Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/access-regs.h>
  40#include <asm/asm-offsets.h>
  41#include <asm/ctlreg.h>
  42#include <asm/pfault.h>
  43#include <asm/diag.h>
 
  44#include <asm/facility.h>
  45#include <asm/fpu.h>
  46#include <asm/ipl.h>
  47#include <asm/setup.h>
  48#include <asm/irq.h>
  49#include <asm/tlbflush.h>
  50#include <asm/vtimer.h>
  51#include <asm/abs_lowcore.h>
  52#include <asm/sclp.h>
 
  53#include <asm/debug.h>
  54#include <asm/os_info.h>
  55#include <asm/sigp.h>
  56#include <asm/idle.h>
  57#include <asm/nmi.h>
  58#include <asm/stacktrace.h>
  59#include <asm/topology.h>
  60#include <asm/vdso.h>
  61#include <asm/maccess.h>
  62#include "entry.h"
  63
  64enum {
  65	ec_schedule = 0,
  66	ec_call_function_single,
  67	ec_stop_cpu,
  68	ec_mcck_pending,
  69	ec_irq_work,
  70};
  71
  72enum {
  73	CPU_STATE_STANDBY,
  74	CPU_STATE_CONFIGURED,
  75};
  76
 
 
 
 
 
 
 
 
 
 
 
  77static u8 boot_core_type;
  78DEFINE_PER_CPU(struct pcpu, pcpu_devices);
  79/*
  80 * Pointer to the pcpu area of the boot CPU. This is required when a restart
  81 * interrupt is triggered on an offline CPU. For that case accessing percpu
  82 * data with the common primitives does not work, since the percpu offset is
  83 * stored in a non existent lowcore.
  84 */
  85static struct pcpu *ipl_pcpu;
  86
  87unsigned int smp_cpu_mt_shift;
  88EXPORT_SYMBOL(smp_cpu_mt_shift);
  89
  90unsigned int smp_cpu_mtid;
  91EXPORT_SYMBOL(smp_cpu_mtid);
  92
  93#ifdef CONFIG_CRASH_DUMP
  94__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  95#endif
  96
  97static unsigned int smp_max_threads __initdata = -1U;
  98cpumask_t cpu_setup_mask;
  99
 100static int __init early_nosmt(char *s)
 101{
 102	smp_max_threads = 1;
 103	return 0;
 104}
 105early_param("nosmt", early_nosmt);
 106
 107static int __init early_smt(char *s)
 108{
 109	get_option(&s, &smp_max_threads);
 110	return 0;
 111}
 112early_param("smt", early_smt);
 113
 114/*
 115 * The smp_cpu_state_mutex must be held when changing the state or polarization
 116 * member of a pcpu data structure within the pcpu_devices array.
 117 */
 118DEFINE_MUTEX(smp_cpu_state_mutex);
 119
 120/*
 121 * Signal processor helper functions.
 122 */
 123static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 124{
 125	int cc;
 126
 127	while (1) {
 128		cc = __pcpu_sigp(addr, order, parm, NULL);
 129		if (cc != SIGP_CC_BUSY)
 130			return cc;
 131		cpu_relax();
 132	}
 133}
 134
 135static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 136{
 137	int cc, retry;
 138
 139	for (retry = 0; ; retry++) {
 140		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 141		if (cc != SIGP_CC_BUSY)
 142			break;
 143		if (retry >= 3)
 144			udelay(10);
 145	}
 146	return cc;
 147}
 148
 149static inline int pcpu_stopped(struct pcpu *pcpu)
 150{
 151	u32 status;
 152
 153	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 154			0, &status) != SIGP_CC_STATUS_STORED)
 155		return 0;
 156	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 157}
 158
 159static inline int pcpu_running(struct pcpu *pcpu)
 160{
 161	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 162			0, NULL) != SIGP_CC_STATUS_STORED)
 163		return 1;
 164	/* Status stored condition code is equivalent to cpu not running. */
 165	return 0;
 166}
 167
 168/*
 169 * Find struct pcpu by cpu address.
 170 */
 171static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 172{
 173	int cpu;
 174
 175	for_each_cpu(cpu, mask)
 176		if (per_cpu(pcpu_devices, cpu).address == address)
 177			return &per_cpu(pcpu_devices, cpu);
 178	return NULL;
 179}
 180
 181static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 182{
 183	int order;
 184
 185	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 186		return;
 187	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 188	pcpu->ec_clk = get_tod_clock_fast();
 189	pcpu_sigp_retry(pcpu, order, 0);
 190}
 191
 192static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 193{
 194	unsigned long async_stack, nodat_stack, mcck_stack;
 195	struct lowcore *lc;
 196
 197	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 
 
 
 
 
 
 
 199	async_stack = stack_alloc();
 200	mcck_stack = stack_alloc();
 201	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 202		goto out;
 203	memcpy(lc, get_lowcore(), 512);
 
 204	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 205	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 206	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 207	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 208	lc->cpu_nr = cpu;
 209	lc->spinlock_lockval = arch_spin_lockval(cpu);
 210	lc->spinlock_index = 0;
 
 211	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 212	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 213	lc->preempt_count = PREEMPT_DISABLED;
 214	if (nmi_alloc_mcesa(&lc->mcesad))
 215		goto out;
 216	if (abs_lowcore_map(cpu, lc, true))
 217		goto out_mcesa;
 218	lowcore_ptr[cpu] = lc;
 219	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 220	return 0;
 221
 222out_mcesa:
 223	nmi_free_mcesa(&lc->mcesad);
 224out:
 225	stack_free(mcck_stack);
 226	stack_free(async_stack);
 227	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 228	free_pages((unsigned long) lc, LC_ORDER);
 
 
 
 229	return -ENOMEM;
 230}
 231
 232static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
 233{
 234	unsigned long async_stack, nodat_stack, mcck_stack;
 235	struct lowcore *lc;
 
 
 
 236
 237	lc = lowcore_ptr[cpu];
 238	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 239	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 240	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 241	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 242	lowcore_ptr[cpu] = NULL;
 243	abs_lowcore_unmap(cpu);
 244	nmi_free_mcesa(&lc->mcesad);
 245	stack_free(async_stack);
 246	stack_free(mcck_stack);
 
 247	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 248	free_pages((unsigned long) lc, LC_ORDER);
 249}
 250
 251static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 252{
 253	struct lowcore *lc, *abs_lc;
 254
 255	lc = lowcore_ptr[cpu];
 256	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 257	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 258	lc->cpu_nr = cpu;
 259	lc->pcpu = (unsigned long)pcpu;
 260	lc->restart_flags = RESTART_FLAG_CTLREGS;
 261	lc->spinlock_lockval = arch_spin_lockval(cpu);
 262	lc->spinlock_index = 0;
 263	lc->percpu_offset = __per_cpu_offset[cpu];
 264	lc->kernel_asce = get_lowcore()->kernel_asce;
 265	lc->user_asce = s390_invalid_asce;
 266	lc->machine_flags = get_lowcore()->machine_flags;
 267	lc->user_timer = lc->system_timer =
 268		lc->steal_timer = lc->avg_steal_timer = 0;
 269	abs_lc = get_abs_lowcore();
 270	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 271	put_abs_lowcore(abs_lc);
 272	lc->cregs_save_area[1] = lc->kernel_asce;
 273	lc->cregs_save_area[7] = lc->user_asce;
 274	save_access_regs((unsigned int *) lc->access_regs_save_area);
 
 
 
