Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/kcov.h>
33#include <linux/property.h>
34#include <linux/suspend.h>
35#include <linux/wait.h>
36#include <linux/unaligned.h>
37
38#include <net/bluetooth/bluetooth.h>
39#include <net/bluetooth/hci_core.h>
40#include <net/bluetooth/l2cap.h>
41#include <net/bluetooth/mgmt.h>
42
43#include "hci_debugfs.h"
44#include "smp.h"
45#include "leds.h"
46#include "msft.h"
47#include "aosp.h"
48#include "hci_codec.h"
49
50static void hci_rx_work(struct work_struct *work);
51static void hci_cmd_work(struct work_struct *work);
52static void hci_tx_work(struct work_struct *work);
53
54/* HCI device list */
55LIST_HEAD(hci_dev_list);
56DEFINE_RWLOCK(hci_dev_list_lock);
57
58/* HCI callback list */
59LIST_HEAD(hci_cb_list);
60
61/* HCI ID Numbering */
62static DEFINE_IDA(hci_index_ida);
63
64/* Get HCI device by index.
65 * Device is held on return. */
66struct hci_dev *hci_dev_get(int index)
67{
68 struct hci_dev *hdev = NULL, *d;
69
70 BT_DBG("%d", index);
71
72 if (index < 0)
73 return NULL;
74
75 read_lock(&hci_dev_list_lock);
76 list_for_each_entry(d, &hci_dev_list, list) {
77 if (d->id == index) {
78 hdev = hci_dev_hold(d);
79 break;
80 }
81 }
82 read_unlock(&hci_dev_list_lock);
83 return hdev;
84}
85
86/* ---- Inquiry support ---- */
87
88bool hci_discovery_active(struct hci_dev *hdev)
89{
90 struct discovery_state *discov = &hdev->discovery;
91
92 switch (discov->state) {
93 case DISCOVERY_FINDING:
94 case DISCOVERY_RESOLVING:
95 return true;
96
97 default:
98 return false;
99 }
100}
101
102void hci_discovery_set_state(struct hci_dev *hdev, int state)
103{
104 int old_state = hdev->discovery.state;
105
106 if (old_state == state)
107 return;
108
109 hdev->discovery.state = state;
110
111 switch (state) {
112 case DISCOVERY_STOPPED:
113 hci_update_passive_scan(hdev);
114
115 if (old_state != DISCOVERY_STARTING)
116 mgmt_discovering(hdev, 0);
117 break;
118 case DISCOVERY_STARTING:
119 break;
120 case DISCOVERY_FINDING:
121 mgmt_discovering(hdev, 1);
122 break;
123 case DISCOVERY_RESOLVING:
124 break;
125 case DISCOVERY_STOPPING:
126 break;
127 }
128
129 bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
130}
131
132void hci_inquiry_cache_flush(struct hci_dev *hdev)
133{
134 struct discovery_state *cache = &hdev->discovery;
135 struct inquiry_entry *p, *n;
136
137 list_for_each_entry_safe(p, n, &cache->all, all) {
138 list_del(&p->all);
139 kfree(p);
140 }
141
142 INIT_LIST_HEAD(&cache->unknown);
143 INIT_LIST_HEAD(&cache->resolve);
144}
145
146struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
147 bdaddr_t *bdaddr)
148{
149 struct discovery_state *cache = &hdev->discovery;
150 struct inquiry_entry *e;
151
152 BT_DBG("cache %p, %pMR", cache, bdaddr);
153
154 list_for_each_entry(e, &cache->all, all) {
155 if (!bacmp(&e->data.bdaddr, bdaddr))
156 return e;
157 }
158
159 return NULL;
160}
161
162struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
163 bdaddr_t *bdaddr)
164{
165 struct discovery_state *cache = &hdev->discovery;
166 struct inquiry_entry *e;
167
168 BT_DBG("cache %p, %pMR", cache, bdaddr);
169
170 list_for_each_entry(e, &cache->unknown, list) {
171 if (!bacmp(&e->data.bdaddr, bdaddr))
172 return e;
173 }
174
175 return NULL;
176}
177
178struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
179 bdaddr_t *bdaddr,
180 int state)
181{
182 struct discovery_state *cache = &hdev->discovery;
183 struct inquiry_entry *e;
184
185 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
186
187 list_for_each_entry(e, &cache->resolve, list) {
188 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
189 return e;
190 if (!bacmp(&e->data.bdaddr, bdaddr))
191 return e;
192 }
193
194 return NULL;
195}
196
197void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
198 struct inquiry_entry *ie)
199{
200 struct discovery_state *cache = &hdev->discovery;
201 struct list_head *pos = &cache->resolve;
202 struct inquiry_entry *p;
203
204 list_del(&ie->list);
205
206 list_for_each_entry(p, &cache->resolve, list) {
207 if (p->name_state != NAME_PENDING &&
208 abs(p->data.rssi) >= abs(ie->data.rssi))
209 break;
210 pos = &p->list;
211 }
212
213 list_add(&ie->list, pos);
214}
215
216u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
217 bool name_known)
218{
219 struct discovery_state *cache = &hdev->discovery;
220 struct inquiry_entry *ie;
221 u32 flags = 0;
222
223 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
224
225 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
226
227 if (!data->ssp_mode)
228 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
229
230 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
231 if (ie) {
232 if (!ie->data.ssp_mode)
233 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
234
235 if (ie->name_state == NAME_NEEDED &&
236 data->rssi != ie->data.rssi) {
237 ie->data.rssi = data->rssi;
238 hci_inquiry_cache_update_resolve(hdev, ie);
239 }
240
241 goto update;
242 }
243
244 /* Entry not in the cache. Add new one. */
245 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
246 if (!ie) {
247 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
248 goto done;
249 }
250
251 list_add(&ie->all, &cache->all);
252
253 if (name_known) {
254 ie->name_state = NAME_KNOWN;
255 } else {
256 ie->name_state = NAME_NOT_KNOWN;
257 list_add(&ie->list, &cache->unknown);
258 }
259
260update:
261 if (name_known && ie->name_state != NAME_KNOWN &&
262 ie->name_state != NAME_PENDING) {
263 ie->name_state = NAME_KNOWN;
264 list_del(&ie->list);
265 }
266
267 memcpy(&ie->data, data, sizeof(*data));
268 ie->timestamp = jiffies;
269 cache->timestamp = jiffies;
270
271 if (ie->name_state == NAME_NOT_KNOWN)
272 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
273
274done:
275 return flags;
276}
277
278static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
279{
280 struct discovery_state *cache = &hdev->discovery;
281 struct inquiry_info *info = (struct inquiry_info *) buf;
282 struct inquiry_entry *e;
283 int copied = 0;
284
285 list_for_each_entry(e, &cache->all, all) {
286 struct inquiry_data *data = &e->data;
287
288 if (copied >= num)
289 break;
290
291 bacpy(&info->bdaddr, &data->bdaddr);
292 info->pscan_rep_mode = data->pscan_rep_mode;
293 info->pscan_period_mode = data->pscan_period_mode;
294 info->pscan_mode = data->pscan_mode;
295 memcpy(info->dev_class, data->dev_class, 3);
296 info->clock_offset = data->clock_offset;
297
298 info++;
299 copied++;
300 }
301
302 BT_DBG("cache %p, copied %d", cache, copied);
303 return copied;
304}
305
306int hci_inquiry(void __user *arg)
307{
308 __u8 __user *ptr = arg;
309 struct hci_inquiry_req ir;
310 struct hci_dev *hdev;
311 int err = 0, do_inquiry = 0, max_rsp;
312 __u8 *buf;
313
314 if (copy_from_user(&ir, ptr, sizeof(ir)))
315 return -EFAULT;
316
317 hdev = hci_dev_get(ir.dev_id);
318 if (!hdev)
319 return -ENODEV;
320
321 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
322 err = -EBUSY;
323 goto done;
324 }
325
326 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
327 err = -EOPNOTSUPP;
328 goto done;
329 }
330
331 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
332 err = -EOPNOTSUPP;
333 goto done;
334 }
335
336 /* Restrict maximum inquiry length to 60 seconds */
337 if (ir.length > 60) {
338 err = -EINVAL;
339 goto done;
340 }
341
342 hci_dev_lock(hdev);
343 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
344 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
345 hci_inquiry_cache_flush(hdev);
346 do_inquiry = 1;
347 }
348 hci_dev_unlock(hdev);
349
350 if (do_inquiry) {
351 hci_req_sync_lock(hdev);
352 err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
353 hci_req_sync_unlock(hdev);
354
355 if (err < 0)
356 goto done;
357
358 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
359 * cleared). If it is interrupted by a signal, return -EINTR.
360 */
361 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
362 TASK_INTERRUPTIBLE)) {
363 err = -EINTR;
364 goto done;
365 }
366 }
367
368 /* for unlimited number of responses we will use buffer with
369 * 255 entries
370 */
371 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
372
373 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
374 * copy it to the user space.
375 */
376 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
377 if (!buf) {
378 err = -ENOMEM;
379 goto done;
380 }
381
382 hci_dev_lock(hdev);
383 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
384 hci_dev_unlock(hdev);
385
386 BT_DBG("num_rsp %d", ir.num_rsp);
387
388 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
389 ptr += sizeof(ir);
390 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
391 ir.num_rsp))
392 err = -EFAULT;
393 } else
394 err = -EFAULT;
395
396 kfree(buf);
397
398done:
399 hci_dev_put(hdev);
400 return err;
401}
402
403static int hci_dev_do_open(struct hci_dev *hdev)
404{
405 int ret = 0;
406
407 BT_DBG("%s %p", hdev->name, hdev);
408
409 hci_req_sync_lock(hdev);
410
411 ret = hci_dev_open_sync(hdev);
412
413 hci_req_sync_unlock(hdev);
414 return ret;
415}
416
417/* ---- HCI ioctl helpers ---- */
418
419int hci_dev_open(__u16 dev)
420{
421 struct hci_dev *hdev;
422 int err;
423
424 hdev = hci_dev_get(dev);
425 if (!hdev)
426 return -ENODEV;
427
428 /* Devices that are marked as unconfigured can only be powered
429 * up as user channel. Trying to bring them up as normal devices
430 * will result into a failure. Only user channel operation is
431 * possible.
432 *
433 * When this function is called for a user channel, the flag
434 * HCI_USER_CHANNEL will be set first before attempting to
435 * open the device.
436 */
437 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
438 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
439 err = -EOPNOTSUPP;
440 goto done;
441 }
442
443 /* We need to ensure that no other power on/off work is pending
444 * before proceeding to call hci_dev_do_open. This is
445 * particularly important if the setup procedure has not yet
446 * completed.
447 */
448 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
449 cancel_delayed_work(&hdev->power_off);
450
451 /* After this call it is guaranteed that the setup procedure
452 * has finished. This means that error conditions like RFKILL
453 * or no valid public or static random address apply.
454 */
455 flush_workqueue(hdev->req_workqueue);
456
457 /* For controllers not using the management interface and that
458 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
459 * so that pairing works for them. Once the management interface
460 * is in use this bit will be cleared again and userspace has
461 * to explicitly enable it.
462 */
463 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
464 !hci_dev_test_flag(hdev, HCI_MGMT))
465 hci_dev_set_flag(hdev, HCI_BONDABLE);
466
467 err = hci_dev_do_open(hdev);
468
469done:
470 hci_dev_put(hdev);
471 return err;
472}
473
474int hci_dev_do_close(struct hci_dev *hdev)
475{
476 int err;
477
478 BT_DBG("%s %p", hdev->name, hdev);
479
480 hci_req_sync_lock(hdev);
481
482 err = hci_dev_close_sync(hdev);
483
484 hci_req_sync_unlock(hdev);
485
486 return err;
487}
488
489int hci_dev_close(__u16 dev)
490{
491 struct hci_dev *hdev;
492 int err;
493
494 hdev = hci_dev_get(dev);
495 if (!hdev)
496 return -ENODEV;
497
498 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
499 err = -EBUSY;
500 goto done;
501 }
502
503 cancel_work_sync(&hdev->power_on);
504 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
505 cancel_delayed_work(&hdev->power_off);
506
507 err = hci_dev_do_close(hdev);
508
509done:
510 hci_dev_put(hdev);
511 return err;
512}
513
514static int hci_dev_do_reset(struct hci_dev *hdev)
515{
516 int ret;
517
518 BT_DBG("%s %p", hdev->name, hdev);
519
520 hci_req_sync_lock(hdev);
521
522 /* Drop queues */
523 skb_queue_purge(&hdev->rx_q);
524 skb_queue_purge(&hdev->cmd_q);
525
526 /* Cancel these to avoid queueing non-chained pending work */
527 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
528 /* Wait for
529 *
530 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
531 * queue_delayed_work(&hdev->{cmd,ncmd}_timer)
532 *
533 * inside RCU section to see the flag or complete scheduling.
534 */
535 synchronize_rcu();
536 /* Explicitly cancel works in case scheduled after setting the flag. */
537 cancel_delayed_work(&hdev->cmd_timer);
538 cancel_delayed_work(&hdev->ncmd_timer);
539
540 /* Avoid potential lockdep warnings from the *_flush() calls by
541 * ensuring the workqueue is empty up front.
542 */
543 drain_workqueue(hdev->workqueue);
544
545 hci_dev_lock(hdev);
546 hci_inquiry_cache_flush(hdev);
547 hci_conn_hash_flush(hdev);
548 hci_dev_unlock(hdev);
549
550 if (hdev->flush)
551 hdev->flush(hdev);
552
553 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
554
555 atomic_set(&hdev->cmd_cnt, 1);
556 hdev->acl_cnt = 0;
557 hdev->sco_cnt = 0;
558 hdev->le_cnt = 0;
559 hdev->iso_cnt = 0;
560
561 ret = hci_reset_sync(hdev);
562
563 hci_req_sync_unlock(hdev);
564 return ret;
565}
566
567int hci_dev_reset(__u16 dev)
568{
569 struct hci_dev *hdev;
570 int err;
571
572 hdev = hci_dev_get(dev);
573 if (!hdev)
574 return -ENODEV;
575
576 if (!test_bit(HCI_UP, &hdev->flags)) {
577 err = -ENETDOWN;
578 goto done;
579 }
580
581 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
582 err = -EBUSY;
583 goto done;
584 }
585
586 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
587 err = -EOPNOTSUPP;
588 goto done;
589 }
590
591 err = hci_dev_do_reset(hdev);
592
593done:
594 hci_dev_put(hdev);
595 return err;
596}
597
598int hci_dev_reset_stat(__u16 dev)
599{
600 struct hci_dev *hdev;
601 int ret = 0;
602
603 hdev = hci_dev_get(dev);
604 if (!hdev)
605 return -ENODEV;
606
607 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
608 ret = -EBUSY;
609 goto done;
610 }
611
612 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
613 ret = -EOPNOTSUPP;
614 goto done;
615 }
616
617 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
618
619done:
620 hci_dev_put(hdev);
621 return ret;
622}
623
624static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
625{
626 bool conn_changed, discov_changed;
627
628 BT_DBG("%s scan 0x%02x", hdev->name, scan);
629
630 if ((scan & SCAN_PAGE))
631 conn_changed = !hci_dev_test_and_set_flag(hdev,
632 HCI_CONNECTABLE);
633 else
634 conn_changed = hci_dev_test_and_clear_flag(hdev,
635 HCI_CONNECTABLE);
636
637 if ((scan & SCAN_INQUIRY)) {
638 discov_changed = !hci_dev_test_and_set_flag(hdev,
639 HCI_DISCOVERABLE);
640 } else {
641 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
642 discov_changed = hci_dev_test_and_clear_flag(hdev,
643 HCI_DISCOVERABLE);
644 }
645
646 if (!hci_dev_test_flag(hdev, HCI_MGMT))
647 return;
648
649 if (conn_changed || discov_changed) {
650 /* In case this was disabled through mgmt */
651 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
652
653 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
654 hci_update_adv_data(hdev, hdev->cur_adv_instance);
655
656 mgmt_new_settings(hdev);
657 }
658}
659
660int hci_dev_cmd(unsigned int cmd, void __user *arg)
661{
662 struct hci_dev *hdev;
663 struct hci_dev_req dr;
664 __le16 policy;
665 int err = 0;
666
667 if (copy_from_user(&dr, arg, sizeof(dr)))
668 return -EFAULT;
669
670 hdev = hci_dev_get(dr.dev_id);
671 if (!hdev)
672 return -ENODEV;
673
674 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
675 err = -EBUSY;
676 goto done;
677 }
678
679 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
680 err = -EOPNOTSUPP;
681 goto done;
682 }
683
684 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
685 err = -EOPNOTSUPP;
686 goto done;
687 }
688
689 switch (cmd) {
690 case HCISETAUTH:
691 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
692 1, &dr.dev_opt, HCI_CMD_TIMEOUT);
693 break;
694
695 case HCISETENCRYPT:
696 if (!lmp_encrypt_capable(hdev)) {
697 err = -EOPNOTSUPP;
698 break;
699 }
700
701 if (!test_bit(HCI_AUTH, &hdev->flags)) {
702 /* Auth must be enabled first */
703 err = hci_cmd_sync_status(hdev,
704 HCI_OP_WRITE_AUTH_ENABLE,
705 1, &dr.dev_opt,
706 HCI_CMD_TIMEOUT);
707 if (err)
708 break;
709 }
710
711 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
712 1, &dr.dev_opt, HCI_CMD_TIMEOUT);
713 break;
714
715 case HCISETSCAN:
716 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
717 1, &dr.dev_opt, HCI_CMD_TIMEOUT);
718
719 /* Ensure that the connectable and discoverable states
720 * get correctly modified as this was a non-mgmt change.
721 */
722 if (!err)
723 hci_update_passive_scan_state(hdev, dr.dev_opt);
724 break;
725
726 case HCISETLINKPOL:
727 policy = cpu_to_le16(dr.dev_opt);
728
729 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
730 2, &policy, HCI_CMD_TIMEOUT);
731 break;
732
733 case HCISETLINKMODE:
734 hdev->link_mode = ((__u16) dr.dev_opt) &
735 (HCI_LM_MASTER | HCI_LM_ACCEPT);
736 break;
737
738 case HCISETPTYPE:
739 if (hdev->pkt_type == (__u16) dr.dev_opt)
740 break;
741
742 hdev->pkt_type = (__u16) dr.dev_opt;
743 mgmt_phy_configuration_changed(hdev, NULL);
744 break;
745
746 case HCISETACLMTU:
747 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
748 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
749 break;
750
751 case HCISETSCOMTU:
752 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
753 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
754 break;
755
756 default:
757 err = -EINVAL;
758 break;
759 }
760
761done:
762 hci_dev_put(hdev);
763 return err;
764}
765
766int hci_get_dev_list(void __user *arg)
767{
768 struct hci_dev *hdev;
769 struct hci_dev_list_req *dl;
770 struct hci_dev_req *dr;
771 int n = 0, err;
772 __u16 dev_num;
773
774 if (get_user(dev_num, (__u16 __user *) arg))
775 return -EFAULT;
776
777 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
778 return -EINVAL;
779
780 dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
781 if (!dl)
782 return -ENOMEM;
783
784 dl->dev_num = dev_num;
785 dr = dl->dev_req;
786
787 read_lock(&hci_dev_list_lock);
788 list_for_each_entry(hdev, &hci_dev_list, list) {
789 unsigned long flags = hdev->flags;
790
791 /* When the auto-off is configured it means the transport
792 * is running, but in that case still indicate that the
793 * device is actually down.
794 */
795 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
796 flags &= ~BIT(HCI_UP);
797
798 dr[n].dev_id = hdev->id;
799 dr[n].dev_opt = flags;
800
801 if (++n >= dev_num)
802 break;
803 }
804 read_unlock(&hci_dev_list_lock);
805
806 dl->dev_num = n;
807 err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
808 kfree(dl);
809
810 return err ? -EFAULT : 0;
811}
812
813int hci_get_dev_info(void __user *arg)
814{
815 struct hci_dev *hdev;
816 struct hci_dev_info di;
817 unsigned long flags;
818 int err = 0;
819
820 if (copy_from_user(&di, arg, sizeof(di)))
821 return -EFAULT;
822
823 hdev = hci_dev_get(di.dev_id);
824 if (!hdev)
825 return -ENODEV;
826
827 /* When the auto-off is configured it means the transport
828 * is running, but in that case still indicate that the
829 * device is actually down.
830 */
831 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
832 flags = hdev->flags & ~BIT(HCI_UP);
833 else
834 flags = hdev->flags;
835
836 strscpy(di.name, hdev->name, sizeof(di.name));
837 di.bdaddr = hdev->bdaddr;
838 di.type = (hdev->bus & 0x0f);
839 di.flags = flags;
840 di.pkt_type = hdev->pkt_type;
841 if (lmp_bredr_capable(hdev)) {
842 di.acl_mtu = hdev->acl_mtu;
843 di.acl_pkts = hdev->acl_pkts;
844 di.sco_mtu = hdev->sco_mtu;
845 di.sco_pkts = hdev->sco_pkts;
846 } else {
847 di.acl_mtu = hdev->le_mtu;
848 di.acl_pkts = hdev->le_pkts;
849 di.sco_mtu = 0;
850 di.sco_pkts = 0;
851 }
852 di.link_policy = hdev->link_policy;
853 di.link_mode = hdev->link_mode;
854
855 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
856 memcpy(&di.features, &hdev->features, sizeof(di.features));
857
858 if (copy_to_user(arg, &di, sizeof(di)))
859 err = -EFAULT;
860
861 hci_dev_put(hdev);
862
863 return err;
864}
865
866/* ---- Interface to HCI drivers ---- */
867
868static int hci_dev_do_poweroff(struct hci_dev *hdev)
869{
870 int err;
871
872 BT_DBG("%s %p", hdev->name, hdev);
873
874 hci_req_sync_lock(hdev);
875
876 err = hci_set_powered_sync(hdev, false);
877
878 hci_req_sync_unlock(hdev);
879
880 return err;
881}
882
883static int hci_rfkill_set_block(void *data, bool blocked)
884{
885 struct hci_dev *hdev = data;
886 int err;
887
888 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
889
890 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
891 return -EBUSY;
892
893 if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
894 return 0;
895
896 if (blocked) {
897 hci_dev_set_flag(hdev, HCI_RFKILLED);
898
899 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
900 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
901 err = hci_dev_do_poweroff(hdev);
902 if (err) {
903 bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
904 err);
905
906 /* Make sure the device is still closed even if
907 * anything during power off sequence (eg.
908 * disconnecting devices) failed.
909 */
910 hci_dev_do_close(hdev);
911 }
912 }
913 } else {
914 hci_dev_clear_flag(hdev, HCI_RFKILLED);
915 }
916
917 return 0;
918}
919
920static const struct rfkill_ops hci_rfkill_ops = {
921 .set_block = hci_rfkill_set_block,
922};
923
924static void hci_power_on(struct work_struct *work)
925{
926 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
927 int err;
928
929 BT_DBG("%s", hdev->name);
930
931 if (test_bit(HCI_UP, &hdev->flags) &&
932 hci_dev_test_flag(hdev, HCI_MGMT) &&
933 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
934 cancel_delayed_work(&hdev->power_off);
935 err = hci_powered_update_sync(hdev);
936 mgmt_power_on(hdev, err);
937 return;
938 }
939
940 err = hci_dev_do_open(hdev);
941 if (err < 0) {
942 hci_dev_lock(hdev);
943 mgmt_set_powered_failed(hdev, err);
944 hci_dev_unlock(hdev);
945 return;
946 }
947
948 /* During the HCI setup phase, a few error conditions are
949 * ignored and they need to be checked now. If they are still
950 * valid, it is important to turn the device back off.
951 */
952 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
953 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
954 (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
955 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
956 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
957 hci_dev_do_close(hdev);
958 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
959 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
960 HCI_AUTO_OFF_TIMEOUT);
961 }
962
963 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
964 /* For unconfigured devices, set the HCI_RAW flag
965 * so that userspace can easily identify them.
966 */
967 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
968 set_bit(HCI_RAW, &hdev->flags);
969
970 /* For fully configured devices, this will send
971 * the Index Added event. For unconfigured devices,
972 * it will send Unconfigued Index Added event.
973 *
974 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
975 * and no event will be send.
976 */
977 mgmt_index_added(hdev);
978 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
979 /* When the controller is now configured, then it
980 * is important to clear the HCI_RAW flag.
981 */
982 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
983 clear_bit(HCI_RAW, &hdev->flags);
984
985 /* Powering on the controller with HCI_CONFIG set only
986 * happens with the transition from unconfigured to
987 * configured. This will send the Index Added event.
988 */
989 mgmt_index_added(hdev);
990 }
991}
992
993static void hci_power_off(struct work_struct *work)
994{
995 struct hci_dev *hdev = container_of(work, struct hci_dev,
996 power_off.work);
997
998 BT_DBG("%s", hdev->name);
999
1000 hci_dev_do_close(hdev);
1001}
1002
1003static void hci_error_reset(struct work_struct *work)
1004{
1005 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006
1007 hci_dev_hold(hdev);
1008 BT_DBG("%s", hdev->name);
1009
1010 if (hdev->hw_error)
1011 hdev->hw_error(hdev, hdev->hw_error_code);
1012 else
1013 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1014
1015 if (!hci_dev_do_close(hdev))
1016 hci_dev_do_open(hdev);
1017
1018 hci_dev_put(hdev);
1019}
1020
1021void hci_uuids_clear(struct hci_dev *hdev)
1022{
1023 struct bt_uuid *uuid, *tmp;
1024
1025 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026 list_del(&uuid->list);
1027 kfree(uuid);
1028 }
1029}
1030
1031void hci_link_keys_clear(struct hci_dev *hdev)
1032{
1033 struct link_key *key, *tmp;
1034
1035 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036 list_del_rcu(&key->list);
1037 kfree_rcu(key, rcu);
1038 }
1039}
1040
1041void hci_smp_ltks_clear(struct hci_dev *hdev)
1042{
1043 struct smp_ltk *k, *tmp;
1044
1045 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046 list_del_rcu(&k->list);
1047 kfree_rcu(k, rcu);
1048 }
1049}
1050
1051void hci_smp_irks_clear(struct hci_dev *hdev)
1052{
1053 struct smp_irk *k, *tmp;
1054
1055 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056 list_del_rcu(&k->list);
1057 kfree_rcu(k, rcu);
1058 }
1059}
1060
1061void hci_blocked_keys_clear(struct hci_dev *hdev)
1062{
1063 struct blocked_key *b, *tmp;
1064
1065 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066 list_del_rcu(&b->list);
1067 kfree_rcu(b, rcu);
1068 }
1069}
1070
1071bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072{
1073 bool blocked = false;
1074 struct blocked_key *b;
1075
1076 rcu_read_lock();
1077 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079 blocked = true;
1080 break;
1081 }
1082 }
1083
1084 rcu_read_unlock();
1085 return blocked;
1086}
1087
1088struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089{
1090 struct link_key *k;
1091
1092 rcu_read_lock();
1093 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094 if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095 rcu_read_unlock();
1096
1097 if (hci_is_blocked_key(hdev,
1098 HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099 k->val)) {
1100 bt_dev_warn_ratelimited(hdev,
1101 "Link key blocked for %pMR",
1102 &k->bdaddr);
1103 return NULL;
1104 }
1105
1106 return k;
1107 }
1108 }
1109 rcu_read_unlock();
1110
1111 return NULL;
1112}
1113
1114static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115 u8 key_type, u8 old_key_type)
1116{
1117 /* Legacy key */
1118 if (key_type < 0x03)
1119 return true;
1120
1121 /* Debug keys are insecure so don't store them persistently */
1122 if (key_type == HCI_LK_DEBUG_COMBINATION)
1123 return false;
1124
1125 /* Changed combination key and there's no previous one */
1126 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127 return false;
1128
1129 /* Security mode 3 case */
1130 if (!conn)
1131 return true;
1132
1133 /* BR/EDR key derived using SC from an LE link */
1134 if (conn->type == LE_LINK)
1135 return true;
1136
1137 /* Neither local nor remote side had no-bonding as requirement */
1138 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139 return true;
1140
1141 /* Local side had dedicated bonding as requirement */
1142 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143 return true;
1144
1145 /* Remote side had dedicated bonding as requirement */
1146 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147 return true;
1148
1149 /* If none of the above criteria match, then don't store the key
1150 * persistently */
1151 return false;
1152}
1153
1154static u8 ltk_role(u8 type)
1155{
1156 if (type == SMP_LTK)
1157 return HCI_ROLE_MASTER;
1158
1159 return HCI_ROLE_SLAVE;
1160}
1161
1162struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163 u8 addr_type, u8 role)
1164{
1165 struct smp_ltk *k;
1166
1167 rcu_read_lock();
1168 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170 continue;
1171
1172 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173 rcu_read_unlock();
1174
1175 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176 k->val)) {
1177 bt_dev_warn_ratelimited(hdev,
1178 "LTK blocked for %pMR",
1179 &k->bdaddr);
1180 return NULL;
1181 }
1182
1183 return k;
1184 }
1185 }
1186 rcu_read_unlock();
1187
1188 return NULL;
1189}
1190
1191struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192{
1193 struct smp_irk *irk_to_return = NULL;
1194 struct smp_irk *irk;
1195
1196 rcu_read_lock();
1197 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198 if (!bacmp(&irk->rpa, rpa)) {
1199 irk_to_return = irk;
1200 goto done;
1201 }
1202 }
1203
1204 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205 if (smp_irk_matches(hdev, irk->val, rpa)) {
1206 bacpy(&irk->rpa, rpa);
1207 irk_to_return = irk;
1208 goto done;
1209 }
1210 }
1211
1212done:
1213 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214 irk_to_return->val)) {
1215 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216 &irk_to_return->bdaddr);
1217 irk_to_return = NULL;
1218 }
1219
1220 rcu_read_unlock();
1221
1222 return irk_to_return;
1223}
1224
1225struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226 u8 addr_type)
1227{
1228 struct smp_irk *irk_to_return = NULL;
1229 struct smp_irk *irk;
1230
1231 /* Identity Address must be public or static random */
1232 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233 return NULL;
1234
1235 rcu_read_lock();
1236 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237 if (addr_type == irk->addr_type &&
1238 bacmp(bdaddr, &irk->bdaddr) == 0) {
1239 irk_to_return = irk;
1240 goto done;
1241 }
1242 }
1243
1244done:
1245
1246 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247 irk_to_return->val)) {
1248 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249 &irk_to_return->bdaddr);
1250 irk_to_return = NULL;
1251 }
1252
1253 rcu_read_unlock();
1254
1255 return irk_to_return;
1256}
1257
1258struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259 bdaddr_t *bdaddr, u8 *val, u8 type,
1260 u8 pin_len, bool *persistent)
1261{
1262 struct link_key *key, *old_key;
1263 u8 old_key_type;
1264
1265 old_key = hci_find_link_key(hdev, bdaddr);
1266 if (old_key) {
1267 old_key_type = old_key->type;
1268 key = old_key;
1269 } else {
1270 old_key_type = conn ? conn->key_type : 0xff;
1271 key = kzalloc(sizeof(*key), GFP_KERNEL);
1272 if (!key)
1273 return NULL;
1274 list_add_rcu(&key->list, &hdev->link_keys);
1275 }
1276
1277 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278
1279 /* Some buggy controller combinations generate a changed
1280 * combination key for legacy pairing even when there's no
1281 * previous key */
1282 if (type == HCI_LK_CHANGED_COMBINATION &&
1283 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284 type = HCI_LK_COMBINATION;
1285 if (conn)
1286 conn->key_type = type;
1287 }
1288
1289 bacpy(&key->bdaddr, bdaddr);
1290 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291 key->pin_len = pin_len;
1292
1293 if (type == HCI_LK_CHANGED_COMBINATION)
1294 key->type = old_key_type;
1295 else
1296 key->type = type;
1297
1298 if (persistent)
1299 *persistent = hci_persistent_key(hdev, conn, type,
1300 old_key_type);
1301
1302 return key;
1303}
1304
1305struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306 u8 addr_type, u8 type, u8 authenticated,
1307 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308{
1309 struct smp_ltk *key, *old_key;
1310 u8 role = ltk_role(type);
1311
1312 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313 if (old_key)
1314 key = old_key;
1315 else {
1316 key = kzalloc(sizeof(*key), GFP_KERNEL);
1317 if (!key)
1318 return NULL;
1319 list_add_rcu(&key->list, &hdev->long_term_keys);
1320 }
1321
1322 bacpy(&key->bdaddr, bdaddr);
1323 key->bdaddr_type = addr_type;
1324 memcpy(key->val, tk, sizeof(key->val));
1325 key->authenticated = authenticated;
1326 key->ediv = ediv;
1327 key->rand = rand;
1328 key->enc_size = enc_size;
1329 key->type = type;
1330
1331 return key;
1332}
1333
1334struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335 u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336{
1337 struct smp_irk *irk;
1338
1339 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340 if (!irk) {
1341 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342 if (!irk)
1343 return NULL;
1344
1345 bacpy(&irk->bdaddr, bdaddr);
1346 irk->addr_type = addr_type;
1347
1348 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349 }
1350
1351 memcpy(irk->val, val, 16);
1352 bacpy(&irk->rpa, rpa);
1353
1354 return irk;
1355}
1356
1357int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358{
1359 struct link_key *key;
1360
1361 key = hci_find_link_key(hdev, bdaddr);
1362 if (!key)
1363 return -ENOENT;
1364
1365 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366
1367 list_del_rcu(&key->list);
1368 kfree_rcu(key, rcu);
1369
1370 return 0;
1371}
1372
1373int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374{
1375 struct smp_ltk *k, *tmp;
1376 int removed = 0;
1377
1378 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380 continue;
1381
1382 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383
1384 list_del_rcu(&k->list);
1385 kfree_rcu(k, rcu);
1386 removed++;
1387 }
1388
1389 return removed ? 0 : -ENOENT;
1390}
1391
1392void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393{
1394 struct smp_irk *k, *tmp;
1395
1396 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398 continue;
1399
1400 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401
1402 list_del_rcu(&k->list);
1403 kfree_rcu(k, rcu);
1404 }
1405}
1406
1407bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408{
1409 struct smp_ltk *k;
1410 struct smp_irk *irk;
1411 u8 addr_type;
1412
1413 if (type == BDADDR_BREDR) {
1414 if (hci_find_link_key(hdev, bdaddr))
1415 return true;
1416 return false;
1417 }
1418
1419 /* Convert to HCI addr type which struct smp_ltk uses */
1420 if (type == BDADDR_LE_PUBLIC)
1421 addr_type = ADDR_LE_DEV_PUBLIC;
1422 else
1423 addr_type = ADDR_LE_DEV_RANDOM;
1424
1425 irk = hci_get_irk(hdev, bdaddr, addr_type);
1426 if (irk) {
1427 bdaddr = &irk->bdaddr;
1428 addr_type = irk->addr_type;
1429 }
1430
1431 rcu_read_lock();
1432 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434 rcu_read_unlock();
1435 return true;
1436 }
1437 }
1438 rcu_read_unlock();
1439
1440 return false;
1441}
1442
1443/* HCI command timer function */
1444static void hci_cmd_timeout(struct work_struct *work)
1445{
1446 struct hci_dev *hdev = container_of(work, struct hci_dev,
1447 cmd_timer.work);
1448
1449 if (hdev->req_skb) {
1450 u16 opcode = hci_skb_opcode(hdev->req_skb);
1451
1452 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453
1454 hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455 } else {
1456 bt_dev_err(hdev, "command tx timeout");
1457 }
1458
1459 if (hdev->cmd_timeout)
1460 hdev->cmd_timeout(hdev);
1461
1462 atomic_set(&hdev->cmd_cnt, 1);
1463 queue_work(hdev->workqueue, &hdev->cmd_work);
1464}
1465
1466/* HCI ncmd timer function */
1467static void hci_ncmd_timeout(struct work_struct *work)
1468{
1469 struct hci_dev *hdev = container_of(work, struct hci_dev,
1470 ncmd_timer.work);
1471
1472 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473
1474 /* During HCI_INIT phase no events can be injected if the ncmd timer
1475 * triggers since the procedure has its own timeout handling.
