come from a x32 execve.
748 */
749 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
750 current_thread_info()->status &= ~TS_COMPAT;
751#endif
752}
753
754static void __set_personality_ia32(void)
755{
756#ifdef CONFIG_IA32_EMULATION
757 if (current->mm) {
758 /*
759 * uprobes applied to this MM need to know this and
760 * cannot use user_64bit_mode() at that time.
761 */
762 __set_bit(MM_CONTEXT_UPROBE_IA32, ¤t->mm->context.flags);
763 }
764
765 current->personality |= force_personality32;
766 /* Prepare the first "return" to user space */
767 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
768 current_thread_info()->status |= TS_COMPAT;
769#endif
770}
771
772void set_personality_ia32(bool x32)
773{
774 /* Make sure to be in 32bit mode */
775 set_thread_flag(TIF_ADDR32);
776
777 if (x32)
778 __set_personality_x32();
779 else
780 __set_personality_ia32();
781}
782EXPORT_SYMBOL_GPL(set_personality_ia32);
783
784#ifdef CONFIG_CHECKPOINT_RESTORE
785static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
786{
787 int ret;
788
789 ret = map_vdso_once(image, addr);
790 if (ret)
791 return ret;
792
793 return (long)image->size;
794}
795#endif
796
797#ifdef CONFIG_ADDRESS_MASKING
798
799#define LAM_U57_BITS 6
800
801static void enable_lam_func(void *__mm)
802{
803 struct mm_struct *mm = __mm;
804 unsigned long lam;
805
806 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
807 lam = mm_lam_cr3_mask(mm);
808 write_cr3(__read_cr3() | lam);
809 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
810 }
811}
812
813static void mm_enable_lam(struct mm_struct *mm)
814{
815 mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
816 mm->context.untag_mask = ~GENMASK(62, 57);
817
818 /*
819 * Even though the process must still be single-threaded at this
820 * point, kernel threads may be using the mm. IPI those kernel
821 * threads if they exist.
822 */
823 on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
824 set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
825}
826
827static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
828{
829 if (!cpu_feature_enabled(X86_FEATURE_LAM))
830 return -ENODEV;
831
832 /* PTRACE_ARCH_PRCTL */
833 if (current->mm != mm)
834 return -EINVAL;
835
836 if (mm_valid_pasid(mm) &&
837 !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
838 return -EINVAL;
839
840 if (mmap_write_lock_killable(mm))
841 return -EINTR;
842
843 /*
844 * MM_CONTEXT_LOCK_LAM is set on clone. Prevent LAM from
845 * being enabled unless the process is single threaded:
846 */
847 if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
848 mmap_write_unlock(mm);
849 return -EBUSY;
850 }
851
852 if (!nr_bits || nr_bits > LAM_U57_BITS) {
853 mmap_write_unlock(mm);
854 return -EINVAL;
855 }
856
857 mm_enable_lam(mm);
858
859 mmap_write_unlock(mm);
860
861 return 0;
862}
863#endif
864
865long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
866{
867 int ret = 0;
868
869 switch (option) {
870 case ARCH_SET_GS: {
871 if (unlikely(arg2 >= TASK_SIZE_MAX))
872 return -EPERM;
873
874 preempt_disable();
875 /*
876 * ARCH_SET_GS has always overwritten the index
877 * and the base. Zero is the most sensible value
878 * to put in the index, and is the only value that
879 * makes any sense if FSGSBASE is unavailable.
880 */
881 if (task == current) {
882 loadseg(GS, 0);
883 x86_gsbase_write_cpu_inactive(arg2);
884
885 /*
886 * On non-FSGSBASE systems, save_base_legacy() expects
887 * that we also fill in thread.gsbase.
888 */
889 task->thread.gsbase = arg2;
890
891 } else {
892 task->thread.gsindex = 0;
893 x86_gsbase_write_task(task, arg2);
894 }
895 preempt_enable();
896 break;
897 }
898 case ARCH_SET_FS: {
899 /*
900 * Not strictly needed for %fs, but do it for symmetry
901 * with %gs
902 */
903 if (unlikely(arg2 >= TASK_SIZE_MAX))
904 return -EPERM;
905
906 preempt_disable();
907 /*
908 * Set the selector to 0 for the same reason
909 * as %gs above.