 
 275	arch_spin_lock_setup(cpu);
 276}
 277
 278static void pcpu_attach_task(int cpu, struct task_struct *tsk)
 279{
 280	struct lowcore *lc;
 281
 282	lc = lowcore_ptr[cpu];
 283	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 284	lc->current_task = (unsigned long)tsk;
 285	lc->lpp = LPP_MAGIC;
 286	lc->current_pid = tsk->pid;
 287	lc->user_timer = tsk->thread.user_timer;
 288	lc->guest_timer = tsk->thread.guest_timer;
 289	lc->system_timer = tsk->thread.system_timer;
 290	lc->hardirq_timer = tsk->thread.hardirq_timer;
 291	lc->softirq_timer = tsk->thread.softirq_timer;
 292	lc->steal_timer = 0;
 293}
 294
 295static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
 296{
 297	struct lowcore *lc;
 298
 299	lc = lowcore_ptr[cpu];
 300	lc->restart_stack = lc->kernel_stack;
 301	lc->restart_fn = (unsigned long) func;
 302	lc->restart_data = (unsigned long) data;
 303	lc->restart_source = -1U;
 304	pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
 305}
 306
 307typedef void (pcpu_delegate_fn)(void *);
 308
 309/*
 310 * Call function via PSW restart on pcpu and stop the current cpu.
 311 */
 312static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 313{
 314	func(data);	/* should not return */
 315}
 316
 317static void pcpu_delegate(struct pcpu *pcpu, int cpu,
 318			  pcpu_delegate_fn *func,
 319			  void *data, unsigned long stack)
 320{
 321	struct lowcore *lc, *abs_lc;
 322	unsigned int source_cpu;
 323
 324	lc = lowcore_ptr[cpu];
 325	source_cpu = stap();
 326
 327	if (pcpu->address == source_cpu) {
 328		call_on_stack(2, stack, void, __pcpu_delegate,
 329			      pcpu_delegate_fn *, func, void *, data);
 330	}
 331	/* Stop target cpu (if func returns this stops the current cpu). */
 332	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 333	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 334	/* Restart func on the target cpu and stop the current cpu. */
 335	if (lc) {
 336		lc->restart_stack = stack;
 337		lc->restart_fn = (unsigned long)func;
 338		lc->restart_data = (unsigned long)data;
 339		lc->restart_source = source_cpu;
 340	} else {
 341		abs_lc = get_abs_lowcore();
 342		abs_lc->restart_stack = stack;
 343		abs_lc->restart_fn = (unsigned long)func;
 344		abs_lc->restart_data = (unsigned long)data;
 345		abs_lc->restart_source = source_cpu;
 346		put_abs_lowcore(abs_lc);
 347	}
 348	asm volatile(
 349		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 350		"	brc	2,0b	# busy, try again\n"
 351		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 352		"	brc	2,1b	# busy, try again\n"
 353		: : "d" (pcpu->address), "d" (source_cpu),
 354		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 355		: "0", "1", "cc");
 356	for (;;) ;
 357}
 358
 359/*
 360 * Enable additional logical cpus for multi-threading.
 361 */
 362static int pcpu_set_smt(unsigned int mtid)
 363{
 364	int cc;
 365
 366	if (smp_cpu_mtid == mtid)
 367		return 0;
 368	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 369	if (cc == 0) {
 370		smp_cpu_mtid = mtid;
 371		smp_cpu_mt_shift = 0;
 372		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 373			smp_cpu_mt_shift++;
 374		per_cpu(pcpu_devices, 0).address = stap();
 375	}
 376	return cc;
 377}
 378
 379/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380 * Call function on the ipl CPU.
 381 */
 382void smp_call_ipl_cpu(void (*func)(void *), void *data)
 383{
 384	struct lowcore *lc = lowcore_ptr[0];
 385
 386	if (ipl_pcpu->address == stap())
 387		lc = get_lowcore();
 388
 389	pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
 
 390}
 391
 392int smp_find_processor_id(u16 address)
 393{
 394	int cpu;
 395
 396	for_each_present_cpu(cpu)
 397		if (per_cpu(pcpu_devices, cpu).address == address)
 398			return cpu;
 399	return -1;
 400}
 401
 402void schedule_mcck_handler(void)
 403{
 404	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
 405}
 406
 407bool notrace arch_vcpu_is_preempted(int cpu)
 408{
 409	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 410		return false;
 411	if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
 412		return false;
 413	return true;
 414}
 415EXPORT_SYMBOL(arch_vcpu_is_preempted);
 416
 417void notrace smp_yield_cpu(int cpu)
 418{
 419	if (!MACHINE_HAS_DIAG9C)
 420		return;
 421	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 422	asm volatile("diag %0,0,0x9c"
 423		     : : "d" (per_cpu(pcpu_devices, cpu).address));
 424}
 425EXPORT_SYMBOL_GPL(smp_yield_cpu);
 426
 427/*
 428 * Send cpus emergency shutdown signal. This gives the cpus the
 429 * opportunity to complete outstanding interrupts.
 430 */
 431void notrace smp_emergency_stop(void)
 432{
 433	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 434	static cpumask_t cpumask;
 435	u64 end;
 436	int cpu;
 437
 438	arch_spin_lock(&lock);
 439	cpumask_copy(&cpumask, cpu_online_mask);
 440	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 441
 442	end = get_tod_clock() + (1000000UL << 12);
 443	for_each_cpu(cpu, &cpumask) {
 444		struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 445		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 446		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 447				   0, NULL) == SIGP_CC_BUSY &&
 448		       get_tod_clock() < end)
 449			cpu_relax();
 450	}
 451	while (get_tod_clock() < end) {
 452		for_each_cpu(cpu, &cpumask)
 453			if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
 454				cpumask_clear_cpu(cpu, &cpumask);
 455		if (cpumask_empty(&cpumask))
 456			break;
 457		cpu_relax();
 458	}
 459	arch_spin_unlock(&lock);
 460}
 461NOKPROBE_SYMBOL(smp_emergency_stop);
 462
 463/*
 464 * Stop all cpus but the current one.
 465 */
 466void smp_send_stop(void)
 467{
 468	struct pcpu *pcpu;
 469	int cpu;
 470
 471	/* Disable all interrupts/machine checks */
 472	__load_psw_mask(PSW_KERNEL_BITS);
 473	trace_hardirqs_off();
 474
 475	debug_set_critical();
 476
 477	if (oops_in_progress)
 478		smp_emergency_stop();
 479
 480	/* stop all processors */
 481	for_each_online_cpu(cpu) {
 482		if (cpu == smp_processor_id())
 483			continue;
 484		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 485		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 486		while (!pcpu_stopped(pcpu))
 487			cpu_relax();
 488	}
 489}
 490
 491/*
 492 * This is the main routine where commands issued by other
 493 * cpus are handled.
 494 */
 495static void smp_handle_ext_call(void)
 496{
 497	unsigned long bits;
 498
 499	/* handle bit signal external calls */
 500	bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
 501	if (test_bit(ec_stop_cpu, &bits))
 502		smp_stop_cpu();
 503	if (test_bit(ec_schedule, &bits))
 504		scheduler_ipi();
 505	if (test_bit(ec_call_function_single, &bits))
 506		generic_smp_call_function_single_interrupt();
 507	if (test_bit(ec_mcck_pending, &bits))
 508		s390_handle_mcck();
 509	if (test_bit(ec_irq_work, &bits))
 510		irq_work_run();
 511}
 512
 513static void do_ext_call_interrupt(struct ext_code ext_code,
 514				  unsigned int param32, unsigned long param64)
 515{
 516	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 517	smp_handle_ext_call();
 518}
 519
 520void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 521{
 522	int cpu;
 523
 524	for_each_cpu(cpu, mask)
 525		pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 526}
 527
 528void arch_send_call_function_single_ipi(int cpu)
 529{
 530	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
 531}
 532
 533/*
 534 * this function sends a 'reschedule' IPI to another CPU.
 535 * it goes straight through and wastes no time serializing
 536 * anything. Worst case is that we lose a reschedule ...
 537 */
 538void arch_smp_send_reschedule(int cpu)
 539{
 540	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
 541}
 542
 543#ifdef CONFIG_IRQ_WORK
 544void arch_irq_work_raise(void)
 
 
 
 
 
 
 
 
 
 
 
 545{
 546	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
 
 
 
 
 
 547}
 548#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550#ifdef CONFIG_CRASH_DUMP
 551
 552int smp_store_status(int cpu)
 553{
 554	struct lowcore *lc;
 555	struct pcpu *pcpu;
 556	unsigned long pa;
 557
 558	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 559	lc = lowcore_ptr[cpu];
 560	pa = __pa(&lc->floating_pt_save_area);
 561	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 562			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 563		return -EIO;
 564	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 565		return 0;
 566	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 567	if (MACHINE_HAS_GS)
 568		pa |= lc->mcesad & MCESA_LC_MASK;
 569	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 570			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 571		return -EIO;
 572	return 0;
 573}
 574
 575/*
 576 * Collect CPU state of the previous, crashed system.
 577 * There are three cases:
 578 * 1) standard zfcp/nvme dump
 579 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 580 *    The state for all CPUs except the boot CPU needs to be collected
 581 *    with sigp stop-and-store-status. The boot CPU state is located in
 582 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 583 *    will copy the boot CPU state from the HSA.
 584 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 585 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 586 *    The state for all CPUs except the boot CPU needs to be collected
 587 *    with sigp stop-and-store-status. The firmware or the boot-loader
 588 *    stored the registers of the boot CPU in the absolute lowcore in the
 589 *    memory of the old system.
 590 * 3) kdump or stand-alone kdump for DASD
 591 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
 
 592 *    The state for all CPUs except the boot CPU needs to be collected
 593 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 594 *    stored the registers of the boot CPU in the memory of the old system.
 595 *
 596 * Note that the legacy kdump mode where the old kernel stored the CPU states
 597 * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
 598 * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
 599 * of the elfcorehdr= parameter.
 600 */
 601static bool dump_available(void)
 
 602{
 603	return oldmem_data.start || is_ipl_type_dump();
 
 
 
 
 
 
 604}
 605
 606void __init smp_save_dump_ipl_cpu(void)
 
