Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/access-regs.h>
  40#include <asm/asm-offsets.h>
  41#include <asm/ctlreg.h>
  42#include <asm/pfault.h>
  43#include <asm/diag.h>
 
  44#include <asm/facility.h>
  45#include <asm/fpu.h>
  46#include <asm/ipl.h>
  47#include <asm/setup.h>
  48#include <asm/irq.h>
  49#include <asm/tlbflush.h>
  50#include <asm/vtimer.h>
  51#include <asm/abs_lowcore.h>
  52#include <asm/sclp.h>
 
  53#include <asm/debug.h>
  54#include <asm/os_info.h>
  55#include <asm/sigp.h>
  56#include <asm/idle.h>
  57#include <asm/nmi.h>
  58#include <asm/stacktrace.h>
  59#include <asm/topology.h>
  60#include <asm/vdso.h>
  61#include <asm/maccess.h>
  62#include "entry.h"
  63
  64enum {
  65	ec_schedule = 0,
  66	ec_call_function_single,
  67	ec_stop_cpu,
  68	ec_mcck_pending,
  69	ec_irq_work,
  70};
  71
  72enum {
  73	CPU_STATE_STANDBY,
  74	CPU_STATE_CONFIGURED,
  75};
  76
 
 
 
 
 
 
 
 
 
 
 
  77static u8 boot_core_type;
  78DEFINE_PER_CPU(struct pcpu, pcpu_devices);
  79/*
  80 * Pointer to the pcpu area of the boot CPU. This is required when a restart
  81 * interrupt is triggered on an offline CPU. For that case accessing percpu
  82 * data with the common primitives does not work, since the percpu offset is
  83 * stored in a non existent lowcore.
  84 */
  85static struct pcpu *ipl_pcpu;
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices array.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (per_cpu(pcpu_devices, cpu).address == address)
 177			return &per_cpu(pcpu_devices, cpu);
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 
 
 
 
 
 
 
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 203	memcpy(lc, get_lowcore(), 512);
 
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 211	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213	lc->preempt_count = PREEMPT_DISABLED;
 214	if (nmi_alloc_mcesa(&lc->mcesad))
 215		goto out;
 216	if (abs_lowcore_map(cpu, lc, true))
 217		goto out_mcesa;
 218	lowcore_ptr[cpu] = lc;
 219	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 220	return 0;
 221
 222out_mcesa:
 223	nmi_free_mcesa(&lc->mcesad);
 224out:
 225	stack_free(mcck_stack);
 226	stack_free(async_stack);
 227	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 228	free_pages((unsigned long) lc, LC_ORDER);
 
 
 
 229	return -ENOMEM;
 230}
 231
 232static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
 233{
 234	unsigned long async_stack, nodat_stack, mcck_stack;
 235	struct lowcore *lc;
 
 
 
 236
 237	lc = lowcore_ptr[cpu];
 238	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 239	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 240	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 241	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 242	lowcore_ptr[cpu] = NULL;
 243	abs_lowcore_unmap(cpu);
 244	nmi_free_mcesa(&lc->mcesad);
 245	stack_free(async_stack);
 246	stack_free(mcck_stack);
 
 247	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 248	free_pages((unsigned long) lc, LC_ORDER);
 249}
 250
 251static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 252{
 253	struct lowcore *lc, *abs_lc;
 254
 255	lc = lowcore_ptr[cpu];
 256	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 257	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 258	lc->cpu_nr = cpu;
 259	lc->pcpu = (unsigned long)pcpu;
 260	lc->restart_flags = RESTART_FLAG_CTLREGS;
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = get_lowcore()->kernel_asce;
 265	lc->user_asce = s390_invalid_asce;
 266	lc->machine_flags = get_lowcore()->machine_flags;
 267	lc->user_timer = lc->system_timer =
 268		lc->steal_timer = lc->avg_steal_timer = 0;
 269	abs_lc = get_abs_lowcore();
 270	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 271	put_abs_lowcore(abs_lc);
 272	lc->cregs_save_area[1] = lc->kernel_asce;
 273	lc->cregs_save_area[7] = lc->user_asce;
 274	save_access_regs((unsigned int *) lc->access_regs_save_area);
 
 
 
 
 275	arch_spin_lock_setup(cpu);
 276}
 277
 278static void pcpu_attach_task(int cpu, struct task_struct *tsk)
 279{
 280	struct lowcore *lc;
 281
 282	lc = lowcore_ptr[cpu];
 283	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 284	lc->current_task = (unsigned long)tsk;
 285	lc->lpp = LPP_MAGIC;
 286	lc->current_pid = tsk->pid;
 287	lc->user_timer = tsk->thread.user_timer;
 288	lc->guest_timer = tsk->thread.guest_timer;
 289	lc->system_timer = tsk->thread.system_timer;
 290	lc->hardirq_timer = tsk->thread.hardirq_timer;
 291	lc->softirq_timer = tsk->thread.softirq_timer;
 292	lc->steal_timer = 0;
 293}
 294
 295static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
 296{
 297	struct lowcore *lc;
 298
 299	lc = lowcore_ptr[cpu];
 300	lc->restart_stack = lc->kernel_stack;
 301	lc->restart_fn = (unsigned long) func;
 302	lc->restart_data = (unsigned long) data;
 303	lc->restart_source = -1U;
 304	pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
 305}
 306
 307typedef void (pcpu_delegate_fn)(void *);
 308
 309/*
 310 * Call function via PSW restart on pcpu and stop the current cpu.
 311 */
 312static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 313{
 314	func(data);	/* should not return */
 315}
 316
 317static void pcpu_delegate(struct pcpu *pcpu, int cpu,
 318			  pcpu_delegate_fn *func,
 319			  void *data, unsigned long stack)
 320{
 321	struct lowcore *lc, *abs_lc;
 322	unsigned int source_cpu;
 323
 324	lc = lowcore_ptr[cpu];
 325	source_cpu = stap();
 326
 327	if (pcpu->address == source_cpu) {
 328		call_on_stack(2, stack, void, __pcpu_delegate,
 329			      pcpu_delegate_fn *, func, void *, data);
 330	}
 331	/* Stop target cpu (if func returns this stops the current cpu). */
 332	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 333	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 334	/* Restart func on the target cpu and stop the current cpu. */
 335	if (lc) {
 336		lc->restart_stack = stack;
 337		lc->restart_fn = (unsigned long)func;
 338		lc->restart_data = (unsigned long)data;
 339		lc->restart_source = source_cpu;
 340	} else {
 341		abs_lc = get_abs_lowcore();
 342		abs_lc->restart_stack = stack;
 343		abs_lc->restart_fn = (unsigned long)func;
 344		abs_lc->restart_data = (unsigned long)data;
 345		abs_lc->restart_source = source_cpu;
 346		put_abs_lowcore(abs_lc);
 347	}
 348	asm volatile(
 349		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 350		"	brc	2,0b	# busy, try again\n"
 351		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 352		"	brc	2,1b	# busy, try again\n"
 353		: : "d" (pcpu->address), "d" (source_cpu),
 354		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 355		: "0", "1", "cc");
 356	for (;;) ;
 357}
 358
 359/*
 360 * Enable additional logical cpus for multi-threading.
 361 */
 362static int pcpu_set_smt(unsigned int mtid)
 363{
 364	int cc;
 365
 366	if (smp_cpu_mtid == mtid)
 367		return 0;
 368	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 369	if (cc == 0) {
 370		smp_cpu_mtid = mtid;
 371		smp_cpu_mt_shift = 0;
 372		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 373			smp_cpu_mt_shift++;
 374		per_cpu(pcpu_devices, 0).address = stap();
 375	}
 376	return cc;
 377}
 378
 379/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380 * Call function on the ipl CPU.
 381 */
 382void smp_call_ipl_cpu(void (*func)(void *), void *data)
 383{
 384	struct lowcore *lc = lowcore_ptr[0];
 385
 386	if (ipl_pcpu->address == stap())
 387		lc = get_lowcore();
 388
 389	pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
 
