Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 *
143 * Return: 0 on success or a negative error number on failure.
144 */
145static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 struct ww_acquire_ctx *ww_ctx)
147{
148 bool lock = false;
149 int ret = 0;
150
151 mutex_lock(®ulator_nesting_mutex);
152
153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 if (rdev->mutex_owner == current)
155 rdev->ref_cnt++;
156 else
157 lock = true;
158
159 if (lock) {
160 mutex_unlock(®ulator_nesting_mutex);
161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 mutex_lock(®ulator_nesting_mutex);
163 }
164 } else {
165 lock = true;
166 }
167
168 if (lock && ret != -EDEADLK) {
169 rdev->ref_cnt++;
170 rdev->mutex_owner = current;
171 }
172
173 mutex_unlock(®ulator_nesting_mutex);
174
175 return ret;
176}
177
178/**
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
181 *
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
186 * wait on mutex.
187 */
188static void regulator_lock(struct regulator_dev *rdev)
189{
190 regulator_lock_nested(rdev, NULL);
191}
192
193/**
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
196 *
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
199 */
200static void regulator_unlock(struct regulator_dev *rdev)
201{
202 mutex_lock(®ulator_nesting_mutex);
203
204 if (--rdev->ref_cnt == 0) {
205 rdev->mutex_owner = NULL;
206 ww_mutex_unlock(&rdev->mutex);
207 }
208
209 WARN_ON_ONCE(rdev->ref_cnt < 0);
210
211 mutex_unlock(®ulator_nesting_mutex);
212}
213
214/**
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
219 *
220 * Locks both rdevs using the regulator_ww_class.
221 */
222static void regulator_lock_two(struct regulator_dev *rdev1,
223 struct regulator_dev *rdev2,
224 struct ww_acquire_ctx *ww_ctx)
225{
226 struct regulator_dev *held, *contended;
227 int ret;
228
229 ww_acquire_init(ww_ctx, ®ulator_ww_class);
230
231 /* Try to just grab both of them */
232 ret = regulator_lock_nested(rdev1, ww_ctx);
233 WARN_ON(ret);
234 ret = regulator_lock_nested(rdev2, ww_ctx);
235 if (ret != -EDEADLOCK) {
236 WARN_ON(ret);
237 goto exit;
238 }
239
240 held = rdev1;
241 contended = rdev2;
242 while (true) {
243 regulator_unlock(held);
244
245 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 contended->ref_cnt++;
247 contended->mutex_owner = current;
248 swap(held, contended);
249 ret = regulator_lock_nested(contended, ww_ctx);
250
251 if (ret != -EDEADLOCK) {
252 WARN_ON(ret);
253 break;
254 }
255 }
256
257exit:
258 ww_acquire_done(ww_ctx);
259}
260
261/**
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
266 *
267 * The inverse of regulator_lock_two().
268 */
269
270static void regulator_unlock_two(struct regulator_dev *rdev1,
271 struct regulator_dev *rdev2,
272 struct ww_acquire_ctx *ww_ctx)
273{
274 regulator_unlock(rdev2);
275 regulator_unlock(rdev1);
276 ww_acquire_fini(ww_ctx);
277}
278
279static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280{
281 struct regulator_dev *c_rdev;
282 int i;
283
284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286
287 if (rdev->supply->rdev == c_rdev)
288 return true;
289 }
290
291 return false;
292}
293
294static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 unsigned int n_coupled)
296{
297 struct regulator_dev *c_rdev, *supply_rdev;
298 int i, supply_n_coupled;
299
300 for (i = n_coupled; i > 0; i--) {
301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302
303 if (!c_rdev)
304 continue;
305
306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 supply_rdev = c_rdev->supply->rdev;
308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309
310 regulator_unlock_recursive(supply_rdev,
311 supply_n_coupled);
312 }
313
314 regulator_unlock(c_rdev);
315 }
316}
317
318static int regulator_lock_recursive(struct regulator_dev *rdev,
319 struct regulator_dev **new_contended_rdev,
320 struct regulator_dev **old_contended_rdev,
321 struct ww_acquire_ctx *ww_ctx)
322{
323 struct regulator_dev *c_rdev;
324 int i, err;
325
326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328
329 if (!c_rdev)
330 continue;
331
332 if (c_rdev != *old_contended_rdev) {
333 err = regulator_lock_nested(c_rdev, ww_ctx);
334 if (err) {
335 if (err == -EDEADLK) {
336 *new_contended_rdev = c_rdev;
337 goto err_unlock;
338 }
339
340 /* shouldn't happen */
341 WARN_ON_ONCE(err != -EALREADY);
342 }
343 } else {
344 *old_contended_rdev = NULL;
345 }
346
347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 err = regulator_lock_recursive(c_rdev->supply->rdev,
349 new_contended_rdev,
350 old_contended_rdev,
351 ww_ctx);
352 if (err) {
353 regulator_unlock(c_rdev);
354 goto err_unlock;
355 }
356 }
357 }
358
359 return 0;
360
361err_unlock:
362 regulator_unlock_recursive(rdev, i);
363
364 return err;
365}
366
367/**
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369 * regulators
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
372 *
373 * Unlock all regulators related with rdev by coupling or supplying.
374 */
375static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 struct ww_acquire_ctx *ww_ctx)
377{
378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 ww_acquire_fini(ww_ctx);
380}
381
382/**
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
386 *
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
389 */
390static void regulator_lock_dependent(struct regulator_dev *rdev,
391 struct ww_acquire_ctx *ww_ctx)
392{
393 struct regulator_dev *new_contended_rdev = NULL;
394 struct regulator_dev *old_contended_rdev = NULL;
395 int err;
396
397 mutex_lock(®ulator_list_mutex);
398
399 ww_acquire_init(ww_ctx, ®ulator_ww_class);
400
401 do {
402 if (new_contended_rdev) {
403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 old_contended_rdev = new_contended_rdev;
405 old_contended_rdev->ref_cnt++;
406 old_contended_rdev->mutex_owner = current;
407 }
408
409 err = regulator_lock_recursive(rdev,
410 &new_contended_rdev,
411 &old_contended_rdev,
412 ww_ctx);
413
414 if (old_contended_rdev)
415 regulator_unlock(old_contended_rdev);
416
417 } while (err == -EDEADLK);
418
419 ww_acquire_done(ww_ctx);
420
421 mutex_unlock(®ulator_list_mutex);
422}
423
424/* Platform voltage constraint check */
425int regulator_check_voltage(struct regulator_dev *rdev,
426 int *min_uV, int *max_uV)
427{
428 BUG_ON(*min_uV > *max_uV);
429
430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 rdev_err(rdev, "voltage operation not allowed\n");
432 return -EPERM;
433 }
434
435 if (*max_uV > rdev->constraints->max_uV)
436 *max_uV = rdev->constraints->max_uV;
437 if (*min_uV < rdev->constraints->min_uV)
438 *min_uV = rdev->constraints->min_uV;
439
440 if (*min_uV > *max_uV) {
441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 *min_uV, *max_uV);
443 return -EINVAL;
444 }
445
446 return 0;
447}
448
449/* return 0 if the state is valid */
450static int regulator_check_states(suspend_state_t state)
451{
452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453}
454
455/* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
457 */
458int regulator_check_consumers(struct regulator_dev *rdev,
459 int *min_uV, int *max_uV,
460 suspend_state_t state)
461{
462 struct regulator *regulator;
463 struct regulator_voltage *voltage;
464
465 list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 voltage = ®ulator->voltage[state];
467 /*
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
470 */
471 if (!voltage->min_uV && !voltage->max_uV)
472 continue;
473
474 if (*max_uV > voltage->max_uV)
475 *max_uV = voltage->max_uV;
476 if (*min_uV < voltage->min_uV)
477 *min_uV = voltage->min_uV;
478 }
479
480 if (*min_uV > *max_uV) {
481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 *min_uV, *max_uV);
483 return -EINVAL;
484 }
485
486 return 0;
487}
488
489/* current constraint check */
490static int regulator_check_current_limit(struct regulator_dev *rdev,
491 int *min_uA, int *max_uA)
492{
493 BUG_ON(*min_uA > *max_uA);
494
495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 rdev_err(rdev, "current operation not allowed\n");
497 return -EPERM;
498 }
499
500 if (*max_uA > rdev->constraints->max_uA &&
501 rdev->constraints->max_uA)
502 *max_uA = rdev->constraints->max_uA;
503 if (*min_uA < rdev->constraints->min_uA)
504 *min_uA = rdev->constraints->min_uA;
505
506 if (*min_uA > *max_uA) {
507 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
508 *min_uA, *max_uA);
509 return -EINVAL;
510 }
511
512 return 0;
513}
514
515/* operating mode constraint check */
516static int regulator_mode_constrain(struct regulator_dev *rdev,
517 unsigned int *mode)
518{
519 switch (*mode) {
520 case REGULATOR_MODE_FAST:
521 case REGULATOR_MODE_NORMAL:
522 case REGULATOR_MODE_IDLE:
523 case REGULATOR_MODE_STANDBY:
524 break;
525 default:
526 rdev_err(rdev, "invalid mode %x specified\n", *mode);
527 return -EINVAL;
528 }
529
530 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
531 rdev_err(rdev, "mode operation not allowed\n");
532 return -EPERM;
533 }
534
535 /* The modes are bitmasks, the most power hungry modes having
536 * the lowest values. If the requested mode isn't supported
537 * try higher modes.
538 */
539 while (*mode) {
540 if (rdev->constraints->valid_modes_mask & *mode)
541 return 0;
542 *mode /= 2;
543 }
544
545 return -EINVAL;
546}
547
548static inline struct regulator_state *
549regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
550{
551 if (rdev->constraints == NULL)
552 return NULL;
553
554 switch (state) {
555 case PM_SUSPEND_STANDBY:
556 return &rdev->constraints->state_standby;
557 case PM_SUSPEND_MEM:
558 return &rdev->constraints->state_mem;
559 case PM_SUSPEND_MAX:
560 return &rdev->constraints->state_disk;
561 default:
562 return NULL;
563 }
564}
565
566static const struct regulator_state *
567regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
568{
569 const struct regulator_state *rstate;
570
571 rstate = regulator_get_suspend_state(rdev, state);
572 if (rstate == NULL)
573 return NULL;
574
575 /* If we have no suspend mode configuration don't set anything;
576 * only warn if the driver implements set_suspend_voltage or
577 * set_suspend_mode callback.
578 */
579 if (rstate->enabled != ENABLE_IN_SUSPEND &&
580 rstate->enabled != DISABLE_IN_SUSPEND) {
581 if (rdev->desc->ops->set_suspend_voltage ||
582 rdev->desc->ops->set_suspend_mode)
583 rdev_warn(rdev, "No configuration\n");
584 return NULL;
585 }
586
587 return rstate;
588}
589
590static ssize_t microvolts_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592{
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594 int uV;
595
596 regulator_lock(rdev);
597 uV = regulator_get_voltage_rdev(rdev);
598 regulator_unlock(rdev);
599
600 if (uV < 0)
601 return uV;
602 return sprintf(buf, "%d\n", uV);
603}
604static DEVICE_ATTR_RO(microvolts);
605
606static ssize_t microamps_show(struct device *dev,
607 struct device_attribute *attr, char *buf)
608{
609 struct regulator_dev *rdev = dev_get_drvdata(dev);
610
611 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
612}
613static DEVICE_ATTR_RO(microamps);
614
615static ssize_t name_show(struct device *dev, struct device_attribute *attr,
616 char *buf)
617{
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return sprintf(buf, "%s\n", rdev_get_name(rdev));
621}
622static DEVICE_ATTR_RO(name);
623
624static const char *regulator_opmode_to_str(int mode)
625{
626 switch (mode) {
627 case REGULATOR_MODE_FAST:
628 return "fast";
629 case REGULATOR_MODE_NORMAL:
630 return "normal";
631 case REGULATOR_MODE_IDLE:
632 return "idle";
633 case REGULATOR_MODE_STANDBY:
634 return "standby";
635 }
636 return "unknown";
637}
638
639static ssize_t regulator_print_opmode(char *buf, int mode)
640{
641 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642}
643
644static ssize_t opmode_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646{
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648
649 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
650}
651static DEVICE_ATTR_RO(opmode);
652
653static ssize_t regulator_print_state(char *buf, int state)
654{
655 if (state > 0)
656 return sprintf(buf, "enabled\n");
657 else if (state == 0)
658 return sprintf(buf, "disabled\n");
659 else
660 return sprintf(buf, "unknown\n");
661}
662
663static ssize_t state_show(struct device *dev,
664 struct device_attribute *attr, char *buf)
665{
666 struct regulator_dev *rdev = dev_get_drvdata(dev);
667 ssize_t ret;
668
669 regulator_lock(rdev);
670 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671 regulator_unlock(rdev);
672
673 return ret;
674}
675static DEVICE_ATTR_RO(state);
676
677static ssize_t status_show(struct device *dev,
678 struct device_attribute *attr, char *buf)
679{
680 struct regulator_dev *rdev = dev_get_drvdata(dev);
681 int status;
682 char *label;
683
684 status = rdev->desc->ops->get_status(rdev);
685 if (status < 0)
686 return status;
687
688 switch (status) {
689 case REGULATOR_STATUS_OFF:
690 label = "off";
691 break;
692 case REGULATOR_STATUS_ON:
693 label = "on";
694 break;
695 case REGULATOR_STATUS_ERROR:
696 label = "error";
697 break;
698 case REGULATOR_STATUS_FAST:
699 label = "fast";
700 break;
701 case REGULATOR_STATUS_NORMAL:
702 label = "normal";
703 break;
704 case REGULATOR_STATUS_IDLE:
705 label = "idle";
706 break;
707 case REGULATOR_STATUS_STANDBY:
708 label = "standby";
709 break;
710 case REGULATOR_STATUS_BYPASS:
711 label = "bypass";
712 break;
713 case REGULATOR_STATUS_UNDEFINED:
714 label = "undefined";
715 break;
716 default:
717 return -ERANGE;
718 }
719
720 return sprintf(buf, "%s\n", label);
721}
722static DEVICE_ATTR_RO(status);
723
724static ssize_t min_microamps_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726{
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728
729 if (!rdev->constraints)
730 return sprintf(buf, "constraint not defined\n");
731
732 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
733}
734static DEVICE_ATTR_RO(min_microamps);
735
736static ssize_t max_microamps_show(struct device *dev,
737 struct device_attribute *attr, char *buf)
738{
739 struct regulator_dev *rdev = dev_get_drvdata(dev);
740
741 if (!rdev->constraints)
742 return sprintf(buf, "constraint not defined\n");
743
744 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
745}
746static DEVICE_ATTR_RO(max_microamps);
747
748static ssize_t min_microvolts_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
750{
751 struct regulator_dev *rdev = dev_get_drvdata(dev);
752
753 if (!rdev->constraints)
754 return sprintf(buf, "constraint not defined\n");
755
756 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
757}
758static DEVICE_ATTR_RO(min_microvolts);
759
760static ssize_t max_microvolts_show(struct device *dev,
761 struct device_attribute *attr, char *buf)
762{
763 struct regulator_dev *rdev = dev_get_drvdata(dev);
764
765 if (!rdev->constraints)
766 return sprintf(buf, "constraint not defined\n");
767
768 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
769}
770static DEVICE_ATTR_RO(max_microvolts);
771
772static ssize_t requested_microamps_show(struct device *dev,
773 struct device_attribute *attr, char *buf)
774{
775 struct regulator_dev *rdev = dev_get_drvdata(dev);
776 struct regulator *regulator;
777 int uA = 0;
778
779 regulator_lock(rdev);
780 list_for_each_entry(regulator, &rdev->consumer_list, list) {
781 if (regulator->enable_count)
782 uA += regulator->uA_load;
783 }
784 regulator_unlock(rdev);
785 return sprintf(buf, "%d\n", uA);
786}
787static DEVICE_ATTR_RO(requested_microamps);
788
789static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
790 char *buf)
791{
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793 return sprintf(buf, "%d\n", rdev->use_count);
794}
795static DEVICE_ATTR_RO(num_users);
796
797static ssize_t type_show(struct device *dev, struct device_attribute *attr,
798 char *buf)
799{
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 switch (rdev->desc->type) {
803 case REGULATOR_VOLTAGE:
804 return sprintf(buf, "voltage\n");
805 case REGULATOR_CURRENT:
806 return sprintf(buf, "current\n");
807 }
808 return sprintf(buf, "unknown\n");
809}
810static DEVICE_ATTR_RO(type);
811
812static ssize_t suspend_mem_microvolts_show(struct device *dev,
813 struct device_attribute *attr, char *buf)
814{
815 struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
818}
819static DEVICE_ATTR_RO(suspend_mem_microvolts);
820
821static ssize_t suspend_disk_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823{
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
827}
828static DEVICE_ATTR_RO(suspend_disk_microvolts);
829
830static ssize_t suspend_standby_microvolts_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
832{
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
836}
837static DEVICE_ATTR_RO(suspend_standby_microvolts);
838
839static ssize_t suspend_mem_mode_show(struct device *dev,
840 struct device_attribute *attr, char *buf)
841{
842 struct regulator_dev *rdev = dev_get_drvdata(dev);
843
844 return regulator_print_opmode(buf,
845 rdev->constraints->state_mem.mode);
846}
847static DEVICE_ATTR_RO(suspend_mem_mode);
848
849static ssize_t suspend_disk_mode_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
851{
852 struct regulator_dev *rdev = dev_get_drvdata(dev);
853
854 return regulator_print_opmode(buf,
855 rdev->constraints->state_disk.mode);
856}
857static DEVICE_ATTR_RO(suspend_disk_mode);
858
859static ssize_t suspend_standby_mode_show(struct device *dev,
860 struct device_attribute *attr, char *buf)
861{
862 struct regulator_dev *rdev = dev_get_drvdata(dev);
863
864 return regulator_print_opmode(buf,
865 rdev->constraints->state_standby.mode);
866}
867static DEVICE_ATTR_RO(suspend_standby_mode);
868
869static ssize_t suspend_mem_state_show(struct device *dev,
870 struct device_attribute *attr, char *buf)
871{
872 struct regulator_dev *rdev = dev_get_drvdata(dev);
873
874 return regulator_print_state(buf,
875 rdev->constraints->state_mem.enabled);
876}
877static DEVICE_ATTR_RO(suspend_mem_state);
878
879static ssize_t suspend_disk_state_show(struct device *dev,
880 struct device_attribute *attr, char *buf)
881{
882 struct regulator_dev *rdev = dev_get_drvdata(dev);
883
884 return regulator_print_state(buf,
885 rdev->constraints->state_disk.enabled);
886}
887static DEVICE_ATTR_RO(suspend_disk_state);
888
889static ssize_t suspend_standby_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_standby.enabled);
896}
897static DEVICE_ATTR_RO(suspend_standby_state);
898
899static ssize_t bypass_show(struct device *dev,
900 struct device_attribute *attr, char *buf)
901{
902 struct regulator_dev *rdev = dev_get_drvdata(dev);
903 const char *report;
904 bool bypass;
905 int ret;
906
907 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
908
909 if (ret != 0)
910 report = "unknown";
911 else if (bypass)
912 report = "enabled";
913 else
914 report = "disabled";
915
916 return sprintf(buf, "%s\n", report);
917}
918static DEVICE_ATTR_RO(bypass);
919
920#define REGULATOR_ERROR_ATTR(name, bit) \
921 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
922 char *buf) \
923 { \
924 int ret; \
925 unsigned int flags; \
926 struct regulator_dev *rdev = dev_get_drvdata(dev); \
927 ret = _regulator_get_error_flags(rdev, &flags); \
928 if (ret) \
929 return ret; \
930 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
931 } \
932 static DEVICE_ATTR_RO(name)
933
934REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
935REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
936REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
937REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
938REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
939REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
940REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
941REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
942REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
943
944/* Calculate the new optimum regulator operating mode based on the new total
945 * consumer load. All locks held by caller
946 */
947static int drms_uA_update(struct regulator_dev *rdev)
948{
949 struct regulator *sibling;
950 int current_uA = 0, output_uV, input_uV, err;
951 unsigned int mode;
952
953 /*
954 * first check to see if we can set modes at all, otherwise just
955 * tell the consumer everything is OK.
956 */
957 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
958 rdev_dbg(rdev, "DRMS operation not allowed\n");
959 return 0;
960 }
961
962 if (!rdev->desc->ops->get_optimum_mode &&
963 !rdev->desc->ops->set_load)
964 return 0;
965
966 if (!rdev->desc->ops->set_mode &&
967 !rdev->desc->ops->set_load)
968 return -EINVAL;
969
970 /* calc total requested load */
971 list_for_each_entry(sibling, &rdev->consumer_list, list) {
972 if (sibling->enable_count)
973 current_uA += sibling->uA_load;
974 }
975
976 current_uA += rdev->constraints->system_load;
977
978 if (rdev->desc->ops->set_load) {
979 /* set the optimum mode for our new total regulator load */
980 err = rdev->desc->ops->set_load(rdev, current_uA);
981 if (err < 0)
982 rdev_err(rdev, "failed to set load %d: %pe\n",
983 current_uA, ERR_PTR(err));
984 } else {
985 /*
986 * Unfortunately in some cases the constraints->valid_ops has
987 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
988 * That's not really legit but we won't consider it a fatal
989 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
990 * wasn't set.
991 */
992 if (!rdev->constraints->valid_modes_mask) {
993 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
994 return 0;
995 }
996
997 /* get output voltage */
998 output_uV = regulator_get_voltage_rdev(rdev);
999
1000 /*
1001 * Don't return an error; if regulator driver cares about
1002 * output_uV then it's up to the driver to validate.
1003 */
1004 if (output_uV <= 0)
1005 rdev_dbg(rdev, "invalid output voltage found\n");
1006
1007 /* get input voltage */
1008 input_uV = 0;
1009 if (rdev->supply)
1010 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011 if (input_uV <= 0)
1012 input_uV = rdev->constraints->input_uV;
1013
1014 /*
1015 * Don't return an error; if regulator driver cares about
1016 * input_uV then it's up to the driver to validate.
1017 */
1018 if (input_uV <= 0)
1019 rdev_dbg(rdev, "invalid input voltage found\n");
1020
1021 /* now get the optimum mode for our new total regulator load */
1022 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023 output_uV, current_uA);
1024
1025 /* check the new mode is allowed */
1026 err = regulator_mode_constrain(rdev, &mode);
1027 if (err < 0) {
1028 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029 current_uA, input_uV, output_uV, ERR_PTR(err));
1030 return err;
1031 }
1032
1033 err = rdev->desc->ops->set_mode(rdev, mode);
1034 if (err < 0)
1035 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036 mode, ERR_PTR(err));
1037 }
1038
1039 return err;
1040}
1041
1042static int __suspend_set_state(struct regulator_dev *rdev,
1043 const struct regulator_state *rstate)
1044{
1045 int ret = 0;
1046
1047 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048 rdev->desc->ops->set_suspend_enable)
1049 ret = rdev->desc->ops->set_suspend_enable(rdev);
1050 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051 rdev->desc->ops->set_suspend_disable)
1052 ret = rdev->desc->ops->set_suspend_disable(rdev);
1053 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054 ret = 0;
1055
1056 if (ret < 0) {
1057 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058 return ret;
1059 }
1060
1061 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063 if (ret < 0) {
1064 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065 return ret;
1066 }
1067 }
1068
1069 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071 if (ret < 0) {
1072 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073 return ret;
1074 }
1075 }
1076
1077 return ret;
1078}
1079
1080static int suspend_set_initial_state(struct regulator_dev *rdev)
1081{
1082 const struct regulator_state *rstate;
1083
1084 rstate = regulator_get_suspend_state_check(rdev,
1085 rdev->constraints->initial_state);
1086 if (!rstate)
1087 return 0;
1088
1089 return __suspend_set_state(rdev, rstate);
1090}
1091
1092#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093static void print_constraints_debug(struct regulator_dev *rdev)
1094{
1095 struct regulation_constraints *constraints = rdev->constraints;
1096 char buf[160] = "";
1097 size_t len = sizeof(buf) - 1;
1098 int count = 0;
1099 int ret;
1100
1101 if (constraints->min_uV && constraints->max_uV) {
1102 if (constraints->min_uV == constraints->max_uV)
1103 count += scnprintf(buf + count, len - count, "%d mV ",
1104 constraints->min_uV / 1000);
1105 else
1106 count += scnprintf(buf + count, len - count,
1107 "%d <--> %d mV ",
1108 constraints->min_uV / 1000,
1109 constraints->max_uV / 1000);
1110 }
1111
1112 if (!constraints->min_uV ||
1113 constraints->min_uV != constraints->max_uV) {
1114 ret = regulator_get_voltage_rdev(rdev);
1115 if (ret > 0)
1116 count += scnprintf(buf + count, len - count,
1117 "at %d mV ", ret / 1000);
1118 }
1119
1120 if (constraints->uV_offset)
1121 count += scnprintf(buf + count, len - count, "%dmV offset ",
1122 constraints->uV_offset / 1000);
1123
1124 if (constraints->min_uA && constraints->max_uA) {
1125 if (constraints->min_uA == constraints->max_uA)
1126 count += scnprintf(buf + count, len - count, "%d mA ",
1127 constraints->min_uA / 1000);
1128 else
1129 count += scnprintf(buf + count, len - count,
1130 "%d <--> %d mA ",
1131 constraints->min_uA / 1000,
1132 constraints->max_uA / 1000);
1133 }
1134
1135 if (!constraints->min_uA ||
1136 constraints->min_uA != constraints->max_uA) {
1137 ret = _regulator_get_current_limit(rdev);
1138 if (ret > 0)
1139 count += scnprintf(buf + count, len - count,
1140 "at %d mA ", ret / 1000);
1141 }
1142
1143 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144 count += scnprintf(buf + count, len - count, "fast ");
1145 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146 count += scnprintf(buf + count, len - count, "normal ");
1147 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148 count += scnprintf(buf + count, len - count, "idle ");
1149 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150 count += scnprintf(buf + count, len - count, "standby ");
1151
1152 if (!count)
1153 count = scnprintf(buf, len, "no parameters");
1154 else
1155 --count;
1156
1157 count += scnprintf(buf + count, len - count, ", %s",
1158 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1159
1160 rdev_dbg(rdev, "%s\n", buf);
1161}
1162#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1165
1166static void print_constraints(struct regulator_dev *rdev)
1167{
1168 struct regulation_constraints *constraints = rdev->constraints;
1169
1170 print_constraints_debug(rdev);
1171
1172 if ((constraints->min_uV != constraints->max_uV) &&
1173 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174 rdev_warn(rdev,
1175 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1176}
1177
1178static int machine_constraints_voltage(struct regulator_dev *rdev,
1179 struct regulation_constraints *constraints)
1180{
1181 const struct regulator_ops *ops = rdev->desc->ops;
1182 int ret;
1183
1184 /* do we need to apply the constraint voltage */
1185 if (rdev->constraints->apply_uV &&
1186 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187 int target_min, target_max;
1188 int current_uV = regulator_get_voltage_rdev(rdev);
1189
1190 if (current_uV == -ENOTRECOVERABLE) {
1191 /* This regulator can't be read and must be initialized */
1192 rdev_info(rdev, "Setting %d-%duV\n",
1193 rdev->constraints->min_uV,
1194 rdev->constraints->max_uV);
1195 _regulator_do_set_voltage(rdev,
1196 rdev->constraints->min_uV,
1197 rdev->constraints->max_uV);
1198 current_uV = regulator_get_voltage_rdev(rdev);
1199 }
1200
1201 if (current_uV < 0) {
1202 if (current_uV != -EPROBE_DEFER)
1203 rdev_err(rdev,
1204 "failed to get the current voltage: %pe\n",
1205 ERR_PTR(current_uV));
1206 return current_uV;
1207 }
1208
1209 /*
1210 * If we're below the minimum voltage move up to the
1211 * minimum voltage, if we're above the maximum voltage
1212 * then move down to the maximum.
1213 */
1214 target_min = current_uV;
1215 target_max = current_uV;
1216
1217 if (current_uV < rdev->constraints->min_uV) {
1218 target_min = rdev->constraints->min_uV;
1219 target_max = rdev->constraints->min_uV;
1220 }
1221
1222 if (current_uV > rdev->constraints->max_uV) {
1223 target_min = rdev->constraints->max_uV;
1224 target_max = rdev->constraints->max_uV;
1225 }
1226
1227 if (target_min != current_uV || target_max != current_uV) {
1228 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229 current_uV, target_min, target_max);
1230 ret = _regulator_do_set_voltage(
1231 rdev, target_min, target_max);
1232 if (ret < 0) {
1233 rdev_err(rdev,
1234 "failed to apply %d-%duV constraint: %pe\n",
1235 target_min, target_max, ERR_PTR(ret));
1236 return ret;
1237 }
1238 }
1239 }
1240
1241 /* constrain machine-level voltage specs to fit
1242 * the actual range supported by this regulator.
1243 */
1244 if (ops->list_voltage && rdev->desc->n_voltages) {
1245 int count = rdev->desc->n_voltages;
1246 int i;
1247 int min_uV = INT_MAX;
1248 int max_uV = INT_MIN;
1249 int cmin = constraints->min_uV;
1250 int cmax = constraints->max_uV;
1251
1252 /* it's safe to autoconfigure fixed-voltage supplies
1253 * and the constraints are used by list_voltage.
1254 */
1255 if (count == 1 && !cmin) {
1256 cmin = 1;
1257 cmax = INT_MAX;
1258 constraints->min_uV = cmin;
1259 constraints->max_uV = cmax;
1260 }
1261
1262 /* voltage constraints are optional */
1263 if ((cmin == 0) && (cmax == 0))
1264 return 0;
1265
1266 /* else require explicit machine-level constraints */
1267 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268 rdev_err(rdev, "invalid voltage constraints\n");
1269 return -EINVAL;
1270 }
1271
1272 /* no need to loop voltages if range is continuous */
1273 if (rdev->desc->continuous_voltage_range)
1274 return 0;
1275
1276 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277 for (i = 0; i < count; i++) {
1278 int value;
1279
1280 value = ops->list_voltage(rdev, i);
1281 if (value <= 0)
1282 continue;
1283
1284 /* maybe adjust [min_uV..max_uV] */
1285 if (value >= cmin && value < min_uV)
1286 min_uV = value;
1287 if (value <= cmax && value > max_uV)
1288 max_uV = value;
1289 }
1290
1291 /* final: [min_uV..max_uV] valid iff constraints valid */
1292 if (max_uV < min_uV) {
1293 rdev_err(rdev,
1294 "unsupportable voltage constraints %u-%uuV\n",
1295 min_uV, max_uV);
1296 return -EINVAL;
1297 }
1298
1299 /* use regulator's subset of machine constraints */
1300 if (constraints->min_uV < min_uV) {
1301 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302 constraints->min_uV, min_uV);
1303 constraints->min_uV = min_uV;
1304 }
1305 if (constraints->max_uV > max_uV) {
1306 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307 constraints->max_uV, max_uV);
1308 constraints->max_uV = max_uV;
1309 }
1310 }
1311
1312 return 0;
1313}
1314
1315static int machine_constraints_current(struct regulator_dev *rdev,
1316 struct regulation_constraints *constraints)
1317{
1318 const struct regulator_ops *ops = rdev->desc->ops;
1319 int ret;
1320
1321 if (!constraints->min_uA && !constraints->max_uA)
1322 return 0;
1323
1324 if (constraints->min_uA > constraints->max_uA) {
1325 rdev_err(rdev, "Invalid current constraints\n");
1326 return -EINVAL;
1327 }
1328
1329 if (!ops->set_current_limit || !ops->get_current_limit) {
1330 rdev_warn(rdev, "Operation of current configuration missing\n");
1331 return 0;
1332 }
1333
1334 /* Set regulator current in constraints range */
1335 ret = ops->set_current_limit(rdev, constraints->min_uA,
1336 constraints->max_uA);
1337 if (ret < 0) {
1338 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339 return ret;
1340 }
1341
1342 return 0;
1343}
1344
1345static int _regulator_do_enable(struct regulator_dev *rdev);
1346
1347static int notif_set_limit(struct regulator_dev *rdev,
1348 int (*set)(struct regulator_dev *, int, int, bool),
1349 int limit, int severity)
1350{
1351 bool enable;
1352
1353 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354 enable = false;
1355 limit = 0;
1356 } else {
1357 enable = true;
1358 }
1359
1360 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361 limit = 0;
1362
1363 return set(rdev, limit, severity, enable);
1364}
1365
1366static int handle_notify_limits(struct regulator_dev *rdev,
1367 int (*set)(struct regulator_dev *, int, int, bool),
1368 struct notification_limit *limits)
1369{
1370 int ret = 0;
1371
1372 if (!set)
1373 return -EOPNOTSUPP;
1374
1375 if (limits->prot)
1376 ret = notif_set_limit(rdev, set, limits->prot,
1377 REGULATOR_SEVERITY_PROT);
1378 if (ret)
1379 return ret;
1380
1381 if (limits->err)
1382 ret = notif_set_limit(rdev, set, limits->err,
1383 REGULATOR_SEVERITY_ERR);
1384 if (ret)
1385 return ret;
1386
1387 if (limits->warn)
1388 ret = notif_set_limit(rdev, set, limits->warn,
1389 REGULATOR_SEVERITY_WARN);
1390
1391 return ret;
1392}
1393/**
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1396 *
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401 * set_mode.
1402 *
1403 * Return: 0 on success or a negative error number on failure.
1404 */
1405static int set_machine_constraints(struct regulator_dev *rdev)
1406{
1407 int ret = 0;
1408 const struct regulator_ops *ops = rdev->desc->ops;
1409
1410 ret = machine_constraints_voltage(rdev, rdev->constraints);
1411 if (ret != 0)
1412 return ret;
1413
1414 ret = machine_constraints_current(rdev, rdev->constraints);
1415 if (ret != 0)
1416 return ret;
1417
1418 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419 ret = ops->set_input_current_limit(rdev,
1420 rdev->constraints->ilim_uA);
1421 if (ret < 0) {
1422 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423 return ret;
1424 }
1425 }
1426
1427 /* do we need to setup our suspend state */
1428 if (rdev->constraints->initial_state) {
1429 ret = suspend_set_initial_state(rdev);
1430 if (ret < 0) {
1431 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432 return ret;
1433 }
1434 }
1435
1436 if (rdev->constraints->initial_mode) {
1437 if (!ops->set_mode) {
1438 rdev_err(rdev, "no set_mode operation\n");
1439 return -EINVAL;
1440 }
1441
1442 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443 if (ret < 0) {
1444 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445 return ret;
1446 }
1447 } else if (rdev->constraints->system_load) {
1448 /*
1449 * We'll only apply the initial system load if an
1450 * initial mode wasn't specified.
