Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 *
   8 *  X86-64 port
   9 *	Andi Kleen.
  10 *
  11 *	CPU hotplug support - ashok.raj@intel.com
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of process handling..
  16 */
  17
  18#include <linux/cpu.h>
  19#include <linux/errno.h>
  20#include <linux/sched.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/fs.h>
  24#include <linux/kernel.h>
  25#include <linux/mm.h>
  26#include <linux/elfcore.h>
  27#include <linux/smp.h>
  28#include <linux/slab.h>
  29#include <linux/user.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/export.h>
  33#include <linux/ptrace.h>
  34#include <linux/notifier.h>
  35#include <linux/kprobes.h>
  36#include <linux/kdebug.h>
  37#include <linux/prctl.h>
  38#include <linux/uaccess.h>
  39#include <linux/io.h>
  40#include <linux/ftrace.h>
  41#include <linux/syscalls.h>
  42#include <linux/iommu.h>
  43
  44#include <asm/processor.h>
  45#include <asm/pkru.h>
  46#include <asm/fpu/sched.h>
  47#include <asm/mmu_context.h>
  48#include <asm/prctl.h>
  49#include <asm/desc.h>
  50#include <asm/proto.h>
  51#include <asm/ia32.h>
  52#include <asm/debugreg.h>
  53#include <asm/switch_to.h>
  54#include <asm/xen/hypervisor.h>
  55#include <asm/vdso.h>
  56#include <asm/resctrl.h>
  57#include <asm/unistd.h>
  58#include <asm/fsgsbase.h>
  59#include <asm/fred.h>
  60#ifdef CONFIG_IA32_EMULATION
  61/* Not included via unistd.h */
  62#include <asm/unistd_32_ia32.h>
  63#endif
  64
  65#include "process.h"
  66
  67/* Prints also some state that isn't saved in the pt_regs */
  68void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
  69		 const char *log_lvl)
  70{
  71	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
  72	unsigned long d0, d1, d2, d3, d6, d7;
  73	unsigned int fsindex, gsindex;
  74	unsigned int ds, es;
  75
  76	show_iret_regs(regs, log_lvl);
  77
  78	if (regs->orig_ax != -1)
  79		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
  80	else
  81		pr_cont("\n");
  82
  83	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
  84	       log_lvl, regs->ax, regs->bx, regs->cx);
  85	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
  86	       log_lvl, regs->dx, regs->si, regs->di);
  87	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
  88	       log_lvl, regs->bp, regs->r8, regs->r9);
  89	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
  90	       log_lvl, regs->r10, regs->r11, regs->r12);
  91	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
  92	       log_lvl, regs->r13, regs->r14, regs->r15);
  93
  94	if (mode == SHOW_REGS_SHORT)
  95		return;
  96
  97	if (mode == SHOW_REGS_USER) {
  98		rdmsrl(MSR_FS_BASE, fs);
  99		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 100		printk("%sFS:  %016lx GS:  %016lx\n",
 101		       log_lvl, fs, shadowgs);
 102		return;
 103	}
 104
 105	asm("movl %%ds,%0" : "=r" (ds));
 106	asm("movl %%es,%0" : "=r" (es));
 107	asm("movl %%fs,%0" : "=r" (fsindex));
 108	asm("movl %%gs,%0" : "=r" (gsindex));
 109
 110	rdmsrl(MSR_FS_BASE, fs);
 111	rdmsrl(MSR_GS_BASE, gs);
 112	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 113
 114	cr0 = read_cr0();
 115	cr2 = read_cr2();
 116	cr3 = __read_cr3();
 117	cr4 = __read_cr4();
 118
 119	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
 120	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
 121	printk("%sCS:  %04x DS: %04x ES: %04x CR0: %016lx\n",
 122		log_lvl, regs->cs, ds, es, cr0);
 123	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
 124		log_lvl, cr2, cr3, cr4);
 125
 126	get_debugreg(d0, 0);
 127	get_debugreg(d1, 1);
 128	get_debugreg(d2, 2);
 129	get_debugreg(d3, 3);
 130	get_debugreg(d6, 6);
 131	get_debugreg(d7, 7);
 132
 133	/* Only print out debug registers if they are in their non-default state. */
 134	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 135	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
 136		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
 137		       log_lvl, d0, d1, d2);
 138		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
 139		       log_lvl, d3, d6, d7);
 140	}
 141
 142	if (cr4 & X86_CR4_PKE)
 143		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
 144}
 145
 146void release_thread(struct task_struct *dead_task)
 147{
 148	WARN_ON(dead_task->mm);
 149}
 150
 151enum which_selector {
 152	FS,
 153	GS
 154};
 155
 156/*
 157 * Out of line to be protected from kprobes and tracing. If this would be
 158 * traced or probed than any access to a per CPU variable happens with
 159 * the wrong GS.
 160 *
 161 * It is not used on Xen paravirt. When paravirt support is needed, it
 162 * needs to be renamed with native_ prefix.
 163 */
 164static noinstr unsigned long __rdgsbase_inactive(void)
 165{
 166	unsigned long gsbase;
 167
 168	lockdep_assert_irqs_disabled();
 169
 170	/*
 171	 * SWAPGS is no longer needed thus NOT allowed with FRED because
 172	 * FRED transitions ensure that an operating system can _always_
 173	 * operate with its own GS base address:
 174	 * - For events that occur in ring 3, FRED event delivery swaps
 175	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
 176	 * - ERETU (the FRED transition that returns to ring 3) also swaps
 177	 *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
 178	 *
 179	 * And the operating system can still setup the GS segment for a
 180	 * user thread without the need of loading a user thread GS with:
 181	 * - Using LKGS, available with FRED, to modify other attributes
 182	 *   of the GS segment without compromising its ability always to
 183	 *   operate with its own GS base address.
 184	 * - Accessing the GS segment base address for a user thread as
 185	 *   before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
 186	 *
 187	 * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
 188	 * MSR instead of the GS segment’s descriptor cache. As such, the
 189	 * operating system never changes its runtime GS base address.
 190	 */
 191	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
 192	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
 193		native_swapgs();
 194		gsbase = rdgsbase();
 195		native_swapgs();
 196	} else {
 197		instrumentation_begin();
 198		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 199		instrumentation_end();
 200	}
 201
 202	return gsbase;
 203}
 204
 205/*
 206 * Out of line to be protected from kprobes and tracing. If this would be
 207 * traced or probed than any access to a per CPU variable happens with
 208 * the wrong GS.
 209 *
 210 * It is not used on Xen paravirt. When paravirt support is needed, it
 211 * needs to be renamed with native_ prefix.
 212 */
 213static noinstr void __wrgsbase_inactive(unsigned long gsbase)
 214{
 215	lockdep_assert_irqs_disabled();
 216
 217	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
 218	    !cpu_feature_enabled(X86_FEATURE_XENPV)) {
 219		native_swapgs();
 220		wrgsbase(gsbase);
 221		native_swapgs();
 222	} else {
 223		instrumentation_begin();
 224		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 225		instrumentation_end();
 226	}
 227}
 228
 229/*
 230 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
 231 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
 232 * It's forcibly inlined because it'll generate better code and this function
 233 * is hot.
