Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
 
  38#include <linux/kprobes.h>
  39#include <asm/access-regs.h>
  40#include <asm/asm-offsets.h>
  41#include <asm/ctlreg.h>
  42#include <asm/pfault.h>
  43#include <asm/diag.h>
 
  44#include <asm/facility.h>
  45#include <asm/fpu.h>
  46#include <asm/ipl.h>
  47#include <asm/setup.h>
  48#include <asm/irq.h>
  49#include <asm/tlbflush.h>
  50#include <asm/vtimer.h>
  51#include <asm/abs_lowcore.h>
  52#include <asm/sclp.h>
 
  53#include <asm/debug.h>
  54#include <asm/os_info.h>
  55#include <asm/sigp.h>
  56#include <asm/idle.h>
  57#include <asm/nmi.h>
  58#include <asm/stacktrace.h>
  59#include <asm/topology.h>
  60#include <asm/vdso.h>
  61#include <asm/maccess.h>
  62#include "entry.h"
  63
  64enum {
  65	ec_schedule = 0,
  66	ec_call_function_single,
  67	ec_stop_cpu,
  68	ec_mcck_pending,
  69	ec_irq_work,
  70};
  71
  72enum {
  73	CPU_STATE_STANDBY,
  74	CPU_STATE_CONFIGURED,
  75};
  76
 
 
 
 
 
 
 
 
 
 
 
  77static u8 boot_core_type;
  78DEFINE_PER_CPU(struct pcpu, pcpu_devices);
  79/*
  80 * Pointer to the pcpu area of the boot CPU. This is required when a restart
  81 * interrupt is triggered on an offline CPU. For that case accessing percpu
  82 * data with the common primitives does not work, since the percpu offset is
  83 * stored in a non existent lowcore.
  84 */
  85static struct pcpu *ipl_pcpu;
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices array.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (per_cpu(pcpu_devices, cpu).address == address)
 177			return &per_cpu(pcpu_devices, cpu);
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 
 
 
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 203	memcpy(lc, get_lowcore(), 512);
 
 
 
 
 
 
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 211	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213	lc->preempt_count = PREEMPT_DISABLED;
 214	if (nmi_alloc_mcesa(&lc->mcesad))
 215		goto out;
 216	if (abs_lowcore_map(cpu, lc, true))
 217		goto out_mcesa;
 218	lowcore_ptr[cpu] = lc;
 219	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 220	return 0;
 221
 222out_mcesa:
 223	nmi_free_mcesa(&lc->mcesad);
 224out:
 225	stack_free(mcck_stack);
 226	stack_free(async_stack);
 227	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 228	free_pages((unsigned long) lc, LC_ORDER);
 
 229	return -ENOMEM;
 230}
 231
 232static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
 233{
 234	unsigned long async_stack, nodat_stack, mcck_stack;
 235	struct lowcore *lc;
 236
 237	lc = lowcore_ptr[cpu];
 238	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 239	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 240	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 241	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 242	lowcore_ptr[cpu] = NULL;
 243	abs_lowcore_unmap(cpu);
 244	nmi_free_mcesa(&lc->mcesad);
 245	stack_free(async_stack);
 246	stack_free(mcck_stack);
 247	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 248	free_pages((unsigned long) lc, LC_ORDER);
 
 249}
 250
 
 
 251static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 252{
 253	struct lowcore *lc, *abs_lc;
 254
 255	lc = lowcore_ptr[cpu];
 256	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 257	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 258	lc->cpu_nr = cpu;
 259	lc->pcpu = (unsigned long)pcpu;
 260	lc->restart_flags = RESTART_FLAG_CTLREGS;
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = get_lowcore()->kernel_asce;
 265	lc->user_asce = s390_invalid_asce;
 266	lc->machine_flags = get_lowcore()->machine_flags;
 267	lc->user_timer = lc->system_timer =
 268		lc->steal_timer = lc->avg_steal_timer = 0;
 269	abs_lc = get_abs_lowcore();
 270	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 271	put_abs_lowcore(abs_lc);
 272	lc->cregs_save_area[1] = lc->kernel_asce;
 273	lc->cregs_save_area[7] = lc->user_asce;
 274	save_access_regs((unsigned int *) lc->access_regs_save_area);
 
 
 
 
 275	arch_spin_lock_setup(cpu);
 276}
 277
 278static void pcpu_attach_task(int cpu, struct task_struct *tsk)
 279{
 280	struct lowcore *lc;
 281
 282	lc = lowcore_ptr[cpu];
 283	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 284	lc->current_task = (unsigned long)tsk;
 285	lc->lpp = LPP_MAGIC;
 286	lc->current_pid = tsk->pid;
 287	lc->user_timer = tsk->thread.user_timer;
 288	lc->guest_timer = tsk->thread.guest_timer;
 289	lc->system_timer = tsk->thread.system_timer;
 290	lc->hardirq_timer = tsk->thread.hardirq_timer;
 291	lc->softirq_timer = tsk->thread.softirq_timer;
 292	lc->steal_timer = 0;
 293}
 294
 295static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
 296{
 297	struct lowcore *lc;
 298
 299	lc = lowcore_ptr[cpu];
 300	lc->restart_stack = lc->kernel_stack;
 301	lc->restart_fn = (unsigned long) func;
 302	lc->restart_data = (unsigned long) data;
 303	lc->restart_source = -1U;
 304	pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
 305}
 306
 307typedef void (pcpu_delegate_fn)(void *);
 308
 309/*
 310 * Call function via PSW restart on pcpu and stop the current cpu.
 311 */
 312static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 313{
 314	func(data);	/* should not return */
 315}
 316
 317static void pcpu_delegate(struct pcpu *pcpu, int cpu,
 318			  pcpu_delegate_fn *func,
 319			  void *data, unsigned long stack)
 320{
 321	struct lowcore *lc, *abs_lc;
 322	unsigned int source_cpu;
 323
 324	lc = lowcore_ptr[cpu];
 325	source_cpu = stap();
 326
 327	if (pcpu->address == source_cpu) {
 328		call_on_stack(2, stack, void, __pcpu_delegate,
 329			      pcpu_delegate_fn *, func, void *, data);
 330	}
 331	/* Stop target cpu (if func returns this stops the current cpu). */
 332	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 333	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 334	/* Restart func on the target cpu and stop the current cpu. */
 335	if (lc) {
 336		lc->restart_stack = stack;
 337		lc->restart_fn = (unsigned long)func;
 338		lc->restart_data = (unsigned long)data;
 339		lc->restart_source = source_cpu;
 340	} else {
 341		abs_lc = get_abs_lowcore();
 342		abs_lc->restart_stack = stack;
 343		abs_lc->restart_fn = (unsigned long)func;
 344		abs_lc->restart_data = (unsigned long)data;
 345		abs_lc->restart_source = source_cpu;
 346		put_abs_lowcore(abs_lc);
 347	}
 348	asm volatile(
 349		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 350		"	brc	2,0b	# busy, try again\n"
 351		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 352		"	brc	2,1b	# busy, try again\n"
 353		: : "d" (pcpu->address), "d" (source_cpu),
 354		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 355		: "0", "1", "cc");
 356	for (;;) ;
 357}
 358
 359/*
 360 * Enable additional logical cpus for multi-threading.
 361 */
 362static int pcpu_set_smt(unsigned int mtid)
 363{
 364	int cc;
 365
 366	if (smp_cpu_mtid == mtid)
 367		return 0;
 368	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 369	if (cc == 0) {
 370		smp_cpu_mtid = mtid;
 371		smp_cpu_mt_shift = 0;
 372		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 373			smp_cpu_mt_shift++;
 374		per_cpu(pcpu_devices, 0).address = stap();
 375	}
 376	return cc;
 377}
 378
 379/*
 380 * Call function on the ipl CPU.
 381 */
 382void smp_call_ipl_cpu(void (*func)(void *), void *data)
 383{
 384	struct lowcore *lc = lowcore_ptr[0];
 385
 386	if (ipl_pcpu->address == stap())
 387		lc = get_lowcore();
 
 
 
 
 
 388
 389	pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
 
 
 
 
 
 
 
