Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <linux/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47#include "aosp.h"
  48#include "hci_codec.h"
  49
  50static void hci_rx_work(struct work_struct *work);
  51static void hci_cmd_work(struct work_struct *work);
  52static void hci_tx_work(struct work_struct *work);
  53
  54/* HCI device list */
  55LIST_HEAD(hci_dev_list);
  56DEFINE_RWLOCK(hci_dev_list_lock);
  57
  58/* HCI callback list */
  59LIST_HEAD(hci_cb_list);
 
  60
  61/* HCI ID Numbering */
  62static DEFINE_IDA(hci_index_ida);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64/* Get HCI device by index.
  65 * Device is held on return. */
  66struct hci_dev *hci_dev_get(int index)
  67{
  68	struct hci_dev *hdev = NULL, *d;
  69
  70	BT_DBG("%d", index);
  71
  72	if (index < 0)
  73		return NULL;
  74
  75	read_lock(&hci_dev_list_lock);
  76	list_for_each_entry(d, &hci_dev_list, list) {
  77		if (d->id == index) {
  78			hdev = hci_dev_hold(d);
  79			break;
  80		}
  81	}
  82	read_unlock(&hci_dev_list_lock);
  83	return hdev;
  84}
  85
  86/* ---- Inquiry support ---- */
  87
  88bool hci_discovery_active(struct hci_dev *hdev)
  89{
  90	struct discovery_state *discov = &hdev->discovery;
  91
  92	switch (discov->state) {
  93	case DISCOVERY_FINDING:
  94	case DISCOVERY_RESOLVING:
  95		return true;
  96
  97	default:
  98		return false;
  99	}
 100}
 101
 102void hci_discovery_set_state(struct hci_dev *hdev, int state)
 103{
 104	int old_state = hdev->discovery.state;
 105
 106	if (old_state == state)
 107		return;
 108
 109	hdev->discovery.state = state;
 110
 111	switch (state) {
 112	case DISCOVERY_STOPPED:
 113		hci_update_passive_scan(hdev);
 114
 115		if (old_state != DISCOVERY_STARTING)
 116			mgmt_discovering(hdev, 0);
 117		break;
 118	case DISCOVERY_STARTING:
 119		break;
 120	case DISCOVERY_FINDING:
 121		mgmt_discovering(hdev, 1);
 122		break;
 123	case DISCOVERY_RESOLVING:
 124		break;
 125	case DISCOVERY_STOPPING:
 126		break;
 127	}
 128
 129	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
 130}
 131
 132void hci_inquiry_cache_flush(struct hci_dev *hdev)
 133{
 134	struct discovery_state *cache = &hdev->discovery;
 135	struct inquiry_entry *p, *n;
 136
 137	list_for_each_entry_safe(p, n, &cache->all, all) {
 138		list_del(&p->all);
 139		kfree(p);
 140	}
 141
 142	INIT_LIST_HEAD(&cache->unknown);
 143	INIT_LIST_HEAD(&cache->resolve);
 144}
 145
 146struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 147					       bdaddr_t *bdaddr)
 148{
 149	struct discovery_state *cache = &hdev->discovery;
 150	struct inquiry_entry *e;
 151
 152	BT_DBG("cache %p, %pMR", cache, bdaddr);
 153
 154	list_for_each_entry(e, &cache->all, all) {
 155		if (!bacmp(&e->data.bdaddr, bdaddr))
 156			return e;
 157	}
 158
 159	return NULL;
 160}
 161
 162struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 163						       bdaddr_t *bdaddr)
 164{
 165	struct discovery_state *cache = &hdev->discovery;
 166	struct inquiry_entry *e;
 167
 168	BT_DBG("cache %p, %pMR", cache, bdaddr);
 169
 170	list_for_each_entry(e, &cache->unknown, list) {
 171		if (!bacmp(&e->data.bdaddr, bdaddr))
 172			return e;
 173	}
 174
 175	return NULL;
 176}
 177
 178struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 179						       bdaddr_t *bdaddr,
 180						       int state)
 181{
 182	struct discovery_state *cache = &hdev->discovery;
 183	struct inquiry_entry *e;
 184
 185	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 186
 187	list_for_each_entry(e, &cache->resolve, list) {
 188		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 189			return e;
 190		if (!bacmp(&e->data.bdaddr, bdaddr))
 191			return e;
 192	}
 193
 194	return NULL;
 195}
 196
 197void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 198				      struct inquiry_entry *ie)
 199{
 200	struct discovery_state *cache = &hdev->discovery;
 201	struct list_head *pos = &cache->resolve;
 202	struct inquiry_entry *p;
 203
 204	list_del(&ie->list);
 205
 206	list_for_each_entry(p, &cache->resolve, list) {
 207		if (p->name_state != NAME_PENDING &&
 208		    abs(p->data.rssi) >= abs(ie->data.rssi))
 209			break;
 210		pos = &p->list;
 211	}
 212
 213	list_add(&ie->list, pos);
 214}
 215
 216u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 217			     bool name_known)
 218{
 219	struct discovery_state *cache = &hdev->discovery;
 220	struct inquiry_entry *ie;
 221	u32 flags = 0;
 222
 223	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 224
 225	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 226
 227	if (!data->ssp_mode)
 228		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 229
 230	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 231	if (ie) {
 232		if (!ie->data.ssp_mode)
 233			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 234
 235		if (ie->name_state == NAME_NEEDED &&
 236		    data->rssi != ie->data.rssi) {
 237			ie->data.rssi = data->rssi;
 238			hci_inquiry_cache_update_resolve(hdev, ie);
 239		}
 240
 241		goto update;
 242	}
 243
 244	/* Entry not in the cache. Add new one. */
 245	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 246	if (!ie) {
 247		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 248		goto done;
 249	}
 250
 251	list_add(&ie->all, &cache->all);
 252
 253	if (name_known) {
 254		ie->name_state = NAME_KNOWN;
 255	} else {
 256		ie->name_state = NAME_NOT_KNOWN;
 257		list_add(&ie->list, &cache->unknown);
 258	}
 259
 260update:
 261	if (name_known && ie->name_state != NAME_KNOWN &&
 262	    ie->name_state != NAME_PENDING) {
 263		ie->name_state = NAME_KNOWN;
 264		list_del(&ie->list);
 265	}
 266
 267	memcpy(&ie->data, data, sizeof(*data));
 268	ie->timestamp = jiffies;
 269	cache->timestamp = jiffies;
 270
 271	if (ie->name_state == NAME_NOT_KNOWN)
 272		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 273
 274done:
 275	return flags;
 276}
 277
 278static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 279{
 280	struct discovery_state *cache = &hdev->discovery;
 281	struct inquiry_info *info = (struct inquiry_info *) buf;
 282	struct inquiry_entry *e;
 283	int copied = 0;
 284
 285	list_for_each_entry(e, &cache->all, all) {
 286		struct inquiry_data *data = &e->data;
 287
 288		if (copied >= num)
 289			break;
 290
 291		bacpy(&info->bdaddr, &data->bdaddr);
 292		info->pscan_rep_mode	= data->pscan_rep_mode;
 293		info->pscan_period_mode	= data->pscan_period_mode;
 294		info->pscan_mode	= data->pscan_mode;
 295		memcpy(info->dev_class, data->dev_class, 3);
 296		info->clock_offset	= data->clock_offset;
 297
 298		info++;
 299		copied++;
 300	}
 301
 302	BT_DBG("cache %p, copied %d", cache, copied);
 303	return copied;
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306int hci_inquiry(void __user *arg)
 307{
 308	__u8 __user *ptr = arg;
 309	struct hci_inquiry_req ir;
 310	struct hci_dev *hdev;
 311	int err = 0, do_inquiry = 0, max_rsp;
 
 312	__u8 *buf;
 313
 314	if (copy_from_user(&ir, ptr, sizeof(ir)))
 315		return -EFAULT;
 316
 317	hdev = hci_dev_get(ir.dev_id);
 318	if (!hdev)
 319		return -ENODEV;
 320
 321	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 322		err = -EBUSY;
 323		goto done;
 324	}
 325
 326	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 327		err = -EOPNOTSUPP;
 328		goto done;
 329	}
 330
 331	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 332		err = -EOPNOTSUPP;
 333		goto done;
 334	}
 335
 336	/* Restrict maximum inquiry length to 60 seconds */
 337	if (ir.length > 60) {
 338		err = -EINVAL;
 339		goto done;
 340	}
 341
 342	hci_dev_lock(hdev);
 343	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 344	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 345		hci_inquiry_cache_flush(hdev);
 346		do_inquiry = 1;
 347	}
 348	hci_dev_unlock(hdev);
 349
 350	if (do_inquiry) {
 351		hci_req_sync_lock(hdev);
 352		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
 353		hci_req_sync_unlock(hdev);
 354
 
 
 
 355		if (err < 0)
 356			goto done;
 357
 358		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 359		 * cleared). If it is interrupted by a signal, return -EINTR.
 360		 */
 361		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 362				TASK_INTERRUPTIBLE)) {
 363			err = -EINTR;
 364			goto done;
 365		}
 366	}
 367
 368	/* for unlimited number of responses we will use buffer with
 369	 * 255 entries
 370	 */
 371	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 372
 373	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 374	 * copy it to the user space.
 375	 */
 376	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 377	if (!buf) {
 378		err = -ENOMEM;
 379		goto done;
 380	}
 381
 382	hci_dev_lock(hdev);
 383	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 384	hci_dev_unlock(hdev);
 385
 386	BT_DBG("num_rsp %d", ir.num_rsp);
 387
 388	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 389		ptr += sizeof(ir);
 390		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 391				 ir.num_rsp))
 392			err = -EFAULT;
 393	} else
 394		err = -EFAULT;
 395
 396	kfree(buf);
 397
 398done:
 399	hci_dev_put(hdev);
 400	return err;
 401}
 402
 403static int hci_dev_do_open(struct hci_dev *hdev)
 404{
 405	int ret = 0;
 406
 407	BT_DBG("%s %p", hdev->name, hdev);
 408
 409	hci_req_sync_lock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 413	hci_req_sync_unlock(hdev);
 
 
 
 
 
 414	return ret;
 415}
 416
 417/* ---- HCI ioctl helpers ---- */
 418
 419int hci_dev_open(__u16 dev)
 420{
 421	struct hci_dev *hdev;
 422	int err;
 423
 424	hdev = hci_dev_get(dev);
 425	if (!hdev)
 426		return -ENODEV;
 427
 428	/* Devices that are marked as unconfigured can only be powered
 429	 * up as user channel. Trying to bring them up as normal devices
 430	 * will result into a failure. Only user channel operation is
 431	 * possible.
 432	 *
 433	 * When this function is called for a user channel, the flag
 434	 * HCI_USER_CHANNEL will be set first before attempting to
 435	 * open the device.
 436	 */
 437	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 438	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 439		err = -EOPNOTSUPP;
 440		goto done;
 441	}
 442
 443	/* We need to ensure that no other power on/off work is pending
 444	 * before proceeding to call hci_dev_do_open. This is
 445	 * particularly important if the setup procedure has not yet
 446	 * completed.
 447	 */
 448	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 449		cancel_delayed_work(&hdev->power_off);
 450
 451	/* After this call it is guaranteed that the setup procedure
 452	 * has finished. This means that error conditions like RFKILL
 453	 * or no valid public or static random address apply.
 454	 */
 455	flush_workqueue(hdev->req_workqueue);
 456
 457	/* For controllers not using the management interface and that
 458	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 459	 * so that pairing works for them. Once the management interface
 460	 * is in use this bit will be cleared again and userspace has
 461	 * to explicitly enable it.
 462	 */
 463	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 464	    !hci_dev_test_flag(hdev, HCI_MGMT))
 465		hci_dev_set_flag(hdev, HCI_BONDABLE);
 466
 467	err = hci_dev_do_open(hdev);
 468
 469done:
 470	hci_dev_put(hdev);
 
 471	return err;
 472}
 473
 474int hci_dev_do_close(struct hci_dev *hdev)
 475{
 476	int err;
 477
 478	BT_DBG("%s %p", hdev->name, hdev);
 479
 480	hci_req_sync_lock(hdev);
 481
 482	err = hci_dev_close_sync(hdev);
 
 483
 484	hci_req_sync_unlock(hdev);
 
 
 
 
 485
 486	return err;
 487}
 
 488
 489int hci_dev_close(__u16 dev)
 490{
 491	struct hci_dev *hdev;
 492	int err;
 
 
 493
 494	hdev = hci_dev_get(dev);
 495	if (!hdev)
 496		return -ENODEV;
 497
 498	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 499		err = -EBUSY;
 500		goto done;
 501	}
 502
 503	cancel_work_sync(&hdev->power_on);
 504	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 505		cancel_delayed_work(&hdev->power_off);
 506
 507	err = hci_dev_do_close(hdev);
 
 
 
 
 508
 509done:
 510	hci_dev_put(hdev);
 511	return err;
 512}
 513
 514static int hci_dev_do_reset(struct hci_dev *hdev)
 515{
 516	int ret;
 517
 518	BT_DBG("%s %p", hdev->name, hdev);
 
 
 
 
 
 
 
 
 
 519
 520	hci_req_sync_lock(hdev);
 
 521
 522	/* Drop queues */
 523	skb_queue_purge(&hdev->rx_q);
 524	skb_queue_purge(&hdev->cmd_q);
 
 525
 526	/* Cancel these to avoid queueing non-chained pending work */
 527	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 528	/* Wait for
 529	 *
 530	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 531	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 532	 *
 533	 * inside RCU section to see the flag or complete scheduling.
 534	 */
 535	synchronize_rcu();
 536	/* Explicitly cancel works in case scheduled after setting the flag. */
 537	cancel_delayed_work(&hdev->cmd_timer);
 538	cancel_delayed_work(&hdev->ncmd_timer);
 539
 540	/* Avoid potential lockdep warnings from the *_flush() calls by
 541	 * ensuring the workqueue is empty up front.
 542	 */
 543	drain_workqueue(hdev->workqueue);
 544
 545	hci_dev_lock(hdev);
 546	hci_inquiry_cache_flush(hdev);
 547	hci_conn_hash_flush(hdev);
 548	hci_dev_unlock(hdev);
 549
 550	if (hdev->flush)
 551		hdev->flush(hdev);
 552
 553	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 
 554
 555	atomic_set(&hdev->cmd_cnt, 1);
 556	hdev->acl_cnt = 0;
 557	hdev->sco_cnt = 0;
 558	hdev->le_cnt = 0;
 559	hdev->iso_cnt = 0;
 560
 561	ret = hci_reset_sync(hdev);
 562
 563	hci_req_sync_unlock(hdev);
 564	return ret;
 565}
 566
 567int hci_dev_reset(__u16 dev)
 568{
 569	struct hci_dev *hdev;
 570	int err;
 571
 572	hdev = hci_dev_get(dev);
 573	if (!hdev)
 574		return -ENODEV;
 575
 576	if (!test_bit(HCI_UP, &hdev->flags)) {
 577		err = -ENETDOWN;
 578		goto done;
 579	}
 580
 581	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 582		err = -EBUSY;
 583		goto done;
 584	}
 585
 586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 587		err = -EOPNOTSUPP;
 588		goto done;
 589	}
 590
 591	err = hci_dev_do_reset(hdev);
 592
 593done:
 594	hci_dev_put(hdev);
 595	return err;
 596}
 597
 598int hci_dev_reset_stat(__u16 dev)
 599{
 600	struct hci_dev *hdev;
 601	int ret = 0;
 602
 603	hdev = hci_dev_get(dev);
 604	if (!hdev)
 605		return -ENODEV;
 606
 607	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 608		ret = -EBUSY;
 
 
 609		goto done;
 610	}
 611
 612	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 613		ret = -EOPNOTSUPP;
 614		goto done;
 615	}
 616
 617	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618
 619done:
 
 620	hci_dev_put(hdev);
 621	return ret;
 622}
 623
 624static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 625{
 626	bool conn_changed, discov_changed;
 627
 628	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 629
 630	if ((scan & SCAN_PAGE))
 631		conn_changed = !hci_dev_test_and_set_flag(hdev,
 632							  HCI_CONNECTABLE);
 633	else
 634		conn_changed = hci_dev_test_and_clear_flag(hdev,
 635							   HCI_CONNECTABLE);
 636
 637	if ((scan & SCAN_INQUIRY)) {
 638		discov_changed = !hci_dev_test_and_set_flag(hdev,
 639							    HCI_DISCOVERABLE);
 640	} else {
 641		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 642		discov_changed = hci_dev_test_and_clear_flag(hdev,
 643							     HCI_DISCOVERABLE);
 644	}
 645
 646	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 647		return;
 648
 649	if (conn_changed || discov_changed) {
 650		/* In case this was disabled through mgmt */
 651		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 652
 653		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 654			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 655
 656		mgmt_new_settings(hdev);
 657	}
 
 658}
 659
 660int hci_dev_cmd(unsigned int cmd, void __user *arg)
 661{
 662	struct hci_dev *hdev;
 663	struct hci_dev_req dr;
 664	__le16 policy;
 665	int err = 0;
 666
 667	if (copy_from_user(&dr, arg, sizeof(dr)))
 668		return -EFAULT;
 669
 670	hdev = hci_dev_get(dr.dev_id);
 671	if (!hdev)
 672		return -ENODEV;
 673
 674	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 675		err = -EBUSY;
 676		goto done;
 677	}
 678
 679	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 680		err = -EOPNOTSUPP;
 681		goto done;
 682	}
 683
 684	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 685		err = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	switch (cmd) {
 690	case HCISETAUTH:
 691		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
 692					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 693		break;
 694
 695	case HCISETENCRYPT:
 696		if (!lmp_encrypt_capable(hdev)) {
 697			err = -EOPNOTSUPP;
 698			break;
 699		}
 700
 701		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 702			/* Auth must be enabled first */
 703			err = hci_cmd_sync_status(hdev,
 704						  HCI_OP_WRITE_AUTH_ENABLE,
 705						  1, &dr.dev_opt,
 706						  HCI_CMD_TIMEOUT);
 707			if (err)
 708				break;
 709		}
 710
 711		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
 712					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 713		break;
 714
 715	case HCISETSCAN:
 716		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
 717					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 718
 719		/* Ensure that the connectable and discoverable states
 720		 * get correctly modified as this was a non-mgmt change.
 721		 */
 722		if (!err)
 723			hci_update_passive_scan_state(hdev, dr.dev_opt);
 724		break;
 725
 726	case HCISETLINKPOL:
 727		policy = cpu_to_le16(dr.dev_opt);
 728
 729		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
 730					  2, &policy, HCI_CMD_TIMEOUT);
 731		break;
 732
 733	case HCISETLINKMODE:
 734		hdev->link_mode = ((__u16) dr.dev_opt) &
 735					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 736		break;
 737
 738	case HCISETPTYPE:
 739		if (hdev->pkt_type == (__u16) dr.dev_opt)
 740			break;
 741
 742		hdev->pkt_type = (__u16) dr.dev_opt;
 743		mgmt_phy_configuration_changed(hdev, NULL);
 744		break;
 745
 746	case HCISETACLMTU:
 747		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 748		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 749		break;
 750
 751	case HCISETSCOMTU:
 752		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 753		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 754		break;
 755
 756	default:
 757		err = -EINVAL;
 758		break;
 759	}
 760
 761done:
 762	hci_dev_put(hdev);
 763	return err;
 764}
 765
 766int hci_get_dev_list(void __user *arg)
 767{
 768	struct hci_dev *hdev;
 769	struct hci_dev_list_req *dl;
 770	struct hci_dev_req *dr;
 771	int n = 0, err;
 772	__u16 dev_num;
 773
 774	if (get_user(dev_num, (__u16 __user *) arg))
 775		return -EFAULT;
 776
 777	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 778		return -EINVAL;
 779
 780	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
 
 
 781	if (!dl)
 782		return -ENOMEM;
 783
 784	dl->dev_num = dev_num;
 785	dr = dl->dev_req;
 786
 787	read_lock(&hci_dev_list_lock);
 788	list_for_each_entry(hdev, &hci_dev_list, list) {
 789		unsigned long flags = hdev->flags;
 
 790
 791		/* When the auto-off is configured it means the transport
 792		 * is running, but in that case still indicate that the
 793		 * device is actually down.
 794		 */
 795		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 796			flags &= ~BIT(HCI_UP);
 797
 798		dr[n].dev_id  = hdev->id;
 799		dr[n].dev_opt = flags;
 800
 801		if (++n >= dev_num)
 802			break;
 803	}
 804	read_unlock(&hci_dev_list_lock);
 805
 806	dl->dev_num = n;
 807	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
 
 
 808	kfree(dl);
 809
 810	return err ? -EFAULT : 0;
 811}
 812
 813int hci_get_dev_info(void __user *arg)
 814{
 815	struct hci_dev *hdev;
 816	struct hci_dev_info di;
 817	unsigned long flags;
 818	int err = 0;
 819
 820	if (copy_from_user(&di, arg, sizeof(di)))
 821		return -EFAULT;
 822
 823	hdev = hci_dev_get(di.dev_id);
 824	if (!hdev)
 825		return -ENODEV;
 826
 827	/* When the auto-off is configured it means the transport
 828	 * is running, but in that case still indicate that the
 829	 * device is actually down.
 830	 */
 831	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 832		flags = hdev->flags & ~BIT(HCI_UP);
 833	else
 834		flags = hdev->flags;
 835
 836	strscpy(di.name, hdev->name, sizeof(di.name));
 837	di.bdaddr   = hdev->bdaddr;
 838	di.type     = (hdev->bus & 0x0f);
 839	di.flags    = flags;
 840	di.pkt_type = hdev->pkt_type;
 841	if (lmp_bredr_capable(hdev)) {
 842		di.acl_mtu  = hdev->acl_mtu;
 843		di.acl_pkts = hdev->acl_pkts;
 844		di.sco_mtu  = hdev->sco_mtu;
 845		di.sco_pkts = hdev->sco_pkts;
 846	} else {
 847		di.acl_mtu  = hdev->le_mtu;
 848		di.acl_pkts = hdev->le_pkts;
 849		di.sco_mtu  = 0;
 850		di.sco_pkts = 0;
 851	}
 852	di.link_policy = hdev->link_policy;
 853	di.link_mode   = hdev->link_mode;
 854
 855	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 856	memcpy(&di.features, &hdev->features, sizeof(di.features));
 857
 858	if (copy_to_user(arg, &di, sizeof(di)))
 859		err = -EFAULT;
 860
 861	hci_dev_put(hdev);
 862
 863	return err;
 864}
 865
 866/* ---- Interface to HCI drivers ---- */
 867
 868static int hci_dev_do_poweroff(struct hci_dev *hdev)
 869{
 870	int err;
 871
 872	BT_DBG("%s %p", hdev->name, hdev);
 873
 874	hci_req_sync_lock(hdev);
 875
 876	err = hci_set_powered_sync(hdev, false);
 877
 878	hci_req_sync_unlock(hdev);
 879
 880	return err;
 881}
 882
 883static int hci_rfkill_set_block(void *data, bool blocked)
 884{
 885	struct hci_dev *hdev = data;
 886	int err;
 887
 888	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 889
 890	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 891		return -EBUSY;
 892
 893	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
 894		return 0;
 895
 896	if (blocked) {
 897		hci_dev_set_flag(hdev, HCI_RFKILLED);
 898
 899		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 900		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 901			err = hci_dev_do_poweroff(hdev);
 902			if (err) {
 903				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
 904					   err);
 905
 906				/* Make sure the device is still closed even if
 907				 * anything during power off sequence (eg.
 908				 * disconnecting devices) failed.
 909				 */
 910				hci_dev_do_close(hdev);
 911			}
 912		}
 913	} else {
 914		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 915	}
 916
 917	return 0;
 918}
 919
 920static const struct rfkill_ops hci_rfkill_ops = {
 921	.set_block = hci_rfkill_set_block,
 922};
 923
 924static void hci_power_on(struct work_struct *work)
 925{
 926	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 927	int err;
 928
 929	BT_DBG("%s", hdev->name);
 930
 931	if (test_bit(HCI_UP, &hdev->flags) &&
 932	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 933	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 934		cancel_delayed_work(&hdev->power_off);
 935		err = hci_powered_update_sync(hdev);
 936		mgmt_power_on(hdev, err);
 937		return;
 938	}
 939
 940	err = hci_dev_do_open(hdev);
 941	if (err < 0) {
 942		hci_dev_lock(hdev);
 943		mgmt_set_powered_failed(hdev, err);
 944		hci_dev_unlock(hdev);
 945		return;
 946	}
 947
 948	/* During the HCI setup phase, a few error conditions are
 949	 * ignored and they need to be checked now. If they are still
 950	 * valid, it is important to turn the device back off.
 951	 */
 952	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 953	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 954	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 955	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
 956		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
 957		hci_dev_do_close(hdev);
 958	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
 959		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
 960				   HCI_AUTO_OFF_TIMEOUT);
 961	}
 962
 963	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
 964		/* For unconfigured devices, set the HCI_RAW flag
 965		 * so that userspace can easily identify them.
 966		 */
 967		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 968			set_bit(HCI_RAW, &hdev->flags);
 969
 970		/* For fully configured devices, this will send
 971		 * the Index Added event. For unconfigured devices,
 972		 * it will send Unconfigued Index Added event.
 973		 *
 974		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
 975		 * and no event will be send.
 976		 */
 977		mgmt_index_added(hdev);
 978	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
 979		/* When the controller is now configured, then it
 980		 * is important to clear the HCI_RAW flag.
 981		 */
 982		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 983			clear_bit(HCI_RAW, &hdev->flags);
 984
 985		/* Powering on the controller with HCI_CONFIG set only
 986		 * happens with the transition from unconfigured to
 987		 * configured. This will send the Index Added event.
 988		 */
 989		mgmt_index_added(hdev);
 990	}
 991}
 992
 993static void hci_power_off(struct work_struct *work)
 994{
 995	struct hci_dev *hdev = container_of(work, struct hci_dev,
 996					    power_off.work);
 997
 998	BT_DBG("%s", hdev->name);
 999
1000	hci_dev_do_close(hdev);
1001}
1002
1003static void hci_error_reset(struct work_struct *work)
1004{
1005	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006
1007	hci_dev_hold(hdev);
1008	BT_DBG("%s", hdev->name);
1009
1010	if (hdev->hw_error)
1011		hdev->hw_error(hdev, hdev->hw_error_code);
1012	else
1013		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1014
1015	if (!hci_dev_do_close(hdev))
1016		hci_dev_do_open(hdev);
1017
1018	hci_dev_put(hdev);
1019}
1020
1021void hci_uuids_clear(struct hci_dev *hdev)
1022{
1023	struct bt_uuid *uuid, *tmp;
1024
1025	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026		list_del(&uuid->list);
1027		kfree(uuid);
1028	}
1029}
1030
1031void hci_link_keys_clear(struct hci_dev *hdev)
1032{
1033	struct link_key *key, *tmp;
 
 
 
1034
1035	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036		list_del_rcu(&key->list);
1037		kfree_rcu(key, rcu);
 
1038	}
1039}
1040
1041void hci_smp_ltks_clear(struct hci_dev *hdev)
1042{
1043	struct smp_ltk *k, *tmp;
1044
1045	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046		list_del_rcu(&k->list);
1047		kfree_rcu(k, rcu);
1048	}
1049}
1050
1051void hci_smp_irks_clear(struct hci_dev *hdev)
1052{
1053	struct smp_irk *k, *tmp;
1054
1055	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056		list_del_rcu(&k->list);
1057		kfree_rcu(k, rcu);
1058	}
1059}
1060
1061void hci_blocked_keys_clear(struct hci_dev *hdev)
1062{
1063	struct blocked_key *b, *tmp;
1064
1065	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066		list_del_rcu(&b->list);
1067		kfree_rcu(b, rcu);
1068	}
1069}
1070
1071bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072{
1073	bool blocked = false;
1074	struct blocked_key *b;
1075
1076	rcu_read_lock();
1077	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079			blocked = true;
1080			break;
1081		}
1082	}
1083
1084	rcu_read_unlock();
1085	return blocked;
1086}
1087
1088struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089{
1090	struct link_key *k;
1091
1092	rcu_read_lock();
1093	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095			rcu_read_unlock();
1096
1097			if (hci_is_blocked_key(hdev,
1098					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099					       k->val)) {
1100				bt_dev_warn_ratelimited(hdev,
1101							"Link key blocked for %pMR",
1102							&k->bdaddr);
1103				return NULL;
1104			}
1105
1106			return k;
1107		}
1108	}
1109	rcu_read_unlock();
1110
1111	return NULL;
1112}
1113
1114static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115			       u8 key_type, u8 old_key_type)
1116{
1117	/* Legacy key */
1118	if (key_type < 0x03)
1119		return true;
1120
1121	/* Debug keys are insecure so don't store them persistently */
1122	if (key_type == HCI_LK_DEBUG_COMBINATION)
1123		return false;
1124
1125	/* Changed combination key and there's no previous one */
1126	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127		return false;
1128
1129	/* Security mode 3 case */
1130	if (!conn)
1131		return true;
1132
1133	/* BR/EDR key derived using SC from an LE link */
1134	if (conn->type == LE_LINK)
1135		return true;
1136
1137	/* Neither local nor remote side had no-bonding as requirement */
1138	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139		return true;
1140
1141	/* Local side had dedicated bonding as requirement */
1142	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143		return true;
1144
1145	/* Remote side had dedicated bonding as requirement */
1146	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147		return true;
1148
1149	/* If none of the above criteria match, then don't store the key
1150	 * persistently */
1151	return false;
1152}
1153
1154static u8 ltk_role(u8 type)
1155{
1156	if (type == SMP_LTK)
1157		return HCI_ROLE_MASTER;
1158
1159	return HCI_ROLE_SLAVE;
1160}
1161
1162struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163			     u8 addr_type, u8 role)
1164{
1165	struct smp_ltk *k;
1166
1167	rcu_read_lock();
1168	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170			continue;
1171
1172		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173			rcu_read_unlock();
1174
1175			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176					       k->val)) {
1177				bt_dev_warn_ratelimited(hdev,
1178							"LTK blocked for %pMR",
1179							&k->bdaddr);
1180				return NULL;
1181			}
 
 
 
1182
 
 
 
 
1183			return k;
1184		}
1185	}
1186	rcu_read_unlock();
1187
1188	return NULL;
1189}
1190
1191struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192{
1193	struct smp_irk *irk_to_return = NULL;
1194	struct smp_irk *irk;
1195
1196	rcu_read_lock();
1197	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198		if (!bacmp(&irk->rpa, rpa)) {
1199			irk_to_return = irk;
1200			goto done;
1201		}
1202	}
1203
1204	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205		if (smp_irk_matches(hdev, irk->val, rpa)) {
1206			bacpy(&irk->rpa, rpa);
1207			irk_to_return = irk;
1208			goto done;
1209		}
1210	}
1211
1212done:
1213	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214						irk_to_return->val)) {
1215		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216					&irk_to_return->bdaddr);
1217		irk_to_return = NULL;
1218	}
1219
1220	rcu_read_unlock();
1221
1222	return irk_to_return;
1223}
1224
1225struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226				     u8 addr_type)
1227{
1228	struct smp_irk *irk_to_return = NULL;
1229	struct smp_irk *irk;
1230
1231	/* Identity Address must be public or static random */
1232	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233		return NULL;
1234
1235	rcu_read_lock();
1236	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237		if (addr_type == irk->addr_type &&
1238		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1239			irk_to_return = irk;
1240			goto done;
1241		}
1242	}
1243
1244done:
1245
1246	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247						irk_to_return->val)) {
1248		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249					&irk_to_return->bdaddr);
1250		irk_to_return = NULL;
1251	}
1252
1253	rcu_read_unlock();
1254
1255	return irk_to_return;
1256}
1257
1258struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259				  bdaddr_t *bdaddr, u8 *val, u8 type,
1260				  u8 pin_len, bool *persistent)
1261{
1262	struct link_key *key, *old_key;
1263	u8 old_key_type;
 
1264
1265	old_key = hci_find_link_key(hdev, bdaddr);
1266	if (old_key) {
1267		old_key_type = old_key->type;
1268		key = old_key;
1269	} else {
1270		old_key_type = conn ? conn->key_type : 0xff;
1271		key = kzalloc(sizeof(*key), GFP_KERNEL);
1272		if (!key)
1273			return NULL;
1274		list_add_rcu(&key->list, &hdev->link_keys);
1275	}
1276
1277	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278
1279	/* Some buggy controller combinations generate a changed
1280	 * combination key for legacy pairing even when there's no
1281	 * previous key */
1282	if (type == HCI_LK_CHANGED_COMBINATION &&
1283	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284		type = HCI_LK_COMBINATION;
1285		if (conn)
1286			conn->key_type = type;
1287	}
1288
1289	bacpy(&key->bdaddr, bdaddr);
1290	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291	key->pin_len = pin_len;
1292
1293	if (type == HCI_LK_CHANGED_COMBINATION)
1294		key->type = old_key_type;
1295	else
1296		key->type = type;
1297
1298	if (persistent)
1299		*persistent = hci_persistent_key(hdev, conn, type,
1300						 old_key_type);
 
1301
1302	return key;
 
 
 
 
 
