Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 *
143 * Return: 0 on success or a negative error number on failure.
144 */
145static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 struct ww_acquire_ctx *ww_ctx)
147{
148 bool lock = false;
149 int ret = 0;
150
151 mutex_lock(®ulator_nesting_mutex);
152
153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 if (rdev->mutex_owner == current)
155 rdev->ref_cnt++;
156 else
157 lock = true;
158
159 if (lock) {
160 mutex_unlock(®ulator_nesting_mutex);
161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 mutex_lock(®ulator_nesting_mutex);
163 }
164 } else {
165 lock = true;
166 }
167
168 if (lock && ret != -EDEADLK) {
169 rdev->ref_cnt++;
170 rdev->mutex_owner = current;
171 }
172
173 mutex_unlock(®ulator_nesting_mutex);
174
175 return ret;
176}
177
178/**
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
181 *
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
186 * wait on mutex.
187 */
188static void regulator_lock(struct regulator_dev *rdev)
189{
190 regulator_lock_nested(rdev, NULL);
191}
192
193/**
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
196 *
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
199 */
200static void regulator_unlock(struct regulator_dev *rdev)
201{
202 mutex_lock(®ulator_nesting_mutex);
203
204 if (--rdev->ref_cnt == 0) {
205 rdev->mutex_owner = NULL;
206 ww_mutex_unlock(&rdev->mutex);
207 }
208
209 WARN_ON_ONCE(rdev->ref_cnt < 0);
210
211 mutex_unlock(®ulator_nesting_mutex);
212}
213
214/**
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
219 *
220 * Locks both rdevs using the regulator_ww_class.
221 */
222static void regulator_lock_two(struct regulator_dev *rdev1,
223 struct regulator_dev *rdev2,
224 struct ww_acquire_ctx *ww_ctx)
225{
226 struct regulator_dev *held, *contended;
227 int ret;
228
229 ww_acquire_init(ww_ctx, ®ulator_ww_class);
230
231 /* Try to just grab both of them */
232 ret = regulator_lock_nested(rdev1, ww_ctx);
233 WARN_ON(ret);
234 ret = regulator_lock_nested(rdev2, ww_ctx);
235 if (ret != -EDEADLOCK) {
236 WARN_ON(ret);
237 goto exit;
238 }
239
240 held = rdev1;
241 contended = rdev2;
242 while (true) {
243 regulator_unlock(held);
244
245 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 contended->ref_cnt++;
247 contended->mutex_owner = current;
248 swap(held, contended);
249 ret = regulator_lock_nested(contended, ww_ctx);
250
251 if (ret != -EDEADLOCK) {
252 WARN_ON(ret);
253 break;
254 }
255 }
256
257exit:
258 ww_acquire_done(ww_ctx);
259}
260
261/**
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
266 *
267 * The inverse of regulator_lock_two().
268 */
269
270static void regulator_unlock_two(struct regulator_dev *rdev1,
271 struct regulator_dev *rdev2,
272 struct ww_acquire_ctx *ww_ctx)
273{
274 regulator_unlock(rdev2);
275 regulator_unlock(rdev1);
276 ww_acquire_fini(ww_ctx);
277}
278
279static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280{
281 struct regulator_dev *c_rdev;
282 int i;
283
284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286
287 if (rdev->supply->rdev == c_rdev)
288 return true;
289 }
290
291 return false;
292}
293
294static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 unsigned int n_coupled)
296{
297 struct regulator_dev *c_rdev, *supply_rdev;
298 int i, supply_n_coupled;
299
300 for (i = n_coupled; i > 0; i--) {
301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302
303 if (!c_rdev)
304 continue;
305
306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 supply_rdev = c_rdev->supply->rdev;
308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309
310 regulator_unlock_recursive(supply_rdev,
311 supply_n_coupled);
312 }
313
314 regulator_unlock(c_rdev);
315 }
316}
317
318static int regulator_lock_recursive(struct regulator_dev *rdev,
319 struct regulator_dev **new_contended_rdev,
320 struct regulator_dev **old_contended_rdev,
321 struct ww_acquire_ctx *ww_ctx)
322{
323 struct regulator_dev *c_rdev;
324 int i, err;
325
326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328
329 if (!c_rdev)
330 continue;
331
332 if (c_rdev != *old_contended_rdev) {
333 err = regulator_lock_nested(c_rdev, ww_ctx);
334 if (err) {
335 if (err == -EDEADLK) {
336 *new_contended_rdev = c_rdev;
337 goto err_unlock;
338 }
339
340 /* shouldn't happen */
341 WARN_ON_ONCE(err != -EALREADY);
342 }
343 } else {
344 *old_contended_rdev = NULL;
345 }
346
347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 err = regulator_lock_recursive(c_rdev->supply->rdev,
349 new_contended_rdev,
350 old_contended_rdev,
351 ww_ctx);
352 if (err) {
353 regulator_unlock(c_rdev);
354 goto err_unlock;
355 }
356 }
357 }
358
359 return 0;
360
361err_unlock:
362 regulator_unlock_recursive(rdev, i);
363
364 return err;
365}
366
367/**
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369 * regulators
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
372 *
373 * Unlock all regulators related with rdev by coupling or supplying.
374 */
375static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 struct ww_acquire_ctx *ww_ctx)
377{
378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 ww_acquire_fini(ww_ctx);
380}
381
382/**
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
386 *
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
389 */
390static void regulator_lock_dependent(struct regulator_dev *rdev,
391 struct ww_acquire_ctx *ww_ctx)
392{
393 struct regulator_dev *new_contended_rdev = NULL;
394 struct regulator_dev *old_contended_rdev = NULL;
395 int err;
396
397 mutex_lock(®ulator_list_mutex);
398
399 ww_acquire_init(ww_ctx, ®ulator_ww_class);
400
401 do {
402 if (new_contended_rdev) {
403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 old_contended_rdev = new_contended_rdev;
405 old_contended_rdev->ref_cnt++;
406 old_contended_rdev->mutex_owner = current;
407 }
408
409 err = regulator_lock_recursive(rdev,
410 &new_contended_rdev,
411 &old_contended_rdev,
412 ww_ctx);
413
414 if (old_contended_rdev)
415 regulator_unlock(old_contended_rdev);
416
417 } while (err == -EDEADLK);
418
419 ww_acquire_done(ww_ctx);
420
421 mutex_unlock(®ulator_list_mutex);
422}
423
424/* Platform voltage constraint check */
425int regulator_check_voltage(struct regulator_dev *rdev,
426 int *min_uV, int *max_uV)
427{
428 BUG_ON(*min_uV > *max_uV);
429
430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 rdev_err(rdev, "voltage operation not allowed\n");
432 return -EPERM;
433 }
434
435 if (*max_uV > rdev->constraints->max_uV)
436 *max_uV = rdev->constraints->max_uV;
437 if (*min_uV < rdev->constraints->min_uV)
438 *min_uV = rdev->constraints->min_uV;
439
440 if (*min_uV > *max_uV) {
441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 *min_uV, *max_uV);
443 return -EINVAL;
444 }
445
446 return 0;
447}
448
449/* return 0 if the state is valid */
450static int regulator_check_states(suspend_state_t state)
451{
452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453}
454
455/* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
457 */
458int regulator_check_consumers(struct regulator_dev *rdev,
459 int *min_uV, int *max_uV,
460 suspend_state_t state)
461{
462 struct regulator *regulator;
463 struct regulator_voltage *voltage;
464
465 list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 voltage = ®ulator->voltage[state];
467 /*
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
470 */
471 if (!voltage->min_uV && !voltage->max_uV)
472 continue;
473
474 if (*max_uV > voltage->max_uV)
475 *max_uV = voltage->max_uV;
476 if (*min_uV < voltage->min_uV)
477 *min_uV = voltage->min_uV;
478 }
479
480 if (*min_uV > *max_uV) {
481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 *min_uV, *max_uV);
483 return -EINVAL;
484 }
485
486 return 0;
487}
488
489/* current constraint check */
490static int regulator_check_current_limit(struct regulator_dev *rdev,
491 int *min_uA, int *max_uA)
492{
493 BUG_ON(*min_uA > *max_uA);
494
495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 rdev_err(rdev, "current operation not allowed\n");
497 return -EPERM;
498 }
499
500 if (*max_uA > rdev->constraints->max_uA &&
501 rdev->constraints->max_uA)
502 *max_uA = rdev->constraints->max_uA;
503 if (*min_uA < rdev->constraints->min_uA)
504 *min_uA = rdev->constraints->min_uA;
505
506 if (*min_uA > *max_uA) {
507 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
508 *min_uA, *max_uA);
509 return -EINVAL;
510 }
511
512 return 0;
513}
514
515/* operating mode constraint check */
516static int regulator_mode_constrain(struct regulator_dev *rdev,
517 unsigned int *mode)
518{
519 switch (*mode) {
520 case REGULATOR_MODE_FAST:
521 case REGULATOR_MODE_NORMAL:
522 case REGULATOR_MODE_IDLE:
523 case REGULATOR_MODE_STANDBY:
524 break;
525 default:
526 rdev_err(rdev, "invalid mode %x specified\n", *mode);
527 return -EINVAL;
528 }
529
530 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
531 rdev_err(rdev, "mode operation not allowed\n");
532 return -EPERM;
533 }
534
535 /* The modes are bitmasks, the most power hungry modes having
536 * the lowest values. If the requested mode isn't supported
537 * try higher modes.
538 */
539 while (*mode) {
540 if (rdev->constraints->valid_modes_mask & *mode)
541 return 0;
542 *mode /= 2;
543 }
544
545 return -EINVAL;
546}
547
548static inline struct regulator_state *
549regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
550{
551 if (rdev->constraints == NULL)
552 return NULL;
553
554 switch (state) {
555 case PM_SUSPEND_STANDBY:
556 return &rdev->constraints->state_standby;
557 case PM_SUSPEND_MEM:
558 return &rdev->constraints->state_mem;
559 case PM_SUSPEND_MAX:
560 return &rdev->constraints->state_disk;
561 default:
562 return NULL;
563 }
564}
565
566static const struct regulator_state *
567regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
568{
569 const struct regulator_state *rstate;
570
571 rstate = regulator_get_suspend_state(rdev, state);
572 if (rstate == NULL)
573 return NULL;
574
575 /* If we have no suspend mode configuration don't set anything;
576 * only warn if the driver implements set_suspend_voltage or
577 * set_suspend_mode callback.
578 */
579 if (rstate->enabled != ENABLE_IN_SUSPEND &&
580 rstate->enabled != DISABLE_IN_SUSPEND) {
581 if (rdev->desc->ops->set_suspend_voltage ||
582 rdev->desc->ops->set_suspend_mode)
583 rdev_warn(rdev, "No configuration\n");
584 return NULL;
585 }
586
587 return rstate;
588}
589
590static ssize_t microvolts_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592{
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594 int uV;
595
596 regulator_lock(rdev);
597 uV = regulator_get_voltage_rdev(rdev);
598 regulator_unlock(rdev);
599
600 if (uV < 0)
601 return uV;
602 return sprintf(buf, "%d\n", uV);
603}
604static DEVICE_ATTR_RO(microvolts);
605
606static ssize_t microamps_show(struct device *dev,
607 struct device_attribute *attr, char *buf)
608{
609 struct regulator_dev *rdev = dev_get_drvdata(dev);
610
611 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
612}
613static DEVICE_ATTR_RO(microamps);
614
615static ssize_t name_show(struct device *dev, struct device_attribute *attr,
616 char *buf)
617{
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return sprintf(buf, "%s\n", rdev_get_name(rdev));
621}
622static DEVICE_ATTR_RO(name);
623
624static const char *regulator_opmode_to_str(int mode)
625{
626 switch (mode) {
627 case REGULATOR_MODE_FAST:
628 return "fast";
629 case REGULATOR_MODE_NORMAL:
630 return "normal";
631 case REGULATOR_MODE_IDLE:
632 return "idle";
633 case REGULATOR_MODE_STANDBY:
634 return "standby";
635 }
636 return "unknown";
637}
638
639static ssize_t regulator_print_opmode(char *buf, int mode)
640{
641 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642}
643
644static ssize_t opmode_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646{
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648
649 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
650}
651static DEVICE_ATTR_RO(opmode);
652
653static ssize_t regulator_print_state(char *buf, int state)
654{
655 if (state > 0)
656 return sprintf(buf, "enabled\n");
657 else if (state == 0)
658 return sprintf(buf, "disabled\n");
659 else
660 return sprintf(buf, "unknown\n");
661}
662
663static ssize_t state_show(struct device *dev,
664 struct device_attribute *attr, char *buf)
665{
666 struct regulator_dev *rdev = dev_get_drvdata(dev);
667 ssize_t ret;
668
669 regulator_lock(rdev);
670 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671 regulator_unlock(rdev);
672
673 return ret;
674}
675static DEVICE_ATTR_RO(state);
676
677static ssize_t status_show(struct device *dev,
678 struct device_attribute *attr, char *buf)
679{
680 struct regulator_dev *rdev = dev_get_drvdata(dev);
681 int status;
682 char *label;
683
684 status = rdev->desc->ops->get_status(rdev);
685 if (status < 0)
686 return status;
687
688 switch (status) {
689 case REGULATOR_STATUS_OFF:
690 label = "off";
691 break;
692 case REGULATOR_STATUS_ON:
693 label = "on";
694 break;
695 case REGULATOR_STATUS_ERROR:
696 label = "error";
697 break;
698 case REGULATOR_STATUS_FAST:
699 label = "fast";
700 break;
701 case REGULATOR_STATUS_NORMAL:
702 label = "normal";
703 break;
704 case REGULATOR_STATUS_IDLE:
705 label = "idle";
706 break;
707 case REGULATOR_STATUS_STANDBY:
708 label = "standby";
709 break;
710 case REGULATOR_STATUS_BYPASS:
711 label = "bypass";
712 break;
713 case REGULATOR_STATUS_UNDEFINED:
714 label = "undefined";
715 break;
716 default:
717 return -ERANGE;
718 }
719
720 return sprintf(buf, "%s\n", label);
721}
722static DEVICE_ATTR_RO(status);
723
724static ssize_t min_microamps_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726{
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728
729 if (!rdev->constraints)
730 return sprintf(buf, "constraint not defined\n");
731
732 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
733}
734static DEVICE_ATTR_RO(min_microamps);
735
736static ssize_t max_microamps_show(struct device *dev,
737 struct device_attribute *attr, char *buf)
738{
739 struct regulator_dev *rdev = dev_get_drvdata(dev);
740
741 if (!rdev->constraints)
742 return sprintf(buf, "constraint not defined\n");
743
744 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
745}
746static DEVICE_ATTR_RO(max_microamps);
747
748static ssize_t min_microvolts_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
750{
751 struct regulator_dev *rdev = dev_get_drvdata(dev);
752
753 if (!rdev->constraints)
754 return sprintf(buf, "constraint not defined\n");
755
756 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
757}
758static DEVICE_ATTR_RO(min_microvolts);
759
760static ssize_t max_microvolts_show(struct device *dev,
761 struct device_attribute *attr, char *buf)
762{
763 struct regulator_dev *rdev = dev_get_drvdata(dev);
764
765 if (!rdev->constraints)
766 return sprintf(buf, "constraint not defined\n");
767
768 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
769}
770static DEVICE_ATTR_RO(max_microvolts);
771
772static ssize_t requested_microamps_show(struct device *dev,
773 struct device_attribute *attr, char *buf)
774{
775 struct regulator_dev *rdev = dev_get_drvdata(dev);
776 struct regulator *regulator;
777 int uA = 0;
778
779 regulator_lock(rdev);
780 list_for_each_entry(regulator, &rdev->consumer_list, list) {
781 if (regulator->enable_count)
782 uA += regulator->uA_load;
783 }
784 regulator_unlock(rdev);
785 return sprintf(buf, "%d\n", uA);
786}
787static DEVICE_ATTR_RO(requested_microamps);
788
789static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
790 char *buf)
791{
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793 return sprintf(buf, "%d\n", rdev->use_count);
794}
795static DEVICE_ATTR_RO(num_users);
796
797static ssize_t type_show(struct device *dev, struct device_attribute *attr,
798 char *buf)
799{
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 switch (rdev->desc->type) {
803 case REGULATOR_VOLTAGE:
804 return sprintf(buf, "voltage\n");
805 case REGULATOR_CURRENT:
806 return sprintf(buf, "current\n");
807 }
808 return sprintf(buf, "unknown\n");
809}
810static DEVICE_ATTR_RO(type);
811
812static ssize_t suspend_mem_microvolts_show(struct device *dev,
813 struct device_attribute *attr, char *buf)
814{
815 struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
818}
819static DEVICE_ATTR_RO(suspend_mem_microvolts);
820
821static ssize_t suspend_disk_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823{
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
827}
828static DEVICE_ATTR_RO(suspend_disk_microvolts);
829
830static ssize_t suspend_standby_microvolts_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
832{
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
836}
837static DEVICE_ATTR_RO(suspend_standby_microvolts);
838
839static ssize_t suspend_mem_mode_show(struct device *dev,
840 struct device_attribute *attr, char *buf)
841{
842 struct regulator_dev *rdev = dev_get_drvdata(dev);
843
844 return regulator_print_opmode(buf,
845 rdev->constraints->state_mem.mode);
846}
847static DEVICE_ATTR_RO(suspend_mem_mode);
848
849static ssize_t suspend_disk_mode_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
851{
852 struct regulator_dev *rdev = dev_get_drvdata(dev);
853
854 return regulator_print_opmode(buf,
855 rdev->constraints->state_disk.mode);
856}
857static DEVICE_ATTR_RO(suspend_disk_mode);
858
859static ssize_t suspend_standby_mode_show(struct device *dev,
860 struct device_attribute *attr, char *buf)
861{
862 struct regulator_dev *rdev = dev_get_drvdata(dev);
863
864 return regulator_print_opmode(buf,
865 rdev->constraints->state_standby.mode);
866}
867static DEVICE_ATTR_RO(suspend_standby_mode);
868
869static ssize_t suspend_mem_state_show(struct device *dev,
870 struct device_attribute *attr, char *buf)
871{
872 struct regulator_dev *rdev = dev_get_drvdata(dev);
873
874 return regulator_print_state(buf,
875 rdev->constraints->state_mem.enabled);
876}
877static DEVICE_ATTR_RO(suspend_mem_state);
878
879static ssize_t suspend_disk_state_show(struct device *dev,
880 struct device_attribute *attr, char *buf)
881{
882 struct regulator_dev *rdev = dev_get_drvdata(dev);
883
884 return regulator_print_state(buf,
885 rdev->constraints->state_disk.enabled);
886}
887static DEVICE_ATTR_RO(suspend_disk_state);
888
889static ssize_t suspend_standby_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_standby.enabled);
896}
897static DEVICE_ATTR_RO(suspend_standby_state);
898
899static ssize_t bypass_show(struct device *dev,
900 struct device_attribute *attr, char *buf)
901{
902 struct regulator_dev *rdev = dev_get_drvdata(dev);
903 const char *report;
904 bool bypass;
905 int ret;
906
907 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
908
909 if (ret != 0)
910 report = "unknown";
911 else if (bypass)
912 report = "enabled";
913 else
914 report = "disabled";
915
916 return sprintf(buf, "%s\n", report);
917}
918static DEVICE_ATTR_RO(bypass);
919
920#define REGULATOR_ERROR_ATTR(name, bit) \
921 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
922 char *buf) \
923 { \
924 int ret; \
925 unsigned int flags; \
926 struct regulator_dev *rdev = dev_get_drvdata(dev); \
927 ret = _regulator_get_error_flags(rdev, &flags); \
928 if (ret) \
929 return ret; \
930 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
931 } \
932 static DEVICE_ATTR_RO(name)
933
934REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
935REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
936REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
937REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
938REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
939REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
940REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
941REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
942REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
943
944/* Calculate the new optimum regulator operating mode based on the new total
945 * consumer load. All locks held by caller
946 */
947static int drms_uA_update(struct regulator_dev *rdev)
948{
949 struct regulator *sibling;
950 int current_uA = 0, output_uV, input_uV, err;
951 unsigned int mode;
952
953 /*
954 * first check to see if we can set modes at all, otherwise just
955 * tell the consumer everything is OK.
956 */
957 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
958 rdev_dbg(rdev, "DRMS operation not allowed\n");
959 return 0;
960 }
961
962 if (!rdev->desc->ops->get_optimum_mode &&
963 !rdev->desc->ops->set_load)
964 return 0;
965
966 if (!rdev->desc->ops->set_mode &&
967 !rdev->desc->ops->set_load)
968 return -EINVAL;
969
970 /* calc total requested load */
971 list_for_each_entry(sibling, &rdev->consumer_list, list) {
972 if (sibling->enable_count)
973 current_uA += sibling->uA_load;
974 }
975
976 current_uA += rdev->constraints->system_load;
977
978 if (rdev->desc->ops->set_load) {
979 /* set the optimum mode for our new total regulator load */
980 err = rdev->desc->ops->set_load(rdev, current_uA);
981 if (err < 0)
982 rdev_err(rdev, "failed to set load %d: %pe\n",
983 current_uA, ERR_PTR(err));
984 } else {
985 /*
986 * Unfortunately in some cases the constraints->valid_ops has
987 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
988 * That's not really legit but we won't consider it a fatal
989 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
990 * wasn't set.
991 */
992 if (!rdev->constraints->valid_modes_mask) {
993 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
994 return 0;
995 }
996
997 /* get output voltage */
998 output_uV = regulator_get_voltage_rdev(rdev);
999
1000 /*
1001 * Don't return an error; if regulator driver cares about
1002 * output_uV then it's up to the driver to validate.
1003 */
1004 if (output_uV <= 0)
1005 rdev_dbg(rdev, "invalid output voltage found\n");
1006
1007 /* get input voltage */
1008 input_uV = 0;
1009 if (rdev->supply)
1010 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011 if (input_uV <= 0)
1012 input_uV = rdev->constraints->input_uV;
1013
1014 /*
1015 * Don't return an error; if regulator driver cares about
1016 * input_uV then it's up to the driver to validate.
1017 */
1018 if (input_uV <= 0)
1019 rdev_dbg(rdev, "invalid input voltage found\n");
1020
1021 /* now get the optimum mode for our new total regulator load */
1022 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023 output_uV, current_uA);
1024
1025 /* check the new mode is allowed */
1026 err = regulator_mode_constrain(rdev, &mode);
1027 if (err < 0) {
1028 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029 current_uA, input_uV, output_uV, ERR_PTR(err));
1030 return err;
1031 }
1032
1033 err = rdev->desc->ops->set_mode(rdev, mode);
1034 if (err < 0)
1035 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036 mode, ERR_PTR(err));
1037 }
1038
1039 return err;
1040}
1041
1042static int __suspend_set_state(struct regulator_dev *rdev,
1043 const struct regulator_state *rstate)
1044{
1045 int ret = 0;
1046
1047 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048 rdev->desc->ops->set_suspend_enable)
1049 ret = rdev->desc->ops->set_suspend_enable(rdev);
1050 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051 rdev->desc->ops->set_suspend_disable)
1052 ret = rdev->desc->ops->set_suspend_disable(rdev);
1053 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054 ret = 0;
1055
1056 if (ret < 0) {
1057 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058 return ret;
1059 }
1060
1061 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063 if (ret < 0) {
1064 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065 return ret;
1066 }
1067 }
1068
1069 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071 if (ret < 0) {
1072 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073 return ret;
1074 }
1075 }
1076
1077 return ret;
1078}
1079
1080static int suspend_set_initial_state(struct regulator_dev *rdev)
1081{
1082 const struct regulator_state *rstate;
1083
1084 rstate = regulator_get_suspend_state_check(rdev,
1085 rdev->constraints->initial_state);
1086 if (!rstate)
1087 return 0;
1088
1089 return __suspend_set_state(rdev, rstate);
1090}
1091
1092#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093static void print_constraints_debug(struct regulator_dev *rdev)
1094{
1095 struct regulation_constraints *constraints = rdev->constraints;
1096 char buf[160] = "";
1097 size_t len = sizeof(buf) - 1;
1098 int count = 0;
1099 int ret;
1100
1101 if (constraints->min_uV && constraints->max_uV) {
1102 if (constraints->min_uV == constraints->max_uV)
1103 count += scnprintf(buf + count, len - count, "%d mV ",
1104 constraints->min_uV / 1000);
1105 else
1106 count += scnprintf(buf + count, len - count,
1107 "%d <--> %d mV ",
1108 constraints->min_uV / 1000,
1109 constraints->max_uV / 1000);
1110 }
1111
1112 if (!constraints->min_uV ||
1113 constraints->min_uV != constraints->max_uV) {
1114 ret = regulator_get_voltage_rdev(rdev);
1115 if (ret > 0)
1116 count += scnprintf(buf + count, len - count,
1117 "at %d mV ", ret / 1000);
1118 }
1119
1120 if (constraints->uV_offset)
1121 count += scnprintf(buf + count, len - count, "%dmV offset ",
1122 constraints->uV_offset / 1000);
1123
1124 if (constraints->min_uA && constraints->max_uA) {
1125 if (constraints->min_uA == constraints->max_uA)
1126 count += scnprintf(buf + count, len - count, "%d mA ",
1127 constraints->min_uA / 1000);
1128 else
1129 count += scnprintf(buf + count, len - count,
1130 "%d <--> %d mA ",
1131 constraints->min_uA / 1000,
1132 constraints->max_uA / 1000);
1133 }
1134
1135 if (!constraints->min_uA ||
1136 constraints->min_uA != constraints->max_uA) {
1137 ret = _regulator_get_current_limit(rdev);
1138 if (ret > 0)
1139 count += scnprintf(buf + count, len - count,
1140 "at %d mA ", ret / 1000);
1141 }
1142
1143 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144 count += scnprintf(buf + count, len - count, "fast ");
1145 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146 count += scnprintf(buf + count, len - count, "normal ");
1147 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148 count += scnprintf(buf + count, len - count, "idle ");
1149 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150 count += scnprintf(buf + count, len - count, "standby ");
1151
1152 if (!count)
1153 count = scnprintf(buf, len, "no parameters");
1154 else
1155 --count;
1156
1157 count += scnprintf(buf + count, len - count, ", %s",
1158 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1159
1160 rdev_dbg(rdev, "%s\n", buf);
1161}
1162#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1165
1166static void print_constraints(struct regulator_dev *rdev)
1167{
1168 struct regulation_constraints *constraints = rdev->constraints;
1169
1170 print_constraints_debug(rdev);
1171
1172 if ((constraints->min_uV != constraints->max_uV) &&
1173 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174 rdev_warn(rdev,
1175 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1176}
1177
1178static int machine_constraints_voltage(struct regulator_dev *rdev,
1179 struct regulation_constraints *constraints)
1180{
1181 const struct regulator_ops *ops = rdev->desc->ops;
1182 int ret;
1183
1184 /* do we need to apply the constraint voltage */
1185 if (rdev->constraints->apply_uV &&
1186 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187 int target_min, target_max;
1188 int current_uV = regulator_get_voltage_rdev(rdev);
1189
1190 if (current_uV == -ENOTRECOVERABLE) {
1191 /* This regulator can't be read and must be initialized */
1192 rdev_info(rdev, "Setting %d-%duV\n",
1193 rdev->constraints->min_uV,
1194 rdev->constraints->max_uV);
1195 _regulator_do_set_voltage(rdev,
1196 rdev->constraints->min_uV,
1197 rdev->constraints->max_uV);
1198 current_uV = regulator_get_voltage_rdev(rdev);
1199 }
1200
1201 if (current_uV < 0) {
1202 if (current_uV != -EPROBE_DEFER)
1203 rdev_err(rdev,
1204 "failed to get the current voltage: %pe\n",
1205 ERR_PTR(current_uV));
1206 return current_uV;
1207 }
1208
1209 /*
1210 * If we're below the minimum voltage move up to the
1211 * minimum voltage, if we're above the maximum voltage
1212 * then move down to the maximum.
1213 */
1214 target_min = current_uV;
1215 target_max = current_uV;
1216
1217 if (current_uV < rdev->constraints->min_uV) {
1218 target_min = rdev->constraints->min_uV;
1219 target_max = rdev->constraints->min_uV;
1220 }
1221
1222 if (current_uV > rdev->constraints->max_uV) {
1223 target_min = rdev->constraints->max_uV;
1224 target_max = rdev->constraints->max_uV;
1225 }
1226
1227 if (target_min != current_uV || target_max != current_uV) {
1228 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229 current_uV, target_min, target_max);
1230 ret = _regulator_do_set_voltage(
1231 rdev, target_min, target_max);
1232 if (ret < 0) {
1233 rdev_err(rdev,
1234 "failed to apply %d-%duV constraint: %pe\n",
1235 target_min, target_max, ERR_PTR(ret));
1236 return ret;
1237 }
1238 }
1239 }
1240
1241 /* constrain machine-level voltage specs to fit
1242 * the actual range supported by this regulator.
1243 */
1244 if (ops->list_voltage && rdev->desc->n_voltages) {
1245 int count = rdev->desc->n_voltages;
1246 int i;
1247 int min_uV = INT_MAX;
1248 int max_uV = INT_MIN;
1249 int cmin = constraints->min_uV;
1250 int cmax = constraints->max_uV;
1251
1252 /* it's safe to autoconfigure fixed-voltage supplies
1253 * and the constraints are used by list_voltage.
1254 */
1255 if (count == 1 && !cmin) {
1256 cmin = 1;
1257 cmax = INT_MAX;
1258 constraints->min_uV = cmin;
1259 constraints->max_uV = cmax;
1260 }
1261
1262 /* voltage constraints are optional */
1263 if ((cmin == 0) && (cmax == 0))
1264 return 0;
1265
1266 /* else require explicit machine-level constraints */
1267 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268 rdev_err(rdev, "invalid voltage constraints\n");
1269 return -EINVAL;
1270 }
1271
1272 /* no need to loop voltages if range is continuous */
1273 if (rdev->desc->continuous_voltage_range)
1274 return 0;
1275
1276 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277 for (i = 0; i < count; i++) {
1278 int value;
1279
1280 value = ops->list_voltage(rdev, i);
1281 if (value <= 0)
1282 continue;
1283
1284 /* maybe adjust [min_uV..max_uV] */
1285 if (value >= cmin && value < min_uV)
1286 min_uV = value;
1287 if (value <= cmax && value > max_uV)
1288 max_uV = value;
1289 }
1290
1291 /* final: [min_uV..max_uV] valid iff constraints valid */
1292 if (max_uV < min_uV) {
1293 rdev_err(rdev,
1294 "unsupportable voltage constraints %u-%uuV\n",
1295 min_uV, max_uV);
1296 return -EINVAL;
1297 }
1298
1299 /* use regulator's subset of machine constraints */
1300 if (constraints->min_uV < min_uV) {
1301 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302 constraints->min_uV, min_uV);
1303 constraints->min_uV = min_uV;
1304 }
1305 if (constraints->max_uV > max_uV) {
1306 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307 constraints->max_uV, max_uV);
1308 constraints->max_uV = max_uV;
1309 }
1310 }
1311
1312 return 0;
1313}
1314
1315static int machine_constraints_current(struct regulator_dev *rdev,
1316 struct regulation_constraints *constraints)
1317{
1318 const struct regulator_ops *ops = rdev->desc->ops;
1319 int ret;
1320
1321 if (!constraints->min_uA && !constraints->max_uA)
1322 return 0;
1323
1324 if (constraints->min_uA > constraints->max_uA) {
1325 rdev_err(rdev, "Invalid current constraints\n");
1326 return -EINVAL;
1327 }
1328
1329 if (!ops->set_current_limit || !ops->get_current_limit) {
1330 rdev_warn(rdev, "Operation of current configuration missing\n");
1331 return 0;
1332 }
1333
1334 /* Set regulator current in constraints range */
1335 ret = ops->set_current_limit(rdev, constraints->min_uA,
1336 constraints->max_uA);
1337 if (ret < 0) {
1338 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339 return ret;
1340 }
1341
1342 return 0;
1343}
1344
1345static int _regulator_do_enable(struct regulator_dev *rdev);
1346
1347static int notif_set_limit(struct regulator_dev *rdev,
1348 int (*set)(struct regulator_dev *, int, int, bool),
1349 int limit, int severity)
1350{
1351 bool enable;
1352
1353 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354 enable = false;
1355 limit = 0;
1356 } else {
1357 enable = true;
1358 }
1359
1360 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361 limit = 0;
1362
1363 return set(rdev, limit, severity, enable);
1364}
1365
1366static int handle_notify_limits(struct regulator_dev *rdev,
1367 int (*set)(struct regulator_dev *, int, int, bool),
1368 struct notification_limit *limits)
1369{
1370 int ret = 0;
1371
1372 if (!set)
1373 return -EOPNOTSUPP;
1374
1375 if (limits->prot)
1376 ret = notif_set_limit(rdev, set, limits->prot,
1377 REGULATOR_SEVERITY_PROT);
1378 if (ret)
1379 return ret;
1380
1381 if (limits->err)
1382 ret = notif_set_limit(rdev, set, limits->err,
1383 REGULATOR_SEVERITY_ERR);
1384 if (ret)
1385 return ret;
1386
1387 if (limits->warn)
1388 ret = notif_set_limit(rdev, set, limits->warn,
1389 REGULATOR_SEVERITY_WARN);
1390
1391 return ret;
1392}
1393/**
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1396 *
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401 * set_mode.
1402 *
1403 * Return: 0 on success or a negative error number on failure.
1404 */
1405static int set_machine_constraints(struct regulator_dev *rdev)
1406{
1407 int ret = 0;
1408 const struct regulator_ops *ops = rdev->desc->ops;
1409
1410 ret = machine_constraints_voltage(rdev, rdev->constraints);
1411 if (ret != 0)
1412 return ret;
1413
1414 ret = machine_constraints_current(rdev, rdev->constraints);
1415 if (ret != 0)
1416 return ret;
1417
1418 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419 ret = ops->set_input_current_limit(rdev,
1420 rdev->constraints->ilim_uA);
1421 if (ret < 0) {
1422 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423 return ret;
1424 }
1425 }
1426
1427 /* do we need to setup our suspend state */
1428 if (rdev->constraints->initial_state) {
1429 ret = suspend_set_initial_state(rdev);
1430 if (ret < 0) {
1431 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432 return ret;
1433 }
1434 }
1435
1436 if (rdev->constraints->initial_mode) {
1437 if (!ops->set_mode) {
1438 rdev_err(rdev, "no set_mode operation\n");
1439 return -EINVAL;
1440 }
1441
1442 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443 if (ret < 0) {
1444 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445 return ret;
1446 }
1447 } else if (rdev->constraints->system_load) {
1448 /*
1449 * We'll only apply the initial system load if an
1450 * initial mode wasn't specified.
1451 */
1452 drms_uA_update(rdev);
1453 }
1454
1455 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456 && ops->set_ramp_delay) {
1457 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458 if (ret < 0) {
1459 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460 return ret;
1461 }
1462 }
1463
1464 if (rdev->constraints->pull_down && ops->set_pull_down) {
1465 ret = ops->set_pull_down(rdev);
1466 if (ret < 0) {
1467 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468 return ret;
1469 }
1470 }
1471
1472 if (rdev->constraints->soft_start && ops->set_soft_start) {
1473 ret = ops->set_soft_start(rdev);
1474 if (ret < 0) {
1475 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476 return ret;
1477 }
1478 }
1479
1480 /*
1481 * Existing logic does not warn if over_current_protection is given as
1482 * a constraint but driver does not support that. I think we should
1483 * warn about this type of issues as it is possible someone changes
1484 * PMIC on board to another type - and the another PMIC's driver does
1485 * not support setting protection. Board composer may happily believe
1486 * the DT limits are respected - especially if the new PMIC HW also
1487 * supports protection but the driver does not. I won't change the logic
1488 * without hearing more experienced opinion on this though.
1489 *
1490 * If warning is seen as a good idea then we can merge handling the
1491 * over-curret protection and detection and get rid of this special
1492 * handling.
1493 */
1494 if (rdev->constraints->over_current_protection
1495 && ops->set_over_current_protection) {
1496 int lim = rdev->constraints->over_curr_limits.prot;
1497
1498 ret = ops->set_over_current_protection(rdev, lim,
1499 REGULATOR_SEVERITY_PROT,
1500 true);
1501 if (ret < 0) {
1502 rdev_err(rdev, "failed to set over current protection: %pe\n",
1503 ERR_PTR(ret));
1504 return ret;
1505 }
1506 }
1507
1508 if (rdev->constraints->over_current_detection)
1509 ret = handle_notify_limits(rdev,
1510 ops->set_over_current_protection,
1511 &rdev->constraints->over_curr_limits);
1512 if (ret) {
1513 if (ret != -EOPNOTSUPP) {
1514 rdev_err(rdev, "failed to set over current limits: %pe\n",
1515 ERR_PTR(ret));
1516 return ret;
1517 }
1518 rdev_warn(rdev,
1519 "IC does not support requested over-current limits\n");
1520 }
1521
1522 if (rdev->constraints->over_voltage_detection)
1523 ret = handle_notify_limits(rdev,
1524 ops->set_over_voltage_protection,
1525 &rdev->constraints->over_voltage_limits);
1526 if (ret) {
1527 if (ret != -EOPNOTSUPP) {
1528 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529 ERR_PTR(ret));
1530 return ret;
1531 }
1532 rdev_warn(rdev,
1533 "IC does not support requested over voltage limits\n");
1534 }
1535
1536 if (rdev->constraints->under_voltage_detection)
1537 ret = handle_notify_limits(rdev,
1538 ops->set_under_voltage_protection,
1539 &rdev->constraints->under_voltage_limits);
1540 if (ret) {
1541 if (ret != -EOPNOTSUPP) {
1542 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543 ERR_PTR(ret));
1544 return ret;
1545 }
1546 rdev_warn(rdev,
1547 "IC does not support requested under voltage limits\n");
1548 }
1549
1550 if (rdev->constraints->over_temp_detection)
1551 ret = handle_notify_limits(rdev,
1552 ops->set_thermal_protection,
1553 &rdev->constraints->temp_limits);
1554 if (ret) {
1555 if (ret != -EOPNOTSUPP) {
1556 rdev_err(rdev, "failed to set temperature limits %pe\n",
1557 ERR_PTR(ret));
1558 return ret;
1559 }
1560 rdev_warn(rdev,
1561 "IC does not support requested temperature limits\n");
1562 }
1563
1564 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565 bool ad_state = (rdev->constraints->active_discharge ==
1566 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1567
1568 ret = ops->set_active_discharge(rdev, ad_state);
1569 if (ret < 0) {
1570 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571 return ret;
1572 }
1573 }
1574
1575 /*
1576 * If there is no mechanism for controlling the regulator then
1577 * flag it as always_on so we don't end up duplicating checks
1578 * for this so much. Note that we could control the state of
1579 * a supply to control the output on a regulator that has no
1580 * direct control.
1581 */
1582 if (!rdev->ena_pin && !ops->enable) {
1583 if (rdev->supply_name && !rdev->supply)
1584 return -EPROBE_DEFER;
1585
1586 if (rdev->supply)
1587 rdev->constraints->always_on =
1588 rdev->supply->rdev->constraints->always_on;
1589 else
1590 rdev->constraints->always_on = true;
1591 }
1592
1593 /* If the constraints say the regulator should be on at this point
1594 * and we have control then make sure it is enabled.
1595 */
1596 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597 /* If we want to enable this regulator, make sure that we know
1598 * the supplying regulator.
1599 */
1600 if (rdev->supply_name && !rdev->supply)
1601 return -EPROBE_DEFER;
1602
1603 /* If supplying regulator has already been enabled,
1604 * it's not intended to have use_count increment
1605 * when rdev is only boot-on.
