Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <linux/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
 
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47#include "aosp.h"
  48#include "hci_codec.h"
  49
  50static void hci_rx_work(struct work_struct *work);
  51static void hci_cmd_work(struct work_struct *work);
  52static void hci_tx_work(struct work_struct *work);
  53
  54/* HCI device list */
  55LIST_HEAD(hci_dev_list);
  56DEFINE_RWLOCK(hci_dev_list_lock);
  57
  58/* HCI callback list */
  59LIST_HEAD(hci_cb_list);
 
  60
  61/* HCI ID Numbering */
  62static DEFINE_IDA(hci_index_ida);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64/* Get HCI device by index.
  65 * Device is held on return. */
  66struct hci_dev *hci_dev_get(int index)
  67{
  68	struct hci_dev *hdev = NULL, *d;
  69
  70	BT_DBG("%d", index);
  71
  72	if (index < 0)
  73		return NULL;
  74
  75	read_lock(&hci_dev_list_lock);
  76	list_for_each_entry(d, &hci_dev_list, list) {
  77		if (d->id == index) {
  78			hdev = hci_dev_hold(d);
  79			break;
  80		}
  81	}
  82	read_unlock(&hci_dev_list_lock);
  83	return hdev;
  84}
  85
  86/* ---- Inquiry support ---- */
  87
  88bool hci_discovery_active(struct hci_dev *hdev)
  89{
  90	struct discovery_state *discov = &hdev->discovery;
  91
  92	switch (discov->state) {
  93	case DISCOVERY_FINDING:
  94	case DISCOVERY_RESOLVING:
  95		return true;
  96
  97	default:
  98		return false;
  99	}
 100}
 101
 102void hci_discovery_set_state(struct hci_dev *hdev, int state)
 103{
 104	int old_state = hdev->discovery.state;
 105
 
 
 106	if (old_state == state)
 107		return;
 108
 109	hdev->discovery.state = state;
 110
 111	switch (state) {
 112	case DISCOVERY_STOPPED:
 113		hci_update_passive_scan(hdev);
 114
 115		if (old_state != DISCOVERY_STARTING)
 116			mgmt_discovering(hdev, 0);
 117		break;
 118	case DISCOVERY_STARTING:
 119		break;
 120	case DISCOVERY_FINDING:
 121		mgmt_discovering(hdev, 1);
 122		break;
 123	case DISCOVERY_RESOLVING:
 124		break;
 125	case DISCOVERY_STOPPING:
 126		break;
 127	}
 128
 129	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
 130}
 131
 132void hci_inquiry_cache_flush(struct hci_dev *hdev)
 133{
 134	struct discovery_state *cache = &hdev->discovery;
 135	struct inquiry_entry *p, *n;
 136
 137	list_for_each_entry_safe(p, n, &cache->all, all) {
 138		list_del(&p->all);
 139		kfree(p);
 140	}
 141
 142	INIT_LIST_HEAD(&cache->unknown);
 143	INIT_LIST_HEAD(&cache->resolve);
 144}
 145
 146struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 147					       bdaddr_t *bdaddr)
 148{
 149	struct discovery_state *cache = &hdev->discovery;
 150	struct inquiry_entry *e;
 151
 152	BT_DBG("cache %p, %pMR", cache, bdaddr);
 153
 154	list_for_each_entry(e, &cache->all, all) {
 155		if (!bacmp(&e->data.bdaddr, bdaddr))
 156			return e;
 157	}
 158
 159	return NULL;
 160}
 161
 162struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 163						       bdaddr_t *bdaddr)
 164{
 165	struct discovery_state *cache = &hdev->discovery;
 166	struct inquiry_entry *e;
 167
 168	BT_DBG("cache %p, %pMR", cache, bdaddr);
 169
 170	list_for_each_entry(e, &cache->unknown, list) {
 171		if (!bacmp(&e->data.bdaddr, bdaddr))
 172			return e;
 173	}
 174
 175	return NULL;
 176}
 177
 178struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 179						       bdaddr_t *bdaddr,
 180						       int state)
 181{
 182	struct discovery_state *cache = &hdev->discovery;
 183	struct inquiry_entry *e;
 184
 185	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 186
 187	list_for_each_entry(e, &cache->resolve, list) {
 188		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 189			return e;
 190		if (!bacmp(&e->data.bdaddr, bdaddr))
 191			return e;
 192	}
 193
 194	return NULL;
 195}
 196
 197void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 198				      struct inquiry_entry *ie)
 199{
 200	struct discovery_state *cache = &hdev->discovery;
 201	struct list_head *pos = &cache->resolve;
 202	struct inquiry_entry *p;
 203
 204	list_del(&ie->list);
 205
 206	list_for_each_entry(p, &cache->resolve, list) {
 207		if (p->name_state != NAME_PENDING &&
 208		    abs(p->data.rssi) >= abs(ie->data.rssi))
 209			break;
 210		pos = &p->list;
 211	}
 212
 213	list_add(&ie->list, pos);
 214}
 215
 216u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 217			     bool name_known)
 218{
 219	struct discovery_state *cache = &hdev->discovery;
 220	struct inquiry_entry *ie;
 221	u32 flags = 0;
 222
 223	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 224
 225	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 226
 227	if (!data->ssp_mode)
 228		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 229
 230	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 231	if (ie) {
 232		if (!ie->data.ssp_mode)
 233			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 234
 235		if (ie->name_state == NAME_NEEDED &&
 236		    data->rssi != ie->data.rssi) {
 237			ie->data.rssi = data->rssi;
 238			hci_inquiry_cache_update_resolve(hdev, ie);
 239		}
 240
 241		goto update;
 242	}
 243
 244	/* Entry not in the cache. Add new one. */
 245	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 246	if (!ie) {
 247		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 248		goto done;
 249	}
 250
 251	list_add(&ie->all, &cache->all);
 252
 253	if (name_known) {
 254		ie->name_state = NAME_KNOWN;
 255	} else {
 256		ie->name_state = NAME_NOT_KNOWN;
 257		list_add(&ie->list, &cache->unknown);
 258	}
 259
 260update:
 261	if (name_known && ie->name_state != NAME_KNOWN &&
 262	    ie->name_state != NAME_PENDING) {
 263		ie->name_state = NAME_KNOWN;
 264		list_del(&ie->list);
 265	}
 266
 267	memcpy(&ie->data, data, sizeof(*data));
 268	ie->timestamp = jiffies;
 269	cache->timestamp = jiffies;
 270
 271	if (ie->name_state == NAME_NOT_KNOWN)
 272		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 273
 274done:
 275	return flags;
 276}
 277
 278static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 279{
 280	struct discovery_state *cache = &hdev->discovery;
 281	struct inquiry_info *info = (struct inquiry_info *) buf;
 282	struct inquiry_entry *e;
 283	int copied = 0;
 284
 285	list_for_each_entry(e, &cache->all, all) {
 286		struct inquiry_data *data = &e->data;
 287
 288		if (copied >= num)
 289			break;
 290
 291		bacpy(&info->bdaddr, &data->bdaddr);
 292		info->pscan_rep_mode	= data->pscan_rep_mode;
 293		info->pscan_period_mode	= data->pscan_period_mode;
 294		info->pscan_mode	= data->pscan_mode;
 295		memcpy(info->dev_class, data->dev_class, 3);
 296		info->clock_offset	= data->clock_offset;
 297
 298		info++;
 299		copied++;
 300	}
 301
 302	BT_DBG("cache %p, copied %d", cache, copied);
 303	return copied;
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306int hci_inquiry(void __user *arg)
 307{
 308	__u8 __user *ptr = arg;
 309	struct hci_inquiry_req ir;
 310	struct hci_dev *hdev;
 311	int err = 0, do_inquiry = 0, max_rsp;
 
 312	__u8 *buf;
 313
 314	if (copy_from_user(&ir, ptr, sizeof(ir)))
 315		return -EFAULT;
 316
 317	hdev = hci_dev_get(ir.dev_id);
 318	if (!hdev)
 319		return -ENODEV;
 320
 321	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 322		err = -EBUSY;
 323		goto done;
 324	}
 325
 326	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 327		err = -EOPNOTSUPP;
 328		goto done;
 329	}
 330
 331	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 332		err = -EOPNOTSUPP;
 333		goto done;
 334	}
 335
 336	/* Restrict maximum inquiry length to 60 seconds */
 337	if (ir.length > 60) {
 338		err = -EINVAL;
 339		goto done;
 340	}
 341
 342	hci_dev_lock(hdev);
 343	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 344	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 345		hci_inquiry_cache_flush(hdev);
 346		do_inquiry = 1;
 347	}
 348	hci_dev_unlock(hdev);
 349
 350	if (do_inquiry) {
 351		hci_req_sync_lock(hdev);
 352		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
 353		hci_req_sync_unlock(hdev);
 354
 
 
 
 355		if (err < 0)
 356			goto done;
 357
 358		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 359		 * cleared). If it is interrupted by a signal, return -EINTR.
 360		 */
 361		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 362				TASK_INTERRUPTIBLE)) {
 363			err = -EINTR;
 364			goto done;
 365		}
 366	}
 367
 368	/* for unlimited number of responses we will use buffer with
 369	 * 255 entries
 370	 */
 371	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 372
 373	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 374	 * copy it to the user space.
 375	 */
 376	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 377	if (!buf) {
 378		err = -ENOMEM;
 379		goto done;
 380	}
 381
 382	hci_dev_lock(hdev);
 383	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 384	hci_dev_unlock(hdev);
 385
 386	BT_DBG("num_rsp %d", ir.num_rsp);
 387
 388	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 389		ptr += sizeof(ir);
 390		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 391				 ir.num_rsp))
 392			err = -EFAULT;
 393	} else
 394		err = -EFAULT;
 395
 396	kfree(buf);
 397
 398done:
 399	hci_dev_put(hdev);
 400	return err;
 401}
 402
 403static int hci_dev_do_open(struct hci_dev *hdev)
 404{
 405	int ret = 0;
 406
 407	BT_DBG("%s %p", hdev->name, hdev);
 408
 409	hci_req_sync_lock(hdev);
 410
 411	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413	hci_req_sync_unlock(hdev);
 414	return ret;
 415}
 416
 417/* ---- HCI ioctl helpers ---- */
 418
 419int hci_dev_open(__u16 dev)
 420{
 421	struct hci_dev *hdev;
 422	int err;
 423
 424	hdev = hci_dev_get(dev);
 425	if (!hdev)
 426		return -ENODEV;
 427
 428	/* Devices that are marked as unconfigured can only be powered
 429	 * up as user channel. Trying to bring them up as normal devices
 430	 * will result into a failure. Only user channel operation is
 431	 * possible.
 432	 *
 433	 * When this function is called for a user channel, the flag
 434	 * HCI_USER_CHANNEL will be set first before attempting to
 435	 * open the device.
 436	 */
 437	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 438	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 439		err = -EOPNOTSUPP;
 440		goto done;
 441	}
 442
 443	/* We need to ensure that no other power on/off work is pending
 444	 * before proceeding to call hci_dev_do_open. This is
 445	 * particularly important if the setup procedure has not yet
 446	 * completed.
 447	 */
 448	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 449		cancel_delayed_work(&hdev->power_off);
 450
 451	/* After this call it is guaranteed that the setup procedure
 452	 * has finished. This means that error conditions like RFKILL
 453	 * or no valid public or static random address apply.
 454	 */
 455	flush_workqueue(hdev->req_workqueue);
 456
 457	/* For controllers not using the management interface and that
 458	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 459	 * so that pairing works for them. Once the management interface
 460	 * is in use this bit will be cleared again and userspace has
 461	 * to explicitly enable it.
 462	 */
 463	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 464	    !hci_dev_test_flag(hdev, HCI_MGMT))
 465		hci_dev_set_flag(hdev, HCI_BONDABLE);
 466
 467	err = hci_dev_do_open(hdev);
 468
 469done:
 470	hci_dev_put(hdev);
 471	return err;
 472}
 473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474int hci_dev_do_close(struct hci_dev *hdev)
 475{
 476	int err;
 477
 478	BT_DBG("%s %p", hdev->name, hdev);
 479
 
 
 
 
 
 
 
 
 
 
 
 480	hci_req_sync_lock(hdev);
 481
 482	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483
 484	hci_req_sync_unlock(hdev);
 485
 486	return err;
 
 487}
 488
 489int hci_dev_close(__u16 dev)
 490{
 491	struct hci_dev *hdev;
 492	int err;
 493
 494	hdev = hci_dev_get(dev);
 495	if (!hdev)
 496		return -ENODEV;
 497
 498	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 499		err = -EBUSY;
 500		goto done;
 501	}
 502
 503	cancel_work_sync(&hdev->power_on);
 504	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 505		cancel_delayed_work(&hdev->power_off);
 506
 507	err = hci_dev_do_close(hdev);
 508
 509done:
 510	hci_dev_put(hdev);
 511	return err;
 512}
 513
 514static int hci_dev_do_reset(struct hci_dev *hdev)
 515{
 516	int ret;
 517
 518	BT_DBG("%s %p", hdev->name, hdev);
 519
 520	hci_req_sync_lock(hdev);
 521
 522	/* Drop queues */
 523	skb_queue_purge(&hdev->rx_q);
 524	skb_queue_purge(&hdev->cmd_q);
 525
 526	/* Cancel these to avoid queueing non-chained pending work */
 527	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 528	/* Wait for
 529	 *
 530	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 531	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 532	 *
 533	 * inside RCU section to see the flag or complete scheduling.
 534	 */
 535	synchronize_rcu();
 536	/* Explicitly cancel works in case scheduled after setting the flag. */
 537	cancel_delayed_work(&hdev->cmd_timer);
 538	cancel_delayed_work(&hdev->ncmd_timer);
 539
 540	/* Avoid potential lockdep warnings from the *_flush() calls by
 541	 * ensuring the workqueue is empty up front.
 542	 */
 543	drain_workqueue(hdev->workqueue);
 544
 545	hci_dev_lock(hdev);
 546	hci_inquiry_cache_flush(hdev);
 547	hci_conn_hash_flush(hdev);
 548	hci_dev_unlock(hdev);
 549
 550	if (hdev->flush)
 551		hdev->flush(hdev);
 552
 553	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 554
 555	atomic_set(&hdev->cmd_cnt, 1);
 556	hdev->acl_cnt = 0;
 557	hdev->sco_cnt = 0;
 558	hdev->le_cnt = 0;
 559	hdev->iso_cnt = 0;
 560
 561	ret = hci_reset_sync(hdev);
 562
 563	hci_req_sync_unlock(hdev);
 564	return ret;
 565}
 566
 567int hci_dev_reset(__u16 dev)
 568{
 569	struct hci_dev *hdev;
 570	int err;
 571
 572	hdev = hci_dev_get(dev);
 573	if (!hdev)
 574		return -ENODEV;
 575
 576	if (!test_bit(HCI_UP, &hdev->flags)) {
 577		err = -ENETDOWN;
 578		goto done;
 579	}
 580
 581	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 582		err = -EBUSY;
 583		goto done;
 584	}
 585
 586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 587		err = -EOPNOTSUPP;
 588		goto done;
 589	}
 590
 591	err = hci_dev_do_reset(hdev);
 592
 593done:
 594	hci_dev_put(hdev);
 595	return err;
 596}
 597
 598int hci_dev_reset_stat(__u16 dev)
 599{
 600	struct hci_dev *hdev;
 601	int ret = 0;
 602
 603	hdev = hci_dev_get(dev);
 604	if (!hdev)
 605		return -ENODEV;
 606
 607	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 608		ret = -EBUSY;
 609		goto done;
 610	}
 611
 612	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 613		ret = -EOPNOTSUPP;
 614		goto done;
 615	}
 616
 617	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 618
 619done:
 620	hci_dev_put(hdev);
 621	return ret;
 622}
 623
 624static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 625{
 626	bool conn_changed, discov_changed;
 627
 628	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 629
 630	if ((scan & SCAN_PAGE))
 631		conn_changed = !hci_dev_test_and_set_flag(hdev,
 632							  HCI_CONNECTABLE);
 633	else
 634		conn_changed = hci_dev_test_and_clear_flag(hdev,
 635							   HCI_CONNECTABLE);
 636
 637	if ((scan & SCAN_INQUIRY)) {
 638		discov_changed = !hci_dev_test_and_set_flag(hdev,
 639							    HCI_DISCOVERABLE);
 640	} else {
 641		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 642		discov_changed = hci_dev_test_and_clear_flag(hdev,
 643							     HCI_DISCOVERABLE);
 644	}
 645
 646	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 647		return;
 648
 649	if (conn_changed || discov_changed) {
 650		/* In case this was disabled through mgmt */
 651		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 652
 653		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 654			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 655
 656		mgmt_new_settings(hdev);
 657	}
 658}
 659
 660int hci_dev_cmd(unsigned int cmd, void __user *arg)
 661{
 662	struct hci_dev *hdev;
 663	struct hci_dev_req dr;
 664	__le16 policy;
 665	int err = 0;
 666
 667	if (copy_from_user(&dr, arg, sizeof(dr)))
 668		return -EFAULT;
 669
 670	hdev = hci_dev_get(dr.dev_id);
 671	if (!hdev)
 672		return -ENODEV;
 673
 674	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 675		err = -EBUSY;
 676		goto done;
 677	}
 678
 679	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 680		err = -EOPNOTSUPP;
 681		goto done;
 682	}
 683
 
 
 
 
 
 684	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 685		err = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	switch (cmd) {
 690	case HCISETAUTH:
 691		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
 692					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 693		break;
 694
 695	case HCISETENCRYPT:
 696		if (!lmp_encrypt_capable(hdev)) {
 697			err = -EOPNOTSUPP;
 698			break;
 699		}
 700
 701		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 702			/* Auth must be enabled first */
 703			err = hci_cmd_sync_status(hdev,
 704						  HCI_OP_WRITE_AUTH_ENABLE,
 705						  1, &dr.dev_opt,
 706						  HCI_CMD_TIMEOUT);
 707			if (err)
 708				break;
 709		}
 710
 711		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
 712					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 713		break;
 714
 715	case HCISETSCAN:
 716		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
 717					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 718
 719		/* Ensure that the connectable and discoverable states
 720		 * get correctly modified as this was a non-mgmt change.
 721		 */
 722		if (!err)
 723			hci_update_passive_scan_state(hdev, dr.dev_opt);
 724		break;
 725
 726	case HCISETLINKPOL:
 727		policy = cpu_to_le16(dr.dev_opt);
 728
 729		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
 730					  2, &policy, HCI_CMD_TIMEOUT);
 731		break;
 732
 733	case HCISETLINKMODE:
 734		hdev->link_mode = ((__u16) dr.dev_opt) &
 735					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 736		break;
 737
 738	case HCISETPTYPE:
 739		if (hdev->pkt_type == (__u16) dr.dev_opt)
 740			break;
 741
 742		hdev->pkt_type = (__u16) dr.dev_opt;
 743		mgmt_phy_configuration_changed(hdev, NULL);
 744		break;
 745
 746	case HCISETACLMTU:
 747		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 748		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 749		break;
 750
 751	case HCISETSCOMTU:
 752		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 753		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 754		break;
 755
 756	default:
 757		err = -EINVAL;
 758		break;
 759	}
 760
 761done:
 762	hci_dev_put(hdev);
 763	return err;
 764}
 765
 766int hci_get_dev_list(void __user *arg)
 767{
 768	struct hci_dev *hdev;
 769	struct hci_dev_list_req *dl;
 770	struct hci_dev_req *dr;
 771	int n = 0, err;
 772	__u16 dev_num;
 773
 774	if (get_user(dev_num, (__u16 __user *) arg))
 775		return -EFAULT;
 776
 777	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 778		return -EINVAL;
 779
 780	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
 
 
 781	if (!dl)
 782		return -ENOMEM;
 783
 784	dl->dev_num = dev_num;
 785	dr = dl->dev_req;
 786
 787	read_lock(&hci_dev_list_lock);
 788	list_for_each_entry(hdev, &hci_dev_list, list) {
 789		unsigned long flags = hdev->flags;
 790
 791		/* When the auto-off is configured it means the transport
 792		 * is running, but in that case still indicate that the
 793		 * device is actually down.
 794		 */
 795		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 796			flags &= ~BIT(HCI_UP);
 797
 798		dr[n].dev_id  = hdev->id;
 799		dr[n].dev_opt = flags;
 800
 801		if (++n >= dev_num)
 802			break;
 803	}
 804	read_unlock(&hci_dev_list_lock);
 805
 806	dl->dev_num = n;
 807	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
 
 
 808	kfree(dl);
 809
 810	return err ? -EFAULT : 0;
 811}
 812
 813int hci_get_dev_info(void __user *arg)
 814{
 815	struct hci_dev *hdev;
 816	struct hci_dev_info di;
 817	unsigned long flags;
 818	int err = 0;
 819
 820	if (copy_from_user(&di, arg, sizeof(di)))
 821		return -EFAULT;
 822
 823	hdev = hci_dev_get(di.dev_id);
 824	if (!hdev)
 825		return -ENODEV;
 826
 827	/* When the auto-off is configured it means the transport
 828	 * is running, but in that case still indicate that the
 829	 * device is actually down.
 830	 */
 831	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 832		flags = hdev->flags & ~BIT(HCI_UP);
 833	else
 834		flags = hdev->flags;
 835
 836	strscpy(di.name, hdev->name, sizeof(di.name));
 837	di.bdaddr   = hdev->bdaddr;
 838	di.type     = (hdev->bus & 0x0f);
 839	di.flags    = flags;
 840	di.pkt_type = hdev->pkt_type;
 841	if (lmp_bredr_capable(hdev)) {
 842		di.acl_mtu  = hdev->acl_mtu;
 843		di.acl_pkts = hdev->acl_pkts;
 844		di.sco_mtu  = hdev->sco_mtu;
 845		di.sco_pkts = hdev->sco_pkts;
 846	} else {
 847		di.acl_mtu  = hdev->le_mtu;
 848		di.acl_pkts = hdev->le_pkts;
 849		di.sco_mtu  = 0;
 850		di.sco_pkts = 0;
 851	}
 852	di.link_policy = hdev->link_policy;
 853	di.link_mode   = hdev->link_mode;
 854
 855	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 856	memcpy(&di.features, &hdev->features, sizeof(di.features));
 857
 858	if (copy_to_user(arg, &di, sizeof(di)))
 859		err = -EFAULT;
 860
 861	hci_dev_put(hdev);
 862
 863	return err;
 864}
 865
 866/* ---- Interface to HCI drivers ---- */
 867
 868static int hci_dev_do_poweroff(struct hci_dev *hdev)
 869{
 870	int err;
 871
 872	BT_DBG("%s %p", hdev->name, hdev);
 873
 874	hci_req_sync_lock(hdev);
 875
 876	err = hci_set_powered_sync(hdev, false);
 877
 878	hci_req_sync_unlock(hdev);
 879
 880	return err;
 881}
 882
 883static int hci_rfkill_set_block(void *data, bool blocked)
 884{
 885	struct hci_dev *hdev = data;
 886	int err;
 887
 888	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 889
 890	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 891		return -EBUSY;
 892
 893	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
 894		return 0;
 895
 896	if (blocked) {
 897		hci_dev_set_flag(hdev, HCI_RFKILLED);
 898
 899		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 900		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 901			err = hci_dev_do_poweroff(hdev);
 902			if (err) {
 903				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
 904					   err);
 905
 906				/* Make sure the device is still closed even if
 907				 * anything during power off sequence (eg.
 908				 * disconnecting devices) failed.
 909				 */
 910				hci_dev_do_close(hdev);
 911			}
 912		}
 913	} else {
 914		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 915	}
 916
 917	return 0;
 918}
 919
 920static const struct rfkill_ops hci_rfkill_ops = {
 921	.set_block = hci_rfkill_set_block,
 922};
 923
 924static void hci_power_on(struct work_struct *work)
 925{
 926	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 927	int err;
 928
 929	BT_DBG("%s", hdev->name);
 930
 931	if (test_bit(HCI_UP, &hdev->flags) &&
 932	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 933	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 934		cancel_delayed_work(&hdev->power_off);
 935		err = hci_powered_update_sync(hdev);
 
 
 936		mgmt_power_on(hdev, err);
 937		return;
 938	}
 939
 940	err = hci_dev_do_open(hdev);
 941	if (err < 0) {
 942		hci_dev_lock(hdev);
 943		mgmt_set_powered_failed(hdev, err);
 944		hci_dev_unlock(hdev);
 945		return;
 946	}
 947
 948	/* During the HCI setup phase, a few error conditions are
 949	 * ignored and they need to be checked now. If they are still
 950	 * valid, it is important to turn the device back off.
 951	 */
 952	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 953	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 954	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 
 955	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
 956		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
 957		hci_dev_do_close(hdev);
 958	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
 959		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
 960				   HCI_AUTO_OFF_TIMEOUT);
 961	}
 962
 963	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
 964		/* For unconfigured devices, set the HCI_RAW flag
 965		 * so that userspace can easily identify them.
 966		 */
 967		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 968			set_bit(HCI_RAW, &hdev->flags);
 969
 970		/* For fully configured devices, this will send
 971		 * the Index Added event. For unconfigured devices,
 972		 * it will send Unconfigued Index Added event.
 973		 *
 974		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
 975		 * and no event will be send.
 976		 */
 977		mgmt_index_added(hdev);
 978	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
 979		/* When the controller is now configured, then it
 980		 * is important to clear the HCI_RAW flag.
 981		 */
 982		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 983			clear_bit(HCI_RAW, &hdev->flags);
 984
 985		/* Powering on the controller with HCI_CONFIG set only
 986		 * happens with the transition from unconfigured to
 987		 * configured. This will send the Index Added event.
 988		 */
 989		mgmt_index_added(hdev);
 990	}
 991}
 992
 993static void hci_power_off(struct work_struct *work)
 994{
 995	struct hci_dev *hdev = container_of(work, struct hci_dev,
 996					    power_off.work);
 997
 998	BT_DBG("%s", hdev->name);
 999
1000	hci_dev_do_close(hdev);
1001}
1002
1003static void hci_error_reset(struct work_struct *work)
1004{
1005	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006
1007	hci_dev_hold(hdev);
1008	BT_DBG("%s", hdev->name);
1009
1010	if (hdev->hw_error)
1011		hdev->hw_error(hdev, hdev->hw_error_code);
1012	else
1013		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
 