 390}
 391
 392int smp_find_processor_id(u16 address)
 393{
 394	int cpu;
 395
 396	for_each_present_cpu(cpu)
 397		if (per_cpu(pcpu_devices, cpu).address == address)
 398			return cpu;
 399	return -1;
 400}
 401
 402void schedule_mcck_handler(void)
 403{
 404	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
 405}
 406
 407bool notrace arch_vcpu_is_preempted(int cpu)
 408{
 409	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 410		return false;
 411	if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
 412		return false;
 413	return true;
 414}
 415EXPORT_SYMBOL(arch_vcpu_is_preempted);
 416
 417void notrace smp_yield_cpu(int cpu)
 418{
 419	if (!MACHINE_HAS_DIAG9C)
 420		return;
 421	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 422	asm volatile("diag %0,0,0x9c"
 423		     : : "d" (per_cpu(pcpu_devices, cpu).address));
 
 
 
 424}
 425EXPORT_SYMBOL_GPL(smp_yield_cpu);
 426
 427/*
 428 * Send cpus emergency shutdown signal. This gives the cpus the
 429 * opportunity to complete outstanding interrupts.
 430 */
 431void notrace smp_emergency_stop(void)
 432{
 433	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 434	static cpumask_t cpumask;
 435	u64 end;
 436	int cpu;
 437
 438	arch_spin_lock(&lock);
 439	cpumask_copy(&cpumask, cpu_online_mask);
 440	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 441
 442	end = get_tod_clock() + (1000000UL << 12);
 443	for_each_cpu(cpu, &cpumask) {
 444		struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 445		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 446		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 447				   0, NULL) == SIGP_CC_BUSY &&
 448		       get_tod_clock() < end)
 449			cpu_relax();
 450	}
 451	while (get_tod_clock() < end) {
 452		for_each_cpu(cpu, &cpumask)
 453			if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
 454				cpumask_clear_cpu(cpu, &cpumask);
 455		if (cpumask_empty(&cpumask))
 456			break;
 457		cpu_relax();
 458	}
 459	arch_spin_unlock(&lock);
 460}
 461NOKPROBE_SYMBOL(smp_emergency_stop);
 462
 463/*
 464 * Stop all cpus but the current one.
 465 */
 466void smp_send_stop(void)
 467{
 468	struct pcpu *pcpu;
 469	int cpu;
 470
 471	/* Disable all interrupts/machine checks */
 472	__load_psw_mask(PSW_KERNEL_BITS);
 473	trace_hardirqs_off();
 474
 475	debug_set_critical();
 476
 477	if (oops_in_progress)
 478		smp_emergency_stop();
 479
 480	/* stop all processors */
 481	for_each_online_cpu(cpu) {
 482		if (cpu == smp_processor_id())
 483			continue;
 484		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 485		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 486		while (!pcpu_stopped(pcpu))
 487			cpu_relax();
 488	}
 489}
 490
 491/*
 492 * This is the main routine where commands issued by other
 493 * cpus are handled.
 494 */
 495static void smp_handle_ext_call(void)
 496{
 497	unsigned long bits;
 498
 499	/* handle bit signal external calls */
 500	bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
 501	if (test_bit(ec_stop_cpu, &bits))
 502		smp_stop_cpu();
 503	if (test_bit(ec_schedule, &bits))
 504		scheduler_ipi();
 505	if (test_bit(ec_call_function_single, &bits))
 506		generic_smp_call_function_single_interrupt();
 507	if (test_bit(ec_mcck_pending, &bits))
 508		s390_handle_mcck();
 509	if (test_bit(ec_irq_work, &bits))
 510		irq_work_run();
 511}
 512
 513static void do_ext_call_interrupt(struct ext_code ext_code,
 514				  unsigned int param32, unsigned long param64)
 515{
 516	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 517	smp_handle_ext_call();
 518}
 519
 520void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 521{
 522	int cpu;
 523
 524	for_each_cpu(cpu, mask)
 525		pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 526}
 527
 528void arch_send_call_function_single_ipi(int cpu)
 529{
 530	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 531}
 532
 533/*
 534 * this function sends a 'reschedule' IPI to another CPU.
 535 * it goes straight through and wastes no time serializing
 536 * anything. Worst case is that we lose a reschedule ...
 537 */
 538void arch_smp_send_reschedule(int cpu)
 539{
 540	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
 541}
 542
 543#ifdef CONFIG_IRQ_WORK
 544void arch_irq_work_raise(void)
 
 
 
 
 
 
 
 
 
 
 
 545{
 546	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
 
 
 
 
 
 547}
 548#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550#ifdef CONFIG_CRASH_DUMP
 551
 552int smp_store_status(int cpu)
 553{
 554	struct lowcore *lc;
 555	struct pcpu *pcpu;
 556	unsigned long pa;
 557
 558	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 559	lc = lowcore_ptr[cpu];
 560	pa = __pa(&lc->floating_pt_save_area);
 561	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 562			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 563		return -EIO;
 564	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 565		return 0;
 566	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 567	if (MACHINE_HAS_GS)
 568		pa |= lc->mcesad & MCESA_LC_MASK;
 569	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 570			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 571		return -EIO;
 572	return 0;
 573}
 574
 575/*
 576 * Collect CPU state of the previous, crashed system.
 577 * There are three cases:
 578 * 1) standard zfcp/nvme dump
 579 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 580 *    The state for all CPUs except the boot CPU needs to be collected
 581 *    with sigp stop-and-store-status. The boot CPU state is located in
 582 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 583 *    will copy the boot CPU state from the HSA.
 584 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 585 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 586 *    The state for all CPUs except the boot CPU needs to be collected
 587 *    with sigp stop-and-store-status. The firmware or the boot-loader
 588 *    stored the registers of the boot CPU in the absolute lowcore in the
 589 *    memory of the old system.
 590 * 3) kdump or stand-alone kdump for DASD
 591 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
 
 592 *    The state for all CPUs except the boot CPU needs to be collected
 593 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 594 *    stored the registers of the boot CPU in the memory of the old system.
 595 *
 596 * Note that the legacy kdump mode where the old kernel stored the CPU states
 597 * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
 598 * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
 599 * of the elfcorehdr= parameter.
 600 */
 601static bool dump_available(void)
 
 602{
 603	return oldmem_data.start || is_ipl_type_dump();
 
 
 
 
 
 
 604}
 605
 606void __init smp_save_dump_ipl_cpu(void)
 
 607{
 608	struct save_area *sa;
 609	void *regs;
 610
 611	if (!dump_available())
 612		return;
 613	sa = save_area_alloc(true);
 614	regs = memblock_alloc(512, 8);
 615	if (!sa || !regs)
 616		panic("could not allocate memory for boot CPU save area\n");
 617	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 618	save_area_add_regs(sa, regs);
 619	memblock_free(regs, 512);
 620	if (cpu_has_vx())
 621		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 622}
 623
 624void __init smp_save_dump_secondary_cpus(void)
 625{
 626	int addr, boot_cpu_addr, max_cpu_addr;
 627	struct save_area *sa;
 628	void *page;
 
 629
 630	if (!dump_available())
 
 631		return;
 632	/* Allocate a page as dumping area for the store status sigps */
 633	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 634	if (!page)
 635		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 636		      PAGE_SIZE, 1UL << 31);
 637
 638	/* Set multi-threading state to the previous system. */
 639	pcpu_set_smt(sclp.mtid_prev);
 640	boot_cpu_addr = stap();
 641	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 642	for (addr = 0; addr <= max_cpu_addr; addr++) {
 643		if (addr == boot_cpu_addr)
 644			continue;
 645		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 646		    SIGP_CC_NOT_OPERATIONAL)
 647			continue;
 648		sa = save_area_alloc(false);
 
 
 649		if (!sa)
 650			panic("could not allocate memory for save area\n");
 651		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 652		save_area_add_regs(sa, page);
 653		if (cpu_has_vx()) {
 654			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 655			save_area_add_vxrs(sa, page);
 656		}
 
 
 
 
 
