Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/kcov.h>
33#include <linux/property.h>
34#include <linux/suspend.h>
35#include <linux/wait.h>
36#include <linux/unaligned.h>
37
38#include <net/bluetooth/bluetooth.h>
39#include <net/bluetooth/hci_core.h>
40#include <net/bluetooth/l2cap.h>
41#include <net/bluetooth/mgmt.h>
42
43#include "hci_debugfs.h"
44#include "smp.h"
45#include "leds.h"
46#include "msft.h"
47#include "aosp.h"
48#include "hci_codec.h"
49
50static void hci_rx_work(struct work_struct *work);
51static void hci_cmd_work(struct work_struct *work);
52static void hci_tx_work(struct work_struct *work);
53
54/* HCI device list */
55LIST_HEAD(hci_dev_list);
56DEFINE_RWLOCK(hci_dev_list_lock);
57
58/* HCI callback list */
59LIST_HEAD(hci_cb_list);
60
61/* HCI ID Numbering */
62static DEFINE_IDA(hci_index_ida);
63
64/* Get HCI device by index.
65 * Device is held on return. */
66struct hci_dev *hci_dev_get(int index)
67{
68 struct hci_dev *hdev = NULL, *d;
69
70 BT_DBG("%d", index);
71
72 if (index < 0)
73 return NULL;
74
75 read_lock(&hci_dev_list_lock);
76 list_for_each_entry(d, &hci_dev_list, list) {
77 if (d->id == index) {
78 hdev = hci_dev_hold(d);
79 break;
80 }
81 }
82 read_unlock(&hci_dev_list_lock);
83 return hdev;
84}
85
86/* ---- Inquiry support ---- */
87
88bool hci_discovery_active(struct hci_dev *hdev)
89{
90 struct discovery_state *discov = &hdev->discovery;
91
92 switch (discov->state) {
93 case DISCOVERY_FINDING:
94 case DISCOVERY_RESOLVING:
95 return true;
96
97 default:
98 return false;
99 }
100}
101
102void hci_discovery_set_state(struct hci_dev *hdev, int state)
103{
104 int old_state = hdev->discovery.state;
105
106 if (old_state == state)
107 return;
108
109 hdev->discovery.state = state;
110
111 switch (state) {
112 case DISCOVERY_STOPPED:
113 hci_update_passive_scan(hdev);
114
115 if (old_state != DISCOVERY_STARTING)
116 mgmt_discovering(hdev, 0);
117 break;
118 case DISCOVERY_STARTING:
119 break;
120 case DISCOVERY_FINDING:
121 mgmt_discovering(hdev, 1);
122 break;
123 case DISCOVERY_RESOLVING:
124 break;
125 case DISCOVERY_STOPPING:
126 break;
127 }
128
129 bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
130}
131
132void hci_inquiry_cache_flush(struct hci_dev *hdev)
133{
134 struct discovery_state *cache = &hdev->discovery;
135 struct inquiry_entry *p, *n;
136
137 list_for_each_entry_safe(p, n, &cache->all, all) {
138 list_del(&p->all);
139 kfree(p);
140 }
141
142 INIT_LIST_HEAD(&cache->unknown);
143 INIT_LIST_HEAD(&cache->resolve);
144}
145
146struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
147 bdaddr_t *bdaddr)
148{
149 struct discovery_state *cache = &hdev->discovery;
150 struct inquiry_entry *e;
151
152 BT_DBG("cache %p, %pMR", cache, bdaddr);
153
154 list_for_each_entry(e, &cache->all, all) {
155 if (!bacmp(&e->data.bdaddr, bdaddr))
156 return e;
157 }
158
159 return NULL;
160}
161
162struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
163 bdaddr_t *bdaddr)
164{
165 struct discovery_state *cache = &hdev->discovery;
166 struct inquiry_entry *e;
167
168 BT_DBG("cache %p, %pMR", cache, bdaddr);
169
170 list_for_each_entry(e, &cache->unknown, list) {
171 if (!bacmp(&e->data.bdaddr, bdaddr))
172 return e;
173 }
174
175 return NULL;
176}
177
178struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
179 bdaddr_t *bdaddr,
180 int state)
181{
182 struct discovery_state *cache = &hdev->discovery;
183 struct inquiry_entry *e;
184
185 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
186
187 list_for_each_entry(e, &cache->resolve, list) {
188 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
189 return e;
190 if (!bacmp(&e->data.bdaddr, bdaddr))
191 return e;
192 }
193
194 return NULL;
195}
196
197void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
198 struct inquiry_entry *ie)
199{
200 struct discovery_state *cache = &hdev->discovery;
201 struct list_head *pos = &cache->resolve;
202 struct inquiry_entry *p;
203
204 list_del(&ie->list);
205
206 list_for_each_entry(p, &cache->resolve, list) {
207 if (p->name_state != NAME_PENDING &&
208 abs(p->data.rssi) >= abs(ie->data.rssi))
209 break;
210 pos = &p->list;
211 }
212
213 list_add(&ie->list, pos);
214}
215
216u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
217 bool name_known)
218{
219 struct discovery_state *cache = &hdev->discovery;
220 struct inquiry_entry *ie;
221 u32 flags = 0;
222
223 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
224
225 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
226
227 if (!data->ssp_mode)
228 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
229
230 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
231 if (ie) {
232 if (!ie->data.ssp_mode)
233 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
234
235 if (ie->name_state == NAME_NEEDED &&
236 data->rssi != ie->data.rssi) {
237 ie->data.rssi = data->rssi;
238 hci_inquiry_cache_update_resolve(hdev, ie);
239 }
240
241 goto update;
242 }
243
244 /* Entry not in the cache. Add new one. */
245 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
246 if (!ie) {
247 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
248 goto done;
249 }
250
251 list_add(&ie->all, &cache->all);
252
253 if (name_known) {
254 ie->name_state = NAME_KNOWN;
255 } else {
256 ie->name_state = NAME_NOT_KNOWN;
257 list_add(&ie->list, &cache->unknown);
258 }
259
260update:
261 if (name_known && ie->name_state != NAME_KNOWN &&
262 ie->name_state != NAME_PENDING) {
263 ie->name_state = NAME_KNOWN;
264 list_del(&ie->list);
265 }
266
267 memcpy(&ie->data, data, sizeof(*data));
268 ie->timestamp = jiffies;
269 cache->timestamp = jiffies;
270
271 if (ie->name_state == NAME_NOT_KNOWN)
272 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
273
274done:
275 return flags;
276}
277
278static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
279{
280 struct discovery_state *cache = &hdev->discovery;
281 struct inquiry_info *info = (struct inquiry_info *) buf;
282 struct inquiry_entry *e;
283 int copied = 0;
284
285 list_for_each_entry(e, &cache->all, all) {
286 struct inquiry_data *data = &e->data;
287
288 if (copied >= num)
289 break;
290
291 bacpy(&info->bdaddr, &data->bdaddr);
292 info->pscan_rep_mode = data->pscan_rep_mode;
293 info->pscan_period_mode = data->pscan_period_mode;
294 info->pscan_mode = data->pscan_mode;
295 memcpy(info->dev_class, data->dev_class, 3);
296 info->clock_offset = data->clock_offset;
297
298 info++;
299 copied++;
300 }
301
302 BT_DBG("cache %p, copied %d", cache, copied);
303 return copied;
304}
305
306int hci_inquiry(void __user *arg)
307{
308 __u8 __user *ptr = arg;
309 struct hci_inquiry_req ir;
310 struct hci_dev *hdev;
311 int err = 0, do_inquiry = 0, max_rsp;
312 __u8 *buf;
313
314 if (copy_from_user(&ir, ptr, sizeof(ir)))
315 return -EFAULT;
316
317 hdev = hci_dev_get(ir.dev_id);
318 if (!hdev)
319 return -ENODEV;
320
321 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
322 err = -EBUSY;
323 goto done;
324 }
325
326 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
327 err = -EOPNOTSUPP;
328 goto done;
329 }
330
331 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
332 err = -EOPNOTSUPP;
333 goto done;
334 }
335
336 /* Restrict maximum inquiry length to 60 seconds */
337 if (ir.length > 60) {
338 err = -EINVAL;
339 goto done;
340 }
341
342 hci_dev_lock(hdev);
343 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
344 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
345 hci_inquiry_cache_flush(hdev);
346 do_inquiry = 1;
347 }
348 hci_dev_unlock(hdev);
349
350 if (do_inquiry) {
351 hci_req_sync_lock(hdev);
352 err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
353 hci_req_sync_unlock(hdev);
354
355 if (err < 0)
356 goto done;
357
358 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
359 * cleared). If it is interrupted by a signal, return -EINTR.
360 */
361 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
362 TASK_INTERRUPTIBLE)) {
363 err = -EINTR;
364 goto done;
365 }
366 }
367
368 /* for unlimited number of responses we will use buffer with
369 * 255 entries
370 */
371 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
372
373 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
374 * copy it to the user space.
375 */
376 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
377 if (!buf) {
378 err = -ENOMEM;
379 goto done;
380 }
381
382 hci_dev_lock(hdev);
383 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
384 hci_dev_unlock(hdev);
385
386 BT_DBG("num_rsp %d", ir.num_rsp);
387
388 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
389 ptr += sizeof(ir);
390 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
391 ir.num_rsp))
392 err = -EFAULT;
393 } else
394 err = -EFAULT;
395
396 kfree(buf);
397
398done:
399 hci_dev_put(hdev);
400 return err;
401}
402
403static int hci_dev_do_open(struct hci_dev *hdev)
404{
405 int ret = 0;
406
407 BT_DBG("%s %p", hdev->name, hdev);
408
409 hci_req_sync_lock(hdev);
410
411 ret = hci_dev_open_sync(hdev);
412
413 hci_req_sync_unlock(hdev);
414 return ret;
415}
416
417/* ---- HCI ioctl helpers ---- */
418
419int hci_dev_open(__u16 dev)
420{
421 struct hci_dev *hdev;
422 int err;
423
424 hdev = hci_dev_get(dev);
425 if (!hdev)
426 return -ENODEV;
427
428 /* Devices that are marked as unconfigured can only be powered
429 * up as user channel. Trying to bring them up as normal devices
430 * will result into a failure. Only user channel operation is
431 * possible.
432 *
433 * When this function is called for a user channel, the flag
434 * HCI_USER_CHANNEL will be set first before attempting to
435 * open the device.
436 */
437 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
438 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
439 err = -EOPNOTSUPP;
440 goto done;
441 }
442
443 /* We need to ensure that no other power on/off work is pending
444 * before proceeding to call hci_dev_do_open. This is
445 * particularly important if the setup procedure has not yet
446 * completed.
447 */
448 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
449 cancel_delayed_work(&hdev->power_off);
450
451 /* After this call it is guaranteed that the setup procedure
452 * has finished. This means that error conditions like RFKILL
453 * or no valid public or static random address apply.
454 */
455 flush_workqueue(hdev->req_workqueue);
456
457 /* For controllers not using the management interface and that
458 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
459 * so that pairing works for them. Once the management interface
460 * is in use this bit will be cleared again and userspace has
461 * to explicitly enable it.
462 */
463 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
464 !hci_dev_test_flag(hdev, HCI_MGMT))
465 hci_dev_set_flag(hdev, HCI_BONDABLE);
466
467 err = hci_dev_do_open(hdev);
468
469done:
470 hci_dev_put(hdev);
471 return err;
472}
473
474int hci_dev_do_close(struct hci_dev *hdev)
475{
476 int err;
477
478 BT_DBG("%s %p", hdev->name, hdev);
479
480 hci_req_sync_lock(hdev);
481
482 err = hci_dev_close_sync(hdev);
483
484 hci_req_sync_unlock(hdev);
485
486 return err;
487}
488
489int hci_dev_close(__u16 dev)
490{
491 struct hci_dev *hdev;
492 int err;
493
494 hdev = hci_dev_get(dev);
495 if (!hdev)
496 return -ENODEV;
497
498 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
499 err = -EBUSY;
500 goto done;
501 }
502
503 cancel_work_sync(&hdev->power_on);
504 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
505 cancel_delayed_work(&hdev->power_off);
506
507 err = hci_dev_do_close(hdev);
508
509done:
510 hci_dev_put(hdev);
511 return err;
512}
513
514static int hci_dev_do_reset(struct hci_dev *hdev)
515{
516 int ret;
517
518 BT_DBG("%s %p", hdev->name, hdev);
519
520 hci_req_sync_lock(hdev);
521
522 /* Drop queues */
523 skb_queue_purge(&hdev->rx_q);
524 skb_queue_purge(&hdev->cmd_q);
525
526 /* Cancel these to avoid queueing non-chained pending work */
527 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
528 /* Wait for
529 *
530 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
531 * queue_delayed_work(&hdev->{cmd,ncmd}_timer)
532 *
533 * inside RCU section to see the flag or complete scheduling.
534 */
535 synchronize_rcu();
536 /* Explicitly cancel works in case scheduled after setting the flag. */
537 cancel_delayed_work(&hdev->cmd_timer);
538 cancel_delayed_work(&hdev->ncmd_timer);
539
540 /* Avoid potential lockdep warnings from the *_flush() calls by
541 * ensuring the workqueue is empty up front.
542 */
543 drain_workqueue(hdev->workqueue);
544
545 hci_dev_lock(hdev);
546 hci_inquiry_cache_flush(hdev);
547 hci_conn_hash_flush(hdev);
548 hci_dev_unlock(hdev);
549
550 if (hdev->flush)
551 hdev->flush(hdev);
552
553 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
554
555 atomic_set(&hdev->cmd_cnt, 1);
556 hdev->acl_cnt = 0;
557 hdev->sco_cnt = 0;
558 hdev->le_cnt = 0;
559 hdev->iso_cnt = 0;
560
561 ret = hci_reset_sync(hdev);
562
563 hci_req_sync_unlock(hdev);
564 return ret;
565}
566
567int hci_dev_reset(__u16 dev)
568{
569 struct hci_dev *hdev;
570 int err;
571
572 hdev = hci_dev_get(dev);
573 if (!hdev)
574 return -ENODEV;
575
576 if (!test_bit(HCI_UP, &hdev->flags)) {
577 err = -ENETDOWN;
578 goto done;
579 }
580
581 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
582 err = -EBUSY;
583 goto done;
584 }
585
586 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
587 err = -EOPNOTSUPP;
588 goto done;
589 }
590
591 err = hci_dev_do_reset(hdev);
592
593done:
594 hci_dev_put(hdev);
595 return err;
596}
597
598int hci_dev_reset_stat(__u16 dev)
599{
600 struct hci_dev *hdev;
601 int ret = 0;
602
603 hdev = hci_dev_get(dev);
604 if (!hdev)
605 return -ENODEV;
606
607 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
608 ret = -EBUSY;
609 goto done;
610 }
611
612 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
613 ret = -EOPNOTSUPP;
614 goto done;
615 }
616
617 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
618
619done:
620 hci_dev_put(hdev);
621 return ret;
622}
623
624static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
625{
626 bool conn_changed, discov_changed;
627
628 BT_DBG("%s scan 0x%02x", hdev->name, scan);
629
630 if ((scan & SCAN_PAGE))
631 conn_changed = !hci_dev_test_and_set_flag(hdev,
632 HCI_CONNECTABLE);
633 else
634 conn_changed = hci_dev_test_and_clear_flag(hdev,
635 HCI_CONNECTABLE);
636
637 if ((scan & SCAN_INQUIRY)) {
638 discov_changed = !hci_dev_test_and_set_flag(hdev,
639 HCI_DISCOVERABLE);
640 } else {
641 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
642 discov_changed = hci_dev_test_and_clear_flag(hdev,
643 HCI_DISCOVERABLE);
644 }
645
646 if (!hci_dev_test_flag(hdev, HCI_MGMT))
647 return;
648
649 if (conn_changed || discov_changed) {
650 /* In case this was disabled through mgmt */
651 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
652
653 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
654 hci_update_adv_data(hdev, hdev->cur_adv_instance);
655
656 mgmt_new_settings(hdev);
657 }
658}
659
660int hci_dev_cmd(unsigned int cmd, void __user *arg)
661{
662 struct hci_dev *hdev;
663 struct hci_dev_req dr;
664 __le16 policy;
665 int err = 0;
666
667 if (copy_from_user(&dr, arg, sizeof(dr)))
668 return -EFAULT;
669
670 hdev = hci_dev_get(dr.dev_id);
671 if (!hdev)
672 return -ENODEV;
673
674 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
675 err = -EBUSY;
676 goto done;
677 }
678
679 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
680 err = -EOPNOTSUPP;
681 goto done;
682 }
683
684 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
685 err = -EOPNOTSUPP;
686 goto done;
687 }
688
689 switch (cmd) {
690 case HCISETAUTH:
691 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
692 1, &dr.dev_opt, HCI_CMD_TIMEOUT);
693 break;
694
695 case HCISETENCRYPT:
696 if (!lmp_encrypt_capable(hdev)) {
697 err = -EOPNOTSUPP;
698 break;
699 }
700
701 if (!test_bit(HCI_AUTH, &hdev->flags)) {
702 /* Auth must be enabled first */
703 err = hci_cmd_sync_status(hdev,
704 HCI_OP_WRITE_AUTH_ENABLE,
705 1, &dr.dev_opt,
706 HCI_CMD_TIMEOUT);
707 if (err)
708 break;
709 }
710
711 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
712 1, &dr.dev_opt, HCI_CMD_TIMEOUT);
713 break;
714
715 case HCISETSCAN:
716 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
717 1, &dr.dev_opt, HCI_CMD_TIMEOUT);
718
719 /* Ensure that the connectable and discoverable states
720 * get correctly modified as this was a non-mgmt change.
721 */
722 if (!err)
723 hci_update_passive_scan_state(hdev, dr.dev_opt);
724 break;
725
726 case HCISETLINKPOL:
727 policy = cpu_to_le16(dr.dev_opt);
728
729 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
730 2, &policy, HCI_CMD_TIMEOUT);
731 break;
732
733 case HCISETLINKMODE:
734 hdev->link_mode = ((__u16) dr.dev_opt) &
735 (HCI_LM_MASTER | HCI_LM_ACCEPT);
736 break;
737
738 case HCISETPTYPE:
739 if (hdev->pkt_type == (__u16) dr.dev_opt)
740 break;
741
742 hdev->pkt_type = (__u16) dr.dev_opt;
743 mgmt_phy_configuration_changed(hdev, NULL);
744 break;
745
746 case HCISETACLMTU:
747 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
748 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
749 break;
750
751 case HCISETSCOMTU:
752 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
753 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
754 break;
755
756 default:
757 err = -EINVAL;
758 break;
759 }
760
761done:
762 hci_dev_put(hdev);
763 return err;
764}
765
766int hci_get_dev_list(void __user *arg)
767{
768 struct hci_dev *hdev;
769 struct hci_dev_list_req *dl;
770 struct hci_dev_req *dr;
771 int n = 0, err;
772 __u16 dev_num;
773
774 if (get_user(dev_num, (__u16 __user *) arg))
775 return -EFAULT;
776
777 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
778 return -EINVAL;
779
780 dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
781 if (!dl)
782 return -ENOMEM;
783
784 dl->dev_num = dev_num;
785 dr = dl->dev_req;
786
787 read_lock(&hci_dev_list_lock);
788 list_for_each_entry(hdev, &hci_dev_list, list) {
789 unsigned long flags = hdev->flags;
790
791 /* When the auto-off is configured it means the transport
792 * is running, but in that case still indicate that the
793 * device is actually down.
794 */
795 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
796 flags &= ~BIT(HCI_UP);
797
798 dr[n].dev_id = hdev->id;
799 dr[n].dev_opt = flags;
800
801 if (++n >= dev_num)
802 break;
803 }
804 read_unlock(&hci_dev_list_lock);
805
806 dl->dev_num = n;
807 err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
808 kfree(dl);
809
810 return err ? -EFAULT : 0;
811}
812
813int hci_get_dev_info(void __user *arg)
814{
815 struct hci_dev *hdev;
816 struct hci_dev_info di;
817 unsigned long flags;
818 int err = 0;
819
820 if (copy_from_user(&di, arg, sizeof(di)))
821 return -EFAULT;
822
823 hdev = hci_dev_get(di.dev_id);
824 if (!hdev)
825 return -ENODEV;
826
827 /* When the auto-off is configured it means the transport
828 * is running, but in that case still indicate that the
829 * device is actually down.
830 */
831 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
832 flags = hdev->flags & ~BIT(HCI_UP);
833 else
834 flags = hdev->flags;
835
836 strscpy(di.name, hdev->name, sizeof(di.name));
837 di.bdaddr = hdev->bdaddr;
838 di.type = (hdev->bus & 0x0f);
839 di.flags = flags;
840 di.pkt_type = hdev->pkt_type;
841 if (lmp_bredr_capable(hdev)) {
842 di.acl_mtu = hdev->acl_mtu;
843 di.acl_pkts = hdev->acl_pkts;
844 di.sco_mtu = hdev->sco_mtu;
845 di.sco_pkts = hdev->sco_pkts;
846 } else {
847 di.acl_mtu = hdev->le_mtu;
848 di.acl_pkts = hdev->le_pkts;
849 di.sco_mtu = 0;
850 di.sco_pkts = 0;
851 }
852 di.link_policy = hdev->link_policy;
853 di.link_mode = hdev->link_mode;
854
855 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
856 memcpy(&di.features, &hdev->features, sizeof(di.features));
857
858 if (copy_to_user(arg, &di, sizeof(di)))
859 err = -EFAULT;
860
861 hci_dev_put(hdev);
862
863 return err;
864}
865
866/* ---- Interface to HCI drivers ---- */
867
868static int hci_dev_do_poweroff(struct hci_dev *hdev)
869{
870 int err;
871
872 BT_DBG("%s %p", hdev->name, hdev);
873
874 hci_req_sync_lock(hdev);
875
876 err = hci_set_powered_sync(hdev, false);
877
878 hci_req_sync_unlock(hdev);
879
880 return err;
881}
882
883static int hci_rfkill_set_block(void *data, bool blocked)
884{
885 struct hci_dev *hdev = data;
886 int err;
887
888 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
889
890 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
891 return -EBUSY;
892
893 if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
894 return 0;
895
896 if (blocked) {
897 hci_dev_set_flag(hdev, HCI_RFKILLED);
898
899 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
900 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
901 err = hci_dev_do_poweroff(hdev);
902 if (err) {
903 bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
904 err);
905
906 /* Make sure the device is still closed even if
907 * anything during power off sequence (eg.
908 * disconnecting devices) failed.
909 */
910 hci_dev_do_close(hdev);
911 }
912 }
913 } else {
914 hci_dev_clear_flag(hdev, HCI_RFKILLED);
915 }
916
917 return 0;
918}
919
920static const struct rfkill_ops hci_rfkill_ops = {
921 .set_block = hci_rfkill_set_block,
922};
923
924static void hci_power_on(struct work_struct *work)
925{
926 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
927 int err;
928
929 BT_DBG("%s", hdev->name);
930
931 if (test_bit(HCI_UP, &hdev->flags) &&
932 hci_dev_test_flag(hdev, HCI_MGMT) &&
933 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
934 cancel_delayed_work(&hdev->power_off);
935 err = hci_powered_update_sync(hdev);
936 mgmt_power_on(hdev, err);
937 return;
938 }
939
940 err = hci_dev_do_open(hdev);
941 if (err < 0) {
942 hci_dev_lock(hdev);
943 mgmt_set_powered_failed(hdev, err);
944 hci_dev_unlock(hdev);
945 return;
946 }
947
948 /* During the HCI setup phase, a few error conditions are
949 * ignored and they need to be checked now. If they are still
950 * valid, it is important to turn the device back off.
951 */
952 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
953 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
954 (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
955 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
956 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
957 hci_dev_do_close(hdev);
958 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
959 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
960 HCI_AUTO_OFF_TIMEOUT);
961 }
962
963 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
964 /* For unconfigured devices, set the HCI_RAW flag
965 * so that userspace can easily identify them.
966 */
967 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
968 set_bit(HCI_RAW, &hdev->flags);
969
970 /* For fully configured devices, this will send
971 * the Index Added event. For unconfigured devices,
972 * it will send Unconfigued Index Added event.
973 *
974 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
975 * and no event will be send.
976 */
977 mgmt_index_added(hdev);
978 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
979 /* When the controller is now configured, then it
980 * is important to clear the HCI_RAW flag.
981 */
982 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
983 clear_bit(HCI_RAW, &hdev->flags);
984
985 /* Powering on the controller with HCI_CONFIG set only
986 * happens with the transition from unconfigured to
987 * configured. This will send the Index Added event.
