Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <linux/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
 
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47#include "aosp.h"
  48#include "hci_codec.h"
  49
  50static void hci_rx_work(struct work_struct *work);
  51static void hci_cmd_work(struct work_struct *work);
  52static void hci_tx_work(struct work_struct *work);
  53
  54/* HCI device list */
  55LIST_HEAD(hci_dev_list);
  56DEFINE_RWLOCK(hci_dev_list_lock);
  57
  58/* HCI callback list */
  59LIST_HEAD(hci_cb_list);
 
  60
  61/* HCI ID Numbering */
  62static DEFINE_IDA(hci_index_ida);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64/* Get HCI device by index.
  65 * Device is held on return. */
  66struct hci_dev *hci_dev_get(int index)
  67{
  68	struct hci_dev *hdev = NULL, *d;
  69
  70	BT_DBG("%d", index);
  71
  72	if (index < 0)
  73		return NULL;
  74
  75	read_lock(&hci_dev_list_lock);
  76	list_for_each_entry(d, &hci_dev_list, list) {
  77		if (d->id == index) {
  78			hdev = hci_dev_hold(d);
  79			break;
  80		}
  81	}
  82	read_unlock(&hci_dev_list_lock);
  83	return hdev;
  84}
  85
  86/* ---- Inquiry support ---- */
  87
  88bool hci_discovery_active(struct hci_dev *hdev)
  89{
  90	struct discovery_state *discov = &hdev->discovery;
  91
  92	switch (discov->state) {
  93	case DISCOVERY_FINDING:
  94	case DISCOVERY_RESOLVING:
  95		return true;
  96
  97	default:
  98		return false;
  99	}
 100}
 101
 102void hci_discovery_set_state(struct hci_dev *hdev, int state)
 103{
 104	int old_state = hdev->discovery.state;
 105
 
 
 106	if (old_state == state)
 107		return;
 108
 109	hdev->discovery.state = state;
 110
 111	switch (state) {
 112	case DISCOVERY_STOPPED:
 113		hci_update_passive_scan(hdev);
 114
 115		if (old_state != DISCOVERY_STARTING)
 116			mgmt_discovering(hdev, 0);
 117		break;
 118	case DISCOVERY_STARTING:
 119		break;
 120	case DISCOVERY_FINDING:
 121		mgmt_discovering(hdev, 1);
 122		break;
 123	case DISCOVERY_RESOLVING:
 124		break;
 125	case DISCOVERY_STOPPING:
 126		break;
 127	}
 128
 129	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
 130}
 131
 132void hci_inquiry_cache_flush(struct hci_dev *hdev)
 133{
 134	struct discovery_state *cache = &hdev->discovery;
 135	struct inquiry_entry *p, *n;
 136
 137	list_for_each_entry_safe(p, n, &cache->all, all) {
 138		list_del(&p->all);
 139		kfree(p);
 140	}
 141
 142	INIT_LIST_HEAD(&cache->unknown);
 143	INIT_LIST_HEAD(&cache->resolve);
 144}
 145
 146struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 147					       bdaddr_t *bdaddr)
 148{
 149	struct discovery_state *cache = &hdev->discovery;
 150	struct inquiry_entry *e;
 151
 152	BT_DBG("cache %p, %pMR", cache, bdaddr);
 153
 154	list_for_each_entry(e, &cache->all, all) {
 155		if (!bacmp(&e->data.bdaddr, bdaddr))
 156			return e;
 157	}
 158
 159	return NULL;
 160}
 161
 162struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 163						       bdaddr_t *bdaddr)
 164{
 165	struct discovery_state *cache = &hdev->discovery;
 166	struct inquiry_entry *e;
 167
 168	BT_DBG("cache %p, %pMR", cache, bdaddr);
 169
 170	list_for_each_entry(e, &cache->unknown, list) {
 171		if (!bacmp(&e->data.bdaddr, bdaddr))
 172			return e;
 173	}
 174
 175	return NULL;
 176}
 177
 178struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 179						       bdaddr_t *bdaddr,
 180						       int state)
 181{
 182	struct discovery_state *cache = &hdev->discovery;
 183	struct inquiry_entry *e;
 184
 185	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 186
 187	list_for_each_entry(e, &cache->resolve, list) {
 188		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 189			return e;
 190		if (!bacmp(&e->data.bdaddr, bdaddr))
 191			return e;
 192	}
 193
 194	return NULL;
 195}
 196
 197void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 198				      struct inquiry_entry *ie)
 199{
 200	struct discovery_state *cache = &hdev->discovery;
 201	struct list_head *pos = &cache->resolve;
 202	struct inquiry_entry *p;
 203
 204	list_del(&ie->list);
 205
 206	list_for_each_entry(p, &cache->resolve, list) {
 207		if (p->name_state != NAME_PENDING &&
 208		    abs(p->data.rssi) >= abs(ie->data.rssi))
 209			break;
 210		pos = &p->list;
 211	}
 212
 213	list_add(&ie->list, pos);
 214}
 215
 216u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 217			     bool name_known)
 218{
 219	struct discovery_state *cache = &hdev->discovery;
 220	struct inquiry_entry *ie;
 221	u32 flags = 0;
 222
 223	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 224
 225	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 226
 227	if (!data->ssp_mode)
 228		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 229
 230	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 231	if (ie) {
 232		if (!ie->data.ssp_mode)
 233			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 234
 235		if (ie->name_state == NAME_NEEDED &&
 236		    data->rssi != ie->data.rssi) {
 237			ie->data.rssi = data->rssi;
 238			hci_inquiry_cache_update_resolve(hdev, ie);
 239		}
 240
 241		goto update;
 242	}
 243
 244	/* Entry not in the cache. Add new one. */
 245	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 246	if (!ie) {
 247		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 248		goto done;
 249	}
 250
 251	list_add(&ie->all, &cache->all);
 252
 253	if (name_known) {
 254		ie->name_state = NAME_KNOWN;
 255	} else {
 256		ie->name_state = NAME_NOT_KNOWN;
 257		list_add(&ie->list, &cache->unknown);
 258	}
 259
 260update:
 261	if (name_known && ie->name_state != NAME_KNOWN &&
 262	    ie->name_state != NAME_PENDING) {
 263		ie->name_state = NAME_KNOWN;
 264		list_del(&ie->list);
 265	}
 266
 267	memcpy(&ie->data, data, sizeof(*data));
 268	ie->timestamp = jiffies;
 269	cache->timestamp = jiffies;
 270
 271	if (ie->name_state == NAME_NOT_KNOWN)
 272		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 273
 274done:
 275	return flags;
 276}
 277
 278static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 279{
 280	struct discovery_state *cache = &hdev->discovery;
 281	struct inquiry_info *info = (struct inquiry_info *) buf;
 282	struct inquiry_entry *e;
 283	int copied = 0;
 284
 285	list_for_each_entry(e, &cache->all, all) {
 286		struct inquiry_data *data = &e->data;
 287
 288		if (copied >= num)
 289			break;
 290
 291		bacpy(&info->bdaddr, &data->bdaddr);
 292		info->pscan_rep_mode	= data->pscan_rep_mode;
 293		info->pscan_period_mode	= data->pscan_period_mode;
 294		info->pscan_mode	= data->pscan_mode;
 295		memcpy(info->dev_class, data->dev_class, 3);
 296		info->clock_offset	= data->clock_offset;
 297
 298		info++;
 299		copied++;
 300	}
 301
 302	BT_DBG("cache %p, copied %d", cache, copied);
 303	return copied;
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306int hci_inquiry(void __user *arg)
 307{
 308	__u8 __user *ptr = arg;
 309	struct hci_inquiry_req ir;
 310	struct hci_dev *hdev;
 311	int err = 0, do_inquiry = 0, max_rsp;
 
 312	__u8 *buf;
 313
 314	if (copy_from_user(&ir, ptr, sizeof(ir)))
 315		return -EFAULT;
 316
 317	hdev = hci_dev_get(ir.dev_id);
 318	if (!hdev)
 319		return -ENODEV;
 320
 321	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 322		err = -EBUSY;
 323		goto done;
 324	}
 325
 326	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 327		err = -EOPNOTSUPP;
 328		goto done;
 329	}
 330
 
 
 
 
 
 331	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 332		err = -EOPNOTSUPP;
 333		goto done;
 334	}
 335
 336	/* Restrict maximum inquiry length to 60 seconds */
 337	if (ir.length > 60) {
 338		err = -EINVAL;
 339		goto done;
 340	}
 341
 342	hci_dev_lock(hdev);
 343	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 344	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 345		hci_inquiry_cache_flush(hdev);
 346		do_inquiry = 1;
 347	}
 348	hci_dev_unlock(hdev);
 349
 350	if (do_inquiry) {
 351		hci_req_sync_lock(hdev);
 352		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
 353		hci_req_sync_unlock(hdev);
 354
 
 
 
 355		if (err < 0)
 356			goto done;
 357
 358		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 359		 * cleared). If it is interrupted by a signal, return -EINTR.
 360		 */
 361		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 362				TASK_INTERRUPTIBLE)) {
 363			err = -EINTR;
 364			goto done;
 365		}
 366	}
 367
 368	/* for unlimited number of responses we will use buffer with
 369	 * 255 entries
 370	 */
 371	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 372
 373	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 374	 * copy it to the user space.
 375	 */
 376	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 377	if (!buf) {
 378		err = -ENOMEM;
 379		goto done;
 380	}
 381
 382	hci_dev_lock(hdev);
 383	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 384	hci_dev_unlock(hdev);
 385
 386	BT_DBG("num_rsp %d", ir.num_rsp);
 387
 388	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 389		ptr += sizeof(ir);
 390		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 391				 ir.num_rsp))
 392			err = -EFAULT;
 393	} else
 394		err = -EFAULT;
 395
 396	kfree(buf);
 397
 398done:
 399	hci_dev_put(hdev);
 400	return err;
 401}
 402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403static int hci_dev_do_open(struct hci_dev *hdev)
 404{
 405	int ret = 0;
 406
 407	BT_DBG("%s %p", hdev->name, hdev);
 408
 409	hci_req_sync_lock(hdev);
 410
 411	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 
 
 
 
 
 413	hci_req_sync_unlock(hdev);
 414	return ret;
 415}
 416
 417/* ---- HCI ioctl helpers ---- */
 418
 419int hci_dev_open(__u16 dev)
 420{
 421	struct hci_dev *hdev;
 422	int err;
 423
 424	hdev = hci_dev_get(dev);
 425	if (!hdev)
 426		return -ENODEV;
 427
 428	/* Devices that are marked as unconfigured can only be powered
 429	 * up as user channel. Trying to bring them up as normal devices
 430	 * will result into a failure. Only user channel operation is
 431	 * possible.
 432	 *
 433	 * When this function is called for a user channel, the flag
 434	 * HCI_USER_CHANNEL will be set first before attempting to
 435	 * open the device.
 436	 */
 437	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 438	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 439		err = -EOPNOTSUPP;
 440		goto done;
 441	}
 442
 443	/* We need to ensure that no other power on/off work is pending
 444	 * before proceeding to call hci_dev_do_open. This is
 445	 * particularly important if the setup procedure has not yet
 446	 * completed.
 447	 */
 448	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 449		cancel_delayed_work(&hdev->power_off);
 450
 451	/* After this call it is guaranteed that the setup procedure
 452	 * has finished. This means that error conditions like RFKILL
 453	 * or no valid public or static random address apply.
 454	 */
 455	flush_workqueue(hdev->req_workqueue);
 456
 457	/* For controllers not using the management interface and that
 458	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 459	 * so that pairing works for them. Once the management interface
 460	 * is in use this bit will be cleared again and userspace has
 461	 * to explicitly enable it.
 462	 */
 463	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 464	    !hci_dev_test_flag(hdev, HCI_MGMT))
 465		hci_dev_set_flag(hdev, HCI_BONDABLE);
 466
 467	err = hci_dev_do_open(hdev);
 468
 469done:
 470	hci_dev_put(hdev);
 471	return err;
 472}
 473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474int hci_dev_do_close(struct hci_dev *hdev)
 475{
 476	int err;
 477
 478	BT_DBG("%s %p", hdev->name, hdev);
 479
 
 
 
 
 480	hci_req_sync_lock(hdev);
 481
 482	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483
 484	hci_req_sync_unlock(hdev);
 485
 486	return err;
 
 487}
 488
 489int hci_dev_close(__u16 dev)
 490{
 491	struct hci_dev *hdev;
 492	int err;
 493
 494	hdev = hci_dev_get(dev);
 495	if (!hdev)
 496		return -ENODEV;
 497
 498	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 499		err = -EBUSY;
 500		goto done;
 501	}
 502
 503	cancel_work_sync(&hdev->power_on);
 504	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 505		cancel_delayed_work(&hdev->power_off);
 506
 507	err = hci_dev_do_close(hdev);
 508
 509done:
 510	hci_dev_put(hdev);
 511	return err;
 512}
 513
 514static int hci_dev_do_reset(struct hci_dev *hdev)
 515{
 516	int ret;
 517
 518	BT_DBG("%s %p", hdev->name, hdev);
 519
 520	hci_req_sync_lock(hdev);
 521
 522	/* Drop queues */
 523	skb_queue_purge(&hdev->rx_q);
 524	skb_queue_purge(&hdev->cmd_q);
 525
 526	/* Cancel these to avoid queueing non-chained pending work */
 527	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 528	/* Wait for
 529	 *
 530	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 531	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 532	 *
 533	 * inside RCU section to see the flag or complete scheduling.
 534	 */
 535	synchronize_rcu();
 536	/* Explicitly cancel works in case scheduled after setting the flag. */
 537	cancel_delayed_work(&hdev->cmd_timer);
 538	cancel_delayed_work(&hdev->ncmd_timer);
 539
 540	/* Avoid potential lockdep warnings from the *_flush() calls by
 541	 * ensuring the workqueue is empty up front.
 542	 */
 543	drain_workqueue(hdev->workqueue);
 544
 545	hci_dev_lock(hdev);
 546	hci_inquiry_cache_flush(hdev);
 547	hci_conn_hash_flush(hdev);
 548	hci_dev_unlock(hdev);
 549
 550	if (hdev->flush)
 551		hdev->flush(hdev);
 552
 553	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 554
 555	atomic_set(&hdev->cmd_cnt, 1);
 556	hdev->acl_cnt = 0;
 557	hdev->sco_cnt = 0;
 558	hdev->le_cnt = 0;
 559	hdev->iso_cnt = 0;
 560
 561	ret = hci_reset_sync(hdev);
 562
 563	hci_req_sync_unlock(hdev);
 564	return ret;
 565}
 566
 567int hci_dev_reset(__u16 dev)
 568{
 569	struct hci_dev *hdev;
 570	int err;
 571
 572	hdev = hci_dev_get(dev);
 573	if (!hdev)
 574		return -ENODEV;
 575
 576	if (!test_bit(HCI_UP, &hdev->flags)) {
 577		err = -ENETDOWN;
 578		goto done;
 579	}
 580
 581	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 582		err = -EBUSY;
 583		goto done;
 584	}
 585
 586	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 587		err = -EOPNOTSUPP;
 588		goto done;
 589	}
 590
 591	err = hci_dev_do_reset(hdev);
 592
 593done:
 594	hci_dev_put(hdev);
 595	return err;
 596}
 597
 598int hci_dev_reset_stat(__u16 dev)
 599{
 600	struct hci_dev *hdev;
 601	int ret = 0;
 602
 603	hdev = hci_dev_get(dev);
 604	if (!hdev)
 605		return -ENODEV;
 606
 607	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 608		ret = -EBUSY;
 609		goto done;
 610	}
 611
 612	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 613		ret = -EOPNOTSUPP;
 614		goto done;
 615	}
 616
 617	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 618
 619done:
 620	hci_dev_put(hdev);
 621	return ret;
 622}
 623
 624static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 625{
 626	bool conn_changed, discov_changed;
 627
 628	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 629
 630	if ((scan & SCAN_PAGE))
 631		conn_changed = !hci_dev_test_and_set_flag(hdev,
 632							  HCI_CONNECTABLE);
 633	else
 634		conn_changed = hci_dev_test_and_clear_flag(hdev,
 635							   HCI_CONNECTABLE);
 636
 637	if ((scan & SCAN_INQUIRY)) {
 638		discov_changed = !hci_dev_test_and_set_flag(hdev,
 639							    HCI_DISCOVERABLE);
 640	} else {
 641		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 642		discov_changed = hci_dev_test_and_clear_flag(hdev,
 643							     HCI_DISCOVERABLE);
 644	}
 645
 646	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 647		return;
 648
 649	if (conn_changed || discov_changed) {
 650		/* In case this was disabled through mgmt */
 651		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 652
 653		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 654			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 655
 656		mgmt_new_settings(hdev);
 657	}
 658}
 659
 660int hci_dev_cmd(unsigned int cmd, void __user *arg)
 661{
 662	struct hci_dev *hdev;
 663	struct hci_dev_req dr;
 664	__le16 policy;
 665	int err = 0;
 666
 667	if (copy_from_user(&dr, arg, sizeof(dr)))
 668		return -EFAULT;
 669
 670	hdev = hci_dev_get(dr.dev_id);
 671	if (!hdev)
 672		return -ENODEV;
 673
 674	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 675		err = -EBUSY;
 676		goto done;
 677	}
 678
 679	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 680		err = -EOPNOTSUPP;
 681		goto done;
 682	}
 683
 
 
 
 
 
 684	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 685		err = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	switch (cmd) {
 690	case HCISETAUTH:
 691		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
 692					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 693		break;
 694
 695	case HCISETENCRYPT:
 696		if (!lmp_encrypt_capable(hdev)) {
 697			err = -EOPNOTSUPP;
 698			break;
 699		}
 700
 701		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 702			/* Auth must be enabled first */
 703			err = hci_cmd_sync_status(hdev,
 704						  HCI_OP_WRITE_AUTH_ENABLE,
 705						  1, &dr.dev_opt,
 706						  HCI_CMD_TIMEOUT);
 707			if (err)
 708				break;
 709		}
 710
 711		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
 712					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 713		break;
 714
 715	case HCISETSCAN:
 716		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
 717					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
 718
 719		/* Ensure that the connectable and discoverable states
 720		 * get correctly modified as this was a non-mgmt change.
 721		 */
 722		if (!err)
 723			hci_update_passive_scan_state(hdev, dr.dev_opt);
 724		break;
 725
 726	case HCISETLINKPOL:
 727		policy = cpu_to_le16(dr.dev_opt);
 728
 729		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
 730					  2, &policy, HCI_CMD_TIMEOUT);
 731		break;
 732
 733	case HCISETLINKMODE:
 734		hdev->link_mode = ((__u16) dr.dev_opt) &
 735					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 736		break;
 737
 738	case HCISETPTYPE:
 739		if (hdev->pkt_type == (__u16) dr.dev_opt)
 740			break;
 741
 742		hdev->pkt_type = (__u16) dr.dev_opt;
 743		mgmt_phy_configuration_changed(hdev, NULL);
 744		break;
 745
 746	case HCISETACLMTU:
 747		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 748		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 749		break;
 750
 751	case HCISETSCOMTU:
 752		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 753		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 754		break;
 755
 756	default:
 757		err = -EINVAL;
 758		break;
 759	}
 760
 761done:
 762	hci_dev_put(hdev);
 763	return err;
 764}
 765
 766int hci_get_dev_list(void __user *arg)
 767{
 768	struct hci_dev *hdev;
 769	struct hci_dev_list_req *dl;
 770	struct hci_dev_req *dr;
 771	int n = 0, err;
 772	__u16 dev_num;
 773
 774	if (get_user(dev_num, (__u16 __user *) arg))
 775		return -EFAULT;
 776
 777	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 778		return -EINVAL;
 779
 780	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
 
 
 781	if (!dl)
 782		return -ENOMEM;
 783
 784	dl->dev_num = dev_num;
 785	dr = dl->dev_req;
 786
 787	read_lock(&hci_dev_list_lock);
 788	list_for_each_entry(hdev, &hci_dev_list, list) {
 789		unsigned long flags = hdev->flags;
 790
 791		/* When the auto-off is configured it means the transport
 792		 * is running, but in that case still indicate that the
 793		 * device is actually down.
 794		 */
 795		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 796			flags &= ~BIT(HCI_UP);
 797
 798		dr[n].dev_id  = hdev->id;
 799		dr[n].dev_opt = flags;
 800
 801		if (++n >= dev_num)
 802			break;
 803	}
 804	read_unlock(&hci_dev_list_lock);
 805
 806	dl->dev_num = n;
 807	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
 
 
 808	kfree(dl);
 809
 810	return err ? -EFAULT : 0;
 811}
 812
 813int hci_get_dev_info(void __user *arg)
 814{
 815	struct hci_dev *hdev;
 816	struct hci_dev_info di;
 817	unsigned long flags;
 818	int err = 0;
 819
 820	if (copy_from_user(&di, arg, sizeof(di)))
 821		return -EFAULT;
 822
 823	hdev = hci_dev_get(di.dev_id);
 824	if (!hdev)
 825		return -ENODEV;
 826
 827	/* When the auto-off is configured it means the transport
 828	 * is running, but in that case still indicate that the
 829	 * device is actually down.
 830	 */
 831	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 832		flags = hdev->flags & ~BIT(HCI_UP);
 833	else
 834		flags = hdev->flags;
 835
 836	strscpy(di.name, hdev->name, sizeof(di.name));
 837	di.bdaddr   = hdev->bdaddr;
 838	di.type     = (hdev->bus & 0x0f);
 839	di.flags    = flags;
 840	di.pkt_type = hdev->pkt_type;
 841	if (lmp_bredr_capable(hdev)) {
 842		di.acl_mtu  = hdev->acl_mtu;
 843		di.acl_pkts = hdev->acl_pkts;
 844		di.sco_mtu  = hdev->sco_mtu;
 845		di.sco_pkts = hdev->sco_pkts;
 846	} else {
 847		di.acl_mtu  = hdev->le_mtu;
 848		di.acl_pkts = hdev->le_pkts;
 849		di.sco_mtu  = 0;
 850		di.sco_pkts = 0;
 851	}
 852	di.link_policy = hdev->link_policy;
 853	di.link_mode   = hdev->link_mode;
 854
 855	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 856	memcpy(&di.features, &hdev->features, sizeof(di.features));
 857
 858	if (copy_to_user(arg, &di, sizeof(di)))
 859		err = -EFAULT;
 860
 861	hci_dev_put(hdev);
 862
 863	return err;
 864}
 865
 866/* ---- Interface to HCI drivers ---- */
 867
 868static int hci_dev_do_poweroff(struct hci_dev *hdev)
 869{
 870	int err;
 871
 872	BT_DBG("%s %p", hdev->name, hdev);
 873
 874	hci_req_sync_lock(hdev);
 875
 876	err = hci_set_powered_sync(hdev, false);
 877
 878	hci_req_sync_unlock(hdev);
 879
 880	return err;
 881}
 882
 883static int hci_rfkill_set_block(void *data, bool blocked)
 884{
 885	struct hci_dev *hdev = data;
 886	int err;
 887
 888	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 889
 890	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 891		return -EBUSY;
 892
 893	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
 894		return 0;
 895
 896	if (blocked) {
 897		hci_dev_set_flag(hdev, HCI_RFKILLED);
 898
 899		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 900		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 901			err = hci_dev_do_poweroff(hdev);
 902			if (err) {
 903				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
 904					   err);
 905
 906				/* Make sure the device is still closed even if
 907				 * anything during power off sequence (eg.
 908				 * disconnecting devices) failed.
 909				 */
 910				hci_dev_do_close(hdev);
 911			}
 912		}
 913	} else {
 914		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 915	}
 916
 917	return 0;
 918}
 919
 920static const struct rfkill_ops hci_rfkill_ops = {
 921	.set_block = hci_rfkill_set_block,
 922};
 923
 924static void hci_power_on(struct work_struct *work)
 925{
 926	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 927	int err;
 928
 929	BT_DBG("%s", hdev->name);
 930
 931	if (test_bit(HCI_UP, &hdev->flags) &&
 932	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 933	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 934		cancel_delayed_work(&hdev->power_off);
 935		err = hci_powered_update_sync(hdev);
 
 
 936		mgmt_power_on(hdev, err);
 937		return;
 938	}
 939
 940	err = hci_dev_do_open(hdev);
 941	if (err < 0) {
 942		hci_dev_lock(hdev);
 943		mgmt_set_powered_failed(hdev, err);
 944		hci_dev_unlock(hdev);
 945		return;
 946	}
 947
 948	/* During the HCI setup phase, a few error conditions are
 949	 * ignored and they need to be checked now. If they are still
 950	 * valid, it is important to turn the device back off.
 951	 */
 952	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 953	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 954	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 
 955	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
 956		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
 957		hci_dev_do_close(hdev);
 958	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
 959		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
 960				   HCI_AUTO_OFF_TIMEOUT);
 961	}
 962
 963	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
 964		/* For unconfigured devices, set the HCI_RAW flag
 965		 * so that userspace can easily identify them.
 966		 */
 967		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 968			set_bit(HCI_RAW, &hdev->flags);
 969
 970		/* For fully configured devices, this will send
 971		 * the Index Added event. For unconfigured devices,
 972		 * it will send Unconfigued Index Added event.
 973		 *
 974		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
 975		 * and no event will be send.
 976		 */
 977		mgmt_index_added(hdev);
 978	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
 979		/* When the controller is now configured, then it
 980		 * is important to clear the HCI_RAW flag.
 981		 */
 982		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 983			clear_bit(HCI_RAW, &hdev->flags);
 984
 985		/* Powering on the controller with HCI_CONFIG set only
 986		 * happens with the transition from unconfigured to
 987		 * configured. This will send the Index Added event.
 988		 */
 989		mgmt_index_added(hdev);
 990	}
 991}
 992
 993static void hci_power_off(struct work_struct *work)
 994{
 995	struct hci_dev *hdev = container_of(work, struct hci_dev,
 996					    power_off.work);
 997
 998	BT_DBG("%s", hdev->name);
 999
1000	hci_dev_do_close(hdev);
1001}
1002
1003static void hci_error_reset(struct work_struct *work)
1004{
1005	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006
1007	hci_dev_hold(hdev);
1008	BT_DBG("%s", hdev->name);
1009
1010	if (hdev->hw_error)
1011		hdev->hw_error(hdev, hdev->hw_error_code);
1012	else
1013		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1014
1015	if (!hci_dev_do_close(hdev))
1016		hci_dev_do_open(hdev);
1017
1018	hci_dev_put(hdev);
1019}
1020
1021void hci_uuids_clear(struct hci_dev *hdev)
1022{
1023	struct bt_uuid *uuid, *tmp;
1024
1025	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026		list_del(&uuid->list);
1027		kfree(uuid);
1028	}
1029}
1030
1031void hci_link_keys_clear(struct hci_dev *hdev)
1032{
1033	struct link_key *key, *tmp;
1034
1035	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036		list_del_rcu(&key->list);
1037		kfree_rcu(key, rcu);
1038	}
1039}
1040
1041void hci_smp_ltks_clear(struct hci_dev *hdev)
1042{
1043	struct smp_ltk *k, *tmp;
1044
1045	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046		list_del_rcu(&k->list);
1047		kfree_rcu(k, rcu);
1048	}
1049}
1050
1051void hci_smp_irks_clear(struct hci_dev *hdev)
1052{
1053	struct smp_irk *k, *tmp;
1054
1055	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056		list_del_rcu(&k->list);
1057		kfree_rcu(k, rcu);
1058	}
1059}
1060
1061void hci_blocked_keys_clear(struct hci_dev *hdev)
1062{
1063	struct blocked_key *b, *tmp;
1064
1065	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066		list_del_rcu(&b->list);
1067		kfree_rcu(b, rcu);
1068	}
1069}
1070
1071bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072{
1073	bool blocked = false;
1074	struct blocked_key *b;
1075
1076	rcu_read_lock();
1077	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079			blocked = true;
1080			break;
1081		}
1082	}
1083
1084	rcu_read_unlock();
1085	return blocked;
1086}
1087
1088struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089{
1090	struct link_key *k;
1091
1092	rcu_read_lock();
1093	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095			rcu_read_unlock();
1096
1097			if (hci_is_blocked_key(hdev,
1098					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099					       k->val)) {
1100				bt_dev_warn_ratelimited(hdev,
1101							"Link key blocked for %pMR",
1102							&k->bdaddr);
1103				return NULL;
1104			}
1105
1106			return k;
1107		}
1108	}
1109	rcu_read_unlock();
1110
1111	return NULL;
1112}
1113
1114static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115			       u8 key_type, u8 old_key_type)
1116{
1117	/* Legacy key */
1118	if (key_type < 0x03)
1119		return true;
1120
1121	/* Debug keys are insecure so don't store them persistently */
1122	if (key_type == HCI_LK_DEBUG_COMBINATION)
1123		return false;
1124
1125	/* Changed combination key and there's no previous one */
1126	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127		return false;
1128
1129	/* Security mode 3 case */
1130	if (!conn)
1131		return true;
1132
1133	/* BR/EDR key derived using SC from an LE link */
1134	if (conn->type == LE_LINK)
1135		return true;
1136
1137	/* Neither local nor remote side had no-bonding as requirement */
1138	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139		return true;
1140
1141	/* Local side had dedicated bonding as requirement */
1142	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143		return true;
1144
1145	/* Remote side had dedicated bonding as requirement */
1146	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147		return true;
1148
1149	/* If none of the above criteria match, then don't store the key
1150	 * persistently */
1151	return false;
1152}
1153
1154static u8 ltk_role(u8 type)
1155{
1156	if (type == SMP_LTK)
1157		return HCI_ROLE_MASTER;
1158
1159	return HCI_ROLE_SLAVE;
1160}
1161
1162struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163			     u8 addr_type, u8 role)
1164{
1165	struct smp_ltk *k;
1166
1167	rcu_read_lock();
1168	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170			continue;
1171
1172		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173			rcu_read_unlock();
1174
1175			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176					       k->val)) {
1177				bt_dev_warn_ratelimited(hdev,
1178							"LTK blocked for %pMR",
1179							&k->bdaddr);
1180				return NULL;
1181			}
1182
1183			return k;
1184		}
1185	}
1186	rcu_read_unlock();
1187
1188	return NULL;
1189}
1190
1191struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192{
1193	struct smp_irk *irk_to_return = NULL;
1194	struct smp_irk *irk;
1195
1196	rcu_read_lock();
1197	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198		if (!bacmp(&irk->rpa, rpa)) {
1199			irk_to_return = irk;
1200			goto done;
1201		}
1202	}
1203
1204	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205		if (smp_irk_matches(hdev, irk->val, rpa)) {
1206			bacpy(&irk->rpa, rpa);
1207			irk_to_return = irk;
1208			goto done;
1209		}
1210	}
1211
1212done:
1213	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214						irk_to_return->val)) {
1215		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216					&irk_to_return->bdaddr);
1217		irk_to_return = NULL;
1218	}
1219
1220	rcu_read_unlock();
1221
1222	return irk_to_return;
1223}
1224
1225struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226				     u8 addr_type)
1227{
1228	struct smp_irk *irk_to_return = NULL;
1229	struct smp_irk *irk;
1230
1231	/* Identity Address must be public or static random */
1232	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233		return NULL;
1234
1235	rcu_read_lock();
1236	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237		if (addr_type == irk->addr_type &&
1238		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1239			irk_to_return = irk;
1240			goto done;
1241		}
1242	}
1243
1244done:
1245
1246	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247						irk_to_return->val)) {
1248		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249					&irk_to_return->bdaddr);
1250		irk_to_return = NULL;
1251	}
1252
1253	rcu_read_unlock();
1254
1255	return irk_to_return;
1256}
1257
1258struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259				  bdaddr_t *bdaddr, u8 *val, u8 type,
1260				  u8 pin_len, bool *persistent)
1261{
1262	struct link_key *key, *old_key;
1263	u8 old_key_type;
1264
1265	old_key = hci_find_link_key(hdev, bdaddr);
1266	if (old_key) {
1267		old_key_type = old_key->type;
1268		key = old_key;
1269	} else {
1270		old_key_type = conn ? conn->key_type : 0xff;
1271		key = kzalloc(sizeof(*key), GFP_KERNEL);
1272		if (!key)
1273			return NULL;
1274		list_add_rcu(&key->list, &hdev->link_keys);
1275	}
1276
1277	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278
1279	/* Some buggy controller combinations generate a changed
1280	 * combination key for legacy pairing even when there's no
1281	 * previous key */
1282	if (type == HCI_LK_CHANGED_COMBINATION &&
1283	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284		type = HCI_LK_COMBINATION;
1285		if (conn)
1286			conn->key_type = type;
1287	}
1288
1289	bacpy(&key->bdaddr, bdaddr);
1290	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291	key->pin_len = pin_len;
1292
1293	if (type == HCI_LK_CHANGED_COMBINATION)
1294		key->type = old_key_type;
1295	else
1296		key->type = type;
1297
1298	if (persistent)
1299		*persistent = hci_persistent_key(hdev, conn, type,
1300						 old_key_type);
1301
1302	return key;
1303}
1304
1305struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306			    u8 addr_type, u8 type, u8 authenticated,
1307			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308{
1309	struct smp_ltk *key, *old_key;
1310	u8 role = ltk_role(type);
1311
1312	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313	if (old_key)
1314		key = old_key;
1315	else {
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->long_term_keys);
1320	}
1321
1322	bacpy(&key->bdaddr, bdaddr);
1323	key->bdaddr_type = addr_type;
1324	memcpy(key->val, tk, sizeof(key->val));
1325	key->authenticated = authenticated;
1326	key->ediv = ediv;
1327	key->rand = rand;
1328	key->enc_size = enc_size;
1329	key->type = type;
1330
1331	return key;
1332}
1333
1334struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336{
1337	struct smp_irk *irk;
1338
1339	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340	if (!irk) {
1341		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342		if (!irk)
1343			return NULL;
1344
1345		bacpy(&irk->bdaddr, bdaddr);
1346		irk->addr_type = addr_type;
1347
1348		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349	}
1350
1351	memcpy(irk->val, val, 16);
1352	bacpy(&irk->rpa, rpa);
1353
1354	return irk;
1355}
1356
1357int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358{
1359	struct link_key *key;
1360
1361	key = hci_find_link_key(hdev, bdaddr);
1362	if (!key)
1363		return -ENOENT;
1364
1365	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366
1367	list_del_rcu(&key->list);
1368	kfree_rcu(key, rcu);
1369
1370	return 0;
1371}
1372
1373int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374{
1375	struct smp_ltk *k, *tmp;
1376	int removed = 0;
1377
1378	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380			continue;
1381
1382		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383
1384		list_del_rcu(&k->list);
1385		kfree_rcu(k, rcu);
1386		removed++;
1387	}
1388
1389	return removed ? 0 : -ENOENT;
1390}
1391
1392void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393{
1394	struct smp_irk *k, *tmp;
1395
1396	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398			continue;
1399
1400		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401
1402		list_del_rcu(&k->list);
1403		kfree_rcu(k, rcu);
1404	}
1405}
1406
1407bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408{
1409	struct smp_ltk *k;
1410	struct smp_irk *irk;
1411	u8 addr_type;
1412
1413	if (type == BDADDR_BREDR) {
1414		if (hci_find_link_key(hdev, bdaddr))
1415			return true;
1416		return false;
1417	}
1418
1419	/* Convert to HCI addr type which struct smp_ltk uses */
1420	if (type == BDADDR_LE_PUBLIC)
1421		addr_type = ADDR_LE_DEV_PUBLIC;
1422	else
1423		addr_type = ADDR_LE_DEV_RANDOM;
1424
1425	irk = hci_get_irk(hdev, bdaddr, addr_type);
1426	if (irk) {
1427		bdaddr = &irk->bdaddr;
1428		addr_type = irk->addr_type;
1429	}
1430
1431	rcu_read_lock();
1432	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434			rcu_read_unlock();
1435			return true;
1436		}
1437	}
1438	rcu_read_unlock();
1439
1440	return false;
1441}
1442
1443/* HCI command timer function */
1444static void hci_cmd_timeout(struct work_struct *work)
1445{
1446	struct hci_dev *hdev = container_of(work, struct hci_dev,
1447					    cmd_timer.work);
1448
1449	if (hdev->req_skb) {
1450		u16 opcode = hci_skb_opcode(hdev->req_skb);
 