1476 */
1477 if (test_bit(HCI_INIT, &hdev->flags))
1478 return;
1479
1480 /* This is an irrecoverable state, inject hardware error event */
1481 hci_reset_dev(hdev);
1482}
1483
1484struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485 bdaddr_t *bdaddr, u8 bdaddr_type)
1486{
1487 struct oob_data *data;
1488
1489 list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490 if (bacmp(bdaddr, &data->bdaddr) != 0)
1491 continue;
1492 if (data->bdaddr_type != bdaddr_type)
1493 continue;
1494 return data;
1495 }
1496
1497 return NULL;
1498}
1499
1500int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501 u8 bdaddr_type)
1502{
1503 struct oob_data *data;
1504
1505 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506 if (!data)
1507 return -ENOENT;
1508
1509 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510
1511 list_del(&data->list);
1512 kfree(data);
1513
1514 return 0;
1515}
1516
1517void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518{
1519 struct oob_data *data, *n;
1520
1521 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522 list_del(&data->list);
1523 kfree(data);
1524 }
1525}
1526
1527int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529 u8 *hash256, u8 *rand256)
1530{
1531 struct oob_data *data;
1532
1533 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534 if (!data) {
1535 data = kmalloc(sizeof(*data), GFP_KERNEL);
1536 if (!data)
1537 return -ENOMEM;
1538
1539 bacpy(&data->bdaddr, bdaddr);
1540 data->bdaddr_type = bdaddr_type;
1541 list_add(&data->list, &hdev->remote_oob_data);
1542 }
1543
1544 if (hash192 && rand192) {
1545 memcpy(data->hash192, hash192, sizeof(data->hash192));
1546 memcpy(data->rand192, rand192, sizeof(data->rand192));
1547 if (hash256 && rand256)
1548 data->present = 0x03;
1549 } else {
1550 memset(data->hash192, 0, sizeof(data->hash192));
1551 memset(data->rand192, 0, sizeof(data->rand192));
1552 if (hash256 && rand256)
1553 data->present = 0x02;
1554 else
1555 data->present = 0x00;
1556 }
1557
1558 if (hash256 && rand256) {
1559 memcpy(data->hash256, hash256, sizeof(data->hash256));
1560 memcpy(data->rand256, rand256, sizeof(data->rand256));
1561 } else {
1562 memset(data->hash256, 0, sizeof(data->hash256));
1563 memset(data->rand256, 0, sizeof(data->rand256));
1564 if (hash192 && rand192)
1565 data->present = 0x01;
1566 }
1567
1568 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569
1570 return 0;
1571}
1572
1573/* This function requires the caller holds hdev->lock */
1574struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575{
1576 struct adv_info *adv_instance;
1577
1578 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579 if (adv_instance->instance == instance)
1580 return adv_instance;
1581 }
1582
1583 return NULL;
1584}
1585
1586/* This function requires the caller holds hdev->lock */
1587struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588{
1589 struct adv_info *cur_instance;
1590
1591 cur_instance = hci_find_adv_instance(hdev, instance);
1592 if (!cur_instance)
1593 return NULL;
1594
1595 if (cur_instance == list_last_entry(&hdev->adv_instances,
1596 struct adv_info, list))
1597 return list_first_entry(&hdev->adv_instances,
1598 struct adv_info, list);
1599 else
1600 return list_next_entry(cur_instance, list);
1601}
1602
1603/* This function requires the caller holds hdev->lock */
1604int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605{
1606 struct adv_info *adv_instance;
1607
1608 adv_instance = hci_find_adv_instance(hdev, instance);
1609 if (!adv_instance)
1610 return -ENOENT;
1611
1612 BT_DBG("%s removing %dMR", hdev->name, instance);
1613
1614 if (hdev->cur_adv_instance == instance) {
1615 if (hdev->adv_instance_timeout) {
1616 cancel_delayed_work(&hdev->adv_instance_expire);
1617 hdev->adv_instance_timeout = 0;
1618 }
1619 hdev->cur_adv_instance = 0x00;
1620 }
1621
1622 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1623
1624 list_del(&adv_instance->list);
1625 kfree(adv_instance);
1626
1627 hdev->adv_instance_cnt--;
1628
1629 return 0;
1630}
1631
1632void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1633{
1634 struct adv_info *adv_instance, *n;
1635
1636 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637 adv_instance->rpa_expired = rpa_expired;
1638}
1639
1640/* This function requires the caller holds hdev->lock */
1641void hci_adv_instances_clear(struct hci_dev *hdev)
1642{
1643 struct adv_info *adv_instance, *n;
1644
1645 if (hdev->adv_instance_timeout) {
1646 disable_delayed_work(&hdev->adv_instance_expire);
1647 hdev->adv_instance_timeout = 0;
1648 }
1649
1650 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651 disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652 list_del(&adv_instance->list);
1653 kfree(adv_instance);
1654 }
1655
1656 hdev->adv_instance_cnt = 0;
1657 hdev->cur_adv_instance = 0x00;
1658}
1659
1660static void adv_instance_rpa_expired(struct work_struct *work)
1661{
1662 struct adv_info *adv_instance = container_of(work, struct adv_info,
1663 rpa_expired_cb.work);
1664
1665 BT_DBG("");
1666
1667 adv_instance->rpa_expired = true;
1668}
1669
1670/* This function requires the caller holds hdev->lock */
1671struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672 u32 flags, u16 adv_data_len, u8 *adv_data,
1673 u16 scan_rsp_len, u8 *scan_rsp_data,
1674 u16 timeout, u16 duration, s8 tx_power,
1675 u32 min_interval, u32 max_interval,
1676 u8 mesh_handle)
1677{
1678 struct adv_info *adv;
1679
1680 adv = hci_find_adv_instance(hdev, instance);
1681 if (adv) {
1682 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685 } else {
1686 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687 instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688 return ERR_PTR(-EOVERFLOW);
1689
1690 adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691 if (!adv)
1692 return ERR_PTR(-ENOMEM);
1693
1694 adv->pending = true;
1695 adv->instance = instance;
1696
1697 /* If controller support only one set and the instance is set to
1698 * 1 then there is no option other than using handle 0x00.
1699 */
1700 if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701 adv->handle = 0x00;
1702 else
1703 adv->handle = instance;
1704
1705 list_add(&adv->list, &hdev->adv_instances);
1706 hdev->adv_instance_cnt++;
1707 }
1708
1709 adv->flags = flags;
1710 adv->min_interval = min_interval;
1711 adv->max_interval = max_interval;
1712 adv->tx_power = tx_power;
1713 /* Defining a mesh_handle changes the timing units to ms,
1714 * rather than seconds, and ties the instance to the requested
1715 * mesh_tx queue.
1716 */
1717 adv->mesh = mesh_handle;
1718
1719 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720 scan_rsp_len, scan_rsp_data);
1721
1722 adv->timeout = timeout;
1723 adv->remaining_time = timeout;
1724
1725 if (duration == 0)
1726 adv->duration = hdev->def_multi_adv_rotation_duration;
1727 else
1728 adv->duration = duration;
1729
1730 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1731
1732 BT_DBG("%s for %dMR", hdev->name, instance);
1733
1734 return adv;
1735}
1736
1737/* This function requires the caller holds hdev->lock */
1738struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739 u32 flags, u8 data_len, u8 *data,
1740 u32 min_interval, u32 max_interval)
1741{
1742 struct adv_info *adv;
1743
1744 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746 min_interval, max_interval, 0);
1747 if (IS_ERR(adv))
1748 return adv;
1749
1750 adv->periodic = true;
1751 adv->per_adv_data_len = data_len;
1752
1753 if (data)
1754 memcpy(adv->per_adv_data, data, data_len);
1755
1756 return adv;
1757}
1758
1759/* This function requires the caller holds hdev->lock */
1760int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761 u16 adv_data_len, u8 *adv_data,
1762 u16 scan_rsp_len, u8 *scan_rsp_data)
1763{
1764 struct adv_info *adv;
1765
1766 adv = hci_find_adv_instance(hdev, instance);
1767
1768 /* If advertisement doesn't exist, we can't modify its data */
1769 if (!adv)
1770 return -ENOENT;
1771
1772 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774 memcpy(adv->adv_data, adv_data, adv_data_len);
1775 adv->adv_data_len = adv_data_len;
1776 adv->adv_data_changed = true;
1777 }
1778
1779 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782 adv->scan_rsp_len = scan_rsp_len;
1783 adv->scan_rsp_changed = true;
1784 }
1785
1786 /* Mark as changed if there are flags which would affect it */
1787 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789 adv->scan_rsp_changed = true;
1790
1791 return 0;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796{
1797 u32 flags;
1798 struct adv_info *adv;
1799
1800 if (instance == 0x00) {
1801 /* Instance 0 always manages the "Tx Power" and "Flags"
1802 * fields
1803 */
1804 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805
1806 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807 * corresponds to the "connectable" instance flag.
1808 */
1809 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811
1812 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815 flags |= MGMT_ADV_FLAG_DISCOV;
1816
1817 return flags;
1818 }
1819
1820 adv = hci_find_adv_instance(hdev, instance);
1821
1822 /* Return 0 when we got an invalid instance identifier. */
1823 if (!adv)
1824 return 0;
1825
1826 return adv->flags;
1827}
1828
1829bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830{
1831 struct adv_info *adv;
1832
1833 /* Instance 0x00 always set local name */
1834 if (instance == 0x00)
1835 return true;
1836
1837 adv = hci_find_adv_instance(hdev, instance);
1838 if (!adv)
1839 return false;
1840
1841 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843 return true;
1844
1845 return adv->scan_rsp_len ? true : false;
1846}
1847
1848/* This function requires the caller holds hdev->lock */
1849void hci_adv_monitors_clear(struct hci_dev *hdev)
1850{
1851 struct adv_monitor *monitor;
1852 int handle;
1853
1854 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855 hci_free_adv_monitor(hdev, monitor);
1856
1857 idr_destroy(&hdev->adv_monitors_idr);
1858}
1859
1860/* Frees the monitor structure and do some bookkeepings.
1861 * This function requires the caller holds hdev->lock.
1862 */
1863void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864{
1865 struct adv_pattern *pattern;
1866 struct adv_pattern *tmp;
1867
1868 if (!monitor)
1869 return;
1870
1871 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872 list_del(&pattern->list);
1873 kfree(pattern);
1874 }
1875
1876 if (monitor->handle)
1877 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878
1879 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880 hdev->adv_monitors_cnt--;
1881 mgmt_adv_monitor_removed(hdev, monitor->handle);
1882 }
1883
1884 kfree(monitor);
1885}
1886
1887/* Assigns handle to a monitor, and if offloading is supported and power is on,
1888 * also attempts to forward the request to the controller.
1889 * This function requires the caller holds hci_req_sync_lock.
1890 */
1891int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1892{
1893 int min, max, handle;
1894 int status = 0;
1895
1896 if (!monitor)
1897 return -EINVAL;
1898
1899 hci_dev_lock(hdev);
1900
1901 min = HCI_MIN_ADV_MONITOR_HANDLE;
1902 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904 GFP_KERNEL);
1905
1906 hci_dev_unlock(hdev);
1907
1908 if (handle < 0)
1909 return handle;
1910
1911 monitor->handle = handle;
1912
1913 if (!hdev_is_powered(hdev))
1914 return status;
1915
1916 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917 case HCI_ADV_MONITOR_EXT_NONE:
1918 bt_dev_dbg(hdev, "add monitor %d status %d",
1919 monitor->handle, status);
1920 /* Message was not forwarded to controller - not an error */
1921 break;
1922
1923 case HCI_ADV_MONITOR_EXT_MSFT:
1924 status = msft_add_monitor_pattern(hdev, monitor);
1925 bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926 handle, status);
1927 break;
1928 }
1929
1930 return status;
1931}
1932
1933/* Attempts to tell the controller and free the monitor. If somehow the
1934 * controller doesn't have a corresponding handle, remove anyway.
1935 * This function requires the caller holds hci_req_sync_lock.
1936 */
1937static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938 struct adv_monitor *monitor)
1939{
1940 int status = 0;
1941 int handle;
1942
1943 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945 bt_dev_dbg(hdev, "remove monitor %d status %d",
1946 monitor->handle, status);
1947 goto free_monitor;
1948
1949 case HCI_ADV_MONITOR_EXT_MSFT:
1950 handle = monitor->handle;
1951 status = msft_remove_monitor(hdev, monitor);
1952 bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953 handle, status);
1954 break;
1955 }
1956
1957 /* In case no matching handle registered, just free the monitor */
1958 if (status == -ENOENT)
1959 goto free_monitor;
1960
1961 return status;
1962
1963free_monitor:
1964 if (status == -ENOENT)
1965 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966 monitor->handle);
1967 hci_free_adv_monitor(hdev, monitor);
1968
1969 return status;
1970}
1971
1972/* This function requires the caller holds hci_req_sync_lock */
1973int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1974{
1975 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1976
1977 if (!monitor)
1978 return -EINVAL;
1979
1980 return hci_remove_adv_monitor(hdev, monitor);
1981}
1982
1983/* This function requires the caller holds hci_req_sync_lock */
1984int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1985{
1986 struct adv_monitor *monitor;
1987 int idr_next_id = 0;
1988 int status = 0;
1989
1990 while (1) {
1991 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992 if (!monitor)
1993 break;
1994
1995 status = hci_remove_adv_monitor(hdev, monitor);
1996 if (status)
1997 return status;
1998
1999 idr_next_id++;
2000 }
2001
2002 return status;
2003}
2004
2005/* This function requires the caller holds hdev->lock */
2006bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007{
2008 return !idr_is_empty(&hdev->adv_monitors_idr);
2009}
2010
2011int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2012{
2013 if (msft_monitor_supported(hdev))
2014 return HCI_ADV_MONITOR_EXT_MSFT;
2015
2016 return HCI_ADV_MONITOR_EXT_NONE;
2017}
2018
2019struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020 bdaddr_t *bdaddr, u8 type)
2021{
2022 struct bdaddr_list *b;
2023
2024 list_for_each_entry(b, bdaddr_list, list) {
2025 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026 return b;
2027 }
2028
2029 return NULL;
2030}
2031
2032struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034 u8 type)
2035{
2036 struct bdaddr_list_with_irk *b;
2037
2038 list_for_each_entry(b, bdaddr_list, list) {
2039 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040 return b;
2041 }
2042
2043 return NULL;
2044}
2045
2046struct bdaddr_list_with_flags *
2047hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048 bdaddr_t *bdaddr, u8 type)
2049{
2050 struct bdaddr_list_with_flags *b;
2051
2052 list_for_each_entry(b, bdaddr_list, list) {
2053 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054 return b;
2055 }
2056
2057 return NULL;
2058}
2059
2060void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061{
2062 struct bdaddr_list *b, *n;
2063
2064 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065 list_del(&b->list);
2066 kfree(b);
2067 }
2068}
2069
2070int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071{
2072 struct bdaddr_list *entry;
2073
2074 if (!bacmp(bdaddr, BDADDR_ANY))
2075 return -EBADF;
2076
2077 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078 return -EEXIST;
2079
2080 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081 if (!entry)
2082 return -ENOMEM;
2083
2084 bacpy(&entry->bdaddr, bdaddr);
2085 entry->bdaddr_type = type;
2086
2087 list_add(&entry->list, list);
2088
2089 return 0;
2090}
2091
2092int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093 u8 type, u8 *peer_irk, u8 *local_irk)
2094{
2095 struct bdaddr_list_with_irk *entry;
2096
2097 if (!bacmp(bdaddr, BDADDR_ANY))
2098 return -EBADF;
2099
2100 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101 return -EEXIST;
2102
2103 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104 if (!entry)
2105 return -ENOMEM;
2106
2107 bacpy(&entry->bdaddr, bdaddr);
2108 entry->bdaddr_type = type;
2109
2110 if (peer_irk)
2111 memcpy(entry->peer_irk, peer_irk, 16);
2112
2113 if (local_irk)
2114 memcpy(entry->local_irk, local_irk, 16);
2115
2116 list_add(&entry->list, list);
2117
2118 return 0;
2119}
2120
2121int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122 u8 type, u32 flags)
2123{
2124 struct bdaddr_list_with_flags *entry;
2125
2126 if (!bacmp(bdaddr, BDADDR_ANY))
2127 return -EBADF;
2128
2129 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130 return -EEXIST;
2131
2132 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133 if (!entry)
2134 return -ENOMEM;
2135
2136 bacpy(&entry->bdaddr, bdaddr);
2137 entry->bdaddr_type = type;
2138 entry->flags = flags;
2139
2140 list_add(&entry->list, list);
2141
2142 return 0;
2143}
2144
2145int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2146{
2147 struct bdaddr_list *entry;
2148
2149 if (!bacmp(bdaddr, BDADDR_ANY)) {
2150 hci_bdaddr_list_clear(list);
2151 return 0;
2152 }
2153
2154 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155 if (!entry)
2156 return -ENOENT;
2157
2158 list_del(&entry->list);
2159 kfree(entry);
2160
2161 return 0;
2162}
2163
2164int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165 u8 type)
2166{
2167 struct bdaddr_list_with_irk *entry;
2168
2169 if (!bacmp(bdaddr, BDADDR_ANY)) {
2170 hci_bdaddr_list_clear(list);
2171 return 0;
2172 }
2173
2174 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175 if (!entry)
2176 return -ENOENT;
2177
2178 list_del(&entry->list);
2179 kfree(entry);
2180
2181 return 0;
2182}
2183
2184int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2185 u8 type)
2186{
2187 struct bdaddr_list_with_flags *entry;
2188
2189 if (!bacmp(bdaddr, BDADDR_ANY)) {
2190 hci_bdaddr_list_clear(list);
2191 return 0;
2192 }
2193
2194 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2195 if (!entry)
2196 return -ENOENT;
2197
2198 list_del(&entry->list);
2199 kfree(entry);
2200
2201 return 0;
2202}
2203
2204/* This function requires the caller holds hdev->lock */
2205struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2206 bdaddr_t *addr, u8 addr_type)
2207{
2208 struct hci_conn_params *params;
2209
2210 list_for_each_entry(params, &hdev->le_conn_params, list) {
2211 if (bacmp(¶ms->addr, addr) == 0 &&
2212 params->addr_type == addr_type) {
2213 return params;
2214 }
2215 }
2216
2217 return NULL;
2218}
2219
2220/* This function requires the caller holds hdev->lock or rcu_read_lock */
2221struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2222 bdaddr_t *addr, u8 addr_type)
2223{
2224 struct hci_conn_params *param;
2225
2226 rcu_read_lock();
2227
2228 list_for_each_entry_rcu(param, list, action) {
2229 if (bacmp(¶m->addr, addr) == 0 &&
2230 param->addr_type == addr_type) {
2231 rcu_read_unlock();
2232 return param;
2233 }
2234 }
2235
2236 rcu_read_unlock();
2237
2238 return NULL;
2239}
2240
2241/* This function requires the caller holds hdev->lock */
2242void hci_pend_le_list_del_init(struct hci_conn_params *param)
2243{
2244 if (list_empty(¶m->action))
2245 return;
2246
2247 list_del_rcu(¶m->action);
2248 synchronize_rcu();
2249 INIT_LIST_HEAD(¶m->action);
2250}
2251
2252/* This function requires the caller holds hdev->lock */
2253void hci_pend_le_list_add(struct hci_conn_params *param,
2254 struct list_head *list)
2255{
2256 list_add_rcu(¶m->action, list);
2257}
2258
2259/* This function requires the caller holds hdev->lock */
2260struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2261 bdaddr_t *addr, u8 addr_type)
2262{
2263 struct hci_conn_params *params;
2264
2265 params = hci_conn_params_lookup(hdev, addr, addr_type);
2266 if (params)
2267 return params;
2268
2269 params = kzalloc(sizeof(*params), GFP_KERNEL);
2270 if (!params) {
2271 bt_dev_err(hdev, "out of memory");
2272 return NULL;
2273 }
2274
2275 bacpy(¶ms->addr, addr);
2276 params->addr_type = addr_type;
2277
2278 list_add(¶ms->list, &hdev->le_conn_params);
2279 INIT_LIST_HEAD(¶ms->action);
2280
2281 params->conn_min_interval = hdev->le_conn_min_interval;
2282 params->conn_max_interval = hdev->le_conn_max_interval;
2283 params->conn_latency = hdev->le_conn_latency;
2284 params->supervision_timeout = hdev->le_supv_timeout;
2285 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2286
2287 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2288
2289 return params;
2290}
2291
2292void hci_conn_params_free(struct hci_conn_params *params)
2293{
2294 hci_pend_le_list_del_init(params);
2295
2296 if (params->conn) {
2297 hci_conn_drop(params->conn);
2298 hci_conn_put(params->conn);
2299 }
2300
2301 list_del(¶ms->list);
2302 kfree(params);
2303}
2304
2305/* This function requires the caller holds hdev->lock */
2306void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2307{
2308 struct hci_conn_params *params;
2309
2310 params = hci_conn_params_lookup(hdev, addr, addr_type);
2311 if (!params)
2312 return;
2313
2314 hci_conn_params_free(params);
2315
2316 hci_update_passive_scan(hdev);
2317
2318 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2319}
2320
2321/* This function requires the caller holds hdev->lock */
2322void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2323{
2324 struct hci_conn_params *params, *tmp;
2325
2326 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2327 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2328 continue;
2329
2330 /* If trying to establish one time connection to disabled
2331 * device, leave the params, but mark them as just once.
2332 */
2333 if (params->explicit_connect) {
2334 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2335 continue;
2336 }
2337
2338 hci_conn_params_free(params);
2339 }
2340
2341 BT_DBG("All LE disabled connection parameters were removed");
2342}
2343
2344/* This function requires the caller holds hdev->lock */
2345static void hci_conn_params_clear_all(struct hci_dev *hdev)
2346{
2347 struct hci_conn_params *params, *tmp;
2348
2349 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2350 hci_conn_params_free(params);
2351
2352 BT_DBG("All LE connection parameters were removed");
2353}
2354
2355/* Copy the Identity Address of the controller.
2356 *
2357 * If the controller has a public BD_ADDR, then by default use that one.
2358 * If this is a LE only controller without a public address, default to
2359 * the static random address.
2360 *
2361 * For debugging purposes it is possible to force controllers with a
2362 * public address to use the static random address instead.
2363 *
2364 * In case BR/EDR has been disabled on a dual-mode controller and
2365 * userspace has configured a static address, then that address
2366 * becomes the identity address instead of the public BR/EDR address.