 607{
 608	struct save_area *sa;
 609	void *regs;
 610
 611	if (!dump_available())
 612		return;
 613	sa = save_area_alloc(true);
 614	regs = memblock_alloc(512, 8);
 615	if (!sa || !regs)
 616		panic("could not allocate memory for boot CPU save area\n");
 617	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 618	save_area_add_regs(sa, regs);
 619	memblock_free(regs, 512);
 620	if (cpu_has_vx())
 621		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 622}
 623
 624void __init smp_save_dump_secondary_cpus(void)
 625{
 626	int addr, boot_cpu_addr, max_cpu_addr;
 627	struct save_area *sa;
 628	void *page;
 
 629
 630	if (!dump_available())
 
 631		return;
 632	/* Allocate a page as dumping area for the store status sigps */
 633	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 634	if (!page)
 635		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 636		      PAGE_SIZE, 1UL << 31);
 637
 638	/* Set multi-threading state to the previous system. */
 639	pcpu_set_smt(sclp.mtid_prev);
 640	boot_cpu_addr = stap();
 641	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 642	for (addr = 0; addr <= max_cpu_addr; addr++) {
 643		if (addr == boot_cpu_addr)
 644			continue;
 645		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 646		    SIGP_CC_NOT_OPERATIONAL)
 647			continue;
 648		sa = save_area_alloc(false);
 
 
 649		if (!sa)
 650			panic("could not allocate memory for save area\n");
 651		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 652		save_area_add_regs(sa, page);
 653		if (cpu_has_vx()) {
 654			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 655			save_area_add_vxrs(sa, page);
 656		}
 
 
 
 
 
 
 657	}
 658	memblock_free(page, PAGE_SIZE);
 659	diag_amode31_ops.diag308_reset();
 660	pcpu_set_smt(0);
 661}
 662#endif /* CONFIG_CRASH_DUMP */
 663
 664void smp_cpu_set_polarization(int cpu, int val)
 665{
 666	per_cpu(pcpu_devices, cpu).polarization = val;
 667}
 668
 669int smp_cpu_get_polarization(int cpu)
 670{
 671	return per_cpu(pcpu_devices, cpu).polarization;
 672}
 673
 674void smp_cpu_set_capacity(int cpu, unsigned long val)
 675{
 676	per_cpu(pcpu_devices, cpu).capacity = val;
 677}
 678
 679unsigned long smp_cpu_get_capacity(int cpu)
 680{
 681	return per_cpu(pcpu_devices, cpu).capacity;
 682}
 683
 684void smp_set_core_capacity(int cpu, unsigned long val)
 685{
 686	int i;
 687
 688	cpu = smp_get_base_cpu(cpu);
 689	for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
 690		smp_cpu_set_capacity(i, val);
 691}
 692
 693int smp_cpu_get_cpu_address(int cpu)
 694{
 695	return per_cpu(pcpu_devices, cpu).address;
 696}
 697
 698static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 699{
 700	static int use_sigp_detection;
 701	int address;
 702
 703	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 704		use_sigp_detection = 1;
 705		for (address = 0;
 706		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 707		     address += (1U << smp_cpu_mt_shift)) {
 708			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 709			    SIGP_CC_NOT_OPERATIONAL)
 710				continue;
 711			info->core[info->configured].core_id =
 712				address >> smp_cpu_mt_shift;
 713			info->configured++;
 714		}
 715		info->combined = info->configured;
 716	}
 717}
 718
 
 
 719static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 720			bool configured, bool early)
 721{
 722	struct pcpu *pcpu;
 723	int cpu, nr, i;
 724	u16 address;
 725
 726	nr = 0;
 727	if (sclp.has_core_type && core->type != boot_core_type)
 728		return nr;
 729	cpu = cpumask_first(avail);
 730	address = core->core_id << smp_cpu_mt_shift;
 731	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 732		if (pcpu_find_address(cpu_present_mask, address + i))
 733			continue;
 734		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 735		pcpu->address = address + i;
 736		if (configured)
 737			pcpu->state = CPU_STATE_CONFIGURED;
 738		else
 739			pcpu->state = CPU_STATE_STANDBY;
 740		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 741		smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
 742		set_cpu_present(cpu, true);
 743		if (!early && arch_register_cpu(cpu))
 744			set_cpu_present(cpu, false);
 745		else
 746			nr++;
 747		cpumask_clear_cpu(cpu, avail);
 748		cpu = cpumask_next(cpu, avail);
 749	}
 750	return nr;
 751}
 752
 753static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 754{
 755	struct sclp_core_entry *core;
 756	static cpumask_t avail;
 757	bool configured;
 758	u16 core_id;
 759	int nr, i;
 760
 761	cpus_read_lock();
 762	mutex_lock(&smp_cpu_state_mutex);
 763	nr = 0;
 764	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 765	/*
 766	 * Add IPL core first (which got logical CPU number 0) to make sure
 767	 * that all SMT threads get subsequent logical CPU numbers.
 768	 */
 769	if (early) {
 770		core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
 771		for (i = 0; i < info->configured; i++) {
 772			core = &info->core[i];
 773			if (core->core_id == core_id) {
 774				nr += smp_add_core(core, &avail, true, early);
 775				break;
 776			}
 777		}
 778	}
 779	for (i = 0; i < info->combined; i++) {
 780		configured = i < info->configured;
 781		nr += smp_add_core(&info->core[i], &avail, configured, early);
 782	}
 783	mutex_unlock(&smp_cpu_state_mutex);
 784	cpus_read_unlock();
 785	return nr;
 786}
 787
 788void __init smp_detect_cpus(void)
 789{
 790	unsigned int cpu, mtid, c_cpus, s_cpus;
 791	struct sclp_core_info *info;
 792	u16 address;
 793
 794	/* Get CPU information */
 795	info = memblock_alloc(sizeof(*info), 8);
 796	if (!info)
 797		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 798		      __func__, sizeof(*info), 8);
 799	smp_get_core_info(info, 1);
 800	/* Find boot CPU type */
 801	if (sclp.has_core_type) {
 802		address = stap();
 803		for (cpu = 0; cpu < info->combined; cpu++)
 804			if (info->core[cpu].core_id == address) {
 805				/* The boot cpu dictates the cpu type. */
 806				boot_core_type = info->core[cpu].type;
 807				break;
 808			}
 809		if (cpu >= info->combined)
 810			panic("Could not find boot CPU type");
 811	}
 812
 813	/* Set multi-threading state for the current system */
 814	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 815	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 816	pcpu_set_smt(mtid);
 817
 818	/* Print number of CPUs */
 819	c_cpus = s_cpus = 0;
 820	for (cpu = 0; cpu < info->combined; cpu++) {
 821		if (sclp.has_core_type &&
 822		    info->core[cpu].type != boot_core_type)
 823			continue;
 824		if (cpu < info->configured)
 825			c_cpus += smp_cpu_mtid + 1;
 826		else
 827			s_cpus += smp_cpu_mtid + 1;
 828	}
 829	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 830	memblock_free(info, sizeof(*info));
 
 
 
 
 
 831}
 832
 833/*
 834 *	Activate a secondary processor.
 835 */
 836static void smp_start_secondary(void *cpuvoid)
 837{
 838	struct lowcore *lc = get_lowcore();
 839	int cpu = raw_smp_processor_id();
 840
 841	lc->last_update_clock = get_tod_clock();
 842	lc->restart_stack = (unsigned long)restart_stack;
 843	lc->restart_fn = (unsigned long)do_restart;
 844	lc->restart_data = 0;
 845	lc->restart_source = -1U;
 846	lc->restart_flags = 0;
 847	restore_access_regs(lc->access_regs_save_area);
 848	cpu_init();
 849	rcutree_report_cpu_starting(cpu);
 850	init_cpu_timer();
 851	vtime_init();
 852	vdso_getcpu_init();
 853	pfault_init();
 854	cpumask_set_cpu(cpu, &cpu_setup_mask);
 855	update_cpu_masks();
 856	notify_cpu_starting(cpu);
 857	if (topology_cpu_dedicated(cpu))
 858		set_cpu_flag(CIF_DEDICATED_CPU);
 859	else
 860		clear_cpu_flag(CIF_DEDICATED_CPU);
 861	set_cpu_online(cpu, true);
 
 862	inc_irq_stat(CPU_RST);
 863	local_irq_enable();
 864	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 865}
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867/* Upping and downing of CPUs */
 868int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 869{
 870	struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 871	int rc;
 872
 
 873	if (pcpu->state != CPU_STATE_CONFIGURED)
 874		return -EIO;
 875	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 
 
 
 
 
 
 
 
 
 
