Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel CPU scheduler code
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
9 */
10#include <linux/highmem.h>
11#include <linux/hrtimer_api.h>
12#include <linux/ktime_api.h>
13#include <linux/sched/signal.h>
14#include <linux/syscalls_api.h>
15#include <linux/debug_locks.h>
16#include <linux/prefetch.h>
17#include <linux/capability.h>
18#include <linux/pgtable_api.h>
19#include <linux/wait_bit.h>
20#include <linux/jiffies.h>
21#include <linux/spinlock_api.h>
22#include <linux/cpumask_api.h>
23#include <linux/lockdep_api.h>
24#include <linux/hardirq.h>
25#include <linux/softirq.h>
26#include <linux/refcount_api.h>
27#include <linux/topology.h>
28#include <linux/sched/clock.h>
29#include <linux/sched/cond_resched.h>
30#include <linux/sched/cputime.h>
31#include <linux/sched/debug.h>
32#include <linux/sched/hotplug.h>
33#include <linux/sched/init.h>
34#include <linux/sched/isolation.h>
35#include <linux/sched/loadavg.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/nohz.h>
38#include <linux/sched/rseq_api.h>
39#include <linux/sched/rt.h>
40
41#include <linux/blkdev.h>
42#include <linux/context_tracking.h>
43#include <linux/cpuset.h>
44#include <linux/delayacct.h>
45#include <linux/init_task.h>
46#include <linux/interrupt.h>
47#include <linux/ioprio.h>
48#include <linux/kallsyms.h>
49#include <linux/kcov.h>
50#include <linux/kprobes.h>
51#include <linux/llist_api.h>
52#include <linux/mmu_context.h>
53#include <linux/mmzone.h>
54#include <linux/mutex_api.h>
55#include <linux/nmi.h>
56#include <linux/nospec.h>
57#include <linux/perf_event_api.h>
58#include <linux/profile.h>
59#include <linux/psi.h>
60#include <linux/rcuwait_api.h>
61#include <linux/rseq.h>
62#include <linux/sched/wake_q.h>
63#include <linux/scs.h>
64#include <linux/slab.h>
65#include <linux/syscalls.h>
66#include <linux/vtime.h>
67#include <linux/wait_api.h>
68#include <linux/workqueue_api.h>
69
70#ifdef CONFIG_PREEMPT_DYNAMIC
71# ifdef CONFIG_GENERIC_ENTRY
72# include <linux/entry-common.h>
73# endif
74#endif
75
76#include <uapi/linux/sched/types.h>
77
78#include <asm/irq_regs.h>
79#include <asm/switch_to.h>
80#include <asm/tlb.h>
81
82#define CREATE_TRACE_POINTS
83#include <linux/sched/rseq_api.h>
84#include <trace/events/sched.h>
85#include <trace/events/ipi.h>
86#undef CREATE_TRACE_POINTS
87
88#include "sched.h"
89#include "stats.h"
90
91#include "autogroup.h"
92#include "pelt.h"
93#include "smp.h"
94#include "stats.h"
95
96#include "../workqueue_internal.h"
97#include "../../io_uring/io-wq.h"
98#include "../smpboot.h"
99
100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102
103/*
104 * Export tracepoints that act as a bare tracehook (ie: have no trace event
105 * associated with them) to allow external modules to probe them.
106 */
107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119
120DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121
122#ifdef CONFIG_SCHED_DEBUG
123/*
124 * Debugging: various feature bits
125 *
126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127 * sysctl_sched_features, defined in sched.h, to allow constants propagation
128 * at compile time and compiler optimization based on features default.
129 */
130#define SCHED_FEAT(name, enabled) \
131 (1UL << __SCHED_FEAT_##name) * enabled |
132const_debug unsigned int sysctl_sched_features =
133#include "features.h"
134 0;
135#undef SCHED_FEAT
136
137/*
138 * Print a warning if need_resched is set for the given duration (if
139 * LATENCY_WARN is enabled).
140 *
141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142 * per boot.
143 */
144__read_mostly int sysctl_resched_latency_warn_ms = 100;
145__read_mostly int sysctl_resched_latency_warn_once = 1;
146#endif /* CONFIG_SCHED_DEBUG */
147
148/*
149 * Number of tasks to iterate in a single balance run.
150 * Limited because this is done with IRQs disabled.
151 */
152const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153
154__read_mostly int scheduler_running;
155
156#ifdef CONFIG_SCHED_CORE
157
158DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159
160/* kernel prio, less is more */
161static inline int __task_prio(const struct task_struct *p)
162{
163 if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 return -2;
165
166 if (p->dl_server)
167 return -1; /* deadline */
168
169 if (rt_or_dl_prio(p->prio))
170 return p->prio; /* [-1, 99] */
171
172 if (p->sched_class == &idle_sched_class)
173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174
175 if (task_on_scx(p))
176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177
178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179}
180
181/*
182 * l(a,b)
183 * le(a,b) := !l(b,a)
184 * g(a,b) := l(b,a)
185 * ge(a,b) := !l(a,b)
186 */
187
188/* real prio, less is less */
189static inline bool prio_less(const struct task_struct *a,
190 const struct task_struct *b, bool in_fi)
191{
192
193 int pa = __task_prio(a), pb = __task_prio(b);
194
195 if (-pa < -pb)
196 return true;
197
198 if (-pb < -pa)
199 return false;
200
201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202 const struct sched_dl_entity *a_dl, *b_dl;
203
204 a_dl = &a->dl;
205 /*
206 * Since,'a' and 'b' can be CFS tasks served by DL server,
207 * __task_prio() can return -1 (for DL) even for those. In that
208 * case, get to the dl_server's DL entity.
209 */
210 if (a->dl_server)
211 a_dl = a->dl_server;
212
213 b_dl = &b->dl;
214 if (b->dl_server)
215 b_dl = b->dl_server;
216
217 return !dl_time_before(a_dl->deadline, b_dl->deadline);
218 }
219
220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
221 return cfs_prio_less(a, b, in_fi);
222
223#ifdef CONFIG_SCHED_CLASS_EXT
224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */
225 return scx_prio_less(a, b, in_fi);
226#endif
227
228 return false;
229}
230
231static inline bool __sched_core_less(const struct task_struct *a,
232 const struct task_struct *b)
233{
234 if (a->core_cookie < b->core_cookie)
235 return true;
236
237 if (a->core_cookie > b->core_cookie)
238 return false;
239
240 /* flip prio, so high prio is leftmost */
241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242 return true;
243
244 return false;
245}
246
247#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248
249static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250{
251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252}
253
254static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255{
256 const struct task_struct *p = __node_2_sc(node);
257 unsigned long cookie = (unsigned long)key;
258
259 if (cookie < p->core_cookie)
260 return -1;
261
262 if (cookie > p->core_cookie)
263 return 1;
264
265 return 0;
266}
267
268void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269{
270 if (p->se.sched_delayed)
271 return;
272
273 rq->core->core_task_seq++;
274
275 if (!p->core_cookie)
276 return;
277
278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
279}
280
281void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
282{
283 if (p->se.sched_delayed)
284 return;
285
286 rq->core->core_task_seq++;
287
288 if (sched_core_enqueued(p)) {
289 rb_erase(&p->core_node, &rq->core_tree);
290 RB_CLEAR_NODE(&p->core_node);
291 }
292
293 /*
294 * Migrating the last task off the cpu, with the cpu in forced idle
295 * state. Reschedule to create an accounting edge for forced idle,
296 * and re-examine whether the core is still in forced idle state.
297 */
298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
299 rq->core->core_forceidle_count && rq->curr == rq->idle)
300 resched_curr(rq);
301}
302
303static int sched_task_is_throttled(struct task_struct *p, int cpu)
304{
305 if (p->sched_class->task_is_throttled)
306 return p->sched_class->task_is_throttled(p, cpu);
307
308 return 0;
309}
310
311static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
312{
313 struct rb_node *node = &p->core_node;
314 int cpu = task_cpu(p);
315
316 do {
317 node = rb_next(node);
318 if (!node)
319 return NULL;
320
321 p = __node_2_sc(node);
322 if (p->core_cookie != cookie)
323 return NULL;
324
325 } while (sched_task_is_throttled(p, cpu));
326
327 return p;
328}
329
330/*
331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
332 * If no suitable task is found, NULL will be returned.
333 */
334static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
335{
336 struct task_struct *p;
337 struct rb_node *node;
338
339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
340 if (!node)
341 return NULL;
342
343 p = __node_2_sc(node);
344 if (!sched_task_is_throttled(p, rq->cpu))
345 return p;
346
347 return sched_core_next(p, cookie);
348}
349
350/*
351 * Magic required such that:
352 *
353 * raw_spin_rq_lock(rq);
354 * ...
355 * raw_spin_rq_unlock(rq);
356 *
357 * ends up locking and unlocking the _same_ lock, and all CPUs
358 * always agree on what rq has what lock.
359 *
360 * XXX entirely possible to selectively enable cores, don't bother for now.
361 */
362
363static DEFINE_MUTEX(sched_core_mutex);
364static atomic_t sched_core_count;
365static struct cpumask sched_core_mask;
366
367static void sched_core_lock(int cpu, unsigned long *flags)
368{
369 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
370 int t, i = 0;
371
372 local_irq_save(*flags);
373 for_each_cpu(t, smt_mask)
374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
375}
376
377static void sched_core_unlock(int cpu, unsigned long *flags)
378{
379 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380 int t;
381
382 for_each_cpu(t, smt_mask)
383 raw_spin_unlock(&cpu_rq(t)->__lock);
384 local_irq_restore(*flags);
385}
386
387static void __sched_core_flip(bool enabled)
388{
389 unsigned long flags;
390 int cpu, t;
391
392 cpus_read_lock();
393
394 /*
395 * Toggle the online cores, one by one.
396 */
397 cpumask_copy(&sched_core_mask, cpu_online_mask);
398 for_each_cpu(cpu, &sched_core_mask) {
399 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
400
401 sched_core_lock(cpu, &flags);
402
403 for_each_cpu(t, smt_mask)
404 cpu_rq(t)->core_enabled = enabled;
405
406 cpu_rq(cpu)->core->core_forceidle_start = 0;
407
408 sched_core_unlock(cpu, &flags);
409
410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
411 }
412
413 /*
414 * Toggle the offline CPUs.
415 */
416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
417 cpu_rq(cpu)->core_enabled = enabled;
418
419 cpus_read_unlock();
420}
421
422static void sched_core_assert_empty(void)
423{
424 int cpu;
425
426 for_each_possible_cpu(cpu)
427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
428}
429
430static void __sched_core_enable(void)
431{
432 static_branch_enable(&__sched_core_enabled);
433 /*
434 * Ensure all previous instances of raw_spin_rq_*lock() have finished
435 * and future ones will observe !sched_core_disabled().
436 */
437 synchronize_rcu();
438 __sched_core_flip(true);
439 sched_core_assert_empty();
440}
441
442static void __sched_core_disable(void)
443{
444 sched_core_assert_empty();
445 __sched_core_flip(false);
446 static_branch_disable(&__sched_core_enabled);
447}
448
449void sched_core_get(void)
450{
451 if (atomic_inc_not_zero(&sched_core_count))
452 return;
453
454 mutex_lock(&sched_core_mutex);
455 if (!atomic_read(&sched_core_count))
456 __sched_core_enable();
457
458 smp_mb__before_atomic();
459 atomic_inc(&sched_core_count);
460 mutex_unlock(&sched_core_mutex);
461}
462
463static void __sched_core_put(struct work_struct *work)
464{
465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
466 __sched_core_disable();
467 mutex_unlock(&sched_core_mutex);
468 }
469}
470
471void sched_core_put(void)
472{
473 static DECLARE_WORK(_work, __sched_core_put);
474
475 /*
476 * "There can be only one"
477 *
478 * Either this is the last one, or we don't actually need to do any
479 * 'work'. If it is the last *again*, we rely on
480 * WORK_STRUCT_PENDING_BIT.
481 */
482 if (!atomic_add_unless(&sched_core_count, -1, 1))
483 schedule_work(&_work);
484}
485
486#else /* !CONFIG_SCHED_CORE */
487
488static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
489static inline void
490sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
491
492#endif /* CONFIG_SCHED_CORE */
493
494/*
495 * Serialization rules:
496 *
497 * Lock order:
498 *
499 * p->pi_lock
500 * rq->lock
501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
502 *
503 * rq1->lock
504 * rq2->lock where: rq1 < rq2
505 *
506 * Regular state:
507 *
508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
509 * local CPU's rq->lock, it optionally removes the task from the runqueue and
510 * always looks at the local rq data structures to find the most eligible task
511 * to run next.
512 *
513 * Task enqueue is also under rq->lock, possibly taken from another CPU.
514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
515 * the local CPU to avoid bouncing the runqueue state around [ see
516 * ttwu_queue_wakelist() ]
517 *
518 * Task wakeup, specifically wakeups that involve migration, are horribly
519 * complicated to avoid having to take two rq->locks.
520 *
521 * Special state:
522 *
523 * System-calls and anything external will use task_rq_lock() which acquires
524 * both p->pi_lock and rq->lock. As a consequence the state they change is
525 * stable while holding either lock:
526 *
527 * - sched_setaffinity()/
528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
529 * - set_user_nice(): p->se.load, p->*prio
530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
531 * p->se.load, p->rt_priority,
532 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
533 * - sched_setnuma(): p->numa_preferred_nid
534 * - sched_move_task(): p->sched_task_group
535 * - uclamp_update_active() p->uclamp*
536 *
537 * p->state <- TASK_*:
538 *
539 * is changed locklessly using set_current_state(), __set_current_state() or
540 * set_special_state(), see their respective comments, or by
541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
542 * concurrent self.
543 *
544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
545 *
546 * is set by activate_task() and cleared by deactivate_task(), under
547 * rq->lock. Non-zero indicates the task is runnable, the special
548 * ON_RQ_MIGRATING state is used for migration without holding both
549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
550 *
551 * Additionally it is possible to be ->on_rq but still be considered not
552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue
553 * but will be dequeued as soon as they get picked again. See the
554 * task_is_runnable() helper.
555 *
556 * p->on_cpu <- { 0, 1 }:
557 *
558 * is set by prepare_task() and cleared by finish_task() such that it will be
559 * set before p is scheduled-in and cleared after p is scheduled-out, both
560 * under rq->lock. Non-zero indicates the task is running on its CPU.
561 *
562 * [ The astute reader will observe that it is possible for two tasks on one
563 * CPU to have ->on_cpu = 1 at the same time. ]
564 *
565 * task_cpu(p): is changed by set_task_cpu(), the rules are:
566 *
567 * - Don't call set_task_cpu() on a blocked task:
568 *
569 * We don't care what CPU we're not running on, this simplifies hotplug,
570 * the CPU assignment of blocked tasks isn't required to be valid.
