Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 *
   8 *  X86-64 port
   9 *	Andi Kleen.
  10 *
  11 *	CPU hotplug support - ashok.raj@intel.com
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of process handling..
  16 */
  17
 
  18#include <linux/cpu.h>
  19#include <linux/errno.h>
  20#include <linux/sched.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/fs.h>
  24#include <linux/kernel.h>
  25#include <linux/mm.h>
  26#include <linux/elfcore.h>
  27#include <linux/smp.h>
  28#include <linux/slab.h>
  29#include <linux/user.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/export.h>
  33#include <linux/ptrace.h>
  34#include <linux/notifier.h>
  35#include <linux/kprobes.h>
  36#include <linux/kdebug.h>
 
  37#include <linux/prctl.h>
  38#include <linux/uaccess.h>
  39#include <linux/io.h>
  40#include <linux/ftrace.h>
  41#include <linux/syscalls.h>
  42#include <linux/iommu.h>
  43
 
 
  44#include <asm/processor.h>
  45#include <asm/pkru.h>
  46#include <asm/fpu/sched.h>
  47#include <asm/mmu_context.h>
  48#include <asm/prctl.h>
  49#include <asm/desc.h>
  50#include <asm/proto.h>
  51#include <asm/ia32.h>
 
 
  52#include <asm/debugreg.h>
  53#include <asm/switch_to.h>
  54#include <asm/xen/hypervisor.h>
  55#include <asm/vdso.h>
  56#include <asm/resctrl.h>
  57#include <asm/unistd.h>
  58#include <asm/fsgsbase.h>
  59#include <asm/fred.h>
  60#ifdef CONFIG_IA32_EMULATION
  61/* Not included via unistd.h */
  62#include <asm/unistd_32_ia32.h>
  63#endif
  64
  65#include "process.h"
  66
  67/* Prints also some state that isn't saved in the pt_regs */
  68void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
  69		 const char *log_lvl)
  70{
  71	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
  72	unsigned long d0, d1, d2, d3, d6, d7;
  73	unsigned int fsindex, gsindex;
  74	unsigned int ds, es;
  75
  76	show_iret_regs(regs, log_lvl);
  77
  78	if (regs->orig_ax != -1)
  79		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
  80	else
  81		pr_cont("\n");
 
  82
  83	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
  84	       log_lvl, regs->ax, regs->bx, regs->cx);
  85	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
  86	       log_lvl, regs->dx, regs->si, regs->di);
  87	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
  88	       log_lvl, regs->bp, regs->r8, regs->r9);
  89	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
  90	       log_lvl, regs->r10, regs->r11, regs->r12);
  91	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
  92	       log_lvl, regs->r13, regs->r14, regs->r15);
 
  93
  94	if (mode == SHOW_REGS_SHORT)
 
 
  95		return;
 
 
  96
  97	if (mode == SHOW_REGS_USER) {
  98		rdmsrl(MSR_FS_BASE, fs);
  99		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 100		printk("%sFS:  %016lx GS:  %016lx\n",
 101		       log_lvl, fs, shadowgs);
 102		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	asm("movl %%ds,%0" : "=r" (ds));
 
 106	asm("movl %%es,%0" : "=r" (es));
 107	asm("movl %%fs,%0" : "=r" (fsindex));
 108	asm("movl %%gs,%0" : "=r" (gsindex));
 109
 110	rdmsrl(MSR_FS_BASE, fs);
 111	rdmsrl(MSR_GS_BASE, gs);
 112	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 113
 
 
 
 114	cr0 = read_cr0();
 115	cr2 = read_cr2();
 116	cr3 = __read_cr3();
 117	cr4 = __read_cr4();
 118
 119	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
 120	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
 121	printk("%sCS:  %04x DS: %04x ES: %04x CR0: %016lx\n",
 122		log_lvl, regs->cs, ds, es, cr0);
 123	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
 124		log_lvl, cr2, cr3, cr4);
 125
 126	get_debugreg(d0, 0);
 127	get_debugreg(d1, 1);
 128	get_debugreg(d2, 2);
 
 129	get_debugreg(d3, 3);
 130	get_debugreg(d6, 6);
 131	get_debugreg(d7, 7);
 132
 133	/* Only print out debug registers if they are in their non-default state. */
 134	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 135	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
 136		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
 137		       log_lvl, d0, d1, d2);
 138		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
 139		       log_lvl, d3, d6, d7);
 140	}
 141
 142	if (cr4 & X86_CR4_PKE)
 143		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
 144}
 145
 146void release_thread(struct task_struct *dead_task)
 147{
 148	WARN_ON(dead_task->mm);
 
 
 
 
 
 
 