 390}
 391
 392int smp_find_processor_id(u16 address)
 393{
 394	int cpu;
 395
 396	for_each_present_cpu(cpu)
 397		if (per_cpu(pcpu_devices, cpu).address == address)
 398			return cpu;
 399	return -1;
 400}
 401
 402void schedule_mcck_handler(void)
 403{
 404	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
 405}
 406
 407bool notrace arch_vcpu_is_preempted(int cpu)
 408{
 409	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 410		return false;
 411	if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
 412		return false;
 413	return true;
 414}
 415EXPORT_SYMBOL(arch_vcpu_is_preempted);
 416
 417void notrace smp_yield_cpu(int cpu)
 418{
 419	if (!MACHINE_HAS_DIAG9C)
 420		return;
 421	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 422	asm volatile("diag %0,0,0x9c"
 423		     : : "d" (per_cpu(pcpu_devices, cpu).address));
 
 
 
 424}
 425EXPORT_SYMBOL_GPL(smp_yield_cpu);
 426
 427/*
 428 * Send cpus emergency shutdown signal. This gives the cpus the
 429 * opportunity to complete outstanding interrupts.
 430 */
 431void notrace smp_emergency_stop(void)
 432{
 433	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 434	static cpumask_t cpumask;
 435	u64 end;
 436	int cpu;
 437
 438	arch_spin_lock(&lock);
 439	cpumask_copy(&cpumask, cpu_online_mask);
 440	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 441
 442	end = get_tod_clock() + (1000000UL << 12);
 443	for_each_cpu(cpu, &cpumask) {
 444		struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 445		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 446		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 447				   0, NULL) == SIGP_CC_BUSY &&
 448		       get_tod_clock() < end)
 449			cpu_relax();
 450	}
 451	while (get_tod_clock() < end) {
 452		for_each_cpu(cpu, &cpumask)
 453			if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
 454				cpumask_clear_cpu(cpu, &cpumask);
 455		if (cpumask_empty(&cpumask))
 456			break;
 457		cpu_relax();
 458	}
 459	arch_spin_unlock(&lock);
 460}
 461NOKPROBE_SYMBOL(smp_emergency_stop);
 462
 463/*
 464 * Stop all cpus but the current one.
 465 */
 466void smp_send_stop(void)
 467{
 468	struct pcpu *pcpu;
 469	int cpu;
 470
 471	/* Disable all interrupts/machine checks */
 472	__load_psw_mask(PSW_KERNEL_BITS);
 473	trace_hardirqs_off();
 474
 475	debug_set_critical();
 476
 477	if (oops_in_progress)
 478		smp_emergency_stop();
 479
 480	/* stop all processors */
 481	for_each_online_cpu(cpu) {
 482		if (cpu == smp_processor_id())
 483			continue;
 484		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 485		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 486		while (!pcpu_stopped(pcpu))
 487			cpu_relax();
 488	}
 489}
 490
 491/*
 492 * This is the main routine where commands issued by other
 493 * cpus are handled.
 494 */
 495static void smp_handle_ext_call(void)
 496{
 497	unsigned long bits;
 498
 499	/* handle bit signal external calls */
 500	bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
 501	if (test_bit(ec_stop_cpu, &bits))
 502		smp_stop_cpu();
 503	if (test_bit(ec_schedule, &bits))
 504		scheduler_ipi();
 505	if (test_bit(ec_call_function_single, &bits))
 506		generic_smp_call_function_single_interrupt();
 507	if (test_bit(ec_mcck_pending, &bits))
 508		s390_handle_mcck();
 509	if (test_bit(ec_irq_work, &bits))
 510		irq_work_run();
 511}
 512
 513static void do_ext_call_interrupt(struct ext_code ext_code,
 514				  unsigned int param32, unsigned long param64)
 515{
 516	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 517	smp_handle_ext_call();
 518}
 519
 520void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 521{
 522	int cpu;
 523
 524	for_each_cpu(cpu, mask)
 525		pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 526}
 527
 528void arch_send_call_function_single_ipi(int cpu)
 529{
 530	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 531}
 532
 533/*
 534 * this function sends a 'reschedule' IPI to another CPU.
 535 * it goes straight through and wastes no time serializing
 536 * anything. Worst case is that we lose a reschedule ...
 537 */
 538void arch_smp_send_reschedule(int cpu)
 539{
 540	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
 541}
 542
 543#ifdef CONFIG_IRQ_WORK
 544void arch_irq_work_raise(void)
 
 
 
 
 
 
 
 
 
 
 
 545{
 546	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
 
 
 
 
 
 547}
 548#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550#ifdef CONFIG_CRASH_DUMP
 551
 552int smp_store_status(int cpu)
 553{
 554	struct lowcore *lc;
 555	struct pcpu *pcpu;
 556	unsigned long pa;
 557
 558	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 559	lc = lowcore_ptr[cpu];
 560	pa = __pa(&lc->floating_pt_save_area);
 561	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 562			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 563		return -EIO;
 564	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 565		return 0;
 566	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 567	if (MACHINE_HAS_GS)
 568		pa |= lc->mcesad & MCESA_LC_MASK;
 569	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 570			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 571		return -EIO;
 572	return 0;
 573}
 574
 575/*
 576 * Collect CPU state of the previous, crashed system.
 577 * There are three cases:
 578 * 1) standard zfcp/nvme dump
 579 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 580 *    The state for all CPUs except the boot CPU needs to be collected
 581 *    with sigp stop-and-store-status. The boot CPU state is located in
 582 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 583 *    will copy the boot CPU state from the HSA.
 584 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 585 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 586 *    The state for all CPUs except the boot CPU needs to be collected
 587 *    with sigp stop-and-store-status. The firmware or the boot-loader
 588 *    stored the registers of the boot CPU in the absolute lowcore in the
 589 *    memory of the old system.
 590 * 3) kdump or stand-alone kdump for DASD
 591 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
 
 592 *    The state for all CPUs except the boot CPU needs to be collected
 593 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 594 *    stored the registers of the boot CPU in the memory of the old system.
 595 *
 596 * Note that the legacy kdump mode where the old kernel stored the CPU states
 597 * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
 598 * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
 599 * of the elfcorehdr= parameter.
 600 */
 601static bool dump_available(void)
 
 602{
 603	return oldmem_data.start || is_ipl_type_dump();
 
 
 
 
 
 
 604}
 605
 606void __init smp_save_dump_ipl_cpu(void)
 
 607{
 608	struct save_area *sa;
 609	void *regs;
 610
 611	if (!dump_available())
 612		return;
 613	sa = save_area_alloc(true);
 614	regs = memblock_alloc(512, 8);
 615	if (!sa || !regs)
 616		panic("could not allocate memory for boot CPU save area\n");
 617	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 618	save_area_add_regs(sa, regs);
 619	memblock_free(regs, 512);
 620	if (cpu_has_vx())
 621		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 622}
 623
 624void __init smp_save_dump_secondary_cpus(void)
 625{
 626	int addr, boot_cpu_addr, max_cpu_addr;
 627	struct save_area *sa;
 628	void *page;
 
 629
 630	if (!dump_available())
 
 631		return;
 632	/* Allocate a page as dumping area for the store status sigps */
 633	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 634	if (!page)
 635		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 636		      PAGE_SIZE, 1UL << 31);
 637
 638	/* Set multi-threading state to the previous system. */
 639	pcpu_set_smt(sclp.mtid_prev);
 640	boot_cpu_addr = stap();
 641	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 642	for (addr = 0; addr <= max_cpu_addr; addr++) {
 643		if (addr == boot_cpu_addr)
 644			continue;
 645		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 646		    SIGP_CC_NOT_OPERATIONAL)
 647			continue;
 648		sa = save_area_alloc(false);
 
 
 649		if (!sa)
 650			panic("could not allocate memory for save area\n");
 651		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 652		save_area_add_regs(sa, page);
 653		if (cpu_has_vx()) {
 654			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 655			save_area_add_vxrs(sa, page);
 656		}
 
 
 
 
 
