Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/access-regs.h>
  40#include <asm/asm-offsets.h>
  41#include <asm/ctlreg.h>
  42#include <asm/pfault.h>
  43#include <asm/diag.h>
 
  44#include <asm/facility.h>
  45#include <asm/fpu.h>
  46#include <asm/ipl.h>
  47#include <asm/setup.h>
  48#include <asm/irq.h>
  49#include <asm/tlbflush.h>
  50#include <asm/vtimer.h>
  51#include <asm/abs_lowcore.h>
  52#include <asm/sclp.h>
  53#include <asm/debug.h>
  54#include <asm/os_info.h>
  55#include <asm/sigp.h>
  56#include <asm/idle.h>
  57#include <asm/nmi.h>
  58#include <asm/stacktrace.h>
  59#include <asm/topology.h>
  60#include <asm/vdso.h>
  61#include <asm/maccess.h>
  62#include "entry.h"
  63
  64enum {
  65	ec_schedule = 0,
  66	ec_call_function_single,
  67	ec_stop_cpu,
  68	ec_mcck_pending,
  69	ec_irq_work,
  70};
  71
  72enum {
  73	CPU_STATE_STANDBY,
  74	CPU_STATE_CONFIGURED,
  75};
  76
 
 
 
 
 
 
 
 
 
 
  77static u8 boot_core_type;
  78DEFINE_PER_CPU(struct pcpu, pcpu_devices);
  79/*
  80 * Pointer to the pcpu area of the boot CPU. This is required when a restart
  81 * interrupt is triggered on an offline CPU. For that case accessing percpu
  82 * data with the common primitives does not work, since the percpu offset is
  83 * stored in a non existent lowcore.
  84 */
  85static struct pcpu *ipl_pcpu;
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices array.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (per_cpu(pcpu_devices, cpu).address == address)
 177			return &per_cpu(pcpu_devices, cpu);
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 203	memcpy(lc, get_lowcore(), 512);
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 
 211	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213	lc->preempt_count = PREEMPT_DISABLED;
 214	if (nmi_alloc_mcesa(&lc->mcesad))
 215		goto out;
 216	if (abs_lowcore_map(cpu, lc, true))
 217		goto out_mcesa;
 218	lowcore_ptr[cpu] = lc;
 219	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 220	return 0;
 221
 222out_mcesa:
 223	nmi_free_mcesa(&lc->mcesad);
 224out:
 225	stack_free(mcck_stack);
 226	stack_free(async_stack);
 227	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 228	free_pages((unsigned long) lc, LC_ORDER);
 229	return -ENOMEM;
 230}
 231
 232static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
 233{
 234	unsigned long async_stack, nodat_stack, mcck_stack;
 235	struct lowcore *lc;
 
 236
 
 237	lc = lowcore_ptr[cpu];
 238	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 239	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 240	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 241	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 242	lowcore_ptr[cpu] = NULL;
 243	abs_lowcore_unmap(cpu);
 244	nmi_free_mcesa(&lc->mcesad);
 245	stack_free(async_stack);
 246	stack_free(mcck_stack);
 247	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 248	free_pages((unsigned long) lc, LC_ORDER);
 249}
 250
 251static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 252{
 253	struct lowcore *lc, *abs_lc;
 254
 255	lc = lowcore_ptr[cpu];
 256	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 257	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 258	lc->cpu_nr = cpu;
 259	lc->pcpu = (unsigned long)pcpu;
 260	lc->restart_flags = RESTART_FLAG_CTLREGS;
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = get_lowcore()->kernel_asce;
 265	lc->user_asce = s390_invalid_asce;
 266	lc->machine_flags = get_lowcore()->machine_flags;
 267	lc->user_timer = lc->system_timer =
 268		lc->steal_timer = lc->avg_steal_timer = 0;
 269	abs_lc = get_abs_lowcore();
 270	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 271	put_abs_lowcore(abs_lc);
 272	lc->cregs_save_area[1] = lc->kernel_asce;
 273	lc->cregs_save_area[7] = lc->user_asce;
 274	save_access_regs((unsigned int *) lc->access_regs_save_area);
 275	arch_spin_lock_setup(cpu);
 276}
 277
 278static void pcpu_attach_task(int cpu, struct task_struct *tsk)
 279{
 280	struct lowcore *lc;
 
 281
 
 282	lc = lowcore_ptr[cpu];
 283	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 284	lc->current_task = (unsigned long)tsk;
 
 285	lc->lpp = LPP_MAGIC;
 286	lc->current_pid = tsk->pid;
 287	lc->user_timer = tsk->thread.user_timer;
 288	lc->guest_timer = tsk->thread.guest_timer;
 289	lc->system_timer = tsk->thread.system_timer;
 290	lc->hardirq_timer = tsk->thread.hardirq_timer;
 291	lc->softirq_timer = tsk->thread.softirq_timer;
 292	lc->steal_timer = 0;
 293}
 294
 295static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
 296{
 297	struct lowcore *lc;
 
 298
 
 299	lc = lowcore_ptr[cpu];
 300	lc->restart_stack = lc->kernel_stack;
 301	lc->restart_fn = (unsigned long) func;
 302	lc->restart_data = (unsigned long) data;
 303	lc->restart_source = -1U;
 304	pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
 305}
 306
 307typedef void (pcpu_delegate_fn)(void *);
 308
 309/*
 310 * Call function via PSW restart on pcpu and stop the current cpu.
 311 */
 312static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 313{
 314	func(data);	/* should not return */
 315}
 316
 317static void pcpu_delegate(struct pcpu *pcpu, int cpu,
 318			  pcpu_delegate_fn *func,
 319			  void *data, unsigned long stack)
 320{
 321	struct lowcore *lc, *abs_lc;
 322	unsigned int source_cpu;
 323
 324	lc = lowcore_ptr[cpu];
 325	source_cpu = stap();
 326
 
 327	if (pcpu->address == source_cpu) {
 328		call_on_stack(2, stack, void, __pcpu_delegate,
 329			      pcpu_delegate_fn *, func, void *, data);
 330	}
 331	/* Stop target cpu (if func returns this stops the current cpu). */
 332	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 333	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 334	/* Restart func on the target cpu and stop the current cpu. */
 335	if (lc) {
 336		lc->restart_stack = stack;
 337		lc->restart_fn = (unsigned long)func;
 338		lc->restart_data = (unsigned long)data;
 339		lc->restart_source = source_cpu;
 340	} else {
 341		abs_lc = get_abs_lowcore();
 342		abs_lc->restart_stack = stack;
 343		abs_lc->restart_fn = (unsigned long)func;
 344		abs_lc->restart_data = (unsigned long)data;
 345		abs_lc->restart_source = source_cpu;
 346		put_abs_lowcore(abs_lc);
 347	}
 348	asm volatile(
 349		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 350		"	brc	2,0b	# busy, try again\n"
 351		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 352		"	brc	2,1b	# busy, try again\n"
 353		: : "d" (pcpu->address), "d" (source_cpu),
 354		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 355		: "0", "1", "cc");
 356	for (;;) ;
 357}
 358
 359/*
 360 * Enable additional logical cpus for multi-threading.
 361 */
 362static int pcpu_set_smt(unsigned int mtid)
 363{
 364	int cc;
 365
 366	if (smp_cpu_mtid == mtid)
 367		return 0;
 368	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 369	if (cc == 0) {
 370		smp_cpu_mtid = mtid;
 371		smp_cpu_mt_shift = 0;
 372		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 373			smp_cpu_mt_shift++;
 374		per_cpu(pcpu_devices, 0).address = stap();
 375	}
 376	return cc;
 377}
 378
 379/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380 * Call function on the ipl CPU.
 381 */
 382void smp_call_ipl_cpu(void (*func)(void *), void *data)
 383{
 384	struct lowcore *lc = lowcore_ptr[0];
 385
 386	if (ipl_pcpu->address == stap())
 387		lc = get_lowcore();
 388
 389	pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
 