571 *
572 * - for try_to_wake_up(), called under p->pi_lock:
573 *
574 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
575 *
576 * - for migration called under rq->lock:
577 * [ see task_on_rq_migrating() in task_rq_lock() ]
578 *
579 * o move_queued_task()
580 * o detach_task()
581 *
582 * - for migration called under double_rq_lock():
583 *
584 * o __migrate_swap_task()
585 * o push_rt_task() / pull_rt_task()
586 * o push_dl_task() / pull_dl_task()
587 * o dl_task_offline_migration()
588 *
589 */
590
591void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
592{
593 raw_spinlock_t *lock;
594
595 /* Matches synchronize_rcu() in __sched_core_enable() */
596 preempt_disable();
597 if (sched_core_disabled()) {
598 raw_spin_lock_nested(&rq->__lock, subclass);
599 /* preempt_count *MUST* be > 1 */
600 preempt_enable_no_resched();
601 return;
602 }
603
604 for (;;) {
605 lock = __rq_lockp(rq);
606 raw_spin_lock_nested(lock, subclass);
607 if (likely(lock == __rq_lockp(rq))) {
608 /* preempt_count *MUST* be > 1 */
609 preempt_enable_no_resched();
610 return;
611 }
612 raw_spin_unlock(lock);
613 }
614}
615
616bool raw_spin_rq_trylock(struct rq *rq)
617{
618 raw_spinlock_t *lock;
619 bool ret;
620
621 /* Matches synchronize_rcu() in __sched_core_enable() */
622 preempt_disable();
623 if (sched_core_disabled()) {
624 ret = raw_spin_trylock(&rq->__lock);
625 preempt_enable();
626 return ret;
627 }
628
629 for (;;) {
630 lock = __rq_lockp(rq);
631 ret = raw_spin_trylock(lock);
632 if (!ret || (likely(lock == __rq_lockp(rq)))) {
633 preempt_enable();
634 return ret;
635 }
636 raw_spin_unlock(lock);
637 }
638}
639
640void raw_spin_rq_unlock(struct rq *rq)
641{
642 raw_spin_unlock(rq_lockp(rq));
643}
644
645#ifdef CONFIG_SMP
646/*
647 * double_rq_lock - safely lock two runqueues
648 */
649void double_rq_lock(struct rq *rq1, struct rq *rq2)
650{
651 lockdep_assert_irqs_disabled();
652
653 if (rq_order_less(rq2, rq1))
654 swap(rq1, rq2);
655
656 raw_spin_rq_lock(rq1);
657 if (__rq_lockp(rq1) != __rq_lockp(rq2))
658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
659
660 double_rq_clock_clear_update(rq1, rq2);
661}
662#endif
663
664/*
665 * __task_rq_lock - lock the rq @p resides on.
666 */
667struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
668 __acquires(rq->lock)
669{
670 struct rq *rq;
671
672 lockdep_assert_held(&p->pi_lock);
673
674 for (;;) {
675 rq = task_rq(p);
676 raw_spin_rq_lock(rq);
677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
678 rq_pin_lock(rq, rf);
679 return rq;
680 }
681 raw_spin_rq_unlock(rq);
682
683 while (unlikely(task_on_rq_migrating(p)))
684 cpu_relax();
685 }
686}
687
688/*
689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
690 */
691struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
692 __acquires(p->pi_lock)
693 __acquires(rq->lock)
694{
695 struct rq *rq;
696
697 for (;;) {
698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
699 rq = task_rq(p);
700 raw_spin_rq_lock(rq);
701 /*
702 * move_queued_task() task_rq_lock()
703 *
704 * ACQUIRE (rq->lock)
705 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
707 * [S] ->cpu = new_cpu [L] task_rq()
708 * [L] ->on_rq
709 * RELEASE (rq->lock)
710 *
711 * If we observe the old CPU in task_rq_lock(), the acquire of
712 * the old rq->lock will fully serialize against the stores.
713 *
714 * If we observe the new CPU in task_rq_lock(), the address
715 * dependency headed by '[L] rq = task_rq()' and the acquire
716 * will pair with the WMB to ensure we then also see migrating.
717 */
718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
719 rq_pin_lock(rq, rf);
720 return rq;
721 }
722 raw_spin_rq_unlock(rq);
723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
724
725 while (unlikely(task_on_rq_migrating(p)))
726 cpu_relax();
727 }
728}
729
730/*
731 * RQ-clock updating methods:
732 */
733
734static void update_rq_clock_task(struct rq *rq, s64 delta)
735{
736/*
737 * In theory, the compile should just see 0 here, and optimize out the call
738 * to sched_rt_avg_update. But I don't trust it...
739 */
740 s64 __maybe_unused steal = 0, irq_delta = 0;
741
742#ifdef CONFIG_IRQ_TIME_ACCOUNTING
743 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
744
745 /*
746 * Since irq_time is only updated on {soft,}irq_exit, we might run into
747 * this case when a previous update_rq_clock() happened inside a
748 * {soft,}IRQ region.
749 *
750 * When this happens, we stop ->clock_task and only update the
751 * prev_irq_time stamp to account for the part that fit, so that a next
752 * update will consume the rest. This ensures ->clock_task is
753 * monotonic.
754 *
755 * It does however cause some slight miss-attribution of {soft,}IRQ
756 * time, a more accurate solution would be to update the irq_time using
757 * the current rq->clock timestamp, except that would require using
758 * atomic ops.
759 */
760 if (irq_delta > delta)
761 irq_delta = delta;
762
763 rq->prev_irq_time += irq_delta;
764 delta -= irq_delta;
765 delayacct_irq(rq->curr, irq_delta);
766#endif
767#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
768 if (static_key_false((¶virt_steal_rq_enabled))) {
769 u64 prev_steal;
770
771 steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
772 steal -= rq->prev_steal_time_rq;
773
774 if (unlikely(steal > delta))
775 steal = delta;
776
777 rq->prev_steal_time_rq = prev_steal;
778 delta -= steal;
779 }
780#endif
781
782 rq->clock_task += delta;
783
784#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
785 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
786 update_irq_load_avg(rq, irq_delta + steal);
787#endif
788 update_rq_clock_pelt(rq, delta);
789}
790
791void update_rq_clock(struct rq *rq)
792{
793 s64 delta;
794
795 lockdep_assert_rq_held(rq);
796
797 if (rq->clock_update_flags & RQCF_ACT_SKIP)
798 return;
799
800#ifdef CONFIG_SCHED_DEBUG
801 if (sched_feat(WARN_DOUBLE_CLOCK))
802 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
803 rq->clock_update_flags |= RQCF_UPDATED;
804#endif
805
806 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
807 if (delta < 0)
808 return;
809 rq->clock += delta;
810 update_rq_clock_task(rq, delta);
811}
812
813#ifdef CONFIG_SCHED_HRTICK
814/*
815 * Use HR-timers to deliver accurate preemption points.
816 */
817
818static void hrtick_clear(struct rq *rq)
819{
820 if (hrtimer_active(&rq->hrtick_timer))
821 hrtimer_cancel(&rq->hrtick_timer);
822}
823
824/*
825 * High-resolution timer tick.
826 * Runs from hardirq context with interrupts disabled.
827 */
828static enum hrtimer_restart hrtick(struct hrtimer *timer)
829{
830 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
831 struct rq_flags rf;
832
833 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
834
835 rq_lock(rq, &rf);
836 update_rq_clock(rq);
837 rq->donor->sched_class->task_tick(rq, rq->curr, 1);
838 rq_unlock(rq, &rf);
839
840 return HRTIMER_NORESTART;
841}
842
843#ifdef CONFIG_SMP
844
845static void __hrtick_restart(struct rq *rq)
846{
847 struct hrtimer *timer = &rq->hrtick_timer;
848 ktime_t time = rq->hrtick_time;
849
850 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
851}
852
853/*
854 * called from hardirq (IPI) context
855 */
856static void __hrtick_start(void *arg)
857{
858 struct rq *rq = arg;
859 struct rq_flags rf;
860
861 rq_lock(rq, &rf);
862 __hrtick_restart(rq);
863 rq_unlock(rq, &rf);
864}
865
866/*
867 * Called to set the hrtick timer state.
868 *
869 * called with rq->lock held and IRQs disabled
870 */
871void hrtick_start(struct rq *rq, u64 delay)
872{
873 struct hrtimer *timer = &rq->hrtick_timer;
874 s64 delta;
875
876 /*
877 * Don't schedule slices shorter than 10000ns, that just
878 * doesn't make sense and can cause timer DoS.
879 */
880 delta = max_t(s64, delay, 10000LL);
881 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
882
883 if (rq == this_rq())
884 __hrtick_restart(rq);
885 else
886 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
887}
888
889#else
890/*
891 * Called to set the hrtick timer state.
892 *
893 * called with rq->lock held and IRQs disabled
894 */
895void hrtick_start(struct rq *rq, u64 delay)
896{
897 /*
898 * Don't schedule slices shorter than 10000ns, that just
899 * doesn't make sense. Rely on vruntime for fairness.
900 */
901 delay = max_t(u64, delay, 10000LL);
902 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
903 HRTIMER_MODE_REL_PINNED_HARD);
904}
905
906#endif /* CONFIG_SMP */
907
908static void hrtick_rq_init(struct rq *rq)
909{
910#ifdef CONFIG_SMP
911 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
912#endif
913 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
914 rq->hrtick_timer.function = hrtick;
915}
916#else /* CONFIG_SCHED_HRTICK */
917static inline void hrtick_clear(struct rq *rq)
918{
919}
920
921static inline void hrtick_rq_init(struct rq *rq)
922{
923}
924#endif /* CONFIG_SCHED_HRTICK */
925
926/*
927 * try_cmpxchg based fetch_or() macro so it works for different integer types:
928 */
929#define fetch_or(ptr, mask) \
930 ({ \
931 typeof(ptr) _ptr = (ptr); \
932 typeof(mask) _mask = (mask); \
933 typeof(*_ptr) _val = *_ptr; \
934 \
935 do { \
936 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
937 _val; \
938})
939
940#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
941/*
942 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
943 * this avoids any races wrt polling state changes and thereby avoids
944 * spurious IPIs.
945 */
946static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
947{
948 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
949}
950
951/*
952 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
953 *
954 * If this returns true, then the idle task promises to call
955 * sched_ttwu_pending() and reschedule soon.
956 */
957static bool set_nr_if_polling(struct task_struct *p)
958{
959 struct thread_info *ti = task_thread_info(p);
960 typeof(ti->flags) val = READ_ONCE(ti->flags);
961
962 do {
963 if (!(val & _TIF_POLLING_NRFLAG))
964 return false;
965 if (val & _TIF_NEED_RESCHED)
966 return true;
967 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
968
969 return true;
970}
971
972#else
973static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
974{
975 set_ti_thread_flag(ti, tif);
976 return true;
977}
978
979#ifdef CONFIG_SMP
980static inline bool set_nr_if_polling(struct task_struct *p)
981{
982 return false;
983}
984#endif
985#endif
986
987static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
988{
989 struct wake_q_node *node = &task->wake_q;
990
991 /*
992 * Atomically grab the task, if ->wake_q is !nil already it means
993 * it's already queued (either by us or someone else) and will get the
994 * wakeup due to that.
995 *
996 * In order to ensure that a pending wakeup will observe our pending
997 * state, even in the failed case, an explicit smp_mb() must be used.
998 */
999 smp_mb__before_atomic();
1000 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1001 return false;
1002
1003 /*
1004 * The head is context local, there can be no concurrency.
1005 */
1006 *head->lastp = node;
1007 head->lastp = &node->next;
1008 return true;
1009}
1010
1011/**
1012 * wake_q_add() - queue a wakeup for 'later' waking.
1013 * @head: the wake_q_head to add @task to
1014 * @task: the task to queue for 'later' wakeup
1015 *
1016 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1017 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1018 * instantly.
1019 *
1020 * This function must be used as-if it were wake_up_process(); IOW the task
1021 * must be ready to be woken at this location.
1022 */
1023void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1024{
1025 if (__wake_q_add(head, task))
1026 get_task_struct(task);
1027}
1028
1029/**
1030 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1031 * @head: the wake_q_head to add @task to
1032 * @task: the task to queue for 'later' wakeup
1033 *
1034 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1035 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1036 * instantly.
1037 *
1038 * This function must be used as-if it were wake_up_process(); IOW the task
1039 * must be ready to be woken at this location.
1040 *
1041 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1042 * that already hold reference to @task can call the 'safe' version and trust
1043 * wake_q to do the right thing depending whether or not the @task is already
1044 * queued for wakeup.
1045 */
1046void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1047{
1048 if (!__wake_q_add(head, task))
1049 put_task_struct(task);
1050}
1051
1052void wake_up_q(struct wake_q_head *head)
1053{
1054 struct wake_q_node *node = head->first;
1055
1056 while (node != WAKE_Q_TAIL) {
1057 struct task_struct *task;
1058
1059 task = container_of(node, struct task_struct, wake_q);
1060 /* Task can safely be re-inserted now: */
1061 node = node->next;
1062 task->wake_q.next = NULL;
1063
1064 /*
1065 * wake_up_process() executes a full barrier, which pairs with
1066 * the queueing in wake_q_add() so as not to miss wakeups.
1067 */
1068 wake_up_process(task);
1069 put_task_struct(task);
1070 }
1071}
1072
1073/*
1074 * resched_curr - mark rq's current task 'to be rescheduled now'.
1075 *
1076 * On UP this means the setting of the need_resched flag, on SMP it
1077 * might also involve a cross-CPU call to trigger the scheduler on
1078 * the target CPU.
1079 */
1080static void __resched_curr(struct rq *rq, int tif)
1081{
1082 struct task_struct *curr = rq->curr;
1083 struct thread_info *cti = task_thread_info(curr);
1084 int cpu;
1085
1086 lockdep_assert_rq_held(rq);
1087
1088 /*
1089 * Always immediately preempt the idle task; no point in delaying doing
1090 * actual work.
1091 */
1092 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1093 tif = TIF_NEED_RESCHED;
1094
1095 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1096 return;
1097
1098 cpu = cpu_of(rq);
1099
1100 if (cpu == smp_processor_id()) {
1101 set_ti_thread_flag(cti, tif);
1102 if (tif == TIF_NEED_RESCHED)
1103 set_preempt_need_resched();
1104 return;
1105 }
1106
1107 if (set_nr_and_not_polling(cti, tif)) {
1108 if (tif == TIF_NEED_RESCHED)
1109 smp_send_reschedule(cpu);
1110 } else {
1111 trace_sched_wake_idle_without_ipi(cpu);
1112 }
1113}
1114
1115void resched_curr(struct rq *rq)
1116{
1117 __resched_curr(rq, TIF_NEED_RESCHED);
1118}
1119
1120#ifdef CONFIG_PREEMPT_DYNAMIC
1121static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1122static __always_inline bool dynamic_preempt_lazy(void)
1123{
1124 return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1125}
1126#else
1127static __always_inline bool dynamic_preempt_lazy(void)
1128{
1129 return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1130}
1131#endif
1132
1133static __always_inline int get_lazy_tif_bit(void)
1134{
1135 if (dynamic_preempt_lazy())
1136 return TIF_NEED_RESCHED_LAZY;
1137
1138 return TIF_NEED_RESCHED;
1139}
1140
1141void resched_curr_lazy(struct rq *rq)
1142{
1143 __resched_curr(rq, get_lazy_tif_bit());
1144}
1145
1146void resched_cpu(int cpu)
1147{
1148 struct rq *rq = cpu_rq(cpu);
1149 unsigned long flags;
1150
1151 raw_spin_rq_lock_irqsave(rq, flags);
1152 if (cpu_online(cpu) || cpu == smp_processor_id())
1153 resched_curr(rq);
1154 raw_spin_rq_unlock_irqrestore(rq, flags);
1155}
1156
1157#ifdef CONFIG_SMP
1158#ifdef CONFIG_NO_HZ_COMMON
1159/*
1160 * In the semi idle case, use the nearest busy CPU for migrating timers
1161 * from an idle CPU. This is good for power-savings.
1162 *
1163 * We don't do similar optimization for completely idle system, as
1164 * selecting an idle CPU will add more delays to the timers than intended
1165 * (as that CPU's timer base may not be up to date wrt jiffies etc).