1451 */
1452 drms_uA_update(rdev);
1453 }
1454
1455 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456 && ops->set_ramp_delay) {
1457 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458 if (ret < 0) {
1459 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460 return ret;
1461 }
1462 }
1463
1464 if (rdev->constraints->pull_down && ops->set_pull_down) {
1465 ret = ops->set_pull_down(rdev);
1466 if (ret < 0) {
1467 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468 return ret;
1469 }
1470 }
1471
1472 if (rdev->constraints->soft_start && ops->set_soft_start) {
1473 ret = ops->set_soft_start(rdev);
1474 if (ret < 0) {
1475 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476 return ret;
1477 }
1478 }
1479
1480 /*
1481 * Existing logic does not warn if over_current_protection is given as
1482 * a constraint but driver does not support that. I think we should
1483 * warn about this type of issues as it is possible someone changes
1484 * PMIC on board to another type - and the another PMIC's driver does
1485 * not support setting protection. Board composer may happily believe
1486 * the DT limits are respected - especially if the new PMIC HW also
1487 * supports protection but the driver does not. I won't change the logic
1488 * without hearing more experienced opinion on this though.
1489 *
1490 * If warning is seen as a good idea then we can merge handling the
1491 * over-curret protection and detection and get rid of this special
1492 * handling.
1493 */
1494 if (rdev->constraints->over_current_protection
1495 && ops->set_over_current_protection) {
1496 int lim = rdev->constraints->over_curr_limits.prot;
1497
1498 ret = ops->set_over_current_protection(rdev, lim,
1499 REGULATOR_SEVERITY_PROT,
1500 true);
1501 if (ret < 0) {
1502 rdev_err(rdev, "failed to set over current protection: %pe\n",
1503 ERR_PTR(ret));
1504 return ret;
1505 }
1506 }
1507
1508 if (rdev->constraints->over_current_detection)
1509 ret = handle_notify_limits(rdev,
1510 ops->set_over_current_protection,
1511 &rdev->constraints->over_curr_limits);
1512 if (ret) {
1513 if (ret != -EOPNOTSUPP) {
1514 rdev_err(rdev, "failed to set over current limits: %pe\n",
1515 ERR_PTR(ret));
1516 return ret;
1517 }
1518 rdev_warn(rdev,
1519 "IC does not support requested over-current limits\n");
1520 }
1521
1522 if (rdev->constraints->over_voltage_detection)
1523 ret = handle_notify_limits(rdev,
1524 ops->set_over_voltage_protection,
1525 &rdev->constraints->over_voltage_limits);
1526 if (ret) {
1527 if (ret != -EOPNOTSUPP) {
1528 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529 ERR_PTR(ret));
1530 return ret;
1531 }
1532 rdev_warn(rdev,
1533 "IC does not support requested over voltage limits\n");
1534 }
1535
1536 if (rdev->constraints->under_voltage_detection)
1537 ret = handle_notify_limits(rdev,
1538 ops->set_under_voltage_protection,
1539 &rdev->constraints->under_voltage_limits);
1540 if (ret) {
1541 if (ret != -EOPNOTSUPP) {
1542 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543 ERR_PTR(ret));
1544 return ret;
1545 }
1546 rdev_warn(rdev,
1547 "IC does not support requested under voltage limits\n");
1548 }
1549
1550 if (rdev->constraints->over_temp_detection)
1551 ret = handle_notify_limits(rdev,
1552 ops->set_thermal_protection,
1553 &rdev->constraints->temp_limits);
1554 if (ret) {
1555 if (ret != -EOPNOTSUPP) {
1556 rdev_err(rdev, "failed to set temperature limits %pe\n",
1557 ERR_PTR(ret));
1558 return ret;
1559 }
1560 rdev_warn(rdev,
1561 "IC does not support requested temperature limits\n");
1562 }
1563
1564 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565 bool ad_state = (rdev->constraints->active_discharge ==
1566 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1567
1568 ret = ops->set_active_discharge(rdev, ad_state);
1569 if (ret < 0) {
1570 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571 return ret;
1572 }
1573 }
1574
1575 /*
1576 * If there is no mechanism for controlling the regulator then
1577 * flag it as always_on so we don't end up duplicating checks
1578 * for this so much. Note that we could control the state of
1579 * a supply to control the output on a regulator that has no
1580 * direct control.
1581 */
1582 if (!rdev->ena_pin && !ops->enable) {
1583 if (rdev->supply_name && !rdev->supply)
1584 return -EPROBE_DEFER;
1585
1586 if (rdev->supply)
1587 rdev->constraints->always_on =
1588 rdev->supply->rdev->constraints->always_on;
1589 else
1590 rdev->constraints->always_on = true;
1591 }
1592
1593 /* If the constraints say the regulator should be on at this point
1594 * and we have control then make sure it is enabled.
1595 */
1596 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597 /* If we want to enable this regulator, make sure that we know
1598 * the supplying regulator.
1599 */
1600 if (rdev->supply_name && !rdev->supply)
1601 return -EPROBE_DEFER;
1602
1603 /* If supplying regulator has already been enabled,
1604 * it's not intended to have use_count increment
1605 * when rdev is only boot-on.
1606 */
1607 if (rdev->supply &&
1608 (rdev->constraints->always_on ||
1609 !regulator_is_enabled(rdev->supply))) {
1610 ret = regulator_enable(rdev->supply);
1611 if (ret < 0) {
1612 _regulator_put(rdev->supply);
1613 rdev->supply = NULL;
1614 return ret;
1615 }
1616 }
1617
1618 ret = _regulator_do_enable(rdev);
1619 if (ret < 0 && ret != -EINVAL) {
1620 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621 return ret;
1622 }
1623
1624 if (rdev->constraints->always_on)
1625 rdev->use_count++;
1626 } else if (rdev->desc->off_on_delay) {
1627 rdev->last_off = ktime_get();
1628 }
1629
1630 print_constraints(rdev);
1631 return 0;
1632}
1633
1634/**
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1638 *
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1642 *
1643 * Return: 0 on success or a negative error number on failure.
1644 */
1645static int set_supply(struct regulator_dev *rdev,
1646 struct regulator_dev *supply_rdev)
1647{
1648 int err;
1649
1650 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1651
1652 if (!try_module_get(supply_rdev->owner))
1653 return -ENODEV;
1654
1655 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656 if (rdev->supply == NULL) {
1657 module_put(supply_rdev->owner);
1658 err = -ENOMEM;
1659 return err;
1660 }
1661 supply_rdev->open_count++;
1662
1663 return 0;
1664}
1665
1666/**
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev: regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply: symbolic name for supply
1671 *
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices. Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1676 *
1677 * Return: 0 on success or a negative error number on failure.
1678 */
1679static int set_consumer_device_supply(struct regulator_dev *rdev,
1680 const char *consumer_dev_name,
1681 const char *supply)
1682{
1683 struct regulator_map *node, *new_node;
1684 int has_dev;
1685
1686 if (supply == NULL)
1687 return -EINVAL;
1688
1689 if (consumer_dev_name != NULL)
1690 has_dev = 1;
1691 else
1692 has_dev = 0;
1693
1694 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695 if (new_node == NULL)
1696 return -ENOMEM;
1697
1698 new_node->regulator = rdev;
1699 new_node->supply = supply;
1700
1701 if (has_dev) {
1702 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703 if (new_node->dev_name == NULL) {
1704 kfree(new_node);
1705 return -ENOMEM;
1706 }
1707 }
1708
1709 mutex_lock(®ulator_list_mutex);
1710 list_for_each_entry(node, ®ulator_map_list, list) {
1711 if (node->dev_name && consumer_dev_name) {
1712 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713 continue;
1714 } else if (node->dev_name || consumer_dev_name) {
1715 continue;
1716 }
1717
1718 if (strcmp(node->supply, supply) != 0)
1719 continue;
1720
1721 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722 consumer_dev_name,
1723 dev_name(&node->regulator->dev),
1724 node->regulator->desc->name,
1725 supply,
1726 dev_name(&rdev->dev), rdev_get_name(rdev));
1727 goto fail;
1728 }
1729
1730 list_add(&new_node->list, ®ulator_map_list);
1731 mutex_unlock(®ulator_list_mutex);
1732
1733 return 0;
1734
1735fail:
1736 mutex_unlock(®ulator_list_mutex);
1737 kfree(new_node->dev_name);
1738 kfree(new_node);
1739 return -EBUSY;
1740}
1741
1742static void unset_regulator_supplies(struct regulator_dev *rdev)
1743{
1744 struct regulator_map *node, *n;
1745
1746 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1747 if (rdev == node->regulator) {
1748 list_del(&node->list);
1749 kfree(node->dev_name);
1750 kfree(node);
1751 }
1752 }
1753}
1754
1755#ifdef CONFIG_DEBUG_FS
1756static ssize_t constraint_flags_read_file(struct file *file,
1757 char __user *user_buf,
1758 size_t count, loff_t *ppos)
1759{
1760 const struct regulator *regulator = file->private_data;
1761 const struct regulation_constraints *c = regulator->rdev->constraints;
1762 char *buf;
1763 ssize_t ret;
1764
1765 if (!c)
1766 return 0;
1767
1768 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769 if (!buf)
1770 return -ENOMEM;
1771
1772 ret = snprintf(buf, PAGE_SIZE,
1773 "always_on: %u\n"
1774 "boot_on: %u\n"
1775 "apply_uV: %u\n"
1776 "ramp_disable: %u\n"
1777 "soft_start: %u\n"
1778 "pull_down: %u\n"
1779 "over_current_protection: %u\n",
1780 c->always_on,
1781 c->boot_on,
1782 c->apply_uV,
1783 c->ramp_disable,
1784 c->soft_start,
1785 c->pull_down,
1786 c->over_current_protection);
1787
1788 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789 kfree(buf);
1790
1791 return ret;
1792}
1793
1794#endif
1795
1796static const struct file_operations constraint_flags_fops = {
1797#ifdef CONFIG_DEBUG_FS
1798 .open = simple_open,
1799 .read = constraint_flags_read_file,
1800 .llseek = default_llseek,
1801#endif
1802};
1803
1804#define REG_STR_SIZE 64
1805
1806static struct regulator *create_regulator(struct regulator_dev *rdev,
1807 struct device *dev,
1808 const char *supply_name)
1809{
1810 struct regulator *regulator;
1811 int err = 0;
1812
1813 lockdep_assert_held_once(&rdev->mutex.base);
1814
1815 if (dev) {
1816 char buf[REG_STR_SIZE];
1817 int size;
1818
1819 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820 dev->kobj.name, supply_name);
1821 if (size >= REG_STR_SIZE)
1822 return NULL;
1823
1824 supply_name = kstrdup(buf, GFP_KERNEL);
1825 if (supply_name == NULL)
1826 return NULL;
1827 } else {
1828 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829 if (supply_name == NULL)
1830 return NULL;
1831 }
1832
1833 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834 if (regulator == NULL) {
1835 kfree_const(supply_name);
1836 return NULL;
1837 }
1838
1839 regulator->rdev = rdev;
1840 regulator->supply_name = supply_name;
1841
1842 list_add(®ulator->list, &rdev->consumer_list);
1843
1844 if (dev) {
1845 regulator->dev = dev;
1846
1847 /* Add a link to the device sysfs entry */
1848 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849 supply_name);
1850 if (err) {
1851 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852 dev->kobj.name, ERR_PTR(err));
1853 /* non-fatal */
1854 }
1855 }
1856
1857 if (err != -EEXIST) {
1858 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859 if (IS_ERR(regulator->debugfs)) {
1860 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861 regulator->debugfs = NULL;
1862 }
1863 }
1864
1865 if (regulator->debugfs) {
1866 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867 ®ulator->uA_load);
1868 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1870 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1872 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873 regulator, &constraint_flags_fops);
1874 }
1875
1876 /*
1877 * Check now if the regulator is an always on regulator - if
1878 * it is then we don't need to do nearly so much work for
1879 * enable/disable calls.
1880 */
1881 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882 _regulator_is_enabled(rdev))
1883 regulator->always_on = true;
1884
1885 return regulator;
1886}
1887
1888static int _regulator_get_enable_time(struct regulator_dev *rdev)
1889{
1890 if (rdev->constraints && rdev->constraints->enable_time)
1891 return rdev->constraints->enable_time;
1892 if (rdev->desc->ops->enable_time)
1893 return rdev->desc->ops->enable_time(rdev);
1894 return rdev->desc->enable_time;
1895}
1896
1897static struct regulator_supply_alias *regulator_find_supply_alias(
1898 struct device *dev, const char *supply)
1899{
1900 struct regulator_supply_alias *map;
1901
1902 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1903 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904 return map;
1905
1906 return NULL;
1907}
1908
1909static void regulator_supply_alias(struct device **dev, const char **supply)
1910{
1911 struct regulator_supply_alias *map;
1912
1913 map = regulator_find_supply_alias(*dev, *supply);
1914 if (map) {
1915 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916 *supply, map->alias_supply,
1917 dev_name(map->alias_dev));
1918 *dev = map->alias_dev;
1919 *supply = map->alias_supply;
1920 }
1921}
1922
1923static int regulator_match(struct device *dev, const void *data)
1924{
1925 struct regulator_dev *r = dev_to_rdev(dev);
1926
1927 return strcmp(rdev_get_name(r), data) == 0;
1928}
1929
1930static struct regulator_dev *regulator_lookup_by_name(const char *name)
1931{
1932 struct device *dev;
1933
1934 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1935
1936 return dev ? dev_to_rdev(dev) : NULL;
1937}
1938
1939/**
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1943 *
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1945 *
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951 * in the future.
1952 */
1953static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954 const char *supply)
1955{
1956 struct regulator_dev *r = NULL;
1957 struct regulator_map *map;
1958 const char *devname = NULL;
1959
1960 regulator_supply_alias(&dev, &supply);
1961
1962 /* first do a dt based lookup */
1963 if (dev_of_node(dev)) {
1964 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965 if (!IS_ERR(r))
1966 return r;
1967 if (PTR_ERR(r) == -EPROBE_DEFER)
1968 return r;
1969
1970 if (PTR_ERR(r) == -ENODEV)
1971 r = NULL;
1972 }
1973
1974 /* if not found, try doing it non-dt way */
1975 if (dev)
1976 devname = dev_name(dev);
1977
1978 mutex_lock(®ulator_list_mutex);
1979 list_for_each_entry(map, ®ulator_map_list, list) {
1980 /* If the mapping has a device set up it must match */
1981 if (map->dev_name &&
1982 (!devname || strcmp(map->dev_name, devname)))
1983 continue;
1984
1985 if (strcmp(map->supply, supply) == 0 &&
1986 get_device(&map->regulator->dev)) {
1987 r = map->regulator;
1988 break;
1989 }
1990 }
1991 mutex_unlock(®ulator_list_mutex);
1992
1993 if (r)
1994 return r;
1995
1996 r = regulator_lookup_by_name(supply);
1997 if (r)
1998 return r;
1999
2000 return ERR_PTR(-ENODEV);
2001}
2002
2003static int regulator_resolve_supply(struct regulator_dev *rdev)
2004{
2005 struct regulator_dev *r;
2006 struct device *dev = rdev->dev.parent;
2007 struct ww_acquire_ctx ww_ctx;
2008 int ret = 0;
2009
2010 /* No supply to resolve? */
2011 if (!rdev->supply_name)
2012 return 0;
2013
2014 /* Supply already resolved? (fast-path without locking contention) */
2015 if (rdev->supply)
2016 return 0;
2017
2018 r = regulator_dev_lookup(dev, rdev->supply_name);
2019 if (IS_ERR(r)) {
2020 ret = PTR_ERR(r);
2021
2022 /* Did the lookup explicitly defer for us? */
2023 if (ret == -EPROBE_DEFER)
2024 goto out;
2025
2026 if (have_full_constraints()) {
2027 r = dummy_regulator_rdev;
2028 get_device(&r->dev);
2029 } else {
2030 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031 rdev->supply_name, rdev->desc->name);
2032 ret = -EPROBE_DEFER;
2033 goto out;
2034 }
2035 }
2036
2037 if (r == rdev) {
2038 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039 rdev->desc->name, rdev->supply_name);
2040 if (!have_full_constraints()) {
2041 ret = -EINVAL;
2042 goto out;
2043 }
2044 r = dummy_regulator_rdev;
2045 get_device(&r->dev);
2046 }
2047
2048 /*
2049 * If the supply's parent device is not the same as the
2050 * regulator's parent device, then ensure the parent device
2051 * is bound before we resolve the supply, in case the parent
2052 * device get probe deferred and unregisters the supply.
2053 */
2054 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055 if (!device_is_bound(r->dev.parent)) {
2056 put_device(&r->dev);
2057 ret = -EPROBE_DEFER;
2058 goto out;
2059 }
2060 }
2061
2062 /* Recursively resolve the supply of the supply */
2063 ret = regulator_resolve_supply(r);
2064 if (ret < 0) {
2065 put_device(&r->dev);
2066 goto out;
2067 }
2068
2069 /*
2070 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071 * between rdev->supply null check and setting rdev->supply in
2072 * set_supply() from concurrent tasks.
2073 */
2074 regulator_lock_two(rdev, r, &ww_ctx);
2075
2076 /* Supply just resolved by a concurrent task? */
2077 if (rdev->supply) {
2078 regulator_unlock_two(rdev, r, &ww_ctx);
2079 put_device(&r->dev);
2080 goto out;
2081 }
2082
2083 ret = set_supply(rdev, r);
2084 if (ret < 0) {
2085 regulator_unlock_two(rdev, r, &ww_ctx);
2086 put_device(&r->dev);
2087 goto out;
2088 }
2089
2090 regulator_unlock_two(rdev, r, &ww_ctx);
2091
2092 /*
2093 * In set_machine_constraints() we may have turned this regulator on
2094 * but we couldn't propagate to the supply if it hadn't been resolved
2095 * yet. Do it now.
2096 */
2097 if (rdev->use_count) {
2098 ret = regulator_enable(rdev->supply);
2099 if (ret < 0) {
2100 _regulator_put(rdev->supply);
2101 rdev->supply = NULL;
2102 goto out;
2103 }
2104 }
2105
2106out:
2107 return ret;
2108}
2109
2110/* common pre-checks for regulator requests */
2111int _regulator_get_common_check(struct device *dev, const char *id,
2112 enum regulator_get_type get_type)
2113{
2114 if (get_type >= MAX_GET_TYPE) {
2115 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116 return -EINVAL;
2117 }
2118
2119 if (id == NULL) {
2120 dev_err(dev, "regulator request with no identifier\n");
2121 return -EINVAL;
2122 }
2123
2124 return 0;
2125}
2126
2127/**
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 * Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2134 *
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136 * encoded error.
2137 *
2138 * This function should be chained with *regulator_dev_lookup() functions.
2139 */
2140struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141 const char *id, enum regulator_get_type get_type)
2142{
2143 struct regulator *regulator;
2144 struct device_link *link;
2145 int ret;
2146
2147 if (IS_ERR(rdev)) {
2148 ret = PTR_ERR(rdev);
2149
2150 /*
2151 * If regulator_dev_lookup() fails with error other
2152 * than -ENODEV our job here is done, we simply return it.
2153 */
2154 if (ret != -ENODEV)
2155 return ERR_PTR(ret);
2156
2157 if (!have_full_constraints()) {
2158 dev_warn(dev,
2159 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160 return ERR_PTR(-ENODEV);
2161 }
2162
2163 switch (get_type) {
2164 case NORMAL_GET:
2165 /*
2166 * Assume that a regulator is physically present and
2167 * enabled, even if it isn't hooked up, and just
2168 * provide a dummy.
2169 */
2170 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171 rdev = dummy_regulator_rdev;
2172 get_device(&rdev->dev);
2173 break;
2174
2175 case EXCLUSIVE_GET:
2176 dev_warn(dev,
2177 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178 fallthrough;
2179
2180 default:
2181 return ERR_PTR(-ENODEV);
2182 }
2183 }
2184
2185 if (rdev->exclusive) {
2186 regulator = ERR_PTR(-EPERM);
2187 put_device(&rdev->dev);
2188 return regulator;
2189 }
2190
2191 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192 regulator = ERR_PTR(-EBUSY);
2193 put_device(&rdev->dev);
2194 return regulator;
2195 }
2196
2197 mutex_lock(®ulator_list_mutex);
2198 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199 mutex_unlock(®ulator_list_mutex);
2200
2201 if (ret != 0) {
2202 regulator = ERR_PTR(-EPROBE_DEFER);
2203 put_device(&rdev->dev);
2204 return regulator;
2205 }
2206
2207 ret = regulator_resolve_supply(rdev);
2208 if (ret < 0) {
2209 regulator = ERR_PTR(ret);
2210 put_device(&rdev->dev);
2211 return regulator;
2212 }
2213
2214 if (!try_module_get(rdev->owner)) {
2215 regulator = ERR_PTR(-EPROBE_DEFER);
2216 put_device(&rdev->dev);
2217 return regulator;
2218 }
2219
2220 regulator_lock(rdev);
2221 regulator = create_regulator(rdev, dev, id);
2222 regulator_unlock(rdev);
2223 if (regulator == NULL) {
2224 regulator = ERR_PTR(-ENOMEM);
2225 module_put(rdev->owner);
2226 put_device(&rdev->dev);
2227 return regulator;
2228 }
2229
2230 rdev->open_count++;
2231 if (get_type == EXCLUSIVE_GET) {
2232 rdev->exclusive = 1;
2233
2234 ret = _regulator_is_enabled(rdev);
2235 if (ret > 0) {
2236 rdev->use_count = 1;
2237 regulator->enable_count = 1;
2238
2239 /* Propagate the regulator state to its supply */
2240 if (rdev->supply) {
2241 ret = regulator_enable(rdev->supply);
2242 if (ret < 0) {
2243 destroy_regulator(regulator);
2244 module_put(rdev->owner);
2245 put_device(&rdev->dev);
2246 return ERR_PTR(ret);
2247 }
2248 }
2249 } else {
2250 rdev->use_count = 0;
2251 regulator->enable_count = 0;
2252 }
2253 }
2254
2255 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256 if (!IS_ERR_OR_NULL(link))
2257 regulator->device_link = true;
2258
2259 return regulator;
2260}
2261
2262/* Internal regulator request function */
2263struct regulator *_regulator_get(struct device *dev, const char *id,
2264 enum regulator_get_type get_type)
2265{
2266 struct regulator_dev *rdev;
2267 int ret;
2268
2269 ret = _regulator_get_common_check(dev, id, get_type);
2270 if (ret)
2271 return ERR_PTR(ret);
2272
2273 rdev = regulator_dev_lookup(dev, id);
2274 return _regulator_get_common(rdev, dev, id, get_type);
2275}
2276
2277/**
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2281 *
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged. It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2286 *
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 * producer, or an ERR_PTR() encoded negative error number.
2289 */
2290struct regulator *regulator_get(struct device *dev, const char *id)
2291{
2292 return _regulator_get(dev, id, NORMAL_GET);
2293}
2294EXPORT_SYMBOL_GPL(regulator_get);
2295
2296/**
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2300 *
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
2304 *
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2308 * controlling.
2309 *
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged. It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2314 *
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 * producer, or an ERR_PTR() encoded negative error number.
2317 */
2318struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2319{
2320 return _regulator_get(dev, id, EXCLUSIVE_GET);
2321}
2322EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2323
2324/**
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2328 *
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2334 * supplies.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged. It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 *
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 * producer, or an ERR_PTR() encoded negative error number.
2343 */
2344struct regulator *regulator_get_optional(struct device *dev, const char *id)
2345{
2346 return _regulator_get(dev, id, OPTIONAL_GET);
2347}
2348EXPORT_SYMBOL_GPL(regulator_get_optional);
2349
2350static void destroy_regulator(struct regulator *regulator)
2351{
2352 struct regulator_dev *rdev = regulator->rdev;
2353
2354 debugfs_remove_recursive(regulator->debugfs);
2355
2356 if (regulator->dev) {
2357 if (regulator->device_link)
2358 device_link_remove(regulator->dev, &rdev->dev);
2359
2360 /* remove any sysfs entries */
2361 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2362 }
2363
2364 regulator_lock(rdev);
2365 list_del(®ulator->list);
2366
2367 rdev->open_count--;
2368 rdev->exclusive = 0;
2369 regulator_unlock(rdev);
2370
2371 kfree_const(regulator->supply_name);
2372 kfree(regulator);
2373}
2374
2375/* regulator_list_mutex lock held by regulator_put() */
2376static void _regulator_put(struct regulator *regulator)
2377{
2378 struct regulator_dev *rdev;
2379
2380 if (IS_ERR_OR_NULL(regulator))
2381 return;
2382
2383 lockdep_assert_held_once(®ulator_list_mutex);
2384
2385 /* Docs say you must disable before calling regulator_put() */
2386 WARN_ON(regulator->enable_count);
2387
2388 rdev = regulator->rdev;
2389
2390 destroy_regulator(regulator);
2391
2392 module_put(rdev->owner);
2393 put_device(&rdev->dev);
2394}
2395
2396/**
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2399 *
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2402 * this function.
2403 */
2404void regulator_put(struct regulator *regulator)
2405{
2406 mutex_lock(®ulator_list_mutex);
2407 _regulator_put(regulator);
2408 mutex_unlock(®ulator_list_mutex);
2409}
2410EXPORT_SYMBOL_GPL(regulator_put);
2411
2412/**
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2414 *
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2419 * supply
2420 *
2421 * All lookups for id on dev will instead be conducted for alias_id on
2422 * alias_dev.
2423 *
2424 * Return: 0 on success or a negative error number on failure.
2425 */
2426int regulator_register_supply_alias(struct device *dev, const char *id,
2427 struct device *alias_dev,
2428 const char *alias_id)
2429{
2430 struct regulator_supply_alias *map;
2431
2432 map = regulator_find_supply_alias(dev, id);
2433 if (map)
2434 return -EEXIST;
2435
2436 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437 if (!map)
2438 return -ENOMEM;
2439
2440 map->src_dev = dev;
2441 map->src_supply = id;
2442 map->alias_dev = alias_dev;
2443 map->alias_supply = alias_id;
2444
2445 list_add(&map->list, ®ulator_supply_alias_list);
2446
2447 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448 id, dev_name(dev), alias_id, dev_name(alias_dev));
2449
2450 return 0;
2451}
2452EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2453
2454/**
2455 * regulator_unregister_supply_alias - Remove device alias
2456 *
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2459 *
2460 * Remove a lookup alias if one exists for id on dev.
2461 */
2462void regulator_unregister_supply_alias(struct device *dev, const char *id)
2463{
2464 struct regulator_supply_alias *map;
2465
2466 map = regulator_find_supply_alias(dev, id);
2467 if (map) {
2468 list_del(&map->list);
2469 kfree(map);
2470 }
2471}
2472EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2473
2474/**
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2476 *
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2481 * lookup the supply
2482 * @num_id: Number of aliases to register
2483 *
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation. If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2488 *
2489 * Return: 0 on success or a negative error number on failure.
2490 */
2491int regulator_bulk_register_supply_alias(struct device *dev,
2492 const char *const *id,
2493 struct device *alias_dev,
2494 const char *const *alias_id,
2495 int num_id)
2496{
2497 int i;
2498 int ret;
2499
2500 for (i = 0; i < num_id; ++i) {
2501 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502 alias_id[i]);
2503 if (ret < 0)
2504 goto err;
2505 }
2506
2507 return 0;
2508
2509err:
2510 dev_err(dev,
2511 "Failed to create supply alias %s,%s -> %s,%s\n",
2512 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2513
2514 while (--i >= 0)
2515 regulator_unregister_supply_alias(dev, id[i]);
2516
2517 return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2520
2521/**
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2523 *
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2527 *
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2530 */
2531void regulator_bulk_unregister_supply_alias(struct device *dev,
2532 const char *const *id,
2533 int num_id)
2534{
2535 int i;
2536
2537 for (i = 0; i < num_id; ++i)
2538 regulator_unregister_supply_alias(dev, id[i]);
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2541
2542
2543/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545 const struct regulator_config *config)
2546{
2547 struct regulator_enable_gpio *pin, *new_pin;
2548 struct gpio_desc *gpiod;
2549
2550 gpiod = config->ena_gpiod;
2551 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2552
2553 mutex_lock(®ulator_list_mutex);
2554
2555 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2556 if (pin->gpiod == gpiod) {
2557 rdev_dbg(rdev, "GPIO is already used\n");
2558 goto update_ena_gpio_to_rdev;
2559 }
2560 }
2561
2562 if (new_pin == NULL) {
2563 mutex_unlock(®ulator_list_mutex);
2564 return -ENOMEM;
2565 }
2566
2567 pin = new_pin;
2568 new_pin = NULL;
2569
2570 pin->gpiod = gpiod;
2571 list_add(&pin->list, ®ulator_ena_gpio_list);
2572
2573update_ena_gpio_to_rdev:
2574 pin->request_count++;
2575 rdev->ena_pin = pin;
2576
2577 mutex_unlock(®ulator_list_mutex);
2578 kfree(new_pin);
2579
2580 return 0;
2581}
2582
2583static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2584{
2585 struct regulator_enable_gpio *pin, *n;
2586
2587 if (!rdev->ena_pin)
2588 return;
2589
2590 /* Free the GPIO only in case of no use */
2591 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2592 if (pin != rdev->ena_pin)
2593 continue;
2594
2595 if (--pin->request_count)
2596 break;
2597
2598 gpiod_put(pin->gpiod);
2599 list_del(&pin->list);
2600 kfree(pin);
2601 break;
2602 }
2603
2604 rdev->ena_pin = NULL;
2605}
2606
2607/**
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2611 *
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2614 *
2615 * Return: 0 on success or a negative error number on failure.
2616 */
2617static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2618{
2619 struct regulator_enable_gpio *pin = rdev->ena_pin;
2620
2621 if (!pin)
2622 return -EINVAL;
2623
2624 if (enable) {
2625 /* Enable GPIO at initial use */
2626 if (pin->enable_count == 0)
2627 gpiod_set_value_cansleep(pin->gpiod, 1);
2628
2629 pin->enable_count++;
2630 } else {
2631 if (pin->enable_count > 1) {
2632 pin->enable_count--;
2633 return 0;
2634 }
2635
2636 /* Disable GPIO if not used */
2637 if (pin->enable_count <= 1) {
2638 gpiod_set_value_cansleep(pin->gpiod, 0);
2639 pin->enable_count = 0;
2640 }
2641 }
2642
2643 return 0;
2644}
2645
2646/**
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 * interpreted as "regulator is enabled"
2649 * @rdev: the regulator device to check
2650 *
2651 * Return:
2652 * * 1 - if status shows regulator is in enabled state
2653 * * 0 - if not enabled state
2654 * * Error Value - as received from ops->get_status()
2655 */
2656static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2657{
2658 int ret = rdev->desc->ops->get_status(rdev);
2659
2660 if (ret < 0) {
2661 rdev_info(rdev, "get_status returned error: %d\n", ret);
2662 return ret;
2663 }
2664
2665 switch (ret) {
2666 case REGULATOR_STATUS_OFF:
2667 case REGULATOR_STATUS_ERROR:
2668 case REGULATOR_STATUS_UNDEFINED:
2669 return 0;
2670 default:
2671 return 1;
2672 }
2673}
2674
2675static int _regulator_do_enable(struct regulator_dev *rdev)
2676{
2677 int ret, delay;
2678
2679 /* Query before enabling in case configuration dependent. */
2680 ret = _regulator_get_enable_time(rdev);
2681 if (ret >= 0) {
2682 delay = ret;
2683 } else {
2684 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685 delay = 0;
2686 }
2687
2688 trace_regulator_enable(rdev_get_name(rdev));
2689
2690 if (rdev->desc->off_on_delay) {
2691 /* if needed, keep a distance of off_on_delay from last time
2692 * this regulator was disabled.
2693 */
2694 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2696
2697 if (remaining > 0)
2698 fsleep(remaining);
2699 }
2700
2701 if (rdev->ena_pin) {
2702 if (!rdev->ena_gpio_state) {
2703 ret = regulator_ena_gpio_ctrl(rdev, true);
2704 if (ret < 0)
2705 return ret;
2706 rdev->ena_gpio_state = 1;
2707 }
2708 } else if (rdev->desc->ops->enable) {
2709 ret = rdev->desc->ops->enable(rdev);
2710 if (ret < 0)
2711 return ret;
2712 } else {
2713 return -EINVAL;
2714 }
2715
2716 /* Allow the regulator to ramp; it would be useful to extend
2717 * this for bulk operations so that the regulators can ramp
2718 * together.
2719 */
2720 trace_regulator_enable_delay(rdev_get_name(rdev));
2721
2722 /* If poll_enabled_time is set, poll upto the delay calculated
2723 * above, delaying poll_enabled_time uS to check if the regulator
2724 * actually got enabled.
2725 * If the regulator isn't enabled after our delay helper has expired,
2726 * return -ETIMEDOUT.
2727 */
2728 if (rdev->desc->poll_enabled_time) {
2729 int time_remaining = delay;
2730
2731 while (time_remaining > 0) {
2732 fsleep(rdev->desc->poll_enabled_time);
2733
2734 if (rdev->desc->ops->get_status) {
2735 ret = _regulator_check_status_enabled(rdev);
2736 if (ret < 0)
2737 return ret;
2738 else if (ret)
2739 break;
2740 } else if (rdev->desc->ops->is_enabled(rdev))
2741 break;
2742
2743 time_remaining -= rdev->desc->poll_enabled_time;
2744 }
2745
2746 if (time_remaining <= 0) {
2747 rdev_err(rdev, "Enabled check timed out\n");
2748 return -ETIMEDOUT;
2749 }
2750 } else {
2751 fsleep(delay);
2752 }
2753
2754 trace_regulator_enable_complete(rdev_get_name(rdev));
2755
2756 return 0;
2757}
2758
2759/**
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2762 *
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled. Explained in example with two consumers of the same
2766 * regulator:
2767 * consumer A: set_load(100); => total load = 0
2768 * consumer A: regulator_enable(); => total load = 100
2769 * consumer B: set_load(1000); => total load = 100
2770 * consumer B: regulator_enable(); => total load = 1100
2771 * consumer A: regulator_disable(); => total_load = 1000
2772 *
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2776 *
2777 * Return: 0 on success or negative error number on failure.