1451
1452		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453
1454		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455	} else {
1456		bt_dev_err(hdev, "command tx timeout");
1457	}
1458
1459	if (hdev->cmd_timeout)
1460		hdev->cmd_timeout(hdev);
1461
1462	atomic_set(&hdev->cmd_cnt, 1);
1463	queue_work(hdev->workqueue, &hdev->cmd_work);
1464}
1465
1466/* HCI ncmd timer function */
1467static void hci_ncmd_timeout(struct work_struct *work)
1468{
1469	struct hci_dev *hdev = container_of(work, struct hci_dev,
1470					    ncmd_timer.work);
1471
1472	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473
1474	/* During HCI_INIT phase no events can be injected if the ncmd timer
1475	 * triggers since the procedure has its own timeout handling.
1476	 */
1477	if (test_bit(HCI_INIT, &hdev->flags))
1478		return;
1479
1480	/* This is an irrecoverable state, inject hardware error event */
1481	hci_reset_dev(hdev);
1482}
1483
1484struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485					  bdaddr_t *bdaddr, u8 bdaddr_type)
1486{
1487	struct oob_data *data;
1488
1489	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490		if (bacmp(bdaddr, &data->bdaddr) != 0)
1491			continue;
1492		if (data->bdaddr_type != bdaddr_type)
1493			continue;
1494		return data;
1495	}
1496
1497	return NULL;
1498}
1499
1500int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501			       u8 bdaddr_type)
1502{
1503	struct oob_data *data;
1504
1505	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506	if (!data)
1507		return -ENOENT;
1508
1509	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510
1511	list_del(&data->list);
1512	kfree(data);
1513
1514	return 0;
1515}
1516
1517void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518{
1519	struct oob_data *data, *n;
1520
1521	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522		list_del(&data->list);
1523		kfree(data);
1524	}
1525}
1526
1527int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529			    u8 *hash256, u8 *rand256)
1530{
1531	struct oob_data *data;
1532
1533	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534	if (!data) {
1535		data = kmalloc(sizeof(*data), GFP_KERNEL);
1536		if (!data)
1537			return -ENOMEM;
1538
1539		bacpy(&data->bdaddr, bdaddr);
1540		data->bdaddr_type = bdaddr_type;
1541		list_add(&data->list, &hdev->remote_oob_data);
1542	}
1543
1544	if (hash192 && rand192) {
1545		memcpy(data->hash192, hash192, sizeof(data->hash192));
1546		memcpy(data->rand192, rand192, sizeof(data->rand192));
1547		if (hash256 && rand256)
1548			data->present = 0x03;
1549	} else {
1550		memset(data->hash192, 0, sizeof(data->hash192));
1551		memset(data->rand192, 0, sizeof(data->rand192));
1552		if (hash256 && rand256)
1553			data->present = 0x02;
1554		else
1555			data->present = 0x00;
1556	}
1557
1558	if (hash256 && rand256) {
1559		memcpy(data->hash256, hash256, sizeof(data->hash256));
1560		memcpy(data->rand256, rand256, sizeof(data->rand256));
1561	} else {
1562		memset(data->hash256, 0, sizeof(data->hash256));
1563		memset(data->rand256, 0, sizeof(data->rand256));
1564		if (hash192 && rand192)
1565			data->present = 0x01;
1566	}
1567
1568	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569
1570	return 0;
1571}
1572
1573/* This function requires the caller holds hdev->lock */
1574struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575{
1576	struct adv_info *adv_instance;
1577
1578	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579		if (adv_instance->instance == instance)
1580			return adv_instance;
1581	}
1582
1583	return NULL;
1584}
1585
1586/* This function requires the caller holds hdev->lock */
1587struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588{
1589	struct adv_info *cur_instance;
1590
1591	cur_instance = hci_find_adv_instance(hdev, instance);
1592	if (!cur_instance)
1593		return NULL;
1594
1595	if (cur_instance == list_last_entry(&hdev->adv_instances,
1596					    struct adv_info, list))
1597		return list_first_entry(&hdev->adv_instances,
1598						 struct adv_info, list);
1599	else
1600		return list_next_entry(cur_instance, list);
1601}
1602
1603/* This function requires the caller holds hdev->lock */
1604int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605{
1606	struct adv_info *adv_instance;
1607
1608	adv_instance = hci_find_adv_instance(hdev, instance);
1609	if (!adv_instance)
1610		return -ENOENT;
1611
1612	BT_DBG("%s removing %dMR", hdev->name, instance);
1613
1614	if (hdev->cur_adv_instance == instance) {
1615		if (hdev->adv_instance_timeout) {
1616			cancel_delayed_work(&hdev->adv_instance_expire);
1617			hdev->adv_instance_timeout = 0;
1618		}
1619		hdev->cur_adv_instance = 0x00;
1620	}
1621
1622	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1623
1624	list_del(&adv_instance->list);
1625	kfree(adv_instance);
1626
1627	hdev->adv_instance_cnt--;
1628
1629	return 0;
1630}
1631
1632void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1633{
1634	struct adv_info *adv_instance, *n;
1635
1636	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637		adv_instance->rpa_expired = rpa_expired;
1638}
1639
1640/* This function requires the caller holds hdev->lock */
1641void hci_adv_instances_clear(struct hci_dev *hdev)
1642{
1643	struct adv_info *adv_instance, *n;
1644
1645	if (hdev->adv_instance_timeout) {
1646		disable_delayed_work(&hdev->adv_instance_expire);
1647		hdev->adv_instance_timeout = 0;
1648	}
1649
1650	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651		disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652		list_del(&adv_instance->list);
1653		kfree(adv_instance);
1654	}
1655
1656	hdev->adv_instance_cnt = 0;
1657	hdev->cur_adv_instance = 0x00;
1658}
1659
1660static void adv_instance_rpa_expired(struct work_struct *work)
1661{
1662	struct adv_info *adv_instance = container_of(work, struct adv_info,
1663						     rpa_expired_cb.work);
1664
1665	BT_DBG("");
1666
1667	adv_instance->rpa_expired = true;
1668}
1669
1670/* This function requires the caller holds hdev->lock */
1671struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672				      u32 flags, u16 adv_data_len, u8 *adv_data,
1673				      u16 scan_rsp_len, u8 *scan_rsp_data,
1674				      u16 timeout, u16 duration, s8 tx_power,
1675				      u32 min_interval, u32 max_interval,
1676				      u8 mesh_handle)
1677{
1678	struct adv_info *adv;
1679
1680	adv = hci_find_adv_instance(hdev, instance);
1681	if (adv) {
1682		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685	} else {
1686		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688			return ERR_PTR(-EOVERFLOW);
1689
1690		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691		if (!adv)
1692			return ERR_PTR(-ENOMEM);
1693
1694		adv->pending = true;
1695		adv->instance = instance;
1696
1697		/* If controller support only one set and the instance is set to
1698		 * 1 then there is no option other than using handle 0x00.
1699		 */
1700		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701			adv->handle = 0x00;
1702		else
1703			adv->handle = instance;
1704
1705		list_add(&adv->list, &hdev->adv_instances);
 
 
1706		hdev->adv_instance_cnt++;
1707	}
1708
1709	adv->flags = flags;
1710	adv->min_interval = min_interval;
1711	adv->max_interval = max_interval;
1712	adv->tx_power = tx_power;
1713	/* Defining a mesh_handle changes the timing units to ms,
1714	 * rather than seconds, and ties the instance to the requested
1715	 * mesh_tx queue.
1716	 */
1717	adv->mesh = mesh_handle;
1718
1719	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720				  scan_rsp_len, scan_rsp_data);
 
1721
1722	adv->timeout = timeout;
1723	adv->remaining_time = timeout;
1724
1725	if (duration == 0)
1726		adv->duration = hdev->def_multi_adv_rotation_duration;
1727	else
1728		adv->duration = duration;
1729
1730	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
 
1731
1732	BT_DBG("%s for %dMR", hdev->name, instance);
1733
1734	return adv;
1735}
1736
1737/* This function requires the caller holds hdev->lock */
1738struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739				      u32 flags, u8 data_len, u8 *data,
1740				      u32 min_interval, u32 max_interval)
1741{
1742	struct adv_info *adv;
1743
1744	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746				   min_interval, max_interval, 0);
1747	if (IS_ERR(adv))
1748		return adv;
1749
1750	adv->periodic = true;
1751	adv->per_adv_data_len = data_len;
1752
1753	if (data)
1754		memcpy(adv->per_adv_data, data, data_len);
1755
1756	return adv;
1757}
1758
1759/* This function requires the caller holds hdev->lock */
1760int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761			      u16 adv_data_len, u8 *adv_data,
1762			      u16 scan_rsp_len, u8 *scan_rsp_data)
1763{
1764	struct adv_info *adv;
1765
1766	adv = hci_find_adv_instance(hdev, instance);
1767
1768	/* If advertisement doesn't exist, we can't modify its data */
1769	if (!adv)
1770		return -ENOENT;
1771
1772	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774		memcpy(adv->adv_data, adv_data, adv_data_len);
1775		adv->adv_data_len = adv_data_len;
1776		adv->adv_data_changed = true;
1777	}
1778
1779	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782		adv->scan_rsp_len = scan_rsp_len;
1783		adv->scan_rsp_changed = true;
1784	}
1785
1786	/* Mark as changed if there are flags which would affect it */
1787	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789		adv->scan_rsp_changed = true;
1790
1791	return 0;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796{
1797	u32 flags;
1798	struct adv_info *adv;
1799
1800	if (instance == 0x00) {
1801		/* Instance 0 always manages the "Tx Power" and "Flags"
1802		 * fields
1803		 */
1804		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805
1806		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807		 * corresponds to the "connectable" instance flag.
1808		 */
1809		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811
1812		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815			flags |= MGMT_ADV_FLAG_DISCOV;
1816
1817		return flags;
1818	}
1819
1820	adv = hci_find_adv_instance(hdev, instance);
1821
1822	/* Return 0 when we got an invalid instance identifier. */
1823	if (!adv)
1824		return 0;
1825
1826	return adv->flags;
1827}
1828
1829bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830{
1831	struct adv_info *adv;
1832
1833	/* Instance 0x00 always set local name */
1834	if (instance == 0x00)
1835		return true;
1836
1837	adv = hci_find_adv_instance(hdev, instance);
1838	if (!adv)
1839		return false;
1840
1841	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843		return true;
1844
1845	return adv->scan_rsp_len ? true : false;
1846}
1847
1848/* This function requires the caller holds hdev->lock */
1849void hci_adv_monitors_clear(struct hci_dev *hdev)
1850{
1851	struct adv_monitor *monitor;
1852	int handle;
1853
1854	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855		hci_free_adv_monitor(hdev, monitor);
1856
1857	idr_destroy(&hdev->adv_monitors_idr);
1858}
1859
1860/* Frees the monitor structure and do some bookkeepings.
1861 * This function requires the caller holds hdev->lock.
1862 */
1863void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864{
1865	struct adv_pattern *pattern;
1866	struct adv_pattern *tmp;
1867
1868	if (!monitor)
1869		return;
1870
1871	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872		list_del(&pattern->list);
1873		kfree(pattern);
1874	}
1875
1876	if (monitor->handle)
1877		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878
1879	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880		hdev->adv_monitors_cnt--;
1881		mgmt_adv_monitor_removed(hdev, monitor->handle);
1882	}
1883
1884	kfree(monitor);
1885}
1886
 
 
 
 
 
 
 
 
 
 
1887/* Assigns handle to a monitor, and if offloading is supported and power is on,
1888 * also attempts to forward the request to the controller.
1889 * This function requires the caller holds hci_req_sync_lock.
 
1890 */
1891int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
 
1892{
1893	int min, max, handle;
1894	int status = 0;
1895
1896	if (!monitor)
1897		return -EINVAL;
1898
1899	hci_dev_lock(hdev);
 
 
 
1900
1901	min = HCI_MIN_ADV_MONITOR_HANDLE;
1902	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904			   GFP_KERNEL);
1905
1906	hci_dev_unlock(hdev);
1907
1908	if (handle < 0)
1909		return handle;
1910
1911	monitor->handle = handle;
1912
1913	if (!hdev_is_powered(hdev))
1914		return status;
1915
1916	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917	case HCI_ADV_MONITOR_EXT_NONE:
1918		bt_dev_dbg(hdev, "add monitor %d status %d",
1919			   monitor->handle, status);
1920		/* Message was not forwarded to controller - not an error */
1921		break;
1922
1923	case HCI_ADV_MONITOR_EXT_MSFT:
1924		status = msft_add_monitor_pattern(hdev, monitor);
1925		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926			   handle, status);
1927		break;
1928	}
1929
1930	return status;
1931}
1932
1933/* Attempts to tell the controller and free the monitor. If somehow the
1934 * controller doesn't have a corresponding handle, remove anyway.
1935 * This function requires the caller holds hci_req_sync_lock.
 
1936 */
1937static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938				  struct adv_monitor *monitor)
 
1939{
1940	int status = 0;
1941	int handle;
1942
1943	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945		bt_dev_dbg(hdev, "remove monitor %d status %d",
1946			   monitor->handle, status);
1947		goto free_monitor;
1948
1949	case HCI_ADV_MONITOR_EXT_MSFT:
1950		handle = monitor->handle;
1951		status = msft_remove_monitor(hdev, monitor);
1952		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953			   handle, status);
1954		break;
1955	}
1956
1957	/* In case no matching handle registered, just free the monitor */
1958	if (status == -ENOENT)
1959		goto free_monitor;
1960
1961	return status;
1962
1963free_monitor:
1964	if (status == -ENOENT)
1965		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966			    monitor->handle);
1967	hci_free_adv_monitor(hdev, monitor);
1968
1969	return status;
 
1970}
1971
1972/* This function requires the caller holds hci_req_sync_lock */
1973int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
 
 
1974{
1975	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
 
1976
1977	if (!monitor)
1978		return -EINVAL;
 
 
1979
1980	return hci_remove_adv_monitor(hdev, monitor);
 
 
 
 
 
 
 
1981}
1982
1983/* This function requires the caller holds hci_req_sync_lock */
1984int hci_remove_all_adv_monitor(struct hci_dev *hdev)
 
 
1985{
1986	struct adv_monitor *monitor;
1987	int idr_next_id = 0;
1988	int status = 0;
 
1989
1990	while (1) {
 
 
1991		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992		if (!monitor)
1993			break;
1994
1995		status = hci_remove_adv_monitor(hdev, monitor);
1996		if (status)
1997			return status;
1998
1999		idr_next_id++;
 
2000	}
2001
2002	return status;
 
 
 
 
 
 
2003}
2004
2005/* This function requires the caller holds hdev->lock */
2006bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007{
2008	return !idr_is_empty(&hdev->adv_monitors_idr);
2009}
2010
2011int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2012{
2013	if (msft_monitor_supported(hdev))
2014		return HCI_ADV_MONITOR_EXT_MSFT;
2015
2016	return HCI_ADV_MONITOR_EXT_NONE;
2017}
2018
2019struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020					 bdaddr_t *bdaddr, u8 type)
2021{
2022	struct bdaddr_list *b;
2023
2024	list_for_each_entry(b, bdaddr_list, list) {
2025		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026			return b;
2027	}
2028
2029	return NULL;
2030}
2031
2032struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034				u8 type)
2035{
2036	struct bdaddr_list_with_irk *b;
2037
2038	list_for_each_entry(b, bdaddr_list, list) {
2039		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040			return b;
2041	}
2042
2043	return NULL;
2044}
2045
2046struct bdaddr_list_with_flags *
2047hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048				  bdaddr_t *bdaddr, u8 type)
2049{
2050	struct bdaddr_list_with_flags *b;
2051
2052	list_for_each_entry(b, bdaddr_list, list) {
2053		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054			return b;
2055	}
2056
2057	return NULL;
2058}
2059
2060void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061{
2062	struct bdaddr_list *b, *n;
2063
2064	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065		list_del(&b->list);
2066		kfree(b);
2067	}
2068}
2069
2070int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071{
2072	struct bdaddr_list *entry;
2073
2074	if (!bacmp(bdaddr, BDADDR_ANY))
2075		return -EBADF;
2076
2077	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078		return -EEXIST;
2079
2080	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081	if (!entry)
2082		return -ENOMEM;
2083
2084	bacpy(&entry->bdaddr, bdaddr);
2085	entry->bdaddr_type = type;
2086
2087	list_add(&entry->list, list);
2088
2089	return 0;
2090}
2091
2092int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093					u8 type, u8 *peer_irk, u8 *local_irk)
2094{
2095	struct bdaddr_list_with_irk *entry;
2096
2097	if (!bacmp(bdaddr, BDADDR_ANY))
2098		return -EBADF;
2099
2100	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101		return -EEXIST;
2102
2103	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104	if (!entry)
2105		return -ENOMEM;
2106
2107	bacpy(&entry->bdaddr, bdaddr);
2108	entry->bdaddr_type = type;
2109
2110	if (peer_irk)
2111		memcpy(entry->peer_irk, peer_irk, 16);
2112
2113	if (local_irk)
2114		memcpy(entry->local_irk, local_irk, 16);
2115
2116	list_add(&entry->list, list);
2117
2118	return 0;
2119}
2120
2121int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122				   u8 type, u32 flags)
2123{
2124	struct bdaddr_list_with_flags *entry;
2125
2126	if (!bacmp(bdaddr, BDADDR_ANY))
2127		return -EBADF;
2128
2129	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130		return -EEXIST;
2131
2132	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133	if (!entry)
2134		return -ENOMEM;
2135
2136	bacpy(&entry->bdaddr, bdaddr);
2137	entry->bdaddr_type = type;
2138	entry->flags = flags;
2139
2140	list_add(&entry->list, list);
2141
2142	return 0;
2143}
2144
2145int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2146{
2147	struct bdaddr_list *entry;
2148
2149	if (!bacmp(bdaddr, BDADDR_ANY)) {
2150		hci_bdaddr_list_clear(list);
2151		return 0;
2152	}
2153
2154	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155	if (!entry)
2156		return -ENOENT;
2157
2158	list_del(&entry->list);
2159	kfree(entry);
2160
2161	return 0;
2162}
2163
2164int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165							u8 type)
2166{
2167	struct bdaddr_list_with_irk *entry;
2168
2169	if (!bacmp(bdaddr, BDADDR_ANY)) {
2170		hci_bdaddr_list_clear(list);
2171		return 0;
2172	}
2173
2174	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175	if (!entry)
2176		return -ENOENT;
2177
2178	list_del(&entry->list);
2179	kfree(entry);
2180
2181	return 0;
2182}
2183
2184int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2185				   u8 type)
2186{
2187	struct bdaddr_list_with_flags *entry;
2188
2189	if (!bacmp(bdaddr, BDADDR_ANY)) {
2190		hci_bdaddr_list_clear(list);
2191		return 0;
2192	}
2193
2194	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2195	if (!entry)
2196		return -ENOENT;
2197
2198	list_del(&entry->list);
2199	kfree(entry);
2200
2201	return 0;
2202}
2203
2204/* This function requires the caller holds hdev->lock */
2205struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2206					       bdaddr_t *addr, u8 addr_type)
2207{
2208	struct hci_conn_params *params;
2209
2210	list_for_each_entry(params, &hdev->le_conn_params, list) {
2211		if (bacmp(&params->addr, addr) == 0 &&
2212		    params->addr_type == addr_type) {
2213			return params;
2214		}
2215	}
2216
2217	return NULL;
2218}
2219
2220/* This function requires the caller holds hdev->lock or rcu_read_lock */
2221struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2222						  bdaddr_t *addr, u8 addr_type)
2223{
2224	struct hci_conn_params *param;
2225
2226	rcu_read_lock();
 
 
 
 
 
 
 
2227
2228	list_for_each_entry_rcu(param, list, action) {
2229		if (bacmp(&param->addr, addr) == 0 &&
2230		    param->addr_type == addr_type) {
2231			rcu_read_unlock();
2232			return param;
2233		}
2234	}
2235
2236	rcu_read_unlock();
2237
2238	return NULL;
2239}
2240
2241/* This function requires the caller holds hdev->lock */
2242void hci_pend_le_list_del_init(struct hci_conn_params *param)
2243{
2244	if (list_empty(&param->action))
2245		return;
2246
2247	list_del_rcu(&param->action);
2248	synchronize_rcu();
2249	INIT_LIST_HEAD(&param->action);
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253void hci_pend_le_list_add(struct hci_conn_params *param,
2254			  struct list_head *list)
2255{
2256	list_add_rcu(&param->action, list);
2257}
2258
2259/* This function requires the caller holds hdev->lock */
2260struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2261					    bdaddr_t *addr, u8 addr_type)
2262{
2263	struct hci_conn_params *params;
2264
2265	params = hci_conn_params_lookup(hdev, addr, addr_type);
2266	if (params)
2267		return params;
2268
2269	params = kzalloc(sizeof(*params), GFP_KERNEL);
2270	if (!params) {
2271		bt_dev_err(hdev, "out of memory");
2272		return NULL;
2273	}
2274
2275	bacpy(&params->addr, addr);
2276	params->addr_type = addr_type;
2277
2278	list_add(&params->list, &hdev->le_conn_params);
2279	INIT_LIST_HEAD(&params->action);
2280
2281	params->conn_min_interval = hdev->le_conn_min_interval;
2282	params->conn_max_interval = hdev->le_conn_max_interval;
2283	params->conn_latency = hdev->le_conn_latency;
2284	params->supervision_timeout = hdev->le_supv_timeout;
2285	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2286
2287	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2288
2289	return params;
2290}
2291
2292void hci_conn_params_free(struct hci_conn_params *params)
2293{
2294	hci_pend_le_list_del_init(params);
2295
2296	if (params->conn) {
2297		hci_conn_drop(params->conn);
2298		hci_conn_put(params->conn);
2299	}
2300
 
2301	list_del(&params->list);
2302	kfree(params);
2303}
2304
2305/* This function requires the caller holds hdev->lock */
2306void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2307{
2308	struct hci_conn_params *params;
2309
2310	params = hci_conn_params_lookup(hdev, addr, addr_type);
2311	if (!params)
2312		return;
2313
2314	hci_conn_params_free(params);
2315
2316	hci_update_passive_scan(hdev);
2317
2318	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2319}
2320
2321/* This function requires the caller holds hdev->lock */
2322void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2323{
2324	struct hci_conn_params *params, *tmp;
2325
2326	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2327		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2328			continue;
2329
2330		/* If trying to establish one time connection to disabled
2331		 * device, leave the params, but mark them as just once.
2332		 */
2333		if (params->explicit_connect) {
2334			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2335			continue;
2336		}
2337
2338		hci_conn_params_free(params);
 
2339	}
2340
2341	BT_DBG("All LE disabled connection parameters were removed");
2342}
2343
2344/* This function requires the caller holds hdev->lock */
2345static void hci_conn_params_clear_all(struct hci_dev *hdev)
2346{
2347	struct hci_conn_params *params, *tmp;
2348
2349	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2350		hci_conn_params_free(params);
2351
2352	BT_DBG("All LE connection parameters were removed");
2353}
2354
2355/* Copy the Identity Address of the controller.
2356 *
2357 * If the controller has a public BD_ADDR, then by default use that one.
2358 * If this is a LE only controller without a public address, default to
2359 * the static random address.
2360 *
2361 * For debugging purposes it is possible to force controllers with a
2362 * public address to use the static random address instead.
2363 *
2364 * In case BR/EDR has been disabled on a dual-mode controller and
2365 * userspace has configured a static address, then that address
2366 * becomes the identity address instead of the public BR/EDR address.
2367 */
2368void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2369			       u8 *bdaddr_type)
2370{
2371	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2372	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2373	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2374	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2375		bacpy(bdaddr, &hdev->static_addr);
2376		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2377	} else {
2378		bacpy(bdaddr, &hdev->bdaddr);
2379		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2380	}
2381}
2382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2383static void hci_clear_wake_reason(struct hci_dev *hdev)
2384{
2385	hci_dev_lock(hdev);
2386
2387	hdev->wake_reason = 0;
2388	bacpy(&hdev->wake_addr, BDADDR_ANY);
2389	hdev->wake_addr_type = 0;
2390
2391	hci_dev_unlock(hdev);
2392}
2393
2394static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2395				void *data)
2396{
2397	struct hci_dev *hdev =
2398		container_of(nb, struct hci_dev, suspend_notifier);
2399	int ret = 0;
 
2400
2401	/* Userspace has full control of this device. Do nothing. */
2402	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2403		return NOTIFY_DONE;
 
 
 
 
2404
2405	/* To avoid a potential race with hci_unregister_dev. */
2406	hci_dev_hold(hdev);
 
 
2407
2408	switch (action) {
2409	case PM_HIBERNATION_PREPARE:
2410	case PM_SUSPEND_PREPARE:
2411		ret = hci_suspend_dev(hdev);
2412		break;
2413	case PM_POST_HIBERNATION:
2414	case PM_POST_SUSPEND:
2415		ret = hci_resume_dev(hdev);
2416		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417	}
2418
 
 
 