1606 */
1607 if (rdev->supply &&
1608 (rdev->constraints->always_on ||
1609 !regulator_is_enabled(rdev->supply))) {
1610 ret = regulator_enable(rdev->supply);
1611 if (ret < 0) {
1612 _regulator_put(rdev->supply);
1613 rdev->supply = NULL;
1614 return ret;
1615 }
1616 }
1617
1618 ret = _regulator_do_enable(rdev);
1619 if (ret < 0 && ret != -EINVAL) {
1620 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621 return ret;
1622 }
1623
1624 if (rdev->constraints->always_on)
1625 rdev->use_count++;
1626 } else if (rdev->desc->off_on_delay) {
1627 rdev->last_off = ktime_get();
1628 }
1629
1630 print_constraints(rdev);
1631 return 0;
1632}
1633
1634/**
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1638 *
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1642 *
1643 * Return: 0 on success or a negative error number on failure.
1644 */
1645static int set_supply(struct regulator_dev *rdev,
1646 struct regulator_dev *supply_rdev)
1647{
1648 int err;
1649
1650 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1651
1652 if (!try_module_get(supply_rdev->owner))
1653 return -ENODEV;
1654
1655 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656 if (rdev->supply == NULL) {
1657 module_put(supply_rdev->owner);
1658 err = -ENOMEM;
1659 return err;
1660 }
1661 supply_rdev->open_count++;
1662
1663 return 0;
1664}
1665
1666/**
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev: regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply: symbolic name for supply
1671 *
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices. Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1676 *
1677 * Return: 0 on success or a negative error number on failure.
1678 */
1679static int set_consumer_device_supply(struct regulator_dev *rdev,
1680 const char *consumer_dev_name,
1681 const char *supply)
1682{
1683 struct regulator_map *node, *new_node;
1684 int has_dev;
1685
1686 if (supply == NULL)
1687 return -EINVAL;
1688
1689 if (consumer_dev_name != NULL)
1690 has_dev = 1;
1691 else
1692 has_dev = 0;
1693
1694 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695 if (new_node == NULL)
1696 return -ENOMEM;
1697
1698 new_node->regulator = rdev;
1699 new_node->supply = supply;
1700
1701 if (has_dev) {
1702 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703 if (new_node->dev_name == NULL) {
1704 kfree(new_node);
1705 return -ENOMEM;
1706 }
1707 }
1708
1709 mutex_lock(®ulator_list_mutex);
1710 list_for_each_entry(node, ®ulator_map_list, list) {
1711 if (node->dev_name && consumer_dev_name) {
1712 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713 continue;
1714 } else if (node->dev_name || consumer_dev_name) {
1715 continue;
1716 }
1717
1718 if (strcmp(node->supply, supply) != 0)
1719 continue;
1720
1721 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722 consumer_dev_name,
1723 dev_name(&node->regulator->dev),
1724 node->regulator->desc->name,
1725 supply,
1726 dev_name(&rdev->dev), rdev_get_name(rdev));
1727 goto fail;
1728 }
1729
1730 list_add(&new_node->list, ®ulator_map_list);
1731 mutex_unlock(®ulator_list_mutex);
1732
1733 return 0;
1734
1735fail:
1736 mutex_unlock(®ulator_list_mutex);
1737 kfree(new_node->dev_name);
1738 kfree(new_node);
1739 return -EBUSY;
1740}
1741
1742static void unset_regulator_supplies(struct regulator_dev *rdev)
1743{
1744 struct regulator_map *node, *n;
1745
1746 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1747 if (rdev == node->regulator) {
1748 list_del(&node->list);
1749 kfree(node->dev_name);
1750 kfree(node);
1751 }
1752 }
1753}
1754
1755#ifdef CONFIG_DEBUG_FS
1756static ssize_t constraint_flags_read_file(struct file *file,
1757 char __user *user_buf,
1758 size_t count, loff_t *ppos)
1759{
1760 const struct regulator *regulator = file->private_data;
1761 const struct regulation_constraints *c = regulator->rdev->constraints;
1762 char *buf;
1763 ssize_t ret;
1764
1765 if (!c)
1766 return 0;
1767
1768 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769 if (!buf)
1770 return -ENOMEM;
1771
1772 ret = snprintf(buf, PAGE_SIZE,
1773 "always_on: %u\n"
1774 "boot_on: %u\n"
1775 "apply_uV: %u\n"
1776 "ramp_disable: %u\n"
1777 "soft_start: %u\n"
1778 "pull_down: %u\n"
1779 "over_current_protection: %u\n",
1780 c->always_on,
1781 c->boot_on,
1782 c->apply_uV,
1783 c->ramp_disable,
1784 c->soft_start,
1785 c->pull_down,
1786 c->over_current_protection);
1787
1788 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789 kfree(buf);
1790
1791 return ret;
1792}
1793
1794#endif
1795
1796static const struct file_operations constraint_flags_fops = {
1797#ifdef CONFIG_DEBUG_FS
1798 .open = simple_open,
1799 .read = constraint_flags_read_file,
1800 .llseek = default_llseek,
1801#endif
1802};
1803
1804#define REG_STR_SIZE 64
1805
1806static struct regulator *create_regulator(struct regulator_dev *rdev,
1807 struct device *dev,
1808 const char *supply_name)
1809{
1810 struct regulator *regulator;
1811 int err = 0;
1812
1813 lockdep_assert_held_once(&rdev->mutex.base);
1814
1815 if (dev) {
1816 char buf[REG_STR_SIZE];
1817 int size;
1818
1819 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820 dev->kobj.name, supply_name);
1821 if (size >= REG_STR_SIZE)
1822 return NULL;
1823
1824 supply_name = kstrdup(buf, GFP_KERNEL);
1825 if (supply_name == NULL)
1826 return NULL;
1827 } else {
1828 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829 if (supply_name == NULL)
1830 return NULL;
1831 }
1832
1833 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834 if (regulator == NULL) {
1835 kfree_const(supply_name);
1836 return NULL;
1837 }
1838
1839 regulator->rdev = rdev;
1840 regulator->supply_name = supply_name;
1841
1842 list_add(®ulator->list, &rdev->consumer_list);
1843
1844 if (dev) {
1845 regulator->dev = dev;
1846
1847 /* Add a link to the device sysfs entry */
1848 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849 supply_name);
1850 if (err) {
1851 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852 dev->kobj.name, ERR_PTR(err));
1853 /* non-fatal */
1854 }
1855 }
1856
1857 if (err != -EEXIST) {
1858 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859 if (IS_ERR(regulator->debugfs)) {
1860 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861 regulator->debugfs = NULL;
1862 }
1863 }
1864
1865 if (regulator->debugfs) {
1866 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867 ®ulator->uA_load);
1868 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1870 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1872 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873 regulator, &constraint_flags_fops);
1874 }
1875
1876 /*
1877 * Check now if the regulator is an always on regulator - if
1878 * it is then we don't need to do nearly so much work for
1879 * enable/disable calls.
1880 */
1881 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882 _regulator_is_enabled(rdev))
1883 regulator->always_on = true;
1884
1885 return regulator;
1886}
1887
1888static int _regulator_get_enable_time(struct regulator_dev *rdev)
1889{
1890 if (rdev->constraints && rdev->constraints->enable_time)
1891 return rdev->constraints->enable_time;
1892 if (rdev->desc->ops->enable_time)
1893 return rdev->desc->ops->enable_time(rdev);
1894 return rdev->desc->enable_time;
1895}
1896
1897static struct regulator_supply_alias *regulator_find_supply_alias(
1898 struct device *dev, const char *supply)
1899{
1900 struct regulator_supply_alias *map;
1901
1902 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1903 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904 return map;
1905
1906 return NULL;
1907}
1908
1909static void regulator_supply_alias(struct device **dev, const char **supply)
1910{
1911 struct regulator_supply_alias *map;
1912
1913 map = regulator_find_supply_alias(*dev, *supply);
1914 if (map) {
1915 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916 *supply, map->alias_supply,
1917 dev_name(map->alias_dev));
1918 *dev = map->alias_dev;
1919 *supply = map->alias_supply;
1920 }
1921}
1922
1923static int regulator_match(struct device *dev, const void *data)
1924{
1925 struct regulator_dev *r = dev_to_rdev(dev);
1926
1927 return strcmp(rdev_get_name(r), data) == 0;
1928}
1929
1930static struct regulator_dev *regulator_lookup_by_name(const char *name)
1931{
1932 struct device *dev;
1933
1934 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1935
1936 return dev ? dev_to_rdev(dev) : NULL;
1937}
1938
1939/**
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1943 *
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1945 *
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951 * in the future.
1952 */
1953static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954 const char *supply)
1955{
1956 struct regulator_dev *r = NULL;
1957 struct regulator_map *map;
1958 const char *devname = NULL;
1959
1960 regulator_supply_alias(&dev, &supply);
1961
1962 /* first do a dt based lookup */
1963 if (dev_of_node(dev)) {
1964 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965 if (!IS_ERR(r))
1966 return r;
1967 if (PTR_ERR(r) == -EPROBE_DEFER)
1968 return r;
1969
1970 if (PTR_ERR(r) == -ENODEV)
1971 r = NULL;
1972 }
1973
1974 /* if not found, try doing it non-dt way */
1975 if (dev)
1976 devname = dev_name(dev);
1977
1978 mutex_lock(®ulator_list_mutex);
1979 list_for_each_entry(map, ®ulator_map_list, list) {
1980 /* If the mapping has a device set up it must match */
1981 if (map->dev_name &&
1982 (!devname || strcmp(map->dev_name, devname)))
1983 continue;
1984
1985 if (strcmp(map->supply, supply) == 0 &&
1986 get_device(&map->regulator->dev)) {
1987 r = map->regulator;
1988 break;
1989 }
1990 }
1991 mutex_unlock(®ulator_list_mutex);
1992
1993 if (r)
1994 return r;
1995
1996 r = regulator_lookup_by_name(supply);
1997 if (r)
1998 return r;
1999
2000 return ERR_PTR(-ENODEV);
2001}
2002
2003static int regulator_resolve_supply(struct regulator_dev *rdev)
2004{
2005 struct regulator_dev *r;
2006 struct device *dev = rdev->dev.parent;
2007 struct ww_acquire_ctx ww_ctx;
2008 int ret = 0;
2009
2010 /* No supply to resolve? */
2011 if (!rdev->supply_name)
2012 return 0;
2013
2014 /* Supply already resolved? (fast-path without locking contention) */
2015 if (rdev->supply)
2016 return 0;
2017
2018 r = regulator_dev_lookup(dev, rdev->supply_name);
2019 if (IS_ERR(r)) {
2020 ret = PTR_ERR(r);
2021
2022 /* Did the lookup explicitly defer for us? */
2023 if (ret == -EPROBE_DEFER)
2024 goto out;
2025
2026 if (have_full_constraints()) {
2027 r = dummy_regulator_rdev;
2028 get_device(&r->dev);
2029 } else {
2030 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031 rdev->supply_name, rdev->desc->name);
2032 ret = -EPROBE_DEFER;
2033 goto out;
2034 }
2035 }
2036
2037 if (r == rdev) {
2038 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039 rdev->desc->name, rdev->supply_name);
2040 if (!have_full_constraints()) {
2041 ret = -EINVAL;
2042 goto out;
2043 }
2044 r = dummy_regulator_rdev;
2045 get_device(&r->dev);
2046 }
2047
2048 /*
2049 * If the supply's parent device is not the same as the
2050 * regulator's parent device, then ensure the parent device
2051 * is bound before we resolve the supply, in case the parent
2052 * device get probe deferred and unregisters the supply.
2053 */
2054 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055 if (!device_is_bound(r->dev.parent)) {
2056 put_device(&r->dev);
2057 ret = -EPROBE_DEFER;
2058 goto out;
2059 }
2060 }
2061
2062 /* Recursively resolve the supply of the supply */
2063 ret = regulator_resolve_supply(r);
2064 if (ret < 0) {
2065 put_device(&r->dev);
2066 goto out;
2067 }
2068
2069 /*
2070 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071 * between rdev->supply null check and setting rdev->supply in
2072 * set_supply() from concurrent tasks.
2073 */
2074 regulator_lock_two(rdev, r, &ww_ctx);
2075
2076 /* Supply just resolved by a concurrent task? */
2077 if (rdev->supply) {
2078 regulator_unlock_two(rdev, r, &ww_ctx);
2079 put_device(&r->dev);
2080 goto out;
2081 }
2082
2083 ret = set_supply(rdev, r);
2084 if (ret < 0) {
2085 regulator_unlock_two(rdev, r, &ww_ctx);
2086 put_device(&r->dev);
2087 goto out;
2088 }
2089
2090 regulator_unlock_two(rdev, r, &ww_ctx);
2091
2092 /*
2093 * In set_machine_constraints() we may have turned this regulator on
2094 * but we couldn't propagate to the supply if it hadn't been resolved
2095 * yet. Do it now.
2096 */
2097 if (rdev->use_count) {
2098 ret = regulator_enable(rdev->supply);
2099 if (ret < 0) {
2100 _regulator_put(rdev->supply);
2101 rdev->supply = NULL;
2102 goto out;
2103 }
2104 }
2105
2106out:
2107 return ret;
2108}
2109
2110/* common pre-checks for regulator requests */
2111int _regulator_get_common_check(struct device *dev, const char *id,
2112 enum regulator_get_type get_type)
2113{
2114 if (get_type >= MAX_GET_TYPE) {
2115 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116 return -EINVAL;
2117 }
2118
2119 if (id == NULL) {
2120 dev_err(dev, "regulator request with no identifier\n");
2121 return -EINVAL;
2122 }
2123
2124 return 0;
2125}
2126
2127/**
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 * Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2134 *
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136 * encoded error.
2137 *
2138 * This function should be chained with *regulator_dev_lookup() functions.
2139 */
2140struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141 const char *id, enum regulator_get_type get_type)
2142{
2143 struct regulator *regulator;
2144 struct device_link *link;
2145 int ret;
2146
2147 if (IS_ERR(rdev)) {
2148 ret = PTR_ERR(rdev);
2149
2150 /*
2151 * If regulator_dev_lookup() fails with error other
2152 * than -ENODEV our job here is done, we simply return it.
2153 */
2154 if (ret != -ENODEV)
2155 return ERR_PTR(ret);
2156
2157 if (!have_full_constraints()) {
2158 dev_warn(dev,
2159 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160 return ERR_PTR(-ENODEV);
2161 }
2162
2163 switch (get_type) {
2164 case NORMAL_GET:
2165 /*
2166 * Assume that a regulator is physically present and
2167 * enabled, even if it isn't hooked up, and just
2168 * provide a dummy.
2169 */
2170 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171 rdev = dummy_regulator_rdev;
2172 get_device(&rdev->dev);
2173 break;
2174
2175 case EXCLUSIVE_GET:
2176 dev_warn(dev,
2177 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178 fallthrough;
2179
2180 default:
2181 return ERR_PTR(-ENODEV);
2182 }
2183 }
2184
2185 if (rdev->exclusive) {
2186 regulator = ERR_PTR(-EPERM);
2187 put_device(&rdev->dev);
2188 return regulator;
2189 }
2190
2191 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192 regulator = ERR_PTR(-EBUSY);
2193 put_device(&rdev->dev);
2194 return regulator;
2195 }
2196
2197 mutex_lock(®ulator_list_mutex);
2198 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199 mutex_unlock(®ulator_list_mutex);
2200
2201 if (ret != 0) {
2202 regulator = ERR_PTR(-EPROBE_DEFER);
2203 put_device(&rdev->dev);
2204 return regulator;
2205 }
2206
2207 ret = regulator_resolve_supply(rdev);
2208 if (ret < 0) {
2209 regulator = ERR_PTR(ret);
2210 put_device(&rdev->dev);
2211 return regulator;
2212 }
2213
2214 if (!try_module_get(rdev->owner)) {
2215 regulator = ERR_PTR(-EPROBE_DEFER);
2216 put_device(&rdev->dev);
2217 return regulator;
2218 }
2219
2220 regulator_lock(rdev);
2221 regulator = create_regulator(rdev, dev, id);
2222 regulator_unlock(rdev);
2223 if (regulator == NULL) {
2224 regulator = ERR_PTR(-ENOMEM);
2225 module_put(rdev->owner);
2226 put_device(&rdev->dev);
2227 return regulator;
2228 }
2229
2230 rdev->open_count++;
2231 if (get_type == EXCLUSIVE_GET) {
2232 rdev->exclusive = 1;
2233
2234 ret = _regulator_is_enabled(rdev);
2235 if (ret > 0) {
2236 rdev->use_count = 1;
2237 regulator->enable_count = 1;
2238
2239 /* Propagate the regulator state to its supply */
2240 if (rdev->supply) {
2241 ret = regulator_enable(rdev->supply);
2242 if (ret < 0) {
2243 destroy_regulator(regulator);
2244 module_put(rdev->owner);
2245 put_device(&rdev->dev);
2246 return ERR_PTR(ret);
2247 }
2248 }
2249 } else {
2250 rdev->use_count = 0;
2251 regulator->enable_count = 0;
2252 }
2253 }
2254
2255 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256 if (!IS_ERR_OR_NULL(link))
2257 regulator->device_link = true;
2258
2259 return regulator;
2260}
2261
2262/* Internal regulator request function */
2263struct regulator *_regulator_get(struct device *dev, const char *id,
2264 enum regulator_get_type get_type)
2265{
2266 struct regulator_dev *rdev;
2267 int ret;
2268
2269 ret = _regulator_get_common_check(dev, id, get_type);
2270 if (ret)
2271 return ERR_PTR(ret);
2272
2273 rdev = regulator_dev_lookup(dev, id);
2274 return _regulator_get_common(rdev, dev, id, get_type);
2275}
2276
2277/**
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2281 *
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged. It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2286 *
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 * producer, or an ERR_PTR() encoded negative error number.
2289 */
2290struct regulator *regulator_get(struct device *dev, const char *id)
2291{
2292 return _regulator_get(dev, id, NORMAL_GET);
2293}
2294EXPORT_SYMBOL_GPL(regulator_get);
2295
2296/**
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2300 *
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
2304 *
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2308 * controlling.
2309 *
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged. It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2314 *
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 * producer, or an ERR_PTR() encoded negative error number.
2317 */
2318struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2319{
2320 return _regulator_get(dev, id, EXCLUSIVE_GET);
2321}
2322EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2323
2324/**
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2328 *
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2334 * supplies.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged. It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 *
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 * producer, or an ERR_PTR() encoded negative error number.
2343 */
2344struct regulator *regulator_get_optional(struct device *dev, const char *id)
2345{
2346 return _regulator_get(dev, id, OPTIONAL_GET);
2347}
2348EXPORT_SYMBOL_GPL(regulator_get_optional);
2349
2350static void destroy_regulator(struct regulator *regulator)
2351{
2352 struct regulator_dev *rdev = regulator->rdev;
2353
2354 debugfs_remove_recursive(regulator->debugfs);
2355
2356 if (regulator->dev) {
2357 if (regulator->device_link)
2358 device_link_remove(regulator->dev, &rdev->dev);
2359
2360 /* remove any sysfs entries */
2361 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2362 }
2363
2364 regulator_lock(rdev);
2365 list_del(®ulator->list);
2366
2367 rdev->open_count--;
2368 rdev->exclusive = 0;
2369 regulator_unlock(rdev);
2370
2371 kfree_const(regulator->supply_name);
2372 kfree(regulator);
2373}
2374
2375/* regulator_list_mutex lock held by regulator_put() */
2376static void _regulator_put(struct regulator *regulator)
2377{
2378 struct regulator_dev *rdev;
2379
2380 if (IS_ERR_OR_NULL(regulator))
2381 return;
2382
2383 lockdep_assert_held_once(®ulator_list_mutex);
2384
2385 /* Docs say you must disable before calling regulator_put() */
2386 WARN_ON(regulator->enable_count);
2387
2388 rdev = regulator->rdev;
2389
2390 destroy_regulator(regulator);
2391
2392 module_put(rdev->owner);
2393 put_device(&rdev->dev);
2394}
2395
2396/**
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2399 *
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2402 * this function.
2403 */
2404void regulator_put(struct regulator *regulator)
2405{
2406 mutex_lock(®ulator_list_mutex);
2407 _regulator_put(regulator);
2408 mutex_unlock(®ulator_list_mutex);
2409}
2410EXPORT_SYMBOL_GPL(regulator_put);
2411
2412/**
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2414 *
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2419 * supply
2420 *
2421 * All lookups for id on dev will instead be conducted for alias_id on
2422 * alias_dev.
2423 *
2424 * Return: 0 on success or a negative error number on failure.
2425 */
2426int regulator_register_supply_alias(struct device *dev, const char *id,
2427 struct device *alias_dev,
2428 const char *alias_id)
2429{
2430 struct regulator_supply_alias *map;
2431
2432 map = regulator_find_supply_alias(dev, id);
2433 if (map)
2434 return -EEXIST;
2435
2436 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437 if (!map)
2438 return -ENOMEM;
2439
2440 map->src_dev = dev;
2441 map->src_supply = id;
2442 map->alias_dev = alias_dev;
2443 map->alias_supply = alias_id;
2444
2445 list_add(&map->list, ®ulator_supply_alias_list);
2446
2447 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448 id, dev_name(dev), alias_id, dev_name(alias_dev));
2449
2450 return 0;
2451}
2452EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2453
2454/**
2455 * regulator_unregister_supply_alias - Remove device alias
2456 *
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2459 *
2460 * Remove a lookup alias if one exists for id on dev.
2461 */
2462void regulator_unregister_supply_alias(struct device *dev, const char *id)
2463{
2464 struct regulator_supply_alias *map;
2465
2466 map = regulator_find_supply_alias(dev, id);
2467 if (map) {
2468 list_del(&map->list);
2469 kfree(map);
2470 }
2471}
2472EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2473
2474/**
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2476 *
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2481 * lookup the supply
2482 * @num_id: Number of aliases to register
2483 *
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation. If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2488 *
2489 * Return: 0 on success or a negative error number on failure.
2490 */
2491int regulator_bulk_register_supply_alias(struct device *dev,
2492 const char *const *id,
2493 struct device *alias_dev,
2494 const char *const *alias_id,
2495 int num_id)
2496{
2497 int i;
2498 int ret;
2499
2500 for (i = 0; i < num_id; ++i) {
2501 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502 alias_id[i]);
2503 if (ret < 0)
2504 goto err;
2505 }
2506
2507 return 0;
2508
2509err:
2510 dev_err(dev,
2511 "Failed to create supply alias %s,%s -> %s,%s\n",
2512 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2513
2514 while (--i >= 0)
2515 regulator_unregister_supply_alias(dev, id[i]);
2516
2517 return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2520
2521/**
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2523 *
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2527 *
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2530 */
2531void regulator_bulk_unregister_supply_alias(struct device *dev,
2532 const char *const *id,
2533 int num_id)
2534{
2535 int i;
2536
2537 for (i = 0; i < num_id; ++i)
2538 regulator_unregister_supply_alias(dev, id[i]);
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2541
2542
2543/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545 const struct regulator_config *config)
2546{
2547 struct regulator_enable_gpio *pin, *new_pin;
2548 struct gpio_desc *gpiod;
2549
2550 gpiod = config->ena_gpiod;
2551 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2552
2553 mutex_lock(®ulator_list_mutex);
2554
2555 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2556 if (pin->gpiod == gpiod) {
2557 rdev_dbg(rdev, "GPIO is already used\n");
2558 goto update_ena_gpio_to_rdev;
2559 }
2560 }
2561
2562 if (new_pin == NULL) {
2563 mutex_unlock(®ulator_list_mutex);
2564 return -ENOMEM;
2565 }
2566
2567 pin = new_pin;
2568 new_pin = NULL;
2569
2570 pin->gpiod = gpiod;
2571 list_add(&pin->list, ®ulator_ena_gpio_list);
2572
2573update_ena_gpio_to_rdev:
2574 pin->request_count++;
2575 rdev->ena_pin = pin;
2576
2577 mutex_unlock(®ulator_list_mutex);
2578 kfree(new_pin);
2579
2580 return 0;
2581}
2582
2583static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2584{
2585 struct regulator_enable_gpio *pin, *n;
2586
2587 if (!rdev->ena_pin)
2588 return;
2589
2590 /* Free the GPIO only in case of no use */
2591 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2592 if (pin != rdev->ena_pin)
2593 continue;
2594
2595 if (--pin->request_count)
2596 break;
2597
2598 gpiod_put(pin->gpiod);
2599 list_del(&pin->list);
2600 kfree(pin);
2601 break;
2602 }
2603
2604 rdev->ena_pin = NULL;
2605}
2606
2607/**
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2611 *
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2614 *
2615 * Return: 0 on success or a negative error number on failure.
2616 */
2617static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2618{
2619 struct regulator_enable_gpio *pin = rdev->ena_pin;
2620
2621 if (!pin)
2622 return -EINVAL;
2623
2624 if (enable) {
2625 /* Enable GPIO at initial use */
2626 if (pin->enable_count == 0)
2627 gpiod_set_value_cansleep(pin->gpiod, 1);
2628
2629 pin->enable_count++;
2630 } else {
2631 if (pin->enable_count > 1) {
2632 pin->enable_count--;
2633 return 0;
2634 }
2635
2636 /* Disable GPIO if not used */
2637 if (pin->enable_count <= 1) {
2638 gpiod_set_value_cansleep(pin->gpiod, 0);
2639 pin->enable_count = 0;
2640 }
2641 }
2642
2643 return 0;
2644}
2645
2646/**
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 * interpreted as "regulator is enabled"
2649 * @rdev: the regulator device to check
2650 *
2651 * Return:
2652 * * 1 - if status shows regulator is in enabled state
2653 * * 0 - if not enabled state
2654 * * Error Value - as received from ops->get_status()
2655 */
2656static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2657{
2658 int ret = rdev->desc->ops->get_status(rdev);
2659
2660 if (ret < 0) {
2661 rdev_info(rdev, "get_status returned error: %d\n", ret);
2662 return ret;
2663 }
2664
2665 switch (ret) {
2666 case REGULATOR_STATUS_OFF:
2667 case REGULATOR_STATUS_ERROR:
2668 case REGULATOR_STATUS_UNDEFINED:
2669 return 0;
2670 default:
2671 return 1;
2672 }
2673}
2674
2675static int _regulator_do_enable(struct regulator_dev *rdev)
2676{
2677 int ret, delay;
2678
2679 /* Query before enabling in case configuration dependent. */
2680 ret = _regulator_get_enable_time(rdev);
2681 if (ret >= 0) {
2682 delay = ret;
2683 } else {
2684 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685 delay = 0;
2686 }
2687
2688 trace_regulator_enable(rdev_get_name(rdev));
2689
2690 if (rdev->desc->off_on_delay) {
2691 /* if needed, keep a distance of off_on_delay from last time
2692 * this regulator was disabled.
2693 */
2694 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2696
2697 if (remaining > 0)
2698 fsleep(remaining);
2699 }
2700
2701 if (rdev->ena_pin) {
2702 if (!rdev->ena_gpio_state) {
2703 ret = regulator_ena_gpio_ctrl(rdev, true);
2704 if (ret < 0)
2705 return ret;
2706 rdev->ena_gpio_state = 1;
2707 }
2708 } else if (rdev->desc->ops->enable) {
2709 ret = rdev->desc->ops->enable(rdev);
2710 if (ret < 0)
2711 return ret;
2712 } else {
2713 return -EINVAL;
2714 }
2715
2716 /* Allow the regulator to ramp; it would be useful to extend
2717 * this for bulk operations so that the regulators can ramp
2718 * together.
2719 */
2720 trace_regulator_enable_delay(rdev_get_name(rdev));
2721
2722 /* If poll_enabled_time is set, poll upto the delay calculated
2723 * above, delaying poll_enabled_time uS to check if the regulator
2724 * actually got enabled.
2725 * If the regulator isn't enabled after our delay helper has expired,
2726 * return -ETIMEDOUT.
2727 */
2728 if (rdev->desc->poll_enabled_time) {
2729 int time_remaining = delay;
2730
2731 while (time_remaining > 0) {
2732 fsleep(rdev->desc->poll_enabled_time);
2733
2734 if (rdev->desc->ops->get_status) {
2735 ret = _regulator_check_status_enabled(rdev);
2736 if (ret < 0)
2737 return ret;
2738 else if (ret)
2739 break;
2740 } else if (rdev->desc->ops->is_enabled(rdev))
2741 break;
2742
2743 time_remaining -= rdev->desc->poll_enabled_time;
2744 }
2745
2746 if (time_remaining <= 0) {
2747 rdev_err(rdev, "Enabled check timed out\n");
2748 return -ETIMEDOUT;
2749 }
2750 } else {
2751 fsleep(delay);
2752 }
2753
2754 trace_regulator_enable_complete(rdev_get_name(rdev));
2755
2756 return 0;
2757}
2758
2759/**
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2762 *
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled. Explained in example with two consumers of the same
2766 * regulator:
2767 * consumer A: set_load(100); => total load = 0
2768 * consumer A: regulator_enable(); => total load = 100
2769 * consumer B: set_load(1000); => total load = 100
2770 * consumer B: regulator_enable(); => total load = 1100
2771 * consumer A: regulator_disable(); => total_load = 1000
2772 *
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2776 *
2777 * Return: 0 on success or negative error number on failure.
2778 */
2779static int _regulator_handle_consumer_enable(struct regulator *regulator)
2780{
2781 int ret;
2782 struct regulator_dev *rdev = regulator->rdev;
2783
2784 lockdep_assert_held_once(&rdev->mutex.base);
2785
2786 regulator->enable_count++;
2787 if (regulator->uA_load && regulator->enable_count == 1) {
2788 ret = drms_uA_update(rdev);
2789 if (ret)
2790 regulator->enable_count--;
2791 return ret;
2792 }
2793
2794 return 0;
2795}
2796
2797/**
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2800 *
2801 * The opposite of _regulator_handle_consumer_enable().
2802 *
2803 * Return: 0 on success or a negative error number on failure.
2804 */
2805static int _regulator_handle_consumer_disable(struct regulator *regulator)
2806{
2807 struct regulator_dev *rdev = regulator->rdev;
2808
2809 lockdep_assert_held_once(&rdev->mutex.base);
2810
2811 if (!regulator->enable_count) {
2812 rdev_err(rdev, "Underflow of regulator enable count\n");
2813 return -EINVAL;
2814 }
2815
2816 regulator->enable_count--;
2817 if (regulator->uA_load && regulator->enable_count == 0)
2818 return drms_uA_update(rdev);
2819
2820 return 0;
2821}
2822
2823/* locks held by regulator_enable() */
2824static int _regulator_enable(struct regulator *regulator)
2825{
2826 struct regulator_dev *rdev = regulator->rdev;
2827 int ret;
2828
2829 lockdep_assert_held_once(&rdev->mutex.base);
2830
2831 if (rdev->use_count == 0 && rdev->supply) {
2832 ret = _regulator_enable(rdev->supply);
2833 if (ret < 0)
2834 return ret;
2835 }
2836
2837 /* balance only if there are regulators coupled */
2838 if (rdev->coupling_desc.n_coupled > 1) {
2839 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840 if (ret < 0)
2841 goto err_disable_supply;
2842 }
2843
2844 ret = _regulator_handle_consumer_enable(regulator);
2845 if (ret < 0)
2846 goto err_disable_supply;
2847
2848 if (rdev->use_count == 0) {
2849 /*
2850 * The regulator may already be enabled if it's not switchable
2851 * or was left on
2852 */
2853 ret = _regulator_is_enabled(rdev);
2854 if (ret == -EINVAL || ret == 0) {
2855 if (!regulator_ops_is_valid(rdev,
2856 REGULATOR_CHANGE_STATUS)) {
2857 ret = -EPERM;
2858 goto err_consumer_disable;
2859 }
2860
2861 ret = _regulator_do_enable(rdev);
2862 if (ret < 0)
2863 goto err_consumer_disable;
2864
2865 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866 NULL);
2867 } else if (ret < 0) {
2868 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869 goto err_consumer_disable;
2870 }
2871 /* Fallthrough on positive return values - already enabled */
2872 }
2873
2874 if (regulator->enable_count == 1)
2875 rdev->use_count++;
2876
2877 return 0;
2878
2879err_consumer_disable:
2880 _regulator_handle_consumer_disable(regulator);
2881
2882err_disable_supply:
2883 if (rdev->use_count == 0 && rdev->supply)
2884 _regulator_disable(rdev->supply);
2885
2886 return ret;
2887}
2888
2889/**
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2892 *
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value. Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2896 *
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2899 *
2900 * Return: 0 on success or a negative error number on failure.
2901 */
2902int regulator_enable(struct regulator *regulator)
2903{
2904 struct regulator_dev *rdev = regulator->rdev;
2905 struct ww_acquire_ctx ww_ctx;
2906 int ret;
2907
2908 regulator_lock_dependent(rdev, &ww_ctx);
2909 ret = _regulator_enable(regulator);
2910 regulator_unlock_dependent(rdev, &ww_ctx);
2911
2912 return ret;
2913}
2914EXPORT_SYMBOL_GPL(regulator_enable);
2915
2916static int _regulator_do_disable(struct regulator_dev *rdev)
2917{
2918 int ret;
2919
2920 trace_regulator_disable(rdev_get_name(rdev));
2921
2922 if (rdev->ena_pin) {
2923 if (rdev->ena_gpio_state) {
2924 ret = regulator_ena_gpio_ctrl(rdev, false);
2925 if (ret < 0)
2926 return ret;
2927 rdev->ena_gpio_state = 0;
2928 }
2929
2930 } else if (rdev->desc->ops->disable) {
2931 ret = rdev->desc->ops->disable(rdev);
2932 if (ret != 0)
2933 return ret;
2934 }
2935
2936 if (rdev->desc->off_on_delay)
2937 rdev->last_off = ktime_get_boottime();
2938
2939 trace_regulator_disable_complete(rdev_get_name(rdev));
2940
2941 return 0;
2942}
2943
2944/* locks held by regulator_disable() */
2945static int _regulator_disable(struct regulator *regulator)
2946{
2947 struct regulator_dev *rdev = regulator->rdev;
2948 int ret = 0;
2949
2950 lockdep_assert_held_once(&rdev->mutex.base);
2951
2952 if (WARN(regulator->enable_count == 0,
2953 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954 return -EIO;
2955
2956 if (regulator->enable_count == 1) {
2957 /* disabling last enable_count from this regulator */
2958 /* are we the last user and permitted to disable ? */
2959 if (rdev->use_count == 1 &&
2960 (rdev->constraints && !rdev->constraints->always_on)) {
2961
2962 /* we are last user */
2963 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964 ret = _notifier_call_chain(rdev,
2965 REGULATOR_EVENT_PRE_DISABLE,
2966 NULL);
2967 if (ret & NOTIFY_STOP_MASK)
2968 return -EINVAL;
2969
2970 ret = _regulator_do_disable(rdev);
2971 if (ret < 0) {
2972 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973 _notifier_call_chain(rdev,
2974 REGULATOR_EVENT_ABORT_DISABLE,
2975 NULL);
2976 return ret;
2977 }
2978 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979 NULL);
2980 }
2981
2982 rdev->use_count = 0;
2983 } else if (rdev->use_count > 1) {
2984 rdev->use_count--;
2985 }
2986 }
2987
2988 if (ret == 0)
2989 ret = _regulator_handle_consumer_disable(regulator);
2990
2991 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2993
2994 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995 ret = _regulator_disable(rdev->supply);
2996
2997 return ret;
2998}
2999
3000/**
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3003 *
3004 * Disable the regulator output voltage or current. Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3007 *
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3011 *
3012 * Return: 0 on success or a negative error number on failure.
3013 */
3014int regulator_disable(struct regulator *regulator)
3015{
3016 struct regulator_dev *rdev = regulator->rdev;
3017 struct ww_acquire_ctx ww_ctx;
3018 int ret;
3019
3020 regulator_lock_dependent(rdev, &ww_ctx);
3021 ret = _regulator_disable(regulator);
3022 regulator_unlock_dependent(rdev, &ww_ctx);
3023
3024 return ret;
3025}
3026EXPORT_SYMBOL_GPL(regulator_disable);
3027
3028/* locks held by regulator_force_disable() */
3029static int _regulator_force_disable(struct regulator_dev *rdev)
3030{
3031 int ret = 0;
3032
3033 lockdep_assert_held_once(&rdev->mutex.base);
3034
3035 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036 REGULATOR_EVENT_PRE_DISABLE, NULL);
3037 if (ret & NOTIFY_STOP_MASK)
3038 return -EINVAL;
3039
3040 ret = _regulator_do_disable(rdev);
3041 if (ret < 0) {
3042 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045 return ret;
3046 }
3047
3048 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049 REGULATOR_EVENT_DISABLE, NULL);
3050
3051 return 0;
3052}
3053
3054/**
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3057 *
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3062 *
3063 * Return: 0 on success or a negative error number on failure.
3064 */
3065int regulator_force_disable(struct regulator *regulator)
3066{
3067 struct regulator_dev *rdev = regulator->rdev;
3068 struct ww_acquire_ctx ww_ctx;
3069 int ret;
3070
3071 regulator_lock_dependent(rdev, &ww_ctx);
3072
3073 ret = _regulator_force_disable(regulator->rdev);
3074
3075 if (rdev->coupling_desc.n_coupled > 1)
3076 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3077
3078 if (regulator->uA_load) {
3079 regulator->uA_load = 0;
3080 ret = drms_uA_update(rdev);
3081 }
3082
3083 if (rdev->use_count != 0 && rdev->supply)
3084 _regulator_disable(rdev->supply);
3085
3086 regulator_unlock_dependent(rdev, &ww_ctx);
3087
3088 return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_force_disable);
3091
3092static void regulator_disable_work(struct work_struct *work)
3093{
3094 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095 disable_work.work);
3096 struct ww_acquire_ctx ww_ctx;
3097 int count, i, ret;
3098 struct regulator *regulator;
3099 int total_count = 0;
3100
3101 regulator_lock_dependent(rdev, &ww_ctx);
3102
3103 /*
3104 * Workqueue functions queue the new work instance while the previous
3105 * work instance is being processed. Cancel the queued work instance
3106 * as the work instance under processing does the job of the queued
3107 * work instance.
3108 */
3109 cancel_delayed_work(&rdev->disable_work);
3110
3111 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112 count = regulator->deferred_disables;
3113
3114 if (!count)
3115 continue;
3116
3117 total_count += count;
3118 regulator->deferred_disables = 0;
3119
3120 for (i = 0; i < count; i++) {
3121 ret = _regulator_disable(regulator);
3122 if (ret != 0)
3123 rdev_err(rdev, "Deferred disable failed: %pe\n",
3124 ERR_PTR(ret));
3125 }
3126 }
3127 WARN_ON(!total_count);
3128
3129 if (rdev->coupling_desc.n_coupled > 1)
3130 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132 regulator_unlock_dependent(rdev, &ww_ctx);
3133}
3134
3135/**
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3139 *
3140 * Execute regulator_disable() on the regulator after a delay. This
3141 * is intended for use with devices that require some time to quiesce.
3142 *
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3146 *
3147 * Return: 0 on success or a negative error number on failure.