 390}
 391
 392int smp_find_processor_id(u16 address)
 393{
 394	int cpu;
 395
 396	for_each_present_cpu(cpu)
 397		if (per_cpu(pcpu_devices, cpu).address == address)
 398			return cpu;
 399	return -1;
 400}
 401
 402void schedule_mcck_handler(void)
 403{
 404	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
 405}
 406
 407bool notrace arch_vcpu_is_preempted(int cpu)
 408{
 409	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 410		return false;
 411	if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
 412		return false;
 413	return true;
 414}
 415EXPORT_SYMBOL(arch_vcpu_is_preempted);
 416
 417void notrace smp_yield_cpu(int cpu)
 418{
 419	if (!MACHINE_HAS_DIAG9C)
 420		return;
 421	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 422	asm volatile("diag %0,0,0x9c"
 423		     : : "d" (per_cpu(pcpu_devices, cpu).address));
 424}
 425EXPORT_SYMBOL_GPL(smp_yield_cpu);
 426
 427/*
 428 * Send cpus emergency shutdown signal. This gives the cpus the
 429 * opportunity to complete outstanding interrupts.
 430 */
 431void notrace smp_emergency_stop(void)
 432{
 433	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 434	static cpumask_t cpumask;
 435	u64 end;
 436	int cpu;
 437
 438	arch_spin_lock(&lock);
 439	cpumask_copy(&cpumask, cpu_online_mask);
 440	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 441
 442	end = get_tod_clock() + (1000000UL << 12);
 443	for_each_cpu(cpu, &cpumask) {
 444		struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 445		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 446		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 447				   0, NULL) == SIGP_CC_BUSY &&
 448		       get_tod_clock() < end)
 449			cpu_relax();
 450	}
 451	while (get_tod_clock() < end) {
 452		for_each_cpu(cpu, &cpumask)
 453			if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
 454				cpumask_clear_cpu(cpu, &cpumask);
 455		if (cpumask_empty(&cpumask))
 456			break;
 457		cpu_relax();
 458	}
 459	arch_spin_unlock(&lock);
 460}
 461NOKPROBE_SYMBOL(smp_emergency_stop);
 462
 463/*
 464 * Stop all cpus but the current one.
 465 */
 466void smp_send_stop(void)
 467{
 468	struct pcpu *pcpu;
 469	int cpu;
 470
 471	/* Disable all interrupts/machine checks */
 472	__load_psw_mask(PSW_KERNEL_BITS);
 473	trace_hardirqs_off();
 474
 475	debug_set_critical();
 476
 477	if (oops_in_progress)
 478		smp_emergency_stop();
 479
 480	/* stop all processors */
 481	for_each_online_cpu(cpu) {
 482		if (cpu == smp_processor_id())
 483			continue;
 484		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 485		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 486		while (!pcpu_stopped(pcpu))
 487			cpu_relax();
 488	}
 489}
 490
 491/*
 492 * This is the main routine where commands issued by other
 493 * cpus are handled.
 494 */
 495static void smp_handle_ext_call(void)
 496{
 497	unsigned long bits;
 498
 499	/* handle bit signal external calls */
 500	bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
 501	if (test_bit(ec_stop_cpu, &bits))
 502		smp_stop_cpu();
 503	if (test_bit(ec_schedule, &bits))
 504		scheduler_ipi();
 505	if (test_bit(ec_call_function_single, &bits))
 506		generic_smp_call_function_single_interrupt();
 507	if (test_bit(ec_mcck_pending, &bits))
 508		s390_handle_mcck();
 509	if (test_bit(ec_irq_work, &bits))
 510		irq_work_run();
 511}
 512
 513static void do_ext_call_interrupt(struct ext_code ext_code,
 514				  unsigned int param32, unsigned long param64)
 515{
 516	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 517	smp_handle_ext_call();
 518}
 519
 520void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 521{
 522	int cpu;
 523
 524	for_each_cpu(cpu, mask)
 525		pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 526}
 527
 528void arch_send_call_function_single_ipi(int cpu)
 529{
 530	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 531}
 532
 533/*
 534 * this function sends a 'reschedule' IPI to another CPU.
 535 * it goes straight through and wastes no time serializing
 536 * anything. Worst case is that we lose a reschedule ...
 537 */
 538void arch_smp_send_reschedule(int cpu)
 539{
 540	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
 541}
 542
 543#ifdef CONFIG_IRQ_WORK
 544void arch_irq_work_raise(void)
 545{
 546	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
 547}
 548#endif
 549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550#ifdef CONFIG_CRASH_DUMP
 551
 552int smp_store_status(int cpu)
 553{
 554	struct lowcore *lc;
 555	struct pcpu *pcpu;
 556	unsigned long pa;
 557
 558	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 559	lc = lowcore_ptr[cpu];
 560	pa = __pa(&lc->floating_pt_save_area);
 561	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 562			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 563		return -EIO;
 564	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 565		return 0;
 566	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 567	if (MACHINE_HAS_GS)
 568		pa |= lc->mcesad & MCESA_LC_MASK;
 569	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 570			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 571		return -EIO;
 572	return 0;
 573}
 574
 575/*
 576 * Collect CPU state of the previous, crashed system.
 577 * There are three cases:
 578 * 1) standard zfcp/nvme dump
 579 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 580 *    The state for all CPUs except the boot CPU needs to be collected
 581 *    with sigp stop-and-store-status. The boot CPU state is located in
 582 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 583 *    will copy the boot CPU state from the HSA.
 584 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 585 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 586 *    The state for all CPUs except the boot CPU needs to be collected
 587 *    with sigp stop-and-store-status. The firmware or the boot-loader
 588 *    stored the registers of the boot CPU in the absolute lowcore in the
 589 *    memory of the old system.
 590 * 3) kdump or stand-alone kdump for DASD
 591 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
 
 592 *    The state for all CPUs except the boot CPU needs to be collected
 593 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 594 *    stored the registers of the boot CPU in the memory of the old system.
 595 *
 596 * Note that the legacy kdump mode where the old kernel stored the CPU states
 597 * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
 598 * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
 599 * of the elfcorehdr= parameter.
 600 */
 601static bool dump_available(void)
 
 602{
 603	return oldmem_data.start || is_ipl_type_dump();
 
 
 
 
 
 
 604}
 605
 606void __init smp_save_dump_ipl_cpu(void)
 
 607{
 608	struct save_area *sa;
 609	void *regs;
 610
 611	if (!dump_available())
 612		return;
 613	sa = save_area_alloc(true);
 614	regs = memblock_alloc(512, 8);
 615	if (!sa || !regs)
 616		panic("could not allocate memory for boot CPU save area\n");
 617	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 618	save_area_add_regs(sa, regs);
 619	memblock_free(regs, 512);
 620	if (cpu_has_vx())
 621		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 622}
 623
 624void __init smp_save_dump_secondary_cpus(void)
 625{
 626	int addr, boot_cpu_addr, max_cpu_addr;
 627	struct save_area *sa;
 628	void *page;
 
 629
 630	if (!dump_available())
 
 631		return;
 632	/* Allocate a page as dumping area for the store status sigps */
 633	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 634	if (!page)
 635		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 636		      PAGE_SIZE, 1UL << 31);
 637
 638	/* Set multi-threading state to the previous system. */
 639	pcpu_set_smt(sclp.mtid_prev);
 640	boot_cpu_addr = stap();
 641	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 642	for (addr = 0; addr <= max_cpu_addr; addr++) {
 643		if (addr == boot_cpu_addr)
 644			continue;
 645		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 646		    SIGP_CC_NOT_OPERATIONAL)
 647			continue;
 648		sa = save_area_alloc(false);
 
 
 649		if (!sa)
 650			panic("could not allocate memory for save area\n");
 651		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 652		save_area_add_regs(sa, page);
 653		if (cpu_has_vx()) {
 654			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 655			save_area_add_vxrs(sa, page);
 656		}
 
 
 
 
 
 
 657	}
 658	memblock_free(page, PAGE_SIZE);
 659	diag_amode31_ops.diag308_reset();
 660	pcpu_set_smt(0);
 661}
 662#endif /* CONFIG_CRASH_DUMP */
 663
 664void smp_cpu_set_polarization(int cpu, int val)
 665{
 666	per_cpu(pcpu_devices, cpu).polarization = val;
 667}
 668
 669int smp_cpu_get_polarization(int cpu)
 670{
 671	return per_cpu(pcpu_devices, cpu).polarization;
 672}
 673
 674void smp_cpu_set_capacity(int cpu, unsigned long val)
 675{
 676	per_cpu(pcpu_devices, cpu).capacity = val;
 677}
 678
 679unsigned long smp_cpu_get_capacity(int cpu)
 680{
 681	return per_cpu(pcpu_devices, cpu).capacity;
 682}
 683
 684void smp_set_core_capacity(int cpu, unsigned long val)
 685{
 686	int i;
 687
 688	cpu = smp_get_base_cpu(cpu);
 689	for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
 690		smp_cpu_set_capacity(i, val);
 691}
 692
 693int smp_cpu_get_cpu_address(int cpu)
 694{
 695	return per_cpu(pcpu_devices, cpu).address;
 696}
 697
 698static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 699{
 700	static int use_sigp_detection;
 701	int address;
 702
 703	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 704		use_sigp_detection = 1;
 705		for (address = 0;
 706		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 707		     address += (1U << smp_cpu_mt_shift)) {
 708			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 709			    SIGP_CC_NOT_OPERATIONAL)
 710				continue;
 711			info->core[info->configured].core_id =
 712				address >> smp_cpu_mt_shift;
 713			info->configured++;
 714		}
 715		info->combined = info->configured;
 716	}
 717}
 718
 
