Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
  40static DEFINE_MUTEX(regulator_list_mutex);
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
  46
  47static struct dentry *debugfs_root;
  48
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 142 *
 143 * Return: 0 on success or a negative error number on failure.
 144 */
 145static inline int regulator_lock_nested(struct regulator_dev *rdev,
 146					struct ww_acquire_ctx *ww_ctx)
 147{
 148	bool lock = false;
 149	int ret = 0;
 150
 151	mutex_lock(&regulator_nesting_mutex);
 152
 153	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 154		if (rdev->mutex_owner == current)
 155			rdev->ref_cnt++;
 156		else
 157			lock = true;
 158
 159		if (lock) {
 160			mutex_unlock(&regulator_nesting_mutex);
 161			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 162			mutex_lock(&regulator_nesting_mutex);
 163		}
 164	} else {
 165		lock = true;
 166	}
 167
 168	if (lock && ret != -EDEADLK) {
 169		rdev->ref_cnt++;
 170		rdev->mutex_owner = current;
 171	}
 172
 173	mutex_unlock(&regulator_nesting_mutex);
 174
 175	return ret;
 176}
 177
 178/**
 179 * regulator_lock - lock a single regulator
 180 * @rdev:		regulator source
 181 *
 182 * This function can be called many times by one task on
 183 * a single regulator and its mutex will be locked only
 184 * once. If a task, which is calling this function is other
 185 * than the one, which initially locked the mutex, it will
 186 * wait on mutex.
 187 */
 188static void regulator_lock(struct regulator_dev *rdev)
 189{
 190	regulator_lock_nested(rdev, NULL);
 191}
 192
 193/**
 194 * regulator_unlock - unlock a single regulator
 195 * @rdev:		regulator_source
 196 *
 197 * This function unlocks the mutex when the
 198 * reference counter reaches 0.
 199 */
 200static void regulator_unlock(struct regulator_dev *rdev)
 201{
 202	mutex_lock(&regulator_nesting_mutex);
 203
 204	if (--rdev->ref_cnt == 0) {
 205		rdev->mutex_owner = NULL;
 206		ww_mutex_unlock(&rdev->mutex);
 207	}
 208
 209	WARN_ON_ONCE(rdev->ref_cnt < 0);
 210
 211	mutex_unlock(&regulator_nesting_mutex);
 212}
 213
 214/**
 215 * regulator_lock_two - lock two regulators
 216 * @rdev1:		first regulator
 217 * @rdev2:		second regulator
 218 * @ww_ctx:		w/w mutex acquire context
 219 *
 220 * Locks both rdevs using the regulator_ww_class.
 221 */
 222static void regulator_lock_two(struct regulator_dev *rdev1,
 223			       struct regulator_dev *rdev2,
 224			       struct ww_acquire_ctx *ww_ctx)
 225{
 226	struct regulator_dev *held, *contended;
 227	int ret;
 228
 229	ww_acquire_init(ww_ctx, &regulator_ww_class);
 230
 231	/* Try to just grab both of them */
 232	ret = regulator_lock_nested(rdev1, ww_ctx);
 233	WARN_ON(ret);
 234	ret = regulator_lock_nested(rdev2, ww_ctx);
 235	if (ret != -EDEADLOCK) {
 236		WARN_ON(ret);
 237		goto exit;
 238	}
 239
 240	held = rdev1;
 241	contended = rdev2;
 242	while (true) {
 243		regulator_unlock(held);
 244
 245		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 246		contended->ref_cnt++;
 247		contended->mutex_owner = current;
 248		swap(held, contended);
 249		ret = regulator_lock_nested(contended, ww_ctx);
 250
 251		if (ret != -EDEADLOCK) {
 252			WARN_ON(ret);
 253			break;
 254		}
 255	}
 256
 257exit:
 258	ww_acquire_done(ww_ctx);
 259}
 260
 261/**
 262 * regulator_unlock_two - unlock two regulators
 263 * @rdev1:		first regulator
 264 * @rdev2:		second regulator
 265 * @ww_ctx:		w/w mutex acquire context
 266 *
 267 * The inverse of regulator_lock_two().
 268 */
 269
 270static void regulator_unlock_two(struct regulator_dev *rdev1,
 271				 struct regulator_dev *rdev2,
 272				 struct ww_acquire_ctx *ww_ctx)
 273{
 274	regulator_unlock(rdev2);
 275	regulator_unlock(rdev1);
 276	ww_acquire_fini(ww_ctx);
 277}
 278
 279static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 280{
 281	struct regulator_dev *c_rdev;
 282	int i;
 283
 284	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 285		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 286
 287		if (rdev->supply->rdev == c_rdev)
 288			return true;
 289	}
 290
 291	return false;
 292}
 293
 294static void regulator_unlock_recursive(struct regulator_dev *rdev,
 295				       unsigned int n_coupled)
 296{
 297	struct regulator_dev *c_rdev, *supply_rdev;
 298	int i, supply_n_coupled;
 299
 300	for (i = n_coupled; i > 0; i--) {
 301		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 302
 303		if (!c_rdev)
 304			continue;
 305
 306		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 307			supply_rdev = c_rdev->supply->rdev;
 308			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 309
 310			regulator_unlock_recursive(supply_rdev,
 311						   supply_n_coupled);
 312		}
 313
 314		regulator_unlock(c_rdev);
 315	}
 316}
 317
 318static int regulator_lock_recursive(struct regulator_dev *rdev,
 319				    struct regulator_dev **new_contended_rdev,
 320				    struct regulator_dev **old_contended_rdev,
 321				    struct ww_acquire_ctx *ww_ctx)
 322{
 323	struct regulator_dev *c_rdev;
 324	int i, err;
 325
 326	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 327		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 328
 329		if (!c_rdev)
 330			continue;
 331
 332		if (c_rdev != *old_contended_rdev) {
 333			err = regulator_lock_nested(c_rdev, ww_ctx);
 334			if (err) {
 335				if (err == -EDEADLK) {
 336					*new_contended_rdev = c_rdev;
 337					goto err_unlock;
 338				}
 339
 340				/* shouldn't happen */
 341				WARN_ON_ONCE(err != -EALREADY);
 342			}
 343		} else {
 344			*old_contended_rdev = NULL;
 345		}
 346
 347		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 348			err = regulator_lock_recursive(c_rdev->supply->rdev,
 349						       new_contended_rdev,
 350						       old_contended_rdev,
 351						       ww_ctx);
 352			if (err) {
 353				regulator_unlock(c_rdev);
 354				goto err_unlock;
 355			}
 356		}
 357	}
 358
 359	return 0;
 360
 361err_unlock:
 362	regulator_unlock_recursive(rdev, i);
 363
 364	return err;
 365}
 366
 367/**
 368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 369 *				regulators
 370 * @rdev:			regulator source
 371 * @ww_ctx:			w/w mutex acquire context
 372 *
 373 * Unlock all regulators related with rdev by coupling or supplying.
 374 */
 375static void regulator_unlock_dependent(struct regulator_dev *rdev,
 376				       struct ww_acquire_ctx *ww_ctx)
 377{
 378	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 379	ww_acquire_fini(ww_ctx);
 380}
 381
 382/**
 383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 384 * @rdev:			regulator source
 385 * @ww_ctx:			w/w mutex acquire context
 386 *
 387 * This function as a wrapper on regulator_lock_recursive(), which locks
 388 * all regulators related with rdev by coupling or supplying.
 389 */
 390static void regulator_lock_dependent(struct regulator_dev *rdev,
 391				     struct ww_acquire_ctx *ww_ctx)
 392{
 393	struct regulator_dev *new_contended_rdev = NULL;
 394	struct regulator_dev *old_contended_rdev = NULL;
 395	int err;
 396
 397	mutex_lock(&regulator_list_mutex);
 398
 399	ww_acquire_init(ww_ctx, &regulator_ww_class);
 400
 401	do {
 402		if (new_contended_rdev) {
 403			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 404			old_contended_rdev = new_contended_rdev;
 405			old_contended_rdev->ref_cnt++;
 406			old_contended_rdev->mutex_owner = current;
 407		}
 408
 409		err = regulator_lock_recursive(rdev,
 410					       &new_contended_rdev,
 411					       &old_contended_rdev,
 412					       ww_ctx);
 413
 414		if (old_contended_rdev)
 415			regulator_unlock(old_contended_rdev);
 416
 417	} while (err == -EDEADLK);
 418
 419	ww_acquire_done(ww_ctx);
 420
 421	mutex_unlock(&regulator_list_mutex);
 422}
 423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424/* Platform voltage constraint check */
 425int regulator_check_voltage(struct regulator_dev *rdev,
 426			    int *min_uV, int *max_uV)
 427{
 428	BUG_ON(*min_uV > *max_uV);
 429
 430	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 431		rdev_err(rdev, "voltage operation not allowed\n");
 432		return -EPERM;
 433	}
 434
 435	if (*max_uV > rdev->constraints->max_uV)
 436		*max_uV = rdev->constraints->max_uV;
 437	if (*min_uV < rdev->constraints->min_uV)
 438		*min_uV = rdev->constraints->min_uV;
 439
 440	if (*min_uV > *max_uV) {
 441		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 442			 *min_uV, *max_uV);
 443		return -EINVAL;
 444	}
 445
 446	return 0;
 447}
 448
 449/* return 0 if the state is valid */
 450static int regulator_check_states(suspend_state_t state)
 451{
 452	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 453}
 454
 455/* Make sure we select a voltage that suits the needs of all
 456 * regulator consumers
 457 */
 458int regulator_check_consumers(struct regulator_dev *rdev,
 459			      int *min_uV, int *max_uV,
 460			      suspend_state_t state)
 461{
 462	struct regulator *regulator;
 463	struct regulator_voltage *voltage;
 464
 465	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 466		voltage = &regulator->voltage[state];
 467		/*
 468		 * Assume consumers that didn't say anything are OK
 469		 * with anything in the constraint range.
 470		 */
 471		if (!voltage->min_uV && !voltage->max_uV)
 472			continue;
 473
 474		if (*max_uV > voltage->max_uV)
 475			*max_uV = voltage->max_uV;
 476		if (*min_uV < voltage->min_uV)
 477			*min_uV = voltage->min_uV;
 478	}
 479
 480	if (*min_uV > *max_uV) {
 481		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 482			*min_uV, *max_uV);
 483		return -EINVAL;
 484	}
 485
 486	return 0;
 487}
 488
 489/* current constraint check */
 490static int regulator_check_current_limit(struct regulator_dev *rdev,
 491					int *min_uA, int *max_uA)
 492{
 493	BUG_ON(*min_uA > *max_uA);
 494
 495	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 496		rdev_err(rdev, "current operation not allowed\n");
 497		return -EPERM;
 498	}
 499
 500	if (*max_uA > rdev->constraints->max_uA &&
 501	    rdev->constraints->max_uA)
 502		*max_uA = rdev->constraints->max_uA;
 503	if (*min_uA < rdev->constraints->min_uA)
 504		*min_uA = rdev->constraints->min_uA;
 505
 506	if (*min_uA > *max_uA) {
 507		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 508			 *min_uA, *max_uA);
 509		return -EINVAL;
 510	}
 511
 512	return 0;
 513}
 514
 515/* operating mode constraint check */
 516static int regulator_mode_constrain(struct regulator_dev *rdev,
 517				    unsigned int *mode)
 518{
 519	switch (*mode) {
 520	case REGULATOR_MODE_FAST:
 521	case REGULATOR_MODE_NORMAL:
 522	case REGULATOR_MODE_IDLE:
 523	case REGULATOR_MODE_STANDBY:
 524		break;
 525	default:
 526		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 527		return -EINVAL;
 528	}
 529
 530	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 531		rdev_err(rdev, "mode operation not allowed\n");
 532		return -EPERM;
 533	}
 534
 535	/* The modes are bitmasks, the most power hungry modes having
 536	 * the lowest values. If the requested mode isn't supported
 537	 * try higher modes.
 538	 */
 539	while (*mode) {
 540		if (rdev->constraints->valid_modes_mask & *mode)
 541			return 0;
 542		*mode /= 2;
 543	}
 544
 545	return -EINVAL;
 546}
 547
 548static inline struct regulator_state *
 549regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 550{
 551	if (rdev->constraints == NULL)
 552		return NULL;
 553
 554	switch (state) {
 555	case PM_SUSPEND_STANDBY:
 556		return &rdev->constraints->state_standby;
 557	case PM_SUSPEND_MEM:
 558		return &rdev->constraints->state_mem;
 559	case PM_SUSPEND_MAX:
 560		return &rdev->constraints->state_disk;
 561	default:
 562		return NULL;
 563	}
 564}
 565
 566static const struct regulator_state *
 567regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 568{
 569	const struct regulator_state *rstate;
 570
 571	rstate = regulator_get_suspend_state(rdev, state);
 572	if (rstate == NULL)
 573		return NULL;
 574
 575	/* If we have no suspend mode configuration don't set anything;
 576	 * only warn if the driver implements set_suspend_voltage or
 577	 * set_suspend_mode callback.
 578	 */
 579	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 580	    rstate->enabled != DISABLE_IN_SUSPEND) {
 581		if (rdev->desc->ops->set_suspend_voltage ||
 582		    rdev->desc->ops->set_suspend_mode)
 583			rdev_warn(rdev, "No configuration\n");
 584		return NULL;
 585	}
 586
 587	return rstate;
 588}
 589
 590static ssize_t microvolts_show(struct device *dev,
 591			       struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594	int uV;
 595
 596	regulator_lock(rdev);
 597	uV = regulator_get_voltage_rdev(rdev);
 598	regulator_unlock(rdev);
 599
 600	if (uV < 0)
 601		return uV;
 602	return sprintf(buf, "%d\n", uV);
 603}
 604static DEVICE_ATTR_RO(microvolts);
 605
 606static ssize_t microamps_show(struct device *dev,
 607			      struct device_attribute *attr, char *buf)
 608{
 609	struct regulator_dev *rdev = dev_get_drvdata(dev);
 610
 611	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 612}
 613static DEVICE_ATTR_RO(microamps);
 614
 615static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 616			 char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 621}
 622static DEVICE_ATTR_RO(name);
 623
 624static const char *regulator_opmode_to_str(int mode)
 625{
 626	switch (mode) {
 627	case REGULATOR_MODE_FAST:
 628		return "fast";
 629	case REGULATOR_MODE_NORMAL:
 630		return "normal";
 631	case REGULATOR_MODE_IDLE:
 632		return "idle";
 633	case REGULATOR_MODE_STANDBY:
 634		return "standby";
 635	}
 636	return "unknown";
 637}
 638
 639static ssize_t regulator_print_opmode(char *buf, int mode)
 640{
 641	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 642}
 643
 644static ssize_t opmode_show(struct device *dev,
 645			   struct device_attribute *attr, char *buf)
 646{
 647	struct regulator_dev *rdev = dev_get_drvdata(dev);
 648
 649	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 650}
 651static DEVICE_ATTR_RO(opmode);
 652
 653static ssize_t regulator_print_state(char *buf, int state)
 654{
 655	if (state > 0)
 656		return sprintf(buf, "enabled\n");
 657	else if (state == 0)
 658		return sprintf(buf, "disabled\n");
 659	else
 660		return sprintf(buf, "unknown\n");
 661}
 662
 663static ssize_t state_show(struct device *dev,
 664			  struct device_attribute *attr, char *buf)
 665{
 666	struct regulator_dev *rdev = dev_get_drvdata(dev);
 667	ssize_t ret;
 668
 669	regulator_lock(rdev);
 670	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 671	regulator_unlock(rdev);
 672
 673	return ret;
 674}
 675static DEVICE_ATTR_RO(state);
 676
 677static ssize_t status_show(struct device *dev,
 678			   struct device_attribute *attr, char *buf)
 679{
 680	struct regulator_dev *rdev = dev_get_drvdata(dev);
 681	int status;
 682	char *label;
 683
 684	status = rdev->desc->ops->get_status(rdev);
 685	if (status < 0)
 686		return status;
 687
 688	switch (status) {
 689	case REGULATOR_STATUS_OFF:
 690		label = "off";
 691		break;
 692	case REGULATOR_STATUS_ON:
 693		label = "on";
 694		break;
 695	case REGULATOR_STATUS_ERROR:
 696		label = "error";
 697		break;
 698	case REGULATOR_STATUS_FAST:
 699		label = "fast";
 700		break;
 701	case REGULATOR_STATUS_NORMAL:
 702		label = "normal";
 703		break;
 704	case REGULATOR_STATUS_IDLE:
 705		label = "idle";
 706		break;
 707	case REGULATOR_STATUS_STANDBY:
 708		label = "standby";
 709		break;
 710	case REGULATOR_STATUS_BYPASS:
 711		label = "bypass";
 712		break;
 713	case REGULATOR_STATUS_UNDEFINED:
 714		label = "undefined";
 715		break;
 716	default:
 717		return -ERANGE;
 718	}
 719
 720	return sprintf(buf, "%s\n", label);
 721}
 722static DEVICE_ATTR_RO(status);
 723
 724static ssize_t min_microamps_show(struct device *dev,
 725				  struct device_attribute *attr, char *buf)
 726{
 727	struct regulator_dev *rdev = dev_get_drvdata(dev);
 728
 729	if (!rdev->constraints)
 730		return sprintf(buf, "constraint not defined\n");
 731
 732	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 733}
 734static DEVICE_ATTR_RO(min_microamps);
 735
 736static ssize_t max_microamps_show(struct device *dev,
 737				  struct device_attribute *attr, char *buf)
 738{
 739	struct regulator_dev *rdev = dev_get_drvdata(dev);
 740
 741	if (!rdev->constraints)
 742		return sprintf(buf, "constraint not defined\n");
 743
 744	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 745}
 746static DEVICE_ATTR_RO(max_microamps);
 747
 748static ssize_t min_microvolts_show(struct device *dev,
 749				   struct device_attribute *attr, char *buf)
 750{
 751	struct regulator_dev *rdev = dev_get_drvdata(dev);
 752
 753	if (!rdev->constraints)
 754		return sprintf(buf, "constraint not defined\n");
 755
 756	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 757}
 758static DEVICE_ATTR_RO(min_microvolts);
 759
 760static ssize_t max_microvolts_show(struct device *dev,
 761				   struct device_attribute *attr, char *buf)
 762{
 763	struct regulator_dev *rdev = dev_get_drvdata(dev);
 764
 765	if (!rdev->constraints)
 766		return sprintf(buf, "constraint not defined\n");
 767
 768	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 769}
 770static DEVICE_ATTR_RO(max_microvolts);
 771
 772static ssize_t requested_microamps_show(struct device *dev,
 773					struct device_attribute *attr, char *buf)
 774{
 775	struct regulator_dev *rdev = dev_get_drvdata(dev);
 776	struct regulator *regulator;
 777	int uA = 0;
 778
 779	regulator_lock(rdev);
 780	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 781		if (regulator->enable_count)
 782			uA += regulator->uA_load;
 783	}
 784	regulator_unlock(rdev);
 785	return sprintf(buf, "%d\n", uA);
 786}
 787static DEVICE_ATTR_RO(requested_microamps);
 788
 789static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 790			      char *buf)
 791{
 792	struct regulator_dev *rdev = dev_get_drvdata(dev);
 793	return sprintf(buf, "%d\n", rdev->use_count);
 794}
 795static DEVICE_ATTR_RO(num_users);
 796
 797static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 798			 char *buf)
 799{
 800	struct regulator_dev *rdev = dev_get_drvdata(dev);
 801
 802	switch (rdev->desc->type) {
 803	case REGULATOR_VOLTAGE:
 804		return sprintf(buf, "voltage\n");
 805	case REGULATOR_CURRENT:
 806		return sprintf(buf, "current\n");
 807	}
 808	return sprintf(buf, "unknown\n");
 809}
 810static DEVICE_ATTR_RO(type);
 811
 812static ssize_t suspend_mem_microvolts_show(struct device *dev,
 813					   struct device_attribute *attr, char *buf)
 814{
 815	struct regulator_dev *rdev = dev_get_drvdata(dev);
 816
 817	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 818}
 819static DEVICE_ATTR_RO(suspend_mem_microvolts);
 820
 821static ssize_t suspend_disk_microvolts_show(struct device *dev,
 822					    struct device_attribute *attr, char *buf)
 823{
 824	struct regulator_dev *rdev = dev_get_drvdata(dev);
 825
 826	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 827}
 828static DEVICE_ATTR_RO(suspend_disk_microvolts);
 829
 830static ssize_t suspend_standby_microvolts_show(struct device *dev,
 831					       struct device_attribute *attr, char *buf)
 832{
 833	struct regulator_dev *rdev = dev_get_drvdata(dev);
 834
 835	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 836}
 837static DEVICE_ATTR_RO(suspend_standby_microvolts);
 838
 839static ssize_t suspend_mem_mode_show(struct device *dev,
 840				     struct device_attribute *attr, char *buf)
 841{
 842	struct regulator_dev *rdev = dev_get_drvdata(dev);
 843
 844	return regulator_print_opmode(buf,
 845		rdev->constraints->state_mem.mode);
 846}
 847static DEVICE_ATTR_RO(suspend_mem_mode);
 848
 849static ssize_t suspend_disk_mode_show(struct device *dev,
 850				      struct device_attribute *attr, char *buf)
 851{
 852	struct regulator_dev *rdev = dev_get_drvdata(dev);
 853
 854	return regulator_print_opmode(buf,
 855		rdev->constraints->state_disk.mode);
 856}
 857static DEVICE_ATTR_RO(suspend_disk_mode);
 858
 859static ssize_t suspend_standby_mode_show(struct device *dev,
 860					 struct device_attribute *attr, char *buf)
 861{
 862	struct regulator_dev *rdev = dev_get_drvdata(dev);
 863
 864	return regulator_print_opmode(buf,
 865		rdev->constraints->state_standby.mode);
 866}
 867static DEVICE_ATTR_RO(suspend_standby_mode);
 868
 869static ssize_t suspend_mem_state_show(struct device *dev,
 870				      struct device_attribute *attr, char *buf)
 871{
 872	struct regulator_dev *rdev = dev_get_drvdata(dev);
 873
 874	return regulator_print_state(buf,
 875			rdev->constraints->state_mem.enabled);
 876}
 877static DEVICE_ATTR_RO(suspend_mem_state);
 878
 879static ssize_t suspend_disk_state_show(struct device *dev,
 880				       struct device_attribute *attr, char *buf)
 881{
 882	struct regulator_dev *rdev = dev_get_drvdata(dev);
 883
 884	return regulator_print_state(buf,
 885			rdev->constraints->state_disk.enabled);
 886}
 887static DEVICE_ATTR_RO(suspend_disk_state);
 888
 889static ssize_t suspend_standby_state_show(struct device *dev,
 890					  struct device_attribute *attr, char *buf)
 891{
 892	struct regulator_dev *rdev = dev_get_drvdata(dev);
 893
 894	return regulator_print_state(buf,
 895			rdev->constraints->state_standby.enabled);
 896}
 897static DEVICE_ATTR_RO(suspend_standby_state);
 898
 899static ssize_t bypass_show(struct device *dev,
 900			   struct device_attribute *attr, char *buf)
 901{
 902	struct regulator_dev *rdev = dev_get_drvdata(dev);
 903	const char *report;
 904	bool bypass;
 905	int ret;
 906
 907	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 908
 909	if (ret != 0)
 910		report = "unknown";
 911	else if (bypass)
 912		report = "enabled";
 913	else
 914		report = "disabled";
 915
 916	return sprintf(buf, "%s\n", report);
 917}
 918static DEVICE_ATTR_RO(bypass);
 919
 920#define REGULATOR_ERROR_ATTR(name, bit)							\
 921	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 922				   char *buf)						\
 923	{										\
 924		int ret;								\
 925		unsigned int flags;							\
 926		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 927		ret = _regulator_get_error_flags(rdev, &flags);				\
 928		if (ret)								\
 929			return ret;							\
 930		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 931	}										\
 932	static DEVICE_ATTR_RO(name)
 933
 934REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 935REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 936REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
 937REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
 938REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
 939REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
 940REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
 941REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
 942REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
 943
 944/* Calculate the new optimum regulator operating mode based on the new total
 945 * consumer load. All locks held by caller
 946 */
 947static int drms_uA_update(struct regulator_dev *rdev)
 948{
 949	struct regulator *sibling;
 950	int current_uA = 0, output_uV, input_uV, err;
 951	unsigned int mode;
 952
 953	/*
 954	 * first check to see if we can set modes at all, otherwise just
 955	 * tell the consumer everything is OK.
 956	 */
 957	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 958		rdev_dbg(rdev, "DRMS operation not allowed\n");
 959		return 0;
 960	}
 961
 962	if (!rdev->desc->ops->get_optimum_mode &&
 963	    !rdev->desc->ops->set_load)
 964		return 0;
 965
 966	if (!rdev->desc->ops->set_mode &&
 967	    !rdev->desc->ops->set_load)
 968		return -EINVAL;
 969
 970	/* calc total requested load */
 971	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 972		if (sibling->enable_count)
 973			current_uA += sibling->uA_load;
 974	}
 975
 976	current_uA += rdev->constraints->system_load;
 977
 978	if (rdev->desc->ops->set_load) {
 979		/* set the optimum mode for our new total regulator load */
 980		err = rdev->desc->ops->set_load(rdev, current_uA);
 981		if (err < 0)
 982			rdev_err(rdev, "failed to set load %d: %pe\n",
 983				 current_uA, ERR_PTR(err));
 984	} else {
 985		/*
 986		 * Unfortunately in some cases the constraints->valid_ops has
 987		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
 988		 * That's not really legit but we won't consider it a fatal
 989		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
 990		 * wasn't set.
 991		 */
 992		if (!rdev->constraints->valid_modes_mask) {
 993			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
 994			return 0;
 995		}
 996
 997		/* get output voltage */
 998		output_uV = regulator_get_voltage_rdev(rdev);
 999
1000		/*
1001		 * Don't return an error; if regulator driver cares about
1002		 * output_uV then it's up to the driver to validate.
1003		 */
1004		if (output_uV <= 0)
1005			rdev_dbg(rdev, "invalid output voltage found\n");
1006
1007		/* get input voltage */
1008		input_uV = 0;
1009		if (rdev->supply)
1010			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011		if (input_uV <= 0)
1012			input_uV = rdev->constraints->input_uV;
1013
1014		/*
1015		 * Don't return an error; if regulator driver cares about
1016		 * input_uV then it's up to the driver to validate.
1017		 */
1018		if (input_uV <= 0)
1019			rdev_dbg(rdev, "invalid input voltage found\n");
1020
1021		/* now get the optimum mode for our new total regulator load */
1022		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023							 output_uV, current_uA);
1024
1025		/* check the new mode is allowed */
1026		err = regulator_mode_constrain(rdev, &mode);
1027		if (err < 0) {
1028			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029				 current_uA, input_uV, output_uV, ERR_PTR(err));
1030			return err;
1031		}
1032
1033		err = rdev->desc->ops->set_mode(rdev, mode);
1034		if (err < 0)
1035			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036				 mode, ERR_PTR(err));
1037	}
1038
1039	return err;
1040}
1041
1042static int __suspend_set_state(struct regulator_dev *rdev,
1043			       const struct regulator_state *rstate)
1044{
1045	int ret = 0;
1046
1047	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048		rdev->desc->ops->set_suspend_enable)
1049		ret = rdev->desc->ops->set_suspend_enable(rdev);
1050	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051		rdev->desc->ops->set_suspend_disable)
1052		ret = rdev->desc->ops->set_suspend_disable(rdev);
1053	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054		ret = 0;
1055
1056	if (ret < 0) {
1057		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058		return ret;
1059	}
1060
1061	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063		if (ret < 0) {
1064			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065			return ret;
1066		}
1067	}
1068
1069	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071		if (ret < 0) {
1072			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073			return ret;
1074		}
1075	}
1076
1077	return ret;
1078}
1079
1080static int suspend_set_initial_state(struct regulator_dev *rdev)
1081{
1082	const struct regulator_state *rstate;
1083
1084	rstate = regulator_get_suspend_state_check(rdev,
1085			rdev->constraints->initial_state);
1086	if (!rstate)
1087		return 0;
1088
1089	return __suspend_set_state(rdev, rstate);
1090}
1091
1092#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093static void print_constraints_debug(struct regulator_dev *rdev)
1094{
1095	struct regulation_constraints *constraints = rdev->constraints;
1096	char buf[160] = "";
1097	size_t len = sizeof(buf) - 1;
1098	int count = 0;
1099	int ret;
1100
1101	if (constraints->min_uV && constraints->max_uV) {
1102		if (constraints->min_uV == constraints->max_uV)
1103			count += scnprintf(buf + count, len - count, "%d mV ",
1104					   constraints->min_uV / 1000);
1105		else
1106			count += scnprintf(buf + count, len - count,
1107					   "%d <--> %d mV ",
1108					   constraints->min_uV / 1000,
1109					   constraints->max_uV / 1000);
1110	}
1111
1112	if (!constraints->min_uV ||
1113	    constraints->min_uV != constraints->max_uV) {
1114		ret = regulator_get_voltage_rdev(rdev);
1115		if (ret > 0)
1116			count += scnprintf(buf + count, len - count,
1117					   "at %d mV ", ret / 1000);
1118	}
1119
1120	if (constraints->uV_offset)
1121		count += scnprintf(buf + count, len - count, "%dmV offset ",
1122				   constraints->uV_offset / 1000);
1123
1124	if (constraints->min_uA && constraints->max_uA) {
1125		if (constraints->min_uA == constraints->max_uA)
1126			count += scnprintf(buf + count, len - count, "%d mA ",
1127					   constraints->min_uA / 1000);
1128		else
1129			count += scnprintf(buf + count, len - count,
1130					   "%d <--> %d mA ",
1131					   constraints->min_uA / 1000,
1132					   constraints->max_uA / 1000);
1133	}
1134
1135	if (!constraints->min_uA ||
1136	    constraints->min_uA != constraints->max_uA) {
1137		ret = _regulator_get_current_limit(rdev);
1138		if (ret > 0)
1139			count += scnprintf(buf + count, len - count,
1140					   "at %d mA ", ret / 1000);
1141	}
1142
1143	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144		count += scnprintf(buf + count, len - count, "fast ");
1145	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146		count += scnprintf(buf + count, len - count, "normal ");
1147	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148		count += scnprintf(buf + count, len - count, "idle ");
1149	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150		count += scnprintf(buf + count, len - count, "standby ");
1151
1152	if (!count)
1153		count = scnprintf(buf, len, "no parameters");
1154	else
1155		--count;
1156
1157	count += scnprintf(buf + count, len - count, ", %s",
1158		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1159
1160	rdev_dbg(rdev, "%s\n", buf);
1161}
1162#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1165
1166static void print_constraints(struct regulator_dev *rdev)
1167{
1168	struct regulation_constraints *constraints = rdev->constraints;
1169
1170	print_constraints_debug(rdev);
1171
1172	if ((constraints->min_uV != constraints->max_uV) &&
1173	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174		rdev_warn(rdev,
1175			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1176}
1177
1178static int machine_constraints_voltage(struct regulator_dev *rdev,
1179	struct regulation_constraints *constraints)
1180{
1181	const struct regulator_ops *ops = rdev->desc->ops;
1182	int ret;
1183
1184	/* do we need to apply the constraint voltage */
1185	if (rdev->constraints->apply_uV &&
1186	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187		int target_min, target_max;
1188		int current_uV = regulator_get_voltage_rdev(rdev);
1189
1190		if (current_uV == -ENOTRECOVERABLE) {
1191			/* This regulator can't be read and must be initialized */
1192			rdev_info(rdev, "Setting %d-%duV\n",
1193				  rdev->constraints->min_uV,
1194				  rdev->constraints->max_uV);
1195			_regulator_do_set_voltage(rdev,
1196						  rdev->constraints->min_uV,
1197						  rdev->constraints->max_uV);
1198			current_uV = regulator_get_voltage_rdev(rdev);
1199		}
1200
1201		if (current_uV < 0) {
1202			if (current_uV != -EPROBE_DEFER)
1203				rdev_err(rdev,
1204					 "failed to get the current voltage: %pe\n",
1205					 ERR_PTR(current_uV));
1206			return current_uV;
1207		}
1208
1209		/*
1210		 * If we're below the minimum voltage move up to the
1211		 * minimum voltage, if we're above the maximum voltage
1212		 * then move down to the maximum.
1213		 */
1214		target_min = current_uV;
1215		target_max = current_uV;
1216
1217		if (current_uV < rdev->constraints->min_uV) {
1218			target_min = rdev->constraints->min_uV;
1219			target_max = rdev->constraints->min_uV;
1220		}
1221
1222		if (current_uV > rdev->constraints->max_uV) {
1223			target_min = rdev->constraints->max_uV;
1224			target_max = rdev->constraints->max_uV;
1225		}
1226
1227		if (target_min != current_uV || target_max != current_uV) {
1228			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229				  current_uV, target_min, target_max);
1230			ret = _regulator_do_set_voltage(
1231				rdev, target_min, target_max);
1232			if (ret < 0) {
1233				rdev_err(rdev,
1234					"failed to apply %d-%duV constraint: %pe\n",
1235					target_min, target_max, ERR_PTR(ret));
1236				return ret;
1237			}
1238		}
1239	}
1240
1241	/* constrain machine-level voltage specs to fit
1242	 * the actual range supported by this regulator.
1243	 */
1244	if (ops->list_voltage && rdev->desc->n_voltages) {
1245		int	count = rdev->desc->n_voltages;
1246		int	i;
1247		int	min_uV = INT_MAX;
1248		int	max_uV = INT_MIN;
1249		int	cmin = constraints->min_uV;
1250		int	cmax = constraints->max_uV;
1251
1252		/* it's safe to autoconfigure fixed-voltage supplies
1253		 * and the constraints are used by list_voltage.
1254		 */
1255		if (count == 1 && !cmin) {
1256			cmin = 1;
1257			cmax = INT_MAX;
1258			constraints->min_uV = cmin;
1259			constraints->max_uV = cmax;
1260		}
1261
1262		/* voltage constraints are optional */
1263		if ((cmin == 0) && (cmax == 0))
1264			return 0;
1265
1266		/* else require explicit machine-level constraints */
1267		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268			rdev_err(rdev, "invalid voltage constraints\n");
1269			return -EINVAL;
1270		}
1271
1272		/* no need to loop voltages if range is continuous */
1273		if (rdev->desc->continuous_voltage_range)
1274			return 0;
1275
1276		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277		for (i = 0; i < count; i++) {
1278			int	value;
1279
1280			value = ops->list_voltage(rdev, i);
1281			if (value <= 0)
1282				continue;
1283
1284			/* maybe adjust [min_uV..max_uV] */
1285			if (value >= cmin && value < min_uV)
1286				min_uV = value;
1287			if (value <= cmax && value > max_uV)
1288				max_uV = value;
1289		}
1290
1291		/* final: [min_uV..max_uV] valid iff constraints valid */
1292		if (max_uV < min_uV) {
1293			rdev_err(rdev,
1294				 "unsupportable voltage constraints %u-%uuV\n",
1295				 min_uV, max_uV);
1296			return -EINVAL;
1297		}
1298
1299		/* use regulator's subset of machine constraints */
1300		if (constraints->min_uV < min_uV) {
1301			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302				 constraints->min_uV, min_uV);
1303			constraints->min_uV = min_uV;
1304		}
1305		if (constraints->max_uV > max_uV) {
1306			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307				 constraints->max_uV, max_uV);
1308			constraints->max_uV = max_uV;
1309		}
1310	}
1311
1312	return 0;
1313}
1314
1315static int machine_constraints_current(struct regulator_dev *rdev,
1316	struct regulation_constraints *constraints)
1317{
1318	const struct regulator_ops *ops = rdev->desc->ops;
1319	int ret;
1320
1321	if (!constraints->min_uA && !constraints->max_uA)
1322		return 0;
1323
1324	if (constraints->min_uA > constraints->max_uA) {
1325		rdev_err(rdev, "Invalid current constraints\n");
1326		return -EINVAL;
1327	}
1328
1329	if (!ops->set_current_limit || !ops->get_current_limit) {
1330		rdev_warn(rdev, "Operation of current configuration missing\n");
1331		return 0;
1332	}
1333
1334	/* Set regulator current in constraints range */
1335	ret = ops->set_current_limit(rdev, constraints->min_uA,
1336			constraints->max_uA);
1337	if (ret < 0) {
1338		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339		return ret;
1340	}
1341
1342	return 0;
1343}
1344
1345static int _regulator_do_enable(struct regulator_dev *rdev);
1346
1347static int notif_set_limit(struct regulator_dev *rdev,
1348			   int (*set)(struct regulator_dev *, int, int, bool),
1349			   int limit, int severity)
1350{
1351	bool enable;
1352
1353	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354		enable = false;
1355		limit = 0;
1356	} else {
1357		enable = true;
1358	}
1359
1360	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361		limit = 0;
1362
1363	return set(rdev, limit, severity, enable);
1364}
1365
1366static int handle_notify_limits(struct regulator_dev *rdev,
1367			int (*set)(struct regulator_dev *, int, int, bool),
1368			struct notification_limit *limits)
1369{
1370	int ret = 0;
1371
1372	if (!set)
1373		return -EOPNOTSUPP;
1374
1375	if (limits->prot)
1376		ret = notif_set_limit(rdev, set, limits->prot,
1377				      REGULATOR_SEVERITY_PROT);
1378	if (ret)
1379		return ret;
1380
1381	if (limits->err)
1382		ret = notif_set_limit(rdev, set, limits->err,
1383				      REGULATOR_SEVERITY_ERR);
1384	if (ret)
1385		return ret;
1386
1387	if (limits->warn)
1388		ret = notif_set_limit(rdev, set, limits->warn,
1389				      REGULATOR_SEVERITY_WARN);
1390
1391	return ret;
1392}
1393/**
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1396 *
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401 * set_mode.
1402 *
1403 * Return: 0 on success or a negative error number on failure.
1404 */
1405static int set_machine_constraints(struct regulator_dev *rdev)
1406{
1407	int ret = 0;
1408	const struct regulator_ops *ops = rdev->desc->ops;
1409
1410	ret = machine_constraints_voltage(rdev, rdev->constraints);
1411	if (ret != 0)
1412		return ret;
1413
1414	ret = machine_constraints_current(rdev, rdev->constraints);
1415	if (ret != 0)
1416		return ret;
1417
1418	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419		ret = ops->set_input_current_limit(rdev,
1420						   rdev->constraints->ilim_uA);
1421		if (ret < 0) {
1422			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423			return ret;
1424		}
1425	}
1426
1427	/* do we need to setup our suspend state */
1428	if (rdev->constraints->initial_state) {
1429		ret = suspend_set_initial_state(rdev);
1430		if (ret < 0) {
1431			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432			return ret;
1433		}
1434	}
1435
1436	if (rdev->constraints->initial_mode) {
1437		if (!ops->set_mode) {
1438			rdev_err(rdev, "no set_mode operation\n");
1439			return -EINVAL;
1440		}
1441
1442		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443		if (ret < 0) {
1444			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445			return ret;
1446		}
1447	} else if (rdev->constraints->system_load) {
1448		/*
1449		 * We'll only apply the initial system load if an
1450		 * initial mode wasn't specified.
1451		 */
1452		drms_uA_update(rdev);
1453	}
1454
1455	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456		&& ops->set_ramp_delay) {
1457		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458		if (ret < 0) {
1459			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460			return ret;
1461		}
1462	}
1463
1464	if (rdev->constraints->pull_down && ops->set_pull_down) {
1465		ret = ops->set_pull_down(rdev);
1466		if (ret < 0) {
1467			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468			return ret;
1469		}
1470	}
1471
1472	if (rdev->constraints->soft_start && ops->set_soft_start) {
1473		ret = ops->set_soft_start(rdev);
1474		if (ret < 0) {
1475			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476			return ret;
1477		}
1478	}
1479
1480	/*
1481	 * Existing logic does not warn if over_current_protection is given as
1482	 * a constraint but driver does not support that. I think we should
1483	 * warn about this type of issues as it is possible someone changes
1484	 * PMIC on board to another type - and the another PMIC's driver does
1485	 * not support setting protection. Board composer may happily believe
1486	 * the DT limits are respected - especially if the new PMIC HW also
1487	 * supports protection but the driver does not. I won't change the logic
1488	 * without hearing more experienced opinion on this though.
1489	 *
1490	 * If warning is seen as a good idea then we can merge handling the
1491	 * over-curret protection and detection and get rid of this special
1492	 * handling.
1493	 */
1494	if (rdev->constraints->over_current_protection
1495		&& ops->set_over_current_protection) {
1496		int lim = rdev->constraints->over_curr_limits.prot;
1497
1498		ret = ops->set_over_current_protection(rdev, lim,
1499						       REGULATOR_SEVERITY_PROT,
1500						       true);
1501		if (ret < 0) {
1502			rdev_err(rdev, "failed to set over current protection: %pe\n",
1503				 ERR_PTR(ret));
1504			return ret;
1505		}
1506	}
1507
1508	if (rdev->constraints->over_current_detection)
1509		ret = handle_notify_limits(rdev,
1510					   ops->set_over_current_protection,
1511					   &rdev->constraints->over_curr_limits);
1512	if (ret) {
1513		if (ret != -EOPNOTSUPP) {
1514			rdev_err(rdev, "failed to set over current limits: %pe\n",
1515				 ERR_PTR(ret));
1516			return ret;
1517		}
1518		rdev_warn(rdev,
1519			  "IC does not support requested over-current limits\n");
1520	}
1521
1522	if (rdev->constraints->over_voltage_detection)
1523		ret = handle_notify_limits(rdev,
1524					   ops->set_over_voltage_protection,
1525					   &rdev->constraints->over_voltage_limits);
1526	if (ret) {
1527		if (ret != -EOPNOTSUPP) {
1528			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529				 ERR_PTR(ret));
1530			return ret;
1531		}
1532		rdev_warn(rdev,
1533			  "IC does not support requested over voltage limits\n");
1534	}
1535
1536	if (rdev->constraints->under_voltage_detection)
1537		ret = handle_notify_limits(rdev,
1538					   ops->set_under_voltage_protection,
1539					   &rdev->constraints->under_voltage_limits);
1540	if (ret) {
1541		if (ret != -EOPNOTSUPP) {
1542			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543				 ERR_PTR(ret));
1544			return ret;
1545		}
1546		rdev_warn(rdev,
1547			  "IC does not support requested under voltage limits\n");
1548	}
1549
1550	if (rdev->constraints->over_temp_detection)
1551		ret = handle_notify_limits(rdev,
1552					   ops->set_thermal_protection,
1553					   &rdev->constraints->temp_limits);
1554	if (ret) {
1555		if (ret != -EOPNOTSUPP) {
1556			rdev_err(rdev, "failed to set temperature limits %pe\n",
1557				 ERR_PTR(ret));
1558			return ret;
1559		}
1560		rdev_warn(rdev,
1561			  "IC does not support requested temperature limits\n");
1562	}
1563
1564	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565		bool ad_state = (rdev->constraints->active_discharge ==
1566			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1567
1568		ret = ops->set_active_discharge(rdev, ad_state);
1569		if (ret < 0) {
1570			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571			return ret;
1572		}
1573	}
1574
1575	/*
1576	 * If there is no mechanism for controlling the regulator then
1577	 * flag it as always_on so we don't end up duplicating checks
1578	 * for this so much.  Note that we could control the state of
1579	 * a supply to control the output on a regulator that has no
1580	 * direct control.
1581	 */
1582	if (!rdev->ena_pin && !ops->enable) {
1583		if (rdev->supply_name && !rdev->supply)
1584			return -EPROBE_DEFER;
1585
1586		if (rdev->supply)
1587			rdev->constraints->always_on =
1588				rdev->supply->rdev->constraints->always_on;
1589		else
1590			rdev->constraints->always_on = true;
1591	}
1592
1593	/* If the constraints say the regulator should be on at this point
1594	 * and we have control then make sure it is enabled.
1595	 */
1596	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597		/* If we want to enable this regulator, make sure that we know
1598		 * the supplying regulator.
1599		 */
1600		if (rdev->supply_name && !rdev->supply)
1601			return -EPROBE_DEFER;
1602
1603		/* If supplying regulator has already been enabled,
1604		 * it's not intended to have use_count increment
1605		 * when rdev is only boot-on.
1606		 */
1607		if (rdev->supply &&
1608		    (rdev->constraints->always_on ||
1609		     !regulator_is_enabled(rdev->supply))) {
1610			ret = regulator_enable(rdev->supply);
1611			if (ret < 0) {
1612				_regulator_put(rdev->supply);
1613				rdev->supply = NULL;
1614				return ret;
1615			}
1616		}
1617
1618		ret = _regulator_do_enable(rdev);
1619		if (ret < 0 && ret != -EINVAL) {
1620			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621			return ret;
1622		}
1623
1624		if (rdev->constraints->always_on)
1625			rdev->use_count++;
1626	} else if (rdev->desc->off_on_delay) {
1627		rdev->last_off = ktime_get();
1628	}
1629
1630	print_constraints(rdev);
1631	return 0;
1632}
1633
1634/**
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1638 *
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1642 *
1643 * Return: 0 on success or a negative error number on failure.
1644 */
1645static int set_supply(struct regulator_dev *rdev,
1646		      struct regulator_dev *supply_rdev)
1647{
1648	int err;
1649
1650	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1651
1652	if (!try_module_get(supply_rdev->owner))
1653		return -ENODEV;
1654
1655	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656	if (rdev->supply == NULL) {
1657		module_put(supply_rdev->owner);
1658		err = -ENOMEM;
1659		return err;
1660	}
1661	supply_rdev->open_count++;
1662
1663	return 0;
1664}
1665
1666/**
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev:         regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply:       symbolic name for supply
1671 *
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices.  Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1676 *
1677 * Return: 0 on success or a negative error number on failure.
1678 */
1679static int set_consumer_device_supply(struct regulator_dev *rdev,
1680				      const char *consumer_dev_name,
1681				      const char *supply)
1682{
1683	struct regulator_map *node, *new_node;
1684	int has_dev;
1685
1686	if (supply == NULL)
1687		return -EINVAL;
1688
1689	if (consumer_dev_name != NULL)
1690		has_dev = 1;
1691	else
1692		has_dev = 0;
1693
1694	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695	if (new_node == NULL)
1696		return -ENOMEM;
1697
1698	new_node->regulator = rdev;
1699	new_node->supply = supply;
1700
1701	if (has_dev) {
1702		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703		if (new_node->dev_name == NULL) {
1704			kfree(new_node);
1705			return -ENOMEM;
1706		}
1707	}
1708
1709	mutex_lock(&regulator_list_mutex);
1710	list_for_each_entry(node, &regulator_map_list, list) {
1711		if (node->dev_name && consumer_dev_name) {
1712			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713				continue;
1714		} else if (node->dev_name || consumer_dev_name) {
1715			continue;
1716		}
1717
1718		if (strcmp(node->supply, supply) != 0)
1719			continue;
1720
1721		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722			 consumer_dev_name,
1723			 dev_name(&node->regulator->dev),
1724			 node->regulator->desc->name,
1725			 supply,
1726			 dev_name(&rdev->dev), rdev_get_name(rdev));
1727		goto fail;
1728	}
1729
1730	list_add(&new_node->list, &regulator_map_list);
1731	mutex_unlock(&regulator_list_mutex);
1732
1733	return 0;
1734
1735fail:
1736	mutex_unlock(&regulator_list_mutex);
1737	kfree(new_node->dev_name);
1738	kfree(new_node);
1739	return -EBUSY;
1740}
1741
1742static void unset_regulator_supplies(struct regulator_dev *rdev)
1743{
1744	struct regulator_map *node, *n;
1745
1746	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1747		if (rdev == node->regulator) {
1748			list_del(&node->list);
1749			kfree(node->dev_name);
1750			kfree(node);
1751		}
1752	}
1753}
1754
1755#ifdef CONFIG_DEBUG_FS
1756static ssize_t constraint_flags_read_file(struct file *file,
1757					  char __user *user_buf,
1758					  size_t count, loff_t *ppos)
1759{
1760	const struct regulator *regulator = file->private_data;
1761	const struct regulation_constraints *c = regulator->rdev->constraints;
1762	char *buf;
1763	ssize_t ret;
1764
1765	if (!c)
1766		return 0;
1767
1768	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769	if (!buf)
1770		return -ENOMEM;
1771
1772	ret = snprintf(buf, PAGE_SIZE,
1773			"always_on: %u\n"
1774			"boot_on: %u\n"
1775			"apply_uV: %u\n"
1776			"ramp_disable: %u\n"
1777			"soft_start: %u\n"
1778			"pull_down: %u\n"
1779			"over_current_protection: %u\n",
1780			c->always_on,
1781			c->boot_on,
1782			c->apply_uV,
1783			c->ramp_disable,
1784			c->soft_start,
1785			c->pull_down,
1786			c->over_current_protection);
1787
1788	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789	kfree(buf);
1790
1791	return ret;
1792}
1793
1794#endif
1795
1796static const struct file_operations constraint_flags_fops = {
1797#ifdef CONFIG_DEBUG_FS
1798	.open = simple_open,
1799	.read = constraint_flags_read_file,
1800	.llseek = default_llseek,
1801#endif
1802};
1803
1804#define REG_STR_SIZE	64
1805
1806static struct regulator *create_regulator(struct regulator_dev *rdev,
1807					  struct device *dev,
1808					  const char *supply_name)
1809{
1810	struct regulator *regulator;
1811	int err = 0;
1812
1813	lockdep_assert_held_once(&rdev->mutex.base);
1814
1815	if (dev) {
1816		char buf[REG_STR_SIZE];
1817		int size;
1818
1819		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820				dev->kobj.name, supply_name);
1821		if (size >= REG_STR_SIZE)
1822			return NULL;
1823
1824		supply_name = kstrdup(buf, GFP_KERNEL);
1825		if (supply_name == NULL)
1826			return NULL;
1827	} else {
1828		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829		if (supply_name == NULL)
1830			return NULL;
1831	}
1832
1833	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834	if (regulator == NULL) {
1835		kfree_const(supply_name);
1836		return NULL;
1837	}
1838
1839	regulator->rdev = rdev;
1840	regulator->supply_name = supply_name;
1841
1842	list_add(&regulator->list, &rdev->consumer_list);
1843
1844	if (dev) {
1845		regulator->dev = dev;
1846
1847		/* Add a link to the device sysfs entry */
1848		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849					       supply_name);
1850		if (err) {
1851			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852				  dev->kobj.name, ERR_PTR(err));
1853			/* non-fatal */
1854		}
1855	}
1856
1857	if (err != -EEXIST) {
1858		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859		if (IS_ERR(regulator->debugfs)) {
1860			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861			regulator->debugfs = NULL;
1862		}
1863	}
1864
1865	if (regulator->debugfs) {
1866		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867				   &regulator->uA_load);
1868		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1870		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1872		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873				    regulator, &constraint_flags_fops);
1874	}
1875
1876	/*
1877	 * Check now if the regulator is an always on regulator - if
1878	 * it is then we don't need to do nearly so much work for
1879	 * enable/disable calls.
1880	 */
1881	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882	    _regulator_is_enabled(rdev))
1883		regulator->always_on = true;
1884
1885	return regulator;
1886}
1887
1888static int _regulator_get_enable_time(struct regulator_dev *rdev)
1889{
1890	if (rdev->constraints && rdev->constraints->enable_time)
1891		return rdev->constraints->enable_time;
1892	if (rdev->desc->ops->enable_time)
1893		return rdev->desc->ops->enable_time(rdev);
1894	return rdev->desc->enable_time;
1895}
1896
1897static struct regulator_supply_alias *regulator_find_supply_alias(
1898		struct device *dev, const char *supply)
1899{
1900	struct regulator_supply_alias *map;
1901
1902	list_for_each_entry(map, &regulator_supply_alias_list, list)
1903		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904			return map;
1905
1906	return NULL;
1907}
1908
1909static void regulator_supply_alias(struct device **dev, const char **supply)
1910{
1911	struct regulator_supply_alias *map;
1912
1913	map = regulator_find_supply_alias(*dev, *supply);
1914	if (map) {
1915		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916				*supply, map->alias_supply,
1917				dev_name(map->alias_dev));
1918		*dev = map->alias_dev;
1919		*supply = map->alias_supply;
1920	}
1921}
1922
1923static int regulator_match(struct device *dev, const void *data)
1924{
1925	struct regulator_dev *r = dev_to_rdev(dev);
1926
1927	return strcmp(rdev_get_name(r), data) == 0;
1928}
1929
1930static struct regulator_dev *regulator_lookup_by_name(const char *name)
1931{
1932	struct device *dev;
1933
1934	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1935
1936	return dev ? dev_to_rdev(dev) : NULL;
1937}
1938
1939/**
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1943 *
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1945 *
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951 * in the future.
1952 */
1953static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954						  const char *supply)
1955{
1956	struct regulator_dev *r = NULL;
 