 
2419	if (ret)
2420		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2421			   action, ret);
2422
2423	hci_dev_put(hdev);
2424	return NOTIFY_DONE;
2425}
2426
2427/* Alloc HCI device */
2428struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2429{
2430	struct hci_dev *hdev;
2431	unsigned int alloc_size;
2432
2433	alloc_size = sizeof(*hdev);
2434	if (sizeof_priv) {
2435		/* Fixme: May need ALIGN-ment? */
2436		alloc_size += sizeof_priv;
2437	}
2438
2439	hdev = kzalloc(alloc_size, GFP_KERNEL);
2440	if (!hdev)
2441		return NULL;
2442
2443	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2444	hdev->esco_type = (ESCO_HV1);
2445	hdev->link_mode = (HCI_LM_ACCEPT);
2446	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2447	hdev->io_capability = 0x03;	/* No Input No Output */
2448	hdev->manufacturer = 0xffff;	/* Default to internal use */
2449	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2450	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2451	hdev->adv_instance_cnt = 0;
2452	hdev->cur_adv_instance = 0x00;
2453	hdev->adv_instance_timeout = 0;
2454
2455	hdev->advmon_allowlist_duration = 300;
2456	hdev->advmon_no_filter_duration = 500;
2457	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2458
2459	hdev->sniff_max_interval = 800;
2460	hdev->sniff_min_interval = 80;
2461
2462	hdev->le_adv_channel_map = 0x07;
2463	hdev->le_adv_min_interval = 0x0800;
2464	hdev->le_adv_max_interval = 0x0800;
2465	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2466	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2467	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2468	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2469	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2470	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2471	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2472	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2473	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2474	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2475	hdev->le_conn_min_interval = 0x0018;
2476	hdev->le_conn_max_interval = 0x0028;
2477	hdev->le_conn_latency = 0x0000;
2478	hdev->le_supv_timeout = 0x002a;
2479	hdev->le_def_tx_len = 0x001b;
2480	hdev->le_def_tx_time = 0x0148;
2481	hdev->le_max_tx_len = 0x001b;
2482	hdev->le_max_tx_time = 0x0148;
2483	hdev->le_max_rx_len = 0x001b;
2484	hdev->le_max_rx_time = 0x0148;
2485	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2486	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2487	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2488	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2489	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2490	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2491	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2492	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2493	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2494
2495	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2496	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2497	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2498	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2499	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2500	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2501
2502	/* default 1.28 sec page scan */
2503	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2504	hdev->def_page_scan_int = 0x0800;
2505	hdev->def_page_scan_window = 0x0012;
2506
2507	mutex_init(&hdev->lock);
2508	mutex_init(&hdev->req_lock);
2509
2510	ida_init(&hdev->unset_handle_ida);
2511
2512	INIT_LIST_HEAD(&hdev->mesh_pending);
2513	INIT_LIST_HEAD(&hdev->mgmt_pending);
2514	INIT_LIST_HEAD(&hdev->reject_list);
2515	INIT_LIST_HEAD(&hdev->accept_list);
2516	INIT_LIST_HEAD(&hdev->uuids);
2517	INIT_LIST_HEAD(&hdev->link_keys);
2518	INIT_LIST_HEAD(&hdev->long_term_keys);
2519	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2520	INIT_LIST_HEAD(&hdev->remote_oob_data);
2521	INIT_LIST_HEAD(&hdev->le_accept_list);
2522	INIT_LIST_HEAD(&hdev->le_resolv_list);
2523	INIT_LIST_HEAD(&hdev->le_conn_params);
2524	INIT_LIST_HEAD(&hdev->pend_le_conns);
2525	INIT_LIST_HEAD(&hdev->pend_le_reports);
2526	INIT_LIST_HEAD(&hdev->conn_hash.list);
2527	INIT_LIST_HEAD(&hdev->adv_instances);
2528	INIT_LIST_HEAD(&hdev->blocked_keys);
2529	INIT_LIST_HEAD(&hdev->monitored_devices);
2530
2531	INIT_LIST_HEAD(&hdev->local_codecs);
2532	INIT_WORK(&hdev->rx_work, hci_rx_work);
2533	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2534	INIT_WORK(&hdev->tx_work, hci_tx_work);
2535	INIT_WORK(&hdev->power_on, hci_power_on);
2536	INIT_WORK(&hdev->error_reset, hci_error_reset);
2537
2538	hci_cmd_sync_init(hdev);
2539
2540	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2541
2542	skb_queue_head_init(&hdev->rx_q);
2543	skb_queue_head_init(&hdev->cmd_q);
2544	skb_queue_head_init(&hdev->raw_q);
2545
2546	init_waitqueue_head(&hdev->req_wait_q);
 
2547
2548	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2549	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2550
2551	hci_devcd_setup(hdev);
2552
2553	hci_init_sysfs(hdev);
2554	discovery_init(hdev);
2555
2556	return hdev;
2557}
2558EXPORT_SYMBOL(hci_alloc_dev_priv);
2559
2560/* Free HCI device */
2561void hci_free_dev(struct hci_dev *hdev)
2562{
2563	/* will free via device release */
2564	put_device(&hdev->dev);
2565}
2566EXPORT_SYMBOL(hci_free_dev);
2567
2568/* Register HCI device */
2569int hci_register_dev(struct hci_dev *hdev)
2570{
2571	int id, error;
2572
2573	if (!hdev->open || !hdev->close || !hdev->send)
2574		return -EINVAL;
2575
2576	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	if (id < 0)
2578		return id;
2579
2580	error = dev_set_name(&hdev->dev, "hci%u", id);
2581	if (error)
2582		return error;
2583
2584	hdev->name = dev_name(&hdev->dev);
2585	hdev->id = id;
2586
2587	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2588
2589	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2590	if (!hdev->workqueue) {
2591		error = -ENOMEM;
2592		goto err;
2593	}
2594
2595	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2596						      hdev->name);
2597	if (!hdev->req_workqueue) {
2598		destroy_workqueue(hdev->workqueue);
2599		error = -ENOMEM;
2600		goto err;
2601	}
2602
2603	if (!IS_ERR_OR_NULL(bt_debugfs))
2604		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2605
 
 
2606	error = device_add(&hdev->dev);
2607	if (error < 0)
2608		goto err_wqueue;
2609
2610	hci_leds_init(hdev);
2611
2612	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2613				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2614				    hdev);
2615	if (hdev->rfkill) {
2616		if (rfkill_register(hdev->rfkill) < 0) {
2617			rfkill_destroy(hdev->rfkill);
2618			hdev->rfkill = NULL;
2619		}
2620	}
2621
2622	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2623		hci_dev_set_flag(hdev, HCI_RFKILLED);
2624
2625	hci_dev_set_flag(hdev, HCI_SETUP);
2626	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2627
2628	/* Assume BR/EDR support until proven otherwise (such as
2629	 * through reading supported features during init.
2630	 */
2631	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 
 
2632
2633	write_lock(&hci_dev_list_lock);
2634	list_add(&hdev->list, &hci_dev_list);
2635	write_unlock(&hci_dev_list_lock);
2636
2637	/* Devices that are marked for raw-only usage are unconfigured
2638	 * and should not be included in normal operation.
2639	 */
2640	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2641		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2642
2643	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2644	 * callback.
2645	 */
2646	if (hdev->wakeup)
2647		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2648
2649	hci_sock_dev_event(hdev, HCI_DEV_REG);
2650	hci_dev_hold(hdev);
2651
2652	error = hci_register_suspend_notifier(hdev);
2653	if (error)
2654		BT_WARN("register suspend notifier failed error:%d\n", error);
 
 
 
2655
2656	queue_work(hdev->req_workqueue, &hdev->power_on);
2657
2658	idr_init(&hdev->adv_monitors_idr);
2659	msft_register(hdev);
2660
2661	return id;
2662
2663err_wqueue:
2664	debugfs_remove_recursive(hdev->debugfs);
2665	destroy_workqueue(hdev->workqueue);
2666	destroy_workqueue(hdev->req_workqueue);
2667err:
2668	ida_free(&hci_index_ida, hdev->id);
2669
2670	return error;
2671}
2672EXPORT_SYMBOL(hci_register_dev);
2673
2674/* Unregister HCI device */
2675void hci_unregister_dev(struct hci_dev *hdev)
2676{
2677	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2678
2679	mutex_lock(&hdev->unregister_lock);
2680	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2681	mutex_unlock(&hdev->unregister_lock);
2682
2683	write_lock(&hci_dev_list_lock);
2684	list_del(&hdev->list);
2685	write_unlock(&hci_dev_list_lock);
2686
2687	disable_work_sync(&hdev->rx_work);
2688	disable_work_sync(&hdev->cmd_work);
2689	disable_work_sync(&hdev->tx_work);
2690	disable_work_sync(&hdev->power_on);
2691	disable_work_sync(&hdev->error_reset);
2692
2693	hci_cmd_sync_clear(hdev);
2694
2695	hci_unregister_suspend_notifier(hdev);
 
 
 
 
2696
2697	hci_dev_do_close(hdev);
2698
2699	if (!test_bit(HCI_INIT, &hdev->flags) &&
2700	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2701	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2702		hci_dev_lock(hdev);
2703		mgmt_index_removed(hdev);
2704		hci_dev_unlock(hdev);
2705	}
2706
2707	/* mgmt_index_removed should take care of emptying the
2708	 * pending list */
2709	BUG_ON(!list_empty(&hdev->mgmt_pending));
2710
2711	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2712
2713	if (hdev->rfkill) {
2714		rfkill_unregister(hdev->rfkill);
2715		rfkill_destroy(hdev->rfkill);
2716	}
2717
2718	device_del(&hdev->dev);
2719	/* Actual cleanup is deferred until hci_release_dev(). */
2720	hci_dev_put(hdev);
2721}
2722EXPORT_SYMBOL(hci_unregister_dev);
2723
2724/* Release HCI device */
2725void hci_release_dev(struct hci_dev *hdev)
2726{
2727	debugfs_remove_recursive(hdev->debugfs);
2728	kfree_const(hdev->hw_info);
2729	kfree_const(hdev->fw_info);
2730
2731	destroy_workqueue(hdev->workqueue);
2732	destroy_workqueue(hdev->req_workqueue);
2733
2734	hci_dev_lock(hdev);
2735	hci_bdaddr_list_clear(&hdev->reject_list);
2736	hci_bdaddr_list_clear(&hdev->accept_list);
2737	hci_uuids_clear(hdev);
2738	hci_link_keys_clear(hdev);
2739	hci_smp_ltks_clear(hdev);
2740	hci_smp_irks_clear(hdev);
2741	hci_remote_oob_data_clear(hdev);
2742	hci_adv_instances_clear(hdev);
2743	hci_adv_monitors_clear(hdev);
2744	hci_bdaddr_list_clear(&hdev->le_accept_list);
2745	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2746	hci_conn_params_clear_all(hdev);
2747	hci_discovery_filter_clear(hdev);
2748	hci_blocked_keys_clear(hdev);
2749	hci_codec_list_clear(&hdev->local_codecs);
2750	msft_release(hdev);
2751	hci_dev_unlock(hdev);
2752
2753	ida_destroy(&hdev->unset_handle_ida);
2754	ida_free(&hci_index_ida, hdev->id);
2755	kfree_skb(hdev->sent_cmd);
2756	kfree_skb(hdev->req_skb);
2757	kfree_skb(hdev->recv_event);
2758	kfree(hdev);
2759}
2760EXPORT_SYMBOL(hci_release_dev);
2761
2762int hci_register_suspend_notifier(struct hci_dev *hdev)
2763{
2764	int ret = 0;
2765
2766	if (!hdev->suspend_notifier.notifier_call &&
2767	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769		ret = register_pm_notifier(&hdev->suspend_notifier);
2770	}
2771
2772	return ret;
2773}
2774
2775int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776{
2777	int ret = 0;
2778
2779	if (hdev->suspend_notifier.notifier_call) {
2780		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781		if (!ret)
2782			hdev->suspend_notifier.notifier_call = NULL;
2783	}
2784
2785	return ret;
2786}
2787
2788/* Cancel ongoing command synchronously:
2789 *
2790 * - Cancel command timer
2791 * - Reset command counter
2792 * - Cancel command request
2793 */
2794static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2795{
2796	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2797
2798	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2799		disable_delayed_work_sync(&hdev->cmd_timer);
2800		disable_delayed_work_sync(&hdev->ncmd_timer);
2801	} else  {
2802		cancel_delayed_work_sync(&hdev->cmd_timer);
2803		cancel_delayed_work_sync(&hdev->ncmd_timer);
2804	}
2805
2806	atomic_set(&hdev->cmd_cnt, 1);
2807
2808	hci_cmd_sync_cancel_sync(hdev, err);
2809}
2810
2811/* Suspend HCI device */
2812int hci_suspend_dev(struct hci_dev *hdev)
2813{
2814	int ret;
2815
2816	bt_dev_dbg(hdev, "");
2817
2818	/* Suspend should only act on when powered. */
2819	if (!hdev_is_powered(hdev) ||
2820	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2821		return 0;
2822
2823	/* If powering down don't attempt to suspend */
2824	if (mgmt_powering_down(hdev))
2825		return 0;
2826
2827	/* Cancel potentially blocking sync operation before suspend */
2828	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2829
2830	hci_req_sync_lock(hdev);
2831	ret = hci_suspend_sync(hdev);
2832	hci_req_sync_unlock(hdev);
2833
2834	hci_clear_wake_reason(hdev);
2835	mgmt_suspending(hdev, hdev->suspend_state);
2836
2837	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2838	return ret;
2839}
2840EXPORT_SYMBOL(hci_suspend_dev);
2841
2842/* Resume HCI device */
2843int hci_resume_dev(struct hci_dev *hdev)
2844{
2845	int ret;
2846
2847	bt_dev_dbg(hdev, "");
2848
2849	/* Resume should only act on when powered. */
2850	if (!hdev_is_powered(hdev) ||
2851	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2852		return 0;
2853
2854	/* If powering down don't attempt to resume */
2855	if (mgmt_powering_down(hdev))
2856		return 0;
2857
2858	hci_req_sync_lock(hdev);
2859	ret = hci_resume_sync(hdev);
2860	hci_req_sync_unlock(hdev);
2861
2862	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2863		      hdev->wake_addr_type);
2864
2865	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2866	return ret;
2867}
2868EXPORT_SYMBOL(hci_resume_dev);
2869
2870/* Reset HCI device */
2871int hci_reset_dev(struct hci_dev *hdev)
2872{
2873	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2874	struct sk_buff *skb;
2875
2876	skb = bt_skb_alloc(3, GFP_ATOMIC);
2877	if (!skb)
2878		return -ENOMEM;
2879
2880	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2881	skb_put_data(skb, hw_err, 3);
2882
2883	bt_dev_err(hdev, "Injecting HCI hardware error event");
2884
2885	/* Send Hardware Error to upper stack */
2886	return hci_recv_frame(hdev, skb);
2887}
2888EXPORT_SYMBOL(hci_reset_dev);
2889
2890static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2891{
2892	if (hdev->classify_pkt_type)
2893		return hdev->classify_pkt_type(hdev, skb);
2894
2895	return hci_skb_pkt_type(skb);
2896}
2897
2898/* Receive frame from HCI drivers */
2899int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2900{
2901	u8 dev_pkt_type;
2902
2903	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2904		      && !test_bit(HCI_INIT, &hdev->flags))) {
2905		kfree_skb(skb);
2906		return -ENXIO;
2907	}
2908
2909	/* Check if the driver agree with packet type classification */
2910	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2911	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2912		hci_skb_pkt_type(skb) = dev_pkt_type;
2913	}
2914
2915	switch (hci_skb_pkt_type(skb)) {
2916	case HCI_EVENT_PKT:
2917		break;
2918	case HCI_ACLDATA_PKT:
2919		/* Detect if ISO packet has been sent as ACL */
2920		if (hci_conn_num(hdev, ISO_LINK)) {
2921			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2922			__u8 type;
2923
2924			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2925			if (type == ISO_LINK)
2926				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2927		}
2928		break;
2929	case HCI_SCODATA_PKT:
2930		break;
2931	case HCI_ISODATA_PKT:
2932		break;
2933	default:
2934		kfree_skb(skb);
2935		return -EINVAL;
2936	}
2937
2938	/* Incoming skb */
2939	bt_cb(skb)->incoming = 1;
2940
2941	/* Time stamp */
2942	__net_timestamp(skb);
2943
2944	skb_queue_tail(&hdev->rx_q, skb);
2945	queue_work(hdev->workqueue, &hdev->rx_work);
2946
2947	return 0;
2948}
2949EXPORT_SYMBOL(hci_recv_frame);
2950
2951/* Receive diagnostic message from HCI drivers */
2952int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2953{
2954	/* Mark as diagnostic packet */
2955	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2956
2957	/* Time stamp */
2958	__net_timestamp(skb);
2959
2960	skb_queue_tail(&hdev->rx_q, skb);
2961	queue_work(hdev->workqueue, &hdev->rx_work);
2962
2963	return 0;
2964}
2965EXPORT_SYMBOL(hci_recv_diag);
2966
2967void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2968{
2969	va_list vargs;
2970
2971	va_start(vargs, fmt);
2972	kfree_const(hdev->hw_info);
2973	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974	va_end(vargs);
2975}
2976EXPORT_SYMBOL(hci_set_hw_info);
2977
2978void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2979{
2980	va_list vargs;
2981
2982	va_start(vargs, fmt);
2983	kfree_const(hdev->fw_info);
2984	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2985	va_end(vargs);
2986}
2987EXPORT_SYMBOL(hci_set_fw_info);
2988
2989/* ---- Interface to upper protocols ---- */
2990
2991int hci_register_cb(struct hci_cb *cb)
2992{
2993	BT_DBG("%p name %s", cb, cb->name);
2994
2995	list_add_tail_rcu(&cb->list, &hci_cb_list);
 
 
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL(hci_register_cb);
3000
3001int hci_unregister_cb(struct hci_cb *cb)
3002{
3003	BT_DBG("%p name %s", cb, cb->name);
3004
3005	list_del_rcu(&cb->list);
3006	synchronize_rcu();
 
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(hci_unregister_cb);
3011
3012static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013{
3014	int err;
3015
3016	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017	       skb->len);
3018
3019	/* Time stamp */
3020	__net_timestamp(skb);
3021
3022	/* Send copy to monitor */
3023	hci_send_to_monitor(hdev, skb);
3024
3025	if (atomic_read(&hdev->promisc)) {
3026		/* Send copy to the sockets */
3027		hci_send_to_sock(hdev, skb);
3028	}
3029
3030	/* Get rid of skb owner, prior to sending to the driver. */
3031	skb_orphan(skb);
3032
3033	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034		kfree_skb(skb);
3035		return -EINVAL;
3036	}
3037
3038	err = hdev->send(hdev, skb);
3039	if (err < 0) {
3040		bt_dev_err(hdev, "sending frame failed (%d)", err);
3041		kfree_skb(skb);
3042		return err;
3043	}
3044
3045	return 0;
3046}
3047
3048/* Send HCI command */
3049int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050		 const void *param)
3051{
3052	struct sk_buff *skb;
3053
3054	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055
3056	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3057	if (!skb) {
3058		bt_dev_err(hdev, "no memory for command");
3059		return -ENOMEM;
3060	}
3061
3062	/* Stand-alone HCI commands must be flagged as
3063	 * single-command requests.
3064	 */
3065	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066
3067	skb_queue_tail(&hdev->cmd_q, skb);
3068	queue_work(hdev->workqueue, &hdev->cmd_work);
3069
3070	return 0;
3071}
3072
3073int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074		   const void *param)
3075{
3076	struct sk_buff *skb;
3077
3078	if (hci_opcode_ogf(opcode) != 0x3f) {
3079		/* A controller receiving a command shall respond with either
3080		 * a Command Status Event or a Command Complete Event.
3081		 * Therefore, all standard HCI commands must be sent via the
3082		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083		 * Some vendors do not comply with this rule for vendor-specific
3084		 * commands and do not return any event. We want to support
3085		 * unresponded commands for such cases only.
3086		 */
3087		bt_dev_err(hdev, "unresponded command not supported");
3088		return -EINVAL;
3089	}
3090
3091	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3092	if (!skb) {
3093		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094			   opcode);
3095		return -ENOMEM;
3096	}
3097
3098	hci_send_frame(hdev, skb);
3099
3100	return 0;
3101}
3102EXPORT_SYMBOL(__hci_cmd_send);
3103
3104/* Get data from the previously sent command */
3105static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3106{
3107	struct hci_command_hdr *hdr;
3108
3109	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3110		return NULL;
3111
3112	hdr = (void *)skb->data;
3113
3114	if (hdr->opcode != cpu_to_le16(opcode))
3115		return NULL;
3116
3117	return skb->data + HCI_COMMAND_HDR_SIZE;
3118}
3119
3120/* Get data from the previously sent command */
3121void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3122{
3123	void *data;
3124
3125	/* Check if opcode matches last sent command */
3126	data = hci_cmd_data(hdev->sent_cmd, opcode);
3127	if (!data)
3128		/* Check if opcode matches last request */
3129		data = hci_cmd_data(hdev->req_skb, opcode);
3130
3131	return data;
3132}
3133
3134/* Get data from last received event */
3135void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3136{
3137	struct hci_event_hdr *hdr;
3138	int offset;
3139
3140	if (!hdev->recv_event)
3141		return NULL;
3142
3143	hdr = (void *)hdev->recv_event->data;
3144	offset = sizeof(*hdr);
3145
3146	if (hdr->evt != event) {
3147		/* In case of LE metaevent check the subevent match */
3148		if (hdr->evt == HCI_EV_LE_META) {
3149			struct hci_ev_le_meta *ev;
3150
3151			ev = (void *)hdev->recv_event->data + offset;
3152			offset += sizeof(*ev);
3153			if (ev->subevent == event)
3154				goto found;
3155		}
3156		return NULL;
3157	}
3158
3159found:
3160	bt_dev_dbg(hdev, "event 0x%2.2x", event);
 
3161
3162	return hdev->recv_event->data + offset;
3163}
 
3164
3165/* Send ACL data */
3166static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3167{
3168	struct hci_acl_hdr *hdr;
3169	int len = skb->len;
3170
3171	skb_push(skb, HCI_ACL_HDR_SIZE);
3172	skb_reset_transport_header(skb);
3173	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3174	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3175	hdr->dlen   = cpu_to_le16(len);
3176}
3177
3178static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3179			  struct sk_buff *skb, __u16 flags)
3180{
3181	struct hci_conn *conn = chan->conn;
3182	struct hci_dev *hdev = conn->hdev;
3183	struct sk_buff *list;
3184
3185	skb->len = skb_headlen(skb);
3186	skb->data_len = 0;
3187
3188	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3189
3190	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
3191
3192	list = skb_shinfo(skb)->frag_list;
3193	if (!list) {
3194		/* Non fragmented */
3195		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3196
3197		skb_queue_tail(queue, skb);
3198	} else {
3199		/* Fragmented */
3200		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3201
3202		skb_shinfo(skb)->frag_list = NULL;
3203
3204		/* Queue all fragments atomically. We need to use spin_lock_bh
3205		 * here because of 6LoWPAN links, as there this function is
3206		 * called from softirq and using normal spin lock could cause
3207		 * deadlocks.
3208		 */
3209		spin_lock_bh(&queue->lock);
3210
3211		__skb_queue_tail(queue, skb);
3212
3213		flags &= ~ACL_START;
3214		flags |= ACL_CONT;
3215		do {
3216			skb = list; list = list->next;
3217
3218			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3219			hci_add_acl_hdr(skb, conn->handle, flags);
3220
3221			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3222
3223			__skb_queue_tail(queue, skb);
3224		} while (list);
3225
3226		spin_unlock_bh(&queue->lock);
3227	}
3228}
3229
3230void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3231{
3232	struct hci_dev *hdev = chan->conn->hdev;
3233
3234	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3235
3236	hci_queue_acl(chan, &chan->data_q, skb, flags);
3237
3238	queue_work(hdev->workqueue, &hdev->tx_work);
3239}
3240
3241/* Send SCO data */
3242void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3243{
3244	struct hci_dev *hdev = conn->hdev;
3245	struct hci_sco_hdr hdr;
3246
3247	BT_DBG("%s len %d", hdev->name, skb->len);
3248
3249	hdr.handle = cpu_to_le16(conn->handle);
3250	hdr.dlen   = skb->len;
3251
3252	skb_push(skb, HCI_SCO_HDR_SIZE);
3253	skb_reset_transport_header(skb);
3254	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3255
3256	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3257
3258	skb_queue_tail(&conn->data_q, skb);
3259	queue_work(hdev->workqueue, &hdev->tx_work);
3260}
3261
3262/* Send ISO data */
3263static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3264{
3265	struct hci_iso_hdr *hdr;
3266	int len = skb->len;
3267
3268	skb_push(skb, HCI_ISO_HDR_SIZE);
3269	skb_reset_transport_header(skb);
3270	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3271	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3272	hdr->dlen   = cpu_to_le16(len);
3273}
3274
3275static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3276			  struct sk_buff *skb)
3277{
3278	struct hci_dev *hdev = conn->hdev;
3279	struct sk_buff *list;
3280	__u16 flags;
3281
3282	skb->len = skb_headlen(skb);
3283	skb->data_len = 0;
3284
3285	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3286
3287	list = skb_shinfo(skb)->frag_list;
3288
3289	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3290	hci_add_iso_hdr(skb, conn->handle, flags);
3291
3292	if (!list) {
3293		/* Non fragmented */
3294		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3295
3296		skb_queue_tail(queue, skb);
3297	} else {
3298		/* Fragmented */
3299		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3300
3301		skb_shinfo(skb)->frag_list = NULL;
3302
3303		__skb_queue_tail(queue, skb);
3304
3305		do {
3306			skb = list; list = list->next;
3307
3308			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3309			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3310						   0x00);
3311			hci_add_iso_hdr(skb, conn->handle, flags);
3312
3313			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3314
3315			__skb_queue_tail(queue, skb);
3316		} while (list);
3317	}
3318}
3319
3320void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3321{
3322	struct hci_dev *hdev = conn->hdev;
3323
3324	BT_DBG("%s len %d", hdev->name, skb->len);
3325
3326	hci_queue_iso(conn, &conn->data_q, skb);
3327
3328	queue_work(hdev->workqueue, &hdev->tx_work);
3329}
3330
3331/* ---- HCI TX task (outgoing data) ---- */
3332
3333/* HCI Connection scheduler */
3334static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3335{
3336	struct hci_dev *hdev;
3337	int cnt, q;
3338
3339	if (!conn) {
3340		*quote = 0;
3341		return;
3342	}
3343
3344	hdev = conn->hdev;
3345
3346	switch (conn->type) {
3347	case ACL_LINK:
3348		cnt = hdev->acl_cnt;
3349		break;
3350	case SCO_LINK:
3351	case ESCO_LINK:
3352		cnt = hdev->sco_cnt;
3353		break;
3354	case LE_LINK:
3355		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3356		break;
3357	case ISO_LINK:
3358		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3359			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360		break;
3361	default:
3362		cnt = 0;
3363		bt_dev_err(hdev, "unknown link type %d", conn->type);
3364	}
3365
3366	q = cnt / num;
3367	*quote = q ? q : 1;
3368}
3369
3370static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3371				     int *quote)
3372{
3373	struct hci_conn_hash *h = &hdev->conn_hash;
3374	struct hci_conn *conn = NULL, *c;
3375	unsigned int num = 0, min = ~0;
3376
3377	/* We don't have to lock device here. Connections are always
3378	 * added and removed with TX task disabled. */
3379
3380	rcu_read_lock();
3381
3382	list_for_each_entry_rcu(c, &h->list, list) {
3383		if (c->type != type || skb_queue_empty(&c->data_q))
3384			continue;
3385
3386		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3387			continue;
3388
3389		num++;
3390
3391		if (c->sent < min) {
3392			min  = c->sent;
3393			conn = c;
3394		}
3395
3396		if (hci_conn_num(hdev, type) == num)
3397			break;
3398	}
3399
3400	rcu_read_unlock();
3401
3402	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	BT_DBG("conn %p quote %d", conn, *quote);
3405	return conn;
3406}
3407
3408static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3409{
3410	struct hci_conn_hash *h = &hdev->conn_hash;
3411	struct hci_conn *c;
3412
3413	bt_dev_err(hdev, "link tx timeout");
3414
3415	rcu_read_lock();
3416
3417	/* Kill stalled connections */
3418	list_for_each_entry_rcu(c, &h->list, list) {
3419		if (c->type == type && c->sent) {
3420			bt_dev_err(hdev, "killing stalled connection %pMR",
3421				   &c->dst);
3422			/* hci_disconnect might sleep, so, we have to release
3423			 * the RCU read lock before calling it.
3424			 */
3425			rcu_read_unlock();
3426			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3427			rcu_read_lock();
3428		}
3429	}
3430
3431	rcu_read_unlock();
3432}
3433
3434static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3435				      int *quote)
3436{
3437	struct hci_conn_hash *h = &hdev->conn_hash;
3438	struct hci_chan *chan = NULL;
3439	unsigned int num = 0, min = ~0, cur_prio = 0;
3440	struct hci_conn *conn;
3441	int conn_num = 0;
3442
3443	BT_DBG("%s", hdev->name);
3444
3445	rcu_read_lock();
3446
3447	list_for_each_entry_rcu(conn, &h->list, list) {
3448		struct hci_chan *tmp;
3449
3450		if (conn->type != type)
3451			continue;
3452
3453		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3454			continue;
3455
3456		conn_num++;
3457
3458		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3459			struct sk_buff *skb;
3460
3461			if (skb_queue_empty(&tmp->data_q))
3462				continue;
3463
3464			skb = skb_peek(&tmp->data_q);
3465			if (skb->priority < cur_prio)
3466				continue;
3467
3468			if (skb->priority > cur_prio) {
3469				num = 0;
3470				min = ~0;
3471				cur_prio = skb->priority;
3472			}
3473
3474			num++;
3475
3476			if (conn->sent < min) {
3477				min  = conn->sent;
3478				chan = tmp;
3479			}
3480		}
3481
3482		if (hci_conn_num(hdev, type) == conn_num)
3483			break;
3484	}
3485
3486	rcu_read_unlock();
3487
3488	if (!chan)
3489		return NULL;
3490
3491	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492
 
 
3493	BT_DBG("chan %p quote %d", chan, *quote);
3494	return chan;
3495}
3496
3497static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3498{
3499	struct hci_conn_hash *h = &hdev->conn_hash;
3500	struct hci_conn *conn;
3501	int num = 0;
3502
3503	BT_DBG("%s", hdev->name);
3504
3505	rcu_read_lock();
3506
3507	list_for_each_entry_rcu(conn, &h->list, list) {
3508		struct hci_chan *chan;
3509
3510		if (conn->type != type)
3511			continue;
3512
3513		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3514			continue;
3515
3516		num++;
3517
3518		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3519			struct sk_buff *skb;
3520
3521			if (chan->sent) {
3522				chan->sent = 0;
3523				continue;
3524			}
3525
3526			if (skb_queue_empty(&chan->data_q))
3527				continue;
3528
3529			skb = skb_peek(&chan->data_q);
3530			if (skb->priority >= HCI_PRIO_MAX - 1)
3531				continue;
3532
3533			skb->priority = HCI_PRIO_MAX - 1;
3534
3535			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3536			       skb->priority);
3537		}
3538
3539		if (hci_conn_num(hdev, type) == num)
3540			break;
3541	}
3542
3543	rcu_read_unlock();
3544
3545}
3546
3547static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3548{
3549	unsigned long last_tx;
3550
3551	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3552		return;
3553
3554	switch (type) {
3555	case LE_LINK:
3556		last_tx = hdev->le_last_tx;
3557		break;
3558	default:
3559		last_tx = hdev->acl_last_tx;
3560		break;
 
