Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <linux/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
 
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47#include "aosp.h"
  48#include "hci_codec.h"
  49
  50static void hci_rx_work(struct work_struct *work);
  51static void hci_cmd_work(struct work_struct *work);
  52static void hci_tx_work(struct work_struct *work);
  53
  54/* HCI device list */
  55LIST_HEAD(hci_dev_list);
  56DEFINE_RWLOCK(hci_dev_list_lock);
  57
  58/* HCI callback list */
  59LIST_HEAD(hci_cb_list);
 
  60
  61/* HCI ID Numbering */
  62static DEFINE_IDA(hci_index_ida);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64/* Get HCI device by index.
  65 * Device is held on return. */
  66struct hci_dev *hci_dev_get(int index)
  67{
  68	struct hci_dev *hdev = NULL, *d;
  69
  70	BT_DBG("%d", index);
  71
  72	if (index < 0)
  73		return NULL;
  74
  75	read_lock(&hci_dev_list_lock);
  76	list_for_each_entry(d, &hci_dev_list, list) {
  77		if (d->id == index) {
  78			hdev = hci_dev_hold(d);
  79			break;
  80		}
  81	}
  82	read_unlock(&hci_dev_list_lock);
  83	return hdev;
  84}
  85
  86/* ---- Inquiry support ---- */
  87
  88bool hci_discovery_active(struct hci_dev *hdev)
  89{
  90	struct discovery_state *discov = &hdev->discovery;
  91
  92	switch (discov->state) {
  93	case DISCOVERY_FINDING:
  94	case DISCOVERY_RESOLVING:
  95		return true;
  96
  97	default:
  98		return false;
  99	}
 100}
 101
 102void hci_discovery_set_state(struct hci_dev *hdev, int state)
 103{
 104	int old_state = hdev->discovery.state;
 105
 
 
 106	if (old_state == state)
 107		return;
 108
 109	hdev->discovery.state = state;
 110
 111	switch (state) {
 112	case DISCOVERY_STOPPED:
 113		hci_update_passive_scan(hdev);
 114
 115		if (old_state != DISCOVERY_STARTING)
 116			mgmt_discovering(hdev, 0);
 117		break;
 118	case DISCOVERY_STARTING:
 119		break;
 120	case DISCOVERY_FINDING:
 121		mgmt_discovering(hdev, 1);
 122		break;
 123	case DISCOVERY_RESOLVING:
 124		break;
 125	case DISCOVERY_STOPPING:
 126		break;
 127	}
 128
 129	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
 130}
 131
 132void hci_inquiry_cache_flush(struct hci_dev *hdev)
 133{
 134	struct discovery_state *cache = &hdev->discovery;
 135	struct inquiry_entry *p, *n;
 136
 137	list_for_each_entry_safe(p, n, &cache->all, all) {
 138		list_del(&p->all);
 139		kfree(p);
 140	}
 141
 142	INIT_LIST_HEAD(&cache->unknown);
 143	INIT_LIST_HEAD(&cache->resolve);
 144}
 145
 146struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 147					       bdaddr_t *bdaddr)
 148{
 149	struct discovery_state *cache = &hdev->discovery;
 150	struct inquiry_entry *e;
 151
 152	BT_DBG("cache %p, %pMR", cache, bdaddr);
 153
 154	list_for_each_entry(e, &cache->all, all) {
 155		if (!bacmp(&e->data.bdaddr, bdaddr))
 156			return e;
 157	}
 158
 159	return NULL;
 160}
 161
 162struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 163						       bdaddr_t *bdaddr)
 164{
 165	struct discovery_state *cache = &hdev->discovery;
 166	struct inquiry_entry *e;
 167
 168	BT_DBG("cache %p, %pMR", cache, bdaddr);
 169
 170	list_for_each_entry(e, &cache->unknown, list) {
 171		if (!bacmp(&e->data.bdaddr, bdaddr))
 172			return e;
 173	}
 174
 175	return NULL;
 176}
 177
 178struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 179						       bdaddr_t *bdaddr,
 180						       int state)
 181{
 182	struct discovery_state *cache = &hdev->discovery;
 183	struct inquiry_entry *e;
 184
 185	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 186
 187	list_for_each_entry(e, &cache->resolve, list) {
 188		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 189			return e;
 190		if (!bacmp(&e->data.bdaddr, bdaddr))
 191			return e;
 192	}
 193
 194	return NULL;
 195}
 196
 197void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 198				      struct inquiry_entry *ie)
 199{
 200	struct discovery_state *cache = &hdev->discovery;
 201	struct list_head *pos = &cache->resolve;
 202	struct inquiry_entry *p;
 203
 204	list_del(&ie->list);
 205
 206	list_for_each_entry(p, &cache->resolve, list) {
 207		if (p->name_state != NAME_PENDING &&
 208		    abs(p->data.rssi) >= abs(ie->data.rssi))
 209			break;
 210		pos = &p->list;
 211	}
 212
 213	list_add(&ie->list, pos);
 214}
 215
 216u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 217			     bool name_known)
 218{
 219	struct discovery_state *cache = &hdev->discovery;
 220	struct inquiry_entry *ie;
 221	u32 flags = 0;
 222
 223	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 224
 225	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 226
 227	if (!data->ssp_mode)
 228		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 229
 230	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 231	if (ie) {
 232		if (!ie->data.ssp_mode)
 233			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 234
 235		if (ie->name_state == NAME_NEEDED &&
 236		    data->rssi != ie->data.rssi) {
 237			ie->data.rssi = data->rssi;
 238			hci_inquiry_cache_update_resolve(hdev, ie);
 239		}
 240
 241		goto update;
 242	}
 243
 244	/* Entry not in the cache. Add new one. */
 245	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 246	if (!ie) {
 247		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 248		goto done;
 249	}
 250
 251	list_add(&ie->all, &cache->all);
 252
 253	if (name_known) {
 254		ie->name_state = NAME_KNOWN;
 255	} else {
 256		ie->name_state = NAME_NOT_KNOWN;
 257		list_add(&ie->list, &cache->unknown);
 258	}
 259
 260update:
 261	if (name_known && ie->name_state != NAME_KNOWN &&
 262	    ie->name_state != NAME_PENDING) {
 263		ie->name_state = NAME_KNOWN;
 264		list_del(&ie->list);
 265	}
 266
 267	memcpy(&ie->data, data, sizeof(*data));
 268	ie->timestamp = jiffies;
 269	cache->timestamp = jiffies;
 270
 271	if (ie->name_state == NAME_NOT_KNOWN)
 272		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 273
 274done:
 275	return flags;
 276}
 277
 278static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 279{
 280	struct discovery_state *cache = &hdev->discovery;
 281	struct inquiry_info *info = (struct inquiry_info *) buf;
 282	struct inquiry_entry *e;
 283	int copied = 0;
 284
 285	list_for_each_entry(e, &cache->all, all) {
 286		struct inquiry_data *data = &e->data;
 287
 288		if (copied >= num)
 289			break;
 290
 291		bacpy(&info->bdaddr, &data->bdaddr);
 292		info->pscan_rep_mode	= data->pscan_rep_mode;
 293		info->pscan_period_mode	= data->pscan_period_mode;
 294		info->pscan_mode	= data->pscan_mode;
 295		memcpy(info->dev_class, data->dev_class, 3);
 296		info->clock_offset	= data->clock_offset;
 297
 298		info++;
 299		copied++;
 300	}
 301
 302	BT_DBG("cache %p, copied %d", cache, copied);
 303	return copied;
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306int hci_inquiry(void __user *arg)
 307{
 308	__u8 __user *ptr = arg;
 309	struct hci_inquiry_req ir;
 310	struct hci_dev *hdev;
 311	int err = 0, do_inquiry = 0, max_rsp;
 
 312	__u8 *buf;
 313
 314	if (copy_from_user(&ir, ptr, sizeof(ir)))
 315		return -EFAULT;
 316
 317	hdev = hci_dev_get(ir.dev_id);
 318	if (!hdev)
 319		return -ENODEV;
 320
 321	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 322		err = -EBUSY;
 323		goto done;
 324	}
 325
 326	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 327		err = -EOPNOTSUPP;
 328		goto done;
 329	}
 330
 331	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 332		err = -EOPNOTSUPP;
 333		goto done;
 334	}
 335
 336	/* Restrict maximum inquiry length to 60 seconds */
 337	if (ir.length > 60) {
 338		err = -EINVAL;
 339		goto done;
 340	}
 341
 342	hci_dev_lock(hdev);
 343	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 344	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 345		hci_inquiry_cache_flush(hdev);
 346		do_inquiry = 1;
 347	}
 348	hci_dev_unlock(hdev);
 349
 350	if (do_inquiry) {
 351		hci_req_sync_lock(hdev);
 352		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
 353		hci_req_sync_unlock(hdev);
 354
 
 
 
 355		if (err < 0)
 356			goto done;
 357
 358		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 359		 * cleared). If it is interrupted by a signal, return -EINTR.
 360		 */
 361		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 362				TASK_INTERRUPTIBLE)) {
 363			err = -EINTR;
 364			goto done;
 365		}
 366	}
 367
 368	/* for unlimited number of responses we will use buffer with
 369	 * 255 entries
 370	 */
 371	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 372
 373	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 374	 * copy it to the user space.
 375	 */
 376	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 377	if (!buf) {
 378		err = -ENOMEM;
 379		goto done;
 380	}
 381
 382	hci_dev_lock(hdev);
 383	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 384	hci_dev_unlock(hdev);
 385
 386	BT_DBG("num_rsp %d", ir.num_rsp);
 387
 388	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 389		ptr += sizeof(ir);
 390		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 391				 ir.num_rsp))
 392			err = -EFAULT;
 393	} else
 394		err = -EFAULT;
 395
 396	kfree(buf);
 397
 398done:
 399	hci_dev_put(hdev);
 400	return err;
 401}
 402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403static int hci_dev_do_open(struct hci_dev *hdev)
 404{
 405	int ret = 0;
 406
 407	BT_DBG("%s %p", hdev->name, hdev);
 408
 409	hci_req_sync_lock(hdev);
 410
 411	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413	hci_req_sync_unlock(hdev);
 414	return ret;
 415}
 416
 417/* ---- HCI ioctl helpers ---- */
 418
 419int hci_dev_open(__u16 dev)
 420{
 421	struct hci_dev *hdev;
 422	int err;
 423
 424	hdev = hci_dev_get(dev);
 425	if (!hdev)
 426		return -ENODEV;
 427
 428	/* Devices that are marked as unconfigured can only be powered
 429	 * up as user channel. Trying to bring them up as normal devices
 430	 * will result into a failure. Only user channel operation is
 431	 * possible.
 432	 *
 433	 * When this function is called for a user channel, the flag
 434	 * HCI_USER_CHANNEL will be set first before attempting to
 435	 * open the device.
 436	 */
 437	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 438	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 439		err = -EOPNOTSUPP;
 440		goto done;
 441	}
 442
 443	/* We need to ensure that no other power on/off work is pending
 444	 * before proceeding to call hci_dev_do_open. This is
 445	 * particularly important if the setup procedure has not yet
 446	 * completed.
 447	 */
 448	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 449		cancel_delayed_work(&hdev->power_off);
 450
 451	/* After this call it is guaranteed that the setup procedure
 452	 * has finished. This means that error conditions like RFKILL
 453	 * or no valid public or static random address apply.
 454	 */
 455	flush_workqueue(hdev->req_workqueue);
 456
 457	/* For controllers not using the management interface and that
 458	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 459	 * so that pairing works for them. Once the management interface
 460	 * is in use this bit will be cleared again and userspace has
 461	 * to explicitly enable it.
 462	 */
 463	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 464	    !hci_dev_test_flag(hdev, HCI_MGMT))
 465		hci_dev_set_flag(hdev, HCI_BONDABLE);
 466
 467	err = hci_dev_do_open(hdev);
 468
 469done:
 470	hci_dev_put(hdev);
 471	return err;
 472}
 473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474int hci_dev_do_close(struct hci_dev *hdev)
 475{
 476	int err;
 477
 478	BT_DBG("%s %p", hdev->name, hdev);
 479
 
 
 
 
 
 
 
 
 
 
 
 480	hci_req_sync_lock(hdev);
 481
 482	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483
 484	hci_req_sync_unlock(hdev);
 485
 486	return err;
 
 487}
 488
 489int hci_dev_close(__u16 dev)
 490{
 491	struct hci_dev *hdev;
 492	int err;
 493
 494	hdev = hci_dev_get(dev);
 495	if (!hdev)
 496		return -ENODEV;
 497
 498	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 499		err = -EBUSY;
 500		goto done;
 501	}
 502
 503	cancel_work_sync(&hdev->power_on);
 504	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 505		cancel_delayed_work(&hdev->power_off);
 506
 507	err = hci_dev_do_close(hdev);
 508
 509done:
 510	hci_dev_put(hdev);
 511	return err;
 512}
 513
 514static int hci_dev_do_reset(struct hci_dev *hdev)
 515{
 516	int ret;
 517
 518	BT_DBG("%s %p", hdev->name, hdev);
 519
 520	hci_req_sync_lock(hdev);
 521
 522	/* Drop queues */
 523	skb_queue_purge(&hdev->rx_q);
 524	skb_queue_purge(&hdev->cmd_q);
 525
 526	/* Cancel these to avoid queueing non-chained pending work */
 527	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 528	/* Wait for
 529	 *
 530	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 531	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 532	 *
 533	 * inside RCU section to see the flag or complete scheduling.
 534	 */
 535	synchronize_rcu();
 536	/* Explicitly cancel works in case scheduled after setting the flag. */
 537	cancel_delayed_work(&hdev->cmd_timer);
 538	cancel_delayed_work(&hdev->ncmd_timer);
 539
 540	/* Avoid potential lockdep warnings from the *_flush() calls by
 541	 * ensuring the workqueue is empty up front.
 542	 */
 543	drain_workqueue(hdev->workqueue);
 544
 545	hci_dev_lock(hdev);
 546	hci_inquiry_cache_flush(hdev);
 547	hci_conn_hash_flush(hdev);
 548	hci_dev_unlock(hdev);
 549
 550	if (hdev->flush)
 551		hdev->flush(hdev);
 552
 553	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 554
 555	atomic_set(&hdev->cmd_cnt, 1);
 556	hdev->acl_cnt = 0;
 557	hdev->sco_cnt = 0;
 558	hdev->le_cnt = 0;
 559	hdev->iso_cnt = 0;
 560
 561	ret = hci_reset_sync(hdev);
 562
 563	hci_req_sync_unlock(hdev);
 564	return ret;
 565}
 566
 567int hci_dev_reset(__u16 dev)
 568{
 569	struct hci_dev *hdev;
 570	int err;
 571
 572	hdev = hci_dev_get(dev);
 573	if (!hdev)
 574		return -ENODEV;
 575
 576	if (!test_bit(HCI_UP, &hdev->flags)) {
 577		err = -ENETDOWN;
 578		goto done;
 579	}
 580
 581	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 582		err = -EBUSY;
 583		goto done;
 584	}
 585
 586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 587		err = -EOPNOTSUPP;
 588		goto done;
 589	}
 590
 591	err = hci_dev_do_reset(hdev);
 592
 593done:
 594	hci_dev_put(hdev);
 595	return err;
 596}
 597
 598int hci_dev_reset_stat(__u16 dev)
 599{
 600	struct hci_dev *hdev;
 601	int ret = 0;
 602
 603	hdev = hci_dev_get(dev);
 604	if (!hdev)
 605		return -ENODEV;
 606
 607	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 608		ret = -EBUSY;
 609		goto done;
 610	}
 611
 612	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 613		ret = -EOPNOTSUPP;
 614		goto done;
 615	}
 616
 617	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 618
 619done:
 620	hci_dev_put(hdev);
 621	return ret;
 622}
 623
 624static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 625{
 626	bool conn_changed, discov_changed;
 627
 628	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 629
 630	if ((scan & SCAN_PAGE))
 631		conn_changed = !hci_dev_test_and_set_flag(hdev,
 632							  HCI_CONNECTABLE);
 633	else
 634		conn_changed = hci_dev_test_and_clear_flag(hdev,
 635							   HCI_CONNECTABLE);
 636
 637	if ((scan & SCAN_INQUIRY)) {
 638		discov_changed = !hci_dev_test_and_set_flag(hdev,
 639							    HCI_DISCOVERABLE);
 640	} else {
 641		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 642		discov_changed = hci_dev_test_and_clear_flag(hdev,
 643							     HCI_DISCOVERABLE);
 644	}
 645
 646	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 647		return;
 648
 649	if (conn_changed || discov_changed) {
 650		/* In case this was disabled through mgmt */
 651		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 652
 653		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 654			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 655
 656		mgmt_new_settings(hdev);
 657	}
 658}
 659
 660int hci_dev_cmd(unsigned int cmd, void __user *arg)
 661{
 662	struct hci_dev *hdev;
 663	struct hci_dev_req dr;
 664	__le16 policy;
 665	int err = 0;
 666
 667	if (copy_from_user(&dr, arg, sizeof(dr)))
 668		return -EFAULT;
 669
 670	hdev = hci_dev_get(dr.dev_id);
 671	if (!hdev)
 672		return -ENODEV;
 673
 674	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 675		err = -EBUSY;
 676		goto done;
 677	}
 678
 679	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 680		err = -EOPNOTSUPP;
 681		goto done;
 682	}
 683
 
 
 
 
 
 684	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 685		err = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	switch (cmd) {
 690	case HCISETAUTH:
 691		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
 692					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 693		break;
 694
 695	case HCISETENCRYPT:
 696		if (!lmp_encrypt_capable(hdev)) {
 697			err = -EOPNOTSUPP;
 698			break;
 699		}
 700
 701		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 702			/* Auth must be enabled first */
 703			err = hci_cmd_sync_status(hdev,
 704						  HCI_OP_WRITE_AUTH_ENABLE,
 705						  1, &dr.dev_opt,
 706						  HCI_CMD_TIMEOUT);
 707			if (err)
 708				break;
 709		}
 710
 711		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
 712					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 713		break;
 714
 715	case HCISETSCAN:
 716		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
 717					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 718
 719		/* Ensure that the connectable and discoverable states
 720		 * get correctly modified as this was a non-mgmt change.
 721		 */
 722		if (!err)
 723			hci_update_passive_scan_state(hdev, dr.dev_opt);
 724		break;
 725
 726	case HCISETLINKPOL:
 727		policy = cpu_to_le16(dr.dev_opt);
 728
 729		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
 730					  2, &policy, HCI_CMD_TIMEOUT);
 731		break;
 732
 733	case HCISETLINKMODE:
 734		hdev->link_mode = ((__u16) dr.dev_opt) &
 735					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 736		break;
 737
 738	case HCISETPTYPE:
 739		if (hdev->pkt_type == (__u16) dr.dev_opt)
 740			break;
 741
 742		hdev->pkt_type = (__u16) dr.dev_opt;
 743		mgmt_phy_configuration_changed(hdev, NULL);
 744		break;
 745
 746	case HCISETACLMTU:
 747		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 748		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 749		break;
 750
 751	case HCISETSCOMTU:
 752		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 753		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 754		break;
 755
 756	default:
 757		err = -EINVAL;
 758		break;
 759	}
 760
 761done:
 762	hci_dev_put(hdev);
 763	return err;
 764}
 765
 766int hci_get_dev_list(void __user *arg)
 767{
 768	struct hci_dev *hdev;
 769	struct hci_dev_list_req *dl;
 770	struct hci_dev_req *dr;
 771	int n = 0, err;
 772	__u16 dev_num;
 773
 774	if (get_user(dev_num, (__u16 __user *) arg))
 775		return -EFAULT;
 776
 777	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 778		return -EINVAL;
 779
 780	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
 
 
 781	if (!dl)
 782		return -ENOMEM;
 783
 784	dl->dev_num = dev_num;
 785	dr = dl->dev_req;
 786
 787	read_lock(&hci_dev_list_lock);
 788	list_for_each_entry(hdev, &hci_dev_list, list) {
 789		unsigned long flags = hdev->flags;
 790
 791		/* When the auto-off is configured it means the transport
 792		 * is running, but in that case still indicate that the
 793		 * device is actually down.
 794		 */
 795		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 796			flags &= ~BIT(HCI_UP);
 797
 798		dr[n].dev_id  = hdev->id;
 799		dr[n].dev_opt = flags;
 800
 801		if (++n >= dev_num)
 802			break;
 803	}
 804	read_unlock(&hci_dev_list_lock);
 805
 806	dl->dev_num = n;
 807	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
 
 
 808	kfree(dl);
 809
 810	return err ? -EFAULT : 0;
 811}
 812
 813int hci_get_dev_info(void __user *arg)
 814{
 815	struct hci_dev *hdev;
 816	struct hci_dev_info di;
 817	unsigned long flags;
 818	int err = 0;
 819
 820	if (copy_from_user(&di, arg, sizeof(di)))
 821		return -EFAULT;
 822
 823	hdev = hci_dev_get(di.dev_id);
 824	if (!hdev)
 825		return -ENODEV;
 826
 827	/* When the auto-off is configured it means the transport
 828	 * is running, but in that case still indicate that the
 829	 * device is actually down.
 830	 */
 831	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 832		flags = hdev->flags & ~BIT(HCI_UP);
 833	else
 834		flags = hdev->flags;
 835
 836	strscpy(di.name, hdev->name, sizeof(di.name));
 837	di.bdaddr   = hdev->bdaddr;
 838	di.type     = (hdev->bus & 0x0f);
 839	di.flags    = flags;
 840	di.pkt_type = hdev->pkt_type;
 841	if (lmp_bredr_capable(hdev)) {
 842		di.acl_mtu  = hdev->acl_mtu;
 843		di.acl_pkts = hdev->acl_pkts;
 844		di.sco_mtu  = hdev->sco_mtu;
 845		di.sco_pkts = hdev->sco_pkts;
 846	} else {
 847		di.acl_mtu  = hdev->le_mtu;
 848		di.acl_pkts = hdev->le_pkts;
 849		di.sco_mtu  = 0;
 850		di.sco_pkts = 0;
 851	}
 852	di.link_policy = hdev->link_policy;
 853	di.link_mode   = hdev->link_mode;
 854
 855	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 856	memcpy(&di.features, &hdev->features, sizeof(di.features));
 857
 858	if (copy_to_user(arg, &di, sizeof(di)))
 859		err = -EFAULT;
 860
 861	hci_dev_put(hdev);
 862
 863	return err;
 864}
 865
 866/* ---- Interface to HCI drivers ---- */
 867
 868static int hci_dev_do_poweroff(struct hci_dev *hdev)
 869{
 870	int err;
 871
 872	BT_DBG("%s %p", hdev->name, hdev);
 873
 874	hci_req_sync_lock(hdev);
 875
 876	err = hci_set_powered_sync(hdev, false);
 877
 878	hci_req_sync_unlock(hdev);
 879
 880	return err;
 881}
 882
 883static int hci_rfkill_set_block(void *data, bool blocked)
 884{
 885	struct hci_dev *hdev = data;
 886	int err;
 887
 888	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 889
 890	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 891		return -EBUSY;
 892
 893	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
 894		return 0;
 895
 896	if (blocked) {
 897		hci_dev_set_flag(hdev, HCI_RFKILLED);
 898
 899		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 900		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 901			err = hci_dev_do_poweroff(hdev);
 902			if (err) {
 903				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
 904					   err);
 905
 906				/* Make sure the device is still closed even if
 907				 * anything during power off sequence (eg.
 908				 * disconnecting devices) failed.
 909				 */
 910				hci_dev_do_close(hdev);
 911			}
 912		}
 913	} else {
 914		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 915	}
 916
 917	return 0;
 918}
 919
 920static const struct rfkill_ops hci_rfkill_ops = {
 921	.set_block = hci_rfkill_set_block,
 922};
 923
 924static void hci_power_on(struct work_struct *work)
 925{
 926	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 927	int err;
 928
 929	BT_DBG("%s", hdev->name);
 930
 931	if (test_bit(HCI_UP, &hdev->flags) &&
 932	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 933	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 934		cancel_delayed_work(&hdev->power_off);
 935		err = hci_powered_update_sync(hdev);
 