1957	struct regulator_map *map;
1958	const char *devname = NULL;
1959
1960	regulator_supply_alias(&dev, &supply);
1961
1962	/* first do a dt based lookup */
1963	if (dev_of_node(dev)) {
1964		r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965		if (!IS_ERR(r))
1966			return r;
1967		if (PTR_ERR(r) == -EPROBE_DEFER)
1968			return r;
 
1969
1970		if (PTR_ERR(r) == -ENODEV)
1971			r = NULL;
 
 
 
 
1972	}
1973
1974	/* if not found, try doing it non-dt way */
1975	if (dev)
1976		devname = dev_name(dev);
1977
1978	mutex_lock(&regulator_list_mutex);
1979	list_for_each_entry(map, &regulator_map_list, list) {
1980		/* If the mapping has a device set up it must match */
1981		if (map->dev_name &&
1982		    (!devname || strcmp(map->dev_name, devname)))
1983			continue;
1984
1985		if (strcmp(map->supply, supply) == 0 &&
1986		    get_device(&map->regulator->dev)) {
1987			r = map->regulator;
1988			break;
1989		}
1990	}
1991	mutex_unlock(&regulator_list_mutex);
1992
1993	if (r)
1994		return r;
1995
1996	r = regulator_lookup_by_name(supply);
1997	if (r)
1998		return r;
1999
2000	return ERR_PTR(-ENODEV);
2001}
2002
2003static int regulator_resolve_supply(struct regulator_dev *rdev)
2004{
2005	struct regulator_dev *r;
2006	struct device *dev = rdev->dev.parent;
2007	struct ww_acquire_ctx ww_ctx;
2008	int ret = 0;
2009
2010	/* No supply to resolve? */
2011	if (!rdev->supply_name)
2012		return 0;
2013
2014	/* Supply already resolved? (fast-path without locking contention) */
2015	if (rdev->supply)
2016		return 0;
2017
2018	r = regulator_dev_lookup(dev, rdev->supply_name);
2019	if (IS_ERR(r)) {
2020		ret = PTR_ERR(r);
2021
2022		/* Did the lookup explicitly defer for us? */
2023		if (ret == -EPROBE_DEFER)
2024			goto out;
2025
2026		if (have_full_constraints()) {
2027			r = dummy_regulator_rdev;
2028			get_device(&r->dev);
2029		} else {
2030			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031				rdev->supply_name, rdev->desc->name);
2032			ret = -EPROBE_DEFER;
2033			goto out;
2034		}
2035	}
2036
2037	if (r == rdev) {
2038		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039			rdev->desc->name, rdev->supply_name);
2040		if (!have_full_constraints()) {
2041			ret = -EINVAL;
2042			goto out;
2043		}
2044		r = dummy_regulator_rdev;
2045		get_device(&r->dev);
2046	}
2047
2048	/*
2049	 * If the supply's parent device is not the same as the
2050	 * regulator's parent device, then ensure the parent device
2051	 * is bound before we resolve the supply, in case the parent
2052	 * device get probe deferred and unregisters the supply.
2053	 */
2054	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055		if (!device_is_bound(r->dev.parent)) {
2056			put_device(&r->dev);
2057			ret = -EPROBE_DEFER;
2058			goto out;
2059		}
2060	}
2061
2062	/* Recursively resolve the supply of the supply */
2063	ret = regulator_resolve_supply(r);
2064	if (ret < 0) {
2065		put_device(&r->dev);
2066		goto out;
2067	}
2068
2069	/*
2070	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071	 * between rdev->supply null check and setting rdev->supply in
2072	 * set_supply() from concurrent tasks.
2073	 */
2074	regulator_lock_two(rdev, r, &ww_ctx);
2075
2076	/* Supply just resolved by a concurrent task? */
2077	if (rdev->supply) {
2078		regulator_unlock_two(rdev, r, &ww_ctx);
2079		put_device(&r->dev);
2080		goto out;
2081	}
2082
2083	ret = set_supply(rdev, r);
2084	if (ret < 0) {
2085		regulator_unlock_two(rdev, r, &ww_ctx);
2086		put_device(&r->dev);
2087		goto out;
2088	}
2089
2090	regulator_unlock_two(rdev, r, &ww_ctx);
2091
2092	/*
2093	 * In set_machine_constraints() we may have turned this regulator on
2094	 * but we couldn't propagate to the supply if it hadn't been resolved
2095	 * yet.  Do it now.
2096	 */
2097	if (rdev->use_count) {
2098		ret = regulator_enable(rdev->supply);
2099		if (ret < 0) {
2100			_regulator_put(rdev->supply);
2101			rdev->supply = NULL;
2102			goto out;
2103		}
2104	}
2105
2106out:
2107	return ret;
2108}
2109
2110/* common pre-checks for regulator requests */
2111int _regulator_get_common_check(struct device *dev, const char *id,
2112				enum regulator_get_type get_type)
2113{
 
 
 
 
 
2114	if (get_type >= MAX_GET_TYPE) {
2115		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116		return -EINVAL;
2117	}
2118
2119	if (id == NULL) {
2120		dev_err(dev, "regulator request with no identifier\n");
2121		return -EINVAL;
2122	}
2123
2124	return 0;
2125}
2126
2127/**
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 *       Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2134 *
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136 *	    encoded error.
2137 *
2138 * This function should be chained with *regulator_dev_lookup() functions.
2139 */
2140struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141					const char *id, enum regulator_get_type get_type)
2142{
2143	struct regulator *regulator;
2144	struct device_link *link;
2145	int ret;
2146
2147	if (IS_ERR(rdev)) {
2148		ret = PTR_ERR(rdev);
2149
2150		/*
2151		 * If regulator_dev_lookup() fails with error other
2152		 * than -ENODEV our job here is done, we simply return it.
2153		 */
2154		if (ret != -ENODEV)
2155			return ERR_PTR(ret);
2156
2157		if (!have_full_constraints()) {
2158			dev_warn(dev,
2159				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160			return ERR_PTR(-ENODEV);
2161		}
2162
2163		switch (get_type) {
2164		case NORMAL_GET:
2165			/*
2166			 * Assume that a regulator is physically present and
2167			 * enabled, even if it isn't hooked up, and just
2168			 * provide a dummy.
2169			 */
2170			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171			rdev = dummy_regulator_rdev;
2172			get_device(&rdev->dev);
2173			break;
2174
2175		case EXCLUSIVE_GET:
2176			dev_warn(dev,
2177				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178			fallthrough;
2179
2180		default:
2181			return ERR_PTR(-ENODEV);
2182		}
2183	}
2184
2185	if (rdev->exclusive) {
2186		regulator = ERR_PTR(-EPERM);
2187		put_device(&rdev->dev);
2188		return regulator;
2189	}
2190
2191	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192		regulator = ERR_PTR(-EBUSY);
2193		put_device(&rdev->dev);
2194		return regulator;
2195	}
2196
2197	mutex_lock(&regulator_list_mutex);
2198	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199	mutex_unlock(&regulator_list_mutex);
2200
2201	if (ret != 0) {
2202		regulator = ERR_PTR(-EPROBE_DEFER);
2203		put_device(&rdev->dev);
2204		return regulator;
2205	}
2206
2207	ret = regulator_resolve_supply(rdev);
2208	if (ret < 0) {
2209		regulator = ERR_PTR(ret);
2210		put_device(&rdev->dev);
2211		return regulator;
2212	}
2213
2214	if (!try_module_get(rdev->owner)) {
2215		regulator = ERR_PTR(-EPROBE_DEFER);
2216		put_device(&rdev->dev);
2217		return regulator;
2218	}
2219
2220	regulator_lock(rdev);
2221	regulator = create_regulator(rdev, dev, id);
2222	regulator_unlock(rdev);
2223	if (regulator == NULL) {
2224		regulator = ERR_PTR(-ENOMEM);
2225		module_put(rdev->owner);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	rdev->open_count++;
2231	if (get_type == EXCLUSIVE_GET) {
2232		rdev->exclusive = 1;
2233
2234		ret = _regulator_is_enabled(rdev);
2235		if (ret > 0) {
2236			rdev->use_count = 1;
2237			regulator->enable_count = 1;
2238
2239			/* Propagate the regulator state to its supply */
2240			if (rdev->supply) {
2241				ret = regulator_enable(rdev->supply);
2242				if (ret < 0) {
2243					destroy_regulator(regulator);
2244					module_put(rdev->owner);
2245					put_device(&rdev->dev);
2246					return ERR_PTR(ret);
2247				}
2248			}
2249		} else {
2250			rdev->use_count = 0;
2251			regulator->enable_count = 0;
2252		}
2253	}
2254
2255	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256	if (!IS_ERR_OR_NULL(link))
2257		regulator->device_link = true;
2258
2259	return regulator;
2260}
2261
2262/* Internal regulator request function */
2263struct regulator *_regulator_get(struct device *dev, const char *id,
2264				 enum regulator_get_type get_type)
2265{
2266	struct regulator_dev *rdev;
2267	int ret;
2268
2269	ret = _regulator_get_common_check(dev, id, get_type);
2270	if (ret)
2271		return ERR_PTR(ret);
2272
2273	rdev = regulator_dev_lookup(dev, id);
2274	return _regulator_get_common(rdev, dev, id, get_type);
2275}
2276
2277/**
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2281 *
 
 
 
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged.  It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2286 *
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 *	   producer, or an ERR_PTR() encoded negative error number.
2289 */
2290struct regulator *regulator_get(struct device *dev, const char *id)
2291{
2292	return _regulator_get(dev, id, NORMAL_GET);
2293}
2294EXPORT_SYMBOL_GPL(regulator_get);
2295
2296/**
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2300 *
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
 
 
2304 *
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2308 * controlling.
2309 *
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged.  It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2314 *
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 *	   producer, or an ERR_PTR() encoded negative error number.
2317 */
2318struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2319{
2320	return _regulator_get(dev, id, EXCLUSIVE_GET);
2321}
2322EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2323
2324/**
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2328 *
 
 
 
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2334 * supplies.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged.  It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 *
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 *	   producer, or an ERR_PTR() encoded negative error number.
2343 */
2344struct regulator *regulator_get_optional(struct device *dev, const char *id)
2345{
2346	return _regulator_get(dev, id, OPTIONAL_GET);
2347}
2348EXPORT_SYMBOL_GPL(regulator_get_optional);
2349
2350static void destroy_regulator(struct regulator *regulator)
2351{
2352	struct regulator_dev *rdev = regulator->rdev;
2353
2354	debugfs_remove_recursive(regulator->debugfs);
2355
2356	if (regulator->dev) {
2357		if (regulator->device_link)
2358			device_link_remove(regulator->dev, &rdev->dev);
2359
2360		/* remove any sysfs entries */
2361		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2362	}
2363
2364	regulator_lock(rdev);
2365	list_del(&regulator->list);
2366
2367	rdev->open_count--;
2368	rdev->exclusive = 0;
2369	regulator_unlock(rdev);
2370
2371	kfree_const(regulator->supply_name);
2372	kfree(regulator);
2373}
2374
2375/* regulator_list_mutex lock held by regulator_put() */
2376static void _regulator_put(struct regulator *regulator)
2377{
2378	struct regulator_dev *rdev;
2379
2380	if (IS_ERR_OR_NULL(regulator))
2381		return;
2382
2383	lockdep_assert_held_once(&regulator_list_mutex);
2384
2385	/* Docs say you must disable before calling regulator_put() */
2386	WARN_ON(regulator->enable_count);
2387
2388	rdev = regulator->rdev;
2389
2390	destroy_regulator(regulator);
2391
2392	module_put(rdev->owner);
2393	put_device(&rdev->dev);
2394}
2395
2396/**
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2399 *
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2402 * this function.
2403 */
2404void regulator_put(struct regulator *regulator)
2405{
2406	mutex_lock(&regulator_list_mutex);
2407	_regulator_put(regulator);
2408	mutex_unlock(&regulator_list_mutex);
2409}
2410EXPORT_SYMBOL_GPL(regulator_put);
2411
2412/**
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2414 *
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2419 * supply
2420 *
2421 * All lookups for id on dev will instead be conducted for alias_id on
2422 * alias_dev.
2423 *
2424 * Return: 0 on success or a negative error number on failure.
2425 */
2426int regulator_register_supply_alias(struct device *dev, const char *id,
2427				    struct device *alias_dev,
2428				    const char *alias_id)
2429{
2430	struct regulator_supply_alias *map;
2431
2432	map = regulator_find_supply_alias(dev, id);
2433	if (map)
2434		return -EEXIST;
2435
2436	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437	if (!map)
2438		return -ENOMEM;
2439
2440	map->src_dev = dev;
2441	map->src_supply = id;
2442	map->alias_dev = alias_dev;
2443	map->alias_supply = alias_id;
2444
2445	list_add(&map->list, &regulator_supply_alias_list);
2446
2447	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448		id, dev_name(dev), alias_id, dev_name(alias_dev));
2449
2450	return 0;
2451}
2452EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2453
2454/**
2455 * regulator_unregister_supply_alias - Remove device alias
2456 *
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2459 *
2460 * Remove a lookup alias if one exists for id on dev.
2461 */
2462void regulator_unregister_supply_alias(struct device *dev, const char *id)
2463{
2464	struct regulator_supply_alias *map;
2465
2466	map = regulator_find_supply_alias(dev, id);
2467	if (map) {
2468		list_del(&map->list);
2469		kfree(map);
2470	}
2471}
2472EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2473
2474/**
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2476 *
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2481 * lookup the supply
2482 * @num_id: Number of aliases to register
2483 *
 
 
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation.  If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2488 *
2489 * Return: 0 on success or a negative error number on failure.
2490 */
2491int regulator_bulk_register_supply_alias(struct device *dev,
2492					 const char *const *id,
2493					 struct device *alias_dev,
2494					 const char *const *alias_id,
2495					 int num_id)
2496{
2497	int i;
2498	int ret;
2499
2500	for (i = 0; i < num_id; ++i) {
2501		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502						      alias_id[i]);
2503		if (ret < 0)
2504			goto err;
2505	}
2506
2507	return 0;
2508
2509err:
2510	dev_err(dev,
2511		"Failed to create supply alias %s,%s -> %s,%s\n",
2512		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2513
2514	while (--i >= 0)
2515		regulator_unregister_supply_alias(dev, id[i]);
2516
2517	return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2520
2521/**
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2523 *
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2527 *
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2530 */
2531void regulator_bulk_unregister_supply_alias(struct device *dev,
2532					    const char *const *id,
2533					    int num_id)
2534{
2535	int i;
2536
2537	for (i = 0; i < num_id; ++i)
2538		regulator_unregister_supply_alias(dev, id[i]);
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2541
2542
2543/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545				const struct regulator_config *config)
2546{
2547	struct regulator_enable_gpio *pin, *new_pin;
2548	struct gpio_desc *gpiod;
2549
2550	gpiod = config->ena_gpiod;
2551	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2552
2553	mutex_lock(&regulator_list_mutex);
2554
2555	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2556		if (pin->gpiod == gpiod) {
2557			rdev_dbg(rdev, "GPIO is already used\n");
2558			goto update_ena_gpio_to_rdev;
2559		}
2560	}
2561
2562	if (new_pin == NULL) {
2563		mutex_unlock(&regulator_list_mutex);
2564		return -ENOMEM;
2565	}
2566
2567	pin = new_pin;
2568	new_pin = NULL;
2569
2570	pin->gpiod = gpiod;
2571	list_add(&pin->list, &regulator_ena_gpio_list);
2572
2573update_ena_gpio_to_rdev:
2574	pin->request_count++;
2575	rdev->ena_pin = pin;
2576
2577	mutex_unlock(&regulator_list_mutex);
2578	kfree(new_pin);
2579
2580	return 0;
2581}
2582
2583static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2584{
2585	struct regulator_enable_gpio *pin, *n;
2586
2587	if (!rdev->ena_pin)
2588		return;
2589
2590	/* Free the GPIO only in case of no use */
2591	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2592		if (pin != rdev->ena_pin)
2593			continue;
2594
2595		if (--pin->request_count)
2596			break;
2597
2598		gpiod_put(pin->gpiod);
2599		list_del(&pin->list);
2600		kfree(pin);
2601		break;
2602	}
2603
2604	rdev->ena_pin = NULL;
2605}
2606
2607/**
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2611 *
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2614 *
2615 * Return: 0 on success or a negative error number on failure.
2616 */
2617static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2618{
2619	struct regulator_enable_gpio *pin = rdev->ena_pin;
2620
2621	if (!pin)
2622		return -EINVAL;
2623
2624	if (enable) {
2625		/* Enable GPIO at initial use */
2626		if (pin->enable_count == 0)
2627			gpiod_set_value_cansleep(pin->gpiod, 1);
2628
2629		pin->enable_count++;
2630	} else {
2631		if (pin->enable_count > 1) {
2632			pin->enable_count--;
2633			return 0;
2634		}
2635
2636		/* Disable GPIO if not used */
2637		if (pin->enable_count <= 1) {
2638			gpiod_set_value_cansleep(pin->gpiod, 0);
2639			pin->enable_count = 0;
2640		}
2641	}
2642
2643	return 0;
2644}
2645
2646/**
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 *				     interpreted as "regulator is enabled"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649 * @rdev: the regulator device to check
2650 *
2651 * Return:
2652 * * 1			- if status shows regulator is in enabled state
2653 * * 0			- if not enabled state
2654 * * Error Value	- as received from ops->get_status()
2655 */
2656static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2657{
2658	int ret = rdev->desc->ops->get_status(rdev);
2659
2660	if (ret < 0) {
2661		rdev_info(rdev, "get_status returned error: %d\n", ret);
2662		return ret;
2663	}
2664
2665	switch (ret) {
2666	case REGULATOR_STATUS_OFF:
2667	case REGULATOR_STATUS_ERROR:
2668	case REGULATOR_STATUS_UNDEFINED:
2669		return 0;
2670	default:
2671		return 1;
2672	}
2673}
2674
2675static int _regulator_do_enable(struct regulator_dev *rdev)
2676{
2677	int ret, delay;
2678
2679	/* Query before enabling in case configuration dependent.  */
2680	ret = _regulator_get_enable_time(rdev);
2681	if (ret >= 0) {
2682		delay = ret;
2683	} else {
2684		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685		delay = 0;
2686	}
2687
2688	trace_regulator_enable(rdev_get_name(rdev));
2689
2690	if (rdev->desc->off_on_delay) {
2691		/* if needed, keep a distance of off_on_delay from last time
2692		 * this regulator was disabled.
2693		 */
2694		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2696
2697		if (remaining > 0)
2698			fsleep(remaining);
2699	}
2700
2701	if (rdev->ena_pin) {
2702		if (!rdev->ena_gpio_state) {
2703			ret = regulator_ena_gpio_ctrl(rdev, true);
2704			if (ret < 0)
2705				return ret;
2706			rdev->ena_gpio_state = 1;
2707		}
2708	} else if (rdev->desc->ops->enable) {
2709		ret = rdev->desc->ops->enable(rdev);
2710		if (ret < 0)
2711			return ret;
2712	} else {
2713		return -EINVAL;
2714	}
2715
2716	/* Allow the regulator to ramp; it would be useful to extend
2717	 * this for bulk operations so that the regulators can ramp
2718	 * together.
2719	 */
2720	trace_regulator_enable_delay(rdev_get_name(rdev));
2721
2722	/* If poll_enabled_time is set, poll upto the delay calculated
2723	 * above, delaying poll_enabled_time uS to check if the regulator
2724	 * actually got enabled.
2725	 * If the regulator isn't enabled after our delay helper has expired,
2726	 * return -ETIMEDOUT.
2727	 */
2728	if (rdev->desc->poll_enabled_time) {
2729		int time_remaining = delay;
2730
2731		while (time_remaining > 0) {
2732			fsleep(rdev->desc->poll_enabled_time);
2733
2734			if (rdev->desc->ops->get_status) {
2735				ret = _regulator_check_status_enabled(rdev);
2736				if (ret < 0)
2737					return ret;
2738				else if (ret)
2739					break;
2740			} else if (rdev->desc->ops->is_enabled(rdev))
2741				break;
2742
2743			time_remaining -= rdev->desc->poll_enabled_time;
2744		}
2745
2746		if (time_remaining <= 0) {
2747			rdev_err(rdev, "Enabled check timed out\n");
2748			return -ETIMEDOUT;
2749		}
2750	} else {
2751		fsleep(delay);
2752	}
2753
2754	trace_regulator_enable_complete(rdev_get_name(rdev));
2755
2756	return 0;
2757}
2758
2759/**
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2762 *
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled.  Explained in example with two consumers of the same
2766 * regulator:
2767 *   consumer A: set_load(100);       => total load = 0
2768 *   consumer A: regulator_enable();  => total load = 100
2769 *   consumer B: set_load(1000);      => total load = 100
2770 *   consumer B: regulator_enable();  => total load = 1100
2771 *   consumer A: regulator_disable(); => total_load = 1000
2772 *
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2776 *
2777 * Return: 0 on success or negative error number on failure.
2778 */
2779static int _regulator_handle_consumer_enable(struct regulator *regulator)
2780{
2781	int ret;
2782	struct regulator_dev *rdev = regulator->rdev;
2783
2784	lockdep_assert_held_once(&rdev->mutex.base);
2785
2786	regulator->enable_count++;
2787	if (regulator->uA_load && regulator->enable_count == 1) {
2788		ret = drms_uA_update(rdev);
2789		if (ret)
2790			regulator->enable_count--;
2791		return ret;
2792	}
2793
2794	return 0;
2795}
2796
2797/**
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2800 *
2801 * The opposite of _regulator_handle_consumer_enable().
2802 *
2803 * Return: 0 on success or a negative error number on failure.
2804 */
2805static int _regulator_handle_consumer_disable(struct regulator *regulator)
2806{
2807	struct regulator_dev *rdev = regulator->rdev;
2808
2809	lockdep_assert_held_once(&rdev->mutex.base);
2810
2811	if (!regulator->enable_count) {
2812		rdev_err(rdev, "Underflow of regulator enable count\n");
2813		return -EINVAL;
2814	}
2815
2816	regulator->enable_count--;
2817	if (regulator->uA_load && regulator->enable_count == 0)
2818		return drms_uA_update(rdev);
2819
2820	return 0;
2821}
2822
2823/* locks held by regulator_enable() */
2824static int _regulator_enable(struct regulator *regulator)
2825{
2826	struct regulator_dev *rdev = regulator->rdev;
2827	int ret;
2828
2829	lockdep_assert_held_once(&rdev->mutex.base);
2830
2831	if (rdev->use_count == 0 && rdev->supply) {
2832		ret = _regulator_enable(rdev->supply);
2833		if (ret < 0)
2834			return ret;
2835	}
2836
2837	/* balance only if there are regulators coupled */
2838	if (rdev->coupling_desc.n_coupled > 1) {
2839		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840		if (ret < 0)
2841			goto err_disable_supply;
2842	}
2843
2844	ret = _regulator_handle_consumer_enable(regulator);
2845	if (ret < 0)
2846		goto err_disable_supply;
2847
2848	if (rdev->use_count == 0) {
2849		/*
2850		 * The regulator may already be enabled if it's not switchable
2851		 * or was left on
2852		 */
2853		ret = _regulator_is_enabled(rdev);
2854		if (ret == -EINVAL || ret == 0) {
2855			if (!regulator_ops_is_valid(rdev,
2856					REGULATOR_CHANGE_STATUS)) {
2857				ret = -EPERM;
2858				goto err_consumer_disable;
2859			}
2860
2861			ret = _regulator_do_enable(rdev);
2862			if (ret < 0)
2863				goto err_consumer_disable;
2864
2865			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866					     NULL);
2867		} else if (ret < 0) {
2868			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869			goto err_consumer_disable;
2870		}
2871		/* Fallthrough on positive return values - already enabled */
2872	}
2873
2874	if (regulator->enable_count == 1)
2875		rdev->use_count++;
2876
2877	return 0;
2878
2879err_consumer_disable:
2880	_regulator_handle_consumer_disable(regulator);
2881
2882err_disable_supply:
2883	if (rdev->use_count == 0 && rdev->supply)
2884		_regulator_disable(rdev->supply);
2885
2886	return ret;
2887}
2888
2889/**
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2892 *
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value.  Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2896 *
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2899 *
2900 * Return: 0 on success or a negative error number on failure.
2901 */
2902int regulator_enable(struct regulator *regulator)
2903{
2904	struct regulator_dev *rdev = regulator->rdev;
2905	struct ww_acquire_ctx ww_ctx;
2906	int ret;
2907
2908	regulator_lock_dependent(rdev, &ww_ctx);
2909	ret = _regulator_enable(regulator);
2910	regulator_unlock_dependent(rdev, &ww_ctx);
2911
2912	return ret;
2913}
2914EXPORT_SYMBOL_GPL(regulator_enable);
2915
2916static int _regulator_do_disable(struct regulator_dev *rdev)
2917{
2918	int ret;
2919
2920	trace_regulator_disable(rdev_get_name(rdev));
2921
2922	if (rdev->ena_pin) {
2923		if (rdev->ena_gpio_state) {
2924			ret = regulator_ena_gpio_ctrl(rdev, false);
2925			if (ret < 0)
2926				return ret;
2927			rdev->ena_gpio_state = 0;
2928		}
2929
2930	} else if (rdev->desc->ops->disable) {
2931		ret = rdev->desc->ops->disable(rdev);
2932		if (ret != 0)
2933			return ret;
2934	}
2935
2936	if (rdev->desc->off_on_delay)
2937		rdev->last_off = ktime_get_boottime();
2938
2939	trace_regulator_disable_complete(rdev_get_name(rdev));
2940
2941	return 0;
2942}
2943
2944/* locks held by regulator_disable() */
2945static int _regulator_disable(struct regulator *regulator)
2946{
2947	struct regulator_dev *rdev = regulator->rdev;
2948	int ret = 0;
2949
2950	lockdep_assert_held_once(&rdev->mutex.base);
2951
2952	if (WARN(regulator->enable_count == 0,
2953		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954		return -EIO;
2955
2956	if (regulator->enable_count == 1) {
2957	/* disabling last enable_count from this regulator */
2958		/* are we the last user and permitted to disable ? */
2959		if (rdev->use_count == 1 &&
2960		    (rdev->constraints && !rdev->constraints->always_on)) {
2961
2962			/* we are last user */
2963			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964				ret = _notifier_call_chain(rdev,
2965							   REGULATOR_EVENT_PRE_DISABLE,
2966							   NULL);
2967				if (ret & NOTIFY_STOP_MASK)
2968					return -EINVAL;
2969
2970				ret = _regulator_do_disable(rdev);
2971				if (ret < 0) {
2972					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973					_notifier_call_chain(rdev,
2974							REGULATOR_EVENT_ABORT_DISABLE,
2975							NULL);
2976					return ret;
2977				}
2978				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979						NULL);
2980			}
2981
2982			rdev->use_count = 0;
2983		} else if (rdev->use_count > 1) {
2984			rdev->use_count--;
2985		}
2986	}
2987
2988	if (ret == 0)
2989		ret = _regulator_handle_consumer_disable(regulator);
2990
2991	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2993
2994	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995		ret = _regulator_disable(rdev->supply);
2996
2997	return ret;
2998}
2999
3000/**
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3003 *
3004 * Disable the regulator output voltage or current.  Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3007 *
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3011 *
3012 * Return: 0 on success or a negative error number on failure.
3013 */
3014int regulator_disable(struct regulator *regulator)
3015{
3016	struct regulator_dev *rdev = regulator->rdev;
3017	struct ww_acquire_ctx ww_ctx;
3018	int ret;
3019
3020	regulator_lock_dependent(rdev, &ww_ctx);
3021	ret = _regulator_disable(regulator);
3022	regulator_unlock_dependent(rdev, &ww_ctx);
3023
3024	return ret;
3025}
3026EXPORT_SYMBOL_GPL(regulator_disable);
3027
3028/* locks held by regulator_force_disable() */
3029static int _regulator_force_disable(struct regulator_dev *rdev)
3030{
3031	int ret = 0;
3032
3033	lockdep_assert_held_once(&rdev->mutex.base);
3034
3035	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036			REGULATOR_EVENT_PRE_DISABLE, NULL);
3037	if (ret & NOTIFY_STOP_MASK)
3038		return -EINVAL;
3039
3040	ret = _regulator_do_disable(rdev);
3041	if (ret < 0) {
3042		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045		return ret;
3046	}
3047
3048	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049			REGULATOR_EVENT_DISABLE, NULL);
3050
3051	return 0;
3052}
3053
3054/**
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3057 *
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3062 *
3063 * Return: 0 on success or a negative error number on failure.
3064 */
3065int regulator_force_disable(struct regulator *regulator)
3066{
3067	struct regulator_dev *rdev = regulator->rdev;
3068	struct ww_acquire_ctx ww_ctx;
3069	int ret;
3070
3071	regulator_lock_dependent(rdev, &ww_ctx);
3072
3073	ret = _regulator_force_disable(regulator->rdev);
3074
3075	if (rdev->coupling_desc.n_coupled > 1)
3076		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3077
3078	if (regulator->uA_load) {
3079		regulator->uA_load = 0;
3080		ret = drms_uA_update(rdev);
3081	}
3082
3083	if (rdev->use_count != 0 && rdev->supply)
3084		_regulator_disable(rdev->supply);
3085
3086	regulator_unlock_dependent(rdev, &ww_ctx);
3087
3088	return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_force_disable);
3091
3092static void regulator_disable_work(struct work_struct *work)
3093{
3094	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095						  disable_work.work);
3096	struct ww_acquire_ctx ww_ctx;
3097	int count, i, ret;
3098	struct regulator *regulator;
3099	int total_count = 0;
3100
3101	regulator_lock_dependent(rdev, &ww_ctx);
3102
3103	/*
3104	 * Workqueue functions queue the new work instance while the previous
3105	 * work instance is being processed. Cancel the queued work instance
3106	 * as the work instance under processing does the job of the queued
3107	 * work instance.
3108	 */
3109	cancel_delayed_work(&rdev->disable_work);
3110
3111	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112		count = regulator->deferred_disables;
3113
3114		if (!count)
3115			continue;
3116
3117		total_count += count;
3118		regulator->deferred_disables = 0;
3119
3120		for (i = 0; i < count; i++) {
3121			ret = _regulator_disable(regulator);
3122			if (ret != 0)
3123				rdev_err(rdev, "Deferred disable failed: %pe\n",
3124					 ERR_PTR(ret));
3125		}
3126	}
3127	WARN_ON(!total_count);
3128
3129	if (rdev->coupling_desc.n_coupled > 1)
3130		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132	regulator_unlock_dependent(rdev, &ww_ctx);
3133}
3134
3135/**
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3139 *
3140 * Execute regulator_disable() on the regulator after a delay.  This
3141 * is intended for use with devices that require some time to quiesce.
3142 *
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3146 *
3147 * Return: 0 on success or a negative error number on failure.
3148 */
3149int regulator_disable_deferred(struct regulator *regulator, int ms)
3150{
3151	struct regulator_dev *rdev = regulator->rdev;
3152
3153	if (!ms)
3154		return regulator_disable(regulator);
3155
3156	regulator_lock(rdev);
3157	regulator->deferred_disables++;
3158	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159			 msecs_to_jiffies(ms));
3160	regulator_unlock(rdev);
3161
3162	return 0;
3163}
3164EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3165
3166static int _regulator_is_enabled(struct regulator_dev *rdev)
3167{
3168	/* A GPIO control always takes precedence */
3169	if (rdev->ena_pin)
3170		return rdev->ena_gpio_state;
3171
3172	/* If we don't know then assume that the regulator is always on */
3173	if (!rdev->desc->ops->is_enabled)
3174		return 1;
3175
3176	return rdev->desc->ops->is_enabled(rdev);
3177}
3178
3179static int _regulator_list_voltage(struct regulator_dev *rdev,
3180				   unsigned selector, int lock)
3181{
3182	const struct regulator_ops *ops = rdev->desc->ops;
3183	int ret;
3184
3185	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186		return rdev->desc->fixed_uV;
3187
3188	if (ops->list_voltage) {
3189		if (selector >= rdev->desc->n_voltages)
3190			return -EINVAL;
3191		if (selector < rdev->desc->linear_min_sel)
3192			return 0;
3193		if (lock)
3194			regulator_lock(rdev);
3195		ret = ops->list_voltage(rdev, selector);
3196		if (lock)
3197			regulator_unlock(rdev);
3198	} else if (rdev->is_switch && rdev->supply) {
3199		ret = _regulator_list_voltage(rdev->supply->rdev,
3200					      selector, lock);
3201	} else {
3202		return -EINVAL;
3203	}
3204
3205	if (ret > 0) {
3206		if (ret < rdev->constraints->min_uV)
3207			ret = 0;
3208		else if (ret > rdev->constraints->max_uV)
3209			ret = 0;
3210	}
3211
3212	return ret;
3213}
3214
3215/**
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3218 *
 
 
 