 234 */
 235static __always_inline void save_base_legacy(struct task_struct *prev_p,
 236					     unsigned short selector,
 237					     enum which_selector which)
 238{
 239	if (likely(selector == 0)) {
 240		/*
 241		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
 242		 * be the pre-existing saved base or it could be zero.  On AMD
 243		 * (with X86_BUG_NULL_SEG), the segment base could be almost
 244		 * anything.
 245		 *
 246		 * This branch is very hot (it's hit twice on almost every
 247		 * context switch between 64-bit programs), and avoiding
 248		 * the RDMSR helps a lot, so we just assume that whatever
 249		 * value is already saved is correct.  This matches historical
 250		 * Linux behavior, so it won't break existing applications.
 251		 *
 252		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
 253		 * report that the base is zero, it needs to actually be zero:
 254		 * see the corresponding logic in load_seg_legacy.
 255		 */
 256	} else {
 257		/*
 258		 * If the selector is 1, 2, or 3, then the base is zero on
 259		 * !X86_BUG_NULL_SEG CPUs and could be anything on
 260		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
 261		 * has never attempted to preserve the base across context
 262		 * switches.
 263		 *
 264		 * If selector > 3, then it refers to a real segment, and
 265		 * saving the base isn't necessary.
 266		 */
 267		if (which == FS)
 268			prev_p->thread.fsbase = 0;
 269		else
 270			prev_p->thread.gsbase = 0;
 271	}
 272}
 273
 274static __always_inline void save_fsgs(struct task_struct *task)
 275{
 276	savesegment(fs, task->thread.fsindex);
 277	savesegment(gs, task->thread.gsindex);
 278	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 279		/*
 280		 * If FSGSBASE is enabled, we can't make any useful guesses
 281		 * about the base, and user code expects us to save the current
 282		 * value.  Fortunately, reading the base directly is efficient.
 283		 */
 284		task->thread.fsbase = rdfsbase();
 285		task->thread.gsbase = __rdgsbase_inactive();
 286	} else {
 287		save_base_legacy(task, task->thread.fsindex, FS);
 288		save_base_legacy(task, task->thread.gsindex, GS);
 289	}
 290}
 291
 292/*
 293 * While a process is running,current->thread.fsbase and current->thread.gsbase
 294 * may not match the corresponding CPU registers (see save_base_legacy()).
 295 */
 296void current_save_fsgs(void)
 297{
 298	unsigned long flags;
 299
 300	/* Interrupts need to be off for FSGSBASE */
 301	local_irq_save(flags);
 302	save_fsgs(current);
 303	local_irq_restore(flags);
 304}
 305#if IS_ENABLED(CONFIG_KVM)
 306EXPORT_SYMBOL_GPL(current_save_fsgs);
 307#endif
 308
 309static __always_inline void loadseg(enum which_selector which,
 310				    unsigned short sel)
 311{
 312	if (which == FS)
 313		loadsegment(fs, sel);
 314	else
 315		load_gs_index(sel);
 316}
 317
 318static __always_inline void load_seg_legacy(unsigned short prev_index,
 319					    unsigned long prev_base,
 320					    unsigned short next_index,
 321					    unsigned long next_base,
 322					    enum which_selector which)
 323{
 324	if (likely(next_index <= 3)) {
 325		/*
 326		 * The next task is using 64-bit TLS, is not using this
 327		 * segment at all, or is having fun with arcane CPU features.
 328		 */
 329		if (next_base == 0) {
 330			/*
 331			 * Nasty case: on AMD CPUs, we need to forcibly zero
 332			 * the base.
 333			 */
 334			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
 335				loadseg(which, __USER_DS);
 336				loadseg(which, next_index);
 337			} else {
 338				/*
 339				 * We could try to exhaustively detect cases
 340				 * under which we can skip the segment load,
 341				 * but there's really only one case that matters
 342				 * for performance: if both the previous and
 343				 * next states are fully zeroed, we can skip
 344				 * the load.
 345				 *
 346				 * (This assumes that prev_base == 0 has no
 347				 * false positives.  This is the case on
 348				 * Intel-style CPUs.)
 349				 */
 350				if (likely(prev_index | next_index | prev_base))
 351					loadseg(which, next_index);
 352			}
 353		} else {
 354			if (prev_index != next_index)
 355				loadseg(which, next_index);
 356			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
 357			       next_base);
 358		}
 359	} else {
 360		/*
 361		 * The next task is using a real segment.  Loading the selector
 362		 * is sufficient.
 363		 */
 364		loadseg(which, next_index);
 365	}
 366}
 367
 368/*
 369 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
 370 * is not XSTATE managed on context switch because that would require a
 371 * lookup in the task's FPU xsave buffer and require to keep that updated
 372 * in various places.
 373 */
 374static __always_inline void x86_pkru_load(struct thread_struct *prev,
 375					  struct thread_struct *next)
 376{
 377	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 378		return;
 379
 380	/* Stash the prev task's value: */
 381	prev->pkru = rdpkru();
 382
 383	/*
 384	 * PKRU writes are slightly expensive.  Avoid them when not
 385	 * strictly necessary:
 386	 */
 387	if (prev->pkru != next->pkru)
 388		wrpkru(next->pkru);
 389}
 390
 391static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
 392					      struct thread_struct *next)
 393{
 394	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
 395		/* Update the FS and GS selectors if they could have changed. */
 396		if (unlikely(prev->fsindex || next->fsindex))
 397			loadseg(FS, next->fsindex);
 398		if (unlikely(prev->gsindex || next->gsindex))
 399			loadseg(GS, next->gsindex);
 400
 401		/* Update the bases. */
 402		wrfsbase(next->fsbase);
 403		__wrgsbase_inactive(next->gsbase);
 404	} else {
 405		load_seg_legacy(prev->fsindex, prev->fsbase,
 406				next->fsindex, next->fsbase, FS);
 407		load_seg_legacy(prev->gsindex, prev->gsbase,
 408				next->gsindex, next->gsbase, GS);
 409	}
 410}
 411
 412unsigned long x86_fsgsbase_read_task(struct task_struct *task,
 413				     unsigned short selector)
 414{
 415	unsigned short idx = selector >> 3;
 416	unsigned long base;
 417
 418	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
 419		if (unlikely(idx >= GDT_ENTRIES))
 420			return 0;
 421
 422		/*
 423		 * There are no user segments in the GDT with nonzero bases
 424		 * other than the TLS segments.
 425		 */
 426		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
 427			return 0;
 428
 429		idx -= GDT_ENTRY_TLS_MIN;
 430		base = get_desc_base(&task->thread.tls_array[idx]);
 431	} else {
 432#ifdef CONFIG_MODIFY_LDT_SYSCALL
 433		struct ldt_struct *ldt;
 434
 435		/*
 436		 * If performance here mattered, we could protect the LDT
 437		 * with RCU.  This is a slow path, though, so we can just
 438		 * take the mutex.