1303}
1304
1305struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306			    u8 addr_type, u8 type, u8 authenticated,
1307			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308{
1309	struct smp_ltk *key, *old_key;
1310	u8 role = ltk_role(type);
1311
1312	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313	if (old_key)
1314		key = old_key;
1315	else {
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->long_term_keys);
1320	}
1321
1322	bacpy(&key->bdaddr, bdaddr);
1323	key->bdaddr_type = addr_type;
1324	memcpy(key->val, tk, sizeof(key->val));
1325	key->authenticated = authenticated;
1326	key->ediv = ediv;
1327	key->rand = rand;
1328	key->enc_size = enc_size;
1329	key->type = type;
1330
1331	return key;
1332}
1333
1334struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336{
1337	struct smp_irk *irk;
1338
1339	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340	if (!irk) {
1341		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342		if (!irk)
1343			return NULL;
1344
1345		bacpy(&irk->bdaddr, bdaddr);
1346		irk->addr_type = addr_type;
1347
1348		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349	}
1350
1351	memcpy(irk->val, val, 16);
1352	bacpy(&irk->rpa, rpa);
1353
1354	return irk;
1355}
1356
1357int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358{
1359	struct link_key *key;
1360
1361	key = hci_find_link_key(hdev, bdaddr);
1362	if (!key)
1363		return -ENOENT;
1364
1365	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366
1367	list_del_rcu(&key->list);
1368	kfree_rcu(key, rcu);
1369
1370	return 0;
1371}
1372
1373int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374{
1375	struct smp_ltk *k, *tmp;
1376	int removed = 0;
1377
1378	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380			continue;
1381
1382		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383
1384		list_del_rcu(&k->list);
1385		kfree_rcu(k, rcu);
1386		removed++;
1387	}
1388
1389	return removed ? 0 : -ENOENT;
1390}
1391
1392void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393{
1394	struct smp_irk *k, *tmp;
1395
1396	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398			continue;
1399
1400		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401
1402		list_del_rcu(&k->list);
1403		kfree_rcu(k, rcu);
1404	}
1405}
1406
1407bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408{
1409	struct smp_ltk *k;
1410	struct smp_irk *irk;
1411	u8 addr_type;
1412
1413	if (type == BDADDR_BREDR) {
1414		if (hci_find_link_key(hdev, bdaddr))
1415			return true;
1416		return false;
1417	}
1418
1419	/* Convert to HCI addr type which struct smp_ltk uses */
1420	if (type == BDADDR_LE_PUBLIC)
1421		addr_type = ADDR_LE_DEV_PUBLIC;
1422	else
1423		addr_type = ADDR_LE_DEV_RANDOM;
1424
1425	irk = hci_get_irk(hdev, bdaddr, addr_type);
1426	if (irk) {
1427		bdaddr = &irk->bdaddr;
1428		addr_type = irk->addr_type;
1429	}
1430
1431	rcu_read_lock();
1432	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434			rcu_read_unlock();
1435			return true;
1436		}
1437	}
1438	rcu_read_unlock();
1439
1440	return false;
1441}
1442
1443/* HCI command timer function */
1444static void hci_cmd_timeout(struct work_struct *work)
1445{
1446	struct hci_dev *hdev = container_of(work, struct hci_dev,
1447					    cmd_timer.work);
1448
1449	if (hdev->req_skb) {
1450		u16 opcode = hci_skb_opcode(hdev->req_skb);
 
1451
1452		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453
1454		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455	} else {
1456		bt_dev_err(hdev, "command tx timeout");
1457	}
1458
1459	if (hdev->cmd_timeout)
1460		hdev->cmd_timeout(hdev);
1461
1462	atomic_set(&hdev->cmd_cnt, 1);
1463	queue_work(hdev->workqueue, &hdev->cmd_work);
1464}
1465
1466/* HCI ncmd timer function */
1467static void hci_ncmd_timeout(struct work_struct *work)
1468{
1469	struct hci_dev *hdev = container_of(work, struct hci_dev,
1470					    ncmd_timer.work);
1471
1472	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473
1474	/* During HCI_INIT phase no events can be injected if the ncmd timer
1475	 * triggers since the procedure has its own timeout handling.
1476	 */
1477	if (test_bit(HCI_INIT, &hdev->flags))
1478		return;
1479
1480	/* This is an irrecoverable state, inject hardware error event */
1481	hci_reset_dev(hdev);
1482}
1483
1484struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485					  bdaddr_t *bdaddr, u8 bdaddr_type)
1486{
1487	struct oob_data *data;
1488
1489	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490		if (bacmp(bdaddr, &data->bdaddr) != 0)
1491			continue;
1492		if (data->bdaddr_type != bdaddr_type)
1493			continue;
1494		return data;
1495	}
1496
1497	return NULL;
1498}
1499
1500int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501			       u8 bdaddr_type)
1502{
1503	struct oob_data *data;
1504
1505	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506	if (!data)
1507		return -ENOENT;
1508
1509	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510
1511	list_del(&data->list);
1512	kfree(data);
1513
1514	return 0;
1515}
1516
1517void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518{
1519	struct oob_data *data, *n;
1520
1521	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522		list_del(&data->list);
1523		kfree(data);
1524	}
1525}
1526
1527int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529			    u8 *hash256, u8 *rand256)
1530{
1531	struct oob_data *data;
1532
1533	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534	if (!data) {
1535		data = kmalloc(sizeof(*data), GFP_KERNEL);
1536		if (!data)
1537			return -ENOMEM;
1538
1539		bacpy(&data->bdaddr, bdaddr);
1540		data->bdaddr_type = bdaddr_type;
1541		list_add(&data->list, &hdev->remote_oob_data);
1542	}
1543
1544	if (hash192 && rand192) {
1545		memcpy(data->hash192, hash192, sizeof(data->hash192));
1546		memcpy(data->rand192, rand192, sizeof(data->rand192));
1547		if (hash256 && rand256)
1548			data->present = 0x03;
1549	} else {
1550		memset(data->hash192, 0, sizeof(data->hash192));
1551		memset(data->rand192, 0, sizeof(data->rand192));
1552		if (hash256 && rand256)
1553			data->present = 0x02;
1554		else
1555			data->present = 0x00;
1556	}
1557
1558	if (hash256 && rand256) {
1559		memcpy(data->hash256, hash256, sizeof(data->hash256));
1560		memcpy(data->rand256, rand256, sizeof(data->rand256));
1561	} else {
1562		memset(data->hash256, 0, sizeof(data->hash256));
1563		memset(data->rand256, 0, sizeof(data->rand256));
1564		if (hash192 && rand192)
1565			data->present = 0x01;
1566	}
1567
1568	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569
1570	return 0;
1571}
1572
1573/* This function requires the caller holds hdev->lock */
1574struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575{
1576	struct adv_info *adv_instance;
1577
1578	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579		if (adv_instance->instance == instance)
1580			return adv_instance;
1581	}
1582
1583	return NULL;
1584}
1585
1586/* This function requires the caller holds hdev->lock */
1587struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588{
1589	struct adv_info *cur_instance;
1590
1591	cur_instance = hci_find_adv_instance(hdev, instance);
1592	if (!cur_instance)
1593		return NULL;
1594
1595	if (cur_instance == list_last_entry(&hdev->adv_instances,
1596					    struct adv_info, list))
1597		return list_first_entry(&hdev->adv_instances,
1598						 struct adv_info, list);
1599	else
1600		return list_next_entry(cur_instance, list);
1601}
1602
1603/* This function requires the caller holds hdev->lock */
1604int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605{
1606	struct adv_info *adv_instance;
1607
1608	adv_instance = hci_find_adv_instance(hdev, instance);
1609	if (!adv_instance)
1610		return -ENOENT;
1611
1612	BT_DBG("%s removing %dMR", hdev->name, instance);
 
 
 
 
1613
1614	if (hdev->cur_adv_instance == instance) {
1615		if (hdev->adv_instance_timeout) {
1616			cancel_delayed_work(&hdev->adv_instance_expire);
1617			hdev->adv_instance_timeout = 0;
1618		}
1619		hdev->cur_adv_instance = 0x00;
1620	}
1621
1622	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
 
1623
1624	list_del(&adv_instance->list);
1625	kfree(adv_instance);
1626
1627	hdev->adv_instance_cnt--;
1628
1629	return 0;
1630}
1631
1632void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
 
1633{
1634	struct adv_info *adv_instance, *n;
1635
1636	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637		adv_instance->rpa_expired = rpa_expired;
 
 
 
 
1638}
1639
1640/* This function requires the caller holds hdev->lock */
1641void hci_adv_instances_clear(struct hci_dev *hdev)
1642{
1643	struct adv_info *adv_instance, *n;
1644
1645	if (hdev->adv_instance_timeout) {
1646		disable_delayed_work(&hdev->adv_instance_expire);
1647		hdev->adv_instance_timeout = 0;
1648	}
1649
1650	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651		disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652		list_del(&adv_instance->list);
1653		kfree(adv_instance);
1654	}
1655
1656	hdev->adv_instance_cnt = 0;
1657	hdev->cur_adv_instance = 0x00;
1658}
1659
1660static void adv_instance_rpa_expired(struct work_struct *work)
1661{
1662	struct adv_info *adv_instance = container_of(work, struct adv_info,
1663						     rpa_expired_cb.work);
1664
1665	BT_DBG("");
1666
1667	adv_instance->rpa_expired = true;
1668}
1669
1670/* This function requires the caller holds hdev->lock */
1671struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672				      u32 flags, u16 adv_data_len, u8 *adv_data,
1673				      u16 scan_rsp_len, u8 *scan_rsp_data,
1674				      u16 timeout, u16 duration, s8 tx_power,
1675				      u32 min_interval, u32 max_interval,
1676				      u8 mesh_handle)
1677{
1678	struct adv_info *adv;
1679
1680	adv = hci_find_adv_instance(hdev, instance);
1681	if (adv) {
1682		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685	} else {
1686		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688			return ERR_PTR(-EOVERFLOW);
1689
1690		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691		if (!adv)
1692			return ERR_PTR(-ENOMEM);
1693
1694		adv->pending = true;
1695		adv->instance = instance;
1696
1697		/* If controller support only one set and the instance is set to
1698		 * 1 then there is no option other than using handle 0x00.
1699		 */
1700		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701			adv->handle = 0x00;
1702		else
1703			adv->handle = instance;
1704
1705		list_add(&adv->list, &hdev->adv_instances);
1706		hdev->adv_instance_cnt++;
1707	}
1708
1709	adv->flags = flags;
1710	adv->min_interval = min_interval;
1711	adv->max_interval = max_interval;
1712	adv->tx_power = tx_power;
1713	/* Defining a mesh_handle changes the timing units to ms,
1714	 * rather than seconds, and ties the instance to the requested
1715	 * mesh_tx queue.
1716	 */
1717	adv->mesh = mesh_handle;
1718
1719	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720				  scan_rsp_len, scan_rsp_data);
1721
1722	adv->timeout = timeout;
1723	adv->remaining_time = timeout;
 
1724
1725	if (duration == 0)
1726		adv->duration = hdev->def_multi_adv_rotation_duration;
1727	else
1728		adv->duration = duration;
1729
1730	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
 
 
1731
1732	BT_DBG("%s for %dMR", hdev->name, instance);
 
1733
1734	return adv;
1735}
1736
1737/* This function requires the caller holds hdev->lock */
1738struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739				      u32 flags, u8 data_len, u8 *data,
1740				      u32 min_interval, u32 max_interval)
1741{
1742	struct adv_info *adv;
1743
1744	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746				   min_interval, max_interval, 0);
1747	if (IS_ERR(adv))
1748		return adv;
1749
1750	adv->periodic = true;
1751	adv->per_adv_data_len = data_len;
1752
1753	if (data)
1754		memcpy(adv->per_adv_data, data, data_len);
 
 
1755
1756	return adv;
1757}
1758
1759/* This function requires the caller holds hdev->lock */
1760int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761			      u16 adv_data_len, u8 *adv_data,
1762			      u16 scan_rsp_len, u8 *scan_rsp_data)
1763{
1764	struct adv_info *adv;
1765
1766	adv = hci_find_adv_instance(hdev, instance);
 
1767
1768	/* If advertisement doesn't exist, we can't modify its data */
1769	if (!adv)
1770		return -ENOENT;
1771
1772	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774		memcpy(adv->adv_data, adv_data, adv_data_len);
1775		adv->adv_data_len = adv_data_len;
1776		adv->adv_data_changed = true;
1777	}
1778
1779	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782		adv->scan_rsp_len = scan_rsp_len;
1783		adv->scan_rsp_changed = true;
1784	}
1785
1786	/* Mark as changed if there are flags which would affect it */
1787	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789		adv->scan_rsp_changed = true;
1790
1791	return 0;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796{
1797	u32 flags;
1798	struct adv_info *adv;
1799
1800	if (instance == 0x00) {
1801		/* Instance 0 always manages the "Tx Power" and "Flags"
1802		 * fields
1803		 */
1804		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805
1806		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807		 * corresponds to the "connectable" instance flag.
1808		 */
1809		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811
1812		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815			flags |= MGMT_ADV_FLAG_DISCOV;
1816
1817		return flags;
1818	}
 
1819
1820	adv = hci_find_adv_instance(hdev, instance);
 
1821
1822	/* Return 0 when we got an invalid instance identifier. */
1823	if (!adv)
1824		return 0;
1825
1826	return adv->flags;
1827}
1828
1829bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830{
1831	struct adv_info *adv;
1832
1833	/* Instance 0x00 always set local name */
1834	if (instance == 0x00)
1835		return true;
1836
1837	adv = hci_find_adv_instance(hdev, instance);
1838	if (!adv)
1839		return false;
1840
1841	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843		return true;
1844
1845	return adv->scan_rsp_len ? true : false;
1846}
1847
1848/* This function requires the caller holds hdev->lock */
1849void hci_adv_monitors_clear(struct hci_dev *hdev)
1850{
1851	struct adv_monitor *monitor;
1852	int handle;
1853
1854	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855		hci_free_adv_monitor(hdev, monitor);
1856
1857	idr_destroy(&hdev->adv_monitors_idr);
1858}
1859
1860/* Frees the monitor structure and do some bookkeepings.
1861 * This function requires the caller holds hdev->lock.
1862 */
1863void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864{
1865	struct adv_pattern *pattern;
1866	struct adv_pattern *tmp;
1867
1868	if (!monitor)
1869		return;
1870
1871	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872		list_del(&pattern->list);
1873		kfree(pattern);
1874	}
1875
1876	if (monitor->handle)
1877		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878
1879	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880		hdev->adv_monitors_cnt--;
1881		mgmt_adv_monitor_removed(hdev, monitor->handle);
 
 
1882	}
1883
1884	kfree(monitor);
1885}
1886
1887/* Assigns handle to a monitor, and if offloading is supported and power is on,
1888 * also attempts to forward the request to the controller.
1889 * This function requires the caller holds hci_req_sync_lock.
1890 */
1891int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1892{
1893	int min, max, handle;
1894	int status = 0;
1895
1896	if (!monitor)
1897		return -EINVAL;
1898
1899	hci_dev_lock(hdev);
1900
1901	min = HCI_MIN_ADV_MONITOR_HANDLE;
1902	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904			   GFP_KERNEL);
1905
1906	hci_dev_unlock(hdev);
1907
1908	if (handle < 0)
1909		return handle;
1910
1911	monitor->handle = handle;
1912
1913	if (!hdev_is_powered(hdev))
1914		return status;
 
1915
1916	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917	case HCI_ADV_MONITOR_EXT_NONE:
1918		bt_dev_dbg(hdev, "add monitor %d status %d",
1919			   monitor->handle, status);
1920		/* Message was not forwarded to controller - not an error */
1921		break;
1922
1923	case HCI_ADV_MONITOR_EXT_MSFT:
1924		status = msft_add_monitor_pattern(hdev, monitor);
1925		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926			   handle, status);
1927		break;
1928	}
1929
1930	return status;
1931}
1932
1933/* Attempts to tell the controller and free the monitor. If somehow the
1934 * controller doesn't have a corresponding handle, remove anyway.
1935 * This function requires the caller holds hci_req_sync_lock.
1936 */
1937static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938				  struct adv_monitor *monitor)
1939{
1940	int status = 0;
1941	int handle;
1942
1943	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945		bt_dev_dbg(hdev, "remove monitor %d status %d",
1946			   monitor->handle, status);
1947		goto free_monitor;
1948
1949	case HCI_ADV_MONITOR_EXT_MSFT:
1950		handle = monitor->handle;
1951		status = msft_remove_monitor(hdev, monitor);
1952		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953			   handle, status);
1954		break;
1955	}
1956
1957	/* In case no matching handle registered, just free the monitor */
1958	if (status == -ENOENT)
1959		goto free_monitor;
1960
1961	return status;
1962
1963free_monitor:
1964	if (status == -ENOENT)
1965		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966			    monitor->handle);
1967	hci_free_adv_monitor(hdev, monitor);
1968
1969	return status;
1970}
1971
1972/* This function requires the caller holds hci_req_sync_lock */
1973int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
 
 
1974{
1975	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1976
1977	if (!monitor)
1978		return -EINVAL;
1979
1980	return hci_remove_adv_monitor(hdev, monitor);
1981}
 
1982
1983/* This function requires the caller holds hci_req_sync_lock */
1984int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1985{
1986	struct adv_monitor *monitor;
1987	int idr_next_id = 0;
1988	int status = 0;
1989
1990	while (1) {
1991		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992		if (!monitor)
1993			break;
1994
1995		status = hci_remove_adv_monitor(hdev, monitor);
1996		if (status)
1997			return status;
1998
1999		idr_next_id++;
 
 
 
 
 
 
 
 
 
 
 
 
 
2000	}
2001
2002	return status;
2003}
 
2004
2005/* This function requires the caller holds hdev->lock */
2006bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007{
2008	return !idr_is_empty(&hdev->adv_monitors_idr);
2009}
2010
2011int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
 
2012{
2013	if (msft_monitor_supported(hdev))
2014		return HCI_ADV_MONITOR_EXT_MSFT;
2015
2016	return HCI_ADV_MONITOR_EXT_NONE;
2017}
 
2018
2019struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020					 bdaddr_t *bdaddr, u8 type)
2021{
2022	struct bdaddr_list *b;
2023
2024	list_for_each_entry(b, bdaddr_list, list) {
2025		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026			return b;
2027	}
2028
2029	return NULL;
2030}
2031
2032struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034				u8 type)
2035{
2036	struct bdaddr_list_with_irk *b;
2037
2038	list_for_each_entry(b, bdaddr_list, list) {
2039		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040			return b;
2041	}
2042
2043	return NULL;
2044}
2045
2046struct bdaddr_list_with_flags *
2047hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048				  bdaddr_t *bdaddr, u8 type)
2049{
2050	struct bdaddr_list_with_flags *b;
2051
2052	list_for_each_entry(b, bdaddr_list, list) {
2053		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054			return b;
 
2055	}
2056
2057	return NULL;
2058}
2059
2060void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061{
2062	struct bdaddr_list *b, *n;
2063
2064	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065		list_del(&b->list);
2066		kfree(b);
2067	}
2068}
2069
2070int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071{
2072	struct bdaddr_list *entry;
2073
2074	if (!bacmp(bdaddr, BDADDR_ANY))
2075		return -EBADF;
2076
2077	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078		return -EEXIST;
2079
2080	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081	if (!entry)
2082		return -ENOMEM;
2083
2084	bacpy(&entry->bdaddr, bdaddr);
2085	entry->bdaddr_type = type;
2086
2087	list_add(&entry->list, list);
2088
2089	return 0;
2090}
2091
2092int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093					u8 type, u8 *peer_irk, u8 *local_irk)
2094{
2095	struct bdaddr_list_with_irk *entry;
2096
2097	if (!bacmp(bdaddr, BDADDR_ANY))
2098		return -EBADF;
2099
2100	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101		return -EEXIST;
2102
2103	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104	if (!entry)
2105		return -ENOMEM;
2106
2107	bacpy(&entry->bdaddr, bdaddr);
2108	entry->bdaddr_type = type;
2109
2110	if (peer_irk)
2111		memcpy(entry->peer_irk, peer_irk, 16);
2112
2113	if (local_irk)
2114		memcpy(entry->local_irk, local_irk, 16);
2115
2116	list_add(&entry->list, list);
2117
2118	return 0;
2119}
2120
2121int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122				   u8 type, u32 flags)
2123{
2124	struct bdaddr_list_with_flags *entry;
2125
2126	if (!bacmp(bdaddr, BDADDR_ANY))
2127		return -EBADF;
2128
2129	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130		return -EEXIST;
2131
2132	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133	if (!entry)
2134		return -ENOMEM;
2135
2136	bacpy(&entry->bdaddr, bdaddr);
2137	entry->bdaddr_type = type;
2138	entry->flags = flags;
2139
2140	list_add(&entry->list, list);
2141
2142	return 0;
 
2143}
2144
2145int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
 
2146{
2147	struct bdaddr_list *entry;
2148
2149	if (!bacmp(bdaddr, BDADDR_ANY)) {
2150		hci_bdaddr_list_clear(list);
2151		return 0;
2152	}
2153
2154	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155	if (!entry)
2156		return -ENOENT;
2157
2158	list_del(&entry->list);
2159	kfree(entry);
2160
2161	return 0;
2162}
2163
2164int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165							u8 type)
2166{
2167	struct bdaddr_list_with_irk *entry;
2168
2169	if (!bacmp(bdaddr, BDADDR_ANY)) {
2170		hci_bdaddr_list_clear(list);
2171		return 0;
2172	}
2173
2174	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175	if (!entry)
2176		return -ENOENT;
2177
2178	list_del(&entry->list);
2179	kfree(entry);
2180
2181	return 0;
 
2182}
2183
2184int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2185				   u8 type)
2186{
2187	struct bdaddr_list_with_flags *entry;
2188
2189	if (!bacmp(bdaddr, BDADDR_ANY)) {
2190		hci_bdaddr_list_clear(list);
2191		return 0;
2192	}
2193
2194	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2195	if (!entry)
2196		return -ENOENT;
2197
2198	list_del(&entry->list);
2199	kfree(entry);
2200
2201	return 0;
2202}
2203
2204/* This function requires the caller holds hdev->lock */
2205struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2206					       bdaddr_t *addr, u8 addr_type)
2207{
2208	struct hci_conn_params *params;
 
2209
2210	list_for_each_entry(params, &hdev->le_conn_params, list) {
2211		if (bacmp(&params->addr, addr) == 0 &&
2212		    params->addr_type == addr_type) {
2213			return params;
2214		}
2215	}
2216
2217	return NULL;
2218}
2219
2220/* This function requires the caller holds hdev->lock or rcu_read_lock */
2221struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2222						  bdaddr_t *addr, u8 addr_type)
2223{
2224	struct hci_conn_params *param;
2225
2226	rcu_read_lock();
 
 
2227
2228	list_for_each_entry_rcu(param, list, action) {
2229		if (bacmp(&param->addr, addr) == 0 &&
2230		    param->addr_type == addr_type) {
2231			rcu_read_unlock();
2232			return param;
2233		}
2234	}
2235
2236	rcu_read_unlock();
2237
2238	return NULL;
2239}
 
 
2240
2241/* This function requires the caller holds hdev->lock */
2242void hci_pend_le_list_del_init(struct hci_conn_params *param)
2243{
2244	if (list_empty(&param->action))
2245		return;
2246
2247	list_del_rcu(&param->action);
2248	synchronize_rcu();
2249	INIT_LIST_HEAD(&param->action);
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253void hci_pend_le_list_add(struct hci_conn_params *param,
2254			  struct list_head *list)
2255{
2256	list_add_rcu(&param->action, list);
2257}
2258
2259/* This function requires the caller holds hdev->lock */
2260struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2261					    bdaddr_t *addr, u8 addr_type)
2262{
2263	struct hci_conn_params *params;
2264
2265	params = hci_conn_params_lookup(hdev, addr, addr_type);
2266	if (params)
2267		return params;
 
 
2268
2269	params = kzalloc(sizeof(*params), GFP_KERNEL);
2270	if (!params) {
2271		bt_dev_err(hdev, "out of memory");
2272		return NULL;
2273	}
 
2274
2275	bacpy(&params->addr, addr);
2276	params->addr_type = addr_type;
 
 
 
 
2277
2278	list_add(&params->list, &hdev->le_conn_params);
2279	INIT_LIST_HEAD(&params->action);
2280
2281	params->conn_min_interval = hdev->le_conn_min_interval;
2282	params->conn_max_interval = hdev->le_conn_max_interval;
2283	params->conn_latency = hdev->le_conn_latency;
2284	params->supervision_timeout = hdev->le_supv_timeout;
2285	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2286
2287	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2288
2289	return params;
 
 
2290}
2291
2292void hci_conn_params_free(struct hci_conn_params *params)
2293{
2294	hci_pend_le_list_del_init(params);
2295
2296	if (params->conn) {
2297		hci_conn_drop(params->conn);
2298		hci_conn_put(params->conn);
 
 
 
 
 
 
 
 
 
 
 
2299	}
2300
2301	list_del(&params->list);
2302	kfree(params);
2303}
2304
2305/* This function requires the caller holds hdev->lock */
2306void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2307{
2308	struct hci_conn_params *params;
 
2309
2310	params = hci_conn_params_lookup(hdev, addr, addr_type);
2311	if (!params)
2312		return;
 
 
 
2313
2314	hci_conn_params_free(params);
2315
2316	hci_update_passive_scan(hdev);
 
 
 
 
 
 
 
 
2317
2318	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2319}
2320
2321/* This function requires the caller holds hdev->lock */
2322void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2323{
2324	struct hci_conn_params *params, *tmp;
2325
2326	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2327		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2328			continue;
2329
2330		/* If trying to establish one time connection to disabled
2331		 * device, leave the params, but mark them as just once.
2332		 */
2333		if (params->explicit_connect) {
2334			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2335			continue;
2336		}
2337
2338		hci_conn_params_free(params);
2339	}
2340
2341	BT_DBG("All LE disabled connection parameters were removed");
2342}
 
 
2343
2344/* This function requires the caller holds hdev->lock */
2345static void hci_conn_params_clear_all(struct hci_dev *hdev)
2346{
2347	struct hci_conn_params *params, *tmp;
 
 
 
 
 
 
 
 
 
2348
2349	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2350		hci_conn_params_free(params);
 
 
2351
2352	BT_DBG("All LE connection parameters were removed");
2353}
2354
2355/* Copy the Identity Address of the controller.
2356 *
2357 * If the controller has a public BD_ADDR, then by default use that one.
2358 * If this is a LE only controller without a public address, default to
2359 * the static random address.
2360 *
2361 * For debugging purposes it is possible to force controllers with a
2362 * public address to use the static random address instead.
2363 *
2364 * In case BR/EDR has been disabled on a dual-mode controller and
2365 * userspace has configured a static address, then that address
2366 * becomes the identity address instead of the public BR/EDR address.
2367 */
2368void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2369			       u8 *bdaddr_type)
2370{
2371	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2372	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2373	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2374	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2375		bacpy(bdaddr, &hdev->static_addr);
2376		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2377	} else {
2378		bacpy(bdaddr, &hdev->bdaddr);
2379		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2380	}
2381}
2382
2383static void hci_clear_wake_reason(struct hci_dev *hdev)
2384{
2385	hci_dev_lock(hdev);
2386
2387	hdev->wake_reason = 0;
2388	bacpy(&hdev->wake_addr, BDADDR_ANY);
2389	hdev->wake_addr_type = 0;
2390
2391	hci_dev_unlock(hdev);
2392}
2393
2394static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2395				void *data)
2396{
2397	struct hci_dev *hdev =
2398		container_of(nb, struct hci_dev, suspend_notifier);
2399	int ret = 0;
2400
2401	/* Userspace has full control of this device. Do nothing. */
2402	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2403		return NOTIFY_DONE;
2404
2405	/* To avoid a potential race with hci_unregister_dev. */
2406	hci_dev_hold(hdev);
2407
2408	switch (action) {
2409	case PM_HIBERNATION_PREPARE:
2410	case PM_SUSPEND_PREPARE:
2411		ret = hci_suspend_dev(hdev);
2412		break;
2413	case PM_POST_HIBERNATION:
2414	case PM_POST_SUSPEND:
2415		ret = hci_resume_dev(hdev);
2416		break;
2417	}
2418
2419	if (ret)
2420		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2421			   action, ret);
2422
2423	hci_dev_put(hdev);
2424	return NOTIFY_DONE;
2425}
2426
2427/* Alloc HCI device */
2428struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2429{
2430	struct hci_dev *hdev;
2431	unsigned int alloc_size;
2432
2433	alloc_size = sizeof(*hdev);
2434	if (sizeof_priv) {
2435		/* Fixme: May need ALIGN-ment? */
2436		alloc_size += sizeof_priv;
2437	}
2438
2439	hdev = kzalloc(alloc_size, GFP_KERNEL);
2440	if (!hdev)
2441		return NULL;
2442
2443	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2444	hdev->esco_type = (ESCO_HV1);
2445	hdev->link_mode = (HCI_LM_ACCEPT);
2446	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2447	hdev->io_capability = 0x03;	/* No Input No Output */
2448	hdev->manufacturer = 0xffff;	/* Default to internal use */
2449	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2450	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2451	hdev->adv_instance_cnt = 0;
2452	hdev->cur_adv_instance = 0x00;
2453	hdev->adv_instance_timeout = 0;
2454
2455	hdev->advmon_allowlist_duration = 300;
2456	hdev->advmon_no_filter_duration = 500;
2457	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2458
2459	hdev->sniff_max_interval = 800;
2460	hdev->sniff_min_interval = 80;
2461
2462	hdev->le_adv_channel_map = 0x07;
2463	hdev->le_adv_min_interval = 0x0800;
2464	hdev->le_adv_max_interval = 0x0800;
2465	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2466	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2467	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2468	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2469	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2470	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2471	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2472	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2473	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2474	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2475	hdev->le_conn_min_interval = 0x0018;
2476	hdev->le_conn_max_interval = 0x0028;
2477	hdev->le_conn_latency = 0x0000;
2478	hdev->le_supv_timeout = 0x002a;
2479	hdev->le_def_tx_len = 0x001b;
2480	hdev->le_def_tx_time = 0x0148;
2481	hdev->le_max_tx_len = 0x001b;
2482	hdev->le_max_tx_time = 0x0148;
2483	hdev->le_max_rx_len = 0x001b;
2484	hdev->le_max_rx_time = 0x0148;
2485	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2486	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2487	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2488	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2489	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2490	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2491	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2492	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2493	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2494
2495	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2496	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2497	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2498	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2499	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2500	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2501
2502	/* default 1.28 sec page scan */
2503	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2504	hdev->def_page_scan_int = 0x0800;
2505	hdev->def_page_scan_window = 0x0012;
2506
2507	mutex_init(&hdev->lock);
2508	mutex_init(&hdev->req_lock);
2509
2510	ida_init(&hdev->unset_handle_ida);
2511
2512	INIT_LIST_HEAD(&hdev->mesh_pending);
2513	INIT_LIST_HEAD(&hdev->mgmt_pending);
2514	INIT_LIST_HEAD(&hdev->reject_list);
2515	INIT_LIST_HEAD(&hdev->accept_list);
2516	INIT_LIST_HEAD(&hdev->uuids);
2517	INIT_LIST_HEAD(&hdev->link_keys);
2518	INIT_LIST_HEAD(&hdev->long_term_keys);
2519	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2520	INIT_LIST_HEAD(&hdev->remote_oob_data);
2521	INIT_LIST_HEAD(&hdev->le_accept_list);
2522	INIT_LIST_HEAD(&hdev->le_resolv_list);
2523	INIT_LIST_HEAD(&hdev->le_conn_params);
2524	INIT_LIST_HEAD(&hdev->pend_le_conns);
2525	INIT_LIST_HEAD(&hdev->pend_le_reports);
2526	INIT_LIST_HEAD(&hdev->conn_hash.list);
2527	INIT_LIST_HEAD(&hdev->adv_instances);
2528	INIT_LIST_HEAD(&hdev->blocked_keys);
2529	INIT_LIST_HEAD(&hdev->monitored_devices);
2530
2531	INIT_LIST_HEAD(&hdev->local_codecs);
2532	INIT_WORK(&hdev->rx_work, hci_rx_work);
2533	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2534	INIT_WORK(&hdev->tx_work, hci_tx_work);
2535	INIT_WORK(&hdev->power_on, hci_power_on);
2536	INIT_WORK(&hdev->error_reset, hci_error_reset);
2537
2538	hci_cmd_sync_init(hdev);
2539
2540	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
 
 
2541
2542	skb_queue_head_init(&hdev->rx_q);
2543	skb_queue_head_init(&hdev->cmd_q);
2544	skb_queue_head_init(&hdev->raw_q);
2545
2546	init_waitqueue_head(&hdev->req_wait_q);
2547
2548	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2549	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2550
2551	hci_devcd_setup(hdev);
2552
2553	hci_init_sysfs(hdev);
2554	discovery_init(hdev);
2555
2556	return hdev;
2557}
2558EXPORT_SYMBOL(hci_alloc_dev_priv);
2559
2560/* Free HCI device */
2561void hci_free_dev(struct hci_dev *hdev)
2562{
2563	/* will free via device release */
2564	put_device(&hdev->dev);
2565}
2566EXPORT_SYMBOL(hci_free_dev);
2567
2568/* Register HCI device */
2569int hci_register_dev(struct hci_dev *hdev)
2570{
2571	int id, error;
2572
2573	if (!hdev->open || !hdev->close || !hdev->send)
2574		return -EINVAL;
2575
2576	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	if (id < 0)
2578		return id;
2579
2580	error = dev_set_name(&hdev->dev, "hci%u", id);
2581	if (error)
2582		return error;
2583
2584	hdev->name = dev_name(&hdev->dev);
2585	hdev->id = id;
2586
2587	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2588
2589	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
2590	if (!hdev->workqueue) {
2591		error = -ENOMEM;
2592		goto err;
2593	}
2594
2595	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2596						      hdev->name);
2597	if (!hdev->req_workqueue) {
2598		destroy_workqueue(hdev->workqueue);
2599		error = -ENOMEM;
2600		goto err;
2601	}
2602
2603	if (!IS_ERR_OR_NULL(bt_debugfs))
2604		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2605
2606	error = device_add(&hdev->dev);
2607	if (error < 0)
 