1014
1015	if (!hci_dev_do_close(hdev))
1016		hci_dev_do_open(hdev);
1017
1018	hci_dev_put(hdev);
1019}
1020
1021void hci_uuids_clear(struct hci_dev *hdev)
1022{
1023	struct bt_uuid *uuid, *tmp;
1024
1025	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026		list_del(&uuid->list);
1027		kfree(uuid);
1028	}
1029}
1030
1031void hci_link_keys_clear(struct hci_dev *hdev)
1032{
1033	struct link_key *key, *tmp;
1034
1035	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036		list_del_rcu(&key->list);
1037		kfree_rcu(key, rcu);
1038	}
1039}
1040
1041void hci_smp_ltks_clear(struct hci_dev *hdev)
1042{
1043	struct smp_ltk *k, *tmp;
1044
1045	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046		list_del_rcu(&k->list);
1047		kfree_rcu(k, rcu);
1048	}
1049}
1050
1051void hci_smp_irks_clear(struct hci_dev *hdev)
1052{
1053	struct smp_irk *k, *tmp;
1054
1055	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056		list_del_rcu(&k->list);
1057		kfree_rcu(k, rcu);
1058	}
1059}
1060
1061void hci_blocked_keys_clear(struct hci_dev *hdev)
1062{
1063	struct blocked_key *b, *tmp;
1064
1065	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066		list_del_rcu(&b->list);
1067		kfree_rcu(b, rcu);
1068	}
1069}
1070
1071bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072{
1073	bool blocked = false;
1074	struct blocked_key *b;
1075
1076	rcu_read_lock();
1077	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079			blocked = true;
1080			break;
1081		}
1082	}
1083
1084	rcu_read_unlock();
1085	return blocked;
1086}
1087
1088struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089{
1090	struct link_key *k;
1091
1092	rcu_read_lock();
1093	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095			rcu_read_unlock();
1096
1097			if (hci_is_blocked_key(hdev,
1098					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099					       k->val)) {
1100				bt_dev_warn_ratelimited(hdev,
1101							"Link key blocked for %pMR",
1102							&k->bdaddr);
1103				return NULL;
1104			}
1105
1106			return k;
1107		}
1108	}
1109	rcu_read_unlock();
1110
1111	return NULL;
1112}
1113
1114static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115			       u8 key_type, u8 old_key_type)
1116{
1117	/* Legacy key */
1118	if (key_type < 0x03)
1119		return true;
1120
1121	/* Debug keys are insecure so don't store them persistently */
1122	if (key_type == HCI_LK_DEBUG_COMBINATION)
1123		return false;
1124
1125	/* Changed combination key and there's no previous one */
1126	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127		return false;
1128
1129	/* Security mode 3 case */
1130	if (!conn)
1131		return true;
1132
1133	/* BR/EDR key derived using SC from an LE link */
1134	if (conn->type == LE_LINK)
1135		return true;
1136
1137	/* Neither local nor remote side had no-bonding as requirement */
1138	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139		return true;
1140
1141	/* Local side had dedicated bonding as requirement */
1142	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143		return true;
1144
1145	/* Remote side had dedicated bonding as requirement */
1146	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147		return true;
1148
1149	/* If none of the above criteria match, then don't store the key
1150	 * persistently */
1151	return false;
1152}
1153
1154static u8 ltk_role(u8 type)
1155{
1156	if (type == SMP_LTK)
1157		return HCI_ROLE_MASTER;
1158
1159	return HCI_ROLE_SLAVE;
1160}
1161
1162struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163			     u8 addr_type, u8 role)
1164{
1165	struct smp_ltk *k;
1166
1167	rcu_read_lock();
1168	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170			continue;
1171
1172		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173			rcu_read_unlock();
1174
1175			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176					       k->val)) {
1177				bt_dev_warn_ratelimited(hdev,
1178							"LTK blocked for %pMR",
1179							&k->bdaddr);
1180				return NULL;
1181			}
1182
1183			return k;
1184		}
1185	}
1186	rcu_read_unlock();
1187
1188	return NULL;
1189}
1190
1191struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192{
1193	struct smp_irk *irk_to_return = NULL;
1194	struct smp_irk *irk;
1195
1196	rcu_read_lock();
1197	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198		if (!bacmp(&irk->rpa, rpa)) {
1199			irk_to_return = irk;
1200			goto done;
1201		}
1202	}
1203
1204	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205		if (smp_irk_matches(hdev, irk->val, rpa)) {
1206			bacpy(&irk->rpa, rpa);
1207			irk_to_return = irk;
1208			goto done;
1209		}
1210	}
1211
1212done:
1213	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214						irk_to_return->val)) {
1215		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216					&irk_to_return->bdaddr);
1217		irk_to_return = NULL;
1218	}
1219
1220	rcu_read_unlock();
1221
1222	return irk_to_return;
1223}
1224
1225struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226				     u8 addr_type)
1227{
1228	struct smp_irk *irk_to_return = NULL;
1229	struct smp_irk *irk;
1230
1231	/* Identity Address must be public or static random */
1232	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233		return NULL;
1234
1235	rcu_read_lock();
1236	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237		if (addr_type == irk->addr_type &&
1238		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1239			irk_to_return = irk;
1240			goto done;
1241		}
1242	}
1243
1244done:
1245
1246	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247						irk_to_return->val)) {
1248		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249					&irk_to_return->bdaddr);
1250		irk_to_return = NULL;
1251	}
1252
1253	rcu_read_unlock();
1254
1255	return irk_to_return;
1256}
1257
1258struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259				  bdaddr_t *bdaddr, u8 *val, u8 type,
1260				  u8 pin_len, bool *persistent)
1261{
1262	struct link_key *key, *old_key;
1263	u8 old_key_type;
1264
1265	old_key = hci_find_link_key(hdev, bdaddr);
1266	if (old_key) {
1267		old_key_type = old_key->type;
1268		key = old_key;
1269	} else {
1270		old_key_type = conn ? conn->key_type : 0xff;
1271		key = kzalloc(sizeof(*key), GFP_KERNEL);
1272		if (!key)
1273			return NULL;
1274		list_add_rcu(&key->list, &hdev->link_keys);
1275	}
1276
1277	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278
1279	/* Some buggy controller combinations generate a changed
1280	 * combination key for legacy pairing even when there's no
1281	 * previous key */
1282	if (type == HCI_LK_CHANGED_COMBINATION &&
1283	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284		type = HCI_LK_COMBINATION;
1285		if (conn)
1286			conn->key_type = type;
1287	}
1288
1289	bacpy(&key->bdaddr, bdaddr);
1290	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291	key->pin_len = pin_len;
1292
1293	if (type == HCI_LK_CHANGED_COMBINATION)
1294		key->type = old_key_type;
1295	else
1296		key->type = type;
1297
1298	if (persistent)
1299		*persistent = hci_persistent_key(hdev, conn, type,
1300						 old_key_type);
1301
1302	return key;
1303}
1304
1305struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306			    u8 addr_type, u8 type, u8 authenticated,
1307			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308{
1309	struct smp_ltk *key, *old_key;
1310	u8 role = ltk_role(type);
1311
1312	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313	if (old_key)
1314		key = old_key;
1315	else {
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->long_term_keys);
1320	}
1321
1322	bacpy(&key->bdaddr, bdaddr);
1323	key->bdaddr_type = addr_type;
1324	memcpy(key->val, tk, sizeof(key->val));
1325	key->authenticated = authenticated;
1326	key->ediv = ediv;
1327	key->rand = rand;
1328	key->enc_size = enc_size;
1329	key->type = type;
1330
1331	return key;
1332}
1333
1334struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336{
1337	struct smp_irk *irk;
1338
1339	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340	if (!irk) {
1341		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342		if (!irk)
1343			return NULL;
1344
1345		bacpy(&irk->bdaddr, bdaddr);
1346		irk->addr_type = addr_type;
1347
1348		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349	}
1350
1351	memcpy(irk->val, val, 16);
1352	bacpy(&irk->rpa, rpa);
1353
1354	return irk;
1355}
1356
1357int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358{
1359	struct link_key *key;
1360
1361	key = hci_find_link_key(hdev, bdaddr);
1362	if (!key)
1363		return -ENOENT;
1364
1365	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366
1367	list_del_rcu(&key->list);
1368	kfree_rcu(key, rcu);
1369
1370	return 0;
1371}
1372
1373int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374{
1375	struct smp_ltk *k, *tmp;
1376	int removed = 0;
1377
1378	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380			continue;
1381
1382		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383
1384		list_del_rcu(&k->list);
1385		kfree_rcu(k, rcu);
1386		removed++;
1387	}
1388
1389	return removed ? 0 : -ENOENT;
1390}
1391
1392void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393{
1394	struct smp_irk *k, *tmp;
1395
1396	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398			continue;
1399
1400		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401
1402		list_del_rcu(&k->list);
1403		kfree_rcu(k, rcu);
1404	}
1405}
1406
1407bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408{
1409	struct smp_ltk *k;
1410	struct smp_irk *irk;
1411	u8 addr_type;
1412
1413	if (type == BDADDR_BREDR) {
1414		if (hci_find_link_key(hdev, bdaddr))
1415			return true;
1416		return false;
1417	}
1418
1419	/* Convert to HCI addr type which struct smp_ltk uses */
1420	if (type == BDADDR_LE_PUBLIC)
1421		addr_type = ADDR_LE_DEV_PUBLIC;
1422	else
1423		addr_type = ADDR_LE_DEV_RANDOM;
1424
1425	irk = hci_get_irk(hdev, bdaddr, addr_type);
1426	if (irk) {
1427		bdaddr = &irk->bdaddr;
1428		addr_type = irk->addr_type;
1429	}
1430
1431	rcu_read_lock();
1432	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434			rcu_read_unlock();
1435			return true;
1436		}
1437	}
1438	rcu_read_unlock();
1439
1440	return false;
1441}
1442
1443/* HCI command timer function */
1444static void hci_cmd_timeout(struct work_struct *work)
1445{
1446	struct hci_dev *hdev = container_of(work, struct hci_dev,
1447					    cmd_timer.work);
1448
1449	if (hdev->req_skb) {
1450		u16 opcode = hci_skb_opcode(hdev->req_skb);
 
1451
1452		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453
1454		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455	} else {
1456		bt_dev_err(hdev, "command tx timeout");
1457	}
1458
1459	if (hdev->cmd_timeout)
1460		hdev->cmd_timeout(hdev);
1461
1462	atomic_set(&hdev->cmd_cnt, 1);
1463	queue_work(hdev->workqueue, &hdev->cmd_work);
1464}
1465
1466/* HCI ncmd timer function */
1467static void hci_ncmd_timeout(struct work_struct *work)
1468{
1469	struct hci_dev *hdev = container_of(work, struct hci_dev,
1470					    ncmd_timer.work);
1471
1472	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473
1474	/* During HCI_INIT phase no events can be injected if the ncmd timer
1475	 * triggers since the procedure has its own timeout handling.
1476	 */
1477	if (test_bit(HCI_INIT, &hdev->flags))
1478		return;
1479
1480	/* This is an irrecoverable state, inject hardware error event */
1481	hci_reset_dev(hdev);
1482}
1483
1484struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485					  bdaddr_t *bdaddr, u8 bdaddr_type)
1486{
1487	struct oob_data *data;
1488
1489	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490		if (bacmp(bdaddr, &data->bdaddr) != 0)
1491			continue;
1492		if (data->bdaddr_type != bdaddr_type)
1493			continue;
1494		return data;
1495	}
1496
1497	return NULL;
1498}
1499
1500int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501			       u8 bdaddr_type)
1502{
1503	struct oob_data *data;
1504
1505	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506	if (!data)
1507		return -ENOENT;
1508
1509	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510
1511	list_del(&data->list);
1512	kfree(data);
1513
1514	return 0;
1515}
1516
1517void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518{
1519	struct oob_data *data, *n;
1520
1521	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522		list_del(&data->list);
1523		kfree(data);
1524	}
1525}
1526
1527int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529			    u8 *hash256, u8 *rand256)
1530{
1531	struct oob_data *data;
1532
1533	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534	if (!data) {
1535		data = kmalloc(sizeof(*data), GFP_KERNEL);
1536		if (!data)
1537			return -ENOMEM;
1538
1539		bacpy(&data->bdaddr, bdaddr);
1540		data->bdaddr_type = bdaddr_type;
1541		list_add(&data->list, &hdev->remote_oob_data);
1542	}
1543
1544	if (hash192 && rand192) {
1545		memcpy(data->hash192, hash192, sizeof(data->hash192));
1546		memcpy(data->rand192, rand192, sizeof(data->rand192));
1547		if (hash256 && rand256)
1548			data->present = 0x03;
1549	} else {
1550		memset(data->hash192, 0, sizeof(data->hash192));
1551		memset(data->rand192, 0, sizeof(data->rand192));
1552		if (hash256 && rand256)
1553			data->present = 0x02;
1554		else
1555			data->present = 0x00;
1556	}
1557
1558	if (hash256 && rand256) {
1559		memcpy(data->hash256, hash256, sizeof(data->hash256));
1560		memcpy(data->rand256, rand256, sizeof(data->rand256));
1561	} else {
1562		memset(data->hash256, 0, sizeof(data->hash256));
1563		memset(data->rand256, 0, sizeof(data->rand256));
1564		if (hash192 && rand192)
1565			data->present = 0x01;
1566	}
1567
1568	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569
1570	return 0;
1571}
1572
1573/* This function requires the caller holds hdev->lock */
1574struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575{
1576	struct adv_info *adv_instance;
1577
1578	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579		if (adv_instance->instance == instance)
1580			return adv_instance;
1581	}
1582
1583	return NULL;
1584}
1585
1586/* This function requires the caller holds hdev->lock */
1587struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588{
1589	struct adv_info *cur_instance;
1590
1591	cur_instance = hci_find_adv_instance(hdev, instance);
1592	if (!cur_instance)
1593		return NULL;
1594
1595	if (cur_instance == list_last_entry(&hdev->adv_instances,
1596					    struct adv_info, list))
1597		return list_first_entry(&hdev->adv_instances,
1598						 struct adv_info, list);
1599	else
1600		return list_next_entry(cur_instance, list);
1601}
1602
1603/* This function requires the caller holds hdev->lock */
1604int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605{
1606	struct adv_info *adv_instance;
1607
1608	adv_instance = hci_find_adv_instance(hdev, instance);
1609	if (!adv_instance)
1610		return -ENOENT;
1611
1612	BT_DBG("%s removing %dMR", hdev->name, instance);
1613
1614	if (hdev->cur_adv_instance == instance) {
1615		if (hdev->adv_instance_timeout) {
1616			cancel_delayed_work(&hdev->adv_instance_expire);
1617			hdev->adv_instance_timeout = 0;
1618		}
1619		hdev->cur_adv_instance = 0x00;
1620	}
1621
1622	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1623
1624	list_del(&adv_instance->list);
1625	kfree(adv_instance);
1626
1627	hdev->adv_instance_cnt--;
1628
1629	return 0;
1630}
1631
1632void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1633{
1634	struct adv_info *adv_instance, *n;
1635
1636	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637		adv_instance->rpa_expired = rpa_expired;
1638}
1639
1640/* This function requires the caller holds hdev->lock */
1641void hci_adv_instances_clear(struct hci_dev *hdev)
1642{
1643	struct adv_info *adv_instance, *n;
1644
1645	if (hdev->adv_instance_timeout) {
1646		disable_delayed_work(&hdev->adv_instance_expire);
1647		hdev->adv_instance_timeout = 0;
1648	}
1649
1650	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651		disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652		list_del(&adv_instance->list);
1653		kfree(adv_instance);
1654	}
1655
1656	hdev->adv_instance_cnt = 0;
1657	hdev->cur_adv_instance = 0x00;
1658}
1659
1660static void adv_instance_rpa_expired(struct work_struct *work)
 
 
 
 
1661{
1662	struct adv_info *adv_instance = container_of(work, struct adv_info,
1663						     rpa_expired_cb.work);
1664
1665	BT_DBG("");
1666
1667	adv_instance->rpa_expired = true;
1668}
1669
1670/* This function requires the caller holds hdev->lock */
1671struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672				      u32 flags, u16 adv_data_len, u8 *adv_data,
1673				      u16 scan_rsp_len, u8 *scan_rsp_data,
1674				      u16 timeout, u16 duration, s8 tx_power,
1675				      u32 min_interval, u32 max_interval,
1676				      u8 mesh_handle)
1677{
1678	struct adv_info *adv;
1679
1680	adv = hci_find_adv_instance(hdev, instance);
1681	if (adv) {
1682		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685	} else {
1686		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688			return ERR_PTR(-EOVERFLOW);
1689
1690		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691		if (!adv)
1692			return ERR_PTR(-ENOMEM);
1693
1694		adv->pending = true;
1695		adv->instance = instance;
1696
1697		/* If controller support only one set and the instance is set to
1698		 * 1 then there is no option other than using handle 0x00.
1699		 */
1700		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701			adv->handle = 0x00;
1702		else
1703			adv->handle = instance;
1704
1705		list_add(&adv->list, &hdev->adv_instances);
 
 
1706		hdev->adv_instance_cnt++;
1707	}
1708
1709	adv->flags = flags;
1710	adv->min_interval = min_interval;
1711	adv->max_interval = max_interval;
1712	adv->tx_power = tx_power;
1713	/* Defining a mesh_handle changes the timing units to ms,
1714	 * rather than seconds, and ties the instance to the requested
1715	 * mesh_tx queue.
1716	 */
1717	adv->mesh = mesh_handle;
1718
1719	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720				  scan_rsp_len, scan_rsp_data);
1721
1722	adv->timeout = timeout;
1723	adv->remaining_time = timeout;
1724
1725	if (duration == 0)
1726		adv->duration = hdev->def_multi_adv_rotation_duration;
1727	else
1728		adv->duration = duration;
1729
1730	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1731
1732	BT_DBG("%s for %dMR", hdev->name, instance);
1733
1734	return adv;
1735}
1736
1737/* This function requires the caller holds hdev->lock */
1738struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739				      u32 flags, u8 data_len, u8 *data,
1740				      u32 min_interval, u32 max_interval)
1741{
1742	struct adv_info *adv;
1743
1744	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746				   min_interval, max_interval, 0);
1747	if (IS_ERR(adv))
1748		return adv;
1749
1750	adv->periodic = true;
1751	adv->per_adv_data_len = data_len;
1752
1753	if (data)
1754		memcpy(adv->per_adv_data, data, data_len);
1755
1756	return adv;
1757}
1758
1759/* This function requires the caller holds hdev->lock */
1760int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761			      u16 adv_data_len, u8 *adv_data,
1762			      u16 scan_rsp_len, u8 *scan_rsp_data)
1763{
1764	struct adv_info *adv;
1765
1766	adv = hci_find_adv_instance(hdev, instance);
1767
1768	/* If advertisement doesn't exist, we can't modify its data */
1769	if (!adv)
1770		return -ENOENT;
1771
1772	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774		memcpy(adv->adv_data, adv_data, adv_data_len);
1775		adv->adv_data_len = adv_data_len;
1776		adv->adv_data_changed = true;
1777	}
1778
1779	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782		adv->scan_rsp_len = scan_rsp_len;
1783		adv->scan_rsp_changed = true;
1784	}
1785
1786	/* Mark as changed if there are flags which would affect it */
1787	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789		adv->scan_rsp_changed = true;
1790
1791	return 0;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796{
1797	u32 flags;
1798	struct adv_info *adv;
1799
1800	if (instance == 0x00) {
1801		/* Instance 0 always manages the "Tx Power" and "Flags"
1802		 * fields
1803		 */
1804		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805
1806		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807		 * corresponds to the "connectable" instance flag.
1808		 */
1809		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811
1812		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815			flags |= MGMT_ADV_FLAG_DISCOV;
1816
1817		return flags;
1818	}
1819
1820	adv = hci_find_adv_instance(hdev, instance);
1821
1822	/* Return 0 when we got an invalid instance identifier. */
1823	if (!adv)
1824		return 0;
1825
1826	return adv->flags;
1827}
1828
1829bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830{
1831	struct adv_info *adv;
1832
1833	/* Instance 0x00 always set local name */
1834	if (instance == 0x00)
1835		return true;
1836
1837	adv = hci_find_adv_instance(hdev, instance);
1838	if (!adv)
1839		return false;
1840
1841	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843		return true;
1844
1845	return adv->scan_rsp_len ? true : false;
1846}
1847
1848/* This function requires the caller holds hdev->lock */
1849void hci_adv_monitors_clear(struct hci_dev *hdev)
1850{
1851	struct adv_monitor *monitor;
1852	int handle;
1853
1854	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855		hci_free_adv_monitor(hdev, monitor);
1856
1857	idr_destroy(&hdev->adv_monitors_idr);
1858}
1859
1860/* Frees the monitor structure and do some bookkeepings.
1861 * This function requires the caller holds hdev->lock.
1862 */
1863void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864{
1865	struct adv_pattern *pattern;
1866	struct adv_pattern *tmp;
1867
1868	if (!monitor)
1869		return;
1870
1871	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872		list_del(&pattern->list);
1873		kfree(pattern);
1874	}
1875
1876	if (monitor->handle)
1877		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878
1879	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880		hdev->adv_monitors_cnt--;
1881		mgmt_adv_monitor_removed(hdev, monitor->handle);
1882	}
1883
1884	kfree(monitor);
1885}
1886
1887/* Assigns handle to a monitor, and if offloading is supported and power is on,
1888 * also attempts to forward the request to the controller.
1889 * This function requires the caller holds hci_req_sync_lock.
1890 */
1891int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1892{
1893	int min, max, handle;
1894	int status = 0;
1895
1896	if (!monitor)
1897		return -EINVAL;
1898
1899	hci_dev_lock(hdev);
1900
1901	min = HCI_MIN_ADV_MONITOR_HANDLE;
1902	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904			   GFP_KERNEL);
1905
1906	hci_dev_unlock(hdev);
1907
1908	if (handle < 0)
1909		return handle;
1910
1911	monitor->handle = handle;
1912
1913	if (!hdev_is_powered(hdev))
1914		return status;
1915
1916	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917	case HCI_ADV_MONITOR_EXT_NONE:
1918		bt_dev_dbg(hdev, "add monitor %d status %d",
1919			   monitor->handle, status);
1920		/* Message was not forwarded to controller - not an error */
1921		break;
1922
1923	case HCI_ADV_MONITOR_EXT_MSFT:
1924		status = msft_add_monitor_pattern(hdev, monitor);
1925		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926			   handle, status);
1927		break;
1928	}
1929
1930	return status;
1931}
1932
1933/* Attempts to tell the controller and free the monitor. If somehow the
1934 * controller doesn't have a corresponding handle, remove anyway.
1935 * This function requires the caller holds hci_req_sync_lock.
1936 */
1937static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938				  struct adv_monitor *monitor)
1939{
1940	int status = 0;
1941	int handle;
1942
1943	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945		bt_dev_dbg(hdev, "remove monitor %d status %d",
1946			   monitor->handle, status);
1947		goto free_monitor;
1948
1949	case HCI_ADV_MONITOR_EXT_MSFT:
1950		handle = monitor->handle;
1951		status = msft_remove_monitor(hdev, monitor);
1952		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953			   handle, status);
1954		break;
1955	}
1956
1957	/* In case no matching handle registered, just free the monitor */
1958	if (status == -ENOENT)
1959		goto free_monitor;
1960
1961	return status;
1962
1963free_monitor:
1964	if (status == -ENOENT)
1965		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966			    monitor->handle);
1967	hci_free_adv_monitor(hdev, monitor);
1968
1969	return status;
1970}
1971
1972/* This function requires the caller holds hci_req_sync_lock */
1973int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1974{
1975	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1976
1977	if (!monitor)
1978		return -EINVAL;
1979
1980	return hci_remove_adv_monitor(hdev, monitor);
1981}
1982
1983/* This function requires the caller holds hci_req_sync_lock */
1984int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1985{
1986	struct adv_monitor *monitor;
1987	int idr_next_id = 0;
1988	int status = 0;
1989
1990	while (1) {
1991		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992		if (!monitor)
1993			break;
1994
1995		status = hci_remove_adv_monitor(hdev, monitor);
1996		if (status)
1997			return status;
1998
1999		idr_next_id++;
2000	}
2001
2002	return status;
2003}
2004
2005/* This function requires the caller holds hdev->lock */
2006bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007{
2008	return !idr_is_empty(&hdev->adv_monitors_idr);
2009}
2010
2011int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2012{
2013	if (msft_monitor_supported(hdev))
2014		return HCI_ADV_MONITOR_EXT_MSFT;
2015
2016	return HCI_ADV_MONITOR_EXT_NONE;
2017}
2018
2019struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020					 bdaddr_t *bdaddr, u8 type)
2021{
2022	struct bdaddr_list *b;
2023
2024	list_for_each_entry(b, bdaddr_list, list) {
2025		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026			return b;
2027	}
2028
2029	return NULL;
2030}
2031
2032struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034				u8 type)
2035{
2036	struct bdaddr_list_with_irk *b;
2037
2038	list_for_each_entry(b, bdaddr_list, list) {
2039		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040			return b;
2041	}
2042
2043	return NULL;
2044}
2045
2046struct bdaddr_list_with_flags *
2047hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048				  bdaddr_t *bdaddr, u8 type)
2049{
2050	struct bdaddr_list_with_flags *b;
2051
2052	list_for_each_entry(b, bdaddr_list, list) {
2053		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054			return b;
2055	}
2056
2057	return NULL;
2058}
2059
2060void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061{
2062	struct bdaddr_list *b, *n;
2063
2064	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065		list_del(&b->list);
2066		kfree(b);
2067	}
2068}
2069
2070int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071{
2072	struct bdaddr_list *entry;
2073
2074	if (!bacmp(bdaddr, BDADDR_ANY))
2075		return -EBADF;
2076
2077	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078		return -EEXIST;
2079
2080	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081	if (!entry)
2082		return -ENOMEM;
2083
2084	bacpy(&entry->bdaddr, bdaddr);
2085	entry->bdaddr_type = type;
2086
2087	list_add(&entry->list, list);
2088
2089	return 0;
2090}
2091
2092int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093					u8 type, u8 *peer_irk, u8 *local_irk)
2094{
2095	struct bdaddr_list_with_irk *entry;
2096
2097	if (!bacmp(bdaddr, BDADDR_ANY))
2098		return -EBADF;
2099
2100	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101		return -EEXIST;
2102
2103	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104	if (!entry)
2105		return -ENOMEM;
2106
2107	bacpy(&entry->bdaddr, bdaddr);
2108	entry->bdaddr_type = type;
2109
2110	if (peer_irk)
2111		memcpy(entry->peer_irk, peer_irk, 16);
2112
2113	if (local_irk)
2114		memcpy(entry->local_irk, local_irk, 16);
2115
2116	list_add(&entry->list, list);
2117
2118	return 0;
2119}
2120
2121int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122				   u8 type, u32 flags)
2123{
2124	struct bdaddr_list_with_flags *entry;
2125
2126	if (!bacmp(bdaddr, BDADDR_ANY))
2127		return -EBADF;
2128
2129	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130		return -EEXIST;
2131
2132	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133	if (!entry)
2134		return -ENOMEM;
2135
2136	bacpy(&entry->bdaddr, bdaddr);
2137	entry->bdaddr_type = type;
2138	entry->flags = flags;
2139
2140	list_add(&entry->list, list);
2141
2142	return 0;
2143}
2144
2145int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2146{
2147	struct bdaddr_list *entry;
2148
2149	if (!bacmp(bdaddr, BDADDR_ANY)) {
2150		hci_bdaddr_list_clear(list);
2151		return 0;
2152	}
2153
2154	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155	if (!entry)
2156		return -ENOENT;
2157
2158	list_del(&entry->list);
2159	kfree(entry);
2160
2161	return 0;
2162}
2163
2164int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165							u8 type)
2166{
2167	struct bdaddr_list_with_irk *entry;
2168
2169	if (!bacmp(bdaddr, BDADDR_ANY)) {
2170		hci_bdaddr_list_clear(list);
2171		return 0;
2172	}
2173
2174	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175	if (!entry)
2176		return -ENOENT;
2177
2178	list_del(&entry->list);
2179	kfree(entry);
2180
2181	return 0;
2182}
2183
2184int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2185				   u8 type)
2186{
2187	struct bdaddr_list_with_flags *entry;
2188
2189	if (!bacmp(bdaddr, BDADDR_ANY)) {
2190		hci_bdaddr_list_clear(list);
2191		return 0;
2192	}
2193
2194	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2195	if (!entry)
2196		return -ENOENT;
2197
2198	list_del(&entry->list);
2199	kfree(entry);
2200
2201	return 0;
2202}
2203
2204/* This function requires the caller holds hdev->lock */
2205struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2206					       bdaddr_t *addr, u8 addr_type)
2207{
2208	struct hci_conn_params *params;
2209
2210	list_for_each_entry(params, &hdev->le_conn_params, list) {
2211		if (bacmp(&params->addr, addr) == 0 &&
2212		    params->addr_type == addr_type) {
2213			return params;
2214		}
2215	}
2216
2217	return NULL;
2218}
2219
2220/* This function requires the caller holds hdev->lock or rcu_read_lock */
2221struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2222						  bdaddr_t *addr, u8 addr_type)
2223{
2224	struct hci_conn_params *param;
2225
2226	rcu_read_lock();
2227
2228	list_for_each_entry_rcu(param, list, action) {
2229		if (bacmp(&param->addr, addr) == 0 &&
2230		    param->addr_type == addr_type) {
2231			rcu_read_unlock();
2232			return param;
2233		}
2234	}
2235
2236	rcu_read_unlock();
2237
2238	return NULL;
2239}
2240
2241/* This function requires the caller holds hdev->lock */
2242void hci_pend_le_list_del_init(struct hci_conn_params *param)
2243{
2244	if (list_empty(&param->action))
2245		return;
2246
2247	list_del_rcu(&param->action);
2248	synchronize_rcu();
2249	INIT_LIST_HEAD(&param->action);
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253void hci_pend_le_list_add(struct hci_conn_params *param,
2254			  struct list_head *list)
2255{
2256	list_add_rcu(&param->action, list);
2257}
2258
2259/* This function requires the caller holds hdev->lock */
2260struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2261					    bdaddr_t *addr, u8 addr_type)
2262{
2263	struct hci_conn_params *params;
2264
2265	params = hci_conn_params_lookup(hdev, addr, addr_type);
2266	if (params)
2267		return params;
2268
2269	params = kzalloc(sizeof(*params), GFP_KERNEL);
2270	if (!params) {
2271		bt_dev_err(hdev, "out of memory");
2272		return NULL;
2273	}
2274
2275	bacpy(&params->addr, addr);
2276	params->addr_type = addr_type;
2277
2278	list_add(&params->list, &hdev->le_conn_params);
2279	INIT_LIST_HEAD(&params->action);
2280
2281	params->conn_min_interval = hdev->le_conn_min_interval;
2282	params->conn_max_interval = hdev->le_conn_max_interval;
2283	params->conn_latency = hdev->le_conn_latency;
2284	params->supervision_timeout = hdev->le_supv_timeout;
2285	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2286
2287	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2288
2289	return params;
2290}
2291
2292void hci_conn_params_free(struct hci_conn_params *params)
2293{
2294	hci_pend_le_list_del_init(params);
2295
2296	if (params->conn) {
2297		hci_conn_drop(params->conn);
2298		hci_conn_put(params->conn);
2299	}
2300
 