 
 719static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 720			bool configured, bool early)
 721{
 722	struct pcpu *pcpu;
 723	int cpu, nr, i;
 724	u16 address;
 725
 726	nr = 0;
 727	if (sclp.has_core_type && core->type != boot_core_type)
 728		return nr;
 729	cpu = cpumask_first(avail);
 730	address = core->core_id << smp_cpu_mt_shift;
 731	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 732		if (pcpu_find_address(cpu_present_mask, address + i))
 733			continue;
 734		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 735		pcpu->address = address + i;
 736		if (configured)
 737			pcpu->state = CPU_STATE_CONFIGURED;
 738		else
 739			pcpu->state = CPU_STATE_STANDBY;
 740		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 741		smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
 742		set_cpu_present(cpu, true);
 743		if (!early && arch_register_cpu(cpu))
 744			set_cpu_present(cpu, false);
 745		else
 746			nr++;
 747		cpumask_clear_cpu(cpu, avail);
 748		cpu = cpumask_next(cpu, avail);
 749	}
 750	return nr;
 751}
 752
 753static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 754{
 755	struct sclp_core_entry *core;
 756	static cpumask_t avail;
 757	bool configured;
 758	u16 core_id;
 759	int nr, i;
 760
 761	cpus_read_lock();
 762	mutex_lock(&smp_cpu_state_mutex);
 763	nr = 0;
 764	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 765	/*
 766	 * Add IPL core first (which got logical CPU number 0) to make sure
 767	 * that all SMT threads get subsequent logical CPU numbers.
 768	 */
 769	if (early) {
 770		core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
 771		for (i = 0; i < info->configured; i++) {
 772			core = &info->core[i];
 773			if (core->core_id == core_id) {
 774				nr += smp_add_core(core, &avail, true, early);
 775				break;
 776			}
 777		}
 778	}
 779	for (i = 0; i < info->combined; i++) {
 780		configured = i < info->configured;
 781		nr += smp_add_core(&info->core[i], &avail, configured, early);
 782	}
 783	mutex_unlock(&smp_cpu_state_mutex);
 784	cpus_read_unlock();
 785	return nr;
 786}
 787
 788void __init smp_detect_cpus(void)
 789{
 790	unsigned int cpu, mtid, c_cpus, s_cpus;
 791	struct sclp_core_info *info;
 792	u16 address;
 793
 794	/* Get CPU information */
 795	info = memblock_alloc(sizeof(*info), 8);
 796	if (!info)
 797		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 798		      __func__, sizeof(*info), 8);
 799	smp_get_core_info(info, 1);
 800	/* Find boot CPU type */
 801	if (sclp.has_core_type) {
 802		address = stap();
 803		for (cpu = 0; cpu < info->combined; cpu++)
 804			if (info->core[cpu].core_id == address) {
 805				/* The boot cpu dictates the cpu type. */
 806				boot_core_type = info->core[cpu].type;
 807				break;
 808			}
 809		if (cpu >= info->combined)
 810			panic("Could not find boot CPU type");
 811	}
 812
 813	/* Set multi-threading state for the current system */
 814	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 815	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 816	pcpu_set_smt(mtid);
 817
 818	/* Print number of CPUs */
 819	c_cpus = s_cpus = 0;
 820	for (cpu = 0; cpu < info->combined; cpu++) {
 821		if (sclp.has_core_type &&
 822		    info->core[cpu].type != boot_core_type)
 823			continue;
 824		if (cpu < info->configured)
 825			c_cpus += smp_cpu_mtid + 1;
 826		else
 827			s_cpus += smp_cpu_mtid + 1;
 828	}
 829	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 830	memblock_free(info, sizeof(*info));
 
 
 
 831}
 832
 833/*
 834 *	Activate a secondary processor.
 835 */
 836static void smp_start_secondary(void *cpuvoid)
 837{
 838	struct lowcore *lc = get_lowcore();
 839	int cpu = raw_smp_processor_id();
 840
 841	lc->last_update_clock = get_tod_clock();
 842	lc->restart_stack = (unsigned long)restart_stack;
 843	lc->restart_fn = (unsigned long)do_restart;
 844	lc->restart_data = 0;
 845	lc->restart_source = -1U;
 846	lc->restart_flags = 0;
 847	restore_access_regs(lc->access_regs_save_area);
 848	cpu_init();
 849	rcutree_report_cpu_starting(cpu);
 850	init_cpu_timer();
 851	vtime_init();
 852	vdso_getcpu_init();
 853	pfault_init();
 854	cpumask_set_cpu(cpu, &cpu_setup_mask);
 855	update_cpu_masks();
 856	notify_cpu_starting(cpu);
 857	if (topology_cpu_dedicated(cpu))
 858		set_cpu_flag(CIF_DEDICATED_CPU);
 859	else
 860		clear_cpu_flag(CIF_DEDICATED_CPU);
 861	set_cpu_online(cpu, true);
 862	inc_irq_stat(CPU_RST);
 863	local_irq_enable();
 864	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 865}
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 867/* Upping and downing of CPUs */
 868int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 869{
 870	struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 871	int rc;
 872
 873	if (pcpu->state != CPU_STATE_CONFIGURED)
 874		return -EIO;
 875	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 876	    SIGP_CC_ORDER_CODE_ACCEPTED)
 877		return -EIO;
 878
 879	rc = pcpu_alloc_lowcore(pcpu, cpu);
 880	if (rc)
 881		return rc;
 882	/*
 883	 * Make sure global control register contents do not change
 884	 * until new CPU has initialized control registers.
 885	 */
 886	system_ctlreg_lock();
 887	pcpu_prepare_secondary(pcpu, cpu);
 888	pcpu_attach_task(cpu, tidle);
 889	pcpu_start_fn(cpu, smp_start_secondary, NULL);
 890	/* Wait until cpu puts itself in the online & active maps */
 891	while (!cpu_online(cpu))
 892		cpu_relax();
 893	system_ctlreg_unlock();
 894	return 0;
 895}
 896
 897static unsigned int setup_possible_cpus __initdata;
 898
 899static int __init _setup_possible_cpus(char *s)
 900{
 901	get_option(&s, &setup_possible_cpus);
 902	return 0;
 903}
 904early_param("possible_cpus", _setup_possible_cpus);
 905
 906int __cpu_disable(void)
 907{
 908	struct ctlreg cregs[16];
 909	int cpu;
 910
 911	/* Handle possible pending IPIs */
 912	smp_handle_ext_call();
 913	cpu = smp_processor_id();
 914	set_cpu_online(cpu, false);
 915	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 916	update_cpu_masks();
 917	/* Disable pseudo page faults on this cpu. */
 918	pfault_fini();
 919	/* Disable interrupt sources via control register. */
 920	__local_ctl_store(0, 15, cregs);
 921	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 922	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 923	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 924	__local_ctl_load(0, 15, cregs);
 925	clear_cpu_flag(CIF_NOHZ_DELAY);
 926	return 0;
 927}
 928
 929void __cpu_die(unsigned int cpu)
 930{
 931	struct pcpu *pcpu;
 932
 933	/* Wait until target cpu is down */
 934	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 935	while (!pcpu_stopped(pcpu))
 936		cpu_relax();
 937	pcpu_free_lowcore(pcpu, cpu);
 938	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 939	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 940	pcpu->flags = 0;
 941}
 942
 943void __noreturn cpu_die(void)
 944{
 945	idle_task_exit();
 946	pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
 
 947	for (;;) ;
 948}
 949
 950void __init smp_fill_possible_mask(void)
 951{
 952	unsigned int possible, sclp_max, cpu;
 953
 954	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 955	sclp_max = min(smp_max_threads, sclp_max);
 956	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 957	possible = setup_possible_cpus ?: nr_cpu_ids;
 958	possible = min(possible, sclp_max);
 959	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 960		set_cpu_possible(cpu, true);
 961}
 962
 963void __init smp_prepare_cpus(unsigned int max_cpus)
 964{
 