910 */
911 if (task == current) {
912 loadseg(FS, 0);
913 x86_fsbase_write_cpu(arg2);
914
915 /*
916 * On non-FSGSBASE systems, save_base_legacy() expects
917 * that we also fill in thread.fsbase.
918 */
919 task->thread.fsbase = arg2;
920 } else {
921 task->thread.fsindex = 0;
922 x86_fsbase_write_task(task, arg2);
923 }
924 preempt_enable();
925 break;
926 }
927 case ARCH_GET_FS: {
928 unsigned long base = x86_fsbase_read_task(task);
929
930 ret = put_user(base, (unsigned long __user *)arg2);
931 break;
932 }
933 case ARCH_GET_GS: {
934 unsigned long base = x86_gsbase_read_task(task);
935
936 ret = put_user(base, (unsigned long __user *)arg2);
937 break;
938 }
939
940#ifdef CONFIG_CHECKPOINT_RESTORE
941# ifdef CONFIG_X86_X32_ABI
942 case ARCH_MAP_VDSO_X32:
943 return prctl_map_vdso(&vdso_image_x32, arg2);
944# endif
945# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
946 case ARCH_MAP_VDSO_32:
947 return prctl_map_vdso(&vdso_image_32, arg2);
948# endif
949 case ARCH_MAP_VDSO_64:
950 return prctl_map_vdso(&vdso_image_64, arg2);
951#endif
952#ifdef CONFIG_ADDRESS_MASKING
953 case ARCH_GET_UNTAG_MASK:
954 return put_user(task->mm->context.untag_mask,
955 (unsigned long __user *)arg2);
956 case ARCH_ENABLE_TAGGED_ADDR:
957 return prctl_enable_tagged_addr(task->mm, arg2);
958 case ARCH_FORCE_TAGGED_SVA:
959 if (current != task)
960 return -EINVAL;
961 set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
962 return 0;
963 case ARCH_GET_MAX_TAG_BITS:
964 if (!cpu_feature_enabled(X86_FEATURE_LAM))
965 return put_user(0, (unsigned long __user *)arg2);
966 else
967 return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
968#endif
969 case ARCH_SHSTK_ENABLE:
970 case ARCH_SHSTK_DISABLE:
971 case ARCH_SHSTK_LOCK:
972 case ARCH_SHSTK_UNLOCK:
973 case ARCH_SHSTK_STATUS:
974 return shstk_prctl(task, option, arg2);
975 default:
976 ret = -EINVAL;
977 break;
978 }
979
980 return ret;
981}
982
983SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
984{
985 long ret;
986
987 ret = do_arch_prctl_64(current, option, arg2);
988 if (ret == -EINVAL)
989 ret = do_arch_prctl_common(option, arg2);
990
991 return ret;
992}
993
994#ifdef CONFIG_IA32_EMULATION
995COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
996{
997 return do_arch_prctl_common(option, arg2);
998}
999#endif
1000
1001unsigned long KSTK_ESP(struct task_struct *task)
1002{
1003 return task_pt_regs(task)->sp;
1004}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14/*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18#include <linux/cpu.h>
19#include <linux/errno.h>
20#include <linux/sched.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/fs.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/elfcore.h>
27#include <linux/smp.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/export.h>
33#include <linux/ptrace.h>
34#include <linux/notifier.h>
35#include <linux/kprobes.h>
36#include <linux/kdebug.h>
37#include <linux/prctl.h>
38#include <linux/uaccess.h>
39#include <linux/io.h>
40#include <linux/ftrace.h>
41#include <linux/syscalls.h>
42#include <linux/iommu.h>
43
44#include <asm/processor.h>
45#include <asm/pkru.h>
46#include <asm/fpu/sched.h>
47#include <asm/mmu_context.h>
48#include <asm/prctl.h>
49#include <asm/desc.h>
50#include <asm/proto.h>
51#include <asm/ia32.h>
52#include <asm/debugreg.h>
53#include <asm/switch_to.h>
54#include <asm/xen/hypervisor.h>
55#include <asm/vdso.h>
56#include <asm/resctrl.h>
57#include <asm/unistd.h>
58#include <asm/fsgsbase.h>
59#ifdef CONFIG_IA32_EMULATION
60/* Not included via unistd.h */
61#include <asm/unistd_32_ia32.h>
62#endif
63
64#include "process.h"
65
66/* Prints also some state that isn't saved in the pt_regs */
67void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
68 const char *log_lvl)
69{
70 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
71 unsigned long d0, d1, d2, d3, d6, d7;
72 unsigned int fsindex, gsindex;
73 unsigned int ds, es;
74
75 show_iret_regs(regs, log_lvl);