 
 657	}
 658	memblock_free(page, PAGE_SIZE);
 659	diag_amode31_ops.diag308_reset();
 660	pcpu_set_smt(0);
 661}
 662#endif /* CONFIG_CRASH_DUMP */
 663
 664void smp_cpu_set_polarization(int cpu, int val)
 665{
 666	per_cpu(pcpu_devices, cpu).polarization = val;
 667}
 668
 669int smp_cpu_get_polarization(int cpu)
 670{
 671	return per_cpu(pcpu_devices, cpu).polarization;
 672}
 673
 674void smp_cpu_set_capacity(int cpu, unsigned long val)
 675{
 676	per_cpu(pcpu_devices, cpu).capacity = val;
 677}
 678
 679unsigned long smp_cpu_get_capacity(int cpu)
 680{
 681	return per_cpu(pcpu_devices, cpu).capacity;
 682}
 683
 684void smp_set_core_capacity(int cpu, unsigned long val)
 685{
 686	int i;
 687
 688	cpu = smp_get_base_cpu(cpu);
 689	for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
 690		smp_cpu_set_capacity(i, val);
 691}
 692
 693int smp_cpu_get_cpu_address(int cpu)
 694{
 695	return per_cpu(pcpu_devices, cpu).address;
 696}
 697
 698static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 699{
 700	static int use_sigp_detection;
 701	int address;
 702
 703	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 704		use_sigp_detection = 1;
 705		for (address = 0;
 706		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 707		     address += (1U << smp_cpu_mt_shift)) {
 708			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 709			    SIGP_CC_NOT_OPERATIONAL)
 710				continue;
 711			info->core[info->configured].core_id =
 712				address >> smp_cpu_mt_shift;
 713			info->configured++;
 714		}
 715		info->combined = info->configured;
 716	}
 717}
 718
 719static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 720			bool configured, bool early)
 
 721{
 722	struct pcpu *pcpu;
 723	int cpu, nr, i;
 
 724	u16 address;
 725
 726	nr = 0;
 727	if (sclp.has_core_type && core->type != boot_core_type)
 728		return nr;
 729	cpu = cpumask_first(avail);
 730	address = core->core_id << smp_cpu_mt_shift;
 731	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 732		if (pcpu_find_address(cpu_present_mask, address + i))
 733			continue;
 734		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 735		pcpu->address = address + i;
 736		if (configured)
 737			pcpu->state = CPU_STATE_CONFIGURED;
 738		else
 739			pcpu->state = CPU_STATE_STANDBY;
 740		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 741		smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
 742		set_cpu_present(cpu, true);
 743		if (!early && arch_register_cpu(cpu))
 744			set_cpu_present(cpu, false);
 745		else
 746			nr++;
 747		cpumask_clear_cpu(cpu, avail);
 748		cpu = cpumask_next(cpu, avail);
 749	}
 750	return nr;
 751}
 752
 753static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 754{
 755	struct sclp_core_entry *core;
 756	static cpumask_t avail;
 757	bool configured;
 758	u16 core_id;
 759	int nr, i;
 760
 761	cpus_read_lock();
 762	mutex_lock(&smp_cpu_state_mutex);
 763	nr = 0;
 764	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 765	/*
 766	 * Add IPL core first (which got logical CPU number 0) to make sure
 767	 * that all SMT threads get subsequent logical CPU numbers.
 768	 */
 769	if (early) {
 770		core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
 771		for (i = 0; i < info->configured; i++) {
 772			core = &info->core[i];
 773			if (core->core_id == core_id) {
 774				nr += smp_add_core(core, &avail, true, early);
 
 
 
 
 
 
 
 
 
 
 
 775				break;
 776			}
 777		}
 778	}
 779	for (i = 0; i < info->combined; i++) {
 780		configured = i < info->configured;
 781		nr += smp_add_core(&info->core[i], &avail, configured, early);
 782	}
 783	mutex_unlock(&smp_cpu_state_mutex);
 784	cpus_read_unlock();
 785	return nr;
 786}
 787
 788void __init smp_detect_cpus(void)
 789{
 790	unsigned int cpu, mtid, c_cpus, s_cpus;
 791	struct sclp_core_info *info;
 792	u16 address;
 793
 794	/* Get CPU information */
 795	info = memblock_alloc(sizeof(*info), 8);
 796	if (!info)
 797		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 798		      __func__, sizeof(*info), 8);
 799	smp_get_core_info(info, 1);
 800	/* Find boot CPU type */
 801	if (sclp.has_core_type) {
 802		address = stap();
 803		for (cpu = 0; cpu < info->combined; cpu++)
 804			if (info->core[cpu].core_id == address) {
 805				/* The boot cpu dictates the cpu type. */
 806				boot_core_type = info->core[cpu].type;
 807				break;
 808			}
 809		if (cpu >= info->combined)
 810			panic("Could not find boot CPU type");
 811	}
 812
 813	/* Set multi-threading state for the current system */
 814	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 815	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 816	pcpu_set_smt(mtid);
 817
 818	/* Print number of CPUs */
 819	c_cpus = s_cpus = 0;
 820	for (cpu = 0; cpu < info->combined; cpu++) {
 821		if (sclp.has_core_type &&
 822		    info->core[cpu].type != boot_core_type)
 823			continue;
 824		if (cpu < info->configured)
 825			c_cpus += smp_cpu_mtid + 1;
 826		else
 827			s_cpus += smp_cpu_mtid + 1;
 828	}
 829	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 830	memblock_free(info, sizeof(*info));
 
 
 
 
 
 831}
 832
 833/*
 834 *	Activate a secondary processor.
 835 */
 836static void smp_start_secondary(void *cpuvoid)
 837{
 838	struct lowcore *lc = get_lowcore();
 839	int cpu = raw_smp_processor_id();
 840
 841	lc->last_update_clock = get_tod_clock();
 842	lc->restart_stack = (unsigned long)restart_stack;
 843	lc->restart_fn = (unsigned long)do_restart;
 844	lc->restart_data = 0;
 845	lc->restart_source = -1U;
 846	lc->restart_flags = 0;
 847	restore_access_regs(lc->access_regs_save_area);
 
 848	cpu_init();
 849	rcutree_report_cpu_starting(cpu);
 850	init_cpu_timer();
 851	vtime_init();
 852	vdso_getcpu_init();
 853	pfault_init();
 854	cpumask_set_cpu(cpu, &cpu_setup_mask);
 855	update_cpu_masks();
 856	notify_cpu_starting(cpu);
 857	if (topology_cpu_dedicated(cpu))
 858		set_cpu_flag(CIF_DEDICATED_CPU);
 859	else
 860		clear_cpu_flag(CIF_DEDICATED_CPU);
 861	set_cpu_online(cpu, true);
 862	inc_irq_stat(CPU_RST);
 863	local_irq_enable();
 864	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 865}
 866
 867/* Upping and downing of CPUs */
 868int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 869{
 870	struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 871	int rc;
 872
 
 873	if (pcpu->state != CPU_STATE_CONFIGURED)
 874		return -EIO;
 875	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 
 
 
 
 
 
 
 
 
 
 
 876	    SIGP_CC_ORDER_CODE_ACCEPTED)
 877		return -EIO;
 878
 879	rc = pcpu_alloc_lowcore(pcpu, cpu);
 880	if (rc)
 881		return rc;
 882	/*
 883	 * Make sure global control register contents do not change
 884	 * until new CPU has initialized control registers.
 885	 */
 886	system_ctlreg_lock();
 887	pcpu_prepare_secondary(pcpu, cpu);
 888	pcpu_attach_task(cpu, tidle);
 889	pcpu_start_fn(cpu, smp_start_secondary, NULL);
 890	/* Wait until cpu puts itself in the online & active maps */
 891	while (!cpu_online(cpu))
 892		cpu_relax();
 893	system_ctlreg_unlock();
 894	return 0;
 895}
 896
 897static unsigned int setup_possible_cpus __initdata;
 898
 899static int __init _setup_possible_cpus(char *s)
 900{
 901	get_option(&s, &setup_possible_cpus);
 902	return 0;
 903}
 904early_param("possible_cpus", _setup_possible_cpus);
 905
 
 
 906int __cpu_disable(void)
 907{
 908	struct ctlreg cregs[16];
 909	int cpu;
 910
 911	/* Handle possible pending IPIs */
 912	smp_handle_ext_call();
 913	cpu = smp_processor_id();
 914	set_cpu_online(cpu, false);
 915	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 916	update_cpu_masks();
 917	/* Disable pseudo page faults on this cpu. */
 918	pfault_fini();
 919	/* Disable interrupt sources via control register. */
 920	__local_ctl_store(0, 15, cregs);
 921	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 922	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 923	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 924	__local_ctl_load(0, 15, cregs);
 925	clear_cpu_flag(CIF_NOHZ_DELAY);
 926	return 0;
 927}
 928
 929void __cpu_die(unsigned int cpu)
 930{
 931	struct pcpu *pcpu;
 932
 933	/* Wait until target cpu is down */
 934	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 935	while (!pcpu_stopped(pcpu))
 936		cpu_relax();
 937	pcpu_free_lowcore(pcpu, cpu);
 938	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 939	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 940	pcpu->flags = 0;
 941}
 942
 943void __noreturn cpu_die(void)
 944{
 945	idle_task_exit();
 946	pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
 