 965	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 966		panic("Couldn't request external interrupt 0x1201");
 967	system_ctl_set_bit(0, 14);
 968	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 969		panic("Couldn't request external interrupt 0x1202");
 970	system_ctl_set_bit(0, 13);
 971	smp_rescan_cpus(true);
 972}
 973
 974void __init smp_prepare_boot_cpu(void)
 975{
 976	struct lowcore *lc = get_lowcore();
 977
 978	WARN_ON(!cpu_present(0) || !cpu_online(0));
 979	lc->percpu_offset = __per_cpu_offset[0];
 980	ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
 981	ipl_pcpu->state = CPU_STATE_CONFIGURED;
 982	lc->pcpu = (unsigned long)ipl_pcpu;
 983	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 984	smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
 985}
 986
 987void __init smp_setup_processor_id(void)
 988{
 989	struct lowcore *lc = get_lowcore();
 990
 991	lc->cpu_nr = 0;
 992	per_cpu(pcpu_devices, 0).address = stap();
 993	lc->spinlock_lockval = arch_spin_lockval(0);
 994	lc->spinlock_index = 0;
 995}
 996
 997/*
 998 * the frequency of the profiling timer can be changed
 999 * by writing a multiplier value into /proc/profile.
1000 *
1001 * usually you want to run this on all CPUs ;)
1002 */
1003int setup_profiling_timer(unsigned int multiplier)
1004{
1005	return 0;
1006}
1007
1008static ssize_t cpu_configure_show(struct device *dev,
1009				  struct device_attribute *attr, char *buf)
1010{
1011	ssize_t count;
1012
1013	mutex_lock(&smp_cpu_state_mutex);
1014	count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1015	mutex_unlock(&smp_cpu_state_mutex);
1016	return count;
1017}
1018
1019static ssize_t cpu_configure_store(struct device *dev,
1020				   struct device_attribute *attr,
1021				   const char *buf, size_t count)
1022{
1023	struct pcpu *pcpu;
1024	int cpu, val, rc, i;
1025	char delim;
1026
1027	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1028		return -EINVAL;
1029	if (val != 0 && val != 1)
1030		return -EINVAL;
1031	cpus_read_lock();
1032	mutex_lock(&smp_cpu_state_mutex);
1033	rc = -EBUSY;
1034	/* disallow configuration changes of online cpus */
1035	cpu = dev->id;
1036	cpu = smp_get_base_cpu(cpu);
 
 
1037	for (i = 0; i <= smp_cpu_mtid; i++)
1038		if (cpu_online(cpu + i))
1039			goto out;
1040	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1041	rc = 0;
1042	switch (val) {
1043	case 0:
1044		if (pcpu->state != CPU_STATE_CONFIGURED)
1045			break;
1046		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1047		if (rc)
1048			break;
1049		for (i = 0; i <= smp_cpu_mtid; i++) {
1050			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051				continue;
1052			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1053			smp_cpu_set_polarization(cpu + i,
1054						 POLARIZATION_UNKNOWN);
1055		}
1056		topology_expect_change();
1057		break;
1058	case 1:
1059		if (pcpu->state != CPU_STATE_STANDBY)
1060			break;
1061		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1062		if (rc)
1063			break;
1064		for (i = 0; i <= smp_cpu_mtid; i++) {
1065			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1066				continue;
1067			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1068			smp_cpu_set_polarization(cpu + i,
1069						 POLARIZATION_UNKNOWN);
1070		}
1071		topology_expect_change();
1072		break;
1073	default:
1074		break;
1075	}
1076out:
1077	mutex_unlock(&smp_cpu_state_mutex);
1078	cpus_read_unlock();
1079	return rc ? rc : count;
1080}
1081static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1082
1083static ssize_t show_cpu_address(struct device *dev,
1084				struct device_attribute *attr, char *buf)
1085{
1086	return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1087}
1088static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1089
1090static struct attribute *cpu_common_attrs[] = {
1091	&dev_attr_configure.attr,
1092	&dev_attr_address.attr,
1093	NULL,
1094};
1095
1096static struct attribute_group cpu_common_attr_group = {
1097	.attrs = cpu_common_attrs,
1098};
1099
1100static struct attribute *cpu_online_attrs[] = {
1101	&dev_attr_idle_count.attr,
1102	&dev_attr_idle_time_us.attr,
1103	NULL,
1104};
1105
1106static struct attribute_group cpu_online_attr_group = {
1107	.attrs = cpu_online_attrs,
1108};
1109
1110static int smp_cpu_online(unsigned int cpu)
1111{
1112	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1113
1114	return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1115}
1116
1117static int smp_cpu_pre_down(unsigned int cpu)
1118{
1119	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1120
1121	sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1122	return 0;
1123}
1124
1125bool arch_cpu_is_hotpluggable(int cpu)
1126{
1127	return !!cpu;
1128}
1129
1130int arch_register_cpu(int cpu)
1131{
1132	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
 
1133	int rc;
1134
1135	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
 
 
 
 
 
1136	rc = register_cpu(c, cpu);
1137	if (rc)
1138		goto out;
1139	rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1140	if (rc)
1141		goto out_cpu;
1142	rc = topology_cpu_init(c);
1143	if (rc)
1144		goto out_topology;
1145	return 0;
1146
1147out_topology:
1148	sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1149out_cpu:
1150	unregister_cpu(c);
1151out:
1152	return rc;
1153}
1154
1155int __ref smp_rescan_cpus(bool early)
1156{
1157	struct sclp_core_info *info;
1158	int nr;
1159
1160	info = kzalloc(sizeof(*info), GFP_KERNEL);
1161	if (!info)
1162		return -ENOMEM;
1163	smp_get_core_info(info, 0);
1164	nr = __smp_rescan_cpus(info, early);
1165	kfree(info);
1166	if (nr)
1167		topology_schedule_update();
1168	return 0;
1169}
1170
1171static ssize_t __ref rescan_store(struct device *dev,
1172				  struct device_attribute *attr,
1173				  const char *buf,
1174				  size_t count)
1175{
1176	int rc;
1177
1178	rc = lock_device_hotplug_sysfs();
1179	if (rc)
1180		return rc;
1181	rc = smp_rescan_cpus(false);
1182	unlock_device_hotplug();
1183	return rc ? rc : count;
1184}
1185static DEVICE_ATTR_WO(rescan);
1186
1187static int __init s390_smp_init(void)
1188{
1189	struct device *dev_root;
1190	int rc;
1191
1192	dev_root = bus_get_dev_root(&cpu_subsys);
1193	if (dev_root) {
1194		rc = device_create_file(dev_root, &dev_attr_rescan);
1195		put_device(dev_root);
 
1196		if (rc)
1197			return rc;
1198	}
 
1199	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1200			       smp_cpu_online, smp_cpu_pre_down);
1201	rc = rc <= 0 ? rc : 0;
 
1202	return rc;
1203}
1204subsys_initcall(s390_smp_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/memblock.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
  33#include <linux/irq_work.h>
  34#include <linux/cpu.h>
  35#include <linux/slab.h>
  36#include <linux/sched/hotplug.h>
  37#include <linux/sched/task_stack.h>
  38#include <linux/crash_dump.h>
  39#include <linux/kprobes.h>
 
  40#include <asm/asm-offsets.h>
 
 
  41#include <asm/diag.h>
  42#include <asm/switch_to.h>
  43#include <asm/facility.h>
 
  44#include <asm/ipl.h>
  45#include <asm/setup.h>
  46#include <asm/irq.h>
  47#include <asm/tlbflush.h>
  48#include <asm/vtimer.h>
  49#include <asm/lowcore.h>
  50#include <asm/sclp.h>
  51#include <asm/debug.h>
  52#include <asm/os_info.h>
  53#include <asm/sigp.h>
  54#include <asm/idle.h>
  55#include <asm/nmi.h>
  56#include <asm/stacktrace.h>
  57#include <asm/topology.h>
  58#include <asm/vdso.h>
 
  59#include "entry.h"
  60
  61enum {
  62	ec_schedule = 0,
  63	ec_call_function_single,
  64	ec_stop_cpu,
  65	ec_mcck_pending,
  66	ec_irq_work,
  67};
  68
  69enum {
  70	CPU_STATE_STANDBY,
  71	CPU_STATE_CONFIGURED,
  72};
  73
  74static DEFINE_PER_CPU(struct cpu *, cpu_device);
  75
  76struct pcpu {
  77	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  78	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  79	signed char state;		/* physical cpu state */
  80	signed char polarization;	/* physical polarization */
  81	u16 address;			/* physical cpu address */
  82};
  83
  84static u8 boot_core_type;
  85static struct pcpu pcpu_devices[NR_CPUS];
 