 
 936		mgmt_power_on(hdev, err);
 937		return;
 938	}
 939
 940	err = hci_dev_do_open(hdev);
 941	if (err < 0) {
 942		hci_dev_lock(hdev);
 943		mgmt_set_powered_failed(hdev, err);
 944		hci_dev_unlock(hdev);
 945		return;
 946	}
 947
 948	/* During the HCI setup phase, a few error conditions are
 949	 * ignored and they need to be checked now. If they are still
 950	 * valid, it is important to turn the device back off.
 951	 */
 952	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 953	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 954	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 
 955	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
 956		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
 957		hci_dev_do_close(hdev);
 958	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
 959		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
 960				   HCI_AUTO_OFF_TIMEOUT);
 961	}
 962
 963	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
 964		/* For unconfigured devices, set the HCI_RAW flag
 965		 * so that userspace can easily identify them.
 966		 */
 967		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 968			set_bit(HCI_RAW, &hdev->flags);
 969
 970		/* For fully configured devices, this will send
 971		 * the Index Added event. For unconfigured devices,
 972		 * it will send Unconfigued Index Added event.
 973		 *
 974		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
 975		 * and no event will be send.
 976		 */
 977		mgmt_index_added(hdev);
 978	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
 979		/* When the controller is now configured, then it
 980		 * is important to clear the HCI_RAW flag.
 981		 */
 982		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 983			clear_bit(HCI_RAW, &hdev->flags);
 984
 985		/* Powering on the controller with HCI_CONFIG set only
 986		 * happens with the transition from unconfigured to
 987		 * configured. This will send the Index Added event.
 988		 */
 989		mgmt_index_added(hdev);
 990	}
 991}
 992
 993static void hci_power_off(struct work_struct *work)
 994{
 995	struct hci_dev *hdev = container_of(work, struct hci_dev,
 996					    power_off.work);
 997
 998	BT_DBG("%s", hdev->name);
 999
1000	hci_dev_do_close(hdev);
1001}
1002
1003static void hci_error_reset(struct work_struct *work)
1004{
1005	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006
1007	hci_dev_hold(hdev);
1008	BT_DBG("%s", hdev->name);
1009
1010	if (hdev->hw_error)
1011		hdev->hw_error(hdev, hdev->hw_error_code);
1012	else
1013		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1014
1015	if (!hci_dev_do_close(hdev))
1016		hci_dev_do_open(hdev);
1017
1018	hci_dev_put(hdev);
1019}
1020
1021void hci_uuids_clear(struct hci_dev *hdev)
1022{
1023	struct bt_uuid *uuid, *tmp;
1024
1025	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026		list_del(&uuid->list);
1027		kfree(uuid);
1028	}
1029}
1030
1031void hci_link_keys_clear(struct hci_dev *hdev)
1032{
1033	struct link_key *key, *tmp;
1034
1035	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036		list_del_rcu(&key->list);
1037		kfree_rcu(key, rcu);
1038	}
1039}
1040
1041void hci_smp_ltks_clear(struct hci_dev *hdev)
1042{
1043	struct smp_ltk *k, *tmp;
1044
1045	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046		list_del_rcu(&k->list);
1047		kfree_rcu(k, rcu);
1048	}
1049}
1050
1051void hci_smp_irks_clear(struct hci_dev *hdev)
1052{
1053	struct smp_irk *k, *tmp;
1054
1055	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056		list_del_rcu(&k->list);
1057		kfree_rcu(k, rcu);
1058	}
1059}
1060
1061void hci_blocked_keys_clear(struct hci_dev *hdev)
1062{
1063	struct blocked_key *b, *tmp;
1064
1065	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066		list_del_rcu(&b->list);
1067		kfree_rcu(b, rcu);
1068	}
1069}
1070
1071bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072{
1073	bool blocked = false;
1074	struct blocked_key *b;
1075
1076	rcu_read_lock();
1077	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079			blocked = true;
1080			break;
1081		}
1082	}
1083
1084	rcu_read_unlock();
1085	return blocked;
1086}
1087
1088struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089{
1090	struct link_key *k;
1091
1092	rcu_read_lock();
1093	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095			rcu_read_unlock();
1096
1097			if (hci_is_blocked_key(hdev,
1098					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099					       k->val)) {
1100				bt_dev_warn_ratelimited(hdev,
1101							"Link key blocked for %pMR",
1102							&k->bdaddr);
1103				return NULL;
1104			}
1105
1106			return k;
1107		}
1108	}
1109	rcu_read_unlock();
1110
1111	return NULL;
1112}
1113
1114static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115			       u8 key_type, u8 old_key_type)
1116{
1117	/* Legacy key */
1118	if (key_type < 0x03)
1119		return true;
1120
1121	/* Debug keys are insecure so don't store them persistently */
1122	if (key_type == HCI_LK_DEBUG_COMBINATION)
1123		return false;
1124
1125	/* Changed combination key and there's no previous one */
1126	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127		return false;
1128
1129	/* Security mode 3 case */
1130	if (!conn)
1131		return true;
1132
1133	/* BR/EDR key derived using SC from an LE link */
1134	if (conn->type == LE_LINK)
1135		return true;
1136
1137	/* Neither local nor remote side had no-bonding as requirement */
1138	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139		return true;
1140
1141	/* Local side had dedicated bonding as requirement */
1142	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143		return true;
1144
1145	/* Remote side had dedicated bonding as requirement */
1146	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147		return true;
1148
1149	/* If none of the above criteria match, then don't store the key
1150	 * persistently */
1151	return false;
1152}
1153
1154static u8 ltk_role(u8 type)
1155{
1156	if (type == SMP_LTK)
1157		return HCI_ROLE_MASTER;
1158
1159	return HCI_ROLE_SLAVE;
1160}
1161
1162struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163			     u8 addr_type, u8 role)
1164{
1165	struct smp_ltk *k;
1166
1167	rcu_read_lock();
1168	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170			continue;
1171
1172		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173			rcu_read_unlock();
1174
1175			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176					       k->val)) {
1177				bt_dev_warn_ratelimited(hdev,
1178							"LTK blocked for %pMR",
1179							&k->bdaddr);
1180				return NULL;
1181			}
1182
1183			return k;
1184		}
1185	}
1186	rcu_read_unlock();
1187
1188	return NULL;
1189}
1190
1191struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192{
1193	struct smp_irk *irk_to_return = NULL;
1194	struct smp_irk *irk;
1195
1196	rcu_read_lock();
1197	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198		if (!bacmp(&irk->rpa, rpa)) {
1199			irk_to_return = irk;
1200			goto done;
1201		}
1202	}
1203
1204	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205		if (smp_irk_matches(hdev, irk->val, rpa)) {
1206			bacpy(&irk->rpa, rpa);
1207			irk_to_return = irk;
1208			goto done;
1209		}
1210	}
1211
1212done:
1213	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214						irk_to_return->val)) {
1215		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216					&irk_to_return->bdaddr);
1217		irk_to_return = NULL;
1218	}
1219
1220	rcu_read_unlock();
1221
1222	return irk_to_return;
1223}
1224
1225struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226				     u8 addr_type)
1227{
1228	struct smp_irk *irk_to_return = NULL;
1229	struct smp_irk *irk;
1230
1231	/* Identity Address must be public or static random */
1232	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233		return NULL;
1234
1235	rcu_read_lock();
1236	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237		if (addr_type == irk->addr_type &&
1238		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1239			irk_to_return = irk;
1240			goto done;
1241		}
1242	}
1243
1244done:
1245
1246	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247						irk_to_return->val)) {
1248		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249					&irk_to_return->bdaddr);
1250		irk_to_return = NULL;
1251	}
1252
1253	rcu_read_unlock();
1254
1255	return irk_to_return;
1256}
1257
1258struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259				  bdaddr_t *bdaddr, u8 *val, u8 type,
1260				  u8 pin_len, bool *persistent)
1261{
1262	struct link_key *key, *old_key;
1263	u8 old_key_type;
1264
1265	old_key = hci_find_link_key(hdev, bdaddr);
1266	if (old_key) {
1267		old_key_type = old_key->type;
1268		key = old_key;
1269	} else {
1270		old_key_type = conn ? conn->key_type : 0xff;
1271		key = kzalloc(sizeof(*key), GFP_KERNEL);
1272		if (!key)
1273			return NULL;
1274		list_add_rcu(&key->list, &hdev->link_keys);
1275	}
1276
1277	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278
1279	/* Some buggy controller combinations generate a changed
1280	 * combination key for legacy pairing even when there's no
1281	 * previous key */
1282	if (type == HCI_LK_CHANGED_COMBINATION &&
1283	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284		type = HCI_LK_COMBINATION;
1285		if (conn)
1286			conn->key_type = type;
1287	}
1288
1289	bacpy(&key->bdaddr, bdaddr);
1290	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291	key->pin_len = pin_len;
1292
1293	if (type == HCI_LK_CHANGED_COMBINATION)
1294		key->type = old_key_type;
1295	else
1296		key->type = type;
1297
1298	if (persistent)
1299		*persistent = hci_persistent_key(hdev, conn, type,
1300						 old_key_type);
1301
1302	return key;
1303}
1304
1305struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306			    u8 addr_type, u8 type, u8 authenticated,
1307			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308{
1309	struct smp_ltk *key, *old_key;
1310	u8 role = ltk_role(type);
1311
1312	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313	if (old_key)
1314		key = old_key;
1315	else {
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->long_term_keys);
1320	}
1321
1322	bacpy(&key->bdaddr, bdaddr);
1323	key->bdaddr_type = addr_type;
1324	memcpy(key->val, tk, sizeof(key->val));
1325	key->authenticated = authenticated;
1326	key->ediv = ediv;
1327	key->rand = rand;
1328	key->enc_size = enc_size;
1329	key->type = type;
1330
1331	return key;
1332}
1333
1334struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336{
1337	struct smp_irk *irk;
1338
1339	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340	if (!irk) {
1341		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342		if (!irk)
1343			return NULL;
1344
1345		bacpy(&irk->bdaddr, bdaddr);
1346		irk->addr_type = addr_type;
1347
1348		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349	}
1350
1351	memcpy(irk->val, val, 16);
1352	bacpy(&irk->rpa, rpa);
1353
1354	return irk;
1355}
1356
1357int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358{
1359	struct link_key *key;
1360
1361	key = hci_find_link_key(hdev, bdaddr);
1362	if (!key)
1363		return -ENOENT;
1364
1365	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366
1367	list_del_rcu(&key->list);
1368	kfree_rcu(key, rcu);
1369
1370	return 0;
1371}
1372
1373int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374{
1375	struct smp_ltk *k, *tmp;
1376	int removed = 0;
1377
1378	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380			continue;
1381
1382		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383
1384		list_del_rcu(&k->list);
1385		kfree_rcu(k, rcu);
1386		removed++;
1387	}
1388
1389	return removed ? 0 : -ENOENT;
1390}
1391
1392void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393{
1394	struct smp_irk *k, *tmp;
1395
1396	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398			continue;
1399
1400		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401
1402		list_del_rcu(&k->list);
1403		kfree_rcu(k, rcu);
1404	}
1405}
1406
1407bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408{
1409	struct smp_ltk *k;
1410	struct smp_irk *irk;
1411	u8 addr_type;
1412
1413	if (type == BDADDR_BREDR) {
1414		if (hci_find_link_key(hdev, bdaddr))
1415			return true;
1416		return false;
1417	}
1418
1419	/* Convert to HCI addr type which struct smp_ltk uses */
1420	if (type == BDADDR_LE_PUBLIC)
1421		addr_type = ADDR_LE_DEV_PUBLIC;
1422	else
1423		addr_type = ADDR_LE_DEV_RANDOM;
1424
1425	irk = hci_get_irk(hdev, bdaddr, addr_type);
1426	if (irk) {
1427		bdaddr = &irk->bdaddr;
1428		addr_type = irk->addr_type;
1429	}
1430
1431	rcu_read_lock();
1432	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434			rcu_read_unlock();
1435			return true;
1436		}
1437	}
1438	rcu_read_unlock();
1439
1440	return false;
1441}
1442
1443/* HCI command timer function */
1444static void hci_cmd_timeout(struct work_struct *work)
1445{
1446	struct hci_dev *hdev = container_of(work, struct hci_dev,
1447					    cmd_timer.work);
1448
1449	if (hdev->req_skb) {
1450		u16 opcode = hci_skb_opcode(hdev->req_skb);
 
1451
1452		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453
1454		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455	} else {
1456		bt_dev_err(hdev, "command tx timeout");
1457	}
1458
1459	if (hdev->cmd_timeout)
1460		hdev->cmd_timeout(hdev);
1461
1462	atomic_set(&hdev->cmd_cnt, 1);
1463	queue_work(hdev->workqueue, &hdev->cmd_work);
1464}
1465
1466/* HCI ncmd timer function */
1467static void hci_ncmd_timeout(struct work_struct *work)
1468{
1469	struct hci_dev *hdev = container_of(work, struct hci_dev,
1470					    ncmd_timer.work);
1471
1472	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473
1474	/* During HCI_INIT phase no events can be injected if the ncmd timer
1475	 * triggers since the procedure has its own timeout handling.
1476	 */
1477	if (test_bit(HCI_INIT, &hdev->flags))
1478		return;
1479
1480	/* This is an irrecoverable state, inject hardware error event */
1481	hci_reset_dev(hdev);
1482}
1483
1484struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485					  bdaddr_t *bdaddr, u8 bdaddr_type)
1486{
1487	struct oob_data *data;
1488
1489	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490		if (bacmp(bdaddr, &data->bdaddr) != 0)
1491			continue;
1492		if (data->bdaddr_type != bdaddr_type)
1493			continue;
1494		return data;
1495	}
1496
1497	return NULL;
1498}
1499
1500int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501			       u8 bdaddr_type)
1502{
1503	struct oob_data *data;
1504
1505	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506	if (!data)
1507		return -ENOENT;
1508
1509	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510
1511	list_del(&data->list);
1512	kfree(data);
1513
1514	return 0;
1515}
1516
1517void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518{
1519	struct oob_data *data, *n;
1520
1521	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522		list_del(&data->list);
1523		kfree(data);
1524	}
1525}
1526
1527int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529			    u8 *hash256, u8 *rand256)
1530{
1531	struct oob_data *data;
1532
1533	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534	if (!data) {
1535		data = kmalloc(sizeof(*data), GFP_KERNEL);
1536		if (!data)
1537			return -ENOMEM;
1538
1539		bacpy(&data->bdaddr, bdaddr);
1540		data->bdaddr_type = bdaddr_type;
1541		list_add(&data->list, &hdev->remote_oob_data);
1542	}
1543
1544	if (hash192 && rand192) {
1545		memcpy(data->hash192, hash192, sizeof(data->hash192));
1546		memcpy(data->rand192, rand192, sizeof(data->rand192));
1547		if (hash256 && rand256)
1548			data->present = 0x03;
1549	} else {
1550		memset(data->hash192, 0, sizeof(data->hash192));
1551		memset(data->rand192, 0, sizeof(data->rand192));
1552		if (hash256 && rand256)
1553			data->present = 0x02;
1554		else
1555			data->present = 0x00;
1556	}
1557
1558	if (hash256 && rand256) {
1559		memcpy(data->hash256, hash256, sizeof(data->hash256));
1560		memcpy(data->rand256, rand256, sizeof(data->rand256));
1561	} else {
1562		memset(data->hash256, 0, sizeof(data->hash256));
1563		memset(data->rand256, 0, sizeof(data->rand256));
1564		if (hash192 && rand192)
1565			data->present = 0x01;
1566	}
1567
1568	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569
1570	return 0;
1571}
1572
1573/* This function requires the caller holds hdev->lock */
1574struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575{
1576	struct adv_info *adv_instance;
1577
1578	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579		if (adv_instance->instance == instance)
1580			return adv_instance;
1581	}
1582
1583	return NULL;
1584}
1585
1586/* This function requires the caller holds hdev->lock */
1587struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588{
1589	struct adv_info *cur_instance;
1590
1591	cur_instance = hci_find_adv_instance(hdev, instance);
1592	if (!cur_instance)
1593		return NULL;
1594
1595	if (cur_instance == list_last_entry(&hdev->adv_instances,
1596					    struct adv_info, list))
1597		return list_first_entry(&hdev->adv_instances,
1598						 struct adv_info, list);
1599	else
1600		return list_next_entry(cur_instance, list);
1601}
1602
1603/* This function requires the caller holds hdev->lock */
1604int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605{
1606	struct adv_info *adv_instance;
1607
1608	adv_instance = hci_find_adv_instance(hdev, instance);
1609	if (!adv_instance)
1610		return -ENOENT;
1611
1612	BT_DBG("%s removing %dMR", hdev->name, instance);
1613
1614	if (hdev->cur_adv_instance == instance) {
1615		if (hdev->adv_instance_timeout) {
1616			cancel_delayed_work(&hdev->adv_instance_expire);
1617			hdev->adv_instance_timeout = 0;
1618		}
1619		hdev->cur_adv_instance = 0x00;
1620	}
1621
1622	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1623
1624	list_del(&adv_instance->list);
1625	kfree(adv_instance);
1626
1627	hdev->adv_instance_cnt--;
1628
1629	return 0;
1630}
1631
1632void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1633{
1634	struct adv_info *adv_instance, *n;
1635
1636	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637		adv_instance->rpa_expired = rpa_expired;
1638}
1639
1640/* This function requires the caller holds hdev->lock */
1641void hci_adv_instances_clear(struct hci_dev *hdev)
1642{
1643	struct adv_info *adv_instance, *n;
1644
1645	if (hdev->adv_instance_timeout) {
1646		disable_delayed_work(&hdev->adv_instance_expire);
1647		hdev->adv_instance_timeout = 0;
1648	}
1649
1650	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651		disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652		list_del(&adv_instance->list);
1653		kfree(adv_instance);
1654	}
1655
1656	hdev->adv_instance_cnt = 0;
1657	hdev->cur_adv_instance = 0x00;
1658}
1659
1660static void adv_instance_rpa_expired(struct work_struct *work)
1661{
1662	struct adv_info *adv_instance = container_of(work, struct adv_info,
1663						     rpa_expired_cb.work);
1664
1665	BT_DBG("");
1666
1667	adv_instance->rpa_expired = true;
1668}
1669
1670/* This function requires the caller holds hdev->lock */
1671struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672				      u32 flags, u16 adv_data_len, u8 *adv_data,
1673				      u16 scan_rsp_len, u8 *scan_rsp_data,
1674				      u16 timeout, u16 duration, s8 tx_power,
1675				      u32 min_interval, u32 max_interval,
1676				      u8 mesh_handle)
1677{
1678	struct adv_info *adv;
1679
1680	adv = hci_find_adv_instance(hdev, instance);
1681	if (adv) {
1682		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685	} else {
1686		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688			return ERR_PTR(-EOVERFLOW);
1689
1690		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691		if (!adv)
1692			return ERR_PTR(-ENOMEM);
1693
1694		adv->pending = true;
1695		adv->instance = instance;
1696
1697		/* If controller support only one set and the instance is set to
1698		 * 1 then there is no option other than using handle 0x00.
1699		 */
1700		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701			adv->handle = 0x00;
1702		else
1703			adv->handle = instance;
1704
1705		list_add(&adv->list, &hdev->adv_instances);
 
 
1706		hdev->adv_instance_cnt++;
1707	}
1708
1709	adv->flags = flags;
1710	adv->min_interval = min_interval;
1711	adv->max_interval = max_interval;
1712	adv->tx_power = tx_power;
1713	/* Defining a mesh_handle changes the timing units to ms,
1714	 * rather than seconds, and ties the instance to the requested
1715	 * mesh_tx queue.
1716	 */
1717	adv->mesh = mesh_handle;
1718
1719	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720				  scan_rsp_len, scan_rsp_data);
1721
1722	adv->timeout = timeout;
1723	adv->remaining_time = timeout;
1724
1725	if (duration == 0)
1726		adv->duration = hdev->def_multi_adv_rotation_duration;
1727	else
1728		adv->duration = duration;
1729
1730	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1731
1732	BT_DBG("%s for %dMR", hdev->name, instance);
1733
1734	return adv;
1735}
1736
1737/* This function requires the caller holds hdev->lock */
1738struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739				      u32 flags, u8 data_len, u8 *data,
1740				      u32 min_interval, u32 max_interval)
1741{
1742	struct adv_info *adv;
1743
1744	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746				   min_interval, max_interval, 0);
1747	if (IS_ERR(adv))
1748		return adv;
1749
1750	adv->periodic = true;
1751	adv->per_adv_data_len = data_len;
1752
1753	if (data)
1754		memcpy(adv->per_adv_data, data, data_len);
1755
1756	return adv;
1757}
1758
1759/* This function requires the caller holds hdev->lock */
1760int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761			      u16 adv_data_len, u8 *adv_data,
1762			      u16 scan_rsp_len, u8 *scan_rsp_data)
1763{
1764	struct adv_info *adv;
1765
1766	adv = hci_find_adv_instance(hdev, instance);
1767
1768	/* If advertisement doesn't exist, we can't modify its data */
1769	if (!adv)
1770		return -ENOENT;
1771
1772	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774		memcpy(adv->adv_data, adv_data, adv_data_len);
1775		adv->adv_data_len = adv_data_len;
1776		adv->adv_data_changed = true;
1777	}
1778
1779	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782		adv->scan_rsp_len = scan_rsp_len;
1783		adv->scan_rsp_changed = true;
1784	}
1785
1786	/* Mark as changed if there are flags which would affect it */
1787	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789		adv->scan_rsp_changed = true;
1790
1791	return 0;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796{
1797	u32 flags;
1798	struct adv_info *adv;
1799
1800	if (instance == 0x00) {
1801		/* Instance 0 always manages the "Tx Power" and "Flags"
1802		 * fields
1803		 */
1804		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805
1806		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807		 * corresponds to the "connectable" instance flag.
1808		 */
1809		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811
1812		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815			flags |= MGMT_ADV_FLAG_DISCOV;
1816
1817		return flags;
1818	}
1819
1820	adv = hci_find_adv_instance(hdev, instance);
1821
1822	/* Return 0 when we got an invalid instance identifier. */
1823	if (!adv)
1824		return 0;
1825
1826	return adv->flags;
1827}
1828
1829bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830{
1831	struct adv_info *adv;
1832
1833	/* Instance 0x00 always set local name */
1834	if (instance == 0x00)
1835		return true;
1836
1837	adv = hci_find_adv_instance(hdev, instance);
1838	if (!adv)
1839		return false;
1840
1841	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843		return true;
1844
1845	return adv->scan_rsp_len ? true : false;
1846}
1847
1848/* This function requires the caller holds hdev->lock */
1849void hci_adv_monitors_clear(struct hci_dev *hdev)
1850{
1851	struct adv_monitor *monitor;
1852	int handle;
1853
1854	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855		hci_free_adv_monitor(hdev, monitor);
1856
1857	idr_destroy(&hdev->adv_monitors_idr);
1858}
1859
1860/* Frees the monitor structure and do some bookkeepings.
1861 * This function requires the caller holds hdev->lock.
1862 */
1863void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864{
1865	struct adv_pattern *pattern;
1866	struct adv_pattern *tmp;
1867
1868	if (!monitor)
1869		return;
1870
1871	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872		list_del(&pattern->list);
1873		kfree(pattern);
1874	}
1875
1876	if (monitor->handle)
1877		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878
1879	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880		hdev->adv_monitors_cnt--;
1881		mgmt_adv_monitor_removed(hdev, monitor->handle);
1882	}
1883
1884	kfree(monitor);
1885}
1886
1887/* Assigns handle to a monitor, and if offloading is supported and power is on,
1888 * also attempts to forward the request to the controller.
1889 * This function requires the caller holds hci_req_sync_lock.
1890 */
1891int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1892{
1893	int min, max, handle;
1894	int status = 0;
1895
1896	if (!monitor)
1897		return -EINVAL;
1898
1899	hci_dev_lock(hdev);
1900
1901	min = HCI_MIN_ADV_MONITOR_HANDLE;
1902	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904			   GFP_KERNEL);
1905
1906	hci_dev_unlock(hdev);
1907
1908	if (handle < 0)
1909		return handle;
1910
 
1911	monitor->handle = handle;
1912
1913	if (!hdev_is_powered(hdev))
1914		return status;
1915
1916	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917	case HCI_ADV_MONITOR_EXT_NONE:
1918		bt_dev_dbg(hdev, "add monitor %d status %d",
1919			   monitor->handle, status);
1920		/* Message was not forwarded to controller - not an error */
1921		break;
1922
1923	case HCI_ADV_MONITOR_EXT_MSFT:
1924		status = msft_add_monitor_pattern(hdev, monitor);
1925		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926			   handle, status);
1927		break;
1928	}
1929
1930	return status;
1931}
1932
1933/* Attempts to tell the controller and free the monitor. If somehow the
1934 * controller doesn't have a corresponding handle, remove anyway.
1935 * This function requires the caller holds hci_req_sync_lock.
1936 */
1937static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938				  struct adv_monitor *monitor)
1939{
1940	int status = 0;
1941	int handle;
1942
1943	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945		bt_dev_dbg(hdev, "remove monitor %d status %d",
1946			   monitor->handle, status);
1947		goto free_monitor;
1948
1949	case HCI_ADV_MONITOR_EXT_MSFT:
1950		handle = monitor->handle;
1951		status = msft_remove_monitor(hdev, monitor);
1952		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953			   handle, status);
1954		break;
1955	}
1956
1957	/* In case no matching handle registered, just free the monitor */
1958	if (status == -ENOENT)
1959		goto free_monitor;
1960
1961	return status;
1962
1963free_monitor:
1964	if (status == -ENOENT)
1965		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966			    monitor->handle);
1967	hci_free_adv_monitor(hdev, monitor);
1968
1969	return status;
1970}
1971
1972/* This function requires the caller holds hci_req_sync_lock */
1973int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1974{
1975	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
 
1976
1977	if (!monitor)
1978		return -EINVAL;
1979
1980	return hci_remove_adv_monitor(hdev, monitor);
1981}
1982
1983/* This function requires the caller holds hci_req_sync_lock */
1984int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1985{
1986	struct adv_monitor *monitor;
1987	int idr_next_id = 0;
1988	int status = 0;
1989
1990	while (1) {
1991		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992		if (!monitor)
1993			break;
1994
1995		status = hci_remove_adv_monitor(hdev, monitor);
1996		if (status)
1997			return status;
1998
1999		idr_next_id++;
2000	}
2001
2002	return status;
 
 
2003}
2004
2005/* This function requires the caller holds hdev->lock */
2006bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007{
2008	return !idr_is_empty(&hdev->adv_monitors_idr);
2009}
2010
2011int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2012{
2013	if (msft_monitor_supported(hdev))
2014		return HCI_ADV_MONITOR_EXT_MSFT;
2015
2016	return HCI_ADV_MONITOR_EXT_NONE;
2017}
2018
2019struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020					 bdaddr_t *bdaddr, u8 type)
2021{
2022	struct bdaddr_list *b;
2023
2024	list_for_each_entry(b, bdaddr_list, list) {
2025		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026			return b;
2027	}
2028
2029	return NULL;
2030}
2031
2032struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034				u8 type)
2035{
2036	struct bdaddr_list_with_irk *b;
2037
2038	list_for_each_entry(b, bdaddr_list, list) {
2039		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040			return b;
2041	}
2042
2043	return NULL;
2044}
2045
2046struct bdaddr_list_with_flags *
2047hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048				  bdaddr_t *bdaddr, u8 type)
2049{
2050	struct bdaddr_list_with_flags *b;
2051
2052	list_for_each_entry(b, bdaddr_list, list) {
2053		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054			return b;
2055	}
2056
2057	return NULL;
2058}
2059
2060void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061{
2062	struct bdaddr_list *b, *n;
2063
2064	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065		list_del(&b->list);
2066		kfree(b);
2067	}
2068}
2069
2070int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071{
2072	struct bdaddr_list *entry;
2073
2074	if (!bacmp(bdaddr, BDADDR_ANY))
2075		return -EBADF;
2076
2077	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078		return -EEXIST;
2079
2080	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081	if (!entry)
2082		return -ENOMEM;
2083
2084	bacpy(&entry->bdaddr, bdaddr);
2085	entry->bdaddr_type = type;
2086
2087	list_add(&entry->list, list);
2088
2089	return 0;
2090}
2091
2092int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093					u8 type, u8 *peer_irk, u8 *local_irk)
2094{
2095	struct bdaddr_list_with_irk *entry;
2096
2097	if (!bacmp(bdaddr, BDADDR_ANY))
2098		return -EBADF;
2099
2100	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101		return -EEXIST;
2102
2103	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104	if (!entry)
2105		return -ENOMEM;
2106
2107	bacpy(&entry->bdaddr, bdaddr);
2108	entry->bdaddr_type = type;
2109
2110	if (peer_irk)
2111		memcpy(entry->peer_irk, peer_irk, 16);
2112
2113	if (local_irk)
2114		memcpy(entry->local_irk, local_irk, 16);
2115
2116	list_add(&entry->list, list);
2117
2118	return 0;
2119}
2120
2121int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122				   u8 type, u32 flags)
2123{
2124	struct bdaddr_list_with_flags *entry;
2125
2126	if (!bacmp(bdaddr, BDADDR_ANY))
2127		return -EBADF;
2128
2129	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130		return -EEXIST;
2131
2132	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133	if (!entry)
2134		return -ENOMEM;
2135
2136	bacpy(&entry->bdaddr, bdaddr);
2137	entry->bdaddr_type = type;
2138	entry->flags = flags;
2139
2140	list_add(&entry->list, list);
2141
2142	return 0;
2143}
2144
2145int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2146{
2147	struct bdaddr_list *entry;
2148
2149	if (!bacmp(bdaddr, BDADDR_ANY)) {
2150		hci_bdaddr_list_clear(list);
2151		return 0;
2152	}
2153
2154	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155	if (!entry)
2156		return -ENOENT;
2157
2158	list_del(&entry->list);
2159	kfree(entry);
2160
2161	return 0;
2162}
2163
2164int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165							u8 type)
2166{
2167	struct bdaddr_list_with_irk *entry;
2168
2169	if (!bacmp(bdaddr, BDADDR_ANY)) {
2170		hci_bdaddr_list_clear(list);
2171		return 0;
2172	}
2173
2174	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175	if (!entry)
2176		return -ENOENT;
2177
2178	list_del(&entry->list);
2179	kfree(entry);
2180
2181	return 0;
2182}
2183
2184int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2185				   u8 type)
2186{
2187	struct bdaddr_list_with_flags *entry;
2188
2189	if (!bacmp(bdaddr, BDADDR_ANY)) {
2190		hci_bdaddr_list_clear(list);
2191		return 0;
2192	}
2193
2194	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2195	if (!entry)
2196		return -ENOENT;
2197
2198	list_del(&entry->list);
2199	kfree(entry);
2200
2201	return 0;
2202}
2203
2204/* This function requires the caller holds hdev->lock */
2205struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2206					       bdaddr_t *addr, u8 addr_type)
2207{
2208	struct hci_conn_params *params;
2209
2210	list_for_each_entry(params, &hdev->le_conn_params, list) {
2211		if (bacmp(&params->addr, addr) == 0 &&
2212		    params->addr_type == addr_type) {
2213			return params;
2214		}
2215	}
2216
2217	return NULL;
2218}
2219
2220/* This function requires the caller holds hdev->lock or rcu_read_lock */
2221struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2222						  bdaddr_t *addr, u8 addr_type)
2223{
2224	struct hci_conn_params *param;
2225
2226	rcu_read_lock();
 
 
 
 
 
 
 
2227
2228	list_for_each_entry_rcu(param, list, action) {
2229		if (bacmp(&param->addr, addr) == 0 &&
2230		    param->addr_type == addr_type) {
2231			rcu_read_unlock();
2232			return param;
2233		}
2234	}
2235
2236	rcu_read_unlock();
2237
2238	return NULL;
2239}
2240
2241/* This function requires the caller holds hdev->lock */
2242void hci_pend_le_list_del_init(struct hci_conn_params *param)
2243{
2244	if (list_empty(&param->action))
2245		return;
2246
2247	list_del_rcu(&param->action);
2248	synchronize_rcu();
2249	INIT_LIST_HEAD(&param->action);
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253void hci_pend_le_list_add(struct hci_conn_params *param,
2254			  struct list_head *list)
2255{
2256	list_add_rcu(&param->action, list);
2257}
2258
2259/* This function requires the caller holds hdev->lock */
2260struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2261					    bdaddr_t *addr, u8 addr_type)
2262{
2263	struct hci_conn_params *params;
2264
2265	params = hci_conn_params_lookup(hdev, addr, addr_type);
2266	if (params)
2267		return params;
2268
2269	params = kzalloc(sizeof(*params), GFP_KERNEL);
2270	if (!params) {
2271		bt_dev_err(hdev, "out of memory");
2272		return NULL;
2273	}
2274
2275	bacpy(&params->addr, addr);
2276	params->addr_type = addr_type;
2277
2278	list_add(&params->list, &hdev->le_conn_params);
2279	INIT_LIST_HEAD(&params->action);
2280
2281	params->conn_min_interval = hdev->le_conn_min_interval;
2282	params->conn_max_interval = hdev->le_conn_max_interval;
2283	params->conn_latency = hdev->le_conn_latency;
2284	params->supervision_timeout = hdev->le_supv_timeout;
2285	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2286
2287	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2288
2289	return params;
2290}
2291
2292void hci_conn_params_free(struct hci_conn_params *params)
2293{
2294	hci_pend_le_list_del_init(params);
2295
2296	if (params->conn) {
2297		hci_conn_drop(params->conn);
2298		hci_conn_put(params->conn);
2299	}
2300
 
2301	list_del(&params->list);
2302	kfree(params);
2303}
2304
2305/* This function requires the caller holds hdev->lock */
2306void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2307{
2308	struct hci_conn_params *params;
2309
2310	params = hci_conn_params_lookup(hdev, addr, addr_type);
2311	if (!params)
2312		return;
2313
2314	hci_conn_params_free(params);
2315
2316	hci_update_passive_scan(hdev);
2317
2318	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2319}
2320
2321/* This function requires the caller holds hdev->lock */
2322void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2323{
2324	struct hci_conn_params *params, *tmp;
2325
2326	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2327		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2328			continue;
2329
2330		/* If trying to establish one time connection to disabled
2331		 * device, leave the params, but mark them as just once.
2332		 */
2333		if (params->explicit_connect) {
2334			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2335			continue;
2336		}
2337
2338		hci_conn_params_free(params);
 
2339	}
2340
2341	BT_DBG("All LE disabled connection parameters were removed");
2342}
2343
2344/* This function requires the caller holds hdev->lock */
2345static void hci_conn_params_clear_all(struct hci_dev *hdev)
2346{
2347	struct hci_conn_params *params, *tmp;
2348
2349	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2350		hci_conn_params_free(params);
2351
2352	BT_DBG("All LE connection parameters were removed");
2353}
2354
2355/* Copy the Identity Address of the controller.
2356 *
2357 * If the controller has a public BD_ADDR, then by default use that one.
2358 * If this is a LE only controller without a public address, default to
2359 * the static random address.
2360 *
2361 * For debugging purposes it is possible to force controllers with a
2362 * public address to use the static random address instead.
2363 *
2364 * In case BR/EDR has been disabled on a dual-mode controller and
2365 * userspace has configured a static address, then that address
2366 * becomes the identity address instead of the public BR/EDR address.
2367 */
2368void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2369			       u8 *bdaddr_type)
2370{
2371	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2372	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2373	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2374	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2375		bacpy(bdaddr, &hdev->static_addr);
2376		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2377	} else {
2378		bacpy(bdaddr, &hdev->bdaddr);
2379		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2380	}
2381}
2382
2383static void hci_clear_wake_reason(struct hci_dev *hdev)
2384{
2385	hci_dev_lock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386
2387	hdev->wake_reason = 0;
2388	bacpy(&hdev->wake_addr, BDADDR_ANY);
2389	hdev->wake_addr_type = 0;
 
2390
 
 
 
 
 
 
 
 
 
 
2391	hci_dev_unlock(hdev);
2392}
2393
 
 
 
 
 
 
 
 
 