 
 149}
 150
 151enum which_selector {
 152	FS,
 153	GS
 154};
 155
 156/*
 157 * Out of line to be protected from kprobes and tracing. If this would be
 158 * traced or probed than any access to a per CPU variable happens with
 159 * the wrong GS.
 160 *
 161 * It is not used on Xen paravirt. When paravirt support is needed, it
 162 * needs to be renamed with native_ prefix.
 163 */
 164static noinstr unsigned long __rdgsbase_inactive(void)
 165{
 166	unsigned long gsbase;
 167
 168	lockdep_assert_irqs_disabled();
 169
 170	/*
 171	 * SWAPGS is no longer needed thus NOT allowed with FRED because
 172	 * FRED transitions ensure that an operating system can _always_
 173	 * operate with its own GS base address:
 174	 * - For events that occur in ring 3, FRED event delivery swaps
 175	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
 176	 * - ERETU (the FRED transition that returns to ring 3) also swaps
 177	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
 178	 *
 179	 * And the operating system can still setup the GS segment for a
 180	 * user thread without the need of loading a user thread GS with:
 181	 * - Using LKGS, available with FRED, to modify other attributes
 182	 *   of the GS segment without compromising its ability always to
 183	 *   operate with its own GS base address.
 184	 * - Accessing the GS segment base address for a user thread as
 185	 *   before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
 186	 *
 187	 * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
 188	 * MSR instead of the GS segment’s descriptor cache. As such, the
 189	 * operating system never changes its runtime GS base address.
 190	 */
 191	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
 192	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
 193		native_swapgs();
 194		gsbase = rdgsbase();
 195		native_swapgs();
 196	} else {
 197		instrumentation_begin();
 198		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 199		instrumentation_end();
 200	}
 201
 202	return gsbase;
 203}
 204
 205/*
 206 * Out of line to be protected from kprobes and tracing. If this would be
 207 * traced or probed than any access to a per CPU variable happens with
 208 * the wrong GS.
 209 *
 210 * It is not used on Xen paravirt. When paravirt support is needed, it
 211 * needs to be renamed with native_ prefix.
 212 */
 213static noinstr void __wrgsbase_inactive(unsigned long gsbase)
 214{
 215	lockdep_assert_irqs_disabled();
 216
 217	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
 218	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
 219		native_swapgs();
 220		wrgsbase(gsbase);
 221		native_swapgs();
 222	} else {
 223		instrumentation_begin();
 224		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 225		instrumentation_end();
 226	}
 227}
 228
 229/*
 230 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
 231 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
 232 * It's forcibly inlined because it'll generate better code and this function
 233 * is hot.
 234 */
 235static __always_inline void save_base_legacy(struct task_struct *prev_p,
 236					     unsigned short selector,
 237					     enum which_selector which)
 238{
 239	if (likely(selector == 0)) {
 240		/*
 241		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
 242		 * be the pre-existing saved base or it could be zero.  On AMD
 243		 * (with X86_BUG_NULL_SEG), the segment base could be almost
 244		 * anything.
 245		 *
 246		 * This branch is very hot (it's hit twice on almost every
 247		 * context switch between 64-bit programs), and avoiding
 248		 * the RDMSR helps a lot, so we just assume that whatever
 249		 * value is already saved is correct.  This matches historical
 250		 * Linux behavior, so it won't break existing applications.
 251		 *
 252		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
 253		 * report that the base is zero, it needs to actually be zero:
 254		 * see the corresponding logic in load_seg_legacy.
 255		 */
 256	} else {
 257		/*
 258		 * If the selector is 1, 2, or 3, then the base is zero on
 259		 * !X86_BUG_NULL_SEG CPUs and could be anything on
 260		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
 261		 * has never attempted to preserve the base across context
 262		 * switches.
 263		 *
 264		 * If selector > 3, then it refers to a real segment, and
 265		 * saving the base isn't necessary.
 266		 */
 267		if (which == FS)
 268			prev_p->thread.fsbase = 0;
 269		else
 270			prev_p->thread.gsbase = 0;
 271	}
 272}
 273
 274static __always_inline void save_fsgs(struct task_struct *task)
 
 
 275{
 276	savesegment(fs, task->thread.fsindex);
 277	savesegment(gs, task->thread.gsindex);
 278	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 279		/*
 280		 * If FSGSBASE is enabled, we can't make any useful guesses
 281		 * about the base, and user code expects us to save the current
 282		 * value.  Fortunately, reading the base directly is efficient.
 283		 */
 284		task->thread.fsbase = rdfsbase();
 285		task->thread.gsbase = __rdgsbase_inactive();
 286	} else {
 287		save_base_legacy(task, task->thread.fsindex, FS);
 288		save_base_legacy(task, task->thread.gsindex, GS);
 289	}
 290}
 291
 292/*
 293 * While a process is running,current->thread.fsbase and current->thread.gsbase
 294 * may not match the corresponding CPU registers (see save_base_legacy()).
 295 */
 296void current_save_fsgs(void)
 297{
 298	unsigned long flags;
 299
 300	/* Interrupts need to be off for FSGSBASE */
 301	local_irq_save(flags);
 302	save_fsgs(current);
 303	local_irq_restore(flags);
 304}
 305#if IS_ENABLED(CONFIG_KVM)
 306EXPORT_SYMBOL_GPL(current_save_fsgs);
 307#endif
 308
 309static __always_inline void loadseg(enum which_selector which,
 310				    unsigned short sel)
 311{
 312	if (which == FS)
 313		loadsegment(fs, sel);
 314	else
 315		load_gs_index(sel);
 316}
 317
 318static __always_inline void load_seg_legacy(unsigned short prev_index,
 319					    unsigned long prev_base,
 320					    unsigned short next_index,
 321					    unsigned long next_base,
 322					    enum which_selector which)
 323{
 324	if (likely(next_index <= 3)) {
 325		/*
 326		 * The next task is using 64-bit TLS, is not using this
 327		 * segment at all, or is having fun with arcane CPU features.
 328		 */
 329		if (next_base == 0) {
 330			/*
 331			 * Nasty case: on AMD CPUs, we need to forcibly zero
 332			 * the base.
 333			 */
 334			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
 335				loadseg(which, __USER_DS);
 336				loadseg(which, next_index);
 337			} else {
 338				/*
 339				 * We could try to exhaustively detect cases
 340				 * under which we can skip the segment load,
 341				 * but there's really only one case that matters
 342				 * for performance: if both the previous and
 343				 * next states are fully zeroed, we can skip
 344				 * the load.
 345				 *
 346				 * (This assumes that prev_base == 0 has no
 347				 * false positives.  This is the case on
 348				 * Intel-style CPUs.)
 349				 */
 350				if (likely(prev_index | next_index | prev_base))
 351					loadseg(which, next_index);
 352			}
 353		} else {
 354			if (prev_index != next_index)
 355				loadseg(which, next_index);
 356			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
 357			       next_base);
 358		}
 359	} else {
 360		/*
 361		 * The next task is using a real segment.  Loading the selector
 362		 * is sufficient.
 363		 */
 364		loadseg(which, next_index);
 365	}
 366}
 367
 368/*
 369 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
 370 * is not XSTATE managed on context switch because that would require a
 371 * lookup in the task's FPU xsave buffer and require to keep that updated
 372 * in various places.
 373 */
 374static __always_inline void x86_pkru_load(struct thread_struct *prev,
 375					  struct thread_struct *next)
 376{
 377	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 378		return;
 379
 380	/* Stash the prev task's value: */
 381	prev->pkru = rdpkru();
 382
 383	/*
 384	 * PKRU writes are slightly expensive.  Avoid them when not
 385	 * strictly necessary:
 386	 */
 387	if (prev->pkru != next->pkru)
 388		wrpkru(next->pkru);
 389}
 390
 391static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
 392					      struct thread_struct *next)
 393{
 394	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 395		/* Update the FS and GS selectors if they could have changed. */
 396		if (unlikely(prev->fsindex || next->fsindex))
 397			loadseg(FS, next->fsindex);
 398		if (unlikely(prev->gsindex || next->gsindex))
 399			loadseg(GS, next->gsindex);
 400
 401		/* Update the bases. */
 402		wrfsbase(next->fsbase);
 403		__wrgsbase_inactive(next->gsbase);
 404	} else {
 405		load_seg_legacy(prev->fsindex, prev->fsbase,
 406				next->fsindex, next->fsbase, FS);
 407		load_seg_legacy(prev->gsindex, prev->gsbase,
 408				next->gsindex, next->gsbase, GS);
 409	}
 410}
 411
 412unsigned long x86_fsgsbase_read_task(struct task_struct *task,
 413				     unsigned short selector)
 414{
 415	unsigned short idx = selector >> 3;
 416	unsigned long base;
 417
 418	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
 419		if (unlikely(idx >= GDT_ENTRIES))
 420			return 0;
 421
 422		/*
 423		 * There are no user segments in the GDT with nonzero bases
 424		 * other than the TLS segments.
 425		 */
 426		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
 427			return 0;
 428
 429		idx -= GDT_ENTRY_TLS_MIN;
 430		base = get_desc_base(&task->thread.tls_array[idx]);
 431	} else {
 432#ifdef CONFIG_MODIFY_LDT_SYSCALL
 433		struct ldt_struct *ldt;
 434
 435		/*
 436		 * If performance here mattered, we could protect the LDT
 437		 * with RCU.  This is a slow path, though, so we can just
 438		 * take the mutex.
 439		 */
 440		mutex_lock(&task->mm->context.lock);
 441		ldt = task->mm->context.ldt;
 442		if (unlikely(!ldt || idx >= ldt->nr_entries))
 443			base = 0;
 444		else
 445			base = get_desc_base(ldt->entries + idx);
 446		mutex_unlock(&task->mm->context.lock);
 447#else
 448		base = 0;
 449#endif
 