 439		 */
 440		mutex_lock(&task->mm->context.lock);
 441		ldt = task->mm->context.ldt;
 442		if (unlikely(!ldt || idx >= ldt->nr_entries))
 443			base = 0;
 444		else
 445			base = get_desc_base(ldt->entries + idx);
 446		mutex_unlock(&task->mm->context.lock);
 447#else
 448		base = 0;
 449#endif
 450	}
 451
 452	return base;
 453}
 454
 455unsigned long x86_gsbase_read_cpu_inactive(void)
 456{
 457	unsigned long gsbase;
 458
 459	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 460		unsigned long flags;
 461
 462		local_irq_save(flags);
 463		gsbase = __rdgsbase_inactive();
 464		local_irq_restore(flags);
 465	} else {
 466		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
 467	}
 468
 469	return gsbase;
 470}
 471
 472void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
 473{
 474	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
 475		unsigned long flags;
 476
 477		local_irq_save(flags);
 478		__wrgsbase_inactive(gsbase);
 479		local_irq_restore(flags);
 480	} else {
 481		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
 482	}
 483}
 484
 485unsigned long x86_fsbase_read_task(struct task_struct *task)
 486{
 487	unsigned long fsbase;
 488
 489	if (task == current)
 490		fsbase = x86_fsbase_read_cpu();
 491	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 492		 (task->thread.fsindex == 0))
 493		fsbase = task->thread.fsbase;
 494	else
 495		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
 496
 497	return fsbase;
 498}
 499
 500unsigned long x86_gsbase_read_task(struct task_struct *task)
 501{
 502	unsigned long gsbase;
 503
 504	if (task == current)
 505		gsbase = x86_gsbase_read_cpu_inactive();
 506	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
 507		 (task->thread.gsindex == 0))
 508		gsbase = task->thread.gsbase;
 509	else
 510		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
 511
 512	return gsbase;
 513}
 514
 515void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
 516{
 517	WARN_ON_ONCE(task == current);
 518
 519	task->thread.fsbase = fsbase;
 520}
 521
 522void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
 523{
 524	WARN_ON_ONCE(task == current);
 525
 526	task->thread.gsbase = gsbase;
 527}
 528
 529static void
 530start_thread_common(struct pt_regs *regs, unsigned long new_ip,
 531		    unsigned long new_sp,
 532		    u16 _cs, u16 _ss, u16 _ds)
 533{
 534	WARN_ON_ONCE(regs != current_pt_regs());
 535
 536	if (static_cpu_has(X86_BUG_NULL_SEG)) {
 537		/* Loading zero below won't clear the base. */
 538		loadsegment(fs, __USER_DS);
 539		load_gs_index(__USER_DS);
 540	}
 541
 542	reset_thread_features();
 543
 544	loadsegment(fs, 0);
 545	loadsegment(es, _ds);
 546	loadsegment(ds, _ds);
 547	load_gs_index(0);
 548
 549	regs->ip	= new_ip;
 550	regs->sp	= new_sp;
 551	regs->csx	= _cs;
 552	regs->ssx	= _ss;
 553	/*
 554	 * Allow single-step trap and NMI when starting a new task, thus
 555	 * once the new task enters user space, single-step trap and NMI
 556	 * are both enabled immediately.
 557	 *
 558	 * Entering a new task is logically speaking a return from a
 559	 * system call (exec, fork, clone, etc.). As such, if ptrace
 560	 * enables single stepping a single step exception should be
 561	 * allowed to trigger immediately upon entering user space.
 562	 * This is not optional.
 563	 *
 564	 * NMI should *never* be disabled in user space. As such, this
 565	 * is an optional, opportunistic way to catch errors.
 566	 *
 567	 * Paranoia: High-order 48 bits above the lowest 16 bit SS are
 568	 * discarded by the legacy IRET instruction on all Intel, AMD,
 569	 * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
 570	 * even when FRED is not enabled. But we choose the safer side
 571	 * to use these bits only when FRED is enabled.
 572	 */
 573	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
 574		regs->fred_ss.swevent	= true;
 575		regs->fred_ss.nmi	= true;
 576	}
 577
 578	regs->flags	= X86_EFLAGS_IF | X86_EFLAGS_FIXED;
 579}
 580
 581void
 582start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 583{
 584	start_thread_common(regs, new_ip, new_sp,
 585			    __USER_CS, __USER_DS, 0);
 586}
 587EXPORT_SYMBOL_GPL(start_thread);
 588
 589#ifdef CONFIG_COMPAT
 590void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
 591{
 592	start_thread_common(regs, new_ip, new_sp,
 593			    x32 ? __USER_CS : __USER32_CS,
 594			    __USER_DS, __USER_DS);
 595}
 596#endif
 597
 598/*
 599 *	switch_to(x,y) should switch tasks from x to y.
 600 *
 601 * This could still be optimized:
 602 * - fold all the options into a flag word and test it with a single test.
 603 * - could test fs/gs bitsliced
 604 *
 605 * Kprobes not supported here. Set the probe on schedule instead.
 606 * Function graph tracer not supported too.
 607 */
 608__no_kmsan_checks
 609__visible __notrace_funcgraph struct task_struct *
 610__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 611{
 612	struct thread_struct *prev = &prev_p->thread;
 613	struct thread_struct *next = &next_p->thread;
 
 614	int cpu = smp_processor_id();
 615
 616	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
 617		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
 618
 619	if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
 620		switch_fpu_prepare(prev_p, cpu);
 621
 622	/* We must save %fs and %gs before load_TLS() because
 623	 * %fs and %gs may be cleared by load_TLS().
 624	 *
 625	 * (e.g. xen_load_tls())
 626	 */
 627	save_fsgs(prev_p);
 628
 629	/*
 630	 * Load TLS before restoring any segments so that segment loads
 631	 * reference the correct GDT entries.
 632	 */
 633	load_TLS(next, cpu);
 634
 635	/*
 636	 * Leave lazy mode, flushing any hypercalls made here.  This
 637	 * must be done after loading TLS entries in the GDT but before
 638	 * loading segments that might reference them.
 639	 */
 640	arch_end_context_switch(next_p);
 641
 642	/* Switch DS and ES.
 643	 *
 644	 * Reading them only returns the selectors, but writing them (if
 645	 * nonzero) loads the full descriptor from the GDT or LDT.  The
 646	 * LDT for next is loaded in switch_mm, and the GDT is loaded
 647	 * above.
 648	 *
 649	 * We therefore need to write new values to the segment
 650	 * registers on every context switch unless both the new and old
 651	 * values are zero.
 652	 *
 653	 * Note that we don't need to do anything for CS and SS, as
 654	 * those are saved and restored as part of pt_regs.
 655	 */
 656	savesegment(es, prev->es);
 657	if (unlikely(next->es | prev->es))
 658		loadsegment(es, next->es);
 659
 660	savesegment(ds, prev->ds);
 661	if (unlikely(next->ds | prev->ds))
 662		loadsegment(ds, next->ds);
 663
 664	x86_fsgsbase_load(prev, next);
 665
 666	x86_pkru_load(prev, next);
 667
 668	/*
 669	 * Switch the PDA and FPU contexts.