76
77 if (regs->orig_ax != -1)
78 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
79 else
80 pr_cont("\n");
81
82 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
83 log_lvl, regs->ax, regs->bx, regs->cx);
84 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
85 log_lvl, regs->dx, regs->si, regs->di);
86 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
87 log_lvl, regs->bp, regs->r8, regs->r9);
88 printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
89 log_lvl, regs->r10, regs->r11, regs->r12);
90 printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
91 log_lvl, regs->r13, regs->r14, regs->r15);
92
93 if (mode == SHOW_REGS_SHORT)
94 return;
95
96 if (mode == SHOW_REGS_USER) {
97 rdmsrl(MSR_FS_BASE, fs);
98 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
99 printk("%sFS: %016lx GS: %016lx\n",
100 log_lvl, fs, shadowgs);
101 return;
102 }
103
104 asm("movl %%ds,%0" : "=r" (ds));
105 asm("movl %%es,%0" : "=r" (es));
106 asm("movl %%fs,%0" : "=r" (fsindex));
107 asm("movl %%gs,%0" : "=r" (gsindex));
108
109 rdmsrl(MSR_FS_BASE, fs);
110 rdmsrl(MSR_GS_BASE, gs);
111 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
112
113 cr0 = read_cr0();
114 cr2 = read_cr2();
115 cr3 = __read_cr3();
116 cr4 = __read_cr4();
117
118 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
119 log_lvl, fs, fsindex, gs, gsindex, shadowgs);
120 printk("%sCS: %04lx DS: %04x ES: %04x CR0: %016lx\n",
121 log_lvl, regs->cs, ds, es, cr0);
122 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
123 log_lvl, cr2, cr3, cr4);
124
125 get_debugreg(d0, 0);
126 get_debugreg(d1, 1);
127 get_debugreg(d2, 2);
128 get_debugreg(d3, 3);
129 get_debugreg(d6, 6);
130 get_debugreg(d7, 7);
131
132 /* Only print out debug registers if they are in their non-default state. */
133 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
134 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
135 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
136 log_lvl, d0, d1, d2);
137 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
138 log_lvl, d3, d6, d7);
139 }
140
141 if (cpu_feature_enabled(X86_FEATURE_OSPKE))
142 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
143}
144
145void release_thread(struct task_struct *dead_task)
146{
147 WARN_ON(dead_task->mm);
148}
149
150enum which_selector {
151 FS,
152 GS
153};
154
155/*
156 * Out of line to be protected from kprobes and tracing. If this would be
157 * traced or probed than any access to a per CPU variable happens with
158 * the wrong GS.
159 *
160 * It is not used on Xen paravirt. When paravirt support is needed, it
161 * needs to be renamed with native_ prefix.
162 */
163static noinstr unsigned long __rdgsbase_inactive(void)
164{
165 unsigned long gsbase;
166
167 lockdep_assert_irqs_disabled();
168
169 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
170 native_swapgs();
171 gsbase = rdgsbase();
172 native_swapgs();
173 } else {
174 instrumentation_begin();
175 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
176 instrumentation_end();
177 }
178
179 return gsbase;
180}
181
182/*
183 * Out of line to be protected from kprobes and tracing. If this would be
184 * traced or probed than any access to a per CPU variable happens with
185 * the wrong GS.
186 *
187 * It is not used on Xen paravirt. When paravirt support is needed, it
188 * needs to be renamed with native_ prefix.
189 */
190static noinstr void __wrgsbase_inactive(unsigned long gsbase)
191{
192 lockdep_assert_irqs_disabled();
193
194 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
195 native_swapgs();
196 wrgsbase(gsbase);
197 native_swapgs();
198 } else {
199 instrumentation_begin();
200 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
201 instrumentation_end();
202 }
203}
204
205/*
206 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
207 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
208 * It's forcibly inlined because it'll generate better code and this function
209 * is hot.