2778 */
2779static int _regulator_handle_consumer_enable(struct regulator *regulator)
2780{
2781 int ret;
2782 struct regulator_dev *rdev = regulator->rdev;
2783
2784 lockdep_assert_held_once(&rdev->mutex.base);
2785
2786 regulator->enable_count++;
2787 if (regulator->uA_load && regulator->enable_count == 1) {
2788 ret = drms_uA_update(rdev);
2789 if (ret)
2790 regulator->enable_count--;
2791 return ret;
2792 }
2793
2794 return 0;
2795}
2796
2797/**
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2800 *
2801 * The opposite of _regulator_handle_consumer_enable().
2802 *
2803 * Return: 0 on success or a negative error number on failure.
2804 */
2805static int _regulator_handle_consumer_disable(struct regulator *regulator)
2806{
2807 struct regulator_dev *rdev = regulator->rdev;
2808
2809 lockdep_assert_held_once(&rdev->mutex.base);
2810
2811 if (!regulator->enable_count) {
2812 rdev_err(rdev, "Underflow of regulator enable count\n");
2813 return -EINVAL;
2814 }
2815
2816 regulator->enable_count--;
2817 if (regulator->uA_load && regulator->enable_count == 0)
2818 return drms_uA_update(rdev);
2819
2820 return 0;
2821}
2822
2823/* locks held by regulator_enable() */
2824static int _regulator_enable(struct regulator *regulator)
2825{
2826 struct regulator_dev *rdev = regulator->rdev;
2827 int ret;
2828
2829 lockdep_assert_held_once(&rdev->mutex.base);
2830
2831 if (rdev->use_count == 0 && rdev->supply) {
2832 ret = _regulator_enable(rdev->supply);
2833 if (ret < 0)
2834 return ret;
2835 }
2836
2837 /* balance only if there are regulators coupled */
2838 if (rdev->coupling_desc.n_coupled > 1) {
2839 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840 if (ret < 0)
2841 goto err_disable_supply;
2842 }
2843
2844 ret = _regulator_handle_consumer_enable(regulator);
2845 if (ret < 0)
2846 goto err_disable_supply;
2847
2848 if (rdev->use_count == 0) {
2849 /*
2850 * The regulator may already be enabled if it's not switchable
2851 * or was left on
2852 */
2853 ret = _regulator_is_enabled(rdev);
2854 if (ret == -EINVAL || ret == 0) {
2855 if (!regulator_ops_is_valid(rdev,
2856 REGULATOR_CHANGE_STATUS)) {
2857 ret = -EPERM;
2858 goto err_consumer_disable;
2859 }
2860
2861 ret = _regulator_do_enable(rdev);
2862 if (ret < 0)
2863 goto err_consumer_disable;
2864
2865 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866 NULL);
2867 } else if (ret < 0) {
2868 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869 goto err_consumer_disable;
2870 }
2871 /* Fallthrough on positive return values - already enabled */
2872 }
2873
2874 if (regulator->enable_count == 1)
2875 rdev->use_count++;
2876
2877 return 0;
2878
2879err_consumer_disable:
2880 _regulator_handle_consumer_disable(regulator);
2881
2882err_disable_supply:
2883 if (rdev->use_count == 0 && rdev->supply)
2884 _regulator_disable(rdev->supply);
2885
2886 return ret;
2887}
2888
2889/**
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2892 *
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value. Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2896 *
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2899 *
2900 * Return: 0 on success or a negative error number on failure.
2901 */
2902int regulator_enable(struct regulator *regulator)
2903{
2904 struct regulator_dev *rdev = regulator->rdev;
2905 struct ww_acquire_ctx ww_ctx;
2906 int ret;
2907
2908 regulator_lock_dependent(rdev, &ww_ctx);
2909 ret = _regulator_enable(regulator);
2910 regulator_unlock_dependent(rdev, &ww_ctx);
2911
2912 return ret;
2913}
2914EXPORT_SYMBOL_GPL(regulator_enable);
2915
2916static int _regulator_do_disable(struct regulator_dev *rdev)
2917{
2918 int ret;
2919
2920 trace_regulator_disable(rdev_get_name(rdev));
2921
2922 if (rdev->ena_pin) {
2923 if (rdev->ena_gpio_state) {
2924 ret = regulator_ena_gpio_ctrl(rdev, false);
2925 if (ret < 0)
2926 return ret;
2927 rdev->ena_gpio_state = 0;
2928 }
2929
2930 } else if (rdev->desc->ops->disable) {
2931 ret = rdev->desc->ops->disable(rdev);
2932 if (ret != 0)
2933 return ret;
2934 }
2935
2936 if (rdev->desc->off_on_delay)
2937 rdev->last_off = ktime_get_boottime();
2938
2939 trace_regulator_disable_complete(rdev_get_name(rdev));
2940
2941 return 0;
2942}
2943
2944/* locks held by regulator_disable() */
2945static int _regulator_disable(struct regulator *regulator)
2946{
2947 struct regulator_dev *rdev = regulator->rdev;
2948 int ret = 0;
2949
2950 lockdep_assert_held_once(&rdev->mutex.base);
2951
2952 if (WARN(regulator->enable_count == 0,
2953 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954 return -EIO;
2955
2956 if (regulator->enable_count == 1) {
2957 /* disabling last enable_count from this regulator */
2958 /* are we the last user and permitted to disable ? */
2959 if (rdev->use_count == 1 &&
2960 (rdev->constraints && !rdev->constraints->always_on)) {
2961
2962 /* we are last user */
2963 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964 ret = _notifier_call_chain(rdev,
2965 REGULATOR_EVENT_PRE_DISABLE,
2966 NULL);
2967 if (ret & NOTIFY_STOP_MASK)
2968 return -EINVAL;
2969
2970 ret = _regulator_do_disable(rdev);
2971 if (ret < 0) {
2972 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973 _notifier_call_chain(rdev,
2974 REGULATOR_EVENT_ABORT_DISABLE,
2975 NULL);
2976 return ret;
2977 }
2978 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979 NULL);
2980 }
2981
2982 rdev->use_count = 0;
2983 } else if (rdev->use_count > 1) {
2984 rdev->use_count--;
2985 }
2986 }
2987
2988 if (ret == 0)
2989 ret = _regulator_handle_consumer_disable(regulator);
2990
2991 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2993
2994 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995 ret = _regulator_disable(rdev->supply);
2996
2997 return ret;
2998}
2999
3000/**
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3003 *
3004 * Disable the regulator output voltage or current. Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3007 *
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3011 *
3012 * Return: 0 on success or a negative error number on failure.
3013 */
3014int regulator_disable(struct regulator *regulator)
3015{
3016 struct regulator_dev *rdev = regulator->rdev;
3017 struct ww_acquire_ctx ww_ctx;
3018 int ret;
3019
3020 regulator_lock_dependent(rdev, &ww_ctx);
3021 ret = _regulator_disable(regulator);
3022 regulator_unlock_dependent(rdev, &ww_ctx);
3023
3024 return ret;
3025}
3026EXPORT_SYMBOL_GPL(regulator_disable);
3027
3028/* locks held by regulator_force_disable() */
3029static int _regulator_force_disable(struct regulator_dev *rdev)
3030{
3031 int ret = 0;
3032
3033 lockdep_assert_held_once(&rdev->mutex.base);
3034
3035 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036 REGULATOR_EVENT_PRE_DISABLE, NULL);
3037 if (ret & NOTIFY_STOP_MASK)
3038 return -EINVAL;
3039
3040 ret = _regulator_do_disable(rdev);
3041 if (ret < 0) {
3042 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045 return ret;
3046 }
3047
3048 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049 REGULATOR_EVENT_DISABLE, NULL);
3050
3051 return 0;
3052}
3053
3054/**
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3057 *
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3062 *
3063 * Return: 0 on success or a negative error number on failure.
3064 */
3065int regulator_force_disable(struct regulator *regulator)
3066{
3067 struct regulator_dev *rdev = regulator->rdev;
3068 struct ww_acquire_ctx ww_ctx;
3069 int ret;
3070
3071 regulator_lock_dependent(rdev, &ww_ctx);
3072
3073 ret = _regulator_force_disable(regulator->rdev);
3074
3075 if (rdev->coupling_desc.n_coupled > 1)
3076 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3077
3078 if (regulator->uA_load) {
3079 regulator->uA_load = 0;
3080 ret = drms_uA_update(rdev);
3081 }
3082
3083 if (rdev->use_count != 0 && rdev->supply)
3084 _regulator_disable(rdev->supply);
3085
3086 regulator_unlock_dependent(rdev, &ww_ctx);
3087
3088 return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_force_disable);
3091
3092static void regulator_disable_work(struct work_struct *work)
3093{
3094 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095 disable_work.work);
3096 struct ww_acquire_ctx ww_ctx;
3097 int count, i, ret;
3098 struct regulator *regulator;
3099 int total_count = 0;
3100
3101 regulator_lock_dependent(rdev, &ww_ctx);
3102
3103 /*
3104 * Workqueue functions queue the new work instance while the previous
3105 * work instance is being processed. Cancel the queued work instance
3106 * as the work instance under processing does the job of the queued
3107 * work instance.
3108 */
3109 cancel_delayed_work(&rdev->disable_work);
3110
3111 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112 count = regulator->deferred_disables;
3113
3114 if (!count)
3115 continue;
3116
3117 total_count += count;
3118 regulator->deferred_disables = 0;
3119
3120 for (i = 0; i < count; i++) {
3121 ret = _regulator_disable(regulator);
3122 if (ret != 0)
3123 rdev_err(rdev, "Deferred disable failed: %pe\n",
3124 ERR_PTR(ret));
3125 }
3126 }
3127 WARN_ON(!total_count);
3128
3129 if (rdev->coupling_desc.n_coupled > 1)
3130 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132 regulator_unlock_dependent(rdev, &ww_ctx);
3133}
3134
3135/**
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3139 *
3140 * Execute regulator_disable() on the regulator after a delay. This
3141 * is intended for use with devices that require some time to quiesce.
3142 *
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3146 *
3147 * Return: 0 on success or a negative error number on failure.
3148 */
3149int regulator_disable_deferred(struct regulator *regulator, int ms)
3150{
3151 struct regulator_dev *rdev = regulator->rdev;
3152
3153 if (!ms)
3154 return regulator_disable(regulator);
3155
3156 regulator_lock(rdev);
3157 regulator->deferred_disables++;
3158 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159 msecs_to_jiffies(ms));
3160 regulator_unlock(rdev);
3161
3162 return 0;
3163}
3164EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3165
3166static int _regulator_is_enabled(struct regulator_dev *rdev)
3167{
3168 /* A GPIO control always takes precedence */
3169 if (rdev->ena_pin)
3170 return rdev->ena_gpio_state;
3171
3172 /* If we don't know then assume that the regulator is always on */
3173 if (!rdev->desc->ops->is_enabled)
3174 return 1;
3175
3176 return rdev->desc->ops->is_enabled(rdev);
3177}
3178
3179static int _regulator_list_voltage(struct regulator_dev *rdev,
3180 unsigned selector, int lock)
3181{
3182 const struct regulator_ops *ops = rdev->desc->ops;
3183 int ret;
3184
3185 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186 return rdev->desc->fixed_uV;
3187
3188 if (ops->list_voltage) {
3189 if (selector >= rdev->desc->n_voltages)
3190 return -EINVAL;
3191 if (selector < rdev->desc->linear_min_sel)
3192 return 0;
3193 if (lock)
3194 regulator_lock(rdev);
3195 ret = ops->list_voltage(rdev, selector);
3196 if (lock)
3197 regulator_unlock(rdev);
3198 } else if (rdev->is_switch && rdev->supply) {
3199 ret = _regulator_list_voltage(rdev->supply->rdev,
3200 selector, lock);
3201 } else {
3202 return -EINVAL;
3203 }
3204
3205 if (ret > 0) {
3206 if (ret < rdev->constraints->min_uV)
3207 ret = 0;
3208 else if (ret > rdev->constraints->max_uV)
3209 ret = 0;
3210 }
3211
3212 return ret;
3213}
3214
3215/**
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3218 *
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3222 *
3223 * Return: Positive if the regulator driver backing the source/client
3224 * has requested that the device be enabled, zero if it hasn't,
3225 * else a negative error number.
3226 */
3227int regulator_is_enabled(struct regulator *regulator)
3228{
3229 int ret;
3230
3231 if (regulator->always_on)
3232 return 1;
3233
3234 regulator_lock(regulator->rdev);
3235 ret = _regulator_is_enabled(regulator->rdev);
3236 regulator_unlock(regulator->rdev);
3237
3238 return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_is_enabled);
3241
3242/**
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3245 *
3246 * Return: Number of selectors for @regulator, or negative error number.
3247 *
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3250 */
3251int regulator_count_voltages(struct regulator *regulator)
3252{
3253 struct regulator_dev *rdev = regulator->rdev;
3254
3255 if (rdev->desc->n_voltages)
3256 return rdev->desc->n_voltages;
3257
3258 if (!rdev->is_switch || !rdev->supply)
3259 return -EINVAL;
3260
3261 return regulator_count_voltages(rdev->supply);
3262}
3263EXPORT_SYMBOL_GPL(regulator_count_voltages);
3264
3265/**
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3270 *
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 * 0 if @selector can't be used on this system, or a negative error
3273 * number on failure.
3274 */
3275int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3276{
3277 return _regulator_list_voltage(regulator->rdev, selector, 1);
3278}
3279EXPORT_SYMBOL_GPL(regulator_list_voltage);
3280
3281/**
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3284 *
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3287 */
3288struct regmap *regulator_get_regmap(struct regulator *regulator)
3289{
3290 struct regmap *map = regulator->rdev->regmap;
3291
3292 return map ? map : ERR_PTR(-EOPNOTSUPP);
3293}
3294EXPORT_SYMBOL_GPL(regulator_get_regmap);
3295
3296/**
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3301 *
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3305 * for example.
3306 *
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 * voltage selectors.
3309 *
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3312 */
3313int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314 unsigned *vsel_reg,
3315 unsigned *vsel_mask)
3316{
3317 struct regulator_dev *rdev = regulator->rdev;
3318 const struct regulator_ops *ops = rdev->desc->ops;
3319
3320 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321 return -EOPNOTSUPP;
3322
3323 *vsel_reg = rdev->desc->vsel_reg;
3324 *vsel_mask = rdev->desc->vsel_mask;
3325
3326 return 0;
3327}
3328EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3329
3330/**
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3334 *
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3338 *
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3341 * selectors.
3342 */
3343int regulator_list_hardware_vsel(struct regulator *regulator,
3344 unsigned selector)
3345{
3346 struct regulator_dev *rdev = regulator->rdev;
3347 const struct regulator_ops *ops = rdev->desc->ops;
3348
3349 if (selector >= rdev->desc->n_voltages)
3350 return -EINVAL;
3351 if (selector < rdev->desc->linear_min_sel)
3352 return 0;
3353 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354 return -EOPNOTSUPP;
3355
3356 return selector;
3357}
3358EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3359
3360/**
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3364 *
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3367 *
3368 * Return: 0 on success or a negative error number on failure.
3369 */
3370int regulator_hardware_enable(struct regulator *regulator, bool enable)
3371{
3372 struct regulator_dev *rdev = regulator->rdev;
3373 const struct regulator_ops *ops = rdev->desc->ops;
3374 int ret = -EOPNOTSUPP;
3375
3376 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377 return ret;
3378
3379 if (enable)
3380 ret = ops->enable(rdev);
3381 else
3382 ret = ops->disable(rdev);
3383
3384 return ret;
3385}
3386EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3387
3388/**
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3391 *
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 * or 0 if the regulator isn't a linear regulator.
3394 */
3395unsigned int regulator_get_linear_step(struct regulator *regulator)
3396{
3397 struct regulator_dev *rdev = regulator->rdev;
3398
3399 return rdev->desc->uV_step;
3400}
3401EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402
3403/**
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3405 *
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3409 *
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 * number if @regulator's voltage can't be changed and voltage readback
3412 * failed.
3413 */
3414int regulator_is_supported_voltage(struct regulator *regulator,
3415 int min_uV, int max_uV)
3416{
3417 struct regulator_dev *rdev = regulator->rdev;
3418 int i, voltages, ret;
3419
3420 /* If we can't change voltage check the current voltage */
3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422 ret = regulator_get_voltage(regulator);
3423 if (ret >= 0)
3424 return min_uV <= ret && ret <= max_uV;
3425 else
3426 return ret;
3427 }
3428
3429 /* Any voltage within constrains range is fine? */
3430 if (rdev->desc->continuous_voltage_range)
3431 return min_uV >= rdev->constraints->min_uV &&
3432 max_uV <= rdev->constraints->max_uV;
3433
3434 ret = regulator_count_voltages(regulator);
3435 if (ret < 0)
3436 return 0;
3437 voltages = ret;
3438
3439 for (i = 0; i < voltages; i++) {
3440 ret = regulator_list_voltage(regulator, i);
3441
3442 if (ret >= min_uV && ret <= max_uV)
3443 return 1;
3444 }
3445
3446 return 0;
3447}
3448EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449
3450static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451 int max_uV)
3452{
3453 const struct regulator_desc *desc = rdev->desc;
3454
3455 if (desc->ops->map_voltage)
3456 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457
3458 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460
3461 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463
3464 if (desc->ops->list_voltage ==
3465 regulator_list_voltage_pickable_linear_range)
3466 return regulator_map_voltage_pickable_linear_range(rdev,
3467 min_uV, max_uV);
3468
3469 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470}
3471
3472static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473 int min_uV, int max_uV,
3474 unsigned *selector)
3475{
3476 struct pre_voltage_change_data data;
3477 int ret;
3478
3479 data.old_uV = regulator_get_voltage_rdev(rdev);
3480 data.min_uV = min_uV;
3481 data.max_uV = max_uV;
3482 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483 &data);
3484 if (ret & NOTIFY_STOP_MASK)
3485 return -EINVAL;
3486
3487 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488 if (ret >= 0)
3489 return ret;
3490
3491 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492 (void *)data.old_uV);
3493
3494 return ret;
3495}
3496
3497static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498 int uV, unsigned selector)
3499{
3500 struct pre_voltage_change_data data;
3501 int ret;
3502
3503 data.old_uV = regulator_get_voltage_rdev(rdev);
3504 data.min_uV = uV;
3505 data.max_uV = uV;
3506 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507 &data);
3508 if (ret & NOTIFY_STOP_MASK)
3509 return -EINVAL;
3510
3511 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512 if (ret >= 0)
3513 return ret;
3514
3515 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516 (void *)data.old_uV);
3517
3518 return ret;
3519}
3520
3521static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522 int uV, int new_selector)
3523{
3524 const struct regulator_ops *ops = rdev->desc->ops;
3525 int diff, old_sel, curr_sel, ret;
3526
3527 /* Stepping is only needed if the regulator is enabled. */
3528 if (!_regulator_is_enabled(rdev))
3529 goto final_set;
3530
3531 if (!ops->get_voltage_sel)
3532 return -EINVAL;
3533
3534 old_sel = ops->get_voltage_sel(rdev);
3535 if (old_sel < 0)
3536 return old_sel;
3537
3538 diff = new_selector - old_sel;
3539 if (diff == 0)
3540 return 0; /* No change needed. */
3541
3542 if (diff > 0) {
3543 /* Stepping up. */
3544 for (curr_sel = old_sel + rdev->desc->vsel_step;
3545 curr_sel < new_selector;
3546 curr_sel += rdev->desc->vsel_step) {
3547 /*
3548 * Call the callback directly instead of using
3549 * _regulator_call_set_voltage_sel() as we don't
3550 * want to notify anyone yet. Same in the branch
3551 * below.
3552 */
3553 ret = ops->set_voltage_sel(rdev, curr_sel);
3554 if (ret)
3555 goto try_revert;
3556 }
3557 } else {
3558 /* Stepping down. */
3559 for (curr_sel = old_sel - rdev->desc->vsel_step;
3560 curr_sel > new_selector;
3561 curr_sel -= rdev->desc->vsel_step) {
3562 ret = ops->set_voltage_sel(rdev, curr_sel);
3563 if (ret)
3564 goto try_revert;
3565 }
3566 }
3567
3568final_set:
3569 /* The final selector will trigger the notifiers. */
3570 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571
3572try_revert:
3573 /*
3574 * At least try to return to the previous voltage if setting a new
3575 * one failed.
3576 */
3577 (void)ops->set_voltage_sel(rdev, old_sel);
3578 return ret;
3579}
3580
3581static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582 int old_uV, int new_uV)
3583{
3584 unsigned int ramp_delay = 0;
3585
3586 if (rdev->constraints->ramp_delay)
3587 ramp_delay = rdev->constraints->ramp_delay;
3588 else if (rdev->desc->ramp_delay)
3589 ramp_delay = rdev->desc->ramp_delay;
3590 else if (rdev->constraints->settling_time)
3591 return rdev->constraints->settling_time;
3592 else if (rdev->constraints->settling_time_up &&
3593 (new_uV > old_uV))
3594 return rdev->constraints->settling_time_up;
3595 else if (rdev->constraints->settling_time_down &&
3596 (new_uV < old_uV))
3597 return rdev->constraints->settling_time_down;
3598
3599 if (ramp_delay == 0)
3600 return 0;
3601
3602 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603}
3604
3605static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606 int min_uV, int max_uV)
3607{
3608 int ret;
3609 int delay = 0;
3610 int best_val = 0;
3611 unsigned int selector;
3612 int old_selector = -1;
3613 const struct regulator_ops *ops = rdev->desc->ops;
3614 int old_uV = regulator_get_voltage_rdev(rdev);
3615
3616 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617
3618 min_uV += rdev->constraints->uV_offset;
3619 max_uV += rdev->constraints->uV_offset;
3620
3621 /*
3622 * If we can't obtain the old selector there is not enough
3623 * info to call set_voltage_time_sel().
3624 */
3625 if (_regulator_is_enabled(rdev) &&
3626 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627 old_selector = ops->get_voltage_sel(rdev);
3628 if (old_selector < 0)
3629 return old_selector;
3630 }
3631
3632 if (ops->set_voltage) {
3633 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634 &selector);
3635
3636 if (ret >= 0) {
3637 if (ops->list_voltage)
3638 best_val = ops->list_voltage(rdev,
3639 selector);
3640 else
3641 best_val = regulator_get_voltage_rdev(rdev);
3642 }
3643
3644 } else if (ops->set_voltage_sel) {
3645 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646 if (ret >= 0) {
3647 best_val = ops->list_voltage(rdev, ret);
3648 if (min_uV <= best_val && max_uV >= best_val) {
3649 selector = ret;
3650 if (old_selector == selector)
3651 ret = 0;
3652 else if (rdev->desc->vsel_step)
3653 ret = _regulator_set_voltage_sel_step(
3654 rdev, best_val, selector);
3655 else
3656 ret = _regulator_call_set_voltage_sel(
3657 rdev, best_val, selector);
3658 } else {
3659 ret = -EINVAL;
3660 }
3661 }
3662 } else {
3663 ret = -EINVAL;
3664 }
3665
3666 if (ret)
3667 goto out;
3668
3669 if (ops->set_voltage_time_sel) {
3670 /*
3671 * Call set_voltage_time_sel if successfully obtained
3672 * old_selector
3673 */
3674 if (old_selector >= 0 && old_selector != selector)
3675 delay = ops->set_voltage_time_sel(rdev, old_selector,
3676 selector);
3677 } else {
3678 if (old_uV != best_val) {
3679 if (ops->set_voltage_time)
3680 delay = ops->set_voltage_time(rdev, old_uV,
3681 best_val);
3682 else
3683 delay = _regulator_set_voltage_time(rdev,
3684 old_uV,
3685 best_val);
3686 }
3687 }
3688
3689 if (delay < 0) {
3690 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691 delay = 0;
3692 }
3693
3694 /* Insert any necessary delays */
3695 fsleep(delay);
3696
3697 if (best_val >= 0) {
3698 unsigned long data = best_val;
3699
3700 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701 (void *)data);
3702 }
3703
3704out:
3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706
3707 return ret;
3708}
3709
3710static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711 int min_uV, int max_uV, suspend_state_t state)
3712{
3713 struct regulator_state *rstate;
3714 int uV, sel;
3715
3716 rstate = regulator_get_suspend_state(rdev, state);
3717 if (rstate == NULL)
3718 return -EINVAL;
3719
3720 if (min_uV < rstate->min_uV)
3721 min_uV = rstate->min_uV;
3722 if (max_uV > rstate->max_uV)
3723 max_uV = rstate->max_uV;
3724
3725 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726 if (sel < 0)
3727 return sel;
3728
3729 uV = rdev->desc->ops->list_voltage(rdev, sel);
3730 if (uV >= min_uV && uV <= max_uV)
3731 rstate->uV = uV;
3732
3733 return 0;
3734}
3735
3736static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737 int min_uV, int max_uV,
3738 suspend_state_t state)
3739{
3740 struct regulator_dev *rdev = regulator->rdev;
3741 struct regulator_voltage *voltage = ®ulator->voltage[state];
3742 int ret = 0;
3743 int old_min_uV, old_max_uV;
3744 int current_uV;
3745
3746 /* If we're setting the same range as last time the change
3747 * should be a noop (some cpufreq implementations use the same
3748 * voltage for multiple frequencies, for example).
3749 */
3750 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751 goto out;
3752
3753 /* If we're trying to set a range that overlaps the current voltage,
3754 * return successfully even though the regulator does not support
3755 * changing the voltage.
3756 */
3757 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758 current_uV = regulator_get_voltage_rdev(rdev);
3759 if (min_uV <= current_uV && current_uV <= max_uV) {
3760 voltage->min_uV = min_uV;
3761 voltage->max_uV = max_uV;
3762 goto out;
3763 }
3764 }
3765
3766 /* sanity check */
3767 if (!rdev->desc->ops->set_voltage &&
3768 !rdev->desc->ops->set_voltage_sel) {
3769 ret = -EINVAL;
3770 goto out;
3771 }
3772
3773 /* constraints check */
3774 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775 if (ret < 0)
3776 goto out;
3777
3778 /* restore original values in case of error */
3779 old_min_uV = voltage->min_uV;
3780 old_max_uV = voltage->max_uV;
3781 voltage->min_uV = min_uV;
3782 voltage->max_uV = max_uV;
3783
3784 /* for not coupled regulators this will just set the voltage */
3785 ret = regulator_balance_voltage(rdev, state);
3786 if (ret < 0) {
3787 voltage->min_uV = old_min_uV;
3788 voltage->max_uV = old_max_uV;
3789 }
3790
3791out:
3792 return ret;
3793}
3794
3795int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796 int max_uV, suspend_state_t state)
3797{
3798 int best_supply_uV = 0;
3799 int supply_change_uV = 0;
3800 int ret;
3801
3802 if (rdev->supply &&
3803 regulator_ops_is_valid(rdev->supply->rdev,
3804 REGULATOR_CHANGE_VOLTAGE) &&
3805 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806 rdev->desc->ops->get_voltage_sel))) {
3807 int current_supply_uV;
3808 int selector;
3809
3810 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811 if (selector < 0) {
3812 ret = selector;
3813 goto out;
3814 }
3815
3816 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817 if (best_supply_uV < 0) {
3818 ret = best_supply_uV;
3819 goto out;
3820 }
3821
3822 best_supply_uV += rdev->desc->min_dropout_uV;
3823
3824 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825 if (current_supply_uV < 0) {
3826 ret = current_supply_uV;
3827 goto out;
3828 }
3829
3830 supply_change_uV = best_supply_uV - current_supply_uV;
3831 }
3832
3833 if (supply_change_uV > 0) {
3834 ret = regulator_set_voltage_unlocked(rdev->supply,
3835 best_supply_uV, INT_MAX, state);
3836 if (ret) {
3837 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838 ERR_PTR(ret));
3839 goto out;
3840 }
3841 }
3842
3843 if (state == PM_SUSPEND_ON)
3844 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845 else
3846 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847 max_uV, state);
3848 if (ret < 0)
3849 goto out;
3850
3851 if (supply_change_uV < 0) {
3852 ret = regulator_set_voltage_unlocked(rdev->supply,
3853 best_supply_uV, INT_MAX, state);
3854 if (ret)
3855 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856 ERR_PTR(ret));
3857 /* No need to fail here */
3858 ret = 0;
3859 }
3860
3861out:
3862 return ret;
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865
3866static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867 int *current_uV, int *min_uV)
3868{
3869 struct regulation_constraints *constraints = rdev->constraints;
3870
3871 /* Limit voltage change only if necessary */
3872 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873 return 1;
3874
3875 if (*current_uV < 0) {
3876 *current_uV = regulator_get_voltage_rdev(rdev);
3877
3878 if (*current_uV < 0)
3879 return *current_uV;
3880 }
3881
3882 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883 return 1;
3884
3885 /* Clamp target voltage within the given step */
3886 if (*current_uV < *min_uV)
3887 *min_uV = min(*current_uV + constraints->max_uV_step,
3888 *min_uV);
3889 else
3890 *min_uV = max(*current_uV - constraints->max_uV_step,
3891 *min_uV);
3892
3893 return 0;
3894}
3895
3896static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897 int *current_uV,
3898 int *min_uV, int *max_uV,
3899 suspend_state_t state,
3900 int n_coupled)
3901{
3902 struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904 struct regulation_constraints *constraints = rdev->constraints;
3905 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906 int max_current_uV = 0, min_current_uV = INT_MAX;
3907 int highest_min_uV = 0, target_uV, possible_uV;
3908 int i, ret, max_spread;
3909 bool done;
3910
3911 *current_uV = -1;
3912
3913 /*
3914 * If there are no coupled regulators, simply set the voltage
3915 * demanded by consumers.
3916 */
3917 if (n_coupled == 1) {
3918 /*
3919 * If consumers don't provide any demands, set voltage
3920 * to min_uV
3921 */
3922 desired_min_uV = constraints->min_uV;
3923 desired_max_uV = constraints->max_uV;
3924
3925 ret = regulator_check_consumers(rdev,
3926 &desired_min_uV,
3927 &desired_max_uV, state);
3928 if (ret < 0)
3929 return ret;
3930
3931 done = true;
3932
3933 goto finish;
3934 }
3935
3936 /* Find highest min desired voltage */
3937 for (i = 0; i < n_coupled; i++) {
3938 int tmp_min = 0;
3939 int tmp_max = INT_MAX;
3940
3941 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3942
3943 ret = regulator_check_consumers(c_rdevs[i],
3944 &tmp_min,
3945 &tmp_max, state);
3946 if (ret < 0)
3947 return ret;
3948
3949 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950 if (ret < 0)
3951 return ret;
3952
3953 highest_min_uV = max(highest_min_uV, tmp_min);
3954
3955 if (i == 0) {
3956 desired_min_uV = tmp_min;
3957 desired_max_uV = tmp_max;
3958 }
3959 }
3960
3961 max_spread = constraints->max_spread[0];
3962
3963 /*
3964 * Let target_uV be equal to the desired one if possible.
3965 * If not, set it to minimum voltage, allowed by other coupled
3966 * regulators.
3967 */
3968 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3969
3970 /*
3971 * Find min and max voltages, which currently aren't violating
3972 * max_spread.
3973 */
3974 for (i = 1; i < n_coupled; i++) {
3975 int tmp_act;
3976
3977 if (!_regulator_is_enabled(c_rdevs[i]))
3978 continue;
3979
3980 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981 if (tmp_act < 0)
3982 return tmp_act;
3983
3984 min_current_uV = min(tmp_act, min_current_uV);
3985 max_current_uV = max(tmp_act, max_current_uV);
3986 }
3987
3988 /* There aren't any other regulators enabled */
3989 if (max_current_uV == 0) {
3990 possible_uV = target_uV;
3991 } else {
3992 /*
3993 * Correct target voltage, so as it currently isn't
3994 * violating max_spread
3995 */
3996 possible_uV = max(target_uV, max_current_uV - max_spread);
3997 possible_uV = min(possible_uV, min_current_uV + max_spread);
3998 }
3999
4000 if (possible_uV > desired_max_uV)
4001 return -EINVAL;
4002
4003 done = (possible_uV == target_uV);
4004 desired_min_uV = possible_uV;
4005
4006finish:
4007 /* Apply max_uV_step constraint if necessary */
4008 if (state == PM_SUSPEND_ON) {
4009 ret = regulator_limit_voltage_step(rdev, current_uV,
4010 &desired_min_uV);
4011 if (ret < 0)
4012 return ret;
4013
4014 if (ret == 0)
4015 done = false;
4016 }
4017
4018 /* Set current_uV if wasn't done earlier in the code and if necessary */
4019 if (n_coupled > 1 && *current_uV == -1) {
4020
4021 if (_regulator_is_enabled(rdev)) {
4022 ret = regulator_get_voltage_rdev(rdev);
4023 if (ret < 0)
4024 return ret;
4025
4026 *current_uV = ret;
4027 } else {
4028 *current_uV = desired_min_uV;
4029 }
4030 }
4031
4032 *min_uV = desired_min_uV;
4033 *max_uV = desired_max_uV;
4034
4035 return done;
4036}
4037
4038int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039 suspend_state_t state, bool skip_coupled)
4040{
4041 struct regulator_dev **c_rdevs;
4042 struct regulator_dev *best_rdev;
4043 struct coupling_desc *c_desc = &rdev->coupling_desc;
4044 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045 unsigned int delta, best_delta;
4046 unsigned long c_rdev_done = 0;
4047 bool best_c_rdev_done;
4048
4049 c_rdevs = c_desc->coupled_rdevs;
4050 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4051
4052 /*
4053 * Find the best possible voltage change on each loop. Leave the loop
4054 * if there isn't any possible change.