 
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3222 *
3223 * Return: Positive if the regulator driver backing the source/client
3224 *	   has requested that the device be enabled, zero if it hasn't,
3225 *	   else a negative error number.
3226 */
3227int regulator_is_enabled(struct regulator *regulator)
3228{
3229	int ret;
3230
3231	if (regulator->always_on)
3232		return 1;
3233
3234	regulator_lock(regulator->rdev);
3235	ret = _regulator_is_enabled(regulator->rdev);
3236	regulator_unlock(regulator->rdev);
3237
3238	return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_is_enabled);
3241
3242/**
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3245 *
3246 * Return: Number of selectors for @regulator, or negative error number.
3247 *
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3250 */
3251int regulator_count_voltages(struct regulator *regulator)
3252{
3253	struct regulator_dev	*rdev = regulator->rdev;
3254
3255	if (rdev->desc->n_voltages)
3256		return rdev->desc->n_voltages;
3257
3258	if (!rdev->is_switch || !rdev->supply)
3259		return -EINVAL;
3260
3261	return regulator_count_voltages(rdev->supply);
3262}
3263EXPORT_SYMBOL_GPL(regulator_count_voltages);
3264
3265/**
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3270 *
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 *	   0 if @selector can't be used on this system, or a negative error
3273 *	   number on failure.
3274 */
3275int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3276{
3277	return _regulator_list_voltage(regulator->rdev, selector, 1);
3278}
3279EXPORT_SYMBOL_GPL(regulator_list_voltage);
3280
3281/**
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3284 *
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3287 */
3288struct regmap *regulator_get_regmap(struct regulator *regulator)
3289{
3290	struct regmap *map = regulator->rdev->regmap;
3291
3292	return map ? map : ERR_PTR(-EOPNOTSUPP);
3293}
3294EXPORT_SYMBOL_GPL(regulator_get_regmap);
3295
3296/**
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3301 *
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3305 * for example.
3306 *
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 *         voltage selectors.
3309 *
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3312 */
3313int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314					 unsigned *vsel_reg,
3315					 unsigned *vsel_mask)
3316{
3317	struct regulator_dev *rdev = regulator->rdev;
3318	const struct regulator_ops *ops = rdev->desc->ops;
3319
3320	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321		return -EOPNOTSUPP;
3322
3323	*vsel_reg = rdev->desc->vsel_reg;
3324	*vsel_mask = rdev->desc->vsel_mask;
3325
3326	return 0;
3327}
3328EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3329
3330/**
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3334 *
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3338 *
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3341 *	   selectors.
3342 */
3343int regulator_list_hardware_vsel(struct regulator *regulator,
3344				 unsigned selector)
3345{
3346	struct regulator_dev *rdev = regulator->rdev;
3347	const struct regulator_ops *ops = rdev->desc->ops;
3348
3349	if (selector >= rdev->desc->n_voltages)
3350		return -EINVAL;
3351	if (selector < rdev->desc->linear_min_sel)
3352		return 0;
3353	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354		return -EOPNOTSUPP;
3355
3356	return selector;
3357}
3358EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3359
3360/**
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3364 *
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3367 *
3368 * Return: 0 on success or a negative error number on failure.
3369 */
3370int regulator_hardware_enable(struct regulator *regulator, bool enable)
3371{
3372	struct regulator_dev *rdev = regulator->rdev;
3373	const struct regulator_ops *ops = rdev->desc->ops;
3374	int ret = -EOPNOTSUPP;
3375
3376	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377		return ret;
3378
3379	if (enable)
3380		ret = ops->enable(rdev);
3381	else
3382		ret = ops->disable(rdev);
3383
3384	return ret;
3385}
3386EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3387
3388/**
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3391 *
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 *	   or 0 if the regulator isn't a linear regulator.
3394 */
3395unsigned int regulator_get_linear_step(struct regulator *regulator)
3396{
3397	struct regulator_dev *rdev = regulator->rdev;
3398
3399	return rdev->desc->uV_step;
3400}
3401EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402
3403/**
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3405 *
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3409 *
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 *	   number if @regulator's voltage can't be changed and voltage readback
3412 *	   failed.
3413 */
3414int regulator_is_supported_voltage(struct regulator *regulator,
3415				   int min_uV, int max_uV)
3416{
3417	struct regulator_dev *rdev = regulator->rdev;
3418	int i, voltages, ret;
3419
3420	/* If we can't change voltage check the current voltage */
3421	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422		ret = regulator_get_voltage(regulator);
3423		if (ret >= 0)
3424			return min_uV <= ret && ret <= max_uV;
3425		else
3426			return ret;
3427	}
3428
3429	/* Any voltage within constrains range is fine? */
3430	if (rdev->desc->continuous_voltage_range)
3431		return min_uV >= rdev->constraints->min_uV &&
3432				max_uV <= rdev->constraints->max_uV;
3433
3434	ret = regulator_count_voltages(regulator);
3435	if (ret < 0)
3436		return 0;
3437	voltages = ret;
3438
3439	for (i = 0; i < voltages; i++) {
3440		ret = regulator_list_voltage(regulator, i);
3441
3442		if (ret >= min_uV && ret <= max_uV)
3443			return 1;
3444	}
3445
3446	return 0;
3447}
3448EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449
3450static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451				 int max_uV)
3452{
3453	const struct regulator_desc *desc = rdev->desc;
3454
3455	if (desc->ops->map_voltage)
3456		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457
3458	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460
3461	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463
3464	if (desc->ops->list_voltage ==
3465		regulator_list_voltage_pickable_linear_range)
3466		return regulator_map_voltage_pickable_linear_range(rdev,
3467							min_uV, max_uV);
3468
3469	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470}
3471
3472static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473				       int min_uV, int max_uV,
3474				       unsigned *selector)
3475{
3476	struct pre_voltage_change_data data;
3477	int ret;
3478
3479	data.old_uV = regulator_get_voltage_rdev(rdev);
3480	data.min_uV = min_uV;
3481	data.max_uV = max_uV;
3482	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483				   &data);
3484	if (ret & NOTIFY_STOP_MASK)
3485		return -EINVAL;
3486
3487	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488	if (ret >= 0)
3489		return ret;
3490
3491	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492			     (void *)data.old_uV);
3493
3494	return ret;
3495}
3496
3497static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498					   int uV, unsigned selector)
3499{
3500	struct pre_voltage_change_data data;
3501	int ret;
3502
3503	data.old_uV = regulator_get_voltage_rdev(rdev);
3504	data.min_uV = uV;
3505	data.max_uV = uV;
3506	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507				   &data);
3508	if (ret & NOTIFY_STOP_MASK)
3509		return -EINVAL;
3510
3511	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512	if (ret >= 0)
3513		return ret;
3514
3515	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516			     (void *)data.old_uV);
3517
3518	return ret;
3519}
3520
3521static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522					   int uV, int new_selector)
3523{
3524	const struct regulator_ops *ops = rdev->desc->ops;
3525	int diff, old_sel, curr_sel, ret;
3526
3527	/* Stepping is only needed if the regulator is enabled. */
3528	if (!_regulator_is_enabled(rdev))
3529		goto final_set;
3530
3531	if (!ops->get_voltage_sel)
3532		return -EINVAL;
3533
3534	old_sel = ops->get_voltage_sel(rdev);
3535	if (old_sel < 0)
3536		return old_sel;
3537
3538	diff = new_selector - old_sel;
3539	if (diff == 0)
3540		return 0; /* No change needed. */
3541
3542	if (diff > 0) {
3543		/* Stepping up. */
3544		for (curr_sel = old_sel + rdev->desc->vsel_step;
3545		     curr_sel < new_selector;
3546		     curr_sel += rdev->desc->vsel_step) {
3547			/*
3548			 * Call the callback directly instead of using
3549			 * _regulator_call_set_voltage_sel() as we don't
3550			 * want to notify anyone yet. Same in the branch
3551			 * below.
3552			 */
3553			ret = ops->set_voltage_sel(rdev, curr_sel);
3554			if (ret)
3555				goto try_revert;
3556		}
3557	} else {
3558		/* Stepping down. */
3559		for (curr_sel = old_sel - rdev->desc->vsel_step;
3560		     curr_sel > new_selector;
3561		     curr_sel -= rdev->desc->vsel_step) {
3562			ret = ops->set_voltage_sel(rdev, curr_sel);
3563			if (ret)
3564				goto try_revert;
3565		}
3566	}
3567
3568final_set:
3569	/* The final selector will trigger the notifiers. */
3570	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571
3572try_revert:
3573	/*
3574	 * At least try to return to the previous voltage if setting a new
3575	 * one failed.
3576	 */
3577	(void)ops->set_voltage_sel(rdev, old_sel);
3578	return ret;
3579}
3580
3581static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582				       int old_uV, int new_uV)
3583{
3584	unsigned int ramp_delay = 0;
3585
3586	if (rdev->constraints->ramp_delay)
3587		ramp_delay = rdev->constraints->ramp_delay;
3588	else if (rdev->desc->ramp_delay)
3589		ramp_delay = rdev->desc->ramp_delay;
3590	else if (rdev->constraints->settling_time)
3591		return rdev->constraints->settling_time;
3592	else if (rdev->constraints->settling_time_up &&
3593		 (new_uV > old_uV))
3594		return rdev->constraints->settling_time_up;
3595	else if (rdev->constraints->settling_time_down &&
3596		 (new_uV < old_uV))
3597		return rdev->constraints->settling_time_down;
3598
3599	if (ramp_delay == 0)
3600		return 0;
3601
3602	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603}
3604
3605static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606				     int min_uV, int max_uV)
3607{
3608	int ret;
3609	int delay = 0;
3610	int best_val = 0;
3611	unsigned int selector;
3612	int old_selector = -1;
3613	const struct regulator_ops *ops = rdev->desc->ops;
3614	int old_uV = regulator_get_voltage_rdev(rdev);
3615
3616	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617
3618	min_uV += rdev->constraints->uV_offset;
3619	max_uV += rdev->constraints->uV_offset;
3620
3621	/*
3622	 * If we can't obtain the old selector there is not enough
3623	 * info to call set_voltage_time_sel().
3624	 */
3625	if (_regulator_is_enabled(rdev) &&
3626	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627		old_selector = ops->get_voltage_sel(rdev);
3628		if (old_selector < 0)
3629			return old_selector;
3630	}
3631
3632	if (ops->set_voltage) {
3633		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634						  &selector);
3635
3636		if (ret >= 0) {
3637			if (ops->list_voltage)
3638				best_val = ops->list_voltage(rdev,
3639							     selector);
3640			else
3641				best_val = regulator_get_voltage_rdev(rdev);
3642		}
3643
3644	} else if (ops->set_voltage_sel) {
3645		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646		if (ret >= 0) {
3647			best_val = ops->list_voltage(rdev, ret);
3648			if (min_uV <= best_val && max_uV >= best_val) {
3649				selector = ret;
3650				if (old_selector == selector)
3651					ret = 0;
3652				else if (rdev->desc->vsel_step)
3653					ret = _regulator_set_voltage_sel_step(
3654						rdev, best_val, selector);
3655				else
3656					ret = _regulator_call_set_voltage_sel(
3657						rdev, best_val, selector);
3658			} else {
3659				ret = -EINVAL;
3660			}
3661		}
3662	} else {
3663		ret = -EINVAL;
3664	}
3665
3666	if (ret)
3667		goto out;
3668
3669	if (ops->set_voltage_time_sel) {
3670		/*
3671		 * Call set_voltage_time_sel if successfully obtained
3672		 * old_selector
3673		 */
3674		if (old_selector >= 0 && old_selector != selector)
3675			delay = ops->set_voltage_time_sel(rdev, old_selector,
3676							  selector);
3677	} else {
3678		if (old_uV != best_val) {
3679			if (ops->set_voltage_time)
3680				delay = ops->set_voltage_time(rdev, old_uV,
3681							      best_val);
3682			else
3683				delay = _regulator_set_voltage_time(rdev,
3684								    old_uV,
3685								    best_val);
3686		}
3687	}
3688
3689	if (delay < 0) {
3690		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691		delay = 0;
3692	}
3693
3694	/* Insert any necessary delays */
3695	fsleep(delay);
3696
3697	if (best_val >= 0) {
3698		unsigned long data = best_val;
3699
3700		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701				     (void *)data);
3702	}
3703
3704out:
3705	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706
3707	return ret;
3708}
3709
3710static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711				  int min_uV, int max_uV, suspend_state_t state)
3712{
3713	struct regulator_state *rstate;
3714	int uV, sel;
3715
3716	rstate = regulator_get_suspend_state(rdev, state);
3717	if (rstate == NULL)
3718		return -EINVAL;
3719
3720	if (min_uV < rstate->min_uV)
3721		min_uV = rstate->min_uV;
3722	if (max_uV > rstate->max_uV)
3723		max_uV = rstate->max_uV;
3724
3725	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726	if (sel < 0)
3727		return sel;
3728
3729	uV = rdev->desc->ops->list_voltage(rdev, sel);
3730	if (uV >= min_uV && uV <= max_uV)
3731		rstate->uV = uV;
3732
3733	return 0;
3734}
3735
3736static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737					  int min_uV, int max_uV,
3738					  suspend_state_t state)
3739{
3740	struct regulator_dev *rdev = regulator->rdev;
3741	struct regulator_voltage *voltage = &regulator->voltage[state];
3742	int ret = 0;
3743	int old_min_uV, old_max_uV;
3744	int current_uV;
3745
3746	/* If we're setting the same range as last time the change
3747	 * should be a noop (some cpufreq implementations use the same
3748	 * voltage for multiple frequencies, for example).
3749	 */
3750	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751		goto out;
3752
3753	/* If we're trying to set a range that overlaps the current voltage,
3754	 * return successfully even though the regulator does not support
3755	 * changing the voltage.
3756	 */
3757	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758		current_uV = regulator_get_voltage_rdev(rdev);
3759		if (min_uV <= current_uV && current_uV <= max_uV) {
3760			voltage->min_uV = min_uV;
3761			voltage->max_uV = max_uV;
3762			goto out;
3763		}
3764	}
3765
3766	/* sanity check */
3767	if (!rdev->desc->ops->set_voltage &&
3768	    !rdev->desc->ops->set_voltage_sel) {
3769		ret = -EINVAL;
3770		goto out;
3771	}
3772
3773	/* constraints check */
3774	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775	if (ret < 0)
3776		goto out;
3777
3778	/* restore original values in case of error */
3779	old_min_uV = voltage->min_uV;
3780	old_max_uV = voltage->max_uV;
3781	voltage->min_uV = min_uV;
3782	voltage->max_uV = max_uV;
3783
3784	/* for not coupled regulators this will just set the voltage */
3785	ret = regulator_balance_voltage(rdev, state);
3786	if (ret < 0) {
3787		voltage->min_uV = old_min_uV;
3788		voltage->max_uV = old_max_uV;
3789	}
3790
3791out:
3792	return ret;
3793}
3794
3795int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796			       int max_uV, suspend_state_t state)
3797{
3798	int best_supply_uV = 0;
3799	int supply_change_uV = 0;
3800	int ret;
3801
3802	if (rdev->supply &&
3803	    regulator_ops_is_valid(rdev->supply->rdev,
3804				   REGULATOR_CHANGE_VOLTAGE) &&
3805	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806					   rdev->desc->ops->get_voltage_sel))) {
3807		int current_supply_uV;
3808		int selector;
3809
3810		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811		if (selector < 0) {
3812			ret = selector;
3813			goto out;
3814		}
3815
3816		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817		if (best_supply_uV < 0) {
3818			ret = best_supply_uV;
3819			goto out;
3820		}
3821
3822		best_supply_uV += rdev->desc->min_dropout_uV;
3823
3824		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825		if (current_supply_uV < 0) {
3826			ret = current_supply_uV;
3827			goto out;
3828		}
3829
3830		supply_change_uV = best_supply_uV - current_supply_uV;
3831	}
3832
3833	if (supply_change_uV > 0) {
3834		ret = regulator_set_voltage_unlocked(rdev->supply,
3835				best_supply_uV, INT_MAX, state);
3836		if (ret) {
3837			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838				ERR_PTR(ret));
3839			goto out;
3840		}
3841	}
3842
3843	if (state == PM_SUSPEND_ON)
3844		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845	else
3846		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847							max_uV, state);
3848	if (ret < 0)
3849		goto out;
3850
3851	if (supply_change_uV < 0) {
3852		ret = regulator_set_voltage_unlocked(rdev->supply,
3853				best_supply_uV, INT_MAX, state);
3854		if (ret)
3855			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856				 ERR_PTR(ret));
3857		/* No need to fail here */
3858		ret = 0;
3859	}
3860
3861out:
3862	return ret;
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865
3866static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867					int *current_uV, int *min_uV)
3868{
3869	struct regulation_constraints *constraints = rdev->constraints;
3870
3871	/* Limit voltage change only if necessary */
3872	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873		return 1;
3874
3875	if (*current_uV < 0) {
3876		*current_uV = regulator_get_voltage_rdev(rdev);
3877
3878		if (*current_uV < 0)
3879			return *current_uV;
3880	}
3881
3882	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883		return 1;
3884
3885	/* Clamp target voltage within the given step */
3886	if (*current_uV < *min_uV)
3887		*min_uV = min(*current_uV + constraints->max_uV_step,
3888			      *min_uV);
3889	else
3890		*min_uV = max(*current_uV - constraints->max_uV_step,
3891			      *min_uV);
3892
3893	return 0;
3894}
3895
3896static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897					 int *current_uV,
3898					 int *min_uV, int *max_uV,
3899					 suspend_state_t state,
3900					 int n_coupled)
3901{
3902	struct coupling_desc *c_desc = &rdev->coupling_desc;
3903	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904	struct regulation_constraints *constraints = rdev->constraints;
3905	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906	int max_current_uV = 0, min_current_uV = INT_MAX;
3907	int highest_min_uV = 0, target_uV, possible_uV;
3908	int i, ret, max_spread;
3909	bool done;
3910
3911	*current_uV = -1;
3912
3913	/*
3914	 * If there are no coupled regulators, simply set the voltage
3915	 * demanded by consumers.
3916	 */
3917	if (n_coupled == 1) {
3918		/*
3919		 * If consumers don't provide any demands, set voltage
3920		 * to min_uV
3921		 */
3922		desired_min_uV = constraints->min_uV;
3923		desired_max_uV = constraints->max_uV;
3924
3925		ret = regulator_check_consumers(rdev,
3926						&desired_min_uV,
3927						&desired_max_uV, state);
3928		if (ret < 0)
3929			return ret;
3930
 
3931		done = true;
3932
3933		goto finish;
3934	}
3935
3936	/* Find highest min desired voltage */
3937	for (i = 0; i < n_coupled; i++) {
3938		int tmp_min = 0;
3939		int tmp_max = INT_MAX;
3940
3941		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3942
3943		ret = regulator_check_consumers(c_rdevs[i],
3944						&tmp_min,
3945						&tmp_max, state);
3946		if (ret < 0)
3947			return ret;
3948
3949		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950		if (ret < 0)
3951			return ret;
3952
3953		highest_min_uV = max(highest_min_uV, tmp_min);
3954
3955		if (i == 0) {
3956			desired_min_uV = tmp_min;
3957			desired_max_uV = tmp_max;
3958		}
3959	}
3960
3961	max_spread = constraints->max_spread[0];
3962
3963	/*
3964	 * Let target_uV be equal to the desired one if possible.
3965	 * If not, set it to minimum voltage, allowed by other coupled
3966	 * regulators.
3967	 */
3968	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3969
3970	/*
3971	 * Find min and max voltages, which currently aren't violating
3972	 * max_spread.
3973	 */
3974	for (i = 1; i < n_coupled; i++) {
3975		int tmp_act;
3976
3977		if (!_regulator_is_enabled(c_rdevs[i]))
3978			continue;
3979
3980		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981		if (tmp_act < 0)
3982			return tmp_act;
3983
3984		min_current_uV = min(tmp_act, min_current_uV);
3985		max_current_uV = max(tmp_act, max_current_uV);
3986	}
3987
3988	/* There aren't any other regulators enabled */
3989	if (max_current_uV == 0) {
3990		possible_uV = target_uV;
3991	} else {
3992		/*
3993		 * Correct target voltage, so as it currently isn't
3994		 * violating max_spread
3995		 */
3996		possible_uV = max(target_uV, max_current_uV - max_spread);
3997		possible_uV = min(possible_uV, min_current_uV + max_spread);
3998	}
3999
4000	if (possible_uV > desired_max_uV)
4001		return -EINVAL;
4002
4003	done = (possible_uV == target_uV);
4004	desired_min_uV = possible_uV;
4005
4006finish:
4007	/* Apply max_uV_step constraint if necessary */
4008	if (state == PM_SUSPEND_ON) {
4009		ret = regulator_limit_voltage_step(rdev, current_uV,
4010						   &desired_min_uV);
4011		if (ret < 0)
4012			return ret;
4013
4014		if (ret == 0)
4015			done = false;
4016	}
4017
4018	/* Set current_uV if wasn't done earlier in the code and if necessary */
4019	if (n_coupled > 1 && *current_uV == -1) {
4020
4021		if (_regulator_is_enabled(rdev)) {
4022			ret = regulator_get_voltage_rdev(rdev);
4023			if (ret < 0)
4024				return ret;
4025
4026			*current_uV = ret;
4027		} else {
4028			*current_uV = desired_min_uV;
4029		}
4030	}
4031
4032	*min_uV = desired_min_uV;
4033	*max_uV = desired_max_uV;
4034
4035	return done;
4036}
4037
4038int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039				 suspend_state_t state, bool skip_coupled)
4040{
4041	struct regulator_dev **c_rdevs;
4042	struct regulator_dev *best_rdev;
4043	struct coupling_desc *c_desc = &rdev->coupling_desc;
4044	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045	unsigned int delta, best_delta;
4046	unsigned long c_rdev_done = 0;
4047	bool best_c_rdev_done;
4048
4049	c_rdevs = c_desc->coupled_rdevs;
4050	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4051
4052	/*
4053	 * Find the best possible voltage change on each loop. Leave the loop
4054	 * if there isn't any possible change.
4055	 */
4056	do {
4057		best_c_rdev_done = false;
4058		best_delta = 0;
4059		best_min_uV = 0;
4060		best_max_uV = 0;
4061		best_c_rdev = 0;
4062		best_rdev = NULL;
4063
4064		/*
4065		 * Find highest difference between optimal voltage
4066		 * and current voltage.
4067		 */
4068		for (i = 0; i < n_coupled; i++) {
4069			/*
4070			 * optimal_uV is the best voltage that can be set for
4071			 * i-th regulator at the moment without violating
4072			 * max_spread constraint in order to balance
4073			 * the coupled voltages.
4074			 */
4075			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4076
4077			if (test_bit(i, &c_rdev_done))
4078				continue;
4079
4080			ret = regulator_get_optimal_voltage(c_rdevs[i],
4081							    &current_uV,
4082							    &optimal_uV,
4083							    &optimal_max_uV,
4084							    state, n_coupled);
4085			if (ret < 0)
4086				goto out;
4087
4088			delta = abs(optimal_uV - current_uV);
4089
4090			if (delta && best_delta <= delta) {
4091				best_c_rdev_done = ret;
4092				best_delta = delta;
4093				best_rdev = c_rdevs[i];
4094				best_min_uV = optimal_uV;
4095				best_max_uV = optimal_max_uV;
4096				best_c_rdev = i;
4097			}
4098		}
4099
4100		/* Nothing to change, return successfully */
4101		if (!best_rdev) {
4102			ret = 0;
4103			goto out;
4104		}
4105
4106		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107						 best_max_uV, state);
4108
4109		if (ret < 0)
4110			goto out;
4111
4112		if (best_c_rdev_done)
4113			set_bit(best_c_rdev, &c_rdev_done);
4114
4115	} while (n_coupled > 1);
4116
4117out:
4118	return ret;
4119}
4120
4121static int regulator_balance_voltage(struct regulator_dev *rdev,
4122				     suspend_state_t state)
4123{
4124	struct coupling_desc *c_desc = &rdev->coupling_desc;
4125	struct regulator_coupler *coupler = c_desc->coupler;
4126	bool skip_coupled = false;
4127
4128	/*
4129	 * If system is in a state other than PM_SUSPEND_ON, don't check
4130	 * other coupled regulators.
4131	 */
4132	if (state != PM_SUSPEND_ON)
4133		skip_coupled = true;
4134
4135	if (c_desc->n_resolved < c_desc->n_coupled) {
4136		rdev_err(rdev, "Not all coupled regulators registered\n");
4137		return -EPERM;
4138	}
4139
4140	/* Invoke custom balancer for customized couplers */
4141	if (coupler && coupler->balance_voltage)
4142		return coupler->balance_voltage(coupler, rdev, state);
4143
4144	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4145}
4146
4147/**
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4152 *
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4155 *
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4159 *
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4164 *
4165 * Return: 0 on success or a negative error number on failure.
4166 */
4167int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4168{
4169	struct ww_acquire_ctx ww_ctx;
4170	int ret;
4171
4172	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4173
4174	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175					     PM_SUSPEND_ON);
4176
4177	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4178
4179	return ret;
4180}
4181EXPORT_SYMBOL_GPL(regulator_set_voltage);
4182
4183static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184					   suspend_state_t state, bool en)
4185{
4186	struct regulator_state *rstate;
4187
4188	rstate = regulator_get_suspend_state(rdev, state);
4189	if (rstate == NULL)
4190		return -EINVAL;
4191
4192	if (!rstate->changeable)
4193		return -EPERM;
4194
4195	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4196
4197	return 0;
4198}
4199
4200int regulator_suspend_enable(struct regulator_dev *rdev,
4201				    suspend_state_t state)
4202{
4203	return regulator_suspend_toggle(rdev, state, true);
4204}
4205EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4206
4207int regulator_suspend_disable(struct regulator_dev *rdev,
4208				     suspend_state_t state)
4209{
4210	struct regulator *regulator;
4211	struct regulator_voltage *voltage;
4212
4213	/*
4214	 * if any consumer wants this regulator device keeping on in
4215	 * suspend states, don't set it as disabled.
4216	 */
4217	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218		voltage = &regulator->voltage[state];
4219		if (voltage->min_uV || voltage->max_uV)
4220			return 0;
4221	}
4222
4223	return regulator_suspend_toggle(rdev, state, false);
4224}
4225EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4226
4227static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228					  int min_uV, int max_uV,
4229					  suspend_state_t state)
4230{
4231	struct regulator_dev *rdev = regulator->rdev;
4232	struct regulator_state *rstate;
4233
4234	rstate = regulator_get_suspend_state(rdev, state);
4235	if (rstate == NULL)
4236		return -EINVAL;
4237
4238	if (rstate->min_uV == rstate->max_uV) {
4239		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240		return -EPERM;
4241	}
4242
4243	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4244}
4245
4246int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247				  int max_uV, suspend_state_t state)
4248{
4249	struct ww_acquire_ctx ww_ctx;
4250	int ret;
4251
4252	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254		return -EINVAL;
4255
4256	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4257
4258	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259					     max_uV, state);
4260
4261	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4262
4263	return ret;
4264}
4265EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4266
4267/**
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4272 *
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4275 * voltage.
4276 *
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4278 */
4279int regulator_set_voltage_time(struct regulator *regulator,
4280			       int old_uV, int new_uV)
4281{
4282	struct regulator_dev *rdev = regulator->rdev;
4283	const struct regulator_ops *ops = rdev->desc->ops;
4284	int old_sel = -1;
4285	int new_sel = -1;
4286	int voltage;
4287	int i;
4288
4289	if (ops->set_voltage_time)
4290		return ops->set_voltage_time(rdev, old_uV, new_uV);
4291	else if (!ops->set_voltage_time_sel)
4292		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293
4294	/* Currently requires operations to do this */
4295	if (!ops->list_voltage || !rdev->desc->n_voltages)
4296		return -EINVAL;
4297
4298	for (i = 0; i < rdev->desc->n_voltages; i++) {
4299		/* We only look for exact voltage matches here */
4300		if (i < rdev->desc->linear_min_sel)
4301			continue;
4302
4303		if (old_sel >= 0 && new_sel >= 0)
4304			break;
4305
4306		voltage = regulator_list_voltage(regulator, i);
4307		if (voltage < 0)
4308			return -EINVAL;
4309		if (voltage == 0)
4310			continue;
4311		if (voltage == old_uV)
4312			old_sel = i;
4313		if (voltage == new_uV)
4314			new_sel = i;
4315	}
4316
4317	if (old_sel < 0 || new_sel < 0)
4318		return -EINVAL;
4319
4320	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321}
4322EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323
4324/**
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4329 *
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4332 *
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4335 *
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4337 */
4338int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339				   unsigned int old_selector,
4340				   unsigned int new_selector)
4341{
4342	int old_volt, new_volt;
4343
4344	/* sanity check */
4345	if (!rdev->desc->ops->list_voltage)
4346		return -EINVAL;
4347
4348	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4350
4351	if (rdev->desc->ops->set_voltage_time)
4352		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353							 new_volt);
4354	else
4355		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4356}
4357EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4358
4359int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4360{
4361	int ret;
4362
4363	regulator_lock(rdev);
4364
4365	if (!rdev->desc->ops->set_voltage &&
4366	    !rdev->desc->ops->set_voltage_sel) {
4367		ret = -EINVAL;
4368		goto out;
4369	}
4370
4371	/* balance only, if regulator is coupled */
4372	if (rdev->coupling_desc.n_coupled > 1)
4373		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374	else
4375		ret = -EOPNOTSUPP;
4376
4377out:
4378	regulator_unlock(rdev);
4379	return ret;
4380}
4381
4382/**
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4385 *
4386 * Re-apply the last configured voltage.  This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4389 *
4390 * Return: 0 on success or a negative error number on failure.
4391 */
4392int regulator_sync_voltage(struct regulator *regulator)
4393{
4394	struct regulator_dev *rdev = regulator->rdev;
4395	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4396	int ret, min_uV, max_uV;
4397
4398	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399		return 0;
4400
4401	regulator_lock(rdev);
4402
4403	if (!rdev->desc->ops->set_voltage &&
4404	    !rdev->desc->ops->set_voltage_sel) {
4405		ret = -EINVAL;
4406		goto out;
4407	}
4408
4409	/* This is only going to work if we've had a voltage configured. */
4410	if (!voltage->min_uV && !voltage->max_uV) {
4411		ret = -EINVAL;
4412		goto out;
4413	}
4414
4415	min_uV = voltage->min_uV;
4416	max_uV = voltage->max_uV;
4417
4418	/* This should be a paranoia check... */
4419	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420	if (ret < 0)
4421		goto out;
4422
4423	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424	if (ret < 0)
4425		goto out;
4426
4427	/* balance only, if regulator is coupled */
4428	if (rdev->coupling_desc.n_coupled > 1)
4429		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430	else
4431		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4432
4433out:
4434	regulator_unlock(rdev);
4435	return ret;
4436}
4437EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4438
4439int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4440{
4441	int sel, ret;
4442	bool bypassed;
4443
4444	if (rdev->desc->ops->get_bypass) {
4445		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446		if (ret < 0)
4447			return ret;
4448		if (bypassed) {
4449			/* if bypassed the regulator must have a supply */
4450			if (!rdev->supply) {
4451				rdev_err(rdev,
4452					 "bypassed regulator has no supply!\n");
4453				return -EPROBE_DEFER;
4454			}
4455
4456			return regulator_get_voltage_rdev(rdev->supply->rdev);
4457		}
4458	}
4459
4460	if (rdev->desc->ops->get_voltage_sel) {
4461		sel = rdev->desc->ops->get_voltage_sel(rdev);
4462		if (sel < 0)
4463			return sel;
4464		ret = rdev->desc->ops->list_voltage(rdev, sel);
4465	} else if (rdev->desc->ops->get_voltage) {
4466		ret = rdev->desc->ops->get_voltage(rdev);
4467	} else if (rdev->desc->ops->list_voltage) {
4468		ret = rdev->desc->ops->list_voltage(rdev, 0);
4469	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470		ret = rdev->desc->fixed_uV;
4471	} else if (rdev->supply) {
4472		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473	} else if (rdev->supply_name) {
4474		return -EPROBE_DEFER;
4475	} else {
4476		return -EINVAL;
4477	}
4478
4479	if (ret < 0)
4480		return ret;
4481	return ret - rdev->constraints->uV_offset;
4482}
4483EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4484
4485/**
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4488 *
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4490 *
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4493 */
4494int regulator_get_voltage(struct regulator *regulator)
4495{
4496	struct ww_acquire_ctx ww_ctx;
4497	int ret;
4498
4499	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500	ret = regulator_get_voltage_rdev(regulator->rdev);
4501	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4502
4503	return ret;
4504}
4505EXPORT_SYMBOL_GPL(regulator_get_voltage);
4506
4507/**
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4512 *
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4515 *
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4519 *
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4522 *
4523 * Return: 0 on success or a negative error number on failure.
4524 */
4525int regulator_set_current_limit(struct regulator *regulator,
4526			       int min_uA, int max_uA)
4527{
4528	struct regulator_dev *rdev = regulator->rdev;
4529	int ret;
4530
4531	regulator_lock(rdev);
4532
4533	/* sanity check */
4534	if (!rdev->desc->ops->set_current_limit) {
4535		ret = -EINVAL;
4536		goto out;
4537	}
4538
4539	/* constraints check */
4540	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541	if (ret < 0)
4542		goto out;
4543
4544	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545out:
4546	regulator_unlock(rdev);
4547	return ret;
4548}
4549EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550
4551static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552{
4553	/* sanity check */
4554	if (!rdev->desc->ops->get_current_limit)
4555		return -EINVAL;
4556
4557	return rdev->desc->ops->get_current_limit(rdev);
4558}
4559
4560static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561{
4562	int ret;
4563
4564	regulator_lock(rdev);
4565	ret = _regulator_get_current_limit_unlocked(rdev);
4566	regulator_unlock(rdev);
4567
4568	return ret;
4569}
4570
4571/**
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4574 *
4575 * Return: Current supplied by the specified current sink in uA,
4576 *	   or a negative error number on failure.
4577 *
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4580 */
4581int regulator_get_current_limit(struct regulator *regulator)
4582{
4583	return _regulator_get_current_limit(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4586
4587/**
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4591 *
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4594 *
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4597 *
4598 * Return: 0 on success or a negative error number on failure.
4599 */
4600int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4601{
4602	struct regulator_dev *rdev = regulator->rdev;
4603	int ret;
4604	int regulator_curr_mode;
4605
4606	regulator_lock(rdev);
4607
4608	/* sanity check */
4609	if (!rdev->desc->ops->set_mode) {
4610		ret = -EINVAL;
4611		goto out;
4612	}
4613
4614	/* return if the same mode is requested */
4615	if (rdev->desc->ops->get_mode) {
4616		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617		if (regulator_curr_mode == mode) {
4618			ret = 0;
4619			goto out;
4620		}
4621	}
4622
4623	/* constraints check */
4624	ret = regulator_mode_constrain(rdev, &mode);
4625	if (ret < 0)
4626		goto out;
4627
4628	ret = rdev->desc->ops->set_mode(rdev, mode);
4629out:
4630	regulator_unlock(rdev);
4631	return ret;
4632}
4633EXPORT_SYMBOL_GPL(regulator_set_mode);
4634
4635static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4636{
4637	/* sanity check */
4638	if (!rdev->desc->ops->get_mode)
4639		return -EINVAL;
4640
4641	return rdev->desc->ops->get_mode(rdev);
4642}
4643
4644static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4645{
4646	int ret;
4647
4648	regulator_lock(rdev);
4649	ret = _regulator_get_mode_unlocked(rdev);
4650	regulator_unlock(rdev);
4651
4652	return ret;
4653}
4654
4655/**
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4658 *
4659 * Get the current regulator operating mode.
4660 *
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 *	   or a negative error number on failure.
4663 */
4664unsigned int regulator_get_mode(struct regulator *regulator)
4665{
4666	return _regulator_get_mode(regulator->rdev);
4667}
4668EXPORT_SYMBOL_GPL(regulator_get_mode);
4669
4670static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4671{
4672	int ret = 0;
4673
4674	if (rdev->use_cached_err) {
4675		spin_lock(&rdev->err_lock);
4676		ret = rdev->cached_err;
4677		spin_unlock(&rdev->err_lock);
4678	}
4679	return ret;
4680}
4681
4682static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683					unsigned int *flags)
4684{
4685	int cached_flags, ret = 0;
4686
4687	regulator_lock(rdev);
4688
4689	cached_flags = rdev_get_cached_err_flags(rdev);
4690
4691	if (rdev->desc->ops->get_error_flags)
4692		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693	else if (!rdev->use_cached_err)
4694		ret = -EINVAL;
4695
4696	*flags |= cached_flags;
4697
4698	regulator_unlock(rdev);
4699
4700	return ret;
4701}
4702
4703/**
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4707 *
4708 * Get the current regulator error information.
4709 *
4710 * Return: 0 on success or a negative error number on failure.
4711 */
4712int regulator_get_error_flags(struct regulator *regulator,
4713				unsigned int *flags)
4714{
4715	return _regulator_get_error_flags(regulator->rdev, flags);
4716}
4717EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4718
4719/**
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4723 *
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4727 *
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4733 *
4734 *    o Device is opened / closed.
4735 *    o Device I/O is about to begin or has just finished.
4736 *    o Device is idling in between work.
4737 *
4738 * This information is also exported via sysfs to userspace.
4739 *
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4742 *
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load.  If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4747 *
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4750 *
4751 * Return: 0 on success or a negative error number on failure.
4752 */
4753int regulator_set_load(struct regulator *regulator, int uA_load)
4754{
4755	struct regulator_dev *rdev = regulator->rdev;
4756	int old_uA_load;
4757	int ret = 0;
4758
4759	regulator_lock(rdev);
4760	old_uA_load = regulator->uA_load;
4761	regulator->uA_load = uA_load;
4762	if (regulator->enable_count && old_uA_load != uA_load) {
4763		ret = drms_uA_update(rdev);
4764		if (ret < 0)
4765			regulator->uA_load = old_uA_load;
4766	}
4767	regulator_unlock(rdev);
4768
4769	return ret;
4770}
4771EXPORT_SYMBOL_GPL(regulator_set_load);
4772
4773/**
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4775 *
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4778 *
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this.  Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4783 *
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 *	   a negative error number on failure.
4786 */
4787int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788{
4789	struct regulator_dev *rdev = regulator->rdev;
4790	const char *name = rdev_get_name(rdev);
4791	int ret = 0;
4792
4793	if (!rdev->desc->ops->set_bypass)
4794		return 0;
4795
4796	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797		return 0;
4798
4799	regulator_lock(rdev);
4800
4801	if (enable && !regulator->bypass) {
4802		rdev->bypass_count++;
4803
4804		if (rdev->bypass_count == rdev->open_count) {
4805			trace_regulator_bypass_enable(name);
4806
4807			ret = rdev->desc->ops->set_bypass(rdev, enable);
4808			if (ret != 0)
4809				rdev->bypass_count--;
4810			else
4811				trace_regulator_bypass_enable_complete(name);
4812		}
4813
4814	} else if (!enable && regulator->bypass) {
4815		rdev->bypass_count--;
4816
4817		if (rdev->bypass_count != rdev->open_count) {
4818			trace_regulator_bypass_disable(name);
4819
4820			ret = rdev->desc->ops->set_bypass(rdev, enable);
4821			if (ret != 0)
4822				rdev->bypass_count++;
4823			else
4824				trace_regulator_bypass_disable_complete(name);
4825		}
4826	}
4827
4828	if (ret == 0)
4829		regulator->bypass = enable;
4830
4831	regulator_unlock(rdev);
4832
4833	return ret;
4834}
4835EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836
4837/**
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4841 *
4842 * Register notifier block to receive regulator events.
4843 *
4844 * Return: 0 on success or a negative error number on failure.
4845 */
4846int regulator_register_notifier(struct regulator *regulator,
4847			      struct notifier_block *nb)
4848{
4849	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4850						nb);
4851}
4852EXPORT_SYMBOL_GPL(regulator_register_notifier);
4853
4854/**
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4858 *
4859 * Unregister regulator event notifier block.
4860 *
4861 * Return: 0 on success or a negative error number on failure.
4862 */
4863int regulator_unregister_notifier(struct regulator *regulator,
4864				struct notifier_block *nb)
4865{
4866	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4867						  nb);
4868}
4869EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4870
4871/* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4873 */
4874static int _notifier_call_chain(struct regulator_dev *rdev,
4875				  unsigned long event, void *data)
4876{
4877	/* call rdev chain first */
4878	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4879
4880	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881		struct device *parent = rdev->dev.parent;
4882		const char *rname = rdev_get_name(rdev);
4883		char name[32];
4884
4885		/* Avoid duplicate debugfs directory names */
4886		if (parent && rname == rdev->desc->name) {
4887			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888				 rname);
4889			rname = name;
4890		}
4891		reg_generate_netlink_event(rname, event);
4892	}
4893
4894	return ret;
4895}
4896
4897int _regulator_bulk_get(struct device *dev, int num_consumers,
4898			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4899{
4900	int i;
4901	int ret;
4902
4903	for (i = 0; i < num_consumers; i++)
4904		consumers[i].consumer = NULL;
4905
4906	for (i = 0; i < num_consumers; i++) {
4907		consumers[i].consumer = _regulator_get(dev,
4908						       consumers[i].supply, get_type);
4909		if (IS_ERR(consumers[i].consumer)) {
4910			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911					    "Failed to get supply '%s'\n",
4912					    consumers[i].supply);
4913			consumers[i].consumer = NULL;
4914			goto err;
4915		}
4916
4917		if (consumers[i].init_load_uA > 0) {
4918			ret = regulator_set_load(consumers[i].consumer,
4919						 consumers[i].init_load_uA);
4920			if (ret) {
4921				i++;
4922				goto err;
4923			}
4924		}
4925	}
4926
4927	return 0;
4928
4929err:
4930	while (--i >= 0)
4931		regulator_put(consumers[i].consumer);
4932
4933	return ret;
4934}
4935
4936/**
4937 * regulator_bulk_get - get multiple regulator consumers
4938 *
4939 * @dev:           Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers:     Configuration of consumers; clients are stored here.
4942 *
 
 
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation.  If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4947 *
4948 * Return: 0 on success or a negative error number on failure.
4949 */
4950int regulator_bulk_get(struct device *dev, int num_consumers,
4951		       struct regulator_bulk_data *consumers)
4952{
4953	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4954}
4955EXPORT_SYMBOL_GPL(regulator_bulk_get);
4956
4957static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4958{
4959	struct regulator_bulk_data *bulk = data;
4960
4961	bulk->ret = regulator_enable(bulk->consumer);
4962}
4963
4964/**
4965 * regulator_bulk_enable - enable multiple regulator consumers
4966 *
4967 * @num_consumers: Number of consumers
4968 * @consumers:     Consumer data; clients are stored here.
 
4969 *
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call.  If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4973 * return.
4974 *
4975 * Return: 0 on success or a negative error number on failure.
4976 */
4977int regulator_bulk_enable(int num_consumers,
4978			  struct regulator_bulk_data *consumers)
4979{
4980	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981	int i;
4982	int ret = 0;
4983
4984	for (i = 0; i < num_consumers; i++) {
4985		async_schedule_domain(regulator_bulk_enable_async,
4986				      &consumers[i], &async_domain);
4987	}
4988
4989	async_synchronize_full_domain(&async_domain);
4990
4991	/* If any consumer failed we need to unwind any that succeeded */
4992	for (i = 0; i < num_consumers; i++) {
4993		if (consumers[i].ret != 0) {
4994			ret = consumers[i].ret;
4995			goto err;
4996		}
4997	}
4998
4999	return 0;
5000
5001err:
5002	for (i = 0; i < num_consumers; i++) {
5003		if (consumers[i].ret < 0)
5004			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005			       ERR_PTR(consumers[i].ret));
5006		else
5007			regulator_disable(consumers[i].consumer);
5008	}
5009
5010	return ret;
5011}
5012EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5013
5014/**
5015 * regulator_bulk_disable - disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers:     Consumer data; clients are stored here.
 
