Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
  40static DEFINE_MUTEX(regulator_list_mutex);
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
  46
  47static struct dentry *debugfs_root;
  48
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 142 *
 143 * Return: 0 on success or a negative error number on failure.
 144 */
 145static inline int regulator_lock_nested(struct regulator_dev *rdev,
 146					struct ww_acquire_ctx *ww_ctx)
 147{
 148	bool lock = false;
 149	int ret = 0;
 150
 151	mutex_lock(&regulator_nesting_mutex);
 152
 153	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 154		if (rdev->mutex_owner == current)
 155			rdev->ref_cnt++;
 156		else
 157			lock = true;
 158
 159		if (lock) {
 160			mutex_unlock(&regulator_nesting_mutex);
 161			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 162			mutex_lock(&regulator_nesting_mutex);
 163		}
 164	} else {
 165		lock = true;
 166	}
 167
 168	if (lock && ret != -EDEADLK) {
 169		rdev->ref_cnt++;
 170		rdev->mutex_owner = current;
 171	}
 172
 173	mutex_unlock(&regulator_nesting_mutex);
 174
 175	return ret;
 176}
 177
 178/**
 179 * regulator_lock - lock a single regulator
 180 * @rdev:		regulator source
 181 *
 182 * This function can be called many times by one task on
 183 * a single regulator and its mutex will be locked only
 184 * once. If a task, which is calling this function is other
 185 * than the one, which initially locked the mutex, it will
 186 * wait on mutex.
 187 */
 188static void regulator_lock(struct regulator_dev *rdev)
 189{
 190	regulator_lock_nested(rdev, NULL);
 191}
 192
 193/**
 194 * regulator_unlock - unlock a single regulator
 195 * @rdev:		regulator_source
 196 *
 197 * This function unlocks the mutex when the
 198 * reference counter reaches 0.
 199 */
 200static void regulator_unlock(struct regulator_dev *rdev)
 201{
 202	mutex_lock(&regulator_nesting_mutex);
 203
 204	if (--rdev->ref_cnt == 0) {
 205		rdev->mutex_owner = NULL;
 206		ww_mutex_unlock(&rdev->mutex);
 207	}
 208
 209	WARN_ON_ONCE(rdev->ref_cnt < 0);
 210
 211	mutex_unlock(&regulator_nesting_mutex);
 212}
 213
 214/**
 215 * regulator_lock_two - lock two regulators
 216 * @rdev1:		first regulator
 217 * @rdev2:		second regulator
 218 * @ww_ctx:		w/w mutex acquire context
 219 *
 220 * Locks both rdevs using the regulator_ww_class.
 221 */
 222static void regulator_lock_two(struct regulator_dev *rdev1,
 223			       struct regulator_dev *rdev2,
 224			       struct ww_acquire_ctx *ww_ctx)
 225{
 226	struct regulator_dev *held, *contended;
 227	int ret;
 228
 229	ww_acquire_init(ww_ctx, &regulator_ww_class);
 230
 231	/* Try to just grab both of them */
 232	ret = regulator_lock_nested(rdev1, ww_ctx);
 233	WARN_ON(ret);
 234	ret = regulator_lock_nested(rdev2, ww_ctx);
 235	if (ret != -EDEADLOCK) {
 236		WARN_ON(ret);
 237		goto exit;
 238	}
 239
 240	held = rdev1;
 241	contended = rdev2;
 242	while (true) {
 243		regulator_unlock(held);
 244
 245		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 246		contended->ref_cnt++;
 247		contended->mutex_owner = current;
 248		swap(held, contended);
 249		ret = regulator_lock_nested(contended, ww_ctx);
 250
 251		if (ret != -EDEADLOCK) {
 252			WARN_ON(ret);
 253			break;
 254		}
 255	}
 256
 257exit:
 258	ww_acquire_done(ww_ctx);
 259}
 260
 261/**
 262 * regulator_unlock_two - unlock two regulators
 263 * @rdev1:		first regulator
 264 * @rdev2:		second regulator
 265 * @ww_ctx:		w/w mutex acquire context
 266 *
 267 * The inverse of regulator_lock_two().
 268 */
 269
 270static void regulator_unlock_two(struct regulator_dev *rdev1,
 271				 struct regulator_dev *rdev2,
 272				 struct ww_acquire_ctx *ww_ctx)
 273{
 274	regulator_unlock(rdev2);
 275	regulator_unlock(rdev1);
 276	ww_acquire_fini(ww_ctx);
 277}
 278
 279static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 280{
 281	struct regulator_dev *c_rdev;
 282	int i;
 283
 284	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 285		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 286
 287		if (rdev->supply->rdev == c_rdev)
 288			return true;
 289	}
 290
 291	return false;
 292}
 293
 294static void regulator_unlock_recursive(struct regulator_dev *rdev,
 295				       unsigned int n_coupled)
 296{
 297	struct regulator_dev *c_rdev, *supply_rdev;
 298	int i, supply_n_coupled;
 299
 300	for (i = n_coupled; i > 0; i--) {
 301		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 302
 303		if (!c_rdev)
 304			continue;
 305
 306		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 307			supply_rdev = c_rdev->supply->rdev;
 308			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 309
 310			regulator_unlock_recursive(supply_rdev,
 311						   supply_n_coupled);
 312		}
 313
 314		regulator_unlock(c_rdev);
 315	}
 316}
 317
 318static int regulator_lock_recursive(struct regulator_dev *rdev,
 319				    struct regulator_dev **new_contended_rdev,
 320				    struct regulator_dev **old_contended_rdev,
 321				    struct ww_acquire_ctx *ww_ctx)
 322{
 323	struct regulator_dev *c_rdev;
 324	int i, err;
 325
 326	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 327		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 328
 329		if (!c_rdev)
 330			continue;
 331
 332		if (c_rdev != *old_contended_rdev) {
 333			err = regulator_lock_nested(c_rdev, ww_ctx);
 334			if (err) {
 335				if (err == -EDEADLK) {
 336					*new_contended_rdev = c_rdev;
 337					goto err_unlock;
 338				}
 339
 340				/* shouldn't happen */
 341				WARN_ON_ONCE(err != -EALREADY);
 342			}
 343		} else {
 344			*old_contended_rdev = NULL;
 345		}
 346
 347		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 348			err = regulator_lock_recursive(c_rdev->supply->rdev,
 349						       new_contended_rdev,
 350						       old_contended_rdev,
 351						       ww_ctx);
 352			if (err) {
 353				regulator_unlock(c_rdev);
 354				goto err_unlock;
 355			}
 356		}
 357	}
 358
 359	return 0;
 360
 361err_unlock:
 362	regulator_unlock_recursive(rdev, i);
 363
 364	return err;
 365}
 366
 367/**
 368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 369 *				regulators
 370 * @rdev:			regulator source
 371 * @ww_ctx:			w/w mutex acquire context
 372 *
 373 * Unlock all regulators related with rdev by coupling or supplying.
 374 */
 375static void regulator_unlock_dependent(struct regulator_dev *rdev,
 376				       struct ww_acquire_ctx *ww_ctx)
 377{
 378	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 379	ww_acquire_fini(ww_ctx);
 380}
 381
 382/**
 383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 384 * @rdev:			regulator source
 385 * @ww_ctx:			w/w mutex acquire context
 386 *
 387 * This function as a wrapper on regulator_lock_recursive(), which locks
 388 * all regulators related with rdev by coupling or supplying.
 389 */
 390static void regulator_lock_dependent(struct regulator_dev *rdev,
 391				     struct ww_acquire_ctx *ww_ctx)
 392{
 393	struct regulator_dev *new_contended_rdev = NULL;
 394	struct regulator_dev *old_contended_rdev = NULL;
 395	int err;
 396
 397	mutex_lock(&regulator_list_mutex);
 398
 399	ww_acquire_init(ww_ctx, &regulator_ww_class);
 400
 401	do {
 402		if (new_contended_rdev) {
 403			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 404			old_contended_rdev = new_contended_rdev;
 405			old_contended_rdev->ref_cnt++;
 406			old_contended_rdev->mutex_owner = current;
 407		}
 408
 409		err = regulator_lock_recursive(rdev,
 410					       &new_contended_rdev,
 411					       &old_contended_rdev,
 412					       ww_ctx);
 413
 414		if (old_contended_rdev)
 415			regulator_unlock(old_contended_rdev);
 416
 417	} while (err == -EDEADLK);
 418
 419	ww_acquire_done(ww_ctx);
 420
 421	mutex_unlock(&regulator_list_mutex);
 422}
 423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424/* Platform voltage constraint check */
 425int regulator_check_voltage(struct regulator_dev *rdev,
 426			    int *min_uV, int *max_uV)
 427{
 428	BUG_ON(*min_uV > *max_uV);
 429
 430	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 431		rdev_err(rdev, "voltage operation not allowed\n");
 432		return -EPERM;
 433	}
 434
 435	if (*max_uV > rdev->constraints->max_uV)
 436		*max_uV = rdev->constraints->max_uV;
 437	if (*min_uV < rdev->constraints->min_uV)
 438		*min_uV = rdev->constraints->min_uV;
 439
 440	if (*min_uV > *max_uV) {
 441		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 442			 *min_uV, *max_uV);
 443		return -EINVAL;
 444	}
 445
 446	return 0;
 447}
 448
 449/* return 0 if the state is valid */
 450static int regulator_check_states(suspend_state_t state)
 451{
 452	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 453}
 454
 455/* Make sure we select a voltage that suits the needs of all
 456 * regulator consumers
 457 */
 458int regulator_check_consumers(struct regulator_dev *rdev,
 459			      int *min_uV, int *max_uV,
 460			      suspend_state_t state)
 461{
 462	struct regulator *regulator;
 463	struct regulator_voltage *voltage;
 464
 465	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 466		voltage = &regulator->voltage[state];
 467		/*
 468		 * Assume consumers that didn't say anything are OK
 469		 * with anything in the constraint range.
 470		 */
 471		if (!voltage->min_uV && !voltage->max_uV)
 472			continue;
 473
 474		if (*max_uV > voltage->max_uV)
 475			*max_uV = voltage->max_uV;
 476		if (*min_uV < voltage->min_uV)
 477			*min_uV = voltage->min_uV;
 478	}
 479
 480	if (*min_uV > *max_uV) {
 481		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 482			*min_uV, *max_uV);
 483		return -EINVAL;
 484	}
 485
 486	return 0;
 487}
 488
 489/* current constraint check */
 490static int regulator_check_current_limit(struct regulator_dev *rdev,
 491					int *min_uA, int *max_uA)
 492{
 493	BUG_ON(*min_uA > *max_uA);
 494
 495	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 496		rdev_err(rdev, "current operation not allowed\n");
 497		return -EPERM;
 498	}
 499
 500	if (*max_uA > rdev->constraints->max_uA &&
 501	    rdev->constraints->max_uA)
 502		*max_uA = rdev->constraints->max_uA;
 503	if (*min_uA < rdev->constraints->min_uA)
 504		*min_uA = rdev->constraints->min_uA;
 505
 506	if (*min_uA > *max_uA) {
 507		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 508			 *min_uA, *max_uA);
 509		return -EINVAL;
 510	}
 511
 512	return 0;
 513}
 514
 515/* operating mode constraint check */
 516static int regulator_mode_constrain(struct regulator_dev *rdev,
 517				    unsigned int *mode)
 518{
 519	switch (*mode) {
 520	case REGULATOR_MODE_FAST:
 521	case REGULATOR_MODE_NORMAL:
 522	case REGULATOR_MODE_IDLE:
 523	case REGULATOR_MODE_STANDBY:
 524		break;
 525	default:
 526		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 527		return -EINVAL;
 528	}
 529
 530	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 531		rdev_err(rdev, "mode operation not allowed\n");
 532		return -EPERM;
 533	}
 534
 535	/* The modes are bitmasks, the most power hungry modes having
 536	 * the lowest values. If the requested mode isn't supported
 537	 * try higher modes.
 538	 */
 539	while (*mode) {
 540		if (rdev->constraints->valid_modes_mask & *mode)
 541			return 0;
 542		*mode /= 2;
 543	}
 544
 545	return -EINVAL;
 546}
 547
 548static inline struct regulator_state *
 549regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 550{
 551	if (rdev->constraints == NULL)
 552		return NULL;
 553
 554	switch (state) {
 555	case PM_SUSPEND_STANDBY:
 556		return &rdev->constraints->state_standby;
 557	case PM_SUSPEND_MEM:
 558		return &rdev->constraints->state_mem;
 559	case PM_SUSPEND_MAX:
 560		return &rdev->constraints->state_disk;
 561	default:
 562		return NULL;
 563	}
 564}
 565
 566static const struct regulator_state *
 567regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 568{
 569	const struct regulator_state *rstate;
 570
 571	rstate = regulator_get_suspend_state(rdev, state);
 572	if (rstate == NULL)
 573		return NULL;
 574
 575	/* If we have no suspend mode configuration don't set anything;
 576	 * only warn if the driver implements set_suspend_voltage or
 577	 * set_suspend_mode callback.
 578	 */
 579	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 580	    rstate->enabled != DISABLE_IN_SUSPEND) {
 581		if (rdev->desc->ops->set_suspend_voltage ||
 582		    rdev->desc->ops->set_suspend_mode)
 583			rdev_warn(rdev, "No configuration\n");
 584		return NULL;
 585	}
 586
 587	return rstate;
 588}
 589
 590static ssize_t microvolts_show(struct device *dev,
 591			       struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594	int uV;
 595
 596	regulator_lock(rdev);
 597	uV = regulator_get_voltage_rdev(rdev);
 598	regulator_unlock(rdev);
 599
 600	if (uV < 0)
 601		return uV;
 602	return sprintf(buf, "%d\n", uV);
 603}
 604static DEVICE_ATTR_RO(microvolts);
 605
 606static ssize_t microamps_show(struct device *dev,
 607			      struct device_attribute *attr, char *buf)
 608{
 609	struct regulator_dev *rdev = dev_get_drvdata(dev);
 610
 611	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 612}
 613static DEVICE_ATTR_RO(microamps);
 614
 615static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 616			 char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 621}
 622static DEVICE_ATTR_RO(name);
 623
 624static const char *regulator_opmode_to_str(int mode)
 625{
 626	switch (mode) {
 627	case REGULATOR_MODE_FAST:
 628		return "fast";
 629	case REGULATOR_MODE_NORMAL:
 630		return "normal";
 631	case REGULATOR_MODE_IDLE:
 632		return "idle";
 633	case REGULATOR_MODE_STANDBY:
 634		return "standby";
 635	}
 636	return "unknown";
 637}
 638
 639static ssize_t regulator_print_opmode(char *buf, int mode)
 640{
 641	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 642}
 643
 644static ssize_t opmode_show(struct device *dev,
 645			   struct device_attribute *attr, char *buf)
 646{
 647	struct regulator_dev *rdev = dev_get_drvdata(dev);
 648
 649	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 650}
 651static DEVICE_ATTR_RO(opmode);
 652
 653static ssize_t regulator_print_state(char *buf, int state)
 654{
 655	if (state > 0)
 656		return sprintf(buf, "enabled\n");
 657	else if (state == 0)
 658		return sprintf(buf, "disabled\n");
 659	else
 660		return sprintf(buf, "unknown\n");
 661}
 662
 663static ssize_t state_show(struct device *dev,
 664			  struct device_attribute *attr, char *buf)
 665{
 666	struct regulator_dev *rdev = dev_get_drvdata(dev);
 667	ssize_t ret;
 668
 669	regulator_lock(rdev);
 670	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 671	regulator_unlock(rdev);
 672
 673	return ret;
 674}
 675static DEVICE_ATTR_RO(state);
 676
 677static ssize_t status_show(struct device *dev,
 678			   struct device_attribute *attr, char *buf)
 679{
 680	struct regulator_dev *rdev = dev_get_drvdata(dev);
 681	int status;
 682	char *label;
 683
 684	status = rdev->desc->ops->get_status(rdev);
 685	if (status < 0)
 686		return status;
 687
 688	switch (status) {
 689	case REGULATOR_STATUS_OFF:
 690		label = "off";
 691		break;
 692	case REGULATOR_STATUS_ON:
 693		label = "on";
 694		break;
 695	case REGULATOR_STATUS_ERROR:
 696		label = "error";
 697		break;
 698	case REGULATOR_STATUS_FAST:
 699		label = "fast";
 700		break;
 701	case REGULATOR_STATUS_NORMAL:
 702		label = "normal";
 703		break;
 704	case REGULATOR_STATUS_IDLE:
 705		label = "idle";
 706		break;
 707	case REGULATOR_STATUS_STANDBY:
 708		label = "standby";
 709		break;
 710	case REGULATOR_STATUS_BYPASS:
 711		label = "bypass";
 712		break;
 713	case REGULATOR_STATUS_UNDEFINED:
 714		label = "undefined";
 715		break;
 716	default:
 717		return -ERANGE;
 718	}
 719
 720	return sprintf(buf, "%s\n", label);
 721}
 722static DEVICE_ATTR_RO(status);
 723
 724static ssize_t min_microamps_show(struct device *dev,
 725				  struct device_attribute *attr, char *buf)
 726{
 727	struct regulator_dev *rdev = dev_get_drvdata(dev);
 728
 729	if (!rdev->constraints)
 730		return sprintf(buf, "constraint not defined\n");
 731
 732	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 733}
 734static DEVICE_ATTR_RO(min_microamps);
 735
 736static ssize_t max_microamps_show(struct device *dev,
 737				  struct device_attribute *attr, char *buf)
 738{
 739	struct regulator_dev *rdev = dev_get_drvdata(dev);
 740
 741	if (!rdev->constraints)
 742		return sprintf(buf, "constraint not defined\n");
 743
 744	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 745}
 746static DEVICE_ATTR_RO(max_microamps);
 747
 748static ssize_t min_microvolts_show(struct device *dev,
 749				   struct device_attribute *attr, char *buf)
 750{
 751	struct regulator_dev *rdev = dev_get_drvdata(dev);
 752
 753	if (!rdev->constraints)
 754		return sprintf(buf, "constraint not defined\n");
 755
 756	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 757}
 758static DEVICE_ATTR_RO(min_microvolts);
 759
 760static ssize_t max_microvolts_show(struct device *dev,
 761				   struct device_attribute *attr, char *buf)
 762{
 763	struct regulator_dev *rdev = dev_get_drvdata(dev);
 764
 765	if (!rdev->constraints)
 766		return sprintf(buf, "constraint not defined\n");
 767
 768	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 769}
 770static DEVICE_ATTR_RO(max_microvolts);
 771
 772static ssize_t requested_microamps_show(struct device *dev,
 773					struct device_attribute *attr, char *buf)
 774{
 775	struct regulator_dev *rdev = dev_get_drvdata(dev);
 776	struct regulator *regulator;
 777	int uA = 0;
 778
 779	regulator_lock(rdev);
 780	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 781		if (regulator->enable_count)
 782			uA += regulator->uA_load;
 783	}
 784	regulator_unlock(rdev);
 785	return sprintf(buf, "%d\n", uA);
 786}
 787static DEVICE_ATTR_RO(requested_microamps);
 788
 789static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 790			      char *buf)
 791{
 792	struct regulator_dev *rdev = dev_get_drvdata(dev);
 793	return sprintf(buf, "%d\n", rdev->use_count);
 794}
 795static DEVICE_ATTR_RO(num_users);
 796
 797static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 798			 char *buf)
 799{
 800	struct regulator_dev *rdev = dev_get_drvdata(dev);
 801
 802	switch (rdev->desc->type) {
 803	case REGULATOR_VOLTAGE:
 804		return sprintf(buf, "voltage\n");
 805	case REGULATOR_CURRENT:
 806		return sprintf(buf, "current\n");
 807	}
 808	return sprintf(buf, "unknown\n");
 809}
 810static DEVICE_ATTR_RO(type);
 811
 812static ssize_t suspend_mem_microvolts_show(struct device *dev,
 813					   struct device_attribute *attr, char *buf)
 814{
 815	struct regulator_dev *rdev = dev_get_drvdata(dev);
 816
 817	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 818}
 819static DEVICE_ATTR_RO(suspend_mem_microvolts);
 820
 821static ssize_t suspend_disk_microvolts_show(struct device *dev,
 822					    struct device_attribute *attr, char *buf)
 823{
 824	struct regulator_dev *rdev = dev_get_drvdata(dev);
 825
 826	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 827}
 828static DEVICE_ATTR_RO(suspend_disk_microvolts);
 829
 830static ssize_t suspend_standby_microvolts_show(struct device *dev,
 831					       struct device_attribute *attr, char *buf)
 832{
 833	struct regulator_dev *rdev = dev_get_drvdata(dev);
 834
 835	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 836}
 837static DEVICE_ATTR_RO(suspend_standby_microvolts);
 838
 839static ssize_t suspend_mem_mode_show(struct device *dev,
 840				     struct device_attribute *attr, char *buf)
 841{
 842	struct regulator_dev *rdev = dev_get_drvdata(dev);
 843
 844	return regulator_print_opmode(buf,
 845		rdev->constraints->state_mem.mode);
 846}
 847static DEVICE_ATTR_RO(suspend_mem_mode);
 848
 849static ssize_t suspend_disk_mode_show(struct device *dev,
 850				      struct device_attribute *attr, char *buf)
 851{
 852	struct regulator_dev *rdev = dev_get_drvdata(dev);
 853
 854	return regulator_print_opmode(buf,
 855		rdev->constraints->state_disk.mode);
 856}
 857static DEVICE_ATTR_RO(suspend_disk_mode);
 858
 859static ssize_t suspend_standby_mode_show(struct device *dev,
 860					 struct device_attribute *attr, char *buf)
 861{
 862	struct regulator_dev *rdev = dev_get_drvdata(dev);
 863
 864	return regulator_print_opmode(buf,
 865		rdev->constraints->state_standby.mode);
 866}
 867static DEVICE_ATTR_RO(suspend_standby_mode);
 868
 869static ssize_t suspend_mem_state_show(struct device *dev,
 870				      struct device_attribute *attr, char *buf)
 871{
 872	struct regulator_dev *rdev = dev_get_drvdata(dev);
 873
 874	return regulator_print_state(buf,
 875			rdev->constraints->state_mem.enabled);
 876}
 877static DEVICE_ATTR_RO(suspend_mem_state);
 878
 879static ssize_t suspend_disk_state_show(struct device *dev,
 880				       struct device_attribute *attr, char *buf)
 881{
 882	struct regulator_dev *rdev = dev_get_drvdata(dev);
 883
 884	return regulator_print_state(buf,
 885			rdev->constraints->state_disk.enabled);
 886}
 887static DEVICE_ATTR_RO(suspend_disk_state);
 888
 889static ssize_t suspend_standby_state_show(struct device *dev,
 890					  struct device_attribute *attr, char *buf)
 891{
 892	struct regulator_dev *rdev = dev_get_drvdata(dev);
 893
 894	return regulator_print_state(buf,
 895			rdev->constraints->state_standby.enabled);
 896}
 897static DEVICE_ATTR_RO(suspend_standby_state);
 898
 899static ssize_t bypass_show(struct device *dev,
 900			   struct device_attribute *attr, char *buf)
 901{
 902	struct regulator_dev *rdev = dev_get_drvdata(dev);
 903	const char *report;
 904	bool bypass;
 905	int ret;
 906
 907	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 908
 909	if (ret != 0)
 910		report = "unknown";
 911	else if (bypass)
 912		report = "enabled";
 913	else
 914		report = "disabled";
 915
 916	return sprintf(buf, "%s\n", report);
 917}
 918static DEVICE_ATTR_RO(bypass);
 919
 920#define REGULATOR_ERROR_ATTR(name, bit)							\
 921	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 922				   char *buf)						\
 923	{										\
 924		int ret;								\
 925		unsigned int flags;							\
 926		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 927		ret = _regulator_get_error_flags(rdev, &flags);				\
 928		if (ret)								\
 929			return ret;							\
 930		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 931	}										\
 932	static DEVICE_ATTR_RO(name)
 933
 934REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 935REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 936REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
 937REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
 938REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
 939REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
 940REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
 941REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
 942REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
 943
 944/* Calculate the new optimum regulator operating mode based on the new total
 945 * consumer load. All locks held by caller
 946 */
 947static int drms_uA_update(struct regulator_dev *rdev)
 948{
 949	struct regulator *sibling;
 950	int current_uA = 0, output_uV, input_uV, err;
 951	unsigned int mode;
 952
 953	/*
 954	 * first check to see if we can set modes at all, otherwise just
 955	 * tell the consumer everything is OK.
 956	 */
 957	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 958		rdev_dbg(rdev, "DRMS operation not allowed\n");
 959		return 0;
 960	}
 961
 962	if (!rdev->desc->ops->get_optimum_mode &&
 963	    !rdev->desc->ops->set_load)
 964		return 0;
 965
 966	if (!rdev->desc->ops->set_mode &&
 967	    !rdev->desc->ops->set_load)
 968		return -EINVAL;
 969
 970	/* calc total requested load */
 971	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 972		if (sibling->enable_count)
 973			current_uA += sibling->uA_load;
 974	}
 975
 976	current_uA += rdev->constraints->system_load;
 977
 978	if (rdev->desc->ops->set_load) {
 979		/* set the optimum mode for our new total regulator load */
 980		err = rdev->desc->ops->set_load(rdev, current_uA);
 981		if (err < 0)
 982			rdev_err(rdev, "failed to set load %d: %pe\n",
 983				 current_uA, ERR_PTR(err));
 984	} else {
 985		/*
 986		 * Unfortunately in some cases the constraints->valid_ops has
 987		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
 988		 * That's not really legit but we won't consider it a fatal
 989		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
 990		 * wasn't set.
 991		 */
 992		if (!rdev->constraints->valid_modes_mask) {
 993			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
 994			return 0;
 995		}
 996
 997		/* get output voltage */
 998		output_uV = regulator_get_voltage_rdev(rdev);
 999
1000		/*
1001		 * Don't return an error; if regulator driver cares about
1002		 * output_uV then it's up to the driver to validate.
1003		 */
1004		if (output_uV <= 0)
1005			rdev_dbg(rdev, "invalid output voltage found\n");
1006
1007		/* get input voltage */
1008		input_uV = 0;
1009		if (rdev->supply)
1010			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011		if (input_uV <= 0)
1012			input_uV = rdev->constraints->input_uV;
1013
1014		/*
1015		 * Don't return an error; if regulator driver cares about
1016		 * input_uV then it's up to the driver to validate.
1017		 */
1018		if (input_uV <= 0)
1019			rdev_dbg(rdev, "invalid input voltage found\n");
1020
1021		/* now get the optimum mode for our new total regulator load */
1022		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023							 output_uV, current_uA);
1024
1025		/* check the new mode is allowed */
1026		err = regulator_mode_constrain(rdev, &mode);
1027		if (err < 0) {
1028			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029				 current_uA, input_uV, output_uV, ERR_PTR(err));
1030			return err;
1031		}
1032
1033		err = rdev->desc->ops->set_mode(rdev, mode);
1034		if (err < 0)
1035			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036				 mode, ERR_PTR(err));
1037	}
1038
1039	return err;
1040}
1041
1042static int __suspend_set_state(struct regulator_dev *rdev,
1043			       const struct regulator_state *rstate)
1044{
1045	int ret = 0;
1046
1047	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048		rdev->desc->ops->set_suspend_enable)
1049		ret = rdev->desc->ops->set_suspend_enable(rdev);
1050	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051		rdev->desc->ops->set_suspend_disable)
1052		ret = rdev->desc->ops->set_suspend_disable(rdev);
1053	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054		ret = 0;
1055
1056	if (ret < 0) {
1057		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058		return ret;
1059	}
1060
1061	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063		if (ret < 0) {
1064			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065			return ret;
1066		}
1067	}
1068
1069	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071		if (ret < 0) {
1072			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073			return ret;
1074		}
1075	}
1076
1077	return ret;
1078}
1079
1080static int suspend_set_initial_state(struct regulator_dev *rdev)
1081{
1082	const struct regulator_state *rstate;
1083
1084	rstate = regulator_get_suspend_state_check(rdev,
1085			rdev->constraints->initial_state);
1086	if (!rstate)
1087		return 0;
1088
1089	return __suspend_set_state(rdev, rstate);
1090}
1091
1092#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093static void print_constraints_debug(struct regulator_dev *rdev)
1094{
1095	struct regulation_constraints *constraints = rdev->constraints;
1096	char buf[160] = "";
1097	size_t len = sizeof(buf) - 1;
1098	int count = 0;
1099	int ret;
1100
1101	if (constraints->min_uV && constraints->max_uV) {
1102		if (constraints->min_uV == constraints->max_uV)
1103			count += scnprintf(buf + count, len - count, "%d mV ",
1104					   constraints->min_uV / 1000);
1105		else
1106			count += scnprintf(buf + count, len - count,
1107					   "%d <--> %d mV ",
1108					   constraints->min_uV / 1000,
1109					   constraints->max_uV / 1000);
1110	}
1111
1112	if (!constraints->min_uV ||
1113	    constraints->min_uV != constraints->max_uV) {
1114		ret = regulator_get_voltage_rdev(rdev);
1115		if (ret > 0)
1116			count += scnprintf(buf + count, len - count,
1117					   "at %d mV ", ret / 1000);
1118	}
1119
1120	if (constraints->uV_offset)
1121		count += scnprintf(buf + count, len - count, "%dmV offset ",
1122				   constraints->uV_offset / 1000);
1123
1124	if (constraints->min_uA && constraints->max_uA) {
1125		if (constraints->min_uA == constraints->max_uA)
1126			count += scnprintf(buf + count, len - count, "%d mA ",
1127					   constraints->min_uA / 1000);
1128		else
1129			count += scnprintf(buf + count, len - count,
1130					   "%d <--> %d mA ",
1131					   constraints->min_uA / 1000,
1132					   constraints->max_uA / 1000);
1133	}
1134
1135	if (!constraints->min_uA ||
1136	    constraints->min_uA != constraints->max_uA) {
1137		ret = _regulator_get_current_limit(rdev);
1138		if (ret > 0)
1139			count += scnprintf(buf + count, len - count,
1140					   "at %d mA ", ret / 1000);
1141	}
1142
1143	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144		count += scnprintf(buf + count, len - count, "fast ");
1145	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146		count += scnprintf(buf + count, len - count, "normal ");
1147	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148		count += scnprintf(buf + count, len - count, "idle ");
1149	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150		count += scnprintf(buf + count, len - count, "standby ");
1151
1152	if (!count)
1153		count = scnprintf(buf, len, "no parameters");
1154	else
1155		--count;
1156
1157	count += scnprintf(buf + count, len - count, ", %s",
1158		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1159
1160	rdev_dbg(rdev, "%s\n", buf);
1161}
1162#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1165
1166static void print_constraints(struct regulator_dev *rdev)
1167{
1168	struct regulation_constraints *constraints = rdev->constraints;
1169
1170	print_constraints_debug(rdev);
1171
1172	if ((constraints->min_uV != constraints->max_uV) &&
1173	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174		rdev_warn(rdev,
1175			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1176}
1177
1178static int machine_constraints_voltage(struct regulator_dev *rdev,
1179	struct regulation_constraints *constraints)
1180{
1181	const struct regulator_ops *ops = rdev->desc->ops;
1182	int ret;
1183
1184	/* do we need to apply the constraint voltage */
1185	if (rdev->constraints->apply_uV &&
1186	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187		int target_min, target_max;
1188		int current_uV = regulator_get_voltage_rdev(rdev);
1189
1190		if (current_uV == -ENOTRECOVERABLE) {
1191			/* This regulator can't be read and must be initialized */
1192			rdev_info(rdev, "Setting %d-%duV\n",
1193				  rdev->constraints->min_uV,
1194				  rdev->constraints->max_uV);
1195			_regulator_do_set_voltage(rdev,
1196						  rdev->constraints->min_uV,
1197						  rdev->constraints->max_uV);
1198			current_uV = regulator_get_voltage_rdev(rdev);
1199		}
1200
1201		if (current_uV < 0) {
1202			if (current_uV != -EPROBE_DEFER)
1203				rdev_err(rdev,
1204					 "failed to get the current voltage: %pe\n",
1205					 ERR_PTR(current_uV));
1206			return current_uV;
1207		}
1208
1209		/*
1210		 * If we're below the minimum voltage move up to the
1211		 * minimum voltage, if we're above the maximum voltage
1212		 * then move down to the maximum.
1213		 */
1214		target_min = current_uV;
1215		target_max = current_uV;
1216
1217		if (current_uV < rdev->constraints->min_uV) {
1218			target_min = rdev->constraints->min_uV;
1219			target_max = rdev->constraints->min_uV;
1220		}
1221
1222		if (current_uV > rdev->constraints->max_uV) {
1223			target_min = rdev->constraints->max_uV;
1224			target_max = rdev->constraints->max_uV;
1225		}
1226
1227		if (target_min != current_uV || target_max != current_uV) {
1228			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229				  current_uV, target_min, target_max);
1230			ret = _regulator_do_set_voltage(
1231				rdev, target_min, target_max);
1232			if (ret < 0) {
1233				rdev_err(rdev,
1234					"failed to apply %d-%duV constraint: %pe\n",
1235					target_min, target_max, ERR_PTR(ret));
1236				return ret;
1237			}
1238		}
1239	}
1240
1241	/* constrain machine-level voltage specs to fit
1242	 * the actual range supported by this regulator.
1243	 */
1244	if (ops->list_voltage && rdev->desc->n_voltages) {
1245		int	count = rdev->desc->n_voltages;
1246		int	i;
1247		int	min_uV = INT_MAX;
1248		int	max_uV = INT_MIN;
1249		int	cmin = constraints->min_uV;
1250		int	cmax = constraints->max_uV;
1251
1252		/* it's safe to autoconfigure fixed-voltage supplies
1253		 * and the constraints are used by list_voltage.
1254		 */
1255		if (count == 1 && !cmin) {
1256			cmin = 1;
1257			cmax = INT_MAX;
1258			constraints->min_uV = cmin;
1259			constraints->max_uV = cmax;
1260		}
1261
1262		/* voltage constraints are optional */
1263		if ((cmin == 0) && (cmax == 0))
1264			return 0;
1265
1266		/* else require explicit machine-level constraints */
1267		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268			rdev_err(rdev, "invalid voltage constraints\n");
1269			return -EINVAL;
1270		}
1271
1272		/* no need to loop voltages if range is continuous */
1273		if (rdev->desc->continuous_voltage_range)
1274			return 0;
1275
1276		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277		for (i = 0; i < count; i++) {
1278			int	value;
1279
1280			value = ops->list_voltage(rdev, i);
1281			if (value <= 0)
1282				continue;
1283
1284			/* maybe adjust [min_uV..max_uV] */
1285			if (value >= cmin && value < min_uV)
1286				min_uV = value;
1287			if (value <= cmax && value > max_uV)
1288				max_uV = value;
1289		}
1290
1291		/* final: [min_uV..max_uV] valid iff constraints valid */
1292		if (max_uV < min_uV) {
1293			rdev_err(rdev,
1294				 "unsupportable voltage constraints %u-%uuV\n",
1295				 min_uV, max_uV);
1296			return -EINVAL;
1297		}
1298
1299		/* use regulator's subset of machine constraints */
1300		if (constraints->min_uV < min_uV) {
1301			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302				 constraints->min_uV, min_uV);
1303			constraints->min_uV = min_uV;
1304		}
1305		if (constraints->max_uV > max_uV) {
1306			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307				 constraints->max_uV, max_uV);
1308			constraints->max_uV = max_uV;
1309		}
1310	}
1311
1312	return 0;
1313}
1314
1315static int machine_constraints_current(struct regulator_dev *rdev,
1316	struct regulation_constraints *constraints)
1317{
1318	const struct regulator_ops *ops = rdev->desc->ops;
1319	int ret;
1320
1321	if (!constraints->min_uA && !constraints->max_uA)
1322		return 0;
1323
1324	if (constraints->min_uA > constraints->max_uA) {
1325		rdev_err(rdev, "Invalid current constraints\n");
1326		return -EINVAL;
1327	}
1328
1329	if (!ops->set_current_limit || !ops->get_current_limit) {
1330		rdev_warn(rdev, "Operation of current configuration missing\n");
1331		return 0;
1332	}
1333
1334	/* Set regulator current in constraints range */
1335	ret = ops->set_current_limit(rdev, constraints->min_uA,
1336			constraints->max_uA);
1337	if (ret < 0) {
1338		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339		return ret;
1340	}
1341
1342	return 0;
1343}
1344
1345static int _regulator_do_enable(struct regulator_dev *rdev);
1346
1347static int notif_set_limit(struct regulator_dev *rdev,
1348			   int (*set)(struct regulator_dev *, int, int, bool),
1349			   int limit, int severity)
1350{
1351	bool enable;
1352
1353	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354		enable = false;
1355		limit = 0;
1356	} else {
1357		enable = true;
1358	}
1359
1360	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361		limit = 0;
1362
1363	return set(rdev, limit, severity, enable);
1364}
1365
1366static int handle_notify_limits(struct regulator_dev *rdev,
1367			int (*set)(struct regulator_dev *, int, int, bool),
1368			struct notification_limit *limits)
1369{
1370	int ret = 0;
1371
1372	if (!set)
1373		return -EOPNOTSUPP;
1374
1375	if (limits->prot)
1376		ret = notif_set_limit(rdev, set, limits->prot,
1377				      REGULATOR_SEVERITY_PROT);
1378	if (ret)
1379		return ret;
1380
1381	if (limits->err)
1382		ret = notif_set_limit(rdev, set, limits->err,
1383				      REGULATOR_SEVERITY_ERR);
1384	if (ret)
1385		return ret;
1386
1387	if (limits->warn)
1388		ret = notif_set_limit(rdev, set, limits->warn,
1389				      REGULATOR_SEVERITY_WARN);
1390
1391	return ret;
1392}
1393/**
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1396 *
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401 * set_mode.
1402 *
1403 * Return: 0 on success or a negative error number on failure.
1404 */
1405static int set_machine_constraints(struct regulator_dev *rdev)
1406{
1407	int ret = 0;
1408	const struct regulator_ops *ops = rdev->desc->ops;
1409
1410	ret = machine_constraints_voltage(rdev, rdev->constraints);
1411	if (ret != 0)
1412		return ret;
1413
1414	ret = machine_constraints_current(rdev, rdev->constraints);
1415	if (ret != 0)
1416		return ret;
1417
1418	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419		ret = ops->set_input_current_limit(rdev,
1420						   rdev->constraints->ilim_uA);
1421		if (ret < 0) {
1422			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423			return ret;
1424		}
1425	}
1426
1427	/* do we need to setup our suspend state */
1428	if (rdev->constraints->initial_state) {
1429		ret = suspend_set_initial_state(rdev);
1430		if (ret < 0) {
1431			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432			return ret;
1433		}
1434	}
1435
1436	if (rdev->constraints->initial_mode) {
1437		if (!ops->set_mode) {
1438			rdev_err(rdev, "no set_mode operation\n");
1439			return -EINVAL;
1440		}
1441
1442		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443		if (ret < 0) {
1444			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445			return ret;
1446		}
1447	} else if (rdev->constraints->system_load) {
1448		/*
1449		 * We'll only apply the initial system load if an
1450		 * initial mode wasn't specified.
1451		 */
1452		drms_uA_update(rdev);
1453	}
1454
1455	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456		&& ops->set_ramp_delay) {
1457		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458		if (ret < 0) {
1459			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460			return ret;
1461		}
1462	}
1463
1464	if (rdev->constraints->pull_down && ops->set_pull_down) {
1465		ret = ops->set_pull_down(rdev);
1466		if (ret < 0) {
1467			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468			return ret;
1469		}
1470	}
1471
1472	if (rdev->constraints->soft_start && ops->set_soft_start) {
1473		ret = ops->set_soft_start(rdev);
1474		if (ret < 0) {
1475			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476			return ret;
1477		}
1478	}
1479
1480	/*
1481	 * Existing logic does not warn if over_current_protection is given as
1482	 * a constraint but driver does not support that. I think we should
1483	 * warn about this type of issues as it is possible someone changes
1484	 * PMIC on board to another type - and the another PMIC's driver does
1485	 * not support setting protection. Board composer may happily believe
1486	 * the DT limits are respected - especially if the new PMIC HW also
1487	 * supports protection but the driver does not. I won't change the logic
1488	 * without hearing more experienced opinion on this though.
1489	 *
1490	 * If warning is seen as a good idea then we can merge handling the
1491	 * over-curret protection and detection and get rid of this special
1492	 * handling.
1493	 */
1494	if (rdev->constraints->over_current_protection
1495		&& ops->set_over_current_protection) {
1496		int lim = rdev->constraints->over_curr_limits.prot;
1497
1498		ret = ops->set_over_current_protection(rdev, lim,
1499						       REGULATOR_SEVERITY_PROT,
1500						       true);
1501		if (ret < 0) {
1502			rdev_err(rdev, "failed to set over current protection: %pe\n",
1503				 ERR_PTR(ret));
1504			return ret;
1505		}
1506	}
1507
1508	if (rdev->constraints->over_current_detection)
1509		ret = handle_notify_limits(rdev,
1510					   ops->set_over_current_protection,
1511					   &rdev->constraints->over_curr_limits);
1512	if (ret) {
1513		if (ret != -EOPNOTSUPP) {
1514			rdev_err(rdev, "failed to set over current limits: %pe\n",
1515				 ERR_PTR(ret));
1516			return ret;
1517		}
1518		rdev_warn(rdev,
1519			  "IC does not support requested over-current limits\n");
1520	}
1521
1522	if (rdev->constraints->over_voltage_detection)
1523		ret = handle_notify_limits(rdev,
1524					   ops->set_over_voltage_protection,
1525					   &rdev->constraints->over_voltage_limits);
1526	if (ret) {
1527		if (ret != -EOPNOTSUPP) {
1528			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529				 ERR_PTR(ret));
1530			return ret;
1531		}
1532		rdev_warn(rdev,
1533			  "IC does not support requested over voltage limits\n");
1534	}
1535
1536	if (rdev->constraints->under_voltage_detection)
1537		ret = handle_notify_limits(rdev,
1538					   ops->set_under_voltage_protection,
1539					   &rdev->constraints->under_voltage_limits);
1540	if (ret) {
1541		if (ret != -EOPNOTSUPP) {
1542			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543				 ERR_PTR(ret));
1544			return ret;
1545		}
1546		rdev_warn(rdev,
1547			  "IC does not support requested under voltage limits\n");
1548	}
1549
1550	if (rdev->constraints->over_temp_detection)
1551		ret = handle_notify_limits(rdev,
1552					   ops->set_thermal_protection,
1553					   &rdev->constraints->temp_limits);
1554	if (ret) {
1555		if (ret != -EOPNOTSUPP) {
1556			rdev_err(rdev, "failed to set temperature limits %pe\n",
1557				 ERR_PTR(ret));
1558			return ret;
1559		}
1560		rdev_warn(rdev,
1561			  "IC does not support requested temperature limits\n");
1562	}
1563
1564	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565		bool ad_state = (rdev->constraints->active_discharge ==
1566			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1567
1568		ret = ops->set_active_discharge(rdev, ad_state);
1569		if (ret < 0) {
1570			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571			return ret;
1572		}
1573	}
1574
1575	/*
1576	 * If there is no mechanism for controlling the regulator then
1577	 * flag it as always_on so we don't end up duplicating checks
1578	 * for this so much.  Note that we could control the state of
1579	 * a supply to control the output on a regulator that has no
1580	 * direct control.
1581	 */
1582	if (!rdev->ena_pin && !ops->enable) {
1583		if (rdev->supply_name && !rdev->supply)
1584			return -EPROBE_DEFER;
1585
1586		if (rdev->supply)
1587			rdev->constraints->always_on =
1588				rdev->supply->rdev->constraints->always_on;
1589		else
1590			rdev->constraints->always_on = true;
1591	}
1592
1593	/* If the constraints say the regulator should be on at this point
1594	 * and we have control then make sure it is enabled.
1595	 */
1596	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597		/* If we want to enable this regulator, make sure that we know
1598		 * the supplying regulator.
1599		 */
1600		if (rdev->supply_name && !rdev->supply)
1601			return -EPROBE_DEFER;
1602
1603		/* If supplying regulator has already been enabled,
1604		 * it's not intended to have use_count increment
1605		 * when rdev is only boot-on.
1606		 */
1607		if (rdev->supply &&
1608		    (rdev->constraints->always_on ||
1609		     !regulator_is_enabled(rdev->supply))) {
1610			ret = regulator_enable(rdev->supply);
1611			if (ret < 0) {
1612				_regulator_put(rdev->supply);
1613				rdev->supply = NULL;
1614				return ret;
1615			}
1616		}
1617
1618		ret = _regulator_do_enable(rdev);
1619		if (ret < 0 && ret != -EINVAL) {
1620			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621			return ret;
1622		}
1623
1624		if (rdev->constraints->always_on)
1625			rdev->use_count++;
1626	} else if (rdev->desc->off_on_delay) {
1627		rdev->last_off = ktime_get();
1628	}
1629
1630	print_constraints(rdev);
1631	return 0;
1632}
1633
1634/**
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1638 *
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1642 *
1643 * Return: 0 on success or a negative error number on failure.
1644 */
1645static int set_supply(struct regulator_dev *rdev,
1646		      struct regulator_dev *supply_rdev)
1647{
1648	int err;
1649
1650	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1651
1652	if (!try_module_get(supply_rdev->owner))
1653		return -ENODEV;
1654
1655	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656	if (rdev->supply == NULL) {
1657		module_put(supply_rdev->owner);
1658		err = -ENOMEM;
1659		return err;
1660	}
1661	supply_rdev->open_count++;
1662
1663	return 0;
1664}
1665
1666/**
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev:         regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply:       symbolic name for supply
1671 *
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices.  Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1676 *
1677 * Return: 0 on success or a negative error number on failure.
1678 */
1679static int set_consumer_device_supply(struct regulator_dev *rdev,
1680				      const char *consumer_dev_name,
1681				      const char *supply)
1682{
1683	struct regulator_map *node, *new_node;
1684	int has_dev;
1685
1686	if (supply == NULL)
1687		return -EINVAL;
1688
1689	if (consumer_dev_name != NULL)
1690		has_dev = 1;
1691	else
1692		has_dev = 0;
1693
1694	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695	if (new_node == NULL)
1696		return -ENOMEM;
1697
1698	new_node->regulator = rdev;
1699	new_node->supply = supply;
1700
1701	if (has_dev) {
1702		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703		if (new_node->dev_name == NULL) {
1704			kfree(new_node);
1705			return -ENOMEM;
1706		}
1707	}
1708
1709	mutex_lock(&regulator_list_mutex);
1710	list_for_each_entry(node, &regulator_map_list, list) {
1711		if (node->dev_name && consumer_dev_name) {
1712			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713				continue;
1714		} else if (node->dev_name || consumer_dev_name) {
1715			continue;
1716		}
1717
1718		if (strcmp(node->supply, supply) != 0)
1719			continue;
1720
1721		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722			 consumer_dev_name,
1723			 dev_name(&node->regulator->dev),
1724			 node->regulator->desc->name,
1725			 supply,
1726			 dev_name(&rdev->dev), rdev_get_name(rdev));
1727		goto fail;
1728	}
1729
1730	list_add(&new_node->list, &regulator_map_list);
1731	mutex_unlock(&regulator_list_mutex);
1732
1733	return 0;
1734
1735fail:
1736	mutex_unlock(&regulator_list_mutex);
1737	kfree(new_node->dev_name);
1738	kfree(new_node);
1739	return -EBUSY;
1740}
1741
1742static void unset_regulator_supplies(struct regulator_dev *rdev)
1743{
1744	struct regulator_map *node, *n;
1745
1746	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1747		if (rdev == node->regulator) {
1748			list_del(&node->list);
1749			kfree(node->dev_name);
1750			kfree(node);
1751		}
1752	}
1753}
1754
1755#ifdef CONFIG_DEBUG_FS
1756static ssize_t constraint_flags_read_file(struct file *file,
1757					  char __user *user_buf,
1758					  size_t count, loff_t *ppos)
1759{
1760	const struct regulator *regulator = file->private_data;
1761	const struct regulation_constraints *c = regulator->rdev->constraints;
1762	char *buf;
1763	ssize_t ret;
1764
1765	if (!c)
1766		return 0;
1767
1768	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769	if (!buf)
1770		return -ENOMEM;
1771
1772	ret = snprintf(buf, PAGE_SIZE,
1773			"always_on: %u\n"
1774			"boot_on: %u\n"
1775			"apply_uV: %u\n"
1776			"ramp_disable: %u\n"
1777			"soft_start: %u\n"
1778			"pull_down: %u\n"
1779			"over_current_protection: %u\n",
1780			c->always_on,
1781			c->boot_on,
1782			c->apply_uV,
1783			c->ramp_disable,
1784			c->soft_start,
1785			c->pull_down,
1786			c->over_current_protection);
1787
1788	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789	kfree(buf);
1790
1791	return ret;
1792}
1793
1794#endif
1795
1796static const struct file_operations constraint_flags_fops = {
1797#ifdef CONFIG_DEBUG_FS
1798	.open = simple_open,
1799	.read = constraint_flags_read_file,
1800	.llseek = default_llseek,
1801#endif
1802};
1803
1804#define REG_STR_SIZE	64
1805
1806static struct regulator *create_regulator(struct regulator_dev *rdev,
1807					  struct device *dev,
1808					  const char *supply_name)
1809{
1810	struct regulator *regulator;
1811	int err = 0;
1812
1813	lockdep_assert_held_once(&rdev->mutex.base);
1814
1815	if (dev) {
1816		char buf[REG_STR_SIZE];
1817		int size;
1818
1819		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820				dev->kobj.name, supply_name);
1821		if (size >= REG_STR_SIZE)
1822			return NULL;
1823
1824		supply_name = kstrdup(buf, GFP_KERNEL);
1825		if (supply_name == NULL)
1826			return NULL;
1827	} else {
1828		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829		if (supply_name == NULL)
1830			return NULL;
1831	}
1832
1833	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834	if (regulator == NULL) {
1835		kfree_const(supply_name);
1836		return NULL;
1837	}
1838
1839	regulator->rdev = rdev;
1840	regulator->supply_name = supply_name;
1841
 