 947	for (;;) ;
 948}
 949
 
 
 950void __init smp_fill_possible_mask(void)
 951{
 952	unsigned int possible, sclp_max, cpu;
 953
 954	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 955	sclp_max = min(smp_max_threads, sclp_max);
 956	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 957	possible = setup_possible_cpus ?: nr_cpu_ids;
 958	possible = min(possible, sclp_max);
 959	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 960		set_cpu_possible(cpu, true);
 961}
 962
 963void __init smp_prepare_cpus(unsigned int max_cpus)
 964{
 
 965	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 966		panic("Couldn't request external interrupt 0x1201");
 967	system_ctl_set_bit(0, 14);
 968	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 969		panic("Couldn't request external interrupt 0x1202");
 970	system_ctl_set_bit(0, 13);
 971	smp_rescan_cpus(true);
 972}
 973
 974void __init smp_prepare_boot_cpu(void)
 975{
 976	struct lowcore *lc = get_lowcore();
 977
 978	WARN_ON(!cpu_present(0) || !cpu_online(0));
 979	lc->percpu_offset = __per_cpu_offset[0];
 980	ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
 981	ipl_pcpu->state = CPU_STATE_CONFIGURED;
 982	lc->pcpu = (unsigned long)ipl_pcpu;
 983	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 984	smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
 985}
 986
 987void __init smp_setup_processor_id(void)
 988{
 989	struct lowcore *lc = get_lowcore();
 990
 991	lc->cpu_nr = 0;
 992	per_cpu(pcpu_devices, 0).address = stap();
 993	lc->spinlock_lockval = arch_spin_lockval(0);
 994	lc->spinlock_index = 0;
 
 
 995}
 996
 997/*
 998 * the frequency of the profiling timer can be changed
 999 * by writing a multiplier value into /proc/profile.
1000 *
1001 * usually you want to run this on all CPUs ;)
1002 */
1003int setup_profiling_timer(unsigned int multiplier)
1004{
1005	return 0;
1006}
1007
 
1008static ssize_t cpu_configure_show(struct device *dev,
1009				  struct device_attribute *attr, char *buf)
1010{
1011	ssize_t count;
1012
1013	mutex_lock(&smp_cpu_state_mutex);
1014	count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1015	mutex_unlock(&smp_cpu_state_mutex);
1016	return count;
1017}
1018
1019static ssize_t cpu_configure_store(struct device *dev,
1020				   struct device_attribute *attr,
1021				   const char *buf, size_t count)
1022{
1023	struct pcpu *pcpu;
1024	int cpu, val, rc, i;
1025	char delim;
1026
1027	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1028		return -EINVAL;
1029	if (val != 0 && val != 1)
1030		return -EINVAL;
1031	cpus_read_lock();
1032	mutex_lock(&smp_cpu_state_mutex);
1033	rc = -EBUSY;
1034	/* disallow configuration changes of online cpus */
1035	cpu = dev->id;
1036	cpu = smp_get_base_cpu(cpu);
 
 
1037	for (i = 0; i <= smp_cpu_mtid; i++)
1038		if (cpu_online(cpu + i))
1039			goto out;
1040	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1041	rc = 0;
1042	switch (val) {
1043	case 0:
1044		if (pcpu->state != CPU_STATE_CONFIGURED)
1045			break;
1046		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1047		if (rc)
1048			break;
1049		for (i = 0; i <= smp_cpu_mtid; i++) {
1050			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051				continue;
1052			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1053			smp_cpu_set_polarization(cpu + i,
1054						 POLARIZATION_UNKNOWN);
1055		}
1056		topology_expect_change();
1057		break;
1058	case 1:
1059		if (pcpu->state != CPU_STATE_STANDBY)
1060			break;
1061		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1062		if (rc)
1063			break;
1064		for (i = 0; i <= smp_cpu_mtid; i++) {
1065			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1066				continue;
1067			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1068			smp_cpu_set_polarization(cpu + i,
1069						 POLARIZATION_UNKNOWN);
1070		}
1071		topology_expect_change();
1072		break;
1073	default:
1074		break;
1075	}
1076out:
1077	mutex_unlock(&smp_cpu_state_mutex);
1078	cpus_read_unlock();
1079	return rc ? rc : count;
1080}
1081static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 
1082
1083static ssize_t show_cpu_address(struct device *dev,
1084				struct device_attribute *attr, char *buf)
1085{
1086	return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1087}
1088static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1089
1090static struct attribute *cpu_common_attrs[] = {
 
1091	&dev_attr_configure.attr,
 
1092	&dev_attr_address.attr,
1093	NULL,
1094};
1095
1096static struct attribute_group cpu_common_attr_group = {
1097	.attrs = cpu_common_attrs,
1098};
1099
1100static struct attribute *cpu_online_attrs[] = {
1101	&dev_attr_idle_count.attr,
1102	&dev_attr_idle_time_us.attr,
1103	NULL,
1104};
1105
1106static struct attribute_group cpu_online_attr_group = {
1107	.attrs = cpu_online_attrs,
1108};
1109
1110static int smp_cpu_online(unsigned int cpu)
1111{
1112	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1113
1114	return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1115}
1116
1117static int smp_cpu_pre_down(unsigned int cpu)
1118{
1119	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1120
1121	sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1122	return 0;
1123}
1124
1125bool arch_cpu_is_hotpluggable(int cpu)
1126{
1127	return !!cpu;
1128}
1129
1130int arch_register_cpu(int cpu)
1131{
1132	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1133	int rc;
1134
1135	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
 
 
 
 
 
1136	rc = register_cpu(c, cpu);
1137	if (rc)
1138		goto out;
1139	rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1140	if (rc)
1141		goto out_cpu;
1142	rc = topology_cpu_init(c);
1143	if (rc)
1144		goto out_topology;
1145	return 0;
1146
1147out_topology:
1148	sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1149out_cpu:
 
1150	unregister_cpu(c);
 
1151out:
1152	return rc;
1153}
1154
1155int __ref smp_rescan_cpus(bool early)
 
 
1156{
1157	struct sclp_core_info *info;
1158	int nr;
1159
1160	info = kzalloc(sizeof(*info), GFP_KERNEL);
1161	if (!info)
1162		return -ENOMEM;
1163	smp_get_core_info(info, 0);
1164	nr = __smp_rescan_cpus(info, early);
 
 
 
 
1165	kfree(info);
1166	if (nr)
1167		topology_schedule_update();
1168	return 0;
1169}
1170
1171static ssize_t __ref rescan_store(struct device *dev,
1172				  struct device_attribute *attr,
1173				  const char *buf,
1174				  size_t count)
1175{
1176	int rc;
1177
1178	rc = lock_device_hotplug_sysfs();
1179	if (rc)
1180		return rc;
1181	rc = smp_rescan_cpus(false);
1182	unlock_device_hotplug();
1183	return rc ? rc : count;
1184}
1185static DEVICE_ATTR_WO(rescan);
 
1186
1187static int __init s390_smp_init(void)
1188{
1189	struct device *dev_root;
1190	int rc;
1191
1192	dev_root = bus_get_dev_root(&cpu_subsys);
1193	if (dev_root) {
1194		rc = device_create_file(dev_root, &dev_attr_rescan);
1195		put_device(dev_root);
 
 
 
1196		if (rc)
1197			return rc;
1198	}
 
1199	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1200			       smp_cpu_online, smp_cpu_pre_down);
1201	rc = rc <= 0 ? rc : 0;
 
1202	return rc;
1203}
1204subsys_initcall(s390_smp_init);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/bootmem.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
 
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/memblock.h>
  39#include <linux/kprobes.h>
 
  40#include <asm/asm-offsets.h>
 
 
  41#include <asm/diag.h>
  42#include <asm/switch_to.h>
  43#include <asm/facility.h>
 
  44#include <asm/ipl.h>
  45#include <asm/setup.h>
  46#include <asm/irq.h>
  47#include <asm/tlbflush.h>
  48#include <asm/vtimer.h>
  49#include <asm/lowcore.h>
  50#include <asm/sclp.h>
  51#include <asm/vdso.h>
  52#include <asm/debug.h>
  53#include <asm/os_info.h>
  54#include <asm/sigp.h>
  55#include <asm/idle.h>
  56#include <asm/nmi.h>
 
  57#include <asm/topology.h>
 
 
  58#include "entry.h"
  59
  60enum {
  61	ec_schedule = 0,
  62	ec_call_function_single,
  63	ec_stop_cpu,
 