 
 876	    SIGP_CC_ORDER_CODE_ACCEPTED)
 877		return -EIO;
 878
 879	rc = pcpu_alloc_lowcore(pcpu, cpu);
 880	if (rc)
 881		return rc;
 882	/*
 883	 * Make sure global control register contents do not change
 884	 * until new CPU has initialized control registers.
 885	 */
 886	system_ctlreg_lock();
 887	pcpu_prepare_secondary(pcpu, cpu);
 888	pcpu_attach_task(cpu, tidle);
 889	pcpu_start_fn(cpu, smp_start_secondary, NULL);
 890	/* Wait until cpu puts itself in the online & active maps */
 891	while (!cpu_online(cpu))
 892		cpu_relax();
 893	system_ctlreg_unlock();
 894	return 0;
 895}
 896
 897static unsigned int setup_possible_cpus __initdata;
 898
 899static int __init _setup_possible_cpus(char *s)
 900{
 901	get_option(&s, &setup_possible_cpus);
 902	return 0;
 903}
 904early_param("possible_cpus", _setup_possible_cpus);
 905
 906int __cpu_disable(void)
 907{
 908	struct ctlreg cregs[16];
 909	int cpu;
 910
 911	/* Handle possible pending IPIs */
 912	smp_handle_ext_call();
 913	cpu = smp_processor_id();
 914	set_cpu_online(cpu, false);
 915	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 916	update_cpu_masks();
 917	/* Disable pseudo page faults on this cpu. */
 918	pfault_fini();
 919	/* Disable interrupt sources via control register. */
 920	__local_ctl_store(0, 15, cregs);
 921	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 922	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 923	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 924	__local_ctl_load(0, 15, cregs);
 925	clear_cpu_flag(CIF_NOHZ_DELAY);
 926	return 0;
 927}
 928
 929void __cpu_die(unsigned int cpu)
 930{
 931	struct pcpu *pcpu;
 932
 933	/* Wait until target cpu is down */
 934	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
 935	while (!pcpu_stopped(pcpu))
 936		cpu_relax();
 937	pcpu_free_lowcore(pcpu, cpu);
 938	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 939	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 940	pcpu->flags = 0;
 941}
 942
 943void __noreturn cpu_die(void)
 944{
 945	idle_task_exit();
 946	pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
 
 947	for (;;) ;
 948}
 949
 950void __init smp_fill_possible_mask(void)
 951{
 952	unsigned int possible, sclp_max, cpu;
 953
 954	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 955	sclp_max = min(smp_max_threads, sclp_max);
 956	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 957	possible = setup_possible_cpus ?: nr_cpu_ids;
 958	possible = min(possible, sclp_max);
 959	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 960		set_cpu_possible(cpu, true);
 961}
 962
 963void __init smp_prepare_cpus(unsigned int max_cpus)
 964{
 
 965	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 966		panic("Couldn't request external interrupt 0x1201");
 967	system_ctl_set_bit(0, 14);
 968	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 969		panic("Couldn't request external interrupt 0x1202");
 970	system_ctl_set_bit(0, 13);
 971	smp_rescan_cpus(true);
 972}
 973
 974void __init smp_prepare_boot_cpu(void)
 975{
 976	struct lowcore *lc = get_lowcore();
 977
 978	WARN_ON(!cpu_present(0) || !cpu_online(0));
 979	lc->percpu_offset = __per_cpu_offset[0];
 980	ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
 981	ipl_pcpu->state = CPU_STATE_CONFIGURED;
 982	lc->pcpu = (unsigned long)ipl_pcpu;
 983	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 984	smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
 985}
 986
 987void __init smp_setup_processor_id(void)
 988{
 989	struct lowcore *lc = get_lowcore();
 990
 991	lc->cpu_nr = 0;
 992	per_cpu(pcpu_devices, 0).address = stap();
 993	lc->spinlock_lockval = arch_spin_lockval(0);
 994	lc->spinlock_index = 0;
 995}
 996
 997/*
 998 * the frequency of the profiling timer can be changed
 999 * by writing a multiplier value into /proc/profile.
1000 *
1001 * usually you want to run this on all CPUs ;)
1002 */
1003int setup_profiling_timer(unsigned int multiplier)
1004{
1005	return 0;
1006}
1007
1008static ssize_t cpu_configure_show(struct device *dev,
1009				  struct device_attribute *attr, char *buf)
1010{
1011	ssize_t count;
1012
1013	mutex_lock(&smp_cpu_state_mutex);
1014	count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1015	mutex_unlock(&smp_cpu_state_mutex);
1016	return count;
1017}
1018
1019static ssize_t cpu_configure_store(struct device *dev,
1020				   struct device_attribute *attr,
1021				   const char *buf, size_t count)
1022{
1023	struct pcpu *pcpu;
1024	int cpu, val, rc, i;
1025	char delim;
1026
1027	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1028		return -EINVAL;
1029	if (val != 0 && val != 1)
1030		return -EINVAL;
1031	cpus_read_lock();
1032	mutex_lock(&smp_cpu_state_mutex);
1033	rc = -EBUSY;
1034	/* disallow configuration changes of online cpus */
1035	cpu = dev->id;
1036	cpu = smp_get_base_cpu(cpu);
 
 
1037	for (i = 0; i <= smp_cpu_mtid; i++)
1038		if (cpu_online(cpu + i))
1039			goto out;
1040	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1041	rc = 0;
1042	switch (val) {
1043	case 0:
1044		if (pcpu->state != CPU_STATE_CONFIGURED)
1045			break;
1046		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1047		if (rc)
1048			break;
1049		for (i = 0; i <= smp_cpu_mtid; i++) {
1050			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051				continue;
1052			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1053			smp_cpu_set_polarization(cpu + i,
1054						 POLARIZATION_UNKNOWN);
1055		}
1056		topology_expect_change();
1057		break;
1058	case 1:
1059		if (pcpu->state != CPU_STATE_STANDBY)
1060			break;
1061		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1062		if (rc)
1063			break;
1064		for (i = 0; i <= smp_cpu_mtid; i++) {
1065			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1066				continue;
1067			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1068			smp_cpu_set_polarization(cpu + i,
1069						 POLARIZATION_UNKNOWN);
1070		}
1071		topology_expect_change();
1072		break;
1073	default:
1074		break;
1075	}
1076out:
1077	mutex_unlock(&smp_cpu_state_mutex);
1078	cpus_read_unlock();
1079	return rc ? rc : count;
1080}
1081static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1082
1083static ssize_t show_cpu_address(struct device *dev,
1084				struct device_attribute *attr, char *buf)
1085{
1086	return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1087}
1088static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1089
1090static struct attribute *cpu_common_attrs[] = {
1091	&dev_attr_configure.attr,
1092	&dev_attr_address.attr,
1093	NULL,
1094};
1095
1096static struct attribute_group cpu_common_attr_group = {
1097	.attrs = cpu_common_attrs,
1098};
1099
1100static struct attribute *cpu_online_attrs[] = {
1101	&dev_attr_idle_count.attr,
1102	&dev_attr_idle_time_us.attr,
1103	NULL,
1104};
1105
1106static struct attribute_group cpu_online_attr_group = {
1107	.attrs = cpu_online_attrs,
1108};
1109
1110static int smp_cpu_online(unsigned int cpu)
1111{
1112	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1113
1114	return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1115}
1116
1117static int smp_cpu_pre_down(unsigned int cpu)
1118{
1119	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1120
1121	sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1122	return 0;
1123}
1124
1125bool arch_cpu_is_hotpluggable(int cpu)
1126{
1127	return !!cpu;
1128}
1129
1130int arch_register_cpu(int cpu)
1131{
1132	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1133	int rc;
1134
1135	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
 
 
 
 
 
1136	rc = register_cpu(c, cpu);
1137	if (rc)
1138		goto out;
1139	rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1140	if (rc)
1141		goto out_cpu;
1142	rc = topology_cpu_init(c);
1143	if (rc)
1144		goto out_topology;
1145	return 0;
1146
1147out_topology:
1148	sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1149out_cpu:
1150	unregister_cpu(c);
1151out:
1152	return rc;
1153}
1154
1155int __ref smp_rescan_cpus(bool early)
1156{
1157	struct sclp_core_info *info;
1158	int nr;
1159
1160	info = kzalloc(sizeof(*info), GFP_KERNEL);
1161	if (!info)
1162		return -ENOMEM;
1163	smp_get_core_info(info, 0);
1164	nr = __smp_rescan_cpus(info, early);
 
 
 
 
1165	kfree(info);
1166	if (nr)
1167		topology_schedule_update();
1168	return 0;
1169}
1170
1171static ssize_t __ref rescan_store(struct device *dev,
1172				  struct device_attribute *attr,
1173				  const char *buf,
1174				  size_t count)
1175{
1176	int rc;
1177
1178	rc = lock_device_hotplug_sysfs();
1179	if (rc)
1180		return rc;
1181	rc = smp_rescan_cpus(false);
1182	unlock_device_hotplug();
1183	return rc ? rc : count;
1184}
1185static DEVICE_ATTR_WO(rescan);
1186
1187static int __init s390_smp_init(void)
1188{
1189	struct device *dev_root;
1190	int rc;
1191
1192	dev_root = bus_get_dev_root(&cpu_subsys);
1193	if (dev_root) {
1194		rc = device_create_file(dev_root, &dev_attr_rescan);
1195		put_device(dev_root);
 
1196		if (rc)
1197			return rc;
1198	}
 
1199	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1200			       smp_cpu_online, smp_cpu_pre_down);
1201	rc = rc <= 0 ? rc : 0;
 