2394static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2395				void *data)
2396{
2397	struct hci_dev *hdev =
2398		container_of(nb, struct hci_dev, suspend_notifier);
2399	int ret = 0;
2400
2401	/* Userspace has full control of this device. Do nothing. */
2402	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2403		return NOTIFY_DONE;
 
 
 
 
2404
2405	/* To avoid a potential race with hci_unregister_dev. */
2406	hci_dev_hold(hdev);
 
2407
2408	switch (action) {
2409	case PM_HIBERNATION_PREPARE:
2410	case PM_SUSPEND_PREPARE:
2411		ret = hci_suspend_dev(hdev);
2412		break;
2413	case PM_POST_HIBERNATION:
2414	case PM_POST_SUSPEND:
2415		ret = hci_resume_dev(hdev);
2416		break;
 
 
 
 
 
 
 
2417	}
2418
 
 
 
 
2419	if (ret)
2420		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2421			   action, ret);
2422
2423	hci_dev_put(hdev);
2424	return NOTIFY_DONE;
2425}
2426
2427/* Alloc HCI device */
2428struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2429{
2430	struct hci_dev *hdev;
2431	unsigned int alloc_size;
2432
2433	alloc_size = sizeof(*hdev);
2434	if (sizeof_priv) {
2435		/* Fixme: May need ALIGN-ment? */
2436		alloc_size += sizeof_priv;
2437	}
2438
2439	hdev = kzalloc(alloc_size, GFP_KERNEL);
2440	if (!hdev)
2441		return NULL;
2442
2443	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2444	hdev->esco_type = (ESCO_HV1);
2445	hdev->link_mode = (HCI_LM_ACCEPT);
2446	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2447	hdev->io_capability = 0x03;	/* No Input No Output */
2448	hdev->manufacturer = 0xffff;	/* Default to internal use */
2449	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2450	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2451	hdev->adv_instance_cnt = 0;
2452	hdev->cur_adv_instance = 0x00;
2453	hdev->adv_instance_timeout = 0;
2454
2455	hdev->advmon_allowlist_duration = 300;
2456	hdev->advmon_no_filter_duration = 500;
2457	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2458
2459	hdev->sniff_max_interval = 800;
2460	hdev->sniff_min_interval = 80;
2461
2462	hdev->le_adv_channel_map = 0x07;
2463	hdev->le_adv_min_interval = 0x0800;
2464	hdev->le_adv_max_interval = 0x0800;
2465	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2466	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2467	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2468	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2469	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2470	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2471	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2472	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2473	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2474	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2475	hdev->le_conn_min_interval = 0x0018;
2476	hdev->le_conn_max_interval = 0x0028;
2477	hdev->le_conn_latency = 0x0000;
2478	hdev->le_supv_timeout = 0x002a;
2479	hdev->le_def_tx_len = 0x001b;
2480	hdev->le_def_tx_time = 0x0148;
2481	hdev->le_max_tx_len = 0x001b;
2482	hdev->le_max_tx_time = 0x0148;
2483	hdev->le_max_rx_len = 0x001b;
2484	hdev->le_max_rx_time = 0x0148;
2485	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2486	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2487	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2488	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2489	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2490	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2491	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2492	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2493	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2494
2495	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2496	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2497	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2498	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2499	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2500	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2501
2502	/* default 1.28 sec page scan */
2503	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2504	hdev->def_page_scan_int = 0x0800;
2505	hdev->def_page_scan_window = 0x0012;
2506
2507	mutex_init(&hdev->lock);
2508	mutex_init(&hdev->req_lock);
2509
2510	ida_init(&hdev->unset_handle_ida);
2511
2512	INIT_LIST_HEAD(&hdev->mesh_pending);
2513	INIT_LIST_HEAD(&hdev->mgmt_pending);
2514	INIT_LIST_HEAD(&hdev->reject_list);
2515	INIT_LIST_HEAD(&hdev->accept_list);
2516	INIT_LIST_HEAD(&hdev->uuids);
2517	INIT_LIST_HEAD(&hdev->link_keys);
2518	INIT_LIST_HEAD(&hdev->long_term_keys);
2519	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2520	INIT_LIST_HEAD(&hdev->remote_oob_data);
2521	INIT_LIST_HEAD(&hdev->le_accept_list);
2522	INIT_LIST_HEAD(&hdev->le_resolv_list);
2523	INIT_LIST_HEAD(&hdev->le_conn_params);
2524	INIT_LIST_HEAD(&hdev->pend_le_conns);
2525	INIT_LIST_HEAD(&hdev->pend_le_reports);
2526	INIT_LIST_HEAD(&hdev->conn_hash.list);
2527	INIT_LIST_HEAD(&hdev->adv_instances);
2528	INIT_LIST_HEAD(&hdev->blocked_keys);
2529	INIT_LIST_HEAD(&hdev->monitored_devices);
2530
2531	INIT_LIST_HEAD(&hdev->local_codecs);
2532	INIT_WORK(&hdev->rx_work, hci_rx_work);
2533	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2534	INIT_WORK(&hdev->tx_work, hci_tx_work);
2535	INIT_WORK(&hdev->power_on, hci_power_on);
2536	INIT_WORK(&hdev->error_reset, hci_error_reset);
2537
2538	hci_cmd_sync_init(hdev);
2539
2540	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2541
2542	skb_queue_head_init(&hdev->rx_q);
2543	skb_queue_head_init(&hdev->cmd_q);
2544	skb_queue_head_init(&hdev->raw_q);
2545
2546	init_waitqueue_head(&hdev->req_wait_q);
 
2547
2548	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2549	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2550
2551	hci_devcd_setup(hdev);
2552
2553	hci_init_sysfs(hdev);
2554	discovery_init(hdev);
2555
2556	return hdev;
2557}
2558EXPORT_SYMBOL(hci_alloc_dev_priv);
2559
2560/* Free HCI device */
2561void hci_free_dev(struct hci_dev *hdev)
2562{
2563	/* will free via device release */
2564	put_device(&hdev->dev);
2565}
2566EXPORT_SYMBOL(hci_free_dev);
2567
2568/* Register HCI device */
2569int hci_register_dev(struct hci_dev *hdev)
2570{
2571	int id, error;
2572
2573	if (!hdev->open || !hdev->close || !hdev->send)
2574		return -EINVAL;
2575
2576	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	if (id < 0)
2578		return id;
2579
2580	error = dev_set_name(&hdev->dev, "hci%u", id);
2581	if (error)
2582		return error;
2583
2584	hdev->name = dev_name(&hdev->dev);
2585	hdev->id = id;
2586
2587	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2588
2589	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2590	if (!hdev->workqueue) {
2591		error = -ENOMEM;
2592		goto err;
2593	}
2594
2595	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2596						      hdev->name);
2597	if (!hdev->req_workqueue) {
2598		destroy_workqueue(hdev->workqueue);
2599		error = -ENOMEM;
2600		goto err;
2601	}
2602
2603	if (!IS_ERR_OR_NULL(bt_debugfs))
2604		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2605
 
 
2606	error = device_add(&hdev->dev);
2607	if (error < 0)
2608		goto err_wqueue;
2609
2610	hci_leds_init(hdev);
2611
2612	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2613				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2614				    hdev);
2615	if (hdev->rfkill) {
2616		if (rfkill_register(hdev->rfkill) < 0) {
2617			rfkill_destroy(hdev->rfkill);
2618			hdev->rfkill = NULL;
2619		}
2620	}
2621
2622	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2623		hci_dev_set_flag(hdev, HCI_RFKILLED);
2624
2625	hci_dev_set_flag(hdev, HCI_SETUP);
2626	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2627
2628	/* Assume BR/EDR support until proven otherwise (such as
2629	 * through reading supported features during init.
2630	 */
2631	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 
 
2632
2633	write_lock(&hci_dev_list_lock);
2634	list_add(&hdev->list, &hci_dev_list);
2635	write_unlock(&hci_dev_list_lock);
2636
2637	/* Devices that are marked for raw-only usage are unconfigured
2638	 * and should not be included in normal operation.
2639	 */
2640	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2641		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2642
2643	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2644	 * callback.
2645	 */
2646	if (hdev->wakeup)
2647		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2648
2649	hci_sock_dev_event(hdev, HCI_DEV_REG);
2650	hci_dev_hold(hdev);
2651
2652	error = hci_register_suspend_notifier(hdev);
 
2653	if (error)
2654		BT_WARN("register suspend notifier failed error:%d\n", error);
2655
2656	queue_work(hdev->req_workqueue, &hdev->power_on);
2657
2658	idr_init(&hdev->adv_monitors_idr);
2659	msft_register(hdev);
2660
2661	return id;
2662
2663err_wqueue:
2664	debugfs_remove_recursive(hdev->debugfs);
2665	destroy_workqueue(hdev->workqueue);
2666	destroy_workqueue(hdev->req_workqueue);
2667err:
2668	ida_free(&hci_index_ida, hdev->id);
2669
2670	return error;
2671}
2672EXPORT_SYMBOL(hci_register_dev);
2673
2674/* Unregister HCI device */
2675void hci_unregister_dev(struct hci_dev *hdev)
2676{
 
 
2677	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2678
2679	mutex_lock(&hdev->unregister_lock);
2680	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2681	mutex_unlock(&hdev->unregister_lock);
 
2682
2683	write_lock(&hci_dev_list_lock);
2684	list_del(&hdev->list);
2685	write_unlock(&hci_dev_list_lock);
2686
2687	disable_work_sync(&hdev->rx_work);
2688	disable_work_sync(&hdev->cmd_work);
2689	disable_work_sync(&hdev->tx_work);
2690	disable_work_sync(&hdev->power_on);
2691	disable_work_sync(&hdev->error_reset);
2692
2693	hci_cmd_sync_clear(hdev);
2694
2695	hci_unregister_suspend_notifier(hdev);
 
2696
2697	hci_dev_do_close(hdev);
2698
2699	if (!test_bit(HCI_INIT, &hdev->flags) &&
2700	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2701	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2702		hci_dev_lock(hdev);
2703		mgmt_index_removed(hdev);
2704		hci_dev_unlock(hdev);
2705	}
2706
2707	/* mgmt_index_removed should take care of emptying the
2708	 * pending list */
2709	BUG_ON(!list_empty(&hdev->mgmt_pending));
2710
2711	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2712
2713	if (hdev->rfkill) {
2714		rfkill_unregister(hdev->rfkill);
2715		rfkill_destroy(hdev->rfkill);
2716	}
2717
2718	device_del(&hdev->dev);
2719	/* Actual cleanup is deferred until hci_release_dev(). */
2720	hci_dev_put(hdev);
2721}
2722EXPORT_SYMBOL(hci_unregister_dev);
2723
2724/* Release HCI device */
2725void hci_release_dev(struct hci_dev *hdev)
2726{
2727	debugfs_remove_recursive(hdev->debugfs);
2728	kfree_const(hdev->hw_info);
2729	kfree_const(hdev->fw_info);
2730
2731	destroy_workqueue(hdev->workqueue);
2732	destroy_workqueue(hdev->req_workqueue);
2733
2734	hci_dev_lock(hdev);
2735	hci_bdaddr_list_clear(&hdev->reject_list);
2736	hci_bdaddr_list_clear(&hdev->accept_list);
2737	hci_uuids_clear(hdev);
2738	hci_link_keys_clear(hdev);
2739	hci_smp_ltks_clear(hdev);
2740	hci_smp_irks_clear(hdev);
2741	hci_remote_oob_data_clear(hdev);
2742	hci_adv_instances_clear(hdev);
2743	hci_adv_monitors_clear(hdev);
2744	hci_bdaddr_list_clear(&hdev->le_accept_list);
2745	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2746	hci_conn_params_clear_all(hdev);
2747	hci_discovery_filter_clear(hdev);
2748	hci_blocked_keys_clear(hdev);
2749	hci_codec_list_clear(&hdev->local_codecs);
2750	msft_release(hdev);
2751	hci_dev_unlock(hdev);
2752
2753	ida_destroy(&hdev->unset_handle_ida);
2754	ida_free(&hci_index_ida, hdev->id);
2755	kfree_skb(hdev->sent_cmd);
2756	kfree_skb(hdev->req_skb);
2757	kfree_skb(hdev->recv_event);
2758	kfree(hdev);
2759}
2760EXPORT_SYMBOL(hci_release_dev);
2761
2762int hci_register_suspend_notifier(struct hci_dev *hdev)
2763{
2764	int ret = 0;
2765
2766	if (!hdev->suspend_notifier.notifier_call &&
2767	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769		ret = register_pm_notifier(&hdev->suspend_notifier);
2770	}
2771
2772	return ret;
2773}
2774
2775int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776{
2777	int ret = 0;
2778
2779	if (hdev->suspend_notifier.notifier_call) {
2780		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781		if (!ret)
2782			hdev->suspend_notifier.notifier_call = NULL;
2783	}
2784
2785	return ret;
2786}
2787
2788/* Cancel ongoing command synchronously:
2789 *
2790 * - Cancel command timer
2791 * - Reset command counter
2792 * - Cancel command request
2793 */
2794static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2795{
2796	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2797
2798	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2799		disable_delayed_work_sync(&hdev->cmd_timer);
2800		disable_delayed_work_sync(&hdev->ncmd_timer);
2801	} else  {
2802		cancel_delayed_work_sync(&hdev->cmd_timer);
2803		cancel_delayed_work_sync(&hdev->ncmd_timer);
2804	}
2805
2806	atomic_set(&hdev->cmd_cnt, 1);
2807
2808	hci_cmd_sync_cancel_sync(hdev, err);
2809}
 
2810
2811/* Suspend HCI device */
2812int hci_suspend_dev(struct hci_dev *hdev)
2813{
2814	int ret;
2815
2816	bt_dev_dbg(hdev, "");
2817
2818	/* Suspend should only act on when powered. */
2819	if (!hdev_is_powered(hdev) ||
2820	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2821		return 0;
2822
2823	/* If powering down don't attempt to suspend */
2824	if (mgmt_powering_down(hdev))
2825		return 0;
2826
2827	/* Cancel potentially blocking sync operation before suspend */
2828	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2829
2830	hci_req_sync_lock(hdev);
2831	ret = hci_suspend_sync(hdev);
2832	hci_req_sync_unlock(hdev);
2833
2834	hci_clear_wake_reason(hdev);
2835	mgmt_suspending(hdev, hdev->suspend_state);
2836
2837	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2838	return ret;
2839}
2840EXPORT_SYMBOL(hci_suspend_dev);
2841
2842/* Resume HCI device */
2843int hci_resume_dev(struct hci_dev *hdev)
2844{
2845	int ret;
2846
2847	bt_dev_dbg(hdev, "");
2848
2849	/* Resume should only act on when powered. */
2850	if (!hdev_is_powered(hdev) ||
2851	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2852		return 0;
2853
2854	/* If powering down don't attempt to resume */
2855	if (mgmt_powering_down(hdev))
2856		return 0;
2857
2858	hci_req_sync_lock(hdev);
2859	ret = hci_resume_sync(hdev);
2860	hci_req_sync_unlock(hdev);
2861
2862	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2863		      hdev->wake_addr_type);
2864
2865	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2866	return ret;
2867}
2868EXPORT_SYMBOL(hci_resume_dev);
2869
2870/* Reset HCI device */
2871int hci_reset_dev(struct hci_dev *hdev)
2872{
2873	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2874	struct sk_buff *skb;
2875
2876	skb = bt_skb_alloc(3, GFP_ATOMIC);
2877	if (!skb)
2878		return -ENOMEM;
2879
2880	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2881	skb_put_data(skb, hw_err, 3);
2882
2883	bt_dev_err(hdev, "Injecting HCI hardware error event");
2884
2885	/* Send Hardware Error to upper stack */
2886	return hci_recv_frame(hdev, skb);
2887}
2888EXPORT_SYMBOL(hci_reset_dev);
2889
2890static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2891{
2892	if (hdev->classify_pkt_type)
2893		return hdev->classify_pkt_type(hdev, skb);
2894
2895	return hci_skb_pkt_type(skb);
2896}
2897
2898/* Receive frame from HCI drivers */
2899int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2900{
2901	u8 dev_pkt_type;
2902
2903	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2904		      && !test_bit(HCI_INIT, &hdev->flags))) {
2905		kfree_skb(skb);
2906		return -ENXIO;
2907	}
2908
2909	/* Check if the driver agree with packet type classification */
2910	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2911	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2912		hci_skb_pkt_type(skb) = dev_pkt_type;
2913	}
2914
2915	switch (hci_skb_pkt_type(skb)) {
2916	case HCI_EVENT_PKT:
2917		break;
2918	case HCI_ACLDATA_PKT:
2919		/* Detect if ISO packet has been sent as ACL */
2920		if (hci_conn_num(hdev, ISO_LINK)) {
2921			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2922			__u8 type;
2923
2924			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2925			if (type == ISO_LINK)
2926				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2927		}
2928		break;
2929	case HCI_SCODATA_PKT:
2930		break;
2931	case HCI_ISODATA_PKT:
2932		break;
2933	default:
2934		kfree_skb(skb);
2935		return -EINVAL;
2936	}
2937
2938	/* Incoming skb */
2939	bt_cb(skb)->incoming = 1;
2940
2941	/* Time stamp */
2942	__net_timestamp(skb);
2943
2944	skb_queue_tail(&hdev->rx_q, skb);
2945	queue_work(hdev->workqueue, &hdev->rx_work);
2946
2947	return 0;
2948}
2949EXPORT_SYMBOL(hci_recv_frame);
2950
2951/* Receive diagnostic message from HCI drivers */
2952int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2953{
2954	/* Mark as diagnostic packet */
2955	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2956
2957	/* Time stamp */
2958	__net_timestamp(skb);
2959
2960	skb_queue_tail(&hdev->rx_q, skb);
2961	queue_work(hdev->workqueue, &hdev->rx_work);
2962
2963	return 0;
2964}
2965EXPORT_SYMBOL(hci_recv_diag);
2966
2967void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2968{
2969	va_list vargs;
2970
2971	va_start(vargs, fmt);
2972	kfree_const(hdev->hw_info);
2973	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974	va_end(vargs);
2975}
2976EXPORT_SYMBOL(hci_set_hw_info);
2977
2978void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2979{
2980	va_list vargs;
2981
2982	va_start(vargs, fmt);
2983	kfree_const(hdev->fw_info);
2984	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2985	va_end(vargs);
2986}
2987EXPORT_SYMBOL(hci_set_fw_info);
2988
2989/* ---- Interface to upper protocols ---- */
2990
2991int hci_register_cb(struct hci_cb *cb)
2992{
2993	BT_DBG("%p name %s", cb, cb->name);
2994
2995	list_add_tail_rcu(&cb->list, &hci_cb_list);
 
 
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL(hci_register_cb);
3000
3001int hci_unregister_cb(struct hci_cb *cb)
3002{
3003	BT_DBG("%p name %s", cb, cb->name);
3004
3005	list_del_rcu(&cb->list);
3006	synchronize_rcu();
 
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(hci_unregister_cb);
3011
3012static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013{
3014	int err;
3015
3016	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017	       skb->len);
3018
3019	/* Time stamp */
3020	__net_timestamp(skb);
3021
3022	/* Send copy to monitor */
3023	hci_send_to_monitor(hdev, skb);
3024
3025	if (atomic_read(&hdev->promisc)) {
3026		/* Send copy to the sockets */
3027		hci_send_to_sock(hdev, skb);
3028	}
3029
3030	/* Get rid of skb owner, prior to sending to the driver. */
3031	skb_orphan(skb);
3032
3033	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034		kfree_skb(skb);
3035		return -EINVAL;
3036	}
3037
3038	err = hdev->send(hdev, skb);
3039	if (err < 0) {
3040		bt_dev_err(hdev, "sending frame failed (%d)", err);
3041		kfree_skb(skb);
3042		return err;
3043	}
3044
3045	return 0;
3046}
3047
3048/* Send HCI command */
3049int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050		 const void *param)
3051{
3052	struct sk_buff *skb;
3053
3054	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055
3056	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3057	if (!skb) {
3058		bt_dev_err(hdev, "no memory for command");
3059		return -ENOMEM;
3060	}
3061
3062	/* Stand-alone HCI commands must be flagged as
3063	 * single-command requests.
3064	 */
3065	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066
3067	skb_queue_tail(&hdev->cmd_q, skb);
3068	queue_work(hdev->workqueue, &hdev->cmd_work);
3069
3070	return 0;
3071}
3072
3073int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074		   const void *param)
3075{
3076	struct sk_buff *skb;
3077
3078	if (hci_opcode_ogf(opcode) != 0x3f) {
3079		/* A controller receiving a command shall respond with either
3080		 * a Command Status Event or a Command Complete Event.
3081		 * Therefore, all standard HCI commands must be sent via the
3082		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083		 * Some vendors do not comply with this rule for vendor-specific
3084		 * commands and do not return any event. We want to support
3085		 * unresponded commands for such cases only.
3086		 */
3087		bt_dev_err(hdev, "unresponded command not supported");
3088		return -EINVAL;
3089	}
3090
3091	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3092	if (!skb) {
3093		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094			   opcode);
3095		return -ENOMEM;
3096	}
3097
3098	hci_send_frame(hdev, skb);
3099
3100	return 0;
3101}
3102EXPORT_SYMBOL(__hci_cmd_send);
3103
3104/* Get data from the previously sent command */
3105static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3106{
3107	struct hci_command_hdr *hdr;
3108
3109	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3110		return NULL;
3111
3112	hdr = (void *)skb->data;
3113
3114	if (hdr->opcode != cpu_to_le16(opcode))
3115		return NULL;
3116
3117	return skb->data + HCI_COMMAND_HDR_SIZE;
3118}
3119
3120/* Get data from the previously sent command */
3121void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3122{
3123	void *data;
3124
3125	/* Check if opcode matches last sent command */
3126	data = hci_cmd_data(hdev->sent_cmd, opcode);
3127	if (!data)
3128		/* Check if opcode matches last request */
3129		data = hci_cmd_data(hdev->req_skb, opcode);
3130
3131	return data;
3132}
3133
3134/* Get data from last received event */
3135void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3136{
3137	struct hci_event_hdr *hdr;
3138	int offset;
3139
3140	if (!hdev->recv_event)
3141		return NULL;
3142
3143	hdr = (void *)hdev->recv_event->data;
3144	offset = sizeof(*hdr);
3145
3146	if (hdr->evt != event) {
3147		/* In case of LE metaevent check the subevent match */
3148		if (hdr->evt == HCI_EV_LE_META) {
3149			struct hci_ev_le_meta *ev;
3150
3151			ev = (void *)hdev->recv_event->data + offset;
3152			offset += sizeof(*ev);
3153			if (ev->subevent == event)
3154				goto found;
3155		}
3156		return NULL;
3157	}
3158
3159found:
3160	bt_dev_dbg(hdev, "event 0x%2.2x", event);
 
3161
3162	return hdev->recv_event->data + offset;
3163}
 
3164
3165/* Send ACL data */
3166static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3167{
3168	struct hci_acl_hdr *hdr;
3169	int len = skb->len;
3170
3171	skb_push(skb, HCI_ACL_HDR_SIZE);
3172	skb_reset_transport_header(skb);
3173	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3174	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3175	hdr->dlen   = cpu_to_le16(len);
3176}
3177
3178static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3179			  struct sk_buff *skb, __u16 flags)
3180{
3181	struct hci_conn *conn = chan->conn;
3182	struct hci_dev *hdev = conn->hdev;
3183	struct sk_buff *list;
3184
3185	skb->len = skb_headlen(skb);
3186	skb->data_len = 0;
3187
3188	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3189
3190	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
3191
3192	list = skb_shinfo(skb)->frag_list;
3193	if (!list) {
3194		/* Non fragmented */
3195		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3196
3197		skb_queue_tail(queue, skb);
3198	} else {
3199		/* Fragmented */
3200		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3201
3202		skb_shinfo(skb)->frag_list = NULL;
3203
3204		/* Queue all fragments atomically. We need to use spin_lock_bh
3205		 * here because of 6LoWPAN links, as there this function is
3206		 * called from softirq and using normal spin lock could cause
3207		 * deadlocks.
3208		 */
3209		spin_lock_bh(&queue->lock);
3210
3211		__skb_queue_tail(queue, skb);
3212
3213		flags &= ~ACL_START;
3214		flags |= ACL_CONT;
3215		do {
3216			skb = list; list = list->next;
3217
3218			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3219			hci_add_acl_hdr(skb, conn->handle, flags);
3220
3221			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3222
3223			__skb_queue_tail(queue, skb);
3224		} while (list);
3225
3226		spin_unlock_bh(&queue->lock);
3227	}
3228}
3229
3230void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3231{
3232	struct hci_dev *hdev = chan->conn->hdev;
3233
3234	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3235
3236	hci_queue_acl(chan, &chan->data_q, skb, flags);
3237
3238	queue_work(hdev->workqueue, &hdev->tx_work);
3239}
3240
3241/* Send SCO data */
3242void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3243{
3244	struct hci_dev *hdev = conn->hdev;
3245	struct hci_sco_hdr hdr;
3246
3247	BT_DBG("%s len %d", hdev->name, skb->len);
3248
3249	hdr.handle = cpu_to_le16(conn->handle);
3250	hdr.dlen   = skb->len;
3251
3252	skb_push(skb, HCI_SCO_HDR_SIZE);
3253	skb_reset_transport_header(skb);
3254	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3255
3256	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3257
3258	skb_queue_tail(&conn->data_q, skb);
3259	queue_work(hdev->workqueue, &hdev->tx_work);
3260}
3261
3262/* Send ISO data */
3263static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3264{
3265	struct hci_iso_hdr *hdr;
3266	int len = skb->len;
3267
3268	skb_push(skb, HCI_ISO_HDR_SIZE);
3269	skb_reset_transport_header(skb);
3270	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3271	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3272	hdr->dlen   = cpu_to_le16(len);
3273}
3274
3275static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3276			  struct sk_buff *skb)
3277{
3278	struct hci_dev *hdev = conn->hdev;
3279	struct sk_buff *list;
3280	__u16 flags;
3281
3282	skb->len = skb_headlen(skb);
3283	skb->data_len = 0;
3284
3285	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3286
3287	list = skb_shinfo(skb)->frag_list;
3288
3289	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3290	hci_add_iso_hdr(skb, conn->handle, flags);
3291
3292	if (!list) {
3293		/* Non fragmented */
3294		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3295
3296		skb_queue_tail(queue, skb);
3297	} else {
3298		/* Fragmented */
3299		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3300
3301		skb_shinfo(skb)->frag_list = NULL;
3302
3303		__skb_queue_tail(queue, skb);
3304
3305		do {
3306			skb = list; list = list->next;
3307
3308			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3309			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3310						   0x00);
3311			hci_add_iso_hdr(skb, conn->handle, flags);
3312
3313			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3314
3315			__skb_queue_tail(queue, skb);
3316		} while (list);
3317	}
3318}
3319
3320void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3321{
3322	struct hci_dev *hdev = conn->hdev;
3323
3324	BT_DBG("%s len %d", hdev->name, skb->len);
3325
3326	hci_queue_iso(conn, &conn->data_q, skb);
3327
3328	queue_work(hdev->workqueue, &hdev->tx_work);
3329}
3330
3331/* ---- HCI TX task (outgoing data) ---- */
3332
3333/* HCI Connection scheduler */
3334static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3335{
3336	struct hci_dev *hdev;
3337	int cnt, q;
3338
3339	if (!conn) {
3340		*quote = 0;
3341		return;
3342	}
3343
3344	hdev = conn->hdev;
3345
3346	switch (conn->type) {
3347	case ACL_LINK:
3348		cnt = hdev->acl_cnt;
3349		break;
3350	case SCO_LINK:
3351	case ESCO_LINK:
3352		cnt = hdev->sco_cnt;
3353		break;
3354	case LE_LINK:
3355		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3356		break;
3357	case ISO_LINK:
3358		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3359			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360		break;
3361	default:
3362		cnt = 0;
3363		bt_dev_err(hdev, "unknown link type %d", conn->type);
3364	}
3365
3366	q = cnt / num;
3367	*quote = q ? q : 1;
3368}
3369
3370static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3371				     int *quote)
3372{
3373	struct hci_conn_hash *h = &hdev->conn_hash;
3374	struct hci_conn *conn = NULL, *c;
3375	unsigned int num = 0, min = ~0;
3376
3377	/* We don't have to lock device here. Connections are always
3378	 * added and removed with TX task disabled. */
3379
3380	rcu_read_lock();
3381
3382	list_for_each_entry_rcu(c, &h->list, list) {
3383		if (c->type != type || skb_queue_empty(&c->data_q))
3384			continue;
3385
3386		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3387			continue;
3388
3389		num++;
3390
3391		if (c->sent < min) {
3392			min  = c->sent;
3393			conn = c;
3394		}
3395
3396		if (hci_conn_num(hdev, type) == num)
3397			break;
3398	}
3399
3400	rcu_read_unlock();
3401
3402	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	BT_DBG("conn %p quote %d", conn, *quote);
3405	return conn;
3406}
3407
3408static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3409{
3410	struct hci_conn_hash *h = &hdev->conn_hash;
3411	struct hci_conn *c;
3412
3413	bt_dev_err(hdev, "link tx timeout");
3414
3415	rcu_read_lock();
3416
3417	/* Kill stalled connections */
3418	list_for_each_entry_rcu(c, &h->list, list) {
3419		if (c->type == type && c->sent) {
3420			bt_dev_err(hdev, "killing stalled connection %pMR",
3421				   &c->dst);
3422			/* hci_disconnect might sleep, so, we have to release
3423			 * the RCU read lock before calling it.
3424			 */
3425			rcu_read_unlock();
3426			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3427			rcu_read_lock();
3428		}
3429	}
3430
3431	rcu_read_unlock();
3432}
3433
3434static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3435				      int *quote)
3436{
3437	struct hci_conn_hash *h = &hdev->conn_hash;
3438	struct hci_chan *chan = NULL;
3439	unsigned int num = 0, min = ~0, cur_prio = 0;
3440	struct hci_conn *conn;
3441	int conn_num = 0;
3442
3443	BT_DBG("%s", hdev->name);
3444
3445	rcu_read_lock();
3446
3447	list_for_each_entry_rcu(conn, &h->list, list) {
3448		struct hci_chan *tmp;
3449
3450		if (conn->type != type)
3451			continue;
3452
3453		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3454			continue;
3455
3456		conn_num++;
3457
3458		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3459			struct sk_buff *skb;
3460
3461			if (skb_queue_empty(&tmp->data_q))
3462				continue;
3463
3464			skb = skb_peek(&tmp->data_q);
3465			if (skb->priority < cur_prio)
3466				continue;
3467
3468			if (skb->priority > cur_prio) {
3469				num = 0;
3470				min = ~0;
3471				cur_prio = skb->priority;
3472			}
3473
3474			num++;
3475
3476			if (conn->sent < min) {
3477				min  = conn->sent;
3478				chan = tmp;
3479			}
3480		}
3481
3482		if (hci_conn_num(hdev, type) == conn_num)
3483			break;
3484	}
3485
3486	rcu_read_unlock();
3487
3488	if (!chan)
3489		return NULL;
3490
3491	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492
 