2367 */
2368void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2369 u8 *bdaddr_type)
2370{
2371 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2372 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2373 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2374 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2375 bacpy(bdaddr, &hdev->static_addr);
2376 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2377 } else {
2378 bacpy(bdaddr, &hdev->bdaddr);
2379 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2380 }
2381}
2382
2383static void hci_clear_wake_reason(struct hci_dev *hdev)
2384{
2385 hci_dev_lock(hdev);
2386
2387 hdev->wake_reason = 0;
2388 bacpy(&hdev->wake_addr, BDADDR_ANY);
2389 hdev->wake_addr_type = 0;
2390
2391 hci_dev_unlock(hdev);
2392}
2393
2394static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2395 void *data)
2396{
2397 struct hci_dev *hdev =
2398 container_of(nb, struct hci_dev, suspend_notifier);
2399 int ret = 0;
2400
2401 /* Userspace has full control of this device. Do nothing. */
2402 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2403 return NOTIFY_DONE;
2404
2405 /* To avoid a potential race with hci_unregister_dev. */
2406 hci_dev_hold(hdev);
2407
2408 switch (action) {
2409 case PM_HIBERNATION_PREPARE:
2410 case PM_SUSPEND_PREPARE:
2411 ret = hci_suspend_dev(hdev);
2412 break;
2413 case PM_POST_HIBERNATION:
2414 case PM_POST_SUSPEND:
2415 ret = hci_resume_dev(hdev);
2416 break;
2417 }
2418
2419 if (ret)
2420 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2421 action, ret);
2422
2423 hci_dev_put(hdev);
2424 return NOTIFY_DONE;
2425}
2426
2427/* Alloc HCI device */
2428struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2429{
2430 struct hci_dev *hdev;
2431 unsigned int alloc_size;
2432
2433 alloc_size = sizeof(*hdev);
2434 if (sizeof_priv) {
2435 /* Fixme: May need ALIGN-ment? */
2436 alloc_size += sizeof_priv;
2437 }
2438
2439 hdev = kzalloc(alloc_size, GFP_KERNEL);
2440 if (!hdev)
2441 return NULL;
2442
2443 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2444 hdev->esco_type = (ESCO_HV1);
2445 hdev->link_mode = (HCI_LM_ACCEPT);
2446 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2447 hdev->io_capability = 0x03; /* No Input No Output */
2448 hdev->manufacturer = 0xffff; /* Default to internal use */
2449 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2450 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2451 hdev->adv_instance_cnt = 0;
2452 hdev->cur_adv_instance = 0x00;
2453 hdev->adv_instance_timeout = 0;
2454
2455 hdev->advmon_allowlist_duration = 300;
2456 hdev->advmon_no_filter_duration = 500;
2457 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */
2458
2459 hdev->sniff_max_interval = 800;
2460 hdev->sniff_min_interval = 80;
2461
2462 hdev->le_adv_channel_map = 0x07;
2463 hdev->le_adv_min_interval = 0x0800;
2464 hdev->le_adv_max_interval = 0x0800;
2465 hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2466 hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2467 hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2468 hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2469 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2470 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2471 hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2472 hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2473 hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2474 hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2475 hdev->le_conn_min_interval = 0x0018;
2476 hdev->le_conn_max_interval = 0x0028;
2477 hdev->le_conn_latency = 0x0000;
2478 hdev->le_supv_timeout = 0x002a;
2479 hdev->le_def_tx_len = 0x001b;
2480 hdev->le_def_tx_time = 0x0148;
2481 hdev->le_max_tx_len = 0x001b;
2482 hdev->le_max_tx_time = 0x0148;
2483 hdev->le_max_rx_len = 0x001b;
2484 hdev->le_max_rx_time = 0x0148;
2485 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2486 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2487 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2488 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2489 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2490 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2491 hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2492 hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2493 hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2494
2495 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2496 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2497 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2498 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2499 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2500 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2501
2502 /* default 1.28 sec page scan */
2503 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2504 hdev->def_page_scan_int = 0x0800;
2505 hdev->def_page_scan_window = 0x0012;
2506
2507 mutex_init(&hdev->lock);
2508 mutex_init(&hdev->req_lock);
2509
2510 ida_init(&hdev->unset_handle_ida);
2511
2512 INIT_LIST_HEAD(&hdev->mesh_pending);
2513 INIT_LIST_HEAD(&hdev->mgmt_pending);
2514 INIT_LIST_HEAD(&hdev->reject_list);
2515 INIT_LIST_HEAD(&hdev->accept_list);
2516 INIT_LIST_HEAD(&hdev->uuids);
2517 INIT_LIST_HEAD(&hdev->link_keys);
2518 INIT_LIST_HEAD(&hdev->long_term_keys);
2519 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2520 INIT_LIST_HEAD(&hdev->remote_oob_data);
2521 INIT_LIST_HEAD(&hdev->le_accept_list);
2522 INIT_LIST_HEAD(&hdev->le_resolv_list);
2523 INIT_LIST_HEAD(&hdev->le_conn_params);
2524 INIT_LIST_HEAD(&hdev->pend_le_conns);
2525 INIT_LIST_HEAD(&hdev->pend_le_reports);
2526 INIT_LIST_HEAD(&hdev->conn_hash.list);
2527 INIT_LIST_HEAD(&hdev->adv_instances);
2528 INIT_LIST_HEAD(&hdev->blocked_keys);
2529 INIT_LIST_HEAD(&hdev->monitored_devices);
2530
2531 INIT_LIST_HEAD(&hdev->local_codecs);
2532 INIT_WORK(&hdev->rx_work, hci_rx_work);
2533 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2534 INIT_WORK(&hdev->tx_work, hci_tx_work);
2535 INIT_WORK(&hdev->power_on, hci_power_on);
2536 INIT_WORK(&hdev->error_reset, hci_error_reset);
2537
2538 hci_cmd_sync_init(hdev);
2539
2540 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2541
2542 skb_queue_head_init(&hdev->rx_q);
2543 skb_queue_head_init(&hdev->cmd_q);
2544 skb_queue_head_init(&hdev->raw_q);
2545
2546 init_waitqueue_head(&hdev->req_wait_q);
2547
2548 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2549 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2550
2551 hci_devcd_setup(hdev);
2552
2553 hci_init_sysfs(hdev);
2554 discovery_init(hdev);
2555
2556 return hdev;
2557}
2558EXPORT_SYMBOL(hci_alloc_dev_priv);
2559
2560/* Free HCI device */
2561void hci_free_dev(struct hci_dev *hdev)
2562{
2563 /* will free via device release */
2564 put_device(&hdev->dev);
2565}
2566EXPORT_SYMBOL(hci_free_dev);
2567
2568/* Register HCI device */
2569int hci_register_dev(struct hci_dev *hdev)
2570{
2571 int id, error;
2572
2573 if (!hdev->open || !hdev->close || !hdev->send)
2574 return -EINVAL;
2575
2576 id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2577 if (id < 0)
2578 return id;
2579
2580 error = dev_set_name(&hdev->dev, "hci%u", id);
2581 if (error)
2582 return error;
2583
2584 hdev->name = dev_name(&hdev->dev);
2585 hdev->id = id;
2586
2587 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2588
2589 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2590 if (!hdev->workqueue) {
2591 error = -ENOMEM;
2592 goto err;
2593 }
2594
2595 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2596 hdev->name);
2597 if (!hdev->req_workqueue) {
2598 destroy_workqueue(hdev->workqueue);
2599 error = -ENOMEM;
2600 goto err;
2601 }
2602
2603 if (!IS_ERR_OR_NULL(bt_debugfs))
2604 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2605
2606 error = device_add(&hdev->dev);
2607 if (error < 0)
2608 goto err_wqueue;
2609
2610 hci_leds_init(hdev);
2611
2612 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2613 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2614 hdev);
2615 if (hdev->rfkill) {
2616 if (rfkill_register(hdev->rfkill) < 0) {
2617 rfkill_destroy(hdev->rfkill);
2618 hdev->rfkill = NULL;
2619 }
2620 }
2621
2622 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2623 hci_dev_set_flag(hdev, HCI_RFKILLED);
2624
2625 hci_dev_set_flag(hdev, HCI_SETUP);
2626 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2627
2628 /* Assume BR/EDR support until proven otherwise (such as
2629 * through reading supported features during init.
2630 */
2631 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2632
2633 write_lock(&hci_dev_list_lock);
2634 list_add(&hdev->list, &hci_dev_list);
2635 write_unlock(&hci_dev_list_lock);
2636
2637 /* Devices that are marked for raw-only usage are unconfigured
2638 * and should not be included in normal operation.
2639 */
2640 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2641 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2642
2643 /* Mark Remote Wakeup connection flag as supported if driver has wakeup
2644 * callback.
2645 */
2646 if (hdev->wakeup)
2647 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2648
2649 hci_sock_dev_event(hdev, HCI_DEV_REG);
2650 hci_dev_hold(hdev);
2651
2652 error = hci_register_suspend_notifier(hdev);
2653 if (error)
2654 BT_WARN("register suspend notifier failed error:%d\n", error);
2655
2656 queue_work(hdev->req_workqueue, &hdev->power_on);
2657
2658 idr_init(&hdev->adv_monitors_idr);
2659 msft_register(hdev);
2660
2661 return id;
2662
2663err_wqueue:
2664 debugfs_remove_recursive(hdev->debugfs);
2665 destroy_workqueue(hdev->workqueue);
2666 destroy_workqueue(hdev->req_workqueue);
2667err:
2668 ida_free(&hci_index_ida, hdev->id);
2669
2670 return error;
2671}
2672EXPORT_SYMBOL(hci_register_dev);
2673
2674/* Unregister HCI device */
2675void hci_unregister_dev(struct hci_dev *hdev)
2676{
2677 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2678
2679 mutex_lock(&hdev->unregister_lock);
2680 hci_dev_set_flag(hdev, HCI_UNREGISTER);
2681 mutex_unlock(&hdev->unregister_lock);
2682
2683 write_lock(&hci_dev_list_lock);
2684 list_del(&hdev->list);
2685 write_unlock(&hci_dev_list_lock);
2686
2687 disable_work_sync(&hdev->rx_work);
2688 disable_work_sync(&hdev->cmd_work);
2689 disable_work_sync(&hdev->tx_work);
2690 disable_work_sync(&hdev->power_on);
2691 disable_work_sync(&hdev->error_reset);
2692
2693 hci_cmd_sync_clear(hdev);
2694
2695 hci_unregister_suspend_notifier(hdev);
2696
2697 hci_dev_do_close(hdev);
2698
2699 if (!test_bit(HCI_INIT, &hdev->flags) &&
2700 !hci_dev_test_flag(hdev, HCI_SETUP) &&
2701 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2702 hci_dev_lock(hdev);
2703 mgmt_index_removed(hdev);
2704 hci_dev_unlock(hdev);
2705 }
2706
2707 /* mgmt_index_removed should take care of emptying the
2708 * pending list */
2709 BUG_ON(!list_empty(&hdev->mgmt_pending));
2710
2711 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2712
2713 if (hdev->rfkill) {
2714 rfkill_unregister(hdev->rfkill);
2715 rfkill_destroy(hdev->rfkill);
2716 }
2717
2718 device_del(&hdev->dev);
2719 /* Actual cleanup is deferred until hci_release_dev(). */
2720 hci_dev_put(hdev);
2721}
2722EXPORT_SYMBOL(hci_unregister_dev);
2723
2724/* Release HCI device */
2725void hci_release_dev(struct hci_dev *hdev)
2726{
2727 debugfs_remove_recursive(hdev->debugfs);
2728 kfree_const(hdev->hw_info);
2729 kfree_const(hdev->fw_info);
2730
2731 destroy_workqueue(hdev->workqueue);
2732 destroy_workqueue(hdev->req_workqueue);
2733
2734 hci_dev_lock(hdev);
2735 hci_bdaddr_list_clear(&hdev->reject_list);
2736 hci_bdaddr_list_clear(&hdev->accept_list);
2737 hci_uuids_clear(hdev);
2738 hci_link_keys_clear(hdev);
2739 hci_smp_ltks_clear(hdev);
2740 hci_smp_irks_clear(hdev);
2741 hci_remote_oob_data_clear(hdev);
2742 hci_adv_instances_clear(hdev);
2743 hci_adv_monitors_clear(hdev);
2744 hci_bdaddr_list_clear(&hdev->le_accept_list);
2745 hci_bdaddr_list_clear(&hdev->le_resolv_list);
2746 hci_conn_params_clear_all(hdev);
2747 hci_discovery_filter_clear(hdev);
2748 hci_blocked_keys_clear(hdev);
2749 hci_codec_list_clear(&hdev->local_codecs);
2750 msft_release(hdev);
2751 hci_dev_unlock(hdev);
2752
2753 ida_destroy(&hdev->unset_handle_ida);
2754 ida_free(&hci_index_ida, hdev->id);
2755 kfree_skb(hdev->sent_cmd);
2756 kfree_skb(hdev->req_skb);
2757 kfree_skb(hdev->recv_event);
2758 kfree(hdev);
2759}
2760EXPORT_SYMBOL(hci_release_dev);
2761
2762int hci_register_suspend_notifier(struct hci_dev *hdev)
2763{
2764 int ret = 0;
2765
2766 if (!hdev->suspend_notifier.notifier_call &&
2767 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769 ret = register_pm_notifier(&hdev->suspend_notifier);
2770 }
2771
2772 return ret;
2773}
2774
2775int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776{
2777 int ret = 0;
2778
2779 if (hdev->suspend_notifier.notifier_call) {
2780 ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781 if (!ret)
2782 hdev->suspend_notifier.notifier_call = NULL;
2783 }
2784
2785 return ret;
2786}
2787
2788/* Cancel ongoing command synchronously:
2789 *
2790 * - Cancel command timer
2791 * - Reset command counter
2792 * - Cancel command request
2793 */
2794static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2795{
2796 bt_dev_dbg(hdev, "err 0x%2.2x", err);
2797
2798 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2799 disable_delayed_work_sync(&hdev->cmd_timer);
2800 disable_delayed_work_sync(&hdev->ncmd_timer);
2801 } else {
2802 cancel_delayed_work_sync(&hdev->cmd_timer);
2803 cancel_delayed_work_sync(&hdev->ncmd_timer);
2804 }
2805
2806 atomic_set(&hdev->cmd_cnt, 1);
2807
2808 hci_cmd_sync_cancel_sync(hdev, err);
2809}
2810
2811/* Suspend HCI device */
2812int hci_suspend_dev(struct hci_dev *hdev)
2813{
2814 int ret;
2815
2816 bt_dev_dbg(hdev, "");
2817
2818 /* Suspend should only act on when powered. */
2819 if (!hdev_is_powered(hdev) ||
2820 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2821 return 0;
2822
2823 /* If powering down don't attempt to suspend */
2824 if (mgmt_powering_down(hdev))
2825 return 0;
2826
2827 /* Cancel potentially blocking sync operation before suspend */
2828 hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2829
2830 hci_req_sync_lock(hdev);
2831 ret = hci_suspend_sync(hdev);
2832 hci_req_sync_unlock(hdev);
2833
2834 hci_clear_wake_reason(hdev);
2835 mgmt_suspending(hdev, hdev->suspend_state);
2836
2837 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2838 return ret;
2839}
2840EXPORT_SYMBOL(hci_suspend_dev);
2841
2842/* Resume HCI device */
2843int hci_resume_dev(struct hci_dev *hdev)
2844{
2845 int ret;
2846
2847 bt_dev_dbg(hdev, "");
2848
2849 /* Resume should only act on when powered. */
2850 if (!hdev_is_powered(hdev) ||
2851 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2852 return 0;
2853
2854 /* If powering down don't attempt to resume */
2855 if (mgmt_powering_down(hdev))
2856 return 0;
2857
2858 hci_req_sync_lock(hdev);
2859 ret = hci_resume_sync(hdev);
2860 hci_req_sync_unlock(hdev);
2861
2862 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2863 hdev->wake_addr_type);
2864
2865 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2866 return ret;
2867}
2868EXPORT_SYMBOL(hci_resume_dev);
2869
2870/* Reset HCI device */
2871int hci_reset_dev(struct hci_dev *hdev)
2872{
2873 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2874 struct sk_buff *skb;
2875
2876 skb = bt_skb_alloc(3, GFP_ATOMIC);
2877 if (!skb)
2878 return -ENOMEM;
2879
2880 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2881 skb_put_data(skb, hw_err, 3);
2882
2883 bt_dev_err(hdev, "Injecting HCI hardware error event");
2884
2885 /* Send Hardware Error to upper stack */
2886 return hci_recv_frame(hdev, skb);
2887}
2888EXPORT_SYMBOL(hci_reset_dev);
2889
2890static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2891{
2892 if (hdev->classify_pkt_type)
2893 return hdev->classify_pkt_type(hdev, skb);
2894
2895 return hci_skb_pkt_type(skb);
2896}
2897
2898/* Receive frame from HCI drivers */
2899int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2900{
2901 u8 dev_pkt_type;
2902
2903 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2904 && !test_bit(HCI_INIT, &hdev->flags))) {
2905 kfree_skb(skb);
2906 return -ENXIO;
2907 }
2908
2909 /* Check if the driver agree with packet type classification */
2910 dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2911 if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2912 hci_skb_pkt_type(skb) = dev_pkt_type;
2913 }
2914
2915 switch (hci_skb_pkt_type(skb)) {
2916 case HCI_EVENT_PKT:
2917 break;
2918 case HCI_ACLDATA_PKT:
2919 /* Detect if ISO packet has been sent as ACL */
2920 if (hci_conn_num(hdev, ISO_LINK)) {
2921 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2922 __u8 type;
2923
2924 type = hci_conn_lookup_type(hdev, hci_handle(handle));
2925 if (type == ISO_LINK)
2926 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2927 }
2928 break;
2929 case HCI_SCODATA_PKT:
2930 break;
2931 case HCI_ISODATA_PKT:
2932 break;
2933 default:
2934 kfree_skb(skb);
2935 return -EINVAL;
2936 }
2937
2938 /* Incoming skb */
2939 bt_cb(skb)->incoming = 1;
2940
2941 /* Time stamp */
2942 __net_timestamp(skb);
2943
2944 skb_queue_tail(&hdev->rx_q, skb);
2945 queue_work(hdev->workqueue, &hdev->rx_work);
2946
2947 return 0;
2948}
2949EXPORT_SYMBOL(hci_recv_frame);
2950
2951/* Receive diagnostic message from HCI drivers */
2952int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2953{
2954 /* Mark as diagnostic packet */
2955 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2956
2957 /* Time stamp */
2958 __net_timestamp(skb);
2959
2960 skb_queue_tail(&hdev->rx_q, skb);
2961 queue_work(hdev->workqueue, &hdev->rx_work);
2962
2963 return 0;
2964}
2965EXPORT_SYMBOL(hci_recv_diag);
2966
2967void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2968{
2969 va_list vargs;
2970
2971 va_start(vargs, fmt);
2972 kfree_const(hdev->hw_info);
2973 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974 va_end(vargs);
2975}
2976EXPORT_SYMBOL(hci_set_hw_info);
2977
2978void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2979{
2980 va_list vargs;
2981
2982 va_start(vargs, fmt);
2983 kfree_const(hdev->fw_info);
2984 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2985 va_end(vargs);
2986}
2987EXPORT_SYMBOL(hci_set_fw_info);
2988
2989/* ---- Interface to upper protocols ---- */
2990
2991int hci_register_cb(struct hci_cb *cb)
2992{
2993 BT_DBG("%p name %s", cb, cb->name);
2994
2995 list_add_tail_rcu(&cb->list, &hci_cb_list);
2996
2997 return 0;
2998}
2999EXPORT_SYMBOL(hci_register_cb);
3000
3001int hci_unregister_cb(struct hci_cb *cb)
3002{
3003 BT_DBG("%p name %s", cb, cb->name);
3004
3005 list_del_rcu(&cb->list);
3006 synchronize_rcu();
3007
3008 return 0;
3009}
3010EXPORT_SYMBOL(hci_unregister_cb);
3011
3012static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013{
3014 int err;
3015
3016 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017 skb->len);
3018
3019 /* Time stamp */
3020 __net_timestamp(skb);
3021
3022 /* Send copy to monitor */
3023 hci_send_to_monitor(hdev, skb);
3024
3025 if (atomic_read(&hdev->promisc)) {
3026 /* Send copy to the sockets */
3027 hci_send_to_sock(hdev, skb);
3028 }
3029
3030 /* Get rid of skb owner, prior to sending to the driver. */
3031 skb_orphan(skb);
3032
3033 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034 kfree_skb(skb);
3035 return -EINVAL;
3036 }
3037
3038 err = hdev->send(hdev, skb);
3039 if (err < 0) {
3040 bt_dev_err(hdev, "sending frame failed (%d)", err);
3041 kfree_skb(skb);
3042 return err;
3043 }
3044
3045 return 0;
3046}
3047
3048/* Send HCI command */
3049int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050 const void *param)
3051{
3052 struct sk_buff *skb;
3053
3054 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055
3056 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3057 if (!skb) {
3058 bt_dev_err(hdev, "no memory for command");
3059 return -ENOMEM;
3060 }
3061
3062 /* Stand-alone HCI commands must be flagged as
3063 * single-command requests.
3064 */
3065 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066
3067 skb_queue_tail(&hdev->cmd_q, skb);
3068 queue_work(hdev->workqueue, &hdev->cmd_work);
3069
3070 return 0;
3071}
3072
3073int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074 const void *param)
3075{
3076 struct sk_buff *skb;
3077
3078 if (hci_opcode_ogf(opcode) != 0x3f) {
3079 /* A controller receiving a command shall respond with either
3080 * a Command Status Event or a Command Complete Event.
3081 * Therefore, all standard HCI commands must be sent via the
3082 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083 * Some vendors do not comply with this rule for vendor-specific
3084 * commands and do not return any event. We want to support
3085 * unresponded commands for such cases only.
3086 */
3087 bt_dev_err(hdev, "unresponded command not supported");
3088 return -EINVAL;
3089 }
3090
3091 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3092 if (!skb) {
3093 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094 opcode);
3095 return -ENOMEM;
3096 }
3097
3098 hci_send_frame(hdev, skb);
3099
3100 return 0;
3101}
3102EXPORT_SYMBOL(__hci_cmd_send);
3103
3104/* Get data from the previously sent command */
3105static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3106{
3107 struct hci_command_hdr *hdr;
3108
3109 if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3110 return NULL;
3111
3112 hdr = (void *)skb->data;
3113
3114 if (hdr->opcode != cpu_to_le16(opcode))
3115 return NULL;
3116
3117 return skb->data + HCI_COMMAND_HDR_SIZE;
3118}
3119
3120/* Get data from the previously sent command */
3121void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3122{
3123 void *data;
3124
3125 /* Check if opcode matches last sent command */
3126 data = hci_cmd_data(hdev->sent_cmd, opcode);
3127 if (!data)
3128 /* Check if opcode matches last request */
3129 data = hci_cmd_data(hdev->req_skb, opcode);
3130
3131 return data;
3132}
3133
3134/* Get data from last received event */
3135void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3136{
3137 struct hci_event_hdr *hdr;
3138 int offset;
3139
3140 if (!hdev->recv_event)
3141 return NULL;
3142
3143 hdr = (void *)hdev->recv_event->data;
3144 offset = sizeof(*hdr);
3145
3146 if (hdr->evt != event) {
3147 /* In case of LE metaevent check the subevent match */
3148 if (hdr->evt == HCI_EV_LE_META) {
3149 struct hci_ev_le_meta *ev;
3150
3151 ev = (void *)hdev->recv_event->data + offset;
3152 offset += sizeof(*ev);
3153 if (ev->subevent == event)
3154 goto found;
3155 }
3156 return NULL;
3157 }
3158
3159found:
3160 bt_dev_dbg(hdev, "event 0x%2.2x", event);
3161
3162 return hdev->recv_event->data + offset;
3163}
3164
3165/* Send ACL data */
3166static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3167{
3168 struct hci_acl_hdr *hdr;
3169 int len = skb->len;
3170
3171 skb_push(skb, HCI_ACL_HDR_SIZE);
3172 skb_reset_transport_header(skb);
3173 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3174 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3175 hdr->dlen = cpu_to_le16(len);
3176}
3177
3178static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3179 struct sk_buff *skb, __u16 flags)
3180{
3181 struct hci_conn *conn = chan->conn;
3182 struct hci_dev *hdev = conn->hdev;
3183 struct sk_buff *list;
3184
3185 skb->len = skb_headlen(skb);
3186 skb->data_len = 0;
3187
3188 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3189
3190 hci_add_acl_hdr(skb, conn->handle, flags);
3191
3192 list = skb_shinfo(skb)->frag_list;
3193 if (!list) {
3194 /* Non fragmented */
3195 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3196
3197 skb_queue_tail(queue, skb);
3198 } else {
3199 /* Fragmented */
3200 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3201
3202 skb_shinfo(skb)->frag_list = NULL;
3203
3204 /* Queue all fragments atomically. We need to use spin_lock_bh
3205 * here because of 6LoWPAN links, as there this function is
3206 * called from softirq and using normal spin lock could cause
3207 * deadlocks.
3208 */
3209 spin_lock_bh(&queue->lock);
3210
3211 __skb_queue_tail(queue, skb);
3212
3213 flags &= ~ACL_START;
3214 flags |= ACL_CONT;
3215 do {
3216 skb = list; list = list->next;
3217
3218 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3219 hci_add_acl_hdr(skb, conn->handle, flags);
3220
3221 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3222
3223 __skb_queue_tail(queue, skb);
3224 } while (list);
3225
3226 spin_unlock_bh(&queue->lock);
3227 }
3228}
3229
3230void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3231{
3232 struct hci_dev *hdev = chan->conn->hdev;
3233
3234 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3235
3236 hci_queue_acl(chan, &chan->data_q, skb, flags);
3237
3238 queue_work(hdev->workqueue, &hdev->tx_work);
3239}
3240
3241/* Send SCO data */
3242void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3243{
3244 struct hci_dev *hdev = conn->hdev;
3245 struct hci_sco_hdr hdr;
3246
3247 BT_DBG("%s len %d", hdev->name, skb->len);
3248
3249 hdr.handle = cpu_to_le16(conn->handle);
3250 hdr.dlen = skb->len;
3251
3252 skb_push(skb, HCI_SCO_HDR_SIZE);
3253 skb_reset_transport_header(skb);
3254 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3255
3256 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3257
3258 skb_queue_tail(&conn->data_q, skb);
3259 queue_work(hdev->workqueue, &hdev->tx_work);
3260}
3261
3262/* Send ISO data */
3263static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3264{
3265 struct hci_iso_hdr *hdr;
3266 int len = skb->len;
3267
3268 skb_push(skb, HCI_ISO_HDR_SIZE);
3269 skb_reset_transport_header(skb);
3270 hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3271 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3272 hdr->dlen = cpu_to_le16(len);
3273}
3274
3275static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3276 struct sk_buff *skb)
3277{
3278 struct hci_dev *hdev = conn->hdev;
3279 struct sk_buff *list;
3280 __u16 flags;
3281
3282 skb->len = skb_headlen(skb);
3283 skb->data_len = 0;
3284
3285 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3286
3287 list = skb_shinfo(skb)->frag_list;
3288
3289 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3290 hci_add_iso_hdr(skb, conn->handle, flags);
3291
3292 if (!list) {
3293 /* Non fragmented */
3294 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3295
3296 skb_queue_tail(queue, skb);
3297 } else {
3298 /* Fragmented */
3299 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3300
3301 skb_shinfo(skb)->frag_list = NULL;
3302
3303 __skb_queue_tail(queue, skb);
3304
3305 do {
3306 skb = list; list = list->next;
3307
3308 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3309 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3310 0x00);
3311 hci_add_iso_hdr(skb, conn->handle, flags);
3312
3313 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3314
3315 __skb_queue_tail(queue, skb);
3316 } while (list);
3317 }
3318}
3319
3320void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3321{
3322 struct hci_dev *hdev = conn->hdev;
3323
3324 BT_DBG("%s len %d", hdev->name, skb->len);
3325
3326 hci_queue_iso(conn, &conn->data_q, skb);
3327
3328 queue_work(hdev->workqueue, &hdev->tx_work);
3329}
3330
3331/* ---- HCI TX task (outgoing data) ---- */
3332
3333/* HCI Connection scheduler */
3334static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3335{
3336 struct hci_dev *hdev;
3337 int cnt, q;
3338
3339 if (!conn) {
3340 *quote = 0;
3341 return;
3342 }
3343
3344 hdev = conn->hdev;
3345
3346 switch (conn->type) {
3347 case ACL_LINK:
3348 cnt = hdev->acl_cnt;
3349 break;
3350 case SCO_LINK:
3351 case ESCO_LINK:
3352 cnt = hdev->sco_cnt;
3353 break;
3354 case LE_LINK:
3355 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3356 break;
3357 case ISO_LINK:
3358 cnt = hdev->iso_mtu ? hdev->iso_cnt :
3359 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360 break;
3361 default:
3362 cnt = 0;
3363 bt_dev_err(hdev, "unknown link type %d", conn->type);
3364 }
3365
3366 q = cnt / num;
3367 *quote = q ? q : 1;
3368}
3369
3370static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3371 int *quote)
3372{
3373 struct hci_conn_hash *h = &hdev->conn_hash;
3374 struct hci_conn *conn = NULL, *c;
3375 unsigned int num = 0, min = ~0;
3376
3377 /* We don't have to lock device here. Connections are always
3378 * added and removed with TX task disabled. */
3379
3380 rcu_read_lock();
3381
3382 list_for_each_entry_rcu(c, &h->list, list) {
3383 if (c->type != type || skb_queue_empty(&c->data_q))
3384 continue;
3385
3386 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3387 continue;
3388
3389 num++;
3390
3391 if (c->sent < min) {
3392 min = c->sent;
3393 conn = c;
3394 }
3395
3396 if (hci_conn_num(hdev, type) == num)
3397 break;
3398 }
3399
3400 rcu_read_unlock();
3401
3402 hci_quote_sent(conn, num, quote);
3403
3404 BT_DBG("conn %p quote %d", conn, *quote);
3405 return conn;
3406}
3407
3408static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3409{
3410 struct hci_conn_hash *h = &hdev->conn_hash;
3411 struct hci_conn *c;
3412
3413 bt_dev_err(hdev, "link tx timeout");
3414
3415 rcu_read_lock();
3416
3417 /* Kill stalled connections */
3418 list_for_each_entry_rcu(c, &h->list, list) {
3419 if (c->type == type && c->sent) {
3420 bt_dev_err(hdev, "killing stalled connection %pMR",
3421 &c->dst);
3422 /* hci_disconnect might sleep, so, we have to release
3423 * the RCU read lock before calling it.