 
 
 
 
 
 
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices arreay.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (pcpu_devices[cpu].address == address)
 177			return pcpu_devices + cpu;
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 203	memcpy(lc, &S390_lowcore, 512);
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 211	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
 212	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 213	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 214	lc->preempt_count = PREEMPT_DISABLED;
 215	if (nmi_alloc_per_cpu(lc))
 216		goto out;
 
 
 217	lowcore_ptr[cpu] = lc;
 218	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 219	return 0;
 220
 
 
 221out:
 222	stack_free(mcck_stack);
 223	stack_free(async_stack);
 224	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 225	free_pages((unsigned long) lc, LC_ORDER);
 226	return -ENOMEM;
 227}
 228
 229static void pcpu_free_lowcore(struct pcpu *pcpu)
 230{
 231	unsigned long async_stack, nodat_stack, mcck_stack;
 232	struct lowcore *lc;
 233	int cpu;
 234
 235	cpu = pcpu - pcpu_devices;
 236	lc = lowcore_ptr[cpu];
 237	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 238	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 239	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 240	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 241	lowcore_ptr[cpu] = NULL;
 242	nmi_free_per_cpu(lc);
 
 243	stack_free(async_stack);
 244	stack_free(mcck_stack);
 245	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 246	free_pages((unsigned long) lc, LC_ORDER);
 247}
 248
 249static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 250{
 251	struct lowcore *lc = lowcore_ptr[cpu];
 252
 
 253	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 254	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 255	lc->cpu_nr = cpu;
 
 256	lc->restart_flags = RESTART_FLAG_CTLREGS;
 257	lc->spinlock_lockval = arch_spin_lockval(cpu);
 258	lc->spinlock_index = 0;
 259	lc->percpu_offset = __per_cpu_offset[cpu];
 260	lc->kernel_asce = S390_lowcore.kernel_asce;
 261	lc->user_asce = s390_invalid_asce;
 262	lc->machine_flags = S390_lowcore.machine_flags;
 263	lc->user_timer = lc->system_timer =
 264		lc->steal_timer = lc->avg_steal_timer = 0;
 265	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 266	lc->cregs_save_area[1] = lc->kernel_asce;
 267	lc->cregs_save_area[7] = lc->user_asce;
 268	save_access_regs((unsigned int *) lc->access_regs_save_area);
 269	arch_spin_lock_setup(cpu);
 270}
 271
 272static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 273{
 274	struct lowcore *lc;
 275	int cpu;
 276
 277	cpu = pcpu - pcpu_devices;
 278	lc = lowcore_ptr[cpu];
 279	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 280		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 281	lc->current_task = (unsigned long) tsk;
 282	lc->lpp = LPP_MAGIC;
 283	lc->current_pid = tsk->pid;
 284	lc->user_timer = tsk->thread.user_timer;
 285	lc->guest_timer = tsk->thread.guest_timer;
 286	lc->system_timer = tsk->thread.system_timer;
 287	lc->hardirq_timer = tsk->thread.hardirq_timer;
 288	lc->softirq_timer = tsk->thread.softirq_timer;
 289	lc->steal_timer = 0;
 290}
 291
 292static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 293{
 294	struct lowcore *lc;
 295	int cpu;
 296
 297	cpu = pcpu - pcpu_devices;
 298	lc = lowcore_ptr[cpu];
 299	lc->restart_stack = lc->nodat_stack;
 300	lc->restart_fn = (unsigned long) func;
 301	lc->restart_data = (unsigned long) data;
 302	lc->restart_source = -1U;
 303	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 304}
 305
 306typedef void (pcpu_delegate_fn)(void *);
 307
 308/*
 309 * Call function via PSW restart on pcpu and stop the current cpu.
 310 */
 311static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 312{
 313	func(data);	/* should not return */
 314}
 315
 316static void pcpu_delegate(struct pcpu *pcpu,
 317			  pcpu_delegate_fn *func,
 318			  void *data, unsigned long stack)
 319{
 320	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 321	unsigned int source_cpu = stap();
 
 
 
 322
 323	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 324	if (pcpu->address == source_cpu) {
 325		call_on_stack(2, stack, void, __pcpu_delegate,
 326			      pcpu_delegate_fn *, func, void *, data);
 327	}
 328	/* Stop target cpu (if func returns this stops the current cpu). */
 329	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 330	/* Restart func on the target cpu and stop the current cpu. */
 331	mem_assign_absolute(lc->restart_stack, stack);
 332	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 333	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 334	mem_assign_absolute(lc->restart_source, source_cpu);
 335	__bpon();
 
 
 
 
 
 
 
 
 336	asm volatile(
 337		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 338		"	brc	2,0b	# busy, try again\n"
 339		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 340		"	brc	2,1b	# busy, try again\n"
 341		: : "d" (pcpu->address), "d" (source_cpu),
 342		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 343		: "0", "1", "cc");
 344	for (;;) ;
 345}
 346
 347/*
 348 * Enable additional logical cpus for multi-threading.
 349 */
 350static int pcpu_set_smt(unsigned int mtid)
 351{
 352	int cc;
 353
 354	if (smp_cpu_mtid == mtid)
 355		return 0;
 356	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 357	if (cc == 0) {
 358		smp_cpu_mtid = mtid;
 359		smp_cpu_mt_shift = 0;
 360		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 361			smp_cpu_mt_shift++;
 362		pcpu_devices[0].address = stap();
 363	}
 364	return cc;
 365}
 366
 367/*
 368 * Call function on an online CPU.
 369 */
 370void smp_call_online_cpu(void (*func)(void *), void *data)
 371{
 372	struct pcpu *pcpu;
 373
 374	/* Use the current cpu if it is online. */
 375	pcpu = pcpu_find_address(cpu_online_mask, stap());
 376	if (!pcpu)
 377		/* Use the first online cpu. */
 378		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 379	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 380}
 381
 382/*
 383 * Call function on the ipl CPU.
 384 */
 385void smp_call_ipl_cpu(void (*func)(void *), void *data)
 386{
 387	struct lowcore *lc = lowcore_ptr[0];
 388
 389	if (pcpu_devices[0].address == stap())
 390		lc = &S390_lowcore;
 391
 392	pcpu_delegate(&pcpu_devices[0], func, data,
 393		      lc->nodat_stack);
 394}
 395
 396int smp_find_processor_id(u16 address)
 397{
 398	int cpu;
 399
 400	for_each_present_cpu(cpu)
 401		if (pcpu_devices[cpu].address == address)
 402			return cpu;
 403	return -1;
 404}
 405
 406void schedule_mcck_handler(void)
 407{
 408	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 409}
 410
 411bool notrace arch_vcpu_is_preempted(int cpu)
 412{
 413	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 414		return false;
 415	if (pcpu_running(pcpu_devices + cpu))
 416		return false;
 417	return true;
 418}
 419EXPORT_SYMBOL(arch_vcpu_is_preempted);
 420
 421void notrace smp_yield_cpu(int cpu)
 422{
 423	if (!MACHINE_HAS_DIAG9C)
 424		return;
 425	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 426	asm volatile("diag %0,0,0x9c"
 427		     : : "d" (pcpu_devices[cpu].address));
 428}
 429EXPORT_SYMBOL_GPL(smp_yield_cpu);
 430
 431/*
 432 * Send cpus emergency shutdown signal. This gives the cpus the
 433 * opportunity to complete outstanding interrupts.
 434 */
 435void notrace smp_emergency_stop(void)
 436{
 437	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 438	static cpumask_t cpumask;
 439	u64 end;
 440	int cpu;
 441
 442	arch_spin_lock(&lock);
 443	cpumask_copy(&cpumask, cpu_online_mask);
 444	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 445
 446	end = get_tod_clock() + (1000000UL << 12);
 447	for_each_cpu(cpu, &cpumask) {
 448		struct pcpu *pcpu = pcpu_devices + cpu;
 449		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 450		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 451				   0, NULL) == SIGP_CC_BUSY &&
 452		       get_tod_clock() < end)
 453			cpu_relax();
 454	}
 455	while (get_tod_clock() < end) {
 456		for_each_cpu(cpu, &cpumask)
 457			if (pcpu_stopped(pcpu_devices + cpu))
 458				cpumask_clear_cpu(cpu, &cpumask);
 459		if (cpumask_empty(&cpumask))
 460			break;
 461		cpu_relax();
 462	}
 463	arch_spin_unlock(&lock);
 464}
 465NOKPROBE_SYMBOL(smp_emergency_stop);
 466
 467/*
 468 * Stop all cpus but the current one.
 469 */
 470void smp_send_stop(void)
 471{
 