 
 
 
 
 
 
 
 
 450	}
 451
 452	return base;
 453}
 454
 455unsigned long x86_gsbase_read_cpu_inactive(void)
 456{
 457	unsigned long gsbase;
 458
 459	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 460		unsigned long flags;
 461
 462		local_irq_save(flags);
 463		gsbase = __rdgsbase_inactive();
 464		local_irq_restore(flags);
 465	} else {
 466		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 467	}
 468
 469	return gsbase;
 470}
 471
 472void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
 473{
 474	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 475		unsigned long flags;
 476
 477		local_irq_save(flags);
 478		__wrgsbase_inactive(gsbase);
 479		local_irq_restore(flags);
 480	} else {
 481		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 482	}
 483}
 484
 485unsigned long x86_fsbase_read_task(struct task_struct *task)
 486{
 487	unsigned long fsbase;
 488
 489	if (task == current)
 490		fsbase = x86_fsbase_read_cpu();
 491	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 492		 (task->thread.fsindex == 0))
 493		fsbase = task->thread.fsbase;
 494	else
 495		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
 496
 497	return fsbase;
 498}
 499
 500unsigned long x86_gsbase_read_task(struct task_struct *task)
 501{
 502	unsigned long gsbase;
 503
 504	if (task == current)
 505		gsbase = x86_gsbase_read_cpu_inactive();
 506	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 507		 (task->thread.gsindex == 0))
 508		gsbase = task->thread.gsbase;
 509	else
 510		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
 511
 512	return gsbase;
 513}
 514
 515void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
 516{
 517	WARN_ON_ONCE(task == current);
 518
 519	task->thread.fsbase = fsbase;
 520}
 521
 522void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
 523{
 524	WARN_ON_ONCE(task == current);
 525
 526	task->thread.gsbase = gsbase;
 527}
 528
 529static void
 530start_thread_common(struct pt_regs *regs, unsigned long new_ip,
 531		    unsigned long new_sp,
 532		    u16 _cs, u16 _ss, u16 _ds)
 533{
 534	WARN_ON_ONCE(regs != current_pt_regs());
 535
 536	if (static_cpu_has(X86_BUG_NULL_SEG)) {
 537		/* Loading zero below won't clear the base. */
 538		loadsegment(fs, __USER_DS);
 539		load_gs_index(__USER_DS);
 540	}
 541
 542	reset_thread_features();
 543
 544	loadsegment(fs, 0);
 545	loadsegment(es, _ds);
 546	loadsegment(ds, _ds);
 547	load_gs_index(0);
 548
 549	regs->ip	= new_ip;
 550	regs->sp	= new_sp;
 551	regs->csx	= _cs;
 552	regs->ssx	= _ss;
 553	/*
 554	 * Allow single-step trap and NMI when starting a new task, thus
 555	 * once the new task enters user space, single-step trap and NMI
 556	 * are both enabled immediately.
 557	 *
 558	 * Entering a new task is logically speaking a return from a
 559	 * system call (exec, fork, clone, etc.). As such, if ptrace
 560	 * enables single stepping a single step exception should be
 561	 * allowed to trigger immediately upon entering user space.
 562	 * This is not optional.
 563	 *
 564	 * NMI should *never* be disabled in user space. As such, this
 565	 * is an optional, opportunistic way to catch errors.
 566	 *
 567	 * Paranoia: High-order 48 bits above the lowest 16 bit SS are
 568	 * discarded by the legacy IRET instruction on all Intel, AMD,
 569	 * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
 570	 * even when FRED is not enabled. But we choose the safer side
 571	 * to use these bits only when FRED is enabled.
 572	 */
 573	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
 574		regs->fred_ss.swevent	= true;
 575		regs->fred_ss.nmi	= true;
 576	}
 577
 578	regs->flags	= X86_EFLAGS_IF | X86_EFLAGS_FIXED;
 579}
 580
 581void
 582start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 583{
 584	start_thread_common(regs, new_ip, new_sp,
 585			    __USER_CS, __USER_DS, 0);
 586}
 587EXPORT_SYMBOL_GPL(start_thread);
 588
 589#ifdef CONFIG_COMPAT
 590void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
 591{
 592	start_thread_common(regs, new_ip, new_sp,
 593			    x32 ? __USER_CS : __USER32_CS,
 594			    __USER_DS, __USER_DS);
 595}
 596#endif
 597
 598/*
 599 *	switch_to(x,y) should switch tasks from x to y.
 600 *
 601 * This could still be optimized:
 602 * - fold all the options into a flag word and test it with a single test.
 603 * - could test fs/gs bitsliced
 604 *
 605 * Kprobes not supported here. Set the probe on schedule instead.
 606 * Function graph tracer not supported too.
 607 */
 608__no_kmsan_checks
 609__visible __notrace_funcgraph struct task_struct *
 610__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 611{
 612	struct thread_struct *prev = &prev_p->thread;
 613	struct thread_struct *next = &next_p->thread;
 614	int cpu = smp_processor_id();
 615
 616	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
 617		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
 618
 619	if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
 620		switch_fpu_prepare(prev_p, cpu);
 621
 622	/* We must save %fs and %gs before load_TLS() because
 623	 * %fs and %gs may be cleared by load_TLS().
 624	 *
 625	 * (e.g. xen_load_tls())
 626	 */
 627	save_fsgs(prev_p);
 628
 629	/*
 630	 * Load TLS before restoring any segments so that segment loads
 631	 * reference the correct GDT entries.
 632	 */
 633	load_TLS(next, cpu);
 