 
 657	}
 658	memblock_free(page, PAGE_SIZE);
 659	diag_amode31_ops.diag308_reset();
 660	pcpu_set_smt(0);
 661}
 662#endif /* CONFIG_CRASH_DUMP */
 663
 664void smp_cpu_set_polarization(int cpu, int val)
 665{
 666	per_cpu(pcpu_devices, cpu).polarization = val;
 667}
 668
 669int smp_cpu_get_polarization(int cpu)
 670{
 671	return per_cpu(pcpu_devices, cpu).polarization;
 672}
 673
 674void smp_cpu_set_capacity(int cpu, unsigned long val)
 675{
 676	per_cpu(pcpu_devices, cpu).capacity = val;
 677}
 678
 679unsigned long smp_cpu_get_capacity(int cpu)
 680{
 681	return per_cpu(pcpu_devices, cpu).capacity;
 682}
 683
 684void smp_set_core_capacity(int cpu, unsigned long val)
 685{
 686	int i;
 687
 688	cpu = smp_get_base_cpu(cpu);
 689	for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
 690		smp_cpu_set_capacity(i, val);
 691}
 692
 693int smp_cpu_get_cpu_address(int cpu)
 694{
 695	return per_cpu(pcpu_devices, cpu).address;
 696}
 697
 698static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 699{
 700	static int use_sigp_detection;
 701	int address;
 702
 703	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 704		use_sigp_detection = 1;
 705		for (address = 0;
 706		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 707		     address += (1U << smp_cpu_mt_shift)) {
 708			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 709			    SIGP_CC_NOT_OPERATIONAL)
 710				continue;
 711			info->core[info->configured].core_id =
 712				address >> smp_cpu_mt_shift;
 713			info->configured++;
 714		}
 715		info->combined = info->configured;
 716	}
 717}
 718
 719static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 720			bool configured, bool early)
 
 721{
 722	struct pcpu *pcpu;
 723	int cpu, nr, i;
 
 724	u16 address;
 725
 726	nr = 0;
 727	if (sclp.has_core_type && core->type != boot_core_type)
 728		return nr;
 729	cpu = cpumask_first(avail);
 730	address = core->core_id << smp_cpu_mt_shift;
 731	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 732		if (pcpu_find_address(cpu_present_mask, address + i))
 733			continue;
 734		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 735		pcpu->address = address + i;
 736		if (configured)
 737			pcpu->state = CPU_STATE_CONFIGURED;
 738		else
 739			pcpu->state = CPU_STATE_STANDBY;
 740		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 741		smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
 742		set_cpu_present(cpu, true);
 743		if (!early && arch_register_cpu(cpu))
 744			set_cpu_present(cpu, false);
 745		else
 746			nr++;
 747		cpumask_clear_cpu(cpu, avail);
 748		cpu = cpumask_next(cpu, avail);
 749	}
 750	return nr;
 751}
 752
 753static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 754{
 755	struct sclp_core_entry *core;
 756	static cpumask_t avail;
 757	bool configured;
 758	u16 core_id;
 759	int nr, i;
 760
 761	cpus_read_lock();
 762	mutex_lock(&smp_cpu_state_mutex);
 763	nr = 0;
 764	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 765	/*
 766	 * Add IPL core first (which got logical CPU number 0) to make sure
 767	 * that all SMT threads get subsequent logical CPU numbers.
 768	 */
 769	if (early) {
 770		core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
 771		for (i = 0; i < info->configured; i++) {
 772			core = &info->core[i];
 773			if (core->core_id == core_id) {
 774				nr += smp_add_core(core, &avail, true, early);
 
 
 
 
 
 
 
 
 
 
 
 775				break;
 776			}
 777		}
 778	}
 779	for (i = 0; i < info->combined; i++) {
 780		configured = i < info->configured;
 781		nr += smp_add_core(&info->core[i], &avail, configured, early);
 782	}
 783	mutex_unlock(&smp_cpu_state_mutex);
 784	cpus_read_unlock();
 785	return nr;
 786}
 787
 788void __init smp_detect_cpus(void)
 789{
 790	unsigned int cpu, mtid, c_cpus, s_cpus;
 791	struct sclp_core_info *info;
 792	u16 address;
 793
 794	/* Get CPU information */
 795	info = memblock_alloc(sizeof(*info), 8);
 796	if (!info)
 797		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 798		      __func__, sizeof(*info), 8);
 799	smp_get_core_info(info, 1);
 800	/* Find boot CPU type */
 801	if (sclp.has_core_type) {
 802		address = stap();
 803		for (cpu = 0; cpu < info->combined; cpu++)
 804			if (info->core[cpu].core_id == address) {
 805				/* The boot cpu dictates the cpu type. */
 806				boot_core_type = info->core[cpu].type;
 807				break;
 808			}
 809		if (cpu >= info->combined)
 810			panic("Could not find boot CPU type");
 811	}
 812
 813	/* Set multi-threading state for the current system */
 814	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 815	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 816	pcpu_set_smt(mtid);
 817
 818	/* Print number of CPUs */
 819	c_cpus = s_cpus = 0;
 820	for (cpu = 0; cpu < info->combined; cpu++) {
 821		if (sclp.has_core_type &&
 822		    info->core[cpu].type != boot_core_type)
 823			continue;
 824		if (cpu < info->configured)
 825			c_cpus += smp_cpu_mtid + 1;
 826		else
 827			s_cpus += smp_cpu_mtid + 1;
 828	}
 829	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 830	memblock_free(info, sizeof(*info));
 
 
 
 
 
 831}
 832
 833/*
 834 *	Activate a secondary processor.
 835 */
 836static void smp_start_secondary(void *cpuvoid)
 837{
 838	struct lowcore *lc = get_lowcore();
 839	int cpu = raw_smp_processor_id();
 840
 841	lc->last_update_clock = get_tod_clock();
 842	lc->restart_stack = (unsigned long)restart_stack;
 843	lc->restart_fn = (unsigned long)do_restart;
 844	lc->restart_data = 0;
 845	lc->restart_source = -1U;
 846	lc->restart_flags = 0;
 847	restore_access_regs(lc->access_regs_save_area);
 848	cpu_init();
 849	rcutree_report_cpu_starting(cpu);
 850	init_cpu_timer();
 851	vtime_init();
 852	vdso_getcpu_init();
 853	pfault_init();
 854	cpumask_set_cpu(cpu, &cpu_setup_mask);
 855	update_cpu_masks();
 856	notify_cpu_starting(cpu);
 857	if (topology_cpu_dedicated(cpu))
 858		set_cpu_flag(CIF_DEDICATED_CPU);
 859	else
 860		clear_cpu_flag(CIF_DEDICATED_CPU);
 861	set_cpu_online(cpu, true);
 862	inc_irq_stat(CPU_RST);
 863	local_irq_enable();
 864	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 865}
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867/* Upping and downing of CPUs */
 868int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 869{
 870	struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 871	int rc;
 872
 
 873	if (pcpu->state != CPU_STATE_CONFIGURED)
 874		return -EIO;
 875	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 
 
 
 
 
 
 
 
 
 
 
 876	    SIGP_CC_ORDER_CODE_ACCEPTED)
 877		return -EIO;
 878
 879	rc = pcpu_alloc_lowcore(pcpu, cpu);
 880	if (rc)
 881		return rc;
 882	/*
 883	 * Make sure global control register contents do not change
 884	 * until new CPU has initialized control registers.
 885	 */
 886	system_ctlreg_lock();
 887	pcpu_prepare_secondary(pcpu, cpu);
 888	pcpu_attach_task(cpu, tidle);
 889	pcpu_start_fn(cpu, smp_start_secondary, NULL);
 890	/* Wait until cpu puts itself in the online & active maps */
 891	while (!cpu_online(cpu))
 892		cpu_relax();
 893	system_ctlreg_unlock();
 894	return 0;
 895}
 896
 897static unsigned int setup_possible_cpus __initdata;
 898
 899static int __init _setup_possible_cpus(char *s)
 900{
 901	get_option(&s, &setup_possible_cpus);
 902	return 0;
 903}
 904early_param("possible_cpus", _setup_possible_cpus);
 905
 906int __cpu_disable(void)
 907{
 908	struct ctlreg cregs[16];
 909	int cpu;
 910
 911	/* Handle possible pending IPIs */
 912	smp_handle_ext_call();
 913	cpu = smp_processor_id();
 914	set_cpu_online(cpu, false);
 915	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 916	update_cpu_masks();
 917	/* Disable pseudo page faults on this cpu. */
 918	pfault_fini();
 919	/* Disable interrupt sources via control register. */
 920	__local_ctl_store(0, 15, cregs);
 921	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 922	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 923	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 924	__local_ctl_load(0, 15, cregs);
 925	clear_cpu_flag(CIF_NOHZ_DELAY);
 926	return 0;
 927}
 928
 929void __cpu_die(unsigned int cpu)
 930{
 931	struct pcpu *pcpu;
 932
 933	/* Wait until target cpu is down */
 934	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 935	while (!pcpu_stopped(pcpu))
 936		cpu_relax();
 937	pcpu_free_lowcore(pcpu, cpu);
 938	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 939	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 940	pcpu->flags = 0;
 941}
 942
 943void __noreturn cpu_die(void)
 944{
 945	idle_task_exit();
 946	pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
 