5019 *
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call.  If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5023 * return.
5024 *
5025 * Return: 0 on success or a negative error number on failure.
5026 */
5027int regulator_bulk_disable(int num_consumers,
5028			   struct regulator_bulk_data *consumers)
5029{
5030	int i;
5031	int ret, r;
5032
5033	for (i = num_consumers - 1; i >= 0; --i) {
5034		ret = regulator_disable(consumers[i].consumer);
5035		if (ret != 0)
5036			goto err;
5037	}
5038
5039	return 0;
5040
5041err:
5042	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043	for (++i; i < num_consumers; ++i) {
5044		r = regulator_enable(consumers[i].consumer);
5045		if (r != 0)
5046			pr_err("Failed to re-enable %s: %pe\n",
5047			       consumers[i].supply, ERR_PTR(r));
5048	}
5049
5050	return ret;
5051}
5052EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5053
5054/**
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5056 *
5057 * @num_consumers: Number of consumers
5058 * @consumers:     Consumer data; clients are stored here.
 
5059 *
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5066 *
5067 * Return: 0 on success or a negative error number on failure.
5068 */
5069int regulator_bulk_force_disable(int num_consumers,
5070			   struct regulator_bulk_data *consumers)
5071{
5072	int i;
5073	int ret = 0;
5074
5075	for (i = 0; i < num_consumers; i++) {
5076		consumers[i].ret =
5077			    regulator_force_disable(consumers[i].consumer);
5078
5079		/* Store first error for reporting */
5080		if (consumers[i].ret && !ret)
5081			ret = consumers[i].ret;
5082	}
5083
5084	return ret;
5085}
5086EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5087
5088/**
5089 * regulator_bulk_free - free multiple regulator consumers
5090 *
5091 * @num_consumers: Number of consumers
5092 * @consumers:     Consumer data; clients are stored here.
5093 *
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5096 */
5097void regulator_bulk_free(int num_consumers,
5098			 struct regulator_bulk_data *consumers)
5099{
5100	int i;
5101
5102	for (i = 0; i < num_consumers; i++) {
5103		regulator_put(consumers[i].consumer);
5104		consumers[i].consumer = NULL;
5105	}
5106}
5107EXPORT_SYMBOL_GPL(regulator_bulk_free);
5108
5109/**
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5113 *
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5117 */
5118static void regulator_handle_critical(struct regulator_dev *rdev,
5119				      unsigned long event)
5120{
5121	const char *reason = NULL;
5122
5123	if (!rdev->constraints->system_critical)
5124		return;
5125
5126	switch (event) {
5127	case REGULATOR_EVENT_UNDER_VOLTAGE:
5128		reason = "System critical regulator: voltage drop detected";
5129		break;
5130	case REGULATOR_EVENT_OVER_CURRENT:
5131		reason = "System critical regulator: over-current detected";
5132		break;
5133	case REGULATOR_EVENT_FAIL:
5134		reason = "System critical regulator: unknown error";
5135	}
5136
5137	if (!reason)
5138		return;
5139
5140	hw_protection_shutdown(reason,
5141			       rdev->constraints->uv_less_critical_window_ms);
5142}
5143
5144/**
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5149 *
5150 * Called by regulator drivers to notify clients a regulator event has
5151 * occurred.
5152 *
5153 * Return: %NOTIFY_DONE.
5154 */
5155int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156				  unsigned long event, void *data)
5157{
5158	regulator_handle_critical(rdev, event);
5159
5160	_notifier_call_chain(rdev, event, data);
5161	return NOTIFY_DONE;
5162
5163}
5164EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5165
5166/**
5167 * regulator_mode_to_status - convert a regulator mode into a status
5168 *
5169 * @mode: Mode to convert
5170 *
5171 * Convert a regulator mode into a status.
5172 *
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5174 */
5175int regulator_mode_to_status(unsigned int mode)
5176{
5177	switch (mode) {
5178	case REGULATOR_MODE_FAST:
5179		return REGULATOR_STATUS_FAST;
5180	case REGULATOR_MODE_NORMAL:
5181		return REGULATOR_STATUS_NORMAL;
5182	case REGULATOR_MODE_IDLE:
5183		return REGULATOR_STATUS_IDLE;
5184	case REGULATOR_MODE_STANDBY:
5185		return REGULATOR_STATUS_STANDBY;
5186	default:
5187		return REGULATOR_STATUS_UNDEFINED;
5188	}
5189}
5190EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5191
5192static struct attribute *regulator_dev_attrs[] = {
5193	&dev_attr_name.attr,
5194	&dev_attr_num_users.attr,
5195	&dev_attr_type.attr,
5196	&dev_attr_microvolts.attr,
5197	&dev_attr_microamps.attr,
5198	&dev_attr_opmode.attr,
5199	&dev_attr_state.attr,
5200	&dev_attr_status.attr,
5201	&dev_attr_bypass.attr,
5202	&dev_attr_requested_microamps.attr,
5203	&dev_attr_min_microvolts.attr,
5204	&dev_attr_max_microvolts.attr,
5205	&dev_attr_min_microamps.attr,
5206	&dev_attr_max_microamps.attr,
5207	&dev_attr_under_voltage.attr,
5208	&dev_attr_over_current.attr,
5209	&dev_attr_regulation_out.attr,
5210	&dev_attr_fail.attr,
5211	&dev_attr_over_temp.attr,
5212	&dev_attr_under_voltage_warn.attr,
5213	&dev_attr_over_current_warn.attr,
5214	&dev_attr_over_voltage_warn.attr,
5215	&dev_attr_over_temp_warn.attr,
5216	&dev_attr_suspend_standby_state.attr,
5217	&dev_attr_suspend_mem_state.attr,
5218	&dev_attr_suspend_disk_state.attr,
5219	&dev_attr_suspend_standby_microvolts.attr,
5220	&dev_attr_suspend_mem_microvolts.attr,
5221	&dev_attr_suspend_disk_microvolts.attr,
5222	&dev_attr_suspend_standby_mode.attr,
5223	&dev_attr_suspend_mem_mode.attr,
5224	&dev_attr_suspend_disk_mode.attr,
5225	NULL
5226};
5227
5228/*
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5231 */
5232static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233					 struct attribute *attr, int idx)
5234{
5235	struct device *dev = kobj_to_dev(kobj);
5236	struct regulator_dev *rdev = dev_to_rdev(dev);
5237	const struct regulator_ops *ops = rdev->desc->ops;
5238	umode_t mode = attr->mode;
5239
5240	/* these three are always present */
5241	if (attr == &dev_attr_name.attr ||
5242	    attr == &dev_attr_num_users.attr ||
5243	    attr == &dev_attr_type.attr)
5244		return mode;
5245
5246	/* some attributes need specific methods to be displayed */
5247	if (attr == &dev_attr_microvolts.attr) {
5248		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252			return mode;
5253		return 0;
5254	}
5255
5256	if (attr == &dev_attr_microamps.attr)
5257		return ops->get_current_limit ? mode : 0;
5258
5259	if (attr == &dev_attr_opmode.attr)
5260		return ops->get_mode ? mode : 0;
5261
5262	if (attr == &dev_attr_state.attr)
5263		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5264
5265	if (attr == &dev_attr_status.attr)
5266		return ops->get_status ? mode : 0;
5267
5268	if (attr == &dev_attr_bypass.attr)
5269		return ops->get_bypass ? mode : 0;
5270
5271	if (attr == &dev_attr_under_voltage.attr ||
5272	    attr == &dev_attr_over_current.attr ||
5273	    attr == &dev_attr_regulation_out.attr ||
5274	    attr == &dev_attr_fail.attr ||
5275	    attr == &dev_attr_over_temp.attr ||
5276	    attr == &dev_attr_under_voltage_warn.attr ||
5277	    attr == &dev_attr_over_current_warn.attr ||
5278	    attr == &dev_attr_over_voltage_warn.attr ||
5279	    attr == &dev_attr_over_temp_warn.attr)
5280		return ops->get_error_flags ? mode : 0;
5281
5282	/* constraints need specific supporting methods */
5283	if (attr == &dev_attr_min_microvolts.attr ||
5284	    attr == &dev_attr_max_microvolts.attr)
5285		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5286
5287	if (attr == &dev_attr_min_microamps.attr ||
5288	    attr == &dev_attr_max_microamps.attr)
5289		return ops->set_current_limit ? mode : 0;
5290
5291	if (attr == &dev_attr_suspend_standby_state.attr ||
5292	    attr == &dev_attr_suspend_mem_state.attr ||
5293	    attr == &dev_attr_suspend_disk_state.attr)
5294		return mode;
5295
5296	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5298	    attr == &dev_attr_suspend_disk_microvolts.attr)
5299		return ops->set_suspend_voltage ? mode : 0;
5300
5301	if (attr == &dev_attr_suspend_standby_mode.attr ||
5302	    attr == &dev_attr_suspend_mem_mode.attr ||
5303	    attr == &dev_attr_suspend_disk_mode.attr)
5304		return ops->set_suspend_mode ? mode : 0;
5305
5306	return mode;
5307}
5308
5309static const struct attribute_group regulator_dev_group = {
5310	.attrs = regulator_dev_attrs,
5311	.is_visible = regulator_attr_is_visible,
5312};
5313
5314static const struct attribute_group *regulator_dev_groups[] = {
5315	&regulator_dev_group,
5316	NULL
5317};
5318
5319static void regulator_dev_release(struct device *dev)
5320{
5321	struct regulator_dev *rdev = dev_get_drvdata(dev);
5322
5323	debugfs_remove_recursive(rdev->debugfs);
5324	kfree(rdev->constraints);
5325	of_node_put(rdev->dev.of_node);
5326	kfree(rdev);
5327}
5328
5329static void rdev_init_debugfs(struct regulator_dev *rdev)
5330{
5331	struct device *parent = rdev->dev.parent;
5332	const char *rname = rdev_get_name(rdev);
5333	char name[NAME_MAX];
5334
5335	/* Avoid duplicate debugfs directory names */
5336	if (parent && rname == rdev->desc->name) {
5337		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338			 rname);
5339		rname = name;
5340	}
5341
5342	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343	if (IS_ERR(rdev->debugfs))
5344		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5345
5346	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347			   &rdev->use_count);
5348	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349			   &rdev->open_count);
5350	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351			   &rdev->bypass_count);
5352}
5353
5354static int regulator_register_resolve_supply(struct device *dev, void *data)
5355{
5356	struct regulator_dev *rdev = dev_to_rdev(dev);
5357
5358	if (regulator_resolve_supply(rdev))
5359		rdev_dbg(rdev, "unable to resolve supply\n");
5360
5361	return 0;
5362}
5363
5364int regulator_coupler_register(struct regulator_coupler *coupler)
5365{
5366	mutex_lock(&regulator_list_mutex);
5367	list_add_tail(&coupler->list, &regulator_coupler_list);
5368	mutex_unlock(&regulator_list_mutex);
5369
5370	return 0;
5371}
5372
5373static struct regulator_coupler *
5374regulator_find_coupler(struct regulator_dev *rdev)
5375{
5376	struct regulator_coupler *coupler;
5377	int err;
5378
5379	/*
5380	 * Note that regulators are appended to the list and the generic
5381	 * coupler is registered first, hence it will be attached at last
5382	 * if nobody cared.
5383	 */
5384	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5385		err = coupler->attach_regulator(coupler, rdev);
5386		if (!err) {
5387			if (!coupler->balance_voltage &&
5388			    rdev->coupling_desc.n_coupled > 2)
5389				goto err_unsupported;
5390
5391			return coupler;
5392		}
5393
5394		if (err < 0)
5395			return ERR_PTR(err);
5396
5397		if (err == 1)
5398			continue;
5399
5400		break;
5401	}
5402
5403	return ERR_PTR(-EINVAL);
5404
5405err_unsupported:
5406	if (coupler->detach_regulator)
5407		coupler->detach_regulator(coupler, rdev);
5408
5409	rdev_err(rdev,
5410		"Voltage balancing for multiple regulator couples is unimplemented\n");
5411
5412	return ERR_PTR(-EPERM);
5413}
5414
5415static void regulator_resolve_coupling(struct regulator_dev *rdev)
5416{
5417	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418	struct coupling_desc *c_desc = &rdev->coupling_desc;
5419	int n_coupled = c_desc->n_coupled;
5420	struct regulator_dev *c_rdev;
5421	int i;
5422
5423	for (i = 1; i < n_coupled; i++) {
5424		/* already resolved */
5425		if (c_desc->coupled_rdevs[i])
5426			continue;
5427
5428		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5429
5430		if (!c_rdev)
5431			continue;
5432
5433		if (c_rdev->coupling_desc.coupler != coupler) {
5434			rdev_err(rdev, "coupler mismatch with %s\n",
5435				 rdev_get_name(c_rdev));
5436			return;
5437		}
5438
5439		c_desc->coupled_rdevs[i] = c_rdev;
5440		c_desc->n_resolved++;
5441
5442		regulator_resolve_coupling(c_rdev);
5443	}
5444}
5445
5446static void regulator_remove_coupling(struct regulator_dev *rdev)
5447{
5448	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450	struct regulator_dev *__c_rdev, *c_rdev;
5451	unsigned int __n_coupled, n_coupled;
5452	int i, k;
5453	int err;
5454
5455	n_coupled = c_desc->n_coupled;
5456
5457	for (i = 1; i < n_coupled; i++) {
5458		c_rdev = c_desc->coupled_rdevs[i];
5459
5460		if (!c_rdev)
5461			continue;
5462
5463		regulator_lock(c_rdev);
5464
5465		__c_desc = &c_rdev->coupling_desc;
5466		__n_coupled = __c_desc->n_coupled;
5467
5468		for (k = 1; k < __n_coupled; k++) {
5469			__c_rdev = __c_desc->coupled_rdevs[k];
5470
5471			if (__c_rdev == rdev) {
5472				__c_desc->coupled_rdevs[k] = NULL;
5473				__c_desc->n_resolved--;
5474				break;
5475			}
5476		}
5477
5478		regulator_unlock(c_rdev);
5479
5480		c_desc->coupled_rdevs[i] = NULL;
5481		c_desc->n_resolved--;
5482	}
5483
5484	if (coupler && coupler->detach_regulator) {
5485		err = coupler->detach_regulator(coupler, rdev);
5486		if (err)
5487			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488				 ERR_PTR(err));
5489	}
5490
5491	kfree(rdev->coupling_desc.coupled_rdevs);
5492	rdev->coupling_desc.coupled_rdevs = NULL;
5493}
5494
5495static int regulator_init_coupling(struct regulator_dev *rdev)
5496{
5497	struct regulator_dev **coupled;
5498	int err, n_phandles;
5499
5500	if (!IS_ENABLED(CONFIG_OF))
5501		n_phandles = 0;
5502	else
5503		n_phandles = of_get_n_coupled(rdev);
5504
5505	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506	if (!coupled)
5507		return -ENOMEM;
5508
5509	rdev->coupling_desc.coupled_rdevs = coupled;
5510
5511	/*
5512	 * Every regulator should always have coupling descriptor filled with
5513	 * at least pointer to itself.
5514	 */
5515	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516	rdev->coupling_desc.n_coupled = n_phandles + 1;
5517	rdev->coupling_desc.n_resolved++;
5518
5519	/* regulator isn't coupled */
5520	if (n_phandles == 0)
5521		return 0;
5522
5523	if (!of_check_coupling_data(rdev))
5524		return -EPERM;
5525
5526	mutex_lock(&regulator_list_mutex);
5527	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528	mutex_unlock(&regulator_list_mutex);
5529
5530	if (IS_ERR(rdev->coupling_desc.coupler)) {
5531		err = PTR_ERR(rdev->coupling_desc.coupler);
5532		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533		return err;
5534	}
5535
5536	return 0;
5537}
5538
5539static int generic_coupler_attach(struct regulator_coupler *coupler,
5540				  struct regulator_dev *rdev)
5541{
5542	if (rdev->coupling_desc.n_coupled > 2) {
5543		rdev_err(rdev,
5544			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545		return -EPERM;
5546	}
5547
5548	if (!rdev->constraints->always_on) {
5549		rdev_err(rdev,
5550			 "Coupling of a non always-on regulator is unimplemented\n");
5551		return -ENOTSUPP;
5552	}
5553
5554	return 0;
5555}
5556
5557static struct regulator_coupler generic_regulator_coupler = {
5558	.attach_regulator = generic_coupler_attach,
5559};
5560
5561/**
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5566 *
5567 * Called by regulator drivers to register a regulator.
5568 *
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 *	   an ERR_PTR() encoded negative error number on failure.
5571 */
5572struct regulator_dev *
5573regulator_register(struct device *dev,
5574		   const struct regulator_desc *regulator_desc,
5575		   const struct regulator_config *cfg)
5576{
5577	const struct regulator_init_data *init_data;
5578	struct regulator_config *config = NULL;
5579	static atomic_t regulator_no = ATOMIC_INIT(-1);
5580	struct regulator_dev *rdev;
5581	bool dangling_cfg_gpiod = false;
5582	bool dangling_of_gpiod = false;
5583	int ret, i;
5584	bool resolved_early = false;
5585
5586	if (cfg == NULL)
5587		return ERR_PTR(-EINVAL);
5588	if (cfg->ena_gpiod)
5589		dangling_cfg_gpiod = true;
5590	if (regulator_desc == NULL) {
5591		ret = -EINVAL;
5592		goto rinse;
5593	}
5594
5595	WARN_ON(!dev || !cfg->dev);
5596
5597	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598		ret = -EINVAL;
5599		goto rinse;
5600	}
5601
5602	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603	    regulator_desc->type != REGULATOR_CURRENT) {
5604		ret = -EINVAL;
5605		goto rinse;
5606	}
5607
5608	/* Only one of each should be implemented */
5609	WARN_ON(regulator_desc->ops->get_voltage &&
5610		regulator_desc->ops->get_voltage_sel);
5611	WARN_ON(regulator_desc->ops->set_voltage &&
5612		regulator_desc->ops->set_voltage_sel);
5613
5614	/* If we're using selectors we must implement list_voltage. */
5615	if (regulator_desc->ops->get_voltage_sel &&
5616	    !regulator_desc->ops->list_voltage) {
5617		ret = -EINVAL;
5618		goto rinse;
5619	}
5620	if (regulator_desc->ops->set_voltage_sel &&
5621	    !regulator_desc->ops->list_voltage) {
5622		ret = -EINVAL;
5623		goto rinse;
5624	}
5625
5626	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627	if (rdev == NULL) {
5628		ret = -ENOMEM;
5629		goto rinse;
5630	}
5631	device_initialize(&rdev->dev);
5632	dev_set_drvdata(&rdev->dev, rdev);
5633	rdev->dev.class = &regulator_class;
5634	spin_lock_init(&rdev->err_lock);
5635
5636	/*
5637	 * Duplicate the config so the driver could override it after
5638	 * parsing init data.
5639	 */
5640	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641	if (config == NULL) {
5642		ret = -ENOMEM;
5643		goto clean;
5644	}
5645
5646	/*
5647	 * DT may override the config->init_data provided if the platform
5648	 * needs to do so. If so, config->init_data is completely ignored.
5649	 */
5650	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5651					       &rdev->dev.of_node);
5652
5653	/*
5654	 * Sometimes not all resources are probed already so we need to take
5655	 * that into account. This happens most the time if the ena_gpiod comes
5656	 * from a gpio extender or something else.
5657	 */
5658	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5659		ret = -EPROBE_DEFER;
5660		goto clean;
5661	}
5662
5663	/*
5664	 * We need to keep track of any GPIO descriptor coming from the
5665	 * device tree until we have handled it over to the core. If the
5666	 * config that was passed in to this function DOES NOT contain
5667	 * a descriptor, and the config after this call DOES contain
5668	 * a descriptor, we definitely got one from parsing the device
5669	 * tree.
5670	 */
5671	if (!cfg->ena_gpiod && config->ena_gpiod)
5672		dangling_of_gpiod = true;
5673	if (!init_data) {
5674		init_data = config->init_data;
5675		rdev->dev.of_node = of_node_get(config->of_node);
5676	}
5677
5678	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5679	rdev->reg_data = config->driver_data;
5680	rdev->owner = regulator_desc->owner;
5681	rdev->desc = regulator_desc;
5682	if (config->regmap)
5683		rdev->regmap = config->regmap;
5684	else if (dev_get_regmap(dev, NULL))
5685		rdev->regmap = dev_get_regmap(dev, NULL);
5686	else if (dev->parent)
5687		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5688	INIT_LIST_HEAD(&rdev->consumer_list);
5689	INIT_LIST_HEAD(&rdev->list);
5690	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5691	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5692
5693	if (init_data && init_data->supply_regulator)
5694		rdev->supply_name = init_data->supply_regulator;
5695	else if (regulator_desc->supply_name)
5696		rdev->supply_name = regulator_desc->supply_name;
5697
5698	/* register with sysfs */
5699	rdev->dev.parent = config->dev;
5700	dev_set_name(&rdev->dev, "regulator.%lu",
5701		    (unsigned long) atomic_inc_return(&regulator_no));
5702
5703	/* set regulator constraints */
5704	if (init_data)
5705		rdev->constraints = kmemdup(&init_data->constraints,
5706					    sizeof(*rdev->constraints),
5707					    GFP_KERNEL);
5708	else
5709		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5710					    GFP_KERNEL);
5711	if (!rdev->constraints) {
5712		ret = -ENOMEM;
5713		goto wash;
5714	}
5715
5716	if (regulator_desc->init_cb) {
5717		ret = regulator_desc->init_cb(rdev, config);
5718		if (ret < 0)
5719			goto wash;
5720	}
5721
5722	if ((rdev->supply_name && !rdev->supply) &&
5723		(rdev->constraints->always_on ||
5724		 rdev->constraints->boot_on)) {
5725		ret = regulator_resolve_supply(rdev);
5726		if (ret)
5727			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5728					 ERR_PTR(ret));
5729
5730		resolved_early = true;
5731	}
5732
 
 
 
 
 
 
 
5733	if (config->ena_gpiod) {
5734		ret = regulator_ena_gpio_request(rdev, config);
5735		if (ret != 0) {
5736			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5737				 ERR_PTR(ret));
5738			goto wash;
5739		}
5740		/* The regulator core took over the GPIO descriptor */
5741		dangling_cfg_gpiod = false;
5742		dangling_of_gpiod = false;
5743	}
5744
5745	ret = set_machine_constraints(rdev);
5746	if (ret == -EPROBE_DEFER && !resolved_early) {
5747		/* Regulator might be in bypass mode and so needs its supply
5748		 * to set the constraints
5749		 */
5750		/* FIXME: this currently triggers a chicken-and-egg problem
5751		 * when creating -SUPPLY symlink in sysfs to a regulator
5752		 * that is just being created
5753		 */
5754		rdev_dbg(rdev, "will resolve supply early: %s\n",
5755			 rdev->supply_name);
5756		ret = regulator_resolve_supply(rdev);
5757		if (!ret)
5758			ret = set_machine_constraints(rdev);
5759		else
5760			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5761				 ERR_PTR(ret));
5762	}
5763	if (ret < 0)
5764		goto wash;
5765
5766	ret = regulator_init_coupling(rdev);
5767	if (ret < 0)
5768		goto wash;
5769
5770	/* add consumers devices */
5771	if (init_data) {
5772		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5773			ret = set_consumer_device_supply(rdev,
5774				init_data->consumer_supplies[i].dev_name,
5775				init_data->consumer_supplies[i].supply);
5776			if (ret < 0) {
5777				dev_err(dev, "Failed to set supply %s\n",
5778					init_data->consumer_supplies[i].supply);
5779				goto unset_supplies;
5780			}
5781		}
5782	}
5783
5784	if (!rdev->desc->ops->get_voltage &&
5785	    !rdev->desc->ops->list_voltage &&
5786	    !rdev->desc->fixed_uV)
5787		rdev->is_switch = true;
5788
5789	ret = device_add(&rdev->dev);
5790	if (ret != 0)
5791		goto unset_supplies;
5792
5793	rdev_init_debugfs(rdev);
5794
5795	/* try to resolve regulators coupling since a new one was registered */
5796	mutex_lock(&regulator_list_mutex);
5797	regulator_resolve_coupling(rdev);
5798	mutex_unlock(&regulator_list_mutex);
5799
5800	/* try to resolve regulators supply since a new one was registered */
5801	class_for_each_device(&regulator_class, NULL, NULL,
5802			      regulator_register_resolve_supply);
5803	kfree(config);
5804	return rdev;
5805
5806unset_supplies:
5807	mutex_lock(&regulator_list_mutex);
5808	unset_regulator_supplies(rdev);
5809	regulator_remove_coupling(rdev);
5810	mutex_unlock(&regulator_list_mutex);
5811wash:
5812	regulator_put(rdev->supply);
5813	kfree(rdev->coupling_desc.coupled_rdevs);
5814	mutex_lock(&regulator_list_mutex);
5815	regulator_ena_gpio_free(rdev);
5816	mutex_unlock(&regulator_list_mutex);
5817clean:
5818	if (dangling_of_gpiod)
5819		gpiod_put(config->ena_gpiod);
5820	kfree(config);
5821	put_device(&rdev->dev);
5822rinse:
5823	if (dangling_cfg_gpiod)
5824		gpiod_put(cfg->ena_gpiod);
5825	return ERR_PTR(ret);
5826}
5827EXPORT_SYMBOL_GPL(regulator_register);
5828
5829/**
5830 * regulator_unregister - unregister regulator
5831 * @rdev: regulator to unregister
5832 *
5833 * Called by regulator drivers to unregister a regulator.
5834 */
5835void regulator_unregister(struct regulator_dev *rdev)
5836{
5837	if (rdev == NULL)
5838		return;
5839
5840	if (rdev->supply) {
5841		while (rdev->use_count--)
5842			regulator_disable(rdev->supply);
5843		regulator_put(rdev->supply);
5844	}
5845
5846	flush_work(&rdev->disable_work.work);
5847
5848	mutex_lock(&regulator_list_mutex);
5849
5850	WARN_ON(rdev->open_count);
5851	regulator_remove_coupling(rdev);
5852	unset_regulator_supplies(rdev);
5853	list_del(&rdev->list);
5854	regulator_ena_gpio_free(rdev);
5855	device_unregister(&rdev->dev);
5856
5857	mutex_unlock(&regulator_list_mutex);
5858}
5859EXPORT_SYMBOL_GPL(regulator_unregister);
5860
5861#ifdef CONFIG_SUSPEND
5862/**
5863 * regulator_suspend - prepare regulators for system wide suspend
5864 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5865 *
5866 * Configure each regulator with it's suspend operating parameters for state.
5867 *
5868 * Return: 0 on success or a negative error number on failure.
5869 */
5870static int regulator_suspend(struct device *dev)
5871{
5872	struct regulator_dev *rdev = dev_to_rdev(dev);
5873	suspend_state_t state = pm_suspend_target_state;
5874	int ret;
5875	const struct regulator_state *rstate;
5876
5877	rstate = regulator_get_suspend_state_check(rdev, state);
5878	if (!rstate)
5879		return 0;
5880
5881	regulator_lock(rdev);
5882	ret = __suspend_set_state(rdev, rstate);
5883	regulator_unlock(rdev);
5884
5885	return ret;
5886}
5887
5888static int regulator_resume(struct device *dev)
5889{
5890	suspend_state_t state = pm_suspend_target_state;
5891	struct regulator_dev *rdev = dev_to_rdev(dev);
5892	struct regulator_state *rstate;
5893	int ret = 0;
5894
5895	rstate = regulator_get_suspend_state(rdev, state);
5896	if (rstate == NULL)
5897		return 0;
5898
5899	/* Avoid grabbing the lock if we don't need to */
5900	if (!rdev->desc->ops->resume)
5901		return 0;
5902
5903	regulator_lock(rdev);
5904
5905	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5906	    rstate->enabled == DISABLE_IN_SUSPEND)
5907		ret = rdev->desc->ops->resume(rdev);
5908
5909	regulator_unlock(rdev);
5910
5911	return ret;
5912}
5913#else /* !CONFIG_SUSPEND */
5914
5915#define regulator_suspend	NULL
5916#define regulator_resume	NULL
5917
5918#endif /* !CONFIG_SUSPEND */
5919
5920#ifdef CONFIG_PM
5921static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5922	.suspend	= regulator_suspend,
5923	.resume		= regulator_resume,
5924};
5925#endif
5926
5927const struct class regulator_class = {
5928	.name = "regulator",
5929	.dev_release = regulator_dev_release,
5930	.dev_groups = regulator_dev_groups,
5931#ifdef CONFIG_PM
5932	.pm = &regulator_pm_ops,
5933#endif
5934};
5935/**
5936 * regulator_has_full_constraints - the system has fully specified constraints
5937 *
5938 * Calling this function will cause the regulator API to disable all
5939 * regulators which have a zero use count and don't have an always_on
5940 * constraint in a late_initcall.
5941 *
5942 * The intention is that this will become the default behaviour in a
5943 * future kernel release so users are encouraged to use this facility
5944 * now.
5945 */
5946void regulator_has_full_constraints(void)
5947{
5948	has_full_constraints = 1;
5949}
5950EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5951
5952/**
5953 * rdev_get_drvdata - get rdev regulator driver data
5954 * @rdev: regulator
5955 *
5956 * Get rdev regulator driver private data. This call can be used in the
5957 * regulator driver context.
5958 *
5959 * Return: Pointer to regulator driver private data.
5960 */
5961void *rdev_get_drvdata(struct regulator_dev *rdev)
5962{
5963	return rdev->reg_data;
5964}
5965EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5966
5967/**
5968 * regulator_get_drvdata - get regulator driver data
5969 * @regulator: regulator
5970 *
5971 * Get regulator driver private data. This call can be used in the consumer
5972 * driver context when non API regulator specific functions need to be called.
5973 *
5974 * Return: Pointer to regulator driver private data.
5975 */
5976void *regulator_get_drvdata(struct regulator *regulator)
5977{
5978	return regulator->rdev->reg_data;
5979}
5980EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5981
5982/**
5983 * regulator_set_drvdata - set regulator driver data
5984 * @regulator: regulator
5985 * @data: data
5986 */
5987void regulator_set_drvdata(struct regulator *regulator, void *data)
5988{
5989	regulator->rdev->reg_data = data;
5990}
5991EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5992
5993/**
5994 * rdev_get_id - get regulator ID
5995 * @rdev: regulator
5996 *
5997 * Return: Regulator ID for @rdev.
5998 */
5999int rdev_get_id(struct regulator_dev *rdev)
6000{
6001	return rdev->desc->id;
6002}
6003EXPORT_SYMBOL_GPL(rdev_get_id);
6004
6005struct device *rdev_get_dev(struct regulator_dev *rdev)
6006{
6007	return &rdev->dev;
6008}
6009EXPORT_SYMBOL_GPL(rdev_get_dev);
6010
6011struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6012{
6013	return rdev->regmap;
6014}
6015EXPORT_SYMBOL_GPL(rdev_get_regmap);
6016
6017void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6018{
6019	return reg_init_data->driver_data;
6020}
6021EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6022
6023#ifdef CONFIG_DEBUG_FS
6024static int supply_map_show(struct seq_file *sf, void *data)
6025{
6026	struct regulator_map *map;
6027
6028	list_for_each_entry(map, &regulator_map_list, list) {
6029		seq_printf(sf, "%s -> %s.%s\n",
6030				rdev_get_name(map->regulator), map->dev_name,
6031				map->supply);
6032	}
6033
6034	return 0;
6035}
6036DEFINE_SHOW_ATTRIBUTE(supply_map);
6037
6038struct summary_data {
6039	struct seq_file *s;
6040	struct regulator_dev *parent;
6041	int level;
6042};
6043
6044static void regulator_summary_show_subtree(struct seq_file *s,
6045					   struct regulator_dev *rdev,
6046					   int level);
6047
6048static int regulator_summary_show_children(struct device *dev, void *data)
6049{
6050	struct regulator_dev *rdev = dev_to_rdev(dev);
6051	struct summary_data *summary_data = data;
6052
6053	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6054		regulator_summary_show_subtree(summary_data->s, rdev,
6055					       summary_data->level + 1);
6056
6057	return 0;
6058}
6059
6060static void regulator_summary_show_subtree(struct seq_file *s,
6061					   struct regulator_dev *rdev,
6062					   int level)
6063{
6064	struct regulation_constraints *c;
6065	struct regulator *consumer;
6066	struct summary_data summary_data;
6067	unsigned int opmode;
6068
6069	if (!rdev)
6070		return;
6071
6072	opmode = _regulator_get_mode_unlocked(rdev);
6073	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6074		   level * 3 + 1, "",
6075		   30 - level * 3, rdev_get_name(rdev),
6076		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6077		   regulator_opmode_to_str(opmode));
6078
6079	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6080	seq_printf(s, "%5dmA ",
6081		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6082
6083	c = rdev->constraints;
6084	if (c) {
6085		switch (rdev->desc->type) {
6086		case REGULATOR_VOLTAGE:
6087			seq_printf(s, "%5dmV %5dmV ",
6088				   c->min_uV / 1000, c->max_uV / 1000);
6089			break;
6090		case REGULATOR_CURRENT:
6091			seq_printf(s, "%5dmA %5dmA ",
6092				   c->min_uA / 1000, c->max_uA / 1000);
6093			break;
6094		}
6095	}
6096
6097	seq_puts(s, "\n");
6098
6099	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6100		if (consumer->dev && consumer->dev->class == &regulator_class)
6101			continue;
6102
6103		seq_printf(s, "%*s%-*s ",
6104			   (level + 1) * 3 + 1, "",
6105			   30 - (level + 1) * 3,
6106			   consumer->supply_name ? consumer->supply_name :
6107			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6108
6109		switch (rdev->desc->type) {
6110		case REGULATOR_VOLTAGE:
6111			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6112				   consumer->enable_count,
6113				   consumer->uA_load / 1000,
6114				   consumer->uA_load && !consumer->enable_count ?
6115				   '*' : ' ',
6116				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6117				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6118			break;
6119		case REGULATOR_CURRENT:
6120			break;
6121		}
6122
6123		seq_puts(s, "\n");
6124	}
6125
6126	summary_data.s = s;
6127	summary_data.level = level;
6128	summary_data.parent = rdev;
6129
6130	class_for_each_device(&regulator_class, NULL, &summary_data,
6131			      regulator_summary_show_children);
6132}
6133
6134struct summary_lock_data {
6135	struct ww_acquire_ctx *ww_ctx;
6136	struct regulator_dev **new_contended_rdev;
6137	struct regulator_dev **old_contended_rdev;
6138};
6139
6140static int regulator_summary_lock_one(struct device *dev, void *data)
6141{
6142	struct regulator_dev *rdev = dev_to_rdev(dev);
6143	struct summary_lock_data *lock_data = data;
6144	int ret = 0;
6145
6146	if (rdev != *lock_data->old_contended_rdev) {
6147		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6148
6149		if (ret == -EDEADLK)
6150			*lock_data->new_contended_rdev = rdev;
6151		else
6152			WARN_ON_ONCE(ret);
6153	} else {
6154		*lock_data->old_contended_rdev = NULL;
6155	}
6156
6157	return ret;
6158}
6159
6160static int regulator_summary_unlock_one(struct device *dev, void *data)
6161{
6162	struct regulator_dev *rdev = dev_to_rdev(dev);
6163	struct summary_lock_data *lock_data = data;
6164
6165	if (lock_data) {
6166		if (rdev == *lock_data->new_contended_rdev)
6167			return -EDEADLK;
6168	}
6169
6170	regulator_unlock(rdev);
6171
6172	return 0;
6173}
6174
6175static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6176				      struct regulator_dev **new_contended_rdev,
6177				      struct regulator_dev **old_contended_rdev)
6178{
6179	struct summary_lock_data lock_data;
6180	int ret;
6181
6182	lock_data.ww_ctx = ww_ctx;
6183	lock_data.new_contended_rdev = new_contended_rdev;
6184	lock_data.old_contended_rdev = old_contended_rdev;
6185
6186	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6187				    regulator_summary_lock_one);
6188	if (ret)
6189		class_for_each_device(&regulator_class, NULL, &lock_data,
6190				      regulator_summary_unlock_one);
6191
6192	return ret;
6193}
6194
6195static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6196{
6197	struct regulator_dev *new_contended_rdev = NULL;
6198	struct regulator_dev *old_contended_rdev = NULL;
6199	int err;
6200
6201	mutex_lock(&regulator_list_mutex);
6202
6203	ww_acquire_init(ww_ctx, &regulator_ww_class);
6204
6205	do {
6206		if (new_contended_rdev) {
6207			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6208			old_contended_rdev = new_contended_rdev;
6209			old_contended_rdev->ref_cnt++;
6210			old_contended_rdev->mutex_owner = current;
6211		}
6212
6213		err = regulator_summary_lock_all(ww_ctx,
6214						 &new_contended_rdev,
6215						 &old_contended_rdev);
6216
6217		if (old_contended_rdev)
6218			regulator_unlock(old_contended_rdev);
6219
6220	} while (err == -EDEADLK);
6221
6222	ww_acquire_done(ww_ctx);
6223}
6224
6225static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6226{
6227	class_for_each_device(&regulator_class, NULL, NULL,
6228			      regulator_summary_unlock_one);
6229	ww_acquire_fini(ww_ctx);
6230
6231	mutex_unlock(&regulator_list_mutex);
6232}
6233
6234static int regulator_summary_show_roots(struct device *dev, void *data)
6235{
6236	struct regulator_dev *rdev = dev_to_rdev(dev);
6237	struct seq_file *s = data;
6238
6239	if (!rdev->supply)
6240		regulator_summary_show_subtree(s, rdev, 0);
6241
6242	return 0;
6243}
6244
6245static int regulator_summary_show(struct seq_file *s, void *data)
6246{
6247	struct ww_acquire_ctx ww_ctx;
6248
6249	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6250	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6251
6252	regulator_summary_lock(&ww_ctx);
6253
6254	class_for_each_device(&regulator_class, NULL, s,
6255			      regulator_summary_show_roots);
6256
6257	regulator_summary_unlock(&ww_ctx);
6258
6259	return 0;
6260}
6261DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6262#endif /* CONFIG_DEBUG_FS */
6263
6264static int __init regulator_init(void)
6265{
6266	int ret;
6267
6268	ret = class_register(&regulator_class);
6269
6270	debugfs_root = debugfs_create_dir("regulator", NULL);
6271	if (IS_ERR(debugfs_root))
6272		pr_debug("regulator: Failed to create debugfs directory\n");
6273
6274#ifdef CONFIG_DEBUG_FS
6275	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6276			    &supply_map_fops);
6277
6278	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6279			    NULL, &regulator_summary_fops);
6280#endif
6281	regulator_dummy_init();
6282
6283	regulator_coupler_register(&generic_regulator_coupler);
6284
6285	return ret;
6286}
6287
6288/* init early to allow our consumers to complete system booting */
6289core_initcall(regulator_init);
6290
6291static int regulator_late_cleanup(struct device *dev, void *data)
6292{
6293	struct regulator_dev *rdev = dev_to_rdev(dev);
6294	struct regulation_constraints *c = rdev->constraints;
6295	int ret;
6296
6297	if (c && c->always_on)
6298		return 0;
6299
6300	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6301		return 0;
6302
6303	regulator_lock(rdev);
6304
6305	if (rdev->use_count)
6306		goto unlock;
6307
6308	/* If reading the status failed, assume that it's off. */
6309	if (_regulator_is_enabled(rdev) <= 0)
6310		goto unlock;
6311
6312	if (have_full_constraints()) {
6313		/* We log since this may kill the system if it goes
6314		 * wrong.
6315		 */
6316		rdev_info(rdev, "disabling\n");
6317		ret = _regulator_do_disable(rdev);
6318		if (ret != 0)
6319			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6320	} else {
6321		/* The intention is that in future we will
6322		 * assume that full constraints are provided
6323		 * so warn even if we aren't going to do
6324		 * anything here.
6325		 */
6326		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6327	}
6328
6329unlock:
6330	regulator_unlock(rdev);
6331
6332	return 0;
6333}
6334
6335static bool regulator_ignore_unused;
6336static int __init regulator_ignore_unused_setup(char *__unused)
6337{
6338	regulator_ignore_unused = true;
6339	return 1;
6340}
6341__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6342
6343static void regulator_init_complete_work_function(struct work_struct *work)
6344{
6345	/*
6346	 * Regulators may had failed to resolve their input supplies
6347	 * when were registered, either because the input supply was
6348	 * not registered yet or because its parent device was not
6349	 * bound yet. So attempt to resolve the input supplies for
6350	 * pending regulators before trying to disable unused ones.
6351	 */
6352	class_for_each_device(&regulator_class, NULL, NULL,
6353			      regulator_register_resolve_supply);
6354
6355	/*
6356	 * For debugging purposes, it may be useful to prevent unused
6357	 * regulators from being disabled.
6358	 */
6359	if (regulator_ignore_unused) {
6360		pr_warn("regulator: Not disabling unused regulators\n");
6361		return;
6362	}
6363
6364	/* If we have a full configuration then disable any regulators
6365	 * we have permission to change the status for and which are
6366	 * not in use or always_on.  This is effectively the default
6367	 * for DT and ACPI as they have full constraints.
6368	 */
6369	class_for_each_device(&regulator_class, NULL, NULL,
6370			      regulator_late_cleanup);
6371}
6372
6373static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6374			    regulator_init_complete_work_function);
6375
6376static int __init regulator_init_complete(void)
6377{
6378	/*
6379	 * Since DT doesn't provide an idiomatic mechanism for
6380	 * enabling full constraints and since it's much more natural
6381	 * with DT to provide them just assume that a DT enabled
6382	 * system has full constraints.
6383	 */
6384	if (of_have_populated_dt())
6385		has_full_constraints = true;
6386
6387	/*
6388	 * We punt completion for an arbitrary amount of time since
6389	 * systems like distros will load many drivers from userspace
6390	 * so consumers might not always be ready yet, this is
6391	 * particularly an issue with laptops where this might bounce
6392	 * the display off then on.  Ideally we'd get a notification
6393	 * from userspace when this happens but we don't so just wait
6394	 * a bit and hope we waited long enough.  It'd be better if
6395	 * we'd only do this on systems that need it, and a kernel
6396	 * command line option might be useful.
6397	 */
6398	schedule_delayed_work(&regulator_init_complete_work,
6399			      msecs_to_jiffies(30000));
6400
6401	return 0;
6402}
6403late_initcall_sync(regulator_init_complete);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
  40static DEFINE_MUTEX(regulator_list_mutex);
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
  46
  47static struct dentry *debugfs_root;
  48
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 
 