 
  64};
  65
  66enum {
  67	CPU_STATE_STANDBY,
  68	CPU_STATE_CONFIGURED,
  69};
  70
  71static DEFINE_PER_CPU(struct cpu *, cpu_device);
  72
  73struct pcpu {
  74	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
  75	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  76	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  77	signed char state;		/* physical cpu state */
  78	signed char polarization;	/* physical polarization */
  79	u16 address;			/* physical cpu address */
  80};
  81
  82static u8 boot_core_type;
  83static struct pcpu pcpu_devices[NR_CPUS];
 
 
 
 
 
 
 
  84
  85unsigned int smp_cpu_mt_shift;
  86EXPORT_SYMBOL(smp_cpu_mt_shift);
  87
  88unsigned int smp_cpu_mtid;
  89EXPORT_SYMBOL(smp_cpu_mtid);
  90
  91#ifdef CONFIG_CRASH_DUMP
  92__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  93#endif
  94
  95static unsigned int smp_max_threads __initdata = -1U;
 
  96
  97static int __init early_nosmt(char *s)
  98{
  99	smp_max_threads = 1;
 100	return 0;
 101}
 102early_param("nosmt", early_nosmt);
 103
 104static int __init early_smt(char *s)
 105{
 106	get_option(&s, &smp_max_threads);
 107	return 0;
 108}
 109early_param("smt", early_smt);
 110
 111/*
 112 * The smp_cpu_state_mutex must be held when changing the state or polarization
 113 * member of a pcpu data structure within the pcpu_devices arreay.
 114 */
 115DEFINE_MUTEX(smp_cpu_state_mutex);
 116
 117/*
 118 * Signal processor helper functions.
 119 */
 120static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 121{
 122	int cc;
 123
 124	while (1) {
 125		cc = __pcpu_sigp(addr, order, parm, NULL);
 126		if (cc != SIGP_CC_BUSY)
 127			return cc;
 128		cpu_relax();
 129	}
 130}
 131
 132static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 133{
 134	int cc, retry;
 135
 136	for (retry = 0; ; retry++) {
 137		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 138		if (cc != SIGP_CC_BUSY)
 139			break;
 140		if (retry >= 3)
 141			udelay(10);
 142	}
 143	return cc;
 144}
 145
 146static inline int pcpu_stopped(struct pcpu *pcpu)
 147{
 148	u32 uninitialized_var(status);
 149
 150	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 151			0, &status) != SIGP_CC_STATUS_STORED)
 152		return 0;
 153	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 154}
 155
 156static inline int pcpu_running(struct pcpu *pcpu)
 157{
 158	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 159			0, NULL) != SIGP_CC_STATUS_STORED)
 160		return 1;
 161	/* Status stored condition code is equivalent to cpu not running. */
 162	return 0;
 163}
 164
 165/*
 166 * Find struct pcpu by cpu address.
 167 */
 168static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 169{
 170	int cpu;
 171
 172	for_each_cpu(cpu, mask)
 173		if (pcpu_devices[cpu].address == address)
 174			return pcpu_devices + cpu;
 175	return NULL;
 176}
 177
 178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 179{
 180	int order;
 181
 182	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 183		return;
 184	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 185	pcpu->ec_clk = get_tod_clock_fast();
 186	pcpu_sigp_retry(pcpu, order, 0);
 187}
 188
 189#define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 190#define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, panic_stack;
 195	struct lowcore *lc;
 196
 197	if (pcpu != &pcpu_devices[0]) {
 198		pcpu->lowcore =	(struct lowcore *)
 199			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 200		async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 201		panic_stack = __get_free_page(GFP_KERNEL);
 202		if (!pcpu->lowcore || !panic_stack || !async_stack)
 203			goto out;
 204	} else {
 205		async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
 206		panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
 207	}
 208	lc = pcpu->lowcore;
 209	memcpy(lc, &S390_lowcore, 512);
 210	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 211	lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
 212	lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
 
 213	lc->cpu_nr = cpu;
 214	lc->spinlock_lockval = arch_spin_lockval(cpu);
 215	lc->spinlock_index = 0;
 216	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
 217	if (nmi_alloc_per_cpu(lc))
 
 
 218		goto out;
 219	if (vdso_alloc_per_cpu(lc))
 220		goto out_mcesa;
 221	lowcore_ptr[cpu] = lc;
 222	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 223	return 0;
 224
 225out_mcesa:
 226	nmi_free_per_cpu(lc);
 227out:
 228	if (pcpu != &pcpu_devices[0]) {
 229		free_page(panic_stack);
 230		free_pages(async_stack, ASYNC_ORDER);
 231		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 232	}
 233	return -ENOMEM;
 234}
 235
 236#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 237
 238static void pcpu_free_lowcore(struct pcpu *pcpu)
 239{
 
 
 240	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 241	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 242	vdso_free_per_cpu(pcpu->lowcore);
 243	nmi_free_per_cpu(pcpu->lowcore);
 244	if (pcpu == &pcpu_devices[0])
 245		return;
 246	free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
 247	free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
 248	free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 249}
 250
 251#endif /* CONFIG_HOTPLUG_CPU */
 252
 253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 254{
 255	struct lowcore *lc = pcpu->lowcore;
 256
 
 257	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 258	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 259	lc->cpu_nr = cpu;
 
 
 260	lc->spinlock_lockval = arch_spin_lockval(cpu);
 261	lc->spinlock_index = 0;
 262	lc->percpu_offset = __per_cpu_offset[cpu];
 263	lc->kernel_asce = S390_lowcore.kernel_asce;
 264	lc->machine_flags = S390_lowcore.machine_flags;
 265	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 266	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 
 
 
 
 267	save_access_regs((unsigned int *) lc->access_regs_save_area);
 268	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 269	       sizeof(lc->stfle_fac_list));
 270	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
 271	       sizeof(lc->alt_stfle_fac_list));
 272	arch_spin_lock_setup(cpu);
 273}
 274
 275static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 276{
 277	struct lowcore *lc = pcpu->lowcore;
 278
 279	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 280		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 281	lc->current_task = (unsigned long) tsk;
 282	lc->lpp = LPP_MAGIC;
 283	lc->current_pid = tsk->pid;
 284	lc->user_timer = tsk->thread.user_timer;
 285	lc->guest_timer = tsk->thread.guest_timer;
 286	lc->system_timer = tsk->thread.system_timer;
 287	lc->hardirq_timer = tsk->thread.hardirq_timer;
 288	lc->softirq_timer = tsk->thread.softirq_timer;
 289	lc->steal_timer = 0;
 290}
 291
 292static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 293{
 294	struct lowcore *lc = pcpu->lowcore;
 295
 
 296	lc->restart_stack = lc->kernel_stack;
 297	lc->restart_fn = (unsigned long) func;
 298	lc->restart_data = (unsigned long) data;
 299	lc->restart_source = -1UL;
 300	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 301}
 302
 
 
 303/*
 304 * Call function via PSW restart on pcpu and stop the current cpu.
 305 */
 306static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 
 
 
 
 
 
 307			  void *data, unsigned long stack)
 308{
 309	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 310	unsigned long source_cpu = stap();
 
 
 
 311
 312	__load_psw_mask(PSW_KERNEL_BITS);
 313	if (pcpu->address == source_cpu)
 314		func(data);	/* should not return */
 
 315	/* Stop target cpu (if func returns this stops the current cpu). */
 316	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 317	/* Restart func on the target cpu and stop the current cpu. */
 318	mem_assign_absolute(lc->restart_stack, stack);
 319	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 320	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 321	mem_assign_absolute(lc->restart_source, source_cpu);
 322	__bpon();
 
 
 
 
 
 
 