988 */
989 mgmt_index_added(hdev);
990 }
991}
992
993static void hci_power_off(struct work_struct *work)
994{
995 struct hci_dev *hdev = container_of(work, struct hci_dev,
996 power_off.work);
997
998 BT_DBG("%s", hdev->name);
999
1000 hci_dev_do_close(hdev);
1001}
1002
1003static void hci_error_reset(struct work_struct *work)
1004{
1005 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006
1007 hci_dev_hold(hdev);
1008 BT_DBG("%s", hdev->name);
1009
1010 if (hdev->hw_error)
1011 hdev->hw_error(hdev, hdev->hw_error_code);
1012 else
1013 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1014
1015 if (!hci_dev_do_close(hdev))
1016 hci_dev_do_open(hdev);
1017
1018 hci_dev_put(hdev);
1019}
1020
1021void hci_uuids_clear(struct hci_dev *hdev)
1022{
1023 struct bt_uuid *uuid, *tmp;
1024
1025 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026 list_del(&uuid->list);
1027 kfree(uuid);
1028 }
1029}
1030
1031void hci_link_keys_clear(struct hci_dev *hdev)
1032{
1033 struct link_key *key, *tmp;
1034
1035 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036 list_del_rcu(&key->list);
1037 kfree_rcu(key, rcu);
1038 }
1039}
1040
1041void hci_smp_ltks_clear(struct hci_dev *hdev)
1042{
1043 struct smp_ltk *k, *tmp;
1044
1045 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046 list_del_rcu(&k->list);
1047 kfree_rcu(k, rcu);
1048 }
1049}
1050
1051void hci_smp_irks_clear(struct hci_dev *hdev)
1052{
1053 struct smp_irk *k, *tmp;
1054
1055 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056 list_del_rcu(&k->list);
1057 kfree_rcu(k, rcu);
1058 }
1059}
1060
1061void hci_blocked_keys_clear(struct hci_dev *hdev)
1062{
1063 struct blocked_key *b, *tmp;
1064
1065 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066 list_del_rcu(&b->list);
1067 kfree_rcu(b, rcu);
1068 }
1069}
1070
1071bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072{
1073 bool blocked = false;
1074 struct blocked_key *b;
1075
1076 rcu_read_lock();
1077 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079 blocked = true;
1080 break;
1081 }
1082 }
1083
1084 rcu_read_unlock();
1085 return blocked;
1086}
1087
1088struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089{
1090 struct link_key *k;
1091
1092 rcu_read_lock();
1093 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094 if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095 rcu_read_unlock();
1096
1097 if (hci_is_blocked_key(hdev,
1098 HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099 k->val)) {
1100 bt_dev_warn_ratelimited(hdev,
1101 "Link key blocked for %pMR",
1102 &k->bdaddr);
1103 return NULL;
1104 }
1105
1106 return k;
1107 }
1108 }
1109 rcu_read_unlock();
1110
1111 return NULL;
1112}
1113
1114static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115 u8 key_type, u8 old_key_type)
1116{
1117 /* Legacy key */
1118 if (key_type < 0x03)
1119 return true;
1120
1121 /* Debug keys are insecure so don't store them persistently */
1122 if (key_type == HCI_LK_DEBUG_COMBINATION)
1123 return false;
1124
1125 /* Changed combination key and there's no previous one */
1126 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127 return false;
1128
1129 /* Security mode 3 case */
1130 if (!conn)
1131 return true;
1132
1133 /* BR/EDR key derived using SC from an LE link */
1134 if (conn->type == LE_LINK)
1135 return true;
1136
1137 /* Neither local nor remote side had no-bonding as requirement */
1138 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139 return true;
1140
1141 /* Local side had dedicated bonding as requirement */
1142 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143 return true;
1144
1145 /* Remote side had dedicated bonding as requirement */
1146 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147 return true;
1148
1149 /* If none of the above criteria match, then don't store the key
1150 * persistently */
1151 return false;
1152}
1153
1154static u8 ltk_role(u8 type)
1155{
1156 if (type == SMP_LTK)
1157 return HCI_ROLE_MASTER;
1158
1159 return HCI_ROLE_SLAVE;
1160}
1161
1162struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163 u8 addr_type, u8 role)
1164{
1165 struct smp_ltk *k;
1166
1167 rcu_read_lock();
1168 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170 continue;
1171
1172 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173 rcu_read_unlock();
1174
1175 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176 k->val)) {
1177 bt_dev_warn_ratelimited(hdev,
1178 "LTK blocked for %pMR",
1179 &k->bdaddr);
1180 return NULL;
1181 }
1182
1183 return k;
1184 }
1185 }
1186 rcu_read_unlock();
1187
1188 return NULL;
1189}
1190
1191struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192{
1193 struct smp_irk *irk_to_return = NULL;
1194 struct smp_irk *irk;
1195
1196 rcu_read_lock();
1197 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198 if (!bacmp(&irk->rpa, rpa)) {
1199 irk_to_return = irk;
1200 goto done;
1201 }
1202 }
1203
1204 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205 if (smp_irk_matches(hdev, irk->val, rpa)) {
1206 bacpy(&irk->rpa, rpa);
1207 irk_to_return = irk;
1208 goto done;
1209 }
1210 }
1211
1212done:
1213 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214 irk_to_return->val)) {
1215 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216 &irk_to_return->bdaddr);
1217 irk_to_return = NULL;
1218 }
1219
1220 rcu_read_unlock();
1221
1222 return irk_to_return;
1223}
1224
1225struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226 u8 addr_type)
1227{
1228 struct smp_irk *irk_to_return = NULL;
1229 struct smp_irk *irk;
1230
1231 /* Identity Address must be public or static random */
1232 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233 return NULL;
1234
1235 rcu_read_lock();
1236 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237 if (addr_type == irk->addr_type &&
1238 bacmp(bdaddr, &irk->bdaddr) == 0) {
1239 irk_to_return = irk;
1240 goto done;
1241 }
1242 }
1243
1244done:
1245
1246 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247 irk_to_return->val)) {
1248 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249 &irk_to_return->bdaddr);
1250 irk_to_return = NULL;
1251 }
1252
1253 rcu_read_unlock();
1254
1255 return irk_to_return;
1256}
1257
1258struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259 bdaddr_t *bdaddr, u8 *val, u8 type,
1260 u8 pin_len, bool *persistent)
1261{
1262 struct link_key *key, *old_key;
1263 u8 old_key_type;
1264
1265 old_key = hci_find_link_key(hdev, bdaddr);
1266 if (old_key) {
1267 old_key_type = old_key->type;
1268 key = old_key;
1269 } else {
1270 old_key_type = conn ? conn->key_type : 0xff;
1271 key = kzalloc(sizeof(*key), GFP_KERNEL);
1272 if (!key)
1273 return NULL;
1274 list_add_rcu(&key->list, &hdev->link_keys);
1275 }
1276
1277 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278
1279 /* Some buggy controller combinations generate a changed
1280 * combination key for legacy pairing even when there's no
1281 * previous key */
1282 if (type == HCI_LK_CHANGED_COMBINATION &&
1283 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284 type = HCI_LK_COMBINATION;
1285 if (conn)
1286 conn->key_type = type;
1287 }
1288
1289 bacpy(&key->bdaddr, bdaddr);
1290 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291 key->pin_len = pin_len;
1292
1293 if (type == HCI_LK_CHANGED_COMBINATION)
1294 key->type = old_key_type;
1295 else
1296 key->type = type;
1297
1298 if (persistent)
1299 *persistent = hci_persistent_key(hdev, conn, type,
1300 old_key_type);
1301
1302 return key;
1303}
1304
1305struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306 u8 addr_type, u8 type, u8 authenticated,
1307 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308{
1309 struct smp_ltk *key, *old_key;
1310 u8 role = ltk_role(type);
1311
1312 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313 if (old_key)
1314 key = old_key;
1315 else {
1316 key = kzalloc(sizeof(*key), GFP_KERNEL);
1317 if (!key)
1318 return NULL;
1319 list_add_rcu(&key->list, &hdev->long_term_keys);
1320 }
1321
1322 bacpy(&key->bdaddr, bdaddr);
1323 key->bdaddr_type = addr_type;
1324 memcpy(key->val, tk, sizeof(key->val));
1325 key->authenticated = authenticated;
1326 key->ediv = ediv;
1327 key->rand = rand;
1328 key->enc_size = enc_size;
1329 key->type = type;
1330
1331 return key;
1332}
1333
1334struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335 u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336{
1337 struct smp_irk *irk;
1338
1339 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340 if (!irk) {
1341 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342 if (!irk)
1343 return NULL;
1344
1345 bacpy(&irk->bdaddr, bdaddr);
1346 irk->addr_type = addr_type;
1347
1348 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349 }
1350
1351 memcpy(irk->val, val, 16);
1352 bacpy(&irk->rpa, rpa);
1353
1354 return irk;
1355}
1356
1357int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358{
1359 struct link_key *key;
1360
1361 key = hci_find_link_key(hdev, bdaddr);
1362 if (!key)
1363 return -ENOENT;
1364
1365 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366
1367 list_del_rcu(&key->list);
1368 kfree_rcu(key, rcu);
1369
1370 return 0;
1371}
1372
1373int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374{
1375 struct smp_ltk *k, *tmp;
1376 int removed = 0;
1377
1378 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380 continue;
1381
1382 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383
1384 list_del_rcu(&k->list);
1385 kfree_rcu(k, rcu);
1386 removed++;
1387 }
1388
1389 return removed ? 0 : -ENOENT;
1390}
1391
1392void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393{
1394 struct smp_irk *k, *tmp;
1395
1396 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398 continue;
1399
1400 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401
1402 list_del_rcu(&k->list);
1403 kfree_rcu(k, rcu);
1404 }
1405}
1406
1407bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408{
1409 struct smp_ltk *k;
1410 struct smp_irk *irk;
1411 u8 addr_type;
1412
1413 if (type == BDADDR_BREDR) {
1414 if (hci_find_link_key(hdev, bdaddr))
1415 return true;
1416 return false;
1417 }
1418
1419 /* Convert to HCI addr type which struct smp_ltk uses */
1420 if (type == BDADDR_LE_PUBLIC)
1421 addr_type = ADDR_LE_DEV_PUBLIC;
1422 else
1423 addr_type = ADDR_LE_DEV_RANDOM;
1424
1425 irk = hci_get_irk(hdev, bdaddr, addr_type);
1426 if (irk) {
1427 bdaddr = &irk->bdaddr;
1428 addr_type = irk->addr_type;
1429 }
1430
1431 rcu_read_lock();
1432 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434 rcu_read_unlock();
1435 return true;
1436 }
1437 }
1438 rcu_read_unlock();
1439
1440 return false;
1441}
1442
1443/* HCI command timer function */
1444static void hci_cmd_timeout(struct work_struct *work)
1445{
1446 struct hci_dev *hdev = container_of(work, struct hci_dev,
1447 cmd_timer.work);
1448
1449 if (hdev->req_skb) {
1450 u16 opcode = hci_skb_opcode(hdev->req_skb);
1451
1452 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453
1454 hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455 } else {
1456 bt_dev_err(hdev, "command tx timeout");
1457 }
1458
1459 if (hdev->cmd_timeout)
1460 hdev->cmd_timeout(hdev);
1461
1462 atomic_set(&hdev->cmd_cnt, 1);
1463 queue_work(hdev->workqueue, &hdev->cmd_work);
1464}
1465
1466/* HCI ncmd timer function */
1467static void hci_ncmd_timeout(struct work_struct *work)
1468{
1469 struct hci_dev *hdev = container_of(work, struct hci_dev,
1470 ncmd_timer.work);
1471
1472 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473
1474 /* During HCI_INIT phase no events can be injected if the ncmd timer
1475 * triggers since the procedure has its own timeout handling.
1476 */
1477 if (test_bit(HCI_INIT, &hdev->flags))
1478 return;
1479
1480 /* This is an irrecoverable state, inject hardware error event */
1481 hci_reset_dev(hdev);
1482}
1483
1484struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485 bdaddr_t *bdaddr, u8 bdaddr_type)
1486{
1487 struct oob_data *data;
1488
1489 list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490 if (bacmp(bdaddr, &data->bdaddr) != 0)
1491 continue;
1492 if (data->bdaddr_type != bdaddr_type)
1493 continue;
1494 return data;
1495 }
1496
1497 return NULL;
1498}
1499
1500int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501 u8 bdaddr_type)
1502{
1503 struct oob_data *data;
1504
1505 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506 if (!data)
1507 return -ENOENT;
1508
1509 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510
1511 list_del(&data->list);
1512 kfree(data);
1513
1514 return 0;
1515}
1516
1517void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518{
1519 struct oob_data *data, *n;
1520
1521 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522 list_del(&data->list);
1523 kfree(data);
1524 }
1525}
1526
1527int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529 u8 *hash256, u8 *rand256)
1530{
1531 struct oob_data *data;
1532
1533 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534 if (!data) {
1535 data = kmalloc(sizeof(*data), GFP_KERNEL);
1536 if (!data)
1537 return -ENOMEM;
1538
1539 bacpy(&data->bdaddr, bdaddr);
1540 data->bdaddr_type = bdaddr_type;
1541 list_add(&data->list, &hdev->remote_oob_data);
1542 }
1543
1544 if (hash192 && rand192) {
1545 memcpy(data->hash192, hash192, sizeof(data->hash192));
1546 memcpy(data->rand192, rand192, sizeof(data->rand192));
1547 if (hash256 && rand256)
1548 data->present = 0x03;
1549 } else {
1550 memset(data->hash192, 0, sizeof(data->hash192));
1551 memset(data->rand192, 0, sizeof(data->rand192));
1552 if (hash256 && rand256)
1553 data->present = 0x02;
1554 else
1555 data->present = 0x00;
1556 }
1557
1558 if (hash256 && rand256) {
1559 memcpy(data->hash256, hash256, sizeof(data->hash256));
1560 memcpy(data->rand256, rand256, sizeof(data->rand256));
1561 } else {
1562 memset(data->hash256, 0, sizeof(data->hash256));
1563 memset(data->rand256, 0, sizeof(data->rand256));
1564 if (hash192 && rand192)
1565 data->present = 0x01;
1566 }
1567
1568 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569
1570 return 0;
1571}
1572
1573/* This function requires the caller holds hdev->lock */
1574struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575{
1576 struct adv_info *adv_instance;
1577
1578 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579 if (adv_instance->instance == instance)
1580 return adv_instance;
1581 }
1582
1583 return NULL;
1584}
1585
1586/* This function requires the caller holds hdev->lock */
1587struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588{
1589 struct adv_info *cur_instance;
1590
1591 cur_instance = hci_find_adv_instance(hdev, instance);
1592 if (!cur_instance)
1593 return NULL;
1594
1595 if (cur_instance == list_last_entry(&hdev->adv_instances,
1596 struct adv_info, list))
1597 return list_first_entry(&hdev->adv_instances,
1598 struct adv_info, list);
1599 else
1600 return list_next_entry(cur_instance, list);
1601}
1602
1603/* This function requires the caller holds hdev->lock */
1604int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605{
1606 struct adv_info *adv_instance;
1607
1608 adv_instance = hci_find_adv_instance(hdev, instance);
1609 if (!adv_instance)
1610 return -ENOENT;
1611
1612 BT_DBG("%s removing %dMR", hdev->name, instance);
1613
1614 if (hdev->cur_adv_instance == instance) {
1615 if (hdev->adv_instance_timeout) {
1616 cancel_delayed_work(&hdev->adv_instance_expire);
1617 hdev->adv_instance_timeout = 0;
1618 }
1619 hdev->cur_adv_instance = 0x00;
1620 }
1621
1622 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1623
1624 list_del(&adv_instance->list);
1625 kfree(adv_instance);
1626
1627 hdev->adv_instance_cnt--;
1628
1629 return 0;
1630}
1631
1632void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1633{
1634 struct adv_info *adv_instance, *n;
1635
1636 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637 adv_instance->rpa_expired = rpa_expired;
1638}
1639
1640/* This function requires the caller holds hdev->lock */
1641void hci_adv_instances_clear(struct hci_dev *hdev)
1642{
1643 struct adv_info *adv_instance, *n;
1644
1645 if (hdev->adv_instance_timeout) {
1646 disable_delayed_work(&hdev->adv_instance_expire);
1647 hdev->adv_instance_timeout = 0;
1648 }
1649
1650 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651 disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652 list_del(&adv_instance->list);
1653 kfree(adv_instance);
1654 }
1655
1656 hdev->adv_instance_cnt = 0;
1657 hdev->cur_adv_instance = 0x00;
1658}
1659
1660static void adv_instance_rpa_expired(struct work_struct *work)
1661{
1662 struct adv_info *adv_instance = container_of(work, struct adv_info,
1663 rpa_expired_cb.work);
1664
1665 BT_DBG("");
1666
1667 adv_instance->rpa_expired = true;
1668}
1669
1670/* This function requires the caller holds hdev->lock */
1671struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672 u32 flags, u16 adv_data_len, u8 *adv_data,
1673 u16 scan_rsp_len, u8 *scan_rsp_data,
1674 u16 timeout, u16 duration, s8 tx_power,
1675 u32 min_interval, u32 max_interval,
1676 u8 mesh_handle)
1677{
1678 struct adv_info *adv;
1679
1680 adv = hci_find_adv_instance(hdev, instance);
1681 if (adv) {
1682 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685 } else {
1686 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687 instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688 return ERR_PTR(-EOVERFLOW);
1689
1690 adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691 if (!adv)
1692 return ERR_PTR(-ENOMEM);
1693
1694 adv->pending = true;
1695 adv->instance = instance;
1696
1697 /* If controller support only one set and the instance is set to
1698 * 1 then there is no option other than using handle 0x00.
1699 */
1700 if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701 adv->handle = 0x00;
1702 else
1703 adv->handle = instance;
1704
1705 list_add(&adv->list, &hdev->adv_instances);
1706 hdev->adv_instance_cnt++;
1707 }
1708
1709 adv->flags = flags;
1710 adv->min_interval = min_interval;
1711 adv->max_interval = max_interval;
1712 adv->tx_power = tx_power;
1713 /* Defining a mesh_handle changes the timing units to ms,
1714 * rather than seconds, and ties the instance to the requested
1715 * mesh_tx queue.
1716 */
1717 adv->mesh = mesh_handle;
1718
1719 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720 scan_rsp_len, scan_rsp_data);
1721
1722 adv->timeout = timeout;
1723 adv->remaining_time = timeout;
1724
1725 if (duration == 0)
1726 adv->duration = hdev->def_multi_adv_rotation_duration;
1727 else
1728 adv->duration = duration;
1729
1730 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1731
1732 BT_DBG("%s for %dMR", hdev->name, instance);
1733
1734 return adv;
1735}
1736
1737/* This function requires the caller holds hdev->lock */
1738struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739 u32 flags, u8 data_len, u8 *data,
1740 u32 min_interval, u32 max_interval)
1741{
1742 struct adv_info *adv;
1743
1744 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746 min_interval, max_interval, 0);
1747 if (IS_ERR(adv))
1748 return adv;
1749
1750 adv->periodic = true;
1751 adv->per_adv_data_len = data_len;
1752
1753 if (data)
1754 memcpy(adv->per_adv_data, data, data_len);
1755
1756 return adv;
1757}
1758
1759/* This function requires the caller holds hdev->lock */
1760int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761 u16 adv_data_len, u8 *adv_data,
1762 u16 scan_rsp_len, u8 *scan_rsp_data)
1763{
1764 struct adv_info *adv;
1765
1766 adv = hci_find_adv_instance(hdev, instance);
1767
1768 /* If advertisement doesn't exist, we can't modify its data */
1769 if (!adv)
1770 return -ENOENT;
1771
1772 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774 memcpy(adv->adv_data, adv_data, adv_data_len);
1775 adv->adv_data_len = adv_data_len;
1776 adv->adv_data_changed = true;
1777 }
1778
1779 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782 adv->scan_rsp_len = scan_rsp_len;
1783 adv->scan_rsp_changed = true;
1784 }
1785
1786 /* Mark as changed if there are flags which would affect it */
1787 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789 adv->scan_rsp_changed = true;
1790
1791 return 0;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796{
1797 u32 flags;
1798 struct adv_info *adv;
1799
1800 if (instance == 0x00) {
1801 /* Instance 0 always manages the "Tx Power" and "Flags"
1802 * fields
1803 */
1804 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805
1806 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807 * corresponds to the "connectable" instance flag.
1808 */
1809 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811
1812 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815 flags |= MGMT_ADV_FLAG_DISCOV;
1816
1817 return flags;
1818 }
1819
1820 adv = hci_find_adv_instance(hdev, instance);
1821
1822 /* Return 0 when we got an invalid instance identifier. */
1823 if (!adv)
1824 return 0;
1825
1826 return adv->flags;
1827}
1828
1829bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830{
1831 struct adv_info *adv;
1832
1833 /* Instance 0x00 always set local name */
1834 if (instance == 0x00)
1835 return true;
1836
1837 adv = hci_find_adv_instance(hdev, instance);
1838 if (!adv)
1839 return false;
1840
1841 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843 return true;
1844
1845 return adv->scan_rsp_len ? true : false;
1846}
1847
1848/* This function requires the caller holds hdev->lock */
1849void hci_adv_monitors_clear(struct hci_dev *hdev)
1850{
1851 struct adv_monitor *monitor;
1852 int handle;
1853
1854 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855 hci_free_adv_monitor(hdev, monitor);
1856
1857 idr_destroy(&hdev->adv_monitors_idr);
1858}
1859
1860/* Frees the monitor structure and do some bookkeepings.
1861 * This function requires the caller holds hdev->lock.
1862 */
1863void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864{
1865 struct adv_pattern *pattern;
1866 struct adv_pattern *tmp;
1867
1868 if (!monitor)
1869 return;
1870
1871 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872 list_del(&pattern->list);
1873 kfree(pattern);
1874 }
1875
1876 if (monitor->handle)
1877 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878
1879 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880 hdev->adv_monitors_cnt--;
1881 mgmt_adv_monitor_removed(hdev, monitor->handle);
1882 }
1883
1884 kfree(monitor);
1885}
1886
1887/* Assigns handle to a monitor, and if offloading is supported and power is on,
1888 * also attempts to forward the request to the controller.
1889 * This function requires the caller holds hci_req_sync_lock.
1890 */
1891int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1892{
1893 int min, max, handle;
1894 int status = 0;
1895
1896 if (!monitor)
1897 return -EINVAL;
1898
1899 hci_dev_lock(hdev);
1900
1901 min = HCI_MIN_ADV_MONITOR_HANDLE;
1902 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904 GFP_KERNEL);
1905
1906 hci_dev_unlock(hdev);
1907
1908 if (handle < 0)
1909 return handle;
1910
1911 monitor->handle = handle;
1912
1913 if (!hdev_is_powered(hdev))
1914 return status;
1915
1916 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917 case HCI_ADV_MONITOR_EXT_NONE:
1918 bt_dev_dbg(hdev, "add monitor %d status %d",
1919 monitor->handle, status);
1920 /* Message was not forwarded to controller - not an error */
1921 break;
1922
1923 case HCI_ADV_MONITOR_EXT_MSFT:
1924 status = msft_add_monitor_pattern(hdev, monitor);
1925 bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926 handle, status);
1927 break;
1928 }
1929
1930 return status;
1931}
1932
1933/* Attempts to tell the controller and free the monitor. If somehow the
1934 * controller doesn't have a corresponding handle, remove anyway.
1935 * This function requires the caller holds hci_req_sync_lock.
1936 */
1937static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938 struct adv_monitor *monitor)
1939{
1940 int status = 0;
1941 int handle;
1942
1943 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945 bt_dev_dbg(hdev, "remove monitor %d status %d",
1946 monitor->handle, status);
1947 goto free_monitor;
1948
1949 case HCI_ADV_MONITOR_EXT_MSFT:
1950 handle = monitor->handle;
1951 status = msft_remove_monitor(hdev, monitor);
1952 bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953 handle, status);
1954 break;
1955 }
1956
1957 /* In case no matching handle registered, just free the monitor */
1958 if (status == -ENOENT)
1959 goto free_monitor;
1960
1961 return status;
1962
1963free_monitor:
1964 if (status == -ENOENT)
1965 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966 monitor->handle);
1967 hci_free_adv_monitor(hdev, monitor);
1968
1969 return status;
1970}
1971
1972/* This function requires the caller holds hci_req_sync_lock */
1973int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1974{
1975 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1976
1977 if (!monitor)
1978 return -EINVAL;
1979
1980 return hci_remove_adv_monitor(hdev, monitor);
1981}
1982
1983/* This function requires the caller holds hci_req_sync_lock */
1984int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1985{
1986 struct adv_monitor *monitor;
1987 int idr_next_id = 0;
1988 int status = 0;
1989
1990 while (1) {
1991 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992 if (!monitor)
1993 break;
1994
1995 status = hci_remove_adv_monitor(hdev, monitor);
1996 if (status)
1997 return status;
1998
1999 idr_next_id++;
2000 }
2001
2002 return status;
2003}
2004
2005/* This function requires the caller holds hdev->lock */
2006bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007{
2008 return !idr_is_empty(&hdev->adv_monitors_idr);
2009}
2010
2011int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2012{
2013 if (msft_monitor_supported(hdev))
2014 return HCI_ADV_MONITOR_EXT_MSFT;
2015
2016 return HCI_ADV_MONITOR_EXT_NONE;
2017}
2018
2019struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020 bdaddr_t *bdaddr, u8 type)
2021{
2022 struct bdaddr_list *b;
2023
2024 list_for_each_entry(b, bdaddr_list, list) {
2025 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026 return b;
2027 }
2028
2029 return NULL;
2030}
2031
2032struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034 u8 type)
2035{
2036 struct bdaddr_list_with_irk *b;
2037
2038 list_for_each_entry(b, bdaddr_list, list) {
2039 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040 return b;
2041 }
2042
2043 return NULL;
2044}
2045
2046struct bdaddr_list_with_flags *
2047hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048 bdaddr_t *bdaddr, u8 type)
2049{
2050 struct bdaddr_list_with_flags *b;
2051
2052 list_for_each_entry(b, bdaddr_list, list) {
2053 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054 return b;
2055 }
2056
2057 return NULL;
2058}
2059
2060void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061{
2062 struct bdaddr_list *b, *n;
2063
2064 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065 list_del(&b->list);
2066 kfree(b);
2067 }
2068}
2069
2070int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071{
2072 struct bdaddr_list *entry;
2073
2074 if (!bacmp(bdaddr, BDADDR_ANY))
2075 return -EBADF;
2076
2077 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078 return -EEXIST;
2079
2080 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081 if (!entry)
2082 return -ENOMEM;
2083
2084 bacpy(&entry->bdaddr, bdaddr);
2085 entry->bdaddr_type = type;
2086
2087 list_add(&entry->list, list);
2088
2089 return 0;
2090}
2091
2092int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093 u8 type, u8 *peer_irk, u8 *local_irk)
2094{
2095 struct bdaddr_list_with_irk *entry;
2096
2097 if (!bacmp(bdaddr, BDADDR_ANY))
2098 return -EBADF;
2099
2100 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101 return -EEXIST;
2102
2103 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104 if (!entry)
2105 return -ENOMEM;
2106
2107 bacpy(&entry->bdaddr, bdaddr);
2108 entry->bdaddr_type = type;
2109
2110 if (peer_irk)
2111 memcpy(entry->peer_irk, peer_irk, 16);
2112
2113 if (local_irk)
2114 memcpy(entry->local_irk, local_irk, 16);
2115
2116 list_add(&entry->list, list);
2117
2118 return 0;
2119}
2120
2121int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122 u8 type, u32 flags)
2123{
2124 struct bdaddr_list_with_flags *entry;
2125
2126 if (!bacmp(bdaddr, BDADDR_ANY))
2127 return -EBADF;
2128
2129 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130 return -EEXIST;
2131
2132 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133 if (!entry)
2134 return -ENOMEM;
2135
2136 bacpy(&entry->bdaddr, bdaddr);
2137 entry->bdaddr_type = type;
2138 entry->flags = flags;
2139
2140 list_add(&entry->list, list);
2141
2142 return 0;
2143}
2144
2145int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2146{
2147 struct bdaddr_list *entry;
2148
2149 if (!bacmp(bdaddr, BDADDR_ANY)) {
2150 hci_bdaddr_list_clear(list);
2151 return 0;
2152 }
2153
2154 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155 if (!entry)
2156 return -ENOENT;
2157
2158 list_del(&entry->list);
2159 kfree(entry);
2160
2161 return 0;
2162}
2163
2164int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165 u8 type)
2166{
2167 struct bdaddr_list_with_irk *entry;
2168
2169 if (!bacmp(bdaddr, BDADDR_ANY)) {
2170 hci_bdaddr_list_clear(list);
2171 return 0;
2172 }
2173
2174 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175 if (!entry)
2176 return -ENOENT;
2177
2178 list_del(&entry->list);
2179 kfree(entry);
2180
2181 return 0;
2182}
2183
2184int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2185 u8 type)
2186{
2187 struct bdaddr_list_with_flags *entry;
2188
2189 if (!bacmp(bdaddr, BDADDR_ANY)) {
2190 hci_bdaddr_list_clear(list);
2191 return 0;
2192 }
2193
2194 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2195 if (!entry)
2196 return -ENOENT;
2197
2198 list_del(&entry->list);
2199 kfree(entry);
2200
2201 return 0;
2202}
2203
2204/* This function requires the caller holds hdev->lock */
2205struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2206 bdaddr_t *addr, u8 addr_type)
2207{
2208 struct hci_conn_params *params;
2209
2210 list_for_each_entry(params, &hdev->le_conn_params, list) {
2211 if (bacmp(¶ms->addr, addr) == 0 &&
2212 params->addr_type == addr_type) {
2213 return params;
2214 }
2215 }
2216
2217 return NULL;
2218}
2219
2220/* This function requires the caller holds hdev->lock or rcu_read_lock */
2221struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2222 bdaddr_t *addr, u8 addr_type)
2223{
2224 struct hci_conn_params *param;
2225
2226 rcu_read_lock();
2227
2228 list_for_each_entry_rcu(param, list, action) {
2229 if (bacmp(¶m->addr, addr) == 0 &&
2230 param->addr_type == addr_type) {
2231 rcu_read_unlock();
2232 return param;
2233 }
2234 }
2235
2236 rcu_read_unlock();
2237
2238 return NULL;
2239}
2240
2241/* This function requires the caller holds hdev->lock */
2242void hci_pend_le_list_del_init(struct hci_conn_params *param)
2243{
2244 if (list_empty(¶m->action))
2245 return;
2246
2247 list_del_rcu(¶m->action);
2248 synchronize_rcu();
2249 INIT_LIST_HEAD(¶m->action);
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253void hci_pend_le_list_add(struct hci_conn_params *param,
2254 struct list_head *list)
2255{
2256 list_add_rcu(¶m->action, list);
2257}
2258
2259/* This function requires the caller holds hdev->lock */
2260struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2261 bdaddr_t *addr, u8 addr_type)
2262{
2263 struct hci_conn_params *params;
2264
2265 params = hci_conn_params_lookup(hdev, addr, addr_type);
2266 if (params)
2267 return params;
2268
2269 params = kzalloc(sizeof(*params), GFP_KERNEL);
2270 if (!params) {
2271 bt_dev_err(hdev, "out of memory");
2272 return NULL;
2273 }
2274
2275 bacpy(¶ms->addr, addr);
2276 params->addr_type = addr_type;
2277
2278 list_add(¶ms->list, &hdev->le_conn_params);
2279 INIT_LIST_HEAD(¶ms->action);
2280
2281 params->conn_min_interval = hdev->le_conn_min_interval;
2282 params->conn_max_interval = hdev->le_conn_max_interval;
2283 params->conn_latency = hdev->le_conn_latency;
2284 params->supervision_timeout = hdev->le_supv_timeout;
2285 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2286
2287 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2288
2289 return params;
2290}
2291
2292void hci_conn_params_free(struct hci_conn_params *params)
2293{
2294 hci_pend_le_list_del_init(params);
2295
2296 if (params->conn) {
2297 hci_conn_drop(params->conn);
2298 hci_conn_put(params->conn);
2299 }
2300
2301 list_del(¶ms->list);
2302 kfree(params);
2303}
2304
2305/* This function requires the caller holds hdev->lock */
2306void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2307{
2308 struct hci_conn_params *params;
2309
2310 params = hci_conn_params_lookup(hdev, addr, addr_type);
2311 if (!params)
2312 return;
2313
2314 hci_conn_params_free(params);
2315
2316 hci_update_passive_scan(hdev);
2317
2318 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2319}
2320
2321/* This function requires the caller holds hdev->lock */
2322void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2323{
2324 struct hci_conn_params *params, *tmp;
2325
2326 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2327 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2328 continue;
2329
2330 /* If trying to establish one time connection to disabled
2331 * device, leave the params, but mark them as just once.
2332 */
2333 if (params->explicit_connect) {
2334 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2335 continue;
2336 }
2337
2338 hci_conn_params_free(params);
2339 }
2340
2341 BT_DBG("All LE disabled connection parameters were removed");
2342}
2343
2344/* This function requires the caller holds hdev->lock */
2345static void hci_conn_params_clear_all(struct hci_dev *hdev)
2346{
2347 struct hci_conn_params *params, *tmp;
2348
2349 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2350 hci_conn_params_free(params);
2351
2352 BT_DBG("All LE connection parameters were removed");
2353}
2354
2355/* Copy the Identity Address of the controller.
2356 *
2357 * If the controller has a public BD_ADDR, then by default use that one.
2358 * If this is a LE only controller without a public address, default to
2359 * the static random address.
2360 *
2361 * For debugging purposes it is possible to force controllers with a
2362 * public address to use the static random address instead.
2363 *
2364 * In case BR/EDR has been disabled on a dual-mode controller and
2365 * userspace has configured a static address, then that address
2366 * becomes the identity address instead of the public BR/EDR address.