 142 */
 143static inline int regulator_lock_nested(struct regulator_dev *rdev,
 144					struct ww_acquire_ctx *ww_ctx)
 145{
 146	bool lock = false;
 147	int ret = 0;
 148
 149	mutex_lock(&regulator_nesting_mutex);
 150
 151	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 152		if (rdev->mutex_owner == current)
 153			rdev->ref_cnt++;
 154		else
 155			lock = true;
 156
 157		if (lock) {
 158			mutex_unlock(&regulator_nesting_mutex);
 159			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 160			mutex_lock(&regulator_nesting_mutex);
 161		}
 162	} else {
 163		lock = true;
 164	}
 165
 166	if (lock && ret != -EDEADLK) {
 167		rdev->ref_cnt++;
 168		rdev->mutex_owner = current;
 169	}
 170
 171	mutex_unlock(&regulator_nesting_mutex);
 172
 173	return ret;
 174}
 175
 176/**
 177 * regulator_lock - lock a single regulator
 178 * @rdev:		regulator source
 179 *
 180 * This function can be called many times by one task on
 181 * a single regulator and its mutex will be locked only
 182 * once. If a task, which is calling this function is other
 183 * than the one, which initially locked the mutex, it will
 184 * wait on mutex.
 185 */
 186static void regulator_lock(struct regulator_dev *rdev)
 187{
 188	regulator_lock_nested(rdev, NULL);
 189}
 190
 191/**
 192 * regulator_unlock - unlock a single regulator
 193 * @rdev:		regulator_source
 194 *
 195 * This function unlocks the mutex when the
 196 * reference counter reaches 0.
 197 */
 198static void regulator_unlock(struct regulator_dev *rdev)
 199{
 200	mutex_lock(&regulator_nesting_mutex);
 201
 202	if (--rdev->ref_cnt == 0) {
 203		rdev->mutex_owner = NULL;
 204		ww_mutex_unlock(&rdev->mutex);
 205	}
 206
 207	WARN_ON_ONCE(rdev->ref_cnt < 0);
 208
 209	mutex_unlock(&regulator_nesting_mutex);
 210}
 211
 212/**
 213 * regulator_lock_two - lock two regulators
 214 * @rdev1:		first regulator
 215 * @rdev2:		second regulator
 216 * @ww_ctx:		w/w mutex acquire context
 217 *
 218 * Locks both rdevs using the regulator_ww_class.
 219 */
 220static void regulator_lock_two(struct regulator_dev *rdev1,
 221			       struct regulator_dev *rdev2,
 222			       struct ww_acquire_ctx *ww_ctx)
 223{
 224	struct regulator_dev *held, *contended;
 225	int ret;
 226
 227	ww_acquire_init(ww_ctx, &regulator_ww_class);
 228
 229	/* Try to just grab both of them */
 230	ret = regulator_lock_nested(rdev1, ww_ctx);
 231	WARN_ON(ret);
 232	ret = regulator_lock_nested(rdev2, ww_ctx);
 233	if (ret != -EDEADLOCK) {
 234		WARN_ON(ret);
 235		goto exit;
 236	}
 237
 238	held = rdev1;
 239	contended = rdev2;
 240	while (true) {
 241		regulator_unlock(held);
 242
 243		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 244		contended->ref_cnt++;
 245		contended->mutex_owner = current;
 246		swap(held, contended);
 247		ret = regulator_lock_nested(contended, ww_ctx);
 248
 249		if (ret != -EDEADLOCK) {
 250			WARN_ON(ret);
 251			break;
 252		}
 253	}
 254
 255exit:
 256	ww_acquire_done(ww_ctx);
 257}
 258
 259/**
 260 * regulator_unlock_two - unlock two regulators
 261 * @rdev1:		first regulator
 262 * @rdev2:		second regulator
 263 * @ww_ctx:		w/w mutex acquire context
 264 *
 265 * The inverse of regulator_lock_two().
 266 */
 267
 268static void regulator_unlock_two(struct regulator_dev *rdev1,
 269				 struct regulator_dev *rdev2,
 270				 struct ww_acquire_ctx *ww_ctx)
 271{
 272	regulator_unlock(rdev2);
 273	regulator_unlock(rdev1);
 274	ww_acquire_fini(ww_ctx);
 275}
 276
 277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 278{
 279	struct regulator_dev *c_rdev;
 280	int i;
 281
 282	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 283		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 284
 285		if (rdev->supply->rdev == c_rdev)
 286			return true;
 287	}
 288
 289	return false;
 290}
 291
 292static void regulator_unlock_recursive(struct regulator_dev *rdev,
 293				       unsigned int n_coupled)
 294{
 295	struct regulator_dev *c_rdev, *supply_rdev;
 296	int i, supply_n_coupled;
 297
 298	for (i = n_coupled; i > 0; i--) {
 299		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 300
 301		if (!c_rdev)
 302			continue;
 303
 304		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 305			supply_rdev = c_rdev->supply->rdev;
 306			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 307
 308			regulator_unlock_recursive(supply_rdev,
 309						   supply_n_coupled);
 310		}
 311
 312		regulator_unlock(c_rdev);
 313	}
 314}
 315
 316static int regulator_lock_recursive(struct regulator_dev *rdev,
 317				    struct regulator_dev **new_contended_rdev,
 318				    struct regulator_dev **old_contended_rdev,
 319				    struct ww_acquire_ctx *ww_ctx)
 320{
 321	struct regulator_dev *c_rdev;
 322	int i, err;
 323
 324	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 325		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 326
 327		if (!c_rdev)
 328			continue;
 329
 330		if (c_rdev != *old_contended_rdev) {
 331			err = regulator_lock_nested(c_rdev, ww_ctx);
 332			if (err) {
 333				if (err == -EDEADLK) {
 334					*new_contended_rdev = c_rdev;
 335					goto err_unlock;
 336				}
 337
 338				/* shouldn't happen */
 339				WARN_ON_ONCE(err != -EALREADY);
 340			}
 341		} else {
 342			*old_contended_rdev = NULL;
 343		}
 344
 345		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 346			err = regulator_lock_recursive(c_rdev->supply->rdev,
 347						       new_contended_rdev,
 348						       old_contended_rdev,
 349						       ww_ctx);
 350			if (err) {
 351				regulator_unlock(c_rdev);
 352				goto err_unlock;
 353			}
 354		}
 355	}
 356
 357	return 0;
 358
 359err_unlock:
 360	regulator_unlock_recursive(rdev, i);
 361
 362	return err;
 363}
 364
 365/**
 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 367 *				regulators
 368 * @rdev:			regulator source
 369 * @ww_ctx:			w/w mutex acquire context
 370 *
 371 * Unlock all regulators related with rdev by coupling or supplying.
 372 */
 373static void regulator_unlock_dependent(struct regulator_dev *rdev,
 374				       struct ww_acquire_ctx *ww_ctx)
 375{
 376	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 377	ww_acquire_fini(ww_ctx);
 378}
 379
 380/**
 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 382 * @rdev:			regulator source
 383 * @ww_ctx:			w/w mutex acquire context
 384 *
 385 * This function as a wrapper on regulator_lock_recursive(), which locks
 386 * all regulators related with rdev by coupling or supplying.
 387 */
 388static void regulator_lock_dependent(struct regulator_dev *rdev,
 389				     struct ww_acquire_ctx *ww_ctx)
 390{
 391	struct regulator_dev *new_contended_rdev = NULL;
 392	struct regulator_dev *old_contended_rdev = NULL;
 393	int err;
 394
 395	mutex_lock(&regulator_list_mutex);
 396
 397	ww_acquire_init(ww_ctx, &regulator_ww_class);
 398
 399	do {
 400		if (new_contended_rdev) {
 401			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 402			old_contended_rdev = new_contended_rdev;
 403			old_contended_rdev->ref_cnt++;
 404			old_contended_rdev->mutex_owner = current;
 405		}
 406
 407		err = regulator_lock_recursive(rdev,
 408					       &new_contended_rdev,
 409					       &old_contended_rdev,
 410					       ww_ctx);
 411
 412		if (old_contended_rdev)
 413			regulator_unlock(old_contended_rdev);
 414
 415	} while (err == -EDEADLK);
 416
 417	ww_acquire_done(ww_ctx);
 418
 419	mutex_unlock(&regulator_list_mutex);
 420}
 421
 422/**
 423 * of_get_child_regulator - get a child regulator device node
 424 * based on supply name
 425 * @parent: Parent device node
 426 * @prop_name: Combination regulator supply name and "-supply"
 427 *
 428 * Traverse all child nodes.
 429 * Extract the child regulator device node corresponding to the supply name.
 430 * returns the device node corresponding to the regulator if found, else
 431 * returns NULL.
 432 */
 433static struct device_node *of_get_child_regulator(struct device_node *parent,
 434						  const char *prop_name)
 435{
 436	struct device_node *regnode = NULL;
 437	struct device_node *child = NULL;
 438
 439	for_each_child_of_node(parent, child) {
 440		regnode = of_parse_phandle(child, prop_name, 0);
 441
 442		if (!regnode) {
 443			regnode = of_get_child_regulator(child, prop_name);
 444			if (regnode)
 445				goto err_node_put;
 446		} else {
 447			goto err_node_put;
 448		}
 449	}
 450	return NULL;
 451
 452err_node_put:
 453	of_node_put(child);
 454	return regnode;
 455}
 456
 457/**
 458 * of_get_regulator - get a regulator device node based on supply name
 459 * @dev: Device pointer for the consumer (of regulator) device
 460 * @supply: regulator supply name
 461 *
 462 * Extract the regulator device node corresponding to the supply name.
 463 * returns the device node corresponding to the regulator if found, else
 464 * returns NULL.
 465 */
 466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 467{
 468	struct device_node *regnode = NULL;
 469	char prop_name[64]; /* 64 is max size of property name */
 470
 471	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 472
 473	snprintf(prop_name, 64, "%s-supply", supply);
 474	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 475
 476	if (!regnode) {
 477		regnode = of_get_child_regulator(dev->of_node, prop_name);
 478		if (regnode)
 479			return regnode;
 480
 481		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 482				prop_name, dev->of_node);
 483		return NULL;
 484	}
 485	return regnode;
 486}
 487
 488/* Platform voltage constraint check */
 489int regulator_check_voltage(struct regulator_dev *rdev,
 490			    int *min_uV, int *max_uV)
 491{
 492	BUG_ON(*min_uV > *max_uV);
 493
 494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 495		rdev_err(rdev, "voltage operation not allowed\n");
 496		return -EPERM;
 497	}
 498
 499	if (*max_uV > rdev->constraints->max_uV)
 500		*max_uV = rdev->constraints->max_uV;
 501	if (*min_uV < rdev->constraints->min_uV)
 502		*min_uV = rdev->constraints->min_uV;
 503
 504	if (*min_uV > *max_uV) {
 505		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 506			 *min_uV, *max_uV);
 507		return -EINVAL;
 508	}
 509
 510	return 0;
 511}
 512
 513/* return 0 if the state is valid */
 514static int regulator_check_states(suspend_state_t state)
 515{
 516	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 517}
 518
 519/* Make sure we select a voltage that suits the needs of all
 520 * regulator consumers
 521 */
 522int regulator_check_consumers(struct regulator_dev *rdev,
 523			      int *min_uV, int *max_uV,
 524			      suspend_state_t state)
 525{
 526	struct regulator *regulator;
 527	struct regulator_voltage *voltage;
 528
 529	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 530		voltage = &regulator->voltage[state];
 531		/*
 532		 * Assume consumers that didn't say anything are OK
 533		 * with anything in the constraint range.
 534		 */
 535		if (!voltage->min_uV && !voltage->max_uV)
 536			continue;
 537
 538		if (*max_uV > voltage->max_uV)
 539			*max_uV = voltage->max_uV;
 540		if (*min_uV < voltage->min_uV)
 541			*min_uV = voltage->min_uV;
 542	}
 543
 544	if (*min_uV > *max_uV) {
 545		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 546			*min_uV, *max_uV);
 547		return -EINVAL;
 548	}
 549
 550	return 0;
 551}
 552
 553/* current constraint check */
 554static int regulator_check_current_limit(struct regulator_dev *rdev,
 555					int *min_uA, int *max_uA)
 556{
 557	BUG_ON(*min_uA > *max_uA);
 558
 559	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 560		rdev_err(rdev, "current operation not allowed\n");
 561		return -EPERM;
 562	}
 563
 564	if (*max_uA > rdev->constraints->max_uA)
 
 565		*max_uA = rdev->constraints->max_uA;
 566	if (*min_uA < rdev->constraints->min_uA)
 567		*min_uA = rdev->constraints->min_uA;
 568
 569	if (*min_uA > *max_uA) {
 570		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 571			 *min_uA, *max_uA);
 572		return -EINVAL;
 573	}
 574
 575	return 0;
 576}
 577
 578/* operating mode constraint check */
 579static int regulator_mode_constrain(struct regulator_dev *rdev,
 580				    unsigned int *mode)
 581{
 582	switch (*mode) {
 583	case REGULATOR_MODE_FAST:
 584	case REGULATOR_MODE_NORMAL:
 585	case REGULATOR_MODE_IDLE:
 586	case REGULATOR_MODE_STANDBY:
 587		break;
 588	default:
 589		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 590		return -EINVAL;
 591	}
 592
 593	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 594		rdev_err(rdev, "mode operation not allowed\n");
 595		return -EPERM;
 596	}
 597
 598	/* The modes are bitmasks, the most power hungry modes having
 599	 * the lowest values. If the requested mode isn't supported
 600	 * try higher modes.
 601	 */
 602	while (*mode) {
 603		if (rdev->constraints->valid_modes_mask & *mode)
 604			return 0;
 605		*mode /= 2;
 606	}
 607
 608	return -EINVAL;
 609}
 610
 611static inline struct regulator_state *
 612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 613{
 614	if (rdev->constraints == NULL)
 615		return NULL;
 616
 617	switch (state) {
 618	case PM_SUSPEND_STANDBY:
 619		return &rdev->constraints->state_standby;
 620	case PM_SUSPEND_MEM:
 621		return &rdev->constraints->state_mem;
 622	case PM_SUSPEND_MAX:
 623		return &rdev->constraints->state_disk;
 624	default:
 625		return NULL;
 626	}
 627}
 628
 629static const struct regulator_state *
 630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 631{
 632	const struct regulator_state *rstate;
 633
 634	rstate = regulator_get_suspend_state(rdev, state);
 635	if (rstate == NULL)
 636		return NULL;
 637
 638	/* If we have no suspend mode configuration don't set anything;
 639	 * only warn if the driver implements set_suspend_voltage or
 640	 * set_suspend_mode callback.
 641	 */
 642	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 643	    rstate->enabled != DISABLE_IN_SUSPEND) {
 644		if (rdev->desc->ops->set_suspend_voltage ||
 645		    rdev->desc->ops->set_suspend_mode)
 646			rdev_warn(rdev, "No configuration\n");
 647		return NULL;
 648	}
 649
 650	return rstate;
 651}
 652
 653static ssize_t microvolts_show(struct device *dev,
 654			       struct device_attribute *attr, char *buf)
 655{
 656	struct regulator_dev *rdev = dev_get_drvdata(dev);
 657	int uV;
 658
 659	regulator_lock(rdev);
 660	uV = regulator_get_voltage_rdev(rdev);
 661	regulator_unlock(rdev);
 662
 663	if (uV < 0)
 664		return uV;
 665	return sprintf(buf, "%d\n", uV);
 666}
 667static DEVICE_ATTR_RO(microvolts);
 668
 669static ssize_t microamps_show(struct device *dev,
 670			      struct device_attribute *attr, char *buf)
 671{
 672	struct regulator_dev *rdev = dev_get_drvdata(dev);
 673
 674	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 675}
 676static DEVICE_ATTR_RO(microamps);
 677
 678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct regulator_dev *rdev = dev_get_drvdata(dev);
 682
 683	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 684}
 685static DEVICE_ATTR_RO(name);
 686
 687static const char *regulator_opmode_to_str(int mode)
 688{
 689	switch (mode) {
 690	case REGULATOR_MODE_FAST:
 691		return "fast";
 692	case REGULATOR_MODE_NORMAL:
 693		return "normal";
 694	case REGULATOR_MODE_IDLE:
 695		return "idle";
 696	case REGULATOR_MODE_STANDBY:
 697		return "standby";
 698	}
 699	return "unknown";
 700}
 701
 702static ssize_t regulator_print_opmode(char *buf, int mode)
 703{
 704	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 705}
 706
 707static ssize_t opmode_show(struct device *dev,
 708			   struct device_attribute *attr, char *buf)
 709{
 710	struct regulator_dev *rdev = dev_get_drvdata(dev);
 711
 712	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 713}
 714static DEVICE_ATTR_RO(opmode);
 715
 716static ssize_t regulator_print_state(char *buf, int state)
 717{
 718	if (state > 0)
 719		return sprintf(buf, "enabled\n");
 720	else if (state == 0)
 721		return sprintf(buf, "disabled\n");
 722	else
 723		return sprintf(buf, "unknown\n");
 724}
 725
 726static ssize_t state_show(struct device *dev,
 727			  struct device_attribute *attr, char *buf)
 728{
 729	struct regulator_dev *rdev = dev_get_drvdata(dev);
 730	ssize_t ret;
 731
 732	regulator_lock(rdev);
 733	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 734	regulator_unlock(rdev);
 735
 736	return ret;
 737}
 738static DEVICE_ATTR_RO(state);
 739
 740static ssize_t status_show(struct device *dev,
 741			   struct device_attribute *attr, char *buf)
 742{
 743	struct regulator_dev *rdev = dev_get_drvdata(dev);
 744	int status;
 745	char *label;
 746
 747	status = rdev->desc->ops->get_status(rdev);
 748	if (status < 0)
 749		return status;
 750
 751	switch (status) {
 752	case REGULATOR_STATUS_OFF:
 753		label = "off";
 754		break;
 755	case REGULATOR_STATUS_ON:
 756		label = "on";
 757		break;
 758	case REGULATOR_STATUS_ERROR:
 759		label = "error";
 760		break;
 761	case REGULATOR_STATUS_FAST:
 762		label = "fast";
 763		break;
 764	case REGULATOR_STATUS_NORMAL:
 765		label = "normal";
 766		break;
 767	case REGULATOR_STATUS_IDLE:
 768		label = "idle";
 769		break;
 770	case REGULATOR_STATUS_STANDBY:
 771		label = "standby";
 772		break;
 773	case REGULATOR_STATUS_BYPASS:
 774		label = "bypass";
 775		break;
 776	case REGULATOR_STATUS_UNDEFINED:
 777		label = "undefined";
 778		break;
 779	default:
 780		return -ERANGE;
 781	}
 782
 783	return sprintf(buf, "%s\n", label);
 784}
 785static DEVICE_ATTR_RO(status);
 786
 787static ssize_t min_microamps_show(struct device *dev,
 788				  struct device_attribute *attr, char *buf)
 789{
 790	struct regulator_dev *rdev = dev_get_drvdata(dev);
 791
 792	if (!rdev->constraints)
 793		return sprintf(buf, "constraint not defined\n");
 794
 795	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 796}
 797static DEVICE_ATTR_RO(min_microamps);
 798
 799static ssize_t max_microamps_show(struct device *dev,
 800				  struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	if (!rdev->constraints)
 805		return sprintf(buf, "constraint not defined\n");
 806
 807	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 808}
 809static DEVICE_ATTR_RO(max_microamps);
 810
 811static ssize_t min_microvolts_show(struct device *dev,
 812				   struct device_attribute *attr, char *buf)
 813{
 814	struct regulator_dev *rdev = dev_get_drvdata(dev);
 815
 816	if (!rdev->constraints)
 817		return sprintf(buf, "constraint not defined\n");
 818
 819	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 820}
 821static DEVICE_ATTR_RO(min_microvolts);
 822
 823static ssize_t max_microvolts_show(struct device *dev,
 824				   struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	if (!rdev->constraints)
 829		return sprintf(buf, "constraint not defined\n");
 830
 831	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 832}
 833static DEVICE_ATTR_RO(max_microvolts);
 834
 835static ssize_t requested_microamps_show(struct device *dev,
 836					struct device_attribute *attr, char *buf)
 837{
 838	struct regulator_dev *rdev = dev_get_drvdata(dev);
 839	struct regulator *regulator;
 840	int uA = 0;
 841
 842	regulator_lock(rdev);
 843	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 844		if (regulator->enable_count)
 845			uA += regulator->uA_load;
 846	}
 847	regulator_unlock(rdev);
 848	return sprintf(buf, "%d\n", uA);
 849}
 850static DEVICE_ATTR_RO(requested_microamps);
 851
 852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 853			      char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856	return sprintf(buf, "%d\n", rdev->use_count);
 857}
 858static DEVICE_ATTR_RO(num_users);
 859
 860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 861			 char *buf)
 862{
 863	struct regulator_dev *rdev = dev_get_drvdata(dev);
 864
 865	switch (rdev->desc->type) {
 866	case REGULATOR_VOLTAGE:
 867		return sprintf(buf, "voltage\n");
 868	case REGULATOR_CURRENT:
 869		return sprintf(buf, "current\n");
 870	}
 871	return sprintf(buf, "unknown\n");
 872}
 873static DEVICE_ATTR_RO(type);
 874
 875static ssize_t suspend_mem_microvolts_show(struct device *dev,
 876					   struct device_attribute *attr, char *buf)
 877{
 878	struct regulator_dev *rdev = dev_get_drvdata(dev);
 879
 880	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 881}
 882static DEVICE_ATTR_RO(suspend_mem_microvolts);
 883
 884static ssize_t suspend_disk_microvolts_show(struct device *dev,
 885					    struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 890}
 891static DEVICE_ATTR_RO(suspend_disk_microvolts);
 892
 893static ssize_t suspend_standby_microvolts_show(struct device *dev,
 894					       struct device_attribute *attr, char *buf)
 895{
 896	struct regulator_dev *rdev = dev_get_drvdata(dev);
 897
 898	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 899}
 900static DEVICE_ATTR_RO(suspend_standby_microvolts);
 901
 902static ssize_t suspend_mem_mode_show(struct device *dev,
 903				     struct device_attribute *attr, char *buf)
 904{
 905	struct regulator_dev *rdev = dev_get_drvdata(dev);
 906
 907	return regulator_print_opmode(buf,
 908		rdev->constraints->state_mem.mode);
 909}
 910static DEVICE_ATTR_RO(suspend_mem_mode);
 911
 912static ssize_t suspend_disk_mode_show(struct device *dev,
 913				      struct device_attribute *attr, char *buf)
 914{
 915	struct regulator_dev *rdev = dev_get_drvdata(dev);
 916
 917	return regulator_print_opmode(buf,
 918		rdev->constraints->state_disk.mode);
 919}
 920static DEVICE_ATTR_RO(suspend_disk_mode);
 921
 922static ssize_t suspend_standby_mode_show(struct device *dev,
 923					 struct device_attribute *attr, char *buf)
 924{
 925	struct regulator_dev *rdev = dev_get_drvdata(dev);
 926
 927	return regulator_print_opmode(buf,
 928		rdev->constraints->state_standby.mode);
 929}
 930static DEVICE_ATTR_RO(suspend_standby_mode);
 931
 932static ssize_t suspend_mem_state_show(struct device *dev,
 933				      struct device_attribute *attr, char *buf)
 934{
 935	struct regulator_dev *rdev = dev_get_drvdata(dev);
 936
 937	return regulator_print_state(buf,
 938			rdev->constraints->state_mem.enabled);
 939}
 940static DEVICE_ATTR_RO(suspend_mem_state);
 941
 942static ssize_t suspend_disk_state_show(struct device *dev,
 943				       struct device_attribute *attr, char *buf)
 944{
 945	struct regulator_dev *rdev = dev_get_drvdata(dev);
 946
 947	return regulator_print_state(buf,
 948			rdev->constraints->state_disk.enabled);
 949}
 950static DEVICE_ATTR_RO(suspend_disk_state);
 951
 952static ssize_t suspend_standby_state_show(struct device *dev,
 953					  struct device_attribute *attr, char *buf)
 954{
 955	struct regulator_dev *rdev = dev_get_drvdata(dev);
 956
 957	return regulator_print_state(buf,
 958			rdev->constraints->state_standby.enabled);
 959}
 960static DEVICE_ATTR_RO(suspend_standby_state);
 961
 962static ssize_t bypass_show(struct device *dev,
 963			   struct device_attribute *attr, char *buf)
 964{
 965	struct regulator_dev *rdev = dev_get_drvdata(dev);
 966	const char *report;
 967	bool bypass;
 968	int ret;
 969
 970	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 971
 972	if (ret != 0)
 973		report = "unknown";
 974	else if (bypass)
 975		report = "enabled";
 976	else
 977		report = "disabled";
 978
 979	return sprintf(buf, "%s\n", report);
 980}
 981static DEVICE_ATTR_RO(bypass);
 982
 983#define REGULATOR_ERROR_ATTR(name, bit)							\
 984	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 985				   char *buf)						\
 986	{										\
 987		int ret;								\
 988		unsigned int flags;							\
 989		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 990		ret = _regulator_get_error_flags(rdev, &flags);				\
 991		if (ret)								\
 992			return ret;							\
 993		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 994	}										\
 995	static DEVICE_ATTR_RO(name)
 996
 997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012	struct regulator *sibling;
1013	int current_uA = 0, output_uV, input_uV, err;
1014	unsigned int mode;
1015
1016	/*
1017	 * first check to see if we can set modes at all, otherwise just
1018	 * tell the consumer everything is OK.
1019	 */
1020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022		return 0;
1023	}
1024
1025	if (!rdev->desc->ops->get_optimum_mode &&
1026	    !rdev->desc->ops->set_load)
1027		return 0;
1028
1029	if (!rdev->desc->ops->set_mode &&
1030	    !rdev->desc->ops->set_load)
1031		return -EINVAL;
1032
1033	/* calc total requested load */
1034	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035		if (sibling->enable_count)
1036			current_uA += sibling->uA_load;
1037	}
1038
1039	current_uA += rdev->constraints->system_load;
1040
1041	if (rdev->desc->ops->set_load) {
1042		/* set the optimum mode for our new total regulator load */
1043		err = rdev->desc->ops->set_load(rdev, current_uA);
1044		if (err < 0)
1045			rdev_err(rdev, "failed to set load %d: %pe\n",
1046				 current_uA, ERR_PTR(err));
1047	} else {
1048		/*
1049		 * Unfortunately in some cases the constraints->valid_ops has
1050		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051		 * That's not really legit but we won't consider it a fatal
1052		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053		 * wasn't set.
1054		 */
1055		if (!rdev->constraints->valid_modes_mask) {
1056			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057			return 0;
1058		}
1059
1060		/* get output voltage */
1061		output_uV = regulator_get_voltage_rdev(rdev);
1062
1063		/*
1064		 * Don't return an error; if regulator driver cares about
1065		 * output_uV then it's up to the driver to validate.
1066		 */
1067		if (output_uV <= 0)
1068			rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070		/* get input voltage */
1071		input_uV = 0;
1072		if (rdev->supply)
1073			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074		if (input_uV <= 0)
1075			input_uV = rdev->constraints->input_uV;
1076
1077		/*
1078		 * Don't return an error; if regulator driver cares about
1079		 * input_uV then it's up to the driver to validate.
1080		 */
1081		if (input_uV <= 0)
1082			rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084		/* now get the optimum mode for our new total regulator load */
1085		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086							 output_uV, current_uA);
1087
1088		/* check the new mode is allowed */
1089		err = regulator_mode_constrain(rdev, &mode);
1090		if (err < 0) {
1091			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093			return err;
1094		}
1095
1096		err = rdev->desc->ops->set_mode(rdev, mode);
1097		if (err < 0)
1098			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099				 mode, ERR_PTR(err));
1100	}
1101
1102	return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106			       const struct regulator_state *rstate)
1107{
1108	int ret = 0;
1109
1110	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111		rdev->desc->ops->set_suspend_enable)
1112		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114		rdev->desc->ops->set_suspend_disable)
1115		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117		ret = 0;
1118
1119	if (ret < 0) {
1120		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121		return ret;
1122	}
1123
1124	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126		if (ret < 0) {
1127			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128			return ret;
1129		}
1130	}
1131
1132	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134		if (ret < 0) {
1135			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136			return ret;
1137		}
1138	}
1139
1140	return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145	const struct regulator_state *rstate;
1146
1147	rstate = regulator_get_suspend_state_check(rdev,
1148			rdev->constraints->initial_state);
1149	if (!rstate)
1150		return 0;
1151
1152	return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158	struct regulation_constraints *constraints = rdev->constraints;
1159	char buf[160] = "";
1160	size_t len = sizeof(buf) - 1;
1161	int count = 0;
1162	int ret;
1163
1164	if (constraints->min_uV && constraints->max_uV) {
1165		if (constraints->min_uV == constraints->max_uV)
1166			count += scnprintf(buf + count, len - count, "%d mV ",
1167					   constraints->min_uV / 1000);
1168		else
1169			count += scnprintf(buf + count, len - count,
1170					   "%d <--> %d mV ",
1171					   constraints->min_uV / 1000,
1172					   constraints->max_uV / 1000);
1173	}
1174
1175	if (!constraints->min_uV ||
1176	    constraints->min_uV != constraints->max_uV) {
1177		ret = regulator_get_voltage_rdev(rdev);
1178		if (ret > 0)
1179			count += scnprintf(buf + count, len - count,
1180					   "at %d mV ", ret / 1000);
1181	}
1182
1183	if (constraints->uV_offset)
1184		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185				   constraints->uV_offset / 1000);
1186
1187	if (constraints->min_uA && constraints->max_uA) {
1188		if (constraints->min_uA == constraints->max_uA)
1189			count += scnprintf(buf + count, len - count, "%d mA ",
1190					   constraints->min_uA / 1000);
1191		else
1192			count += scnprintf(buf + count, len - count,
1193					   "%d <--> %d mA ",
1194					   constraints->min_uA / 1000,
1195					   constraints->max_uA / 1000);
1196	}
1197
1198	if (!constraints->min_uA ||
1199	    constraints->min_uA != constraints->max_uA) {
1200		ret = _regulator_get_current_limit(rdev);
1201		if (ret > 0)
1202			count += scnprintf(buf + count, len - count,
1203					   "at %d mA ", ret / 1000);
1204	}
1205
1206	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207		count += scnprintf(buf + count, len - count, "fast ");
1208	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209		count += scnprintf(buf + count, len - count, "normal ");
1210	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211		count += scnprintf(buf + count, len - count, "idle ");
1212	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213		count += scnprintf(buf + count, len - count, "standby ");
1214
1215	if (!count)
1216		count = scnprintf(buf, len, "no parameters");
1217	else
1218		--count;
1219
1220	count += scnprintf(buf + count, len - count, ", %s",
1221		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223	rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231	struct regulation_constraints *constraints = rdev->constraints;
1232
1233	print_constraints_debug(rdev);
1234
1235	if ((constraints->min_uV != constraints->max_uV) &&
1236	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237		rdev_warn(rdev,
1238			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242	struct regulation_constraints *constraints)
1243{
1244	const struct regulator_ops *ops = rdev->desc->ops;
1245	int ret;
1246
1247	/* do we need to apply the constraint voltage */
1248	if (rdev->constraints->apply_uV &&
1249	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250		int target_min, target_max;
1251		int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253		if (current_uV == -ENOTRECOVERABLE) {
1254			/* This regulator can't be read and must be initialized */
1255			rdev_info(rdev, "Setting %d-%duV\n",
1256				  rdev->constraints->min_uV,
1257				  rdev->constraints->max_uV);
1258			_regulator_do_set_voltage(rdev,
1259						  rdev->constraints->min_uV,
1260						  rdev->constraints->max_uV);
1261			current_uV = regulator_get_voltage_rdev(rdev);
1262		}
1263
1264		if (current_uV < 0) {
1265			if (current_uV != -EPROBE_DEFER)
1266				rdev_err(rdev,
1267					 "failed to get the current voltage: %pe\n",
1268					 ERR_PTR(current_uV));
1269			return current_uV;
1270		}
1271
1272		/*
1273		 * If we're below the minimum voltage move up to the
1274		 * minimum voltage, if we're above the maximum voltage
1275		 * then move down to the maximum.
1276		 */
1277		target_min = current_uV;
1278		target_max = current_uV;
1279
1280		if (current_uV < rdev->constraints->min_uV) {
1281			target_min = rdev->constraints->min_uV;
1282			target_max = rdev->constraints->min_uV;
1283		}
1284
1285		if (current_uV > rdev->constraints->max_uV) {
1286			target_min = rdev->constraints->max_uV;
1287			target_max = rdev->constraints->max_uV;
1288		}
1289
1290		if (target_min != current_uV || target_max != current_uV) {
1291			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292				  current_uV, target_min, target_max);
1293			ret = _regulator_do_set_voltage(
1294				rdev, target_min, target_max);
1295			if (ret < 0) {
1296				rdev_err(rdev,
1297					"failed to apply %d-%duV constraint: %pe\n",
1298					target_min, target_max, ERR_PTR(ret));
1299				return ret;
1300			}
1301		}
1302	}
1303
1304	/* constrain machine-level voltage specs to fit
1305	 * the actual range supported by this regulator.
1306	 */
1307	if (ops->list_voltage && rdev->desc->n_voltages) {
1308		int	count = rdev->desc->n_voltages;
1309		int	i;
1310		int	min_uV = INT_MAX;
1311		int	max_uV = INT_MIN;
1312		int	cmin = constraints->min_uV;
1313		int	cmax = constraints->max_uV;
1314
1315		/* it's safe to autoconfigure fixed-voltage supplies
1316		 * and the constraints are used by list_voltage.
1317		 */
1318		if (count == 1 && !cmin) {
1319			cmin = 1;
1320			cmax = INT_MAX;
1321			constraints->min_uV = cmin;
1322			constraints->max_uV = cmax;
1323		}
1324
1325		/* voltage constraints are optional */
1326		if ((cmin == 0) && (cmax == 0))
1327			return 0;
1328
1329		/* else require explicit machine-level constraints */
1330		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331			rdev_err(rdev, "invalid voltage constraints\n");
1332			return -EINVAL;
1333		}
1334
1335		/* no need to loop voltages if range is continuous */
1336		if (rdev->desc->continuous_voltage_range)
1337			return 0;
1338
1339		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340		for (i = 0; i < count; i++) {
1341			int	value;
1342
1343			value = ops->list_voltage(rdev, i);
1344			if (value <= 0)
1345				continue;
1346
1347			/* maybe adjust [min_uV..max_uV] */
1348			if (value >= cmin && value < min_uV)
1349				min_uV = value;
1350			if (value <= cmax && value > max_uV)
1351				max_uV = value;
1352		}
1353
1354		/* final: [min_uV..max_uV] valid iff constraints valid */
1355		if (max_uV < min_uV) {
1356			rdev_err(rdev,
1357				 "unsupportable voltage constraints %u-%uuV\n",
1358				 min_uV, max_uV);
1359			return -EINVAL;
1360		}
1361
1362		/* use regulator's subset of machine constraints */
1363		if (constraints->min_uV < min_uV) {
1364			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365				 constraints->min_uV, min_uV);
1366			constraints->min_uV = min_uV;
1367		}
1368		if (constraints->max_uV > max_uV) {
1369			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370				 constraints->max_uV, max_uV);
1371			constraints->max_uV = max_uV;
1372		}
1373	}
1374
1375	return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379	struct regulation_constraints *constraints)
1380{
1381	const struct regulator_ops *ops = rdev->desc->ops;
1382	int ret;
1383
1384	if (!constraints->min_uA && !constraints->max_uA)
1385		return 0;
1386
1387	if (constraints->min_uA > constraints->max_uA) {
1388		rdev_err(rdev, "Invalid current constraints\n");
1389		return -EINVAL;
1390	}
1391
1392	if (!ops->set_current_limit || !ops->get_current_limit) {
1393		rdev_warn(rdev, "Operation of current configuration missing\n");
1394		return 0;
1395	}
1396
1397	/* Set regulator current in constraints range */
1398	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399			constraints->max_uA);
1400	if (ret < 0) {
1401		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402		return ret;
1403	}
1404
1405	return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411			   int (*set)(struct regulator_dev *, int, int, bool),
1412			   int limit, int severity)
1413{
1414	bool enable;
1415
1416	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417		enable = false;
1418		limit = 0;
1419	} else {
1420		enable = true;
1421	}
1422
1423	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424		limit = 0;
1425
1426	return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430			int (*set)(struct regulator_dev *, int, int, bool),
1431			struct notification_limit *limits)
1432{
1433	int ret = 0;
1434
1435	if (!set)
1436		return -EOPNOTSUPP;
1437
1438	if (limits->prot)
1439		ret = notif_set_limit(rdev, set, limits->prot,
1440				      REGULATOR_SEVERITY_PROT);
1441	if (ret)
1442		return ret;
1443
1444	if (limits->err)
1445		ret = notif_set_limit(rdev, set, limits->err,
1446				      REGULATOR_SEVERITY_ERR);
1447	if (ret)
1448		return ret;
1449
1450	if (limits->warn)
1451		ret = notif_set_limit(rdev, set, limits->warn,
1452				      REGULATOR_SEVERITY_WARN);
1453
1454	return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
 
 
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468	int ret = 0;
1469	const struct regulator_ops *ops = rdev->desc->ops;
1470
1471	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472	if (ret != 0)
1473		return ret;
1474
1475	ret = machine_constraints_current(rdev, rdev->constraints);
1476	if (ret != 0)
1477		return ret;
1478
1479	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480		ret = ops->set_input_current_limit(rdev,
1481						   rdev->constraints->ilim_uA);
1482		if (ret < 0) {
1483			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484			return ret;
1485		}
1486	}
1487
1488	/* do we need to setup our suspend state */
1489	if (rdev->constraints->initial_state) {
1490		ret = suspend_set_initial_state(rdev);
1491		if (ret < 0) {
1492			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493			return ret;
1494		}
1495	}
1496
1497	if (rdev->constraints->initial_mode) {
1498		if (!ops->set_mode) {
1499			rdev_err(rdev, "no set_mode operation\n");
1500			return -EINVAL;
1501		}
1502
1503		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504		if (ret < 0) {
1505			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506			return ret;
1507		}
1508	} else if (rdev->constraints->system_load) {
1509		/*
1510		 * We'll only apply the initial system load if an
1511		 * initial mode wasn't specified.
1512		 */
1513		drms_uA_update(rdev);
1514	}
1515
1516	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517		&& ops->set_ramp_delay) {
1518		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519		if (ret < 0) {
1520			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521			return ret;
1522		}
1523	}
1524
1525	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526		ret = ops->set_pull_down(rdev);
1527		if (ret < 0) {
1528			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529			return ret;
1530		}
1531	}
1532
1533	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534		ret = ops->set_soft_start(rdev);
1535		if (ret < 0) {
1536			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537			return ret;
1538		}
1539	}
1540
1541	/*
1542	 * Existing logic does not warn if over_current_protection is given as
1543	 * a constraint but driver does not support that. I think we should
1544	 * warn about this type of issues as it is possible someone changes
1545	 * PMIC on board to another type - and the another PMIC's driver does
1546	 * not support setting protection. Board composer may happily believe
1547	 * the DT limits are respected - especially if the new PMIC HW also
1548	 * supports protection but the driver does not. I won't change the logic
1549	 * without hearing more experienced opinion on this though.
1550	 *
1551	 * If warning is seen as a good idea then we can merge handling the
1552	 * over-curret protection and detection and get rid of this special
1553	 * handling.
1554	 */
1555	if (rdev->constraints->over_current_protection
1556		&& ops->set_over_current_protection) {
1557		int lim = rdev->constraints->over_curr_limits.prot;
1558
1559		ret = ops->set_over_current_protection(rdev, lim,
1560						       REGULATOR_SEVERITY_PROT,
1561						       true);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564				 ERR_PTR(ret));
1565			return ret;
1566		}
1567	}
1568
1569	if (rdev->constraints->over_current_detection)
1570		ret = handle_notify_limits(rdev,
1571					   ops->set_over_current_protection,
1572					   &rdev->constraints->over_curr_limits);
1573	if (ret) {
1574		if (ret != -EOPNOTSUPP) {
1575			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576				 ERR_PTR(ret));
1577			return ret;
1578		}
1579		rdev_warn(rdev,
1580			  "IC does not support requested over-current limits\n");
1581	}
1582
1583	if (rdev->constraints->over_voltage_detection)
1584		ret = handle_notify_limits(rdev,
1585					   ops->set_over_voltage_protection,
1586					   &rdev->constraints->over_voltage_limits);
1587	if (ret) {
1588		if (ret != -EOPNOTSUPP) {
1589			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590				 ERR_PTR(ret));
1591			return ret;
1592		}
1593		rdev_warn(rdev,
1594			  "IC does not support requested over voltage limits\n");
1595	}
1596
1597	if (rdev->constraints->under_voltage_detection)
1598		ret = handle_notify_limits(rdev,
1599					   ops->set_under_voltage_protection,
1600					   &rdev->constraints->under_voltage_limits);
1601	if (ret) {
1602		if (ret != -EOPNOTSUPP) {
1603			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604				 ERR_PTR(ret));
1605			return ret;
1606		}
1607		rdev_warn(rdev,
1608			  "IC does not support requested under voltage limits\n");
1609	}
1610
1611	if (rdev->constraints->over_temp_detection)
1612		ret = handle_notify_limits(rdev,
1613					   ops->set_thermal_protection,
1614					   &rdev->constraints->temp_limits);
1615	if (ret) {
1616		if (ret != -EOPNOTSUPP) {
1617			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618				 ERR_PTR(ret));
1619			return ret;
1620		}
1621		rdev_warn(rdev,
1622			  "IC does not support requested temperature limits\n");
1623	}
1624
1625	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626		bool ad_state = (rdev->constraints->active_discharge ==
1627			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629		ret = ops->set_active_discharge(rdev, ad_state);
1630		if (ret < 0) {
1631			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632			return ret;
1633		}
1634	}
1635
1636	/*
1637	 * If there is no mechanism for controlling the regulator then
1638	 * flag it as always_on so we don't end up duplicating checks
1639	 * for this so much.  Note that we could control the state of
1640	 * a supply to control the output on a regulator that has no
1641	 * direct control.
1642	 */
1643	if (!rdev->ena_pin && !ops->enable) {
1644		if (rdev->supply_name && !rdev->supply)
1645			return -EPROBE_DEFER;
1646
1647		if (rdev->supply)
1648			rdev->constraints->always_on =
1649				rdev->supply->rdev->constraints->always_on;
1650		else
1651			rdev->constraints->always_on = true;
1652	}
1653
1654	/* If the constraints say the regulator should be on at this point
1655	 * and we have control then make sure it is enabled.
1656	 */
1657	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658		/* If we want to enable this regulator, make sure that we know
1659		 * the supplying regulator.
1660		 */
1661		if (rdev->supply_name && !rdev->supply)
1662			return -EPROBE_DEFER;
1663
1664		/* If supplying regulator has already been enabled,
1665		 * it's not intended to have use_count increment
1666		 * when rdev is only boot-on.
1667		 */
1668		if (rdev->supply &&
1669		    (rdev->constraints->always_on ||
1670		     !regulator_is_enabled(rdev->supply))) {
1671			ret = regulator_enable(rdev->supply);
1672			if (ret < 0) {
1673				_regulator_put(rdev->supply);
1674				rdev->supply = NULL;
1675				return ret;
1676			}
1677		}
1678
1679		ret = _regulator_do_enable(rdev);
1680		if (ret < 0 && ret != -EINVAL) {
1681			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682			return ret;
1683		}
1684
1685		if (rdev->constraints->always_on)
1686			rdev->use_count++;
1687	} else if (rdev->desc->off_on_delay) {
1688		rdev->last_off = ktime_get();
1689	}
1690
1691	print_constraints(rdev);
1692	return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
 