 
 
 
 
 634
 635	/*
 636	 * Leave lazy mode, flushing any hypercalls made here.  This
 637	 * must be done after loading TLS entries in the GDT but before
 638	 * loading segments that might reference them.
 639	 */
 640	arch_end_context_switch(next_p);
 641
 642	/* Switch DS and ES.
 643	 *
 644	 * Reading them only returns the selectors, but writing them (if
 645	 * nonzero) loads the full descriptor from the GDT or LDT.  The
 646	 * LDT for next is loaded in switch_mm, and the GDT is loaded
 647	 * above.
 648	 *
 649	 * We therefore need to write new values to the segment
 650	 * registers on every context switch unless both the new and old
 651	 * values are zero.
 652	 *
 653	 * Note that we don't need to do anything for CS and SS, as
 654	 * those are saved and restored as part of pt_regs.
 655	 */
 656	savesegment(es, prev->es);
 657	if (unlikely(next->es | prev->es))
 658		loadsegment(es, next->es);
 659
 660	savesegment(ds, prev->ds);
 661	if (unlikely(next->ds | prev->ds))
 662		loadsegment(ds, next->ds);
 663
 664	x86_fsgsbase_load(prev, next);
 665
 666	x86_pkru_load(prev, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668	/*
 669	 * Switch the PDA and FPU contexts.
 
 
 
 
 670	 */
 671	raw_cpu_write(pcpu_hot.current_task, next_p);
 672	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
 673
 674	switch_fpu_finish(next_p);
 675
 676	/* Reload sp0. */
 677	update_task_stack(next_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678
 679	switch_to_extra(prev_p, next_p);
 
 
 
 
 
 
 
 
 
 680
 681	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
 682		/*
 683		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
 684		 * does not update the cached descriptor.  As a result, if we
 685		 * do SYSRET while SS is NULL, we'll end up in user mode with
 686		 * SS apparently equal to __USER_DS but actually unusable.
 687		 *
 688		 * The straightforward workaround would be to fix it up just
 689		 * before SYSRET, but that would slow down the system call
 690		 * fast paths.  Instead, we ensure that SS is never NULL in
 691		 * system call context.  We do this by replacing NULL SS
 692		 * selectors at every context switch.  SYSCALL sets up a valid
 693		 * SS, so the only way to get NULL is to re-enter the kernel
 694		 * from CPL 3 through an interrupt.  Since that can't happen
 695		 * in the same task as a running syscall, we are guaranteed to
 696		 * context switch between every interrupt vector entry and a
 697		 * subsequent SYSRET.
 698		 *
 699		 * We read SS first because SS reads are much faster than
 700		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
 701		 * it previously had a different non-NULL value.
 702		 */
 703		unsigned short ss_sel;
 704		savesegment(ss, ss_sel);
 705		if (ss_sel != __KERNEL_DS)
 706			loadsegment(ss, __KERNEL_DS);
 707	}
 708
 709	/* Load the Intel cache allocation PQR MSR. */
 710	resctrl_sched_in(next_p);
 
 
 
 
 711
 712	return prev_p;
 713}
 714
 715void set_personality_64bit(void)
 716{
 717	/* inherit personality from parent */
 718
 719	/* Make sure to be in 64bit mode */
 720	clear_thread_flag(TIF_ADDR32);
 721	/* Pretend that this comes from a 64bit execve */
 722	task_pt_regs(current)->orig_ax = __NR_execve;
 723	current_thread_info()->status &= ~TS_COMPAT;
 724	if (current->mm)
 725		__set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
 726
 727	/* TBD: overwrites user setup. Should have two bits.
 728	   But 64bit processes have always behaved this way,
 729	   so it's not too bad. The main problem is just that
 730	   32bit children are affected again. */
 731	current->personality &= ~READ_IMPLIES_EXEC;
 732}
 733
 734static void __set_personality_x32(void)
 735{
 736#ifdef CONFIG_X86_X32_ABI
 737	if (current->mm)
 738		current->mm->context.flags = 0;
 739
 740	current->personality &= ~READ_IMPLIES_EXEC;
 741	/*
 742	 * in_32bit_syscall() uses the presence of the x32 syscall bit
 743	 * flag to determine compat status.  The x86 mmap() code relies on
 744	 * the syscall bitness so set x32 syscall bit right here to make
 745	 * in_32bit_syscall() work during exec().
 746	 *
 747	 * Pretend to come from a x32 execve.
 748	 */
 749	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
 750	current_thread_info()->status &= ~TS_COMPAT;
 751#endif
 752}
 753
 754static void __set_personality_ia32(void)
 755{
 756#ifdef CONFIG_IA32_EMULATION
 757	if (current->mm) {
 758		/*
 759		 * uprobes applied to this MM need to know this and
 760		 * cannot use user_64bit_mode() at that time.
 761		 */
 762		__set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
 763	}
 764
 765	current->personality |= force_personality32;
 766	/* Prepare the first "return" to user space */
 767	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
 768	current_thread_info()->status |= TS_COMPAT;
 769#endif
 770}
 771
 772void set_personality_ia32(bool x32)
 773{
 774	/* Make sure to be in 32bit mode */
 775	set_thread_flag(TIF_ADDR32);
 776
 777	if (x32)
 778		__set_personality_x32();
 779	else
 780		__set_personality_ia32();
 781}
 782EXPORT_SYMBOL_GPL(set_personality_ia32);
 783
 784#ifdef CONFIG_CHECKPOINT_RESTORE
 785static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
 786{
 787	int ret;
 788
 789	ret = map_vdso_once(image, addr);
 790	if (ret)
 791		return ret;
 792
 793	return (long)image->size;
 794}
 795#endif
 796
 797#ifdef CONFIG_ADDRESS_MASKING
 798
 799#define LAM_U57_BITS 6
 800
 801static void enable_lam_func(void *__mm)
 802{
 803	struct mm_struct *mm = __mm;
 804	unsigned long lam;
 805
 806	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
 807		lam = mm_lam_cr3_mask(mm);
 808		write_cr3(__read_cr3() | lam);
 809		cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
 810	}
 811}
 812
 813static void mm_enable_lam(struct mm_struct *mm)
 814{
 815	mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
 816	mm->context.untag_mask =  ~GENMASK(62, 57);
 817
 818	/*
 819	 * Even though the process must still be single-threaded at this
 820	 * point, kernel threads may be using the mm.  IPI those kernel
 821	 * threads if they exist.
 822	 */
 823	on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
 824	set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
 825}
 826
 827static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
 828{
 829	if (!cpu_feature_enabled(X86_FEATURE_LAM))
 830		return -ENODEV;
 831
 832	/* PTRACE_ARCH_PRCTL */
 833	if (current->mm != mm)
 834		return -EINVAL;
 835
 836	if (mm_valid_pasid(mm) &&
 837	    !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
 838		return -EINVAL;
 839
 840	if (mmap_write_lock_killable(mm))
 841		return -EINTR;
 842
 843	/*
 844	 * MM_CONTEXT_LOCK_LAM is set on clone.  Prevent LAM from
 845	 * being enabled unless the process is single threaded:
 846	 */
 847	if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
 848		mmap_write_unlock(mm);
 849		return -EBUSY;
 850	}
 851
 852	if (!nr_bits || nr_bits > LAM_U57_BITS) {
 853		mmap_write_unlock(mm);
 854		return -EINVAL;
 855	}
 856
 857	mm_enable_lam(mm);
 858
 859	mmap_write_unlock(mm);
 860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861	return 0;
 862}
 863#endif
 864
 865long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
 866{
 867	int ret = 0;
 