2367 */
2368void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2369 u8 *bdaddr_type)
2370{
2371 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2372 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2373 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2374 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2375 bacpy(bdaddr, &hdev->static_addr);
2376 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2377 } else {
2378 bacpy(bdaddr, &hdev->bdaddr);
2379 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2380 }
2381}
2382
2383static void hci_clear_wake_reason(struct hci_dev *hdev)
2384{
2385 hci_dev_lock(hdev);
2386
2387 hdev->wake_reason = 0;
2388 bacpy(&hdev->wake_addr, BDADDR_ANY);
2389 hdev->wake_addr_type = 0;
2390
2391 hci_dev_unlock(hdev);
2392}
2393
2394static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2395 void *data)
2396{
2397 struct hci_dev *hdev =
2398 container_of(nb, struct hci_dev, suspend_notifier);
2399 int ret = 0;
2400
2401 /* Userspace has full control of this device. Do nothing. */
2402 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2403 return NOTIFY_DONE;
2404
2405 /* To avoid a potential race with hci_unregister_dev. */
2406 hci_dev_hold(hdev);
2407
2408 switch (action) {
2409 case PM_HIBERNATION_PREPARE:
2410 case PM_SUSPEND_PREPARE:
2411 ret = hci_suspend_dev(hdev);
2412 break;
2413 case PM_POST_HIBERNATION:
2414 case PM_POST_SUSPEND:
2415 ret = hci_resume_dev(hdev);
2416 break;
2417 }
2418
2419 if (ret)
2420 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2421 action, ret);
2422
2423 hci_dev_put(hdev);
2424 return NOTIFY_DONE;
2425}
2426
2427/* Alloc HCI device */
2428struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2429{
2430 struct hci_dev *hdev;
2431 unsigned int alloc_size;
2432
2433 alloc_size = sizeof(*hdev);
2434 if (sizeof_priv) {
2435 /* Fixme: May need ALIGN-ment? */
2436 alloc_size += sizeof_priv;
2437 }
2438
2439 hdev = kzalloc(alloc_size, GFP_KERNEL);
2440 if (!hdev)
2441 return NULL;
2442
2443 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2444 hdev->esco_type = (ESCO_HV1);
2445 hdev->link_mode = (HCI_LM_ACCEPT);
2446 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2447 hdev->io_capability = 0x03; /* No Input No Output */
2448 hdev->manufacturer = 0xffff; /* Default to internal use */
2449 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2450 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2451 hdev->adv_instance_cnt = 0;
2452 hdev->cur_adv_instance = 0x00;
2453 hdev->adv_instance_timeout = 0;
2454
2455 hdev->advmon_allowlist_duration = 300;
2456 hdev->advmon_no_filter_duration = 500;
2457 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */
2458
2459 hdev->sniff_max_interval = 800;
2460 hdev->sniff_min_interval = 80;
2461
2462 hdev->le_adv_channel_map = 0x07;
2463 hdev->le_adv_min_interval = 0x0800;
2464 hdev->le_adv_max_interval = 0x0800;
2465 hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2466 hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2467 hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2468 hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2469 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2470 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2471 hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2472 hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2473 hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2474 hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2475 hdev->le_conn_min_interval = 0x0018;
2476 hdev->le_conn_max_interval = 0x0028;
2477 hdev->le_conn_latency = 0x0000;
2478 hdev->le_supv_timeout = 0x002a;
2479 hdev->le_def_tx_len = 0x001b;
2480 hdev->le_def_tx_time = 0x0148;
2481 hdev->le_max_tx_len = 0x001b;
2482 hdev->le_max_tx_time = 0x0148;
2483 hdev->le_max_rx_len = 0x001b;
2484 hdev->le_max_rx_time = 0x0148;
2485 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2486 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2487 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2488 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2489 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2490 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2491 hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2492 hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2493 hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2494
2495 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2496 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2497 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2498 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2499 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2500 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2501
2502 /* default 1.28 sec page scan */
2503 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2504 hdev->def_page_scan_int = 0x0800;
2505 hdev->def_page_scan_window = 0x0012;
2506
2507 mutex_init(&hdev->lock);
2508 mutex_init(&hdev->req_lock);
2509
2510 ida_init(&hdev->unset_handle_ida);
2511
2512 INIT_LIST_HEAD(&hdev->mesh_pending);
2513 INIT_LIST_HEAD(&hdev->mgmt_pending);
2514 INIT_LIST_HEAD(&hdev->reject_list);
2515 INIT_LIST_HEAD(&hdev->accept_list);
2516 INIT_LIST_HEAD(&hdev->uuids);
2517 INIT_LIST_HEAD(&hdev->link_keys);
2518 INIT_LIST_HEAD(&hdev->long_term_keys);
2519 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2520 INIT_LIST_HEAD(&hdev->remote_oob_data);
2521 INIT_LIST_HEAD(&hdev->le_accept_list);
2522 INIT_LIST_HEAD(&hdev->le_resolv_list);
2523 INIT_LIST_HEAD(&hdev->le_conn_params);
2524 INIT_LIST_HEAD(&hdev->pend_le_conns);
2525 INIT_LIST_HEAD(&hdev->pend_le_reports);
2526 INIT_LIST_HEAD(&hdev->conn_hash.list);
2527 INIT_LIST_HEAD(&hdev->adv_instances);
2528 INIT_LIST_HEAD(&hdev->blocked_keys);
2529 INIT_LIST_HEAD(&hdev->monitored_devices);
2530
2531 INIT_LIST_HEAD(&hdev->local_codecs);
2532 INIT_WORK(&hdev->rx_work, hci_rx_work);
2533 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2534 INIT_WORK(&hdev->tx_work, hci_tx_work);
2535 INIT_WORK(&hdev->power_on, hci_power_on);
2536 INIT_WORK(&hdev->error_reset, hci_error_reset);
2537
2538 hci_cmd_sync_init(hdev);
2539
2540 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2541
2542 skb_queue_head_init(&hdev->rx_q);
2543 skb_queue_head_init(&hdev->cmd_q);
2544 skb_queue_head_init(&hdev->raw_q);
2545
2546 init_waitqueue_head(&hdev->req_wait_q);
2547
2548 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2549 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2550
2551 hci_devcd_setup(hdev);
2552
2553 hci_init_sysfs(hdev);
2554 discovery_init(hdev);
2555
2556 return hdev;
2557}
2558EXPORT_SYMBOL(hci_alloc_dev_priv);
2559
2560/* Free HCI device */
2561void hci_free_dev(struct hci_dev *hdev)
2562{
2563 /* will free via device release */
2564 put_device(&hdev->dev);
2565}
2566EXPORT_SYMBOL(hci_free_dev);
2567
2568/* Register HCI device */
2569int hci_register_dev(struct hci_dev *hdev)
2570{
2571 int id, error;
2572
2573 if (!hdev->open || !hdev->close || !hdev->send)
2574 return -EINVAL;
2575
2576 id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2577 if (id < 0)
2578 return id;
2579
2580 error = dev_set_name(&hdev->dev, "hci%u", id);
2581 if (error)
2582 return error;
2583
2584 hdev->name = dev_name(&hdev->dev);
2585 hdev->id = id;
2586
2587 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2588
2589 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2590 if (!hdev->workqueue) {
2591 error = -ENOMEM;
2592 goto err;
2593 }
2594
2595 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2596 hdev->name);
2597 if (!hdev->req_workqueue) {
2598 destroy_workqueue(hdev->workqueue);
2599 error = -ENOMEM;
2600 goto err;
2601 }
2602
2603 if (!IS_ERR_OR_NULL(bt_debugfs))
2604 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2605
2606 error = device_add(&hdev->dev);
2607 if (error < 0)
2608 goto err_wqueue;
2609
2610 hci_leds_init(hdev);
2611
2612 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2613 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2614 hdev);
2615 if (hdev->rfkill) {
2616 if (rfkill_register(hdev->rfkill) < 0) {
2617 rfkill_destroy(hdev->rfkill);
2618 hdev->rfkill = NULL;
2619 }
2620 }
2621
2622 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2623 hci_dev_set_flag(hdev, HCI_RFKILLED);
2624
2625 hci_dev_set_flag(hdev, HCI_SETUP);
2626 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2627
2628 /* Assume BR/EDR support until proven otherwise (such as
2629 * through reading supported features during init.
2630 */
2631 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2632
2633 write_lock(&hci_dev_list_lock);
2634 list_add(&hdev->list, &hci_dev_list);
2635 write_unlock(&hci_dev_list_lock);
2636
2637 /* Devices that are marked for raw-only usage are unconfigured
2638 * and should not be included in normal operation.
2639 */
2640 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2641 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2642
2643 /* Mark Remote Wakeup connection flag as supported if driver has wakeup
2644 * callback.
2645 */
2646 if (hdev->wakeup)
2647 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2648
2649 hci_sock_dev_event(hdev, HCI_DEV_REG);
2650 hci_dev_hold(hdev);
2651
2652 error = hci_register_suspend_notifier(hdev);
2653 if (error)
2654 BT_WARN("register suspend notifier failed error:%d\n", error);
2655
2656 queue_work(hdev->req_workqueue, &hdev->power_on);
2657
2658 idr_init(&hdev->adv_monitors_idr);
2659 msft_register(hdev);
2660
2661 return id;
2662
2663err_wqueue:
2664 debugfs_remove_recursive(hdev->debugfs);
2665 destroy_workqueue(hdev->workqueue);
2666 destroy_workqueue(hdev->req_workqueue);
2667err:
2668 ida_free(&hci_index_ida, hdev->id);
2669
2670 return error;
2671}
2672EXPORT_SYMBOL(hci_register_dev);
2673
2674/* Unregister HCI device */
2675void hci_unregister_dev(struct hci_dev *hdev)
2676{
2677 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2678
2679 mutex_lock(&hdev->unregister_lock);
2680 hci_dev_set_flag(hdev, HCI_UNREGISTER);
2681 mutex_unlock(&hdev->unregister_lock);
2682
2683 write_lock(&hci_dev_list_lock);
2684 list_del(&hdev->list);
2685 write_unlock(&hci_dev_list_lock);
2686
2687 disable_work_sync(&hdev->rx_work);
2688 disable_work_sync(&hdev->cmd_work);
2689 disable_work_sync(&hdev->tx_work);
2690 disable_work_sync(&hdev->power_on);
2691 disable_work_sync(&hdev->error_reset);
2692
2693 hci_cmd_sync_clear(hdev);
2694
2695 hci_unregister_suspend_notifier(hdev);
2696
2697 hci_dev_do_close(hdev);
2698
2699 if (!test_bit(HCI_INIT, &hdev->flags) &&
2700 !hci_dev_test_flag(hdev, HCI_SETUP) &&
2701 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2702 hci_dev_lock(hdev);
2703 mgmt_index_removed(hdev);
2704 hci_dev_unlock(hdev);
2705 }
2706
2707 /* mgmt_index_removed should take care of emptying the
2708 * pending list */
2709 BUG_ON(!list_empty(&hdev->mgmt_pending));
2710
2711 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2712
2713 if (hdev->rfkill) {
2714 rfkill_unregister(hdev->rfkill);
2715 rfkill_destroy(hdev->rfkill);
2716 }
2717
2718 device_del(&hdev->dev);
2719 /* Actual cleanup is deferred until hci_release_dev(). */
2720 hci_dev_put(hdev);
2721}
2722EXPORT_SYMBOL(hci_unregister_dev);
2723
2724/* Release HCI device */
2725void hci_release_dev(struct hci_dev *hdev)
2726{
2727 debugfs_remove_recursive(hdev->debugfs);
2728 kfree_const(hdev->hw_info);
2729 kfree_const(hdev->fw_info);
2730
2731 destroy_workqueue(hdev->workqueue);
2732 destroy_workqueue(hdev->req_workqueue);
2733
2734 hci_dev_lock(hdev);
2735 hci_bdaddr_list_clear(&hdev->reject_list);
2736 hci_bdaddr_list_clear(&hdev->accept_list);
2737 hci_uuids_clear(hdev);
2738 hci_link_keys_clear(hdev);
2739 hci_smp_ltks_clear(hdev);
2740 hci_smp_irks_clear(hdev);
2741 hci_remote_oob_data_clear(hdev);
2742 hci_adv_instances_clear(hdev);
2743 hci_adv_monitors_clear(hdev);
2744 hci_bdaddr_list_clear(&hdev->le_accept_list);
2745 hci_bdaddr_list_clear(&hdev->le_resolv_list);
2746 hci_conn_params_clear_all(hdev);
2747 hci_discovery_filter_clear(hdev);
2748 hci_blocked_keys_clear(hdev);
2749 hci_codec_list_clear(&hdev->local_codecs);
2750 msft_release(hdev);
2751 hci_dev_unlock(hdev);
2752
2753 ida_destroy(&hdev->unset_handle_ida);
2754 ida_free(&hci_index_ida, hdev->id);
2755 kfree_skb(hdev->sent_cmd);
2756 kfree_skb(hdev->req_skb);
2757 kfree_skb(hdev->recv_event);
2758 kfree(hdev);
2759}
2760EXPORT_SYMBOL(hci_release_dev);
2761
2762int hci_register_suspend_notifier(struct hci_dev *hdev)
2763{
2764 int ret = 0;
2765
2766 if (!hdev->suspend_notifier.notifier_call &&
2767 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769 ret = register_pm_notifier(&hdev->suspend_notifier);
2770 }
2771
2772 return ret;
2773}
2774
2775int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776{
2777 int ret = 0;
2778
2779 if (hdev->suspend_notifier.notifier_call) {
2780 ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781 if (!ret)
2782 hdev->suspend_notifier.notifier_call = NULL;
2783 }
2784
2785 return ret;
2786}
2787
2788/* Cancel ongoing command synchronously:
2789 *
2790 * - Cancel command timer
2791 * - Reset command counter
2792 * - Cancel command request
2793 */
2794static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2795{
2796 bt_dev_dbg(hdev, "err 0x%2.2x", err);
2797
2798 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2799 disable_delayed_work_sync(&hdev->cmd_timer);
2800 disable_delayed_work_sync(&hdev->ncmd_timer);
2801 } else {
2802 cancel_delayed_work_sync(&hdev->cmd_timer);
2803 cancel_delayed_work_sync(&hdev->ncmd_timer);
2804 }
2805
2806 atomic_set(&hdev->cmd_cnt, 1);
2807
2808 hci_cmd_sync_cancel_sync(hdev, err);
2809}
2810
2811/* Suspend HCI device */
2812int hci_suspend_dev(struct hci_dev *hdev)
2813{
2814 int ret;
2815
2816 bt_dev_dbg(hdev, "");
2817
2818 /* Suspend should only act on when powered. */
2819 if (!hdev_is_powered(hdev) ||
2820 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2821 return 0;
2822
2823 /* If powering down don't attempt to suspend */
2824 if (mgmt_powering_down(hdev))
2825 return 0;
2826
2827 /* Cancel potentially blocking sync operation before suspend */
2828 hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2829
2830 hci_req_sync_lock(hdev);
2831 ret = hci_suspend_sync(hdev);
2832 hci_req_sync_unlock(hdev);
2833
2834 hci_clear_wake_reason(hdev);
2835 mgmt_suspending(hdev, hdev->suspend_state);
2836
2837 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2838 return ret;
2839}
2840EXPORT_SYMBOL(hci_suspend_dev);
2841
2842/* Resume HCI device */
2843int hci_resume_dev(struct hci_dev *hdev)
2844{
2845 int ret;
2846
2847 bt_dev_dbg(hdev, "");
2848
2849 /* Resume should only act on when powered. */
2850 if (!hdev_is_powered(hdev) ||
2851 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2852 return 0;
2853
2854 /* If powering down don't attempt to resume */
2855 if (mgmt_powering_down(hdev))
2856 return 0;
2857
2858 hci_req_sync_lock(hdev);
2859 ret = hci_resume_sync(hdev);
2860 hci_req_sync_unlock(hdev);
2861
2862 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2863 hdev->wake_addr_type);
2864
2865 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2866 return ret;
2867}
2868EXPORT_SYMBOL(hci_resume_dev);
2869
2870/* Reset HCI device */
2871int hci_reset_dev(struct hci_dev *hdev)
2872{
2873 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2874 struct sk_buff *skb;
2875
2876 skb = bt_skb_alloc(3, GFP_ATOMIC);
2877 if (!skb)
2878 return -ENOMEM;
2879
2880 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2881 skb_put_data(skb, hw_err, 3);
2882
2883 bt_dev_err(hdev, "Injecting HCI hardware error event");
2884
2885 /* Send Hardware Error to upper stack */
2886 return hci_recv_frame(hdev, skb);
2887}
2888EXPORT_SYMBOL(hci_reset_dev);
2889
2890static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2891{
2892 if (hdev->classify_pkt_type)
2893 return hdev->classify_pkt_type(hdev, skb);
2894
2895 return hci_skb_pkt_type(skb);
2896}
2897
2898/* Receive frame from HCI drivers */
2899int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2900{
2901 u8 dev_pkt_type;
2902
2903 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2904 && !test_bit(HCI_INIT, &hdev->flags))) {
2905 kfree_skb(skb);
2906 return -ENXIO;
2907 }
2908
2909 /* Check if the driver agree with packet type classification */
2910 dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2911 if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2912 hci_skb_pkt_type(skb) = dev_pkt_type;
2913 }
2914
2915 switch (hci_skb_pkt_type(skb)) {
2916 case HCI_EVENT_PKT:
2917 break;
2918 case HCI_ACLDATA_PKT:
2919 /* Detect if ISO packet has been sent as ACL */
2920 if (hci_conn_num(hdev, ISO_LINK)) {
2921 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2922 __u8 type;
2923
2924 type = hci_conn_lookup_type(hdev, hci_handle(handle));
2925 if (type == ISO_LINK)
2926 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2927 }
2928 break;
2929 case HCI_SCODATA_PKT:
2930 break;
2931 case HCI_ISODATA_PKT:
2932 break;
2933 default:
2934 kfree_skb(skb);
2935 return -EINVAL;
2936 }
2937
2938 /* Incoming skb */
2939 bt_cb(skb)->incoming = 1;
2940
2941 /* Time stamp */
2942 __net_timestamp(skb);
2943
2944 skb_queue_tail(&hdev->rx_q, skb);
2945 queue_work(hdev->workqueue, &hdev->rx_work);
2946
2947 return 0;
2948}
2949EXPORT_SYMBOL(hci_recv_frame);
2950
2951/* Receive diagnostic message from HCI drivers */
2952int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2953{
2954 /* Mark as diagnostic packet */
2955 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2956
2957 /* Time stamp */
2958 __net_timestamp(skb);
2959
2960 skb_queue_tail(&hdev->rx_q, skb);
2961 queue_work(hdev->workqueue, &hdev->rx_work);
2962
2963 return 0;
2964}
2965EXPORT_SYMBOL(hci_recv_diag);
2966
2967void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2968{
2969 va_list vargs;
2970
2971 va_start(vargs, fmt);
2972 kfree_const(hdev->hw_info);
2973 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974 va_end(vargs);
2975}
2976EXPORT_SYMBOL(hci_set_hw_info);
2977
2978void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2979{
2980 va_list vargs;
2981
2982 va_start(vargs, fmt);
2983 kfree_const(hdev->fw_info);
2984 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2985 va_end(vargs);
2986}
2987EXPORT_SYMBOL(hci_set_fw_info);
2988
2989/* ---- Interface to upper protocols ---- */
2990
2991int hci_register_cb(struct hci_cb *cb)
2992{
2993 BT_DBG("%p name %s", cb, cb->name);
2994
2995 list_add_tail_rcu(&cb->list, &hci_cb_list);
2996
2997 return 0;
2998}
2999EXPORT_SYMBOL(hci_register_cb);
3000
3001int hci_unregister_cb(struct hci_cb *cb)
3002{
3003 BT_DBG("%p name %s", cb, cb->name);
3004
3005 list_del_rcu(&cb->list);
3006 synchronize_rcu();
3007
3008 return 0;
3009}
3010EXPORT_SYMBOL(hci_unregister_cb);
3011
3012static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013{
3014 int err;
3015
3016 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017 skb->len);
3018
3019 /* Time stamp */
3020 __net_timestamp(skb);
3021
3022 /* Send copy to monitor */
3023 hci_send_to_monitor(hdev, skb);
3024
3025 if (atomic_read(&hdev->promisc)) {
3026 /* Send copy to the sockets */
3027 hci_send_to_sock(hdev, skb);
3028 }
3029
3030 /* Get rid of skb owner, prior to sending to the driver. */
3031 skb_orphan(skb);
3032
3033 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034 kfree_skb(skb);
3035 return -EINVAL;
3036 }
3037
3038 err = hdev->send(hdev, skb);
3039 if (err < 0) {
3040 bt_dev_err(hdev, "sending frame failed (%d)", err);
3041 kfree_skb(skb);
3042 return err;
3043 }
3044
3045 return 0;
3046}
3047
3048/* Send HCI command */
3049int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050 const void *param)
3051{
3052 struct sk_buff *skb;
3053
3054 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055
3056 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3057 if (!skb) {
3058 bt_dev_err(hdev, "no memory for command");
3059 return -ENOMEM;
3060 }
3061
3062 /* Stand-alone HCI commands must be flagged as
3063 * single-command requests.
3064 */
3065 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066
3067 skb_queue_tail(&hdev->cmd_q, skb);
3068 queue_work(hdev->workqueue, &hdev->cmd_work);
3069
3070 return 0;
3071}
3072
3073int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074 const void *param)
3075{
3076 struct sk_buff *skb;
3077
3078 if (hci_opcode_ogf(opcode) != 0x3f) {
3079 /* A controller receiving a command shall respond with either
3080 * a Command Status Event or a Command Complete Event.
3081 * Therefore, all standard HCI commands must be sent via the
3082 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083 * Some vendors do not comply with this rule for vendor-specific
3084 * commands and do not return any event. We want to support
3085 * unresponded commands for such cases only.
3086 */
3087 bt_dev_err(hdev, "unresponded command not supported");
3088 return -EINVAL;
3089 }
3090
3091 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3092 if (!skb) {
3093 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094 opcode);
3095 return -ENOMEM;
3096 }
3097
3098 hci_send_frame(hdev, skb);
3099
3100 return 0;
3101}
3102EXPORT_SYMBOL(__hci_cmd_send);
3103
3104/* Get data from the previously sent command */
3105static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3106{
3107 struct hci_command_hdr *hdr;
3108
3109 if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3110 return NULL;
3111
3112 hdr = (void *)skb->data;
3113
3114 if (hdr->opcode != cpu_to_le16(opcode))
3115 return NULL;
3116
3117 return skb->data + HCI_COMMAND_HDR_SIZE;
3118}
3119
3120/* Get data from the previously sent command */
3121void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3122{
3123 void *data;
3124
3125 /* Check if opcode matches last sent command */
3126 data = hci_cmd_data(hdev->sent_cmd, opcode);
3127 if (!data)
3128 /* Check if opcode matches last request */
3129 data = hci_cmd_data(hdev->req_skb, opcode);
3130
3131 return data;
3132}
3133
3134/* Get data from last received event */
3135void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3136{
3137 struct hci_event_hdr *hdr;
3138 int offset;
3139
3140 if (!hdev->recv_event)
3141 return NULL;
3142
3143 hdr = (void *)hdev->recv_event->data;
3144 offset = sizeof(*hdr);
3145
3146 if (hdr->evt != event) {
3147 /* In case of LE metaevent check the subevent match */
3148 if (hdr->evt == HCI_EV_LE_META) {
3149 struct hci_ev_le_meta *ev;
3150
3151 ev = (void *)hdev->recv_event->data + offset;
3152 offset += sizeof(*ev);
3153 if (ev->subevent == event)
3154 goto found;
3155 }
3156 return NULL;
3157 }
3158
3159found:
3160 bt_dev_dbg(hdev, "event 0x%2.2x", event);
3161
3162 return hdev->recv_event->data + offset;
3163}
3164
3165/* Send ACL data */
3166static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3167{
3168 struct hci_acl_hdr *hdr;
3169 int len = skb->len;
3170
3171 skb_push(skb, HCI_ACL_HDR_SIZE);
3172 skb_reset_transport_header(skb);
3173 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3174 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3175 hdr->dlen = cpu_to_le16(len);
3176}
3177
3178static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3179 struct sk_buff *skb, __u16 flags)
3180{
3181 struct hci_conn *conn = chan->conn;
3182 struct hci_dev *hdev = conn->hdev;
3183 struct sk_buff *list;
3184
3185 skb->len = skb_headlen(skb);
3186 skb->data_len = 0;
3187
3188 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3189
3190 hci_add_acl_hdr(skb, conn->handle, flags);
3191
3192 list = skb_shinfo(skb)->frag_list;
3193 if (!list) {
3194 /* Non fragmented */
3195 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3196
3197 skb_queue_tail(queue, skb);
3198 } else {
3199 /* Fragmented */
3200 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3201
3202 skb_shinfo(skb)->frag_list = NULL;
3203
3204 /* Queue all fragments atomically. We need to use spin_lock_bh
3205 * here because of 6LoWPAN links, as there this function is
3206 * called from softirq and using normal spin lock could cause
3207 * deadlocks.
3208 */
3209 spin_lock_bh(&queue->lock);
3210
3211 __skb_queue_tail(queue, skb);
3212
3213 flags &= ~ACL_START;
3214 flags |= ACL_CONT;
3215 do {
3216 skb = list; list = list->next;
3217
3218 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3219 hci_add_acl_hdr(skb, conn->handle, flags);
3220
3221 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3222
3223 __skb_queue_tail(queue, skb);
3224 } while (list);
3225
3226 spin_unlock_bh(&queue->lock);
3227 }
3228}
3229
3230void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3231{
3232 struct hci_dev *hdev = chan->conn->hdev;
3233
3234 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3235
3236 hci_queue_acl(chan, &chan->data_q, skb, flags);
3237
3238 queue_work(hdev->workqueue, &hdev->tx_work);
3239}
3240
3241/* Send SCO data */
3242void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3243{
3244 struct hci_dev *hdev = conn->hdev;
3245 struct hci_sco_hdr hdr;
3246
3247 BT_DBG("%s len %d", hdev->name, skb->len);
3248
3249 hdr.handle = cpu_to_le16(conn->handle);
3250 hdr.dlen = skb->len;
3251
3252 skb_push(skb, HCI_SCO_HDR_SIZE);
3253 skb_reset_transport_header(skb);
3254 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3255
3256 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3257
3258 skb_queue_tail(&conn->data_q, skb);
3259 queue_work(hdev->workqueue, &hdev->tx_work);
3260}
3261
3262/* Send ISO data */
3263static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3264{
3265 struct hci_iso_hdr *hdr;
3266 int len = skb->len;
3267
3268 skb_push(skb, HCI_ISO_HDR_SIZE);
3269 skb_reset_transport_header(skb);
3270 hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3271 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3272 hdr->dlen = cpu_to_le16(len);
3273}
3274
3275static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3276 struct sk_buff *skb)
3277{
3278 struct hci_dev *hdev = conn->hdev;
3279 struct sk_buff *list;
3280 __u16 flags;
3281
3282 skb->len = skb_headlen(skb);
3283 skb->data_len = 0;
3284
3285 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3286
3287 list = skb_shinfo(skb)->frag_list;
3288
3289 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3290 hci_add_iso_hdr(skb, conn->handle, flags);
3291
3292 if (!list) {
3293 /* Non fragmented */
3294 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3295
3296 skb_queue_tail(queue, skb);
3297 } else {
3298 /* Fragmented */
3299 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3300
3301 skb_shinfo(skb)->frag_list = NULL;
3302
3303 __skb_queue_tail(queue, skb);
3304
3305 do {
3306 skb = list; list = list->next;
3307
3308 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3309 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3310 0x00);
3311 hci_add_iso_hdr(skb, conn->handle, flags);
3312
3313 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3314
3315 __skb_queue_tail(queue, skb);
3316 } while (list);
3317 }
3318}
3319
3320void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3321{
3322 struct hci_dev *hdev = conn->hdev;
3323
3324 BT_DBG("%s len %d", hdev->name, skb->len);
3325
3326 hci_queue_iso(conn, &conn->data_q, skb);
3327
3328 queue_work(hdev->workqueue, &hdev->tx_work);
3329}
3330
3331/* ---- HCI TX task (outgoing data) ---- */
3332
3333/* HCI Connection scheduler */
3334static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3335{
3336 struct hci_dev *hdev;
3337 int cnt, q;
3338
3339 if (!conn) {
3340 *quote = 0;
3341 return;
3342 }
3343
3344 hdev = conn->hdev;
3345
3346 switch (conn->type) {
3347 case ACL_LINK:
3348 cnt = hdev->acl_cnt;
3349 break;
3350 case SCO_LINK:
3351 case ESCO_LINK:
3352 cnt = hdev->sco_cnt;
3353 break;
3354 case LE_LINK:
3355 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3356 break;
3357 case ISO_LINK:
3358 cnt = hdev->iso_mtu ? hdev->iso_cnt :
3359 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360 break;
3361 default:
3362 cnt = 0;
3363 bt_dev_err(hdev, "unknown link type %d", conn->type);
3364 }
3365
3366 q = cnt / num;
3367 *quote = q ? q : 1;
3368}
3369
3370static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3371 int *quote)
3372{
3373 struct hci_conn_hash *h = &hdev->conn_hash;
3374 struct hci_conn *conn = NULL, *c;
3375 unsigned int num = 0, min = ~0;
3376
3377 /* We don't have to lock device here. Connections are always
3378 * added and removed with TX task disabled. */
3379
3380 rcu_read_lock();
3381
3382 list_for_each_entry_rcu(c, &h->list, list) {
3383 if (c->type != type || skb_queue_empty(&c->data_q))
3384 continue;
3385
3386 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3387 continue;
3388
3389 num++;
3390
3391 if (c->sent < min) {
3392 min = c->sent;
3393 conn = c;
3394 }
3395
3396 if (hci_conn_num(hdev, type) == num)
3397 break;
3398 }
3399
3400 rcu_read_unlock();
3401
3402 hci_quote_sent(conn, num, quote);
3403
3404 BT_DBG("conn %p quote %d", conn, *quote);
3405 return conn;
3406}
3407
3408static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3409{
3410 struct hci_conn_hash *h = &hdev->conn_hash;
3411 struct hci_conn *c;
3412
3413 bt_dev_err(hdev, "link tx timeout");
3414
3415 rcu_read_lock();
3416
3417 /* Kill stalled connections */
3418 list_for_each_entry_rcu(c, &h->list, list) {
3419 if (c->type == type && c->sent) {
3420 bt_dev_err(hdev, "killing stalled connection %pMR",
3421 &c->dst);
3422 /* hci_disconnect might sleep, so, we have to release
3423 * the RCU read lock before calling it.