 
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705		      struct regulator_dev *supply_rdev)
1706{
1707	int err;
1708
1709	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711	if (!try_module_get(supply_rdev->owner))
1712		return -ENODEV;
1713
1714	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715	if (rdev->supply == NULL) {
1716		module_put(supply_rdev->owner);
1717		err = -ENOMEM;
1718		return err;
1719	}
1720	supply_rdev->open_count++;
1721
1722	return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev:         regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply:       symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices.  Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
 
 
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737				      const char *consumer_dev_name,
1738				      const char *supply)
1739{
1740	struct regulator_map *node, *new_node;
1741	int has_dev;
1742
1743	if (supply == NULL)
1744		return -EINVAL;
1745
1746	if (consumer_dev_name != NULL)
1747		has_dev = 1;
1748	else
1749		has_dev = 0;
1750
1751	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752	if (new_node == NULL)
1753		return -ENOMEM;
1754
1755	new_node->regulator = rdev;
1756	new_node->supply = supply;
1757
1758	if (has_dev) {
1759		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760		if (new_node->dev_name == NULL) {
1761			kfree(new_node);
1762			return -ENOMEM;
1763		}
1764	}
1765
1766	mutex_lock(&regulator_list_mutex);
1767	list_for_each_entry(node, &regulator_map_list, list) {
1768		if (node->dev_name && consumer_dev_name) {
1769			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770				continue;
1771		} else if (node->dev_name || consumer_dev_name) {
1772			continue;
1773		}
1774
1775		if (strcmp(node->supply, supply) != 0)
1776			continue;
1777
1778		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779			 consumer_dev_name,
1780			 dev_name(&node->regulator->dev),
1781			 node->regulator->desc->name,
1782			 supply,
1783			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784		goto fail;
1785	}
1786
1787	list_add(&new_node->list, &regulator_map_list);
1788	mutex_unlock(&regulator_list_mutex);
1789
1790	return 0;
1791
1792fail:
1793	mutex_unlock(&regulator_list_mutex);
1794	kfree(new_node->dev_name);
1795	kfree(new_node);
1796	return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801	struct regulator_map *node, *n;
1802
1803	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804		if (rdev == node->regulator) {
1805			list_del(&node->list);
1806			kfree(node->dev_name);
1807			kfree(node);
1808		}
1809	}
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814					  char __user *user_buf,
1815					  size_t count, loff_t *ppos)
1816{
1817	const struct regulator *regulator = file->private_data;
1818	const struct regulation_constraints *c = regulator->rdev->constraints;
1819	char *buf;
1820	ssize_t ret;
1821
1822	if (!c)
1823		return 0;
1824
1825	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826	if (!buf)
1827		return -ENOMEM;
1828
1829	ret = snprintf(buf, PAGE_SIZE,
1830			"always_on: %u\n"
1831			"boot_on: %u\n"
1832			"apply_uV: %u\n"
1833			"ramp_disable: %u\n"
1834			"soft_start: %u\n"
1835			"pull_down: %u\n"
1836			"over_current_protection: %u\n",
1837			c->always_on,
1838			c->boot_on,
1839			c->apply_uV,
1840			c->ramp_disable,
1841			c->soft_start,
1842			c->pull_down,
1843			c->over_current_protection);
1844
1845	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846	kfree(buf);
1847
1848	return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855	.open = simple_open,
1856	.read = constraint_flags_read_file,
1857	.llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE	64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864					  struct device *dev,
1865					  const char *supply_name)
1866{
1867	struct regulator *regulator;
1868	int err = 0;
1869
1870	lockdep_assert_held_once(&rdev->mutex.base);
1871
1872	if (dev) {
1873		char buf[REG_STR_SIZE];
1874		int size;
1875
1876		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877				dev->kobj.name, supply_name);
1878		if (size >= REG_STR_SIZE)
1879			return NULL;
1880
1881		supply_name = kstrdup(buf, GFP_KERNEL);
1882		if (supply_name == NULL)
1883			return NULL;
1884	} else {
1885		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886		if (supply_name == NULL)
1887			return NULL;
1888	}
1889
1890	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891	if (regulator == NULL) {
1892		kfree_const(supply_name);
1893		return NULL;
1894	}
1895
1896	regulator->rdev = rdev;
1897	regulator->supply_name = supply_name;
1898
1899	list_add(&regulator->list, &rdev->consumer_list);
1900
1901	if (dev) {
1902		regulator->dev = dev;
1903
1904		/* Add a link to the device sysfs entry */
1905		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906					       supply_name);
1907		if (err) {
1908			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909				  dev->kobj.name, ERR_PTR(err));
1910			/* non-fatal */
1911		}
1912	}
1913
1914	if (err != -EEXIST)
1915		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916	if (IS_ERR(regulator->debugfs))
1917		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
 
 
1918
1919	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920			   &regulator->uA_load);
1921	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926			    regulator, &constraint_flags_fops);
 
 
1927
1928	/*
1929	 * Check now if the regulator is an always on regulator - if
1930	 * it is then we don't need to do nearly so much work for
1931	 * enable/disable calls.
1932	 */
1933	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934	    _regulator_is_enabled(rdev))
1935		regulator->always_on = true;
1936
1937	return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942	if (rdev->constraints && rdev->constraints->enable_time)
1943		return rdev->constraints->enable_time;
1944	if (rdev->desc->ops->enable_time)
1945		return rdev->desc->ops->enable_time(rdev);
1946	return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950		struct device *dev, const char *supply)
1951{
1952	struct regulator_supply_alias *map;
1953
1954	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956			return map;
1957
1958	return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963	struct regulator_supply_alias *map;
1964
1965	map = regulator_find_supply_alias(*dev, *supply);
1966	if (map) {
1967		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968				*supply, map->alias_supply,
1969				dev_name(map->alias_dev));
1970		*dev = map->alias_dev;
1971		*supply = map->alias_supply;
1972	}
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977	struct regulator_dev *r = dev_to_rdev(dev);
1978
1979	return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984	struct device *dev;
1985
1986	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987
1988	return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
 
 
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004						  const char *supply)
2005{
2006	struct regulator_dev *r = NULL;
2007	struct device_node *node;
2008	struct regulator_map *map;
2009	const char *devname = NULL;
2010
2011	regulator_supply_alias(&dev, &supply);
2012
2013	/* first do a dt based lookup */
2014	if (dev && dev->of_node) {
2015		node = of_get_regulator(dev, supply);
2016		if (node) {
2017			r = of_find_regulator_by_node(node);
2018			of_node_put(node);
2019			if (r)
2020				return r;
2021
2022			/*
2023			 * We have a node, but there is no device.
2024			 * assume it has not registered yet.
2025			 */
2026			return ERR_PTR(-EPROBE_DEFER);
2027		}
2028	}
2029
2030	/* if not found, try doing it non-dt way */
2031	if (dev)
2032		devname = dev_name(dev);
2033
2034	mutex_lock(&regulator_list_mutex);
2035	list_for_each_entry(map, &regulator_map_list, list) {
2036		/* If the mapping has a device set up it must match */
2037		if (map->dev_name &&
2038		    (!devname || strcmp(map->dev_name, devname)))
2039			continue;
2040
2041		if (strcmp(map->supply, supply) == 0 &&
2042		    get_device(&map->regulator->dev)) {
2043			r = map->regulator;
2044			break;
2045		}
2046	}
2047	mutex_unlock(&regulator_list_mutex);
2048
2049	if (r)
2050		return r;
2051
2052	r = regulator_lookup_by_name(supply);
2053	if (r)
2054		return r;
2055
2056	return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061	struct regulator_dev *r;
2062	struct device *dev = rdev->dev.parent;
2063	struct ww_acquire_ctx ww_ctx;
2064	int ret = 0;
2065
2066	/* No supply to resolve? */
2067	if (!rdev->supply_name)
2068		return 0;
2069
2070	/* Supply already resolved? (fast-path without locking contention) */
2071	if (rdev->supply)
2072		return 0;
2073
2074	r = regulator_dev_lookup(dev, rdev->supply_name);
2075	if (IS_ERR(r)) {
2076		ret = PTR_ERR(r);
2077
2078		/* Did the lookup explicitly defer for us? */
2079		if (ret == -EPROBE_DEFER)
2080			goto out;
2081
2082		if (have_full_constraints()) {
2083			r = dummy_regulator_rdev;
2084			get_device(&r->dev);
2085		} else {
2086			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087				rdev->supply_name, rdev->desc->name);
2088			ret = -EPROBE_DEFER;
2089			goto out;
2090		}
2091	}
2092
2093	if (r == rdev) {
2094		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095			rdev->desc->name, rdev->supply_name);
2096		if (!have_full_constraints()) {
2097			ret = -EINVAL;
2098			goto out;
2099		}
2100		r = dummy_regulator_rdev;
2101		get_device(&r->dev);
2102	}
2103
2104	/*
2105	 * If the supply's parent device is not the same as the
2106	 * regulator's parent device, then ensure the parent device
2107	 * is bound before we resolve the supply, in case the parent
2108	 * device get probe deferred and unregisters the supply.
2109	 */
2110	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111		if (!device_is_bound(r->dev.parent)) {
2112			put_device(&r->dev);
2113			ret = -EPROBE_DEFER;
2114			goto out;
2115		}
2116	}
2117
2118	/* Recursively resolve the supply of the supply */
2119	ret = regulator_resolve_supply(r);
2120	if (ret < 0) {
2121		put_device(&r->dev);
2122		goto out;
2123	}
2124
2125	/*
2126	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127	 * between rdev->supply null check and setting rdev->supply in
2128	 * set_supply() from concurrent tasks.
2129	 */
2130	regulator_lock_two(rdev, r, &ww_ctx);
2131
2132	/* Supply just resolved by a concurrent task? */
2133	if (rdev->supply) {
2134		regulator_unlock_two(rdev, r, &ww_ctx);
2135		put_device(&r->dev);
2136		goto out;
2137	}
2138
2139	ret = set_supply(rdev, r);
2140	if (ret < 0) {
2141		regulator_unlock_two(rdev, r, &ww_ctx);
2142		put_device(&r->dev);
2143		goto out;
2144	}
2145
2146	regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148	/*
2149	 * In set_machine_constraints() we may have turned this regulator on
2150	 * but we couldn't propagate to the supply if it hadn't been resolved
2151	 * yet.  Do it now.
2152	 */
2153	if (rdev->use_count) {
2154		ret = regulator_enable(rdev->supply);
2155		if (ret < 0) {
2156			_regulator_put(rdev->supply);
2157			rdev->supply = NULL;
2158			goto out;
2159		}
2160	}
2161
2162out:
2163	return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168				 enum regulator_get_type get_type)
2169{
2170	struct regulator_dev *rdev;
2171	struct regulator *regulator;
2172	struct device_link *link;
2173	int ret;
2174
2175	if (get_type >= MAX_GET_TYPE) {
2176		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177		return ERR_PTR(-EINVAL);
2178	}
2179
2180	if (id == NULL) {
2181		pr_err("get() with no identifier\n");
2182		return ERR_PTR(-EINVAL);
2183	}
2184
2185	rdev = regulator_dev_lookup(dev, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	if (IS_ERR(rdev)) {
2187		ret = PTR_ERR(rdev);
2188
2189		/*
2190		 * If regulator_dev_lookup() fails with error other
2191		 * than -ENODEV our job here is done, we simply return it.
2192		 */
2193		if (ret != -ENODEV)
2194			return ERR_PTR(ret);
2195
2196		if (!have_full_constraints()) {
2197			dev_warn(dev,
2198				 "incomplete constraints, dummy supplies not allowed\n");
2199			return ERR_PTR(-ENODEV);
2200		}
2201
2202		switch (get_type) {
2203		case NORMAL_GET:
2204			/*
2205			 * Assume that a regulator is physically present and
2206			 * enabled, even if it isn't hooked up, and just
2207			 * provide a dummy.
2208			 */
2209			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210			rdev = dummy_regulator_rdev;
2211			get_device(&rdev->dev);
2212			break;
2213
2214		case EXCLUSIVE_GET:
2215			dev_warn(dev,
2216				 "dummy supplies not allowed for exclusive requests\n");
2217			fallthrough;
2218
2219		default:
2220			return ERR_PTR(-ENODEV);
2221		}
2222	}
2223
2224	if (rdev->exclusive) {
2225		regulator = ERR_PTR(-EPERM);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231		regulator = ERR_PTR(-EBUSY);
2232		put_device(&rdev->dev);
2233		return regulator;
2234	}
2235
2236	mutex_lock(&regulator_list_mutex);
2237	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238	mutex_unlock(&regulator_list_mutex);
2239
2240	if (ret != 0) {
2241		regulator = ERR_PTR(-EPROBE_DEFER);
2242		put_device(&rdev->dev);
2243		return regulator;
2244	}
2245
2246	ret = regulator_resolve_supply(rdev);
2247	if (ret < 0) {
2248		regulator = ERR_PTR(ret);
2249		put_device(&rdev->dev);
2250		return regulator;
2251	}
2252
2253	if (!try_module_get(rdev->owner)) {
2254		regulator = ERR_PTR(-EPROBE_DEFER);
2255		put_device(&rdev->dev);
2256		return regulator;
2257	}
2258
2259	regulator_lock(rdev);
2260	regulator = create_regulator(rdev, dev, id);
2261	regulator_unlock(rdev);
2262	if (regulator == NULL) {
2263		regulator = ERR_PTR(-ENOMEM);
2264		module_put(rdev->owner);
2265		put_device(&rdev->dev);
2266		return regulator;
2267	}
2268
2269	rdev->open_count++;
2270	if (get_type == EXCLUSIVE_GET) {
2271		rdev->exclusive = 1;
2272
2273		ret = _regulator_is_enabled(rdev);
2274		if (ret > 0) {
2275			rdev->use_count = 1;
2276			regulator->enable_count = 1;
 
 
 
 
 
 
 
 
 
 
 
2277		} else {
2278			rdev->use_count = 0;
2279			regulator->enable_count = 0;
2280		}
2281	}
2282
2283	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284	if (!IS_ERR_OR_NULL(link))
2285		regulator->device_link = true;
2286
2287	return regulator;
2288}
2289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged.  It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
 
 
 
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305	return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno.  Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged.  It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
 
 
 
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332	return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged.  It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
 
 
 
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358	return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364	struct regulator_dev *rdev = regulator->rdev;
2365
2366	debugfs_remove_recursive(regulator->debugfs);
2367
2368	if (regulator->dev) {
2369		if (regulator->device_link)
2370			device_link_remove(regulator->dev, &rdev->dev);
2371
2372		/* remove any sysfs entries */
2373		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374	}
2375
2376	regulator_lock(rdev);
2377	list_del(&regulator->list);
2378
2379	rdev->open_count--;
2380	rdev->exclusive = 0;
2381	regulator_unlock(rdev);
2382
2383	kfree_const(regulator->supply_name);
2384	kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390	struct regulator_dev *rdev;
2391
2392	if (IS_ERR_OR_NULL(regulator))
2393		return;
2394
2395	lockdep_assert_held_once(&regulator_list_mutex);
2396
2397	/* Docs say you must disable before calling regulator_put() */
2398	WARN_ON(regulator->enable_count);
2399
2400	rdev = regulator->rdev;
2401
2402	destroy_regulator(regulator);
2403
2404	module_put(rdev->owner);
2405	put_device(&rdev->dev);
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418	mutex_lock(&regulator_list_mutex);
2419	_regulator_put(regulator);
2420	mutex_unlock(&regulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
 
 
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437				    struct device *alias_dev,
2438				    const char *alias_id)
2439{
2440	struct regulator_supply_alias *map;
2441
2442	map = regulator_find_supply_alias(dev, id);
2443	if (map)
2444		return -EEXIST;
2445
2446	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447	if (!map)
2448		return -ENOMEM;
2449
2450	map->src_dev = dev;
2451	map->src_supply = id;
2452	map->alias_dev = alias_dev;
2453	map->alias_supply = alias_id;
2454
2455	list_add(&map->list, &regulator_supply_alias_list);
2456
2457	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458		id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460	return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474	struct regulator_supply_alias *map;
2475
2476	map = regulator_find_supply_alias(dev, id);
2477	if (map) {
2478		list_del(&map->list);
2479		kfree(map);
2480	}
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation.  If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
 
 
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502					 const char *const *id,
2503					 struct device *alias_dev,
2504					 const char *const *alias_id,
2505					 int num_id)
2506{
2507	int i;
2508	int ret;
2509
2510	for (i = 0; i < num_id; ++i) {
2511		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512						      alias_id[i]);
2513		if (ret < 0)
2514			goto err;
2515	}
2516
2517	return 0;
2518
2519err:
2520	dev_err(dev,
2521		"Failed to create supply alias %s,%s -> %s,%s\n",
2522		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524	while (--i >= 0)
2525		regulator_unregister_supply_alias(dev, id[i]);
2526
2527	return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542					    const char *const *id,
2543					    int num_id)
2544{
2545	int i;
2546
2547	for (i = 0; i < num_id; ++i)
2548		regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555				const struct regulator_config *config)
2556{
2557	struct regulator_enable_gpio *pin, *new_pin;
2558	struct gpio_desc *gpiod;
2559
2560	gpiod = config->ena_gpiod;
2561	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563	mutex_lock(&regulator_list_mutex);
2564
2565	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2566		if (pin->gpiod == gpiod) {
2567			rdev_dbg(rdev, "GPIO is already used\n");
2568			goto update_ena_gpio_to_rdev;
2569		}
2570	}
2571
2572	if (new_pin == NULL) {
2573		mutex_unlock(&regulator_list_mutex);
2574		return -ENOMEM;
2575	}
2576
2577	pin = new_pin;
2578	new_pin = NULL;
2579
2580	pin->gpiod = gpiod;
2581	list_add(&pin->list, &regulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584	pin->request_count++;
2585	rdev->ena_pin = pin;
2586
2587	mutex_unlock(&regulator_list_mutex);
2588	kfree(new_pin);
2589
2590	return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595	struct regulator_enable_gpio *pin, *n;
2596
2597	if (!rdev->ena_pin)
2598		return;
2599
2600	/* Free the GPIO only in case of no use */
2601	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2602		if (pin != rdev->ena_pin)
2603			continue;
2604
2605		if (--pin->request_count)
2606			break;
2607
2608		gpiod_put(pin->gpiod);
2609		list_del(&pin->list);
2610		kfree(pin);
2611		break;
2612	}
2613
2614	rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 
 
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627	struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629	if (!pin)
2630		return -EINVAL;
2631
2632	if (enable) {
2633		/* Enable GPIO at initial use */
2634		if (pin->enable_count == 0)
2635			gpiod_set_value_cansleep(pin->gpiod, 1);
2636
2637		pin->enable_count++;
2638	} else {
2639		if (pin->enable_count > 1) {
2640			pin->enable_count--;
2641			return 0;
2642		}
2643
2644		/* Disable GPIO if not used */
2645		if (pin->enable_count <= 1) {
2646			gpiod_set_value_cansleep(pin->gpiod, 0);
2647			pin->enable_count = 0;
2648		}
2649	}
2650
2651	return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 *     Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667	unsigned int ms = delay / 1000;
2668	unsigned int us = delay % 1000;
2669
2670	if (ms > 0) {
2671		/*
2672		 * For small enough values, handle super-millisecond
2673		 * delays in the usleep_range() call below.
2674		 */
2675		if (ms < 20)
2676			us += ms * 1000;
2677		else
2678			msleep(ms);
2679	}
2680
2681	/*
2682	 * Give the scheduler some room to coalesce with any other
2683	 * wakeup sources. For delays shorter than 10 us, don't even
2684	 * bother setting up high-resolution timers and just busy-
2685	 * loop.
2686	 */
2687	if (us >= 10)
2688		usleep_range(us, us + 100);
2689	else
2690		udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1			- if status shows regulator is in enabled state
2702 * * 0			- if not enabled state
2703 * * Error Value	- as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707	int ret = rdev->desc->ops->get_status(rdev);
2708
2709	if (ret < 0) {
2710		rdev_info(rdev, "get_status returned error: %d\n", ret);
2711		return ret;
2712	}
2713
2714	switch (ret) {
2715	case REGULATOR_STATUS_OFF:
2716	case REGULATOR_STATUS_ERROR:
2717	case REGULATOR_STATUS_UNDEFINED:
2718		return 0;
2719	default:
2720		return 1;
2721	}
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726	int ret, delay;
2727
2728	/* Query before enabling in case configuration dependent.  */
2729	ret = _regulator_get_enable_time(rdev);
2730	if (ret >= 0) {
2731		delay = ret;
2732	} else {
2733		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734		delay = 0;
2735	}
2736
2737	trace_regulator_enable(rdev_get_name(rdev));
2738
2739	if (rdev->desc->off_on_delay) {
2740		/* if needed, keep a distance of off_on_delay from last time
2741		 * this regulator was disabled.
2742		 */
2743		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746		if (remaining > 0)
2747			_regulator_delay_helper(remaining);
2748	}
2749
2750	if (rdev->ena_pin) {
2751		if (!rdev->ena_gpio_state) {
2752			ret = regulator_ena_gpio_ctrl(rdev, true);
2753			if (ret < 0)
2754				return ret;
2755			rdev->ena_gpio_state = 1;
2756		}
2757	} else if (rdev->desc->ops->enable) {
2758		ret = rdev->desc->ops->enable(rdev);
2759		if (ret < 0)
2760			return ret;
2761	} else {
2762		return -EINVAL;
2763	}
2764
2765	/* Allow the regulator to ramp; it would be useful to extend
2766	 * this for bulk operations so that the regulators can ramp
2767	 * together.
2768	 */
2769	trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771	/* If poll_enabled_time is set, poll upto the delay calculated
2772	 * above, delaying poll_enabled_time uS to check if the regulator
2773	 * actually got enabled.
2774	 * If the regulator isn't enabled after our delay helper has expired,
2775	 * return -ETIMEDOUT.
2776	 */
2777	if (rdev->desc->poll_enabled_time) {
2778		int time_remaining = delay;
2779
2780		while (time_remaining > 0) {
2781			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783			if (rdev->desc->ops->get_status) {
2784				ret = _regulator_check_status_enabled(rdev);
2785				if (ret < 0)
2786					return ret;
2787				else if (ret)
2788					break;
2789			} else if (rdev->desc->ops->is_enabled(rdev))
2790				break;
2791
2792			time_remaining -= rdev->desc->poll_enabled_time;
2793		}
2794
2795		if (time_remaining <= 0) {
2796			rdev_err(rdev, "Enabled check timed out\n");
2797			return -ETIMEDOUT;
2798		}
2799	} else {
2800		_regulator_delay_helper(delay);
2801	}
2802
2803	trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805	return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled.  Explained in example with two consumers of the same
2815 * regulator:
2816 *   consumer A: set_load(100);       => total load = 0
2817 *   consumer A: regulator_enable();  => total load = 100
2818 *   consumer B: set_load(1000);      => total load = 100
2819 *   consumer B: regulator_enable();  => total load = 1100
2820 *   consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830	int ret;
2831	struct regulator_dev *rdev = regulator->rdev;
2832
2833	lockdep_assert_held_once(&rdev->mutex.base);
2834
2835	regulator->enable_count++;
2836	if (regulator->uA_load && regulator->enable_count == 1) {
2837		ret = drms_uA_update(rdev);
2838		if (ret)
2839			regulator->enable_count--;
2840		return ret;
2841	}
2842
2843	return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856	struct regulator_dev *rdev = regulator->rdev;
2857
2858	lockdep_assert_held_once(&rdev->mutex.base);
2859
2860	if (!regulator->enable_count) {
2861		rdev_err(rdev, "Underflow of regulator enable count\n");
2862		return -EINVAL;
2863	}
2864
2865	regulator->enable_count--;
2866	if (regulator->uA_load && regulator->enable_count == 0)
2867		return drms_uA_update(rdev);
2868
2869	return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875	struct regulator_dev *rdev = regulator->rdev;
2876	int ret;
2877
2878	lockdep_assert_held_once(&rdev->mutex.base);
2879
2880	if (rdev->use_count == 0 && rdev->supply) {
2881		ret = _regulator_enable(rdev->supply);
2882		if (ret < 0)
2883			return ret;
2884	}
2885
2886	/* balance only if there are regulators coupled */
2887	if (rdev->coupling_desc.n_coupled > 1) {
2888		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889		if (ret < 0)
2890			goto err_disable_supply;
2891	}
2892
2893	ret = _regulator_handle_consumer_enable(regulator);
2894	if (ret < 0)
2895		goto err_disable_supply;
2896
2897	if (rdev->use_count == 0) {
2898		/*
2899		 * The regulator may already be enabled if it's not switchable
2900		 * or was left on
2901		 */
2902		ret = _regulator_is_enabled(rdev);
2903		if (ret == -EINVAL || ret == 0) {
2904			if (!regulator_ops_is_valid(rdev,
2905					REGULATOR_CHANGE_STATUS)) {
2906				ret = -EPERM;
2907				goto err_consumer_disable;
2908			}
2909
2910			ret = _regulator_do_enable(rdev);
2911			if (ret < 0)
2912				goto err_consumer_disable;
2913
2914			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915					     NULL);
2916		} else if (ret < 0) {
2917			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918			goto err_consumer_disable;
2919		}
2920		/* Fallthrough on positive return values - already enabled */
2921	}
2922
2923	if (regulator->enable_count == 1)
2924		rdev->use_count++;
2925
2926	return 0;
2927
2928err_consumer_disable:
2929	_regulator_handle_consumer_disable(regulator);
2930
2931err_disable_supply:
2932	if (rdev->use_count == 0 && rdev->supply)
2933		_regulator_disable(rdev->supply);
2934
2935	return ret;
2936}
2937
2938/**
2939 * regulator_enable - enable regulator output
2940 * @regulator: regulator source
2941 *
2942 * Request that the regulator be enabled with the regulator output at
2943 * the predefined voltage or current value.  Calls to regulator_enable()
2944 * must be balanced with calls to regulator_disable().
2945 *
2946 * NOTE: the output value can be set by other drivers, boot loader or may be
2947 * hardwired in the regulator.
 
 
2948 */
2949int regulator_enable(struct regulator *regulator)
2950{
2951	struct regulator_dev *rdev = regulator->rdev;
2952	struct ww_acquire_ctx ww_ctx;
2953	int ret;
2954
2955	regulator_lock_dependent(rdev, &ww_ctx);
2956	ret = _regulator_enable(regulator);
2957	regulator_unlock_dependent(rdev, &ww_ctx);
2958
2959	return ret;
2960}
2961EXPORT_SYMBOL_GPL(regulator_enable);
2962
2963static int _regulator_do_disable(struct regulator_dev *rdev)
2964{
2965	int ret;
2966
2967	trace_regulator_disable(rdev_get_name(rdev));
2968
2969	if (rdev->ena_pin) {
2970		if (rdev->ena_gpio_state) {
2971			ret = regulator_ena_gpio_ctrl(rdev, false);
2972			if (ret < 0)
2973				return ret;
2974			rdev->ena_gpio_state = 0;
2975		}
2976
2977	} else if (rdev->desc->ops->disable) {
2978		ret = rdev->desc->ops->disable(rdev);
2979		if (ret != 0)
2980			return ret;
2981	}
2982
2983	if (rdev->desc->off_on_delay)
2984		rdev->last_off = ktime_get_boottime();
2985
2986	trace_regulator_disable_complete(rdev_get_name(rdev));
2987
2988	return 0;
2989}
2990
2991/* locks held by regulator_disable() */
2992static int _regulator_disable(struct regulator *regulator)
2993{
2994	struct regulator_dev *rdev = regulator->rdev;
2995	int ret = 0;
2996
2997	lockdep_assert_held_once(&rdev->mutex.base);
2998
2999	if (WARN(regulator->enable_count == 0,
3000		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001		return -EIO;
3002
3003	if (regulator->enable_count == 1) {
3004	/* disabling last enable_count from this regulator */
3005		/* are we the last user and permitted to disable ? */
3006		if (rdev->use_count == 1 &&
3007		    (rdev->constraints && !rdev->constraints->always_on)) {
3008
3009			/* we are last user */
3010			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011				ret = _notifier_call_chain(rdev,
3012							   REGULATOR_EVENT_PRE_DISABLE,
3013							   NULL);
3014				if (ret & NOTIFY_STOP_MASK)
3015					return -EINVAL;
3016
3017				ret = _regulator_do_disable(rdev);
3018				if (ret < 0) {
3019					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020					_notifier_call_chain(rdev,
3021							REGULATOR_EVENT_ABORT_DISABLE,
3022							NULL);
3023					return ret;
3024				}
3025				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026						NULL);
3027			}
3028
3029			rdev->use_count = 0;
3030		} else if (rdev->use_count > 1) {
3031			rdev->use_count--;
3032		}
3033	}
3034
3035	if (ret == 0)
3036		ret = _regulator_handle_consumer_disable(regulator);
3037
3038	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040
3041	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042		ret = _regulator_disable(rdev->supply);
3043
3044	return ret;
3045}
3046
3047/**
3048 * regulator_disable - disable regulator output
3049 * @regulator: regulator source
3050 *
3051 * Disable the regulator output voltage or current.  Calls to
3052 * regulator_enable() must be balanced with calls to
3053 * regulator_disable().
3054 *
3055 * NOTE: this will only disable the regulator output if no other consumer
3056 * devices have it enabled, the regulator device supports disabling and
3057 * machine constraints permit this operation.
 
 
3058 */
3059int regulator_disable(struct regulator *regulator)
3060{
3061	struct regulator_dev *rdev = regulator->rdev;
3062	struct ww_acquire_ctx ww_ctx;
3063	int ret;
3064
3065	regulator_lock_dependent(rdev, &ww_ctx);
3066	ret = _regulator_disable(regulator);
3067	regulator_unlock_dependent(rdev, &ww_ctx);
3068
3069	return ret;
3070}
3071EXPORT_SYMBOL_GPL(regulator_disable);
3072
3073/* locks held by regulator_force_disable() */
3074static int _regulator_force_disable(struct regulator_dev *rdev)
3075{
3076	int ret = 0;
3077
3078	lockdep_assert_held_once(&rdev->mutex.base);
3079
3080	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081			REGULATOR_EVENT_PRE_DISABLE, NULL);
3082	if (ret & NOTIFY_STOP_MASK)
3083		return -EINVAL;
3084
3085	ret = _regulator_do_disable(rdev);
3086	if (ret < 0) {
3087		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090		return ret;
3091	}
3092
3093	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094			REGULATOR_EVENT_DISABLE, NULL);
3095
3096	return 0;
3097}
3098
3099/**
3100 * regulator_force_disable - force disable regulator output
3101 * @regulator: regulator source
3102 *
3103 * Forcibly disable the regulator output voltage or current.
3104 * NOTE: this *will* disable the regulator output even if other consumer
3105 * devices have it enabled. This should be used for situations when device
3106 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 
 
3107 */
3108int regulator_force_disable(struct regulator *regulator)
3109{
3110	struct regulator_dev *rdev = regulator->rdev;
3111	struct ww_acquire_ctx ww_ctx;
3112	int ret;
3113
3114	regulator_lock_dependent(rdev, &ww_ctx);
3115
3116	ret = _regulator_force_disable(regulator->rdev);
3117
3118	if (rdev->coupling_desc.n_coupled > 1)
3119		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120
3121	if (regulator->uA_load) {
3122		regulator->uA_load = 0;
3123		ret = drms_uA_update(rdev);
3124	}
3125
3126	if (rdev->use_count != 0 && rdev->supply)
3127		_regulator_disable(rdev->supply);
3128
3129	regulator_unlock_dependent(rdev, &ww_ctx);
3130
3131	return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_force_disable);
3134
3135static void regulator_disable_work(struct work_struct *work)
3136{
3137	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138						  disable_work.work);
3139	struct ww_acquire_ctx ww_ctx;
3140	int count, i, ret;
3141	struct regulator *regulator;
3142	int total_count = 0;
3143
3144	regulator_lock_dependent(rdev, &ww_ctx);
3145
3146	/*
3147	 * Workqueue functions queue the new work instance while the previous
3148	 * work instance is being processed. Cancel the queued work instance
3149	 * as the work instance under processing does the job of the queued
3150	 * work instance.
3151	 */
3152	cancel_delayed_work(&rdev->disable_work);
3153
3154	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155		count = regulator->deferred_disables;
3156
3157		if (!count)
3158			continue;
3159
3160		total_count += count;
3161		regulator->deferred_disables = 0;
3162
3163		for (i = 0; i < count; i++) {
3164			ret = _regulator_disable(regulator);
3165			if (ret != 0)
3166				rdev_err(rdev, "Deferred disable failed: %pe\n",
3167					 ERR_PTR(ret));
3168		}
3169	}
3170	WARN_ON(!total_count);
3171
3172	if (rdev->coupling_desc.n_coupled > 1)
3173		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174
3175	regulator_unlock_dependent(rdev, &ww_ctx);
3176}
3177
3178/**
3179 * regulator_disable_deferred - disable regulator output with delay
3180 * @regulator: regulator source
3181 * @ms: milliseconds until the regulator is disabled
3182 *
3183 * Execute regulator_disable() on the regulator after a delay.  This
3184 * is intended for use with devices that require some time to quiesce.
3185 *
3186 * NOTE: this will only disable the regulator output if no other consumer
3187 * devices have it enabled, the regulator device supports disabling and
3188 * machine constraints permit this operation.
 
 
3189 */
3190int regulator_disable_deferred(struct regulator *regulator, int ms)
3191{
3192	struct regulator_dev *rdev = regulator->rdev;
3193
3194	if (!ms)
3195		return regulator_disable(regulator);
3196
3197	regulator_lock(rdev);
3198	regulator->deferred_disables++;
3199	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200			 msecs_to_jiffies(ms));
3201	regulator_unlock(rdev);
3202
3203	return 0;
3204}
3205EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206
3207static int _regulator_is_enabled(struct regulator_dev *rdev)
3208{
3209	/* A GPIO control always takes precedence */
3210	if (rdev->ena_pin)
3211		return rdev->ena_gpio_state;
3212
3213	/* If we don't know then assume that the regulator is always on */
3214	if (!rdev->desc->ops->is_enabled)
3215		return 1;
3216
3217	return rdev->desc->ops->is_enabled(rdev);
3218}
3219
3220static int _regulator_list_voltage(struct regulator_dev *rdev,
3221				   unsigned selector, int lock)
3222{
3223	const struct regulator_ops *ops = rdev->desc->ops;
3224	int ret;
3225
3226	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227		return rdev->desc->fixed_uV;
3228
3229	if (ops->list_voltage) {
3230		if (selector >= rdev->desc->n_voltages)
3231			return -EINVAL;
3232		if (selector < rdev->desc->linear_min_sel)
3233			return 0;
3234		if (lock)
3235			regulator_lock(rdev);
3236		ret = ops->list_voltage(rdev, selector);
3237		if (lock)
3238			regulator_unlock(rdev);
3239	} else if (rdev->is_switch && rdev->supply) {
3240		ret = _regulator_list_voltage(rdev->supply->rdev,
3241					      selector, lock);
3242	} else {
3243		return -EINVAL;
3244	}
3245
3246	if (ret > 0) {
3247		if (ret < rdev->constraints->min_uV)
3248			ret = 0;
3249		else if (ret > rdev->constraints->max_uV)
3250			ret = 0;
3251	}
3252
3253	return ret;
3254}
3255
3256/**
3257 * regulator_is_enabled - is the regulator output enabled
3258 * @regulator: regulator source
3259 *
3260 * Returns positive if the regulator driver backing the source/client
3261 * has requested that the device be enabled, zero if it hasn't, else a
3262 * negative errno code.
3263 *
3264 * Note that the device backing this regulator handle can have multiple
3265 * users, so it might be enabled even if regulator_enable() was never
3266 * called for this particular source.
 
 
 
 
3267 */
3268int regulator_is_enabled(struct regulator *regulator)
3269{
3270	int ret;
3271
3272	if (regulator->always_on)
3273		return 1;
3274
3275	regulator_lock(regulator->rdev);
3276	ret = _regulator_is_enabled(regulator->rdev);
3277	regulator_unlock(regulator->rdev);
3278
3279	return ret;
3280}
3281EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282
3283/**
3284 * regulator_count_voltages - count regulator_list_voltage() selectors
3285 * @regulator: regulator source
3286 *
3287 * Returns number of selectors, or negative errno.  Selectors are
3288 * numbered starting at zero, and typically correspond to bitfields
3289 * in hardware registers.
 
3290 */
3291int regulator_count_voltages(struct regulator *regulator)
3292{
3293	struct regulator_dev	*rdev = regulator->rdev;
3294
3295	if (rdev->desc->n_voltages)
3296		return rdev->desc->n_voltages;
3297
3298	if (!rdev->is_switch || !rdev->supply)
3299		return -EINVAL;
3300
3301	return regulator_count_voltages(rdev->supply);
3302}
3303EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304
3305/**
3306 * regulator_list_voltage - enumerate supported voltages
3307 * @regulator: regulator source
3308 * @selector: identify voltage to list
3309 * Context: can sleep
3310 *
3311 * Returns a voltage that can be passed to @regulator_set_voltage(),
3312 * zero if this selector code can't be used on this system, or a
3313 * negative errno.
3314 */
3315int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316{
3317	return _regulator_list_voltage(regulator->rdev, selector, 1);
3318}
3319EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320
3321/**
3322 * regulator_get_regmap - get the regulator's register map
3323 * @regulator: regulator source
3324 *
3325 * Returns the register map for the given regulator, or an ERR_PTR value
3326 * if the regulator doesn't use regmap.
3327 */
3328struct regmap *regulator_get_regmap(struct regulator *regulator)
3329{
3330	struct regmap *map = regulator->rdev->regmap;
3331
3332	return map ? map : ERR_PTR(-EOPNOTSUPP);
3333}
 
3334
3335/**
3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337 * @regulator: regulator source
3338 * @vsel_reg: voltage selector register, output parameter
3339 * @vsel_mask: mask for voltage selector bitfield, output parameter
3340 *
3341 * Returns the hardware register offset and bitmask used for setting the
3342 * regulator voltage. This might be useful when configuring voltage-scaling
3343 * hardware or firmware that can make I2C requests behind the kernel's back,
3344 * for example.
3345 *
 
 
 
3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347 * and 0 is returned, otherwise a negative errno is returned.
3348 */
3349int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350					 unsigned *vsel_reg,
3351					 unsigned *vsel_mask)
3352{
3353	struct regulator_dev *rdev = regulator->rdev;
3354	const struct regulator_ops *ops = rdev->desc->ops;
3355
3356	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357		return -EOPNOTSUPP;
3358
3359	*vsel_reg = rdev->desc->vsel_reg;
3360	*vsel_mask = rdev->desc->vsel_mask;
3361
3362	return 0;
3363}
3364EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365
3366/**
3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368 * @regulator: regulator source
3369 * @selector: identify voltage to list
3370 *
3371 * Converts the selector to a hardware-specific voltage selector that can be
3372 * directly written to the regulator registers. The address of the voltage
3373 * register can be determined by calling @regulator_get_hardware_vsel_register.
3374 *
3375 * On error a negative errno is returned.
 
 
3376 */
3377int regulator_list_hardware_vsel(struct regulator *regulator,
3378				 unsigned selector)
3379{
3380	struct regulator_dev *rdev = regulator->rdev;
3381	const struct regulator_ops *ops = rdev->desc->ops;
3382
3383	if (selector >= rdev->desc->n_voltages)
3384		return -EINVAL;
3385	if (selector < rdev->desc->linear_min_sel)
3386		return 0;
3387	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388		return -EOPNOTSUPP;
3389
3390	return selector;
3391}
3392EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393
3394/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3395 * regulator_get_linear_step - return the voltage step size between VSEL values
3396 * @regulator: regulator source
3397 *
3398 * Returns the voltage step size between VSEL values for linear
3399 * regulators, or return 0 if the regulator isn't a linear regulator.
3400 */
3401unsigned int regulator_get_linear_step(struct regulator *regulator)
3402{
3403	struct regulator_dev *rdev = regulator->rdev;
3404
3405	return rdev->desc->uV_step;
3406}
3407EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408
3409/**
3410 * regulator_is_supported_voltage - check if a voltage range can be supported
3411 *
3412 * @regulator: Regulator to check.
3413 * @min_uV: Minimum required voltage in uV.
3414 * @max_uV: Maximum required voltage in uV.
3415 *
3416 * Returns a boolean.
 