1842	list_add(&regulator->list, &rdev->consumer_list);
 
1843
1844	if (dev) {
1845		regulator->dev = dev;
1846
1847		/* Add a link to the device sysfs entry */
1848		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849					       supply_name);
1850		if (err) {
1851			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852				  dev->kobj.name, ERR_PTR(err));
1853			/* non-fatal */
1854		}
1855	}
1856
1857	if (err != -EEXIST) {
1858		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859		if (IS_ERR(regulator->debugfs)) {
1860			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861			regulator->debugfs = NULL;
1862		}
1863	}
1864
1865	if (regulator->debugfs) {
1866		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867				   &regulator->uA_load);
1868		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1870		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1872		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873				    regulator, &constraint_flags_fops);
 
1874	}
1875
1876	/*
1877	 * Check now if the regulator is an always on regulator - if
1878	 * it is then we don't need to do nearly so much work for
1879	 * enable/disable calls.
1880	 */
1881	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882	    _regulator_is_enabled(rdev))
1883		regulator->always_on = true;
1884
1885	return regulator;
1886}
1887
1888static int _regulator_get_enable_time(struct regulator_dev *rdev)
1889{
1890	if (rdev->constraints && rdev->constraints->enable_time)
1891		return rdev->constraints->enable_time;
1892	if (rdev->desc->ops->enable_time)
1893		return rdev->desc->ops->enable_time(rdev);
1894	return rdev->desc->enable_time;
1895}
1896
1897static struct regulator_supply_alias *regulator_find_supply_alias(
1898		struct device *dev, const char *supply)
1899{
1900	struct regulator_supply_alias *map;
1901
1902	list_for_each_entry(map, &regulator_supply_alias_list, list)
1903		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904			return map;
1905
1906	return NULL;
1907}
1908
1909static void regulator_supply_alias(struct device **dev, const char **supply)
1910{
1911	struct regulator_supply_alias *map;
1912
1913	map = regulator_find_supply_alias(*dev, *supply);
1914	if (map) {
1915		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916				*supply, map->alias_supply,
1917				dev_name(map->alias_dev));
1918		*dev = map->alias_dev;
1919		*supply = map->alias_supply;
1920	}
1921}
1922
1923static int regulator_match(struct device *dev, const void *data)
1924{
1925	struct regulator_dev *r = dev_to_rdev(dev);
1926
1927	return strcmp(rdev_get_name(r), data) == 0;
1928}
1929
1930static struct regulator_dev *regulator_lookup_by_name(const char *name)
1931{
1932	struct device *dev;
1933
1934	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1935
1936	return dev ? dev_to_rdev(dev) : NULL;
1937}
1938
1939/**
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1943 *
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1945 *
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951 * in the future.
1952 */
1953static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954						  const char *supply)
1955{
1956	struct regulator_dev *r = NULL;
 
1957	struct regulator_map *map;
1958	const char *devname = NULL;
1959
1960	regulator_supply_alias(&dev, &supply);
1961
1962	/* first do a dt based lookup */
1963	if (dev_of_node(dev)) {
1964		r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965		if (!IS_ERR(r))
1966			return r;
1967		if (PTR_ERR(r) == -EPROBE_DEFER)
1968			return r;
1969
1970		if (PTR_ERR(r) == -ENODEV)
1971			r = NULL;
 
 
 
 
1972	}
1973
1974	/* if not found, try doing it non-dt way */
1975	if (dev)
1976		devname = dev_name(dev);
1977
1978	mutex_lock(&regulator_list_mutex);
1979	list_for_each_entry(map, &regulator_map_list, list) {
1980		/* If the mapping has a device set up it must match */
1981		if (map->dev_name &&
1982		    (!devname || strcmp(map->dev_name, devname)))
1983			continue;
1984
1985		if (strcmp(map->supply, supply) == 0 &&
1986		    get_device(&map->regulator->dev)) {
1987			r = map->regulator;
1988			break;
1989		}
1990	}
1991	mutex_unlock(&regulator_list_mutex);
1992
1993	if (r)
1994		return r;
1995
1996	r = regulator_lookup_by_name(supply);
1997	if (r)
1998		return r;
1999
2000	return ERR_PTR(-ENODEV);
2001}
2002
2003static int regulator_resolve_supply(struct regulator_dev *rdev)
2004{
2005	struct regulator_dev *r;
2006	struct device *dev = rdev->dev.parent;
2007	struct ww_acquire_ctx ww_ctx;
2008	int ret = 0;
2009
2010	/* No supply to resolve? */
2011	if (!rdev->supply_name)
2012		return 0;
2013
2014	/* Supply already resolved? (fast-path without locking contention) */
2015	if (rdev->supply)
2016		return 0;
2017
2018	r = regulator_dev_lookup(dev, rdev->supply_name);
2019	if (IS_ERR(r)) {
2020		ret = PTR_ERR(r);
2021
2022		/* Did the lookup explicitly defer for us? */
2023		if (ret == -EPROBE_DEFER)
2024			goto out;
2025
2026		if (have_full_constraints()) {
2027			r = dummy_regulator_rdev;
2028			get_device(&r->dev);
2029		} else {
2030			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031				rdev->supply_name, rdev->desc->name);
2032			ret = -EPROBE_DEFER;
2033			goto out;
2034		}
2035	}
2036
2037	if (r == rdev) {
2038		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039			rdev->desc->name, rdev->supply_name);
2040		if (!have_full_constraints()) {
2041			ret = -EINVAL;
2042			goto out;
2043		}
2044		r = dummy_regulator_rdev;
2045		get_device(&r->dev);
2046	}
2047
2048	/*
2049	 * If the supply's parent device is not the same as the
2050	 * regulator's parent device, then ensure the parent device
2051	 * is bound before we resolve the supply, in case the parent
2052	 * device get probe deferred and unregisters the supply.
2053	 */
2054	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055		if (!device_is_bound(r->dev.parent)) {
2056			put_device(&r->dev);
2057			ret = -EPROBE_DEFER;
2058			goto out;
2059		}
2060	}
2061
2062	/* Recursively resolve the supply of the supply */
2063	ret = regulator_resolve_supply(r);
2064	if (ret < 0) {
2065		put_device(&r->dev);
2066		goto out;
2067	}
2068
2069	/*
2070	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071	 * between rdev->supply null check and setting rdev->supply in
2072	 * set_supply() from concurrent tasks.
2073	 */
2074	regulator_lock_two(rdev, r, &ww_ctx);
2075
2076	/* Supply just resolved by a concurrent task? */
2077	if (rdev->supply) {
2078		regulator_unlock_two(rdev, r, &ww_ctx);
2079		put_device(&r->dev);
2080		goto out;
2081	}
2082
2083	ret = set_supply(rdev, r);
2084	if (ret < 0) {
2085		regulator_unlock_two(rdev, r, &ww_ctx);
2086		put_device(&r->dev);
2087		goto out;
2088	}
2089
2090	regulator_unlock_two(rdev, r, &ww_ctx);
2091
2092	/*
2093	 * In set_machine_constraints() we may have turned this regulator on
2094	 * but we couldn't propagate to the supply if it hadn't been resolved
2095	 * yet.  Do it now.
2096	 */
2097	if (rdev->use_count) {
2098		ret = regulator_enable(rdev->supply);
2099		if (ret < 0) {
2100			_regulator_put(rdev->supply);
2101			rdev->supply = NULL;
2102			goto out;
2103		}
2104	}
2105
2106out:
2107	return ret;
2108}
2109
2110/* common pre-checks for regulator requests */
2111int _regulator_get_common_check(struct device *dev, const char *id,
2112				enum regulator_get_type get_type)
2113{
 
 
 
 
 
2114	if (get_type >= MAX_GET_TYPE) {
2115		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116		return -EINVAL;
2117	}
2118
2119	if (id == NULL) {
2120		dev_err(dev, "regulator request with no identifier\n");
2121		return -EINVAL;
2122	}
2123
2124	return 0;
2125}
2126
2127/**
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 *       Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2134 *
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136 *	    encoded error.
2137 *
2138 * This function should be chained with *regulator_dev_lookup() functions.
2139 */
2140struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141					const char *id, enum regulator_get_type get_type)
2142{
2143	struct regulator *regulator;
2144	struct device_link *link;
2145	int ret;
2146
2147	if (IS_ERR(rdev)) {
2148		ret = PTR_ERR(rdev);
2149
2150		/*
2151		 * If regulator_dev_lookup() fails with error other
2152		 * than -ENODEV our job here is done, we simply return it.
2153		 */
2154		if (ret != -ENODEV)
2155			return ERR_PTR(ret);
2156
2157		if (!have_full_constraints()) {
2158			dev_warn(dev,
2159				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160			return ERR_PTR(-ENODEV);
2161		}
2162
2163		switch (get_type) {
2164		case NORMAL_GET:
2165			/*
2166			 * Assume that a regulator is physically present and
2167			 * enabled, even if it isn't hooked up, and just
2168			 * provide a dummy.
2169			 */
2170			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171			rdev = dummy_regulator_rdev;
2172			get_device(&rdev->dev);
2173			break;
2174
2175		case EXCLUSIVE_GET:
2176			dev_warn(dev,
2177				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178			fallthrough;
2179
2180		default:
2181			return ERR_PTR(-ENODEV);
2182		}
2183	}
2184
2185	if (rdev->exclusive) {
2186		regulator = ERR_PTR(-EPERM);
2187		put_device(&rdev->dev);
2188		return regulator;
2189	}
2190
2191	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192		regulator = ERR_PTR(-EBUSY);
2193		put_device(&rdev->dev);
2194		return regulator;
2195	}
2196
2197	mutex_lock(&regulator_list_mutex);
2198	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199	mutex_unlock(&regulator_list_mutex);
2200
2201	if (ret != 0) {
2202		regulator = ERR_PTR(-EPROBE_DEFER);
2203		put_device(&rdev->dev);
2204		return regulator;
2205	}
2206
2207	ret = regulator_resolve_supply(rdev);
2208	if (ret < 0) {
2209		regulator = ERR_PTR(ret);
2210		put_device(&rdev->dev);
2211		return regulator;
2212	}
2213
2214	if (!try_module_get(rdev->owner)) {
2215		regulator = ERR_PTR(-EPROBE_DEFER);
2216		put_device(&rdev->dev);
2217		return regulator;
2218	}
2219
2220	regulator_lock(rdev);
2221	regulator = create_regulator(rdev, dev, id);
2222	regulator_unlock(rdev);
2223	if (regulator == NULL) {
2224		regulator = ERR_PTR(-ENOMEM);
2225		module_put(rdev->owner);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	rdev->open_count++;
2231	if (get_type == EXCLUSIVE_GET) {
2232		rdev->exclusive = 1;
2233
2234		ret = _regulator_is_enabled(rdev);
2235		if (ret > 0) {
2236			rdev->use_count = 1;
2237			regulator->enable_count = 1;
2238
2239			/* Propagate the regulator state to its supply */
2240			if (rdev->supply) {
2241				ret = regulator_enable(rdev->supply);
2242				if (ret < 0) {
2243					destroy_regulator(regulator);
2244					module_put(rdev->owner);
2245					put_device(&rdev->dev);
2246					return ERR_PTR(ret);
2247				}
2248			}
2249		} else {
2250			rdev->use_count = 0;
2251			regulator->enable_count = 0;
2252		}
2253	}
2254
2255	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256	if (!IS_ERR_OR_NULL(link))
2257		regulator->device_link = true;
2258
2259	return regulator;
2260}
2261
2262/* Internal regulator request function */
2263struct regulator *_regulator_get(struct device *dev, const char *id,
2264				 enum regulator_get_type get_type)
2265{
2266	struct regulator_dev *rdev;
2267	int ret;
2268
2269	ret = _regulator_get_common_check(dev, id, get_type);
2270	if (ret)
2271		return ERR_PTR(ret);
2272
2273	rdev = regulator_dev_lookup(dev, id);
2274	return _regulator_get_common(rdev, dev, id, get_type);
2275}
2276
2277/**
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2281 *
 
 
 
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged.  It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2286 *
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 *	   producer, or an ERR_PTR() encoded negative error number.
2289 */
2290struct regulator *regulator_get(struct device *dev, const char *id)
2291{
2292	return _regulator_get(dev, id, NORMAL_GET);
2293}
2294EXPORT_SYMBOL_GPL(regulator_get);
2295
2296/**
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2300 *
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
 
 
2304 *
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2308 * controlling.
2309 *
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged.  It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2314 *
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 *	   producer, or an ERR_PTR() encoded negative error number.
2317 */
2318struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2319{
2320	return _regulator_get(dev, id, EXCLUSIVE_GET);
2321}
2322EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2323
2324/**
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2328 *
 
 
 
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2334 * supplies.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged.  It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 *
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 *	   producer, or an ERR_PTR() encoded negative error number.
2343 */
2344struct regulator *regulator_get_optional(struct device *dev, const char *id)
2345{
2346	return _regulator_get(dev, id, OPTIONAL_GET);
2347}
2348EXPORT_SYMBOL_GPL(regulator_get_optional);
2349
2350static void destroy_regulator(struct regulator *regulator)
2351{
2352	struct regulator_dev *rdev = regulator->rdev;
2353
2354	debugfs_remove_recursive(regulator->debugfs);
2355
2356	if (regulator->dev) {
2357		if (regulator->device_link)
2358			device_link_remove(regulator->dev, &rdev->dev);
2359
2360		/* remove any sysfs entries */
2361		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2362	}
2363
2364	regulator_lock(rdev);
2365	list_del(&regulator->list);
2366
2367	rdev->open_count--;
2368	rdev->exclusive = 0;
2369	regulator_unlock(rdev);
2370
2371	kfree_const(regulator->supply_name);
2372	kfree(regulator);
2373}
2374
2375/* regulator_list_mutex lock held by regulator_put() */
2376static void _regulator_put(struct regulator *regulator)
2377{
2378	struct regulator_dev *rdev;
2379
2380	if (IS_ERR_OR_NULL(regulator))
2381		return;
2382
2383	lockdep_assert_held_once(&regulator_list_mutex);
2384
2385	/* Docs say you must disable before calling regulator_put() */
2386	WARN_ON(regulator->enable_count);
2387
2388	rdev = regulator->rdev;
2389
2390	destroy_regulator(regulator);
2391
2392	module_put(rdev->owner);
2393	put_device(&rdev->dev);
2394}
2395
2396/**
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2399 *
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2402 * this function.
2403 */
2404void regulator_put(struct regulator *regulator)
2405{
2406	mutex_lock(&regulator_list_mutex);
2407	_regulator_put(regulator);
2408	mutex_unlock(&regulator_list_mutex);
2409}
2410EXPORT_SYMBOL_GPL(regulator_put);
2411
2412/**
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2414 *
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2419 * supply
2420 *
2421 * All lookups for id on dev will instead be conducted for alias_id on
2422 * alias_dev.
2423 *
2424 * Return: 0 on success or a negative error number on failure.
2425 */
2426int regulator_register_supply_alias(struct device *dev, const char *id,
2427				    struct device *alias_dev,
2428				    const char *alias_id)
2429{
2430	struct regulator_supply_alias *map;
2431
2432	map = regulator_find_supply_alias(dev, id);
2433	if (map)
2434		return -EEXIST;
2435
2436	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437	if (!map)
2438		return -ENOMEM;
2439
2440	map->src_dev = dev;
2441	map->src_supply = id;
2442	map->alias_dev = alias_dev;
2443	map->alias_supply = alias_id;
2444
2445	list_add(&map->list, &regulator_supply_alias_list);
2446
2447	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448		id, dev_name(dev), alias_id, dev_name(alias_dev));
2449
2450	return 0;
2451}
2452EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2453
2454/**
2455 * regulator_unregister_supply_alias - Remove device alias
2456 *
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2459 *
2460 * Remove a lookup alias if one exists for id on dev.
2461 */
2462void regulator_unregister_supply_alias(struct device *dev, const char *id)
2463{
2464	struct regulator_supply_alias *map;
2465
2466	map = regulator_find_supply_alias(dev, id);
2467	if (map) {
2468		list_del(&map->list);
2469		kfree(map);
2470	}
2471}
2472EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2473
2474/**
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2476 *
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2481 * lookup the supply
2482 * @num_id: Number of aliases to register
2483 *
 
 
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation.  If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2488 *
2489 * Return: 0 on success or a negative error number on failure.
2490 */
2491int regulator_bulk_register_supply_alias(struct device *dev,
2492					 const char *const *id,
2493					 struct device *alias_dev,
2494					 const char *const *alias_id,
2495					 int num_id)
2496{
2497	int i;
2498	int ret;
2499
2500	for (i = 0; i < num_id; ++i) {
2501		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502						      alias_id[i]);
2503		if (ret < 0)
2504			goto err;
2505	}
2506
2507	return 0;
2508
2509err:
2510	dev_err(dev,
2511		"Failed to create supply alias %s,%s -> %s,%s\n",
2512		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2513
2514	while (--i >= 0)
2515		regulator_unregister_supply_alias(dev, id[i]);
2516
2517	return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2520
2521/**
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2523 *
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2527 *
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2530 */
2531void regulator_bulk_unregister_supply_alias(struct device *dev,
2532					    const char *const *id,
2533					    int num_id)
2534{
2535	int i;
2536
2537	for (i = 0; i < num_id; ++i)
2538		regulator_unregister_supply_alias(dev, id[i]);
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2541
2542
2543/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545				const struct regulator_config *config)
2546{
2547	struct regulator_enable_gpio *pin, *new_pin;
2548	struct gpio_desc *gpiod;
2549
2550	gpiod = config->ena_gpiod;
2551	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2552
2553	mutex_lock(&regulator_list_mutex);
2554
2555	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2556		if (pin->gpiod == gpiod) {
2557			rdev_dbg(rdev, "GPIO is already used\n");
2558			goto update_ena_gpio_to_rdev;
2559		}
2560	}
2561
2562	if (new_pin == NULL) {
2563		mutex_unlock(&regulator_list_mutex);
2564		return -ENOMEM;
2565	}
2566
2567	pin = new_pin;
2568	new_pin = NULL;
2569
2570	pin->gpiod = gpiod;
2571	list_add(&pin->list, &regulator_ena_gpio_list);
2572
2573update_ena_gpio_to_rdev:
2574	pin->request_count++;
2575	rdev->ena_pin = pin;
2576
2577	mutex_unlock(&regulator_list_mutex);
2578	kfree(new_pin);
2579
2580	return 0;
2581}
2582
2583static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2584{
2585	struct regulator_enable_gpio *pin, *n;
2586
2587	if (!rdev->ena_pin)
2588		return;
2589
2590	/* Free the GPIO only in case of no use */
2591	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2592		if (pin != rdev->ena_pin)
2593			continue;
2594
2595		if (--pin->request_count)
2596			break;
2597
2598		gpiod_put(pin->gpiod);
2599		list_del(&pin->list);
2600		kfree(pin);
2601		break;
2602	}
2603
2604	rdev->ena_pin = NULL;
2605}
2606
2607/**
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2611 *
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2614 *
2615 * Return: 0 on success or a negative error number on failure.
2616 */
2617static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2618{
2619	struct regulator_enable_gpio *pin = rdev->ena_pin;
2620
2621	if (!pin)
2622		return -EINVAL;
2623
2624	if (enable) {
2625		/* Enable GPIO at initial use */
2626		if (pin->enable_count == 0)
2627			gpiod_set_value_cansleep(pin->gpiod, 1);
2628
2629		pin->enable_count++;
2630	} else {
2631		if (pin->enable_count > 1) {
2632			pin->enable_count--;
2633			return 0;
2634		}
2635
2636		/* Disable GPIO if not used */
2637		if (pin->enable_count <= 1) {
2638			gpiod_set_value_cansleep(pin->gpiod, 0);
2639			pin->enable_count = 0;
2640		}
2641	}
2642
2643	return 0;
2644}
2645
2646/**
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 *				     interpreted as "regulator is enabled"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649 * @rdev: the regulator device to check
2650 *
2651 * Return:
2652 * * 1			- if status shows regulator is in enabled state
2653 * * 0			- if not enabled state
2654 * * Error Value	- as received from ops->get_status()
2655 */
2656static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2657{
2658	int ret = rdev->desc->ops->get_status(rdev);
2659
2660	if (ret < 0) {
2661		rdev_info(rdev, "get_status returned error: %d\n", ret);
2662		return ret;
2663	}
2664
2665	switch (ret) {
2666	case REGULATOR_STATUS_OFF:
2667	case REGULATOR_STATUS_ERROR:
2668	case REGULATOR_STATUS_UNDEFINED:
2669		return 0;
2670	default:
2671		return 1;
2672	}
2673}
2674
2675static int _regulator_do_enable(struct regulator_dev *rdev)
2676{
2677	int ret, delay;
2678
2679	/* Query before enabling in case configuration dependent.  */
2680	ret = _regulator_get_enable_time(rdev);
2681	if (ret >= 0) {
2682		delay = ret;
2683	} else {
2684		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685		delay = 0;
2686	}
2687
2688	trace_regulator_enable(rdev_get_name(rdev));
2689
2690	if (rdev->desc->off_on_delay) {
2691		/* if needed, keep a distance of off_on_delay from last time
2692		 * this regulator was disabled.
2693		 */
2694		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2696
2697		if (remaining > 0)
2698			fsleep(remaining);
2699	}
2700
2701	if (rdev->ena_pin) {
2702		if (!rdev->ena_gpio_state) {
2703			ret = regulator_ena_gpio_ctrl(rdev, true);
2704			if (ret < 0)
2705				return ret;
2706			rdev->ena_gpio_state = 1;
2707		}
2708	} else if (rdev->desc->ops->enable) {
2709		ret = rdev->desc->ops->enable(rdev);
2710		if (ret < 0)
2711			return ret;
2712	} else {
2713		return -EINVAL;
2714	}
2715
2716	/* Allow the regulator to ramp; it would be useful to extend
2717	 * this for bulk operations so that the regulators can ramp
2718	 * together.
2719	 */
2720	trace_regulator_enable_delay(rdev_get_name(rdev));
2721
2722	/* If poll_enabled_time is set, poll upto the delay calculated
2723	 * above, delaying poll_enabled_time uS to check if the regulator
2724	 * actually got enabled.
2725	 * If the regulator isn't enabled after our delay helper has expired,
2726	 * return -ETIMEDOUT.
2727	 */
2728	if (rdev->desc->poll_enabled_time) {
2729		int time_remaining = delay;
2730
2731		while (time_remaining > 0) {
2732			fsleep(rdev->desc->poll_enabled_time);
2733
2734			if (rdev->desc->ops->get_status) {
2735				ret = _regulator_check_status_enabled(rdev);
2736				if (ret < 0)
2737					return ret;
2738				else if (ret)
2739					break;
2740			} else if (rdev->desc->ops->is_enabled(rdev))
2741				break;
2742
2743			time_remaining -= rdev->desc->poll_enabled_time;
2744		}
2745
2746		if (time_remaining <= 0) {
2747			rdev_err(rdev, "Enabled check timed out\n");
2748			return -ETIMEDOUT;
2749		}
2750	} else {
2751		fsleep(delay);
2752	}
2753
2754	trace_regulator_enable_complete(rdev_get_name(rdev));
2755
2756	return 0;
2757}
2758
2759/**
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2762 *
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled.  Explained in example with two consumers of the same
2766 * regulator:
2767 *   consumer A: set_load(100);       => total load = 0
2768 *   consumer A: regulator_enable();  => total load = 100
2769 *   consumer B: set_load(1000);      => total load = 100
2770 *   consumer B: regulator_enable();  => total load = 1100
2771 *   consumer A: regulator_disable(); => total_load = 1000
2772 *
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2776 *
2777 * Return: 0 on success or negative error number on failure.
2778 */
2779static int _regulator_handle_consumer_enable(struct regulator *regulator)
2780{
2781	int ret;
2782	struct regulator_dev *rdev = regulator->rdev;
2783
2784	lockdep_assert_held_once(&rdev->mutex.base);
2785
2786	regulator->enable_count++;
2787	if (regulator->uA_load && regulator->enable_count == 1) {
2788		ret = drms_uA_update(rdev);
2789		if (ret)
2790			regulator->enable_count--;
2791		return ret;
2792	}
2793
2794	return 0;
2795}
2796
2797/**
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2800 *
2801 * The opposite of _regulator_handle_consumer_enable().
2802 *
2803 * Return: 0 on success or a negative error number on failure.
2804 */
2805static int _regulator_handle_consumer_disable(struct regulator *regulator)
2806{
2807	struct regulator_dev *rdev = regulator->rdev;
2808
2809	lockdep_assert_held_once(&rdev->mutex.base);
2810
2811	if (!regulator->enable_count) {
2812		rdev_err(rdev, "Underflow of regulator enable count\n");
2813		return -EINVAL;
2814	}
2815
2816	regulator->enable_count--;
2817	if (regulator->uA_load && regulator->enable_count == 0)
2818		return drms_uA_update(rdev);
2819
2820	return 0;
2821}
2822
2823/* locks held by regulator_enable() */
2824static int _regulator_enable(struct regulator *regulator)
2825{
2826	struct regulator_dev *rdev = regulator->rdev;
2827	int ret;
2828
2829	lockdep_assert_held_once(&rdev->mutex.base);
2830
2831	if (rdev->use_count == 0 && rdev->supply) {
2832		ret = _regulator_enable(rdev->supply);
2833		if (ret < 0)
2834			return ret;
2835	}
2836
2837	/* balance only if there are regulators coupled */
2838	if (rdev->coupling_desc.n_coupled > 1) {
2839		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840		if (ret < 0)
2841			goto err_disable_supply;
2842	}
2843
2844	ret = _regulator_handle_consumer_enable(regulator);
2845	if (ret < 0)
2846		goto err_disable_supply;
2847
2848	if (rdev->use_count == 0) {
2849		/*
2850		 * The regulator may already be enabled if it's not switchable
2851		 * or was left on
2852		 */
2853		ret = _regulator_is_enabled(rdev);
2854		if (ret == -EINVAL || ret == 0) {
2855			if (!regulator_ops_is_valid(rdev,
2856					REGULATOR_CHANGE_STATUS)) {
2857				ret = -EPERM;
2858				goto err_consumer_disable;
2859			}
2860
2861			ret = _regulator_do_enable(rdev);
2862			if (ret < 0)
2863				goto err_consumer_disable;
2864
2865			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866					     NULL);
2867		} else if (ret < 0) {
2868			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869			goto err_consumer_disable;
2870		}
2871		/* Fallthrough on positive return values - already enabled */
2872	}
2873
2874	if (regulator->enable_count == 1)
2875		rdev->use_count++;
2876
2877	return 0;
2878
2879err_consumer_disable:
2880	_regulator_handle_consumer_disable(regulator);
2881
2882err_disable_supply:
2883	if (rdev->use_count == 0 && rdev->supply)
2884		_regulator_disable(rdev->supply);
2885
2886	return ret;
2887}
2888
2889/**
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2892 *
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value.  Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2896 *
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2899 *
2900 * Return: 0 on success or a negative error number on failure.
2901 */
2902int regulator_enable(struct regulator *regulator)
2903{
2904	struct regulator_dev *rdev = regulator->rdev;
2905	struct ww_acquire_ctx ww_ctx;
2906	int ret;
2907
2908	regulator_lock_dependent(rdev, &ww_ctx);
2909	ret = _regulator_enable(regulator);
2910	regulator_unlock_dependent(rdev, &ww_ctx);
2911
2912	return ret;
2913}
2914EXPORT_SYMBOL_GPL(regulator_enable);
2915
2916static int _regulator_do_disable(struct regulator_dev *rdev)
2917{
2918	int ret;
2919
2920	trace_regulator_disable(rdev_get_name(rdev));
2921
2922	if (rdev->ena_pin) {
2923		if (rdev->ena_gpio_state) {
2924			ret = regulator_ena_gpio_ctrl(rdev, false);
2925			if (ret < 0)
2926				return ret;
2927			rdev->ena_gpio_state = 0;
2928		}
2929
2930	} else if (rdev->desc->ops->disable) {
2931		ret = rdev->desc->ops->disable(rdev);
2932		if (ret != 0)
2933			return ret;
2934	}
2935
2936	if (rdev->desc->off_on_delay)
2937		rdev->last_off = ktime_get_boottime();
2938
2939	trace_regulator_disable_complete(rdev_get_name(rdev));
2940
2941	return 0;
2942}
2943
2944/* locks held by regulator_disable() */
2945static int _regulator_disable(struct regulator *regulator)
2946{
2947	struct regulator_dev *rdev = regulator->rdev;
2948	int ret = 0;
2949
2950	lockdep_assert_held_once(&rdev->mutex.base);
2951
2952	if (WARN(regulator->enable_count == 0,
2953		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954		return -EIO;
2955
2956	if (regulator->enable_count == 1) {
2957	/* disabling last enable_count from this regulator */
2958		/* are we the last user and permitted to disable ? */
2959		if (rdev->use_count == 1 &&
2960		    (rdev->constraints && !rdev->constraints->always_on)) {
2961
2962			/* we are last user */
2963			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964				ret = _notifier_call_chain(rdev,
2965							   REGULATOR_EVENT_PRE_DISABLE,
2966							   NULL);
2967				if (ret & NOTIFY_STOP_MASK)
2968					return -EINVAL;
2969
2970				ret = _regulator_do_disable(rdev);
2971				if (ret < 0) {
2972					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973					_notifier_call_chain(rdev,
2974							REGULATOR_EVENT_ABORT_DISABLE,
2975							NULL);
2976					return ret;
2977				}
2978				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979						NULL);
 
2980			}
2981
2982			rdev->use_count = 0;
2983		} else if (rdev->use_count > 1) {
2984			rdev->use_count--;
2985		}
 
 
 
 
2986	}
2987
2988	if (ret == 0)
2989		ret = _regulator_handle_consumer_disable(regulator);
2990
2991	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2993
2994	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995		ret = _regulator_disable(rdev->supply);
2996
2997	return ret;
2998}
2999
3000/**
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3003 *
3004 * Disable the regulator output voltage or current.  Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3007 *
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3011 *
3012 * Return: 0 on success or a negative error number on failure.
3013 */
3014int regulator_disable(struct regulator *regulator)
3015{
3016	struct regulator_dev *rdev = regulator->rdev;
3017	struct ww_acquire_ctx ww_ctx;
3018	int ret;
3019
3020	regulator_lock_dependent(rdev, &ww_ctx);
3021	ret = _regulator_disable(regulator);
3022	regulator_unlock_dependent(rdev, &ww_ctx);
3023
3024	return ret;
3025}
3026EXPORT_SYMBOL_GPL(regulator_disable);
3027
3028/* locks held by regulator_force_disable() */
3029static int _regulator_force_disable(struct regulator_dev *rdev)
3030{
3031	int ret = 0;
3032
3033	lockdep_assert_held_once(&rdev->mutex.base);
3034
3035	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036			REGULATOR_EVENT_PRE_DISABLE, NULL);
3037	if (ret & NOTIFY_STOP_MASK)
3038		return -EINVAL;
3039
3040	ret = _regulator_do_disable(rdev);
3041	if (ret < 0) {
3042		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045		return ret;
3046	}
3047
3048	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049			REGULATOR_EVENT_DISABLE, NULL);
3050
3051	return 0;
3052}
3053
3054/**
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3057 *
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3062 *
3063 * Return: 0 on success or a negative error number on failure.
3064 */
3065int regulator_force_disable(struct regulator *regulator)
3066{
3067	struct regulator_dev *rdev = regulator->rdev;
3068	struct ww_acquire_ctx ww_ctx;
3069	int ret;
3070
3071	regulator_lock_dependent(rdev, &ww_ctx);
3072
3073	ret = _regulator_force_disable(regulator->rdev);
3074
3075	if (rdev->coupling_desc.n_coupled > 1)
3076		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3077
3078	if (regulator->uA_load) {
3079		regulator->uA_load = 0;
3080		ret = drms_uA_update(rdev);
3081	}
3082
3083	if (rdev->use_count != 0 && rdev->supply)
3084		_regulator_disable(rdev->supply);
3085
3086	regulator_unlock_dependent(rdev, &ww_ctx);
3087
3088	return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_force_disable);
3091
3092static void regulator_disable_work(struct work_struct *work)
3093{
3094	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095						  disable_work.work);
3096	struct ww_acquire_ctx ww_ctx;
3097	int count, i, ret;
3098	struct regulator *regulator;
3099	int total_count = 0;
3100
3101	regulator_lock_dependent(rdev, &ww_ctx);
3102
3103	/*
3104	 * Workqueue functions queue the new work instance while the previous
3105	 * work instance is being processed. Cancel the queued work instance
3106	 * as the work instance under processing does the job of the queued
3107	 * work instance.
3108	 */
3109	cancel_delayed_work(&rdev->disable_work);
3110
3111	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112		count = regulator->deferred_disables;
3113
3114		if (!count)
3115			continue;
3116
3117		total_count += count;
3118		regulator->deferred_disables = 0;
3119
3120		for (i = 0; i < count; i++) {
3121			ret = _regulator_disable(regulator);
3122			if (ret != 0)
3123				rdev_err(rdev, "Deferred disable failed: %pe\n",
3124					 ERR_PTR(ret));
3125		}
3126	}
3127	WARN_ON(!total_count);
3128
3129	if (rdev->coupling_desc.n_coupled > 1)
3130		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132	regulator_unlock_dependent(rdev, &ww_ctx);
3133}
3134
3135/**
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3139 *
3140 * Execute regulator_disable() on the regulator after a delay.  This
3141 * is intended for use with devices that require some time to quiesce.
3142 *
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3146 *
3147 * Return: 0 on success or a negative error number on failure.
3148 */
3149int regulator_disable_deferred(struct regulator *regulator, int ms)
3150{
3151	struct regulator_dev *rdev = regulator->rdev;
3152
3153	if (!ms)
3154		return regulator_disable(regulator);
3155
3156	regulator_lock(rdev);
3157	regulator->deferred_disables++;
3158	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159			 msecs_to_jiffies(ms));
3160	regulator_unlock(rdev);
3161
3162	return 0;
3163}
3164EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3165
3166static int _regulator_is_enabled(struct regulator_dev *rdev)
3167{
3168	/* A GPIO control always takes precedence */
3169	if (rdev->ena_pin)
3170		return rdev->ena_gpio_state;
3171
3172	/* If we don't know then assume that the regulator is always on */
3173	if (!rdev->desc->ops->is_enabled)
3174		return 1;
3175
3176	return rdev->desc->ops->is_enabled(rdev);
3177}
3178
3179static int _regulator_list_voltage(struct regulator_dev *rdev,
3180				   unsigned selector, int lock)
3181{
3182	const struct regulator_ops *ops = rdev->desc->ops;
3183	int ret;
3184
3185	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186		return rdev->desc->fixed_uV;
3187
3188	if (ops->list_voltage) {
3189		if (selector >= rdev->desc->n_voltages)
3190			return -EINVAL;
3191		if (selector < rdev->desc->linear_min_sel)
3192			return 0;
3193		if (lock)
3194			regulator_lock(rdev);
3195		ret = ops->list_voltage(rdev, selector);
3196		if (lock)
3197			regulator_unlock(rdev);
3198	} else if (rdev->is_switch && rdev->supply) {
3199		ret = _regulator_list_voltage(rdev->supply->rdev,
3200					      selector, lock);
3201	} else {
3202		return -EINVAL;
3203	}
3204
3205	if (ret > 0) {
3206		if (ret < rdev->constraints->min_uV)
3207			ret = 0;
3208		else if (ret > rdev->constraints->max_uV)
3209			ret = 0;
3210	}
3211
3212	return ret;
3213}
3214
3215/**
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3218 *
 
 
 