3148 */
3149int regulator_disable_deferred(struct regulator *regulator, int ms)
3150{
3151 struct regulator_dev *rdev = regulator->rdev;
3152
3153 if (!ms)
3154 return regulator_disable(regulator);
3155
3156 regulator_lock(rdev);
3157 regulator->deferred_disables++;
3158 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159 msecs_to_jiffies(ms));
3160 regulator_unlock(rdev);
3161
3162 return 0;
3163}
3164EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3165
3166static int _regulator_is_enabled(struct regulator_dev *rdev)
3167{
3168 /* A GPIO control always takes precedence */
3169 if (rdev->ena_pin)
3170 return rdev->ena_gpio_state;
3171
3172 /* If we don't know then assume that the regulator is always on */
3173 if (!rdev->desc->ops->is_enabled)
3174 return 1;
3175
3176 return rdev->desc->ops->is_enabled(rdev);
3177}
3178
3179static int _regulator_list_voltage(struct regulator_dev *rdev,
3180 unsigned selector, int lock)
3181{
3182 const struct regulator_ops *ops = rdev->desc->ops;
3183 int ret;
3184
3185 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186 return rdev->desc->fixed_uV;
3187
3188 if (ops->list_voltage) {
3189 if (selector >= rdev->desc->n_voltages)
3190 return -EINVAL;
3191 if (selector < rdev->desc->linear_min_sel)
3192 return 0;
3193 if (lock)
3194 regulator_lock(rdev);
3195 ret = ops->list_voltage(rdev, selector);
3196 if (lock)
3197 regulator_unlock(rdev);
3198 } else if (rdev->is_switch && rdev->supply) {
3199 ret = _regulator_list_voltage(rdev->supply->rdev,
3200 selector, lock);
3201 } else {
3202 return -EINVAL;
3203 }
3204
3205 if (ret > 0) {
3206 if (ret < rdev->constraints->min_uV)
3207 ret = 0;
3208 else if (ret > rdev->constraints->max_uV)
3209 ret = 0;
3210 }
3211
3212 return ret;
3213}
3214
3215/**
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3218 *
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3222 *
3223 * Return: Positive if the regulator driver backing the source/client
3224 * has requested that the device be enabled, zero if it hasn't,
3225 * else a negative error number.
3226 */
3227int regulator_is_enabled(struct regulator *regulator)
3228{
3229 int ret;
3230
3231 if (regulator->always_on)
3232 return 1;
3233
3234 regulator_lock(regulator->rdev);
3235 ret = _regulator_is_enabled(regulator->rdev);
3236 regulator_unlock(regulator->rdev);
3237
3238 return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_is_enabled);
3241
3242/**
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3245 *
3246 * Return: Number of selectors for @regulator, or negative error number.
3247 *
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3250 */
3251int regulator_count_voltages(struct regulator *regulator)
3252{
3253 struct regulator_dev *rdev = regulator->rdev;
3254
3255 if (rdev->desc->n_voltages)
3256 return rdev->desc->n_voltages;
3257
3258 if (!rdev->is_switch || !rdev->supply)
3259 return -EINVAL;
3260
3261 return regulator_count_voltages(rdev->supply);
3262}
3263EXPORT_SYMBOL_GPL(regulator_count_voltages);
3264
3265/**
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3270 *
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 * 0 if @selector can't be used on this system, or a negative error
3273 * number on failure.
3274 */
3275int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3276{
3277 return _regulator_list_voltage(regulator->rdev, selector, 1);
3278}
3279EXPORT_SYMBOL_GPL(regulator_list_voltage);
3280
3281/**
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3284 *
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3287 */
3288struct regmap *regulator_get_regmap(struct regulator *regulator)
3289{
3290 struct regmap *map = regulator->rdev->regmap;
3291
3292 return map ? map : ERR_PTR(-EOPNOTSUPP);
3293}
3294EXPORT_SYMBOL_GPL(regulator_get_regmap);
3295
3296/**
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3301 *
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3305 * for example.
3306 *
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 * voltage selectors.
3309 *
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3312 */
3313int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314 unsigned *vsel_reg,
3315 unsigned *vsel_mask)
3316{
3317 struct regulator_dev *rdev = regulator->rdev;
3318 const struct regulator_ops *ops = rdev->desc->ops;
3319
3320 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321 return -EOPNOTSUPP;
3322
3323 *vsel_reg = rdev->desc->vsel_reg;
3324 *vsel_mask = rdev->desc->vsel_mask;
3325
3326 return 0;
3327}
3328EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3329
3330/**
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3334 *
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3338 *
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3341 * selectors.
3342 */
3343int regulator_list_hardware_vsel(struct regulator *regulator,
3344 unsigned selector)
3345{
3346 struct regulator_dev *rdev = regulator->rdev;
3347 const struct regulator_ops *ops = rdev->desc->ops;
3348
3349 if (selector >= rdev->desc->n_voltages)
3350 return -EINVAL;
3351 if (selector < rdev->desc->linear_min_sel)
3352 return 0;
3353 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354 return -EOPNOTSUPP;
3355
3356 return selector;
3357}
3358EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3359
3360/**
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3364 *
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3367 *
3368 * Return: 0 on success or a negative error number on failure.
3369 */
3370int regulator_hardware_enable(struct regulator *regulator, bool enable)
3371{
3372 struct regulator_dev *rdev = regulator->rdev;
3373 const struct regulator_ops *ops = rdev->desc->ops;
3374 int ret = -EOPNOTSUPP;
3375
3376 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377 return ret;
3378
3379 if (enable)
3380 ret = ops->enable(rdev);
3381 else
3382 ret = ops->disable(rdev);
3383
3384 return ret;
3385}
3386EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3387
3388/**
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3391 *
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 * or 0 if the regulator isn't a linear regulator.
3394 */
3395unsigned int regulator_get_linear_step(struct regulator *regulator)
3396{
3397 struct regulator_dev *rdev = regulator->rdev;
3398
3399 return rdev->desc->uV_step;
3400}
3401EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402
3403/**
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3405 *
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3409 *
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 * number if @regulator's voltage can't be changed and voltage readback
3412 * failed.
3413 */
3414int regulator_is_supported_voltage(struct regulator *regulator,
3415 int min_uV, int max_uV)
3416{
3417 struct regulator_dev *rdev = regulator->rdev;
3418 int i, voltages, ret;
3419
3420 /* If we can't change voltage check the current voltage */
3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422 ret = regulator_get_voltage(regulator);
3423 if (ret >= 0)
3424 return min_uV <= ret && ret <= max_uV;
3425 else
3426 return ret;
3427 }
3428
3429 /* Any voltage within constrains range is fine? */
3430 if (rdev->desc->continuous_voltage_range)
3431 return min_uV >= rdev->constraints->min_uV &&
3432 max_uV <= rdev->constraints->max_uV;
3433
3434 ret = regulator_count_voltages(regulator);
3435 if (ret < 0)
3436 return 0;
3437 voltages = ret;
3438
3439 for (i = 0; i < voltages; i++) {
3440 ret = regulator_list_voltage(regulator, i);
3441
3442 if (ret >= min_uV && ret <= max_uV)
3443 return 1;
3444 }
3445
3446 return 0;
3447}
3448EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449
3450static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451 int max_uV)
3452{
3453 const struct regulator_desc *desc = rdev->desc;
3454
3455 if (desc->ops->map_voltage)
3456 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457
3458 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460
3461 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463
3464 if (desc->ops->list_voltage ==
3465 regulator_list_voltage_pickable_linear_range)
3466 return regulator_map_voltage_pickable_linear_range(rdev,
3467 min_uV, max_uV);
3468
3469 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470}
3471
3472static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473 int min_uV, int max_uV,
3474 unsigned *selector)
3475{
3476 struct pre_voltage_change_data data;
3477 int ret;
3478
3479 data.old_uV = regulator_get_voltage_rdev(rdev);
3480 data.min_uV = min_uV;
3481 data.max_uV = max_uV;
3482 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483 &data);
3484 if (ret & NOTIFY_STOP_MASK)
3485 return -EINVAL;
3486
3487 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488 if (ret >= 0)
3489 return ret;
3490
3491 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492 (void *)data.old_uV);
3493
3494 return ret;
3495}
3496
3497static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498 int uV, unsigned selector)
3499{
3500 struct pre_voltage_change_data data;
3501 int ret;
3502
3503 data.old_uV = regulator_get_voltage_rdev(rdev);
3504 data.min_uV = uV;
3505 data.max_uV = uV;
3506 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507 &data);
3508 if (ret & NOTIFY_STOP_MASK)
3509 return -EINVAL;
3510
3511 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512 if (ret >= 0)
3513 return ret;
3514
3515 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516 (void *)data.old_uV);
3517
3518 return ret;
3519}
3520
3521static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522 int uV, int new_selector)
3523{
3524 const struct regulator_ops *ops = rdev->desc->ops;
3525 int diff, old_sel, curr_sel, ret;
3526
3527 /* Stepping is only needed if the regulator is enabled. */
3528 if (!_regulator_is_enabled(rdev))
3529 goto final_set;
3530
3531 if (!ops->get_voltage_sel)
3532 return -EINVAL;
3533
3534 old_sel = ops->get_voltage_sel(rdev);
3535 if (old_sel < 0)
3536 return old_sel;
3537
3538 diff = new_selector - old_sel;
3539 if (diff == 0)
3540 return 0; /* No change needed. */
3541
3542 if (diff > 0) {
3543 /* Stepping up. */
3544 for (curr_sel = old_sel + rdev->desc->vsel_step;
3545 curr_sel < new_selector;
3546 curr_sel += rdev->desc->vsel_step) {
3547 /*
3548 * Call the callback directly instead of using
3549 * _regulator_call_set_voltage_sel() as we don't
3550 * want to notify anyone yet. Same in the branch
3551 * below.
3552 */
3553 ret = ops->set_voltage_sel(rdev, curr_sel);
3554 if (ret)
3555 goto try_revert;
3556 }
3557 } else {
3558 /* Stepping down. */
3559 for (curr_sel = old_sel - rdev->desc->vsel_step;
3560 curr_sel > new_selector;
3561 curr_sel -= rdev->desc->vsel_step) {
3562 ret = ops->set_voltage_sel(rdev, curr_sel);
3563 if (ret)
3564 goto try_revert;
3565 }
3566 }
3567
3568final_set:
3569 /* The final selector will trigger the notifiers. */
3570 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571
3572try_revert:
3573 /*
3574 * At least try to return to the previous voltage if setting a new
3575 * one failed.
3576 */
3577 (void)ops->set_voltage_sel(rdev, old_sel);
3578 return ret;
3579}
3580
3581static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582 int old_uV, int new_uV)
3583{
3584 unsigned int ramp_delay = 0;
3585
3586 if (rdev->constraints->ramp_delay)
3587 ramp_delay = rdev->constraints->ramp_delay;
3588 else if (rdev->desc->ramp_delay)
3589 ramp_delay = rdev->desc->ramp_delay;
3590 else if (rdev->constraints->settling_time)
3591 return rdev->constraints->settling_time;
3592 else if (rdev->constraints->settling_time_up &&
3593 (new_uV > old_uV))
3594 return rdev->constraints->settling_time_up;
3595 else if (rdev->constraints->settling_time_down &&
3596 (new_uV < old_uV))
3597 return rdev->constraints->settling_time_down;
3598
3599 if (ramp_delay == 0)
3600 return 0;
3601
3602 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603}
3604
3605static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606 int min_uV, int max_uV)
3607{
3608 int ret;
3609 int delay = 0;
3610 int best_val = 0;
3611 unsigned int selector;
3612 int old_selector = -1;
3613 const struct regulator_ops *ops = rdev->desc->ops;
3614 int old_uV = regulator_get_voltage_rdev(rdev);
3615
3616 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617
3618 min_uV += rdev->constraints->uV_offset;
3619 max_uV += rdev->constraints->uV_offset;
3620
3621 /*
3622 * If we can't obtain the old selector there is not enough
3623 * info to call set_voltage_time_sel().
3624 */
3625 if (_regulator_is_enabled(rdev) &&
3626 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627 old_selector = ops->get_voltage_sel(rdev);
3628 if (old_selector < 0)
3629 return old_selector;
3630 }
3631
3632 if (ops->set_voltage) {
3633 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634 &selector);
3635
3636 if (ret >= 0) {
3637 if (ops->list_voltage)
3638 best_val = ops->list_voltage(rdev,
3639 selector);
3640 else
3641 best_val = regulator_get_voltage_rdev(rdev);
3642 }
3643
3644 } else if (ops->set_voltage_sel) {
3645 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646 if (ret >= 0) {
3647 best_val = ops->list_voltage(rdev, ret);
3648 if (min_uV <= best_val && max_uV >= best_val) {
3649 selector = ret;
3650 if (old_selector == selector)
3651 ret = 0;
3652 else if (rdev->desc->vsel_step)
3653 ret = _regulator_set_voltage_sel_step(
3654 rdev, best_val, selector);
3655 else
3656 ret = _regulator_call_set_voltage_sel(
3657 rdev, best_val, selector);
3658 } else {
3659 ret = -EINVAL;
3660 }
3661 }
3662 } else {
3663 ret = -EINVAL;
3664 }
3665
3666 if (ret)
3667 goto out;
3668
3669 if (ops->set_voltage_time_sel) {
3670 /*
3671 * Call set_voltage_time_sel if successfully obtained
3672 * old_selector
3673 */
3674 if (old_selector >= 0 && old_selector != selector)
3675 delay = ops->set_voltage_time_sel(rdev, old_selector,
3676 selector);
3677 } else {
3678 if (old_uV != best_val) {
3679 if (ops->set_voltage_time)
3680 delay = ops->set_voltage_time(rdev, old_uV,
3681 best_val);
3682 else
3683 delay = _regulator_set_voltage_time(rdev,
3684 old_uV,
3685 best_val);
3686 }
3687 }
3688
3689 if (delay < 0) {
3690 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691 delay = 0;
3692 }
3693
3694 /* Insert any necessary delays */
3695 fsleep(delay);
3696
3697 if (best_val >= 0) {
3698 unsigned long data = best_val;
3699
3700 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701 (void *)data);
3702 }
3703
3704out:
3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706
3707 return ret;
3708}
3709
3710static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711 int min_uV, int max_uV, suspend_state_t state)
3712{
3713 struct regulator_state *rstate;
3714 int uV, sel;
3715
3716 rstate = regulator_get_suspend_state(rdev, state);
3717 if (rstate == NULL)
3718 return -EINVAL;
3719
3720 if (min_uV < rstate->min_uV)
3721 min_uV = rstate->min_uV;
3722 if (max_uV > rstate->max_uV)
3723 max_uV = rstate->max_uV;
3724
3725 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726 if (sel < 0)
3727 return sel;
3728
3729 uV = rdev->desc->ops->list_voltage(rdev, sel);
3730 if (uV >= min_uV && uV <= max_uV)
3731 rstate->uV = uV;
3732
3733 return 0;
3734}
3735
3736static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737 int min_uV, int max_uV,
3738 suspend_state_t state)
3739{
3740 struct regulator_dev *rdev = regulator->rdev;
3741 struct regulator_voltage *voltage = ®ulator->voltage[state];
3742 int ret = 0;
3743 int old_min_uV, old_max_uV;
3744 int current_uV;
3745
3746 /* If we're setting the same range as last time the change
3747 * should be a noop (some cpufreq implementations use the same
3748 * voltage for multiple frequencies, for example).
3749 */
3750 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751 goto out;
3752
3753 /* If we're trying to set a range that overlaps the current voltage,
3754 * return successfully even though the regulator does not support
3755 * changing the voltage.
3756 */
3757 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758 current_uV = regulator_get_voltage_rdev(rdev);
3759 if (min_uV <= current_uV && current_uV <= max_uV) {
3760 voltage->min_uV = min_uV;
3761 voltage->max_uV = max_uV;
3762 goto out;
3763 }
3764 }
3765
3766 /* sanity check */
3767 if (!rdev->desc->ops->set_voltage &&
3768 !rdev->desc->ops->set_voltage_sel) {
3769 ret = -EINVAL;
3770 goto out;
3771 }
3772
3773 /* constraints check */
3774 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775 if (ret < 0)
3776 goto out;
3777
3778 /* restore original values in case of error */
3779 old_min_uV = voltage->min_uV;
3780 old_max_uV = voltage->max_uV;
3781 voltage->min_uV = min_uV;
3782 voltage->max_uV = max_uV;
3783
3784 /* for not coupled regulators this will just set the voltage */
3785 ret = regulator_balance_voltage(rdev, state);
3786 if (ret < 0) {
3787 voltage->min_uV = old_min_uV;
3788 voltage->max_uV = old_max_uV;
3789 }
3790
3791out:
3792 return ret;
3793}
3794
3795int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796 int max_uV, suspend_state_t state)
3797{
3798 int best_supply_uV = 0;
3799 int supply_change_uV = 0;
3800 int ret;
3801
3802 if (rdev->supply &&
3803 regulator_ops_is_valid(rdev->supply->rdev,
3804 REGULATOR_CHANGE_VOLTAGE) &&
3805 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806 rdev->desc->ops->get_voltage_sel))) {
3807 int current_supply_uV;
3808 int selector;
3809
3810 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811 if (selector < 0) {
3812 ret = selector;
3813 goto out;
3814 }
3815
3816 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817 if (best_supply_uV < 0) {
3818 ret = best_supply_uV;
3819 goto out;
3820 }
3821
3822 best_supply_uV += rdev->desc->min_dropout_uV;
3823
3824 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825 if (current_supply_uV < 0) {
3826 ret = current_supply_uV;
3827 goto out;
3828 }
3829
3830 supply_change_uV = best_supply_uV - current_supply_uV;
3831 }
3832
3833 if (supply_change_uV > 0) {
3834 ret = regulator_set_voltage_unlocked(rdev->supply,
3835 best_supply_uV, INT_MAX, state);
3836 if (ret) {
3837 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838 ERR_PTR(ret));
3839 goto out;
3840 }
3841 }
3842
3843 if (state == PM_SUSPEND_ON)
3844 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845 else
3846 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847 max_uV, state);
3848 if (ret < 0)
3849 goto out;
3850
3851 if (supply_change_uV < 0) {
3852 ret = regulator_set_voltage_unlocked(rdev->supply,
3853 best_supply_uV, INT_MAX, state);
3854 if (ret)
3855 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856 ERR_PTR(ret));
3857 /* No need to fail here */
3858 ret = 0;
3859 }
3860
3861out:
3862 return ret;
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865
3866static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867 int *current_uV, int *min_uV)
3868{
3869 struct regulation_constraints *constraints = rdev->constraints;
3870
3871 /* Limit voltage change only if necessary */
3872 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873 return 1;
3874
3875 if (*current_uV < 0) {
3876 *current_uV = regulator_get_voltage_rdev(rdev);
3877
3878 if (*current_uV < 0)
3879 return *current_uV;
3880 }
3881
3882 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883 return 1;
3884
3885 /* Clamp target voltage within the given step */
3886 if (*current_uV < *min_uV)
3887 *min_uV = min(*current_uV + constraints->max_uV_step,
3888 *min_uV);
3889 else
3890 *min_uV = max(*current_uV - constraints->max_uV_step,
3891 *min_uV);
3892
3893 return 0;
3894}
3895
3896static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897 int *current_uV,
3898 int *min_uV, int *max_uV,
3899 suspend_state_t state,
3900 int n_coupled)
3901{
3902 struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904 struct regulation_constraints *constraints = rdev->constraints;
3905 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906 int max_current_uV = 0, min_current_uV = INT_MAX;
3907 int highest_min_uV = 0, target_uV, possible_uV;
3908 int i, ret, max_spread;
3909 bool done;
3910
3911 *current_uV = -1;
3912
3913 /*
3914 * If there are no coupled regulators, simply set the voltage
3915 * demanded by consumers.
3916 */
3917 if (n_coupled == 1) {
3918 /*
3919 * If consumers don't provide any demands, set voltage
3920 * to min_uV
3921 */
3922 desired_min_uV = constraints->min_uV;
3923 desired_max_uV = constraints->max_uV;
3924
3925 ret = regulator_check_consumers(rdev,
3926 &desired_min_uV,
3927 &desired_max_uV, state);
3928 if (ret < 0)
3929 return ret;
3930
3931 done = true;
3932
3933 goto finish;
3934 }
3935
3936 /* Find highest min desired voltage */
3937 for (i = 0; i < n_coupled; i++) {
3938 int tmp_min = 0;
3939 int tmp_max = INT_MAX;
3940
3941 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3942
3943 ret = regulator_check_consumers(c_rdevs[i],
3944 &tmp_min,
3945 &tmp_max, state);
3946 if (ret < 0)
3947 return ret;
3948
3949 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950 if (ret < 0)
3951 return ret;
3952
3953 highest_min_uV = max(highest_min_uV, tmp_min);
3954
3955 if (i == 0) {
3956 desired_min_uV = tmp_min;
3957 desired_max_uV = tmp_max;
3958 }
3959 }
3960
3961 max_spread = constraints->max_spread[0];
3962
3963 /*
3964 * Let target_uV be equal to the desired one if possible.
3965 * If not, set it to minimum voltage, allowed by other coupled
3966 * regulators.
3967 */
3968 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3969
3970 /*
3971 * Find min and max voltages, which currently aren't violating
3972 * max_spread.
3973 */
3974 for (i = 1; i < n_coupled; i++) {
3975 int tmp_act;
3976
3977 if (!_regulator_is_enabled(c_rdevs[i]))
3978 continue;
3979
3980 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981 if (tmp_act < 0)
3982 return tmp_act;
3983
3984 min_current_uV = min(tmp_act, min_current_uV);
3985 max_current_uV = max(tmp_act, max_current_uV);
3986 }
3987
3988 /* There aren't any other regulators enabled */
3989 if (max_current_uV == 0) {
3990 possible_uV = target_uV;
3991 } else {
3992 /*
3993 * Correct target voltage, so as it currently isn't
3994 * violating max_spread
3995 */
3996 possible_uV = max(target_uV, max_current_uV - max_spread);
3997 possible_uV = min(possible_uV, min_current_uV + max_spread);
3998 }
3999
4000 if (possible_uV > desired_max_uV)
4001 return -EINVAL;
4002
4003 done = (possible_uV == target_uV);
4004 desired_min_uV = possible_uV;
4005
4006finish:
4007 /* Apply max_uV_step constraint if necessary */
4008 if (state == PM_SUSPEND_ON) {
4009 ret = regulator_limit_voltage_step(rdev, current_uV,
4010 &desired_min_uV);
4011 if (ret < 0)
4012 return ret;
4013
4014 if (ret == 0)
4015 done = false;
4016 }
4017
4018 /* Set current_uV if wasn't done earlier in the code and if necessary */
4019 if (n_coupled > 1 && *current_uV == -1) {
4020
4021 if (_regulator_is_enabled(rdev)) {
4022 ret = regulator_get_voltage_rdev(rdev);
4023 if (ret < 0)
4024 return ret;
4025
4026 *current_uV = ret;
4027 } else {
4028 *current_uV = desired_min_uV;
4029 }
4030 }
4031
4032 *min_uV = desired_min_uV;
4033 *max_uV = desired_max_uV;
4034
4035 return done;
4036}
4037
4038int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039 suspend_state_t state, bool skip_coupled)
4040{
4041 struct regulator_dev **c_rdevs;
4042 struct regulator_dev *best_rdev;
4043 struct coupling_desc *c_desc = &rdev->coupling_desc;
4044 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045 unsigned int delta, best_delta;
4046 unsigned long c_rdev_done = 0;
4047 bool best_c_rdev_done;
4048
4049 c_rdevs = c_desc->coupled_rdevs;
4050 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4051
4052 /*
4053 * Find the best possible voltage change on each loop. Leave the loop
4054 * if there isn't any possible change.
4055 */
4056 do {
4057 best_c_rdev_done = false;
4058 best_delta = 0;
4059 best_min_uV = 0;
4060 best_max_uV = 0;
4061 best_c_rdev = 0;
4062 best_rdev = NULL;
4063
4064 /*
4065 * Find highest difference between optimal voltage
4066 * and current voltage.
4067 */
4068 for (i = 0; i < n_coupled; i++) {
4069 /*
4070 * optimal_uV is the best voltage that can be set for
4071 * i-th regulator at the moment without violating
4072 * max_spread constraint in order to balance
4073 * the coupled voltages.
4074 */
4075 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4076
4077 if (test_bit(i, &c_rdev_done))
4078 continue;
4079
4080 ret = regulator_get_optimal_voltage(c_rdevs[i],
4081 ¤t_uV,
4082 &optimal_uV,
4083 &optimal_max_uV,
4084 state, n_coupled);
4085 if (ret < 0)
4086 goto out;
4087
4088 delta = abs(optimal_uV - current_uV);
4089
4090 if (delta && best_delta <= delta) {
4091 best_c_rdev_done = ret;
4092 best_delta = delta;
4093 best_rdev = c_rdevs[i];
4094 best_min_uV = optimal_uV;
4095 best_max_uV = optimal_max_uV;
4096 best_c_rdev = i;
4097 }
4098 }
4099
4100 /* Nothing to change, return successfully */
4101 if (!best_rdev) {
4102 ret = 0;
4103 goto out;
4104 }
4105
4106 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107 best_max_uV, state);
4108
4109 if (ret < 0)
4110 goto out;
4111
4112 if (best_c_rdev_done)
4113 set_bit(best_c_rdev, &c_rdev_done);
4114
4115 } while (n_coupled > 1);
4116
4117out:
4118 return ret;
4119}
4120
4121static int regulator_balance_voltage(struct regulator_dev *rdev,
4122 suspend_state_t state)
4123{
4124 struct coupling_desc *c_desc = &rdev->coupling_desc;
4125 struct regulator_coupler *coupler = c_desc->coupler;
4126 bool skip_coupled = false;
4127
4128 /*
4129 * If system is in a state other than PM_SUSPEND_ON, don't check
4130 * other coupled regulators.
4131 */
4132 if (state != PM_SUSPEND_ON)
4133 skip_coupled = true;
4134
4135 if (c_desc->n_resolved < c_desc->n_coupled) {
4136 rdev_err(rdev, "Not all coupled regulators registered\n");
4137 return -EPERM;
4138 }
4139
4140 /* Invoke custom balancer for customized couplers */
4141 if (coupler && coupler->balance_voltage)
4142 return coupler->balance_voltage(coupler, rdev, state);
4143
4144 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4145}
4146
4147/**
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4152 *
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4155 *
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4159 *
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4164 *
4165 * Return: 0 on success or a negative error number on failure.
4166 */
4167int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4168{
4169 struct ww_acquire_ctx ww_ctx;
4170 int ret;
4171
4172 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4173
4174 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175 PM_SUSPEND_ON);
4176
4177 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4178
4179 return ret;
4180}
4181EXPORT_SYMBOL_GPL(regulator_set_voltage);
4182
4183static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184 suspend_state_t state, bool en)
4185{
4186 struct regulator_state *rstate;
4187
4188 rstate = regulator_get_suspend_state(rdev, state);
4189 if (rstate == NULL)
4190 return -EINVAL;
4191
4192 if (!rstate->changeable)
4193 return -EPERM;
4194
4195 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4196
4197 return 0;
4198}
4199
4200int regulator_suspend_enable(struct regulator_dev *rdev,
4201 suspend_state_t state)
4202{
4203 return regulator_suspend_toggle(rdev, state, true);
4204}
4205EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4206
4207int regulator_suspend_disable(struct regulator_dev *rdev,
4208 suspend_state_t state)
4209{
4210 struct regulator *regulator;
4211 struct regulator_voltage *voltage;
4212
4213 /*
4214 * if any consumer wants this regulator device keeping on in
4215 * suspend states, don't set it as disabled.
4216 */
4217 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218 voltage = ®ulator->voltage[state];
4219 if (voltage->min_uV || voltage->max_uV)
4220 return 0;
4221 }
4222
4223 return regulator_suspend_toggle(rdev, state, false);
4224}
4225EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4226
4227static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228 int min_uV, int max_uV,
4229 suspend_state_t state)
4230{
4231 struct regulator_dev *rdev = regulator->rdev;
4232 struct regulator_state *rstate;
4233
4234 rstate = regulator_get_suspend_state(rdev, state);
4235 if (rstate == NULL)
4236 return -EINVAL;
4237
4238 if (rstate->min_uV == rstate->max_uV) {
4239 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240 return -EPERM;
4241 }
4242
4243 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4244}
4245
4246int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247 int max_uV, suspend_state_t state)
4248{
4249 struct ww_acquire_ctx ww_ctx;
4250 int ret;
4251
4252 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254 return -EINVAL;
4255
4256 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4257
4258 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259 max_uV, state);
4260
4261 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4262
4263 return ret;
4264}
4265EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4266
4267/**
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4272 *
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4275 * voltage.
4276 *
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4278 */
4279int regulator_set_voltage_time(struct regulator *regulator,
4280 int old_uV, int new_uV)
4281{
4282 struct regulator_dev *rdev = regulator->rdev;
4283 const struct regulator_ops *ops = rdev->desc->ops;
4284 int old_sel = -1;
4285 int new_sel = -1;
4286 int voltage;
4287 int i;
4288
4289 if (ops->set_voltage_time)
4290 return ops->set_voltage_time(rdev, old_uV, new_uV);
4291 else if (!ops->set_voltage_time_sel)
4292 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293
4294 /* Currently requires operations to do this */
4295 if (!ops->list_voltage || !rdev->desc->n_voltages)
4296 return -EINVAL;
4297
4298 for (i = 0; i < rdev->desc->n_voltages; i++) {
4299 /* We only look for exact voltage matches here */
4300 if (i < rdev->desc->linear_min_sel)
4301 continue;
4302
4303 if (old_sel >= 0 && new_sel >= 0)
4304 break;
4305
4306 voltage = regulator_list_voltage(regulator, i);
4307 if (voltage < 0)
4308 return -EINVAL;
4309 if (voltage == 0)
4310 continue;
4311 if (voltage == old_uV)
4312 old_sel = i;
4313 if (voltage == new_uV)
4314 new_sel = i;
4315 }
4316
4317 if (old_sel < 0 || new_sel < 0)
4318 return -EINVAL;
4319
4320 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321}
4322EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323
4324/**
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4329 *
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4332 *
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4335 *
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4337 */
4338int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339 unsigned int old_selector,
4340 unsigned int new_selector)
4341{
4342 int old_volt, new_volt;
4343
4344 /* sanity check */
4345 if (!rdev->desc->ops->list_voltage)
4346 return -EINVAL;
4347
4348 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4350
4351 if (rdev->desc->ops->set_voltage_time)
4352 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353 new_volt);
4354 else
4355 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4356}
4357EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4358
4359int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4360{
4361 int ret;
4362
4363 regulator_lock(rdev);
4364
4365 if (!rdev->desc->ops->set_voltage &&
4366 !rdev->desc->ops->set_voltage_sel) {
4367 ret = -EINVAL;
4368 goto out;
4369 }
4370
4371 /* balance only, if regulator is coupled */
4372 if (rdev->coupling_desc.n_coupled > 1)
4373 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374 else
4375 ret = -EOPNOTSUPP;
4376
4377out:
4378 regulator_unlock(rdev);
4379 return ret;
4380}
4381
4382/**
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4385 *
4386 * Re-apply the last configured voltage. This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4389 *
4390 * Return: 0 on success or a negative error number on failure.
4391 */
4392int regulator_sync_voltage(struct regulator *regulator)
4393{
4394 struct regulator_dev *rdev = regulator->rdev;
4395 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4396 int ret, min_uV, max_uV;
4397
4398 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399 return 0;
4400
4401 regulator_lock(rdev);
4402
4403 if (!rdev->desc->ops->set_voltage &&
4404 !rdev->desc->ops->set_voltage_sel) {
4405 ret = -EINVAL;
4406 goto out;
4407 }
4408
4409 /* This is only going to work if we've had a voltage configured. */
4410 if (!voltage->min_uV && !voltage->max_uV) {
4411 ret = -EINVAL;
4412 goto out;
4413 }
4414
4415 min_uV = voltage->min_uV;
4416 max_uV = voltage->max_uV;
4417
4418 /* This should be a paranoia check... */
4419 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420 if (ret < 0)
4421 goto out;
4422
4423 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424 if (ret < 0)
4425 goto out;
4426
4427 /* balance only, if regulator is coupled */
4428 if (rdev->coupling_desc.n_coupled > 1)
4429 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430 else
4431 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4432
4433out:
4434 regulator_unlock(rdev);
4435 return ret;
4436}
4437EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4438
4439int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4440{
4441 int sel, ret;
4442 bool bypassed;
4443
4444 if (rdev->desc->ops->get_bypass) {
4445 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446 if (ret < 0)
4447 return ret;
4448 if (bypassed) {
4449 /* if bypassed the regulator must have a supply */
4450 if (!rdev->supply) {
4451 rdev_err(rdev,
4452 "bypassed regulator has no supply!\n");
4453 return -EPROBE_DEFER;
4454 }
4455
4456 return regulator_get_voltage_rdev(rdev->supply->rdev);
4457 }
4458 }
4459
4460 if (rdev->desc->ops->get_voltage_sel) {
4461 sel = rdev->desc->ops->get_voltage_sel(rdev);
4462 if (sel < 0)
4463 return sel;
4464 ret = rdev->desc->ops->list_voltage(rdev, sel);
4465 } else if (rdev->desc->ops->get_voltage) {
4466 ret = rdev->desc->ops->get_voltage(rdev);
4467 } else if (rdev->desc->ops->list_voltage) {
4468 ret = rdev->desc->ops->list_voltage(rdev, 0);
4469 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470 ret = rdev->desc->fixed_uV;
4471 } else if (rdev->supply) {
4472 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473 } else if (rdev->supply_name) {
4474 return -EPROBE_DEFER;
4475 } else {
4476 return -EINVAL;
4477 }
4478
4479 if (ret < 0)
4480 return ret;
4481 return ret - rdev->constraints->uV_offset;
4482}
4483EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4484
4485/**
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4488 *
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4490 *
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4493 */
4494int regulator_get_voltage(struct regulator *regulator)
4495{
4496 struct ww_acquire_ctx ww_ctx;
4497 int ret;
4498
4499 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500 ret = regulator_get_voltage_rdev(regulator->rdev);
4501 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4502
4503 return ret;
4504}
4505EXPORT_SYMBOL_GPL(regulator_get_voltage);
4506
4507/**
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4512 *
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4515 *
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4519 *
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4522 *
4523 * Return: 0 on success or a negative error number on failure.
4524 */
4525int regulator_set_current_limit(struct regulator *regulator,
4526 int min_uA, int max_uA)
4527{
4528 struct regulator_dev *rdev = regulator->rdev;
4529 int ret;
4530
4531 regulator_lock(rdev);
4532
4533 /* sanity check */
4534 if (!rdev->desc->ops->set_current_limit) {
4535 ret = -EINVAL;
4536 goto out;
4537 }
4538
4539 /* constraints check */
4540 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541 if (ret < 0)
4542 goto out;
4543
4544 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545out:
4546 regulator_unlock(rdev);
4547 return ret;
4548}
4549EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550
4551static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552{
4553 /* sanity check */
4554 if (!rdev->desc->ops->get_current_limit)
4555 return -EINVAL;
4556
4557 return rdev->desc->ops->get_current_limit(rdev);
4558}
4559
4560static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561{
4562 int ret;
4563
4564 regulator_lock(rdev);
4565 ret = _regulator_get_current_limit_unlocked(rdev);
4566 regulator_unlock(rdev);
4567
4568 return ret;
4569}
4570
4571/**
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4574 *
4575 * Return: Current supplied by the specified current sink in uA,
4576 * or a negative error number on failure.
4577 *
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4580 */
4581int regulator_get_current_limit(struct regulator *regulator)
4582{
4583 return _regulator_get_current_limit(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4586
4587/**
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4591 *
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4594 *
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4597 *
4598 * Return: 0 on success or a negative error number on failure.
4599 */
4600int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4601{
4602 struct regulator_dev *rdev = regulator->rdev;
4603 int ret;
4604 int regulator_curr_mode;
4605
4606 regulator_lock(rdev);
4607
4608 /* sanity check */
4609 if (!rdev->desc->ops->set_mode) {
4610 ret = -EINVAL;
4611 goto out;
4612 }
4613
4614 /* return if the same mode is requested */
4615 if (rdev->desc->ops->get_mode) {
4616 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617 if (regulator_curr_mode == mode) {
4618 ret = 0;
4619 goto out;
4620 }
4621 }
4622
4623 /* constraints check */
4624 ret = regulator_mode_constrain(rdev, &mode);
4625 if (ret < 0)
4626 goto out;
4627
4628 ret = rdev->desc->ops->set_mode(rdev, mode);
4629out:
4630 regulator_unlock(rdev);
4631 return ret;
4632}
4633EXPORT_SYMBOL_GPL(regulator_set_mode);
4634
4635static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4636{
4637 /* sanity check */
4638 if (!rdev->desc->ops->get_mode)
4639 return -EINVAL;
4640
4641 return rdev->desc->ops->get_mode(rdev);
4642}
4643
4644static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4645{
4646 int ret;
4647
4648 regulator_lock(rdev);
4649 ret = _regulator_get_mode_unlocked(rdev);
4650 regulator_unlock(rdev);
4651
4652 return ret;
4653}
4654
4655/**
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4658 *
4659 * Get the current regulator operating mode.
4660 *
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 * or a negative error number on failure.
4663 */
4664unsigned int regulator_get_mode(struct regulator *regulator)
4665{
4666 return _regulator_get_mode(regulator->rdev);
4667}
4668EXPORT_SYMBOL_GPL(regulator_get_mode);
4669
4670static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4671{
4672 int ret = 0;
4673
4674 if (rdev->use_cached_err) {
4675 spin_lock(&rdev->err_lock);
4676 ret = rdev->cached_err;
4677 spin_unlock(&rdev->err_lock);
4678 }
4679 return ret;
4680}
4681
4682static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683 unsigned int *flags)
4684{
4685 int cached_flags, ret = 0;
4686
4687 regulator_lock(rdev);
4688
4689 cached_flags = rdev_get_cached_err_flags(rdev);
4690
4691 if (rdev->desc->ops->get_error_flags)
4692 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693 else if (!rdev->use_cached_err)
4694 ret = -EINVAL;
4695
4696 *flags |= cached_flags;
4697
4698 regulator_unlock(rdev);
4699
4700 return ret;
4701}
4702
4703/**
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4707 *
4708 * Get the current regulator error information.
4709 *
4710 * Return: 0 on success or a negative error number on failure.
4711 */
4712int regulator_get_error_flags(struct regulator *regulator,
4713 unsigned int *flags)
4714{
4715 return _regulator_get_error_flags(regulator->rdev, flags);
4716}
4717EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4718
4719/**
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4723 *
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4727 *
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4733 *
4734 * o Device is opened / closed.
4735 * o Device I/O is about to begin or has just finished.
4736 * o Device is idling in between work.
4737 *
4738 * This information is also exported via sysfs to userspace.
4739 *
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4742 *
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load. If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4747 *
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4750 *
4751 * Return: 0 on success or a negative error number on failure.
4752 */
4753int regulator_set_load(struct regulator *regulator, int uA_load)
4754{
4755 struct regulator_dev *rdev = regulator->rdev;
4756 int old_uA_load;
4757 int ret = 0;
4758
4759 regulator_lock(rdev);
4760 old_uA_load = regulator->uA_load;
4761 regulator->uA_load = uA_load;
4762 if (regulator->enable_count && old_uA_load != uA_load) {
4763 ret = drms_uA_update(rdev);
4764 if (ret < 0)
4765 regulator->uA_load = old_uA_load;
4766 }
4767 regulator_unlock(rdev);
4768
4769 return ret;
4770}
4771EXPORT_SYMBOL_GPL(regulator_set_load);
4772
4773/**
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4775 *
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4778 *
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this. Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4783 *
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 * a negative error number on failure.