2301	list_del(&params->list);
2302	kfree(params);
2303}
2304
2305/* This function requires the caller holds hdev->lock */
2306void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2307{
2308	struct hci_conn_params *params;
2309
2310	params = hci_conn_params_lookup(hdev, addr, addr_type);
2311	if (!params)
2312		return;
2313
2314	hci_conn_params_free(params);
2315
2316	hci_update_passive_scan(hdev);
2317
2318	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2319}
2320
2321/* This function requires the caller holds hdev->lock */
2322void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2323{
2324	struct hci_conn_params *params, *tmp;
2325
2326	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2327		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2328			continue;
2329
2330		/* If trying to establish one time connection to disabled
2331		 * device, leave the params, but mark them as just once.
2332		 */
2333		if (params->explicit_connect) {
2334			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2335			continue;
2336		}
2337
2338		hci_conn_params_free(params);
 
2339	}
2340
2341	BT_DBG("All LE disabled connection parameters were removed");
2342}
2343
2344/* This function requires the caller holds hdev->lock */
2345static void hci_conn_params_clear_all(struct hci_dev *hdev)
2346{
2347	struct hci_conn_params *params, *tmp;
2348
2349	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2350		hci_conn_params_free(params);
2351
2352	BT_DBG("All LE connection parameters were removed");
2353}
2354
2355/* Copy the Identity Address of the controller.
2356 *
2357 * If the controller has a public BD_ADDR, then by default use that one.
2358 * If this is a LE only controller without a public address, default to
2359 * the static random address.
2360 *
2361 * For debugging purposes it is possible to force controllers with a
2362 * public address to use the static random address instead.
2363 *
2364 * In case BR/EDR has been disabled on a dual-mode controller and
2365 * userspace has configured a static address, then that address
2366 * becomes the identity address instead of the public BR/EDR address.
2367 */
2368void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2369			       u8 *bdaddr_type)
2370{
2371	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2372	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2373	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2374	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2375		bacpy(bdaddr, &hdev->static_addr);
2376		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2377	} else {
2378		bacpy(bdaddr, &hdev->bdaddr);
2379		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2380	}
2381}
2382
2383static void hci_clear_wake_reason(struct hci_dev *hdev)
2384{
2385	hci_dev_lock(hdev);
2386
2387	hdev->wake_reason = 0;
2388	bacpy(&hdev->wake_addr, BDADDR_ANY);
2389	hdev->wake_addr_type = 0;
2390
2391	hci_dev_unlock(hdev);
2392}
2393
2394static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2395				void *data)
2396{
2397	struct hci_dev *hdev =
2398		container_of(nb, struct hci_dev, suspend_notifier);
2399	int ret = 0;
2400
2401	/* Userspace has full control of this device. Do nothing. */
2402	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2403		return NOTIFY_DONE;
2404
2405	/* To avoid a potential race with hci_unregister_dev. */
2406	hci_dev_hold(hdev);
2407
2408	switch (action) {
2409	case PM_HIBERNATION_PREPARE:
2410	case PM_SUSPEND_PREPARE:
2411		ret = hci_suspend_dev(hdev);
2412		break;
2413	case PM_POST_HIBERNATION:
2414	case PM_POST_SUSPEND:
2415		ret = hci_resume_dev(hdev);
2416		break;
2417	}
2418
2419	if (ret)
2420		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2421			   action, ret);
2422
2423	hci_dev_put(hdev);
2424	return NOTIFY_DONE;
2425}
2426
2427/* Alloc HCI device */
2428struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2429{
2430	struct hci_dev *hdev;
2431	unsigned int alloc_size;
2432
2433	alloc_size = sizeof(*hdev);
2434	if (sizeof_priv) {
2435		/* Fixme: May need ALIGN-ment? */
2436		alloc_size += sizeof_priv;
2437	}
2438
2439	hdev = kzalloc(alloc_size, GFP_KERNEL);
2440	if (!hdev)
2441		return NULL;
2442
2443	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2444	hdev->esco_type = (ESCO_HV1);
2445	hdev->link_mode = (HCI_LM_ACCEPT);
2446	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2447	hdev->io_capability = 0x03;	/* No Input No Output */
2448	hdev->manufacturer = 0xffff;	/* Default to internal use */
2449	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2450	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2451	hdev->adv_instance_cnt = 0;
2452	hdev->cur_adv_instance = 0x00;
2453	hdev->adv_instance_timeout = 0;
2454
2455	hdev->advmon_allowlist_duration = 300;
2456	hdev->advmon_no_filter_duration = 500;
2457	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2458
2459	hdev->sniff_max_interval = 800;
2460	hdev->sniff_min_interval = 80;
2461
2462	hdev->le_adv_channel_map = 0x07;
2463	hdev->le_adv_min_interval = 0x0800;
2464	hdev->le_adv_max_interval = 0x0800;
2465	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2466	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2467	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2468	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2469	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2470	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2471	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2472	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2473	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2474	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2475	hdev->le_conn_min_interval = 0x0018;
2476	hdev->le_conn_max_interval = 0x0028;
2477	hdev->le_conn_latency = 0x0000;
2478	hdev->le_supv_timeout = 0x002a;
2479	hdev->le_def_tx_len = 0x001b;
2480	hdev->le_def_tx_time = 0x0148;
2481	hdev->le_max_tx_len = 0x001b;
2482	hdev->le_max_tx_time = 0x0148;
2483	hdev->le_max_rx_len = 0x001b;
2484	hdev->le_max_rx_time = 0x0148;
2485	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2486	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2487	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2488	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2489	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2490	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2491	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2492	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2493	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2494
2495	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2496	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2497	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2498	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2499	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2500	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2501
2502	/* default 1.28 sec page scan */
2503	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2504	hdev->def_page_scan_int = 0x0800;
2505	hdev->def_page_scan_window = 0x0012;
2506
2507	mutex_init(&hdev->lock);
2508	mutex_init(&hdev->req_lock);
2509
2510	ida_init(&hdev->unset_handle_ida);
2511
2512	INIT_LIST_HEAD(&hdev->mesh_pending);
2513	INIT_LIST_HEAD(&hdev->mgmt_pending);
2514	INIT_LIST_HEAD(&hdev->reject_list);
2515	INIT_LIST_HEAD(&hdev->accept_list);
2516	INIT_LIST_HEAD(&hdev->uuids);
2517	INIT_LIST_HEAD(&hdev->link_keys);
2518	INIT_LIST_HEAD(&hdev->long_term_keys);
2519	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2520	INIT_LIST_HEAD(&hdev->remote_oob_data);
2521	INIT_LIST_HEAD(&hdev->le_accept_list);
2522	INIT_LIST_HEAD(&hdev->le_resolv_list);
2523	INIT_LIST_HEAD(&hdev->le_conn_params);
2524	INIT_LIST_HEAD(&hdev->pend_le_conns);
2525	INIT_LIST_HEAD(&hdev->pend_le_reports);
2526	INIT_LIST_HEAD(&hdev->conn_hash.list);
2527	INIT_LIST_HEAD(&hdev->adv_instances);
2528	INIT_LIST_HEAD(&hdev->blocked_keys);
2529	INIT_LIST_HEAD(&hdev->monitored_devices);
2530
2531	INIT_LIST_HEAD(&hdev->local_codecs);
2532	INIT_WORK(&hdev->rx_work, hci_rx_work);
2533	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2534	INIT_WORK(&hdev->tx_work, hci_tx_work);
2535	INIT_WORK(&hdev->power_on, hci_power_on);
2536	INIT_WORK(&hdev->error_reset, hci_error_reset);
2537
2538	hci_cmd_sync_init(hdev);
2539
2540	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2541
2542	skb_queue_head_init(&hdev->rx_q);
2543	skb_queue_head_init(&hdev->cmd_q);
2544	skb_queue_head_init(&hdev->raw_q);
2545
2546	init_waitqueue_head(&hdev->req_wait_q);
2547
2548	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2549	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2550
2551	hci_devcd_setup(hdev);
2552
2553	hci_init_sysfs(hdev);
2554	discovery_init(hdev);
2555
2556	return hdev;
2557}
2558EXPORT_SYMBOL(hci_alloc_dev_priv);
2559
2560/* Free HCI device */
2561void hci_free_dev(struct hci_dev *hdev)
2562{
2563	/* will free via device release */
2564	put_device(&hdev->dev);
2565}
2566EXPORT_SYMBOL(hci_free_dev);
2567
2568/* Register HCI device */
2569int hci_register_dev(struct hci_dev *hdev)
2570{
2571	int id, error;
2572
2573	if (!hdev->open || !hdev->close || !hdev->send)
2574		return -EINVAL;
2575
2576	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	if (id < 0)
2578		return id;
2579
2580	error = dev_set_name(&hdev->dev, "hci%u", id);
2581	if (error)
2582		return error;
2583
2584	hdev->name = dev_name(&hdev->dev);
2585	hdev->id = id;
2586
2587	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2588
2589	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
2590	if (!hdev->workqueue) {
2591		error = -ENOMEM;
2592		goto err;
2593	}
2594
2595	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2596						      hdev->name);
2597	if (!hdev->req_workqueue) {
2598		destroy_workqueue(hdev->workqueue);
2599		error = -ENOMEM;
2600		goto err;
2601	}
2602
2603	if (!IS_ERR_OR_NULL(bt_debugfs))
2604		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2605
 
 
2606	error = device_add(&hdev->dev);
2607	if (error < 0)
2608		goto err_wqueue;
2609
2610	hci_leds_init(hdev);
2611
2612	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2613				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2614				    hdev);
2615	if (hdev->rfkill) {
2616		if (rfkill_register(hdev->rfkill) < 0) {
2617			rfkill_destroy(hdev->rfkill);
2618			hdev->rfkill = NULL;
2619		}
2620	}
2621
2622	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2623		hci_dev_set_flag(hdev, HCI_RFKILLED);
2624
2625	hci_dev_set_flag(hdev, HCI_SETUP);
2626	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2627
2628	/* Assume BR/EDR support until proven otherwise (such as
2629	 * through reading supported features during init.
2630	 */
2631	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 
 
2632
2633	write_lock(&hci_dev_list_lock);
2634	list_add(&hdev->list, &hci_dev_list);
2635	write_unlock(&hci_dev_list_lock);
2636
2637	/* Devices that are marked for raw-only usage are unconfigured
2638	 * and should not be included in normal operation.
2639	 */
2640	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2641		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2642
2643	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2644	 * callback.
2645	 */
2646	if (hdev->wakeup)
2647		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2648
2649	hci_sock_dev_event(hdev, HCI_DEV_REG);
2650	hci_dev_hold(hdev);
2651
2652	error = hci_register_suspend_notifier(hdev);
2653	if (error)
2654		BT_WARN("register suspend notifier failed error:%d\n", error);
2655
2656	queue_work(hdev->req_workqueue, &hdev->power_on);
2657
2658	idr_init(&hdev->adv_monitors_idr);
2659	msft_register(hdev);
2660
2661	return id;
2662
2663err_wqueue:
2664	debugfs_remove_recursive(hdev->debugfs);
2665	destroy_workqueue(hdev->workqueue);
2666	destroy_workqueue(hdev->req_workqueue);
2667err:
2668	ida_free(&hci_index_ida, hdev->id);
2669
2670	return error;
2671}
2672EXPORT_SYMBOL(hci_register_dev);
2673
2674/* Unregister HCI device */
2675void hci_unregister_dev(struct hci_dev *hdev)
2676{
 
 
2677	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2678
2679	mutex_lock(&hdev->unregister_lock);
2680	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2681	mutex_unlock(&hdev->unregister_lock);
 
2682
2683	write_lock(&hci_dev_list_lock);
2684	list_del(&hdev->list);
2685	write_unlock(&hci_dev_list_lock);
2686
2687	disable_work_sync(&hdev->rx_work);
2688	disable_work_sync(&hdev->cmd_work);
2689	disable_work_sync(&hdev->tx_work);
2690	disable_work_sync(&hdev->power_on);
2691	disable_work_sync(&hdev->error_reset);
2692
2693	hci_cmd_sync_clear(hdev);
2694
2695	hci_unregister_suspend_notifier(hdev);
2696
2697	hci_dev_do_close(hdev);
2698
2699	if (!test_bit(HCI_INIT, &hdev->flags) &&
2700	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2701	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2702		hci_dev_lock(hdev);
2703		mgmt_index_removed(hdev);
2704		hci_dev_unlock(hdev);
2705	}
2706
2707	/* mgmt_index_removed should take care of emptying the
2708	 * pending list */
2709	BUG_ON(!list_empty(&hdev->mgmt_pending));
2710
2711	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2712
2713	if (hdev->rfkill) {
2714		rfkill_unregister(hdev->rfkill);
2715		rfkill_destroy(hdev->rfkill);
2716	}
2717
2718	device_del(&hdev->dev);
2719	/* Actual cleanup is deferred until hci_release_dev(). */
2720	hci_dev_put(hdev);
2721}
2722EXPORT_SYMBOL(hci_unregister_dev);
2723
2724/* Release HCI device */
2725void hci_release_dev(struct hci_dev *hdev)
2726{
2727	debugfs_remove_recursive(hdev->debugfs);
2728	kfree_const(hdev->hw_info);
2729	kfree_const(hdev->fw_info);
2730
2731	destroy_workqueue(hdev->workqueue);
2732	destroy_workqueue(hdev->req_workqueue);
2733
2734	hci_dev_lock(hdev);
2735	hci_bdaddr_list_clear(&hdev->reject_list);
2736	hci_bdaddr_list_clear(&hdev->accept_list);
2737	hci_uuids_clear(hdev);
2738	hci_link_keys_clear(hdev);
2739	hci_smp_ltks_clear(hdev);
2740	hci_smp_irks_clear(hdev);
2741	hci_remote_oob_data_clear(hdev);
2742	hci_adv_instances_clear(hdev);
2743	hci_adv_monitors_clear(hdev);
2744	hci_bdaddr_list_clear(&hdev->le_accept_list);
2745	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2746	hci_conn_params_clear_all(hdev);
2747	hci_discovery_filter_clear(hdev);
2748	hci_blocked_keys_clear(hdev);
2749	hci_codec_list_clear(&hdev->local_codecs);
2750	msft_release(hdev);
2751	hci_dev_unlock(hdev);
2752
2753	ida_destroy(&hdev->unset_handle_ida);
2754	ida_free(&hci_index_ida, hdev->id);
2755	kfree_skb(hdev->sent_cmd);
2756	kfree_skb(hdev->req_skb);
2757	kfree_skb(hdev->recv_event);
2758	kfree(hdev);
2759}
2760EXPORT_SYMBOL(hci_release_dev);
2761
2762int hci_register_suspend_notifier(struct hci_dev *hdev)
2763{
2764	int ret = 0;
2765
2766	if (!hdev->suspend_notifier.notifier_call &&
2767	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769		ret = register_pm_notifier(&hdev->suspend_notifier);
2770	}
2771
2772	return ret;
2773}
2774
2775int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776{
2777	int ret = 0;
2778
2779	if (hdev->suspend_notifier.notifier_call) {
2780		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781		if (!ret)
2782			hdev->suspend_notifier.notifier_call = NULL;
2783	}
2784
2785	return ret;
2786}
2787
2788/* Cancel ongoing command synchronously:
2789 *
2790 * - Cancel command timer
2791 * - Reset command counter
2792 * - Cancel command request
2793 */
2794static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2795{
2796	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2797
2798	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2799		disable_delayed_work_sync(&hdev->cmd_timer);
2800		disable_delayed_work_sync(&hdev->ncmd_timer);
2801	} else  {
2802		cancel_delayed_work_sync(&hdev->cmd_timer);
2803		cancel_delayed_work_sync(&hdev->ncmd_timer);
2804	}
2805
2806	atomic_set(&hdev->cmd_cnt, 1);
2807
2808	hci_cmd_sync_cancel_sync(hdev, err);
2809}
 
2810
2811/* Suspend HCI device */
2812int hci_suspend_dev(struct hci_dev *hdev)
2813{
2814	int ret;
2815
2816	bt_dev_dbg(hdev, "");
2817
2818	/* Suspend should only act on when powered. */
2819	if (!hdev_is_powered(hdev) ||
2820	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2821		return 0;
2822
2823	/* If powering down don't attempt to suspend */
2824	if (mgmt_powering_down(hdev))
2825		return 0;
2826
2827	/* Cancel potentially blocking sync operation before suspend */
2828	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2829
2830	hci_req_sync_lock(hdev);
2831	ret = hci_suspend_sync(hdev);
2832	hci_req_sync_unlock(hdev);
2833
2834	hci_clear_wake_reason(hdev);
2835	mgmt_suspending(hdev, hdev->suspend_state);
2836
2837	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2838	return ret;
2839}
2840EXPORT_SYMBOL(hci_suspend_dev);
2841
2842/* Resume HCI device */
2843int hci_resume_dev(struct hci_dev *hdev)
2844{
2845	int ret;
2846
2847	bt_dev_dbg(hdev, "");
2848
2849	/* Resume should only act on when powered. */
2850	if (!hdev_is_powered(hdev) ||
2851	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2852		return 0;
2853
2854	/* If powering down don't attempt to resume */
2855	if (mgmt_powering_down(hdev))
2856		return 0;
2857
2858	hci_req_sync_lock(hdev);
2859	ret = hci_resume_sync(hdev);
2860	hci_req_sync_unlock(hdev);
2861
2862	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2863		      hdev->wake_addr_type);
2864
2865	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2866	return ret;
2867}
2868EXPORT_SYMBOL(hci_resume_dev);
2869
2870/* Reset HCI device */
2871int hci_reset_dev(struct hci_dev *hdev)
2872{
2873	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2874	struct sk_buff *skb;
2875
2876	skb = bt_skb_alloc(3, GFP_ATOMIC);
2877	if (!skb)
2878		return -ENOMEM;
2879
2880	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2881	skb_put_data(skb, hw_err, 3);
2882
2883	bt_dev_err(hdev, "Injecting HCI hardware error event");
2884
2885	/* Send Hardware Error to upper stack */
2886	return hci_recv_frame(hdev, skb);
2887}
2888EXPORT_SYMBOL(hci_reset_dev);
2889
2890static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2891{
2892	if (hdev->classify_pkt_type)
2893		return hdev->classify_pkt_type(hdev, skb);
2894
2895	return hci_skb_pkt_type(skb);
2896}
2897
2898/* Receive frame from HCI drivers */
2899int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2900{
2901	u8 dev_pkt_type;
2902
2903	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2904		      && !test_bit(HCI_INIT, &hdev->flags))) {
2905		kfree_skb(skb);
2906		return -ENXIO;
2907	}
2908
2909	/* Check if the driver agree with packet type classification */
2910	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2911	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2912		hci_skb_pkt_type(skb) = dev_pkt_type;
2913	}
2914
2915	switch (hci_skb_pkt_type(skb)) {
2916	case HCI_EVENT_PKT:
2917		break;
2918	case HCI_ACLDATA_PKT:
2919		/* Detect if ISO packet has been sent as ACL */
2920		if (hci_conn_num(hdev, ISO_LINK)) {
2921			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2922			__u8 type;
2923
2924			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2925			if (type == ISO_LINK)
2926				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2927		}
2928		break;
2929	case HCI_SCODATA_PKT:
2930		break;
2931	case HCI_ISODATA_PKT:
2932		break;
2933	default:
2934		kfree_skb(skb);
2935		return -EINVAL;
2936	}
2937
2938	/* Incoming skb */
2939	bt_cb(skb)->incoming = 1;
2940
2941	/* Time stamp */
2942	__net_timestamp(skb);
2943
2944	skb_queue_tail(&hdev->rx_q, skb);
2945	queue_work(hdev->workqueue, &hdev->rx_work);
2946
2947	return 0;
2948}
2949EXPORT_SYMBOL(hci_recv_frame);
2950
2951/* Receive diagnostic message from HCI drivers */
2952int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2953{
2954	/* Mark as diagnostic packet */
2955	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2956
2957	/* Time stamp */
2958	__net_timestamp(skb);
2959
2960	skb_queue_tail(&hdev->rx_q, skb);
2961	queue_work(hdev->workqueue, &hdev->rx_work);
2962
2963	return 0;
2964}
2965EXPORT_SYMBOL(hci_recv_diag);
2966
2967void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2968{
2969	va_list vargs;
2970
2971	va_start(vargs, fmt);
2972	kfree_const(hdev->hw_info);
2973	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974	va_end(vargs);
2975}
2976EXPORT_SYMBOL(hci_set_hw_info);
2977
2978void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2979{
2980	va_list vargs;
2981
2982	va_start(vargs, fmt);
2983	kfree_const(hdev->fw_info);
2984	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2985	va_end(vargs);
2986}
2987EXPORT_SYMBOL(hci_set_fw_info);
2988
2989/* ---- Interface to upper protocols ---- */
2990
2991int hci_register_cb(struct hci_cb *cb)
2992{
2993	BT_DBG("%p name %s", cb, cb->name);
2994
2995	list_add_tail_rcu(&cb->list, &hci_cb_list);
 
 
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL(hci_register_cb);
3000
3001int hci_unregister_cb(struct hci_cb *cb)
3002{
3003	BT_DBG("%p name %s", cb, cb->name);
3004
3005	list_del_rcu(&cb->list);
3006	synchronize_rcu();
 
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(hci_unregister_cb);
3011
3012static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013{
3014	int err;
3015
3016	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017	       skb->len);
3018
3019	/* Time stamp */
3020	__net_timestamp(skb);
3021
3022	/* Send copy to monitor */
3023	hci_send_to_monitor(hdev, skb);
3024
3025	if (atomic_read(&hdev->promisc)) {
3026		/* Send copy to the sockets */
3027		hci_send_to_sock(hdev, skb);
3028	}
3029
3030	/* Get rid of skb owner, prior to sending to the driver. */
3031	skb_orphan(skb);
3032
3033	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034		kfree_skb(skb);
3035		return -EINVAL;
3036	}
3037
3038	err = hdev->send(hdev, skb);
3039	if (err < 0) {
3040		bt_dev_err(hdev, "sending frame failed (%d)", err);
3041		kfree_skb(skb);
3042		return err;
3043	}
3044
3045	return 0;
3046}
3047
3048/* Send HCI command */
3049int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050		 const void *param)
3051{
3052	struct sk_buff *skb;
3053
3054	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055
3056	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3057	if (!skb) {
3058		bt_dev_err(hdev, "no memory for command");
3059		return -ENOMEM;
3060	}
3061
3062	/* Stand-alone HCI commands must be flagged as
3063	 * single-command requests.
3064	 */
3065	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066
3067	skb_queue_tail(&hdev->cmd_q, skb);
3068	queue_work(hdev->workqueue, &hdev->cmd_work);
3069
3070	return 0;
3071}
3072
3073int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074		   const void *param)
3075{
3076	struct sk_buff *skb;
3077
3078	if (hci_opcode_ogf(opcode) != 0x3f) {
3079		/* A controller receiving a command shall respond with either
3080		 * a Command Status Event or a Command Complete Event.
3081		 * Therefore, all standard HCI commands must be sent via the
3082		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083		 * Some vendors do not comply with this rule for vendor-specific
3084		 * commands and do not return any event. We want to support
3085		 * unresponded commands for such cases only.
3086		 */
3087		bt_dev_err(hdev, "unresponded command not supported");
3088		return -EINVAL;
3089	}
3090
3091	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3092	if (!skb) {
3093		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094			   opcode);
3095		return -ENOMEM;
3096	}
3097
3098	hci_send_frame(hdev, skb);
3099
3100	return 0;
3101}
3102EXPORT_SYMBOL(__hci_cmd_send);
3103
3104/* Get data from the previously sent command */
3105static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3106{
3107	struct hci_command_hdr *hdr;
3108
3109	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3110		return NULL;
3111
3112	hdr = (void *)skb->data;
3113
3114	if (hdr->opcode != cpu_to_le16(opcode))
3115		return NULL;
3116
3117	return skb->data + HCI_COMMAND_HDR_SIZE;
3118}
3119
3120/* Get data from the previously sent command */
3121void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3122{
3123	void *data;
3124
3125	/* Check if opcode matches last sent command */
3126	data = hci_cmd_data(hdev->sent_cmd, opcode);
3127	if (!data)
3128		/* Check if opcode matches last request */
3129		data = hci_cmd_data(hdev->req_skb, opcode);
3130
3131	return data;
3132}
3133
3134/* Get data from last received event */
3135void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3136{
3137	struct hci_event_hdr *hdr;
3138	int offset;
3139
3140	if (!hdev->recv_event)
3141		return NULL;
3142
3143	hdr = (void *)hdev->recv_event->data;
3144	offset = sizeof(*hdr);
3145
3146	if (hdr->evt != event) {
3147		/* In case of LE metaevent check the subevent match */
3148		if (hdr->evt == HCI_EV_LE_META) {
3149			struct hci_ev_le_meta *ev;
3150
3151			ev = (void *)hdev->recv_event->data + offset;
3152			offset += sizeof(*ev);
3153			if (ev->subevent == event)
3154				goto found;
3155		}
3156		return NULL;
3157	}
3158
3159found:
3160	bt_dev_dbg(hdev, "event 0x%2.2x", event);
 