3561	}
3562
3563	/* tx timeout must be longer than maximum link supervision timeout
3564	 * (40.9 seconds)
3565	 */
3566	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3567		hci_link_tx_to(hdev, type);
3568}
3569
3570/* Schedule SCO */
3571static void hci_sched_sco(struct hci_dev *hdev)
3572{
3573	struct hci_conn *conn;
3574	struct sk_buff *skb;
3575	int quote;
3576
3577	BT_DBG("%s", hdev->name);
3578
3579	if (!hci_conn_num(hdev, SCO_LINK))
3580		return;
3581
3582	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3583		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3584			BT_DBG("skb %p len %d", skb, skb->len);
3585			hci_send_frame(hdev, skb);
3586
3587			conn->sent++;
3588			if (conn->sent == ~0)
3589				conn->sent = 0;
3590		}
3591	}
3592}
3593
3594static void hci_sched_esco(struct hci_dev *hdev)
3595{
3596	struct hci_conn *conn;
3597	struct sk_buff *skb;
3598	int quote;
3599
3600	BT_DBG("%s", hdev->name);
3601
3602	if (!hci_conn_num(hdev, ESCO_LINK))
3603		return;
3604
3605	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3606						     &quote))) {
3607		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3608			BT_DBG("skb %p len %d", skb, skb->len);
3609			hci_send_frame(hdev, skb);
3610
3611			conn->sent++;
3612			if (conn->sent == ~0)
3613				conn->sent = 0;
3614		}
3615	}
3616}
3617
3618static void hci_sched_acl_pkt(struct hci_dev *hdev)
3619{
3620	unsigned int cnt = hdev->acl_cnt;
3621	struct hci_chan *chan;
3622	struct sk_buff *skb;
3623	int quote;
3624
3625	__check_timeout(hdev, cnt, ACL_LINK);
3626
3627	while (hdev->acl_cnt &&
3628	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3629		u32 priority = (skb_peek(&chan->data_q))->priority;
3630		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3631			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3632			       skb->len, skb->priority);
3633
3634			/* Stop if priority has changed */
3635			if (skb->priority < priority)
3636				break;
3637
3638			skb = skb_dequeue(&chan->data_q);
3639
3640			hci_conn_enter_active_mode(chan->conn,
3641						   bt_cb(skb)->force_active);
3642
3643			hci_send_frame(hdev, skb);
3644			hdev->acl_last_tx = jiffies;
3645
3646			hdev->acl_cnt--;
3647			chan->sent++;
3648			chan->conn->sent++;
3649
3650			/* Send pending SCO packets right away */
3651			hci_sched_sco(hdev);
3652			hci_sched_esco(hdev);
3653		}
3654	}
3655
3656	if (cnt != hdev->acl_cnt)
3657		hci_prio_recalculate(hdev, ACL_LINK);
3658}
3659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660static void hci_sched_acl(struct hci_dev *hdev)
3661{
3662	BT_DBG("%s", hdev->name);
3663
3664	/* No ACL link over BR/EDR controller */
3665	if (!hci_conn_num(hdev, ACL_LINK))
3666		return;
3667
3668	hci_sched_acl_pkt(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static void hci_sched_le(struct hci_dev *hdev)
3672{
3673	struct hci_chan *chan;
3674	struct sk_buff *skb;
3675	int quote, *cnt, tmp;
3676
3677	BT_DBG("%s", hdev->name);
3678
3679	if (!hci_conn_num(hdev, LE_LINK))
3680		return;
3681
3682	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3683
3684	__check_timeout(hdev, *cnt, LE_LINK);
3685
3686	tmp = *cnt;
3687	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3688		u32 priority = (skb_peek(&chan->data_q))->priority;
3689		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3690			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691			       skb->len, skb->priority);
3692
3693			/* Stop if priority has changed */
3694			if (skb->priority < priority)
3695				break;
3696
3697			skb = skb_dequeue(&chan->data_q);
3698
3699			hci_send_frame(hdev, skb);
3700			hdev->le_last_tx = jiffies;
3701
3702			(*cnt)--;
3703			chan->sent++;
3704			chan->conn->sent++;
3705
3706			/* Send pending SCO packets right away */
3707			hci_sched_sco(hdev);
3708			hci_sched_esco(hdev);
3709		}
3710	}
3711
3712	if (*cnt != tmp)
3713		hci_prio_recalculate(hdev, LE_LINK);
3714}
3715
3716/* Schedule CIS */
3717static void hci_sched_iso(struct hci_dev *hdev)
3718{
3719	struct hci_conn *conn;
3720	struct sk_buff *skb;
3721	int quote, *cnt;
3722
3723	BT_DBG("%s", hdev->name);
3724
3725	if (!hci_conn_num(hdev, ISO_LINK))
3726		return;
3727
3728	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3729		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3730	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3731		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3732			BT_DBG("skb %p len %d", skb, skb->len);
3733			hci_send_frame(hdev, skb);
3734
3735			conn->sent++;
3736			if (conn->sent == ~0)
3737				conn->sent = 0;
3738			(*cnt)--;
3739		}
3740	}
3741}
3742
3743static void hci_tx_work(struct work_struct *work)
3744{
3745	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3746	struct sk_buff *skb;
3747
3748	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3749	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3750
3751	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3752		/* Schedule queues and send stuff to HCI driver */
3753		hci_sched_sco(hdev);
3754		hci_sched_esco(hdev);
3755		hci_sched_iso(hdev);
3756		hci_sched_acl(hdev);
3757		hci_sched_le(hdev);
3758	}
3759
3760	/* Send next queued raw (unknown type) packet */
3761	while ((skb = skb_dequeue(&hdev->raw_q)))
3762		hci_send_frame(hdev, skb);
3763}
3764
3765/* ----- HCI RX task (incoming data processing) ----- */
3766
3767/* ACL data packet */
3768static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3769{
3770	struct hci_acl_hdr *hdr;
3771	struct hci_conn *conn;
3772	__u16 handle, flags;
3773
3774	hdr = skb_pull_data(skb, sizeof(*hdr));
3775	if (!hdr) {
3776		bt_dev_err(hdev, "ACL packet too small");
3777		goto drop;
3778	}
3779
3780	handle = __le16_to_cpu(hdr->handle);
3781	flags  = hci_flags(handle);
3782	handle = hci_handle(handle);
3783
3784	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3785		   handle, flags);
3786
3787	hdev->stat.acl_rx++;
3788
3789	hci_dev_lock(hdev);
3790	conn = hci_conn_hash_lookup_handle(hdev, handle);
3791	hci_dev_unlock(hdev);
3792
3793	if (conn) {
3794		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3795
3796		/* Send to upper protocol */
3797		l2cap_recv_acldata(conn, skb, flags);
3798		return;
3799	} else {
3800		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3801			   handle);
3802	}
3803
3804drop:
3805	kfree_skb(skb);
3806}
3807
3808/* SCO data packet */
3809static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810{
3811	struct hci_sco_hdr *hdr;
3812	struct hci_conn *conn;
3813	__u16 handle, flags;
3814
3815	hdr = skb_pull_data(skb, sizeof(*hdr));
3816	if (!hdr) {
3817		bt_dev_err(hdev, "SCO packet too small");
3818		goto drop;
3819	}
3820
3821	handle = __le16_to_cpu(hdr->handle);
3822	flags  = hci_flags(handle);
3823	handle = hci_handle(handle);
3824
3825	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3826		   handle, flags);
3827
3828	hdev->stat.sco_rx++;
3829
3830	hci_dev_lock(hdev);
3831	conn = hci_conn_hash_lookup_handle(hdev, handle);
3832	hci_dev_unlock(hdev);
3833
3834	if (conn) {
3835		/* Send to upper protocol */
3836		hci_skb_pkt_status(skb) = flags & 0x03;
3837		sco_recv_scodata(conn, skb);
3838		return;
3839	} else {
3840		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3841				       handle);
3842	}
3843
3844drop:
3845	kfree_skb(skb);
3846}
3847
3848static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3849{
3850	struct hci_iso_hdr *hdr;
3851	struct hci_conn *conn;
3852	__u16 handle, flags;
3853
3854	hdr = skb_pull_data(skb, sizeof(*hdr));
3855	if (!hdr) {
3856		bt_dev_err(hdev, "ISO packet too small");
3857		goto drop;
3858	}
3859
3860	handle = __le16_to_cpu(hdr->handle);
3861	flags  = hci_flags(handle);
3862	handle = hci_handle(handle);
3863
3864	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3865		   handle, flags);
3866
3867	hci_dev_lock(hdev);
3868	conn = hci_conn_hash_lookup_handle(hdev, handle);
3869	hci_dev_unlock(hdev);
3870
3871	if (!conn) {
3872		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3873			   handle);
3874		goto drop;
3875	}
3876
3877	/* Send to upper protocol */
3878	iso_recv(conn, skb, flags);
3879	return;
3880
3881drop:
3882	kfree_skb(skb);
3883}
3884
3885static bool hci_req_is_complete(struct hci_dev *hdev)
3886{
3887	struct sk_buff *skb;
3888
3889	skb = skb_peek(&hdev->cmd_q);
3890	if (!skb)
3891		return true;
3892
3893	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3894}
3895
3896static void hci_resend_last(struct hci_dev *hdev)
3897{
3898	struct hci_command_hdr *sent;
3899	struct sk_buff *skb;
3900	u16 opcode;
3901
3902	if (!hdev->sent_cmd)
3903		return;
3904
3905	sent = (void *) hdev->sent_cmd->data;
3906	opcode = __le16_to_cpu(sent->opcode);
3907	if (opcode == HCI_OP_RESET)
3908		return;
3909
3910	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3911	if (!skb)
3912		return;
3913
3914	skb_queue_head(&hdev->cmd_q, skb);
3915	queue_work(hdev->workqueue, &hdev->cmd_work);
3916}
3917
3918void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3919			  hci_req_complete_t *req_complete,
3920			  hci_req_complete_skb_t *req_complete_skb)
3921{
3922	struct sk_buff *skb;
3923	unsigned long flags;
3924
3925	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3926
3927	/* If the completed command doesn't match the last one that was
3928	 * sent we need to do special handling of it.
3929	 */
3930	if (!hci_sent_cmd_data(hdev, opcode)) {
3931		/* Some CSR based controllers generate a spontaneous
3932		 * reset complete event during init and any pending
3933		 * command will never be completed. In such a case we
3934		 * need to resend whatever was the last sent
3935		 * command.
3936		 */
3937		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3938			hci_resend_last(hdev);
3939
3940		return;
3941	}
3942
3943	/* If we reach this point this event matches the last command sent */
3944	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3945
3946	/* If the command succeeded and there's still more commands in
3947	 * this request the request is not yet complete.
3948	 */
3949	if (!status && !hci_req_is_complete(hdev))
3950		return;
3951
3952	skb = hdev->req_skb;
3953
3954	/* If this was the last command in a request the complete
3955	 * callback would be found in hdev->req_skb instead of the
3956	 * command queue (hdev->cmd_q).
3957	 */
3958	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3959		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3960		return;
3961	}
3962
3963	if (skb && bt_cb(skb)->hci.req_complete) {
3964		*req_complete = bt_cb(skb)->hci.req_complete;
3965		return;
3966	}
3967
3968	/* Remove all pending commands belonging to this request */
3969	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3970	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3971		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3972			__skb_queue_head(&hdev->cmd_q, skb);
3973			break;
3974		}
3975
3976		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3977			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3978		else
3979			*req_complete = bt_cb(skb)->hci.req_complete;
3980		dev_kfree_skb_irq(skb);
3981	}
3982	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3983}
3984
3985static void hci_rx_work(struct work_struct *work)
3986{
3987	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3988	struct sk_buff *skb;
3989
3990	BT_DBG("%s", hdev->name);
3991
3992	/* The kcov_remote functions used for collecting packet parsing
3993	 * coverage information from this background thread and associate
3994	 * the coverage with the syscall's thread which originally injected
3995	 * the packet. This helps fuzzing the kernel.
3996	 */
3997	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3998		kcov_remote_start_common(skb_get_kcov_handle(skb));
3999
4000		/* Send copy to monitor */
4001		hci_send_to_monitor(hdev, skb);
4002
4003		if (atomic_read(&hdev->promisc)) {
4004			/* Send copy to the sockets */
4005			hci_send_to_sock(hdev, skb);
4006		}
4007
4008		/* If the device has been opened in HCI_USER_CHANNEL,
4009		 * the userspace has exclusive access to device.
4010		 * When device is HCI_INIT, we still need to process
4011		 * the data packets to the driver in order
4012		 * to complete its setup().
4013		 */
4014		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4015		    !test_bit(HCI_INIT, &hdev->flags)) {
4016			kfree_skb(skb);
4017			continue;
4018		}
4019
4020		if (test_bit(HCI_INIT, &hdev->flags)) {
4021			/* Don't process data packets in this states. */
4022			switch (hci_skb_pkt_type(skb)) {
4023			case HCI_ACLDATA_PKT:
4024			case HCI_SCODATA_PKT:
4025			case HCI_ISODATA_PKT:
4026				kfree_skb(skb);
4027				continue;
4028			}
4029		}
4030
4031		/* Process frame */
4032		switch (hci_skb_pkt_type(skb)) {
4033		case HCI_EVENT_PKT:
4034			BT_DBG("%s Event packet", hdev->name);
4035			hci_event_packet(hdev, skb);
4036			break;
4037
4038		case HCI_ACLDATA_PKT:
4039			BT_DBG("%s ACL data packet", hdev->name);
4040			hci_acldata_packet(hdev, skb);
4041			break;
4042
4043		case HCI_SCODATA_PKT:
4044			BT_DBG("%s SCO data packet", hdev->name);
4045			hci_scodata_packet(hdev, skb);
4046			break;
4047
4048		case HCI_ISODATA_PKT:
4049			BT_DBG("%s ISO data packet", hdev->name);
4050			hci_isodata_packet(hdev, skb);
4051			break;
4052
4053		default:
4054			kfree_skb(skb);
4055			break;
4056		}
4057	}
4058}
4059
4060static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4061{
4062	int err;
4063
4064	bt_dev_dbg(hdev, "skb %p", skb);
4065
4066	kfree_skb(hdev->sent_cmd);
4067
4068	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4069	if (!hdev->sent_cmd) {
4070		skb_queue_head(&hdev->cmd_q, skb);
4071		queue_work(hdev->workqueue, &hdev->cmd_work);
4072		return;
4073	}
4074
4075	err = hci_send_frame(hdev, skb);
4076	if (err < 0) {
4077		hci_cmd_sync_cancel_sync(hdev, -err);
4078		return;
4079	}
4080
4081	if (hdev->req_status == HCI_REQ_PEND &&
4082	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4083		kfree_skb(hdev->req_skb);
4084		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	}
4086
4087	atomic_dec(&hdev->cmd_cnt);
4088}
4089
4090static void hci_cmd_work(struct work_struct *work)
4091{
4092	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4093	struct sk_buff *skb;
4094
4095	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4096	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4097
4098	/* Send queued commands */
4099	if (atomic_read(&hdev->cmd_cnt)) {
4100		skb = skb_dequeue(&hdev->cmd_q);
4101		if (!skb)
4102			return;
4103
4104		hci_send_cmd_sync(hdev, skb);
4105
4106		rcu_read_lock();
4107		if (test_bit(HCI_RESET, &hdev->flags) ||
4108		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4109			cancel_delayed_work(&hdev->cmd_timer);
4110		else
4111			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4112					   HCI_CMD_TIMEOUT);
4113		rcu_read_unlock();
 
 
 
 
 
 
 
4114	}
4115}
v5.14.15
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
 
  32#include <linux/property.h>
  33#include <linux/suspend.h>
  34#include <linux/wait.h>
  35#include <asm/unaligned.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39#include <net/bluetooth/l2cap.h>
  40#include <net/bluetooth/mgmt.h>
  41
  42#include "hci_request.h"
  43#include "hci_debugfs.h"
  44#include "smp.h"
  45#include "leds.h"
  46#include "msft.h"
  47#include "aosp.h"
 
  48
  49static void hci_rx_work(struct work_struct *work);
  50static void hci_cmd_work(struct work_struct *work);
  51static void hci_tx_work(struct work_struct *work);
  52
  53/* HCI device list */
  54LIST_HEAD(hci_dev_list);
  55DEFINE_RWLOCK(hci_dev_list_lock);
  56
  57/* HCI callback list */
  58LIST_HEAD(hci_cb_list);
  59DEFINE_MUTEX(hci_cb_list_lock);
  60
  61/* HCI ID Numbering */
  62static DEFINE_IDA(hci_index_ida);
  63
  64/* ---- HCI debugfs entries ---- */
  65
  66static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  67			     size_t count, loff_t *ppos)
  68{
  69	struct hci_dev *hdev = file->private_data;
  70	char buf[3];
  71
  72	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  73	buf[1] = '\n';
  74	buf[2] = '\0';
  75	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  76}
  77
  78static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  79			      size_t count, loff_t *ppos)
  80{
  81	struct hci_dev *hdev = file->private_data;
  82	struct sk_buff *skb;
  83	bool enable;
  84	int err;
  85
  86	if (!test_bit(HCI_UP, &hdev->flags))
  87		return -ENETDOWN;
  88
  89	err = kstrtobool_from_user(user_buf, count, &enable);
  90	if (err)
  91		return err;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	bool enable;
 139	int err;
 140
 141	err = kstrtobool_from_user(user_buf, count, &enable);
 142	if (err)
 143		return err;
 144
 145	/* When the diagnostic flags are not persistent and the transport
 146	 * is not active or in user channel operation, then there is no need
 147	 * for the vendor callback. Instead just store the desired value and
 148	 * the setting will be programmed when the controller gets powered on.
 149	 */
 150	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 151	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
 152	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
 153		goto done;
 154
 155	hci_req_sync_lock(hdev);
 156	err = hdev->set_diag(hdev, enable);
 157	hci_req_sync_unlock(hdev);
 158
 159	if (err < 0)
 160		return err;
 161
 162done:
 163	if (enable)
 164		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 165	else
 166		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 167
 168	return count;
 169}
 170
 171static const struct file_operations vendor_diag_fops = {
 172	.open		= simple_open,
 173	.read		= vendor_diag_read,
 174	.write		= vendor_diag_write,
 175	.llseek		= default_llseek,
 176};
 177
 178static void hci_debugfs_create_basic(struct hci_dev *hdev)
 179{
 180	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 181			    &dut_mode_fops);
 182
 183	if (hdev->set_diag)
 184		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 185				    &vendor_diag_fops);
 186}
 187
 188static int hci_reset_req(struct hci_request *req, unsigned long opt)
 189{
 190	BT_DBG("%s %ld", req->hdev->name, opt);
 191
 192	/* Reset device */
 193	set_bit(HCI_RESET, &req->hdev->flags);
 194	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 195	return 0;
 196}
 197
 198static void bredr_init(struct hci_request *req)
 199{
 200	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 201
 202	/* Read Local Supported Features */
 203	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 204
 205	/* Read Local Version */
 206	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 207
 208	/* Read BD Address */
 209	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 210}
 211
 212static void amp_init1(struct hci_request *req)
 213{
 214	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 215
 216	/* Read Local Version */
 217	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 218
 219	/* Read Local Supported Commands */
 220	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 221
 222	/* Read Local AMP Info */
 223	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 224
 225	/* Read Data Blk size */
 226	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 227
 228	/* Read Flow Control Mode */
 229	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 230
 231	/* Read Location Data */
 232	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 233}
 234
 235static int amp_init2(struct hci_request *req)
 236{
 237	/* Read Local Supported Features. Not all AMP controllers
 238	 * support this so it's placed conditionally in the second
 239	 * stage init.
 240	 */
 241	if (req->hdev->commands[14] & 0x20)
 242		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 243
 244	return 0;
 245}
 246
 247static int hci_init1_req(struct hci_request *req, unsigned long opt)
 248{
 249	struct hci_dev *hdev = req->hdev;
 250
 251	BT_DBG("%s %ld", hdev->name, opt);
 252
 253	/* Reset */
 254	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 255		hci_reset_req(req, 0);
 256
 257	switch (hdev->dev_type) {
 258	case HCI_PRIMARY:
 259		bredr_init(req);
 260		break;
 261	case HCI_AMP:
 262		amp_init1(req);
 263		break;
 264	default:
 265		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
 266		break;
 267	}
 268
 269	return 0;
 270}
 271
 272static void bredr_setup(struct hci_request *req)
 273{
 274	__le16 param;
 275	__u8 flt_type;
 276
 277	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 278	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 279
 280	/* Read Class of Device */
 281	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 282
 283	/* Read Local Name */
 284	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 285
 286	/* Read Voice Setting */
 287	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 288
 289	/* Read Number of Supported IAC */
 290	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 291
 292	/* Read Current IAC LAP */
 293	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 294
 295	/* Clear Event Filters */
 296	flt_type = HCI_FLT_CLEAR_ALL;
 297	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 298
 299	/* Connection accept timeout ~20 secs */
 300	param = cpu_to_le16(0x7d00);
 301	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 302}
 303
 304static void le_setup(struct hci_request *req)
 305{
 306	struct hci_dev *hdev = req->hdev;
 307
 308	/* Read LE Buffer Size */
 309	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 310
 311	/* Read LE Local Supported Features */
 312	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 313
 314	/* Read LE Supported States */
 315	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 316
 317	/* LE-only controllers have LE implicitly enabled */
 318	if (!lmp_bredr_capable(hdev))
 319		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 320}
 321
 322static void hci_setup_event_mask(struct hci_request *req)
 323{
 324	struct hci_dev *hdev = req->hdev;
 325
 326	/* The second byte is 0xff instead of 0x9f (two reserved bits
 327	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 328	 * command otherwise.
 329	 */
 330	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 331
 332	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 333	 * any event mask for pre 1.2 devices.
 334	 */
 335	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 336		return;
 337
 338	if (lmp_bredr_capable(hdev)) {
 339		events[4] |= 0x01; /* Flow Specification Complete */
 340	} else {
 341		/* Use a different default for LE-only devices */
 342		memset(events, 0, sizeof(events));
 343		events[1] |= 0x20; /* Command Complete */
 344		events[1] |= 0x40; /* Command Status */
 345		events[1] |= 0x80; /* Hardware Error */
 346
 347		/* If the controller supports the Disconnect command, enable
 348		 * the corresponding event. In addition enable packet flow
 349		 * control related events.
 350		 */
 351		if (hdev->commands[0] & 0x20) {
 352			events[0] |= 0x10; /* Disconnection Complete */
 353			events[2] |= 0x04; /* Number of Completed Packets */
 354			events[3] |= 0x02; /* Data Buffer Overflow */
 355		}
 356
 357		/* If the controller supports the Read Remote Version
 358		 * Information command, enable the corresponding event.
 359		 */
 360		if (hdev->commands[2] & 0x80)
 361			events[1] |= 0x08; /* Read Remote Version Information
 362					    * Complete
 363					    */
 364
 365		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 366			events[0] |= 0x80; /* Encryption Change */
 367			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 368		}
 369	}
 370
 371	if (lmp_inq_rssi_capable(hdev) ||
 372	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 373		events[4] |= 0x02; /* Inquiry Result with RSSI */
 374
 375	if (lmp_ext_feat_capable(hdev))
 376		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 377
 378	if (lmp_esco_capable(hdev)) {
 379		events[5] |= 0x08; /* Synchronous Connection Complete */
 380		events[5] |= 0x10; /* Synchronous Connection Changed */
 381	}
 382
 383	if (lmp_sniffsubr_capable(hdev))
 384		events[5] |= 0x20; /* Sniff Subrating */
 385
 386	if (lmp_pause_enc_capable(hdev))
 387		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 388
 389	if (lmp_ext_inq_capable(hdev))
 390		events[5] |= 0x40; /* Extended Inquiry Result */
 391
 392	if (lmp_no_flush_capable(hdev))
 393		events[7] |= 0x01; /* Enhanced Flush Complete */
 394
 395	if (lmp_lsto_capable(hdev))
 396		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 397
 398	if (lmp_ssp_capable(hdev)) {
 399		events[6] |= 0x01;	/* IO Capability Request */
 400		events[6] |= 0x02;	/* IO Capability Response */
 401		events[6] |= 0x04;	/* User Confirmation Request */
 402		events[6] |= 0x08;	/* User Passkey Request */
 403		events[6] |= 0x10;	/* Remote OOB Data Request */
 404		events[6] |= 0x20;	/* Simple Pairing Complete */
 405		events[7] |= 0x04;	/* User Passkey Notification */
 406		events[7] |= 0x08;	/* Keypress Notification */
 407		events[7] |= 0x10;	/* Remote Host Supported
 408					 * Features Notification
 409					 */
 410	}
 411
 412	if (lmp_le_capable(hdev))
 413		events[7] |= 0x20;	/* LE Meta-Event */
 414
 415	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 416}
 417
 418static int hci_init2_req(struct hci_request *req, unsigned long opt)
 419{
 420	struct hci_dev *hdev = req->hdev;
 421
 422	if (hdev->dev_type == HCI_AMP)
 423		return amp_init2(req);
 424
 425	if (lmp_bredr_capable(hdev))
 426		bredr_setup(req);
 427	else
 428		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 429
 430	if (lmp_le_capable(hdev))
 431		le_setup(req);
 432
 433	/* All Bluetooth 1.2 and later controllers should support the
 434	 * HCI command for reading the local supported commands.
 435	 *
 436	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 437	 * but do not have support for this command. If that is the case,
 438	 * the driver can quirk the behavior and skip reading the local
 439	 * supported commands.
 440	 */
 441	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 442	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 443		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 444
 445	if (lmp_ssp_capable(hdev)) {
 446		/* When SSP is available, then the host features page
 447		 * should also be available as well. However some
 448		 * controllers list the max_page as 0 as long as SSP
 449		 * has not been enabled. To achieve proper debugging
 450		 * output, force the minimum max_page to 1 at least.
 451		 */
 452		hdev->max_page = 0x01;
 453
 454		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 455			u8 mode = 0x01;
 456
 457			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 458				    sizeof(mode), &mode);
 459		} else {
 460			struct hci_cp_write_eir cp;
 461
 462			memset(hdev->eir, 0, sizeof(hdev->eir));
 463			memset(&cp, 0, sizeof(cp));
 464
 465			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 466		}
 467	}
 468
 469	if (lmp_inq_rssi_capable(hdev) ||
 470	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 471		u8 mode;
 472
 473		/* If Extended Inquiry Result events are supported, then
 474		 * they are clearly preferred over Inquiry Result with RSSI
 475		 * events.
 476		 */
 477		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 478
 479		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 480	}
 481
 482	if (lmp_inq_tx_pwr_capable(hdev))
 483		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 484
 485	if (lmp_ext_feat_capable(hdev)) {
 486		struct hci_cp_read_local_ext_features cp;
 487
 488		cp.page = 0x01;
 489		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 490			    sizeof(cp), &cp);
 491	}
 492
 493	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 494		u8 enable = 1;
 495		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 496			    &enable);
 497	}
 498
 499	return 0;
 500}
 501
 502static void hci_setup_link_policy(struct hci_request *req)
 503{
 504	struct hci_dev *hdev = req->hdev;
 505	struct hci_cp_write_def_link_policy cp;
 506	u16 link_policy = 0;
 507
 508	if (lmp_rswitch_capable(hdev))
 509		link_policy |= HCI_LP_RSWITCH;
 510	if (lmp_hold_capable(hdev))
 511		link_policy |= HCI_LP_HOLD;
 512	if (lmp_sniff_capable(hdev))
 513		link_policy |= HCI_LP_SNIFF;
 514	if (lmp_park_capable(hdev))
 515		link_policy |= HCI_LP_PARK;
 516
 517	cp.policy = cpu_to_le16(link_policy);
 518	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 519}
 520
 521static void hci_set_le_support(struct hci_request *req)
 522{
 523	struct hci_dev *hdev = req->hdev;
 524	struct hci_cp_write_le_host_supported cp;
 525
 526	/* LE-only devices do not support explicit enablement */
 527	if (!lmp_bredr_capable(hdev))
 528		return;
 529
 530	memset(&cp, 0, sizeof(cp));
 531
 532	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 533		cp.le = 0x01;
 534		cp.simul = 0x00;
 535	}
 536
 537	if (cp.le != lmp_host_le_capable(hdev))
 538		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 539			    &cp);
 540}
 541
 542static void hci_set_event_mask_page_2(struct hci_request *req)
 543{
 544	struct hci_dev *hdev = req->hdev;
 545	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 546	bool changed = false;
 547
 548	/* If Connectionless Peripheral Broadcast central role is supported
 549	 * enable all necessary events for it.
 550	 */
 551	if (lmp_cpb_central_capable(hdev)) {
 552		events[1] |= 0x40;	/* Triggered Clock Capture */
 553		events[1] |= 0x80;	/* Synchronization Train Complete */
 554		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
 555		events[2] |= 0x20;	/* CPB Channel Map Change */
 556		changed = true;
 557	}
 558
 559	/* If Connectionless Peripheral Broadcast peripheral role is supported
 560	 * enable all necessary events for it.
 561	 */
 562	if (lmp_cpb_peripheral_capable(hdev)) {
 563		events[2] |= 0x01;	/* Synchronization Train Received */
 564		events[2] |= 0x02;	/* CPB Receive */
 565		events[2] |= 0x04;	/* CPB Timeout */
 566		events[2] |= 0x08;	/* Truncated Page Complete */
 567		changed = true;
 568	}
 569
 570	/* Enable Authenticated Payload Timeout Expired event if supported */
 571	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 572		events[2] |= 0x80;
 573		changed = true;
 574	}
 575
 576	/* Some Broadcom based controllers indicate support for Set Event
 577	 * Mask Page 2 command, but then actually do not support it. Since
 578	 * the default value is all bits set to zero, the command is only
 579	 * required if the event mask has to be changed. In case no change
 580	 * to the event mask is needed, skip this command.
 581	 */
 582	if (changed)
 583		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
 584			    sizeof(events), events);
 585}
 586
 587static int hci_init3_req(struct hci_request *req, unsigned long opt)
 588{
 589	struct hci_dev *hdev = req->hdev;
 590	u8 p;
 591
 592	hci_setup_event_mask(req);
 593
 594	if (hdev->commands[6] & 0x20 &&
 595	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 596		struct hci_cp_read_stored_link_key cp;
 597
 598		bacpy(&cp.bdaddr, BDADDR_ANY);
 599		cp.read_all = 0x01;
 600		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 601	}
 602
 603	if (hdev->commands[5] & 0x10)
 604		hci_setup_link_policy(req);
 605
 606	if (hdev->commands[8] & 0x01)
 607		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 608
 609	if (hdev->commands[18] & 0x04 &&
 610	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
 611		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
 612
 613	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 614	 * support the Read Page Scan Type command. Check support for
 615	 * this command in the bit mask of supported commands.
 616	 */
 617	if (hdev->commands[13] & 0x01)
 618		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 619
 620	if (lmp_le_capable(hdev)) {
 621		u8 events[8];
 622
 623		memset(events, 0, sizeof(events));
 624
 625		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 626			events[0] |= 0x10;	/* LE Long Term Key Request */
 627
 628		/* If controller supports the Connection Parameters Request
 629		 * Link Layer Procedure, enable the corresponding event.
 630		 */
 631		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 632			events[0] |= 0x20;	/* LE Remote Connection
 633						 * Parameter Request
 634						 */
 635
 636		/* If the controller supports the Data Length Extension
 637		 * feature, enable the corresponding event.
 638		 */
 639		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 640			events[0] |= 0x40;	/* LE Data Length Change */
 641
 642		/* If the controller supports LL Privacy feature, enable
 643		 * the corresponding event.
 644		 */
 645		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
 646			events[1] |= 0x02;	/* LE Enhanced Connection
 647						 * Complete
 648						 */
 649
 650		/* If the controller supports Extended Scanner Filter
 651		 * Policies, enable the corresponding event.
 652		 */
 653		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 654			events[1] |= 0x04;	/* LE Direct Advertising
 655						 * Report
 656						 */
 657
 658		/* If the controller supports Channel Selection Algorithm #2
 659		 * feature, enable the corresponding event.
 660		 */
 661		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 662			events[2] |= 0x08;	/* LE Channel Selection
 663						 * Algorithm
 664						 */
 665
 666		/* If the controller supports the LE Set Scan Enable command,
 667		 * enable the corresponding advertising report event.
 668		 */
 669		if (hdev->commands[26] & 0x08)
 670			events[0] |= 0x02;	/* LE Advertising Report */
 671
 672		/* If the controller supports the LE Create Connection
 673		 * command, enable the corresponding event.
 674		 */
 675		if (hdev->commands[26] & 0x10)
 676			events[0] |= 0x01;	/* LE Connection Complete */
 677
 678		/* If the controller supports the LE Connection Update
 679		 * command, enable the corresponding event.
 680		 */
 681		if (hdev->commands[27] & 0x04)
 682			events[0] |= 0x04;	/* LE Connection Update
 683						 * Complete
 684						 */
 685
 686		/* If the controller supports the LE Read Remote Used Features
 687		 * command, enable the corresponding event.
 688		 */
 689		if (hdev->commands[27] & 0x20)
 690			events[0] |= 0x08;	/* LE Read Remote Used
 691						 * Features Complete
 692						 */
 693
 694		/* If the controller supports the LE Read Local P-256
 695		 * Public Key command, enable the corresponding event.
 696		 */
 697		if (hdev->commands[34] & 0x02)
 698			events[0] |= 0x80;	/* LE Read Local P-256
 699						 * Public Key Complete
 700						 */
 701
 702		/* If the controller supports the LE Generate DHKey
 703		 * command, enable the corresponding event.
 704		 */
 705		if (hdev->commands[34] & 0x04)
 706			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 707
 708		/* If the controller supports the LE Set Default PHY or
 709		 * LE Set PHY commands, enable the corresponding event.
 710		 */
 711		if (hdev->commands[35] & (0x20 | 0x40))
 712			events[1] |= 0x08;        /* LE PHY Update Complete */
 713
 714		/* If the controller supports LE Set Extended Scan Parameters
 715		 * and LE Set Extended Scan Enable commands, enable the
 716		 * corresponding event.
 717		 */
 718		if (use_ext_scan(hdev))
 719			events[1] |= 0x10;	/* LE Extended Advertising
 720						 * Report
 721						 */
 722
 723		/* If the controller supports the LE Extended Advertising
 724		 * command, enable the corresponding event.
 725		 */
 726		if (ext_adv_capable(hdev))
 727			events[2] |= 0x02;	/* LE Advertising Set
 728						 * Terminated
 729						 */
 730
 731		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 732			    events);
 733
 734		/* Read LE Advertising Channel TX Power */
 735		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 736			/* HCI TS spec forbids mixing of legacy and extended
 737			 * advertising commands wherein READ_ADV_TX_POWER is
 738			 * also included. So do not call it if extended adv
 739			 * is supported otherwise controller will return
 740			 * COMMAND_DISALLOWED for extended commands.
 741			 */
 742			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 743		}
 744
 745		if (hdev->commands[38] & 0x80) {
 746			/* Read LE Min/Max Tx Power*/
 747			hci_req_add(req, HCI_OP_LE_READ_TRANSMIT_POWER,
 748				    0, NULL);
 749		}
 750
 751		if (hdev->commands[26] & 0x40) {
 752			/* Read LE Accept List Size */
 753			hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
 754				    0, NULL);
 755		}
 756
 757		if (hdev->commands[26] & 0x80) {
 758			/* Clear LE Accept List */
 759			hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL);
 760		}
 761
 762		if (hdev->commands[34] & 0x40) {
 763			/* Read LE Resolving List Size */
 764			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 765				    0, NULL);
 766		}
 767
 768		if (hdev->commands[34] & 0x20) {
 769			/* Clear LE Resolving List */
 770			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
 771		}
 772
 773		if (hdev->commands[35] & 0x04) {
 774			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
 775
 776			/* Set RPA timeout */
 777			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
 778				    &rpa_timeout);
 779		}
 780
 781		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 782			/* Read LE Maximum Data Length */
 783			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 784
 785			/* Read LE Suggested Default Data Length */
 786			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 787		}
 788
 789		if (ext_adv_capable(hdev)) {
 790			/* Read LE Number of Supported Advertising Sets */
 791			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 792				    0, NULL);
 793		}
 794
 795		hci_set_le_support(req);
 796	}
 797
 798	/* Read features beyond page 1 if available */
 799	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 800		struct hci_cp_read_local_ext_features cp;
 801
 802		cp.page = p;
 803		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 804			    sizeof(cp), &cp);
 805	}
 806
 807	return 0;
 808}
 809
 810static int hci_init4_req(struct hci_request *req, unsigned long opt)
 811{
 812	struct hci_dev *hdev = req->hdev;
 813
 814	/* Some Broadcom based Bluetooth controllers do not support the
 815	 * Delete Stored Link Key command. They are clearly indicating its
 816	 * absence in the bit mask of supported commands.
 817	 *
 818	 * Check the supported commands and only if the command is marked
 819	 * as supported send it. If not supported assume that the controller
 820	 * does not have actual support for stored link keys which makes this
 821	 * command redundant anyway.
 822	 *
 823	 * Some controllers indicate that they support handling deleting
 824	 * stored link keys, but they don't. The quirk lets a driver
 825	 * just disable this command.
 826	 */
 827	if (hdev->commands[6] & 0x80 &&
 828	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 829		struct hci_cp_delete_stored_link_key cp;
 830
 831		bacpy(&cp.bdaddr, BDADDR_ANY);
 832		cp.delete_all = 0x01;
 833		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 834			    sizeof(cp), &cp);
 835	}
 836
 837	/* Set event mask page 2 if the HCI command for it is supported */
 838	if (hdev->commands[22] & 0x04)
 839		hci_set_event_mask_page_2(req);
 840
 841	/* Read local codec list if the HCI command is supported */
 842	if (hdev->commands[29] & 0x20)
 843		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 844
 845	/* Read local pairing options if the HCI command is supported */
 846	if (hdev->commands[41] & 0x08)
 847		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
 848
 849	/* Get MWS transport configuration if the HCI command is supported */
 850	if (hdev->commands[30] & 0x08)
 851		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 852
 853	/* Check for Synchronization Train support */
 854	if (lmp_sync_train_capable(hdev))
 855		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 856
 857	/* Enable Secure Connections if supported and configured */
 858	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 859	    bredr_sc_enabled(hdev)) {
 860		u8 support = 0x01;
 861
 862		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 863			    sizeof(support), &support);
 864	}
 865
 866	/* Set erroneous data reporting if supported to the wideband speech
 867	 * setting value
 868	 */
 869	if (hdev->commands[18] & 0x08 &&
 870	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
 871		bool enabled = hci_dev_test_flag(hdev,
 872						 HCI_WIDEBAND_SPEECH_ENABLED);
 873
 874		if (enabled !=
 875		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
 876			struct hci_cp_write_def_err_data_reporting cp;
 877
 878			cp.err_data_reporting = enabled ?
 879						ERR_DATA_REPORTING_ENABLED :
 880						ERR_DATA_REPORTING_DISABLED;
 881
 882			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
 883				    sizeof(cp), &cp);
 884		}
 885	}
 886
 887	/* Set Suggested Default Data Length to maximum if supported */
 888	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 889		struct hci_cp_le_write_def_data_len cp;
 890
 891		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
 892		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
 893		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
 894	}
 895
 896	/* Set Default PHY parameters if command is supported */
 897	if (hdev->commands[35] & 0x20) {
 898		struct hci_cp_le_set_default_phy cp;
 899
 900		cp.all_phys = 0x00;
 901		cp.tx_phys = hdev->le_tx_def_phys;
 902		cp.rx_phys = hdev->le_rx_def_phys;
 903
 904		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
 905	}
 906
 907	return 0;
 908}
 909
 910static int __hci_init(struct hci_dev *hdev)
 911{
 912	int err;
 913
 914	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 915	if (err < 0)
 916		return err;
 917
 918	if (hci_dev_test_flag(hdev, HCI_SETUP))
 919		hci_debugfs_create_basic(hdev);
 920
 921	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 922	if (err < 0)
 923		return err;
 924
 925	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 926	 * BR/EDR/LE type controllers. AMP controllers only need the
 927	 * first two stages of init.
 928	 */
 929	if (hdev->dev_type != HCI_PRIMARY)
 930		return 0;
 931
 932	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 933	if (err < 0)
 934		return err;
 935
 936	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 937	if (err < 0)
 938		return err;
 939
 940	/* This function is only called when the controller is actually in
 941	 * configured state. When the controller is marked as unconfigured,
 942	 * this initialization procedure is not run.
 943	 *
 944	 * It means that it is possible that a controller runs through its
 945	 * setup phase and then discovers missing settings. If that is the
 946	 * case, then this function will not be called. It then will only
 947	 * be called during the config phase.
 948	 *
 949	 * So only when in setup phase or config phase, create the debugfs
 950	 * entries and register the SMP channels.
 951	 */
 952	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 953	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 954		return 0;
 955
 956	hci_debugfs_create_common(hdev);
 957
 958	if (lmp_bredr_capable(hdev))
 959		hci_debugfs_create_bredr(hdev);
 960
 961	if (lmp_le_capable(hdev))
 962		hci_debugfs_create_le(hdev);
 963
 964	return 0;
 965}
 966
 967static int hci_init0_req(struct hci_request *req, unsigned long opt)
 968{
 969	struct hci_dev *hdev = req->hdev;
 970
 971	BT_DBG("%s %ld", hdev->name, opt);
 972
 973	/* Reset */
 974	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 975		hci_reset_req(req, 0);
 976
 977	/* Read Local Version */
 978	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 979
 980	/* Read BD Address */
 981	if (hdev->set_bdaddr)
 982		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 983
 984	return 0;
 985}
 986
 987static int __hci_unconf_init(struct hci_dev *hdev)
 988{
 989	int err;
 990
 991	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 992		return 0;
 993
 994	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 995	if (err < 0)
 996		return err;
 997
 998	if (hci_dev_test_flag(hdev, HCI_SETUP))
 999		hci_debugfs_create_basic(hdev);
1000
1001	return 0;
1002}
1003
1004static int hci_scan_req(struct hci_request *req, unsigned long opt)
1005{
1006	__u8 scan = opt;
1007
1008	BT_DBG("%s %x", req->hdev->name, scan);
1009
1010	/* Inquiry and Page scans */
1011	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1012	return 0;
1013}
1014
1015static int hci_auth_req(struct hci_request *req, unsigned long opt)
1016{
1017	__u8 auth = opt;
1018
1019	BT_DBG("%s %x", req->hdev->name, auth);
1020
1021	/* Authentication */
1022	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1023	return 0;
1024}
1025
1026static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1027{
1028	__u8 encrypt = opt;
1029
1030	BT_DBG("%s %x", req->hdev->name, encrypt);
1031
1032	/* Encryption */
1033	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1034	return 0;
1035}
1036
1037static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1038{
1039	__le16 policy = cpu_to_le16(opt);
1040
1041	BT_DBG("%s %x", req->hdev->name, policy);
1042
1043	/* Default link policy */
1044	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1045	return 0;
1046}
1047
1048/* Get HCI device by index.
1049 * Device is held on return. */
1050struct hci_dev *hci_dev_get(int index)
1051{
1052	struct hci_dev *hdev = NULL, *d;
1053
1054	BT_DBG("%d", index);
1055
1056	if (index < 0)
1057		return NULL;
1058
1059	read_lock(&hci_dev_list_lock);
1060	list_for_each_entry(d, &hci_dev_list, list) {
1061		if (d->id == index) {
1062			hdev = hci_dev_hold(d);
1063			break;
1064		}
1065	}
1066	read_unlock(&hci_dev_list_lock);
1067	return hdev;
1068}
1069
1070/* ---- Inquiry support ---- */
1071
1072bool hci_discovery_active(struct hci_dev *hdev)
1073{
1074	struct discovery_state *discov = &hdev->discovery;
1075
1076	switch (discov->state) {
1077	case DISCOVERY_FINDING:
1078	case DISCOVERY_RESOLVING:
1079		return true;
1080
1081	default:
1082		return false;
1083	}
1084}
1085
1086void hci_discovery_set_state(struct hci_dev *hdev, int state)
1087{
1088	int old_state = hdev->discovery.state;
1089
1090	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1091
1092	if (old_state == state)
1093		return;
1094
1095	hdev->discovery.state = state;
1096
1097	switch (state) {
1098	case DISCOVERY_STOPPED:
1099		hci_update_background_scan(hdev);
1100
1101		if (old_state != DISCOVERY_STARTING)
1102			mgmt_discovering(hdev, 0);
1103		break;
1104	case DISCOVERY_STARTING:
1105		break;
1106	case DISCOVERY_FINDING:
1107		mgmt_discovering(hdev, 1);
1108		break;
1109	case DISCOVERY_RESOLVING:
1110		break;
1111	case DISCOVERY_STOPPING:
1112		break;
1113	}
 