1166 */
1167int get_nohz_timer_target(void)
1168{
1169 int i, cpu = smp_processor_id(), default_cpu = -1;
1170 struct sched_domain *sd;
1171 const struct cpumask *hk_mask;
1172
1173 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1174 if (!idle_cpu(cpu))
1175 return cpu;
1176 default_cpu = cpu;
1177 }
1178
1179 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1180
1181 guard(rcu)();
1182
1183 for_each_domain(cpu, sd) {
1184 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1185 if (cpu == i)
1186 continue;
1187
1188 if (!idle_cpu(i))
1189 return i;
1190 }
1191 }
1192
1193 if (default_cpu == -1)
1194 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1195
1196 return default_cpu;
1197}
1198
1199/*
1200 * When add_timer_on() enqueues a timer into the timer wheel of an
1201 * idle CPU then this timer might expire before the next timer event
1202 * which is scheduled to wake up that CPU. In case of a completely
1203 * idle system the next event might even be infinite time into the
1204 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1205 * leaves the inner idle loop so the newly added timer is taken into
1206 * account when the CPU goes back to idle and evaluates the timer
1207 * wheel for the next timer event.
1208 */
1209static void wake_up_idle_cpu(int cpu)
1210{
1211 struct rq *rq = cpu_rq(cpu);
1212
1213 if (cpu == smp_processor_id())
1214 return;
1215
1216 /*
1217 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1218 * part of the idle loop. This forces an exit from the idle loop
1219 * and a round trip to schedule(). Now this could be optimized
1220 * because a simple new idle loop iteration is enough to
1221 * re-evaluate the next tick. Provided some re-ordering of tick
1222 * nohz functions that would need to follow TIF_NR_POLLING
1223 * clearing:
1224 *
1225 * - On most architectures, a simple fetch_or on ti::flags with a
1226 * "0" value would be enough to know if an IPI needs to be sent.
1227 *
1228 * - x86 needs to perform a last need_resched() check between
1229 * monitor and mwait which doesn't take timers into account.
1230 * There a dedicated TIF_TIMER flag would be required to
1231 * fetch_or here and be checked along with TIF_NEED_RESCHED
1232 * before mwait().
1233 *
1234 * However, remote timer enqueue is not such a frequent event
1235 * and testing of the above solutions didn't appear to report
1236 * much benefits.
1237 */
1238 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1239 smp_send_reschedule(cpu);
1240 else
1241 trace_sched_wake_idle_without_ipi(cpu);
1242}
1243
1244static bool wake_up_full_nohz_cpu(int cpu)
1245{
1246 /*
1247 * We just need the target to call irq_exit() and re-evaluate
1248 * the next tick. The nohz full kick at least implies that.
1249 * If needed we can still optimize that later with an
1250 * empty IRQ.
1251 */
1252 if (cpu_is_offline(cpu))
1253 return true; /* Don't try to wake offline CPUs. */
1254 if (tick_nohz_full_cpu(cpu)) {
1255 if (cpu != smp_processor_id() ||
1256 tick_nohz_tick_stopped())
1257 tick_nohz_full_kick_cpu(cpu);
1258 return true;
1259 }
1260
1261 return false;
1262}
1263
1264/*
1265 * Wake up the specified CPU. If the CPU is going offline, it is the
1266 * caller's responsibility to deal with the lost wakeup, for example,
1267 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1268 */
1269void wake_up_nohz_cpu(int cpu)
1270{
1271 if (!wake_up_full_nohz_cpu(cpu))
1272 wake_up_idle_cpu(cpu);
1273}
1274
1275static void nohz_csd_func(void *info)
1276{
1277 struct rq *rq = info;
1278 int cpu = cpu_of(rq);
1279 unsigned int flags;
1280
1281 /*
1282 * Release the rq::nohz_csd.
1283 */
1284 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1285 WARN_ON(!(flags & NOHZ_KICK_MASK));
1286
1287 rq->idle_balance = idle_cpu(cpu);
1288 if (rq->idle_balance) {
1289 rq->nohz_idle_balance = flags;
1290 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1291 }
1292}
1293
1294#endif /* CONFIG_NO_HZ_COMMON */
1295
1296#ifdef CONFIG_NO_HZ_FULL
1297static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1298{
1299 if (rq->nr_running != 1)
1300 return false;
1301
1302 if (p->sched_class != &fair_sched_class)
1303 return false;
1304
1305 if (!task_on_rq_queued(p))
1306 return false;
1307
1308 return true;
1309}
1310
1311bool sched_can_stop_tick(struct rq *rq)
1312{
1313 int fifo_nr_running;
1314
1315 /* Deadline tasks, even if single, need the tick */
1316 if (rq->dl.dl_nr_running)
1317 return false;
1318
1319 /*
1320 * If there are more than one RR tasks, we need the tick to affect the
1321 * actual RR behaviour.
1322 */
1323 if (rq->rt.rr_nr_running) {
1324 if (rq->rt.rr_nr_running == 1)
1325 return true;
1326 else
1327 return false;
1328 }
1329
1330 /*
1331 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1332 * forced preemption between FIFO tasks.
1333 */
1334 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1335 if (fifo_nr_running)
1336 return true;
1337
1338 /*
1339 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1340 * left. For CFS, if there's more than one we need the tick for
1341 * involuntary preemption. For SCX, ask.
1342 */
1343 if (scx_enabled() && !scx_can_stop_tick(rq))
1344 return false;
1345
1346 if (rq->cfs.h_nr_running > 1)
1347 return false;
1348
1349 /*
1350 * If there is one task and it has CFS runtime bandwidth constraints
1351 * and it's on the cpu now we don't want to stop the tick.
1352 * This check prevents clearing the bit if a newly enqueued task here is
1353 * dequeued by migrating while the constrained task continues to run.
1354 * E.g. going from 2->1 without going through pick_next_task().
1355 */
1356 if (__need_bw_check(rq, rq->curr)) {
1357 if (cfs_task_bw_constrained(rq->curr))
1358 return false;
1359 }
1360
1361 return true;
1362}
1363#endif /* CONFIG_NO_HZ_FULL */
1364#endif /* CONFIG_SMP */
1365
1366#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1367 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1368/*
1369 * Iterate task_group tree rooted at *from, calling @down when first entering a
1370 * node and @up when leaving it for the final time.
1371 *
1372 * Caller must hold rcu_lock or sufficient equivalent.
1373 */
1374int walk_tg_tree_from(struct task_group *from,
1375 tg_visitor down, tg_visitor up, void *data)
1376{
1377 struct task_group *parent, *child;
1378 int ret;
1379
1380 parent = from;
1381
1382down:
1383 ret = (*down)(parent, data);
1384 if (ret)
1385 goto out;
1386 list_for_each_entry_rcu(child, &parent->children, siblings) {
1387 parent = child;
1388 goto down;
1389
1390up:
1391 continue;
1392 }
1393 ret = (*up)(parent, data);
1394 if (ret || parent == from)
1395 goto out;
1396
1397 child = parent;
1398 parent = parent->parent;
1399 if (parent)
1400 goto up;
1401out:
1402 return ret;
1403}
1404
1405int tg_nop(struct task_group *tg, void *data)
1406{
1407 return 0;
1408}
1409#endif
1410
1411void set_load_weight(struct task_struct *p, bool update_load)
1412{
1413 int prio = p->static_prio - MAX_RT_PRIO;
1414 struct load_weight lw;
1415
1416 if (task_has_idle_policy(p)) {
1417 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1418 lw.inv_weight = WMULT_IDLEPRIO;
1419 } else {
1420 lw.weight = scale_load(sched_prio_to_weight[prio]);
1421 lw.inv_weight = sched_prio_to_wmult[prio];
1422 }
1423
1424 /*
1425 * SCHED_OTHER tasks have to update their load when changing their
1426 * weight
1427 */
1428 if (update_load && p->sched_class->reweight_task)
1429 p->sched_class->reweight_task(task_rq(p), p, &lw);
1430 else
1431 p->se.load = lw;
1432}
1433
1434#ifdef CONFIG_UCLAMP_TASK
1435/*
1436 * Serializes updates of utilization clamp values
1437 *
1438 * The (slow-path) user-space triggers utilization clamp value updates which
1439 * can require updates on (fast-path) scheduler's data structures used to
1440 * support enqueue/dequeue operations.
1441 * While the per-CPU rq lock protects fast-path update operations, user-space
1442 * requests are serialized using a mutex to reduce the risk of conflicting
1443 * updates or API abuses.
1444 */
1445static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1446
1447/* Max allowed minimum utilization */
1448static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1449
1450/* Max allowed maximum utilization */
1451static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1452
1453/*
1454 * By default RT tasks run at the maximum performance point/capacity of the
1455 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1456 * SCHED_CAPACITY_SCALE.
1457 *
1458 * This knob allows admins to change the default behavior when uclamp is being
1459 * used. In battery powered devices, particularly, running at the maximum
1460 * capacity and frequency will increase energy consumption and shorten the
1461 * battery life.
1462 *
1463 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1464 *
1465 * This knob will not override the system default sched_util_clamp_min defined
1466 * above.
1467 */
1468unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1469
1470/* All clamps are required to be less or equal than these values */
1471static struct uclamp_se uclamp_default[UCLAMP_CNT];
1472
1473/*
1474 * This static key is used to reduce the uclamp overhead in the fast path. It
1475 * primarily disables the call to uclamp_rq_{inc, dec}() in
1476 * enqueue/dequeue_task().
1477 *
1478 * This allows users to continue to enable uclamp in their kernel config with
1479 * minimum uclamp overhead in the fast path.
1480 *
1481 * As soon as userspace modifies any of the uclamp knobs, the static key is
1482 * enabled, since we have an actual users that make use of uclamp
1483 * functionality.
1484 *
1485 * The knobs that would enable this static key are:
1486 *
1487 * * A task modifying its uclamp value with sched_setattr().
1488 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1489 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1490 */
1491DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1492
1493static inline unsigned int
1494uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1495 unsigned int clamp_value)
1496{
1497 /*
1498 * Avoid blocked utilization pushing up the frequency when we go
1499 * idle (which drops the max-clamp) by retaining the last known
1500 * max-clamp.
1501 */
1502 if (clamp_id == UCLAMP_MAX) {
1503 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1504 return clamp_value;
1505 }
1506
1507 return uclamp_none(UCLAMP_MIN);
1508}
1509
1510static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1511 unsigned int clamp_value)
1512{
1513 /* Reset max-clamp retention only on idle exit */
1514 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1515 return;
1516
1517 uclamp_rq_set(rq, clamp_id, clamp_value);
1518}
1519
1520static inline
1521unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1522 unsigned int clamp_value)
1523{
1524 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1525 int bucket_id = UCLAMP_BUCKETS - 1;
1526
1527 /*
1528 * Since both min and max clamps are max aggregated, find the
1529 * top most bucket with tasks in.
1530 */
1531 for ( ; bucket_id >= 0; bucket_id--) {
1532 if (!bucket[bucket_id].tasks)
1533 continue;
1534 return bucket[bucket_id].value;
1535 }
1536
1537 /* No tasks -- default clamp values */
1538 return uclamp_idle_value(rq, clamp_id, clamp_value);
1539}
1540
1541static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1542{
1543 unsigned int default_util_min;
1544 struct uclamp_se *uc_se;
1545
1546 lockdep_assert_held(&p->pi_lock);
1547
1548 uc_se = &p->uclamp_req[UCLAMP_MIN];
1549
1550 /* Only sync if user didn't override the default */
1551 if (uc_se->user_defined)
1552 return;
1553
1554 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1555 uclamp_se_set(uc_se, default_util_min, false);
1556}
1557
1558static void uclamp_update_util_min_rt_default(struct task_struct *p)
1559{
1560 if (!rt_task(p))
1561 return;
1562
1563 /* Protect updates to p->uclamp_* */
1564 guard(task_rq_lock)(p);
1565 __uclamp_update_util_min_rt_default(p);
1566}
1567
1568static inline struct uclamp_se
1569uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1570{
1571 /* Copy by value as we could modify it */
1572 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1573#ifdef CONFIG_UCLAMP_TASK_GROUP
1574 unsigned int tg_min, tg_max, value;
1575
1576 /*
1577 * Tasks in autogroups or root task group will be
1578 * restricted by system defaults.
1579 */
1580 if (task_group_is_autogroup(task_group(p)))
1581 return uc_req;
1582 if (task_group(p) == &root_task_group)
1583 return uc_req;
1584
1585 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1586 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1587 value = uc_req.value;
1588 value = clamp(value, tg_min, tg_max);
1589 uclamp_se_set(&uc_req, value, false);
1590#endif
1591
1592 return uc_req;
1593}
1594
1595/*
1596 * The effective clamp bucket index of a task depends on, by increasing
1597 * priority:
1598 * - the task specific clamp value, when explicitly requested from userspace
1599 * - the task group effective clamp value, for tasks not either in the root
1600 * group or in an autogroup
1601 * - the system default clamp value, defined by the sysadmin
1602 */
1603static inline struct uclamp_se
1604uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1605{
1606 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1607 struct uclamp_se uc_max = uclamp_default[clamp_id];
1608
1609 /* System default restrictions always apply */
1610 if (unlikely(uc_req.value > uc_max.value))
1611 return uc_max;
1612
1613 return uc_req;
1614}
1615
1616unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1617{
1618 struct uclamp_se uc_eff;
1619
1620 /* Task currently refcounted: use back-annotated (effective) value */
1621 if (p->uclamp[clamp_id].active)
1622 return (unsigned long)p->uclamp[clamp_id].value;
1623
1624 uc_eff = uclamp_eff_get(p, clamp_id);
1625
1626 return (unsigned long)uc_eff.value;
1627}
1628
1629/*
1630 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1631 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1632 * updates the rq's clamp value if required.
1633 *
1634 * Tasks can have a task-specific value requested from user-space, track
1635 * within each bucket the maximum value for tasks refcounted in it.
1636 * This "local max aggregation" allows to track the exact "requested" value
1637 * for each bucket when all its RUNNABLE tasks require the same clamp.
1638 */
1639static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1640 enum uclamp_id clamp_id)
1641{
1642 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1643 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1644 struct uclamp_bucket *bucket;
1645
1646 lockdep_assert_rq_held(rq);
1647
1648 /* Update task effective clamp */
1649 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1650
1651 bucket = &uc_rq->bucket[uc_se->bucket_id];
1652 bucket->tasks++;
1653 uc_se->active = true;
1654
1655 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1656
1657 /*
1658 * Local max aggregation: rq buckets always track the max
1659 * "requested" clamp value of its RUNNABLE tasks.
1660 */
1661 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1662 bucket->value = uc_se->value;
1663
1664 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1665 uclamp_rq_set(rq, clamp_id, uc_se->value);
1666}
1667
1668/*
1669 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1670 * is released. If this is the last task reference counting the rq's max
1671 * active clamp value, then the rq's clamp value is updated.
1672 *
1673 * Both refcounted tasks and rq's cached clamp values are expected to be
1674 * always valid. If it's detected they are not, as defensive programming,
1675 * enforce the expected state and warn.
1676 */
1677static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1678 enum uclamp_id clamp_id)
1679{
1680 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1681 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1682 struct uclamp_bucket *bucket;
1683 unsigned int bkt_clamp;
1684 unsigned int rq_clamp;
1685
1686 lockdep_assert_rq_held(rq);
1687
1688 /*
1689 * If sched_uclamp_used was enabled after task @p was enqueued,
1690 * we could end up with unbalanced call to uclamp_rq_dec_id().
1691 *
1692 * In this case the uc_se->active flag should be false since no uclamp
1693 * accounting was performed at enqueue time and we can just return
1694 * here.
1695 *
1696 * Need to be careful of the following enqueue/dequeue ordering
1697 * problem too
1698 *
1699 * enqueue(taskA)
1700 * // sched_uclamp_used gets enabled
1701 * enqueue(taskB)
1702 * dequeue(taskA)
1703 * // Must not decrement bucket->tasks here
1704 * dequeue(taskB)
1705 *
1706 * where we could end up with stale data in uc_se and
1707 * bucket[uc_se->bucket_id].
1708 *
1709 * The following check here eliminates the possibility of such race.