 670	 */
 671	raw_cpu_write(pcpu_hot.current_task, next_p);
 672	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
 673
 674	switch_fpu_finish(next_p);
 675
 676	/* Reload sp0. */
 677	update_task_stack(next_p);
 678
 679	switch_to_extra(prev_p, next_p);
 680
 681	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
 682		/*
 683		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
 684		 * does not update the cached descriptor.  As a result, if we
 685		 * do SYSRET while SS is NULL, we'll end up in user mode with
 686		 * SS apparently equal to __USER_DS but actually unusable.
 687		 *
 688		 * The straightforward workaround would be to fix it up just
 689		 * before SYSRET, but that would slow down the system call
 690		 * fast paths.  Instead, we ensure that SS is never NULL in
 691		 * system call context.  We do this by replacing NULL SS
 692		 * selectors at every context switch.  SYSCALL sets up a valid
 693		 * SS, so the only way to get NULL is to re-enter the kernel
 694		 * from CPL 3 through an interrupt.  Since that can't happen
 695		 * in the same task as a running syscall, we are guaranteed to
 696		 * context switch between every interrupt vector entry and a
 697		 * subsequent SYSRET.
 698		 *
 699		 * We read SS first because SS reads are much faster than
 700		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
 701		 * it previously had a different non-NULL value.
 702		 */
 703		unsigned short ss_sel;
 704		savesegment(ss, ss_sel);
 705		if (ss_sel != __KERNEL_DS)
 706			loadsegment(ss, __KERNEL_DS);
 707	}
 708
 709	/* Load the Intel cache allocation PQR MSR. */
 710	resctrl_sched_in(next_p);
 711
 712	return prev_p;
 713}
 714
 715void set_personality_64bit(void)
 716{
 717	/* inherit personality from parent */
 718
 719	/* Make sure to be in 64bit mode */
 720	clear_thread_flag(TIF_ADDR32);
 721	/* Pretend that this comes from a 64bit execve */
 722	task_pt_regs(current)->orig_ax = __NR_execve;
 723	current_thread_info()->status &= ~TS_COMPAT;
 724	if (current->mm)
 725		__set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
 726
 727	/* TBD: overwrites user setup. Should have two bits.
 728	   But 64bit processes have always behaved this way,
 729	   so it's not too bad. The main problem is just that
 730	   32bit children are affected again. */
 731	current->personality &= ~READ_IMPLIES_EXEC;
 732}
 733
 734static void __set_personality_x32(void)
 735{
 736#ifdef CONFIG_X86_X32_ABI
 737	if (current->mm)
 738		current->mm->context.flags = 0;
 739
 740	current->personality &= ~READ_IMPLIES_EXEC;
 741	/*
 742	 * in_32bit_syscall() uses the presence of the x32 syscall bit
 743	 * flag to determine compat status.  The x86 mmap() code relies on
 744	 * the syscall bitness so set x32 syscall bit right here to make
 745	 * in_32bit_syscall() work during exec().
 746	 *
 747	 * Pretend to come from a x32 execve.
 748	 */
 749	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
 750	current_thread_info()->status &= ~TS_COMPAT;
 751#endif
 752}
 753
 754static void __set_personality_ia32(void)
 755{
 756#ifdef CONFIG_IA32_EMULATION
 757	if (current->mm) {
 758		/*
 759		 * uprobes applied to this MM need to know this and
 760		 * cannot use user_64bit_mode() at that time.
 761		 */
 762		__set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
 763	}
 764
 765	current->personality |= force_personality32;
 766	/* Prepare the first "return" to user space */
 767	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
 768	current_thread_info()->status |= TS_COMPAT;
 769#endif
 770}
 771
 772void set_personality_ia32(bool x32)
 773{
 774	/* Make sure to be in 32bit mode */
 775	set_thread_flag(TIF_ADDR32);
 776
 777	if (x32)
 778		__set_personality_x32();
 779	else
 780		__set_personality_ia32();
 781}
 782EXPORT_SYMBOL_GPL(set_personality_ia32);
 783
 784#ifdef CONFIG_CHECKPOINT_RESTORE
 785static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
 786{
 787	int ret;
 788
 789	ret = map_vdso_once(image, addr);
 790	if (ret)
 791		return ret;
 792
 793	return (long)image->size;
 794}
 795#endif
 796
 797#ifdef CONFIG_ADDRESS_MASKING
 798
 799#define LAM_U57_BITS 6
 800
 801static void enable_lam_func(void *__mm)
 802{
 803	struct mm_struct *mm = __mm;
 804	unsigned long lam;
 805
 806	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
 807		lam = mm_lam_cr3_mask(mm);
 808		write_cr3(__read_cr3() | lam);
 809		cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
 810	}
 811}
 812
 813static void mm_enable_lam(struct mm_struct *mm)
 814{
 815	mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
 816	mm->context.untag_mask =  ~GENMASK(62, 57);
 817
 818	/*
 819	 * Even though the process must still be single-threaded at this
 820	 * point, kernel threads may be using the mm.  IPI those kernel
 821	 * threads if they exist.
 822	 */
 823	on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
 824	set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
 825}
 826
 827static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
 828{
 829	if (!cpu_feature_enabled(X86_FEATURE_LAM))
 830		return -ENODEV;
 831
 832	/* PTRACE_ARCH_PRCTL */
 833	if (current->mm != mm)
 834		return -EINVAL;
 835
 836	if (mm_valid_pasid(mm) &&
 837	    !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
 838		return -EINVAL;
 839
 840	if (mmap_write_lock_killable(mm))
 841		return -EINTR;
 842
 843	/*
 844	 * MM_CONTEXT_LOCK_LAM is set on clone.  Prevent LAM from
 845	 * being enabled unless the process is single threaded:
 846	 */
 847	if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
 848		mmap_write_unlock(mm);
 849		return -EBUSY;
 850	}
 851
 852	if (!nr_bits || nr_bits > LAM_U57_BITS) {
 853		mmap_write_unlock(mm);
 854		return -EINVAL;
 855	}
 856
 857	mm_enable_lam(mm);
 858
 859	mmap_write_unlock(mm);
 860
 861	return 0;
 862}
 863#endif
 864
 865long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
 866{
 867	int ret = 0;
 868
 869	switch (option) {
 870	case ARCH_SET_GS: {
 871		if (unlikely(arg2 >= TASK_SIZE_MAX))
 872			return -EPERM;
 873
 874		preempt_disable();
 875		/*
 876		 * ARCH_SET_GS has always overwritten the index
 877		 * and the base. Zero is the most sensible value
 878		 * to put in the index, and is the only value that
 879		 * makes any sense if FSGSBASE is unavailable.
 880		 */
 881		if (task == current) {
 882			loadseg(GS, 0);
 883			x86_gsbase_write_cpu_inactive(arg2);
 884
 885			/*
 886			 * On non-FSGSBASE systems, save_base_legacy() expects
 887			 * that we also fill in thread.gsbase.