 
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3222 *
3223 * Return: Positive if the regulator driver backing the source/client
3224 *	   has requested that the device be enabled, zero if it hasn't,
3225 *	   else a negative error number.
3226 */
3227int regulator_is_enabled(struct regulator *regulator)
3228{
3229	int ret;
3230
3231	if (regulator->always_on)
3232		return 1;
3233
3234	regulator_lock(regulator->rdev);
3235	ret = _regulator_is_enabled(regulator->rdev);
3236	regulator_unlock(regulator->rdev);
3237
3238	return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_is_enabled);
3241
3242/**
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3245 *
3246 * Return: Number of selectors for @regulator, or negative error number.
3247 *
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3250 */
3251int regulator_count_voltages(struct regulator *regulator)
3252{
3253	struct regulator_dev	*rdev = regulator->rdev;
3254
3255	if (rdev->desc->n_voltages)
3256		return rdev->desc->n_voltages;
3257
3258	if (!rdev->is_switch || !rdev->supply)
3259		return -EINVAL;
3260
3261	return regulator_count_voltages(rdev->supply);
3262}
3263EXPORT_SYMBOL_GPL(regulator_count_voltages);
3264
3265/**
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3270 *
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 *	   0 if @selector can't be used on this system, or a negative error
3273 *	   number on failure.
3274 */
3275int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3276{
3277	return _regulator_list_voltage(regulator->rdev, selector, 1);
3278}
3279EXPORT_SYMBOL_GPL(regulator_list_voltage);
3280
3281/**
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3284 *
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3287 */
3288struct regmap *regulator_get_regmap(struct regulator *regulator)
3289{
3290	struct regmap *map = regulator->rdev->regmap;
3291
3292	return map ? map : ERR_PTR(-EOPNOTSUPP);
3293}
3294EXPORT_SYMBOL_GPL(regulator_get_regmap);
3295
3296/**
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3301 *
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3305 * for example.
3306 *
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 *         voltage selectors.
3309 *
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3312 */
3313int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314					 unsigned *vsel_reg,
3315					 unsigned *vsel_mask)
3316{
3317	struct regulator_dev *rdev = regulator->rdev;
3318	const struct regulator_ops *ops = rdev->desc->ops;
3319
3320	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321		return -EOPNOTSUPP;
3322
3323	*vsel_reg = rdev->desc->vsel_reg;
3324	*vsel_mask = rdev->desc->vsel_mask;
3325
3326	return 0;
3327}
3328EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3329
3330/**
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3334 *
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3338 *
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3341 *	   selectors.
3342 */
3343int regulator_list_hardware_vsel(struct regulator *regulator,
3344				 unsigned selector)
3345{
3346	struct regulator_dev *rdev = regulator->rdev;
3347	const struct regulator_ops *ops = rdev->desc->ops;
3348
3349	if (selector >= rdev->desc->n_voltages)
3350		return -EINVAL;
3351	if (selector < rdev->desc->linear_min_sel)
3352		return 0;
3353	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354		return -EOPNOTSUPP;
3355
3356	return selector;
3357}
3358EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3359
3360/**
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3364 *
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3367 *
3368 * Return: 0 on success or a negative error number on failure.
3369 */
3370int regulator_hardware_enable(struct regulator *regulator, bool enable)
3371{
3372	struct regulator_dev *rdev = regulator->rdev;
3373	const struct regulator_ops *ops = rdev->desc->ops;
3374	int ret = -EOPNOTSUPP;
3375
3376	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377		return ret;
3378
3379	if (enable)
3380		ret = ops->enable(rdev);
3381	else
3382		ret = ops->disable(rdev);
3383
3384	return ret;
3385}
3386EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3387
3388/**
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3391 *
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 *	   or 0 if the regulator isn't a linear regulator.
3394 */
3395unsigned int regulator_get_linear_step(struct regulator *regulator)
3396{
3397	struct regulator_dev *rdev = regulator->rdev;
3398
3399	return rdev->desc->uV_step;
3400}
3401EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402
3403/**
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3405 *
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3409 *
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 *	   number if @regulator's voltage can't be changed and voltage readback
3412 *	   failed.
3413 */
3414int regulator_is_supported_voltage(struct regulator *regulator,
3415				   int min_uV, int max_uV)
3416{
3417	struct regulator_dev *rdev = regulator->rdev;
3418	int i, voltages, ret;
3419
3420	/* If we can't change voltage check the current voltage */
3421	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422		ret = regulator_get_voltage(regulator);
3423		if (ret >= 0)
3424			return min_uV <= ret && ret <= max_uV;
3425		else
3426			return ret;
3427	}
3428
3429	/* Any voltage within constrains range is fine? */
3430	if (rdev->desc->continuous_voltage_range)
3431		return min_uV >= rdev->constraints->min_uV &&
3432				max_uV <= rdev->constraints->max_uV;
3433
3434	ret = regulator_count_voltages(regulator);
3435	if (ret < 0)
3436		return 0;
3437	voltages = ret;
3438
3439	for (i = 0; i < voltages; i++) {
3440		ret = regulator_list_voltage(regulator, i);
3441
3442		if (ret >= min_uV && ret <= max_uV)
3443			return 1;
3444	}
3445
3446	return 0;
3447}
3448EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449
3450static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451				 int max_uV)
3452{
3453	const struct regulator_desc *desc = rdev->desc;
3454
3455	if (desc->ops->map_voltage)
3456		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457
3458	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460
3461	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463
3464	if (desc->ops->list_voltage ==
3465		regulator_list_voltage_pickable_linear_range)
3466		return regulator_map_voltage_pickable_linear_range(rdev,
3467							min_uV, max_uV);
3468
3469	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470}
3471
3472static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473				       int min_uV, int max_uV,
3474				       unsigned *selector)
3475{
3476	struct pre_voltage_change_data data;
3477	int ret;
3478
3479	data.old_uV = regulator_get_voltage_rdev(rdev);
3480	data.min_uV = min_uV;
3481	data.max_uV = max_uV;
3482	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483				   &data);
3484	if (ret & NOTIFY_STOP_MASK)
3485		return -EINVAL;
3486
3487	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488	if (ret >= 0)
3489		return ret;
3490
3491	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492			     (void *)data.old_uV);
3493
3494	return ret;
3495}
3496
3497static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498					   int uV, unsigned selector)
3499{
3500	struct pre_voltage_change_data data;
3501	int ret;
3502
3503	data.old_uV = regulator_get_voltage_rdev(rdev);
3504	data.min_uV = uV;
3505	data.max_uV = uV;
3506	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507				   &data);
3508	if (ret & NOTIFY_STOP_MASK)
3509		return -EINVAL;
3510
3511	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512	if (ret >= 0)
3513		return ret;
3514
3515	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516			     (void *)data.old_uV);
3517
3518	return ret;
3519}
3520
3521static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522					   int uV, int new_selector)
3523{
3524	const struct regulator_ops *ops = rdev->desc->ops;
3525	int diff, old_sel, curr_sel, ret;
3526
3527	/* Stepping is only needed if the regulator is enabled. */
3528	if (!_regulator_is_enabled(rdev))
3529		goto final_set;
3530
3531	if (!ops->get_voltage_sel)
3532		return -EINVAL;
3533
3534	old_sel = ops->get_voltage_sel(rdev);
3535	if (old_sel < 0)
3536		return old_sel;
3537
3538	diff = new_selector - old_sel;
3539	if (diff == 0)
3540		return 0; /* No change needed. */
3541
3542	if (diff > 0) {
3543		/* Stepping up. */
3544		for (curr_sel = old_sel + rdev->desc->vsel_step;
3545		     curr_sel < new_selector;
3546		     curr_sel += rdev->desc->vsel_step) {
3547			/*
3548			 * Call the callback directly instead of using
3549			 * _regulator_call_set_voltage_sel() as we don't
3550			 * want to notify anyone yet. Same in the branch
3551			 * below.
3552			 */
3553			ret = ops->set_voltage_sel(rdev, curr_sel);
3554			if (ret)
3555				goto try_revert;
3556		}
3557	} else {
3558		/* Stepping down. */
3559		for (curr_sel = old_sel - rdev->desc->vsel_step;
3560		     curr_sel > new_selector;
3561		     curr_sel -= rdev->desc->vsel_step) {
3562			ret = ops->set_voltage_sel(rdev, curr_sel);
3563			if (ret)
3564				goto try_revert;
3565		}
3566	}
3567
3568final_set:
3569	/* The final selector will trigger the notifiers. */
3570	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571
3572try_revert:
3573	/*
3574	 * At least try to return to the previous voltage if setting a new
3575	 * one failed.
3576	 */
3577	(void)ops->set_voltage_sel(rdev, old_sel);
3578	return ret;
3579}
3580
3581static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582				       int old_uV, int new_uV)
3583{
3584	unsigned int ramp_delay = 0;
3585
3586	if (rdev->constraints->ramp_delay)
3587		ramp_delay = rdev->constraints->ramp_delay;
3588	else if (rdev->desc->ramp_delay)
3589		ramp_delay = rdev->desc->ramp_delay;
3590	else if (rdev->constraints->settling_time)
3591		return rdev->constraints->settling_time;
3592	else if (rdev->constraints->settling_time_up &&
3593		 (new_uV > old_uV))
3594		return rdev->constraints->settling_time_up;
3595	else if (rdev->constraints->settling_time_down &&
3596		 (new_uV < old_uV))
3597		return rdev->constraints->settling_time_down;
3598
3599	if (ramp_delay == 0)
 
3600		return 0;
 
3601
3602	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603}
3604
3605static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606				     int min_uV, int max_uV)
3607{
3608	int ret;
3609	int delay = 0;
3610	int best_val = 0;
3611	unsigned int selector;
3612	int old_selector = -1;
3613	const struct regulator_ops *ops = rdev->desc->ops;
3614	int old_uV = regulator_get_voltage_rdev(rdev);
3615
3616	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617
3618	min_uV += rdev->constraints->uV_offset;
3619	max_uV += rdev->constraints->uV_offset;
3620
3621	/*
3622	 * If we can't obtain the old selector there is not enough
3623	 * info to call set_voltage_time_sel().
3624	 */
3625	if (_regulator_is_enabled(rdev) &&
3626	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627		old_selector = ops->get_voltage_sel(rdev);
3628		if (old_selector < 0)
3629			return old_selector;
3630	}
3631
3632	if (ops->set_voltage) {
3633		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634						  &selector);
3635
3636		if (ret >= 0) {
3637			if (ops->list_voltage)
3638				best_val = ops->list_voltage(rdev,
3639							     selector);
3640			else
3641				best_val = regulator_get_voltage_rdev(rdev);
3642		}
3643
3644	} else if (ops->set_voltage_sel) {
3645		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646		if (ret >= 0) {
3647			best_val = ops->list_voltage(rdev, ret);
3648			if (min_uV <= best_val && max_uV >= best_val) {
3649				selector = ret;
3650				if (old_selector == selector)
3651					ret = 0;
3652				else if (rdev->desc->vsel_step)
3653					ret = _regulator_set_voltage_sel_step(
3654						rdev, best_val, selector);
3655				else
3656					ret = _regulator_call_set_voltage_sel(
3657						rdev, best_val, selector);
3658			} else {
3659				ret = -EINVAL;
3660			}
3661		}
3662	} else {
3663		ret = -EINVAL;
3664	}
3665
3666	if (ret)
3667		goto out;
3668
3669	if (ops->set_voltage_time_sel) {
3670		/*
3671		 * Call set_voltage_time_sel if successfully obtained
3672		 * old_selector
3673		 */
3674		if (old_selector >= 0 && old_selector != selector)
3675			delay = ops->set_voltage_time_sel(rdev, old_selector,
3676							  selector);
3677	} else {
3678		if (old_uV != best_val) {
3679			if (ops->set_voltage_time)
3680				delay = ops->set_voltage_time(rdev, old_uV,
3681							      best_val);
3682			else
3683				delay = _regulator_set_voltage_time(rdev,
3684								    old_uV,
3685								    best_val);
3686		}
3687	}
3688
3689	if (delay < 0) {
3690		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691		delay = 0;
3692	}
3693
3694	/* Insert any necessary delays */
3695	fsleep(delay);
 
 
 
 
 
3696
3697	if (best_val >= 0) {
3698		unsigned long data = best_val;
3699
3700		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701				     (void *)data);
3702	}
3703
3704out:
3705	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706
3707	return ret;
3708}
3709
3710static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711				  int min_uV, int max_uV, suspend_state_t state)
3712{
3713	struct regulator_state *rstate;
3714	int uV, sel;
3715
3716	rstate = regulator_get_suspend_state(rdev, state);
3717	if (rstate == NULL)
3718		return -EINVAL;
3719
3720	if (min_uV < rstate->min_uV)
3721		min_uV = rstate->min_uV;
3722	if (max_uV > rstate->max_uV)
3723		max_uV = rstate->max_uV;
3724
3725	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726	if (sel < 0)
3727		return sel;
3728
3729	uV = rdev->desc->ops->list_voltage(rdev, sel);
3730	if (uV >= min_uV && uV <= max_uV)
3731		rstate->uV = uV;
3732
3733	return 0;
3734}
3735
3736static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737					  int min_uV, int max_uV,
3738					  suspend_state_t state)
3739{
3740	struct regulator_dev *rdev = regulator->rdev;
3741	struct regulator_voltage *voltage = &regulator->voltage[state];
3742	int ret = 0;
3743	int old_min_uV, old_max_uV;
3744	int current_uV;
3745
3746	/* If we're setting the same range as last time the change
3747	 * should be a noop (some cpufreq implementations use the same
3748	 * voltage for multiple frequencies, for example).
3749	 */
3750	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751		goto out;
3752
3753	/* If we're trying to set a range that overlaps the current voltage,
3754	 * return successfully even though the regulator does not support
3755	 * changing the voltage.
3756	 */
3757	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758		current_uV = regulator_get_voltage_rdev(rdev);
3759		if (min_uV <= current_uV && current_uV <= max_uV) {
3760			voltage->min_uV = min_uV;
3761			voltage->max_uV = max_uV;
3762			goto out;
3763		}
3764	}
3765
3766	/* sanity check */
3767	if (!rdev->desc->ops->set_voltage &&
3768	    !rdev->desc->ops->set_voltage_sel) {
3769		ret = -EINVAL;
3770		goto out;
3771	}
3772
3773	/* constraints check */
3774	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775	if (ret < 0)
3776		goto out;
3777
3778	/* restore original values in case of error */
3779	old_min_uV = voltage->min_uV;
3780	old_max_uV = voltage->max_uV;
3781	voltage->min_uV = min_uV;
3782	voltage->max_uV = max_uV;
3783
3784	/* for not coupled regulators this will just set the voltage */
3785	ret = regulator_balance_voltage(rdev, state);
3786	if (ret < 0) {
3787		voltage->min_uV = old_min_uV;
3788		voltage->max_uV = old_max_uV;
3789	}
3790
3791out:
3792	return ret;
3793}
3794
3795int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796			       int max_uV, suspend_state_t state)
3797{
3798	int best_supply_uV = 0;
3799	int supply_change_uV = 0;
3800	int ret;
3801
3802	if (rdev->supply &&
3803	    regulator_ops_is_valid(rdev->supply->rdev,
3804				   REGULATOR_CHANGE_VOLTAGE) &&
3805	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806					   rdev->desc->ops->get_voltage_sel))) {
3807		int current_supply_uV;
3808		int selector;
3809
3810		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811		if (selector < 0) {
3812			ret = selector;
3813			goto out;
3814		}
3815
3816		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817		if (best_supply_uV < 0) {
3818			ret = best_supply_uV;
3819			goto out;
3820		}
3821
3822		best_supply_uV += rdev->desc->min_dropout_uV;
3823
3824		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825		if (current_supply_uV < 0) {
3826			ret = current_supply_uV;
3827			goto out;
3828		}
3829
3830		supply_change_uV = best_supply_uV - current_supply_uV;
3831	}
3832
3833	if (supply_change_uV > 0) {
3834		ret = regulator_set_voltage_unlocked(rdev->supply,
3835				best_supply_uV, INT_MAX, state);
3836		if (ret) {
3837			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838				ERR_PTR(ret));
3839			goto out;
3840		}
3841	}
3842
3843	if (state == PM_SUSPEND_ON)
3844		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845	else
3846		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847							max_uV, state);
3848	if (ret < 0)
3849		goto out;
3850
3851	if (supply_change_uV < 0) {
3852		ret = regulator_set_voltage_unlocked(rdev->supply,
3853				best_supply_uV, INT_MAX, state);
3854		if (ret)
3855			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856				 ERR_PTR(ret));
3857		/* No need to fail here */
3858		ret = 0;
3859	}
3860
3861out:
3862	return ret;
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865
3866static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867					int *current_uV, int *min_uV)
3868{
3869	struct regulation_constraints *constraints = rdev->constraints;
3870
3871	/* Limit voltage change only if necessary */
3872	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873		return 1;
3874
3875	if (*current_uV < 0) {
3876		*current_uV = regulator_get_voltage_rdev(rdev);
3877
3878		if (*current_uV < 0)
3879			return *current_uV;
3880	}
3881
3882	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883		return 1;
3884
3885	/* Clamp target voltage within the given step */
3886	if (*current_uV < *min_uV)
3887		*min_uV = min(*current_uV + constraints->max_uV_step,
3888			      *min_uV);
3889	else
3890		*min_uV = max(*current_uV - constraints->max_uV_step,
3891			      *min_uV);
3892
3893	return 0;
3894}
3895
3896static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897					 int *current_uV,
3898					 int *min_uV, int *max_uV,
3899					 suspend_state_t state,
3900					 int n_coupled)
3901{
3902	struct coupling_desc *c_desc = &rdev->coupling_desc;
3903	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904	struct regulation_constraints *constraints = rdev->constraints;
3905	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906	int max_current_uV = 0, min_current_uV = INT_MAX;
3907	int highest_min_uV = 0, target_uV, possible_uV;
3908	int i, ret, max_spread;
3909	bool done;
3910
3911	*current_uV = -1;
3912
3913	/*
3914	 * If there are no coupled regulators, simply set the voltage
3915	 * demanded by consumers.
3916	 */
3917	if (n_coupled == 1) {
3918		/*
3919		 * If consumers don't provide any demands, set voltage
3920		 * to min_uV
3921		 */
3922		desired_min_uV = constraints->min_uV;
3923		desired_max_uV = constraints->max_uV;
3924
3925		ret = regulator_check_consumers(rdev,
3926						&desired_min_uV,
3927						&desired_max_uV, state);
3928		if (ret < 0)
3929			return ret;
3930
 
3931		done = true;
3932
3933		goto finish;
3934	}
3935
3936	/* Find highest min desired voltage */
3937	for (i = 0; i < n_coupled; i++) {
3938		int tmp_min = 0;
3939		int tmp_max = INT_MAX;
3940
3941		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3942
3943		ret = regulator_check_consumers(c_rdevs[i],
3944						&tmp_min,
3945						&tmp_max, state);
3946		if (ret < 0)
3947			return ret;
3948
3949		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950		if (ret < 0)
3951			return ret;
3952
3953		highest_min_uV = max(highest_min_uV, tmp_min);
3954
3955		if (i == 0) {
3956			desired_min_uV = tmp_min;
3957			desired_max_uV = tmp_max;
3958		}
3959	}
3960
3961	max_spread = constraints->max_spread[0];
3962
3963	/*
3964	 * Let target_uV be equal to the desired one if possible.
3965	 * If not, set it to minimum voltage, allowed by other coupled
3966	 * regulators.
3967	 */
3968	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3969
3970	/*
3971	 * Find min and max voltages, which currently aren't violating
3972	 * max_spread.
3973	 */
3974	for (i = 1; i < n_coupled; i++) {
3975		int tmp_act;
3976
3977		if (!_regulator_is_enabled(c_rdevs[i]))
3978			continue;
3979
3980		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981		if (tmp_act < 0)
3982			return tmp_act;
3983
3984		min_current_uV = min(tmp_act, min_current_uV);
3985		max_current_uV = max(tmp_act, max_current_uV);
3986	}
3987
3988	/* There aren't any other regulators enabled */
3989	if (max_current_uV == 0) {
3990		possible_uV = target_uV;
3991	} else {
3992		/*
3993		 * Correct target voltage, so as it currently isn't
3994		 * violating max_spread
3995		 */
3996		possible_uV = max(target_uV, max_current_uV - max_spread);
3997		possible_uV = min(possible_uV, min_current_uV + max_spread);
3998	}
3999
4000	if (possible_uV > desired_max_uV)
4001		return -EINVAL;
4002
4003	done = (possible_uV == target_uV);
4004	desired_min_uV = possible_uV;
4005
4006finish:
4007	/* Apply max_uV_step constraint if necessary */
4008	if (state == PM_SUSPEND_ON) {
4009		ret = regulator_limit_voltage_step(rdev, current_uV,
4010						   &desired_min_uV);
4011		if (ret < 0)
4012			return ret;
4013
4014		if (ret == 0)
4015			done = false;
4016	}
4017
4018	/* Set current_uV if wasn't done earlier in the code and if necessary */
4019	if (n_coupled > 1 && *current_uV == -1) {
4020
4021		if (_regulator_is_enabled(rdev)) {
4022			ret = regulator_get_voltage_rdev(rdev);
4023			if (ret < 0)
4024				return ret;
4025
4026			*current_uV = ret;
4027		} else {
4028			*current_uV = desired_min_uV;
4029		}
4030	}
4031
4032	*min_uV = desired_min_uV;
4033	*max_uV = desired_max_uV;
4034
4035	return done;
4036}
4037
4038int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039				 suspend_state_t state, bool skip_coupled)
4040{
4041	struct regulator_dev **c_rdevs;
4042	struct regulator_dev *best_rdev;
4043	struct coupling_desc *c_desc = &rdev->coupling_desc;
4044	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045	unsigned int delta, best_delta;
4046	unsigned long c_rdev_done = 0;
4047	bool best_c_rdev_done;
4048
4049	c_rdevs = c_desc->coupled_rdevs;
4050	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4051
4052	/*
4053	 * Find the best possible voltage change on each loop. Leave the loop
4054	 * if there isn't any possible change.
4055	 */
4056	do {
4057		best_c_rdev_done = false;
4058		best_delta = 0;
4059		best_min_uV = 0;
4060		best_max_uV = 0;
4061		best_c_rdev = 0;
4062		best_rdev = NULL;
4063
4064		/*
4065		 * Find highest difference between optimal voltage
4066		 * and current voltage.
4067		 */
4068		for (i = 0; i < n_coupled; i++) {
4069			/*
4070			 * optimal_uV is the best voltage that can be set for
4071			 * i-th regulator at the moment without violating
4072			 * max_spread constraint in order to balance
4073			 * the coupled voltages.
4074			 */
4075			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4076
4077			if (test_bit(i, &c_rdev_done))
4078				continue;
4079
4080			ret = regulator_get_optimal_voltage(c_rdevs[i],
4081							    &current_uV,
4082							    &optimal_uV,
4083							    &optimal_max_uV,
4084							    state, n_coupled);
4085			if (ret < 0)
4086				goto out;
4087
4088			delta = abs(optimal_uV - current_uV);
4089
4090			if (delta && best_delta <= delta) {
4091				best_c_rdev_done = ret;
4092				best_delta = delta;
4093				best_rdev = c_rdevs[i];
4094				best_min_uV = optimal_uV;
4095				best_max_uV = optimal_max_uV;
4096				best_c_rdev = i;
4097			}
4098		}
4099
4100		/* Nothing to change, return successfully */
4101		if (!best_rdev) {
4102			ret = 0;
4103			goto out;
4104		}
4105
4106		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107						 best_max_uV, state);
4108
4109		if (ret < 0)
4110			goto out;
4111
4112		if (best_c_rdev_done)
4113			set_bit(best_c_rdev, &c_rdev_done);
4114
4115	} while (n_coupled > 1);
4116
4117out:
4118	return ret;
4119}
4120
4121static int regulator_balance_voltage(struct regulator_dev *rdev,
4122				     suspend_state_t state)
4123{
4124	struct coupling_desc *c_desc = &rdev->coupling_desc;
4125	struct regulator_coupler *coupler = c_desc->coupler;
4126	bool skip_coupled = false;
4127
4128	/*
4129	 * If system is in a state other than PM_SUSPEND_ON, don't check
4130	 * other coupled regulators.
4131	 */
4132	if (state != PM_SUSPEND_ON)
4133		skip_coupled = true;
4134
4135	if (c_desc->n_resolved < c_desc->n_coupled) {
4136		rdev_err(rdev, "Not all coupled regulators registered\n");
4137		return -EPERM;
4138	}
4139
4140	/* Invoke custom balancer for customized couplers */
4141	if (coupler && coupler->balance_voltage)
4142		return coupler->balance_voltage(coupler, rdev, state);
4143
4144	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4145}
4146
4147/**
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4152 *
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4155 *
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4159 *
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4164 *
4165 * Return: 0 on success or a negative error number on failure.
4166 */
4167int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4168{
4169	struct ww_acquire_ctx ww_ctx;
4170	int ret;
4171
4172	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4173
4174	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175					     PM_SUSPEND_ON);
4176
4177	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4178
4179	return ret;
4180}
4181EXPORT_SYMBOL_GPL(regulator_set_voltage);
4182
4183static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184					   suspend_state_t state, bool en)
4185{
4186	struct regulator_state *rstate;
4187
4188	rstate = regulator_get_suspend_state(rdev, state);
4189	if (rstate == NULL)
4190		return -EINVAL;
4191
4192	if (!rstate->changeable)
4193		return -EPERM;
4194
4195	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4196
4197	return 0;
4198}
4199
4200int regulator_suspend_enable(struct regulator_dev *rdev,
4201				    suspend_state_t state)
4202{
4203	return regulator_suspend_toggle(rdev, state, true);
4204}
4205EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4206
4207int regulator_suspend_disable(struct regulator_dev *rdev,
4208				     suspend_state_t state)
4209{
4210	struct regulator *regulator;
4211	struct regulator_voltage *voltage;
4212
4213	/*
4214	 * if any consumer wants this regulator device keeping on in
4215	 * suspend states, don't set it as disabled.
4216	 */
4217	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218		voltage = &regulator->voltage[state];
4219		if (voltage->min_uV || voltage->max_uV)
4220			return 0;
4221	}
4222
4223	return regulator_suspend_toggle(rdev, state, false);
4224}
4225EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4226
4227static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228					  int min_uV, int max_uV,
4229					  suspend_state_t state)
4230{
4231	struct regulator_dev *rdev = regulator->rdev;
4232	struct regulator_state *rstate;
4233
4234	rstate = regulator_get_suspend_state(rdev, state);
4235	if (rstate == NULL)
4236		return -EINVAL;
4237
4238	if (rstate->min_uV == rstate->max_uV) {
4239		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240		return -EPERM;
4241	}
4242
4243	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4244}
4245
4246int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247				  int max_uV, suspend_state_t state)
4248{
4249	struct ww_acquire_ctx ww_ctx;
4250	int ret;
4251
4252	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254		return -EINVAL;
4255
4256	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4257
4258	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259					     max_uV, state);
4260
4261	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4262
4263	return ret;
4264}
4265EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4266
4267/**
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4272 *
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4275 * voltage.
4276 *
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4278 */
4279int regulator_set_voltage_time(struct regulator *regulator,
4280			       int old_uV, int new_uV)
4281{
4282	struct regulator_dev *rdev = regulator->rdev;
4283	const struct regulator_ops *ops = rdev->desc->ops;
4284	int old_sel = -1;
4285	int new_sel = -1;
4286	int voltage;
4287	int i;
4288
4289	if (ops->set_voltage_time)
4290		return ops->set_voltage_time(rdev, old_uV, new_uV);
4291	else if (!ops->set_voltage_time_sel)
4292		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293
4294	/* Currently requires operations to do this */
4295	if (!ops->list_voltage || !rdev->desc->n_voltages)
4296		return -EINVAL;
4297
4298	for (i = 0; i < rdev->desc->n_voltages; i++) {
4299		/* We only look for exact voltage matches here */
4300		if (i < rdev->desc->linear_min_sel)
4301			continue;
4302
4303		if (old_sel >= 0 && new_sel >= 0)
4304			break;
4305
4306		voltage = regulator_list_voltage(regulator, i);
4307		if (voltage < 0)
4308			return -EINVAL;
4309		if (voltage == 0)
4310			continue;
4311		if (voltage == old_uV)
4312			old_sel = i;
4313		if (voltage == new_uV)
4314			new_sel = i;
4315	}
4316
4317	if (old_sel < 0 || new_sel < 0)
4318		return -EINVAL;
4319
4320	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321}
4322EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323
4324/**
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4329 *
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4332 *
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4335 *
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4337 */
4338int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339				   unsigned int old_selector,
4340				   unsigned int new_selector)
4341{
4342	int old_volt, new_volt;
4343
4344	/* sanity check */
4345	if (!rdev->desc->ops->list_voltage)
4346		return -EINVAL;
4347
4348	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4350
4351	if (rdev->desc->ops->set_voltage_time)
4352		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353							 new_volt);
4354	else
4355		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4356}
4357EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4358
4359int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4360{
4361	int ret;
4362
4363	regulator_lock(rdev);
4364
4365	if (!rdev->desc->ops->set_voltage &&
4366	    !rdev->desc->ops->set_voltage_sel) {
4367		ret = -EINVAL;
4368		goto out;
4369	}
4370
4371	/* balance only, if regulator is coupled */
4372	if (rdev->coupling_desc.n_coupled > 1)
4373		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374	else
4375		ret = -EOPNOTSUPP;
4376
4377out:
4378	regulator_unlock(rdev);
4379	return ret;
4380}
4381
4382/**
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4385 *
4386 * Re-apply the last configured voltage.  This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4389 *
4390 * Return: 0 on success or a negative error number on failure.
4391 */
4392int regulator_sync_voltage(struct regulator *regulator)
4393{
4394	struct regulator_dev *rdev = regulator->rdev;
4395	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4396	int ret, min_uV, max_uV;
4397
4398	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399		return 0;
4400
4401	regulator_lock(rdev);
4402
4403	if (!rdev->desc->ops->set_voltage &&
4404	    !rdev->desc->ops->set_voltage_sel) {
4405		ret = -EINVAL;
4406		goto out;
4407	}
4408
4409	/* This is only going to work if we've had a voltage configured. */
4410	if (!voltage->min_uV && !voltage->max_uV) {
4411		ret = -EINVAL;
4412		goto out;
4413	}
4414
4415	min_uV = voltage->min_uV;
4416	max_uV = voltage->max_uV;
4417
4418	/* This should be a paranoia check... */
4419	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420	if (ret < 0)
4421		goto out;
4422
4423	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424	if (ret < 0)
4425		goto out;
4426
4427	/* balance only, if regulator is coupled */
4428	if (rdev->coupling_desc.n_coupled > 1)
4429		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430	else
4431		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4432
4433out:
4434	regulator_unlock(rdev);
4435	return ret;
4436}
4437EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4438
4439int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4440{
4441	int sel, ret;
4442	bool bypassed;
4443
4444	if (rdev->desc->ops->get_bypass) {
4445		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446		if (ret < 0)
4447			return ret;
4448		if (bypassed) {
4449			/* if bypassed the regulator must have a supply */
4450			if (!rdev->supply) {
4451				rdev_err(rdev,
4452					 "bypassed regulator has no supply!\n");
4453				return -EPROBE_DEFER;
4454			}
4455
4456			return regulator_get_voltage_rdev(rdev->supply->rdev);
4457		}
4458	}
4459
4460	if (rdev->desc->ops->get_voltage_sel) {
4461		sel = rdev->desc->ops->get_voltage_sel(rdev);
4462		if (sel < 0)
4463			return sel;
4464		ret = rdev->desc->ops->list_voltage(rdev, sel);
4465	} else if (rdev->desc->ops->get_voltage) {
4466		ret = rdev->desc->ops->get_voltage(rdev);
4467	} else if (rdev->desc->ops->list_voltage) {
4468		ret = rdev->desc->ops->list_voltage(rdev, 0);
4469	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470		ret = rdev->desc->fixed_uV;
4471	} else if (rdev->supply) {
4472		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473	} else if (rdev->supply_name) {
4474		return -EPROBE_DEFER;
4475	} else {
4476		return -EINVAL;
4477	}
4478
4479	if (ret < 0)
4480		return ret;
4481	return ret - rdev->constraints->uV_offset;
4482}
4483EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4484
4485/**
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4488 *
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4490 *
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4493 */
4494int regulator_get_voltage(struct regulator *regulator)
4495{
4496	struct ww_acquire_ctx ww_ctx;
4497	int ret;
4498
4499	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500	ret = regulator_get_voltage_rdev(regulator->rdev);
4501	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4502
4503	return ret;
4504}
4505EXPORT_SYMBOL_GPL(regulator_get_voltage);
4506
4507/**
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4512 *
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4515 *
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4519 *
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4522 *
4523 * Return: 0 on success or a negative error number on failure.
4524 */
4525int regulator_set_current_limit(struct regulator *regulator,
4526			       int min_uA, int max_uA)
4527{
4528	struct regulator_dev *rdev = regulator->rdev;
4529	int ret;
4530
4531	regulator_lock(rdev);
4532
4533	/* sanity check */
4534	if (!rdev->desc->ops->set_current_limit) {
4535		ret = -EINVAL;
4536		goto out;
4537	}
4538
4539	/* constraints check */
4540	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541	if (ret < 0)
4542		goto out;
4543
4544	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545out:
4546	regulator_unlock(rdev);
4547	return ret;
4548}
4549EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550
4551static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552{
4553	/* sanity check */
4554	if (!rdev->desc->ops->get_current_limit)
4555		return -EINVAL;
4556
4557	return rdev->desc->ops->get_current_limit(rdev);
4558}
4559
4560static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561{
4562	int ret;
4563
4564	regulator_lock(rdev);
4565	ret = _regulator_get_current_limit_unlocked(rdev);
4566	regulator_unlock(rdev);
4567
4568	return ret;
4569}
4570
4571/**
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4574 *
4575 * Return: Current supplied by the specified current sink in uA,
4576 *	   or a negative error number on failure.
4577 *
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4580 */
4581int regulator_get_current_limit(struct regulator *regulator)
4582{
4583	return _regulator_get_current_limit(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4586
4587/**
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4591 *
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4594 *
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4597 *
4598 * Return: 0 on success or a negative error number on failure.
4599 */
4600int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4601{
4602	struct regulator_dev *rdev = regulator->rdev;
4603	int ret;
4604	int regulator_curr_mode;
4605
4606	regulator_lock(rdev);
4607
4608	/* sanity check */
4609	if (!rdev->desc->ops->set_mode) {
4610		ret = -EINVAL;
4611		goto out;
4612	}
4613
4614	/* return if the same mode is requested */
4615	if (rdev->desc->ops->get_mode) {
4616		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617		if (regulator_curr_mode == mode) {
4618			ret = 0;
4619			goto out;
4620		}
4621	}
4622
4623	/* constraints check */
4624	ret = regulator_mode_constrain(rdev, &mode);
4625	if (ret < 0)
4626		goto out;
4627
4628	ret = rdev->desc->ops->set_mode(rdev, mode);
4629out:
4630	regulator_unlock(rdev);
4631	return ret;
4632}
4633EXPORT_SYMBOL_GPL(regulator_set_mode);
4634
4635static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4636{
4637	/* sanity check */
4638	if (!rdev->desc->ops->get_mode)
4639		return -EINVAL;
4640
4641	return rdev->desc->ops->get_mode(rdev);
4642}
4643
4644static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4645{
4646	int ret;
4647
4648	regulator_lock(rdev);
4649	ret = _regulator_get_mode_unlocked(rdev);
4650	regulator_unlock(rdev);
4651
4652	return ret;
4653}
4654
4655/**
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4658 *
4659 * Get the current regulator operating mode.
4660 *
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 *	   or a negative error number on failure.
4663 */
4664unsigned int regulator_get_mode(struct regulator *regulator)
4665{
4666	return _regulator_get_mode(regulator->rdev);
4667}
4668EXPORT_SYMBOL_GPL(regulator_get_mode);
4669
4670static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4671{
4672	int ret = 0;
4673
4674	if (rdev->use_cached_err) {
4675		spin_lock(&rdev->err_lock);
4676		ret = rdev->cached_err;
4677		spin_unlock(&rdev->err_lock);
4678	}
4679	return ret;
4680}
4681
4682static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683					unsigned int *flags)
4684{
4685	int cached_flags, ret = 0;
4686
4687	regulator_lock(rdev);
4688
4689	cached_flags = rdev_get_cached_err_flags(rdev);
4690
4691	if (rdev->desc->ops->get_error_flags)
4692		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693	else if (!rdev->use_cached_err)
4694		ret = -EINVAL;
4695
4696	*flags |= cached_flags;
4697
4698	regulator_unlock(rdev);
4699
4700	return ret;
4701}
4702
4703/**
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4707 *
4708 * Get the current regulator error information.
4709 *
4710 * Return: 0 on success or a negative error number on failure.
4711 */
4712int regulator_get_error_flags(struct regulator *regulator,
4713				unsigned int *flags)
4714{
4715	return _regulator_get_error_flags(regulator->rdev, flags);
4716}
4717EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4718
4719/**
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4723 *
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4727 *
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4733 *
4734 *    o Device is opened / closed.
4735 *    o Device I/O is about to begin or has just finished.
4736 *    o Device is idling in between work.
4737 *
4738 * This information is also exported via sysfs to userspace.
4739 *
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4742 *
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load.  If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4747 *
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4750 *
4751 * Return: 0 on success or a negative error number on failure.
4752 */
4753int regulator_set_load(struct regulator *regulator, int uA_load)
4754{
4755	struct regulator_dev *rdev = regulator->rdev;
4756	int old_uA_load;
4757	int ret = 0;
4758
4759	regulator_lock(rdev);
4760	old_uA_load = regulator->uA_load;
4761	regulator->uA_load = uA_load;
4762	if (regulator->enable_count && old_uA_load != uA_load) {
4763		ret = drms_uA_update(rdev);
4764		if (ret < 0)
4765			regulator->uA_load = old_uA_load;
4766	}
4767	regulator_unlock(rdev);
4768
4769	return ret;
4770}
4771EXPORT_SYMBOL_GPL(regulator_set_load);
4772
4773/**
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4775 *
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4778 *
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this.  Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4783 *
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 *	   a negative error number on failure.
4786 */
4787int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788{
4789	struct regulator_dev *rdev = regulator->rdev;
4790	const char *name = rdev_get_name(rdev);
4791	int ret = 0;
4792
4793	if (!rdev->desc->ops->set_bypass)
4794		return 0;
4795
4796	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797		return 0;
4798
4799	regulator_lock(rdev);
4800
4801	if (enable && !regulator->bypass) {
4802		rdev->bypass_count++;
4803
4804		if (rdev->bypass_count == rdev->open_count) {
4805			trace_regulator_bypass_enable(name);
4806
4807			ret = rdev->desc->ops->set_bypass(rdev, enable);
4808			if (ret != 0)
4809				rdev->bypass_count--;
4810			else
4811				trace_regulator_bypass_enable_complete(name);
4812		}
4813
4814	} else if (!enable && regulator->bypass) {
4815		rdev->bypass_count--;
4816
4817		if (rdev->bypass_count != rdev->open_count) {
4818			trace_regulator_bypass_disable(name);
4819
4820			ret = rdev->desc->ops->set_bypass(rdev, enable);
4821			if (ret != 0)
4822				rdev->bypass_count++;
4823			else
4824				trace_regulator_bypass_disable_complete(name);
4825		}
4826	}
4827
4828	if (ret == 0)
4829		regulator->bypass = enable;
4830
4831	regulator_unlock(rdev);
4832
4833	return ret;
4834}
4835EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836
4837/**
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4841 *
4842 * Register notifier block to receive regulator events.
4843 *
4844 * Return: 0 on success or a negative error number on failure.
4845 */
4846int regulator_register_notifier(struct regulator *regulator,
4847			      struct notifier_block *nb)
4848{
4849	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4850						nb);
4851}
4852EXPORT_SYMBOL_GPL(regulator_register_notifier);
4853
4854/**
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4858 *
4859 * Unregister regulator event notifier block.
4860 *
4861 * Return: 0 on success or a negative error number on failure.
4862 */
4863int regulator_unregister_notifier(struct regulator *regulator,
4864				struct notifier_block *nb)
4865{
4866	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4867						  nb);
4868}
4869EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4870
4871/* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4873 */
4874static int _notifier_call_chain(struct regulator_dev *rdev,
4875				  unsigned long event, void *data)
4876{
4877	/* call rdev chain first */
4878	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4879
4880	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881		struct device *parent = rdev->dev.parent;
4882		const char *rname = rdev_get_name(rdev);
4883		char name[32];
4884
4885		/* Avoid duplicate debugfs directory names */
4886		if (parent && rname == rdev->desc->name) {
4887			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888				 rname);
4889			rname = name;
4890		}
4891		reg_generate_netlink_event(rname, event);
4892	}
4893
4894	return ret;
4895}
4896
4897int _regulator_bulk_get(struct device *dev, int num_consumers,
4898			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4899{
4900	int i;
4901	int ret;
4902
4903	for (i = 0; i < num_consumers; i++)
4904		consumers[i].consumer = NULL;
4905
4906	for (i = 0; i < num_consumers; i++) {
4907		consumers[i].consumer = _regulator_get(dev,
4908						       consumers[i].supply, get_type);
4909		if (IS_ERR(consumers[i].consumer)) {
4910			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911					    "Failed to get supply '%s'\n",
4912					    consumers[i].supply);
4913			consumers[i].consumer = NULL;
4914			goto err;
4915		}
4916
4917		if (consumers[i].init_load_uA > 0) {
4918			ret = regulator_set_load(consumers[i].consumer,
4919						 consumers[i].init_load_uA);
4920			if (ret) {
4921				i++;
4922				goto err;
4923			}
4924		}
4925	}
4926
4927	return 0;
4928
4929err:
 
 
 
 
 
 
 
4930	while (--i >= 0)
4931		regulator_put(consumers[i].consumer);
4932
4933	return ret;
4934}
4935
4936/**
4937 * regulator_bulk_get - get multiple regulator consumers
4938 *
4939 * @dev:           Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers:     Configuration of consumers; clients are stored here.
4942 *
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation.  If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4947 *
4948 * Return: 0 on success or a negative error number on failure.
4949 */
4950int regulator_bulk_get(struct device *dev, int num_consumers,
4951		       struct regulator_bulk_data *consumers)
4952{
4953	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4954}
4955EXPORT_SYMBOL_GPL(regulator_bulk_get);
4956
4957static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4958{
4959	struct regulator_bulk_data *bulk = data;
4960
4961	bulk->ret = regulator_enable(bulk->consumer);
4962}
4963
4964/**
4965 * regulator_bulk_enable - enable multiple regulator consumers
4966 *
4967 * @num_consumers: Number of consumers
4968 * @consumers:     Consumer data; clients are stored here.
 
4969 *
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call.  If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4973 * return.
4974 *
4975 * Return: 0 on success or a negative error number on failure.
4976 */
4977int regulator_bulk_enable(int num_consumers,
4978			  struct regulator_bulk_data *consumers)
4979{
4980	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981	int i;
4982	int ret = 0;
4983
4984	for (i = 0; i < num_consumers; i++) {
4985		async_schedule_domain(regulator_bulk_enable_async,
4986				      &consumers[i], &async_domain);
4987	}
4988
4989	async_synchronize_full_domain(&async_domain);
4990
4991	/* If any consumer failed we need to unwind any that succeeded */
4992	for (i = 0; i < num_consumers; i++) {
4993		if (consumers[i].ret != 0) {
4994			ret = consumers[i].ret;
4995			goto err;
4996		}
4997	}
4998
4999	return 0;
5000
5001err:
5002	for (i = 0; i < num_consumers; i++) {
5003		if (consumers[i].ret < 0)
5004			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005			       ERR_PTR(consumers[i].ret));
5006		else
5007			regulator_disable(consumers[i].consumer);
5008	}
5009
5010	return ret;
5011}
5012EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5013
5014/**
5015 * regulator_bulk_disable - disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers:     Consumer data; clients are stored here.
 
5019 *
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call.  If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5023 * return.
5024 *
5025 * Return: 0 on success or a negative error number on failure.
5026 */
5027int regulator_bulk_disable(int num_consumers,
5028			   struct regulator_bulk_data *consumers)
5029{
5030	int i;
5031	int ret, r;
5032
5033	for (i = num_consumers - 1; i >= 0; --i) {
5034		ret = regulator_disable(consumers[i].consumer);
5035		if (ret != 0)
5036			goto err;
5037	}
5038
5039	return 0;
5040
5041err:
5042	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043	for (++i; i < num_consumers; ++i) {
5044		r = regulator_enable(consumers[i].consumer);
5045		if (r != 0)
5046			pr_err("Failed to re-enable %s: %pe\n",
5047			       consumers[i].supply, ERR_PTR(r));
5048	}
5049
5050	return ret;
5051}
5052EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5053
5054/**
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5056 *
5057 * @num_consumers: Number of consumers
5058 * @consumers:     Consumer data; clients are stored here.
 