4786 */
4787int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788{
4789 struct regulator_dev *rdev = regulator->rdev;
4790 const char *name = rdev_get_name(rdev);
4791 int ret = 0;
4792
4793 if (!rdev->desc->ops->set_bypass)
4794 return 0;
4795
4796 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797 return 0;
4798
4799 regulator_lock(rdev);
4800
4801 if (enable && !regulator->bypass) {
4802 rdev->bypass_count++;
4803
4804 if (rdev->bypass_count == rdev->open_count) {
4805 trace_regulator_bypass_enable(name);
4806
4807 ret = rdev->desc->ops->set_bypass(rdev, enable);
4808 if (ret != 0)
4809 rdev->bypass_count--;
4810 else
4811 trace_regulator_bypass_enable_complete(name);
4812 }
4813
4814 } else if (!enable && regulator->bypass) {
4815 rdev->bypass_count--;
4816
4817 if (rdev->bypass_count != rdev->open_count) {
4818 trace_regulator_bypass_disable(name);
4819
4820 ret = rdev->desc->ops->set_bypass(rdev, enable);
4821 if (ret != 0)
4822 rdev->bypass_count++;
4823 else
4824 trace_regulator_bypass_disable_complete(name);
4825 }
4826 }
4827
4828 if (ret == 0)
4829 regulator->bypass = enable;
4830
4831 regulator_unlock(rdev);
4832
4833 return ret;
4834}
4835EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836
4837/**
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4841 *
4842 * Register notifier block to receive regulator events.
4843 *
4844 * Return: 0 on success or a negative error number on failure.
4845 */
4846int regulator_register_notifier(struct regulator *regulator,
4847 struct notifier_block *nb)
4848{
4849 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4850 nb);
4851}
4852EXPORT_SYMBOL_GPL(regulator_register_notifier);
4853
4854/**
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4858 *
4859 * Unregister regulator event notifier block.
4860 *
4861 * Return: 0 on success or a negative error number on failure.
4862 */
4863int regulator_unregister_notifier(struct regulator *regulator,
4864 struct notifier_block *nb)
4865{
4866 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4867 nb);
4868}
4869EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4870
4871/* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4873 */
4874static int _notifier_call_chain(struct regulator_dev *rdev,
4875 unsigned long event, void *data)
4876{
4877 /* call rdev chain first */
4878 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4879
4880 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881 struct device *parent = rdev->dev.parent;
4882 const char *rname = rdev_get_name(rdev);
4883 char name[32];
4884
4885 /* Avoid duplicate debugfs directory names */
4886 if (parent && rname == rdev->desc->name) {
4887 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888 rname);
4889 rname = name;
4890 }
4891 reg_generate_netlink_event(rname, event);
4892 }
4893
4894 return ret;
4895}
4896
4897int _regulator_bulk_get(struct device *dev, int num_consumers,
4898 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4899{
4900 int i;
4901 int ret;
4902
4903 for (i = 0; i < num_consumers; i++)
4904 consumers[i].consumer = NULL;
4905
4906 for (i = 0; i < num_consumers; i++) {
4907 consumers[i].consumer = _regulator_get(dev,
4908 consumers[i].supply, get_type);
4909 if (IS_ERR(consumers[i].consumer)) {
4910 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911 "Failed to get supply '%s'\n",
4912 consumers[i].supply);
4913 consumers[i].consumer = NULL;
4914 goto err;
4915 }
4916
4917 if (consumers[i].init_load_uA > 0) {
4918 ret = regulator_set_load(consumers[i].consumer,
4919 consumers[i].init_load_uA);
4920 if (ret) {
4921 i++;
4922 goto err;
4923 }
4924 }
4925 }
4926
4927 return 0;
4928
4929err:
4930 while (--i >= 0)
4931 regulator_put(consumers[i].consumer);
4932
4933 return ret;
4934}
4935
4936/**
4937 * regulator_bulk_get - get multiple regulator consumers
4938 *
4939 * @dev: Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers: Configuration of consumers; clients are stored here.
4942 *
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation. If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4947 *
4948 * Return: 0 on success or a negative error number on failure.
4949 */
4950int regulator_bulk_get(struct device *dev, int num_consumers,
4951 struct regulator_bulk_data *consumers)
4952{
4953 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4954}
4955EXPORT_SYMBOL_GPL(regulator_bulk_get);
4956
4957static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4958{
4959 struct regulator_bulk_data *bulk = data;
4960
4961 bulk->ret = regulator_enable(bulk->consumer);
4962}
4963
4964/**
4965 * regulator_bulk_enable - enable multiple regulator consumers
4966 *
4967 * @num_consumers: Number of consumers
4968 * @consumers: Consumer data; clients are stored here.
4969 *
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call. If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4973 * return.
4974 *
4975 * Return: 0 on success or a negative error number on failure.
4976 */
4977int regulator_bulk_enable(int num_consumers,
4978 struct regulator_bulk_data *consumers)
4979{
4980 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981 int i;
4982 int ret = 0;
4983
4984 for (i = 0; i < num_consumers; i++) {
4985 async_schedule_domain(regulator_bulk_enable_async,
4986 &consumers[i], &async_domain);
4987 }
4988
4989 async_synchronize_full_domain(&async_domain);
4990
4991 /* If any consumer failed we need to unwind any that succeeded */
4992 for (i = 0; i < num_consumers; i++) {
4993 if (consumers[i].ret != 0) {
4994 ret = consumers[i].ret;
4995 goto err;
4996 }
4997 }
4998
4999 return 0;
5000
5001err:
5002 for (i = 0; i < num_consumers; i++) {
5003 if (consumers[i].ret < 0)
5004 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005 ERR_PTR(consumers[i].ret));
5006 else
5007 regulator_disable(consumers[i].consumer);
5008 }
5009
5010 return ret;
5011}
5012EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5013
5014/**
5015 * regulator_bulk_disable - disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers: Consumer data; clients are stored here.
5019 *
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call. If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5023 * return.
5024 *
5025 * Return: 0 on success or a negative error number on failure.
5026 */
5027int regulator_bulk_disable(int num_consumers,
5028 struct regulator_bulk_data *consumers)
5029{
5030 int i;
5031 int ret, r;
5032
5033 for (i = num_consumers - 1; i >= 0; --i) {
5034 ret = regulator_disable(consumers[i].consumer);
5035 if (ret != 0)
5036 goto err;
5037 }
5038
5039 return 0;
5040
5041err:
5042 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043 for (++i; i < num_consumers; ++i) {
5044 r = regulator_enable(consumers[i].consumer);
5045 if (r != 0)
5046 pr_err("Failed to re-enable %s: %pe\n",
5047 consumers[i].supply, ERR_PTR(r));
5048 }
5049
5050 return ret;
5051}
5052EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5053
5054/**
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5056 *
5057 * @num_consumers: Number of consumers
5058 * @consumers: Consumer data; clients are stored here.
5059 *
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5066 *
5067 * Return: 0 on success or a negative error number on failure.
5068 */
5069int regulator_bulk_force_disable(int num_consumers,
5070 struct regulator_bulk_data *consumers)
5071{
5072 int i;
5073 int ret = 0;
5074
5075 for (i = 0; i < num_consumers; i++) {
5076 consumers[i].ret =
5077 regulator_force_disable(consumers[i].consumer);
5078
5079 /* Store first error for reporting */
5080 if (consumers[i].ret && !ret)
5081 ret = consumers[i].ret;
5082 }
5083
5084 return ret;
5085}
5086EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5087
5088/**
5089 * regulator_bulk_free - free multiple regulator consumers
5090 *
5091 * @num_consumers: Number of consumers
5092 * @consumers: Consumer data; clients are stored here.
5093 *
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5096 */
5097void regulator_bulk_free(int num_consumers,
5098 struct regulator_bulk_data *consumers)
5099{
5100 int i;
5101
5102 for (i = 0; i < num_consumers; i++) {
5103 regulator_put(consumers[i].consumer);
5104 consumers[i].consumer = NULL;
5105 }
5106}
5107EXPORT_SYMBOL_GPL(regulator_bulk_free);
5108
5109/**
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5113 *
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5117 */
5118static void regulator_handle_critical(struct regulator_dev *rdev,
5119 unsigned long event)
5120{
5121 const char *reason = NULL;
5122
5123 if (!rdev->constraints->system_critical)
5124 return;
5125
5126 switch (event) {
5127 case REGULATOR_EVENT_UNDER_VOLTAGE:
5128 reason = "System critical regulator: voltage drop detected";
5129 break;
5130 case REGULATOR_EVENT_OVER_CURRENT:
5131 reason = "System critical regulator: over-current detected";
5132 break;
5133 case REGULATOR_EVENT_FAIL:
5134 reason = "System critical regulator: unknown error";
5135 }
5136
5137 if (!reason)
5138 return;
5139
5140 hw_protection_shutdown(reason,
5141 rdev->constraints->uv_less_critical_window_ms);
5142}
5143
5144/**
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5149 *
5150 * Called by regulator drivers to notify clients a regulator event has
5151 * occurred.
5152 *
5153 * Return: %NOTIFY_DONE.
5154 */
5155int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156 unsigned long event, void *data)
5157{
5158 regulator_handle_critical(rdev, event);
5159
5160 _notifier_call_chain(rdev, event, data);
5161 return NOTIFY_DONE;
5162
5163}
5164EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5165
5166/**
5167 * regulator_mode_to_status - convert a regulator mode into a status
5168 *
5169 * @mode: Mode to convert
5170 *
5171 * Convert a regulator mode into a status.
5172 *
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5174 */
5175int regulator_mode_to_status(unsigned int mode)
5176{
5177 switch (mode) {
5178 case REGULATOR_MODE_FAST:
5179 return REGULATOR_STATUS_FAST;
5180 case REGULATOR_MODE_NORMAL:
5181 return REGULATOR_STATUS_NORMAL;
5182 case REGULATOR_MODE_IDLE:
5183 return REGULATOR_STATUS_IDLE;
5184 case REGULATOR_MODE_STANDBY:
5185 return REGULATOR_STATUS_STANDBY;
5186 default:
5187 return REGULATOR_STATUS_UNDEFINED;
5188 }
5189}
5190EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5191
5192static struct attribute *regulator_dev_attrs[] = {
5193 &dev_attr_name.attr,
5194 &dev_attr_num_users.attr,
5195 &dev_attr_type.attr,
5196 &dev_attr_microvolts.attr,
5197 &dev_attr_microamps.attr,
5198 &dev_attr_opmode.attr,
5199 &dev_attr_state.attr,
5200 &dev_attr_status.attr,
5201 &dev_attr_bypass.attr,
5202 &dev_attr_requested_microamps.attr,
5203 &dev_attr_min_microvolts.attr,
5204 &dev_attr_max_microvolts.attr,
5205 &dev_attr_min_microamps.attr,
5206 &dev_attr_max_microamps.attr,
5207 &dev_attr_under_voltage.attr,
5208 &dev_attr_over_current.attr,
5209 &dev_attr_regulation_out.attr,
5210 &dev_attr_fail.attr,
5211 &dev_attr_over_temp.attr,
5212 &dev_attr_under_voltage_warn.attr,
5213 &dev_attr_over_current_warn.attr,
5214 &dev_attr_over_voltage_warn.attr,
5215 &dev_attr_over_temp_warn.attr,
5216 &dev_attr_suspend_standby_state.attr,
5217 &dev_attr_suspend_mem_state.attr,
5218 &dev_attr_suspend_disk_state.attr,
5219 &dev_attr_suspend_standby_microvolts.attr,
5220 &dev_attr_suspend_mem_microvolts.attr,
5221 &dev_attr_suspend_disk_microvolts.attr,
5222 &dev_attr_suspend_standby_mode.attr,
5223 &dev_attr_suspend_mem_mode.attr,
5224 &dev_attr_suspend_disk_mode.attr,
5225 NULL
5226};
5227
5228/*
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5231 */
5232static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233 struct attribute *attr, int idx)
5234{
5235 struct device *dev = kobj_to_dev(kobj);
5236 struct regulator_dev *rdev = dev_to_rdev(dev);
5237 const struct regulator_ops *ops = rdev->desc->ops;
5238 umode_t mode = attr->mode;
5239
5240 /* these three are always present */
5241 if (attr == &dev_attr_name.attr ||
5242 attr == &dev_attr_num_users.attr ||
5243 attr == &dev_attr_type.attr)
5244 return mode;
5245
5246 /* some attributes need specific methods to be displayed */
5247 if (attr == &dev_attr_microvolts.attr) {
5248 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252 return mode;
5253 return 0;
5254 }
5255
5256 if (attr == &dev_attr_microamps.attr)
5257 return ops->get_current_limit ? mode : 0;
5258
5259 if (attr == &dev_attr_opmode.attr)
5260 return ops->get_mode ? mode : 0;
5261
5262 if (attr == &dev_attr_state.attr)
5263 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5264
5265 if (attr == &dev_attr_status.attr)
5266 return ops->get_status ? mode : 0;
5267
5268 if (attr == &dev_attr_bypass.attr)
5269 return ops->get_bypass ? mode : 0;
5270
5271 if (attr == &dev_attr_under_voltage.attr ||
5272 attr == &dev_attr_over_current.attr ||
5273 attr == &dev_attr_regulation_out.attr ||
5274 attr == &dev_attr_fail.attr ||
5275 attr == &dev_attr_over_temp.attr ||
5276 attr == &dev_attr_under_voltage_warn.attr ||
5277 attr == &dev_attr_over_current_warn.attr ||
5278 attr == &dev_attr_over_voltage_warn.attr ||
5279 attr == &dev_attr_over_temp_warn.attr)
5280 return ops->get_error_flags ? mode : 0;
5281
5282 /* constraints need specific supporting methods */
5283 if (attr == &dev_attr_min_microvolts.attr ||
5284 attr == &dev_attr_max_microvolts.attr)
5285 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5286
5287 if (attr == &dev_attr_min_microamps.attr ||
5288 attr == &dev_attr_max_microamps.attr)
5289 return ops->set_current_limit ? mode : 0;
5290
5291 if (attr == &dev_attr_suspend_standby_state.attr ||
5292 attr == &dev_attr_suspend_mem_state.attr ||
5293 attr == &dev_attr_suspend_disk_state.attr)
5294 return mode;
5295
5296 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297 attr == &dev_attr_suspend_mem_microvolts.attr ||
5298 attr == &dev_attr_suspend_disk_microvolts.attr)
5299 return ops->set_suspend_voltage ? mode : 0;
5300
5301 if (attr == &dev_attr_suspend_standby_mode.attr ||
5302 attr == &dev_attr_suspend_mem_mode.attr ||
5303 attr == &dev_attr_suspend_disk_mode.attr)
5304 return ops->set_suspend_mode ? mode : 0;
5305
5306 return mode;
5307}
5308
5309static const struct attribute_group regulator_dev_group = {
5310 .attrs = regulator_dev_attrs,
5311 .is_visible = regulator_attr_is_visible,
5312};
5313
5314static const struct attribute_group *regulator_dev_groups[] = {
5315 ®ulator_dev_group,
5316 NULL
5317};
5318
5319static void regulator_dev_release(struct device *dev)
5320{
5321 struct regulator_dev *rdev = dev_get_drvdata(dev);
5322
5323 debugfs_remove_recursive(rdev->debugfs);
5324 kfree(rdev->constraints);
5325 of_node_put(rdev->dev.of_node);
5326 kfree(rdev);
5327}
5328
5329static void rdev_init_debugfs(struct regulator_dev *rdev)
5330{
5331 struct device *parent = rdev->dev.parent;
5332 const char *rname = rdev_get_name(rdev);
5333 char name[NAME_MAX];
5334
5335 /* Avoid duplicate debugfs directory names */
5336 if (parent && rname == rdev->desc->name) {
5337 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338 rname);
5339 rname = name;
5340 }
5341
5342 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343 if (IS_ERR(rdev->debugfs))
5344 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5345
5346 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347 &rdev->use_count);
5348 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349 &rdev->open_count);
5350 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351 &rdev->bypass_count);
5352}
5353
5354static int regulator_register_resolve_supply(struct device *dev, void *data)
5355{
5356 struct regulator_dev *rdev = dev_to_rdev(dev);
5357
5358 if (regulator_resolve_supply(rdev))
5359 rdev_dbg(rdev, "unable to resolve supply\n");
5360
5361 return 0;
5362}
5363
5364int regulator_coupler_register(struct regulator_coupler *coupler)
5365{
5366 mutex_lock(®ulator_list_mutex);
5367 list_add_tail(&coupler->list, ®ulator_coupler_list);
5368 mutex_unlock(®ulator_list_mutex);
5369
5370 return 0;
5371}
5372
5373static struct regulator_coupler *
5374regulator_find_coupler(struct regulator_dev *rdev)
5375{
5376 struct regulator_coupler *coupler;
5377 int err;
5378
5379 /*
5380 * Note that regulators are appended to the list and the generic
5381 * coupler is registered first, hence it will be attached at last
5382 * if nobody cared.
5383 */
5384 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5385 err = coupler->attach_regulator(coupler, rdev);
5386 if (!err) {
5387 if (!coupler->balance_voltage &&
5388 rdev->coupling_desc.n_coupled > 2)
5389 goto err_unsupported;
5390
5391 return coupler;
5392 }
5393
5394 if (err < 0)
5395 return ERR_PTR(err);
5396
5397 if (err == 1)
5398 continue;
5399
5400 break;
5401 }
5402
5403 return ERR_PTR(-EINVAL);
5404
5405err_unsupported:
5406 if (coupler->detach_regulator)
5407 coupler->detach_regulator(coupler, rdev);
5408
5409 rdev_err(rdev,
5410 "Voltage balancing for multiple regulator couples is unimplemented\n");
5411
5412 return ERR_PTR(-EPERM);
5413}
5414
5415static void regulator_resolve_coupling(struct regulator_dev *rdev)
5416{
5417 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418 struct coupling_desc *c_desc = &rdev->coupling_desc;
5419 int n_coupled = c_desc->n_coupled;
5420 struct regulator_dev *c_rdev;
5421 int i;
5422
5423 for (i = 1; i < n_coupled; i++) {
5424 /* already resolved */
5425 if (c_desc->coupled_rdevs[i])
5426 continue;
5427
5428 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5429
5430 if (!c_rdev)
5431 continue;
5432
5433 if (c_rdev->coupling_desc.coupler != coupler) {
5434 rdev_err(rdev, "coupler mismatch with %s\n",
5435 rdev_get_name(c_rdev));
5436 return;
5437 }
5438
5439 c_desc->coupled_rdevs[i] = c_rdev;
5440 c_desc->n_resolved++;
5441
5442 regulator_resolve_coupling(c_rdev);
5443 }
5444}
5445
5446static void regulator_remove_coupling(struct regulator_dev *rdev)
5447{
5448 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450 struct regulator_dev *__c_rdev, *c_rdev;
5451 unsigned int __n_coupled, n_coupled;
5452 int i, k;
5453 int err;
5454
5455 n_coupled = c_desc->n_coupled;
5456
5457 for (i = 1; i < n_coupled; i++) {
5458 c_rdev = c_desc->coupled_rdevs[i];
5459
5460 if (!c_rdev)
5461 continue;
5462
5463 regulator_lock(c_rdev);
5464
5465 __c_desc = &c_rdev->coupling_desc;
5466 __n_coupled = __c_desc->n_coupled;
5467
5468 for (k = 1; k < __n_coupled; k++) {
5469 __c_rdev = __c_desc->coupled_rdevs[k];
5470
5471 if (__c_rdev == rdev) {
5472 __c_desc->coupled_rdevs[k] = NULL;
5473 __c_desc->n_resolved--;
5474 break;
5475 }
5476 }
5477
5478 regulator_unlock(c_rdev);
5479
5480 c_desc->coupled_rdevs[i] = NULL;
5481 c_desc->n_resolved--;
5482 }
5483
5484 if (coupler && coupler->detach_regulator) {
5485 err = coupler->detach_regulator(coupler, rdev);
5486 if (err)
5487 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488 ERR_PTR(err));
5489 }
5490
5491 kfree(rdev->coupling_desc.coupled_rdevs);
5492 rdev->coupling_desc.coupled_rdevs = NULL;
5493}
5494
5495static int regulator_init_coupling(struct regulator_dev *rdev)
5496{
5497 struct regulator_dev **coupled;
5498 int err, n_phandles;
5499
5500 if (!IS_ENABLED(CONFIG_OF))
5501 n_phandles = 0;
5502 else
5503 n_phandles = of_get_n_coupled(rdev);
5504
5505 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506 if (!coupled)
5507 return -ENOMEM;
5508
5509 rdev->coupling_desc.coupled_rdevs = coupled;
5510
5511 /*
5512 * Every regulator should always have coupling descriptor filled with
5513 * at least pointer to itself.
5514 */
5515 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516 rdev->coupling_desc.n_coupled = n_phandles + 1;
5517 rdev->coupling_desc.n_resolved++;
5518
5519 /* regulator isn't coupled */
5520 if (n_phandles == 0)
5521 return 0;
5522
5523 if (!of_check_coupling_data(rdev))
5524 return -EPERM;
5525
5526 mutex_lock(®ulator_list_mutex);
5527 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528 mutex_unlock(®ulator_list_mutex);
5529
5530 if (IS_ERR(rdev->coupling_desc.coupler)) {
5531 err = PTR_ERR(rdev->coupling_desc.coupler);
5532 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533 return err;
5534 }
5535
5536 return 0;
5537}
5538
5539static int generic_coupler_attach(struct regulator_coupler *coupler,
5540 struct regulator_dev *rdev)
5541{
5542 if (rdev->coupling_desc.n_coupled > 2) {
5543 rdev_err(rdev,
5544 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545 return -EPERM;
5546 }
5547
5548 if (!rdev->constraints->always_on) {
5549 rdev_err(rdev,
5550 "Coupling of a non always-on regulator is unimplemented\n");
5551 return -ENOTSUPP;
5552 }
5553
5554 return 0;
5555}
5556
5557static struct regulator_coupler generic_regulator_coupler = {
5558 .attach_regulator = generic_coupler_attach,
5559};
5560
5561/**
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5566 *
5567 * Called by regulator drivers to register a regulator.
5568 *
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 * an ERR_PTR() encoded negative error number on failure.
5571 */
5572struct regulator_dev *
5573regulator_register(struct device *dev,
5574 const struct regulator_desc *regulator_desc,
5575 const struct regulator_config *cfg)
5576{
5577 const struct regulator_init_data *init_data;
5578 struct regulator_config *config = NULL;
5579 static atomic_t regulator_no = ATOMIC_INIT(-1);
5580 struct regulator_dev *rdev;
5581 bool dangling_cfg_gpiod = false;
5582 bool dangling_of_gpiod = false;
5583 int ret, i;
5584 bool resolved_early = false;
5585
5586 if (cfg == NULL)
5587 return ERR_PTR(-EINVAL);
5588 if (cfg->ena_gpiod)
5589 dangling_cfg_gpiod = true;
5590 if (regulator_desc == NULL) {
5591 ret = -EINVAL;
5592 goto rinse;
5593 }
5594
5595 WARN_ON(!dev || !cfg->dev);
5596
5597 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598 ret = -EINVAL;
5599 goto rinse;
5600 }
5601
5602 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603 regulator_desc->type != REGULATOR_CURRENT) {
5604 ret = -EINVAL;
5605 goto rinse;
5606 }
5607
5608 /* Only one of each should be implemented */
5609 WARN_ON(regulator_desc->ops->get_voltage &&
5610 regulator_desc->ops->get_voltage_sel);
5611 WARN_ON(regulator_desc->ops->set_voltage &&
5612 regulator_desc->ops->set_voltage_sel);
5613
5614 /* If we're using selectors we must implement list_voltage. */
5615 if (regulator_desc->ops->get_voltage_sel &&
5616 !regulator_desc->ops->list_voltage) {
5617 ret = -EINVAL;
5618 goto rinse;
5619 }
5620 if (regulator_desc->ops->set_voltage_sel &&
5621 !regulator_desc->ops->list_voltage) {
5622 ret = -EINVAL;
5623 goto rinse;
5624 }
5625
5626 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627 if (rdev == NULL) {
5628 ret = -ENOMEM;
5629 goto rinse;
5630 }
5631 device_initialize(&rdev->dev);
5632 dev_set_drvdata(&rdev->dev, rdev);
5633 rdev->dev.class = ®ulator_class;
5634 spin_lock_init(&rdev->err_lock);
5635
5636 /*
5637 * Duplicate the config so the driver could override it after
5638 * parsing init data.
5639 */
5640 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641 if (config == NULL) {
5642 ret = -ENOMEM;
5643 goto clean;
5644 }
5645
5646 /*
5647 * DT may override the config->init_data provided if the platform
5648 * needs to do so. If so, config->init_data is completely ignored.
5649 */
5650 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5651 &rdev->dev.of_node);
5652
5653 /*
5654 * Sometimes not all resources are probed already so we need to take
5655 * that into account. This happens most the time if the ena_gpiod comes
5656 * from a gpio extender or something else.
5657 */
5658 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5659 ret = -EPROBE_DEFER;
5660 goto clean;
5661 }
5662
5663 /*
5664 * We need to keep track of any GPIO descriptor coming from the
5665 * device tree until we have handled it over to the core. If the
5666 * config that was passed in to this function DOES NOT contain
5667 * a descriptor, and the config after this call DOES contain
5668 * a descriptor, we definitely got one from parsing the device
5669 * tree.
5670 */
5671 if (!cfg->ena_gpiod && config->ena_gpiod)
5672 dangling_of_gpiod = true;
5673 if (!init_data) {
5674 init_data = config->init_data;
5675 rdev->dev.of_node = of_node_get(config->of_node);
5676 }
5677
5678 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5679 rdev->reg_data = config->driver_data;
5680 rdev->owner = regulator_desc->owner;
5681 rdev->desc = regulator_desc;
5682 if (config->regmap)
5683 rdev->regmap = config->regmap;
5684 else if (dev_get_regmap(dev, NULL))
5685 rdev->regmap = dev_get_regmap(dev, NULL);
5686 else if (dev->parent)
5687 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5688 INIT_LIST_HEAD(&rdev->consumer_list);
5689 INIT_LIST_HEAD(&rdev->list);
5690 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5691 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5692
5693 if (init_data && init_data->supply_regulator)
5694 rdev->supply_name = init_data->supply_regulator;
5695 else if (regulator_desc->supply_name)
5696 rdev->supply_name = regulator_desc->supply_name;
5697
5698 /* register with sysfs */
5699 rdev->dev.parent = config->dev;
5700 dev_set_name(&rdev->dev, "regulator.%lu",
5701 (unsigned long) atomic_inc_return(®ulator_no));
5702
5703 /* set regulator constraints */
5704 if (init_data)
5705 rdev->constraints = kmemdup(&init_data->constraints,
5706 sizeof(*rdev->constraints),
5707 GFP_KERNEL);
5708 else
5709 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5710 GFP_KERNEL);
5711 if (!rdev->constraints) {
5712 ret = -ENOMEM;
5713 goto wash;
5714 }
5715
5716 if (regulator_desc->init_cb) {
5717 ret = regulator_desc->init_cb(rdev, config);
5718 if (ret < 0)
5719 goto wash;
5720 }
5721
5722 if ((rdev->supply_name && !rdev->supply) &&
5723 (rdev->constraints->always_on ||
5724 rdev->constraints->boot_on)) {
5725 ret = regulator_resolve_supply(rdev);
5726 if (ret)
5727 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5728 ERR_PTR(ret));
5729
5730 resolved_early = true;
5731 }
5732
5733 if (config->ena_gpiod) {
5734 ret = regulator_ena_gpio_request(rdev, config);
5735 if (ret != 0) {
5736 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5737 ERR_PTR(ret));
5738 goto wash;
5739 }
5740 /* The regulator core took over the GPIO descriptor */
5741 dangling_cfg_gpiod = false;
5742 dangling_of_gpiod = false;
5743 }
5744
5745 ret = set_machine_constraints(rdev);
5746 if (ret == -EPROBE_DEFER && !resolved_early) {
5747 /* Regulator might be in bypass mode and so needs its supply
5748 * to set the constraints
5749 */
5750 /* FIXME: this currently triggers a chicken-and-egg problem
5751 * when creating -SUPPLY symlink in sysfs to a regulator
5752 * that is just being created
5753 */
5754 rdev_dbg(rdev, "will resolve supply early: %s\n",
5755 rdev->supply_name);
5756 ret = regulator_resolve_supply(rdev);
5757 if (!ret)
5758 ret = set_machine_constraints(rdev);
5759 else
5760 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5761 ERR_PTR(ret));
5762 }
5763 if (ret < 0)
5764 goto wash;
5765
5766 ret = regulator_init_coupling(rdev);
5767 if (ret < 0)
5768 goto wash;
5769
5770 /* add consumers devices */
5771 if (init_data) {
5772 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5773 ret = set_consumer_device_supply(rdev,
5774 init_data->consumer_supplies[i].dev_name,
5775 init_data->consumer_supplies[i].supply);
5776 if (ret < 0) {
5777 dev_err(dev, "Failed to set supply %s\n",
5778 init_data->consumer_supplies[i].supply);
5779 goto unset_supplies;
5780 }
5781 }
5782 }
5783
5784 if (!rdev->desc->ops->get_voltage &&
5785 !rdev->desc->ops->list_voltage &&
5786 !rdev->desc->fixed_uV)
5787 rdev->is_switch = true;
5788
5789 ret = device_add(&rdev->dev);
5790 if (ret != 0)
5791 goto unset_supplies;
5792
5793 rdev_init_debugfs(rdev);
5794
5795 /* try to resolve regulators coupling since a new one was registered */
5796 mutex_lock(®ulator_list_mutex);
5797 regulator_resolve_coupling(rdev);
5798 mutex_unlock(®ulator_list_mutex);
5799
5800 /* try to resolve regulators supply since a new one was registered */
5801 class_for_each_device(®ulator_class, NULL, NULL,
5802 regulator_register_resolve_supply);
5803 kfree(config);
5804 return rdev;
5805
5806unset_supplies:
5807 mutex_lock(®ulator_list_mutex);
5808 unset_regulator_supplies(rdev);
5809 regulator_remove_coupling(rdev);
5810 mutex_unlock(®ulator_list_mutex);
5811wash:
5812 regulator_put(rdev->supply);
5813 kfree(rdev->coupling_desc.coupled_rdevs);
5814 mutex_lock(®ulator_list_mutex);
5815 regulator_ena_gpio_free(rdev);
5816 mutex_unlock(®ulator_list_mutex);
5817clean:
5818 if (dangling_of_gpiod)
5819 gpiod_put(config->ena_gpiod);
5820 kfree(config);
5821 put_device(&rdev->dev);
5822rinse:
5823 if (dangling_cfg_gpiod)
5824 gpiod_put(cfg->ena_gpiod);
5825 return ERR_PTR(ret);
5826}
5827EXPORT_SYMBOL_GPL(regulator_register);
5828
5829/**
5830 * regulator_unregister - unregister regulator
5831 * @rdev: regulator to unregister
5832 *
5833 * Called by regulator drivers to unregister a regulator.
5834 */
5835void regulator_unregister(struct regulator_dev *rdev)
5836{
5837 if (rdev == NULL)
5838 return;
5839
5840 if (rdev->supply) {
5841 while (rdev->use_count--)
5842 regulator_disable(rdev->supply);
5843 regulator_put(rdev->supply);
5844 }
5845
5846 flush_work(&rdev->disable_work.work);
5847
5848 mutex_lock(®ulator_list_mutex);
5849
5850 WARN_ON(rdev->open_count);
5851 regulator_remove_coupling(rdev);
5852 unset_regulator_supplies(rdev);
5853 list_del(&rdev->list);
5854 regulator_ena_gpio_free(rdev);
5855 device_unregister(&rdev->dev);
5856
5857 mutex_unlock(®ulator_list_mutex);
5858}
5859EXPORT_SYMBOL_GPL(regulator_unregister);
5860
5861#ifdef CONFIG_SUSPEND
5862/**
5863 * regulator_suspend - prepare regulators for system wide suspend
5864 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5865 *
5866 * Configure each regulator with it's suspend operating parameters for state.
5867 *
5868 * Return: 0 on success or a negative error number on failure.
5869 */
5870static int regulator_suspend(struct device *dev)
5871{
5872 struct regulator_dev *rdev = dev_to_rdev(dev);
5873 suspend_state_t state = pm_suspend_target_state;
5874 int ret;
5875 const struct regulator_state *rstate;
5876
5877 rstate = regulator_get_suspend_state_check(rdev, state);
5878 if (!rstate)
5879 return 0;
5880
5881 regulator_lock(rdev);
5882 ret = __suspend_set_state(rdev, rstate);
5883 regulator_unlock(rdev);
5884
5885 return ret;
5886}
5887
5888static int regulator_resume(struct device *dev)
5889{
5890 suspend_state_t state = pm_suspend_target_state;
5891 struct regulator_dev *rdev = dev_to_rdev(dev);
5892 struct regulator_state *rstate;
5893 int ret = 0;
5894
5895 rstate = regulator_get_suspend_state(rdev, state);
5896 if (rstate == NULL)
5897 return 0;
5898
5899 /* Avoid grabbing the lock if we don't need to */
5900 if (!rdev->desc->ops->resume)
5901 return 0;
5902
5903 regulator_lock(rdev);
5904
5905 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5906 rstate->enabled == DISABLE_IN_SUSPEND)
5907 ret = rdev->desc->ops->resume(rdev);
5908
5909 regulator_unlock(rdev);
5910
5911 return ret;
5912}
5913#else /* !CONFIG_SUSPEND */
5914
5915#define regulator_suspend NULL
5916#define regulator_resume NULL
5917
5918#endif /* !CONFIG_SUSPEND */
5919
5920#ifdef CONFIG_PM
5921static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5922 .suspend = regulator_suspend,
5923 .resume = regulator_resume,
5924};
5925#endif
5926
5927const struct class regulator_class = {
5928 .name = "regulator",
5929 .dev_release = regulator_dev_release,
5930 .dev_groups = regulator_dev_groups,
5931#ifdef CONFIG_PM
5932 .pm = ®ulator_pm_ops,
5933#endif
5934};
5935/**
5936 * regulator_has_full_constraints - the system has fully specified constraints
5937 *
5938 * Calling this function will cause the regulator API to disable all
5939 * regulators which have a zero use count and don't have an always_on
5940 * constraint in a late_initcall.
5941 *
5942 * The intention is that this will become the default behaviour in a
5943 * future kernel release so users are encouraged to use this facility
5944 * now.
5945 */
5946void regulator_has_full_constraints(void)
5947{
5948 has_full_constraints = 1;
5949}
5950EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5951
5952/**
5953 * rdev_get_drvdata - get rdev regulator driver data
5954 * @rdev: regulator
5955 *
5956 * Get rdev regulator driver private data. This call can be used in the
5957 * regulator driver context.
5958 *
5959 * Return: Pointer to regulator driver private data.
5960 */
5961void *rdev_get_drvdata(struct regulator_dev *rdev)
5962{
5963 return rdev->reg_data;
5964}
5965EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5966
5967/**
5968 * regulator_get_drvdata - get regulator driver data
5969 * @regulator: regulator
5970 *
5971 * Get regulator driver private data. This call can be used in the consumer
5972 * driver context when non API regulator specific functions need to be called.
5973 *
5974 * Return: Pointer to regulator driver private data.
5975 */
5976void *regulator_get_drvdata(struct regulator *regulator)
5977{
5978 return regulator->rdev->reg_data;
5979}
5980EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5981
5982/**
5983 * regulator_set_drvdata - set regulator driver data
5984 * @regulator: regulator
5985 * @data: data
5986 */
5987void regulator_set_drvdata(struct regulator *regulator, void *data)
5988{
5989 regulator->rdev->reg_data = data;
5990}
5991EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5992
5993/**
5994 * rdev_get_id - get regulator ID
5995 * @rdev: regulator
5996 *
5997 * Return: Regulator ID for @rdev.
5998 */
5999int rdev_get_id(struct regulator_dev *rdev)
6000{
6001 return rdev->desc->id;
6002}
6003EXPORT_SYMBOL_GPL(rdev_get_id);
6004
6005struct device *rdev_get_dev(struct regulator_dev *rdev)
6006{
6007 return &rdev->dev;
6008}
6009EXPORT_SYMBOL_GPL(rdev_get_dev);
6010
6011struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6012{
6013 return rdev->regmap;
6014}
6015EXPORT_SYMBOL_GPL(rdev_get_regmap);
6016
6017void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6018{
6019 return reg_init_data->driver_data;
6020}
6021EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6022
6023#ifdef CONFIG_DEBUG_FS
6024static int supply_map_show(struct seq_file *sf, void *data)
6025{
6026 struct regulator_map *map;
6027
6028 list_for_each_entry(map, ®ulator_map_list, list) {
6029 seq_printf(sf, "%s -> %s.%s\n",
6030 rdev_get_name(map->regulator), map->dev_name,
6031 map->supply);
6032 }
6033
6034 return 0;
6035}
6036DEFINE_SHOW_ATTRIBUTE(supply_map);
6037
6038struct summary_data {
6039 struct seq_file *s;
6040 struct regulator_dev *parent;
6041 int level;
6042};
6043
6044static void regulator_summary_show_subtree(struct seq_file *s,
6045 struct regulator_dev *rdev,
6046 int level);
6047
6048static int regulator_summary_show_children(struct device *dev, void *data)
6049{
6050 struct regulator_dev *rdev = dev_to_rdev(dev);
6051 struct summary_data *summary_data = data;
6052
6053 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6054 regulator_summary_show_subtree(summary_data->s, rdev,
6055 summary_data->level + 1);
6056
6057 return 0;
6058}
6059
6060static void regulator_summary_show_subtree(struct seq_file *s,
6061 struct regulator_dev *rdev,
6062 int level)
6063{
6064 struct regulation_constraints *c;
6065 struct regulator *consumer;
6066 struct summary_data summary_data;
6067 unsigned int opmode;
6068
6069 if (!rdev)
6070 return;
6071
6072 opmode = _regulator_get_mode_unlocked(rdev);
6073 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6074 level * 3 + 1, "",
6075 30 - level * 3, rdev_get_name(rdev),
6076 rdev->use_count, rdev->open_count, rdev->bypass_count,
6077 regulator_opmode_to_str(opmode));
6078
6079 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6080 seq_printf(s, "%5dmA ",
6081 _regulator_get_current_limit_unlocked(rdev) / 1000);
6082
6083 c = rdev->constraints;
6084 if (c) {
6085 switch (rdev->desc->type) {
6086 case REGULATOR_VOLTAGE:
6087 seq_printf(s, "%5dmV %5dmV ",
6088 c->min_uV / 1000, c->max_uV / 1000);
6089 break;
6090 case REGULATOR_CURRENT:
6091 seq_printf(s, "%5dmA %5dmA ",
6092 c->min_uA / 1000, c->max_uA / 1000);
6093 break;
6094 }
6095 }
6096
6097 seq_puts(s, "\n");
6098
6099 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6100 if (consumer->dev && consumer->dev->class == ®ulator_class)
6101 continue;
6102
6103 seq_printf(s, "%*s%-*s ",
6104 (level + 1) * 3 + 1, "",
6105 30 - (level + 1) * 3,
6106 consumer->supply_name ? consumer->supply_name :
6107 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6108
6109 switch (rdev->desc->type) {
6110 case REGULATOR_VOLTAGE:
6111 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6112 consumer->enable_count,
6113 consumer->uA_load / 1000,
6114 consumer->uA_load && !consumer->enable_count ?