 
 323	asm volatile(
 324		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 325		"	brc	2,0b	# busy, try again\n"
 326		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 327		"	brc	2,1b	# busy, try again\n"
 328		: : "d" (pcpu->address), "d" (source_cpu),
 329		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 330		: "0", "1", "cc");
 331	for (;;) ;
 332}
 333
 334/*
 335 * Enable additional logical cpus for multi-threading.
 336 */
 337static int pcpu_set_smt(unsigned int mtid)
 338{
 339	int cc;
 340
 341	if (smp_cpu_mtid == mtid)
 342		return 0;
 343	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 344	if (cc == 0) {
 345		smp_cpu_mtid = mtid;
 346		smp_cpu_mt_shift = 0;
 347		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 348			smp_cpu_mt_shift++;
 349		pcpu_devices[0].address = stap();
 350	}
 351	return cc;
 352}
 353
 354/*
 355 * Call function on an online CPU.
 356 */
 357void smp_call_online_cpu(void (*func)(void *), void *data)
 358{
 359	struct pcpu *pcpu;
 360
 361	/* Use the current cpu if it is online. */
 362	pcpu = pcpu_find_address(cpu_online_mask, stap());
 363	if (!pcpu)
 364		/* Use the first online cpu. */
 365		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 366	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 367}
 368
 369/*
 370 * Call function on the ipl CPU.
 371 */
 372void smp_call_ipl_cpu(void (*func)(void *), void *data)
 373{
 374	pcpu_delegate(&pcpu_devices[0], func, data,
 375		      pcpu_devices->lowcore->panic_stack -
 376		      PANIC_FRAME_OFFSET + PAGE_SIZE);
 377}
 378
 379int smp_find_processor_id(u16 address)
 380{
 381	int cpu;
 382
 383	for_each_present_cpu(cpu)
 384		if (pcpu_devices[cpu].address == address)
 385			return cpu;
 386	return -1;
 387}
 388
 389bool arch_vcpu_is_preempted(int cpu)
 
 
 
 
 
 390{
 391	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 392		return false;
 393	if (pcpu_running(pcpu_devices + cpu))
 394		return false;
 395	return true;
 396}
 397EXPORT_SYMBOL(arch_vcpu_is_preempted);
 398
 399void smp_yield_cpu(int cpu)
 400{
 401	if (MACHINE_HAS_DIAG9C) {
 402		diag_stat_inc_norecursion(DIAG_STAT_X09C);
 403		asm volatile("diag %0,0,0x9c"
 404			     : : "d" (pcpu_devices[cpu].address));
 405	} else if (MACHINE_HAS_DIAG44) {
 406		diag_stat_inc_norecursion(DIAG_STAT_X044);
 407		asm volatile("diag 0,0,0x44");
 408	}
 409}
 
 410
 411/*
 412 * Send cpus emergency shutdown signal. This gives the cpus the
 413 * opportunity to complete outstanding interrupts.
 414 */
 415void notrace smp_emergency_stop(void)
 416{
 417	cpumask_t cpumask;
 
 418	u64 end;
 419	int cpu;
 420
 
 421	cpumask_copy(&cpumask, cpu_online_mask);
 422	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 423
 424	end = get_tod_clock() + (1000000UL << 12);
 425	for_each_cpu(cpu, &cpumask) {
 426		struct pcpu *pcpu = pcpu_devices + cpu;
 427		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 428		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 429				   0, NULL) == SIGP_CC_BUSY &&
 430		       get_tod_clock() < end)
 431			cpu_relax();
 432	}
 433	while (get_tod_clock() < end) {
 434		for_each_cpu(cpu, &cpumask)
 435			if (pcpu_stopped(pcpu_devices + cpu))
 436				cpumask_clear_cpu(cpu, &cpumask);
 437		if (cpumask_empty(&cpumask))
 438			break;
 439		cpu_relax();
 440	}
 
 441}
 442NOKPROBE_SYMBOL(smp_emergency_stop);
 443
 444/*
 445 * Stop all cpus but the current one.
 446 */
 447void smp_send_stop(void)
 448{
 
 449	int cpu;
 450
 451	/* Disable all interrupts/machine checks */
 452	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 453	trace_hardirqs_off();
 454
 455	debug_set_critical();
 456
 457	if (oops_in_progress)
 458		smp_emergency_stop();
 459
 460	/* stop all processors */
 461	for_each_online_cpu(cpu) {
 462		if (cpu == smp_processor_id())
 463			continue;
 464		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 465		while (!pcpu_stopped(pcpu_devices + cpu))
 
 466			cpu_relax();
 467	}
 468}
 469
 470/*
 471 * This is the main routine where commands issued by other
 472 * cpus are handled.
 473 */
 474static void smp_handle_ext_call(void)
 475{
 476	unsigned long bits;
 477
 478	/* handle bit signal external calls */
 479	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 480	if (test_bit(ec_stop_cpu, &bits))
 481		smp_stop_cpu();
 482	if (test_bit(ec_schedule, &bits))
 483		scheduler_ipi();
 484	if (test_bit(ec_call_function_single, &bits))
 485		generic_smp_call_function_single_interrupt();
 
 
 
 
 486}
 487
 488static void do_ext_call_interrupt(struct ext_code ext_code,
 489				  unsigned int param32, unsigned long param64)
 490{
 491	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 492	smp_handle_ext_call();
 493}
 494
 495void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 496{
 497	int cpu;
 498
 499	for_each_cpu(cpu, mask)
 500		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 501}
 502
 503void arch_send_call_function_single_ipi(int cpu)
 504{
 505	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 506}
 507
 508/*
 509 * this function sends a 'reschedule' IPI to another CPU.
 510 * it goes straight through and wastes no time serializing
 511 * anything. Worst case is that we lose a reschedule ...
 512 */
 513void smp_send_reschedule(int cpu)
 514{
 515	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 516}
 517
 518/*
 519 * parameter area for the set/clear control bit callbacks
 520 */
 521struct ec_creg_mask_parms {
 522	unsigned long orval;
 523	unsigned long andval;
 524	int cr;
 525};
 526
 527/*
 528 * callback for setting/clearing control bits
 529 */
 530static void smp_ctl_bit_callback(void *info)
 531{
 532	struct ec_creg_mask_parms *pp = info;
 533	unsigned long cregs[16];
 534
 535	__ctl_store(cregs, 0, 15);
 536	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 537	__ctl_load(cregs, 0, 15);
 538}
 539
 540/*
 541 * Set a bit in a control register of all cpus
 542 */
 543void smp_ctl_set_bit(int cr, int bit)
 544{
 545	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 546
 547	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 548}
 549EXPORT_SYMBOL(smp_ctl_set_bit);
 550
 551/*
 552 * Clear a bit in a control register of all cpus
 553 */
 554void smp_ctl_clear_bit(int cr, int bit)
 555{
 556	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 557
 558	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 559}
 560EXPORT_SYMBOL(smp_ctl_clear_bit);
 561
 562#ifdef CONFIG_CRASH_DUMP
 563
 564int smp_store_status(int cpu)
 565{
 566	struct pcpu *pcpu = pcpu_devices + cpu;
 
 567	unsigned long pa;
 568
 569	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 
 
 570	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 571			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 572		return -EIO;
 573	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 574		return 0;
 575	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
 576	if (MACHINE_HAS_GS)
 577		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
 578	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 579			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 580		return -EIO;
 581	return 0;
 582}
 583
 584/*
 585 * Collect CPU state of the previous, crashed system.
 586 * There are four cases:
 587 * 1) standard zfcp dump
 588 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 589 *    The state for all CPUs except the boot CPU needs to be collected
 590 *    with sigp stop-and-store-status. The boot CPU state is located in
 591 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 592 *    will copy the boot CPU state from the HSA.
 593 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 594 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 595 *    The state for all CPUs except the boot CPU needs to be collected
 596 *    with sigp stop-and-store-status. The firmware or the boot-loader
 597 *    stored the registers of the boot CPU in the absolute lowcore in the
 598 *    memory of the old system.
 599 * 3) kdump and the old kernel did not store the CPU state,
 600 *    or stand-alone kdump for DASD
 601 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 602 *    The state for all CPUs except the boot CPU needs to be collected
 603 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 604 *    stored the registers of the boot CPU in the memory of the old system.
 605 * 4) kdump and the old kernel stored the CPU state
 606 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 607 *    This case does not exist for s390 anymore, setup_arch explicitly
 608 *    deactivates the elfcorehdr= kernel parameter
 
 609 */
 610static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 611				     bool is_boot_cpu, unsigned long page)
 612{
 613	__vector128 *vxrs = (__vector128 *) page;
 614
 615	if (is_boot_cpu)
 616		vxrs = boot_cpu_vector_save_area;
 617	else
 618		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 619	save_area_add_vxrs(sa, vxrs);
 620}
 621
 622static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 623				     bool is_boot_cpu, unsigned long page)
 624{
 625	void *regs = (void *) page;
 
 626
 627	if (is_boot_cpu)
 628		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 629	else
 630		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 
 
 
 631	save_area_add_regs(sa, regs);
 
 
 