1202	return rc;
1203}
1204subsys_initcall(s390_smp_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/memblock.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
 
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
 
  39#include <asm/asm-offsets.h>
 
 
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
 
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/lowcore.h>
  49#include <asm/sclp.h>
  50#include <asm/vdso.h>
  51#include <asm/debug.h>
  52#include <asm/os_info.h>
  53#include <asm/sigp.h>
  54#include <asm/idle.h>
  55#include <asm/nmi.h>
  56#include <asm/stacktrace.h>
  57#include <asm/topology.h>
 
 
  58#include "entry.h"
  59
  60enum {
  61	ec_schedule = 0,
  62	ec_call_function_single,
  63	ec_stop_cpu,
  64	ec_mcck_pending,
 
  65};
  66
  67enum {
  68	CPU_STATE_STANDBY,
  69	CPU_STATE_CONFIGURED,
  70};
  71
  72static DEFINE_PER_CPU(struct cpu *, cpu_device);
  73
  74struct pcpu {
  75	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
  76	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  77	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  78	signed char state;		/* physical cpu state */
  79	signed char polarization;	/* physical polarization */
  80	u16 address;			/* physical cpu address */
  81};
  82
  83static u8 boot_core_type;
  84static struct pcpu pcpu_devices[NR_CPUS];
 
 
 
 
 
 
 
  85
  86unsigned int smp_cpu_mt_shift;
  87EXPORT_SYMBOL(smp_cpu_mt_shift);
  88
  89unsigned int smp_cpu_mtid;
  90EXPORT_SYMBOL(smp_cpu_mtid);
  91
  92#ifdef CONFIG_CRASH_DUMP
  93__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  94#endif
  95
  96static unsigned int smp_max_threads __initdata = -1U;
 
  97
  98static int __init early_nosmt(char *s)
  99{
 100	smp_max_threads = 1;
 101	return 0;
 102}
 103early_param("nosmt", early_nosmt);
 104
 105static int __init early_smt(char *s)
 106{
 107	get_option(&s, &smp_max_threads);
 108	return 0;
 109}
 110early_param("smt", early_smt);
 111
 112/*
 113 * The smp_cpu_state_mutex must be held when changing the state or polarization
 114 * member of a pcpu data structure within the pcpu_devices arreay.
 115 */
 116DEFINE_MUTEX(smp_cpu_state_mutex);
 117
 118/*
 119 * Signal processor helper functions.
 120 */
 121static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 122{
 123	int cc;
 124
 125	while (1) {
 126		cc = __pcpu_sigp(addr, order, parm, NULL);
 127		if (cc != SIGP_CC_BUSY)
 128			return cc;
 129		cpu_relax();
 130	}
 131}
 132
 133static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 134{
 135	int cc, retry;
 136
 137	for (retry = 0; ; retry++) {
 138		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 139		if (cc != SIGP_CC_BUSY)
 140			break;
 141		if (retry >= 3)
 142			udelay(10);
 143	}
 144	return cc;
 145}
 146
 147static inline int pcpu_stopped(struct pcpu *pcpu)
 148{
 149	u32 status;
 150
 151	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 152			0, &status) != SIGP_CC_STATUS_STORED)
 153		return 0;
 154	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 155}
 156
 157static inline int pcpu_running(struct pcpu *pcpu)
 158{
 159	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 160			0, NULL) != SIGP_CC_STATUS_STORED)
 161		return 1;
 162	/* Status stored condition code is equivalent to cpu not running. */
 163	return 0;
 164}
 165
 166/*
 167 * Find struct pcpu by cpu address.
 168 */
 169static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 170{
 171	int cpu;
 172
 173	for_each_cpu(cpu, mask)
 174		if (pcpu_devices[cpu].address == address)
 175			return pcpu_devices + cpu;
 176	return NULL;
 177}
 178
 179static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 180{
 181	int order;
 182
 183	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 184		return;
 185	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 186	pcpu->ec_clk = get_tod_clock_fast();
 187	pcpu_sigp_retry(pcpu, order, 0);
 188}
 189
 190static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 191{
 192	unsigned long async_stack, nodat_stack;
 193	struct lowcore *lc;
 194
 195	if (pcpu != &pcpu_devices[0]) {
 196		pcpu->lowcore =	(struct lowcore *)
 197			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 199		if (!pcpu->lowcore || !nodat_stack)
 200			goto out;
 201	} else {
 202		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 203	}
 204	async_stack = stack_alloc();
 205	if (!async_stack)
 
 206		goto out;
 207	lc = pcpu->lowcore;
 208	memcpy(lc, &S390_lowcore, 512);
 209	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 210	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 211	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 
 212	lc->cpu_nr = cpu;
 213	lc->spinlock_lockval = arch_spin_lockval(cpu);
 214	lc->spinlock_index = 0;
 215	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
 216	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 217	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 218	if (nmi_alloc_per_cpu(lc))
 219		goto out_async;
 220	if (vdso_alloc_per_cpu(lc))
 
 221		goto out_mcesa;
 222	lowcore_ptr[cpu] = lc;
 223	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 224	return 0;
 225
 226out_mcesa:
 227	nmi_free_per_cpu(lc);
 228out_async:
 
 229	stack_free(async_stack);
 230out:
 231	if (pcpu != &pcpu_devices[0]) {
 232		free_pages(nodat_stack, THREAD_SIZE_ORDER);
 233		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 234	}
 235	return -ENOMEM;
 236}
 237
 238static void pcpu_free_lowcore(struct pcpu *pcpu)
 239{
 240	unsigned long async_stack, nodat_stack, lowcore;
 241
 242	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 243	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
 244	lowcore = (unsigned long) pcpu->lowcore;
 245
 
 
 
 
 246	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 247	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 248	vdso_free_per_cpu(pcpu->lowcore);
 249	nmi_free_per_cpu(pcpu->lowcore);
 250	stack_free(async_stack);
 251	if (pcpu == &pcpu_devices[0])
 252		return;
 253	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 254	free_pages(lowcore, LC_ORDER);
 255}
 256
 257static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 258{
 259	struct lowcore *lc = pcpu->lowcore;
 260
 
 261	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 262	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 263	lc->cpu_nr = cpu;
 
 
 264	lc->spinlock_lockval = arch_spin_lockval(cpu);
 265	lc->spinlock_index = 0;
 266	lc->percpu_offset = __per_cpu_offset[cpu];
 267	lc->kernel_asce = S390_lowcore.kernel_asce;
 268	lc->user_asce = S390_lowcore.kernel_asce;
 269	lc->machine_flags = S390_lowcore.machine_flags;
 270	lc->user_timer = lc->system_timer =
 271		lc->steal_timer = lc->avg_steal_timer = 0;
 272	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 273	lc->cregs_save_area[1] = lc->kernel_asce;
 274	lc->cregs_save_area[7] = lc->vdso_asce;
 275	save_access_regs((unsigned int *) lc->access_regs_save_area);
 276	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 277	       sizeof(lc->stfle_fac_list));
 278	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
 279	       sizeof(lc->alt_stfle_fac_list));
 280	arch_spin_lock_setup(cpu);
 281}
 282
 283static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 284{
 285	struct lowcore *lc = pcpu->lowcore;
 286
 287	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 288		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 289	lc->current_task = (unsigned long) tsk;
 290	lc->lpp = LPP_MAGIC;
 291	lc->current_pid = tsk->pid;
 292	lc->user_timer = tsk->thread.user_timer;
 293	lc->guest_timer = tsk->thread.guest_timer;
 294	lc->system_timer = tsk->thread.system_timer;
 295	lc->hardirq_timer = tsk->thread.hardirq_timer;
 296	lc->softirq_timer = tsk->thread.softirq_timer;
 297	lc->steal_timer = 0;
 298}
 299
 300static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 301{
 302	struct lowcore *lc = pcpu->lowcore;
 303
 304	lc->restart_stack = lc->nodat_stack;
 
 305	lc->restart_fn = (unsigned long) func;
 306	lc->restart_data = (unsigned long) data;
 307	lc->restart_source = -1UL;
 308	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 309}
 310
 
 
 311/*
 312 * Call function via PSW restart on pcpu and stop the current cpu.
 313 */
 314static void __pcpu_delegate(void (*func)(void*), void *data)
 315{
 316	func(data);	/* should not return */
 317}
 318
 319static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
 320						void (*func)(void *),
 321						void *data, unsigned long stack)
 322{
 323	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 324	unsigned long source_cpu = stap();
 325
 326	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 327	if (pcpu->address == source_cpu)
 328		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
 
 
 
 
 329	/* Stop target cpu (if func returns this stops the current cpu). */
 330	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 331	/* Restart func on the target cpu and stop the current cpu. */
 332	mem_assign_absolute(lc->restart_stack, stack);
 333	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 334	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 335	mem_assign_absolute(lc->restart_source, source_cpu);
 336	__bpon();
 
 
 
 
 
 
 