 947	for (;;) ;
 948}
 949
 950void __init smp_fill_possible_mask(void)
 951{
 952	unsigned int possible, sclp_max, cpu;
 953
 954	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 955	sclp_max = min(smp_max_threads, sclp_max);
 956	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 957	possible = setup_possible_cpus ?: nr_cpu_ids;
 958	possible = min(possible, sclp_max);
 959	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 960		set_cpu_possible(cpu, true);
 961}
 962
 963void __init smp_prepare_cpus(unsigned int max_cpus)
 964{
 
 965	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 966		panic("Couldn't request external interrupt 0x1201");
 967	system_ctl_set_bit(0, 14);
 968	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 969		panic("Couldn't request external interrupt 0x1202");
 970	system_ctl_set_bit(0, 13);
 971	smp_rescan_cpus(true);
 972}
 973
 974void __init smp_prepare_boot_cpu(void)
 975{
 976	struct lowcore *lc = get_lowcore();
 977
 978	WARN_ON(!cpu_present(0) || !cpu_online(0));
 979	lc->percpu_offset = __per_cpu_offset[0];
 980	ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
 981	ipl_pcpu->state = CPU_STATE_CONFIGURED;
 982	lc->pcpu = (unsigned long)ipl_pcpu;
 983	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 984	smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
 985}
 986
 987void __init smp_setup_processor_id(void)
 988{
 989	struct lowcore *lc = get_lowcore();
 990
 991	lc->cpu_nr = 0;
 992	per_cpu(pcpu_devices, 0).address = stap();
 993	lc->spinlock_lockval = arch_spin_lockval(0);
 994	lc->spinlock_index = 0;
 
 
 995}
 996
 997/*
 998 * the frequency of the profiling timer can be changed
 999 * by writing a multiplier value into /proc/profile.
1000 *
1001 * usually you want to run this on all CPUs ;)
1002 */
1003int setup_profiling_timer(unsigned int multiplier)
1004{
1005	return 0;
1006}
1007
1008static ssize_t cpu_configure_show(struct device *dev,
1009				  struct device_attribute *attr, char *buf)
1010{
1011	ssize_t count;
1012
1013	mutex_lock(&smp_cpu_state_mutex);
1014	count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1015	mutex_unlock(&smp_cpu_state_mutex);
1016	return count;
1017}
1018
1019static ssize_t cpu_configure_store(struct device *dev,
1020				   struct device_attribute *attr,
1021				   const char *buf, size_t count)
1022{
1023	struct pcpu *pcpu;
1024	int cpu, val, rc, i;
1025	char delim;
1026
1027	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1028		return -EINVAL;
1029	if (val != 0 && val != 1)
1030		return -EINVAL;
1031	cpus_read_lock();
1032	mutex_lock(&smp_cpu_state_mutex);
1033	rc = -EBUSY;
1034	/* disallow configuration changes of online cpus */
1035	cpu = dev->id;
1036	cpu = smp_get_base_cpu(cpu);
 
 
1037	for (i = 0; i <= smp_cpu_mtid; i++)
1038		if (cpu_online(cpu + i))
1039			goto out;
1040	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1041	rc = 0;
1042	switch (val) {
1043	case 0:
1044		if (pcpu->state != CPU_STATE_CONFIGURED)
1045			break;
1046		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1047		if (rc)
1048			break;
1049		for (i = 0; i <= smp_cpu_mtid; i++) {
1050			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051				continue;
1052			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1053			smp_cpu_set_polarization(cpu + i,
1054						 POLARIZATION_UNKNOWN);
1055		}
1056		topology_expect_change();
1057		break;
1058	case 1:
1059		if (pcpu->state != CPU_STATE_STANDBY)
1060			break;
1061		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1062		if (rc)
1063			break;
1064		for (i = 0; i <= smp_cpu_mtid; i++) {
1065			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1066				continue;
1067			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1068			smp_cpu_set_polarization(cpu + i,
1069						 POLARIZATION_UNKNOWN);
1070		}
1071		topology_expect_change();
1072		break;
1073	default:
1074		break;
1075	}
1076out:
1077	mutex_unlock(&smp_cpu_state_mutex);
1078	cpus_read_unlock();
1079	return rc ? rc : count;
1080}
1081static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1082
1083static ssize_t show_cpu_address(struct device *dev,
1084				struct device_attribute *attr, char *buf)
1085{
1086	return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1087}
1088static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1089
1090static struct attribute *cpu_common_attrs[] = {
1091	&dev_attr_configure.attr,
1092	&dev_attr_address.attr,
1093	NULL,
1094};
1095
1096static struct attribute_group cpu_common_attr_group = {
1097	.attrs = cpu_common_attrs,
1098};
1099
1100static struct attribute *cpu_online_attrs[] = {
1101	&dev_attr_idle_count.attr,
1102	&dev_attr_idle_time_us.attr,
1103	NULL,
1104};
1105
1106static struct attribute_group cpu_online_attr_group = {
1107	.attrs = cpu_online_attrs,
1108};
1109
1110static int smp_cpu_online(unsigned int cpu)
1111{
1112	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1113
1114	return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1115}
1116
1117static int smp_cpu_pre_down(unsigned int cpu)
1118{
1119	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1120
1121	sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1122	return 0;
1123}
1124
1125bool arch_cpu_is_hotpluggable(int cpu)
1126{
1127	return !!cpu;
1128}
1129
1130int arch_register_cpu(int cpu)
1131{
1132	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1133	int rc;
1134
1135	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
 
 
 
 
 
1136	rc = register_cpu(c, cpu);
1137	if (rc)
1138		goto out;
1139	rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1140	if (rc)
1141		goto out_cpu;
1142	rc = topology_cpu_init(c);
1143	if (rc)
1144		goto out_topology;
1145	return 0;
1146
1147out_topology:
1148	sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1149out_cpu:
1150	unregister_cpu(c);
1151out:
1152	return rc;
1153}
1154
1155int __ref smp_rescan_cpus(bool early)
1156{
1157	struct sclp_core_info *info;
1158	int nr;
1159
1160	info = kzalloc(sizeof(*info), GFP_KERNEL);
1161	if (!info)
1162		return -ENOMEM;
1163	smp_get_core_info(info, 0);
1164	nr = __smp_rescan_cpus(info, early);
 
 
 
 
1165	kfree(info);
1166	if (nr)
1167		topology_schedule_update();
1168	return 0;
1169}
1170
1171static ssize_t __ref rescan_store(struct device *dev,
1172				  struct device_attribute *attr,
1173				  const char *buf,
1174				  size_t count)
1175{
1176	int rc;
1177
1178	rc = lock_device_hotplug_sysfs();
1179	if (rc)
1180		return rc;
1181	rc = smp_rescan_cpus(false);
1182	unlock_device_hotplug();
1183	return rc ? rc : count;
1184}
1185static DEVICE_ATTR_WO(rescan);
1186
1187static int __init s390_smp_init(void)
1188{
1189	struct device *dev_root;
1190	int rc;
1191
1192	dev_root = bus_get_dev_root(&cpu_subsys);
1193	if (dev_root) {
1194		rc = device_create_file(dev_root, &dev_attr_rescan);
1195		put_device(dev_root);
 
1196		if (rc)
1197			return rc;
1198	}
 
1199	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1200			       smp_cpu_online, smp_cpu_pre_down);
1201	rc = rc <= 0 ? rc : 0;
 
1202	return rc;
1203}
1204subsys_initcall(s390_smp_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/memblock.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
 
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
 
  39#include <asm/asm-offsets.h>
 
 
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
 
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/lowcore.h>
  49#include <asm/sclp.h>
  50#include <asm/vdso.h>
  51#include <asm/debug.h>
  52#include <asm/os_info.h>
  53#include <asm/sigp.h>
  54#include <asm/idle.h>
  55#include <asm/nmi.h>
  56#include <asm/stacktrace.h>
  57#include <asm/topology.h>
 
 
  58#include "entry.h"
  59
  60enum {
  61	ec_schedule = 0,
  62	ec_call_function_single,
  63	ec_stop_cpu,
 