 
3493	BT_DBG("chan %p quote %d", chan, *quote);
3494	return chan;
3495}
3496
3497static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3498{
3499	struct hci_conn_hash *h = &hdev->conn_hash;
3500	struct hci_conn *conn;
3501	int num = 0;
3502
3503	BT_DBG("%s", hdev->name);
3504
3505	rcu_read_lock();
3506
3507	list_for_each_entry_rcu(conn, &h->list, list) {
3508		struct hci_chan *chan;
3509
3510		if (conn->type != type)
3511			continue;
3512
3513		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3514			continue;
3515
3516		num++;
3517
3518		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3519			struct sk_buff *skb;
3520
3521			if (chan->sent) {
3522				chan->sent = 0;
3523				continue;
3524			}
3525
3526			if (skb_queue_empty(&chan->data_q))
3527				continue;
3528
3529			skb = skb_peek(&chan->data_q);
3530			if (skb->priority >= HCI_PRIO_MAX - 1)
3531				continue;
3532
3533			skb->priority = HCI_PRIO_MAX - 1;
3534
3535			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3536			       skb->priority);
3537		}
3538
3539		if (hci_conn_num(hdev, type) == num)
3540			break;
3541	}
3542
3543	rcu_read_unlock();
3544
3545}
3546
3547static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3548{
3549	unsigned long last_tx;
3550
3551	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3552		return;
3553
3554	switch (type) {
3555	case LE_LINK:
3556		last_tx = hdev->le_last_tx;
3557		break;
3558	default:
3559		last_tx = hdev->acl_last_tx;
3560		break;
 
3561	}
3562
3563	/* tx timeout must be longer than maximum link supervision timeout
3564	 * (40.9 seconds)
3565	 */
3566	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3567		hci_link_tx_to(hdev, type);
3568}
3569
3570/* Schedule SCO */
3571static void hci_sched_sco(struct hci_dev *hdev)
3572{
3573	struct hci_conn *conn;
3574	struct sk_buff *skb;
3575	int quote;
3576
3577	BT_DBG("%s", hdev->name);
3578
3579	if (!hci_conn_num(hdev, SCO_LINK))
3580		return;
3581
3582	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3583		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3584			BT_DBG("skb %p len %d", skb, skb->len);
3585			hci_send_frame(hdev, skb);
3586
3587			conn->sent++;
3588			if (conn->sent == ~0)
3589				conn->sent = 0;
3590		}
3591	}
3592}
3593
3594static void hci_sched_esco(struct hci_dev *hdev)
3595{
3596	struct hci_conn *conn;
3597	struct sk_buff *skb;
3598	int quote;
3599
3600	BT_DBG("%s", hdev->name);
3601
3602	if (!hci_conn_num(hdev, ESCO_LINK))
3603		return;
3604
3605	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3606						     &quote))) {
3607		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3608			BT_DBG("skb %p len %d", skb, skb->len);
3609			hci_send_frame(hdev, skb);
3610
3611			conn->sent++;
3612			if (conn->sent == ~0)
3613				conn->sent = 0;
3614		}
3615	}
3616}
3617
3618static void hci_sched_acl_pkt(struct hci_dev *hdev)
3619{
3620	unsigned int cnt = hdev->acl_cnt;
3621	struct hci_chan *chan;
3622	struct sk_buff *skb;
3623	int quote;
3624
3625	__check_timeout(hdev, cnt, ACL_LINK);
3626
3627	while (hdev->acl_cnt &&
3628	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3629		u32 priority = (skb_peek(&chan->data_q))->priority;
3630		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3631			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3632			       skb->len, skb->priority);
3633
3634			/* Stop if priority has changed */
3635			if (skb->priority < priority)
3636				break;
3637
3638			skb = skb_dequeue(&chan->data_q);
3639
3640			hci_conn_enter_active_mode(chan->conn,
3641						   bt_cb(skb)->force_active);
3642
3643			hci_send_frame(hdev, skb);
3644			hdev->acl_last_tx = jiffies;
3645
3646			hdev->acl_cnt--;
3647			chan->sent++;
3648			chan->conn->sent++;
3649
3650			/* Send pending SCO packets right away */
3651			hci_sched_sco(hdev);
3652			hci_sched_esco(hdev);
3653		}
3654	}
3655
3656	if (cnt != hdev->acl_cnt)
3657		hci_prio_recalculate(hdev, ACL_LINK);
3658}
3659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660static void hci_sched_acl(struct hci_dev *hdev)
3661{
3662	BT_DBG("%s", hdev->name);
3663
3664	/* No ACL link over BR/EDR controller */
3665	if (!hci_conn_num(hdev, ACL_LINK))
3666		return;
3667
3668	hci_sched_acl_pkt(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static void hci_sched_le(struct hci_dev *hdev)
3672{
3673	struct hci_chan *chan;
3674	struct sk_buff *skb;
3675	int quote, *cnt, tmp;
3676
3677	BT_DBG("%s", hdev->name);
3678
3679	if (!hci_conn_num(hdev, LE_LINK))
3680		return;
3681
3682	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3683
3684	__check_timeout(hdev, *cnt, LE_LINK);
3685
3686	tmp = *cnt;
3687	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3688		u32 priority = (skb_peek(&chan->data_q))->priority;
3689		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3690			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691			       skb->len, skb->priority);
3692
3693			/* Stop if priority has changed */
3694			if (skb->priority < priority)
3695				break;
3696
3697			skb = skb_dequeue(&chan->data_q);
3698
3699			hci_send_frame(hdev, skb);
3700			hdev->le_last_tx = jiffies;
3701
3702			(*cnt)--;
3703			chan->sent++;
3704			chan->conn->sent++;
3705
3706			/* Send pending SCO packets right away */
3707			hci_sched_sco(hdev);
3708			hci_sched_esco(hdev);
3709		}
3710	}
3711
3712	if (*cnt != tmp)
3713		hci_prio_recalculate(hdev, LE_LINK);
3714}
3715
3716/* Schedule CIS */
3717static void hci_sched_iso(struct hci_dev *hdev)
3718{
3719	struct hci_conn *conn;
3720	struct sk_buff *skb;
3721	int quote, *cnt;
3722
3723	BT_DBG("%s", hdev->name);
3724
3725	if (!hci_conn_num(hdev, ISO_LINK))
3726		return;
3727
3728	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3729		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3730	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3731		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3732			BT_DBG("skb %p len %d", skb, skb->len);
3733			hci_send_frame(hdev, skb);
3734
3735			conn->sent++;
3736			if (conn->sent == ~0)
3737				conn->sent = 0;
3738			(*cnt)--;
3739		}
3740	}
3741}
3742
3743static void hci_tx_work(struct work_struct *work)
3744{
3745	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3746	struct sk_buff *skb;
3747
3748	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3749	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3750
3751	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3752		/* Schedule queues and send stuff to HCI driver */
3753		hci_sched_sco(hdev);
3754		hci_sched_esco(hdev);
3755		hci_sched_iso(hdev);
3756		hci_sched_acl(hdev);
3757		hci_sched_le(hdev);
3758	}
3759
3760	/* Send next queued raw (unknown type) packet */
3761	while ((skb = skb_dequeue(&hdev->raw_q)))
3762		hci_send_frame(hdev, skb);
3763}
3764
3765/* ----- HCI RX task (incoming data processing) ----- */
3766
3767/* ACL data packet */
3768static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3769{
3770	struct hci_acl_hdr *hdr;
3771	struct hci_conn *conn;
3772	__u16 handle, flags;
3773
3774	hdr = skb_pull_data(skb, sizeof(*hdr));
3775	if (!hdr) {
3776		bt_dev_err(hdev, "ACL packet too small");
3777		goto drop;
3778	}
3779
3780	handle = __le16_to_cpu(hdr->handle);
3781	flags  = hci_flags(handle);
3782	handle = hci_handle(handle);
3783
3784	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3785		   handle, flags);
3786
3787	hdev->stat.acl_rx++;
3788
3789	hci_dev_lock(hdev);
3790	conn = hci_conn_hash_lookup_handle(hdev, handle);
3791	hci_dev_unlock(hdev);
3792
3793	if (conn) {
3794		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3795
3796		/* Send to upper protocol */
3797		l2cap_recv_acldata(conn, skb, flags);
3798		return;
3799	} else {
3800		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3801			   handle);
3802	}
3803
3804drop:
3805	kfree_skb(skb);
3806}
3807
3808/* SCO data packet */
3809static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810{
3811	struct hci_sco_hdr *hdr;
3812	struct hci_conn *conn;
3813	__u16 handle, flags;
3814
3815	hdr = skb_pull_data(skb, sizeof(*hdr));
3816	if (!hdr) {
3817		bt_dev_err(hdev, "SCO packet too small");
3818		goto drop;
3819	}
3820
3821	handle = __le16_to_cpu(hdr->handle);
3822	flags  = hci_flags(handle);
3823	handle = hci_handle(handle);
3824
3825	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3826		   handle, flags);
3827
3828	hdev->stat.sco_rx++;
3829
3830	hci_dev_lock(hdev);
3831	conn = hci_conn_hash_lookup_handle(hdev, handle);
3832	hci_dev_unlock(hdev);
3833
3834	if (conn) {
3835		/* Send to upper protocol */
3836		hci_skb_pkt_status(skb) = flags & 0x03;
3837		sco_recv_scodata(conn, skb);
3838		return;
3839	} else {
3840		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3841				       handle);
3842	}
3843
3844drop:
3845	kfree_skb(skb);
3846}
3847
3848static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3849{
3850	struct hci_iso_hdr *hdr;
3851	struct hci_conn *conn;
3852	__u16 handle, flags;
3853
3854	hdr = skb_pull_data(skb, sizeof(*hdr));
3855	if (!hdr) {
3856		bt_dev_err(hdev, "ISO packet too small");
3857		goto drop;
3858	}
3859
3860	handle = __le16_to_cpu(hdr->handle);
3861	flags  = hci_flags(handle);
3862	handle = hci_handle(handle);
3863
3864	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3865		   handle, flags);
3866
3867	hci_dev_lock(hdev);
3868	conn = hci_conn_hash_lookup_handle(hdev, handle);
3869	hci_dev_unlock(hdev);
3870
3871	if (!conn) {
3872		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3873			   handle);
3874		goto drop;
3875	}
3876
3877	/* Send to upper protocol */
3878	iso_recv(conn, skb, flags);
3879	return;
3880
3881drop:
3882	kfree_skb(skb);
3883}
3884
3885static bool hci_req_is_complete(struct hci_dev *hdev)
3886{
3887	struct sk_buff *skb;
3888
3889	skb = skb_peek(&hdev->cmd_q);
3890	if (!skb)
3891		return true;
3892
3893	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3894}
3895
3896static void hci_resend_last(struct hci_dev *hdev)
3897{
3898	struct hci_command_hdr *sent;
3899	struct sk_buff *skb;
3900	u16 opcode;
3901
3902	if (!hdev->sent_cmd)
3903		return;
3904
3905	sent = (void *) hdev->sent_cmd->data;
3906	opcode = __le16_to_cpu(sent->opcode);
3907	if (opcode == HCI_OP_RESET)
3908		return;
3909
3910	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3911	if (!skb)
3912		return;
3913
3914	skb_queue_head(&hdev->cmd_q, skb);
3915	queue_work(hdev->workqueue, &hdev->cmd_work);
3916}
3917
3918void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3919			  hci_req_complete_t *req_complete,
3920			  hci_req_complete_skb_t *req_complete_skb)
3921{
3922	struct sk_buff *skb;
3923	unsigned long flags;
3924
3925	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3926
3927	/* If the completed command doesn't match the last one that was
3928	 * sent we need to do special handling of it.
3929	 */
3930	if (!hci_sent_cmd_data(hdev, opcode)) {
3931		/* Some CSR based controllers generate a spontaneous
3932		 * reset complete event during init and any pending
3933		 * command will never be completed. In such a case we
3934		 * need to resend whatever was the last sent
3935		 * command.
3936		 */
3937		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3938			hci_resend_last(hdev);
3939
3940		return;
3941	}
3942
3943	/* If we reach this point this event matches the last command sent */
3944	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3945
3946	/* If the command succeeded and there's still more commands in
3947	 * this request the request is not yet complete.
3948	 */
3949	if (!status && !hci_req_is_complete(hdev))
3950		return;
3951
3952	skb = hdev->req_skb;
3953
3954	/* If this was the last command in a request the complete
3955	 * callback would be found in hdev->req_skb instead of the
3956	 * command queue (hdev->cmd_q).
3957	 */
3958	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3959		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3960		return;
3961	}
3962
3963	if (skb && bt_cb(skb)->hci.req_complete) {
3964		*req_complete = bt_cb(skb)->hci.req_complete;
3965		return;
3966	}
3967
3968	/* Remove all pending commands belonging to this request */
3969	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3970	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3971		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3972			__skb_queue_head(&hdev->cmd_q, skb);
3973			break;
3974		}
3975
3976		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3977			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3978		else
3979			*req_complete = bt_cb(skb)->hci.req_complete;
3980		dev_kfree_skb_irq(skb);
3981	}
3982	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3983}
3984
3985static void hci_rx_work(struct work_struct *work)
3986{
3987	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3988	struct sk_buff *skb;
3989
3990	BT_DBG("%s", hdev->name);
3991
3992	/* The kcov_remote functions used for collecting packet parsing
3993	 * coverage information from this background thread and associate
3994	 * the coverage with the syscall's thread which originally injected
3995	 * the packet. This helps fuzzing the kernel.
3996	 */
3997	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3998		kcov_remote_start_common(skb_get_kcov_handle(skb));
3999
4000		/* Send copy to monitor */
4001		hci_send_to_monitor(hdev, skb);
4002
4003		if (atomic_read(&hdev->promisc)) {
4004			/* Send copy to the sockets */
4005			hci_send_to_sock(hdev, skb);
4006		}
4007
4008		/* If the device has been opened in HCI_USER_CHANNEL,
4009		 * the userspace has exclusive access to device.
4010		 * When device is HCI_INIT, we still need to process
4011		 * the data packets to the driver in order
4012		 * to complete its setup().
4013		 */
4014		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4015		    !test_bit(HCI_INIT, &hdev->flags)) {
4016			kfree_skb(skb);
4017			continue;
4018		}
4019
4020		if (test_bit(HCI_INIT, &hdev->flags)) {
4021			/* Don't process data packets in this states. */
4022			switch (hci_skb_pkt_type(skb)) {
4023			case HCI_ACLDATA_PKT:
4024			case HCI_SCODATA_PKT:
4025			case HCI_ISODATA_PKT:
4026				kfree_skb(skb);
4027				continue;
4028			}
4029		}
4030
4031		/* Process frame */
4032		switch (hci_skb_pkt_type(skb)) {
4033		case HCI_EVENT_PKT:
4034			BT_DBG("%s Event packet", hdev->name);
4035			hci_event_packet(hdev, skb);
4036			break;
4037
4038		case HCI_ACLDATA_PKT:
4039			BT_DBG("%s ACL data packet", hdev->name);
4040			hci_acldata_packet(hdev, skb);
4041			break;
4042
4043		case HCI_SCODATA_PKT:
4044			BT_DBG("%s SCO data packet", hdev->name);
4045			hci_scodata_packet(hdev, skb);
4046			break;
4047
4048		case HCI_ISODATA_PKT:
4049			BT_DBG("%s ISO data packet", hdev->name);
4050			hci_isodata_packet(hdev, skb);
4051			break;
4052
4053		default:
4054			kfree_skb(skb);
4055			break;
4056		}
4057	}
4058}
4059
4060static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4061{
4062	int err;
4063
4064	bt_dev_dbg(hdev, "skb %p", skb);
4065
4066	kfree_skb(hdev->sent_cmd);
4067
4068	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4069	if (!hdev->sent_cmd) {
4070		skb_queue_head(&hdev->cmd_q, skb);
4071		queue_work(hdev->workqueue, &hdev->cmd_work);
4072		return;
4073	}
4074
4075	err = hci_send_frame(hdev, skb);
4076	if (err < 0) {
4077		hci_cmd_sync_cancel_sync(hdev, -err);
4078		return;
4079	}
4080
4081	if (hdev->req_status == HCI_REQ_PEND &&
4082	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4083		kfree_skb(hdev->req_skb);
4084		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	}
4086
4087	atomic_dec(&hdev->cmd_cnt);
4088}
4089
4090static void hci_cmd_work(struct work_struct *work)
4091{
4092	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4093	struct sk_buff *skb;
4094
4095	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4096	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4097
4098	/* Send queued commands */
4099	if (atomic_read(&hdev->cmd_cnt)) {
4100		skb = skb_dequeue(&hdev->cmd_q);
4101		if (!skb)
4102			return;
4103
4104		hci_send_cmd_sync(hdev, skb);
4105
4106		rcu_read_lock();
4107		if (test_bit(HCI_RESET, &hdev->flags) ||
4108		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4109			cancel_delayed_work(&hdev->cmd_timer);
4110		else
4111			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4112					   HCI_CMD_TIMEOUT);
4113		rcu_read_unlock();
 
 
 
 
 
 
 
4114	}
4115}
v5.9
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
 
  32#include <linux/property.h>
  33#include <linux/suspend.h>
  34#include <linux/wait.h>
  35#include <asm/unaligned.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39#include <net/bluetooth/l2cap.h>
  40#include <net/bluetooth/mgmt.h>
  41
  42#include "hci_request.h"
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
 