3424 */
3425 rcu_read_unlock();
3426 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3427 rcu_read_lock();
3428 }
3429 }
3430
3431 rcu_read_unlock();
3432}
3433
3434static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3435 int *quote)
3436{
3437 struct hci_conn_hash *h = &hdev->conn_hash;
3438 struct hci_chan *chan = NULL;
3439 unsigned int num = 0, min = ~0, cur_prio = 0;
3440 struct hci_conn *conn;
3441 int conn_num = 0;
3442
3443 BT_DBG("%s", hdev->name);
3444
3445 rcu_read_lock();
3446
3447 list_for_each_entry_rcu(conn, &h->list, list) {
3448 struct hci_chan *tmp;
3449
3450 if (conn->type != type)
3451 continue;
3452
3453 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3454 continue;
3455
3456 conn_num++;
3457
3458 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3459 struct sk_buff *skb;
3460
3461 if (skb_queue_empty(&tmp->data_q))
3462 continue;
3463
3464 skb = skb_peek(&tmp->data_q);
3465 if (skb->priority < cur_prio)
3466 continue;
3467
3468 if (skb->priority > cur_prio) {
3469 num = 0;
3470 min = ~0;
3471 cur_prio = skb->priority;
3472 }
3473
3474 num++;
3475
3476 if (conn->sent < min) {
3477 min = conn->sent;
3478 chan = tmp;
3479 }
3480 }
3481
3482 if (hci_conn_num(hdev, type) == conn_num)
3483 break;
3484 }
3485
3486 rcu_read_unlock();
3487
3488 if (!chan)
3489 return NULL;
3490
3491 hci_quote_sent(chan->conn, num, quote);
3492
3493 BT_DBG("chan %p quote %d", chan, *quote);
3494 return chan;
3495}
3496
3497static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3498{
3499 struct hci_conn_hash *h = &hdev->conn_hash;
3500 struct hci_conn *conn;
3501 int num = 0;
3502
3503 BT_DBG("%s", hdev->name);
3504
3505 rcu_read_lock();
3506
3507 list_for_each_entry_rcu(conn, &h->list, list) {
3508 struct hci_chan *chan;
3509
3510 if (conn->type != type)
3511 continue;
3512
3513 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3514 continue;
3515
3516 num++;
3517
3518 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3519 struct sk_buff *skb;
3520
3521 if (chan->sent) {
3522 chan->sent = 0;
3523 continue;
3524 }
3525
3526 if (skb_queue_empty(&chan->data_q))
3527 continue;
3528
3529 skb = skb_peek(&chan->data_q);
3530 if (skb->priority >= HCI_PRIO_MAX - 1)
3531 continue;
3532
3533 skb->priority = HCI_PRIO_MAX - 1;
3534
3535 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3536 skb->priority);
3537 }
3538
3539 if (hci_conn_num(hdev, type) == num)
3540 break;
3541 }
3542
3543 rcu_read_unlock();
3544
3545}
3546
3547static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3548{
3549 unsigned long last_tx;
3550
3551 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3552 return;
3553
3554 switch (type) {
3555 case LE_LINK:
3556 last_tx = hdev->le_last_tx;
3557 break;
3558 default:
3559 last_tx = hdev->acl_last_tx;
3560 break;
3561 }
3562
3563 /* tx timeout must be longer than maximum link supervision timeout
3564 * (40.9 seconds)
3565 */
3566 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3567 hci_link_tx_to(hdev, type);
3568}
3569
3570/* Schedule SCO */
3571static void hci_sched_sco(struct hci_dev *hdev)
3572{
3573 struct hci_conn *conn;
3574 struct sk_buff *skb;
3575 int quote;
3576
3577 BT_DBG("%s", hdev->name);
3578
3579 if (!hci_conn_num(hdev, SCO_LINK))
3580 return;
3581
3582 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3583 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3584 BT_DBG("skb %p len %d", skb, skb->len);
3585 hci_send_frame(hdev, skb);
3586
3587 conn->sent++;
3588 if (conn->sent == ~0)
3589 conn->sent = 0;
3590 }
3591 }
3592}
3593
3594static void hci_sched_esco(struct hci_dev *hdev)
3595{
3596 struct hci_conn *conn;
3597 struct sk_buff *skb;
3598 int quote;
3599
3600 BT_DBG("%s", hdev->name);
3601
3602 if (!hci_conn_num(hdev, ESCO_LINK))
3603 return;
3604
3605 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3606 "e))) {
3607 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3608 BT_DBG("skb %p len %d", skb, skb->len);
3609 hci_send_frame(hdev, skb);
3610
3611 conn->sent++;
3612 if (conn->sent == ~0)
3613 conn->sent = 0;
3614 }
3615 }
3616}
3617
3618static void hci_sched_acl_pkt(struct hci_dev *hdev)
3619{
3620 unsigned int cnt = hdev->acl_cnt;
3621 struct hci_chan *chan;
3622 struct sk_buff *skb;
3623 int quote;
3624
3625 __check_timeout(hdev, cnt, ACL_LINK);
3626
3627 while (hdev->acl_cnt &&
3628 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3629 u32 priority = (skb_peek(&chan->data_q))->priority;
3630 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3631 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3632 skb->len, skb->priority);
3633
3634 /* Stop if priority has changed */
3635 if (skb->priority < priority)
3636 break;
3637
3638 skb = skb_dequeue(&chan->data_q);
3639
3640 hci_conn_enter_active_mode(chan->conn,
3641 bt_cb(skb)->force_active);
3642
3643 hci_send_frame(hdev, skb);
3644 hdev->acl_last_tx = jiffies;
3645
3646 hdev->acl_cnt--;
3647 chan->sent++;
3648 chan->conn->sent++;
3649
3650 /* Send pending SCO packets right away */
3651 hci_sched_sco(hdev);
3652 hci_sched_esco(hdev);
3653 }
3654 }
3655
3656 if (cnt != hdev->acl_cnt)
3657 hci_prio_recalculate(hdev, ACL_LINK);
3658}
3659
3660static void hci_sched_acl(struct hci_dev *hdev)
3661{
3662 BT_DBG("%s", hdev->name);
3663
3664 /* No ACL link over BR/EDR controller */
3665 if (!hci_conn_num(hdev, ACL_LINK))
3666 return;
3667
3668 hci_sched_acl_pkt(hdev);
3669}
3670
3671static void hci_sched_le(struct hci_dev *hdev)
3672{
3673 struct hci_chan *chan;
3674 struct sk_buff *skb;
3675 int quote, *cnt, tmp;
3676
3677 BT_DBG("%s", hdev->name);
3678
3679 if (!hci_conn_num(hdev, LE_LINK))
3680 return;
3681
3682 cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3683
3684 __check_timeout(hdev, *cnt, LE_LINK);
3685
3686 tmp = *cnt;
3687 while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3688 u32 priority = (skb_peek(&chan->data_q))->priority;
3689 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3690 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691 skb->len, skb->priority);
3692
3693 /* Stop if priority has changed */
3694 if (skb->priority < priority)
3695 break;
3696
3697 skb = skb_dequeue(&chan->data_q);
3698
3699 hci_send_frame(hdev, skb);
3700 hdev->le_last_tx = jiffies;
3701
3702 (*cnt)--;
3703 chan->sent++;
3704 chan->conn->sent++;
3705
3706 /* Send pending SCO packets right away */
3707 hci_sched_sco(hdev);
3708 hci_sched_esco(hdev);
3709 }
3710 }
3711
3712 if (*cnt != tmp)
3713 hci_prio_recalculate(hdev, LE_LINK);
3714}
3715
3716/* Schedule CIS */
3717static void hci_sched_iso(struct hci_dev *hdev)
3718{
3719 struct hci_conn *conn;
3720 struct sk_buff *skb;
3721 int quote, *cnt;
3722
3723 BT_DBG("%s", hdev->name);
3724
3725 if (!hci_conn_num(hdev, ISO_LINK))
3726 return;
3727
3728 cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3729 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3730 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) {
3731 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3732 BT_DBG("skb %p len %d", skb, skb->len);
3733 hci_send_frame(hdev, skb);
3734
3735 conn->sent++;
3736 if (conn->sent == ~0)
3737 conn->sent = 0;
3738 (*cnt)--;
3739 }
3740 }
3741}
3742
3743static void hci_tx_work(struct work_struct *work)
3744{
3745 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3746 struct sk_buff *skb;
3747
3748 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3749 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3750
3751 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3752 /* Schedule queues and send stuff to HCI driver */
3753 hci_sched_sco(hdev);
3754 hci_sched_esco(hdev);
3755 hci_sched_iso(hdev);
3756 hci_sched_acl(hdev);
3757 hci_sched_le(hdev);
3758 }
3759
3760 /* Send next queued raw (unknown type) packet */
3761 while ((skb = skb_dequeue(&hdev->raw_q)))
3762 hci_send_frame(hdev, skb);
3763}
3764
3765/* ----- HCI RX task (incoming data processing) ----- */
3766
3767/* ACL data packet */
3768static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3769{
3770 struct hci_acl_hdr *hdr;
3771 struct hci_conn *conn;
3772 __u16 handle, flags;
3773
3774 hdr = skb_pull_data(skb, sizeof(*hdr));
3775 if (!hdr) {
3776 bt_dev_err(hdev, "ACL packet too small");
3777 goto drop;
3778 }
3779
3780 handle = __le16_to_cpu(hdr->handle);
3781 flags = hci_flags(handle);
3782 handle = hci_handle(handle);
3783
3784 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3785 handle, flags);
3786
3787 hdev->stat.acl_rx++;
3788
3789 hci_dev_lock(hdev);
3790 conn = hci_conn_hash_lookup_handle(hdev, handle);
3791 hci_dev_unlock(hdev);
3792
3793 if (conn) {
3794 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3795
3796 /* Send to upper protocol */
3797 l2cap_recv_acldata(conn, skb, flags);
3798 return;
3799 } else {
3800 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3801 handle);
3802 }
3803
3804drop:
3805 kfree_skb(skb);
3806}
3807
3808/* SCO data packet */
3809static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810{
3811 struct hci_sco_hdr *hdr;
3812 struct hci_conn *conn;
3813 __u16 handle, flags;
3814
3815 hdr = skb_pull_data(skb, sizeof(*hdr));
3816 if (!hdr) {
3817 bt_dev_err(hdev, "SCO packet too small");
3818 goto drop;
3819 }
3820
3821 handle = __le16_to_cpu(hdr->handle);
3822 flags = hci_flags(handle);
3823 handle = hci_handle(handle);
3824
3825 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3826 handle, flags);
3827
3828 hdev->stat.sco_rx++;
3829
3830 hci_dev_lock(hdev);
3831 conn = hci_conn_hash_lookup_handle(hdev, handle);
3832 hci_dev_unlock(hdev);
3833
3834 if (conn) {
3835 /* Send to upper protocol */
3836 hci_skb_pkt_status(skb) = flags & 0x03;
3837 sco_recv_scodata(conn, skb);
3838 return;
3839 } else {
3840 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3841 handle);
3842 }
3843
3844drop:
3845 kfree_skb(skb);
3846}
3847
3848static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3849{
3850 struct hci_iso_hdr *hdr;
3851 struct hci_conn *conn;
3852 __u16 handle, flags;
3853
3854 hdr = skb_pull_data(skb, sizeof(*hdr));
3855 if (!hdr) {
3856 bt_dev_err(hdev, "ISO packet too small");
3857 goto drop;
3858 }
3859
3860 handle = __le16_to_cpu(hdr->handle);
3861 flags = hci_flags(handle);
3862 handle = hci_handle(handle);
3863
3864 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3865 handle, flags);
3866
3867 hci_dev_lock(hdev);
3868 conn = hci_conn_hash_lookup_handle(hdev, handle);
3869 hci_dev_unlock(hdev);
3870
3871 if (!conn) {
3872 bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3873 handle);
3874 goto drop;
3875 }
3876
3877 /* Send to upper protocol */
3878 iso_recv(conn, skb, flags);
3879 return;
3880
3881drop:
3882 kfree_skb(skb);
3883}
3884
3885static bool hci_req_is_complete(struct hci_dev *hdev)
3886{
3887 struct sk_buff *skb;
3888
3889 skb = skb_peek(&hdev->cmd_q);
3890 if (!skb)
3891 return true;
3892
3893 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3894}
3895
3896static void hci_resend_last(struct hci_dev *hdev)
3897{
3898 struct hci_command_hdr *sent;
3899 struct sk_buff *skb;
3900 u16 opcode;
3901
3902 if (!hdev->sent_cmd)
3903 return;
3904
3905 sent = (void *) hdev->sent_cmd->data;
3906 opcode = __le16_to_cpu(sent->opcode);
3907 if (opcode == HCI_OP_RESET)
3908 return;
3909
3910 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3911 if (!skb)
3912 return;
3913
3914 skb_queue_head(&hdev->cmd_q, skb);
3915 queue_work(hdev->workqueue, &hdev->cmd_work);
3916}
3917
3918void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3919 hci_req_complete_t *req_complete,
3920 hci_req_complete_skb_t *req_complete_skb)
3921{
3922 struct sk_buff *skb;
3923 unsigned long flags;
3924
3925 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3926
3927 /* If the completed command doesn't match the last one that was
3928 * sent we need to do special handling of it.
3929 */
3930 if (!hci_sent_cmd_data(hdev, opcode)) {
3931 /* Some CSR based controllers generate a spontaneous
3932 * reset complete event during init and any pending
3933 * command will never be completed. In such a case we
3934 * need to resend whatever was the last sent
3935 * command.
3936 */
3937 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3938 hci_resend_last(hdev);
3939
3940 return;
3941 }
3942
3943 /* If we reach this point this event matches the last command sent */
3944 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3945
3946 /* If the command succeeded and there's still more commands in
3947 * this request the request is not yet complete.
3948 */
3949 if (!status && !hci_req_is_complete(hdev))
3950 return;
3951
3952 skb = hdev->req_skb;
3953
3954 /* If this was the last command in a request the complete
3955 * callback would be found in hdev->req_skb instead of the
3956 * command queue (hdev->cmd_q).
3957 */
3958 if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3959 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3960 return;
3961 }
3962
3963 if (skb && bt_cb(skb)->hci.req_complete) {
3964 *req_complete = bt_cb(skb)->hci.req_complete;
3965 return;
3966 }
3967
3968 /* Remove all pending commands belonging to this request */
3969 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3970 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3971 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3972 __skb_queue_head(&hdev->cmd_q, skb);
3973 break;
3974 }
3975
3976 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3977 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3978 else
3979 *req_complete = bt_cb(skb)->hci.req_complete;
3980 dev_kfree_skb_irq(skb);
3981 }
3982 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3983}
3984
3985static void hci_rx_work(struct work_struct *work)
3986{
3987 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3988 struct sk_buff *skb;
3989
3990 BT_DBG("%s", hdev->name);
3991
3992 /* The kcov_remote functions used for collecting packet parsing
3993 * coverage information from this background thread and associate
3994 * the coverage with the syscall's thread which originally injected
3995 * the packet. This helps fuzzing the kernel.
3996 */
3997 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3998 kcov_remote_start_common(skb_get_kcov_handle(skb));
3999
4000 /* Send copy to monitor */
4001 hci_send_to_monitor(hdev, skb);
4002
4003 if (atomic_read(&hdev->promisc)) {
4004 /* Send copy to the sockets */
4005 hci_send_to_sock(hdev, skb);
4006 }
4007
4008 /* If the device has been opened in HCI_USER_CHANNEL,
4009 * the userspace has exclusive access to device.
4010 * When device is HCI_INIT, we still need to process
4011 * the data packets to the driver in order
4012 * to complete its setup().
4013 */
4014 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4015 !test_bit(HCI_INIT, &hdev->flags)) {
4016 kfree_skb(skb);
4017 continue;
4018 }
4019
4020 if (test_bit(HCI_INIT, &hdev->flags)) {
4021 /* Don't process data packets in this states. */
4022 switch (hci_skb_pkt_type(skb)) {
4023 case HCI_ACLDATA_PKT:
4024 case HCI_SCODATA_PKT:
4025 case HCI_ISODATA_PKT:
4026 kfree_skb(skb);
4027 continue;
4028 }
4029 }
4030
4031 /* Process frame */
4032 switch (hci_skb_pkt_type(skb)) {
4033 case HCI_EVENT_PKT:
4034 BT_DBG("%s Event packet", hdev->name);
4035 hci_event_packet(hdev, skb);
4036 break;
4037
4038 case HCI_ACLDATA_PKT:
4039 BT_DBG("%s ACL data packet", hdev->name);
4040 hci_acldata_packet(hdev, skb);
4041 break;
4042
4043 case HCI_SCODATA_PKT:
4044 BT_DBG("%s SCO data packet", hdev->name);
4045 hci_scodata_packet(hdev, skb);
4046 break;
4047
4048 case HCI_ISODATA_PKT:
4049 BT_DBG("%s ISO data packet", hdev->name);
4050 hci_isodata_packet(hdev, skb);
4051 break;
4052
4053 default:
4054 kfree_skb(skb);
4055 break;
4056 }
4057 }
4058}
4059
4060static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4061{
4062 int err;
4063
4064 bt_dev_dbg(hdev, "skb %p", skb);
4065
4066 kfree_skb(hdev->sent_cmd);
4067
4068 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4069 if (!hdev->sent_cmd) {
4070 skb_queue_head(&hdev->cmd_q, skb);
4071 queue_work(hdev->workqueue, &hdev->cmd_work);
4072 return;
4073 }
4074
4075 err = hci_send_frame(hdev, skb);
4076 if (err < 0) {
4077 hci_cmd_sync_cancel_sync(hdev, -err);
4078 return;
4079 }
4080
4081 if (hdev->req_status == HCI_REQ_PEND &&
4082 !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4083 kfree_skb(hdev->req_skb);
4084 hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085 }
4086
4087 atomic_dec(&hdev->cmd_cnt);
4088}
4089
4090static void hci_cmd_work(struct work_struct *work)
4091{
4092 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4093 struct sk_buff *skb;
4094
4095 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4096 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4097
4098 /* Send queued commands */
4099 if (atomic_read(&hdev->cmd_cnt)) {
4100 skb = skb_dequeue(&hdev->cmd_q);
4101 if (!skb)
4102 return;
4103
4104 hci_send_cmd_sync(hdev, skb);
4105
4106 rcu_read_lock();
4107 if (test_bit(HCI_RESET, &hdev->flags) ||
4108 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4109 cancel_delayed_work(&hdev->cmd_timer);
4110 else
4111 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4112 HCI_CMD_TIMEOUT);
4113 rcu_read_unlock();
4114 }
4115}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/property.h>
33#include <linux/suspend.h>
34#include <linux/wait.h>
35#include <asm/unaligned.h>
36
37#include <net/bluetooth/bluetooth.h>
38#include <net/bluetooth/hci_core.h>
39#include <net/bluetooth/l2cap.h>
40#include <net/bluetooth/mgmt.h>
41
42#include "hci_request.h"
43#include "hci_debugfs.h"
44#include "smp.h"
45#include "leds.h"
46#include "msft.h"
47
48static void hci_rx_work(struct work_struct *work);
49static void hci_cmd_work(struct work_struct *work);
50static void hci_tx_work(struct work_struct *work);
51
52/* HCI device list */
53LIST_HEAD(hci_dev_list);
54DEFINE_RWLOCK(hci_dev_list_lock);
55
56/* HCI callback list */
57LIST_HEAD(hci_cb_list);
58DEFINE_MUTEX(hci_cb_list_lock);
59
60/* HCI ID Numbering */
61static DEFINE_IDA(hci_index_ida);
62
63/* ---- HCI debugfs entries ---- */
64
65static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 size_t count, loff_t *ppos)
67{
68 struct hci_dev *hdev = file->private_data;
69 char buf[3];
70
71 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 buf[1] = '\n';
73 buf[2] = '\0';
74 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75}
76
77static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 size_t count, loff_t *ppos)
79{
80 struct hci_dev *hdev = file->private_data;
81 struct sk_buff *skb;
82 bool enable;
83 int err;
84
85 if (!test_bit(HCI_UP, &hdev->flags))
86 return -ENETDOWN;
87
88 err = kstrtobool_from_user(user_buf, count, &enable);
89 if (err)
90 return err;
91
92 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 return -EALREADY;
94
95 hci_req_sync_lock(hdev);
96 if (enable)
97 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 HCI_CMD_TIMEOUT);
99 else
100 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 HCI_CMD_TIMEOUT);
102 hci_req_sync_unlock(hdev);
103
104 if (IS_ERR(skb))
105 return PTR_ERR(skb);
106
107 kfree_skb(skb);
108
109 hci_dev_change_flag(hdev, HCI_DUT_MODE);
110
111 return count;
112}
113
114static const struct file_operations dut_mode_fops = {
115 .open = simple_open,
116 .read = dut_mode_read,
117 .write = dut_mode_write,
118 .llseek = default_llseek,
119};
120
121static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 size_t count, loff_t *ppos)
123{
124 struct hci_dev *hdev = file->private_data;
125 char buf[3];
126
127 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 buf[1] = '\n';
129 buf[2] = '\0';
130 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131}
132
133static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 size_t count, loff_t *ppos)
135{
136 struct hci_dev *hdev = file->private_data;
137 bool enable;
138 int err;
139
140 err = kstrtobool_from_user(user_buf, count, &enable);
141 if (err)
142 return err;
143
144 /* When the diagnostic flags are not persistent and the transport
145 * is not active or in user channel operation, then there is no need
146 * for the vendor callback. Instead just store the desired value and
147 * the setting will be programmed when the controller gets powered on.
148 */
149 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 goto done;
153
154 hci_req_sync_lock(hdev);
155 err = hdev->set_diag(hdev, enable);
156 hci_req_sync_unlock(hdev);
157
158 if (err < 0)
159 return err;
160
161done:
162 if (enable)
163 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 else
165 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166
167 return count;
168}
169
170static const struct file_operations vendor_diag_fops = {
171 .open = simple_open,
172 .read = vendor_diag_read,
173 .write = vendor_diag_write,
174 .llseek = default_llseek,
175};
176
177static void hci_debugfs_create_basic(struct hci_dev *hdev)
178{
179 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 &dut_mode_fops);
181
182 if (hdev->set_diag)
183 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 &vendor_diag_fops);
185}
186
187static int hci_reset_req(struct hci_request *req, unsigned long opt)
188{
189 BT_DBG("%s %ld", req->hdev->name, opt);
190
191 /* Reset device */
192 set_bit(HCI_RESET, &req->hdev->flags);
193 hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 return 0;
195}
196
197static void bredr_init(struct hci_request *req)
198{
199 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200
201 /* Read Local Supported Features */
202 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203
204 /* Read Local Version */
205 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206
207 /* Read BD Address */
208 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209}
210
211static void amp_init1(struct hci_request *req)
212{
213 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214
215 /* Read Local Version */
216 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217
218 /* Read Local Supported Commands */
219 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220
221 /* Read Local AMP Info */
222 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223
224 /* Read Data Blk size */
225 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226
227 /* Read Flow Control Mode */
228 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229
230 /* Read Location Data */
231 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232}
233
234static int amp_init2(struct hci_request *req)
235{
236 /* Read Local Supported Features. Not all AMP controllers
237 * support this so it's placed conditionally in the second
238 * stage init.
239 */
240 if (req->hdev->commands[14] & 0x20)
241 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242
243 return 0;
244}
245
246static int hci_init1_req(struct hci_request *req, unsigned long opt)
247{
248 struct hci_dev *hdev = req->hdev;
249
250 BT_DBG("%s %ld", hdev->name, opt);
251
252 /* Reset */
253 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 hci_reset_req(req, 0);
255
256 switch (hdev->dev_type) {
257 case HCI_PRIMARY:
258 bredr_init(req);
259 break;
260 case HCI_AMP:
261 amp_init1(req);
262 break;
263 default:
264 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 break;
266 }
267
268 return 0;
269}
270
271static void bredr_setup(struct hci_request *req)
272{
273 __le16 param;
274 __u8 flt_type;
275
276 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278
279 /* Read Class of Device */
280 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281
282 /* Read Local Name */
283 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284
285 /* Read Voice Setting */
286 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287
288 /* Read Number of Supported IAC */
289 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290
291 /* Read Current IAC LAP */
292 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293
294 /* Clear Event Filters */
295 flt_type = HCI_FLT_CLEAR_ALL;
296 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297
298 /* Connection accept timeout ~20 secs */
299 param = cpu_to_le16(0x7d00);
300 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
301}
302
303static void le_setup(struct hci_request *req)
304{
305 struct hci_dev *hdev = req->hdev;
306
307 /* Read LE Buffer Size */
308 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309
310 /* Read LE Local Supported Features */
311 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312
313 /* Read LE Supported States */
314 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315
316 /* LE-only controllers have LE implicitly enabled */
317 if (!lmp_bredr_capable(hdev))
318 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319}
320
321static void hci_setup_event_mask(struct hci_request *req)
322{
323 struct hci_dev *hdev = req->hdev;
324
325 /* The second byte is 0xff instead of 0x9f (two reserved bits
326 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 * command otherwise.
328 */
329 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330
331 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 * any event mask for pre 1.2 devices.
333 */
334 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 return;
336
337 if (lmp_bredr_capable(hdev)) {
338 events[4] |= 0x01; /* Flow Specification Complete */
339 } else {
340 /* Use a different default for LE-only devices */
341 memset(events, 0, sizeof(events));
342 events[1] |= 0x20; /* Command Complete */
343 events[1] |= 0x40; /* Command Status */
344 events[1] |= 0x80; /* Hardware Error */
345
346 /* If the controller supports the Disconnect command, enable
347 * the corresponding event. In addition enable packet flow
348 * control related events.
349 */
350 if (hdev->commands[0] & 0x20) {
351 events[0] |= 0x10; /* Disconnection Complete */
352 events[2] |= 0x04; /* Number of Completed Packets */
353 events[3] |= 0x02; /* Data Buffer Overflow */
354 }
355
356 /* If the controller supports the Read Remote Version
357 * Information command, enable the corresponding event.
358 */
359 if (hdev->commands[2] & 0x80)
360 events[1] |= 0x08; /* Read Remote Version Information
361 * Complete
362 */
363
364 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 events[0] |= 0x80; /* Encryption Change */
366 events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 }
368 }
369
370 if (lmp_inq_rssi_capable(hdev) ||
371 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 events[4] |= 0x02; /* Inquiry Result with RSSI */
373
374 if (lmp_ext_feat_capable(hdev))
375 events[4] |= 0x04; /* Read Remote Extended Features Complete */
376
377 if (lmp_esco_capable(hdev)) {
378 events[5] |= 0x08; /* Synchronous Connection Complete */
379 events[5] |= 0x10; /* Synchronous Connection Changed */
380 }
381
382 if (lmp_sniffsubr_capable(hdev))
383 events[5] |= 0x20; /* Sniff Subrating */
384
385 if (lmp_pause_enc_capable(hdev))
386 events[5] |= 0x80; /* Encryption Key Refresh Complete */
387
388 if (lmp_ext_inq_capable(hdev))
389 events[5] |= 0x40; /* Extended Inquiry Result */
390
391 if (lmp_no_flush_capable(hdev))
392 events[7] |= 0x01; /* Enhanced Flush Complete */
393
394 if (lmp_lsto_capable(hdev))
395 events[6] |= 0x80; /* Link Supervision Timeout Changed */
396
397 if (lmp_ssp_capable(hdev)) {
398 events[6] |= 0x01; /* IO Capability Request */
399 events[6] |= 0x02; /* IO Capability Response */
400 events[6] |= 0x04; /* User Confirmation Request */
401 events[6] |= 0x08; /* User Passkey Request */
402 events[6] |= 0x10; /* Remote OOB Data Request */
403 events[6] |= 0x20; /* Simple Pairing Complete */
404 events[7] |= 0x04; /* User Passkey Notification */
405 events[7] |= 0x08; /* Keypress Notification */
406 events[7] |= 0x10; /* Remote Host Supported
407 * Features Notification
408 */
409 }
410
411 if (lmp_le_capable(hdev))
412 events[7] |= 0x20; /* LE Meta-Event */
413
414 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415}
416
417static int hci_init2_req(struct hci_request *req, unsigned long opt)
418{
419 struct hci_dev *hdev = req->hdev;
420
421 if (hdev->dev_type == HCI_AMP)
422 return amp_init2(req);
423
424 if (lmp_bredr_capable(hdev))
425 bredr_setup(req);
426 else
427 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428
429 if (lmp_le_capable(hdev))
430 le_setup(req);
431
432 /* All Bluetooth 1.2 and later controllers should support the
433 * HCI command for reading the local supported commands.
434 *
435 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 * but do not have support for this command. If that is the case,
437 * the driver can quirk the behavior and skip reading the local
438 * supported commands.
439 */
440 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443
444 if (lmp_ssp_capable(hdev)) {
445 /* When SSP is available, then the host features page
446 * should also be available as well. However some
447 * controllers list the max_page as 0 as long as SSP
448 * has not been enabled. To achieve proper debugging
449 * output, force the minimum max_page to 1 at least.
450 */
451 hdev->max_page = 0x01;
452
453 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 u8 mode = 0x01;
455
456 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 sizeof(mode), &mode);
458 } else {
459 struct hci_cp_write_eir cp;
460
461 memset(hdev->eir, 0, sizeof(hdev->eir));
462 memset(&cp, 0, sizeof(cp));
463
464 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 }
466 }
467
468 if (lmp_inq_rssi_capable(hdev) ||
469 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 u8 mode;
471
472 /* If Extended Inquiry Result events are supported, then
473 * they are clearly preferred over Inquiry Result with RSSI
474 * events.