 
  64};
  65
  66enum {
  67	CPU_STATE_STANDBY,
  68	CPU_STATE_CONFIGURED,
  69};
  70
  71static DEFINE_PER_CPU(struct cpu *, cpu_device);
  72
  73struct pcpu {
  74	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
  75	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  76	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  77	signed char state;		/* physical cpu state */
  78	signed char polarization;	/* physical polarization */
  79	u16 address;			/* physical cpu address */
  80};
  81
  82static u8 boot_core_type;
  83static struct pcpu pcpu_devices[NR_CPUS];
 
 
 
 
 
 
 
  84
  85unsigned int smp_cpu_mt_shift;
  86EXPORT_SYMBOL(smp_cpu_mt_shift);
  87
  88unsigned int smp_cpu_mtid;
  89EXPORT_SYMBOL(smp_cpu_mtid);
  90
  91#ifdef CONFIG_CRASH_DUMP
  92__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  93#endif
  94
  95static unsigned int smp_max_threads __initdata = -1U;
 
  96
  97static int __init early_nosmt(char *s)
  98{
  99	smp_max_threads = 1;
 100	return 0;
 101}
 102early_param("nosmt", early_nosmt);
 103
 104static int __init early_smt(char *s)
 105{
 106	get_option(&s, &smp_max_threads);
 107	return 0;
 108}
 109early_param("smt", early_smt);
 110
 111/*
 112 * The smp_cpu_state_mutex must be held when changing the state or polarization
 113 * member of a pcpu data structure within the pcpu_devices arreay.
 114 */
 115DEFINE_MUTEX(smp_cpu_state_mutex);
 116
 117/*
 118 * Signal processor helper functions.
 119 */
 120static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 121{
 122	int cc;
 123
 124	while (1) {
 125		cc = __pcpu_sigp(addr, order, parm, NULL);
 126		if (cc != SIGP_CC_BUSY)
 127			return cc;
 128		cpu_relax();
 129	}
 130}
 131
 132static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 133{
 134	int cc, retry;
 135
 136	for (retry = 0; ; retry++) {
 137		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 138		if (cc != SIGP_CC_BUSY)
 139			break;
 140		if (retry >= 3)
 141			udelay(10);
 142	}
 143	return cc;
 144}
 145
 146static inline int pcpu_stopped(struct pcpu *pcpu)
 147{
 148	u32 uninitialized_var(status);
 149
 150	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 151			0, &status) != SIGP_CC_STATUS_STORED)
 152		return 0;
 153	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 154}
 155
 156static inline int pcpu_running(struct pcpu *pcpu)
 157{
 158	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 159			0, NULL) != SIGP_CC_STATUS_STORED)
 160		return 1;
 161	/* Status stored condition code is equivalent to cpu not running. */
 162	return 0;
 163}
 164
 165/*
 166 * Find struct pcpu by cpu address.
 167 */
 168static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 169{
 170	int cpu;
 171
 172	for_each_cpu(cpu, mask)
 173		if (pcpu_devices[cpu].address == address)
 174			return pcpu_devices + cpu;
 175	return NULL;
 176}
 177
 178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 179{
 180	int order;
 181
 182	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 183		return;
 184	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 185	pcpu->ec_clk = get_tod_clock_fast();
 186	pcpu_sigp_retry(pcpu, order, 0);
 187}
 188
 189static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 190{
 191	unsigned long async_stack, nodat_stack;
 192	struct lowcore *lc;
 193
 194	if (pcpu != &pcpu_devices[0]) {
 195		pcpu->lowcore =	(struct lowcore *)
 196			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 197		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 198		if (!pcpu->lowcore || !nodat_stack)
 199			goto out;
 200	} else {
 201		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 202	}
 203	async_stack = stack_alloc();
 204	if (!async_stack)
 
 205		goto out;
 206	lc = pcpu->lowcore;
 207	memcpy(lc, &S390_lowcore, 512);
 208	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 209	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 210	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 
 211	lc->cpu_nr = cpu;
 212	lc->spinlock_lockval = arch_spin_lockval(cpu);
 213	lc->spinlock_index = 0;
 214	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
 215	if (nmi_alloc_per_cpu(lc))
 216		goto out_async;
 217	if (vdso_alloc_per_cpu(lc))
 
 
 218		goto out_mcesa;
 219	lowcore_ptr[cpu] = lc;
 220	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 221	return 0;
 222
 223out_mcesa:
 224	nmi_free_per_cpu(lc);
 225out_async:
 
 226	stack_free(async_stack);
 227out:
 228	if (pcpu != &pcpu_devices[0]) {
 229		free_pages(nodat_stack, THREAD_SIZE_ORDER);
 230		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 231	}
 232	return -ENOMEM;
 233}
 234
 235static void pcpu_free_lowcore(struct pcpu *pcpu)
 236{
 237	unsigned long async_stack, nodat_stack, lowcore;
 238
 239	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 240	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
 241	lowcore = (unsigned long) pcpu->lowcore;
 242
 
 
 
 
 243	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 244	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 245	vdso_free_per_cpu(pcpu->lowcore);
 246	nmi_free_per_cpu(pcpu->lowcore);
 247	stack_free(async_stack);
 248	if (pcpu == &pcpu_devices[0])
 249		return;
 250	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 251	free_pages(lowcore, LC_ORDER);
 252}
 253
 254static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 255{
 256	struct lowcore *lc = pcpu->lowcore;
 257
 
 258	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 259	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 260	lc->cpu_nr = cpu;
 
 
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = S390_lowcore.kernel_asce;
 265	lc->machine_flags = S390_lowcore.machine_flags;
 
 266	lc->user_timer = lc->system_timer =
 267		lc->steal_timer = lc->avg_steal_timer = 0;
 268	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 
 
 269	save_access_regs((unsigned int *) lc->access_regs_save_area);
 270	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 271	       sizeof(lc->stfle_fac_list));
 272	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
 273	       sizeof(lc->alt_stfle_fac_list));
 274	arch_spin_lock_setup(cpu);
 275}
 276
 277static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 278{
 279	struct lowcore *lc = pcpu->lowcore;
 280
 281	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 282		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 283	lc->current_task = (unsigned long) tsk;
 284	lc->lpp = LPP_MAGIC;
 285	lc->current_pid = tsk->pid;
 286	lc->user_timer = tsk->thread.user_timer;
 287	lc->guest_timer = tsk->thread.guest_timer;
 288	lc->system_timer = tsk->thread.system_timer;
 289	lc->hardirq_timer = tsk->thread.hardirq_timer;
 290	lc->softirq_timer = tsk->thread.softirq_timer;
 291	lc->steal_timer = 0;
 292}
 293
 294static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 295{
 296	struct lowcore *lc = pcpu->lowcore;
 297
 298	lc->restart_stack = lc->nodat_stack;
 
 299	lc->restart_fn = (unsigned long) func;
 300	lc->restart_data = (unsigned long) data;
 301	lc->restart_source = -1UL;
 302	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 303}
 304
 
 
 305/*
 306 * Call function via PSW restart on pcpu and stop the current cpu.
 307 */
 308static void __pcpu_delegate(void (*func)(void*), void *data)
 309{
 310	func(data);	/* should not return */
 311}
 312
 313static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
 314						void (*func)(void *),
 315						void *data, unsigned long stack)
 316{
 317	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 318	unsigned long source_cpu = stap();
 319
 320	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 321	if (pcpu->address == source_cpu)
 322		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
 
 
 
 
 323	/* Stop target cpu (if func returns this stops the current cpu). */
 324	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 325	/* Restart func on the target cpu and stop the current cpu. */
 326	mem_assign_absolute(lc->restart_stack, stack);
 327	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 328	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 329	mem_assign_absolute(lc->restart_source, source_cpu);
 330	__bpon();
 
 
 
 
 
 
 