5059 *
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5066 *
5067 * Return: 0 on success or a negative error number on failure.
5068 */
5069int regulator_bulk_force_disable(int num_consumers,
5070			   struct regulator_bulk_data *consumers)
5071{
5072	int i;
5073	int ret = 0;
5074
5075	for (i = 0; i < num_consumers; i++) {
5076		consumers[i].ret =
5077			    regulator_force_disable(consumers[i].consumer);
5078
5079		/* Store first error for reporting */
5080		if (consumers[i].ret && !ret)
5081			ret = consumers[i].ret;
5082	}
5083
5084	return ret;
5085}
5086EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5087
5088/**
5089 * regulator_bulk_free - free multiple regulator consumers
5090 *
5091 * @num_consumers: Number of consumers
5092 * @consumers:     Consumer data; clients are stored here.
5093 *
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5096 */
5097void regulator_bulk_free(int num_consumers,
5098			 struct regulator_bulk_data *consumers)
5099{
5100	int i;
5101
5102	for (i = 0; i < num_consumers; i++) {
5103		regulator_put(consumers[i].consumer);
5104		consumers[i].consumer = NULL;
5105	}
5106}
5107EXPORT_SYMBOL_GPL(regulator_bulk_free);
5108
5109/**
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5113 *
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5117 */
5118static void regulator_handle_critical(struct regulator_dev *rdev,
5119				      unsigned long event)
5120{
5121	const char *reason = NULL;
5122
5123	if (!rdev->constraints->system_critical)
5124		return;
5125
5126	switch (event) {
5127	case REGULATOR_EVENT_UNDER_VOLTAGE:
5128		reason = "System critical regulator: voltage drop detected";
5129		break;
5130	case REGULATOR_EVENT_OVER_CURRENT:
5131		reason = "System critical regulator: over-current detected";
5132		break;
5133	case REGULATOR_EVENT_FAIL:
5134		reason = "System critical regulator: unknown error";
5135	}
5136
5137	if (!reason)
5138		return;
5139
5140	hw_protection_shutdown(reason,
5141			       rdev->constraints->uv_less_critical_window_ms);
5142}
5143
5144/**
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5149 *
5150 * Called by regulator drivers to notify clients a regulator event has
5151 * occurred.
5152 *
5153 * Return: %NOTIFY_DONE.
5154 */
5155int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156				  unsigned long event, void *data)
5157{
5158	regulator_handle_critical(rdev, event);
5159
5160	_notifier_call_chain(rdev, event, data);
5161	return NOTIFY_DONE;
5162
5163}
5164EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5165
5166/**
5167 * regulator_mode_to_status - convert a regulator mode into a status
5168 *
5169 * @mode: Mode to convert
5170 *
5171 * Convert a regulator mode into a status.
5172 *
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5174 */
5175int regulator_mode_to_status(unsigned int mode)
5176{
5177	switch (mode) {
5178	case REGULATOR_MODE_FAST:
5179		return REGULATOR_STATUS_FAST;
5180	case REGULATOR_MODE_NORMAL:
5181		return REGULATOR_STATUS_NORMAL;
5182	case REGULATOR_MODE_IDLE:
5183		return REGULATOR_STATUS_IDLE;
5184	case REGULATOR_MODE_STANDBY:
5185		return REGULATOR_STATUS_STANDBY;
5186	default:
5187		return REGULATOR_STATUS_UNDEFINED;
5188	}
5189}
5190EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5191
5192static struct attribute *regulator_dev_attrs[] = {
5193	&dev_attr_name.attr,
5194	&dev_attr_num_users.attr,
5195	&dev_attr_type.attr,
5196	&dev_attr_microvolts.attr,
5197	&dev_attr_microamps.attr,
5198	&dev_attr_opmode.attr,
5199	&dev_attr_state.attr,
5200	&dev_attr_status.attr,
5201	&dev_attr_bypass.attr,
5202	&dev_attr_requested_microamps.attr,
5203	&dev_attr_min_microvolts.attr,
5204	&dev_attr_max_microvolts.attr,
5205	&dev_attr_min_microamps.attr,
5206	&dev_attr_max_microamps.attr,
5207	&dev_attr_under_voltage.attr,
5208	&dev_attr_over_current.attr,
5209	&dev_attr_regulation_out.attr,
5210	&dev_attr_fail.attr,
5211	&dev_attr_over_temp.attr,
5212	&dev_attr_under_voltage_warn.attr,
5213	&dev_attr_over_current_warn.attr,
5214	&dev_attr_over_voltage_warn.attr,
5215	&dev_attr_over_temp_warn.attr,
5216	&dev_attr_suspend_standby_state.attr,
5217	&dev_attr_suspend_mem_state.attr,
5218	&dev_attr_suspend_disk_state.attr,
5219	&dev_attr_suspend_standby_microvolts.attr,
5220	&dev_attr_suspend_mem_microvolts.attr,
5221	&dev_attr_suspend_disk_microvolts.attr,
5222	&dev_attr_suspend_standby_mode.attr,
5223	&dev_attr_suspend_mem_mode.attr,
5224	&dev_attr_suspend_disk_mode.attr,
5225	NULL
5226};
5227
5228/*
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5231 */
5232static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233					 struct attribute *attr, int idx)
5234{
5235	struct device *dev = kobj_to_dev(kobj);
5236	struct regulator_dev *rdev = dev_to_rdev(dev);
5237	const struct regulator_ops *ops = rdev->desc->ops;
5238	umode_t mode = attr->mode;
5239
5240	/* these three are always present */
5241	if (attr == &dev_attr_name.attr ||
5242	    attr == &dev_attr_num_users.attr ||
5243	    attr == &dev_attr_type.attr)
5244		return mode;
5245
5246	/* some attributes need specific methods to be displayed */
5247	if (attr == &dev_attr_microvolts.attr) {
5248		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252			return mode;
5253		return 0;
5254	}
5255
5256	if (attr == &dev_attr_microamps.attr)
5257		return ops->get_current_limit ? mode : 0;
5258
5259	if (attr == &dev_attr_opmode.attr)
5260		return ops->get_mode ? mode : 0;
5261
5262	if (attr == &dev_attr_state.attr)
5263		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5264
5265	if (attr == &dev_attr_status.attr)
5266		return ops->get_status ? mode : 0;
5267
5268	if (attr == &dev_attr_bypass.attr)
5269		return ops->get_bypass ? mode : 0;
5270
5271	if (attr == &dev_attr_under_voltage.attr ||
5272	    attr == &dev_attr_over_current.attr ||
5273	    attr == &dev_attr_regulation_out.attr ||
5274	    attr == &dev_attr_fail.attr ||
5275	    attr == &dev_attr_over_temp.attr ||
5276	    attr == &dev_attr_under_voltage_warn.attr ||
5277	    attr == &dev_attr_over_current_warn.attr ||
5278	    attr == &dev_attr_over_voltage_warn.attr ||
5279	    attr == &dev_attr_over_temp_warn.attr)
5280		return ops->get_error_flags ? mode : 0;
5281
5282	/* constraints need specific supporting methods */
5283	if (attr == &dev_attr_min_microvolts.attr ||
5284	    attr == &dev_attr_max_microvolts.attr)
5285		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5286
5287	if (attr == &dev_attr_min_microamps.attr ||
5288	    attr == &dev_attr_max_microamps.attr)
5289		return ops->set_current_limit ? mode : 0;
5290
5291	if (attr == &dev_attr_suspend_standby_state.attr ||
5292	    attr == &dev_attr_suspend_mem_state.attr ||
5293	    attr == &dev_attr_suspend_disk_state.attr)
5294		return mode;
5295
5296	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5298	    attr == &dev_attr_suspend_disk_microvolts.attr)
5299		return ops->set_suspend_voltage ? mode : 0;
5300
5301	if (attr == &dev_attr_suspend_standby_mode.attr ||
5302	    attr == &dev_attr_suspend_mem_mode.attr ||
5303	    attr == &dev_attr_suspend_disk_mode.attr)
5304		return ops->set_suspend_mode ? mode : 0;
5305
5306	return mode;
5307}
5308
5309static const struct attribute_group regulator_dev_group = {
5310	.attrs = regulator_dev_attrs,
5311	.is_visible = regulator_attr_is_visible,
5312};
5313
5314static const struct attribute_group *regulator_dev_groups[] = {
5315	&regulator_dev_group,
5316	NULL
5317};
5318
5319static void regulator_dev_release(struct device *dev)
5320{
5321	struct regulator_dev *rdev = dev_get_drvdata(dev);
5322
5323	debugfs_remove_recursive(rdev->debugfs);
5324	kfree(rdev->constraints);
5325	of_node_put(rdev->dev.of_node);
5326	kfree(rdev);
5327}
5328
5329static void rdev_init_debugfs(struct regulator_dev *rdev)
5330{
5331	struct device *parent = rdev->dev.parent;
5332	const char *rname = rdev_get_name(rdev);
5333	char name[NAME_MAX];
5334
5335	/* Avoid duplicate debugfs directory names */
5336	if (parent && rname == rdev->desc->name) {
5337		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338			 rname);
5339		rname = name;
5340	}
5341
5342	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343	if (IS_ERR(rdev->debugfs))
5344		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
 
5345
5346	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347			   &rdev->use_count);
5348	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349			   &rdev->open_count);
5350	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351			   &rdev->bypass_count);
5352}
5353
5354static int regulator_register_resolve_supply(struct device *dev, void *data)
5355{
5356	struct regulator_dev *rdev = dev_to_rdev(dev);
5357
5358	if (regulator_resolve_supply(rdev))
5359		rdev_dbg(rdev, "unable to resolve supply\n");
5360
5361	return 0;
5362}
5363
5364int regulator_coupler_register(struct regulator_coupler *coupler)
5365{
5366	mutex_lock(&regulator_list_mutex);
5367	list_add_tail(&coupler->list, &regulator_coupler_list);
5368	mutex_unlock(&regulator_list_mutex);
5369
5370	return 0;
5371}
5372
5373static struct regulator_coupler *
5374regulator_find_coupler(struct regulator_dev *rdev)
5375{
5376	struct regulator_coupler *coupler;
5377	int err;
5378
5379	/*
5380	 * Note that regulators are appended to the list and the generic
5381	 * coupler is registered first, hence it will be attached at last
5382	 * if nobody cared.
5383	 */
5384	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5385		err = coupler->attach_regulator(coupler, rdev);
5386		if (!err) {
5387			if (!coupler->balance_voltage &&
5388			    rdev->coupling_desc.n_coupled > 2)
5389				goto err_unsupported;
5390
5391			return coupler;
5392		}
5393
5394		if (err < 0)
5395			return ERR_PTR(err);
5396
5397		if (err == 1)
5398			continue;
5399
5400		break;
5401	}
5402
5403	return ERR_PTR(-EINVAL);
5404
5405err_unsupported:
5406	if (coupler->detach_regulator)
5407		coupler->detach_regulator(coupler, rdev);
5408
5409	rdev_err(rdev,
5410		"Voltage balancing for multiple regulator couples is unimplemented\n");
5411
5412	return ERR_PTR(-EPERM);
5413}
5414
5415static void regulator_resolve_coupling(struct regulator_dev *rdev)
5416{
5417	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418	struct coupling_desc *c_desc = &rdev->coupling_desc;
5419	int n_coupled = c_desc->n_coupled;
5420	struct regulator_dev *c_rdev;
5421	int i;
5422
5423	for (i = 1; i < n_coupled; i++) {
5424		/* already resolved */
5425		if (c_desc->coupled_rdevs[i])
5426			continue;
5427
5428		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5429
5430		if (!c_rdev)
5431			continue;
5432
5433		if (c_rdev->coupling_desc.coupler != coupler) {
5434			rdev_err(rdev, "coupler mismatch with %s\n",
5435				 rdev_get_name(c_rdev));
5436			return;
5437		}
5438
5439		c_desc->coupled_rdevs[i] = c_rdev;
5440		c_desc->n_resolved++;
5441
5442		regulator_resolve_coupling(c_rdev);
5443	}
5444}
5445
5446static void regulator_remove_coupling(struct regulator_dev *rdev)
5447{
5448	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450	struct regulator_dev *__c_rdev, *c_rdev;
5451	unsigned int __n_coupled, n_coupled;
5452	int i, k;
5453	int err;
5454
5455	n_coupled = c_desc->n_coupled;
5456
5457	for (i = 1; i < n_coupled; i++) {
5458		c_rdev = c_desc->coupled_rdevs[i];
5459
5460		if (!c_rdev)
5461			continue;
5462
5463		regulator_lock(c_rdev);
5464
5465		__c_desc = &c_rdev->coupling_desc;
5466		__n_coupled = __c_desc->n_coupled;
5467
5468		for (k = 1; k < __n_coupled; k++) {
5469			__c_rdev = __c_desc->coupled_rdevs[k];
5470
5471			if (__c_rdev == rdev) {
5472				__c_desc->coupled_rdevs[k] = NULL;
5473				__c_desc->n_resolved--;
5474				break;
5475			}
5476		}
5477
5478		regulator_unlock(c_rdev);
5479
5480		c_desc->coupled_rdevs[i] = NULL;
5481		c_desc->n_resolved--;
5482	}
5483
5484	if (coupler && coupler->detach_regulator) {
5485		err = coupler->detach_regulator(coupler, rdev);
5486		if (err)
5487			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488				 ERR_PTR(err));
5489	}
5490
5491	kfree(rdev->coupling_desc.coupled_rdevs);
5492	rdev->coupling_desc.coupled_rdevs = NULL;
5493}
5494
5495static int regulator_init_coupling(struct regulator_dev *rdev)
5496{
5497	struct regulator_dev **coupled;
5498	int err, n_phandles;
5499
5500	if (!IS_ENABLED(CONFIG_OF))
5501		n_phandles = 0;
5502	else
5503		n_phandles = of_get_n_coupled(rdev);
5504
5505	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506	if (!coupled)
5507		return -ENOMEM;
5508
5509	rdev->coupling_desc.coupled_rdevs = coupled;
5510
5511	/*
5512	 * Every regulator should always have coupling descriptor filled with
5513	 * at least pointer to itself.
5514	 */
5515	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516	rdev->coupling_desc.n_coupled = n_phandles + 1;
5517	rdev->coupling_desc.n_resolved++;
5518
5519	/* regulator isn't coupled */
5520	if (n_phandles == 0)
5521		return 0;
5522
5523	if (!of_check_coupling_data(rdev))
5524		return -EPERM;
5525
5526	mutex_lock(&regulator_list_mutex);
5527	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528	mutex_unlock(&regulator_list_mutex);
5529
5530	if (IS_ERR(rdev->coupling_desc.coupler)) {
5531		err = PTR_ERR(rdev->coupling_desc.coupler);
5532		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533		return err;
5534	}
5535
5536	return 0;
5537}
5538
5539static int generic_coupler_attach(struct regulator_coupler *coupler,
5540				  struct regulator_dev *rdev)
5541{
5542	if (rdev->coupling_desc.n_coupled > 2) {
5543		rdev_err(rdev,
5544			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545		return -EPERM;
5546	}
5547
5548	if (!rdev->constraints->always_on) {
5549		rdev_err(rdev,
5550			 "Coupling of a non always-on regulator is unimplemented\n");
5551		return -ENOTSUPP;
5552	}
5553
5554	return 0;
5555}
5556
5557static struct regulator_coupler generic_regulator_coupler = {
5558	.attach_regulator = generic_coupler_attach,
5559};
5560
5561/**
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5566 *
5567 * Called by regulator drivers to register a regulator.
5568 *
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 *	   an ERR_PTR() encoded negative error number on failure.
5571 */
5572struct regulator_dev *
5573regulator_register(struct device *dev,
5574		   const struct regulator_desc *regulator_desc,
5575		   const struct regulator_config *cfg)
5576{
5577	const struct regulator_init_data *init_data;
5578	struct regulator_config *config = NULL;
5579	static atomic_t regulator_no = ATOMIC_INIT(-1);
5580	struct regulator_dev *rdev;
5581	bool dangling_cfg_gpiod = false;
5582	bool dangling_of_gpiod = false;
 
5583	int ret, i;
5584	bool resolved_early = false;
5585
5586	if (cfg == NULL)
5587		return ERR_PTR(-EINVAL);
5588	if (cfg->ena_gpiod)
5589		dangling_cfg_gpiod = true;
5590	if (regulator_desc == NULL) {
5591		ret = -EINVAL;
5592		goto rinse;
5593	}
5594
5595	WARN_ON(!dev || !cfg->dev);
 
5596
5597	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598		ret = -EINVAL;
5599		goto rinse;
5600	}
5601
5602	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603	    regulator_desc->type != REGULATOR_CURRENT) {
5604		ret = -EINVAL;
5605		goto rinse;
5606	}
5607
5608	/* Only one of each should be implemented */
5609	WARN_ON(regulator_desc->ops->get_voltage &&
5610		regulator_desc->ops->get_voltage_sel);
5611	WARN_ON(regulator_desc->ops->set_voltage &&
5612		regulator_desc->ops->set_voltage_sel);
5613
5614	/* If we're using selectors we must implement list_voltage. */
5615	if (regulator_desc->ops->get_voltage_sel &&
5616	    !regulator_desc->ops->list_voltage) {
5617		ret = -EINVAL;
5618		goto rinse;
5619	}
5620	if (regulator_desc->ops->set_voltage_sel &&
5621	    !regulator_desc->ops->list_voltage) {
5622		ret = -EINVAL;
5623		goto rinse;
5624	}
5625
5626	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627	if (rdev == NULL) {
5628		ret = -ENOMEM;
5629		goto rinse;
5630	}
5631	device_initialize(&rdev->dev);
5632	dev_set_drvdata(&rdev->dev, rdev);
5633	rdev->dev.class = &regulator_class;
5634	spin_lock_init(&rdev->err_lock);
5635
5636	/*
5637	 * Duplicate the config so the driver could override it after
5638	 * parsing init data.
5639	 */
5640	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641	if (config == NULL) {
5642		ret = -ENOMEM;
5643		goto clean;
5644	}
5645
5646	/*
5647	 * DT may override the config->init_data provided if the platform
5648	 * needs to do so. If so, config->init_data is completely ignored.
5649	 */
5650	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5651					       &rdev->dev.of_node);
5652
5653	/*
5654	 * Sometimes not all resources are probed already so we need to take
5655	 * that into account. This happens most the time if the ena_gpiod comes
5656	 * from a gpio extender or something else.
5657	 */
5658	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5659		ret = -EPROBE_DEFER;
5660		goto clean;
5661	}
5662
5663	/*
5664	 * We need to keep track of any GPIO descriptor coming from the
5665	 * device tree until we have handled it over to the core. If the
5666	 * config that was passed in to this function DOES NOT contain
5667	 * a descriptor, and the config after this call DOES contain
5668	 * a descriptor, we definitely got one from parsing the device
5669	 * tree.
5670	 */
5671	if (!cfg->ena_gpiod && config->ena_gpiod)
5672		dangling_of_gpiod = true;
5673	if (!init_data) {
5674		init_data = config->init_data;
5675		rdev->dev.of_node = of_node_get(config->of_node);
5676	}
5677
5678	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5679	rdev->reg_data = config->driver_data;
5680	rdev->owner = regulator_desc->owner;
5681	rdev->desc = regulator_desc;
5682	if (config->regmap)
5683		rdev->regmap = config->regmap;
5684	else if (dev_get_regmap(dev, NULL))
5685		rdev->regmap = dev_get_regmap(dev, NULL);
5686	else if (dev->parent)
5687		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5688	INIT_LIST_HEAD(&rdev->consumer_list);
5689	INIT_LIST_HEAD(&rdev->list);
5690	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5691	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5692
5693	if (init_data && init_data->supply_regulator)
5694		rdev->supply_name = init_data->supply_regulator;
5695	else if (regulator_desc->supply_name)
5696		rdev->supply_name = regulator_desc->supply_name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5697
5698	/* register with sysfs */
5699	rdev->dev.parent = config->dev;
 
5700	dev_set_name(&rdev->dev, "regulator.%lu",
5701		    (unsigned long) atomic_inc_return(&regulator_no));
 
5702
5703	/* set regulator constraints */
5704	if (init_data)
5705		rdev->constraints = kmemdup(&init_data->constraints,
5706					    sizeof(*rdev->constraints),
5707					    GFP_KERNEL);
5708	else
5709		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5710					    GFP_KERNEL);
5711	if (!rdev->constraints) {
5712		ret = -ENOMEM;
5713		goto wash;
5714	}
5715
5716	if (regulator_desc->init_cb) {
5717		ret = regulator_desc->init_cb(rdev, config);
5718		if (ret < 0)
5719			goto wash;
5720	}
5721
5722	if ((rdev->supply_name && !rdev->supply) &&
5723		(rdev->constraints->always_on ||
5724		 rdev->constraints->boot_on)) {
5725		ret = regulator_resolve_supply(rdev);
5726		if (ret)
5727			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5728					 ERR_PTR(ret));
5729
5730		resolved_early = true;
5731	}
5732
5733	if (config->ena_gpiod) {
5734		ret = regulator_ena_gpio_request(rdev, config);
5735		if (ret != 0) {
5736			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5737				 ERR_PTR(ret));
5738			goto wash;
5739		}
5740		/* The regulator core took over the GPIO descriptor */
5741		dangling_cfg_gpiod = false;
5742		dangling_of_gpiod = false;
5743	}
5744
5745	ret = set_machine_constraints(rdev);
5746	if (ret == -EPROBE_DEFER && !resolved_early) {
5747		/* Regulator might be in bypass mode and so needs its supply
5748		 * to set the constraints
5749		 */
5750		/* FIXME: this currently triggers a chicken-and-egg problem
5751		 * when creating -SUPPLY symlink in sysfs to a regulator
5752		 * that is just being created
5753		 */
5754		rdev_dbg(rdev, "will resolve supply early: %s\n",
5755			 rdev->supply_name);
5756		ret = regulator_resolve_supply(rdev);
5757		if (!ret)
5758			ret = set_machine_constraints(rdev);
5759		else
5760			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5761				 ERR_PTR(ret));
5762	}
5763	if (ret < 0)
5764		goto wash;
5765
5766	ret = regulator_init_coupling(rdev);
5767	if (ret < 0)
5768		goto wash;
5769
5770	/* add consumers devices */
5771	if (init_data) {
5772		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5773			ret = set_consumer_device_supply(rdev,
5774				init_data->consumer_supplies[i].dev_name,
5775				init_data->consumer_supplies[i].supply);
5776			if (ret < 0) {
5777				dev_err(dev, "Failed to set supply %s\n",
5778					init_data->consumer_supplies[i].supply);
5779				goto unset_supplies;
5780			}
5781		}
5782	}
5783
5784	if (!rdev->desc->ops->get_voltage &&
5785	    !rdev->desc->ops->list_voltage &&
5786	    !rdev->desc->fixed_uV)
5787		rdev->is_switch = true;
5788
5789	ret = device_add(&rdev->dev);
5790	if (ret != 0)
5791		goto unset_supplies;
5792
5793	rdev_init_debugfs(rdev);
5794
5795	/* try to resolve regulators coupling since a new one was registered */
5796	mutex_lock(&regulator_list_mutex);
5797	regulator_resolve_coupling(rdev);
5798	mutex_unlock(&regulator_list_mutex);
5799
5800	/* try to resolve regulators supply since a new one was registered */
5801	class_for_each_device(&regulator_class, NULL, NULL,
5802			      regulator_register_resolve_supply);
5803	kfree(config);
5804	return rdev;
5805
5806unset_supplies:
5807	mutex_lock(&regulator_list_mutex);
5808	unset_regulator_supplies(rdev);
5809	regulator_remove_coupling(rdev);
5810	mutex_unlock(&regulator_list_mutex);
5811wash:
5812	regulator_put(rdev->supply);
5813	kfree(rdev->coupling_desc.coupled_rdevs);
5814	mutex_lock(&regulator_list_mutex);
5815	regulator_ena_gpio_free(rdev);
5816	mutex_unlock(&regulator_list_mutex);
5817clean:
5818	if (dangling_of_gpiod)
5819		gpiod_put(config->ena_gpiod);
5820	kfree(config);
5821	put_device(&rdev->dev);
5822rinse:
5823	if (dangling_cfg_gpiod)
5824		gpiod_put(cfg->ena_gpiod);
5825	return ERR_PTR(ret);
5826}
5827EXPORT_SYMBOL_GPL(regulator_register);
5828
5829/**
5830 * regulator_unregister - unregister regulator
5831 * @rdev: regulator to unregister
5832 *
5833 * Called by regulator drivers to unregister a regulator.
5834 */
5835void regulator_unregister(struct regulator_dev *rdev)
5836{
5837	if (rdev == NULL)
5838		return;
5839
5840	if (rdev->supply) {
5841		while (rdev->use_count--)
5842			regulator_disable(rdev->supply);
5843		regulator_put(rdev->supply);
5844	}
5845
5846	flush_work(&rdev->disable_work.work);
5847
5848	mutex_lock(&regulator_list_mutex);
5849
 
5850	WARN_ON(rdev->open_count);
5851	regulator_remove_coupling(rdev);
5852	unset_regulator_supplies(rdev);
5853	list_del(&rdev->list);
5854	regulator_ena_gpio_free(rdev);
5855	device_unregister(&rdev->dev);
5856
5857	mutex_unlock(&regulator_list_mutex);
5858}
5859EXPORT_SYMBOL_GPL(regulator_unregister);
5860
5861#ifdef CONFIG_SUSPEND
5862/**
5863 * regulator_suspend - prepare regulators for system wide suspend
5864 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5865 *
5866 * Configure each regulator with it's suspend operating parameters for state.
5867 *
5868 * Return: 0 on success or a negative error number on failure.
5869 */
5870static int regulator_suspend(struct device *dev)
5871{
5872	struct regulator_dev *rdev = dev_to_rdev(dev);
5873	suspend_state_t state = pm_suspend_target_state;
5874	int ret;
5875	const struct regulator_state *rstate;
5876
5877	rstate = regulator_get_suspend_state_check(rdev, state);
5878	if (!rstate)
5879		return 0;
5880
5881	regulator_lock(rdev);
5882	ret = __suspend_set_state(rdev, rstate);
5883	regulator_unlock(rdev);
5884
5885	return ret;
5886}
5887
5888static int regulator_resume(struct device *dev)
5889{
5890	suspend_state_t state = pm_suspend_target_state;
5891	struct regulator_dev *rdev = dev_to_rdev(dev);
5892	struct regulator_state *rstate;
5893	int ret = 0;
5894
5895	rstate = regulator_get_suspend_state(rdev, state);
5896	if (rstate == NULL)
5897		return 0;
5898
5899	/* Avoid grabbing the lock if we don't need to */
5900	if (!rdev->desc->ops->resume)
5901		return 0;
5902
5903	regulator_lock(rdev);
5904
5905	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5906	    rstate->enabled == DISABLE_IN_SUSPEND)
5907		ret = rdev->desc->ops->resume(rdev);
5908
5909	regulator_unlock(rdev);
5910
5911	return ret;
5912}
5913#else /* !CONFIG_SUSPEND */
5914
5915#define regulator_suspend	NULL
5916#define regulator_resume	NULL
5917
5918#endif /* !CONFIG_SUSPEND */
5919
5920#ifdef CONFIG_PM
5921static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5922	.suspend	= regulator_suspend,
5923	.resume		= regulator_resume,
5924};
5925#endif
5926
5927const struct class regulator_class = {
5928	.name = "regulator",
5929	.dev_release = regulator_dev_release,
5930	.dev_groups = regulator_dev_groups,
5931#ifdef CONFIG_PM
5932	.pm = &regulator_pm_ops,
5933#endif
5934};
5935/**
5936 * regulator_has_full_constraints - the system has fully specified constraints
5937 *
5938 * Calling this function will cause the regulator API to disable all
5939 * regulators which have a zero use count and don't have an always_on
5940 * constraint in a late_initcall.
5941 *
5942 * The intention is that this will become the default behaviour in a
5943 * future kernel release so users are encouraged to use this facility
5944 * now.
5945 */
5946void regulator_has_full_constraints(void)
5947{
5948	has_full_constraints = 1;
5949}
5950EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5951
5952/**
5953 * rdev_get_drvdata - get rdev regulator driver data
5954 * @rdev: regulator
5955 *
5956 * Get rdev regulator driver private data. This call can be used in the
5957 * regulator driver context.
5958 *
5959 * Return: Pointer to regulator driver private data.
5960 */
5961void *rdev_get_drvdata(struct regulator_dev *rdev)
5962{
5963	return rdev->reg_data;
5964}
5965EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5966
5967/**
5968 * regulator_get_drvdata - get regulator driver data
5969 * @regulator: regulator
5970 *
5971 * Get regulator driver private data. This call can be used in the consumer
5972 * driver context when non API regulator specific functions need to be called.
5973 *
5974 * Return: Pointer to regulator driver private data.
5975 */
5976void *regulator_get_drvdata(struct regulator *regulator)
5977{
5978	return regulator->rdev->reg_data;
5979}
5980EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5981
5982/**
5983 * regulator_set_drvdata - set regulator driver data
5984 * @regulator: regulator
5985 * @data: data
5986 */
5987void regulator_set_drvdata(struct regulator *regulator, void *data)
5988{
5989	regulator->rdev->reg_data = data;
5990}
5991EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5992
5993/**
5994 * rdev_get_id - get regulator ID
5995 * @rdev: regulator
5996 *
5997 * Return: Regulator ID for @rdev.
5998 */
5999int rdev_get_id(struct regulator_dev *rdev)
6000{
6001	return rdev->desc->id;
6002}
6003EXPORT_SYMBOL_GPL(rdev_get_id);
6004
6005struct device *rdev_get_dev(struct regulator_dev *rdev)
6006{
6007	return &rdev->dev;
6008}
6009EXPORT_SYMBOL_GPL(rdev_get_dev);
6010
6011struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6012{
6013	return rdev->regmap;
6014}
6015EXPORT_SYMBOL_GPL(rdev_get_regmap);
6016
6017void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6018{
6019	return reg_init_data->driver_data;
6020}
6021EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6022
6023#ifdef CONFIG_DEBUG_FS
6024static int supply_map_show(struct seq_file *sf, void *data)
6025{
6026	struct regulator_map *map;
6027
6028	list_for_each_entry(map, &regulator_map_list, list) {
6029		seq_printf(sf, "%s -> %s.%s\n",
6030				rdev_get_name(map->regulator), map->dev_name,
6031				map->supply);
6032	}
6033
6034	return 0;
6035}
6036DEFINE_SHOW_ATTRIBUTE(supply_map);
6037
6038struct summary_data {
6039	struct seq_file *s;
6040	struct regulator_dev *parent;
6041	int level;
6042};
6043
6044static void regulator_summary_show_subtree(struct seq_file *s,
6045					   struct regulator_dev *rdev,
6046					   int level);
6047
6048static int regulator_summary_show_children(struct device *dev, void *data)
6049{
6050	struct regulator_dev *rdev = dev_to_rdev(dev);
6051	struct summary_data *summary_data = data;
6052
6053	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6054		regulator_summary_show_subtree(summary_data->s, rdev,
6055					       summary_data->level + 1);
6056
6057	return 0;
6058}
6059
6060static void regulator_summary_show_subtree(struct seq_file *s,
6061					   struct regulator_dev *rdev,
6062					   int level)
6063{
6064	struct regulation_constraints *c;
6065	struct regulator *consumer;
6066	struct summary_data summary_data;
6067	unsigned int opmode;
6068
6069	if (!rdev)
6070		return;
6071
6072	opmode = _regulator_get_mode_unlocked(rdev);
6073	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6074		   level * 3 + 1, "",
6075		   30 - level * 3, rdev_get_name(rdev),
6076		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6077		   regulator_opmode_to_str(opmode));
6078
6079	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6080	seq_printf(s, "%5dmA ",
6081		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6082
6083	c = rdev->constraints;
6084	if (c) {
6085		switch (rdev->desc->type) {
6086		case REGULATOR_VOLTAGE:
6087			seq_printf(s, "%5dmV %5dmV ",
6088				   c->min_uV / 1000, c->max_uV / 1000);
6089			break;
6090		case REGULATOR_CURRENT:
6091			seq_printf(s, "%5dmA %5dmA ",
6092				   c->min_uA / 1000, c->max_uA / 1000);
6093			break;
6094		}
6095	}
6096
6097	seq_puts(s, "\n");
6098
6099	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6100		if (consumer->dev && consumer->dev->class == &regulator_class)
6101			continue;
6102
6103		seq_printf(s, "%*s%-*s ",
6104			   (level + 1) * 3 + 1, "",
6105			   30 - (level + 1) * 3,
6106			   consumer->supply_name ? consumer->supply_name :
6107			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6108
6109		switch (rdev->desc->type) {
6110		case REGULATOR_VOLTAGE:
6111			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6112				   consumer->enable_count,
6113				   consumer->uA_load / 1000,
6114				   consumer->uA_load && !consumer->enable_count ?
6115				   '*' : ' ',
6116				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6117				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6118			break;
6119		case REGULATOR_CURRENT:
6120			break;
6121		}
6122
6123		seq_puts(s, "\n");
6124	}
6125
6126	summary_data.s = s;
6127	summary_data.level = level;
6128	summary_data.parent = rdev;
6129
6130	class_for_each_device(&regulator_class, NULL, &summary_data,
6131			      regulator_summary_show_children);
6132}
6133
6134struct summary_lock_data {
6135	struct ww_acquire_ctx *ww_ctx;
6136	struct regulator_dev **new_contended_rdev;
6137	struct regulator_dev **old_contended_rdev;
6138};
6139
6140static int regulator_summary_lock_one(struct device *dev, void *data)
6141{
6142	struct regulator_dev *rdev = dev_to_rdev(dev);
6143	struct summary_lock_data *lock_data = data;
6144	int ret = 0;
6145
6146	if (rdev != *lock_data->old_contended_rdev) {
6147		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6148
6149		if (ret == -EDEADLK)
6150			*lock_data->new_contended_rdev = rdev;
6151		else
6152			WARN_ON_ONCE(ret);
6153	} else {
6154		*lock_data->old_contended_rdev = NULL;
6155	}
6156
6157	return ret;
6158}
6159
6160static int regulator_summary_unlock_one(struct device *dev, void *data)
6161{
6162	struct regulator_dev *rdev = dev_to_rdev(dev);
6163	struct summary_lock_data *lock_data = data;
6164
6165	if (lock_data) {
6166		if (rdev == *lock_data->new_contended_rdev)
6167			return -EDEADLK;
6168	}
6169
6170	regulator_unlock(rdev);
6171
6172	return 0;
6173}
6174
6175static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6176				      struct regulator_dev **new_contended_rdev,
6177				      struct regulator_dev **old_contended_rdev)
6178{
6179	struct summary_lock_data lock_data;
6180	int ret;
6181
6182	lock_data.ww_ctx = ww_ctx;
6183	lock_data.new_contended_rdev = new_contended_rdev;
6184	lock_data.old_contended_rdev = old_contended_rdev;
6185
6186	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6187				    regulator_summary_lock_one);
6188	if (ret)
6189		class_for_each_device(&regulator_class, NULL, &lock_data,
6190				      regulator_summary_unlock_one);
6191
6192	return ret;
6193}
6194
6195static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6196{
6197	struct regulator_dev *new_contended_rdev = NULL;
6198	struct regulator_dev *old_contended_rdev = NULL;
6199	int err;
6200
6201	mutex_lock(&regulator_list_mutex);
6202
6203	ww_acquire_init(ww_ctx, &regulator_ww_class);
6204
6205	do {
6206		if (new_contended_rdev) {
6207			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6208			old_contended_rdev = new_contended_rdev;
6209			old_contended_rdev->ref_cnt++;
6210			old_contended_rdev->mutex_owner = current;
6211		}
6212
6213		err = regulator_summary_lock_all(ww_ctx,
6214						 &new_contended_rdev,
6215						 &old_contended_rdev);
6216
6217		if (old_contended_rdev)
6218			regulator_unlock(old_contended_rdev);
6219
6220	} while (err == -EDEADLK);
6221
6222	ww_acquire_done(ww_ctx);
6223}
6224
6225static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6226{
6227	class_for_each_device(&regulator_class, NULL, NULL,
6228			      regulator_summary_unlock_one);
6229	ww_acquire_fini(ww_ctx);
6230
6231	mutex_unlock(&regulator_list_mutex);
6232}
6233
6234static int regulator_summary_show_roots(struct device *dev, void *data)
6235{
6236	struct regulator_dev *rdev = dev_to_rdev(dev);
6237	struct seq_file *s = data;
6238
6239	if (!rdev->supply)
6240		regulator_summary_show_subtree(s, rdev, 0);
6241
6242	return 0;
6243}
6244
6245static int regulator_summary_show(struct seq_file *s, void *data)
6246{
6247	struct ww_acquire_ctx ww_ctx;
6248
6249	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6250	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6251
6252	regulator_summary_lock(&ww_ctx);
6253
6254	class_for_each_device(&regulator_class, NULL, s,
6255			      regulator_summary_show_roots);
6256
6257	regulator_summary_unlock(&ww_ctx);
6258
6259	return 0;
6260}
6261DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6262#endif /* CONFIG_DEBUG_FS */
6263
6264static int __init regulator_init(void)
6265{
6266	int ret;
6267
6268	ret = class_register(&regulator_class);
6269
6270	debugfs_root = debugfs_create_dir("regulator", NULL);
6271	if (IS_ERR(debugfs_root))
6272		pr_debug("regulator: Failed to create debugfs directory\n");
6273
6274#ifdef CONFIG_DEBUG_FS
6275	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6276			    &supply_map_fops);
6277
6278	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6279			    NULL, &regulator_summary_fops);
6280#endif
6281	regulator_dummy_init();
6282
6283	regulator_coupler_register(&generic_regulator_coupler);
6284
6285	return ret;
6286}
6287
6288/* init early to allow our consumers to complete system booting */
6289core_initcall(regulator_init);
6290
6291static int regulator_late_cleanup(struct device *dev, void *data)
6292{
6293	struct regulator_dev *rdev = dev_to_rdev(dev);
 
6294	struct regulation_constraints *c = rdev->constraints;
6295	int ret;
6296
6297	if (c && c->always_on)
6298		return 0;
6299
6300	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6301		return 0;
6302
6303	regulator_lock(rdev);
6304
6305	if (rdev->use_count)
6306		goto unlock;
6307
6308	/* If reading the status failed, assume that it's off. */
6309	if (_regulator_is_enabled(rdev) <= 0)
 
 
 
 
 
 
6310		goto unlock;
6311
6312	if (have_full_constraints()) {
6313		/* We log since this may kill the system if it goes
6314		 * wrong.
6315		 */
6316		rdev_info(rdev, "disabling\n");
6317		ret = _regulator_do_disable(rdev);
6318		if (ret != 0)
6319			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6320	} else {
6321		/* The intention is that in future we will
6322		 * assume that full constraints are provided
6323		 * so warn even if we aren't going to do
6324		 * anything here.
6325		 */
6326		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6327	}
6328
6329unlock:
6330	regulator_unlock(rdev);
6331
6332	return 0;
6333}
6334
6335static bool regulator_ignore_unused;
6336static int __init regulator_ignore_unused_setup(char *__unused)
6337{
6338	regulator_ignore_unused = true;
6339	return 1;
6340}
6341__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6342
6343static void regulator_init_complete_work_function(struct work_struct *work)
6344{
6345	/*
6346	 * Regulators may had failed to resolve their input supplies
6347	 * when were registered, either because the input supply was
6348	 * not registered yet or because its parent device was not
6349	 * bound yet. So attempt to resolve the input supplies for
6350	 * pending regulators before trying to disable unused ones.
6351	 */
6352	class_for_each_device(&regulator_class, NULL, NULL,
6353			      regulator_register_resolve_supply);
6354
6355	/*
6356	 * For debugging purposes, it may be useful to prevent unused
6357	 * regulators from being disabled.
6358	 */
6359	if (regulator_ignore_unused) {
6360		pr_warn("regulator: Not disabling unused regulators\n");
6361		return;
6362	}
6363
6364	/* If we have a full configuration then disable any regulators
6365	 * we have permission to change the status for and which are
6366	 * not in use or always_on.  This is effectively the default
6367	 * for DT and ACPI as they have full constraints.
6368	 */
6369	class_for_each_device(&regulator_class, NULL, NULL,
6370			      regulator_late_cleanup);
6371}
6372
6373static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6374			    regulator_init_complete_work_function);
6375
6376static int __init regulator_init_complete(void)
6377{
6378	/*
6379	 * Since DT doesn't provide an idiomatic mechanism for
6380	 * enabling full constraints and since it's much more natural
6381	 * with DT to provide them just assume that a DT enabled
6382	 * system has full constraints.
6383	 */
6384	if (of_have_populated_dt())
6385		has_full_constraints = true;
6386
6387	/*
6388	 * We punt completion for an arbitrary amount of time since
6389	 * systems like distros will load many drivers from userspace
6390	 * so consumers might not always be ready yet, this is
6391	 * particularly an issue with laptops where this might bounce
6392	 * the display off then on.  Ideally we'd get a notification
6393	 * from userspace when this happens but we don't so just wait
6394	 * a bit and hope we waited long enough.  It'd be better if
6395	 * we'd only do this on systems that need it, and a kernel
6396	 * command line option might be useful.
6397	 */
6398	schedule_delayed_work(&regulator_init_complete_work,
6399			      msecs_to_jiffies(30000));
6400
6401	return 0;
6402}
6403late_initcall_sync(regulator_init_complete);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
 
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
 
  35
  36static DEFINE_WW_CLASS(regulator_ww_class);
  37static DEFINE_MUTEX(regulator_nesting_mutex);
  38static DEFINE_MUTEX(regulator_list_mutex);
  39static LIST_HEAD(regulator_map_list);
  40static LIST_HEAD(regulator_ena_gpio_list);
  41static LIST_HEAD(regulator_supply_alias_list);
  42static LIST_HEAD(regulator_coupler_list);
  43static bool has_full_constraints;
  44
  45static struct dentry *debugfs_root;
  46
  47/*
  48 * struct regulator_map
  49 *
  50 * Used to provide symbolic supply names to devices.
  51 */
  52struct regulator_map {
  53	struct list_head list;
  54	const char *dev_name;   /* The dev_name() for the consumer */
  55	const char *supply;
  56	struct regulator_dev *regulator;
  57};
  58
  59/*
  60 * struct regulator_enable_gpio
  61 *
  62 * Management for shared enable GPIO pin
  63 */
  64struct regulator_enable_gpio {
  65	struct list_head list;
  66	struct gpio_desc *gpiod;
  67	u32 enable_count;	/* a number of enabled shared GPIO */
  68	u32 request_count;	/* a number of requested shared GPIO */
  69};
  70
  71/*
  72 * struct regulator_supply_alias
  73 *
  74 * Used to map lookups for a supply onto an alternative device.
  75 */
  76struct regulator_supply_alias {
  77	struct list_head list;
  78	struct device *src_dev;
  79	const char *src_supply;
  80	struct device *alias_dev;
  81	const char *alias_supply;
  82};
  83
  84static int _regulator_is_enabled(struct regulator_dev *rdev);
  85static int _regulator_disable(struct regulator *regulator);
 
  86static int _regulator_get_current_limit(struct regulator_dev *rdev);
  87static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  88static int _notifier_call_chain(struct regulator_dev *rdev,
  89				  unsigned long event, void *data);
  90static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  91				     int min_uV, int max_uV);
  92static int regulator_balance_voltage(struct regulator_dev *rdev,
  93				     suspend_state_t state);
  94static struct regulator *create_regulator(struct regulator_dev *rdev,
  95					  struct device *dev,
  96					  const char *supply_name);
  97static void destroy_regulator(struct regulator *regulator);
  98static void _regulator_put(struct regulator *regulator);
  99
 100const char *rdev_get_name(struct regulator_dev *rdev)
 101{
 102	if (rdev->constraints && rdev->constraints->name)
 103		return rdev->constraints->name;
 104	else if (rdev->desc->name)
 105		return rdev->desc->name;
 106	else
 107		return "";
 108}
 109EXPORT_SYMBOL_GPL(rdev_get_name);
 110
 111static bool have_full_constraints(void)
 112{
 113	return has_full_constraints || of_have_populated_dt();
 114}
 115
 116static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 117{
 118	if (!rdev->constraints) {
 119		rdev_err(rdev, "no constraints\n");
 120		return false;
 121	}
 122
 123	if (rdev->constraints->valid_ops_mask & ops)
 124		return true;
 125
 126	return false;
 127}
 128
 129/**
 130 * regulator_lock_nested - lock a single regulator
 131 * @rdev:		regulator source
 132 * @ww_ctx:		w/w mutex acquire context
 133 *
 134 * This function can be called many times by one task on
 135 * a single regulator and its mutex will be locked only
 136 * once. If a task, which is calling this function is other
 137 * than the one, which initially locked the mutex, it will
 138 * wait on mutex.
 