4055 */
4056 do {
4057 best_c_rdev_done = false;
4058 best_delta = 0;
4059 best_min_uV = 0;
4060 best_max_uV = 0;
4061 best_c_rdev = 0;
4062 best_rdev = NULL;
4063
4064 /*
4065 * Find highest difference between optimal voltage
4066 * and current voltage.
4067 */
4068 for (i = 0; i < n_coupled; i++) {
4069 /*
4070 * optimal_uV is the best voltage that can be set for
4071 * i-th regulator at the moment without violating
4072 * max_spread constraint in order to balance
4073 * the coupled voltages.
4074 */
4075 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4076
4077 if (test_bit(i, &c_rdev_done))
4078 continue;
4079
4080 ret = regulator_get_optimal_voltage(c_rdevs[i],
4081 ¤t_uV,
4082 &optimal_uV,
4083 &optimal_max_uV,
4084 state, n_coupled);
4085 if (ret < 0)
4086 goto out;
4087
4088 delta = abs(optimal_uV - current_uV);
4089
4090 if (delta && best_delta <= delta) {
4091 best_c_rdev_done = ret;
4092 best_delta = delta;
4093 best_rdev = c_rdevs[i];
4094 best_min_uV = optimal_uV;
4095 best_max_uV = optimal_max_uV;
4096 best_c_rdev = i;
4097 }
4098 }
4099
4100 /* Nothing to change, return successfully */
4101 if (!best_rdev) {
4102 ret = 0;
4103 goto out;
4104 }
4105
4106 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107 best_max_uV, state);
4108
4109 if (ret < 0)
4110 goto out;
4111
4112 if (best_c_rdev_done)
4113 set_bit(best_c_rdev, &c_rdev_done);
4114
4115 } while (n_coupled > 1);
4116
4117out:
4118 return ret;
4119}
4120
4121static int regulator_balance_voltage(struct regulator_dev *rdev,
4122 suspend_state_t state)
4123{
4124 struct coupling_desc *c_desc = &rdev->coupling_desc;
4125 struct regulator_coupler *coupler = c_desc->coupler;
4126 bool skip_coupled = false;
4127
4128 /*
4129 * If system is in a state other than PM_SUSPEND_ON, don't check
4130 * other coupled regulators.
4131 */
4132 if (state != PM_SUSPEND_ON)
4133 skip_coupled = true;
4134
4135 if (c_desc->n_resolved < c_desc->n_coupled) {
4136 rdev_err(rdev, "Not all coupled regulators registered\n");
4137 return -EPERM;
4138 }
4139
4140 /* Invoke custom balancer for customized couplers */
4141 if (coupler && coupler->balance_voltage)
4142 return coupler->balance_voltage(coupler, rdev, state);
4143
4144 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4145}
4146
4147/**
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4152 *
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4155 *
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4159 *
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4164 *
4165 * Return: 0 on success or a negative error number on failure.
4166 */
4167int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4168{
4169 struct ww_acquire_ctx ww_ctx;
4170 int ret;
4171
4172 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4173
4174 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175 PM_SUSPEND_ON);
4176
4177 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4178
4179 return ret;
4180}
4181EXPORT_SYMBOL_GPL(regulator_set_voltage);
4182
4183static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184 suspend_state_t state, bool en)
4185{
4186 struct regulator_state *rstate;
4187
4188 rstate = regulator_get_suspend_state(rdev, state);
4189 if (rstate == NULL)
4190 return -EINVAL;
4191
4192 if (!rstate->changeable)
4193 return -EPERM;
4194
4195 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4196
4197 return 0;
4198}
4199
4200int regulator_suspend_enable(struct regulator_dev *rdev,
4201 suspend_state_t state)
4202{
4203 return regulator_suspend_toggle(rdev, state, true);
4204}
4205EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4206
4207int regulator_suspend_disable(struct regulator_dev *rdev,
4208 suspend_state_t state)
4209{
4210 struct regulator *regulator;
4211 struct regulator_voltage *voltage;
4212
4213 /*
4214 * if any consumer wants this regulator device keeping on in
4215 * suspend states, don't set it as disabled.
4216 */
4217 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218 voltage = ®ulator->voltage[state];
4219 if (voltage->min_uV || voltage->max_uV)
4220 return 0;
4221 }
4222
4223 return regulator_suspend_toggle(rdev, state, false);
4224}
4225EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4226
4227static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228 int min_uV, int max_uV,
4229 suspend_state_t state)
4230{
4231 struct regulator_dev *rdev = regulator->rdev;
4232 struct regulator_state *rstate;
4233
4234 rstate = regulator_get_suspend_state(rdev, state);
4235 if (rstate == NULL)
4236 return -EINVAL;
4237
4238 if (rstate->min_uV == rstate->max_uV) {
4239 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240 return -EPERM;
4241 }
4242
4243 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4244}
4245
4246int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247 int max_uV, suspend_state_t state)
4248{
4249 struct ww_acquire_ctx ww_ctx;
4250 int ret;
4251
4252 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254 return -EINVAL;
4255
4256 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4257
4258 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259 max_uV, state);
4260
4261 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4262
4263 return ret;
4264}
4265EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4266
4267/**
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4272 *
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4275 * voltage.
4276 *
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4278 */
4279int regulator_set_voltage_time(struct regulator *regulator,
4280 int old_uV, int new_uV)
4281{
4282 struct regulator_dev *rdev = regulator->rdev;
4283 const struct regulator_ops *ops = rdev->desc->ops;
4284 int old_sel = -1;
4285 int new_sel = -1;
4286 int voltage;
4287 int i;
4288
4289 if (ops->set_voltage_time)
4290 return ops->set_voltage_time(rdev, old_uV, new_uV);
4291 else if (!ops->set_voltage_time_sel)
4292 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293
4294 /* Currently requires operations to do this */
4295 if (!ops->list_voltage || !rdev->desc->n_voltages)
4296 return -EINVAL;
4297
4298 for (i = 0; i < rdev->desc->n_voltages; i++) {
4299 /* We only look for exact voltage matches here */
4300 if (i < rdev->desc->linear_min_sel)
4301 continue;
4302
4303 if (old_sel >= 0 && new_sel >= 0)
4304 break;
4305
4306 voltage = regulator_list_voltage(regulator, i);
4307 if (voltage < 0)
4308 return -EINVAL;
4309 if (voltage == 0)
4310 continue;
4311 if (voltage == old_uV)
4312 old_sel = i;
4313 if (voltage == new_uV)
4314 new_sel = i;
4315 }
4316
4317 if (old_sel < 0 || new_sel < 0)
4318 return -EINVAL;
4319
4320 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321}
4322EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323
4324/**
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4329 *
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4332 *
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4335 *
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4337 */
4338int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339 unsigned int old_selector,
4340 unsigned int new_selector)
4341{
4342 int old_volt, new_volt;
4343
4344 /* sanity check */
4345 if (!rdev->desc->ops->list_voltage)
4346 return -EINVAL;
4347
4348 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4350
4351 if (rdev->desc->ops->set_voltage_time)
4352 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353 new_volt);
4354 else
4355 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4356}
4357EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4358
4359int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4360{
4361 int ret;
4362
4363 regulator_lock(rdev);
4364
4365 if (!rdev->desc->ops->set_voltage &&
4366 !rdev->desc->ops->set_voltage_sel) {
4367 ret = -EINVAL;
4368 goto out;
4369 }
4370
4371 /* balance only, if regulator is coupled */
4372 if (rdev->coupling_desc.n_coupled > 1)
4373 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374 else
4375 ret = -EOPNOTSUPP;
4376
4377out:
4378 regulator_unlock(rdev);
4379 return ret;
4380}
4381
4382/**
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4385 *
4386 * Re-apply the last configured voltage. This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4389 *
4390 * Return: 0 on success or a negative error number on failure.
4391 */
4392int regulator_sync_voltage(struct regulator *regulator)
4393{
4394 struct regulator_dev *rdev = regulator->rdev;
4395 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4396 int ret, min_uV, max_uV;
4397
4398 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399 return 0;
4400
4401 regulator_lock(rdev);
4402
4403 if (!rdev->desc->ops->set_voltage &&
4404 !rdev->desc->ops->set_voltage_sel) {
4405 ret = -EINVAL;
4406 goto out;
4407 }
4408
4409 /* This is only going to work if we've had a voltage configured. */
4410 if (!voltage->min_uV && !voltage->max_uV) {
4411 ret = -EINVAL;
4412 goto out;
4413 }
4414
4415 min_uV = voltage->min_uV;
4416 max_uV = voltage->max_uV;
4417
4418 /* This should be a paranoia check... */
4419 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420 if (ret < 0)
4421 goto out;
4422
4423 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424 if (ret < 0)
4425 goto out;
4426
4427 /* balance only, if regulator is coupled */
4428 if (rdev->coupling_desc.n_coupled > 1)
4429 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430 else
4431 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4432
4433out:
4434 regulator_unlock(rdev);
4435 return ret;
4436}
4437EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4438
4439int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4440{
4441 int sel, ret;
4442 bool bypassed;
4443
4444 if (rdev->desc->ops->get_bypass) {
4445 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446 if (ret < 0)
4447 return ret;
4448 if (bypassed) {
4449 /* if bypassed the regulator must have a supply */
4450 if (!rdev->supply) {
4451 rdev_err(rdev,
4452 "bypassed regulator has no supply!\n");
4453 return -EPROBE_DEFER;
4454 }
4455
4456 return regulator_get_voltage_rdev(rdev->supply->rdev);
4457 }
4458 }
4459
4460 if (rdev->desc->ops->get_voltage_sel) {
4461 sel = rdev->desc->ops->get_voltage_sel(rdev);
4462 if (sel < 0)
4463 return sel;
4464 ret = rdev->desc->ops->list_voltage(rdev, sel);
4465 } else if (rdev->desc->ops->get_voltage) {
4466 ret = rdev->desc->ops->get_voltage(rdev);
4467 } else if (rdev->desc->ops->list_voltage) {
4468 ret = rdev->desc->ops->list_voltage(rdev, 0);
4469 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470 ret = rdev->desc->fixed_uV;
4471 } else if (rdev->supply) {
4472 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473 } else if (rdev->supply_name) {
4474 return -EPROBE_DEFER;
4475 } else {
4476 return -EINVAL;
4477 }
4478
4479 if (ret < 0)
4480 return ret;
4481 return ret - rdev->constraints->uV_offset;
4482}
4483EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4484
4485/**
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4488 *
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4490 *
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4493 */
4494int regulator_get_voltage(struct regulator *regulator)
4495{
4496 struct ww_acquire_ctx ww_ctx;
4497 int ret;
4498
4499 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500 ret = regulator_get_voltage_rdev(regulator->rdev);
4501 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4502
4503 return ret;
4504}
4505EXPORT_SYMBOL_GPL(regulator_get_voltage);
4506
4507/**
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4512 *
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4515 *
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4519 *
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4522 *
4523 * Return: 0 on success or a negative error number on failure.
4524 */
4525int regulator_set_current_limit(struct regulator *regulator,
4526 int min_uA, int max_uA)
4527{
4528 struct regulator_dev *rdev = regulator->rdev;
4529 int ret;
4530
4531 regulator_lock(rdev);
4532
4533 /* sanity check */
4534 if (!rdev->desc->ops->set_current_limit) {
4535 ret = -EINVAL;
4536 goto out;
4537 }
4538
4539 /* constraints check */
4540 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541 if (ret < 0)
4542 goto out;
4543
4544 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545out:
4546 regulator_unlock(rdev);
4547 return ret;
4548}
4549EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550
4551static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552{
4553 /* sanity check */
4554 if (!rdev->desc->ops->get_current_limit)
4555 return -EINVAL;
4556
4557 return rdev->desc->ops->get_current_limit(rdev);
4558}
4559
4560static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561{
4562 int ret;
4563
4564 regulator_lock(rdev);
4565 ret = _regulator_get_current_limit_unlocked(rdev);
4566 regulator_unlock(rdev);
4567
4568 return ret;
4569}
4570
4571/**
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4574 *
4575 * Return: Current supplied by the specified current sink in uA,
4576 * or a negative error number on failure.
4577 *
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4580 */
4581int regulator_get_current_limit(struct regulator *regulator)
4582{
4583 return _regulator_get_current_limit(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4586
4587/**
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4591 *
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4594 *
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4597 *
4598 * Return: 0 on success or a negative error number on failure.
4599 */
4600int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4601{
4602 struct regulator_dev *rdev = regulator->rdev;
4603 int ret;
4604 int regulator_curr_mode;
4605
4606 regulator_lock(rdev);
4607
4608 /* sanity check */
4609 if (!rdev->desc->ops->set_mode) {
4610 ret = -EINVAL;
4611 goto out;
4612 }
4613
4614 /* return if the same mode is requested */
4615 if (rdev->desc->ops->get_mode) {
4616 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617 if (regulator_curr_mode == mode) {
4618 ret = 0;
4619 goto out;
4620 }
4621 }
4622
4623 /* constraints check */
4624 ret = regulator_mode_constrain(rdev, &mode);
4625 if (ret < 0)
4626 goto out;
4627
4628 ret = rdev->desc->ops->set_mode(rdev, mode);
4629out:
4630 regulator_unlock(rdev);
4631 return ret;
4632}
4633EXPORT_SYMBOL_GPL(regulator_set_mode);
4634
4635static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4636{
4637 /* sanity check */
4638 if (!rdev->desc->ops->get_mode)
4639 return -EINVAL;
4640
4641 return rdev->desc->ops->get_mode(rdev);
4642}
4643
4644static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4645{
4646 int ret;
4647
4648 regulator_lock(rdev);
4649 ret = _regulator_get_mode_unlocked(rdev);
4650 regulator_unlock(rdev);
4651
4652 return ret;
4653}
4654
4655/**
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4658 *
4659 * Get the current regulator operating mode.
4660 *
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 * or a negative error number on failure.
4663 */
4664unsigned int regulator_get_mode(struct regulator *regulator)
4665{
4666 return _regulator_get_mode(regulator->rdev);
4667}
4668EXPORT_SYMBOL_GPL(regulator_get_mode);
4669
4670static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4671{
4672 int ret = 0;
4673
4674 if (rdev->use_cached_err) {
4675 spin_lock(&rdev->err_lock);
4676 ret = rdev->cached_err;
4677 spin_unlock(&rdev->err_lock);
4678 }
4679 return ret;
4680}
4681
4682static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683 unsigned int *flags)
4684{
4685 int cached_flags, ret = 0;
4686
4687 regulator_lock(rdev);
4688
4689 cached_flags = rdev_get_cached_err_flags(rdev);
4690
4691 if (rdev->desc->ops->get_error_flags)
4692 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693 else if (!rdev->use_cached_err)
4694 ret = -EINVAL;
4695
4696 *flags |= cached_flags;
4697
4698 regulator_unlock(rdev);
4699
4700 return ret;
4701}
4702
4703/**
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4707 *
4708 * Get the current regulator error information.
4709 *
4710 * Return: 0 on success or a negative error number on failure.
4711 */
4712int regulator_get_error_flags(struct regulator *regulator,
4713 unsigned int *flags)
4714{
4715 return _regulator_get_error_flags(regulator->rdev, flags);
4716}
4717EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4718
4719/**
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4723 *
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4727 *
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4733 *
4734 * o Device is opened / closed.
4735 * o Device I/O is about to begin or has just finished.
4736 * o Device is idling in between work.
4737 *
4738 * This information is also exported via sysfs to userspace.
4739 *
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4742 *
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load. If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4747 *
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4750 *
4751 * Return: 0 on success or a negative error number on failure.
4752 */
4753int regulator_set_load(struct regulator *regulator, int uA_load)
4754{
4755 struct regulator_dev *rdev = regulator->rdev;
4756 int old_uA_load;
4757 int ret = 0;
4758
4759 regulator_lock(rdev);
4760 old_uA_load = regulator->uA_load;
4761 regulator->uA_load = uA_load;
4762 if (regulator->enable_count && old_uA_load != uA_load) {
4763 ret = drms_uA_update(rdev);
4764 if (ret < 0)
4765 regulator->uA_load = old_uA_load;
4766 }
4767 regulator_unlock(rdev);
4768
4769 return ret;
4770}
4771EXPORT_SYMBOL_GPL(regulator_set_load);
4772
4773/**
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4775 *
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4778 *
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this. Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4783 *
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 * a negative error number on failure.
4786 */
4787int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788{
4789 struct regulator_dev *rdev = regulator->rdev;
4790 const char *name = rdev_get_name(rdev);
4791 int ret = 0;
4792
4793 if (!rdev->desc->ops->set_bypass)
4794 return 0;
4795
4796 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797 return 0;
4798
4799 regulator_lock(rdev);
4800
4801 if (enable && !regulator->bypass) {
4802 rdev->bypass_count++;
4803
4804 if (rdev->bypass_count == rdev->open_count) {
4805 trace_regulator_bypass_enable(name);
4806
4807 ret = rdev->desc->ops->set_bypass(rdev, enable);
4808 if (ret != 0)
4809 rdev->bypass_count--;
4810 else
4811 trace_regulator_bypass_enable_complete(name);
4812 }
4813
4814 } else if (!enable && regulator->bypass) {
4815 rdev->bypass_count--;
4816
4817 if (rdev->bypass_count != rdev->open_count) {
4818 trace_regulator_bypass_disable(name);
4819
4820 ret = rdev->desc->ops->set_bypass(rdev, enable);
4821 if (ret != 0)
4822 rdev->bypass_count++;
4823 else
4824 trace_regulator_bypass_disable_complete(name);
4825 }
4826 }
4827
4828 if (ret == 0)
4829 regulator->bypass = enable;
4830
4831 regulator_unlock(rdev);
4832
4833 return ret;
4834}
4835EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836
4837/**
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4841 *
4842 * Register notifier block to receive regulator events.
4843 *
4844 * Return: 0 on success or a negative error number on failure.
4845 */
4846int regulator_register_notifier(struct regulator *regulator,
4847 struct notifier_block *nb)
4848{
4849 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4850 nb);
4851}
4852EXPORT_SYMBOL_GPL(regulator_register_notifier);
4853
4854/**
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4858 *
4859 * Unregister regulator event notifier block.
4860 *
4861 * Return: 0 on success or a negative error number on failure.
4862 */
4863int regulator_unregister_notifier(struct regulator *regulator,
4864 struct notifier_block *nb)
4865{
4866 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4867 nb);
4868}
4869EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4870
4871/* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4873 */
4874static int _notifier_call_chain(struct regulator_dev *rdev,
4875 unsigned long event, void *data)
4876{
4877 /* call rdev chain first */
4878 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4879
4880 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881 struct device *parent = rdev->dev.parent;
4882 const char *rname = rdev_get_name(rdev);
4883 char name[32];
4884
4885 /* Avoid duplicate debugfs directory names */
4886 if (parent && rname == rdev->desc->name) {
4887 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888 rname);
4889 rname = name;
4890 }
4891 reg_generate_netlink_event(rname, event);
4892 }
4893
4894 return ret;
4895}
4896
4897int _regulator_bulk_get(struct device *dev, int num_consumers,
4898 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4899{
4900 int i;
4901 int ret;
4902
4903 for (i = 0; i < num_consumers; i++)
4904 consumers[i].consumer = NULL;
4905
4906 for (i = 0; i < num_consumers; i++) {
4907 consumers[i].consumer = _regulator_get(dev,
4908 consumers[i].supply, get_type);
4909 if (IS_ERR(consumers[i].consumer)) {
4910 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911 "Failed to get supply '%s'\n",
4912 consumers[i].supply);
4913 consumers[i].consumer = NULL;
4914 goto err;
4915 }
4916
4917 if (consumers[i].init_load_uA > 0) {
4918 ret = regulator_set_load(consumers[i].consumer,
4919 consumers[i].init_load_uA);
4920 if (ret) {
4921 i++;
4922 goto err;
4923 }
4924 }
4925 }
4926
4927 return 0;
4928
4929err:
4930 while (--i >= 0)
4931 regulator_put(consumers[i].consumer);
4932
4933 return ret;
4934}
4935
4936/**
4937 * regulator_bulk_get - get multiple regulator consumers
4938 *
4939 * @dev: Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers: Configuration of consumers; clients are stored here.
4942 *
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation. If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4947 *
4948 * Return: 0 on success or a negative error number on failure.
4949 */
4950int regulator_bulk_get(struct device *dev, int num_consumers,
4951 struct regulator_bulk_data *consumers)
4952{
4953 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4954}
4955EXPORT_SYMBOL_GPL(regulator_bulk_get);
4956
4957static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4958{
4959 struct regulator_bulk_data *bulk = data;
4960
4961 bulk->ret = regulator_enable(bulk->consumer);
4962}
4963
4964/**
4965 * regulator_bulk_enable - enable multiple regulator consumers
4966 *
4967 * @num_consumers: Number of consumers
4968 * @consumers: Consumer data; clients are stored here.
4969 *
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call. If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4973 * return.
4974 *
4975 * Return: 0 on success or a negative error number on failure.
4976 */
4977int regulator_bulk_enable(int num_consumers,
4978 struct regulator_bulk_data *consumers)
4979{
4980 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981 int i;
4982 int ret = 0;
4983
4984 for (i = 0; i < num_consumers; i++) {
4985 async_schedule_domain(regulator_bulk_enable_async,
4986 &consumers[i], &async_domain);
4987 }
4988
4989 async_synchronize_full_domain(&async_domain);
4990
4991 /* If any consumer failed we need to unwind any that succeeded */
4992 for (i = 0; i < num_consumers; i++) {
4993 if (consumers[i].ret != 0) {
4994 ret = consumers[i].ret;
4995 goto err;
4996 }
4997 }
4998
4999 return 0;
5000
5001err:
5002 for (i = 0; i < num_consumers; i++) {
5003 if (consumers[i].ret < 0)
5004 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005 ERR_PTR(consumers[i].ret));
5006 else
5007 regulator_disable(consumers[i].consumer);
5008 }
5009
5010 return ret;
5011}
5012EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5013
5014/**
5015 * regulator_bulk_disable - disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers: Consumer data; clients are stored here.
5019 *
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call. If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5023 * return.
5024 *
5025 * Return: 0 on success or a negative error number on failure.
5026 */
5027int regulator_bulk_disable(int num_consumers,
5028 struct regulator_bulk_data *consumers)
5029{
5030 int i;
5031 int ret, r;
5032
5033 for (i = num_consumers - 1; i >= 0; --i) {
5034 ret = regulator_disable(consumers[i].consumer);
5035 if (ret != 0)
5036 goto err;
5037 }
5038
5039 return 0;
5040
5041err:
5042 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043 for (++i; i < num_consumers; ++i) {
5044 r = regulator_enable(consumers[i].consumer);
5045 if (r != 0)
5046 pr_err("Failed to re-enable %s: %pe\n",
5047 consumers[i].supply, ERR_PTR(r));
5048 }
5049
5050 return ret;
5051}
5052EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5053
5054/**
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5056 *
5057 * @num_consumers: Number of consumers
5058 * @consumers: Consumer data; clients are stored here.
5059 *
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5066 *
5067 * Return: 0 on success or a negative error number on failure.
5068 */
5069int regulator_bulk_force_disable(int num_consumers,
5070 struct regulator_bulk_data *consumers)
5071{
5072 int i;
5073 int ret = 0;
5074
5075 for (i = 0; i < num_consumers; i++) {
5076 consumers[i].ret =
5077 regulator_force_disable(consumers[i].consumer);
5078
5079 /* Store first error for reporting */
5080 if (consumers[i].ret && !ret)
5081 ret = consumers[i].ret;
5082 }
5083
5084 return ret;
5085}
5086EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5087
5088/**
5089 * regulator_bulk_free - free multiple regulator consumers
5090 *
5091 * @num_consumers: Number of consumers
5092 * @consumers: Consumer data; clients are stored here.
5093 *
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5096 */
5097void regulator_bulk_free(int num_consumers,
5098 struct regulator_bulk_data *consumers)
5099{
5100 int i;
5101
5102 for (i = 0; i < num_consumers; i++) {
5103 regulator_put(consumers[i].consumer);
5104 consumers[i].consumer = NULL;
5105 }
5106}
5107EXPORT_SYMBOL_GPL(regulator_bulk_free);
5108
5109/**
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5113 *
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5117 */
5118static void regulator_handle_critical(struct regulator_dev *rdev,
5119 unsigned long event)
5120{
5121 const char *reason = NULL;
5122
5123 if (!rdev->constraints->system_critical)
5124 return;
5125
5126 switch (event) {
5127 case REGULATOR_EVENT_UNDER_VOLTAGE:
5128 reason = "System critical regulator: voltage drop detected";
5129 break;
5130 case REGULATOR_EVENT_OVER_CURRENT:
5131 reason = "System critical regulator: over-current detected";
5132 break;
5133 case REGULATOR_EVENT_FAIL:
5134 reason = "System critical regulator: unknown error";
5135 }
5136
5137 if (!reason)
5138 return;
5139
5140 hw_protection_shutdown(reason,
5141 rdev->constraints->uv_less_critical_window_ms);
5142}
5143
5144/**
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5149 *
5150 * Called by regulator drivers to notify clients a regulator event has
5151 * occurred.
5152 *
5153 * Return: %NOTIFY_DONE.
5154 */
5155int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156 unsigned long event, void *data)
5157{
5158 regulator_handle_critical(rdev, event);
5159
5160 _notifier_call_chain(rdev, event, data);
5161 return NOTIFY_DONE;
5162
5163}
5164EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5165
5166/**
5167 * regulator_mode_to_status - convert a regulator mode into a status
5168 *
5169 * @mode: Mode to convert
5170 *
5171 * Convert a regulator mode into a status.
5172 *
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5174 */
5175int regulator_mode_to_status(unsigned int mode)
5176{
5177 switch (mode) {
5178 case REGULATOR_MODE_FAST:
5179 return REGULATOR_STATUS_FAST;
5180 case REGULATOR_MODE_NORMAL:
5181 return REGULATOR_STATUS_NORMAL;
5182 case REGULATOR_MODE_IDLE:
5183 return REGULATOR_STATUS_IDLE;
5184 case REGULATOR_MODE_STANDBY:
5185 return REGULATOR_STATUS_STANDBY;
5186 default:
5187 return REGULATOR_STATUS_UNDEFINED;
5188 }
5189}
5190EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5191
5192static struct attribute *regulator_dev_attrs[] = {
5193 &dev_attr_name.attr,
5194 &dev_attr_num_users.attr,
5195 &dev_attr_type.attr,
5196 &dev_attr_microvolts.attr,
5197 &dev_attr_microamps.attr,
5198 &dev_attr_opmode.attr,
5199 &dev_attr_state.attr,
5200 &dev_attr_status.attr,
5201 &dev_attr_bypass.attr,
5202 &dev_attr_requested_microamps.attr,
5203 &dev_attr_min_microvolts.attr,
5204 &dev_attr_max_microvolts.attr,
5205 &dev_attr_min_microamps.attr,
5206 &dev_attr_max_microamps.attr,
5207 &dev_attr_under_voltage.attr,
5208 &dev_attr_over_current.attr,
5209 &dev_attr_regulation_out.attr,
5210 &dev_attr_fail.attr,
5211 &dev_attr_over_temp.attr,
5212 &dev_attr_under_voltage_warn.attr,
5213 &dev_attr_over_current_warn.attr,
5214 &dev_attr_over_voltage_warn.attr,
5215 &dev_attr_over_temp_warn.attr,
5216 &dev_attr_suspend_standby_state.attr,
5217 &dev_attr_suspend_mem_state.attr,
5218 &dev_attr_suspend_disk_state.attr,
5219 &dev_attr_suspend_standby_microvolts.attr,
5220 &dev_attr_suspend_mem_microvolts.attr,
5221 &dev_attr_suspend_disk_microvolts.attr,
5222 &dev_attr_suspend_standby_mode.attr,
5223 &dev_attr_suspend_mem_mode.attr,
5224 &dev_attr_suspend_disk_mode.attr,
5225 NULL
5226};
5227
5228/*
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5231 */
5232static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233 struct attribute *attr, int idx)
5234{
5235 struct device *dev = kobj_to_dev(kobj);
5236 struct regulator_dev *rdev = dev_to_rdev(dev);
5237 const struct regulator_ops *ops = rdev->desc->ops;
5238 umode_t mode = attr->mode;
5239
5240 /* these three are always present */
5241 if (attr == &dev_attr_name.attr ||
5242 attr == &dev_attr_num_users.attr ||
5243 attr == &dev_attr_type.attr)
5244 return mode;
5245
5246 /* some attributes need specific methods to be displayed */
5247 if (attr == &dev_attr_microvolts.attr) {
5248 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252 return mode;
5253 return 0;
5254 }
5255
5256 if (attr == &dev_attr_microamps.attr)
5257 return ops->get_current_limit ? mode : 0;
5258
5259 if (attr == &dev_attr_opmode.attr)
5260 return ops->get_mode ? mode : 0;
5261
5262 if (attr == &dev_attr_state.attr)
5263 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5264
5265 if (attr == &dev_attr_status.attr)
5266 return ops->get_status ? mode : 0;
5267
5268 if (attr == &dev_attr_bypass.attr)
5269 return ops->get_bypass ? mode : 0;
5270
5271 if (attr == &dev_attr_under_voltage.attr ||
5272 attr == &dev_attr_over_current.attr ||
5273 attr == &dev_attr_regulation_out.attr ||
5274 attr == &dev_attr_fail.attr ||
5275 attr == &dev_attr_over_temp.attr ||
5276 attr == &dev_attr_under_voltage_warn.attr ||
5277 attr == &dev_attr_over_current_warn.attr ||
5278 attr == &dev_attr_over_voltage_warn.attr ||
5279 attr == &dev_attr_over_temp_warn.attr)
5280 return ops->get_error_flags ? mode : 0;
5281
5282 /* constraints need specific supporting methods */
5283 if (attr == &dev_attr_min_microvolts.attr ||
5284 attr == &dev_attr_max_microvolts.attr)
5285 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5286
5287 if (attr == &dev_attr_min_microamps.attr ||
5288 attr == &dev_attr_max_microamps.attr)
5289 return ops->set_current_limit ? mode : 0;
5290
5291 if (attr == &dev_attr_suspend_standby_state.attr ||
5292 attr == &dev_attr_suspend_mem_state.attr ||
5293 attr == &dev_attr_suspend_disk_state.attr)
5294 return mode;
5295
5296 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297 attr == &dev_attr_suspend_mem_microvolts.attr ||
5298 attr == &dev_attr_suspend_disk_microvolts.attr)
5299 return ops->set_suspend_voltage ? mode : 0;
5300
5301 if (attr == &dev_attr_suspend_standby_mode.attr ||
5302 attr == &dev_attr_suspend_mem_mode.attr ||
5303 attr == &dev_attr_suspend_disk_mode.attr)
5304 return ops->set_suspend_mode ? mode : 0;
5305
5306 return mode;
5307}
5308
5309static const struct attribute_group regulator_dev_group = {
5310 .attrs = regulator_dev_attrs,
5311 .is_visible = regulator_attr_is_visible,
5312};
5313
5314static const struct attribute_group *regulator_dev_groups[] = {
5315 ®ulator_dev_group,
5316 NULL
5317};
5318
5319static void regulator_dev_release(struct device *dev)
5320{
5321 struct regulator_dev *rdev = dev_get_drvdata(dev);
5322
5323 debugfs_remove_recursive(rdev->debugfs);
5324 kfree(rdev->constraints);
5325 of_node_put(rdev->dev.of_node);
5326 kfree(rdev);
5327}
5328
5329static void rdev_init_debugfs(struct regulator_dev *rdev)
5330{
5331 struct device *parent = rdev->dev.parent;
5332 const char *rname = rdev_get_name(rdev);
5333 char name[NAME_MAX];
5334
5335 /* Avoid duplicate debugfs directory names */
5336 if (parent && rname == rdev->desc->name) {
5337 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338 rname);
5339 rname = name;
5340 }
5341
5342 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343 if (IS_ERR(rdev->debugfs))
5344 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5345
5346 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347 &rdev->use_count);
5348 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349 &rdev->open_count);
5350 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351 &rdev->bypass_count);
5352}
5353
5354static int regulator_register_resolve_supply(struct device *dev, void *data)
5355{
5356 struct regulator_dev *rdev = dev_to_rdev(dev);
5357
5358 if (regulator_resolve_supply(rdev))
5359 rdev_dbg(rdev, "unable to resolve supply\n");
5360
5361 return 0;
5362}
5363
5364int regulator_coupler_register(struct regulator_coupler *coupler)
5365{
5366 mutex_lock(®ulator_list_mutex);
5367 list_add_tail(&coupler->list, ®ulator_coupler_list);
5368 mutex_unlock(®ulator_list_mutex);
5369
5370 return 0;
5371}
5372
5373static struct regulator_coupler *
5374regulator_find_coupler(struct regulator_dev *rdev)
5375{
5376 struct regulator_coupler *coupler;
5377 int err;
5378
5379 /*
5380 * Note that regulators are appended to the list and the generic
5381 * coupler is registered first, hence it will be attached at last
5382 * if nobody cared.