 
 868
 869	switch (option) {
 870	case ARCH_SET_GS: {
 871		if (unlikely(arg2 >= TASK_SIZE_MAX))
 872			return -EPERM;
 873
 874		preempt_disable();
 875		/*
 876		 * ARCH_SET_GS has always overwritten the index
 877		 * and the base. Zero is the most sensible value
 878		 * to put in the index, and is the only value that
 879		 * makes any sense if FSGSBASE is unavailable.
 880		 */
 881		if (task == current) {
 882			loadseg(GS, 0);
 883			x86_gsbase_write_cpu_inactive(arg2);
 884
 885			/*
 886			 * On non-FSGSBASE systems, save_base_legacy() expects
 887			 * that we also fill in thread.gsbase.
 888			 */
 889			task->thread.gsbase = arg2;
 890
 891		} else {
 892			task->thread.gsindex = 0;
 893			x86_gsbase_write_task(task, arg2);
 
 
 
 
 894		}
 895		preempt_enable();
 896		break;
 897	}
 898	case ARCH_SET_FS: {
 899		/*
 900		 * Not strictly needed for %fs, but do it for symmetry
 901		 * with %gs
 902		 */
 903		if (unlikely(arg2 >= TASK_SIZE_MAX))
 904			return -EPERM;
 905
 906		preempt_disable();
 907		/*
 908		 * Set the selector to 0 for the same reason
 909		 * as %gs above.
 910		 */
 911		if (task == current) {
 912			loadseg(FS, 0);
 913			x86_fsbase_write_cpu(arg2);
 914
 915			/*
 916			 * On non-FSGSBASE systems, save_base_legacy() expects
 917			 * that we also fill in thread.fsbase.
 918			 */
 919			task->thread.fsbase = arg2;
 920		} else {
 921			task->thread.fsindex = 0;
 922			x86_fsbase_write_task(task, arg2);
 
 
 
 
 
 
 923		}
 924		preempt_enable();
 925		break;
 926	}
 927	case ARCH_GET_FS: {
 928		unsigned long base = x86_fsbase_read_task(task);
 929
 930		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
 
 
 931		break;
 932	}
 933	case ARCH_GET_GS: {
 934		unsigned long base = x86_gsbase_read_task(task);
 935
 936		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
 
 
 
 
 
 
 
 937		break;
 938	}
 939
 940#ifdef CONFIG_CHECKPOINT_RESTORE
 941# ifdef CONFIG_X86_X32_ABI
 942	case ARCH_MAP_VDSO_X32:
 943		return prctl_map_vdso(&vdso_image_x32, arg2);
 944# endif
 945# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
 946	case ARCH_MAP_VDSO_32:
 947		return prctl_map_vdso(&vdso_image_32, arg2);
 948# endif
 949	case ARCH_MAP_VDSO_64:
 950		return prctl_map_vdso(&vdso_image_64, arg2);
 951#endif
 952#ifdef CONFIG_ADDRESS_MASKING
 953	case ARCH_GET_UNTAG_MASK:
 954		return put_user(task->mm->context.untag_mask,
 955				(unsigned long __user *)arg2);
 956	case ARCH_ENABLE_TAGGED_ADDR:
 957		return prctl_enable_tagged_addr(task->mm, arg2);
 958	case ARCH_FORCE_TAGGED_SVA:
 959		if (current != task)
 960			return -EINVAL;
 961		set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
 962		return 0;
 963	case ARCH_GET_MAX_TAG_BITS:
 964		if (!cpu_feature_enabled(X86_FEATURE_LAM))
 965			return put_user(0, (unsigned long __user *)arg2);
 966		else
 967			return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
 968#endif
 969	case ARCH_SHSTK_ENABLE:
 970	case ARCH_SHSTK_DISABLE:
 971	case ARCH_SHSTK_LOCK:
 972	case ARCH_SHSTK_UNLOCK:
 973	case ARCH_SHSTK_STATUS:
 974		return shstk_prctl(task, option, arg2);
 975	default:
 976		ret = -EINVAL;
 977		break;
 978	}
 979
 980	return ret;
 981}
 982
 983SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 984{
 985	long ret;
 986
 987	ret = do_arch_prctl_64(current, option, arg2);
 988	if (ret == -EINVAL)
 989		ret = do_arch_prctl_common(option, arg2);
 990
 991	return ret;
 992}
 993
 994#ifdef CONFIG_IA32_EMULATION
 995COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 996{
 997	return do_arch_prctl_common(option, arg2);
 998}
 999#endif
1000
1001unsigned long KSTK_ESP(struct task_struct *task)
1002{
1003	return task_pt_regs(task)->sp;
 
1004}
v3.1
 
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 *
  7 *  X86-64 port
  8 *	Andi Kleen.
  9 *
 10 *	CPU hotplug support - ashok.raj@intel.com
 11 */
 12
 13/*
 14 * This file handles the architecture-dependent parts of process handling..
 15 */
 16
 17#include <linux/stackprotector.h>
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 
 