 
1114}
1115
1116void hci_inquiry_cache_flush(struct hci_dev *hdev)
1117{
1118	struct discovery_state *cache = &hdev->discovery;
1119	struct inquiry_entry *p, *n;
1120
1121	list_for_each_entry_safe(p, n, &cache->all, all) {
1122		list_del(&p->all);
1123		kfree(p);
1124	}
1125
1126	INIT_LIST_HEAD(&cache->unknown);
1127	INIT_LIST_HEAD(&cache->resolve);
1128}
1129
1130struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1131					       bdaddr_t *bdaddr)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_entry *e;
1135
1136	BT_DBG("cache %p, %pMR", cache, bdaddr);
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		if (!bacmp(&e->data.bdaddr, bdaddr))
1140			return e;
1141	}
1142
1143	return NULL;
1144}
1145
1146struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1147						       bdaddr_t *bdaddr)
1148{
1149	struct discovery_state *cache = &hdev->discovery;
1150	struct inquiry_entry *e;
1151
1152	BT_DBG("cache %p, %pMR", cache, bdaddr);
1153
1154	list_for_each_entry(e, &cache->unknown, list) {
1155		if (!bacmp(&e->data.bdaddr, bdaddr))
1156			return e;
1157	}
1158
1159	return NULL;
1160}
1161
1162struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1163						       bdaddr_t *bdaddr,
1164						       int state)
1165{
1166	struct discovery_state *cache = &hdev->discovery;
1167	struct inquiry_entry *e;
1168
1169	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1170
1171	list_for_each_entry(e, &cache->resolve, list) {
1172		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1173			return e;
1174		if (!bacmp(&e->data.bdaddr, bdaddr))
1175			return e;
1176	}
1177
1178	return NULL;
1179}
1180
1181void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1182				      struct inquiry_entry *ie)
1183{
1184	struct discovery_state *cache = &hdev->discovery;
1185	struct list_head *pos = &cache->resolve;
1186	struct inquiry_entry *p;
1187
1188	list_del(&ie->list);
1189
1190	list_for_each_entry(p, &cache->resolve, list) {
1191		if (p->name_state != NAME_PENDING &&
1192		    abs(p->data.rssi) >= abs(ie->data.rssi))
1193			break;
1194		pos = &p->list;
1195	}
1196
1197	list_add(&ie->list, pos);
1198}
1199
1200u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1201			     bool name_known)
1202{
1203	struct discovery_state *cache = &hdev->discovery;
1204	struct inquiry_entry *ie;
1205	u32 flags = 0;
1206
1207	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1208
1209	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1210
1211	if (!data->ssp_mode)
1212		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1213
1214	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1215	if (ie) {
1216		if (!ie->data.ssp_mode)
1217			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1218
1219		if (ie->name_state == NAME_NEEDED &&
1220		    data->rssi != ie->data.rssi) {
1221			ie->data.rssi = data->rssi;
1222			hci_inquiry_cache_update_resolve(hdev, ie);
1223		}
1224
1225		goto update;
1226	}
1227
1228	/* Entry not in the cache. Add new one. */
1229	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1230	if (!ie) {
1231		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1232		goto done;
1233	}
1234
1235	list_add(&ie->all, &cache->all);
1236
1237	if (name_known) {
1238		ie->name_state = NAME_KNOWN;
1239	} else {
1240		ie->name_state = NAME_NOT_KNOWN;
1241		list_add(&ie->list, &cache->unknown);
1242	}
1243
1244update:
1245	if (name_known && ie->name_state != NAME_KNOWN &&
1246	    ie->name_state != NAME_PENDING) {
1247		ie->name_state = NAME_KNOWN;
1248		list_del(&ie->list);
1249	}
1250
1251	memcpy(&ie->data, data, sizeof(*data));
1252	ie->timestamp = jiffies;
1253	cache->timestamp = jiffies;
1254
1255	if (ie->name_state == NAME_NOT_KNOWN)
1256		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1257
1258done:
1259	return flags;
1260}
1261
1262static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1263{
1264	struct discovery_state *cache = &hdev->discovery;
1265	struct inquiry_info *info = (struct inquiry_info *) buf;
1266	struct inquiry_entry *e;
1267	int copied = 0;
1268
1269	list_for_each_entry(e, &cache->all, all) {
1270		struct inquiry_data *data = &e->data;
1271
1272		if (copied >= num)
1273			break;
1274
1275		bacpy(&info->bdaddr, &data->bdaddr);
1276		info->pscan_rep_mode	= data->pscan_rep_mode;
1277		info->pscan_period_mode	= data->pscan_period_mode;
1278		info->pscan_mode	= data->pscan_mode;
1279		memcpy(info->dev_class, data->dev_class, 3);
1280		info->clock_offset	= data->clock_offset;
1281
1282		info++;
1283		copied++;
1284	}
1285
1286	BT_DBG("cache %p, copied %d", cache, copied);
1287	return copied;
1288}
1289
1290static int hci_inq_req(struct hci_request *req, unsigned long opt)
1291{
1292	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1293	struct hci_dev *hdev = req->hdev;
1294	struct hci_cp_inquiry cp;
1295
1296	BT_DBG("%s", hdev->name);
1297
1298	if (test_bit(HCI_INQUIRY, &hdev->flags))
1299		return 0;
1300
1301	/* Start Inquiry */
1302	memcpy(&cp.lap, &ir->lap, 3);
1303	cp.length  = ir->length;
1304	cp.num_rsp = ir->num_rsp;
1305	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1306
1307	return 0;
1308}
1309
1310int hci_inquiry(void __user *arg)
1311{
1312	__u8 __user *ptr = arg;
1313	struct hci_inquiry_req ir;
1314	struct hci_dev *hdev;
1315	int err = 0, do_inquiry = 0, max_rsp;
1316	long timeo;
1317	__u8 *buf;
1318
1319	if (copy_from_user(&ir, ptr, sizeof(ir)))
1320		return -EFAULT;
1321
1322	hdev = hci_dev_get(ir.dev_id);
1323	if (!hdev)
1324		return -ENODEV;
1325
1326	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1327		err = -EBUSY;
1328		goto done;
1329	}
1330
1331	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1332		err = -EOPNOTSUPP;
1333		goto done;
1334	}
1335
1336	if (hdev->dev_type != HCI_PRIMARY) {
1337		err = -EOPNOTSUPP;
1338		goto done;
1339	}
1340
1341	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1342		err = -EOPNOTSUPP;
1343		goto done;
1344	}
1345
1346	/* Restrict maximum inquiry length to 60 seconds */
1347	if (ir.length > 60) {
1348		err = -EINVAL;
1349		goto done;
1350	}
1351
1352	hci_dev_lock(hdev);
1353	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1354	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1355		hci_inquiry_cache_flush(hdev);
1356		do_inquiry = 1;
1357	}
1358	hci_dev_unlock(hdev);
1359
1360	timeo = ir.length * msecs_to_jiffies(2000);
 
 
 
1361
1362	if (do_inquiry) {
1363		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1364				   timeo, NULL);
1365		if (err < 0)
1366			goto done;
1367
1368		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1369		 * cleared). If it is interrupted by a signal, return -EINTR.
1370		 */
1371		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1372				TASK_INTERRUPTIBLE)) {
1373			err = -EINTR;
1374			goto done;
1375		}
1376	}
1377
1378	/* for unlimited number of responses we will use buffer with
1379	 * 255 entries
1380	 */
1381	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1382
1383	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1384	 * copy it to the user space.
1385	 */
1386	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1387	if (!buf) {
1388		err = -ENOMEM;
1389		goto done;
1390	}
1391
1392	hci_dev_lock(hdev);
1393	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1394	hci_dev_unlock(hdev);
1395
1396	BT_DBG("num_rsp %d", ir.num_rsp);
1397
1398	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1399		ptr += sizeof(ir);
1400		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1401				 ir.num_rsp))
1402			err = -EFAULT;
1403	} else
1404		err = -EFAULT;
1405
1406	kfree(buf);
1407
1408done:
1409	hci_dev_put(hdev);
1410	return err;
1411}
1412
1413/**
1414 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1415 *				       (BD_ADDR) for a HCI device from
1416 *				       a firmware node property.
1417 * @hdev:	The HCI device
1418 *
1419 * Search the firmware node for 'local-bd-address'.
1420 *
1421 * All-zero BD addresses are rejected, because those could be properties
1422 * that exist in the firmware tables, but were not updated by the firmware. For
1423 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1424 */
1425static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1426{
1427	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1428	bdaddr_t ba;
1429	int ret;
1430
1431	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1432					    (u8 *)&ba, sizeof(ba));
1433	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1434		return;
1435
1436	bacpy(&hdev->public_addr, &ba);
1437}
1438
1439static int hci_dev_do_open(struct hci_dev *hdev)
1440{
1441	int ret = 0;
1442
1443	BT_DBG("%s %p", hdev->name, hdev);
1444
1445	hci_req_sync_lock(hdev);
1446
1447	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1448		ret = -ENODEV;
1449		goto done;
1450	}
1451
1452	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1453	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1454		/* Check for rfkill but allow the HCI setup stage to
1455		 * proceed (which in itself doesn't cause any RF activity).
1456		 */
1457		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1458			ret = -ERFKILL;
1459			goto done;
1460		}
1461
1462		/* Check for valid public address or a configured static
1463		 * random address, but let the HCI setup proceed to
1464		 * be able to determine if there is a public address
1465		 * or not.
1466		 *
1467		 * In case of user channel usage, it is not important
1468		 * if a public address or static random address is
1469		 * available.
1470		 *
1471		 * This check is only valid for BR/EDR controllers
1472		 * since AMP controllers do not have an address.
1473		 */
1474		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1475		    hdev->dev_type == HCI_PRIMARY &&
1476		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1477		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1478			ret = -EADDRNOTAVAIL;
1479			goto done;
1480		}
1481	}
1482
1483	if (test_bit(HCI_UP, &hdev->flags)) {
1484		ret = -EALREADY;
1485		goto done;
1486	}
1487
1488	if (hdev->open(hdev)) {
1489		ret = -EIO;
1490		goto done;
1491	}
1492
1493	set_bit(HCI_RUNNING, &hdev->flags);
1494	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1495
1496	atomic_set(&hdev->cmd_cnt, 1);
1497	set_bit(HCI_INIT, &hdev->flags);
1498
1499	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1500	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1501		bool invalid_bdaddr;
1502
1503		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1504
1505		if (hdev->setup)
1506			ret = hdev->setup(hdev);
1507
1508		/* The transport driver can set the quirk to mark the
1509		 * BD_ADDR invalid before creating the HCI device or in
1510		 * its setup callback.
1511		 */
1512		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1513					  &hdev->quirks);
1514
1515		if (ret)
1516			goto setup_failed;
1517
1518		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1519			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1520				hci_dev_get_bd_addr_from_property(hdev);
1521
1522			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1523			    hdev->set_bdaddr) {
1524				ret = hdev->set_bdaddr(hdev,
1525						       &hdev->public_addr);
1526
1527				/* If setting of the BD_ADDR from the device
1528				 * property succeeds, then treat the address
1529				 * as valid even if the invalid BD_ADDR
1530				 * quirk indicates otherwise.
1531				 */
1532				if (!ret)
1533					invalid_bdaddr = false;
1534			}
1535		}
1536
1537setup_failed:
1538		/* The transport driver can set these quirks before
1539		 * creating the HCI device or in its setup callback.
1540		 *
1541		 * For the invalid BD_ADDR quirk it is possible that
1542		 * it becomes a valid address if the bootloader does
1543		 * provide it (see above).
1544		 *
1545		 * In case any of them is set, the controller has to
1546		 * start up as unconfigured.
1547		 */
1548		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1549		    invalid_bdaddr)
1550			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1551
1552		/* For an unconfigured controller it is required to
1553		 * read at least the version information provided by
1554		 * the Read Local Version Information command.
1555		 *
1556		 * If the set_bdaddr driver callback is provided, then
1557		 * also the original Bluetooth public device address
1558		 * will be read using the Read BD Address command.
1559		 */
1560		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1561			ret = __hci_unconf_init(hdev);
1562	}
1563
1564	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1565		/* If public address change is configured, ensure that
1566		 * the address gets programmed. If the driver does not
1567		 * support changing the public address, fail the power
1568		 * on procedure.
1569		 */
1570		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1571		    hdev->set_bdaddr)
1572			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1573		else
1574			ret = -EADDRNOTAVAIL;
1575	}
1576
1577	if (!ret) {
1578		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1579		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1580			ret = __hci_init(hdev);
1581			if (!ret && hdev->post_init)
1582				ret = hdev->post_init(hdev);
1583		}
1584	}
1585
1586	/* If the HCI Reset command is clearing all diagnostic settings,
1587	 * then they need to be reprogrammed after the init procedure
1588	 * completed.
1589	 */
1590	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1591	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1592	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1593		ret = hdev->set_diag(hdev, true);
1594
1595	msft_do_open(hdev);
1596	aosp_do_open(hdev);
1597
1598	clear_bit(HCI_INIT, &hdev->flags);
1599
1600	if (!ret) {
1601		hci_dev_hold(hdev);
1602		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1603		hci_adv_instances_set_rpa_expired(hdev, true);
1604		set_bit(HCI_UP, &hdev->flags);
1605		hci_sock_dev_event(hdev, HCI_DEV_UP);
1606		hci_leds_update_powered(hdev, true);
1607		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1608		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1609		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1610		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1611		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1612		    hdev->dev_type == HCI_PRIMARY) {
1613			ret = __hci_req_hci_power_on(hdev);
1614			mgmt_power_on(hdev, ret);
1615		}
1616	} else {
1617		/* Init failed, cleanup */
1618		flush_work(&hdev->tx_work);
1619
1620		/* Since hci_rx_work() is possible to awake new cmd_work
1621		 * it should be flushed first to avoid unexpected call of
1622		 * hci_cmd_work()
1623		 */
1624		flush_work(&hdev->rx_work);
1625		flush_work(&hdev->cmd_work);
1626
1627		skb_queue_purge(&hdev->cmd_q);
1628		skb_queue_purge(&hdev->rx_q);
1629
1630		if (hdev->flush)
1631			hdev->flush(hdev);
1632
1633		if (hdev->sent_cmd) {
1634			kfree_skb(hdev->sent_cmd);
1635			hdev->sent_cmd = NULL;
1636		}
1637
1638		clear_bit(HCI_RUNNING, &hdev->flags);
1639		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1640
1641		hdev->close(hdev);
1642		hdev->flags &= BIT(HCI_RAW);
1643	}
1644
1645done:
1646	hci_req_sync_unlock(hdev);
1647	return ret;
1648}
1649
1650/* ---- HCI ioctl helpers ---- */
1651
1652int hci_dev_open(__u16 dev)
1653{
1654	struct hci_dev *hdev;
1655	int err;
1656
1657	hdev = hci_dev_get(dev);
1658	if (!hdev)
1659		return -ENODEV;
1660
1661	/* Devices that are marked as unconfigured can only be powered
1662	 * up as user channel. Trying to bring them up as normal devices
1663	 * will result into a failure. Only user channel operation is
1664	 * possible.
1665	 *
1666	 * When this function is called for a user channel, the flag
1667	 * HCI_USER_CHANNEL will be set first before attempting to
1668	 * open the device.
1669	 */
1670	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1671	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1672		err = -EOPNOTSUPP;
1673		goto done;
1674	}
1675
1676	/* We need to ensure that no other power on/off work is pending
1677	 * before proceeding to call hci_dev_do_open. This is
1678	 * particularly important if the setup procedure has not yet
1679	 * completed.
1680	 */
1681	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1682		cancel_delayed_work(&hdev->power_off);
1683
1684	/* After this call it is guaranteed that the setup procedure
1685	 * has finished. This means that error conditions like RFKILL
1686	 * or no valid public or static random address apply.
1687	 */
1688	flush_workqueue(hdev->req_workqueue);
1689
1690	/* For controllers not using the management interface and that
1691	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1692	 * so that pairing works for them. Once the management interface
1693	 * is in use this bit will be cleared again and userspace has
1694	 * to explicitly enable it.
1695	 */
1696	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1697	    !hci_dev_test_flag(hdev, HCI_MGMT))
1698		hci_dev_set_flag(hdev, HCI_BONDABLE);
1699
1700	err = hci_dev_do_open(hdev);
1701
1702done:
1703	hci_dev_put(hdev);
1704	return err;
1705}
1706
1707/* This function requires the caller holds hdev->lock */
1708static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1709{
1710	struct hci_conn_params *p;
1711
1712	list_for_each_entry(p, &hdev->le_conn_params, list) {
1713		if (p->conn) {
1714			hci_conn_drop(p->conn);
1715			hci_conn_put(p->conn);
1716			p->conn = NULL;
1717		}
1718		list_del_init(&p->action);
1719	}
1720
1721	BT_DBG("All LE pending actions cleared");
1722}
1723
1724int hci_dev_do_close(struct hci_dev *hdev)
1725{
1726	bool auto_off;
1727
1728	BT_DBG("%s %p", hdev->name, hdev);
1729
1730	cancel_delayed_work(&hdev->power_off);
1731	cancel_delayed_work(&hdev->ncmd_timer);
1732
1733	hci_request_cancel_all(hdev);
1734	hci_req_sync_lock(hdev);
1735
1736	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1737	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1738	    test_bit(HCI_UP, &hdev->flags)) {
1739		/* Execute vendor specific shutdown routine */
1740		if (hdev->shutdown)
1741			hdev->shutdown(hdev);
1742	}
1743
1744	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1745		cancel_delayed_work_sync(&hdev->cmd_timer);
1746		hci_req_sync_unlock(hdev);
1747		return 0;
1748	}
1749
1750	hci_leds_update_powered(hdev, false);
1751
1752	/* Flush RX and TX works */
1753	flush_work(&hdev->tx_work);
1754	flush_work(&hdev->rx_work);
1755
1756	if (hdev->discov_timeout > 0) {
1757		hdev->discov_timeout = 0;
1758		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1759		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1760	}
1761
1762	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1763		cancel_delayed_work(&hdev->service_cache);
1764
1765	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1766		struct adv_info *adv_instance;
1767
1768		cancel_delayed_work_sync(&hdev->rpa_expired);
1769
1770		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1771			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1772	}
1773
1774	/* Avoid potential lockdep warnings from the *_flush() calls by
1775	 * ensuring the workqueue is empty up front.
1776	 */
1777	drain_workqueue(hdev->workqueue);
1778
1779	hci_dev_lock(hdev);
1780
1781	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1782
1783	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1784
1785	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1786	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1787	    hci_dev_test_flag(hdev, HCI_MGMT))
1788		__mgmt_power_off(hdev);
1789
1790	hci_inquiry_cache_flush(hdev);
1791	hci_pend_le_actions_clear(hdev);
1792	hci_conn_hash_flush(hdev);
1793	hci_dev_unlock(hdev);
1794
1795	smp_unregister(hdev);
1796
1797	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1798
1799	aosp_do_close(hdev);
1800	msft_do_close(hdev);
1801
1802	if (hdev->flush)
1803		hdev->flush(hdev);
1804
1805	/* Reset device */
1806	skb_queue_purge(&hdev->cmd_q);
1807	atomic_set(&hdev->cmd_cnt, 1);
1808	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1809	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1810		set_bit(HCI_INIT, &hdev->flags);
1811		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1812		clear_bit(HCI_INIT, &hdev->flags);
1813	}
1814
1815	/* flush cmd  work */
1816	flush_work(&hdev->cmd_work);
1817
1818	/* Drop queues */
1819	skb_queue_purge(&hdev->rx_q);
1820	skb_queue_purge(&hdev->cmd_q);
1821	skb_queue_purge(&hdev->raw_q);
1822
1823	/* Drop last sent command */
1824	if (hdev->sent_cmd) {
1825		cancel_delayed_work_sync(&hdev->cmd_timer);
1826		kfree_skb(hdev->sent_cmd);
1827		hdev->sent_cmd = NULL;
1828	}
1829
1830	clear_bit(HCI_RUNNING, &hdev->flags);
1831	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1832
1833	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1834		wake_up(&hdev->suspend_wait_q);
1835
1836	/* After this point our queues are empty
1837	 * and no tasks are scheduled. */
1838	hdev->close(hdev);
1839
1840	/* Clear flags */
1841	hdev->flags &= BIT(HCI_RAW);
1842	hci_dev_clear_volatile_flags(hdev);
1843
1844	/* Controller radio is available but is currently powered down */
1845	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1846
1847	memset(hdev->eir, 0, sizeof(hdev->eir));
1848	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1849	bacpy(&hdev->random_addr, BDADDR_ANY);
1850
1851	hci_req_sync_unlock(hdev);
1852
1853	hci_dev_put(hdev);
1854	return 0;
1855}
1856
1857int hci_dev_close(__u16 dev)
1858{
1859	struct hci_dev *hdev;
1860	int err;
1861
1862	hdev = hci_dev_get(dev);
1863	if (!hdev)
1864		return -ENODEV;
1865
1866	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1867		err = -EBUSY;
1868		goto done;
1869	}
1870
 