 
3417 */
3418int regulator_is_supported_voltage(struct regulator *regulator,
3419				   int min_uV, int max_uV)
3420{
3421	struct regulator_dev *rdev = regulator->rdev;
3422	int i, voltages, ret;
3423
3424	/* If we can't change voltage check the current voltage */
3425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426		ret = regulator_get_voltage(regulator);
3427		if (ret >= 0)
3428			return min_uV <= ret && ret <= max_uV;
3429		else
3430			return ret;
3431	}
3432
3433	/* Any voltage within constrains range is fine? */
3434	if (rdev->desc->continuous_voltage_range)
3435		return min_uV >= rdev->constraints->min_uV &&
3436				max_uV <= rdev->constraints->max_uV;
3437
3438	ret = regulator_count_voltages(regulator);
3439	if (ret < 0)
3440		return 0;
3441	voltages = ret;
3442
3443	for (i = 0; i < voltages; i++) {
3444		ret = regulator_list_voltage(regulator, i);
3445
3446		if (ret >= min_uV && ret <= max_uV)
3447			return 1;
3448	}
3449
3450	return 0;
3451}
3452EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453
3454static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455				 int max_uV)
3456{
3457	const struct regulator_desc *desc = rdev->desc;
3458
3459	if (desc->ops->map_voltage)
3460		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461
3462	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464
3465	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467
3468	if (desc->ops->list_voltage ==
3469		regulator_list_voltage_pickable_linear_range)
3470		return regulator_map_voltage_pickable_linear_range(rdev,
3471							min_uV, max_uV);
3472
3473	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474}
3475
3476static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477				       int min_uV, int max_uV,
3478				       unsigned *selector)
3479{
3480	struct pre_voltage_change_data data;
3481	int ret;
3482
3483	data.old_uV = regulator_get_voltage_rdev(rdev);
3484	data.min_uV = min_uV;
3485	data.max_uV = max_uV;
3486	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487				   &data);
3488	if (ret & NOTIFY_STOP_MASK)
3489		return -EINVAL;
3490
3491	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492	if (ret >= 0)
3493		return ret;
3494
3495	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496			     (void *)data.old_uV);
3497
3498	return ret;
3499}
3500
3501static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502					   int uV, unsigned selector)
3503{
3504	struct pre_voltage_change_data data;
3505	int ret;
3506
3507	data.old_uV = regulator_get_voltage_rdev(rdev);
3508	data.min_uV = uV;
3509	data.max_uV = uV;
3510	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511				   &data);
3512	if (ret & NOTIFY_STOP_MASK)
3513		return -EINVAL;
3514
3515	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516	if (ret >= 0)
3517		return ret;
3518
3519	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520			     (void *)data.old_uV);
3521
3522	return ret;
3523}
3524
3525static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526					   int uV, int new_selector)
3527{
3528	const struct regulator_ops *ops = rdev->desc->ops;
3529	int diff, old_sel, curr_sel, ret;
3530
3531	/* Stepping is only needed if the regulator is enabled. */
3532	if (!_regulator_is_enabled(rdev))
3533		goto final_set;
3534
3535	if (!ops->get_voltage_sel)
3536		return -EINVAL;
3537
3538	old_sel = ops->get_voltage_sel(rdev);
3539	if (old_sel < 0)
3540		return old_sel;
3541
3542	diff = new_selector - old_sel;
3543	if (diff == 0)
3544		return 0; /* No change needed. */
3545
3546	if (diff > 0) {
3547		/* Stepping up. */
3548		for (curr_sel = old_sel + rdev->desc->vsel_step;
3549		     curr_sel < new_selector;
3550		     curr_sel += rdev->desc->vsel_step) {
3551			/*
3552			 * Call the callback directly instead of using
3553			 * _regulator_call_set_voltage_sel() as we don't
3554			 * want to notify anyone yet. Same in the branch
3555			 * below.
3556			 */
3557			ret = ops->set_voltage_sel(rdev, curr_sel);
3558			if (ret)
3559				goto try_revert;
3560		}
3561	} else {
3562		/* Stepping down. */
3563		for (curr_sel = old_sel - rdev->desc->vsel_step;
3564		     curr_sel > new_selector;
3565		     curr_sel -= rdev->desc->vsel_step) {
3566			ret = ops->set_voltage_sel(rdev, curr_sel);
3567			if (ret)
3568				goto try_revert;
3569		}
3570	}
3571
3572final_set:
3573	/* The final selector will trigger the notifiers. */
3574	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575
3576try_revert:
3577	/*
3578	 * At least try to return to the previous voltage if setting a new
3579	 * one failed.
3580	 */
3581	(void)ops->set_voltage_sel(rdev, old_sel);
3582	return ret;
3583}
3584
3585static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586				       int old_uV, int new_uV)
3587{
3588	unsigned int ramp_delay = 0;
3589
3590	if (rdev->constraints->ramp_delay)
3591		ramp_delay = rdev->constraints->ramp_delay;
3592	else if (rdev->desc->ramp_delay)
3593		ramp_delay = rdev->desc->ramp_delay;
3594	else if (rdev->constraints->settling_time)
3595		return rdev->constraints->settling_time;
3596	else if (rdev->constraints->settling_time_up &&
3597		 (new_uV > old_uV))
3598		return rdev->constraints->settling_time_up;
3599	else if (rdev->constraints->settling_time_down &&
3600		 (new_uV < old_uV))
3601		return rdev->constraints->settling_time_down;
3602
3603	if (ramp_delay == 0)
3604		return 0;
3605
3606	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607}
3608
3609static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610				     int min_uV, int max_uV)
3611{
3612	int ret;
3613	int delay = 0;
3614	int best_val = 0;
3615	unsigned int selector;
3616	int old_selector = -1;
3617	const struct regulator_ops *ops = rdev->desc->ops;
3618	int old_uV = regulator_get_voltage_rdev(rdev);
3619
3620	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621
3622	min_uV += rdev->constraints->uV_offset;
3623	max_uV += rdev->constraints->uV_offset;
3624
3625	/*
3626	 * If we can't obtain the old selector there is not enough
3627	 * info to call set_voltage_time_sel().
3628	 */
3629	if (_regulator_is_enabled(rdev) &&
3630	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631		old_selector = ops->get_voltage_sel(rdev);
3632		if (old_selector < 0)
3633			return old_selector;
3634	}
3635
3636	if (ops->set_voltage) {
3637		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638						  &selector);
3639
3640		if (ret >= 0) {
3641			if (ops->list_voltage)
3642				best_val = ops->list_voltage(rdev,
3643							     selector);
3644			else
3645				best_val = regulator_get_voltage_rdev(rdev);
3646		}
3647
3648	} else if (ops->set_voltage_sel) {
3649		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650		if (ret >= 0) {
3651			best_val = ops->list_voltage(rdev, ret);
3652			if (min_uV <= best_val && max_uV >= best_val) {
3653				selector = ret;
3654				if (old_selector == selector)
3655					ret = 0;
3656				else if (rdev->desc->vsel_step)
3657					ret = _regulator_set_voltage_sel_step(
3658						rdev, best_val, selector);
3659				else
3660					ret = _regulator_call_set_voltage_sel(
3661						rdev, best_val, selector);
3662			} else {
3663				ret = -EINVAL;
3664			}
3665		}
3666	} else {
3667		ret = -EINVAL;
3668	}
3669
3670	if (ret)
3671		goto out;
3672
3673	if (ops->set_voltage_time_sel) {
3674		/*
3675		 * Call set_voltage_time_sel if successfully obtained
3676		 * old_selector
3677		 */
3678		if (old_selector >= 0 && old_selector != selector)
3679			delay = ops->set_voltage_time_sel(rdev, old_selector,
3680							  selector);
3681	} else {
3682		if (old_uV != best_val) {
3683			if (ops->set_voltage_time)
3684				delay = ops->set_voltage_time(rdev, old_uV,
3685							      best_val);
3686			else
3687				delay = _regulator_set_voltage_time(rdev,
3688								    old_uV,
3689								    best_val);
3690		}
3691	}
3692
3693	if (delay < 0) {
3694		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695		delay = 0;
3696	}
3697
3698	/* Insert any necessary delays */
3699	_regulator_delay_helper(delay);
3700
3701	if (best_val >= 0) {
3702		unsigned long data = best_val;
3703
3704		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705				     (void *)data);
3706	}
3707
3708out:
3709	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710
3711	return ret;
3712}
3713
3714static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715				  int min_uV, int max_uV, suspend_state_t state)
3716{
3717	struct regulator_state *rstate;
3718	int uV, sel;
3719
3720	rstate = regulator_get_suspend_state(rdev, state);
3721	if (rstate == NULL)
3722		return -EINVAL;
3723
3724	if (min_uV < rstate->min_uV)
3725		min_uV = rstate->min_uV;
3726	if (max_uV > rstate->max_uV)
3727		max_uV = rstate->max_uV;
3728
3729	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730	if (sel < 0)
3731		return sel;
3732
3733	uV = rdev->desc->ops->list_voltage(rdev, sel);
3734	if (uV >= min_uV && uV <= max_uV)
3735		rstate->uV = uV;
3736
3737	return 0;
3738}
3739
3740static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741					  int min_uV, int max_uV,
3742					  suspend_state_t state)
3743{
3744	struct regulator_dev *rdev = regulator->rdev;
3745	struct regulator_voltage *voltage = &regulator->voltage[state];
3746	int ret = 0;
3747	int old_min_uV, old_max_uV;
3748	int current_uV;
3749
3750	/* If we're setting the same range as last time the change
3751	 * should be a noop (some cpufreq implementations use the same
3752	 * voltage for multiple frequencies, for example).
3753	 */
3754	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755		goto out;
3756
3757	/* If we're trying to set a range that overlaps the current voltage,
3758	 * return successfully even though the regulator does not support
3759	 * changing the voltage.
3760	 */
3761	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762		current_uV = regulator_get_voltage_rdev(rdev);
3763		if (min_uV <= current_uV && current_uV <= max_uV) {
3764			voltage->min_uV = min_uV;
3765			voltage->max_uV = max_uV;
3766			goto out;
3767		}
3768	}
3769
3770	/* sanity check */
3771	if (!rdev->desc->ops->set_voltage &&
3772	    !rdev->desc->ops->set_voltage_sel) {
3773		ret = -EINVAL;
3774		goto out;
3775	}
3776
3777	/* constraints check */
3778	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779	if (ret < 0)
3780		goto out;
3781
3782	/* restore original values in case of error */
3783	old_min_uV = voltage->min_uV;
3784	old_max_uV = voltage->max_uV;
3785	voltage->min_uV = min_uV;
3786	voltage->max_uV = max_uV;
3787
3788	/* for not coupled regulators this will just set the voltage */
3789	ret = regulator_balance_voltage(rdev, state);
3790	if (ret < 0) {
3791		voltage->min_uV = old_min_uV;
3792		voltage->max_uV = old_max_uV;
3793	}
3794
3795out:
3796	return ret;
3797}
3798
3799int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800			       int max_uV, suspend_state_t state)
3801{
3802	int best_supply_uV = 0;
3803	int supply_change_uV = 0;
3804	int ret;
3805
3806	if (rdev->supply &&
3807	    regulator_ops_is_valid(rdev->supply->rdev,
3808				   REGULATOR_CHANGE_VOLTAGE) &&
3809	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810					   rdev->desc->ops->get_voltage_sel))) {
3811		int current_supply_uV;
3812		int selector;
3813
3814		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815		if (selector < 0) {
3816			ret = selector;
3817			goto out;
3818		}
3819
3820		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821		if (best_supply_uV < 0) {
3822			ret = best_supply_uV;
3823			goto out;
3824		}
3825
3826		best_supply_uV += rdev->desc->min_dropout_uV;
3827
3828		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829		if (current_supply_uV < 0) {
3830			ret = current_supply_uV;
3831			goto out;
3832		}
3833
3834		supply_change_uV = best_supply_uV - current_supply_uV;
3835	}
3836
3837	if (supply_change_uV > 0) {
3838		ret = regulator_set_voltage_unlocked(rdev->supply,
3839				best_supply_uV, INT_MAX, state);
3840		if (ret) {
3841			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842				ERR_PTR(ret));
3843			goto out;
3844		}
3845	}
3846
3847	if (state == PM_SUSPEND_ON)
3848		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849	else
3850		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851							max_uV, state);
3852	if (ret < 0)
3853		goto out;
3854
3855	if (supply_change_uV < 0) {
3856		ret = regulator_set_voltage_unlocked(rdev->supply,
3857				best_supply_uV, INT_MAX, state);
3858		if (ret)
3859			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860				 ERR_PTR(ret));
3861		/* No need to fail here */
3862		ret = 0;
3863	}
3864
3865out:
3866	return ret;
3867}
3868EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869
3870static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871					int *current_uV, int *min_uV)
3872{
3873	struct regulation_constraints *constraints = rdev->constraints;
3874
3875	/* Limit voltage change only if necessary */
3876	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877		return 1;
3878
3879	if (*current_uV < 0) {
3880		*current_uV = regulator_get_voltage_rdev(rdev);
3881
3882		if (*current_uV < 0)
3883			return *current_uV;
3884	}
3885
3886	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887		return 1;
3888
3889	/* Clamp target voltage within the given step */
3890	if (*current_uV < *min_uV)
3891		*min_uV = min(*current_uV + constraints->max_uV_step,
3892			      *min_uV);
3893	else
3894		*min_uV = max(*current_uV - constraints->max_uV_step,
3895			      *min_uV);
3896
3897	return 0;
3898}
3899
3900static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901					 int *current_uV,
3902					 int *min_uV, int *max_uV,
3903					 suspend_state_t state,
3904					 int n_coupled)
3905{
3906	struct coupling_desc *c_desc = &rdev->coupling_desc;
3907	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908	struct regulation_constraints *constraints = rdev->constraints;
3909	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910	int max_current_uV = 0, min_current_uV = INT_MAX;
3911	int highest_min_uV = 0, target_uV, possible_uV;
3912	int i, ret, max_spread;
3913	bool done;
3914
3915	*current_uV = -1;
3916
3917	/*
3918	 * If there are no coupled regulators, simply set the voltage
3919	 * demanded by consumers.
3920	 */
3921	if (n_coupled == 1) {
3922		/*
3923		 * If consumers don't provide any demands, set voltage
3924		 * to min_uV
3925		 */
3926		desired_min_uV = constraints->min_uV;
3927		desired_max_uV = constraints->max_uV;
3928
3929		ret = regulator_check_consumers(rdev,
3930						&desired_min_uV,
3931						&desired_max_uV, state);
3932		if (ret < 0)
3933			return ret;
3934
3935		possible_uV = desired_min_uV;
3936		done = true;
3937
3938		goto finish;
3939	}
3940
3941	/* Find highest min desired voltage */
3942	for (i = 0; i < n_coupled; i++) {
3943		int tmp_min = 0;
3944		int tmp_max = INT_MAX;
3945
3946		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3947
3948		ret = regulator_check_consumers(c_rdevs[i],
3949						&tmp_min,
3950						&tmp_max, state);
3951		if (ret < 0)
3952			return ret;
3953
3954		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3955		if (ret < 0)
3956			return ret;
3957
3958		highest_min_uV = max(highest_min_uV, tmp_min);
3959
3960		if (i == 0) {
3961			desired_min_uV = tmp_min;
3962			desired_max_uV = tmp_max;
3963		}
3964	}
3965
3966	max_spread = constraints->max_spread[0];
3967
3968	/*
3969	 * Let target_uV be equal to the desired one if possible.
3970	 * If not, set it to minimum voltage, allowed by other coupled
3971	 * regulators.
3972	 */
3973	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3974
3975	/*
3976	 * Find min and max voltages, which currently aren't violating
3977	 * max_spread.
3978	 */
3979	for (i = 1; i < n_coupled; i++) {
3980		int tmp_act;
3981
3982		if (!_regulator_is_enabled(c_rdevs[i]))
3983			continue;
3984
3985		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3986		if (tmp_act < 0)
3987			return tmp_act;
3988
3989		min_current_uV = min(tmp_act, min_current_uV);
3990		max_current_uV = max(tmp_act, max_current_uV);
3991	}
3992
3993	/* There aren't any other regulators enabled */
3994	if (max_current_uV == 0) {
3995		possible_uV = target_uV;
3996	} else {
3997		/*
3998		 * Correct target voltage, so as it currently isn't
3999		 * violating max_spread
4000		 */
4001		possible_uV = max(target_uV, max_current_uV - max_spread);
4002		possible_uV = min(possible_uV, min_current_uV + max_spread);
4003	}
4004
4005	if (possible_uV > desired_max_uV)
4006		return -EINVAL;
4007
4008	done = (possible_uV == target_uV);
4009	desired_min_uV = possible_uV;
4010
4011finish:
4012	/* Apply max_uV_step constraint if necessary */
4013	if (state == PM_SUSPEND_ON) {
4014		ret = regulator_limit_voltage_step(rdev, current_uV,
4015						   &desired_min_uV);
4016		if (ret < 0)
4017			return ret;
4018
4019		if (ret == 0)
4020			done = false;
4021	}
4022
4023	/* Set current_uV if wasn't done earlier in the code and if necessary */
4024	if (n_coupled > 1 && *current_uV == -1) {
4025
4026		if (_regulator_is_enabled(rdev)) {
4027			ret = regulator_get_voltage_rdev(rdev);
4028			if (ret < 0)
4029				return ret;
4030
4031			*current_uV = ret;
4032		} else {
4033			*current_uV = desired_min_uV;
4034		}
4035	}
4036
4037	*min_uV = desired_min_uV;
4038	*max_uV = desired_max_uV;
4039
4040	return done;
4041}
4042
4043int regulator_do_balance_voltage(struct regulator_dev *rdev,
4044				 suspend_state_t state, bool skip_coupled)
4045{
4046	struct regulator_dev **c_rdevs;
4047	struct regulator_dev *best_rdev;
4048	struct coupling_desc *c_desc = &rdev->coupling_desc;
4049	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4050	unsigned int delta, best_delta;
4051	unsigned long c_rdev_done = 0;
4052	bool best_c_rdev_done;
4053
4054	c_rdevs = c_desc->coupled_rdevs;
4055	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4056
4057	/*
4058	 * Find the best possible voltage change on each loop. Leave the loop
4059	 * if there isn't any possible change.
4060	 */
4061	do {
4062		best_c_rdev_done = false;
4063		best_delta = 0;
4064		best_min_uV = 0;
4065		best_max_uV = 0;
4066		best_c_rdev = 0;
4067		best_rdev = NULL;
4068
4069		/*
4070		 * Find highest difference between optimal voltage
4071		 * and current voltage.
4072		 */
4073		for (i = 0; i < n_coupled; i++) {
4074			/*
4075			 * optimal_uV is the best voltage that can be set for
4076			 * i-th regulator at the moment without violating
4077			 * max_spread constraint in order to balance
4078			 * the coupled voltages.
4079			 */
4080			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4081
4082			if (test_bit(i, &c_rdev_done))
4083				continue;
4084
4085			ret = regulator_get_optimal_voltage(c_rdevs[i],
4086							    &current_uV,
4087							    &optimal_uV,
4088							    &optimal_max_uV,
4089							    state, n_coupled);
4090			if (ret < 0)
4091				goto out;
4092
4093			delta = abs(optimal_uV - current_uV);
4094
4095			if (delta && best_delta <= delta) {
4096				best_c_rdev_done = ret;
4097				best_delta = delta;
4098				best_rdev = c_rdevs[i];
4099				best_min_uV = optimal_uV;
4100				best_max_uV = optimal_max_uV;
4101				best_c_rdev = i;
4102			}
4103		}
4104
4105		/* Nothing to change, return successfully */
4106		if (!best_rdev) {
4107			ret = 0;
4108			goto out;
4109		}
4110
4111		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4112						 best_max_uV, state);
4113
4114		if (ret < 0)
4115			goto out;
4116
4117		if (best_c_rdev_done)
4118			set_bit(best_c_rdev, &c_rdev_done);
4119
4120	} while (n_coupled > 1);
4121
4122out:
4123	return ret;
4124}
4125
4126static int regulator_balance_voltage(struct regulator_dev *rdev,
4127				     suspend_state_t state)
4128{
4129	struct coupling_desc *c_desc = &rdev->coupling_desc;
4130	struct regulator_coupler *coupler = c_desc->coupler;
4131	bool skip_coupled = false;
4132
4133	/*
4134	 * If system is in a state other than PM_SUSPEND_ON, don't check
4135	 * other coupled regulators.
4136	 */
4137	if (state != PM_SUSPEND_ON)
4138		skip_coupled = true;
4139
4140	if (c_desc->n_resolved < c_desc->n_coupled) {
4141		rdev_err(rdev, "Not all coupled regulators registered\n");
4142		return -EPERM;
4143	}
4144
4145	/* Invoke custom balancer for customized couplers */
4146	if (coupler && coupler->balance_voltage)
4147		return coupler->balance_voltage(coupler, rdev, state);
4148
4149	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4150}
4151
4152/**
4153 * regulator_set_voltage - set regulator output voltage
4154 * @regulator: regulator source
4155 * @min_uV: Minimum required voltage in uV
4156 * @max_uV: Maximum acceptable voltage in uV
4157 *
4158 * Sets a voltage regulator to the desired output voltage. This can be set
4159 * during any regulator state. IOW, regulator can be disabled or enabled.
4160 *
4161 * If the regulator is enabled then the voltage will change to the new value
4162 * immediately otherwise if the regulator is disabled the regulator will
4163 * output at the new voltage when enabled.
4164 *
4165 * NOTE: If the regulator is shared between several devices then the lowest
4166 * request voltage that meets the system constraints will be used.
4167 * Regulator system constraints must be set for this regulator before
4168 * calling this function otherwise this call will fail.
 
 
4169 */
4170int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4171{
4172	struct ww_acquire_ctx ww_ctx;
4173	int ret;
4174
4175	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4176
4177	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4178					     PM_SUSPEND_ON);
4179
4180	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181
4182	return ret;
4183}
4184EXPORT_SYMBOL_GPL(regulator_set_voltage);
4185
4186static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4187					   suspend_state_t state, bool en)
4188{
4189	struct regulator_state *rstate;
4190
4191	rstate = regulator_get_suspend_state(rdev, state);
4192	if (rstate == NULL)
4193		return -EINVAL;
4194
4195	if (!rstate->changeable)
4196		return -EPERM;
4197
4198	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4199
4200	return 0;
4201}
4202
4203int regulator_suspend_enable(struct regulator_dev *rdev,
4204				    suspend_state_t state)
4205{
4206	return regulator_suspend_toggle(rdev, state, true);
4207}
4208EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4209
4210int regulator_suspend_disable(struct regulator_dev *rdev,
4211				     suspend_state_t state)
4212{
4213	struct regulator *regulator;
4214	struct regulator_voltage *voltage;
4215
4216	/*
4217	 * if any consumer wants this regulator device keeping on in
4218	 * suspend states, don't set it as disabled.
4219	 */
4220	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4221		voltage = &regulator->voltage[state];
4222		if (voltage->min_uV || voltage->max_uV)
4223			return 0;
4224	}
4225
4226	return regulator_suspend_toggle(rdev, state, false);
4227}
4228EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4229
4230static int _regulator_set_suspend_voltage(struct regulator *regulator,
4231					  int min_uV, int max_uV,
4232					  suspend_state_t state)
4233{
4234	struct regulator_dev *rdev = regulator->rdev;
4235	struct regulator_state *rstate;
4236
4237	rstate = regulator_get_suspend_state(rdev, state);
4238	if (rstate == NULL)
4239		return -EINVAL;
4240
4241	if (rstate->min_uV == rstate->max_uV) {
4242		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4243		return -EPERM;
4244	}
4245
4246	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4247}
4248
4249int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4250				  int max_uV, suspend_state_t state)
4251{
4252	struct ww_acquire_ctx ww_ctx;
4253	int ret;
4254
4255	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4256	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4257		return -EINVAL;
4258
4259	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4260
4261	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4262					     max_uV, state);
4263
4264	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4265
4266	return ret;
4267}
4268EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4269
4270/**
4271 * regulator_set_voltage_time - get raise/fall time
4272 * @regulator: regulator source
4273 * @old_uV: starting voltage in microvolts
4274 * @new_uV: target voltage in microvolts
4275 *
4276 * Provided with the starting and ending voltage, this function attempts to
4277 * calculate the time in microseconds required to rise or fall to this new
4278 * voltage.
 
 
4279 */
4280int regulator_set_voltage_time(struct regulator *regulator,
4281			       int old_uV, int new_uV)
4282{
4283	struct regulator_dev *rdev = regulator->rdev;
4284	const struct regulator_ops *ops = rdev->desc->ops;
4285	int old_sel = -1;
4286	int new_sel = -1;
4287	int voltage;
4288	int i;
4289
4290	if (ops->set_voltage_time)
4291		return ops->set_voltage_time(rdev, old_uV, new_uV);
4292	else if (!ops->set_voltage_time_sel)
4293		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294
4295	/* Currently requires operations to do this */
4296	if (!ops->list_voltage || !rdev->desc->n_voltages)
4297		return -EINVAL;
4298
4299	for (i = 0; i < rdev->desc->n_voltages; i++) {
4300		/* We only look for exact voltage matches here */
4301		if (i < rdev->desc->linear_min_sel)
4302			continue;
4303
4304		if (old_sel >= 0 && new_sel >= 0)
4305			break;
4306
4307		voltage = regulator_list_voltage(regulator, i);
4308		if (voltage < 0)
4309			return -EINVAL;
4310		if (voltage == 0)
4311			continue;
4312		if (voltage == old_uV)
4313			old_sel = i;
4314		if (voltage == new_uV)
4315			new_sel = i;
4316	}
4317
4318	if (old_sel < 0 || new_sel < 0)
4319		return -EINVAL;
4320
4321	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322}
4323EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4324
4325/**
4326 * regulator_set_voltage_time_sel - get raise/fall time
4327 * @rdev: regulator source device
4328 * @old_selector: selector for starting voltage
4329 * @new_selector: selector for target voltage
4330 *
4331 * Provided with the starting and target voltage selectors, this function
4332 * returns time in microseconds required to rise or fall to this new voltage
4333 *
4334 * Drivers providing ramp_delay in regulation_constraints can use this as their
4335 * set_voltage_time_sel() operation.
 
 
4336 */
4337int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338				   unsigned int old_selector,
4339				   unsigned int new_selector)
4340{
4341	int old_volt, new_volt;
4342
4343	/* sanity check */
4344	if (!rdev->desc->ops->list_voltage)
4345		return -EINVAL;
4346
4347	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349
4350	if (rdev->desc->ops->set_voltage_time)
4351		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352							 new_volt);
4353	else
4354		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355}
4356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357
4358int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359{
4360	int ret;
4361
4362	regulator_lock(rdev);
4363
4364	if (!rdev->desc->ops->set_voltage &&
4365	    !rdev->desc->ops->set_voltage_sel) {
4366		ret = -EINVAL;
4367		goto out;
4368	}
4369
4370	/* balance only, if regulator is coupled */
4371	if (rdev->coupling_desc.n_coupled > 1)
4372		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373	else
4374		ret = -EOPNOTSUPP;
4375
4376out:
4377	regulator_unlock(rdev);
4378	return ret;
4379}
4380
4381/**
4382 * regulator_sync_voltage - re-apply last regulator output voltage
4383 * @regulator: regulator source
4384 *
4385 * Re-apply the last configured voltage.  This is intended to be used
4386 * where some external control source the consumer is cooperating with
4387 * has caused the configured voltage to change.
 
 
4388 */
4389int regulator_sync_voltage(struct regulator *regulator)
4390{
4391	struct regulator_dev *rdev = regulator->rdev;
4392	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4393	int ret, min_uV, max_uV;
4394
4395	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4396		return 0;
4397
4398	regulator_lock(rdev);
4399
4400	if (!rdev->desc->ops->set_voltage &&
4401	    !rdev->desc->ops->set_voltage_sel) {
4402		ret = -EINVAL;
4403		goto out;
4404	}
4405
4406	/* This is only going to work if we've had a voltage configured. */
4407	if (!voltage->min_uV && !voltage->max_uV) {
4408		ret = -EINVAL;
4409		goto out;
4410	}
4411
4412	min_uV = voltage->min_uV;
4413	max_uV = voltage->max_uV;
4414
4415	/* This should be a paranoia check... */
4416	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4417	if (ret < 0)
4418		goto out;
4419
4420	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4421	if (ret < 0)
4422		goto out;
4423
4424	/* balance only, if regulator is coupled */
4425	if (rdev->coupling_desc.n_coupled > 1)
4426		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4427	else
4428		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4429
4430out:
4431	regulator_unlock(rdev);
4432	return ret;
4433}
4434EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4435
4436int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4437{
4438	int sel, ret;
4439	bool bypassed;
4440
4441	if (rdev->desc->ops->get_bypass) {
4442		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4443		if (ret < 0)
4444			return ret;
4445		if (bypassed) {
4446			/* if bypassed the regulator must have a supply */
4447			if (!rdev->supply) {
4448				rdev_err(rdev,
4449					 "bypassed regulator has no supply!\n");
4450				return -EPROBE_DEFER;
4451			}
4452
4453			return regulator_get_voltage_rdev(rdev->supply->rdev);
4454		}
4455	}
4456
4457	if (rdev->desc->ops->get_voltage_sel) {
4458		sel = rdev->desc->ops->get_voltage_sel(rdev);
4459		if (sel < 0)
4460			return sel;
4461		ret = rdev->desc->ops->list_voltage(rdev, sel);
4462	} else if (rdev->desc->ops->get_voltage) {
4463		ret = rdev->desc->ops->get_voltage(rdev);
4464	} else if (rdev->desc->ops->list_voltage) {
4465		ret = rdev->desc->ops->list_voltage(rdev, 0);
4466	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4467		ret = rdev->desc->fixed_uV;
4468	} else if (rdev->supply) {
4469		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4470	} else if (rdev->supply_name) {
4471		return -EPROBE_DEFER;
4472	} else {
4473		return -EINVAL;
4474	}
4475
4476	if (ret < 0)
4477		return ret;
4478	return ret - rdev->constraints->uV_offset;
4479}
4480EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4481
4482/**
4483 * regulator_get_voltage - get regulator output voltage
4484 * @regulator: regulator source
4485 *
4486 * This returns the current regulator voltage in uV.
4487 *
4488 * NOTE: If the regulator is disabled it will return the voltage value. This
4489 * function should not be used to determine regulator state.
4490 */
4491int regulator_get_voltage(struct regulator *regulator)
4492{
4493	struct ww_acquire_ctx ww_ctx;
4494	int ret;
4495
4496	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4497	ret = regulator_get_voltage_rdev(regulator->rdev);
4498	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4499
4500	return ret;
4501}
4502EXPORT_SYMBOL_GPL(regulator_get_voltage);
4503
4504/**
4505 * regulator_set_current_limit - set regulator output current limit
4506 * @regulator: regulator source
4507 * @min_uA: Minimum supported current in uA
4508 * @max_uA: Maximum supported current in uA
4509 *
4510 * Sets current sink to the desired output current. This can be set during
4511 * any regulator state. IOW, regulator can be disabled or enabled.
4512 *
4513 * If the regulator is enabled then the current will change to the new value
4514 * immediately otherwise if the regulator is disabled the regulator will
4515 * output at the new current when enabled.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
 
 
4519 */
4520int regulator_set_current_limit(struct regulator *regulator,
4521			       int min_uA, int max_uA)
4522{
4523	struct regulator_dev *rdev = regulator->rdev;
4524	int ret;
4525
4526	regulator_lock(rdev);
4527
4528	/* sanity check */
4529	if (!rdev->desc->ops->set_current_limit) {
4530		ret = -EINVAL;
4531		goto out;
4532	}
4533
4534	/* constraints check */
4535	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4536	if (ret < 0)
4537		goto out;
4538
4539	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4540out:
4541	regulator_unlock(rdev);
4542	return ret;
4543}
4544EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4545
4546static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4547{
4548	/* sanity check */
4549	if (!rdev->desc->ops->get_current_limit)
4550		return -EINVAL;
4551
4552	return rdev->desc->ops->get_current_limit(rdev);
4553}
4554
4555static int _regulator_get_current_limit(struct regulator_dev *rdev)
4556{
4557	int ret;
4558
4559	regulator_lock(rdev);
4560	ret = _regulator_get_current_limit_unlocked(rdev);
4561	regulator_unlock(rdev);
4562
4563	return ret;
4564}
4565
4566/**
4567 * regulator_get_current_limit - get regulator output current
4568 * @regulator: regulator source
4569 *
4570 * This returns the current supplied by the specified current sink in uA.
 
4571 *
4572 * NOTE: If the regulator is disabled it will return the current value. This
4573 * function should not be used to determine regulator state.
4574 */
4575int regulator_get_current_limit(struct regulator *regulator)
4576{
4577	return _regulator_get_current_limit(regulator->rdev);
4578}
4579EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4580
4581/**
4582 * regulator_set_mode - set regulator operating mode
4583 * @regulator: regulator source
4584 * @mode: operating mode - one of the REGULATOR_MODE constants
4585 *
4586 * Set regulator operating mode to increase regulator efficiency or improve
4587 * regulation performance.
4588 *
4589 * NOTE: Regulator system constraints must be set for this regulator before
4590 * calling this function otherwise this call will fail.
 
 
4591 */
4592int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4593{
4594	struct regulator_dev *rdev = regulator->rdev;
4595	int ret;
4596	int regulator_curr_mode;
4597
4598	regulator_lock(rdev);
4599
4600	/* sanity check */
4601	if (!rdev->desc->ops->set_mode) {
4602		ret = -EINVAL;
4603		goto out;
4604	}
4605
4606	/* return if the same mode is requested */
4607	if (rdev->desc->ops->get_mode) {
4608		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4609		if (regulator_curr_mode == mode) {
4610			ret = 0;
4611			goto out;
4612		}
4613	}
4614
4615	/* constraints check */
4616	ret = regulator_mode_constrain(rdev, &mode);
4617	if (ret < 0)
4618		goto out;
4619
4620	ret = rdev->desc->ops->set_mode(rdev, mode);
4621out:
4622	regulator_unlock(rdev);
4623	return ret;
4624}
4625EXPORT_SYMBOL_GPL(regulator_set_mode);
4626
4627static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4628{
4629	/* sanity check */
4630	if (!rdev->desc->ops->get_mode)
4631		return -EINVAL;
4632
4633	return rdev->desc->ops->get_mode(rdev);
4634}
4635
4636static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4637{
4638	int ret;
4639
4640	regulator_lock(rdev);
4641	ret = _regulator_get_mode_unlocked(rdev);
4642	regulator_unlock(rdev);
4643
4644	return ret;
4645}
4646
4647/**
4648 * regulator_get_mode - get regulator operating mode
4649 * @regulator: regulator source
4650 *
4651 * Get the current regulator operating mode.
 
 
 
4652 */
4653unsigned int regulator_get_mode(struct regulator *regulator)
4654{
4655	return _regulator_get_mode(regulator->rdev);
4656}
4657EXPORT_SYMBOL_GPL(regulator_get_mode);
4658
4659static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4660{
4661	int ret = 0;
4662
4663	if (rdev->use_cached_err) {
4664		spin_lock(&rdev->err_lock);
4665		ret = rdev->cached_err;
4666		spin_unlock(&rdev->err_lock);
4667	}
4668	return ret;
4669}
4670
4671static int _regulator_get_error_flags(struct regulator_dev *rdev,
4672					unsigned int *flags)
4673{
4674	int cached_flags, ret = 0;
4675
4676	regulator_lock(rdev);
4677
4678	cached_flags = rdev_get_cached_err_flags(rdev);
4679
4680	if (rdev->desc->ops->get_error_flags)
4681		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4682	else if (!rdev->use_cached_err)
4683		ret = -EINVAL;
4684
4685	*flags |= cached_flags;
4686
4687	regulator_unlock(rdev);
4688
4689	return ret;
4690}
4691
4692/**
4693 * regulator_get_error_flags - get regulator error information
4694 * @regulator: regulator source
4695 * @flags: pointer to store error flags
4696 *
4697 * Get the current regulator error information.
 
 
4698 */
4699int regulator_get_error_flags(struct regulator *regulator,
4700				unsigned int *flags)
4701{
4702	return _regulator_get_error_flags(regulator->rdev, flags);
4703}
4704EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4705
4706/**
4707 * regulator_set_load - set regulator load
4708 * @regulator: regulator source
4709 * @uA_load: load current
4710 *
4711 * Notifies the regulator core of a new device load. This is then used by
4712 * DRMS (if enabled by constraints) to set the most efficient regulator
4713 * operating mode for the new regulator loading.
4714 *
4715 * Consumer devices notify their supply regulator of the maximum power
4716 * they will require (can be taken from device datasheet in the power
4717 * consumption tables) when they change operational status and hence power
4718 * state. Examples of operational state changes that can affect power
4719 * consumption are :-
4720 *
4721 *    o Device is opened / closed.
4722 *    o Device I/O is about to begin or has just finished.
4723 *    o Device is idling in between work.
4724 *
4725 * This information is also exported via sysfs to userspace.
4726 *
4727 * DRMS will sum the total requested load on the regulator and change
4728 * to the most efficient operating mode if platform constraints allow.
4729 *
4730 * NOTE: when a regulator consumer requests to have a regulator
4731 * disabled then any load that consumer requested no longer counts
4732 * toward the total requested load.  If the regulator is re-enabled
4733 * then the previously requested load will start counting again.
4734 *
4735 * If a regulator is an always-on regulator then an individual consumer's
4736 * load will still be removed if that consumer is fully disabled.
4737 *
4738 * On error a negative errno is returned.
4739 */
4740int regulator_set_load(struct regulator *regulator, int uA_load)
4741{
4742	struct regulator_dev *rdev = regulator->rdev;
4743	int old_uA_load;
4744	int ret = 0;
4745
4746	regulator_lock(rdev);
4747	old_uA_load = regulator->uA_load;
4748	regulator->uA_load = uA_load;
4749	if (regulator->enable_count && old_uA_load != uA_load) {
4750		ret = drms_uA_update(rdev);
4751		if (ret < 0)
4752			regulator->uA_load = old_uA_load;
4753	}
4754	regulator_unlock(rdev);
4755
4756	return ret;
4757}
4758EXPORT_SYMBOL_GPL(regulator_set_load);
4759
4760/**
4761 * regulator_allow_bypass - allow the regulator to go into bypass mode
4762 *
4763 * @regulator: Regulator to configure
4764 * @enable: enable or disable bypass mode
4765 *
4766 * Allow the regulator to go into bypass mode if all other consumers
4767 * for the regulator also enable bypass mode and the machine
4768 * constraints allow this.  Bypass mode means that the regulator is
4769 * simply passing the input directly to the output with no regulation.
 
 
 
4770 */
4771int regulator_allow_bypass(struct regulator *regulator, bool enable)
4772{
4773	struct regulator_dev *rdev = regulator->rdev;
4774	const char *name = rdev_get_name(rdev);
4775	int ret = 0;
4776
4777	if (!rdev->desc->ops->set_bypass)
4778		return 0;
4779
4780	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4781		return 0;
4782
4783	regulator_lock(rdev);
4784
4785	if (enable && !regulator->bypass) {
4786		rdev->bypass_count++;
4787
4788		if (rdev->bypass_count == rdev->open_count) {
4789			trace_regulator_bypass_enable(name);
4790
4791			ret = rdev->desc->ops->set_bypass(rdev, enable);
4792			if (ret != 0)
4793				rdev->bypass_count--;
4794			else
4795				trace_regulator_bypass_enable_complete(name);
4796		}
4797
4798	} else if (!enable && regulator->bypass) {
4799		rdev->bypass_count--;
4800
4801		if (rdev->bypass_count != rdev->open_count) {
4802			trace_regulator_bypass_disable(name);
4803
4804			ret = rdev->desc->ops->set_bypass(rdev, enable);
4805			if (ret != 0)
4806				rdev->bypass_count++;
4807			else
4808				trace_regulator_bypass_disable_complete(name);
4809		}
4810	}
4811
4812	if (ret == 0)
4813		regulator->bypass = enable;
4814
4815	regulator_unlock(rdev);
4816
4817	return ret;
4818}
4819EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4820
4821/**
4822 * regulator_register_notifier - register regulator event notifier
4823 * @regulator: regulator source
4824 * @nb: notifier block
4825 *
4826 * Register notifier block to receive regulator events.
 
 
4827 */
4828int regulator_register_notifier(struct regulator *regulator,
4829			      struct notifier_block *nb)
4830{
4831	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4832						nb);
4833}
4834EXPORT_SYMBOL_GPL(regulator_register_notifier);
4835
4836/**
4837 * regulator_unregister_notifier - unregister regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Unregister regulator event notifier block.
 
 
4842 */
4843int regulator_unregister_notifier(struct regulator *regulator,
4844				struct notifier_block *nb)
4845{
4846	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4847						  nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4850
4851/* notify regulator consumers and downstream regulator consumers.
4852 * Note mutex must be held by caller.
4853 */
4854static int _notifier_call_chain(struct regulator_dev *rdev,
4855				  unsigned long event, void *data)
4856{
4857	/* call rdev chain first */
4858	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4859
4860	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4861		struct device *parent = rdev->dev.parent;
4862		const char *rname = rdev_get_name(rdev);
4863		char name[32];
4864
4865		/* Avoid duplicate debugfs directory names */
4866		if (parent && rname == rdev->desc->name) {
4867			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4868				 rname);
4869			rname = name;
4870		}
4871		reg_generate_netlink_event(rname, event);
4872	}
4873
4874	return ret;
4875}
4876
4877int _regulator_bulk_get(struct device *dev, int num_consumers,
4878			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4879{
4880	int i;
4881	int ret;
4882
4883	for (i = 0; i < num_consumers; i++)
4884		consumers[i].consumer = NULL;
4885
4886	for (i = 0; i < num_consumers; i++) {
4887		consumers[i].consumer = _regulator_get(dev,
4888						       consumers[i].supply, get_type);
4889		if (IS_ERR(consumers[i].consumer)) {
4890			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4891					    "Failed to get supply '%s'",
4892					    consumers[i].supply);
4893			consumers[i].consumer = NULL;
4894			goto err;
4895		}
4896
4897		if (consumers[i].init_load_uA > 0) {
4898			ret = regulator_set_load(consumers[i].consumer,
4899						 consumers[i].init_load_uA);
4900			if (ret) {
4901				i++;
4902				goto err;
4903			}
4904		}
4905	}
4906
4907	return 0;
4908
4909err:
4910	while (--i >= 0)
4911		regulator_put(consumers[i].consumer);
4912
4913	return ret;
4914}
4915
4916/**
4917 * regulator_bulk_get - get multiple regulator consumers
4918 *
4919 * @dev:           Device to supply
4920 * @num_consumers: Number of consumers to register
4921 * @consumers:     Configuration of consumers; clients are stored here.
4922 *
4923 * @return 0 on success, an errno on failure.
4924 *
4925 * This helper function allows drivers to get several regulator
4926 * consumers in one operation.  If any of the regulators cannot be
4927 * acquired then any regulators that were allocated will be freed
4928 * before returning to the caller.
 
 
4929 */
4930int regulator_bulk_get(struct device *dev, int num_consumers,
4931		       struct regulator_bulk_data *consumers)
4932{
4933	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_get);
4936
4937static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4938{
4939	struct regulator_bulk_data *bulk = data;
4940
4941	bulk->ret = regulator_enable(bulk->consumer);
4942}
4943
4944/**
4945 * regulator_bulk_enable - enable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers:     Consumer data; clients are stored here.
4949 * @return         0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to enable multiple regulator
4952 * clients in a single API call.  If any consumers cannot be enabled
4953 * then any others that were enabled will be disabled again prior to
4954 * return.
 
 
4955 */
4956int regulator_bulk_enable(int num_consumers,
4957			  struct regulator_bulk_data *consumers)
4958{
4959	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4960	int i;
4961	int ret = 0;
4962
4963	for (i = 0; i < num_consumers; i++) {
4964		async_schedule_domain(regulator_bulk_enable_async,
4965				      &consumers[i], &async_domain);
4966	}
4967
4968	async_synchronize_full_domain(&async_domain);
4969
4970	/* If any consumer failed we need to unwind any that succeeded */
4971	for (i = 0; i < num_consumers; i++) {
4972		if (consumers[i].ret != 0) {
4973			ret = consumers[i].ret;
4974			goto err;
4975		}
4976	}
4977
4978	return 0;
4979
4980err:
4981	for (i = 0; i < num_consumers; i++) {
4982		if (consumers[i].ret < 0)
4983			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4984			       ERR_PTR(consumers[i].ret));
4985		else
4986			regulator_disable(consumers[i].consumer);
4987	}
4988
4989	return ret;
4990}
4991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4992
4993/**
4994 * regulator_bulk_disable - disable multiple regulator consumers
4995 *
4996 * @num_consumers: Number of consumers
4997 * @consumers:     Consumer data; clients are stored here.
4998 * @return         0 on success, an errno on failure
4999 *
5000 * This convenience API allows consumers to disable multiple regulator
5001 * clients in a single API call.  If any consumers cannot be disabled
5002 * then any others that were disabled will be enabled again prior to
5003 * return.
 