 632}
 633
 634void __init smp_save_dump_cpus(void)
 635{
 636	int addr, boot_cpu_addr, max_cpu_addr;
 637	struct save_area *sa;
 638	unsigned long page;
 639	bool is_boot_cpu;
 640
 641	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 642		/* No previous system present, normal boot. */
 643		return;
 644	/* Allocate a page as dumping area for the store status sigps */
 645	page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
 
 
 
 
 646	/* Set multi-threading state to the previous system. */
 647	pcpu_set_smt(sclp.mtid_prev);
 648	boot_cpu_addr = stap();
 649	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 650	for (addr = 0; addr <= max_cpu_addr; addr++) {
 
 
 651		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 652		    SIGP_CC_NOT_OPERATIONAL)
 653			continue;
 654		is_boot_cpu = (addr == boot_cpu_addr);
 655		/* Allocate save area */
 656		sa = save_area_alloc(is_boot_cpu);
 657		if (!sa)
 658			panic("could not allocate memory for save area\n");
 659		if (MACHINE_HAS_VX)
 660			/* Get the vector registers */
 661			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 662		/*
 663		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 664		 * of the boot CPU are stored in the HSA. To retrieve
 665		 * these registers an SCLP request is required which is
 666		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 667		 */
 668		if (!is_boot_cpu || OLDMEM_BASE)
 669			/* Get the CPU registers */
 670			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 671	}
 672	memblock_free(page, PAGE_SIZE);
 673	diag308_reset();
 674	pcpu_set_smt(0);
 675}
 676#endif /* CONFIG_CRASH_DUMP */
 677
 678void smp_cpu_set_polarization(int cpu, int val)
 679{
 680	pcpu_devices[cpu].polarization = val;
 681}
 682
 683int smp_cpu_get_polarization(int cpu)
 684{
 685	return pcpu_devices[cpu].polarization;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686}
 687
 688static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 689{
 690	static int use_sigp_detection;
 691	int address;
 692
 693	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 694		use_sigp_detection = 1;
 695		for (address = 0;
 696		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 697		     address += (1U << smp_cpu_mt_shift)) {
 698			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 699			    SIGP_CC_NOT_OPERATIONAL)
 700				continue;
 701			info->core[info->configured].core_id =
 702				address >> smp_cpu_mt_shift;
 703			info->configured++;
 704		}
 705		info->combined = info->configured;
 706	}
 707}
 708
 709static int smp_add_present_cpu(int cpu);
 710
 711static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 712{
 713	struct pcpu *pcpu;
 714	cpumask_t avail;
 715	int cpu, nr, i, j;
 716	u16 address;
 717
 718	nr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 720	cpu = cpumask_first(&avail);
 721	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 722		if (sclp.has_core_type && info->core[i].type != boot_core_type)
 723			continue;
 724		address = info->core[i].core_id << smp_cpu_mt_shift;
 725		for (j = 0; j <= smp_cpu_mtid; j++) {
 726			if (pcpu_find_address(cpu_present_mask, address + j))
 727				continue;
 728			pcpu = pcpu_devices + cpu;
 729			pcpu->address = address + j;
 730			pcpu->state =
 731				(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 732				CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 733			smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 734			set_cpu_present(cpu, true);
 735			if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 736				set_cpu_present(cpu, false);
 737			else
 738				nr++;
 739			cpu = cpumask_next(cpu, &avail);
 740			if (cpu >= nr_cpu_ids)
 741				break;
 
 742		}
 743	}
 
 
 
 
 
 
 744	return nr;
 745}
 746
 747void __init smp_detect_cpus(void)
 748{
 749	unsigned int cpu, mtid, c_cpus, s_cpus;
 750	struct sclp_core_info *info;
 751	u16 address;
 752
 753	/* Get CPU information */
 754	info = memblock_virt_alloc(sizeof(*info), 8);
 
 
 
 755	smp_get_core_info(info, 1);
 756	/* Find boot CPU type */
 757	if (sclp.has_core_type) {
 758		address = stap();
 759		for (cpu = 0; cpu < info->combined; cpu++)
 760			if (info->core[cpu].core_id == address) {
 761				/* The boot cpu dictates the cpu type. */
 762				boot_core_type = info->core[cpu].type;
 763				break;
 764			}
 765		if (cpu >= info->combined)
 766			panic("Could not find boot CPU type");
 767	}
 768
 769	/* Set multi-threading state for the current system */
 770	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 771	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 772	pcpu_set_smt(mtid);
 773
 774	/* Print number of CPUs */
 775	c_cpus = s_cpus = 0;
 776	for (cpu = 0; cpu < info->combined; cpu++) {
 777		if (sclp.has_core_type &&
 778		    info->core[cpu].type != boot_core_type)
 779			continue;
 780		if (cpu < info->configured)
 781			c_cpus += smp_cpu_mtid + 1;
 782		else
 783			s_cpus += smp_cpu_mtid + 1;
 784	}
 785	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 786
 787	/* Add CPUs present at boot */
 788	get_online_cpus();
 789	__smp_rescan_cpus(info, 0);
 790	put_online_cpus();
 791	memblock_free_early((unsigned long)info, sizeof(*info));
 792}
 793
 794/*
 795 *	Activate a secondary processor.
 796 */
 797static void smp_start_secondary(void *cpuvoid)
 798{
 799	int cpu = smp_processor_id();
 
 800
 801	S390_lowcore.last_update_clock = get_tod_clock();
 802	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 803	S390_lowcore.restart_fn = (unsigned long) do_restart;
 804	S390_lowcore.restart_data = 0;
 805	S390_lowcore.restart_source = -1UL;
 806	restore_access_regs(S390_lowcore.access_regs_save_area);
 807	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 808	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 809	cpu_init();
 810	preempt_disable();
 811	init_cpu_timer();
 812	vtime_init();
 
 813	pfault_init();
 
 
 814	notify_cpu_starting(cpu);
 815	if (topology_cpu_dedicated(cpu))
 816		set_cpu_flag(CIF_DEDICATED_CPU);
 817	else
 818		clear_cpu_flag(CIF_DEDICATED_CPU);
 819	set_cpu_online(cpu, true);
 820	inc_irq_stat(CPU_RST);
 821	local_irq_enable();
 822	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 823}
 824
 825/* Upping and downing of CPUs */
 826int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 827{
 828	struct pcpu *pcpu;
 829	int base, i, rc;
 830
 831	pcpu = pcpu_devices + cpu;
 832	if (pcpu->state != CPU_STATE_CONFIGURED)
 833		return -EIO;
 834	base = smp_get_base_cpu(cpu);
 835	for (i = 0; i <= smp_cpu_mtid; i++) {
 836		if (base + i < nr_cpu_ids)
 837			if (cpu_online(base + i))
 838				break;
 839	}
 840	/*
 841	 * If this is the first CPU of the core to get online
 842	 * do an initial CPU reset.
 843	 */
 844	if (i > smp_cpu_mtid &&
 845	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 846	    SIGP_CC_ORDER_CODE_ACCEPTED)
 847		return -EIO;
 848
 849	rc = pcpu_alloc_lowcore(pcpu, cpu);
 850	if (rc)
 851		return rc;
 
 
 
 
 
 852	pcpu_prepare_secondary(pcpu, cpu);
 853	pcpu_attach_task(pcpu, tidle);
 854	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 855	/* Wait until cpu puts itself in the online & active maps */
 856	while (!cpu_online(cpu))
 857		cpu_relax();
 
 858	return 0;
 859}
 860
 861static unsigned int setup_possible_cpus __initdata;
 862
 863static int __init _setup_possible_cpus(char *s)
 864{
 865	get_option(&s, &setup_possible_cpus);
 866	return 0;
 867}
 868early_param("possible_cpus", _setup_possible_cpus);
 869
 870#ifdef CONFIG_HOTPLUG_CPU
 871
 872int __cpu_disable(void)
 873{
 874	unsigned long cregs[16];
 
 875
 876	/* Handle possible pending IPIs */
 877	smp_handle_ext_call();
 878	set_cpu_online(smp_processor_id(), false);
 
 
 