3161
3162	return hdev->recv_event->data + offset;
3163}
 
3164
3165/* Send ACL data */
3166static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3167{
3168	struct hci_acl_hdr *hdr;
3169	int len = skb->len;
3170
3171	skb_push(skb, HCI_ACL_HDR_SIZE);
3172	skb_reset_transport_header(skb);
3173	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3174	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3175	hdr->dlen   = cpu_to_le16(len);
3176}
3177
3178static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3179			  struct sk_buff *skb, __u16 flags)
3180{
3181	struct hci_conn *conn = chan->conn;
3182	struct hci_dev *hdev = conn->hdev;
3183	struct sk_buff *list;
3184
3185	skb->len = skb_headlen(skb);
3186	skb->data_len = 0;
3187
3188	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3189
3190	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
3191
3192	list = skb_shinfo(skb)->frag_list;
3193	if (!list) {
3194		/* Non fragmented */
3195		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3196
3197		skb_queue_tail(queue, skb);
3198	} else {
3199		/* Fragmented */
3200		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3201
3202		skb_shinfo(skb)->frag_list = NULL;
3203
3204		/* Queue all fragments atomically. We need to use spin_lock_bh
3205		 * here because of 6LoWPAN links, as there this function is
3206		 * called from softirq and using normal spin lock could cause
3207		 * deadlocks.
3208		 */
3209		spin_lock_bh(&queue->lock);
3210
3211		__skb_queue_tail(queue, skb);
3212
3213		flags &= ~ACL_START;
3214		flags |= ACL_CONT;
3215		do {
3216			skb = list; list = list->next;
3217
3218			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3219			hci_add_acl_hdr(skb, conn->handle, flags);
3220
3221			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3222
3223			__skb_queue_tail(queue, skb);
3224		} while (list);
3225
3226		spin_unlock_bh(&queue->lock);
3227	}
3228}
3229
3230void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3231{
3232	struct hci_dev *hdev = chan->conn->hdev;
3233
3234	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3235
3236	hci_queue_acl(chan, &chan->data_q, skb, flags);
3237
3238	queue_work(hdev->workqueue, &hdev->tx_work);
3239}
3240
3241/* Send SCO data */
3242void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3243{
3244	struct hci_dev *hdev = conn->hdev;
3245	struct hci_sco_hdr hdr;
3246
3247	BT_DBG("%s len %d", hdev->name, skb->len);
3248
3249	hdr.handle = cpu_to_le16(conn->handle);
3250	hdr.dlen   = skb->len;
3251
3252	skb_push(skb, HCI_SCO_HDR_SIZE);
3253	skb_reset_transport_header(skb);
3254	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3255
3256	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3257
3258	skb_queue_tail(&conn->data_q, skb);
3259	queue_work(hdev->workqueue, &hdev->tx_work);
3260}
3261
3262/* Send ISO data */
3263static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3264{
3265	struct hci_iso_hdr *hdr;
3266	int len = skb->len;
3267
3268	skb_push(skb, HCI_ISO_HDR_SIZE);
3269	skb_reset_transport_header(skb);
3270	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3271	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3272	hdr->dlen   = cpu_to_le16(len);
3273}
3274
3275static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3276			  struct sk_buff *skb)
3277{
3278	struct hci_dev *hdev = conn->hdev;
3279	struct sk_buff *list;
3280	__u16 flags;
3281
3282	skb->len = skb_headlen(skb);
3283	skb->data_len = 0;
3284
3285	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3286
3287	list = skb_shinfo(skb)->frag_list;
3288
3289	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3290	hci_add_iso_hdr(skb, conn->handle, flags);
3291
3292	if (!list) {
3293		/* Non fragmented */
3294		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3295
3296		skb_queue_tail(queue, skb);
3297	} else {
3298		/* Fragmented */
3299		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3300
3301		skb_shinfo(skb)->frag_list = NULL;
3302
3303		__skb_queue_tail(queue, skb);
3304
3305		do {
3306			skb = list; list = list->next;
3307
3308			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3309			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3310						   0x00);
3311			hci_add_iso_hdr(skb, conn->handle, flags);
3312
3313			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3314
3315			__skb_queue_tail(queue, skb);
3316		} while (list);
3317	}
3318}
3319
3320void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3321{
3322	struct hci_dev *hdev = conn->hdev;
3323
3324	BT_DBG("%s len %d", hdev->name, skb->len);
3325
3326	hci_queue_iso(conn, &conn->data_q, skb);
3327
3328	queue_work(hdev->workqueue, &hdev->tx_work);
3329}
3330
3331/* ---- HCI TX task (outgoing data) ---- */
3332
3333/* HCI Connection scheduler */
3334static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3335{
3336	struct hci_dev *hdev;
3337	int cnt, q;
3338
3339	if (!conn) {
3340		*quote = 0;
3341		return;
3342	}
3343
3344	hdev = conn->hdev;
3345
3346	switch (conn->type) {
3347	case ACL_LINK:
3348		cnt = hdev->acl_cnt;
3349		break;
3350	case SCO_LINK:
3351	case ESCO_LINK:
3352		cnt = hdev->sco_cnt;
3353		break;
3354	case LE_LINK:
3355		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3356		break;
3357	case ISO_LINK:
3358		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3359			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360		break;
3361	default:
3362		cnt = 0;
3363		bt_dev_err(hdev, "unknown link type %d", conn->type);
3364	}
3365
3366	q = cnt / num;
3367	*quote = q ? q : 1;
3368}
3369
3370static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3371				     int *quote)
3372{
3373	struct hci_conn_hash *h = &hdev->conn_hash;
3374	struct hci_conn *conn = NULL, *c;
3375	unsigned int num = 0, min = ~0;
3376
3377	/* We don't have to lock device here. Connections are always
3378	 * added and removed with TX task disabled. */
3379
3380	rcu_read_lock();
3381
3382	list_for_each_entry_rcu(c, &h->list, list) {
3383		if (c->type != type || skb_queue_empty(&c->data_q))
3384			continue;
3385
3386		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3387			continue;
3388
3389		num++;
3390
3391		if (c->sent < min) {
3392			min  = c->sent;
3393			conn = c;
3394		}
3395
3396		if (hci_conn_num(hdev, type) == num)
3397			break;
3398	}
3399
3400	rcu_read_unlock();
3401
3402	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	BT_DBG("conn %p quote %d", conn, *quote);
3405	return conn;
3406}
3407
3408static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3409{
3410	struct hci_conn_hash *h = &hdev->conn_hash;
3411	struct hci_conn *c;
3412
3413	bt_dev_err(hdev, "link tx timeout");
3414
3415	rcu_read_lock();
3416
3417	/* Kill stalled connections */
3418	list_for_each_entry_rcu(c, &h->list, list) {
3419		if (c->type == type && c->sent) {
3420			bt_dev_err(hdev, "killing stalled connection %pMR",
3421				   &c->dst);
3422			/* hci_disconnect might sleep, so, we have to release
3423			 * the RCU read lock before calling it.
3424			 */
3425			rcu_read_unlock();
3426			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3427			rcu_read_lock();
3428		}
3429	}
3430
3431	rcu_read_unlock();
3432}
3433
3434static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3435				      int *quote)
3436{
3437	struct hci_conn_hash *h = &hdev->conn_hash;
3438	struct hci_chan *chan = NULL;
3439	unsigned int num = 0, min = ~0, cur_prio = 0;
3440	struct hci_conn *conn;
3441	int conn_num = 0;
3442
3443	BT_DBG("%s", hdev->name);
3444
3445	rcu_read_lock();
3446
3447	list_for_each_entry_rcu(conn, &h->list, list) {
3448		struct hci_chan *tmp;
3449
3450		if (conn->type != type)
3451			continue;
3452
3453		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3454			continue;
3455
3456		conn_num++;
3457
3458		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3459			struct sk_buff *skb;
3460
3461			if (skb_queue_empty(&tmp->data_q))
3462				continue;
3463
3464			skb = skb_peek(&tmp->data_q);
3465			if (skb->priority < cur_prio)
3466				continue;
3467
3468			if (skb->priority > cur_prio) {
3469				num = 0;
3470				min = ~0;
3471				cur_prio = skb->priority;
3472			}
3473
3474			num++;
3475
3476			if (conn->sent < min) {
3477				min  = conn->sent;
3478				chan = tmp;
3479			}
3480		}
3481
3482		if (hci_conn_num(hdev, type) == conn_num)
3483			break;
3484	}
3485
3486	rcu_read_unlock();
3487
3488	if (!chan)
3489		return NULL;
3490
3491	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492
 
 
3493	BT_DBG("chan %p quote %d", chan, *quote);
3494	return chan;
3495}
3496
3497static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3498{
3499	struct hci_conn_hash *h = &hdev->conn_hash;
3500	struct hci_conn *conn;
3501	int num = 0;
3502
3503	BT_DBG("%s", hdev->name);
3504
3505	rcu_read_lock();
3506
3507	list_for_each_entry_rcu(conn, &h->list, list) {
3508		struct hci_chan *chan;
3509
3510		if (conn->type != type)
3511			continue;
3512
3513		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3514			continue;
3515
3516		num++;
3517
3518		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3519			struct sk_buff *skb;
3520
3521			if (chan->sent) {
3522				chan->sent = 0;
3523				continue;
3524			}
3525
3526			if (skb_queue_empty(&chan->data_q))
3527				continue;
3528
3529			skb = skb_peek(&chan->data_q);
3530			if (skb->priority >= HCI_PRIO_MAX - 1)
3531				continue;
3532
3533			skb->priority = HCI_PRIO_MAX - 1;
3534
3535			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3536			       skb->priority);
3537		}
3538
3539		if (hci_conn_num(hdev, type) == num)
3540			break;
3541	}
3542
3543	rcu_read_unlock();
3544
3545}
3546
3547static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3548{
3549	unsigned long last_tx;
3550
3551	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3552		return;
3553
3554	switch (type) {
3555	case LE_LINK:
3556		last_tx = hdev->le_last_tx;
3557		break;
3558	default:
3559		last_tx = hdev->acl_last_tx;
3560		break;
 
3561	}
3562
3563	/* tx timeout must be longer than maximum link supervision timeout
3564	 * (40.9 seconds)
3565	 */
3566	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3567		hci_link_tx_to(hdev, type);
3568}
3569
3570/* Schedule SCO */
3571static void hci_sched_sco(struct hci_dev *hdev)
3572{
3573	struct hci_conn *conn;
 
3574	struct sk_buff *skb;
3575	int quote;
3576
3577	BT_DBG("%s", hdev->name);
3578
3579	if (!hci_conn_num(hdev, SCO_LINK))
3580		return;
3581
3582	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3583		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3584			BT_DBG("skb %p len %d", skb, skb->len);
3585			hci_send_frame(hdev, skb);
3586
3587			conn->sent++;
3588			if (conn->sent == ~0)
3589				conn->sent = 0;
3590		}
3591	}
3592}
3593
3594static void hci_sched_esco(struct hci_dev *hdev)
3595{
3596	struct hci_conn *conn;
3597	struct sk_buff *skb;
3598	int quote;
3599
3600	BT_DBG("%s", hdev->name);
3601
3602	if (!hci_conn_num(hdev, ESCO_LINK))
3603		return;
3604
3605	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3606						     &quote))) {
3607		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3608			BT_DBG("skb %p len %d", skb, skb->len);
3609			hci_send_frame(hdev, skb);
 
3610
3611			conn->sent++;
3612			if (conn->sent == ~0)
3613				conn->sent = 0;
3614		}
3615	}
 
 
 
3616}
3617
3618static void hci_sched_acl_pkt(struct hci_dev *hdev)
3619{
3620	unsigned int cnt = hdev->acl_cnt;
3621	struct hci_chan *chan;
3622	struct sk_buff *skb;
3623	int quote;
 
3624
3625	__check_timeout(hdev, cnt, ACL_LINK);
3626
3627	while (hdev->acl_cnt &&
3628	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
 
 
 
 
 
 
 
3629		u32 priority = (skb_peek(&chan->data_q))->priority;
3630		while (quote-- && (skb = skb_peek(&chan->data_q))) {
 
 
3631			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3632			       skb->len, skb->priority);
3633
3634			/* Stop if priority has changed */
3635			if (skb->priority < priority)
3636				break;
3637
3638			skb = skb_dequeue(&chan->data_q);
3639
 
 
 
 
3640			hci_conn_enter_active_mode(chan->conn,
3641						   bt_cb(skb)->force_active);
3642
3643			hci_send_frame(hdev, skb);
3644			hdev->acl_last_tx = jiffies;
3645
3646			hdev->acl_cnt--;
3647			chan->sent++;
3648			chan->conn->sent++;
3649
3650			/* Send pending SCO packets right away */
3651			hci_sched_sco(hdev);
3652			hci_sched_esco(hdev);
3653		}
3654	}
3655
3656	if (cnt != hdev->acl_cnt)
3657		hci_prio_recalculate(hdev, ACL_LINK);
3658}
3659
3660static void hci_sched_acl(struct hci_dev *hdev)
3661{
3662	BT_DBG("%s", hdev->name);
3663
3664	/* No ACL link over BR/EDR controller */
3665	if (!hci_conn_num(hdev, ACL_LINK))
 
 
 
 
3666		return;
3667
3668	hci_sched_acl_pkt(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static void hci_sched_le(struct hci_dev *hdev)
3672{
3673	struct hci_chan *chan;
3674	struct sk_buff *skb;
3675	int quote, *cnt, tmp;
3676
3677	BT_DBG("%s", hdev->name);
3678
3679	if (!hci_conn_num(hdev, LE_LINK))
3680		return;
3681
3682	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3683
3684	__check_timeout(hdev, *cnt, LE_LINK);
 
 
 
 
3685
3686	tmp = *cnt;
3687	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
 
3688		u32 priority = (skb_peek(&chan->data_q))->priority;
3689		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3690			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691			       skb->len, skb->priority);
3692
3693			/* Stop if priority has changed */
3694			if (skb->priority < priority)
3695				break;
3696
3697			skb = skb_dequeue(&chan->data_q);
3698
3699			hci_send_frame(hdev, skb);
3700			hdev->le_last_tx = jiffies;
3701
3702			(*cnt)--;
3703			chan->sent++;
3704			chan->conn->sent++;
3705
3706			/* Send pending SCO packets right away */
3707			hci_sched_sco(hdev);
3708			hci_sched_esco(hdev);
3709		}
3710	}
3711
3712	if (*cnt != tmp)
3713		hci_prio_recalculate(hdev, LE_LINK);
3714}
3715
3716/* Schedule CIS */
3717static void hci_sched_iso(struct hci_dev *hdev)
3718{
3719	struct hci_conn *conn;
3720	struct sk_buff *skb;
3721	int quote, *cnt;
3722
3723	BT_DBG("%s", hdev->name);
3724
3725	if (!hci_conn_num(hdev, ISO_LINK))
3726		return;
3727
3728	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3729		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3730	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3731		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3732			BT_DBG("skb %p len %d", skb, skb->len);
3733			hci_send_frame(hdev, skb);
3734
3735			conn->sent++;
3736			if (conn->sent == ~0)
3737				conn->sent = 0;
3738			(*cnt)--;
3739		}
3740	}
3741}
3742
3743static void hci_tx_work(struct work_struct *work)
3744{
3745	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3746	struct sk_buff *skb;
3747
3748	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3749	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3750
3751	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3752		/* Schedule queues and send stuff to HCI driver */
 
3753		hci_sched_sco(hdev);
3754		hci_sched_esco(hdev);
3755		hci_sched_iso(hdev);
3756		hci_sched_acl(hdev);
3757		hci_sched_le(hdev);
3758	}
3759
3760	/* Send next queued raw (unknown type) packet */
3761	while ((skb = skb_dequeue(&hdev->raw_q)))
3762		hci_send_frame(hdev, skb);
3763}
3764
3765/* ----- HCI RX task (incoming data processing) ----- */
3766
3767/* ACL data packet */
3768static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3769{
3770	struct hci_acl_hdr *hdr;
3771	struct hci_conn *conn;
3772	__u16 handle, flags;
3773
3774	hdr = skb_pull_data(skb, sizeof(*hdr));
3775	if (!hdr) {
3776		bt_dev_err(hdev, "ACL packet too small");
3777		goto drop;
3778	}
3779
3780	handle = __le16_to_cpu(hdr->handle);
3781	flags  = hci_flags(handle);
3782	handle = hci_handle(handle);
3783
3784	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3785		   handle, flags);
3786
3787	hdev->stat.acl_rx++;
3788
3789	hci_dev_lock(hdev);
3790	conn = hci_conn_hash_lookup_handle(hdev, handle);
3791	hci_dev_unlock(hdev);
3792
3793	if (conn) {
3794		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3795
3796		/* Send to upper protocol */
3797		l2cap_recv_acldata(conn, skb, flags);
3798		return;
3799	} else {
3800		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3801			   handle);
3802	}
3803
3804drop:
3805	kfree_skb(skb);
3806}
3807
3808/* SCO data packet */
3809static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810{
3811	struct hci_sco_hdr *hdr;
3812	struct hci_conn *conn;
3813	__u16 handle, flags;
3814
3815	hdr = skb_pull_data(skb, sizeof(*hdr));
3816	if (!hdr) {
3817		bt_dev_err(hdev, "SCO packet too small");
3818		goto drop;
3819	}
3820
3821	handle = __le16_to_cpu(hdr->handle);
3822	flags  = hci_flags(handle);
3823	handle = hci_handle(handle);
3824
3825	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3826		   handle, flags);
3827
3828	hdev->stat.sco_rx++;
3829
3830	hci_dev_lock(hdev);
3831	conn = hci_conn_hash_lookup_handle(hdev, handle);
3832	hci_dev_unlock(hdev);
3833
3834	if (conn) {
3835		/* Send to upper protocol */
3836		hci_skb_pkt_status(skb) = flags & 0x03;
3837		sco_recv_scodata(conn, skb);
3838		return;
3839	} else {
3840		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3841				       handle);
3842	}
3843
3844drop:
3845	kfree_skb(skb);
3846}
3847
3848static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3849{
3850	struct hci_iso_hdr *hdr;
3851	struct hci_conn *conn;
3852	__u16 handle, flags;
3853
3854	hdr = skb_pull_data(skb, sizeof(*hdr));
3855	if (!hdr) {
3856		bt_dev_err(hdev, "ISO packet too small");
3857		goto drop;
3858	}
3859
3860	handle = __le16_to_cpu(hdr->handle);
3861	flags  = hci_flags(handle);
3862	handle = hci_handle(handle);
3863
3864	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3865		   handle, flags);
3866
3867	hci_dev_lock(hdev);
3868	conn = hci_conn_hash_lookup_handle(hdev, handle);
3869	hci_dev_unlock(hdev);
3870
3871	if (!conn) {
3872		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3873			   handle);
3874		goto drop;
3875	}
3876
3877	/* Send to upper protocol */
3878	iso_recv(conn, skb, flags);
3879	return;
3880
3881drop:
3882	kfree_skb(skb);
3883}
3884
3885static bool hci_req_is_complete(struct hci_dev *hdev)
3886{
3887	struct sk_buff *skb;
3888
3889	skb = skb_peek(&hdev->cmd_q);
3890	if (!skb)
3891		return true;
3892
3893	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3894}
3895
3896static void hci_resend_last(struct hci_dev *hdev)
3897{
3898	struct hci_command_hdr *sent;
3899	struct sk_buff *skb;
3900	u16 opcode;
3901
3902	if (!hdev->sent_cmd)
3903		return;
3904
3905	sent = (void *) hdev->sent_cmd->data;
3906	opcode = __le16_to_cpu(sent->opcode);
3907	if (opcode == HCI_OP_RESET)
3908		return;
3909
3910	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3911	if (!skb)
3912		return;
3913
3914	skb_queue_head(&hdev->cmd_q, skb);
3915	queue_work(hdev->workqueue, &hdev->cmd_work);
3916}
3917
3918void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3919			  hci_req_complete_t *req_complete,
3920			  hci_req_complete_skb_t *req_complete_skb)
3921{
3922	struct sk_buff *skb;
3923	unsigned long flags;
3924
3925	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3926
3927	/* If the completed command doesn't match the last one that was
3928	 * sent we need to do special handling of it.
3929	 */
3930	if (!hci_sent_cmd_data(hdev, opcode)) {
3931		/* Some CSR based controllers generate a spontaneous
3932		 * reset complete event during init and any pending
3933		 * command will never be completed. In such a case we
3934		 * need to resend whatever was the last sent
3935		 * command.
3936		 */
3937		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3938			hci_resend_last(hdev);
3939
3940		return;
3941	}
3942
3943	/* If we reach this point this event matches the last command sent */
3944	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3945
3946	/* If the command succeeded and there's still more commands in
3947	 * this request the request is not yet complete.
3948	 */
3949	if (!status && !hci_req_is_complete(hdev))
3950		return;
3951
3952	skb = hdev->req_skb;
3953
3954	/* If this was the last command in a request the complete
3955	 * callback would be found in hdev->req_skb instead of the
3956	 * command queue (hdev->cmd_q).
3957	 */
3958	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3959		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3960		return;
3961	}
3962
3963	if (skb && bt_cb(skb)->hci.req_complete) {
3964		*req_complete = bt_cb(skb)->hci.req_complete;
3965		return;
3966	}
3967
3968	/* Remove all pending commands belonging to this request */
3969	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3970	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3971		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3972			__skb_queue_head(&hdev->cmd_q, skb);
3973			break;
3974		}
3975
3976		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3977			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3978		else
3979			*req_complete = bt_cb(skb)->hci.req_complete;
3980		dev_kfree_skb_irq(skb);
3981	}
3982	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3983}
3984
3985static void hci_rx_work(struct work_struct *work)
3986{
3987	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3988	struct sk_buff *skb;
3989
3990	BT_DBG("%s", hdev->name);
3991
3992	/* The kcov_remote functions used for collecting packet parsing
3993	 * coverage information from this background thread and associate
3994	 * the coverage with the syscall's thread which originally injected
3995	 * the packet. This helps fuzzing the kernel.
3996	 */
3997	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3998		kcov_remote_start_common(skb_get_kcov_handle(skb));
3999
4000		/* Send copy to monitor */
4001		hci_send_to_monitor(hdev, skb);
4002
4003		if (atomic_read(&hdev->promisc)) {
4004			/* Send copy to the sockets */
4005			hci_send_to_sock(hdev, skb);
4006		}
4007
4008		/* If the device has been opened in HCI_USER_CHANNEL,
4009		 * the userspace has exclusive access to device.
4010		 * When device is HCI_INIT, we still need to process
4011		 * the data packets to the driver in order
4012		 * to complete its setup().
4013		 */
4014		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4015		    !test_bit(HCI_INIT, &hdev->flags)) {
4016			kfree_skb(skb);
4017			continue;
4018		}
4019
4020		if (test_bit(HCI_INIT, &hdev->flags)) {
4021			/* Don't process data packets in this states. */
4022			switch (hci_skb_pkt_type(skb)) {
4023			case HCI_ACLDATA_PKT:
4024			case HCI_SCODATA_PKT:
4025			case HCI_ISODATA_PKT:
4026				kfree_skb(skb);
4027				continue;
4028			}
4029		}
4030
4031		/* Process frame */
4032		switch (hci_skb_pkt_type(skb)) {
4033		case HCI_EVENT_PKT:
4034			BT_DBG("%s Event packet", hdev->name);
4035			hci_event_packet(hdev, skb);
4036			break;
4037
4038		case HCI_ACLDATA_PKT:
4039			BT_DBG("%s ACL data packet", hdev->name);
4040			hci_acldata_packet(hdev, skb);
4041			break;
4042
4043		case HCI_SCODATA_PKT:
4044			BT_DBG("%s SCO data packet", hdev->name);
4045			hci_scodata_packet(hdev, skb);
4046			break;
4047
4048		case HCI_ISODATA_PKT:
4049			BT_DBG("%s ISO data packet", hdev->name);
4050			hci_isodata_packet(hdev, skb);
4051			break;
4052
4053		default:
4054			kfree_skb(skb);
4055			break;
4056		}
4057	}
4058}
4059
4060static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4061{
4062	int err;
4063
4064	bt_dev_dbg(hdev, "skb %p", skb);
4065
4066	kfree_skb(hdev->sent_cmd);
4067
4068	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4069	if (!hdev->sent_cmd) {
4070		skb_queue_head(&hdev->cmd_q, skb);
4071		queue_work(hdev->workqueue, &hdev->cmd_work);
4072		return;
4073	}
4074
4075	err = hci_send_frame(hdev, skb);
4076	if (err < 0) {
4077		hci_cmd_sync_cancel_sync(hdev, -err);
4078		return;
4079	}
4080
4081	if (hdev->req_status == HCI_REQ_PEND &&
4082	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4083		kfree_skb(hdev->req_skb);
4084		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	}
4086
4087	atomic_dec(&hdev->cmd_cnt);
4088}
4089
4090static void hci_cmd_work(struct work_struct *work)
4091{
4092	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4093	struct sk_buff *skb;
4094
4095	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4096	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4097
4098	/* Send queued commands */
4099	if (atomic_read(&hdev->cmd_cnt)) {
4100		skb = skb_dequeue(&hdev->cmd_q);
4101		if (!skb)
4102			return;
4103
4104		hci_send_cmd_sync(hdev, skb);
4105
4106		rcu_read_lock();
4107		if (test_bit(HCI_RESET, &hdev->flags) ||
4108		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4109			cancel_delayed_work(&hdev->cmd_timer);
4110		else
4111			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4112					   HCI_CMD_TIMEOUT);
4113		rcu_read_unlock();
 