210 */
211static __always_inline void save_base_legacy(struct task_struct *prev_p,
212 unsigned short selector,
213 enum which_selector which)
214{
215 if (likely(selector == 0)) {
216 /*
217 * On Intel (without X86_BUG_NULL_SEG), the segment base could
218 * be the pre-existing saved base or it could be zero. On AMD
219 * (with X86_BUG_NULL_SEG), the segment base could be almost
220 * anything.
221 *
222 * This branch is very hot (it's hit twice on almost every
223 * context switch between 64-bit programs), and avoiding
224 * the RDMSR helps a lot, so we just assume that whatever
225 * value is already saved is correct. This matches historical
226 * Linux behavior, so it won't break existing applications.
227 *
228 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
229 * report that the base is zero, it needs to actually be zero:
230 * see the corresponding logic in load_seg_legacy.
231 */
232 } else {
233 /*
234 * If the selector is 1, 2, or 3, then the base is zero on
235 * !X86_BUG_NULL_SEG CPUs and could be anything on
236 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
237 * has never attempted to preserve the base across context
238 * switches.
239 *
240 * If selector > 3, then it refers to a real segment, and
241 * saving the base isn't necessary.
242 */
243 if (which == FS)
244 prev_p->thread.fsbase = 0;
245 else
246 prev_p->thread.gsbase = 0;
247 }
248}
249
250static __always_inline void save_fsgs(struct task_struct *task)
251{
252 savesegment(fs, task->thread.fsindex);
253 savesegment(gs, task->thread.gsindex);
254 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
255 /*
256 * If FSGSBASE is enabled, we can't make any useful guesses
257 * about the base, and user code expects us to save the current
258 * value. Fortunately, reading the base directly is efficient.
259 */
260 task->thread.fsbase = rdfsbase();
261 task->thread.gsbase = __rdgsbase_inactive();
262 } else {
263 save_base_legacy(task, task->thread.fsindex, FS);
264 save_base_legacy(task, task->thread.gsindex, GS);
265 }
266}
267
268/*
269 * While a process is running,current->thread.fsbase and current->thread.gsbase
270 * may not match the corresponding CPU registers (see save_base_legacy()).
271 */
272void current_save_fsgs(void)
273{
274 unsigned long flags;
275
276 /* Interrupts need to be off for FSGSBASE */
277 local_irq_save(flags);
278 save_fsgs(current);
279 local_irq_restore(flags);
280}
281#if IS_ENABLED(CONFIG_KVM)
282EXPORT_SYMBOL_GPL(current_save_fsgs);
283#endif
284
285static __always_inline void loadseg(enum which_selector which,
286 unsigned short sel)
287{
288 if (which == FS)
289 loadsegment(fs, sel);
290 else
291 load_gs_index(sel);
292}
293
294static __always_inline void load_seg_legacy(unsigned short prev_index,
295 unsigned long prev_base,
296 unsigned short next_index,
297 unsigned long next_base,
298 enum which_selector which)
299{
300 if (likely(next_index <= 3)) {
301 /*
302 * The next task is using 64-bit TLS, is not using this
303 * segment at all, or is having fun with arcane CPU features.
304 */
305 if (next_base == 0) {
306 /*
307 * Nasty case: on AMD CPUs, we need to forcibly zero
308 * the base.
309 */
310 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
311 loadseg(which, __USER_DS);
312 loadseg(which, next_index);
313 } else {
314 /*
315 * We could try to exhaustively detect cases
316 * under which we can skip the segment load,
317 * but there's really only one case that matters
318 * for performance: if both the previous and
319 * next states are fully zeroed, we can skip
320 * the load.
321 *
322 * (This assumes that prev_base == 0 has no
323 * false positives. This is the case on
324 * Intel-style CPUs.)
325 */
326 if (likely(prev_index | next_index | prev_base))
327 loadseg(which, next_index);
328 }
329 } else {
330 if (prev_index != next_index)
331 loadseg(which, next_index);
332 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
333 next_base);
334 }
335 } else {
336 /*
337 * The next task is using a real segment. Loading the selector
338 * is sufficient.
339 */
340 loadseg(which, next_index);
341 }
342}
343
344/*
345 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
346 * is not XSTATE managed on context switch because that would require a
347 * lookup in the task's FPU xsave buffer and require to keep that updated
348 * in various places.