 
  47
  48static void hci_rx_work(struct work_struct *work);
  49static void hci_cmd_work(struct work_struct *work);
  50static void hci_tx_work(struct work_struct *work);
  51
  52/* HCI device list */
  53LIST_HEAD(hci_dev_list);
  54DEFINE_RWLOCK(hci_dev_list_lock);
  55
  56/* HCI callback list */
  57LIST_HEAD(hci_cb_list);
  58DEFINE_MUTEX(hci_cb_list_lock);
  59
  60/* HCI ID Numbering */
  61static DEFINE_IDA(hci_index_ida);
  62
  63/* ---- HCI debugfs entries ---- */
  64
  65static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  66			     size_t count, loff_t *ppos)
  67{
  68	struct hci_dev *hdev = file->private_data;
  69	char buf[3];
  70
  71	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  72	buf[1] = '\n';
  73	buf[2] = '\0';
  74	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  75}
  76
  77static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  78			      size_t count, loff_t *ppos)
  79{
  80	struct hci_dev *hdev = file->private_data;
  81	struct sk_buff *skb;
  82	bool enable;
  83	int err;
  84
  85	if (!test_bit(HCI_UP, &hdev->flags))
  86		return -ENETDOWN;
  87
  88	err = kstrtobool_from_user(user_buf, count, &enable);
  89	if (err)
  90		return err;
  91
  92	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  93		return -EALREADY;
  94
  95	hci_req_sync_lock(hdev);
  96	if (enable)
  97		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  98				     HCI_CMD_TIMEOUT);
  99	else
 100		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 101				     HCI_CMD_TIMEOUT);
 102	hci_req_sync_unlock(hdev);
 103
 104	if (IS_ERR(skb))
 105		return PTR_ERR(skb);
 106
 107	kfree_skb(skb);
 108
 109	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 110
 111	return count;
 112}
 113
 114static const struct file_operations dut_mode_fops = {
 115	.open		= simple_open,
 116	.read		= dut_mode_read,
 117	.write		= dut_mode_write,
 118	.llseek		= default_llseek,
 119};
 120
 121static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 122				size_t count, loff_t *ppos)
 123{
 124	struct hci_dev *hdev = file->private_data;
 125	char buf[3];
 126
 127	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 128	buf[1] = '\n';
 129	buf[2] = '\0';
 130	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 131}
 132
 133static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 134				 size_t count, loff_t *ppos)
 135{
 136	struct hci_dev *hdev = file->private_data;
 137	bool enable;
 138	int err;
 139
 140	err = kstrtobool_from_user(user_buf, count, &enable);
 141	if (err)
 142		return err;
 143
 144	/* When the diagnostic flags are not persistent and the transport
 145	 * is not active or in user channel operation, then there is no need
 146	 * for the vendor callback. Instead just store the desired value and
 147	 * the setting will be programmed when the controller gets powered on.
 148	 */
 149	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 150	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 151	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 152		goto done;
 153
 154	hci_req_sync_lock(hdev);
 155	err = hdev->set_diag(hdev, enable);
 156	hci_req_sync_unlock(hdev);
 157
 158	if (err < 0)
 159		return err;
 160
 161done:
 162	if (enable)
 163		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 164	else
 165		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 166
 167	return count;
 168}
 169
 170static const struct file_operations vendor_diag_fops = {
 171	.open		= simple_open,
 172	.read		= vendor_diag_read,
 173	.write		= vendor_diag_write,
 174	.llseek		= default_llseek,
 175};
 176
 177static void hci_debugfs_create_basic(struct hci_dev *hdev)
 178{
 179	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 180			    &dut_mode_fops);
 181
 182	if (hdev->set_diag)
 183		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 184				    &vendor_diag_fops);
 185}
 186
 187static int hci_reset_req(struct hci_request *req, unsigned long opt)
 188{
 189	BT_DBG("%s %ld", req->hdev->name, opt);
 190
 191	/* Reset device */
 192	set_bit(HCI_RESET, &req->hdev->flags);
 193	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 194	return 0;
 195}
 196
 197static void bredr_init(struct hci_request *req)
 198{
 199	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 200
 201	/* Read Local Supported Features */
 202	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 203
 204	/* Read Local Version */
 205	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 206
 207	/* Read BD Address */
 208	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 209}
 210
 211static void amp_init1(struct hci_request *req)
 212{
 213	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 214
 215	/* Read Local Version */
 216	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 217
 218	/* Read Local Supported Commands */
 219	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 220
 221	/* Read Local AMP Info */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 223
 224	/* Read Data Blk size */
 225	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 226
 227	/* Read Flow Control Mode */
 228	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 229
 230	/* Read Location Data */
 231	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 232}
 233
 234static int amp_init2(struct hci_request *req)
 235{
 236	/* Read Local Supported Features. Not all AMP controllers
 237	 * support this so it's placed conditionally in the second
 238	 * stage init.
 239	 */
 240	if (req->hdev->commands[14] & 0x20)
 241		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 242
 243	return 0;
 244}
 245
 246static int hci_init1_req(struct hci_request *req, unsigned long opt)
 247{
 248	struct hci_dev *hdev = req->hdev;
 249
 250	BT_DBG("%s %ld", hdev->name, opt);
 251
 252	/* Reset */
 253	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 254		hci_reset_req(req, 0);
 255
 256	switch (hdev->dev_type) {
 257	case HCI_PRIMARY:
 258		bredr_init(req);
 259		break;
 260	case HCI_AMP:
 261		amp_init1(req);
 262		break;
 263	default:
 264		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 265		break;
 266	}
 267
 268	return 0;
 269}
 270
 271static void bredr_setup(struct hci_request *req)
 272{
 273	__le16 param;
 274	__u8 flt_type;
 275
 276	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 277	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 278
 279	/* Read Class of Device */
 280	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 281
 282	/* Read Local Name */
 283	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 284
 285	/* Read Voice Setting */
 286	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 287
 288	/* Read Number of Supported IAC */
 289	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 290
 291	/* Read Current IAC LAP */
 292	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 293
 294	/* Clear Event Filters */
 295	flt_type = HCI_FLT_CLEAR_ALL;
 296	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 297
 298	/* Connection accept timeout ~20 secs */
 299	param = cpu_to_le16(0x7d00);
 300	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 301}
 302
 303static void le_setup(struct hci_request *req)
 304{
 305	struct hci_dev *hdev = req->hdev;
 306
 307	/* Read LE Buffer Size */
 308	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 309
 310	/* Read LE Local Supported Features */
 311	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 312
 313	/* Read LE Supported States */
 314	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 315
 316	/* LE-only controllers have LE implicitly enabled */
 317	if (!lmp_bredr_capable(hdev))
 318		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 319}
 320
 321static void hci_setup_event_mask(struct hci_request *req)
 322{
 323	struct hci_dev *hdev = req->hdev;
 324
 325	/* The second byte is 0xff instead of 0x9f (two reserved bits
 326	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 327	 * command otherwise.
 328	 */
 329	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 330
 331	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 332	 * any event mask for pre 1.2 devices.
 333	 */
 334	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 335		return;
 336
 337	if (lmp_bredr_capable(hdev)) {
 338		events[4] |= 0x01; /* Flow Specification Complete */
 339	} else {
 340		/* Use a different default for LE-only devices */
 341		memset(events, 0, sizeof(events));
 342		events[1] |= 0x20; /* Command Complete */
 343		events[1] |= 0x40; /* Command Status */
 344		events[1] |= 0x80; /* Hardware Error */
 345
 346		/* If the controller supports the Disconnect command, enable
 347		 * the corresponding event. In addition enable packet flow
 348		 * control related events.
 349		 */
 350		if (hdev->commands[0] & 0x20) {
 351			events[0] |= 0x10; /* Disconnection Complete */
 352			events[2] |= 0x04; /* Number of Completed Packets */
 353			events[3] |= 0x02; /* Data Buffer Overflow */
 354		}
 355
 356		/* If the controller supports the Read Remote Version
 357		 * Information command, enable the corresponding event.
 358		 */
 359		if (hdev->commands[2] & 0x80)
 360			events[1] |= 0x08; /* Read Remote Version Information
 361					    * Complete
 362					    */
 363
 364		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 365			events[0] |= 0x80; /* Encryption Change */
 366			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 367		}
 368	}
 369
 370	if (lmp_inq_rssi_capable(hdev) ||
 371	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 372		events[4] |= 0x02; /* Inquiry Result with RSSI */
 373
 374	if (lmp_ext_feat_capable(hdev))
 375		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 376
 377	if (lmp_esco_capable(hdev)) {
 378		events[5] |= 0x08; /* Synchronous Connection Complete */
 379		events[5] |= 0x10; /* Synchronous Connection Changed */
 380	}
 381
 382	if (lmp_sniffsubr_capable(hdev))
 383		events[5] |= 0x20; /* Sniff Subrating */
 384
 385	if (lmp_pause_enc_capable(hdev))
 386		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 387
 388	if (lmp_ext_inq_capable(hdev))
 389		events[5] |= 0x40; /* Extended Inquiry Result */
 390
 391	if (lmp_no_flush_capable(hdev))
 392		events[7] |= 0x01; /* Enhanced Flush Complete */
 393
 394	if (lmp_lsto_capable(hdev))
 395		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 396
 397	if (lmp_ssp_capable(hdev)) {
 398		events[6] |= 0x01;	/* IO Capability Request */
 399		events[6] |= 0x02;	/* IO Capability Response */
 400		events[6] |= 0x04;	/* User Confirmation Request */
 401		events[6] |= 0x08;	/* User Passkey Request */
 402		events[6] |= 0x10;	/* Remote OOB Data Request */
 403		events[6] |= 0x20;	/* Simple Pairing Complete */
 404		events[7] |= 0x04;	/* User Passkey Notification */
 405		events[7] |= 0x08;	/* Keypress Notification */
 406		events[7] |= 0x10;	/* Remote Host Supported
 407					 * Features Notification
 408					 */
 409	}
 410
 411	if (lmp_le_capable(hdev))
 412		events[7] |= 0x20;	/* LE Meta-Event */
 413
 414	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 415}
 416
 417static int hci_init2_req(struct hci_request *req, unsigned long opt)
 418{
 419	struct hci_dev *hdev = req->hdev;
 420
 421	if (hdev->dev_type == HCI_AMP)
 422		return amp_init2(req);
 423
 424	if (lmp_bredr_capable(hdev))
 425		bredr_setup(req);
 426	else
 427		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 428
 429	if (lmp_le_capable(hdev))
 430		le_setup(req);
 431
 432	/* All Bluetooth 1.2 and later controllers should support the
 433	 * HCI command for reading the local supported commands.
 434	 *
 435	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 436	 * but do not have support for this command. If that is the case,
 437	 * the driver can quirk the behavior and skip reading the local
 438	 * supported commands.
 439	 */
 440	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 441	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 442		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 443
 444	if (lmp_ssp_capable(hdev)) {
 445		/* When SSP is available, then the host features page
 446		 * should also be available as well. However some
 447		 * controllers list the max_page as 0 as long as SSP
 448		 * has not been enabled. To achieve proper debugging
 449		 * output, force the minimum max_page to 1 at least.
 450		 */
 451		hdev->max_page = 0x01;
 452
 453		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 454			u8 mode = 0x01;
 455
 456			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 457				    sizeof(mode), &mode);
 458		} else {
 459			struct hci_cp_write_eir cp;
 460
 461			memset(hdev->eir, 0, sizeof(hdev->eir));
 462			memset(&cp, 0, sizeof(cp));
 463
 464			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 465		}
 466	}
 467
 468	if (lmp_inq_rssi_capable(hdev) ||
 469	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 470		u8 mode;
 471
 472		/* If Extended Inquiry Result events are supported, then
 473		 * they are clearly preferred over Inquiry Result with RSSI
 474		 * events.
 475		 */
 476		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 477
 478		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 479	}
 480
 481	if (lmp_inq_tx_pwr_capable(hdev))
 482		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 483
 484	if (lmp_ext_feat_capable(hdev)) {
 485		struct hci_cp_read_local_ext_features cp;
 486
 487		cp.page = 0x01;
 488		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 489			    sizeof(cp), &cp);
 490	}
 491
 492	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 493		u8 enable = 1;
 494		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 495			    &enable);
 496	}
 497
 498	return 0;
 499}
 500
 501static void hci_setup_link_policy(struct hci_request *req)
 502{
 503	struct hci_dev *hdev = req->hdev;
 504	struct hci_cp_write_def_link_policy cp;
 505	u16 link_policy = 0;
 506
 507	if (lmp_rswitch_capable(hdev))
 508		link_policy |= HCI_LP_RSWITCH;
 509	if (lmp_hold_capable(hdev))
 510		link_policy |= HCI_LP_HOLD;
 511	if (lmp_sniff_capable(hdev))
 512		link_policy |= HCI_LP_SNIFF;
 513	if (lmp_park_capable(hdev))
 514		link_policy |= HCI_LP_PARK;
 515
 516	cp.policy = cpu_to_le16(link_policy);
 517	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 518}
 519
 520static void hci_set_le_support(struct hci_request *req)
 521{
 522	struct hci_dev *hdev = req->hdev;
 523	struct hci_cp_write_le_host_supported cp;
 524
 525	/* LE-only devices do not support explicit enablement */
 526	if (!lmp_bredr_capable(hdev))
 527		return;
 528
 529	memset(&cp, 0, sizeof(cp));
 530
 531	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 532		cp.le = 0x01;
 533		cp.simul = 0x00;
 534	}
 535
 536	if (cp.le != lmp_host_le_capable(hdev))
 537		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 538			    &cp);
 539}
 540
 541static void hci_set_event_mask_page_2(struct hci_request *req)
 542{
 543	struct hci_dev *hdev = req->hdev;
 544	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 545	bool changed = false;
 546
 547	/* If Connectionless Slave Broadcast master role is supported
 548	 * enable all necessary events for it.
 549	 */
 550	if (lmp_csb_master_capable(hdev)) {
 551		events[1] |= 0x40;	/* Triggered Clock Capture */
 552		events[1] |= 0x80;	/* Synchronization Train Complete */
 553		events[2] |= 0x10;	/* Slave Page Response Timeout */
 554		events[2] |= 0x20;	/* CSB Channel Map Change */
 555		changed = true;
 556	}
 557
 558	/* If Connectionless Slave Broadcast slave role is supported
 559	 * enable all necessary events for it.
 560	 */
 561	if (lmp_csb_slave_capable(hdev)) {
 562		events[2] |= 0x01;	/* Synchronization Train Received */
 563		events[2] |= 0x02;	/* CSB Receive */
 564		events[2] |= 0x04;	/* CSB Timeout */
 565		events[2] |= 0x08;	/* Truncated Page Complete */
 566		changed = true;
 567	}
 568
 569	/* Enable Authenticated Payload Timeout Expired event if supported */
 570	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 571		events[2] |= 0x80;
 572		changed = true;
 573	}
 574
 575	/* Some Broadcom based controllers indicate support for Set Event
 576	 * Mask Page 2 command, but then actually do not support it. Since
 577	 * the default value is all bits set to zero, the command is only
 578	 * required if the event mask has to be changed. In case no change
 579	 * to the event mask is needed, skip this command.
 580	 */
 581	if (changed)
 582		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 583			    sizeof(events), events);
 584}
 585
 586static int hci_init3_req(struct hci_request *req, unsigned long opt)
 587{
 588	struct hci_dev *hdev = req->hdev;
 589	u8 p;
 590
 591	hci_setup_event_mask(req);
 592
 593	if (hdev->commands[6] & 0x20 &&
 594	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 595		struct hci_cp_read_stored_link_key cp;
 596
 597		bacpy(&cp.bdaddr, BDADDR_ANY);
 598		cp.read_all = 0x01;
 599		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 600	}
 601
 602	if (hdev->commands[5] & 0x10)
 603		hci_setup_link_policy(req);
 604
 605	if (hdev->commands[8] & 0x01)
 606		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 607
 608	if (hdev->commands[18] & 0x04 &&
 609	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
 610		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
 611
 612	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 613	 * support the Read Page Scan Type command. Check support for
 614	 * this command in the bit mask of supported commands.
 615	 */
 616	if (hdev->commands[13] & 0x01)
 617		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 618
 619	if (lmp_le_capable(hdev)) {
 620		u8 events[8];
 621
 622		memset(events, 0, sizeof(events));
 623
 624		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 625			events[0] |= 0x10;	/* LE Long Term Key Request */
 626
 627		/* If controller supports the Connection Parameters Request
 628		 * Link Layer Procedure, enable the corresponding event.
 629		 */
 630		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 631			events[0] |= 0x20;	/* LE Remote Connection
 632						 * Parameter Request
 633						 */
 634
 635		/* If the controller supports the Data Length Extension
 636		 * feature, enable the corresponding event.
 637		 */
 638		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 639			events[0] |= 0x40;	/* LE Data Length Change */
 640
 641		/* If the controller supports LL Privacy feature, enable
 642		 * the corresponding event.
 643		 */
 644		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
 645			events[1] |= 0x02;	/* LE Enhanced Connection
 646						 * Complete
 647						 */
 648
 649		/* If the controller supports Extended Scanner Filter
 650		 * Policies, enable the correspondig event.
 651		 */
 652		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 653			events[1] |= 0x04;	/* LE Direct Advertising
 654						 * Report
 655						 */
 656
 657		/* If the controller supports Channel Selection Algorithm #2
 658		 * feature, enable the corresponding event.
 659		 */
 660		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 661			events[2] |= 0x08;	/* LE Channel Selection
 662						 * Algorithm
 663						 */
 664
 665		/* If the controller supports the LE Set Scan Enable command,
 666		 * enable the corresponding advertising report event.
 667		 */
 668		if (hdev->commands[26] & 0x08)
 669			events[0] |= 0x02;	/* LE Advertising Report */
 670
 671		/* If the controller supports the LE Create Connection
 672		 * command, enable the corresponding event.
 673		 */
 674		if (hdev->commands[26] & 0x10)
 675			events[0] |= 0x01;	/* LE Connection Complete */
 676
 677		/* If the controller supports the LE Connection Update
 678		 * command, enable the corresponding event.
 679		 */
 680		if (hdev->commands[27] & 0x04)
 681			events[0] |= 0x04;	/* LE Connection Update
 682						 * Complete
 683						 */
 684
 685		/* If the controller supports the LE Read Remote Used Features
 686		 * command, enable the corresponding event.
 687		 */
 688		if (hdev->commands[27] & 0x20)
 689			events[0] |= 0x08;	/* LE Read Remote Used
 690						 * Features Complete
 691						 */
 692
 693		/* If the controller supports the LE Read Local P-256
 694		 * Public Key command, enable the corresponding event.
 695		 */
 696		if (hdev->commands[34] & 0x02)
 697			events[0] |= 0x80;	/* LE Read Local P-256
 698						 * Public Key Complete
 699						 */
 700
 701		/* If the controller supports the LE Generate DHKey
 702		 * command, enable the corresponding event.
 703		 */
 704		if (hdev->commands[34] & 0x04)
 705			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 706
 707		/* If the controller supports the LE Set Default PHY or
 708		 * LE Set PHY commands, enable the corresponding event.
 709		 */
 710		if (hdev->commands[35] & (0x20 | 0x40))
 711			events[1] |= 0x08;        /* LE PHY Update Complete */
 712
 713		/* If the controller supports LE Set Extended Scan Parameters
 714		 * and LE Set Extended Scan Enable commands, enable the
 715		 * corresponding event.
 716		 */
 717		if (use_ext_scan(hdev))
 718			events[1] |= 0x10;	/* LE Extended Advertising
 719						 * Report
 720						 */
 721
 722		/* If the controller supports the LE Extended Advertising
 723		 * command, enable the corresponding event.
 724		 */
 725		if (ext_adv_capable(hdev))
 726			events[2] |= 0x02;	/* LE Advertising Set
 727						 * Terminated
 728						 */
 729
 730		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 731			    events);
 732
 733		/* Read LE Advertising Channel TX Power */
 734		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 735			/* HCI TS spec forbids mixing of legacy and extended
 736			 * advertising commands wherein READ_ADV_TX_POWER is
 737			 * also included. So do not call it if extended adv
 738			 * is supported otherwise controller will return
 739			 * COMMAND_DISALLOWED for extended commands.
 740			 */
 741			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 742		}
 743
 744		if (hdev->commands[26] & 0x40) {
 745			/* Read LE White List Size */
 746			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 747				    0, NULL);
 748		}
 749
 750		if (hdev->commands[26] & 0x80) {
 751			/* Clear LE White List */
 752			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 753		}
 754
 755		if (hdev->commands[34] & 0x40) {
 756			/* Read LE Resolving List Size */
 757			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 758				    0, NULL);
 759		}
 760
 761		if (hdev->commands[34] & 0x20) {
 762			/* Clear LE Resolving List */
 763			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 764		}
 765
 766		if (hdev->commands[35] & 0x40) {
 767			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
 768
 769			/* Set RPA timeout */
 770			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
 771				    &rpa_timeout);
 772		}
 773
 774		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 775			/* Read LE Maximum Data Length */
 776			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 777
 778			/* Read LE Suggested Default Data Length */
 779			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 780		}
 781
 782		if (ext_adv_capable(hdev)) {
 783			/* Read LE Number of Supported Advertising Sets */
 784			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 785				    0, NULL);
 786		}
 787
 788		hci_set_le_support(req);
 789	}
 790
 791	/* Read features beyond page 1 if available */
 792	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 793		struct hci_cp_read_local_ext_features cp;
 794
 795		cp.page = p;
 796		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 797			    sizeof(cp), &cp);
 798	}
 799
 800	return 0;
 801}
 802
 803static int hci_init4_req(struct hci_request *req, unsigned long opt)
 804{
 805	struct hci_dev *hdev = req->hdev;
 806
 807	/* Some Broadcom based Bluetooth controllers do not support the
 808	 * Delete Stored Link Key command. They are clearly indicating its
 809	 * absence in the bit mask of supported commands.
 810	 *
 811	 * Check the supported commands and only if the the command is marked
 812	 * as supported send it. If not supported assume that the controller
 813	 * does not have actual support for stored link keys which makes this
 814	 * command redundant anyway.
 815	 *
 816	 * Some controllers indicate that they support handling deleting
 817	 * stored link keys, but they don't. The quirk lets a driver
 818	 * just disable this command.
 819	 */
 820	if (hdev->commands[6] & 0x80 &&
 821	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 822		struct hci_cp_delete_stored_link_key cp;
 823
 824		bacpy(&cp.bdaddr, BDADDR_ANY);
 825		cp.delete_all = 0x01;
 826		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 827			    sizeof(cp), &cp);
 828	}
 829
 830	/* Set event mask page 2 if the HCI command for it is supported */
 831	if (hdev->commands[22] & 0x04)
 832		hci_set_event_mask_page_2(req);
 833
 834	/* Read local codec list if the HCI command is supported */
 835	if (hdev->commands[29] & 0x20)
 836		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 837
 838	/* Read local pairing options if the HCI command is supported */
 839	if (hdev->commands[41] & 0x08)
 840		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
 841
 842	/* Get MWS transport configuration if the HCI command is supported */
 843	if (hdev->commands[30] & 0x08)
 844		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 845
 846	/* Check for Synchronization Train support */
 847	if (lmp_sync_train_capable(hdev))
 848		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 849
 850	/* Enable Secure Connections if supported and configured */
 851	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 852	    bredr_sc_enabled(hdev)) {
 853		u8 support = 0x01;
 854
 855		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 856			    sizeof(support), &support);
 857	}
 858
 859	/* Set erroneous data reporting if supported to the wideband speech
 860	 * setting value
 861	 */
 862	if (hdev->commands[18] & 0x08 &&
 863	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
 864		bool enabled = hci_dev_test_flag(hdev,
 865						 HCI_WIDEBAND_SPEECH_ENABLED);
 866
 867		if (enabled !=
 868		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
 869			struct hci_cp_write_def_err_data_reporting cp;
 870
 871			cp.err_data_reporting = enabled ?
 872						ERR_DATA_REPORTING_ENABLED :
 873						ERR_DATA_REPORTING_DISABLED;
 874
 875			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
 876				    sizeof(cp), &cp);
 877		}
 878	}
 879
 880	/* Set Suggested Default Data Length to maximum if supported */
 881	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 882		struct hci_cp_le_write_def_data_len cp;
 883
 884		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
 885		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
 886		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 887	}
 888
 889	/* Set Default PHY parameters if command is supported */
 890	if (hdev->commands[35] & 0x20) {
 891		struct hci_cp_le_set_default_phy cp;
 892
 893		cp.all_phys = 0x00;
 894		cp.tx_phys = hdev->le_tx_def_phys;
 895		cp.rx_phys = hdev->le_rx_def_phys;
 896
 897		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 898	}
 899
 900	return 0;
 901}
 902
 903static int __hci_init(struct hci_dev *hdev)
 904{
 905	int err;
 906
 907	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 908	if (err < 0)
 909		return err;
 910
 911	if (hci_dev_test_flag(hdev, HCI_SETUP))
 912		hci_debugfs_create_basic(hdev);
 913
 914	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 915	if (err < 0)
 916		return err;
 917
 918	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 919	 * BR/EDR/LE type controllers. AMP controllers only need the
 920	 * first two stages of init.
 921	 */
 922	if (hdev->dev_type != HCI_PRIMARY)
 923		return 0;
 924
 925	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 926	if (err < 0)
 927		return err;
 928
 929	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 930	if (err < 0)
 931		return err;
 932
 933	/* This function is only called when the controller is actually in
 934	 * configured state. When the controller is marked as unconfigured,
 935	 * this initialization procedure is not run.
 936	 *
 937	 * It means that it is possible that a controller runs through its
 938	 * setup phase and then discovers missing settings. If that is the
 939	 * case, then this function will not be called. It then will only
 940	 * be called during the config phase.
 941	 *
 942	 * So only when in setup phase or config phase, create the debugfs
 943	 * entries and register the SMP channels.
 944	 */
 945	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 946	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 947		return 0;
 948
 949	hci_debugfs_create_common(hdev);
 950
 951	if (lmp_bredr_capable(hdev))
 952		hci_debugfs_create_bredr(hdev);
 953
 954	if (lmp_le_capable(hdev))
 955		hci_debugfs_create_le(hdev);
 956
 957	return 0;
 958}
 959
 960static int hci_init0_req(struct hci_request *req, unsigned long opt)
 961{
 962	struct hci_dev *hdev = req->hdev;
 963
 964	BT_DBG("%s %ld", hdev->name, opt);
 965
 966	/* Reset */
 967	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 968		hci_reset_req(req, 0);
 969
 970	/* Read Local Version */
 971	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 972
 973	/* Read BD Address */
 974	if (hdev->set_bdaddr)
 975		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 976
 977	return 0;
 978}
 979
 980static int __hci_unconf_init(struct hci_dev *hdev)
 981{
 982	int err;
 983
 984	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 985		return 0;
 986
 987	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 988	if (err < 0)
 989		return err;
 990
 991	if (hci_dev_test_flag(hdev, HCI_SETUP))
 992		hci_debugfs_create_basic(hdev);
 993
 994	return 0;
 995}
 996
 997static int hci_scan_req(struct hci_request *req, unsigned long opt)
 998{
 999	__u8 scan = opt;
1000
1001	BT_DBG("%s %x", req->hdev->name, scan);
1002
1003	/* Inquiry and Page scans */
1004	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005	return 0;
1006}
1007
1008static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009{
1010	__u8 auth = opt;
1011
1012	BT_DBG("%s %x", req->hdev->name, auth);
1013
1014	/* Authentication */
1015	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016	return 0;
1017}
1018
1019static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020{
1021	__u8 encrypt = opt;
1022
1023	BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025	/* Encryption */
1026	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027	return 0;
1028}
1029
1030static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031{
1032	__le16 policy = cpu_to_le16(opt);
1033
1034	BT_DBG("%s %x", req->hdev->name, policy);
1035
1036	/* Default link policy */
1037	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038	return 0;
1039}
1040
1041/* Get HCI device by index.
1042 * Device is held on return. */
1043struct hci_dev *hci_dev_get(int index)
1044{
1045	struct hci_dev *hdev = NULL, *d;
1046
1047	BT_DBG("%d", index);
1048
1049	if (index < 0)
1050		return NULL;
1051
1052	read_lock(&hci_dev_list_lock);
1053	list_for_each_entry(d, &hci_dev_list, list) {
1054		if (d->id == index) {
1055			hdev = hci_dev_hold(d);
1056			break;
1057		}
1058	}
1059	read_unlock(&hci_dev_list_lock);
1060	return hdev;
1061}
1062
1063/* ---- Inquiry support ---- */
1064
1065bool hci_discovery_active(struct hci_dev *hdev)
1066{
1067	struct discovery_state *discov = &hdev->discovery;
1068
1069	switch (discov->state) {
1070	case DISCOVERY_FINDING:
1071	case DISCOVERY_RESOLVING:
1072		return true;
1073
1074	default:
1075		return false;
1076	}
1077}
1078
1079void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080{
1081	int old_state = hdev->discovery.state;
1082
1083	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085	if (old_state == state)
1086		return;
1087
1088	hdev->discovery.state = state;
1089
1090	switch (state) {
1091	case DISCOVERY_STOPPED:
1092		hci_update_background_scan(hdev);
1093
1094		if (old_state != DISCOVERY_STARTING)
1095			mgmt_discovering(hdev, 0);
1096		break;
1097	case DISCOVERY_STARTING:
1098		break;
1099	case DISCOVERY_FINDING:
1100		mgmt_discovering(hdev, 1);
1101		break;
1102	case DISCOVERY_RESOLVING:
1103		break;
1104	case DISCOVERY_STOPPING:
1105		break;
1106	}
 
 
1107}
1108
1109void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110{
1111	struct discovery_state *cache = &hdev->discovery;
1112	struct inquiry_entry *p, *n;
1113
1114	list_for_each_entry_safe(p, n, &cache->all, all) {
1115		list_del(&p->all);
1116		kfree(p);
1117	}
1118
1119	INIT_LIST_HEAD(&cache->unknown);
1120	INIT_LIST_HEAD(&cache->resolve);
1121}
1122
1123struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124					       bdaddr_t *bdaddr)
1125{
1126	struct discovery_state *cache = &hdev->discovery;
1127	struct inquiry_entry *e;
1128
1129	BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131	list_for_each_entry(e, &cache->all, all) {
1132		if (!bacmp(&e->data.bdaddr, bdaddr))
1133			return e;
1134	}
1135
1136	return NULL;
1137}
1138
1139struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140						       bdaddr_t *bdaddr)
1141{
1142	struct discovery_state *cache = &hdev->discovery;
1143	struct inquiry_entry *e;
1144
1145	BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147	list_for_each_entry(e, &cache->unknown, list) {
1148		if (!bacmp(&e->data.bdaddr, bdaddr))
1149			return e;
1150	}
1151
1152	return NULL;
1153}
1154
1155struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156						       bdaddr_t *bdaddr,
1157						       int state)
1158{
1159	struct discovery_state *cache = &hdev->discovery;
1160	struct inquiry_entry *e;
1161
1162	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164	list_for_each_entry(e, &cache->resolve, list) {
1165		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166			return e;
1167		if (!bacmp(&e->data.bdaddr, bdaddr))
1168			return e;
1169	}
1170
1171	return NULL;
1172}
1173
1174void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175				      struct inquiry_entry *ie)
1176{
1177	struct discovery_state *cache = &hdev->discovery;
1178	struct list_head *pos = &cache->resolve;
1179	struct inquiry_entry *p;
1180
1181	list_del(&ie->list);
1182
1183	list_for_each_entry(p, &cache->resolve, list) {
1184		if (p->name_state != NAME_PENDING &&
1185		    abs(p->data.rssi) >= abs(ie->data.rssi))
1186			break;
1187		pos = &p->list;
1188	}
1189
1190	list_add(&ie->list, pos);
1191}
1192
1193u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194			     bool name_known)
1195{
1196	struct discovery_state *cache = &hdev->discovery;
1197	struct inquiry_entry *ie;
1198	u32 flags = 0;
1199
1200	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204	if (!data->ssp_mode)
1205		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208	if (ie) {
1209		if (!ie->data.ssp_mode)
1210			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212		if (ie->name_state == NAME_NEEDED &&
1213		    data->rssi != ie->data.rssi) {
1214			ie->data.rssi = data->rssi;
1215			hci_inquiry_cache_update_resolve(hdev, ie);
1216		}
1217
1218		goto update;
1219	}
1220
1221	/* Entry not in the cache. Add new one. */
1222	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223	if (!ie) {
1224		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225		goto done;
1226	}
1227
1228	list_add(&ie->all, &cache->all);
1229
1230	if (name_known) {
1231		ie->name_state = NAME_KNOWN;
1232	} else {
1233		ie->name_state = NAME_NOT_KNOWN;
1234		list_add(&ie->list, &cache->unknown);
1235	}
1236
1237update:
1238	if (name_known && ie->name_state != NAME_KNOWN &&
1239	    ie->name_state != NAME_PENDING) {
1240		ie->name_state = NAME_KNOWN;
1241		list_del(&ie->list);
1242	}
1243
1244	memcpy(&ie->data, data, sizeof(*data));
1245	ie->timestamp = jiffies;
1246	cache->timestamp = jiffies;
1247
1248	if (ie->name_state == NAME_NOT_KNOWN)
1249		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251done:
1252	return flags;
1253}
1254
1255static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256{
1257	struct discovery_state *cache = &hdev->discovery;
1258	struct inquiry_info *info = (struct inquiry_info *) buf;
1259	struct inquiry_entry *e;
1260	int copied = 0;
1261
1262	list_for_each_entry(e, &cache->all, all) {
1263		struct inquiry_data *data = &e->data;
1264
1265		if (copied >= num)
1266			break;
1267
1268		bacpy(&info->bdaddr, &data->bdaddr);
1269		info->pscan_rep_mode	= data->pscan_rep_mode;
1270		info->pscan_period_mode	= data->pscan_period_mode;
1271		info->pscan_mode	= data->pscan_mode;
1272		memcpy(info->dev_class, data->dev_class, 3);
1273		info->clock_offset	= data->clock_offset;
1274
1275		info++;
1276		copied++;
1277	}
1278
1279	BT_DBG("cache %p, copied %d", cache, copied);
1280	return copied;
1281}
1282
1283static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284{
1285	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286	struct hci_dev *hdev = req->hdev;
1287	struct hci_cp_inquiry cp;
1288
1289	BT_DBG("%s", hdev->name);
1290
1291	if (test_bit(HCI_INQUIRY, &hdev->flags))
1292		return 0;
1293
1294	/* Start Inquiry */
1295	memcpy(&cp.lap, &ir->lap, 3);
1296	cp.length  = ir->length;
1297	cp.num_rsp = ir->num_rsp;
1298	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300	return 0;
1301}
1302
1303int hci_inquiry(void __user *arg)
1304{
1305	__u8 __user *ptr = arg;
1306	struct hci_inquiry_req ir;
1307	struct hci_dev *hdev;
1308	int err = 0, do_inquiry = 0, max_rsp;
1309	long timeo;
1310	__u8 *buf;
1311
1312	if (copy_from_user(&ir, ptr, sizeof(ir)))
1313		return -EFAULT;
1314
1315	hdev = hci_dev_get(ir.dev_id);
1316	if (!hdev)
1317		return -ENODEV;
1318
1319	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320		err = -EBUSY;
1321		goto done;
1322	}
1323
1324	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325		err = -EOPNOTSUPP;
1326		goto done;
1327	}
1328
1329	if (hdev->dev_type != HCI_PRIMARY) {
1330		err = -EOPNOTSUPP;
1331		goto done;
1332	}
1333
1334	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335		err = -EOPNOTSUPP;
 
1336		goto done;
1337	}
1338
1339	hci_dev_lock(hdev);
1340	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342		hci_inquiry_cache_flush(hdev);
1343		do_inquiry = 1;
1344	}
1345	hci_dev_unlock(hdev);
1346
1347	timeo = ir.length * msecs_to_jiffies(2000);
 
 
 
1348
1349	if (do_inquiry) {
1350		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351				   timeo, NULL);
1352		if (err < 0)
1353			goto done;
1354
1355		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356		 * cleared). If it is interrupted by a signal, return -EINTR.
1357		 */
1358		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359				TASK_INTERRUPTIBLE))
1360			return -EINTR;
 