 
 
 
 
4114	}
4115}
v4.10.11
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
  33#include <asm/unaligned.h>
 
 
 
 
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
 
 
 
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_PRIMARY:
 264		bredr_init(req);
 265		break;
 266	case HCI_AMP:
 267		amp_init1(req);
 268		break;
 269	default:
 270		BT_ERR("Unknown device type %d", hdev->dev_type);
 271		break;
 272	}
 273
 274	return 0;
 275}
 276
 277static void bredr_setup(struct hci_request *req)
 278{
 279	__le16 param;
 280	__u8 flt_type;
 281
 282	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 283	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 284
 285	/* Read Class of Device */
 286	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 287
 288	/* Read Local Name */
 289	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 290
 291	/* Read Voice Setting */
 292	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 293
 294	/* Read Number of Supported IAC */
 295	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 296
 297	/* Read Current IAC LAP */
 298	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 299
 300	/* Clear Event Filters */
 301	flt_type = HCI_FLT_CLEAR_ALL;
 302	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 303
 304	/* Connection accept timeout ~20 secs */
 305	param = cpu_to_le16(0x7d00);
 306	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 307}
 308
 309static void le_setup(struct hci_request *req)
 310{
 311	struct hci_dev *hdev = req->hdev;
 312
 313	/* Read LE Buffer Size */
 314	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 315
 316	/* Read LE Local Supported Features */
 317	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 318
 319	/* Read LE Supported States */
 320	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 321
 322	/* LE-only controllers have LE implicitly enabled */
 323	if (!lmp_bredr_capable(hdev))
 324		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 325}
 326
 327static void hci_setup_event_mask(struct hci_request *req)
 328{
 329	struct hci_dev *hdev = req->hdev;
 330
 331	/* The second byte is 0xff instead of 0x9f (two reserved bits
 332	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 333	 * command otherwise.
 334	 */
 335	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 336
 337	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 338	 * any event mask for pre 1.2 devices.
 339	 */
 340	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 341		return;
 342
 343	if (lmp_bredr_capable(hdev)) {
 344		events[4] |= 0x01; /* Flow Specification Complete */
 345	} else {
 346		/* Use a different default for LE-only devices */
 347		memset(events, 0, sizeof(events));
 348		events[1] |= 0x20; /* Command Complete */
 349		events[1] |= 0x40; /* Command Status */
 350		events[1] |= 0x80; /* Hardware Error */
 351
 352		/* If the controller supports the Disconnect command, enable
 353		 * the corresponding event. In addition enable packet flow
 354		 * control related events.
 355		 */
 356		if (hdev->commands[0] & 0x20) {
 357			events[0] |= 0x10; /* Disconnection Complete */
 358			events[2] |= 0x04; /* Number of Completed Packets */
 359			events[3] |= 0x02; /* Data Buffer Overflow */
 360		}
 361
 362		/* If the controller supports the Read Remote Version
 363		 * Information command, enable the corresponding event.
 364		 */
 365		if (hdev->commands[2] & 0x80)
 366			events[1] |= 0x08; /* Read Remote Version Information
 367					    * Complete
 368					    */
 369
 370		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 371			events[0] |= 0x80; /* Encryption Change */
 372			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 373		}
 374	}
 375
 376	if (lmp_inq_rssi_capable(hdev) ||
 377	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 378		events[4] |= 0x02; /* Inquiry Result with RSSI */
 379
 380	if (lmp_ext_feat_capable(hdev))
 381		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 382
 383	if (lmp_esco_capable(hdev)) {
 384		events[5] |= 0x08; /* Synchronous Connection Complete */
 385		events[5] |= 0x10; /* Synchronous Connection Changed */
 386	}
 387
 388	if (lmp_sniffsubr_capable(hdev))
 389		events[5] |= 0x20; /* Sniff Subrating */
 390
 391	if (lmp_pause_enc_capable(hdev))
 392		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 393
 394	if (lmp_ext_inq_capable(hdev))
 395		events[5] |= 0x40; /* Extended Inquiry Result */
 396
 397	if (lmp_no_flush_capable(hdev))
 398		events[7] |= 0x01; /* Enhanced Flush Complete */
 399
 400	if (lmp_lsto_capable(hdev))
 401		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 402
 403	if (lmp_ssp_capable(hdev)) {
 404		events[6] |= 0x01;	/* IO Capability Request */
 405		events[6] |= 0x02;	/* IO Capability Response */
 406		events[6] |= 0x04;	/* User Confirmation Request */
 407		events[6] |= 0x08;	/* User Passkey Request */
 408		events[6] |= 0x10;	/* Remote OOB Data Request */
 409		events[6] |= 0x20;	/* Simple Pairing Complete */
 410		events[7] |= 0x04;	/* User Passkey Notification */
 411		events[7] |= 0x08;	/* Keypress Notification */
 412		events[7] |= 0x10;	/* Remote Host Supported
 413					 * Features Notification
 414					 */
 415	}
 416
 417	if (lmp_le_capable(hdev))
 418		events[7] |= 0x20;	/* LE Meta-Event */
 419
 420	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 421}
 422
 423static int hci_init2_req(struct hci_request *req, unsigned long opt)
 424{
 425	struct hci_dev *hdev = req->hdev;
 426
 427	if (hdev->dev_type == HCI_AMP)
 428		return amp_init2(req);
 429
 430	if (lmp_bredr_capable(hdev))
 431		bredr_setup(req);
 432	else
 433		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 434
 435	if (lmp_le_capable(hdev))
 436		le_setup(req);
 437
 438	/* All Bluetooth 1.2 and later controllers should support the
 439	 * HCI command for reading the local supported commands.
 440	 *
 441	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 442	 * but do not have support for this command. If that is the case,
 443	 * the driver can quirk the behavior and skip reading the local
 444	 * supported commands.
 445	 */
 446	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 447	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 448		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 449
 450	if (lmp_ssp_capable(hdev)) {
 451		/* When SSP is available, then the host features page
 452		 * should also be available as well. However some
 453		 * controllers list the max_page as 0 as long as SSP
 454		 * has not been enabled. To achieve proper debugging
 455		 * output, force the minimum max_page to 1 at least.
 456		 */
 457		hdev->max_page = 0x01;
 458
 459		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 460			u8 mode = 0x01;
 461
 462			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 463				    sizeof(mode), &mode);
 464		} else {
 465			struct hci_cp_write_eir cp;
 466
 467			memset(hdev->eir, 0, sizeof(hdev->eir));
 468			memset(&cp, 0, sizeof(cp));
 469
 470			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 471		}
 472	}
 473
 474	if (lmp_inq_rssi_capable(hdev) ||
 475	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 476		u8 mode;
 477
 478		/* If Extended Inquiry Result events are supported, then
 479		 * they are clearly preferred over Inquiry Result with RSSI
 480		 * events.
 481		 */
 482		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 483
 484		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 485	}
 486
 487	if (lmp_inq_tx_pwr_capable(hdev))
 488		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 489
 490	if (lmp_ext_feat_capable(hdev)) {
 491		struct hci_cp_read_local_ext_features cp;
 492
 493		cp.page = 0x01;
 494		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 495			    sizeof(cp), &cp);
 496	}
 497
 498	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 499		u8 enable = 1;
 500		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 501			    &enable);
 502	}
 503
 504	return 0;
 505}
 506
 507static void hci_setup_link_policy(struct hci_request *req)
 508{
 509	struct hci_dev *hdev = req->hdev;
 510	struct hci_cp_write_def_link_policy cp;
 511	u16 link_policy = 0;
 512
 513	if (lmp_rswitch_capable(hdev))
 514		link_policy |= HCI_LP_RSWITCH;
 515	if (lmp_hold_capable(hdev))
 516		link_policy |= HCI_LP_HOLD;
 517	if (lmp_sniff_capable(hdev))
 518		link_policy |= HCI_LP_SNIFF;
 519	if (lmp_park_capable(hdev))
 520		link_policy |= HCI_LP_PARK;
 521
 522	cp.policy = cpu_to_le16(link_policy);
 523	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 524}
 525
 526static void hci_set_le_support(struct hci_request *req)
 527{
 528	struct hci_dev *hdev = req->hdev;
 529	struct hci_cp_write_le_host_supported cp;
 530
 531	/* LE-only devices do not support explicit enablement */
 532	if (!lmp_bredr_capable(hdev))
 533		return;
 534
 535	memset(&cp, 0, sizeof(cp));
 536
 537	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 538		cp.le = 0x01;
 539		cp.simul = 0x00;
 540	}
 541
 542	if (cp.le != lmp_host_le_capable(hdev))
 543		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 544			    &cp);
 545}
 546
 547static void hci_set_event_mask_page_2(struct hci_request *req)
 548{
 549	struct hci_dev *hdev = req->hdev;
 550	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 551
 552	/* If Connectionless Slave Broadcast master role is supported
 553	 * enable all necessary events for it.
 554	 */
 555	if (lmp_csb_master_capable(hdev)) {
 556		events[1] |= 0x40;	/* Triggered Clock Capture */
 557		events[1] |= 0x80;	/* Synchronization Train Complete */
 558		events[2] |= 0x10;	/* Slave Page Response Timeout */
 559		events[2] |= 0x20;	/* CSB Channel Map Change */
 560	}
 561
 562	/* If Connectionless Slave Broadcast slave role is supported
 563	 * enable all necessary events for it.
 564	 */
 565	if (lmp_csb_slave_capable(hdev)) {
 566		events[2] |= 0x01;	/* Synchronization Train Received */
 567		events[2] |= 0x02;	/* CSB Receive */
 568		events[2] |= 0x04;	/* CSB Timeout */
 569		events[2] |= 0x08;	/* Truncated Page Complete */
 570	}
 571
 572	/* Enable Authenticated Payload Timeout Expired event if supported */
 573	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 574		events[2] |= 0x80;
 575
 576	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 577}
 578
 579static int hci_init3_req(struct hci_request *req, unsigned long opt)
 580{
 581	struct hci_dev *hdev = req->hdev;
 582	u8 p;
 583
 584	hci_setup_event_mask(req);
 585
 586	if (hdev->commands[6] & 0x20 &&
 587	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 588		struct hci_cp_read_stored_link_key cp;
 589
 590		bacpy(&cp.bdaddr, BDADDR_ANY);
 591		cp.read_all = 0x01;
 592		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 593	}
 594
 595	if (hdev->commands[5] & 0x10)
 596		hci_setup_link_policy(req);
 597
 598	if (hdev->commands[8] & 0x01)
 599		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 600
 601	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 602	 * support the Read Page Scan Type command. Check support for
 603	 * this command in the bit mask of supported commands.
 604	 */
 605	if (hdev->commands[13] & 0x01)
 606		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 607
 608	if (lmp_le_capable(hdev)) {
 609		u8 events[8];
 610
 611		memset(events, 0, sizeof(events));
 612
 613		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 614			events[0] |= 0x10;	/* LE Long Term Key Request */
 615
 616		/* If controller supports the Connection Parameters Request
 617		 * Link Layer Procedure, enable the corresponding event.
 618		 */
 619		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 620			events[0] |= 0x20;	/* LE Remote Connection
 621						 * Parameter Request
 622						 */
 623
 624		/* If the controller supports the Data Length Extension
 625		 * feature, enable the corresponding event.
 626		 */
 627		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 628			events[0] |= 0x40;	/* LE Data Length Change */
 629
 630		/* If the controller supports Extended Scanner Filter
 631		 * Policies, enable the correspondig event.
 632		 */
 633		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 634			events[1] |= 0x04;	/* LE Direct Advertising
 635						 * Report
 636						 */
 637
 638		/* If the controller supports the LE Set Scan Enable command,
 639		 * enable the corresponding advertising report event.
 640		 */
 641		if (hdev->commands[26] & 0x08)
 642			events[0] |= 0x02;	/* LE Advertising Report */
 643
 644		/* If the controller supports the LE Create Connection
 645		 * command, enable the corresponding event.
 646		 */
 647		if (hdev->commands[26] & 0x10)
 648			events[0] |= 0x01;	/* LE Connection Complete */
 649
 650		/* If the controller supports the LE Connection Update
 651		 * command, enable the corresponding event.
 652		 */
 653		if (hdev->commands[27] & 0x04)
 654			events[0] |= 0x04;	/* LE Connection Update
 655						 * Complete
 656						 */
 657
 658		/* If the controller supports the LE Read Remote Used Features
 659		 * command, enable the corresponding event.
 660		 */
 661		if (hdev->commands[27] & 0x20)
 662			events[0] |= 0x08;	/* LE Read Remote Used
 663						 * Features Complete
 664						 */
 665
 666		/* If the controller supports the LE Read Local P-256
 667		 * Public Key command, enable the corresponding event.
 668		 */
 669		if (hdev->commands[34] & 0x02)
 670			events[0] |= 0x80;	/* LE Read Local P-256
 671						 * Public Key Complete
 672						 */
 673
 674		/* If the controller supports the LE Generate DHKey
 675		 * command, enable the corresponding event.
 676		 */
 677		if (hdev->commands[34] & 0x04)
 678			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 679
 680		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 681			    events);
 682
 683		if (hdev->commands[25] & 0x40) {
 684			/* Read LE Advertising Channel TX Power */
 685			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 686		}
 687
 688		if (hdev->commands[26] & 0x40) {
 689			/* Read LE White List Size */
 690			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 691				    0, NULL);
 692		}
 693
 694		if (hdev->commands[26] & 0x80) {
 695			/* Clear LE White List */
 696			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 697		}
 698
 699		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 700			/* Read LE Maximum Data Length */
 701			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 702
 703			/* Read LE Suggested Default Data Length */
 704			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 705		}
 706
 707		hci_set_le_support(req);
 708	}
 709
 710	/* Read features beyond page 1 if available */
 711	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 712		struct hci_cp_read_local_ext_features cp;
 713
 714		cp.page = p;
 715		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 716			    sizeof(cp), &cp);
 717	}
 718
 719	return 0;
 720}
 721
 722static int hci_init4_req(struct hci_request *req, unsigned long opt)
 723{
 724	struct hci_dev *hdev = req->hdev;
 725
 726	/* Some Broadcom based Bluetooth controllers do not support the
 727	 * Delete Stored Link Key command. They are clearly indicating its
 728	 * absence in the bit mask of supported commands.
 729	 *
 730	 * Check the supported commands and only if the the command is marked
 731	 * as supported send it. If not supported assume that the controller
 732	 * does not have actual support for stored link keys which makes this
 733	 * command redundant anyway.
 734	 *
 735	 * Some controllers indicate that they support handling deleting
 736	 * stored link keys, but they don't. The quirk lets a driver
 737	 * just disable this command.
 738	 */
 739	if (hdev->commands[6] & 0x80 &&
 740	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 741		struct hci_cp_delete_stored_link_key cp;
 742
 743		bacpy(&cp.bdaddr, BDADDR_ANY);
 744		cp.delete_all = 0x01;
 745		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 746			    sizeof(cp), &cp);
 747	}
 748
 749	/* Set event mask page 2 if the HCI command for it is supported */
 750	if (hdev->commands[22] & 0x04)
 751		hci_set_event_mask_page_2(req);
 752
 753	/* Read local codec list if the HCI command is supported */
 754	if (hdev->commands[29] & 0x20)
 755		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 756
 757	/* Get MWS transport configuration if the HCI command is supported */
 758	if (hdev->commands[30] & 0x08)
 759		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 760
 761	/* Check for Synchronization Train support */
 762	if (lmp_sync_train_capable(hdev))
 763		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 764
 765	/* Enable Secure Connections if supported and configured */
 766	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 767	    bredr_sc_enabled(hdev)) {
 768		u8 support = 0x01;
 769
 770		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 771			    sizeof(support), &support);
 772	}
 773
 774	return 0;
 775}
 776
 777static int __hci_init(struct hci_dev *hdev)
 778{
 779	int err;
 780
 781	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 782	if (err < 0)
 783		return err;
 784
 785	if (hci_dev_test_flag(hdev, HCI_SETUP))
 786		hci_debugfs_create_basic(hdev);
 787
 788	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 789	if (err < 0)
 790		return err;
 791
 792	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 793	 * BR/EDR/LE type controllers. AMP controllers only need the
 794	 * first two stages of init.
 795	 */
 796	if (hdev->dev_type != HCI_PRIMARY)
 797		return 0;
 798
 799	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 800	if (err < 0)
 801		return err;
 802
 803	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 804	if (err < 0)
 805		return err;
 806
 807	/* This function is only called when the controller is actually in
 808	 * configured state. When the controller is marked as unconfigured,
 809	 * this initialization procedure is not run.
 810	 *
 811	 * It means that it is possible that a controller runs through its
 812	 * setup phase and then discovers missing settings. If that is the
 813	 * case, then this function will not be called. It then will only
 814	 * be called during the config phase.
 815	 *
 816	 * So only when in setup phase or config phase, create the debugfs
 817	 * entries and register the SMP channels.
 818	 */
 819	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 820	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 821		return 0;
 822
 823	hci_debugfs_create_common(hdev);
 824
 825	if (lmp_bredr_capable(hdev))
 826		hci_debugfs_create_bredr(hdev);
 827
 828	if (lmp_le_capable(hdev))
 829		hci_debugfs_create_le(hdev);
 830
 831	return 0;
 832}
 833
 834static int hci_init0_req(struct hci_request *req, unsigned long opt)
 835{
 836	struct hci_dev *hdev = req->hdev;
 837
 838	BT_DBG("%s %ld", hdev->name, opt);
 839
 840	/* Reset */
 841	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 842		hci_reset_req(req, 0);
 843
 844	/* Read Local Version */
 845	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 846
 847	/* Read BD Address */
 848	if (hdev->set_bdaddr)
 849		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 850
 851	return 0;
 852}
 853
 854static int __hci_unconf_init(struct hci_dev *hdev)
 855{
 856	int err;
 857
 858	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 859		return 0;
 860
 861	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 862	if (err < 0)
 863		return err;
 864
 865	if (hci_dev_test_flag(hdev, HCI_SETUP))
 866		hci_debugfs_create_basic(hdev);
 867
 868	return 0;
 869}
 870
 871static int hci_scan_req(struct hci_request *req, unsigned long opt)
 872{
 873	__u8 scan = opt;
 874
 875	BT_DBG("%s %x", req->hdev->name, scan);
 876
 877	/* Inquiry and Page scans */
 878	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 879	return 0;
 880}
 881
 882static int hci_auth_req(struct hci_request *req, unsigned long opt)
 883{
 884	__u8 auth = opt;
 885
 886	BT_DBG("%s %x", req->hdev->name, auth);
 887
 888	/* Authentication */
 889	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 890	return 0;
 891}
 892
 893static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 894{
 895	__u8 encrypt = opt;
 896
 897	BT_DBG("%s %x", req->hdev->name, encrypt);
 898
 899	/* Encryption */
 900	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 901	return 0;
 902}
 903
 904static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 905{
 906	__le16 policy = cpu_to_le16(opt);
 907
 908	BT_DBG("%s %x", req->hdev->name, policy);
 909
 910	/* Default link policy */
 911	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 912	return 0;
 913}
 914
 915/* Get HCI device by index.
 916 * Device is held on return. */
 917struct hci_dev *hci_dev_get(int index)
 918{
 919	struct hci_dev *hdev = NULL, *d;
 920
 921	BT_DBG("%d", index);
 922
 923	if (index < 0)
 924		return NULL;
 925
 926	read_lock(&hci_dev_list_lock);
 927	list_for_each_entry(d, &hci_dev_list, list) {
 928		if (d->id == index) {
 929			hdev = hci_dev_hold(d);
 930			break;
 931		}
 932	}
 933	read_unlock(&hci_dev_list_lock);
 934	return hdev;
 935}
 936
 937/* ---- Inquiry support ---- */
 938
 939bool hci_discovery_active(struct hci_dev *hdev)
 940{
 941	struct discovery_state *discov = &hdev->discovery;
 942
 943	switch (discov->state) {
 944	case DISCOVERY_FINDING:
 945	case DISCOVERY_RESOLVING:
 946		return true;
 947
 948	default:
 949		return false;
 950	}
 951}
 952
 953void hci_discovery_set_state(struct hci_dev *hdev, int state)
 954{
 955	int old_state = hdev->discovery.state;
 956
 957	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 958
 959	if (old_state == state)
 960		return;
 961
 962	hdev->discovery.state = state;
 963
 964	switch (state) {
 965	case DISCOVERY_STOPPED:
 966		hci_update_background_scan(hdev);
 967
 968		if (old_state != DISCOVERY_STARTING)
 969			mgmt_discovering(hdev, 0);
 970		break;
 971	case DISCOVERY_STARTING:
 972		break;
 973	case DISCOVERY_FINDING:
 974		mgmt_discovering(hdev, 1);
 975		break;
 976	case DISCOVERY_RESOLVING:
 977		break;
 978	case DISCOVERY_STOPPING:
 979		break;
 980	}
 
 
 981}
 982
 983void hci_inquiry_cache_flush(struct hci_dev *hdev)
 984{
 985	struct discovery_state *cache = &hdev->discovery;
 986	struct inquiry_entry *p, *n;
 987
 988	list_for_each_entry_safe(p, n, &cache->all, all) {
 989		list_del(&p->all);
 990		kfree(p);
 991	}
 992
 993	INIT_LIST_HEAD(&cache->unknown);
 994	INIT_LIST_HEAD(&cache->resolve);
 995}
 996
 997struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 998					       bdaddr_t *bdaddr)
 999{
1000	struct discovery_state *cache = &hdev->discovery;
1001	struct inquiry_entry *e;
1002
1003	BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005	list_for_each_entry(e, &cache->all, all) {
1006		if (!bacmp(&e->data.bdaddr, bdaddr))
1007			return e;
1008	}
1009
1010	return NULL;
1011}
1012
1013struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014						       bdaddr_t *bdaddr)
1015{
1016	struct discovery_state *cache = &hdev->discovery;
1017	struct inquiry_entry *e;
1018
1019	BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021	list_for_each_entry(e, &cache->unknown, list) {
1022		if (!bacmp(&e->data.bdaddr, bdaddr))
1023			return e;
1024	}
1025
1026	return NULL;
1027}
1028
1029struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030						       bdaddr_t *bdaddr,
1031						       int state)
1032{
1033	struct discovery_state *cache = &hdev->discovery;
1034	struct inquiry_entry *e;
1035
1036	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038	list_for_each_entry(e, &cache->resolve, list) {
1039		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040			return e;
1041		if (!bacmp(&e->data.bdaddr, bdaddr))
1042			return e;
1043	}
1044
1045	return NULL;
1046}
1047
1048void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049				      struct inquiry_entry *ie)
1050{
1051	struct discovery_state *cache = &hdev->discovery;
1052	struct list_head *pos = &cache->resolve;
1053	struct inquiry_entry *p;
1054
1055	list_del(&ie->list);
1056
1057	list_for_each_entry(p, &cache->resolve, list) {
1058		if (p->name_state != NAME_PENDING &&
1059		    abs(p->data.rssi) >= abs(ie->data.rssi))
1060			break;
1061		pos = &p->list;
1062	}
1063
1064	list_add(&ie->list, pos);
1065}
1066
1067u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068			     bool name_known)
1069{
1070	struct discovery_state *cache = &hdev->discovery;
1071	struct inquiry_entry *ie;
1072	u32 flags = 0;
1073
1074	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078	if (!data->ssp_mode)
1079		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082	if (ie) {
1083		if (!ie->data.ssp_mode)
1084			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086		if (ie->name_state == NAME_NEEDED &&
1087		    data->rssi != ie->data.rssi) {
1088			ie->data.rssi = data->rssi;
1089			hci_inquiry_cache_update_resolve(hdev, ie);
1090		}
1091
1092		goto update;
1093	}
1094
1095	/* Entry not in the cache. Add new one. */
1096	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097	if (!ie) {
1098		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099		goto done;
1100	}
1101
1102	list_add(&ie->all, &cache->all);
1103
1104	if (name_known) {
1105		ie->name_state = NAME_KNOWN;
1106	} else {
1107		ie->name_state = NAME_NOT_KNOWN;
1108		list_add(&ie->list, &cache->unknown);
1109	}
1110
1111update:
1112	if (name_known && ie->name_state != NAME_KNOWN &&
1113	    ie->name_state != NAME_PENDING) {
1114		ie->name_state = NAME_KNOWN;
1115		list_del(&ie->list);
1116	}
1117
1118	memcpy(&ie->data, data, sizeof(*data));
1119	ie->timestamp = jiffies;
1120	cache->timestamp = jiffies;
1121
1122	if (ie->name_state == NAME_NOT_KNOWN)
1123		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125done:
1126	return flags;
1127}
1128
1129static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130{
1131	struct discovery_state *cache = &hdev->discovery;
1132	struct inquiry_info *info = (struct inquiry_info *) buf;
1133	struct inquiry_entry *e;
1134	int copied = 0;
1135
1136	list_for_each_entry(e, &cache->all, all) {
1137		struct inquiry_data *data = &e->data;
1138
1139		if (copied >= num)
1140			break;
1141
1142		bacpy(&info->bdaddr, &data->bdaddr);
1143		info->pscan_rep_mode	= data->pscan_rep_mode;
1144		info->pscan_period_mode	= data->pscan_period_mode;
1145		info->pscan_mode	= data->pscan_mode;
1146		memcpy(info->dev_class, data->dev_class, 3);
1147		info->clock_offset	= data->clock_offset;
1148
1149		info++;
1150		copied++;
1151	}
1152
1153	BT_DBG("cache %p, copied %d", cache, copied);
1154	return copied;
1155}
1156
1157static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158{
1159	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160	struct hci_dev *hdev = req->hdev;
1161	struct hci_cp_inquiry cp;
1162
1163	BT_DBG("%s", hdev->name);
1164
1165	if (test_bit(HCI_INQUIRY, &hdev->flags))
1166		return 0;
1167
1168	/* Start Inquiry */
1169	memcpy(&cp.lap, &ir->lap, 3);
1170	cp.length  = ir->length;
1171	cp.num_rsp = ir->num_rsp;
1172	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174	return 0;
1175}
1176
1177int hci_inquiry(void __user *arg)
1178{
1179	__u8 __user *ptr = arg;
1180	struct hci_inquiry_req ir;
1181	struct hci_dev *hdev;
1182	int err = 0, do_inquiry = 0, max_rsp;
1183	long timeo;
1184	__u8 *buf;
1185
1186	if (copy_from_user(&ir, ptr, sizeof(ir)))
1187		return -EFAULT;
1188
1189	hdev = hci_dev_get(ir.dev_id);
1190	if (!hdev)
1191		return -ENODEV;
1192
1193	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194		err = -EBUSY;
1195		goto done;
1196	}
1197
1198	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199		err = -EOPNOTSUPP;
1200		goto done;
1201	}
1202
1203	if (hdev->dev_type != HCI_PRIMARY) {
1204		err = -EOPNOTSUPP;
1205		goto done;
1206	}
1207
1208	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209		err = -EOPNOTSUPP;
 