349 */
350static __always_inline void x86_pkru_load(struct thread_struct *prev,
351 struct thread_struct *next)
352{
353 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
354 return;
355
356 /* Stash the prev task's value: */
357 prev->pkru = rdpkru();
358
359 /*
360 * PKRU writes are slightly expensive. Avoid them when not
361 * strictly necessary:
362 */
363 if (prev->pkru != next->pkru)
364 wrpkru(next->pkru);
365}
366
367static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
368 struct thread_struct *next)
369{
370 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
371 /* Update the FS and GS selectors if they could have changed. */
372 if (unlikely(prev->fsindex || next->fsindex))
373 loadseg(FS, next->fsindex);
374 if (unlikely(prev->gsindex || next->gsindex))
375 loadseg(GS, next->gsindex);
376
377 /* Update the bases. */
378 wrfsbase(next->fsbase);
379 __wrgsbase_inactive(next->gsbase);
380 } else {
381 load_seg_legacy(prev->fsindex, prev->fsbase,
382 next->fsindex, next->fsbase, FS);
383 load_seg_legacy(prev->gsindex, prev->gsbase,
384 next->gsindex, next->gsbase, GS);
385 }
386}
387
388unsigned long x86_fsgsbase_read_task(struct task_struct *task,
389 unsigned short selector)
390{
391 unsigned short idx = selector >> 3;
392 unsigned long base;
393
394 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
395 if (unlikely(idx >= GDT_ENTRIES))
396 return 0;
397
398 /*
399 * There are no user segments in the GDT with nonzero bases
400 * other than the TLS segments.
401 */
402 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
403 return 0;
404
405 idx -= GDT_ENTRY_TLS_MIN;
406 base = get_desc_base(&task->thread.tls_array[idx]);
407 } else {
408#ifdef CONFIG_MODIFY_LDT_SYSCALL
409 struct ldt_struct *ldt;
410
411 /*
412 * If performance here mattered, we could protect the LDT
413 * with RCU. This is a slow path, though, so we can just
414 * take the mutex.
415 */
416 mutex_lock(&task->mm->context.lock);
417 ldt = task->mm->context.ldt;
418 if (unlikely(!ldt || idx >= ldt->nr_entries))
419 base = 0;
420 else
421 base = get_desc_base(ldt->entries + idx);
422 mutex_unlock(&task->mm->context.lock);
423#else
424 base = 0;
425#endif
426 }
427
428 return base;
429}
430
431unsigned long x86_gsbase_read_cpu_inactive(void)
432{
433 unsigned long gsbase;
434
435 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
436 unsigned long flags;
437
438 local_irq_save(flags);
439 gsbase = __rdgsbase_inactive();
440 local_irq_restore(flags);
441 } else {
442 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
443 }
444
445 return gsbase;
446}
447
448void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
449{
450 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
451 unsigned long flags;
452
453 local_irq_save(flags);
454 __wrgsbase_inactive(gsbase);
455 local_irq_restore(flags);
456 } else {
457 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
458 }
459}
460
461unsigned long x86_fsbase_read_task(struct task_struct *task)
462{
463 unsigned long fsbase;
464
465 if (task == current)
466 fsbase = x86_fsbase_read_cpu();
467 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
468 (task->thread.fsindex == 0))
469 fsbase = task->thread.fsbase;
470 else
471 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
472
473 return fsbase;
474}
475
476unsigned long x86_gsbase_read_task(struct task_struct *task)
477{
478 unsigned long gsbase;
479
480 if (task == current)
481 gsbase = x86_gsbase_read_cpu_inactive();
482 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
483 (task->thread.gsindex == 0))
484 gsbase = task->thread.gsbase;
485 else
486 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
487
488 return gsbase;
489}
490
491void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
492{
493 WARN_ON_ONCE(task == current);
494
495 task->thread.fsbase = fsbase;
496}
497
498void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
499{
500 WARN_ON_ONCE(task == current);
501
502 task->thread.gsbase = gsbase;
503}
504
505static void
506start_thread_common(struct pt_regs *regs, unsigned long new_ip,
507 unsigned long new_sp,
508 unsigned int _cs, unsigned int _ss, unsigned int _ds)
509{
510 WARN_ON_ONCE(regs != current_pt_regs());
511
512 if (static_cpu_has(X86_BUG_NULL_SEG)) {
513 /* Loading zero below won't clear the base. */
514 loadsegment(fs, __USER_DS);
515 load_gs_index(__USER_DS);
516 }
517
518 reset_thread_features();
519
520 loadsegment(fs, 0);
521 loadsegment(es, _ds);
522 loadsegment(ds, _ds);
523 load_gs_index(0);
524
525 regs->ip = new_ip;
526 regs->sp = new_sp;
527 regs->cs = _cs;
528 regs->ss = _ss;
529 regs->flags = X86_EFLAGS_IF;
530}
531
532void
533start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
534{
535 start_thread_common(regs, new_ip, new_sp,
536 __USER_CS, __USER_DS, 0);
537}
538EXPORT_SYMBOL_GPL(start_thread);
539
540#ifdef CONFIG_COMPAT
541void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
542{
543 start_thread_common(regs, new_ip, new_sp,
544 x32 ? __USER_CS : __USER32_CS,
545 __USER_DS, __USER_DS);
546}
547#endif
548
549/*
550 * switch_to(x,y) should switch tasks from x to y.