 21#include <linux/fs.h>
 22#include <linux/kernel.h>
 23#include <linux/mm.h>
 24#include <linux/elfcore.h>
 25#include <linux/smp.h>
 26#include <linux/slab.h>
 27#include <linux/user.h>
 28#include <linux/interrupt.h>
 29#include <linux/delay.h>
 30#include <linux/module.h>
 31#include <linux/ptrace.h>
 32#include <linux/notifier.h>
 33#include <linux/kprobes.h>
 34#include <linux/kdebug.h>
 35#include <linux/tick.h>
 36#include <linux/prctl.h>
 37#include <linux/uaccess.h>
 38#include <linux/io.h>
 39#include <linux/ftrace.h>
 40#include <linux/cpuidle.h>
 
 41
 42#include <asm/pgtable.h>
 43#include <asm/system.h>
 44#include <asm/processor.h>
 45#include <asm/i387.h>
 
 46#include <asm/mmu_context.h>
 47#include <asm/prctl.h>
 48#include <asm/desc.h>
 49#include <asm/proto.h>
 50#include <asm/ia32.h>
 51#include <asm/idle.h>
 52#include <asm/syscalls.h>
 53#include <asm/debugreg.h>
 
 
 
 
 
 
 
 
 
 
 
 54
 55asmlinkage extern void ret_from_fork(void);
 56
 57DEFINE_PER_CPU(unsigned long, old_rsp);
 58static DEFINE_PER_CPU(unsigned char, is_idle);
 
 
 
 
 
 
 59
 60static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 61
 62void idle_notifier_register(struct notifier_block *n)
 63{
 64	atomic_notifier_chain_register(&idle_notifier, n);
 65}
 66EXPORT_SYMBOL_GPL(idle_notifier_register);
 67
 68void idle_notifier_unregister(struct notifier_block *n)
 69{
 70	atomic_notifier_chain_unregister(&idle_notifier, n);
 71}
 72EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 73
 74void enter_idle(void)
 75{
 76	percpu_write(is_idle, 1);
 77	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 78}
 79
 80static void __exit_idle(void)
 81{
 82	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
 83		return;
 84	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 85}
 86
 87/* Called from interrupts to signify idle end */
 88void exit_idle(void)
 89{
 90	/* idle loop has pid 0 */
 91	if (current->pid)
 92		return;
 93	__exit_idle();
 94}
 95
 96#ifndef CONFIG_SMP
 97static inline void play_dead(void)
 98{
 99	BUG();
100}
101#endif
102
103/*
104 * The idle thread. There's no useful work to be
105 * done, so just try to conserve power and have a
106 * low exit latency (ie sit in a loop waiting for
107 * somebody to say that they'd like to reschedule)
108 */
109void cpu_idle(void)
110{
111	current_thread_info()->status |= TS_POLLING;
112
113	/*
114	 * If we're the non-boot CPU, nothing set the stack canary up
115	 * for us.  CPU0 already has it initialized but no harm in
116	 * doing it again.  This is a good place for updating it, as
117	 * we wont ever return from this function (so the invalid
118	 * canaries already on the stack wont ever trigger).
119	 */
120	boot_init_stack_canary();
121
122	/* endless idle loop with no priority at all */
123	while (1) {
124		tick_nohz_stop_sched_tick(1);
125		while (!need_resched()) {
126
127			rmb();
128
129			if (cpu_is_offline(smp_processor_id()))
130				play_dead();
131			/*
132			 * Idle routines should keep interrupts disabled
133			 * from here on, until they go to idle.
134			 * Otherwise, idle callbacks can misfire.
135			 */
136			local_irq_disable();
137			enter_idle();
138			/* Don't trace irqs off for idle */
139			stop_critical_timings();
140			if (cpuidle_idle_call())
141				pm_idle();
142			start_critical_timings();
143
144			/* In many cases the interrupt that ended idle
145			   has already called exit_idle. But some idle
146			   loops can be woken up without interrupt. */
147			__exit_idle();
148		}
149
150		tick_nohz_restart_sched_tick();
151		preempt_enable_no_resched();
152		schedule();
153		preempt_disable();
154	}
155}
156
157/* Prints also some state that isn't saved in the pt_regs */
158void __show_regs(struct pt_regs *regs, int all)
159{
160	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
161	unsigned long d0, d1, d2, d3, d6, d7;
162	unsigned int fsindex, gsindex;
163	unsigned int ds, cs, es;
164
165	show_regs_common();
166	printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
167	printk_address(regs->ip, 1);
168	printk(KERN_DEFAULT "RSP: %04lx:%016lx  EFLAGS: %08lx\n", regs->ss,
169			regs->sp, regs->flags);
170	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
171	       regs->ax, regs->bx, regs->cx);
172	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
173	       regs->dx, regs->si, regs->di);
174	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
175	       regs->bp, regs->r8, regs->r9);
176	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
177	       regs->r10, regs->r11, regs->r12);
178	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
179	       regs->r13, regs->r14, regs->r15);
180
181	asm("movl %%ds,%0" : "=r" (ds));
182	asm("movl %%cs,%0" : "=r" (cs));
183	asm("movl %%es,%0" : "=r" (es));
184	asm("movl %%fs,%0" : "=r" (fsindex));
185	asm("movl %%gs,%0" : "=r" (gsindex));
186
187	rdmsrl(MSR_FS_BASE, fs);
188	rdmsrl(MSR_GS_BASE, gs);
189	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
190
191	if (!all)
192		return;
193
194	cr0 = read_cr0();
195	cr2 = read_cr2();
196	cr3 = read_cr3();
197	cr4 = read_cr4();
198
199	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
200	       fs, fsindex, gs, gsindex, shadowgs);
201	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
202			es, cr0);
203	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
204			cr4);
205
206	get_debugreg(d0, 0);
207	get_debugreg(d1, 1);
208	get_debugreg(d2, 2);
209	printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
210	get_debugreg(d3, 3);
211	get_debugreg(d6, 6);
212	get_debugreg(d7, 7);
213	printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
 
 
 
 
 
 
 
 
 
 
 
214}
215
216void release_thread(struct task_struct *dead_task)
217{
218	if (dead_task->mm) {
219		if (dead_task->mm->context.size) {
220			printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
221					dead_task->comm,
222					dead_task->mm->context.ldt,
223					dead_task->mm->context.size);
224			BUG();
225		}
226	}
227}
228
229static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
230{
231	struct user_desc ud = {
232		.base_addr = addr,
233		.limit = 0xfffff,
234		.seg_32bit = 1,
235		.limit_in_pages = 1,
236		.useable = 1,
237	};
238	struct desc_struct *desc = t->thread.tls_array;
239	desc += tls;
240	fill_ldt(desc, &ud);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241}
242
243static inline u32 read_32bit_tls(struct task_struct *t, int tls)
 
 
 
 
 
 
 
 
244{
245	return get_desc_base(&t->thread.tls_array[tls]);
 
 
 
 
 
 
 
 
 
 
 
246}
247
248/*
249 * This gets called before we allocate a new thread and copy
250 * the current task into it.
 