6115 '*' : ' ',
6116 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6117 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6118 break;
6119 case REGULATOR_CURRENT:
6120 break;
6121 }
6122
6123 seq_puts(s, "\n");
6124 }
6125
6126 summary_data.s = s;
6127 summary_data.level = level;
6128 summary_data.parent = rdev;
6129
6130 class_for_each_device(®ulator_class, NULL, &summary_data,
6131 regulator_summary_show_children);
6132}
6133
6134struct summary_lock_data {
6135 struct ww_acquire_ctx *ww_ctx;
6136 struct regulator_dev **new_contended_rdev;
6137 struct regulator_dev **old_contended_rdev;
6138};
6139
6140static int regulator_summary_lock_one(struct device *dev, void *data)
6141{
6142 struct regulator_dev *rdev = dev_to_rdev(dev);
6143 struct summary_lock_data *lock_data = data;
6144 int ret = 0;
6145
6146 if (rdev != *lock_data->old_contended_rdev) {
6147 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6148
6149 if (ret == -EDEADLK)
6150 *lock_data->new_contended_rdev = rdev;
6151 else
6152 WARN_ON_ONCE(ret);
6153 } else {
6154 *lock_data->old_contended_rdev = NULL;
6155 }
6156
6157 return ret;
6158}
6159
6160static int regulator_summary_unlock_one(struct device *dev, void *data)
6161{
6162 struct regulator_dev *rdev = dev_to_rdev(dev);
6163 struct summary_lock_data *lock_data = data;
6164
6165 if (lock_data) {
6166 if (rdev == *lock_data->new_contended_rdev)
6167 return -EDEADLK;
6168 }
6169
6170 regulator_unlock(rdev);
6171
6172 return 0;
6173}
6174
6175static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6176 struct regulator_dev **new_contended_rdev,
6177 struct regulator_dev **old_contended_rdev)
6178{
6179 struct summary_lock_data lock_data;
6180 int ret;
6181
6182 lock_data.ww_ctx = ww_ctx;
6183 lock_data.new_contended_rdev = new_contended_rdev;
6184 lock_data.old_contended_rdev = old_contended_rdev;
6185
6186 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6187 regulator_summary_lock_one);
6188 if (ret)
6189 class_for_each_device(®ulator_class, NULL, &lock_data,
6190 regulator_summary_unlock_one);
6191
6192 return ret;
6193}
6194
6195static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6196{
6197 struct regulator_dev *new_contended_rdev = NULL;
6198 struct regulator_dev *old_contended_rdev = NULL;
6199 int err;
6200
6201 mutex_lock(®ulator_list_mutex);
6202
6203 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6204
6205 do {
6206 if (new_contended_rdev) {
6207 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6208 old_contended_rdev = new_contended_rdev;
6209 old_contended_rdev->ref_cnt++;
6210 old_contended_rdev->mutex_owner = current;
6211 }
6212
6213 err = regulator_summary_lock_all(ww_ctx,
6214 &new_contended_rdev,
6215 &old_contended_rdev);
6216
6217 if (old_contended_rdev)
6218 regulator_unlock(old_contended_rdev);
6219
6220 } while (err == -EDEADLK);
6221
6222 ww_acquire_done(ww_ctx);
6223}
6224
6225static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6226{
6227 class_for_each_device(®ulator_class, NULL, NULL,
6228 regulator_summary_unlock_one);
6229 ww_acquire_fini(ww_ctx);
6230
6231 mutex_unlock(®ulator_list_mutex);
6232}
6233
6234static int regulator_summary_show_roots(struct device *dev, void *data)
6235{
6236 struct regulator_dev *rdev = dev_to_rdev(dev);
6237 struct seq_file *s = data;
6238
6239 if (!rdev->supply)
6240 regulator_summary_show_subtree(s, rdev, 0);
6241
6242 return 0;
6243}
6244
6245static int regulator_summary_show(struct seq_file *s, void *data)
6246{
6247 struct ww_acquire_ctx ww_ctx;
6248
6249 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6250 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6251
6252 regulator_summary_lock(&ww_ctx);
6253
6254 class_for_each_device(®ulator_class, NULL, s,
6255 regulator_summary_show_roots);
6256
6257 regulator_summary_unlock(&ww_ctx);
6258
6259 return 0;
6260}
6261DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6262#endif /* CONFIG_DEBUG_FS */
6263
6264static int __init regulator_init(void)
6265{
6266 int ret;
6267
6268 ret = class_register(®ulator_class);
6269
6270 debugfs_root = debugfs_create_dir("regulator", NULL);
6271 if (IS_ERR(debugfs_root))
6272 pr_debug("regulator: Failed to create debugfs directory\n");
6273
6274#ifdef CONFIG_DEBUG_FS
6275 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6276 &supply_map_fops);
6277
6278 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6279 NULL, ®ulator_summary_fops);
6280#endif
6281 regulator_dummy_init();
6282
6283 regulator_coupler_register(&generic_regulator_coupler);
6284
6285 return ret;
6286}
6287
6288/* init early to allow our consumers to complete system booting */
6289core_initcall(regulator_init);
6290
6291static int regulator_late_cleanup(struct device *dev, void *data)
6292{
6293 struct regulator_dev *rdev = dev_to_rdev(dev);
6294 struct regulation_constraints *c = rdev->constraints;
6295 int ret;
6296
6297 if (c && c->always_on)
6298 return 0;
6299
6300 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6301 return 0;
6302
6303 regulator_lock(rdev);
6304
6305 if (rdev->use_count)
6306 goto unlock;
6307
6308 /* If reading the status failed, assume that it's off. */
6309 if (_regulator_is_enabled(rdev) <= 0)
6310 goto unlock;
6311
6312 if (have_full_constraints()) {
6313 /* We log since this may kill the system if it goes
6314 * wrong.
6315 */
6316 rdev_info(rdev, "disabling\n");
6317 ret = _regulator_do_disable(rdev);
6318 if (ret != 0)
6319 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6320 } else {
6321 /* The intention is that in future we will
6322 * assume that full constraints are provided
6323 * so warn even if we aren't going to do
6324 * anything here.
6325 */
6326 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6327 }
6328
6329unlock:
6330 regulator_unlock(rdev);
6331
6332 return 0;
6333}
6334
6335static bool regulator_ignore_unused;
6336static int __init regulator_ignore_unused_setup(char *__unused)
6337{
6338 regulator_ignore_unused = true;
6339 return 1;
6340}
6341__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6342
6343static void regulator_init_complete_work_function(struct work_struct *work)
6344{
6345 /*
6346 * Regulators may had failed to resolve their input supplies
6347 * when were registered, either because the input supply was
6348 * not registered yet or because its parent device was not
6349 * bound yet. So attempt to resolve the input supplies for
6350 * pending regulators before trying to disable unused ones.
6351 */
6352 class_for_each_device(®ulator_class, NULL, NULL,
6353 regulator_register_resolve_supply);
6354
6355 /*
6356 * For debugging purposes, it may be useful to prevent unused
6357 * regulators from being disabled.
6358 */
6359 if (regulator_ignore_unused) {
6360 pr_warn("regulator: Not disabling unused regulators\n");
6361 return;
6362 }
6363
6364 /* If we have a full configuration then disable any regulators
6365 * we have permission to change the status for and which are
6366 * not in use or always_on. This is effectively the default
6367 * for DT and ACPI as they have full constraints.
6368 */
6369 class_for_each_device(®ulator_class, NULL, NULL,
6370 regulator_late_cleanup);
6371}
6372
6373static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6374 regulator_init_complete_work_function);
6375
6376static int __init regulator_init_complete(void)
6377{
6378 /*
6379 * Since DT doesn't provide an idiomatic mechanism for
6380 * enabling full constraints and since it's much more natural
6381 * with DT to provide them just assume that a DT enabled
6382 * system has full constraints.
6383 */
6384 if (of_have_populated_dt())
6385 has_full_constraints = true;
6386
6387 /*
6388 * We punt completion for an arbitrary amount of time since
6389 * systems like distros will load many drivers from userspace
6390 * so consumers might not always be ready yet, this is
6391 * particularly an issue with laptops where this might bounce
6392 * the display off then on. Ideally we'd get a notification
6393 * from userspace when this happens but we don't so just wait
6394 * a bit and hope we waited long enough. It'd be better if
6395 * we'd only do this on systems that need it, and a kernel
6396 * command line option might be useful.
6397 */
6398 schedule_delayed_work(®ulator_init_complete_work,
6399 msecs_to_jiffies(30000));
6400
6401 return 0;
6402}
6403late_initcall_sync(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static LIST_HEAD(regulator_coupler_list);
54static bool has_full_constraints;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80};
81
82/*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93};
94
95static int _regulator_is_enabled(struct regulator_dev *rdev);
96static int _regulator_disable(struct regulator *regulator);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108static void destroy_regulator(struct regulator *regulator);
109static void _regulator_put(struct regulator *regulator);
110
111const char *rdev_get_name(struct regulator_dev *rdev)
112{
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119}
120
121static bool have_full_constraints(void)
122{
123 return has_full_constraints || of_have_populated_dt();
124}
125
126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127{
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137}
138
139/**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152{
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181}
182
183/**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193void regulator_lock(struct regulator_dev *rdev)
194{
195 regulator_lock_nested(rdev, NULL);
196}
197EXPORT_SYMBOL_GPL(regulator_lock);
198
199/**
200 * regulator_unlock - unlock a single regulator
201 * @rdev: regulator_source
202 *
203 * This function unlocks the mutex when the
204 * reference counter reaches 0.
205 */
206void regulator_unlock(struct regulator_dev *rdev)
207{
208 mutex_lock(®ulator_nesting_mutex);
209
210 if (--rdev->ref_cnt == 0) {
211 rdev->mutex_owner = NULL;
212 ww_mutex_unlock(&rdev->mutex);
213 }
214
215 WARN_ON_ONCE(rdev->ref_cnt < 0);
216
217 mutex_unlock(®ulator_nesting_mutex);
218}
219EXPORT_SYMBOL_GPL(regulator_unlock);
220
221static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222{
223 struct regulator_dev *c_rdev;
224 int i;
225
226 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228
229 if (rdev->supply->rdev == c_rdev)
230 return true;
231 }
232
233 return false;
234}
235
236static void regulator_unlock_recursive(struct regulator_dev *rdev,
237 unsigned int n_coupled)
238{
239 struct regulator_dev *c_rdev, *supply_rdev;
240 int i, supply_n_coupled;
241
242 for (i = n_coupled; i > 0; i--) {
243 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244
245 if (!c_rdev)
246 continue;
247
248 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
249 supply_rdev = c_rdev->supply->rdev;
250 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
251
252 regulator_unlock_recursive(supply_rdev,
253 supply_n_coupled);
254 }
255
256 regulator_unlock(c_rdev);
257 }
258}
259
260static int regulator_lock_recursive(struct regulator_dev *rdev,
261 struct regulator_dev **new_contended_rdev,
262 struct regulator_dev **old_contended_rdev,
263 struct ww_acquire_ctx *ww_ctx)
264{
265 struct regulator_dev *c_rdev;
266 int i, err;
267
268 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
269 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
270
271 if (!c_rdev)
272 continue;
273
274 if (c_rdev != *old_contended_rdev) {
275 err = regulator_lock_nested(c_rdev, ww_ctx);
276 if (err) {
277 if (err == -EDEADLK) {
278 *new_contended_rdev = c_rdev;
279 goto err_unlock;
280 }
281
282 /* shouldn't happen */
283 WARN_ON_ONCE(err != -EALREADY);
284 }
285 } else {
286 *old_contended_rdev = NULL;
287 }
288
289 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
290 err = regulator_lock_recursive(c_rdev->supply->rdev,
291 new_contended_rdev,
292 old_contended_rdev,
293 ww_ctx);
294 if (err) {
295 regulator_unlock(c_rdev);
296 goto err_unlock;
297 }
298 }
299 }
300
301 return 0;
302
303err_unlock:
304 regulator_unlock_recursive(rdev, i);
305
306 return err;
307}
308
309/**
310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
311 * regulators
312 * @rdev: regulator source
313 * @ww_ctx: w/w mutex acquire context
314 *
315 * Unlock all regulators related with rdev by coupling or supplying.
316 */
317static void regulator_unlock_dependent(struct regulator_dev *rdev,
318 struct ww_acquire_ctx *ww_ctx)
319{
320 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
321 ww_acquire_fini(ww_ctx);
322}
323
324/**
325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326 * @rdev: regulator source
327 * @ww_ctx: w/w mutex acquire context
328 *
329 * This function as a wrapper on regulator_lock_recursive(), which locks
330 * all regulators related with rdev by coupling or supplying.
331 */
332static void regulator_lock_dependent(struct regulator_dev *rdev,
333 struct ww_acquire_ctx *ww_ctx)
334{
335 struct regulator_dev *new_contended_rdev = NULL;
336 struct regulator_dev *old_contended_rdev = NULL;
337 int err;
338
339 mutex_lock(®ulator_list_mutex);
340
341 ww_acquire_init(ww_ctx, ®ulator_ww_class);
342
343 do {
344 if (new_contended_rdev) {
345 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
346 old_contended_rdev = new_contended_rdev;
347 old_contended_rdev->ref_cnt++;
348 }
349
350 err = regulator_lock_recursive(rdev,
351 &new_contended_rdev,
352 &old_contended_rdev,
353 ww_ctx);
354
355 if (old_contended_rdev)
356 regulator_unlock(old_contended_rdev);
357
358 } while (err == -EDEADLK);
359
360 ww_acquire_done(ww_ctx);
361
362 mutex_unlock(®ulator_list_mutex);
363}
364
365/**
366 * of_get_child_regulator - get a child regulator device node
367 * based on supply name
368 * @parent: Parent device node
369 * @prop_name: Combination regulator supply name and "-supply"
370 *
371 * Traverse all child nodes.
372 * Extract the child regulator device node corresponding to the supply name.
373 * returns the device node corresponding to the regulator if found, else
374 * returns NULL.
375 */
376static struct device_node *of_get_child_regulator(struct device_node *parent,
377 const char *prop_name)
378{
379 struct device_node *regnode = NULL;
380 struct device_node *child = NULL;
381
382 for_each_child_of_node(parent, child) {
383 regnode = of_parse_phandle(child, prop_name, 0);
384
385 if (!regnode) {
386 regnode = of_get_child_regulator(child, prop_name);
387 if (regnode)
388 goto err_node_put;
389 } else {
390 goto err_node_put;
391 }
392 }
393 return NULL;
394
395err_node_put:
396 of_node_put(child);
397 return regnode;
398}
399
400/**
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
404 *
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
407 * returns NULL.
408 */
409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410{
411 struct device_node *regnode = NULL;
412 char prop_name[32]; /* 32 is max size of property name */
413
414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416 snprintf(prop_name, 32, "%s-supply", supply);
417 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419 if (!regnode) {
420 regnode = of_get_child_regulator(dev->of_node, prop_name);
421 if (regnode)
422 return regnode;
423
424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 prop_name, dev->of_node);
426 return NULL;
427 }
428 return regnode;
429}
430
431/* Platform voltage constraint check */
432int regulator_check_voltage(struct regulator_dev *rdev,
433 int *min_uV, int *max_uV)
434{
435 BUG_ON(*min_uV > *max_uV);
436
437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 rdev_err(rdev, "voltage operation not allowed\n");
439 return -EPERM;
440 }
441
442 if (*max_uV > rdev->constraints->max_uV)
443 *max_uV = rdev->constraints->max_uV;
444 if (*min_uV < rdev->constraints->min_uV)
445 *min_uV = rdev->constraints->min_uV;
446
447 if (*min_uV > *max_uV) {
448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 *min_uV, *max_uV);
450 return -EINVAL;
451 }
452
453 return 0;
454}
455
456/* return 0 if the state is valid */
457static int regulator_check_states(suspend_state_t state)
458{
459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460}
461
462/* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
464 */
465int regulator_check_consumers(struct regulator_dev *rdev,
466 int *min_uV, int *max_uV,
467 suspend_state_t state)
468{
469 struct regulator *regulator;
470 struct regulator_voltage *voltage;
471
472 list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 voltage = ®ulator->voltage[state];
474 /*
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
477 */
478 if (!voltage->min_uV && !voltage->max_uV)
479 continue;
480
481 if (*max_uV > voltage->max_uV)
482 *max_uV = voltage->max_uV;
483 if (*min_uV < voltage->min_uV)
484 *min_uV = voltage->min_uV;
485 }
486
487 if (*min_uV > *max_uV) {
488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 *min_uV, *max_uV);
490 return -EINVAL;
491 }
492
493 return 0;
494}
495
496/* current constraint check */
497static int regulator_check_current_limit(struct regulator_dev *rdev,
498 int *min_uA, int *max_uA)
499{
500 BUG_ON(*min_uA > *max_uA);
501
502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 rdev_err(rdev, "current operation not allowed\n");
504 return -EPERM;
505 }
506
507 if (*max_uA > rdev->constraints->max_uA)
508 *max_uA = rdev->constraints->max_uA;
509 if (*min_uA < rdev->constraints->min_uA)
510 *min_uA = rdev->constraints->min_uA;
511
512 if (*min_uA > *max_uA) {
513 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 *min_uA, *max_uA);
515 return -EINVAL;
516 }
517
518 return 0;
519}
520
521/* operating mode constraint check */
522static int regulator_mode_constrain(struct regulator_dev *rdev,
523 unsigned int *mode)
524{
525 switch (*mode) {
526 case REGULATOR_MODE_FAST:
527 case REGULATOR_MODE_NORMAL:
528 case REGULATOR_MODE_IDLE:
529 case REGULATOR_MODE_STANDBY:
530 break;
531 default:
532 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 return -EINVAL;
534 }
535
536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 rdev_err(rdev, "mode operation not allowed\n");
538 return -EPERM;
539 }
540
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
544 while (*mode) {
545 if (rdev->constraints->valid_modes_mask & *mode)
546 return 0;
547 *mode /= 2;
548 }
549
550 return -EINVAL;
551}
552
553static inline struct regulator_state *
554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555{
556 if (rdev->constraints == NULL)
557 return NULL;
558
559 switch (state) {
560 case PM_SUSPEND_STANDBY:
561 return &rdev->constraints->state_standby;
562 case PM_SUSPEND_MEM:
563 return &rdev->constraints->state_mem;
564 case PM_SUSPEND_MAX:
565 return &rdev->constraints->state_disk;
566 default:
567 return NULL;
568 }
569}
570
571static ssize_t regulator_uV_show(struct device *dev,
572 struct device_attribute *attr, char *buf)
573{
574 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 int uV;
576
577 regulator_lock(rdev);
578 uV = regulator_get_voltage_rdev(rdev);
579 regulator_unlock(rdev);
580
581 if (uV < 0)
582 return uV;
583 return sprintf(buf, "%d\n", uV);
584}
585static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
586
587static ssize_t regulator_uA_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589{
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
593}
594static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
595
596static ssize_t name_show(struct device *dev, struct device_attribute *attr,
597 char *buf)
598{
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return sprintf(buf, "%s\n", rdev_get_name(rdev));
602}
603static DEVICE_ATTR_RO(name);
604
605static const char *regulator_opmode_to_str(int mode)
606{
607 switch (mode) {
608 case REGULATOR_MODE_FAST:
609 return "fast";
610 case REGULATOR_MODE_NORMAL:
611 return "normal";
612 case REGULATOR_MODE_IDLE:
613 return "idle";
614 case REGULATOR_MODE_STANDBY:
615 return "standby";
616 }
617 return "unknown";
618}
619
620static ssize_t regulator_print_opmode(char *buf, int mode)
621{
622 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
623}
624
625static ssize_t regulator_opmode_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627{
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
631}
632static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
633
634static ssize_t regulator_print_state(char *buf, int state)
635{
636 if (state > 0)
637 return sprintf(buf, "enabled\n");
638 else if (state == 0)
639 return sprintf(buf, "disabled\n");
640 else
641 return sprintf(buf, "unknown\n");
642}
643
644static ssize_t regulator_state_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646{
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648 ssize_t ret;
649
650 regulator_lock(rdev);
651 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652 regulator_unlock(rdev);
653
654 return ret;
655}
656static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
657
658static ssize_t regulator_status_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 int status;
663 char *label;
664
665 status = rdev->desc->ops->get_status(rdev);
666 if (status < 0)
667 return status;
668
669 switch (status) {
670 case REGULATOR_STATUS_OFF:
671 label = "off";
672 break;
673 case REGULATOR_STATUS_ON:
674 label = "on";
675 break;
676 case REGULATOR_STATUS_ERROR:
677 label = "error";
678 break;
679 case REGULATOR_STATUS_FAST:
680 label = "fast";
681 break;
682 case REGULATOR_STATUS_NORMAL:
683 label = "normal";
684 break;
685 case REGULATOR_STATUS_IDLE:
686 label = "idle";
687 break;
688 case REGULATOR_STATUS_STANDBY:
689 label = "standby";
690 break;
691 case REGULATOR_STATUS_BYPASS:
692 label = "bypass";
693 break;
694 case REGULATOR_STATUS_UNDEFINED:
695 label = "undefined";
696 break;
697 default:
698 return -ERANGE;
699 }
700
701 return sprintf(buf, "%s\n", label);
702}
703static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
704
705static ssize_t regulator_min_uA_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707{
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 if (!rdev->constraints)
711 return sprintf(buf, "constraint not defined\n");
712
713 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
714}
715static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
716
717static ssize_t regulator_max_uA_show(struct device *dev,
718 struct device_attribute *attr, char *buf)
719{
720 struct regulator_dev *rdev = dev_get_drvdata(dev);
721
722 if (!rdev->constraints)
723 return sprintf(buf, "constraint not defined\n");
724
725 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
726}
727static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
728
729static ssize_t regulator_min_uV_show(struct device *dev,
730 struct device_attribute *attr, char *buf)
731{
732 struct regulator_dev *rdev = dev_get_drvdata(dev);
733
734 if (!rdev->constraints)
735 return sprintf(buf, "constraint not defined\n");
736
737 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
738}
739static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
740
741static ssize_t regulator_max_uV_show(struct device *dev,
742 struct device_attribute *attr, char *buf)
743{
744 struct regulator_dev *rdev = dev_get_drvdata(dev);
745
746 if (!rdev->constraints)
747 return sprintf(buf, "constraint not defined\n");
748
749 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
750}
751static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
752
753static ssize_t regulator_total_uA_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
755{
756 struct regulator_dev *rdev = dev_get_drvdata(dev);
757 struct regulator *regulator;
758 int uA = 0;
759
760 regulator_lock(rdev);
761 list_for_each_entry(regulator, &rdev->consumer_list, list) {
762 if (regulator->enable_count)
763 uA += regulator->uA_load;
764 }
765 regulator_unlock(rdev);
766 return sprintf(buf, "%d\n", uA);
767}
768static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
769
770static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
771 char *buf)
772{
773 struct regulator_dev *rdev = dev_get_drvdata(dev);
774 return sprintf(buf, "%d\n", rdev->use_count);
775}
776static DEVICE_ATTR_RO(num_users);
777
778static ssize_t type_show(struct device *dev, struct device_attribute *attr,
779 char *buf)
780{
781 struct regulator_dev *rdev = dev_get_drvdata(dev);
782
783 switch (rdev->desc->type) {
784 case REGULATOR_VOLTAGE:
785 return sprintf(buf, "voltage\n");
786 case REGULATOR_CURRENT:
787 return sprintf(buf, "current\n");
788 }
789 return sprintf(buf, "unknown\n");
790}
791static DEVICE_ATTR_RO(type);
792
793static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
794 struct device_attribute *attr, char *buf)
795{
796 struct regulator_dev *rdev = dev_get_drvdata(dev);
797
798 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
799}
800static DEVICE_ATTR(suspend_mem_microvolts, 0444,
801 regulator_suspend_mem_uV_show, NULL);
802
803static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
804 struct device_attribute *attr, char *buf)
805{
806 struct regulator_dev *rdev = dev_get_drvdata(dev);
807
808 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
809}
810static DEVICE_ATTR(suspend_disk_microvolts, 0444,
811 regulator_suspend_disk_uV_show, NULL);
812
813static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
814 struct device_attribute *attr, char *buf)
815{
816 struct regulator_dev *rdev = dev_get_drvdata(dev);
817
818 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
819}
820static DEVICE_ATTR(suspend_standby_microvolts, 0444,
821 regulator_suspend_standby_uV_show, NULL);
822
823static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 return regulator_print_opmode(buf,
829 rdev->constraints->state_mem.mode);
830}
831static DEVICE_ATTR(suspend_mem_mode, 0444,
832 regulator_suspend_mem_mode_show, NULL);
833
834static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_disk.mode);
841}
842static DEVICE_ATTR(suspend_disk_mode, 0444,
843 regulator_suspend_disk_mode_show, NULL);
844
845static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847{
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_standby.mode);
852}
853static DEVICE_ATTR(suspend_standby_mode, 0444,
854 regulator_suspend_standby_mode_show, NULL);
855
856static ssize_t regulator_suspend_mem_state_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858{
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_state(buf,
862 rdev->constraints->state_mem.enabled);
863}
864static DEVICE_ATTR(suspend_mem_state, 0444,
865 regulator_suspend_mem_state_show, NULL);
866
867static ssize_t regulator_suspend_disk_state_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869{
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_state(buf,
873 rdev->constraints->state_disk.enabled);
874}
875static DEVICE_ATTR(suspend_disk_state, 0444,
876 regulator_suspend_disk_state_show, NULL);
877
878static ssize_t regulator_suspend_standby_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880{
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_standby.enabled);
885}
886static DEVICE_ATTR(suspend_standby_state, 0444,
887 regulator_suspend_standby_state_show, NULL);
888
889static ssize_t regulator_bypass_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893 const char *report;
894 bool bypass;
895 int ret;
896
897 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
898
899 if (ret != 0)
900 report = "unknown";
901 else if (bypass)
902 report = "enabled";
903 else
904 report = "disabled";
905
906 return sprintf(buf, "%s\n", report);
907}
908static DEVICE_ATTR(bypass, 0444,
909 regulator_bypass_show, NULL);
910
911/* Calculate the new optimum regulator operating mode based on the new total
912 * consumer load. All locks held by caller */
913static int drms_uA_update(struct regulator_dev *rdev)
914{
915 struct regulator *sibling;
916 int current_uA = 0, output_uV, input_uV, err;
917 unsigned int mode;
918
919 /*
920 * first check to see if we can set modes at all, otherwise just
921 * tell the consumer everything is OK.
922 */
923 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
924 rdev_dbg(rdev, "DRMS operation not allowed\n");
925 return 0;
926 }
927
928 if (!rdev->desc->ops->get_optimum_mode &&
929 !rdev->desc->ops->set_load)
930 return 0;
931
932 if (!rdev->desc->ops->set_mode &&
933 !rdev->desc->ops->set_load)
934 return -EINVAL;
935
936 /* calc total requested load */
937 list_for_each_entry(sibling, &rdev->consumer_list, list) {
938 if (sibling->enable_count)
939 current_uA += sibling->uA_load;
940 }
941
942 current_uA += rdev->constraints->system_load;
943
944 if (rdev->desc->ops->set_load) {
945 /* set the optimum mode for our new total regulator load */
946 err = rdev->desc->ops->set_load(rdev, current_uA);
947 if (err < 0)
948 rdev_err(rdev, "failed to set load %d\n", current_uA);
949 } else {
950 /* get output voltage */
951 output_uV = regulator_get_voltage_rdev(rdev);
952 if (output_uV <= 0) {
953 rdev_err(rdev, "invalid output voltage found\n");
954 return -EINVAL;
955 }
956
957 /* get input voltage */
958 input_uV = 0;
959 if (rdev->supply)
960 input_uV = regulator_get_voltage(rdev->supply);
961 if (input_uV <= 0)
962 input_uV = rdev->constraints->input_uV;
963 if (input_uV <= 0) {
964 rdev_err(rdev, "invalid input voltage found\n");
965 return -EINVAL;
966 }
967
968 /* now get the optimum mode for our new total regulator load */
969 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
970 output_uV, current_uA);
971
972 /* check the new mode is allowed */
973 err = regulator_mode_constrain(rdev, &mode);
974 if (err < 0) {
975 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976 current_uA, input_uV, output_uV);
977 return err;
978 }
979
980 err = rdev->desc->ops->set_mode(rdev, mode);
981 if (err < 0)
982 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
983 }
984
985 return err;
986}
987
988static int suspend_set_state(struct regulator_dev *rdev,
989 suspend_state_t state)
990{
991 int ret = 0;
992 struct regulator_state *rstate;
993
994 rstate = regulator_get_suspend_state(rdev, state);
995 if (rstate == NULL)
996 return 0;
997
998 /* If we have no suspend mode configuration don't set anything;
999 * only warn if the driver implements set_suspend_voltage or
1000 * set_suspend_mode callback.
1001 */
1002 if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003 rstate->enabled != DISABLE_IN_SUSPEND) {
1004 if (rdev->desc->ops->set_suspend_voltage ||
1005 rdev->desc->ops->set_suspend_mode)
1006 rdev_warn(rdev, "No configuration\n");
1007 return 0;
1008 }
1009
1010 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011 rdev->desc->ops->set_suspend_enable)
1012 ret = rdev->desc->ops->set_suspend_enable(rdev);
1013 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014 rdev->desc->ops->set_suspend_disable)
1015 ret = rdev->desc->ops->set_suspend_disable(rdev);
1016 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017 ret = 0;
1018
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to enabled/disable\n");
1021 return ret;
1022 }
1023
1024 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to set voltage\n");
1028 return ret;
1029 }
1030 }
1031
1032 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034 if (ret < 0) {
1035 rdev_err(rdev, "failed to set mode\n");
1036 return ret;
1037 }
1038 }
1039
1040 return ret;
1041}
1042
1043static void print_constraints(struct regulator_dev *rdev)
1044{
1045 struct regulation_constraints *constraints = rdev->constraints;
1046 char buf[160] = "";
1047 size_t len = sizeof(buf) - 1;
1048 int count = 0;
1049 int ret;
1050
1051 if (constraints->min_uV && constraints->max_uV) {
1052 if (constraints->min_uV == constraints->max_uV)
1053 count += scnprintf(buf + count, len - count, "%d mV ",
1054 constraints->min_uV / 1000);
1055 else
1056 count += scnprintf(buf + count, len - count,
1057 "%d <--> %d mV ",
1058 constraints->min_uV / 1000,
1059 constraints->max_uV / 1000);
1060 }
1061
1062 if (!constraints->min_uV ||
1063 constraints->min_uV != constraints->max_uV) {
1064 ret = regulator_get_voltage_rdev(rdev);
1065 if (ret > 0)
1066 count += scnprintf(buf + count, len - count,
1067 "at %d mV ", ret / 1000);
1068 }
1069
1070 if (constraints->uV_offset)
1071 count += scnprintf(buf + count, len - count, "%dmV offset ",
1072 constraints->uV_offset / 1000);
1073
1074 if (constraints->min_uA && constraints->max_uA) {
1075 if (constraints->min_uA == constraints->max_uA)
1076 count += scnprintf(buf + count, len - count, "%d mA ",
1077 constraints->min_uA / 1000);
1078 else
1079 count += scnprintf(buf + count, len - count,
1080 "%d <--> %d mA ",
1081 constraints->min_uA / 1000,
1082 constraints->max_uA / 1000);
1083 }
1084
1085 if (!constraints->min_uA ||
1086 constraints->min_uA != constraints->max_uA) {
1087 ret = _regulator_get_current_limit(rdev);
1088 if (ret > 0)
1089 count += scnprintf(buf + count, len - count,
1090 "at %d mA ", ret / 1000);
1091 }
1092
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094 count += scnprintf(buf + count, len - count, "fast ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096 count += scnprintf(buf + count, len - count, "normal ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098 count += scnprintf(buf + count, len - count, "idle ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100 count += scnprintf(buf + count, len - count, "standby");
1101
1102 if (!count)
1103 scnprintf(buf, len, "no parameters");
1104
1105 rdev_dbg(rdev, "%s\n", buf);
1106
1107 if ((constraints->min_uV != constraints->max_uV) &&
1108 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109 rdev_warn(rdev,
1110 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111}
1112
1113static int machine_constraints_voltage(struct regulator_dev *rdev,
1114 struct regulation_constraints *constraints)
1115{
1116 const struct regulator_ops *ops = rdev->desc->ops;
1117 int ret;
1118
1119 /* do we need to apply the constraint voltage */
1120 if (rdev->constraints->apply_uV &&
1121 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122 int target_min, target_max;
1123 int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125 if (current_uV == -ENOTRECOVERABLE) {
1126 /* This regulator can't be read and must be initialized */
1127 rdev_info(rdev, "Setting %d-%duV\n",
1128 rdev->constraints->min_uV,
1129 rdev->constraints->max_uV);
1130 _regulator_do_set_voltage(rdev,
1131 rdev->constraints->min_uV,
1132 rdev->constraints->max_uV);
1133 current_uV = regulator_get_voltage_rdev(rdev);
1134 }
1135
1136 if (current_uV < 0) {
1137 rdev_err(rdev,
1138 "failed to get the current voltage(%d)\n",
1139 current_uV);
1140 return current_uV;
1141 }
1142
1143 /*
1144 * If we're below the minimum voltage move up to the
1145 * minimum voltage, if we're above the maximum voltage
1146 * then move down to the maximum.
1147 */
1148 target_min = current_uV;
1149 target_max = current_uV;
1150
1151 if (current_uV < rdev->constraints->min_uV) {
1152 target_min = rdev->constraints->min_uV;
1153 target_max = rdev->constraints->min_uV;
1154 }
1155
1156 if (current_uV > rdev->constraints->max_uV) {
1157 target_min = rdev->constraints->max_uV;
1158 target_max = rdev->constraints->max_uV;
1159 }
1160
1161 if (target_min != current_uV || target_max != current_uV) {
1162 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163 current_uV, target_min, target_max);
1164 ret = _regulator_do_set_voltage(
1165 rdev, target_min, target_max);
1166 if (ret < 0) {
1167 rdev_err(rdev,
1168 "failed to apply %d-%duV constraint(%d)\n",
1169 target_min, target_max, ret);
1170 return ret;
1171 }
1172 }
1173 }
1174
1175 /* constrain machine-level voltage specs to fit
1176 * the actual range supported by this regulator.
1177 */
1178 if (ops->list_voltage && rdev->desc->n_voltages) {
1179 int count = rdev->desc->n_voltages;
1180 int i;
1181 int min_uV = INT_MAX;
1182 int max_uV = INT_MIN;
1183 int cmin = constraints->min_uV;
1184 int cmax = constraints->max_uV;
1185
1186 /* it's safe to autoconfigure fixed-voltage supplies
1187 and the constraints are used by list_voltage. */
1188 if (count == 1 && !cmin) {
1189 cmin = 1;
1190 cmax = INT_MAX;
1191 constraints->min_uV = cmin;
1192 constraints->max_uV = cmax;
1193 }
1194
1195 /* voltage constraints are optional */
1196 if ((cmin == 0) && (cmax == 0))
1197 return 0;
1198
1199 /* else require explicit machine-level constraints */
1200 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201 rdev_err(rdev, "invalid voltage constraints\n");
1202 return -EINVAL;
1203 }
1204
1205 /* no need to loop voltages if range is continuous */
1206 if (rdev->desc->continuous_voltage_range)
1207 return 0;
1208
1209 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210 for (i = 0; i < count; i++) {
1211 int value;
1212
1213 value = ops->list_voltage(rdev, i);
1214 if (value <= 0)
1215 continue;
1216
1217 /* maybe adjust [min_uV..max_uV] */
1218 if (value >= cmin && value < min_uV)
1219 min_uV = value;
1220 if (value <= cmax && value > max_uV)
1221 max_uV = value;
1222 }
1223
1224 /* final: [min_uV..max_uV] valid iff constraints valid */
1225 if (max_uV < min_uV) {
1226 rdev_err(rdev,
1227 "unsupportable voltage constraints %u-%uuV\n",
1228 min_uV, max_uV);
1229 return -EINVAL;
1230 }
1231
1232 /* use regulator's subset of machine constraints */
1233 if (constraints->min_uV < min_uV) {
1234 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235 constraints->min_uV, min_uV);
1236 constraints->min_uV = min_uV;
1237 }
1238 if (constraints->max_uV > max_uV) {
1239 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240 constraints->max_uV, max_uV);
1241 constraints->max_uV = max_uV;
1242 }
1243 }
1244
1245 return 0;
1246}
1247
1248static int machine_constraints_current(struct regulator_dev *rdev,
1249 struct regulation_constraints *constraints)
1250{
1251 const struct regulator_ops *ops = rdev->desc->ops;
1252 int ret;
1253
1254 if (!constraints->min_uA && !constraints->max_uA)
1255 return 0;
1256
1257 if (constraints->min_uA > constraints->max_uA) {
1258 rdev_err(rdev, "Invalid current constraints\n");
1259 return -EINVAL;
1260 }
1261
1262 if (!ops->set_current_limit || !ops->get_current_limit) {
1263 rdev_warn(rdev, "Operation of current configuration missing\n");
1264 return 0;
1265 }
1266
1267 /* Set regulator current in constraints range */
1268 ret = ops->set_current_limit(rdev, constraints->min_uA,
1269 constraints->max_uA);
1270 if (ret < 0) {
1271 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272 return ret;
1273 }
1274
1275 return 0;
1276}
1277
1278static int _regulator_do_enable(struct regulator_dev *rdev);
1279
1280/**
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1284 *
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1290 */
1291static int set_machine_constraints(struct regulator_dev *rdev,
1292 const struct regulation_constraints *constraints)
1293{
1294 int ret = 0;
1295 const struct regulator_ops *ops = rdev->desc->ops;
1296
1297 if (constraints)
1298 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299 GFP_KERNEL);
1300 else
1301 rdev->constraints = kzalloc(sizeof(*constraints),
1302 GFP_KERNEL);
1303 if (!rdev->constraints)
1304 return -ENOMEM;
1305
1306 ret = machine_constraints_voltage(rdev, rdev->constraints);
1307 if (ret != 0)
1308 return ret;
1309
1310 ret = machine_constraints_current(rdev, rdev->constraints);
1311 if (ret != 0)
1312 return ret;
1313
1314 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315 ret = ops->set_input_current_limit(rdev,
1316 rdev->constraints->ilim_uA);
1317 if (ret < 0) {
1318 rdev_err(rdev, "failed to set input limit\n");
1319 return ret;
1320 }
1321 }
1322
1323 /* do we need to setup our suspend state */
1324 if (rdev->constraints->initial_state) {
1325 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326 if (ret < 0) {
1327 rdev_err(rdev, "failed to set suspend state\n");
1328 return ret;
1329 }
1330 }
1331
1332 if (rdev->constraints->initial_mode) {
1333 if (!ops->set_mode) {
1334 rdev_err(rdev, "no set_mode operation\n");
1335 return -EINVAL;
1336 }
1337
1338 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339 if (ret < 0) {
1340 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341 return ret;
1342 }
1343 } else if (rdev->constraints->system_load) {
1344 /*
1345 * We'll only apply the initial system load if an
1346 * initial mode wasn't specified.
1347 */
1348 drms_uA_update(rdev);
1349 }
1350
1351 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352 && ops->set_ramp_delay) {
1353 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354 if (ret < 0) {
1355 rdev_err(rdev, "failed to set ramp_delay\n");
1356 return ret;
1357 }
1358 }
1359
1360 if (rdev->constraints->pull_down && ops->set_pull_down) {
1361 ret = ops->set_pull_down(rdev);
1362 if (ret < 0) {
1363 rdev_err(rdev, "failed to set pull down\n");
1364 return ret;
1365 }
1366 }
1367
1368 if (rdev->constraints->soft_start && ops->set_soft_start) {
1369 ret = ops->set_soft_start(rdev);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set soft start\n");
1372 return ret;
1373 }
1374 }
1375
1376 if (rdev->constraints->over_current_protection
1377 && ops->set_over_current_protection) {
1378 ret = ops->set_over_current_protection(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set over current protection\n");
1381 return ret;
1382 }
1383 }
1384
1385 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386 bool ad_state = (rdev->constraints->active_discharge ==
1387 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389 ret = ops->set_active_discharge(rdev, ad_state);
1390 if (ret < 0) {
1391 rdev_err(rdev, "failed to set active discharge\n");
1392 return ret;
1393 }
1394 }
1395
1396 /* If the constraints say the regulator should be on at this point
1397 * and we have control then make sure it is enabled.