1210		goto done;
1211	}
1212
1213	hci_dev_lock(hdev);
1214	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216		hci_inquiry_cache_flush(hdev);
1217		do_inquiry = 1;
1218	}
1219	hci_dev_unlock(hdev);
1220
1221	timeo = ir.length * msecs_to_jiffies(2000);
 
 
 
1222
1223	if (do_inquiry) {
1224		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225				   timeo, NULL);
1226		if (err < 0)
1227			goto done;
1228
1229		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230		 * cleared). If it is interrupted by a signal, return -EINTR.
1231		 */
1232		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233				TASK_INTERRUPTIBLE))
1234			return -EINTR;
 
 
1235	}
1236
1237	/* for unlimited number of responses we will use buffer with
1238	 * 255 entries
1239	 */
1240	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243	 * copy it to the user space.
1244	 */
1245	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246	if (!buf) {
1247		err = -ENOMEM;
1248		goto done;
1249	}
1250
1251	hci_dev_lock(hdev);
1252	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253	hci_dev_unlock(hdev);
1254
1255	BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258		ptr += sizeof(ir);
1259		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260				 ir.num_rsp))
1261			err = -EFAULT;
1262	} else
1263		err = -EFAULT;
1264
1265	kfree(buf);
1266
1267done:
1268	hci_dev_put(hdev);
1269	return err;
1270}
1271
1272static int hci_dev_do_open(struct hci_dev *hdev)
1273{
1274	int ret = 0;
1275
1276	BT_DBG("%s %p", hdev->name, hdev);
1277
1278	hci_req_sync_lock(hdev);
1279
1280	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281		ret = -ENODEV;
1282		goto done;
1283	}
1284
1285	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287		/* Check for rfkill but allow the HCI setup stage to
1288		 * proceed (which in itself doesn't cause any RF activity).
1289		 */
1290		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291			ret = -ERFKILL;
1292			goto done;
1293		}
1294
1295		/* Check for valid public address or a configured static
1296		 * random adddress, but let the HCI setup proceed to
1297		 * be able to determine if there is a public address
1298		 * or not.
1299		 *
1300		 * In case of user channel usage, it is not important
1301		 * if a public address or static random address is
1302		 * available.
1303		 *
1304		 * This check is only valid for BR/EDR controllers
1305		 * since AMP controllers do not have an address.
1306		 */
1307		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308		    hdev->dev_type == HCI_PRIMARY &&
1309		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311			ret = -EADDRNOTAVAIL;
1312			goto done;
1313		}
1314	}
1315
1316	if (test_bit(HCI_UP, &hdev->flags)) {
1317		ret = -EALREADY;
1318		goto done;
1319	}
1320
1321	if (hdev->open(hdev)) {
1322		ret = -EIO;
1323		goto done;
1324	}
1325
1326	set_bit(HCI_RUNNING, &hdev->flags);
1327	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329	atomic_set(&hdev->cmd_cnt, 1);
1330	set_bit(HCI_INIT, &hdev->flags);
1331
1332	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335		if (hdev->setup)
1336			ret = hdev->setup(hdev);
1337
1338		/* The transport driver can set these quirks before
1339		 * creating the HCI device or in its setup callback.
1340		 *
1341		 * In case any of them is set, the controller has to
1342		 * start up as unconfigured.
1343		 */
1344		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348		/* For an unconfigured controller it is required to
1349		 * read at least the version information provided by
1350		 * the Read Local Version Information command.
1351		 *
1352		 * If the set_bdaddr driver callback is provided, then
1353		 * also the original Bluetooth public device address
1354		 * will be read using the Read BD Address command.
1355		 */
1356		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357			ret = __hci_unconf_init(hdev);
1358	}
1359
1360	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361		/* If public address change is configured, ensure that
1362		 * the address gets programmed. If the driver does not
1363		 * support changing the public address, fail the power
1364		 * on procedure.
1365		 */
1366		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367		    hdev->set_bdaddr)
1368			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369		else
1370			ret = -EADDRNOTAVAIL;
1371	}
1372
1373	if (!ret) {
1374		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376			ret = __hci_init(hdev);
1377			if (!ret && hdev->post_init)
1378				ret = hdev->post_init(hdev);
1379		}
1380	}
1381
1382	/* If the HCI Reset command is clearing all diagnostic settings,
1383	 * then they need to be reprogrammed after the init procedure
1384	 * completed.
1385	 */
1386	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388		ret = hdev->set_diag(hdev, true);
1389
1390	clear_bit(HCI_INIT, &hdev->flags);
1391
1392	if (!ret) {
1393		hci_dev_hold(hdev);
1394		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395		set_bit(HCI_UP, &hdev->flags);
1396		hci_sock_dev_event(hdev, HCI_DEV_UP);
1397		hci_leds_update_powered(hdev, true);
1398		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1403		    hdev->dev_type == HCI_PRIMARY) {
1404			ret = __hci_req_hci_power_on(hdev);
1405			mgmt_power_on(hdev, ret);
1406		}
1407	} else {
1408		/* Init failed, cleanup */
1409		flush_work(&hdev->tx_work);
1410		flush_work(&hdev->cmd_work);
1411		flush_work(&hdev->rx_work);
1412
1413		skb_queue_purge(&hdev->cmd_q);
1414		skb_queue_purge(&hdev->rx_q);
1415
1416		if (hdev->flush)
1417			hdev->flush(hdev);
1418
1419		if (hdev->sent_cmd) {
1420			kfree_skb(hdev->sent_cmd);
1421			hdev->sent_cmd = NULL;
1422		}
1423
1424		clear_bit(HCI_RUNNING, &hdev->flags);
1425		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427		hdev->close(hdev);
1428		hdev->flags &= BIT(HCI_RAW);
1429	}
1430
1431done:
1432	hci_req_sync_unlock(hdev);
1433	return ret;
1434}
1435
1436/* ---- HCI ioctl helpers ---- */
1437
1438int hci_dev_open(__u16 dev)
1439{
1440	struct hci_dev *hdev;
1441	int err;
1442
1443	hdev = hci_dev_get(dev);
1444	if (!hdev)
1445		return -ENODEV;
1446
1447	/* Devices that are marked as unconfigured can only be powered
1448	 * up as user channel. Trying to bring them up as normal devices
1449	 * will result into a failure. Only user channel operation is
1450	 * possible.
1451	 *
1452	 * When this function is called for a user channel, the flag
1453	 * HCI_USER_CHANNEL will be set first before attempting to
1454	 * open the device.
1455	 */
1456	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458		err = -EOPNOTSUPP;
1459		goto done;
1460	}
1461
1462	/* We need to ensure that no other power on/off work is pending
1463	 * before proceeding to call hci_dev_do_open. This is
1464	 * particularly important if the setup procedure has not yet
1465	 * completed.
1466	 */
1467	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468		cancel_delayed_work(&hdev->power_off);
1469
1470	/* After this call it is guaranteed that the setup procedure
1471	 * has finished. This means that error conditions like RFKILL
1472	 * or no valid public or static random address apply.
1473	 */
1474	flush_workqueue(hdev->req_workqueue);
1475
1476	/* For controllers not using the management interface and that
1477	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478	 * so that pairing works for them. Once the management interface
1479	 * is in use this bit will be cleared again and userspace has
1480	 * to explicitly enable it.
1481	 */
1482	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483	    !hci_dev_test_flag(hdev, HCI_MGMT))
1484		hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486	err = hci_dev_do_open(hdev);
1487
1488done:
1489	hci_dev_put(hdev);
1490	return err;
1491}
1492
1493/* This function requires the caller holds hdev->lock */
1494static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495{
1496	struct hci_conn_params *p;
1497
1498	list_for_each_entry(p, &hdev->le_conn_params, list) {
1499		if (p->conn) {
1500			hci_conn_drop(p->conn);
1501			hci_conn_put(p->conn);
1502			p->conn = NULL;
1503		}
1504		list_del_init(&p->action);
1505	}
1506
1507	BT_DBG("All LE pending actions cleared");
1508}
1509
1510int hci_dev_do_close(struct hci_dev *hdev)
1511{
1512	bool auto_off;
1513
1514	BT_DBG("%s %p", hdev->name, hdev);
1515
1516	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518	    test_bit(HCI_UP, &hdev->flags)) {
1519		/* Execute vendor specific shutdown routine */
1520		if (hdev->shutdown)
1521			hdev->shutdown(hdev);
1522	}
1523
1524	cancel_delayed_work(&hdev->power_off);
1525
1526	hci_request_cancel_all(hdev);
1527	hci_req_sync_lock(hdev);
1528
1529	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530		cancel_delayed_work_sync(&hdev->cmd_timer);
1531		hci_req_sync_unlock(hdev);
1532		return 0;
1533	}
1534
1535	hci_leds_update_powered(hdev, false);
1536
1537	/* Flush RX and TX works */
1538	flush_work(&hdev->tx_work);
1539	flush_work(&hdev->rx_work);
1540
1541	if (hdev->discov_timeout > 0) {
1542		hdev->discov_timeout = 0;
1543		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545	}
1546
1547	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548		cancel_delayed_work(&hdev->service_cache);
1549
1550	if (hci_dev_test_flag(hdev, HCI_MGMT))
1551		cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553	/* Avoid potential lockdep warnings from the *_flush() calls by
1554	 * ensuring the workqueue is empty up front.
1555	 */
1556	drain_workqueue(hdev->workqueue);
1557
1558	hci_dev_lock(hdev);
1559
1560	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1566	    hci_dev_test_flag(hdev, HCI_MGMT))
1567		__mgmt_power_off(hdev);
1568
1569	hci_inquiry_cache_flush(hdev);
1570	hci_pend_le_actions_clear(hdev);
1571	hci_conn_hash_flush(hdev);
1572	hci_dev_unlock(hdev);
1573
1574	smp_unregister(hdev);
1575
1576	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577
1578	if (hdev->flush)
1579		hdev->flush(hdev);
1580
1581	/* Reset device */
1582	skb_queue_purge(&hdev->cmd_q);
1583	atomic_set(&hdev->cmd_cnt, 1);
1584	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1585	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1586		set_bit(HCI_INIT, &hdev->flags);
1587		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1588		clear_bit(HCI_INIT, &hdev->flags);
1589	}
1590
1591	/* flush cmd  work */
1592	flush_work(&hdev->cmd_work);
1593
1594	/* Drop queues */
1595	skb_queue_purge(&hdev->rx_q);
1596	skb_queue_purge(&hdev->cmd_q);
1597	skb_queue_purge(&hdev->raw_q);
1598
1599	/* Drop last sent command */
1600	if (hdev->sent_cmd) {
1601		cancel_delayed_work_sync(&hdev->cmd_timer);
1602		kfree_skb(hdev->sent_cmd);
1603		hdev->sent_cmd = NULL;
1604	}
1605
1606	clear_bit(HCI_RUNNING, &hdev->flags);
1607	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608
1609	/* After this point our queues are empty
1610	 * and no tasks are scheduled. */
1611	hdev->close(hdev);
1612
1613	/* Clear flags */
1614	hdev->flags &= BIT(HCI_RAW);
1615	hci_dev_clear_volatile_flags(hdev);
1616
1617	/* Controller radio is available but is currently powered down */
1618	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619
1620	memset(hdev->eir, 0, sizeof(hdev->eir));
1621	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1622	bacpy(&hdev->random_addr, BDADDR_ANY);
1623
1624	hci_req_sync_unlock(hdev);
1625
1626	hci_dev_put(hdev);
1627	return 0;
1628}
1629
1630int hci_dev_close(__u16 dev)
1631{
1632	struct hci_dev *hdev;
1633	int err;
1634
1635	hdev = hci_dev_get(dev);
1636	if (!hdev)
1637		return -ENODEV;
1638
1639	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1640		err = -EBUSY;
1641		goto done;
1642	}
1643
 
1644	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1645		cancel_delayed_work(&hdev->power_off);
1646
1647	err = hci_dev_do_close(hdev);
1648
1649done:
1650	hci_dev_put(hdev);
1651	return err;
1652}
1653
1654static int hci_dev_do_reset(struct hci_dev *hdev)
1655{
1656	int ret;
1657
1658	BT_DBG("%s %p", hdev->name, hdev);
1659
1660	hci_req_sync_lock(hdev);
1661
1662	/* Drop queues */
1663	skb_queue_purge(&hdev->rx_q);
1664	skb_queue_purge(&hdev->cmd_q);
1665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666	/* Avoid potential lockdep warnings from the *_flush() calls by
1667	 * ensuring the workqueue is empty up front.
1668	 */
1669	drain_workqueue(hdev->workqueue);
1670
1671	hci_dev_lock(hdev);
1672	hci_inquiry_cache_flush(hdev);
1673	hci_conn_hash_flush(hdev);
1674	hci_dev_unlock(hdev);
1675
1676	if (hdev->flush)
1677		hdev->flush(hdev);
1678
 
 
1679	atomic_set(&hdev->cmd_cnt, 1);
1680	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1681
1682	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683
1684	hci_req_sync_unlock(hdev);
1685	return ret;
1686}
1687
1688int hci_dev_reset(__u16 dev)
1689{
1690	struct hci_dev *hdev;
1691	int err;
1692
1693	hdev = hci_dev_get(dev);
1694	if (!hdev)
1695		return -ENODEV;
1696
1697	if (!test_bit(HCI_UP, &hdev->flags)) {
1698		err = -ENETDOWN;
1699		goto done;
1700	}
1701
1702	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1703		err = -EBUSY;
1704		goto done;
1705	}
1706
1707	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1708		err = -EOPNOTSUPP;
1709		goto done;
1710	}
1711
1712	err = hci_dev_do_reset(hdev);
1713
1714done:
1715	hci_dev_put(hdev);
1716	return err;
1717}
1718
1719int hci_dev_reset_stat(__u16 dev)
1720{
1721	struct hci_dev *hdev;
1722	int ret = 0;
1723
1724	hdev = hci_dev_get(dev);
1725	if (!hdev)
1726		return -ENODEV;
1727
1728	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1729		ret = -EBUSY;
1730		goto done;
1731	}
1732
1733	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1734		ret = -EOPNOTSUPP;
1735		goto done;
1736	}
1737
1738	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739
1740done:
1741	hci_dev_put(hdev);
1742	return ret;
1743}
1744
1745static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746{
1747	bool conn_changed, discov_changed;
1748
1749	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750
1751	if ((scan & SCAN_PAGE))
1752		conn_changed = !hci_dev_test_and_set_flag(hdev,
1753							  HCI_CONNECTABLE);
1754	else
1755		conn_changed = hci_dev_test_and_clear_flag(hdev,
1756							   HCI_CONNECTABLE);
1757
1758	if ((scan & SCAN_INQUIRY)) {
1759		discov_changed = !hci_dev_test_and_set_flag(hdev,
1760							    HCI_DISCOVERABLE);
1761	} else {
1762		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1763		discov_changed = hci_dev_test_and_clear_flag(hdev,
1764							     HCI_DISCOVERABLE);
1765	}
1766
1767	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1768		return;
1769
1770	if (conn_changed || discov_changed) {
1771		/* In case this was disabled through mgmt */
1772		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773
1774		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1775			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776
1777		mgmt_new_settings(hdev);
1778	}
1779}
1780
1781int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782{
1783	struct hci_dev *hdev;
1784	struct hci_dev_req dr;
 
1785	int err = 0;
1786
1787	if (copy_from_user(&dr, arg, sizeof(dr)))
1788		return -EFAULT;
1789
1790	hdev = hci_dev_get(dr.dev_id);
1791	if (!hdev)
1792		return -ENODEV;
1793
1794	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1795		err = -EBUSY;
1796		goto done;
1797	}
1798
1799	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800		err = -EOPNOTSUPP;
1801		goto done;
1802	}
1803
1804	if (hdev->dev_type != HCI_PRIMARY) {
1805		err = -EOPNOTSUPP;
1806		goto done;
1807	}
1808
1809	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1810		err = -EOPNOTSUPP;
1811		goto done;
1812	}
1813
1814	switch (cmd) {
1815	case HCISETAUTH:
1816		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1817				   HCI_INIT_TIMEOUT, NULL);
1818		break;
1819
1820	case HCISETENCRYPT:
1821		if (!lmp_encrypt_capable(hdev)) {
1822			err = -EOPNOTSUPP;
1823			break;
1824		}
1825
1826		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1827			/* Auth must be enabled first */
1828			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1829					   HCI_INIT_TIMEOUT, NULL);
 
 
1830			if (err)
1831				break;
1832		}
1833
1834		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1835				   HCI_INIT_TIMEOUT, NULL);
1836		break;
1837
1838	case HCISETSCAN:
1839		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1840				   HCI_INIT_TIMEOUT, NULL);
1841
1842		/* Ensure that the connectable and discoverable states
1843		 * get correctly modified as this was a non-mgmt change.
1844		 */
1845		if (!err)
1846			hci_update_scan_state(hdev, dr.dev_opt);
1847		break;
1848
1849	case HCISETLINKPOL:
1850		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1851				   HCI_INIT_TIMEOUT, NULL);
 
 
1852		break;
1853
1854	case HCISETLINKMODE:
1855		hdev->link_mode = ((__u16) dr.dev_opt) &
1856					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1857		break;
1858
1859	case HCISETPTYPE:
 
 
 
1860		hdev->pkt_type = (__u16) dr.dev_opt;
 
1861		break;
1862
1863	case HCISETACLMTU:
1864		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1865		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1866		break;
1867
1868	case HCISETSCOMTU:
1869		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1870		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1871		break;
1872
1873	default:
1874		err = -EINVAL;
1875		break;
1876	}
1877
1878done:
1879	hci_dev_put(hdev);
1880	return err;
1881}
1882
1883int hci_get_dev_list(void __user *arg)
1884{
1885	struct hci_dev *hdev;
1886	struct hci_dev_list_req *dl;
1887	struct hci_dev_req *dr;
1888	int n = 0, size, err;
1889	__u16 dev_num;
1890
1891	if (get_user(dev_num, (__u16 __user *) arg))
1892		return -EFAULT;
1893
1894	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1895		return -EINVAL;
1896
1897	size = sizeof(*dl) + dev_num * sizeof(*dr);
1898
1899	dl = kzalloc(size, GFP_KERNEL);
1900	if (!dl)
1901		return -ENOMEM;
1902
 
1903	dr = dl->dev_req;
1904
1905	read_lock(&hci_dev_list_lock);
1906	list_for_each_entry(hdev, &hci_dev_list, list) {
1907		unsigned long flags = hdev->flags;
1908
1909		/* When the auto-off is configured it means the transport
1910		 * is running, but in that case still indicate that the
1911		 * device is actually down.
1912		 */
1913		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1914			flags &= ~BIT(HCI_UP);
1915
1916		(dr + n)->dev_id  = hdev->id;
1917		(dr + n)->dev_opt = flags;
1918
1919		if (++n >= dev_num)
1920			break;
1921	}
1922	read_unlock(&hci_dev_list_lock);
1923
1924	dl->dev_num = n;
1925	size = sizeof(*dl) + n * sizeof(*dr);
1926
1927	err = copy_to_user(arg, dl, size);
1928	kfree(dl);
1929
1930	return err ? -EFAULT : 0;
1931}
1932
1933int hci_get_dev_info(void __user *arg)
1934{
1935	struct hci_dev *hdev;
1936	struct hci_dev_info di;
1937	unsigned long flags;
1938	int err = 0;
1939
1940	if (copy_from_user(&di, arg, sizeof(di)))
1941		return -EFAULT;
1942
1943	hdev = hci_dev_get(di.dev_id);
1944	if (!hdev)
1945		return -ENODEV;
1946
1947	/* When the auto-off is configured it means the transport
1948	 * is running, but in that case still indicate that the
1949	 * device is actually down.
1950	 */
1951	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1952		flags = hdev->flags & ~BIT(HCI_UP);
1953	else
1954		flags = hdev->flags;
1955
1956	strcpy(di.name, hdev->name);
1957	di.bdaddr   = hdev->bdaddr;
1958	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1959	di.flags    = flags;
1960	di.pkt_type = hdev->pkt_type;
1961	if (lmp_bredr_capable(hdev)) {
1962		di.acl_mtu  = hdev->acl_mtu;
1963		di.acl_pkts = hdev->acl_pkts;
1964		di.sco_mtu  = hdev->sco_mtu;
1965		di.sco_pkts = hdev->sco_pkts;
1966	} else {
1967		di.acl_mtu  = hdev->le_mtu;
1968		di.acl_pkts = hdev->le_pkts;
1969		di.sco_mtu  = 0;
1970		di.sco_pkts = 0;
1971	}
1972	di.link_policy = hdev->link_policy;
1973	di.link_mode   = hdev->link_mode;
1974
1975	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1976	memcpy(&di.features, &hdev->features, sizeof(di.features));
1977
1978	if (copy_to_user(arg, &di, sizeof(di)))
1979		err = -EFAULT;
1980
1981	hci_dev_put(hdev);
1982
1983	return err;
1984}
1985
1986/* ---- Interface to HCI drivers ---- */
1987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988static int hci_rfkill_set_block(void *data, bool blocked)
1989{
1990	struct hci_dev *hdev = data;
 
1991
1992	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993
1994	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1995		return -EBUSY;
1996
 
 
 
1997	if (blocked) {
1998		hci_dev_set_flag(hdev, HCI_RFKILLED);
 
1999		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2000		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2001			hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
2002	} else {
2003		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2004	}
2005
2006	return 0;
2007}
2008
2009static const struct rfkill_ops hci_rfkill_ops = {
2010	.set_block = hci_rfkill_set_block,
2011};
2012
2013static void hci_power_on(struct work_struct *work)
2014{
2015	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2016	int err;
2017
2018	BT_DBG("%s", hdev->name);
2019
2020	if (test_bit(HCI_UP, &hdev->flags) &&
2021	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2022	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2023		cancel_delayed_work(&hdev->power_off);
2024		hci_req_sync_lock(hdev);
2025		err = __hci_req_hci_power_on(hdev);
2026		hci_req_sync_unlock(hdev);
2027		mgmt_power_on(hdev, err);
2028		return;
2029	}
2030
2031	err = hci_dev_do_open(hdev);
2032	if (err < 0) {
2033		hci_dev_lock(hdev);
2034		mgmt_set_powered_failed(hdev, err);
2035		hci_dev_unlock(hdev);
2036		return;
2037	}
2038
2039	/* During the HCI setup phase, a few error conditions are
2040	 * ignored and they need to be checked now. If they are still
2041	 * valid, it is important to turn the device back off.
2042	 */
2043	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045	    (hdev->dev_type == HCI_PRIMARY &&
2046	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049		hci_dev_do_close(hdev);
2050	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052				   HCI_AUTO_OFF_TIMEOUT);
2053	}
2054
2055	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056		/* For unconfigured devices, set the HCI_RAW flag
2057		 * so that userspace can easily identify them.
2058		 */
2059		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060			set_bit(HCI_RAW, &hdev->flags);
2061
2062		/* For fully configured devices, this will send
2063		 * the Index Added event. For unconfigured devices,
2064		 * it will send Unconfigued Index Added event.
2065		 *
2066		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067		 * and no event will be send.
2068		 */
2069		mgmt_index_added(hdev);
2070	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071		/* When the controller is now configured, then it
2072		 * is important to clear the HCI_RAW flag.
2073		 */
2074		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075			clear_bit(HCI_RAW, &hdev->flags);
2076
2077		/* Powering on the controller with HCI_CONFIG set only
2078		 * happens with the transition from unconfigured to
2079		 * configured. This will send the Index Added event.
2080		 */
2081		mgmt_index_added(hdev);
2082	}
2083}
2084
2085static void hci_power_off(struct work_struct *work)
2086{
2087	struct hci_dev *hdev = container_of(work, struct hci_dev,
2088					    power_off.work);
2089
2090	BT_DBG("%s", hdev->name);
2091
2092	hci_dev_do_close(hdev);
2093}
2094
2095static void hci_error_reset(struct work_struct *work)
2096{
2097	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098
 
2099	BT_DBG("%s", hdev->name);
2100
2101	if (hdev->hw_error)
2102		hdev->hw_error(hdev, hdev->hw_error_code);
2103	else
2104		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105		       hdev->hw_error_code);
2106
2107	if (hci_dev_do_close(hdev))
2108		return;
2109
2110	hci_dev_do_open(hdev);
2111}
2112
2113void hci_uuids_clear(struct hci_dev *hdev)
2114{
2115	struct bt_uuid *uuid, *tmp;
2116
2117	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118		list_del(&uuid->list);
2119		kfree(uuid);
2120	}
2121}
2122
2123void hci_link_keys_clear(struct hci_dev *hdev)
2124{
2125	struct link_key *key;
2126
2127	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128		list_del_rcu(&key->list);
2129		kfree_rcu(key, rcu);
2130	}
2131}
2132
2133void hci_smp_ltks_clear(struct hci_dev *hdev)
2134{
2135	struct smp_ltk *k;
2136
2137	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138		list_del_rcu(&k->list);
2139		kfree_rcu(k, rcu);
2140	}
2141}
2142
2143void hci_smp_irks_clear(struct hci_dev *hdev)
2144{
2145	struct smp_irk *k;
2146
2147	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148		list_del_rcu(&k->list);
2149		kfree_rcu(k, rcu);
2150	}
2151}
2152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154{
2155	struct link_key *k;
2156
2157	rcu_read_lock();
2158	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2161			return k;
2162		}
2163	}
2164	rcu_read_unlock();
2165
2166	return NULL;
2167}
2168
2169static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170			       u8 key_type, u8 old_key_type)
2171{
2172	/* Legacy key */
2173	if (key_type < 0x03)
2174		return true;
2175
2176	/* Debug keys are insecure so don't store them persistently */
2177	if (key_type == HCI_LK_DEBUG_COMBINATION)
2178		return false;
2179
2180	/* Changed combination key and there's no previous one */
2181	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182		return false;
2183
2184	/* Security mode 3 case */
2185	if (!conn)
2186		return true;
2187
2188	/* BR/EDR key derived using SC from an LE link */
2189	if (conn->type == LE_LINK)
2190		return true;
2191
2192	/* Neither local nor remote side had no-bonding as requirement */
2193	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194		return true;
2195
2196	/* Local side had dedicated bonding as requirement */
2197	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198		return true;
2199
2200	/* Remote side had dedicated bonding as requirement */
2201	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202		return true;
2203
2204	/* If none of the above criteria match, then don't store the key
2205	 * persistently */
2206	return false;
2207}
2208
2209static u8 ltk_role(u8 type)
2210{
2211	if (type == SMP_LTK)
2212		return HCI_ROLE_MASTER;
2213
2214	return HCI_ROLE_SLAVE;
2215}
2216
2217struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218			     u8 addr_type, u8 role)
2219{
2220	struct smp_ltk *k;
2221
2222	rcu_read_lock();
2223	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225			continue;
2226
2227		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2229			return k;
2230		}
2231	}
2232	rcu_read_unlock();
2233
2234	return NULL;
2235}
2236
2237struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238{
 