 
1361	}
1362
1363	/* for unlimited number of responses we will use buffer with
1364	 * 255 entries
1365	 */
1366	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367
1368	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369	 * copy it to the user space.
1370	 */
1371	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372	if (!buf) {
1373		err = -ENOMEM;
1374		goto done;
1375	}
1376
1377	hci_dev_lock(hdev);
1378	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379	hci_dev_unlock(hdev);
1380
1381	BT_DBG("num_rsp %d", ir.num_rsp);
1382
1383	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384		ptr += sizeof(ir);
1385		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386				 ir.num_rsp))
1387			err = -EFAULT;
1388	} else
1389		err = -EFAULT;
1390
1391	kfree(buf);
1392
1393done:
1394	hci_dev_put(hdev);
1395	return err;
1396}
1397
1398/**
1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400 *				       (BD_ADDR) for a HCI device from
1401 *				       a firmware node property.
1402 * @hdev:	The HCI device
1403 *
1404 * Search the firmware node for 'local-bd-address'.
1405 *
1406 * All-zero BD addresses are rejected, because those could be properties
1407 * that exist in the firmware tables, but were not updated by the firmware. For
1408 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409 */
1410static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411{
1412	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413	bdaddr_t ba;
1414	int ret;
1415
1416	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417					    (u8 *)&ba, sizeof(ba));
1418	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419		return;
1420
1421	bacpy(&hdev->public_addr, &ba);
1422}
1423
1424static int hci_dev_do_open(struct hci_dev *hdev)
1425{
1426	int ret = 0;
1427
1428	BT_DBG("%s %p", hdev->name, hdev);
1429
1430	hci_req_sync_lock(hdev);
1431
1432	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433		ret = -ENODEV;
1434		goto done;
1435	}
1436
1437	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439		/* Check for rfkill but allow the HCI setup stage to
1440		 * proceed (which in itself doesn't cause any RF activity).
1441		 */
1442		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443			ret = -ERFKILL;
1444			goto done;
1445		}
1446
1447		/* Check for valid public address or a configured static
1448		 * random adddress, but let the HCI setup proceed to
1449		 * be able to determine if there is a public address
1450		 * or not.
1451		 *
1452		 * In case of user channel usage, it is not important
1453		 * if a public address or static random address is
1454		 * available.
1455		 *
1456		 * This check is only valid for BR/EDR controllers
1457		 * since AMP controllers do not have an address.
1458		 */
1459		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460		    hdev->dev_type == HCI_PRIMARY &&
1461		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463			ret = -EADDRNOTAVAIL;
1464			goto done;
1465		}
1466	}
1467
1468	if (test_bit(HCI_UP, &hdev->flags)) {
1469		ret = -EALREADY;
1470		goto done;
1471	}
1472
1473	if (hdev->open(hdev)) {
1474		ret = -EIO;
1475		goto done;
1476	}
1477
1478	set_bit(HCI_RUNNING, &hdev->flags);
1479	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480
1481	atomic_set(&hdev->cmd_cnt, 1);
1482	set_bit(HCI_INIT, &hdev->flags);
1483
1484	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486		bool invalid_bdaddr;
1487
1488		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489
1490		if (hdev->setup)
1491			ret = hdev->setup(hdev);
1492
1493		/* The transport driver can set the quirk to mark the
1494		 * BD_ADDR invalid before creating the HCI device or in
1495		 * its setup callback.
1496		 */
1497		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498					  &hdev->quirks);
1499
1500		if (ret)
1501			goto setup_failed;
1502
1503		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505				hci_dev_get_bd_addr_from_property(hdev);
1506
1507			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508			    hdev->set_bdaddr) {
1509				ret = hdev->set_bdaddr(hdev,
1510						       &hdev->public_addr);
1511
1512				/* If setting of the BD_ADDR from the device
1513				 * property succeeds, then treat the address
1514				 * as valid even if the invalid BD_ADDR
1515				 * quirk indicates otherwise.
1516				 */
1517				if (!ret)
1518					invalid_bdaddr = false;
1519			}
1520		}
1521
1522setup_failed:
1523		/* The transport driver can set these quirks before
1524		 * creating the HCI device or in its setup callback.
1525		 *
1526		 * For the invalid BD_ADDR quirk it is possible that
1527		 * it becomes a valid address if the bootloader does
1528		 * provide it (see above).
1529		 *
1530		 * In case any of them is set, the controller has to
1531		 * start up as unconfigured.
1532		 */
1533		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534		    invalid_bdaddr)
1535			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536
1537		/* For an unconfigured controller it is required to
1538		 * read at least the version information provided by
1539		 * the Read Local Version Information command.
1540		 *
1541		 * If the set_bdaddr driver callback is provided, then
1542		 * also the original Bluetooth public device address
1543		 * will be read using the Read BD Address command.
1544		 */
1545		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546			ret = __hci_unconf_init(hdev);
1547	}
1548
1549	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550		/* If public address change is configured, ensure that
1551		 * the address gets programmed. If the driver does not
1552		 * support changing the public address, fail the power
1553		 * on procedure.
1554		 */
1555		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556		    hdev->set_bdaddr)
1557			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558		else
1559			ret = -EADDRNOTAVAIL;
1560	}
1561
1562	if (!ret) {
1563		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565			ret = __hci_init(hdev);
1566			if (!ret && hdev->post_init)
1567				ret = hdev->post_init(hdev);
1568		}
1569	}
1570
1571	/* If the HCI Reset command is clearing all diagnostic settings,
1572	 * then they need to be reprogrammed after the init procedure
1573	 * completed.
1574	 */
1575	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578		ret = hdev->set_diag(hdev, true);
1579
1580	msft_do_open(hdev);
1581
1582	clear_bit(HCI_INIT, &hdev->flags);
1583
1584	if (!ret) {
1585		hci_dev_hold(hdev);
1586		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587		hci_adv_instances_set_rpa_expired(hdev, true);
1588		set_bit(HCI_UP, &hdev->flags);
1589		hci_sock_dev_event(hdev, HCI_DEV_UP);
1590		hci_leds_update_powered(hdev, true);
1591		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1596		    hdev->dev_type == HCI_PRIMARY) {
1597			ret = __hci_req_hci_power_on(hdev);
1598			mgmt_power_on(hdev, ret);
1599		}
1600	} else {
1601		/* Init failed, cleanup */
1602		flush_work(&hdev->tx_work);
1603		flush_work(&hdev->cmd_work);
1604		flush_work(&hdev->rx_work);
1605
1606		skb_queue_purge(&hdev->cmd_q);
1607		skb_queue_purge(&hdev->rx_q);
1608
1609		if (hdev->flush)
1610			hdev->flush(hdev);
1611
1612		if (hdev->sent_cmd) {
1613			kfree_skb(hdev->sent_cmd);
1614			hdev->sent_cmd = NULL;
1615		}
1616
1617		clear_bit(HCI_RUNNING, &hdev->flags);
1618		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619
1620		hdev->close(hdev);
1621		hdev->flags &= BIT(HCI_RAW);
1622	}
1623
1624done:
1625	hci_req_sync_unlock(hdev);
1626	return ret;
1627}
1628
1629/* ---- HCI ioctl helpers ---- */
1630
1631int hci_dev_open(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	/* Devices that are marked as unconfigured can only be powered
1641	 * up as user channel. Trying to bring them up as normal devices
1642	 * will result into a failure. Only user channel operation is
1643	 * possible.
1644	 *
1645	 * When this function is called for a user channel, the flag
1646	 * HCI_USER_CHANNEL will be set first before attempting to
1647	 * open the device.
1648	 */
1649	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651		err = -EOPNOTSUPP;
1652		goto done;
1653	}
1654
1655	/* We need to ensure that no other power on/off work is pending
1656	 * before proceeding to call hci_dev_do_open. This is
1657	 * particularly important if the setup procedure has not yet
1658	 * completed.
1659	 */
1660	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661		cancel_delayed_work(&hdev->power_off);
1662
1663	/* After this call it is guaranteed that the setup procedure
1664	 * has finished. This means that error conditions like RFKILL
1665	 * or no valid public or static random address apply.
1666	 */
1667	flush_workqueue(hdev->req_workqueue);
1668
1669	/* For controllers not using the management interface and that
1670	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671	 * so that pairing works for them. Once the management interface
1672	 * is in use this bit will be cleared again and userspace has
1673	 * to explicitly enable it.
1674	 */
1675	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676	    !hci_dev_test_flag(hdev, HCI_MGMT))
1677		hci_dev_set_flag(hdev, HCI_BONDABLE);
1678
1679	err = hci_dev_do_open(hdev);
1680
1681done:
1682	hci_dev_put(hdev);
1683	return err;
1684}
1685
1686/* This function requires the caller holds hdev->lock */
1687static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688{
1689	struct hci_conn_params *p;
1690
1691	list_for_each_entry(p, &hdev->le_conn_params, list) {
1692		if (p->conn) {
1693			hci_conn_drop(p->conn);
1694			hci_conn_put(p->conn);
1695			p->conn = NULL;
1696		}
1697		list_del_init(&p->action);
1698	}
1699
1700	BT_DBG("All LE pending actions cleared");
1701}
1702
1703int hci_dev_do_close(struct hci_dev *hdev)
1704{
1705	bool auto_off;
1706
1707	BT_DBG("%s %p", hdev->name, hdev);
1708
1709	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711	    test_bit(HCI_UP, &hdev->flags)) {
1712		/* Execute vendor specific shutdown routine */
1713		if (hdev->shutdown)
1714			hdev->shutdown(hdev);
1715	}
1716
1717	cancel_delayed_work(&hdev->power_off);
1718
1719	hci_request_cancel_all(hdev);
1720	hci_req_sync_lock(hdev);
1721
1722	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723		cancel_delayed_work_sync(&hdev->cmd_timer);
1724		hci_req_sync_unlock(hdev);
1725		return 0;
1726	}
1727
1728	hci_leds_update_powered(hdev, false);
1729
1730	/* Flush RX and TX works */
1731	flush_work(&hdev->tx_work);
1732	flush_work(&hdev->rx_work);
1733
1734	if (hdev->discov_timeout > 0) {
1735		hdev->discov_timeout = 0;
1736		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738	}
1739
1740	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741		cancel_delayed_work(&hdev->service_cache);
1742
1743	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744		struct adv_info *adv_instance;
1745
1746		cancel_delayed_work_sync(&hdev->rpa_expired);
1747
1748		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750	}
1751
1752	/* Avoid potential lockdep warnings from the *_flush() calls by
1753	 * ensuring the workqueue is empty up front.
1754	 */
1755	drain_workqueue(hdev->workqueue);
1756
1757	hci_dev_lock(hdev);
1758
1759	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760
1761	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762
1763	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765	    hci_dev_test_flag(hdev, HCI_MGMT))
1766		__mgmt_power_off(hdev);
1767
1768	hci_inquiry_cache_flush(hdev);
1769	hci_pend_le_actions_clear(hdev);
1770	hci_conn_hash_flush(hdev);
1771	hci_dev_unlock(hdev);
1772
1773	smp_unregister(hdev);
1774
1775	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776
1777	msft_do_close(hdev);
1778
1779	if (hdev->flush)
1780		hdev->flush(hdev);
1781
1782	/* Reset device */
1783	skb_queue_purge(&hdev->cmd_q);
1784	atomic_set(&hdev->cmd_cnt, 1);
1785	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787		set_bit(HCI_INIT, &hdev->flags);
1788		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789		clear_bit(HCI_INIT, &hdev->flags);
1790	}
1791
1792	/* flush cmd  work */
1793	flush_work(&hdev->cmd_work);
1794
1795	/* Drop queues */
1796	skb_queue_purge(&hdev->rx_q);
1797	skb_queue_purge(&hdev->cmd_q);
1798	skb_queue_purge(&hdev->raw_q);
1799
1800	/* Drop last sent command */
1801	if (hdev->sent_cmd) {
1802		cancel_delayed_work_sync(&hdev->cmd_timer);
1803		kfree_skb(hdev->sent_cmd);
1804		hdev->sent_cmd = NULL;
1805	}
1806
1807	clear_bit(HCI_RUNNING, &hdev->flags);
1808	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809
1810	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811		wake_up(&hdev->suspend_wait_q);
1812
1813	/* After this point our queues are empty
1814	 * and no tasks are scheduled. */
1815	hdev->close(hdev);
1816
1817	/* Clear flags */
1818	hdev->flags &= BIT(HCI_RAW);
1819	hci_dev_clear_volatile_flags(hdev);
1820
1821	/* Controller radio is available but is currently powered down */
1822	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823
1824	memset(hdev->eir, 0, sizeof(hdev->eir));
1825	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826	bacpy(&hdev->random_addr, BDADDR_ANY);
1827
1828	hci_req_sync_unlock(hdev);
1829
1830	hci_dev_put(hdev);
1831	return 0;
1832}
1833
1834int hci_dev_close(__u16 dev)
1835{
1836	struct hci_dev *hdev;
1837	int err;
1838
1839	hdev = hci_dev_get(dev);
1840	if (!hdev)
1841		return -ENODEV;
1842
1843	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844		err = -EBUSY;
1845		goto done;
1846	}
1847
 
1848	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849		cancel_delayed_work(&hdev->power_off);
1850
1851	err = hci_dev_do_close(hdev);
1852
1853done:
1854	hci_dev_put(hdev);
1855	return err;
1856}
1857
1858static int hci_dev_do_reset(struct hci_dev *hdev)
1859{
1860	int ret;
1861
1862	BT_DBG("%s %p", hdev->name, hdev);
1863
1864	hci_req_sync_lock(hdev);
1865
1866	/* Drop queues */
1867	skb_queue_purge(&hdev->rx_q);
1868	skb_queue_purge(&hdev->cmd_q);
1869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870	/* Avoid potential lockdep warnings from the *_flush() calls by
1871	 * ensuring the workqueue is empty up front.
1872	 */
1873	drain_workqueue(hdev->workqueue);
1874
1875	hci_dev_lock(hdev);
1876	hci_inquiry_cache_flush(hdev);
1877	hci_conn_hash_flush(hdev);
1878	hci_dev_unlock(hdev);
1879
1880	if (hdev->flush)
1881		hdev->flush(hdev);
1882
 
 
1883	atomic_set(&hdev->cmd_cnt, 1);
1884	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1885
1886	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887
1888	hci_req_sync_unlock(hdev);
1889	return ret;
1890}
1891
1892int hci_dev_reset(__u16 dev)
1893{
1894	struct hci_dev *hdev;
1895	int err;
1896
1897	hdev = hci_dev_get(dev);
1898	if (!hdev)
1899		return -ENODEV;
1900
1901	if (!test_bit(HCI_UP, &hdev->flags)) {
1902		err = -ENETDOWN;
1903		goto done;
1904	}
1905
1906	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907		err = -EBUSY;
1908		goto done;
1909	}
1910
1911	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912		err = -EOPNOTSUPP;
1913		goto done;
1914	}
1915
1916	err = hci_dev_do_reset(hdev);
1917
1918done:
1919	hci_dev_put(hdev);
1920	return err;
1921}
1922
1923int hci_dev_reset_stat(__u16 dev)
1924{
1925	struct hci_dev *hdev;
1926	int ret = 0;
1927
1928	hdev = hci_dev_get(dev);
1929	if (!hdev)
1930		return -ENODEV;
1931
1932	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933		ret = -EBUSY;
1934		goto done;
1935	}
1936
1937	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938		ret = -EOPNOTSUPP;
1939		goto done;
1940	}
1941
1942	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943
1944done:
1945	hci_dev_put(hdev);
1946	return ret;
1947}
1948
1949static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950{
1951	bool conn_changed, discov_changed;
1952
1953	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954
1955	if ((scan & SCAN_PAGE))
1956		conn_changed = !hci_dev_test_and_set_flag(hdev,
1957							  HCI_CONNECTABLE);
1958	else
1959		conn_changed = hci_dev_test_and_clear_flag(hdev,
1960							   HCI_CONNECTABLE);
1961
1962	if ((scan & SCAN_INQUIRY)) {
1963		discov_changed = !hci_dev_test_and_set_flag(hdev,
1964							    HCI_DISCOVERABLE);
1965	} else {
1966		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967		discov_changed = hci_dev_test_and_clear_flag(hdev,
1968							     HCI_DISCOVERABLE);
1969	}
1970
1971	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972		return;
1973
1974	if (conn_changed || discov_changed) {
1975		/* In case this was disabled through mgmt */
1976		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977
1978		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980
1981		mgmt_new_settings(hdev);
1982	}
1983}
1984
1985int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986{
1987	struct hci_dev *hdev;
1988	struct hci_dev_req dr;
 
1989	int err = 0;
1990
1991	if (copy_from_user(&dr, arg, sizeof(dr)))
1992		return -EFAULT;
1993
1994	hdev = hci_dev_get(dr.dev_id);
1995	if (!hdev)
1996		return -ENODEV;
1997
1998	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999		err = -EBUSY;
2000		goto done;
2001	}
2002
2003	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004		err = -EOPNOTSUPP;
2005		goto done;
2006	}
2007
2008	if (hdev->dev_type != HCI_PRIMARY) {
2009		err = -EOPNOTSUPP;
2010		goto done;
2011	}
2012
2013	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014		err = -EOPNOTSUPP;
2015		goto done;
2016	}
2017
2018	switch (cmd) {
2019	case HCISETAUTH:
2020		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021				   HCI_INIT_TIMEOUT, NULL);
2022		break;
2023
2024	case HCISETENCRYPT:
2025		if (!lmp_encrypt_capable(hdev)) {
2026			err = -EOPNOTSUPP;
2027			break;
2028		}
2029
2030		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031			/* Auth must be enabled first */
2032			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033					   HCI_INIT_TIMEOUT, NULL);
 
 
2034			if (err)
2035				break;
2036		}
2037
2038		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039				   HCI_INIT_TIMEOUT, NULL);
2040		break;
2041
2042	case HCISETSCAN:
2043		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044				   HCI_INIT_TIMEOUT, NULL);
2045
2046		/* Ensure that the connectable and discoverable states
2047		 * get correctly modified as this was a non-mgmt change.
2048		 */
2049		if (!err)
2050			hci_update_scan_state(hdev, dr.dev_opt);
2051		break;
2052
2053	case HCISETLINKPOL:
2054		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055				   HCI_INIT_TIMEOUT, NULL);
 
 
2056		break;
2057
2058	case HCISETLINKMODE:
2059		hdev->link_mode = ((__u16) dr.dev_opt) &
2060					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2061		break;
2062
2063	case HCISETPTYPE:
2064		if (hdev->pkt_type == (__u16) dr.dev_opt)
2065			break;
2066
2067		hdev->pkt_type = (__u16) dr.dev_opt;
2068		mgmt_phy_configuration_changed(hdev, NULL);
2069		break;
2070
2071	case HCISETACLMTU:
2072		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2073		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074		break;
2075
2076	case HCISETSCOMTU:
2077		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2078		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079		break;
2080
2081	default:
2082		err = -EINVAL;
2083		break;
2084	}
2085
2086done:
2087	hci_dev_put(hdev);
2088	return err;
2089}
2090
2091int hci_get_dev_list(void __user *arg)
2092{
2093	struct hci_dev *hdev;
2094	struct hci_dev_list_req *dl;
2095	struct hci_dev_req *dr;
2096	int n = 0, size, err;
2097	__u16 dev_num;
2098
2099	if (get_user(dev_num, (__u16 __user *) arg))
2100		return -EFAULT;
2101
2102	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103		return -EINVAL;
2104
2105	size = sizeof(*dl) + dev_num * sizeof(*dr);
2106
2107	dl = kzalloc(size, GFP_KERNEL);
2108	if (!dl)
2109		return -ENOMEM;
2110
 
2111	dr = dl->dev_req;
2112
2113	read_lock(&hci_dev_list_lock);
2114	list_for_each_entry(hdev, &hci_dev_list, list) {
2115		unsigned long flags = hdev->flags;
2116
2117		/* When the auto-off is configured it means the transport
2118		 * is running, but in that case still indicate that the
2119		 * device is actually down.
2120		 */
2121		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122			flags &= ~BIT(HCI_UP);
2123
2124		(dr + n)->dev_id  = hdev->id;
2125		(dr + n)->dev_opt = flags;
2126
2127		if (++n >= dev_num)
2128			break;
2129	}
2130	read_unlock(&hci_dev_list_lock);
2131
2132	dl->dev_num = n;
2133	size = sizeof(*dl) + n * sizeof(*dr);
2134
2135	err = copy_to_user(arg, dl, size);
2136	kfree(dl);
2137
2138	return err ? -EFAULT : 0;
2139}
2140
2141int hci_get_dev_info(void __user *arg)
2142{
2143	struct hci_dev *hdev;
2144	struct hci_dev_info di;
2145	unsigned long flags;
2146	int err = 0;
2147
2148	if (copy_from_user(&di, arg, sizeof(di)))
2149		return -EFAULT;
2150
2151	hdev = hci_dev_get(di.dev_id);
2152	if (!hdev)
2153		return -ENODEV;
2154
2155	/* When the auto-off is configured it means the transport
2156	 * is running, but in that case still indicate that the
2157	 * device is actually down.
2158	 */
2159	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160		flags = hdev->flags & ~BIT(HCI_UP);
2161	else
2162		flags = hdev->flags;
2163
2164	strcpy(di.name, hdev->name);
2165	di.bdaddr   = hdev->bdaddr;
2166	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167	di.flags    = flags;
2168	di.pkt_type = hdev->pkt_type;
2169	if (lmp_bredr_capable(hdev)) {
2170		di.acl_mtu  = hdev->acl_mtu;
2171		di.acl_pkts = hdev->acl_pkts;
2172		di.sco_mtu  = hdev->sco_mtu;
2173		di.sco_pkts = hdev->sco_pkts;
2174	} else {
2175		di.acl_mtu  = hdev->le_mtu;
2176		di.acl_pkts = hdev->le_pkts;
2177		di.sco_mtu  = 0;
2178		di.sco_pkts = 0;
2179	}
2180	di.link_policy = hdev->link_policy;
2181	di.link_mode   = hdev->link_mode;
2182
2183	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184	memcpy(&di.features, &hdev->features, sizeof(di.features));
2185
2186	if (copy_to_user(arg, &di, sizeof(di)))
2187		err = -EFAULT;
2188
2189	hci_dev_put(hdev);
2190
2191	return err;
2192}
2193
2194/* ---- Interface to HCI drivers ---- */
2195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196static int hci_rfkill_set_block(void *data, bool blocked)
2197{
2198	struct hci_dev *hdev = data;
 
2199
2200	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201
2202	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203		return -EBUSY;
2204
 
 
 
2205	if (blocked) {
2206		hci_dev_set_flag(hdev, HCI_RFKILLED);
 
2207		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2209			hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
2210	} else {
2211		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212	}
2213
2214	return 0;
2215}
2216
2217static const struct rfkill_ops hci_rfkill_ops = {
2218	.set_block = hci_rfkill_set_block,
2219};
2220
2221static void hci_power_on(struct work_struct *work)
2222{
2223	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224	int err;
2225
2226	BT_DBG("%s", hdev->name);
2227
2228	if (test_bit(HCI_UP, &hdev->flags) &&
2229	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2230	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231		cancel_delayed_work(&hdev->power_off);
2232		hci_req_sync_lock(hdev);
2233		err = __hci_req_hci_power_on(hdev);
2234		hci_req_sync_unlock(hdev);
2235		mgmt_power_on(hdev, err);
2236		return;
2237	}
2238
2239	err = hci_dev_do_open(hdev);
2240	if (err < 0) {
2241		hci_dev_lock(hdev);
2242		mgmt_set_powered_failed(hdev, err);
2243		hci_dev_unlock(hdev);
2244		return;
2245	}
2246
2247	/* During the HCI setup phase, a few error conditions are
2248	 * ignored and they need to be checked now. If they are still
2249	 * valid, it is important to turn the device back off.
2250	 */
2251	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253	    (hdev->dev_type == HCI_PRIMARY &&
2254	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257		hci_dev_do_close(hdev);
2258	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260				   HCI_AUTO_OFF_TIMEOUT);
2261	}
2262
2263	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264		/* For unconfigured devices, set the HCI_RAW flag
2265		 * so that userspace can easily identify them.
2266		 */
2267		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268			set_bit(HCI_RAW, &hdev->flags);
2269
2270		/* For fully configured devices, this will send
2271		 * the Index Added event. For unconfigured devices,
2272		 * it will send Unconfigued Index Added event.
2273		 *
2274		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275		 * and no event will be send.
2276		 */
2277		mgmt_index_added(hdev);
2278	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279		/* When the controller is now configured, then it
2280		 * is important to clear the HCI_RAW flag.
2281		 */
2282		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283			clear_bit(HCI_RAW, &hdev->flags);
2284
2285		/* Powering on the controller with HCI_CONFIG set only
2286		 * happens with the transition from unconfigured to
2287		 * configured. This will send the Index Added event.
2288		 */
2289		mgmt_index_added(hdev);
2290	}
2291}
2292
2293static void hci_power_off(struct work_struct *work)
2294{
2295	struct hci_dev *hdev = container_of(work, struct hci_dev,
2296					    power_off.work);
2297
2298	BT_DBG("%s", hdev->name);
2299
2300	hci_dev_do_close(hdev);
2301}
2302
2303static void hci_error_reset(struct work_struct *work)
2304{
2305	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306
 
2307	BT_DBG("%s", hdev->name);
2308
2309	if (hdev->hw_error)
2310		hdev->hw_error(hdev, hdev->hw_error_code);
2311	else
2312		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2313
2314	if (hci_dev_do_close(hdev))
2315		return;
2316
2317	hci_dev_do_open(hdev);
2318}
2319
2320void hci_uuids_clear(struct hci_dev *hdev)
2321{
2322	struct bt_uuid *uuid, *tmp;
2323
2324	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325		list_del(&uuid->list);
2326		kfree(uuid);
2327	}
2328}
2329
2330void hci_link_keys_clear(struct hci_dev *hdev)
2331{
2332	struct link_key *key;
2333
2334	list_for_each_entry(key, &hdev->link_keys, list) {
2335		list_del_rcu(&key->list);
2336		kfree_rcu(key, rcu);
2337	}
2338}
2339
2340void hci_smp_ltks_clear(struct hci_dev *hdev)
2341{
2342	struct smp_ltk *k;
2343
2344	list_for_each_entry(k, &hdev->long_term_keys, list) {
2345		list_del_rcu(&k->list);
2346		kfree_rcu(k, rcu);
2347	}
2348}
2349
2350void hci_smp_irks_clear(struct hci_dev *hdev)
2351{
2352	struct smp_irk *k;
2353
2354	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355		list_del_rcu(&k->list);
2356		kfree_rcu(k, rcu);
2357	}
2358}
2359
2360void hci_blocked_keys_clear(struct hci_dev *hdev)
2361{
2362	struct blocked_key *b;
2363
2364	list_for_each_entry(b, &hdev->blocked_keys, list) {
2365		list_del_rcu(&b->list);
2366		kfree_rcu(b, rcu);
2367	}
2368}
2369
2370bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371{
2372	bool blocked = false;
2373	struct blocked_key *b;
2374
2375	rcu_read_lock();
2376	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378			blocked = true;
2379			break;
2380		}
2381	}
2382
2383	rcu_read_unlock();
2384	return blocked;
2385}
2386
2387struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388{
2389	struct link_key *k;
2390
2391	rcu_read_lock();
2392	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394			rcu_read_unlock();
2395
2396			if (hci_is_blocked_key(hdev,
2397					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398					       k->val)) {
2399				bt_dev_warn_ratelimited(hdev,
2400							"Link key blocked for %pMR",
2401							&k->bdaddr);
2402				return NULL;
2403			}
2404
2405			return k;
2406		}
2407	}
2408	rcu_read_unlock();
2409
2410	return NULL;
2411}
2412
2413static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414			       u8 key_type, u8 old_key_type)
2415{
2416	/* Legacy key */
2417	if (key_type < 0x03)
2418		return true;
2419
2420	/* Debug keys are insecure so don't store them persistently */
2421	if (key_type == HCI_LK_DEBUG_COMBINATION)
2422		return false;
2423
2424	/* Changed combination key and there's no previous one */
2425	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426		return false;
2427
2428	/* Security mode 3 case */
2429	if (!conn)
2430		return true;
2431
2432	/* BR/EDR key derived using SC from an LE link */
2433	if (conn->type == LE_LINK)
2434		return true;
2435
2436	/* Neither local nor remote side had no-bonding as requirement */
2437	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438		return true;
2439
2440	/* Local side had dedicated bonding as requirement */
2441	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442		return true;
2443
2444	/* Remote side had dedicated bonding as requirement */
2445	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446		return true;
2447
2448	/* If none of the above criteria match, then don't store the key
2449	 * persistently */
2450	return false;
2451}
2452
2453static u8 ltk_role(u8 type)
2454{
2455	if (type == SMP_LTK)
2456		return HCI_ROLE_MASTER;
2457
2458	return HCI_ROLE_SLAVE;
2459}
2460
2461struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462			     u8 addr_type, u8 role)
2463{
2464	struct smp_ltk *k;
2465
2466	rcu_read_lock();
2467	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469			continue;
2470
2471		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472			rcu_read_unlock();
2473
2474			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475					       k->val)) {
2476				bt_dev_warn_ratelimited(hdev,
2477							"LTK blocked for %pMR",
2478							&k->bdaddr);
2479				return NULL;
2480			}
2481
2482			return k;
2483		}
2484	}
2485	rcu_read_unlock();
2486
2487	return NULL;
2488}
2489
2490struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491{
2492	struct smp_irk *irk_to_return = NULL;
2493	struct smp_irk *irk;
2494
2495	rcu_read_lock();
2496	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497		if (!bacmp(&irk->rpa, rpa)) {
2498			irk_to_return = irk;
2499			goto done;
2500		}
2501	}
2502
2503	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504		if (smp_irk_matches(hdev, irk->val, rpa)) {
2505			bacpy(&irk->rpa, rpa);
2506			irk_to_return = irk;
2507			goto done;
2508		}
2509	}
2510
2511done:
2512	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513						irk_to_return->val)) {
2514		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515					&irk_to_return->bdaddr);
2516		irk_to_return = NULL;
2517	}
2518
2519	rcu_read_unlock();
2520
2521	return irk_to_return;
2522}
2523
2524struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525				     u8 addr_type)
2526{
2527	struct smp_irk *irk_to_return = NULL;
2528	struct smp_irk *irk;
2529
2530	/* Identity Address must be public or static random */
2531	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532		return NULL;
2533
2534	rcu_read_lock();
2535	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536		if (addr_type == irk->addr_type &&
2537		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2538			irk_to_return = irk;
2539			goto done;
2540		}
2541	}
2542
2543done:
2544
2545	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546						irk_to_return->val)) {
2547		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548					&irk_to_return->bdaddr);
2549		irk_to_return = NULL;
2550	}
2551
2552	rcu_read_unlock();
2553
2554	return irk_to_return;
2555}
2556
2557struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558				  bdaddr_t *bdaddr, u8 *val, u8 type,
2559				  u8 pin_len, bool *persistent)
2560{
2561	struct link_key *key, *old_key;
2562	u8 old_key_type;
2563
2564	old_key = hci_find_link_key(hdev, bdaddr);
2565	if (old_key) {
2566		old_key_type = old_key->type;
2567		key = old_key;
2568	} else {
2569		old_key_type = conn ? conn->key_type : 0xff;
2570		key = kzalloc(sizeof(*key), GFP_KERNEL);
2571		if (!key)
2572			return NULL;
2573		list_add_rcu(&key->list, &hdev->link_keys);
2574	}
2575
2576	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577
2578	/* Some buggy controller combinations generate a changed
2579	 * combination key for legacy pairing even when there's no
2580	 * previous key */
2581	if (type == HCI_LK_CHANGED_COMBINATION &&
2582	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583		type = HCI_LK_COMBINATION;
2584		if (conn)
2585			conn->key_type = type;
2586	}
2587
2588	bacpy(&key->bdaddr, bdaddr);
2589	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590	key->pin_len = pin_len;
2591
2592	if (type == HCI_LK_CHANGED_COMBINATION)
2593		key->type = old_key_type;
2594	else
2595		key->type = type;
2596
2597	if (persistent)
2598		*persistent = hci_persistent_key(hdev, conn, type,
2599						 old_key_type);
2600
2601	return key;
2602}
2603
2604struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605			    u8 addr_type, u8 type, u8 authenticated,
2606			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607{
2608	struct smp_ltk *key, *old_key;
2609	u8 role = ltk_role(type);
2610
2611	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612	if (old_key)
2613		key = old_key;
2614	else {
2615		key = kzalloc(sizeof(*key), GFP_KERNEL);
2616		if (!key)
2617			return NULL;
2618		list_add_rcu(&key->list, &hdev->long_term_keys);
2619	}
2620
2621	bacpy(&key->bdaddr, bdaddr);
2622	key->bdaddr_type = addr_type;
2623	memcpy(key->val, tk, sizeof(key->val));
2624	key->authenticated = authenticated;
2625	key->ediv = ediv;
2626	key->rand = rand;
2627	key->enc_size = enc_size;
2628	key->type = type;
2629
2630	return key;
2631}
2632
2633struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635{
2636	struct smp_irk *irk;
2637
2638	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639	if (!irk) {
2640		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641		if (!irk)
2642			return NULL;
2643
2644		bacpy(&irk->bdaddr, bdaddr);
2645		irk->addr_type = addr_type;
2646
2647		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648	}
2649
2650	memcpy(irk->val, val, 16);
2651	bacpy(&irk->rpa, rpa);
2652
2653	return irk;
2654}
2655
2656int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657{
2658	struct link_key *key;
2659
2660	key = hci_find_link_key(hdev, bdaddr);
2661	if (!key)
2662		return -ENOENT;
2663
2664	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665
2666	list_del_rcu(&key->list);
2667	kfree_rcu(key, rcu);
2668
2669	return 0;
2670}
2671
2672int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673{
2674	struct smp_ltk *k;
2675	int removed = 0;
2676
2677	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679			continue;
2680
2681		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682
2683		list_del_rcu(&k->list);
2684		kfree_rcu(k, rcu);
2685		removed++;
2686	}
2687
2688	return removed ? 0 : -ENOENT;
2689}
2690
2691void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692{
2693	struct smp_irk *k;
2694
2695	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697			continue;
2698
2699		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700
2701		list_del_rcu(&k->list);
2702		kfree_rcu(k, rcu);
2703	}
2704}
2705
2706bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707{
2708	struct smp_ltk *k;
2709	struct smp_irk *irk;
2710	u8 addr_type;
2711
2712	if (type == BDADDR_BREDR) {
2713		if (hci_find_link_key(hdev, bdaddr))
2714			return true;
2715		return false;
2716	}
2717
2718	/* Convert to HCI addr type which struct smp_ltk uses */
2719	if (type == BDADDR_LE_PUBLIC)
2720		addr_type = ADDR_LE_DEV_PUBLIC;
2721	else
2722		addr_type = ADDR_LE_DEV_RANDOM;
2723
2724	irk = hci_get_irk(hdev, bdaddr, addr_type);
2725	if (irk) {
2726		bdaddr = &irk->bdaddr;
2727		addr_type = irk->addr_type;
2728	}
2729
2730	rcu_read_lock();
2731	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733			rcu_read_unlock();
2734			return true;
2735		}
2736	}
2737	rcu_read_unlock();
2738
2739	return false;
2740}
2741
2742/* HCI command timer function */
2743static void hci_cmd_timeout(struct work_struct *work)
2744{
2745	struct hci_dev *hdev = container_of(work, struct hci_dev,
2746					    cmd_timer.work);
2747
2748	if (hdev->sent_cmd) {
2749		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750		u16 opcode = __le16_to_cpu(sent->opcode);
2751
2752		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
 