3424 */
3425 rcu_read_unlock();
3426 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3427 rcu_read_lock();
3428 }
3429 }
3430
3431 rcu_read_unlock();
3432}
3433
3434static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3435 int *quote)
3436{
3437 struct hci_conn_hash *h = &hdev->conn_hash;
3438 struct hci_chan *chan = NULL;
3439 unsigned int num = 0, min = ~0, cur_prio = 0;
3440 struct hci_conn *conn;
3441 int conn_num = 0;
3442
3443 BT_DBG("%s", hdev->name);
3444
3445 rcu_read_lock();
3446
3447 list_for_each_entry_rcu(conn, &h->list, list) {
3448 struct hci_chan *tmp;
3449
3450 if (conn->type != type)
3451 continue;
3452
3453 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3454 continue;
3455
3456 conn_num++;
3457
3458 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3459 struct sk_buff *skb;
3460
3461 if (skb_queue_empty(&tmp->data_q))
3462 continue;
3463
3464 skb = skb_peek(&tmp->data_q);
3465 if (skb->priority < cur_prio)
3466 continue;
3467
3468 if (skb->priority > cur_prio) {
3469 num = 0;
3470 min = ~0;
3471 cur_prio = skb->priority;
3472 }
3473
3474 num++;
3475
3476 if (conn->sent < min) {
3477 min = conn->sent;
3478 chan = tmp;
3479 }
3480 }
3481
3482 if (hci_conn_num(hdev, type) == conn_num)
3483 break;
3484 }
3485
3486 rcu_read_unlock();
3487
3488 if (!chan)
3489 return NULL;
3490
3491 hci_quote_sent(chan->conn, num, quote);
3492
3493 BT_DBG("chan %p quote %d", chan, *quote);
3494 return chan;
3495}
3496
3497static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3498{
3499 struct hci_conn_hash *h = &hdev->conn_hash;
3500 struct hci_conn *conn;
3501 int num = 0;
3502
3503 BT_DBG("%s", hdev->name);
3504
3505 rcu_read_lock();
3506
3507 list_for_each_entry_rcu(conn, &h->list, list) {
3508 struct hci_chan *chan;
3509
3510 if (conn->type != type)
3511 continue;
3512
3513 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3514 continue;
3515
3516 num++;
3517
3518 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3519 struct sk_buff *skb;
3520
3521 if (chan->sent) {
3522 chan->sent = 0;
3523 continue;
3524 }
3525
3526 if (skb_queue_empty(&chan->data_q))
3527 continue;
3528
3529 skb = skb_peek(&chan->data_q);
3530 if (skb->priority >= HCI_PRIO_MAX - 1)
3531 continue;
3532
3533 skb->priority = HCI_PRIO_MAX - 1;
3534
3535 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3536 skb->priority);
3537 }
3538
3539 if (hci_conn_num(hdev, type) == num)
3540 break;
3541 }
3542
3543 rcu_read_unlock();
3544
3545}
3546
3547static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3548{
3549 unsigned long last_tx;
3550
3551 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3552 return;
3553
3554 switch (type) {
3555 case LE_LINK:
3556 last_tx = hdev->le_last_tx;
3557 break;
3558 default:
3559 last_tx = hdev->acl_last_tx;
3560 break;
3561 }
3562
3563 /* tx timeout must be longer than maximum link supervision timeout
3564 * (40.9 seconds)
3565 */
3566 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3567 hci_link_tx_to(hdev, type);
3568}
3569
3570/* Schedule SCO */
3571static void hci_sched_sco(struct hci_dev *hdev)
3572{
3573 struct hci_conn *conn;
3574 struct sk_buff *skb;
3575 int quote;
3576
3577 BT_DBG("%s", hdev->name);
3578
3579 if (!hci_conn_num(hdev, SCO_LINK))
3580 return;
3581
3582 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3583 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3584 BT_DBG("skb %p len %d", skb, skb->len);
3585 hci_send_frame(hdev, skb);
3586
3587 conn->sent++;
3588 if (conn->sent == ~0)
3589 conn->sent = 0;
3590 }
3591 }
3592}
3593
3594static void hci_sched_esco(struct hci_dev *hdev)
3595{
3596 struct hci_conn *conn;
3597 struct sk_buff *skb;
3598 int quote;
3599
3600 BT_DBG("%s", hdev->name);
3601
3602 if (!hci_conn_num(hdev, ESCO_LINK))
3603 return;
3604
3605 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3606 "e))) {
3607 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3608 BT_DBG("skb %p len %d", skb, skb->len);
3609 hci_send_frame(hdev, skb);
3610
3611 conn->sent++;
3612 if (conn->sent == ~0)
3613 conn->sent = 0;
3614 }
3615 }
3616}
3617
3618static void hci_sched_acl_pkt(struct hci_dev *hdev)
3619{
3620 unsigned int cnt = hdev->acl_cnt;
3621 struct hci_chan *chan;
3622 struct sk_buff *skb;
3623 int quote;
3624
3625 __check_timeout(hdev, cnt, ACL_LINK);
3626
3627 while (hdev->acl_cnt &&
3628 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3629 u32 priority = (skb_peek(&chan->data_q))->priority;
3630 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3631 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3632 skb->len, skb->priority);
3633
3634 /* Stop if priority has changed */
3635 if (skb->priority < priority)
3636 break;
3637
3638 skb = skb_dequeue(&chan->data_q);
3639
3640 hci_conn_enter_active_mode(chan->conn,
3641 bt_cb(skb)->force_active);
3642
3643 hci_send_frame(hdev, skb);
3644 hdev->acl_last_tx = jiffies;
3645
3646 hdev->acl_cnt--;
3647 chan->sent++;
3648 chan->conn->sent++;
3649
3650 /* Send pending SCO packets right away */
3651 hci_sched_sco(hdev);
3652 hci_sched_esco(hdev);
3653 }
3654 }
3655
3656 if (cnt != hdev->acl_cnt)
3657 hci_prio_recalculate(hdev, ACL_LINK);
3658}
3659
3660static void hci_sched_acl(struct hci_dev *hdev)
3661{
3662 BT_DBG("%s", hdev->name);
3663
3664 /* No ACL link over BR/EDR controller */
3665 if (!hci_conn_num(hdev, ACL_LINK))
3666 return;
3667
3668 hci_sched_acl_pkt(hdev);
3669}
3670
3671static void hci_sched_le(struct hci_dev *hdev)
3672{
3673 struct hci_chan *chan;
3674 struct sk_buff *skb;
3675 int quote, *cnt, tmp;
3676
3677 BT_DBG("%s", hdev->name);
3678
3679 if (!hci_conn_num(hdev, LE_LINK))
3680 return;
3681
3682 cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3683
3684 __check_timeout(hdev, *cnt, LE_LINK);
3685
3686 tmp = *cnt;
3687 while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3688 u32 priority = (skb_peek(&chan->data_q))->priority;
3689 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3690 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691 skb->len, skb->priority);
3692
3693 /* Stop if priority has changed */
3694 if (skb->priority < priority)
3695 break;
3696
3697 skb = skb_dequeue(&chan->data_q);
3698
3699 hci_send_frame(hdev, skb);
3700 hdev->le_last_tx = jiffies;
3701
3702 (*cnt)--;
3703 chan->sent++;
3704 chan->conn->sent++;
3705
3706 /* Send pending SCO packets right away */
3707 hci_sched_sco(hdev);
3708 hci_sched_esco(hdev);
3709 }
3710 }
3711
3712 if (*cnt != tmp)
3713 hci_prio_recalculate(hdev, LE_LINK);
3714}
3715
3716/* Schedule CIS */
3717static void hci_sched_iso(struct hci_dev *hdev)
3718{
3719 struct hci_conn *conn;
3720 struct sk_buff *skb;
3721 int quote, *cnt;
3722
3723 BT_DBG("%s", hdev->name);
3724
3725 if (!hci_conn_num(hdev, ISO_LINK))
3726 return;
3727
3728 cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3729 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3730 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) {
3731 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3732 BT_DBG("skb %p len %d", skb, skb->len);
3733 hci_send_frame(hdev, skb);
3734
3735 conn->sent++;
3736 if (conn->sent == ~0)
3737 conn->sent = 0;
3738 (*cnt)--;
3739 }
3740 }
3741}
3742
3743static void hci_tx_work(struct work_struct *work)
3744{
3745 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3746 struct sk_buff *skb;
3747
3748 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3749 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3750
3751 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3752 /* Schedule queues and send stuff to HCI driver */
3753 hci_sched_sco(hdev);
3754 hci_sched_esco(hdev);
3755 hci_sched_iso(hdev);
3756 hci_sched_acl(hdev);
3757 hci_sched_le(hdev);
3758 }
3759
3760 /* Send next queued raw (unknown type) packet */
3761 while ((skb = skb_dequeue(&hdev->raw_q)))
3762 hci_send_frame(hdev, skb);
3763}
3764
3765/* ----- HCI RX task (incoming data processing) ----- */
3766
3767/* ACL data packet */
3768static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3769{
3770 struct hci_acl_hdr *hdr;
3771 struct hci_conn *conn;
3772 __u16 handle, flags;
3773
3774 hdr = skb_pull_data(skb, sizeof(*hdr));
3775 if (!hdr) {
3776 bt_dev_err(hdev, "ACL packet too small");
3777 goto drop;
3778 }
3779
3780 handle = __le16_to_cpu(hdr->handle);
3781 flags = hci_flags(handle);
3782 handle = hci_handle(handle);
3783
3784 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3785 handle, flags);
3786
3787 hdev->stat.acl_rx++;
3788
3789 hci_dev_lock(hdev);
3790 conn = hci_conn_hash_lookup_handle(hdev, handle);
3791 hci_dev_unlock(hdev);
3792
3793 if (conn) {
3794 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3795
3796 /* Send to upper protocol */
3797 l2cap_recv_acldata(conn, skb, flags);
3798 return;
3799 } else {
3800 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3801 handle);
3802 }
3803
3804drop:
3805 kfree_skb(skb);
3806}
3807
3808/* SCO data packet */
3809static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810{
3811 struct hci_sco_hdr *hdr;
3812 struct hci_conn *conn;
3813 __u16 handle, flags;
3814
3815 hdr = skb_pull_data(skb, sizeof(*hdr));
3816 if (!hdr) {
3817 bt_dev_err(hdev, "SCO packet too small");
3818 goto drop;
3819 }
3820
3821 handle = __le16_to_cpu(hdr->handle);
3822 flags = hci_flags(handle);
3823 handle = hci_handle(handle);
3824
3825 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3826 handle, flags);
3827
3828 hdev->stat.sco_rx++;
3829
3830 hci_dev_lock(hdev);
3831 conn = hci_conn_hash_lookup_handle(hdev, handle);
3832 hci_dev_unlock(hdev);
3833
3834 if (conn) {
3835 /* Send to upper protocol */
3836 hci_skb_pkt_status(skb) = flags & 0x03;
3837 sco_recv_scodata(conn, skb);
3838 return;
3839 } else {
3840 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3841 handle);
3842 }
3843
3844drop:
3845 kfree_skb(skb);
3846}
3847
3848static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3849{
3850 struct hci_iso_hdr *hdr;
3851 struct hci_conn *conn;
3852 __u16 handle, flags;
3853
3854 hdr = skb_pull_data(skb, sizeof(*hdr));
3855 if (!hdr) {
3856 bt_dev_err(hdev, "ISO packet too small");
3857 goto drop;
3858 }
3859
3860 handle = __le16_to_cpu(hdr->handle);
3861 flags = hci_flags(handle);
3862 handle = hci_handle(handle);
3863
3864 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3865 handle, flags);
3866
3867 hci_dev_lock(hdev);
3868 conn = hci_conn_hash_lookup_handle(hdev, handle);
3869 hci_dev_unlock(hdev);
3870
3871 if (!conn) {
3872 bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3873 handle);
3874 goto drop;
3875 }
3876
3877 /* Send to upper protocol */
3878 iso_recv(conn, skb, flags);
3879 return;
3880
3881drop:
3882 kfree_skb(skb);
3883}
3884
3885static bool hci_req_is_complete(struct hci_dev *hdev)
3886{
3887 struct sk_buff *skb;
3888
3889 skb = skb_peek(&hdev->cmd_q);
3890 if (!skb)
3891 return true;
3892
3893 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3894}
3895
3896static void hci_resend_last(struct hci_dev *hdev)
3897{
3898 struct hci_command_hdr *sent;
3899 struct sk_buff *skb;
3900 u16 opcode;
3901
3902 if (!hdev->sent_cmd)
3903 return;
3904
3905 sent = (void *) hdev->sent_cmd->data;
3906 opcode = __le16_to_cpu(sent->opcode);
3907 if (opcode == HCI_OP_RESET)
3908 return;
3909
3910 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3911 if (!skb)
3912 return;
3913
3914 skb_queue_head(&hdev->cmd_q, skb);
3915 queue_work(hdev->workqueue, &hdev->cmd_work);
3916}
3917
3918void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3919 hci_req_complete_t *req_complete,
3920 hci_req_complete_skb_t *req_complete_skb)
3921{
3922 struct sk_buff *skb;
3923 unsigned long flags;
3924
3925 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3926
3927 /* If the completed command doesn't match the last one that was
3928 * sent we need to do special handling of it.
3929 */
3930 if (!hci_sent_cmd_data(hdev, opcode)) {
3931 /* Some CSR based controllers generate a spontaneous
3932 * reset complete event during init and any pending
3933 * command will never be completed. In such a case we
3934 * need to resend whatever was the last sent
3935 * command.
3936 */
3937 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3938 hci_resend_last(hdev);
3939
3940 return;
3941 }
3942
3943 /* If we reach this point this event matches the last command sent */
3944 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3945
3946 /* If the command succeeded and there's still more commands in
3947 * this request the request is not yet complete.
3948 */
3949 if (!status && !hci_req_is_complete(hdev))
3950 return;
3951
3952 skb = hdev->req_skb;
3953
3954 /* If this was the last command in a request the complete
3955 * callback would be found in hdev->req_skb instead of the
3956 * command queue (hdev->cmd_q).
3957 */
3958 if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3959 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3960 return;
3961 }
3962
3963 if (skb && bt_cb(skb)->hci.req_complete) {
3964 *req_complete = bt_cb(skb)->hci.req_complete;
3965 return;
3966 }
3967
3968 /* Remove all pending commands belonging to this request */
3969 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3970 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3971 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3972 __skb_queue_head(&hdev->cmd_q, skb);
3973 break;
3974 }
3975
3976 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3977 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3978 else
3979 *req_complete = bt_cb(skb)->hci.req_complete;
3980 dev_kfree_skb_irq(skb);
3981 }
3982 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3983}
3984
3985static void hci_rx_work(struct work_struct *work)
3986{
3987 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3988 struct sk_buff *skb;
3989
3990 BT_DBG("%s", hdev->name);
3991
3992 /* The kcov_remote functions used for collecting packet parsing
3993 * coverage information from this background thread and associate
3994 * the coverage with the syscall's thread which originally injected
3995 * the packet. This helps fuzzing the kernel.
3996 */
3997 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3998 kcov_remote_start_common(skb_get_kcov_handle(skb));
3999
4000 /* Send copy to monitor */
4001 hci_send_to_monitor(hdev, skb);
4002
4003 if (atomic_read(&hdev->promisc)) {
4004 /* Send copy to the sockets */
4005 hci_send_to_sock(hdev, skb);
4006 }
4007
4008 /* If the device has been opened in HCI_USER_CHANNEL,
4009 * the userspace has exclusive access to device.
4010 * When device is HCI_INIT, we still need to process
4011 * the data packets to the driver in order
4012 * to complete its setup().
4013 */
4014 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4015 !test_bit(HCI_INIT, &hdev->flags)) {
4016 kfree_skb(skb);
4017 continue;
4018 }
4019
4020 if (test_bit(HCI_INIT, &hdev->flags)) {
4021 /* Don't process data packets in this states. */
4022 switch (hci_skb_pkt_type(skb)) {
4023 case HCI_ACLDATA_PKT:
4024 case HCI_SCODATA_PKT:
4025 case HCI_ISODATA_PKT:
4026 kfree_skb(skb);
4027 continue;
4028 }
4029 }
4030
4031 /* Process frame */
4032 switch (hci_skb_pkt_type(skb)) {
4033 case HCI_EVENT_PKT:
4034 BT_DBG("%s Event packet", hdev->name);
4035 hci_event_packet(hdev, skb);
4036 break;
4037
4038 case HCI_ACLDATA_PKT:
4039 BT_DBG("%s ACL data packet", hdev->name);
4040 hci_acldata_packet(hdev, skb);
4041 break;
4042
4043 case HCI_SCODATA_PKT:
4044 BT_DBG("%s SCO data packet", hdev->name);
4045 hci_scodata_packet(hdev, skb);
4046 break;
4047
4048 case HCI_ISODATA_PKT:
4049 BT_DBG("%s ISO data packet", hdev->name);
4050 hci_isodata_packet(hdev, skb);
4051 break;
4052
4053 default:
4054 kfree_skb(skb);
4055 break;
4056 }
4057 }
4058}
4059
4060static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4061{
4062 int err;
4063
4064 bt_dev_dbg(hdev, "skb %p", skb);
4065
4066 kfree_skb(hdev->sent_cmd);
4067
4068 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4069 if (!hdev->sent_cmd) {
4070 skb_queue_head(&hdev->cmd_q, skb);
4071 queue_work(hdev->workqueue, &hdev->cmd_work);
4072 return;
4073 }
4074
4075 err = hci_send_frame(hdev, skb);
4076 if (err < 0) {
4077 hci_cmd_sync_cancel_sync(hdev, -err);
4078 return;
4079 }
4080
4081 if (hdev->req_status == HCI_REQ_PEND &&
4082 !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4083 kfree_skb(hdev->req_skb);
4084 hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085 }
4086
4087 atomic_dec(&hdev->cmd_cnt);
4088}
4089
4090static void hci_cmd_work(struct work_struct *work)
4091{
4092 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4093 struct sk_buff *skb;
4094
4095 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4096 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4097
4098 /* Send queued commands */
4099 if (atomic_read(&hdev->cmd_cnt)) {
4100 skb = skb_dequeue(&hdev->cmd_q);
4101 if (!skb)
4102 return;
4103
4104 hci_send_cmd_sync(hdev, skb);
4105
4106 rcu_read_lock();
4107 if (test_bit(HCI_RESET, &hdev->flags) ||
4108 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4109 cancel_delayed_work(&hdev->cmd_timer);
4110 else
4111 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4112 HCI_CMD_TIMEOUT);
4113 rcu_read_unlock();
4114 }
4115}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/property.h>
33#include <linux/suspend.h>
34#include <linux/wait.h>
35#include <asm/unaligned.h>
36
37#include <net/bluetooth/bluetooth.h>
38#include <net/bluetooth/hci_core.h>
39#include <net/bluetooth/l2cap.h>
40#include <net/bluetooth/mgmt.h>
41
42#include "hci_request.h"
43#include "hci_debugfs.h"
44#include "smp.h"
45#include "leds.h"
46#include "msft.h"
47#include "aosp.h"
48
49static void hci_rx_work(struct work_struct *work);
50static void hci_cmd_work(struct work_struct *work);
51static void hci_tx_work(struct work_struct *work);
52
53/* HCI device list */
54LIST_HEAD(hci_dev_list);
55DEFINE_RWLOCK(hci_dev_list_lock);
56
57/* HCI callback list */
58LIST_HEAD(hci_cb_list);
59DEFINE_MUTEX(hci_cb_list_lock);
60
61/* HCI ID Numbering */
62static DEFINE_IDA(hci_index_ida);
63
64/* ---- HCI debugfs entries ---- */
65
66static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
67 size_t count, loff_t *ppos)
68{
69 struct hci_dev *hdev = file->private_data;
70 char buf[3];
71
72 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
73 buf[1] = '\n';
74 buf[2] = '\0';
75 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
76}
77
78static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
79 size_t count, loff_t *ppos)
80{
81 struct hci_dev *hdev = file->private_data;
82 struct sk_buff *skb;
83 bool enable;
84 int err;
85
86 if (!test_bit(HCI_UP, &hdev->flags))
87 return -ENETDOWN;
88
89 err = kstrtobool_from_user(user_buf, count, &enable);
90 if (err)
91 return err;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113}
114
115static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120};
121
122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124{
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132}
133
134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136{
137 struct hci_dev *hdev = file->private_data;
138 bool enable;
139 int err;
140
141 err = kstrtobool_from_user(user_buf, count, &enable);
142 if (err)
143 return err;
144
145 /* When the diagnostic flags are not persistent and the transport
146 * is not active or in user channel operation, then there is no need
147 * for the vendor callback. Instead just store the desired value and
148 * the setting will be programmed when the controller gets powered on.
149 */
150 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
151 (!test_bit(HCI_RUNNING, &hdev->flags) ||
152 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
153 goto done;
154
155 hci_req_sync_lock(hdev);
156 err = hdev->set_diag(hdev, enable);
157 hci_req_sync_unlock(hdev);
158
159 if (err < 0)
160 return err;
161
162done:
163 if (enable)
164 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
165 else
166 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
167
168 return count;
169}
170
171static const struct file_operations vendor_diag_fops = {
172 .open = simple_open,
173 .read = vendor_diag_read,
174 .write = vendor_diag_write,
175 .llseek = default_llseek,
176};
177
178static void hci_debugfs_create_basic(struct hci_dev *hdev)
179{
180 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
181 &dut_mode_fops);
182
183 if (hdev->set_diag)
184 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
185 &vendor_diag_fops);
186}
187
188static int hci_reset_req(struct hci_request *req, unsigned long opt)
189{
190 BT_DBG("%s %ld", req->hdev->name, opt);
191
192 /* Reset device */
193 set_bit(HCI_RESET, &req->hdev->flags);
194 hci_req_add(req, HCI_OP_RESET, 0, NULL);
195 return 0;
196}
197
198static void bredr_init(struct hci_request *req)
199{
200 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
201
202 /* Read Local Supported Features */
203 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
204
205 /* Read Local Version */
206 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
207
208 /* Read BD Address */
209 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
210}
211
212static void amp_init1(struct hci_request *req)
213{
214 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
215
216 /* Read Local Version */
217 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
218
219 /* Read Local Supported Commands */
220 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
221
222 /* Read Local AMP Info */
223 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
224
225 /* Read Data Blk size */
226 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
227
228 /* Read Flow Control Mode */
229 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
230
231 /* Read Location Data */
232 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
233}
234
235static int amp_init2(struct hci_request *req)
236{
237 /* Read Local Supported Features. Not all AMP controllers
238 * support this so it's placed conditionally in the second
239 * stage init.
240 */
241 if (req->hdev->commands[14] & 0x20)
242 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
243
244 return 0;
245}
246
247static int hci_init1_req(struct hci_request *req, unsigned long opt)
248{
249 struct hci_dev *hdev = req->hdev;
250
251 BT_DBG("%s %ld", hdev->name, opt);
252
253 /* Reset */
254 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
255 hci_reset_req(req, 0);
256
257 switch (hdev->dev_type) {
258 case HCI_PRIMARY:
259 bredr_init(req);
260 break;
261 case HCI_AMP:
262 amp_init1(req);
263 break;
264 default:
265 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
266 break;
267 }
268
269 return 0;
270}
271
272static void bredr_setup(struct hci_request *req)
273{
274 __le16 param;
275 __u8 flt_type;
276
277 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
278 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
279
280 /* Read Class of Device */
281 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
282
283 /* Read Local Name */
284 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
285
286 /* Read Voice Setting */
287 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
288
289 /* Read Number of Supported IAC */
290 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
291
292 /* Read Current IAC LAP */
293 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
294
295 /* Clear Event Filters */
296 flt_type = HCI_FLT_CLEAR_ALL;
297 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
298
299 /* Connection accept timeout ~20 secs */
300 param = cpu_to_le16(0x7d00);
301 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
302}
303
304static void le_setup(struct hci_request *req)
305{
306 struct hci_dev *hdev = req->hdev;
307
308 /* Read LE Buffer Size */
309 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
310
311 /* Read LE Local Supported Features */
312 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
313
314 /* Read LE Supported States */
315 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
316
317 /* LE-only controllers have LE implicitly enabled */
318 if (!lmp_bredr_capable(hdev))
319 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
320}
321
322static void hci_setup_event_mask(struct hci_request *req)
323{
324 struct hci_dev *hdev = req->hdev;
325
326 /* The second byte is 0xff instead of 0x9f (two reserved bits
327 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
328 * command otherwise.
329 */
330 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
331
332 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
333 * any event mask for pre 1.2 devices.
334 */
335 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
336 return;
337
338 if (lmp_bredr_capable(hdev)) {
339 events[4] |= 0x01; /* Flow Specification Complete */
340 } else {
341 /* Use a different default for LE-only devices */
342 memset(events, 0, sizeof(events));
343 events[1] |= 0x20; /* Command Complete */
344 events[1] |= 0x40; /* Command Status */
345 events[1] |= 0x80; /* Hardware Error */
346
347 /* If the controller supports the Disconnect command, enable
348 * the corresponding event. In addition enable packet flow
349 * control related events.
350 */
351 if (hdev->commands[0] & 0x20) {
352 events[0] |= 0x10; /* Disconnection Complete */
353 events[2] |= 0x04; /* Number of Completed Packets */
354 events[3] |= 0x02; /* Data Buffer Overflow */
355 }
356
357 /* If the controller supports the Read Remote Version
358 * Information command, enable the corresponding event.
359 */
360 if (hdev->commands[2] & 0x80)
361 events[1] |= 0x08; /* Read Remote Version Information
362 * Complete
363 */
364
365 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
366 events[0] |= 0x80; /* Encryption Change */
367 events[5] |= 0x80; /* Encryption Key Refresh Complete */
368 }
369 }
370
371 if (lmp_inq_rssi_capable(hdev) ||
372 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
373 events[4] |= 0x02; /* Inquiry Result with RSSI */
374
375 if (lmp_ext_feat_capable(hdev))
376 events[4] |= 0x04; /* Read Remote Extended Features Complete */
377
378 if (lmp_esco_capable(hdev)) {
379 events[5] |= 0x08; /* Synchronous Connection Complete */
380 events[5] |= 0x10; /* Synchronous Connection Changed */
381 }
382
383 if (lmp_sniffsubr_capable(hdev))
384 events[5] |= 0x20; /* Sniff Subrating */
385
386 if (lmp_pause_enc_capable(hdev))
387 events[5] |= 0x80; /* Encryption Key Refresh Complete */
388
389 if (lmp_ext_inq_capable(hdev))
390 events[5] |= 0x40; /* Extended Inquiry Result */
391
392 if (lmp_no_flush_capable(hdev))
393 events[7] |= 0x01; /* Enhanced Flush Complete */
394
395 if (lmp_lsto_capable(hdev))
396 events[6] |= 0x80; /* Link Supervision Timeout Changed */
397
398 if (lmp_ssp_capable(hdev)) {
399 events[6] |= 0x01; /* IO Capability Request */
400 events[6] |= 0x02; /* IO Capability Response */
401 events[6] |= 0x04; /* User Confirmation Request */
402 events[6] |= 0x08; /* User Passkey Request */
403 events[6] |= 0x10; /* Remote OOB Data Request */
404 events[6] |= 0x20; /* Simple Pairing Complete */
405 events[7] |= 0x04; /* User Passkey Notification */
406 events[7] |= 0x08; /* Keypress Notification */
407 events[7] |= 0x10; /* Remote Host Supported
408 * Features Notification
409 */
410 }
411
412 if (lmp_le_capable(hdev))
413 events[7] |= 0x20; /* LE Meta-Event */
414
415 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
416}
417
418static int hci_init2_req(struct hci_request *req, unsigned long opt)
419{
420 struct hci_dev *hdev = req->hdev;
421
422 if (hdev->dev_type == HCI_AMP)
423 return amp_init2(req);
424
425 if (lmp_bredr_capable(hdev))
426 bredr_setup(req);
427 else
428 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
429
430 if (lmp_le_capable(hdev))
431 le_setup(req);
432
433 /* All Bluetooth 1.2 and later controllers should support the
434 * HCI command for reading the local supported commands.
435 *
436 * Unfortunately some controllers indicate Bluetooth 1.2 support,
437 * but do not have support for this command. If that is the case,
438 * the driver can quirk the behavior and skip reading the local
439 * supported commands.
440 */
441 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
442 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
443 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
444
445 if (lmp_ssp_capable(hdev)) {
446 /* When SSP is available, then the host features page
447 * should also be available as well. However some
448 * controllers list the max_page as 0 as long as SSP
449 * has not been enabled. To achieve proper debugging
450 * output, force the minimum max_page to 1 at least.
451 */
452 hdev->max_page = 0x01;
453
454 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
455 u8 mode = 0x01;
456
457 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
458 sizeof(mode), &mode);
459 } else {
460 struct hci_cp_write_eir cp;
461
462 memset(hdev->eir, 0, sizeof(hdev->eir));
463 memset(&cp, 0, sizeof(cp));
464
465 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
466 }
467 }
468
469 if (lmp_inq_rssi_capable(hdev) ||
470 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
471 u8 mode;
472
473 /* If Extended Inquiry Result events are supported, then
474 * they are clearly preferred over Inquiry Result with RSSI
475 * events.
476 */
477 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
478
479 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
480 }
481
482 if (lmp_inq_tx_pwr_capable(hdev))
483 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
484
485 if (lmp_ext_feat_capable(hdev)) {
486 struct hci_cp_read_local_ext_features cp;
487
488 cp.page = 0x01;
489 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
490 sizeof(cp), &cp);
491 }
492
493 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
494 u8 enable = 1;
495 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
496 &enable);
497 }
498
499 return 0;
500}
501
502static void hci_setup_link_policy(struct hci_request *req)
503{
504 struct hci_dev *hdev = req->hdev;
505 struct hci_cp_write_def_link_policy cp;
506 u16 link_policy = 0;
507
508 if (lmp_rswitch_capable(hdev))
509 link_policy |= HCI_LP_RSWITCH;
510 if (lmp_hold_capable(hdev))
511 link_policy |= HCI_LP_HOLD;
512 if (lmp_sniff_capable(hdev))
513 link_policy |= HCI_LP_SNIFF;
514 if (lmp_park_capable(hdev))
515 link_policy |= HCI_LP_PARK;
516
517 cp.policy = cpu_to_le16(link_policy);
518 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
519}
520
521static void hci_set_le_support(struct hci_request *req)
522{
523 struct hci_dev *hdev = req->hdev;
524 struct hci_cp_write_le_host_supported cp;
525
526 /* LE-only devices do not support explicit enablement */
527 if (!lmp_bredr_capable(hdev))
528 return;
529
530 memset(&cp, 0, sizeof(cp));
531
532 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
533 cp.le = 0x01;
534 cp.simul = 0x00;
535 }
536
537 if (cp.le != lmp_host_le_capable(hdev))
538 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
539 &cp);
540}
541
542static void hci_set_event_mask_page_2(struct hci_request *req)
543{
544 struct hci_dev *hdev = req->hdev;
545 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
546 bool changed = false;
547
548 /* If Connectionless Peripheral Broadcast central role is supported
549 * enable all necessary events for it.
550 */
551 if (lmp_cpb_central_capable(hdev)) {
552 events[1] |= 0x40; /* Triggered Clock Capture */
553 events[1] |= 0x80; /* Synchronization Train Complete */
554 events[2] |= 0x10; /* Peripheral Page Response Timeout */
555 events[2] |= 0x20; /* CPB Channel Map Change */
556 changed = true;
557 }
558
559 /* If Connectionless Peripheral Broadcast peripheral role is supported
560 * enable all necessary events for it.
561 */
562 if (lmp_cpb_peripheral_capable(hdev)) {
563 events[2] |= 0x01; /* Synchronization Train Received */
564 events[2] |= 0x02; /* CPB Receive */
565 events[2] |= 0x04; /* CPB Timeout */
566 events[2] |= 0x08; /* Truncated Page Complete */
567 changed = true;
568 }
569
570 /* Enable Authenticated Payload Timeout Expired event if supported */
571 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
572 events[2] |= 0x80;
573 changed = true;
574 }
575
576 /* Some Broadcom based controllers indicate support for Set Event
577 * Mask Page 2 command, but then actually do not support it. Since
578 * the default value is all bits set to zero, the command is only
579 * required if the event mask has to be changed. In case no change
580 * to the event mask is needed, skip this command.
581 */
582 if (changed)
583 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
584 sizeof(events), events);
585}
586
587static int hci_init3_req(struct hci_request *req, unsigned long opt)
588{
589 struct hci_dev *hdev = req->hdev;
590 u8 p;
591
592 hci_setup_event_mask(req);
593
594 if (hdev->commands[6] & 0x20 &&
595 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
596 struct hci_cp_read_stored_link_key cp;
597
598 bacpy(&cp.bdaddr, BDADDR_ANY);
599 cp.read_all = 0x01;
600 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
601 }
602
603 if (hdev->commands[5] & 0x10)
604 hci_setup_link_policy(req);
605
606 if (hdev->commands[8] & 0x01)
607 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
608
609 if (hdev->commands[18] & 0x04 &&
610 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
611 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
612
613 /* Some older Broadcom based Bluetooth 1.2 controllers do not
614 * support the Read Page Scan Type command. Check support for
615 * this command in the bit mask of supported commands.
616 */
617 if (hdev->commands[13] & 0x01)
618 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
619
620 if (lmp_le_capable(hdev)) {
621 u8 events[8];
622
623 memset(events, 0, sizeof(events));
624
625 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
626 events[0] |= 0x10; /* LE Long Term Key Request */
627
628 /* If controller supports the Connection Parameters Request
629 * Link Layer Procedure, enable the corresponding event.
630 */
631 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
632 events[0] |= 0x20; /* LE Remote Connection
633 * Parameter Request
634 */
635
636 /* If the controller supports the Data Length Extension
637 * feature, enable the corresponding event.
638 */
639 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
640 events[0] |= 0x40; /* LE Data Length Change */
641
642 /* If the controller supports LL Privacy feature, enable
643 * the corresponding event.
644 */
645 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
646 events[1] |= 0x02; /* LE Enhanced Connection
647 * Complete
648 */
649
650 /* If the controller supports Extended Scanner Filter
651 * Policies, enable the corresponding event.
652 */
653 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
654 events[1] |= 0x04; /* LE Direct Advertising
655 * Report
656 */
657
658 /* If the controller supports Channel Selection Algorithm #2
659 * feature, enable the corresponding event.