1871	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1872		cancel_delayed_work(&hdev->power_off);
1873
1874	err = hci_dev_do_close(hdev);
1875
1876done:
1877	hci_dev_put(hdev);
1878	return err;
1879}
1880
1881static int hci_dev_do_reset(struct hci_dev *hdev)
1882{
1883	int ret;
1884
1885	BT_DBG("%s %p", hdev->name, hdev);
1886
1887	hci_req_sync_lock(hdev);
1888
1889	/* Drop queues */
1890	skb_queue_purge(&hdev->rx_q);
1891	skb_queue_purge(&hdev->cmd_q);
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	/* Avoid potential lockdep warnings from the *_flush() calls by
1894	 * ensuring the workqueue is empty up front.
1895	 */
1896	drain_workqueue(hdev->workqueue);
1897
1898	hci_dev_lock(hdev);
1899	hci_inquiry_cache_flush(hdev);
1900	hci_conn_hash_flush(hdev);
1901	hci_dev_unlock(hdev);
1902
1903	if (hdev->flush)
1904		hdev->flush(hdev);
1905
 
 
1906	atomic_set(&hdev->cmd_cnt, 1);
1907	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1908
1909	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1910
1911	hci_req_sync_unlock(hdev);
1912	return ret;
1913}
1914
1915int hci_dev_reset(__u16 dev)
1916{
1917	struct hci_dev *hdev;
1918	int err;
1919
1920	hdev = hci_dev_get(dev);
1921	if (!hdev)
1922		return -ENODEV;
1923
1924	if (!test_bit(HCI_UP, &hdev->flags)) {
1925		err = -ENETDOWN;
1926		goto done;
1927	}
1928
1929	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1930		err = -EBUSY;
1931		goto done;
1932	}
1933
1934	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1935		err = -EOPNOTSUPP;
1936		goto done;
1937	}
1938
1939	err = hci_dev_do_reset(hdev);
1940
1941done:
1942	hci_dev_put(hdev);
1943	return err;
1944}
1945
1946int hci_dev_reset_stat(__u16 dev)
1947{
1948	struct hci_dev *hdev;
1949	int ret = 0;
1950
1951	hdev = hci_dev_get(dev);
1952	if (!hdev)
1953		return -ENODEV;
1954
1955	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1956		ret = -EBUSY;
1957		goto done;
1958	}
1959
1960	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1961		ret = -EOPNOTSUPP;
1962		goto done;
1963	}
1964
1965	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1966
1967done:
1968	hci_dev_put(hdev);
1969	return ret;
1970}
1971
1972static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1973{
1974	bool conn_changed, discov_changed;
1975
1976	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1977
1978	if ((scan & SCAN_PAGE))
1979		conn_changed = !hci_dev_test_and_set_flag(hdev,
1980							  HCI_CONNECTABLE);
1981	else
1982		conn_changed = hci_dev_test_and_clear_flag(hdev,
1983							   HCI_CONNECTABLE);
1984
1985	if ((scan & SCAN_INQUIRY)) {
1986		discov_changed = !hci_dev_test_and_set_flag(hdev,
1987							    HCI_DISCOVERABLE);
1988	} else {
1989		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1990		discov_changed = hci_dev_test_and_clear_flag(hdev,
1991							     HCI_DISCOVERABLE);
1992	}
1993
1994	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1995		return;
1996
1997	if (conn_changed || discov_changed) {
1998		/* In case this was disabled through mgmt */
1999		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2000
2001		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2002			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
2003
2004		mgmt_new_settings(hdev);
2005	}
2006}
2007
2008int hci_dev_cmd(unsigned int cmd, void __user *arg)
2009{
2010	struct hci_dev *hdev;
2011	struct hci_dev_req dr;
 
2012	int err = 0;
2013
2014	if (copy_from_user(&dr, arg, sizeof(dr)))
2015		return -EFAULT;
2016
2017	hdev = hci_dev_get(dr.dev_id);
2018	if (!hdev)
2019		return -ENODEV;
2020
2021	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2022		err = -EBUSY;
2023		goto done;
2024	}
2025
2026	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2027		err = -EOPNOTSUPP;
2028		goto done;
2029	}
2030
2031	if (hdev->dev_type != HCI_PRIMARY) {
2032		err = -EOPNOTSUPP;
2033		goto done;
2034	}
2035
2036	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2037		err = -EOPNOTSUPP;
2038		goto done;
2039	}
2040
2041	switch (cmd) {
2042	case HCISETAUTH:
2043		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2044				   HCI_INIT_TIMEOUT, NULL);
2045		break;
2046
2047	case HCISETENCRYPT:
2048		if (!lmp_encrypt_capable(hdev)) {
2049			err = -EOPNOTSUPP;
2050			break;
2051		}
2052
2053		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2054			/* Auth must be enabled first */
2055			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2056					   HCI_INIT_TIMEOUT, NULL);
 
 
2057			if (err)
2058				break;
2059		}
2060
2061		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2062				   HCI_INIT_TIMEOUT, NULL);
2063		break;
2064
2065	case HCISETSCAN:
2066		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2067				   HCI_INIT_TIMEOUT, NULL);
2068
2069		/* Ensure that the connectable and discoverable states
2070		 * get correctly modified as this was a non-mgmt change.
2071		 */
2072		if (!err)
2073			hci_update_scan_state(hdev, dr.dev_opt);
2074		break;
2075
2076	case HCISETLINKPOL:
2077		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2078				   HCI_INIT_TIMEOUT, NULL);
 
 
2079		break;
2080
2081	case HCISETLINKMODE:
2082		hdev->link_mode = ((__u16) dr.dev_opt) &
2083					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2084		break;
2085
2086	case HCISETPTYPE:
2087		if (hdev->pkt_type == (__u16) dr.dev_opt)
2088			break;
2089
2090		hdev->pkt_type = (__u16) dr.dev_opt;
2091		mgmt_phy_configuration_changed(hdev, NULL);
2092		break;
2093
2094	case HCISETACLMTU:
2095		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2096		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2097		break;
2098
2099	case HCISETSCOMTU:
2100		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2101		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2102		break;
2103
2104	default:
2105		err = -EINVAL;
2106		break;
2107	}
2108
2109done:
2110	hci_dev_put(hdev);
2111	return err;
2112}
2113
2114int hci_get_dev_list(void __user *arg)
2115{
2116	struct hci_dev *hdev;
2117	struct hci_dev_list_req *dl;
2118	struct hci_dev_req *dr;
2119	int n = 0, size, err;
2120	__u16 dev_num;
2121
2122	if (get_user(dev_num, (__u16 __user *) arg))
2123		return -EFAULT;
2124
2125	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2126		return -EINVAL;
2127
2128	size = sizeof(*dl) + dev_num * sizeof(*dr);
2129
2130	dl = kzalloc(size, GFP_KERNEL);
2131	if (!dl)
2132		return -ENOMEM;
2133
 
2134	dr = dl->dev_req;
2135
2136	read_lock(&hci_dev_list_lock);
2137	list_for_each_entry(hdev, &hci_dev_list, list) {
2138		unsigned long flags = hdev->flags;
2139
2140		/* When the auto-off is configured it means the transport
2141		 * is running, but in that case still indicate that the
2142		 * device is actually down.
2143		 */
2144		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2145			flags &= ~BIT(HCI_UP);
2146
2147		(dr + n)->dev_id  = hdev->id;
2148		(dr + n)->dev_opt = flags;
2149
2150		if (++n >= dev_num)
2151			break;
2152	}
2153	read_unlock(&hci_dev_list_lock);
2154
2155	dl->dev_num = n;
2156	size = sizeof(*dl) + n * sizeof(*dr);
2157
2158	err = copy_to_user(arg, dl, size);
2159	kfree(dl);
2160
2161	return err ? -EFAULT : 0;
2162}
2163
2164int hci_get_dev_info(void __user *arg)
2165{
2166	struct hci_dev *hdev;
2167	struct hci_dev_info di;
2168	unsigned long flags;
2169	int err = 0;
2170
2171	if (copy_from_user(&di, arg, sizeof(di)))
2172		return -EFAULT;
2173
2174	hdev = hci_dev_get(di.dev_id);
2175	if (!hdev)
2176		return -ENODEV;
2177
2178	/* When the auto-off is configured it means the transport
2179	 * is running, but in that case still indicate that the
2180	 * device is actually down.
2181	 */
2182	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2183		flags = hdev->flags & ~BIT(HCI_UP);
2184	else
2185		flags = hdev->flags;
2186
2187	strcpy(di.name, hdev->name);
2188	di.bdaddr   = hdev->bdaddr;
2189	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2190	di.flags    = flags;
2191	di.pkt_type = hdev->pkt_type;
2192	if (lmp_bredr_capable(hdev)) {
2193		di.acl_mtu  = hdev->acl_mtu;
2194		di.acl_pkts = hdev->acl_pkts;
2195		di.sco_mtu  = hdev->sco_mtu;
2196		di.sco_pkts = hdev->sco_pkts;
2197	} else {
2198		di.acl_mtu  = hdev->le_mtu;
2199		di.acl_pkts = hdev->le_pkts;
2200		di.sco_mtu  = 0;
2201		di.sco_pkts = 0;
2202	}
2203	di.link_policy = hdev->link_policy;
2204	di.link_mode   = hdev->link_mode;
2205
2206	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2207	memcpy(&di.features, &hdev->features, sizeof(di.features));
2208
2209	if (copy_to_user(arg, &di, sizeof(di)))
2210		err = -EFAULT;
2211
2212	hci_dev_put(hdev);
2213
2214	return err;
2215}
2216
2217/* ---- Interface to HCI drivers ---- */
2218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219static int hci_rfkill_set_block(void *data, bool blocked)
2220{
2221	struct hci_dev *hdev = data;
 
2222
2223	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2224
2225	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2226		return -EBUSY;
2227
 
 
 
2228	if (blocked) {
2229		hci_dev_set_flag(hdev, HCI_RFKILLED);
 
2230		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2231		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2232			hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
2233	} else {
2234		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2235	}
2236
2237	return 0;
2238}
2239
2240static const struct rfkill_ops hci_rfkill_ops = {
2241	.set_block = hci_rfkill_set_block,
2242};
2243
2244static void hci_power_on(struct work_struct *work)
2245{
2246	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2247	int err;
2248
2249	BT_DBG("%s", hdev->name);
2250
2251	if (test_bit(HCI_UP, &hdev->flags) &&
2252	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2253	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2254		cancel_delayed_work(&hdev->power_off);
2255		hci_req_sync_lock(hdev);
2256		err = __hci_req_hci_power_on(hdev);
2257		hci_req_sync_unlock(hdev);
2258		mgmt_power_on(hdev, err);
2259		return;
2260	}
2261
2262	err = hci_dev_do_open(hdev);
2263	if (err < 0) {
2264		hci_dev_lock(hdev);
2265		mgmt_set_powered_failed(hdev, err);
2266		hci_dev_unlock(hdev);
2267		return;
2268	}
2269
2270	/* During the HCI setup phase, a few error conditions are
2271	 * ignored and they need to be checked now. If they are still
2272	 * valid, it is important to turn the device back off.
2273	 */
2274	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2275	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2276	    (hdev->dev_type == HCI_PRIMARY &&
2277	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2278	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2279		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2280		hci_dev_do_close(hdev);
2281	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2282		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2283				   HCI_AUTO_OFF_TIMEOUT);
2284	}
2285
2286	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2287		/* For unconfigured devices, set the HCI_RAW flag
2288		 * so that userspace can easily identify them.
2289		 */
2290		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2291			set_bit(HCI_RAW, &hdev->flags);
2292
2293		/* For fully configured devices, this will send
2294		 * the Index Added event. For unconfigured devices,
2295		 * it will send Unconfigued Index Added event.
2296		 *
2297		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2298		 * and no event will be send.
2299		 */
2300		mgmt_index_added(hdev);
2301	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2302		/* When the controller is now configured, then it
2303		 * is important to clear the HCI_RAW flag.
2304		 */
2305		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2306			clear_bit(HCI_RAW, &hdev->flags);
2307
2308		/* Powering on the controller with HCI_CONFIG set only
2309		 * happens with the transition from unconfigured to
2310		 * configured. This will send the Index Added event.
2311		 */
2312		mgmt_index_added(hdev);
2313	}
2314}
2315
2316static void hci_power_off(struct work_struct *work)
2317{
2318	struct hci_dev *hdev = container_of(work, struct hci_dev,
2319					    power_off.work);
2320
2321	BT_DBG("%s", hdev->name);
2322
2323	hci_dev_do_close(hdev);
2324}
2325
2326static void hci_error_reset(struct work_struct *work)
2327{
2328	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2329
 
2330	BT_DBG("%s", hdev->name);
2331
2332	if (hdev->hw_error)
2333		hdev->hw_error(hdev, hdev->hw_error_code);
2334	else
2335		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2336
2337	if (hci_dev_do_close(hdev))
2338		return;
2339
2340	hci_dev_do_open(hdev);
2341}
2342
2343void hci_uuids_clear(struct hci_dev *hdev)
2344{
2345	struct bt_uuid *uuid, *tmp;
2346
2347	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2348		list_del(&uuid->list);
2349		kfree(uuid);
2350	}
2351}
2352
2353void hci_link_keys_clear(struct hci_dev *hdev)
2354{
2355	struct link_key *key;
2356
2357	list_for_each_entry(key, &hdev->link_keys, list) {
2358		list_del_rcu(&key->list);
2359		kfree_rcu(key, rcu);
2360	}
2361}
2362
2363void hci_smp_ltks_clear(struct hci_dev *hdev)
2364{
2365	struct smp_ltk *k;
2366
2367	list_for_each_entry(k, &hdev->long_term_keys, list) {
2368		list_del_rcu(&k->list);
2369		kfree_rcu(k, rcu);
2370	}
2371}
2372
2373void hci_smp_irks_clear(struct hci_dev *hdev)
2374{
2375	struct smp_irk *k;
2376
2377	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2378		list_del_rcu(&k->list);
2379		kfree_rcu(k, rcu);
2380	}
2381}
2382
2383void hci_blocked_keys_clear(struct hci_dev *hdev)
2384{
2385	struct blocked_key *b;
2386
2387	list_for_each_entry(b, &hdev->blocked_keys, list) {
2388		list_del_rcu(&b->list);
2389		kfree_rcu(b, rcu);
2390	}
2391}
2392
2393bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2394{
2395	bool blocked = false;
2396	struct blocked_key *b;
2397
2398	rcu_read_lock();
2399	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2400		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2401			blocked = true;
2402			break;
2403		}
2404	}
2405
2406	rcu_read_unlock();
2407	return blocked;
2408}
2409
2410struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2411{
2412	struct link_key *k;
2413
2414	rcu_read_lock();
2415	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2416		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2417			rcu_read_unlock();
2418
2419			if (hci_is_blocked_key(hdev,
2420					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2421					       k->val)) {
2422				bt_dev_warn_ratelimited(hdev,
2423							"Link key blocked for %pMR",
2424							&k->bdaddr);
2425				return NULL;
2426			}
2427
2428			return k;
2429		}
2430	}
2431	rcu_read_unlock();
2432
2433	return NULL;
2434}
2435
2436static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2437			       u8 key_type, u8 old_key_type)
2438{
2439	/* Legacy key */
2440	if (key_type < 0x03)
2441		return true;
2442
2443	/* Debug keys are insecure so don't store them persistently */
2444	if (key_type == HCI_LK_DEBUG_COMBINATION)
2445		return false;
2446
2447	/* Changed combination key and there's no previous one */
2448	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2449		return false;
2450
2451	/* Security mode 3 case */
2452	if (!conn)
2453		return true;
2454
2455	/* BR/EDR key derived using SC from an LE link */
2456	if (conn->type == LE_LINK)
2457		return true;
2458
2459	/* Neither local nor remote side had no-bonding as requirement */
2460	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2461		return true;
2462
2463	/* Local side had dedicated bonding as requirement */
2464	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2465		return true;
2466
2467	/* Remote side had dedicated bonding as requirement */
2468	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2469		return true;
2470
2471	/* If none of the above criteria match, then don't store the key
2472	 * persistently */
2473	return false;
2474}
2475
2476static u8 ltk_role(u8 type)
2477{
2478	if (type == SMP_LTK)
2479		return HCI_ROLE_MASTER;
2480
2481	return HCI_ROLE_SLAVE;
2482}
2483
2484struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2485			     u8 addr_type, u8 role)
2486{
2487	struct smp_ltk *k;
2488
2489	rcu_read_lock();
2490	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2491		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2492			continue;
2493
2494		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2495			rcu_read_unlock();
2496
2497			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2498					       k->val)) {
2499				bt_dev_warn_ratelimited(hdev,
2500							"LTK blocked for %pMR",
2501							&k->bdaddr);
2502				return NULL;
2503			}
2504
2505			return k;
2506		}
2507	}
2508	rcu_read_unlock();
2509
2510	return NULL;
2511}
2512
2513struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2514{
2515	struct smp_irk *irk_to_return = NULL;
2516	struct smp_irk *irk;
2517
2518	rcu_read_lock();
2519	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2520		if (!bacmp(&irk->rpa, rpa)) {
2521			irk_to_return = irk;
2522			goto done;
2523		}
2524	}
2525
2526	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2527		if (smp_irk_matches(hdev, irk->val, rpa)) {
2528			bacpy(&irk->rpa, rpa);
2529			irk_to_return = irk;
2530			goto done;
2531		}
2532	}
2533
2534done:
2535	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2536						irk_to_return->val)) {
2537		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2538					&irk_to_return->bdaddr);
2539		irk_to_return = NULL;
2540	}
2541
2542	rcu_read_unlock();
2543
2544	return irk_to_return;
2545}
2546
2547struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2548				     u8 addr_type)
2549{
2550	struct smp_irk *irk_to_return = NULL;
2551	struct smp_irk *irk;
2552
2553	/* Identity Address must be public or static random */
2554	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2555		return NULL;
2556
2557	rcu_read_lock();
2558	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2559		if (addr_type == irk->addr_type &&
2560		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2561			irk_to_return = irk;
2562			goto done;
2563		}
2564	}
2565
2566done:
2567
2568	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2569						irk_to_return->val)) {
2570		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2571					&irk_to_return->bdaddr);
2572		irk_to_return = NULL;
2573	}
2574
2575	rcu_read_unlock();
2576
2577	return irk_to_return;
2578}
2579
2580struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2581				  bdaddr_t *bdaddr, u8 *val, u8 type,
2582				  u8 pin_len, bool *persistent)
2583{
2584	struct link_key *key, *old_key;
2585	u8 old_key_type;
2586
2587	old_key = hci_find_link_key(hdev, bdaddr);
2588	if (old_key) {
2589		old_key_type = old_key->type;
2590		key = old_key;
2591	} else {
2592		old_key_type = conn ? conn->key_type : 0xff;
2593		key = kzalloc(sizeof(*key), GFP_KERNEL);
2594		if (!key)
2595			return NULL;
2596		list_add_rcu(&key->list, &hdev->link_keys);
2597	}
2598
2599	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2600
2601	/* Some buggy controller combinations generate a changed
2602	 * combination key for legacy pairing even when there's no
2603	 * previous key */
2604	if (type == HCI_LK_CHANGED_COMBINATION &&
2605	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2606		type = HCI_LK_COMBINATION;
2607		if (conn)
2608			conn->key_type = type;
2609	}
2610
2611	bacpy(&key->bdaddr, bdaddr);
2612	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2613	key->pin_len = pin_len;
2614
2615	if (type == HCI_LK_CHANGED_COMBINATION)
2616		key->type = old_key_type;
2617	else
2618		key->type = type;
2619
2620	if (persistent)
2621		*persistent = hci_persistent_key(hdev, conn, type,
2622						 old_key_type);
2623
2624	return key;
2625}
2626
2627struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2628			    u8 addr_type, u8 type, u8 authenticated,
2629			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2630{
2631	struct smp_ltk *key, *old_key;
2632	u8 role = ltk_role(type);
2633
2634	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2635	if (old_key)
2636		key = old_key;
2637	else {
2638		key = kzalloc(sizeof(*key), GFP_KERNEL);
2639		if (!key)
2640			return NULL;
2641		list_add_rcu(&key->list, &hdev->long_term_keys);
2642	}
2643
2644	bacpy(&key->bdaddr, bdaddr);
2645	key->bdaddr_type = addr_type;
2646	memcpy(key->val, tk, sizeof(key->val));
2647	key->authenticated = authenticated;
2648	key->ediv = ediv;
2649	key->rand = rand;
2650	key->enc_size = enc_size;
2651	key->type = type;
2652
2653	return key;
2654}
2655
2656struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2657			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2658{
2659	struct smp_irk *irk;
2660
2661	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2662	if (!irk) {
2663		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2664		if (!irk)
2665			return NULL;
2666
2667		bacpy(&irk->bdaddr, bdaddr);
2668		irk->addr_type = addr_type;
2669
2670		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2671	}
2672
2673	memcpy(irk->val, val, 16);
2674	bacpy(&irk->rpa, rpa);
2675
2676	return irk;
2677}
2678
2679int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2680{
2681	struct link_key *key;
2682
2683	key = hci_find_link_key(hdev, bdaddr);
2684	if (!key)
2685		return -ENOENT;
2686
2687	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2688
2689	list_del_rcu(&key->list);
2690	kfree_rcu(key, rcu);
2691
2692	return 0;
2693}
2694
2695int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2696{
2697	struct smp_ltk *k;
2698	int removed = 0;
2699
2700	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2701		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2702			continue;
2703
2704		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2705
2706		list_del_rcu(&k->list);
2707		kfree_rcu(k, rcu);
2708		removed++;
2709	}
2710
2711	return removed ? 0 : -ENOENT;
2712}
2713
2714void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2715{
2716	struct smp_irk *k;
2717
2718	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2719		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2720			continue;
2721
2722		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2723
2724		list_del_rcu(&k->list);
2725		kfree_rcu(k, rcu);
2726	}
2727}
2728
2729bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct smp_ltk *k;
2732	struct smp_irk *irk;
2733	u8 addr_type;
2734
2735	if (type == BDADDR_BREDR) {
2736		if (hci_find_link_key(hdev, bdaddr))
2737			return true;
2738		return false;
2739	}
2740
2741	/* Convert to HCI addr type which struct smp_ltk uses */
2742	if (type == BDADDR_LE_PUBLIC)
2743		addr_type = ADDR_LE_DEV_PUBLIC;
2744	else
2745		addr_type = ADDR_LE_DEV_RANDOM;
2746
2747	irk = hci_get_irk(hdev, bdaddr, addr_type);
2748	if (irk) {
2749		bdaddr = &irk->bdaddr;
2750		addr_type = irk->addr_type;
2751	}
2752
2753	rcu_read_lock();
2754	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2755		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2756			rcu_read_unlock();
2757			return true;
2758		}
2759	}
2760	rcu_read_unlock();
2761
2762	return false;
2763}
2764
2765/* HCI command timer function */
2766static void hci_cmd_timeout(struct work_struct *work)
2767{
2768	struct hci_dev *hdev = container_of(work, struct hci_dev,
2769					    cmd_timer.work);
2770
2771	if (hdev->sent_cmd) {
2772		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2773		u16 opcode = __le16_to_cpu(sent->opcode);
2774
2775		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
 
 
2776	} else {
2777		bt_dev_err(hdev, "command tx timeout");
2778	}
2779
2780	if (hdev->cmd_timeout)
2781		hdev->cmd_timeout(hdev);
2782
2783	atomic_set(&hdev->cmd_cnt, 1);
2784	queue_work(hdev->workqueue, &hdev->cmd_work);
2785}
2786
2787/* HCI ncmd timer function */
2788static void hci_ncmd_timeout(struct work_struct *work)
2789{
2790	struct hci_dev *hdev = container_of(work, struct hci_dev,
2791					    ncmd_timer.work);
2792
2793	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
2794
2795	/* During HCI_INIT phase no events can be injected if the ncmd timer
2796	 * triggers since the procedure has its own timeout handling.
2797	 */
2798	if (test_bit(HCI_INIT, &hdev->flags))
2799		return;
2800
2801	/* This is an irrecoverable state, inject hardware error event */
2802	hci_reset_dev(hdev);
2803}
2804
2805struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2806					  bdaddr_t *bdaddr, u8 bdaddr_type)
2807{
2808	struct oob_data *data;
2809
2810	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2811		if (bacmp(bdaddr, &data->bdaddr) != 0)
2812			continue;
2813		if (data->bdaddr_type != bdaddr_type)
2814			continue;
2815		return data;
2816	}
2817
2818	return NULL;
2819}
2820
2821int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2822			       u8 bdaddr_type)
2823{
2824	struct oob_data *data;
2825
2826	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2827	if (!data)
2828		return -ENOENT;
2829
2830	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2831
2832	list_del(&data->list);
2833	kfree(data);
2834
2835	return 0;
2836}
2837
2838void hci_remote_oob_data_clear(struct hci_dev *hdev)
2839{
2840	struct oob_data *data, *n;
2841
2842	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2843		list_del(&data->list);
2844		kfree(data);
2845	}
2846}
2847
2848int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2849			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2850			    u8 *hash256, u8 *rand256)
2851{
2852	struct oob_data *data;
2853
2854	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2855	if (!data) {
2856		data = kmalloc(sizeof(*data), GFP_KERNEL);
2857		if (!data)
2858			return -ENOMEM;
2859
2860		bacpy(&data->bdaddr, bdaddr);
2861		data->bdaddr_type = bdaddr_type;
2862		list_add(&data->list, &hdev->remote_oob_data);
2863	}
2864
2865	if (hash192 && rand192) {
2866		memcpy(data->hash192, hash192, sizeof(data->hash192));
2867		memcpy(data->rand192, rand192, sizeof(data->rand192));
2868		if (hash256 && rand256)
2869			data->present = 0x03;
2870	} else {
2871		memset(data->hash192, 0, sizeof(data->hash192));
2872		memset(data->rand192, 0, sizeof(data->rand192));
2873		if (hash256 && rand256)
2874			data->present = 0x02;
2875		else
2876			data->present = 0x00;
2877	}
2878
2879	if (hash256 && rand256) {
2880		memcpy(data->hash256, hash256, sizeof(data->hash256));
2881		memcpy(data->rand256, rand256, sizeof(data->rand256));
2882	} else {
2883		memset(data->hash256, 0, sizeof(data->hash256));
2884		memset(data->rand256, 0, sizeof(data->rand256));
2885		if (hash192 && rand192)
2886			data->present = 0x01;
2887	}
2888
2889	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2890
2891	return 0;
2892}
2893
2894/* This function requires the caller holds hdev->lock */
2895struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2896{
2897	struct adv_info *adv_instance;
2898
2899	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2900		if (adv_instance->instance == instance)
2901			return adv_instance;
2902	}
2903
2904	return NULL;
2905}
2906
2907/* This function requires the caller holds hdev->lock */
2908struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2909{
2910	struct adv_info *cur_instance;
2911
2912	cur_instance = hci_find_adv_instance(hdev, instance);
2913	if (!cur_instance)
2914		return NULL;
2915
2916	if (cur_instance == list_last_entry(&hdev->adv_instances,
2917					    struct adv_info, list))
2918		return list_first_entry(&hdev->adv_instances,
2919						 struct adv_info, list);
2920	else
2921		return list_next_entry(cur_instance, list);
2922}
2923
2924/* This function requires the caller holds hdev->lock */
2925int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2926{
2927	struct adv_info *adv_instance;
2928
2929	adv_instance = hci_find_adv_instance(hdev, instance);
2930	if (!adv_instance)
2931		return -ENOENT;
2932
2933	BT_DBG("%s removing %dMR", hdev->name, instance);
2934
2935	if (hdev->cur_adv_instance == instance) {
2936		if (hdev->adv_instance_timeout) {
2937			cancel_delayed_work(&hdev->adv_instance_expire);
2938			hdev->adv_instance_timeout = 0;
2939		}
2940		hdev->cur_adv_instance = 0x00;
2941	}
2942
2943	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2944
2945	list_del(&adv_instance->list);
2946	kfree(adv_instance);
2947
2948	hdev->adv_instance_cnt--;
2949
2950	return 0;
2951}
2952
2953void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2954{
2955	struct adv_info *adv_instance, *n;
2956
2957	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2958		adv_instance->rpa_expired = rpa_expired;
2959}
2960
2961/* This function requires the caller holds hdev->lock */
2962void hci_adv_instances_clear(struct hci_dev *hdev)
2963{
2964	struct adv_info *adv_instance, *n;
2965
2966	if (hdev->adv_instance_timeout) {
2967		cancel_delayed_work(&hdev->adv_instance_expire);
2968		hdev->adv_instance_timeout = 0;
2969	}
2970
2971	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2972		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2973		list_del(&adv_instance->list);
2974		kfree(adv_instance);
2975	}
2976
2977	hdev->adv_instance_cnt = 0;
2978	hdev->cur_adv_instance = 0x00;
2979}
2980
2981static void adv_instance_rpa_expired(struct work_struct *work)
2982{
2983	struct adv_info *adv_instance = container_of(work, struct adv_info,
2984						     rpa_expired_cb.work);
2985
2986	BT_DBG("");
2987
2988	adv_instance->rpa_expired = true;
2989}
2990
2991/* This function requires the caller holds hdev->lock */
2992int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2993			 u16 adv_data_len, u8 *adv_data,
2994			 u16 scan_rsp_len, u8 *scan_rsp_data,
2995			 u16 timeout, u16 duration, s8 tx_power,
2996			 u32 min_interval, u32 max_interval)
2997{
2998	struct adv_info *adv_instance;
2999
3000	adv_instance = hci_find_adv_instance(hdev, instance);
3001	if (adv_instance) {
3002		memset(adv_instance->adv_data, 0,
3003		       sizeof(adv_instance->adv_data));
3004		memset(adv_instance->scan_rsp_data, 0,
3005		       sizeof(adv_instance->scan_rsp_data));
3006	} else {
3007		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
3008		    instance < 1 || instance > hdev->le_num_of_adv_sets)
3009			return -EOVERFLOW;
 