 
 337	asm volatile(
 338		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 339		"	brc	2,0b	# busy, try again\n"
 340		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 341		"	brc	2,1b	# busy, try again\n"
 342		: : "d" (pcpu->address), "d" (source_cpu),
 343		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 344		: "0", "1", "cc");
 345	for (;;) ;
 346}
 347
 348/*
 349 * Enable additional logical cpus for multi-threading.
 350 */
 351static int pcpu_set_smt(unsigned int mtid)
 352{
 353	int cc;
 354
 355	if (smp_cpu_mtid == mtid)
 356		return 0;
 357	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 358	if (cc == 0) {
 359		smp_cpu_mtid = mtid;
 360		smp_cpu_mt_shift = 0;
 361		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 362			smp_cpu_mt_shift++;
 363		pcpu_devices[0].address = stap();
 364	}
 365	return cc;
 366}
 367
 368/*
 369 * Call function on an online CPU.
 370 */
 371void smp_call_online_cpu(void (*func)(void *), void *data)
 372{
 373	struct pcpu *pcpu;
 374
 375	/* Use the current cpu if it is online. */
 376	pcpu = pcpu_find_address(cpu_online_mask, stap());
 377	if (!pcpu)
 378		/* Use the first online cpu. */
 379		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 380	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 381}
 382
 383/*
 384 * Call function on the ipl CPU.
 385 */
 386void smp_call_ipl_cpu(void (*func)(void *), void *data)
 387{
 388	struct lowcore *lc = pcpu_devices->lowcore;
 389
 390	if (pcpu_devices[0].address == stap())
 391		lc = &S390_lowcore;
 392
 393	pcpu_delegate(&pcpu_devices[0], func, data,
 394		      lc->nodat_stack);
 395}
 396
 397int smp_find_processor_id(u16 address)
 398{
 399	int cpu;
 400
 401	for_each_present_cpu(cpu)
 402		if (pcpu_devices[cpu].address == address)
 403			return cpu;
 404	return -1;
 405}
 406
 407void schedule_mcck_handler(void)
 408{
 409	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 410}
 411
 412bool notrace arch_vcpu_is_preempted(int cpu)
 413{
 414	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 415		return false;
 416	if (pcpu_running(pcpu_devices + cpu))
 417		return false;
 418	return true;
 419}
 420EXPORT_SYMBOL(arch_vcpu_is_preempted);
 421
 422void notrace smp_yield_cpu(int cpu)
 423{
 424	if (!MACHINE_HAS_DIAG9C)
 425		return;
 426	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 427	asm volatile("diag %0,0,0x9c"
 428		     : : "d" (pcpu_devices[cpu].address));
 429}
 
 430
 431/*
 432 * Send cpus emergency shutdown signal. This gives the cpus the
 433 * opportunity to complete outstanding interrupts.
 434 */
 435void notrace smp_emergency_stop(void)
 436{
 437	cpumask_t cpumask;
 
 438	u64 end;
 439	int cpu;
 440
 
 441	cpumask_copy(&cpumask, cpu_online_mask);
 442	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 443
 444	end = get_tod_clock() + (1000000UL << 12);
 445	for_each_cpu(cpu, &cpumask) {
 446		struct pcpu *pcpu = pcpu_devices + cpu;
 447		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 448		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 449				   0, NULL) == SIGP_CC_BUSY &&
 450		       get_tod_clock() < end)
 451			cpu_relax();
 452	}
 453	while (get_tod_clock() < end) {
 454		for_each_cpu(cpu, &cpumask)
 455			if (pcpu_stopped(pcpu_devices + cpu))
 456				cpumask_clear_cpu(cpu, &cpumask);
 457		if (cpumask_empty(&cpumask))
 458			break;
 459		cpu_relax();
 460	}
 
 461}
 462NOKPROBE_SYMBOL(smp_emergency_stop);
 463
 464/*
 465 * Stop all cpus but the current one.
 466 */
 467void smp_send_stop(void)
 468{
 
 469	int cpu;
 470
 471	/* Disable all interrupts/machine checks */
 472	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 473	trace_hardirqs_off();
 474
 475	debug_set_critical();
 476
 477	if (oops_in_progress)
 478		smp_emergency_stop();
 479
 480	/* stop all processors */
 481	for_each_online_cpu(cpu) {
 482		if (cpu == smp_processor_id())
 483			continue;
 484		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 485		while (!pcpu_stopped(pcpu_devices + cpu))
 
 486			cpu_relax();
 487	}
 488}
 489
 490/*
 491 * This is the main routine where commands issued by other
 492 * cpus are handled.
 493 */
 494static void smp_handle_ext_call(void)
 495{
 496	unsigned long bits;
 497
 498	/* handle bit signal external calls */
 499	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 500	if (test_bit(ec_stop_cpu, &bits))
 501		smp_stop_cpu();
 502	if (test_bit(ec_schedule, &bits))
 503		scheduler_ipi();
 504	if (test_bit(ec_call_function_single, &bits))
 505		generic_smp_call_function_single_interrupt();
 506	if (test_bit(ec_mcck_pending, &bits))
 507		s390_handle_mcck();
 
 
 508}
 509
 510static void do_ext_call_interrupt(struct ext_code ext_code,
 511				  unsigned int param32, unsigned long param64)
 512{
 513	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 514	smp_handle_ext_call();
 515}
 516
 517void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 518{
 519	int cpu;
 520
 521	for_each_cpu(cpu, mask)
 522		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 523}
 524
 525void arch_send_call_function_single_ipi(int cpu)
 526{
 527	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 528}
 529
 530/*
 531 * this function sends a 'reschedule' IPI to another CPU.
 532 * it goes straight through and wastes no time serializing
 533 * anything. Worst case is that we lose a reschedule ...
 534 */
 535void smp_send_reschedule(int cpu)
 536{
 537	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 538}
 539
 540/*
 541 * parameter area for the set/clear control bit callbacks
 542 */
 543struct ec_creg_mask_parms {
 544	unsigned long orval;
 545	unsigned long andval;
 546	int cr;
 547};
 548
 549/*
 550 * callback for setting/clearing control bits
 551 */
 552static void smp_ctl_bit_callback(void *info)
 553{
 554	struct ec_creg_mask_parms *pp = info;
 555	unsigned long cregs[16];
 556
 557	__ctl_store(cregs, 0, 15);
 558	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 559	__ctl_load(cregs, 0, 15);
 560}
 561
 562/*
 563 * Set a bit in a control register of all cpus
 564 */
 565void smp_ctl_set_bit(int cr, int bit)
 566{
 567	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 568
 569	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 570}
 571EXPORT_SYMBOL(smp_ctl_set_bit);
 572
 573/*
 574 * Clear a bit in a control register of all cpus
 575 */
 576void smp_ctl_clear_bit(int cr, int bit)
 577{
 578	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 579
 580	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 581}
 582EXPORT_SYMBOL(smp_ctl_clear_bit);
 583
 584#ifdef CONFIG_CRASH_DUMP
 585
 586int smp_store_status(int cpu)
 587{
 588	struct pcpu *pcpu = pcpu_devices + cpu;
 
 589	unsigned long pa;
 590
 591	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 
 
 592	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 593			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 594		return -EIO;
 595	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 596		return 0;
 597	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
 598	if (MACHINE_HAS_GS)
 599		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
 600	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 601			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 602		return -EIO;
 603	return 0;
 604}
 605
 606/*
 607 * Collect CPU state of the previous, crashed system.
 608 * There are four cases:
 609 * 1) standard zfcp dump
 610 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 611 *    The state for all CPUs except the boot CPU needs to be collected
 612 *    with sigp stop-and-store-status. The boot CPU state is located in
 613 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 614 *    will copy the boot CPU state from the HSA.
 615 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 616 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 617 *    The state for all CPUs except the boot CPU needs to be collected
 618 *    with sigp stop-and-store-status. The firmware or the boot-loader
 619 *    stored the registers of the boot CPU in the absolute lowcore in the
 620 *    memory of the old system.
 621 * 3) kdump and the old kernel did not store the CPU state,
 622 *    or stand-alone kdump for DASD
 623 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 624 *    The state for all CPUs except the boot CPU needs to be collected
 625 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 626 *    stored the registers of the boot CPU in the memory of the old system.
 627 * 4) kdump and the old kernel stored the CPU state
 628 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 629 *    This case does not exist for s390 anymore, setup_arch explicitly
 630 *    deactivates the elfcorehdr= kernel parameter
 
 631 */
 632static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 633				     bool is_boot_cpu, unsigned long page)
 634{
 635	__vector128 *vxrs = (__vector128 *) page;
 636
 637	if (is_boot_cpu)
 638		vxrs = boot_cpu_vector_save_area;
 639	else
 640		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 641	save_area_add_vxrs(sa, vxrs);
 642}
 643
 644static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 645				     bool is_boot_cpu, unsigned long page)
 646{
 647	void *regs = (void *) page;
 
 648
 649	if (is_boot_cpu)
 650		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 651	else
 652		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 
 
 
 653	save_area_add_regs(sa, regs);
 
 
 