1398 */
1399 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400 if (rdev->supply) {
1401 ret = regulator_enable(rdev->supply);
1402 if (ret < 0) {
1403 _regulator_put(rdev->supply);
1404 rdev->supply = NULL;
1405 return ret;
1406 }
1407 }
1408
1409 ret = _regulator_do_enable(rdev);
1410 if (ret < 0 && ret != -EINVAL) {
1411 rdev_err(rdev, "failed to enable\n");
1412 return ret;
1413 }
1414
1415 if (rdev->constraints->always_on)
1416 rdev->use_count++;
1417 }
1418
1419 print_constraints(rdev);
1420 return 0;
1421}
1422
1423/**
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1427 *
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1431 */
1432static int set_supply(struct regulator_dev *rdev,
1433 struct regulator_dev *supply_rdev)
1434{
1435 int err;
1436
1437 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439 if (!try_module_get(supply_rdev->owner))
1440 return -ENODEV;
1441
1442 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443 if (rdev->supply == NULL) {
1444 err = -ENOMEM;
1445 return err;
1446 }
1447 supply_rdev->open_count++;
1448
1449 return 0;
1450}
1451
1452/**
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev: regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply: symbolic name for supply
1457 *
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices. Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1462 */
1463static int set_consumer_device_supply(struct regulator_dev *rdev,
1464 const char *consumer_dev_name,
1465 const char *supply)
1466{
1467 struct regulator_map *node, *new_node;
1468 int has_dev;
1469
1470 if (supply == NULL)
1471 return -EINVAL;
1472
1473 if (consumer_dev_name != NULL)
1474 has_dev = 1;
1475 else
1476 has_dev = 0;
1477
1478 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479 if (new_node == NULL)
1480 return -ENOMEM;
1481
1482 new_node->regulator = rdev;
1483 new_node->supply = supply;
1484
1485 if (has_dev) {
1486 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487 if (new_node->dev_name == NULL) {
1488 kfree(new_node);
1489 return -ENOMEM;
1490 }
1491 }
1492
1493 mutex_lock(®ulator_list_mutex);
1494 list_for_each_entry(node, ®ulator_map_list, list) {
1495 if (node->dev_name && consumer_dev_name) {
1496 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497 continue;
1498 } else if (node->dev_name || consumer_dev_name) {
1499 continue;
1500 }
1501
1502 if (strcmp(node->supply, supply) != 0)
1503 continue;
1504
1505 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506 consumer_dev_name,
1507 dev_name(&node->regulator->dev),
1508 node->regulator->desc->name,
1509 supply,
1510 dev_name(&rdev->dev), rdev_get_name(rdev));
1511 goto fail;
1512 }
1513
1514 list_add(&new_node->list, ®ulator_map_list);
1515 mutex_unlock(®ulator_list_mutex);
1516
1517 return 0;
1518
1519fail:
1520 mutex_unlock(®ulator_list_mutex);
1521 kfree(new_node->dev_name);
1522 kfree(new_node);
1523 return -EBUSY;
1524}
1525
1526static void unset_regulator_supplies(struct regulator_dev *rdev)
1527{
1528 struct regulator_map *node, *n;
1529
1530 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1531 if (rdev == node->regulator) {
1532 list_del(&node->list);
1533 kfree(node->dev_name);
1534 kfree(node);
1535 }
1536 }
1537}
1538
1539#ifdef CONFIG_DEBUG_FS
1540static ssize_t constraint_flags_read_file(struct file *file,
1541 char __user *user_buf,
1542 size_t count, loff_t *ppos)
1543{
1544 const struct regulator *regulator = file->private_data;
1545 const struct regulation_constraints *c = regulator->rdev->constraints;
1546 char *buf;
1547 ssize_t ret;
1548
1549 if (!c)
1550 return 0;
1551
1552 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553 if (!buf)
1554 return -ENOMEM;
1555
1556 ret = snprintf(buf, PAGE_SIZE,
1557 "always_on: %u\n"
1558 "boot_on: %u\n"
1559 "apply_uV: %u\n"
1560 "ramp_disable: %u\n"
1561 "soft_start: %u\n"
1562 "pull_down: %u\n"
1563 "over_current_protection: %u\n",
1564 c->always_on,
1565 c->boot_on,
1566 c->apply_uV,
1567 c->ramp_disable,
1568 c->soft_start,
1569 c->pull_down,
1570 c->over_current_protection);
1571
1572 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573 kfree(buf);
1574
1575 return ret;
1576}
1577
1578#endif
1579
1580static const struct file_operations constraint_flags_fops = {
1581#ifdef CONFIG_DEBUG_FS
1582 .open = simple_open,
1583 .read = constraint_flags_read_file,
1584 .llseek = default_llseek,
1585#endif
1586};
1587
1588#define REG_STR_SIZE 64
1589
1590static struct regulator *create_regulator(struct regulator_dev *rdev,
1591 struct device *dev,
1592 const char *supply_name)
1593{
1594 struct regulator *regulator;
1595 int err;
1596
1597 if (dev) {
1598 char buf[REG_STR_SIZE];
1599 int size;
1600
1601 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602 dev->kobj.name, supply_name);
1603 if (size >= REG_STR_SIZE)
1604 return NULL;
1605
1606 supply_name = kstrdup(buf, GFP_KERNEL);
1607 if (supply_name == NULL)
1608 return NULL;
1609 } else {
1610 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 if (supply_name == NULL)
1612 return NULL;
1613 }
1614
1615 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616 if (regulator == NULL) {
1617 kfree(supply_name);
1618 return NULL;
1619 }
1620
1621 regulator->rdev = rdev;
1622 regulator->supply_name = supply_name;
1623
1624 regulator_lock(rdev);
1625 list_add(®ulator->list, &rdev->consumer_list);
1626 regulator_unlock(rdev);
1627
1628 if (dev) {
1629 regulator->dev = dev;
1630
1631 /* Add a link to the device sysfs entry */
1632 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633 supply_name);
1634 if (err) {
1635 rdev_dbg(rdev, "could not add device link %s err %d\n",
1636 dev->kobj.name, err);
1637 /* non-fatal */
1638 }
1639 }
1640
1641 regulator->debugfs = debugfs_create_dir(supply_name,
1642 rdev->debugfs);
1643 if (!regulator->debugfs) {
1644 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645 } else {
1646 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647 ®ulator->uA_load);
1648 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1650 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1652 debugfs_create_file("constraint_flags", 0444,
1653 regulator->debugfs, regulator,
1654 &constraint_flags_fops);
1655 }
1656
1657 /*
1658 * Check now if the regulator is an always on regulator - if
1659 * it is then we don't need to do nearly so much work for
1660 * enable/disable calls.
1661 */
1662 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663 _regulator_is_enabled(rdev))
1664 regulator->always_on = true;
1665
1666 return regulator;
1667}
1668
1669static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670{
1671 if (rdev->constraints && rdev->constraints->enable_time)
1672 return rdev->constraints->enable_time;
1673 if (rdev->desc->ops->enable_time)
1674 return rdev->desc->ops->enable_time(rdev);
1675 return rdev->desc->enable_time;
1676}
1677
1678static struct regulator_supply_alias *regulator_find_supply_alias(
1679 struct device *dev, const char *supply)
1680{
1681 struct regulator_supply_alias *map;
1682
1683 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1684 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685 return map;
1686
1687 return NULL;
1688}
1689
1690static void regulator_supply_alias(struct device **dev, const char **supply)
1691{
1692 struct regulator_supply_alias *map;
1693
1694 map = regulator_find_supply_alias(*dev, *supply);
1695 if (map) {
1696 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697 *supply, map->alias_supply,
1698 dev_name(map->alias_dev));
1699 *dev = map->alias_dev;
1700 *supply = map->alias_supply;
1701 }
1702}
1703
1704static int regulator_match(struct device *dev, const void *data)
1705{
1706 struct regulator_dev *r = dev_to_rdev(dev);
1707
1708 return strcmp(rdev_get_name(r), data) == 0;
1709}
1710
1711static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712{
1713 struct device *dev;
1714
1715 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1716
1717 return dev ? dev_to_rdev(dev) : NULL;
1718}
1719
1720/**
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1724 *
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1731 */
1732static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733 const char *supply)
1734{
1735 struct regulator_dev *r = NULL;
1736 struct device_node *node;
1737 struct regulator_map *map;
1738 const char *devname = NULL;
1739
1740 regulator_supply_alias(&dev, &supply);
1741
1742 /* first do a dt based lookup */
1743 if (dev && dev->of_node) {
1744 node = of_get_regulator(dev, supply);
1745 if (node) {
1746 r = of_find_regulator_by_node(node);
1747 if (r)
1748 return r;
1749
1750 /*
1751 * We have a node, but there is no device.
1752 * assume it has not registered yet.
1753 */
1754 return ERR_PTR(-EPROBE_DEFER);
1755 }
1756 }
1757
1758 /* if not found, try doing it non-dt way */
1759 if (dev)
1760 devname = dev_name(dev);
1761
1762 mutex_lock(®ulator_list_mutex);
1763 list_for_each_entry(map, ®ulator_map_list, list) {
1764 /* If the mapping has a device set up it must match */
1765 if (map->dev_name &&
1766 (!devname || strcmp(map->dev_name, devname)))
1767 continue;
1768
1769 if (strcmp(map->supply, supply) == 0 &&
1770 get_device(&map->regulator->dev)) {
1771 r = map->regulator;
1772 break;
1773 }
1774 }
1775 mutex_unlock(®ulator_list_mutex);
1776
1777 if (r)
1778 return r;
1779
1780 r = regulator_lookup_by_name(supply);
1781 if (r)
1782 return r;
1783
1784 return ERR_PTR(-ENODEV);
1785}
1786
1787static int regulator_resolve_supply(struct regulator_dev *rdev)
1788{
1789 struct regulator_dev *r;
1790 struct device *dev = rdev->dev.parent;
1791 int ret;
1792
1793 /* No supply to resolve? */
1794 if (!rdev->supply_name)
1795 return 0;
1796
1797 /* Supply already resolved? */
1798 if (rdev->supply)
1799 return 0;
1800
1801 r = regulator_dev_lookup(dev, rdev->supply_name);
1802 if (IS_ERR(r)) {
1803 ret = PTR_ERR(r);
1804
1805 /* Did the lookup explicitly defer for us? */
1806 if (ret == -EPROBE_DEFER)
1807 return ret;
1808
1809 if (have_full_constraints()) {
1810 r = dummy_regulator_rdev;
1811 get_device(&r->dev);
1812 } else {
1813 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814 rdev->supply_name, rdev->desc->name);
1815 return -EPROBE_DEFER;
1816 }
1817 }
1818
1819 /*
1820 * If the supply's parent device is not the same as the
1821 * regulator's parent device, then ensure the parent device
1822 * is bound before we resolve the supply, in case the parent
1823 * device get probe deferred and unregisters the supply.
1824 */
1825 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826 if (!device_is_bound(r->dev.parent)) {
1827 put_device(&r->dev);
1828 return -EPROBE_DEFER;
1829 }
1830 }
1831
1832 /* Recursively resolve the supply of the supply */
1833 ret = regulator_resolve_supply(r);
1834 if (ret < 0) {
1835 put_device(&r->dev);
1836 return ret;
1837 }
1838
1839 ret = set_supply(rdev, r);
1840 if (ret < 0) {
1841 put_device(&r->dev);
1842 return ret;
1843 }
1844
1845 /*
1846 * In set_machine_constraints() we may have turned this regulator on
1847 * but we couldn't propagate to the supply if it hadn't been resolved
1848 * yet. Do it now.
1849 */
1850 if (rdev->use_count) {
1851 ret = regulator_enable(rdev->supply);
1852 if (ret < 0) {
1853 _regulator_put(rdev->supply);
1854 rdev->supply = NULL;
1855 return ret;
1856 }
1857 }
1858
1859 return 0;
1860}
1861
1862/* Internal regulator request function */
1863struct regulator *_regulator_get(struct device *dev, const char *id,
1864 enum regulator_get_type get_type)
1865{
1866 struct regulator_dev *rdev;
1867 struct regulator *regulator;
1868 struct device_link *link;
1869 int ret;
1870
1871 if (get_type >= MAX_GET_TYPE) {
1872 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873 return ERR_PTR(-EINVAL);
1874 }
1875
1876 if (id == NULL) {
1877 pr_err("get() with no identifier\n");
1878 return ERR_PTR(-EINVAL);
1879 }
1880
1881 rdev = regulator_dev_lookup(dev, id);
1882 if (IS_ERR(rdev)) {
1883 ret = PTR_ERR(rdev);
1884
1885 /*
1886 * If regulator_dev_lookup() fails with error other
1887 * than -ENODEV our job here is done, we simply return it.
1888 */
1889 if (ret != -ENODEV)
1890 return ERR_PTR(ret);
1891
1892 if (!have_full_constraints()) {
1893 dev_warn(dev,
1894 "incomplete constraints, dummy supplies not allowed\n");
1895 return ERR_PTR(-ENODEV);
1896 }
1897
1898 switch (get_type) {
1899 case NORMAL_GET:
1900 /*
1901 * Assume that a regulator is physically present and
1902 * enabled, even if it isn't hooked up, and just
1903 * provide a dummy.
1904 */
1905 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906 rdev = dummy_regulator_rdev;
1907 get_device(&rdev->dev);
1908 break;
1909
1910 case EXCLUSIVE_GET:
1911 dev_warn(dev,
1912 "dummy supplies not allowed for exclusive requests\n");
1913 fallthrough;
1914
1915 default:
1916 return ERR_PTR(-ENODEV);
1917 }
1918 }
1919
1920 if (rdev->exclusive) {
1921 regulator = ERR_PTR(-EPERM);
1922 put_device(&rdev->dev);
1923 return regulator;
1924 }
1925
1926 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927 regulator = ERR_PTR(-EBUSY);
1928 put_device(&rdev->dev);
1929 return regulator;
1930 }
1931
1932 mutex_lock(®ulator_list_mutex);
1933 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934 mutex_unlock(®ulator_list_mutex);
1935
1936 if (ret != 0) {
1937 regulator = ERR_PTR(-EPROBE_DEFER);
1938 put_device(&rdev->dev);
1939 return regulator;
1940 }
1941
1942 ret = regulator_resolve_supply(rdev);
1943 if (ret < 0) {
1944 regulator = ERR_PTR(ret);
1945 put_device(&rdev->dev);
1946 return regulator;
1947 }
1948
1949 if (!try_module_get(rdev->owner)) {
1950 regulator = ERR_PTR(-EPROBE_DEFER);
1951 put_device(&rdev->dev);
1952 return regulator;
1953 }
1954
1955 regulator = create_regulator(rdev, dev, id);
1956 if (regulator == NULL) {
1957 regulator = ERR_PTR(-ENOMEM);
1958 module_put(rdev->owner);
1959 put_device(&rdev->dev);
1960 return regulator;
1961 }
1962
1963 rdev->open_count++;
1964 if (get_type == EXCLUSIVE_GET) {
1965 rdev->exclusive = 1;
1966
1967 ret = _regulator_is_enabled(rdev);
1968 if (ret > 0)
1969 rdev->use_count = 1;
1970 else
1971 rdev->use_count = 0;
1972 }
1973
1974 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975 if (!IS_ERR_OR_NULL(link))
1976 regulator->device_link = true;
1977
1978 return regulator;
1979}
1980
1981/**
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1985 *
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1988 *
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged. It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1993 */
1994struct regulator *regulator_get(struct device *dev, const char *id)
1995{
1996 return _regulator_get(dev, id, NORMAL_GET);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get);
1999
2000/**
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2004 *
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno. Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2010 *
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2015 *
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged. It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2020 */
2021struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022{
2023 return _regulator_get(dev, id, EXCLUSIVE_GET);
2024}
2025EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027/**
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2031 *
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2034 *
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2041 *
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged. It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2046 */
2047struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048{
2049 return _regulator_get(dev, id, OPTIONAL_GET);
2050}
2051EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053static void destroy_regulator(struct regulator *regulator)
2054{
2055 struct regulator_dev *rdev = regulator->rdev;
2056
2057 debugfs_remove_recursive(regulator->debugfs);
2058
2059 if (regulator->dev) {
2060 if (regulator->device_link)
2061 device_link_remove(regulator->dev, &rdev->dev);
2062
2063 /* remove any sysfs entries */
2064 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065 }
2066
2067 regulator_lock(rdev);
2068 list_del(®ulator->list);
2069
2070 rdev->open_count--;
2071 rdev->exclusive = 0;
2072 regulator_unlock(rdev);
2073
2074 kfree_const(regulator->supply_name);
2075 kfree(regulator);
2076}
2077
2078/* regulator_list_mutex lock held by regulator_put() */
2079static void _regulator_put(struct regulator *regulator)
2080{
2081 struct regulator_dev *rdev;
2082
2083 if (IS_ERR_OR_NULL(regulator))
2084 return;
2085
2086 lockdep_assert_held_once(®ulator_list_mutex);
2087
2088 /* Docs say you must disable before calling regulator_put() */
2089 WARN_ON(regulator->enable_count);
2090
2091 rdev = regulator->rdev;
2092
2093 destroy_regulator(regulator);
2094
2095 module_put(rdev->owner);
2096 put_device(&rdev->dev);
2097}
2098
2099/**
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2102 *
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2106 */
2107void regulator_put(struct regulator *regulator)
2108{
2109 mutex_lock(®ulator_list_mutex);
2110 _regulator_put(regulator);
2111 mutex_unlock(®ulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_put);
2114
2115/**
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2117 *
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2123 *
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2126 */
2127int regulator_register_supply_alias(struct device *dev, const char *id,
2128 struct device *alias_dev,
2129 const char *alias_id)
2130{
2131 struct regulator_supply_alias *map;
2132
2133 map = regulator_find_supply_alias(dev, id);
2134 if (map)
2135 return -EEXIST;
2136
2137 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138 if (!map)
2139 return -ENOMEM;
2140
2141 map->src_dev = dev;
2142 map->src_supply = id;
2143 map->alias_dev = alias_dev;
2144 map->alias_supply = alias_id;
2145
2146 list_add(&map->list, ®ulator_supply_alias_list);
2147
2148 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149 id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151 return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155/**
2156 * regulator_unregister_supply_alias - Remove device alias
2157 *
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2160 *
2161 * Remove a lookup alias if one exists for id on dev.
2162 */
2163void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164{
2165 struct regulator_supply_alias *map;
2166
2167 map = regulator_find_supply_alias(dev, id);
2168 if (map) {
2169 list_del(&map->list);
2170 kfree(map);
2171 }
2172}
2173EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175/**
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2177 *
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2184 *
2185 * @return 0 on success, an errno on failure.
2186 *
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation. If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2191 */
2192int regulator_bulk_register_supply_alias(struct device *dev,
2193 const char *const *id,
2194 struct device *alias_dev,
2195 const char *const *alias_id,
2196 int num_id)
2197{
2198 int i;
2199 int ret;
2200
2201 for (i = 0; i < num_id; ++i) {
2202 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203 alias_id[i]);
2204 if (ret < 0)
2205 goto err;
2206 }
2207
2208 return 0;
2209
2210err:
2211 dev_err(dev,
2212 "Failed to create supply alias %s,%s -> %s,%s\n",
2213 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215 while (--i >= 0)
2216 regulator_unregister_supply_alias(dev, id[i]);
2217
2218 return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222/**
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224 *
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2228 *
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2231 */
2232void regulator_bulk_unregister_supply_alias(struct device *dev,
2233 const char *const *id,
2234 int num_id)
2235{
2236 int i;
2237
2238 for (i = 0; i < num_id; ++i)
2239 regulator_unregister_supply_alias(dev, id[i]);
2240}
2241EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246 const struct regulator_config *config)
2247{
2248 struct regulator_enable_gpio *pin, *new_pin;
2249 struct gpio_desc *gpiod;
2250
2251 gpiod = config->ena_gpiod;
2252 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254 mutex_lock(®ulator_list_mutex);
2255
2256 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2257 if (pin->gpiod == gpiod) {
2258 rdev_dbg(rdev, "GPIO is already used\n");
2259 goto update_ena_gpio_to_rdev;
2260 }
2261 }
2262
2263 if (new_pin == NULL) {
2264 mutex_unlock(®ulator_list_mutex);
2265 return -ENOMEM;
2266 }
2267
2268 pin = new_pin;
2269 new_pin = NULL;
2270
2271 pin->gpiod = gpiod;
2272 list_add(&pin->list, ®ulator_ena_gpio_list);
2273
2274update_ena_gpio_to_rdev:
2275 pin->request_count++;
2276 rdev->ena_pin = pin;
2277
2278 mutex_unlock(®ulator_list_mutex);
2279 kfree(new_pin);
2280
2281 return 0;
2282}
2283
2284static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285{
2286 struct regulator_enable_gpio *pin, *n;
2287
2288 if (!rdev->ena_pin)
2289 return;
2290
2291 /* Free the GPIO only in case of no use */
2292 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2293 if (pin != rdev->ena_pin)
2294 continue;
2295
2296 if (--pin->request_count)
2297 break;
2298
2299 gpiod_put(pin->gpiod);
2300 list_del(&pin->list);
2301 kfree(pin);
2302 break;
2303 }
2304
2305 rdev->ena_pin = NULL;
2306}
2307
2308/**
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2312 *
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315 */
2316static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317{
2318 struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320 if (!pin)
2321 return -EINVAL;
2322
2323 if (enable) {
2324 /* Enable GPIO at initial use */
2325 if (pin->enable_count == 0)
2326 gpiod_set_value_cansleep(pin->gpiod, 1);
2327
2328 pin->enable_count++;
2329 } else {
2330 if (pin->enable_count > 1) {
2331 pin->enable_count--;
2332 return 0;
2333 }
2334
2335 /* Disable GPIO if not used */
2336 if (pin->enable_count <= 1) {
2337 gpiod_set_value_cansleep(pin->gpiod, 0);
2338 pin->enable_count = 0;
2339 }
2340 }
2341
2342 return 0;
2343}
2344
2345/**
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2348 *
2349 * Delay for the requested amount of time as per the guidelines in:
2350 *
2351 * Documentation/timers/timers-howto.rst
2352 *
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2355 */
2356static void _regulator_enable_delay(unsigned int delay)
2357{
2358 unsigned int ms = delay / 1000;
2359 unsigned int us = delay % 1000;
2360
2361 if (ms > 0) {
2362 /*
2363 * For small enough values, handle super-millisecond
2364 * delays in the usleep_range() call below.
2365 */
2366 if (ms < 20)
2367 us += ms * 1000;
2368 else
2369 msleep(ms);
2370 }
2371
2372 /*
2373 * Give the scheduler some room to coalesce with any other
2374 * wakeup sources. For delays shorter than 10 us, don't even
2375 * bother setting up high-resolution timers and just busy-
2376 * loop.
2377 */
2378 if (us >= 10)
2379 usleep_range(us, us + 100);
2380 else
2381 udelay(us);
2382}
2383
2384/**
2385 * _regulator_check_status_enabled
2386 *
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2390 *
2391 * Return:
2392 * * 1 - if status shows regulator is in enabled state
2393 * * 0 - if not enabled state
2394 * * Error Value - as received from ops->get_status()
2395 */
2396static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397{
2398 int ret = rdev->desc->ops->get_status(rdev);
2399
2400 if (ret < 0) {
2401 rdev_info(rdev, "get_status returned error: %d\n", ret);
2402 return ret;
2403 }
2404
2405 switch (ret) {
2406 case REGULATOR_STATUS_OFF:
2407 case REGULATOR_STATUS_ERROR:
2408 case REGULATOR_STATUS_UNDEFINED:
2409 return 0;
2410 default:
2411 return 1;
2412 }
2413}
2414
2415static int _regulator_do_enable(struct regulator_dev *rdev)
2416{
2417 int ret, delay;
2418
2419 /* Query before enabling in case configuration dependent. */
2420 ret = _regulator_get_enable_time(rdev);
2421 if (ret >= 0) {
2422 delay = ret;
2423 } else {
2424 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425 delay = 0;
2426 }
2427
2428 trace_regulator_enable(rdev_get_name(rdev));
2429
2430 if (rdev->desc->off_on_delay) {
2431 /* if needed, keep a distance of off_on_delay from last time
2432 * this regulator was disabled.
2433 */
2434 unsigned long start_jiffy = jiffies;
2435 unsigned long intended, max_delay, remaining;
2436
2437 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438 intended = rdev->last_off_jiffy + max_delay;
2439
2440 if (time_before(start_jiffy, intended)) {
2441 /* calc remaining jiffies to deal with one-time
2442 * timer wrapping.
2443 * in case of multiple timer wrapping, either it can be
2444 * detected by out-of-range remaining, or it cannot be
2445 * detected and we get a penalty of
2446 * _regulator_enable_delay().
2447 */
2448 remaining = intended - start_jiffy;
2449 if (remaining <= max_delay)
2450 _regulator_enable_delay(
2451 jiffies_to_usecs(remaining));
2452 }
2453 }
2454
2455 if (rdev->ena_pin) {
2456 if (!rdev->ena_gpio_state) {
2457 ret = regulator_ena_gpio_ctrl(rdev, true);
2458 if (ret < 0)
2459 return ret;
2460 rdev->ena_gpio_state = 1;
2461 }
2462 } else if (rdev->desc->ops->enable) {
2463 ret = rdev->desc->ops->enable(rdev);
2464 if (ret < 0)
2465 return ret;
2466 } else {
2467 return -EINVAL;
2468 }
2469
2470 /* Allow the regulator to ramp; it would be useful to extend
2471 * this for bulk operations so that the regulators can ramp
2472 * together. */
2473 trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475 /* If poll_enabled_time is set, poll upto the delay calculated
2476 * above, delaying poll_enabled_time uS to check if the regulator
2477 * actually got enabled.
2478 * If the regulator isn't enabled after enable_delay has
2479 * expired, return -ETIMEDOUT.
2480 */
2481 if (rdev->desc->poll_enabled_time) {
2482 unsigned int time_remaining = delay;
2483
2484 while (time_remaining > 0) {
2485 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487 if (rdev->desc->ops->get_status) {
2488 ret = _regulator_check_status_enabled(rdev);
2489 if (ret < 0)
2490 return ret;
2491 else if (ret)
2492 break;
2493 } else if (rdev->desc->ops->is_enabled(rdev))
2494 break;
2495
2496 time_remaining -= rdev->desc->poll_enabled_time;
2497 }
2498
2499 if (time_remaining <= 0) {
2500 rdev_err(rdev, "Enabled check timed out\n");
2501 return -ETIMEDOUT;
2502 }
2503 } else {
2504 _regulator_enable_delay(delay);
2505 }
2506
2507 trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509 return 0;
2510}
2511
2512/**
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2515 *
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled. Explained in example with two consumers of the same
2519 * regulator:
2520 * consumer A: set_load(100); => total load = 0
2521 * consumer A: regulator_enable(); => total load = 100
2522 * consumer B: set_load(1000); => total load = 100
2523 * consumer B: regulator_enable(); => total load = 1100
2524 * consumer A: regulator_disable(); => total_load = 1000
2525 *
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2529 *
2530 * Returns 0 upon no error; -error upon error.
2531 */
2532static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533{
2534 struct regulator_dev *rdev = regulator->rdev;
2535
2536 lockdep_assert_held_once(&rdev->mutex.base);
2537
2538 regulator->enable_count++;
2539 if (regulator->uA_load && regulator->enable_count == 1)
2540 return drms_uA_update(rdev);
2541
2542 return 0;
2543}
2544
2545/**
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2548 *
2549 * The opposite of _regulator_handle_consumer_enable().
2550 *
2551 * Returns 0 upon no error; -error upon error.
2552 */
2553static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554{
2555 struct regulator_dev *rdev = regulator->rdev;
2556
2557 lockdep_assert_held_once(&rdev->mutex.base);
2558
2559 if (!regulator->enable_count) {
2560 rdev_err(rdev, "Underflow of regulator enable count\n");
2561 return -EINVAL;
2562 }
2563
2564 regulator->enable_count--;
2565 if (regulator->uA_load && regulator->enable_count == 0)
2566 return drms_uA_update(rdev);
2567
2568 return 0;
2569}
2570
2571/* locks held by regulator_enable() */
2572static int _regulator_enable(struct regulator *regulator)
2573{
2574 struct regulator_dev *rdev = regulator->rdev;
2575 int ret;
2576
2577 lockdep_assert_held_once(&rdev->mutex.base);
2578
2579 if (rdev->use_count == 0 && rdev->supply) {
2580 ret = _regulator_enable(rdev->supply);
2581 if (ret < 0)
2582 return ret;
2583 }
2584
2585 /* balance only if there are regulators coupled */
2586 if (rdev->coupling_desc.n_coupled > 1) {
2587 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588 if (ret < 0)
2589 goto err_disable_supply;
2590 }
2591
2592 ret = _regulator_handle_consumer_enable(regulator);
2593 if (ret < 0)
2594 goto err_disable_supply;
2595
2596 if (rdev->use_count == 0) {
2597 /* The regulator may on if it's not switchable or left on */
2598 ret = _regulator_is_enabled(rdev);
2599 if (ret == -EINVAL || ret == 0) {
2600 if (!regulator_ops_is_valid(rdev,
2601 REGULATOR_CHANGE_STATUS)) {
2602 ret = -EPERM;
2603 goto err_consumer_disable;
2604 }
2605
2606 ret = _regulator_do_enable(rdev);
2607 if (ret < 0)
2608 goto err_consumer_disable;
2609
2610 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611 NULL);
2612 } else if (ret < 0) {
2613 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614 goto err_consumer_disable;
2615 }
2616 /* Fallthrough on positive return values - already enabled */
2617 }
2618
2619 rdev->use_count++;
2620
2621 return 0;
2622
2623err_consumer_disable:
2624 _regulator_handle_consumer_disable(regulator);
2625
2626err_disable_supply:
2627 if (rdev->use_count == 0 && rdev->supply)
2628 _regulator_disable(rdev->supply);
2629
2630 return ret;
2631}
2632
2633/**
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2636 *
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value. Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2640 *
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2643 */
2644int regulator_enable(struct regulator *regulator)
2645{
2646 struct regulator_dev *rdev = regulator->rdev;
2647 struct ww_acquire_ctx ww_ctx;
2648 int ret;
2649
2650 regulator_lock_dependent(rdev, &ww_ctx);
2651 ret = _regulator_enable(regulator);
2652 regulator_unlock_dependent(rdev, &ww_ctx);
2653
2654 return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658static int _regulator_do_disable(struct regulator_dev *rdev)
2659{
2660 int ret;
2661
2662 trace_regulator_disable(rdev_get_name(rdev));
2663
2664 if (rdev->ena_pin) {
2665 if (rdev->ena_gpio_state) {
2666 ret = regulator_ena_gpio_ctrl(rdev, false);
2667 if (ret < 0)
2668 return ret;
2669 rdev->ena_gpio_state = 0;
2670 }
2671
2672 } else if (rdev->desc->ops->disable) {
2673 ret = rdev->desc->ops->disable(rdev);
2674 if (ret != 0)
2675 return ret;
2676 }
2677
2678 /* cares about last_off_jiffy only if off_on_delay is required by
2679 * device.
2680 */
2681 if (rdev->desc->off_on_delay)
2682 rdev->last_off_jiffy = jiffies;
2683
2684 trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686 return 0;
2687}
2688
2689/* locks held by regulator_disable() */
2690static int _regulator_disable(struct regulator *regulator)
2691{
2692 struct regulator_dev *rdev = regulator->rdev;
2693 int ret = 0;
2694
2695 lockdep_assert_held_once(&rdev->mutex.base);
2696
2697 if (WARN(rdev->use_count <= 0,
2698 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699 return -EIO;
2700
2701 /* are we the last user and permitted to disable ? */
2702 if (rdev->use_count == 1 &&
2703 (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705 /* we are last user */
2706 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707 ret = _notifier_call_chain(rdev,
2708 REGULATOR_EVENT_PRE_DISABLE,
2709 NULL);
2710 if (ret & NOTIFY_STOP_MASK)
2711 return -EINVAL;
2712
2713 ret = _regulator_do_disable(rdev);
2714 if (ret < 0) {
2715 rdev_err(rdev, "failed to disable\n");
2716 _notifier_call_chain(rdev,
2717 REGULATOR_EVENT_ABORT_DISABLE,
2718 NULL);
2719 return ret;
2720 }
2721 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722 NULL);
2723 }
2724
2725 rdev->use_count = 0;
2726 } else if (rdev->use_count > 1) {
2727 rdev->use_count--;
2728 }
2729
2730 if (ret == 0)
2731 ret = _regulator_handle_consumer_disable(regulator);
2732
2733 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737 ret = _regulator_disable(rdev->supply);
2738
2739 return ret;
2740}
2741
2742/**
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2745 *
2746 * Disable the regulator output voltage or current. Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2749 *
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2753 */
2754int regulator_disable(struct regulator *regulator)
2755{
2756 struct regulator_dev *rdev = regulator->rdev;
2757 struct ww_acquire_ctx ww_ctx;
2758 int ret;
2759
2760 regulator_lock_dependent(rdev, &ww_ctx);
2761 ret = _regulator_disable(regulator);
2762 regulator_unlock_dependent(rdev, &ww_ctx);
2763
2764 return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768/* locks held by regulator_force_disable() */
2769static int _regulator_force_disable(struct regulator_dev *rdev)
2770{
2771 int ret = 0;
2772
2773 lockdep_assert_held_once(&rdev->mutex.base);
2774
2775 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776 REGULATOR_EVENT_PRE_DISABLE, NULL);
2777 if (ret & NOTIFY_STOP_MASK)
2778 return -EINVAL;
2779
2780 ret = _regulator_do_disable(rdev);
2781 if (ret < 0) {
2782 rdev_err(rdev, "failed to force disable\n");
2783 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785 return ret;
2786 }
2787
2788 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789 REGULATOR_EVENT_DISABLE, NULL);
2790
2791 return 0;
2792}
2793
2794/**
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2797 *
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802 */
2803int regulator_force_disable(struct regulator *regulator)
2804{
2805 struct regulator_dev *rdev = regulator->rdev;
2806 struct ww_acquire_ctx ww_ctx;
2807 int ret;
2808
2809 regulator_lock_dependent(rdev, &ww_ctx);
2810
2811 ret = _regulator_force_disable(regulator->rdev);
2812
2813 if (rdev->coupling_desc.n_coupled > 1)
2814 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816 if (regulator->uA_load) {
2817 regulator->uA_load = 0;
2818 ret = drms_uA_update(rdev);
2819 }
2820
2821 if (rdev->use_count != 0 && rdev->supply)
2822 _regulator_disable(rdev->supply);
2823
2824 regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826 return ret;
2827}
2828EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830static void regulator_disable_work(struct work_struct *work)
2831{
2832 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833 disable_work.work);
2834 struct ww_acquire_ctx ww_ctx;
2835 int count, i, ret;
2836 struct regulator *regulator;
2837 int total_count = 0;
2838
2839 regulator_lock_dependent(rdev, &ww_ctx);
2840
2841 /*
2842 * Workqueue functions queue the new work instance while the previous
2843 * work instance is being processed. Cancel the queued work instance
2844 * as the work instance under processing does the job of the queued
2845 * work instance.
2846 */
2847 cancel_delayed_work(&rdev->disable_work);
2848
2849 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850 count = regulator->deferred_disables;
2851
2852 if (!count)
2853 continue;
2854
2855 total_count += count;
2856 regulator->deferred_disables = 0;
2857
2858 for (i = 0; i < count; i++) {
2859 ret = _regulator_disable(regulator);
2860 if (ret != 0)
2861 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2862 }
2863 }
2864 WARN_ON(!total_count);
2865
2866 if (rdev->coupling_desc.n_coupled > 1)
2867 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869 regulator_unlock_dependent(rdev, &ww_ctx);
2870}
2871
2872/**
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2876 *
2877 * Execute regulator_disable() on the regulator after a delay. This
2878 * is intended for use with devices that require some time to quiesce.
2879 *
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2883 */
2884int regulator_disable_deferred(struct regulator *regulator, int ms)
2885{
2886 struct regulator_dev *rdev = regulator->rdev;
2887
2888 if (!ms)
2889 return regulator_disable(regulator);
2890
2891 regulator_lock(rdev);
2892 regulator->deferred_disables++;
2893 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894 msecs_to_jiffies(ms));
2895 regulator_unlock(rdev);
2896
2897 return 0;
2898}
2899EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901static int _regulator_is_enabled(struct regulator_dev *rdev)
2902{
2903 /* A GPIO control always takes precedence */
2904 if (rdev->ena_pin)
2905 return rdev->ena_gpio_state;
2906
2907 /* If we don't know then assume that the regulator is always on */
2908 if (!rdev->desc->ops->is_enabled)
2909 return 1;
2910
2911 return rdev->desc->ops->is_enabled(rdev);
2912}
2913
2914static int _regulator_list_voltage(struct regulator_dev *rdev,
2915 unsigned selector, int lock)
2916{
2917 const struct regulator_ops *ops = rdev->desc->ops;
2918 int ret;
2919
2920 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921 return rdev->desc->fixed_uV;
2922
2923 if (ops->list_voltage) {
2924 if (selector >= rdev->desc->n_voltages)
2925 return -EINVAL;
2926 if (lock)
2927 regulator_lock(rdev);
2928 ret = ops->list_voltage(rdev, selector);
2929 if (lock)
2930 regulator_unlock(rdev);
2931 } else if (rdev->is_switch && rdev->supply) {
2932 ret = _regulator_list_voltage(rdev->supply->rdev,
2933 selector, lock);
2934 } else {
2935 return -EINVAL;
2936 }
2937
2938 if (ret > 0) {
2939 if (ret < rdev->constraints->min_uV)
2940 ret = 0;
2941 else if (ret > rdev->constraints->max_uV)
2942 ret = 0;
2943 }
2944
2945 return ret;
2946}
2947
2948/**
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2951 *
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2955 *
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2959 */
2960int regulator_is_enabled(struct regulator *regulator)
2961{
2962 int ret;
2963
2964 if (regulator->always_on)
2965 return 1;
2966
2967 regulator_lock(regulator->rdev);
2968 ret = _regulator_is_enabled(regulator->rdev);
2969 regulator_unlock(regulator->rdev);
2970
2971 return ret;
2972}
2973EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975/**
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2978 *
2979 * Returns number of selectors, or negative errno. Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2982 */
2983int regulator_count_voltages(struct regulator *regulator)
2984{
2985 struct regulator_dev *rdev = regulator->rdev;
2986
2987 if (rdev->desc->n_voltages)
2988 return rdev->desc->n_voltages;
2989
2990 if (!rdev->is_switch || !rdev->supply)
2991 return -EINVAL;
2992
2993 return regulator_count_voltages(rdev->supply);
2994}
2995EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997/**
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3002 *
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3006 */
3007int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008{
3009 return _regulator_list_voltage(regulator->rdev, selector, 1);
3010}
3011EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013/**
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3016 *
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3019 */
3020struct regmap *regulator_get_regmap(struct regulator *regulator)
3021{
3022 struct regmap *map = regulator->rdev->regmap;
3023
3024 return map ? map : ERR_PTR(-EOPNOTSUPP);
3025}
3026
3027/**
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3032 *
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3037 *
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3040 */
3041int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042 unsigned *vsel_reg,
3043 unsigned *vsel_mask)
3044{
3045 struct regulator_dev *rdev = regulator->rdev;
3046 const struct regulator_ops *ops = rdev->desc->ops;
3047
3048 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049 return -EOPNOTSUPP;
3050
3051 *vsel_reg = rdev->desc->vsel_reg;
3052 *vsel_mask = rdev->desc->vsel_mask;
3053
3054 return 0;
3055}
3056EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058/**
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3062 *
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3066 *
3067 * On error a negative errno is returned.