1710 */
1711 if (unlikely(!uc_se->active))
1712 return;
1713
1714 bucket = &uc_rq->bucket[uc_se->bucket_id];
1715
1716 SCHED_WARN_ON(!bucket->tasks);
1717 if (likely(bucket->tasks))
1718 bucket->tasks--;
1719
1720 uc_se->active = false;
1721
1722 /*
1723 * Keep "local max aggregation" simple and accept to (possibly)
1724 * overboost some RUNNABLE tasks in the same bucket.
1725 * The rq clamp bucket value is reset to its base value whenever
1726 * there are no more RUNNABLE tasks refcounting it.
1727 */
1728 if (likely(bucket->tasks))
1729 return;
1730
1731 rq_clamp = uclamp_rq_get(rq, clamp_id);
1732 /*
1733 * Defensive programming: this should never happen. If it happens,
1734 * e.g. due to future modification, warn and fix up the expected value.
1735 */
1736 SCHED_WARN_ON(bucket->value > rq_clamp);
1737 if (bucket->value >= rq_clamp) {
1738 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1739 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1740 }
1741}
1742
1743static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1744{
1745 enum uclamp_id clamp_id;
1746
1747 /*
1748 * Avoid any overhead until uclamp is actually used by the userspace.
1749 *
1750 * The condition is constructed such that a NOP is generated when
1751 * sched_uclamp_used is disabled.
1752 */
1753 if (!static_branch_unlikely(&sched_uclamp_used))
1754 return;
1755
1756 if (unlikely(!p->sched_class->uclamp_enabled))
1757 return;
1758
1759 if (p->se.sched_delayed)
1760 return;
1761
1762 for_each_clamp_id(clamp_id)
1763 uclamp_rq_inc_id(rq, p, clamp_id);
1764
1765 /* Reset clamp idle holding when there is one RUNNABLE task */
1766 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1767 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1768}
1769
1770static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1771{
1772 enum uclamp_id clamp_id;
1773
1774 /*
1775 * Avoid any overhead until uclamp is actually used by the userspace.
1776 *
1777 * The condition is constructed such that a NOP is generated when
1778 * sched_uclamp_used is disabled.
1779 */
1780 if (!static_branch_unlikely(&sched_uclamp_used))
1781 return;
1782
1783 if (unlikely(!p->sched_class->uclamp_enabled))
1784 return;
1785
1786 if (p->se.sched_delayed)
1787 return;
1788
1789 for_each_clamp_id(clamp_id)
1790 uclamp_rq_dec_id(rq, p, clamp_id);
1791}
1792
1793static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1794 enum uclamp_id clamp_id)
1795{
1796 if (!p->uclamp[clamp_id].active)
1797 return;
1798
1799 uclamp_rq_dec_id(rq, p, clamp_id);
1800 uclamp_rq_inc_id(rq, p, clamp_id);
1801
1802 /*
1803 * Make sure to clear the idle flag if we've transiently reached 0
1804 * active tasks on rq.
1805 */
1806 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1807 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1808}
1809
1810static inline void
1811uclamp_update_active(struct task_struct *p)
1812{
1813 enum uclamp_id clamp_id;
1814 struct rq_flags rf;
1815 struct rq *rq;
1816
1817 /*
1818 * Lock the task and the rq where the task is (or was) queued.
1819 *
1820 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1821 * price to pay to safely serialize util_{min,max} updates with
1822 * enqueues, dequeues and migration operations.
1823 * This is the same locking schema used by __set_cpus_allowed_ptr().
1824 */
1825 rq = task_rq_lock(p, &rf);
1826
1827 /*
1828 * Setting the clamp bucket is serialized by task_rq_lock().
1829 * If the task is not yet RUNNABLE and its task_struct is not
1830 * affecting a valid clamp bucket, the next time it's enqueued,
1831 * it will already see the updated clamp bucket value.
1832 */
1833 for_each_clamp_id(clamp_id)
1834 uclamp_rq_reinc_id(rq, p, clamp_id);
1835
1836 task_rq_unlock(rq, p, &rf);
1837}
1838
1839#ifdef CONFIG_UCLAMP_TASK_GROUP
1840static inline void
1841uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1842{
1843 struct css_task_iter it;
1844 struct task_struct *p;
1845
1846 css_task_iter_start(css, 0, &it);
1847 while ((p = css_task_iter_next(&it)))
1848 uclamp_update_active(p);
1849 css_task_iter_end(&it);
1850}
1851
1852static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1853#endif
1854
1855#ifdef CONFIG_SYSCTL
1856#ifdef CONFIG_UCLAMP_TASK_GROUP
1857static void uclamp_update_root_tg(void)
1858{
1859 struct task_group *tg = &root_task_group;
1860
1861 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1862 sysctl_sched_uclamp_util_min, false);
1863 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1864 sysctl_sched_uclamp_util_max, false);
1865
1866 guard(rcu)();
1867 cpu_util_update_eff(&root_task_group.css);
1868}
1869#else
1870static void uclamp_update_root_tg(void) { }
1871#endif
1872
1873static void uclamp_sync_util_min_rt_default(void)
1874{
1875 struct task_struct *g, *p;
1876
1877 /*
1878 * copy_process() sysctl_uclamp
1879 * uclamp_min_rt = X;
1880 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1881 * // link thread smp_mb__after_spinlock()
1882 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1883 * sched_post_fork() for_each_process_thread()
1884 * __uclamp_sync_rt() __uclamp_sync_rt()
1885 *
1886 * Ensures that either sched_post_fork() will observe the new
1887 * uclamp_min_rt or for_each_process_thread() will observe the new
1888 * task.
1889 */
1890 read_lock(&tasklist_lock);
1891 smp_mb__after_spinlock();
1892 read_unlock(&tasklist_lock);
1893
1894 guard(rcu)();
1895 for_each_process_thread(g, p)
1896 uclamp_update_util_min_rt_default(p);
1897}
1898
1899static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1900 void *buffer, size_t *lenp, loff_t *ppos)
1901{
1902 bool update_root_tg = false;
1903 int old_min, old_max, old_min_rt;
1904 int result;
1905
1906 guard(mutex)(&uclamp_mutex);
1907
1908 old_min = sysctl_sched_uclamp_util_min;
1909 old_max = sysctl_sched_uclamp_util_max;
1910 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1911
1912 result = proc_dointvec(table, write, buffer, lenp, ppos);
1913 if (result)
1914 goto undo;
1915 if (!write)
1916 return 0;
1917
1918 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1919 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1920 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1921
1922 result = -EINVAL;
1923 goto undo;
1924 }
1925
1926 if (old_min != sysctl_sched_uclamp_util_min) {
1927 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1928 sysctl_sched_uclamp_util_min, false);
1929 update_root_tg = true;
1930 }
1931 if (old_max != sysctl_sched_uclamp_util_max) {
1932 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1933 sysctl_sched_uclamp_util_max, false);
1934 update_root_tg = true;
1935 }
1936
1937 if (update_root_tg) {
1938 static_branch_enable(&sched_uclamp_used);
1939 uclamp_update_root_tg();
1940 }
1941
1942 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1943 static_branch_enable(&sched_uclamp_used);
1944 uclamp_sync_util_min_rt_default();
1945 }
1946
1947 /*
1948 * We update all RUNNABLE tasks only when task groups are in use.
1949 * Otherwise, keep it simple and do just a lazy update at each next
1950 * task enqueue time.
1951 */
1952 return 0;
1953
1954undo:
1955 sysctl_sched_uclamp_util_min = old_min;
1956 sysctl_sched_uclamp_util_max = old_max;
1957 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1958 return result;
1959}
1960#endif
1961
1962static void uclamp_fork(struct task_struct *p)
1963{
1964 enum uclamp_id clamp_id;
1965
1966 /*
1967 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1968 * as the task is still at its early fork stages.
1969 */
1970 for_each_clamp_id(clamp_id)
1971 p->uclamp[clamp_id].active = false;
1972
1973 if (likely(!p->sched_reset_on_fork))
1974 return;
1975
1976 for_each_clamp_id(clamp_id) {
1977 uclamp_se_set(&p->uclamp_req[clamp_id],
1978 uclamp_none(clamp_id), false);
1979 }
1980}
1981
1982static void uclamp_post_fork(struct task_struct *p)
1983{
1984 uclamp_update_util_min_rt_default(p);
1985}
1986
1987static void __init init_uclamp_rq(struct rq *rq)
1988{
1989 enum uclamp_id clamp_id;
1990 struct uclamp_rq *uc_rq = rq->uclamp;
1991
1992 for_each_clamp_id(clamp_id) {
1993 uc_rq[clamp_id] = (struct uclamp_rq) {
1994 .value = uclamp_none(clamp_id)
1995 };
1996 }
1997
1998 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1999}
2000
2001static void __init init_uclamp(void)
2002{
2003 struct uclamp_se uc_max = {};
2004 enum uclamp_id clamp_id;
2005 int cpu;
2006
2007 for_each_possible_cpu(cpu)
2008 init_uclamp_rq(cpu_rq(cpu));
2009
2010 for_each_clamp_id(clamp_id) {
2011 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2012 uclamp_none(clamp_id), false);
2013 }
2014
2015 /* System defaults allow max clamp values for both indexes */
2016 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2017 for_each_clamp_id(clamp_id) {
2018 uclamp_default[clamp_id] = uc_max;
2019#ifdef CONFIG_UCLAMP_TASK_GROUP
2020 root_task_group.uclamp_req[clamp_id] = uc_max;
2021 root_task_group.uclamp[clamp_id] = uc_max;
2022#endif
2023 }
2024}
2025
2026#else /* !CONFIG_UCLAMP_TASK */
2027static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2028static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2029static inline void uclamp_fork(struct task_struct *p) { }
2030static inline void uclamp_post_fork(struct task_struct *p) { }
2031static inline void init_uclamp(void) { }
2032#endif /* CONFIG_UCLAMP_TASK */
2033
2034bool sched_task_on_rq(struct task_struct *p)
2035{
2036 return task_on_rq_queued(p);
2037}
2038
2039unsigned long get_wchan(struct task_struct *p)
2040{
2041 unsigned long ip = 0;
2042 unsigned int state;
2043
2044 if (!p || p == current)
2045 return 0;
2046
2047 /* Only get wchan if task is blocked and we can keep it that way. */
2048 raw_spin_lock_irq(&p->pi_lock);
2049 state = READ_ONCE(p->__state);
2050 smp_rmb(); /* see try_to_wake_up() */
2051 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2052 ip = __get_wchan(p);
2053 raw_spin_unlock_irq(&p->pi_lock);
2054
2055 return ip;
2056}
2057
2058void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2059{
2060 if (!(flags & ENQUEUE_NOCLOCK))
2061 update_rq_clock(rq);
2062
2063 p->sched_class->enqueue_task(rq, p, flags);
2064 /*
2065 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2066 * ->sched_delayed.
2067 */
2068 uclamp_rq_inc(rq, p);
2069
2070 psi_enqueue(p, flags);
2071
2072 if (!(flags & ENQUEUE_RESTORE))
2073 sched_info_enqueue(rq, p);
2074
2075 if (sched_core_enabled(rq))
2076 sched_core_enqueue(rq, p);
2077}
2078
2079/*
2080 * Must only return false when DEQUEUE_SLEEP.
2081 */
2082inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2083{
2084 if (sched_core_enabled(rq))
2085 sched_core_dequeue(rq, p, flags);
2086
2087 if (!(flags & DEQUEUE_NOCLOCK))
2088 update_rq_clock(rq);
2089
2090 if (!(flags & DEQUEUE_SAVE))
2091 sched_info_dequeue(rq, p);
2092
2093 psi_dequeue(p, flags);
2094
2095 /*
2096 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2097 * and mark the task ->sched_delayed.
2098 */
2099 uclamp_rq_dec(rq, p);
2100 return p->sched_class->dequeue_task(rq, p, flags);
2101}
2102
2103void activate_task(struct rq *rq, struct task_struct *p, int flags)
2104{
2105 if (task_on_rq_migrating(p))
2106 flags |= ENQUEUE_MIGRATED;
2107 if (flags & ENQUEUE_MIGRATED)
2108 sched_mm_cid_migrate_to(rq, p);
2109
2110 enqueue_task(rq, p, flags);
2111
2112 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2113 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2114}
2115
2116void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2117{
2118 SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2119
2120 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2121 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2122
2123 /*
2124 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2125 * dequeue_task() and cleared *after* enqueue_task().
2126 */
2127
2128 dequeue_task(rq, p, flags);
2129}
2130
2131static void block_task(struct rq *rq, struct task_struct *p, int flags)
2132{
2133 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2134 __block_task(rq, p);
2135}
2136
2137/**
2138 * task_curr - is this task currently executing on a CPU?
2139 * @p: the task in question.
2140 *
2141 * Return: 1 if the task is currently executing. 0 otherwise.
2142 */
2143inline int task_curr(const struct task_struct *p)
2144{
2145 return cpu_curr(task_cpu(p)) == p;
2146}
2147
2148/*
2149 * ->switching_to() is called with the pi_lock and rq_lock held and must not
2150 * mess with locking.
2151 */
2152void check_class_changing(struct rq *rq, struct task_struct *p,
2153 const struct sched_class *prev_class)
2154{
2155 if (prev_class != p->sched_class && p->sched_class->switching_to)
2156 p->sched_class->switching_to(rq, p);
2157}
2158
2159/*
2160 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2161 * use the balance_callback list if you want balancing.
2162 *
2163 * this means any call to check_class_changed() must be followed by a call to
2164 * balance_callback().
2165 */
2166void check_class_changed(struct rq *rq, struct task_struct *p,
2167 const struct sched_class *prev_class,
2168 int oldprio)
2169{
2170 if (prev_class != p->sched_class) {
2171 if (prev_class->switched_from)
2172 prev_class->switched_from(rq, p);
2173
2174 p->sched_class->switched_to(rq, p);
2175 } else if (oldprio != p->prio || dl_task(p))
2176 p->sched_class->prio_changed(rq, p, oldprio);
2177}
2178
2179void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2180{
2181 struct task_struct *donor = rq->donor;
2182
2183 if (p->sched_class == donor->sched_class)
2184 donor->sched_class->wakeup_preempt(rq, p, flags);
2185 else if (sched_class_above(p->sched_class, donor->sched_class))
2186 resched_curr(rq);
2187
2188 /*
2189 * A queue event has occurred, and we're going to schedule. In
2190 * this case, we can save a useless back to back clock update.
2191 */
2192 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2193 rq_clock_skip_update(rq);
2194}
2195
2196static __always_inline
2197int __task_state_match(struct task_struct *p, unsigned int state)
2198{
2199 if (READ_ONCE(p->__state) & state)
2200 return 1;
2201
2202 if (READ_ONCE(p->saved_state) & state)
2203 return -1;
2204
2205 return 0;
2206}
2207
2208static __always_inline
2209int task_state_match(struct task_struct *p, unsigned int state)
2210{
2211 /*
2212 * Serialize against current_save_and_set_rtlock_wait_state(),
2213 * current_restore_rtlock_saved_state(), and __refrigerator().
2214 */
2215 guard(raw_spinlock_irq)(&p->pi_lock);
2216 return __task_state_match(p, state);
2217}
2218
2219/*
2220 * wait_task_inactive - wait for a thread to unschedule.
2221 *
2222 * Wait for the thread to block in any of the states set in @match_state.
2223 * If it changes, i.e. @p might have woken up, then return zero. When we
2224 * succeed in waiting for @p to be off its CPU, we return a positive number
2225 * (its total switch count). If a second call a short while later returns the
2226 * same number, the caller can be sure that @p has remained unscheduled the
2227 * whole time.
2228 *
2229 * The caller must ensure that the task *will* unschedule sometime soon,
2230 * else this function might spin for a *long* time. This function can't
2231 * be called with interrupts off, or it may introduce deadlock with
2232 * smp_call_function() if an IPI is sent by the same process we are
2233 * waiting to become inactive.