475 */
476 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477
478 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 }
480
481 if (lmp_inq_tx_pwr_capable(hdev))
482 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483
484 if (lmp_ext_feat_capable(hdev)) {
485 struct hci_cp_read_local_ext_features cp;
486
487 cp.page = 0x01;
488 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 sizeof(cp), &cp);
490 }
491
492 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 u8 enable = 1;
494 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 &enable);
496 }
497
498 return 0;
499}
500
501static void hci_setup_link_policy(struct hci_request *req)
502{
503 struct hci_dev *hdev = req->hdev;
504 struct hci_cp_write_def_link_policy cp;
505 u16 link_policy = 0;
506
507 if (lmp_rswitch_capable(hdev))
508 link_policy |= HCI_LP_RSWITCH;
509 if (lmp_hold_capable(hdev))
510 link_policy |= HCI_LP_HOLD;
511 if (lmp_sniff_capable(hdev))
512 link_policy |= HCI_LP_SNIFF;
513 if (lmp_park_capable(hdev))
514 link_policy |= HCI_LP_PARK;
515
516 cp.policy = cpu_to_le16(link_policy);
517 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518}
519
520static void hci_set_le_support(struct hci_request *req)
521{
522 struct hci_dev *hdev = req->hdev;
523 struct hci_cp_write_le_host_supported cp;
524
525 /* LE-only devices do not support explicit enablement */
526 if (!lmp_bredr_capable(hdev))
527 return;
528
529 memset(&cp, 0, sizeof(cp));
530
531 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 cp.le = 0x01;
533 cp.simul = 0x00;
534 }
535
536 if (cp.le != lmp_host_le_capable(hdev))
537 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 &cp);
539}
540
541static void hci_set_event_mask_page_2(struct hci_request *req)
542{
543 struct hci_dev *hdev = req->hdev;
544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 bool changed = false;
546
547 /* If Connectionless Slave Broadcast master role is supported
548 * enable all necessary events for it.
549 */
550 if (lmp_csb_master_capable(hdev)) {
551 events[1] |= 0x40; /* Triggered Clock Capture */
552 events[1] |= 0x80; /* Synchronization Train Complete */
553 events[2] |= 0x10; /* Slave Page Response Timeout */
554 events[2] |= 0x20; /* CSB Channel Map Change */
555 changed = true;
556 }
557
558 /* If Connectionless Slave Broadcast slave role is supported
559 * enable all necessary events for it.
560 */
561 if (lmp_csb_slave_capable(hdev)) {
562 events[2] |= 0x01; /* Synchronization Train Received */
563 events[2] |= 0x02; /* CSB Receive */
564 events[2] |= 0x04; /* CSB Timeout */
565 events[2] |= 0x08; /* Truncated Page Complete */
566 changed = true;
567 }
568
569 /* Enable Authenticated Payload Timeout Expired event if supported */
570 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 events[2] |= 0x80;
572 changed = true;
573 }
574
575 /* Some Broadcom based controllers indicate support for Set Event
576 * Mask Page 2 command, but then actually do not support it. Since
577 * the default value is all bits set to zero, the command is only
578 * required if the event mask has to be changed. In case no change
579 * to the event mask is needed, skip this command.
580 */
581 if (changed)
582 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 sizeof(events), events);
584}
585
586static int hci_init3_req(struct hci_request *req, unsigned long opt)
587{
588 struct hci_dev *hdev = req->hdev;
589 u8 p;
590
591 hci_setup_event_mask(req);
592
593 if (hdev->commands[6] & 0x20 &&
594 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 struct hci_cp_read_stored_link_key cp;
596
597 bacpy(&cp.bdaddr, BDADDR_ANY);
598 cp.read_all = 0x01;
599 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 }
601
602 if (hdev->commands[5] & 0x10)
603 hci_setup_link_policy(req);
604
605 if (hdev->commands[8] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607
608 if (hdev->commands[18] & 0x04 &&
609 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611
612 /* Some older Broadcom based Bluetooth 1.2 controllers do not
613 * support the Read Page Scan Type command. Check support for
614 * this command in the bit mask of supported commands.
615 */
616 if (hdev->commands[13] & 0x01)
617 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618
619 if (lmp_le_capable(hdev)) {
620 u8 events[8];
621
622 memset(events, 0, sizeof(events));
623
624 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 events[0] |= 0x10; /* LE Long Term Key Request */
626
627 /* If controller supports the Connection Parameters Request
628 * Link Layer Procedure, enable the corresponding event.
629 */
630 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 events[0] |= 0x20; /* LE Remote Connection
632 * Parameter Request
633 */
634
635 /* If the controller supports the Data Length Extension
636 * feature, enable the corresponding event.
637 */
638 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 events[0] |= 0x40; /* LE Data Length Change */
640
641 /* If the controller supports LL Privacy feature, enable
642 * the corresponding event.
643 */
644 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 events[1] |= 0x02; /* LE Enhanced Connection
646 * Complete
647 */
648
649 /* If the controller supports Extended Scanner Filter
650 * Policies, enable the correspondig event.
651 */
652 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 events[1] |= 0x04; /* LE Direct Advertising
654 * Report
655 */
656
657 /* If the controller supports Channel Selection Algorithm #2
658 * feature, enable the corresponding event.
659 */
660 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 events[2] |= 0x08; /* LE Channel Selection
662 * Algorithm
663 */
664
665 /* If the controller supports the LE Set Scan Enable command,
666 * enable the corresponding advertising report event.
667 */
668 if (hdev->commands[26] & 0x08)
669 events[0] |= 0x02; /* LE Advertising Report */
670
671 /* If the controller supports the LE Create Connection
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[26] & 0x10)
675 events[0] |= 0x01; /* LE Connection Complete */
676
677 /* If the controller supports the LE Connection Update
678 * command, enable the corresponding event.
679 */
680 if (hdev->commands[27] & 0x04)
681 events[0] |= 0x04; /* LE Connection Update
682 * Complete
683 */
684
685 /* If the controller supports the LE Read Remote Used Features
686 * command, enable the corresponding event.
687 */
688 if (hdev->commands[27] & 0x20)
689 events[0] |= 0x08; /* LE Read Remote Used
690 * Features Complete
691 */
692
693 /* If the controller supports the LE Read Local P-256
694 * Public Key command, enable the corresponding event.
695 */
696 if (hdev->commands[34] & 0x02)
697 events[0] |= 0x80; /* LE Read Local P-256
698 * Public Key Complete
699 */
700
701 /* If the controller supports the LE Generate DHKey
702 * command, enable the corresponding event.
703 */
704 if (hdev->commands[34] & 0x04)
705 events[1] |= 0x01; /* LE Generate DHKey Complete */
706
707 /* If the controller supports the LE Set Default PHY or
708 * LE Set PHY commands, enable the corresponding event.
709 */
710 if (hdev->commands[35] & (0x20 | 0x40))
711 events[1] |= 0x08; /* LE PHY Update Complete */
712
713 /* If the controller supports LE Set Extended Scan Parameters
714 * and LE Set Extended Scan Enable commands, enable the
715 * corresponding event.
716 */
717 if (use_ext_scan(hdev))
718 events[1] |= 0x10; /* LE Extended Advertising
719 * Report
720 */
721
722 /* If the controller supports the LE Extended Advertising
723 * command, enable the corresponding event.
724 */
725 if (ext_adv_capable(hdev))
726 events[2] |= 0x02; /* LE Advertising Set
727 * Terminated
728 */
729
730 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 events);
732
733 /* Read LE Advertising Channel TX Power */
734 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 /* HCI TS spec forbids mixing of legacy and extended
736 * advertising commands wherein READ_ADV_TX_POWER is
737 * also included. So do not call it if extended adv
738 * is supported otherwise controller will return
739 * COMMAND_DISALLOWED for extended commands.
740 */
741 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x40) {
745 /* Read LE White List Size */
746 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 0, NULL);
748 }
749
750 if (hdev->commands[26] & 0x80) {
751 /* Clear LE White List */
752 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x40) {
756 /* Read LE Resolving List Size */
757 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 0, NULL);
759 }
760
761 if (hdev->commands[34] & 0x20) {
762 /* Clear LE Resolving List */
763 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 }
765
766 if (hdev->commands[35] & 0x40) {
767 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768
769 /* Set RPA timeout */
770 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 &rpa_timeout);
772 }
773
774 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 /* Read LE Maximum Data Length */
776 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777
778 /* Read LE Suggested Default Data Length */
779 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 }
781
782 if (ext_adv_capable(hdev)) {
783 /* Read LE Number of Supported Advertising Sets */
784 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 0, NULL);
786 }
787
788 hci_set_le_support(req);
789 }
790
791 /* Read features beyond page 1 if available */
792 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 struct hci_cp_read_local_ext_features cp;
794
795 cp.page = p;
796 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 sizeof(cp), &cp);
798 }
799
800 return 0;
801}
802
803static int hci_init4_req(struct hci_request *req, unsigned long opt)
804{
805 struct hci_dev *hdev = req->hdev;
806
807 /* Some Broadcom based Bluetooth controllers do not support the
808 * Delete Stored Link Key command. They are clearly indicating its
809 * absence in the bit mask of supported commands.
810 *
811 * Check the supported commands and only if the the command is marked
812 * as supported send it. If not supported assume that the controller
813 * does not have actual support for stored link keys which makes this
814 * command redundant anyway.
815 *
816 * Some controllers indicate that they support handling deleting
817 * stored link keys, but they don't. The quirk lets a driver
818 * just disable this command.
819 */
820 if (hdev->commands[6] & 0x80 &&
821 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 struct hci_cp_delete_stored_link_key cp;
823
824 bacpy(&cp.bdaddr, BDADDR_ANY);
825 cp.delete_all = 0x01;
826 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 sizeof(cp), &cp);
828 }
829
830 /* Set event mask page 2 if the HCI command for it is supported */
831 if (hdev->commands[22] & 0x04)
832 hci_set_event_mask_page_2(req);
833
834 /* Read local codec list if the HCI command is supported */
835 if (hdev->commands[29] & 0x20)
836 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837
838 /* Read local pairing options if the HCI command is supported */
839 if (hdev->commands[41] & 0x08)
840 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841
842 /* Get MWS transport configuration if the HCI command is supported */
843 if (hdev->commands[30] & 0x08)
844 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845
846 /* Check for Synchronization Train support */
847 if (lmp_sync_train_capable(hdev))
848 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849
850 /* Enable Secure Connections if supported and configured */
851 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 bredr_sc_enabled(hdev)) {
853 u8 support = 0x01;
854
855 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 sizeof(support), &support);
857 }
858
859 /* Set erroneous data reporting if supported to the wideband speech
860 * setting value
861 */
862 if (hdev->commands[18] & 0x08 &&
863 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 bool enabled = hci_dev_test_flag(hdev,
865 HCI_WIDEBAND_SPEECH_ENABLED);
866
867 if (enabled !=
868 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 struct hci_cp_write_def_err_data_reporting cp;
870
871 cp.err_data_reporting = enabled ?
872 ERR_DATA_REPORTING_ENABLED :
873 ERR_DATA_REPORTING_DISABLED;
874
875 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 sizeof(cp), &cp);
877 }
878 }
879
880 /* Set Suggested Default Data Length to maximum if supported */
881 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 struct hci_cp_le_write_def_data_len cp;
883
884 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 }
888
889 /* Set Default PHY parameters if command is supported */
890 if (hdev->commands[35] & 0x20) {
891 struct hci_cp_le_set_default_phy cp;
892
893 cp.all_phys = 0x00;
894 cp.tx_phys = hdev->le_tx_def_phys;
895 cp.rx_phys = hdev->le_rx_def_phys;
896
897 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 }
899
900 return 0;
901}
902
903static int __hci_init(struct hci_dev *hdev)
904{
905 int err;
906
907 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 if (err < 0)
909 return err;
910
911 if (hci_dev_test_flag(hdev, HCI_SETUP))
912 hci_debugfs_create_basic(hdev);
913
914 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 if (err < 0)
916 return err;
917
918 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 * BR/EDR/LE type controllers. AMP controllers only need the
920 * first two stages of init.
921 */
922 if (hdev->dev_type != HCI_PRIMARY)
923 return 0;
924
925 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 if (err < 0)
927 return err;
928
929 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 if (err < 0)
931 return err;
932
933 /* This function is only called when the controller is actually in
934 * configured state. When the controller is marked as unconfigured,
935 * this initialization procedure is not run.
936 *
937 * It means that it is possible that a controller runs through its
938 * setup phase and then discovers missing settings. If that is the
939 * case, then this function will not be called. It then will only
940 * be called during the config phase.
941 *
942 * So only when in setup phase or config phase, create the debugfs
943 * entries and register the SMP channels.
944 */
945 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 !hci_dev_test_flag(hdev, HCI_CONFIG))
947 return 0;
948
949 hci_debugfs_create_common(hdev);
950
951 if (lmp_bredr_capable(hdev))
952 hci_debugfs_create_bredr(hdev);
953
954 if (lmp_le_capable(hdev))
955 hci_debugfs_create_le(hdev);
956
957 return 0;
958}
959
960static int hci_init0_req(struct hci_request *req, unsigned long opt)
961{
962 struct hci_dev *hdev = req->hdev;
963
964 BT_DBG("%s %ld", hdev->name, opt);
965
966 /* Reset */
967 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 hci_reset_req(req, 0);
969
970 /* Read Local Version */
971 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972
973 /* Read BD Address */
974 if (hdev->set_bdaddr)
975 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976
977 return 0;
978}
979
980static int __hci_unconf_init(struct hci_dev *hdev)
981{
982 int err;
983
984 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 return 0;
986
987 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 if (err < 0)
989 return err;
990
991 if (hci_dev_test_flag(hdev, HCI_SETUP))
992 hci_debugfs_create_basic(hdev);
993
994 return 0;
995}
996
997static int hci_scan_req(struct hci_request *req, unsigned long opt)
998{
999 __u8 scan = opt;
1000
1001 BT_DBG("%s %x", req->hdev->name, scan);
1002
1003 /* Inquiry and Page scans */
1004 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 return 0;
1006}
1007
1008static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009{
1010 __u8 auth = opt;
1011
1012 BT_DBG("%s %x", req->hdev->name, auth);
1013
1014 /* Authentication */
1015 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 return 0;
1017}
1018
1019static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020{
1021 __u8 encrypt = opt;
1022
1023 BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025 /* Encryption */
1026 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 return 0;
1028}
1029
1030static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031{
1032 __le16 policy = cpu_to_le16(opt);
1033
1034 BT_DBG("%s %x", req->hdev->name, policy);
1035
1036 /* Default link policy */
1037 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 return 0;
1039}
1040
1041/* Get HCI device by index.
1042 * Device is held on return. */
1043struct hci_dev *hci_dev_get(int index)
1044{
1045 struct hci_dev *hdev = NULL, *d;
1046
1047 BT_DBG("%d", index);
1048
1049 if (index < 0)
1050 return NULL;
1051
1052 read_lock(&hci_dev_list_lock);
1053 list_for_each_entry(d, &hci_dev_list, list) {
1054 if (d->id == index) {
1055 hdev = hci_dev_hold(d);
1056 break;
1057 }
1058 }
1059 read_unlock(&hci_dev_list_lock);
1060 return hdev;
1061}
1062
1063/* ---- Inquiry support ---- */
1064
1065bool hci_discovery_active(struct hci_dev *hdev)
1066{
1067 struct discovery_state *discov = &hdev->discovery;
1068
1069 switch (discov->state) {
1070 case DISCOVERY_FINDING:
1071 case DISCOVERY_RESOLVING:
1072 return true;
1073
1074 default:
1075 return false;
1076 }
1077}
1078
1079void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080{
1081 int old_state = hdev->discovery.state;
1082
1083 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085 if (old_state == state)
1086 return;
1087
1088 hdev->discovery.state = state;
1089
1090 switch (state) {
1091 case DISCOVERY_STOPPED:
1092 hci_update_background_scan(hdev);
1093
1094 if (old_state != DISCOVERY_STARTING)
1095 mgmt_discovering(hdev, 0);
1096 break;
1097 case DISCOVERY_STARTING:
1098 break;
1099 case DISCOVERY_FINDING:
1100 mgmt_discovering(hdev, 1);
1101 break;
1102 case DISCOVERY_RESOLVING:
1103 break;
1104 case DISCOVERY_STOPPING:
1105 break;
1106 }
1107}
1108
1109void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110{
1111 struct discovery_state *cache = &hdev->discovery;
1112 struct inquiry_entry *p, *n;
1113
1114 list_for_each_entry_safe(p, n, &cache->all, all) {
1115 list_del(&p->all);
1116 kfree(p);
1117 }
1118
1119 INIT_LIST_HEAD(&cache->unknown);
1120 INIT_LIST_HEAD(&cache->resolve);
1121}
1122
1123struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 bdaddr_t *bdaddr)
1125{
1126 struct discovery_state *cache = &hdev->discovery;
1127 struct inquiry_entry *e;
1128
1129 BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131 list_for_each_entry(e, &cache->all, all) {
1132 if (!bacmp(&e->data.bdaddr, bdaddr))
1133 return e;
1134 }
1135
1136 return NULL;
1137}
1138
1139struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 bdaddr_t *bdaddr)
1141{
1142 struct discovery_state *cache = &hdev->discovery;
1143 struct inquiry_entry *e;
1144
1145 BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147 list_for_each_entry(e, &cache->unknown, list) {
1148 if (!bacmp(&e->data.bdaddr, bdaddr))
1149 return e;
1150 }
1151
1152 return NULL;
1153}
1154
1155struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 bdaddr_t *bdaddr,
1157 int state)
1158{
1159 struct discovery_state *cache = &hdev->discovery;
1160 struct inquiry_entry *e;
1161
1162 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164 list_for_each_entry(e, &cache->resolve, list) {
1165 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 return e;
1167 if (!bacmp(&e->data.bdaddr, bdaddr))
1168 return e;
1169 }
1170
1171 return NULL;
1172}
1173
1174void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 struct inquiry_entry *ie)
1176{
1177 struct discovery_state *cache = &hdev->discovery;
1178 struct list_head *pos = &cache->resolve;
1179 struct inquiry_entry *p;
1180
1181 list_del(&ie->list);
1182
1183 list_for_each_entry(p, &cache->resolve, list) {
1184 if (p->name_state != NAME_PENDING &&
1185 abs(p->data.rssi) >= abs(ie->data.rssi))
1186 break;
1187 pos = &p->list;
1188 }
1189
1190 list_add(&ie->list, pos);
1191}
1192
1193u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 bool name_known)
1195{
1196 struct discovery_state *cache = &hdev->discovery;
1197 struct inquiry_entry *ie;
1198 u32 flags = 0;
1199
1200 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204 if (!data->ssp_mode)
1205 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 if (ie) {
1209 if (!ie->data.ssp_mode)
1210 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212 if (ie->name_state == NAME_NEEDED &&
1213 data->rssi != ie->data.rssi) {
1214 ie->data.rssi = data->rssi;
1215 hci_inquiry_cache_update_resolve(hdev, ie);
1216 }
1217
1218 goto update;
1219 }
1220
1221 /* Entry not in the cache. Add new one. */
1222 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 if (!ie) {
1224 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 goto done;
1226 }
1227
1228 list_add(&ie->all, &cache->all);
1229
1230 if (name_known) {
1231 ie->name_state = NAME_KNOWN;
1232 } else {
1233 ie->name_state = NAME_NOT_KNOWN;
1234 list_add(&ie->list, &cache->unknown);
1235 }
1236
1237update:
1238 if (name_known && ie->name_state != NAME_KNOWN &&
1239 ie->name_state != NAME_PENDING) {
1240 ie->name_state = NAME_KNOWN;
1241 list_del(&ie->list);
1242 }
1243
1244 memcpy(&ie->data, data, sizeof(*data));
1245 ie->timestamp = jiffies;
1246 cache->timestamp = jiffies;
1247
1248 if (ie->name_state == NAME_NOT_KNOWN)
1249 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251done:
1252 return flags;
1253}
1254
1255static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256{
1257 struct discovery_state *cache = &hdev->discovery;
1258 struct inquiry_info *info = (struct inquiry_info *) buf;
1259 struct inquiry_entry *e;
1260 int copied = 0;
1261
1262 list_for_each_entry(e, &cache->all, all) {
1263 struct inquiry_data *data = &e->data;
1264
1265 if (copied >= num)
1266 break;
1267
1268 bacpy(&info->bdaddr, &data->bdaddr);
1269 info->pscan_rep_mode = data->pscan_rep_mode;
1270 info->pscan_period_mode = data->pscan_period_mode;
1271 info->pscan_mode = data->pscan_mode;
1272 memcpy(info->dev_class, data->dev_class, 3);
1273 info->clock_offset = data->clock_offset;
1274
1275 info++;
1276 copied++;
1277 }
1278
1279 BT_DBG("cache %p, copied %d", cache, copied);
1280 return copied;
1281}
1282
1283static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284{
1285 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 struct hci_dev *hdev = req->hdev;
1287 struct hci_cp_inquiry cp;
1288
1289 BT_DBG("%s", hdev->name);
1290
1291 if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 return 0;
1293
1294 /* Start Inquiry */
1295 memcpy(&cp.lap, &ir->lap, 3);
1296 cp.length = ir->length;
1297 cp.num_rsp = ir->num_rsp;
1298 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300 return 0;
1301}
1302
1303int hci_inquiry(void __user *arg)
1304{
1305 __u8 __user *ptr = arg;
1306 struct hci_inquiry_req ir;
1307 struct hci_dev *hdev;
1308 int err = 0, do_inquiry = 0, max_rsp;
1309 long timeo;
1310 __u8 *buf;
1311
1312 if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 return -EFAULT;
1314
1315 hdev = hci_dev_get(ir.dev_id);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 err = -EBUSY;
1321 goto done;
1322 }
1323
1324 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 err = -EOPNOTSUPP;
1326 goto done;
1327 }
1328
1329 if (hdev->dev_type != HCI_PRIMARY) {
1330 err = -EOPNOTSUPP;
1331 goto done;
1332 }
1333
1334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 err = -EOPNOTSUPP;
1336 goto done;
1337 }
1338
1339 hci_dev_lock(hdev);
1340 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342 hci_inquiry_cache_flush(hdev);
1343 do_inquiry = 1;
1344 }
1345 hci_dev_unlock(hdev);
1346
1347 timeo = ir.length * msecs_to_jiffies(2000);
1348
1349 if (do_inquiry) {
1350 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351 timeo, NULL);
1352 if (err < 0)
1353 goto done;
1354
1355 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356 * cleared). If it is interrupted by a signal, return -EINTR.
1357 */
1358 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359 TASK_INTERRUPTIBLE))
1360 return -EINTR;
1361 }
1362
1363 /* for unlimited number of responses we will use buffer with
1364 * 255 entries
1365 */
1366 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367
1368 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369 * copy it to the user space.
1370 */
1371 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372 if (!buf) {
1373 err = -ENOMEM;
1374 goto done;
1375 }
1376
1377 hci_dev_lock(hdev);
1378 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379 hci_dev_unlock(hdev);
1380
1381 BT_DBG("num_rsp %d", ir.num_rsp);
1382
1383 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384 ptr += sizeof(ir);
1385 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386 ir.num_rsp))
1387 err = -EFAULT;
1388 } else
1389 err = -EFAULT;
1390
1391 kfree(buf);
1392
1393done:
1394 hci_dev_put(hdev);
1395 return err;
1396}
1397
1398/**
1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400 * (BD_ADDR) for a HCI device from
1401 * a firmware node property.
1402 * @hdev: The HCI device
1403 *
1404 * Search the firmware node for 'local-bd-address'.
1405 *
1406 * All-zero BD addresses are rejected, because those could be properties
1407 * that exist in the firmware tables, but were not updated by the firmware. For
1408 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409 */
1410static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411{
1412 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413 bdaddr_t ba;
1414 int ret;
1415
1416 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417 (u8 *)&ba, sizeof(ba));
1418 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419 return;
1420
1421 bacpy(&hdev->public_addr, &ba);
1422}
1423
1424static int hci_dev_do_open(struct hci_dev *hdev)
1425{
1426 int ret = 0;
1427
1428 BT_DBG("%s %p", hdev->name, hdev);
1429
1430 hci_req_sync_lock(hdev);
1431
1432 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433 ret = -ENODEV;
1434 goto done;
1435 }
1436
1437 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439 /* Check for rfkill but allow the HCI setup stage to
1440 * proceed (which in itself doesn't cause any RF activity).
1441 */
1442 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443 ret = -ERFKILL;
1444 goto done;
1445 }
1446
1447 /* Check for valid public address or a configured static
1448 * random adddress, but let the HCI setup proceed to
1449 * be able to determine if there is a public address
1450 * or not.
1451 *
1452 * In case of user channel usage, it is not important
1453 * if a public address or static random address is
1454 * available.
1455 *
1456 * This check is only valid for BR/EDR controllers
1457 * since AMP controllers do not have an address.
1458 */
1459 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460 hdev->dev_type == HCI_PRIMARY &&
1461 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463 ret = -EADDRNOTAVAIL;
1464 goto done;
1465 }
1466 }
1467
1468 if (test_bit(HCI_UP, &hdev->flags)) {
1469 ret = -EALREADY;
1470 goto done;
1471 }
1472
1473 if (hdev->open(hdev)) {
1474 ret = -EIO;
1475 goto done;
1476 }
1477
1478 set_bit(HCI_RUNNING, &hdev->flags);
1479 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480
1481 atomic_set(&hdev->cmd_cnt, 1);
1482 set_bit(HCI_INIT, &hdev->flags);
1483
1484 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486 bool invalid_bdaddr;
1487
1488 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489
1490 if (hdev->setup)
1491 ret = hdev->setup(hdev);
1492
1493 /* The transport driver can set the quirk to mark the
1494 * BD_ADDR invalid before creating the HCI device or in
1495 * its setup callback.
1496 */
1497 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498 &hdev->quirks);
1499
1500 if (ret)
1501 goto setup_failed;
1502
1503 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505 hci_dev_get_bd_addr_from_property(hdev);
1506
1507 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508 hdev->set_bdaddr) {
1509 ret = hdev->set_bdaddr(hdev,
1510 &hdev->public_addr);
1511
1512 /* If setting of the BD_ADDR from the device
1513 * property succeeds, then treat the address
1514 * as valid even if the invalid BD_ADDR
1515 * quirk indicates otherwise.
1516 */
1517 if (!ret)
1518 invalid_bdaddr = false;
1519 }
1520 }
1521
1522setup_failed:
1523 /* The transport driver can set these quirks before
1524 * creating the HCI device or in its setup callback.
1525 *
1526 * For the invalid BD_ADDR quirk it is possible that
1527 * it becomes a valid address if the bootloader does
1528 * provide it (see above).
1529 *
1530 * In case any of them is set, the controller has to
1531 * start up as unconfigured.
1532 */
1533 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534 invalid_bdaddr)
1535 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536
1537 /* For an unconfigured controller it is required to
1538 * read at least the version information provided by
1539 * the Read Local Version Information command.
1540 *
1541 * If the set_bdaddr driver callback is provided, then
1542 * also the original Bluetooth public device address
1543 * will be read using the Read BD Address command.
1544 */
1545 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546 ret = __hci_unconf_init(hdev);
1547 }
1548
1549 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550 /* If public address change is configured, ensure that
1551 * the address gets programmed. If the driver does not
1552 * support changing the public address, fail the power
1553 * on procedure.
1554 */
1555 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556 hdev->set_bdaddr)
1557 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558 else
1559 ret = -EADDRNOTAVAIL;
1560 }
1561
1562 if (!ret) {
1563 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565 ret = __hci_init(hdev);
1566 if (!ret && hdev->post_init)
1567 ret = hdev->post_init(hdev);
1568 }
1569 }
1570
1571 /* If the HCI Reset command is clearing all diagnostic settings,
1572 * then they need to be reprogrammed after the init procedure
1573 * completed.
1574 */
1575 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578 ret = hdev->set_diag(hdev, true);
1579
1580 msft_do_open(hdev);
1581
1582 clear_bit(HCI_INIT, &hdev->flags);
1583
1584 if (!ret) {
1585 hci_dev_hold(hdev);
1586 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587 hci_adv_instances_set_rpa_expired(hdev, true);
1588 set_bit(HCI_UP, &hdev->flags);
1589 hci_sock_dev_event(hdev, HCI_DEV_UP);
1590 hci_leds_update_powered(hdev, true);
1591 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595 hci_dev_test_flag(hdev, HCI_MGMT) &&
1596 hdev->dev_type == HCI_PRIMARY) {
1597 ret = __hci_req_hci_power_on(hdev);
1598 mgmt_power_on(hdev, ret);
1599 }
1600 } else {
1601 /* Init failed, cleanup */
1602 flush_work(&hdev->tx_work);
1603 flush_work(&hdev->cmd_work);
1604 flush_work(&hdev->rx_work);
1605
1606 skb_queue_purge(&hdev->cmd_q);
1607 skb_queue_purge(&hdev->rx_q);
1608
1609 if (hdev->flush)
1610 hdev->flush(hdev);
1611
1612 if (hdev->sent_cmd) {
1613 kfree_skb(hdev->sent_cmd);
1614 hdev->sent_cmd = NULL;
1615 }
1616
1617 clear_bit(HCI_RUNNING, &hdev->flags);
1618 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619
1620 hdev->close(hdev);
1621 hdev->flags &= BIT(HCI_RAW);
1622 }
1623
1624done:
1625 hci_req_sync_unlock(hdev);
1626 return ret;
1627}
1628
1629/* ---- HCI ioctl helpers ---- */
1630
1631int hci_dev_open(__u16 dev)
1632{
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 /* Devices that are marked as unconfigured can only be powered
1641 * up as user channel. Trying to bring them up as normal devices
1642 * will result into a failure. Only user channel operation is
1643 * possible.