 
 139 */
 140static inline int regulator_lock_nested(struct regulator_dev *rdev,
 141					struct ww_acquire_ctx *ww_ctx)
 142{
 143	bool lock = false;
 144	int ret = 0;
 145
 146	mutex_lock(&regulator_nesting_mutex);
 147
 148	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 149		if (rdev->mutex_owner == current)
 150			rdev->ref_cnt++;
 151		else
 152			lock = true;
 153
 154		if (lock) {
 155			mutex_unlock(&regulator_nesting_mutex);
 156			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 157			mutex_lock(&regulator_nesting_mutex);
 158		}
 159	} else {
 160		lock = true;
 161	}
 162
 163	if (lock && ret != -EDEADLK) {
 164		rdev->ref_cnt++;
 165		rdev->mutex_owner = current;
 166	}
 167
 168	mutex_unlock(&regulator_nesting_mutex);
 169
 170	return ret;
 171}
 172
 173/**
 174 * regulator_lock - lock a single regulator
 175 * @rdev:		regulator source
 176 *
 177 * This function can be called many times by one task on
 178 * a single regulator and its mutex will be locked only
 179 * once. If a task, which is calling this function is other
 180 * than the one, which initially locked the mutex, it will
 181 * wait on mutex.
 182 */
 183static void regulator_lock(struct regulator_dev *rdev)
 184{
 185	regulator_lock_nested(rdev, NULL);
 186}
 187
 188/**
 189 * regulator_unlock - unlock a single regulator
 190 * @rdev:		regulator_source
 191 *
 192 * This function unlocks the mutex when the
 193 * reference counter reaches 0.
 194 */
 195static void regulator_unlock(struct regulator_dev *rdev)
 196{
 197	mutex_lock(&regulator_nesting_mutex);
 198
 199	if (--rdev->ref_cnt == 0) {
 200		rdev->mutex_owner = NULL;
 201		ww_mutex_unlock(&rdev->mutex);
 202	}
 203
 204	WARN_ON_ONCE(rdev->ref_cnt < 0);
 205
 206	mutex_unlock(&regulator_nesting_mutex);
 207}
 208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 210{
 211	struct regulator_dev *c_rdev;
 212	int i;
 213
 214	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 215		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 216
 217		if (rdev->supply->rdev == c_rdev)
 218			return true;
 219	}
 220
 221	return false;
 222}
 223
 224static void regulator_unlock_recursive(struct regulator_dev *rdev,
 225				       unsigned int n_coupled)
 226{
 227	struct regulator_dev *c_rdev, *supply_rdev;
 228	int i, supply_n_coupled;
 229
 230	for (i = n_coupled; i > 0; i--) {
 231		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 232
 233		if (!c_rdev)
 234			continue;
 235
 236		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 237			supply_rdev = c_rdev->supply->rdev;
 238			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 239
 240			regulator_unlock_recursive(supply_rdev,
 241						   supply_n_coupled);
 242		}
 243
 244		regulator_unlock(c_rdev);
 245	}
 246}
 247
 248static int regulator_lock_recursive(struct regulator_dev *rdev,
 249				    struct regulator_dev **new_contended_rdev,
 250				    struct regulator_dev **old_contended_rdev,
 251				    struct ww_acquire_ctx *ww_ctx)
 252{
 253	struct regulator_dev *c_rdev;
 254	int i, err;
 255
 256	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 257		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 258
 259		if (!c_rdev)
 260			continue;
 261
 262		if (c_rdev != *old_contended_rdev) {
 263			err = regulator_lock_nested(c_rdev, ww_ctx);
 264			if (err) {
 265				if (err == -EDEADLK) {
 266					*new_contended_rdev = c_rdev;
 267					goto err_unlock;
 268				}
 269
 270				/* shouldn't happen */
 271				WARN_ON_ONCE(err != -EALREADY);
 272			}
 273		} else {
 274			*old_contended_rdev = NULL;
 275		}
 276
 277		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 278			err = regulator_lock_recursive(c_rdev->supply->rdev,
 279						       new_contended_rdev,
 280						       old_contended_rdev,
 281						       ww_ctx);
 282			if (err) {
 283				regulator_unlock(c_rdev);
 284				goto err_unlock;
 285			}
 286		}
 287	}
 288
 289	return 0;
 290
 291err_unlock:
 292	regulator_unlock_recursive(rdev, i);
 293
 294	return err;
 295}
 296
 297/**
 298 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 299 *				regulators
 300 * @rdev:			regulator source
 301 * @ww_ctx:			w/w mutex acquire context
 302 *
 303 * Unlock all regulators related with rdev by coupling or supplying.
 304 */
 305static void regulator_unlock_dependent(struct regulator_dev *rdev,
 306				       struct ww_acquire_ctx *ww_ctx)
 307{
 308	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 309	ww_acquire_fini(ww_ctx);
 310}
 311
 312/**
 313 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 314 * @rdev:			regulator source
 315 * @ww_ctx:			w/w mutex acquire context
 316 *
 317 * This function as a wrapper on regulator_lock_recursive(), which locks
 318 * all regulators related with rdev by coupling or supplying.
 319 */
 320static void regulator_lock_dependent(struct regulator_dev *rdev,
 321				     struct ww_acquire_ctx *ww_ctx)
 322{
 323	struct regulator_dev *new_contended_rdev = NULL;
 324	struct regulator_dev *old_contended_rdev = NULL;
 325	int err;
 326
 327	mutex_lock(&regulator_list_mutex);
 328
 329	ww_acquire_init(ww_ctx, &regulator_ww_class);
 330
 331	do {
 332		if (new_contended_rdev) {
 333			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 334			old_contended_rdev = new_contended_rdev;
 335			old_contended_rdev->ref_cnt++;
 
 336		}
 337
 338		err = regulator_lock_recursive(rdev,
 339					       &new_contended_rdev,
 340					       &old_contended_rdev,
 341					       ww_ctx);
 342
 343		if (old_contended_rdev)
 344			regulator_unlock(old_contended_rdev);
 345
 346	} while (err == -EDEADLK);
 347
 348	ww_acquire_done(ww_ctx);
 349
 350	mutex_unlock(&regulator_list_mutex);
 351}
 352
 353/**
 354 * of_get_child_regulator - get a child regulator device node
 355 * based on supply name
 356 * @parent: Parent device node
 357 * @prop_name: Combination regulator supply name and "-supply"
 358 *
 359 * Traverse all child nodes.
 360 * Extract the child regulator device node corresponding to the supply name.
 361 * returns the device node corresponding to the regulator if found, else
 362 * returns NULL.
 363 */
 364static struct device_node *of_get_child_regulator(struct device_node *parent,
 365						  const char *prop_name)
 366{
 367	struct device_node *regnode = NULL;
 368	struct device_node *child = NULL;
 369
 370	for_each_child_of_node(parent, child) {
 371		regnode = of_parse_phandle(child, prop_name, 0);
 372
 373		if (!regnode) {
 374			regnode = of_get_child_regulator(child, prop_name);
 375			if (regnode)
 376				goto err_node_put;
 377		} else {
 378			goto err_node_put;
 379		}
 380	}
 381	return NULL;
 382
 383err_node_put:
 384	of_node_put(child);
 385	return regnode;
 386}
 387
 388/**
 389 * of_get_regulator - get a regulator device node based on supply name
 390 * @dev: Device pointer for the consumer (of regulator) device
 391 * @supply: regulator supply name
 392 *
 393 * Extract the regulator device node corresponding to the supply name.
 394 * returns the device node corresponding to the regulator if found, else
 395 * returns NULL.
 396 */
 397static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 398{
 399	struct device_node *regnode = NULL;
 400	char prop_name[64]; /* 64 is max size of property name */
 401
 402	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 403
 404	snprintf(prop_name, 64, "%s-supply", supply);
 405	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 406
 407	if (!regnode) {
 408		regnode = of_get_child_regulator(dev->of_node, prop_name);
 409		if (regnode)
 410			return regnode;
 411
 412		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 413				prop_name, dev->of_node);
 414		return NULL;
 415	}
 416	return regnode;
 417}
 418
 419/* Platform voltage constraint check */
 420int regulator_check_voltage(struct regulator_dev *rdev,
 421			    int *min_uV, int *max_uV)
 422{
 423	BUG_ON(*min_uV > *max_uV);
 424
 425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 426		rdev_err(rdev, "voltage operation not allowed\n");
 427		return -EPERM;
 428	}
 429
 430	if (*max_uV > rdev->constraints->max_uV)
 431		*max_uV = rdev->constraints->max_uV;
 432	if (*min_uV < rdev->constraints->min_uV)
 433		*min_uV = rdev->constraints->min_uV;
 434
 435	if (*min_uV > *max_uV) {
 436		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 437			 *min_uV, *max_uV);
 438		return -EINVAL;
 439	}
 440
 441	return 0;
 442}
 443
 444/* return 0 if the state is valid */
 445static int regulator_check_states(suspend_state_t state)
 446{
 447	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 448}
 449
 450/* Make sure we select a voltage that suits the needs of all
 451 * regulator consumers
 452 */
 453int regulator_check_consumers(struct regulator_dev *rdev,
 454			      int *min_uV, int *max_uV,
 455			      suspend_state_t state)
 456{
 457	struct regulator *regulator;
 458	struct regulator_voltage *voltage;
 459
 460	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 461		voltage = &regulator->voltage[state];
 462		/*
 463		 * Assume consumers that didn't say anything are OK
 464		 * with anything in the constraint range.
 465		 */
 466		if (!voltage->min_uV && !voltage->max_uV)
 467			continue;
 468
 469		if (*max_uV > voltage->max_uV)
 470			*max_uV = voltage->max_uV;
 471		if (*min_uV < voltage->min_uV)
 472			*min_uV = voltage->min_uV;
 473	}
 474
 475	if (*min_uV > *max_uV) {
 476		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 477			*min_uV, *max_uV);
 478		return -EINVAL;
 479	}
 480
 481	return 0;
 482}
 483
 484/* current constraint check */
 485static int regulator_check_current_limit(struct regulator_dev *rdev,
 486					int *min_uA, int *max_uA)
 487{
 488	BUG_ON(*min_uA > *max_uA);
 489
 490	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 491		rdev_err(rdev, "current operation not allowed\n");
 492		return -EPERM;
 493	}
 494
 495	if (*max_uA > rdev->constraints->max_uA)
 
 496		*max_uA = rdev->constraints->max_uA;
 497	if (*min_uA < rdev->constraints->min_uA)
 498		*min_uA = rdev->constraints->min_uA;
 499
 500	if (*min_uA > *max_uA) {
 501		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 502			 *min_uA, *max_uA);
 503		return -EINVAL;
 504	}
 505
 506	return 0;
 507}
 508
 509/* operating mode constraint check */
 510static int regulator_mode_constrain(struct regulator_dev *rdev,
 511				    unsigned int *mode)
 512{
 513	switch (*mode) {
 514	case REGULATOR_MODE_FAST:
 515	case REGULATOR_MODE_NORMAL:
 516	case REGULATOR_MODE_IDLE:
 517	case REGULATOR_MODE_STANDBY:
 518		break;
 519	default:
 520		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 521		return -EINVAL;
 522	}
 523
 524	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 525		rdev_err(rdev, "mode operation not allowed\n");
 526		return -EPERM;
 527	}
 528
 529	/* The modes are bitmasks, the most power hungry modes having
 530	 * the lowest values. If the requested mode isn't supported
 531	 * try higher modes.
 532	 */
 533	while (*mode) {
 534		if (rdev->constraints->valid_modes_mask & *mode)
 535			return 0;
 536		*mode /= 2;
 537	}
 538
 539	return -EINVAL;
 540}
 541
 542static inline struct regulator_state *
 543regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 544{
 545	if (rdev->constraints == NULL)
 546		return NULL;
 547
 548	switch (state) {
 549	case PM_SUSPEND_STANDBY:
 550		return &rdev->constraints->state_standby;
 551	case PM_SUSPEND_MEM:
 552		return &rdev->constraints->state_mem;
 553	case PM_SUSPEND_MAX:
 554		return &rdev->constraints->state_disk;
 555	default:
 556		return NULL;
 557	}
 558}
 559
 560static const struct regulator_state *
 561regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 562{
 563	const struct regulator_state *rstate;
 564
 565	rstate = regulator_get_suspend_state(rdev, state);
 566	if (rstate == NULL)
 567		return NULL;
 568
 569	/* If we have no suspend mode configuration don't set anything;
 570	 * only warn if the driver implements set_suspend_voltage or
 571	 * set_suspend_mode callback.
 572	 */
 573	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 574	    rstate->enabled != DISABLE_IN_SUSPEND) {
 575		if (rdev->desc->ops->set_suspend_voltage ||
 576		    rdev->desc->ops->set_suspend_mode)
 577			rdev_warn(rdev, "No configuration\n");
 578		return NULL;
 579	}
 580
 581	return rstate;
 582}
 583
 584static ssize_t microvolts_show(struct device *dev,
 585			       struct device_attribute *attr, char *buf)
 586{
 587	struct regulator_dev *rdev = dev_get_drvdata(dev);
 588	int uV;
 589
 590	regulator_lock(rdev);
 591	uV = regulator_get_voltage_rdev(rdev);
 592	regulator_unlock(rdev);
 593
 594	if (uV < 0)
 595		return uV;
 596	return sprintf(buf, "%d\n", uV);
 597}
 598static DEVICE_ATTR_RO(microvolts);
 599
 600static ssize_t microamps_show(struct device *dev,
 601			      struct device_attribute *attr, char *buf)
 602{
 603	struct regulator_dev *rdev = dev_get_drvdata(dev);
 604
 605	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 606}
 607static DEVICE_ATTR_RO(microamps);
 608
 609static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 610			 char *buf)
 611{
 612	struct regulator_dev *rdev = dev_get_drvdata(dev);
 613
 614	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 615}
 616static DEVICE_ATTR_RO(name);
 617
 618static const char *regulator_opmode_to_str(int mode)
 619{
 620	switch (mode) {
 621	case REGULATOR_MODE_FAST:
 622		return "fast";
 623	case REGULATOR_MODE_NORMAL:
 624		return "normal";
 625	case REGULATOR_MODE_IDLE:
 626		return "idle";
 627	case REGULATOR_MODE_STANDBY:
 628		return "standby";
 629	}
 630	return "unknown";
 631}
 632
 633static ssize_t regulator_print_opmode(char *buf, int mode)
 634{
 635	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 636}
 637
 638static ssize_t opmode_show(struct device *dev,
 639			   struct device_attribute *attr, char *buf)
 640{
 641	struct regulator_dev *rdev = dev_get_drvdata(dev);
 642
 643	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 644}
 645static DEVICE_ATTR_RO(opmode);
 646
 647static ssize_t regulator_print_state(char *buf, int state)
 648{
 649	if (state > 0)
 650		return sprintf(buf, "enabled\n");
 651	else if (state == 0)
 652		return sprintf(buf, "disabled\n");
 653	else
 654		return sprintf(buf, "unknown\n");
 655}
 656
 657static ssize_t state_show(struct device *dev,
 658			  struct device_attribute *attr, char *buf)
 659{
 660	struct regulator_dev *rdev = dev_get_drvdata(dev);
 661	ssize_t ret;
 662
 663	regulator_lock(rdev);
 664	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 665	regulator_unlock(rdev);
 666
 667	return ret;
 668}
 669static DEVICE_ATTR_RO(state);
 670
 671static ssize_t status_show(struct device *dev,
 672			   struct device_attribute *attr, char *buf)
 673{
 674	struct regulator_dev *rdev = dev_get_drvdata(dev);
 675	int status;
 676	char *label;
 677
 678	status = rdev->desc->ops->get_status(rdev);
 679	if (status < 0)
 680		return status;
 681
 682	switch (status) {
 683	case REGULATOR_STATUS_OFF:
 684		label = "off";
 685		break;
 686	case REGULATOR_STATUS_ON:
 687		label = "on";
 688		break;
 689	case REGULATOR_STATUS_ERROR:
 690		label = "error";
 691		break;
 692	case REGULATOR_STATUS_FAST:
 693		label = "fast";
 694		break;
 695	case REGULATOR_STATUS_NORMAL:
 696		label = "normal";
 697		break;
 698	case REGULATOR_STATUS_IDLE:
 699		label = "idle";
 700		break;
 701	case REGULATOR_STATUS_STANDBY:
 702		label = "standby";
 703		break;
 704	case REGULATOR_STATUS_BYPASS:
 705		label = "bypass";
 706		break;
 707	case REGULATOR_STATUS_UNDEFINED:
 708		label = "undefined";
 709		break;
 710	default:
 711		return -ERANGE;
 712	}
 713
 714	return sprintf(buf, "%s\n", label);
 715}
 716static DEVICE_ATTR_RO(status);
 717
 718static ssize_t min_microamps_show(struct device *dev,
 719				  struct device_attribute *attr, char *buf)
 720{
 721	struct regulator_dev *rdev = dev_get_drvdata(dev);
 722
 723	if (!rdev->constraints)
 724		return sprintf(buf, "constraint not defined\n");
 725
 726	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 727}
 728static DEVICE_ATTR_RO(min_microamps);
 729
 730static ssize_t max_microamps_show(struct device *dev,
 731				  struct device_attribute *attr, char *buf)
 732{
 733	struct regulator_dev *rdev = dev_get_drvdata(dev);
 734
 735	if (!rdev->constraints)
 736		return sprintf(buf, "constraint not defined\n");
 737
 738	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 739}
 740static DEVICE_ATTR_RO(max_microamps);
 741
 742static ssize_t min_microvolts_show(struct device *dev,
 743				   struct device_attribute *attr, char *buf)
 744{
 745	struct regulator_dev *rdev = dev_get_drvdata(dev);
 746
 747	if (!rdev->constraints)
 748		return sprintf(buf, "constraint not defined\n");
 749
 750	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 751}
 752static DEVICE_ATTR_RO(min_microvolts);
 753
 754static ssize_t max_microvolts_show(struct device *dev,
 755				   struct device_attribute *attr, char *buf)
 756{
 757	struct regulator_dev *rdev = dev_get_drvdata(dev);
 758
 759	if (!rdev->constraints)
 760		return sprintf(buf, "constraint not defined\n");
 761
 762	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 763}
 764static DEVICE_ATTR_RO(max_microvolts);
 765
 766static ssize_t requested_microamps_show(struct device *dev,
 767					struct device_attribute *attr, char *buf)
 768{
 769	struct regulator_dev *rdev = dev_get_drvdata(dev);
 770	struct regulator *regulator;
 771	int uA = 0;
 772
 773	regulator_lock(rdev);
 774	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 775		if (regulator->enable_count)
 776			uA += regulator->uA_load;
 777	}
 778	regulator_unlock(rdev);
 779	return sprintf(buf, "%d\n", uA);
 780}
 781static DEVICE_ATTR_RO(requested_microamps);
 782
 783static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 784			      char *buf)
 785{
 786	struct regulator_dev *rdev = dev_get_drvdata(dev);
 787	return sprintf(buf, "%d\n", rdev->use_count);
 788}
 789static DEVICE_ATTR_RO(num_users);
 790
 791static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 792			 char *buf)
 793{
 794	struct regulator_dev *rdev = dev_get_drvdata(dev);
 795
 796	switch (rdev->desc->type) {
 797	case REGULATOR_VOLTAGE:
 798		return sprintf(buf, "voltage\n");
 799	case REGULATOR_CURRENT:
 800		return sprintf(buf, "current\n");
 801	}
 802	return sprintf(buf, "unknown\n");
 803}
 804static DEVICE_ATTR_RO(type);
 805
 806static ssize_t suspend_mem_microvolts_show(struct device *dev,
 807					   struct device_attribute *attr, char *buf)
 808{
 809	struct regulator_dev *rdev = dev_get_drvdata(dev);
 810
 811	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 812}
 813static DEVICE_ATTR_RO(suspend_mem_microvolts);
 814
 815static ssize_t suspend_disk_microvolts_show(struct device *dev,
 816					    struct device_attribute *attr, char *buf)
 817{
 818	struct regulator_dev *rdev = dev_get_drvdata(dev);
 819
 820	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 821}
 822static DEVICE_ATTR_RO(suspend_disk_microvolts);
 823
 824static ssize_t suspend_standby_microvolts_show(struct device *dev,
 825					       struct device_attribute *attr, char *buf)
 826{
 827	struct regulator_dev *rdev = dev_get_drvdata(dev);
 828
 829	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 830}
 831static DEVICE_ATTR_RO(suspend_standby_microvolts);
 832
 833static ssize_t suspend_mem_mode_show(struct device *dev,
 834				     struct device_attribute *attr, char *buf)
 835{
 836	struct regulator_dev *rdev = dev_get_drvdata(dev);
 837
 838	return regulator_print_opmode(buf,
 839		rdev->constraints->state_mem.mode);
 840}
 841static DEVICE_ATTR_RO(suspend_mem_mode);
 842
 843static ssize_t suspend_disk_mode_show(struct device *dev,
 844				      struct device_attribute *attr, char *buf)
 845{
 846	struct regulator_dev *rdev = dev_get_drvdata(dev);
 847
 848	return regulator_print_opmode(buf,
 849		rdev->constraints->state_disk.mode);
 850}
 851static DEVICE_ATTR_RO(suspend_disk_mode);
 852
 853static ssize_t suspend_standby_mode_show(struct device *dev,
 854					 struct device_attribute *attr, char *buf)
 855{
 856	struct regulator_dev *rdev = dev_get_drvdata(dev);
 857
 858	return regulator_print_opmode(buf,
 859		rdev->constraints->state_standby.mode);
 860}
 861static DEVICE_ATTR_RO(suspend_standby_mode);
 862
 863static ssize_t suspend_mem_state_show(struct device *dev,
 864				      struct device_attribute *attr, char *buf)
 865{
 866	struct regulator_dev *rdev = dev_get_drvdata(dev);
 867
 868	return regulator_print_state(buf,
 869			rdev->constraints->state_mem.enabled);
 870}
 871static DEVICE_ATTR_RO(suspend_mem_state);
 872
 873static ssize_t suspend_disk_state_show(struct device *dev,
 874				       struct device_attribute *attr, char *buf)
 875{
 876	struct regulator_dev *rdev = dev_get_drvdata(dev);
 877
 878	return regulator_print_state(buf,
 879			rdev->constraints->state_disk.enabled);
 880}
 881static DEVICE_ATTR_RO(suspend_disk_state);
 882
 883static ssize_t suspend_standby_state_show(struct device *dev,
 884					  struct device_attribute *attr, char *buf)
 885{
 886	struct regulator_dev *rdev = dev_get_drvdata(dev);
 887
 888	return regulator_print_state(buf,
 889			rdev->constraints->state_standby.enabled);
 890}
 891static DEVICE_ATTR_RO(suspend_standby_state);
 892
 893static ssize_t bypass_show(struct device *dev,
 894			   struct device_attribute *attr, char *buf)
 895{
 896	struct regulator_dev *rdev = dev_get_drvdata(dev);
 897	const char *report;
 898	bool bypass;
 899	int ret;
 900
 901	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 902
 903	if (ret != 0)
 904		report = "unknown";
 905	else if (bypass)
 906		report = "enabled";
 907	else
 908		report = "disabled";
 909
 910	return sprintf(buf, "%s\n", report);
 911}
 912static DEVICE_ATTR_RO(bypass);
 913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914/* Calculate the new optimum regulator operating mode based on the new total
 915 * consumer load. All locks held by caller
 916 */
 917static int drms_uA_update(struct regulator_dev *rdev)
 918{
 919	struct regulator *sibling;
 920	int current_uA = 0, output_uV, input_uV, err;
 921	unsigned int mode;
 922
 923	/*
 924	 * first check to see if we can set modes at all, otherwise just
 925	 * tell the consumer everything is OK.
 926	 */
 927	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 928		rdev_dbg(rdev, "DRMS operation not allowed\n");
 929		return 0;
 930	}
 931
 932	if (!rdev->desc->ops->get_optimum_mode &&
 933	    !rdev->desc->ops->set_load)
 934		return 0;
 935
 936	if (!rdev->desc->ops->set_mode &&
 937	    !rdev->desc->ops->set_load)
 938		return -EINVAL;
 939
 940	/* calc total requested load */
 941	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 942		if (sibling->enable_count)
 943			current_uA += sibling->uA_load;
 944	}
 945
 946	current_uA += rdev->constraints->system_load;
 947
 948	if (rdev->desc->ops->set_load) {
 949		/* set the optimum mode for our new total regulator load */
 950		err = rdev->desc->ops->set_load(rdev, current_uA);
 951		if (err < 0)
 952			rdev_err(rdev, "failed to set load %d: %pe\n",
 953				 current_uA, ERR_PTR(err));
 954	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 955		/* get output voltage */
 956		output_uV = regulator_get_voltage_rdev(rdev);
 957		if (output_uV <= 0) {
 958			rdev_err(rdev, "invalid output voltage found\n");
 959			return -EINVAL;
 960		}
 
 
 
 961
 962		/* get input voltage */
 963		input_uV = 0;
 964		if (rdev->supply)
 965			input_uV = regulator_get_voltage(rdev->supply);
 966		if (input_uV <= 0)
 967			input_uV = rdev->constraints->input_uV;
 968		if (input_uV <= 0) {
 969			rdev_err(rdev, "invalid input voltage found\n");
 970			return -EINVAL;
 971		}
 
 
 
 972
 973		/* now get the optimum mode for our new total regulator load */
 974		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 975							 output_uV, current_uA);
 976
 977		/* check the new mode is allowed */
 978		err = regulator_mode_constrain(rdev, &mode);
 979		if (err < 0) {
 980			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
 981				 current_uA, input_uV, output_uV, ERR_PTR(err));
 982			return err;
 983		}
 984
 985		err = rdev->desc->ops->set_mode(rdev, mode);
 986		if (err < 0)
 987			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
 988				 mode, ERR_PTR(err));
 989	}
 990
 991	return err;
 992}
 993
 994static int __suspend_set_state(struct regulator_dev *rdev,
 995			       const struct regulator_state *rstate)
 996{
 997	int ret = 0;
 998
 999	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000		rdev->desc->ops->set_suspend_enable)
1001		ret = rdev->desc->ops->set_suspend_enable(rdev);
1002	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003		rdev->desc->ops->set_suspend_disable)
1004		ret = rdev->desc->ops->set_suspend_disable(rdev);
1005	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006		ret = 0;
1007
1008	if (ret < 0) {
1009		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010		return ret;
1011	}
1012
1013	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015		if (ret < 0) {
1016			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017			return ret;
1018		}
1019	}
1020
1021	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023		if (ret < 0) {
1024			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025			return ret;
1026		}
1027	}
1028
1029	return ret;
1030}
1031
1032static int suspend_set_initial_state(struct regulator_dev *rdev)
1033{
1034	const struct regulator_state *rstate;
1035
1036	rstate = regulator_get_suspend_state_check(rdev,
1037			rdev->constraints->initial_state);
1038	if (!rstate)
1039		return 0;
1040
1041	return __suspend_set_state(rdev, rstate);
1042}
1043
1044#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045static void print_constraints_debug(struct regulator_dev *rdev)
1046{
1047	struct regulation_constraints *constraints = rdev->constraints;
1048	char buf[160] = "";
1049	size_t len = sizeof(buf) - 1;
1050	int count = 0;
1051	int ret;
1052
1053	if (constraints->min_uV && constraints->max_uV) {
1054		if (constraints->min_uV == constraints->max_uV)
1055			count += scnprintf(buf + count, len - count, "%d mV ",
1056					   constraints->min_uV / 1000);
1057		else
1058			count += scnprintf(buf + count, len - count,
1059					   "%d <--> %d mV ",
1060					   constraints->min_uV / 1000,
1061					   constraints->max_uV / 1000);
1062	}
1063
1064	if (!constraints->min_uV ||
1065	    constraints->min_uV != constraints->max_uV) {
1066		ret = regulator_get_voltage_rdev(rdev);
1067		if (ret > 0)
1068			count += scnprintf(buf + count, len - count,
1069					   "at %d mV ", ret / 1000);
1070	}
1071
1072	if (constraints->uV_offset)
1073		count += scnprintf(buf + count, len - count, "%dmV offset ",
1074				   constraints->uV_offset / 1000);
1075
1076	if (constraints->min_uA && constraints->max_uA) {
1077		if (constraints->min_uA == constraints->max_uA)
1078			count += scnprintf(buf + count, len - count, "%d mA ",
1079					   constraints->min_uA / 1000);
1080		else
1081			count += scnprintf(buf + count, len - count,
1082					   "%d <--> %d mA ",
1083					   constraints->min_uA / 1000,
1084					   constraints->max_uA / 1000);
1085	}
1086
1087	if (!constraints->min_uA ||
1088	    constraints->min_uA != constraints->max_uA) {
1089		ret = _regulator_get_current_limit(rdev);
1090		if (ret > 0)
1091			count += scnprintf(buf + count, len - count,
1092					   "at %d mA ", ret / 1000);
1093	}
1094
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096		count += scnprintf(buf + count, len - count, "fast ");
1097	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098		count += scnprintf(buf + count, len - count, "normal ");
1099	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100		count += scnprintf(buf + count, len - count, "idle ");
1101	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102		count += scnprintf(buf + count, len - count, "standby ");
1103
1104	if (!count)
1105		count = scnprintf(buf, len, "no parameters");
1106	else
1107		--count;
1108
1109	count += scnprintf(buf + count, len - count, ", %s",
1110		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112	rdev_dbg(rdev, "%s\n", buf);
1113}
1114#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118static void print_constraints(struct regulator_dev *rdev)
1119{
1120	struct regulation_constraints *constraints = rdev->constraints;
1121
1122	print_constraints_debug(rdev);
1123
1124	if ((constraints->min_uV != constraints->max_uV) &&
1125	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126		rdev_warn(rdev,
1127			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128}
1129
1130static int machine_constraints_voltage(struct regulator_dev *rdev,
1131	struct regulation_constraints *constraints)
1132{
1133	const struct regulator_ops *ops = rdev->desc->ops;
1134	int ret;
1135
1136	/* do we need to apply the constraint voltage */
1137	if (rdev->constraints->apply_uV &&
1138	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139		int target_min, target_max;
1140		int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142		if (current_uV == -ENOTRECOVERABLE) {
1143			/* This regulator can't be read and must be initialized */
1144			rdev_info(rdev, "Setting %d-%duV\n",
1145				  rdev->constraints->min_uV,
1146				  rdev->constraints->max_uV);
1147			_regulator_do_set_voltage(rdev,
1148						  rdev->constraints->min_uV,
1149						  rdev->constraints->max_uV);
1150			current_uV = regulator_get_voltage_rdev(rdev);
1151		}
1152
1153		if (current_uV < 0) {
1154			rdev_err(rdev,
1155				 "failed to get the current voltage: %pe\n",
1156				 ERR_PTR(current_uV));
 
1157			return current_uV;
1158		}
1159
1160		/*
1161		 * If we're below the minimum voltage move up to the
1162		 * minimum voltage, if we're above the maximum voltage
1163		 * then move down to the maximum.
1164		 */
1165		target_min = current_uV;
1166		target_max = current_uV;
1167
1168		if (current_uV < rdev->constraints->min_uV) {
1169			target_min = rdev->constraints->min_uV;
1170			target_max = rdev->constraints->min_uV;
1171		}
1172
1173		if (current_uV > rdev->constraints->max_uV) {
1174			target_min = rdev->constraints->max_uV;
1175			target_max = rdev->constraints->max_uV;
1176		}
1177
1178		if (target_min != current_uV || target_max != current_uV) {
1179			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180				  current_uV, target_min, target_max);
1181			ret = _regulator_do_set_voltage(
1182				rdev, target_min, target_max);
1183			if (ret < 0) {
1184				rdev_err(rdev,
1185					"failed to apply %d-%duV constraint: %pe\n",
1186					target_min, target_max, ERR_PTR(ret));
1187				return ret;
1188			}
1189		}
1190	}
1191
1192	/* constrain machine-level voltage specs to fit
1193	 * the actual range supported by this regulator.
1194	 */
1195	if (ops->list_voltage && rdev->desc->n_voltages) {
1196		int	count = rdev->desc->n_voltages;
1197		int	i;
1198		int	min_uV = INT_MAX;
1199		int	max_uV = INT_MIN;
1200		int	cmin = constraints->min_uV;
1201		int	cmax = constraints->max_uV;
1202
1203		/* it's safe to autoconfigure fixed-voltage supplies
1204		 * and the constraints are used by list_voltage.
1205		 */
1206		if (count == 1 && !cmin) {
1207			cmin = 1;
1208			cmax = INT_MAX;
1209			constraints->min_uV = cmin;
1210			constraints->max_uV = cmax;
1211		}
1212
1213		/* voltage constraints are optional */
1214		if ((cmin == 0) && (cmax == 0))
1215			return 0;
1216
1217		/* else require explicit machine-level constraints */
1218		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219			rdev_err(rdev, "invalid voltage constraints\n");
1220			return -EINVAL;
1221		}
1222
1223		/* no need to loop voltages if range is continuous */
1224		if (rdev->desc->continuous_voltage_range)
1225			return 0;
1226
1227		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228		for (i = 0; i < count; i++) {
1229			int	value;
1230
1231			value = ops->list_voltage(rdev, i);
1232			if (value <= 0)
1233				continue;
1234
1235			/* maybe adjust [min_uV..max_uV] */
1236			if (value >= cmin && value < min_uV)
1237				min_uV = value;
1238			if (value <= cmax && value > max_uV)
1239				max_uV = value;
1240		}
1241
1242		/* final: [min_uV..max_uV] valid iff constraints valid */
1243		if (max_uV < min_uV) {
1244			rdev_err(rdev,
1245				 "unsupportable voltage constraints %u-%uuV\n",
1246				 min_uV, max_uV);
1247			return -EINVAL;
1248		}
1249
1250		/* use regulator's subset of machine constraints */
1251		if (constraints->min_uV < min_uV) {
1252			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253				 constraints->min_uV, min_uV);
1254			constraints->min_uV = min_uV;
1255		}
1256		if (constraints->max_uV > max_uV) {
1257			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258				 constraints->max_uV, max_uV);
1259			constraints->max_uV = max_uV;
1260		}
1261	}
1262
1263	return 0;
1264}
1265
1266static int machine_constraints_current(struct regulator_dev *rdev,
1267	struct regulation_constraints *constraints)
1268{
1269	const struct regulator_ops *ops = rdev->desc->ops;
1270	int ret;
1271
1272	if (!constraints->min_uA && !constraints->max_uA)
1273		return 0;
1274
1275	if (constraints->min_uA > constraints->max_uA) {
1276		rdev_err(rdev, "Invalid current constraints\n");
1277		return -EINVAL;
1278	}
1279
1280	if (!ops->set_current_limit || !ops->get_current_limit) {
1281		rdev_warn(rdev, "Operation of current configuration missing\n");
1282		return 0;
1283	}
1284
1285	/* Set regulator current in constraints range */
1286	ret = ops->set_current_limit(rdev, constraints->min_uA,
1287			constraints->max_uA);
1288	if (ret < 0) {
1289		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290		return ret;
1291	}
1292
1293	return 0;
1294}
1295
1296static int _regulator_do_enable(struct regulator_dev *rdev);
1297
1298static int notif_set_limit(struct regulator_dev *rdev,
1299			   int (*set)(struct regulator_dev *, int, int, bool),
1300			   int limit, int severity)
1301{
1302	bool enable;
1303
1304	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305		enable = false;
1306		limit = 0;
1307	} else {
1308		enable = true;
1309	}
1310
1311	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312		limit = 0;
1313
1314	return set(rdev, limit, severity, enable);
1315}
1316
1317static int handle_notify_limits(struct regulator_dev *rdev,
1318			int (*set)(struct regulator_dev *, int, int, bool),
1319			struct notification_limit *limits)
1320{
1321	int ret = 0;
1322
1323	if (!set)
1324		return -EOPNOTSUPP;
1325
1326	if (limits->prot)
1327		ret = notif_set_limit(rdev, set, limits->prot,
1328				      REGULATOR_SEVERITY_PROT);
1329	if (ret)
1330		return ret;
1331
1332	if (limits->err)
1333		ret = notif_set_limit(rdev, set, limits->err,
1334				      REGULATOR_SEVERITY_ERR);
1335	if (ret)
1336		return ret;
1337
1338	if (limits->warn)
1339		ret = notif_set_limit(rdev, set, limits->warn,
1340				      REGULATOR_SEVERITY_WARN);
1341
1342	return ret;
1343}
1344/**
1345 * set_machine_constraints - sets regulator constraints
1346 * @rdev: regulator source
1347 *
1348 * Allows platform initialisation code to define and constrain
1349 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1350 * Constraints *must* be set by platform code in order for some
1351 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352 * set_mode.
 
 
1353 */
1354static int set_machine_constraints(struct regulator_dev *rdev)
1355{
1356	int ret = 0;
1357	const struct regulator_ops *ops = rdev->desc->ops;
1358
1359	ret = machine_constraints_voltage(rdev, rdev->constraints);
1360	if (ret != 0)
1361		return ret;
1362
1363	ret = machine_constraints_current(rdev, rdev->constraints);
1364	if (ret != 0)
1365		return ret;
1366
1367	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368		ret = ops->set_input_current_limit(rdev,
1369						   rdev->constraints->ilim_uA);
1370		if (ret < 0) {
1371			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372			return ret;
1373		}
1374	}
1375
1376	/* do we need to setup our suspend state */
1377	if (rdev->constraints->initial_state) {
1378		ret = suspend_set_initial_state(rdev);
1379		if (ret < 0) {
1380			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381			return ret;
1382		}
1383	}
1384
1385	if (rdev->constraints->initial_mode) {
1386		if (!ops->set_mode) {
1387			rdev_err(rdev, "no set_mode operation\n");
1388			return -EINVAL;
1389		}
1390
1391		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392		if (ret < 0) {
1393			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394			return ret;
1395		}
1396	} else if (rdev->constraints->system_load) {
1397		/*
1398		 * We'll only apply the initial system load if an
1399		 * initial mode wasn't specified.
1400		 */
1401		drms_uA_update(rdev);
1402	}
1403
1404	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405		&& ops->set_ramp_delay) {
1406		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407		if (ret < 0) {
1408			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409			return ret;
1410		}
1411	}
1412
1413	if (rdev->constraints->pull_down && ops->set_pull_down) {
1414		ret = ops->set_pull_down(rdev);
1415		if (ret < 0) {
1416			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417			return ret;
1418		}
1419	}
1420
1421	if (rdev->constraints->soft_start && ops->set_soft_start) {
1422		ret = ops->set_soft_start(rdev);
1423		if (ret < 0) {
1424			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425			return ret;
1426		}
1427	}
1428
1429	/*
1430	 * Existing logic does not warn if over_current_protection is given as
1431	 * a constraint but driver does not support that. I think we should
1432	 * warn about this type of issues as it is possible someone changes
1433	 * PMIC on board to another type - and the another PMIC's driver does
1434	 * not support setting protection. Board composer may happily believe
1435	 * the DT limits are respected - especially if the new PMIC HW also
1436	 * supports protection but the driver does not. I won't change the logic
1437	 * without hearing more experienced opinion on this though.
1438	 *
1439	 * If warning is seen as a good idea then we can merge handling the
1440	 * over-curret protection and detection and get rid of this special
1441	 * handling.
1442	 */
1443	if (rdev->constraints->over_current_protection
1444		&& ops->set_over_current_protection) {
1445		int lim = rdev->constraints->over_curr_limits.prot;
1446
1447		ret = ops->set_over_current_protection(rdev, lim,
1448						       REGULATOR_SEVERITY_PROT,
1449						       true);
1450		if (ret < 0) {
1451			rdev_err(rdev, "failed to set over current protection: %pe\n",
1452				 ERR_PTR(ret));
1453			return ret;
1454		}
1455	}
1456
1457	if (rdev->constraints->over_current_detection)
1458		ret = handle_notify_limits(rdev,
1459					   ops->set_over_current_protection,
1460					   &rdev->constraints->over_curr_limits);
1461	if (ret) {
1462		if (ret != -EOPNOTSUPP) {
1463			rdev_err(rdev, "failed to set over current limits: %pe\n",
1464				 ERR_PTR(ret));
1465			return ret;
1466		}
1467		rdev_warn(rdev,
1468			  "IC does not support requested over-current limits\n");
1469	}
1470
1471	if (rdev->constraints->over_voltage_detection)
1472		ret = handle_notify_limits(rdev,
1473					   ops->set_over_voltage_protection,
1474					   &rdev->constraints->over_voltage_limits);
1475	if (ret) {
1476		if (ret != -EOPNOTSUPP) {
1477			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478				 ERR_PTR(ret));
1479			return ret;
1480		}
1481		rdev_warn(rdev,
1482			  "IC does not support requested over voltage limits\n");
1483	}
1484
1485	if (rdev->constraints->under_voltage_detection)
1486		ret = handle_notify_limits(rdev,
1487					   ops->set_under_voltage_protection,
1488					   &rdev->constraints->under_voltage_limits);
1489	if (ret) {
1490		if (ret != -EOPNOTSUPP) {
1491			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492				 ERR_PTR(ret));
1493			return ret;
1494		}
1495		rdev_warn(rdev,
1496			  "IC does not support requested under voltage limits\n");
1497	}
1498
1499	if (rdev->constraints->over_temp_detection)
1500		ret = handle_notify_limits(rdev,
1501					   ops->set_thermal_protection,
1502					   &rdev->constraints->temp_limits);
1503	if (ret) {
1504		if (ret != -EOPNOTSUPP) {
1505			rdev_err(rdev, "failed to set temperature limits %pe\n",
1506				 ERR_PTR(ret));
1507			return ret;
1508		}
1509		rdev_warn(rdev,
1510			  "IC does not support requested temperature limits\n");
1511	}
1512
1513	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514		bool ad_state = (rdev->constraints->active_discharge ==
1515			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516
1517		ret = ops->set_active_discharge(rdev, ad_state);
1518		if (ret < 0) {
1519			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520			return ret;
1521		}
1522	}
1523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524	/* If the constraints say the regulator should be on at this point
1525	 * and we have control then make sure it is enabled.
1526	 */
1527	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528		/* If we want to enable this regulator, make sure that we know
1529		 * the supplying regulator.
1530		 */
1531		if (rdev->supply_name && !rdev->supply)
1532			return -EPROBE_DEFER;
1533
1534		if (rdev->supply) {
 
 
 
 
 
 
1535			ret = regulator_enable(rdev->supply);
1536			if (ret < 0) {
1537				_regulator_put(rdev->supply);
1538				rdev->supply = NULL;
1539				return ret;
1540			}
1541		}
1542
1543		ret = _regulator_do_enable(rdev);
1544		if (ret < 0 && ret != -EINVAL) {
1545			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546			return ret;
1547		}
1548
1549		if (rdev->constraints->always_on)
1550			rdev->use_count++;
1551	} else if (rdev->desc->off_on_delay) {
1552		rdev->last_off = ktime_get();
1553	}
1554
1555	print_constraints(rdev);
1556	return 0;
1557}
1558
1559/**
1560 * set_supply - set regulator supply regulator
1561 * @rdev: regulator name
1562 * @supply_rdev: supply regulator name
1563 *
1564 * Called by platform initialisation code to set the supply regulator for this
1565 * regulator. This ensures that a regulators supply will also be enabled by the
1566 * core if it's child is enabled.
 
 
1567 */
1568static int set_supply(struct regulator_dev *rdev,
1569		      struct regulator_dev *supply_rdev)
1570{
1571	int err;
1572
1573	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1574
1575	if (!try_module_get(supply_rdev->owner))
1576		return -ENODEV;
1577
1578	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579	if (rdev->supply == NULL) {
 
1580		err = -ENOMEM;
1581		return err;
1582	}
1583	supply_rdev->open_count++;
1584
1585	return 0;
1586}
1587
1588/**
1589 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590 * @rdev:         regulator source
1591 * @consumer_dev_name: dev_name() string for device supply applies to
1592 * @supply:       symbolic name for supply
1593 *
1594 * Allows platform initialisation code to map physical regulator
1595 * sources to symbolic names for supplies for use by devices.  Devices
1596 * should use these symbolic names to request regulators, avoiding the
1597 * need to provide board-specific regulator names as platform data.
 