551 *
552 * This could still be optimized:
553 * - fold all the options into a flag word and test it with a single test.
554 * - could test fs/gs bitsliced
555 *
556 * Kprobes not supported here. Set the probe on schedule instead.
557 * Function graph tracer not supported too.
558 */
559__no_kmsan_checks
560__visible __notrace_funcgraph struct task_struct *
561__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
562{
563 struct thread_struct *prev = &prev_p->thread;
564 struct thread_struct *next = &next_p->thread;
565 struct fpu *prev_fpu = &prev->fpu;
566 int cpu = smp_processor_id();
567
568 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
569 this_cpu_read(pcpu_hot.hardirq_stack_inuse));
570
571 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
572 switch_fpu_prepare(prev_fpu, cpu);
573
574 /* We must save %fs and %gs before load_TLS() because
575 * %fs and %gs may be cleared by load_TLS().
576 *
577 * (e.g. xen_load_tls())
578 */
579 save_fsgs(prev_p);
580
581 /*
582 * Load TLS before restoring any segments so that segment loads
583 * reference the correct GDT entries.
584 */
585 load_TLS(next, cpu);
586
587 /*
588 * Leave lazy mode, flushing any hypercalls made here. This
589 * must be done after loading TLS entries in the GDT but before
590 * loading segments that might reference them.
591 */
592 arch_end_context_switch(next_p);
593
594 /* Switch DS and ES.
595 *
596 * Reading them only returns the selectors, but writing them (if
597 * nonzero) loads the full descriptor from the GDT or LDT. The
598 * LDT for next is loaded in switch_mm, and the GDT is loaded
599 * above.
600 *
601 * We therefore need to write new values to the segment
602 * registers on every context switch unless both the new and old
603 * values are zero.
604 *
605 * Note that we don't need to do anything for CS and SS, as
606 * those are saved and restored as part of pt_regs.
607 */
608 savesegment(es, prev->es);
609 if (unlikely(next->es | prev->es))
610 loadsegment(es, next->es);
611
612 savesegment(ds, prev->ds);
613 if (unlikely(next->ds | prev->ds))
614 loadsegment(ds, next->ds);
615
616 x86_fsgsbase_load(prev, next);
617
618 x86_pkru_load(prev, next);
619
620 /*
621 * Switch the PDA and FPU contexts.
622 */
623 raw_cpu_write(pcpu_hot.current_task, next_p);
624 raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
625
626 switch_fpu_finish();
627
628 /* Reload sp0. */
629 update_task_stack(next_p);
630
631 switch_to_extra(prev_p, next_p);
632
633 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
634 /*
635 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
636 * does not update the cached descriptor. As a result, if we
637 * do SYSRET while SS is NULL, we'll end up in user mode with
638 * SS apparently equal to __USER_DS but actually unusable.
639 *
640 * The straightforward workaround would be to fix it up just
641 * before SYSRET, but that would slow down the system call
642 * fast paths. Instead, we ensure that SS is never NULL in
643 * system call context. We do this by replacing NULL SS
644 * selectors at every context switch. SYSCALL sets up a valid
645 * SS, so the only way to get NULL is to re-enter the kernel
646 * from CPL 3 through an interrupt. Since that can't happen
647 * in the same task as a running syscall, we are guaranteed to
648 * context switch between every interrupt vector entry and a
649 * subsequent SYSRET.