 888			 */
 889			task->thread.gsbase = arg2;
 890
 891		} else {
 892			task->thread.gsindex = 0;
 893			x86_gsbase_write_task(task, arg2);
 894		}
 895		preempt_enable();
 896		break;
 897	}
 898	case ARCH_SET_FS: {
 899		/*
 900		 * Not strictly needed for %fs, but do it for symmetry
 901		 * with %gs
 902		 */
 903		if (unlikely(arg2 >= TASK_SIZE_MAX))
 904			return -EPERM;
 905
 906		preempt_disable();
 907		/*
 908		 * Set the selector to 0 for the same reason
 909		 * as %gs above.
 910		 */
 911		if (task == current) {
 912			loadseg(FS, 0);
 913			x86_fsbase_write_cpu(arg2);
 914
 915			/*
 916			 * On non-FSGSBASE systems, save_base_legacy() expects
 917			 * that we also fill in thread.fsbase.
 918			 */
 919			task->thread.fsbase = arg2;
 920		} else {
 921			task->thread.fsindex = 0;
 922			x86_fsbase_write_task(task, arg2);
 923		}
 924		preempt_enable();
 925		break;
 926	}
 927	case ARCH_GET_FS: {
 928		unsigned long base = x86_fsbase_read_task(task);
 929
 930		ret = put_user(base, (unsigned long __user *)arg2);
 931		break;
 932	}
 933	case ARCH_GET_GS: {
 934		unsigned long base = x86_gsbase_read_task(task);
 935
 936		ret = put_user(base, (unsigned long __user *)arg2);
 937		break;
 938	}
 939
 940#ifdef CONFIG_CHECKPOINT_RESTORE
 941# ifdef CONFIG_X86_X32_ABI
 942	case ARCH_MAP_VDSO_X32:
 943		return prctl_map_vdso(&vdso_image_x32, arg2);
 944# endif
 945# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
 946	case ARCH_MAP_VDSO_32:
 947		return prctl_map_vdso(&vdso_image_32, arg2);
 948# endif
 949	case ARCH_MAP_VDSO_64:
 950		return prctl_map_vdso(&vdso_image_64, arg2);
 951#endif
 952#ifdef CONFIG_ADDRESS_MASKING
 953	case ARCH_GET_UNTAG_MASK:
 954		return put_user(task->mm->context.untag_mask,
 955				(unsigned long __user *)arg2);
 956	case ARCH_ENABLE_TAGGED_ADDR:
 957		return prctl_enable_tagged_addr(task->mm, arg2);
 958	case ARCH_FORCE_TAGGED_SVA:
 959		if (current != task)
 960			return -EINVAL;
 961		set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
 962		return 0;
 963	case ARCH_GET_MAX_TAG_BITS:
 964		if (!cpu_feature_enabled(X86_FEATURE_LAM))
 965			return put_user(0, (unsigned long __user *)arg2);
 966		else
 967			return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
 968#endif
 969	case ARCH_SHSTK_ENABLE:
 970	case ARCH_SHSTK_DISABLE:
 971	case ARCH_SHSTK_LOCK:
 972	case ARCH_SHSTK_UNLOCK:
 973	case ARCH_SHSTK_STATUS:
 974		return shstk_prctl(task, option, arg2);
 975	default:
 976		ret = -EINVAL;
 977		break;
 978	}
 979
 980	return ret;
 981}
 982
 983SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 984{
 985	long ret;
 986
 987	ret = do_arch_prctl_64(current, option, arg2);
 988	if (ret == -EINVAL)
 989		ret = do_arch_prctl_common(option, arg2);
 990
 991	return ret;
 992}
 993
 994#ifdef CONFIG_IA32_EMULATION
 995COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 996{
 997	return do_arch_prctl_common(option, arg2);
 998}
 999#endif
1000
1001unsigned long KSTK_ESP(struct task_struct *task)
1002{
1003	return task_pt_regs(task)->sp;
1004}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 
 42
 43#include <asm/processor.h>
 44#include <asm/pkru.h>
 45#include <asm/fpu/sched.h>
 46#include <asm/mmu_context.h>
 47#include <asm/prctl.h>
 48#include <asm/desc.h>
 49#include <asm/proto.h>
 50#include <asm/ia32.h>
 51#include <asm/debugreg.h>
 52#include <asm/switch_to.h>
 53#include <asm/xen/hypervisor.h>
 54#include <asm/vdso.h>
 55#include <asm/resctrl.h>
 56#include <asm/unistd.h>
 57#include <asm/fsgsbase.h>
 
 58#ifdef CONFIG_IA32_EMULATION
 59/* Not included via unistd.h */
 60#include <asm/unistd_32_ia32.h>
 61#endif
 62
 63#include "process.h"
 64
 65/* Prints also some state that isn't saved in the pt_regs */
 66void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 67		 const char *log_lvl)
 68{
 69	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 70	unsigned long d0, d1, d2, d3, d6, d7;
 71	unsigned int fsindex, gsindex;
 72	unsigned int ds, es;
 73
 74	show_iret_regs(regs, log_lvl);
 75
 76	if (regs->orig_ax != -1)
 77		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 78	else
 79		pr_cont("\n");
 80
 81	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 82	       log_lvl, regs->ax, regs->bx, regs->cx);
 83	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 84	       log_lvl, regs->dx, regs->si, regs->di);
 85	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 86	       log_lvl, regs->bp, regs->r8, regs->r9);
 87	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 88	       log_lvl, regs->r10, regs->r11, regs->r12);
 89	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 90	       log_lvl, regs->r13, regs->r14, regs->r15);
 91
 92	if (mode == SHOW_REGS_SHORT)
 93		return;
 94
 95	if (mode == SHOW_REGS_USER) {
 96		rdmsrl(MSR_FS_BASE, fs);
 97		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 98		printk("%sFS:  %016lx GS:  %016lx\n",
 99		       log_lvl, fs, shadowgs);
100		return;
101	}
102
103	asm("movl %%ds,%0" : "=r" (ds));
104	asm("movl %%es,%0" : "=r" (es));
105	asm("movl %%fs,%0" : "=r" (fsindex));
106	asm("movl %%gs,%0" : "=r" (gsindex));
107
108	rdmsrl(MSR_FS_BASE, fs);
109	rdmsrl(MSR_GS_BASE, gs);
110	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111
112	cr0 = read_cr0();
113	cr2 = read_cr2();
114	cr3 = __read_cr3();
115	cr4 = __read_cr4();
116
117	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
119	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
120		log_lvl, regs->cs, ds, es, cr0);
121	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
122		log_lvl, cr2, cr3, cr4);
123
124	get_debugreg(d0, 0);
125	get_debugreg(d1, 1);
126	get_debugreg(d2, 2);
127	get_debugreg(d3, 3);
128	get_debugreg(d6, 6);
129	get_debugreg(d7, 7);
130
131	/* Only print out debug registers if they are in their non-default state. */
132	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
135		       log_lvl, d0, d1, d2);
136		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
137		       log_lvl, d3, d6, d7);
138	}
139
140	if (cpu_feature_enabled(X86_FEATURE_OSPKE))
141		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
142}
143
144void release_thread(struct task_struct *dead_task)
145{
146	WARN_ON(dead_task->mm);
147}
148
149enum which_selector {
150	FS,
151	GS
152};
153
154/*
155 * Out of line to be protected from kprobes and tracing. If this would be
156 * traced or probed than any access to a per CPU variable happens with
157 * the wrong GS.