 
 
 
 
 
2608		goto err_wqueue;
 
2609
2610	hci_leds_init(hdev);
 
 
2611
2612	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2613				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2614				    hdev);
2615	if (hdev->rfkill) {
2616		if (rfkill_register(hdev->rfkill) < 0) {
2617			rfkill_destroy(hdev->rfkill);
2618			hdev->rfkill = NULL;
2619		}
2620	}
2621
2622	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2623		hci_dev_set_flag(hdev, HCI_RFKILLED);
2624
2625	hci_dev_set_flag(hdev, HCI_SETUP);
2626	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2627
2628	/* Assume BR/EDR support until proven otherwise (such as
2629	 * through reading supported features during init.
2630	 */
2631	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 
 
2632
2633	write_lock(&hci_dev_list_lock);
2634	list_add(&hdev->list, &hci_dev_list);
2635	write_unlock(&hci_dev_list_lock);
2636
2637	/* Devices that are marked for raw-only usage are unconfigured
2638	 * and should not be included in normal operation.
2639	 */
2640	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2641		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2642
2643	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2644	 * callback.
2645	 */
2646	if (hdev->wakeup)
2647		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2648
2649	hci_sock_dev_event(hdev, HCI_DEV_REG);
2650	hci_dev_hold(hdev);
2651
2652	error = hci_register_suspend_notifier(hdev);
2653	if (error)
2654		BT_WARN("register suspend notifier failed error:%d\n", error);
2655
2656	queue_work(hdev->req_workqueue, &hdev->power_on);
2657
2658	idr_init(&hdev->adv_monitors_idr);
2659	msft_register(hdev);
2660
2661	return id;
2662
 
 
2663err_wqueue:
2664	debugfs_remove_recursive(hdev->debugfs);
2665	destroy_workqueue(hdev->workqueue);
2666	destroy_workqueue(hdev->req_workqueue);
2667err:
2668	ida_free(&hci_index_ida, hdev->id);
2669
2670	return error;
2671}
2672EXPORT_SYMBOL(hci_register_dev);
2673
2674/* Unregister HCI device */
2675void hci_unregister_dev(struct hci_dev *hdev)
2676{
 
 
2677	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2678
2679	mutex_lock(&hdev->unregister_lock);
2680	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2681	mutex_unlock(&hdev->unregister_lock);
2682
2683	write_lock(&hci_dev_list_lock);
2684	list_del(&hdev->list);
2685	write_unlock(&hci_dev_list_lock);
2686
2687	disable_work_sync(&hdev->rx_work);
2688	disable_work_sync(&hdev->cmd_work);
2689	disable_work_sync(&hdev->tx_work);
2690	disable_work_sync(&hdev->power_on);
2691	disable_work_sync(&hdev->error_reset);
2692
2693	hci_cmd_sync_clear(hdev);
2694
2695	hci_unregister_suspend_notifier(hdev);
 
2696
2697	hci_dev_do_close(hdev);
2698
2699	if (!test_bit(HCI_INIT, &hdev->flags) &&
2700	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2701	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2702		hci_dev_lock(hdev);
2703		mgmt_index_removed(hdev);
2704		hci_dev_unlock(hdev);
2705	}
2706
2707	/* mgmt_index_removed should take care of emptying the
2708	 * pending list */
2709	BUG_ON(!list_empty(&hdev->mgmt_pending));
2710
2711	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2712
2713	if (hdev->rfkill) {
2714		rfkill_unregister(hdev->rfkill);
2715		rfkill_destroy(hdev->rfkill);
2716	}
2717
 
 
 
2718	device_del(&hdev->dev);
2719	/* Actual cleanup is deferred until hci_release_dev(). */
2720	hci_dev_put(hdev);
2721}
2722EXPORT_SYMBOL(hci_unregister_dev);
2723
2724/* Release HCI device */
2725void hci_release_dev(struct hci_dev *hdev)
2726{
2727	debugfs_remove_recursive(hdev->debugfs);
2728	kfree_const(hdev->hw_info);
2729	kfree_const(hdev->fw_info);
2730
2731	destroy_workqueue(hdev->workqueue);
2732	destroy_workqueue(hdev->req_workqueue);
2733
2734	hci_dev_lock(hdev);
2735	hci_bdaddr_list_clear(&hdev->reject_list);
2736	hci_bdaddr_list_clear(&hdev->accept_list);
2737	hci_uuids_clear(hdev);
2738	hci_link_keys_clear(hdev);
2739	hci_smp_ltks_clear(hdev);
2740	hci_smp_irks_clear(hdev);
2741	hci_remote_oob_data_clear(hdev);
2742	hci_adv_instances_clear(hdev);
2743	hci_adv_monitors_clear(hdev);
2744	hci_bdaddr_list_clear(&hdev->le_accept_list);
2745	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2746	hci_conn_params_clear_all(hdev);
2747	hci_discovery_filter_clear(hdev);
2748	hci_blocked_keys_clear(hdev);
2749	hci_codec_list_clear(&hdev->local_codecs);
2750	msft_release(hdev);
2751	hci_dev_unlock(hdev);
2752
2753	ida_destroy(&hdev->unset_handle_ida);
2754	ida_free(&hci_index_ida, hdev->id);
2755	kfree_skb(hdev->sent_cmd);
2756	kfree_skb(hdev->req_skb);
2757	kfree_skb(hdev->recv_event);
2758	kfree(hdev);
2759}
2760EXPORT_SYMBOL(hci_release_dev);
2761
2762int hci_register_suspend_notifier(struct hci_dev *hdev)
2763{
2764	int ret = 0;
2765
2766	if (!hdev->suspend_notifier.notifier_call &&
2767	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769		ret = register_pm_notifier(&hdev->suspend_notifier);
2770	}
2771
2772	return ret;
2773}
2774
2775int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776{
2777	int ret = 0;
2778
2779	if (hdev->suspend_notifier.notifier_call) {
2780		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781		if (!ret)
2782			hdev->suspend_notifier.notifier_call = NULL;
2783	}
2784
2785	return ret;
2786}
2787
2788/* Cancel ongoing command synchronously:
2789 *
2790 * - Cancel command timer
2791 * - Reset command counter
2792 * - Cancel command request
2793 */
2794static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2795{
2796	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2797
2798	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2799		disable_delayed_work_sync(&hdev->cmd_timer);
2800		disable_delayed_work_sync(&hdev->ncmd_timer);
2801	} else  {
2802		cancel_delayed_work_sync(&hdev->cmd_timer);
2803		cancel_delayed_work_sync(&hdev->ncmd_timer);
2804	}
2805
2806	atomic_set(&hdev->cmd_cnt, 1);
2807
2808	hci_cmd_sync_cancel_sync(hdev, err);
2809}
 
2810
2811/* Suspend HCI device */
2812int hci_suspend_dev(struct hci_dev *hdev)
2813{
2814	int ret;
2815
2816	bt_dev_dbg(hdev, "");
2817
2818	/* Suspend should only act on when powered. */
2819	if (!hdev_is_powered(hdev) ||
2820	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2821		return 0;
2822
2823	/* If powering down don't attempt to suspend */
2824	if (mgmt_powering_down(hdev))
2825		return 0;
2826
2827	/* Cancel potentially blocking sync operation before suspend */
2828	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2829
2830	hci_req_sync_lock(hdev);
2831	ret = hci_suspend_sync(hdev);
2832	hci_req_sync_unlock(hdev);
2833
2834	hci_clear_wake_reason(hdev);
2835	mgmt_suspending(hdev, hdev->suspend_state);
2836
2837	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2838	return ret;
2839}
2840EXPORT_SYMBOL(hci_suspend_dev);
2841
2842/* Resume HCI device */
2843int hci_resume_dev(struct hci_dev *hdev)
2844{
2845	int ret;
2846
2847	bt_dev_dbg(hdev, "");
2848
2849	/* Resume should only act on when powered. */
2850	if (!hdev_is_powered(hdev) ||
2851	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2852		return 0;
2853
2854	/* If powering down don't attempt to resume */
2855	if (mgmt_powering_down(hdev))
2856		return 0;
2857
2858	hci_req_sync_lock(hdev);
2859	ret = hci_resume_sync(hdev);
2860	hci_req_sync_unlock(hdev);
2861
2862	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2863		      hdev->wake_addr_type);
2864
2865	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2866	return ret;
2867}
2868EXPORT_SYMBOL(hci_resume_dev);
2869
2870/* Reset HCI device */
2871int hci_reset_dev(struct hci_dev *hdev)
2872{
2873	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2874	struct sk_buff *skb;
2875
2876	skb = bt_skb_alloc(3, GFP_ATOMIC);
2877	if (!skb)
2878		return -ENOMEM;
2879
2880	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2881	skb_put_data(skb, hw_err, 3);
2882
2883	bt_dev_err(hdev, "Injecting HCI hardware error event");
2884
2885	/* Send Hardware Error to upper stack */
2886	return hci_recv_frame(hdev, skb);
2887}
2888EXPORT_SYMBOL(hci_reset_dev);
2889
2890static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2891{
2892	if (hdev->classify_pkt_type)
2893		return hdev->classify_pkt_type(hdev, skb);
2894
2895	return hci_skb_pkt_type(skb);
2896}
2897
2898/* Receive frame from HCI drivers */
2899int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2900{
2901	u8 dev_pkt_type;
2902
2903	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2904		      && !test_bit(HCI_INIT, &hdev->flags))) {
2905		kfree_skb(skb);
2906		return -ENXIO;
2907	}
2908
2909	/* Check if the driver agree with packet type classification */
2910	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2911	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2912		hci_skb_pkt_type(skb) = dev_pkt_type;
2913	}
2914
2915	switch (hci_skb_pkt_type(skb)) {
2916	case HCI_EVENT_PKT:
2917		break;
2918	case HCI_ACLDATA_PKT:
2919		/* Detect if ISO packet has been sent as ACL */
2920		if (hci_conn_num(hdev, ISO_LINK)) {
2921			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2922			__u8 type;
2923
2924			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2925			if (type == ISO_LINK)
2926				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2927		}
2928		break;
2929	case HCI_SCODATA_PKT:
2930		break;
2931	case HCI_ISODATA_PKT:
2932		break;
2933	default:
2934		kfree_skb(skb);
2935		return -EINVAL;
2936	}
2937
2938	/* Incoming skb */
2939	bt_cb(skb)->incoming = 1;
2940
2941	/* Time stamp */
2942	__net_timestamp(skb);
2943
2944	skb_queue_tail(&hdev->rx_q, skb);
2945	queue_work(hdev->workqueue, &hdev->rx_work);
2946
2947	return 0;
2948}
2949EXPORT_SYMBOL(hci_recv_frame);
2950
2951/* Receive diagnostic message from HCI drivers */
2952int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2953{
2954	/* Mark as diagnostic packet */
2955	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
 
 
 
2956
2957	/* Time stamp */
2958	__net_timestamp(skb);
 
2959
2960	skb_queue_tail(&hdev->rx_q, skb);
2961	queue_work(hdev->workqueue, &hdev->rx_work);
2962
2963	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964}
2965EXPORT_SYMBOL(hci_recv_diag);
2966
2967void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2968{
2969	va_list vargs;
 
 
 
2970
2971	va_start(vargs, fmt);
2972	kfree_const(hdev->hw_info);
2973	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974	va_end(vargs);
 
 
 
 
 
 
2975}
2976EXPORT_SYMBOL(hci_set_hw_info);
 
 
2977
2978void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2979{
2980	va_list vargs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2981
2982	va_start(vargs, fmt);
2983	kfree_const(hdev->fw_info);
2984	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2985	va_end(vargs);
2986}
2987EXPORT_SYMBOL(hci_set_fw_info);
2988
2989/* ---- Interface to upper protocols ---- */
2990
2991int hci_register_cb(struct hci_cb *cb)
2992{
2993	BT_DBG("%p name %s", cb, cb->name);
2994
2995	list_add_tail_rcu(&cb->list, &hci_cb_list);
 
 
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL(hci_register_cb);
3000
3001int hci_unregister_cb(struct hci_cb *cb)
3002{
3003	BT_DBG("%p name %s", cb, cb->name);
3004
3005	list_del_rcu(&cb->list);
3006	synchronize_rcu();
 
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(hci_unregister_cb);
3011
3012static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013{
3014	int err;
3015
3016	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017	       skb->len);
3018
3019	/* Time stamp */
3020	__net_timestamp(skb);
3021
3022	/* Send copy to monitor */
3023	hci_send_to_monitor(hdev, skb);
3024
3025	if (atomic_read(&hdev->promisc)) {
3026		/* Send copy to the sockets */
3027		hci_send_to_sock(hdev, skb);
3028	}
3029
3030	/* Get rid of skb owner, prior to sending to the driver. */
3031	skb_orphan(skb);
3032
3033	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034		kfree_skb(skb);
3035		return -EINVAL;
3036	}
3037
3038	err = hdev->send(hdev, skb);
3039	if (err < 0) {
3040		bt_dev_err(hdev, "sending frame failed (%d)", err);
3041		kfree_skb(skb);
3042		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3043	}
3044
 
 
 
 
 
 
 
 
 
 
 
 
 
3045	return 0;
3046}
3047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048/* Send HCI command */
3049int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050		 const void *param)
3051{
3052	struct sk_buff *skb;
3053
3054	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055
3056	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3057	if (!skb) {
3058		bt_dev_err(hdev, "no memory for command");
3059		return -ENOMEM;
3060	}
3061
3062	/* Stand-alone HCI commands must be flagged as
3063	 * single-command requests.
3064	 */
3065	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066
3067	skb_queue_tail(&hdev->cmd_q, skb);
3068	queue_work(hdev->workqueue, &hdev->cmd_work);
3069
3070	return 0;
3071}
3072
3073int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074		   const void *param)
 
3075{
 
3076	struct sk_buff *skb;
3077
3078	if (hci_opcode_ogf(opcode) != 0x3f) {
3079		/* A controller receiving a command shall respond with either
3080		 * a Command Status Event or a Command Complete Event.
3081		 * Therefore, all standard HCI commands must be sent via the
3082		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083		 * Some vendors do not comply with this rule for vendor-specific
3084		 * commands and do not return any event. We want to support
3085		 * unresponded commands for such cases only.
3086		 */
3087		bt_dev_err(hdev, "unresponded command not supported");
3088		return -EINVAL;
3089	}
3090
3091	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
 
 
 
 
 
 
3092	if (!skb) {
3093		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094			   opcode);
3095		return -ENOMEM;
 
3096	}
3097
3098	hci_send_frame(hdev, skb);
 
3099
3100	return 0;
 
 
3101}
3102EXPORT_SYMBOL(__hci_cmd_send);
3103
3104/* Get data from the previously sent command */
3105static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3106{
3107	struct hci_command_hdr *hdr;
3108
3109	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3110		return NULL;
3111
3112	hdr = (void *)skb->data;
3113
3114	if (hdr->opcode != cpu_to_le16(opcode))
3115		return NULL;
3116
3117	return skb->data + HCI_COMMAND_HDR_SIZE;
3118}
3119
3120/* Get data from the previously sent command */
3121void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3122{
3123	void *data;
3124
3125	/* Check if opcode matches last sent command */
3126	data = hci_cmd_data(hdev->sent_cmd, opcode);
3127	if (!data)
3128		/* Check if opcode matches last request */
3129		data = hci_cmd_data(hdev->req_skb, opcode);
3130
3131	return data;
3132}
3133
3134/* Get data from last received event */
3135void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3136{
3137	struct hci_event_hdr *hdr;
3138	int offset;
3139
3140	if (!hdev->recv_event)
3141		return NULL;
3142
3143	hdr = (void *)hdev->recv_event->data;
3144	offset = sizeof(*hdr);
3145
3146	if (hdr->evt != event) {
3147		/* In case of LE metaevent check the subevent match */
3148		if (hdr->evt == HCI_EV_LE_META) {
3149			struct hci_ev_le_meta *ev;
3150
3151			ev = (void *)hdev->recv_event->data + offset;
3152			offset += sizeof(*ev);
3153			if (ev->subevent == event)
3154				goto found;
3155		}
3156		return NULL;
3157	}
3158
3159found:
3160	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3161
3162	return hdev->recv_event->data + offset;
3163}
3164
3165/* Send ACL data */
3166static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3167{
3168	struct hci_acl_hdr *hdr;
3169	int len = skb->len;
3170
3171	skb_push(skb, HCI_ACL_HDR_SIZE);
3172	skb_reset_transport_header(skb);
3173	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3174	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3175	hdr->dlen   = cpu_to_le16(len);
3176}
3177
3178static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3179			  struct sk_buff *skb, __u16 flags)
3180{
3181	struct hci_conn *conn = chan->conn;
3182	struct hci_dev *hdev = conn->hdev;
3183	struct sk_buff *list;
3184
3185	skb->len = skb_headlen(skb);
3186	skb->data_len = 0;
3187
3188	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3189
3190	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
3191
3192	list = skb_shinfo(skb)->frag_list;
3193	if (!list) {
3194		/* Non fragmented */
3195		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3196
3197		skb_queue_tail(queue, skb);
3198	} else {
3199		/* Fragmented */
3200		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3201
3202		skb_shinfo(skb)->frag_list = NULL;
3203
3204		/* Queue all fragments atomically. We need to use spin_lock_bh
3205		 * here because of 6LoWPAN links, as there this function is
3206		 * called from softirq and using normal spin lock could cause
3207		 * deadlocks.
3208		 */
3209		spin_lock_bh(&queue->lock);
3210
3211		__skb_queue_tail(queue, skb);
3212
3213		flags &= ~ACL_START;
3214		flags |= ACL_CONT;
3215		do {
3216			skb = list; list = list->next;
3217
3218			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3219			hci_add_acl_hdr(skb, conn->handle, flags);
3220
3221			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3222
3223			__skb_queue_tail(queue, skb);
3224		} while (list);
3225
3226		spin_unlock_bh(&queue->lock);
3227	}
3228}
3229
3230void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3231{
3232	struct hci_dev *hdev = chan->conn->hdev;
3233
3234	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3235
3236	hci_queue_acl(chan, &chan->data_q, skb, flags);
3237
3238	queue_work(hdev->workqueue, &hdev->tx_work);
3239}
3240
3241/* Send SCO data */
3242void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3243{
3244	struct hci_dev *hdev = conn->hdev;
3245	struct hci_sco_hdr hdr;
3246
3247	BT_DBG("%s len %d", hdev->name, skb->len);
3248
3249	hdr.handle = cpu_to_le16(conn->handle);
3250	hdr.dlen   = skb->len;
3251
3252	skb_push(skb, HCI_SCO_HDR_SIZE);
3253	skb_reset_transport_header(skb);
3254	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3255
3256	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3257
3258	skb_queue_tail(&conn->data_q, skb);
3259	queue_work(hdev->workqueue, &hdev->tx_work);
3260}
3261
3262/* Send ISO data */
3263static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3264{
3265	struct hci_iso_hdr *hdr;
3266	int len = skb->len;
3267
3268	skb_push(skb, HCI_ISO_HDR_SIZE);
3269	skb_reset_transport_header(skb);
3270	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3271	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3272	hdr->dlen   = cpu_to_le16(len);
3273}
3274
3275static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3276			  struct sk_buff *skb)
3277{
3278	struct hci_dev *hdev = conn->hdev;
3279	struct sk_buff *list;
3280	__u16 flags;
3281
3282	skb->len = skb_headlen(skb);
3283	skb->data_len = 0;
3284
3285	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3286
3287	list = skb_shinfo(skb)->frag_list;
3288
3289	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3290	hci_add_iso_hdr(skb, conn->handle, flags);
3291
3292	if (!list) {
3293		/* Non fragmented */
3294		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3295
3296		skb_queue_tail(queue, skb);
3297	} else {
3298		/* Fragmented */
3299		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3300
3301		skb_shinfo(skb)->frag_list = NULL;
3302
3303		__skb_queue_tail(queue, skb);
3304
3305		do {
3306			skb = list; list = list->next;
3307
3308			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3309			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3310						   0x00);
3311			hci_add_iso_hdr(skb, conn->handle, flags);
3312
3313			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3314
3315			__skb_queue_tail(queue, skb);
3316		} while (list);
3317	}
3318}
3319
3320void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3321{
3322	struct hci_dev *hdev = conn->hdev;
3323
3324	BT_DBG("%s len %d", hdev->name, skb->len);
3325
3326	hci_queue_iso(conn, &conn->data_q, skb);
3327
3328	queue_work(hdev->workqueue, &hdev->tx_work);
3329}
3330
3331/* ---- HCI TX task (outgoing data) ---- */
3332
3333/* HCI Connection scheduler */
3334static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3335{
3336	struct hci_dev *hdev;
3337	int cnt, q;
3338
3339	if (!conn) {
3340		*quote = 0;
3341		return;
3342	}
3343
3344	hdev = conn->hdev;
3345
3346	switch (conn->type) {
3347	case ACL_LINK:
3348		cnt = hdev->acl_cnt;
3349		break;
3350	case SCO_LINK:
3351	case ESCO_LINK:
3352		cnt = hdev->sco_cnt;
3353		break;
3354	case LE_LINK:
3355		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3356		break;
3357	case ISO_LINK:
3358		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3359			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360		break;
3361	default:
3362		cnt = 0;
3363		bt_dev_err(hdev, "unknown link type %d", conn->type);
3364	}
3365
3366	q = cnt / num;
3367	*quote = q ? q : 1;
3368}
3369
3370static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3371				     int *quote)
3372{
3373	struct hci_conn_hash *h = &hdev->conn_hash;
3374	struct hci_conn *conn = NULL, *c;
3375	unsigned int num = 0, min = ~0;
3376
3377	/* We don't have to lock device here. Connections are always
3378	 * added and removed with TX task disabled. */
3379
3380	rcu_read_lock();
3381
3382	list_for_each_entry_rcu(c, &h->list, list) {
3383		if (c->type != type || skb_queue_empty(&c->data_q))
3384			continue;
3385
3386		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3387			continue;
3388
3389		num++;
3390
3391		if (c->sent < min) {
3392			min  = c->sent;
3393			conn = c;
3394		}
3395
3396		if (hci_conn_num(hdev, type) == num)
3397			break;
3398	}
3399
3400	rcu_read_unlock();
3401
3402	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	BT_DBG("conn %p quote %d", conn, *quote);
3405	return conn;
3406}
3407
3408static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3409{
3410	struct hci_conn_hash *h = &hdev->conn_hash;
3411	struct hci_conn *c;
3412
3413	bt_dev_err(hdev, "link tx timeout");
3414
3415	rcu_read_lock();
3416
3417	/* Kill stalled connections */
3418	list_for_each_entry_rcu(c, &h->list, list) {
3419		if (c->type == type && c->sent) {
3420			bt_dev_err(hdev, "killing stalled connection %pMR",
3421				   &c->dst);
3422			/* hci_disconnect might sleep, so, we have to release
3423			 * the RCU read lock before calling it.
3424			 */
3425			rcu_read_unlock();
3426			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3427			rcu_read_lock();
3428		}
3429	}
3430
3431	rcu_read_unlock();
3432}
3433
3434static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3435				      int *quote)
3436{
3437	struct hci_conn_hash *h = &hdev->conn_hash;
3438	struct hci_chan *chan = NULL;
3439	unsigned int num = 0, min = ~0, cur_prio = 0;
3440	struct hci_conn *conn;
3441	int conn_num = 0;
3442
3443	BT_DBG("%s", hdev->name);
3444
3445	rcu_read_lock();
3446
3447	list_for_each_entry_rcu(conn, &h->list, list) {
3448		struct hci_chan *tmp;
3449
3450		if (conn->type != type)
3451			continue;
3452
3453		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3454			continue;
3455
3456		conn_num++;
3457
3458		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3459			struct sk_buff *skb;
3460
3461			if (skb_queue_empty(&tmp->data_q))
3462				continue;
3463
3464			skb = skb_peek(&tmp->data_q);
3465			if (skb->priority < cur_prio)
3466				continue;
3467
3468			if (skb->priority > cur_prio) {
3469				num = 0;
3470				min = ~0;
3471				cur_prio = skb->priority;
3472			}
3473
3474			num++;
3475
3476			if (conn->sent < min) {
3477				min  = conn->sent;
3478				chan = tmp;
3479			}
3480		}
3481
3482		if (hci_conn_num(hdev, type) == conn_num)
3483			break;
3484	}
3485
3486	rcu_read_unlock();
3487
3488	if (!chan)
3489		return NULL;
3490
3491	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492
 
 
3493	BT_DBG("chan %p quote %d", chan, *quote);
3494	return chan;
3495}
3496
3497static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3498{
3499	struct hci_conn_hash *h = &hdev->conn_hash;
3500	struct hci_conn *conn;
3501	int num = 0;
3502
3503	BT_DBG("%s", hdev->name);
3504
3505	rcu_read_lock();
3506
3507	list_for_each_entry_rcu(conn, &h->list, list) {
3508		struct hci_chan *chan;
3509
3510		if (conn->type != type)
3511			continue;
3512
3513		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3514			continue;
3515
3516		num++;
3517
3518		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3519			struct sk_buff *skb;
3520
3521			if (chan->sent) {
3522				chan->sent = 0;
3523				continue;
3524			}
3525
3526			if (skb_queue_empty(&chan->data_q))
3527				continue;
3528
3529			skb = skb_peek(&chan->data_q);
3530			if (skb->priority >= HCI_PRIO_MAX - 1)
3531				continue;
3532
3533			skb->priority = HCI_PRIO_MAX - 1;
3534
3535			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3536			       skb->priority);
3537		}
3538
3539		if (hci_conn_num(hdev, type) == num)
3540			break;
3541	}
3542
3543	rcu_read_unlock();
3544
3545}
3546
3547static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3548{
3549	unsigned long last_tx;
3550
3551	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3552		return;
3553
3554	switch (type) {
3555	case LE_LINK:
3556		last_tx = hdev->le_last_tx;
3557		break;
3558	default:
3559		last_tx = hdev->acl_last_tx;
3560		break;
 
3561	}
3562
3563	/* tx timeout must be longer than maximum link supervision timeout
3564	 * (40.9 seconds)
3565	 */
3566	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3567		hci_link_tx_to(hdev, type);
3568}
3569
3570/* Schedule SCO */
3571static void hci_sched_sco(struct hci_dev *hdev)
3572{
3573	struct hci_conn *conn;
 
3574	struct sk_buff *skb;
3575	int quote;
3576
3577	BT_DBG("%s", hdev->name);
3578
3579	if (!hci_conn_num(hdev, SCO_LINK))
3580		return;
3581
3582	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3583		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3584			BT_DBG("skb %p len %d", skb, skb->len);
3585			hci_send_frame(hdev, skb);
3586
3587			conn->sent++;
3588			if (conn->sent == ~0)
3589				conn->sent = 0;
3590		}
3591	}
3592}
3593
3594static void hci_sched_esco(struct hci_dev *hdev)
3595{
3596	struct hci_conn *conn;
3597	struct sk_buff *skb;
3598	int quote;
3599
3600	BT_DBG("%s", hdev->name);
3601
3602	if (!hci_conn_num(hdev, ESCO_LINK))
3603		return;
3604
3605	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3606						     &quote))) {
3607		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3608			BT_DBG("skb %p len %d", skb, skb->len);
3609			hci_send_frame(hdev, skb);
 
3610
3611			conn->sent++;
3612			if (conn->sent == ~0)
3613				conn->sent = 0;
3614		}
3615	}
 
 
 
3616}
3617
3618static void hci_sched_acl_pkt(struct hci_dev *hdev)
3619{
3620	unsigned int cnt = hdev->acl_cnt;
3621	struct hci_chan *chan;
3622	struct sk_buff *skb;
3623	int quote;
 
3624
3625	__check_timeout(hdev, cnt, ACL_LINK);
3626
3627	while (hdev->acl_cnt &&
3628	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
 
 
 
 
 
 
 
3629		u32 priority = (skb_peek(&chan->data_q))->priority;
3630		while (quote-- && (skb = skb_peek(&chan->data_q))) {
 
 
3631			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3632			       skb->len, skb->priority);
3633
3634			/* Stop if priority has changed */
3635			if (skb->priority < priority)
3636				break;
3637
3638			skb = skb_dequeue(&chan->data_q);
3639
 
 
 
 
3640			hci_conn_enter_active_mode(chan->conn,
3641						   bt_cb(skb)->force_active);
3642
3643			hci_send_frame(hdev, skb);
3644			hdev->acl_last_tx = jiffies;
3645
3646			hdev->acl_cnt--;
3647			chan->sent++;
3648			chan->conn->sent++;
3649
3650			/* Send pending SCO packets right away */
3651			hci_sched_sco(hdev);
3652			hci_sched_esco(hdev);
3653		}
3654	}
3655
3656	if (cnt != hdev->acl_cnt)
3657		hci_prio_recalculate(hdev, ACL_LINK);
3658}
3659
3660static void hci_sched_acl(struct hci_dev *hdev)
3661{
3662	BT_DBG("%s", hdev->name);
3663
3664	/* No ACL link over BR/EDR controller */
3665	if (!hci_conn_num(hdev, ACL_LINK))
 
 
 
 
3666		return;
3667
3668	hci_sched_acl_pkt(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static void hci_sched_le(struct hci_dev *hdev)
3672{
3673	struct hci_chan *chan;
3674	struct sk_buff *skb;
3675	int quote, *cnt, tmp;
3676
3677	BT_DBG("%s", hdev->name);
3678
3679	if (!hci_conn_num(hdev, LE_LINK))
3680		return;
3681
3682	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3683
3684	__check_timeout(hdev, *cnt, LE_LINK);
 
 
 
 
3685
3686	tmp = *cnt;
3687	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
 
3688		u32 priority = (skb_peek(&chan->data_q))->priority;
3689		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3690			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691			       skb->len, skb->priority);
3692
3693			/* Stop if priority has changed */
3694			if (skb->priority < priority)
3695				break;
3696
3697			skb = skb_dequeue(&chan->data_q);
3698
3699			hci_send_frame(hdev, skb);
3700			hdev->le_last_tx = jiffies;
3701
3702			(*cnt)--;
3703			chan->sent++;
3704			chan->conn->sent++;
3705
3706			/* Send pending SCO packets right away */
3707			hci_sched_sco(hdev);
3708			hci_sched_esco(hdev);
3709		}
3710	}
3711
3712	if (*cnt != tmp)
3713		hci_prio_recalculate(hdev, LE_LINK);
3714}
3715
3716/* Schedule CIS */
3717static void hci_sched_iso(struct hci_dev *hdev)
3718{
3719	struct hci_conn *conn;
3720	struct sk_buff *skb;
3721	int quote, *cnt;
3722
3723	BT_DBG("%s", hdev->name);
3724
3725	if (!hci_conn_num(hdev, ISO_LINK))
3726		return;
3727
3728	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3729		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3730	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3731		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3732			BT_DBG("skb %p len %d", skb, skb->len);
3733			hci_send_frame(hdev, skb);
3734
3735			conn->sent++;
3736			if (conn->sent == ~0)
3737				conn->sent = 0;
3738			(*cnt)--;
3739		}
3740	}
3741}
3742
3743static void hci_tx_work(struct work_struct *work)
3744{
3745	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3746	struct sk_buff *skb;
3747
3748	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3749	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3750
3751	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3752		/* Schedule queues and send stuff to HCI driver */
 