 
1598 */
1599static int set_consumer_device_supply(struct regulator_dev *rdev,
1600				      const char *consumer_dev_name,
1601				      const char *supply)
1602{
1603	struct regulator_map *node, *new_node;
1604	int has_dev;
1605
1606	if (supply == NULL)
1607		return -EINVAL;
1608
1609	if (consumer_dev_name != NULL)
1610		has_dev = 1;
1611	else
1612		has_dev = 0;
1613
1614	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1615	if (new_node == NULL)
1616		return -ENOMEM;
1617
1618	new_node->regulator = rdev;
1619	new_node->supply = supply;
1620
1621	if (has_dev) {
1622		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1623		if (new_node->dev_name == NULL) {
1624			kfree(new_node);
1625			return -ENOMEM;
1626		}
1627	}
1628
1629	mutex_lock(&regulator_list_mutex);
1630	list_for_each_entry(node, &regulator_map_list, list) {
1631		if (node->dev_name && consumer_dev_name) {
1632			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1633				continue;
1634		} else if (node->dev_name || consumer_dev_name) {
1635			continue;
1636		}
1637
1638		if (strcmp(node->supply, supply) != 0)
1639			continue;
1640
1641		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1642			 consumer_dev_name,
1643			 dev_name(&node->regulator->dev),
1644			 node->regulator->desc->name,
1645			 supply,
1646			 dev_name(&rdev->dev), rdev_get_name(rdev));
1647		goto fail;
1648	}
1649
1650	list_add(&new_node->list, &regulator_map_list);
1651	mutex_unlock(&regulator_list_mutex);
1652
1653	return 0;
1654
1655fail:
1656	mutex_unlock(&regulator_list_mutex);
1657	kfree(new_node->dev_name);
1658	kfree(new_node);
1659	return -EBUSY;
1660}
1661
1662static void unset_regulator_supplies(struct regulator_dev *rdev)
1663{
1664	struct regulator_map *node, *n;
1665
1666	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1667		if (rdev == node->regulator) {
1668			list_del(&node->list);
1669			kfree(node->dev_name);
1670			kfree(node);
1671		}
1672	}
1673}
1674
1675#ifdef CONFIG_DEBUG_FS
1676static ssize_t constraint_flags_read_file(struct file *file,
1677					  char __user *user_buf,
1678					  size_t count, loff_t *ppos)
1679{
1680	const struct regulator *regulator = file->private_data;
1681	const struct regulation_constraints *c = regulator->rdev->constraints;
1682	char *buf;
1683	ssize_t ret;
1684
1685	if (!c)
1686		return 0;
1687
1688	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1689	if (!buf)
1690		return -ENOMEM;
1691
1692	ret = snprintf(buf, PAGE_SIZE,
1693			"always_on: %u\n"
1694			"boot_on: %u\n"
1695			"apply_uV: %u\n"
1696			"ramp_disable: %u\n"
1697			"soft_start: %u\n"
1698			"pull_down: %u\n"
1699			"over_current_protection: %u\n",
1700			c->always_on,
1701			c->boot_on,
1702			c->apply_uV,
1703			c->ramp_disable,
1704			c->soft_start,
1705			c->pull_down,
1706			c->over_current_protection);
1707
1708	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1709	kfree(buf);
1710
1711	return ret;
1712}
1713
1714#endif
1715
1716static const struct file_operations constraint_flags_fops = {
1717#ifdef CONFIG_DEBUG_FS
1718	.open = simple_open,
1719	.read = constraint_flags_read_file,
1720	.llseek = default_llseek,
1721#endif
1722};
1723
1724#define REG_STR_SIZE	64
1725
1726static struct regulator *create_regulator(struct regulator_dev *rdev,
1727					  struct device *dev,
1728					  const char *supply_name)
1729{
1730	struct regulator *regulator;
1731	int err = 0;
1732
 
 
1733	if (dev) {
1734		char buf[REG_STR_SIZE];
1735		int size;
1736
1737		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1738				dev->kobj.name, supply_name);
1739		if (size >= REG_STR_SIZE)
1740			return NULL;
1741
1742		supply_name = kstrdup(buf, GFP_KERNEL);
1743		if (supply_name == NULL)
1744			return NULL;
1745	} else {
1746		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1747		if (supply_name == NULL)
1748			return NULL;
1749	}
1750
1751	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752	if (regulator == NULL) {
1753		kfree(supply_name);
1754		return NULL;
1755	}
1756
1757	regulator->rdev = rdev;
1758	regulator->supply_name = supply_name;
1759
1760	regulator_lock(rdev);
1761	list_add(&regulator->list, &rdev->consumer_list);
1762	regulator_unlock(rdev);
1763
1764	if (dev) {
1765		regulator->dev = dev;
1766
1767		/* Add a link to the device sysfs entry */
1768		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769					       supply_name);
1770		if (err) {
1771			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1772				  dev->kobj.name, ERR_PTR(err));
1773			/* non-fatal */
1774		}
1775	}
1776
1777	if (err != -EEXIST)
1778		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779	if (!regulator->debugfs) {
1780		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781	} else {
 
 
 
 
1782		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1783				   &regulator->uA_load);
1784		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1786		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1788		debugfs_create_file("constraint_flags", 0444,
1789				    regulator->debugfs, regulator,
1790				    &constraint_flags_fops);
1791	}
1792
1793	/*
1794	 * Check now if the regulator is an always on regulator - if
1795	 * it is then we don't need to do nearly so much work for
1796	 * enable/disable calls.
1797	 */
1798	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799	    _regulator_is_enabled(rdev))
1800		regulator->always_on = true;
1801
1802	return regulator;
1803}
1804
1805static int _regulator_get_enable_time(struct regulator_dev *rdev)
1806{
1807	if (rdev->constraints && rdev->constraints->enable_time)
1808		return rdev->constraints->enable_time;
1809	if (rdev->desc->ops->enable_time)
1810		return rdev->desc->ops->enable_time(rdev);
1811	return rdev->desc->enable_time;
1812}
1813
1814static struct regulator_supply_alias *regulator_find_supply_alias(
1815		struct device *dev, const char *supply)
1816{
1817	struct regulator_supply_alias *map;
1818
1819	list_for_each_entry(map, &regulator_supply_alias_list, list)
1820		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1821			return map;
1822
1823	return NULL;
1824}
1825
1826static void regulator_supply_alias(struct device **dev, const char **supply)
1827{
1828	struct regulator_supply_alias *map;
1829
1830	map = regulator_find_supply_alias(*dev, *supply);
1831	if (map) {
1832		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1833				*supply, map->alias_supply,
1834				dev_name(map->alias_dev));
1835		*dev = map->alias_dev;
1836		*supply = map->alias_supply;
1837	}
1838}
1839
1840static int regulator_match(struct device *dev, const void *data)
1841{
1842	struct regulator_dev *r = dev_to_rdev(dev);
1843
1844	return strcmp(rdev_get_name(r), data) == 0;
1845}
1846
1847static struct regulator_dev *regulator_lookup_by_name(const char *name)
1848{
1849	struct device *dev;
1850
1851	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1852
1853	return dev ? dev_to_rdev(dev) : NULL;
1854}
1855
1856/**
1857 * regulator_dev_lookup - lookup a regulator device.
1858 * @dev: device for regulator "consumer".
1859 * @supply: Supply name or regulator ID.
1860 *
 
 
1861 * If successful, returns a struct regulator_dev that corresponds to the name
1862 * @supply and with the embedded struct device refcount incremented by one.
1863 * The refcount must be dropped by calling put_device().
1864 * On failure one of the following ERR-PTR-encoded values is returned:
1865 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1866 * in the future.
1867 */
1868static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869						  const char *supply)
1870{
1871	struct regulator_dev *r = NULL;
1872	struct device_node *node;
1873	struct regulator_map *map;
1874	const char *devname = NULL;
1875
1876	regulator_supply_alias(&dev, &supply);
1877
1878	/* first do a dt based lookup */
1879	if (dev && dev->of_node) {
1880		node = of_get_regulator(dev, supply);
1881		if (node) {
1882			r = of_find_regulator_by_node(node);
1883			if (r)
1884				return r;
1885
1886			/*
1887			 * We have a node, but there is no device.
1888			 * assume it has not registered yet.
1889			 */
1890			return ERR_PTR(-EPROBE_DEFER);
1891		}
1892	}
1893
1894	/* if not found, try doing it non-dt way */
1895	if (dev)
1896		devname = dev_name(dev);
1897
1898	mutex_lock(&regulator_list_mutex);
1899	list_for_each_entry(map, &regulator_map_list, list) {
1900		/* If the mapping has a device set up it must match */
1901		if (map->dev_name &&
1902		    (!devname || strcmp(map->dev_name, devname)))
1903			continue;
1904
1905		if (strcmp(map->supply, supply) == 0 &&
1906		    get_device(&map->regulator->dev)) {
1907			r = map->regulator;
1908			break;
1909		}
1910	}
1911	mutex_unlock(&regulator_list_mutex);
1912
1913	if (r)
1914		return r;
1915
1916	r = regulator_lookup_by_name(supply);
1917	if (r)
1918		return r;
1919
1920	return ERR_PTR(-ENODEV);
1921}
1922
1923static int regulator_resolve_supply(struct regulator_dev *rdev)
1924{
1925	struct regulator_dev *r;
1926	struct device *dev = rdev->dev.parent;
 
1927	int ret = 0;
1928
1929	/* No supply to resolve? */
1930	if (!rdev->supply_name)
1931		return 0;
1932
1933	/* Supply already resolved? (fast-path without locking contention) */
1934	if (rdev->supply)
1935		return 0;
1936
1937	r = regulator_dev_lookup(dev, rdev->supply_name);
1938	if (IS_ERR(r)) {
1939		ret = PTR_ERR(r);
1940
1941		/* Did the lookup explicitly defer for us? */
1942		if (ret == -EPROBE_DEFER)
1943			goto out;
1944
1945		if (have_full_constraints()) {
1946			r = dummy_regulator_rdev;
1947			get_device(&r->dev);
1948		} else {
1949			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1950				rdev->supply_name, rdev->desc->name);
1951			ret = -EPROBE_DEFER;
1952			goto out;
1953		}
1954	}
1955
1956	if (r == rdev) {
1957		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1958			rdev->desc->name, rdev->supply_name);
1959		if (!have_full_constraints()) {
1960			ret = -EINVAL;
1961			goto out;
1962		}
1963		r = dummy_regulator_rdev;
1964		get_device(&r->dev);
1965	}
1966
1967	/*
1968	 * If the supply's parent device is not the same as the
1969	 * regulator's parent device, then ensure the parent device
1970	 * is bound before we resolve the supply, in case the parent
1971	 * device get probe deferred and unregisters the supply.
1972	 */
1973	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1974		if (!device_is_bound(r->dev.parent)) {
1975			put_device(&r->dev);
1976			ret = -EPROBE_DEFER;
1977			goto out;
1978		}
1979	}
1980
1981	/* Recursively resolve the supply of the supply */
1982	ret = regulator_resolve_supply(r);
1983	if (ret < 0) {
1984		put_device(&r->dev);
1985		goto out;
1986	}
1987
1988	/*
1989	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1990	 * between rdev->supply null check and setting rdev->supply in
1991	 * set_supply() from concurrent tasks.
1992	 */
1993	regulator_lock(rdev);
1994
1995	/* Supply just resolved by a concurrent task? */
1996	if (rdev->supply) {
1997		regulator_unlock(rdev);
1998		put_device(&r->dev);
1999		goto out;
2000	}
2001
2002	ret = set_supply(rdev, r);
2003	if (ret < 0) {
2004		regulator_unlock(rdev);
2005		put_device(&r->dev);
2006		goto out;
2007	}
2008
2009	regulator_unlock(rdev);
2010
2011	/*
2012	 * In set_machine_constraints() we may have turned this regulator on
2013	 * but we couldn't propagate to the supply if it hadn't been resolved
2014	 * yet.  Do it now.
2015	 */
2016	if (rdev->use_count) {
2017		ret = regulator_enable(rdev->supply);
2018		if (ret < 0) {
2019			_regulator_put(rdev->supply);
2020			rdev->supply = NULL;
2021			goto out;
2022		}
2023	}
2024
2025out:
2026	return ret;
2027}
2028
2029/* Internal regulator request function */
2030struct regulator *_regulator_get(struct device *dev, const char *id,
2031				 enum regulator_get_type get_type)
2032{
2033	struct regulator_dev *rdev;
2034	struct regulator *regulator;
2035	struct device_link *link;
2036	int ret;
2037
2038	if (get_type >= MAX_GET_TYPE) {
2039		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2040		return ERR_PTR(-EINVAL);
2041	}
2042
2043	if (id == NULL) {
2044		pr_err("get() with no identifier\n");
2045		return ERR_PTR(-EINVAL);
2046	}
2047
2048	rdev = regulator_dev_lookup(dev, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	if (IS_ERR(rdev)) {
2050		ret = PTR_ERR(rdev);
2051
2052		/*
2053		 * If regulator_dev_lookup() fails with error other
2054		 * than -ENODEV our job here is done, we simply return it.
2055		 */
2056		if (ret != -ENODEV)
2057			return ERR_PTR(ret);
2058
2059		if (!have_full_constraints()) {
2060			dev_warn(dev,
2061				 "incomplete constraints, dummy supplies not allowed\n");
2062			return ERR_PTR(-ENODEV);
2063		}
2064
2065		switch (get_type) {
2066		case NORMAL_GET:
2067			/*
2068			 * Assume that a regulator is physically present and
2069			 * enabled, even if it isn't hooked up, and just
2070			 * provide a dummy.
2071			 */
2072			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073			rdev = dummy_regulator_rdev;
2074			get_device(&rdev->dev);
2075			break;
2076
2077		case EXCLUSIVE_GET:
2078			dev_warn(dev,
2079				 "dummy supplies not allowed for exclusive requests\n");
2080			fallthrough;
2081
2082		default:
2083			return ERR_PTR(-ENODEV);
2084		}
2085	}
2086
2087	if (rdev->exclusive) {
2088		regulator = ERR_PTR(-EPERM);
2089		put_device(&rdev->dev);
2090		return regulator;
2091	}
2092
2093	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094		regulator = ERR_PTR(-EBUSY);
2095		put_device(&rdev->dev);
2096		return regulator;
2097	}
2098
2099	mutex_lock(&regulator_list_mutex);
2100	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2101	mutex_unlock(&regulator_list_mutex);
2102
2103	if (ret != 0) {
2104		regulator = ERR_PTR(-EPROBE_DEFER);
2105		put_device(&rdev->dev);
2106		return regulator;
2107	}
2108
2109	ret = regulator_resolve_supply(rdev);
2110	if (ret < 0) {
2111		regulator = ERR_PTR(ret);
2112		put_device(&rdev->dev);
2113		return regulator;
2114	}
2115
2116	if (!try_module_get(rdev->owner)) {
2117		regulator = ERR_PTR(-EPROBE_DEFER);
2118		put_device(&rdev->dev);
2119		return regulator;
2120	}
2121
 
2122	regulator = create_regulator(rdev, dev, id);
 
2123	if (regulator == NULL) {
2124		regulator = ERR_PTR(-ENOMEM);
2125		module_put(rdev->owner);
2126		put_device(&rdev->dev);
2127		return regulator;
2128	}
2129
2130	rdev->open_count++;
2131	if (get_type == EXCLUSIVE_GET) {
2132		rdev->exclusive = 1;
2133
2134		ret = _regulator_is_enabled(rdev);
2135		if (ret > 0)
2136			rdev->use_count = 1;
2137		else
 
 
 
 
 
 
 
 
 
 
 
 
2138			rdev->use_count = 0;
 
 
2139	}
2140
2141	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2142	if (!IS_ERR_OR_NULL(link))
2143		regulator->device_link = true;
2144
2145	return regulator;
2146}
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148/**
2149 * regulator_get - lookup and obtain a reference to a regulator.
2150 * @dev: device for regulator "consumer"
2151 * @id: Supply name or regulator ID.
2152 *
2153 * Returns a struct regulator corresponding to the regulator producer,
2154 * or IS_ERR() condition containing errno.
2155 *
2156 * Use of supply names configured via set_consumer_device_supply() is
2157 * strongly encouraged.  It is recommended that the supply name used
2158 * should match the name used for the supply and/or the relevant
2159 * device pins in the datasheet.
 
 
 
2160 */
2161struct regulator *regulator_get(struct device *dev, const char *id)
2162{
2163	return _regulator_get(dev, id, NORMAL_GET);
2164}
2165EXPORT_SYMBOL_GPL(regulator_get);
2166
2167/**
2168 * regulator_get_exclusive - obtain exclusive access to a regulator.
2169 * @dev: device for regulator "consumer"
2170 * @id: Supply name or regulator ID.
2171 *
2172 * Returns a struct regulator corresponding to the regulator producer,
2173 * or IS_ERR() condition containing errno.  Other consumers will be
2174 * unable to obtain this regulator while this reference is held and the
2175 * use count for the regulator will be initialised to reflect the current
2176 * state of the regulator.
2177 *
2178 * This is intended for use by consumers which cannot tolerate shared
2179 * use of the regulator such as those which need to force the
2180 * regulator off for correct operation of the hardware they are
2181 * controlling.
2182 *
2183 * Use of supply names configured via set_consumer_device_supply() is
2184 * strongly encouraged.  It is recommended that the supply name used
2185 * should match the name used for the supply and/or the relevant
2186 * device pins in the datasheet.
 
 
 
2187 */
2188struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2189{
2190	return _regulator_get(dev, id, EXCLUSIVE_GET);
2191}
2192EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2193
2194/**
2195 * regulator_get_optional - obtain optional access to a regulator.
2196 * @dev: device for regulator "consumer"
2197 * @id: Supply name or regulator ID.
2198 *
2199 * Returns a struct regulator corresponding to the regulator producer,
2200 * or IS_ERR() condition containing errno.
2201 *
2202 * This is intended for use by consumers for devices which can have
2203 * some supplies unconnected in normal use, such as some MMC devices.
2204 * It can allow the regulator core to provide stub supplies for other
2205 * supplies requested using normal regulator_get() calls without
2206 * disrupting the operation of drivers that can handle absent
2207 * supplies.
2208 *
2209 * Use of supply names configured via set_consumer_device_supply() is
2210 * strongly encouraged.  It is recommended that the supply name used
2211 * should match the name used for the supply and/or the relevant
2212 * device pins in the datasheet.
 
 
 
2213 */
2214struct regulator *regulator_get_optional(struct device *dev, const char *id)
2215{
2216	return _regulator_get(dev, id, OPTIONAL_GET);
2217}
2218EXPORT_SYMBOL_GPL(regulator_get_optional);
2219
2220static void destroy_regulator(struct regulator *regulator)
2221{
2222	struct regulator_dev *rdev = regulator->rdev;
2223
2224	debugfs_remove_recursive(regulator->debugfs);
2225
2226	if (regulator->dev) {
2227		if (regulator->device_link)
2228			device_link_remove(regulator->dev, &rdev->dev);
2229
2230		/* remove any sysfs entries */
2231		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232	}
2233
2234	regulator_lock(rdev);
2235	list_del(&regulator->list);
2236
2237	rdev->open_count--;
2238	rdev->exclusive = 0;
2239	regulator_unlock(rdev);
2240
2241	kfree_const(regulator->supply_name);
2242	kfree(regulator);
2243}
2244
2245/* regulator_list_mutex lock held by regulator_put() */
2246static void _regulator_put(struct regulator *regulator)
2247{
2248	struct regulator_dev *rdev;
2249
2250	if (IS_ERR_OR_NULL(regulator))
2251		return;
2252
2253	lockdep_assert_held_once(&regulator_list_mutex);
2254
2255	/* Docs say you must disable before calling regulator_put() */
2256	WARN_ON(regulator->enable_count);
2257
2258	rdev = regulator->rdev;
2259
2260	destroy_regulator(regulator);
2261
2262	module_put(rdev->owner);
2263	put_device(&rdev->dev);
2264}
2265
2266/**
2267 * regulator_put - "free" the regulator source
2268 * @regulator: regulator source
2269 *
2270 * Note: drivers must ensure that all regulator_enable calls made on this
2271 * regulator source are balanced by regulator_disable calls prior to calling
2272 * this function.
2273 */
2274void regulator_put(struct regulator *regulator)
2275{
2276	mutex_lock(&regulator_list_mutex);
2277	_regulator_put(regulator);
2278	mutex_unlock(&regulator_list_mutex);
2279}
2280EXPORT_SYMBOL_GPL(regulator_put);
2281
2282/**
2283 * regulator_register_supply_alias - Provide device alias for supply lookup
2284 *
2285 * @dev: device that will be given as the regulator "consumer"
2286 * @id: Supply name or regulator ID
2287 * @alias_dev: device that should be used to lookup the supply
2288 * @alias_id: Supply name or regulator ID that should be used to lookup the
2289 * supply
2290 *
2291 * All lookups for id on dev will instead be conducted for alias_id on
2292 * alias_dev.
 
 
2293 */
2294int regulator_register_supply_alias(struct device *dev, const char *id,
2295				    struct device *alias_dev,
2296				    const char *alias_id)
2297{
2298	struct regulator_supply_alias *map;
2299
2300	map = regulator_find_supply_alias(dev, id);
2301	if (map)
2302		return -EEXIST;
2303
2304	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2305	if (!map)
2306		return -ENOMEM;
2307
2308	map->src_dev = dev;
2309	map->src_supply = id;
2310	map->alias_dev = alias_dev;
2311	map->alias_supply = alias_id;
2312
2313	list_add(&map->list, &regulator_supply_alias_list);
2314
2315	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2316		id, dev_name(dev), alias_id, dev_name(alias_dev));
2317
2318	return 0;
2319}
2320EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2321
2322/**
2323 * regulator_unregister_supply_alias - Remove device alias
2324 *
2325 * @dev: device that will be given as the regulator "consumer"
2326 * @id: Supply name or regulator ID
2327 *
2328 * Remove a lookup alias if one exists for id on dev.
2329 */
2330void regulator_unregister_supply_alias(struct device *dev, const char *id)
2331{
2332	struct regulator_supply_alias *map;
2333
2334	map = regulator_find_supply_alias(dev, id);
2335	if (map) {
2336		list_del(&map->list);
2337		kfree(map);
2338	}
2339}
2340EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2341
2342/**
2343 * regulator_bulk_register_supply_alias - register multiple aliases
2344 *
2345 * @dev: device that will be given as the regulator "consumer"
2346 * @id: List of supply names or regulator IDs
2347 * @alias_dev: device that should be used to lookup the supply
2348 * @alias_id: List of supply names or regulator IDs that should be used to
2349 * lookup the supply
2350 * @num_id: Number of aliases to register
2351 *
2352 * @return 0 on success, an errno on failure.
2353 *
2354 * This helper function allows drivers to register several supply
2355 * aliases in one operation.  If any of the aliases cannot be
2356 * registered any aliases that were registered will be removed
2357 * before returning to the caller.
 
 
2358 */
2359int regulator_bulk_register_supply_alias(struct device *dev,
2360					 const char *const *id,
2361					 struct device *alias_dev,
2362					 const char *const *alias_id,
2363					 int num_id)
2364{
2365	int i;
2366	int ret;
2367
2368	for (i = 0; i < num_id; ++i) {
2369		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2370						      alias_id[i]);
2371		if (ret < 0)
2372			goto err;
2373	}
2374
2375	return 0;
2376
2377err:
2378	dev_err(dev,
2379		"Failed to create supply alias %s,%s -> %s,%s\n",
2380		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2381
2382	while (--i >= 0)
2383		regulator_unregister_supply_alias(dev, id[i]);
2384
2385	return ret;
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2388
2389/**
2390 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2391 *
2392 * @dev: device that will be given as the regulator "consumer"
2393 * @id: List of supply names or regulator IDs
2394 * @num_id: Number of aliases to unregister
2395 *
2396 * This helper function allows drivers to unregister several supply
2397 * aliases in one operation.
2398 */
2399void regulator_bulk_unregister_supply_alias(struct device *dev,
2400					    const char *const *id,
2401					    int num_id)
2402{
2403	int i;
2404
2405	for (i = 0; i < num_id; ++i)
2406		regulator_unregister_supply_alias(dev, id[i]);
2407}
2408EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2409
2410
2411/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2412static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2413				const struct regulator_config *config)
2414{
2415	struct regulator_enable_gpio *pin, *new_pin;
2416	struct gpio_desc *gpiod;
2417
2418	gpiod = config->ena_gpiod;
2419	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2420
2421	mutex_lock(&regulator_list_mutex);
2422
2423	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2424		if (pin->gpiod == gpiod) {
2425			rdev_dbg(rdev, "GPIO is already used\n");
2426			goto update_ena_gpio_to_rdev;
2427		}
2428	}
2429
2430	if (new_pin == NULL) {
2431		mutex_unlock(&regulator_list_mutex);
2432		return -ENOMEM;
2433	}
2434
2435	pin = new_pin;
2436	new_pin = NULL;
2437
2438	pin->gpiod = gpiod;
2439	list_add(&pin->list, &regulator_ena_gpio_list);
2440
2441update_ena_gpio_to_rdev:
2442	pin->request_count++;
2443	rdev->ena_pin = pin;
2444
2445	mutex_unlock(&regulator_list_mutex);
2446	kfree(new_pin);
2447
2448	return 0;
2449}
2450
2451static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2452{
2453	struct regulator_enable_gpio *pin, *n;
2454
2455	if (!rdev->ena_pin)
2456		return;
2457
2458	/* Free the GPIO only in case of no use */
2459	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2460		if (pin != rdev->ena_pin)
2461			continue;
2462
2463		if (--pin->request_count)
2464			break;
2465
2466		gpiod_put(pin->gpiod);
2467		list_del(&pin->list);
2468		kfree(pin);
2469		break;
2470	}
2471
2472	rdev->ena_pin = NULL;
2473}
2474
2475/**
2476 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2477 * @rdev: regulator_dev structure
2478 * @enable: enable GPIO at initial use?
2479 *
2480 * GPIO is enabled in case of initial use. (enable_count is 0)
2481 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 
 
2482 */
2483static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2484{
2485	struct regulator_enable_gpio *pin = rdev->ena_pin;
2486
2487	if (!pin)
2488		return -EINVAL;
2489
2490	if (enable) {
2491		/* Enable GPIO at initial use */
2492		if (pin->enable_count == 0)
2493			gpiod_set_value_cansleep(pin->gpiod, 1);
2494
2495		pin->enable_count++;
2496	} else {
2497		if (pin->enable_count > 1) {
2498			pin->enable_count--;
2499			return 0;
2500		}
2501
2502		/* Disable GPIO if not used */
2503		if (pin->enable_count <= 1) {
2504			gpiod_set_value_cansleep(pin->gpiod, 0);
2505			pin->enable_count = 0;
2506		}
2507	}
2508
2509	return 0;
2510}
2511
2512/**
2513 * _regulator_enable_delay - a delay helper function
2514 * @delay: time to delay in microseconds
2515 *
2516 * Delay for the requested amount of time as per the guidelines in:
2517 *
2518 *     Documentation/timers/timers-howto.rst
2519 *
2520 * The assumption here is that regulators will never be enabled in
2521 * atomic context and therefore sleeping functions can be used.
2522 */
2523static void _regulator_enable_delay(unsigned int delay)
2524{
2525	unsigned int ms = delay / 1000;
2526	unsigned int us = delay % 1000;
2527
2528	if (ms > 0) {
2529		/*
2530		 * For small enough values, handle super-millisecond
2531		 * delays in the usleep_range() call below.
2532		 */
2533		if (ms < 20)
2534			us += ms * 1000;
2535		else
2536			msleep(ms);
2537	}
2538
2539	/*
2540	 * Give the scheduler some room to coalesce with any other
2541	 * wakeup sources. For delays shorter than 10 us, don't even
2542	 * bother setting up high-resolution timers and just busy-
2543	 * loop.
2544	 */
2545	if (us >= 10)
2546		usleep_range(us, us + 100);
2547	else
2548		udelay(us);
2549}
2550
2551/**
2552 * _regulator_check_status_enabled
2553 *
2554 * A helper function to check if the regulator status can be interpreted
2555 * as 'regulator is enabled'.
2556 * @rdev: the regulator device to check
2557 *
2558 * Return:
2559 * * 1			- if status shows regulator is in enabled state
2560 * * 0			- if not enabled state
2561 * * Error Value	- as received from ops->get_status()
2562 */
2563static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2564{
2565	int ret = rdev->desc->ops->get_status(rdev);
2566
2567	if (ret < 0) {
2568		rdev_info(rdev, "get_status returned error: %d\n", ret);
2569		return ret;
2570	}
2571
2572	switch (ret) {
2573	case REGULATOR_STATUS_OFF:
2574	case REGULATOR_STATUS_ERROR:
2575	case REGULATOR_STATUS_UNDEFINED:
2576		return 0;
2577	default:
2578		return 1;
2579	}
2580}
2581
2582static int _regulator_do_enable(struct regulator_dev *rdev)
2583{
2584	int ret, delay;
2585
2586	/* Query before enabling in case configuration dependent.  */
2587	ret = _regulator_get_enable_time(rdev);
2588	if (ret >= 0) {
2589		delay = ret;
2590	} else {
2591		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592		delay = 0;
2593	}
2594
2595	trace_regulator_enable(rdev_get_name(rdev));
2596
2597	if (rdev->desc->off_on_delay && rdev->last_off) {
2598		/* if needed, keep a distance of off_on_delay from last time
2599		 * this regulator was disabled.
2600		 */
2601		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2602		s64 remaining = ktime_us_delta(end, ktime_get());
2603
2604		if (remaining > 0)
2605			_regulator_enable_delay(remaining);
2606	}
2607
2608	if (rdev->ena_pin) {
2609		if (!rdev->ena_gpio_state) {
2610			ret = regulator_ena_gpio_ctrl(rdev, true);
2611			if (ret < 0)
2612				return ret;
2613			rdev->ena_gpio_state = 1;
2614		}
2615	} else if (rdev->desc->ops->enable) {
2616		ret = rdev->desc->ops->enable(rdev);
2617		if (ret < 0)
2618			return ret;
2619	} else {
2620		return -EINVAL;
2621	}
2622
2623	/* Allow the regulator to ramp; it would be useful to extend
2624	 * this for bulk operations so that the regulators can ramp
2625	 * together.
2626	 */
2627	trace_regulator_enable_delay(rdev_get_name(rdev));
2628
2629	/* If poll_enabled_time is set, poll upto the delay calculated
2630	 * above, delaying poll_enabled_time uS to check if the regulator
2631	 * actually got enabled.
2632	 * If the regulator isn't enabled after enable_delay has
2633	 * expired, return -ETIMEDOUT.
2634	 */
2635	if (rdev->desc->poll_enabled_time) {
2636		unsigned int time_remaining = delay;
2637
2638		while (time_remaining > 0) {
2639			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2640
2641			if (rdev->desc->ops->get_status) {
2642				ret = _regulator_check_status_enabled(rdev);
2643				if (ret < 0)
2644					return ret;
2645				else if (ret)
2646					break;
2647			} else if (rdev->desc->ops->is_enabled(rdev))
2648				break;
2649
2650			time_remaining -= rdev->desc->poll_enabled_time;
2651		}
2652
2653		if (time_remaining <= 0) {
2654			rdev_err(rdev, "Enabled check timed out\n");
2655			return -ETIMEDOUT;
2656		}
2657	} else {
2658		_regulator_enable_delay(delay);
2659	}
2660
2661	trace_regulator_enable_complete(rdev_get_name(rdev));
2662
2663	return 0;
2664}
2665
2666/**
2667 * _regulator_handle_consumer_enable - handle that a consumer enabled
2668 * @regulator: regulator source
2669 *
2670 * Some things on a regulator consumer (like the contribution towards total
2671 * load on the regulator) only have an effect when the consumer wants the
2672 * regulator enabled.  Explained in example with two consumers of the same
2673 * regulator:
2674 *   consumer A: set_load(100);       => total load = 0
2675 *   consumer A: regulator_enable();  => total load = 100
2676 *   consumer B: set_load(1000);      => total load = 100
2677 *   consumer B: regulator_enable();  => total load = 1100
2678 *   consumer A: regulator_disable(); => total_load = 1000
2679 *
2680 * This function (together with _regulator_handle_consumer_disable) is
2681 * responsible for keeping track of the refcount for a given regulator consumer
2682 * and applying / unapplying these things.
2683 *
2684 * Returns 0 upon no error; -error upon error.
2685 */
2686static int _regulator_handle_consumer_enable(struct regulator *regulator)
2687{
 
2688	struct regulator_dev *rdev = regulator->rdev;
2689
2690	lockdep_assert_held_once(&rdev->mutex.base);
2691
2692	regulator->enable_count++;
2693	if (regulator->uA_load && regulator->enable_count == 1)
2694		return drms_uA_update(rdev);
 
 
 
 
2695
2696	return 0;
2697}
2698
2699/**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
2707static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708{
2709	struct regulator_dev *rdev = regulator->rdev;
2710
2711	lockdep_assert_held_once(&rdev->mutex.base);
2712
2713	if (!regulator->enable_count) {
2714		rdev_err(rdev, "Underflow of regulator enable count\n");
2715		return -EINVAL;
2716	}
2717
2718	regulator->enable_count--;
2719	if (regulator->uA_load && regulator->enable_count == 0)
2720		return drms_uA_update(rdev);
2721
2722	return 0;
2723}
2724
2725/* locks held by regulator_enable() */
2726static int _regulator_enable(struct regulator *regulator)
2727{
2728	struct regulator_dev *rdev = regulator->rdev;
2729	int ret;
2730
2731	lockdep_assert_held_once(&rdev->mutex.base);
2732
2733	if (rdev->use_count == 0 && rdev->supply) {
2734		ret = _regulator_enable(rdev->supply);
2735		if (ret < 0)
2736			return ret;
2737	}
2738
2739	/* balance only if there are regulators coupled */
2740	if (rdev->coupling_desc.n_coupled > 1) {
2741		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742		if (ret < 0)
2743			goto err_disable_supply;
2744	}
2745
2746	ret = _regulator_handle_consumer_enable(regulator);
2747	if (ret < 0)
2748		goto err_disable_supply;
2749
2750	if (rdev->use_count == 0) {
2751		/*
2752		 * The regulator may already be enabled if it's not switchable
2753		 * or was left on
2754		 */
2755		ret = _regulator_is_enabled(rdev);
2756		if (ret == -EINVAL || ret == 0) {
2757			if (!regulator_ops_is_valid(rdev,
2758					REGULATOR_CHANGE_STATUS)) {
2759				ret = -EPERM;
2760				goto err_consumer_disable;
2761			}
2762
2763			ret = _regulator_do_enable(rdev);
2764			if (ret < 0)
2765				goto err_consumer_disable;
2766
2767			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2768					     NULL);
2769		} else if (ret < 0) {
2770			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771			goto err_consumer_disable;
2772		}
2773		/* Fallthrough on positive return values - already enabled */
2774	}
2775
2776	rdev->use_count++;
 
2777
2778	return 0;
2779
2780err_consumer_disable:
2781	_regulator_handle_consumer_disable(regulator);
2782
2783err_disable_supply:
2784	if (rdev->use_count == 0 && rdev->supply)
2785		_regulator_disable(rdev->supply);
2786
2787	return ret;
2788}
2789
2790/**
2791 * regulator_enable - enable regulator output
2792 * @regulator: regulator source
2793 *
2794 * Request that the regulator be enabled with the regulator output at
2795 * the predefined voltage or current value.  Calls to regulator_enable()
2796 * must be balanced with calls to regulator_disable().
2797 *
2798 * NOTE: the output value can be set by other drivers, boot loader or may be
2799 * hardwired in the regulator.
 
 
2800 */
2801int regulator_enable(struct regulator *regulator)
2802{
2803	struct regulator_dev *rdev = regulator->rdev;
2804	struct ww_acquire_ctx ww_ctx;
2805	int ret;
2806
2807	regulator_lock_dependent(rdev, &ww_ctx);
2808	ret = _regulator_enable(regulator);
2809	regulator_unlock_dependent(rdev, &ww_ctx);
2810
2811	return ret;
2812}
2813EXPORT_SYMBOL_GPL(regulator_enable);
2814
2815static int _regulator_do_disable(struct regulator_dev *rdev)
2816{
2817	int ret;
2818
2819	trace_regulator_disable(rdev_get_name(rdev));
2820
2821	if (rdev->ena_pin) {
2822		if (rdev->ena_gpio_state) {
2823			ret = regulator_ena_gpio_ctrl(rdev, false);
2824			if (ret < 0)
2825				return ret;
2826			rdev->ena_gpio_state = 0;
2827		}
2828
2829	} else if (rdev->desc->ops->disable) {
2830		ret = rdev->desc->ops->disable(rdev);
2831		if (ret != 0)
2832			return ret;
2833	}
2834
2835	if (rdev->desc->off_on_delay)
2836		rdev->last_off = ktime_get();
2837
2838	trace_regulator_disable_complete(rdev_get_name(rdev));
2839
2840	return 0;
2841}
2842
2843/* locks held by regulator_disable() */
2844static int _regulator_disable(struct regulator *regulator)
2845{
2846	struct regulator_dev *rdev = regulator->rdev;
2847	int ret = 0;
2848
2849	lockdep_assert_held_once(&rdev->mutex.base);
2850
2851	if (WARN(rdev->use_count <= 0,
2852		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853		return -EIO;
2854
2855	/* are we the last user and permitted to disable ? */
2856	if (rdev->use_count == 1 &&
2857	    (rdev->constraints && !rdev->constraints->always_on)) {
2858
2859		/* we are last user */
2860		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861			ret = _notifier_call_chain(rdev,
2862						   REGULATOR_EVENT_PRE_DISABLE,
2863						   NULL);
2864			if (ret & NOTIFY_STOP_MASK)
2865				return -EINVAL;
2866
2867			ret = _regulator_do_disable(rdev);
2868			if (ret < 0) {
2869				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870				_notifier_call_chain(rdev,
2871						REGULATOR_EVENT_ABORT_DISABLE,
 
 
 
 
 
 
2872						NULL);
2873				return ret;
2874			}
2875			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876					NULL);
 
 
2877		}
2878
2879		rdev->use_count = 0;
2880	} else if (rdev->use_count > 1) {
2881		rdev->use_count--;
2882	}
2883
2884	if (ret == 0)
2885		ret = _regulator_handle_consumer_disable(regulator);
2886
2887	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889
2890	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891		ret = _regulator_disable(rdev->supply);
2892
2893	return ret;
2894}
2895
2896/**
2897 * regulator_disable - disable regulator output
2898 * @regulator: regulator source
2899 *
2900 * Disable the regulator output voltage or current.  Calls to
2901 * regulator_enable() must be balanced with calls to
2902 * regulator_disable().
2903 *
2904 * NOTE: this will only disable the regulator output if no other consumer
2905 * devices have it enabled, the regulator device supports disabling and
2906 * machine constraints permit this operation.
 
 
2907 */
2908int regulator_disable(struct regulator *regulator)
2909{
2910	struct regulator_dev *rdev = regulator->rdev;
2911	struct ww_acquire_ctx ww_ctx;
2912	int ret;
2913
2914	regulator_lock_dependent(rdev, &ww_ctx);
2915	ret = _regulator_disable(regulator);
2916	regulator_unlock_dependent(rdev, &ww_ctx);
2917
2918	return ret;
2919}
2920EXPORT_SYMBOL_GPL(regulator_disable);
2921
2922/* locks held by regulator_force_disable() */
2923static int _regulator_force_disable(struct regulator_dev *rdev)
2924{
2925	int ret = 0;
2926
2927	lockdep_assert_held_once(&rdev->mutex.base);
2928
2929	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930			REGULATOR_EVENT_PRE_DISABLE, NULL);
2931	if (ret & NOTIFY_STOP_MASK)
2932		return -EINVAL;
2933
2934	ret = _regulator_do_disable(rdev);
2935	if (ret < 0) {
2936		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939		return ret;
2940	}
2941
2942	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943			REGULATOR_EVENT_DISABLE, NULL);
2944
2945	return 0;
2946}
2947
2948/**
2949 * regulator_force_disable - force disable regulator output
2950 * @regulator: regulator source
2951 *
2952 * Forcibly disable the regulator output voltage or current.
2953 * NOTE: this *will* disable the regulator output even if other consumer
2954 * devices have it enabled. This should be used for situations when device
2955 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 
 
2956 */
2957int regulator_force_disable(struct regulator *regulator)
2958{
2959	struct regulator_dev *rdev = regulator->rdev;
2960	struct ww_acquire_ctx ww_ctx;
2961	int ret;
2962
2963	regulator_lock_dependent(rdev, &ww_ctx);
2964
2965	ret = _regulator_force_disable(regulator->rdev);
2966
2967	if (rdev->coupling_desc.n_coupled > 1)
2968		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969
2970	if (regulator->uA_load) {
2971		regulator->uA_load = 0;
2972		ret = drms_uA_update(rdev);
2973	}
2974
2975	if (rdev->use_count != 0 && rdev->supply)
2976		_regulator_disable(rdev->supply);
2977
2978	regulator_unlock_dependent(rdev, &ww_ctx);
2979
2980	return ret;
2981}
2982EXPORT_SYMBOL_GPL(regulator_force_disable);
2983
2984static void regulator_disable_work(struct work_struct *work)
2985{
2986	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987						  disable_work.work);
2988	struct ww_acquire_ctx ww_ctx;
2989	int count, i, ret;
2990	struct regulator *regulator;
2991	int total_count = 0;
2992
2993	regulator_lock_dependent(rdev, &ww_ctx);
2994
2995	/*
2996	 * Workqueue functions queue the new work instance while the previous
2997	 * work instance is being processed. Cancel the queued work instance
2998	 * as the work instance under processing does the job of the queued
2999	 * work instance.
3000	 */
3001	cancel_delayed_work(&rdev->disable_work);
3002
3003	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004		count = regulator->deferred_disables;
3005
3006		if (!count)
3007			continue;
3008
3009		total_count += count;
3010		regulator->deferred_disables = 0;
3011
3012		for (i = 0; i < count; i++) {
3013			ret = _regulator_disable(regulator);
3014			if (ret != 0)
3015				rdev_err(rdev, "Deferred disable failed: %pe\n",
3016					 ERR_PTR(ret));
3017		}
3018	}
3019	WARN_ON(!total_count);
3020
3021	if (rdev->coupling_desc.n_coupled > 1)
3022		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023
3024	regulator_unlock_dependent(rdev, &ww_ctx);
3025}
3026
3027/**
3028 * regulator_disable_deferred - disable regulator output with delay
3029 * @regulator: regulator source
3030 * @ms: milliseconds until the regulator is disabled
3031 *
3032 * Execute regulator_disable() on the regulator after a delay.  This
3033 * is intended for use with devices that require some time to quiesce.
3034 *
3035 * NOTE: this will only disable the regulator output if no other consumer
3036 * devices have it enabled, the regulator device supports disabling and
3037 * machine constraints permit this operation.
 
 
3038 */
3039int regulator_disable_deferred(struct regulator *regulator, int ms)
3040{
3041	struct regulator_dev *rdev = regulator->rdev;
3042
3043	if (!ms)
3044		return regulator_disable(regulator);
3045
3046	regulator_lock(rdev);
3047	regulator->deferred_disables++;
3048	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049			 msecs_to_jiffies(ms));
3050	regulator_unlock(rdev);
3051
3052	return 0;
3053}
3054EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055
3056static int _regulator_is_enabled(struct regulator_dev *rdev)
3057{
3058	/* A GPIO control always takes precedence */
3059	if (rdev->ena_pin)
3060		return rdev->ena_gpio_state;
3061
3062	/* If we don't know then assume that the regulator is always on */
3063	if (!rdev->desc->ops->is_enabled)
3064		return 1;
3065
3066	return rdev->desc->ops->is_enabled(rdev);
3067}
3068
3069static int _regulator_list_voltage(struct regulator_dev *rdev,
3070				   unsigned selector, int lock)
3071{
3072	const struct regulator_ops *ops = rdev->desc->ops;
3073	int ret;
3074
3075	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076		return rdev->desc->fixed_uV;
3077
3078	if (ops->list_voltage) {
3079		if (selector >= rdev->desc->n_voltages)
3080			return -EINVAL;
3081		if (selector < rdev->desc->linear_min_sel)
3082			return 0;
3083		if (lock)
3084			regulator_lock(rdev);
3085		ret = ops->list_voltage(rdev, selector);
3086		if (lock)
3087			regulator_unlock(rdev);
3088	} else if (rdev->is_switch && rdev->supply) {
3089		ret = _regulator_list_voltage(rdev->supply->rdev,
3090					      selector, lock);
3091	} else {
3092		return -EINVAL;
3093	}
3094
3095	if (ret > 0) {
3096		if (ret < rdev->constraints->min_uV)
3097			ret = 0;
3098		else if (ret > rdev->constraints->max_uV)
3099			ret = 0;
3100	}
3101
3102	return ret;
3103}
3104
3105/**
3106 * regulator_is_enabled - is the regulator output enabled
3107 * @regulator: regulator source
3108 *
3109 * Returns positive if the regulator driver backing the source/client
3110 * has requested that the device be enabled, zero if it hasn't, else a
3111 * negative errno code.
3112 *
3113 * Note that the device backing this regulator handle can have multiple
3114 * users, so it might be enabled even if regulator_enable() was never
3115 * called for this particular source.
 
 
 
 
3116 */
3117int regulator_is_enabled(struct regulator *regulator)
3118{
3119	int ret;
3120
3121	if (regulator->always_on)
3122		return 1;
3123
3124	regulator_lock(regulator->rdev);
3125	ret = _regulator_is_enabled(regulator->rdev);
3126	regulator_unlock(regulator->rdev);
3127
3128	return ret;
3129}
3130EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131
3132/**
3133 * regulator_count_voltages - count regulator_list_voltage() selectors
3134 * @regulator: regulator source
3135 *
3136 * Returns number of selectors, or negative errno.  Selectors are
3137 * numbered starting at zero, and typically correspond to bitfields
3138 * in hardware registers.
 