158 *
159 * It is not used on Xen paravirt. When paravirt support is needed, it
160 * needs to be renamed with native_ prefix.
161 */
162static noinstr unsigned long __rdgsbase_inactive(void)
163{
164	unsigned long gsbase;
165
166	lockdep_assert_irqs_disabled();
167
168	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169		native_swapgs();
170		gsbase = rdgsbase();
171		native_swapgs();
172	} else {
173		instrumentation_begin();
174		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
175		instrumentation_end();
176	}
177
178	return gsbase;
179}
180
181/*
182 * Out of line to be protected from kprobes and tracing. If this would be
183 * traced or probed than any access to a per CPU variable happens with
184 * the wrong GS.
185 *
186 * It is not used on Xen paravirt. When paravirt support is needed, it
187 * needs to be renamed with native_ prefix.
188 */
189static noinstr void __wrgsbase_inactive(unsigned long gsbase)
190{
191	lockdep_assert_irqs_disabled();
192
193	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
 
194		native_swapgs();
195		wrgsbase(gsbase);
196		native_swapgs();
197	} else {
198		instrumentation_begin();
199		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
200		instrumentation_end();
201	}
202}
203
204/*
205 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
206 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
207 * It's forcibly inlined because it'll generate better code and this function
208 * is hot.
209 */
210static __always_inline void save_base_legacy(struct task_struct *prev_p,
211					     unsigned short selector,
212					     enum which_selector which)
213{
214	if (likely(selector == 0)) {
215		/*
216		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
217		 * be the pre-existing saved base or it could be zero.  On AMD
218		 * (with X86_BUG_NULL_SEG), the segment base could be almost
219		 * anything.
220		 *
221		 * This branch is very hot (it's hit twice on almost every
222		 * context switch between 64-bit programs), and avoiding
223		 * the RDMSR helps a lot, so we just assume that whatever
224		 * value is already saved is correct.  This matches historical
225		 * Linux behavior, so it won't break existing applications.
226		 *
227		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
228		 * report that the base is zero, it needs to actually be zero:
229		 * see the corresponding logic in load_seg_legacy.
230		 */
231	} else {
232		/*
233		 * If the selector is 1, 2, or 3, then the base is zero on
234		 * !X86_BUG_NULL_SEG CPUs and could be anything on
235		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
236		 * has never attempted to preserve the base across context
237		 * switches.
238		 *
239		 * If selector > 3, then it refers to a real segment, and
240		 * saving the base isn't necessary.
241		 */
242		if (which == FS)
243			prev_p->thread.fsbase = 0;
244		else
245			prev_p->thread.gsbase = 0;
246	}
247}
248
249static __always_inline void save_fsgs(struct task_struct *task)
250{
251	savesegment(fs, task->thread.fsindex);
252	savesegment(gs, task->thread.gsindex);
253	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
254		/*
255		 * If FSGSBASE is enabled, we can't make any useful guesses
256		 * about the base, and user code expects us to save the current
257		 * value.  Fortunately, reading the base directly is efficient.
258		 */
259		task->thread.fsbase = rdfsbase();
260		task->thread.gsbase = __rdgsbase_inactive();
261	} else {
262		save_base_legacy(task, task->thread.fsindex, FS);
263		save_base_legacy(task, task->thread.gsindex, GS);
264	}
265}
266
267/*
268 * While a process is running,current->thread.fsbase and current->thread.gsbase
269 * may not match the corresponding CPU registers (see save_base_legacy()).
270 */
271void current_save_fsgs(void)
272{
273	unsigned long flags;
274
275	/* Interrupts need to be off for FSGSBASE */
276	local_irq_save(flags);
277	save_fsgs(current);
278	local_irq_restore(flags);
279}
280#if IS_ENABLED(CONFIG_KVM)
281EXPORT_SYMBOL_GPL(current_save_fsgs);
282#endif
283
284static __always_inline void loadseg(enum which_selector which,
285				    unsigned short sel)
286{
287	if (which == FS)
288		loadsegment(fs, sel);
289	else
290		load_gs_index(sel);
291}
292
293static __always_inline void load_seg_legacy(unsigned short prev_index,
294					    unsigned long prev_base,
295					    unsigned short next_index,
296					    unsigned long next_base,
297					    enum which_selector which)
298{
299	if (likely(next_index <= 3)) {
300		/*
301		 * The next task is using 64-bit TLS, is not using this
302		 * segment at all, or is having fun with arcane CPU features.
303		 */
304		if (next_base == 0) {
305			/*
306			 * Nasty case: on AMD CPUs, we need to forcibly zero
307			 * the base.
308			 */
309			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
310				loadseg(which, __USER_DS);
311				loadseg(which, next_index);
312			} else {
313				/*
314				 * We could try to exhaustively detect cases
315				 * under which we can skip the segment load,
316				 * but there's really only one case that matters
317				 * for performance: if both the previous and
318				 * next states are fully zeroed, we can skip
319				 * the load.
320				 *
321				 * (This assumes that prev_base == 0 has no
322				 * false positives.  This is the case on
323				 * Intel-style CPUs.)
324				 */
325				if (likely(prev_index | next_index | prev_base))
326					loadseg(which, next_index);
327			}
328		} else {
329			if (prev_index != next_index)
330				loadseg(which, next_index);
331			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
332			       next_base);
333		}
334	} else {
335		/*
336		 * The next task is using a real segment.  Loading the selector
337		 * is sufficient.
338		 */
339		loadseg(which, next_index);
340	}
341}
342
343/*
344 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
345 * is not XSTATE managed on context switch because that would require a
346 * lookup in the task's FPU xsave buffer and require to keep that updated
347 * in various places.
348 */
349static __always_inline void x86_pkru_load(struct thread_struct *prev,
350					  struct thread_struct *next)
351{
352	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
353		return;
354
355	/* Stash the prev task's value: */
356	prev->pkru = rdpkru();
357
358	/*
359	 * PKRU writes are slightly expensive.  Avoid them when not
360	 * strictly necessary:
361	 */
362	if (prev->pkru != next->pkru)
363		wrpkru(next->pkru);
364}
365
366static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
367					      struct thread_struct *next)
368{
369	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
370		/* Update the FS and GS selectors if they could have changed. */
371		if (unlikely(prev->fsindex || next->fsindex))
372			loadseg(FS, next->fsindex);
373		if (unlikely(prev->gsindex || next->gsindex))
374			loadseg(GS, next->gsindex);
375
376		/* Update the bases. */
377		wrfsbase(next->fsbase);
378		__wrgsbase_inactive(next->gsbase);
379	} else {
380		load_seg_legacy(prev->fsindex, prev->fsbase,
381				next->fsindex, next->fsbase, FS);
382		load_seg_legacy(prev->gsindex, prev->gsbase,
383				next->gsindex, next->gsbase, GS);
384	}
385}
386
387unsigned long x86_fsgsbase_read_task(struct task_struct *task,
388				     unsigned short selector)
389{
390	unsigned short idx = selector >> 3;
391	unsigned long base;
392
393	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
394		if (unlikely(idx >= GDT_ENTRIES))
395			return 0;
396
397		/*
398		 * There are no user segments in the GDT with nonzero bases
399		 * other than the TLS segments.