3753		hci_sched_sco(hdev);
3754		hci_sched_esco(hdev);
3755		hci_sched_iso(hdev);
3756		hci_sched_acl(hdev);
3757		hci_sched_le(hdev);
3758	}
3759
3760	/* Send next queued raw (unknown type) packet */
3761	while ((skb = skb_dequeue(&hdev->raw_q)))
3762		hci_send_frame(hdev, skb);
3763}
3764
3765/* ----- HCI RX task (incoming data processing) ----- */
3766
3767/* ACL data packet */
3768static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3769{
3770	struct hci_acl_hdr *hdr;
3771	struct hci_conn *conn;
3772	__u16 handle, flags;
3773
3774	hdr = skb_pull_data(skb, sizeof(*hdr));
3775	if (!hdr) {
3776		bt_dev_err(hdev, "ACL packet too small");
3777		goto drop;
3778	}
3779
3780	handle = __le16_to_cpu(hdr->handle);
3781	flags  = hci_flags(handle);
3782	handle = hci_handle(handle);
3783
3784	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3785		   handle, flags);
3786
3787	hdev->stat.acl_rx++;
3788
3789	hci_dev_lock(hdev);
3790	conn = hci_conn_hash_lookup_handle(hdev, handle);
3791	hci_dev_unlock(hdev);
3792
3793	if (conn) {
3794		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3795
3796		/* Send to upper protocol */
3797		l2cap_recv_acldata(conn, skb, flags);
3798		return;
3799	} else {
3800		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3801			   handle);
3802	}
3803
3804drop:
3805	kfree_skb(skb);
3806}
3807
3808/* SCO data packet */
3809static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810{
3811	struct hci_sco_hdr *hdr;
3812	struct hci_conn *conn;
3813	__u16 handle, flags;
3814
3815	hdr = skb_pull_data(skb, sizeof(*hdr));
3816	if (!hdr) {
3817		bt_dev_err(hdev, "SCO packet too small");
3818		goto drop;
3819	}
3820
3821	handle = __le16_to_cpu(hdr->handle);
3822	flags  = hci_flags(handle);
3823	handle = hci_handle(handle);
3824
3825	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3826		   handle, flags);
3827
3828	hdev->stat.sco_rx++;
3829
3830	hci_dev_lock(hdev);
3831	conn = hci_conn_hash_lookup_handle(hdev, handle);
3832	hci_dev_unlock(hdev);
3833
3834	if (conn) {
3835		/* Send to upper protocol */
3836		hci_skb_pkt_status(skb) = flags & 0x03;
3837		sco_recv_scodata(conn, skb);
3838		return;
3839	} else {
3840		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3841				       handle);
3842	}
3843
3844drop:
3845	kfree_skb(skb);
3846}
3847
3848static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3849{
3850	struct hci_iso_hdr *hdr;
3851	struct hci_conn *conn;
3852	__u16 handle, flags;
3853
3854	hdr = skb_pull_data(skb, sizeof(*hdr));
3855	if (!hdr) {
3856		bt_dev_err(hdev, "ISO packet too small");
3857		goto drop;
3858	}
3859
3860	handle = __le16_to_cpu(hdr->handle);
3861	flags  = hci_flags(handle);
3862	handle = hci_handle(handle);
3863
3864	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3865		   handle, flags);
3866
3867	hci_dev_lock(hdev);
3868	conn = hci_conn_hash_lookup_handle(hdev, handle);
3869	hci_dev_unlock(hdev);
3870
3871	if (!conn) {
3872		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3873			   handle);
3874		goto drop;
3875	}
3876
3877	/* Send to upper protocol */
3878	iso_recv(conn, skb, flags);
3879	return;
3880
3881drop:
3882	kfree_skb(skb);
3883}
3884
3885static bool hci_req_is_complete(struct hci_dev *hdev)
3886{
3887	struct sk_buff *skb;
3888
3889	skb = skb_peek(&hdev->cmd_q);
3890	if (!skb)
3891		return true;
3892
3893	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3894}
3895
3896static void hci_resend_last(struct hci_dev *hdev)
3897{
3898	struct hci_command_hdr *sent;
3899	struct sk_buff *skb;
3900	u16 opcode;
3901
3902	if (!hdev->sent_cmd)
3903		return;
3904
3905	sent = (void *) hdev->sent_cmd->data;
3906	opcode = __le16_to_cpu(sent->opcode);
3907	if (opcode == HCI_OP_RESET)
3908		return;
3909
3910	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3911	if (!skb)
3912		return;
3913
3914	skb_queue_head(&hdev->cmd_q, skb);
3915	queue_work(hdev->workqueue, &hdev->cmd_work);
3916}
3917
3918void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3919			  hci_req_complete_t *req_complete,
3920			  hci_req_complete_skb_t *req_complete_skb)
3921{
 
3922	struct sk_buff *skb;
3923	unsigned long flags;
3924
3925	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3926
3927	/* If the completed command doesn't match the last one that was
3928	 * sent we need to do special handling of it.
3929	 */
3930	if (!hci_sent_cmd_data(hdev, opcode)) {
3931		/* Some CSR based controllers generate a spontaneous
3932		 * reset complete event during init and any pending
3933		 * command will never be completed. In such a case we
3934		 * need to resend whatever was the last sent
3935		 * command.
3936		 */
3937		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3938			hci_resend_last(hdev);
3939
3940		return;
3941	}
3942
3943	/* If we reach this point this event matches the last command sent */
3944	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3945
3946	/* If the command succeeded and there's still more commands in
3947	 * this request the request is not yet complete.
3948	 */
3949	if (!status && !hci_req_is_complete(hdev))
3950		return;
3951
3952	skb = hdev->req_skb;
3953
3954	/* If this was the last command in a request the complete
3955	 * callback would be found in hdev->req_skb instead of the
3956	 * command queue (hdev->cmd_q).
3957	 */
3958	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3959		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3960		return;
3961	}
3962
3963	if (skb && bt_cb(skb)->hci.req_complete) {
3964		*req_complete = bt_cb(skb)->hci.req_complete;
3965		return;
 
 
 
 
 
 
3966	}
3967
3968	/* Remove all pending commands belonging to this request */
3969	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3970	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3971		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3972			__skb_queue_head(&hdev->cmd_q, skb);
3973			break;
3974		}
3975
3976		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3977			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3978		else
3979			*req_complete = bt_cb(skb)->hci.req_complete;
3980		dev_kfree_skb_irq(skb);
3981	}
3982	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
 
 
 
 
3983}
3984
3985static void hci_rx_work(struct work_struct *work)
3986{
3987	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3988	struct sk_buff *skb;
3989
3990	BT_DBG("%s", hdev->name);
3991
3992	/* The kcov_remote functions used for collecting packet parsing
3993	 * coverage information from this background thread and associate
3994	 * the coverage with the syscall's thread which originally injected
3995	 * the packet. This helps fuzzing the kernel.
3996	 */
3997	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3998		kcov_remote_start_common(skb_get_kcov_handle(skb));
3999
4000		/* Send copy to monitor */
4001		hci_send_to_monitor(hdev, skb);
4002
4003		if (atomic_read(&hdev->promisc)) {
4004			/* Send copy to the sockets */
4005			hci_send_to_sock(hdev, skb);
4006		}
4007
4008		/* If the device has been opened in HCI_USER_CHANNEL,
4009		 * the userspace has exclusive access to device.
4010		 * When device is HCI_INIT, we still need to process
4011		 * the data packets to the driver in order
4012		 * to complete its setup().
4013		 */
4014		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4015		    !test_bit(HCI_INIT, &hdev->flags)) {
4016			kfree_skb(skb);
4017			continue;
4018		}
4019
4020		if (test_bit(HCI_INIT, &hdev->flags)) {
4021			/* Don't process data packets in this states. */
4022			switch (hci_skb_pkt_type(skb)) {
4023			case HCI_ACLDATA_PKT:
4024			case HCI_SCODATA_PKT:
4025			case HCI_ISODATA_PKT:
4026				kfree_skb(skb);
4027				continue;
4028			}
4029		}
4030
4031		/* Process frame */
4032		switch (hci_skb_pkt_type(skb)) {
4033		case HCI_EVENT_PKT:
4034			BT_DBG("%s Event packet", hdev->name);
4035			hci_event_packet(hdev, skb);
4036			break;
4037
4038		case HCI_ACLDATA_PKT:
4039			BT_DBG("%s ACL data packet", hdev->name);
4040			hci_acldata_packet(hdev, skb);
4041			break;
4042
4043		case HCI_SCODATA_PKT:
4044			BT_DBG("%s SCO data packet", hdev->name);
4045			hci_scodata_packet(hdev, skb);
4046			break;
4047
4048		case HCI_ISODATA_PKT:
4049			BT_DBG("%s ISO data packet", hdev->name);
4050			hci_isodata_packet(hdev, skb);
4051			break;
4052
4053		default:
4054			kfree_skb(skb);
4055			break;
4056		}
4057	}
4058}
4059
4060static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4061{
4062	int err;
 
4063
4064	bt_dev_dbg(hdev, "skb %p", skb);
 
4065
4066	kfree_skb(hdev->sent_cmd);
 
 
 
 
4067
4068	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4069	if (!hdev->sent_cmd) {
4070		skb_queue_head(&hdev->cmd_q, skb);
4071		queue_work(hdev->workqueue, &hdev->cmd_work);
4072		return;
4073	}
4074
4075	err = hci_send_frame(hdev, skb);
4076	if (err < 0) {
4077		hci_cmd_sync_cancel_sync(hdev, -err);
4078		return;
 
 
 
 
 
 
 
 
 
4079	}
 
4080
4081	if (hdev->req_status == HCI_REQ_PEND &&
4082	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4083		kfree_skb(hdev->req_skb);
4084		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	}
4086
4087	atomic_dec(&hdev->cmd_cnt);
 
 
4088}
4089
4090static void hci_cmd_work(struct work_struct *work)
4091{
4092	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4093	struct sk_buff *skb;
 
 
4094
4095	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4096	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
 
 
 
 
 
4097
4098	/* Send queued commands */
4099	if (atomic_read(&hdev->cmd_cnt)) {
4100		skb = skb_dequeue(&hdev->cmd_q);
4101		if (!skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4102			return;
4103
4104		hci_send_cmd_sync(hdev, skb);
 
 
 
 
 
 
4105
4106		rcu_read_lock();
4107		if (test_bit(HCI_RESET, &hdev->flags) ||
4108		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4109			cancel_delayed_work(&hdev->cmd_timer);
4110		else
4111			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4112					   HCI_CMD_TIMEOUT);
4113		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
4114	}
 
 
 
 
4115}
v3.15
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
 
 
 
 
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
 
 
  37
 
  38#include "smp.h"
 
 
 