660 */
661 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
662 events[2] |= 0x08; /* LE Channel Selection
663 * Algorithm
664 */
665
666 /* If the controller supports the LE Set Scan Enable command,
667 * enable the corresponding advertising report event.
668 */
669 if (hdev->commands[26] & 0x08)
670 events[0] |= 0x02; /* LE Advertising Report */
671
672 /* If the controller supports the LE Create Connection
673 * command, enable the corresponding event.
674 */
675 if (hdev->commands[26] & 0x10)
676 events[0] |= 0x01; /* LE Connection Complete */
677
678 /* If the controller supports the LE Connection Update
679 * command, enable the corresponding event.
680 */
681 if (hdev->commands[27] & 0x04)
682 events[0] |= 0x04; /* LE Connection Update
683 * Complete
684 */
685
686 /* If the controller supports the LE Read Remote Used Features
687 * command, enable the corresponding event.
688 */
689 if (hdev->commands[27] & 0x20)
690 events[0] |= 0x08; /* LE Read Remote Used
691 * Features Complete
692 */
693
694 /* If the controller supports the LE Read Local P-256
695 * Public Key command, enable the corresponding event.
696 */
697 if (hdev->commands[34] & 0x02)
698 events[0] |= 0x80; /* LE Read Local P-256
699 * Public Key Complete
700 */
701
702 /* If the controller supports the LE Generate DHKey
703 * command, enable the corresponding event.
704 */
705 if (hdev->commands[34] & 0x04)
706 events[1] |= 0x01; /* LE Generate DHKey Complete */
707
708 /* If the controller supports the LE Set Default PHY or
709 * LE Set PHY commands, enable the corresponding event.
710 */
711 if (hdev->commands[35] & (0x20 | 0x40))
712 events[1] |= 0x08; /* LE PHY Update Complete */
713
714 /* If the controller supports LE Set Extended Scan Parameters
715 * and LE Set Extended Scan Enable commands, enable the
716 * corresponding event.
717 */
718 if (use_ext_scan(hdev))
719 events[1] |= 0x10; /* LE Extended Advertising
720 * Report
721 */
722
723 /* If the controller supports the LE Extended Advertising
724 * command, enable the corresponding event.
725 */
726 if (ext_adv_capable(hdev))
727 events[2] |= 0x02; /* LE Advertising Set
728 * Terminated
729 */
730
731 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
732 events);
733
734 /* Read LE Advertising Channel TX Power */
735 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
736 /* HCI TS spec forbids mixing of legacy and extended
737 * advertising commands wherein READ_ADV_TX_POWER is
738 * also included. So do not call it if extended adv
739 * is supported otherwise controller will return
740 * COMMAND_DISALLOWED for extended commands.
741 */
742 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
743 }
744
745 if (hdev->commands[38] & 0x80) {
746 /* Read LE Min/Max Tx Power*/
747 hci_req_add(req, HCI_OP_LE_READ_TRANSMIT_POWER,
748 0, NULL);
749 }
750
751 if (hdev->commands[26] & 0x40) {
752 /* Read LE Accept List Size */
753 hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
754 0, NULL);
755 }
756
757 if (hdev->commands[26] & 0x80) {
758 /* Clear LE Accept List */
759 hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL);
760 }
761
762 if (hdev->commands[34] & 0x40) {
763 /* Read LE Resolving List Size */
764 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
765 0, NULL);
766 }
767
768 if (hdev->commands[34] & 0x20) {
769 /* Clear LE Resolving List */
770 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
771 }
772
773 if (hdev->commands[35] & 0x04) {
774 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
775
776 /* Set RPA timeout */
777 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
778 &rpa_timeout);
779 }
780
781 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
782 /* Read LE Maximum Data Length */
783 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
784
785 /* Read LE Suggested Default Data Length */
786 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
787 }
788
789 if (ext_adv_capable(hdev)) {
790 /* Read LE Number of Supported Advertising Sets */
791 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
792 0, NULL);
793 }
794
795 hci_set_le_support(req);
796 }
797
798 /* Read features beyond page 1 if available */
799 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
800 struct hci_cp_read_local_ext_features cp;
801
802 cp.page = p;
803 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
804 sizeof(cp), &cp);
805 }
806
807 return 0;
808}
809
810static int hci_init4_req(struct hci_request *req, unsigned long opt)
811{
812 struct hci_dev *hdev = req->hdev;
813
814 /* Some Broadcom based Bluetooth controllers do not support the
815 * Delete Stored Link Key command. They are clearly indicating its
816 * absence in the bit mask of supported commands.
817 *
818 * Check the supported commands and only if the command is marked
819 * as supported send it. If not supported assume that the controller
820 * does not have actual support for stored link keys which makes this
821 * command redundant anyway.
822 *
823 * Some controllers indicate that they support handling deleting
824 * stored link keys, but they don't. The quirk lets a driver
825 * just disable this command.
826 */
827 if (hdev->commands[6] & 0x80 &&
828 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
829 struct hci_cp_delete_stored_link_key cp;
830
831 bacpy(&cp.bdaddr, BDADDR_ANY);
832 cp.delete_all = 0x01;
833 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
834 sizeof(cp), &cp);
835 }
836
837 /* Set event mask page 2 if the HCI command for it is supported */
838 if (hdev->commands[22] & 0x04)
839 hci_set_event_mask_page_2(req);
840
841 /* Read local codec list if the HCI command is supported */
842 if (hdev->commands[29] & 0x20)
843 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
844
845 /* Read local pairing options if the HCI command is supported */
846 if (hdev->commands[41] & 0x08)
847 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
848
849 /* Get MWS transport configuration if the HCI command is supported */
850 if (hdev->commands[30] & 0x08)
851 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
852
853 /* Check for Synchronization Train support */
854 if (lmp_sync_train_capable(hdev))
855 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
856
857 /* Enable Secure Connections if supported and configured */
858 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
859 bredr_sc_enabled(hdev)) {
860 u8 support = 0x01;
861
862 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
863 sizeof(support), &support);
864 }
865
866 /* Set erroneous data reporting if supported to the wideband speech
867 * setting value
868 */
869 if (hdev->commands[18] & 0x08 &&
870 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
871 bool enabled = hci_dev_test_flag(hdev,
872 HCI_WIDEBAND_SPEECH_ENABLED);
873
874 if (enabled !=
875 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
876 struct hci_cp_write_def_err_data_reporting cp;
877
878 cp.err_data_reporting = enabled ?
879 ERR_DATA_REPORTING_ENABLED :
880 ERR_DATA_REPORTING_DISABLED;
881
882 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
883 sizeof(cp), &cp);
884 }
885 }
886
887 /* Set Suggested Default Data Length to maximum if supported */
888 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
889 struct hci_cp_le_write_def_data_len cp;
890
891 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
892 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
893 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
894 }
895
896 /* Set Default PHY parameters if command is supported */
897 if (hdev->commands[35] & 0x20) {
898 struct hci_cp_le_set_default_phy cp;
899
900 cp.all_phys = 0x00;
901 cp.tx_phys = hdev->le_tx_def_phys;
902 cp.rx_phys = hdev->le_rx_def_phys;
903
904 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
905 }
906
907 return 0;
908}
909
910static int __hci_init(struct hci_dev *hdev)
911{
912 int err;
913
914 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
915 if (err < 0)
916 return err;
917
918 if (hci_dev_test_flag(hdev, HCI_SETUP))
919 hci_debugfs_create_basic(hdev);
920
921 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
922 if (err < 0)
923 return err;
924
925 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
926 * BR/EDR/LE type controllers. AMP controllers only need the
927 * first two stages of init.
928 */
929 if (hdev->dev_type != HCI_PRIMARY)
930 return 0;
931
932 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
933 if (err < 0)
934 return err;
935
936 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
937 if (err < 0)
938 return err;
939
940 /* This function is only called when the controller is actually in
941 * configured state. When the controller is marked as unconfigured,
942 * this initialization procedure is not run.
943 *
944 * It means that it is possible that a controller runs through its
945 * setup phase and then discovers missing settings. If that is the
946 * case, then this function will not be called. It then will only
947 * be called during the config phase.
948 *
949 * So only when in setup phase or config phase, create the debugfs
950 * entries and register the SMP channels.
951 */
952 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
953 !hci_dev_test_flag(hdev, HCI_CONFIG))
954 return 0;
955
956 hci_debugfs_create_common(hdev);
957
958 if (lmp_bredr_capable(hdev))
959 hci_debugfs_create_bredr(hdev);
960
961 if (lmp_le_capable(hdev))
962 hci_debugfs_create_le(hdev);
963
964 return 0;
965}
966
967static int hci_init0_req(struct hci_request *req, unsigned long opt)
968{
969 struct hci_dev *hdev = req->hdev;
970
971 BT_DBG("%s %ld", hdev->name, opt);
972
973 /* Reset */
974 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
975 hci_reset_req(req, 0);
976
977 /* Read Local Version */
978 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
979
980 /* Read BD Address */
981 if (hdev->set_bdaddr)
982 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
983
984 return 0;
985}
986
987static int __hci_unconf_init(struct hci_dev *hdev)
988{
989 int err;
990
991 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
992 return 0;
993
994 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
995 if (err < 0)
996 return err;
997
998 if (hci_dev_test_flag(hdev, HCI_SETUP))
999 hci_debugfs_create_basic(hdev);
1000
1001 return 0;
1002}
1003
1004static int hci_scan_req(struct hci_request *req, unsigned long opt)
1005{
1006 __u8 scan = opt;
1007
1008 BT_DBG("%s %x", req->hdev->name, scan);
1009
1010 /* Inquiry and Page scans */
1011 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1012 return 0;
1013}
1014
1015static int hci_auth_req(struct hci_request *req, unsigned long opt)
1016{
1017 __u8 auth = opt;
1018
1019 BT_DBG("%s %x", req->hdev->name, auth);
1020
1021 /* Authentication */
1022 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1023 return 0;
1024}
1025
1026static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1027{
1028 __u8 encrypt = opt;
1029
1030 BT_DBG("%s %x", req->hdev->name, encrypt);
1031
1032 /* Encryption */
1033 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1034 return 0;
1035}
1036
1037static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1038{
1039 __le16 policy = cpu_to_le16(opt);
1040
1041 BT_DBG("%s %x", req->hdev->name, policy);
1042
1043 /* Default link policy */
1044 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1045 return 0;
1046}
1047
1048/* Get HCI device by index.
1049 * Device is held on return. */
1050struct hci_dev *hci_dev_get(int index)
1051{
1052 struct hci_dev *hdev = NULL, *d;
1053
1054 BT_DBG("%d", index);
1055
1056 if (index < 0)
1057 return NULL;
1058
1059 read_lock(&hci_dev_list_lock);
1060 list_for_each_entry(d, &hci_dev_list, list) {
1061 if (d->id == index) {
1062 hdev = hci_dev_hold(d);
1063 break;
1064 }
1065 }
1066 read_unlock(&hci_dev_list_lock);
1067 return hdev;
1068}
1069
1070/* ---- Inquiry support ---- */
1071
1072bool hci_discovery_active(struct hci_dev *hdev)
1073{
1074 struct discovery_state *discov = &hdev->discovery;
1075
1076 switch (discov->state) {
1077 case DISCOVERY_FINDING:
1078 case DISCOVERY_RESOLVING:
1079 return true;
1080
1081 default:
1082 return false;
1083 }
1084}
1085
1086void hci_discovery_set_state(struct hci_dev *hdev, int state)
1087{
1088 int old_state = hdev->discovery.state;
1089
1090 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1091
1092 if (old_state == state)
1093 return;
1094
1095 hdev->discovery.state = state;
1096
1097 switch (state) {
1098 case DISCOVERY_STOPPED:
1099 hci_update_background_scan(hdev);
1100
1101 if (old_state != DISCOVERY_STARTING)
1102 mgmt_discovering(hdev, 0);
1103 break;
1104 case DISCOVERY_STARTING:
1105 break;
1106 case DISCOVERY_FINDING:
1107 mgmt_discovering(hdev, 1);
1108 break;
1109 case DISCOVERY_RESOLVING:
1110 break;
1111 case DISCOVERY_STOPPING:
1112 break;
1113 }
1114}
1115
1116void hci_inquiry_cache_flush(struct hci_dev *hdev)
1117{
1118 struct discovery_state *cache = &hdev->discovery;
1119 struct inquiry_entry *p, *n;
1120
1121 list_for_each_entry_safe(p, n, &cache->all, all) {
1122 list_del(&p->all);
1123 kfree(p);
1124 }
1125
1126 INIT_LIST_HEAD(&cache->unknown);
1127 INIT_LIST_HEAD(&cache->resolve);
1128}
1129
1130struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1131 bdaddr_t *bdaddr)
1132{
1133 struct discovery_state *cache = &hdev->discovery;
1134 struct inquiry_entry *e;
1135
1136 BT_DBG("cache %p, %pMR", cache, bdaddr);
1137
1138 list_for_each_entry(e, &cache->all, all) {
1139 if (!bacmp(&e->data.bdaddr, bdaddr))
1140 return e;
1141 }
1142
1143 return NULL;
1144}
1145
1146struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1147 bdaddr_t *bdaddr)
1148{
1149 struct discovery_state *cache = &hdev->discovery;
1150 struct inquiry_entry *e;
1151
1152 BT_DBG("cache %p, %pMR", cache, bdaddr);
1153
1154 list_for_each_entry(e, &cache->unknown, list) {
1155 if (!bacmp(&e->data.bdaddr, bdaddr))
1156 return e;
1157 }
1158
1159 return NULL;
1160}
1161
1162struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1163 bdaddr_t *bdaddr,
1164 int state)
1165{
1166 struct discovery_state *cache = &hdev->discovery;
1167 struct inquiry_entry *e;
1168
1169 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1170
1171 list_for_each_entry(e, &cache->resolve, list) {
1172 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1173 return e;
1174 if (!bacmp(&e->data.bdaddr, bdaddr))
1175 return e;
1176 }
1177
1178 return NULL;
1179}
1180
1181void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1182 struct inquiry_entry *ie)
1183{
1184 struct discovery_state *cache = &hdev->discovery;
1185 struct list_head *pos = &cache->resolve;
1186 struct inquiry_entry *p;
1187
1188 list_del(&ie->list);
1189
1190 list_for_each_entry(p, &cache->resolve, list) {
1191 if (p->name_state != NAME_PENDING &&
1192 abs(p->data.rssi) >= abs(ie->data.rssi))
1193 break;
1194 pos = &p->list;
1195 }
1196
1197 list_add(&ie->list, pos);
1198}
1199
1200u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1201 bool name_known)
1202{
1203 struct discovery_state *cache = &hdev->discovery;
1204 struct inquiry_entry *ie;
1205 u32 flags = 0;
1206
1207 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1208
1209 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1210
1211 if (!data->ssp_mode)
1212 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1213
1214 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1215 if (ie) {
1216 if (!ie->data.ssp_mode)
1217 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1218
1219 if (ie->name_state == NAME_NEEDED &&
1220 data->rssi != ie->data.rssi) {
1221 ie->data.rssi = data->rssi;
1222 hci_inquiry_cache_update_resolve(hdev, ie);
1223 }
1224
1225 goto update;
1226 }
1227
1228 /* Entry not in the cache. Add new one. */
1229 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1230 if (!ie) {
1231 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1232 goto done;
1233 }
1234
1235 list_add(&ie->all, &cache->all);
1236
1237 if (name_known) {
1238 ie->name_state = NAME_KNOWN;
1239 } else {
1240 ie->name_state = NAME_NOT_KNOWN;
1241 list_add(&ie->list, &cache->unknown);
1242 }
1243
1244update:
1245 if (name_known && ie->name_state != NAME_KNOWN &&
1246 ie->name_state != NAME_PENDING) {
1247 ie->name_state = NAME_KNOWN;
1248 list_del(&ie->list);
1249 }
1250
1251 memcpy(&ie->data, data, sizeof(*data));
1252 ie->timestamp = jiffies;
1253 cache->timestamp = jiffies;
1254
1255 if (ie->name_state == NAME_NOT_KNOWN)
1256 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1257
1258done:
1259 return flags;
1260}
1261
1262static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1263{
1264 struct discovery_state *cache = &hdev->discovery;
1265 struct inquiry_info *info = (struct inquiry_info *) buf;
1266 struct inquiry_entry *e;
1267 int copied = 0;
1268
1269 list_for_each_entry(e, &cache->all, all) {
1270 struct inquiry_data *data = &e->data;
1271
1272 if (copied >= num)
1273 break;
1274
1275 bacpy(&info->bdaddr, &data->bdaddr);
1276 info->pscan_rep_mode = data->pscan_rep_mode;
1277 info->pscan_period_mode = data->pscan_period_mode;
1278 info->pscan_mode = data->pscan_mode;
1279 memcpy(info->dev_class, data->dev_class, 3);
1280 info->clock_offset = data->clock_offset;
1281
1282 info++;
1283 copied++;
1284 }
1285
1286 BT_DBG("cache %p, copied %d", cache, copied);
1287 return copied;
1288}
1289
1290static int hci_inq_req(struct hci_request *req, unsigned long opt)
1291{
1292 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1293 struct hci_dev *hdev = req->hdev;
1294 struct hci_cp_inquiry cp;
1295
1296 BT_DBG("%s", hdev->name);
1297
1298 if (test_bit(HCI_INQUIRY, &hdev->flags))
1299 return 0;
1300
1301 /* Start Inquiry */
1302 memcpy(&cp.lap, &ir->lap, 3);
1303 cp.length = ir->length;
1304 cp.num_rsp = ir->num_rsp;
1305 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1306
1307 return 0;
1308}
1309
1310int hci_inquiry(void __user *arg)
1311{
1312 __u8 __user *ptr = arg;
1313 struct hci_inquiry_req ir;
1314 struct hci_dev *hdev;
1315 int err = 0, do_inquiry = 0, max_rsp;
1316 long timeo;
1317 __u8 *buf;
1318
1319 if (copy_from_user(&ir, ptr, sizeof(ir)))
1320 return -EFAULT;
1321
1322 hdev = hci_dev_get(ir.dev_id);
1323 if (!hdev)
1324 return -ENODEV;
1325
1326 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1327 err = -EBUSY;
1328 goto done;
1329 }
1330
1331 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1332 err = -EOPNOTSUPP;
1333 goto done;
1334 }
1335
1336 if (hdev->dev_type != HCI_PRIMARY) {
1337 err = -EOPNOTSUPP;
1338 goto done;
1339 }
1340
1341 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1342 err = -EOPNOTSUPP;
1343 goto done;
1344 }
1345
1346 /* Restrict maximum inquiry length to 60 seconds */
1347 if (ir.length > 60) {
1348 err = -EINVAL;
1349 goto done;
1350 }
1351
1352 hci_dev_lock(hdev);
1353 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1354 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1355 hci_inquiry_cache_flush(hdev);
1356 do_inquiry = 1;
1357 }
1358 hci_dev_unlock(hdev);
1359
1360 timeo = ir.length * msecs_to_jiffies(2000);
1361
1362 if (do_inquiry) {
1363 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1364 timeo, NULL);
1365 if (err < 0)
1366 goto done;
1367
1368 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1369 * cleared). If it is interrupted by a signal, return -EINTR.
1370 */
1371 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1372 TASK_INTERRUPTIBLE)) {
1373 err = -EINTR;
1374 goto done;
1375 }
1376 }
1377
1378 /* for unlimited number of responses we will use buffer with
1379 * 255 entries
1380 */
1381 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1382
1383 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1384 * copy it to the user space.
1385 */
1386 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1387 if (!buf) {
1388 err = -ENOMEM;
1389 goto done;
1390 }
1391
1392 hci_dev_lock(hdev);
1393 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1394 hci_dev_unlock(hdev);
1395
1396 BT_DBG("num_rsp %d", ir.num_rsp);
1397
1398 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1399 ptr += sizeof(ir);
1400 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1401 ir.num_rsp))
1402 err = -EFAULT;
1403 } else
1404 err = -EFAULT;
1405
1406 kfree(buf);
1407
1408done:
1409 hci_dev_put(hdev);
1410 return err;
1411}
1412
1413/**
1414 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1415 * (BD_ADDR) for a HCI device from
1416 * a firmware node property.
1417 * @hdev: The HCI device
1418 *
1419 * Search the firmware node for 'local-bd-address'.
1420 *
1421 * All-zero BD addresses are rejected, because those could be properties
1422 * that exist in the firmware tables, but were not updated by the firmware. For
1423 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1424 */
1425static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1426{
1427 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1428 bdaddr_t ba;
1429 int ret;
1430
1431 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1432 (u8 *)&ba, sizeof(ba));
1433 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1434 return;
1435
1436 bacpy(&hdev->public_addr, &ba);
1437}
1438
1439static int hci_dev_do_open(struct hci_dev *hdev)
1440{
1441 int ret = 0;
1442
1443 BT_DBG("%s %p", hdev->name, hdev);
1444
1445 hci_req_sync_lock(hdev);
1446
1447 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1448 ret = -ENODEV;
1449 goto done;
1450 }
1451
1452 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1453 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1454 /* Check for rfkill but allow the HCI setup stage to
1455 * proceed (which in itself doesn't cause any RF activity).
1456 */
1457 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1458 ret = -ERFKILL;
1459 goto done;
1460 }
1461
1462 /* Check for valid public address or a configured static
1463 * random address, but let the HCI setup proceed to
1464 * be able to determine if there is a public address
1465 * or not.
1466 *
1467 * In case of user channel usage, it is not important
1468 * if a public address or static random address is
1469 * available.
1470 *
1471 * This check is only valid for BR/EDR controllers
1472 * since AMP controllers do not have an address.
1473 */
1474 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1475 hdev->dev_type == HCI_PRIMARY &&
1476 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1477 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1478 ret = -EADDRNOTAVAIL;
1479 goto done;
1480 }
1481 }
1482
1483 if (test_bit(HCI_UP, &hdev->flags)) {
1484 ret = -EALREADY;
1485 goto done;
1486 }
1487
1488 if (hdev->open(hdev)) {
1489 ret = -EIO;
1490 goto done;
1491 }
1492
1493 set_bit(HCI_RUNNING, &hdev->flags);
1494 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1495
1496 atomic_set(&hdev->cmd_cnt, 1);
1497 set_bit(HCI_INIT, &hdev->flags);
1498
1499 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1500 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1501 bool invalid_bdaddr;
1502
1503 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1504
1505 if (hdev->setup)
1506 ret = hdev->setup(hdev);
1507
1508 /* The transport driver can set the quirk to mark the
1509 * BD_ADDR invalid before creating the HCI device or in
1510 * its setup callback.
1511 */
1512 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1513 &hdev->quirks);
1514
1515 if (ret)
1516 goto setup_failed;
1517
1518 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1519 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1520 hci_dev_get_bd_addr_from_property(hdev);
1521
1522 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1523 hdev->set_bdaddr) {
1524 ret = hdev->set_bdaddr(hdev,
1525 &hdev->public_addr);
1526
1527 /* If setting of the BD_ADDR from the device
1528 * property succeeds, then treat the address
1529 * as valid even if the invalid BD_ADDR
1530 * quirk indicates otherwise.
1531 */
1532 if (!ret)
1533 invalid_bdaddr = false;
1534 }
1535 }
1536
1537setup_failed:
1538 /* The transport driver can set these quirks before
1539 * creating the HCI device or in its setup callback.
1540 *
1541 * For the invalid BD_ADDR quirk it is possible that
1542 * it becomes a valid address if the bootloader does
1543 * provide it (see above).
1544 *
1545 * In case any of them is set, the controller has to
1546 * start up as unconfigured.
1547 */
1548 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1549 invalid_bdaddr)
1550 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1551
1552 /* For an unconfigured controller it is required to
1553 * read at least the version information provided by
1554 * the Read Local Version Information command.
1555 *
1556 * If the set_bdaddr driver callback is provided, then
1557 * also the original Bluetooth public device address
1558 * will be read using the Read BD Address command.
1559 */
1560 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1561 ret = __hci_unconf_init(hdev);
1562 }
1563
1564 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1565 /* If public address change is configured, ensure that
1566 * the address gets programmed. If the driver does not
1567 * support changing the public address, fail the power
1568 * on procedure.
1569 */
1570 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1571 hdev->set_bdaddr)
1572 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1573 else
1574 ret = -EADDRNOTAVAIL;
1575 }
1576
1577 if (!ret) {
1578 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1579 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1580 ret = __hci_init(hdev);
1581 if (!ret && hdev->post_init)
1582 ret = hdev->post_init(hdev);
1583 }
1584 }
1585
1586 /* If the HCI Reset command is clearing all diagnostic settings,
1587 * then they need to be reprogrammed after the init procedure
1588 * completed.
1589 */
1590 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1591 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1592 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1593 ret = hdev->set_diag(hdev, true);
1594
1595 msft_do_open(hdev);
1596 aosp_do_open(hdev);
1597
1598 clear_bit(HCI_INIT, &hdev->flags);
1599
1600 if (!ret) {
1601 hci_dev_hold(hdev);
1602 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1603 hci_adv_instances_set_rpa_expired(hdev, true);
1604 set_bit(HCI_UP, &hdev->flags);
1605 hci_sock_dev_event(hdev, HCI_DEV_UP);
1606 hci_leds_update_powered(hdev, true);
1607 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1608 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1609 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1610 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1611 hci_dev_test_flag(hdev, HCI_MGMT) &&
1612 hdev->dev_type == HCI_PRIMARY) {
1613 ret = __hci_req_hci_power_on(hdev);
1614 mgmt_power_on(hdev, ret);
1615 }
1616 } else {
1617 /* Init failed, cleanup */
1618 flush_work(&hdev->tx_work);
1619
1620 /* Since hci_rx_work() is possible to awake new cmd_work
1621 * it should be flushed first to avoid unexpected call of
1622 * hci_cmd_work()
1623 */
1624 flush_work(&hdev->rx_work);
1625 flush_work(&hdev->cmd_work);
1626
1627 skb_queue_purge(&hdev->cmd_q);
1628 skb_queue_purge(&hdev->rx_q);
1629
1630 if (hdev->flush)
1631 hdev->flush(hdev);
1632
1633 if (hdev->sent_cmd) {
1634 kfree_skb(hdev->sent_cmd);
1635 hdev->sent_cmd = NULL;
1636 }
1637
1638 clear_bit(HCI_RUNNING, &hdev->flags);
1639 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1640
1641 hdev->close(hdev);
1642 hdev->flags &= BIT(HCI_RAW);
1643 }
1644
1645done:
1646 hci_req_sync_unlock(hdev);
1647 return ret;
1648}
1649
1650/* ---- HCI ioctl helpers ---- */
1651
1652int hci_dev_open(__u16 dev)
1653{
1654 struct hci_dev *hdev;
1655 int err;
1656
1657 hdev = hci_dev_get(dev);
1658 if (!hdev)
1659 return -ENODEV;
1660
1661 /* Devices that are marked as unconfigured can only be powered
1662 * up as user channel. Trying to bring them up as normal devices
1663 * will result into a failure. Only user channel operation is
1664 * possible.
1665 *
1666 * When this function is called for a user channel, the flag
1667 * HCI_USER_CHANNEL will be set first before attempting to
1668 * open the device.
1669 */
1670 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1671 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1672 err = -EOPNOTSUPP;
1673 goto done;
1674 }
1675
1676 /* We need to ensure that no other power on/off work is pending
1677 * before proceeding to call hci_dev_do_open. This is
1678 * particularly important if the setup procedure has not yet
1679 * completed.
1680 */
1681 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1682 cancel_delayed_work(&hdev->power_off);
1683
1684 /* After this call it is guaranteed that the setup procedure
1685 * has finished. This means that error conditions like RFKILL
1686 * or no valid public or static random address apply.
1687 */
1688 flush_workqueue(hdev->req_workqueue);
1689
1690 /* For controllers not using the management interface and that
1691 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1692 * so that pairing works for them. Once the management interface
1693 * is in use this bit will be cleared again and userspace has
1694 * to explicitly enable it.
1695 */
1696 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1697 !hci_dev_test_flag(hdev, HCI_MGMT))
1698 hci_dev_set_flag(hdev, HCI_BONDABLE);
1699
1700 err = hci_dev_do_open(hdev);
1701
1702done:
1703 hci_dev_put(hdev);
1704 return err;
1705}
1706
1707/* This function requires the caller holds hdev->lock */
1708static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1709{
1710 struct hci_conn_params *p;
1711
1712 list_for_each_entry(p, &hdev->le_conn_params, list) {
1713 if (p->conn) {
1714 hci_conn_drop(p->conn);
1715 hci_conn_put(p->conn);
1716 p->conn = NULL;
1717 }
1718 list_del_init(&p->action);
1719 }
1720
1721 BT_DBG("All LE pending actions cleared");
1722}
1723
1724int hci_dev_do_close(struct hci_dev *hdev)
1725{
1726 bool auto_off;
1727
1728 BT_DBG("%s %p", hdev->name, hdev);
1729
1730 cancel_delayed_work(&hdev->power_off);
1731 cancel_delayed_work(&hdev->ncmd_timer);
1732
1733 hci_request_cancel_all(hdev);
1734 hci_req_sync_lock(hdev);
1735
1736 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1737 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1738 test_bit(HCI_UP, &hdev->flags)) {
1739 /* Execute vendor specific shutdown routine */
1740 if (hdev->shutdown)
1741 hdev->shutdown(hdev);
1742 }
1743
1744 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1745 cancel_delayed_work_sync(&hdev->cmd_timer);
1746 hci_req_sync_unlock(hdev);
1747 return 0;
1748 }
1749
1750 hci_leds_update_powered(hdev, false);
1751
1752 /* Flush RX and TX works */
1753 flush_work(&hdev->tx_work);
1754 flush_work(&hdev->rx_work);
1755
1756 if (hdev->discov_timeout > 0) {
1757 hdev->discov_timeout = 0;
1758 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1759 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1760 }
1761
1762 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1763 cancel_delayed_work(&hdev->service_cache);
1764
1765 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1766 struct adv_info *adv_instance;
1767
1768 cancel_delayed_work_sync(&hdev->rpa_expired);
1769
1770 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1771 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1772 }
1773
1774 /* Avoid potential lockdep warnings from the *_flush() calls by
1775 * ensuring the workqueue is empty up front.