3068 */
3069int regulator_list_hardware_vsel(struct regulator *regulator,
3070 unsigned selector)
3071{
3072 struct regulator_dev *rdev = regulator->rdev;
3073 const struct regulator_ops *ops = rdev->desc->ops;
3074
3075 if (selector >= rdev->desc->n_voltages)
3076 return -EINVAL;
3077 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078 return -EOPNOTSUPP;
3079
3080 return selector;
3081}
3082EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084/**
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3087 *
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3090 */
3091unsigned int regulator_get_linear_step(struct regulator *regulator)
3092{
3093 struct regulator_dev *rdev = regulator->rdev;
3094
3095 return rdev->desc->uV_step;
3096}
3097EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099/**
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3101 *
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3105 *
3106 * Returns a boolean.
3107 */
3108int regulator_is_supported_voltage(struct regulator *regulator,
3109 int min_uV, int max_uV)
3110{
3111 struct regulator_dev *rdev = regulator->rdev;
3112 int i, voltages, ret;
3113
3114 /* If we can't change voltage check the current voltage */
3115 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116 ret = regulator_get_voltage(regulator);
3117 if (ret >= 0)
3118 return min_uV <= ret && ret <= max_uV;
3119 else
3120 return ret;
3121 }
3122
3123 /* Any voltage within constrains range is fine? */
3124 if (rdev->desc->continuous_voltage_range)
3125 return min_uV >= rdev->constraints->min_uV &&
3126 max_uV <= rdev->constraints->max_uV;
3127
3128 ret = regulator_count_voltages(regulator);
3129 if (ret < 0)
3130 return 0;
3131 voltages = ret;
3132
3133 for (i = 0; i < voltages; i++) {
3134 ret = regulator_list_voltage(regulator, i);
3135
3136 if (ret >= min_uV && ret <= max_uV)
3137 return 1;
3138 }
3139
3140 return 0;
3141}
3142EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145 int max_uV)
3146{
3147 const struct regulator_desc *desc = rdev->desc;
3148
3149 if (desc->ops->map_voltage)
3150 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158 if (desc->ops->list_voltage ==
3159 regulator_list_voltage_pickable_linear_range)
3160 return regulator_map_voltage_pickable_linear_range(rdev,
3161 min_uV, max_uV);
3162
3163 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164}
3165
3166static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167 int min_uV, int max_uV,
3168 unsigned *selector)
3169{
3170 struct pre_voltage_change_data data;
3171 int ret;
3172
3173 data.old_uV = regulator_get_voltage_rdev(rdev);
3174 data.min_uV = min_uV;
3175 data.max_uV = max_uV;
3176 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177 &data);
3178 if (ret & NOTIFY_STOP_MASK)
3179 return -EINVAL;
3180
3181 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182 if (ret >= 0)
3183 return ret;
3184
3185 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186 (void *)data.old_uV);
3187
3188 return ret;
3189}
3190
3191static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192 int uV, unsigned selector)
3193{
3194 struct pre_voltage_change_data data;
3195 int ret;
3196
3197 data.old_uV = regulator_get_voltage_rdev(rdev);
3198 data.min_uV = uV;
3199 data.max_uV = uV;
3200 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201 &data);
3202 if (ret & NOTIFY_STOP_MASK)
3203 return -EINVAL;
3204
3205 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206 if (ret >= 0)
3207 return ret;
3208
3209 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210 (void *)data.old_uV);
3211
3212 return ret;
3213}
3214
3215static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216 int uV, int new_selector)
3217{
3218 const struct regulator_ops *ops = rdev->desc->ops;
3219 int diff, old_sel, curr_sel, ret;
3220
3221 /* Stepping is only needed if the regulator is enabled. */
3222 if (!_regulator_is_enabled(rdev))
3223 goto final_set;
3224
3225 if (!ops->get_voltage_sel)
3226 return -EINVAL;
3227
3228 old_sel = ops->get_voltage_sel(rdev);
3229 if (old_sel < 0)
3230 return old_sel;
3231
3232 diff = new_selector - old_sel;
3233 if (diff == 0)
3234 return 0; /* No change needed. */
3235
3236 if (diff > 0) {
3237 /* Stepping up. */
3238 for (curr_sel = old_sel + rdev->desc->vsel_step;
3239 curr_sel < new_selector;
3240 curr_sel += rdev->desc->vsel_step) {
3241 /*
3242 * Call the callback directly instead of using
3243 * _regulator_call_set_voltage_sel() as we don't
3244 * want to notify anyone yet. Same in the branch
3245 * below.
3246 */
3247 ret = ops->set_voltage_sel(rdev, curr_sel);
3248 if (ret)
3249 goto try_revert;
3250 }
3251 } else {
3252 /* Stepping down. */
3253 for (curr_sel = old_sel - rdev->desc->vsel_step;
3254 curr_sel > new_selector;
3255 curr_sel -= rdev->desc->vsel_step) {
3256 ret = ops->set_voltage_sel(rdev, curr_sel);
3257 if (ret)
3258 goto try_revert;
3259 }
3260 }
3261
3262final_set:
3263 /* The final selector will trigger the notifiers. */
3264 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266try_revert:
3267 /*
3268 * At least try to return to the previous voltage if setting a new
3269 * one failed.
3270 */
3271 (void)ops->set_voltage_sel(rdev, old_sel);
3272 return ret;
3273}
3274
3275static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276 int old_uV, int new_uV)
3277{
3278 unsigned int ramp_delay = 0;
3279
3280 if (rdev->constraints->ramp_delay)
3281 ramp_delay = rdev->constraints->ramp_delay;
3282 else if (rdev->desc->ramp_delay)
3283 ramp_delay = rdev->desc->ramp_delay;
3284 else if (rdev->constraints->settling_time)
3285 return rdev->constraints->settling_time;
3286 else if (rdev->constraints->settling_time_up &&
3287 (new_uV > old_uV))
3288 return rdev->constraints->settling_time_up;
3289 else if (rdev->constraints->settling_time_down &&
3290 (new_uV < old_uV))
3291 return rdev->constraints->settling_time_down;
3292
3293 if (ramp_delay == 0) {
3294 rdev_dbg(rdev, "ramp_delay not set\n");
3295 return 0;
3296 }
3297
3298 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299}
3300
3301static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302 int min_uV, int max_uV)
3303{
3304 int ret;
3305 int delay = 0;
3306 int best_val = 0;
3307 unsigned int selector;
3308 int old_selector = -1;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310 int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314 min_uV += rdev->constraints->uV_offset;
3315 max_uV += rdev->constraints->uV_offset;
3316
3317 /*
3318 * If we can't obtain the old selector there is not enough
3319 * info to call set_voltage_time_sel().
3320 */
3321 if (_regulator_is_enabled(rdev) &&
3322 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323 old_selector = ops->get_voltage_sel(rdev);
3324 if (old_selector < 0)
3325 return old_selector;
3326 }
3327
3328 if (ops->set_voltage) {
3329 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330 &selector);
3331
3332 if (ret >= 0) {
3333 if (ops->list_voltage)
3334 best_val = ops->list_voltage(rdev,
3335 selector);
3336 else
3337 best_val = regulator_get_voltage_rdev(rdev);
3338 }
3339
3340 } else if (ops->set_voltage_sel) {
3341 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342 if (ret >= 0) {
3343 best_val = ops->list_voltage(rdev, ret);
3344 if (min_uV <= best_val && max_uV >= best_val) {
3345 selector = ret;
3346 if (old_selector == selector)
3347 ret = 0;
3348 else if (rdev->desc->vsel_step)
3349 ret = _regulator_set_voltage_sel_step(
3350 rdev, best_val, selector);
3351 else
3352 ret = _regulator_call_set_voltage_sel(
3353 rdev, best_val, selector);
3354 } else {
3355 ret = -EINVAL;
3356 }
3357 }
3358 } else {
3359 ret = -EINVAL;
3360 }
3361
3362 if (ret)
3363 goto out;
3364
3365 if (ops->set_voltage_time_sel) {
3366 /*
3367 * Call set_voltage_time_sel if successfully obtained
3368 * old_selector
3369 */
3370 if (old_selector >= 0 && old_selector != selector)
3371 delay = ops->set_voltage_time_sel(rdev, old_selector,
3372 selector);
3373 } else {
3374 if (old_uV != best_val) {
3375 if (ops->set_voltage_time)
3376 delay = ops->set_voltage_time(rdev, old_uV,
3377 best_val);
3378 else
3379 delay = _regulator_set_voltage_time(rdev,
3380 old_uV,
3381 best_val);
3382 }
3383 }
3384
3385 if (delay < 0) {
3386 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387 delay = 0;
3388 }
3389
3390 /* Insert any necessary delays */
3391 if (delay >= 1000) {
3392 mdelay(delay / 1000);
3393 udelay(delay % 1000);
3394 } else if (delay) {
3395 udelay(delay);
3396 }
3397
3398 if (best_val >= 0) {
3399 unsigned long data = best_val;
3400
3401 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402 (void *)data);
3403 }
3404
3405out:
3406 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408 return ret;
3409}
3410
3411static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412 int min_uV, int max_uV, suspend_state_t state)
3413{
3414 struct regulator_state *rstate;
3415 int uV, sel;
3416
3417 rstate = regulator_get_suspend_state(rdev, state);
3418 if (rstate == NULL)
3419 return -EINVAL;
3420
3421 if (min_uV < rstate->min_uV)
3422 min_uV = rstate->min_uV;
3423 if (max_uV > rstate->max_uV)
3424 max_uV = rstate->max_uV;
3425
3426 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427 if (sel < 0)
3428 return sel;
3429
3430 uV = rdev->desc->ops->list_voltage(rdev, sel);
3431 if (uV >= min_uV && uV <= max_uV)
3432 rstate->uV = uV;
3433
3434 return 0;
3435}
3436
3437static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438 int min_uV, int max_uV,
3439 suspend_state_t state)
3440{
3441 struct regulator_dev *rdev = regulator->rdev;
3442 struct regulator_voltage *voltage = ®ulator->voltage[state];
3443 int ret = 0;
3444 int old_min_uV, old_max_uV;
3445 int current_uV;
3446
3447 /* If we're setting the same range as last time the change
3448 * should be a noop (some cpufreq implementations use the same
3449 * voltage for multiple frequencies, for example).
3450 */
3451 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452 goto out;
3453
3454 /* If we're trying to set a range that overlaps the current voltage,
3455 * return successfully even though the regulator does not support
3456 * changing the voltage.
3457 */
3458 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459 current_uV = regulator_get_voltage_rdev(rdev);
3460 if (min_uV <= current_uV && current_uV <= max_uV) {
3461 voltage->min_uV = min_uV;
3462 voltage->max_uV = max_uV;
3463 goto out;
3464 }
3465 }
3466
3467 /* sanity check */
3468 if (!rdev->desc->ops->set_voltage &&
3469 !rdev->desc->ops->set_voltage_sel) {
3470 ret = -EINVAL;
3471 goto out;
3472 }
3473
3474 /* constraints check */
3475 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476 if (ret < 0)
3477 goto out;
3478
3479 /* restore original values in case of error */
3480 old_min_uV = voltage->min_uV;
3481 old_max_uV = voltage->max_uV;
3482 voltage->min_uV = min_uV;
3483 voltage->max_uV = max_uV;
3484
3485 /* for not coupled regulators this will just set the voltage */
3486 ret = regulator_balance_voltage(rdev, state);
3487 if (ret < 0) {
3488 voltage->min_uV = old_min_uV;
3489 voltage->max_uV = old_max_uV;
3490 }
3491
3492out:
3493 return ret;
3494}
3495
3496int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497 int max_uV, suspend_state_t state)
3498{
3499 int best_supply_uV = 0;
3500 int supply_change_uV = 0;
3501 int ret;
3502
3503 if (rdev->supply &&
3504 regulator_ops_is_valid(rdev->supply->rdev,
3505 REGULATOR_CHANGE_VOLTAGE) &&
3506 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507 rdev->desc->ops->get_voltage_sel))) {
3508 int current_supply_uV;
3509 int selector;
3510
3511 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512 if (selector < 0) {
3513 ret = selector;
3514 goto out;
3515 }
3516
3517 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518 if (best_supply_uV < 0) {
3519 ret = best_supply_uV;
3520 goto out;
3521 }
3522
3523 best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526 if (current_supply_uV < 0) {
3527 ret = current_supply_uV;
3528 goto out;
3529 }
3530
3531 supply_change_uV = best_supply_uV - current_supply_uV;
3532 }
3533
3534 if (supply_change_uV > 0) {
3535 ret = regulator_set_voltage_unlocked(rdev->supply,
3536 best_supply_uV, INT_MAX, state);
3537 if (ret) {
3538 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539 ret);
3540 goto out;
3541 }
3542 }
3543
3544 if (state == PM_SUSPEND_ON)
3545 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546 else
3547 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548 max_uV, state);
3549 if (ret < 0)
3550 goto out;
3551
3552 if (supply_change_uV < 0) {
3553 ret = regulator_set_voltage_unlocked(rdev->supply,
3554 best_supply_uV, INT_MAX, state);
3555 if (ret)
3556 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557 ret);
3558 /* No need to fail here */
3559 ret = 0;
3560 }
3561
3562out:
3563 return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566
3567static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568 int *current_uV, int *min_uV)
3569{
3570 struct regulation_constraints *constraints = rdev->constraints;
3571
3572 /* Limit voltage change only if necessary */
3573 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574 return 1;
3575
3576 if (*current_uV < 0) {
3577 *current_uV = regulator_get_voltage_rdev(rdev);
3578
3579 if (*current_uV < 0)
3580 return *current_uV;
3581 }
3582
3583 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584 return 1;
3585
3586 /* Clamp target voltage within the given step */
3587 if (*current_uV < *min_uV)
3588 *min_uV = min(*current_uV + constraints->max_uV_step,
3589 *min_uV);
3590 else
3591 *min_uV = max(*current_uV - constraints->max_uV_step,
3592 *min_uV);
3593
3594 return 0;
3595}
3596
3597static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598 int *current_uV,
3599 int *min_uV, int *max_uV,
3600 suspend_state_t state,
3601 int n_coupled)
3602{
3603 struct coupling_desc *c_desc = &rdev->coupling_desc;
3604 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605 struct regulation_constraints *constraints = rdev->constraints;
3606 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607 int max_current_uV = 0, min_current_uV = INT_MAX;
3608 int highest_min_uV = 0, target_uV, possible_uV;
3609 int i, ret, max_spread;
3610 bool done;
3611
3612 *current_uV = -1;
3613
3614 /*
3615 * If there are no coupled regulators, simply set the voltage
3616 * demanded by consumers.
3617 */
3618 if (n_coupled == 1) {
3619 /*
3620 * If consumers don't provide any demands, set voltage
3621 * to min_uV
3622 */
3623 desired_min_uV = constraints->min_uV;
3624 desired_max_uV = constraints->max_uV;
3625
3626 ret = regulator_check_consumers(rdev,
3627 &desired_min_uV,
3628 &desired_max_uV, state);
3629 if (ret < 0)
3630 return ret;
3631
3632 possible_uV = desired_min_uV;
3633 done = true;
3634
3635 goto finish;
3636 }
3637
3638 /* Find highest min desired voltage */
3639 for (i = 0; i < n_coupled; i++) {
3640 int tmp_min = 0;
3641 int tmp_max = INT_MAX;
3642
3643 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645 ret = regulator_check_consumers(c_rdevs[i],
3646 &tmp_min,
3647 &tmp_max, state);
3648 if (ret < 0)
3649 return ret;
3650
3651 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652 if (ret < 0)
3653 return ret;
3654
3655 highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657 if (i == 0) {
3658 desired_min_uV = tmp_min;
3659 desired_max_uV = tmp_max;
3660 }
3661 }
3662
3663 max_spread = constraints->max_spread[0];
3664
3665 /*
3666 * Let target_uV be equal to the desired one if possible.
3667 * If not, set it to minimum voltage, allowed by other coupled
3668 * regulators.
3669 */
3670 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672 /*
3673 * Find min and max voltages, which currently aren't violating
3674 * max_spread.
3675 */
3676 for (i = 1; i < n_coupled; i++) {
3677 int tmp_act;
3678
3679 if (!_regulator_is_enabled(c_rdevs[i]))
3680 continue;
3681
3682 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683 if (tmp_act < 0)
3684 return tmp_act;
3685
3686 min_current_uV = min(tmp_act, min_current_uV);
3687 max_current_uV = max(tmp_act, max_current_uV);
3688 }
3689
3690 /* There aren't any other regulators enabled */
3691 if (max_current_uV == 0) {
3692 possible_uV = target_uV;
3693 } else {
3694 /*
3695 * Correct target voltage, so as it currently isn't
3696 * violating max_spread
3697 */
3698 possible_uV = max(target_uV, max_current_uV - max_spread);
3699 possible_uV = min(possible_uV, min_current_uV + max_spread);
3700 }
3701
3702 if (possible_uV > desired_max_uV)
3703 return -EINVAL;
3704
3705 done = (possible_uV == target_uV);
3706 desired_min_uV = possible_uV;
3707
3708finish:
3709 /* Apply max_uV_step constraint if necessary */
3710 if (state == PM_SUSPEND_ON) {
3711 ret = regulator_limit_voltage_step(rdev, current_uV,
3712 &desired_min_uV);
3713 if (ret < 0)
3714 return ret;
3715
3716 if (ret == 0)
3717 done = false;
3718 }
3719
3720 /* Set current_uV if wasn't done earlier in the code and if necessary */
3721 if (n_coupled > 1 && *current_uV == -1) {
3722
3723 if (_regulator_is_enabled(rdev)) {
3724 ret = regulator_get_voltage_rdev(rdev);
3725 if (ret < 0)
3726 return ret;
3727
3728 *current_uV = ret;
3729 } else {
3730 *current_uV = desired_min_uV;
3731 }
3732 }
3733
3734 *min_uV = desired_min_uV;
3735 *max_uV = desired_max_uV;
3736
3737 return done;
3738}
3739
3740int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741 suspend_state_t state, bool skip_coupled)
3742{
3743 struct regulator_dev **c_rdevs;
3744 struct regulator_dev *best_rdev;
3745 struct coupling_desc *c_desc = &rdev->coupling_desc;
3746 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747 unsigned int delta, best_delta;
3748 unsigned long c_rdev_done = 0;
3749 bool best_c_rdev_done;
3750
3751 c_rdevs = c_desc->coupled_rdevs;
3752 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753
3754 /*
3755 * Find the best possible voltage change on each loop. Leave the loop
3756 * if there isn't any possible change.
3757 */
3758 do {
3759 best_c_rdev_done = false;
3760 best_delta = 0;
3761 best_min_uV = 0;
3762 best_max_uV = 0;
3763 best_c_rdev = 0;
3764 best_rdev = NULL;
3765
3766 /*
3767 * Find highest difference between optimal voltage
3768 * and current voltage.
3769 */
3770 for (i = 0; i < n_coupled; i++) {
3771 /*
3772 * optimal_uV is the best voltage that can be set for
3773 * i-th regulator at the moment without violating
3774 * max_spread constraint in order to balance
3775 * the coupled voltages.
3776 */
3777 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779 if (test_bit(i, &c_rdev_done))
3780 continue;
3781
3782 ret = regulator_get_optimal_voltage(c_rdevs[i],
3783 ¤t_uV,
3784 &optimal_uV,
3785 &optimal_max_uV,
3786 state, n_coupled);
3787 if (ret < 0)
3788 goto out;
3789
3790 delta = abs(optimal_uV - current_uV);
3791
3792 if (delta && best_delta <= delta) {
3793 best_c_rdev_done = ret;
3794 best_delta = delta;
3795 best_rdev = c_rdevs[i];
3796 best_min_uV = optimal_uV;
3797 best_max_uV = optimal_max_uV;
3798 best_c_rdev = i;
3799 }
3800 }
3801
3802 /* Nothing to change, return successfully */
3803 if (!best_rdev) {
3804 ret = 0;
3805 goto out;
3806 }
3807
3808 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809 best_max_uV, state);
3810
3811 if (ret < 0)
3812 goto out;
3813
3814 if (best_c_rdev_done)
3815 set_bit(best_c_rdev, &c_rdev_done);
3816
3817 } while (n_coupled > 1);
3818
3819out:
3820 return ret;
3821}
3822
3823static int regulator_balance_voltage(struct regulator_dev *rdev,
3824 suspend_state_t state)
3825{
3826 struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 struct regulator_coupler *coupler = c_desc->coupler;
3828 bool skip_coupled = false;
3829
3830 /*
3831 * If system is in a state other than PM_SUSPEND_ON, don't check
3832 * other coupled regulators.
3833 */
3834 if (state != PM_SUSPEND_ON)
3835 skip_coupled = true;
3836
3837 if (c_desc->n_resolved < c_desc->n_coupled) {
3838 rdev_err(rdev, "Not all coupled regulators registered\n");
3839 return -EPERM;
3840 }
3841
3842 /* Invoke custom balancer for customized couplers */
3843 if (coupler && coupler->balance_voltage)
3844 return coupler->balance_voltage(coupler, rdev, state);
3845
3846 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847}
3848
3849/**
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3854 *
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3857 *
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3861 *
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3866 */
3867int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868{
3869 struct ww_acquire_ctx ww_ctx;
3870 int ret;
3871
3872 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875 PM_SUSPEND_ON);
3876
3877 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879 return ret;
3880}
3881EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884 suspend_state_t state, bool en)
3885{
3886 struct regulator_state *rstate;
3887
3888 rstate = regulator_get_suspend_state(rdev, state);
3889 if (rstate == NULL)
3890 return -EINVAL;
3891
3892 if (!rstate->changeable)
3893 return -EPERM;
3894
3895 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897 return 0;
3898}
3899
3900int regulator_suspend_enable(struct regulator_dev *rdev,
3901 suspend_state_t state)
3902{
3903 return regulator_suspend_toggle(rdev, state, true);
3904}
3905EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907int regulator_suspend_disable(struct regulator_dev *rdev,
3908 suspend_state_t state)
3909{
3910 struct regulator *regulator;
3911 struct regulator_voltage *voltage;
3912
3913 /*
3914 * if any consumer wants this regulator device keeping on in
3915 * suspend states, don't set it as disabled.
3916 */
3917 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918 voltage = ®ulator->voltage[state];
3919 if (voltage->min_uV || voltage->max_uV)
3920 return 0;
3921 }
3922
3923 return regulator_suspend_toggle(rdev, state, false);
3924}
3925EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928 int min_uV, int max_uV,
3929 suspend_state_t state)
3930{
3931 struct regulator_dev *rdev = regulator->rdev;
3932 struct regulator_state *rstate;
3933
3934 rstate = regulator_get_suspend_state(rdev, state);
3935 if (rstate == NULL)
3936 return -EINVAL;
3937
3938 if (rstate->min_uV == rstate->max_uV) {
3939 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940 return -EPERM;
3941 }
3942
3943 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944}
3945
3946int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947 int max_uV, suspend_state_t state)
3948{
3949 struct ww_acquire_ctx ww_ctx;
3950 int ret;
3951
3952 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954 return -EINVAL;
3955
3956 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959 max_uV, state);
3960
3961 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963 return ret;
3964}
3965EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967/**
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3972 *
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3976 */
3977int regulator_set_voltage_time(struct regulator *regulator,
3978 int old_uV, int new_uV)
3979{
3980 struct regulator_dev *rdev = regulator->rdev;
3981 const struct regulator_ops *ops = rdev->desc->ops;
3982 int old_sel = -1;
3983 int new_sel = -1;
3984 int voltage;
3985 int i;
3986
3987 if (ops->set_voltage_time)
3988 return ops->set_voltage_time(rdev, old_uV, new_uV);
3989 else if (!ops->set_voltage_time_sel)
3990 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992 /* Currently requires operations to do this */
3993 if (!ops->list_voltage || !rdev->desc->n_voltages)
3994 return -EINVAL;
3995
3996 for (i = 0; i < rdev->desc->n_voltages; i++) {
3997 /* We only look for exact voltage matches here */
3998 voltage = regulator_list_voltage(regulator, i);
3999 if (voltage < 0)
4000 return -EINVAL;
4001 if (voltage == 0)
4002 continue;
4003 if (voltage == old_uV)
4004 old_sel = i;
4005 if (voltage == new_uV)
4006 new_sel = i;
4007 }
4008
4009 if (old_sel < 0 || new_sel < 0)
4010 return -EINVAL;
4011
4012 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013}
4014EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016/**
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4021 *
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4024 *
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4027 */
4028int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029 unsigned int old_selector,
4030 unsigned int new_selector)
4031{
4032 int old_volt, new_volt;
4033
4034 /* sanity check */
4035 if (!rdev->desc->ops->list_voltage)
4036 return -EINVAL;
4037
4038 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041 if (rdev->desc->ops->set_voltage_time)
4042 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043 new_volt);
4044 else
4045 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046}
4047EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
4049/**
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4052 *
4053 * Re-apply the last configured voltage. This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4056 */
4057int regulator_sync_voltage(struct regulator *regulator)
4058{
4059 struct regulator_dev *rdev = regulator->rdev;
4060 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4061 int ret, min_uV, max_uV;
4062
4063 regulator_lock(rdev);
4064
4065 if (!rdev->desc->ops->set_voltage &&
4066 !rdev->desc->ops->set_voltage_sel) {
4067 ret = -EINVAL;
4068 goto out;
4069 }
4070
4071 /* This is only going to work if we've had a voltage configured. */
4072 if (!voltage->min_uV && !voltage->max_uV) {
4073 ret = -EINVAL;
4074 goto out;
4075 }
4076
4077 min_uV = voltage->min_uV;
4078 max_uV = voltage->max_uV;
4079
4080 /* This should be a paranoia check... */
4081 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082 if (ret < 0)
4083 goto out;
4084
4085 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086 if (ret < 0)
4087 goto out;
4088
4089 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090
4091out:
4092 regulator_unlock(rdev);
4093 return ret;
4094}
4095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098{
4099 int sel, ret;
4100 bool bypassed;
4101
4102 if (rdev->desc->ops->get_bypass) {
4103 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104 if (ret < 0)
4105 return ret;
4106 if (bypassed) {
4107 /* if bypassed the regulator must have a supply */
4108 if (!rdev->supply) {
4109 rdev_err(rdev,
4110 "bypassed regulator has no supply!\n");
4111 return -EPROBE_DEFER;
4112 }
4113
4114 return regulator_get_voltage_rdev(rdev->supply->rdev);
4115 }
4116 }
4117
4118 if (rdev->desc->ops->get_voltage_sel) {
4119 sel = rdev->desc->ops->get_voltage_sel(rdev);
4120 if (sel < 0)
4121 return sel;
4122 ret = rdev->desc->ops->list_voltage(rdev, sel);
4123 } else if (rdev->desc->ops->get_voltage) {
4124 ret = rdev->desc->ops->get_voltage(rdev);
4125 } else if (rdev->desc->ops->list_voltage) {
4126 ret = rdev->desc->ops->list_voltage(rdev, 0);
4127 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128 ret = rdev->desc->fixed_uV;
4129 } else if (rdev->supply) {
4130 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131 } else {
4132 return -EINVAL;
4133 }
4134
4135 if (ret < 0)
4136 return ret;
4137 return ret - rdev->constraints->uV_offset;
4138}
4139EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141/**
4142 * regulator_get_voltage - get regulator output voltage
4143 * @regulator: regulator source
4144 *
4145 * This returns the current regulator voltage in uV.
4146 *
4147 * NOTE: If the regulator is disabled it will return the voltage value. This
4148 * function should not be used to determine regulator state.
4149 */
4150int regulator_get_voltage(struct regulator *regulator)
4151{
4152 struct ww_acquire_ctx ww_ctx;
4153 int ret;
4154
4155 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156 ret = regulator_get_voltage_rdev(regulator->rdev);
4157 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158
4159 return ret;
4160}
4161EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163/**
4164 * regulator_set_current_limit - set regulator output current limit
4165 * @regulator: regulator source
4166 * @min_uA: Minimum supported current in uA
4167 * @max_uA: Maximum supported current in uA
4168 *
4169 * Sets current sink to the desired output current. This can be set during
4170 * any regulator state. IOW, regulator can be disabled or enabled.
4171 *
4172 * If the regulator is enabled then the current will change to the new value
4173 * immediately otherwise if the regulator is disabled the regulator will
4174 * output at the new current when enabled.
4175 *
4176 * NOTE: Regulator system constraints must be set for this regulator before
4177 * calling this function otherwise this call will fail.
4178 */
4179int regulator_set_current_limit(struct regulator *regulator,
4180 int min_uA, int max_uA)
4181{
4182 struct regulator_dev *rdev = regulator->rdev;
4183 int ret;
4184
4185 regulator_lock(rdev);
4186
4187 /* sanity check */
4188 if (!rdev->desc->ops->set_current_limit) {
4189 ret = -EINVAL;
4190 goto out;
4191 }
4192
4193 /* constraints check */
4194 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195 if (ret < 0)
4196 goto out;
4197
4198 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199out:
4200 regulator_unlock(rdev);
4201 return ret;
4202}
4203EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206{
4207 /* sanity check */
4208 if (!rdev->desc->ops->get_current_limit)
4209 return -EINVAL;
4210
4211 return rdev->desc->ops->get_current_limit(rdev);
4212}
4213
4214static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215{
4216 int ret;
4217
4218 regulator_lock(rdev);
4219 ret = _regulator_get_current_limit_unlocked(rdev);
4220 regulator_unlock(rdev);
4221
4222 return ret;
4223}
4224
4225/**
4226 * regulator_get_current_limit - get regulator output current
4227 * @regulator: regulator source
4228 *
4229 * This returns the current supplied by the specified current sink in uA.
4230 *
4231 * NOTE: If the regulator is disabled it will return the current value. This
4232 * function should not be used to determine regulator state.
4233 */
4234int regulator_get_current_limit(struct regulator *regulator)
4235{
4236 return _regulator_get_current_limit(regulator->rdev);
4237}
4238EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240/**
4241 * regulator_set_mode - set regulator operating mode
4242 * @regulator: regulator source
4243 * @mode: operating mode - one of the REGULATOR_MODE constants
4244 *
4245 * Set regulator operating mode to increase regulator efficiency or improve
4246 * regulation performance.
4247 *
4248 * NOTE: Regulator system constraints must be set for this regulator before
4249 * calling this function otherwise this call will fail.
4250 */
4251int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252{
4253 struct regulator_dev *rdev = regulator->rdev;
4254 int ret;
4255 int regulator_curr_mode;
4256
4257 regulator_lock(rdev);
4258
4259 /* sanity check */
4260 if (!rdev->desc->ops->set_mode) {
4261 ret = -EINVAL;
4262 goto out;
4263 }
4264
4265 /* return if the same mode is requested */
4266 if (rdev->desc->ops->get_mode) {
4267 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268 if (regulator_curr_mode == mode) {
4269 ret = 0;
4270 goto out;
4271 }
4272 }
4273
4274 /* constraints check */
4275 ret = regulator_mode_constrain(rdev, &mode);
4276 if (ret < 0)
4277 goto out;
4278
4279 ret = rdev->desc->ops->set_mode(rdev, mode);
4280out:
4281 regulator_unlock(rdev);
4282 return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287{
4288 /* sanity check */
4289 if (!rdev->desc->ops->get_mode)
4290 return -EINVAL;
4291
4292 return rdev->desc->ops->get_mode(rdev);
4293}
4294
4295static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296{
4297 int ret;
4298
4299 regulator_lock(rdev);
4300 ret = _regulator_get_mode_unlocked(rdev);
4301 regulator_unlock(rdev);
4302
4303 return ret;
4304}
4305
4306/**
4307 * regulator_get_mode - get regulator operating mode
4308 * @regulator: regulator source
4309 *
4310 * Get the current regulator operating mode.
4311 */
4312unsigned int regulator_get_mode(struct regulator *regulator)
4313{
4314 return _regulator_get_mode(regulator->rdev);
4315}
4316EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
4318static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319 unsigned int *flags)
4320{
4321 int ret;
4322
4323 regulator_lock(rdev);
4324
4325 /* sanity check */
4326 if (!rdev->desc->ops->get_error_flags) {
4327 ret = -EINVAL;
4328 goto out;
4329 }
4330
4331 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332out:
4333 regulator_unlock(rdev);
4334 return ret;
4335}
4336
4337/**
4338 * regulator_get_error_flags - get regulator error information
4339 * @regulator: regulator source
4340 * @flags: pointer to store error flags
4341 *
4342 * Get the current regulator error information.
4343 */
4344int regulator_get_error_flags(struct regulator *regulator,
4345 unsigned int *flags)
4346{
4347 return _regulator_get_error_flags(regulator->rdev, flags);
4348}
4349EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351/**
4352 * regulator_set_load - set regulator load
4353 * @regulator: regulator source
4354 * @uA_load: load current
4355 *
4356 * Notifies the regulator core of a new device load. This is then used by
4357 * DRMS (if enabled by constraints) to set the most efficient regulator
4358 * operating mode for the new regulator loading.
4359 *
4360 * Consumer devices notify their supply regulator of the maximum power
4361 * they will require (can be taken from device datasheet in the power
4362 * consumption tables) when they change operational status and hence power
4363 * state. Examples of operational state changes that can affect power
4364 * consumption are :-
4365 *
4366 * o Device is opened / closed.
4367 * o Device I/O is about to begin or has just finished.
4368 * o Device is idling in between work.
4369 *
4370 * This information is also exported via sysfs to userspace.
4371 *
4372 * DRMS will sum the total requested load on the regulator and change
4373 * to the most efficient operating mode if platform constraints allow.
4374 *
4375 * NOTE: when a regulator consumer requests to have a regulator
4376 * disabled then any load that consumer requested no longer counts
4377 * toward the total requested load. If the regulator is re-enabled
4378 * then the previously requested load will start counting again.
4379 *
4380 * If a regulator is an always-on regulator then an individual consumer's
4381 * load will still be removed if that consumer is fully disabled.
4382 *
4383 * On error a negative errno is returned.
4384 */
4385int regulator_set_load(struct regulator *regulator, int uA_load)
4386{
4387 struct regulator_dev *rdev = regulator->rdev;
4388 int old_uA_load;
4389 int ret = 0;
4390
4391 regulator_lock(rdev);
4392 old_uA_load = regulator->uA_load;
4393 regulator->uA_load = uA_load;
4394 if (regulator->enable_count && old_uA_load != uA_load) {
4395 ret = drms_uA_update(rdev);
4396 if (ret < 0)
4397 regulator->uA_load = old_uA_load;
4398 }
4399 regulator_unlock(rdev);
4400
4401 return ret;
4402}
4403EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405/**
4406 * regulator_allow_bypass - allow the regulator to go into bypass mode
4407 *
4408 * @regulator: Regulator to configure
4409 * @enable: enable or disable bypass mode
4410 *
4411 * Allow the regulator to go into bypass mode if all other consumers
4412 * for the regulator also enable bypass mode and the machine
4413 * constraints allow this. Bypass mode means that the regulator is
4414 * simply passing the input directly to the output with no regulation.
4415 */
4416int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417{
4418 struct regulator_dev *rdev = regulator->rdev;
4419 const char *name = rdev_get_name(rdev);
4420 int ret = 0;
4421
4422 if (!rdev->desc->ops->set_bypass)
4423 return 0;
4424
4425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426 return 0;
4427
4428 regulator_lock(rdev);
4429
4430 if (enable && !regulator->bypass) {
4431 rdev->bypass_count++;
4432
4433 if (rdev->bypass_count == rdev->open_count) {
4434 trace_regulator_bypass_enable(name);
4435
4436 ret = rdev->desc->ops->set_bypass(rdev, enable);
4437 if (ret != 0)
4438 rdev->bypass_count--;
4439 else
4440 trace_regulator_bypass_enable_complete(name);
4441 }
4442
4443 } else if (!enable && regulator->bypass) {
4444 rdev->bypass_count--;
4445
4446 if (rdev->bypass_count != rdev->open_count) {
4447 trace_regulator_bypass_disable(name);
4448
4449 ret = rdev->desc->ops->set_bypass(rdev, enable);
4450 if (ret != 0)
4451 rdev->bypass_count++;
4452 else
4453 trace_regulator_bypass_disable_complete(name);
4454 }
4455 }
4456
4457 if (ret == 0)
4458 regulator->bypass = enable;
4459
4460 regulator_unlock(rdev);
4461
4462 return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466/**
4467 * regulator_register_notifier - register regulator event notifier
4468 * @regulator: regulator source
4469 * @nb: notifier block
4470 *
4471 * Register notifier block to receive regulator events.
4472 */
4473int regulator_register_notifier(struct regulator *regulator,
4474 struct notifier_block *nb)
4475{
4476 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4477 nb);
4478}
4479EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481/**
4482 * regulator_unregister_notifier - unregister regulator event notifier
4483 * @regulator: regulator source
4484 * @nb: notifier block
4485 *
4486 * Unregister regulator event notifier block.
4487 */
4488int regulator_unregister_notifier(struct regulator *regulator,
4489 struct notifier_block *nb)
4490{
4491 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4492 nb);
4493}
4494EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496/* notify regulator consumers and downstream regulator consumers.
4497 * Note mutex must be held by caller.
4498 */
4499static int _notifier_call_chain(struct regulator_dev *rdev,
4500 unsigned long event, void *data)
4501{
4502 /* call rdev chain first */
4503 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504}
4505
4506/**
4507 * regulator_bulk_get - get multiple regulator consumers
4508 *
4509 * @dev: Device to supply
4510 * @num_consumers: Number of consumers to register
4511 * @consumers: Configuration of consumers; clients are stored here.
4512 *
4513 * @return 0 on success, an errno on failure.
4514 *
4515 * This helper function allows drivers to get several regulator
4516 * consumers in one operation. If any of the regulators cannot be
4517 * acquired then any regulators that were allocated will be freed
4518 * before returning to the caller.
4519 */
4520int regulator_bulk_get(struct device *dev, int num_consumers,
4521 struct regulator_bulk_data *consumers)
4522{
4523 int i;
4524 int ret;
4525
4526 for (i = 0; i < num_consumers; i++)
4527 consumers[i].consumer = NULL;
4528
4529 for (i = 0; i < num_consumers; i++) {
4530 consumers[i].consumer = regulator_get(dev,
4531 consumers[i].supply);
4532 if (IS_ERR(consumers[i].consumer)) {
4533 ret = PTR_ERR(consumers[i].consumer);
4534 consumers[i].consumer = NULL;
4535 goto err;
4536 }
4537 }
4538
4539 return 0;
4540
4541err:
4542 if (ret != -EPROBE_DEFER)
4543 dev_err(dev, "Failed to get supply '%s': %d\n",
4544 consumers[i].supply, ret);
4545 else
4546 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547 consumers[i].supply);
4548
4549 while (--i >= 0)
4550 regulator_put(consumers[i].consumer);
4551
4552 return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557{
4558 struct regulator_bulk_data *bulk = data;
4559
4560 bulk->ret = regulator_enable(bulk->consumer);
4561}
4562
4563/**
4564 * regulator_bulk_enable - enable multiple regulator consumers
4565 *
4566 * @num_consumers: Number of consumers
4567 * @consumers: Consumer data; clients are stored here.