 
 331	asm volatile(
 332		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 333		"	brc	2,0b	# busy, try again\n"
 334		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 335		"	brc	2,1b	# busy, try again\n"
 336		: : "d" (pcpu->address), "d" (source_cpu),
 337		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 338		: "0", "1", "cc");
 339	for (;;) ;
 340}
 341
 342/*
 343 * Enable additional logical cpus for multi-threading.
 344 */
 345static int pcpu_set_smt(unsigned int mtid)
 346{
 347	int cc;
 348
 349	if (smp_cpu_mtid == mtid)
 350		return 0;
 351	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 352	if (cc == 0) {
 353		smp_cpu_mtid = mtid;
 354		smp_cpu_mt_shift = 0;
 355		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 356			smp_cpu_mt_shift++;
 357		pcpu_devices[0].address = stap();
 358	}
 359	return cc;
 360}
 361
 362/*
 363 * Call function on an online CPU.
 364 */
 365void smp_call_online_cpu(void (*func)(void *), void *data)
 366{
 367	struct pcpu *pcpu;
 368
 369	/* Use the current cpu if it is online. */
 370	pcpu = pcpu_find_address(cpu_online_mask, stap());
 371	if (!pcpu)
 372		/* Use the first online cpu. */
 373		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 374	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 375}
 376
 377/*
 378 * Call function on the ipl CPU.
 379 */
 380void smp_call_ipl_cpu(void (*func)(void *), void *data)
 381{
 382	struct lowcore *lc = pcpu_devices->lowcore;
 383
 384	if (pcpu_devices[0].address == stap())
 385		lc = &S390_lowcore;
 386
 387	pcpu_delegate(&pcpu_devices[0], func, data,
 388		      lc->nodat_stack);
 389}
 390
 391int smp_find_processor_id(u16 address)
 392{
 393	int cpu;
 394
 395	for_each_present_cpu(cpu)
 396		if (pcpu_devices[cpu].address == address)
 397			return cpu;
 398	return -1;
 399}
 400
 401bool arch_vcpu_is_preempted(int cpu)
 
 
 
 
 
 402{
 403	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 404		return false;
 405	if (pcpu_running(pcpu_devices + cpu))
 406		return false;
 407	return true;
 408}
 409EXPORT_SYMBOL(arch_vcpu_is_preempted);
 410
 411void smp_yield_cpu(int cpu)
 412{
 413	if (MACHINE_HAS_DIAG9C) {
 414		diag_stat_inc_norecursion(DIAG_STAT_X09C);
 415		asm volatile("diag %0,0,0x9c"
 416			     : : "d" (pcpu_devices[cpu].address));
 417	} else if (MACHINE_HAS_DIAG44 && !smp_cpu_mtid) {
 418		diag_stat_inc_norecursion(DIAG_STAT_X044);
 419		asm volatile("diag 0,0,0x44");
 420	}
 421}
 
 422
 423/*
 424 * Send cpus emergency shutdown signal. This gives the cpus the
 425 * opportunity to complete outstanding interrupts.
 426 */
 427void notrace smp_emergency_stop(void)
 428{
 429	cpumask_t cpumask;
 
 430	u64 end;
 431	int cpu;
 432
 
 433	cpumask_copy(&cpumask, cpu_online_mask);
 434	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 435
 436	end = get_tod_clock() + (1000000UL << 12);
 437	for_each_cpu(cpu, &cpumask) {
 438		struct pcpu *pcpu = pcpu_devices + cpu;
 439		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 440		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 441				   0, NULL) == SIGP_CC_BUSY &&
 442		       get_tod_clock() < end)
 443			cpu_relax();
 444	}
 445	while (get_tod_clock() < end) {
 446		for_each_cpu(cpu, &cpumask)
 447			if (pcpu_stopped(pcpu_devices + cpu))
 448				cpumask_clear_cpu(cpu, &cpumask);
 449		if (cpumask_empty(&cpumask))
 450			break;
 451		cpu_relax();
 452	}
 
 453}
 454NOKPROBE_SYMBOL(smp_emergency_stop);
 455
 456/*
 457 * Stop all cpus but the current one.
 458 */
 459void smp_send_stop(void)
 460{
 
 461	int cpu;
 462
 463	/* Disable all interrupts/machine checks */
 464	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 465	trace_hardirqs_off();
 466
 467	debug_set_critical();
 468
 469	if (oops_in_progress)
 470		smp_emergency_stop();
 471
 472	/* stop all processors */
 473	for_each_online_cpu(cpu) {
 474		if (cpu == smp_processor_id())
 475			continue;
 476		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 477		while (!pcpu_stopped(pcpu_devices + cpu))
 
 478			cpu_relax();
 479	}
 480}
 481
 482/*
 483 * This is the main routine where commands issued by other
 484 * cpus are handled.
 485 */
 486static void smp_handle_ext_call(void)
 487{
 488	unsigned long bits;
 489
 490	/* handle bit signal external calls */
 491	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 492	if (test_bit(ec_stop_cpu, &bits))
 493		smp_stop_cpu();
 494	if (test_bit(ec_schedule, &bits))
 495		scheduler_ipi();
 496	if (test_bit(ec_call_function_single, &bits))
 497		generic_smp_call_function_single_interrupt();
 
 
 
 
 498}
 499
 500static void do_ext_call_interrupt(struct ext_code ext_code,
 501				  unsigned int param32, unsigned long param64)
 502{
 503	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 504	smp_handle_ext_call();
 505}
 506
 507void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 508{
 509	int cpu;
 510
 511	for_each_cpu(cpu, mask)
 512		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 513}
 514
 515void arch_send_call_function_single_ipi(int cpu)
 516{
 517	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 518}
 519
 520/*
 521 * this function sends a 'reschedule' IPI to another CPU.
 522 * it goes straight through and wastes no time serializing
 523 * anything. Worst case is that we lose a reschedule ...
 524 */
 525void smp_send_reschedule(int cpu)
 526{
 527	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 528}
 529
 530/*
 531 * parameter area for the set/clear control bit callbacks
 532 */
 533struct ec_creg_mask_parms {
 534	unsigned long orval;
 535	unsigned long andval;
 536	int cr;
 537};
 538
 539/*
 540 * callback for setting/clearing control bits
 541 */
 542static void smp_ctl_bit_callback(void *info)
 543{
 544	struct ec_creg_mask_parms *pp = info;
 545	unsigned long cregs[16];
 546
 547	__ctl_store(cregs, 0, 15);
 548	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 549	__ctl_load(cregs, 0, 15);
 550}
 551
 552/*
 553 * Set a bit in a control register of all cpus
 554 */
 555void smp_ctl_set_bit(int cr, int bit)
 556{
 557	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 558
 559	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 560}
 561EXPORT_SYMBOL(smp_ctl_set_bit);
 562
 563/*
 564 * Clear a bit in a control register of all cpus
 565 */
 566void smp_ctl_clear_bit(int cr, int bit)
 567{
 568	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 569
 570	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 571}
 572EXPORT_SYMBOL(smp_ctl_clear_bit);
 573
 574#ifdef CONFIG_CRASH_DUMP
 575
 576int smp_store_status(int cpu)
 577{
 578	struct pcpu *pcpu = pcpu_devices + cpu;
 
 579	unsigned long pa;
 580
 581	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 
 
 582	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 583			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 584		return -EIO;
 585	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 586		return 0;
 587	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
 588	if (MACHINE_HAS_GS)
 589		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
 590	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 591			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 592		return -EIO;
 593	return 0;
 594}
 595
 596/*
 597 * Collect CPU state of the previous, crashed system.
 598 * There are four cases:
 599 * 1) standard zfcp dump
 600 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 601 *    The state for all CPUs except the boot CPU needs to be collected
 602 *    with sigp stop-and-store-status. The boot CPU state is located in
 603 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 604 *    will copy the boot CPU state from the HSA.
 605 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 606 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 607 *    The state for all CPUs except the boot CPU needs to be collected
 608 *    with sigp stop-and-store-status. The firmware or the boot-loader
 609 *    stored the registers of the boot CPU in the absolute lowcore in the
 610 *    memory of the old system.
 611 * 3) kdump and the old kernel did not store the CPU state,
 612 *    or stand-alone kdump for DASD
 613 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 614 *    The state for all CPUs except the boot CPU needs to be collected
 615 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 616 *    stored the registers of the boot CPU in the memory of the old system.
 617 * 4) kdump and the old kernel stored the CPU state
 618 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 619 *    This case does not exist for s390 anymore, setup_arch explicitly
 620 *    deactivates the elfcorehdr= kernel parameter
 
 621 */
 622static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 623				     bool is_boot_cpu, unsigned long page)
 624{
 625	__vector128 *vxrs = (__vector128 *) page;
 626
 627	if (is_boot_cpu)
 628		vxrs = boot_cpu_vector_save_area;
 629	else
 630		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 631	save_area_add_vxrs(sa, vxrs);
 632}
 633
 634static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 635				     bool is_boot_cpu, unsigned long page)
 636{
 637	void *regs = (void *) page;
 
 638
 639	if (is_boot_cpu)
 640		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 641	else
 642		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 
 
 
 643	save_area_add_regs(sa, regs);
 
 
 