650 *
651 * We read SS first because SS reads are much faster than
652 * writes. Out of caution, we force SS to __KERNEL_DS even if
653 * it previously had a different non-NULL value.
654 */
655 unsigned short ss_sel;
656 savesegment(ss, ss_sel);
657 if (ss_sel != __KERNEL_DS)
658 loadsegment(ss, __KERNEL_DS);
659 }
660
661 /* Load the Intel cache allocation PQR MSR. */
662 resctrl_sched_in(next_p);
663
664 return prev_p;
665}
666
667void set_personality_64bit(void)
668{
669 /* inherit personality from parent */
670
671 /* Make sure to be in 64bit mode */
672 clear_thread_flag(TIF_ADDR32);
673 /* Pretend that this comes from a 64bit execve */
674 task_pt_regs(current)->orig_ax = __NR_execve;
675 current_thread_info()->status &= ~TS_COMPAT;
676 if (current->mm)
677 __set_bit(MM_CONTEXT_HAS_VSYSCALL, ¤t->mm->context.flags);
678
679 /* TBD: overwrites user setup. Should have two bits.
680 But 64bit processes have always behaved this way,
681 so it's not too bad. The main problem is just that
682 32bit children are affected again. */
683 current->personality &= ~READ_IMPLIES_EXEC;
684}
685
686static void __set_personality_x32(void)
687{
688#ifdef CONFIG_X86_X32_ABI
689 if (current->mm)
690 current->mm->context.flags = 0;
691
692 current->personality &= ~READ_IMPLIES_EXEC;
693 /*
694 * in_32bit_syscall() uses the presence of the x32 syscall bit
695 * flag to determine compat status. The x86 mmap() code relies on
696 * the syscall bitness so set x32 syscall bit right here to make
697 * in_32bit_syscall() work during exec().
698 *
699 * Pretend to come from a x32 execve.
700 */
701 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
702 current_thread_info()->status &= ~TS_COMPAT;
703#endif
704}
705
706static void __set_personality_ia32(void)
707{
708#ifdef CONFIG_IA32_EMULATION
709 if (current->mm) {
710 /*
711 * uprobes applied to this MM need to know this and
712 * cannot use user_64bit_mode() at that time.
713 */
714 __set_bit(MM_CONTEXT_UPROBE_IA32, ¤t->mm->context.flags);
715 }
716
717 current->personality |= force_personality32;
718 /* Prepare the first "return" to user space */
719 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
720 current_thread_info()->status |= TS_COMPAT;
721#endif
722}
723
724void set_personality_ia32(bool x32)
725{
726 /* Make sure to be in 32bit mode */
727 set_thread_flag(TIF_ADDR32);
728
729 if (x32)
730 __set_personality_x32();
731 else
732 __set_personality_ia32();
733}
734EXPORT_SYMBOL_GPL(set_personality_ia32);
735
736#ifdef CONFIG_CHECKPOINT_RESTORE
737static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
738{
739 int ret;
740
741 ret = map_vdso_once(image, addr);
742 if (ret)
743 return ret;
744
745 return (long)image->size;
746}
747#endif
748
749#ifdef CONFIG_ADDRESS_MASKING
750
751#define LAM_U57_BITS 6
752
753static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
754{
755 if (!cpu_feature_enabled(X86_FEATURE_LAM))
756 return -ENODEV;
757
758 /* PTRACE_ARCH_PRCTL */
759 if (current->mm != mm)
760 return -EINVAL;
761
762 if (mm_valid_pasid(mm) &&
763 !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
764 return -EINVAL;
765
766 if (mmap_write_lock_killable(mm))
767 return -EINTR;
768
769 if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
770 mmap_write_unlock(mm);
771 return -EBUSY;
772 }
773
774 if (!nr_bits) {
775 mmap_write_unlock(mm);
776 return -EINVAL;
777 } else if (nr_bits <= LAM_U57_BITS) {
778 mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
779 mm->context.untag_mask = ~GENMASK(62, 57);
780 } else {
781 mmap_write_unlock(mm);
782 return -EINVAL;
783 }
784
785 write_cr3(__read_cr3() | mm->context.lam_cr3_mask);
786 set_tlbstate_lam_mode(mm);
787 set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
788
789 mmap_write_unlock(mm);
790
791 return 0;
792}
793#endif
794
795long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
796{
797 int ret = 0;
798
799 switch (option) {
800 case ARCH_SET_GS: {
801 if (unlikely(arg2 >= TASK_SIZE_MAX))
802 return -EPERM;
803
804 preempt_disable();
805 /*
806 * ARCH_SET_GS has always overwritten the index
807 * and the base. Zero is the most sensible value
808 * to put in the index, and is the only value that
809 * makes any sense if FSGSBASE is unavailable.