 472	int cpu;
 473
 474	/* Disable all interrupts/machine checks */
 475	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 476	trace_hardirqs_off();
 477
 478	debug_set_critical();
 479
 480	if (oops_in_progress)
 481		smp_emergency_stop();
 482
 483	/* stop all processors */
 484	for_each_online_cpu(cpu) {
 485		if (cpu == smp_processor_id())
 486			continue;
 487		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 488		while (!pcpu_stopped(pcpu_devices + cpu))
 
 489			cpu_relax();
 490	}
 491}
 492
 493/*
 494 * This is the main routine where commands issued by other
 495 * cpus are handled.
 496 */
 497static void smp_handle_ext_call(void)
 498{
 499	unsigned long bits;
 500
 501	/* handle bit signal external calls */
 502	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 503	if (test_bit(ec_stop_cpu, &bits))
 504		smp_stop_cpu();
 505	if (test_bit(ec_schedule, &bits))
 506		scheduler_ipi();
 507	if (test_bit(ec_call_function_single, &bits))
 508		generic_smp_call_function_single_interrupt();
 509	if (test_bit(ec_mcck_pending, &bits))
 510		__s390_handle_mcck();
 511	if (test_bit(ec_irq_work, &bits))
 512		irq_work_run();
 513}
 514
 515static void do_ext_call_interrupt(struct ext_code ext_code,
 516				  unsigned int param32, unsigned long param64)
 517{
 518	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 519	smp_handle_ext_call();
 520}
 521
 522void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 523{
 524	int cpu;
 525
 526	for_each_cpu(cpu, mask)
 527		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 528}
 529
 530void arch_send_call_function_single_ipi(int cpu)
 531{
 532	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 533}
 534
 535/*
 536 * this function sends a 'reschedule' IPI to another CPU.
 537 * it goes straight through and wastes no time serializing
 538 * anything. Worst case is that we lose a reschedule ...
 539 */
 540void smp_send_reschedule(int cpu)
 541{
 542	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 543}
 544
 545#ifdef CONFIG_IRQ_WORK
 546void arch_irq_work_raise(void)
 547{
 548	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 549}
 550#endif
 551
 552/*
 553 * parameter area for the set/clear control bit callbacks
 554 */
 555struct ec_creg_mask_parms {
 556	unsigned long orval;
 557	unsigned long andval;
 558	int cr;
 559};
 560
 561/*
 562 * callback for setting/clearing control bits
 563 */
 564static void smp_ctl_bit_callback(void *info)
 565{
 566	struct ec_creg_mask_parms *pp = info;
 567	unsigned long cregs[16];
 568
 569	__ctl_store(cregs, 0, 15);
 570	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 571	__ctl_load(cregs, 0, 15);
 572}
 573
 574static DEFINE_SPINLOCK(ctl_lock);
 575static unsigned long ctlreg;
 576
 577/*
 578 * Set a bit in a control register of all cpus
 579 */
 580void smp_ctl_set_bit(int cr, int bit)
 581{
 582	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 583
 584	spin_lock(&ctl_lock);
 585	memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
 586	__set_bit(bit, &ctlreg);
 587	memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
 588	spin_unlock(&ctl_lock);
 589	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 590}
 591EXPORT_SYMBOL(smp_ctl_set_bit);
 592
 593/*
 594 * Clear a bit in a control register of all cpus
 595 */
 596void smp_ctl_clear_bit(int cr, int bit)
 597{
 598	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 599
 600	spin_lock(&ctl_lock);
 601	memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
 602	__clear_bit(bit, &ctlreg);
 603	memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
 604	spin_unlock(&ctl_lock);
 605	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 606}
 607EXPORT_SYMBOL(smp_ctl_clear_bit);
 608
 609#ifdef CONFIG_CRASH_DUMP
 610
 611int smp_store_status(int cpu)
 612{
 613	struct lowcore *lc;
 614	struct pcpu *pcpu;
 615	unsigned long pa;
 616
 617	pcpu = pcpu_devices + cpu;
 618	lc = lowcore_ptr[cpu];
 619	pa = __pa(&lc->floating_pt_save_area);
 620	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 621			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 622		return -EIO;
 623	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 624		return 0;
 625	pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
 626	if (MACHINE_HAS_GS)
 627		pa |= lc->mcesad & MCESA_LC_MASK;
 628	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 629			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 630		return -EIO;
 631	return 0;
 632}
 633
 634/*
 635 * Collect CPU state of the previous, crashed system.
 636 * There are four cases:
 637 * 1) standard zfcp/nvme dump
 638 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 639 *    The state for all CPUs except the boot CPU needs to be collected
 640 *    with sigp stop-and-store-status. The boot CPU state is located in
 641 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 642 *    will copy the boot CPU state from the HSA.
 643 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 644 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 645 *    The state for all CPUs except the boot CPU needs to be collected
 646 *    with sigp stop-and-store-status. The firmware or the boot-loader
 647 *    stored the registers of the boot CPU in the absolute lowcore in the
 648 *    memory of the old system.
 649 * 3) kdump and the old kernel did not store the CPU state,
 650 *    or stand-alone kdump for DASD
 651 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 652 *    The state for all CPUs except the boot CPU needs to be collected
 653 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 654 *    stored the registers of the boot CPU in the memory of the old system.
 655 * 4) kdump and the old kernel stored the CPU state
 656 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 657 *    This case does not exist for s390 anymore, setup_arch explicitly
 658 *    deactivates the elfcorehdr= kernel parameter
 
 659 */
 660static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 661				     bool is_boot_cpu, unsigned long page)
 662{
 663	__vector128 *vxrs = (__vector128 *) page;
 664
 665	if (is_boot_cpu)
 666		vxrs = boot_cpu_vector_save_area;
 667	else
 668		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 669	save_area_add_vxrs(sa, vxrs);
 670}
 671
 672static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 673				     bool is_boot_cpu, unsigned long page)
 674{
 675	void *regs = (void *) page;
 
 676
 677	if (is_boot_cpu)
 678		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 679	else
 680		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 
 
 
 681	save_area_add_regs(sa, regs);
 
 
 
 682}
 683
 684void __init smp_save_dump_cpus(void)
 685{
 686	int addr, boot_cpu_addr, max_cpu_addr;
 687	struct save_area *sa;
 688	unsigned long page;
 689	bool is_boot_cpu;
 690
 691	if (!(OLDMEM_BASE || is_ipl_type_dump()))
 692		/* No previous system present, normal boot. */
 693		return;
 694	/* Allocate a page as dumping area for the store status sigps */
 695	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
 696	if (!page)
 697		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 698		      PAGE_SIZE, 1UL << 31);
 699
 700	/* Set multi-threading state to the previous system. */
 701	pcpu_set_smt(sclp.mtid_prev);
 702	boot_cpu_addr = stap();
 703	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 704	for (addr = 0; addr <= max_cpu_addr; addr++) {
 