 
251 */
252void prepare_to_copy(struct task_struct *tsk)
 
 
253{
254	unlazy_fpu(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255}
256
257int copy_thread(unsigned long clone_flags, unsigned long sp,
258		unsigned long unused,
259	struct task_struct *p, struct pt_regs *regs)
260{
261	int err;
262	struct pt_regs *childregs;
263	struct task_struct *me = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
265	childregs = ((struct pt_regs *)
266			(THREAD_SIZE + task_stack_page(p))) - 1;
267	*childregs = *regs;
 
 
 
 
 
268
269	childregs->ax = 0;
270	if (user_mode(regs))
271		childregs->sp = sp;
 
 
272	else
273		childregs->sp = (unsigned long)childregs;
 
274
275	p->thread.sp = (unsigned long) childregs;
276	p->thread.sp0 = (unsigned long) (childregs+1);
277	p->thread.usersp = me->thread.usersp;
278
279	set_tsk_thread_flag(p, TIF_FORK);
280
281	p->thread.io_bitmap_ptr = NULL;
282
283	savesegment(gs, p->thread.gsindex);
284	p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
285	savesegment(fs, p->thread.fsindex);
286	p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
287	savesegment(es, p->thread.es);
288	savesegment(ds, p->thread.ds);
289
290	err = -ENOMEM;
291	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
292
293	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
294		p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
295		if (!p->thread.io_bitmap_ptr) {
296			p->thread.io_bitmap_max = 0;
297			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298		}
299		memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr,
300				IO_BITMAP_BYTES);
301		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 
 
 
302	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
304	/*
305	 * Set a new TLS for the child thread?
 
306	 */
307	if (clone_flags & CLONE_SETTLS) {
308#ifdef CONFIG_IA32_EMULATION
309		if (test_thread_flag(TIF_IA32))
310			err = do_set_thread_area(p, -1,
311				(struct user_desc __user *)childregs->si, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312		else
 
 
 
 
313#endif
314			err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8);
315		if (err)
316			goto out;
317	}
318	err = 0;
319out:
320	if (err && p->thread.io_bitmap_ptr) {
321		kfree(p->thread.io_bitmap_ptr);
322		p->thread.io_bitmap_max = 0;
323	}
324
325	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326}
327
328static void
329start_thread_common(struct pt_regs *regs, unsigned long new_ip,
330		    unsigned long new_sp,
331		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
332{
 
 
 
 
 
 
 
 
 
 
333	loadsegment(fs, 0);
334	loadsegment(es, _ds);
335	loadsegment(ds, _ds);
336	load_gs_index(0);
337	regs->ip		= new_ip;
338	regs->sp		= new_sp;
339	percpu_write(old_rsp, new_sp);
340	regs->cs		= _cs;
341	regs->ss		= _ss;
342	regs->flags		= X86_EFLAGS_IF;
343	/*
344	 * Free the old FP and other extended state
345	 */
346	free_thread_xstate(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347}
348
349void
350start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
351{
352	start_thread_common(regs, new_ip, new_sp,
353			    __USER_CS, __USER_DS, 0);
354}
 
355
356#ifdef CONFIG_IA32_EMULATION
357void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp)
358{
359	start_thread_common(regs, new_ip, new_sp,
360			    __USER32_CS, __USER32_DS, __USER32_DS);
 
361}
362#endif
363
364/*
365 *	switch_to(x,y) should switch tasks from x to y.
366 *
367 * This could still be optimized:
368 * - fold all the options into a flag word and test it with a single test.
369 * - could test fs/gs bitsliced
370 *
371 * Kprobes not supported here. Set the probe on schedule instead.
372 * Function graph tracer not supported too.
373 */
374__notrace_funcgraph struct task_struct *
 
375__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
376{
377	struct thread_struct *prev = &prev_p->thread;
378	struct thread_struct *next = &next_p->thread;
379	int cpu = smp_processor_id();
380	struct tss_struct *tss = &per_cpu(init_tss, cpu);
381	unsigned fsindex, gsindex;
382	bool preload_fpu;
 
 
 
 
 
 
 
 
 
 
383
384	/*
385	 * If the task has used fpu the last 5 timeslices, just do a full
386	 * restore of the math state immediately to avoid the trap; the
387	 * chances of needing FPU soon are obviously high now
388	 */
389	preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
390
391	/* we're going to use this soon, after a few expensive things */
392	if (preload_fpu)
393		prefetch(next->fpu.state);
394
395	/*
396	 * Reload esp0, LDT and the page table pointer:
 
 
397	 */
398	load_sp0(tss, next);
399
400	/*
401	 * Switch DS and ES.
402	 * This won't pick up thread selector changes, but I guess that is ok.
 
 
 
 
 
 
 
 
 
 
403	 */
404	savesegment(es, prev->es);
405	if (unlikely(next->es | prev->es))
406		loadsegment(es, next->es);
407
408	savesegment(ds, prev->ds);
409	if (unlikely(next->ds | prev->ds))
410		loadsegment(ds, next->ds);
411
 
412
413	/* We must save %fs and %gs before load_TLS() because
414	 * %fs and %gs may be cleared by load_TLS().
415	 *
416	 * (e.g. xen_load_tls())
417	 */
418	savesegment(fs, fsindex);
419	savesegment(gs, gsindex);
420
421	load_TLS(next, cpu);
422
423	/* Must be after DS reload */
424	__unlazy_fpu(prev_p);
425
426	/* Make sure cpu is ready for new context */
427	if (preload_fpu)
428		clts();
429
430	/*
431	 * Leave lazy mode, flushing any hypercalls made here.
432	 * This must be done before restoring TLS segments so
433	 * the GDT and LDT are properly updated, and must be
434	 * done before math_state_restore, so the TS bit is up
435	 * to date.
436	 */
437	arch_end_context_switch(next_p);
 
 
 