400		 */
401		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
402			return 0;
403
404		idx -= GDT_ENTRY_TLS_MIN;
405		base = get_desc_base(&task->thread.tls_array[idx]);
406	} else {
407#ifdef CONFIG_MODIFY_LDT_SYSCALL
408		struct ldt_struct *ldt;
409
410		/*
411		 * If performance here mattered, we could protect the LDT
412		 * with RCU.  This is a slow path, though, so we can just
413		 * take the mutex.
414		 */
415		mutex_lock(&task->mm->context.lock);
416		ldt = task->mm->context.ldt;
417		if (unlikely(!ldt || idx >= ldt->nr_entries))
418			base = 0;
419		else
420			base = get_desc_base(ldt->entries + idx);
421		mutex_unlock(&task->mm->context.lock);
422#else
423		base = 0;
424#endif
425	}
426
427	return base;
428}
429
430unsigned long x86_gsbase_read_cpu_inactive(void)
431{
432	unsigned long gsbase;
433
434	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
435		unsigned long flags;
436
437		local_irq_save(flags);
438		gsbase = __rdgsbase_inactive();
439		local_irq_restore(flags);
440	} else {
441		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
442	}
443
444	return gsbase;
445}
446
447void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
448{
449	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
450		unsigned long flags;
451
452		local_irq_save(flags);
453		__wrgsbase_inactive(gsbase);
454		local_irq_restore(flags);
455	} else {
456		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
457	}
458}
459
460unsigned long x86_fsbase_read_task(struct task_struct *task)
461{
462	unsigned long fsbase;
463
464	if (task == current)
465		fsbase = x86_fsbase_read_cpu();
466	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
467		 (task->thread.fsindex == 0))
468		fsbase = task->thread.fsbase;
469	else
470		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
471
472	return fsbase;
473}
474
475unsigned long x86_gsbase_read_task(struct task_struct *task)
476{
477	unsigned long gsbase;
478
479	if (task == current)
480		gsbase = x86_gsbase_read_cpu_inactive();
481	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
482		 (task->thread.gsindex == 0))
483		gsbase = task->thread.gsbase;
484	else
485		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
486
487	return gsbase;
488}
489
490void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
491{
492	WARN_ON_ONCE(task == current);
493
494	task->thread.fsbase = fsbase;
495}
496
497void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
498{
499	WARN_ON_ONCE(task == current);
500
501	task->thread.gsbase = gsbase;
502}
503
504static void
505start_thread_common(struct pt_regs *regs, unsigned long new_ip,
506		    unsigned long new_sp,
507		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
508{
509	WARN_ON_ONCE(regs != current_pt_regs());
510
511	if (static_cpu_has(X86_BUG_NULL_SEG)) {
512		/* Loading zero below won't clear the base. */
513		loadsegment(fs, __USER_DS);
514		load_gs_index(__USER_DS);
515	}
516
 
 
517	loadsegment(fs, 0);
518	loadsegment(es, _ds);
519	loadsegment(ds, _ds);
520	load_gs_index(0);
521
522	regs->ip		= new_ip;
523	regs->sp		= new_sp;
524	regs->cs		= _cs;
525	regs->ss		= _ss;
526	regs->flags		= X86_EFLAGS_IF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527}
528
529void
530start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
531{
532	start_thread_common(regs, new_ip, new_sp,
533			    __USER_CS, __USER_DS, 0);
534}
535EXPORT_SYMBOL_GPL(start_thread);
536
537#ifdef CONFIG_COMPAT
538void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
539{
540	start_thread_common(regs, new_ip, new_sp,
541			    x32 ? __USER_CS : __USER32_CS,
542			    __USER_DS, __USER_DS);
543}
544#endif
545
546/*
547 *	switch_to(x,y) should switch tasks from x to y.
548 *
549 * This could still be optimized:
550 * - fold all the options into a flag word and test it with a single test.
551 * - could test fs/gs bitsliced
552 *
553 * Kprobes not supported here. Set the probe on schedule instead.
554 * Function graph tracer not supported too.
555 */
556__no_kmsan_checks
557__visible __notrace_funcgraph struct task_struct *
558__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
559{
560	struct thread_struct *prev = &prev_p->thread;
561	struct thread_struct *next = &next_p->thread;
562	struct fpu *prev_fpu = &prev->fpu;
563	int cpu = smp_processor_id();
564
565	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
566		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
567
568	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
569		switch_fpu_prepare(prev_fpu, cpu);
570
571	/* We must save %fs and %gs before load_TLS() because
572	 * %fs and %gs may be cleared by load_TLS().
573	 *
574	 * (e.g. xen_load_tls())
575	 */
576	save_fsgs(prev_p);
577
578	/*
579	 * Load TLS before restoring any segments so that segment loads
580	 * reference the correct GDT entries.
581	 */
582	load_TLS(next, cpu);
583
584	/*
585	 * Leave lazy mode, flushing any hypercalls made here.  This
586	 * must be done after loading TLS entries in the GDT but before
587	 * loading segments that might reference them.
588	 */
589	arch_end_context_switch(next_p);
590
591	/* Switch DS and ES.
592	 *
593	 * Reading them only returns the selectors, but writing them (if
594	 * nonzero) loads the full descriptor from the GDT or LDT.  The
595	 * LDT for next is loaded in switch_mm, and the GDT is loaded
596	 * above.
597	 *
598	 * We therefore need to write new values to the segment
599	 * registers on every context switch unless both the new and old
600	 * values are zero.
601	 *
602	 * Note that we don't need to do anything for CS and SS, as
603	 * those are saved and restored as part of pt_regs.
604	 */
605	savesegment(es, prev->es);
606	if (unlikely(next->es | prev->es))
607		loadsegment(es, next->es);
608
609	savesegment(ds, prev->ds);
610	if (unlikely(next->ds | prev->ds))
611		loadsegment(ds, next->ds);
612
613	x86_fsgsbase_load(prev, next);
614
615	x86_pkru_load(prev, next);
616
617	/*
618	 * Switch the PDA and FPU contexts.
619	 */
620	raw_cpu_write(pcpu_hot.current_task, next_p);
621	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
622
623	switch_fpu_finish();
624
625	/* Reload sp0. */
626	update_task_stack(next_p);
627
628	switch_to_extra(prev_p, next_p);
629
630	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
631		/*
632		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
633		 * does not update the cached descriptor.  As a result, if we
634		 * do SYSRET while SS is NULL, we'll end up in user mode with
635		 * SS apparently equal to __USER_DS but actually unusable.