 
  39
  40static void hci_rx_work(struct work_struct *work);
  41static void hci_cmd_work(struct work_struct *work);
  42static void hci_tx_work(struct work_struct *work);
  43
  44/* HCI device list */
  45LIST_HEAD(hci_dev_list);
  46DEFINE_RWLOCK(hci_dev_list_lock);
  47
  48/* HCI callback list */
  49LIST_HEAD(hci_cb_list);
  50DEFINE_RWLOCK(hci_cb_list_lock);
  51
  52/* HCI ID Numbering */
  53static DEFINE_IDA(hci_index_ida);
  54
  55/* ---- HCI notifications ---- */
  56
  57static void hci_notify(struct hci_dev *hdev, int event)
  58{
  59	hci_sock_dev_event(hdev, event);
  60}
  61
  62/* ---- HCI debugfs entries ---- */
  63
  64static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  65			     size_t count, loff_t *ppos)
  66{
  67	struct hci_dev *hdev = file->private_data;
  68	char buf[3];
  69
  70	buf[0] = test_bit(HCI_DUT_MODE, &hdev->dev_flags) ? 'Y': 'N';
  71	buf[1] = '\n';
  72	buf[2] = '\0';
  73	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  74}
  75
  76static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  77			      size_t count, loff_t *ppos)
  78{
  79	struct hci_dev *hdev = file->private_data;
  80	struct sk_buff *skb;
  81	char buf[32];
  82	size_t buf_size = min(count, (sizeof(buf)-1));
  83	bool enable;
  84	int err;
  85
  86	if (!test_bit(HCI_UP, &hdev->flags))
  87		return -ENETDOWN;
  88
  89	if (copy_from_user(buf, user_buf, buf_size))
  90		return -EFAULT;
  91
  92	buf[buf_size] = '\0';
  93	if (strtobool(buf, &enable))
  94		return -EINVAL;
  95
  96	if (enable == test_bit(HCI_DUT_MODE, &hdev->dev_flags))
  97		return -EALREADY;
  98
  99	hci_req_lock(hdev);
 100	if (enable)
 101		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	else
 104		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 105				     HCI_CMD_TIMEOUT);
 106	hci_req_unlock(hdev);
 107
 108	if (IS_ERR(skb))
 109		return PTR_ERR(skb);
 110
 111	err = -bt_to_errno(skb->data[0]);
 112	kfree_skb(skb);
 113
 114	if (err < 0)
 115		return err;
 116
 117	change_bit(HCI_DUT_MODE, &hdev->dev_flags);
 118
 119	return count;
 120}
 121
 122static const struct file_operations dut_mode_fops = {
 123	.open		= simple_open,
 124	.read		= dut_mode_read,
 125	.write		= dut_mode_write,
 126	.llseek		= default_llseek,
 127};
 128
 129static int features_show(struct seq_file *f, void *ptr)
 130{
 131	struct hci_dev *hdev = f->private;
 132	u8 p;
 133
 134	hci_dev_lock(hdev);
 135	for (p = 0; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 136		seq_printf(f, "%2u: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
 137			   "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", p,
 138			   hdev->features[p][0], hdev->features[p][1],
 139			   hdev->features[p][2], hdev->features[p][3],
 140			   hdev->features[p][4], hdev->features[p][5],
 141			   hdev->features[p][6], hdev->features[p][7]);
 142	}
 143	if (lmp_le_capable(hdev))
 144		seq_printf(f, "LE: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
 145			   "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n",
 146			   hdev->le_features[0], hdev->le_features[1],
 147			   hdev->le_features[2], hdev->le_features[3],
 148			   hdev->le_features[4], hdev->le_features[5],
 149			   hdev->le_features[6], hdev->le_features[7]);
 150	hci_dev_unlock(hdev);
 151
 152	return 0;
 153}
 154
 155static int features_open(struct inode *inode, struct file *file)
 156{
 157	return single_open(file, features_show, inode->i_private);
 158}
 159
 160static const struct file_operations features_fops = {
 161	.open		= features_open,
 162	.read		= seq_read,
 163	.llseek		= seq_lseek,
 164	.release	= single_release,
 165};
 166
 167static int blacklist_show(struct seq_file *f, void *p)
 168{
 169	struct hci_dev *hdev = f->private;
 170	struct bdaddr_list *b;
 171
 172	hci_dev_lock(hdev);
 173	list_for_each_entry(b, &hdev->blacklist, list)
 174		seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
 175	hci_dev_unlock(hdev);
 176
 177	return 0;
 178}
 179
 180static int blacklist_open(struct inode *inode, struct file *file)
 181{
 182	return single_open(file, blacklist_show, inode->i_private);
 183}
 184
 185static const struct file_operations blacklist_fops = {
 186	.open		= blacklist_open,
 187	.read		= seq_read,
 188	.llseek		= seq_lseek,
 189	.release	= single_release,
 190};
 191
 192static int uuids_show(struct seq_file *f, void *p)
 193{
 194	struct hci_dev *hdev = f->private;
 195	struct bt_uuid *uuid;
 196
 197	hci_dev_lock(hdev);
 198	list_for_each_entry(uuid, &hdev->uuids, list) {
 199		u8 i, val[16];
 200
 201		/* The Bluetooth UUID values are stored in big endian,
 202		 * but with reversed byte order. So convert them into
 203		 * the right order for the %pUb modifier.
 204		 */
 205		for (i = 0; i < 16; i++)
 206			val[i] = uuid->uuid[15 - i];
 207
 208		seq_printf(f, "%pUb\n", val);
 209	}
 210	hci_dev_unlock(hdev);
 211
 212	return 0;
 213}
 214
 215static int uuids_open(struct inode *inode, struct file *file)
 216{
 217	return single_open(file, uuids_show, inode->i_private);
 218}
 219
 220static const struct file_operations uuids_fops = {
 221	.open		= uuids_open,
 222	.read		= seq_read,
 223	.llseek		= seq_lseek,
 224	.release	= single_release,
 225};
 226
 227static int inquiry_cache_show(struct seq_file *f, void *p)
 228{
 229	struct hci_dev *hdev = f->private;
 230	struct discovery_state *cache = &hdev->discovery;
 231	struct inquiry_entry *e;
 232
 233	hci_dev_lock(hdev);
 234
 235	list_for_each_entry(e, &cache->all, all) {
 236		struct inquiry_data *data = &e->data;
 237		seq_printf(f, "%pMR %d %d %d 0x%.2x%.2x%.2x 0x%.4x %d %d %u\n",
 238			   &data->bdaddr,
 239			   data->pscan_rep_mode, data->pscan_period_mode,
 240			   data->pscan_mode, data->dev_class[2],
 241			   data->dev_class[1], data->dev_class[0],
 242			   __le16_to_cpu(data->clock_offset),
 243			   data->rssi, data->ssp_mode, e->timestamp);
 244	}
 245
 246	hci_dev_unlock(hdev);
 247
 248	return 0;
 249}
 250
 251static int inquiry_cache_open(struct inode *inode, struct file *file)
 252{
 253	return single_open(file, inquiry_cache_show, inode->i_private);
 254}
 255
 256static const struct file_operations inquiry_cache_fops = {
 257	.open		= inquiry_cache_open,
 258	.read		= seq_read,
 259	.llseek		= seq_lseek,
 260	.release	= single_release,
 261};
 262
 263static int link_keys_show(struct seq_file *f, void *ptr)
 264{
 265	struct hci_dev *hdev = f->private;
 266	struct list_head *p, *n;
 267
 268	hci_dev_lock(hdev);
 269	list_for_each_safe(p, n, &hdev->link_keys) {
 270		struct link_key *key = list_entry(p, struct link_key, list);
 271		seq_printf(f, "%pMR %u %*phN %u\n", &key->bdaddr, key->type,
 272			   HCI_LINK_KEY_SIZE, key->val, key->pin_len);
 273	}
 274	hci_dev_unlock(hdev);
 275
 276	return 0;
 277}
 278
 279static int link_keys_open(struct inode *inode, struct file *file)
 280{
 281	return single_open(file, link_keys_show, inode->i_private);
 282}
 283
 284static const struct file_operations link_keys_fops = {
 285	.open		= link_keys_open,
 286	.read		= seq_read,
 287	.llseek		= seq_lseek,
 288	.release	= single_release,
 289};
 290
 291static int dev_class_show(struct seq_file *f, void *ptr)
 292{
 293	struct hci_dev *hdev = f->private;
 294
 295	hci_dev_lock(hdev);
 296	seq_printf(f, "0x%.2x%.2x%.2x\n", hdev->dev_class[2],
 297		   hdev->dev_class[1], hdev->dev_class[0]);
 298	hci_dev_unlock(hdev);
 299
 300	return 0;
 301}
 302
 303static int dev_class_open(struct inode *inode, struct file *file)
 304{
 305	return single_open(file, dev_class_show, inode->i_private);
 306}
 307
 308static const struct file_operations dev_class_fops = {
 309	.open		= dev_class_open,
 310	.read		= seq_read,
 311	.llseek		= seq_lseek,
 312	.release	= single_release,
 313};
 314
 315static int voice_setting_get(void *data, u64 *val)
 316{
 317	struct hci_dev *hdev = data;
 318
 319	hci_dev_lock(hdev);
 320	*val = hdev->voice_setting;
 321	hci_dev_unlock(hdev);
 322
 323	return 0;
 324}
 325
 326DEFINE_SIMPLE_ATTRIBUTE(voice_setting_fops, voice_setting_get,
 327			NULL, "0x%4.4llx\n");
 328
 329static int auto_accept_delay_set(void *data, u64 val)
 330{
 331	struct hci_dev *hdev = data;
 332
 333	hci_dev_lock(hdev);
 334	hdev->auto_accept_delay = val;
 335	hci_dev_unlock(hdev);
 336
 337	return 0;
 338}
 339
 340static int auto_accept_delay_get(void *data, u64 *val)
 341{
 342	struct hci_dev *hdev = data;
 343
 344	hci_dev_lock(hdev);
 345	*val = hdev->auto_accept_delay;
 346	hci_dev_unlock(hdev);
 347
 348	return 0;
 349}
 350
 351DEFINE_SIMPLE_ATTRIBUTE(auto_accept_delay_fops, auto_accept_delay_get,
 352			auto_accept_delay_set, "%llu\n");
 353
 354static int ssp_debug_mode_set(void *data, u64 val)
 355{
 356	struct hci_dev *hdev = data;
 357	struct sk_buff *skb;
 358	__u8 mode;
 359	int err;
 360
 361	if (val != 0 && val != 1)
 362		return -EINVAL;
 363
 364	if (!test_bit(HCI_UP, &hdev->flags))
 365		return -ENETDOWN;
 366
 367	hci_req_lock(hdev);
 368	mode = val;
 369	skb = __hci_cmd_sync(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, sizeof(mode),
 370			     &mode, HCI_CMD_TIMEOUT);
 371	hci_req_unlock(hdev);
 372
 373	if (IS_ERR(skb))
 374		return PTR_ERR(skb);
 375
 376	err = -bt_to_errno(skb->data[0]);
 377	kfree_skb(skb);
 378
 379	if (err < 0)
 380		return err;
 381
 382	hci_dev_lock(hdev);
 383	hdev->ssp_debug_mode = val;
 384	hci_dev_unlock(hdev);
 385
 386	return 0;
 387}
 388
 389static int ssp_debug_mode_get(void *data, u64 *val)
 390{
 391	struct hci_dev *hdev = data;
 392
 393	hci_dev_lock(hdev);
 394	*val = hdev->ssp_debug_mode;
 395	hci_dev_unlock(hdev);
 396
 397	return 0;
 398}
 399
 400DEFINE_SIMPLE_ATTRIBUTE(ssp_debug_mode_fops, ssp_debug_mode_get,
 401			ssp_debug_mode_set, "%llu\n");
 402
 403static ssize_t force_sc_support_read(struct file *file, char __user *user_buf,
 404				     size_t count, loff_t *ppos)
 405{
 406	struct hci_dev *hdev = file->private_data;
 407	char buf[3];
 408
 409	buf[0] = test_bit(HCI_FORCE_SC, &hdev->dev_flags) ? 'Y': 'N';
 410	buf[1] = '\n';
 411	buf[2] = '\0';
 412	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 413}
 414
 415static ssize_t force_sc_support_write(struct file *file,
 416				      const char __user *user_buf,
 417				      size_t count, loff_t *ppos)
 418{
 419	struct hci_dev *hdev = file->private_data;
 420	char buf[32];
 421	size_t buf_size = min(count, (sizeof(buf)-1));
 422	bool enable;
 423
 424	if (test_bit(HCI_UP, &hdev->flags))
 425		return -EBUSY;
 426
 427	if (copy_from_user(buf, user_buf, buf_size))
 428		return -EFAULT;
 429
 430	buf[buf_size] = '\0';
 431	if (strtobool(buf, &enable))
 432		return -EINVAL;
 433
 434	if (enable == test_bit(HCI_FORCE_SC, &hdev->dev_flags))
 435		return -EALREADY;
 436
 437	change_bit(HCI_FORCE_SC, &hdev->dev_flags);
 438
 439	return count;
 440}
 441
 442static const struct file_operations force_sc_support_fops = {
 443	.open		= simple_open,
 444	.read		= force_sc_support_read,
 445	.write		= force_sc_support_write,
 446	.llseek		= default_llseek,
 447};
 448
 449static ssize_t sc_only_mode_read(struct file *file, char __user *user_buf,
 450				 size_t count, loff_t *ppos)
 451{
 452	struct hci_dev *hdev = file->private_data;
 453	char buf[3];
 454
 455	buf[0] = test_bit(HCI_SC_ONLY, &hdev->dev_flags) ? 'Y': 'N';
 456	buf[1] = '\n';
 457	buf[2] = '\0';
 458	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 459}
 460
 461static const struct file_operations sc_only_mode_fops = {
 462	.open		= simple_open,
 463	.read		= sc_only_mode_read,
 464	.llseek		= default_llseek,
 465};
 466
 467static int idle_timeout_set(void *data, u64 val)
 468{
 469	struct hci_dev *hdev = data;
 470
 471	if (val != 0 && (val < 500 || val > 3600000))
 472		return -EINVAL;
 473
 474	hci_dev_lock(hdev);
 475	hdev->idle_timeout = val;
 476	hci_dev_unlock(hdev);
 477
 478	return 0;
 479}
 480
 481static int idle_timeout_get(void *data, u64 *val)
 482{
 483	struct hci_dev *hdev = data;
 484
 485	hci_dev_lock(hdev);
 486	*val = hdev->idle_timeout;
 487	hci_dev_unlock(hdev);
 488
 489	return 0;
 490}
 491
 492DEFINE_SIMPLE_ATTRIBUTE(idle_timeout_fops, idle_timeout_get,
 493			idle_timeout_set, "%llu\n");
 494
 495static int rpa_timeout_set(void *data, u64 val)
 496{
 497	struct hci_dev *hdev = data;
 498
 499	/* Require the RPA timeout to be at least 30 seconds and at most
 500	 * 24 hours.
 501	 */
 502	if (val < 30 || val > (60 * 60 * 24))
 503		return -EINVAL;
 504
 505	hci_dev_lock(hdev);
 506	hdev->rpa_timeout = val;
 507	hci_dev_unlock(hdev);
 508
 509	return 0;
 510}
 511
 512static int rpa_timeout_get(void *data, u64 *val)
 513{
 514	struct hci_dev *hdev = data;
 515
 516	hci_dev_lock(hdev);
 517	*val = hdev->rpa_timeout;
 518	hci_dev_unlock(hdev);
 519
 520	return 0;
 521}
 522
 523DEFINE_SIMPLE_ATTRIBUTE(rpa_timeout_fops, rpa_timeout_get,
 524			rpa_timeout_set, "%llu\n");
 525
 526static int sniff_min_interval_set(void *data, u64 val)
 527{
 528	struct hci_dev *hdev = data;
 529
 530	if (val == 0 || val % 2 || val > hdev->sniff_max_interval)
 531		return -EINVAL;
 532
 533	hci_dev_lock(hdev);
 534	hdev->sniff_min_interval = val;
 535	hci_dev_unlock(hdev);
 536
 537	return 0;
 538}
 539
 540static int sniff_min_interval_get(void *data, u64 *val)
 541{
 542	struct hci_dev *hdev = data;
 543
 544	hci_dev_lock(hdev);
 545	*val = hdev->sniff_min_interval;
 546	hci_dev_unlock(hdev);
 547
 548	return 0;
 549}
 550
 551DEFINE_SIMPLE_ATTRIBUTE(sniff_min_interval_fops, sniff_min_interval_get,
 552			sniff_min_interval_set, "%llu\n");
 553
 554static int sniff_max_interval_set(void *data, u64 val)
 555{
 556	struct hci_dev *hdev = data;
 557
 558	if (val == 0 || val % 2 || val < hdev->sniff_min_interval)
 559		return -EINVAL;
 560
 561	hci_dev_lock(hdev);
 562	hdev->sniff_max_interval = val;
 563	hci_dev_unlock(hdev);
 564
 565	return 0;
 566}
 567
 568static int sniff_max_interval_get(void *data, u64 *val)
 569{
 570	struct hci_dev *hdev = data;
 571
 572	hci_dev_lock(hdev);
 573	*val = hdev->sniff_max_interval;
 574	hci_dev_unlock(hdev);
 575
 576	return 0;
 577}
 578
 579DEFINE_SIMPLE_ATTRIBUTE(sniff_max_interval_fops, sniff_max_interval_get,
 580			sniff_max_interval_set, "%llu\n");
 581
 582static int identity_show(struct seq_file *f, void *p)
 583{
 584	struct hci_dev *hdev = f->private;
 585	bdaddr_t addr;
 586	u8 addr_type;
 587
 588	hci_dev_lock(hdev);
 589
 590	hci_copy_identity_address(hdev, &addr, &addr_type);
 591
 592	seq_printf(f, "%pMR (type %u) %*phN %pMR\n", &addr, addr_type,
 593		   16, hdev->irk, &hdev->rpa);
 594
 595	hci_dev_unlock(hdev);
 596
 597	return 0;
 598}
 599
 600static int identity_open(struct inode *inode, struct file *file)
 601{
 602	return single_open(file, identity_show, inode->i_private);
 603}
 604
 605static const struct file_operations identity_fops = {
 606	.open		= identity_open,
 607	.read		= seq_read,
 608	.llseek		= seq_lseek,
 609	.release	= single_release,
 610};
 611
 612static int random_address_show(struct seq_file *f, void *p)
 613{
 614	struct hci_dev *hdev = f->private;
 615
 616	hci_dev_lock(hdev);
 617	seq_printf(f, "%pMR\n", &hdev->random_addr);
 618	hci_dev_unlock(hdev);
 619
 620	return 0;
 621}
 622
 623static int random_address_open(struct inode *inode, struct file *file)
 624{
 625	return single_open(file, random_address_show, inode->i_private);
 626}
 627
 628static const struct file_operations random_address_fops = {
 629	.open		= random_address_open,
 630	.read		= seq_read,
 631	.llseek		= seq_lseek,
 632	.release	= single_release,
 633};
 634
 635static int static_address_show(struct seq_file *f, void *p)
 636{
 637	struct hci_dev *hdev = f->private;
 638
 639	hci_dev_lock(hdev);
 640	seq_printf(f, "%pMR\n", &hdev->static_addr);
 641	hci_dev_unlock(hdev);
 642
 643	return 0;
 644}
 645
 646static int static_address_open(struct inode *inode, struct file *file)
 647{
 648	return single_open(file, static_address_show, inode->i_private);
 649}
 650
 651static const struct file_operations static_address_fops = {
 652	.open		= static_address_open,
 653	.read		= seq_read,
 654	.llseek		= seq_lseek,
 655	.release	= single_release,
 656};
 657
 658static ssize_t force_static_address_read(struct file *file,
 659					 char __user *user_buf,
 660					 size_t count, loff_t *ppos)
 661{
 662	struct hci_dev *hdev = file->private_data;
 663	char buf[3];
 664
 665	buf[0] = test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ? 'Y': 'N';
 666	buf[1] = '\n';
 667	buf[2] = '\0';
 668	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 669}
 670
 671static ssize_t force_static_address_write(struct file *file,
 672					  const char __user *user_buf,
 673					  size_t count, loff_t *ppos)
 674{
 675	struct hci_dev *hdev = file->private_data;
 676	char buf[32];
 677	size_t buf_size = min(count, (sizeof(buf)-1));
 678	bool enable;
 679
 680	if (test_bit(HCI_UP, &hdev->flags))
 681		return -EBUSY;
 682
 683	if (copy_from_user(buf, user_buf, buf_size))
 684		return -EFAULT;
 685
 686	buf[buf_size] = '\0';
 687	if (strtobool(buf, &enable))
 688		return -EINVAL;
 689
 690	if (enable == test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags))
 691		return -EALREADY;
 692
 693	change_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags);
 694
 695	return count;
 696}
 697
 698static const struct file_operations force_static_address_fops = {
 699	.open		= simple_open,
 700	.read		= force_static_address_read,
 701	.write		= force_static_address_write,
 702	.llseek		= default_llseek,
 703};
 704
 705static int white_list_show(struct seq_file *f, void *ptr)
 706{
 707	struct hci_dev *hdev = f->private;
 708	struct bdaddr_list *b;
 709
 710	hci_dev_lock(hdev);
 711	list_for_each_entry(b, &hdev->le_white_list, list)
 712		seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
 713	hci_dev_unlock(hdev);
 714
 715	return 0;
 716}
 717
 718static int white_list_open(struct inode *inode, struct file *file)
 719{
 720	return single_open(file, white_list_show, inode->i_private);
 721}
 722
 723static const struct file_operations white_list_fops = {
 724	.open		= white_list_open,
 725	.read		= seq_read,
 726	.llseek		= seq_lseek,
 727	.release	= single_release,
 728};
 729
 730static int identity_resolving_keys_show(struct seq_file *f, void *ptr)
 731{
 732	struct hci_dev *hdev = f->private;
 733	struct list_head *p, *n;
 734
 735	hci_dev_lock(hdev);
 736	list_for_each_safe(p, n, &hdev->identity_resolving_keys) {
 737		struct smp_irk *irk = list_entry(p, struct smp_irk, list);
 738		seq_printf(f, "%pMR (type %u) %*phN %pMR\n",
 739			   &irk->bdaddr, irk->addr_type,
 740			   16, irk->val, &irk->rpa);
 741	}
 742	hci_dev_unlock(hdev);
 743
 744	return 0;
 745}
 746
 747static int identity_resolving_keys_open(struct inode *inode, struct file *file)
 748{
 749	return single_open(file, identity_resolving_keys_show,
 750			   inode->i_private);
 751}
 752
 753static const struct file_operations identity_resolving_keys_fops = {
 754	.open		= identity_resolving_keys_open,
 755	.read		= seq_read,
 756	.llseek		= seq_lseek,
 757	.release	= single_release,
 758};
 759
 760static int long_term_keys_show(struct seq_file *f, void *ptr)
 761{
 762	struct hci_dev *hdev = f->private;
 763	struct list_head *p, *n;
 764
 765	hci_dev_lock(hdev);
 766	list_for_each_safe(p, n, &hdev->long_term_keys) {
 767		struct smp_ltk *ltk = list_entry(p, struct smp_ltk, list);
 768		seq_printf(f, "%pMR (type %u) %u 0x%02x %u %.4x %.16llx %*phN\n",
 769			   &ltk->bdaddr, ltk->bdaddr_type, ltk->authenticated,
 770			   ltk->type, ltk->enc_size, __le16_to_cpu(ltk->ediv),
 771			   __le64_to_cpu(ltk->rand), 16, ltk->val);
 772	}
 773	hci_dev_unlock(hdev);
 774
 775	return 0;
 776}
 777
 778static int long_term_keys_open(struct inode *inode, struct file *file)
 779{
 780	return single_open(file, long_term_keys_show, inode->i_private);
 781}
 782
 783static const struct file_operations long_term_keys_fops = {
 784	.open		= long_term_keys_open,
 785	.read		= seq_read,
 786	.llseek		= seq_lseek,
 787	.release	= single_release,
 788};
 789
 790static int conn_min_interval_set(void *data, u64 val)
 791{
 792	struct hci_dev *hdev = data;
 793
 794	if (val < 0x0006 || val > 0x0c80 || val > hdev->le_conn_max_interval)
 795		return -EINVAL;
 796
 797	hci_dev_lock(hdev);
 798	hdev->le_conn_min_interval = val;
 799	hci_dev_unlock(hdev);
 800
 801	return 0;
 802}
 803
 804static int conn_min_interval_get(void *data, u64 *val)
 805{
 806	struct hci_dev *hdev = data;
 807
 808	hci_dev_lock(hdev);
 809	*val = hdev->le_conn_min_interval;
 810	hci_dev_unlock(hdev);
 811
 812	return 0;
 813}
 814
 815DEFINE_SIMPLE_ATTRIBUTE(conn_min_interval_fops, conn_min_interval_get,
 816			conn_min_interval_set, "%llu\n");
 817
 818static int conn_max_interval_set(void *data, u64 val)
 819{
 820	struct hci_dev *hdev = data;
 821
 822	if (val < 0x0006 || val > 0x0c80 || val < hdev->le_conn_min_interval)
 823		return -EINVAL;
 824
 825	hci_dev_lock(hdev);
 826	hdev->le_conn_max_interval = val;
 827	hci_dev_unlock(hdev);
 828
 829	return 0;
 830}
 831
 832static int conn_max_interval_get(void *data, u64 *val)
 833{
 834	struct hci_dev *hdev = data;
 835
 836	hci_dev_lock(hdev);
 837	*val = hdev->le_conn_max_interval;
 838	hci_dev_unlock(hdev);
 839
 840	return 0;
 841}
 842
 843DEFINE_SIMPLE_ATTRIBUTE(conn_max_interval_fops, conn_max_interval_get,
 844			conn_max_interval_set, "%llu\n");
 845
 846static int adv_channel_map_set(void *data, u64 val)
 847{
 848	struct hci_dev *hdev = data;
 849
 850	if (val < 0x01 || val > 0x07)
 851		return -EINVAL;
 852
 853	hci_dev_lock(hdev);
 854	hdev->le_adv_channel_map = val;
 855	hci_dev_unlock(hdev);
 856
 857	return 0;
 858}
 859
 860static int adv_channel_map_get(void *data, u64 *val)
 861{
 862	struct hci_dev *hdev = data;
 863
 864	hci_dev_lock(hdev);
 865	*val = hdev->le_adv_channel_map;
 866	hci_dev_unlock(hdev);
 867
 868	return 0;
 869}
 870
 871DEFINE_SIMPLE_ATTRIBUTE(adv_channel_map_fops, adv_channel_map_get,
 872			adv_channel_map_set, "%llu\n");
 873
 874static ssize_t lowpan_read(struct file *file, char __user *user_buf,
 875			   size_t count, loff_t *ppos)
 876{
 877	struct hci_dev *hdev = file->private_data;
 878	char buf[3];
 879
 880	buf[0] = test_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags) ? 'Y' : 'N';
 881	buf[1] = '\n';
 882	buf[2] = '\0';
 883	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 884}
 885
 886static ssize_t lowpan_write(struct file *fp, const char __user *user_buffer,
 887			    size_t count, loff_t *position)
 888{
 889	struct hci_dev *hdev = fp->private_data;
 890	bool enable;
 891	char buf[32];
 892	size_t buf_size = min(count, (sizeof(buf)-1));
 893
 894	if (copy_from_user(buf, user_buffer, buf_size))
 895		return -EFAULT;
 896
 897	buf[buf_size] = '\0';
 898
 899	if (strtobool(buf, &enable) < 0)
 900		return -EINVAL;
 901
 902	if (enable == test_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags))
 903		return -EALREADY;
 904
 905	change_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags);
 906
 907	return count;
 908}
 909
 910static const struct file_operations lowpan_debugfs_fops = {
 911	.open		= simple_open,
 912	.read		= lowpan_read,
 913	.write		= lowpan_write,
 914	.llseek		= default_llseek,
 915};
 916
 917static int le_auto_conn_show(struct seq_file *sf, void *ptr)
 918{
 919	struct hci_dev *hdev = sf->private;
 920	struct hci_conn_params *p;
 921
 922	hci_dev_lock(hdev);
 923
 924	list_for_each_entry(p, &hdev->le_conn_params, list) {
 925		seq_printf(sf, "%pMR %u %u\n", &p->addr, p->addr_type,
 926			   p->auto_connect);
 927	}
 928
 929	hci_dev_unlock(hdev);
 930
 931	return 0;
 932}
 933
 934static int le_auto_conn_open(struct inode *inode, struct file *file)
 935{
 936	return single_open(file, le_auto_conn_show, inode->i_private);
 937}
 938
 939static ssize_t le_auto_conn_write(struct file *file, const char __user *data,
 940				  size_t count, loff_t *offset)
 941{
 942	struct seq_file *sf = file->private_data;
 943	struct hci_dev *hdev = sf->private;
 944	u8 auto_connect = 0;
 945	bdaddr_t addr;
 946	u8 addr_type;
 947	char *buf;
 948	int err = 0;
 949	int n;
 950
 951	/* Don't allow partial write */
 952	if (*offset != 0)
 953		return -EINVAL;
 954
 955	if (count < 3)
 956		return -EINVAL;
 957
 958	buf = kzalloc(count, GFP_KERNEL);
 959	if (!buf)
 960		return -ENOMEM;
 961
 962	if (copy_from_user(buf, data, count)) {
 963		err = -EFAULT;
 964		goto done;
 965	}
 966
 967	if (memcmp(buf, "add", 3) == 0) {
 968		n = sscanf(&buf[4], "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx %hhu %hhu",
 969			   &addr.b[5], &addr.b[4], &addr.b[3], &addr.b[2],
 970			   &addr.b[1], &addr.b[0], &addr_type,
 971			   &auto_connect);
 972
 973		if (n < 7) {
 974			err = -EINVAL;
 975			goto done;
 976		}
 977
 978		hci_dev_lock(hdev);
 979		err = hci_conn_params_add(hdev, &addr, addr_type, auto_connect,
 980					  hdev->le_conn_min_interval,
 981					  hdev->le_conn_max_interval);
 982		hci_dev_unlock(hdev);
 983
 984		if (err)
 985			goto done;
 986	} else if (memcmp(buf, "del", 3) == 0) {
 987		n = sscanf(&buf[4], "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx %hhu",
 988			   &addr.b[5], &addr.b[4], &addr.b[3], &addr.b[2],
 989			   &addr.b[1], &addr.b[0], &addr_type);
 990
 991		if (n < 7) {
 992			err = -EINVAL;
 993			goto done;
 994		}
 995
 996		hci_dev_lock(hdev);
 997		hci_conn_params_del(hdev, &addr, addr_type);
 998		hci_dev_unlock(hdev);
 999	} else if (memcmp(buf, "clr", 3) == 0) {
1000		hci_dev_lock(hdev);
1001		hci_conn_params_clear(hdev);
1002		hci_pend_le_conns_clear(hdev);
1003		hci_update_background_scan(hdev);
1004		hci_dev_unlock(hdev);
1005	} else {
1006		err = -EINVAL;
1007	}
1008
1009done:
1010	kfree(buf);
1011
1012	if (err)
1013		return err;
1014	else
1015		return count;
1016}
1017
1018static const struct file_operations le_auto_conn_fops = {
1019	.open		= le_auto_conn_open,
1020	.read		= seq_read,
1021	.write		= le_auto_conn_write,
1022	.llseek		= seq_lseek,
1023	.release	= single_release,
1024};
1025
1026/* ---- HCI requests ---- */
1027
1028static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
1029{
1030	BT_DBG("%s result 0x%2.2x", hdev->name, result);
1031
1032	if (hdev->req_status == HCI_REQ_PEND) {
1033		hdev->req_result = result;
1034		hdev->req_status = HCI_REQ_DONE;
1035		wake_up_interruptible(&hdev->req_wait_q);
1036	}
1037}
1038
1039static void hci_req_cancel(struct hci_dev *hdev, int err)
1040{
1041	BT_DBG("%s err 0x%2.2x", hdev->name, err);
1042
1043	if (hdev->req_status == HCI_REQ_PEND) {
1044		hdev->req_result = err;
1045		hdev->req_status = HCI_REQ_CANCELED;
1046		wake_up_interruptible(&hdev->req_wait_q);
1047	}
1048}
1049
1050static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
1051					    u8 event)
1052{
1053	struct hci_ev_cmd_complete *ev;
1054	struct hci_event_hdr *hdr;
1055	struct sk_buff *skb;
1056
1057	hci_dev_lock(hdev);
1058
1059	skb = hdev->recv_evt;
1060	hdev->recv_evt = NULL;
1061
1062	hci_dev_unlock(hdev);
1063
1064	if (!skb)
1065		return ERR_PTR(-ENODATA);
1066
1067	if (skb->len < sizeof(*hdr)) {
1068		BT_ERR("Too short HCI event");
1069		goto failed;
1070	}
1071
1072	hdr = (void *) skb->data;
1073	skb_pull(skb, HCI_EVENT_HDR_SIZE);
1074
1075	if (event) {
1076		if (hdr->evt != event)
1077			goto failed;
1078		return skb;
1079	}
1080
1081	if (hdr->evt != HCI_EV_CMD_COMPLETE) {
1082		BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
1083		goto failed;
1084	}
1085
1086	if (skb->len < sizeof(*ev)) {
1087		BT_ERR("Too short cmd_complete event");
1088		goto failed;
1089	}
1090
1091	ev = (void *) skb->data;
1092	skb_pull(skb, sizeof(*ev));
1093
1094	if (opcode == __le16_to_cpu(ev->opcode))
1095		return skb;
1096
1097	BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
1098	       __le16_to_cpu(ev->opcode));
1099
1100failed:
1101	kfree_skb(skb);
1102	return ERR_PTR(-ENODATA);
1103}
1104
1105struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1106				  const void *param, u8 event, u32 timeout)
1107{
1108	DECLARE_WAITQUEUE(wait, current);
1109	struct hci_request req;
1110	int err = 0;
1111
1112	BT_DBG("%s", hdev->name);
1113
1114	hci_req_init(&req, hdev);
1115
1116	hci_req_add_ev(&req, opcode, plen, param, event);
1117
1118	hdev->req_status = HCI_REQ_PEND;
1119
1120	err = hci_req_run(&req, hci_req_sync_complete);
1121	if (err < 0)
1122		return ERR_PTR(err);
1123
1124	add_wait_queue(&hdev->req_wait_q, &wait);
1125	set_current_state(TASK_INTERRUPTIBLE);
1126
1127	schedule_timeout(timeout);
1128
1129	remove_wait_queue(&hdev->req_wait_q, &wait);
1130
1131	if (signal_pending(current))
1132		return ERR_PTR(-EINTR);
1133
1134	switch (hdev->req_status) {
1135	case HCI_REQ_DONE:
1136		err = -bt_to_errno(hdev->req_result);
1137		break;
1138
1139	case HCI_REQ_CANCELED:
1140		err = -hdev->req_result;
1141		break;
1142
1143	default:
1144		err = -ETIMEDOUT;
1145		break;
1146	}
1147
1148	hdev->req_status = hdev->req_result = 0;
1149
1150	BT_DBG("%s end: err %d", hdev->name, err);
1151
1152	if (err < 0)
1153		return ERR_PTR(err);
1154
1155	return hci_get_cmd_complete(hdev, opcode, event);
1156}
1157EXPORT_SYMBOL(__hci_cmd_sync_ev);
1158
1159struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1160			       const void *param, u32 timeout)
1161{
1162	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
1163}
1164EXPORT_SYMBOL(__hci_cmd_sync);
1165
1166/* Execute request and wait for completion. */
1167static int __hci_req_sync(struct hci_dev *hdev,
1168			  void (*func)(struct hci_request *req,
1169				      unsigned long opt),
1170			  unsigned long opt, __u32 timeout)
1171{
1172	struct hci_request req;
1173	DECLARE_WAITQUEUE(wait, current);
1174	int err = 0;
1175
1176	BT_DBG("%s start", hdev->name);
1177
1178	hci_req_init(&req, hdev);
1179
1180	hdev->req_status = HCI_REQ_PEND;
1181
1182	func(&req, opt);
1183
1184	err = hci_req_run(&req, hci_req_sync_complete);
1185	if (err < 0) {
1186		hdev->req_status = 0;
1187
1188		/* ENODATA means the HCI request command queue is empty.
1189		 * This can happen when a request with conditionals doesn't
1190		 * trigger any commands to be sent. This is normal behavior
1191		 * and should not trigger an error return.
1192		 */
1193		if (err == -ENODATA)
1194			return 0;
1195
1196		return err;
1197	}
1198
1199	add_wait_queue(&hdev->req_wait_q, &wait);
1200	set_current_state(TASK_INTERRUPTIBLE);
1201
1202	schedule_timeout(timeout);
1203
1204	remove_wait_queue(&hdev->req_wait_q, &wait);
1205
1206	if (signal_pending(current))
1207		return -EINTR;
1208
1209	switch (hdev->req_status) {
1210	case HCI_REQ_DONE:
1211		err = -bt_to_errno(hdev->req_result);
1212		break;
1213
1214	case HCI_REQ_CANCELED:
1215		err = -hdev->req_result;
1216		break;
1217
1218	default:
1219		err = -ETIMEDOUT;
1220		break;
1221	}
1222
1223	hdev->req_status = hdev->req_result = 0;
1224
1225	BT_DBG("%s end: err %d", hdev->name, err);
1226
1227	return err;
1228}
1229
1230static int hci_req_sync(struct hci_dev *hdev,
1231			void (*req)(struct hci_request *req,
1232				    unsigned long opt),
1233			unsigned long opt, __u32 timeout)
1234{
1235	int ret;
1236
1237	if (!test_bit(HCI_UP, &hdev->flags))
1238		return -ENETDOWN;
1239
1240	/* Serialize all requests */
1241	hci_req_lock(hdev);
1242	ret = __hci_req_sync(hdev, req, opt, timeout);
1243	hci_req_unlock(hdev);
1244
1245	return ret;
1246}
1247
1248static void hci_reset_req(struct hci_request *req, unsigned long opt)
1249{
1250	BT_DBG("%s %ld", req->hdev->name, opt);
1251
1252	/* Reset device */
1253	set_bit(HCI_RESET, &req->hdev->flags);
1254	hci_req_add(req, HCI_OP_RESET, 0, NULL);
1255}
1256
1257static void bredr_init(struct hci_request *req)
1258{
1259	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
1260
1261	/* Read Local Supported Features */
1262	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1263
1264	/* Read Local Version */
1265	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1266
1267	/* Read BD Address */
1268	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
1269}
1270
1271static void amp_init(struct hci_request *req)
1272{
1273	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
1274
1275	/* Read Local Version */
1276	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1277
1278	/* Read Local Supported Commands */
1279	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1280
1281	/* Read Local Supported Features */
1282	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1283
1284	/* Read Local AMP Info */
1285	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
1286
1287	/* Read Data Blk size */
1288	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
1289
1290	/* Read Flow Control Mode */
1291	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
1292
1293	/* Read Location Data */
1294	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
1295}
1296
1297static void hci_init1_req(struct hci_request *req, unsigned long opt)
1298{
1299	struct hci_dev *hdev = req->hdev;
1300
1301	BT_DBG("%s %ld", hdev->name, opt);
1302
1303	/* Reset */
1304	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
1305		hci_reset_req(req, 0);
1306
1307	switch (hdev->dev_type) {
1308	case HCI_BREDR:
1309		bredr_init(req);
1310		break;
1311
1312	case HCI_AMP:
1313		amp_init(req);
1314		break;
1315
1316	default:
1317		BT_ERR("Unknown device type %d", hdev->dev_type);
1318		break;
1319	}
1320}
1321
1322static void bredr_setup(struct hci_request *req)
1323{
1324	struct hci_dev *hdev = req->hdev;
1325
1326	__le16 param;
1327	__u8 flt_type;
1328
1329	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
1330	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
1331
1332	/* Read Class of Device */
1333	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
1334
1335	/* Read Local Name */
1336	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
1337
1338	/* Read Voice Setting */
1339	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
1340
1341	/* Read Number of Supported IAC */
1342	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
1343
1344	/* Read Current IAC LAP */
1345	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
1346
1347	/* Clear Event Filters */
1348	flt_type = HCI_FLT_CLEAR_ALL;
1349	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
1350
1351	/* Connection accept timeout ~20 secs */
1352	param = cpu_to_le16(0x7d00);
1353	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
1354
1355	/* AVM Berlin (31), aka "BlueFRITZ!", reports version 1.2,
1356	 * but it does not support page scan related HCI commands.
1357	 */
1358	if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) {
1359		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
1360		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
1361	}
1362}
1363
1364static void le_setup(struct hci_request *req)
1365{
1366	struct hci_dev *hdev = req->hdev;
1367
1368	/* Read LE Buffer Size */
1369	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
1370
1371	/* Read LE Local Supported Features */
1372	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
1373
1374	/* Read LE Supported States */
1375	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
1376
1377	/* Read LE Advertising Channel TX Power */
1378	hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
1379
1380	/* Read LE White List Size */
1381	hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
1382
1383	/* Clear LE White List */
1384	hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
1385
1386	/* LE-only controllers have LE implicitly enabled */
1387	if (!lmp_bredr_capable(hdev))
1388		set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
1389}
1390
1391static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
1392{
1393	if (lmp_ext_inq_capable(hdev))
1394		return 0x02;
1395
1396	if (lmp_inq_rssi_capable(hdev))
1397		return 0x01;
1398
1399	if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
1400	    hdev->lmp_subver == 0x0757)
1401		return 0x01;
1402
1403	if (hdev->manufacturer == 15) {
1404		if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
1405			return 0x01;
1406		if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
1407			return 0x01;
1408		if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
1409			return 0x01;
1410	}
1411
1412	if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
1413	    hdev->lmp_subver == 0x1805)
1414		return 0x01;
1415
1416	return 0x00;
1417}
1418
1419static void hci_setup_inquiry_mode(struct hci_request *req)
1420{
1421	u8 mode;
1422
1423	mode = hci_get_inquiry_mode(req->hdev);
1424
1425	hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
1426}
1427
1428static void hci_setup_event_mask(struct hci_request *req)
1429{
1430	struct hci_dev *hdev = req->hdev;
1431
1432	/* The second byte is 0xff instead of 0x9f (two reserved bits
1433	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
1434	 * command otherwise.
1435	 */
1436	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
1437
1438	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
1439	 * any event mask for pre 1.2 devices.
1440	 */
1441	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
1442		return;
1443
1444	if (lmp_bredr_capable(hdev)) {
1445		events[4] |= 0x01; /* Flow Specification Complete */
1446		events[4] |= 0x02; /* Inquiry Result with RSSI */
1447		events[4] |= 0x04; /* Read Remote Extended Features Complete */
1448		events[5] |= 0x08; /* Synchronous Connection Complete */
1449		events[5] |= 0x10; /* Synchronous Connection Changed */
1450	} else {
1451		/* Use a different default for LE-only devices */
1452		memset(events, 0, sizeof(events));
1453		events[0] |= 0x10; /* Disconnection Complete */
1454		events[0] |= 0x80; /* Encryption Change */
1455		events[1] |= 0x08; /* Read Remote Version Information Complete */
1456		events[1] |= 0x20; /* Command Complete */
1457		events[1] |= 0x40; /* Command Status */
1458		events[1] |= 0x80; /* Hardware Error */
1459		events[2] |= 0x04; /* Number of Completed Packets */
1460		events[3] |= 0x02; /* Data Buffer Overflow */
1461		events[5] |= 0x80; /* Encryption Key Refresh Complete */
1462	}
1463
1464	if (lmp_inq_rssi_capable(hdev))
1465		events[4] |= 0x02; /* Inquiry Result with RSSI */
1466
1467	if (lmp_sniffsubr_capable(hdev))
1468		events[5] |= 0x20; /* Sniff Subrating */
1469
1470	if (lmp_pause_enc_capable(hdev))
1471		events[5] |= 0x80; /* Encryption Key Refresh Complete */
1472
1473	if (lmp_ext_inq_capable(hdev))
1474		events[5] |= 0x40; /* Extended Inquiry Result */
1475
1476	if (lmp_no_flush_capable(hdev))
1477		events[7] |= 0x01; /* Enhanced Flush Complete */
1478
1479	if (lmp_lsto_capable(hdev))
1480		events[6] |= 0x80; /* Link Supervision Timeout Changed */
1481
1482	if (lmp_ssp_capable(hdev)) {
1483		events[6] |= 0x01;	/* IO Capability Request */
1484		events[6] |= 0x02;	/* IO Capability Response */
1485		events[6] |= 0x04;	/* User Confirmation Request */
1486		events[6] |= 0x08;	/* User Passkey Request */
1487		events[6] |= 0x10;	/* Remote OOB Data Request */
1488		events[6] |= 0x20;	/* Simple Pairing Complete */
1489		events[7] |= 0x04;	/* User Passkey Notification */
1490		events[7] |= 0x08;	/* Keypress Notification */
1491		events[7] |= 0x10;	/* Remote Host Supported
1492					 * Features Notification
1493					 */
1494	}
1495
1496	if (lmp_le_capable(hdev))
1497		events[7] |= 0x20;	/* LE Meta-Event */
1498
1499	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
1500
1501	if (lmp_le_capable(hdev)) {
1502		memset(events, 0, sizeof(events));
1503		events[0] = 0x1f;
1504		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
1505			    sizeof(events), events);
1506	}
1507}
1508
1509static void hci_init2_req(struct hci_request *req, unsigned long opt)
1510{
1511	struct hci_dev *hdev = req->hdev;
1512
1513	if (lmp_bredr_capable(hdev))
1514		bredr_setup(req);
1515	else
1516		clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
1517
1518	if (lmp_le_capable(hdev))
1519		le_setup(req);
1520
1521	hci_setup_event_mask(req);
1522
1523	/* AVM Berlin (31), aka "BlueFRITZ!", doesn't support the read
1524	 * local supported commands HCI command.
1525	 */
1526	if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1)
1527		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1528
1529	if (lmp_ssp_capable(hdev)) {
1530		/* When SSP is available, then the host features page
1531		 * should also be available as well. However some
1532		 * controllers list the max_page as 0 as long as SSP
1533		 * has not been enabled. To achieve proper debugging
1534		 * output, force the minimum max_page to 1 at least.
1535		 */
1536		hdev->max_page = 0x01;
1537
1538		if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
1539			u8 mode = 0x01;
1540			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
1541				    sizeof(mode), &mode);
1542		} else {
1543			struct hci_cp_write_eir cp;
1544
1545			memset(hdev->eir, 0, sizeof(hdev->eir));
1546			memset(&cp, 0, sizeof(cp));
1547
1548			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
1549		}
1550	}
1551
1552	if (lmp_inq_rssi_capable(hdev))
1553		hci_setup_inquiry_mode(req);
1554
1555	if (lmp_inq_tx_pwr_capable(hdev))
1556		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
1557
1558	if (lmp_ext_feat_capable(hdev)) {
1559		struct hci_cp_read_local_ext_features cp;
1560
1561		cp.page = 0x01;
1562		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1563			    sizeof(cp), &cp);
1564	}
1565
1566	if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
1567		u8 enable = 1;
1568		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
1569			    &enable);
1570	}
1571}
1572
1573static void hci_setup_link_policy(struct hci_request *req)
1574{
1575	struct hci_dev *hdev = req->hdev;
1576	struct hci_cp_write_def_link_policy cp;
1577	u16 link_policy = 0;
1578
1579	if (lmp_rswitch_capable(hdev))
1580		link_policy |= HCI_LP_RSWITCH;
1581	if (lmp_hold_capable(hdev))
1582		link_policy |= HCI_LP_HOLD;
1583	if (lmp_sniff_capable(hdev))
1584		link_policy |= HCI_LP_SNIFF;
1585	if (lmp_park_capable(hdev))
1586		link_policy |= HCI_LP_PARK;
1587
1588	cp.policy = cpu_to_le16(link_policy);
1589	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
1590}
1591
1592static void hci_set_le_support(struct hci_request *req)
1593{
1594	struct hci_dev *hdev = req->hdev;
1595	struct hci_cp_write_le_host_supported cp;
1596
1597	/* LE-only devices do not support explicit enablement */
1598	if (!lmp_bredr_capable(hdev))
1599		return;
1600
1601	memset(&cp, 0, sizeof(cp));
1602
1603	if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
1604		cp.le = 0x01;
1605		cp.simul = lmp_le_br_capable(hdev);
1606	}
1607
1608	if (cp.le != lmp_host_le_capable(hdev))
1609		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
1610			    &cp);
1611}
1612
1613static void hci_set_event_mask_page_2(struct hci_request *req)
1614{
1615	struct hci_dev *hdev = req->hdev;
1616	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1617
1618	/* If Connectionless Slave Broadcast master role is supported
1619	 * enable all necessary events for it.
1620	 */
1621	if (lmp_csb_master_capable(hdev)) {
1622		events[1] |= 0x40;	/* Triggered Clock Capture */
1623		events[1] |= 0x80;	/* Synchronization Train Complete */
1624		events[2] |= 0x10;	/* Slave Page Response Timeout */
1625		events[2] |= 0x20;	/* CSB Channel Map Change */
1626	}
1627
1628	/* If Connectionless Slave Broadcast slave role is supported
1629	 * enable all necessary events for it.
1630	 */
1631	if (lmp_csb_slave_capable(hdev)) {
1632		events[2] |= 0x01;	/* Synchronization Train Received */
1633		events[2] |= 0x02;	/* CSB Receive */
1634		events[2] |= 0x04;	/* CSB Timeout */
1635		events[2] |= 0x08;	/* Truncated Page Complete */
1636	}
1637
1638	/* Enable Authenticated Payload Timeout Expired event if supported */
1639	if (lmp_ping_capable(hdev))
1640		events[2] |= 0x80;
1641
1642	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
1643}
1644
1645static void hci_init3_req(struct hci_request *req, unsigned long opt)
1646{
1647	struct hci_dev *hdev = req->hdev;
1648	u8 p;
1649
1650	/* Some Broadcom based Bluetooth controllers do not support the
1651	 * Delete Stored Link Key command. They are clearly indicating its
1652	 * absence in the bit mask of supported commands.
1653	 *
1654	 * Check the supported commands and only if the the command is marked
1655	 * as supported send it. If not supported assume that the controller
1656	 * does not have actual support for stored link keys which makes this
1657	 * command redundant anyway.
1658	 *
1659	 * Some controllers indicate that they support handling deleting
1660	 * stored link keys, but they don't. The quirk lets a driver
1661	 * just disable this command.
1662	 */
1663	if (hdev->commands[6] & 0x80 &&
1664	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
1665		struct hci_cp_delete_stored_link_key cp;
1666
1667		bacpy(&cp.bdaddr, BDADDR_ANY);
1668		cp.delete_all = 0x01;
1669		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
1670			    sizeof(cp), &cp);
1671	}
1672
1673	if (hdev->commands[5] & 0x10)
1674		hci_setup_link_policy(req);
1675
1676	if (lmp_le_capable(hdev))
1677		hci_set_le_support(req);
1678
1679	/* Read features beyond page 1 if available */
1680	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
1681		struct hci_cp_read_local_ext_features cp;
1682
1683		cp.page = p;
1684		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1685			    sizeof(cp), &cp);
1686	}
1687}
1688
1689static void hci_init4_req(struct hci_request *req, unsigned long opt)
1690{
1691	struct hci_dev *hdev = req->hdev;
1692
1693	/* Set event mask page 2 if the HCI command for it is supported */
1694	if (hdev->commands[22] & 0x04)
1695		hci_set_event_mask_page_2(req);
1696
1697	/* Check for Synchronization Train support */
1698	if (lmp_sync_train_capable(hdev))
1699		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
1700
1701	/* Enable Secure Connections if supported and configured */
1702	if ((lmp_sc_capable(hdev) ||
1703	     test_bit(HCI_FORCE_SC, &hdev->dev_flags)) &&
1704	    test_bit(HCI_SC_ENABLED, &hdev->dev_flags)) {
1705		u8 support = 0x01;
1706		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
1707			    sizeof(support), &support);
1708	}
1709}
1710
1711static int __hci_init(struct hci_dev *hdev)
1712{
1713	int err;
1714
1715	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
1716	if (err < 0)
1717		return err;
1718
1719	/* The Device Under Test (DUT) mode is special and available for
1720	 * all controller types. So just create it early on.
1721	 */
1722	if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
1723		debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
1724				    &dut_mode_fops);
1725	}
1726
1727	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
1728	 * BR/EDR/LE type controllers. AMP controllers only need the
1729	 * first stage init.
1730	 */
1731	if (hdev->dev_type != HCI_BREDR)
1732		return 0;
1733
1734	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
1735	if (err < 0)
1736		return err;
1737
1738	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
1739	if (err < 0)
1740		return err;
1741
1742	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
1743	if (err < 0)
1744		return err;
1745
1746	/* Only create debugfs entries during the initial setup
1747	 * phase and not every time the controller gets powered on.
1748	 */
1749	if (!test_bit(HCI_SETUP, &hdev->dev_flags))
1750		return 0;
1751
1752	debugfs_create_file("features", 0444, hdev->debugfs, hdev,
1753			    &features_fops);
1754	debugfs_create_u16("manufacturer", 0444, hdev->debugfs,
1755			   &hdev->manufacturer);
1756	debugfs_create_u8("hci_version", 0444, hdev->debugfs, &hdev->hci_ver);
1757	debugfs_create_u16("hci_revision", 0444, hdev->debugfs, &hdev->hci_rev);
1758	debugfs_create_file("blacklist", 0444, hdev->debugfs, hdev,
1759			    &blacklist_fops);
1760	debugfs_create_file("uuids", 0444, hdev->debugfs, hdev, &uuids_fops);
1761
1762	if (lmp_bredr_capable(hdev)) {
1763		debugfs_create_file("inquiry_cache", 0444, hdev->debugfs,
1764				    hdev, &inquiry_cache_fops);
1765		debugfs_create_file("link_keys", 0400, hdev->debugfs,
1766				    hdev, &link_keys_fops);
1767		debugfs_create_file("dev_class", 0444, hdev->debugfs,
1768				    hdev, &dev_class_fops);
1769		debugfs_create_file("voice_setting", 0444, hdev->debugfs,
1770				    hdev, &voice_setting_fops);
1771	}
1772
1773	if (lmp_ssp_capable(hdev)) {
1774		debugfs_create_file("auto_accept_delay", 0644, hdev->debugfs,
1775				    hdev, &auto_accept_delay_fops);
1776		debugfs_create_file("ssp_debug_mode", 0644, hdev->debugfs,
1777				    hdev, &ssp_debug_mode_fops);
1778		debugfs_create_file("force_sc_support", 0644, hdev->debugfs,
1779				    hdev, &force_sc_support_fops);
1780		debugfs_create_file("sc_only_mode", 0444, hdev->debugfs,
1781				    hdev, &sc_only_mode_fops);
1782	}
1783
1784	if (lmp_sniff_capable(hdev)) {
1785		debugfs_create_file("idle_timeout", 0644, hdev->debugfs,
1786				    hdev, &idle_timeout_fops);
1787		debugfs_create_file("sniff_min_interval", 0644, hdev->debugfs,
1788				    hdev, &sniff_min_interval_fops);
1789		debugfs_create_file("sniff_max_interval", 0644, hdev->debugfs,
1790				    hdev, &sniff_max_interval_fops);
1791	}
1792
1793	if (lmp_le_capable(hdev)) {
1794		debugfs_create_file("identity", 0400, hdev->debugfs,
1795				    hdev, &identity_fops);
1796		debugfs_create_file("rpa_timeout", 0644, hdev->debugfs,
1797				    hdev, &rpa_timeout_fops);
1798		debugfs_create_file("random_address", 0444, hdev->debugfs,
1799				    hdev, &random_address_fops);
1800		debugfs_create_file("static_address", 0444, hdev->debugfs,
1801				    hdev, &static_address_fops);
1802
1803		/* For controllers with a public address, provide a debug
1804		 * option to force the usage of the configured static
1805		 * address. By default the public address is used.
1806		 */
1807		if (bacmp(&hdev->bdaddr, BDADDR_ANY))
1808			debugfs_create_file("force_static_address", 0644,
1809					    hdev->debugfs, hdev,
1810					    &force_static_address_fops);
1811
1812		debugfs_create_u8("white_list_size", 0444, hdev->debugfs,
1813				  &hdev->le_white_list_size);
1814		debugfs_create_file("white_list", 0444, hdev->debugfs, hdev,
1815				    &white_list_fops);
1816		debugfs_create_file("identity_resolving_keys", 0400,
1817				    hdev->debugfs, hdev,
1818				    &identity_resolving_keys_fops);
1819		debugfs_create_file("long_term_keys", 0400, hdev->debugfs,
1820				    hdev, &long_term_keys_fops);
1821		debugfs_create_file("conn_min_interval", 0644, hdev->debugfs,
1822				    hdev, &conn_min_interval_fops);
1823		debugfs_create_file("conn_max_interval", 0644, hdev->debugfs,
1824				    hdev, &conn_max_interval_fops);
1825		debugfs_create_file("adv_channel_map", 0644, hdev->debugfs,
1826				    hdev, &adv_channel_map_fops);
1827		debugfs_create_file("6lowpan", 0644, hdev->debugfs, hdev,
1828				    &lowpan_debugfs_fops);
1829		debugfs_create_file("le_auto_conn", 0644, hdev->debugfs, hdev,
1830				    &le_auto_conn_fops);
1831	}
1832
1833	return 0;
1834}
1835
1836static void hci_scan_req(struct hci_request *req, unsigned long opt)
1837{
1838	__u8 scan = opt;
1839
1840	BT_DBG("%s %x", req->hdev->name, scan);
1841
1842	/* Inquiry and Page scans */
1843	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1844}
1845
1846static void hci_auth_req(struct hci_request *req, unsigned long opt)
1847{
1848	__u8 auth = opt;
1849
1850	BT_DBG("%s %x", req->hdev->name, auth);
1851
1852	/* Authentication */
1853	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1854}
1855
1856static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
1857{
1858	__u8 encrypt = opt;
1859
1860	BT_DBG("%s %x", req->hdev->name, encrypt);
1861
1862	/* Encryption */
1863	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1864}
1865
1866static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
1867{
1868	__le16 policy = cpu_to_le16(opt);
1869
1870	BT_DBG("%s %x", req->hdev->name, policy);
1871
1872	/* Default link policy */
1873	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1874}
1875
1876/* Get HCI device by index.
1877 * Device is held on return. */
1878struct hci_dev *hci_dev_get(int index)
1879{
1880	struct hci_dev *hdev = NULL, *d;
1881
1882	BT_DBG("%d", index);
1883
1884	if (index < 0)
1885		return NULL;
1886
1887	read_lock(&hci_dev_list_lock);
1888	list_for_each_entry(d, &hci_dev_list, list) {
1889		if (d->id == index) {
1890			hdev = hci_dev_hold(d);
1891			break;
1892		}
1893	}
1894	read_unlock(&hci_dev_list_lock);
1895	return hdev;
1896}
1897
1898/* ---- Inquiry support ---- */
1899
1900bool hci_discovery_active(struct hci_dev *hdev)
1901{
1902	struct discovery_state *discov = &hdev->discovery;
1903
1904	switch (discov->state) {
1905	case DISCOVERY_FINDING:
1906	case DISCOVERY_RESOLVING:
1907		return true;
1908
1909	default:
1910		return false;
1911	}
1912}
1913
1914void hci_discovery_set_state(struct hci_dev *hdev, int state)
1915{
1916	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1917
1918	if (hdev->discovery.state == state)
1919		return;
1920
 