5383 */
5384 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5385 err = coupler->attach_regulator(coupler, rdev);
5386 if (!err) {
5387 if (!coupler->balance_voltage &&
5388 rdev->coupling_desc.n_coupled > 2)
5389 goto err_unsupported;
5390
5391 return coupler;
5392 }
5393
5394 if (err < 0)
5395 return ERR_PTR(err);
5396
5397 if (err == 1)
5398 continue;
5399
5400 break;
5401 }
5402
5403 return ERR_PTR(-EINVAL);
5404
5405err_unsupported:
5406 if (coupler->detach_regulator)
5407 coupler->detach_regulator(coupler, rdev);
5408
5409 rdev_err(rdev,
5410 "Voltage balancing for multiple regulator couples is unimplemented\n");
5411
5412 return ERR_PTR(-EPERM);
5413}
5414
5415static void regulator_resolve_coupling(struct regulator_dev *rdev)
5416{
5417 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418 struct coupling_desc *c_desc = &rdev->coupling_desc;
5419 int n_coupled = c_desc->n_coupled;
5420 struct regulator_dev *c_rdev;
5421 int i;
5422
5423 for (i = 1; i < n_coupled; i++) {
5424 /* already resolved */
5425 if (c_desc->coupled_rdevs[i])
5426 continue;
5427
5428 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5429
5430 if (!c_rdev)
5431 continue;
5432
5433 if (c_rdev->coupling_desc.coupler != coupler) {
5434 rdev_err(rdev, "coupler mismatch with %s\n",
5435 rdev_get_name(c_rdev));
5436 return;
5437 }
5438
5439 c_desc->coupled_rdevs[i] = c_rdev;
5440 c_desc->n_resolved++;
5441
5442 regulator_resolve_coupling(c_rdev);
5443 }
5444}
5445
5446static void regulator_remove_coupling(struct regulator_dev *rdev)
5447{
5448 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450 struct regulator_dev *__c_rdev, *c_rdev;
5451 unsigned int __n_coupled, n_coupled;
5452 int i, k;
5453 int err;
5454
5455 n_coupled = c_desc->n_coupled;
5456
5457 for (i = 1; i < n_coupled; i++) {
5458 c_rdev = c_desc->coupled_rdevs[i];
5459
5460 if (!c_rdev)
5461 continue;
5462
5463 regulator_lock(c_rdev);
5464
5465 __c_desc = &c_rdev->coupling_desc;
5466 __n_coupled = __c_desc->n_coupled;
5467
5468 for (k = 1; k < __n_coupled; k++) {
5469 __c_rdev = __c_desc->coupled_rdevs[k];
5470
5471 if (__c_rdev == rdev) {
5472 __c_desc->coupled_rdevs[k] = NULL;
5473 __c_desc->n_resolved--;
5474 break;
5475 }
5476 }
5477
5478 regulator_unlock(c_rdev);
5479
5480 c_desc->coupled_rdevs[i] = NULL;
5481 c_desc->n_resolved--;
5482 }
5483
5484 if (coupler && coupler->detach_regulator) {
5485 err = coupler->detach_regulator(coupler, rdev);
5486 if (err)
5487 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488 ERR_PTR(err));
5489 }
5490
5491 kfree(rdev->coupling_desc.coupled_rdevs);
5492 rdev->coupling_desc.coupled_rdevs = NULL;
5493}
5494
5495static int regulator_init_coupling(struct regulator_dev *rdev)
5496{
5497 struct regulator_dev **coupled;
5498 int err, n_phandles;
5499
5500 if (!IS_ENABLED(CONFIG_OF))
5501 n_phandles = 0;
5502 else
5503 n_phandles = of_get_n_coupled(rdev);
5504
5505 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506 if (!coupled)
5507 return -ENOMEM;
5508
5509 rdev->coupling_desc.coupled_rdevs = coupled;
5510
5511 /*
5512 * Every regulator should always have coupling descriptor filled with
5513 * at least pointer to itself.
5514 */
5515 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516 rdev->coupling_desc.n_coupled = n_phandles + 1;
5517 rdev->coupling_desc.n_resolved++;
5518
5519 /* regulator isn't coupled */
5520 if (n_phandles == 0)
5521 return 0;
5522
5523 if (!of_check_coupling_data(rdev))
5524 return -EPERM;
5525
5526 mutex_lock(®ulator_list_mutex);
5527 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528 mutex_unlock(®ulator_list_mutex);
5529
5530 if (IS_ERR(rdev->coupling_desc.coupler)) {
5531 err = PTR_ERR(rdev->coupling_desc.coupler);
5532 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533 return err;
5534 }
5535
5536 return 0;
5537}
5538
5539static int generic_coupler_attach(struct regulator_coupler *coupler,
5540 struct regulator_dev *rdev)
5541{
5542 if (rdev->coupling_desc.n_coupled > 2) {
5543 rdev_err(rdev,
5544 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545 return -EPERM;
5546 }
5547
5548 if (!rdev->constraints->always_on) {
5549 rdev_err(rdev,
5550 "Coupling of a non always-on regulator is unimplemented\n");
5551 return -ENOTSUPP;
5552 }
5553
5554 return 0;
5555}
5556
5557static struct regulator_coupler generic_regulator_coupler = {
5558 .attach_regulator = generic_coupler_attach,
5559};
5560
5561/**
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5566 *
5567 * Called by regulator drivers to register a regulator.
5568 *
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 * an ERR_PTR() encoded negative error number on failure.
5571 */
5572struct regulator_dev *
5573regulator_register(struct device *dev,
5574 const struct regulator_desc *regulator_desc,
5575 const struct regulator_config *cfg)
5576{
5577 const struct regulator_init_data *init_data;
5578 struct regulator_config *config = NULL;
5579 static atomic_t regulator_no = ATOMIC_INIT(-1);
5580 struct regulator_dev *rdev;
5581 bool dangling_cfg_gpiod = false;
5582 bool dangling_of_gpiod = false;
5583 int ret, i;
5584 bool resolved_early = false;
5585
5586 if (cfg == NULL)
5587 return ERR_PTR(-EINVAL);
5588 if (cfg->ena_gpiod)
5589 dangling_cfg_gpiod = true;
5590 if (regulator_desc == NULL) {
5591 ret = -EINVAL;
5592 goto rinse;
5593 }
5594
5595 WARN_ON(!dev || !cfg->dev);
5596
5597 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598 ret = -EINVAL;
5599 goto rinse;
5600 }
5601
5602 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603 regulator_desc->type != REGULATOR_CURRENT) {
5604 ret = -EINVAL;
5605 goto rinse;
5606 }
5607
5608 /* Only one of each should be implemented */
5609 WARN_ON(regulator_desc->ops->get_voltage &&
5610 regulator_desc->ops->get_voltage_sel);
5611 WARN_ON(regulator_desc->ops->set_voltage &&
5612 regulator_desc->ops->set_voltage_sel);
5613
5614 /* If we're using selectors we must implement list_voltage. */
5615 if (regulator_desc->ops->get_voltage_sel &&
5616 !regulator_desc->ops->list_voltage) {
5617 ret = -EINVAL;
5618 goto rinse;
5619 }
5620 if (regulator_desc->ops->set_voltage_sel &&
5621 !regulator_desc->ops->list_voltage) {
5622 ret = -EINVAL;
5623 goto rinse;
5624 }
5625
5626 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627 if (rdev == NULL) {
5628 ret = -ENOMEM;
5629 goto rinse;
5630 }
5631 device_initialize(&rdev->dev);
5632 dev_set_drvdata(&rdev->dev, rdev);
5633 rdev->dev.class = ®ulator_class;
5634 spin_lock_init(&rdev->err_lock);
5635
5636 /*
5637 * Duplicate the config so the driver could override it after
5638 * parsing init data.
5639 */
5640 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641 if (config == NULL) {
5642 ret = -ENOMEM;
5643 goto clean;
5644 }
5645
5646 /*
5647 * DT may override the config->init_data provided if the platform
5648 * needs to do so. If so, config->init_data is completely ignored.
5649 */
5650 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5651 &rdev->dev.of_node);
5652
5653 /*
5654 * Sometimes not all resources are probed already so we need to take
5655 * that into account. This happens most the time if the ena_gpiod comes
5656 * from a gpio extender or something else.
5657 */
5658 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5659 ret = -EPROBE_DEFER;
5660 goto clean;
5661 }
5662
5663 /*
5664 * We need to keep track of any GPIO descriptor coming from the
5665 * device tree until we have handled it over to the core. If the
5666 * config that was passed in to this function DOES NOT contain
5667 * a descriptor, and the config after this call DOES contain
5668 * a descriptor, we definitely got one from parsing the device
5669 * tree.
5670 */
5671 if (!cfg->ena_gpiod && config->ena_gpiod)
5672 dangling_of_gpiod = true;
5673 if (!init_data) {
5674 init_data = config->init_data;
5675 rdev->dev.of_node = of_node_get(config->of_node);
5676 }
5677
5678 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5679 rdev->reg_data = config->driver_data;
5680 rdev->owner = regulator_desc->owner;
5681 rdev->desc = regulator_desc;
5682 if (config->regmap)
5683 rdev->regmap = config->regmap;
5684 else if (dev_get_regmap(dev, NULL))
5685 rdev->regmap = dev_get_regmap(dev, NULL);
5686 else if (dev->parent)
5687 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5688 INIT_LIST_HEAD(&rdev->consumer_list);
5689 INIT_LIST_HEAD(&rdev->list);
5690 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5691 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5692
5693 if (init_data && init_data->supply_regulator)
5694 rdev->supply_name = init_data->supply_regulator;
5695 else if (regulator_desc->supply_name)
5696 rdev->supply_name = regulator_desc->supply_name;
5697
5698 /* register with sysfs */
5699 rdev->dev.parent = config->dev;
5700 dev_set_name(&rdev->dev, "regulator.%lu",
5701 (unsigned long) atomic_inc_return(®ulator_no));
5702
5703 /* set regulator constraints */
5704 if (init_data)
5705 rdev->constraints = kmemdup(&init_data->constraints,
5706 sizeof(*rdev->constraints),
5707 GFP_KERNEL);
5708 else
5709 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5710 GFP_KERNEL);
5711 if (!rdev->constraints) {
5712 ret = -ENOMEM;
5713 goto wash;
5714 }
5715
5716 if (regulator_desc->init_cb) {
5717 ret = regulator_desc->init_cb(rdev, config);
5718 if (ret < 0)
5719 goto wash;
5720 }
5721
5722 if ((rdev->supply_name && !rdev->supply) &&
5723 (rdev->constraints->always_on ||
5724 rdev->constraints->boot_on)) {
5725 ret = regulator_resolve_supply(rdev);
5726 if (ret)
5727 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5728 ERR_PTR(ret));
5729
5730 resolved_early = true;
5731 }
5732
5733 if (config->ena_gpiod) {
5734 ret = regulator_ena_gpio_request(rdev, config);
5735 if (ret != 0) {
5736 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5737 ERR_PTR(ret));
5738 goto wash;
5739 }
5740 /* The regulator core took over the GPIO descriptor */
5741 dangling_cfg_gpiod = false;
5742 dangling_of_gpiod = false;
5743 }
5744
5745 ret = set_machine_constraints(rdev);
5746 if (ret == -EPROBE_DEFER && !resolved_early) {
5747 /* Regulator might be in bypass mode and so needs its supply
5748 * to set the constraints
5749 */
5750 /* FIXME: this currently triggers a chicken-and-egg problem
5751 * when creating -SUPPLY symlink in sysfs to a regulator
5752 * that is just being created
5753 */
5754 rdev_dbg(rdev, "will resolve supply early: %s\n",
5755 rdev->supply_name);
5756 ret = regulator_resolve_supply(rdev);
5757 if (!ret)
5758 ret = set_machine_constraints(rdev);
5759 else
5760 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5761 ERR_PTR(ret));
5762 }
5763 if (ret < 0)
5764 goto wash;
5765
5766 ret = regulator_init_coupling(rdev);
5767 if (ret < 0)
5768 goto wash;
5769
5770 /* add consumers devices */
5771 if (init_data) {
5772 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5773 ret = set_consumer_device_supply(rdev,
5774 init_data->consumer_supplies[i].dev_name,
5775 init_data->consumer_supplies[i].supply);
5776 if (ret < 0) {
5777 dev_err(dev, "Failed to set supply %s\n",
5778 init_data->consumer_supplies[i].supply);
5779 goto unset_supplies;
5780 }
5781 }
5782 }
5783
5784 if (!rdev->desc->ops->get_voltage &&
5785 !rdev->desc->ops->list_voltage &&
5786 !rdev->desc->fixed_uV)
5787 rdev->is_switch = true;
5788
5789 ret = device_add(&rdev->dev);
5790 if (ret != 0)
5791 goto unset_supplies;
5792
5793 rdev_init_debugfs(rdev);
5794
5795 /* try to resolve regulators coupling since a new one was registered */
5796 mutex_lock(®ulator_list_mutex);
5797 regulator_resolve_coupling(rdev);
5798 mutex_unlock(®ulator_list_mutex);
5799
5800 /* try to resolve regulators supply since a new one was registered */
5801 class_for_each_device(®ulator_class, NULL, NULL,
5802 regulator_register_resolve_supply);
5803 kfree(config);
5804 return rdev;
5805
5806unset_supplies:
5807 mutex_lock(®ulator_list_mutex);
5808 unset_regulator_supplies(rdev);
5809 regulator_remove_coupling(rdev);
5810 mutex_unlock(®ulator_list_mutex);
5811wash:
5812 regulator_put(rdev->supply);
5813 kfree(rdev->coupling_desc.coupled_rdevs);
5814 mutex_lock(®ulator_list_mutex);
5815 regulator_ena_gpio_free(rdev);
5816 mutex_unlock(®ulator_list_mutex);
5817clean:
5818 if (dangling_of_gpiod)
5819 gpiod_put(config->ena_gpiod);
5820 kfree(config);
5821 put_device(&rdev->dev);
5822rinse:
5823 if (dangling_cfg_gpiod)
5824 gpiod_put(cfg->ena_gpiod);
5825 return ERR_PTR(ret);
5826}
5827EXPORT_SYMBOL_GPL(regulator_register);
5828
5829/**
5830 * regulator_unregister - unregister regulator
5831 * @rdev: regulator to unregister
5832 *
5833 * Called by regulator drivers to unregister a regulator.
5834 */
5835void regulator_unregister(struct regulator_dev *rdev)
5836{
5837 if (rdev == NULL)
5838 return;
5839
5840 if (rdev->supply) {
5841 while (rdev->use_count--)
5842 regulator_disable(rdev->supply);
5843 regulator_put(rdev->supply);
5844 }
5845
5846 flush_work(&rdev->disable_work.work);
5847
5848 mutex_lock(®ulator_list_mutex);
5849
5850 WARN_ON(rdev->open_count);
5851 regulator_remove_coupling(rdev);
5852 unset_regulator_supplies(rdev);
5853 list_del(&rdev->list);
5854 regulator_ena_gpio_free(rdev);
5855 device_unregister(&rdev->dev);
5856
5857 mutex_unlock(®ulator_list_mutex);
5858}
5859EXPORT_SYMBOL_GPL(regulator_unregister);
5860
5861#ifdef CONFIG_SUSPEND
5862/**
5863 * regulator_suspend - prepare regulators for system wide suspend
5864 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5865 *
5866 * Configure each regulator with it's suspend operating parameters for state.
5867 *
5868 * Return: 0 on success or a negative error number on failure.
5869 */
5870static int regulator_suspend(struct device *dev)
5871{
5872 struct regulator_dev *rdev = dev_to_rdev(dev);
5873 suspend_state_t state = pm_suspend_target_state;
5874 int ret;
5875 const struct regulator_state *rstate;
5876
5877 rstate = regulator_get_suspend_state_check(rdev, state);
5878 if (!rstate)
5879 return 0;
5880
5881 regulator_lock(rdev);
5882 ret = __suspend_set_state(rdev, rstate);
5883 regulator_unlock(rdev);
5884
5885 return ret;
5886}
5887
5888static int regulator_resume(struct device *dev)
5889{
5890 suspend_state_t state = pm_suspend_target_state;
5891 struct regulator_dev *rdev = dev_to_rdev(dev);
5892 struct regulator_state *rstate;
5893 int ret = 0;
5894
5895 rstate = regulator_get_suspend_state(rdev, state);
5896 if (rstate == NULL)
5897 return 0;
5898
5899 /* Avoid grabbing the lock if we don't need to */
5900 if (!rdev->desc->ops->resume)
5901 return 0;
5902
5903 regulator_lock(rdev);
5904
5905 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5906 rstate->enabled == DISABLE_IN_SUSPEND)
5907 ret = rdev->desc->ops->resume(rdev);
5908
5909 regulator_unlock(rdev);
5910
5911 return ret;
5912}
5913#else /* !CONFIG_SUSPEND */
5914
5915#define regulator_suspend NULL
5916#define regulator_resume NULL
5917
5918#endif /* !CONFIG_SUSPEND */
5919
5920#ifdef CONFIG_PM
5921static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5922 .suspend = regulator_suspend,
5923 .resume = regulator_resume,
5924};
5925#endif
5926
5927const struct class regulator_class = {
5928 .name = "regulator",
5929 .dev_release = regulator_dev_release,
5930 .dev_groups = regulator_dev_groups,
5931#ifdef CONFIG_PM
5932 .pm = ®ulator_pm_ops,
5933#endif
5934};
5935/**
5936 * regulator_has_full_constraints - the system has fully specified constraints
5937 *
5938 * Calling this function will cause the regulator API to disable all
5939 * regulators which have a zero use count and don't have an always_on
5940 * constraint in a late_initcall.
5941 *
5942 * The intention is that this will become the default behaviour in a
5943 * future kernel release so users are encouraged to use this facility
5944 * now.
5945 */
5946void regulator_has_full_constraints(void)
5947{
5948 has_full_constraints = 1;
5949}
5950EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5951
5952/**
5953 * rdev_get_drvdata - get rdev regulator driver data
5954 * @rdev: regulator
5955 *
5956 * Get rdev regulator driver private data. This call can be used in the
5957 * regulator driver context.
5958 *
5959 * Return: Pointer to regulator driver private data.
5960 */
5961void *rdev_get_drvdata(struct regulator_dev *rdev)
5962{
5963 return rdev->reg_data;
5964}
5965EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5966
5967/**
5968 * regulator_get_drvdata - get regulator driver data
5969 * @regulator: regulator
5970 *
5971 * Get regulator driver private data. This call can be used in the consumer
5972 * driver context when non API regulator specific functions need to be called.
5973 *
5974 * Return: Pointer to regulator driver private data.
5975 */
5976void *regulator_get_drvdata(struct regulator *regulator)
5977{
5978 return regulator->rdev->reg_data;
5979}
5980EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5981
5982/**
5983 * regulator_set_drvdata - set regulator driver data
5984 * @regulator: regulator
5985 * @data: data
5986 */
5987void regulator_set_drvdata(struct regulator *regulator, void *data)
5988{
5989 regulator->rdev->reg_data = data;
5990}
5991EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5992
5993/**
5994 * rdev_get_id - get regulator ID
5995 * @rdev: regulator
5996 *
5997 * Return: Regulator ID for @rdev.
5998 */
5999int rdev_get_id(struct regulator_dev *rdev)
6000{
6001 return rdev->desc->id;
6002}
6003EXPORT_SYMBOL_GPL(rdev_get_id);
6004
6005struct device *rdev_get_dev(struct regulator_dev *rdev)
6006{
6007 return &rdev->dev;
6008}
6009EXPORT_SYMBOL_GPL(rdev_get_dev);
6010
6011struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6012{
6013 return rdev->regmap;
6014}
6015EXPORT_SYMBOL_GPL(rdev_get_regmap);
6016
6017void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6018{
6019 return reg_init_data->driver_data;
6020}
6021EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6022
6023#ifdef CONFIG_DEBUG_FS
6024static int supply_map_show(struct seq_file *sf, void *data)
6025{
6026 struct regulator_map *map;
6027
6028 list_for_each_entry(map, ®ulator_map_list, list) {
6029 seq_printf(sf, "%s -> %s.%s\n",
6030 rdev_get_name(map->regulator), map->dev_name,
6031 map->supply);
6032 }
6033
6034 return 0;
6035}
6036DEFINE_SHOW_ATTRIBUTE(supply_map);
6037
6038struct summary_data {
6039 struct seq_file *s;
6040 struct regulator_dev *parent;
6041 int level;
6042};
6043
6044static void regulator_summary_show_subtree(struct seq_file *s,
6045 struct regulator_dev *rdev,
6046 int level);
6047
6048static int regulator_summary_show_children(struct device *dev, void *data)
6049{
6050 struct regulator_dev *rdev = dev_to_rdev(dev);
6051 struct summary_data *summary_data = data;
6052
6053 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6054 regulator_summary_show_subtree(summary_data->s, rdev,
6055 summary_data->level + 1);
6056
6057 return 0;
6058}
6059
6060static void regulator_summary_show_subtree(struct seq_file *s,
6061 struct regulator_dev *rdev,
6062 int level)
6063{
6064 struct regulation_constraints *c;
6065 struct regulator *consumer;
6066 struct summary_data summary_data;
6067 unsigned int opmode;
6068
6069 if (!rdev)
6070 return;
6071
6072 opmode = _regulator_get_mode_unlocked(rdev);
6073 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6074 level * 3 + 1, "",
6075 30 - level * 3, rdev_get_name(rdev),
6076 rdev->use_count, rdev->open_count, rdev->bypass_count,
6077 regulator_opmode_to_str(opmode));
6078
6079 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6080 seq_printf(s, "%5dmA ",
6081 _regulator_get_current_limit_unlocked(rdev) / 1000);
6082
6083 c = rdev->constraints;
6084 if (c) {
6085 switch (rdev->desc->type) {
6086 case REGULATOR_VOLTAGE:
6087 seq_printf(s, "%5dmV %5dmV ",
6088 c->min_uV / 1000, c->max_uV / 1000);
6089 break;
6090 case REGULATOR_CURRENT:
6091 seq_printf(s, "%5dmA %5dmA ",
6092 c->min_uA / 1000, c->max_uA / 1000);
6093 break;
6094 }
6095 }
6096
6097 seq_puts(s, "\n");
6098
6099 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6100 if (consumer->dev && consumer->dev->class == ®ulator_class)
6101 continue;
6102
6103 seq_printf(s, "%*s%-*s ",
6104 (level + 1) * 3 + 1, "",
6105 30 - (level + 1) * 3,
6106 consumer->supply_name ? consumer->supply_name :
6107 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6108
6109 switch (rdev->desc->type) {
6110 case REGULATOR_VOLTAGE:
6111 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6112 consumer->enable_count,
6113 consumer->uA_load / 1000,
6114 consumer->uA_load && !consumer->enable_count ?
6115 '*' : ' ',
6116 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6117 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6118 break;
6119 case REGULATOR_CURRENT:
6120 break;
6121 }
6122
6123 seq_puts(s, "\n");
6124 }
6125
6126 summary_data.s = s;
6127 summary_data.level = level;
6128 summary_data.parent = rdev;
6129
6130 class_for_each_device(®ulator_class, NULL, &summary_data,
6131 regulator_summary_show_children);
6132}
6133
6134struct summary_lock_data {
6135 struct ww_acquire_ctx *ww_ctx;
6136 struct regulator_dev **new_contended_rdev;
6137 struct regulator_dev **old_contended_rdev;
6138};
6139
6140static int regulator_summary_lock_one(struct device *dev, void *data)
6141{
6142 struct regulator_dev *rdev = dev_to_rdev(dev);
6143 struct summary_lock_data *lock_data = data;
6144 int ret = 0;
6145
6146 if (rdev != *lock_data->old_contended_rdev) {
6147 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6148
6149 if (ret == -EDEADLK)
6150 *lock_data->new_contended_rdev = rdev;
6151 else
6152 WARN_ON_ONCE(ret);
6153 } else {
6154 *lock_data->old_contended_rdev = NULL;
6155 }
6156
6157 return ret;
6158}
6159
6160static int regulator_summary_unlock_one(struct device *dev, void *data)
6161{
6162 struct regulator_dev *rdev = dev_to_rdev(dev);
6163 struct summary_lock_data *lock_data = data;
6164
6165 if (lock_data) {
6166 if (rdev == *lock_data->new_contended_rdev)
6167 return -EDEADLK;
6168 }
6169
6170 regulator_unlock(rdev);
6171
6172 return 0;
6173}
6174
6175static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6176 struct regulator_dev **new_contended_rdev,
6177 struct regulator_dev **old_contended_rdev)
6178{
6179 struct summary_lock_data lock_data;
6180 int ret;
6181
6182 lock_data.ww_ctx = ww_ctx;
6183 lock_data.new_contended_rdev = new_contended_rdev;
6184 lock_data.old_contended_rdev = old_contended_rdev;
6185
6186 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6187 regulator_summary_lock_one);
6188 if (ret)
6189 class_for_each_device(®ulator_class, NULL, &lock_data,
6190 regulator_summary_unlock_one);
6191
6192 return ret;
6193}
6194
6195static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6196{
6197 struct regulator_dev *new_contended_rdev = NULL;
6198 struct regulator_dev *old_contended_rdev = NULL;
6199 int err;
6200
6201 mutex_lock(®ulator_list_mutex);
6202
6203 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6204
6205 do {
6206 if (new_contended_rdev) {
6207 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6208 old_contended_rdev = new_contended_rdev;
6209 old_contended_rdev->ref_cnt++;
6210 old_contended_rdev->mutex_owner = current;
6211 }
6212
6213 err = regulator_summary_lock_all(ww_ctx,
6214 &new_contended_rdev,
6215 &old_contended_rdev);
6216
6217 if (old_contended_rdev)
6218 regulator_unlock(old_contended_rdev);
6219
6220 } while (err == -EDEADLK);
6221
6222 ww_acquire_done(ww_ctx);
6223}
6224
6225static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6226{
6227 class_for_each_device(®ulator_class, NULL, NULL,
6228 regulator_summary_unlock_one);
6229 ww_acquire_fini(ww_ctx);
6230
6231 mutex_unlock(®ulator_list_mutex);
6232}
6233
6234static int regulator_summary_show_roots(struct device *dev, void *data)
6235{
6236 struct regulator_dev *rdev = dev_to_rdev(dev);
6237 struct seq_file *s = data;
6238
6239 if (!rdev->supply)
6240 regulator_summary_show_subtree(s, rdev, 0);
6241
6242 return 0;
6243}
6244
6245static int regulator_summary_show(struct seq_file *s, void *data)
6246{
6247 struct ww_acquire_ctx ww_ctx;
6248
6249 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6250 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6251
6252 regulator_summary_lock(&ww_ctx);
6253
6254 class_for_each_device(®ulator_class, NULL, s,
6255 regulator_summary_show_roots);
6256
6257 regulator_summary_unlock(&ww_ctx);
6258
6259 return 0;
6260}
6261DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6262#endif /* CONFIG_DEBUG_FS */
6263
6264static int __init regulator_init(void)
6265{
6266 int ret;
6267
6268 ret = class_register(®ulator_class);
6269
6270 debugfs_root = debugfs_create_dir("regulator", NULL);
6271 if (IS_ERR(debugfs_root))
6272 pr_debug("regulator: Failed to create debugfs directory\n");
6273
6274#ifdef CONFIG_DEBUG_FS
6275 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6276 &supply_map_fops);
6277
6278 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6279 NULL, ®ulator_summary_fops);
6280#endif
6281 regulator_dummy_init();
6282
6283 regulator_coupler_register(&generic_regulator_coupler);
6284
6285 return ret;
6286}
6287
6288/* init early to allow our consumers to complete system booting */
6289core_initcall(regulator_init);
6290
6291static int regulator_late_cleanup(struct device *dev, void *data)
6292{
6293 struct regulator_dev *rdev = dev_to_rdev(dev);
6294 struct regulation_constraints *c = rdev->constraints;
6295 int ret;
6296
6297 if (c && c->always_on)
6298 return 0;
6299
6300 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6301 return 0;
6302
6303 regulator_lock(rdev);
6304
6305 if (rdev->use_count)
6306 goto unlock;
6307
6308 /* If reading the status failed, assume that it's off. */
6309 if (_regulator_is_enabled(rdev) <= 0)
6310 goto unlock;
6311
6312 if (have_full_constraints()) {
6313 /* We log since this may kill the system if it goes
6314 * wrong.
6315 */
6316 rdev_info(rdev, "disabling\n");
6317 ret = _regulator_do_disable(rdev);
6318 if (ret != 0)
6319 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6320 } else {
6321 /* The intention is that in future we will
6322 * assume that full constraints are provided
6323 * so warn even if we aren't going to do
6324 * anything here.
6325 */
6326 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6327 }
6328
6329unlock:
6330 regulator_unlock(rdev);
6331
6332 return 0;
6333}
6334
6335static bool regulator_ignore_unused;
6336static int __init regulator_ignore_unused_setup(char *__unused)
6337{
6338 regulator_ignore_unused = true;
6339 return 1;
6340}
6341__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6342
6343static void regulator_init_complete_work_function(struct work_struct *work)
6344{
6345 /*
6346 * Regulators may had failed to resolve their input supplies
6347 * when were registered, either because the input supply was
6348 * not registered yet or because its parent device was not
6349 * bound yet. So attempt to resolve the input supplies for
6350 * pending regulators before trying to disable unused ones.
6351 */
6352 class_for_each_device(®ulator_class, NULL, NULL,
6353 regulator_register_resolve_supply);
6354
6355 /*
6356 * For debugging purposes, it may be useful to prevent unused
6357 * regulators from being disabled.
6358 */
6359 if (regulator_ignore_unused) {
6360 pr_warn("regulator: Not disabling unused regulators\n");
6361 return;
6362 }
6363
6364 /* If we have a full configuration then disable any regulators
6365 * we have permission to change the status for and which are
6366 * not in use or always_on. This is effectively the default
6367 * for DT and ACPI as they have full constraints.
6368 */
6369 class_for_each_device(®ulator_class, NULL, NULL,
6370 regulator_late_cleanup);
6371}
6372
6373static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6374 regulator_init_complete_work_function);
6375
6376static int __init regulator_init_complete(void)
6377{
6378 /*
6379 * Since DT doesn't provide an idiomatic mechanism for
6380 * enabling full constraints and since it's much more natural
6381 * with DT to provide them just assume that a DT enabled
6382 * system has full constraints.
6383 */
6384 if (of_have_populated_dt())
6385 has_full_constraints = true;
6386
6387 /*
6388 * We punt completion for an arbitrary amount of time since
6389 * systems like distros will load many drivers from userspace
6390 * so consumers might not always be ready yet, this is
6391 * particularly an issue with laptops where this might bounce
6392 * the display off then on. Ideally we'd get a notification
6393 * from userspace when this happens but we don't so just wait
6394 * a bit and hope we waited long enough. It'd be better if
6395 * we'd only do this on systems that need it, and a kernel
6396 * command line option might be useful.
6397 */
6398 schedule_delayed_work(®ulator_init_complete_work,
6399 msecs_to_jiffies(30000));
6400
6401 return 0;
6402}
6403late_initcall_sync(regulator_init_complete);
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/gpio/consumer.h>
28#include <linux/of.h>
29#include <linux/regmap.h>
30#include <linux/regulator/of_regulator.h>
31#include <linux/regulator/consumer.h>
32#include <linux/regulator/driver.h>
33#include <linux/regulator/machine.h>
34#include <linux/module.h>
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/regulator.h>
38
39#include "dummy.h"
40#include "internal.h"
41
42#define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50#define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53static DEFINE_MUTEX(regulator_list_mutex);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61static struct class regulator_class;
62
63/*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73};
74
75/*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86};
87
88/*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99};
100
101static int _regulator_is_enabled(struct regulator_dev *rdev);
102static int _regulator_disable(struct regulator_dev *rdev);
103static int _regulator_get_voltage(struct regulator_dev *rdev);
104static int _regulator_get_current_limit(struct regulator_dev *rdev);
105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113static void _regulator_put(struct regulator *regulator);
114
115static struct regulator_dev *dev_to_rdev(struct device *dev)
116{
117 return container_of(dev, struct regulator_dev, dev);
118}
119
120static const char *rdev_get_name(struct regulator_dev *rdev)
121{
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128}
129
130static bool have_full_constraints(void)
131{
132 return has_full_constraints || of_have_populated_dt();
133}
134
135static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136{
137 if (rdev && rdev->supply)
138 return rdev->supply->rdev;
139
140 return NULL;
141}
142
143/**
144 * regulator_lock_supply - lock a regulator and its supplies
145 * @rdev: regulator source
146 */
147static void regulator_lock_supply(struct regulator_dev *rdev)
148{
149 int i;
150
151 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152 mutex_lock_nested(&rdev->mutex, i);
153}
154
155/**
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
158 */
159static void regulator_unlock_supply(struct regulator_dev *rdev)
160{
161 struct regulator *supply;
162
163 while (1) {
164 mutex_unlock(&rdev->mutex);
165 supply = rdev->supply;
166
167 if (!rdev->supply)
168 return;
169
170 rdev = supply->rdev;
171 }
172}
173
174/**
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
178 *
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
181 * returns NULL.