3139 */
3140int regulator_count_voltages(struct regulator *regulator)
3141{
3142	struct regulator_dev	*rdev = regulator->rdev;
3143
3144	if (rdev->desc->n_voltages)
3145		return rdev->desc->n_voltages;
3146
3147	if (!rdev->is_switch || !rdev->supply)
3148		return -EINVAL;
3149
3150	return regulator_count_voltages(rdev->supply);
3151}
3152EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153
3154/**
3155 * regulator_list_voltage - enumerate supported voltages
3156 * @regulator: regulator source
3157 * @selector: identify voltage to list
3158 * Context: can sleep
3159 *
3160 * Returns a voltage that can be passed to @regulator_set_voltage(),
3161 * zero if this selector code can't be used on this system, or a
3162 * negative errno.
3163 */
3164int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165{
3166	return _regulator_list_voltage(regulator->rdev, selector, 1);
3167}
3168EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169
3170/**
3171 * regulator_get_regmap - get the regulator's register map
3172 * @regulator: regulator source
3173 *
3174 * Returns the register map for the given regulator, or an ERR_PTR value
3175 * if the regulator doesn't use regmap.
3176 */
3177struct regmap *regulator_get_regmap(struct regulator *regulator)
3178{
3179	struct regmap *map = regulator->rdev->regmap;
3180
3181	return map ? map : ERR_PTR(-EOPNOTSUPP);
3182}
 
3183
3184/**
3185 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186 * @regulator: regulator source
3187 * @vsel_reg: voltage selector register, output parameter
3188 * @vsel_mask: mask for voltage selector bitfield, output parameter
3189 *
3190 * Returns the hardware register offset and bitmask used for setting the
3191 * regulator voltage. This might be useful when configuring voltage-scaling
3192 * hardware or firmware that can make I2C requests behind the kernel's back,
3193 * for example.
3194 *
 
 
 
3195 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196 * and 0 is returned, otherwise a negative errno is returned.
3197 */
3198int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199					 unsigned *vsel_reg,
3200					 unsigned *vsel_mask)
3201{
3202	struct regulator_dev *rdev = regulator->rdev;
3203	const struct regulator_ops *ops = rdev->desc->ops;
3204
3205	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206		return -EOPNOTSUPP;
3207
3208	*vsel_reg = rdev->desc->vsel_reg;
3209	*vsel_mask = rdev->desc->vsel_mask;
3210
3211	return 0;
3212}
3213EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214
3215/**
3216 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217 * @regulator: regulator source
3218 * @selector: identify voltage to list
3219 *
3220 * Converts the selector to a hardware-specific voltage selector that can be
3221 * directly written to the regulator registers. The address of the voltage
3222 * register can be determined by calling @regulator_get_hardware_vsel_register.
3223 *
3224 * On error a negative errno is returned.
 
 
3225 */
3226int regulator_list_hardware_vsel(struct regulator *regulator,
3227				 unsigned selector)
3228{
3229	struct regulator_dev *rdev = regulator->rdev;
3230	const struct regulator_ops *ops = rdev->desc->ops;
3231
3232	if (selector >= rdev->desc->n_voltages)
3233		return -EINVAL;
3234	if (selector < rdev->desc->linear_min_sel)
3235		return 0;
3236	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237		return -EOPNOTSUPP;
3238
3239	return selector;
3240}
3241EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3244 * regulator_get_linear_step - return the voltage step size between VSEL values
3245 * @regulator: regulator source
3246 *
3247 * Returns the voltage step size between VSEL values for linear
3248 * regulators, or return 0 if the regulator isn't a linear regulator.
3249 */
3250unsigned int regulator_get_linear_step(struct regulator *regulator)
3251{
3252	struct regulator_dev *rdev = regulator->rdev;
3253
3254	return rdev->desc->uV_step;
3255}
3256EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258/**
3259 * regulator_is_supported_voltage - check if a voltage range can be supported
3260 *
3261 * @regulator: Regulator to check.
3262 * @min_uV: Minimum required voltage in uV.
3263 * @max_uV: Maximum required voltage in uV.
3264 *
3265 * Returns a boolean.
 
 
3266 */
3267int regulator_is_supported_voltage(struct regulator *regulator,
3268				   int min_uV, int max_uV)
3269{
3270	struct regulator_dev *rdev = regulator->rdev;
3271	int i, voltages, ret;
3272
3273	/* If we can't change voltage check the current voltage */
3274	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275		ret = regulator_get_voltage(regulator);
3276		if (ret >= 0)
3277			return min_uV <= ret && ret <= max_uV;
3278		else
3279			return ret;
3280	}
3281
3282	/* Any voltage within constrains range is fine? */
3283	if (rdev->desc->continuous_voltage_range)
3284		return min_uV >= rdev->constraints->min_uV &&
3285				max_uV <= rdev->constraints->max_uV;
3286
3287	ret = regulator_count_voltages(regulator);
3288	if (ret < 0)
3289		return 0;
3290	voltages = ret;
3291
3292	for (i = 0; i < voltages; i++) {
3293		ret = regulator_list_voltage(regulator, i);
3294
3295		if (ret >= min_uV && ret <= max_uV)
3296			return 1;
3297	}
3298
3299	return 0;
3300}
3301EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
3303static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304				 int max_uV)
3305{
3306	const struct regulator_desc *desc = rdev->desc;
3307
3308	if (desc->ops->map_voltage)
3309		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317	if (desc->ops->list_voltage ==
3318		regulator_list_voltage_pickable_linear_range)
3319		return regulator_map_voltage_pickable_linear_range(rdev,
3320							min_uV, max_uV);
3321
3322	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323}
3324
3325static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326				       int min_uV, int max_uV,
3327				       unsigned *selector)
3328{
3329	struct pre_voltage_change_data data;
3330	int ret;
3331
3332	data.old_uV = regulator_get_voltage_rdev(rdev);
3333	data.min_uV = min_uV;
3334	data.max_uV = max_uV;
3335	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336				   &data);
3337	if (ret & NOTIFY_STOP_MASK)
3338		return -EINVAL;
3339
3340	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341	if (ret >= 0)
3342		return ret;
3343
3344	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345			     (void *)data.old_uV);
3346
3347	return ret;
3348}
3349
3350static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351					   int uV, unsigned selector)
3352{
3353	struct pre_voltage_change_data data;
3354	int ret;
3355
3356	data.old_uV = regulator_get_voltage_rdev(rdev);
3357	data.min_uV = uV;
3358	data.max_uV = uV;
3359	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360				   &data);
3361	if (ret & NOTIFY_STOP_MASK)
3362		return -EINVAL;
3363
3364	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365	if (ret >= 0)
3366		return ret;
3367
3368	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369			     (void *)data.old_uV);
3370
3371	return ret;
3372}
3373
3374static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375					   int uV, int new_selector)
3376{
3377	const struct regulator_ops *ops = rdev->desc->ops;
3378	int diff, old_sel, curr_sel, ret;
3379
3380	/* Stepping is only needed if the regulator is enabled. */
3381	if (!_regulator_is_enabled(rdev))
3382		goto final_set;
3383
3384	if (!ops->get_voltage_sel)
3385		return -EINVAL;
3386
3387	old_sel = ops->get_voltage_sel(rdev);
3388	if (old_sel < 0)
3389		return old_sel;
3390
3391	diff = new_selector - old_sel;
3392	if (diff == 0)
3393		return 0; /* No change needed. */
3394
3395	if (diff > 0) {
3396		/* Stepping up. */
3397		for (curr_sel = old_sel + rdev->desc->vsel_step;
3398		     curr_sel < new_selector;
3399		     curr_sel += rdev->desc->vsel_step) {
3400			/*
3401			 * Call the callback directly instead of using
3402			 * _regulator_call_set_voltage_sel() as we don't
3403			 * want to notify anyone yet. Same in the branch
3404			 * below.
3405			 */
3406			ret = ops->set_voltage_sel(rdev, curr_sel);
3407			if (ret)
3408				goto try_revert;
3409		}
3410	} else {
3411		/* Stepping down. */
3412		for (curr_sel = old_sel - rdev->desc->vsel_step;
3413		     curr_sel > new_selector;
3414		     curr_sel -= rdev->desc->vsel_step) {
3415			ret = ops->set_voltage_sel(rdev, curr_sel);
3416			if (ret)
3417				goto try_revert;
3418		}
3419	}
3420
3421final_set:
3422	/* The final selector will trigger the notifiers. */
3423	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425try_revert:
3426	/*
3427	 * At least try to return to the previous voltage if setting a new
3428	 * one failed.
3429	 */
3430	(void)ops->set_voltage_sel(rdev, old_sel);
3431	return ret;
3432}
3433
3434static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435				       int old_uV, int new_uV)
3436{
3437	unsigned int ramp_delay = 0;
3438
3439	if (rdev->constraints->ramp_delay)
3440		ramp_delay = rdev->constraints->ramp_delay;
3441	else if (rdev->desc->ramp_delay)
3442		ramp_delay = rdev->desc->ramp_delay;
3443	else if (rdev->constraints->settling_time)
3444		return rdev->constraints->settling_time;
3445	else if (rdev->constraints->settling_time_up &&
3446		 (new_uV > old_uV))
3447		return rdev->constraints->settling_time_up;
3448	else if (rdev->constraints->settling_time_down &&
3449		 (new_uV < old_uV))
3450		return rdev->constraints->settling_time_down;
3451
3452	if (ramp_delay == 0) {
3453		rdev_dbg(rdev, "ramp_delay not set\n");
3454		return 0;
3455	}
3456
3457	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458}
3459
3460static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461				     int min_uV, int max_uV)
3462{
3463	int ret;
3464	int delay = 0;
3465	int best_val = 0;
3466	unsigned int selector;
3467	int old_selector = -1;
3468	const struct regulator_ops *ops = rdev->desc->ops;
3469	int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473	min_uV += rdev->constraints->uV_offset;
3474	max_uV += rdev->constraints->uV_offset;
3475
3476	/*
3477	 * If we can't obtain the old selector there is not enough
3478	 * info to call set_voltage_time_sel().
3479	 */
3480	if (_regulator_is_enabled(rdev) &&
3481	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482		old_selector = ops->get_voltage_sel(rdev);
3483		if (old_selector < 0)
3484			return old_selector;
3485	}
3486
3487	if (ops->set_voltage) {
3488		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489						  &selector);
3490
3491		if (ret >= 0) {
3492			if (ops->list_voltage)
3493				best_val = ops->list_voltage(rdev,
3494							     selector);
3495			else
3496				best_val = regulator_get_voltage_rdev(rdev);
3497		}
3498
3499	} else if (ops->set_voltage_sel) {
3500		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501		if (ret >= 0) {
3502			best_val = ops->list_voltage(rdev, ret);
3503			if (min_uV <= best_val && max_uV >= best_val) {
3504				selector = ret;
3505				if (old_selector == selector)
3506					ret = 0;
3507				else if (rdev->desc->vsel_step)
3508					ret = _regulator_set_voltage_sel_step(
3509						rdev, best_val, selector);
3510				else
3511					ret = _regulator_call_set_voltage_sel(
3512						rdev, best_val, selector);
3513			} else {
3514				ret = -EINVAL;
3515			}
3516		}
3517	} else {
3518		ret = -EINVAL;
3519	}
3520
3521	if (ret)
3522		goto out;
3523
3524	if (ops->set_voltage_time_sel) {
3525		/*
3526		 * Call set_voltage_time_sel if successfully obtained
3527		 * old_selector
3528		 */
3529		if (old_selector >= 0 && old_selector != selector)
3530			delay = ops->set_voltage_time_sel(rdev, old_selector,
3531							  selector);
3532	} else {
3533		if (old_uV != best_val) {
3534			if (ops->set_voltage_time)
3535				delay = ops->set_voltage_time(rdev, old_uV,
3536							      best_val);
3537			else
3538				delay = _regulator_set_voltage_time(rdev,
3539								    old_uV,
3540								    best_val);
3541		}
3542	}
3543
3544	if (delay < 0) {
3545		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546		delay = 0;
3547	}
3548
3549	/* Insert any necessary delays */
3550	if (delay >= 1000) {
3551		mdelay(delay / 1000);
3552		udelay(delay % 1000);
3553	} else if (delay) {
3554		udelay(delay);
3555	}
3556
3557	if (best_val >= 0) {
3558		unsigned long data = best_val;
3559
3560		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561				     (void *)data);
3562	}
3563
3564out:
3565	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567	return ret;
3568}
3569
3570static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571				  int min_uV, int max_uV, suspend_state_t state)
3572{
3573	struct regulator_state *rstate;
3574	int uV, sel;
3575
3576	rstate = regulator_get_suspend_state(rdev, state);
3577	if (rstate == NULL)
3578		return -EINVAL;
3579
3580	if (min_uV < rstate->min_uV)
3581		min_uV = rstate->min_uV;
3582	if (max_uV > rstate->max_uV)
3583		max_uV = rstate->max_uV;
3584
3585	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586	if (sel < 0)
3587		return sel;
3588
3589	uV = rdev->desc->ops->list_voltage(rdev, sel);
3590	if (uV >= min_uV && uV <= max_uV)
3591		rstate->uV = uV;
3592
3593	return 0;
3594}
3595
3596static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597					  int min_uV, int max_uV,
3598					  suspend_state_t state)
3599{
3600	struct regulator_dev *rdev = regulator->rdev;
3601	struct regulator_voltage *voltage = &regulator->voltage[state];
3602	int ret = 0;
3603	int old_min_uV, old_max_uV;
3604	int current_uV;
3605
3606	/* If we're setting the same range as last time the change
3607	 * should be a noop (some cpufreq implementations use the same
3608	 * voltage for multiple frequencies, for example).
3609	 */
3610	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611		goto out;
3612
3613	/* If we're trying to set a range that overlaps the current voltage,
3614	 * return successfully even though the regulator does not support
3615	 * changing the voltage.
3616	 */
3617	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618		current_uV = regulator_get_voltage_rdev(rdev);
3619		if (min_uV <= current_uV && current_uV <= max_uV) {
3620			voltage->min_uV = min_uV;
3621			voltage->max_uV = max_uV;
3622			goto out;
3623		}
3624	}
3625
3626	/* sanity check */
3627	if (!rdev->desc->ops->set_voltage &&
3628	    !rdev->desc->ops->set_voltage_sel) {
3629		ret = -EINVAL;
3630		goto out;
3631	}
3632
3633	/* constraints check */
3634	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635	if (ret < 0)
3636		goto out;
3637
3638	/* restore original values in case of error */
3639	old_min_uV = voltage->min_uV;
3640	old_max_uV = voltage->max_uV;
3641	voltage->min_uV = min_uV;
3642	voltage->max_uV = max_uV;
3643
3644	/* for not coupled regulators this will just set the voltage */
3645	ret = regulator_balance_voltage(rdev, state);
3646	if (ret < 0) {
3647		voltage->min_uV = old_min_uV;
3648		voltage->max_uV = old_max_uV;
3649	}
3650
3651out:
3652	return ret;
3653}
3654
3655int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656			       int max_uV, suspend_state_t state)
3657{
3658	int best_supply_uV = 0;
3659	int supply_change_uV = 0;
3660	int ret;
3661
3662	if (rdev->supply &&
3663	    regulator_ops_is_valid(rdev->supply->rdev,
3664				   REGULATOR_CHANGE_VOLTAGE) &&
3665	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666					   rdev->desc->ops->get_voltage_sel))) {
3667		int current_supply_uV;
3668		int selector;
3669
3670		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671		if (selector < 0) {
3672			ret = selector;
3673			goto out;
3674		}
3675
3676		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677		if (best_supply_uV < 0) {
3678			ret = best_supply_uV;
3679			goto out;
3680		}
3681
3682		best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685		if (current_supply_uV < 0) {
3686			ret = current_supply_uV;
3687			goto out;
3688		}
3689
3690		supply_change_uV = best_supply_uV - current_supply_uV;
3691	}
3692
3693	if (supply_change_uV > 0) {
3694		ret = regulator_set_voltage_unlocked(rdev->supply,
3695				best_supply_uV, INT_MAX, state);
3696		if (ret) {
3697			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698				ERR_PTR(ret));
3699			goto out;
3700		}
3701	}
3702
3703	if (state == PM_SUSPEND_ON)
3704		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705	else
3706		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707							max_uV, state);
3708	if (ret < 0)
3709		goto out;
3710
3711	if (supply_change_uV < 0) {
3712		ret = regulator_set_voltage_unlocked(rdev->supply,
3713				best_supply_uV, INT_MAX, state);
3714		if (ret)
3715			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716				 ERR_PTR(ret));
3717		/* No need to fail here */
3718		ret = 0;
3719	}
3720
3721out:
3722	return ret;
3723}
3724EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
3726static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727					int *current_uV, int *min_uV)
3728{
3729	struct regulation_constraints *constraints = rdev->constraints;
3730
3731	/* Limit voltage change only if necessary */
3732	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733		return 1;
3734
3735	if (*current_uV < 0) {
3736		*current_uV = regulator_get_voltage_rdev(rdev);
3737
3738		if (*current_uV < 0)
3739			return *current_uV;
3740	}
3741
3742	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743		return 1;
3744
3745	/* Clamp target voltage within the given step */
3746	if (*current_uV < *min_uV)
3747		*min_uV = min(*current_uV + constraints->max_uV_step,
3748			      *min_uV);
3749	else
3750		*min_uV = max(*current_uV - constraints->max_uV_step,
3751			      *min_uV);
3752
3753	return 0;
3754}
3755
3756static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757					 int *current_uV,
3758					 int *min_uV, int *max_uV,
3759					 suspend_state_t state,
3760					 int n_coupled)
3761{
3762	struct coupling_desc *c_desc = &rdev->coupling_desc;
3763	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764	struct regulation_constraints *constraints = rdev->constraints;
3765	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766	int max_current_uV = 0, min_current_uV = INT_MAX;
3767	int highest_min_uV = 0, target_uV, possible_uV;
3768	int i, ret, max_spread;
3769	bool done;
3770
3771	*current_uV = -1;
3772
3773	/*
3774	 * If there are no coupled regulators, simply set the voltage
3775	 * demanded by consumers.
3776	 */
3777	if (n_coupled == 1) {
3778		/*
3779		 * If consumers don't provide any demands, set voltage
3780		 * to min_uV
3781		 */
3782		desired_min_uV = constraints->min_uV;
3783		desired_max_uV = constraints->max_uV;
3784
3785		ret = regulator_check_consumers(rdev,
3786						&desired_min_uV,
3787						&desired_max_uV, state);
3788		if (ret < 0)
3789			return ret;
3790
3791		possible_uV = desired_min_uV;
3792		done = true;
3793
3794		goto finish;
3795	}
3796
3797	/* Find highest min desired voltage */
3798	for (i = 0; i < n_coupled; i++) {
3799		int tmp_min = 0;
3800		int tmp_max = INT_MAX;
3801
3802		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804		ret = regulator_check_consumers(c_rdevs[i],
3805						&tmp_min,
3806						&tmp_max, state);
3807		if (ret < 0)
3808			return ret;
3809
3810		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811		if (ret < 0)
3812			return ret;
3813
3814		highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816		if (i == 0) {
3817			desired_min_uV = tmp_min;
3818			desired_max_uV = tmp_max;
3819		}
3820	}
3821
3822	max_spread = constraints->max_spread[0];
3823
3824	/*
3825	 * Let target_uV be equal to the desired one if possible.
3826	 * If not, set it to minimum voltage, allowed by other coupled
3827	 * regulators.
3828	 */
3829	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831	/*
3832	 * Find min and max voltages, which currently aren't violating
3833	 * max_spread.
3834	 */
3835	for (i = 1; i < n_coupled; i++) {
3836		int tmp_act;
3837
3838		if (!_regulator_is_enabled(c_rdevs[i]))
3839			continue;
3840
3841		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842		if (tmp_act < 0)
3843			return tmp_act;
3844
3845		min_current_uV = min(tmp_act, min_current_uV);
3846		max_current_uV = max(tmp_act, max_current_uV);
3847	}
3848
3849	/* There aren't any other regulators enabled */
3850	if (max_current_uV == 0) {
3851		possible_uV = target_uV;
3852	} else {
3853		/*
3854		 * Correct target voltage, so as it currently isn't
3855		 * violating max_spread
3856		 */
3857		possible_uV = max(target_uV, max_current_uV - max_spread);
3858		possible_uV = min(possible_uV, min_current_uV + max_spread);
3859	}
3860
3861	if (possible_uV > desired_max_uV)
3862		return -EINVAL;
3863
3864	done = (possible_uV == target_uV);
3865	desired_min_uV = possible_uV;
3866
3867finish:
3868	/* Apply max_uV_step constraint if necessary */
3869	if (state == PM_SUSPEND_ON) {
3870		ret = regulator_limit_voltage_step(rdev, current_uV,
3871						   &desired_min_uV);
3872		if (ret < 0)
3873			return ret;
3874
3875		if (ret == 0)
3876			done = false;
3877	}
3878
3879	/* Set current_uV if wasn't done earlier in the code and if necessary */
3880	if (n_coupled > 1 && *current_uV == -1) {
3881
3882		if (_regulator_is_enabled(rdev)) {
3883			ret = regulator_get_voltage_rdev(rdev);
3884			if (ret < 0)
3885				return ret;
3886
3887			*current_uV = ret;
3888		} else {
3889			*current_uV = desired_min_uV;
3890		}
3891	}
3892
3893	*min_uV = desired_min_uV;
3894	*max_uV = desired_max_uV;
3895
3896	return done;
3897}
3898
3899int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900				 suspend_state_t state, bool skip_coupled)
3901{
3902	struct regulator_dev **c_rdevs;
3903	struct regulator_dev *best_rdev;
3904	struct coupling_desc *c_desc = &rdev->coupling_desc;
3905	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906	unsigned int delta, best_delta;
3907	unsigned long c_rdev_done = 0;
3908	bool best_c_rdev_done;
3909
3910	c_rdevs = c_desc->coupled_rdevs;
3911	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913	/*
3914	 * Find the best possible voltage change on each loop. Leave the loop
3915	 * if there isn't any possible change.
3916	 */
3917	do {
3918		best_c_rdev_done = false;
3919		best_delta = 0;
3920		best_min_uV = 0;
3921		best_max_uV = 0;
3922		best_c_rdev = 0;
3923		best_rdev = NULL;
3924
3925		/*
3926		 * Find highest difference between optimal voltage
3927		 * and current voltage.
3928		 */
3929		for (i = 0; i < n_coupled; i++) {
3930			/*
3931			 * optimal_uV is the best voltage that can be set for
3932			 * i-th regulator at the moment without violating
3933			 * max_spread constraint in order to balance
3934			 * the coupled voltages.
3935			 */
3936			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938			if (test_bit(i, &c_rdev_done))
3939				continue;
3940
3941			ret = regulator_get_optimal_voltage(c_rdevs[i],
3942							    &current_uV,
3943							    &optimal_uV,
3944							    &optimal_max_uV,
3945							    state, n_coupled);
3946			if (ret < 0)
3947				goto out;
3948
3949			delta = abs(optimal_uV - current_uV);
3950
3951			if (delta && best_delta <= delta) {
3952				best_c_rdev_done = ret;
3953				best_delta = delta;
3954				best_rdev = c_rdevs[i];
3955				best_min_uV = optimal_uV;
3956				best_max_uV = optimal_max_uV;
3957				best_c_rdev = i;
3958			}
3959		}
3960
3961		/* Nothing to change, return successfully */
3962		if (!best_rdev) {
3963			ret = 0;
3964			goto out;
3965		}
3966
3967		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968						 best_max_uV, state);
3969
3970		if (ret < 0)
3971			goto out;
3972
3973		if (best_c_rdev_done)
3974			set_bit(best_c_rdev, &c_rdev_done);
3975
3976	} while (n_coupled > 1);
3977
3978out:
3979	return ret;
3980}
3981
3982static int regulator_balance_voltage(struct regulator_dev *rdev,
3983				     suspend_state_t state)
3984{
3985	struct coupling_desc *c_desc = &rdev->coupling_desc;
3986	struct regulator_coupler *coupler = c_desc->coupler;
3987	bool skip_coupled = false;
3988
3989	/*
3990	 * If system is in a state other than PM_SUSPEND_ON, don't check
3991	 * other coupled regulators.
3992	 */
3993	if (state != PM_SUSPEND_ON)
3994		skip_coupled = true;
3995
3996	if (c_desc->n_resolved < c_desc->n_coupled) {
3997		rdev_err(rdev, "Not all coupled regulators registered\n");
3998		return -EPERM;
3999	}
4000
4001	/* Invoke custom balancer for customized couplers */
4002	if (coupler && coupler->balance_voltage)
4003		return coupler->balance_voltage(coupler, rdev, state);
4004
4005	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006}
4007
4008/**
4009 * regulator_set_voltage - set regulator output voltage
4010 * @regulator: regulator source
4011 * @min_uV: Minimum required voltage in uV
4012 * @max_uV: Maximum acceptable voltage in uV
4013 *
4014 * Sets a voltage regulator to the desired output voltage. This can be set
4015 * during any regulator state. IOW, regulator can be disabled or enabled.
4016 *
4017 * If the regulator is enabled then the voltage will change to the new value
4018 * immediately otherwise if the regulator is disabled the regulator will
4019 * output at the new voltage when enabled.
4020 *
4021 * NOTE: If the regulator is shared between several devices then the lowest
4022 * request voltage that meets the system constraints will be used.
4023 * Regulator system constraints must be set for this regulator before
4024 * calling this function otherwise this call will fail.
 
 
4025 */
4026int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027{
4028	struct ww_acquire_ctx ww_ctx;
4029	int ret;
4030
4031	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034					     PM_SUSPEND_ON);
4035
4036	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038	return ret;
4039}
4040EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
4042static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043					   suspend_state_t state, bool en)
4044{
4045	struct regulator_state *rstate;
4046
4047	rstate = regulator_get_suspend_state(rdev, state);
4048	if (rstate == NULL)
4049		return -EINVAL;
4050
4051	if (!rstate->changeable)
4052		return -EPERM;
4053
4054	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056	return 0;
4057}
4058
4059int regulator_suspend_enable(struct regulator_dev *rdev,
4060				    suspend_state_t state)
4061{
4062	return regulator_suspend_toggle(rdev, state, true);
4063}
4064EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
4066int regulator_suspend_disable(struct regulator_dev *rdev,
4067				     suspend_state_t state)
4068{
4069	struct regulator *regulator;
4070	struct regulator_voltage *voltage;
4071
4072	/*
4073	 * if any consumer wants this regulator device keeping on in
4074	 * suspend states, don't set it as disabled.
4075	 */
4076	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077		voltage = &regulator->voltage[state];
4078		if (voltage->min_uV || voltage->max_uV)
4079			return 0;
4080	}
4081
4082	return regulator_suspend_toggle(rdev, state, false);
4083}
4084EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
4086static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087					  int min_uV, int max_uV,
4088					  suspend_state_t state)
4089{
4090	struct regulator_dev *rdev = regulator->rdev;
4091	struct regulator_state *rstate;
4092
4093	rstate = regulator_get_suspend_state(rdev, state);
4094	if (rstate == NULL)
4095		return -EINVAL;
4096
4097	if (rstate->min_uV == rstate->max_uV) {
4098		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099		return -EPERM;
4100	}
4101
4102	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103}
4104
4105int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106				  int max_uV, suspend_state_t state)
4107{
4108	struct ww_acquire_ctx ww_ctx;
4109	int ret;
4110
4111	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113		return -EINVAL;
4114
4115	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118					     max_uV, state);
4119
4120	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122	return ret;
4123}
4124EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126/**
4127 * regulator_set_voltage_time - get raise/fall time
4128 * @regulator: regulator source
4129 * @old_uV: starting voltage in microvolts
4130 * @new_uV: target voltage in microvolts
4131 *
4132 * Provided with the starting and ending voltage, this function attempts to
4133 * calculate the time in microseconds required to rise or fall to this new
4134 * voltage.
 
 
4135 */
4136int regulator_set_voltage_time(struct regulator *regulator,
4137			       int old_uV, int new_uV)
4138{
4139	struct regulator_dev *rdev = regulator->rdev;
4140	const struct regulator_ops *ops = rdev->desc->ops;
4141	int old_sel = -1;
4142	int new_sel = -1;
4143	int voltage;
4144	int i;
4145
4146	if (ops->set_voltage_time)
4147		return ops->set_voltage_time(rdev, old_uV, new_uV);
4148	else if (!ops->set_voltage_time_sel)
4149		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151	/* Currently requires operations to do this */
4152	if (!ops->list_voltage || !rdev->desc->n_voltages)
4153		return -EINVAL;
4154
4155	for (i = 0; i < rdev->desc->n_voltages; i++) {
4156		/* We only look for exact voltage matches here */
4157		if (i < rdev->desc->linear_min_sel)
4158			continue;
4159
4160		if (old_sel >= 0 && new_sel >= 0)
4161			break;
4162
4163		voltage = regulator_list_voltage(regulator, i);
4164		if (voltage < 0)
4165			return -EINVAL;
4166		if (voltage == 0)
4167			continue;
4168		if (voltage == old_uV)
4169			old_sel = i;
4170		if (voltage == new_uV)
4171			new_sel = i;
4172	}
4173
4174	if (old_sel < 0 || new_sel < 0)
4175		return -EINVAL;
4176
4177	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4178}
4179EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4180
4181/**
4182 * regulator_set_voltage_time_sel - get raise/fall time
4183 * @rdev: regulator source device
4184 * @old_selector: selector for starting voltage
4185 * @new_selector: selector for target voltage
4186 *
4187 * Provided with the starting and target voltage selectors, this function
4188 * returns time in microseconds required to rise or fall to this new voltage
4189 *
4190 * Drivers providing ramp_delay in regulation_constraints can use this as their
4191 * set_voltage_time_sel() operation.
 
 
4192 */
4193int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4194				   unsigned int old_selector,
4195				   unsigned int new_selector)
4196{
4197	int old_volt, new_volt;
4198
4199	/* sanity check */
4200	if (!rdev->desc->ops->list_voltage)
4201		return -EINVAL;
4202
4203	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4204	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4205
4206	if (rdev->desc->ops->set_voltage_time)
4207		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4208							 new_volt);
4209	else
4210		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211}
4212EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213
4214int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4215{
4216	int ret;
4217
4218	regulator_lock(rdev);
4219
4220	if (!rdev->desc->ops->set_voltage &&
4221	    !rdev->desc->ops->set_voltage_sel) {
4222		ret = -EINVAL;
4223		goto out;
4224	}
4225
4226	/* balance only, if regulator is coupled */
4227	if (rdev->coupling_desc.n_coupled > 1)
4228		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4229	else
4230		ret = -EOPNOTSUPP;
4231
4232out:
4233	regulator_unlock(rdev);
4234	return ret;
4235}
4236
4237/**
4238 * regulator_sync_voltage - re-apply last regulator output voltage
4239 * @regulator: regulator source
4240 *
4241 * Re-apply the last configured voltage.  This is intended to be used
4242 * where some external control source the consumer is cooperating with
4243 * has caused the configured voltage to change.
 
 
4244 */
4245int regulator_sync_voltage(struct regulator *regulator)
4246{
4247	struct regulator_dev *rdev = regulator->rdev;
4248	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4249	int ret, min_uV, max_uV;
4250
 
 
 
4251	regulator_lock(rdev);
4252
4253	if (!rdev->desc->ops->set_voltage &&
4254	    !rdev->desc->ops->set_voltage_sel) {
4255		ret = -EINVAL;
4256		goto out;
4257	}
4258
4259	/* This is only going to work if we've had a voltage configured. */
4260	if (!voltage->min_uV && !voltage->max_uV) {
4261		ret = -EINVAL;
4262		goto out;
4263	}
4264
4265	min_uV = voltage->min_uV;
4266	max_uV = voltage->max_uV;
4267
4268	/* This should be a paranoia check... */
4269	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4270	if (ret < 0)
4271		goto out;
4272
4273	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274	if (ret < 0)
4275		goto out;
4276
4277	/* balance only, if regulator is coupled */
4278	if (rdev->coupling_desc.n_coupled > 1)
4279		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4280	else
4281		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282
4283out:
4284	regulator_unlock(rdev);
4285	return ret;
4286}
4287EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4288
4289int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290{
4291	int sel, ret;
4292	bool bypassed;
4293
4294	if (rdev->desc->ops->get_bypass) {
4295		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4296		if (ret < 0)
4297			return ret;
4298		if (bypassed) {
4299			/* if bypassed the regulator must have a supply */
4300			if (!rdev->supply) {
4301				rdev_err(rdev,
4302					 "bypassed regulator has no supply!\n");
4303				return -EPROBE_DEFER;
4304			}
4305
4306			return regulator_get_voltage_rdev(rdev->supply->rdev);
4307		}
4308	}
4309
4310	if (rdev->desc->ops->get_voltage_sel) {
4311		sel = rdev->desc->ops->get_voltage_sel(rdev);
4312		if (sel < 0)
4313			return sel;
4314		ret = rdev->desc->ops->list_voltage(rdev, sel);
4315	} else if (rdev->desc->ops->get_voltage) {
4316		ret = rdev->desc->ops->get_voltage(rdev);
4317	} else if (rdev->desc->ops->list_voltage) {
4318		ret = rdev->desc->ops->list_voltage(rdev, 0);
4319	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4320		ret = rdev->desc->fixed_uV;
4321	} else if (rdev->supply) {
4322		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323	} else if (rdev->supply_name) {
4324		return -EPROBE_DEFER;
4325	} else {
4326		return -EINVAL;
4327	}
4328
4329	if (ret < 0)
4330		return ret;
4331	return ret - rdev->constraints->uV_offset;
4332}
4333EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334
4335/**
4336 * regulator_get_voltage - get regulator output voltage
4337 * @regulator: regulator source
4338 *
4339 * This returns the current regulator voltage in uV.
4340 *
4341 * NOTE: If the regulator is disabled it will return the voltage value. This
4342 * function should not be used to determine regulator state.
4343 */
4344int regulator_get_voltage(struct regulator *regulator)
4345{
4346	struct ww_acquire_ctx ww_ctx;
4347	int ret;
4348
4349	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350	ret = regulator_get_voltage_rdev(regulator->rdev);
4351	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352
4353	return ret;
4354}
4355EXPORT_SYMBOL_GPL(regulator_get_voltage);
4356
4357/**
4358 * regulator_set_current_limit - set regulator output current limit
4359 * @regulator: regulator source
4360 * @min_uA: Minimum supported current in uA
4361 * @max_uA: Maximum supported current in uA
4362 *
4363 * Sets current sink to the desired output current. This can be set during
4364 * any regulator state. IOW, regulator can be disabled or enabled.
4365 *
4366 * If the regulator is enabled then the current will change to the new value
4367 * immediately otherwise if the regulator is disabled the regulator will
4368 * output at the new current when enabled.
4369 *
4370 * NOTE: Regulator system constraints must be set for this regulator before
4371 * calling this function otherwise this call will fail.
 
 
4372 */
4373int regulator_set_current_limit(struct regulator *regulator,
4374			       int min_uA, int max_uA)
4375{
4376	struct regulator_dev *rdev = regulator->rdev;
4377	int ret;
4378
4379	regulator_lock(rdev);
4380
4381	/* sanity check */
4382	if (!rdev->desc->ops->set_current_limit) {
4383		ret = -EINVAL;
4384		goto out;
4385	}
4386
4387	/* constraints check */
4388	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4389	if (ret < 0)
4390		goto out;
4391
4392	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4393out:
4394	regulator_unlock(rdev);
4395	return ret;
4396}
4397EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4398
4399static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4400{
4401	/* sanity check */
4402	if (!rdev->desc->ops->get_current_limit)
4403		return -EINVAL;
4404
4405	return rdev->desc->ops->get_current_limit(rdev);
4406}
4407
4408static int _regulator_get_current_limit(struct regulator_dev *rdev)
4409{
4410	int ret;
4411
4412	regulator_lock(rdev);
4413	ret = _regulator_get_current_limit_unlocked(rdev);
4414	regulator_unlock(rdev);
4415
4416	return ret;
4417}
4418
4419/**
4420 * regulator_get_current_limit - get regulator output current
4421 * @regulator: regulator source
4422 *
4423 * This returns the current supplied by the specified current sink in uA.
 
4424 *
4425 * NOTE: If the regulator is disabled it will return the current value. This
4426 * function should not be used to determine regulator state.
4427 */
4428int regulator_get_current_limit(struct regulator *regulator)
4429{
4430	return _regulator_get_current_limit(regulator->rdev);
4431}
4432EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4433
4434/**
4435 * regulator_set_mode - set regulator operating mode
4436 * @regulator: regulator source
4437 * @mode: operating mode - one of the REGULATOR_MODE constants
4438 *
4439 * Set regulator operating mode to increase regulator efficiency or improve
4440 * regulation performance.
4441 *
4442 * NOTE: Regulator system constraints must be set for this regulator before
4443 * calling this function otherwise this call will fail.
 
 
4444 */
4445int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4446{
4447	struct regulator_dev *rdev = regulator->rdev;
4448	int ret;
4449	int regulator_curr_mode;
4450
4451	regulator_lock(rdev);
4452
4453	/* sanity check */
4454	if (!rdev->desc->ops->set_mode) {
4455		ret = -EINVAL;
4456		goto out;
4457	}
4458
4459	/* return if the same mode is requested */
4460	if (rdev->desc->ops->get_mode) {
4461		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4462		if (regulator_curr_mode == mode) {
4463			ret = 0;
4464			goto out;
4465		}
4466	}
4467
4468	/* constraints check */
4469	ret = regulator_mode_constrain(rdev, &mode);
4470	if (ret < 0)
4471		goto out;
4472
4473	ret = rdev->desc->ops->set_mode(rdev, mode);
4474out:
4475	regulator_unlock(rdev);
4476	return ret;
4477}
4478EXPORT_SYMBOL_GPL(regulator_set_mode);
4479
4480static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4481{
4482	/* sanity check */
4483	if (!rdev->desc->ops->get_mode)
4484		return -EINVAL;
4485
4486	return rdev->desc->ops->get_mode(rdev);
4487}
4488
4489static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4490{
4491	int ret;
4492
4493	regulator_lock(rdev);
4494	ret = _regulator_get_mode_unlocked(rdev);
4495	regulator_unlock(rdev);
4496
4497	return ret;
4498}
4499
4500/**
4501 * regulator_get_mode - get regulator operating mode
4502 * @regulator: regulator source
4503 *
4504 * Get the current regulator operating mode.
 
 
 
4505 */
4506unsigned int regulator_get_mode(struct regulator *regulator)
4507{
4508	return _regulator_get_mode(regulator->rdev);
4509}
4510EXPORT_SYMBOL_GPL(regulator_get_mode);
4511
4512static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4513{
4514	int ret = 0;
4515
4516	if (rdev->use_cached_err) {
4517		spin_lock(&rdev->err_lock);
4518		ret = rdev->cached_err;
4519		spin_unlock(&rdev->err_lock);
4520	}
4521	return ret;
4522}
4523
4524static int _regulator_get_error_flags(struct regulator_dev *rdev,
4525					unsigned int *flags)
4526{
4527	int cached_flags, ret = 0;
4528
4529	regulator_lock(rdev);
4530
4531	cached_flags = rdev_get_cached_err_flags(rdev);
4532
4533	if (rdev->desc->ops->get_error_flags)
4534		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4535	else if (!rdev->use_cached_err)
4536		ret = -EINVAL;
4537
4538	*flags |= cached_flags;
4539
4540	regulator_unlock(rdev);
4541
4542	return ret;
4543}
4544
4545/**
4546 * regulator_get_error_flags - get regulator error information
4547 * @regulator: regulator source
4548 * @flags: pointer to store error flags
4549 *
4550 * Get the current regulator error information.
 
 
4551 */
4552int regulator_get_error_flags(struct regulator *regulator,
4553				unsigned int *flags)
4554{
4555	return _regulator_get_error_flags(regulator->rdev, flags);
4556}
4557EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4558
4559/**
4560 * regulator_set_load - set regulator load
4561 * @regulator: regulator source
4562 * @uA_load: load current
4563 *
4564 * Notifies the regulator core of a new device load. This is then used by
4565 * DRMS (if enabled by constraints) to set the most efficient regulator
4566 * operating mode for the new regulator loading.
4567 *
4568 * Consumer devices notify their supply regulator of the maximum power
4569 * they will require (can be taken from device datasheet in the power
4570 * consumption tables) when they change operational status and hence power
4571 * state. Examples of operational state changes that can affect power
4572 * consumption are :-
4573 *
4574 *    o Device is opened / closed.
4575 *    o Device I/O is about to begin or has just finished.
4576 *    o Device is idling in between work.
4577 *
4578 * This information is also exported via sysfs to userspace.
4579 *
4580 * DRMS will sum the total requested load on the regulator and change
4581 * to the most efficient operating mode if platform constraints allow.
4582 *
4583 * NOTE: when a regulator consumer requests to have a regulator
4584 * disabled then any load that consumer requested no longer counts
4585 * toward the total requested load.  If the regulator is re-enabled
4586 * then the previously requested load will start counting again.
4587 *
4588 * If a regulator is an always-on regulator then an individual consumer's
4589 * load will still be removed if that consumer is fully disabled.
4590 *
4591 * On error a negative errno is returned.
4592 */
4593int regulator_set_load(struct regulator *regulator, int uA_load)
4594{
4595	struct regulator_dev *rdev = regulator->rdev;
4596	int old_uA_load;
4597	int ret = 0;
4598
4599	regulator_lock(rdev);
4600	old_uA_load = regulator->uA_load;
4601	regulator->uA_load = uA_load;
4602	if (regulator->enable_count && old_uA_load != uA_load) {
4603		ret = drms_uA_update(rdev);
4604		if (ret < 0)
4605			regulator->uA_load = old_uA_load;
4606	}
4607	regulator_unlock(rdev);
4608
4609	return ret;
4610}
4611EXPORT_SYMBOL_GPL(regulator_set_load);
4612
4613/**
4614 * regulator_allow_bypass - allow the regulator to go into bypass mode
4615 *
4616 * @regulator: Regulator to configure
4617 * @enable: enable or disable bypass mode
4618 *
4619 * Allow the regulator to go into bypass mode if all other consumers
4620 * for the regulator also enable bypass mode and the machine
4621 * constraints allow this.  Bypass mode means that the regulator is
4622 * simply passing the input directly to the output with no regulation.
 
 
 
4623 */
4624int regulator_allow_bypass(struct regulator *regulator, bool enable)
4625{
4626	struct regulator_dev *rdev = regulator->rdev;
4627	const char *name = rdev_get_name(rdev);
4628	int ret = 0;
4629
4630	if (!rdev->desc->ops->set_bypass)
4631		return 0;
4632
4633	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634		return 0;
4635
4636	regulator_lock(rdev);
4637
4638	if (enable && !regulator->bypass) {
4639		rdev->bypass_count++;
4640
4641		if (rdev->bypass_count == rdev->open_count) {
4642			trace_regulator_bypass_enable(name);
4643
4644			ret = rdev->desc->ops->set_bypass(rdev, enable);
4645			if (ret != 0)
4646				rdev->bypass_count--;
4647			else
4648				trace_regulator_bypass_enable_complete(name);
4649		}
4650
4651	} else if (!enable && regulator->bypass) {
4652		rdev->bypass_count--;
4653
4654		if (rdev->bypass_count != rdev->open_count) {
4655			trace_regulator_bypass_disable(name);
4656
4657			ret = rdev->desc->ops->set_bypass(rdev, enable);
4658			if (ret != 0)
4659				rdev->bypass_count++;
4660			else
4661				trace_regulator_bypass_disable_complete(name);
4662		}
4663	}
4664
4665	if (ret == 0)
4666		regulator->bypass = enable;
4667
4668	regulator_unlock(rdev);
4669
4670	return ret;
4671}
4672EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4673
4674/**
4675 * regulator_register_notifier - register regulator event notifier
4676 * @regulator: regulator source
4677 * @nb: notifier block
4678 *
4679 * Register notifier block to receive regulator events.
 
 
4680 */
4681int regulator_register_notifier(struct regulator *regulator,
4682			      struct notifier_block *nb)
4683{
4684	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4685						nb);
4686}
4687EXPORT_SYMBOL_GPL(regulator_register_notifier);
4688
4689/**
4690 * regulator_unregister_notifier - unregister regulator event notifier
4691 * @regulator: regulator source
4692 * @nb: notifier block
4693 *
4694 * Unregister regulator event notifier block.
 