 
1921	switch (state) {
1922	case DISCOVERY_STOPPED:
1923		hci_update_background_scan(hdev);
1924
1925		if (hdev->discovery.state != DISCOVERY_STARTING)
1926			mgmt_discovering(hdev, 0);
1927		break;
1928	case DISCOVERY_STARTING:
1929		break;
1930	case DISCOVERY_FINDING:
1931		mgmt_discovering(hdev, 1);
1932		break;
1933	case DISCOVERY_RESOLVING:
1934		break;
1935	case DISCOVERY_STOPPING:
1936		break;
1937	}
1938
1939	hdev->discovery.state = state;
1940}
1941
1942void hci_inquiry_cache_flush(struct hci_dev *hdev)
1943{
1944	struct discovery_state *cache = &hdev->discovery;
1945	struct inquiry_entry *p, *n;
1946
1947	list_for_each_entry_safe(p, n, &cache->all, all) {
1948		list_del(&p->all);
1949		kfree(p);
1950	}
1951
1952	INIT_LIST_HEAD(&cache->unknown);
1953	INIT_LIST_HEAD(&cache->resolve);
1954}
1955
1956struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1957					       bdaddr_t *bdaddr)
1958{
1959	struct discovery_state *cache = &hdev->discovery;
1960	struct inquiry_entry *e;
1961
1962	BT_DBG("cache %p, %pMR", cache, bdaddr);
1963
1964	list_for_each_entry(e, &cache->all, all) {
1965		if (!bacmp(&e->data.bdaddr, bdaddr))
1966			return e;
1967	}
1968
1969	return NULL;
1970}
1971
1972struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1973						       bdaddr_t *bdaddr)
1974{
1975	struct discovery_state *cache = &hdev->discovery;
1976	struct inquiry_entry *e;
1977
1978	BT_DBG("cache %p, %pMR", cache, bdaddr);
1979
1980	list_for_each_entry(e, &cache->unknown, list) {
1981		if (!bacmp(&e->data.bdaddr, bdaddr))
1982			return e;
1983	}
1984
1985	return NULL;
1986}
1987
1988struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1989						       bdaddr_t *bdaddr,
1990						       int state)
1991{
1992	struct discovery_state *cache = &hdev->discovery;
1993	struct inquiry_entry *e;
1994
1995	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1996
1997	list_for_each_entry(e, &cache->resolve, list) {
1998		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1999			return e;
2000		if (!bacmp(&e->data.bdaddr, bdaddr))
2001			return e;
2002	}
2003
2004	return NULL;
2005}
2006
2007void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
2008				      struct inquiry_entry *ie)
2009{
2010	struct discovery_state *cache = &hdev->discovery;
2011	struct list_head *pos = &cache->resolve;
2012	struct inquiry_entry *p;
2013
2014	list_del(&ie->list);
2015
2016	list_for_each_entry(p, &cache->resolve, list) {
2017		if (p->name_state != NAME_PENDING &&
2018		    abs(p->data.rssi) >= abs(ie->data.rssi))
2019			break;
2020		pos = &p->list;
2021	}
2022
2023	list_add(&ie->list, pos);
2024}
2025
2026bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
2027			      bool name_known, bool *ssp)
2028{
2029	struct discovery_state *cache = &hdev->discovery;
2030	struct inquiry_entry *ie;
 
2031
2032	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
2033
2034	hci_remove_remote_oob_data(hdev, &data->bdaddr);
2035
2036	if (ssp)
2037		*ssp = data->ssp_mode;
2038
2039	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
2040	if (ie) {
2041		if (ie->data.ssp_mode && ssp)
2042			*ssp = true;
2043
2044		if (ie->name_state == NAME_NEEDED &&
2045		    data->rssi != ie->data.rssi) {
2046			ie->data.rssi = data->rssi;
2047			hci_inquiry_cache_update_resolve(hdev, ie);
2048		}
2049
2050		goto update;
2051	}
2052
2053	/* Entry not in the cache. Add new one. */
2054	ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
2055	if (!ie)
2056		return false;
 
 
2057
2058	list_add(&ie->all, &cache->all);
2059
2060	if (name_known) {
2061		ie->name_state = NAME_KNOWN;
2062	} else {
2063		ie->name_state = NAME_NOT_KNOWN;
2064		list_add(&ie->list, &cache->unknown);
2065	}
2066
2067update:
2068	if (name_known && ie->name_state != NAME_KNOWN &&
2069	    ie->name_state != NAME_PENDING) {
2070		ie->name_state = NAME_KNOWN;
2071		list_del(&ie->list);
2072	}
2073
2074	memcpy(&ie->data, data, sizeof(*data));
2075	ie->timestamp = jiffies;
2076	cache->timestamp = jiffies;
2077
2078	if (ie->name_state == NAME_NOT_KNOWN)
2079		return false;
2080
2081	return true;
 
2082}
2083
2084static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
2085{
2086	struct discovery_state *cache = &hdev->discovery;
2087	struct inquiry_info *info = (struct inquiry_info *) buf;
2088	struct inquiry_entry *e;
2089	int copied = 0;
2090
2091	list_for_each_entry(e, &cache->all, all) {
2092		struct inquiry_data *data = &e->data;
2093
2094		if (copied >= num)
2095			break;
2096
2097		bacpy(&info->bdaddr, &data->bdaddr);
2098		info->pscan_rep_mode	= data->pscan_rep_mode;
2099		info->pscan_period_mode	= data->pscan_period_mode;
2100		info->pscan_mode	= data->pscan_mode;
2101		memcpy(info->dev_class, data->dev_class, 3);
2102		info->clock_offset	= data->clock_offset;
2103
2104		info++;
2105		copied++;
2106	}
2107
2108	BT_DBG("cache %p, copied %d", cache, copied);
2109	return copied;
2110}
2111
2112static void hci_inq_req(struct hci_request *req, unsigned long opt)
2113{
2114	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
2115	struct hci_dev *hdev = req->hdev;
2116	struct hci_cp_inquiry cp;
2117
2118	BT_DBG("%s", hdev->name);
2119
2120	if (test_bit(HCI_INQUIRY, &hdev->flags))
2121		return;
2122
2123	/* Start Inquiry */
2124	memcpy(&cp.lap, &ir->lap, 3);
2125	cp.length  = ir->length;
2126	cp.num_rsp = ir->num_rsp;
2127	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2128}
2129
2130static int wait_inquiry(void *word)
2131{
2132	schedule();
2133	return signal_pending(current);
2134}
2135
2136int hci_inquiry(void __user *arg)
2137{
2138	__u8 __user *ptr = arg;
2139	struct hci_inquiry_req ir;
2140	struct hci_dev *hdev;
2141	int err = 0, do_inquiry = 0, max_rsp;
2142	long timeo;
2143	__u8 *buf;
2144
2145	if (copy_from_user(&ir, ptr, sizeof(ir)))
2146		return -EFAULT;
2147
2148	hdev = hci_dev_get(ir.dev_id);
2149	if (!hdev)
2150		return -ENODEV;
2151
2152	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2153		err = -EBUSY;
2154		goto done;
2155	}
2156
2157	if (hdev->dev_type != HCI_BREDR) {
2158		err = -EOPNOTSUPP;
2159		goto done;
2160	}
2161
2162	if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2163		err = -EOPNOTSUPP;
2164		goto done;
2165	}
2166
 
 
 
 
 
 
2167	hci_dev_lock(hdev);
2168	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
2169	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
2170		hci_inquiry_cache_flush(hdev);
2171		do_inquiry = 1;
2172	}
2173	hci_dev_unlock(hdev);
2174
2175	timeo = ir.length * msecs_to_jiffies(2000);
 
 
 
2176
2177	if (do_inquiry) {
2178		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
2179				   timeo);
2180		if (err < 0)
2181			goto done;
2182
2183		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
2184		 * cleared). If it is interrupted by a signal, return -EINTR.
2185		 */
2186		if (wait_on_bit(&hdev->flags, HCI_INQUIRY, wait_inquiry,
2187				TASK_INTERRUPTIBLE))
2188			return -EINTR;
 
 
2189	}
2190
2191	/* for unlimited number of responses we will use buffer with
2192	 * 255 entries
2193	 */
2194	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
2195
2196	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
2197	 * copy it to the user space.
2198	 */
2199	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
2200	if (!buf) {
2201		err = -ENOMEM;
2202		goto done;
2203	}
2204
2205	hci_dev_lock(hdev);
2206	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
2207	hci_dev_unlock(hdev);
2208
2209	BT_DBG("num_rsp %d", ir.num_rsp);
2210
2211	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
2212		ptr += sizeof(ir);
2213		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
2214				 ir.num_rsp))
2215			err = -EFAULT;
2216	} else
2217		err = -EFAULT;
2218
2219	kfree(buf);
2220
2221done:
2222	hci_dev_put(hdev);
2223	return err;
2224}
2225
2226static int hci_dev_do_open(struct hci_dev *hdev)
2227{
2228	int ret = 0;
2229
2230	BT_DBG("%s %p", hdev->name, hdev);
2231
2232	hci_req_lock(hdev);
2233
2234	if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
2235		ret = -ENODEV;
2236		goto done;
2237	}
2238
2239	if (!test_bit(HCI_SETUP, &hdev->dev_flags)) {
2240		/* Check for rfkill but allow the HCI setup stage to
2241		 * proceed (which in itself doesn't cause any RF activity).
2242		 */
2243		if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) {
2244			ret = -ERFKILL;
2245			goto done;
2246		}
2247
2248		/* Check for valid public address or a configured static
2249		 * random adddress, but let the HCI setup proceed to
2250		 * be able to determine if there is a public address
2251		 * or not.
2252		 *
2253		 * In case of user channel usage, it is not important
2254		 * if a public address or static random address is
2255		 * available.
2256		 *
2257		 * This check is only valid for BR/EDR controllers
2258		 * since AMP controllers do not have an address.
2259		 */
2260		if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2261		    hdev->dev_type == HCI_BREDR &&
2262		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2263		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
2264			ret = -EADDRNOTAVAIL;
2265			goto done;
2266		}
2267	}
2268
2269	if (test_bit(HCI_UP, &hdev->flags)) {
2270		ret = -EALREADY;
2271		goto done;
2272	}
2273
2274	if (hdev->open(hdev)) {
2275		ret = -EIO;
2276		goto done;
2277	}
2278
2279	atomic_set(&hdev->cmd_cnt, 1);
2280	set_bit(HCI_INIT, &hdev->flags);
2281
2282	if (hdev->setup && test_bit(HCI_SETUP, &hdev->dev_flags))
2283		ret = hdev->setup(hdev);
2284
2285	if (!ret) {
2286		if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2287			set_bit(HCI_RAW, &hdev->flags);
2288
2289		if (!test_bit(HCI_RAW, &hdev->flags) &&
2290		    !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2291			ret = __hci_init(hdev);
2292	}
2293
2294	clear_bit(HCI_INIT, &hdev->flags);
2295
2296	if (!ret) {
2297		hci_dev_hold(hdev);
2298		set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags);
2299		set_bit(HCI_UP, &hdev->flags);
2300		hci_notify(hdev, HCI_DEV_UP);
2301		if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2302		    !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2303		    hdev->dev_type == HCI_BREDR) {
2304			hci_dev_lock(hdev);
2305			mgmt_powered(hdev, 1);
2306			hci_dev_unlock(hdev);
2307		}
2308	} else {
2309		/* Init failed, cleanup */
2310		flush_work(&hdev->tx_work);
2311		flush_work(&hdev->cmd_work);
2312		flush_work(&hdev->rx_work);
2313
2314		skb_queue_purge(&hdev->cmd_q);
2315		skb_queue_purge(&hdev->rx_q);
2316
2317		if (hdev->flush)
2318			hdev->flush(hdev);
2319
2320		if (hdev->sent_cmd) {
2321			kfree_skb(hdev->sent_cmd);
2322			hdev->sent_cmd = NULL;
2323		}
2324
2325		hdev->close(hdev);
2326		hdev->flags = 0;
2327	}
2328
2329done:
2330	hci_req_unlock(hdev);
2331	return ret;
2332}
2333
2334/* ---- HCI ioctl helpers ---- */
2335
2336int hci_dev_open(__u16 dev)
2337{
2338	struct hci_dev *hdev;
2339	int err;
2340
2341	hdev = hci_dev_get(dev);
2342	if (!hdev)
2343		return -ENODEV;
2344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345	/* We need to ensure that no other power on/off work is pending
2346	 * before proceeding to call hci_dev_do_open. This is
2347	 * particularly important if the setup procedure has not yet
2348	 * completed.
2349	 */
2350	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2351		cancel_delayed_work(&hdev->power_off);
2352
2353	/* After this call it is guaranteed that the setup procedure
2354	 * has finished. This means that error conditions like RFKILL
2355	 * or no valid public or static random address apply.
2356	 */
2357	flush_workqueue(hdev->req_workqueue);
2358
 
 
 
 
 
 
 
 
 
 
2359	err = hci_dev_do_open(hdev);
2360
 
2361	hci_dev_put(hdev);
2362
2363	return err;
2364}
2365
2366static int hci_dev_do_close(struct hci_dev *hdev)
2367{
 
 
2368	BT_DBG("%s %p", hdev->name, hdev);
2369
2370	cancel_delayed_work(&hdev->power_off);
2371
2372	hci_req_cancel(hdev, ENODEV);
2373	hci_req_lock(hdev);
2374
2375	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
2376		del_timer_sync(&hdev->cmd_timer);
2377		hci_req_unlock(hdev);
2378		return 0;
2379	}
2380
2381	/* Flush RX and TX works */
2382	flush_work(&hdev->tx_work);
2383	flush_work(&hdev->rx_work);
2384
2385	if (hdev->discov_timeout > 0) {
2386		cancel_delayed_work(&hdev->discov_off);
2387		hdev->discov_timeout = 0;
2388		clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
2389		clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
2390	}
2391
2392	if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
2393		cancel_delayed_work(&hdev->service_cache);
 
2394
2395	cancel_delayed_work_sync(&hdev->le_scan_disable);
 
 
 
2396
2397	if (test_bit(HCI_MGMT, &hdev->dev_flags))
2398		cancel_delayed_work_sync(&hdev->rpa_expired);
 
2399
2400	hci_dev_lock(hdev);
2401	hci_inquiry_cache_flush(hdev);
2402	hci_conn_hash_flush(hdev);
2403	hci_pend_le_conns_clear(hdev);
2404	hci_dev_unlock(hdev);
2405
2406	hci_notify(hdev, HCI_DEV_DOWN);
 
 
 
2407
2408	if (hdev->flush)
2409		hdev->flush(hdev);
 
2410
2411	/* Reset device */
2412	skb_queue_purge(&hdev->cmd_q);
2413	atomic_set(&hdev->cmd_cnt, 1);
2414	if (!test_bit(HCI_RAW, &hdev->flags) &&
2415	    !test_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
2416	    test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2417		set_bit(HCI_INIT, &hdev->flags);
2418		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
2419		clear_bit(HCI_INIT, &hdev->flags);
2420	}
2421
2422	/* flush cmd  work */
2423	flush_work(&hdev->cmd_work);
2424
2425	/* Drop queues */
2426	skb_queue_purge(&hdev->rx_q);
2427	skb_queue_purge(&hdev->cmd_q);
2428	skb_queue_purge(&hdev->raw_q);
2429
2430	/* Drop last sent command */
2431	if (hdev->sent_cmd) {
2432		del_timer_sync(&hdev->cmd_timer);
2433		kfree_skb(hdev->sent_cmd);
2434		hdev->sent_cmd = NULL;
2435	}
2436
2437	kfree_skb(hdev->recv_evt);
2438	hdev->recv_evt = NULL;
2439
2440	/* After this point our queues are empty
2441	 * and no tasks are scheduled. */
2442	hdev->close(hdev);
2443
2444	/* Clear flags */
2445	hdev->flags = 0;
2446	hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
2447
2448	if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2449		if (hdev->dev_type == HCI_BREDR) {
2450			hci_dev_lock(hdev);
2451			mgmt_powered(hdev, 0);
2452			hci_dev_unlock(hdev);
2453		}
2454	}
 
2455
2456	/* Controller radio is available but is currently powered down */
2457	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
2458
2459	memset(hdev->eir, 0, sizeof(hdev->eir));
2460	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
2461	bacpy(&hdev->random_addr, BDADDR_ANY);
 
 
2462
2463	hci_req_unlock(hdev);
2464
2465	hci_dev_put(hdev);
2466	return 0;
2467}
2468
2469int hci_dev_close(__u16 dev)
2470{
2471	struct hci_dev *hdev;
2472	int err;
2473
2474	hdev = hci_dev_get(dev);
2475	if (!hdev)
2476		return -ENODEV;
2477
2478	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
 
 
 
 
 
2479		err = -EBUSY;
2480		goto done;
2481	}
2482
2483	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2484		cancel_delayed_work(&hdev->power_off);
 
 
2485
2486	err = hci_dev_do_close(hdev);
2487
2488done:
2489	hci_dev_put(hdev);
2490	return err;
2491}
2492
2493int hci_dev_reset(__u16 dev)
2494{
2495	struct hci_dev *hdev;
2496	int ret = 0;
2497
2498	hdev = hci_dev_get(dev);
2499	if (!hdev)
2500		return -ENODEV;
2501
2502	hci_req_lock(hdev);
2503
2504	if (!test_bit(HCI_UP, &hdev->flags)) {
2505		ret = -ENETDOWN;
2506		goto done;
2507	}
2508
2509	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2510		ret = -EBUSY;
2511		goto done;
2512	}
2513
2514	/* Drop queues */
2515	skb_queue_purge(&hdev->rx_q);
2516	skb_queue_purge(&hdev->cmd_q);
2517
2518	hci_dev_lock(hdev);
2519	hci_inquiry_cache_flush(hdev);
2520	hci_conn_hash_flush(hdev);
2521	hci_dev_unlock(hdev);
2522
2523	if (hdev->flush)
2524		hdev->flush(hdev);
2525
2526	atomic_set(&hdev->cmd_cnt, 1);
2527	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
2528
2529	if (!test_bit(HCI_RAW, &hdev->flags))
2530		ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
2531
2532done:
2533	hci_req_unlock(hdev);
2534	hci_dev_put(hdev);
2535	return ret;
2536}
2537
2538int hci_dev_reset_stat(__u16 dev)
2539{
2540	struct hci_dev *hdev;
2541	int ret = 0;
 
2542
2543	hdev = hci_dev_get(dev);
2544	if (!hdev)
2545		return -ENODEV;
 
 
 
2546
2547	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2548		ret = -EBUSY;
2549		goto done;
 
 
 
 
2550	}
2551
2552	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 
 
 
 
 
 
 
 
2553
2554done:
2555	hci_dev_put(hdev);
2556	return ret;
2557}
2558
2559int hci_dev_cmd(unsigned int cmd, void __user *arg)
2560{
2561	struct hci_dev *hdev;
2562	struct hci_dev_req dr;
 
2563	int err = 0;
2564
2565	if (copy_from_user(&dr, arg, sizeof(dr)))
2566		return -EFAULT;
2567
2568	hdev = hci_dev_get(dr.dev_id);
2569	if (!hdev)
2570		return -ENODEV;
2571
2572	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2573		err = -EBUSY;
2574		goto done;
2575	}
2576
2577	if (hdev->dev_type != HCI_BREDR) {
2578		err = -EOPNOTSUPP;
2579		goto done;
2580	}
2581
2582	if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2583		err = -EOPNOTSUPP;
2584		goto done;
2585	}
2586
2587	switch (cmd) {
2588	case HCISETAUTH:
2589		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2590				   HCI_INIT_TIMEOUT);
2591		break;
2592
2593	case HCISETENCRYPT:
2594		if (!lmp_encrypt_capable(hdev)) {
2595			err = -EOPNOTSUPP;
2596			break;
2597		}
2598
2599		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2600			/* Auth must be enabled first */
2601			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2602					   HCI_INIT_TIMEOUT);
 
 
2603			if (err)
2604				break;
2605		}
2606
2607		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2608				   HCI_INIT_TIMEOUT);
2609		break;
2610
2611	case HCISETSCAN:
2612		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2613				   HCI_INIT_TIMEOUT);
 
 
 
 
 
 
2614		break;
2615
2616	case HCISETLINKPOL:
2617		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2618				   HCI_INIT_TIMEOUT);
 
 
2619		break;
2620
2621	case HCISETLINKMODE:
2622		hdev->link_mode = ((__u16) dr.dev_opt) &
2623					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2624		break;
2625
2626	case HCISETPTYPE:
 
 
 
2627		hdev->pkt_type = (__u16) dr.dev_opt;
 
2628		break;
2629
2630	case HCISETACLMTU:
2631		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2632		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2633		break;
2634
2635	case HCISETSCOMTU:
2636		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2637		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2638		break;
2639
2640	default:
2641		err = -EINVAL;
2642		break;
2643	}
2644
2645done:
2646	hci_dev_put(hdev);
2647	return err;
2648}
2649
2650int hci_get_dev_list(void __user *arg)
2651{
2652	struct hci_dev *hdev;
2653	struct hci_dev_list_req *dl;
2654	struct hci_dev_req *dr;
2655	int n = 0, size, err;
2656	__u16 dev_num;
2657
2658	if (get_user(dev_num, (__u16 __user *) arg))
2659		return -EFAULT;
2660
2661	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2662		return -EINVAL;
2663
2664	size = sizeof(*dl) + dev_num * sizeof(*dr);
2665
2666	dl = kzalloc(size, GFP_KERNEL);
2667	if (!dl)
2668		return -ENOMEM;
2669
 
2670	dr = dl->dev_req;
2671
2672	read_lock(&hci_dev_list_lock);
2673	list_for_each_entry(hdev, &hci_dev_list, list) {
2674		if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2675			cancel_delayed_work(&hdev->power_off);
2676
2677		if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2678			set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
 
2679
2680		(dr + n)->dev_id  = hdev->id;
2681		(dr + n)->dev_opt = hdev->flags;
2682
2683		if (++n >= dev_num)
2684			break;
2685	}
2686	read_unlock(&hci_dev_list_lock);
2687
2688	dl->dev_num = n;
2689	size = sizeof(*dl) + n * sizeof(*dr);
2690
2691	err = copy_to_user(arg, dl, size);
2692	kfree(dl);
2693
2694	return err ? -EFAULT : 0;
2695}
2696
2697int hci_get_dev_info(void __user *arg)
2698{
2699	struct hci_dev *hdev;
2700	struct hci_dev_info di;
 
2701	int err = 0;
2702
2703	if (copy_from_user(&di, arg, sizeof(di)))
2704		return -EFAULT;
2705
2706	hdev = hci_dev_get(di.dev_id);
2707	if (!hdev)
2708		return -ENODEV;
2709
2710	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2711		cancel_delayed_work_sync(&hdev->power_off);
2712
2713	if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2714		set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
2715
2716	strcpy(di.name, hdev->name);
2717	di.bdaddr   = hdev->bdaddr;
2718	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2719	di.flags    = hdev->flags;
2720	di.pkt_type = hdev->pkt_type;
2721	if (lmp_bredr_capable(hdev)) {
2722		di.acl_mtu  = hdev->acl_mtu;
2723		di.acl_pkts = hdev->acl_pkts;
2724		di.sco_mtu  = hdev->sco_mtu;
2725		di.sco_pkts = hdev->sco_pkts;
2726	} else {
2727		di.acl_mtu  = hdev->le_mtu;
2728		di.acl_pkts = hdev->le_pkts;
2729		di.sco_mtu  = 0;
2730		di.sco_pkts = 0;
2731	}
2732	di.link_policy = hdev->link_policy;
2733	di.link_mode   = hdev->link_mode;
2734
2735	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2736	memcpy(&di.features, &hdev->features, sizeof(di.features));
2737
2738	if (copy_to_user(arg, &di, sizeof(di)))
2739		err = -EFAULT;
2740
2741	hci_dev_put(hdev);
2742
2743	return err;
2744}
2745
2746/* ---- Interface to HCI drivers ---- */
2747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2748static int hci_rfkill_set_block(void *data, bool blocked)
2749{
2750	struct hci_dev *hdev = data;
 
2751
2752	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2753
2754	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2755		return -EBUSY;
2756
 
 
 
2757	if (blocked) {
2758		set_bit(HCI_RFKILLED, &hdev->dev_flags);
2759		if (!test_bit(HCI_SETUP, &hdev->dev_flags))
2760			hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
2761	} else {
2762		clear_bit(HCI_RFKILLED, &hdev->dev_flags);
2763	}
2764
2765	return 0;
2766}
2767
2768static const struct rfkill_ops hci_rfkill_ops = {
2769	.set_block = hci_rfkill_set_block,
2770};
2771
2772static void hci_power_on(struct work_struct *work)
2773{
2774	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2775	int err;
2776
2777	BT_DBG("%s", hdev->name);
2778
 
 
 
 
 
 
 
 
 
2779	err = hci_dev_do_open(hdev);
2780	if (err < 0) {
 
2781		mgmt_set_powered_failed(hdev, err);
 
2782		return;
2783	}
2784
2785	/* During the HCI setup phase, a few error conditions are
2786	 * ignored and they need to be checked now. If they are still
2787	 * valid, it is important to turn the device back off.
2788	 */
2789	if (test_bit(HCI_RFKILLED, &hdev->dev_flags) ||
2790	    (hdev->dev_type == HCI_BREDR &&
2791	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2792	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2793		clear_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2794		hci_dev_do_close(hdev);
2795	} else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2796		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2797				   HCI_AUTO_OFF_TIMEOUT);
2798	}
2799
2800	if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
2801		mgmt_index_added(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
2802}
2803
2804static void hci_power_off(struct work_struct *work)
2805{
2806	struct hci_dev *hdev = container_of(work, struct hci_dev,
2807					    power_off.work);
2808
2809	BT_DBG("%s", hdev->name);
2810
2811	hci_dev_do_close(hdev);
2812}
2813
2814static void hci_discov_off(struct work_struct *work)
2815{
2816	struct hci_dev *hdev;
 
 
 
2817
2818	hdev = container_of(work, struct hci_dev, discov_off.work);
 
 
 
2819
2820	BT_DBG("%s", hdev->name);
 
2821
2822	mgmt_discoverable_timeout(hdev);
2823}
2824
2825void hci_uuids_clear(struct hci_dev *hdev)
2826{
2827	struct bt_uuid *uuid, *tmp;
2828
2829	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2830		list_del(&uuid->list);
2831		kfree(uuid);
2832	}
2833}
2834
2835void hci_link_keys_clear(struct hci_dev *hdev)
2836{
2837	struct list_head *p, *n;
2838
2839	list_for_each_safe(p, n, &hdev->link_keys) {
2840		struct link_key *key;
2841
2842		key = list_entry(p, struct link_key, list);
2843
2844		list_del(p);
2845		kfree(key);
2846	}
2847}
2848
2849void hci_smp_ltks_clear(struct hci_dev *hdev)
2850{
2851	struct smp_ltk *k, *tmp;
2852
2853	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2854		list_del(&k->list);
2855		kfree(k);
2856	}
2857}
2858
2859void hci_smp_irks_clear(struct hci_dev *hdev)
2860{
2861	struct smp_irk *k, *tmp;
2862
2863	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2864		list_del(&k->list);
2865		kfree(k);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866	}
 
 
 
2867}
2868
2869struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2870{
2871	struct link_key *k;
2872
2873	list_for_each_entry(k, &hdev->link_keys, list)
2874		if (bacmp(bdaddr, &k->bdaddr) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
2875			return k;
 
 
 
2876
2877	return NULL;
2878}
2879
2880static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2881			       u8 key_type, u8 old_key_type)
2882{
2883	/* Legacy key */
2884	if (key_type < 0x03)
2885		return true;
2886
2887	/* Debug keys are insecure so don't store them persistently */
2888	if (key_type == HCI_LK_DEBUG_COMBINATION)
2889		return false;
2890
2891	/* Changed combination key and there's no previous one */
2892	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2893		return false;
2894
2895	/* Security mode 3 case */
2896	if (!conn)
2897		return true;
2898
 
 
 
 
2899	/* Neither local nor remote side had no-bonding as requirement */
2900	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2901		return true;
2902
2903	/* Local side had dedicated bonding as requirement */
2904	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2905		return true;
2906
2907	/* Remote side had dedicated bonding as requirement */
2908	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2909		return true;
2910
2911	/* If none of the above criteria match, then don't store the key
2912	 * persistently */
2913	return false;
2914}
2915
2916static bool ltk_type_master(u8 type)
2917{
2918	if (type == HCI_SMP_STK || type == HCI_SMP_LTK)
2919		return true;
2920
2921	return false;
2922}
2923
2924struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
2925			     bool master)
2926{
2927	struct smp_ltk *k;
2928
2929	list_for_each_entry(k, &hdev->long_term_keys, list) {
2930		if (k->ediv != ediv || k->rand != rand)
 
2931			continue;
2932
2933		if (ltk_type_master(k->type) != master)
2934			continue;
2935
2936		return k;
2937	}
2938
2939	return NULL;
2940}
2941
2942struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2943				     u8 addr_type, bool master)
2944{
2945	struct smp_ltk *k;
2946
2947	list_for_each_entry(k, &hdev->long_term_keys, list)
2948		if (addr_type == k->bdaddr_type &&
2949		    bacmp(bdaddr, &k->bdaddr) == 0 &&
2950		    ltk_type_master(k->type) == master)
2951			return k;
 
 
 
2952
2953	return NULL;
2954}
2955
2956struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2957{
 
2958	struct smp_irk *irk;
2959
2960	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
2961		if (!bacmp(&irk->rpa, rpa))
2962			return irk;
 
 
 
2963	}
2964
2965	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
2966		if (smp_irk_matches(hdev->tfm_aes, irk->val, rpa)) {
2967			bacpy(&irk->rpa, rpa);
2968			return irk;
 
2969		}
2970	}
2971
2972	return NULL;
 
 
 
 
 
 
 
 
 
 
2973}
2974
2975struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2976				     u8 addr_type)
2977{
 
2978	struct smp_irk *irk;
2979
2980	/* Identity Address must be public or static random */
2981	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2982		return NULL;
2983
2984	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
 
2985		if (addr_type == irk->addr_type &&
2986		    bacmp(bdaddr, &irk->bdaddr) == 0)
2987			return irk;
 
 
2988	}
2989
2990	return NULL;
 
 
 
 
 
 
 
 
 
 
 
2991}
2992
2993int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
2994		     bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
 