 
 
 
 
 
 
3010
3011		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
3012		if (!adv_instance)
3013			return -ENOMEM;
 
 
 
 
3014
3015		adv_instance->pending = true;
3016		adv_instance->instance = instance;
3017		list_add(&adv_instance->list, &hdev->adv_instances);
3018		hdev->adv_instance_cnt++;
3019	}
3020
3021	adv_instance->flags = flags;
3022	adv_instance->adv_data_len = adv_data_len;
3023	adv_instance->scan_rsp_len = scan_rsp_len;
3024	adv_instance->min_interval = min_interval;
3025	adv_instance->max_interval = max_interval;
3026	adv_instance->tx_power = tx_power;
3027
3028	if (adv_data_len)
3029		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3030
3031	if (scan_rsp_len)
3032		memcpy(adv_instance->scan_rsp_data,
3033		       scan_rsp_data, scan_rsp_len);
3034
3035	adv_instance->timeout = timeout;
3036	adv_instance->remaining_time = timeout;
3037
3038	if (duration == 0)
3039		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3040	else
3041		adv_instance->duration = duration;
3042
3043	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3044			  adv_instance_rpa_expired);
3045
3046	BT_DBG("%s for %dMR", hdev->name, instance);
3047
3048	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3049}
3050
3051/* This function requires the caller holds hdev->lock */
3052int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
3053			      u16 adv_data_len, u8 *adv_data,
3054			      u16 scan_rsp_len, u8 *scan_rsp_data)
3055{
3056	struct adv_info *adv_instance;
3057
3058	adv_instance = hci_find_adv_instance(hdev, instance);
3059
3060	/* If advertisement doesn't exist, we can't modify its data */
3061	if (!adv_instance)
3062		return -ENOENT;
3063
3064	if (adv_data_len) {
3065		memset(adv_instance->adv_data, 0,
3066		       sizeof(adv_instance->adv_data));
3067		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3068		adv_instance->adv_data_len = adv_data_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3069	}
3070
3071	if (scan_rsp_len) {
3072		memset(adv_instance->scan_rsp_data, 0,
3073		       sizeof(adv_instance->scan_rsp_data));
3074		memcpy(adv_instance->scan_rsp_data,
3075		       scan_rsp_data, scan_rsp_len);
3076		adv_instance->scan_rsp_len = scan_rsp_len;
3077	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078
3079	return 0;
3080}
3081
3082/* This function requires the caller holds hdev->lock */
3083void hci_adv_monitors_clear(struct hci_dev *hdev)
3084{
3085	struct adv_monitor *monitor;
3086	int handle;
3087
3088	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3089		hci_free_adv_monitor(hdev, monitor);
3090
3091	idr_destroy(&hdev->adv_monitors_idr);
3092}
3093
3094/* Frees the monitor structure and do some bookkeepings.
3095 * This function requires the caller holds hdev->lock.
3096 */
3097void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3098{
3099	struct adv_pattern *pattern;
3100	struct adv_pattern *tmp;
3101
3102	if (!monitor)
3103		return;
3104
3105	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
3106		list_del(&pattern->list);
3107		kfree(pattern);
3108	}
3109
3110	if (monitor->handle)
3111		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3112
3113	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
3114		hdev->adv_monitors_cnt--;
3115		mgmt_adv_monitor_removed(hdev, monitor->handle);
3116	}
3117
3118	kfree(monitor);
3119}
3120
3121int hci_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status)
3122{
3123	return mgmt_add_adv_patterns_monitor_complete(hdev, status);
3124}
3125
3126int hci_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status)
3127{
3128	return mgmt_remove_adv_monitor_complete(hdev, status);
3129}
3130
3131/* Assigns handle to a monitor, and if offloading is supported and power is on,
3132 * also attempts to forward the request to the controller.
3133 * Returns true if request is forwarded (result is pending), false otherwise.
3134 * This function requires the caller holds hdev->lock.
3135 */
3136bool hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor,
3137			 int *err)
3138{
3139	int min, max, handle;
 
3140
3141	*err = 0;
 
3142
3143	if (!monitor) {
3144		*err = -EINVAL;
3145		return false;
3146	}
3147
3148	min = HCI_MIN_ADV_MONITOR_HANDLE;
3149	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3150	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3151			   GFP_KERNEL);
3152	if (handle < 0) {
3153		*err = handle;
3154		return false;
3155	}
 
3156
3157	monitor->handle = handle;
3158
3159	if (!hdev_is_powered(hdev))
3160		return false;
3161
3162	switch (hci_get_adv_monitor_offload_ext(hdev)) {
3163	case HCI_ADV_MONITOR_EXT_NONE:
3164		hci_update_background_scan(hdev);
3165		bt_dev_dbg(hdev, "%s add monitor status %d", hdev->name, *err);
3166		/* Message was not forwarded to controller - not an error */
3167		return false;
 
3168	case HCI_ADV_MONITOR_EXT_MSFT:
3169		*err = msft_add_monitor_pattern(hdev, monitor);
3170		bt_dev_dbg(hdev, "%s add monitor msft status %d", hdev->name,
3171			   *err);
3172		break;
3173	}
3174
3175	return (*err == 0);
3176}
3177
3178/* Attempts to tell the controller and free the monitor. If somehow the
3179 * controller doesn't have a corresponding handle, remove anyway.
3180 * Returns true if request is forwarded (result is pending), false otherwise.
3181 * This function requires the caller holds hdev->lock.
3182 */
3183static bool hci_remove_adv_monitor(struct hci_dev *hdev,
3184				   struct adv_monitor *monitor,
3185				   u16 handle, int *err)
3186{
3187	*err = 0;
 
3188
3189	switch (hci_get_adv_monitor_offload_ext(hdev)) {
3190	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
 
 
3191		goto free_monitor;
 
3192	case HCI_ADV_MONITOR_EXT_MSFT:
3193		*err = msft_remove_monitor(hdev, monitor, handle);
 
 
 
3194		break;
3195	}
3196
3197	/* In case no matching handle registered, just free the monitor */
3198	if (*err == -ENOENT)
3199		goto free_monitor;
3200
3201	return (*err == 0);
3202
3203free_monitor:
3204	if (*err == -ENOENT)
3205		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
3206			    monitor->handle);
3207	hci_free_adv_monitor(hdev, monitor);
3208
3209	*err = 0;
3210	return false;
3211}
3212
3213/* Returns true if request is forwarded (result is pending), false otherwise.
3214 * This function requires the caller holds hdev->lock.
3215 */
3216bool hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle, int *err)
3217{
3218	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
3219	bool pending;
3220
3221	if (!monitor) {
3222		*err = -EINVAL;
3223		return false;
3224	}
3225
3226	pending = hci_remove_adv_monitor(hdev, monitor, handle, err);
3227	if (!*err && !pending)
3228		hci_update_background_scan(hdev);
3229
3230	bt_dev_dbg(hdev, "%s remove monitor handle %d, status %d, %spending",
3231		   hdev->name, handle, *err, pending ? "" : "not ");
3232
3233	return pending;
3234}
3235
3236/* Returns true if request is forwarded (result is pending), false otherwise.
3237 * This function requires the caller holds hdev->lock.
3238 */
3239bool hci_remove_all_adv_monitor(struct hci_dev *hdev, int *err)
3240{
3241	struct adv_monitor *monitor;
3242	int idr_next_id = 0;
3243	bool pending = false;
3244	bool update = false;
3245
3246	*err = 0;
3247
3248	while (!*err && !pending) {
3249		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
3250		if (!monitor)
3251			break;
3252
3253		pending = hci_remove_adv_monitor(hdev, monitor, 0, err);
 
 
3254
3255		if (!*err && !pending)
3256			update = true;
3257	}
3258
3259	if (update)
3260		hci_update_background_scan(hdev);
3261
3262	bt_dev_dbg(hdev, "%s remove all monitors status %d, %spending",
3263		   hdev->name, *err, pending ? "" : "not ");
3264
3265	return pending;
3266}
3267
3268/* This function requires the caller holds hdev->lock */
3269bool hci_is_adv_monitoring(struct hci_dev *hdev)
3270{
3271	return !idr_is_empty(&hdev->adv_monitors_idr);
3272}
3273
3274int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
3275{
3276	if (msft_monitor_supported(hdev))
3277		return HCI_ADV_MONITOR_EXT_MSFT;
3278
3279	return HCI_ADV_MONITOR_EXT_NONE;
3280}
3281
3282struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3283					 bdaddr_t *bdaddr, u8 type)
3284{
3285	struct bdaddr_list *b;
3286
3287	list_for_each_entry(b, bdaddr_list, list) {
3288		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3289			return b;
3290	}
3291
3292	return NULL;
3293}
3294
3295struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3296				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3297				u8 type)
3298{
3299	struct bdaddr_list_with_irk *b;
3300
3301	list_for_each_entry(b, bdaddr_list, list) {
3302		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3303			return b;
3304	}
3305
3306	return NULL;
3307}
3308
3309struct bdaddr_list_with_flags *
3310hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3311				  bdaddr_t *bdaddr, u8 type)
3312{
3313	struct bdaddr_list_with_flags *b;
3314
3315	list_for_each_entry(b, bdaddr_list, list) {
3316		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3317			return b;
3318	}
3319
3320	return NULL;
3321}
3322
3323void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3324{
3325	struct bdaddr_list *b, *n;
3326
3327	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3328		list_del(&b->list);
3329		kfree(b);
3330	}
3331}
3332
3333int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3334{
3335	struct bdaddr_list *entry;
3336
3337	if (!bacmp(bdaddr, BDADDR_ANY))
3338		return -EBADF;
3339
3340	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3341		return -EEXIST;
3342
3343	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3344	if (!entry)
3345		return -ENOMEM;
3346
3347	bacpy(&entry->bdaddr, bdaddr);
3348	entry->bdaddr_type = type;
3349
3350	list_add(&entry->list, list);
3351
3352	return 0;
3353}
3354
3355int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3356					u8 type, u8 *peer_irk, u8 *local_irk)
3357{
3358	struct bdaddr_list_with_irk *entry;
3359
3360	if (!bacmp(bdaddr, BDADDR_ANY))
3361		return -EBADF;
3362
3363	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3364		return -EEXIST;
3365
3366	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3367	if (!entry)
3368		return -ENOMEM;
3369
3370	bacpy(&entry->bdaddr, bdaddr);
3371	entry->bdaddr_type = type;
3372
3373	if (peer_irk)
3374		memcpy(entry->peer_irk, peer_irk, 16);
3375
3376	if (local_irk)
3377		memcpy(entry->local_irk, local_irk, 16);
3378
3379	list_add(&entry->list, list);
3380
3381	return 0;
3382}
3383
3384int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3385				   u8 type, u32 flags)
3386{
3387	struct bdaddr_list_with_flags *entry;
3388
3389	if (!bacmp(bdaddr, BDADDR_ANY))
3390		return -EBADF;
3391
3392	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3393		return -EEXIST;
3394
3395	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3396	if (!entry)
3397		return -ENOMEM;
3398
3399	bacpy(&entry->bdaddr, bdaddr);
3400	entry->bdaddr_type = type;
3401	entry->current_flags = flags;
3402
3403	list_add(&entry->list, list);
3404
3405	return 0;
3406}
3407
3408int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3409{
3410	struct bdaddr_list *entry;
3411
3412	if (!bacmp(bdaddr, BDADDR_ANY)) {
3413		hci_bdaddr_list_clear(list);
3414		return 0;
3415	}
3416
3417	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3418	if (!entry)
3419		return -ENOENT;
3420
3421	list_del(&entry->list);
3422	kfree(entry);
3423
3424	return 0;
3425}
3426
3427int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3428							u8 type)
3429{
3430	struct bdaddr_list_with_irk *entry;
3431
3432	if (!bacmp(bdaddr, BDADDR_ANY)) {
3433		hci_bdaddr_list_clear(list);
3434		return 0;
3435	}
3436
3437	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3438	if (!entry)
3439		return -ENOENT;
3440
3441	list_del(&entry->list);
3442	kfree(entry);
3443
3444	return 0;
3445}
3446
3447int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3448				   u8 type)
3449{
3450	struct bdaddr_list_with_flags *entry;
3451
3452	if (!bacmp(bdaddr, BDADDR_ANY)) {
3453		hci_bdaddr_list_clear(list);
3454		return 0;
3455	}
3456
3457	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3458	if (!entry)
3459		return -ENOENT;
3460
3461	list_del(&entry->list);
3462	kfree(entry);
3463
3464	return 0;
3465}
3466
3467/* This function requires the caller holds hdev->lock */
3468struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3469					       bdaddr_t *addr, u8 addr_type)
3470{
3471	struct hci_conn_params *params;
3472
3473	list_for_each_entry(params, &hdev->le_conn_params, list) {
3474		if (bacmp(&params->addr, addr) == 0 &&
3475		    params->addr_type == addr_type) {
3476			return params;
3477		}
3478	}
3479
3480	return NULL;
3481}
3482
3483/* This function requires the caller holds hdev->lock */
3484struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3485						  bdaddr_t *addr, u8 addr_type)
3486{
3487	struct hci_conn_params *param;
3488
3489	switch (addr_type) {
3490	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3491		addr_type = ADDR_LE_DEV_PUBLIC;
3492		break;
3493	case ADDR_LE_DEV_RANDOM_RESOLVED:
3494		addr_type = ADDR_LE_DEV_RANDOM;
3495		break;
3496	}
3497
3498	list_for_each_entry(param, list, action) {
3499		if (bacmp(&param->addr, addr) == 0 &&
3500		    param->addr_type == addr_type)
 
3501			return param;
 
3502	}
3503
 
 
3504	return NULL;
3505}
3506
3507/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3508struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3509					    bdaddr_t *addr, u8 addr_type)
3510{
3511	struct hci_conn_params *params;
3512
3513	params = hci_conn_params_lookup(hdev, addr, addr_type);
3514	if (params)
3515		return params;
3516
3517	params = kzalloc(sizeof(*params), GFP_KERNEL);
3518	if (!params) {
3519		bt_dev_err(hdev, "out of memory");
3520		return NULL;
3521	}
3522
3523	bacpy(&params->addr, addr);
3524	params->addr_type = addr_type;
3525
3526	list_add(&params->list, &hdev->le_conn_params);
3527	INIT_LIST_HEAD(&params->action);
3528
3529	params->conn_min_interval = hdev->le_conn_min_interval;
3530	params->conn_max_interval = hdev->le_conn_max_interval;
3531	params->conn_latency = hdev->le_conn_latency;
3532	params->supervision_timeout = hdev->le_supv_timeout;
3533	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3534
3535	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3536
3537	return params;
3538}
3539
3540static void hci_conn_params_free(struct hci_conn_params *params)
3541{
 
 
3542	if (params->conn) {
3543		hci_conn_drop(params->conn);
3544		hci_conn_put(params->conn);
3545	}
3546
3547	list_del(&params->action);
3548	list_del(&params->list);
3549	kfree(params);
3550}
3551
3552/* This function requires the caller holds hdev->lock */
3553void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3554{
3555	struct hci_conn_params *params;
3556
3557	params = hci_conn_params_lookup(hdev, addr, addr_type);
3558	if (!params)
3559		return;
3560
3561	hci_conn_params_free(params);
3562
3563	hci_update_background_scan(hdev);
3564
3565	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3566}
3567
3568/* This function requires the caller holds hdev->lock */
3569void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3570{
3571	struct hci_conn_params *params, *tmp;
3572
3573	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3574		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3575			continue;
3576
3577		/* If trying to establish one time connection to disabled
3578		 * device, leave the params, but mark them as just once.
3579		 */
3580		if (params->explicit_connect) {
3581			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3582			continue;
3583		}
3584
3585		list_del(&params->list);
3586		kfree(params);
3587	}
3588
3589	BT_DBG("All LE disabled connection parameters were removed");
3590}
3591
3592/* This function requires the caller holds hdev->lock */
3593static void hci_conn_params_clear_all(struct hci_dev *hdev)
3594{
3595	struct hci_conn_params *params, *tmp;
3596
3597	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3598		hci_conn_params_free(params);
3599
3600	BT_DBG("All LE connection parameters were removed");
3601}
3602
3603/* Copy the Identity Address of the controller.
3604 *
3605 * If the controller has a public BD_ADDR, then by default use that one.
3606 * If this is a LE only controller without a public address, default to
3607 * the static random address.
3608 *
3609 * For debugging purposes it is possible to force controllers with a
3610 * public address to use the static random address instead.
3611 *
3612 * In case BR/EDR has been disabled on a dual-mode controller and
3613 * userspace has configured a static address, then that address
3614 * becomes the identity address instead of the public BR/EDR address.
3615 */
3616void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3617			       u8 *bdaddr_type)
3618{
3619	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3620	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3621	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3622	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3623		bacpy(bdaddr, &hdev->static_addr);
3624		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3625	} else {
3626		bacpy(bdaddr, &hdev->bdaddr);
3627		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3628	}
3629}
3630
3631static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3632{
3633	int i;
3634
3635	for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3636		clear_bit(i, hdev->suspend_tasks);
3637
3638	wake_up(&hdev->suspend_wait_q);
3639}
3640
3641static int hci_suspend_wait_event(struct hci_dev *hdev)
3642{
3643#define WAKE_COND                                                              \
3644	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3645	 __SUSPEND_NUM_TASKS)
3646
3647	int i;
3648	int ret = wait_event_timeout(hdev->suspend_wait_q,
3649				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3650
3651	if (ret == 0) {
3652		bt_dev_err(hdev, "Timed out waiting for suspend events");
3653		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3654			if (test_bit(i, hdev->suspend_tasks))
3655				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3656			clear_bit(i, hdev->suspend_tasks);
3657		}
3658
3659		ret = -ETIMEDOUT;
3660	} else {
3661		ret = 0;
3662	}
3663
3664	return ret;
3665}
3666
3667static void hci_prepare_suspend(struct work_struct *work)
3668{
3669	struct hci_dev *hdev =
3670		container_of(work, struct hci_dev, suspend_prepare);
3671
3672	hci_dev_lock(hdev);
3673	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3674	hci_dev_unlock(hdev);
3675}
3676
3677static int hci_change_suspend_state(struct hci_dev *hdev,
3678				    enum suspended_state next)
3679{
3680	hdev->suspend_state_next = next;
3681	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3682	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3683	return hci_suspend_wait_event(hdev);
3684}
3685
3686static void hci_clear_wake_reason(struct hci_dev *hdev)
3687{
3688	hci_dev_lock(hdev);
3689
3690	hdev->wake_reason = 0;
3691	bacpy(&hdev->wake_addr, BDADDR_ANY);
3692	hdev->wake_addr_type = 0;
3693
3694	hci_dev_unlock(hdev);
3695}
3696
3697static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3698				void *data)
3699{
3700	struct hci_dev *hdev =
3701		container_of(nb, struct hci_dev, suspend_notifier);
3702	int ret = 0;
3703	u8 state = BT_RUNNING;
3704
3705	/* If powering down, wait for completion. */
3706	if (mgmt_powering_down(hdev)) {
3707		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3708		ret = hci_suspend_wait_event(hdev);
3709		if (ret)
3710			goto done;
3711	}
3712
3713	/* Suspend notifier should only act on events when powered. */
3714	if (!hdev_is_powered(hdev) ||
3715	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
3716		goto done;
3717
3718	if (action == PM_SUSPEND_PREPARE) {
3719		/* Suspend consists of two actions:
3720		 *  - First, disconnect everything and make the controller not
3721		 *    connectable (disabling scanning)
3722		 *  - Second, program event filter/accept list and enable scan
3723		 */
3724		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3725		if (!ret)
3726			state = BT_SUSPEND_DISCONNECT;
3727
3728		/* Only configure accept list if disconnect succeeded and wake
3729		 * isn't being prevented.
3730		 */
3731		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3732			ret = hci_change_suspend_state(hdev,
3733						BT_SUSPEND_CONFIGURE_WAKE);
3734			if (!ret)
3735				state = BT_SUSPEND_CONFIGURE_WAKE;
3736		}
3737
3738		hci_clear_wake_reason(hdev);
3739		mgmt_suspending(hdev, state);
3740
3741	} else if (action == PM_POST_SUSPEND) {
3742		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3743
3744		mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3745			      hdev->wake_addr_type);
3746	}
3747
3748done:
3749	/* We always allow suspend even if suspend preparation failed and
3750	 * attempt to recover in resume.
3751	 */
3752	if (ret)
3753		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3754			   action, ret);
3755
 
3756	return NOTIFY_DONE;
3757}
3758
3759/* Alloc HCI device */
3760struct hci_dev *hci_alloc_dev(void)
3761{
3762	struct hci_dev *hdev;
 
3763
3764	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
 
 
 
 
 
 
3765	if (!hdev)
3766		return NULL;
3767
3768	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3769	hdev->esco_type = (ESCO_HV1);
3770	hdev->link_mode = (HCI_LM_ACCEPT);
3771	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3772	hdev->io_capability = 0x03;	/* No Input No Output */
3773	hdev->manufacturer = 0xffff;	/* Default to internal use */
3774	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3775	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3776	hdev->adv_instance_cnt = 0;
3777	hdev->cur_adv_instance = 0x00;
3778	hdev->adv_instance_timeout = 0;
3779
3780	hdev->advmon_allowlist_duration = 300;
3781	hdev->advmon_no_filter_duration = 500;
3782	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
3783
3784	hdev->sniff_max_interval = 800;
3785	hdev->sniff_min_interval = 80;
3786
3787	hdev->le_adv_channel_map = 0x07;
3788	hdev->le_adv_min_interval = 0x0800;
3789	hdev->le_adv_max_interval = 0x0800;
3790	hdev->le_scan_interval = 0x0060;
3791	hdev->le_scan_window = 0x0030;
3792	hdev->le_scan_int_suspend = 0x0400;
3793	hdev->le_scan_window_suspend = 0x0012;
3794	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3795	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3796	hdev->le_scan_int_adv_monitor = 0x0060;
3797	hdev->le_scan_window_adv_monitor = 0x0030;
3798	hdev->le_scan_int_connect = 0x0060;
3799	hdev->le_scan_window_connect = 0x0060;
3800	hdev->le_conn_min_interval = 0x0018;
3801	hdev->le_conn_max_interval = 0x0028;
3802	hdev->le_conn_latency = 0x0000;
3803	hdev->le_supv_timeout = 0x002a;
3804	hdev->le_def_tx_len = 0x001b;
3805	hdev->le_def_tx_time = 0x0148;
3806	hdev->le_max_tx_len = 0x001b;
3807	hdev->le_max_tx_time = 0x0148;
3808	hdev->le_max_rx_len = 0x001b;
3809	hdev->le_max_rx_time = 0x0148;
3810	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3811	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3812	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3813	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3814	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3815	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3816	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3817	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
3818	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
3819
3820	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3821	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3822	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3823	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3824	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3825	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3826
3827	/* default 1.28 sec page scan */
3828	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3829	hdev->def_page_scan_int = 0x0800;
3830	hdev->def_page_scan_window = 0x0012;
3831
3832	mutex_init(&hdev->lock);
3833	mutex_init(&hdev->req_lock);
3834
 
 
 
3835	INIT_LIST_HEAD(&hdev->mgmt_pending);
3836	INIT_LIST_HEAD(&hdev->reject_list);
3837	INIT_LIST_HEAD(&hdev->accept_list);
3838	INIT_LIST_HEAD(&hdev->uuids);
3839	INIT_LIST_HEAD(&hdev->link_keys);
3840	INIT_LIST_HEAD(&hdev->long_term_keys);
3841	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3842	INIT_LIST_HEAD(&hdev->remote_oob_data);
3843	INIT_LIST_HEAD(&hdev->le_accept_list);
3844	INIT_LIST_HEAD(&hdev->le_resolv_list);
3845	INIT_LIST_HEAD(&hdev->le_conn_params);
3846	INIT_LIST_HEAD(&hdev->pend_le_conns);
3847	INIT_LIST_HEAD(&hdev->pend_le_reports);
3848	INIT_LIST_HEAD(&hdev->conn_hash.list);
3849	INIT_LIST_HEAD(&hdev->adv_instances);
3850	INIT_LIST_HEAD(&hdev->blocked_keys);
 
3851
 
3852	INIT_WORK(&hdev->rx_work, hci_rx_work);
3853	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3854	INIT_WORK(&hdev->tx_work, hci_tx_work);
3855	INIT_WORK(&hdev->power_on, hci_power_on);
3856	INIT_WORK(&hdev->error_reset, hci_error_reset);
3857	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
 
3858
3859	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3860
3861	skb_queue_head_init(&hdev->rx_q);
3862	skb_queue_head_init(&hdev->cmd_q);
3863	skb_queue_head_init(&hdev->raw_q);
3864
3865	init_waitqueue_head(&hdev->req_wait_q);
3866	init_waitqueue_head(&hdev->suspend_wait_q);
3867
3868	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3869	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
3870
3871	hci_request_setup(hdev);
3872
3873	hci_init_sysfs(hdev);
3874	discovery_init(hdev);
3875
3876	return hdev;
3877}
3878EXPORT_SYMBOL(hci_alloc_dev);
3879
3880/* Free HCI device */
3881void hci_free_dev(struct hci_dev *hdev)
3882{
3883	/* will free via device release */
3884	put_device(&hdev->dev);
3885}
3886EXPORT_SYMBOL(hci_free_dev);
3887
3888/* Register HCI device */
3889int hci_register_dev(struct hci_dev *hdev)
3890{
3891	int id, error;
3892
3893	if (!hdev->open || !hdev->close || !hdev->send)
3894		return -EINVAL;
3895
3896	/* Do not allow HCI_AMP devices to register at index 0,
3897	 * so the index can be used as the AMP controller ID.
3898	 */
3899	switch (hdev->dev_type) {
3900	case HCI_PRIMARY:
3901		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3902		break;
3903	case HCI_AMP:
3904		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3905		break;
3906	default:
3907		return -EINVAL;
3908	}
3909
3910	if (id < 0)
3911		return id;
3912
3913	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3914	hdev->id = id;
3915
3916	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3917
3918	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3919	if (!hdev->workqueue) {
3920		error = -ENOMEM;
3921		goto err;
3922	}
3923
3924	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3925						      hdev->name);
3926	if (!hdev->req_workqueue) {
3927		destroy_workqueue(hdev->workqueue);
3928		error = -ENOMEM;
3929		goto err;
3930	}
3931
3932	if (!IS_ERR_OR_NULL(bt_debugfs))
3933		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3934
3935	dev_set_name(&hdev->dev, "%s", hdev->name);
3936
3937	error = device_add(&hdev->dev);
3938	if (error < 0)
3939		goto err_wqueue;
3940
3941	hci_leds_init(hdev);
3942
3943	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3944				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3945				    hdev);
3946	if (hdev->rfkill) {
3947		if (rfkill_register(hdev->rfkill) < 0) {
3948			rfkill_destroy(hdev->rfkill);
3949			hdev->rfkill = NULL;
3950		}
3951	}
3952
3953	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3954		hci_dev_set_flag(hdev, HCI_RFKILLED);
3955
3956	hci_dev_set_flag(hdev, HCI_SETUP);
3957	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3958
3959	if (hdev->dev_type == HCI_PRIMARY) {
3960		/* Assume BR/EDR support until proven otherwise (such as
3961		 * through reading supported features during init.
3962		 */
3963		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3964	}
3965
3966	write_lock(&hci_dev_list_lock);
3967	list_add(&hdev->list, &hci_dev_list);
3968	write_unlock(&hci_dev_list_lock);
3969
3970	/* Devices that are marked for raw-only usage are unconfigured
3971	 * and should not be included in normal operation.
3972	 */
3973	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3974		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3975
 
 
 
 
 
 
3976	hci_sock_dev_event(hdev, HCI_DEV_REG);
3977	hci_dev_hold(hdev);
3978
3979	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3980		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3981		error = register_pm_notifier(&hdev->suspend_notifier);
3982		if (error)
3983			goto err_wqueue;
3984	}
3985
3986	queue_work(hdev->req_workqueue, &hdev->power_on);
3987
3988	idr_init(&hdev->adv_monitors_idr);
 
3989
3990	return id;
3991
3992err_wqueue:
 
3993	destroy_workqueue(hdev->workqueue);
3994	destroy_workqueue(hdev->req_workqueue);
3995err:
3996	ida_simple_remove(&hci_index_ida, hdev->id);
3997
3998	return error;
3999}
4000EXPORT_SYMBOL(hci_register_dev);
4001
4002/* Unregister HCI device */
4003void hci_unregister_dev(struct hci_dev *hdev)
4004{
4005	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4006
 
4007	hci_dev_set_flag(hdev, HCI_UNREGISTER);
 
4008
4009	write_lock(&hci_dev_list_lock);
4010	list_del(&hdev->list);
4011	write_unlock(&hci_dev_list_lock);
4012
4013	cancel_work_sync(&hdev->power_on);
 
 
 
 
 