 
2753	} else {
2754		bt_dev_err(hdev, "command tx timeout");
2755	}
2756
2757	if (hdev->cmd_timeout)
2758		hdev->cmd_timeout(hdev);
2759
2760	atomic_set(&hdev->cmd_cnt, 1);
2761	queue_work(hdev->workqueue, &hdev->cmd_work);
2762}
2763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765					  bdaddr_t *bdaddr, u8 bdaddr_type)
2766{
2767	struct oob_data *data;
2768
2769	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770		if (bacmp(bdaddr, &data->bdaddr) != 0)
2771			continue;
2772		if (data->bdaddr_type != bdaddr_type)
2773			continue;
2774		return data;
2775	}
2776
2777	return NULL;
2778}
2779
2780int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781			       u8 bdaddr_type)
2782{
2783	struct oob_data *data;
2784
2785	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786	if (!data)
2787		return -ENOENT;
2788
2789	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790
2791	list_del(&data->list);
2792	kfree(data);
2793
2794	return 0;
2795}
2796
2797void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798{
2799	struct oob_data *data, *n;
2800
2801	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802		list_del(&data->list);
2803		kfree(data);
2804	}
2805}
2806
2807int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809			    u8 *hash256, u8 *rand256)
2810{
2811	struct oob_data *data;
2812
2813	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814	if (!data) {
2815		data = kmalloc(sizeof(*data), GFP_KERNEL);
2816		if (!data)
2817			return -ENOMEM;
2818
2819		bacpy(&data->bdaddr, bdaddr);
2820		data->bdaddr_type = bdaddr_type;
2821		list_add(&data->list, &hdev->remote_oob_data);
2822	}
2823
2824	if (hash192 && rand192) {
2825		memcpy(data->hash192, hash192, sizeof(data->hash192));
2826		memcpy(data->rand192, rand192, sizeof(data->rand192));
2827		if (hash256 && rand256)
2828			data->present = 0x03;
2829	} else {
2830		memset(data->hash192, 0, sizeof(data->hash192));
2831		memset(data->rand192, 0, sizeof(data->rand192));
2832		if (hash256 && rand256)
2833			data->present = 0x02;
2834		else
2835			data->present = 0x00;
2836	}
2837
2838	if (hash256 && rand256) {
2839		memcpy(data->hash256, hash256, sizeof(data->hash256));
2840		memcpy(data->rand256, rand256, sizeof(data->rand256));
2841	} else {
2842		memset(data->hash256, 0, sizeof(data->hash256));
2843		memset(data->rand256, 0, sizeof(data->rand256));
2844		if (hash192 && rand192)
2845			data->present = 0x01;
2846	}
2847
2848	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849
2850	return 0;
2851}
2852
2853/* This function requires the caller holds hdev->lock */
2854struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855{
2856	struct adv_info *adv_instance;
2857
2858	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859		if (adv_instance->instance == instance)
2860			return adv_instance;
2861	}
2862
2863	return NULL;
2864}
2865
2866/* This function requires the caller holds hdev->lock */
2867struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868{
2869	struct adv_info *cur_instance;
2870
2871	cur_instance = hci_find_adv_instance(hdev, instance);
2872	if (!cur_instance)
2873		return NULL;
2874
2875	if (cur_instance == list_last_entry(&hdev->adv_instances,
2876					    struct adv_info, list))
2877		return list_first_entry(&hdev->adv_instances,
2878						 struct adv_info, list);
2879	else
2880		return list_next_entry(cur_instance, list);
2881}
2882
2883/* This function requires the caller holds hdev->lock */
2884int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885{
2886	struct adv_info *adv_instance;
2887
2888	adv_instance = hci_find_adv_instance(hdev, instance);
2889	if (!adv_instance)
2890		return -ENOENT;
2891
2892	BT_DBG("%s removing %dMR", hdev->name, instance);
2893
2894	if (hdev->cur_adv_instance == instance) {
2895		if (hdev->adv_instance_timeout) {
2896			cancel_delayed_work(&hdev->adv_instance_expire);
2897			hdev->adv_instance_timeout = 0;
2898		}
2899		hdev->cur_adv_instance = 0x00;
2900	}
2901
2902	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903
2904	list_del(&adv_instance->list);
2905	kfree(adv_instance);
2906
2907	hdev->adv_instance_cnt--;
2908
2909	return 0;
2910}
2911
2912void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913{
2914	struct adv_info *adv_instance, *n;
2915
2916	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917		adv_instance->rpa_expired = rpa_expired;
2918}
2919
2920/* This function requires the caller holds hdev->lock */
2921void hci_adv_instances_clear(struct hci_dev *hdev)
2922{
2923	struct adv_info *adv_instance, *n;
2924
2925	if (hdev->adv_instance_timeout) {
2926		cancel_delayed_work(&hdev->adv_instance_expire);
2927		hdev->adv_instance_timeout = 0;
2928	}
2929
2930	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932		list_del(&adv_instance->list);
2933		kfree(adv_instance);
2934	}
2935
2936	hdev->adv_instance_cnt = 0;
2937	hdev->cur_adv_instance = 0x00;
2938}
2939
2940static void adv_instance_rpa_expired(struct work_struct *work)
2941{
2942	struct adv_info *adv_instance = container_of(work, struct adv_info,
2943						     rpa_expired_cb.work);
2944
2945	BT_DBG("");
2946
2947	adv_instance->rpa_expired = true;
2948}
2949
2950/* This function requires the caller holds hdev->lock */
2951int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952			 u16 adv_data_len, u8 *adv_data,
2953			 u16 scan_rsp_len, u8 *scan_rsp_data,
2954			 u16 timeout, u16 duration)
2955{
2956	struct adv_info *adv_instance;
2957
2958	adv_instance = hci_find_adv_instance(hdev, instance);
2959	if (adv_instance) {
2960		memset(adv_instance->adv_data, 0,
2961		       sizeof(adv_instance->adv_data));
2962		memset(adv_instance->scan_rsp_data, 0,
2963		       sizeof(adv_instance->scan_rsp_data));
 
2964	} else {
2965		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2967			return -EOVERFLOW;
 
 
 
 
2968
2969		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970		if (!adv_instance)
2971			return -ENOMEM;
 
 
 
 
 
 
 
2972
2973		adv_instance->pending = true;
2974		adv_instance->instance = instance;
2975		list_add(&adv_instance->list, &hdev->adv_instances);
2976		hdev->adv_instance_cnt++;
2977	}
2978
2979	adv_instance->flags = flags;
2980	adv_instance->adv_data_len = adv_data_len;
2981	adv_instance->scan_rsp_len = scan_rsp_len;
2982
2983	if (adv_data_len)
2984		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985
2986	if (scan_rsp_len)
2987		memcpy(adv_instance->scan_rsp_data,
2988		       scan_rsp_data, scan_rsp_len);
 
 
2989
2990	adv_instance->timeout = timeout;
2991	adv_instance->remaining_time = timeout;
2992
2993	if (duration == 0)
2994		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995	else
2996		adv_instance->duration = duration;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2997
2998	adv_instance->tx_power = HCI_TX_POWER_INVALID;
 
 
 
 
2999
3000	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001			  adv_instance_rpa_expired);
3002
3003	BT_DBG("%s for %dMR", hdev->name, instance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004
3005	return 0;
3006}
3007
3008/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009void hci_adv_monitors_clear(struct hci_dev *hdev)
3010{
3011	struct adv_monitor *monitor;
3012	int handle;
3013
3014	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015		hci_free_adv_monitor(monitor);
3016
3017	idr_destroy(&hdev->adv_monitors_idr);
3018}
3019
3020void hci_free_adv_monitor(struct adv_monitor *monitor)
 
 
 
3021{
3022	struct adv_pattern *pattern;
3023	struct adv_pattern *tmp;
3024
3025	if (!monitor)
3026		return;
3027
3028	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
 
3029		kfree(pattern);
 
 
 
 
 
 
 
 
 
3030
3031	kfree(monitor);
3032}
3033
3034/* This function requires the caller holds hdev->lock */
 
 
 
3035int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036{
3037	int min, max, handle;
 
3038
3039	if (!monitor)
3040		return -EINVAL;
3041
 
 
3042	min = HCI_MIN_ADV_MONITOR_HANDLE;
3043	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045			   GFP_KERNEL);
 
 
 
3046	if (handle < 0)
3047		return handle;
3048
3049	hdev->adv_monitors_cnt++;
3050	monitor->handle = handle;
3051
3052	hci_update_background_scan(hdev);
 
 
 
 
 
 
 
 
3053
3054	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3055}
3056
3057static int free_adv_monitor(int id, void *ptr, void *data)
 
3058{
3059	struct hci_dev *hdev = data;
3060	struct adv_monitor *monitor = ptr;
3061
3062	idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063	hci_free_adv_monitor(monitor);
3064
3065	return 0;
3066}
3067
3068/* This function requires the caller holds hdev->lock */
3069int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3070{
3071	struct adv_monitor *monitor;
 
 
3072
3073	if (handle) {
3074		monitor = idr_find(&hdev->adv_monitors_idr, handle);
3075		if (!monitor)
3076			return -ENOENT;
3077
3078		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3079		hci_free_adv_monitor(monitor);
3080	} else {
3081		/* Remove all monitors if handle is 0. */
3082		idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3083	}
3084
3085	hci_update_background_scan(hdev);
3086
3087	return 0;
3088}
3089
3090/* This function requires the caller holds hdev->lock */
3091bool hci_is_adv_monitoring(struct hci_dev *hdev)
3092{
3093	return !idr_is_empty(&hdev->adv_monitors_idr);
3094}
3095
 
 
 
 
 
 
 
 
3096struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3097					 bdaddr_t *bdaddr, u8 type)
3098{
3099	struct bdaddr_list *b;
3100
3101	list_for_each_entry(b, bdaddr_list, list) {
3102		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3103			return b;
3104	}
3105
3106	return NULL;
3107}
3108
3109struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3110				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3111				u8 type)
3112{
3113	struct bdaddr_list_with_irk *b;
3114
3115	list_for_each_entry(b, bdaddr_list, list) {
3116		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3117			return b;
3118	}
3119
3120	return NULL;
3121}
3122
3123struct bdaddr_list_with_flags *
3124hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3125				  bdaddr_t *bdaddr, u8 type)
3126{
3127	struct bdaddr_list_with_flags *b;
3128
3129	list_for_each_entry(b, bdaddr_list, list) {
3130		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3131			return b;
3132	}
3133
3134	return NULL;
3135}
3136
3137void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3138{
3139	struct bdaddr_list *b, *n;
3140
3141	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3142		list_del(&b->list);
3143		kfree(b);
3144	}
3145}
3146
3147int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3148{
3149	struct bdaddr_list *entry;
3150
3151	if (!bacmp(bdaddr, BDADDR_ANY))
3152		return -EBADF;
3153
3154	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3155		return -EEXIST;
3156
3157	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3158	if (!entry)
3159		return -ENOMEM;
3160
3161	bacpy(&entry->bdaddr, bdaddr);
3162	entry->bdaddr_type = type;
3163
3164	list_add(&entry->list, list);
3165
3166	return 0;
3167}
3168
3169int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3170					u8 type, u8 *peer_irk, u8 *local_irk)
3171{
3172	struct bdaddr_list_with_irk *entry;
3173
3174	if (!bacmp(bdaddr, BDADDR_ANY))
3175		return -EBADF;
3176
3177	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3178		return -EEXIST;
3179
3180	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3181	if (!entry)
3182		return -ENOMEM;
3183
3184	bacpy(&entry->bdaddr, bdaddr);
3185	entry->bdaddr_type = type;
3186
3187	if (peer_irk)
3188		memcpy(entry->peer_irk, peer_irk, 16);
3189
3190	if (local_irk)
3191		memcpy(entry->local_irk, local_irk, 16);
3192
3193	list_add(&entry->list, list);
3194
3195	return 0;
3196}
3197
3198int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3199				   u8 type, u32 flags)
3200{
3201	struct bdaddr_list_with_flags *entry;
3202
3203	if (!bacmp(bdaddr, BDADDR_ANY))
3204		return -EBADF;
3205
3206	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3207		return -EEXIST;
3208
3209	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3210	if (!entry)
3211		return -ENOMEM;
3212
3213	bacpy(&entry->bdaddr, bdaddr);
3214	entry->bdaddr_type = type;
3215	entry->current_flags = flags;
3216
3217	list_add(&entry->list, list);
3218
3219	return 0;
3220}
3221
3222int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3223{
3224	struct bdaddr_list *entry;
3225
3226	if (!bacmp(bdaddr, BDADDR_ANY)) {
3227		hci_bdaddr_list_clear(list);
3228		return 0;
3229	}
3230
3231	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3232	if (!entry)
3233		return -ENOENT;
3234
3235	list_del(&entry->list);
3236	kfree(entry);
3237
3238	return 0;
3239}
3240
3241int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3242							u8 type)
3243{
3244	struct bdaddr_list_with_irk *entry;
3245
3246	if (!bacmp(bdaddr, BDADDR_ANY)) {
3247		hci_bdaddr_list_clear(list);
3248		return 0;
3249	}
3250
3251	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3252	if (!entry)
3253		return -ENOENT;
3254
3255	list_del(&entry->list);
3256	kfree(entry);
3257
3258	return 0;
3259}
3260
3261int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3262				   u8 type)
3263{
3264	struct bdaddr_list_with_flags *entry;
3265
3266	if (!bacmp(bdaddr, BDADDR_ANY)) {
3267		hci_bdaddr_list_clear(list);
3268		return 0;
3269	}
3270
3271	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3272	if (!entry)
3273		return -ENOENT;
3274
3275	list_del(&entry->list);
3276	kfree(entry);
3277
3278	return 0;
3279}
3280
3281/* This function requires the caller holds hdev->lock */
3282struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3283					       bdaddr_t *addr, u8 addr_type)
3284{
3285	struct hci_conn_params *params;
3286
3287	list_for_each_entry(params, &hdev->le_conn_params, list) {
3288		if (bacmp(&params->addr, addr) == 0 &&
3289		    params->addr_type == addr_type) {
3290			return params;
3291		}
3292	}
3293
3294	return NULL;
3295}
3296
3297/* This function requires the caller holds hdev->lock */
3298struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3299						  bdaddr_t *addr, u8 addr_type)
3300{
3301	struct hci_conn_params *param;
3302
3303	switch (addr_type) {
3304	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3305		addr_type = ADDR_LE_DEV_PUBLIC;
3306		break;
3307	case ADDR_LE_DEV_RANDOM_RESOLVED:
3308		addr_type = ADDR_LE_DEV_RANDOM;
3309		break;
3310	}
3311
3312	list_for_each_entry(param, list, action) {
3313		if (bacmp(&param->addr, addr) == 0 &&
3314		    param->addr_type == addr_type)
 
3315			return param;
 
3316	}
3317
 
 
3318	return NULL;
3319}
3320
3321/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3322struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3323					    bdaddr_t *addr, u8 addr_type)
3324{
3325	struct hci_conn_params *params;
3326
3327	params = hci_conn_params_lookup(hdev, addr, addr_type);
3328	if (params)
3329		return params;
3330
3331	params = kzalloc(sizeof(*params), GFP_KERNEL);
3332	if (!params) {
3333		bt_dev_err(hdev, "out of memory");
3334		return NULL;
3335	}
3336
3337	bacpy(&params->addr, addr);
3338	params->addr_type = addr_type;
3339
3340	list_add(&params->list, &hdev->le_conn_params);
3341	INIT_LIST_HEAD(&params->action);
3342
3343	params->conn_min_interval = hdev->le_conn_min_interval;
3344	params->conn_max_interval = hdev->le_conn_max_interval;
3345	params->conn_latency = hdev->le_conn_latency;
3346	params->supervision_timeout = hdev->le_supv_timeout;
3347	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3348
3349	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3350
3351	return params;
3352}
3353
3354static void hci_conn_params_free(struct hci_conn_params *params)
3355{
 
 
3356	if (params->conn) {
3357		hci_conn_drop(params->conn);
3358		hci_conn_put(params->conn);
3359	}
3360
3361	list_del(&params->action);
3362	list_del(&params->list);
3363	kfree(params);
3364}
3365
3366/* This function requires the caller holds hdev->lock */
3367void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3368{
3369	struct hci_conn_params *params;
3370
3371	params = hci_conn_params_lookup(hdev, addr, addr_type);
3372	if (!params)
3373		return;
3374
3375	hci_conn_params_free(params);
3376
3377	hci_update_background_scan(hdev);
3378
3379	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3380}
3381
3382/* This function requires the caller holds hdev->lock */
3383void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3384{
3385	struct hci_conn_params *params, *tmp;
3386
3387	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3388		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3389			continue;
3390
3391		/* If trying to estabilish one time connection to disabled
3392		 * device, leave the params, but mark them as just once.
3393		 */
3394		if (params->explicit_connect) {
3395			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3396			continue;
3397		}
3398
3399		list_del(&params->list);
3400		kfree(params);
3401	}
3402
3403	BT_DBG("All LE disabled connection parameters were removed");
3404}
3405
3406/* This function requires the caller holds hdev->lock */
3407static void hci_conn_params_clear_all(struct hci_dev *hdev)
3408{
3409	struct hci_conn_params *params, *tmp;
3410
3411	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3412		hci_conn_params_free(params);
3413
3414	BT_DBG("All LE connection parameters were removed");
3415}
3416
3417/* Copy the Identity Address of the controller.
3418 *
3419 * If the controller has a public BD_ADDR, then by default use that one.
3420 * If this is a LE only controller without a public address, default to
3421 * the static random address.
3422 *
3423 * For debugging purposes it is possible to force controllers with a
3424 * public address to use the static random address instead.
3425 *
3426 * In case BR/EDR has been disabled on a dual-mode controller and
3427 * userspace has configured a static address, then that address
3428 * becomes the identity address instead of the public BR/EDR address.
3429 */
3430void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3431			       u8 *bdaddr_type)
3432{
3433	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3434	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3435	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3436	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3437		bacpy(bdaddr, &hdev->static_addr);
3438		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3439	} else {
3440		bacpy(bdaddr, &hdev->bdaddr);
3441		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3442	}
3443}
3444
3445static int hci_suspend_wait_event(struct hci_dev *hdev)
3446{
3447#define WAKE_COND                                                              \
3448	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3449	 __SUSPEND_NUM_TASKS)
3450
3451	int i;
3452	int ret = wait_event_timeout(hdev->suspend_wait_q,
3453				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3454
3455	if (ret == 0) {
3456		bt_dev_err(hdev, "Timed out waiting for suspend events");
3457		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3458			if (test_bit(i, hdev->suspend_tasks))
3459				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3460			clear_bit(i, hdev->suspend_tasks);
3461		}
3462
3463		ret = -ETIMEDOUT;
3464	} else {
3465		ret = 0;
3466	}
3467
3468	return ret;
3469}
3470
3471static void hci_prepare_suspend(struct work_struct *work)
3472{
3473	struct hci_dev *hdev =
3474		container_of(work, struct hci_dev, suspend_prepare);
3475
3476	hci_dev_lock(hdev);
3477	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3478	hci_dev_unlock(hdev);
3479}
3480
3481static int hci_change_suspend_state(struct hci_dev *hdev,
3482				    enum suspended_state next)
3483{
3484	hdev->suspend_state_next = next;
3485	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3486	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3487	return hci_suspend_wait_event(hdev);
3488}
3489
3490static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3491				void *data)
3492{
3493	struct hci_dev *hdev =
3494		container_of(nb, struct hci_dev, suspend_notifier);
3495	int ret = 0;
3496
3497	/* If powering down, wait for completion. */
3498	if (mgmt_powering_down(hdev)) {
3499		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3500		ret = hci_suspend_wait_event(hdev);
3501		if (ret)
3502			goto done;
3503	}
3504
3505	/* Suspend notifier should only act on events when powered. */
3506	if (!hdev_is_powered(hdev))
3507		goto done;
3508
3509	if (action == PM_SUSPEND_PREPARE) {
3510		/* Suspend consists of two actions:
3511		 *  - First, disconnect everything and make the controller not
3512		 *    connectable (disabling scanning)
3513		 *  - Second, program event filter/whitelist and enable scan
3514		 */
3515		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3516
3517		/* Only configure whitelist if disconnect succeeded and wake
3518		 * isn't being prevented.
3519		 */
3520		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev)))
3521			ret = hci_change_suspend_state(hdev,
3522						BT_SUSPEND_CONFIGURE_WAKE);
3523	} else if (action == PM_POST_SUSPEND) {
3524		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3525	}
3526
3527done:
3528	/* We always allow suspend even if suspend preparation failed and
3529	 * attempt to recover in resume.
3530	 */
3531	if (ret)
3532		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3533			   action, ret);
3534
 
3535	return NOTIFY_DONE;
3536}
3537
3538/* Alloc HCI device */
3539struct hci_dev *hci_alloc_dev(void)
3540{
3541	struct hci_dev *hdev;
 
 
 
 
 
 
 
3542
3543	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3544	if (!hdev)
3545		return NULL;
3546
3547	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3548	hdev->esco_type = (ESCO_HV1);
3549	hdev->link_mode = (HCI_LM_ACCEPT);
3550	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3551	hdev->io_capability = 0x03;	/* No Input No Output */
3552	hdev->manufacturer = 0xffff;	/* Default to internal use */
3553	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3554	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3555	hdev->adv_instance_cnt = 0;
3556	hdev->cur_adv_instance = 0x00;
3557	hdev->adv_instance_timeout = 0;
3558
 
 
 
 
3559	hdev->sniff_max_interval = 800;
3560	hdev->sniff_min_interval = 80;
3561
3562	hdev->le_adv_channel_map = 0x07;
3563	hdev->le_adv_min_interval = 0x0800;
3564	hdev->le_adv_max_interval = 0x0800;
3565	hdev->le_scan_interval = 0x0060;
3566	hdev->le_scan_window = 0x0030;
3567	hdev->le_scan_int_suspend = 0x0400;
3568	hdev->le_scan_window_suspend = 0x0012;
3569	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3570	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3571	hdev->le_scan_int_connect = 0x0060;
3572	hdev->le_scan_window_connect = 0x0060;
 
 
3573	hdev->le_conn_min_interval = 0x0018;
3574	hdev->le_conn_max_interval = 0x0028;
3575	hdev->le_conn_latency = 0x0000;
3576	hdev->le_supv_timeout = 0x002a;
3577	hdev->le_def_tx_len = 0x001b;
3578	hdev->le_def_tx_time = 0x0148;
3579	hdev->le_max_tx_len = 0x001b;
3580	hdev->le_max_tx_time = 0x0148;
3581	hdev->le_max_rx_len = 0x001b;
3582	hdev->le_max_rx_time = 0x0148;
3583	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3584	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3585	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3586	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3587	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3588	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3589	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
 
 
3590
3591	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3592	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3593	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3594	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3595	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3596	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3597
3598	/* default 1.28 sec page scan */
3599	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3600	hdev->def_page_scan_int = 0x0800;
3601	hdev->def_page_scan_window = 0x0012;
3602
3603	mutex_init(&hdev->lock);
3604	mutex_init(&hdev->req_lock);
3605
 
 
 
3606	INIT_LIST_HEAD(&hdev->mgmt_pending);
3607	INIT_LIST_HEAD(&hdev->blacklist);
3608	INIT_LIST_HEAD(&hdev->whitelist);
3609	INIT_LIST_HEAD(&hdev->uuids);
3610	INIT_LIST_HEAD(&hdev->link_keys);
3611	INIT_LIST_HEAD(&hdev->long_term_keys);
3612	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3613	INIT_LIST_HEAD(&hdev->remote_oob_data);
3614	INIT_LIST_HEAD(&hdev->le_white_list);
3615	INIT_LIST_HEAD(&hdev->le_resolv_list);
3616	INIT_LIST_HEAD(&hdev->le_conn_params);
3617	INIT_LIST_HEAD(&hdev->pend_le_conns);
3618	INIT_LIST_HEAD(&hdev->pend_le_reports);
3619	INIT_LIST_HEAD(&hdev->conn_hash.list);
3620	INIT_LIST_HEAD(&hdev->adv_instances);
3621	INIT_LIST_HEAD(&hdev->blocked_keys);
 
3622
 
3623	INIT_WORK(&hdev->rx_work, hci_rx_work);
3624	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3625	INIT_WORK(&hdev->tx_work, hci_tx_work);
3626	INIT_WORK(&hdev->power_on, hci_power_on);
3627	INIT_WORK(&hdev->error_reset, hci_error_reset);
3628	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
 
3629
3630	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3631
3632	skb_queue_head_init(&hdev->rx_q);
3633	skb_queue_head_init(&hdev->cmd_q);
3634	skb_queue_head_init(&hdev->raw_q);
3635
3636	init_waitqueue_head(&hdev->req_wait_q);
3637	init_waitqueue_head(&hdev->suspend_wait_q);
3638
3639	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3640
3641	hci_request_setup(hdev);
3642
3643	hci_init_sysfs(hdev);
3644	discovery_init(hdev);
3645
3646	return hdev;
3647}
3648EXPORT_SYMBOL(hci_alloc_dev);
3649
3650/* Free HCI device */
3651void hci_free_dev(struct hci_dev *hdev)
3652{
3653	/* will free via device release */
3654	put_device(&hdev->dev);
3655}
3656EXPORT_SYMBOL(hci_free_dev);
3657
3658/* Register HCI device */
3659int hci_register_dev(struct hci_dev *hdev)
3660{
3661	int id, error;
3662
3663	if (!hdev->open || !hdev->close || !hdev->send)
3664		return -EINVAL;
3665
3666	/* Do not allow HCI_AMP devices to register at index 0,
3667	 * so the index can be used as the AMP controller ID.
3668	 */
3669	switch (hdev->dev_type) {
3670	case HCI_PRIMARY:
3671		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3672		break;
3673	case HCI_AMP:
3674		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3675		break;
3676	default:
3677		return -EINVAL;
3678	}
3679
3680	if (id < 0)
3681		return id;
3682
3683	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3684	hdev->id = id;
3685
3686	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3687
3688	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3689	if (!hdev->workqueue) {
3690		error = -ENOMEM;
3691		goto err;
3692	}
3693
3694	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3695						      hdev->name);
3696	if (!hdev->req_workqueue) {
3697		destroy_workqueue(hdev->workqueue);
3698		error = -ENOMEM;
3699		goto err;
3700	}
3701
3702	if (!IS_ERR_OR_NULL(bt_debugfs))
3703		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3704
3705	dev_set_name(&hdev->dev, "%s", hdev->name);
3706
3707	error = device_add(&hdev->dev);
3708	if (error < 0)
3709		goto err_wqueue;
3710
3711	hci_leds_init(hdev);
3712
3713	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3714				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3715				    hdev);
3716	if (hdev->rfkill) {
3717		if (rfkill_register(hdev->rfkill) < 0) {
3718			rfkill_destroy(hdev->rfkill);
3719			hdev->rfkill = NULL;
3720		}
3721	}
3722
3723	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3724		hci_dev_set_flag(hdev, HCI_RFKILLED);
3725
3726	hci_dev_set_flag(hdev, HCI_SETUP);
3727	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3728
3729	if (hdev->dev_type == HCI_PRIMARY) {
3730		/* Assume BR/EDR support until proven otherwise (such as
3731		 * through reading supported features during init.
3732		 */
3733		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3734	}
3735
3736	write_lock(&hci_dev_list_lock);
3737	list_add(&hdev->list, &hci_dev_list);
3738	write_unlock(&hci_dev_list_lock);
3739
3740	/* Devices that are marked for raw-only usage are unconfigured
3741	 * and should not be included in normal operation.
3742	 */
3743	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3744		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3745
 
 
 
 
 
 
3746	hci_sock_dev_event(hdev, HCI_DEV_REG);
3747	hci_dev_hold(hdev);
3748
3749	hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3750	error = register_pm_notifier(&hdev->suspend_notifier);
3751	if (error)
3752		goto err_wqueue;
3753
3754	queue_work(hdev->req_workqueue, &hdev->power_on);
3755
3756	idr_init(&hdev->adv_monitors_idr);
 
3757
3758	return id;
3759
3760err_wqueue:
 
3761	destroy_workqueue(hdev->workqueue);
3762	destroy_workqueue(hdev->req_workqueue);
3763err:
3764	ida_simple_remove(&hci_index_ida, hdev->id);
3765
3766	return error;
3767}
3768EXPORT_SYMBOL(hci_register_dev);
3769
3770/* Unregister HCI device */
3771void hci_unregister_dev(struct hci_dev *hdev)
3772{
3773	int id;
3774
3775	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3776
 
3777	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3778
3779	id = hdev->id;
3780
3781	write_lock(&hci_dev_list_lock);
3782	list_del(&hdev->list);
3783	write_unlock(&hci_dev_list_lock);
3784
3785	cancel_work_sync(&hdev->power_on);
 
 
 
 
 
 
3786
3787	unregister_pm_notifier(&hdev->suspend_notifier);
3788	cancel_work_sync(&hdev->suspend_prepare);
3789
3790	hci_dev_do_close(hdev);
3791
3792	if (!test_bit(HCI_INIT, &hdev->flags) &&
3793	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3794	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3795		hci_dev_lock(hdev);
3796		mgmt_index_removed(hdev);
3797		hci_dev_unlock(hdev);
3798	}
3799
3800	/* mgmt_index_removed should take care of emptying the
3801	 * pending list */
3802	BUG_ON(!list_empty(&hdev->mgmt_pending));
3803
3804	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3805
3806	if (hdev->rfkill) {
3807		rfkill_unregister(hdev->rfkill);
3808		rfkill_destroy(hdev->rfkill);
3809	}
3810
3811	device_del(&hdev->dev);
 
 
 
 
3812
 
 
 
3813	debugfs_remove_recursive(hdev->debugfs);
3814	kfree_const(hdev->hw_info);
3815	kfree_const(hdev->fw_info);
3816
3817	destroy_workqueue(hdev->workqueue);
3818	destroy_workqueue(hdev->req_workqueue);
3819
3820	hci_dev_lock(hdev);
3821	hci_bdaddr_list_clear(&hdev->blacklist);
3822	hci_bdaddr_list_clear(&hdev->whitelist);
3823	hci_uuids_clear(hdev);
3824	hci_link_keys_clear(hdev);
3825	hci_smp_ltks_clear(hdev);
3826	hci_smp_irks_clear(hdev);
3827	hci_remote_oob_data_clear(hdev);
3828	hci_adv_instances_clear(hdev);
3829	hci_adv_monitors_clear(hdev);
3830	hci_bdaddr_list_clear(&hdev->le_white_list);
3831	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3832	hci_conn_params_clear_all(hdev);
3833	hci_discovery_filter_clear(hdev);
3834	hci_blocked_keys_clear(hdev);
 