2234 */
2235unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2236{
2237 int running, queued, match;
2238 struct rq_flags rf;
2239 unsigned long ncsw;
2240 struct rq *rq;
2241
2242 for (;;) {
2243 /*
2244 * We do the initial early heuristics without holding
2245 * any task-queue locks at all. We'll only try to get
2246 * the runqueue lock when things look like they will
2247 * work out!
2248 */
2249 rq = task_rq(p);
2250
2251 /*
2252 * If the task is actively running on another CPU
2253 * still, just relax and busy-wait without holding
2254 * any locks.
2255 *
2256 * NOTE! Since we don't hold any locks, it's not
2257 * even sure that "rq" stays as the right runqueue!
2258 * But we don't care, since "task_on_cpu()" will
2259 * return false if the runqueue has changed and p
2260 * is actually now running somewhere else!
2261 */
2262 while (task_on_cpu(rq, p)) {
2263 if (!task_state_match(p, match_state))
2264 return 0;
2265 cpu_relax();
2266 }
2267
2268 /*
2269 * Ok, time to look more closely! We need the rq
2270 * lock now, to be *sure*. If we're wrong, we'll
2271 * just go back and repeat.
2272 */
2273 rq = task_rq_lock(p, &rf);
2274 trace_sched_wait_task(p);
2275 running = task_on_cpu(rq, p);
2276 queued = task_on_rq_queued(p);
2277 ncsw = 0;
2278 if ((match = __task_state_match(p, match_state))) {
2279 /*
2280 * When matching on p->saved_state, consider this task
2281 * still queued so it will wait.
2282 */
2283 if (match < 0)
2284 queued = 1;
2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2286 }
2287 task_rq_unlock(rq, p, &rf);
2288
2289 /*
2290 * If it changed from the expected state, bail out now.
2291 */
2292 if (unlikely(!ncsw))
2293 break;
2294
2295 /*
2296 * Was it really running after all now that we
2297 * checked with the proper locks actually held?
2298 *
2299 * Oops. Go back and try again..
2300 */
2301 if (unlikely(running)) {
2302 cpu_relax();
2303 continue;
2304 }
2305
2306 /*
2307 * It's not enough that it's not actively running,
2308 * it must be off the runqueue _entirely_, and not
2309 * preempted!
2310 *
2311 * So if it was still runnable (but just not actively
2312 * running right now), it's preempted, and we should
2313 * yield - it could be a while.
2314 */
2315 if (unlikely(queued)) {
2316 ktime_t to = NSEC_PER_SEC / HZ;
2317
2318 set_current_state(TASK_UNINTERRUPTIBLE);
2319 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2320 continue;
2321 }
2322
2323 /*
2324 * Ahh, all good. It wasn't running, and it wasn't
2325 * runnable, which means that it will never become
2326 * running in the future either. We're all done!
2327 */
2328 break;
2329 }
2330
2331 return ncsw;
2332}
2333
2334#ifdef CONFIG_SMP
2335
2336static void
2337__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2338
2339static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2340{
2341 struct affinity_context ac = {
2342 .new_mask = cpumask_of(rq->cpu),
2343 .flags = SCA_MIGRATE_DISABLE,
2344 };
2345
2346 if (likely(!p->migration_disabled))
2347 return;
2348
2349 if (p->cpus_ptr != &p->cpus_mask)
2350 return;
2351
2352 /*
2353 * Violates locking rules! See comment in __do_set_cpus_allowed().
2354 */
2355 __do_set_cpus_allowed(p, &ac);
2356}
2357
2358void migrate_disable(void)
2359{
2360 struct task_struct *p = current;
2361
2362 if (p->migration_disabled) {
2363#ifdef CONFIG_DEBUG_PREEMPT
2364 /*
2365 *Warn about overflow half-way through the range.
2366 */
2367 WARN_ON_ONCE((s16)p->migration_disabled < 0);
2368#endif
2369 p->migration_disabled++;
2370 return;
2371 }
2372
2373 guard(preempt)();
2374 this_rq()->nr_pinned++;
2375 p->migration_disabled = 1;
2376}
2377EXPORT_SYMBOL_GPL(migrate_disable);
2378
2379void migrate_enable(void)
2380{
2381 struct task_struct *p = current;
2382 struct affinity_context ac = {
2383 .new_mask = &p->cpus_mask,
2384 .flags = SCA_MIGRATE_ENABLE,
2385 };
2386
2387#ifdef CONFIG_DEBUG_PREEMPT
2388 /*
2389 * Check both overflow from migrate_disable() and superfluous
2390 * migrate_enable().
2391 */
2392 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2393 return;
2394#endif
2395
2396 if (p->migration_disabled > 1) {
2397 p->migration_disabled--;
2398 return;
2399 }
2400
2401 /*
2402 * Ensure stop_task runs either before or after this, and that
2403 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2404 */
2405 guard(preempt)();
2406 if (p->cpus_ptr != &p->cpus_mask)
2407 __set_cpus_allowed_ptr(p, &ac);
2408 /*
2409 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2410 * regular cpus_mask, otherwise things that race (eg.
2411 * select_fallback_rq) get confused.
2412 */
2413 barrier();
2414 p->migration_disabled = 0;
2415 this_rq()->nr_pinned--;
2416}
2417EXPORT_SYMBOL_GPL(migrate_enable);
2418
2419static inline bool rq_has_pinned_tasks(struct rq *rq)
2420{
2421 return rq->nr_pinned;
2422}
2423
2424/*
2425 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2426 * __set_cpus_allowed_ptr() and select_fallback_rq().
2427 */
2428static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2429{
2430 /* When not in the task's cpumask, no point in looking further. */
2431 if (!task_allowed_on_cpu(p, cpu))
2432 return false;
2433
2434 /* migrate_disabled() must be allowed to finish. */
2435 if (is_migration_disabled(p))
2436 return cpu_online(cpu);
2437
2438 /* Non kernel threads are not allowed during either online or offline. */
2439 if (!(p->flags & PF_KTHREAD))
2440 return cpu_active(cpu);
2441
2442 /* KTHREAD_IS_PER_CPU is always allowed. */
2443 if (kthread_is_per_cpu(p))
2444 return cpu_online(cpu);
2445
2446 /* Regular kernel threads don't get to stay during offline. */
2447 if (cpu_dying(cpu))
2448 return false;
2449
2450 /* But are allowed during online. */
2451 return cpu_online(cpu);
2452}
2453
2454/*
2455 * This is how migration works:
2456 *
2457 * 1) we invoke migration_cpu_stop() on the target CPU using
2458 * stop_one_cpu().
2459 * 2) stopper starts to run (implicitly forcing the migrated thread
2460 * off the CPU)
2461 * 3) it checks whether the migrated task is still in the wrong runqueue.
2462 * 4) if it's in the wrong runqueue then the migration thread removes
2463 * it and puts it into the right queue.
2464 * 5) stopper completes and stop_one_cpu() returns and the migration
2465 * is done.
2466 */
2467
2468/*
2469 * move_queued_task - move a queued task to new rq.
2470 *
2471 * Returns (locked) new rq. Old rq's lock is released.
2472 */
2473static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2474 struct task_struct *p, int new_cpu)
2475{
2476 lockdep_assert_rq_held(rq);
2477
2478 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2479 set_task_cpu(p, new_cpu);
2480 rq_unlock(rq, rf);
2481
2482 rq = cpu_rq(new_cpu);
2483
2484 rq_lock(rq, rf);
2485 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2486 activate_task(rq, p, 0);
2487 wakeup_preempt(rq, p, 0);
2488
2489 return rq;
2490}
2491
2492struct migration_arg {
2493 struct task_struct *task;
2494 int dest_cpu;
2495 struct set_affinity_pending *pending;
2496};
2497
2498/*
2499 * @refs: number of wait_for_completion()
2500 * @stop_pending: is @stop_work in use
2501 */
2502struct set_affinity_pending {
2503 refcount_t refs;
2504 unsigned int stop_pending;
2505 struct completion done;
2506 struct cpu_stop_work stop_work;
2507 struct migration_arg arg;
2508};
2509
2510/*
2511 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2512 * this because either it can't run here any more (set_cpus_allowed()
2513 * away from this CPU, or CPU going down), or because we're
2514 * attempting to rebalance this task on exec (sched_exec).
2515 *
2516 * So we race with normal scheduler movements, but that's OK, as long
2517 * as the task is no longer on this CPU.
2518 */
2519static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2520 struct task_struct *p, int dest_cpu)
2521{
2522 /* Affinity changed (again). */
2523 if (!is_cpu_allowed(p, dest_cpu))
2524 return rq;
2525
2526 rq = move_queued_task(rq, rf, p, dest_cpu);
2527
2528 return rq;
2529}
2530
2531/*
2532 * migration_cpu_stop - this will be executed by a high-prio stopper thread
2533 * and performs thread migration by bumping thread off CPU then
2534 * 'pushing' onto another runqueue.
2535 */
2536static int migration_cpu_stop(void *data)
2537{
2538 struct migration_arg *arg = data;
2539 struct set_affinity_pending *pending = arg->pending;
2540 struct task_struct *p = arg->task;
2541 struct rq *rq = this_rq();
2542 bool complete = false;
2543 struct rq_flags rf;
2544
2545 /*
2546 * The original target CPU might have gone down and we might
2547 * be on another CPU but it doesn't matter.
2548 */
2549 local_irq_save(rf.flags);
2550 /*
2551 * We need to explicitly wake pending tasks before running
2552 * __migrate_task() such that we will not miss enforcing cpus_ptr
2553 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2554 */
2555 flush_smp_call_function_queue();
2556
2557 raw_spin_lock(&p->pi_lock);
2558 rq_lock(rq, &rf);
2559
2560 /*
2561 * If we were passed a pending, then ->stop_pending was set, thus
2562 * p->migration_pending must have remained stable.
2563 */
2564 WARN_ON_ONCE(pending && pending != p->migration_pending);
2565
2566 /*
2567 * If task_rq(p) != rq, it cannot be migrated here, because we're
2568 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2569 * we're holding p->pi_lock.
2570 */
2571 if (task_rq(p) == rq) {
2572 if (is_migration_disabled(p))
2573 goto out;
2574
2575 if (pending) {
2576 p->migration_pending = NULL;
2577 complete = true;
2578
2579 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2580 goto out;
2581 }
2582
2583 if (task_on_rq_queued(p)) {
2584 update_rq_clock(rq);
2585 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2586 } else {
2587 p->wake_cpu = arg->dest_cpu;
2588 }
2589
2590 /*
2591 * XXX __migrate_task() can fail, at which point we might end
2592 * up running on a dodgy CPU, AFAICT this can only happen
2593 * during CPU hotplug, at which point we'll get pushed out
2594 * anyway, so it's probably not a big deal.
2595 */
2596
2597 } else if (pending) {
2598 /*
2599 * This happens when we get migrated between migrate_enable()'s
2600 * preempt_enable() and scheduling the stopper task. At that
2601 * point we're a regular task again and not current anymore.
2602 *
2603 * A !PREEMPT kernel has a giant hole here, which makes it far
2604 * more likely.
2605 */
2606
2607 /*
2608 * The task moved before the stopper got to run. We're holding
2609 * ->pi_lock, so the allowed mask is stable - if it got
2610 * somewhere allowed, we're done.
2611 */
2612 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2613 p->migration_pending = NULL;
2614 complete = true;
2615 goto out;
2616 }
2617
2618 /*
2619 * When migrate_enable() hits a rq mis-match we can't reliably
2620 * determine is_migration_disabled() and so have to chase after
2621 * it.
2622 */
2623 WARN_ON_ONCE(!pending->stop_pending);
2624 preempt_disable();
2625 task_rq_unlock(rq, p, &rf);
2626 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2627 &pending->arg, &pending->stop_work);
2628 preempt_enable();
2629 return 0;
2630 }
2631out:
2632 if (pending)
2633 pending->stop_pending = false;
2634 task_rq_unlock(rq, p, &rf);
2635
2636 if (complete)
2637 complete_all(&pending->done);
2638
2639 return 0;
2640}
2641
2642int push_cpu_stop(void *arg)
2643{
2644 struct rq *lowest_rq = NULL, *rq = this_rq();
2645 struct task_struct *p = arg;
2646
2647 raw_spin_lock_irq(&p->pi_lock);
2648 raw_spin_rq_lock(rq);
2649
2650 if (task_rq(p) != rq)
2651 goto out_unlock;
2652
2653 if (is_migration_disabled(p)) {
2654 p->migration_flags |= MDF_PUSH;
2655 goto out_unlock;
2656 }
2657
2658 p->migration_flags &= ~MDF_PUSH;
2659
2660 if (p->sched_class->find_lock_rq)
2661 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2662
2663 if (!lowest_rq)
2664 goto out_unlock;
2665
2666 // XXX validate p is still the highest prio task
2667 if (task_rq(p) == rq) {
2668 move_queued_task_locked(rq, lowest_rq, p);
2669 resched_curr(lowest_rq);
2670 }
2671
2672 double_unlock_balance(rq, lowest_rq);
2673
2674out_unlock:
2675 rq->push_busy = false;
2676 raw_spin_rq_unlock(rq);
2677 raw_spin_unlock_irq(&p->pi_lock);
2678
2679 put_task_struct(p);
2680 return 0;
2681}
2682
2683/*
2684 * sched_class::set_cpus_allowed must do the below, but is not required to
2685 * actually call this function.
2686 */
2687void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2688{
2689 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2690 p->cpus_ptr = ctx->new_mask;
2691 return;
2692 }
2693
2694 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2695 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2696
2697 /*
2698 * Swap in a new user_cpus_ptr if SCA_USER flag set
2699 */
2700 if (ctx->flags & SCA_USER)
2701 swap(p->user_cpus_ptr, ctx->user_mask);
2702}
2703
2704static void
2705__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2706{
2707 struct rq *rq = task_rq(p);
2708 bool queued, running;
2709
2710 /*
2711 * This here violates the locking rules for affinity, since we're only
2712 * supposed to change these variables while holding both rq->lock and
2713 * p->pi_lock.
2714 *
2715 * HOWEVER, it magically works, because ttwu() is the only code that
2716 * accesses these variables under p->pi_lock and only does so after
2717 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2718 * before finish_task().
2719 *
2720 * XXX do further audits, this smells like something putrid.
2721 */
2722 if (ctx->flags & SCA_MIGRATE_DISABLE)
2723 SCHED_WARN_ON(!p->on_cpu);
2724 else
2725 lockdep_assert_held(&p->pi_lock);
2726
2727 queued = task_on_rq_queued(p);
2728 running = task_current_donor(rq, p);
2729
2730 if (queued) {
2731 /*
2732 * Because __kthread_bind() calls this on blocked tasks without
2733 * holding rq->lock.
2734 */
2735 lockdep_assert_rq_held(rq);
2736 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2737 }
2738 if (running)
2739 put_prev_task(rq, p);
2740
2741 p->sched_class->set_cpus_allowed(p, ctx);
2742 mm_set_cpus_allowed(p->mm, ctx->new_mask);
2743
2744 if (queued)
2745 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2746 if (running)
2747 set_next_task(rq, p);
2748}
2749
2750/*
2751 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2752 * affinity (if any) should be destroyed too.
2753 */
2754void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2755{
2756 struct affinity_context ac = {
2757 .new_mask = new_mask,
2758 .user_mask = NULL,
2759 .flags = SCA_USER, /* clear the user requested mask */
2760 };
2761 union cpumask_rcuhead {
2762 cpumask_t cpumask;
2763 struct rcu_head rcu;
2764 };
2765
2766 __do_set_cpus_allowed(p, &ac);
2767
2768 /*
2769 * Because this is called with p->pi_lock held, it is not possible
2770 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2771 * kfree_rcu().