 654}
 655
 656void __init smp_save_dump_cpus(void)
 657{
 658	int addr, boot_cpu_addr, max_cpu_addr;
 659	struct save_area *sa;
 660	unsigned long page;
 661	bool is_boot_cpu;
 662
 663	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 664		/* No previous system present, normal boot. */
 665		return;
 666	/* Allocate a page as dumping area for the store status sigps */
 667	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
 668	if (!page)
 669		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 670		      PAGE_SIZE, 1UL << 31);
 671
 672	/* Set multi-threading state to the previous system. */
 673	pcpu_set_smt(sclp.mtid_prev);
 674	boot_cpu_addr = stap();
 675	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 676	for (addr = 0; addr <= max_cpu_addr; addr++) {
 
 
 677		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 678		    SIGP_CC_NOT_OPERATIONAL)
 679			continue;
 680		is_boot_cpu = (addr == boot_cpu_addr);
 681		/* Allocate save area */
 682		sa = save_area_alloc(is_boot_cpu);
 683		if (!sa)
 684			panic("could not allocate memory for save area\n");
 685		if (MACHINE_HAS_VX)
 686			/* Get the vector registers */
 687			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 688		/*
 689		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 690		 * of the boot CPU are stored in the HSA. To retrieve
 691		 * these registers an SCLP request is required which is
 692		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 693		 */
 694		if (!is_boot_cpu || OLDMEM_BASE)
 695			/* Get the CPU registers */
 696			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 697	}
 698	memblock_free(page, PAGE_SIZE);
 699	diag_dma_ops.diag308_reset();
 700	pcpu_set_smt(0);
 701}
 702#endif /* CONFIG_CRASH_DUMP */
 703
 704void smp_cpu_set_polarization(int cpu, int val)
 705{
 706	pcpu_devices[cpu].polarization = val;
 707}
 708
 709int smp_cpu_get_polarization(int cpu)
 710{
 711	return pcpu_devices[cpu].polarization;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712}
 713
 714int smp_cpu_get_cpu_address(int cpu)
 715{
 716	return pcpu_devices[cpu].address;
 717}
 718
 719static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 720{
 721	static int use_sigp_detection;
 722	int address;
 723
 724	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 725		use_sigp_detection = 1;
 726		for (address = 0;
 727		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 728		     address += (1U << smp_cpu_mt_shift)) {
 729			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 730			    SIGP_CC_NOT_OPERATIONAL)
 731				continue;
 732			info->core[info->configured].core_id =
 733				address >> smp_cpu_mt_shift;
 734			info->configured++;
 735		}
 736		info->combined = info->configured;
 737	}
 738}
 739
 740static int smp_add_present_cpu(int cpu);
 741
 742static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 743			bool configured, bool early)
 744{
 745	struct pcpu *pcpu;
 746	int cpu, nr, i;
 747	u16 address;
 748
 749	nr = 0;
 750	if (sclp.has_core_type && core->type != boot_core_type)
 751		return nr;
 752	cpu = cpumask_first(avail);
 753	address = core->core_id << smp_cpu_mt_shift;
 754	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 755		if (pcpu_find_address(cpu_present_mask, address + i))
 756			continue;
 757		pcpu = pcpu_devices + cpu;
 758		pcpu->address = address + i;
 759		if (configured)
 760			pcpu->state = CPU_STATE_CONFIGURED;
 761		else
 762			pcpu->state = CPU_STATE_STANDBY;
 763		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 764		set_cpu_present(cpu, true);
 765		if (!early && smp_add_present_cpu(cpu) != 0)
 766			set_cpu_present(cpu, false);
 767		else
 768			nr++;
 769		cpumask_clear_cpu(cpu, avail);
 770		cpu = cpumask_next(cpu, avail);
 771	}
 772	return nr;
 773}
 774
 775static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 776{
 777	struct sclp_core_entry *core;
 778	cpumask_t avail;
 779	bool configured;
 780	u16 core_id;
 781	int nr, i;
 782
 
 
 783	nr = 0;
 784	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 785	/*
 786	 * Add IPL core first (which got logical CPU number 0) to make sure
 787	 * that all SMT threads get subsequent logical CPU numbers.
 788	 */
 789	if (early) {
 790		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 791		for (i = 0; i < info->configured; i++) {
 792			core = &info->core[i];
 793			if (core->core_id == core_id) {
 794				nr += smp_add_core(core, &avail, true, early);
 795				break;
 796			}
 797		}
 798	}
 799	for (i = 0; i < info->combined; i++) {
 800		configured = i < info->configured;
 801		nr += smp_add_core(&info->core[i], &avail, configured, early);
 802	}
 
 
 803	return nr;
 804}
 805
 806void __init smp_detect_cpus(void)
 807{
 808	unsigned int cpu, mtid, c_cpus, s_cpus;
 809	struct sclp_core_info *info;
 810	u16 address;
 811
 812	/* Get CPU information */
 813	info = memblock_alloc(sizeof(*info), 8);
 814	if (!info)
 815		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 816		      __func__, sizeof(*info), 8);
 817	smp_get_core_info(info, 1);
 818	/* Find boot CPU type */
 819	if (sclp.has_core_type) {
 820		address = stap();
 821		for (cpu = 0; cpu < info->combined; cpu++)
 822			if (info->core[cpu].core_id == address) {
 823				/* The boot cpu dictates the cpu type. */
 824				boot_core_type = info->core[cpu].type;
 825				break;
 826			}
 827		if (cpu >= info->combined)
 828			panic("Could not find boot CPU type");
 829	}
 830
 831	/* Set multi-threading state for the current system */
 832	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 833	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 834	pcpu_set_smt(mtid);
 835
 836	/* Print number of CPUs */
 837	c_cpus = s_cpus = 0;
 838	for (cpu = 0; cpu < info->combined; cpu++) {
 839		if (sclp.has_core_type &&
 840		    info->core[cpu].type != boot_core_type)
 841			continue;
 842		if (cpu < info->configured)
 843			c_cpus += smp_cpu_mtid + 1;
 844		else
 845			s_cpus += smp_cpu_mtid + 1;
 846	}
 847	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 848
 849	/* Add CPUs present at boot */
 850	get_online_cpus();
 851	__smp_rescan_cpus(info, true);
 852	put_online_cpus();
 853	memblock_free_early((unsigned long)info, sizeof(*info));
 854}
 855
 856static void smp_init_secondary(void)
 
 
 
 857{
 858	int cpu = smp_processor_id();
 
 859
 860	S390_lowcore.last_update_clock = get_tod_clock();
 861	restore_access_regs(S390_lowcore.access_regs_save_area);
 862	set_cpu_flag(CIF_ASCE_PRIMARY);
 863	set_cpu_flag(CIF_ASCE_SECONDARY);
 
 
 
 864	cpu_init();
 865	preempt_disable();
 866	init_cpu_timer();
 867	vtime_init();
 
 868	pfault_init();
 
 
 869	notify_cpu_starting(cpu);
 870	if (topology_cpu_dedicated(cpu))
 871		set_cpu_flag(CIF_DEDICATED_CPU);
 872	else
 873		clear_cpu_flag(CIF_DEDICATED_CPU);
 874	set_cpu_online(cpu, true);
 875	update_cpu_masks();
 876	inc_irq_stat(CPU_RST);
 877	local_irq_enable();
 878	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 879}
 880
 881/*
 882 *	Activate a secondary processor.
 883 */
 884static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
 885{
 886	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 887	S390_lowcore.restart_fn = (unsigned long) do_restart;
 888	S390_lowcore.restart_data = 0;
 889	S390_lowcore.restart_source = -1UL;
 890	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 891	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 892	CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
 893}
 894
 895/* Upping and downing of CPUs */
 896int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 897{
 898	struct pcpu *pcpu;
 899	int base, i, rc;
 900
 901	pcpu = pcpu_devices + cpu;
 902	if (pcpu->state != CPU_STATE_CONFIGURED)
 903		return -EIO;
 904	base = smp_get_base_cpu(cpu);
 905	for (i = 0; i <= smp_cpu_mtid; i++) {
 906		if (base + i < nr_cpu_ids)
 907			if (cpu_online(base + i))
 908				break;
 909	}
 910	/*
 911	 * If this is the first CPU of the core to get online
 912	 * do an initial CPU reset.
 913	 */
 914	if (i > smp_cpu_mtid &&
 915	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 916	    SIGP_CC_ORDER_CODE_ACCEPTED)
 917		return -EIO;
 918
 919	rc = pcpu_alloc_lowcore(pcpu, cpu);
 920	if (rc)
 921		return rc;
 
 
 
 
 
 922	pcpu_prepare_secondary(pcpu, cpu);
 923	pcpu_attach_task(pcpu, tidle);
 924	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 925	/* Wait until cpu puts itself in the online & active maps */
 926	while (!cpu_online(cpu))
 927		cpu_relax();
 