 
 705		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 706		    SIGP_CC_NOT_OPERATIONAL)
 707			continue;
 708		is_boot_cpu = (addr == boot_cpu_addr);
 709		/* Allocate save area */
 710		sa = save_area_alloc(is_boot_cpu);
 711		if (!sa)
 712			panic("could not allocate memory for save area\n");
 713		if (MACHINE_HAS_VX)
 714			/* Get the vector registers */
 715			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 716		/*
 717		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
 718		 * of the boot CPU are stored in the HSA. To retrieve
 719		 * these registers an SCLP request is required which is
 720		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 721		 */
 722		if (!is_boot_cpu || OLDMEM_BASE)
 723			/* Get the CPU registers */
 724			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 725	}
 726	memblock_free(page, PAGE_SIZE);
 727	diag_dma_ops.diag308_reset();
 728	pcpu_set_smt(0);
 729}
 730#endif /* CONFIG_CRASH_DUMP */
 731
 732void smp_cpu_set_polarization(int cpu, int val)
 733{
 734	pcpu_devices[cpu].polarization = val;
 735}
 736
 737int smp_cpu_get_polarization(int cpu)
 738{
 739	return pcpu_devices[cpu].polarization;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740}
 741
 742int smp_cpu_get_cpu_address(int cpu)
 743{
 744	return pcpu_devices[cpu].address;
 745}
 746
 747static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 748{
 749	static int use_sigp_detection;
 750	int address;
 751
 752	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 753		use_sigp_detection = 1;
 754		for (address = 0;
 755		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 756		     address += (1U << smp_cpu_mt_shift)) {
 757			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 758			    SIGP_CC_NOT_OPERATIONAL)
 759				continue;
 760			info->core[info->configured].core_id =
 761				address >> smp_cpu_mt_shift;
 762			info->configured++;
 763		}
 764		info->combined = info->configured;
 765	}
 766}
 767
 768static int smp_add_present_cpu(int cpu);
 769
 770static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 771			bool configured, bool early)
 772{
 773	struct pcpu *pcpu;
 774	int cpu, nr, i;
 775	u16 address;
 776
 777	nr = 0;
 778	if (sclp.has_core_type && core->type != boot_core_type)
 779		return nr;
 780	cpu = cpumask_first(avail);
 781	address = core->core_id << smp_cpu_mt_shift;
 782	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 783		if (pcpu_find_address(cpu_present_mask, address + i))
 784			continue;
 785		pcpu = pcpu_devices + cpu;
 786		pcpu->address = address + i;
 787		if (configured)
 788			pcpu->state = CPU_STATE_CONFIGURED;
 789		else
 790			pcpu->state = CPU_STATE_STANDBY;
 791		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 792		set_cpu_present(cpu, true);
 793		if (!early && smp_add_present_cpu(cpu) != 0)
 794			set_cpu_present(cpu, false);
 795		else
 796			nr++;
 797		cpumask_clear_cpu(cpu, avail);
 798		cpu = cpumask_next(cpu, avail);
 799	}
 800	return nr;
 801}
 802
 803static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 804{
 805	struct sclp_core_entry *core;
 806	static cpumask_t avail;
 807	bool configured;
 808	u16 core_id;
 809	int nr, i;
 810
 811	get_online_cpus();
 812	mutex_lock(&smp_cpu_state_mutex);
 813	nr = 0;
 814	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 815	/*
 816	 * Add IPL core first (which got logical CPU number 0) to make sure
 817	 * that all SMT threads get subsequent logical CPU numbers.
 818	 */
 819	if (early) {
 820		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 821		for (i = 0; i < info->configured; i++) {
 822			core = &info->core[i];
 823			if (core->core_id == core_id) {
 824				nr += smp_add_core(core, &avail, true, early);
 825				break;
 826			}
 827		}
 828	}
 829	for (i = 0; i < info->combined; i++) {
 830		configured = i < info->configured;
 831		nr += smp_add_core(&info->core[i], &avail, configured, early);
 832	}
 833	mutex_unlock(&smp_cpu_state_mutex);
 834	put_online_cpus();
 835	return nr;
 836}
 837
 838void __init smp_detect_cpus(void)
 839{
 840	unsigned int cpu, mtid, c_cpus, s_cpus;
 841	struct sclp_core_info *info;
 842	u16 address;
 843
 844	/* Get CPU information */
 845	info = memblock_alloc(sizeof(*info), 8);
 846	if (!info)
 847		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 848		      __func__, sizeof(*info), 8);
 849	smp_get_core_info(info, 1);
 850	/* Find boot CPU type */
 851	if (sclp.has_core_type) {
 852		address = stap();
 853		for (cpu = 0; cpu < info->combined; cpu++)
 854			if (info->core[cpu].core_id == address) {
 855				/* The boot cpu dictates the cpu type. */
 856				boot_core_type = info->core[cpu].type;
 857				break;
 858			}
 859		if (cpu >= info->combined)
 860			panic("Could not find boot CPU type");
 861	}
 862
 863	/* Set multi-threading state for the current system */
 864	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 865	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 866	pcpu_set_smt(mtid);
 867
 868	/* Print number of CPUs */
 869	c_cpus = s_cpus = 0;
 870	for (cpu = 0; cpu < info->combined; cpu++) {
 871		if (sclp.has_core_type &&
 872		    info->core[cpu].type != boot_core_type)
 873			continue;
 874		if (cpu < info->configured)
 875			c_cpus += smp_cpu_mtid + 1;
 876		else
 877			s_cpus += smp_cpu_mtid + 1;
 878	}
 879	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 880
 881	/* Add CPUs present at boot */
 882	__smp_rescan_cpus(info, true);
 883	memblock_free_early((unsigned long)info, sizeof(*info));
 884}
 885
 886static void smp_init_secondary(void)
 
 
 
 887{
 
 888	int cpu = raw_smp_processor_id();
 889
 890	S390_lowcore.last_update_clock = get_tod_clock();
 891	restore_access_regs(S390_lowcore.access_regs_save_area);
 
 
 
 
 
 892	cpu_init();
 893	rcu_cpu_starting(cpu);
 894	init_cpu_timer();
 895	vtime_init();
 896	vdso_getcpu_init();
 897	pfault_init();
 898	cpumask_set_cpu(cpu, &cpu_setup_mask);
 899	update_cpu_masks();
 900	notify_cpu_starting(cpu);
 901	if (topology_cpu_dedicated(cpu))
 902		set_cpu_flag(CIF_DEDICATED_CPU);
 903	else
 904		clear_cpu_flag(CIF_DEDICATED_CPU);
 905	set_cpu_online(cpu, true);
 906	inc_irq_stat(CPU_RST);
 907	local_irq_enable();
 908	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 909}
 910
 911/*
 912 *	Activate a secondary processor.
 913 */
 914static void smp_start_secondary(void *cpuvoid)
 915{
 916	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 917	S390_lowcore.restart_fn = (unsigned long) do_restart;
 918	S390_lowcore.restart_data = 0;
 919	S390_lowcore.restart_source = -1U;
 920	S390_lowcore.restart_flags = 0;
 921	call_on_stack_noreturn(smp_init_secondary, S390_lowcore.kernel_stack);
 922}
 923
 924/* Upping and downing of CPUs */
 925int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 926{
 927	struct pcpu *pcpu = pcpu_devices + cpu;
 928	int rc;
 929
 930	if (pcpu->state != CPU_STATE_CONFIGURED)
 931		return -EIO;
 932	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 933	    SIGP_CC_ORDER_CODE_ACCEPTED)
 934		return -EIO;
 935
 936	rc = pcpu_alloc_lowcore(pcpu, cpu);
 937	if (rc)
 938		return rc;
 
 
 
 
 
 939	pcpu_prepare_secondary(pcpu, cpu);
 940	pcpu_attach_task(pcpu, tidle);
 941	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 942	/* Wait until cpu puts itself in the online & active maps */
 943	while (!cpu_online(cpu))
 944		cpu_relax();
 
 945	return 0;
 946}
 947
 948static unsigned int setup_possible_cpus __initdata;
 949
 950static int __init _setup_possible_cpus(char *s)
 951{
 952	get_option(&s, &setup_possible_cpus);
 953	return 0;
 954}
 955early_param("possible_cpus", _setup_possible_cpus);
 956
 957int __cpu_disable(void)
 958{
 959	unsigned long cregs[16];
 960	int cpu;
 961
 962	/* Handle possible pending IPIs */
 963	smp_handle_ext_call();
 964	cpu = smp_processor_id();
 965	set_cpu_online(cpu, false);
 966	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 967	update_cpu_masks();
 968	/* Disable pseudo page faults on this cpu. */
 969	pfault_fini();
 970	/* Disable interrupt sources via control register. */
 971	__ctl_store(cregs, 0, 15);
 972	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 973	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 974	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 975	__ctl_load(cregs, 0, 15);
 976	clear_cpu_flag(CIF_NOHZ_DELAY);
 977	return 0;
 978}
 979
 980void __cpu_die(unsigned int cpu)
 981{
 982	struct pcpu *pcpu;
 983
 984	/* Wait until target cpu is down */
 985	pcpu = pcpu_devices + cpu;
 986	while (!pcpu_stopped(pcpu))
 987		cpu_relax();
 988	pcpu_free_lowcore(pcpu);
 989	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 990	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 991}
 992
 993void __noreturn cpu_die(void)
 994{
 995	idle_task_exit();
 996	__bpon();
 997	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 998	for (;;) ;
 999}
1000
1001void __init smp_fill_possible_mask(void)
1002{
1003	unsigned int possible, sclp_max, cpu;
1004
1005	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1006	sclp_max = min(smp_max_threads, sclp_max);
1007	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1008	possible = setup_possible_cpus ?: nr_cpu_ids;
1009	possible = min(possible, sclp_max);
1010	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1011		set_cpu_possible(cpu, true);
1012}
1013
1014void __init smp_prepare_cpus(unsigned int max_cpus)
1015{
1016	/* request the 0x1201 emergency signal external interrupt */
1017	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1018		panic("Couldn't request external interrupt 0x1201");
1019	/* request the 0x1202 external call external interrupt */
1020	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1021		panic("Couldn't request external interrupt 0x1202");
 