2772 */
2773 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2774}
2775
2776int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2777 int node)
2778{
2779 cpumask_t *user_mask;
2780 unsigned long flags;
2781
2782 /*
2783 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2784 * may differ by now due to racing.
2785 */
2786 dst->user_cpus_ptr = NULL;
2787
2788 /*
2789 * This check is racy and losing the race is a valid situation.
2790 * It is not worth the extra overhead of taking the pi_lock on
2791 * every fork/clone.
2792 */
2793 if (data_race(!src->user_cpus_ptr))
2794 return 0;
2795
2796 user_mask = alloc_user_cpus_ptr(node);
2797 if (!user_mask)
2798 return -ENOMEM;
2799
2800 /*
2801 * Use pi_lock to protect content of user_cpus_ptr
2802 *
2803 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2804 * do_set_cpus_allowed().
2805 */
2806 raw_spin_lock_irqsave(&src->pi_lock, flags);
2807 if (src->user_cpus_ptr) {
2808 swap(dst->user_cpus_ptr, user_mask);
2809 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2810 }
2811 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2812
2813 if (unlikely(user_mask))
2814 kfree(user_mask);
2815
2816 return 0;
2817}
2818
2819static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2820{
2821 struct cpumask *user_mask = NULL;
2822
2823 swap(p->user_cpus_ptr, user_mask);
2824
2825 return user_mask;
2826}
2827
2828void release_user_cpus_ptr(struct task_struct *p)
2829{
2830 kfree(clear_user_cpus_ptr(p));
2831}
2832
2833/*
2834 * This function is wildly self concurrent; here be dragons.
2835 *
2836 *
2837 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2838 * designated task is enqueued on an allowed CPU. If that task is currently
2839 * running, we have to kick it out using the CPU stopper.
2840 *
2841 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2842 * Consider:
2843 *
2844 * Initial conditions: P0->cpus_mask = [0, 1]
2845 *
2846 * P0@CPU0 P1
2847 *
2848 * migrate_disable();
2849 * <preempted>
2850 * set_cpus_allowed_ptr(P0, [1]);
2851 *
2852 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2853 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2854 * This means we need the following scheme:
2855 *
2856 * P0@CPU0 P1
2857 *
2858 * migrate_disable();
2859 * <preempted>
2860 * set_cpus_allowed_ptr(P0, [1]);
2861 * <blocks>
2862 * <resumes>
2863 * migrate_enable();
2864 * __set_cpus_allowed_ptr();
2865 * <wakes local stopper>
2866 * `--> <woken on migration completion>
2867 *
2868 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2869 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2870 * task p are serialized by p->pi_lock, which we can leverage: the one that
2871 * should come into effect at the end of the Migrate-Disable region is the last
2872 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2873 * but we still need to properly signal those waiting tasks at the appropriate
2874 * moment.
2875 *
2876 * This is implemented using struct set_affinity_pending. The first
2877 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2878 * setup an instance of that struct and install it on the targeted task_struct.
2879 * Any and all further callers will reuse that instance. Those then wait for
2880 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2881 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2882 *
2883 *
2884 * (1) In the cases covered above. There is one more where the completion is
2885 * signaled within affine_move_task() itself: when a subsequent affinity request
2886 * occurs after the stopper bailed out due to the targeted task still being
2887 * Migrate-Disable. Consider:
2888 *
2889 * Initial conditions: P0->cpus_mask = [0, 1]
2890 *
2891 * CPU0 P1 P2
2892 * <P0>
2893 * migrate_disable();
2894 * <preempted>
2895 * set_cpus_allowed_ptr(P0, [1]);
2896 * <blocks>
2897 * <migration/0>
2898 * migration_cpu_stop()
2899 * is_migration_disabled()
2900 * <bails>
2901 * set_cpus_allowed_ptr(P0, [0, 1]);
2902 * <signal completion>
2903 * <awakes>
2904 *
2905 * Note that the above is safe vs a concurrent migrate_enable(), as any
2906 * pending affinity completion is preceded by an uninstallation of
2907 * p->migration_pending done with p->pi_lock held.
2908 */
2909static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2910 int dest_cpu, unsigned int flags)
2911 __releases(rq->lock)
2912 __releases(p->pi_lock)
2913{
2914 struct set_affinity_pending my_pending = { }, *pending = NULL;
2915 bool stop_pending, complete = false;
2916
2917 /* Can the task run on the task's current CPU? If so, we're done */
2918 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2919 struct task_struct *push_task = NULL;
2920
2921 if ((flags & SCA_MIGRATE_ENABLE) &&
2922 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2923 rq->push_busy = true;
2924 push_task = get_task_struct(p);
2925 }
2926
2927 /*
2928 * If there are pending waiters, but no pending stop_work,
2929 * then complete now.
2930 */
2931 pending = p->migration_pending;
2932 if (pending && !pending->stop_pending) {
2933 p->migration_pending = NULL;
2934 complete = true;
2935 }
2936
2937 preempt_disable();
2938 task_rq_unlock(rq, p, rf);
2939 if (push_task) {
2940 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2941 p, &rq->push_work);
2942 }
2943 preempt_enable();
2944
2945 if (complete)
2946 complete_all(&pending->done);
2947
2948 return 0;
2949 }
2950
2951 if (!(flags & SCA_MIGRATE_ENABLE)) {
2952 /* serialized by p->pi_lock */
2953 if (!p->migration_pending) {
2954 /* Install the request */
2955 refcount_set(&my_pending.refs, 1);
2956 init_completion(&my_pending.done);
2957 my_pending.arg = (struct migration_arg) {
2958 .task = p,
2959 .dest_cpu = dest_cpu,
2960 .pending = &my_pending,
2961 };
2962
2963 p->migration_pending = &my_pending;
2964 } else {
2965 pending = p->migration_pending;
2966 refcount_inc(&pending->refs);
2967 /*
2968 * Affinity has changed, but we've already installed a
2969 * pending. migration_cpu_stop() *must* see this, else
2970 * we risk a completion of the pending despite having a
2971 * task on a disallowed CPU.
2972 *
2973 * Serialized by p->pi_lock, so this is safe.
2974 */
2975 pending->arg.dest_cpu = dest_cpu;
2976 }
2977 }
2978 pending = p->migration_pending;
2979 /*
2980 * - !MIGRATE_ENABLE:
2981 * we'll have installed a pending if there wasn't one already.
2982 *
2983 * - MIGRATE_ENABLE:
2984 * we're here because the current CPU isn't matching anymore,
2985 * the only way that can happen is because of a concurrent
2986 * set_cpus_allowed_ptr() call, which should then still be
2987 * pending completion.
2988 *
2989 * Either way, we really should have a @pending here.
2990 */
2991 if (WARN_ON_ONCE(!pending)) {
2992 task_rq_unlock(rq, p, rf);
2993 return -EINVAL;
2994 }
2995
2996 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2997 /*
2998 * MIGRATE_ENABLE gets here because 'p == current', but for
2999 * anything else we cannot do is_migration_disabled(), punt
3000 * and have the stopper function handle it all race-free.
3001 */
3002 stop_pending = pending->stop_pending;
3003 if (!stop_pending)
3004 pending->stop_pending = true;
3005
3006 if (flags & SCA_MIGRATE_ENABLE)
3007 p->migration_flags &= ~MDF_PUSH;
3008
3009 preempt_disable();
3010 task_rq_unlock(rq, p, rf);
3011 if (!stop_pending) {
3012 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3013 &pending->arg, &pending->stop_work);
3014 }
3015 preempt_enable();
3016
3017 if (flags & SCA_MIGRATE_ENABLE)
3018 return 0;
3019 } else {
3020
3021 if (!is_migration_disabled(p)) {
3022 if (task_on_rq_queued(p))
3023 rq = move_queued_task(rq, rf, p, dest_cpu);
3024
3025 if (!pending->stop_pending) {
3026 p->migration_pending = NULL;
3027 complete = true;
3028 }
3029 }
3030 task_rq_unlock(rq, p, rf);
3031
3032 if (complete)
3033 complete_all(&pending->done);
3034 }
3035
3036 wait_for_completion(&pending->done);
3037
3038 if (refcount_dec_and_test(&pending->refs))
3039 wake_up_var(&pending->refs); /* No UaF, just an address */
3040
3041 /*
3042 * Block the original owner of &pending until all subsequent callers
3043 * have seen the completion and decremented the refcount
3044 */
3045 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3046
3047 /* ARGH */
3048 WARN_ON_ONCE(my_pending.stop_pending);
3049
3050 return 0;
3051}
3052
3053/*
3054 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3055 */
3056static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3057 struct affinity_context *ctx,
3058 struct rq *rq,
3059 struct rq_flags *rf)
3060 __releases(rq->lock)
3061 __releases(p->pi_lock)
3062{
3063 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3064 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3065 bool kthread = p->flags & PF_KTHREAD;
3066 unsigned int dest_cpu;
3067 int ret = 0;
3068
3069 update_rq_clock(rq);
3070
3071 if (kthread || is_migration_disabled(p)) {
3072 /*
3073 * Kernel threads are allowed on online && !active CPUs,
3074 * however, during cpu-hot-unplug, even these might get pushed
3075 * away if not KTHREAD_IS_PER_CPU.
3076 *
3077 * Specifically, migration_disabled() tasks must not fail the
3078 * cpumask_any_and_distribute() pick below, esp. so on
3079 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3080 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3081 */
3082 cpu_valid_mask = cpu_online_mask;
3083 }
3084
3085 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3086 ret = -EINVAL;
3087 goto out;
3088 }
3089
3090 /*
3091 * Must re-check here, to close a race against __kthread_bind(),
3092 * sched_setaffinity() is not guaranteed to observe the flag.
3093 */
3094 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3095 ret = -EINVAL;
3096 goto out;
3097 }
3098
3099 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3100 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3101 if (ctx->flags & SCA_USER)
3102 swap(p->user_cpus_ptr, ctx->user_mask);
3103 goto out;
3104 }
3105
3106 if (WARN_ON_ONCE(p == current &&
3107 is_migration_disabled(p) &&
3108 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3109 ret = -EBUSY;
3110 goto out;
3111 }
3112 }
3113
3114 /*
3115 * Picking a ~random cpu helps in cases where we are changing affinity
3116 * for groups of tasks (ie. cpuset), so that load balancing is not
3117 * immediately required to distribute the tasks within their new mask.
3118 */
3119 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3120 if (dest_cpu >= nr_cpu_ids) {
3121 ret = -EINVAL;
3122 goto out;
3123 }
3124
3125 __do_set_cpus_allowed(p, ctx);
3126
3127 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3128
3129out:
3130 task_rq_unlock(rq, p, rf);
3131
3132 return ret;
3133}
3134
3135/*
3136 * Change a given task's CPU affinity. Migrate the thread to a
3137 * proper CPU and schedule it away if the CPU it's executing on
3138 * is removed from the allowed bitmask.
3139 *
3140 * NOTE: the caller must have a valid reference to the task, the
3141 * task must not exit() & deallocate itself prematurely. The
3142 * call is not atomic; no spinlocks may be held.
3143 */
3144int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3145{
3146 struct rq_flags rf;
3147 struct rq *rq;
3148
3149 rq = task_rq_lock(p, &rf);
3150 /*
3151 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3152 * flags are set.
3153 */
3154 if (p->user_cpus_ptr &&
3155 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3156 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3157 ctx->new_mask = rq->scratch_mask;
3158
3159 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3160}
3161
3162int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3163{
3164 struct affinity_context ac = {
3165 .new_mask = new_mask,
3166 .flags = 0,
3167 };
3168
3169 return __set_cpus_allowed_ptr(p, &ac);
3170}
3171EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3172
3173/*
3174 * Change a given task's CPU affinity to the intersection of its current
3175 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3176 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3177 * affinity or use cpu_online_mask instead.
3178 *
3179 * If the resulting mask is empty, leave the affinity unchanged and return
3180 * -EINVAL.
3181 */
3182static int restrict_cpus_allowed_ptr(struct task_struct *p,
3183 struct cpumask *new_mask,
3184 const struct cpumask *subset_mask)
3185{
3186 struct affinity_context ac = {
3187 .new_mask = new_mask,
3188 .flags = 0,
3189 };
3190 struct rq_flags rf;
3191 struct rq *rq;
3192 int err;
3193
3194 rq = task_rq_lock(p, &rf);
3195
3196 /*
3197 * Forcefully restricting the affinity of a deadline task is
3198 * likely to cause problems, so fail and noisily override the
3199 * mask entirely.
3200 */
3201 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3202 err = -EPERM;
3203 goto err_unlock;
3204 }
3205
3206 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3207 err = -EINVAL;
3208 goto err_unlock;
3209 }
3210
3211 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3212
3213err_unlock:
3214 task_rq_unlock(rq, p, &rf);
3215 return err;
3216}
3217
3218/*
3219 * Restrict the CPU affinity of task @p so that it is a subset of
3220 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3221 * old affinity mask. If the resulting mask is empty, we warn and walk
3222 * up the cpuset hierarchy until we find a suitable mask.
3223 */
3224void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3225{
3226 cpumask_var_t new_mask;
3227 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3228
3229 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3230
3231 /*
3232 * __migrate_task() can fail silently in the face of concurrent
3233 * offlining of the chosen destination CPU, so take the hotplug
3234 * lock to ensure that the migration succeeds.
3235 */
3236 cpus_read_lock();
3237 if (!cpumask_available(new_mask))
3238 goto out_set_mask;
3239
3240 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3241 goto out_free_mask;
3242
3243 /*
3244 * We failed to find a valid subset of the affinity mask for the
3245 * task, so override it based on its cpuset hierarchy.
3246 */
3247 cpuset_cpus_allowed(p, new_mask);
3248 override_mask = new_mask;
3249
3250out_set_mask:
3251 if (printk_ratelimit()) {
3252 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3253 task_pid_nr(p), p->comm,
3254 cpumask_pr_args(override_mask));
3255 }
3256
3257 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3258out_free_mask:
3259 cpus_read_unlock();
3260 free_cpumask_var(new_mask);
3261}
3262
3263/*
3264 * Restore the affinity of a task @p which was previously restricted by a
3265 * call to force_compatible_cpus_allowed_ptr().
3266 *
3267 * It is the caller's responsibility to serialise this with any calls to
3268 * force_compatible_cpus_allowed_ptr(@p).
3269 */
3270void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3271{
3272 struct affinity_context ac = {
3273 .new_mask = task_user_cpus(p),
3274 .flags = 0,
3275 };
3276 int ret;
3277
3278 /*
3279 * Try to restore the old affinity mask with __sched_setaffinity().
3280 * Cpuset masking will be done there too.
3281 */
3282 ret = __sched_setaffinity(p, &ac);
3283 WARN_ON_ONCE(ret);
3284}
3285
3286void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3287{
3288#ifdef CONFIG_SCHED_DEBUG
3289 unsigned int state = READ_ONCE(p->__state);
3290
3291 /*
3292 * We should never call set_task_cpu() on a blocked task,
3293 * ttwu() will sort out the placement.
3294 */
3295 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3296
3297 /*
3298 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3299 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3300 * time relying on p->on_rq.
3301 */
3302 WARN_ON_ONCE(state == TASK_RUNNING &&
3303 p->sched_class == &fair_sched_class &&
3304 (p->on_rq && !task_on_rq_migrating(p)));
3305
3306#ifdef CONFIG_LOCKDEP
3307 /*
3308 * The caller should hold either p->pi_lock or rq->lock, when changing
3309 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3310 *
3311 * sched_move_task() holds both and thus holding either pins the cgroup,
3312 * see task_group().
3313 *
3314 * Furthermore, all task_rq users should acquire both locks, see
3315 * task_rq_lock().