 644}
 645
 646void __init smp_save_dump_cpus(void)
 647{
 648	int addr, boot_cpu_addr, max_cpu_addr;
 649	struct save_area *sa;
 650	unsigned long page;
 651	bool is_boot_cpu;
 652
 653	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 654		/* No previous system present, normal boot. */
 655		return;
 656	/* Allocate a page as dumping area for the store status sigps */
 657	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
 658	if (!page)
 659		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 660		      PAGE_SIZE, 1UL << 31);
 661
 662	/* Set multi-threading state to the previous system. */
 663	pcpu_set_smt(sclp.mtid_prev);
 664	boot_cpu_addr = stap();
 665	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 666	for (addr = 0; addr <= max_cpu_addr; addr++) {
 
 
 667		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 668		    SIGP_CC_NOT_OPERATIONAL)
 669			continue;
 670		is_boot_cpu = (addr == boot_cpu_addr);
 671		/* Allocate save area */
 672		sa = save_area_alloc(is_boot_cpu);
 673		if (!sa)
 674			panic("could not allocate memory for save area\n");
 675		if (MACHINE_HAS_VX)
 676			/* Get the vector registers */
 677			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 678		/*
 679		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 680		 * of the boot CPU are stored in the HSA. To retrieve
 681		 * these registers an SCLP request is required which is
 682		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 683		 */
 684		if (!is_boot_cpu || OLDMEM_BASE)
 685			/* Get the CPU registers */
 686			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 687	}
 688	memblock_free(page, PAGE_SIZE);
 689	diag_dma_ops.diag308_reset();
 690	pcpu_set_smt(0);
 691}
 692#endif /* CONFIG_CRASH_DUMP */
 693
 694void smp_cpu_set_polarization(int cpu, int val)
 695{
 696	pcpu_devices[cpu].polarization = val;
 697}
 698
 699int smp_cpu_get_polarization(int cpu)
 700{
 701	return pcpu_devices[cpu].polarization;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702}
 703
 704static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 705{
 706	static int use_sigp_detection;
 707	int address;
 708
 709	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 710		use_sigp_detection = 1;
 711		for (address = 0;
 712		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 713		     address += (1U << smp_cpu_mt_shift)) {
 714			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 715			    SIGP_CC_NOT_OPERATIONAL)
 716				continue;
 717			info->core[info->configured].core_id =
 718				address >> smp_cpu_mt_shift;
 719			info->configured++;
 720		}
 721		info->combined = info->configured;
 722	}
 723}
 724
 725static int smp_add_present_cpu(int cpu);
 726
 727static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 728{
 729	struct pcpu *pcpu;
 730	cpumask_t avail;
 731	int cpu, nr, i, j;
 732	u16 address;
 733
 734	nr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 736	cpu = cpumask_first(&avail);
 737	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 738		if (sclp.has_core_type && info->core[i].type != boot_core_type)
 739			continue;
 740		address = info->core[i].core_id << smp_cpu_mt_shift;
 741		for (j = 0; j <= smp_cpu_mtid; j++) {
 742			if (pcpu_find_address(cpu_present_mask, address + j))
 743				continue;
 744			pcpu = pcpu_devices + cpu;
 745			pcpu->address = address + j;
 746			pcpu->state =
 747				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 748				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 749			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 750			set_cpu_present(cpu, true);
 751			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 752				set_cpu_present(cpu, false);
 753			else
 754				nr++;
 755			cpu = cpumask_next(cpu, &avail);
 756			if (cpu >= nr_cpu_ids)
 757				break;
 
 758		}
 759	}
 
 
 
 
 
 
 760	return nr;
 761}
 762
 763void __init smp_detect_cpus(void)
 764{
 765	unsigned int cpu, mtid, c_cpus, s_cpus;
 766	struct sclp_core_info *info;
 767	u16 address;
 768
 769	/* Get CPU information */
 770	info = memblock_alloc(sizeof(*info), 8);
 771	if (!info)
 772		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 773		      __func__, sizeof(*info), 8);
 774	smp_get_core_info(info, 1);
 775	/* Find boot CPU type */
 776	if (sclp.has_core_type) {
 777		address = stap();
 778		for (cpu = 0; cpu < info->combined; cpu++)
 779			if (info->core[cpu].core_id == address) {
 780				/* The boot cpu dictates the cpu type. */
 781				boot_core_type = info->core[cpu].type;
 782				break;
 783			}
 784		if (cpu >= info->combined)
 785			panic("Could not find boot CPU type");
 786	}
 787
 788	/* Set multi-threading state for the current system */
 789	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 790	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 791	pcpu_set_smt(mtid);
 792
 793	/* Print number of CPUs */
 794	c_cpus = s_cpus = 0;
 795	for (cpu = 0; cpu < info->combined; cpu++) {
 796		if (sclp.has_core_type &&
 797		    info->core[cpu].type != boot_core_type)
 798			continue;
 799		if (cpu < info->configured)
 800			c_cpus += smp_cpu_mtid + 1;
 801		else
 802			s_cpus += smp_cpu_mtid + 1;
 803	}
 804	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 805
 806	/* Add CPUs present at boot */
 807	get_online_cpus();
 808	__smp_rescan_cpus(info, 0);
 809	put_online_cpus();
 810	memblock_free_early((unsigned long)info, sizeof(*info));
 811}
 812
 813static void smp_init_secondary(void)
 
 
 
 814{
 815	int cpu = smp_processor_id();
 
 816
 817	S390_lowcore.last_update_clock = get_tod_clock();
 818	restore_access_regs(S390_lowcore.access_regs_save_area);
 
 
 
 
 
 819	cpu_init();
 820	preempt_disable();
 821	init_cpu_timer();
 822	vtime_init();
 
 823	pfault_init();
 824	notify_cpu_starting(smp_processor_id());
 
 
 825	if (topology_cpu_dedicated(cpu))
 826		set_cpu_flag(CIF_DEDICATED_CPU);
 827	else
 828		clear_cpu_flag(CIF_DEDICATED_CPU);
 829	set_cpu_online(smp_processor_id(), true);
 830	inc_irq_stat(CPU_RST);
 831	local_irq_enable();
 832	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 833}
 834
 835/*
 836 *	Activate a secondary processor.
 837 */
 838static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
 839{
 840	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 841	S390_lowcore.restart_fn = (unsigned long) do_restart;
 842	S390_lowcore.restart_data = 0;
 843	S390_lowcore.restart_source = -1UL;
 844	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 845	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 846	CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0);
 847}
 848
 849/* Upping and downing of CPUs */
 850int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 851{
 852	struct pcpu *pcpu;
 853	int base, i, rc;
 854
 855	pcpu = pcpu_devices + cpu;
 856	if (pcpu->state != CPU_STATE_CONFIGURED)
 857		return -EIO;
 858	base = smp_get_base_cpu(cpu);
 859	for (i = 0; i <= smp_cpu_mtid; i++) {
 860		if (base + i < nr_cpu_ids)
 861			if (cpu_online(base + i))
 862				break;
 863	}
 864	/*
 865	 * If this is the first CPU of the core to get online
 866	 * do an initial CPU reset.
 867	 */
 868	if (i > smp_cpu_mtid &&
 869	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 870	    SIGP_CC_ORDER_CODE_ACCEPTED)
 871		return -EIO;
 872
 873	rc = pcpu_alloc_lowcore(pcpu, cpu);
 874	if (rc)
 875		return rc;
 
 
 
 
 
 876	pcpu_prepare_secondary(pcpu, cpu);
 877	pcpu_attach_task(pcpu, tidle);
 878	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 879	/* Wait until cpu puts itself in the online & active maps */
 880	while (!cpu_online(cpu))
 881		cpu_relax();
 
 882	return 0;
 883}
 884
 885static unsigned int setup_possible_cpus __initdata;
 886
 887static int __init _setup_possible_cpus(char *s)
 888{
 889	get_option(&s, &setup_possible_cpus);
 890	return 0;
 891}
 892early_param("possible_cpus", _setup_possible_cpus);
 893
 894int __cpu_disable(void)
 895{
 896	unsigned long cregs[16];
 
 897
 898	/* Handle possible pending IPIs */
 899	smp_handle_ext_call();
 900	set_cpu_online(smp_processor_id(), false);
 
 
 