1644 *
1645 * When this function is called for a user channel, the flag
1646 * HCI_USER_CHANNEL will be set first before attempting to
1647 * open the device.
1648 */
1649 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651 err = -EOPNOTSUPP;
1652 goto done;
1653 }
1654
1655 /* We need to ensure that no other power on/off work is pending
1656 * before proceeding to call hci_dev_do_open. This is
1657 * particularly important if the setup procedure has not yet
1658 * completed.
1659 */
1660 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661 cancel_delayed_work(&hdev->power_off);
1662
1663 /* After this call it is guaranteed that the setup procedure
1664 * has finished. This means that error conditions like RFKILL
1665 * or no valid public or static random address apply.
1666 */
1667 flush_workqueue(hdev->req_workqueue);
1668
1669 /* For controllers not using the management interface and that
1670 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671 * so that pairing works for them. Once the management interface
1672 * is in use this bit will be cleared again and userspace has
1673 * to explicitly enable it.
1674 */
1675 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676 !hci_dev_test_flag(hdev, HCI_MGMT))
1677 hci_dev_set_flag(hdev, HCI_BONDABLE);
1678
1679 err = hci_dev_do_open(hdev);
1680
1681done:
1682 hci_dev_put(hdev);
1683 return err;
1684}
1685
1686/* This function requires the caller holds hdev->lock */
1687static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688{
1689 struct hci_conn_params *p;
1690
1691 list_for_each_entry(p, &hdev->le_conn_params, list) {
1692 if (p->conn) {
1693 hci_conn_drop(p->conn);
1694 hci_conn_put(p->conn);
1695 p->conn = NULL;
1696 }
1697 list_del_init(&p->action);
1698 }
1699
1700 BT_DBG("All LE pending actions cleared");
1701}
1702
1703int hci_dev_do_close(struct hci_dev *hdev)
1704{
1705 bool auto_off;
1706
1707 BT_DBG("%s %p", hdev->name, hdev);
1708
1709 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711 test_bit(HCI_UP, &hdev->flags)) {
1712 /* Execute vendor specific shutdown routine */
1713 if (hdev->shutdown)
1714 hdev->shutdown(hdev);
1715 }
1716
1717 cancel_delayed_work(&hdev->power_off);
1718
1719 hci_request_cancel_all(hdev);
1720 hci_req_sync_lock(hdev);
1721
1722 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723 cancel_delayed_work_sync(&hdev->cmd_timer);
1724 hci_req_sync_unlock(hdev);
1725 return 0;
1726 }
1727
1728 hci_leds_update_powered(hdev, false);
1729
1730 /* Flush RX and TX works */
1731 flush_work(&hdev->tx_work);
1732 flush_work(&hdev->rx_work);
1733
1734 if (hdev->discov_timeout > 0) {
1735 hdev->discov_timeout = 0;
1736 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738 }
1739
1740 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741 cancel_delayed_work(&hdev->service_cache);
1742
1743 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744 struct adv_info *adv_instance;
1745
1746 cancel_delayed_work_sync(&hdev->rpa_expired);
1747
1748 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750 }
1751
1752 /* Avoid potential lockdep warnings from the *_flush() calls by
1753 * ensuring the workqueue is empty up front.
1754 */
1755 drain_workqueue(hdev->workqueue);
1756
1757 hci_dev_lock(hdev);
1758
1759 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760
1761 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762
1763 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765 hci_dev_test_flag(hdev, HCI_MGMT))
1766 __mgmt_power_off(hdev);
1767
1768 hci_inquiry_cache_flush(hdev);
1769 hci_pend_le_actions_clear(hdev);
1770 hci_conn_hash_flush(hdev);
1771 hci_dev_unlock(hdev);
1772
1773 smp_unregister(hdev);
1774
1775 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776
1777 msft_do_close(hdev);
1778
1779 if (hdev->flush)
1780 hdev->flush(hdev);
1781
1782 /* Reset device */
1783 skb_queue_purge(&hdev->cmd_q);
1784 atomic_set(&hdev->cmd_cnt, 1);
1785 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787 set_bit(HCI_INIT, &hdev->flags);
1788 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789 clear_bit(HCI_INIT, &hdev->flags);
1790 }
1791
1792 /* flush cmd work */
1793 flush_work(&hdev->cmd_work);
1794
1795 /* Drop queues */
1796 skb_queue_purge(&hdev->rx_q);
1797 skb_queue_purge(&hdev->cmd_q);
1798 skb_queue_purge(&hdev->raw_q);
1799
1800 /* Drop last sent command */
1801 if (hdev->sent_cmd) {
1802 cancel_delayed_work_sync(&hdev->cmd_timer);
1803 kfree_skb(hdev->sent_cmd);
1804 hdev->sent_cmd = NULL;
1805 }
1806
1807 clear_bit(HCI_RUNNING, &hdev->flags);
1808 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809
1810 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811 wake_up(&hdev->suspend_wait_q);
1812
1813 /* After this point our queues are empty
1814 * and no tasks are scheduled. */
1815 hdev->close(hdev);
1816
1817 /* Clear flags */
1818 hdev->flags &= BIT(HCI_RAW);
1819 hci_dev_clear_volatile_flags(hdev);
1820
1821 /* Controller radio is available but is currently powered down */
1822 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823
1824 memset(hdev->eir, 0, sizeof(hdev->eir));
1825 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826 bacpy(&hdev->random_addr, BDADDR_ANY);
1827
1828 hci_req_sync_unlock(hdev);
1829
1830 hci_dev_put(hdev);
1831 return 0;
1832}
1833
1834int hci_dev_close(__u16 dev)
1835{
1836 struct hci_dev *hdev;
1837 int err;
1838
1839 hdev = hci_dev_get(dev);
1840 if (!hdev)
1841 return -ENODEV;
1842
1843 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 err = -EBUSY;
1845 goto done;
1846 }
1847
1848 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849 cancel_delayed_work(&hdev->power_off);
1850
1851 err = hci_dev_do_close(hdev);
1852
1853done:
1854 hci_dev_put(hdev);
1855 return err;
1856}
1857
1858static int hci_dev_do_reset(struct hci_dev *hdev)
1859{
1860 int ret;
1861
1862 BT_DBG("%s %p", hdev->name, hdev);
1863
1864 hci_req_sync_lock(hdev);
1865
1866 /* Drop queues */
1867 skb_queue_purge(&hdev->rx_q);
1868 skb_queue_purge(&hdev->cmd_q);
1869
1870 /* Avoid potential lockdep warnings from the *_flush() calls by
1871 * ensuring the workqueue is empty up front.
1872 */
1873 drain_workqueue(hdev->workqueue);
1874
1875 hci_dev_lock(hdev);
1876 hci_inquiry_cache_flush(hdev);
1877 hci_conn_hash_flush(hdev);
1878 hci_dev_unlock(hdev);
1879
1880 if (hdev->flush)
1881 hdev->flush(hdev);
1882
1883 atomic_set(&hdev->cmd_cnt, 1);
1884 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1885
1886 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887
1888 hci_req_sync_unlock(hdev);
1889 return ret;
1890}
1891
1892int hci_dev_reset(__u16 dev)
1893{
1894 struct hci_dev *hdev;
1895 int err;
1896
1897 hdev = hci_dev_get(dev);
1898 if (!hdev)
1899 return -ENODEV;
1900
1901 if (!test_bit(HCI_UP, &hdev->flags)) {
1902 err = -ENETDOWN;
1903 goto done;
1904 }
1905
1906 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907 err = -EBUSY;
1908 goto done;
1909 }
1910
1911 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912 err = -EOPNOTSUPP;
1913 goto done;
1914 }
1915
1916 err = hci_dev_do_reset(hdev);
1917
1918done:
1919 hci_dev_put(hdev);
1920 return err;
1921}
1922
1923int hci_dev_reset_stat(__u16 dev)
1924{
1925 struct hci_dev *hdev;
1926 int ret = 0;
1927
1928 hdev = hci_dev_get(dev);
1929 if (!hdev)
1930 return -ENODEV;
1931
1932 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933 ret = -EBUSY;
1934 goto done;
1935 }
1936
1937 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938 ret = -EOPNOTSUPP;
1939 goto done;
1940 }
1941
1942 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943
1944done:
1945 hci_dev_put(hdev);
1946 return ret;
1947}
1948
1949static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950{
1951 bool conn_changed, discov_changed;
1952
1953 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954
1955 if ((scan & SCAN_PAGE))
1956 conn_changed = !hci_dev_test_and_set_flag(hdev,
1957 HCI_CONNECTABLE);
1958 else
1959 conn_changed = hci_dev_test_and_clear_flag(hdev,
1960 HCI_CONNECTABLE);
1961
1962 if ((scan & SCAN_INQUIRY)) {
1963 discov_changed = !hci_dev_test_and_set_flag(hdev,
1964 HCI_DISCOVERABLE);
1965 } else {
1966 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967 discov_changed = hci_dev_test_and_clear_flag(hdev,
1968 HCI_DISCOVERABLE);
1969 }
1970
1971 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972 return;
1973
1974 if (conn_changed || discov_changed) {
1975 /* In case this was disabled through mgmt */
1976 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977
1978 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980
1981 mgmt_new_settings(hdev);
1982 }
1983}
1984
1985int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986{
1987 struct hci_dev *hdev;
1988 struct hci_dev_req dr;
1989 int err = 0;
1990
1991 if (copy_from_user(&dr, arg, sizeof(dr)))
1992 return -EFAULT;
1993
1994 hdev = hci_dev_get(dr.dev_id);
1995 if (!hdev)
1996 return -ENODEV;
1997
1998 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999 err = -EBUSY;
2000 goto done;
2001 }
2002
2003 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004 err = -EOPNOTSUPP;
2005 goto done;
2006 }
2007
2008 if (hdev->dev_type != HCI_PRIMARY) {
2009 err = -EOPNOTSUPP;
2010 goto done;
2011 }
2012
2013 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014 err = -EOPNOTSUPP;
2015 goto done;
2016 }
2017
2018 switch (cmd) {
2019 case HCISETAUTH:
2020 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021 HCI_INIT_TIMEOUT, NULL);
2022 break;
2023
2024 case HCISETENCRYPT:
2025 if (!lmp_encrypt_capable(hdev)) {
2026 err = -EOPNOTSUPP;
2027 break;
2028 }
2029
2030 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031 /* Auth must be enabled first */
2032 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033 HCI_INIT_TIMEOUT, NULL);
2034 if (err)
2035 break;
2036 }
2037
2038 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039 HCI_INIT_TIMEOUT, NULL);
2040 break;
2041
2042 case HCISETSCAN:
2043 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044 HCI_INIT_TIMEOUT, NULL);
2045
2046 /* Ensure that the connectable and discoverable states
2047 * get correctly modified as this was a non-mgmt change.
2048 */
2049 if (!err)
2050 hci_update_scan_state(hdev, dr.dev_opt);
2051 break;
2052
2053 case HCISETLINKPOL:
2054 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055 HCI_INIT_TIMEOUT, NULL);
2056 break;
2057
2058 case HCISETLINKMODE:
2059 hdev->link_mode = ((__u16) dr.dev_opt) &
2060 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2061 break;
2062
2063 case HCISETPTYPE:
2064 if (hdev->pkt_type == (__u16) dr.dev_opt)
2065 break;
2066
2067 hdev->pkt_type = (__u16) dr.dev_opt;
2068 mgmt_phy_configuration_changed(hdev, NULL);
2069 break;
2070
2071 case HCISETACLMTU:
2072 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2073 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074 break;
2075
2076 case HCISETSCOMTU:
2077 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2078 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079 break;
2080
2081 default:
2082 err = -EINVAL;
2083 break;
2084 }
2085
2086done:
2087 hci_dev_put(hdev);
2088 return err;
2089}
2090
2091int hci_get_dev_list(void __user *arg)
2092{
2093 struct hci_dev *hdev;
2094 struct hci_dev_list_req *dl;
2095 struct hci_dev_req *dr;
2096 int n = 0, size, err;
2097 __u16 dev_num;
2098
2099 if (get_user(dev_num, (__u16 __user *) arg))
2100 return -EFAULT;
2101
2102 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103 return -EINVAL;
2104
2105 size = sizeof(*dl) + dev_num * sizeof(*dr);
2106
2107 dl = kzalloc(size, GFP_KERNEL);
2108 if (!dl)
2109 return -ENOMEM;
2110
2111 dr = dl->dev_req;
2112
2113 read_lock(&hci_dev_list_lock);
2114 list_for_each_entry(hdev, &hci_dev_list, list) {
2115 unsigned long flags = hdev->flags;
2116
2117 /* When the auto-off is configured it means the transport
2118 * is running, but in that case still indicate that the
2119 * device is actually down.
2120 */
2121 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122 flags &= ~BIT(HCI_UP);
2123
2124 (dr + n)->dev_id = hdev->id;
2125 (dr + n)->dev_opt = flags;
2126
2127 if (++n >= dev_num)
2128 break;
2129 }
2130 read_unlock(&hci_dev_list_lock);
2131
2132 dl->dev_num = n;
2133 size = sizeof(*dl) + n * sizeof(*dr);
2134
2135 err = copy_to_user(arg, dl, size);
2136 kfree(dl);
2137
2138 return err ? -EFAULT : 0;
2139}
2140
2141int hci_get_dev_info(void __user *arg)
2142{
2143 struct hci_dev *hdev;
2144 struct hci_dev_info di;
2145 unsigned long flags;
2146 int err = 0;
2147
2148 if (copy_from_user(&di, arg, sizeof(di)))
2149 return -EFAULT;
2150
2151 hdev = hci_dev_get(di.dev_id);
2152 if (!hdev)
2153 return -ENODEV;
2154
2155 /* When the auto-off is configured it means the transport
2156 * is running, but in that case still indicate that the
2157 * device is actually down.
2158 */
2159 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160 flags = hdev->flags & ~BIT(HCI_UP);
2161 else
2162 flags = hdev->flags;
2163
2164 strcpy(di.name, hdev->name);
2165 di.bdaddr = hdev->bdaddr;
2166 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167 di.flags = flags;
2168 di.pkt_type = hdev->pkt_type;
2169 if (lmp_bredr_capable(hdev)) {
2170 di.acl_mtu = hdev->acl_mtu;
2171 di.acl_pkts = hdev->acl_pkts;
2172 di.sco_mtu = hdev->sco_mtu;
2173 di.sco_pkts = hdev->sco_pkts;
2174 } else {
2175 di.acl_mtu = hdev->le_mtu;
2176 di.acl_pkts = hdev->le_pkts;
2177 di.sco_mtu = 0;
2178 di.sco_pkts = 0;
2179 }
2180 di.link_policy = hdev->link_policy;
2181 di.link_mode = hdev->link_mode;
2182
2183 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184 memcpy(&di.features, &hdev->features, sizeof(di.features));
2185
2186 if (copy_to_user(arg, &di, sizeof(di)))
2187 err = -EFAULT;
2188
2189 hci_dev_put(hdev);
2190
2191 return err;
2192}
2193
2194/* ---- Interface to HCI drivers ---- */
2195
2196static int hci_rfkill_set_block(void *data, bool blocked)
2197{
2198 struct hci_dev *hdev = data;
2199
2200 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201
2202 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203 return -EBUSY;
2204
2205 if (blocked) {
2206 hci_dev_set_flag(hdev, HCI_RFKILLED);
2207 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208 !hci_dev_test_flag(hdev, HCI_CONFIG))
2209 hci_dev_do_close(hdev);
2210 } else {
2211 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212 }
2213
2214 return 0;
2215}
2216
2217static const struct rfkill_ops hci_rfkill_ops = {
2218 .set_block = hci_rfkill_set_block,
2219};
2220
2221static void hci_power_on(struct work_struct *work)
2222{
2223 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224 int err;
2225
2226 BT_DBG("%s", hdev->name);
2227
2228 if (test_bit(HCI_UP, &hdev->flags) &&
2229 hci_dev_test_flag(hdev, HCI_MGMT) &&
2230 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231 cancel_delayed_work(&hdev->power_off);
2232 hci_req_sync_lock(hdev);
2233 err = __hci_req_hci_power_on(hdev);
2234 hci_req_sync_unlock(hdev);
2235 mgmt_power_on(hdev, err);
2236 return;
2237 }
2238
2239 err = hci_dev_do_open(hdev);
2240 if (err < 0) {
2241 hci_dev_lock(hdev);
2242 mgmt_set_powered_failed(hdev, err);
2243 hci_dev_unlock(hdev);
2244 return;
2245 }
2246
2247 /* During the HCI setup phase, a few error conditions are
2248 * ignored and they need to be checked now. If they are still
2249 * valid, it is important to turn the device back off.
2250 */
2251 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253 (hdev->dev_type == HCI_PRIMARY &&
2254 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257 hci_dev_do_close(hdev);
2258 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260 HCI_AUTO_OFF_TIMEOUT);
2261 }
2262
2263 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264 /* For unconfigured devices, set the HCI_RAW flag
2265 * so that userspace can easily identify them.
2266 */
2267 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268 set_bit(HCI_RAW, &hdev->flags);
2269
2270 /* For fully configured devices, this will send
2271 * the Index Added event. For unconfigured devices,
2272 * it will send Unconfigued Index Added event.
2273 *
2274 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275 * and no event will be send.
2276 */
2277 mgmt_index_added(hdev);
2278 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279 /* When the controller is now configured, then it
2280 * is important to clear the HCI_RAW flag.
2281 */
2282 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283 clear_bit(HCI_RAW, &hdev->flags);
2284
2285 /* Powering on the controller with HCI_CONFIG set only
2286 * happens with the transition from unconfigured to
2287 * configured. This will send the Index Added event.
2288 */
2289 mgmt_index_added(hdev);
2290 }
2291}
2292
2293static void hci_power_off(struct work_struct *work)
2294{
2295 struct hci_dev *hdev = container_of(work, struct hci_dev,
2296 power_off.work);
2297
2298 BT_DBG("%s", hdev->name);
2299
2300 hci_dev_do_close(hdev);
2301}
2302
2303static void hci_error_reset(struct work_struct *work)
2304{
2305 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306
2307 BT_DBG("%s", hdev->name);
2308
2309 if (hdev->hw_error)
2310 hdev->hw_error(hdev, hdev->hw_error_code);
2311 else
2312 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2313
2314 if (hci_dev_do_close(hdev))
2315 return;
2316
2317 hci_dev_do_open(hdev);
2318}
2319
2320void hci_uuids_clear(struct hci_dev *hdev)
2321{
2322 struct bt_uuid *uuid, *tmp;
2323
2324 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325 list_del(&uuid->list);
2326 kfree(uuid);
2327 }
2328}
2329
2330void hci_link_keys_clear(struct hci_dev *hdev)
2331{
2332 struct link_key *key;
2333
2334 list_for_each_entry(key, &hdev->link_keys, list) {
2335 list_del_rcu(&key->list);
2336 kfree_rcu(key, rcu);
2337 }
2338}
2339
2340void hci_smp_ltks_clear(struct hci_dev *hdev)
2341{
2342 struct smp_ltk *k;
2343
2344 list_for_each_entry(k, &hdev->long_term_keys, list) {
2345 list_del_rcu(&k->list);
2346 kfree_rcu(k, rcu);
2347 }
2348}
2349
2350void hci_smp_irks_clear(struct hci_dev *hdev)
2351{
2352 struct smp_irk *k;
2353
2354 list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355 list_del_rcu(&k->list);
2356 kfree_rcu(k, rcu);
2357 }
2358}
2359
2360void hci_blocked_keys_clear(struct hci_dev *hdev)
2361{
2362 struct blocked_key *b;
2363
2364 list_for_each_entry(b, &hdev->blocked_keys, list) {
2365 list_del_rcu(&b->list);
2366 kfree_rcu(b, rcu);
2367 }
2368}
2369
2370bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371{
2372 bool blocked = false;
2373 struct blocked_key *b;
2374
2375 rcu_read_lock();
2376 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378 blocked = true;
2379 break;
2380 }
2381 }
2382
2383 rcu_read_unlock();
2384 return blocked;
2385}
2386
2387struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388{
2389 struct link_key *k;
2390
2391 rcu_read_lock();
2392 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394 rcu_read_unlock();
2395
2396 if (hci_is_blocked_key(hdev,
2397 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398 k->val)) {
2399 bt_dev_warn_ratelimited(hdev,
2400 "Link key blocked for %pMR",
2401 &k->bdaddr);
2402 return NULL;
2403 }
2404
2405 return k;
2406 }
2407 }
2408 rcu_read_unlock();
2409
2410 return NULL;
2411}
2412
2413static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414 u8 key_type, u8 old_key_type)
2415{
2416 /* Legacy key */
2417 if (key_type < 0x03)
2418 return true;
2419
2420 /* Debug keys are insecure so don't store them persistently */
2421 if (key_type == HCI_LK_DEBUG_COMBINATION)
2422 return false;
2423
2424 /* Changed combination key and there's no previous one */
2425 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426 return false;
2427
2428 /* Security mode 3 case */
2429 if (!conn)
2430 return true;
2431
2432 /* BR/EDR key derived using SC from an LE link */
2433 if (conn->type == LE_LINK)
2434 return true;
2435
2436 /* Neither local nor remote side had no-bonding as requirement */
2437 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438 return true;
2439
2440 /* Local side had dedicated bonding as requirement */
2441 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442 return true;
2443
2444 /* Remote side had dedicated bonding as requirement */
2445 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446 return true;
2447
2448 /* If none of the above criteria match, then don't store the key
2449 * persistently */
2450 return false;
2451}
2452
2453static u8 ltk_role(u8 type)
2454{
2455 if (type == SMP_LTK)
2456 return HCI_ROLE_MASTER;
2457
2458 return HCI_ROLE_SLAVE;
2459}
2460
2461struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462 u8 addr_type, u8 role)
2463{
2464 struct smp_ltk *k;
2465
2466 rcu_read_lock();
2467 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469 continue;
2470
2471 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472 rcu_read_unlock();
2473
2474 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475 k->val)) {
2476 bt_dev_warn_ratelimited(hdev,
2477 "LTK blocked for %pMR",
2478 &k->bdaddr);
2479 return NULL;
2480 }
2481
2482 return k;
2483 }
2484 }
2485 rcu_read_unlock();
2486
2487 return NULL;
2488}
2489
2490struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491{
2492 struct smp_irk *irk_to_return = NULL;
2493 struct smp_irk *irk;
2494
2495 rcu_read_lock();
2496 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497 if (!bacmp(&irk->rpa, rpa)) {
2498 irk_to_return = irk;
2499 goto done;
2500 }
2501 }
2502
2503 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504 if (smp_irk_matches(hdev, irk->val, rpa)) {
2505 bacpy(&irk->rpa, rpa);
2506 irk_to_return = irk;
2507 goto done;
2508 }
2509 }
2510
2511done:
2512 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513 irk_to_return->val)) {
2514 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515 &irk_to_return->bdaddr);
2516 irk_to_return = NULL;
2517 }
2518
2519 rcu_read_unlock();
2520
2521 return irk_to_return;
2522}
2523
2524struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525 u8 addr_type)
2526{
2527 struct smp_irk *irk_to_return = NULL;
2528 struct smp_irk *irk;
2529
2530 /* Identity Address must be public or static random */
2531 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532 return NULL;
2533
2534 rcu_read_lock();
2535 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536 if (addr_type == irk->addr_type &&
2537 bacmp(bdaddr, &irk->bdaddr) == 0) {
2538 irk_to_return = irk;
2539 goto done;
2540 }
2541 }
2542
2543done:
2544
2545 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546 irk_to_return->val)) {
2547 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548 &irk_to_return->bdaddr);
2549 irk_to_return = NULL;
2550 }
2551
2552 rcu_read_unlock();
2553
2554 return irk_to_return;
2555}
2556
2557struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558 bdaddr_t *bdaddr, u8 *val, u8 type,
2559 u8 pin_len, bool *persistent)
2560{
2561 struct link_key *key, *old_key;
2562 u8 old_key_type;
2563
2564 old_key = hci_find_link_key(hdev, bdaddr);
2565 if (old_key) {
2566 old_key_type = old_key->type;
2567 key = old_key;
2568 } else {
2569 old_key_type = conn ? conn->key_type : 0xff;
2570 key = kzalloc(sizeof(*key), GFP_KERNEL);
2571 if (!key)
2572 return NULL;
2573 list_add_rcu(&key->list, &hdev->link_keys);
2574 }
2575
2576 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577
2578 /* Some buggy controller combinations generate a changed
2579 * combination key for legacy pairing even when there's no
2580 * previous key */
2581 if (type == HCI_LK_CHANGED_COMBINATION &&
2582 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583 type = HCI_LK_COMBINATION;
2584 if (conn)
2585 conn->key_type = type;
2586 }
2587
2588 bacpy(&key->bdaddr, bdaddr);
2589 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590 key->pin_len = pin_len;
2591
2592 if (type == HCI_LK_CHANGED_COMBINATION)
2593 key->type = old_key_type;
2594 else
2595 key->type = type;
2596
2597 if (persistent)
2598 *persistent = hci_persistent_key(hdev, conn, type,
2599 old_key_type);
2600
2601 return key;
2602}
2603
2604struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605 u8 addr_type, u8 type, u8 authenticated,
2606 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607{
2608 struct smp_ltk *key, *old_key;
2609 u8 role = ltk_role(type);
2610
2611 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612 if (old_key)
2613 key = old_key;
2614 else {
2615 key = kzalloc(sizeof(*key), GFP_KERNEL);
2616 if (!key)
2617 return NULL;
2618 list_add_rcu(&key->list, &hdev->long_term_keys);
2619 }
2620
2621 bacpy(&key->bdaddr, bdaddr);
2622 key->bdaddr_type = addr_type;
2623 memcpy(key->val, tk, sizeof(key->val));
2624 key->authenticated = authenticated;
2625 key->ediv = ediv;
2626 key->rand = rand;
2627 key->enc_size = enc_size;
2628 key->type = type;
2629
2630 return key;
2631}
2632
2633struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635{
2636 struct smp_irk *irk;
2637
2638 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639 if (!irk) {
2640 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641 if (!irk)
2642 return NULL;
2643
2644 bacpy(&irk->bdaddr, bdaddr);
2645 irk->addr_type = addr_type;
2646
2647 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648 }
2649
2650 memcpy(irk->val, val, 16);
2651 bacpy(&irk->rpa, rpa);
2652
2653 return irk;
2654}
2655
2656int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657{
2658 struct link_key *key;
2659
2660 key = hci_find_link_key(hdev, bdaddr);
2661 if (!key)
2662 return -ENOENT;
2663
2664 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665
2666 list_del_rcu(&key->list);
2667 kfree_rcu(key, rcu);
2668
2669 return 0;
2670}
2671
2672int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673{
2674 struct smp_ltk *k;
2675 int removed = 0;
2676
2677 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679 continue;
2680
2681 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682
2683 list_del_rcu(&k->list);
2684 kfree_rcu(k, rcu);
2685 removed++;
2686 }
2687
2688 return removed ? 0 : -ENOENT;
2689}
2690
2691void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692{
2693 struct smp_irk *k;
2694
2695 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697 continue;
2698
2699 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700
2701 list_del_rcu(&k->list);
2702 kfree_rcu(k, rcu);
2703 }
2704}
2705
2706bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707{
2708 struct smp_ltk *k;
2709 struct smp_irk *irk;
2710 u8 addr_type;
2711
2712 if (type == BDADDR_BREDR) {
2713 if (hci_find_link_key(hdev, bdaddr))
2714 return true;
2715 return false;
2716 }
2717
2718 /* Convert to HCI addr type which struct smp_ltk uses */
2719 if (type == BDADDR_LE_PUBLIC)
2720 addr_type = ADDR_LE_DEV_PUBLIC;
2721 else
2722 addr_type = ADDR_LE_DEV_RANDOM;
2723
2724 irk = hci_get_irk(hdev, bdaddr, addr_type);
2725 if (irk) {
2726 bdaddr = &irk->bdaddr;
2727 addr_type = irk->addr_type;
2728 }
2729
2730 rcu_read_lock();
2731 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733 rcu_read_unlock();
2734 return true;
2735 }
2736 }
2737 rcu_read_unlock();
2738
2739 return false;
2740}
2741
2742/* HCI command timer function */
2743static void hci_cmd_timeout(struct work_struct *work)
2744{
2745 struct hci_dev *hdev = container_of(work, struct hci_dev,
2746 cmd_timer.work);
2747
2748 if (hdev->sent_cmd) {
2749 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750 u16 opcode = __le16_to_cpu(sent->opcode);