3316 */
3317 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3318 lockdep_is_held(__rq_lockp(task_rq(p)))));
3319#endif
3320 /*
3321 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3322 */
3323 WARN_ON_ONCE(!cpu_online(new_cpu));
3324
3325 WARN_ON_ONCE(is_migration_disabled(p));
3326#endif
3327
3328 trace_sched_migrate_task(p, new_cpu);
3329
3330 if (task_cpu(p) != new_cpu) {
3331 if (p->sched_class->migrate_task_rq)
3332 p->sched_class->migrate_task_rq(p, new_cpu);
3333 p->se.nr_migrations++;
3334 rseq_migrate(p);
3335 sched_mm_cid_migrate_from(p);
3336 perf_event_task_migrate(p);
3337 }
3338
3339 __set_task_cpu(p, new_cpu);
3340}
3341
3342#ifdef CONFIG_NUMA_BALANCING
3343static void __migrate_swap_task(struct task_struct *p, int cpu)
3344{
3345 if (task_on_rq_queued(p)) {
3346 struct rq *src_rq, *dst_rq;
3347 struct rq_flags srf, drf;
3348
3349 src_rq = task_rq(p);
3350 dst_rq = cpu_rq(cpu);
3351
3352 rq_pin_lock(src_rq, &srf);
3353 rq_pin_lock(dst_rq, &drf);
3354
3355 move_queued_task_locked(src_rq, dst_rq, p);
3356 wakeup_preempt(dst_rq, p, 0);
3357
3358 rq_unpin_lock(dst_rq, &drf);
3359 rq_unpin_lock(src_rq, &srf);
3360
3361 } else {
3362 /*
3363 * Task isn't running anymore; make it appear like we migrated
3364 * it before it went to sleep. This means on wakeup we make the
3365 * previous CPU our target instead of where it really is.
3366 */
3367 p->wake_cpu = cpu;
3368 }
3369}
3370
3371struct migration_swap_arg {
3372 struct task_struct *src_task, *dst_task;
3373 int src_cpu, dst_cpu;
3374};
3375
3376static int migrate_swap_stop(void *data)
3377{
3378 struct migration_swap_arg *arg = data;
3379 struct rq *src_rq, *dst_rq;
3380
3381 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3382 return -EAGAIN;
3383
3384 src_rq = cpu_rq(arg->src_cpu);
3385 dst_rq = cpu_rq(arg->dst_cpu);
3386
3387 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3388 guard(double_rq_lock)(src_rq, dst_rq);
3389
3390 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3391 return -EAGAIN;
3392
3393 if (task_cpu(arg->src_task) != arg->src_cpu)
3394 return -EAGAIN;
3395
3396 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3397 return -EAGAIN;
3398
3399 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3400 return -EAGAIN;
3401
3402 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3403 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3404
3405 return 0;
3406}
3407
3408/*
3409 * Cross migrate two tasks
3410 */
3411int migrate_swap(struct task_struct *cur, struct task_struct *p,
3412 int target_cpu, int curr_cpu)
3413{
3414 struct migration_swap_arg arg;
3415 int ret = -EINVAL;
3416
3417 arg = (struct migration_swap_arg){
3418 .src_task = cur,
3419 .src_cpu = curr_cpu,
3420 .dst_task = p,
3421 .dst_cpu = target_cpu,
3422 };
3423
3424 if (arg.src_cpu == arg.dst_cpu)
3425 goto out;
3426
3427 /*
3428 * These three tests are all lockless; this is OK since all of them
3429 * will be re-checked with proper locks held further down the line.
3430 */
3431 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3432 goto out;
3433
3434 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3435 goto out;
3436
3437 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3438 goto out;
3439
3440 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3441 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3442
3443out:
3444 return ret;
3445}
3446#endif /* CONFIG_NUMA_BALANCING */
3447
3448/***
3449 * kick_process - kick a running thread to enter/exit the kernel
3450 * @p: the to-be-kicked thread
3451 *
3452 * Cause a process which is running on another CPU to enter
3453 * kernel-mode, without any delay. (to get signals handled.)
3454 *
3455 * NOTE: this function doesn't have to take the runqueue lock,
3456 * because all it wants to ensure is that the remote task enters
3457 * the kernel. If the IPI races and the task has been migrated
3458 * to another CPU then no harm is done and the purpose has been
3459 * achieved as well.
3460 */
3461void kick_process(struct task_struct *p)
3462{
3463 guard(preempt)();
3464 int cpu = task_cpu(p);
3465
3466 if ((cpu != smp_processor_id()) && task_curr(p))
3467 smp_send_reschedule(cpu);
3468}
3469EXPORT_SYMBOL_GPL(kick_process);
3470
3471/*
3472 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3473 *
3474 * A few notes on cpu_active vs cpu_online:
3475 *
3476 * - cpu_active must be a subset of cpu_online
3477 *
3478 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3479 * see __set_cpus_allowed_ptr(). At this point the newly online
3480 * CPU isn't yet part of the sched domains, and balancing will not
3481 * see it.
3482 *
3483 * - on CPU-down we clear cpu_active() to mask the sched domains and
3484 * avoid the load balancer to place new tasks on the to be removed
3485 * CPU. Existing tasks will remain running there and will be taken
3486 * off.
3487 *
3488 * This means that fallback selection must not select !active CPUs.
3489 * And can assume that any active CPU must be online. Conversely
3490 * select_task_rq() below may allow selection of !active CPUs in order
3491 * to satisfy the above rules.
3492 */
3493static int select_fallback_rq(int cpu, struct task_struct *p)
3494{
3495 int nid = cpu_to_node(cpu);
3496 const struct cpumask *nodemask = NULL;
3497 enum { cpuset, possible, fail } state = cpuset;
3498 int dest_cpu;
3499
3500 /*
3501 * If the node that the CPU is on has been offlined, cpu_to_node()
3502 * will return -1. There is no CPU on the node, and we should
3503 * select the CPU on the other node.
3504 */
3505 if (nid != -1) {
3506 nodemask = cpumask_of_node(nid);
3507
3508 /* Look for allowed, online CPU in same node. */
3509 for_each_cpu(dest_cpu, nodemask) {
3510 if (is_cpu_allowed(p, dest_cpu))
3511 return dest_cpu;
3512 }
3513 }
3514
3515 for (;;) {
3516 /* Any allowed, online CPU? */
3517 for_each_cpu(dest_cpu, p->cpus_ptr) {
3518 if (!is_cpu_allowed(p, dest_cpu))
3519 continue;
3520
3521 goto out;
3522 }
3523
3524 /* No more Mr. Nice Guy. */
3525 switch (state) {
3526 case cpuset:
3527 if (cpuset_cpus_allowed_fallback(p)) {
3528 state = possible;
3529 break;
3530 }
3531 fallthrough;
3532 case possible:
3533 /*
3534 * XXX When called from select_task_rq() we only
3535 * hold p->pi_lock and again violate locking order.
3536 *
3537 * More yuck to audit.
3538 */
3539 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3540 state = fail;
3541 break;
3542 case fail:
3543 BUG();
3544 break;
3545 }
3546 }
3547
3548out:
3549 if (state != cpuset) {
3550 /*
3551 * Don't tell them about moving exiting tasks or
3552 * kernel threads (both mm NULL), since they never
3553 * leave kernel.
3554 */
3555 if (p->mm && printk_ratelimit()) {
3556 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3557 task_pid_nr(p), p->comm, cpu);
3558 }
3559 }
3560
3561 return dest_cpu;
3562}
3563
3564/*
3565 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3566 */
3567static inline
3568int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3569{
3570 lockdep_assert_held(&p->pi_lock);
3571
3572 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3573 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3574 *wake_flags |= WF_RQ_SELECTED;
3575 } else {
3576 cpu = cpumask_any(p->cpus_ptr);
3577 }
3578
3579 /*
3580 * In order not to call set_task_cpu() on a blocking task we need
3581 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3582 * CPU.
3583 *
3584 * Since this is common to all placement strategies, this lives here.
3585 *
3586 * [ this allows ->select_task() to simply return task_cpu(p) and
3587 * not worry about this generic constraint ]
3588 */
3589 if (unlikely(!is_cpu_allowed(p, cpu)))
3590 cpu = select_fallback_rq(task_cpu(p), p);
3591
3592 return cpu;
3593}
3594
3595void sched_set_stop_task(int cpu, struct task_struct *stop)
3596{
3597 static struct lock_class_key stop_pi_lock;
3598 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3599 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3600
3601 if (stop) {
3602 /*
3603 * Make it appear like a SCHED_FIFO task, its something
3604 * userspace knows about and won't get confused about.
3605 *
3606 * Also, it will make PI more or less work without too
3607 * much confusion -- but then, stop work should not
3608 * rely on PI working anyway.
3609 */
3610 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3611
3612 stop->sched_class = &stop_sched_class;
3613
3614 /*
3615 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3616 * adjust the effective priority of a task. As a result,
3617 * rt_mutex_setprio() can trigger (RT) balancing operations,
3618 * which can then trigger wakeups of the stop thread to push
3619 * around the current task.
3620 *
3621 * The stop task itself will never be part of the PI-chain, it
3622 * never blocks, therefore that ->pi_lock recursion is safe.
3623 * Tell lockdep about this by placing the stop->pi_lock in its
3624 * own class.
3625 */
3626 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3627 }
3628
3629 cpu_rq(cpu)->stop = stop;
3630
3631 if (old_stop) {
3632 /*
3633 * Reset it back to a normal scheduling class so that
3634 * it can die in pieces.
3635 */
3636 old_stop->sched_class = &rt_sched_class;
3637 }
3638}
3639
3640#else /* CONFIG_SMP */
3641
3642static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3643
3644static inline bool rq_has_pinned_tasks(struct rq *rq)
3645{
3646 return false;
3647}
3648
3649#endif /* !CONFIG_SMP */
3650
3651static void
3652ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3653{
3654 struct rq *rq;
3655
3656 if (!schedstat_enabled())
3657 return;
3658
3659 rq = this_rq();
3660
3661#ifdef CONFIG_SMP
3662 if (cpu == rq->cpu) {
3663 __schedstat_inc(rq->ttwu_local);
3664 __schedstat_inc(p->stats.nr_wakeups_local);
3665 } else {
3666 struct sched_domain *sd;
3667
3668 __schedstat_inc(p->stats.nr_wakeups_remote);
3669
3670 guard(rcu)();
3671 for_each_domain(rq->cpu, sd) {
3672 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3673 __schedstat_inc(sd->ttwu_wake_remote);
3674 break;
3675 }
3676 }
3677 }
3678
3679 if (wake_flags & WF_MIGRATED)
3680 __schedstat_inc(p->stats.nr_wakeups_migrate);
3681#endif /* CONFIG_SMP */
3682
3683 __schedstat_inc(rq->ttwu_count);
3684 __schedstat_inc(p->stats.nr_wakeups);
3685
3686 if (wake_flags & WF_SYNC)
3687 __schedstat_inc(p->stats.nr_wakeups_sync);
3688}
3689
3690/*
3691 * Mark the task runnable.
3692 */
3693static inline void ttwu_do_wakeup(struct task_struct *p)
3694{
3695 WRITE_ONCE(p->__state, TASK_RUNNING);
3696 trace_sched_wakeup(p);
3697}
3698
3699static void
3700ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3701 struct rq_flags *rf)
3702{
3703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3704
3705 lockdep_assert_rq_held(rq);
3706
3707 if (p->sched_contributes_to_load)
3708 rq->nr_uninterruptible--;
3709
3710#ifdef CONFIG_SMP
3711 if (wake_flags & WF_RQ_SELECTED)
3712 en_flags |= ENQUEUE_RQ_SELECTED;
3713 if (wake_flags & WF_MIGRATED)
3714 en_flags |= ENQUEUE_MIGRATED;
3715 else
3716#endif
3717 if (p->in_iowait) {
3718 delayacct_blkio_end(p);
3719 atomic_dec(&task_rq(p)->nr_iowait);
3720 }
3721
3722 activate_task(rq, p, en_flags);
3723 wakeup_preempt(rq, p, wake_flags);
3724
3725 ttwu_do_wakeup(p);
3726
3727#ifdef CONFIG_SMP
3728 if (p->sched_class->task_woken) {
3729 /*
3730 * Our task @p is fully woken up and running; so it's safe to
3731 * drop the rq->lock, hereafter rq is only used for statistics.
3732 */
3733 rq_unpin_lock(rq, rf);
3734 p->sched_class->task_woken(rq, p);
3735 rq_repin_lock(rq, rf);
3736 }
3737
3738 if (rq->idle_stamp) {
3739 u64 delta = rq_clock(rq) - rq->idle_stamp;
3740 u64 max = 2*rq->max_idle_balance_cost;
3741
3742 update_avg(&rq->avg_idle, delta);
3743
3744 if (rq->avg_idle > max)
3745 rq->avg_idle = max;
3746
3747 rq->idle_stamp = 0;
3748 }
3749#endif
3750}
3751
3752/*
3753 * Consider @p being inside a wait loop:
3754 *
3755 * for (;;) {
3756 * set_current_state(TASK_UNINTERRUPTIBLE);
3757 *
3758 * if (CONDITION)
3759 * break;
3760 *
3761 * schedule();
3762 * }
3763 * __set_current_state(TASK_RUNNING);
3764 *
3765 * between set_current_state() and schedule(). In this case @p is still
3766 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3767 * an atomic manner.
3768 *
3769 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3770 * then schedule() must still happen and p->state can be changed to
3771 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3772 * need to do a full wakeup with enqueue.
3773 *
3774 * Returns: %true when the wakeup is done,
3775 * %false otherwise.
3776 */
3777static int ttwu_runnable(struct task_struct *p, int wake_flags)
3778{
3779 struct rq_flags rf;
3780 struct rq *rq;
3781 int ret = 0;
3782
3783 rq = __task_rq_lock(p, &rf);
3784 if (task_on_rq_queued(p)) {
3785 update_rq_clock(rq);
3786 if (p->se.sched_delayed)
3787 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3788 if (!task_on_cpu(rq, p)) {
3789 /*
3790 * When on_rq && !on_cpu the task is preempted, see if
3791 * it should preempt the task that is current now.
3792 */
3793 wakeup_preempt(rq, p, wake_flags);
3794 }
3795 ttwu_do_wakeup(p);
3796 ret = 1;
3797 }
3798 __task_rq_unlock(rq, &rf);
3799
3800 return ret;
3801}
3802
3803#ifdef CONFIG_SMP
3804void sched_ttwu_pending(void *arg)
3805{
3806 struct llist_node *llist = arg;
3807 struct rq *rq = this_rq();
3808 struct task_struct *p, *t;
3809 struct rq_flags rf;
3810
3811 if (!llist)
3812 return;
3813
3814 rq_lock_irqsave(rq, &rf);
3815 update_rq_clock(rq);
3816
3817 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3818 if (WARN_ON_ONCE(p->on_cpu))
3819 smp_cond_load_acquire(&p->on_cpu, !VAL);
3820
3821 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3822 set_task_cpu(p, cpu_of(rq));
3823
3824 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3825 }
3826
3827 /*
3828 * Must be after enqueueing at least once task such that
3829 * idle_cpu() does not observe a false-negative -- if it does,
3830 * it is possible for select_idle_siblings() to stack a number
3831 * of tasks on this CPU during that window.
3832 *
3833 * It is OK to clear ttwu_pending when another task pending.
3834 * We will receive IPI after local IRQ enabled and then enqueue it.
3835 * Since now nr_running > 0, idle_cpu() will always get correct result.
3836 */
3837 WRITE_ONCE(rq->ttwu_pending, 0);
3838 rq_unlock_irqrestore(rq, &rf);
3839}
3840
3841/*
3842 * Prepare the scene for sending an IPI for a remote smp_call
3843 *
3844 * Returns true if the caller can proceed with sending the IPI.