2239	struct smp_irk *irk;
2240
2241	rcu_read_lock();
2242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243		if (!bacmp(&irk->rpa, rpa)) {
2244			rcu_read_unlock();
2245			return irk;
2246		}
2247	}
2248
2249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250		if (smp_irk_matches(hdev, irk->val, rpa)) {
2251			bacpy(&irk->rpa, rpa);
2252			rcu_read_unlock();
2253			return irk;
2254		}
2255	}
 
 
 
 
 
 
 
 
 
2256	rcu_read_unlock();
2257
2258	return NULL;
2259}
2260
2261struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262				     u8 addr_type)
2263{
 
2264	struct smp_irk *irk;
2265
2266	/* Identity Address must be public or static random */
2267	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268		return NULL;
2269
2270	rcu_read_lock();
2271	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272		if (addr_type == irk->addr_type &&
2273		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2274			rcu_read_unlock();
2275			return irk;
2276		}
2277	}
 
 
 
 
 
 
 
 
 
 
2278	rcu_read_unlock();
2279
2280	return NULL;
2281}
2282
2283struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284				  bdaddr_t *bdaddr, u8 *val, u8 type,
2285				  u8 pin_len, bool *persistent)
2286{
2287	struct link_key *key, *old_key;
2288	u8 old_key_type;
2289
2290	old_key = hci_find_link_key(hdev, bdaddr);
2291	if (old_key) {
2292		old_key_type = old_key->type;
2293		key = old_key;
2294	} else {
2295		old_key_type = conn ? conn->key_type : 0xff;
2296		key = kzalloc(sizeof(*key), GFP_KERNEL);
2297		if (!key)
2298			return NULL;
2299		list_add_rcu(&key->list, &hdev->link_keys);
2300	}
2301
2302	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304	/* Some buggy controller combinations generate a changed
2305	 * combination key for legacy pairing even when there's no
2306	 * previous key */
2307	if (type == HCI_LK_CHANGED_COMBINATION &&
2308	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2309		type = HCI_LK_COMBINATION;
2310		if (conn)
2311			conn->key_type = type;
2312	}
2313
2314	bacpy(&key->bdaddr, bdaddr);
2315	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316	key->pin_len = pin_len;
2317
2318	if (type == HCI_LK_CHANGED_COMBINATION)
2319		key->type = old_key_type;
2320	else
2321		key->type = type;
2322
2323	if (persistent)
2324		*persistent = hci_persistent_key(hdev, conn, type,
2325						 old_key_type);
2326
2327	return key;
2328}
2329
2330struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331			    u8 addr_type, u8 type, u8 authenticated,
2332			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333{
2334	struct smp_ltk *key, *old_key;
2335	u8 role = ltk_role(type);
2336
2337	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2338	if (old_key)
2339		key = old_key;
2340	else {
2341		key = kzalloc(sizeof(*key), GFP_KERNEL);
2342		if (!key)
2343			return NULL;
2344		list_add_rcu(&key->list, &hdev->long_term_keys);
2345	}
2346
2347	bacpy(&key->bdaddr, bdaddr);
2348	key->bdaddr_type = addr_type;
2349	memcpy(key->val, tk, sizeof(key->val));
2350	key->authenticated = authenticated;
2351	key->ediv = ediv;
2352	key->rand = rand;
2353	key->enc_size = enc_size;
2354	key->type = type;
2355
2356	return key;
2357}
2358
2359struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361{
2362	struct smp_irk *irk;
2363
2364	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365	if (!irk) {
2366		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367		if (!irk)
2368			return NULL;
2369
2370		bacpy(&irk->bdaddr, bdaddr);
2371		irk->addr_type = addr_type;
2372
2373		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374	}
2375
2376	memcpy(irk->val, val, 16);
2377	bacpy(&irk->rpa, rpa);
2378
2379	return irk;
2380}
2381
2382int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383{
2384	struct link_key *key;
2385
2386	key = hci_find_link_key(hdev, bdaddr);
2387	if (!key)
2388		return -ENOENT;
2389
2390	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392	list_del_rcu(&key->list);
2393	kfree_rcu(key, rcu);
2394
2395	return 0;
2396}
2397
2398int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399{
2400	struct smp_ltk *k;
2401	int removed = 0;
2402
2403	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405			continue;
2406
2407		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409		list_del_rcu(&k->list);
2410		kfree_rcu(k, rcu);
2411		removed++;
2412	}
2413
2414	return removed ? 0 : -ENOENT;
2415}
2416
2417void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418{
2419	struct smp_irk *k;
2420
2421	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423			continue;
2424
2425		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427		list_del_rcu(&k->list);
2428		kfree_rcu(k, rcu);
2429	}
2430}
2431
2432bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433{
2434	struct smp_ltk *k;
2435	struct smp_irk *irk;
2436	u8 addr_type;
2437
2438	if (type == BDADDR_BREDR) {
2439		if (hci_find_link_key(hdev, bdaddr))
2440			return true;
2441		return false;
2442	}
2443
2444	/* Convert to HCI addr type which struct smp_ltk uses */
2445	if (type == BDADDR_LE_PUBLIC)
2446		addr_type = ADDR_LE_DEV_PUBLIC;
2447	else
2448		addr_type = ADDR_LE_DEV_RANDOM;
2449
2450	irk = hci_get_irk(hdev, bdaddr, addr_type);
2451	if (irk) {
2452		bdaddr = &irk->bdaddr;
2453		addr_type = irk->addr_type;
2454	}
2455
2456	rcu_read_lock();
2457	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459			rcu_read_unlock();
2460			return true;
2461		}
2462	}
2463	rcu_read_unlock();
2464
2465	return false;
2466}
2467
2468/* HCI command timer function */
2469static void hci_cmd_timeout(struct work_struct *work)
2470{
2471	struct hci_dev *hdev = container_of(work, struct hci_dev,
2472					    cmd_timer.work);
2473
2474	if (hdev->sent_cmd) {
2475		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476		u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
 
 
2479	} else {
2480		BT_ERR("%s command tx timeout", hdev->name);
2481	}
2482
 
 
 
2483	atomic_set(&hdev->cmd_cnt, 1);
2484	queue_work(hdev->workqueue, &hdev->cmd_work);
2485}
2486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488					  bdaddr_t *bdaddr, u8 bdaddr_type)
2489{
2490	struct oob_data *data;
2491
2492	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493		if (bacmp(bdaddr, &data->bdaddr) != 0)
2494			continue;
2495		if (data->bdaddr_type != bdaddr_type)
2496			continue;
2497		return data;
2498	}
2499
2500	return NULL;
2501}
2502
2503int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504			       u8 bdaddr_type)
2505{
2506	struct oob_data *data;
2507
2508	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509	if (!data)
2510		return -ENOENT;
2511
2512	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514	list_del(&data->list);
2515	kfree(data);
2516
2517	return 0;
2518}
2519
2520void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521{
2522	struct oob_data *data, *n;
2523
2524	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525		list_del(&data->list);
2526		kfree(data);
2527	}
2528}
2529
2530int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532			    u8 *hash256, u8 *rand256)
2533{
2534	struct oob_data *data;
2535
2536	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2537	if (!data) {
2538		data = kmalloc(sizeof(*data), GFP_KERNEL);
2539		if (!data)
2540			return -ENOMEM;
2541
2542		bacpy(&data->bdaddr, bdaddr);
2543		data->bdaddr_type = bdaddr_type;
2544		list_add(&data->list, &hdev->remote_oob_data);
2545	}
2546
2547	if (hash192 && rand192) {
2548		memcpy(data->hash192, hash192, sizeof(data->hash192));
2549		memcpy(data->rand192, rand192, sizeof(data->rand192));
2550		if (hash256 && rand256)
2551			data->present = 0x03;
2552	} else {
2553		memset(data->hash192, 0, sizeof(data->hash192));
2554		memset(data->rand192, 0, sizeof(data->rand192));
2555		if (hash256 && rand256)
2556			data->present = 0x02;
2557		else
2558			data->present = 0x00;
2559	}
2560
2561	if (hash256 && rand256) {
2562		memcpy(data->hash256, hash256, sizeof(data->hash256));
2563		memcpy(data->rand256, rand256, sizeof(data->rand256));
2564	} else {
2565		memset(data->hash256, 0, sizeof(data->hash256));
2566		memset(data->rand256, 0, sizeof(data->rand256));
2567		if (hash192 && rand192)
2568			data->present = 0x01;
2569	}
2570
2571	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573	return 0;
2574}
2575
2576/* This function requires the caller holds hdev->lock */
2577struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578{
2579	struct adv_info *adv_instance;
2580
2581	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582		if (adv_instance->instance == instance)
2583			return adv_instance;
2584	}
2585
2586	return NULL;
2587}
2588
2589/* This function requires the caller holds hdev->lock */
2590struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591{
2592	struct adv_info *cur_instance;
2593
2594	cur_instance = hci_find_adv_instance(hdev, instance);
2595	if (!cur_instance)
2596		return NULL;
2597
2598	if (cur_instance == list_last_entry(&hdev->adv_instances,
2599					    struct adv_info, list))
2600		return list_first_entry(&hdev->adv_instances,
2601						 struct adv_info, list);
2602	else
2603		return list_next_entry(cur_instance, list);
2604}
2605
2606/* This function requires the caller holds hdev->lock */
2607int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608{
2609	struct adv_info *adv_instance;
2610
2611	adv_instance = hci_find_adv_instance(hdev, instance);
2612	if (!adv_instance)
2613		return -ENOENT;
2614
2615	BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617	if (hdev->cur_adv_instance == instance) {
2618		if (hdev->adv_instance_timeout) {
2619			cancel_delayed_work(&hdev->adv_instance_expire);
2620			hdev->adv_instance_timeout = 0;
2621		}
2622		hdev->cur_adv_instance = 0x00;
2623	}
2624
 
 
2625	list_del(&adv_instance->list);
2626	kfree(adv_instance);
2627
2628	hdev->adv_instance_cnt--;
2629
2630	return 0;
2631}
2632
 
 
 
 
 
 
 
 
2633/* This function requires the caller holds hdev->lock */
2634void hci_adv_instances_clear(struct hci_dev *hdev)
2635{
2636	struct adv_info *adv_instance, *n;
2637
2638	if (hdev->adv_instance_timeout) {
2639		cancel_delayed_work(&hdev->adv_instance_expire);
2640		hdev->adv_instance_timeout = 0;
2641	}
2642
2643	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
 
2644		list_del(&adv_instance->list);
2645		kfree(adv_instance);
2646	}
2647
2648	hdev->adv_instance_cnt = 0;
2649	hdev->cur_adv_instance = 0x00;
2650}
2651
2652/* This function requires the caller holds hdev->lock */
2653int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654			 u16 adv_data_len, u8 *adv_data,
2655			 u16 scan_rsp_len, u8 *scan_rsp_data,
2656			 u16 timeout, u16 duration)
2657{
2658	struct adv_info *adv_instance;
 
 
 
 
 
 
2659
2660	adv_instance = hci_find_adv_instance(hdev, instance);
2661	if (adv_instance) {
2662		memset(adv_instance->adv_data, 0,
2663		       sizeof(adv_instance->adv_data));
2664		memset(adv_instance->scan_rsp_data, 0,
2665		       sizeof(adv_instance->scan_rsp_data));
 
 
 
 
 
 
 
 
 
2666	} else {
2667		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669			return -EOVERFLOW;
 
 
 
 
 
 
 
2670
2671		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672		if (!adv_instance)
2673			return -ENOMEM;
 
 
 
 
2674
2675		adv_instance->pending = true;
2676		adv_instance->instance = instance;
2677		list_add(&adv_instance->list, &hdev->adv_instances);
2678		hdev->adv_instance_cnt++;
2679	}
2680
2681	adv_instance->flags = flags;
2682	adv_instance->adv_data_len = adv_data_len;
2683	adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685	if (adv_data_len)
2686		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687
2688	if (scan_rsp_len)
2689		memcpy(adv_instance->scan_rsp_data,
2690		       scan_rsp_data, scan_rsp_len);
 
 
2691
2692	adv_instance->timeout = timeout;
2693	adv_instance->remaining_time = timeout;
2694
2695	if (duration == 0)
2696		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697	else
2698		adv_instance->duration = duration;
 
 
2699
2700	BT_DBG("%s for %dMR", hdev->name, instance);
2701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702	return 0;
2703}
2704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706					 bdaddr_t *bdaddr, u8 type)
2707{
2708	struct bdaddr_list *b;
2709
2710	list_for_each_entry(b, bdaddr_list, list) {
2711		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712			return b;
2713	}
2714
2715	return NULL;
2716}
2717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719{
2720	struct bdaddr_list *b, *n;
2721
2722	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723		list_del(&b->list);
2724		kfree(b);
2725	}
2726}
2727
2728int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729{
2730	struct bdaddr_list *entry;
2731
2732	if (!bacmp(bdaddr, BDADDR_ANY))
2733		return -EBADF;
2734
2735	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736		return -EEXIST;
2737
2738	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739	if (!entry)
2740		return -ENOMEM;
2741
2742	bacpy(&entry->bdaddr, bdaddr);
2743	entry->bdaddr_type = type;
2744
2745	list_add(&entry->list, list);
2746
2747	return 0;
2748}
2749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751{
2752	struct bdaddr_list *entry;
2753
2754	if (!bacmp(bdaddr, BDADDR_ANY)) {
2755		hci_bdaddr_list_clear(list);
2756		return 0;
2757	}
2758
2759	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760	if (!entry)
2761		return -ENOENT;
2762
2763	list_del(&entry->list);
2764	kfree(entry);
2765
2766	return 0;
2767}
2768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769/* This function requires the caller holds hdev->lock */
2770struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771					       bdaddr_t *addr, u8 addr_type)
2772{
2773	struct hci_conn_params *params;
2774
2775	list_for_each_entry(params, &hdev->le_conn_params, list) {
2776		if (bacmp(&params->addr, addr) == 0 &&
2777		    params->addr_type == addr_type) {
2778			return params;
2779		}
2780	}
2781
2782	return NULL;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787						  bdaddr_t *addr, u8 addr_type)
2788{
2789	struct hci_conn_params *param;
2790
2791	list_for_each_entry(param, list, action) {
 
 
2792		if (bacmp(&param->addr, addr) == 0 &&
2793		    param->addr_type == addr_type)
 
2794			return param;
 
2795	}
2796
 
 
2797	return NULL;
2798}
2799
2800/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802					    bdaddr_t *addr, u8 addr_type)
2803{
2804	struct hci_conn_params *params;
2805
2806	params = hci_conn_params_lookup(hdev, addr, addr_type);
2807	if (params)
2808		return params;
2809
2810	params = kzalloc(sizeof(*params), GFP_KERNEL);
2811	if (!params) {
2812		BT_ERR("Out of memory");
2813		return NULL;
2814	}
2815
2816	bacpy(&params->addr, addr);
2817	params->addr_type = addr_type;
2818
2819	list_add(&params->list, &hdev->le_conn_params);
2820	INIT_LIST_HEAD(&params->action);
2821
2822	params->conn_min_interval = hdev->le_conn_min_interval;
2823	params->conn_max_interval = hdev->le_conn_max_interval;
2824	params->conn_latency = hdev->le_conn_latency;
2825	params->supervision_timeout = hdev->le_supv_timeout;
2826	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830	return params;
2831}
2832
2833static void hci_conn_params_free(struct hci_conn_params *params)
2834{
 
 
2835	if (params->conn) {
2836		hci_conn_drop(params->conn);
2837		hci_conn_put(params->conn);
2838	}
2839
2840	list_del(&params->action);
2841	list_del(&params->list);
2842	kfree(params);
2843}
2844
2845/* This function requires the caller holds hdev->lock */
2846void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847{
2848	struct hci_conn_params *params;
2849
2850	params = hci_conn_params_lookup(hdev, addr, addr_type);
2851	if (!params)
2852		return;
2853
2854	hci_conn_params_free(params);
2855
2856	hci_update_background_scan(hdev);
2857
2858	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859}
2860
2861/* This function requires the caller holds hdev->lock */
2862void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863{
2864	struct hci_conn_params *params, *tmp;
2865
2866	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868			continue;
2869
2870		/* If trying to estabilish one time connection to disabled
2871		 * device, leave the params, but mark them as just once.
2872		 */
2873		if (params->explicit_connect) {
2874			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875			continue;
2876		}
2877
2878		list_del(&params->list);
2879		kfree(params);
2880	}
2881
2882	BT_DBG("All LE disabled connection parameters were removed");
2883}
2884
2885/* This function requires the caller holds hdev->lock */
2886static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887{
2888	struct hci_conn_params *params, *tmp;
2889
2890	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891		hci_conn_params_free(params);
2892
2893	BT_DBG("All LE connection parameters were removed");
2894}
2895
2896/* Copy the Identity Address of the controller.
2897 *
2898 * If the controller has a public BD_ADDR, then by default use that one.
2899 * If this is a LE only controller without a public address, default to
2900 * the static random address.
2901 *
2902 * For debugging purposes it is possible to force controllers with a
2903 * public address to use the static random address instead.
2904 *
2905 * In case BR/EDR has been disabled on a dual-mode controller and
2906 * userspace has configured a static address, then that address
2907 * becomes the identity address instead of the public BR/EDR address.
2908 */
2909void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910			       u8 *bdaddr_type)
2911{
2912	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916		bacpy(bdaddr, &hdev->static_addr);
2917		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2918	} else {
2919		bacpy(bdaddr, &hdev->bdaddr);
2920		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921	}
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924/* Alloc HCI device */
2925struct hci_dev *hci_alloc_dev(void)
2926{
2927	struct hci_dev *hdev;
 
 
 
 
 
 
 
2928
2929	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2930	if (!hdev)
2931		return NULL;
2932
2933	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934	hdev->esco_type = (ESCO_HV1);
2935	hdev->link_mode = (HCI_LM_ACCEPT);
2936	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2937	hdev->io_capability = 0x03;	/* No Input No Output */
2938	hdev->manufacturer = 0xffff;	/* Default to internal use */
2939	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_instance_cnt = 0;
2942	hdev->cur_adv_instance = 0x00;
2943	hdev->adv_instance_timeout = 0;
2944
 
 
 
 
2945	hdev->sniff_max_interval = 800;
2946	hdev->sniff_min_interval = 80;
2947
2948	hdev->le_adv_channel_map = 0x07;
2949	hdev->le_adv_min_interval = 0x0800;
2950	hdev->le_adv_max_interval = 0x0800;
2951	hdev->le_scan_interval = 0x0060;
2952	hdev->le_scan_window = 0x0030;
2953	hdev->le_conn_min_interval = 0x0028;
2954	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
2955	hdev->le_conn_latency = 0x0000;
2956	hdev->le_supv_timeout = 0x002a;
2957	hdev->le_def_tx_len = 0x001b;
2958	hdev->le_def_tx_time = 0x0148;
2959	hdev->le_max_tx_len = 0x001b;
2960	hdev->le_max_tx_time = 0x0148;
2961	hdev->le_max_rx_len = 0x001b;
2962	hdev->le_max_rx_time = 0x0148;
 
 
 
 
 
 
 
 
 
2963
2964	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
 
 
 
 
 
 
 
2968
2969	mutex_init(&hdev->lock);
2970	mutex_init(&hdev->req_lock);
2971
 
 
 
2972	INIT_LIST_HEAD(&hdev->mgmt_pending);
2973	INIT_LIST_HEAD(&hdev->blacklist);
2974	INIT_LIST_HEAD(&hdev->whitelist);
2975	INIT_LIST_HEAD(&hdev->uuids);
2976	INIT_LIST_HEAD(&hdev->link_keys);
2977	INIT_LIST_HEAD(&hdev->long_term_keys);
2978	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979	INIT_LIST_HEAD(&hdev->remote_oob_data);
2980	INIT_LIST_HEAD(&hdev->le_white_list);
 
2981	INIT_LIST_HEAD(&hdev->le_conn_params);
2982	INIT_LIST_HEAD(&hdev->pend_le_conns);
2983	INIT_LIST_HEAD(&hdev->pend_le_reports);
2984	INIT_LIST_HEAD(&hdev->conn_hash.list);
2985	INIT_LIST_HEAD(&hdev->adv_instances);
 
 
2986
 
2987	INIT_WORK(&hdev->rx_work, hci_rx_work);
2988	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989	INIT_WORK(&hdev->tx_work, hci_tx_work);
2990	INIT_WORK(&hdev->power_on, hci_power_on);
2991	INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
 
 
2993	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994
2995	skb_queue_head_init(&hdev->rx_q);
2996	skb_queue_head_init(&hdev->cmd_q);
2997	skb_queue_head_init(&hdev->raw_q);
2998
2999	init_waitqueue_head(&hdev->req_wait_q);
3000
3001	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3002
3003	hci_request_setup(hdev);
3004
3005	hci_init_sysfs(hdev);
3006	discovery_init(hdev);
3007
3008	return hdev;
3009}
3010EXPORT_SYMBOL(hci_alloc_dev);
3011
3012/* Free HCI device */
3013void hci_free_dev(struct hci_dev *hdev)
3014{
3015	/* will free via device release */
3016	put_device(&hdev->dev);
3017}
3018EXPORT_SYMBOL(hci_free_dev);
3019
3020/* Register HCI device */
3021int hci_register_dev(struct hci_dev *hdev)
3022{
3023	int id, error;
3024
3025	if (!hdev->open || !hdev->close || !hdev->send)
3026		return -EINVAL;
3027
3028	/* Do not allow HCI_AMP devices to register at index 0,
3029	 * so the index can be used as the AMP controller ID.
3030	 */
3031	switch (hdev->dev_type) {
3032	case HCI_PRIMARY:
3033		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034		break;
3035	case HCI_AMP:
3036		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037		break;
3038	default:
3039		return -EINVAL;
3040	}
3041
3042	if (id < 0)
3043		return id;
3044
3045	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3046	hdev->id = id;
3047
3048	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051					  WQ_MEM_RECLAIM, 1, hdev->name);
3052	if (!hdev->workqueue) {
3053		error = -ENOMEM;
3054		goto err;
3055	}
3056
3057	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058					      WQ_MEM_RECLAIM, 1, hdev->name);
3059	if (!hdev->req_workqueue) {
3060		destroy_workqueue(hdev->workqueue);
3061		error = -ENOMEM;
3062		goto err;
3063	}
3064
3065	if (!IS_ERR_OR_NULL(bt_debugfs))
3066		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068	dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070	error = device_add(&hdev->dev);
3071	if (error < 0)
3072		goto err_wqueue;
3073
3074	hci_leds_init(hdev);
3075
3076	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078				    hdev);
3079	if (hdev->rfkill) {
3080		if (rfkill_register(hdev->rfkill) < 0) {
3081			rfkill_destroy(hdev->rfkill);
3082			hdev->rfkill = NULL;
3083		}
3084	}
3085
3086	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087		hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089	hci_dev_set_flag(hdev, HCI_SETUP);
3090	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092	if (hdev->dev_type == HCI_PRIMARY) {
3093		/* Assume BR/EDR support until proven otherwise (such as
3094		 * through reading supported features during init.
3095		 */
3096		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097	}
3098
3099	write_lock(&hci_dev_list_lock);
3100	list_add(&hdev->list, &hci_dev_list);
3101	write_unlock(&hci_dev_list_lock);
3102
3103	/* Devices that are marked for raw-only usage are unconfigured
3104	 * and should not be included in normal operation.
3105	 */
3106	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
 
 
 
 
 
 
3109	hci_sock_dev_event(hdev, HCI_DEV_REG);
3110	hci_dev_hold(hdev);
3111
 
 
 
 
3112	queue_work(hdev->req_workqueue, &hdev->power_on);
3113
 
 
 
3114	return id;
3115
3116err_wqueue:
 
3117	destroy_workqueue(hdev->workqueue);
3118	destroy_workqueue(hdev->req_workqueue);
3119err:
3120	ida_simple_remove(&hci_index_ida, hdev->id);
3121
3122	return error;
3123}
3124EXPORT_SYMBOL(hci_register_dev);
3125
3126/* Unregister HCI device */
3127void hci_unregister_dev(struct hci_dev *hdev)
3128{
3129	int id;
3130
3131	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
 
3133	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135	id = hdev->id;
3136
3137	write_lock(&hci_dev_list_lock);
3138	list_del(&hdev->list);
3139	write_unlock(&hci_dev_list_lock);
3140
3141	cancel_work_sync(&hdev->power_on);
 
 
 
 
 
 
 
 
3142
3143	hci_dev_do_close(hdev);
3144
3145	if (!test_bit(HCI_INIT, &hdev->flags) &&
3146	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3147	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3148		hci_dev_lock(hdev);
3149		mgmt_index_removed(hdev);
3150		hci_dev_unlock(hdev);
3151	}
3152
3153	/* mgmt_index_removed should take care of emptying the
3154	 * pending list */
3155	BUG_ON(!list_empty(&hdev->mgmt_pending));
3156
3157	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158
3159	if (hdev->rfkill) {
3160		rfkill_unregister(hdev->rfkill);
3161		rfkill_destroy(hdev->rfkill);
3162	}
3163
3164	device_del(&hdev->dev);
 
 
 
 
3165
 
 
 
3166	debugfs_remove_recursive(hdev->debugfs);
3167	kfree_const(hdev->hw_info);
3168	kfree_const(hdev->fw_info);
3169
3170	destroy_workqueue(hdev->workqueue);
3171	destroy_workqueue(hdev->req_workqueue);
3172
3173	hci_dev_lock(hdev);
3174	hci_bdaddr_list_clear(&hdev->blacklist);
3175	hci_bdaddr_list_clear(&hdev->whitelist);
3176	hci_uuids_clear(hdev);
3177	hci_link_keys_clear(hdev);
3178	hci_smp_ltks_clear(hdev);
3179	hci_smp_irks_clear(hdev);
3180	hci_remote_oob_data_clear(hdev);
3181	hci_adv_instances_clear(hdev);
3182	hci_bdaddr_list_clear(&hdev->le_white_list);
 
 
3183	hci_conn_params_clear_all(hdev);
3184	hci_discovery_filter_clear(hdev);
 
 
 
3185	hci_dev_unlock(hdev);
3186
3187	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3188
3189	ida_simple_remove(&hci_index_ida, id);
3190}
3191EXPORT_SYMBOL(hci_unregister_dev);
3192
3193/* Suspend HCI device */
3194int hci_suspend_dev(struct hci_dev *hdev)
3195{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3196	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197	return 0;
3198}
3199EXPORT_SYMBOL(hci_suspend_dev);
3200
3201/* Resume HCI device */
3202int hci_resume_dev(struct hci_dev *hdev)
3203{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205	return 0;
3206}
3207EXPORT_SYMBOL(hci_resume_dev);
3208
3209/* Reset HCI device */
3210int hci_reset_dev(struct hci_dev *hdev)
3211{
3212	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213	struct sk_buff *skb;
3214
3215	skb = bt_skb_alloc(3, GFP_ATOMIC);
3216	if (!skb)
3217		return -ENOMEM;
3218
3219	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220	memcpy(skb_put(skb, 3), hw_err, 3);
 