182 */
183static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184{
185 struct device_node *regnode = NULL;
186 char prop_name[32]; /* 32 is max size of property name */
187
188 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190 snprintf(prop_name, 32, "%s-supply", supply);
191 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193 if (!regnode) {
194 dev_dbg(dev, "Looking up %s property in node %s failed",
195 prop_name, dev->of_node->full_name);
196 return NULL;
197 }
198 return regnode;
199}
200
201static int _regulator_can_change_status(struct regulator_dev *rdev)
202{
203 if (!rdev->constraints)
204 return 0;
205
206 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 return 1;
208 else
209 return 0;
210}
211
212/* Platform voltage constraint check */
213static int regulator_check_voltage(struct regulator_dev *rdev,
214 int *min_uV, int *max_uV)
215{
216 BUG_ON(*min_uV > *max_uV);
217
218 if (!rdev->constraints) {
219 rdev_err(rdev, "no constraints\n");
220 return -ENODEV;
221 }
222 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 rdev_err(rdev, "voltage operation not allowed\n");
224 return -EPERM;
225 }
226
227 if (*max_uV > rdev->constraints->max_uV)
228 *max_uV = rdev->constraints->max_uV;
229 if (*min_uV < rdev->constraints->min_uV)
230 *min_uV = rdev->constraints->min_uV;
231
232 if (*min_uV > *max_uV) {
233 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 *min_uV, *max_uV);
235 return -EINVAL;
236 }
237
238 return 0;
239}
240
241/* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
243 */
244static int regulator_check_consumers(struct regulator_dev *rdev,
245 int *min_uV, int *max_uV)
246{
247 struct regulator *regulator;
248
249 list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 /*
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
253 */
254 if (!regulator->min_uV && !regulator->max_uV)
255 continue;
256
257 if (*max_uV > regulator->max_uV)
258 *max_uV = regulator->max_uV;
259 if (*min_uV < regulator->min_uV)
260 *min_uV = regulator->min_uV;
261 }
262
263 if (*min_uV > *max_uV) {
264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 *min_uV, *max_uV);
266 return -EINVAL;
267 }
268
269 return 0;
270}
271
272/* current constraint check */
273static int regulator_check_current_limit(struct regulator_dev *rdev,
274 int *min_uA, int *max_uA)
275{
276 BUG_ON(*min_uA > *max_uA);
277
278 if (!rdev->constraints) {
279 rdev_err(rdev, "no constraints\n");
280 return -ENODEV;
281 }
282 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 rdev_err(rdev, "current operation not allowed\n");
284 return -EPERM;
285 }
286
287 if (*max_uA > rdev->constraints->max_uA)
288 *max_uA = rdev->constraints->max_uA;
289 if (*min_uA < rdev->constraints->min_uA)
290 *min_uA = rdev->constraints->min_uA;
291
292 if (*min_uA > *max_uA) {
293 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 *min_uA, *max_uA);
295 return -EINVAL;
296 }
297
298 return 0;
299}
300
301/* operating mode constraint check */
302static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303{
304 switch (*mode) {
305 case REGULATOR_MODE_FAST:
306 case REGULATOR_MODE_NORMAL:
307 case REGULATOR_MODE_IDLE:
308 case REGULATOR_MODE_STANDBY:
309 break;
310 default:
311 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 return -EINVAL;
313 }
314
315 if (!rdev->constraints) {
316 rdev_err(rdev, "no constraints\n");
317 return -ENODEV;
318 }
319 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 rdev_err(rdev, "mode operation not allowed\n");
321 return -EPERM;
322 }
323
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
327 while (*mode) {
328 if (rdev->constraints->valid_modes_mask & *mode)
329 return 0;
330 *mode /= 2;
331 }
332
333 return -EINVAL;
334}
335
336/* dynamic regulator mode switching constraint check */
337static int regulator_check_drms(struct regulator_dev *rdev)
338{
339 if (!rdev->constraints) {
340 rdev_err(rdev, "no constraints\n");
341 return -ENODEV;
342 }
343 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 rdev_dbg(rdev, "drms operation not allowed\n");
345 return -EPERM;
346 }
347 return 0;
348}
349
350static ssize_t regulator_uV_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352{
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
355
356 mutex_lock(&rdev->mutex);
357 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 mutex_unlock(&rdev->mutex);
359
360 return ret;
361}
362static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364static ssize_t regulator_uA_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366{
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370}
371static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 char *buf)
375{
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378 return sprintf(buf, "%s\n", rdev_get_name(rdev));
379}
380static DEVICE_ATTR_RO(name);
381
382static ssize_t regulator_print_opmode(char *buf, int mode)
383{
384 switch (mode) {
385 case REGULATOR_MODE_FAST:
386 return sprintf(buf, "fast\n");
387 case REGULATOR_MODE_NORMAL:
388 return sprintf(buf, "normal\n");
389 case REGULATOR_MODE_IDLE:
390 return sprintf(buf, "idle\n");
391 case REGULATOR_MODE_STANDBY:
392 return sprintf(buf, "standby\n");
393 }
394 return sprintf(buf, "unknown\n");
395}
396
397static ssize_t regulator_opmode_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399{
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403}
404static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406static ssize_t regulator_print_state(char *buf, int state)
407{
408 if (state > 0)
409 return sprintf(buf, "enabled\n");
410 else if (state == 0)
411 return sprintf(buf, "disabled\n");
412 else
413 return sprintf(buf, "unknown\n");
414}
415
416static ssize_t regulator_state_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
418{
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 ssize_t ret;
421
422 mutex_lock(&rdev->mutex);
423 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 mutex_unlock(&rdev->mutex);
425
426 return ret;
427}
428static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430static ssize_t regulator_status_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432{
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434 int status;
435 char *label;
436
437 status = rdev->desc->ops->get_status(rdev);
438 if (status < 0)
439 return status;
440
441 switch (status) {
442 case REGULATOR_STATUS_OFF:
443 label = "off";
444 break;
445 case REGULATOR_STATUS_ON:
446 label = "on";
447 break;
448 case REGULATOR_STATUS_ERROR:
449 label = "error";
450 break;
451 case REGULATOR_STATUS_FAST:
452 label = "fast";
453 break;
454 case REGULATOR_STATUS_NORMAL:
455 label = "normal";
456 break;
457 case REGULATOR_STATUS_IDLE:
458 label = "idle";
459 break;
460 case REGULATOR_STATUS_STANDBY:
461 label = "standby";
462 break;
463 case REGULATOR_STATUS_BYPASS:
464 label = "bypass";
465 break;
466 case REGULATOR_STATUS_UNDEFINED:
467 label = "undefined";
468 break;
469 default:
470 return -ERANGE;
471 }
472
473 return sprintf(buf, "%s\n", label);
474}
475static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477static ssize_t regulator_min_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479{
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
484
485 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486}
487static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489static ssize_t regulator_max_uA_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491{
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
496
497 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498}
499static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501static ssize_t regulator_min_uV_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503{
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 if (!rdev->constraints)
507 return sprintf(buf, "constraint not defined\n");
508
509 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510}
511static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513static ssize_t regulator_max_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515{
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 if (!rdev->constraints)
519 return sprintf(buf, "constraint not defined\n");
520
521 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522}
523static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525static ssize_t regulator_total_uA_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527{
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 struct regulator *regulator;
530 int uA = 0;
531
532 mutex_lock(&rdev->mutex);
533 list_for_each_entry(regulator, &rdev->consumer_list, list)
534 uA += regulator->uA_load;
535 mutex_unlock(&rdev->mutex);
536 return sprintf(buf, "%d\n", uA);
537}
538static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 char *buf)
542{
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return sprintf(buf, "%d\n", rdev->use_count);
545}
546static DEVICE_ATTR_RO(num_users);
547
548static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 char *buf)
550{
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 switch (rdev->desc->type) {
554 case REGULATOR_VOLTAGE:
555 return sprintf(buf, "voltage\n");
556 case REGULATOR_CURRENT:
557 return sprintf(buf, "current\n");
558 }
559 return sprintf(buf, "unknown\n");
560}
561static DEVICE_ATTR_RO(type);
562
563static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565{
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569}
570static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 regulator_suspend_mem_uV_show, NULL);
572
573static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
575{
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579}
580static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 regulator_suspend_disk_uV_show, NULL);
582
583static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585{
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589}
590static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 regulator_suspend_standby_uV_show, NULL);
592
593static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595{
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598 return regulator_print_opmode(buf,
599 rdev->constraints->state_mem.mode);
600}
601static DEVICE_ATTR(suspend_mem_mode, 0444,
602 regulator_suspend_mem_mode_show, NULL);
603
604static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 struct device_attribute *attr, char *buf)
606{
607 struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609 return regulator_print_opmode(buf,
610 rdev->constraints->state_disk.mode);
611}
612static DEVICE_ATTR(suspend_disk_mode, 0444,
613 regulator_suspend_disk_mode_show, NULL);
614
615static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
617{
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return regulator_print_opmode(buf,
621 rdev->constraints->state_standby.mode);
622}
623static DEVICE_ATTR(suspend_standby_mode, 0444,
624 regulator_suspend_standby_mode_show, NULL);
625
626static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 struct device_attribute *attr, char *buf)
628{
629 struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631 return regulator_print_state(buf,
632 rdev->constraints->state_mem.enabled);
633}
634static DEVICE_ATTR(suspend_mem_state, 0444,
635 regulator_suspend_mem_state_show, NULL);
636
637static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
639{
640 struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642 return regulator_print_state(buf,
643 rdev->constraints->state_disk.enabled);
644}
645static DEVICE_ATTR(suspend_disk_state, 0444,
646 regulator_suspend_disk_state_show, NULL);
647
648static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 struct device_attribute *attr, char *buf)
650{
651 struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653 return regulator_print_state(buf,
654 rdev->constraints->state_standby.enabled);
655}
656static DEVICE_ATTR(suspend_standby_state, 0444,
657 regulator_suspend_standby_state_show, NULL);
658
659static ssize_t regulator_bypass_show(struct device *dev,
660 struct device_attribute *attr, char *buf)
661{
662 struct regulator_dev *rdev = dev_get_drvdata(dev);
663 const char *report;
664 bool bypass;
665 int ret;
666
667 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669 if (ret != 0)
670 report = "unknown";
671 else if (bypass)
672 report = "enabled";
673 else
674 report = "disabled";
675
676 return sprintf(buf, "%s\n", report);
677}
678static DEVICE_ATTR(bypass, 0444,
679 regulator_bypass_show, NULL);
680
681/* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683static int drms_uA_update(struct regulator_dev *rdev)
684{
685 struct regulator *sibling;
686 int current_uA = 0, output_uV, input_uV, err;
687 unsigned int mode;
688
689 lockdep_assert_held_once(&rdev->mutex);
690
691 /*
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
694 */
695 err = regulator_check_drms(rdev);
696 if (err < 0)
697 return 0;
698
699 if (!rdev->desc->ops->get_optimum_mode &&
700 !rdev->desc->ops->set_load)
701 return 0;
702
703 if (!rdev->desc->ops->set_mode &&
704 !rdev->desc->ops->set_load)
705 return -EINVAL;
706
707 /* get output voltage */
708 output_uV = _regulator_get_voltage(rdev);
709 if (output_uV <= 0) {
710 rdev_err(rdev, "invalid output voltage found\n");
711 return -EINVAL;
712 }
713
714 /* get input voltage */
715 input_uV = 0;
716 if (rdev->supply)
717 input_uV = regulator_get_voltage(rdev->supply);
718 if (input_uV <= 0)
719 input_uV = rdev->constraints->input_uV;
720 if (input_uV <= 0) {
721 rdev_err(rdev, "invalid input voltage found\n");
722 return -EINVAL;
723 }
724
725 /* calc total requested load */
726 list_for_each_entry(sibling, &rdev->consumer_list, list)
727 current_uA += sibling->uA_load;
728
729 current_uA += rdev->constraints->system_load;
730
731 if (rdev->desc->ops->set_load) {
732 /* set the optimum mode for our new total regulator load */
733 err = rdev->desc->ops->set_load(rdev, current_uA);
734 if (err < 0)
735 rdev_err(rdev, "failed to set load %d\n", current_uA);
736 } else {
737 /* now get the optimum mode for our new total regulator load */
738 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 output_uV, current_uA);
740
741 /* check the new mode is allowed */
742 err = regulator_mode_constrain(rdev, &mode);
743 if (err < 0) {
744 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA, input_uV, output_uV);
746 return err;
747 }
748
749 err = rdev->desc->ops->set_mode(rdev, mode);
750 if (err < 0)
751 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 }
753
754 return err;
755}
756
757static int suspend_set_state(struct regulator_dev *rdev,
758 struct regulator_state *rstate)
759{
760 int ret = 0;
761
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
765 */
766 if (!rstate->enabled && !rstate->disabled) {
767 if (rdev->desc->ops->set_suspend_voltage ||
768 rdev->desc->ops->set_suspend_mode)
769 rdev_warn(rdev, "No configuration\n");
770 return 0;
771 }
772
773 if (rstate->enabled && rstate->disabled) {
774 rdev_err(rdev, "invalid configuration\n");
775 return -EINVAL;
776 }
777
778 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 ret = rdev->desc->ops->set_suspend_enable(rdev);
780 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 ret = rdev->desc->ops->set_suspend_disable(rdev);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 ret = 0;
784
785 if (ret < 0) {
786 rdev_err(rdev, "failed to enabled/disable\n");
787 return ret;
788 }
789
790 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 if (ret < 0) {
793 rdev_err(rdev, "failed to set voltage\n");
794 return ret;
795 }
796 }
797
798 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 if (ret < 0) {
801 rdev_err(rdev, "failed to set mode\n");
802 return ret;
803 }
804 }
805 return ret;
806}
807
808/* locks held by caller */
809static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810{
811 lockdep_assert_held_once(&rdev->mutex);
812
813 if (!rdev->constraints)
814 return -EINVAL;
815
816 switch (state) {
817 case PM_SUSPEND_STANDBY:
818 return suspend_set_state(rdev,
819 &rdev->constraints->state_standby);
820 case PM_SUSPEND_MEM:
821 return suspend_set_state(rdev,
822 &rdev->constraints->state_mem);
823 case PM_SUSPEND_MAX:
824 return suspend_set_state(rdev,
825 &rdev->constraints->state_disk);
826 default:
827 return -EINVAL;
828 }
829}
830
831static void print_constraints(struct regulator_dev *rdev)
832{
833 struct regulation_constraints *constraints = rdev->constraints;
834 char buf[160] = "";
835 size_t len = sizeof(buf) - 1;
836 int count = 0;
837 int ret;
838
839 if (constraints->min_uV && constraints->max_uV) {
840 if (constraints->min_uV == constraints->max_uV)
841 count += scnprintf(buf + count, len - count, "%d mV ",
842 constraints->min_uV / 1000);
843 else
844 count += scnprintf(buf + count, len - count,
845 "%d <--> %d mV ",
846 constraints->min_uV / 1000,
847 constraints->max_uV / 1000);
848 }
849
850 if (!constraints->min_uV ||
851 constraints->min_uV != constraints->max_uV) {
852 ret = _regulator_get_voltage(rdev);
853 if (ret > 0)
854 count += scnprintf(buf + count, len - count,
855 "at %d mV ", ret / 1000);
856 }
857
858 if (constraints->uV_offset)
859 count += scnprintf(buf + count, len - count, "%dmV offset ",
860 constraints->uV_offset / 1000);
861
862 if (constraints->min_uA && constraints->max_uA) {
863 if (constraints->min_uA == constraints->max_uA)
864 count += scnprintf(buf + count, len - count, "%d mA ",
865 constraints->min_uA / 1000);
866 else
867 count += scnprintf(buf + count, len - count,
868 "%d <--> %d mA ",
869 constraints->min_uA / 1000,
870 constraints->max_uA / 1000);
871 }
872
873 if (!constraints->min_uA ||
874 constraints->min_uA != constraints->max_uA) {
875 ret = _regulator_get_current_limit(rdev);
876 if (ret > 0)
877 count += scnprintf(buf + count, len - count,
878 "at %d mA ", ret / 1000);
879 }
880
881 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 count += scnprintf(buf + count, len - count, "fast ");
883 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 count += scnprintf(buf + count, len - count, "normal ");
885 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 count += scnprintf(buf + count, len - count, "idle ");
887 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 count += scnprintf(buf + count, len - count, "standby");
889
890 if (!count)
891 scnprintf(buf, len, "no parameters");
892
893 rdev_dbg(rdev, "%s\n", buf);
894
895 if ((constraints->min_uV != constraints->max_uV) &&
896 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 rdev_warn(rdev,
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899}
900
901static int machine_constraints_voltage(struct regulator_dev *rdev,
902 struct regulation_constraints *constraints)
903{
904 const struct regulator_ops *ops = rdev->desc->ops;
905 int ret;
906
907 /* do we need to apply the constraint voltage */
908 if (rdev->constraints->apply_uV &&
909 rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 int current_uV = _regulator_get_voltage(rdev);
911 if (current_uV < 0) {
912 rdev_err(rdev,
913 "failed to get the current voltage(%d)\n",
914 current_uV);
915 return current_uV;
916 }
917 if (current_uV < rdev->constraints->min_uV ||
918 current_uV > rdev->constraints->max_uV) {
919 ret = _regulator_do_set_voltage(
920 rdev, rdev->constraints->min_uV,
921 rdev->constraints->max_uV);
922 if (ret < 0) {
923 rdev_err(rdev,
924 "failed to apply %duV constraint(%d)\n",
925 rdev->constraints->min_uV, ret);
926 return ret;
927 }
928 }
929 }
930
931 /* constrain machine-level voltage specs to fit
932 * the actual range supported by this regulator.
933 */
934 if (ops->list_voltage && rdev->desc->n_voltages) {
935 int count = rdev->desc->n_voltages;
936 int i;
937 int min_uV = INT_MAX;
938 int max_uV = INT_MIN;
939 int cmin = constraints->min_uV;
940 int cmax = constraints->max_uV;
941
942 /* it's safe to autoconfigure fixed-voltage supplies
943 and the constraints are used by list_voltage. */
944 if (count == 1 && !cmin) {
945 cmin = 1;
946 cmax = INT_MAX;
947 constraints->min_uV = cmin;
948 constraints->max_uV = cmax;
949 }
950
951 /* voltage constraints are optional */
952 if ((cmin == 0) && (cmax == 0))
953 return 0;
954
955 /* else require explicit machine-level constraints */
956 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 rdev_err(rdev, "invalid voltage constraints\n");
958 return -EINVAL;
959 }
960
961 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 for (i = 0; i < count; i++) {
963 int value;
964
965 value = ops->list_voltage(rdev, i);
966 if (value <= 0)
967 continue;
968
969 /* maybe adjust [min_uV..max_uV] */
970 if (value >= cmin && value < min_uV)
971 min_uV = value;
972 if (value <= cmax && value > max_uV)
973 max_uV = value;
974 }
975
976 /* final: [min_uV..max_uV] valid iff constraints valid */
977 if (max_uV < min_uV) {
978 rdev_err(rdev,
979 "unsupportable voltage constraints %u-%uuV\n",
980 min_uV, max_uV);
981 return -EINVAL;
982 }
983
984 /* use regulator's subset of machine constraints */
985 if (constraints->min_uV < min_uV) {
986 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 constraints->min_uV, min_uV);
988 constraints->min_uV = min_uV;
989 }
990 if (constraints->max_uV > max_uV) {
991 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 constraints->max_uV, max_uV);
993 constraints->max_uV = max_uV;
994 }
995 }
996
997 return 0;
998}
999
1000static int machine_constraints_current(struct regulator_dev *rdev,
1001 struct regulation_constraints *constraints)
1002{
1003 const struct regulator_ops *ops = rdev->desc->ops;
1004 int ret;
1005
1006 if (!constraints->min_uA && !constraints->max_uA)
1007 return 0;
1008
1009 if (constraints->min_uA > constraints->max_uA) {
1010 rdev_err(rdev, "Invalid current constraints\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!ops->set_current_limit || !ops->get_current_limit) {
1015 rdev_warn(rdev, "Operation of current configuration missing\n");
1016 return 0;
1017 }
1018
1019 /* Set regulator current in constraints range */
1020 ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 constraints->max_uA);
1022 if (ret < 0) {
1023 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 return ret;
1025 }
1026
1027 return 0;
1028}
1029
1030static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032/**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043static int set_machine_constraints(struct regulator_dev *rdev,
1044 const struct regulation_constraints *constraints)
1045{
1046 int ret = 0;
1047 const struct regulator_ops *ops = rdev->desc->ops;
1048
1049 if (constraints)
1050 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 GFP_KERNEL);
1052 else
1053 rdev->constraints = kzalloc(sizeof(*constraints),
1054 GFP_KERNEL);
1055 if (!rdev->constraints)
1056 return -ENOMEM;
1057
1058 ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 if (ret != 0)
1060 return ret;
1061
1062 ret = machine_constraints_current(rdev, rdev->constraints);
1063 if (ret != 0)
1064 return ret;
1065
1066 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 ret = ops->set_input_current_limit(rdev,
1068 rdev->constraints->ilim_uA);
1069 if (ret < 0) {
1070 rdev_err(rdev, "failed to set input limit\n");
1071 return ret;
1072 }
1073 }
1074
1075 /* do we need to setup our suspend state */
1076 if (rdev->constraints->initial_state) {
1077 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 if (ret < 0) {
1079 rdev_err(rdev, "failed to set suspend state\n");
1080 return ret;
1081 }
1082 }
1083
1084 if (rdev->constraints->initial_mode) {
1085 if (!ops->set_mode) {
1086 rdev_err(rdev, "no set_mode operation\n");
1087 return -EINVAL;
1088 }
1089
1090 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091 if (ret < 0) {
1092 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093 return ret;
1094 }
1095 }
1096
1097 /* If the constraints say the regulator should be on at this point
1098 * and we have control then make sure it is enabled.
1099 */
1100 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101 ret = _regulator_do_enable(rdev);
1102 if (ret < 0 && ret != -EINVAL) {
1103 rdev_err(rdev, "failed to enable\n");
1104 return ret;
1105 }
1106 }
1107
1108 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109 && ops->set_ramp_delay) {
1110 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111 if (ret < 0) {
1112 rdev_err(rdev, "failed to set ramp_delay\n");
1113 return ret;
1114 }
1115 }
1116
1117 if (rdev->constraints->pull_down && ops->set_pull_down) {
1118 ret = ops->set_pull_down(rdev);
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to set pull down\n");
1121 return ret;
1122 }
1123 }
1124
1125 if (rdev->constraints->soft_start && ops->set_soft_start) {
1126 ret = ops->set_soft_start(rdev);
1127 if (ret < 0) {
1128 rdev_err(rdev, "failed to set soft start\n");
1129 return ret;
1130 }
1131 }
1132
1133 if (rdev->constraints->over_current_protection
1134 && ops->set_over_current_protection) {
1135 ret = ops->set_over_current_protection(rdev);
1136 if (ret < 0) {
1137 rdev_err(rdev, "failed to set over current protection\n");
1138 return ret;
1139 }
1140 }
1141
1142 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143 bool ad_state = (rdev->constraints->active_discharge ==
1144 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146 ret = ops->set_active_discharge(rdev, ad_state);
1147 if (ret < 0) {
1148 rdev_err(rdev, "failed to set active discharge\n");
1149 return ret;
1150 }
1151 }
1152
1153 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154 bool ad_state = (rdev->constraints->active_discharge ==
1155 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1156
1157 ret = ops->set_active_discharge(rdev, ad_state);
1158 if (ret < 0) {
1159 rdev_err(rdev, "failed to set active discharge\n");
1160 return ret;
1161 }
1162 }
1163
1164 print_constraints(rdev);
1165 return 0;
1166}
1167
1168/**
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1172 *
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1176 */
1177static int set_supply(struct regulator_dev *rdev,
1178 struct regulator_dev *supply_rdev)
1179{
1180 int err;
1181
1182 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184 if (!try_module_get(supply_rdev->owner))
1185 return -ENODEV;
1186
1187 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188 if (rdev->supply == NULL) {
1189 err = -ENOMEM;
1190 return err;
1191 }
1192 supply_rdev->open_count++;
1193
1194 return 0;
1195}
1196
1197/**
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev: regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply: symbolic name for supply
1202 *
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices. Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1207 */
1208static int set_consumer_device_supply(struct regulator_dev *rdev,
1209 const char *consumer_dev_name,
1210 const char *supply)
1211{
1212 struct regulator_map *node;
1213 int has_dev;
1214
1215 if (supply == NULL)
1216 return -EINVAL;
1217
1218 if (consumer_dev_name != NULL)
1219 has_dev = 1;
1220 else
1221 has_dev = 0;
1222
1223 list_for_each_entry(node, ®ulator_map_list, list) {
1224 if (node->dev_name && consumer_dev_name) {
1225 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226 continue;
1227 } else if (node->dev_name || consumer_dev_name) {
1228 continue;
1229 }
1230
1231 if (strcmp(node->supply, supply) != 0)
1232 continue;
1233
1234 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235 consumer_dev_name,
1236 dev_name(&node->regulator->dev),
1237 node->regulator->desc->name,
1238 supply,
1239 dev_name(&rdev->dev), rdev_get_name(rdev));
1240 return -EBUSY;
1241 }
1242
1243 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244 if (node == NULL)
1245 return -ENOMEM;
1246
1247 node->regulator = rdev;
1248 node->supply = supply;
1249
1250 if (has_dev) {
1251 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252 if (node->dev_name == NULL) {
1253 kfree(node);
1254 return -ENOMEM;
1255 }
1256 }
1257
1258 list_add(&node->list, ®ulator_map_list);
1259 return 0;
1260}
1261
1262static void unset_regulator_supplies(struct regulator_dev *rdev)
1263{
1264 struct regulator_map *node, *n;
1265
1266 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1267 if (rdev == node->regulator) {
1268 list_del(&node->list);
1269 kfree(node->dev_name);
1270 kfree(node);
1271 }
1272 }
1273}
1274
1275#define REG_STR_SIZE 64
1276
1277static struct regulator *create_regulator(struct regulator_dev *rdev,
1278 struct device *dev,
1279 const char *supply_name)
1280{
1281 struct regulator *regulator;
1282 char buf[REG_STR_SIZE];
1283 int err, size;
1284
1285 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286 if (regulator == NULL)
1287 return NULL;
1288
1289 mutex_lock(&rdev->mutex);
1290 regulator->rdev = rdev;
1291 list_add(®ulator->list, &rdev->consumer_list);
1292
1293 if (dev) {
1294 regulator->dev = dev;
1295
1296 /* Add a link to the device sysfs entry */
1297 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298 dev->kobj.name, supply_name);
1299 if (size >= REG_STR_SIZE)
1300 goto overflow_err;
1301
1302 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303 if (regulator->supply_name == NULL)
1304 goto overflow_err;
1305
1306 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307 buf);
1308 if (err) {
1309 rdev_dbg(rdev, "could not add device link %s err %d\n",
1310 dev->kobj.name, err);
1311 /* non-fatal */
1312 }
1313 } else {
1314 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315 if (regulator->supply_name == NULL)
1316 goto overflow_err;
1317 }
1318
1319 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320 rdev->debugfs);
1321 if (!regulator->debugfs) {
1322 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323 } else {
1324 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325 ®ulator->uA_load);
1326 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327 ®ulator->min_uV);
1328 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329 ®ulator->max_uV);
1330 }
1331
1332 /*
1333 * Check now if the regulator is an always on regulator - if
1334 * it is then we don't need to do nearly so much work for
1335 * enable/disable calls.
1336 */
1337 if (!_regulator_can_change_status(rdev) &&
1338 _regulator_is_enabled(rdev))
1339 regulator->always_on = true;
1340
1341 mutex_unlock(&rdev->mutex);
1342 return regulator;
1343overflow_err:
1344 list_del(®ulator->list);
1345 kfree(regulator);
1346 mutex_unlock(&rdev->mutex);
1347 return NULL;
1348}
1349
1350static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351{
1352 if (rdev->constraints && rdev->constraints->enable_time)
1353 return rdev->constraints->enable_time;
1354 if (!rdev->desc->ops->enable_time)
1355 return rdev->desc->enable_time;
1356 return rdev->desc->ops->enable_time(rdev);
1357}
1358
1359static struct regulator_supply_alias *regulator_find_supply_alias(
1360 struct device *dev, const char *supply)
1361{
1362 struct regulator_supply_alias *map;
1363
1364 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1365 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366 return map;
1367
1368 return NULL;
1369}
1370
1371static void regulator_supply_alias(struct device **dev, const char **supply)
1372{
1373 struct regulator_supply_alias *map;
1374
1375 map = regulator_find_supply_alias(*dev, *supply);
1376 if (map) {
1377 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378 *supply, map->alias_supply,
1379 dev_name(map->alias_dev));
1380 *dev = map->alias_dev;
1381 *supply = map->alias_supply;
1382 }
1383}
1384
1385static int of_node_match(struct device *dev, const void *data)
1386{
1387 return dev->of_node == data;
1388}
1389
1390static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391{
1392 struct device *dev;
1393
1394 dev = class_find_device(®ulator_class, NULL, np, of_node_match);
1395
1396 return dev ? dev_to_rdev(dev) : NULL;
1397}
1398
1399static int regulator_match(struct device *dev, const void *data)
1400{
1401 struct regulator_dev *r = dev_to_rdev(dev);
1402
1403 return strcmp(rdev_get_name(r), data) == 0;
1404}
1405
1406static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407{
1408 struct device *dev;
1409
1410 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1411
1412 return dev ? dev_to_rdev(dev) : NULL;
1413}
1414
1415/**
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1421 *
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
1425 */
1426static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427 const char *supply,
1428 int *ret)
1429{
1430 struct regulator_dev *r;
1431 struct device_node *node;
1432 struct regulator_map *map;
1433 const char *devname = NULL;
1434
1435 regulator_supply_alias(&dev, &supply);
1436
1437 /* first do a dt based lookup */
1438 if (dev && dev->of_node) {
1439 node = of_get_regulator(dev, supply);
1440 if (node) {
1441 r = of_find_regulator_by_node(node);
1442 if (r)
1443 return r;
1444 *ret = -EPROBE_DEFER;
1445 return NULL;
1446 } else {
1447 /*
1448 * If we couldn't even get the node then it's
1449 * not just that the device didn't register
1450 * yet, there's no node and we'll never
1451 * succeed.
1452 */
1453 *ret = -ENODEV;
1454 }
1455 }
1456
1457 /* if not found, try doing it non-dt way */
1458 if (dev)
1459 devname = dev_name(dev);
1460
1461 r = regulator_lookup_by_name(supply);
1462 if (r)
1463 return r;
1464
1465 mutex_lock(®ulator_list_mutex);
1466 list_for_each_entry(map, ®ulator_map_list, list) {
1467 /* If the mapping has a device set up it must match */
1468 if (map->dev_name &&
1469 (!devname || strcmp(map->dev_name, devname)))
1470 continue;
1471
1472 if (strcmp(map->supply, supply) == 0 &&
1473 get_device(&map->regulator->dev)) {
1474 mutex_unlock(®ulator_list_mutex);
1475 return map->regulator;
1476 }
1477 }
1478 mutex_unlock(®ulator_list_mutex);
1479
1480 return NULL;
1481}
1482
1483static int regulator_resolve_supply(struct regulator_dev *rdev)
1484{
1485 struct regulator_dev *r;
1486 struct device *dev = rdev->dev.parent;
1487 int ret;
1488
1489 /* No supply to resovle? */
1490 if (!rdev->supply_name)
1491 return 0;
1492
1493 /* Supply already resolved? */
1494 if (rdev->supply)
1495 return 0;
1496
1497 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498 if (!r) {
1499 if (ret == -ENODEV) {
1500 /*
1501 * No supply was specified for this regulator and
1502 * there will never be one.
1503 */
1504 return 0;
1505 }
1506
1507 /* Did the lookup explicitly defer for us? */
1508 if (ret == -EPROBE_DEFER)
1509 return ret;
1510
1511 if (have_full_constraints()) {
1512 r = dummy_regulator_rdev;
1513 get_device(&r->dev);
1514 } else {
1515 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516 rdev->supply_name, rdev->desc->name);
1517 return -EPROBE_DEFER;
1518 }
1519 }
1520
1521 /* Recursively resolve the supply of the supply */
1522 ret = regulator_resolve_supply(r);
1523 if (ret < 0) {
1524 put_device(&r->dev);
1525 return ret;
1526 }
1527
1528 ret = set_supply(rdev, r);
1529 if (ret < 0) {
1530 put_device(&r->dev);
1531 return ret;
1532 }
1533
1534 /* Cascade always-on state to supply */
1535 if (_regulator_is_enabled(rdev) && rdev->supply) {
1536 ret = regulator_enable(rdev->supply);
1537 if (ret < 0) {
1538 _regulator_put(rdev->supply);
1539 return ret;
1540 }
1541 }
1542
1543 return 0;
1544}
1545
1546/* Internal regulator request function */
1547static struct regulator *_regulator_get(struct device *dev, const char *id,
1548 bool exclusive, bool allow_dummy)
1549{
1550 struct regulator_dev *rdev;
1551 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552 const char *devname = NULL;
1553 int ret;
1554
1555 if (id == NULL) {
1556 pr_err("get() with no identifier\n");
1557 return ERR_PTR(-EINVAL);
1558 }
1559
1560 if (dev)
1561 devname = dev_name(dev);
1562
1563 if (have_full_constraints())
1564 ret = -ENODEV;
1565 else
1566 ret = -EPROBE_DEFER;
1567
1568 rdev = regulator_dev_lookup(dev, id, &ret);
1569 if (rdev)
1570 goto found;
1571
1572 regulator = ERR_PTR(ret);
1573
1574 /*
1575 * If we have return value from dev_lookup fail, we do not expect to
1576 * succeed, so, quit with appropriate error value
1577 */
1578 if (ret && ret != -ENODEV)
1579 return regulator;
1580
1581 if (!devname)
1582 devname = "deviceless";
1583
1584 /*
1585 * Assume that a regulator is physically present and enabled
1586 * even if it isn't hooked up and just provide a dummy.
1587 */
1588 if (have_full_constraints() && allow_dummy) {
1589 pr_warn("%s supply %s not found, using dummy regulator\n",
1590 devname, id);
1591
1592 rdev = dummy_regulator_rdev;
1593 get_device(&rdev->dev);
1594 goto found;
1595 /* Don't log an error when called from regulator_get_optional() */
1596 } else if (!have_full_constraints() || exclusive) {
1597 dev_warn(dev, "dummy supplies not allowed\n");
1598 }
1599
1600 return regulator;
1601
1602found:
1603 if (rdev->exclusive) {
1604 regulator = ERR_PTR(-EPERM);
1605 put_device(&rdev->dev);
1606 return regulator;
1607 }
1608
1609 if (exclusive && rdev->open_count) {
1610 regulator = ERR_PTR(-EBUSY);
1611 put_device(&rdev->dev);
1612 return regulator;
1613 }
1614
1615 ret = regulator_resolve_supply(rdev);
1616 if (ret < 0) {
1617 regulator = ERR_PTR(ret);
1618 put_device(&rdev->dev);
1619 return regulator;
1620 }
1621
1622 if (!try_module_get(rdev->owner)) {
1623 put_device(&rdev->dev);
1624 return regulator;
1625 }
1626
1627 regulator = create_regulator(rdev, dev, id);
1628 if (regulator == NULL) {
1629 regulator = ERR_PTR(-ENOMEM);
1630 put_device(&rdev->dev);
1631 module_put(rdev->owner);
1632 return regulator;
1633 }
1634
1635 rdev->open_count++;
1636 if (exclusive) {
1637 rdev->exclusive = 1;
1638
1639 ret = _regulator_is_enabled(rdev);
1640 if (ret > 0)
1641 rdev->use_count = 1;
1642 else
1643 rdev->use_count = 0;
1644 }
1645
1646 return regulator;
1647}
1648
1649/**
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1653 *
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1656 *
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged. It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1661 */
1662struct regulator *regulator_get(struct device *dev, const char *id)
1663{
1664 return _regulator_get(dev, id, false, true);
1665}
1666EXPORT_SYMBOL_GPL(regulator_get);
1667
1668/**
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1672 *
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno. Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1678 *
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1682 * controlling.
1683 *
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged. It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1688 */
1689struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690{
1691 return _regulator_get(dev, id, true, false);
1692}
1693EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694
1695/**
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1699 *
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1702 *
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1708 * supplies.