4568 * @return 0 on success, an errno on failure
4569 *
4570 * This convenience API allows consumers to enable multiple regulator
4571 * clients in a single API call. If any consumers cannot be enabled
4572 * then any others that were enabled will be disabled again prior to
4573 * return.
4574 */
4575int regulator_bulk_enable(int num_consumers,
4576 struct regulator_bulk_data *consumers)
4577{
4578 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579 int i;
4580 int ret = 0;
4581
4582 for (i = 0; i < num_consumers; i++) {
4583 async_schedule_domain(regulator_bulk_enable_async,
4584 &consumers[i], &async_domain);
4585 }
4586
4587 async_synchronize_full_domain(&async_domain);
4588
4589 /* If any consumer failed we need to unwind any that succeeded */
4590 for (i = 0; i < num_consumers; i++) {
4591 if (consumers[i].ret != 0) {
4592 ret = consumers[i].ret;
4593 goto err;
4594 }
4595 }
4596
4597 return 0;
4598
4599err:
4600 for (i = 0; i < num_consumers; i++) {
4601 if (consumers[i].ret < 0)
4602 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603 consumers[i].ret);
4604 else
4605 regulator_disable(consumers[i].consumer);
4606 }
4607
4608 return ret;
4609}
4610EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612/**
4613 * regulator_bulk_disable - disable multiple regulator consumers
4614 *
4615 * @num_consumers: Number of consumers
4616 * @consumers: Consumer data; clients are stored here.
4617 * @return 0 on success, an errno on failure
4618 *
4619 * This convenience API allows consumers to disable multiple regulator
4620 * clients in a single API call. If any consumers cannot be disabled
4621 * then any others that were disabled will be enabled again prior to
4622 * return.
4623 */
4624int regulator_bulk_disable(int num_consumers,
4625 struct regulator_bulk_data *consumers)
4626{
4627 int i;
4628 int ret, r;
4629
4630 for (i = num_consumers - 1; i >= 0; --i) {
4631 ret = regulator_disable(consumers[i].consumer);
4632 if (ret != 0)
4633 goto err;
4634 }
4635
4636 return 0;
4637
4638err:
4639 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640 for (++i; i < num_consumers; ++i) {
4641 r = regulator_enable(consumers[i].consumer);
4642 if (r != 0)
4643 pr_err("Failed to re-enable %s: %d\n",
4644 consumers[i].supply, r);
4645 }
4646
4647 return ret;
4648}
4649EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651/**
4652 * regulator_bulk_force_disable - force disable multiple regulator consumers
4653 *
4654 * @num_consumers: Number of consumers
4655 * @consumers: Consumer data; clients are stored here.
4656 * @return 0 on success, an errno on failure
4657 *
4658 * This convenience API allows consumers to forcibly disable multiple regulator
4659 * clients in a single API call.
4660 * NOTE: This should be used for situations when device damage will
4661 * likely occur if the regulators are not disabled (e.g. over temp).
4662 * Although regulator_force_disable function call for some consumers can
4663 * return error numbers, the function is called for all consumers.
4664 */
4665int regulator_bulk_force_disable(int num_consumers,
4666 struct regulator_bulk_data *consumers)
4667{
4668 int i;
4669 int ret = 0;
4670
4671 for (i = 0; i < num_consumers; i++) {
4672 consumers[i].ret =
4673 regulator_force_disable(consumers[i].consumer);
4674
4675 /* Store first error for reporting */
4676 if (consumers[i].ret && !ret)
4677 ret = consumers[i].ret;
4678 }
4679
4680 return ret;
4681}
4682EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684/**
4685 * regulator_bulk_free - free multiple regulator consumers
4686 *
4687 * @num_consumers: Number of consumers
4688 * @consumers: Consumer data; clients are stored here.
4689 *
4690 * This convenience API allows consumers to free multiple regulator
4691 * clients in a single API call.
4692 */
4693void regulator_bulk_free(int num_consumers,
4694 struct regulator_bulk_data *consumers)
4695{
4696 int i;
4697
4698 for (i = 0; i < num_consumers; i++) {
4699 regulator_put(consumers[i].consumer);
4700 consumers[i].consumer = NULL;
4701 }
4702}
4703EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705/**
4706 * regulator_notifier_call_chain - call regulator event notifier
4707 * @rdev: regulator source
4708 * @event: notifier block
4709 * @data: callback-specific data.
4710 *
4711 * Called by regulator drivers to notify clients a regulator event has
4712 * occurred. We also notify regulator clients downstream.
4713 * Note lock must be held by caller.
4714 */
4715int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716 unsigned long event, void *data)
4717{
4718 lockdep_assert_held_once(&rdev->mutex.base);
4719
4720 _notifier_call_chain(rdev, event, data);
4721 return NOTIFY_DONE;
4722
4723}
4724EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726/**
4727 * regulator_mode_to_status - convert a regulator mode into a status
4728 *
4729 * @mode: Mode to convert
4730 *
4731 * Convert a regulator mode into a status.
4732 */
4733int regulator_mode_to_status(unsigned int mode)
4734{
4735 switch (mode) {
4736 case REGULATOR_MODE_FAST:
4737 return REGULATOR_STATUS_FAST;
4738 case REGULATOR_MODE_NORMAL:
4739 return REGULATOR_STATUS_NORMAL;
4740 case REGULATOR_MODE_IDLE:
4741 return REGULATOR_STATUS_IDLE;
4742 case REGULATOR_MODE_STANDBY:
4743 return REGULATOR_STATUS_STANDBY;
4744 default:
4745 return REGULATOR_STATUS_UNDEFINED;
4746 }
4747}
4748EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750static struct attribute *regulator_dev_attrs[] = {
4751 &dev_attr_name.attr,
4752 &dev_attr_num_users.attr,
4753 &dev_attr_type.attr,
4754 &dev_attr_microvolts.attr,
4755 &dev_attr_microamps.attr,
4756 &dev_attr_opmode.attr,
4757 &dev_attr_state.attr,
4758 &dev_attr_status.attr,
4759 &dev_attr_bypass.attr,
4760 &dev_attr_requested_microamps.attr,
4761 &dev_attr_min_microvolts.attr,
4762 &dev_attr_max_microvolts.attr,
4763 &dev_attr_min_microamps.attr,
4764 &dev_attr_max_microamps.attr,
4765 &dev_attr_suspend_standby_state.attr,
4766 &dev_attr_suspend_mem_state.attr,
4767 &dev_attr_suspend_disk_state.attr,
4768 &dev_attr_suspend_standby_microvolts.attr,
4769 &dev_attr_suspend_mem_microvolts.attr,
4770 &dev_attr_suspend_disk_microvolts.attr,
4771 &dev_attr_suspend_standby_mode.attr,
4772 &dev_attr_suspend_mem_mode.attr,
4773 &dev_attr_suspend_disk_mode.attr,
4774 NULL
4775};
4776
4777/*
4778 * To avoid cluttering sysfs (and memory) with useless state, only
4779 * create attributes that can be meaningfully displayed.
4780 */
4781static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782 struct attribute *attr, int idx)
4783{
4784 struct device *dev = kobj_to_dev(kobj);
4785 struct regulator_dev *rdev = dev_to_rdev(dev);
4786 const struct regulator_ops *ops = rdev->desc->ops;
4787 umode_t mode = attr->mode;
4788
4789 /* these three are always present */
4790 if (attr == &dev_attr_name.attr ||
4791 attr == &dev_attr_num_users.attr ||
4792 attr == &dev_attr_type.attr)
4793 return mode;
4794
4795 /* some attributes need specific methods to be displayed */
4796 if (attr == &dev_attr_microvolts.attr) {
4797 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801 return mode;
4802 return 0;
4803 }
4804
4805 if (attr == &dev_attr_microamps.attr)
4806 return ops->get_current_limit ? mode : 0;
4807
4808 if (attr == &dev_attr_opmode.attr)
4809 return ops->get_mode ? mode : 0;
4810
4811 if (attr == &dev_attr_state.attr)
4812 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814 if (attr == &dev_attr_status.attr)
4815 return ops->get_status ? mode : 0;
4816
4817 if (attr == &dev_attr_bypass.attr)
4818 return ops->get_bypass ? mode : 0;
4819
4820 /* constraints need specific supporting methods */
4821 if (attr == &dev_attr_min_microvolts.attr ||
4822 attr == &dev_attr_max_microvolts.attr)
4823 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825 if (attr == &dev_attr_min_microamps.attr ||
4826 attr == &dev_attr_max_microamps.attr)
4827 return ops->set_current_limit ? mode : 0;
4828
4829 if (attr == &dev_attr_suspend_standby_state.attr ||
4830 attr == &dev_attr_suspend_mem_state.attr ||
4831 attr == &dev_attr_suspend_disk_state.attr)
4832 return mode;
4833
4834 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835 attr == &dev_attr_suspend_mem_microvolts.attr ||
4836 attr == &dev_attr_suspend_disk_microvolts.attr)
4837 return ops->set_suspend_voltage ? mode : 0;
4838
4839 if (attr == &dev_attr_suspend_standby_mode.attr ||
4840 attr == &dev_attr_suspend_mem_mode.attr ||
4841 attr == &dev_attr_suspend_disk_mode.attr)
4842 return ops->set_suspend_mode ? mode : 0;
4843
4844 return mode;
4845}
4846
4847static const struct attribute_group regulator_dev_group = {
4848 .attrs = regulator_dev_attrs,
4849 .is_visible = regulator_attr_is_visible,
4850};
4851
4852static const struct attribute_group *regulator_dev_groups[] = {
4853 ®ulator_dev_group,
4854 NULL
4855};
4856
4857static void regulator_dev_release(struct device *dev)
4858{
4859 struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861 kfree(rdev->constraints);
4862 of_node_put(rdev->dev.of_node);
4863 kfree(rdev);
4864}
4865
4866static void rdev_init_debugfs(struct regulator_dev *rdev)
4867{
4868 struct device *parent = rdev->dev.parent;
4869 const char *rname = rdev_get_name(rdev);
4870 char name[NAME_MAX];
4871
4872 /* Avoid duplicate debugfs directory names */
4873 if (parent && rname == rdev->desc->name) {
4874 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875 rname);
4876 rname = name;
4877 }
4878
4879 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880 if (!rdev->debugfs) {
4881 rdev_warn(rdev, "Failed to create debugfs directory\n");
4882 return;
4883 }
4884
4885 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886 &rdev->use_count);
4887 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888 &rdev->open_count);
4889 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890 &rdev->bypass_count);
4891}
4892
4893static int regulator_register_resolve_supply(struct device *dev, void *data)
4894{
4895 struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897 if (regulator_resolve_supply(rdev))
4898 rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900 return 0;
4901}
4902
4903int regulator_coupler_register(struct regulator_coupler *coupler)
4904{
4905 mutex_lock(®ulator_list_mutex);
4906 list_add_tail(&coupler->list, ®ulator_coupler_list);
4907 mutex_unlock(®ulator_list_mutex);
4908
4909 return 0;
4910}
4911
4912static struct regulator_coupler *
4913regulator_find_coupler(struct regulator_dev *rdev)
4914{
4915 struct regulator_coupler *coupler;
4916 int err;
4917
4918 /*
4919 * Note that regulators are appended to the list and the generic
4920 * coupler is registered first, hence it will be attached at last
4921 * if nobody cared.
4922 */
4923 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4924 err = coupler->attach_regulator(coupler, rdev);
4925 if (!err) {
4926 if (!coupler->balance_voltage &&
4927 rdev->coupling_desc.n_coupled > 2)
4928 goto err_unsupported;
4929
4930 return coupler;
4931 }
4932
4933 if (err < 0)
4934 return ERR_PTR(err);
4935
4936 if (err == 1)
4937 continue;
4938
4939 break;
4940 }
4941
4942 return ERR_PTR(-EINVAL);
4943
4944err_unsupported:
4945 if (coupler->detach_regulator)
4946 coupler->detach_regulator(coupler, rdev);
4947
4948 rdev_err(rdev,
4949 "Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951 return ERR_PTR(-EPERM);
4952}
4953
4954static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955{
4956 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957 struct coupling_desc *c_desc = &rdev->coupling_desc;
4958 int n_coupled = c_desc->n_coupled;
4959 struct regulator_dev *c_rdev;
4960 int i;
4961
4962 for (i = 1; i < n_coupled; i++) {
4963 /* already resolved */
4964 if (c_desc->coupled_rdevs[i])
4965 continue;
4966
4967 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969 if (!c_rdev)
4970 continue;
4971
4972 if (c_rdev->coupling_desc.coupler != coupler) {
4973 rdev_err(rdev, "coupler mismatch with %s\n",
4974 rdev_get_name(c_rdev));
4975 return;
4976 }
4977
4978 c_desc->coupled_rdevs[i] = c_rdev;
4979 c_desc->n_resolved++;
4980
4981 regulator_resolve_coupling(c_rdev);
4982 }
4983}
4984
4985static void regulator_remove_coupling(struct regulator_dev *rdev)
4986{
4987 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989 struct regulator_dev *__c_rdev, *c_rdev;
4990 unsigned int __n_coupled, n_coupled;
4991 int i, k;
4992 int err;
4993
4994 n_coupled = c_desc->n_coupled;
4995
4996 for (i = 1; i < n_coupled; i++) {
4997 c_rdev = c_desc->coupled_rdevs[i];
4998
4999 if (!c_rdev)
5000 continue;
5001
5002 regulator_lock(c_rdev);
5003
5004 __c_desc = &c_rdev->coupling_desc;
5005 __n_coupled = __c_desc->n_coupled;
5006
5007 for (k = 1; k < __n_coupled; k++) {
5008 __c_rdev = __c_desc->coupled_rdevs[k];
5009
5010 if (__c_rdev == rdev) {
5011 __c_desc->coupled_rdevs[k] = NULL;
5012 __c_desc->n_resolved--;
5013 break;
5014 }
5015 }
5016
5017 regulator_unlock(c_rdev);
5018
5019 c_desc->coupled_rdevs[i] = NULL;
5020 c_desc->n_resolved--;
5021 }
5022
5023 if (coupler && coupler->detach_regulator) {
5024 err = coupler->detach_regulator(coupler, rdev);
5025 if (err)
5026 rdev_err(rdev, "failed to detach from coupler: %d\n",
5027 err);
5028 }
5029
5030 kfree(rdev->coupling_desc.coupled_rdevs);
5031 rdev->coupling_desc.coupled_rdevs = NULL;
5032}
5033
5034static int regulator_init_coupling(struct regulator_dev *rdev)
5035{
5036 int err, n_phandles;
5037 size_t alloc_size;
5038
5039 if (!IS_ENABLED(CONFIG_OF))
5040 n_phandles = 0;
5041 else
5042 n_phandles = of_get_n_coupled(rdev);
5043
5044 alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047 if (!rdev->coupling_desc.coupled_rdevs)
5048 return -ENOMEM;
5049
5050 /*
5051 * Every regulator should always have coupling descriptor filled with
5052 * at least pointer to itself.
5053 */
5054 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055 rdev->coupling_desc.n_coupled = n_phandles + 1;
5056 rdev->coupling_desc.n_resolved++;
5057
5058 /* regulator isn't coupled */
5059 if (n_phandles == 0)
5060 return 0;
5061
5062 if (!of_check_coupling_data(rdev))
5063 return -EPERM;
5064
5065 mutex_lock(®ulator_list_mutex);
5066 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067 mutex_unlock(®ulator_list_mutex);
5068
5069 if (IS_ERR(rdev->coupling_desc.coupler)) {
5070 err = PTR_ERR(rdev->coupling_desc.coupler);
5071 rdev_err(rdev, "failed to get coupler: %d\n", err);
5072 return err;
5073 }
5074
5075 return 0;
5076}
5077
5078static int generic_coupler_attach(struct regulator_coupler *coupler,
5079 struct regulator_dev *rdev)
5080{
5081 if (rdev->coupling_desc.n_coupled > 2) {
5082 rdev_err(rdev,
5083 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084 return -EPERM;
5085 }
5086
5087 if (!rdev->constraints->always_on) {
5088 rdev_err(rdev,
5089 "Coupling of a non always-on regulator is unimplemented\n");
5090 return -ENOTSUPP;
5091 }
5092
5093 return 0;
5094}
5095
5096static struct regulator_coupler generic_regulator_coupler = {
5097 .attach_regulator = generic_coupler_attach,
5098};
5099
5100/**
5101 * regulator_register - register regulator
5102 * @regulator_desc: regulator to register
5103 * @cfg: runtime configuration for regulator
5104 *
5105 * Called by regulator drivers to register a regulator.
5106 * Returns a valid pointer to struct regulator_dev on success
5107 * or an ERR_PTR() on error.
5108 */
5109struct regulator_dev *
5110regulator_register(const struct regulator_desc *regulator_desc,
5111 const struct regulator_config *cfg)
5112{
5113 const struct regulation_constraints *constraints = NULL;
5114 const struct regulator_init_data *init_data;
5115 struct regulator_config *config = NULL;
5116 static atomic_t regulator_no = ATOMIC_INIT(-1);
5117 struct regulator_dev *rdev;
5118 bool dangling_cfg_gpiod = false;
5119 bool dangling_of_gpiod = false;
5120 struct device *dev;
5121 int ret, i;
5122
5123 if (cfg == NULL)
5124 return ERR_PTR(-EINVAL);
5125 if (cfg->ena_gpiod)
5126 dangling_cfg_gpiod = true;
5127 if (regulator_desc == NULL) {
5128 ret = -EINVAL;
5129 goto rinse;
5130 }
5131
5132 dev = cfg->dev;
5133 WARN_ON(!dev);
5134
5135 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136 ret = -EINVAL;
5137 goto rinse;
5138 }
5139
5140 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141 regulator_desc->type != REGULATOR_CURRENT) {
5142 ret = -EINVAL;
5143 goto rinse;
5144 }
5145
5146 /* Only one of each should be implemented */
5147 WARN_ON(regulator_desc->ops->get_voltage &&
5148 regulator_desc->ops->get_voltage_sel);
5149 WARN_ON(regulator_desc->ops->set_voltage &&
5150 regulator_desc->ops->set_voltage_sel);
5151
5152 /* If we're using selectors we must implement list_voltage. */
5153 if (regulator_desc->ops->get_voltage_sel &&
5154 !regulator_desc->ops->list_voltage) {
5155 ret = -EINVAL;
5156 goto rinse;
5157 }
5158 if (regulator_desc->ops->set_voltage_sel &&
5159 !regulator_desc->ops->list_voltage) {
5160 ret = -EINVAL;
5161 goto rinse;
5162 }
5163
5164 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165 if (rdev == NULL) {
5166 ret = -ENOMEM;
5167 goto rinse;
5168 }
5169 device_initialize(&rdev->dev);
5170
5171 /*
5172 * Duplicate the config so the driver could override it after
5173 * parsing init data.
5174 */
5175 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176 if (config == NULL) {
5177 ret = -ENOMEM;
5178 goto clean;
5179 }
5180
5181 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182 &rdev->dev.of_node);
5183
5184 /*
5185 * Sometimes not all resources are probed already so we need to take
5186 * that into account. This happens most the time if the ena_gpiod comes
5187 * from a gpio extender or something else.
5188 */
5189 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190 ret = -EPROBE_DEFER;
5191 goto clean;
5192 }
5193
5194 /*
5195 * We need to keep track of any GPIO descriptor coming from the
5196 * device tree until we have handled it over to the core. If the
5197 * config that was passed in to this function DOES NOT contain
5198 * a descriptor, and the config after this call DOES contain
5199 * a descriptor, we definitely got one from parsing the device
5200 * tree.
5201 */
5202 if (!cfg->ena_gpiod && config->ena_gpiod)
5203 dangling_of_gpiod = true;
5204 if (!init_data) {
5205 init_data = config->init_data;
5206 rdev->dev.of_node = of_node_get(config->of_node);
5207 }
5208
5209 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5210 rdev->reg_data = config->driver_data;
5211 rdev->owner = regulator_desc->owner;
5212 rdev->desc = regulator_desc;
5213 if (config->regmap)
5214 rdev->regmap = config->regmap;
5215 else if (dev_get_regmap(dev, NULL))
5216 rdev->regmap = dev_get_regmap(dev, NULL);
5217 else if (dev->parent)
5218 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219 INIT_LIST_HEAD(&rdev->consumer_list);
5220 INIT_LIST_HEAD(&rdev->list);
5221 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224 /* preform any regulator specific init */
5225 if (init_data && init_data->regulator_init) {
5226 ret = init_data->regulator_init(rdev->reg_data);
5227 if (ret < 0)
5228 goto clean;
5229 }
5230
5231 if (config->ena_gpiod) {
5232 ret = regulator_ena_gpio_request(rdev, config);
5233 if (ret != 0) {
5234 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235 ret);
5236 goto clean;
5237 }
5238 /* The regulator core took over the GPIO descriptor */
5239 dangling_cfg_gpiod = false;
5240 dangling_of_gpiod = false;
5241 }
5242
5243 /* register with sysfs */
5244 rdev->dev.class = ®ulator_class;
5245 rdev->dev.parent = dev;
5246 dev_set_name(&rdev->dev, "regulator.%lu",
5247 (unsigned long) atomic_inc_return(®ulator_no));
5248 dev_set_drvdata(&rdev->dev, rdev);
5249
5250 /* set regulator constraints */
5251 if (init_data)
5252 constraints = &init_data->constraints;
5253
5254 if (init_data && init_data->supply_regulator)
5255 rdev->supply_name = init_data->supply_regulator;
5256 else if (regulator_desc->supply_name)
5257 rdev->supply_name = regulator_desc->supply_name;
5258
5259 /*
5260 * Attempt to resolve the regulator supply, if specified,
5261 * but don't return an error if we fail because we will try
5262 * to resolve it again later as more regulators are added.
5263 */
5264 if (regulator_resolve_supply(rdev))
5265 rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267 ret = set_machine_constraints(rdev, constraints);
5268 if (ret < 0)
5269 goto wash;
5270
5271 ret = regulator_init_coupling(rdev);
5272 if (ret < 0)
5273 goto wash;
5274
5275 /* add consumers devices */
5276 if (init_data) {
5277 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278 ret = set_consumer_device_supply(rdev,
5279 init_data->consumer_supplies[i].dev_name,
5280 init_data->consumer_supplies[i].supply);
5281 if (ret < 0) {
5282 dev_err(dev, "Failed to set supply %s\n",
5283 init_data->consumer_supplies[i].supply);
5284 goto unset_supplies;
5285 }
5286 }
5287 }
5288
5289 if (!rdev->desc->ops->get_voltage &&
5290 !rdev->desc->ops->list_voltage &&
5291 !rdev->desc->fixed_uV)
5292 rdev->is_switch = true;
5293
5294 ret = device_add(&rdev->dev);
5295 if (ret != 0)
5296 goto unset_supplies;
5297
5298 rdev_init_debugfs(rdev);
5299
5300 /* try to resolve regulators coupling since a new one was registered */
5301 mutex_lock(®ulator_list_mutex);
5302 regulator_resolve_coupling(rdev);
5303 mutex_unlock(®ulator_list_mutex);
5304
5305 /* try to resolve regulators supply since a new one was registered */
5306 class_for_each_device(®ulator_class, NULL, NULL,
5307 regulator_register_resolve_supply);
5308 kfree(config);
5309 return rdev;
5310
5311unset_supplies:
5312 mutex_lock(®ulator_list_mutex);
5313 unset_regulator_supplies(rdev);
5314 regulator_remove_coupling(rdev);
5315 mutex_unlock(®ulator_list_mutex);
5316wash:
5317 kfree(rdev->coupling_desc.coupled_rdevs);
5318 mutex_lock(®ulator_list_mutex);
5319 regulator_ena_gpio_free(rdev);
5320 mutex_unlock(®ulator_list_mutex);
5321clean:
5322 if (dangling_of_gpiod)
5323 gpiod_put(config->ena_gpiod);
5324 kfree(config);
5325 put_device(&rdev->dev);
5326rinse:
5327 if (dangling_cfg_gpiod)
5328 gpiod_put(cfg->ena_gpiod);
5329 return ERR_PTR(ret);
5330}
5331EXPORT_SYMBOL_GPL(regulator_register);
5332
5333/**
5334 * regulator_unregister - unregister regulator
5335 * @rdev: regulator to unregister
5336 *
5337 * Called by regulator drivers to unregister a regulator.
5338 */
5339void regulator_unregister(struct regulator_dev *rdev)
5340{
5341 if (rdev == NULL)
5342 return;
5343
5344 if (rdev->supply) {
5345 while (rdev->use_count--)
5346 regulator_disable(rdev->supply);
5347 regulator_put(rdev->supply);
5348 }
5349
5350 flush_work(&rdev->disable_work.work);
5351
5352 mutex_lock(®ulator_list_mutex);
5353
5354 debugfs_remove_recursive(rdev->debugfs);
5355 WARN_ON(rdev->open_count);
5356 regulator_remove_coupling(rdev);
5357 unset_regulator_supplies(rdev);
5358 list_del(&rdev->list);
5359 regulator_ena_gpio_free(rdev);
5360 device_unregister(&rdev->dev);
5361
5362 mutex_unlock(®ulator_list_mutex);
5363}
5364EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366#ifdef CONFIG_SUSPEND
5367/**
5368 * regulator_suspend - prepare regulators for system wide suspend
5369 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 *
5371 * Configure each regulator with it's suspend operating parameters for state.
5372 */
5373static int regulator_suspend(struct device *dev)
5374{
5375 struct regulator_dev *rdev = dev_to_rdev(dev);
5376 suspend_state_t state = pm_suspend_target_state;
5377 int ret;
5378
5379 regulator_lock(rdev);
5380 ret = suspend_set_state(rdev, state);
5381 regulator_unlock(rdev);
5382
5383 return ret;
5384}
5385
5386static int regulator_resume(struct device *dev)
5387{
5388 suspend_state_t state = pm_suspend_target_state;
5389 struct regulator_dev *rdev = dev_to_rdev(dev);
5390 struct regulator_state *rstate;
5391 int ret = 0;
5392
5393 rstate = regulator_get_suspend_state(rdev, state);
5394 if (rstate == NULL)
5395 return 0;
5396
5397 regulator_lock(rdev);
5398
5399 if (rdev->desc->ops->resume &&
5400 (rstate->enabled == ENABLE_IN_SUSPEND ||
5401 rstate->enabled == DISABLE_IN_SUSPEND))
5402 ret = rdev->desc->ops->resume(rdev);
5403
5404 regulator_unlock(rdev);
5405
5406 return ret;
5407}
5408#else /* !CONFIG_SUSPEND */
5409
5410#define regulator_suspend NULL
5411#define regulator_resume NULL
5412
5413#endif /* !CONFIG_SUSPEND */
5414
5415#ifdef CONFIG_PM
5416static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417 .suspend = regulator_suspend,
5418 .resume = regulator_resume,
5419};
5420#endif
5421
5422struct class regulator_class = {
5423 .name = "regulator",
5424 .dev_release = regulator_dev_release,
5425 .dev_groups = regulator_dev_groups,
5426#ifdef CONFIG_PM
5427 .pm = ®ulator_pm_ops,
5428#endif
5429};
5430/**
5431 * regulator_has_full_constraints - the system has fully specified constraints
5432 *
5433 * Calling this function will cause the regulator API to disable all
5434 * regulators which have a zero use count and don't have an always_on
5435 * constraint in a late_initcall.
5436 *
5437 * The intention is that this will become the default behaviour in a
5438 * future kernel release so users are encouraged to use this facility
5439 * now.
5440 */
5441void regulator_has_full_constraints(void)
5442{
5443 has_full_constraints = 1;
5444}
5445EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447/**
5448 * rdev_get_drvdata - get rdev regulator driver data
5449 * @rdev: regulator
5450 *
5451 * Get rdev regulator driver private data. This call can be used in the
5452 * regulator driver context.
5453 */
5454void *rdev_get_drvdata(struct regulator_dev *rdev)
5455{
5456 return rdev->reg_data;
5457}
5458EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460/**
5461 * regulator_get_drvdata - get regulator driver data
5462 * @regulator: regulator
5463 *
5464 * Get regulator driver private data. This call can be used in the consumer
5465 * driver context when non API regulator specific functions need to be called.
5466 */
5467void *regulator_get_drvdata(struct regulator *regulator)
5468{
5469 return regulator->rdev->reg_data;
5470}
5471EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473/**
5474 * regulator_set_drvdata - set regulator driver data
5475 * @regulator: regulator
5476 * @data: data
5477 */
5478void regulator_set_drvdata(struct regulator *regulator, void *data)
5479{
5480 regulator->rdev->reg_data = data;
5481}
5482EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484/**
5485 * regulator_get_id - get regulator ID
5486 * @rdev: regulator
5487 */
5488int rdev_get_id(struct regulator_dev *rdev)
5489{
5490 return rdev->desc->id;
5491}
5492EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494struct device *rdev_get_dev(struct regulator_dev *rdev)
5495{
5496 return &rdev->dev;
5497}
5498EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501{
5502 return rdev->regmap;
5503}
5504EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507{
5508 return reg_init_data->driver_data;
5509}
5510EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512#ifdef CONFIG_DEBUG_FS
5513static int supply_map_show(struct seq_file *sf, void *data)
5514{
5515 struct regulator_map *map;
5516
5517 list_for_each_entry(map, ®ulator_map_list, list) {
5518 seq_printf(sf, "%s -> %s.%s\n",
5519 rdev_get_name(map->regulator), map->dev_name,
5520 map->supply);
5521 }
5522
5523 return 0;
5524}
5525DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
5527struct summary_data {
5528 struct seq_file *s;
5529 struct regulator_dev *parent;
5530 int level;
5531};
5532
5533static void regulator_summary_show_subtree(struct seq_file *s,
5534 struct regulator_dev *rdev,
5535 int level);
5536
5537static int regulator_summary_show_children(struct device *dev, void *data)
5538{
5539 struct regulator_dev *rdev = dev_to_rdev(dev);
5540 struct summary_data *summary_data = data;
5541
5542 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543 regulator_summary_show_subtree(summary_data->s, rdev,
5544 summary_data->level + 1);
5545
5546 return 0;
5547}
5548
5549static void regulator_summary_show_subtree(struct seq_file *s,
5550 struct regulator_dev *rdev,
5551 int level)
5552{
5553 struct regulation_constraints *c;
5554 struct regulator *consumer;
5555 struct summary_data summary_data;
5556 unsigned int opmode;
5557
5558 if (!rdev)
5559 return;
5560
5561 opmode = _regulator_get_mode_unlocked(rdev);
5562 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563 level * 3 + 1, "",
5564 30 - level * 3, rdev_get_name(rdev),
5565 rdev->use_count, rdev->open_count, rdev->bypass_count,
5566 regulator_opmode_to_str(opmode));
5567
5568 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569 seq_printf(s, "%5dmA ",
5570 _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572 c = rdev->constraints;
5573 if (c) {
5574 switch (rdev->desc->type) {
5575 case REGULATOR_VOLTAGE:
5576 seq_printf(s, "%5dmV %5dmV ",
5577 c->min_uV / 1000, c->max_uV / 1000);
5578 break;
5579 case REGULATOR_CURRENT:
5580 seq_printf(s, "%5dmA %5dmA ",
5581 c->min_uA / 1000, c->max_uA / 1000);
5582 break;
5583 }
5584 }
5585
5586 seq_puts(s, "\n");
5587
5588 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589 if (consumer->dev && consumer->dev->class == ®ulator_class)
5590 continue;
5591
5592 seq_printf(s, "%*s%-*s ",
5593 (level + 1) * 3 + 1, "",
5594 30 - (level + 1) * 3,
5595 consumer->supply_name ? consumer->supply_name :
5596 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598 switch (rdev->desc->type) {
5599 case REGULATOR_VOLTAGE:
5600 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601 consumer->enable_count,
5602 consumer->uA_load / 1000,
5603 consumer->uA_load && !consumer->enable_count ?
5604 '*' : ' ',
5605 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607 break;
5608 case REGULATOR_CURRENT:
5609 break;
5610 }
5611
5612 seq_puts(s, "\n");
5613 }
5614
5615 summary_data.s = s;
5616 summary_data.level = level;
5617 summary_data.parent = rdev;
5618
5619 class_for_each_device(®ulator_class, NULL, &summary_data,
5620 regulator_summary_show_children);
5621}
5622
5623struct summary_lock_data {
5624 struct ww_acquire_ctx *ww_ctx;
5625 struct regulator_dev **new_contended_rdev;
5626 struct regulator_dev **old_contended_rdev;
5627};
5628
5629static int regulator_summary_lock_one(struct device *dev, void *data)
5630{
5631 struct regulator_dev *rdev = dev_to_rdev(dev);
5632 struct summary_lock_data *lock_data = data;
5633 int ret = 0;
5634
5635 if (rdev != *lock_data->old_contended_rdev) {
5636 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638 if (ret == -EDEADLK)
5639 *lock_data->new_contended_rdev = rdev;
5640 else
5641 WARN_ON_ONCE(ret);
5642 } else {
5643 *lock_data->old_contended_rdev = NULL;
5644 }
5645
5646 return ret;
5647}
5648
5649static int regulator_summary_unlock_one(struct device *dev, void *data)
5650{
5651 struct regulator_dev *rdev = dev_to_rdev(dev);
5652 struct summary_lock_data *lock_data = data;
5653
5654 if (lock_data) {
5655 if (rdev == *lock_data->new_contended_rdev)
5656 return -EDEADLK;
5657 }
5658
5659 regulator_unlock(rdev);
5660
5661 return 0;
5662}
5663
5664static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665 struct regulator_dev **new_contended_rdev,
5666 struct regulator_dev **old_contended_rdev)
5667{
5668 struct summary_lock_data lock_data;
5669 int ret;
5670
5671 lock_data.ww_ctx = ww_ctx;
5672 lock_data.new_contended_rdev = new_contended_rdev;
5673 lock_data.old_contended_rdev = old_contended_rdev;
5674
5675 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5676 regulator_summary_lock_one);
5677 if (ret)
5678 class_for_each_device(®ulator_class, NULL, &lock_data,
5679 regulator_summary_unlock_one);
5680
5681 return ret;
5682}
5683
5684static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685{
5686 struct regulator_dev *new_contended_rdev = NULL;
5687 struct regulator_dev *old_contended_rdev = NULL;
5688 int err;
5689
5690 mutex_lock(®ulator_list_mutex);
5691
5692 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5693
5694 do {
5695 if (new_contended_rdev) {
5696 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697 old_contended_rdev = new_contended_rdev;
5698 old_contended_rdev->ref_cnt++;
5699 }
5700
5701 err = regulator_summary_lock_all(ww_ctx,
5702 &new_contended_rdev,
5703 &old_contended_rdev);
5704
5705 if (old_contended_rdev)
5706 regulator_unlock(old_contended_rdev);
5707
5708 } while (err == -EDEADLK);
5709
5710 ww_acquire_done(ww_ctx);
5711}
5712
5713static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714{
5715 class_for_each_device(®ulator_class, NULL, NULL,
5716 regulator_summary_unlock_one);
5717 ww_acquire_fini(ww_ctx);
5718
5719 mutex_unlock(®ulator_list_mutex);
5720}
5721
5722static int regulator_summary_show_roots(struct device *dev, void *data)
5723{
5724 struct regulator_dev *rdev = dev_to_rdev(dev);
5725 struct seq_file *s = data;
5726
5727 if (!rdev->supply)
5728 regulator_summary_show_subtree(s, rdev, 0);
5729
5730 return 0;
5731}
5732
5733static int regulator_summary_show(struct seq_file *s, void *data)
5734{
5735 struct ww_acquire_ctx ww_ctx;
5736
5737 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5738 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740 regulator_summary_lock(&ww_ctx);
5741
5742 class_for_each_device(®ulator_class, NULL, s,
5743 regulator_summary_show_roots);
5744
5745 regulator_summary_unlock(&ww_ctx);
5746
5747 return 0;
5748}
5749DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750#endif /* CONFIG_DEBUG_FS */
5751
5752static int __init regulator_init(void)
5753{
5754 int ret;
5755
5756 ret = class_register(®ulator_class);
5757
5758 debugfs_root = debugfs_create_dir("regulator", NULL);
5759 if (!debugfs_root)
5760 pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762#ifdef CONFIG_DEBUG_FS
5763 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764 &supply_map_fops);
5765
5766 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767 NULL, ®ulator_summary_fops);
5768#endif
5769 regulator_dummy_init();
5770
5771 regulator_coupler_register(&generic_regulator_coupler);
5772
5773 return ret;
5774}
5775
5776/* init early to allow our consumers to complete system booting */
5777core_initcall(regulator_init);
5778
5779static int regulator_late_cleanup(struct device *dev, void *data)
5780{
5781 struct regulator_dev *rdev = dev_to_rdev(dev);
5782 const struct regulator_ops *ops = rdev->desc->ops;
5783 struct regulation_constraints *c = rdev->constraints;
5784 int enabled, ret;
5785
5786 if (c && c->always_on)
5787 return 0;
5788
5789 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790 return 0;
5791
5792 regulator_lock(rdev);
5793
5794 if (rdev->use_count)
5795 goto unlock;
5796
5797 /* If we can't read the status assume it's on. */
5798 if (ops->is_enabled)
5799 enabled = ops->is_enabled(rdev);
5800 else
5801 enabled = 1;
5802
5803 if (!enabled)
5804 goto unlock;
5805
5806 if (have_full_constraints()) {
5807 /* We log since this may kill the system if it goes
5808 * wrong. */
5809 rdev_info(rdev, "disabling\n");
5810 ret = _regulator_do_disable(rdev);
5811 if (ret != 0)
5812 rdev_err(rdev, "couldn't disable: %d\n", ret);
5813 } else {
5814 /* The intention is that in future we will
5815 * assume that full constraints are provided
5816 * so warn even if we aren't going to do
5817 * anything here.
5818 */
5819 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820 }
5821
5822unlock:
5823 regulator_unlock(rdev);
5824
5825 return 0;
5826}
5827
5828static void regulator_init_complete_work_function(struct work_struct *work)
5829{
5830 /*
5831 * Regulators may had failed to resolve their input supplies
5832 * when were registered, either because the input supply was
5833 * not registered yet or because its parent device was not
5834 * bound yet. So attempt to resolve the input supplies for
5835 * pending regulators before trying to disable unused ones.
5836 */
5837 class_for_each_device(®ulator_class, NULL, NULL,
5838 regulator_register_resolve_supply);
5839
5840 /* If we have a full configuration then disable any regulators
5841 * we have permission to change the status for and which are
5842 * not in use or always_on. This is effectively the default
5843 * for DT and ACPI as they have full constraints.
5844 */
5845 class_for_each_device(®ulator_class, NULL, NULL,
5846 regulator_late_cleanup);
5847}
5848
5849static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850 regulator_init_complete_work_function);
5851
5852static int __init regulator_init_complete(void)
5853{
5854 /*
5855 * Since DT doesn't provide an idiomatic mechanism for
5856 * enabling full constraints and since it's much more natural
5857 * with DT to provide them just assume that a DT enabled
5858 * system has full constraints.
5859 */
5860 if (of_have_populated_dt())
5861 has_full_constraints = true;
5862
5863 /*
5864 * We punt completion for an arbitrary amount of time since
5865 * systems like distros will load many drivers from userspace
5866 * so consumers might not always be ready yet, this is
5867 * particularly an issue with laptops where this might bounce
5868 * the display off then on. Ideally we'd get a notification
5869 * from userspace when this happens but we don't so just wait
5870 * a bit and hope we waited long enough. It'd be better if
5871 * we'd only do this on systems that need it, and a kernel
5872 * command line option might be useful.
5873 */
5874 schedule_delayed_work(®ulator_init_complete_work,
5875 msecs_to_jiffies(30000));
5876
5877 return 0;
5878}
5879late_initcall_sync(regulator_init_complete);