 
3221
3222	/* Send Hardware Error to upper stack */
3223	return hci_recv_frame(hdev, skb);
3224}
3225EXPORT_SYMBOL(hci_reset_dev);
3226
 
 
 
 
 
 
 
 
3227/* Receive frame from HCI drivers */
3228int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229{
 
 
3230	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231		      && !test_bit(HCI_INIT, &hdev->flags))) {
3232		kfree_skb(skb);
3233		return -ENXIO;
3234	}
3235
3236	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3239		kfree_skb(skb);
3240		return -EINVAL;
3241	}
3242
3243	/* Incoming skb */
3244	bt_cb(skb)->incoming = 1;
3245
3246	/* Time stamp */
3247	__net_timestamp(skb);
3248
3249	skb_queue_tail(&hdev->rx_q, skb);
3250	queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252	return 0;
3253}
3254EXPORT_SYMBOL(hci_recv_frame);
3255
3256/* Receive diagnostic message from HCI drivers */
3257int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258{
3259	/* Mark as diagnostic packet */
3260	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261
3262	/* Time stamp */
3263	__net_timestamp(skb);
3264
3265	skb_queue_tail(&hdev->rx_q, skb);
3266	queue_work(hdev->workqueue, &hdev->rx_work);
3267
3268	return 0;
3269}
3270EXPORT_SYMBOL(hci_recv_diag);
3271
3272void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273{
3274	va_list vargs;
3275
3276	va_start(vargs, fmt);
3277	kfree_const(hdev->hw_info);
3278	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3279	va_end(vargs);
3280}
3281EXPORT_SYMBOL(hci_set_hw_info);
3282
3283void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284{
3285	va_list vargs;
3286
3287	va_start(vargs, fmt);
3288	kfree_const(hdev->fw_info);
3289	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3290	va_end(vargs);
3291}
3292EXPORT_SYMBOL(hci_set_fw_info);
3293
3294/* ---- Interface to upper protocols ---- */
3295
3296int hci_register_cb(struct hci_cb *cb)
3297{
3298	BT_DBG("%p name %s", cb, cb->name);
3299
3300	mutex_lock(&hci_cb_list_lock);
3301	list_add_tail(&cb->list, &hci_cb_list);
3302	mutex_unlock(&hci_cb_list_lock);
3303
3304	return 0;
3305}
3306EXPORT_SYMBOL(hci_register_cb);
3307
3308int hci_unregister_cb(struct hci_cb *cb)
3309{
3310	BT_DBG("%p name %s", cb, cb->name);
3311
3312	mutex_lock(&hci_cb_list_lock);
3313	list_del(&cb->list);
3314	mutex_unlock(&hci_cb_list_lock);
3315
3316	return 0;
3317}
3318EXPORT_SYMBOL(hci_unregister_cb);
3319
3320static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321{
3322	int err;
3323
3324	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3325	       skb->len);
3326
3327	/* Time stamp */
3328	__net_timestamp(skb);
3329
3330	/* Send copy to monitor */
3331	hci_send_to_monitor(hdev, skb);
3332
3333	if (atomic_read(&hdev->promisc)) {
3334		/* Send copy to the sockets */
3335		hci_send_to_sock(hdev, skb);
3336	}
3337
3338	/* Get rid of skb owner, prior to sending to the driver. */
3339	skb_orphan(skb);
3340
3341	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3342		kfree_skb(skb);
3343		return;
3344	}
3345
3346	err = hdev->send(hdev, skb);
3347	if (err < 0) {
3348		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3349		kfree_skb(skb);
 
3350	}
 
 
3351}
3352
3353/* Send HCI command */
3354int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3355		 const void *param)
3356{
3357	struct sk_buff *skb;
3358
3359	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360
3361	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3362	if (!skb) {
3363		BT_ERR("%s no memory for command", hdev->name);
3364		return -ENOMEM;
3365	}
3366
3367	/* Stand-alone HCI commands must be flagged as
3368	 * single-command requests.
3369	 */
3370	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3371
3372	skb_queue_tail(&hdev->cmd_q, skb);
3373	queue_work(hdev->workqueue, &hdev->cmd_work);
3374
3375	return 0;
3376}
3377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3378/* Get data from the previously sent command */
3379void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380{
3381	struct hci_command_hdr *hdr;
3382
3383	if (!hdev->sent_cmd)
3384		return NULL;
3385
3386	hdr = (void *) hdev->sent_cmd->data;
3387
3388	if (hdr->opcode != cpu_to_le16(opcode))
3389		return NULL;
3390
3391	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
3392
3393	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3394}
3395
3396/* Send HCI command and wait for command commplete event */
3397struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3398			     const void *param, u32 timeout)
3399{
3400	struct sk_buff *skb;
 
 
 
 
3401
3402	if (!test_bit(HCI_UP, &hdev->flags))
3403		return ERR_PTR(-ENETDOWN);
3404
3405	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
 
 
 
 
 
 
 
 
 
 
3406
3407	hci_req_sync_lock(hdev);
3408	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3409	hci_req_sync_unlock(hdev);
3410
3411	return skb;
3412}
3413EXPORT_SYMBOL(hci_cmd_sync);
3414
3415/* Send ACL data */
3416static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417{
3418	struct hci_acl_hdr *hdr;
3419	int len = skb->len;
3420
3421	skb_push(skb, HCI_ACL_HDR_SIZE);
3422	skb_reset_transport_header(skb);
3423	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3424	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3425	hdr->dlen   = cpu_to_le16(len);
3426}
3427
3428static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3429			  struct sk_buff *skb, __u16 flags)
3430{
3431	struct hci_conn *conn = chan->conn;
3432	struct hci_dev *hdev = conn->hdev;
3433	struct sk_buff *list;
3434
3435	skb->len = skb_headlen(skb);
3436	skb->data_len = 0;
3437
3438	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439
3440	switch (hdev->dev_type) {
3441	case HCI_PRIMARY:
3442		hci_add_acl_hdr(skb, conn->handle, flags);
3443		break;
3444	case HCI_AMP:
3445		hci_add_acl_hdr(skb, chan->handle, flags);
3446		break;
3447	default:
3448		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3449		return;
3450	}
3451
3452	list = skb_shinfo(skb)->frag_list;
3453	if (!list) {
3454		/* Non fragmented */
3455		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456
3457		skb_queue_tail(queue, skb);
3458	} else {
3459		/* Fragmented */
3460		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461
3462		skb_shinfo(skb)->frag_list = NULL;
3463
3464		/* Queue all fragments atomically. We need to use spin_lock_bh
3465		 * here because of 6LoWPAN links, as there this function is
3466		 * called from softirq and using normal spin lock could cause
3467		 * deadlocks.
3468		 */
3469		spin_lock_bh(&queue->lock);
3470
3471		__skb_queue_tail(queue, skb);
3472
3473		flags &= ~ACL_START;
3474		flags |= ACL_CONT;
3475		do {
3476			skb = list; list = list->next;
3477
3478			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3479			hci_add_acl_hdr(skb, conn->handle, flags);
3480
3481			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482
3483			__skb_queue_tail(queue, skb);
3484		} while (list);
3485
3486		spin_unlock_bh(&queue->lock);
3487	}
3488}
3489
3490void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491{
3492	struct hci_dev *hdev = chan->conn->hdev;
3493
3494	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495
3496	hci_queue_acl(chan, &chan->data_q, skb, flags);
3497
3498	queue_work(hdev->workqueue, &hdev->tx_work);
3499}
3500
3501/* Send SCO data */
3502void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503{
3504	struct hci_dev *hdev = conn->hdev;
3505	struct hci_sco_hdr hdr;
3506
3507	BT_DBG("%s len %d", hdev->name, skb->len);
3508
3509	hdr.handle = cpu_to_le16(conn->handle);
3510	hdr.dlen   = skb->len;
3511
3512	skb_push(skb, HCI_SCO_HDR_SIZE);
3513	skb_reset_transport_header(skb);
3514	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515
3516	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3517
3518	skb_queue_tail(&conn->data_q, skb);
3519	queue_work(hdev->workqueue, &hdev->tx_work);
3520}
3521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3522/* ---- HCI TX task (outgoing data) ---- */
3523
3524/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3525static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3526				     int *quote)
3527{
3528	struct hci_conn_hash *h = &hdev->conn_hash;
3529	struct hci_conn *conn = NULL, *c;
3530	unsigned int num = 0, min = ~0;
3531
3532	/* We don't have to lock device here. Connections are always
3533	 * added and removed with TX task disabled. */
3534
3535	rcu_read_lock();
3536
3537	list_for_each_entry_rcu(c, &h->list, list) {
3538		if (c->type != type || skb_queue_empty(&c->data_q))
3539			continue;
3540
3541		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3542			continue;
3543
3544		num++;
3545
3546		if (c->sent < min) {
3547			min  = c->sent;
3548			conn = c;
3549		}
3550
3551		if (hci_conn_num(hdev, type) == num)
3552			break;
3553	}
3554
3555	rcu_read_unlock();
3556
3557	if (conn) {
3558		int cnt, q;
3559
3560		switch (conn->type) {
3561		case ACL_LINK:
3562			cnt = hdev->acl_cnt;
3563			break;
3564		case SCO_LINK:
3565		case ESCO_LINK:
3566			cnt = hdev->sco_cnt;
3567			break;
3568		case LE_LINK:
3569			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3570			break;
3571		default:
3572			cnt = 0;
3573			BT_ERR("Unknown link type");
3574		}
3575
3576		q = cnt / num;
3577		*quote = q ? q : 1;
3578	} else
3579		*quote = 0;
3580
3581	BT_DBG("conn %p quote %d", conn, *quote);
3582	return conn;
3583}
3584
3585static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586{
3587	struct hci_conn_hash *h = &hdev->conn_hash;
3588	struct hci_conn *c;
3589
3590	BT_ERR("%s link tx timeout", hdev->name);
3591
3592	rcu_read_lock();
3593
3594	/* Kill stalled connections */
3595	list_for_each_entry_rcu(c, &h->list, list) {
3596		if (c->type == type && c->sent) {
3597			BT_ERR("%s killing stalled connection %pMR",
3598			       hdev->name, &c->dst);
 
 
 
 
3599			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
3600		}
3601	}
3602
3603	rcu_read_unlock();
3604}
3605
3606static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3607				      int *quote)
3608{
3609	struct hci_conn_hash *h = &hdev->conn_hash;
3610	struct hci_chan *chan = NULL;
3611	unsigned int num = 0, min = ~0, cur_prio = 0;
3612	struct hci_conn *conn;
3613	int cnt, q, conn_num = 0;
3614
3615	BT_DBG("%s", hdev->name);
3616
3617	rcu_read_lock();
3618
3619	list_for_each_entry_rcu(conn, &h->list, list) {
3620		struct hci_chan *tmp;
3621
3622		if (conn->type != type)
3623			continue;
3624
3625		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3626			continue;
3627
3628		conn_num++;
3629
3630		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3631			struct sk_buff *skb;
3632
3633			if (skb_queue_empty(&tmp->data_q))
3634				continue;
3635
3636			skb = skb_peek(&tmp->data_q);
3637			if (skb->priority < cur_prio)
3638				continue;
3639
3640			if (skb->priority > cur_prio) {
3641				num = 0;
3642				min = ~0;
3643				cur_prio = skb->priority;
3644			}
3645
3646			num++;
3647
3648			if (conn->sent < min) {
3649				min  = conn->sent;
3650				chan = tmp;
3651			}
3652		}
3653
3654		if (hci_conn_num(hdev, type) == conn_num)
3655			break;
3656	}
3657
3658	rcu_read_unlock();
3659
3660	if (!chan)
3661		return NULL;
3662
3663	switch (chan->conn->type) {
3664	case ACL_LINK:
3665		cnt = hdev->acl_cnt;
3666		break;
3667	case AMP_LINK:
3668		cnt = hdev->block_cnt;
3669		break;
3670	case SCO_LINK:
3671	case ESCO_LINK:
3672		cnt = hdev->sco_cnt;
3673		break;
3674	case LE_LINK:
3675		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3676		break;
3677	default:
3678		cnt = 0;
3679		BT_ERR("Unknown link type");
3680	}
3681
3682	q = cnt / num;
3683	*quote = q ? q : 1;
3684	BT_DBG("chan %p quote %d", chan, *quote);
3685	return chan;
3686}
3687
3688static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689{
3690	struct hci_conn_hash *h = &hdev->conn_hash;
3691	struct hci_conn *conn;
3692	int num = 0;
3693
3694	BT_DBG("%s", hdev->name);
3695
3696	rcu_read_lock();
3697
3698	list_for_each_entry_rcu(conn, &h->list, list) {
3699		struct hci_chan *chan;
3700
3701		if (conn->type != type)
3702			continue;
3703
3704		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3705			continue;
3706
3707		num++;
3708
3709		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3710			struct sk_buff *skb;
3711
3712			if (chan->sent) {
3713				chan->sent = 0;
3714				continue;
3715			}
3716
3717			if (skb_queue_empty(&chan->data_q))
3718				continue;
3719
3720			skb = skb_peek(&chan->data_q);
3721			if (skb->priority >= HCI_PRIO_MAX - 1)
3722				continue;
3723
3724			skb->priority = HCI_PRIO_MAX - 1;
3725
3726			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3727			       skb->priority);
3728		}
3729
3730		if (hci_conn_num(hdev, type) == num)
3731			break;
3732	}
3733
3734	rcu_read_unlock();
3735
3736}
3737
3738static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739{
3740	/* Calculate count of blocks used by this packet */
3741	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3742}
 
3743
3744static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3745{
3746	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3747		/* ACL tx timeout must be longer than maximum
3748		 * link supervision timeout (40.9 seconds) */
3749		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3750				       HCI_ACL_TX_TIMEOUT))
3751			hci_link_tx_to(hdev, ACL_LINK);
3752	}
 
 
 
 
 
 
3753}
3754
3755static void hci_sched_acl_pkt(struct hci_dev *hdev)
 
3756{
3757	unsigned int cnt = hdev->acl_cnt;
3758	struct hci_chan *chan;
3759	struct sk_buff *skb;
3760	int quote;
3761
3762	__check_timeout(hdev, cnt);
 
 
 
 
 
 
 
 
3763
3764	while (hdev->acl_cnt &&
3765	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
 
 
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_conn_enter_active_mode(chan->conn,
3778						   bt_cb(skb)->force_active);
3779
 
 
 
 
3780			hci_send_frame(hdev, skb);
3781			hdev->acl_last_tx = jiffies;
3782
3783			hdev->acl_cnt--;
3784			chan->sent++;
3785			chan->conn->sent++;
3786		}
3787	}
3788
3789	if (cnt != hdev->acl_cnt)
3790		hci_prio_recalculate(hdev, ACL_LINK);
3791}
3792
3793static void hci_sched_acl_blk(struct hci_dev *hdev)
3794{
3795	unsigned int cnt = hdev->block_cnt;
3796	struct hci_chan *chan;
3797	struct sk_buff *skb;
3798	int quote;
3799	u8 type;
3800
3801	__check_timeout(hdev, cnt);
3802
3803	BT_DBG("%s", hdev->name);
3804
3805	if (hdev->dev_type == HCI_AMP)
3806		type = AMP_LINK;
3807	else
3808		type = ACL_LINK;
3809
3810	while (hdev->block_cnt > 0 &&
3811	       (chan = hci_chan_sent(hdev, type, &quote))) {
3812		u32 priority = (skb_peek(&chan->data_q))->priority;
3813		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3814			int blocks;
3815
3816			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817			       skb->len, skb->priority);
3818
3819			/* Stop if priority has changed */
3820			if (skb->priority < priority)
3821				break;
3822
3823			skb = skb_dequeue(&chan->data_q);
3824
3825			blocks = __get_blocks(hdev, skb);
3826			if (blocks > hdev->block_cnt)
3827				return;
3828
3829			hci_conn_enter_active_mode(chan->conn,
3830						   bt_cb(skb)->force_active);
3831
3832			hci_send_frame(hdev, skb);
3833			hdev->acl_last_tx = jiffies;
3834
3835			hdev->block_cnt -= blocks;
3836			quote -= blocks;
 
3837
3838			chan->sent += blocks;
3839			chan->conn->sent += blocks;
 
3840		}
3841	}
3842
3843	if (cnt != hdev->block_cnt)
3844		hci_prio_recalculate(hdev, type);
3845}
3846
3847static void hci_sched_acl(struct hci_dev *hdev)
3848{
3849	BT_DBG("%s", hdev->name);
3850
3851	/* No ACL link over BR/EDR controller */
3852	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3853		return;
3854
3855	/* No AMP link over AMP controller */
3856	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3857		return;
3858
3859	switch (hdev->flow_ctl_mode) {
3860	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3861		hci_sched_acl_pkt(hdev);
3862		break;
3863
3864	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3865		hci_sched_acl_blk(hdev);
3866		break;
3867	}
3868}
3869
3870/* Schedule SCO */
3871static void hci_sched_sco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, SCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3883		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3884			BT_DBG("skb %p len %d", skb, skb->len);
3885			hci_send_frame(hdev, skb);
3886
3887			conn->sent++;
3888			if (conn->sent == ~0)
3889				conn->sent = 0;
3890		}
3891	}
3892}
3893
3894static void hci_sched_esco(struct hci_dev *hdev)
3895{
3896	struct hci_conn *conn;
3897	struct sk_buff *skb;
3898	int quote;
3899
3900	BT_DBG("%s", hdev->name);
3901
3902	if (!hci_conn_num(hdev, ESCO_LINK))
3903		return;
3904
3905	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3906						     &quote))) {
3907		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3908			BT_DBG("skb %p len %d", skb, skb->len);
3909			hci_send_frame(hdev, skb);
3910
3911			conn->sent++;
3912			if (conn->sent == ~0)
3913				conn->sent = 0;
3914		}
3915	}
3916}
3917
3918static void hci_sched_le(struct hci_dev *hdev)
3919{
3920	struct hci_chan *chan;
3921	struct sk_buff *skb;
3922	int quote, cnt, tmp;
3923
3924	BT_DBG("%s", hdev->name);
3925
3926	if (!hci_conn_num(hdev, LE_LINK))
3927		return;
3928
3929	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930		/* LE tx timeout must be longer than maximum
3931		 * link supervision timeout (40.9 seconds) */
3932		if (!hdev->le_cnt && hdev->le_pkts &&
3933		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3934			hci_link_tx_to(hdev, LE_LINK);
3935	}
3936
3937	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3938	tmp = cnt;
3939	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3940		u32 priority = (skb_peek(&chan->data_q))->priority;
3941		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3942			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3943			       skb->len, skb->priority);
3944
3945			/* Stop if priority has changed */
3946			if (skb->priority < priority)
3947				break;
3948
3949			skb = skb_dequeue(&chan->data_q);
3950
3951			hci_send_frame(hdev, skb);
3952			hdev->le_last_tx = jiffies;
3953
3954			cnt--;
3955			chan->sent++;
3956			chan->conn->sent++;
 
 
 
 
3957		}
3958	}
3959
3960	if (hdev->le_pkts)
3961		hdev->le_cnt = cnt;
3962	else
3963		hdev->acl_cnt = cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3964
3965	if (cnt != tmp)
3966		hci_prio_recalculate(hdev, LE_LINK);
 
 
 
 
3967}
3968
3969static void hci_tx_work(struct work_struct *work)
3970{
3971	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3972	struct sk_buff *skb;
3973
3974	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3975	       hdev->sco_cnt, hdev->le_cnt);
3976
3977	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3978		/* Schedule queues and send stuff to HCI driver */
3979		hci_sched_acl(hdev);
3980		hci_sched_sco(hdev);
3981		hci_sched_esco(hdev);
 
 
3982		hci_sched_le(hdev);
3983	}
3984
3985	/* Send next queued raw (unknown type) packet */
3986	while ((skb = skb_dequeue(&hdev->raw_q)))
3987		hci_send_frame(hdev, skb);
3988}
3989
3990/* ----- HCI RX task (incoming data processing) ----- */
3991
3992/* ACL data packet */
3993static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994{
3995	struct hci_acl_hdr *hdr = (void *) skb->data;
3996	struct hci_conn *conn;
3997	__u16 handle, flags;
3998
3999	skb_pull(skb, HCI_ACL_HDR_SIZE);
 
 
 
 
4000
4001	handle = __le16_to_cpu(hdr->handle);
4002	flags  = hci_flags(handle);
4003	handle = hci_handle(handle);
4004
4005	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4006	       handle, flags);
4007
4008	hdev->stat.acl_rx++;
4009
4010	hci_dev_lock(hdev);
4011	conn = hci_conn_hash_lookup_handle(hdev, handle);
4012	hci_dev_unlock(hdev);
4013
4014	if (conn) {
4015		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016
4017		/* Send to upper protocol */
4018		l2cap_recv_acldata(conn, skb, flags);
4019		return;
4020	} else {
4021		BT_ERR("%s ACL packet for unknown connection handle %d",
4022		       hdev->name, handle);
4023	}
4024
 
4025	kfree_skb(skb);
4026}
4027
4028/* SCO data packet */
4029static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030{
4031	struct hci_sco_hdr *hdr = (void *) skb->data;
4032	struct hci_conn *conn;
4033	__u16 handle;
4034
4035	skb_pull(skb, HCI_SCO_HDR_SIZE);
 
 
 
 
4036
4037	handle = __le16_to_cpu(hdr->handle);
 
 
4038
4039	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4040
4041	hdev->stat.sco_rx++;
4042
4043	hci_dev_lock(hdev);
4044	conn = hci_conn_hash_lookup_handle(hdev, handle);
4045	hci_dev_unlock(hdev);
4046
4047	if (conn) {
4048		/* Send to upper protocol */
 
4049		sco_recv_scodata(conn, skb);
4050		return;
4051	} else {
4052		BT_ERR("%s SCO packet for unknown connection handle %d",
4053		       hdev->name, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4054	}
4055
 
 
 
 
 
4056	kfree_skb(skb);
4057}
4058
4059static bool hci_req_is_complete(struct hci_dev *hdev)
4060{
4061	struct sk_buff *skb;
4062
4063	skb = skb_peek(&hdev->cmd_q);
4064	if (!skb)
4065		return true;
4066
4067	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4068}
4069
4070static void hci_resend_last(struct hci_dev *hdev)
4071{
4072	struct hci_command_hdr *sent;
4073	struct sk_buff *skb;
4074	u16 opcode;
4075
4076	if (!hdev->sent_cmd)
4077		return;
4078
4079	sent = (void *) hdev->sent_cmd->data;
4080	opcode = __le16_to_cpu(sent->opcode);
4081	if (opcode == HCI_OP_RESET)
4082		return;
4083
4084	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	if (!skb)
4086		return;
4087
4088	skb_queue_head(&hdev->cmd_q, skb);
4089	queue_work(hdev->workqueue, &hdev->cmd_work);
4090}
4091
4092void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4093			  hci_req_complete_t *req_complete,
4094			  hci_req_complete_skb_t *req_complete_skb)
4095{
4096	struct sk_buff *skb;
4097	unsigned long flags;
4098
4099	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100
4101	/* If the completed command doesn't match the last one that was
4102	 * sent we need to do special handling of it.
4103	 */
4104	if (!hci_sent_cmd_data(hdev, opcode)) {
4105		/* Some CSR based controllers generate a spontaneous
4106		 * reset complete event during init and any pending
4107		 * command will never be completed. In such a case we
4108		 * need to resend whatever was the last sent
4109		 * command.
4110		 */
4111		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4112			hci_resend_last(hdev);
4113
4114		return;
4115	}
4116
 
 
 
4117	/* If the command succeeded and there's still more commands in
4118	 * this request the request is not yet complete.
4119	 */
4120	if (!status && !hci_req_is_complete(hdev))
4121		return;
4122
 
 
4123	/* If this was the last command in a request the complete
4124	 * callback would be found in hdev->sent_cmd instead of the
4125	 * command queue (hdev->cmd_q).
4126	 */
4127	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4128		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4129		return;
4130	}
4131
4132	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4133		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4134		return;
4135	}
4136
4137	/* Remove all pending commands belonging to this request */
4138	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4139	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4140		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4141			__skb_queue_head(&hdev->cmd_q, skb);
4142			break;
4143		}
4144
4145		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4146			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4147		else
4148			*req_complete = bt_cb(skb)->hci.req_complete;
4149		kfree_skb(skb);
4150	}
4151	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4152}
4153
4154static void hci_rx_work(struct work_struct *work)
4155{
4156	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4157	struct sk_buff *skb;
4158
4159	BT_DBG("%s", hdev->name);
4160
4161	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4162		/* Send copy to monitor */
4163		hci_send_to_monitor(hdev, skb);
4164
4165		if (atomic_read(&hdev->promisc)) {
4166			/* Send copy to the sockets */
4167			hci_send_to_sock(hdev, skb);
4168		}
4169
4170		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4171			kfree_skb(skb);
4172			continue;
4173		}
4174
4175		if (test_bit(HCI_INIT, &hdev->flags)) {
4176			/* Don't process data packets in this states. */
4177			switch (hci_skb_pkt_type(skb)) {
4178			case HCI_ACLDATA_PKT:
4179			case HCI_SCODATA_PKT:
 
4180				kfree_skb(skb);
4181				continue;
4182			}
4183		}
4184
4185		/* Process frame */
4186		switch (hci_skb_pkt_type(skb)) {
4187		case HCI_EVENT_PKT:
4188			BT_DBG("%s Event packet", hdev->name);
4189			hci_event_packet(hdev, skb);
4190			break;
4191
4192		case HCI_ACLDATA_PKT:
4193			BT_DBG("%s ACL data packet", hdev->name);
4194			hci_acldata_packet(hdev, skb);
4195			break;
4196
4197		case HCI_SCODATA_PKT:
4198			BT_DBG("%s SCO data packet", hdev->name);
4199			hci_scodata_packet(hdev, skb);
4200			break;
4201
 
 
 
 
 
4202		default:
4203			kfree_skb(skb);
4204			break;
4205		}
4206	}
4207}
4208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4209static void hci_cmd_work(struct work_struct *work)
4210{
4211	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4212	struct sk_buff *skb;
4213
4214	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4215	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216
4217	/* Send queued commands */
4218	if (atomic_read(&hdev->cmd_cnt)) {
4219		skb = skb_dequeue(&hdev->cmd_q);
4220		if (!skb)
4221			return;
4222
4223		kfree_skb(hdev->sent_cmd);
4224
4225		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4226		if (hdev->sent_cmd) {
4227			atomic_dec(&hdev->cmd_cnt);
4228			hci_send_frame(hdev, skb);
4229			if (test_bit(HCI_RESET, &hdev->flags))
4230				cancel_delayed_work(&hdev->cmd_timer);
4231			else
4232				schedule_delayed_work(&hdev->cmd_timer,
4233						      HCI_CMD_TIMEOUT);
4234		} else {
4235			skb_queue_head(&hdev->cmd_q, skb);
4236			queue_work(hdev->workqueue, &hdev->cmd_work);
4237		}
4238	}
4239}