1709 *
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged. It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1714 */
1715struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716{
1717 return _regulator_get(dev, id, false, false);
1718}
1719EXPORT_SYMBOL_GPL(regulator_get_optional);
1720
1721/* regulator_list_mutex lock held by regulator_put() */
1722static void _regulator_put(struct regulator *regulator)
1723{
1724 struct regulator_dev *rdev;
1725
1726 if (IS_ERR_OR_NULL(regulator))
1727 return;
1728
1729 lockdep_assert_held_once(®ulator_list_mutex);
1730
1731 rdev = regulator->rdev;
1732
1733 debugfs_remove_recursive(regulator->debugfs);
1734
1735 /* remove any sysfs entries */
1736 if (regulator->dev)
1737 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738 mutex_lock(&rdev->mutex);
1739 list_del(®ulator->list);
1740
1741 rdev->open_count--;
1742 rdev->exclusive = 0;
1743 put_device(&rdev->dev);
1744 mutex_unlock(&rdev->mutex);
1745
1746 kfree(regulator->supply_name);
1747 kfree(regulator);
1748
1749 module_put(rdev->owner);
1750}
1751
1752/**
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1755 *
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1758 * this function.
1759 */
1760void regulator_put(struct regulator *regulator)
1761{
1762 mutex_lock(®ulator_list_mutex);
1763 _regulator_put(regulator);
1764 mutex_unlock(®ulator_list_mutex);
1765}
1766EXPORT_SYMBOL_GPL(regulator_put);
1767
1768/**
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1770 *
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1775 * supply
1776 *
1777 * All lookups for id on dev will instead be conducted for alias_id on
1778 * alias_dev.
1779 */
1780int regulator_register_supply_alias(struct device *dev, const char *id,
1781 struct device *alias_dev,
1782 const char *alias_id)
1783{
1784 struct regulator_supply_alias *map;
1785
1786 map = regulator_find_supply_alias(dev, id);
1787 if (map)
1788 return -EEXIST;
1789
1790 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791 if (!map)
1792 return -ENOMEM;
1793
1794 map->src_dev = dev;
1795 map->src_supply = id;
1796 map->alias_dev = alias_dev;
1797 map->alias_supply = alias_id;
1798
1799 list_add(&map->list, ®ulator_supply_alias_list);
1800
1801 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802 id, dev_name(dev), alias_id, dev_name(alias_dev));
1803
1804 return 0;
1805}
1806EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807
1808/**
1809 * regulator_unregister_supply_alias - Remove device alias
1810 *
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1813 *
1814 * Remove a lookup alias if one exists for id on dev.
1815 */
1816void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817{
1818 struct regulator_supply_alias *map;
1819
1820 map = regulator_find_supply_alias(dev, id);
1821 if (map) {
1822 list_del(&map->list);
1823 kfree(map);
1824 }
1825}
1826EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827
1828/**
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1830 *
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1835 * lookup the supply
1836 * @num_id: Number of aliases to register
1837 *
1838 * @return 0 on success, an errno on failure.
1839 *
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation. If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1844 */
1845int regulator_bulk_register_supply_alias(struct device *dev,
1846 const char *const *id,
1847 struct device *alias_dev,
1848 const char *const *alias_id,
1849 int num_id)
1850{
1851 int i;
1852 int ret;
1853
1854 for (i = 0; i < num_id; ++i) {
1855 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856 alias_id[i]);
1857 if (ret < 0)
1858 goto err;
1859 }
1860
1861 return 0;
1862
1863err:
1864 dev_err(dev,
1865 "Failed to create supply alias %s,%s -> %s,%s\n",
1866 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867
1868 while (--i >= 0)
1869 regulator_unregister_supply_alias(dev, id[i]);
1870
1871 return ret;
1872}
1873EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874
1875/**
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877 *
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1881 *
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1884 */
1885void regulator_bulk_unregister_supply_alias(struct device *dev,
1886 const char *const *id,
1887 int num_id)
1888{
1889 int i;
1890
1891 for (i = 0; i < num_id; ++i)
1892 regulator_unregister_supply_alias(dev, id[i]);
1893}
1894EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895
1896
1897/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899 const struct regulator_config *config)
1900{
1901 struct regulator_enable_gpio *pin;
1902 struct gpio_desc *gpiod;
1903 int ret;
1904
1905 gpiod = gpio_to_desc(config->ena_gpio);
1906
1907 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1908 if (pin->gpiod == gpiod) {
1909 rdev_dbg(rdev, "GPIO %d is already used\n",
1910 config->ena_gpio);
1911 goto update_ena_gpio_to_rdev;
1912 }
1913 }
1914
1915 ret = gpio_request_one(config->ena_gpio,
1916 GPIOF_DIR_OUT | config->ena_gpio_flags,
1917 rdev_get_name(rdev));
1918 if (ret)
1919 return ret;
1920
1921 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922 if (pin == NULL) {
1923 gpio_free(config->ena_gpio);
1924 return -ENOMEM;
1925 }
1926
1927 pin->gpiod = gpiod;
1928 pin->ena_gpio_invert = config->ena_gpio_invert;
1929 list_add(&pin->list, ®ulator_ena_gpio_list);
1930
1931update_ena_gpio_to_rdev:
1932 pin->request_count++;
1933 rdev->ena_pin = pin;
1934 return 0;
1935}
1936
1937static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938{
1939 struct regulator_enable_gpio *pin, *n;
1940
1941 if (!rdev->ena_pin)
1942 return;
1943
1944 /* Free the GPIO only in case of no use */
1945 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1946 if (pin->gpiod == rdev->ena_pin->gpiod) {
1947 if (pin->request_count <= 1) {
1948 pin->request_count = 0;
1949 gpiod_put(pin->gpiod);
1950 list_del(&pin->list);
1951 kfree(pin);
1952 rdev->ena_pin = NULL;
1953 return;
1954 } else {
1955 pin->request_count--;
1956 }
1957 }
1958 }
1959}
1960
1961/**
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1965 *
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968 */
1969static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970{
1971 struct regulator_enable_gpio *pin = rdev->ena_pin;
1972
1973 if (!pin)
1974 return -EINVAL;
1975
1976 if (enable) {
1977 /* Enable GPIO at initial use */
1978 if (pin->enable_count == 0)
1979 gpiod_set_value_cansleep(pin->gpiod,
1980 !pin->ena_gpio_invert);
1981
1982 pin->enable_count++;
1983 } else {
1984 if (pin->enable_count > 1) {
1985 pin->enable_count--;
1986 return 0;
1987 }
1988
1989 /* Disable GPIO if not used */
1990 if (pin->enable_count <= 1) {
1991 gpiod_set_value_cansleep(pin->gpiod,
1992 pin->ena_gpio_invert);
1993 pin->enable_count = 0;
1994 }
1995 }
1996
1997 return 0;
1998}
1999
2000/**
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2003 *
2004 * Delay for the requested amount of time as per the guidelines in:
2005 *
2006 * Documentation/timers/timers-howto.txt
2007 *
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2010 */
2011static void _regulator_enable_delay(unsigned int delay)
2012{
2013 unsigned int ms = delay / 1000;
2014 unsigned int us = delay % 1000;
2015
2016 if (ms > 0) {
2017 /*
2018 * For small enough values, handle super-millisecond
2019 * delays in the usleep_range() call below.
2020 */
2021 if (ms < 20)
2022 us += ms * 1000;
2023 else
2024 msleep(ms);
2025 }
2026
2027 /*
2028 * Give the scheduler some room to coalesce with any other
2029 * wakeup sources. For delays shorter than 10 us, don't even
2030 * bother setting up high-resolution timers and just busy-
2031 * loop.
2032 */
2033 if (us >= 10)
2034 usleep_range(us, us + 100);
2035 else
2036 udelay(us);
2037}
2038
2039static int _regulator_do_enable(struct regulator_dev *rdev)
2040{
2041 int ret, delay;
2042
2043 /* Query before enabling in case configuration dependent. */
2044 ret = _regulator_get_enable_time(rdev);
2045 if (ret >= 0) {
2046 delay = ret;
2047 } else {
2048 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049 delay = 0;
2050 }
2051
2052 trace_regulator_enable(rdev_get_name(rdev));
2053
2054 if (rdev->desc->off_on_delay) {
2055 /* if needed, keep a distance of off_on_delay from last time
2056 * this regulator was disabled.
2057 */
2058 unsigned long start_jiffy = jiffies;
2059 unsigned long intended, max_delay, remaining;
2060
2061 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062 intended = rdev->last_off_jiffy + max_delay;
2063
2064 if (time_before(start_jiffy, intended)) {
2065 /* calc remaining jiffies to deal with one-time
2066 * timer wrapping.
2067 * in case of multiple timer wrapping, either it can be
2068 * detected by out-of-range remaining, or it cannot be
2069 * detected and we gets a panelty of
2070 * _regulator_enable_delay().
2071 */
2072 remaining = intended - start_jiffy;
2073 if (remaining <= max_delay)
2074 _regulator_enable_delay(
2075 jiffies_to_usecs(remaining));
2076 }
2077 }
2078
2079 if (rdev->ena_pin) {
2080 if (!rdev->ena_gpio_state) {
2081 ret = regulator_ena_gpio_ctrl(rdev, true);
2082 if (ret < 0)
2083 return ret;
2084 rdev->ena_gpio_state = 1;
2085 }
2086 } else if (rdev->desc->ops->enable) {
2087 ret = rdev->desc->ops->enable(rdev);
2088 if (ret < 0)
2089 return ret;
2090 } else {
2091 return -EINVAL;
2092 }
2093
2094 /* Allow the regulator to ramp; it would be useful to extend
2095 * this for bulk operations so that the regulators can ramp
2096 * together. */
2097 trace_regulator_enable_delay(rdev_get_name(rdev));
2098
2099 _regulator_enable_delay(delay);
2100
2101 trace_regulator_enable_complete(rdev_get_name(rdev));
2102
2103 return 0;
2104}
2105
2106/* locks held by regulator_enable() */
2107static int _regulator_enable(struct regulator_dev *rdev)
2108{
2109 int ret;
2110
2111 lockdep_assert_held_once(&rdev->mutex);
2112
2113 /* check voltage and requested load before enabling */
2114 if (rdev->constraints &&
2115 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116 drms_uA_update(rdev);
2117
2118 if (rdev->use_count == 0) {
2119 /* The regulator may on if it's not switchable or left on */
2120 ret = _regulator_is_enabled(rdev);
2121 if (ret == -EINVAL || ret == 0) {
2122 if (!_regulator_can_change_status(rdev))
2123 return -EPERM;
2124
2125 ret = _regulator_do_enable(rdev);
2126 if (ret < 0)
2127 return ret;
2128
2129 } else if (ret < 0) {
2130 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131 return ret;
2132 }
2133 /* Fallthrough on positive return values - already enabled */
2134 }
2135
2136 rdev->use_count++;
2137
2138 return 0;
2139}
2140
2141/**
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2144 *
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value. Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2148 *
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2151 */
2152int regulator_enable(struct regulator *regulator)
2153{
2154 struct regulator_dev *rdev = regulator->rdev;
2155 int ret = 0;
2156
2157 if (regulator->always_on)
2158 return 0;
2159
2160 if (rdev->supply) {
2161 ret = regulator_enable(rdev->supply);
2162 if (ret != 0)
2163 return ret;
2164 }
2165
2166 mutex_lock(&rdev->mutex);
2167 ret = _regulator_enable(rdev);
2168 mutex_unlock(&rdev->mutex);
2169
2170 if (ret != 0 && rdev->supply)
2171 regulator_disable(rdev->supply);
2172
2173 return ret;
2174}
2175EXPORT_SYMBOL_GPL(regulator_enable);
2176
2177static int _regulator_do_disable(struct regulator_dev *rdev)
2178{
2179 int ret;
2180
2181 trace_regulator_disable(rdev_get_name(rdev));
2182
2183 if (rdev->ena_pin) {
2184 if (rdev->ena_gpio_state) {
2185 ret = regulator_ena_gpio_ctrl(rdev, false);
2186 if (ret < 0)
2187 return ret;
2188 rdev->ena_gpio_state = 0;
2189 }
2190
2191 } else if (rdev->desc->ops->disable) {
2192 ret = rdev->desc->ops->disable(rdev);
2193 if (ret != 0)
2194 return ret;
2195 }
2196
2197 /* cares about last_off_jiffy only if off_on_delay is required by
2198 * device.
2199 */
2200 if (rdev->desc->off_on_delay)
2201 rdev->last_off_jiffy = jiffies;
2202
2203 trace_regulator_disable_complete(rdev_get_name(rdev));
2204
2205 return 0;
2206}
2207
2208/* locks held by regulator_disable() */
2209static int _regulator_disable(struct regulator_dev *rdev)
2210{
2211 int ret = 0;
2212
2213 lockdep_assert_held_once(&rdev->mutex);
2214
2215 if (WARN(rdev->use_count <= 0,
2216 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217 return -EIO;
2218
2219 /* are we the last user and permitted to disable ? */
2220 if (rdev->use_count == 1 &&
2221 (rdev->constraints && !rdev->constraints->always_on)) {
2222
2223 /* we are last user */
2224 if (_regulator_can_change_status(rdev)) {
2225 ret = _notifier_call_chain(rdev,
2226 REGULATOR_EVENT_PRE_DISABLE,
2227 NULL);
2228 if (ret & NOTIFY_STOP_MASK)
2229 return -EINVAL;
2230
2231 ret = _regulator_do_disable(rdev);
2232 if (ret < 0) {
2233 rdev_err(rdev, "failed to disable\n");
2234 _notifier_call_chain(rdev,
2235 REGULATOR_EVENT_ABORT_DISABLE,
2236 NULL);
2237 return ret;
2238 }
2239 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240 NULL);
2241 }
2242
2243 rdev->use_count = 0;
2244 } else if (rdev->use_count > 1) {
2245
2246 if (rdev->constraints &&
2247 (rdev->constraints->valid_ops_mask &
2248 REGULATOR_CHANGE_DRMS))
2249 drms_uA_update(rdev);
2250
2251 rdev->use_count--;
2252 }
2253
2254 return ret;
2255}
2256
2257/**
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2260 *
2261 * Disable the regulator output voltage or current. Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2264 *
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2268 */
2269int regulator_disable(struct regulator *regulator)
2270{
2271 struct regulator_dev *rdev = regulator->rdev;
2272 int ret = 0;
2273
2274 if (regulator->always_on)
2275 return 0;
2276
2277 mutex_lock(&rdev->mutex);
2278 ret = _regulator_disable(rdev);
2279 mutex_unlock(&rdev->mutex);
2280
2281 if (ret == 0 && rdev->supply)
2282 regulator_disable(rdev->supply);
2283
2284 return ret;
2285}
2286EXPORT_SYMBOL_GPL(regulator_disable);
2287
2288/* locks held by regulator_force_disable() */
2289static int _regulator_force_disable(struct regulator_dev *rdev)
2290{
2291 int ret = 0;
2292
2293 lockdep_assert_held_once(&rdev->mutex);
2294
2295 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296 REGULATOR_EVENT_PRE_DISABLE, NULL);
2297 if (ret & NOTIFY_STOP_MASK)
2298 return -EINVAL;
2299
2300 ret = _regulator_do_disable(rdev);
2301 if (ret < 0) {
2302 rdev_err(rdev, "failed to force disable\n");
2303 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305 return ret;
2306 }
2307
2308 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309 REGULATOR_EVENT_DISABLE, NULL);
2310
2311 return 0;
2312}
2313
2314/**
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2317 *
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322 */
2323int regulator_force_disable(struct regulator *regulator)
2324{
2325 struct regulator_dev *rdev = regulator->rdev;
2326 int ret;
2327
2328 mutex_lock(&rdev->mutex);
2329 regulator->uA_load = 0;
2330 ret = _regulator_force_disable(regulator->rdev);
2331 mutex_unlock(&rdev->mutex);
2332
2333 if (rdev->supply)
2334 while (rdev->open_count--)
2335 regulator_disable(rdev->supply);
2336
2337 return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_force_disable);
2340
2341static void regulator_disable_work(struct work_struct *work)
2342{
2343 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344 disable_work.work);
2345 int count, i, ret;
2346
2347 mutex_lock(&rdev->mutex);
2348
2349 BUG_ON(!rdev->deferred_disables);
2350
2351 count = rdev->deferred_disables;
2352 rdev->deferred_disables = 0;
2353
2354 for (i = 0; i < count; i++) {
2355 ret = _regulator_disable(rdev);
2356 if (ret != 0)
2357 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358 }
2359
2360 mutex_unlock(&rdev->mutex);
2361
2362 if (rdev->supply) {
2363 for (i = 0; i < count; i++) {
2364 ret = regulator_disable(rdev->supply);
2365 if (ret != 0) {
2366 rdev_err(rdev,
2367 "Supply disable failed: %d\n", ret);
2368 }
2369 }
2370 }
2371}
2372
2373/**
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2377 *
2378 * Execute regulator_disable() on the regulator after a delay. This
2379 * is intended for use with devices that require some time to quiesce.
2380 *
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2384 */
2385int regulator_disable_deferred(struct regulator *regulator, int ms)
2386{
2387 struct regulator_dev *rdev = regulator->rdev;
2388
2389 if (regulator->always_on)
2390 return 0;
2391
2392 if (!ms)
2393 return regulator_disable(regulator);
2394
2395 mutex_lock(&rdev->mutex);
2396 rdev->deferred_disables++;
2397 mutex_unlock(&rdev->mutex);
2398
2399 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400 msecs_to_jiffies(ms));
2401 return 0;
2402}
2403EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404
2405static int _regulator_is_enabled(struct regulator_dev *rdev)
2406{
2407 /* A GPIO control always takes precedence */
2408 if (rdev->ena_pin)
2409 return rdev->ena_gpio_state;
2410
2411 /* If we don't know then assume that the regulator is always on */
2412 if (!rdev->desc->ops->is_enabled)
2413 return 1;
2414
2415 return rdev->desc->ops->is_enabled(rdev);
2416}
2417
2418static int _regulator_list_voltage(struct regulator *regulator,
2419 unsigned selector, int lock)
2420{
2421 struct regulator_dev *rdev = regulator->rdev;
2422 const struct regulator_ops *ops = rdev->desc->ops;
2423 int ret;
2424
2425 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426 return rdev->desc->fixed_uV;
2427
2428 if (ops->list_voltage) {
2429 if (selector >= rdev->desc->n_voltages)
2430 return -EINVAL;
2431 if (lock)
2432 mutex_lock(&rdev->mutex);
2433 ret = ops->list_voltage(rdev, selector);
2434 if (lock)
2435 mutex_unlock(&rdev->mutex);
2436 } else if (rdev->supply) {
2437 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2438 } else {
2439 return -EINVAL;
2440 }
2441
2442 if (ret > 0) {
2443 if (ret < rdev->constraints->min_uV)
2444 ret = 0;
2445 else if (ret > rdev->constraints->max_uV)
2446 ret = 0;
2447 }
2448
2449 return ret;
2450}
2451
2452/**
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2455 *
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2459 *
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2463 */
2464int regulator_is_enabled(struct regulator *regulator)
2465{
2466 int ret;
2467
2468 if (regulator->always_on)
2469 return 1;
2470
2471 mutex_lock(®ulator->rdev->mutex);
2472 ret = _regulator_is_enabled(regulator->rdev);
2473 mutex_unlock(®ulator->rdev->mutex);
2474
2475 return ret;
2476}
2477EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478
2479/**
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2482 *
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2486 * driver.
2487 */
2488int regulator_can_change_voltage(struct regulator *regulator)
2489{
2490 struct regulator_dev *rdev = regulator->rdev;
2491
2492 if (rdev->constraints &&
2493 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495 return 1;
2496
2497 if (rdev->desc->continuous_voltage_range &&
2498 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499 rdev->constraints->min_uV != rdev->constraints->max_uV)
2500 return 1;
2501 }
2502
2503 return 0;
2504}
2505EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506
2507/**
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2510 *
2511 * Returns number of selectors, or negative errno. Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2514 */
2515int regulator_count_voltages(struct regulator *regulator)
2516{
2517 struct regulator_dev *rdev = regulator->rdev;
2518
2519 if (rdev->desc->n_voltages)
2520 return rdev->desc->n_voltages;
2521
2522 if (!rdev->supply)
2523 return -EINVAL;
2524
2525 return regulator_count_voltages(rdev->supply);
2526}
2527EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528
2529/**
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2534 *
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2537 * negative errno.
2538 */
2539int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540{
2541 return _regulator_list_voltage(regulator, selector, 1);
2542}
2543EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544
2545/**
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2548 *
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
2551 */
2552struct regmap *regulator_get_regmap(struct regulator *regulator)
2553{
2554 struct regmap *map = regulator->rdev->regmap;
2555
2556 return map ? map : ERR_PTR(-EOPNOTSUPP);
2557}
2558
2559/**
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2564 *
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2568 * for example.
2569 *
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2572 */
2573int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574 unsigned *vsel_reg,
2575 unsigned *vsel_mask)
2576{
2577 struct regulator_dev *rdev = regulator->rdev;
2578 const struct regulator_ops *ops = rdev->desc->ops;
2579
2580 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581 return -EOPNOTSUPP;
2582
2583 *vsel_reg = rdev->desc->vsel_reg;
2584 *vsel_mask = rdev->desc->vsel_mask;
2585
2586 return 0;
2587}
2588EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589
2590/**
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
2594 *
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2598 *
2599 * On error a negative errno is returned.
2600 */
2601int regulator_list_hardware_vsel(struct regulator *regulator,
2602 unsigned selector)
2603{
2604 struct regulator_dev *rdev = regulator->rdev;
2605 const struct regulator_ops *ops = rdev->desc->ops;
2606
2607 if (selector >= rdev->desc->n_voltages)
2608 return -EINVAL;
2609 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610 return -EOPNOTSUPP;
2611
2612 return selector;
2613}
2614EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615
2616/**
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2619 *
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2622 */
2623unsigned int regulator_get_linear_step(struct regulator *regulator)
2624{
2625 struct regulator_dev *rdev = regulator->rdev;
2626
2627 return rdev->desc->uV_step;
2628}
2629EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630
2631/**
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2633 *
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2637 *
2638 * Returns a boolean or a negative error code.
2639 */
2640int regulator_is_supported_voltage(struct regulator *regulator,
2641 int min_uV, int max_uV)
2642{
2643 struct regulator_dev *rdev = regulator->rdev;
2644 int i, voltages, ret;
2645
2646 /* If we can't change voltage check the current voltage */
2647 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648 ret = regulator_get_voltage(regulator);
2649 if (ret >= 0)
2650 return min_uV <= ret && ret <= max_uV;
2651 else
2652 return ret;
2653 }
2654
2655 /* Any voltage within constrains range is fine? */
2656 if (rdev->desc->continuous_voltage_range)
2657 return min_uV >= rdev->constraints->min_uV &&
2658 max_uV <= rdev->constraints->max_uV;
2659
2660 ret = regulator_count_voltages(regulator);
2661 if (ret < 0)
2662 return ret;
2663 voltages = ret;
2664
2665 for (i = 0; i < voltages; i++) {
2666 ret = regulator_list_voltage(regulator, i);
2667
2668 if (ret >= min_uV && ret <= max_uV)
2669 return 1;
2670 }
2671
2672 return 0;
2673}
2674EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675
2676static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677 int max_uV)
2678{
2679 const struct regulator_desc *desc = rdev->desc;
2680
2681 if (desc->ops->map_voltage)
2682 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683
2684 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2686
2687 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689
2690 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691}
2692
2693static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694 int min_uV, int max_uV,
2695 unsigned *selector)
2696{
2697 struct pre_voltage_change_data data;
2698 int ret;
2699
2700 data.old_uV = _regulator_get_voltage(rdev);
2701 data.min_uV = min_uV;
2702 data.max_uV = max_uV;
2703 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704 &data);
2705 if (ret & NOTIFY_STOP_MASK)
2706 return -EINVAL;
2707
2708 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709 if (ret >= 0)
2710 return ret;
2711
2712 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713 (void *)data.old_uV);
2714
2715 return ret;
2716}
2717
2718static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719 int uV, unsigned selector)
2720{
2721 struct pre_voltage_change_data data;
2722 int ret;
2723
2724 data.old_uV = _regulator_get_voltage(rdev);
2725 data.min_uV = uV;
2726 data.max_uV = uV;
2727 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728 &data);
2729 if (ret & NOTIFY_STOP_MASK)
2730 return -EINVAL;
2731
2732 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733 if (ret >= 0)
2734 return ret;
2735
2736 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737 (void *)data.old_uV);
2738
2739 return ret;
2740}
2741
2742static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743 int min_uV, int max_uV)
2744{
2745 int ret;
2746 int delay = 0;
2747 int best_val = 0;
2748 unsigned int selector;
2749 int old_selector = -1;
2750
2751 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752
2753 min_uV += rdev->constraints->uV_offset;
2754 max_uV += rdev->constraints->uV_offset;
2755
2756 /*
2757 * If we can't obtain the old selector there is not enough
2758 * info to call set_voltage_time_sel().
2759 */
2760 if (_regulator_is_enabled(rdev) &&
2761 rdev->desc->ops->set_voltage_time_sel &&
2762 rdev->desc->ops->get_voltage_sel) {
2763 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764 if (old_selector < 0)
2765 return old_selector;
2766 }
2767
2768 if (rdev->desc->ops->set_voltage) {
2769 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770 &selector);
2771
2772 if (ret >= 0) {
2773 if (rdev->desc->ops->list_voltage)
2774 best_val = rdev->desc->ops->list_voltage(rdev,
2775 selector);
2776 else
2777 best_val = _regulator_get_voltage(rdev);
2778 }
2779
2780 } else if (rdev->desc->ops->set_voltage_sel) {
2781 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782 if (ret >= 0) {
2783 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784 if (min_uV <= best_val && max_uV >= best_val) {
2785 selector = ret;
2786 if (old_selector == selector)
2787 ret = 0;
2788 else
2789 ret = _regulator_call_set_voltage_sel(
2790 rdev, best_val, selector);
2791 } else {
2792 ret = -EINVAL;
2793 }
2794 }
2795 } else {
2796 ret = -EINVAL;
2797 }
2798
2799 /* Call set_voltage_time_sel if successfully obtained old_selector */
2800 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801 && old_selector != selector) {
2802
2803 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804 old_selector, selector);
2805 if (delay < 0) {
2806 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807 delay);
2808 delay = 0;
2809 }
2810
2811 /* Insert any necessary delays */
2812 if (delay >= 1000) {
2813 mdelay(delay / 1000);
2814 udelay(delay % 1000);
2815 } else if (delay) {
2816 udelay(delay);
2817 }
2818 }
2819
2820 if (ret == 0 && best_val >= 0) {
2821 unsigned long data = best_val;
2822
2823 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824 (void *)data);
2825 }
2826
2827 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828
2829 return ret;
2830}
2831
2832static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833 int min_uV, int max_uV)
2834{
2835 struct regulator_dev *rdev = regulator->rdev;
2836 int ret = 0;
2837 int old_min_uV, old_max_uV;
2838 int current_uV;
2839 int best_supply_uV = 0;
2840 int supply_change_uV = 0;
2841
2842 /* If we're setting the same range as last time the change
2843 * should be a noop (some cpufreq implementations use the same
2844 * voltage for multiple frequencies, for example).
2845 */
2846 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847 goto out;
2848
2849 /* If we're trying to set a range that overlaps the current voltage,
2850 * return successfully even though the regulator does not support
2851 * changing the voltage.
2852 */
2853 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854 current_uV = _regulator_get_voltage(rdev);
2855 if (min_uV <= current_uV && current_uV <= max_uV) {
2856 regulator->min_uV = min_uV;
2857 regulator->max_uV = max_uV;
2858 goto out;
2859 }
2860 }
2861
2862 /* sanity check */
2863 if (!rdev->desc->ops->set_voltage &&
2864 !rdev->desc->ops->set_voltage_sel) {
2865 ret = -EINVAL;
2866 goto out;
2867 }
2868
2869 /* constraints check */
2870 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871 if (ret < 0)
2872 goto out;
2873
2874 /* restore original values in case of error */
2875 old_min_uV = regulator->min_uV;
2876 old_max_uV = regulator->max_uV;
2877 regulator->min_uV = min_uV;
2878 regulator->max_uV = max_uV;
2879
2880 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881 if (ret < 0)
2882 goto out2;
2883
2884 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885 !rdev->desc->ops->get_voltage)) {
2886 int current_supply_uV;
2887 int selector;
2888
2889 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890 if (selector < 0) {
2891 ret = selector;
2892 goto out2;
2893 }
2894
2895 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896 if (best_supply_uV < 0) {
2897 ret = best_supply_uV;
2898 goto out2;
2899 }
2900
2901 best_supply_uV += rdev->desc->min_dropout_uV;
2902
2903 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904 if (current_supply_uV < 0) {
2905 ret = current_supply_uV;
2906 goto out2;
2907 }
2908
2909 supply_change_uV = best_supply_uV - current_supply_uV;
2910 }
2911
2912 if (supply_change_uV > 0) {
2913 ret = regulator_set_voltage_unlocked(rdev->supply,
2914 best_supply_uV, INT_MAX);
2915 if (ret) {
2916 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917 ret);
2918 goto out2;
2919 }
2920 }
2921
2922 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923 if (ret < 0)
2924 goto out2;
2925
2926 if (supply_change_uV < 0) {
2927 ret = regulator_set_voltage_unlocked(rdev->supply,
2928 best_supply_uV, INT_MAX);
2929 if (ret)
2930 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931 ret);
2932 /* No need to fail here */
2933 ret = 0;
2934 }
2935
2936out:
2937 return ret;
2938out2:
2939 regulator->min_uV = old_min_uV;
2940 regulator->max_uV = old_max_uV;
2941
2942 return ret;
2943}
2944
2945/**
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2950 *
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2953 *
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2957 *
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2962 */
2963int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964{
2965 int ret = 0;
2966
2967 regulator_lock_supply(regulator->rdev);
2968
2969 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2970
2971 regulator_unlock_supply(regulator->rdev);
2972
2973 return ret;
2974}
2975EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976
2977/**
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2982 *
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2985 * voltage.
2986 */
2987int regulator_set_voltage_time(struct regulator *regulator,
2988 int old_uV, int new_uV)
2989{
2990 struct regulator_dev *rdev = regulator->rdev;
2991 const struct regulator_ops *ops = rdev->desc->ops;
2992 int old_sel = -1;
2993 int new_sel = -1;
2994 int voltage;
2995 int i;
2996
2997 /* Currently requires operations to do this */
2998 if (!ops->list_voltage || !ops->set_voltage_time_sel
2999 || !rdev->desc->n_voltages)
3000 return -EINVAL;
3001
3002 for (i = 0; i < rdev->desc->n_voltages; i++) {
3003 /* We only look for exact voltage matches here */
3004 voltage = regulator_list_voltage(regulator, i);
3005 if (voltage < 0)
3006 return -EINVAL;
3007 if (voltage == 0)
3008 continue;
3009 if (voltage == old_uV)
3010 old_sel = i;
3011 if (voltage == new_uV)
3012 new_sel = i;
3013 }
3014
3015 if (old_sel < 0 || new_sel < 0)
3016 return -EINVAL;
3017
3018 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019}
3020EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021
3022/**
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3027 *
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3030 *
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3033 */
3034int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035 unsigned int old_selector,
3036 unsigned int new_selector)
3037{
3038 unsigned int ramp_delay = 0;
3039 int old_volt, new_volt;
3040
3041 if (rdev->constraints->ramp_delay)
3042 ramp_delay = rdev->constraints->ramp_delay;
3043 else if (rdev->desc->ramp_delay)
3044 ramp_delay = rdev->desc->ramp_delay;
3045
3046 if (ramp_delay == 0) {
3047 rdev_warn(rdev, "ramp_delay not set\n");
3048 return 0;
3049 }
3050
3051 /* sanity check */
3052 if (!rdev->desc->ops->list_voltage)
3053 return -EINVAL;
3054
3055 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057
3058 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3059}
3060EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061
3062/**
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3065 *
3066 * Re-apply the last configured voltage. This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3069 */
3070int regulator_sync_voltage(struct regulator *regulator)
3071{
3072 struct regulator_dev *rdev = regulator->rdev;
3073 int ret, min_uV, max_uV;
3074
3075 mutex_lock(&rdev->mutex);
3076
3077 if (!rdev->desc->ops->set_voltage &&
3078 !rdev->desc->ops->set_voltage_sel) {
3079 ret = -EINVAL;
3080 goto out;
3081 }
3082
3083 /* This is only going to work if we've had a voltage configured. */
3084 if (!regulator->min_uV && !regulator->max_uV) {
3085 ret = -EINVAL;
3086 goto out;
3087 }
3088
3089 min_uV = regulator->min_uV;
3090 max_uV = regulator->max_uV;
3091
3092 /* This should be a paranoia check... */
3093 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094 if (ret < 0)
3095 goto out;
3096
3097 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098 if (ret < 0)
3099 goto out;
3100
3101 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3102
3103out:
3104 mutex_unlock(&rdev->mutex);
3105 return ret;
3106}
3107EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108
3109static int _regulator_get_voltage(struct regulator_dev *rdev)
3110{
3111 int sel, ret;
3112
3113 if (rdev->desc->ops->get_voltage_sel) {
3114 sel = rdev->desc->ops->get_voltage_sel(rdev);
3115 if (sel < 0)
3116 return sel;
3117 ret = rdev->desc->ops->list_voltage(rdev, sel);
3118 } else if (rdev->desc->ops->get_voltage) {
3119 ret = rdev->desc->ops->get_voltage(rdev);
3120 } else if (rdev->desc->ops->list_voltage) {
3121 ret = rdev->desc->ops->list_voltage(rdev, 0);
3122 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123 ret = rdev->desc->fixed_uV;
3124 } else if (rdev->supply) {
3125 ret = _regulator_get_voltage(rdev->supply->rdev);
3126 } else {
3127 return -EINVAL;
3128 }
3129
3130 if (ret < 0)
3131 return ret;
3132 return ret - rdev->constraints->uV_offset;
3133}
3134
3135/**
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3138 *
3139 * This returns the current regulator voltage in uV.