2751
2752 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2753 } else {
2754 bt_dev_err(hdev, "command tx timeout");
2755 }
2756
2757 if (hdev->cmd_timeout)
2758 hdev->cmd_timeout(hdev);
2759
2760 atomic_set(&hdev->cmd_cnt, 1);
2761 queue_work(hdev->workqueue, &hdev->cmd_work);
2762}
2763
2764struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765 bdaddr_t *bdaddr, u8 bdaddr_type)
2766{
2767 struct oob_data *data;
2768
2769 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770 if (bacmp(bdaddr, &data->bdaddr) != 0)
2771 continue;
2772 if (data->bdaddr_type != bdaddr_type)
2773 continue;
2774 return data;
2775 }
2776
2777 return NULL;
2778}
2779
2780int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781 u8 bdaddr_type)
2782{
2783 struct oob_data *data;
2784
2785 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786 if (!data)
2787 return -ENOENT;
2788
2789 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790
2791 list_del(&data->list);
2792 kfree(data);
2793
2794 return 0;
2795}
2796
2797void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798{
2799 struct oob_data *data, *n;
2800
2801 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802 list_del(&data->list);
2803 kfree(data);
2804 }
2805}
2806
2807int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809 u8 *hash256, u8 *rand256)
2810{
2811 struct oob_data *data;
2812
2813 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814 if (!data) {
2815 data = kmalloc(sizeof(*data), GFP_KERNEL);
2816 if (!data)
2817 return -ENOMEM;
2818
2819 bacpy(&data->bdaddr, bdaddr);
2820 data->bdaddr_type = bdaddr_type;
2821 list_add(&data->list, &hdev->remote_oob_data);
2822 }
2823
2824 if (hash192 && rand192) {
2825 memcpy(data->hash192, hash192, sizeof(data->hash192));
2826 memcpy(data->rand192, rand192, sizeof(data->rand192));
2827 if (hash256 && rand256)
2828 data->present = 0x03;
2829 } else {
2830 memset(data->hash192, 0, sizeof(data->hash192));
2831 memset(data->rand192, 0, sizeof(data->rand192));
2832 if (hash256 && rand256)
2833 data->present = 0x02;
2834 else
2835 data->present = 0x00;
2836 }
2837
2838 if (hash256 && rand256) {
2839 memcpy(data->hash256, hash256, sizeof(data->hash256));
2840 memcpy(data->rand256, rand256, sizeof(data->rand256));
2841 } else {
2842 memset(data->hash256, 0, sizeof(data->hash256));
2843 memset(data->rand256, 0, sizeof(data->rand256));
2844 if (hash192 && rand192)
2845 data->present = 0x01;
2846 }
2847
2848 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849
2850 return 0;
2851}
2852
2853/* This function requires the caller holds hdev->lock */
2854struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855{
2856 struct adv_info *adv_instance;
2857
2858 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859 if (adv_instance->instance == instance)
2860 return adv_instance;
2861 }
2862
2863 return NULL;
2864}
2865
2866/* This function requires the caller holds hdev->lock */
2867struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868{
2869 struct adv_info *cur_instance;
2870
2871 cur_instance = hci_find_adv_instance(hdev, instance);
2872 if (!cur_instance)
2873 return NULL;
2874
2875 if (cur_instance == list_last_entry(&hdev->adv_instances,
2876 struct adv_info, list))
2877 return list_first_entry(&hdev->adv_instances,
2878 struct adv_info, list);
2879 else
2880 return list_next_entry(cur_instance, list);
2881}
2882
2883/* This function requires the caller holds hdev->lock */
2884int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885{
2886 struct adv_info *adv_instance;
2887
2888 adv_instance = hci_find_adv_instance(hdev, instance);
2889 if (!adv_instance)
2890 return -ENOENT;
2891
2892 BT_DBG("%s removing %dMR", hdev->name, instance);
2893
2894 if (hdev->cur_adv_instance == instance) {
2895 if (hdev->adv_instance_timeout) {
2896 cancel_delayed_work(&hdev->adv_instance_expire);
2897 hdev->adv_instance_timeout = 0;
2898 }
2899 hdev->cur_adv_instance = 0x00;
2900 }
2901
2902 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903
2904 list_del(&adv_instance->list);
2905 kfree(adv_instance);
2906
2907 hdev->adv_instance_cnt--;
2908
2909 return 0;
2910}
2911
2912void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913{
2914 struct adv_info *adv_instance, *n;
2915
2916 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917 adv_instance->rpa_expired = rpa_expired;
2918}
2919
2920/* This function requires the caller holds hdev->lock */
2921void hci_adv_instances_clear(struct hci_dev *hdev)
2922{
2923 struct adv_info *adv_instance, *n;
2924
2925 if (hdev->adv_instance_timeout) {
2926 cancel_delayed_work(&hdev->adv_instance_expire);
2927 hdev->adv_instance_timeout = 0;
2928 }
2929
2930 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932 list_del(&adv_instance->list);
2933 kfree(adv_instance);
2934 }
2935
2936 hdev->adv_instance_cnt = 0;
2937 hdev->cur_adv_instance = 0x00;
2938}
2939
2940static void adv_instance_rpa_expired(struct work_struct *work)
2941{
2942 struct adv_info *adv_instance = container_of(work, struct adv_info,
2943 rpa_expired_cb.work);
2944
2945 BT_DBG("");
2946
2947 adv_instance->rpa_expired = true;
2948}
2949
2950/* This function requires the caller holds hdev->lock */
2951int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952 u16 adv_data_len, u8 *adv_data,
2953 u16 scan_rsp_len, u8 *scan_rsp_data,
2954 u16 timeout, u16 duration)
2955{
2956 struct adv_info *adv_instance;
2957
2958 adv_instance = hci_find_adv_instance(hdev, instance);
2959 if (adv_instance) {
2960 memset(adv_instance->adv_data, 0,
2961 sizeof(adv_instance->adv_data));
2962 memset(adv_instance->scan_rsp_data, 0,
2963 sizeof(adv_instance->scan_rsp_data));
2964 } else {
2965 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2967 return -EOVERFLOW;
2968
2969 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970 if (!adv_instance)
2971 return -ENOMEM;
2972
2973 adv_instance->pending = true;
2974 adv_instance->instance = instance;
2975 list_add(&adv_instance->list, &hdev->adv_instances);
2976 hdev->adv_instance_cnt++;
2977 }
2978
2979 adv_instance->flags = flags;
2980 adv_instance->adv_data_len = adv_data_len;
2981 adv_instance->scan_rsp_len = scan_rsp_len;
2982
2983 if (adv_data_len)
2984 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985
2986 if (scan_rsp_len)
2987 memcpy(adv_instance->scan_rsp_data,
2988 scan_rsp_data, scan_rsp_len);
2989
2990 adv_instance->timeout = timeout;
2991 adv_instance->remaining_time = timeout;
2992
2993 if (duration == 0)
2994 adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995 else
2996 adv_instance->duration = duration;
2997
2998 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2999
3000 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001 adv_instance_rpa_expired);
3002
3003 BT_DBG("%s for %dMR", hdev->name, instance);
3004
3005 return 0;
3006}
3007
3008/* This function requires the caller holds hdev->lock */
3009void hci_adv_monitors_clear(struct hci_dev *hdev)
3010{
3011 struct adv_monitor *monitor;
3012 int handle;
3013
3014 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015 hci_free_adv_monitor(monitor);
3016
3017 idr_destroy(&hdev->adv_monitors_idr);
3018}
3019
3020void hci_free_adv_monitor(struct adv_monitor *monitor)
3021{
3022 struct adv_pattern *pattern;
3023 struct adv_pattern *tmp;
3024
3025 if (!monitor)
3026 return;
3027
3028 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3029 kfree(pattern);
3030
3031 kfree(monitor);
3032}
3033
3034/* This function requires the caller holds hdev->lock */
3035int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036{
3037 int min, max, handle;
3038
3039 if (!monitor)
3040 return -EINVAL;
3041
3042 min = HCI_MIN_ADV_MONITOR_HANDLE;
3043 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045 GFP_KERNEL);
3046 if (handle < 0)
3047 return handle;
3048
3049 hdev->adv_monitors_cnt++;
3050 monitor->handle = handle;
3051
3052 hci_update_background_scan(hdev);
3053
3054 return 0;
3055}
3056
3057static int free_adv_monitor(int id, void *ptr, void *data)
3058{
3059 struct hci_dev *hdev = data;
3060 struct adv_monitor *monitor = ptr;
3061
3062 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063 hci_free_adv_monitor(monitor);
3064
3065 return 0;
3066}
3067
3068/* This function requires the caller holds hdev->lock */
3069int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3070{
3071 struct adv_monitor *monitor;
3072
3073 if (handle) {
3074 monitor = idr_find(&hdev->adv_monitors_idr, handle);
3075 if (!monitor)
3076 return -ENOENT;
3077
3078 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3079 hci_free_adv_monitor(monitor);
3080 } else {
3081 /* Remove all monitors if handle is 0. */
3082 idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3083 }
3084
3085 hci_update_background_scan(hdev);
3086
3087 return 0;
3088}
3089
3090/* This function requires the caller holds hdev->lock */
3091bool hci_is_adv_monitoring(struct hci_dev *hdev)
3092{
3093 return !idr_is_empty(&hdev->adv_monitors_idr);
3094}
3095
3096struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3097 bdaddr_t *bdaddr, u8 type)
3098{
3099 struct bdaddr_list *b;
3100
3101 list_for_each_entry(b, bdaddr_list, list) {
3102 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3103 return b;
3104 }
3105
3106 return NULL;
3107}
3108
3109struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3110 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3111 u8 type)
3112{
3113 struct bdaddr_list_with_irk *b;
3114
3115 list_for_each_entry(b, bdaddr_list, list) {
3116 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3117 return b;
3118 }
3119
3120 return NULL;
3121}
3122
3123struct bdaddr_list_with_flags *
3124hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3125 bdaddr_t *bdaddr, u8 type)
3126{
3127 struct bdaddr_list_with_flags *b;
3128
3129 list_for_each_entry(b, bdaddr_list, list) {
3130 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3131 return b;
3132 }
3133
3134 return NULL;
3135}
3136
3137void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3138{
3139 struct bdaddr_list *b, *n;
3140
3141 list_for_each_entry_safe(b, n, bdaddr_list, list) {
3142 list_del(&b->list);
3143 kfree(b);
3144 }
3145}
3146
3147int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3148{
3149 struct bdaddr_list *entry;
3150
3151 if (!bacmp(bdaddr, BDADDR_ANY))
3152 return -EBADF;
3153
3154 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3155 return -EEXIST;
3156
3157 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3158 if (!entry)
3159 return -ENOMEM;
3160
3161 bacpy(&entry->bdaddr, bdaddr);
3162 entry->bdaddr_type = type;
3163
3164 list_add(&entry->list, list);
3165
3166 return 0;
3167}
3168
3169int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3170 u8 type, u8 *peer_irk, u8 *local_irk)
3171{
3172 struct bdaddr_list_with_irk *entry;
3173
3174 if (!bacmp(bdaddr, BDADDR_ANY))
3175 return -EBADF;
3176
3177 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3178 return -EEXIST;
3179
3180 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3181 if (!entry)
3182 return -ENOMEM;
3183
3184 bacpy(&entry->bdaddr, bdaddr);
3185 entry->bdaddr_type = type;
3186
3187 if (peer_irk)
3188 memcpy(entry->peer_irk, peer_irk, 16);
3189
3190 if (local_irk)
3191 memcpy(entry->local_irk, local_irk, 16);
3192
3193 list_add(&entry->list, list);
3194
3195 return 0;
3196}
3197
3198int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3199 u8 type, u32 flags)
3200{
3201 struct bdaddr_list_with_flags *entry;
3202
3203 if (!bacmp(bdaddr, BDADDR_ANY))
3204 return -EBADF;
3205
3206 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3207 return -EEXIST;
3208
3209 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3210 if (!entry)
3211 return -ENOMEM;
3212
3213 bacpy(&entry->bdaddr, bdaddr);
3214 entry->bdaddr_type = type;
3215 entry->current_flags = flags;
3216
3217 list_add(&entry->list, list);
3218
3219 return 0;
3220}
3221
3222int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3223{
3224 struct bdaddr_list *entry;
3225
3226 if (!bacmp(bdaddr, BDADDR_ANY)) {
3227 hci_bdaddr_list_clear(list);
3228 return 0;
3229 }
3230
3231 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3232 if (!entry)
3233 return -ENOENT;
3234
3235 list_del(&entry->list);
3236 kfree(entry);
3237
3238 return 0;
3239}
3240
3241int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3242 u8 type)
3243{
3244 struct bdaddr_list_with_irk *entry;
3245
3246 if (!bacmp(bdaddr, BDADDR_ANY)) {
3247 hci_bdaddr_list_clear(list);
3248 return 0;
3249 }
3250
3251 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3252 if (!entry)
3253 return -ENOENT;
3254
3255 list_del(&entry->list);
3256 kfree(entry);
3257
3258 return 0;
3259}
3260
3261int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3262 u8 type)
3263{
3264 struct bdaddr_list_with_flags *entry;
3265
3266 if (!bacmp(bdaddr, BDADDR_ANY)) {
3267 hci_bdaddr_list_clear(list);
3268 return 0;
3269 }
3270
3271 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3272 if (!entry)
3273 return -ENOENT;
3274
3275 list_del(&entry->list);
3276 kfree(entry);
3277
3278 return 0;
3279}
3280
3281/* This function requires the caller holds hdev->lock */
3282struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3283 bdaddr_t *addr, u8 addr_type)
3284{
3285 struct hci_conn_params *params;
3286
3287 list_for_each_entry(params, &hdev->le_conn_params, list) {
3288 if (bacmp(¶ms->addr, addr) == 0 &&
3289 params->addr_type == addr_type) {
3290 return params;
3291 }
3292 }
3293
3294 return NULL;
3295}
3296
3297/* This function requires the caller holds hdev->lock */
3298struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3299 bdaddr_t *addr, u8 addr_type)
3300{
3301 struct hci_conn_params *param;
3302
3303 switch (addr_type) {
3304 case ADDR_LE_DEV_PUBLIC_RESOLVED:
3305 addr_type = ADDR_LE_DEV_PUBLIC;
3306 break;
3307 case ADDR_LE_DEV_RANDOM_RESOLVED:
3308 addr_type = ADDR_LE_DEV_RANDOM;
3309 break;
3310 }
3311
3312 list_for_each_entry(param, list, action) {
3313 if (bacmp(¶m->addr, addr) == 0 &&
3314 param->addr_type == addr_type)
3315 return param;
3316 }
3317
3318 return NULL;
3319}
3320
3321/* This function requires the caller holds hdev->lock */
3322struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3323 bdaddr_t *addr, u8 addr_type)
3324{
3325 struct hci_conn_params *params;
3326
3327 params = hci_conn_params_lookup(hdev, addr, addr_type);
3328 if (params)
3329 return params;
3330
3331 params = kzalloc(sizeof(*params), GFP_KERNEL);
3332 if (!params) {
3333 bt_dev_err(hdev, "out of memory");
3334 return NULL;
3335 }
3336
3337 bacpy(¶ms->addr, addr);
3338 params->addr_type = addr_type;
3339
3340 list_add(¶ms->list, &hdev->le_conn_params);
3341 INIT_LIST_HEAD(¶ms->action);
3342
3343 params->conn_min_interval = hdev->le_conn_min_interval;
3344 params->conn_max_interval = hdev->le_conn_max_interval;
3345 params->conn_latency = hdev->le_conn_latency;
3346 params->supervision_timeout = hdev->le_supv_timeout;
3347 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3348
3349 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3350
3351 return params;
3352}
3353
3354static void hci_conn_params_free(struct hci_conn_params *params)
3355{
3356 if (params->conn) {
3357 hci_conn_drop(params->conn);
3358 hci_conn_put(params->conn);
3359 }
3360
3361 list_del(¶ms->action);
3362 list_del(¶ms->list);
3363 kfree(params);
3364}
3365
3366/* This function requires the caller holds hdev->lock */
3367void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3368{
3369 struct hci_conn_params *params;
3370
3371 params = hci_conn_params_lookup(hdev, addr, addr_type);
3372 if (!params)
3373 return;
3374
3375 hci_conn_params_free(params);
3376
3377 hci_update_background_scan(hdev);
3378
3379 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3380}
3381
3382/* This function requires the caller holds hdev->lock */
3383void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3384{
3385 struct hci_conn_params *params, *tmp;
3386
3387 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3388 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3389 continue;
3390
3391 /* If trying to estabilish one time connection to disabled
3392 * device, leave the params, but mark them as just once.
3393 */
3394 if (params->explicit_connect) {
3395 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3396 continue;
3397 }
3398
3399 list_del(¶ms->list);
3400 kfree(params);
3401 }
3402
3403 BT_DBG("All LE disabled connection parameters were removed");
3404}
3405
3406/* This function requires the caller holds hdev->lock */
3407static void hci_conn_params_clear_all(struct hci_dev *hdev)
3408{
3409 struct hci_conn_params *params, *tmp;
3410
3411 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3412 hci_conn_params_free(params);
3413
3414 BT_DBG("All LE connection parameters were removed");
3415}
3416
3417/* Copy the Identity Address of the controller.
3418 *
3419 * If the controller has a public BD_ADDR, then by default use that one.
3420 * If this is a LE only controller without a public address, default to
3421 * the static random address.
3422 *
3423 * For debugging purposes it is possible to force controllers with a
3424 * public address to use the static random address instead.
3425 *
3426 * In case BR/EDR has been disabled on a dual-mode controller and
3427 * userspace has configured a static address, then that address
3428 * becomes the identity address instead of the public BR/EDR address.
3429 */
3430void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3431 u8 *bdaddr_type)
3432{
3433 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3434 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3435 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3436 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3437 bacpy(bdaddr, &hdev->static_addr);
3438 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3439 } else {
3440 bacpy(bdaddr, &hdev->bdaddr);
3441 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3442 }
3443}
3444
3445static int hci_suspend_wait_event(struct hci_dev *hdev)
3446{
3447#define WAKE_COND \
3448 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \
3449 __SUSPEND_NUM_TASKS)
3450
3451 int i;
3452 int ret = wait_event_timeout(hdev->suspend_wait_q,
3453 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3454
3455 if (ret == 0) {
3456 bt_dev_err(hdev, "Timed out waiting for suspend events");
3457 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3458 if (test_bit(i, hdev->suspend_tasks))
3459 bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3460 clear_bit(i, hdev->suspend_tasks);
3461 }
3462
3463 ret = -ETIMEDOUT;
3464 } else {
3465 ret = 0;
3466 }
3467
3468 return ret;
3469}
3470
3471static void hci_prepare_suspend(struct work_struct *work)
3472{
3473 struct hci_dev *hdev =
3474 container_of(work, struct hci_dev, suspend_prepare);
3475
3476 hci_dev_lock(hdev);
3477 hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3478 hci_dev_unlock(hdev);
3479}
3480
3481static int hci_change_suspend_state(struct hci_dev *hdev,
3482 enum suspended_state next)
3483{
3484 hdev->suspend_state_next = next;
3485 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3486 queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3487 return hci_suspend_wait_event(hdev);
3488}
3489
3490static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3491 void *data)
3492{
3493 struct hci_dev *hdev =
3494 container_of(nb, struct hci_dev, suspend_notifier);
3495 int ret = 0;
3496
3497 /* If powering down, wait for completion. */
3498 if (mgmt_powering_down(hdev)) {
3499 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3500 ret = hci_suspend_wait_event(hdev);
3501 if (ret)
3502 goto done;
3503 }
3504
3505 /* Suspend notifier should only act on events when powered. */
3506 if (!hdev_is_powered(hdev))
3507 goto done;
3508
3509 if (action == PM_SUSPEND_PREPARE) {
3510 /* Suspend consists of two actions:
3511 * - First, disconnect everything and make the controller not
3512 * connectable (disabling scanning)
3513 * - Second, program event filter/whitelist and enable scan
3514 */
3515 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3516
3517 /* Only configure whitelist if disconnect succeeded and wake
3518 * isn't being prevented.
3519 */
3520 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev)))
3521 ret = hci_change_suspend_state(hdev,
3522 BT_SUSPEND_CONFIGURE_WAKE);
3523 } else if (action == PM_POST_SUSPEND) {
3524 ret = hci_change_suspend_state(hdev, BT_RUNNING);
3525 }
3526
3527done:
3528 /* We always allow suspend even if suspend preparation failed and
3529 * attempt to recover in resume.
3530 */
3531 if (ret)
3532 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3533 action, ret);
3534
3535 return NOTIFY_DONE;
3536}
3537
3538/* Alloc HCI device */
3539struct hci_dev *hci_alloc_dev(void)
3540{
3541 struct hci_dev *hdev;
3542
3543 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3544 if (!hdev)
3545 return NULL;
3546
3547 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3548 hdev->esco_type = (ESCO_HV1);
3549 hdev->link_mode = (HCI_LM_ACCEPT);
3550 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3551 hdev->io_capability = 0x03; /* No Input No Output */
3552 hdev->manufacturer = 0xffff; /* Default to internal use */
3553 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3554 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3555 hdev->adv_instance_cnt = 0;
3556 hdev->cur_adv_instance = 0x00;
3557 hdev->adv_instance_timeout = 0;
3558
3559 hdev->sniff_max_interval = 800;
3560 hdev->sniff_min_interval = 80;
3561
3562 hdev->le_adv_channel_map = 0x07;
3563 hdev->le_adv_min_interval = 0x0800;
3564 hdev->le_adv_max_interval = 0x0800;
3565 hdev->le_scan_interval = 0x0060;
3566 hdev->le_scan_window = 0x0030;
3567 hdev->le_scan_int_suspend = 0x0400;
3568 hdev->le_scan_window_suspend = 0x0012;
3569 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3570 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3571 hdev->le_scan_int_connect = 0x0060;
3572 hdev->le_scan_window_connect = 0x0060;
3573 hdev->le_conn_min_interval = 0x0018;
3574 hdev->le_conn_max_interval = 0x0028;
3575 hdev->le_conn_latency = 0x0000;
3576 hdev->le_supv_timeout = 0x002a;
3577 hdev->le_def_tx_len = 0x001b;
3578 hdev->le_def_tx_time = 0x0148;
3579 hdev->le_max_tx_len = 0x001b;
3580 hdev->le_max_tx_time = 0x0148;
3581 hdev->le_max_rx_len = 0x001b;
3582 hdev->le_max_rx_time = 0x0148;
3583 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3584 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3585 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3586 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3587 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3588 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3589 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3590
3591 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3592 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3593 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3594 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3595 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3596 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3597
3598 /* default 1.28 sec page scan */
3599 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3600 hdev->def_page_scan_int = 0x0800;
3601 hdev->def_page_scan_window = 0x0012;
3602
3603 mutex_init(&hdev->lock);
3604 mutex_init(&hdev->req_lock);
3605
3606 INIT_LIST_HEAD(&hdev->mgmt_pending);
3607 INIT_LIST_HEAD(&hdev->blacklist);
3608 INIT_LIST_HEAD(&hdev->whitelist);
3609 INIT_LIST_HEAD(&hdev->uuids);
3610 INIT_LIST_HEAD(&hdev->link_keys);
3611 INIT_LIST_HEAD(&hdev->long_term_keys);
3612 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3613 INIT_LIST_HEAD(&hdev->remote_oob_data);
3614 INIT_LIST_HEAD(&hdev->le_white_list);
3615 INIT_LIST_HEAD(&hdev->le_resolv_list);
3616 INIT_LIST_HEAD(&hdev->le_conn_params);
3617 INIT_LIST_HEAD(&hdev->pend_le_conns);
3618 INIT_LIST_HEAD(&hdev->pend_le_reports);
3619 INIT_LIST_HEAD(&hdev->conn_hash.list);
3620 INIT_LIST_HEAD(&hdev->adv_instances);
3621 INIT_LIST_HEAD(&hdev->blocked_keys);
3622
3623 INIT_WORK(&hdev->rx_work, hci_rx_work);
3624 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3625 INIT_WORK(&hdev->tx_work, hci_tx_work);
3626 INIT_WORK(&hdev->power_on, hci_power_on);
3627 INIT_WORK(&hdev->error_reset, hci_error_reset);
3628 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3629
3630 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3631
3632 skb_queue_head_init(&hdev->rx_q);
3633 skb_queue_head_init(&hdev->cmd_q);
3634 skb_queue_head_init(&hdev->raw_q);
3635
3636 init_waitqueue_head(&hdev->req_wait_q);
3637 init_waitqueue_head(&hdev->suspend_wait_q);
3638
3639 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3640
3641 hci_request_setup(hdev);
3642
3643 hci_init_sysfs(hdev);
3644 discovery_init(hdev);
3645
3646 return hdev;
3647}
3648EXPORT_SYMBOL(hci_alloc_dev);
3649
3650/* Free HCI device */
3651void hci_free_dev(struct hci_dev *hdev)
3652{
3653 /* will free via device release */
3654 put_device(&hdev->dev);
3655}
3656EXPORT_SYMBOL(hci_free_dev);
3657
3658/* Register HCI device */
3659int hci_register_dev(struct hci_dev *hdev)
3660{
3661 int id, error;
3662
3663 if (!hdev->open || !hdev->close || !hdev->send)
3664 return -EINVAL;
3665
3666 /* Do not allow HCI_AMP devices to register at index 0,
3667 * so the index can be used as the AMP controller ID.
3668 */
3669 switch (hdev->dev_type) {
3670 case HCI_PRIMARY:
3671 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3672 break;
3673 case HCI_AMP:
3674 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3675 break;
3676 default:
3677 return -EINVAL;
3678 }
3679
3680 if (id < 0)
3681 return id;
3682
3683 sprintf(hdev->name, "hci%d", id);
3684 hdev->id = id;
3685
3686 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3687
3688 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3689 if (!hdev->workqueue) {
3690 error = -ENOMEM;
3691 goto err;
3692 }
3693
3694 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3695 hdev->name);
3696 if (!hdev->req_workqueue) {
3697 destroy_workqueue(hdev->workqueue);
3698 error = -ENOMEM;
3699 goto err;
3700 }
3701
3702 if (!IS_ERR_OR_NULL(bt_debugfs))
3703 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3704
3705 dev_set_name(&hdev->dev, "%s", hdev->name);
3706
3707 error = device_add(&hdev->dev);
3708 if (error < 0)
3709 goto err_wqueue;
3710
3711 hci_leds_init(hdev);
3712
3713 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3714 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3715 hdev);
3716 if (hdev->rfkill) {
3717 if (rfkill_register(hdev->rfkill) < 0) {
3718 rfkill_destroy(hdev->rfkill);
3719 hdev->rfkill = NULL;
3720 }
3721 }
3722
3723 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3724 hci_dev_set_flag(hdev, HCI_RFKILLED);
3725
3726 hci_dev_set_flag(hdev, HCI_SETUP);
3727 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3728
3729 if (hdev->dev_type == HCI_PRIMARY) {
3730 /* Assume BR/EDR support until proven otherwise (such as
3731 * through reading supported features during init.
3732 */
3733 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3734 }
3735
3736 write_lock(&hci_dev_list_lock);
3737 list_add(&hdev->list, &hci_dev_list);
3738 write_unlock(&hci_dev_list_lock);
3739
3740 /* Devices that are marked for raw-only usage are unconfigured
3741 * and should not be included in normal operation.