2995{
2996	struct link_key *key, *old_key;
2997	u8 old_key_type;
2998	bool persistent;
2999
3000	old_key = hci_find_link_key(hdev, bdaddr);
3001	if (old_key) {
3002		old_key_type = old_key->type;
3003		key = old_key;
3004	} else {
3005		old_key_type = conn ? conn->key_type : 0xff;
3006		key = kzalloc(sizeof(*key), GFP_KERNEL);
3007		if (!key)
3008			return -ENOMEM;
3009		list_add(&key->list, &hdev->link_keys);
3010	}
3011
3012	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
3013
3014	/* Some buggy controller combinations generate a changed
3015	 * combination key for legacy pairing even when there's no
3016	 * previous key */
3017	if (type == HCI_LK_CHANGED_COMBINATION &&
3018	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
3019		type = HCI_LK_COMBINATION;
3020		if (conn)
3021			conn->key_type = type;
3022	}
3023
3024	bacpy(&key->bdaddr, bdaddr);
3025	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
3026	key->pin_len = pin_len;
3027
3028	if (type == HCI_LK_CHANGED_COMBINATION)
3029		key->type = old_key_type;
3030	else
3031		key->type = type;
3032
3033	if (!new_key)
3034		return 0;
3035
3036	persistent = hci_persistent_key(hdev, conn, type, old_key_type);
3037
3038	mgmt_new_link_key(hdev, key, persistent);
3039
3040	if (conn)
3041		conn->flush_key = !persistent;
3042
3043	return 0;
3044}
3045
3046struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3047			    u8 addr_type, u8 type, u8 authenticated,
3048			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
3049{
3050	struct smp_ltk *key, *old_key;
3051	bool master = ltk_type_master(type);
3052
3053	old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type, master);
3054	if (old_key)
3055		key = old_key;
3056	else {
3057		key = kzalloc(sizeof(*key), GFP_KERNEL);
3058		if (!key)
3059			return NULL;
3060		list_add(&key->list, &hdev->long_term_keys);
3061	}
3062
3063	bacpy(&key->bdaddr, bdaddr);
3064	key->bdaddr_type = addr_type;
3065	memcpy(key->val, tk, sizeof(key->val));
3066	key->authenticated = authenticated;
3067	key->ediv = ediv;
3068	key->rand = rand;
3069	key->enc_size = enc_size;
3070	key->type = type;
3071
3072	return key;
3073}
3074
3075struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3076			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
3077{
3078	struct smp_irk *irk;
3079
3080	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
3081	if (!irk) {
3082		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
3083		if (!irk)
3084			return NULL;
3085
3086		bacpy(&irk->bdaddr, bdaddr);
3087		irk->addr_type = addr_type;
3088
3089		list_add(&irk->list, &hdev->identity_resolving_keys);
3090	}
3091
3092	memcpy(irk->val, val, 16);
3093	bacpy(&irk->rpa, rpa);
3094
3095	return irk;
3096}
3097
3098int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
3099{
3100	struct link_key *key;
3101
3102	key = hci_find_link_key(hdev, bdaddr);
3103	if (!key)
3104		return -ENOENT;
3105
3106	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3107
3108	list_del(&key->list);
3109	kfree(key);
3110
3111	return 0;
3112}
3113
3114int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
3115{
3116	struct smp_ltk *k, *tmp;
3117	int removed = 0;
3118
3119	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
3120		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
3121			continue;
3122
3123		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3124
3125		list_del(&k->list);
3126		kfree(k);
3127		removed++;
3128	}
3129
3130	return removed ? 0 : -ENOENT;
3131}
3132
3133void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
3134{
3135	struct smp_irk *k, *tmp;
3136
3137	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
3138		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
3139			continue;
3140
3141		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3142
3143		list_del(&k->list);
3144		kfree(k);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3145	}
 
 
 
3146}
3147
3148/* HCI command timer function */
3149static void hci_cmd_timeout(unsigned long arg)
3150{
3151	struct hci_dev *hdev = (void *) arg;
 
3152
3153	if (hdev->sent_cmd) {
3154		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
3155		u16 opcode = __le16_to_cpu(sent->opcode);
3156
3157		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
 
 
3158	} else {
3159		BT_ERR("%s command tx timeout", hdev->name);
3160	}
3161
 
 
 
3162	atomic_set(&hdev->cmd_cnt, 1);
3163	queue_work(hdev->workqueue, &hdev->cmd_work);
3164}
3165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3166struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
3167					  bdaddr_t *bdaddr)
3168{
3169	struct oob_data *data;
3170
3171	list_for_each_entry(data, &hdev->remote_oob_data, list)
3172		if (bacmp(bdaddr, &data->bdaddr) == 0)
3173			return data;
 
 
 
 
3174
3175	return NULL;
3176}
3177
3178int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
3179{
3180	struct oob_data *data;
3181
3182	data = hci_find_remote_oob_data(hdev, bdaddr);
3183	if (!data)
3184		return -ENOENT;
3185
3186	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3187
3188	list_del(&data->list);
3189	kfree(data);
3190
3191	return 0;
3192}
3193
3194void hci_remote_oob_data_clear(struct hci_dev *hdev)
3195{
3196	struct oob_data *data, *n;
3197
3198	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
3199		list_del(&data->list);
3200		kfree(data);
3201	}
3202}
3203
3204int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3205			    u8 *hash, u8 *randomizer)
 
3206{
3207	struct oob_data *data;
3208
3209	data = hci_find_remote_oob_data(hdev, bdaddr);
3210	if (!data) {
3211		data = kmalloc(sizeof(*data), GFP_KERNEL);
3212		if (!data)
3213			return -ENOMEM;
3214
3215		bacpy(&data->bdaddr, bdaddr);
 
3216		list_add(&data->list, &hdev->remote_oob_data);
3217	}
3218
3219	memcpy(data->hash192, hash, sizeof(data->hash192));
3220	memcpy(data->randomizer192, randomizer, sizeof(data->randomizer192));
 
 
 
 
 
 
 
 
 
 
 
3221
3222	memset(data->hash256, 0, sizeof(data->hash256));
3223	memset(data->randomizer256, 0, sizeof(data->randomizer256));
 
 
 
 
 
 
 
3224
3225	BT_DBG("%s for %pMR", hdev->name, bdaddr);
3226
3227	return 0;
3228}
3229
3230int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3231				u8 *hash192, u8 *randomizer192,
3232				u8 *hash256, u8 *randomizer256)
 
 
 
 
 
 
 
 
 
 
 
 
3233{
3234	struct oob_data *data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235
3236	data = hci_find_remote_oob_data(hdev, bdaddr);
3237	if (!data) {
3238		data = kmalloc(sizeof(*data), GFP_KERNEL);
3239		if (!data)
3240			return -ENOMEM;
3241
3242		bacpy(&data->bdaddr, bdaddr);
3243		list_add(&data->list, &hdev->remote_oob_data);
 
 
 
 
3244	}
3245
3246	memcpy(data->hash192, hash192, sizeof(data->hash192));
3247	memcpy(data->randomizer192, randomizer192, sizeof(data->randomizer192));
3248
3249	memcpy(data->hash256, hash256, sizeof(data->hash256));
3250	memcpy(data->randomizer256, randomizer256, sizeof(data->randomizer256));
3251
3252	BT_DBG("%s for %pMR", hdev->name, bdaddr);
3253
3254	return 0;
3255}
3256
3257struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
3258					 bdaddr_t *bdaddr, u8 type)
3259{
3260	struct bdaddr_list *b;
3261
3262	list_for_each_entry(b, &hdev->blacklist, list) {
3263		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3264			return b;
3265	}
3266
3267	return NULL;
3268}
3269
3270static void hci_blacklist_clear(struct hci_dev *hdev)
 
3271{
3272	struct list_head *p, *n;
3273
3274	list_for_each_safe(p, n, &hdev->blacklist) {
3275		struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
 
 
3276
3277		list_del(p);
3278		kfree(b);
 
 
3279	}
 
 
 
3280}
3281
3282int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3283{
3284	struct bdaddr_list *entry;
 
 
 
 
 
 
3285
3286	if (!bacmp(bdaddr, BDADDR_ANY))
3287		return -EBADF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3288
3289	if (hci_blacklist_lookup(hdev, bdaddr, type))
3290		return -EEXIST;
3291
3292	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
3293	if (!entry)
3294		return -ENOMEM;
 
 
 
 
3295
3296	bacpy(&entry->bdaddr, bdaddr);
3297	entry->bdaddr_type = type;
 
3298
3299	list_add(&entry->list, &hdev->blacklist);
 
 
 
 
 
 
 
 
3300
3301	return mgmt_device_blocked(hdev, bdaddr, type);
3302}
3303
3304int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3305{
3306	struct bdaddr_list *entry;
3307
3308	if (!bacmp(bdaddr, BDADDR_ANY)) {
3309		hci_blacklist_clear(hdev);
3310		return 0;
3311	}
3312
3313	entry = hci_blacklist_lookup(hdev, bdaddr, type);
3314	if (!entry)
3315		return -ENOENT;
3316
3317	list_del(&entry->list);
3318	kfree(entry);
3319
3320	return mgmt_device_unblocked(hdev, bdaddr, type);
3321}
3322
3323struct bdaddr_list *hci_white_list_lookup(struct hci_dev *hdev,
3324					  bdaddr_t *bdaddr, u8 type)
 
 
3325{
3326	struct bdaddr_list *b;
 
 
 
 
 
 
 
 
 
3327
3328	list_for_each_entry(b, &hdev->le_white_list, list) {
3329		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3330			return b;
3331	}
3332
3333	return NULL;
3334}
3335
3336void hci_white_list_clear(struct hci_dev *hdev)
 
 
 
3337{
3338	struct list_head *p, *n;
3339
3340	list_for_each_safe(p, n, &hdev->le_white_list) {
3341		struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
3342
3343		list_del(p);
3344		kfree(b);
3345	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3346}
3347
3348int hci_white_list_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
 
3349{
3350	struct bdaddr_list *entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
3351
3352	if (!bacmp(bdaddr, BDADDR_ANY))
3353		return -EBADF;
 
 
3354
3355	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
3356	if (!entry)
3357		return -ENOMEM;
3358
3359	bacpy(&entry->bdaddr, bdaddr);
3360	entry->bdaddr_type = type;
3361
3362	list_add(&entry->list, &hdev->le_white_list);
 
 
3363
3364	return 0;
3365}
3366
3367int hci_white_list_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3368{
3369	struct bdaddr_list *entry;
3370
3371	if (!bacmp(bdaddr, BDADDR_ANY))
3372		return -EBADF;
 
3373
3374	entry = hci_white_list_lookup(hdev, bdaddr, type);
3375	if (!entry)
3376		return -ENOENT;
3377
3378	list_del(&entry->list);
3379	kfree(entry);
 
3380
3381	return 0;
3382}
3383
3384/* This function requires the caller holds hdev->lock */
3385struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3386					       bdaddr_t *addr, u8 addr_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
3387{
3388	struct hci_conn_params *params;
 
 
 
 
 
 
 
 
 
 
 
 
3389
3390	list_for_each_entry(params, &hdev->le_conn_params, list) {
3391		if (bacmp(&params->addr, addr) == 0 &&
3392		    params->addr_type == addr_type) {
3393			return params;
3394		}
3395	}
3396
3397	return NULL;
3398}
3399
3400static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
 
 
 
 
3401{
3402	struct hci_conn *conn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr);
3405	if (!conn)
3406		return false;
3407
3408	if (conn->dst_type != type)
3409		return false;
 
 
 
 
3410
3411	if (conn->state != BT_CONNECTED)
3412		return false;
 
 
 
 
3413
3414	return true;
3415}
3416
3417static bool is_identity_address(bdaddr_t *addr, u8 addr_type)
 
 
 
 
 
3418{
3419	if (addr_type == ADDR_LE_DEV_PUBLIC)
3420		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3421
3422	/* Check for Random Static address type */
3423	if ((addr->b[5] & 0xc0) == 0xc0)
3424		return true;
 
 
3425
3426	return false;
3427}
3428
3429/* This function requires the caller holds hdev->lock */
3430int hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
3431			u8 auto_connect, u16 conn_min_interval,
3432			u16 conn_max_interval)
3433{
3434	struct hci_conn_params *params;
3435
3436	if (!is_identity_address(addr, addr_type))
3437		return -EINVAL;
3438
3439	params = hci_conn_params_lookup(hdev, addr, addr_type);
3440	if (params)
3441		goto update;
3442
3443	params = kzalloc(sizeof(*params), GFP_KERNEL);
3444	if (!params) {
3445		BT_ERR("Out of memory");
3446		return -ENOMEM;
3447	}
 
3448
3449	bacpy(&params->addr, addr);
3450	params->addr_type = addr_type;
 
 
3451
3452	list_add(&params->list, &hdev->le_conn_params);
 
 
3453
3454update:
3455	params->conn_min_interval = conn_min_interval;
3456	params->conn_max_interval = conn_max_interval;
3457	params->auto_connect = auto_connect;
3458
3459	switch (auto_connect) {
3460	case HCI_AUTO_CONN_DISABLED:
3461	case HCI_AUTO_CONN_LINK_LOSS:
3462		hci_pend_le_conn_del(hdev, addr, addr_type);
3463		break;
3464	case HCI_AUTO_CONN_ALWAYS:
3465		if (!is_connected(hdev, addr, addr_type))
3466			hci_pend_le_conn_add(hdev, addr, addr_type);
3467		break;
3468	}
3469
3470	BT_DBG("addr %pMR (type %u) auto_connect %u conn_min_interval 0x%.4x "
3471	       "conn_max_interval 0x%.4x", addr, addr_type, auto_connect,
3472	       conn_min_interval, conn_max_interval);
3473
3474	return 0;
 
 
 
3475}
3476
3477/* This function requires the caller holds hdev->lock */
3478void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3479{
3480	struct hci_conn_params *params;
 
3481
3482	params = hci_conn_params_lookup(hdev, addr, addr_type);
3483	if (!params)
3484		return;
3485
3486	hci_pend_le_conn_del(hdev, addr, addr_type);
 
 
 
3487
3488	list_del(&params->list);
3489	kfree(params);
 
 
3490
3491	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3492}
3493
3494/* This function requires the caller holds hdev->lock */
3495void hci_conn_params_clear(struct hci_dev *hdev)
 
3496{
3497	struct hci_conn_params *params, *tmp;
3498
3499	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3500		list_del(&params->list);
3501		kfree(params);
3502	}
3503
3504	BT_DBG("All LE connection parameters were removed");
3505}
3506
3507/* This function requires the caller holds hdev->lock */
3508struct bdaddr_list *hci_pend_le_conn_lookup(struct hci_dev *hdev,
3509					    bdaddr_t *addr, u8 addr_type)
3510{
3511	struct bdaddr_list *entry;
3512
3513	list_for_each_entry(entry, &hdev->pend_le_conns, list) {
3514		if (bacmp(&entry->bdaddr, addr) == 0 &&
3515		    entry->bdaddr_type == addr_type)
3516			return entry;
3517	}
3518
3519	return NULL;
3520}
3521
3522/* This function requires the caller holds hdev->lock */
3523void hci_pend_le_conn_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
 
 
 
 
 
 
 
 
 
3524{
3525	struct bdaddr_list *entry;
3526
3527	entry = hci_pend_le_conn_lookup(hdev, addr, addr_type);
3528	if (entry)
3529		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530
3531	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3532	if (!entry) {
3533		BT_ERR("Out of memory");
3534		return;
3535	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3536
3537	bacpy(&entry->bdaddr, addr);
3538	entry->bdaddr_type = addr_type;
3539
3540	list_add(&entry->list, &hdev->pend_le_conns);
 
 
3541
3542	BT_DBG("addr %pMR (type %u)", addr, addr_type);
 
 
 
 
3543
3544done:
3545	hci_update_background_scan(hdev);
3546}
3547
3548/* This function requires the caller holds hdev->lock */
3549void hci_pend_le_conn_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3550{
3551	struct bdaddr_list *entry;
3552
3553	entry = hci_pend_le_conn_lookup(hdev, addr, addr_type);
 
 
 
 
 
3554	if (!entry)
3555		goto done;
3556
3557	list_del(&entry->list);
3558	kfree(entry);
3559
3560	BT_DBG("addr %pMR (type %u)", addr, addr_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561
3562done:
3563	hci_update_background_scan(hdev);
3564}
3565
3566/* This function requires the caller holds hdev->lock */
3567void hci_pend_le_conns_clear(struct hci_dev *hdev)
3568{
3569	struct bdaddr_list *entry, *tmp;
3570
3571	list_for_each_entry_safe(entry, tmp, &hdev->pend_le_conns, list) {
3572		list_del(&entry->list);
3573		kfree(entry);
3574	}
3575
3576	BT_DBG("All LE pending connections cleared");
 
 
 
 
 
 
 
3577}
3578
3579static void inquiry_complete(struct hci_dev *hdev, u8 status)
 
 
3580{
3581	if (status) {
3582		BT_ERR("Failed to start inquiry: status %d", status);
3583
3584		hci_dev_lock(hdev);
3585		hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3586		hci_dev_unlock(hdev);
3587		return;
 
3588	}
 
 
3589}
3590
3591static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status)
 
 
3592{
3593	/* General inquiry access code (GIAC) */
3594	u8 lap[3] = { 0x33, 0x8b, 0x9e };
3595	struct hci_request req;
3596	struct hci_cp_inquiry cp;
3597	int err;
3598
3599	if (status) {
3600		BT_ERR("Failed to disable LE scanning: status %d", status);
3601		return;
 
 
 
3602	}
3603
3604	switch (hdev->discovery.type) {
3605	case DISCOV_TYPE_LE:
3606		hci_dev_lock(hdev);
3607		hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3608		hci_dev_unlock(hdev);
3609		break;
3610
3611	case DISCOV_TYPE_INTERLEAVED:
3612		hci_req_init(&req, hdev);
 
 
 
3613
3614		memset(&cp, 0, sizeof(cp));
3615		memcpy(&cp.lap, lap, sizeof(cp.lap));
3616		cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
3617		hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
3618
3619		hci_dev_lock(hdev);
 
 
 
 
 
3620
3621		hci_inquiry_cache_flush(hdev);
 
 
 
 
3622
3623		err = hci_req_run(&req, inquiry_complete);
3624		if (err) {
3625			BT_ERR("Inquiry request failed: err %d", err);
3626			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3627		}
3628
3629		hci_dev_unlock(hdev);
3630		break;
 
 
3631	}
3632}
3633
3634static void le_scan_disable_work(struct work_struct *work)
3635{
3636	struct hci_dev *hdev = container_of(work, struct hci_dev,
3637					    le_scan_disable.work);
3638	struct hci_request req;
3639	int err;
3640
3641	BT_DBG("%s", hdev->name);
 
3642
3643	hci_req_init(&req, hdev);
 
 
 
 
3644
3645	hci_req_add_le_scan_disable(&req);
3646
3647	err = hci_req_run(&req, le_scan_disable_work_complete);
3648	if (err)
3649		BT_ERR("Disable LE scanning request failed: err %d", err);
3650}
3651
3652static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
3653{
3654	struct hci_dev *hdev = req->hdev;
3655
3656	/* If we're advertising or initiating an LE connection we can't
3657	 * go ahead and change the random address at this time. This is
3658	 * because the eventual initiator address used for the
3659	 * subsequently created connection will be undefined (some
3660	 * controllers use the new address and others the one we had
3661	 * when the operation started).
3662	 *
3663	 * In this kind of scenario skip the update and let the random
3664	 * address be updated at the next cycle.
3665	 */
3666	if (test_bit(HCI_ADVERTISING, &hdev->dev_flags) ||
3667	    hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) {
3668		BT_DBG("Deferring random address update");
3669		return;
3670	}
3671
3672	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
 
3673}
3674
3675int hci_update_random_address(struct hci_request *req, bool require_privacy,
3676			      u8 *own_addr_type)
3677{
3678	struct hci_dev *hdev = req->hdev;
3679	int err;
3680
3681	/* If privacy is enabled use a resolvable private address. If
3682	 * current RPA has expired or there is something else than
3683	 * the current RPA in use, then generate a new one.
3684	 */
3685	if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) {
3686		int to;
3687
3688		*own_addr_type = ADDR_LE_DEV_RANDOM;
3689
3690		if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) &&
3691		    !bacmp(&hdev->random_addr, &hdev->rpa))
3692			return 0;
3693
3694		err = smp_generate_rpa(hdev->tfm_aes, hdev->irk, &hdev->rpa);
3695		if (err < 0) {
3696			BT_ERR("%s failed to generate new RPA", hdev->name);
3697			return err;
3698		}
3699
3700		set_random_addr(req, &hdev->rpa);
 
3701
3702		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
3703		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
 
 
3704
3705		return 0;
3706	}
 
3707
3708	/* In case of required privacy without resolvable private address,
3709	 * use an unresolvable private address. This is useful for active
3710	 * scanning and non-connectable advertising.
3711	 */
3712	if (require_privacy) {
3713		bdaddr_t urpa;
 
3714
3715		get_random_bytes(&urpa, 6);
3716		urpa.b[5] &= 0x3f;	/* Clear two most significant bits */
3717
3718		*own_addr_type = ADDR_LE_DEV_RANDOM;
3719		set_random_addr(req, &urpa);
3720		return 0;
3721	}
3722
3723	/* If forcing static address is in use or there is no public
3724	 * address use the static address as random address (but skip
3725	 * the HCI command if the current random address is already the
3726	 * static one.
3727	 */
3728	if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ||
3729	    !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
3730		*own_addr_type = ADDR_LE_DEV_RANDOM;
3731		if (bacmp(&hdev->static_addr, &hdev->random_addr))
3732			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
3733				    &hdev->static_addr);
3734		return 0;
3735	}
3736
3737	/* Neither privacy nor static address is being used so use a
3738	 * public address.
3739	 */
3740	*own_addr_type = ADDR_LE_DEV_PUBLIC;
3741
3742	return 0;
3743}
3744
3745/* Copy the Identity Address of the controller.
3746 *
3747 * If the controller has a public BD_ADDR, then by default use that one.
3748 * If this is a LE only controller without a public address, default to
3749 * the static random address.
3750 *
3751 * For debugging purposes it is possible to force controllers with a
3752 * public address to use the static random address instead.
 
 
 
 
3753 */
3754void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3755			       u8 *bdaddr_type)
3756{
3757	if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ||
3758	    !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
 
 
3759		bacpy(bdaddr, &hdev->static_addr);
3760		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3761	} else {
3762		bacpy(bdaddr, &hdev->bdaddr);
3763		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3764	}
3765}
3766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3767/* Alloc HCI device */
3768struct hci_dev *hci_alloc_dev(void)
3769{
3770	struct hci_dev *hdev;
 
 
 
 
 
 
 
3771
3772	hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
3773	if (!hdev)
3774		return NULL;
3775
3776	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3777	hdev->esco_type = (ESCO_HV1);
3778	hdev->link_mode = (HCI_LM_ACCEPT);
3779	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3780	hdev->io_capability = 0x03;	/* No Input No Output */
 
3781	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3782	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
 
 
 
 
 
 
 
3783
3784	hdev->sniff_max_interval = 800;
3785	hdev->sniff_min_interval = 80;
3786
3787	hdev->le_adv_channel_map = 0x07;
3788	hdev->le_scan_interval = 0x0060;
3789	hdev->le_scan_window = 0x0030;
3790	hdev->le_conn_min_interval = 0x0028;
3791	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792
3793	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
 
 
 
 
 
 
 
 
 
 
3794
3795	mutex_init(&hdev->lock);
3796	mutex_init(&hdev->req_lock);
3797
 
 
 
3798	INIT_LIST_HEAD(&hdev->mgmt_pending);
3799	INIT_LIST_HEAD(&hdev->blacklist);
 
3800	INIT_LIST_HEAD(&hdev->uuids);
3801	INIT_LIST_HEAD(&hdev->link_keys);
3802	INIT_LIST_HEAD(&hdev->long_term_keys);
3803	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3804	INIT_LIST_HEAD(&hdev->remote_oob_data);
3805	INIT_LIST_HEAD(&hdev->le_white_list);
 
3806	INIT_LIST_HEAD(&hdev->le_conn_params);
3807	INIT_LIST_HEAD(&hdev->pend_le_conns);
 
3808	INIT_LIST_HEAD(&hdev->conn_hash.list);
 
 
 
3809
 
3810	INIT_WORK(&hdev->rx_work, hci_rx_work);
3811	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3812	INIT_WORK(&hdev->tx_work, hci_tx_work);
3813	INIT_WORK(&hdev->power_on, hci_power_on);
 
 
 
3814
3815	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3816	INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
3817	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3818
3819	skb_queue_head_init(&hdev->rx_q);
3820	skb_queue_head_init(&hdev->cmd_q);
3821	skb_queue_head_init(&hdev->raw_q);
3822
3823	init_waitqueue_head(&hdev->req_wait_q);
3824
3825	setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
 
 
 
3826
3827	hci_init_sysfs(hdev);
3828	discovery_init(hdev);
3829
3830	return hdev;
3831}
3832EXPORT_SYMBOL(hci_alloc_dev);
3833
3834/* Free HCI device */
3835void hci_free_dev(struct hci_dev *hdev)
3836{
3837	/* will free via device release */
3838	put_device(&hdev->dev);
3839}
3840EXPORT_SYMBOL(hci_free_dev);
3841
3842/* Register HCI device */
3843int hci_register_dev(struct hci_dev *hdev)
3844{
3845	int id, error;
3846
3847	if (!hdev->open || !hdev->close)
3848		return -EINVAL;
3849
3850	/* Do not allow HCI_AMP devices to register at index 0,
3851	 * so the index can be used as the AMP controller ID.
3852	 */
3853	switch (hdev->dev_type) {
3854	case HCI_BREDR:
3855		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3856		break;
3857	case HCI_AMP:
3858		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3859		break;
3860	default:
3861		return -EINVAL;
3862	}
3863
3864	if (id < 0)
3865		return id;
3866
3867	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3868	hdev->id = id;
3869
3870	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3871
3872	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3873					  WQ_MEM_RECLAIM, 1, hdev->name);
3874	if (!hdev->workqueue) {
3875		error = -ENOMEM;
3876		goto err;
3877	}
3878
3879	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3880					      WQ_MEM_RECLAIM, 1, hdev->name);
3881	if (!hdev->req_workqueue) {
3882		destroy_workqueue(hdev->workqueue);
3883		error = -ENOMEM;
3884		goto err;
3885	}
3886
3887	if (!IS_ERR_OR_NULL(bt_debugfs))
3888		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3889
3890	dev_set_name(&hdev->dev, "%s", hdev->name);
3891
3892	hdev->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0,
3893					       CRYPTO_ALG_ASYNC);
3894	if (IS_ERR(hdev->tfm_aes)) {
3895		BT_ERR("Unable to create crypto context");
3896		error = PTR_ERR(hdev->tfm_aes);
3897		hdev->tfm_aes = NULL;
3898		goto err_wqueue;
3899	}
3900
3901	error = device_add(&hdev->dev);
3902	if (error < 0)
3903		goto err_tfm;
3904
3905	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3906				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3907				    hdev);
3908	if (hdev->rfkill) {
3909		if (rfkill_register(hdev->rfkill) < 0) {
3910			rfkill_destroy(hdev->rfkill);
3911			hdev->rfkill = NULL;
3912		}
3913	}
3914
3915	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3916		set_bit(HCI_RFKILLED, &hdev->dev_flags);
3917
3918	set_bit(HCI_SETUP, &hdev->dev_flags);
3919	set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
3920
3921	if (hdev->dev_type == HCI_BREDR) {
3922		/* Assume BR/EDR support until proven otherwise (such as
3923		 * through reading supported features during init.
3924		 */
3925		set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
3926	}
3927
3928	write_lock(&hci_dev_list_lock);
3929	list_add(&hdev->list, &hci_dev_list);
3930	write_unlock(&hci_dev_list_lock);
3931
3932	hci_notify(hdev, HCI_DEV_REG);
 
 
 
 
 
 
 
 
 
 
 
 
3933	hci_dev_hold(hdev);
3934
 
 
 
 
3935	queue_work(hdev->req_workqueue, &hdev->power_on);
3936
 
 
 
3937	return id;
3938
3939err_tfm:
3940	crypto_free_blkcipher(hdev->tfm_aes);
3941err_wqueue:
 
3942	destroy_workqueue(hdev->workqueue);
3943	destroy_workqueue(hdev->req_workqueue);
3944err:
3945	ida_simple_remove(&hci_index_ida, hdev->id);
3946
3947	return error;
3948}
3949EXPORT_SYMBOL(hci_register_dev);
3950
3951/* Unregister HCI device */
3952void hci_unregister_dev(struct hci_dev *hdev)
3953{
3954	int i, id;
3955
3956	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3957
3958	set_bit(HCI_UNREGISTER, &hdev->dev_flags);
3959
3960	id = hdev->id;
3961
3962	write_lock(&hci_dev_list_lock);
3963	list_del(&hdev->list);
3964	write_unlock(&hci_dev_list_lock);
3965
3966	hci_dev_do_close(hdev);
 
 
 
 
 
 
3967
3968	for (i = 0; i < NUM_REASSEMBLY; i++)
3969		kfree_skb(hdev->reassembly[i]);
3970
3971	cancel_work_sync(&hdev->power_on);
3972
3973	if (!test_bit(HCI_INIT, &hdev->flags) &&
3974	    !test_bit(HCI_SETUP, &hdev->dev_flags)) {
 
3975		hci_dev_lock(hdev);
3976		mgmt_index_removed(hdev);
3977		hci_dev_unlock(hdev);
3978	}
3979
3980	/* mgmt_index_removed should take care of emptying the
3981	 * pending list */
3982	BUG_ON(!list_empty(&hdev->mgmt_pending));
3983
3984	hci_notify(hdev, HCI_DEV_UNREG);
3985
3986	if (hdev->rfkill) {
3987		rfkill_unregister(hdev->rfkill);
3988		rfkill_destroy(hdev->rfkill);
3989	}
3990
3991	if (hdev->tfm_aes)
3992		crypto_free_blkcipher(hdev->tfm_aes);
3993
3994	device_del(&hdev->dev);
 
 
 
 
3995
 
 
 
3996	debugfs_remove_recursive(hdev->debugfs);
 
 
3997
3998	destroy_workqueue(hdev->workqueue);
3999	destroy_workqueue(hdev->req_workqueue);
4000
4001	hci_dev_lock(hdev);
4002	hci_blacklist_clear(hdev);
 
4003	hci_uuids_clear(hdev);
4004	hci_link_keys_clear(hdev);
4005	hci_smp_ltks_clear(hdev);
4006	hci_smp_irks_clear(hdev);
4007	hci_remote_oob_data_clear(hdev);
4008	hci_white_list_clear(hdev);
4009	hci_conn_params_clear(hdev);
4010	hci_pend_le_conns_clear(hdev);
4011	hci_dev_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4012
4013	hci_dev_put(hdev);
4014
4015	ida_simple_remove(&hci_index_ida, id);
4016}
4017EXPORT_SYMBOL(hci_unregister_dev);
4018
4019/* Suspend HCI device */
4020int hci_suspend_dev(struct hci_dev *hdev)
4021{
4022	hci_notify(hdev, HCI_DEV_SUSPEND);
4023	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024}
4025EXPORT_SYMBOL(hci_suspend_dev);
4026
4027/* Resume HCI device */
4028int hci_resume_dev(struct hci_dev *hdev)
4029{
4030	hci_notify(hdev, HCI_DEV_RESUME);
4031	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4032}
4033EXPORT_SYMBOL(hci_resume_dev);
4034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4035/* Receive frame from HCI drivers */
4036int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4037{
 
 
4038	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4039		      && !test_bit(HCI_INIT, &hdev->flags))) {
4040		kfree_skb(skb);
4041		return -ENXIO;
4042	}
4043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4044	/* Incoming skb */
4045	bt_cb(skb)->incoming = 1;
4046
4047	/* Time stamp */
4048	__net_timestamp(skb);
4049
4050	skb_queue_tail(&hdev->rx_q, skb);
4051	queue_work(hdev->workqueue, &hdev->rx_work);
4052
4053	return 0;
4054}
4055EXPORT_SYMBOL(hci_recv_frame);
4056
4057static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
4058			  int count, __u8 index)
4059{
4060	int len = 0;
4061	int hlen = 0;
4062	int remain = count;
4063	struct sk_buff *skb;
4064	struct bt_skb_cb *scb;
4065
4066	if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
4067	    index >= NUM_REASSEMBLY)
4068		return -EILSEQ;
4069
4070	skb = hdev->reassembly[index];
 
4071
4072	if (!skb) {
4073		switch (type) {
4074		case HCI_ACLDATA_PKT:
4075			len = HCI_MAX_FRAME_SIZE;
4076			hlen = HCI_ACL_HDR_SIZE;
4077			break;
4078		case HCI_EVENT_PKT:
4079			len = HCI_MAX_EVENT_SIZE;
4080			hlen = HCI_EVENT_HDR_SIZE;
4081			break;
4082		case HCI_SCODATA_PKT:
4083			len = HCI_MAX_SCO_SIZE;
4084			hlen = HCI_SCO_HDR_SIZE;
4085			break;
4086		}
4087
4088		skb = bt_skb_alloc(len, GFP_ATOMIC);
4089		if (!skb)
4090			return -ENOMEM;
4091
4092		scb = (void *) skb->cb;
4093		scb->expect = hlen;
4094		scb->pkt_type = type;
4095
4096		hdev->reassembly[index] = skb;
4097	}
4098
4099	while (count) {
4100		scb = (void *) skb->cb;
4101		len = min_t(uint, scb->expect, count);
4102
4103		memcpy(skb_put(skb, len), data, len);
4104
4105		count -= len;
4106		data += len;
4107		scb->expect -= len;
4108		remain = count;
4109
4110		switch (type) {
4111		case HCI_EVENT_PKT:
4112			if (skb->len == HCI_EVENT_HDR_SIZE) {
4113				struct hci_event_hdr *h = hci_event_hdr(skb);
4114				scb->expect = h->plen;
4115
4116				if (skb_tailroom(skb) < scb->expect) {
4117					kfree_skb(skb);
4118					hdev->reassembly[index] = NULL;
4119					return -ENOMEM;
4120				}
4121			}
4122			break;
4123
4124		case HCI_ACLDATA_PKT:
4125			if (skb->len  == HCI_ACL_HDR_SIZE) {
4126				struct hci_acl_hdr *h = hci_acl_hdr(skb);
4127				scb->expect = __le16_to_cpu(h->dlen);
4128
4129				if (skb_tailroom(skb) < scb->expect) {
4130					kfree_skb(skb);
4131					hdev->reassembly[index] = NULL;
4132					return -ENOMEM;
4133				}
4134			}
4135			break;
4136
4137		case HCI_SCODATA_PKT:
4138			if (skb->len == HCI_SCO_HDR_SIZE) {
4139				struct hci_sco_hdr *h = hci_sco_hdr(skb);
4140				scb->expect = h->dlen;
4141
4142				if (skb_tailroom(skb) < scb->expect) {
4143					kfree_skb(skb);
4144					hdev->reassembly[index] = NULL;
4145					return -ENOMEM;
4146				}
4147			}
4148			break;
4149		}
4150
4151		if (scb->expect == 0) {
4152			/* Complete frame */
4153
4154			bt_cb(skb)->pkt_type = type;
4155			hci_recv_frame(hdev, skb);
4156
4157			hdev->reassembly[index] = NULL;
4158			return remain;
4159		}
4160	}
4161
4162	return remain;
4163}
 