3140 *
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3143 */
3144int regulator_get_voltage(struct regulator *regulator)
3145{
3146 int ret;
3147
3148 regulator_lock_supply(regulator->rdev);
3149
3150 ret = _regulator_get_voltage(regulator->rdev);
3151
3152 regulator_unlock_supply(regulator->rdev);
3153
3154 return ret;
3155}
3156EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157
3158/**
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3163 *
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3166 *
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3170 *
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3173 */
3174int regulator_set_current_limit(struct regulator *regulator,
3175 int min_uA, int max_uA)
3176{
3177 struct regulator_dev *rdev = regulator->rdev;
3178 int ret;
3179
3180 mutex_lock(&rdev->mutex);
3181
3182 /* sanity check */
3183 if (!rdev->desc->ops->set_current_limit) {
3184 ret = -EINVAL;
3185 goto out;
3186 }
3187
3188 /* constraints check */
3189 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190 if (ret < 0)
3191 goto out;
3192
3193 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194out:
3195 mutex_unlock(&rdev->mutex);
3196 return ret;
3197}
3198EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199
3200static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201{
3202 int ret;
3203
3204 mutex_lock(&rdev->mutex);
3205
3206 /* sanity check */
3207 if (!rdev->desc->ops->get_current_limit) {
3208 ret = -EINVAL;
3209 goto out;
3210 }
3211
3212 ret = rdev->desc->ops->get_current_limit(rdev);
3213out:
3214 mutex_unlock(&rdev->mutex);
3215 return ret;
3216}
3217
3218/**
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3221 *
3222 * This returns the current supplied by the specified current sink in uA.
3223 *
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3226 */
3227int regulator_get_current_limit(struct regulator *regulator)
3228{
3229 return _regulator_get_current_limit(regulator->rdev);
3230}
3231EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232
3233/**
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3237 *
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3240 *
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3243 */
3244int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245{
3246 struct regulator_dev *rdev = regulator->rdev;
3247 int ret;
3248 int regulator_curr_mode;
3249
3250 mutex_lock(&rdev->mutex);
3251
3252 /* sanity check */
3253 if (!rdev->desc->ops->set_mode) {
3254 ret = -EINVAL;
3255 goto out;
3256 }
3257
3258 /* return if the same mode is requested */
3259 if (rdev->desc->ops->get_mode) {
3260 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261 if (regulator_curr_mode == mode) {
3262 ret = 0;
3263 goto out;
3264 }
3265 }
3266
3267 /* constraints check */
3268 ret = regulator_mode_constrain(rdev, &mode);
3269 if (ret < 0)
3270 goto out;
3271
3272 ret = rdev->desc->ops->set_mode(rdev, mode);
3273out:
3274 mutex_unlock(&rdev->mutex);
3275 return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_set_mode);
3278
3279static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280{
3281 int ret;
3282
3283 mutex_lock(&rdev->mutex);
3284
3285 /* sanity check */
3286 if (!rdev->desc->ops->get_mode) {
3287 ret = -EINVAL;
3288 goto out;
3289 }
3290
3291 ret = rdev->desc->ops->get_mode(rdev);
3292out:
3293 mutex_unlock(&rdev->mutex);
3294 return ret;
3295}
3296
3297/**
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
3300 *
3301 * Get the current regulator operating mode.
3302 */
3303unsigned int regulator_get_mode(struct regulator *regulator)
3304{
3305 return _regulator_get_mode(regulator->rdev);
3306}
3307EXPORT_SYMBOL_GPL(regulator_get_mode);
3308
3309/**
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3313 *
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3317 *
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3323 *
3324 * o Device is opened / closed.
3325 * o Device I/O is about to begin or has just finished.
3326 * o Device is idling in between work.
3327 *
3328 * This information is also exported via sysfs to userspace.
3329 *
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3332 *
3333 * On error a negative errno is returned.
3334 */
3335int regulator_set_load(struct regulator *regulator, int uA_load)
3336{
3337 struct regulator_dev *rdev = regulator->rdev;
3338 int ret;
3339
3340 mutex_lock(&rdev->mutex);
3341 regulator->uA_load = uA_load;
3342 ret = drms_uA_update(rdev);
3343 mutex_unlock(&rdev->mutex);
3344
3345 return ret;
3346}
3347EXPORT_SYMBOL_GPL(regulator_set_load);
3348
3349/**
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3351 *
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3354 *
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this. Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3359 */
3360int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361{
3362 struct regulator_dev *rdev = regulator->rdev;
3363 int ret = 0;
3364
3365 if (!rdev->desc->ops->set_bypass)
3366 return 0;
3367
3368 if (rdev->constraints &&
3369 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370 return 0;
3371
3372 mutex_lock(&rdev->mutex);
3373
3374 if (enable && !regulator->bypass) {
3375 rdev->bypass_count++;
3376
3377 if (rdev->bypass_count == rdev->open_count) {
3378 ret = rdev->desc->ops->set_bypass(rdev, enable);
3379 if (ret != 0)
3380 rdev->bypass_count--;
3381 }
3382
3383 } else if (!enable && regulator->bypass) {
3384 rdev->bypass_count--;
3385
3386 if (rdev->bypass_count != rdev->open_count) {
3387 ret = rdev->desc->ops->set_bypass(rdev, enable);
3388 if (ret != 0)
3389 rdev->bypass_count++;
3390 }
3391 }
3392
3393 if (ret == 0)
3394 regulator->bypass = enable;
3395
3396 mutex_unlock(&rdev->mutex);
3397
3398 return ret;
3399}
3400EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401
3402/**
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3406 *
3407 * Register notifier block to receive regulator events.
3408 */
3409int regulator_register_notifier(struct regulator *regulator,
3410 struct notifier_block *nb)
3411{
3412 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3413 nb);
3414}
3415EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416
3417/**
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3421 *
3422 * Unregister regulator event notifier block.
3423 */
3424int regulator_unregister_notifier(struct regulator *regulator,
3425 struct notifier_block *nb)
3426{
3427 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3428 nb);
3429}
3430EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431
3432/* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3434 */
3435static int _notifier_call_chain(struct regulator_dev *rdev,
3436 unsigned long event, void *data)
3437{
3438 /* call rdev chain first */
3439 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440}
3441
3442/**
3443 * regulator_bulk_get - get multiple regulator consumers
3444 *
3445 * @dev: Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers: Configuration of consumers; clients are stored here.
3448 *
3449 * @return 0 on success, an errno on failure.
3450 *
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation. If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3455 */
3456int regulator_bulk_get(struct device *dev, int num_consumers,
3457 struct regulator_bulk_data *consumers)
3458{
3459 int i;
3460 int ret;
3461
3462 for (i = 0; i < num_consumers; i++)
3463 consumers[i].consumer = NULL;
3464
3465 for (i = 0; i < num_consumers; i++) {
3466 consumers[i].consumer = _regulator_get(dev,
3467 consumers[i].supply,
3468 false,
3469 !consumers[i].optional);
3470 if (IS_ERR(consumers[i].consumer)) {
3471 ret = PTR_ERR(consumers[i].consumer);
3472 dev_err(dev, "Failed to get supply '%s': %d\n",
3473 consumers[i].supply, ret);
3474 consumers[i].consumer = NULL;
3475 goto err;
3476 }
3477 }
3478
3479 return 0;
3480
3481err:
3482 while (--i >= 0)
3483 regulator_put(consumers[i].consumer);
3484
3485 return ret;
3486}
3487EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488
3489static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490{
3491 struct regulator_bulk_data *bulk = data;
3492
3493 bulk->ret = regulator_enable(bulk->consumer);
3494}
3495
3496/**
3497 * regulator_bulk_enable - enable multiple regulator consumers
3498 *
3499 * @num_consumers: Number of consumers
3500 * @consumers: Consumer data; clients are stored here.
3501 * @return 0 on success, an errno on failure
3502 *
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call. If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3506 * return.
3507 */
3508int regulator_bulk_enable(int num_consumers,
3509 struct regulator_bulk_data *consumers)
3510{
3511 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512 int i;
3513 int ret = 0;
3514
3515 for (i = 0; i < num_consumers; i++) {
3516 if (consumers[i].consumer->always_on)
3517 consumers[i].ret = 0;
3518 else
3519 async_schedule_domain(regulator_bulk_enable_async,
3520 &consumers[i], &async_domain);
3521 }
3522
3523 async_synchronize_full_domain(&async_domain);
3524
3525 /* If any consumer failed we need to unwind any that succeeded */
3526 for (i = 0; i < num_consumers; i++) {
3527 if (consumers[i].ret != 0) {
3528 ret = consumers[i].ret;
3529 goto err;
3530 }
3531 }
3532
3533 return 0;
3534
3535err:
3536 for (i = 0; i < num_consumers; i++) {
3537 if (consumers[i].ret < 0)
3538 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539 consumers[i].ret);
3540 else
3541 regulator_disable(consumers[i].consumer);
3542 }
3543
3544 return ret;
3545}
3546EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547
3548/**
3549 * regulator_bulk_disable - disable multiple regulator consumers
3550 *
3551 * @num_consumers: Number of consumers
3552 * @consumers: Consumer data; clients are stored here.
3553 * @return 0 on success, an errno on failure
3554 *
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call. If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3558 * return.
3559 */
3560int regulator_bulk_disable(int num_consumers,
3561 struct regulator_bulk_data *consumers)
3562{
3563 int i;
3564 int ret, r;
3565
3566 for (i = num_consumers - 1; i >= 0; --i) {
3567 ret = regulator_disable(consumers[i].consumer);
3568 if (ret != 0)
3569 goto err;
3570 }
3571
3572 return 0;
3573
3574err:
3575 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576 for (++i; i < num_consumers; ++i) {
3577 r = regulator_enable(consumers[i].consumer);
3578 if (r != 0)
3579 pr_err("Failed to reename %s: %d\n",
3580 consumers[i].supply, r);
3581 }
3582
3583 return ret;
3584}
3585EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586
3587/**
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3589 *
3590 * @num_consumers: Number of consumers
3591 * @consumers: Consumer data; clients are stored here.
3592 * @return 0 on success, an errno on failure
3593 *
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3600 */
3601int regulator_bulk_force_disable(int num_consumers,
3602 struct regulator_bulk_data *consumers)
3603{
3604 int i;
3605 int ret;
3606
3607 for (i = 0; i < num_consumers; i++)
3608 consumers[i].ret =
3609 regulator_force_disable(consumers[i].consumer);
3610
3611 for (i = 0; i < num_consumers; i++) {
3612 if (consumers[i].ret != 0) {
3613 ret = consumers[i].ret;
3614 goto out;
3615 }
3616 }
3617
3618 return 0;
3619out:
3620 return ret;
3621}
3622EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623
3624/**
3625 * regulator_bulk_free - free multiple regulator consumers
3626 *
3627 * @num_consumers: Number of consumers
3628 * @consumers: Consumer data; clients are stored here.
3629 *
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3632 */
3633void regulator_bulk_free(int num_consumers,
3634 struct regulator_bulk_data *consumers)
3635{
3636 int i;
3637
3638 for (i = 0; i < num_consumers; i++) {
3639 regulator_put(consumers[i].consumer);
3640 consumers[i].consumer = NULL;
3641 }
3642}
3643EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644
3645/**
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3650 *
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3654 */
3655int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656 unsigned long event, void *data)
3657{
3658 lockdep_assert_held_once(&rdev->mutex);
3659
3660 _notifier_call_chain(rdev, event, data);
3661 return NOTIFY_DONE;
3662
3663}
3664EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665
3666/**
3667 * regulator_mode_to_status - convert a regulator mode into a status
3668 *
3669 * @mode: Mode to convert
3670 *
3671 * Convert a regulator mode into a status.
3672 */
3673int regulator_mode_to_status(unsigned int mode)
3674{
3675 switch (mode) {
3676 case REGULATOR_MODE_FAST:
3677 return REGULATOR_STATUS_FAST;
3678 case REGULATOR_MODE_NORMAL:
3679 return REGULATOR_STATUS_NORMAL;
3680 case REGULATOR_MODE_IDLE:
3681 return REGULATOR_STATUS_IDLE;
3682 case REGULATOR_MODE_STANDBY:
3683 return REGULATOR_STATUS_STANDBY;
3684 default:
3685 return REGULATOR_STATUS_UNDEFINED;
3686 }
3687}
3688EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689
3690static struct attribute *regulator_dev_attrs[] = {
3691 &dev_attr_name.attr,
3692 &dev_attr_num_users.attr,
3693 &dev_attr_type.attr,
3694 &dev_attr_microvolts.attr,
3695 &dev_attr_microamps.attr,
3696 &dev_attr_opmode.attr,
3697 &dev_attr_state.attr,
3698 &dev_attr_status.attr,
3699 &dev_attr_bypass.attr,
3700 &dev_attr_requested_microamps.attr,
3701 &dev_attr_min_microvolts.attr,
3702 &dev_attr_max_microvolts.attr,
3703 &dev_attr_min_microamps.attr,
3704 &dev_attr_max_microamps.attr,
3705 &dev_attr_suspend_standby_state.attr,
3706 &dev_attr_suspend_mem_state.attr,
3707 &dev_attr_suspend_disk_state.attr,
3708 &dev_attr_suspend_standby_microvolts.attr,
3709 &dev_attr_suspend_mem_microvolts.attr,
3710 &dev_attr_suspend_disk_microvolts.attr,
3711 &dev_attr_suspend_standby_mode.attr,
3712 &dev_attr_suspend_mem_mode.attr,
3713 &dev_attr_suspend_disk_mode.attr,
3714 NULL
3715};
3716
3717/*
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3720 */
3721static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722 struct attribute *attr, int idx)
3723{
3724 struct device *dev = kobj_to_dev(kobj);
3725 struct regulator_dev *rdev = dev_to_rdev(dev);
3726 const struct regulator_ops *ops = rdev->desc->ops;
3727 umode_t mode = attr->mode;
3728
3729 /* these three are always present */
3730 if (attr == &dev_attr_name.attr ||
3731 attr == &dev_attr_num_users.attr ||
3732 attr == &dev_attr_type.attr)
3733 return mode;
3734
3735 /* some attributes need specific methods to be displayed */
3736 if (attr == &dev_attr_microvolts.attr) {
3737 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741 return mode;
3742 return 0;
3743 }
3744
3745 if (attr == &dev_attr_microamps.attr)
3746 return ops->get_current_limit ? mode : 0;
3747
3748 if (attr == &dev_attr_opmode.attr)
3749 return ops->get_mode ? mode : 0;
3750
3751 if (attr == &dev_attr_state.attr)
3752 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753
3754 if (attr == &dev_attr_status.attr)
3755 return ops->get_status ? mode : 0;
3756
3757 if (attr == &dev_attr_bypass.attr)
3758 return ops->get_bypass ? mode : 0;
3759
3760 /* some attributes are type-specific */
3761 if (attr == &dev_attr_requested_microamps.attr)
3762 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3763
3764 /* constraints need specific supporting methods */
3765 if (attr == &dev_attr_min_microvolts.attr ||
3766 attr == &dev_attr_max_microvolts.attr)
3767 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768
3769 if (attr == &dev_attr_min_microamps.attr ||
3770 attr == &dev_attr_max_microamps.attr)
3771 return ops->set_current_limit ? mode : 0;
3772
3773 if (attr == &dev_attr_suspend_standby_state.attr ||
3774 attr == &dev_attr_suspend_mem_state.attr ||
3775 attr == &dev_attr_suspend_disk_state.attr)
3776 return mode;
3777
3778 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779 attr == &dev_attr_suspend_mem_microvolts.attr ||
3780 attr == &dev_attr_suspend_disk_microvolts.attr)
3781 return ops->set_suspend_voltage ? mode : 0;
3782
3783 if (attr == &dev_attr_suspend_standby_mode.attr ||
3784 attr == &dev_attr_suspend_mem_mode.attr ||
3785 attr == &dev_attr_suspend_disk_mode.attr)
3786 return ops->set_suspend_mode ? mode : 0;
3787
3788 return mode;
3789}
3790
3791static const struct attribute_group regulator_dev_group = {
3792 .attrs = regulator_dev_attrs,
3793 .is_visible = regulator_attr_is_visible,
3794};
3795
3796static const struct attribute_group *regulator_dev_groups[] = {
3797 ®ulator_dev_group,
3798 NULL
3799};
3800
3801static void regulator_dev_release(struct device *dev)
3802{
3803 struct regulator_dev *rdev = dev_get_drvdata(dev);
3804
3805 kfree(rdev->constraints);
3806 of_node_put(rdev->dev.of_node);
3807 kfree(rdev);
3808}
3809
3810static struct class regulator_class = {
3811 .name = "regulator",
3812 .dev_release = regulator_dev_release,
3813 .dev_groups = regulator_dev_groups,
3814};
3815
3816static void rdev_init_debugfs(struct regulator_dev *rdev)
3817{
3818 struct device *parent = rdev->dev.parent;
3819 const char *rname = rdev_get_name(rdev);
3820 char name[NAME_MAX];
3821
3822 /* Avoid duplicate debugfs directory names */
3823 if (parent && rname == rdev->desc->name) {
3824 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825 rname);
3826 rname = name;
3827 }
3828
3829 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830 if (!rdev->debugfs) {
3831 rdev_warn(rdev, "Failed to create debugfs directory\n");
3832 return;
3833 }
3834
3835 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836 &rdev->use_count);
3837 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838 &rdev->open_count);
3839 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840 &rdev->bypass_count);
3841}
3842
3843/**
3844 * regulator_register - register regulator
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3847 *
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3851 */
3852struct regulator_dev *
3853regulator_register(const struct regulator_desc *regulator_desc,
3854 const struct regulator_config *cfg)
3855{
3856 const struct regulation_constraints *constraints = NULL;
3857 const struct regulator_init_data *init_data;
3858 struct regulator_config *config = NULL;
3859 static atomic_t regulator_no = ATOMIC_INIT(-1);
3860 struct regulator_dev *rdev;
3861 struct device *dev;
3862 int ret, i;
3863
3864 if (regulator_desc == NULL || cfg == NULL)
3865 return ERR_PTR(-EINVAL);
3866
3867 dev = cfg->dev;
3868 WARN_ON(!dev);
3869
3870 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871 return ERR_PTR(-EINVAL);
3872
3873 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874 regulator_desc->type != REGULATOR_CURRENT)
3875 return ERR_PTR(-EINVAL);
3876
3877 /* Only one of each should be implemented */
3878 WARN_ON(regulator_desc->ops->get_voltage &&
3879 regulator_desc->ops->get_voltage_sel);
3880 WARN_ON(regulator_desc->ops->set_voltage &&
3881 regulator_desc->ops->set_voltage_sel);
3882
3883 /* If we're using selectors we must implement list_voltage. */
3884 if (regulator_desc->ops->get_voltage_sel &&
3885 !regulator_desc->ops->list_voltage) {
3886 return ERR_PTR(-EINVAL);
3887 }
3888 if (regulator_desc->ops->set_voltage_sel &&
3889 !regulator_desc->ops->list_voltage) {
3890 return ERR_PTR(-EINVAL);
3891 }
3892
3893 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894 if (rdev == NULL)
3895 return ERR_PTR(-ENOMEM);
3896
3897 /*
3898 * Duplicate the config so the driver could override it after
3899 * parsing init data.
3900 */
3901 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902 if (config == NULL) {
3903 kfree(rdev);
3904 return ERR_PTR(-ENOMEM);
3905 }
3906
3907 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908 &rdev->dev.of_node);
3909 if (!init_data) {
3910 init_data = config->init_data;
3911 rdev->dev.of_node = of_node_get(config->of_node);
3912 }
3913
3914 mutex_lock(®ulator_list_mutex);
3915
3916 mutex_init(&rdev->mutex);
3917 rdev->reg_data = config->driver_data;
3918 rdev->owner = regulator_desc->owner;
3919 rdev->desc = regulator_desc;
3920 if (config->regmap)
3921 rdev->regmap = config->regmap;
3922 else if (dev_get_regmap(dev, NULL))
3923 rdev->regmap = dev_get_regmap(dev, NULL);
3924 else if (dev->parent)
3925 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926 INIT_LIST_HEAD(&rdev->consumer_list);
3927 INIT_LIST_HEAD(&rdev->list);
3928 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930
3931 /* preform any regulator specific init */
3932 if (init_data && init_data->regulator_init) {
3933 ret = init_data->regulator_init(rdev->reg_data);
3934 if (ret < 0)
3935 goto clean;
3936 }
3937
3938 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939 gpio_is_valid(config->ena_gpio)) {
3940 ret = regulator_ena_gpio_request(rdev, config);
3941 if (ret != 0) {
3942 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943 config->ena_gpio, ret);
3944 goto clean;
3945 }
3946 }
3947
3948 /* register with sysfs */
3949 rdev->dev.class = ®ulator_class;
3950 rdev->dev.parent = dev;
3951 dev_set_name(&rdev->dev, "regulator.%lu",
3952 (unsigned long) atomic_inc_return(®ulator_no));
3953 ret = device_register(&rdev->dev);
3954 if (ret != 0) {
3955 put_device(&rdev->dev);
3956 goto wash;
3957 }
3958
3959 dev_set_drvdata(&rdev->dev, rdev);
3960
3961 /* set regulator constraints */
3962 if (init_data)
3963 constraints = &init_data->constraints;
3964
3965 ret = set_machine_constraints(rdev, constraints);
3966 if (ret < 0)
3967 goto scrub;
3968
3969 if (init_data && init_data->supply_regulator)
3970 rdev->supply_name = init_data->supply_regulator;
3971 else if (regulator_desc->supply_name)
3972 rdev->supply_name = regulator_desc->supply_name;
3973
3974 /* add consumers devices */
3975 if (init_data) {
3976 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977 ret = set_consumer_device_supply(rdev,
3978 init_data->consumer_supplies[i].dev_name,
3979 init_data->consumer_supplies[i].supply);
3980 if (ret < 0) {
3981 dev_err(dev, "Failed to set supply %s\n",
3982 init_data->consumer_supplies[i].supply);
3983 goto unset_supplies;
3984 }
3985 }
3986 }
3987
3988 rdev_init_debugfs(rdev);
3989out:
3990 mutex_unlock(®ulator_list_mutex);
3991 kfree(config);
3992 return rdev;
3993
3994unset_supplies:
3995 unset_regulator_supplies(rdev);
3996
3997scrub:
3998 regulator_ena_gpio_free(rdev);
3999 device_unregister(&rdev->dev);
4000 /* device core frees rdev */
4001 rdev = ERR_PTR(ret);
4002 goto out;
4003
4004wash:
4005 regulator_ena_gpio_free(rdev);
4006clean:
4007 kfree(rdev);
4008 rdev = ERR_PTR(ret);
4009 goto out;
4010}
4011EXPORT_SYMBOL_GPL(regulator_register);
4012
4013/**
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4016 *
4017 * Called by regulator drivers to unregister a regulator.
4018 */
4019void regulator_unregister(struct regulator_dev *rdev)
4020{
4021 if (rdev == NULL)
4022 return;
4023
4024 if (rdev->supply) {
4025 while (rdev->use_count--)
4026 regulator_disable(rdev->supply);
4027 regulator_put(rdev->supply);
4028 }
4029 mutex_lock(®ulator_list_mutex);
4030 debugfs_remove_recursive(rdev->debugfs);
4031 flush_work(&rdev->disable_work.work);
4032 WARN_ON(rdev->open_count);
4033 unset_regulator_supplies(rdev);
4034 list_del(&rdev->list);
4035 mutex_unlock(®ulator_list_mutex);
4036 regulator_ena_gpio_free(rdev);
4037 device_unregister(&rdev->dev);
4038}
4039EXPORT_SYMBOL_GPL(regulator_unregister);
4040
4041static int _regulator_suspend_prepare(struct device *dev, void *data)
4042{
4043 struct regulator_dev *rdev = dev_to_rdev(dev);
4044 const suspend_state_t *state = data;
4045 int ret;
4046
4047 mutex_lock(&rdev->mutex);
4048 ret = suspend_prepare(rdev, *state);
4049 mutex_unlock(&rdev->mutex);
4050
4051 return ret;
4052}
4053
4054/**
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4057 *
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4060 */
4061int regulator_suspend_prepare(suspend_state_t state)
4062{
4063 /* ON is handled by regulator active state */
4064 if (state == PM_SUSPEND_ON)
4065 return -EINVAL;
4066
4067 return class_for_each_device(®ulator_class, NULL, &state,
4068 _regulator_suspend_prepare);
4069}
4070EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071
4072static int _regulator_suspend_finish(struct device *dev, void *data)
4073{
4074 struct regulator_dev *rdev = dev_to_rdev(dev);
4075 int ret;
4076
4077 mutex_lock(&rdev->mutex);
4078 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4079 if (!_regulator_is_enabled(rdev)) {
4080 ret = _regulator_do_enable(rdev);
4081 if (ret)
4082 dev_err(dev,
4083 "Failed to resume regulator %d\n",
4084 ret);
4085 }
4086 } else {
4087 if (!have_full_constraints())
4088 goto unlock;
4089 if (!_regulator_is_enabled(rdev))
4090 goto unlock;
4091
4092 ret = _regulator_do_disable(rdev);
4093 if (ret)
4094 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095 }
4096unlock:
4097 mutex_unlock(&rdev->mutex);
4098
4099 /* Keep processing regulators in spite of any errors */
4100 return 0;
4101}
4102
4103/**
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4105 *
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4108 */
4109int regulator_suspend_finish(void)
4110{
4111 return class_for_each_device(®ulator_class, NULL, NULL,
4112 _regulator_suspend_finish);
4113}
4114EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115
4116/**
4117 * regulator_has_full_constraints - the system has fully specified constraints
4118 *
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4122 *
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4125 * now.
4126 */
4127void regulator_has_full_constraints(void)
4128{
4129 has_full_constraints = 1;
4130}
4131EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132
4133/**
4134 * rdev_get_drvdata - get rdev regulator driver data
4135 * @rdev: regulator
4136 *
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4139 */
4140void *rdev_get_drvdata(struct regulator_dev *rdev)
4141{
4142 return rdev->reg_data;
4143}
4144EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145
4146/**
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4149 *
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4152 */
4153void *regulator_get_drvdata(struct regulator *regulator)
4154{
4155 return regulator->rdev->reg_data;
4156}
4157EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158
4159/**
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4162 * @data: data
4163 */
4164void regulator_set_drvdata(struct regulator *regulator, void *data)
4165{
4166 regulator->rdev->reg_data = data;
4167}
4168EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169
4170/**
4171 * regulator_get_id - get regulator ID
4172 * @rdev: regulator
4173 */
4174int rdev_get_id(struct regulator_dev *rdev)
4175{
4176 return rdev->desc->id;
4177}
4178EXPORT_SYMBOL_GPL(rdev_get_id);
4179
4180struct device *rdev_get_dev(struct regulator_dev *rdev)
4181{
4182 return &rdev->dev;
4183}
4184EXPORT_SYMBOL_GPL(rdev_get_dev);
4185
4186void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187{
4188 return reg_init_data->driver_data;
4189}
4190EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191
4192#ifdef CONFIG_DEBUG_FS
4193static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194 size_t count, loff_t *ppos)
4195{
4196 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197 ssize_t len, ret = 0;
4198 struct regulator_map *map;
4199
4200 if (!buf)
4201 return -ENOMEM;
4202
4203 list_for_each_entry(map, ®ulator_map_list, list) {
4204 len = snprintf(buf + ret, PAGE_SIZE - ret,
4205 "%s -> %s.%s\n",
4206 rdev_get_name(map->regulator), map->dev_name,
4207 map->supply);
4208 if (len >= 0)
4209 ret += len;
4210 if (ret > PAGE_SIZE) {
4211 ret = PAGE_SIZE;
4212 break;
4213 }
4214 }
4215
4216 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217
4218 kfree(buf);
4219
4220 return ret;
4221}
4222#endif
4223
4224static const struct file_operations supply_map_fops = {
4225#ifdef CONFIG_DEBUG_FS
4226 .read = supply_map_read_file,
4227 .llseek = default_llseek,
4228#endif
4229};
4230
4231#ifdef CONFIG_DEBUG_FS
4232struct summary_data {
4233 struct seq_file *s;
4234 struct regulator_dev *parent;
4235 int level;
4236};
4237
4238static void regulator_summary_show_subtree(struct seq_file *s,
4239 struct regulator_dev *rdev,
4240 int level);
4241
4242static int regulator_summary_show_children(struct device *dev, void *data)
4243{
4244 struct regulator_dev *rdev = dev_to_rdev(dev);
4245 struct summary_data *summary_data = data;
4246
4247 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248 regulator_summary_show_subtree(summary_data->s, rdev,
4249 summary_data->level + 1);
4250
4251 return 0;
4252}
4253
4254static void regulator_summary_show_subtree(struct seq_file *s,
4255 struct regulator_dev *rdev,
4256 int level)
4257{
4258 struct regulation_constraints *c;
4259 struct regulator *consumer;
4260 struct summary_data summary_data;
4261
4262 if (!rdev)
4263 return;
4264
4265 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4266 level * 3 + 1, "",
4267 30 - level * 3, rdev_get_name(rdev),
4268 rdev->use_count, rdev->open_count, rdev->bypass_count);
4269
4270 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4272
4273 c = rdev->constraints;
4274 if (c) {
4275 switch (rdev->desc->type) {
4276 case REGULATOR_VOLTAGE:
4277 seq_printf(s, "%5dmV %5dmV ",
4278 c->min_uV / 1000, c->max_uV / 1000);
4279 break;
4280 case REGULATOR_CURRENT:
4281 seq_printf(s, "%5dmA %5dmA ",
4282 c->min_uA / 1000, c->max_uA / 1000);
4283 break;
4284 }
4285 }
4286
4287 seq_puts(s, "\n");
4288
4289 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290 if (consumer->dev->class == ®ulator_class)
4291 continue;
4292
4293 seq_printf(s, "%*s%-*s ",
4294 (level + 1) * 3 + 1, "",
4295 30 - (level + 1) * 3, dev_name(consumer->dev));
4296
4297 switch (rdev->desc->type) {
4298 case REGULATOR_VOLTAGE:
4299 seq_printf(s, "%37dmV %5dmV",
4300 consumer->min_uV / 1000,
4301 consumer->max_uV / 1000);
4302 break;
4303 case REGULATOR_CURRENT:
4304 break;
4305 }
4306
4307 seq_puts(s, "\n");
4308 }
4309
4310 summary_data.s = s;
4311 summary_data.level = level;
4312 summary_data.parent = rdev;
4313
4314 class_for_each_device(®ulator_class, NULL, &summary_data,
4315 regulator_summary_show_children);
4316}
4317
4318static int regulator_summary_show_roots(struct device *dev, void *data)
4319{
4320 struct regulator_dev *rdev = dev_to_rdev(dev);
4321 struct seq_file *s = data;
4322
4323 if (!rdev->supply)
4324 regulator_summary_show_subtree(s, rdev, 0);
4325
4326 return 0;
4327}
4328
4329static int regulator_summary_show(struct seq_file *s, void *data)
4330{
4331 seq_puts(s, " regulator use open bypass voltage current min max\n");
4332 seq_puts(s, "-------------------------------------------------------------------------------\n");
4333
4334 class_for_each_device(®ulator_class, NULL, s,
4335 regulator_summary_show_roots);
4336
4337 return 0;
4338}
4339
4340static int regulator_summary_open(struct inode *inode, struct file *file)
4341{
4342 return single_open(file, regulator_summary_show, inode->i_private);
4343}
4344#endif
4345
4346static const struct file_operations regulator_summary_fops = {
4347#ifdef CONFIG_DEBUG_FS
4348 .open = regulator_summary_open,
4349 .read = seq_read,
4350 .llseek = seq_lseek,
4351 .release = single_release,
4352#endif
4353};
4354
4355static int __init regulator_init(void)
4356{
4357 int ret;
4358
4359 ret = class_register(®ulator_class);
4360
4361 debugfs_root = debugfs_create_dir("regulator", NULL);
4362 if (!debugfs_root)
4363 pr_warn("regulator: Failed to create debugfs directory\n");
4364
4365 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366 &supply_map_fops);
4367
4368 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369 NULL, ®ulator_summary_fops);
4370
4371 regulator_dummy_init();
4372
4373 return ret;
4374}
4375
4376/* init early to allow our consumers to complete system booting */
4377core_initcall(regulator_init);
4378
4379static int __init regulator_late_cleanup(struct device *dev, void *data)
4380{
4381 struct regulator_dev *rdev = dev_to_rdev(dev);
4382 const struct regulator_ops *ops = rdev->desc->ops;
4383 struct regulation_constraints *c = rdev->constraints;
4384 int enabled, ret;
4385
4386 if (c && c->always_on)
4387 return 0;
4388
4389 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390 return 0;
4391
4392 mutex_lock(&rdev->mutex);
4393
4394 if (rdev->use_count)
4395 goto unlock;
4396
4397 /* If we can't read the status assume it's on. */
4398 if (ops->is_enabled)
4399 enabled = ops->is_enabled(rdev);
4400 else
4401 enabled = 1;
4402
4403 if (!enabled)
4404 goto unlock;
4405
4406 if (have_full_constraints()) {
4407 /* We log since this may kill the system if it goes
4408 * wrong. */
4409 rdev_info(rdev, "disabling\n");
4410 ret = _regulator_do_disable(rdev);
4411 if (ret != 0)
4412 rdev_err(rdev, "couldn't disable: %d\n", ret);
4413 } else {
4414 /* The intention is that in future we will
4415 * assume that full constraints are provided
4416 * so warn even if we aren't going to do
4417 * anything here.
4418 */
4419 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420 }
4421
4422unlock:
4423 mutex_unlock(&rdev->mutex);
4424
4425 return 0;
4426}
4427
4428static int __init regulator_init_complete(void)
4429{
4430 /*
4431 * Since DT doesn't provide an idiomatic mechanism for
4432 * enabling full constraints and since it's much more natural
4433 * with DT to provide them just assume that a DT enabled
4434 * system has full constraints.
4435 */
4436 if (of_have_populated_dt())
4437 has_full_constraints = true;
4438
4439 /* If we have a full configuration then disable any regulators
4440 * we have permission to change the status for and which are
4441 * not in use or always_on. This is effectively the default
4442 * for DT and ACPI as they have full constraints.
4443 */
4444 class_for_each_device(®ulator_class, NULL, NULL,
4445 regulator_late_cleanup);
4446
4447 return 0;
4448}
4449late_initcall_sync(regulator_init_complete);