 
4695 */
4696int regulator_unregister_notifier(struct regulator *regulator,
4697				struct notifier_block *nb)
4698{
4699	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4700						  nb);
4701}
4702EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4703
4704/* notify regulator consumers and downstream regulator consumers.
4705 * Note mutex must be held by caller.
4706 */
4707static int _notifier_call_chain(struct regulator_dev *rdev,
4708				  unsigned long event, void *data)
4709{
4710	/* call rdev chain first */
4711	return blocking_notifier_call_chain(&rdev->notifier, event, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4712}
4713
4714/**
4715 * regulator_bulk_get - get multiple regulator consumers
4716 *
4717 * @dev:           Device to supply
4718 * @num_consumers: Number of consumers to register
4719 * @consumers:     Configuration of consumers; clients are stored here.
4720 *
4721 * @return 0 on success, an errno on failure.
4722 *
4723 * This helper function allows drivers to get several regulator
4724 * consumers in one operation.  If any of the regulators cannot be
4725 * acquired then any regulators that were allocated will be freed
4726 * before returning to the caller.
4727 */
4728int regulator_bulk_get(struct device *dev, int num_consumers,
4729		       struct regulator_bulk_data *consumers)
4730{
4731	int i;
4732	int ret;
4733
4734	for (i = 0; i < num_consumers; i++)
4735		consumers[i].consumer = NULL;
4736
4737	for (i = 0; i < num_consumers; i++) {
4738		consumers[i].consumer = regulator_get(dev,
4739						      consumers[i].supply);
4740		if (IS_ERR(consumers[i].consumer)) {
4741			ret = PTR_ERR(consumers[i].consumer);
 
 
4742			consumers[i].consumer = NULL;
4743			goto err;
4744		}
 
 
 
 
 
 
 
 
 
4745	}
4746
4747	return 0;
4748
4749err:
4750	if (ret != -EPROBE_DEFER)
4751		dev_err(dev, "Failed to get supply '%s': %pe\n",
4752			consumers[i].supply, ERR_PTR(ret));
4753	else
4754		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4755			consumers[i].supply);
4756
4757	while (--i >= 0)
4758		regulator_put(consumers[i].consumer);
4759
4760	return ret;
4761}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4762EXPORT_SYMBOL_GPL(regulator_bulk_get);
4763
4764static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4765{
4766	struct regulator_bulk_data *bulk = data;
4767
4768	bulk->ret = regulator_enable(bulk->consumer);
4769}
4770
4771/**
4772 * regulator_bulk_enable - enable multiple regulator consumers
4773 *
4774 * @num_consumers: Number of consumers
4775 * @consumers:     Consumer data; clients are stored here.
4776 * @return         0 on success, an errno on failure
4777 *
4778 * This convenience API allows consumers to enable multiple regulator
4779 * clients in a single API call.  If any consumers cannot be enabled
4780 * then any others that were enabled will be disabled again prior to
4781 * return.
 
 
4782 */
4783int regulator_bulk_enable(int num_consumers,
4784			  struct regulator_bulk_data *consumers)
4785{
4786	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787	int i;
4788	int ret = 0;
4789
4790	for (i = 0; i < num_consumers; i++) {
4791		async_schedule_domain(regulator_bulk_enable_async,
4792				      &consumers[i], &async_domain);
4793	}
4794
4795	async_synchronize_full_domain(&async_domain);
4796
4797	/* If any consumer failed we need to unwind any that succeeded */
4798	for (i = 0; i < num_consumers; i++) {
4799		if (consumers[i].ret != 0) {
4800			ret = consumers[i].ret;
4801			goto err;
4802		}
4803	}
4804
4805	return 0;
4806
4807err:
4808	for (i = 0; i < num_consumers; i++) {
4809		if (consumers[i].ret < 0)
4810			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4811			       ERR_PTR(consumers[i].ret));
4812		else
4813			regulator_disable(consumers[i].consumer);
4814	}
4815
4816	return ret;
4817}
4818EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4819
4820/**
4821 * regulator_bulk_disable - disable multiple regulator consumers
4822 *
4823 * @num_consumers: Number of consumers
4824 * @consumers:     Consumer data; clients are stored here.
4825 * @return         0 on success, an errno on failure
4826 *
4827 * This convenience API allows consumers to disable multiple regulator
4828 * clients in a single API call.  If any consumers cannot be disabled
4829 * then any others that were disabled will be enabled again prior to
4830 * return.
 
 
4831 */
4832int regulator_bulk_disable(int num_consumers,
4833			   struct regulator_bulk_data *consumers)
4834{
4835	int i;
4836	int ret, r;
4837
4838	for (i = num_consumers - 1; i >= 0; --i) {
4839		ret = regulator_disable(consumers[i].consumer);
4840		if (ret != 0)
4841			goto err;
4842	}
4843
4844	return 0;
4845
4846err:
4847	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848	for (++i; i < num_consumers; ++i) {
4849		r = regulator_enable(consumers[i].consumer);
4850		if (r != 0)
4851			pr_err("Failed to re-enable %s: %pe\n",
4852			       consumers[i].supply, ERR_PTR(r));
4853	}
4854
4855	return ret;
4856}
4857EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4858
4859/**
4860 * regulator_bulk_force_disable - force disable multiple regulator consumers
4861 *
4862 * @num_consumers: Number of consumers
4863 * @consumers:     Consumer data; clients are stored here.
4864 * @return         0 on success, an errno on failure
4865 *
4866 * This convenience API allows consumers to forcibly disable multiple regulator
4867 * clients in a single API call.
4868 * NOTE: This should be used for situations when device damage will
4869 * likely occur if the regulators are not disabled (e.g. over temp).
4870 * Although regulator_force_disable function call for some consumers can
4871 * return error numbers, the function is called for all consumers.
 
 
4872 */
4873int regulator_bulk_force_disable(int num_consumers,
4874			   struct regulator_bulk_data *consumers)
4875{
4876	int i;
4877	int ret = 0;
4878
4879	for (i = 0; i < num_consumers; i++) {
4880		consumers[i].ret =
4881			    regulator_force_disable(consumers[i].consumer);
4882
4883		/* Store first error for reporting */
4884		if (consumers[i].ret && !ret)
4885			ret = consumers[i].ret;
4886	}
4887
4888	return ret;
4889}
4890EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4891
4892/**
4893 * regulator_bulk_free - free multiple regulator consumers
4894 *
4895 * @num_consumers: Number of consumers
4896 * @consumers:     Consumer data; clients are stored here.
4897 *
4898 * This convenience API allows consumers to free multiple regulator
4899 * clients in a single API call.
4900 */
4901void regulator_bulk_free(int num_consumers,
4902			 struct regulator_bulk_data *consumers)
4903{
4904	int i;
4905
4906	for (i = 0; i < num_consumers; i++) {
4907		regulator_put(consumers[i].consumer);
4908		consumers[i].consumer = NULL;
4909	}
4910}
4911EXPORT_SYMBOL_GPL(regulator_bulk_free);
4912
4913/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4914 * regulator_notifier_call_chain - call regulator event notifier
4915 * @rdev: regulator source
4916 * @event: notifier block
4917 * @data: callback-specific data.
4918 *
4919 * Called by regulator drivers to notify clients a regulator event has
4920 * occurred.
 
 
4921 */
4922int regulator_notifier_call_chain(struct regulator_dev *rdev,
4923				  unsigned long event, void *data)
4924{
 
 
4925	_notifier_call_chain(rdev, event, data);
4926	return NOTIFY_DONE;
4927
4928}
4929EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4930
4931/**
4932 * regulator_mode_to_status - convert a regulator mode into a status
4933 *
4934 * @mode: Mode to convert
4935 *
4936 * Convert a regulator mode into a status.
 
 
4937 */
4938int regulator_mode_to_status(unsigned int mode)
4939{
4940	switch (mode) {
4941	case REGULATOR_MODE_FAST:
4942		return REGULATOR_STATUS_FAST;
4943	case REGULATOR_MODE_NORMAL:
4944		return REGULATOR_STATUS_NORMAL;
4945	case REGULATOR_MODE_IDLE:
4946		return REGULATOR_STATUS_IDLE;
4947	case REGULATOR_MODE_STANDBY:
4948		return REGULATOR_STATUS_STANDBY;
4949	default:
4950		return REGULATOR_STATUS_UNDEFINED;
4951	}
4952}
4953EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4954
4955static struct attribute *regulator_dev_attrs[] = {
4956	&dev_attr_name.attr,
4957	&dev_attr_num_users.attr,
4958	&dev_attr_type.attr,
4959	&dev_attr_microvolts.attr,
4960	&dev_attr_microamps.attr,
4961	&dev_attr_opmode.attr,
4962	&dev_attr_state.attr,
4963	&dev_attr_status.attr,
4964	&dev_attr_bypass.attr,
4965	&dev_attr_requested_microamps.attr,
4966	&dev_attr_min_microvolts.attr,
4967	&dev_attr_max_microvolts.attr,
4968	&dev_attr_min_microamps.attr,
4969	&dev_attr_max_microamps.attr,
 
 
 
 
 
 
 
 
 
4970	&dev_attr_suspend_standby_state.attr,
4971	&dev_attr_suspend_mem_state.attr,
4972	&dev_attr_suspend_disk_state.attr,
4973	&dev_attr_suspend_standby_microvolts.attr,
4974	&dev_attr_suspend_mem_microvolts.attr,
4975	&dev_attr_suspend_disk_microvolts.attr,
4976	&dev_attr_suspend_standby_mode.attr,
4977	&dev_attr_suspend_mem_mode.attr,
4978	&dev_attr_suspend_disk_mode.attr,
4979	NULL
4980};
4981
4982/*
4983 * To avoid cluttering sysfs (and memory) with useless state, only
4984 * create attributes that can be meaningfully displayed.
4985 */
4986static umode_t regulator_attr_is_visible(struct kobject *kobj,
4987					 struct attribute *attr, int idx)
4988{
4989	struct device *dev = kobj_to_dev(kobj);
4990	struct regulator_dev *rdev = dev_to_rdev(dev);
4991	const struct regulator_ops *ops = rdev->desc->ops;
4992	umode_t mode = attr->mode;
4993
4994	/* these three are always present */
4995	if (attr == &dev_attr_name.attr ||
4996	    attr == &dev_attr_num_users.attr ||
4997	    attr == &dev_attr_type.attr)
4998		return mode;
4999
5000	/* some attributes need specific methods to be displayed */
5001	if (attr == &dev_attr_microvolts.attr) {
5002		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5003		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5004		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5005		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5006			return mode;
5007		return 0;
5008	}
5009
5010	if (attr == &dev_attr_microamps.attr)
5011		return ops->get_current_limit ? mode : 0;
5012
5013	if (attr == &dev_attr_opmode.attr)
5014		return ops->get_mode ? mode : 0;
5015
5016	if (attr == &dev_attr_state.attr)
5017		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5018
5019	if (attr == &dev_attr_status.attr)
5020		return ops->get_status ? mode : 0;
5021
5022	if (attr == &dev_attr_bypass.attr)
5023		return ops->get_bypass ? mode : 0;
5024
 
 
 
 
 
 
 
 
 
 
 
5025	/* constraints need specific supporting methods */
5026	if (attr == &dev_attr_min_microvolts.attr ||
5027	    attr == &dev_attr_max_microvolts.attr)
5028		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5029
5030	if (attr == &dev_attr_min_microamps.attr ||
5031	    attr == &dev_attr_max_microamps.attr)
5032		return ops->set_current_limit ? mode : 0;
5033
5034	if (attr == &dev_attr_suspend_standby_state.attr ||
5035	    attr == &dev_attr_suspend_mem_state.attr ||
5036	    attr == &dev_attr_suspend_disk_state.attr)
5037		return mode;
5038
5039	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5040	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5041	    attr == &dev_attr_suspend_disk_microvolts.attr)
5042		return ops->set_suspend_voltage ? mode : 0;
5043
5044	if (attr == &dev_attr_suspend_standby_mode.attr ||
5045	    attr == &dev_attr_suspend_mem_mode.attr ||
5046	    attr == &dev_attr_suspend_disk_mode.attr)
5047		return ops->set_suspend_mode ? mode : 0;
5048
5049	return mode;
5050}
5051
5052static const struct attribute_group regulator_dev_group = {
5053	.attrs = regulator_dev_attrs,
5054	.is_visible = regulator_attr_is_visible,
5055};
5056
5057static const struct attribute_group *regulator_dev_groups[] = {
5058	&regulator_dev_group,
5059	NULL
5060};
5061
5062static void regulator_dev_release(struct device *dev)
5063{
5064	struct regulator_dev *rdev = dev_get_drvdata(dev);
5065
 
5066	kfree(rdev->constraints);
5067	of_node_put(rdev->dev.of_node);
5068	kfree(rdev);
5069}
5070
5071static void rdev_init_debugfs(struct regulator_dev *rdev)
5072{
5073	struct device *parent = rdev->dev.parent;
5074	const char *rname = rdev_get_name(rdev);
5075	char name[NAME_MAX];
5076
5077	/* Avoid duplicate debugfs directory names */
5078	if (parent && rname == rdev->desc->name) {
5079		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5080			 rname);
5081		rname = name;
5082	}
5083
5084	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085	if (!rdev->debugfs) {
5086		rdev_warn(rdev, "Failed to create debugfs directory\n");
5087		return;
5088	}
5089
5090	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5091			   &rdev->use_count);
5092	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5093			   &rdev->open_count);
5094	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5095			   &rdev->bypass_count);
5096}
5097
5098static int regulator_register_resolve_supply(struct device *dev, void *data)
5099{
5100	struct regulator_dev *rdev = dev_to_rdev(dev);
5101
5102	if (regulator_resolve_supply(rdev))
5103		rdev_dbg(rdev, "unable to resolve supply\n");
5104
5105	return 0;
5106}
5107
5108int regulator_coupler_register(struct regulator_coupler *coupler)
5109{
5110	mutex_lock(&regulator_list_mutex);
5111	list_add_tail(&coupler->list, &regulator_coupler_list);
5112	mutex_unlock(&regulator_list_mutex);
5113
5114	return 0;
5115}
5116
5117static struct regulator_coupler *
5118regulator_find_coupler(struct regulator_dev *rdev)
5119{
5120	struct regulator_coupler *coupler;
5121	int err;
5122
5123	/*
5124	 * Note that regulators are appended to the list and the generic
5125	 * coupler is registered first, hence it will be attached at last
5126	 * if nobody cared.
5127	 */
5128	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5129		err = coupler->attach_regulator(coupler, rdev);
5130		if (!err) {
5131			if (!coupler->balance_voltage &&
5132			    rdev->coupling_desc.n_coupled > 2)
5133				goto err_unsupported;
5134
5135			return coupler;
5136		}
5137
5138		if (err < 0)
5139			return ERR_PTR(err);
5140
5141		if (err == 1)
5142			continue;
5143
5144		break;
5145	}
5146
5147	return ERR_PTR(-EINVAL);
5148
5149err_unsupported:
5150	if (coupler->detach_regulator)
5151		coupler->detach_regulator(coupler, rdev);
5152
5153	rdev_err(rdev,
5154		"Voltage balancing for multiple regulator couples is unimplemented\n");
5155
5156	return ERR_PTR(-EPERM);
5157}
5158
5159static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160{
5161	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162	struct coupling_desc *c_desc = &rdev->coupling_desc;
5163	int n_coupled = c_desc->n_coupled;
5164	struct regulator_dev *c_rdev;
5165	int i;
5166
5167	for (i = 1; i < n_coupled; i++) {
5168		/* already resolved */
5169		if (c_desc->coupled_rdevs[i])
5170			continue;
5171
5172		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5173
5174		if (!c_rdev)
5175			continue;
5176
5177		if (c_rdev->coupling_desc.coupler != coupler) {
5178			rdev_err(rdev, "coupler mismatch with %s\n",
5179				 rdev_get_name(c_rdev));
5180			return;
5181		}
5182
5183		c_desc->coupled_rdevs[i] = c_rdev;
5184		c_desc->n_resolved++;
5185
5186		regulator_resolve_coupling(c_rdev);
5187	}
5188}
5189
5190static void regulator_remove_coupling(struct regulator_dev *rdev)
5191{
5192	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5194	struct regulator_dev *__c_rdev, *c_rdev;
5195	unsigned int __n_coupled, n_coupled;
5196	int i, k;
5197	int err;
5198
5199	n_coupled = c_desc->n_coupled;
5200
5201	for (i = 1; i < n_coupled; i++) {
5202		c_rdev = c_desc->coupled_rdevs[i];
5203
5204		if (!c_rdev)
5205			continue;
5206
5207		regulator_lock(c_rdev);
5208
5209		__c_desc = &c_rdev->coupling_desc;
5210		__n_coupled = __c_desc->n_coupled;
5211
5212		for (k = 1; k < __n_coupled; k++) {
5213			__c_rdev = __c_desc->coupled_rdevs[k];
5214
5215			if (__c_rdev == rdev) {
5216				__c_desc->coupled_rdevs[k] = NULL;
5217				__c_desc->n_resolved--;
5218				break;
5219			}
5220		}
5221
5222		regulator_unlock(c_rdev);
5223
5224		c_desc->coupled_rdevs[i] = NULL;
5225		c_desc->n_resolved--;
5226	}
5227
5228	if (coupler && coupler->detach_regulator) {
5229		err = coupler->detach_regulator(coupler, rdev);
5230		if (err)
5231			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5232				 ERR_PTR(err));
5233	}
5234
5235	kfree(rdev->coupling_desc.coupled_rdevs);
5236	rdev->coupling_desc.coupled_rdevs = NULL;
5237}
5238
5239static int regulator_init_coupling(struct regulator_dev *rdev)
5240{
5241	struct regulator_dev **coupled;
5242	int err, n_phandles;
5243
5244	if (!IS_ENABLED(CONFIG_OF))
5245		n_phandles = 0;
5246	else
5247		n_phandles = of_get_n_coupled(rdev);
5248
5249	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5250	if (!coupled)
5251		return -ENOMEM;
5252
5253	rdev->coupling_desc.coupled_rdevs = coupled;
5254
5255	/*
5256	 * Every regulator should always have coupling descriptor filled with
5257	 * at least pointer to itself.
5258	 */
5259	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5260	rdev->coupling_desc.n_coupled = n_phandles + 1;
5261	rdev->coupling_desc.n_resolved++;
5262
5263	/* regulator isn't coupled */
5264	if (n_phandles == 0)
5265		return 0;
5266
5267	if (!of_check_coupling_data(rdev))
5268		return -EPERM;
5269
5270	mutex_lock(&regulator_list_mutex);
5271	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272	mutex_unlock(&regulator_list_mutex);
5273
5274	if (IS_ERR(rdev->coupling_desc.coupler)) {
5275		err = PTR_ERR(rdev->coupling_desc.coupler);
5276		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277		return err;
5278	}
5279
5280	return 0;
5281}
5282
5283static int generic_coupler_attach(struct regulator_coupler *coupler,
5284				  struct regulator_dev *rdev)
5285{
5286	if (rdev->coupling_desc.n_coupled > 2) {
5287		rdev_err(rdev,
5288			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5289		return -EPERM;
5290	}
5291
5292	if (!rdev->constraints->always_on) {
5293		rdev_err(rdev,
5294			 "Coupling of a non always-on regulator is unimplemented\n");
5295		return -ENOTSUPP;
5296	}
5297
5298	return 0;
5299}
5300
5301static struct regulator_coupler generic_regulator_coupler = {
5302	.attach_regulator = generic_coupler_attach,
5303};
5304
5305/**
5306 * regulator_register - register regulator
 
5307 * @regulator_desc: regulator to register
5308 * @cfg: runtime configuration for regulator
5309 *
5310 * Called by regulator drivers to register a regulator.
5311 * Returns a valid pointer to struct regulator_dev on success
5312 * or an ERR_PTR() on error.
 
5313 */
5314struct regulator_dev *
5315regulator_register(const struct regulator_desc *regulator_desc,
 
5316		   const struct regulator_config *cfg)
5317{
5318	const struct regulator_init_data *init_data;
5319	struct regulator_config *config = NULL;
5320	static atomic_t regulator_no = ATOMIC_INIT(-1);
5321	struct regulator_dev *rdev;
5322	bool dangling_cfg_gpiod = false;
5323	bool dangling_of_gpiod = false;
5324	struct device *dev;
5325	int ret, i;
 
5326
5327	if (cfg == NULL)
5328		return ERR_PTR(-EINVAL);
5329	if (cfg->ena_gpiod)
5330		dangling_cfg_gpiod = true;
5331	if (regulator_desc == NULL) {
5332		ret = -EINVAL;
5333		goto rinse;
5334	}
5335
5336	dev = cfg->dev;
5337	WARN_ON(!dev);
5338
5339	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5340		ret = -EINVAL;
5341		goto rinse;
5342	}
5343
5344	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345	    regulator_desc->type != REGULATOR_CURRENT) {
5346		ret = -EINVAL;
5347		goto rinse;
5348	}
5349
5350	/* Only one of each should be implemented */
5351	WARN_ON(regulator_desc->ops->get_voltage &&
5352		regulator_desc->ops->get_voltage_sel);
5353	WARN_ON(regulator_desc->ops->set_voltage &&
5354		regulator_desc->ops->set_voltage_sel);
5355
5356	/* If we're using selectors we must implement list_voltage. */
5357	if (regulator_desc->ops->get_voltage_sel &&
5358	    !regulator_desc->ops->list_voltage) {
5359		ret = -EINVAL;
5360		goto rinse;
5361	}
5362	if (regulator_desc->ops->set_voltage_sel &&
5363	    !regulator_desc->ops->list_voltage) {
5364		ret = -EINVAL;
5365		goto rinse;
5366	}
5367
5368	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369	if (rdev == NULL) {
5370		ret = -ENOMEM;
5371		goto rinse;
5372	}
5373	device_initialize(&rdev->dev);
 
 
5374	spin_lock_init(&rdev->err_lock);
5375
5376	/*
5377	 * Duplicate the config so the driver could override it after
5378	 * parsing init data.
5379	 */
5380	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5381	if (config == NULL) {
5382		ret = -ENOMEM;
5383		goto clean;
5384	}
5385
 
 
 
 
5386	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387					       &rdev->dev.of_node);
5388
5389	/*
5390	 * Sometimes not all resources are probed already so we need to take
5391	 * that into account. This happens most the time if the ena_gpiod comes
5392	 * from a gpio extender or something else.
5393	 */
5394	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5395		ret = -EPROBE_DEFER;
5396		goto clean;
5397	}
5398
5399	/*
5400	 * We need to keep track of any GPIO descriptor coming from the
5401	 * device tree until we have handled it over to the core. If the
5402	 * config that was passed in to this function DOES NOT contain
5403	 * a descriptor, and the config after this call DOES contain
5404	 * a descriptor, we definitely got one from parsing the device
5405	 * tree.
5406	 */
5407	if (!cfg->ena_gpiod && config->ena_gpiod)
5408		dangling_of_gpiod = true;
5409	if (!init_data) {
5410		init_data = config->init_data;
5411		rdev->dev.of_node = of_node_get(config->of_node);
5412	}
5413
5414	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5415	rdev->reg_data = config->driver_data;
5416	rdev->owner = regulator_desc->owner;
5417	rdev->desc = regulator_desc;
5418	if (config->regmap)
5419		rdev->regmap = config->regmap;
5420	else if (dev_get_regmap(dev, NULL))
5421		rdev->regmap = dev_get_regmap(dev, NULL);
5422	else if (dev->parent)
5423		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424	INIT_LIST_HEAD(&rdev->consumer_list);
5425	INIT_LIST_HEAD(&rdev->list);
5426	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428
5429	/* preform any regulator specific init */
5430	if (init_data && init_data->regulator_init) {
5431		ret = init_data->regulator_init(rdev->reg_data);
5432		if (ret < 0)
5433			goto clean;
5434	}
5435
5436	if (config->ena_gpiod) {
5437		ret = regulator_ena_gpio_request(rdev, config);
5438		if (ret != 0) {
5439			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5440				 ERR_PTR(ret));
5441			goto clean;
5442		}
5443		/* The regulator core took over the GPIO descriptor */
5444		dangling_cfg_gpiod = false;
5445		dangling_of_gpiod = false;
5446	}
5447
5448	/* register with sysfs */
5449	rdev->dev.class = &regulator_class;
5450	rdev->dev.parent = dev;
5451	dev_set_name(&rdev->dev, "regulator.%lu",
5452		    (unsigned long) atomic_inc_return(&regulator_no));
5453	dev_set_drvdata(&rdev->dev, rdev);
5454
5455	/* set regulator constraints */
5456	if (init_data)
5457		rdev->constraints = kmemdup(&init_data->constraints,
5458					    sizeof(*rdev->constraints),
5459					    GFP_KERNEL);
5460	else
5461		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5462					    GFP_KERNEL);
5463	if (!rdev->constraints) {
5464		ret = -ENOMEM;
5465		goto wash;
5466	}
5467
5468	if (init_data && init_data->supply_regulator)
5469		rdev->supply_name = init_data->supply_regulator;
5470	else if (regulator_desc->supply_name)
5471		rdev->supply_name = regulator_desc->supply_name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5472
5473	ret = set_machine_constraints(rdev);
5474	if (ret == -EPROBE_DEFER) {
5475		/* Regulator might be in bypass mode and so needs its supply
5476		 * to set the constraints
5477		 */
5478		/* FIXME: this currently triggers a chicken-and-egg problem
5479		 * when creating -SUPPLY symlink in sysfs to a regulator
5480		 * that is just being created
5481		 */
5482		rdev_dbg(rdev, "will resolve supply early: %s\n",
5483			 rdev->supply_name);
5484		ret = regulator_resolve_supply(rdev);
5485		if (!ret)
5486			ret = set_machine_constraints(rdev);
5487		else
5488			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5489				 ERR_PTR(ret));
5490	}
5491	if (ret < 0)
5492		goto wash;
5493
5494	ret = regulator_init_coupling(rdev);
5495	if (ret < 0)
5496		goto wash;
5497
5498	/* add consumers devices */
5499	if (init_data) {
5500		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5501			ret = set_consumer_device_supply(rdev,
5502				init_data->consumer_supplies[i].dev_name,
5503				init_data->consumer_supplies[i].supply);
5504			if (ret < 0) {
5505				dev_err(dev, "Failed to set supply %s\n",
5506					init_data->consumer_supplies[i].supply);
5507				goto unset_supplies;
5508			}
5509		}
5510	}
5511
5512	if (!rdev->desc->ops->get_voltage &&
5513	    !rdev->desc->ops->list_voltage &&
5514	    !rdev->desc->fixed_uV)
5515		rdev->is_switch = true;
5516
5517	ret = device_add(&rdev->dev);
5518	if (ret != 0)
5519		goto unset_supplies;
5520
5521	rdev_init_debugfs(rdev);
5522
5523	/* try to resolve regulators coupling since a new one was registered */
5524	mutex_lock(&regulator_list_mutex);
5525	regulator_resolve_coupling(rdev);
5526	mutex_unlock(&regulator_list_mutex);
5527
5528	/* try to resolve regulators supply since a new one was registered */
5529	class_for_each_device(&regulator_class, NULL, NULL,
5530			      regulator_register_resolve_supply);
5531	kfree(config);
5532	return rdev;
5533
5534unset_supplies:
5535	mutex_lock(&regulator_list_mutex);
5536	unset_regulator_supplies(rdev);
5537	regulator_remove_coupling(rdev);
5538	mutex_unlock(&regulator_list_mutex);
5539wash:
 
5540	kfree(rdev->coupling_desc.coupled_rdevs);
5541	mutex_lock(&regulator_list_mutex);
5542	regulator_ena_gpio_free(rdev);
5543	mutex_unlock(&regulator_list_mutex);
5544clean:
5545	if (dangling_of_gpiod)
5546		gpiod_put(config->ena_gpiod);
5547	kfree(config);
5548	put_device(&rdev->dev);
5549rinse:
5550	if (dangling_cfg_gpiod)
5551		gpiod_put(cfg->ena_gpiod);
5552	return ERR_PTR(ret);
5553}
5554EXPORT_SYMBOL_GPL(regulator_register);
5555
5556/**
5557 * regulator_unregister - unregister regulator
5558 * @rdev: regulator to unregister
5559 *
5560 * Called by regulator drivers to unregister a regulator.
5561 */
5562void regulator_unregister(struct regulator_dev *rdev)
5563{
5564	if (rdev == NULL)
5565		return;
5566
5567	if (rdev->supply) {
5568		while (rdev->use_count--)
5569			regulator_disable(rdev->supply);
5570		regulator_put(rdev->supply);
5571	}
5572
5573	flush_work(&rdev->disable_work.work);
5574
5575	mutex_lock(&regulator_list_mutex);
5576
5577	debugfs_remove_recursive(rdev->debugfs);
5578	WARN_ON(rdev->open_count);
5579	regulator_remove_coupling(rdev);
5580	unset_regulator_supplies(rdev);
5581	list_del(&rdev->list);
5582	regulator_ena_gpio_free(rdev);
5583	device_unregister(&rdev->dev);
5584
5585	mutex_unlock(&regulator_list_mutex);
5586}
5587EXPORT_SYMBOL_GPL(regulator_unregister);
5588
5589#ifdef CONFIG_SUSPEND
5590/**
5591 * regulator_suspend - prepare regulators for system wide suspend
5592 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593 *
5594 * Configure each regulator with it's suspend operating parameters for state.
 
 
5595 */
5596static int regulator_suspend(struct device *dev)
5597{
5598	struct regulator_dev *rdev = dev_to_rdev(dev);
5599	suspend_state_t state = pm_suspend_target_state;
5600	int ret;
5601	const struct regulator_state *rstate;
5602
5603	rstate = regulator_get_suspend_state_check(rdev, state);
5604	if (!rstate)
5605		return 0;
5606
5607	regulator_lock(rdev);
5608	ret = __suspend_set_state(rdev, rstate);
5609	regulator_unlock(rdev);
5610
5611	return ret;
5612}
5613
5614static int regulator_resume(struct device *dev)
5615{
5616	suspend_state_t state = pm_suspend_target_state;
5617	struct regulator_dev *rdev = dev_to_rdev(dev);
5618	struct regulator_state *rstate;
5619	int ret = 0;
5620
5621	rstate = regulator_get_suspend_state(rdev, state);
5622	if (rstate == NULL)
5623		return 0;
5624
5625	/* Avoid grabbing the lock if we don't need to */
5626	if (!rdev->desc->ops->resume)
5627		return 0;
5628
5629	regulator_lock(rdev);
5630
5631	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5632	    rstate->enabled == DISABLE_IN_SUSPEND)
5633		ret = rdev->desc->ops->resume(rdev);
5634
5635	regulator_unlock(rdev);
5636
5637	return ret;
5638}
5639#else /* !CONFIG_SUSPEND */
5640
5641#define regulator_suspend	NULL
5642#define regulator_resume	NULL
5643
5644#endif /* !CONFIG_SUSPEND */
5645
5646#ifdef CONFIG_PM
5647static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648	.suspend	= regulator_suspend,
5649	.resume		= regulator_resume,
5650};
5651#endif
5652
5653struct class regulator_class = {
5654	.name = "regulator",
5655	.dev_release = regulator_dev_release,
5656	.dev_groups = regulator_dev_groups,
5657#ifdef CONFIG_PM
5658	.pm = &regulator_pm_ops,
5659#endif
5660};
5661/**
5662 * regulator_has_full_constraints - the system has fully specified constraints
5663 *
5664 * Calling this function will cause the regulator API to disable all
5665 * regulators which have a zero use count and don't have an always_on
5666 * constraint in a late_initcall.
5667 *
5668 * The intention is that this will become the default behaviour in a
5669 * future kernel release so users are encouraged to use this facility
5670 * now.
5671 */
5672void regulator_has_full_constraints(void)
5673{
5674	has_full_constraints = 1;
5675}
5676EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5677
5678/**
5679 * rdev_get_drvdata - get rdev regulator driver data
5680 * @rdev: regulator
5681 *
5682 * Get rdev regulator driver private data. This call can be used in the
5683 * regulator driver context.
 
 
5684 */
5685void *rdev_get_drvdata(struct regulator_dev *rdev)
5686{
5687	return rdev->reg_data;
5688}
5689EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5690
5691/**
5692 * regulator_get_drvdata - get regulator driver data
5693 * @regulator: regulator
5694 *
5695 * Get regulator driver private data. This call can be used in the consumer
5696 * driver context when non API regulator specific functions need to be called.
 
 
5697 */
5698void *regulator_get_drvdata(struct regulator *regulator)
5699{
5700	return regulator->rdev->reg_data;
5701}
5702EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5703
5704/**
5705 * regulator_set_drvdata - set regulator driver data
5706 * @regulator: regulator
5707 * @data: data
5708 */
5709void regulator_set_drvdata(struct regulator *regulator, void *data)
5710{
5711	regulator->rdev->reg_data = data;
5712}
5713EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5714
5715/**
5716 * rdev_get_id - get regulator ID
5717 * @rdev: regulator
 
 
5718 */
5719int rdev_get_id(struct regulator_dev *rdev)
5720{
5721	return rdev->desc->id;
5722}
5723EXPORT_SYMBOL_GPL(rdev_get_id);
5724
5725struct device *rdev_get_dev(struct regulator_dev *rdev)
5726{
5727	return &rdev->dev;
5728}
5729EXPORT_SYMBOL_GPL(rdev_get_dev);
5730
5731struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5732{
5733	return rdev->regmap;
5734}
5735EXPORT_SYMBOL_GPL(rdev_get_regmap);
5736
5737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5738{
5739	return reg_init_data->driver_data;
5740}
5741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5742
5743#ifdef CONFIG_DEBUG_FS
5744static int supply_map_show(struct seq_file *sf, void *data)
5745{
5746	struct regulator_map *map;
5747
5748	list_for_each_entry(map, &regulator_map_list, list) {
5749		seq_printf(sf, "%s -> %s.%s\n",
5750				rdev_get_name(map->regulator), map->dev_name,
5751				map->supply);
5752	}
5753
5754	return 0;
5755}
5756DEFINE_SHOW_ATTRIBUTE(supply_map);
5757
5758struct summary_data {
5759	struct seq_file *s;
5760	struct regulator_dev *parent;
5761	int level;
5762};
5763
5764static void regulator_summary_show_subtree(struct seq_file *s,
5765					   struct regulator_dev *rdev,
5766					   int level);
5767
5768static int regulator_summary_show_children(struct device *dev, void *data)
5769{
5770	struct regulator_dev *rdev = dev_to_rdev(dev);
5771	struct summary_data *summary_data = data;
5772
5773	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5774		regulator_summary_show_subtree(summary_data->s, rdev,
5775					       summary_data->level + 1);
5776
5777	return 0;
5778}
5779
5780static void regulator_summary_show_subtree(struct seq_file *s,
5781					   struct regulator_dev *rdev,
5782					   int level)
5783{
5784	struct regulation_constraints *c;
5785	struct regulator *consumer;
5786	struct summary_data summary_data;
5787	unsigned int opmode;
5788
5789	if (!rdev)
5790		return;
5791
5792	opmode = _regulator_get_mode_unlocked(rdev);
5793	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794		   level * 3 + 1, "",
5795		   30 - level * 3, rdev_get_name(rdev),
5796		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5797		   regulator_opmode_to_str(opmode));
5798
5799	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800	seq_printf(s, "%5dmA ",
5801		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5802
5803	c = rdev->constraints;
5804	if (c) {
5805		switch (rdev->desc->type) {
5806		case REGULATOR_VOLTAGE:
5807			seq_printf(s, "%5dmV %5dmV ",
5808				   c->min_uV / 1000, c->max_uV / 1000);
5809			break;
5810		case REGULATOR_CURRENT:
5811			seq_printf(s, "%5dmA %5dmA ",
5812				   c->min_uA / 1000, c->max_uA / 1000);
5813			break;
5814		}
5815	}
5816
5817	seq_puts(s, "\n");
5818
5819	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820		if (consumer->dev && consumer->dev->class == &regulator_class)
5821			continue;
5822
5823		seq_printf(s, "%*s%-*s ",
5824			   (level + 1) * 3 + 1, "",
5825			   30 - (level + 1) * 3,
5826			   consumer->supply_name ? consumer->supply_name :
5827			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828
5829		switch (rdev->desc->type) {
5830		case REGULATOR_VOLTAGE:
5831			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5832				   consumer->enable_count,
5833				   consumer->uA_load / 1000,
5834				   consumer->uA_load && !consumer->enable_count ?
5835				   '*' : ' ',
5836				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5837				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838			break;
5839		case REGULATOR_CURRENT:
5840			break;
5841		}
5842
5843		seq_puts(s, "\n");
5844	}
5845
5846	summary_data.s = s;
5847	summary_data.level = level;
5848	summary_data.parent = rdev;
5849
5850	class_for_each_device(&regulator_class, NULL, &summary_data,
5851			      regulator_summary_show_children);
5852}
5853
5854struct summary_lock_data {
5855	struct ww_acquire_ctx *ww_ctx;
5856	struct regulator_dev **new_contended_rdev;
5857	struct regulator_dev **old_contended_rdev;
5858};
5859
5860static int regulator_summary_lock_one(struct device *dev, void *data)
5861{
5862	struct regulator_dev *rdev = dev_to_rdev(dev);
5863	struct summary_lock_data *lock_data = data;
5864	int ret = 0;
5865
5866	if (rdev != *lock_data->old_contended_rdev) {
5867		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5868
5869		if (ret == -EDEADLK)
5870			*lock_data->new_contended_rdev = rdev;
5871		else
5872			WARN_ON_ONCE(ret);
5873	} else {
5874		*lock_data->old_contended_rdev = NULL;
5875	}
5876
5877	return ret;
5878}
5879
5880static int regulator_summary_unlock_one(struct device *dev, void *data)
5881{
5882	struct regulator_dev *rdev = dev_to_rdev(dev);
5883	struct summary_lock_data *lock_data = data;
5884
5885	if (lock_data) {
5886		if (rdev == *lock_data->new_contended_rdev)
5887			return -EDEADLK;
5888	}
5889
5890	regulator_unlock(rdev);
5891
5892	return 0;
5893}
5894
5895static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5896				      struct regulator_dev **new_contended_rdev,
5897				      struct regulator_dev **old_contended_rdev)
5898{
5899	struct summary_lock_data lock_data;
5900	int ret;
5901
5902	lock_data.ww_ctx = ww_ctx;
5903	lock_data.new_contended_rdev = new_contended_rdev;
5904	lock_data.old_contended_rdev = old_contended_rdev;
5905
5906	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5907				    regulator_summary_lock_one);
5908	if (ret)
5909		class_for_each_device(&regulator_class, NULL, &lock_data,
5910				      regulator_summary_unlock_one);
5911
5912	return ret;
5913}
5914
5915static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5916{
5917	struct regulator_dev *new_contended_rdev = NULL;
5918	struct regulator_dev *old_contended_rdev = NULL;
5919	int err;
5920
5921	mutex_lock(&regulator_list_mutex);
5922
5923	ww_acquire_init(ww_ctx, &regulator_ww_class);
5924
5925	do {
5926		if (new_contended_rdev) {
5927			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5928			old_contended_rdev = new_contended_rdev;
5929			old_contended_rdev->ref_cnt++;
 
5930		}
5931
5932		err = regulator_summary_lock_all(ww_ctx,
5933						 &new_contended_rdev,
5934						 &old_contended_rdev);
5935
5936		if (old_contended_rdev)
5937			regulator_unlock(old_contended_rdev);
5938
5939	} while (err == -EDEADLK);
5940
5941	ww_acquire_done(ww_ctx);
5942}
5943
5944static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5945{
5946	class_for_each_device(&regulator_class, NULL, NULL,
5947			      regulator_summary_unlock_one);
5948	ww_acquire_fini(ww_ctx);
5949
5950	mutex_unlock(&regulator_list_mutex);
5951}
5952
5953static int regulator_summary_show_roots(struct device *dev, void *data)
5954{
5955	struct regulator_dev *rdev = dev_to_rdev(dev);
5956	struct seq_file *s = data;
5957
5958	if (!rdev->supply)
5959		regulator_summary_show_subtree(s, rdev, 0);
5960
5961	return 0;
5962}
5963
5964static int regulator_summary_show(struct seq_file *s, void *data)
5965{
5966	struct ww_acquire_ctx ww_ctx;
5967
5968	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5969	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970
5971	regulator_summary_lock(&ww_ctx);
5972
5973	class_for_each_device(&regulator_class, NULL, s,
5974			      regulator_summary_show_roots);
5975
5976	regulator_summary_unlock(&ww_ctx);
5977
5978	return 0;
5979}
5980DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5981#endif /* CONFIG_DEBUG_FS */
5982
5983static int __init regulator_init(void)
5984{
5985	int ret;
5986
5987	ret = class_register(&regulator_class);
5988
5989	debugfs_root = debugfs_create_dir("regulator", NULL);
5990	if (!debugfs_root)
5991		pr_warn("regulator: Failed to create debugfs directory\n");
5992
5993#ifdef CONFIG_DEBUG_FS
5994	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5995			    &supply_map_fops);
5996
5997	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998			    NULL, &regulator_summary_fops);
5999#endif
6000	regulator_dummy_init();
6001
6002	regulator_coupler_register(&generic_regulator_coupler);
6003
6004	return ret;
6005}
6006
6007/* init early to allow our consumers to complete system booting */
6008core_initcall(regulator_init);
6009
6010static int regulator_late_cleanup(struct device *dev, void *data)
6011{
6012	struct regulator_dev *rdev = dev_to_rdev(dev);
6013	const struct regulator_ops *ops = rdev->desc->ops;
6014	struct regulation_constraints *c = rdev->constraints;
6015	int enabled, ret;
6016
6017	if (c && c->always_on)
6018		return 0;
6019
6020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021		return 0;
6022
6023	regulator_lock(rdev);
6024
6025	if (rdev->use_count)
6026		goto unlock;
6027
6028	/* If we can't read the status assume it's always on. */
6029	if (ops->is_enabled)
6030		enabled = ops->is_enabled(rdev);
6031	else
6032		enabled = 1;
6033
6034	/* But if reading the status failed, assume that it's off. */
6035	if (enabled <= 0)
6036		goto unlock;
6037
6038	if (have_full_constraints()) {
6039		/* We log since this may kill the system if it goes
6040		 * wrong.
6041		 */
6042		rdev_info(rdev, "disabling\n");
6043		ret = _regulator_do_disable(rdev);
6044		if (ret != 0)
6045			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046	} else {
6047		/* The intention is that in future we will
6048		 * assume that full constraints are provided
6049		 * so warn even if we aren't going to do
6050		 * anything here.
6051		 */
6052		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6053	}
6054
6055unlock:
6056	regulator_unlock(rdev);
6057
6058	return 0;
6059}
6060
 
 
 
 
 
 
 
 
6061static void regulator_init_complete_work_function(struct work_struct *work)
6062{
6063	/*
6064	 * Regulators may had failed to resolve their input supplies
6065	 * when were registered, either because the input supply was
6066	 * not registered yet or because its parent device was not
6067	 * bound yet. So attempt to resolve the input supplies for
6068	 * pending regulators before trying to disable unused ones.
6069	 */
6070	class_for_each_device(&regulator_class, NULL, NULL,
6071			      regulator_register_resolve_supply);
 
 
 
 
 
 
 
 
 
6072
6073	/* If we have a full configuration then disable any regulators
6074	 * we have permission to change the status for and which are
6075	 * not in use or always_on.  This is effectively the default
6076	 * for DT and ACPI as they have full constraints.
6077	 */
6078	class_for_each_device(&regulator_class, NULL, NULL,
6079			      regulator_late_cleanup);
6080}
6081
6082static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6083			    regulator_init_complete_work_function);
6084
6085static int __init regulator_init_complete(void)
6086{
6087	/*
6088	 * Since DT doesn't provide an idiomatic mechanism for
6089	 * enabling full constraints and since it's much more natural
6090	 * with DT to provide them just assume that a DT enabled
6091	 * system has full constraints.
6092	 */
6093	if (of_have_populated_dt())
6094		has_full_constraints = true;
6095
6096	/*
6097	 * We punt completion for an arbitrary amount of time since
6098	 * systems like distros will load many drivers from userspace
6099	 * so consumers might not always be ready yet, this is
6100	 * particularly an issue with laptops where this might bounce
6101	 * the display off then on.  Ideally we'd get a notification
6102	 * from userspace when this happens but we don't so just wait
6103	 * a bit and hope we waited long enough.  It'd be better if
6104	 * we'd only do this on systems that need it, and a kernel
6105	 * command line option might be useful.
6106	 */
6107	schedule_delayed_work(&regulator_init_complete_work,
6108			      msecs_to_jiffies(30000));
6109
6110	return 0;
6111}
6112late_initcall_sync(regulator_init_complete);