 
1022}
1023
1024void __init smp_prepare_boot_cpu(void)
1025{
1026	struct pcpu *pcpu = pcpu_devices;
1027
1028	WARN_ON(!cpu_present(0) || !cpu_online(0));
1029	pcpu->state = CPU_STATE_CONFIGURED;
1030	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 
 
1031	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
1032}
1033
1034void __init smp_setup_processor_id(void)
1035{
1036	pcpu_devices[0].address = stap();
1037	S390_lowcore.cpu_nr = 0;
1038	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1039	S390_lowcore.spinlock_index = 0;
 
 
1040}
1041
1042/*
1043 * the frequency of the profiling timer can be changed
1044 * by writing a multiplier value into /proc/profile.
1045 *
1046 * usually you want to run this on all CPUs ;)
1047 */
1048int setup_profiling_timer(unsigned int multiplier)
1049{
1050	return 0;
1051}
1052
1053static ssize_t cpu_configure_show(struct device *dev,
1054				  struct device_attribute *attr, char *buf)
1055{
1056	ssize_t count;
1057
1058	mutex_lock(&smp_cpu_state_mutex);
1059	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1060	mutex_unlock(&smp_cpu_state_mutex);
1061	return count;
1062}
1063
1064static ssize_t cpu_configure_store(struct device *dev,
1065				   struct device_attribute *attr,
1066				   const char *buf, size_t count)
1067{
1068	struct pcpu *pcpu;
1069	int cpu, val, rc, i;
1070	char delim;
1071
1072	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1073		return -EINVAL;
1074	if (val != 0 && val != 1)
1075		return -EINVAL;
1076	get_online_cpus();
1077	mutex_lock(&smp_cpu_state_mutex);
1078	rc = -EBUSY;
1079	/* disallow configuration changes of online cpus and cpu 0 */
1080	cpu = dev->id;
1081	cpu = smp_get_base_cpu(cpu);
1082	if (cpu == 0)
1083		goto out;
1084	for (i = 0; i <= smp_cpu_mtid; i++)
1085		if (cpu_online(cpu + i))
1086			goto out;
1087	pcpu = pcpu_devices + cpu;
1088	rc = 0;
1089	switch (val) {
1090	case 0:
1091		if (pcpu->state != CPU_STATE_CONFIGURED)
1092			break;
1093		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1094		if (rc)
1095			break;
1096		for (i = 0; i <= smp_cpu_mtid; i++) {
1097			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1098				continue;
1099			pcpu[i].state = CPU_STATE_STANDBY;
1100			smp_cpu_set_polarization(cpu + i,
1101						 POLARIZATION_UNKNOWN);
1102		}
1103		topology_expect_change();
1104		break;
1105	case 1:
1106		if (pcpu->state != CPU_STATE_STANDBY)
1107			break;
1108		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1109		if (rc)
1110			break;
1111		for (i = 0; i <= smp_cpu_mtid; i++) {
1112			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1113				continue;
1114			pcpu[i].state = CPU_STATE_CONFIGURED;
1115			smp_cpu_set_polarization(cpu + i,
1116						 POLARIZATION_UNKNOWN);
1117		}
1118		topology_expect_change();
1119		break;
1120	default:
1121		break;
1122	}
1123out:
1124	mutex_unlock(&smp_cpu_state_mutex);
1125	put_online_cpus();
1126	return rc ? rc : count;
1127}
1128static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1129
1130static ssize_t show_cpu_address(struct device *dev,
1131				struct device_attribute *attr, char *buf)
1132{
1133	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1134}
1135static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1136
1137static struct attribute *cpu_common_attrs[] = {
1138	&dev_attr_configure.attr,
1139	&dev_attr_address.attr,
1140	NULL,
1141};
1142
1143static struct attribute_group cpu_common_attr_group = {
1144	.attrs = cpu_common_attrs,
1145};
1146
1147static struct attribute *cpu_online_attrs[] = {
1148	&dev_attr_idle_count.attr,
1149	&dev_attr_idle_time_us.attr,
1150	NULL,
1151};
1152
1153static struct attribute_group cpu_online_attr_group = {
1154	.attrs = cpu_online_attrs,
1155};
1156
1157static int smp_cpu_online(unsigned int cpu)
1158{
1159	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1160
1161	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1162}
1163
1164static int smp_cpu_pre_down(unsigned int cpu)
1165{
1166	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1167
1168	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1169	return 0;
1170}
1171
1172static int smp_add_present_cpu(int cpu)
 
 
 
 
 
1173{
1174	struct device *s;
1175	struct cpu *c;
1176	int rc;
1177
1178	c = kzalloc(sizeof(*c), GFP_KERNEL);
1179	if (!c)
1180		return -ENOMEM;
1181	per_cpu(cpu_device, cpu) = c;
1182	s = &c->dev;
1183	c->hotpluggable = 1;
1184	rc = register_cpu(c, cpu);
1185	if (rc)
1186		goto out;
1187	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1188	if (rc)
1189		goto out_cpu;
1190	rc = topology_cpu_init(c);
1191	if (rc)
1192		goto out_topology;
1193	return 0;
1194
1195out_topology:
1196	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1197out_cpu:
1198	unregister_cpu(c);
1199out:
1200	return rc;
1201}
1202
1203int __ref smp_rescan_cpus(void)
1204{
1205	struct sclp_core_info *info;
1206	int nr;
1207
1208	info = kzalloc(sizeof(*info), GFP_KERNEL);
1209	if (!info)
1210		return -ENOMEM;
1211	smp_get_core_info(info, 0);
1212	nr = __smp_rescan_cpus(info, false);
1213	kfree(info);
1214	if (nr)
1215		topology_schedule_update();
1216	return 0;
1217}
1218
1219static ssize_t __ref rescan_store(struct device *dev,
1220				  struct device_attribute *attr,
1221				  const char *buf,
1222				  size_t count)
1223{
1224	int rc;
1225
1226	rc = lock_device_hotplug_sysfs();
1227	if (rc)
1228		return rc;
1229	rc = smp_rescan_cpus();
1230	unlock_device_hotplug();
1231	return rc ? rc : count;
1232}
1233static DEVICE_ATTR_WO(rescan);
1234
1235static int __init s390_smp_init(void)
1236{
1237	int cpu, rc = 0;
 
1238
1239	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1240	if (rc)
1241		return rc;
1242	for_each_present_cpu(cpu) {
1243		rc = smp_add_present_cpu(cpu);
1244		if (rc)
1245			goto out;
1246	}
1247
1248	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1249			       smp_cpu_online, smp_cpu_pre_down);
1250	rc = rc <= 0 ? rc : 0;
1251out:
1252	return rc;
1253}
1254subsys_initcall(s390_smp_init);
1255
1256static __always_inline void set_new_lowcore(struct lowcore *lc)
1257{
1258	union register_pair dst, src;
1259	u32 pfx;
1260
1261	src.even = (unsigned long) &S390_lowcore;
1262	src.odd  = sizeof(S390_lowcore);
1263	dst.even = (unsigned long) lc;
1264	dst.odd  = sizeof(*lc);
1265	pfx = (unsigned long) lc;
1266
1267	asm volatile(
1268		"	mvcl	%[dst],%[src]\n"
1269		"	spx	%[pfx]\n"
1270		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1271		: [pfx] "Q" (pfx)
1272		: "memory", "cc");
1273}
1274
1275static int __init smp_reinit_ipl_cpu(void)
1276{
1277	unsigned long async_stack, nodat_stack, mcck_stack;
1278	struct lowcore *lc, *lc_ipl;
1279	unsigned long flags;
1280
1281	lc_ipl = lowcore_ptr[0];
1282	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1283	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1284	async_stack = stack_alloc();
1285	mcck_stack = stack_alloc();
1286	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1287		panic("Couldn't allocate memory");
1288
1289	local_irq_save(flags);
1290	local_mcck_disable();
1291	set_new_lowcore(lc);
1292	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1293	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1294	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1295	lowcore_ptr[0] = lc;
1296	local_mcck_enable();
1297	local_irq_restore(flags);
1298
1299	free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1300	memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1301	memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1302
1303	return 0;
1304}
1305early_initcall(smp_reinit_ipl_cpu);