 
5004 */
5005int regulator_bulk_disable(int num_consumers,
5006			   struct regulator_bulk_data *consumers)
5007{
5008	int i;
5009	int ret, r;
5010
5011	for (i = num_consumers - 1; i >= 0; --i) {
5012		ret = regulator_disable(consumers[i].consumer);
5013		if (ret != 0)
5014			goto err;
5015	}
5016
5017	return 0;
5018
5019err:
5020	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5021	for (++i; i < num_consumers; ++i) {
5022		r = regulator_enable(consumers[i].consumer);
5023		if (r != 0)
5024			pr_err("Failed to re-enable %s: %pe\n",
5025			       consumers[i].supply, ERR_PTR(r));
5026	}
5027
5028	return ret;
5029}
5030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5031
5032/**
5033 * regulator_bulk_force_disable - force disable multiple regulator consumers
5034 *
5035 * @num_consumers: Number of consumers
5036 * @consumers:     Consumer data; clients are stored here.
5037 * @return         0 on success, an errno on failure
5038 *
5039 * This convenience API allows consumers to forcibly disable multiple regulator
5040 * clients in a single API call.
5041 * NOTE: This should be used for situations when device damage will
5042 * likely occur if the regulators are not disabled (e.g. over temp).
5043 * Although regulator_force_disable function call for some consumers can
5044 * return error numbers, the function is called for all consumers.
 
 
5045 */
5046int regulator_bulk_force_disable(int num_consumers,
5047			   struct regulator_bulk_data *consumers)
5048{
5049	int i;
5050	int ret = 0;
5051
5052	for (i = 0; i < num_consumers; i++) {
5053		consumers[i].ret =
5054			    regulator_force_disable(consumers[i].consumer);
5055
5056		/* Store first error for reporting */
5057		if (consumers[i].ret && !ret)
5058			ret = consumers[i].ret;
5059	}
5060
5061	return ret;
5062}
5063EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5064
5065/**
5066 * regulator_bulk_free - free multiple regulator consumers
5067 *
5068 * @num_consumers: Number of consumers
5069 * @consumers:     Consumer data; clients are stored here.
5070 *
5071 * This convenience API allows consumers to free multiple regulator
5072 * clients in a single API call.
5073 */
5074void regulator_bulk_free(int num_consumers,
5075			 struct regulator_bulk_data *consumers)
5076{
5077	int i;
5078
5079	for (i = 0; i < num_consumers; i++) {
5080		regulator_put(consumers[i].consumer);
5081		consumers[i].consumer = NULL;
5082	}
5083}
5084EXPORT_SYMBOL_GPL(regulator_bulk_free);
5085
5086/**
5087 * regulator_handle_critical - Handle events for system-critical regulators.
5088 * @rdev: The regulator device.
5089 * @event: The event being handled.
5090 *
5091 * This function handles critical events such as under-voltage, over-current,
5092 * and unknown errors for regulators deemed system-critical. On detecting such
5093 * events, it triggers a hardware protection shutdown with a defined timeout.
5094 */
5095static void regulator_handle_critical(struct regulator_dev *rdev,
5096				      unsigned long event)
5097{
5098	const char *reason = NULL;
5099
5100	if (!rdev->constraints->system_critical)
5101		return;
5102
5103	switch (event) {
5104	case REGULATOR_EVENT_UNDER_VOLTAGE:
5105		reason = "System critical regulator: voltage drop detected";
5106		break;
5107	case REGULATOR_EVENT_OVER_CURRENT:
5108		reason = "System critical regulator: over-current detected";
5109		break;
5110	case REGULATOR_EVENT_FAIL:
5111		reason = "System critical regulator: unknown error";
5112	}
5113
5114	if (!reason)
5115		return;
5116
5117	hw_protection_shutdown(reason,
5118			       rdev->constraints->uv_less_critical_window_ms);
5119}
5120
5121/**
5122 * regulator_notifier_call_chain - call regulator event notifier
5123 * @rdev: regulator source
5124 * @event: notifier block
5125 * @data: callback-specific data.
5126 *
5127 * Called by regulator drivers to notify clients a regulator event has
5128 * occurred.
 
 
5129 */
5130int regulator_notifier_call_chain(struct regulator_dev *rdev,
5131				  unsigned long event, void *data)
5132{
5133	regulator_handle_critical(rdev, event);
5134
5135	_notifier_call_chain(rdev, event, data);
5136	return NOTIFY_DONE;
5137
5138}
5139EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5140
5141/**
5142 * regulator_mode_to_status - convert a regulator mode into a status
5143 *
5144 * @mode: Mode to convert
5145 *
5146 * Convert a regulator mode into a status.
 
 
5147 */
5148int regulator_mode_to_status(unsigned int mode)
5149{
5150	switch (mode) {
5151	case REGULATOR_MODE_FAST:
5152		return REGULATOR_STATUS_FAST;
5153	case REGULATOR_MODE_NORMAL:
5154		return REGULATOR_STATUS_NORMAL;
5155	case REGULATOR_MODE_IDLE:
5156		return REGULATOR_STATUS_IDLE;
5157	case REGULATOR_MODE_STANDBY:
5158		return REGULATOR_STATUS_STANDBY;
5159	default:
5160		return REGULATOR_STATUS_UNDEFINED;
5161	}
5162}
5163EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5164
5165static struct attribute *regulator_dev_attrs[] = {
5166	&dev_attr_name.attr,
5167	&dev_attr_num_users.attr,
5168	&dev_attr_type.attr,
5169	&dev_attr_microvolts.attr,
5170	&dev_attr_microamps.attr,
5171	&dev_attr_opmode.attr,
5172	&dev_attr_state.attr,
5173	&dev_attr_status.attr,
5174	&dev_attr_bypass.attr,
5175	&dev_attr_requested_microamps.attr,
5176	&dev_attr_min_microvolts.attr,
5177	&dev_attr_max_microvolts.attr,
5178	&dev_attr_min_microamps.attr,
5179	&dev_attr_max_microamps.attr,
5180	&dev_attr_under_voltage.attr,
5181	&dev_attr_over_current.attr,
5182	&dev_attr_regulation_out.attr,
5183	&dev_attr_fail.attr,
5184	&dev_attr_over_temp.attr,
5185	&dev_attr_under_voltage_warn.attr,
5186	&dev_attr_over_current_warn.attr,
5187	&dev_attr_over_voltage_warn.attr,
5188	&dev_attr_over_temp_warn.attr,
5189	&dev_attr_suspend_standby_state.attr,
5190	&dev_attr_suspend_mem_state.attr,
5191	&dev_attr_suspend_disk_state.attr,
5192	&dev_attr_suspend_standby_microvolts.attr,
5193	&dev_attr_suspend_mem_microvolts.attr,
5194	&dev_attr_suspend_disk_microvolts.attr,
5195	&dev_attr_suspend_standby_mode.attr,
5196	&dev_attr_suspend_mem_mode.attr,
5197	&dev_attr_suspend_disk_mode.attr,
5198	NULL
5199};
5200
5201/*
5202 * To avoid cluttering sysfs (and memory) with useless state, only
5203 * create attributes that can be meaningfully displayed.
5204 */
5205static umode_t regulator_attr_is_visible(struct kobject *kobj,
5206					 struct attribute *attr, int idx)
5207{
5208	struct device *dev = kobj_to_dev(kobj);
5209	struct regulator_dev *rdev = dev_to_rdev(dev);
5210	const struct regulator_ops *ops = rdev->desc->ops;
5211	umode_t mode = attr->mode;
5212
5213	/* these three are always present */
5214	if (attr == &dev_attr_name.attr ||
5215	    attr == &dev_attr_num_users.attr ||
5216	    attr == &dev_attr_type.attr)
5217		return mode;
5218
5219	/* some attributes need specific methods to be displayed */
5220	if (attr == &dev_attr_microvolts.attr) {
5221		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5222		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5223		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5224		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5225			return mode;
5226		return 0;
5227	}
5228
5229	if (attr == &dev_attr_microamps.attr)
5230		return ops->get_current_limit ? mode : 0;
5231
5232	if (attr == &dev_attr_opmode.attr)
5233		return ops->get_mode ? mode : 0;
5234
5235	if (attr == &dev_attr_state.attr)
5236		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5237
5238	if (attr == &dev_attr_status.attr)
5239		return ops->get_status ? mode : 0;
5240
5241	if (attr == &dev_attr_bypass.attr)
5242		return ops->get_bypass ? mode : 0;
5243
5244	if (attr == &dev_attr_under_voltage.attr ||
5245	    attr == &dev_attr_over_current.attr ||
5246	    attr == &dev_attr_regulation_out.attr ||
5247	    attr == &dev_attr_fail.attr ||
5248	    attr == &dev_attr_over_temp.attr ||
5249	    attr == &dev_attr_under_voltage_warn.attr ||
5250	    attr == &dev_attr_over_current_warn.attr ||
5251	    attr == &dev_attr_over_voltage_warn.attr ||
5252	    attr == &dev_attr_over_temp_warn.attr)
5253		return ops->get_error_flags ? mode : 0;
5254
5255	/* constraints need specific supporting methods */
5256	if (attr == &dev_attr_min_microvolts.attr ||
5257	    attr == &dev_attr_max_microvolts.attr)
5258		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5259
5260	if (attr == &dev_attr_min_microamps.attr ||
5261	    attr == &dev_attr_max_microamps.attr)
5262		return ops->set_current_limit ? mode : 0;
5263
5264	if (attr == &dev_attr_suspend_standby_state.attr ||
5265	    attr == &dev_attr_suspend_mem_state.attr ||
5266	    attr == &dev_attr_suspend_disk_state.attr)
5267		return mode;
5268
5269	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5270	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5271	    attr == &dev_attr_suspend_disk_microvolts.attr)
5272		return ops->set_suspend_voltage ? mode : 0;
5273
5274	if (attr == &dev_attr_suspend_standby_mode.attr ||
5275	    attr == &dev_attr_suspend_mem_mode.attr ||
5276	    attr == &dev_attr_suspend_disk_mode.attr)
5277		return ops->set_suspend_mode ? mode : 0;
5278
5279	return mode;
5280}
5281
5282static const struct attribute_group regulator_dev_group = {
5283	.attrs = regulator_dev_attrs,
5284	.is_visible = regulator_attr_is_visible,
5285};
5286
5287static const struct attribute_group *regulator_dev_groups[] = {
5288	&regulator_dev_group,
5289	NULL
5290};
5291
5292static void regulator_dev_release(struct device *dev)
5293{
5294	struct regulator_dev *rdev = dev_get_drvdata(dev);
5295
5296	debugfs_remove_recursive(rdev->debugfs);
5297	kfree(rdev->constraints);
5298	of_node_put(rdev->dev.of_node);
5299	kfree(rdev);
5300}
5301
5302static void rdev_init_debugfs(struct regulator_dev *rdev)
5303{
5304	struct device *parent = rdev->dev.parent;
5305	const char *rname = rdev_get_name(rdev);
5306	char name[NAME_MAX];
5307
5308	/* Avoid duplicate debugfs directory names */
5309	if (parent && rname == rdev->desc->name) {
5310		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5311			 rname);
5312		rname = name;
5313	}
5314
5315	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5316	if (IS_ERR(rdev->debugfs))
5317		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5318
5319	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5320			   &rdev->use_count);
5321	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5322			   &rdev->open_count);
5323	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5324			   &rdev->bypass_count);
5325}
5326
5327static int regulator_register_resolve_supply(struct device *dev, void *data)
5328{
5329	struct regulator_dev *rdev = dev_to_rdev(dev);
5330
5331	if (regulator_resolve_supply(rdev))
5332		rdev_dbg(rdev, "unable to resolve supply\n");
5333
5334	return 0;
5335}
5336
5337int regulator_coupler_register(struct regulator_coupler *coupler)
5338{
5339	mutex_lock(&regulator_list_mutex);
5340	list_add_tail(&coupler->list, &regulator_coupler_list);
5341	mutex_unlock(&regulator_list_mutex);
5342
5343	return 0;
5344}
5345
5346static struct regulator_coupler *
5347regulator_find_coupler(struct regulator_dev *rdev)
5348{
5349	struct regulator_coupler *coupler;
5350	int err;
5351
5352	/*
5353	 * Note that regulators are appended to the list and the generic
5354	 * coupler is registered first, hence it will be attached at last
5355	 * if nobody cared.
5356	 */
5357	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5358		err = coupler->attach_regulator(coupler, rdev);
5359		if (!err) {
5360			if (!coupler->balance_voltage &&
5361			    rdev->coupling_desc.n_coupled > 2)
5362				goto err_unsupported;
5363
5364			return coupler;
5365		}
5366
5367		if (err < 0)
5368			return ERR_PTR(err);
5369
5370		if (err == 1)
5371			continue;
5372
5373		break;
5374	}
5375
5376	return ERR_PTR(-EINVAL);
5377
5378err_unsupported:
5379	if (coupler->detach_regulator)
5380		coupler->detach_regulator(coupler, rdev);
5381
5382	rdev_err(rdev,
5383		"Voltage balancing for multiple regulator couples is unimplemented\n");
5384
5385	return ERR_PTR(-EPERM);
5386}
5387
5388static void regulator_resolve_coupling(struct regulator_dev *rdev)
5389{
5390	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5391	struct coupling_desc *c_desc = &rdev->coupling_desc;
5392	int n_coupled = c_desc->n_coupled;
5393	struct regulator_dev *c_rdev;
5394	int i;
5395
5396	for (i = 1; i < n_coupled; i++) {
5397		/* already resolved */
5398		if (c_desc->coupled_rdevs[i])
5399			continue;
5400
5401		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5402
5403		if (!c_rdev)
5404			continue;
5405
5406		if (c_rdev->coupling_desc.coupler != coupler) {
5407			rdev_err(rdev, "coupler mismatch with %s\n",
5408				 rdev_get_name(c_rdev));
5409			return;
5410		}
5411
5412		c_desc->coupled_rdevs[i] = c_rdev;
5413		c_desc->n_resolved++;
5414
5415		regulator_resolve_coupling(c_rdev);
5416	}
5417}
5418
5419static void regulator_remove_coupling(struct regulator_dev *rdev)
5420{
5421	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5422	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5423	struct regulator_dev *__c_rdev, *c_rdev;
5424	unsigned int __n_coupled, n_coupled;
5425	int i, k;
5426	int err;
5427
5428	n_coupled = c_desc->n_coupled;
5429
5430	for (i = 1; i < n_coupled; i++) {
5431		c_rdev = c_desc->coupled_rdevs[i];
5432
5433		if (!c_rdev)
5434			continue;
5435
5436		regulator_lock(c_rdev);
5437
5438		__c_desc = &c_rdev->coupling_desc;
5439		__n_coupled = __c_desc->n_coupled;
5440
5441		for (k = 1; k < __n_coupled; k++) {
5442			__c_rdev = __c_desc->coupled_rdevs[k];
5443
5444			if (__c_rdev == rdev) {
5445				__c_desc->coupled_rdevs[k] = NULL;
5446				__c_desc->n_resolved--;
5447				break;
5448			}
5449		}
5450
5451		regulator_unlock(c_rdev);
5452
5453		c_desc->coupled_rdevs[i] = NULL;
5454		c_desc->n_resolved--;
5455	}
5456
5457	if (coupler && coupler->detach_regulator) {
5458		err = coupler->detach_regulator(coupler, rdev);
5459		if (err)
5460			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5461				 ERR_PTR(err));
5462	}
5463
5464	kfree(rdev->coupling_desc.coupled_rdevs);
5465	rdev->coupling_desc.coupled_rdevs = NULL;
5466}
5467
5468static int regulator_init_coupling(struct regulator_dev *rdev)
5469{
5470	struct regulator_dev **coupled;
5471	int err, n_phandles;
5472
5473	if (!IS_ENABLED(CONFIG_OF))
5474		n_phandles = 0;
5475	else
5476		n_phandles = of_get_n_coupled(rdev);
5477
5478	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5479	if (!coupled)
5480		return -ENOMEM;
5481
5482	rdev->coupling_desc.coupled_rdevs = coupled;
5483
5484	/*
5485	 * Every regulator should always have coupling descriptor filled with
5486	 * at least pointer to itself.
5487	 */
5488	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5489	rdev->coupling_desc.n_coupled = n_phandles + 1;
5490	rdev->coupling_desc.n_resolved++;
5491
5492	/* regulator isn't coupled */
5493	if (n_phandles == 0)
5494		return 0;
5495
5496	if (!of_check_coupling_data(rdev))
5497		return -EPERM;
5498
5499	mutex_lock(&regulator_list_mutex);
5500	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5501	mutex_unlock(&regulator_list_mutex);
5502
5503	if (IS_ERR(rdev->coupling_desc.coupler)) {
5504		err = PTR_ERR(rdev->coupling_desc.coupler);
5505		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5506		return err;
5507	}
5508
5509	return 0;
5510}
5511
5512static int generic_coupler_attach(struct regulator_coupler *coupler,
5513				  struct regulator_dev *rdev)
5514{
5515	if (rdev->coupling_desc.n_coupled > 2) {
5516		rdev_err(rdev,
5517			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5518		return -EPERM;
5519	}
5520
5521	if (!rdev->constraints->always_on) {
5522		rdev_err(rdev,
5523			 "Coupling of a non always-on regulator is unimplemented\n");
5524		return -ENOTSUPP;
5525	}
5526
5527	return 0;
5528}
5529
5530static struct regulator_coupler generic_regulator_coupler = {
5531	.attach_regulator = generic_coupler_attach,
5532};
5533
5534/**
5535 * regulator_register - register regulator
5536 * @dev: the device that drive the regulator
5537 * @regulator_desc: regulator to register
5538 * @cfg: runtime configuration for regulator
5539 *
5540 * Called by regulator drivers to register a regulator.
5541 * Returns a valid pointer to struct regulator_dev on success
5542 * or an ERR_PTR() on error.
 
5543 */
5544struct regulator_dev *
5545regulator_register(struct device *dev,
5546		   const struct regulator_desc *regulator_desc,
5547		   const struct regulator_config *cfg)
5548{
5549	const struct regulator_init_data *init_data;
5550	struct regulator_config *config = NULL;
5551	static atomic_t regulator_no = ATOMIC_INIT(-1);
5552	struct regulator_dev *rdev;
5553	bool dangling_cfg_gpiod = false;
5554	bool dangling_of_gpiod = false;
5555	int ret, i;
5556	bool resolved_early = false;
5557
5558	if (cfg == NULL)
5559		return ERR_PTR(-EINVAL);
5560	if (cfg->ena_gpiod)
5561		dangling_cfg_gpiod = true;
5562	if (regulator_desc == NULL) {
5563		ret = -EINVAL;
5564		goto rinse;
5565	}
5566
5567	WARN_ON(!dev || !cfg->dev);
5568
5569	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5570		ret = -EINVAL;
5571		goto rinse;
5572	}
5573
5574	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5575	    regulator_desc->type != REGULATOR_CURRENT) {
5576		ret = -EINVAL;
5577		goto rinse;
5578	}
5579
5580	/* Only one of each should be implemented */
5581	WARN_ON(regulator_desc->ops->get_voltage &&
5582		regulator_desc->ops->get_voltage_sel);
5583	WARN_ON(regulator_desc->ops->set_voltage &&
5584		regulator_desc->ops->set_voltage_sel);
5585
5586	/* If we're using selectors we must implement list_voltage. */
5587	if (regulator_desc->ops->get_voltage_sel &&
5588	    !regulator_desc->ops->list_voltage) {
5589		ret = -EINVAL;
5590		goto rinse;
5591	}
5592	if (regulator_desc->ops->set_voltage_sel &&
5593	    !regulator_desc->ops->list_voltage) {
5594		ret = -EINVAL;
5595		goto rinse;
5596	}
5597
5598	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5599	if (rdev == NULL) {
5600		ret = -ENOMEM;
5601		goto rinse;
5602	}
5603	device_initialize(&rdev->dev);
5604	dev_set_drvdata(&rdev->dev, rdev);
5605	rdev->dev.class = &regulator_class;
5606	spin_lock_init(&rdev->err_lock);
5607
5608	/*
5609	 * Duplicate the config so the driver could override it after
5610	 * parsing init data.
5611	 */
5612	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5613	if (config == NULL) {
5614		ret = -ENOMEM;
5615		goto clean;
5616	}
5617
 
 
 
 
5618	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5619					       &rdev->dev.of_node);
5620
5621	/*
5622	 * Sometimes not all resources are probed already so we need to take
5623	 * that into account. This happens most the time if the ena_gpiod comes
5624	 * from a gpio extender or something else.
5625	 */
5626	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5627		ret = -EPROBE_DEFER;
5628		goto clean;
5629	}
5630
5631	/*
5632	 * We need to keep track of any GPIO descriptor coming from the
5633	 * device tree until we have handled it over to the core. If the
5634	 * config that was passed in to this function DOES NOT contain
5635	 * a descriptor, and the config after this call DOES contain
5636	 * a descriptor, we definitely got one from parsing the device
5637	 * tree.
5638	 */
5639	if (!cfg->ena_gpiod && config->ena_gpiod)
5640		dangling_of_gpiod = true;
5641	if (!init_data) {
5642		init_data = config->init_data;
5643		rdev->dev.of_node = of_node_get(config->of_node);
5644	}
5645
5646	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5647	rdev->reg_data = config->driver_data;
5648	rdev->owner = regulator_desc->owner;
5649	rdev->desc = regulator_desc;
5650	if (config->regmap)
5651		rdev->regmap = config->regmap;
5652	else if (dev_get_regmap(dev, NULL))
5653		rdev->regmap = dev_get_regmap(dev, NULL);
5654	else if (dev->parent)
5655		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5656	INIT_LIST_HEAD(&rdev->consumer_list);
5657	INIT_LIST_HEAD(&rdev->list);
5658	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5659	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5660
5661	if (init_data && init_data->supply_regulator)
5662		rdev->supply_name = init_data->supply_regulator;
5663	else if (regulator_desc->supply_name)
5664		rdev->supply_name = regulator_desc->supply_name;
5665
5666	/* register with sysfs */
5667	rdev->dev.parent = config->dev;
5668	dev_set_name(&rdev->dev, "regulator.%lu",
5669		    (unsigned long) atomic_inc_return(&regulator_no));
5670
5671	/* set regulator constraints */
5672	if (init_data)
5673		rdev->constraints = kmemdup(&init_data->constraints,
5674					    sizeof(*rdev->constraints),
5675					    GFP_KERNEL);
5676	else
5677		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5678					    GFP_KERNEL);
5679	if (!rdev->constraints) {
5680		ret = -ENOMEM;
5681		goto wash;
5682	}
5683
 
 
 
 
 
 
5684	if ((rdev->supply_name && !rdev->supply) &&
5685		(rdev->constraints->always_on ||
5686		 rdev->constraints->boot_on)) {
5687		ret = regulator_resolve_supply(rdev);
5688		if (ret)
5689			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5690					 ERR_PTR(ret));
5691
5692		resolved_early = true;
5693	}
5694
5695	/* perform any regulator specific init */
5696	if (init_data && init_data->regulator_init) {
5697		ret = init_data->regulator_init(rdev->reg_data);
5698		if (ret < 0)
5699			goto wash;
5700	}
5701
5702	if (config->ena_gpiod) {
5703		ret = regulator_ena_gpio_request(rdev, config);
5704		if (ret != 0) {
5705			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5706				 ERR_PTR(ret));
5707			goto wash;
5708		}
5709		/* The regulator core took over the GPIO descriptor */
5710		dangling_cfg_gpiod = false;
5711		dangling_of_gpiod = false;
5712	}
5713
5714	ret = set_machine_constraints(rdev);
5715	if (ret == -EPROBE_DEFER && !resolved_early) {
5716		/* Regulator might be in bypass mode and so needs its supply
5717		 * to set the constraints
5718		 */
5719		/* FIXME: this currently triggers a chicken-and-egg problem
5720		 * when creating -SUPPLY symlink in sysfs to a regulator
5721		 * that is just being created
5722		 */
5723		rdev_dbg(rdev, "will resolve supply early: %s\n",
5724			 rdev->supply_name);
5725		ret = regulator_resolve_supply(rdev);
5726		if (!ret)
5727			ret = set_machine_constraints(rdev);
5728		else
5729			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5730				 ERR_PTR(ret));
5731	}
5732	if (ret < 0)
5733		goto wash;
5734
5735	ret = regulator_init_coupling(rdev);
5736	if (ret < 0)
5737		goto wash;
5738
5739	/* add consumers devices */
5740	if (init_data) {
5741		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5742			ret = set_consumer_device_supply(rdev,
5743				init_data->consumer_supplies[i].dev_name,
5744				init_data->consumer_supplies[i].supply);
5745			if (ret < 0) {
5746				dev_err(dev, "Failed to set supply %s\n",
5747					init_data->consumer_supplies[i].supply);
5748				goto unset_supplies;
5749			}
5750		}
5751	}
5752
5753	if (!rdev->desc->ops->get_voltage &&
5754	    !rdev->desc->ops->list_voltage &&
5755	    !rdev->desc->fixed_uV)
5756		rdev->is_switch = true;
5757
5758	ret = device_add(&rdev->dev);
5759	if (ret != 0)
5760		goto unset_supplies;
5761
5762	rdev_init_debugfs(rdev);
5763
5764	/* try to resolve regulators coupling since a new one was registered */
5765	mutex_lock(&regulator_list_mutex);
5766	regulator_resolve_coupling(rdev);
5767	mutex_unlock(&regulator_list_mutex);
5768
5769	/* try to resolve regulators supply since a new one was registered */
5770	class_for_each_device(&regulator_class, NULL, NULL,
5771			      regulator_register_resolve_supply);
5772	kfree(config);
5773	return rdev;
5774
5775unset_supplies:
5776	mutex_lock(&regulator_list_mutex);
5777	unset_regulator_supplies(rdev);
5778	regulator_remove_coupling(rdev);
5779	mutex_unlock(&regulator_list_mutex);
5780wash:
5781	regulator_put(rdev->supply);
5782	kfree(rdev->coupling_desc.coupled_rdevs);
5783	mutex_lock(&regulator_list_mutex);
5784	regulator_ena_gpio_free(rdev);
5785	mutex_unlock(&regulator_list_mutex);
5786clean:
5787	if (dangling_of_gpiod)
5788		gpiod_put(config->ena_gpiod);
5789	kfree(config);
5790	put_device(&rdev->dev);
5791rinse:
5792	if (dangling_cfg_gpiod)
5793		gpiod_put(cfg->ena_gpiod);
5794	return ERR_PTR(ret);
5795}
5796EXPORT_SYMBOL_GPL(regulator_register);
5797
5798/**
5799 * regulator_unregister - unregister regulator
5800 * @rdev: regulator to unregister
5801 *
5802 * Called by regulator drivers to unregister a regulator.
5803 */
5804void regulator_unregister(struct regulator_dev *rdev)
5805{
5806	if (rdev == NULL)
5807		return;
5808
5809	if (rdev->supply) {
5810		while (rdev->use_count--)
5811			regulator_disable(rdev->supply);
5812		regulator_put(rdev->supply);
5813	}
5814
5815	flush_work(&rdev->disable_work.work);
5816
5817	mutex_lock(&regulator_list_mutex);
5818
5819	WARN_ON(rdev->open_count);
5820	regulator_remove_coupling(rdev);
5821	unset_regulator_supplies(rdev);
5822	list_del(&rdev->list);
5823	regulator_ena_gpio_free(rdev);
5824	device_unregister(&rdev->dev);
5825
5826	mutex_unlock(&regulator_list_mutex);
5827}
5828EXPORT_SYMBOL_GPL(regulator_unregister);
5829
5830#ifdef CONFIG_SUSPEND
5831/**
5832 * regulator_suspend - prepare regulators for system wide suspend
5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5834 *
5835 * Configure each regulator with it's suspend operating parameters for state.
 
 
5836 */
5837static int regulator_suspend(struct device *dev)
5838{
5839	struct regulator_dev *rdev = dev_to_rdev(dev);
5840	suspend_state_t state = pm_suspend_target_state;
5841	int ret;
5842	const struct regulator_state *rstate;
5843
5844	rstate = regulator_get_suspend_state_check(rdev, state);
5845	if (!rstate)
5846		return 0;
5847
5848	regulator_lock(rdev);
5849	ret = __suspend_set_state(rdev, rstate);
5850	regulator_unlock(rdev);
5851
5852	return ret;
5853}
5854
5855static int regulator_resume(struct device *dev)
5856{
5857	suspend_state_t state = pm_suspend_target_state;
5858	struct regulator_dev *rdev = dev_to_rdev(dev);
5859	struct regulator_state *rstate;
5860	int ret = 0;
5861
5862	rstate = regulator_get_suspend_state(rdev, state);
5863	if (rstate == NULL)
5864		return 0;
5865
5866	/* Avoid grabbing the lock if we don't need to */
5867	if (!rdev->desc->ops->resume)
5868		return 0;
5869
5870	regulator_lock(rdev);
5871
5872	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5873	    rstate->enabled == DISABLE_IN_SUSPEND)
5874		ret = rdev->desc->ops->resume(rdev);
5875
5876	regulator_unlock(rdev);
5877
5878	return ret;
5879}
5880#else /* !CONFIG_SUSPEND */
5881
5882#define regulator_suspend	NULL
5883#define regulator_resume	NULL
5884
5885#endif /* !CONFIG_SUSPEND */
5886
5887#ifdef CONFIG_PM
5888static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5889	.suspend	= regulator_suspend,
5890	.resume		= regulator_resume,
5891};
5892#endif
5893
5894struct class regulator_class = {
5895	.name = "regulator",
5896	.dev_release = regulator_dev_release,
5897	.dev_groups = regulator_dev_groups,
5898#ifdef CONFIG_PM
5899	.pm = &regulator_pm_ops,
5900#endif
5901};
5902/**
5903 * regulator_has_full_constraints - the system has fully specified constraints
5904 *
5905 * Calling this function will cause the regulator API to disable all
5906 * regulators which have a zero use count and don't have an always_on
5907 * constraint in a late_initcall.
5908 *
5909 * The intention is that this will become the default behaviour in a
5910 * future kernel release so users are encouraged to use this facility
5911 * now.
5912 */
5913void regulator_has_full_constraints(void)
5914{
5915	has_full_constraints = 1;
5916}
5917EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5918
5919/**
5920 * rdev_get_drvdata - get rdev regulator driver data
5921 * @rdev: regulator
5922 *
5923 * Get rdev regulator driver private data. This call can be used in the
5924 * regulator driver context.
 
 
5925 */
5926void *rdev_get_drvdata(struct regulator_dev *rdev)
5927{
5928	return rdev->reg_data;
5929}
5930EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5931
5932/**
5933 * regulator_get_drvdata - get regulator driver data
5934 * @regulator: regulator
5935 *
5936 * Get regulator driver private data. This call can be used in the consumer
5937 * driver context when non API regulator specific functions need to be called.
 
 
5938 */
5939void *regulator_get_drvdata(struct regulator *regulator)
5940{
5941	return regulator->rdev->reg_data;
5942}
5943EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5944
5945/**
5946 * regulator_set_drvdata - set regulator driver data
5947 * @regulator: regulator
5948 * @data: data
5949 */
5950void regulator_set_drvdata(struct regulator *regulator, void *data)
5951{
5952	regulator->rdev->reg_data = data;
5953}
5954EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5955
5956/**
5957 * rdev_get_id - get regulator ID
5958 * @rdev: regulator
 
 
5959 */
5960int rdev_get_id(struct regulator_dev *rdev)
5961{
5962	return rdev->desc->id;
5963}
5964EXPORT_SYMBOL_GPL(rdev_get_id);
5965
5966struct device *rdev_get_dev(struct regulator_dev *rdev)
5967{
5968	return &rdev->dev;
5969}
5970EXPORT_SYMBOL_GPL(rdev_get_dev);
5971
5972struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5973{
5974	return rdev->regmap;
5975}
5976EXPORT_SYMBOL_GPL(rdev_get_regmap);
5977
5978void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5979{
5980	return reg_init_data->driver_data;
5981}
5982EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5983
5984#ifdef CONFIG_DEBUG_FS
5985static int supply_map_show(struct seq_file *sf, void *data)
5986{
5987	struct regulator_map *map;
5988
5989	list_for_each_entry(map, &regulator_map_list, list) {
5990		seq_printf(sf, "%s -> %s.%s\n",
5991				rdev_get_name(map->regulator), map->dev_name,
5992				map->supply);
5993	}
5994
5995	return 0;
5996}
5997DEFINE_SHOW_ATTRIBUTE(supply_map);
5998
5999struct summary_data {
6000	struct seq_file *s;
6001	struct regulator_dev *parent;
6002	int level;
6003};
6004
6005static void regulator_summary_show_subtree(struct seq_file *s,
6006					   struct regulator_dev *rdev,
6007					   int level);
6008
6009static int regulator_summary_show_children(struct device *dev, void *data)
6010{
6011	struct regulator_dev *rdev = dev_to_rdev(dev);
6012	struct summary_data *summary_data = data;
6013
6014	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6015		regulator_summary_show_subtree(summary_data->s, rdev,
6016					       summary_data->level + 1);
6017
6018	return 0;
6019}
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022					   struct regulator_dev *rdev,
6023					   int level)
6024{
6025	struct regulation_constraints *c;
6026	struct regulator *consumer;
6027	struct summary_data summary_data;
6028	unsigned int opmode;
6029
6030	if (!rdev)
6031		return;
6032
6033	opmode = _regulator_get_mode_unlocked(rdev);
6034	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6035		   level * 3 + 1, "",
6036		   30 - level * 3, rdev_get_name(rdev),
6037		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6038		   regulator_opmode_to_str(opmode));
6039
6040	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6041	seq_printf(s, "%5dmA ",
6042		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6043
6044	c = rdev->constraints;
6045	if (c) {
6046		switch (rdev->desc->type) {
6047		case REGULATOR_VOLTAGE:
6048			seq_printf(s, "%5dmV %5dmV ",
6049				   c->min_uV / 1000, c->max_uV / 1000);
6050			break;
6051		case REGULATOR_CURRENT:
6052			seq_printf(s, "%5dmA %5dmA ",
6053				   c->min_uA / 1000, c->max_uA / 1000);
6054			break;
6055		}
6056	}
6057
6058	seq_puts(s, "\n");
6059
6060	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6061		if (consumer->dev && consumer->dev->class == &regulator_class)
6062			continue;
6063
6064		seq_printf(s, "%*s%-*s ",
6065			   (level + 1) * 3 + 1, "",
6066			   30 - (level + 1) * 3,
6067			   consumer->supply_name ? consumer->supply_name :
6068			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6069
6070		switch (rdev->desc->type) {
6071		case REGULATOR_VOLTAGE:
6072			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6073				   consumer->enable_count,
6074				   consumer->uA_load / 1000,
6075				   consumer->uA_load && !consumer->enable_count ?
6076				   '*' : ' ',
6077				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6078				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6079			break;
6080		case REGULATOR_CURRENT:
6081			break;
6082		}
6083
6084		seq_puts(s, "\n");
6085	}
6086
6087	summary_data.s = s;
6088	summary_data.level = level;
6089	summary_data.parent = rdev;
6090
6091	class_for_each_device(&regulator_class, NULL, &summary_data,
6092			      regulator_summary_show_children);
6093}
6094
6095struct summary_lock_data {
6096	struct ww_acquire_ctx *ww_ctx;
6097	struct regulator_dev **new_contended_rdev;
6098	struct regulator_dev **old_contended_rdev;
6099};
6100
6101static int regulator_summary_lock_one(struct device *dev, void *data)
6102{
6103	struct regulator_dev *rdev = dev_to_rdev(dev);
6104	struct summary_lock_data *lock_data = data;
6105	int ret = 0;
6106
6107	if (rdev != *lock_data->old_contended_rdev) {
6108		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6109
6110		if (ret == -EDEADLK)
6111			*lock_data->new_contended_rdev = rdev;
6112		else
6113			WARN_ON_ONCE(ret);
6114	} else {
6115		*lock_data->old_contended_rdev = NULL;
6116	}
6117
6118	return ret;
6119}
6120
6121static int regulator_summary_unlock_one(struct device *dev, void *data)
6122{
6123	struct regulator_dev *rdev = dev_to_rdev(dev);
6124	struct summary_lock_data *lock_data = data;
6125
6126	if (lock_data) {
6127		if (rdev == *lock_data->new_contended_rdev)
6128			return -EDEADLK;
6129	}
6130
6131	regulator_unlock(rdev);
6132
6133	return 0;
6134}
6135
6136static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6137				      struct regulator_dev **new_contended_rdev,
6138				      struct regulator_dev **old_contended_rdev)
6139{
6140	struct summary_lock_data lock_data;
6141	int ret;
6142
6143	lock_data.ww_ctx = ww_ctx;
6144	lock_data.new_contended_rdev = new_contended_rdev;
6145	lock_data.old_contended_rdev = old_contended_rdev;
6146
6147	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6148				    regulator_summary_lock_one);
6149	if (ret)
6150		class_for_each_device(&regulator_class, NULL, &lock_data,
6151				      regulator_summary_unlock_one);
6152
6153	return ret;
6154}
6155
6156static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6157{
6158	struct regulator_dev *new_contended_rdev = NULL;
6159	struct regulator_dev *old_contended_rdev = NULL;
6160	int err;
6161
6162	mutex_lock(&regulator_list_mutex);
6163
6164	ww_acquire_init(ww_ctx, &regulator_ww_class);
6165
6166	do {
6167		if (new_contended_rdev) {
6168			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6169			old_contended_rdev = new_contended_rdev;
6170			old_contended_rdev->ref_cnt++;
6171			old_contended_rdev->mutex_owner = current;
6172		}
6173
6174		err = regulator_summary_lock_all(ww_ctx,
6175						 &new_contended_rdev,
6176						 &old_contended_rdev);
6177
6178		if (old_contended_rdev)
6179			regulator_unlock(old_contended_rdev);
6180
6181	} while (err == -EDEADLK);
6182
6183	ww_acquire_done(ww_ctx);
6184}
6185
6186static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6187{
6188	class_for_each_device(&regulator_class, NULL, NULL,
6189			      regulator_summary_unlock_one);
6190	ww_acquire_fini(ww_ctx);
6191
6192	mutex_unlock(&regulator_list_mutex);
6193}
6194
6195static int regulator_summary_show_roots(struct device *dev, void *data)
6196{
6197	struct regulator_dev *rdev = dev_to_rdev(dev);
6198	struct seq_file *s = data;
6199
6200	if (!rdev->supply)
6201		regulator_summary_show_subtree(s, rdev, 0);
6202
6203	return 0;
6204}
6205
6206static int regulator_summary_show(struct seq_file *s, void *data)
6207{
6208	struct ww_acquire_ctx ww_ctx;
6209
6210	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6211	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6212
6213	regulator_summary_lock(&ww_ctx);
6214
6215	class_for_each_device(&regulator_class, NULL, s,
6216			      regulator_summary_show_roots);
6217
6218	regulator_summary_unlock(&ww_ctx);
6219
6220	return 0;
6221}
6222DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6223#endif /* CONFIG_DEBUG_FS */
6224
6225static int __init regulator_init(void)
6226{
6227	int ret;
6228
6229	ret = class_register(&regulator_class);
6230
6231	debugfs_root = debugfs_create_dir("regulator", NULL);
6232	if (IS_ERR(debugfs_root))
6233		pr_debug("regulator: Failed to create debugfs directory\n");
6234
6235#ifdef CONFIG_DEBUG_FS
6236	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6237			    &supply_map_fops);
6238
6239	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6240			    NULL, &regulator_summary_fops);
6241#endif
6242	regulator_dummy_init();
6243
6244	regulator_coupler_register(&generic_regulator_coupler);
6245
6246	return ret;
6247}
6248
6249/* init early to allow our consumers to complete system booting */
6250core_initcall(regulator_init);
6251
6252static int regulator_late_cleanup(struct device *dev, void *data)
6253{
6254	struct regulator_dev *rdev = dev_to_rdev(dev);
6255	struct regulation_constraints *c = rdev->constraints;
6256	int ret;
6257
6258	if (c && c->always_on)
6259		return 0;
6260
6261	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6262		return 0;
6263
6264	regulator_lock(rdev);
6265
6266	if (rdev->use_count)
6267		goto unlock;
6268
6269	/* If reading the status failed, assume that it's off. */
6270	if (_regulator_is_enabled(rdev) <= 0)
6271		goto unlock;
6272
6273	if (have_full_constraints()) {
6274		/* We log since this may kill the system if it goes
6275		 * wrong.
6276		 */
6277		rdev_info(rdev, "disabling\n");
6278		ret = _regulator_do_disable(rdev);
6279		if (ret != 0)
6280			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6281	} else {
6282		/* The intention is that in future we will
6283		 * assume that full constraints are provided
6284		 * so warn even if we aren't going to do
6285		 * anything here.
6286		 */
6287		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6288	}
6289
6290unlock:
6291	regulator_unlock(rdev);
6292
6293	return 0;
6294}
6295
6296static bool regulator_ignore_unused;
6297static int __init regulator_ignore_unused_setup(char *__unused)
6298{
6299	regulator_ignore_unused = true;
6300	return 1;
6301}
6302__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6303
6304static void regulator_init_complete_work_function(struct work_struct *work)
6305{
6306	/*
6307	 * Regulators may had failed to resolve their input supplies
6308	 * when were registered, either because the input supply was
6309	 * not registered yet or because its parent device was not
6310	 * bound yet. So attempt to resolve the input supplies for
6311	 * pending regulators before trying to disable unused ones.
6312	 */
6313	class_for_each_device(&regulator_class, NULL, NULL,
6314			      regulator_register_resolve_supply);
6315
6316	/*
6317	 * For debugging purposes, it may be useful to prevent unused
6318	 * regulators from being disabled.
6319	 */
6320	if (regulator_ignore_unused) {
6321		pr_warn("regulator: Not disabling unused regulators\n");
6322		return;
6323	}
6324
6325	/* If we have a full configuration then disable any regulators
6326	 * we have permission to change the status for and which are
6327	 * not in use or always_on.  This is effectively the default
6328	 * for DT and ACPI as they have full constraints.
6329	 */
6330	class_for_each_device(&regulator_class, NULL, NULL,
6331			      regulator_late_cleanup);
6332}
6333
6334static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6335			    regulator_init_complete_work_function);
6336
6337static int __init regulator_init_complete(void)
6338{
6339	/*
6340	 * Since DT doesn't provide an idiomatic mechanism for
6341	 * enabling full constraints and since it's much more natural
6342	 * with DT to provide them just assume that a DT enabled
6343	 * system has full constraints.
6344	 */
6345	if (of_have_populated_dt())
6346		has_full_constraints = true;
6347
6348	/*
6349	 * We punt completion for an arbitrary amount of time since
6350	 * systems like distros will load many drivers from userspace
6351	 * so consumers might not always be ready yet, this is
6352	 * particularly an issue with laptops where this might bounce
6353	 * the display off then on.  Ideally we'd get a notification
6354	 * from userspace when this happens but we don't so just wait
6355	 * a bit and hope we waited long enough.  It'd be better if
6356	 * we'd only do this on systems that need it, and a kernel
6357	 * command line option might be useful.
6358	 */
6359	schedule_delayed_work(&regulator_init_complete_work,
6360			      msecs_to_jiffies(30000));
6361
6362	return 0;
6363}
6364late_initcall_sync(regulator_init_complete);