1776 */
1777 drain_workqueue(hdev->workqueue);
1778
1779 hci_dev_lock(hdev);
1780
1781 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1782
1783 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1784
1785 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1786 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1787 hci_dev_test_flag(hdev, HCI_MGMT))
1788 __mgmt_power_off(hdev);
1789
1790 hci_inquiry_cache_flush(hdev);
1791 hci_pend_le_actions_clear(hdev);
1792 hci_conn_hash_flush(hdev);
1793 hci_dev_unlock(hdev);
1794
1795 smp_unregister(hdev);
1796
1797 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1798
1799 aosp_do_close(hdev);
1800 msft_do_close(hdev);
1801
1802 if (hdev->flush)
1803 hdev->flush(hdev);
1804
1805 /* Reset device */
1806 skb_queue_purge(&hdev->cmd_q);
1807 atomic_set(&hdev->cmd_cnt, 1);
1808 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1809 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1810 set_bit(HCI_INIT, &hdev->flags);
1811 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1812 clear_bit(HCI_INIT, &hdev->flags);
1813 }
1814
1815 /* flush cmd work */
1816 flush_work(&hdev->cmd_work);
1817
1818 /* Drop queues */
1819 skb_queue_purge(&hdev->rx_q);
1820 skb_queue_purge(&hdev->cmd_q);
1821 skb_queue_purge(&hdev->raw_q);
1822
1823 /* Drop last sent command */
1824 if (hdev->sent_cmd) {
1825 cancel_delayed_work_sync(&hdev->cmd_timer);
1826 kfree_skb(hdev->sent_cmd);
1827 hdev->sent_cmd = NULL;
1828 }
1829
1830 clear_bit(HCI_RUNNING, &hdev->flags);
1831 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1832
1833 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1834 wake_up(&hdev->suspend_wait_q);
1835
1836 /* After this point our queues are empty
1837 * and no tasks are scheduled. */
1838 hdev->close(hdev);
1839
1840 /* Clear flags */
1841 hdev->flags &= BIT(HCI_RAW);
1842 hci_dev_clear_volatile_flags(hdev);
1843
1844 /* Controller radio is available but is currently powered down */
1845 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1846
1847 memset(hdev->eir, 0, sizeof(hdev->eir));
1848 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1849 bacpy(&hdev->random_addr, BDADDR_ANY);
1850
1851 hci_req_sync_unlock(hdev);
1852
1853 hci_dev_put(hdev);
1854 return 0;
1855}
1856
1857int hci_dev_close(__u16 dev)
1858{
1859 struct hci_dev *hdev;
1860 int err;
1861
1862 hdev = hci_dev_get(dev);
1863 if (!hdev)
1864 return -ENODEV;
1865
1866 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1867 err = -EBUSY;
1868 goto done;
1869 }
1870
1871 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1872 cancel_delayed_work(&hdev->power_off);
1873
1874 err = hci_dev_do_close(hdev);
1875
1876done:
1877 hci_dev_put(hdev);
1878 return err;
1879}
1880
1881static int hci_dev_do_reset(struct hci_dev *hdev)
1882{
1883 int ret;
1884
1885 BT_DBG("%s %p", hdev->name, hdev);
1886
1887 hci_req_sync_lock(hdev);
1888
1889 /* Drop queues */
1890 skb_queue_purge(&hdev->rx_q);
1891 skb_queue_purge(&hdev->cmd_q);
1892
1893 /* Avoid potential lockdep warnings from the *_flush() calls by
1894 * ensuring the workqueue is empty up front.
1895 */
1896 drain_workqueue(hdev->workqueue);
1897
1898 hci_dev_lock(hdev);
1899 hci_inquiry_cache_flush(hdev);
1900 hci_conn_hash_flush(hdev);
1901 hci_dev_unlock(hdev);
1902
1903 if (hdev->flush)
1904 hdev->flush(hdev);
1905
1906 atomic_set(&hdev->cmd_cnt, 1);
1907 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1908
1909 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1910
1911 hci_req_sync_unlock(hdev);
1912 return ret;
1913}
1914
1915int hci_dev_reset(__u16 dev)
1916{
1917 struct hci_dev *hdev;
1918 int err;
1919
1920 hdev = hci_dev_get(dev);
1921 if (!hdev)
1922 return -ENODEV;
1923
1924 if (!test_bit(HCI_UP, &hdev->flags)) {
1925 err = -ENETDOWN;
1926 goto done;
1927 }
1928
1929 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1930 err = -EBUSY;
1931 goto done;
1932 }
1933
1934 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1935 err = -EOPNOTSUPP;
1936 goto done;
1937 }
1938
1939 err = hci_dev_do_reset(hdev);
1940
1941done:
1942 hci_dev_put(hdev);
1943 return err;
1944}
1945
1946int hci_dev_reset_stat(__u16 dev)
1947{
1948 struct hci_dev *hdev;
1949 int ret = 0;
1950
1951 hdev = hci_dev_get(dev);
1952 if (!hdev)
1953 return -ENODEV;
1954
1955 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1956 ret = -EBUSY;
1957 goto done;
1958 }
1959
1960 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1961 ret = -EOPNOTSUPP;
1962 goto done;
1963 }
1964
1965 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1966
1967done:
1968 hci_dev_put(hdev);
1969 return ret;
1970}
1971
1972static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1973{
1974 bool conn_changed, discov_changed;
1975
1976 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1977
1978 if ((scan & SCAN_PAGE))
1979 conn_changed = !hci_dev_test_and_set_flag(hdev,
1980 HCI_CONNECTABLE);
1981 else
1982 conn_changed = hci_dev_test_and_clear_flag(hdev,
1983 HCI_CONNECTABLE);
1984
1985 if ((scan & SCAN_INQUIRY)) {
1986 discov_changed = !hci_dev_test_and_set_flag(hdev,
1987 HCI_DISCOVERABLE);
1988 } else {
1989 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1990 discov_changed = hci_dev_test_and_clear_flag(hdev,
1991 HCI_DISCOVERABLE);
1992 }
1993
1994 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1995 return;
1996
1997 if (conn_changed || discov_changed) {
1998 /* In case this was disabled through mgmt */
1999 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2000
2001 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2002 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
2003
2004 mgmt_new_settings(hdev);
2005 }
2006}
2007
2008int hci_dev_cmd(unsigned int cmd, void __user *arg)
2009{
2010 struct hci_dev *hdev;
2011 struct hci_dev_req dr;
2012 int err = 0;
2013
2014 if (copy_from_user(&dr, arg, sizeof(dr)))
2015 return -EFAULT;
2016
2017 hdev = hci_dev_get(dr.dev_id);
2018 if (!hdev)
2019 return -ENODEV;
2020
2021 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2022 err = -EBUSY;
2023 goto done;
2024 }
2025
2026 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2027 err = -EOPNOTSUPP;
2028 goto done;
2029 }
2030
2031 if (hdev->dev_type != HCI_PRIMARY) {
2032 err = -EOPNOTSUPP;
2033 goto done;
2034 }
2035
2036 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2037 err = -EOPNOTSUPP;
2038 goto done;
2039 }
2040
2041 switch (cmd) {
2042 case HCISETAUTH:
2043 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2044 HCI_INIT_TIMEOUT, NULL);
2045 break;
2046
2047 case HCISETENCRYPT:
2048 if (!lmp_encrypt_capable(hdev)) {
2049 err = -EOPNOTSUPP;
2050 break;
2051 }
2052
2053 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2054 /* Auth must be enabled first */
2055 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2056 HCI_INIT_TIMEOUT, NULL);
2057 if (err)
2058 break;
2059 }
2060
2061 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2062 HCI_INIT_TIMEOUT, NULL);
2063 break;
2064
2065 case HCISETSCAN:
2066 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2067 HCI_INIT_TIMEOUT, NULL);
2068
2069 /* Ensure that the connectable and discoverable states
2070 * get correctly modified as this was a non-mgmt change.
2071 */
2072 if (!err)
2073 hci_update_scan_state(hdev, dr.dev_opt);
2074 break;
2075
2076 case HCISETLINKPOL:
2077 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2078 HCI_INIT_TIMEOUT, NULL);
2079 break;
2080
2081 case HCISETLINKMODE:
2082 hdev->link_mode = ((__u16) dr.dev_opt) &
2083 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2084 break;
2085
2086 case HCISETPTYPE:
2087 if (hdev->pkt_type == (__u16) dr.dev_opt)
2088 break;
2089
2090 hdev->pkt_type = (__u16) dr.dev_opt;
2091 mgmt_phy_configuration_changed(hdev, NULL);
2092 break;
2093
2094 case HCISETACLMTU:
2095 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2096 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2097 break;
2098
2099 case HCISETSCOMTU:
2100 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2101 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2102 break;
2103
2104 default:
2105 err = -EINVAL;
2106 break;
2107 }
2108
2109done:
2110 hci_dev_put(hdev);
2111 return err;
2112}
2113
2114int hci_get_dev_list(void __user *arg)
2115{
2116 struct hci_dev *hdev;
2117 struct hci_dev_list_req *dl;
2118 struct hci_dev_req *dr;
2119 int n = 0, size, err;
2120 __u16 dev_num;
2121
2122 if (get_user(dev_num, (__u16 __user *) arg))
2123 return -EFAULT;
2124
2125 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2126 return -EINVAL;
2127
2128 size = sizeof(*dl) + dev_num * sizeof(*dr);
2129
2130 dl = kzalloc(size, GFP_KERNEL);
2131 if (!dl)
2132 return -ENOMEM;
2133
2134 dr = dl->dev_req;
2135
2136 read_lock(&hci_dev_list_lock);
2137 list_for_each_entry(hdev, &hci_dev_list, list) {
2138 unsigned long flags = hdev->flags;
2139
2140 /* When the auto-off is configured it means the transport
2141 * is running, but in that case still indicate that the
2142 * device is actually down.
2143 */
2144 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2145 flags &= ~BIT(HCI_UP);
2146
2147 (dr + n)->dev_id = hdev->id;
2148 (dr + n)->dev_opt = flags;
2149
2150 if (++n >= dev_num)
2151 break;
2152 }
2153 read_unlock(&hci_dev_list_lock);
2154
2155 dl->dev_num = n;
2156 size = sizeof(*dl) + n * sizeof(*dr);
2157
2158 err = copy_to_user(arg, dl, size);
2159 kfree(dl);
2160
2161 return err ? -EFAULT : 0;
2162}
2163
2164int hci_get_dev_info(void __user *arg)
2165{
2166 struct hci_dev *hdev;
2167 struct hci_dev_info di;
2168 unsigned long flags;
2169 int err = 0;
2170
2171 if (copy_from_user(&di, arg, sizeof(di)))
2172 return -EFAULT;
2173
2174 hdev = hci_dev_get(di.dev_id);
2175 if (!hdev)
2176 return -ENODEV;
2177
2178 /* When the auto-off is configured it means the transport
2179 * is running, but in that case still indicate that the
2180 * device is actually down.
2181 */
2182 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2183 flags = hdev->flags & ~BIT(HCI_UP);
2184 else
2185 flags = hdev->flags;
2186
2187 strcpy(di.name, hdev->name);
2188 di.bdaddr = hdev->bdaddr;
2189 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2190 di.flags = flags;
2191 di.pkt_type = hdev->pkt_type;
2192 if (lmp_bredr_capable(hdev)) {
2193 di.acl_mtu = hdev->acl_mtu;
2194 di.acl_pkts = hdev->acl_pkts;
2195 di.sco_mtu = hdev->sco_mtu;
2196 di.sco_pkts = hdev->sco_pkts;
2197 } else {
2198 di.acl_mtu = hdev->le_mtu;
2199 di.acl_pkts = hdev->le_pkts;
2200 di.sco_mtu = 0;
2201 di.sco_pkts = 0;
2202 }
2203 di.link_policy = hdev->link_policy;
2204 di.link_mode = hdev->link_mode;
2205
2206 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2207 memcpy(&di.features, &hdev->features, sizeof(di.features));
2208
2209 if (copy_to_user(arg, &di, sizeof(di)))
2210 err = -EFAULT;
2211
2212 hci_dev_put(hdev);
2213
2214 return err;
2215}
2216
2217/* ---- Interface to HCI drivers ---- */
2218
2219static int hci_rfkill_set_block(void *data, bool blocked)
2220{
2221 struct hci_dev *hdev = data;
2222
2223 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2224
2225 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2226 return -EBUSY;
2227
2228 if (blocked) {
2229 hci_dev_set_flag(hdev, HCI_RFKILLED);
2230 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2231 !hci_dev_test_flag(hdev, HCI_CONFIG))
2232 hci_dev_do_close(hdev);
2233 } else {
2234 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2235 }
2236
2237 return 0;
2238}
2239
2240static const struct rfkill_ops hci_rfkill_ops = {
2241 .set_block = hci_rfkill_set_block,
2242};
2243
2244static void hci_power_on(struct work_struct *work)
2245{
2246 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2247 int err;
2248
2249 BT_DBG("%s", hdev->name);
2250
2251 if (test_bit(HCI_UP, &hdev->flags) &&
2252 hci_dev_test_flag(hdev, HCI_MGMT) &&
2253 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2254 cancel_delayed_work(&hdev->power_off);
2255 hci_req_sync_lock(hdev);
2256 err = __hci_req_hci_power_on(hdev);
2257 hci_req_sync_unlock(hdev);
2258 mgmt_power_on(hdev, err);
2259 return;
2260 }
2261
2262 err = hci_dev_do_open(hdev);
2263 if (err < 0) {
2264 hci_dev_lock(hdev);
2265 mgmt_set_powered_failed(hdev, err);
2266 hci_dev_unlock(hdev);
2267 return;
2268 }
2269
2270 /* During the HCI setup phase, a few error conditions are
2271 * ignored and they need to be checked now. If they are still
2272 * valid, it is important to turn the device back off.
2273 */
2274 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2275 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2276 (hdev->dev_type == HCI_PRIMARY &&
2277 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2278 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2279 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2280 hci_dev_do_close(hdev);
2281 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2282 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2283 HCI_AUTO_OFF_TIMEOUT);
2284 }
2285
2286 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2287 /* For unconfigured devices, set the HCI_RAW flag
2288 * so that userspace can easily identify them.
2289 */
2290 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2291 set_bit(HCI_RAW, &hdev->flags);
2292
2293 /* For fully configured devices, this will send
2294 * the Index Added event. For unconfigured devices,
2295 * it will send Unconfigued Index Added event.
2296 *
2297 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2298 * and no event will be send.
2299 */
2300 mgmt_index_added(hdev);
2301 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2302 /* When the controller is now configured, then it
2303 * is important to clear the HCI_RAW flag.
2304 */
2305 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2306 clear_bit(HCI_RAW, &hdev->flags);
2307
2308 /* Powering on the controller with HCI_CONFIG set only
2309 * happens with the transition from unconfigured to
2310 * configured. This will send the Index Added event.
2311 */
2312 mgmt_index_added(hdev);
2313 }
2314}
2315
2316static void hci_power_off(struct work_struct *work)
2317{
2318 struct hci_dev *hdev = container_of(work, struct hci_dev,
2319 power_off.work);
2320
2321 BT_DBG("%s", hdev->name);
2322
2323 hci_dev_do_close(hdev);
2324}
2325
2326static void hci_error_reset(struct work_struct *work)
2327{
2328 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2329
2330 BT_DBG("%s", hdev->name);
2331
2332 if (hdev->hw_error)
2333 hdev->hw_error(hdev, hdev->hw_error_code);
2334 else
2335 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2336
2337 if (hci_dev_do_close(hdev))
2338 return;
2339
2340 hci_dev_do_open(hdev);
2341}
2342
2343void hci_uuids_clear(struct hci_dev *hdev)
2344{
2345 struct bt_uuid *uuid, *tmp;
2346
2347 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2348 list_del(&uuid->list);
2349 kfree(uuid);
2350 }
2351}
2352
2353void hci_link_keys_clear(struct hci_dev *hdev)
2354{
2355 struct link_key *key;
2356
2357 list_for_each_entry(key, &hdev->link_keys, list) {
2358 list_del_rcu(&key->list);
2359 kfree_rcu(key, rcu);
2360 }
2361}
2362
2363void hci_smp_ltks_clear(struct hci_dev *hdev)
2364{
2365 struct smp_ltk *k;
2366
2367 list_for_each_entry(k, &hdev->long_term_keys, list) {
2368 list_del_rcu(&k->list);
2369 kfree_rcu(k, rcu);
2370 }
2371}
2372
2373void hci_smp_irks_clear(struct hci_dev *hdev)
2374{
2375 struct smp_irk *k;
2376
2377 list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2378 list_del_rcu(&k->list);
2379 kfree_rcu(k, rcu);
2380 }
2381}
2382
2383void hci_blocked_keys_clear(struct hci_dev *hdev)
2384{
2385 struct blocked_key *b;
2386
2387 list_for_each_entry(b, &hdev->blocked_keys, list) {
2388 list_del_rcu(&b->list);
2389 kfree_rcu(b, rcu);
2390 }
2391}
2392
2393bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2394{
2395 bool blocked = false;
2396 struct blocked_key *b;
2397
2398 rcu_read_lock();
2399 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2400 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2401 blocked = true;
2402 break;
2403 }
2404 }
2405
2406 rcu_read_unlock();
2407 return blocked;
2408}
2409
2410struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2411{
2412 struct link_key *k;
2413
2414 rcu_read_lock();
2415 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2416 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2417 rcu_read_unlock();
2418
2419 if (hci_is_blocked_key(hdev,
2420 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2421 k->val)) {
2422 bt_dev_warn_ratelimited(hdev,
2423 "Link key blocked for %pMR",
2424 &k->bdaddr);
2425 return NULL;
2426 }
2427
2428 return k;
2429 }
2430 }
2431 rcu_read_unlock();
2432
2433 return NULL;
2434}
2435
2436static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2437 u8 key_type, u8 old_key_type)
2438{
2439 /* Legacy key */
2440 if (key_type < 0x03)
2441 return true;
2442
2443 /* Debug keys are insecure so don't store them persistently */
2444 if (key_type == HCI_LK_DEBUG_COMBINATION)
2445 return false;
2446
2447 /* Changed combination key and there's no previous one */
2448 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2449 return false;
2450
2451 /* Security mode 3 case */
2452 if (!conn)
2453 return true;
2454
2455 /* BR/EDR key derived using SC from an LE link */
2456 if (conn->type == LE_LINK)
2457 return true;
2458
2459 /* Neither local nor remote side had no-bonding as requirement */
2460 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2461 return true;
2462
2463 /* Local side had dedicated bonding as requirement */
2464 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2465 return true;
2466
2467 /* Remote side had dedicated bonding as requirement */
2468 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2469 return true;
2470
2471 /* If none of the above criteria match, then don't store the key
2472 * persistently */
2473 return false;
2474}
2475
2476static u8 ltk_role(u8 type)
2477{
2478 if (type == SMP_LTK)
2479 return HCI_ROLE_MASTER;
2480
2481 return HCI_ROLE_SLAVE;
2482}
2483
2484struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2485 u8 addr_type, u8 role)
2486{
2487 struct smp_ltk *k;
2488
2489 rcu_read_lock();
2490 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2491 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2492 continue;
2493
2494 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2495 rcu_read_unlock();
2496
2497 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2498 k->val)) {
2499 bt_dev_warn_ratelimited(hdev,
2500 "LTK blocked for %pMR",
2501 &k->bdaddr);
2502 return NULL;
2503 }
2504
2505 return k;
2506 }
2507 }
2508 rcu_read_unlock();
2509
2510 return NULL;
2511}
2512
2513struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2514{
2515 struct smp_irk *irk_to_return = NULL;
2516 struct smp_irk *irk;
2517
2518 rcu_read_lock();
2519 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2520 if (!bacmp(&irk->rpa, rpa)) {
2521 irk_to_return = irk;
2522 goto done;
2523 }
2524 }
2525
2526 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2527 if (smp_irk_matches(hdev, irk->val, rpa)) {
2528 bacpy(&irk->rpa, rpa);
2529 irk_to_return = irk;
2530 goto done;
2531 }
2532 }
2533
2534done:
2535 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2536 irk_to_return->val)) {
2537 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2538 &irk_to_return->bdaddr);
2539 irk_to_return = NULL;
2540 }
2541
2542 rcu_read_unlock();
2543
2544 return irk_to_return;
2545}
2546
2547struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2548 u8 addr_type)
2549{
2550 struct smp_irk *irk_to_return = NULL;
2551 struct smp_irk *irk;
2552
2553 /* Identity Address must be public or static random */
2554 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2555 return NULL;
2556
2557 rcu_read_lock();
2558 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2559 if (addr_type == irk->addr_type &&
2560 bacmp(bdaddr, &irk->bdaddr) == 0) {
2561 irk_to_return = irk;
2562 goto done;
2563 }
2564 }
2565
2566done:
2567
2568 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2569 irk_to_return->val)) {
2570 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2571 &irk_to_return->bdaddr);
2572 irk_to_return = NULL;
2573 }
2574
2575 rcu_read_unlock();
2576
2577 return irk_to_return;
2578}
2579
2580struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2581 bdaddr_t *bdaddr, u8 *val, u8 type,
2582 u8 pin_len, bool *persistent)
2583{
2584 struct link_key *key, *old_key;
2585 u8 old_key_type;
2586
2587 old_key = hci_find_link_key(hdev, bdaddr);
2588 if (old_key) {
2589 old_key_type = old_key->type;
2590 key = old_key;
2591 } else {
2592 old_key_type = conn ? conn->key_type : 0xff;
2593 key = kzalloc(sizeof(*key), GFP_KERNEL);
2594 if (!key)
2595 return NULL;
2596 list_add_rcu(&key->list, &hdev->link_keys);
2597 }
2598
2599 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2600
2601 /* Some buggy controller combinations generate a changed
2602 * combination key for legacy pairing even when there's no
2603 * previous key */
2604 if (type == HCI_LK_CHANGED_COMBINATION &&
2605 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2606 type = HCI_LK_COMBINATION;
2607 if (conn)
2608 conn->key_type = type;
2609 }
2610
2611 bacpy(&key->bdaddr, bdaddr);
2612 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2613 key->pin_len = pin_len;
2614
2615 if (type == HCI_LK_CHANGED_COMBINATION)
2616 key->type = old_key_type;
2617 else
2618 key->type = type;
2619
2620 if (persistent)
2621 *persistent = hci_persistent_key(hdev, conn, type,
2622 old_key_type);
2623
2624 return key;
2625}
2626
2627struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2628 u8 addr_type, u8 type, u8 authenticated,
2629 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2630{
2631 struct smp_ltk *key, *old_key;
2632 u8 role = ltk_role(type);
2633
2634 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2635 if (old_key)
2636 key = old_key;
2637 else {
2638 key = kzalloc(sizeof(*key), GFP_KERNEL);
2639 if (!key)
2640 return NULL;
2641 list_add_rcu(&key->list, &hdev->long_term_keys);
2642 }
2643
2644 bacpy(&key->bdaddr, bdaddr);
2645 key->bdaddr_type = addr_type;
2646 memcpy(key->val, tk, sizeof(key->val));
2647 key->authenticated = authenticated;
2648 key->ediv = ediv;
2649 key->rand = rand;
2650 key->enc_size = enc_size;
2651 key->type = type;
2652
2653 return key;
2654}
2655
2656struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2657 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2658{
2659 struct smp_irk *irk;
2660
2661 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2662 if (!irk) {
2663 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2664 if (!irk)
2665 return NULL;
2666
2667 bacpy(&irk->bdaddr, bdaddr);
2668 irk->addr_type = addr_type;
2669
2670 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2671 }
2672
2673 memcpy(irk->val, val, 16);
2674 bacpy(&irk->rpa, rpa);
2675
2676 return irk;
2677}
2678
2679int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2680{
2681 struct link_key *key;
2682
2683 key = hci_find_link_key(hdev, bdaddr);
2684 if (!key)
2685 return -ENOENT;
2686
2687 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2688
2689 list_del_rcu(&key->list);
2690 kfree_rcu(key, rcu);
2691
2692 return 0;
2693}
2694
2695int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2696{
2697 struct smp_ltk *k;
2698 int removed = 0;
2699
2700 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2701 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2702 continue;
2703
2704 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2705
2706 list_del_rcu(&k->list);
2707 kfree_rcu(k, rcu);
2708 removed++;
2709 }
2710
2711 return removed ? 0 : -ENOENT;
2712}
2713
2714void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2715{
2716 struct smp_irk *k;
2717
2718 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2719 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2720 continue;
2721
2722 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2723
2724 list_del_rcu(&k->list);
2725 kfree_rcu(k, rcu);
2726 }
2727}
2728
2729bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2730{
2731 struct smp_ltk *k;
2732 struct smp_irk *irk;
2733 u8 addr_type;
2734
2735 if (type == BDADDR_BREDR) {
2736 if (hci_find_link_key(hdev, bdaddr))
2737 return true;
2738 return false;
2739 }
2740
2741 /* Convert to HCI addr type which struct smp_ltk uses */
2742 if (type == BDADDR_LE_PUBLIC)
2743 addr_type = ADDR_LE_DEV_PUBLIC;
2744 else
2745 addr_type = ADDR_LE_DEV_RANDOM;
2746
2747 irk = hci_get_irk(hdev, bdaddr, addr_type);
2748 if (irk) {
2749 bdaddr = &irk->bdaddr;
2750 addr_type = irk->addr_type;
2751 }
2752
2753 rcu_read_lock();
2754 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2755 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2756 rcu_read_unlock();
2757 return true;
2758 }
2759 }
2760 rcu_read_unlock();
2761
2762 return false;
2763}
2764
2765/* HCI command timer function */
2766static void hci_cmd_timeout(struct work_struct *work)
2767{
2768 struct hci_dev *hdev = container_of(work, struct hci_dev,
2769 cmd_timer.work);
2770
2771 if (hdev->sent_cmd) {
2772 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2773 u16 opcode = __le16_to_cpu(sent->opcode);
2774
2775 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2776 } else {
2777 bt_dev_err(hdev, "command tx timeout");
2778 }
2779
2780 if (hdev->cmd_timeout)
2781 hdev->cmd_timeout(hdev);
2782
2783 atomic_set(&hdev->cmd_cnt, 1);
2784 queue_work(hdev->workqueue, &hdev->cmd_work);
2785}
2786
2787/* HCI ncmd timer function */
2788static void hci_ncmd_timeout(struct work_struct *work)
2789{
2790 struct hci_dev *hdev = container_of(work, struct hci_dev,
2791 ncmd_timer.work);
2792
2793 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
2794
2795 /* During HCI_INIT phase no events can be injected if the ncmd timer
2796 * triggers since the procedure has its own timeout handling.
2797 */
2798 if (test_bit(HCI_INIT, &hdev->flags))
2799 return;
2800
2801 /* This is an irrecoverable state, inject hardware error event */
2802 hci_reset_dev(hdev);
2803}
2804
2805struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2806 bdaddr_t *bdaddr, u8 bdaddr_type)
2807{
2808 struct oob_data *data;
2809
2810 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2811 if (bacmp(bdaddr, &data->bdaddr) != 0)
2812 continue;
2813 if (data->bdaddr_type != bdaddr_type)
2814 continue;
2815 return data;
2816 }
2817
2818 return NULL;
2819}
2820
2821int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2822 u8 bdaddr_type)
2823{
2824 struct oob_data *data;
2825
2826 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2827 if (!data)
2828 return -ENOENT;
2829
2830 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2831
2832 list_del(&data->list);
2833 kfree(data);
2834
2835 return 0;
2836}
2837
2838void hci_remote_oob_data_clear(struct hci_dev *hdev)
2839{
2840 struct oob_data *data, *n;
2841
2842 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2843 list_del(&data->list);
2844 kfree(data);
2845 }
2846}
2847
2848int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2849 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2850 u8 *hash256, u8 *rand256)
2851{
2852 struct oob_data *data;
2853
2854 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2855 if (!data) {
2856 data = kmalloc(sizeof(*data), GFP_KERNEL);
2857 if (!data)
2858 return -ENOMEM;
2859
2860 bacpy(&data->bdaddr, bdaddr);
2861 data->bdaddr_type = bdaddr_type;
2862 list_add(&data->list, &hdev->remote_oob_data);
2863 }
2864
2865 if (hash192 && rand192) {
2866 memcpy(data->hash192, hash192, sizeof(data->hash192));
2867 memcpy(data->rand192, rand192, sizeof(data->rand192));
2868 if (hash256 && rand256)
2869 data->present = 0x03;
2870 } else {
2871 memset(data->hash192, 0, sizeof(data->hash192));
2872 memset(data->rand192, 0, sizeof(data->rand192));
2873 if (hash256 && rand256)
2874 data->present = 0x02;
2875 else
2876 data->present = 0x00;
2877 }
2878
2879 if (hash256 && rand256) {
2880 memcpy(data->hash256, hash256, sizeof(data->hash256));
2881 memcpy(data->rand256, rand256, sizeof(data->rand256));
2882 } else {
2883 memset(data->hash256, 0, sizeof(data->hash256));
2884 memset(data->rand256, 0, sizeof(data->rand256));
2885 if (hash192 && rand192)
2886 data->present = 0x01;
2887 }
2888
2889 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2890
2891 return 0;
2892}
2893
2894/* This function requires the caller holds hdev->lock */
2895struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2896{
2897 struct adv_info *adv_instance;
2898
2899 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2900 if (adv_instance->instance == instance)
2901 return adv_instance;
2902 }
2903
2904 return NULL;
2905}
2906
2907/* This function requires the caller holds hdev->lock */
2908struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2909{
2910 struct adv_info *cur_instance;
2911
2912 cur_instance = hci_find_adv_instance(hdev, instance);
2913 if (!cur_instance)
2914 return NULL;
2915
2916 if (cur_instance == list_last_entry(&hdev->adv_instances,
2917 struct adv_info, list))
2918 return list_first_entry(&hdev->adv_instances,
2919 struct adv_info, list);
2920 else
2921 return list_next_entry(cur_instance, list);
2922}
2923
2924/* This function requires the caller holds hdev->lock */
2925int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2926{
2927 struct adv_info *adv_instance;
2928
2929 adv_instance = hci_find_adv_instance(hdev, instance);
2930 if (!adv_instance)
2931 return -ENOENT;
2932
2933 BT_DBG("%s removing %dMR", hdev->name, instance);
2934
2935 if (hdev->cur_adv_instance == instance) {
2936 if (hdev->adv_instance_timeout) {
2937 cancel_delayed_work(&hdev->adv_instance_expire);
2938 hdev->adv_instance_timeout = 0;
2939 }
2940 hdev->cur_adv_instance = 0x00;
2941 }
2942
2943 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2944
2945 list_del(&adv_instance->list);
2946 kfree(adv_instance);
2947
2948 hdev->adv_instance_cnt--;
2949
2950 return 0;
2951}
2952
2953void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2954{
2955 struct adv_info *adv_instance, *n;
2956
2957 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2958 adv_instance->rpa_expired = rpa_expired;
2959}
2960
2961/* This function requires the caller holds hdev->lock */
2962void hci_adv_instances_clear(struct hci_dev *hdev)
2963{
2964 struct adv_info *adv_instance, *n;
2965
2966 if (hdev->adv_instance_timeout) {
2967 cancel_delayed_work(&hdev->adv_instance_expire);
2968 hdev->adv_instance_timeout = 0;
2969 }
2970
2971 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2972 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2973 list_del(&adv_instance->list);
2974 kfree(adv_instance);
2975 }
2976
2977 hdev->adv_instance_cnt = 0;
2978 hdev->cur_adv_instance = 0x00;
2979}
2980
2981static void adv_instance_rpa_expired(struct work_struct *work)
2982{
2983 struct adv_info *adv_instance = container_of(work, struct adv_info,
2984 rpa_expired_cb.work);
2985
2986 BT_DBG("");
2987
2988 adv_instance->rpa_expired = true;
2989}
2990
2991/* This function requires the caller holds hdev->lock */
2992int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2993 u16 adv_data_len, u8 *adv_data,
2994 u16 scan_rsp_len, u8 *scan_rsp_data,
2995 u16 timeout, u16 duration, s8 tx_power,
2996 u32 min_interval, u32 max_interval)
2997{
2998 struct adv_info *adv_instance;
2999
3000 adv_instance = hci_find_adv_instance(hdev, instance);
3001 if (adv_instance) {
3002 memset(adv_instance->adv_data, 0,
3003 sizeof(adv_instance->adv_data));
3004 memset(adv_instance->scan_rsp_data, 0,
3005 sizeof(adv_instance->scan_rsp_data));
3006 } else {
3007 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
3008 instance < 1 || instance > hdev->le_num_of_adv_sets)
3009 return -EOVERFLOW;
3010
3011 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
3012 if (!adv_instance)
3013 return -ENOMEM;
3014
3015 adv_instance->pending = true;
3016 adv_instance->instance = instance;
3017 list_add(&adv_instance->list, &hdev->adv_instances);
3018 hdev->adv_instance_cnt++;
3019 }
3020
3021 adv_instance->flags = flags;
3022 adv_instance->adv_data_len = adv_data_len;
3023 adv_instance->scan_rsp_len = scan_rsp_len;
3024 adv_instance->min_interval = min_interval;
3025 adv_instance->max_interval = max_interval;
3026 adv_instance->tx_power = tx_power;
3027
3028 if (adv_data_len)
3029 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3030
3031 if (scan_rsp_len)
3032 memcpy(adv_instance->scan_rsp_data,
3033 scan_rsp_data, scan_rsp_len);
3034
3035 adv_instance->timeout = timeout;
3036 adv_instance->remaining_time = timeout;
3037
3038 if (duration == 0)
3039 adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3040 else
3041 adv_instance->duration = duration;
3042
3043 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3044 adv_instance_rpa_expired);
3045
3046 BT_DBG("%s for %dMR", hdev->name, instance);
3047
3048 return 0;
3049}
3050
3051/* This function requires the caller holds hdev->lock */
3052int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
3053 u16 adv_data_len, u8 *adv_data,
3054 u16 scan_rsp_len, u8 *scan_rsp_data)
3055{
3056 struct adv_info *adv_instance;
3057
3058 adv_instance = hci_find_adv_instance(hdev, instance);
3059
3060 /* If advertisement doesn't exist, we can't modify its data */
3061 if (!adv_instance)
3062 return -ENOENT;
3063
3064 if (adv_data_len) {
3065 memset(adv_instance->adv_data, 0,
3066 sizeof(adv_instance->adv_data));
3067 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3068 adv_instance->adv_data_len = adv_data_len;
3069 }
3070
3071 if (scan_rsp_len) {
3072 memset(adv_instance->scan_rsp_data, 0,
3073 sizeof(adv_instance->scan_rsp_data));
3074 memcpy(adv_instance->scan_rsp_data,
3075 scan_rsp_data, scan_rsp_len);
3076 adv_instance->scan_rsp_len = scan_rsp_len;
3077 }
3078
3079 return 0;
3080}
3081
3082/* This function requires the caller holds hdev->lock */
3083void hci_adv_monitors_clear(struct hci_dev *hdev)
3084{
3085 struct adv_monitor *monitor;
3086 int handle;
3087
3088 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3089 hci_free_adv_monitor(hdev, monitor);
3090
3091 idr_destroy(&hdev->adv_monitors_idr);
3092}
3093
3094/* Frees the monitor structure and do some bookkeepings.