 901	/* Disable pseudo page faults on this cpu. */
 902	pfault_fini();
 903	/* Disable interrupt sources via control register. */
 904	__ctl_store(cregs, 0, 15);
 905	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 906	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 907	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 908	__ctl_load(cregs, 0, 15);
 909	clear_cpu_flag(CIF_NOHZ_DELAY);
 910	return 0;
 911}
 912
 913void __cpu_die(unsigned int cpu)
 914{
 915	struct pcpu *pcpu;
 916
 917	/* Wait until target cpu is down */
 918	pcpu = pcpu_devices + cpu;
 919	while (!pcpu_stopped(pcpu))
 920		cpu_relax();
 921	pcpu_free_lowcore(pcpu);
 922	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 923	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 924}
 925
 926void __noreturn cpu_die(void)
 927{
 928	idle_task_exit();
 929	__bpon();
 930	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 931	for (;;) ;
 932}
 933
 934void __init smp_fill_possible_mask(void)
 935{
 936	unsigned int possible, sclp_max, cpu;
 937
 938	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 939	sclp_max = min(smp_max_threads, sclp_max);
 940	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 941	possible = setup_possible_cpus ?: nr_cpu_ids;
 942	possible = min(possible, sclp_max);
 943	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 944		set_cpu_possible(cpu, true);
 945}
 946
 947void __init smp_prepare_cpus(unsigned int max_cpus)
 948{
 949	/* request the 0x1201 emergency signal external interrupt */
 950	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 951		panic("Couldn't request external interrupt 0x1201");
 952	/* request the 0x1202 external call external interrupt */
 953	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 954		panic("Couldn't request external interrupt 0x1202");
 
 
 955}
 956
 957void __init smp_prepare_boot_cpu(void)
 958{
 959	struct pcpu *pcpu = pcpu_devices;
 960
 961	WARN_ON(!cpu_present(0) || !cpu_online(0));
 962	pcpu->state = CPU_STATE_CONFIGURED;
 963	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 964	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 
 965	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
 966}
 967
 968void __init smp_cpus_done(unsigned int max_cpus)
 969{
 970}
 971
 972void __init smp_setup_processor_id(void)
 973{
 974	pcpu_devices[0].address = stap();
 975	S390_lowcore.cpu_nr = 0;
 976	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 977	S390_lowcore.spinlock_index = 0;
 978}
 979
 980/*
 981 * the frequency of the profiling timer can be changed
 982 * by writing a multiplier value into /proc/profile.
 983 *
 984 * usually you want to run this on all CPUs ;)
 985 */
 986int setup_profiling_timer(unsigned int multiplier)
 987{
 988	return 0;
 989}
 990
 991static ssize_t cpu_configure_show(struct device *dev,
 992				  struct device_attribute *attr, char *buf)
 993{
 994	ssize_t count;
 995
 996	mutex_lock(&smp_cpu_state_mutex);
 997	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 998	mutex_unlock(&smp_cpu_state_mutex);
 999	return count;
1000}
1001
1002static ssize_t cpu_configure_store(struct device *dev,
1003				   struct device_attribute *attr,
1004				   const char *buf, size_t count)
1005{
1006	struct pcpu *pcpu;
1007	int cpu, val, rc, i;
1008	char delim;
1009
1010	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1011		return -EINVAL;
1012	if (val != 0 && val != 1)
1013		return -EINVAL;
1014	get_online_cpus();
1015	mutex_lock(&smp_cpu_state_mutex);
1016	rc = -EBUSY;
1017	/* disallow configuration changes of online cpus and cpu 0 */
1018	cpu = dev->id;
1019	cpu = smp_get_base_cpu(cpu);
1020	if (cpu == 0)
1021		goto out;
1022	for (i = 0; i <= smp_cpu_mtid; i++)
1023		if (cpu_online(cpu + i))
1024			goto out;
1025	pcpu = pcpu_devices + cpu;
1026	rc = 0;
1027	switch (val) {
1028	case 0:
1029		if (pcpu->state != CPU_STATE_CONFIGURED)
1030			break;
1031		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1032		if (rc)
1033			break;
1034		for (i = 0; i <= smp_cpu_mtid; i++) {
1035			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1036				continue;
1037			pcpu[i].state = CPU_STATE_STANDBY;
1038			smp_cpu_set_polarization(cpu + i,
1039						 POLARIZATION_UNKNOWN);
1040		}
1041		topology_expect_change();
1042		break;
1043	case 1:
1044		if (pcpu->state != CPU_STATE_STANDBY)
1045			break;
1046		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1047		if (rc)
1048			break;
1049		for (i = 0; i <= smp_cpu_mtid; i++) {
1050			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051				continue;
1052			pcpu[i].state = CPU_STATE_CONFIGURED;
1053			smp_cpu_set_polarization(cpu + i,
1054						 POLARIZATION_UNKNOWN);
1055		}
1056		topology_expect_change();
1057		break;
1058	default:
1059		break;
1060	}
1061out:
1062	mutex_unlock(&smp_cpu_state_mutex);
1063	put_online_cpus();
1064	return rc ? rc : count;
1065}
1066static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1067
1068static ssize_t show_cpu_address(struct device *dev,
1069				struct device_attribute *attr, char *buf)
1070{
1071	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1072}
1073static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1074
1075static struct attribute *cpu_common_attrs[] = {
1076	&dev_attr_configure.attr,
1077	&dev_attr_address.attr,
1078	NULL,
1079};
1080
1081static struct attribute_group cpu_common_attr_group = {
1082	.attrs = cpu_common_attrs,
1083};
1084
1085static struct attribute *cpu_online_attrs[] = {
1086	&dev_attr_idle_count.attr,
1087	&dev_attr_idle_time_us.attr,
1088	NULL,
1089};
1090
1091static struct attribute_group cpu_online_attr_group = {
1092	.attrs = cpu_online_attrs,
1093};
1094
1095static int smp_cpu_online(unsigned int cpu)
1096{
1097	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1098
1099	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1100}
 
1101static int smp_cpu_pre_down(unsigned int cpu)
1102{
1103	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1104
1105	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1106	return 0;
1107}
1108
1109static int smp_add_present_cpu(int cpu)
1110{
1111	struct device *s;
1112	struct cpu *c;
 
 
 
 
1113	int rc;
1114
1115	c = kzalloc(sizeof(*c), GFP_KERNEL);
1116	if (!c)
1117		return -ENOMEM;
1118	per_cpu(cpu_device, cpu) = c;
1119	s = &c->dev;
1120	c->hotpluggable = 1;
1121	rc = register_cpu(c, cpu);
1122	if (rc)
1123		goto out;
1124	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1125	if (rc)
1126		goto out_cpu;
1127	rc = topology_cpu_init(c);
1128	if (rc)
1129		goto out_topology;
1130	return 0;
1131
1132out_topology:
1133	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1134out_cpu:
1135	unregister_cpu(c);
1136out:
1137	return rc;
1138}
1139
1140int __ref smp_rescan_cpus(void)
1141{
1142	struct sclp_core_info *info;
1143	int nr;
1144
1145	info = kzalloc(sizeof(*info), GFP_KERNEL);
1146	if (!info)
1147		return -ENOMEM;
1148	smp_get_core_info(info, 0);
1149	get_online_cpus();
1150	mutex_lock(&smp_cpu_state_mutex);
1151	nr = __smp_rescan_cpus(info, 1);
1152	mutex_unlock(&smp_cpu_state_mutex);
1153	put_online_cpus();
1154	kfree(info);
1155	if (nr)
1156		topology_schedule_update();
1157	return 0;
1158}
1159
1160static ssize_t __ref rescan_store(struct device *dev,
1161				  struct device_attribute *attr,
1162				  const char *buf,
1163				  size_t count)
1164{
1165	int rc;
1166
1167	rc = lock_device_hotplug_sysfs();
1168	if (rc)
1169		return rc;
1170	rc = smp_rescan_cpus();
1171	unlock_device_hotplug();
1172	return rc ? rc : count;
1173}
1174static DEVICE_ATTR_WO(rescan);
1175
1176static int __init s390_smp_init(void)
1177{
1178	int cpu, rc = 0;
 
1179
1180	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1181	if (rc)
1182		return rc;
1183	for_each_present_cpu(cpu) {
1184		rc = smp_add_present_cpu(cpu);
1185		if (rc)
1186			goto out;
1187	}
1188
1189	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1190			       smp_cpu_online, smp_cpu_pre_down);
1191	rc = rc <= 0 ? rc : 0;
1192out:
1193	return rc;
1194}
1195subsys_initcall(s390_smp_init);