636		 *
637		 * The straightforward workaround would be to fix it up just
638		 * before SYSRET, but that would slow down the system call
639		 * fast paths.  Instead, we ensure that SS is never NULL in
640		 * system call context.  We do this by replacing NULL SS
641		 * selectors at every context switch.  SYSCALL sets up a valid
642		 * SS, so the only way to get NULL is to re-enter the kernel
643		 * from CPL 3 through an interrupt.  Since that can't happen
644		 * in the same task as a running syscall, we are guaranteed to
645		 * context switch between every interrupt vector entry and a
646		 * subsequent SYSRET.
647		 *
648		 * We read SS first because SS reads are much faster than
649		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
650		 * it previously had a different non-NULL value.
651		 */
652		unsigned short ss_sel;
653		savesegment(ss, ss_sel);
654		if (ss_sel != __KERNEL_DS)
655			loadsegment(ss, __KERNEL_DS);
656	}
657
658	/* Load the Intel cache allocation PQR MSR. */
659	resctrl_sched_in();
660
661	return prev_p;
662}
663
664void set_personality_64bit(void)
665{
666	/* inherit personality from parent */
667
668	/* Make sure to be in 64bit mode */
669	clear_thread_flag(TIF_ADDR32);
670	/* Pretend that this comes from a 64bit execve */
671	task_pt_regs(current)->orig_ax = __NR_execve;
672	current_thread_info()->status &= ~TS_COMPAT;
673	if (current->mm)
674		current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL;
675
676	/* TBD: overwrites user setup. Should have two bits.
677	   But 64bit processes have always behaved this way,
678	   so it's not too bad. The main problem is just that
679	   32bit children are affected again. */
680	current->personality &= ~READ_IMPLIES_EXEC;
681}
682
683static void __set_personality_x32(void)
684{
685#ifdef CONFIG_X86_X32_ABI
686	if (current->mm)
687		current->mm->context.flags = 0;
688
689	current->personality &= ~READ_IMPLIES_EXEC;
690	/*
691	 * in_32bit_syscall() uses the presence of the x32 syscall bit
692	 * flag to determine compat status.  The x86 mmap() code relies on
693	 * the syscall bitness so set x32 syscall bit right here to make
694	 * in_32bit_syscall() work during exec().
695	 *
696	 * Pretend to come from a x32 execve.
697	 */
698	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
699	current_thread_info()->status &= ~TS_COMPAT;
700#endif
701}
702
703static void __set_personality_ia32(void)
704{
705#ifdef CONFIG_IA32_EMULATION
706	if (current->mm) {
707		/*
708		 * uprobes applied to this MM need to know this and
709		 * cannot use user_64bit_mode() at that time.
710		 */
711		current->mm->context.flags = MM_CONTEXT_UPROBE_IA32;
712	}
713
714	current->personality |= force_personality32;
715	/* Prepare the first "return" to user space */
716	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
717	current_thread_info()->status |= TS_COMPAT;
718#endif
719}
720
721void set_personality_ia32(bool x32)
722{
723	/* Make sure to be in 32bit mode */
724	set_thread_flag(TIF_ADDR32);
725
726	if (x32)
727		__set_personality_x32();
728	else
729		__set_personality_ia32();
730}
731EXPORT_SYMBOL_GPL(set_personality_ia32);
732
733#ifdef CONFIG_CHECKPOINT_RESTORE
734static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
735{
736	int ret;
737
738	ret = map_vdso_once(image, addr);
739	if (ret)
740		return ret;
741
742	return (long)image->size;
743}
744#endif
745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
747{
748	int ret = 0;
749
750	switch (option) {
751	case ARCH_SET_GS: {
752		if (unlikely(arg2 >= TASK_SIZE_MAX))
753			return -EPERM;
754
755		preempt_disable();
756		/*
757		 * ARCH_SET_GS has always overwritten the index
758		 * and the base. Zero is the most sensible value
759		 * to put in the index, and is the only value that
760		 * makes any sense if FSGSBASE is unavailable.
761		 */
762		if (task == current) {
763			loadseg(GS, 0);
764			x86_gsbase_write_cpu_inactive(arg2);
765
766			/*
767			 * On non-FSGSBASE systems, save_base_legacy() expects
768			 * that we also fill in thread.gsbase.
769			 */
770			task->thread.gsbase = arg2;
771
772		} else {
773			task->thread.gsindex = 0;
774			x86_gsbase_write_task(task, arg2);
775		}
776		preempt_enable();
777		break;
778	}
779	case ARCH_SET_FS: {
780		/*
781		 * Not strictly needed for %fs, but do it for symmetry
782		 * with %gs
783		 */
784		if (unlikely(arg2 >= TASK_SIZE_MAX))
785			return -EPERM;
786
787		preempt_disable();
788		/*
789		 * Set the selector to 0 for the same reason
790		 * as %gs above.
791		 */
792		if (task == current) {
793			loadseg(FS, 0);
794			x86_fsbase_write_cpu(arg2);
795
796			/*
797			 * On non-FSGSBASE systems, save_base_legacy() expects
798			 * that we also fill in thread.fsbase.
799			 */
800			task->thread.fsbase = arg2;
801		} else {
802			task->thread.fsindex = 0;
803			x86_fsbase_write_task(task, arg2);
804		}
805		preempt_enable();
806		break;
807	}
808	case ARCH_GET_FS: {
809		unsigned long base = x86_fsbase_read_task(task);
810
811		ret = put_user(base, (unsigned long __user *)arg2);
812		break;
813	}
814	case ARCH_GET_GS: {
815		unsigned long base = x86_gsbase_read_task(task);
816
817		ret = put_user(base, (unsigned long __user *)arg2);
818		break;
819	}
820
821#ifdef CONFIG_CHECKPOINT_RESTORE
822# ifdef CONFIG_X86_X32_ABI
823	case ARCH_MAP_VDSO_X32:
824		return prctl_map_vdso(&vdso_image_x32, arg2);
825# endif
826# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
827	case ARCH_MAP_VDSO_32:
828		return prctl_map_vdso(&vdso_image_32, arg2);
829# endif
830	case ARCH_MAP_VDSO_64:
831		return prctl_map_vdso(&vdso_image_64, arg2);
832#endif
833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
834	default:
835		ret = -EINVAL;
836		break;
837	}
838
839	return ret;
840}
841
842SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
843{
844	long ret;
845
846	ret = do_arch_prctl_64(current, option, arg2);
847	if (ret == -EINVAL)
848		ret = do_arch_prctl_common(option, arg2);
849
850	return ret;
851}
852
853#ifdef CONFIG_IA32_EMULATION
854COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
855{
856	return do_arch_prctl_common(option, arg2);
857}
858#endif
859
860unsigned long KSTK_ESP(struct task_struct *task)
861{
862	return task_pt_regs(task)->sp;
863}