3095 * This function requires the caller holds hdev->lock.
3096 */
3097void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3098{
3099 struct adv_pattern *pattern;
3100 struct adv_pattern *tmp;
3101
3102 if (!monitor)
3103 return;
3104
3105 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
3106 list_del(&pattern->list);
3107 kfree(pattern);
3108 }
3109
3110 if (monitor->handle)
3111 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3112
3113 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
3114 hdev->adv_monitors_cnt--;
3115 mgmt_adv_monitor_removed(hdev, monitor->handle);
3116 }
3117
3118 kfree(monitor);
3119}
3120
3121int hci_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status)
3122{
3123 return mgmt_add_adv_patterns_monitor_complete(hdev, status);
3124}
3125
3126int hci_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status)
3127{
3128 return mgmt_remove_adv_monitor_complete(hdev, status);
3129}
3130
3131/* Assigns handle to a monitor, and if offloading is supported and power is on,
3132 * also attempts to forward the request to the controller.
3133 * Returns true if request is forwarded (result is pending), false otherwise.
3134 * This function requires the caller holds hdev->lock.
3135 */
3136bool hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor,
3137 int *err)
3138{
3139 int min, max, handle;
3140
3141 *err = 0;
3142
3143 if (!monitor) {
3144 *err = -EINVAL;
3145 return false;
3146 }
3147
3148 min = HCI_MIN_ADV_MONITOR_HANDLE;
3149 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3150 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3151 GFP_KERNEL);
3152 if (handle < 0) {
3153 *err = handle;
3154 return false;
3155 }
3156
3157 monitor->handle = handle;
3158
3159 if (!hdev_is_powered(hdev))
3160 return false;
3161
3162 switch (hci_get_adv_monitor_offload_ext(hdev)) {
3163 case HCI_ADV_MONITOR_EXT_NONE:
3164 hci_update_background_scan(hdev);
3165 bt_dev_dbg(hdev, "%s add monitor status %d", hdev->name, *err);
3166 /* Message was not forwarded to controller - not an error */
3167 return false;
3168 case HCI_ADV_MONITOR_EXT_MSFT:
3169 *err = msft_add_monitor_pattern(hdev, monitor);
3170 bt_dev_dbg(hdev, "%s add monitor msft status %d", hdev->name,
3171 *err);
3172 break;
3173 }
3174
3175 return (*err == 0);
3176}
3177
3178/* Attempts to tell the controller and free the monitor. If somehow the
3179 * controller doesn't have a corresponding handle, remove anyway.
3180 * Returns true if request is forwarded (result is pending), false otherwise.
3181 * This function requires the caller holds hdev->lock.
3182 */
3183static bool hci_remove_adv_monitor(struct hci_dev *hdev,
3184 struct adv_monitor *monitor,
3185 u16 handle, int *err)
3186{
3187 *err = 0;
3188
3189 switch (hci_get_adv_monitor_offload_ext(hdev)) {
3190 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
3191 goto free_monitor;
3192 case HCI_ADV_MONITOR_EXT_MSFT:
3193 *err = msft_remove_monitor(hdev, monitor, handle);
3194 break;
3195 }
3196
3197 /* In case no matching handle registered, just free the monitor */
3198 if (*err == -ENOENT)
3199 goto free_monitor;
3200
3201 return (*err == 0);
3202
3203free_monitor:
3204 if (*err == -ENOENT)
3205 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
3206 monitor->handle);
3207 hci_free_adv_monitor(hdev, monitor);
3208
3209 *err = 0;
3210 return false;
3211}
3212
3213/* Returns true if request is forwarded (result is pending), false otherwise.
3214 * This function requires the caller holds hdev->lock.
3215 */
3216bool hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle, int *err)
3217{
3218 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
3219 bool pending;
3220
3221 if (!monitor) {
3222 *err = -EINVAL;
3223 return false;
3224 }
3225
3226 pending = hci_remove_adv_monitor(hdev, monitor, handle, err);
3227 if (!*err && !pending)
3228 hci_update_background_scan(hdev);
3229
3230 bt_dev_dbg(hdev, "%s remove monitor handle %d, status %d, %spending",
3231 hdev->name, handle, *err, pending ? "" : "not ");
3232
3233 return pending;
3234}
3235
3236/* Returns true if request is forwarded (result is pending), false otherwise.
3237 * This function requires the caller holds hdev->lock.
3238 */
3239bool hci_remove_all_adv_monitor(struct hci_dev *hdev, int *err)
3240{
3241 struct adv_monitor *monitor;
3242 int idr_next_id = 0;
3243 bool pending = false;
3244 bool update = false;
3245
3246 *err = 0;
3247
3248 while (!*err && !pending) {
3249 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
3250 if (!monitor)
3251 break;
3252
3253 pending = hci_remove_adv_monitor(hdev, monitor, 0, err);
3254
3255 if (!*err && !pending)
3256 update = true;
3257 }
3258
3259 if (update)
3260 hci_update_background_scan(hdev);
3261
3262 bt_dev_dbg(hdev, "%s remove all monitors status %d, %spending",
3263 hdev->name, *err, pending ? "" : "not ");
3264
3265 return pending;
3266}
3267
3268/* This function requires the caller holds hdev->lock */
3269bool hci_is_adv_monitoring(struct hci_dev *hdev)
3270{
3271 return !idr_is_empty(&hdev->adv_monitors_idr);
3272}
3273
3274int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
3275{
3276 if (msft_monitor_supported(hdev))
3277 return HCI_ADV_MONITOR_EXT_MSFT;
3278
3279 return HCI_ADV_MONITOR_EXT_NONE;
3280}
3281
3282struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3283 bdaddr_t *bdaddr, u8 type)
3284{
3285 struct bdaddr_list *b;
3286
3287 list_for_each_entry(b, bdaddr_list, list) {
3288 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3289 return b;
3290 }
3291
3292 return NULL;
3293}
3294
3295struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3296 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3297 u8 type)
3298{
3299 struct bdaddr_list_with_irk *b;
3300
3301 list_for_each_entry(b, bdaddr_list, list) {
3302 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3303 return b;
3304 }
3305
3306 return NULL;
3307}
3308
3309struct bdaddr_list_with_flags *
3310hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3311 bdaddr_t *bdaddr, u8 type)
3312{
3313 struct bdaddr_list_with_flags *b;
3314
3315 list_for_each_entry(b, bdaddr_list, list) {
3316 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3317 return b;
3318 }
3319
3320 return NULL;
3321}
3322
3323void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3324{
3325 struct bdaddr_list *b, *n;
3326
3327 list_for_each_entry_safe(b, n, bdaddr_list, list) {
3328 list_del(&b->list);
3329 kfree(b);
3330 }
3331}
3332
3333int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3334{
3335 struct bdaddr_list *entry;
3336
3337 if (!bacmp(bdaddr, BDADDR_ANY))
3338 return -EBADF;
3339
3340 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3341 return -EEXIST;
3342
3343 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3344 if (!entry)
3345 return -ENOMEM;
3346
3347 bacpy(&entry->bdaddr, bdaddr);
3348 entry->bdaddr_type = type;
3349
3350 list_add(&entry->list, list);
3351
3352 return 0;
3353}
3354
3355int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3356 u8 type, u8 *peer_irk, u8 *local_irk)
3357{
3358 struct bdaddr_list_with_irk *entry;
3359
3360 if (!bacmp(bdaddr, BDADDR_ANY))
3361 return -EBADF;
3362
3363 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3364 return -EEXIST;
3365
3366 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3367 if (!entry)
3368 return -ENOMEM;
3369
3370 bacpy(&entry->bdaddr, bdaddr);
3371 entry->bdaddr_type = type;
3372
3373 if (peer_irk)
3374 memcpy(entry->peer_irk, peer_irk, 16);
3375
3376 if (local_irk)
3377 memcpy(entry->local_irk, local_irk, 16);
3378
3379 list_add(&entry->list, list);
3380
3381 return 0;
3382}
3383
3384int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3385 u8 type, u32 flags)
3386{
3387 struct bdaddr_list_with_flags *entry;
3388
3389 if (!bacmp(bdaddr, BDADDR_ANY))
3390 return -EBADF;
3391
3392 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3393 return -EEXIST;
3394
3395 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3396 if (!entry)
3397 return -ENOMEM;
3398
3399 bacpy(&entry->bdaddr, bdaddr);
3400 entry->bdaddr_type = type;
3401 entry->current_flags = flags;
3402
3403 list_add(&entry->list, list);
3404
3405 return 0;
3406}
3407
3408int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3409{
3410 struct bdaddr_list *entry;
3411
3412 if (!bacmp(bdaddr, BDADDR_ANY)) {
3413 hci_bdaddr_list_clear(list);
3414 return 0;
3415 }
3416
3417 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3418 if (!entry)
3419 return -ENOENT;
3420
3421 list_del(&entry->list);
3422 kfree(entry);
3423
3424 return 0;
3425}
3426
3427int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3428 u8 type)
3429{
3430 struct bdaddr_list_with_irk *entry;
3431
3432 if (!bacmp(bdaddr, BDADDR_ANY)) {
3433 hci_bdaddr_list_clear(list);
3434 return 0;
3435 }
3436
3437 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3438 if (!entry)
3439 return -ENOENT;
3440
3441 list_del(&entry->list);
3442 kfree(entry);
3443
3444 return 0;
3445}
3446
3447int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3448 u8 type)
3449{
3450 struct bdaddr_list_with_flags *entry;
3451
3452 if (!bacmp(bdaddr, BDADDR_ANY)) {
3453 hci_bdaddr_list_clear(list);
3454 return 0;
3455 }
3456
3457 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3458 if (!entry)
3459 return -ENOENT;
3460
3461 list_del(&entry->list);
3462 kfree(entry);
3463
3464 return 0;
3465}
3466
3467/* This function requires the caller holds hdev->lock */
3468struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3469 bdaddr_t *addr, u8 addr_type)
3470{
3471 struct hci_conn_params *params;
3472
3473 list_for_each_entry(params, &hdev->le_conn_params, list) {
3474 if (bacmp(¶ms->addr, addr) == 0 &&
3475 params->addr_type == addr_type) {
3476 return params;
3477 }
3478 }
3479
3480 return NULL;
3481}
3482
3483/* This function requires the caller holds hdev->lock */
3484struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3485 bdaddr_t *addr, u8 addr_type)
3486{
3487 struct hci_conn_params *param;
3488
3489 switch (addr_type) {
3490 case ADDR_LE_DEV_PUBLIC_RESOLVED:
3491 addr_type = ADDR_LE_DEV_PUBLIC;
3492 break;
3493 case ADDR_LE_DEV_RANDOM_RESOLVED:
3494 addr_type = ADDR_LE_DEV_RANDOM;
3495 break;
3496 }
3497
3498 list_for_each_entry(param, list, action) {
3499 if (bacmp(¶m->addr, addr) == 0 &&
3500 param->addr_type == addr_type)
3501 return param;
3502 }
3503
3504 return NULL;
3505}
3506
3507/* This function requires the caller holds hdev->lock */
3508struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3509 bdaddr_t *addr, u8 addr_type)
3510{
3511 struct hci_conn_params *params;
3512
3513 params = hci_conn_params_lookup(hdev, addr, addr_type);
3514 if (params)
3515 return params;
3516
3517 params = kzalloc(sizeof(*params), GFP_KERNEL);
3518 if (!params) {
3519 bt_dev_err(hdev, "out of memory");
3520 return NULL;
3521 }
3522
3523 bacpy(¶ms->addr, addr);
3524 params->addr_type = addr_type;
3525
3526 list_add(¶ms->list, &hdev->le_conn_params);
3527 INIT_LIST_HEAD(¶ms->action);
3528
3529 params->conn_min_interval = hdev->le_conn_min_interval;
3530 params->conn_max_interval = hdev->le_conn_max_interval;
3531 params->conn_latency = hdev->le_conn_latency;
3532 params->supervision_timeout = hdev->le_supv_timeout;
3533 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3534
3535 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3536
3537 return params;
3538}
3539
3540static void hci_conn_params_free(struct hci_conn_params *params)
3541{
3542 if (params->conn) {
3543 hci_conn_drop(params->conn);
3544 hci_conn_put(params->conn);
3545 }
3546
3547 list_del(¶ms->action);
3548 list_del(¶ms->list);
3549 kfree(params);
3550}
3551
3552/* This function requires the caller holds hdev->lock */
3553void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3554{
3555 struct hci_conn_params *params;
3556
3557 params = hci_conn_params_lookup(hdev, addr, addr_type);
3558 if (!params)
3559 return;
3560
3561 hci_conn_params_free(params);
3562
3563 hci_update_background_scan(hdev);
3564
3565 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3566}
3567
3568/* This function requires the caller holds hdev->lock */
3569void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3570{
3571 struct hci_conn_params *params, *tmp;
3572
3573 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3574 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3575 continue;
3576
3577 /* If trying to establish one time connection to disabled
3578 * device, leave the params, but mark them as just once.
3579 */
3580 if (params->explicit_connect) {
3581 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3582 continue;
3583 }
3584
3585 list_del(¶ms->list);
3586 kfree(params);
3587 }
3588
3589 BT_DBG("All LE disabled connection parameters were removed");
3590}
3591
3592/* This function requires the caller holds hdev->lock */
3593static void hci_conn_params_clear_all(struct hci_dev *hdev)
3594{
3595 struct hci_conn_params *params, *tmp;
3596
3597 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3598 hci_conn_params_free(params);
3599
3600 BT_DBG("All LE connection parameters were removed");
3601}
3602
3603/* Copy the Identity Address of the controller.
3604 *
3605 * If the controller has a public BD_ADDR, then by default use that one.
3606 * If this is a LE only controller without a public address, default to
3607 * the static random address.
3608 *
3609 * For debugging purposes it is possible to force controllers with a
3610 * public address to use the static random address instead.
3611 *
3612 * In case BR/EDR has been disabled on a dual-mode controller and
3613 * userspace has configured a static address, then that address
3614 * becomes the identity address instead of the public BR/EDR address.
3615 */
3616void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3617 u8 *bdaddr_type)
3618{
3619 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3620 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3621 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3622 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3623 bacpy(bdaddr, &hdev->static_addr);
3624 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3625 } else {
3626 bacpy(bdaddr, &hdev->bdaddr);
3627 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3628 }
3629}
3630
3631static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3632{
3633 int i;
3634
3635 for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3636 clear_bit(i, hdev->suspend_tasks);
3637
3638 wake_up(&hdev->suspend_wait_q);
3639}
3640
3641static int hci_suspend_wait_event(struct hci_dev *hdev)
3642{
3643#define WAKE_COND \
3644 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \
3645 __SUSPEND_NUM_TASKS)
3646
3647 int i;
3648 int ret = wait_event_timeout(hdev->suspend_wait_q,
3649 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3650
3651 if (ret == 0) {
3652 bt_dev_err(hdev, "Timed out waiting for suspend events");
3653 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3654 if (test_bit(i, hdev->suspend_tasks))
3655 bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3656 clear_bit(i, hdev->suspend_tasks);
3657 }
3658
3659 ret = -ETIMEDOUT;
3660 } else {
3661 ret = 0;
3662 }
3663
3664 return ret;
3665}
3666
3667static void hci_prepare_suspend(struct work_struct *work)
3668{
3669 struct hci_dev *hdev =
3670 container_of(work, struct hci_dev, suspend_prepare);
3671
3672 hci_dev_lock(hdev);
3673 hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3674 hci_dev_unlock(hdev);
3675}
3676
3677static int hci_change_suspend_state(struct hci_dev *hdev,
3678 enum suspended_state next)
3679{
3680 hdev->suspend_state_next = next;
3681 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3682 queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3683 return hci_suspend_wait_event(hdev);
3684}
3685
3686static void hci_clear_wake_reason(struct hci_dev *hdev)
3687{
3688 hci_dev_lock(hdev);
3689
3690 hdev->wake_reason = 0;
3691 bacpy(&hdev->wake_addr, BDADDR_ANY);
3692 hdev->wake_addr_type = 0;
3693
3694 hci_dev_unlock(hdev);
3695}
3696
3697static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3698 void *data)
3699{
3700 struct hci_dev *hdev =
3701 container_of(nb, struct hci_dev, suspend_notifier);
3702 int ret = 0;
3703 u8 state = BT_RUNNING;
3704
3705 /* If powering down, wait for completion. */
3706 if (mgmt_powering_down(hdev)) {
3707 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3708 ret = hci_suspend_wait_event(hdev);
3709 if (ret)
3710 goto done;
3711 }
3712
3713 /* Suspend notifier should only act on events when powered. */
3714 if (!hdev_is_powered(hdev) ||
3715 hci_dev_test_flag(hdev, HCI_UNREGISTER))
3716 goto done;
3717
3718 if (action == PM_SUSPEND_PREPARE) {
3719 /* Suspend consists of two actions:
3720 * - First, disconnect everything and make the controller not
3721 * connectable (disabling scanning)
3722 * - Second, program event filter/accept list and enable scan
3723 */
3724 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3725 if (!ret)
3726 state = BT_SUSPEND_DISCONNECT;
3727
3728 /* Only configure accept list if disconnect succeeded and wake
3729 * isn't being prevented.
3730 */
3731 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3732 ret = hci_change_suspend_state(hdev,
3733 BT_SUSPEND_CONFIGURE_WAKE);
3734 if (!ret)
3735 state = BT_SUSPEND_CONFIGURE_WAKE;
3736 }
3737
3738 hci_clear_wake_reason(hdev);
3739 mgmt_suspending(hdev, state);
3740
3741 } else if (action == PM_POST_SUSPEND) {
3742 ret = hci_change_suspend_state(hdev, BT_RUNNING);
3743
3744 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3745 hdev->wake_addr_type);
3746 }
3747
3748done:
3749 /* We always allow suspend even if suspend preparation failed and
3750 * attempt to recover in resume.
3751 */
3752 if (ret)
3753 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3754 action, ret);
3755
3756 return NOTIFY_DONE;
3757}
3758
3759/* Alloc HCI device */
3760struct hci_dev *hci_alloc_dev(void)
3761{
3762 struct hci_dev *hdev;
3763
3764 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3765 if (!hdev)
3766 return NULL;
3767
3768 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3769 hdev->esco_type = (ESCO_HV1);
3770 hdev->link_mode = (HCI_LM_ACCEPT);
3771 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3772 hdev->io_capability = 0x03; /* No Input No Output */
3773 hdev->manufacturer = 0xffff; /* Default to internal use */
3774 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3775 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3776 hdev->adv_instance_cnt = 0;
3777 hdev->cur_adv_instance = 0x00;
3778 hdev->adv_instance_timeout = 0;
3779
3780 hdev->advmon_allowlist_duration = 300;
3781 hdev->advmon_no_filter_duration = 500;
3782 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */
3783
3784 hdev->sniff_max_interval = 800;
3785 hdev->sniff_min_interval = 80;
3786
3787 hdev->le_adv_channel_map = 0x07;
3788 hdev->le_adv_min_interval = 0x0800;
3789 hdev->le_adv_max_interval = 0x0800;
3790 hdev->le_scan_interval = 0x0060;
3791 hdev->le_scan_window = 0x0030;
3792 hdev->le_scan_int_suspend = 0x0400;
3793 hdev->le_scan_window_suspend = 0x0012;
3794 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3795 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3796 hdev->le_scan_int_adv_monitor = 0x0060;
3797 hdev->le_scan_window_adv_monitor = 0x0030;
3798 hdev->le_scan_int_connect = 0x0060;
3799 hdev->le_scan_window_connect = 0x0060;
3800 hdev->le_conn_min_interval = 0x0018;
3801 hdev->le_conn_max_interval = 0x0028;
3802 hdev->le_conn_latency = 0x0000;
3803 hdev->le_supv_timeout = 0x002a;
3804 hdev->le_def_tx_len = 0x001b;
3805 hdev->le_def_tx_time = 0x0148;
3806 hdev->le_max_tx_len = 0x001b;
3807 hdev->le_max_tx_time = 0x0148;
3808 hdev->le_max_rx_len = 0x001b;
3809 hdev->le_max_rx_time = 0x0148;
3810 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3811 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3812 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3813 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3814 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3815 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3816 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3817 hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
3818 hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
3819
3820 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3821 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3822 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3823 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3824 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3825 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3826
3827 /* default 1.28 sec page scan */
3828 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3829 hdev->def_page_scan_int = 0x0800;
3830 hdev->def_page_scan_window = 0x0012;
3831
3832 mutex_init(&hdev->lock);
3833 mutex_init(&hdev->req_lock);
3834
3835 INIT_LIST_HEAD(&hdev->mgmt_pending);
3836 INIT_LIST_HEAD(&hdev->reject_list);
3837 INIT_LIST_HEAD(&hdev->accept_list);
3838 INIT_LIST_HEAD(&hdev->uuids);
3839 INIT_LIST_HEAD(&hdev->link_keys);
3840 INIT_LIST_HEAD(&hdev->long_term_keys);
3841 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3842 INIT_LIST_HEAD(&hdev->remote_oob_data);
3843 INIT_LIST_HEAD(&hdev->le_accept_list);
3844 INIT_LIST_HEAD(&hdev->le_resolv_list);
3845 INIT_LIST_HEAD(&hdev->le_conn_params);
3846 INIT_LIST_HEAD(&hdev->pend_le_conns);
3847 INIT_LIST_HEAD(&hdev->pend_le_reports);
3848 INIT_LIST_HEAD(&hdev->conn_hash.list);
3849 INIT_LIST_HEAD(&hdev->adv_instances);
3850 INIT_LIST_HEAD(&hdev->blocked_keys);
3851
3852 INIT_WORK(&hdev->rx_work, hci_rx_work);
3853 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3854 INIT_WORK(&hdev->tx_work, hci_tx_work);
3855 INIT_WORK(&hdev->power_on, hci_power_on);
3856 INIT_WORK(&hdev->error_reset, hci_error_reset);
3857 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3858
3859 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3860
3861 skb_queue_head_init(&hdev->rx_q);
3862 skb_queue_head_init(&hdev->cmd_q);
3863 skb_queue_head_init(&hdev->raw_q);
3864
3865 init_waitqueue_head(&hdev->req_wait_q);
3866 init_waitqueue_head(&hdev->suspend_wait_q);
3867
3868 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3869 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
3870
3871 hci_request_setup(hdev);
3872
3873 hci_init_sysfs(hdev);
3874 discovery_init(hdev);
3875
3876 return hdev;
3877}
3878EXPORT_SYMBOL(hci_alloc_dev);
3879
3880/* Free HCI device */
3881void hci_free_dev(struct hci_dev *hdev)
3882{
3883 /* will free via device release */
3884 put_device(&hdev->dev);
3885}
3886EXPORT_SYMBOL(hci_free_dev);
3887
3888/* Register HCI device */
3889int hci_register_dev(struct hci_dev *hdev)
3890{
3891 int id, error;
3892
3893 if (!hdev->open || !hdev->close || !hdev->send)
3894 return -EINVAL;
3895
3896 /* Do not allow HCI_AMP devices to register at index 0,
3897 * so the index can be used as the AMP controller ID.
3898 */
3899 switch (hdev->dev_type) {
3900 case HCI_PRIMARY:
3901 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3902 break;
3903 case HCI_AMP:
3904 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3905 break;
3906 default:
3907 return -EINVAL;
3908 }
3909
3910 if (id < 0)
3911 return id;
3912
3913 sprintf(hdev->name, "hci%d", id);
3914 hdev->id = id;
3915
3916 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3917
3918 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3919 if (!hdev->workqueue) {
3920 error = -ENOMEM;
3921 goto err;
3922 }
3923
3924 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3925 hdev->name);
3926 if (!hdev->req_workqueue) {
3927 destroy_workqueue(hdev->workqueue);
3928 error = -ENOMEM;
3929 goto err;
3930 }
3931
3932 if (!IS_ERR_OR_NULL(bt_debugfs))
3933 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3934
3935 dev_set_name(&hdev->dev, "%s", hdev->name);
3936
3937 error = device_add(&hdev->dev);
3938 if (error < 0)
3939 goto err_wqueue;
3940
3941 hci_leds_init(hdev);
3942
3943 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3944 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3945 hdev);
3946 if (hdev->rfkill) {
3947 if (rfkill_register(hdev->rfkill) < 0) {
3948 rfkill_destroy(hdev->rfkill);
3949 hdev->rfkill = NULL;
3950 }
3951 }
3952
3953 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3954 hci_dev_set_flag(hdev, HCI_RFKILLED);
3955
3956 hci_dev_set_flag(hdev, HCI_SETUP);
3957 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3958
3959 if (hdev->dev_type == HCI_PRIMARY) {
3960 /* Assume BR/EDR support until proven otherwise (such as
3961 * through reading supported features during init.
3962 */
3963 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3964 }
3965
3966 write_lock(&hci_dev_list_lock);
3967 list_add(&hdev->list, &hci_dev_list);
3968 write_unlock(&hci_dev_list_lock);
3969
3970 /* Devices that are marked for raw-only usage are unconfigured
3971 * and should not be included in normal operation.