3742 */
3743 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3744 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3745
3746 hci_sock_dev_event(hdev, HCI_DEV_REG);
3747 hci_dev_hold(hdev);
3748
3749 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3750 error = register_pm_notifier(&hdev->suspend_notifier);
3751 if (error)
3752 goto err_wqueue;
3753
3754 queue_work(hdev->req_workqueue, &hdev->power_on);
3755
3756 idr_init(&hdev->adv_monitors_idr);
3757
3758 return id;
3759
3760err_wqueue:
3761 destroy_workqueue(hdev->workqueue);
3762 destroy_workqueue(hdev->req_workqueue);
3763err:
3764 ida_simple_remove(&hci_index_ida, hdev->id);
3765
3766 return error;
3767}
3768EXPORT_SYMBOL(hci_register_dev);
3769
3770/* Unregister HCI device */
3771void hci_unregister_dev(struct hci_dev *hdev)
3772{
3773 int id;
3774
3775 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3776
3777 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3778
3779 id = hdev->id;
3780
3781 write_lock(&hci_dev_list_lock);
3782 list_del(&hdev->list);
3783 write_unlock(&hci_dev_list_lock);
3784
3785 cancel_work_sync(&hdev->power_on);
3786
3787 unregister_pm_notifier(&hdev->suspend_notifier);
3788 cancel_work_sync(&hdev->suspend_prepare);
3789
3790 hci_dev_do_close(hdev);
3791
3792 if (!test_bit(HCI_INIT, &hdev->flags) &&
3793 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3794 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3795 hci_dev_lock(hdev);
3796 mgmt_index_removed(hdev);
3797 hci_dev_unlock(hdev);
3798 }
3799
3800 /* mgmt_index_removed should take care of emptying the
3801 * pending list */
3802 BUG_ON(!list_empty(&hdev->mgmt_pending));
3803
3804 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3805
3806 if (hdev->rfkill) {
3807 rfkill_unregister(hdev->rfkill);
3808 rfkill_destroy(hdev->rfkill);
3809 }
3810
3811 device_del(&hdev->dev);
3812
3813 debugfs_remove_recursive(hdev->debugfs);
3814 kfree_const(hdev->hw_info);
3815 kfree_const(hdev->fw_info);
3816
3817 destroy_workqueue(hdev->workqueue);
3818 destroy_workqueue(hdev->req_workqueue);
3819
3820 hci_dev_lock(hdev);
3821 hci_bdaddr_list_clear(&hdev->blacklist);
3822 hci_bdaddr_list_clear(&hdev->whitelist);
3823 hci_uuids_clear(hdev);
3824 hci_link_keys_clear(hdev);
3825 hci_smp_ltks_clear(hdev);
3826 hci_smp_irks_clear(hdev);
3827 hci_remote_oob_data_clear(hdev);
3828 hci_adv_instances_clear(hdev);
3829 hci_adv_monitors_clear(hdev);
3830 hci_bdaddr_list_clear(&hdev->le_white_list);
3831 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3832 hci_conn_params_clear_all(hdev);
3833 hci_discovery_filter_clear(hdev);
3834 hci_blocked_keys_clear(hdev);
3835 hci_dev_unlock(hdev);
3836
3837 hci_dev_put(hdev);
3838
3839 ida_simple_remove(&hci_index_ida, id);
3840}
3841EXPORT_SYMBOL(hci_unregister_dev);
3842
3843/* Suspend HCI device */
3844int hci_suspend_dev(struct hci_dev *hdev)
3845{
3846 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3847 return 0;
3848}
3849EXPORT_SYMBOL(hci_suspend_dev);
3850
3851/* Resume HCI device */
3852int hci_resume_dev(struct hci_dev *hdev)
3853{
3854 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3855 return 0;
3856}
3857EXPORT_SYMBOL(hci_resume_dev);
3858
3859/* Reset HCI device */
3860int hci_reset_dev(struct hci_dev *hdev)
3861{
3862 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3863 struct sk_buff *skb;
3864
3865 skb = bt_skb_alloc(3, GFP_ATOMIC);
3866 if (!skb)
3867 return -ENOMEM;
3868
3869 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3870 skb_put_data(skb, hw_err, 3);
3871
3872 /* Send Hardware Error to upper stack */
3873 return hci_recv_frame(hdev, skb);
3874}
3875EXPORT_SYMBOL(hci_reset_dev);
3876
3877/* Receive frame from HCI drivers */
3878int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3879{
3880 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3881 && !test_bit(HCI_INIT, &hdev->flags))) {
3882 kfree_skb(skb);
3883 return -ENXIO;
3884 }
3885
3886 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3887 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3888 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3889 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3890 kfree_skb(skb);
3891 return -EINVAL;
3892 }
3893
3894 /* Incoming skb */
3895 bt_cb(skb)->incoming = 1;
3896
3897 /* Time stamp */
3898 __net_timestamp(skb);
3899
3900 skb_queue_tail(&hdev->rx_q, skb);
3901 queue_work(hdev->workqueue, &hdev->rx_work);
3902
3903 return 0;
3904}
3905EXPORT_SYMBOL(hci_recv_frame);
3906
3907/* Receive diagnostic message from HCI drivers */
3908int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3909{
3910 /* Mark as diagnostic packet */
3911 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3912
3913 /* Time stamp */
3914 __net_timestamp(skb);
3915
3916 skb_queue_tail(&hdev->rx_q, skb);
3917 queue_work(hdev->workqueue, &hdev->rx_work);
3918
3919 return 0;
3920}
3921EXPORT_SYMBOL(hci_recv_diag);
3922
3923void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3924{
3925 va_list vargs;
3926
3927 va_start(vargs, fmt);
3928 kfree_const(hdev->hw_info);
3929 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3930 va_end(vargs);
3931}
3932EXPORT_SYMBOL(hci_set_hw_info);
3933
3934void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3935{
3936 va_list vargs;
3937
3938 va_start(vargs, fmt);
3939 kfree_const(hdev->fw_info);
3940 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3941 va_end(vargs);
3942}
3943EXPORT_SYMBOL(hci_set_fw_info);
3944
3945/* ---- Interface to upper protocols ---- */
3946
3947int hci_register_cb(struct hci_cb *cb)
3948{
3949 BT_DBG("%p name %s", cb, cb->name);
3950
3951 mutex_lock(&hci_cb_list_lock);
3952 list_add_tail(&cb->list, &hci_cb_list);
3953 mutex_unlock(&hci_cb_list_lock);
3954
3955 return 0;
3956}
3957EXPORT_SYMBOL(hci_register_cb);
3958
3959int hci_unregister_cb(struct hci_cb *cb)
3960{
3961 BT_DBG("%p name %s", cb, cb->name);
3962
3963 mutex_lock(&hci_cb_list_lock);
3964 list_del(&cb->list);
3965 mutex_unlock(&hci_cb_list_lock);
3966
3967 return 0;
3968}
3969EXPORT_SYMBOL(hci_unregister_cb);
3970
3971static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3972{
3973 int err;
3974
3975 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3976 skb->len);
3977
3978 /* Time stamp */
3979 __net_timestamp(skb);
3980
3981 /* Send copy to monitor */
3982 hci_send_to_monitor(hdev, skb);
3983
3984 if (atomic_read(&hdev->promisc)) {
3985 /* Send copy to the sockets */
3986 hci_send_to_sock(hdev, skb);
3987 }
3988
3989 /* Get rid of skb owner, prior to sending to the driver. */
3990 skb_orphan(skb);
3991
3992 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3993 kfree_skb(skb);
3994 return;
3995 }
3996
3997 err = hdev->send(hdev, skb);
3998 if (err < 0) {
3999 bt_dev_err(hdev, "sending frame failed (%d)", err);
4000 kfree_skb(skb);
4001 }
4002}
4003
4004/* Send HCI command */
4005int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4006 const void *param)
4007{
4008 struct sk_buff *skb;
4009
4010 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4011
4012 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4013 if (!skb) {
4014 bt_dev_err(hdev, "no memory for command");
4015 return -ENOMEM;
4016 }
4017
4018 /* Stand-alone HCI commands must be flagged as
4019 * single-command requests.
4020 */
4021 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4022
4023 skb_queue_tail(&hdev->cmd_q, skb);
4024 queue_work(hdev->workqueue, &hdev->cmd_work);
4025
4026 return 0;
4027}
4028
4029int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4030 const void *param)
4031{
4032 struct sk_buff *skb;
4033
4034 if (hci_opcode_ogf(opcode) != 0x3f) {
4035 /* A controller receiving a command shall respond with either
4036 * a Command Status Event or a Command Complete Event.
4037 * Therefore, all standard HCI commands must be sent via the
4038 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4039 * Some vendors do not comply with this rule for vendor-specific
4040 * commands and do not return any event. We want to support
4041 * unresponded commands for such cases only.
4042 */
4043 bt_dev_err(hdev, "unresponded command not supported");
4044 return -EINVAL;
4045 }
4046
4047 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4048 if (!skb) {
4049 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4050 opcode);
4051 return -ENOMEM;
4052 }
4053
4054 hci_send_frame(hdev, skb);
4055
4056 return 0;
4057}
4058EXPORT_SYMBOL(__hci_cmd_send);
4059
4060/* Get data from the previously sent command */
4061void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4062{
4063 struct hci_command_hdr *hdr;
4064
4065 if (!hdev->sent_cmd)
4066 return NULL;
4067
4068 hdr = (void *) hdev->sent_cmd->data;
4069
4070 if (hdr->opcode != cpu_to_le16(opcode))
4071 return NULL;
4072
4073 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4074
4075 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4076}
4077
4078/* Send HCI command and wait for command commplete event */
4079struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4080 const void *param, u32 timeout)
4081{
4082 struct sk_buff *skb;
4083
4084 if (!test_bit(HCI_UP, &hdev->flags))
4085 return ERR_PTR(-ENETDOWN);
4086
4087 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4088
4089 hci_req_sync_lock(hdev);
4090 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4091 hci_req_sync_unlock(hdev);
4092
4093 return skb;
4094}
4095EXPORT_SYMBOL(hci_cmd_sync);
4096
4097/* Send ACL data */
4098static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4099{
4100 struct hci_acl_hdr *hdr;
4101 int len = skb->len;
4102
4103 skb_push(skb, HCI_ACL_HDR_SIZE);
4104 skb_reset_transport_header(skb);
4105 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4106 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4107 hdr->dlen = cpu_to_le16(len);
4108}
4109
4110static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4111 struct sk_buff *skb, __u16 flags)
4112{
4113 struct hci_conn *conn = chan->conn;
4114 struct hci_dev *hdev = conn->hdev;
4115 struct sk_buff *list;
4116
4117 skb->len = skb_headlen(skb);
4118 skb->data_len = 0;
4119
4120 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4121
4122 switch (hdev->dev_type) {
4123 case HCI_PRIMARY:
4124 hci_add_acl_hdr(skb, conn->handle, flags);
4125 break;
4126 case HCI_AMP:
4127 hci_add_acl_hdr(skb, chan->handle, flags);
4128 break;
4129 default:
4130 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4131 return;
4132 }
4133
4134 list = skb_shinfo(skb)->frag_list;
4135 if (!list) {
4136 /* Non fragmented */
4137 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4138
4139 skb_queue_tail(queue, skb);
4140 } else {
4141 /* Fragmented */
4142 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4143
4144 skb_shinfo(skb)->frag_list = NULL;
4145
4146 /* Queue all fragments atomically. We need to use spin_lock_bh
4147 * here because of 6LoWPAN links, as there this function is
4148 * called from softirq and using normal spin lock could cause
4149 * deadlocks.
4150 */
4151 spin_lock_bh(&queue->lock);
4152
4153 __skb_queue_tail(queue, skb);
4154
4155 flags &= ~ACL_START;
4156 flags |= ACL_CONT;
4157 do {
4158 skb = list; list = list->next;
4159
4160 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4161 hci_add_acl_hdr(skb, conn->handle, flags);
4162
4163 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4164
4165 __skb_queue_tail(queue, skb);
4166 } while (list);
4167
4168 spin_unlock_bh(&queue->lock);
4169 }
4170}
4171
4172void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4173{
4174 struct hci_dev *hdev = chan->conn->hdev;
4175
4176 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4177
4178 hci_queue_acl(chan, &chan->data_q, skb, flags);
4179
4180 queue_work(hdev->workqueue, &hdev->tx_work);
4181}
4182
4183/* Send SCO data */
4184void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4185{
4186 struct hci_dev *hdev = conn->hdev;
4187 struct hci_sco_hdr hdr;
4188
4189 BT_DBG("%s len %d", hdev->name, skb->len);
4190
4191 hdr.handle = cpu_to_le16(conn->handle);
4192 hdr.dlen = skb->len;
4193
4194 skb_push(skb, HCI_SCO_HDR_SIZE);
4195 skb_reset_transport_header(skb);
4196 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4197
4198 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4199
4200 skb_queue_tail(&conn->data_q, skb);
4201 queue_work(hdev->workqueue, &hdev->tx_work);
4202}
4203
4204/* ---- HCI TX task (outgoing data) ---- */
4205
4206/* HCI Connection scheduler */
4207static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4208 int *quote)
4209{
4210 struct hci_conn_hash *h = &hdev->conn_hash;
4211 struct hci_conn *conn = NULL, *c;
4212 unsigned int num = 0, min = ~0;
4213
4214 /* We don't have to lock device here. Connections are always
4215 * added and removed with TX task disabled. */
4216
4217 rcu_read_lock();
4218
4219 list_for_each_entry_rcu(c, &h->list, list) {
4220 if (c->type != type || skb_queue_empty(&c->data_q))
4221 continue;
4222
4223 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4224 continue;
4225
4226 num++;
4227
4228 if (c->sent < min) {
4229 min = c->sent;
4230 conn = c;
4231 }
4232
4233 if (hci_conn_num(hdev, type) == num)
4234 break;
4235 }
4236
4237 rcu_read_unlock();
4238
4239 if (conn) {
4240 int cnt, q;
4241
4242 switch (conn->type) {
4243 case ACL_LINK:
4244 cnt = hdev->acl_cnt;
4245 break;
4246 case SCO_LINK:
4247 case ESCO_LINK:
4248 cnt = hdev->sco_cnt;
4249 break;
4250 case LE_LINK:
4251 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4252 break;
4253 default:
4254 cnt = 0;
4255 bt_dev_err(hdev, "unknown link type %d", conn->type);
4256 }
4257
4258 q = cnt / num;
4259 *quote = q ? q : 1;
4260 } else
4261 *quote = 0;
4262
4263 BT_DBG("conn %p quote %d", conn, *quote);
4264 return conn;
4265}
4266
4267static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4268{
4269 struct hci_conn_hash *h = &hdev->conn_hash;
4270 struct hci_conn *c;
4271
4272 bt_dev_err(hdev, "link tx timeout");
4273
4274 rcu_read_lock();
4275
4276 /* Kill stalled connections */
4277 list_for_each_entry_rcu(c, &h->list, list) {
4278 if (c->type == type && c->sent) {
4279 bt_dev_err(hdev, "killing stalled connection %pMR",
4280 &c->dst);
4281 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4282 }
4283 }
4284
4285 rcu_read_unlock();
4286}
4287
4288static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4289 int *quote)
4290{
4291 struct hci_conn_hash *h = &hdev->conn_hash;
4292 struct hci_chan *chan = NULL;
4293 unsigned int num = 0, min = ~0, cur_prio = 0;
4294 struct hci_conn *conn;
4295 int cnt, q, conn_num = 0;
4296
4297 BT_DBG("%s", hdev->name);
4298
4299 rcu_read_lock();
4300
4301 list_for_each_entry_rcu(conn, &h->list, list) {
4302 struct hci_chan *tmp;
4303
4304 if (conn->type != type)
4305 continue;
4306
4307 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4308 continue;
4309
4310 conn_num++;
4311
4312 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4313 struct sk_buff *skb;
4314
4315 if (skb_queue_empty(&tmp->data_q))
4316 continue;
4317
4318 skb = skb_peek(&tmp->data_q);
4319 if (skb->priority < cur_prio)
4320 continue;
4321
4322 if (skb->priority > cur_prio) {
4323 num = 0;
4324 min = ~0;
4325 cur_prio = skb->priority;
4326 }
4327
4328 num++;
4329
4330 if (conn->sent < min) {
4331 min = conn->sent;
4332 chan = tmp;
4333 }
4334 }
4335
4336 if (hci_conn_num(hdev, type) == conn_num)
4337 break;
4338 }
4339
4340 rcu_read_unlock();
4341
4342 if (!chan)
4343 return NULL;
4344
4345 switch (chan->conn->type) {
4346 case ACL_LINK:
4347 cnt = hdev->acl_cnt;
4348 break;
4349 case AMP_LINK:
4350 cnt = hdev->block_cnt;
4351 break;
4352 case SCO_LINK:
4353 case ESCO_LINK:
4354 cnt = hdev->sco_cnt;
4355 break;
4356 case LE_LINK:
4357 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4358 break;
4359 default:
4360 cnt = 0;
4361 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4362 }
4363
4364 q = cnt / num;
4365 *quote = q ? q : 1;
4366 BT_DBG("chan %p quote %d", chan, *quote);
4367 return chan;
4368}
4369
4370static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4371{
4372 struct hci_conn_hash *h = &hdev->conn_hash;
4373 struct hci_conn *conn;
4374 int num = 0;
4375
4376 BT_DBG("%s", hdev->name);
4377
4378 rcu_read_lock();
4379
4380 list_for_each_entry_rcu(conn, &h->list, list) {
4381 struct hci_chan *chan;
4382
4383 if (conn->type != type)
4384 continue;
4385
4386 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4387 continue;
4388
4389 num++;
4390
4391 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4392 struct sk_buff *skb;
4393
4394 if (chan->sent) {
4395 chan->sent = 0;
4396 continue;
4397 }
4398
4399 if (skb_queue_empty(&chan->data_q))
4400 continue;
4401
4402 skb = skb_peek(&chan->data_q);
4403 if (skb->priority >= HCI_PRIO_MAX - 1)
4404 continue;
4405
4406 skb->priority = HCI_PRIO_MAX - 1;
4407
4408 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4409 skb->priority);
4410 }
4411
4412 if (hci_conn_num(hdev, type) == num)
4413 break;
4414 }
4415
4416 rcu_read_unlock();
4417
4418}
4419
4420static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4421{
4422 /* Calculate count of blocks used by this packet */
4423 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4424}
4425
4426static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4427{
4428 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4429 /* ACL tx timeout must be longer than maximum
4430 * link supervision timeout (40.9 seconds) */
4431 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4432 HCI_ACL_TX_TIMEOUT))
4433 hci_link_tx_to(hdev, ACL_LINK);
4434 }
4435}
4436
4437/* Schedule SCO */
4438static void hci_sched_sco(struct hci_dev *hdev)
4439{
4440 struct hci_conn *conn;
4441 struct sk_buff *skb;
4442 int quote;
4443
4444 BT_DBG("%s", hdev->name);
4445
4446 if (!hci_conn_num(hdev, SCO_LINK))
4447 return;
4448
4449 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4450 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4451 BT_DBG("skb %p len %d", skb, skb->len);
4452 hci_send_frame(hdev, skb);
4453
4454 conn->sent++;
4455 if (conn->sent == ~0)
4456 conn->sent = 0;
4457 }
4458 }
4459}
4460
4461static void hci_sched_esco(struct hci_dev *hdev)
4462{
4463 struct hci_conn *conn;
4464 struct sk_buff *skb;
4465 int quote;
4466
4467 BT_DBG("%s", hdev->name);
4468
4469 if (!hci_conn_num(hdev, ESCO_LINK))
4470 return;
4471
4472 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4473 "e))) {
4474 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4475 BT_DBG("skb %p len %d", skb, skb->len);
4476 hci_send_frame(hdev, skb);
4477
4478 conn->sent++;
4479 if (conn->sent == ~0)
4480 conn->sent = 0;
4481 }
4482 }
4483}
4484
4485static void hci_sched_acl_pkt(struct hci_dev *hdev)
4486{
4487 unsigned int cnt = hdev->acl_cnt;
4488 struct hci_chan *chan;
4489 struct sk_buff *skb;
4490 int quote;
4491
4492 __check_timeout(hdev, cnt);
4493
4494 while (hdev->acl_cnt &&
4495 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4496 u32 priority = (skb_peek(&chan->data_q))->priority;
4497 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4498 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4499 skb->len, skb->priority);
4500
4501 /* Stop if priority has changed */
4502 if (skb->priority < priority)
4503 break;
4504
4505 skb = skb_dequeue(&chan->data_q);
4506
4507 hci_conn_enter_active_mode(chan->conn,
4508 bt_cb(skb)->force_active);
4509
4510 hci_send_frame(hdev, skb);
4511 hdev->acl_last_tx = jiffies;
4512
4513 hdev->acl_cnt--;
4514 chan->sent++;
4515 chan->conn->sent++;
4516
4517 /* Send pending SCO packets right away */
4518 hci_sched_sco(hdev);
4519 hci_sched_esco(hdev);
4520 }
4521 }
4522
4523 if (cnt != hdev->acl_cnt)
4524 hci_prio_recalculate(hdev, ACL_LINK);
4525}
4526
4527static void hci_sched_acl_blk(struct hci_dev *hdev)
4528{
4529 unsigned int cnt = hdev->block_cnt;
4530 struct hci_chan *chan;
4531 struct sk_buff *skb;
4532 int quote;
4533 u8 type;
4534
4535 __check_timeout(hdev, cnt);
4536
4537 BT_DBG("%s", hdev->name);
4538
4539 if (hdev->dev_type == HCI_AMP)
4540 type = AMP_LINK;
4541 else
4542 type = ACL_LINK;
4543
4544 while (hdev->block_cnt > 0 &&
4545 (chan = hci_chan_sent(hdev, type, "e))) {
4546 u32 priority = (skb_peek(&chan->data_q))->priority;
4547 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4548 int blocks;
4549
4550 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4551 skb->len, skb->priority);
4552
4553 /* Stop if priority has changed */
4554 if (skb->priority < priority)
4555 break;
4556
4557 skb = skb_dequeue(&chan->data_q);
4558
4559 blocks = __get_blocks(hdev, skb);
4560 if (blocks > hdev->block_cnt)
4561 return;
4562
4563 hci_conn_enter_active_mode(chan->conn,
4564 bt_cb(skb)->force_active);
4565
4566 hci_send_frame(hdev, skb);
4567 hdev->acl_last_tx = jiffies;
4568
4569 hdev->block_cnt -= blocks;
4570 quote -= blocks;
4571
4572 chan->sent += blocks;
4573 chan->conn->sent += blocks;
4574 }
4575 }
4576
4577 if (cnt != hdev->block_cnt)
4578 hci_prio_recalculate(hdev, type);
4579}
4580
4581static void hci_sched_acl(struct hci_dev *hdev)
4582{
4583 BT_DBG("%s", hdev->name);
4584
4585 /* No ACL link over BR/EDR controller */
4586 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4587 return;
4588
4589 /* No AMP link over AMP controller */
4590 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4591 return;
4592
4593 switch (hdev->flow_ctl_mode) {
4594 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4595 hci_sched_acl_pkt(hdev);
4596 break;
4597
4598 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4599 hci_sched_acl_blk(hdev);
4600 break;
4601 }
4602}
4603
4604static void hci_sched_le(struct hci_dev *hdev)
4605{
4606 struct hci_chan *chan;
4607 struct sk_buff *skb;
4608 int quote, cnt, tmp;
4609
4610 BT_DBG("%s", hdev->name);
4611
4612 if (!hci_conn_num(hdev, LE_LINK))
4613 return;
4614
4615 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4616
4617 __check_timeout(hdev, cnt);
4618
4619 tmp = cnt;
4620 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4621 u32 priority = (skb_peek(&chan->data_q))->priority;
4622 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4623 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624 skb->len, skb->priority);
4625
4626 /* Stop if priority has changed */
4627 if (skb->priority < priority)
4628 break;
4629
4630 skb = skb_dequeue(&chan->data_q);
4631
4632 hci_send_frame(hdev, skb);
4633 hdev->le_last_tx = jiffies;
4634
4635 cnt--;
4636 chan->sent++;
4637 chan->conn->sent++;
4638
4639 /* Send pending SCO packets right away */
4640 hci_sched_sco(hdev);
4641 hci_sched_esco(hdev);
4642 }
4643 }
4644
4645 if (hdev->le_pkts)
4646 hdev->le_cnt = cnt;
4647 else
4648 hdev->acl_cnt = cnt;
4649
4650 if (cnt != tmp)
4651 hci_prio_recalculate(hdev, LE_LINK);
4652}
4653
4654static void hci_tx_work(struct work_struct *work)
4655{
4656 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4657 struct sk_buff *skb;
4658
4659 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4660 hdev->sco_cnt, hdev->le_cnt);
4661
4662 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4663 /* Schedule queues and send stuff to HCI driver */
4664 hci_sched_sco(hdev);
4665 hci_sched_esco(hdev);
4666 hci_sched_acl(hdev);
4667 hci_sched_le(hdev);
4668 }
4669
4670 /* Send next queued raw (unknown type) packet */
4671 while ((skb = skb_dequeue(&hdev->raw_q)))
4672 hci_send_frame(hdev, skb);
4673}
4674
4675/* ----- HCI RX task (incoming data processing) ----- */
4676
4677/* ACL data packet */
4678static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4679{
4680 struct hci_acl_hdr *hdr = (void *) skb->data;
4681 struct hci_conn *conn;
4682 __u16 handle, flags;
4683
4684 skb_pull(skb, HCI_ACL_HDR_SIZE);
4685
4686 handle = __le16_to_cpu(hdr->handle);
4687 flags = hci_flags(handle);
4688 handle = hci_handle(handle);
4689
4690 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4691 handle, flags);
4692
4693 hdev->stat.acl_rx++;
4694
4695 hci_dev_lock(hdev);
4696 conn = hci_conn_hash_lookup_handle(hdev, handle);
4697 hci_dev_unlock(hdev);
4698
4699 if (conn) {
4700 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4701
4702 /* Send to upper protocol */
4703 l2cap_recv_acldata(conn, skb, flags);
4704 return;
4705 } else {
4706 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4707 handle);
4708 }
4709
4710 kfree_skb(skb);
4711}
4712
4713/* SCO data packet */
4714static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4715{
4716 struct hci_sco_hdr *hdr = (void *) skb->data;
4717 struct hci_conn *conn;
4718 __u16 handle, flags;
4719
4720 skb_pull(skb, HCI_SCO_HDR_SIZE);
4721
4722 handle = __le16_to_cpu(hdr->handle);
4723 flags = hci_flags(handle);
4724 handle = hci_handle(handle);
4725
4726 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4727 handle, flags);
4728
4729 hdev->stat.sco_rx++;
4730
4731 hci_dev_lock(hdev);
4732 conn = hci_conn_hash_lookup_handle(hdev, handle);
4733 hci_dev_unlock(hdev);
4734
4735 if (conn) {
4736 /* Send to upper protocol */
4737 bt_cb(skb)->sco.pkt_status = flags & 0x03;
4738 sco_recv_scodata(conn, skb);
4739 return;
4740 } else {
4741 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4742 handle);
4743 }
4744
4745 kfree_skb(skb);
4746}
4747
4748static bool hci_req_is_complete(struct hci_dev *hdev)
4749{
4750 struct sk_buff *skb;
4751
4752 skb = skb_peek(&hdev->cmd_q);
4753 if (!skb)
4754 return true;
4755
4756 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4757}
4758
4759static void hci_resend_last(struct hci_dev *hdev)
4760{
4761 struct hci_command_hdr *sent;
4762 struct sk_buff *skb;
4763 u16 opcode;
4764
4765 if (!hdev->sent_cmd)
4766 return;
4767
4768 sent = (void *) hdev->sent_cmd->data;
4769 opcode = __le16_to_cpu(sent->opcode);
4770 if (opcode == HCI_OP_RESET)
4771 return;
4772
4773 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4774 if (!skb)
4775 return;
4776
4777 skb_queue_head(&hdev->cmd_q, skb);
4778 queue_work(hdev->workqueue, &hdev->cmd_work);
4779}
4780
4781void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4782 hci_req_complete_t *req_complete,
4783 hci_req_complete_skb_t *req_complete_skb)
4784{
4785 struct sk_buff *skb;
4786 unsigned long flags;
4787
4788 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4789
4790 /* If the completed command doesn't match the last one that was
4791 * sent we need to do special handling of it.
4792 */
4793 if (!hci_sent_cmd_data(hdev, opcode)) {
4794 /* Some CSR based controllers generate a spontaneous
4795 * reset complete event during init and any pending
4796 * command will never be completed. In such a case we
4797 * need to resend whatever was the last sent
4798 * command.
4799 */
4800 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4801 hci_resend_last(hdev);
4802
4803 return;
4804 }
4805
4806 /* If we reach this point this event matches the last command sent */
4807 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4808
4809 /* If the command succeeded and there's still more commands in
4810 * this request the request is not yet complete.
4811 */
4812 if (!status && !hci_req_is_complete(hdev))
4813 return;
4814
4815 /* If this was the last command in a request the complete
4816 * callback would be found in hdev->sent_cmd instead of the
4817 * command queue (hdev->cmd_q).
4818 */
4819 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4820 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4821 return;
4822 }
4823
4824 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4825 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4826 return;
4827 }
4828
4829 /* Remove all pending commands belonging to this request */
4830 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4831 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4832 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4833 __skb_queue_head(&hdev->cmd_q, skb);
4834 break;
4835 }
4836
4837 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4838 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4839 else
4840 *req_complete = bt_cb(skb)->hci.req_complete;
4841 kfree_skb(skb);
4842 }
4843 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4844}
4845
4846static void hci_rx_work(struct work_struct *work)
4847{
4848 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4849 struct sk_buff *skb;
4850
4851 BT_DBG("%s", hdev->name);
4852
4853 while ((skb = skb_dequeue(&hdev->rx_q))) {
4854 /* Send copy to monitor */
4855 hci_send_to_monitor(hdev, skb);
4856
4857 if (atomic_read(&hdev->promisc)) {
4858 /* Send copy to the sockets */
4859 hci_send_to_sock(hdev, skb);
4860 }
4861
4862 /* If the device has been opened in HCI_USER_CHANNEL,
4863 * the userspace has exclusive access to device.
4864 * When device is HCI_INIT, we still need to process
4865 * the data packets to the driver in order
4866 * to complete its setup().
4867 */
4868 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4869 !test_bit(HCI_INIT, &hdev->flags)) {
4870 kfree_skb(skb);
4871 continue;
4872 }
4873
4874 if (test_bit(HCI_INIT, &hdev->flags)) {
4875 /* Don't process data packets in this states. */
4876 switch (hci_skb_pkt_type(skb)) {
4877 case HCI_ACLDATA_PKT:
4878 case HCI_SCODATA_PKT:
4879 case HCI_ISODATA_PKT:
4880 kfree_skb(skb);
4881 continue;
4882 }
4883 }
4884
4885 /* Process frame */
4886 switch (hci_skb_pkt_type(skb)) {
4887 case HCI_EVENT_PKT:
4888 BT_DBG("%s Event packet", hdev->name);
4889 hci_event_packet(hdev, skb);
4890 break;
4891
4892 case HCI_ACLDATA_PKT:
4893 BT_DBG("%s ACL data packet", hdev->name);
4894 hci_acldata_packet(hdev, skb);
4895 break;
4896
4897 case HCI_SCODATA_PKT:
4898 BT_DBG("%s SCO data packet", hdev->name);
4899 hci_scodata_packet(hdev, skb);
4900 break;
4901
4902 default:
4903 kfree_skb(skb);
4904 break;
4905 }
4906 }
4907}
4908
4909static void hci_cmd_work(struct work_struct *work)
4910{
4911 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4912 struct sk_buff *skb;
4913
4914 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4915 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4916
4917 /* Send queued commands */
4918 if (atomic_read(&hdev->cmd_cnt)) {
4919 skb = skb_dequeue(&hdev->cmd_q);
4920 if (!skb)
4921 return;
4922
4923 kfree_skb(hdev->sent_cmd);
4924
4925 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4926 if (hdev->sent_cmd) {
4927 if (hci_req_status_pend(hdev))
4928 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4929 atomic_dec(&hdev->cmd_cnt);
4930 hci_send_frame(hdev, skb);
4931 if (test_bit(HCI_RESET, &hdev->flags))
4932 cancel_delayed_work(&hdev->cmd_timer);
4933 else
4934 schedule_delayed_work(&hdev->cmd_timer,
4935 HCI_CMD_TIMEOUT);
4936 } else {
4937 skb_queue_head(&hdev->cmd_q, skb);
4938 queue_work(hdev->workqueue, &hdev->cmd_work);
4939 }
4940 }
4941}