 879	/* Disable pseudo page faults on this cpu. */
 880	pfault_fini();
 881	/* Disable interrupt sources via control register. */
 882	__ctl_store(cregs, 0, 15);
 883	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 884	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 885	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 886	__ctl_load(cregs, 0, 15);
 887	clear_cpu_flag(CIF_NOHZ_DELAY);
 888	return 0;
 889}
 890
 891void __cpu_die(unsigned int cpu)
 892{
 893	struct pcpu *pcpu;
 894
 895	/* Wait until target cpu is down */
 896	pcpu = pcpu_devices + cpu;
 897	while (!pcpu_stopped(pcpu))
 898		cpu_relax();
 899	pcpu_free_lowcore(pcpu);
 900	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 901	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 902}
 903
 904void __noreturn cpu_die(void)
 905{
 906	idle_task_exit();
 907	__bpon();
 908	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 909	for (;;) ;
 910}
 911
 912#endif /* CONFIG_HOTPLUG_CPU */
 913
 914void __init smp_fill_possible_mask(void)
 915{
 916	unsigned int possible, sclp_max, cpu;
 917
 918	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 919	sclp_max = min(smp_max_threads, sclp_max);
 920	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 921	possible = setup_possible_cpus ?: nr_cpu_ids;
 922	possible = min(possible, sclp_max);
 923	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 924		set_cpu_possible(cpu, true);
 925}
 926
 927void __init smp_prepare_cpus(unsigned int max_cpus)
 928{
 929	/* request the 0x1201 emergency signal external interrupt */
 930	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 931		panic("Couldn't request external interrupt 0x1201");
 932	/* request the 0x1202 external call external interrupt */
 933	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 934		panic("Couldn't request external interrupt 0x1202");
 
 
 935}
 936
 937void __init smp_prepare_boot_cpu(void)
 938{
 939	struct pcpu *pcpu = pcpu_devices;
 940
 941	WARN_ON(!cpu_present(0) || !cpu_online(0));
 942	pcpu->state = CPU_STATE_CONFIGURED;
 943	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 944	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 
 945	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
 946}
 947
 948void __init smp_cpus_done(unsigned int max_cpus)
 949{
 950}
 951
 952void __init smp_setup_processor_id(void)
 953{
 954	pcpu_devices[0].address = stap();
 955	S390_lowcore.cpu_nr = 0;
 956	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 957	S390_lowcore.spinlock_index = 0;
 958}
 959
 960/*
 961 * the frequency of the profiling timer can be changed
 962 * by writing a multiplier value into /proc/profile.
 963 *
 964 * usually you want to run this on all CPUs ;)
 965 */
 966int setup_profiling_timer(unsigned int multiplier)
 967{
 968	return 0;
 969}
 970
 971#ifdef CONFIG_HOTPLUG_CPU
 972static ssize_t cpu_configure_show(struct device *dev,
 973				  struct device_attribute *attr, char *buf)
 974{
 975	ssize_t count;
 976
 977	mutex_lock(&smp_cpu_state_mutex);
 978	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 979	mutex_unlock(&smp_cpu_state_mutex);
 980	return count;
 981}
 982
 983static ssize_t cpu_configure_store(struct device *dev,
 984				   struct device_attribute *attr,
 985				   const char *buf, size_t count)
 986{
 987	struct pcpu *pcpu;
 988	int cpu, val, rc, i;
 989	char delim;
 990
 991	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 992		return -EINVAL;
 993	if (val != 0 && val != 1)
 994		return -EINVAL;
 995	get_online_cpus();
 996	mutex_lock(&smp_cpu_state_mutex);
 997	rc = -EBUSY;
 998	/* disallow configuration changes of online cpus and cpu 0 */
 999	cpu = dev->id;
1000	cpu = smp_get_base_cpu(cpu);
1001	if (cpu == 0)
1002		goto out;
1003	for (i = 0; i <= smp_cpu_mtid; i++)
1004		if (cpu_online(cpu + i))
1005			goto out;
1006	pcpu = pcpu_devices + cpu;
1007	rc = 0;
1008	switch (val) {
1009	case 0:
1010		if (pcpu->state != CPU_STATE_CONFIGURED)
1011			break;
1012		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1013		if (rc)
1014			break;
1015		for (i = 0; i <= smp_cpu_mtid; i++) {
1016			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1017				continue;
1018			pcpu[i].state = CPU_STATE_STANDBY;
1019			smp_cpu_set_polarization(cpu + i,
1020						 POLARIZATION_UNKNOWN);
1021		}
1022		topology_expect_change();
1023		break;
1024	case 1:
1025		if (pcpu->state != CPU_STATE_STANDBY)
1026			break;
1027		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1028		if (rc)
1029			break;
1030		for (i = 0; i <= smp_cpu_mtid; i++) {
1031			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1032				continue;
1033			pcpu[i].state = CPU_STATE_CONFIGURED;
1034			smp_cpu_set_polarization(cpu + i,
1035						 POLARIZATION_UNKNOWN);
1036		}
1037		topology_expect_change();
1038		break;
1039	default:
1040		break;
1041	}
1042out:
1043	mutex_unlock(&smp_cpu_state_mutex);
1044	put_online_cpus();
1045	return rc ? rc : count;
1046}
1047static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1048#endif /* CONFIG_HOTPLUG_CPU */
1049
1050static ssize_t show_cpu_address(struct device *dev,
1051				struct device_attribute *attr, char *buf)
1052{
1053	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1054}
1055static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1056
1057static struct attribute *cpu_common_attrs[] = {
1058#ifdef CONFIG_HOTPLUG_CPU
1059	&dev_attr_configure.attr,
1060#endif
1061	&dev_attr_address.attr,
1062	NULL,
1063};
1064
1065static struct attribute_group cpu_common_attr_group = {
1066	.attrs = cpu_common_attrs,
1067};
1068
1069static struct attribute *cpu_online_attrs[] = {
1070	&dev_attr_idle_count.attr,
1071	&dev_attr_idle_time_us.attr,
1072	NULL,
1073};
1074
1075static struct attribute_group cpu_online_attr_group = {
1076	.attrs = cpu_online_attrs,
1077};
1078
1079static int smp_cpu_online(unsigned int cpu)
1080{
1081	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1082
1083	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1084}
 
1085static int smp_cpu_pre_down(unsigned int cpu)
1086{
1087	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1088
1089	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1090	return 0;
1091}
1092
1093static int smp_add_present_cpu(int cpu)
1094{
1095	struct device *s;
1096	struct cpu *c;
 
 
 
 
1097	int rc;
1098
1099	c = kzalloc(sizeof(*c), GFP_KERNEL);
1100	if (!c)
1101		return -ENOMEM;
1102	per_cpu(cpu_device, cpu) = c;
1103	s = &c->dev;
1104	c->hotpluggable = 1;
1105	rc = register_cpu(c, cpu);
1106	if (rc)
1107		goto out;
1108	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1109	if (rc)
1110		goto out_cpu;
1111	rc = topology_cpu_init(c);
1112	if (rc)
1113		goto out_topology;
1114	return 0;
1115
1116out_topology:
1117	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1118out_cpu:
1119#ifdef CONFIG_HOTPLUG_CPU
1120	unregister_cpu(c);
1121#endif
1122out:
1123	return rc;
1124}
1125
1126#ifdef CONFIG_HOTPLUG_CPU
1127
1128int __ref smp_rescan_cpus(void)
1129{
1130	struct sclp_core_info *info;
1131	int nr;
1132
1133	info = kzalloc(sizeof(*info), GFP_KERNEL);
1134	if (!info)
1135		return -ENOMEM;
1136	smp_get_core_info(info, 0);
1137	get_online_cpus();
1138	mutex_lock(&smp_cpu_state_mutex);
1139	nr = __smp_rescan_cpus(info, 1);
1140	mutex_unlock(&smp_cpu_state_mutex);
1141	put_online_cpus();
1142	kfree(info);
1143	if (nr)
1144		topology_schedule_update();
1145	return 0;
1146}
1147
1148static ssize_t __ref rescan_store(struct device *dev,
1149				  struct device_attribute *attr,
1150				  const char *buf,
1151				  size_t count)
1152{
1153	int rc;
1154
1155	rc = smp_rescan_cpus();
 
 
 
 
1156	return rc ? rc : count;
1157}
1158static DEVICE_ATTR_WO(rescan);
1159#endif /* CONFIG_HOTPLUG_CPU */
1160
1161static int __init s390_smp_init(void)
1162{
1163	int cpu, rc = 0;
 
1164
1165#ifdef CONFIG_HOTPLUG_CPU
1166	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1167	if (rc)
1168		return rc;
1169#endif
1170	for_each_present_cpu(cpu) {
1171		rc = smp_add_present_cpu(cpu);
1172		if (rc)
1173			goto out;
1174	}
1175
1176	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1177			       smp_cpu_online, smp_cpu_pre_down);
1178	rc = rc <= 0 ? rc : 0;
1179out:
1180	return rc;
1181}
1182subsys_initcall(s390_smp_init);