3972 */
3973 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3974 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3975
3976 hci_sock_dev_event(hdev, HCI_DEV_REG);
3977 hci_dev_hold(hdev);
3978
3979 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3980 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3981 error = register_pm_notifier(&hdev->suspend_notifier);
3982 if (error)
3983 goto err_wqueue;
3984 }
3985
3986 queue_work(hdev->req_workqueue, &hdev->power_on);
3987
3988 idr_init(&hdev->adv_monitors_idr);
3989
3990 return id;
3991
3992err_wqueue:
3993 destroy_workqueue(hdev->workqueue);
3994 destroy_workqueue(hdev->req_workqueue);
3995err:
3996 ida_simple_remove(&hci_index_ida, hdev->id);
3997
3998 return error;
3999}
4000EXPORT_SYMBOL(hci_register_dev);
4001
4002/* Unregister HCI device */
4003void hci_unregister_dev(struct hci_dev *hdev)
4004{
4005 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4006
4007 hci_dev_set_flag(hdev, HCI_UNREGISTER);
4008
4009 write_lock(&hci_dev_list_lock);
4010 list_del(&hdev->list);
4011 write_unlock(&hci_dev_list_lock);
4012
4013 cancel_work_sync(&hdev->power_on);
4014
4015 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
4016 hci_suspend_clear_tasks(hdev);
4017 unregister_pm_notifier(&hdev->suspend_notifier);
4018 cancel_work_sync(&hdev->suspend_prepare);
4019 }
4020
4021 hci_dev_do_close(hdev);
4022
4023 if (!test_bit(HCI_INIT, &hdev->flags) &&
4024 !hci_dev_test_flag(hdev, HCI_SETUP) &&
4025 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4026 hci_dev_lock(hdev);
4027 mgmt_index_removed(hdev);
4028 hci_dev_unlock(hdev);
4029 }
4030
4031 /* mgmt_index_removed should take care of emptying the
4032 * pending list */
4033 BUG_ON(!list_empty(&hdev->mgmt_pending));
4034
4035 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
4036
4037 if (hdev->rfkill) {
4038 rfkill_unregister(hdev->rfkill);
4039 rfkill_destroy(hdev->rfkill);
4040 }
4041
4042 device_del(&hdev->dev);
4043 /* Actual cleanup is deferred until hci_cleanup_dev(). */
4044 hci_dev_put(hdev);
4045}
4046EXPORT_SYMBOL(hci_unregister_dev);
4047
4048/* Cleanup HCI device */
4049void hci_cleanup_dev(struct hci_dev *hdev)
4050{
4051 debugfs_remove_recursive(hdev->debugfs);
4052 kfree_const(hdev->hw_info);
4053 kfree_const(hdev->fw_info);
4054
4055 destroy_workqueue(hdev->workqueue);
4056 destroy_workqueue(hdev->req_workqueue);
4057
4058 hci_dev_lock(hdev);
4059 hci_bdaddr_list_clear(&hdev->reject_list);
4060 hci_bdaddr_list_clear(&hdev->accept_list);
4061 hci_uuids_clear(hdev);
4062 hci_link_keys_clear(hdev);
4063 hci_smp_ltks_clear(hdev);
4064 hci_smp_irks_clear(hdev);
4065 hci_remote_oob_data_clear(hdev);
4066 hci_adv_instances_clear(hdev);
4067 hci_adv_monitors_clear(hdev);
4068 hci_bdaddr_list_clear(&hdev->le_accept_list);
4069 hci_bdaddr_list_clear(&hdev->le_resolv_list);
4070 hci_conn_params_clear_all(hdev);
4071 hci_discovery_filter_clear(hdev);
4072 hci_blocked_keys_clear(hdev);
4073 hci_dev_unlock(hdev);
4074
4075 ida_simple_remove(&hci_index_ida, hdev->id);
4076}
4077
4078/* Suspend HCI device */
4079int hci_suspend_dev(struct hci_dev *hdev)
4080{
4081 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
4082 return 0;
4083}
4084EXPORT_SYMBOL(hci_suspend_dev);
4085
4086/* Resume HCI device */
4087int hci_resume_dev(struct hci_dev *hdev)
4088{
4089 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
4090 return 0;
4091}
4092EXPORT_SYMBOL(hci_resume_dev);
4093
4094/* Reset HCI device */
4095int hci_reset_dev(struct hci_dev *hdev)
4096{
4097 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
4098 struct sk_buff *skb;
4099
4100 skb = bt_skb_alloc(3, GFP_ATOMIC);
4101 if (!skb)
4102 return -ENOMEM;
4103
4104 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
4105 skb_put_data(skb, hw_err, 3);
4106
4107 bt_dev_err(hdev, "Injecting HCI hardware error event");
4108
4109 /* Send Hardware Error to upper stack */
4110 return hci_recv_frame(hdev, skb);
4111}
4112EXPORT_SYMBOL(hci_reset_dev);
4113
4114/* Receive frame from HCI drivers */
4115int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4116{
4117 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4118 && !test_bit(HCI_INIT, &hdev->flags))) {
4119 kfree_skb(skb);
4120 return -ENXIO;
4121 }
4122
4123 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
4124 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
4125 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
4126 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
4127 kfree_skb(skb);
4128 return -EINVAL;
4129 }
4130
4131 /* Incoming skb */
4132 bt_cb(skb)->incoming = 1;
4133
4134 /* Time stamp */
4135 __net_timestamp(skb);
4136
4137 skb_queue_tail(&hdev->rx_q, skb);
4138 queue_work(hdev->workqueue, &hdev->rx_work);
4139
4140 return 0;
4141}
4142EXPORT_SYMBOL(hci_recv_frame);
4143
4144/* Receive diagnostic message from HCI drivers */
4145int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
4146{
4147 /* Mark as diagnostic packet */
4148 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
4149
4150 /* Time stamp */
4151 __net_timestamp(skb);
4152
4153 skb_queue_tail(&hdev->rx_q, skb);
4154 queue_work(hdev->workqueue, &hdev->rx_work);
4155
4156 return 0;
4157}
4158EXPORT_SYMBOL(hci_recv_diag);
4159
4160void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
4161{
4162 va_list vargs;
4163
4164 va_start(vargs, fmt);
4165 kfree_const(hdev->hw_info);
4166 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4167 va_end(vargs);
4168}
4169EXPORT_SYMBOL(hci_set_hw_info);
4170
4171void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
4172{
4173 va_list vargs;
4174
4175 va_start(vargs, fmt);
4176 kfree_const(hdev->fw_info);
4177 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4178 va_end(vargs);
4179}
4180EXPORT_SYMBOL(hci_set_fw_info);
4181
4182/* ---- Interface to upper protocols ---- */
4183
4184int hci_register_cb(struct hci_cb *cb)
4185{
4186 BT_DBG("%p name %s", cb, cb->name);
4187
4188 mutex_lock(&hci_cb_list_lock);
4189 list_add_tail(&cb->list, &hci_cb_list);
4190 mutex_unlock(&hci_cb_list_lock);
4191
4192 return 0;
4193}
4194EXPORT_SYMBOL(hci_register_cb);
4195
4196int hci_unregister_cb(struct hci_cb *cb)
4197{
4198 BT_DBG("%p name %s", cb, cb->name);
4199
4200 mutex_lock(&hci_cb_list_lock);
4201 list_del(&cb->list);
4202 mutex_unlock(&hci_cb_list_lock);
4203
4204 return 0;
4205}
4206EXPORT_SYMBOL(hci_unregister_cb);
4207
4208static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4209{
4210 int err;
4211
4212 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4213 skb->len);
4214
4215 /* Time stamp */
4216 __net_timestamp(skb);
4217
4218 /* Send copy to monitor */
4219 hci_send_to_monitor(hdev, skb);
4220
4221 if (atomic_read(&hdev->promisc)) {
4222 /* Send copy to the sockets */
4223 hci_send_to_sock(hdev, skb);
4224 }
4225
4226 /* Get rid of skb owner, prior to sending to the driver. */
4227 skb_orphan(skb);
4228
4229 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4230 kfree_skb(skb);
4231 return;
4232 }
4233
4234 err = hdev->send(hdev, skb);
4235 if (err < 0) {
4236 bt_dev_err(hdev, "sending frame failed (%d)", err);
4237 kfree_skb(skb);
4238 }
4239}
4240
4241/* Send HCI command */
4242int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4243 const void *param)
4244{
4245 struct sk_buff *skb;
4246
4247 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4248
4249 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4250 if (!skb) {
4251 bt_dev_err(hdev, "no memory for command");
4252 return -ENOMEM;
4253 }
4254
4255 /* Stand-alone HCI commands must be flagged as
4256 * single-command requests.
4257 */
4258 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4259
4260 skb_queue_tail(&hdev->cmd_q, skb);
4261 queue_work(hdev->workqueue, &hdev->cmd_work);
4262
4263 return 0;
4264}
4265
4266int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4267 const void *param)
4268{
4269 struct sk_buff *skb;
4270
4271 if (hci_opcode_ogf(opcode) != 0x3f) {
4272 /* A controller receiving a command shall respond with either
4273 * a Command Status Event or a Command Complete Event.
4274 * Therefore, all standard HCI commands must be sent via the
4275 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4276 * Some vendors do not comply with this rule for vendor-specific
4277 * commands and do not return any event. We want to support
4278 * unresponded commands for such cases only.
4279 */
4280 bt_dev_err(hdev, "unresponded command not supported");
4281 return -EINVAL;
4282 }
4283
4284 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4285 if (!skb) {
4286 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4287 opcode);
4288 return -ENOMEM;
4289 }
4290
4291 hci_send_frame(hdev, skb);
4292
4293 return 0;
4294}
4295EXPORT_SYMBOL(__hci_cmd_send);
4296
4297/* Get data from the previously sent command */
4298void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4299{
4300 struct hci_command_hdr *hdr;
4301
4302 if (!hdev->sent_cmd)
4303 return NULL;
4304
4305 hdr = (void *) hdev->sent_cmd->data;
4306
4307 if (hdr->opcode != cpu_to_le16(opcode))
4308 return NULL;
4309
4310 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4311
4312 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4313}
4314
4315/* Send HCI command and wait for command complete event */
4316struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4317 const void *param, u32 timeout)
4318{
4319 struct sk_buff *skb;
4320
4321 if (!test_bit(HCI_UP, &hdev->flags))
4322 return ERR_PTR(-ENETDOWN);
4323
4324 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4325
4326 hci_req_sync_lock(hdev);
4327 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4328 hci_req_sync_unlock(hdev);
4329
4330 return skb;
4331}
4332EXPORT_SYMBOL(hci_cmd_sync);
4333
4334/* Send ACL data */
4335static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4336{
4337 struct hci_acl_hdr *hdr;
4338 int len = skb->len;
4339
4340 skb_push(skb, HCI_ACL_HDR_SIZE);
4341 skb_reset_transport_header(skb);
4342 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4343 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4344 hdr->dlen = cpu_to_le16(len);
4345}
4346
4347static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4348 struct sk_buff *skb, __u16 flags)
4349{
4350 struct hci_conn *conn = chan->conn;
4351 struct hci_dev *hdev = conn->hdev;
4352 struct sk_buff *list;
4353
4354 skb->len = skb_headlen(skb);
4355 skb->data_len = 0;
4356
4357 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4358
4359 switch (hdev->dev_type) {
4360 case HCI_PRIMARY:
4361 hci_add_acl_hdr(skb, conn->handle, flags);
4362 break;
4363 case HCI_AMP:
4364 hci_add_acl_hdr(skb, chan->handle, flags);
4365 break;
4366 default:
4367 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4368 return;
4369 }
4370
4371 list = skb_shinfo(skb)->frag_list;
4372 if (!list) {
4373 /* Non fragmented */
4374 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4375
4376 skb_queue_tail(queue, skb);
4377 } else {
4378 /* Fragmented */
4379 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4380
4381 skb_shinfo(skb)->frag_list = NULL;
4382
4383 /* Queue all fragments atomically. We need to use spin_lock_bh
4384 * here because of 6LoWPAN links, as there this function is
4385 * called from softirq and using normal spin lock could cause
4386 * deadlocks.
4387 */
4388 spin_lock_bh(&queue->lock);
4389
4390 __skb_queue_tail(queue, skb);
4391
4392 flags &= ~ACL_START;
4393 flags |= ACL_CONT;
4394 do {
4395 skb = list; list = list->next;
4396
4397 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4398 hci_add_acl_hdr(skb, conn->handle, flags);
4399
4400 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4401
4402 __skb_queue_tail(queue, skb);
4403 } while (list);
4404
4405 spin_unlock_bh(&queue->lock);
4406 }
4407}
4408
4409void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4410{
4411 struct hci_dev *hdev = chan->conn->hdev;
4412
4413 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4414
4415 hci_queue_acl(chan, &chan->data_q, skb, flags);
4416
4417 queue_work(hdev->workqueue, &hdev->tx_work);
4418}
4419
4420/* Send SCO data */
4421void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4422{
4423 struct hci_dev *hdev = conn->hdev;
4424 struct hci_sco_hdr hdr;
4425
4426 BT_DBG("%s len %d", hdev->name, skb->len);
4427
4428 hdr.handle = cpu_to_le16(conn->handle);
4429 hdr.dlen = skb->len;
4430
4431 skb_push(skb, HCI_SCO_HDR_SIZE);
4432 skb_reset_transport_header(skb);
4433 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4434
4435 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4436
4437 skb_queue_tail(&conn->data_q, skb);
4438 queue_work(hdev->workqueue, &hdev->tx_work);
4439}
4440
4441/* ---- HCI TX task (outgoing data) ---- */
4442
4443/* HCI Connection scheduler */
4444static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4445 int *quote)
4446{
4447 struct hci_conn_hash *h = &hdev->conn_hash;
4448 struct hci_conn *conn = NULL, *c;
4449 unsigned int num = 0, min = ~0;
4450
4451 /* We don't have to lock device here. Connections are always
4452 * added and removed with TX task disabled. */
4453
4454 rcu_read_lock();
4455
4456 list_for_each_entry_rcu(c, &h->list, list) {
4457 if (c->type != type || skb_queue_empty(&c->data_q))
4458 continue;
4459
4460 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4461 continue;
4462
4463 num++;
4464
4465 if (c->sent < min) {
4466 min = c->sent;
4467 conn = c;
4468 }
4469
4470 if (hci_conn_num(hdev, type) == num)
4471 break;
4472 }
4473
4474 rcu_read_unlock();
4475
4476 if (conn) {
4477 int cnt, q;
4478
4479 switch (conn->type) {
4480 case ACL_LINK:
4481 cnt = hdev->acl_cnt;
4482 break;
4483 case SCO_LINK:
4484 case ESCO_LINK:
4485 cnt = hdev->sco_cnt;
4486 break;
4487 case LE_LINK:
4488 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4489 break;
4490 default:
4491 cnt = 0;
4492 bt_dev_err(hdev, "unknown link type %d", conn->type);
4493 }
4494
4495 q = cnt / num;
4496 *quote = q ? q : 1;
4497 } else
4498 *quote = 0;
4499
4500 BT_DBG("conn %p quote %d", conn, *quote);
4501 return conn;
4502}
4503
4504static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4505{
4506 struct hci_conn_hash *h = &hdev->conn_hash;
4507 struct hci_conn *c;
4508
4509 bt_dev_err(hdev, "link tx timeout");
4510
4511 rcu_read_lock();
4512
4513 /* Kill stalled connections */
4514 list_for_each_entry_rcu(c, &h->list, list) {
4515 if (c->type == type && c->sent) {
4516 bt_dev_err(hdev, "killing stalled connection %pMR",
4517 &c->dst);
4518 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4519 }
4520 }
4521
4522 rcu_read_unlock();
4523}
4524
4525static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4526 int *quote)
4527{
4528 struct hci_conn_hash *h = &hdev->conn_hash;
4529 struct hci_chan *chan = NULL;
4530 unsigned int num = 0, min = ~0, cur_prio = 0;
4531 struct hci_conn *conn;
4532 int cnt, q, conn_num = 0;
4533
4534 BT_DBG("%s", hdev->name);
4535
4536 rcu_read_lock();
4537
4538 list_for_each_entry_rcu(conn, &h->list, list) {
4539 struct hci_chan *tmp;
4540
4541 if (conn->type != type)
4542 continue;
4543
4544 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4545 continue;
4546
4547 conn_num++;
4548
4549 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4550 struct sk_buff *skb;
4551
4552 if (skb_queue_empty(&tmp->data_q))
4553 continue;
4554
4555 skb = skb_peek(&tmp->data_q);
4556 if (skb->priority < cur_prio)
4557 continue;
4558
4559 if (skb->priority > cur_prio) {
4560 num = 0;
4561 min = ~0;
4562 cur_prio = skb->priority;
4563 }
4564
4565 num++;
4566
4567 if (conn->sent < min) {
4568 min = conn->sent;
4569 chan = tmp;
4570 }
4571 }
4572
4573 if (hci_conn_num(hdev, type) == conn_num)
4574 break;
4575 }
4576
4577 rcu_read_unlock();
4578
4579 if (!chan)
4580 return NULL;
4581
4582 switch (chan->conn->type) {
4583 case ACL_LINK:
4584 cnt = hdev->acl_cnt;
4585 break;
4586 case AMP_LINK:
4587 cnt = hdev->block_cnt;
4588 break;
4589 case SCO_LINK:
4590 case ESCO_LINK:
4591 cnt = hdev->sco_cnt;
4592 break;
4593 case LE_LINK:
4594 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4595 break;
4596 default:
4597 cnt = 0;
4598 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4599 }
4600
4601 q = cnt / num;
4602 *quote = q ? q : 1;
4603 BT_DBG("chan %p quote %d", chan, *quote);
4604 return chan;
4605}
4606
4607static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4608{
4609 struct hci_conn_hash *h = &hdev->conn_hash;
4610 struct hci_conn *conn;
4611 int num = 0;
4612
4613 BT_DBG("%s", hdev->name);
4614
4615 rcu_read_lock();
4616
4617 list_for_each_entry_rcu(conn, &h->list, list) {
4618 struct hci_chan *chan;
4619
4620 if (conn->type != type)
4621 continue;
4622
4623 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4624 continue;
4625
4626 num++;
4627
4628 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4629 struct sk_buff *skb;
4630
4631 if (chan->sent) {
4632 chan->sent = 0;
4633 continue;
4634 }
4635
4636 if (skb_queue_empty(&chan->data_q))
4637 continue;
4638
4639 skb = skb_peek(&chan->data_q);
4640 if (skb->priority >= HCI_PRIO_MAX - 1)
4641 continue;
4642
4643 skb->priority = HCI_PRIO_MAX - 1;
4644
4645 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4646 skb->priority);
4647 }
4648
4649 if (hci_conn_num(hdev, type) == num)
4650 break;
4651 }
4652
4653 rcu_read_unlock();
4654
4655}
4656
4657static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4658{
4659 /* Calculate count of blocks used by this packet */
4660 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4661}
4662
4663static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4664{
4665 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4666 /* ACL tx timeout must be longer than maximum
4667 * link supervision timeout (40.9 seconds) */
4668 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4669 HCI_ACL_TX_TIMEOUT))
4670 hci_link_tx_to(hdev, ACL_LINK);
4671 }
4672}
4673
4674/* Schedule SCO */
4675static void hci_sched_sco(struct hci_dev *hdev)
4676{
4677 struct hci_conn *conn;
4678 struct sk_buff *skb;
4679 int quote;
4680
4681 BT_DBG("%s", hdev->name);
4682
4683 if (!hci_conn_num(hdev, SCO_LINK))
4684 return;
4685
4686 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4687 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4688 BT_DBG("skb %p len %d", skb, skb->len);
4689 hci_send_frame(hdev, skb);
4690
4691 conn->sent++;
4692 if (conn->sent == ~0)
4693 conn->sent = 0;
4694 }
4695 }
4696}
4697
4698static void hci_sched_esco(struct hci_dev *hdev)
4699{
4700 struct hci_conn *conn;
4701 struct sk_buff *skb;
4702 int quote;
4703
4704 BT_DBG("%s", hdev->name);
4705
4706 if (!hci_conn_num(hdev, ESCO_LINK))
4707 return;
4708
4709 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4710 "e))) {
4711 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4712 BT_DBG("skb %p len %d", skb, skb->len);
4713 hci_send_frame(hdev, skb);
4714
4715 conn->sent++;
4716 if (conn->sent == ~0)
4717 conn->sent = 0;
4718 }
4719 }
4720}
4721
4722static void hci_sched_acl_pkt(struct hci_dev *hdev)
4723{
4724 unsigned int cnt = hdev->acl_cnt;
4725 struct hci_chan *chan;
4726 struct sk_buff *skb;
4727 int quote;
4728
4729 __check_timeout(hdev, cnt);
4730
4731 while (hdev->acl_cnt &&
4732 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4733 u32 priority = (skb_peek(&chan->data_q))->priority;
4734 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4735 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4736 skb->len, skb->priority);
4737
4738 /* Stop if priority has changed */
4739 if (skb->priority < priority)
4740 break;
4741
4742 skb = skb_dequeue(&chan->data_q);
4743
4744 hci_conn_enter_active_mode(chan->conn,
4745 bt_cb(skb)->force_active);
4746
4747 hci_send_frame(hdev, skb);
4748 hdev->acl_last_tx = jiffies;
4749
4750 hdev->acl_cnt--;
4751 chan->sent++;
4752 chan->conn->sent++;
4753
4754 /* Send pending SCO packets right away */
4755 hci_sched_sco(hdev);
4756 hci_sched_esco(hdev);
4757 }
4758 }
4759
4760 if (cnt != hdev->acl_cnt)
4761 hci_prio_recalculate(hdev, ACL_LINK);
4762}
4763
4764static void hci_sched_acl_blk(struct hci_dev *hdev)
4765{
4766 unsigned int cnt = hdev->block_cnt;
4767 struct hci_chan *chan;
4768 struct sk_buff *skb;
4769 int quote;
4770 u8 type;
4771
4772 __check_timeout(hdev, cnt);
4773
4774 BT_DBG("%s", hdev->name);
4775
4776 if (hdev->dev_type == HCI_AMP)
4777 type = AMP_LINK;
4778 else
4779 type = ACL_LINK;
4780
4781 while (hdev->block_cnt > 0 &&
4782 (chan = hci_chan_sent(hdev, type, "e))) {
4783 u32 priority = (skb_peek(&chan->data_q))->priority;
4784 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4785 int blocks;
4786
4787 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4788 skb->len, skb->priority);
4789
4790 /* Stop if priority has changed */
4791 if (skb->priority < priority)
4792 break;
4793
4794 skb = skb_dequeue(&chan->data_q);
4795
4796 blocks = __get_blocks(hdev, skb);
4797 if (blocks > hdev->block_cnt)
4798 return;
4799
4800 hci_conn_enter_active_mode(chan->conn,
4801 bt_cb(skb)->force_active);
4802
4803 hci_send_frame(hdev, skb);
4804 hdev->acl_last_tx = jiffies;
4805
4806 hdev->block_cnt -= blocks;
4807 quote -= blocks;
4808
4809 chan->sent += blocks;
4810 chan->conn->sent += blocks;
4811 }
4812 }
4813
4814 if (cnt != hdev->block_cnt)
4815 hci_prio_recalculate(hdev, type);
4816}
4817
4818static void hci_sched_acl(struct hci_dev *hdev)
4819{
4820 BT_DBG("%s", hdev->name);
4821
4822 /* No ACL link over BR/EDR controller */
4823 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4824 return;
4825
4826 /* No AMP link over AMP controller */
4827 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4828 return;
4829
4830 switch (hdev->flow_ctl_mode) {
4831 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4832 hci_sched_acl_pkt(hdev);
4833 break;
4834
4835 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4836 hci_sched_acl_blk(hdev);
4837 break;
4838 }
4839}
4840
4841static void hci_sched_le(struct hci_dev *hdev)
4842{
4843 struct hci_chan *chan;
4844 struct sk_buff *skb;
4845 int quote, cnt, tmp;
4846
4847 BT_DBG("%s", hdev->name);
4848
4849 if (!hci_conn_num(hdev, LE_LINK))
4850 return;
4851
4852 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4853
4854 __check_timeout(hdev, cnt);
4855
4856 tmp = cnt;
4857 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4858 u32 priority = (skb_peek(&chan->data_q))->priority;
4859 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4860 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4861 skb->len, skb->priority);
4862
4863 /* Stop if priority has changed */
4864 if (skb->priority < priority)
4865 break;
4866
4867 skb = skb_dequeue(&chan->data_q);
4868
4869 hci_send_frame(hdev, skb);
4870 hdev->le_last_tx = jiffies;
4871
4872 cnt--;
4873 chan->sent++;
4874 chan->conn->sent++;
4875
4876 /* Send pending SCO packets right away */
4877 hci_sched_sco(hdev);
4878 hci_sched_esco(hdev);
4879 }
4880 }
4881
4882 if (hdev->le_pkts)
4883 hdev->le_cnt = cnt;
4884 else
4885 hdev->acl_cnt = cnt;
4886
4887 if (cnt != tmp)
4888 hci_prio_recalculate(hdev, LE_LINK);
4889}
4890
4891static void hci_tx_work(struct work_struct *work)
4892{
4893 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4894 struct sk_buff *skb;
4895
4896 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4897 hdev->sco_cnt, hdev->le_cnt);
4898
4899 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4900 /* Schedule queues and send stuff to HCI driver */
4901 hci_sched_sco(hdev);
4902 hci_sched_esco(hdev);
4903 hci_sched_acl(hdev);
4904 hci_sched_le(hdev);
4905 }
4906
4907 /* Send next queued raw (unknown type) packet */
4908 while ((skb = skb_dequeue(&hdev->raw_q)))
4909 hci_send_frame(hdev, skb);
4910}
4911
4912/* ----- HCI RX task (incoming data processing) ----- */
4913
4914/* ACL data packet */
4915static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4916{
4917 struct hci_acl_hdr *hdr = (void *) skb->data;
4918 struct hci_conn *conn;
4919 __u16 handle, flags;
4920
4921 skb_pull(skb, HCI_ACL_HDR_SIZE);
4922
4923 handle = __le16_to_cpu(hdr->handle);
4924 flags = hci_flags(handle);
4925 handle = hci_handle(handle);
4926
4927 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4928 handle, flags);
4929
4930 hdev->stat.acl_rx++;
4931
4932 hci_dev_lock(hdev);
4933 conn = hci_conn_hash_lookup_handle(hdev, handle);
4934 hci_dev_unlock(hdev);
4935
4936 if (conn) {
4937 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4938
4939 /* Send to upper protocol */
4940 l2cap_recv_acldata(conn, skb, flags);
4941 return;
4942 } else {
4943 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4944 handle);
4945 }
4946
4947 kfree_skb(skb);
4948}
4949
4950/* SCO data packet */
4951static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4952{
4953 struct hci_sco_hdr *hdr = (void *) skb->data;
4954 struct hci_conn *conn;
4955 __u16 handle, flags;
4956
4957 skb_pull(skb, HCI_SCO_HDR_SIZE);
4958
4959 handle = __le16_to_cpu(hdr->handle);
4960 flags = hci_flags(handle);
4961 handle = hci_handle(handle);
4962
4963 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4964 handle, flags);
4965
4966 hdev->stat.sco_rx++;
4967
4968 hci_dev_lock(hdev);
4969 conn = hci_conn_hash_lookup_handle(hdev, handle);
4970 hci_dev_unlock(hdev);
4971
4972 if (conn) {
4973 /* Send to upper protocol */
4974 bt_cb(skb)->sco.pkt_status = flags & 0x03;
4975 sco_recv_scodata(conn, skb);
4976 return;
4977 } else {
4978 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4979 handle);
4980 }
4981
4982 kfree_skb(skb);
4983}
4984
4985static bool hci_req_is_complete(struct hci_dev *hdev)
4986{
4987 struct sk_buff *skb;
4988
4989 skb = skb_peek(&hdev->cmd_q);
4990 if (!skb)
4991 return true;
4992
4993 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4994}
4995
4996static void hci_resend_last(struct hci_dev *hdev)
4997{
4998 struct hci_command_hdr *sent;
4999 struct sk_buff *skb;
5000 u16 opcode;
5001
5002 if (!hdev->sent_cmd)
5003 return;
5004
5005 sent = (void *) hdev->sent_cmd->data;
5006 opcode = __le16_to_cpu(sent->opcode);
5007 if (opcode == HCI_OP_RESET)
5008 return;
5009
5010 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5011 if (!skb)
5012 return;
5013
5014 skb_queue_head(&hdev->cmd_q, skb);
5015 queue_work(hdev->workqueue, &hdev->cmd_work);
5016}
5017
5018void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
5019 hci_req_complete_t *req_complete,
5020 hci_req_complete_skb_t *req_complete_skb)
5021{
5022 struct sk_buff *skb;
5023 unsigned long flags;
5024
5025 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5026
5027 /* If the completed command doesn't match the last one that was
5028 * sent we need to do special handling of it.
5029 */
5030 if (!hci_sent_cmd_data(hdev, opcode)) {
5031 /* Some CSR based controllers generate a spontaneous
5032 * reset complete event during init and any pending
5033 * command will never be completed. In such a case we
5034 * need to resend whatever was the last sent
5035 * command.
5036 */
5037 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5038 hci_resend_last(hdev);
5039
5040 return;
5041 }
5042
5043 /* If we reach this point this event matches the last command sent */
5044 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
5045
5046 /* If the command succeeded and there's still more commands in
5047 * this request the request is not yet complete.
5048 */
5049 if (!status && !hci_req_is_complete(hdev))
5050 return;
5051
5052 /* If this was the last command in a request the complete
5053 * callback would be found in hdev->sent_cmd instead of the
5054 * command queue (hdev->cmd_q).
5055 */
5056 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
5057 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
5058 return;
5059 }
5060
5061 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
5062 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
5063 return;
5064 }
5065
5066 /* Remove all pending commands belonging to this request */
5067 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5068 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5069 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
5070 __skb_queue_head(&hdev->cmd_q, skb);
5071 break;
5072 }
5073
5074 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
5075 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
5076 else
5077 *req_complete = bt_cb(skb)->hci.req_complete;
5078 kfree_skb(skb);
5079 }
5080 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5081}
5082
5083static void hci_rx_work(struct work_struct *work)
5084{
5085 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5086 struct sk_buff *skb;
5087
5088 BT_DBG("%s", hdev->name);
5089
5090 while ((skb = skb_dequeue(&hdev->rx_q))) {
5091 /* Send copy to monitor */
5092 hci_send_to_monitor(hdev, skb);
5093
5094 if (atomic_read(&hdev->promisc)) {
5095 /* Send copy to the sockets */
5096 hci_send_to_sock(hdev, skb);
5097 }
5098
5099 /* If the device has been opened in HCI_USER_CHANNEL,
5100 * the userspace has exclusive access to device.
5101 * When device is HCI_INIT, we still need to process
5102 * the data packets to the driver in order
5103 * to complete its setup().
5104 */
5105 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5106 !test_bit(HCI_INIT, &hdev->flags)) {
5107 kfree_skb(skb);
5108 continue;
5109 }
5110
5111 if (test_bit(HCI_INIT, &hdev->flags)) {
5112 /* Don't process data packets in this states. */
5113 switch (hci_skb_pkt_type(skb)) {
5114 case HCI_ACLDATA_PKT:
5115 case HCI_SCODATA_PKT:
5116 case HCI_ISODATA_PKT:
5117 kfree_skb(skb);
5118 continue;
5119 }
5120 }
5121
5122 /* Process frame */
5123 switch (hci_skb_pkt_type(skb)) {
5124 case HCI_EVENT_PKT:
5125 BT_DBG("%s Event packet", hdev->name);
5126 hci_event_packet(hdev, skb);
5127 break;
5128
5129 case HCI_ACLDATA_PKT:
5130 BT_DBG("%s ACL data packet", hdev->name);
5131 hci_acldata_packet(hdev, skb);
5132 break;
5133
5134 case HCI_SCODATA_PKT:
5135 BT_DBG("%s SCO data packet", hdev->name);
5136 hci_scodata_packet(hdev, skb);
5137 break;
5138
5139 default:
5140 kfree_skb(skb);
5141 break;
5142 }
5143 }
5144}
5145
5146static void hci_cmd_work(struct work_struct *work)
5147{
5148 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5149 struct sk_buff *skb;
5150
5151 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5152 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5153
5154 /* Send queued commands */
5155 if (atomic_read(&hdev->cmd_cnt)) {
5156 skb = skb_dequeue(&hdev->cmd_q);
5157 if (!skb)
5158 return;
5159
5160 kfree_skb(hdev->sent_cmd);
5161
5162 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5163 if (hdev->sent_cmd) {
5164 if (hci_req_status_pend(hdev))
5165 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5166 atomic_dec(&hdev->cmd_cnt);
5167 hci_send_frame(hdev, skb);
5168 if (test_bit(HCI_RESET, &hdev->flags))
5169 cancel_delayed_work(&hdev->cmd_timer);
5170 else
5171 schedule_delayed_work(&hdev->cmd_timer,
5172 HCI_CMD_TIMEOUT);
5173 } else {
5174 skb_queue_head(&hdev->cmd_q, skb);
5175 queue_work(hdev->workqueue, &hdev->cmd_work);
5176 }
5177 }
5178}