438
439	/*
440	 * Switch FS and GS.
441	 *
442	 * Segment register != 0 always requires a reload.  Also
443	 * reload when it has changed.  When prev process used 64bit
444	 * base always reload to avoid an information leak.
445	 */
446	if (unlikely(fsindex | next->fsindex | prev->fs)) {
447		loadsegment(fs, next->fsindex);
448		/*
449		 * Check if the user used a selector != 0; if yes
450		 *  clear 64bit base, since overloaded base is always
451		 *  mapped to the Null selector
452		 */
453		if (fsindex)
454			prev->fs = 0;
455	}
456	/* when next process has a 64bit base use it */
457	if (next->fs)
458		wrmsrl(MSR_FS_BASE, next->fs);
459	prev->fsindex = fsindex;
460
461	if (unlikely(gsindex | next->gsindex | prev->gs)) {
462		load_gs_index(next->gsindex);
463		if (gsindex)
464			prev->gs = 0;
465	}
466	if (next->gs)
467		wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
468	prev->gsindex = gsindex;
469
470	/*
471	 * Switch the PDA and FPU contexts.
472	 */
473	prev->usersp = percpu_read(old_rsp);
474	percpu_write(old_rsp, next->usersp);
475	percpu_write(current_task, next_p);
476
477	percpu_write(kernel_stack,
478		  (unsigned long)task_stack_page(next_p) +
479		  THREAD_SIZE - KERNEL_STACK_OFFSET);
480
481	/*
482	 * Now maybe reload the debug registers and handle I/O bitmaps
483	 */
484	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
485		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
486		__switch_to_xtra(prev_p, next_p, tss);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
488	/*
489	 * Preload the FPU context, now that we've determined that the
490	 * task is likely to be using it. 
491	 */
492	if (preload_fpu)
493		__math_state_restore();
494
495	return prev_p;
496}
497
498void set_personality_64bit(void)
499{
500	/* inherit personality from parent */
501
502	/* Make sure to be in 64bit mode */
503	clear_thread_flag(TIF_IA32);
504
505	/* Ensure the corresponding mm is not marked. */
 
506	if (current->mm)
507		current->mm->context.ia32_compat = 0;
508
509	/* TBD: overwrites user setup. Should have two bits.
510	   But 64bit processes have always behaved this way,
511	   so it's not too bad. The main problem is just that
512	   32bit childs are affected again. */
513	current->personality &= ~READ_IMPLIES_EXEC;
514}
515
516void set_personality_ia32(void)
517{
518	/* inherit personality from parent */
 
 
519
520	/* Make sure to be in 32bit mode */
521	set_thread_flag(TIF_IA32);
522	current->personality |= force_personality32;
 
 
 
 
 
 
 
 
 
 
523
524	/* Mark the associated mm as containing 32-bit tasks. */
525	if (current->mm)
526		current->mm->context.ia32_compat = 1;
 
 
 
 
 
 
 
527
 
528	/* Prepare the first "return" to user space */
 
529	current_thread_info()->status |= TS_COMPAT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530}
 
 
 
 
 
531
532unsigned long get_wchan(struct task_struct *p)
533{
534	unsigned long stack;
535	u64 fp, ip;
536	int count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537
538	if (!p || p == current || p->state == TASK_RUNNING)
539		return 0;
540	stack = (unsigned long)task_stack_page(p);
541	if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE)
542		return 0;
543	fp = *(u64 *)(p->thread.sp);
544	do {
545		if (fp < (unsigned long)stack ||
546		    fp >= (unsigned long)stack+THREAD_SIZE)
547			return 0;
548		ip = *(u64 *)(fp+8);
549		if (!in_sched_functions(ip))
550			return ip;
551		fp = *(u64 *)fp;
552	} while (count++ < 16);
553	return 0;
554}
 
555
556long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
557{
558	int ret = 0;
559	int doit = task == current;
560	int cpu;
561
562	switch (code) {
563	case ARCH_SET_GS:
564		if (addr >= TASK_SIZE_OF(task))
565			return -EPERM;
566		cpu = get_cpu();
567		/* handle small bases via the GDT because that's faster to
568		   switch. */
569		if (addr <= 0xffffffff) {
570			set_32bit_tls(task, GS_TLS, addr);
571			if (doit) {
572				load_TLS(&task->thread, cpu);
573				load_gs_index(GS_TLS_SEL);
574			}
575			task->thread.gsindex = GS_TLS_SEL;
576			task->thread.gs = 0;
 
 
 
 
 
 
 
577		} else {
578			task->thread.gsindex = 0;
579			task->thread.gs = addr;
580			if (doit) {
581				load_gs_index(0);
582				ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr);
583			}
584		}
585		put_cpu();
586		break;
587	case ARCH_SET_FS:
588		/* Not strictly needed for fs, but do it for symmetry
589		   with gs */
590		if (addr >= TASK_SIZE_OF(task))
 
 
 
591			return -EPERM;
592		cpu = get_cpu();
593		/* handle small bases via the GDT because that's faster to
594		   switch. */
595		if (addr <= 0xffffffff) {
596			set_32bit_tls(task, FS_TLS, addr);
597			if (doit) {
598				load_TLS(&task->thread, cpu);
599				loadsegment(fs, FS_TLS_SEL);
600			}
601			task->thread.fsindex = FS_TLS_SEL;
602			task->thread.fs = 0;
 
 
 
 
603		} else {
604			task->thread.fsindex = 0;
605			task->thread.fs = addr;
606			if (doit) {
607				/* set the selector to 0 to not confuse
608				   __switch_to */
609				loadsegment(fs, 0);
610				ret = checking_wrmsrl(MSR_FS_BASE, addr);
611			}
612		}
613		put_cpu();
614		break;
 
615	case ARCH_GET_FS: {
616		unsigned long base;
617		if (task->thread.fsindex == FS_TLS_SEL)
618			base = read_32bit_tls(task, FS_TLS);
619		else if (doit)
620			rdmsrl(MSR_FS_BASE, base);
621		else
622			base = task->thread.fs;
623		ret = put_user(base, (unsigned long __user *)addr);
624		break;
625	}
626	case ARCH_GET_GS: {
627		unsigned long base;
628		unsigned gsindex;
629		if (task->thread.gsindex == GS_TLS_SEL)
630			base = read_32bit_tls(task, GS_TLS);
631		else if (doit) {
632			savesegment(gs, gsindex);
633			if (gsindex)
634				rdmsrl(MSR_KERNEL_GS_BASE, base);
635			else
636				base = task->thread.gs;
637		} else
638			base = task->thread.gs;
639		ret = put_user(base, (unsigned long __user *)addr);
640		break;
641	}
642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643	default:
644		ret = -EINVAL;
645		break;
646	}
647
648	return ret;
649}
650
651long sys_arch_prctl(int code, unsigned long addr)
652{
653	return do_arch_prctl(current, code, addr);
 
 
 
 
 
 
654}
655
 
 
 
 
 
 
 
656unsigned long KSTK_ESP(struct task_struct *task)
657{
658	return (test_tsk_thread_flag(task, TIF_IA32)) ?
659			(task_pt_regs(task)->sp) : ((task)->thread.usersp);
660}