4164
4165int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
4166{
4167	int rem = 0;
4168
4169	if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
4170		return -EILSEQ;
4171
4172	while (count) {
4173		rem = hci_reassembly(hdev, type, data, count, type - 1);
4174		if (rem < 0)
4175			return rem;
4176
4177		data += (count - rem);
4178		count = rem;
4179	}
4180
4181	return rem;
4182}
4183EXPORT_SYMBOL(hci_recv_fragment);
4184
4185#define STREAM_REASSEMBLY 0
4186
4187int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
4188{
4189	int type;
4190	int rem = 0;
4191
4192	while (count) {
4193		struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
4194
4195		if (!skb) {
4196			struct { char type; } *pkt;
4197
4198			/* Start of the frame */
4199			pkt = data;
4200			type = pkt->type;
4201
4202			data++;
4203			count--;
4204		} else
4205			type = bt_cb(skb)->pkt_type;
4206
4207		rem = hci_reassembly(hdev, type, data, count,
4208				     STREAM_REASSEMBLY);
4209		if (rem < 0)
4210			return rem;
4211
4212		data += (count - rem);
4213		count = rem;
4214	}
4215
4216	return rem;
 
 
 
4217}
4218EXPORT_SYMBOL(hci_recv_stream_fragment);
4219
4220/* ---- Interface to upper protocols ---- */
4221
4222int hci_register_cb(struct hci_cb *cb)
4223{
4224	BT_DBG("%p name %s", cb, cb->name);
4225
4226	write_lock(&hci_cb_list_lock);
4227	list_add(&cb->list, &hci_cb_list);
4228	write_unlock(&hci_cb_list_lock);
4229
4230	return 0;
4231}
4232EXPORT_SYMBOL(hci_register_cb);
4233
4234int hci_unregister_cb(struct hci_cb *cb)
4235{
4236	BT_DBG("%p name %s", cb, cb->name);
4237
4238	write_lock(&hci_cb_list_lock);
4239	list_del(&cb->list);
4240	write_unlock(&hci_cb_list_lock);
4241
4242	return 0;
4243}
4244EXPORT_SYMBOL(hci_unregister_cb);
4245
4246static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4247{
4248	BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
 
 
 
4249
4250	/* Time stamp */
4251	__net_timestamp(skb);
4252
4253	/* Send copy to monitor */
4254	hci_send_to_monitor(hdev, skb);
4255
4256	if (atomic_read(&hdev->promisc)) {
4257		/* Send copy to the sockets */
4258		hci_send_to_sock(hdev, skb);
4259	}
4260
4261	/* Get rid of skb owner, prior to sending to the driver. */
4262	skb_orphan(skb);
4263
4264	if (hdev->send(hdev, skb) < 0)
4265		BT_ERR("%s sending frame failed", hdev->name);
4266}
 
4267
4268void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
4269{
4270	skb_queue_head_init(&req->cmd_q);
4271	req->hdev = hdev;
4272	req->err = 0;
4273}
4274
4275int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
4276{
4277	struct hci_dev *hdev = req->hdev;
4278	struct sk_buff *skb;
4279	unsigned long flags;
4280
4281	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
4282
4283	/* If an error occured during request building, remove all HCI
4284	 * commands queued on the HCI request queue.
4285	 */
4286	if (req->err) {
4287		skb_queue_purge(&req->cmd_q);
4288		return req->err;
4289	}
4290
4291	/* Do not allow empty requests */
4292	if (skb_queue_empty(&req->cmd_q))
4293		return -ENODATA;
4294
4295	skb = skb_peek_tail(&req->cmd_q);
4296	bt_cb(skb)->req.complete = complete;
4297
4298	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4299	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
4300	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4301
4302	queue_work(hdev->workqueue, &hdev->cmd_work);
4303
4304	return 0;
4305}
4306
4307static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
4308				       u32 plen, const void *param)
4309{
4310	int len = HCI_COMMAND_HDR_SIZE + plen;
4311	struct hci_command_hdr *hdr;
4312	struct sk_buff *skb;
4313
4314	skb = bt_skb_alloc(len, GFP_ATOMIC);
4315	if (!skb)
4316		return NULL;
4317
4318	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
4319	hdr->opcode = cpu_to_le16(opcode);
4320	hdr->plen   = plen;
4321
4322	if (plen)
4323		memcpy(skb_put(skb, plen), param, plen);
4324
4325	BT_DBG("skb len %d", skb->len);
4326
4327	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
4328
4329	return skb;
4330}
4331
4332/* Send HCI command */
4333int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4334		 const void *param)
4335{
4336	struct sk_buff *skb;
4337
4338	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4339
4340	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4341	if (!skb) {
4342		BT_ERR("%s no memory for command", hdev->name);
4343		return -ENOMEM;
4344	}
4345
4346	/* Stand-alone HCI commands must be flaged as
4347	 * single-command requests.
4348	 */
4349	bt_cb(skb)->req.start = true;
4350
4351	skb_queue_tail(&hdev->cmd_q, skb);
4352	queue_work(hdev->workqueue, &hdev->cmd_work);
4353
4354	return 0;
4355}
4356
4357/* Queue a command to an asynchronous HCI request */
4358void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
4359		    const void *param, u8 event)
4360{
4361	struct hci_dev *hdev = req->hdev;
4362	struct sk_buff *skb;
4363
4364	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 
 
 
 
 
 
 
 
 
 
 
4365
4366	/* If an error occured during request building, there is no point in
4367	 * queueing the HCI command. We can simply return.
4368	 */
4369	if (req->err)
4370		return;
4371
4372	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4373	if (!skb) {
4374		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
4375		       hdev->name, opcode);
4376		req->err = -ENOMEM;
4377		return;
4378	}
4379
4380	if (skb_queue_empty(&req->cmd_q))
4381		bt_cb(skb)->req.start = true;
4382
4383	bt_cb(skb)->req.event = event;
4384
4385	skb_queue_tail(&req->cmd_q, skb);
4386}
 
4387
4388void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
4389		 const void *param)
4390{
4391	hci_req_add_ev(req, opcode, plen, param, 0);
 
 
 
 
 
 
 
 
 
 
4392}
4393
4394/* Get data from the previously sent command */
4395void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4396{
4397	struct hci_command_hdr *hdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4398
4399	if (!hdev->sent_cmd)
4400		return NULL;
4401
4402	hdr = (void *) hdev->sent_cmd->data;
 
4403
4404	if (hdr->opcode != cpu_to_le16(opcode))
 
 
 
 
 
 
 
 
 
4405		return NULL;
 
4406
4407	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
 
4408
4409	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4410}
4411
4412/* Send ACL data */
4413static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4414{
4415	struct hci_acl_hdr *hdr;
4416	int len = skb->len;
4417
4418	skb_push(skb, HCI_ACL_HDR_SIZE);
4419	skb_reset_transport_header(skb);
4420	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4421	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4422	hdr->dlen   = cpu_to_le16(len);
4423}
4424
4425static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4426			  struct sk_buff *skb, __u16 flags)
4427{
4428	struct hci_conn *conn = chan->conn;
4429	struct hci_dev *hdev = conn->hdev;
4430	struct sk_buff *list;
4431
4432	skb->len = skb_headlen(skb);
4433	skb->data_len = 0;
4434
4435	bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4436
4437	switch (hdev->dev_type) {
4438	case HCI_BREDR:
4439		hci_add_acl_hdr(skb, conn->handle, flags);
4440		break;
4441	case HCI_AMP:
4442		hci_add_acl_hdr(skb, chan->handle, flags);
4443		break;
4444	default:
4445		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
4446		return;
4447	}
4448
4449	list = skb_shinfo(skb)->frag_list;
4450	if (!list) {
4451		/* Non fragmented */
4452		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4453
4454		skb_queue_tail(queue, skb);
4455	} else {
4456		/* Fragmented */
4457		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4458
4459		skb_shinfo(skb)->frag_list = NULL;
4460
4461		/* Queue all fragments atomically */
4462		spin_lock(&queue->lock);
 
 
 
 
4463
4464		__skb_queue_tail(queue, skb);
4465
4466		flags &= ~ACL_START;
4467		flags |= ACL_CONT;
4468		do {
4469			skb = list; list = list->next;
4470
4471			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4472			hci_add_acl_hdr(skb, conn->handle, flags);
4473
4474			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4475
4476			__skb_queue_tail(queue, skb);
4477		} while (list);
4478
4479		spin_unlock(&queue->lock);
4480	}
4481}
4482
4483void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4484{
4485	struct hci_dev *hdev = chan->conn->hdev;
4486
4487	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4488
4489	hci_queue_acl(chan, &chan->data_q, skb, flags);
4490
4491	queue_work(hdev->workqueue, &hdev->tx_work);
4492}
4493
4494/* Send SCO data */
4495void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4496{
4497	struct hci_dev *hdev = conn->hdev;
4498	struct hci_sco_hdr hdr;
4499
4500	BT_DBG("%s len %d", hdev->name, skb->len);
4501
4502	hdr.handle = cpu_to_le16(conn->handle);
4503	hdr.dlen   = skb->len;
4504
4505	skb_push(skb, HCI_SCO_HDR_SIZE);
4506	skb_reset_transport_header(skb);
4507	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4508
4509	bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
4510
4511	skb_queue_tail(&conn->data_q, skb);
4512	queue_work(hdev->workqueue, &hdev->tx_work);
4513}
4514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4515/* ---- HCI TX task (outgoing data) ---- */
4516
4517/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4518static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4519				     int *quote)
4520{
4521	struct hci_conn_hash *h = &hdev->conn_hash;
4522	struct hci_conn *conn = NULL, *c;
4523	unsigned int num = 0, min = ~0;
4524
4525	/* We don't have to lock device here. Connections are always
4526	 * added and removed with TX task disabled. */
4527
4528	rcu_read_lock();
4529
4530	list_for_each_entry_rcu(c, &h->list, list) {
4531		if (c->type != type || skb_queue_empty(&c->data_q))
4532			continue;
4533
4534		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4535			continue;
4536
4537		num++;
4538
4539		if (c->sent < min) {
4540			min  = c->sent;
4541			conn = c;
4542		}
4543
4544		if (hci_conn_num(hdev, type) == num)
4545			break;
4546	}
4547
4548	rcu_read_unlock();
4549
4550	if (conn) {
4551		int cnt, q;
4552
4553		switch (conn->type) {
4554		case ACL_LINK:
4555			cnt = hdev->acl_cnt;
4556			break;
4557		case SCO_LINK:
4558		case ESCO_LINK:
4559			cnt = hdev->sco_cnt;
4560			break;
4561		case LE_LINK:
4562			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4563			break;
4564		default:
4565			cnt = 0;
4566			BT_ERR("Unknown link type");
4567		}
4568
4569		q = cnt / num;
4570		*quote = q ? q : 1;
4571	} else
4572		*quote = 0;
4573
4574	BT_DBG("conn %p quote %d", conn, *quote);
4575	return conn;
4576}
4577
4578static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4579{
4580	struct hci_conn_hash *h = &hdev->conn_hash;
4581	struct hci_conn *c;
4582
4583	BT_ERR("%s link tx timeout", hdev->name);
4584
4585	rcu_read_lock();
4586
4587	/* Kill stalled connections */
4588	list_for_each_entry_rcu(c, &h->list, list) {
4589		if (c->type == type && c->sent) {
4590			BT_ERR("%s killing stalled connection %pMR",
4591			       hdev->name, &c->dst);
 
 
 
 
4592			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
4593		}
4594	}
4595
4596	rcu_read_unlock();
4597}
4598
4599static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4600				      int *quote)
4601{
4602	struct hci_conn_hash *h = &hdev->conn_hash;
4603	struct hci_chan *chan = NULL;
4604	unsigned int num = 0, min = ~0, cur_prio = 0;
4605	struct hci_conn *conn;
4606	int cnt, q, conn_num = 0;
4607
4608	BT_DBG("%s", hdev->name);
4609
4610	rcu_read_lock();
4611
4612	list_for_each_entry_rcu(conn, &h->list, list) {
4613		struct hci_chan *tmp;
4614
4615		if (conn->type != type)
4616			continue;
4617
4618		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4619			continue;
4620
4621		conn_num++;
4622
4623		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4624			struct sk_buff *skb;
4625
4626			if (skb_queue_empty(&tmp->data_q))
4627				continue;
4628
4629			skb = skb_peek(&tmp->data_q);
4630			if (skb->priority < cur_prio)
4631				continue;
4632
4633			if (skb->priority > cur_prio) {
4634				num = 0;
4635				min = ~0;
4636				cur_prio = skb->priority;
4637			}
4638
4639			num++;
4640
4641			if (conn->sent < min) {
4642				min  = conn->sent;
4643				chan = tmp;
4644			}
4645		}
4646
4647		if (hci_conn_num(hdev, type) == conn_num)
4648			break;
4649	}
4650
4651	rcu_read_unlock();
4652
4653	if (!chan)
4654		return NULL;
4655
4656	switch (chan->conn->type) {
4657	case ACL_LINK:
4658		cnt = hdev->acl_cnt;
4659		break;
4660	case AMP_LINK:
4661		cnt = hdev->block_cnt;
4662		break;
4663	case SCO_LINK:
4664	case ESCO_LINK:
4665		cnt = hdev->sco_cnt;
4666		break;
4667	case LE_LINK:
4668		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4669		break;
4670	default:
4671		cnt = 0;
4672		BT_ERR("Unknown link type");
4673	}
4674
4675	q = cnt / num;
4676	*quote = q ? q : 1;
4677	BT_DBG("chan %p quote %d", chan, *quote);
4678	return chan;
4679}
4680
4681static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4682{
4683	struct hci_conn_hash *h = &hdev->conn_hash;
4684	struct hci_conn *conn;
4685	int num = 0;
4686
4687	BT_DBG("%s", hdev->name);
4688
4689	rcu_read_lock();
4690
4691	list_for_each_entry_rcu(conn, &h->list, list) {
4692		struct hci_chan *chan;
4693
4694		if (conn->type != type)
4695			continue;
4696
4697		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4698			continue;
4699
4700		num++;
4701
4702		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4703			struct sk_buff *skb;
4704
4705			if (chan->sent) {
4706				chan->sent = 0;
4707				continue;
4708			}
4709
4710			if (skb_queue_empty(&chan->data_q))
4711				continue;
4712
4713			skb = skb_peek(&chan->data_q);
4714			if (skb->priority >= HCI_PRIO_MAX - 1)
4715				continue;
4716
4717			skb->priority = HCI_PRIO_MAX - 1;
4718
4719			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4720			       skb->priority);
4721		}
4722
4723		if (hci_conn_num(hdev, type) == num)
4724			break;
4725	}
4726
4727	rcu_read_unlock();
4728
4729}
4730
4731static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4732{
4733	/* Calculate count of blocks used by this packet */
4734	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4735}
 
4736
4737static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4738{
4739	if (!test_bit(HCI_RAW, &hdev->flags)) {
4740		/* ACL tx timeout must be longer than maximum
4741		 * link supervision timeout (40.9 seconds) */
4742		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4743				       HCI_ACL_TX_TIMEOUT))
4744			hci_link_tx_to(hdev, ACL_LINK);
4745	}
 
 
 
 
 
 
4746}
4747
4748static void hci_sched_acl_pkt(struct hci_dev *hdev)
 
4749{
4750	unsigned int cnt = hdev->acl_cnt;
4751	struct hci_chan *chan;
4752	struct sk_buff *skb;
4753	int quote;
4754
4755	__check_timeout(hdev, cnt);
 
 
 
4756
4757	while (hdev->acl_cnt &&
4758	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4759		u32 priority = (skb_peek(&chan->data_q))->priority;
4760		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4761			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4762			       skb->len, skb->priority);
 
 
 
 
 
4763
4764			/* Stop if priority has changed */
4765			if (skb->priority < priority)
4766				break;
 
 
4767
4768			skb = skb_dequeue(&chan->data_q);
4769
4770			hci_conn_enter_active_mode(chan->conn,
4771						   bt_cb(skb)->force_active);
4772
 
 
 
 
4773			hci_send_frame(hdev, skb);
4774			hdev->acl_last_tx = jiffies;
4775
4776			hdev->acl_cnt--;
4777			chan->sent++;
4778			chan->conn->sent++;
4779		}
4780	}
4781
4782	if (cnt != hdev->acl_cnt)
4783		hci_prio_recalculate(hdev, ACL_LINK);
4784}
4785
4786static void hci_sched_acl_blk(struct hci_dev *hdev)
4787{
4788	unsigned int cnt = hdev->block_cnt;
4789	struct hci_chan *chan;
4790	struct sk_buff *skb;
4791	int quote;
4792	u8 type;
4793
4794	__check_timeout(hdev, cnt);
4795
4796	BT_DBG("%s", hdev->name);
4797
4798	if (hdev->dev_type == HCI_AMP)
4799		type = AMP_LINK;
4800	else
4801		type = ACL_LINK;
4802
4803	while (hdev->block_cnt > 0 &&
4804	       (chan = hci_chan_sent(hdev, type, &quote))) {
4805		u32 priority = (skb_peek(&chan->data_q))->priority;
4806		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4807			int blocks;
4808
4809			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4810			       skb->len, skb->priority);
4811
4812			/* Stop if priority has changed */
4813			if (skb->priority < priority)
4814				break;
4815
4816			skb = skb_dequeue(&chan->data_q);
4817
4818			blocks = __get_blocks(hdev, skb);
4819			if (blocks > hdev->block_cnt)
4820				return;
4821
4822			hci_conn_enter_active_mode(chan->conn,
4823						   bt_cb(skb)->force_active);
4824
4825			hci_send_frame(hdev, skb);
4826			hdev->acl_last_tx = jiffies;
4827
4828			hdev->block_cnt -= blocks;
4829			quote -= blocks;
 
4830
4831			chan->sent += blocks;
4832			chan->conn->sent += blocks;
 
4833		}
4834	}
4835
4836	if (cnt != hdev->block_cnt)
4837		hci_prio_recalculate(hdev, type);
4838}
4839
4840static void hci_sched_acl(struct hci_dev *hdev)
4841{
4842	BT_DBG("%s", hdev->name);
4843
4844	/* No ACL link over BR/EDR controller */
4845	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
4846		return;
4847
4848	/* No AMP link over AMP controller */
4849	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4850		return;
4851
4852	switch (hdev->flow_ctl_mode) {
4853	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4854		hci_sched_acl_pkt(hdev);
4855		break;
4856
4857	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4858		hci_sched_acl_blk(hdev);
4859		break;
4860	}
4861}
4862
4863/* Schedule SCO */
4864static void hci_sched_sco(struct hci_dev *hdev)
4865{
4866	struct hci_conn *conn;
4867	struct sk_buff *skb;
4868	int quote;
4869
4870	BT_DBG("%s", hdev->name);
4871
4872	if (!hci_conn_num(hdev, SCO_LINK))
4873		return;
4874
4875	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4876		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4877			BT_DBG("skb %p len %d", skb, skb->len);
4878			hci_send_frame(hdev, skb);
4879
4880			conn->sent++;
4881			if (conn->sent == ~0)
4882				conn->sent = 0;
4883		}
4884	}
4885}
4886
4887static void hci_sched_esco(struct hci_dev *hdev)
4888{
4889	struct hci_conn *conn;
4890	struct sk_buff *skb;
4891	int quote;
4892
4893	BT_DBG("%s", hdev->name);
4894
4895	if (!hci_conn_num(hdev, ESCO_LINK))
4896		return;
4897
4898	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4899						     &quote))) {
4900		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4901			BT_DBG("skb %p len %d", skb, skb->len);
4902			hci_send_frame(hdev, skb);
4903
4904			conn->sent++;
4905			if (conn->sent == ~0)
4906				conn->sent = 0;
4907		}
4908	}
4909}
4910
4911static void hci_sched_le(struct hci_dev *hdev)
4912{
4913	struct hci_chan *chan;
4914	struct sk_buff *skb;
4915	int quote, cnt, tmp;
4916
4917	BT_DBG("%s", hdev->name);
4918
4919	if (!hci_conn_num(hdev, LE_LINK))
4920		return;
4921
4922	if (!test_bit(HCI_RAW, &hdev->flags)) {
4923		/* LE tx timeout must be longer than maximum
4924		 * link supervision timeout (40.9 seconds) */
4925		if (!hdev->le_cnt && hdev->le_pkts &&
4926		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4927			hci_link_tx_to(hdev, LE_LINK);
4928	}
4929
4930	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4931	tmp = cnt;
4932	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4933		u32 priority = (skb_peek(&chan->data_q))->priority;
4934		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4935			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4936			       skb->len, skb->priority);
4937
4938			/* Stop if priority has changed */
4939			if (skb->priority < priority)
4940				break;
4941
4942			skb = skb_dequeue(&chan->data_q);
4943
4944			hci_send_frame(hdev, skb);
4945			hdev->le_last_tx = jiffies;
4946
4947			cnt--;
4948			chan->sent++;
4949			chan->conn->sent++;
 
 
 
 
4950		}
4951	}
4952
4953	if (hdev->le_pkts)
4954		hdev->le_cnt = cnt;
4955	else
4956		hdev->acl_cnt = cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4957
4958	if (cnt != tmp)
4959		hci_prio_recalculate(hdev, LE_LINK);
 
 
 
 
4960}
4961
4962static void hci_tx_work(struct work_struct *work)
4963{
4964	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4965	struct sk_buff *skb;
4966
4967	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4968	       hdev->sco_cnt, hdev->le_cnt);
4969
4970	if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
4971		/* Schedule queues and send stuff to HCI driver */
4972		hci_sched_acl(hdev);
4973		hci_sched_sco(hdev);
4974		hci_sched_esco(hdev);
 
 
4975		hci_sched_le(hdev);
4976	}
4977
4978	/* Send next queued raw (unknown type) packet */
4979	while ((skb = skb_dequeue(&hdev->raw_q)))
4980		hci_send_frame(hdev, skb);
4981}
4982
4983/* ----- HCI RX task (incoming data processing) ----- */
4984
4985/* ACL data packet */
4986static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4987{
4988	struct hci_acl_hdr *hdr = (void *) skb->data;
4989	struct hci_conn *conn;
4990	__u16 handle, flags;
4991
4992	skb_pull(skb, HCI_ACL_HDR_SIZE);
 
 
 
 
4993
4994	handle = __le16_to_cpu(hdr->handle);
4995	flags  = hci_flags(handle);
4996	handle = hci_handle(handle);
4997
4998	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4999	       handle, flags);
5000
5001	hdev->stat.acl_rx++;
5002
5003	hci_dev_lock(hdev);
5004	conn = hci_conn_hash_lookup_handle(hdev, handle);
5005	hci_dev_unlock(hdev);
5006
5007	if (conn) {
5008		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
5009
5010		/* Send to upper protocol */
5011		l2cap_recv_acldata(conn, skb, flags);
5012		return;
5013	} else {
5014		BT_ERR("%s ACL packet for unknown connection handle %d",
5015		       hdev->name, handle);
5016	}
5017
 
5018	kfree_skb(skb);
5019}
5020
5021/* SCO data packet */
5022static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
5023{
5024	struct hci_sco_hdr *hdr = (void *) skb->data;
5025	struct hci_conn *conn;
5026	__u16 handle;
5027
5028	skb_pull(skb, HCI_SCO_HDR_SIZE);
 
 
 
 
5029
5030	handle = __le16_to_cpu(hdr->handle);
 
 
5031
5032	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
5033
5034	hdev->stat.sco_rx++;
5035
5036	hci_dev_lock(hdev);
5037	conn = hci_conn_hash_lookup_handle(hdev, handle);
5038	hci_dev_unlock(hdev);
5039
5040	if (conn) {
5041		/* Send to upper protocol */
 
5042		sco_recv_scodata(conn, skb);
5043		return;
5044	} else {
5045		BT_ERR("%s SCO packet for unknown connection handle %d",
5046		       hdev->name, handle);
5047	}
5048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5049	kfree_skb(skb);
5050}
5051
5052static bool hci_req_is_complete(struct hci_dev *hdev)
5053{
5054	struct sk_buff *skb;
5055
5056	skb = skb_peek(&hdev->cmd_q);
5057	if (!skb)
5058		return true;
5059
5060	return bt_cb(skb)->req.start;
5061}
5062
5063static void hci_resend_last(struct hci_dev *hdev)
5064{
5065	struct hci_command_hdr *sent;
5066	struct sk_buff *skb;
5067	u16 opcode;
5068
5069	if (!hdev->sent_cmd)
5070		return;
5071
5072	sent = (void *) hdev->sent_cmd->data;
5073	opcode = __le16_to_cpu(sent->opcode);
5074	if (opcode == HCI_OP_RESET)
5075		return;
5076
5077	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5078	if (!skb)
5079		return;
5080
5081	skb_queue_head(&hdev->cmd_q, skb);
5082	queue_work(hdev->workqueue, &hdev->cmd_work);
5083}
5084
5085void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
 
 
5086{
5087	hci_req_complete_t req_complete = NULL;
5088	struct sk_buff *skb;
5089	unsigned long flags;
5090
5091	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5092
5093	/* If the completed command doesn't match the last one that was
5094	 * sent we need to do special handling of it.
5095	 */
5096	if (!hci_sent_cmd_data(hdev, opcode)) {
5097		/* Some CSR based controllers generate a spontaneous
5098		 * reset complete event during init and any pending
5099		 * command will never be completed. In such a case we
5100		 * need to resend whatever was the last sent
5101		 * command.
5102		 */
5103		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5104			hci_resend_last(hdev);
5105
5106		return;
5107	}
5108
 
 
 
5109	/* If the command succeeded and there's still more commands in
5110	 * this request the request is not yet complete.
5111	 */
5112	if (!status && !hci_req_is_complete(hdev))
5113		return;
5114
 
 
5115	/* If this was the last command in a request the complete
5116	 * callback would be found in hdev->sent_cmd instead of the
5117	 * command queue (hdev->cmd_q).
5118	 */
5119	if (hdev->sent_cmd) {
5120		req_complete = bt_cb(hdev->sent_cmd)->req.complete;
 
 
5121
5122		if (req_complete) {
5123			/* We must set the complete callback to NULL to
5124			 * avoid calling the callback more than once if
5125			 * this function gets called again.
5126			 */
5127			bt_cb(hdev->sent_cmd)->req.complete = NULL;
5128
5129			goto call_complete;
5130		}
5131	}
5132
5133	/* Remove all pending commands belonging to this request */
5134	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5135	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5136		if (bt_cb(skb)->req.start) {
5137			__skb_queue_head(&hdev->cmd_q, skb);
5138			break;
5139		}
5140
5141		req_complete = bt_cb(skb)->req.complete;
5142		kfree_skb(skb);
 
 
 
5143	}
5144	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5145
5146call_complete:
5147	if (req_complete)
5148		req_complete(hdev, status);
5149}
5150
5151static void hci_rx_work(struct work_struct *work)
5152{
5153	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5154	struct sk_buff *skb;
5155
5156	BT_DBG("%s", hdev->name);
5157
5158	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
5159		/* Send copy to monitor */
5160		hci_send_to_monitor(hdev, skb);
5161
5162		if (atomic_read(&hdev->promisc)) {
5163			/* Send copy to the sockets */
5164			hci_send_to_sock(hdev, skb);
5165		}
5166
5167		if (test_bit(HCI_RAW, &hdev->flags) ||
5168		    test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
 
 
 
 
 
 
5169			kfree_skb(skb);
5170			continue;
5171		}
5172
5173		if (test_bit(HCI_INIT, &hdev->flags)) {
5174			/* Don't process data packets in this states. */
5175			switch (bt_cb(skb)->pkt_type) {
5176			case HCI_ACLDATA_PKT:
5177			case HCI_SCODATA_PKT:
 
5178				kfree_skb(skb);
5179				continue;
5180			}
5181		}
5182
5183		/* Process frame */
5184		switch (bt_cb(skb)->pkt_type) {
5185		case HCI_EVENT_PKT:
5186			BT_DBG("%s Event packet", hdev->name);
5187			hci_event_packet(hdev, skb);
5188			break;
5189
5190		case HCI_ACLDATA_PKT:
5191			BT_DBG("%s ACL data packet", hdev->name);
5192			hci_acldata_packet(hdev, skb);
5193			break;
5194
5195		case HCI_SCODATA_PKT:
5196			BT_DBG("%s SCO data packet", hdev->name);
5197			hci_scodata_packet(hdev, skb);
5198			break;
5199
 
 
 
 
 
5200		default:
5201			kfree_skb(skb);
5202			break;
5203		}
5204	}
5205}
5206
5207static void hci_cmd_work(struct work_struct *work)
5208{
5209	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5210	struct sk_buff *skb;
5211
5212	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5213	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5214
5215	/* Send queued commands */
5216	if (atomic_read(&hdev->cmd_cnt)) {
5217		skb = skb_dequeue(&hdev->cmd_q);
5218		if (!skb)
5219			return;
5220
5221		kfree_skb(hdev->sent_cmd);
 
 
 
 
 
5222
5223		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5224		if (hdev->sent_cmd) {
5225			atomic_dec(&hdev->cmd_cnt);
5226			hci_send_frame(hdev, skb);
5227			if (test_bit(HCI_RESET, &hdev->flags))
5228				del_timer(&hdev->cmd_timer);
5229			else
5230				mod_timer(&hdev->cmd_timer,
5231					  jiffies + HCI_CMD_TIMEOUT);
5232		} else {
5233			skb_queue_head(&hdev->cmd_q, skb);
5234			queue_work(hdev->workqueue, &hdev->cmd_work);
5235		}
5236	}
5237}
5238
5239void hci_req_add_le_scan_disable(struct hci_request *req)
5240{
5241	struct hci_cp_le_set_scan_enable cp;
 
 
5242
5243	memset(&cp, 0, sizeof(cp));
5244	cp.enable = LE_SCAN_DISABLE;
5245	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
5246}
5247
5248void hci_req_add_le_passive_scan(struct hci_request *req)
5249{
5250	struct hci_cp_le_set_scan_param param_cp;
5251	struct hci_cp_le_set_scan_enable enable_cp;
5252	struct hci_dev *hdev = req->hdev;
5253	u8 own_addr_type;
5254
5255	/* Set require_privacy to true to avoid identification from
5256	 * unknown peer devices. Since this is passive scanning, no
5257	 * SCAN_REQ using the local identity should be sent. Mandating
5258	 * privacy is just an extra precaution.
5259	 */
5260	if (hci_update_random_address(req, true, &own_addr_type))
5261		return;
5262
5263	memset(&param_cp, 0, sizeof(param_cp));
5264	param_cp.type = LE_SCAN_PASSIVE;
5265	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
5266	param_cp.window = cpu_to_le16(hdev->le_scan_window);
5267	param_cp.own_address_type = own_addr_type;
5268	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
5269		    &param_cp);
5270
5271	memset(&enable_cp, 0, sizeof(enable_cp));
5272	enable_cp.enable = LE_SCAN_ENABLE;
5273	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5274	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
5275		    &enable_cp);
5276}
5277
5278static void update_background_scan_complete(struct hci_dev *hdev, u8 status)
5279{
5280	if (status)
5281		BT_DBG("HCI request failed to update background scanning: "
5282		       "status 0x%2.2x", status);
5283}
5284
5285/* This function controls the background scanning based on hdev->pend_le_conns
5286 * list. If there are pending LE connection we start the background scanning,
5287 * otherwise we stop it.
5288 *
5289 * This function requires the caller holds hdev->lock.
5290 */
5291void hci_update_background_scan(struct hci_dev *hdev)
5292{
5293	struct hci_request req;
5294	struct hci_conn *conn;
5295	int err;
5296
5297	hci_req_init(&req, hdev);
5298
5299	if (list_empty(&hdev->pend_le_conns)) {
5300		/* If there is no pending LE connections, we should stop
5301		 * the background scanning.
5302		 */
5303
5304		/* If controller is not scanning we are done. */
5305		if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5306			return;
5307
5308		hci_req_add_le_scan_disable(&req);
5309
5310		BT_DBG("%s stopping background scanning", hdev->name);
5311	} else {
5312		/* If there is at least one pending LE connection, we should
5313		 * keep the background scan running.
5314		 */
5315
5316		/* If controller is connecting, we should not start scanning
5317		 * since some controllers are not able to scan and connect at
5318		 * the same time.
5319		 */
5320		conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
5321		if (conn)
5322			return;
5323
5324		/* If controller is currently scanning, we stop it to ensure we
5325		 * don't miss any advertising (due to duplicates filter).
5326		 */
5327		if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5328			hci_req_add_le_scan_disable(&req);
5329
5330		hci_req_add_le_passive_scan(&req);
5331
5332		BT_DBG("%s starting background scanning", hdev->name);
5333	}
5334
5335	err = hci_req_run(&req, update_background_scan_complete);
5336	if (err)
5337		BT_ERR("Failed to run HCI request: err %d", err);
5338}