810 */
811 if (task == current) {
812 loadseg(GS, 0);
813 x86_gsbase_write_cpu_inactive(arg2);
814
815 /*
816 * On non-FSGSBASE systems, save_base_legacy() expects
817 * that we also fill in thread.gsbase.
818 */
819 task->thread.gsbase = arg2;
820
821 } else {
822 task->thread.gsindex = 0;
823 x86_gsbase_write_task(task, arg2);
824 }
825 preempt_enable();
826 break;
827 }
828 case ARCH_SET_FS: {
829 /*
830 * Not strictly needed for %fs, but do it for symmetry
831 * with %gs
832 */
833 if (unlikely(arg2 >= TASK_SIZE_MAX))
834 return -EPERM;
835
836 preempt_disable();
837 /*
838 * Set the selector to 0 for the same reason
839 * as %gs above.
840 */
841 if (task == current) {
842 loadseg(FS, 0);
843 x86_fsbase_write_cpu(arg2);
844
845 /*
846 * On non-FSGSBASE systems, save_base_legacy() expects
847 * that we also fill in thread.fsbase.
848 */
849 task->thread.fsbase = arg2;
850 } else {
851 task->thread.fsindex = 0;
852 x86_fsbase_write_task(task, arg2);
853 }
854 preempt_enable();
855 break;
856 }
857 case ARCH_GET_FS: {
858 unsigned long base = x86_fsbase_read_task(task);
859
860 ret = put_user(base, (unsigned long __user *)arg2);
861 break;
862 }
863 case ARCH_GET_GS: {
864 unsigned long base = x86_gsbase_read_task(task);
865
866 ret = put_user(base, (unsigned long __user *)arg2);
867 break;
868 }
869
870#ifdef CONFIG_CHECKPOINT_RESTORE
871# ifdef CONFIG_X86_X32_ABI
872 case ARCH_MAP_VDSO_X32:
873 return prctl_map_vdso(&vdso_image_x32, arg2);
874# endif
875# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
876 case ARCH_MAP_VDSO_32:
877 return prctl_map_vdso(&vdso_image_32, arg2);
878# endif
879 case ARCH_MAP_VDSO_64:
880 return prctl_map_vdso(&vdso_image_64, arg2);
881#endif
882#ifdef CONFIG_ADDRESS_MASKING
883 case ARCH_GET_UNTAG_MASK:
884 return put_user(task->mm->context.untag_mask,
885 (unsigned long __user *)arg2);
886 case ARCH_ENABLE_TAGGED_ADDR:
887 return prctl_enable_tagged_addr(task->mm, arg2);
888 case ARCH_FORCE_TAGGED_SVA:
889 if (current != task)
890 return -EINVAL;
891 set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
892 return 0;
893 case ARCH_GET_MAX_TAG_BITS:
894 if (!cpu_feature_enabled(X86_FEATURE_LAM))
895 return put_user(0, (unsigned long __user *)arg2);
896 else
897 return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
898#endif
899 case ARCH_SHSTK_ENABLE:
900 case ARCH_SHSTK_DISABLE:
901 case ARCH_SHSTK_LOCK:
902 case ARCH_SHSTK_UNLOCK:
903 case ARCH_SHSTK_STATUS:
904 return shstk_prctl(task, option, arg2);
905 default:
906 ret = -EINVAL;
907 break;
908 }
909
910 return ret;
911}
912
913SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
914{
915 long ret;
916
917 ret = do_arch_prctl_64(current, option, arg2);
918 if (ret == -EINVAL)
919 ret = do_arch_prctl_common(option, arg2);
920
921 return ret;
922}
923
924#ifdef CONFIG_IA32_EMULATION
925COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
926{
927 return do_arch_prctl_common(option, arg2);
928}
929#endif
930
931unsigned long KSTK_ESP(struct task_struct *task)
932{
933 return task_pt_regs(task)->sp;
934}