 928	return 0;
 929}
 930
 931static unsigned int setup_possible_cpus __initdata;
 932
 933static int __init _setup_possible_cpus(char *s)
 934{
 935	get_option(&s, &setup_possible_cpus);
 936	return 0;
 937}
 938early_param("possible_cpus", _setup_possible_cpus);
 939
 940int __cpu_disable(void)
 941{
 942	unsigned long cregs[16];
 
 943
 944	/* Handle possible pending IPIs */
 945	smp_handle_ext_call();
 946	set_cpu_online(smp_processor_id(), false);
 
 
 947	update_cpu_masks();
 948	/* Disable pseudo page faults on this cpu. */
 949	pfault_fini();
 950	/* Disable interrupt sources via control register. */
 951	__ctl_store(cregs, 0, 15);
 952	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 953	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 954	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 955	__ctl_load(cregs, 0, 15);
 956	clear_cpu_flag(CIF_NOHZ_DELAY);
 957	return 0;
 958}
 959
 960void __cpu_die(unsigned int cpu)
 961{
 962	struct pcpu *pcpu;
 963
 964	/* Wait until target cpu is down */
 965	pcpu = pcpu_devices + cpu;
 966	while (!pcpu_stopped(pcpu))
 967		cpu_relax();
 968	pcpu_free_lowcore(pcpu);
 969	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 970	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 971}
 972
 973void __noreturn cpu_die(void)
 974{
 975	idle_task_exit();
 976	__bpon();
 977	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 978	for (;;) ;
 979}
 980
 981void __init smp_fill_possible_mask(void)
 982{
 983	unsigned int possible, sclp_max, cpu;
 984
 985	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 986	sclp_max = min(smp_max_threads, sclp_max);
 987	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 988	possible = setup_possible_cpus ?: nr_cpu_ids;
 989	possible = min(possible, sclp_max);
 990	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 991		set_cpu_possible(cpu, true);
 992}
 993
 994void __init smp_prepare_cpus(unsigned int max_cpus)
 995{
 996	/* request the 0x1201 emergency signal external interrupt */
 997	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 998		panic("Couldn't request external interrupt 0x1201");
 999	/* request the 0x1202 external call external interrupt */
1000	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1001		panic("Couldn't request external interrupt 0x1202");
 
 
1002}
1003
1004void __init smp_prepare_boot_cpu(void)
1005{
1006	struct pcpu *pcpu = pcpu_devices;
1007
1008	WARN_ON(!cpu_present(0) || !cpu_online(0));
1009	pcpu->state = CPU_STATE_CONFIGURED;
1010	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
1011	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 
1012	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
1013}
1014
1015void __init smp_setup_processor_id(void)
1016{
1017	pcpu_devices[0].address = stap();
1018	S390_lowcore.cpu_nr = 0;
1019	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1020	S390_lowcore.spinlock_index = 0;
 
 
1021}
1022
1023/*
1024 * the frequency of the profiling timer can be changed
1025 * by writing a multiplier value into /proc/profile.
1026 *
1027 * usually you want to run this on all CPUs ;)
1028 */
1029int setup_profiling_timer(unsigned int multiplier)
1030{
1031	return 0;
1032}
1033
1034static ssize_t cpu_configure_show(struct device *dev,
1035				  struct device_attribute *attr, char *buf)
1036{
1037	ssize_t count;
1038
1039	mutex_lock(&smp_cpu_state_mutex);
1040	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1041	mutex_unlock(&smp_cpu_state_mutex);
1042	return count;
1043}
1044
1045static ssize_t cpu_configure_store(struct device *dev,
1046				   struct device_attribute *attr,
1047				   const char *buf, size_t count)
1048{
1049	struct pcpu *pcpu;
1050	int cpu, val, rc, i;
1051	char delim;
1052
1053	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1054		return -EINVAL;
1055	if (val != 0 && val != 1)
1056		return -EINVAL;
1057	get_online_cpus();
1058	mutex_lock(&smp_cpu_state_mutex);
1059	rc = -EBUSY;
1060	/* disallow configuration changes of online cpus and cpu 0 */
1061	cpu = dev->id;
1062	cpu = smp_get_base_cpu(cpu);
1063	if (cpu == 0)
1064		goto out;
1065	for (i = 0; i <= smp_cpu_mtid; i++)
1066		if (cpu_online(cpu + i))
1067			goto out;
1068	pcpu = pcpu_devices + cpu;
1069	rc = 0;
1070	switch (val) {
1071	case 0:
1072		if (pcpu->state != CPU_STATE_CONFIGURED)
1073			break;
1074		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1075		if (rc)
1076			break;
1077		for (i = 0; i <= smp_cpu_mtid; i++) {
1078			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1079				continue;
1080			pcpu[i].state = CPU_STATE_STANDBY;
1081			smp_cpu_set_polarization(cpu + i,
1082						 POLARIZATION_UNKNOWN);
1083		}
1084		topology_expect_change();
1085		break;
1086	case 1:
1087		if (pcpu->state != CPU_STATE_STANDBY)
1088			break;
1089		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1090		if (rc)
1091			break;
1092		for (i = 0; i <= smp_cpu_mtid; i++) {
1093			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1094				continue;
1095			pcpu[i].state = CPU_STATE_CONFIGURED;
1096			smp_cpu_set_polarization(cpu + i,
1097						 POLARIZATION_UNKNOWN);
1098		}
1099		topology_expect_change();
1100		break;
1101	default:
1102		break;
1103	}
1104out:
1105	mutex_unlock(&smp_cpu_state_mutex);
1106	put_online_cpus();
1107	return rc ? rc : count;
1108}
1109static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1110
1111static ssize_t show_cpu_address(struct device *dev,
1112				struct device_attribute *attr, char *buf)
1113{
1114	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1115}
1116static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1117
1118static struct attribute *cpu_common_attrs[] = {
1119	&dev_attr_configure.attr,
1120	&dev_attr_address.attr,
1121	NULL,
1122};
1123
1124static struct attribute_group cpu_common_attr_group = {
1125	.attrs = cpu_common_attrs,
1126};
1127
1128static struct attribute *cpu_online_attrs[] = {
1129	&dev_attr_idle_count.attr,
1130	&dev_attr_idle_time_us.attr,
1131	NULL,
1132};
1133
1134static struct attribute_group cpu_online_attr_group = {
1135	.attrs = cpu_online_attrs,
1136};
1137
1138static int smp_cpu_online(unsigned int cpu)
1139{
1140	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1141
1142	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1143}
1144
1145static int smp_cpu_pre_down(unsigned int cpu)
1146{
1147	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1148
1149	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1150	return 0;
1151}
1152
1153static int smp_add_present_cpu(int cpu)
1154{
1155	struct device *s;
1156	struct cpu *c;
 
 
 
 
1157	int rc;
1158
1159	c = kzalloc(sizeof(*c), GFP_KERNEL);
1160	if (!c)
1161		return -ENOMEM;
1162	per_cpu(cpu_device, cpu) = c;
1163	s = &c->dev;
1164	c->hotpluggable = 1;
1165	rc = register_cpu(c, cpu);
1166	if (rc)
1167		goto out;
1168	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1169	if (rc)
1170		goto out_cpu;
1171	rc = topology_cpu_init(c);
1172	if (rc)
1173		goto out_topology;
1174	return 0;
1175
1176out_topology:
1177	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1178out_cpu:
1179	unregister_cpu(c);
1180out:
1181	return rc;
1182}
1183
1184int __ref smp_rescan_cpus(void)
1185{
1186	struct sclp_core_info *info;
1187	int nr;
1188
1189	info = kzalloc(sizeof(*info), GFP_KERNEL);
1190	if (!info)
1191		return -ENOMEM;
1192	smp_get_core_info(info, 0);
1193	get_online_cpus();
1194	mutex_lock(&smp_cpu_state_mutex);
1195	nr = __smp_rescan_cpus(info, false);
1196	mutex_unlock(&smp_cpu_state_mutex);
1197	put_online_cpus();
1198	kfree(info);
1199	if (nr)
1200		topology_schedule_update();
1201	return 0;
1202}
1203
1204static ssize_t __ref rescan_store(struct device *dev,
1205				  struct device_attribute *attr,
1206				  const char *buf,
1207				  size_t count)
1208{
1209	int rc;
1210
1211	rc = lock_device_hotplug_sysfs();
1212	if (rc)
1213		return rc;
1214	rc = smp_rescan_cpus();
1215	unlock_device_hotplug();
1216	return rc ? rc : count;
1217}
1218static DEVICE_ATTR_WO(rescan);
1219
1220static int __init s390_smp_init(void)
1221{
1222	int cpu, rc = 0;
 
1223
1224	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1225	if (rc)
1226		return rc;
1227	for_each_present_cpu(cpu) {
1228		rc = smp_add_present_cpu(cpu);
1229		if (rc)
1230			goto out;
1231	}
1232
1233	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1234			       smp_cpu_online, smp_cpu_pre_down);
1235	rc = rc <= 0 ? rc : 0;
1236out:
1237	return rc;
1238}
1239subsys_initcall(s390_smp_init);