 
3835	hci_dev_unlock(hdev);
3836
3837	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3838
3839	ida_simple_remove(&hci_index_ida, id);
3840}
3841EXPORT_SYMBOL(hci_unregister_dev);
3842
3843/* Suspend HCI device */
3844int hci_suspend_dev(struct hci_dev *hdev)
3845{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3846	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3847	return 0;
3848}
3849EXPORT_SYMBOL(hci_suspend_dev);
3850
3851/* Resume HCI device */
3852int hci_resume_dev(struct hci_dev *hdev)
3853{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3854	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3855	return 0;
3856}
3857EXPORT_SYMBOL(hci_resume_dev);
3858
3859/* Reset HCI device */
3860int hci_reset_dev(struct hci_dev *hdev)
3861{
3862	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3863	struct sk_buff *skb;
3864
3865	skb = bt_skb_alloc(3, GFP_ATOMIC);
3866	if (!skb)
3867		return -ENOMEM;
3868
3869	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3870	skb_put_data(skb, hw_err, 3);
3871
 
 
3872	/* Send Hardware Error to upper stack */
3873	return hci_recv_frame(hdev, skb);
3874}
3875EXPORT_SYMBOL(hci_reset_dev);
3876
 
 
 
 
 
 
 
 
3877/* Receive frame from HCI drivers */
3878int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3879{
 
 
3880	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3881		      && !test_bit(HCI_INIT, &hdev->flags))) {
3882		kfree_skb(skb);
3883		return -ENXIO;
3884	}
3885
3886	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3887	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3888	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3889	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890		kfree_skb(skb);
3891		return -EINVAL;
3892	}
3893
3894	/* Incoming skb */
3895	bt_cb(skb)->incoming = 1;
3896
3897	/* Time stamp */
3898	__net_timestamp(skb);
3899
3900	skb_queue_tail(&hdev->rx_q, skb);
3901	queue_work(hdev->workqueue, &hdev->rx_work);
3902
3903	return 0;
3904}
3905EXPORT_SYMBOL(hci_recv_frame);
3906
3907/* Receive diagnostic message from HCI drivers */
3908int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3909{
3910	/* Mark as diagnostic packet */
3911	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3912
3913	/* Time stamp */
3914	__net_timestamp(skb);
3915
3916	skb_queue_tail(&hdev->rx_q, skb);
3917	queue_work(hdev->workqueue, &hdev->rx_work);
3918
3919	return 0;
3920}
3921EXPORT_SYMBOL(hci_recv_diag);
3922
3923void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3924{
3925	va_list vargs;
3926
3927	va_start(vargs, fmt);
3928	kfree_const(hdev->hw_info);
3929	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3930	va_end(vargs);
3931}
3932EXPORT_SYMBOL(hci_set_hw_info);
3933
3934void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3935{
3936	va_list vargs;
3937
3938	va_start(vargs, fmt);
3939	kfree_const(hdev->fw_info);
3940	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3941	va_end(vargs);
3942}
3943EXPORT_SYMBOL(hci_set_fw_info);
3944
3945/* ---- Interface to upper protocols ---- */
3946
3947int hci_register_cb(struct hci_cb *cb)
3948{
3949	BT_DBG("%p name %s", cb, cb->name);
3950
3951	mutex_lock(&hci_cb_list_lock);
3952	list_add_tail(&cb->list, &hci_cb_list);
3953	mutex_unlock(&hci_cb_list_lock);
3954
3955	return 0;
3956}
3957EXPORT_SYMBOL(hci_register_cb);
3958
3959int hci_unregister_cb(struct hci_cb *cb)
3960{
3961	BT_DBG("%p name %s", cb, cb->name);
3962
3963	mutex_lock(&hci_cb_list_lock);
3964	list_del(&cb->list);
3965	mutex_unlock(&hci_cb_list_lock);
3966
3967	return 0;
3968}
3969EXPORT_SYMBOL(hci_unregister_cb);
3970
3971static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3972{
3973	int err;
3974
3975	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3976	       skb->len);
3977
3978	/* Time stamp */
3979	__net_timestamp(skb);
3980
3981	/* Send copy to monitor */
3982	hci_send_to_monitor(hdev, skb);
3983
3984	if (atomic_read(&hdev->promisc)) {
3985		/* Send copy to the sockets */
3986		hci_send_to_sock(hdev, skb);
3987	}
3988
3989	/* Get rid of skb owner, prior to sending to the driver. */
3990	skb_orphan(skb);
3991
3992	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3993		kfree_skb(skb);
3994		return;
3995	}
3996
3997	err = hdev->send(hdev, skb);
3998	if (err < 0) {
3999		bt_dev_err(hdev, "sending frame failed (%d)", err);
4000		kfree_skb(skb);
 
4001	}
 
 
4002}
4003
4004/* Send HCI command */
4005int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4006		 const void *param)
4007{
4008	struct sk_buff *skb;
4009
4010	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4011
4012	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4013	if (!skb) {
4014		bt_dev_err(hdev, "no memory for command");
4015		return -ENOMEM;
4016	}
4017
4018	/* Stand-alone HCI commands must be flagged as
4019	 * single-command requests.
4020	 */
4021	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4022
4023	skb_queue_tail(&hdev->cmd_q, skb);
4024	queue_work(hdev->workqueue, &hdev->cmd_work);
4025
4026	return 0;
4027}
4028
4029int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4030		   const void *param)
4031{
4032	struct sk_buff *skb;
4033
4034	if (hci_opcode_ogf(opcode) != 0x3f) {
4035		/* A controller receiving a command shall respond with either
4036		 * a Command Status Event or a Command Complete Event.
4037		 * Therefore, all standard HCI commands must be sent via the
4038		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4039		 * Some vendors do not comply with this rule for vendor-specific
4040		 * commands and do not return any event. We want to support
4041		 * unresponded commands for such cases only.
4042		 */
4043		bt_dev_err(hdev, "unresponded command not supported");
4044		return -EINVAL;
4045	}
4046
4047	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4048	if (!skb) {
4049		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4050			   opcode);
4051		return -ENOMEM;
4052	}
4053
4054	hci_send_frame(hdev, skb);
4055
4056	return 0;
4057}
4058EXPORT_SYMBOL(__hci_cmd_send);
4059
4060/* Get data from the previously sent command */
4061void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4062{
4063	struct hci_command_hdr *hdr;
4064
4065	if (!hdev->sent_cmd)
4066		return NULL;
4067
4068	hdr = (void *) hdev->sent_cmd->data;
4069
4070	if (hdr->opcode != cpu_to_le16(opcode))
4071		return NULL;
4072
4073	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
 
4074
4075	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
 
 
 
 
 
 
 
 
 
 
 
4076}
4077
4078/* Send HCI command and wait for command commplete event */
4079struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4080			     const void *param, u32 timeout)
4081{
4082	struct sk_buff *skb;
 
 
 
 
4083
4084	if (!test_bit(HCI_UP, &hdev->flags))
4085		return ERR_PTR(-ENETDOWN);
4086
4087	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
 
 
 
 
 
 
 
 
 
 
4088
4089	hci_req_sync_lock(hdev);
4090	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4091	hci_req_sync_unlock(hdev);
4092
4093	return skb;
4094}
4095EXPORT_SYMBOL(hci_cmd_sync);
4096
4097/* Send ACL data */
4098static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4099{
4100	struct hci_acl_hdr *hdr;
4101	int len = skb->len;
4102
4103	skb_push(skb, HCI_ACL_HDR_SIZE);
4104	skb_reset_transport_header(skb);
4105	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4106	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4107	hdr->dlen   = cpu_to_le16(len);
4108}
4109
4110static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4111			  struct sk_buff *skb, __u16 flags)
4112{
4113	struct hci_conn *conn = chan->conn;
4114	struct hci_dev *hdev = conn->hdev;
4115	struct sk_buff *list;
4116
4117	skb->len = skb_headlen(skb);
4118	skb->data_len = 0;
4119
4120	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4121
4122	switch (hdev->dev_type) {
4123	case HCI_PRIMARY:
4124		hci_add_acl_hdr(skb, conn->handle, flags);
4125		break;
4126	case HCI_AMP:
4127		hci_add_acl_hdr(skb, chan->handle, flags);
4128		break;
4129	default:
4130		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4131		return;
4132	}
4133
4134	list = skb_shinfo(skb)->frag_list;
4135	if (!list) {
4136		/* Non fragmented */
4137		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4138
4139		skb_queue_tail(queue, skb);
4140	} else {
4141		/* Fragmented */
4142		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4143
4144		skb_shinfo(skb)->frag_list = NULL;
4145
4146		/* Queue all fragments atomically. We need to use spin_lock_bh
4147		 * here because of 6LoWPAN links, as there this function is
4148		 * called from softirq and using normal spin lock could cause
4149		 * deadlocks.
4150		 */
4151		spin_lock_bh(&queue->lock);
4152
4153		__skb_queue_tail(queue, skb);
4154
4155		flags &= ~ACL_START;
4156		flags |= ACL_CONT;
4157		do {
4158			skb = list; list = list->next;
4159
4160			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4161			hci_add_acl_hdr(skb, conn->handle, flags);
4162
4163			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4164
4165			__skb_queue_tail(queue, skb);
4166		} while (list);
4167
4168		spin_unlock_bh(&queue->lock);
4169	}
4170}
4171
4172void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4173{
4174	struct hci_dev *hdev = chan->conn->hdev;
4175
4176	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4177
4178	hci_queue_acl(chan, &chan->data_q, skb, flags);
4179
4180	queue_work(hdev->workqueue, &hdev->tx_work);
4181}
4182
4183/* Send SCO data */
4184void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4185{
4186	struct hci_dev *hdev = conn->hdev;
4187	struct hci_sco_hdr hdr;
4188
4189	BT_DBG("%s len %d", hdev->name, skb->len);
4190
4191	hdr.handle = cpu_to_le16(conn->handle);
4192	hdr.dlen   = skb->len;
4193
4194	skb_push(skb, HCI_SCO_HDR_SIZE);
4195	skb_reset_transport_header(skb);
4196	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4197
4198	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4199
4200	skb_queue_tail(&conn->data_q, skb);
4201	queue_work(hdev->workqueue, &hdev->tx_work);
4202}
4203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4204/* ---- HCI TX task (outgoing data) ---- */
4205
4206/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4207static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4208				     int *quote)
4209{
4210	struct hci_conn_hash *h = &hdev->conn_hash;
4211	struct hci_conn *conn = NULL, *c;
4212	unsigned int num = 0, min = ~0;
4213
4214	/* We don't have to lock device here. Connections are always
4215	 * added and removed with TX task disabled. */
4216
4217	rcu_read_lock();
4218
4219	list_for_each_entry_rcu(c, &h->list, list) {
4220		if (c->type != type || skb_queue_empty(&c->data_q))
4221			continue;
4222
4223		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4224			continue;
4225
4226		num++;
4227
4228		if (c->sent < min) {
4229			min  = c->sent;
4230			conn = c;
4231		}
4232
4233		if (hci_conn_num(hdev, type) == num)
4234			break;
4235	}
4236
4237	rcu_read_unlock();
4238
4239	if (conn) {
4240		int cnt, q;
4241
4242		switch (conn->type) {
4243		case ACL_LINK:
4244			cnt = hdev->acl_cnt;
4245			break;
4246		case SCO_LINK:
4247		case ESCO_LINK:
4248			cnt = hdev->sco_cnt;
4249			break;
4250		case LE_LINK:
4251			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4252			break;
4253		default:
4254			cnt = 0;
4255			bt_dev_err(hdev, "unknown link type %d", conn->type);
4256		}
4257
4258		q = cnt / num;
4259		*quote = q ? q : 1;
4260	} else
4261		*quote = 0;
4262
4263	BT_DBG("conn %p quote %d", conn, *quote);
4264	return conn;
4265}
4266
4267static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4268{
4269	struct hci_conn_hash *h = &hdev->conn_hash;
4270	struct hci_conn *c;
4271
4272	bt_dev_err(hdev, "link tx timeout");
4273
4274	rcu_read_lock();
4275
4276	/* Kill stalled connections */
4277	list_for_each_entry_rcu(c, &h->list, list) {
4278		if (c->type == type && c->sent) {
4279			bt_dev_err(hdev, "killing stalled connection %pMR",
4280				   &c->dst);
 
 
 
 
4281			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
4282		}
4283	}
4284
4285	rcu_read_unlock();
4286}
4287
4288static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4289				      int *quote)
4290{
4291	struct hci_conn_hash *h = &hdev->conn_hash;
4292	struct hci_chan *chan = NULL;
4293	unsigned int num = 0, min = ~0, cur_prio = 0;
4294	struct hci_conn *conn;
4295	int cnt, q, conn_num = 0;
4296
4297	BT_DBG("%s", hdev->name);
4298
4299	rcu_read_lock();
4300
4301	list_for_each_entry_rcu(conn, &h->list, list) {
4302		struct hci_chan *tmp;
4303
4304		if (conn->type != type)
4305			continue;
4306
4307		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4308			continue;
4309
4310		conn_num++;
4311
4312		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4313			struct sk_buff *skb;
4314
4315			if (skb_queue_empty(&tmp->data_q))
4316				continue;
4317
4318			skb = skb_peek(&tmp->data_q);
4319			if (skb->priority < cur_prio)
4320				continue;
4321
4322			if (skb->priority > cur_prio) {
4323				num = 0;
4324				min = ~0;
4325				cur_prio = skb->priority;
4326			}
4327
4328			num++;
4329
4330			if (conn->sent < min) {
4331				min  = conn->sent;
4332				chan = tmp;
4333			}
4334		}
4335
4336		if (hci_conn_num(hdev, type) == conn_num)
4337			break;
4338	}
4339
4340	rcu_read_unlock();
4341
4342	if (!chan)
4343		return NULL;
4344
4345	switch (chan->conn->type) {
4346	case ACL_LINK:
4347		cnt = hdev->acl_cnt;
4348		break;
4349	case AMP_LINK:
4350		cnt = hdev->block_cnt;
4351		break;
4352	case SCO_LINK:
4353	case ESCO_LINK:
4354		cnt = hdev->sco_cnt;
4355		break;
4356	case LE_LINK:
4357		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4358		break;
4359	default:
4360		cnt = 0;
4361		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4362	}
4363
4364	q = cnt / num;
4365	*quote = q ? q : 1;
4366	BT_DBG("chan %p quote %d", chan, *quote);
4367	return chan;
4368}
4369
4370static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4371{
4372	struct hci_conn_hash *h = &hdev->conn_hash;
4373	struct hci_conn *conn;
4374	int num = 0;
4375
4376	BT_DBG("%s", hdev->name);
4377
4378	rcu_read_lock();
4379
4380	list_for_each_entry_rcu(conn, &h->list, list) {
4381		struct hci_chan *chan;
4382
4383		if (conn->type != type)
4384			continue;
4385
4386		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4387			continue;
4388
4389		num++;
4390
4391		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4392			struct sk_buff *skb;
4393
4394			if (chan->sent) {
4395				chan->sent = 0;
4396				continue;
4397			}
4398
4399			if (skb_queue_empty(&chan->data_q))
4400				continue;
4401
4402			skb = skb_peek(&chan->data_q);
4403			if (skb->priority >= HCI_PRIO_MAX - 1)
4404				continue;
4405
4406			skb->priority = HCI_PRIO_MAX - 1;
4407
4408			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4409			       skb->priority);
4410		}
4411
4412		if (hci_conn_num(hdev, type) == num)
4413			break;
4414	}
4415
4416	rcu_read_unlock();
4417
4418}
4419
4420static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4421{
4422	/* Calculate count of blocks used by this packet */
4423	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4424}
 
4425
4426static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4427{
4428	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4429		/* ACL tx timeout must be longer than maximum
4430		 * link supervision timeout (40.9 seconds) */
4431		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4432				       HCI_ACL_TX_TIMEOUT))
4433			hci_link_tx_to(hdev, ACL_LINK);
4434	}
 
 
 
 
 
 
4435}
4436
4437/* Schedule SCO */
4438static void hci_sched_sco(struct hci_dev *hdev)
4439{
4440	struct hci_conn *conn;
4441	struct sk_buff *skb;
4442	int quote;
4443
4444	BT_DBG("%s", hdev->name);
4445
4446	if (!hci_conn_num(hdev, SCO_LINK))
4447		return;
4448
4449	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4450		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4451			BT_DBG("skb %p len %d", skb, skb->len);
4452			hci_send_frame(hdev, skb);
4453
4454			conn->sent++;
4455			if (conn->sent == ~0)
4456				conn->sent = 0;
4457		}
4458	}
4459}
4460
4461static void hci_sched_esco(struct hci_dev *hdev)
4462{
4463	struct hci_conn *conn;
4464	struct sk_buff *skb;
4465	int quote;
4466
4467	BT_DBG("%s", hdev->name);
4468
4469	if (!hci_conn_num(hdev, ESCO_LINK))
4470		return;
4471
4472	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4473						     &quote))) {
4474		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4475			BT_DBG("skb %p len %d", skb, skb->len);
4476			hci_send_frame(hdev, skb);
4477
4478			conn->sent++;
4479			if (conn->sent == ~0)
4480				conn->sent = 0;
4481		}
4482	}
4483}
4484
4485static void hci_sched_acl_pkt(struct hci_dev *hdev)
4486{
4487	unsigned int cnt = hdev->acl_cnt;
4488	struct hci_chan *chan;
4489	struct sk_buff *skb;
4490	int quote;
4491
4492	__check_timeout(hdev, cnt);
4493
4494	while (hdev->acl_cnt &&
4495	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4496		u32 priority = (skb_peek(&chan->data_q))->priority;
4497		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4498			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4499			       skb->len, skb->priority);
4500
4501			/* Stop if priority has changed */
4502			if (skb->priority < priority)
4503				break;
4504
4505			skb = skb_dequeue(&chan->data_q);
4506
4507			hci_conn_enter_active_mode(chan->conn,
4508						   bt_cb(skb)->force_active);
4509
4510			hci_send_frame(hdev, skb);
4511			hdev->acl_last_tx = jiffies;
4512
4513			hdev->acl_cnt--;
4514			chan->sent++;
4515			chan->conn->sent++;
4516
4517			/* Send pending SCO packets right away */
4518			hci_sched_sco(hdev);
4519			hci_sched_esco(hdev);
4520		}
4521	}
4522
4523	if (cnt != hdev->acl_cnt)
4524		hci_prio_recalculate(hdev, ACL_LINK);
4525}
4526
4527static void hci_sched_acl_blk(struct hci_dev *hdev)
4528{
4529	unsigned int cnt = hdev->block_cnt;
4530	struct hci_chan *chan;
4531	struct sk_buff *skb;
4532	int quote;
4533	u8 type;
4534
4535	__check_timeout(hdev, cnt);
4536
4537	BT_DBG("%s", hdev->name);
4538
4539	if (hdev->dev_type == HCI_AMP)
4540		type = AMP_LINK;
4541	else
4542		type = ACL_LINK;
4543
4544	while (hdev->block_cnt > 0 &&
4545	       (chan = hci_chan_sent(hdev, type, &quote))) {
4546		u32 priority = (skb_peek(&chan->data_q))->priority;
4547		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4548			int blocks;
4549
4550			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4551			       skb->len, skb->priority);
4552
4553			/* Stop if priority has changed */
4554			if (skb->priority < priority)
4555				break;
4556
4557			skb = skb_dequeue(&chan->data_q);
4558
4559			blocks = __get_blocks(hdev, skb);
4560			if (blocks > hdev->block_cnt)
4561				return;
4562
4563			hci_conn_enter_active_mode(chan->conn,
4564						   bt_cb(skb)->force_active);
4565
4566			hci_send_frame(hdev, skb);
4567			hdev->acl_last_tx = jiffies;
4568
4569			hdev->block_cnt -= blocks;
4570			quote -= blocks;
4571
4572			chan->sent += blocks;
4573			chan->conn->sent += blocks;
4574		}
4575	}
4576
4577	if (cnt != hdev->block_cnt)
4578		hci_prio_recalculate(hdev, type);
4579}
4580
4581static void hci_sched_acl(struct hci_dev *hdev)
4582{
4583	BT_DBG("%s", hdev->name);
4584
4585	/* No ACL link over BR/EDR controller */
4586	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4587		return;
4588
4589	/* No AMP link over AMP controller */
4590	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4591		return;
4592
4593	switch (hdev->flow_ctl_mode) {
4594	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4595		hci_sched_acl_pkt(hdev);
4596		break;
4597
4598	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4599		hci_sched_acl_blk(hdev);
4600		break;
4601	}
4602}
4603
4604static void hci_sched_le(struct hci_dev *hdev)
4605{
4606	struct hci_chan *chan;
4607	struct sk_buff *skb;
4608	int quote, cnt, tmp;
4609
4610	BT_DBG("%s", hdev->name);
4611
4612	if (!hci_conn_num(hdev, LE_LINK))
4613		return;
4614
4615	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4616
4617	__check_timeout(hdev, cnt);
4618
4619	tmp = cnt;
4620	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4621		u32 priority = (skb_peek(&chan->data_q))->priority;
4622		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4623			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624			       skb->len, skb->priority);
4625
4626			/* Stop if priority has changed */
4627			if (skb->priority < priority)
4628				break;
4629
4630			skb = skb_dequeue(&chan->data_q);
4631
4632			hci_send_frame(hdev, skb);
4633			hdev->le_last_tx = jiffies;
4634
4635			cnt--;
4636			chan->sent++;
4637			chan->conn->sent++;
4638
4639			/* Send pending SCO packets right away */
4640			hci_sched_sco(hdev);
4641			hci_sched_esco(hdev);
4642		}
4643	}
4644
4645	if (hdev->le_pkts)
4646		hdev->le_cnt = cnt;
4647	else
4648		hdev->acl_cnt = cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4649
4650	if (cnt != tmp)
4651		hci_prio_recalculate(hdev, LE_LINK);
 
 
 
 
4652}
4653
4654static void hci_tx_work(struct work_struct *work)
4655{
4656	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4657	struct sk_buff *skb;
4658
4659	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4660	       hdev->sco_cnt, hdev->le_cnt);
4661
4662	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4663		/* Schedule queues and send stuff to HCI driver */
4664		hci_sched_sco(hdev);
4665		hci_sched_esco(hdev);
 
4666		hci_sched_acl(hdev);
4667		hci_sched_le(hdev);
4668	}
4669
4670	/* Send next queued raw (unknown type) packet */
4671	while ((skb = skb_dequeue(&hdev->raw_q)))
4672		hci_send_frame(hdev, skb);
4673}
4674
4675/* ----- HCI RX task (incoming data processing) ----- */
4676
4677/* ACL data packet */
4678static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4679{
4680	struct hci_acl_hdr *hdr = (void *) skb->data;
4681	struct hci_conn *conn;
4682	__u16 handle, flags;
4683
4684	skb_pull(skb, HCI_ACL_HDR_SIZE);
 
 
 
 
4685
4686	handle = __le16_to_cpu(hdr->handle);
4687	flags  = hci_flags(handle);
4688	handle = hci_handle(handle);
4689
4690	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4691	       handle, flags);
4692
4693	hdev->stat.acl_rx++;
4694
4695	hci_dev_lock(hdev);
4696	conn = hci_conn_hash_lookup_handle(hdev, handle);
4697	hci_dev_unlock(hdev);
4698
4699	if (conn) {
4700		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4701
4702		/* Send to upper protocol */
4703		l2cap_recv_acldata(conn, skb, flags);
4704		return;
4705	} else {
4706		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4707			   handle);
4708	}
4709
 
4710	kfree_skb(skb);
4711}
4712
4713/* SCO data packet */
4714static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4715{
4716	struct hci_sco_hdr *hdr = (void *) skb->data;
4717	struct hci_conn *conn;
4718	__u16 handle, flags;
4719
4720	skb_pull(skb, HCI_SCO_HDR_SIZE);
 
 
 
 
4721
4722	handle = __le16_to_cpu(hdr->handle);
4723	flags  = hci_flags(handle);
4724	handle = hci_handle(handle);
4725
4726	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4727	       handle, flags);
4728
4729	hdev->stat.sco_rx++;
4730
4731	hci_dev_lock(hdev);
4732	conn = hci_conn_hash_lookup_handle(hdev, handle);
4733	hci_dev_unlock(hdev);
4734
4735	if (conn) {
4736		/* Send to upper protocol */
4737		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4738		sco_recv_scodata(conn, skb);
4739		return;
4740	} else {
4741		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4742			   handle);
 
4743	}
4744
 
 
 
 
 
4745	kfree_skb(skb);
4746}
4747
4748static bool hci_req_is_complete(struct hci_dev *hdev)
4749{
4750	struct sk_buff *skb;
4751
4752	skb = skb_peek(&hdev->cmd_q);
4753	if (!skb)
4754		return true;
4755
4756	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4757}
4758
4759static void hci_resend_last(struct hci_dev *hdev)
4760{
4761	struct hci_command_hdr *sent;
4762	struct sk_buff *skb;
4763	u16 opcode;
4764
4765	if (!hdev->sent_cmd)
4766		return;
4767
4768	sent = (void *) hdev->sent_cmd->data;
4769	opcode = __le16_to_cpu(sent->opcode);
4770	if (opcode == HCI_OP_RESET)
4771		return;
4772
4773	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4774	if (!skb)
4775		return;
4776
4777	skb_queue_head(&hdev->cmd_q, skb);
4778	queue_work(hdev->workqueue, &hdev->cmd_work);
4779}
4780
4781void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4782			  hci_req_complete_t *req_complete,
4783			  hci_req_complete_skb_t *req_complete_skb)
4784{
4785	struct sk_buff *skb;
4786	unsigned long flags;
4787
4788	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4789
4790	/* If the completed command doesn't match the last one that was
4791	 * sent we need to do special handling of it.
4792	 */
4793	if (!hci_sent_cmd_data(hdev, opcode)) {
4794		/* Some CSR based controllers generate a spontaneous
4795		 * reset complete event during init and any pending
4796		 * command will never be completed. In such a case we
4797		 * need to resend whatever was the last sent
4798		 * command.
4799		 */
4800		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4801			hci_resend_last(hdev);
4802
4803		return;
4804	}
4805
4806	/* If we reach this point this event matches the last command sent */
4807	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4808
4809	/* If the command succeeded and there's still more commands in
4810	 * this request the request is not yet complete.
4811	 */
4812	if (!status && !hci_req_is_complete(hdev))
4813		return;
4814
 
 
4815	/* If this was the last command in a request the complete
4816	 * callback would be found in hdev->sent_cmd instead of the
4817	 * command queue (hdev->cmd_q).
4818	 */
4819	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4820		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4821		return;
4822	}
4823
4824	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4825		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4826		return;
4827	}
4828
4829	/* Remove all pending commands belonging to this request */
4830	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4831	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4832		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4833			__skb_queue_head(&hdev->cmd_q, skb);
4834			break;
4835		}
4836
4837		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4838			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4839		else
4840			*req_complete = bt_cb(skb)->hci.req_complete;
4841		kfree_skb(skb);
4842	}
4843	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4844}
4845
4846static void hci_rx_work(struct work_struct *work)
4847{
4848	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4849	struct sk_buff *skb;
4850
4851	BT_DBG("%s", hdev->name);
4852
4853	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4854		/* Send copy to monitor */
4855		hci_send_to_monitor(hdev, skb);
4856
4857		if (atomic_read(&hdev->promisc)) {
4858			/* Send copy to the sockets */
4859			hci_send_to_sock(hdev, skb);
4860		}
4861
4862		/* If the device has been opened in HCI_USER_CHANNEL,
4863		 * the userspace has exclusive access to device.
4864		 * When device is HCI_INIT, we still need to process
4865		 * the data packets to the driver in order
4866		 * to complete its setup().
4867		 */
4868		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4869		    !test_bit(HCI_INIT, &hdev->flags)) {
4870			kfree_skb(skb);
4871			continue;
4872		}
4873
4874		if (test_bit(HCI_INIT, &hdev->flags)) {
4875			/* Don't process data packets in this states. */
4876			switch (hci_skb_pkt_type(skb)) {
4877			case HCI_ACLDATA_PKT:
4878			case HCI_SCODATA_PKT:
4879			case HCI_ISODATA_PKT:
4880				kfree_skb(skb);
4881				continue;
4882			}
4883		}
4884
4885		/* Process frame */
4886		switch (hci_skb_pkt_type(skb)) {
4887		case HCI_EVENT_PKT:
4888			BT_DBG("%s Event packet", hdev->name);
4889			hci_event_packet(hdev, skb);
4890			break;
4891
4892		case HCI_ACLDATA_PKT:
4893			BT_DBG("%s ACL data packet", hdev->name);
4894			hci_acldata_packet(hdev, skb);
4895			break;
4896
4897		case HCI_SCODATA_PKT:
4898			BT_DBG("%s SCO data packet", hdev->name);
4899			hci_scodata_packet(hdev, skb);
4900			break;
4901
 
 
 
 
 
4902		default:
4903			kfree_skb(skb);
4904			break;
4905		}
4906	}
4907}
4908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4909static void hci_cmd_work(struct work_struct *work)
4910{
4911	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4912	struct sk_buff *skb;
4913
4914	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4915	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4916
4917	/* Send queued commands */
4918	if (atomic_read(&hdev->cmd_cnt)) {
4919		skb = skb_dequeue(&hdev->cmd_q);
4920		if (!skb)
4921			return;
4922
4923		kfree_skb(hdev->sent_cmd);
4924
4925		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4926		if (hdev->sent_cmd) {
4927			if (hci_req_status_pend(hdev))
4928				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4929			atomic_dec(&hdev->cmd_cnt);
4930			hci_send_frame(hdev, skb);
4931			if (test_bit(HCI_RESET, &hdev->flags))
4932				cancel_delayed_work(&hdev->cmd_timer);
4933			else
4934				schedule_delayed_work(&hdev->cmd_timer,
4935						      HCI_CMD_TIMEOUT);
4936		} else {
4937			skb_queue_head(&hdev->cmd_q, skb);
4938			queue_work(hdev->workqueue, &hdev->cmd_work);
4939		}
4940	}
4941}