 
4014
4015	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
4016		hci_suspend_clear_tasks(hdev);
4017		unregister_pm_notifier(&hdev->suspend_notifier);
4018		cancel_work_sync(&hdev->suspend_prepare);
4019	}
4020
4021	hci_dev_do_close(hdev);
4022
4023	if (!test_bit(HCI_INIT, &hdev->flags) &&
4024	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
4025	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4026		hci_dev_lock(hdev);
4027		mgmt_index_removed(hdev);
4028		hci_dev_unlock(hdev);
4029	}
4030
4031	/* mgmt_index_removed should take care of emptying the
4032	 * pending list */
4033	BUG_ON(!list_empty(&hdev->mgmt_pending));
4034
4035	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
4036
4037	if (hdev->rfkill) {
4038		rfkill_unregister(hdev->rfkill);
4039		rfkill_destroy(hdev->rfkill);
4040	}
4041
4042	device_del(&hdev->dev);
4043	/* Actual cleanup is deferred until hci_cleanup_dev(). */
4044	hci_dev_put(hdev);
4045}
4046EXPORT_SYMBOL(hci_unregister_dev);
4047
4048/* Cleanup HCI device */
4049void hci_cleanup_dev(struct hci_dev *hdev)
4050{
4051	debugfs_remove_recursive(hdev->debugfs);
4052	kfree_const(hdev->hw_info);
4053	kfree_const(hdev->fw_info);
4054
4055	destroy_workqueue(hdev->workqueue);
4056	destroy_workqueue(hdev->req_workqueue);
4057
4058	hci_dev_lock(hdev);
4059	hci_bdaddr_list_clear(&hdev->reject_list);
4060	hci_bdaddr_list_clear(&hdev->accept_list);
4061	hci_uuids_clear(hdev);
4062	hci_link_keys_clear(hdev);
4063	hci_smp_ltks_clear(hdev);
4064	hci_smp_irks_clear(hdev);
4065	hci_remote_oob_data_clear(hdev);
4066	hci_adv_instances_clear(hdev);
4067	hci_adv_monitors_clear(hdev);
4068	hci_bdaddr_list_clear(&hdev->le_accept_list);
4069	hci_bdaddr_list_clear(&hdev->le_resolv_list);
4070	hci_conn_params_clear_all(hdev);
4071	hci_discovery_filter_clear(hdev);
4072	hci_blocked_keys_clear(hdev);
 
 
4073	hci_dev_unlock(hdev);
4074
4075	ida_simple_remove(&hci_index_ida, hdev->id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4076}
4077
4078/* Suspend HCI device */
4079int hci_suspend_dev(struct hci_dev *hdev)
4080{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4081	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
4082	return 0;
4083}
4084EXPORT_SYMBOL(hci_suspend_dev);
4085
4086/* Resume HCI device */
4087int hci_resume_dev(struct hci_dev *hdev)
4088{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4089	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
4090	return 0;
4091}
4092EXPORT_SYMBOL(hci_resume_dev);
4093
4094/* Reset HCI device */
4095int hci_reset_dev(struct hci_dev *hdev)
4096{
4097	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
4098	struct sk_buff *skb;
4099
4100	skb = bt_skb_alloc(3, GFP_ATOMIC);
4101	if (!skb)
4102		return -ENOMEM;
4103
4104	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
4105	skb_put_data(skb, hw_err, 3);
4106
4107	bt_dev_err(hdev, "Injecting HCI hardware error event");
4108
4109	/* Send Hardware Error to upper stack */
4110	return hci_recv_frame(hdev, skb);
4111}
4112EXPORT_SYMBOL(hci_reset_dev);
4113
 
 
 
 
 
 
 
 
4114/* Receive frame from HCI drivers */
4115int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4116{
 
 
4117	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4118		      && !test_bit(HCI_INIT, &hdev->flags))) {
4119		kfree_skb(skb);
4120		return -ENXIO;
4121	}
4122
4123	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
4124	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
4125	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
4126	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4127		kfree_skb(skb);
4128		return -EINVAL;
4129	}
4130
4131	/* Incoming skb */
4132	bt_cb(skb)->incoming = 1;
4133
4134	/* Time stamp */
4135	__net_timestamp(skb);
4136
4137	skb_queue_tail(&hdev->rx_q, skb);
4138	queue_work(hdev->workqueue, &hdev->rx_work);
4139
4140	return 0;
4141}
4142EXPORT_SYMBOL(hci_recv_frame);
4143
4144/* Receive diagnostic message from HCI drivers */
4145int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
4146{
4147	/* Mark as diagnostic packet */
4148	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
4149
4150	/* Time stamp */
4151	__net_timestamp(skb);
4152
4153	skb_queue_tail(&hdev->rx_q, skb);
4154	queue_work(hdev->workqueue, &hdev->rx_work);
4155
4156	return 0;
4157}
4158EXPORT_SYMBOL(hci_recv_diag);
4159
4160void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
4161{
4162	va_list vargs;
4163
4164	va_start(vargs, fmt);
4165	kfree_const(hdev->hw_info);
4166	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4167	va_end(vargs);
4168}
4169EXPORT_SYMBOL(hci_set_hw_info);
4170
4171void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
4172{
4173	va_list vargs;
4174
4175	va_start(vargs, fmt);
4176	kfree_const(hdev->fw_info);
4177	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4178	va_end(vargs);
4179}
4180EXPORT_SYMBOL(hci_set_fw_info);
4181
4182/* ---- Interface to upper protocols ---- */
4183
4184int hci_register_cb(struct hci_cb *cb)
4185{
4186	BT_DBG("%p name %s", cb, cb->name);
4187
4188	mutex_lock(&hci_cb_list_lock);
4189	list_add_tail(&cb->list, &hci_cb_list);
4190	mutex_unlock(&hci_cb_list_lock);
4191
4192	return 0;
4193}
4194EXPORT_SYMBOL(hci_register_cb);
4195
4196int hci_unregister_cb(struct hci_cb *cb)
4197{
4198	BT_DBG("%p name %s", cb, cb->name);
4199
4200	mutex_lock(&hci_cb_list_lock);
4201	list_del(&cb->list);
4202	mutex_unlock(&hci_cb_list_lock);
4203
4204	return 0;
4205}
4206EXPORT_SYMBOL(hci_unregister_cb);
4207
4208static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4209{
4210	int err;
4211
4212	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4213	       skb->len);
4214
4215	/* Time stamp */
4216	__net_timestamp(skb);
4217
4218	/* Send copy to monitor */
4219	hci_send_to_monitor(hdev, skb);
4220
4221	if (atomic_read(&hdev->promisc)) {
4222		/* Send copy to the sockets */
4223		hci_send_to_sock(hdev, skb);
4224	}
4225
4226	/* Get rid of skb owner, prior to sending to the driver. */
4227	skb_orphan(skb);
4228
4229	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4230		kfree_skb(skb);
4231		return;
4232	}
4233
4234	err = hdev->send(hdev, skb);
4235	if (err < 0) {
4236		bt_dev_err(hdev, "sending frame failed (%d)", err);
4237		kfree_skb(skb);
 
4238	}
 
 
4239}
4240
4241/* Send HCI command */
4242int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4243		 const void *param)
4244{
4245	struct sk_buff *skb;
4246
4247	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4248
4249	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4250	if (!skb) {
4251		bt_dev_err(hdev, "no memory for command");
4252		return -ENOMEM;
4253	}
4254
4255	/* Stand-alone HCI commands must be flagged as
4256	 * single-command requests.
4257	 */
4258	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4259
4260	skb_queue_tail(&hdev->cmd_q, skb);
4261	queue_work(hdev->workqueue, &hdev->cmd_work);
4262
4263	return 0;
4264}
4265
4266int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4267		   const void *param)
4268{
4269	struct sk_buff *skb;
4270
4271	if (hci_opcode_ogf(opcode) != 0x3f) {
4272		/* A controller receiving a command shall respond with either
4273		 * a Command Status Event or a Command Complete Event.
4274		 * Therefore, all standard HCI commands must be sent via the
4275		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4276		 * Some vendors do not comply with this rule for vendor-specific
4277		 * commands and do not return any event. We want to support
4278		 * unresponded commands for such cases only.
4279		 */
4280		bt_dev_err(hdev, "unresponded command not supported");
4281		return -EINVAL;
4282	}
4283
4284	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4285	if (!skb) {
4286		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4287			   opcode);
4288		return -ENOMEM;
4289	}
4290
4291	hci_send_frame(hdev, skb);
4292
4293	return 0;
4294}
4295EXPORT_SYMBOL(__hci_cmd_send);
4296
4297/* Get data from the previously sent command */
4298void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4299{
4300	struct hci_command_hdr *hdr;
4301
4302	if (!hdev->sent_cmd)
4303		return NULL;
4304
4305	hdr = (void *) hdev->sent_cmd->data;
4306
4307	if (hdr->opcode != cpu_to_le16(opcode))
4308		return NULL;
4309
4310	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
 
4311
4312	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
 
 
 
 
 
 
 
 
 
 
 
4313}
4314
4315/* Send HCI command and wait for command complete event */
4316struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4317			     const void *param, u32 timeout)
4318{
4319	struct sk_buff *skb;
 
 
 
 
4320
4321	if (!test_bit(HCI_UP, &hdev->flags))
4322		return ERR_PTR(-ENETDOWN);
4323
4324	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
 
 
 
 
 
 
 
 
 
 
4325
4326	hci_req_sync_lock(hdev);
4327	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4328	hci_req_sync_unlock(hdev);
4329
4330	return skb;
4331}
4332EXPORT_SYMBOL(hci_cmd_sync);
4333
4334/* Send ACL data */
4335static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4336{
4337	struct hci_acl_hdr *hdr;
4338	int len = skb->len;
4339
4340	skb_push(skb, HCI_ACL_HDR_SIZE);
4341	skb_reset_transport_header(skb);
4342	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4343	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4344	hdr->dlen   = cpu_to_le16(len);
4345}
4346
4347static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4348			  struct sk_buff *skb, __u16 flags)
4349{
4350	struct hci_conn *conn = chan->conn;
4351	struct hci_dev *hdev = conn->hdev;
4352	struct sk_buff *list;
4353
4354	skb->len = skb_headlen(skb);
4355	skb->data_len = 0;
4356
4357	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4358
4359	switch (hdev->dev_type) {
4360	case HCI_PRIMARY:
4361		hci_add_acl_hdr(skb, conn->handle, flags);
4362		break;
4363	case HCI_AMP:
4364		hci_add_acl_hdr(skb, chan->handle, flags);
4365		break;
4366	default:
4367		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4368		return;
4369	}
4370
4371	list = skb_shinfo(skb)->frag_list;
4372	if (!list) {
4373		/* Non fragmented */
4374		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4375
4376		skb_queue_tail(queue, skb);
4377	} else {
4378		/* Fragmented */
4379		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4380
4381		skb_shinfo(skb)->frag_list = NULL;
4382
4383		/* Queue all fragments atomically. We need to use spin_lock_bh
4384		 * here because of 6LoWPAN links, as there this function is
4385		 * called from softirq and using normal spin lock could cause
4386		 * deadlocks.
4387		 */
4388		spin_lock_bh(&queue->lock);
4389
4390		__skb_queue_tail(queue, skb);
4391
4392		flags &= ~ACL_START;
4393		flags |= ACL_CONT;
4394		do {
4395			skb = list; list = list->next;
4396
4397			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4398			hci_add_acl_hdr(skb, conn->handle, flags);
4399
4400			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4401
4402			__skb_queue_tail(queue, skb);
4403		} while (list);
4404
4405		spin_unlock_bh(&queue->lock);
4406	}
4407}
4408
4409void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4410{
4411	struct hci_dev *hdev = chan->conn->hdev;
4412
4413	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4414
4415	hci_queue_acl(chan, &chan->data_q, skb, flags);
4416
4417	queue_work(hdev->workqueue, &hdev->tx_work);
4418}
4419
4420/* Send SCO data */
4421void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4422{
4423	struct hci_dev *hdev = conn->hdev;
4424	struct hci_sco_hdr hdr;
4425
4426	BT_DBG("%s len %d", hdev->name, skb->len);
4427
4428	hdr.handle = cpu_to_le16(conn->handle);
4429	hdr.dlen   = skb->len;
4430
4431	skb_push(skb, HCI_SCO_HDR_SIZE);
4432	skb_reset_transport_header(skb);
4433	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4434
4435	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4436
4437	skb_queue_tail(&conn->data_q, skb);
4438	queue_work(hdev->workqueue, &hdev->tx_work);
4439}
4440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4441/* ---- HCI TX task (outgoing data) ---- */
4442
4443/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4444static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4445				     int *quote)
4446{
4447	struct hci_conn_hash *h = &hdev->conn_hash;
4448	struct hci_conn *conn = NULL, *c;
4449	unsigned int num = 0, min = ~0;
4450
4451	/* We don't have to lock device here. Connections are always
4452	 * added and removed with TX task disabled. */
4453
4454	rcu_read_lock();
4455
4456	list_for_each_entry_rcu(c, &h->list, list) {
4457		if (c->type != type || skb_queue_empty(&c->data_q))
4458			continue;
4459
4460		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4461			continue;
4462
4463		num++;
4464
4465		if (c->sent < min) {
4466			min  = c->sent;
4467			conn = c;
4468		}
4469
4470		if (hci_conn_num(hdev, type) == num)
4471			break;
4472	}
4473
4474	rcu_read_unlock();
4475
4476	if (conn) {
4477		int cnt, q;
4478
4479		switch (conn->type) {
4480		case ACL_LINK:
4481			cnt = hdev->acl_cnt;
4482			break;
4483		case SCO_LINK:
4484		case ESCO_LINK:
4485			cnt = hdev->sco_cnt;
4486			break;
4487		case LE_LINK:
4488			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4489			break;
4490		default:
4491			cnt = 0;
4492			bt_dev_err(hdev, "unknown link type %d", conn->type);
4493		}
4494
4495		q = cnt / num;
4496		*quote = q ? q : 1;
4497	} else
4498		*quote = 0;
4499
4500	BT_DBG("conn %p quote %d", conn, *quote);
4501	return conn;
4502}
4503
4504static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4505{
4506	struct hci_conn_hash *h = &hdev->conn_hash;
4507	struct hci_conn *c;
4508
4509	bt_dev_err(hdev, "link tx timeout");
4510
4511	rcu_read_lock();
4512
4513	/* Kill stalled connections */
4514	list_for_each_entry_rcu(c, &h->list, list) {
4515		if (c->type == type && c->sent) {
4516			bt_dev_err(hdev, "killing stalled connection %pMR",
4517				   &c->dst);
 
 
 
 
4518			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
4519		}
4520	}
4521
4522	rcu_read_unlock();
4523}
4524
4525static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4526				      int *quote)
4527{
4528	struct hci_conn_hash *h = &hdev->conn_hash;
4529	struct hci_chan *chan = NULL;
4530	unsigned int num = 0, min = ~0, cur_prio = 0;
4531	struct hci_conn *conn;
4532	int cnt, q, conn_num = 0;
4533
4534	BT_DBG("%s", hdev->name);
4535
4536	rcu_read_lock();
4537
4538	list_for_each_entry_rcu(conn, &h->list, list) {
4539		struct hci_chan *tmp;
4540
4541		if (conn->type != type)
4542			continue;
4543
4544		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4545			continue;
4546
4547		conn_num++;
4548
4549		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4550			struct sk_buff *skb;
4551
4552			if (skb_queue_empty(&tmp->data_q))
4553				continue;
4554
4555			skb = skb_peek(&tmp->data_q);
4556			if (skb->priority < cur_prio)
4557				continue;
4558
4559			if (skb->priority > cur_prio) {
4560				num = 0;
4561				min = ~0;
4562				cur_prio = skb->priority;
4563			}
4564
4565			num++;
4566
4567			if (conn->sent < min) {
4568				min  = conn->sent;
4569				chan = tmp;
4570			}
4571		}
4572
4573		if (hci_conn_num(hdev, type) == conn_num)
4574			break;
4575	}
4576
4577	rcu_read_unlock();
4578
4579	if (!chan)
4580		return NULL;
4581
4582	switch (chan->conn->type) {
4583	case ACL_LINK:
4584		cnt = hdev->acl_cnt;
4585		break;
4586	case AMP_LINK:
4587		cnt = hdev->block_cnt;
4588		break;
4589	case SCO_LINK:
4590	case ESCO_LINK:
4591		cnt = hdev->sco_cnt;
4592		break;
4593	case LE_LINK:
4594		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4595		break;
4596	default:
4597		cnt = 0;
4598		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4599	}
4600
4601	q = cnt / num;
4602	*quote = q ? q : 1;
4603	BT_DBG("chan %p quote %d", chan, *quote);
4604	return chan;
4605}
4606
4607static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4608{
4609	struct hci_conn_hash *h = &hdev->conn_hash;
4610	struct hci_conn *conn;
4611	int num = 0;
4612
4613	BT_DBG("%s", hdev->name);
4614
4615	rcu_read_lock();
4616
4617	list_for_each_entry_rcu(conn, &h->list, list) {
4618		struct hci_chan *chan;
4619
4620		if (conn->type != type)
4621			continue;
4622
4623		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4624			continue;
4625
4626		num++;
4627
4628		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4629			struct sk_buff *skb;
4630
4631			if (chan->sent) {
4632				chan->sent = 0;
4633				continue;
4634			}
4635
4636			if (skb_queue_empty(&chan->data_q))
4637				continue;
4638
4639			skb = skb_peek(&chan->data_q);
4640			if (skb->priority >= HCI_PRIO_MAX - 1)
4641				continue;
4642
4643			skb->priority = HCI_PRIO_MAX - 1;
4644
4645			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4646			       skb->priority);
4647		}
4648
4649		if (hci_conn_num(hdev, type) == num)
4650			break;
4651	}
4652
4653	rcu_read_unlock();
4654
4655}
4656
4657static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4658{
4659	/* Calculate count of blocks used by this packet */
4660	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4661}
 
4662
4663static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4664{
4665	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4666		/* ACL tx timeout must be longer than maximum
4667		 * link supervision timeout (40.9 seconds) */
4668		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4669				       HCI_ACL_TX_TIMEOUT))
4670			hci_link_tx_to(hdev, ACL_LINK);
4671	}
 
 
 
 
 
 
4672}
4673
4674/* Schedule SCO */
4675static void hci_sched_sco(struct hci_dev *hdev)
4676{
4677	struct hci_conn *conn;
4678	struct sk_buff *skb;
4679	int quote;
4680
4681	BT_DBG("%s", hdev->name);
4682
4683	if (!hci_conn_num(hdev, SCO_LINK))
4684		return;
4685
4686	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4687		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4688			BT_DBG("skb %p len %d", skb, skb->len);
4689			hci_send_frame(hdev, skb);
4690
4691			conn->sent++;
4692			if (conn->sent == ~0)
4693				conn->sent = 0;
4694		}
4695	}
4696}
4697
4698static void hci_sched_esco(struct hci_dev *hdev)
4699{
4700	struct hci_conn *conn;
4701	struct sk_buff *skb;
4702	int quote;
4703
4704	BT_DBG("%s", hdev->name);
4705
4706	if (!hci_conn_num(hdev, ESCO_LINK))
4707		return;
4708
4709	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4710						     &quote))) {
4711		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4712			BT_DBG("skb %p len %d", skb, skb->len);
4713			hci_send_frame(hdev, skb);
4714
4715			conn->sent++;
4716			if (conn->sent == ~0)
4717				conn->sent = 0;
4718		}
4719	}
4720}
4721
4722static void hci_sched_acl_pkt(struct hci_dev *hdev)
4723{
4724	unsigned int cnt = hdev->acl_cnt;
4725	struct hci_chan *chan;
4726	struct sk_buff *skb;
4727	int quote;
4728
4729	__check_timeout(hdev, cnt);
4730
4731	while (hdev->acl_cnt &&
4732	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4733		u32 priority = (skb_peek(&chan->data_q))->priority;
4734		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4735			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4736			       skb->len, skb->priority);
4737
4738			/* Stop if priority has changed */
4739			if (skb->priority < priority)
4740				break;
4741
4742			skb = skb_dequeue(&chan->data_q);
4743
4744			hci_conn_enter_active_mode(chan->conn,
4745						   bt_cb(skb)->force_active);
4746
4747			hci_send_frame(hdev, skb);
4748			hdev->acl_last_tx = jiffies;
4749
4750			hdev->acl_cnt--;
4751			chan->sent++;
4752			chan->conn->sent++;
4753
4754			/* Send pending SCO packets right away */
4755			hci_sched_sco(hdev);
4756			hci_sched_esco(hdev);
4757		}
4758	}
4759
4760	if (cnt != hdev->acl_cnt)
4761		hci_prio_recalculate(hdev, ACL_LINK);
4762}
4763
4764static void hci_sched_acl_blk(struct hci_dev *hdev)
4765{
4766	unsigned int cnt = hdev->block_cnt;
4767	struct hci_chan *chan;
4768	struct sk_buff *skb;
4769	int quote;
4770	u8 type;
4771
4772	__check_timeout(hdev, cnt);
4773
4774	BT_DBG("%s", hdev->name);
4775
4776	if (hdev->dev_type == HCI_AMP)
4777		type = AMP_LINK;
4778	else
4779		type = ACL_LINK;
4780
4781	while (hdev->block_cnt > 0 &&
4782	       (chan = hci_chan_sent(hdev, type, &quote))) {
4783		u32 priority = (skb_peek(&chan->data_q))->priority;
4784		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4785			int blocks;
4786
4787			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4788			       skb->len, skb->priority);
4789
4790			/* Stop if priority has changed */
4791			if (skb->priority < priority)
4792				break;
4793
4794			skb = skb_dequeue(&chan->data_q);
4795
4796			blocks = __get_blocks(hdev, skb);
4797			if (blocks > hdev->block_cnt)
4798				return;
4799
4800			hci_conn_enter_active_mode(chan->conn,
4801						   bt_cb(skb)->force_active);
4802
4803			hci_send_frame(hdev, skb);
4804			hdev->acl_last_tx = jiffies;
4805
4806			hdev->block_cnt -= blocks;
4807			quote -= blocks;
4808
4809			chan->sent += blocks;
4810			chan->conn->sent += blocks;
4811		}
4812	}
4813
4814	if (cnt != hdev->block_cnt)
4815		hci_prio_recalculate(hdev, type);
4816}
4817
4818static void hci_sched_acl(struct hci_dev *hdev)
4819{
4820	BT_DBG("%s", hdev->name);
4821
4822	/* No ACL link over BR/EDR controller */
4823	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4824		return;
4825
4826	/* No AMP link over AMP controller */
4827	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4828		return;
4829
4830	switch (hdev->flow_ctl_mode) {
4831	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4832		hci_sched_acl_pkt(hdev);
4833		break;
4834
4835	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4836		hci_sched_acl_blk(hdev);
4837		break;
4838	}
4839}
4840
4841static void hci_sched_le(struct hci_dev *hdev)
4842{
4843	struct hci_chan *chan;
4844	struct sk_buff *skb;
4845	int quote, cnt, tmp;
4846
4847	BT_DBG("%s", hdev->name);
4848
4849	if (!hci_conn_num(hdev, LE_LINK))
4850		return;
4851
4852	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4853
4854	__check_timeout(hdev, cnt);
4855
4856	tmp = cnt;
4857	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4858		u32 priority = (skb_peek(&chan->data_q))->priority;
4859		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4860			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4861			       skb->len, skb->priority);
4862
4863			/* Stop if priority has changed */
4864			if (skb->priority < priority)
4865				break;
4866
4867			skb = skb_dequeue(&chan->data_q);
4868
4869			hci_send_frame(hdev, skb);
4870			hdev->le_last_tx = jiffies;
4871
4872			cnt--;
4873			chan->sent++;
4874			chan->conn->sent++;
4875
4876			/* Send pending SCO packets right away */
4877			hci_sched_sco(hdev);
4878			hci_sched_esco(hdev);
4879		}
4880	}
4881
4882	if (hdev->le_pkts)
4883		hdev->le_cnt = cnt;
4884	else
4885		hdev->acl_cnt = cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4886
4887	if (cnt != tmp)
4888		hci_prio_recalculate(hdev, LE_LINK);
 
 
 
 
4889}
4890
4891static void hci_tx_work(struct work_struct *work)
4892{
4893	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4894	struct sk_buff *skb;
4895
4896	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4897	       hdev->sco_cnt, hdev->le_cnt);
4898
4899	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4900		/* Schedule queues and send stuff to HCI driver */
4901		hci_sched_sco(hdev);
4902		hci_sched_esco(hdev);
 
4903		hci_sched_acl(hdev);
4904		hci_sched_le(hdev);
4905	}
4906
4907	/* Send next queued raw (unknown type) packet */
4908	while ((skb = skb_dequeue(&hdev->raw_q)))
4909		hci_send_frame(hdev, skb);
4910}
4911
4912/* ----- HCI RX task (incoming data processing) ----- */
4913
4914/* ACL data packet */
4915static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4916{
4917	struct hci_acl_hdr *hdr = (void *) skb->data;
4918	struct hci_conn *conn;
4919	__u16 handle, flags;
4920
4921	skb_pull(skb, HCI_ACL_HDR_SIZE);
 
 
 
 
4922
4923	handle = __le16_to_cpu(hdr->handle);
4924	flags  = hci_flags(handle);
4925	handle = hci_handle(handle);
4926
4927	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4928	       handle, flags);
4929
4930	hdev->stat.acl_rx++;
4931
4932	hci_dev_lock(hdev);
4933	conn = hci_conn_hash_lookup_handle(hdev, handle);
4934	hci_dev_unlock(hdev);
4935
4936	if (conn) {
4937		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4938
4939		/* Send to upper protocol */
4940		l2cap_recv_acldata(conn, skb, flags);
4941		return;
4942	} else {
4943		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4944			   handle);
4945	}
4946
 
4947	kfree_skb(skb);
4948}
4949
4950/* SCO data packet */
4951static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4952{
4953	struct hci_sco_hdr *hdr = (void *) skb->data;
4954	struct hci_conn *conn;
4955	__u16 handle, flags;
4956
4957	skb_pull(skb, HCI_SCO_HDR_SIZE);
 
 
 
 
4958
4959	handle = __le16_to_cpu(hdr->handle);
4960	flags  = hci_flags(handle);
4961	handle = hci_handle(handle);
4962
4963	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4964	       handle, flags);
4965
4966	hdev->stat.sco_rx++;
4967
4968	hci_dev_lock(hdev);
4969	conn = hci_conn_hash_lookup_handle(hdev, handle);
4970	hci_dev_unlock(hdev);
4971
4972	if (conn) {
4973		/* Send to upper protocol */
4974		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4975		sco_recv_scodata(conn, skb);
4976		return;
4977	} else {
4978		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4979			   handle);
 
4980	}
4981
 
 
 
 
 
4982	kfree_skb(skb);
4983}
4984
4985static bool hci_req_is_complete(struct hci_dev *hdev)
4986{
4987	struct sk_buff *skb;
4988
4989	skb = skb_peek(&hdev->cmd_q);
4990	if (!skb)
4991		return true;
4992
4993	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4994}
4995
4996static void hci_resend_last(struct hci_dev *hdev)
4997{
4998	struct hci_command_hdr *sent;
4999	struct sk_buff *skb;
5000	u16 opcode;
5001
5002	if (!hdev->sent_cmd)
5003		return;
5004
5005	sent = (void *) hdev->sent_cmd->data;
5006	opcode = __le16_to_cpu(sent->opcode);
5007	if (opcode == HCI_OP_RESET)
5008		return;
5009
5010	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5011	if (!skb)
5012		return;
5013
5014	skb_queue_head(&hdev->cmd_q, skb);
5015	queue_work(hdev->workqueue, &hdev->cmd_work);
5016}
5017
5018void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
5019			  hci_req_complete_t *req_complete,
5020			  hci_req_complete_skb_t *req_complete_skb)
5021{
5022	struct sk_buff *skb;
5023	unsigned long flags;
5024
5025	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5026
5027	/* If the completed command doesn't match the last one that was
5028	 * sent we need to do special handling of it.
5029	 */
5030	if (!hci_sent_cmd_data(hdev, opcode)) {
5031		/* Some CSR based controllers generate a spontaneous
5032		 * reset complete event during init and any pending
5033		 * command will never be completed. In such a case we
5034		 * need to resend whatever was the last sent
5035		 * command.
5036		 */
5037		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5038			hci_resend_last(hdev);
5039
5040		return;
5041	}
5042
5043	/* If we reach this point this event matches the last command sent */
5044	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
5045
5046	/* If the command succeeded and there's still more commands in
5047	 * this request the request is not yet complete.
5048	 */
5049	if (!status && !hci_req_is_complete(hdev))
5050		return;
5051
 
 
5052	/* If this was the last command in a request the complete
5053	 * callback would be found in hdev->sent_cmd instead of the
5054	 * command queue (hdev->cmd_q).
5055	 */
5056	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
5057		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
5058		return;
5059	}
5060
5061	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
5062		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
5063		return;
5064	}
5065
5066	/* Remove all pending commands belonging to this request */
5067	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5068	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5069		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
5070			__skb_queue_head(&hdev->cmd_q, skb);
5071			break;
5072		}
5073
5074		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
5075			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
5076		else
5077			*req_complete = bt_cb(skb)->hci.req_complete;
5078		kfree_skb(skb);
5079	}
5080	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5081}
5082
5083static void hci_rx_work(struct work_struct *work)
5084{
5085	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5086	struct sk_buff *skb;
5087
5088	BT_DBG("%s", hdev->name);
5089
5090	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
5091		/* Send copy to monitor */
5092		hci_send_to_monitor(hdev, skb);
5093
5094		if (atomic_read(&hdev->promisc)) {
5095			/* Send copy to the sockets */
5096			hci_send_to_sock(hdev, skb);
5097		}
5098
5099		/* If the device has been opened in HCI_USER_CHANNEL,
5100		 * the userspace has exclusive access to device.
5101		 * When device is HCI_INIT, we still need to process
5102		 * the data packets to the driver in order
5103		 * to complete its setup().
5104		 */
5105		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5106		    !test_bit(HCI_INIT, &hdev->flags)) {
5107			kfree_skb(skb);
5108			continue;
5109		}
5110
5111		if (test_bit(HCI_INIT, &hdev->flags)) {
5112			/* Don't process data packets in this states. */
5113			switch (hci_skb_pkt_type(skb)) {
5114			case HCI_ACLDATA_PKT:
5115			case HCI_SCODATA_PKT:
5116			case HCI_ISODATA_PKT:
5117				kfree_skb(skb);
5118				continue;
5119			}
5120		}
5121
5122		/* Process frame */
5123		switch (hci_skb_pkt_type(skb)) {
5124		case HCI_EVENT_PKT:
5125			BT_DBG("%s Event packet", hdev->name);
5126			hci_event_packet(hdev, skb);
5127			break;
5128
5129		case HCI_ACLDATA_PKT:
5130			BT_DBG("%s ACL data packet", hdev->name);
5131			hci_acldata_packet(hdev, skb);
5132			break;
5133
5134		case HCI_SCODATA_PKT:
5135			BT_DBG("%s SCO data packet", hdev->name);
5136			hci_scodata_packet(hdev, skb);
5137			break;
5138
 
 
 
 
 
5139		default:
5140			kfree_skb(skb);
5141			break;
5142		}
5143	}
5144}
5145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5146static void hci_cmd_work(struct work_struct *work)
5147{
5148	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5149	struct sk_buff *skb;
5150
5151	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5152	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5153
5154	/* Send queued commands */
5155	if (atomic_read(&hdev->cmd_cnt)) {
5156		skb = skb_dequeue(&hdev->cmd_q);
5157		if (!skb)
5158			return;
5159
5160		kfree_skb(hdev->sent_cmd);
5161
5162		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5163		if (hdev->sent_cmd) {
5164			if (hci_req_status_pend(hdev))
5165				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5166			atomic_dec(&hdev->cmd_cnt);
5167			hci_send_frame(hdev, skb);
5168			if (test_bit(HCI_RESET, &hdev->flags))
5169				cancel_delayed_work(&hdev->cmd_timer);
5170			else
5171				schedule_delayed_work(&hdev->cmd_timer,
5172						      HCI_CMD_TIMEOUT);
5173		} else {
5174			skb_queue_head(&hdev->cmd_q, skb);
5175			queue_work(hdev->workqueue, &hdev->cmd_work);
5176		}
5177	}
5178}