3845 * Returns false otherwise.
3846 */
3847bool call_function_single_prep_ipi(int cpu)
3848{
3849 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3850 trace_sched_wake_idle_without_ipi(cpu);
3851 return false;
3852 }
3853
3854 return true;
3855}
3856
3857/*
3858 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3859 * necessary. The wakee CPU on receipt of the IPI will queue the task
3860 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3861 * of the wakeup instead of the waker.
3862 */
3863static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3864{
3865 struct rq *rq = cpu_rq(cpu);
3866
3867 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3868
3869 WRITE_ONCE(rq->ttwu_pending, 1);
3870 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3871}
3872
3873void wake_up_if_idle(int cpu)
3874{
3875 struct rq *rq = cpu_rq(cpu);
3876
3877 guard(rcu)();
3878 if (is_idle_task(rcu_dereference(rq->curr))) {
3879 guard(rq_lock_irqsave)(rq);
3880 if (is_idle_task(rq->curr))
3881 resched_curr(rq);
3882 }
3883}
3884
3885bool cpus_equal_capacity(int this_cpu, int that_cpu)
3886{
3887 if (!sched_asym_cpucap_active())
3888 return true;
3889
3890 if (this_cpu == that_cpu)
3891 return true;
3892
3893 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3894}
3895
3896bool cpus_share_cache(int this_cpu, int that_cpu)
3897{
3898 if (this_cpu == that_cpu)
3899 return true;
3900
3901 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3902}
3903
3904/*
3905 * Whether CPUs are share cache resources, which means LLC on non-cluster
3906 * machines and LLC tag or L2 on machines with clusters.
3907 */
3908bool cpus_share_resources(int this_cpu, int that_cpu)
3909{
3910 if (this_cpu == that_cpu)
3911 return true;
3912
3913 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3914}
3915
3916static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3917{
3918 /*
3919 * The BPF scheduler may depend on select_task_rq() being invoked during
3920 * wakeups. In addition, @p may end up executing on a different CPU
3921 * regardless of what happens in the wakeup path making the ttwu_queue
3922 * optimization less meaningful. Skip if on SCX.
3923 */
3924 if (task_on_scx(p))
3925 return false;
3926
3927 /*
3928 * Do not complicate things with the async wake_list while the CPU is
3929 * in hotplug state.
3930 */
3931 if (!cpu_active(cpu))
3932 return false;
3933
3934 /* Ensure the task will still be allowed to run on the CPU. */
3935 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3936 return false;
3937
3938 /*
3939 * If the CPU does not share cache, then queue the task on the
3940 * remote rqs wakelist to avoid accessing remote data.
3941 */
3942 if (!cpus_share_cache(smp_processor_id(), cpu))
3943 return true;
3944
3945 if (cpu == smp_processor_id())
3946 return false;
3947
3948 /*
3949 * If the wakee cpu is idle, or the task is descheduling and the
3950 * only running task on the CPU, then use the wakelist to offload
3951 * the task activation to the idle (or soon-to-be-idle) CPU as
3952 * the current CPU is likely busy. nr_running is checked to
3953 * avoid unnecessary task stacking.
3954 *
3955 * Note that we can only get here with (wakee) p->on_rq=0,
3956 * p->on_cpu can be whatever, we've done the dequeue, so
3957 * the wakee has been accounted out of ->nr_running.
3958 */
3959 if (!cpu_rq(cpu)->nr_running)
3960 return true;
3961
3962 return false;
3963}
3964
3965static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3966{
3967 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3968 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3969 __ttwu_queue_wakelist(p, cpu, wake_flags);
3970 return true;
3971 }
3972
3973 return false;
3974}
3975
3976#else /* !CONFIG_SMP */
3977
3978static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3979{
3980 return false;
3981}
3982
3983#endif /* CONFIG_SMP */
3984
3985static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3986{
3987 struct rq *rq = cpu_rq(cpu);
3988 struct rq_flags rf;
3989
3990 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3991 return;
3992
3993 rq_lock(rq, &rf);
3994 update_rq_clock(rq);
3995 ttwu_do_activate(rq, p, wake_flags, &rf);
3996 rq_unlock(rq, &rf);
3997}
3998
3999/*
4000 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4001 *
4002 * The caller holds p::pi_lock if p != current or has preemption
4003 * disabled when p == current.
4004 *
4005 * The rules of saved_state:
4006 *
4007 * The related locking code always holds p::pi_lock when updating
4008 * p::saved_state, which means the code is fully serialized in both cases.
4009 *
4010 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4011 * No other bits set. This allows to distinguish all wakeup scenarios.
4012 *
4013 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4014 * allows us to prevent early wakeup of tasks before they can be run on
4015 * asymmetric ISA architectures (eg ARMv9).
4016 */
4017static __always_inline
4018bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4019{
4020 int match;
4021
4022 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4023 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4024 state != TASK_RTLOCK_WAIT);
4025 }
4026
4027 *success = !!(match = __task_state_match(p, state));
4028
4029 /*
4030 * Saved state preserves the task state across blocking on
4031 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4032 * set p::saved_state to TASK_RUNNING, but do not wake the task
4033 * because it waits for a lock wakeup or __thaw_task(). Also
4034 * indicate success because from the regular waker's point of
4035 * view this has succeeded.
4036 *
4037 * After acquiring the lock the task will restore p::__state
4038 * from p::saved_state which ensures that the regular
4039 * wakeup is not lost. The restore will also set
4040 * p::saved_state to TASK_RUNNING so any further tests will
4041 * not result in false positives vs. @success
4042 */
4043 if (match < 0)
4044 p->saved_state = TASK_RUNNING;
4045
4046 return match > 0;
4047}
4048
4049/*
4050 * Notes on Program-Order guarantees on SMP systems.
4051 *
4052 * MIGRATION
4053 *
4054 * The basic program-order guarantee on SMP systems is that when a task [t]
4055 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4056 * execution on its new CPU [c1].
4057 *
4058 * For migration (of runnable tasks) this is provided by the following means:
4059 *
4060 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4061 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4062 * rq(c1)->lock (if not at the same time, then in that order).
4063 * C) LOCK of the rq(c1)->lock scheduling in task
4064 *
4065 * Release/acquire chaining guarantees that B happens after A and C after B.
4066 * Note: the CPU doing B need not be c0 or c1
4067 *
4068 * Example:
4069 *
4070 * CPU0 CPU1 CPU2
4071 *
4072 * LOCK rq(0)->lock
4073 * sched-out X
4074 * sched-in Y
4075 * UNLOCK rq(0)->lock
4076 *
4077 * LOCK rq(0)->lock // orders against CPU0
4078 * dequeue X
4079 * UNLOCK rq(0)->lock
4080 *
4081 * LOCK rq(1)->lock
4082 * enqueue X
4083 * UNLOCK rq(1)->lock
4084 *
4085 * LOCK rq(1)->lock // orders against CPU2
4086 * sched-out Z
4087 * sched-in X
4088 * UNLOCK rq(1)->lock
4089 *
4090 *
4091 * BLOCKING -- aka. SLEEP + WAKEUP
4092 *
4093 * For blocking we (obviously) need to provide the same guarantee as for
4094 * migration. However the means are completely different as there is no lock
4095 * chain to provide order. Instead we do:
4096 *
4097 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4098 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4099 *
4100 * Example:
4101 *
4102 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4103 *
4104 * LOCK rq(0)->lock LOCK X->pi_lock
4105 * dequeue X
4106 * sched-out X
4107 * smp_store_release(X->on_cpu, 0);
4108 *
4109 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4110 * X->state = WAKING
4111 * set_task_cpu(X,2)
4112 *
4113 * LOCK rq(2)->lock
4114 * enqueue X
4115 * X->state = RUNNING
4116 * UNLOCK rq(2)->lock
4117 *
4118 * LOCK rq(2)->lock // orders against CPU1
4119 * sched-out Z
4120 * sched-in X
4121 * UNLOCK rq(2)->lock
4122 *
4123 * UNLOCK X->pi_lock
4124 * UNLOCK rq(0)->lock
4125 *
4126 *
4127 * However, for wakeups there is a second guarantee we must provide, namely we
4128 * must ensure that CONDITION=1 done by the caller can not be reordered with
4129 * accesses to the task state; see try_to_wake_up() and set_current_state().
4130 */
4131
4132/**
4133 * try_to_wake_up - wake up a thread
4134 * @p: the thread to be awakened
4135 * @state: the mask of task states that can be woken
4136 * @wake_flags: wake modifier flags (WF_*)
4137 *
4138 * Conceptually does:
4139 *
4140 * If (@state & @p->state) @p->state = TASK_RUNNING.
4141 *
4142 * If the task was not queued/runnable, also place it back on a runqueue.
4143 *
4144 * This function is atomic against schedule() which would dequeue the task.
4145 *
4146 * It issues a full memory barrier before accessing @p->state, see the comment
4147 * with set_current_state().
4148 *
4149 * Uses p->pi_lock to serialize against concurrent wake-ups.
4150 *
4151 * Relies on p->pi_lock stabilizing:
4152 * - p->sched_class
4153 * - p->cpus_ptr
4154 * - p->sched_task_group
4155 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4156 *
4157 * Tries really hard to only take one task_rq(p)->lock for performance.
4158 * Takes rq->lock in:
4159 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4160 * - ttwu_queue() -- new rq, for enqueue of the task;
4161 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4162 *
4163 * As a consequence we race really badly with just about everything. See the
4164 * many memory barriers and their comments for details.
4165 *
4166 * Return: %true if @p->state changes (an actual wakeup was done),
4167 * %false otherwise.
4168 */
4169int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4170{
4171 guard(preempt)();
4172 int cpu, success = 0;
4173
4174 wake_flags |= WF_TTWU;
4175
4176 if (p == current) {
4177 /*
4178 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4179 * == smp_processor_id()'. Together this means we can special
4180 * case the whole 'p->on_rq && ttwu_runnable()' case below
4181 * without taking any locks.
4182 *
4183 * Specifically, given current runs ttwu() we must be before
4184 * schedule()'s block_task(), as such this must not observe
4185 * sched_delayed.
4186 *
4187 * In particular:
4188 * - we rely on Program-Order guarantees for all the ordering,
4189 * - we're serialized against set_special_state() by virtue of
4190 * it disabling IRQs (this allows not taking ->pi_lock).
4191 */
4192 SCHED_WARN_ON(p->se.sched_delayed);
4193 if (!ttwu_state_match(p, state, &success))
4194 goto out;
4195
4196 trace_sched_waking(p);
4197 ttwu_do_wakeup(p);
4198 goto out;
4199 }
4200
4201 /*
4202 * If we are going to wake up a thread waiting for CONDITION we
4203 * need to ensure that CONDITION=1 done by the caller can not be
4204 * reordered with p->state check below. This pairs with smp_store_mb()
4205 * in set_current_state() that the waiting thread does.
4206 */
4207 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4208 smp_mb__after_spinlock();
4209 if (!ttwu_state_match(p, state, &success))
4210 break;
4211
4212 trace_sched_waking(p);
4213
4214 /*
4215 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4216 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4217 * in smp_cond_load_acquire() below.
4218 *
4219 * sched_ttwu_pending() try_to_wake_up()
4220 * STORE p->on_rq = 1 LOAD p->state
4221 * UNLOCK rq->lock
4222 *
4223 * __schedule() (switch to task 'p')
4224 * LOCK rq->lock smp_rmb();
4225 * smp_mb__after_spinlock();
4226 * UNLOCK rq->lock
4227 *
4228 * [task p]
4229 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4230 *
4231 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4232 * __schedule(). See the comment for smp_mb__after_spinlock().
4233 *
4234 * A similar smp_rmb() lives in __task_needs_rq_lock().
4235 */
4236 smp_rmb();
4237 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4238 break;
4239
4240#ifdef CONFIG_SMP
4241 /*
4242 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4243 * possible to, falsely, observe p->on_cpu == 0.
4244 *
4245 * One must be running (->on_cpu == 1) in order to remove oneself
4246 * from the runqueue.
4247 *
4248 * __schedule() (switch to task 'p') try_to_wake_up()
4249 * STORE p->on_cpu = 1 LOAD p->on_rq
4250 * UNLOCK rq->lock
4251 *
4252 * __schedule() (put 'p' to sleep)
4253 * LOCK rq->lock smp_rmb();
4254 * smp_mb__after_spinlock();
4255 * STORE p->on_rq = 0 LOAD p->on_cpu
4256 *
4257 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4258 * __schedule(). See the comment for smp_mb__after_spinlock().
4259 *
4260 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4261 * schedule()'s deactivate_task() has 'happened' and p will no longer
4262 * care about it's own p->state. See the comment in __schedule().
4263 */
4264 smp_acquire__after_ctrl_dep();
4265
4266 /*
4267 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4268 * == 0), which means we need to do an enqueue, change p->state to
4269 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4270 * enqueue, such as ttwu_queue_wakelist().
4271 */
4272 WRITE_ONCE(p->__state, TASK_WAKING);
4273
4274 /*
4275 * If the owning (remote) CPU is still in the middle of schedule() with
4276 * this task as prev, considering queueing p on the remote CPUs wake_list
4277 * which potentially sends an IPI instead of spinning on p->on_cpu to
4278 * let the waker make forward progress. This is safe because IRQs are
4279 * disabled and the IPI will deliver after on_cpu is cleared.
4280 *
4281 * Ensure we load task_cpu(p) after p->on_cpu:
4282 *
4283 * set_task_cpu(p, cpu);
4284 * STORE p->cpu = @cpu
4285 * __schedule() (switch to task 'p')
4286 * LOCK rq->lock
4287 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4288 * STORE p->on_cpu = 1 LOAD p->cpu
4289 *
4290 * to ensure we observe the correct CPU on which the task is currently
4291 * scheduling.
4292 */
4293 if (smp_load_acquire(&p->on_cpu) &&
4294 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4295 break;
4296
4297 /*
4298 * If the owning (remote) CPU is still in the middle of schedule() with
4299 * this task as prev, wait until it's done referencing the task.
4300 *
4301 * Pairs with the smp_store_release() in finish_task().
4302 *
4303 * This ensures that tasks getting woken will be fully ordered against
4304 * their previous state and preserve Program Order.
4305 */
4306 smp_cond_load_acquire(&p->on_cpu, !VAL);
4307
4308 cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4309 if (task_cpu(p) != cpu) {
4310 if (p->in_iowait) {
4311 delayacct_blkio_end(p);
4312 atomic_dec(&task_rq(p)->nr_iowait);
4313 }
4314
4315 wake_flags |= WF_MIGRATED;
4316 psi_ttwu_dequeue(p);
4317 set_task_cpu(p, cpu);
4318 }
4319#else
4320 cpu = task_cpu(p);
4321#endif /* CONFIG_SMP */
4322
4323 ttwu_queue(p, cpu, wake_flags);
4324 }
4325out:
4326 if (success)
4327 ttwu_stat(p, task_cpu(p), wake_flags);
4328
4329 return success;
4330}
4331
4332static bool __task_needs_rq_lock(struct task_struct *p)
4333{
4334 unsigned int state = READ_ONCE(p->__state);
4335
4336 /*
4337 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4338 * the task is blocked. Make sure to check @state since ttwu() can drop
4339 * locks at the end, see ttwu_queue_wakelist().
4340 */
4341 if (state == TASK_RUNNING || state == TASK_WAKING)
4342 return true;
4343
4344 /*
4345 * Ensure we load p->on_rq after p->__state, otherwise it would be
4346 * possible to, falsely, observe p->on_rq == 0.
4347 *
4348 * See try_to_wake_up() for a longer comment.
4349 */
4350 smp_rmb();
4351 if (p->on_rq)
4352 return true;
4353
4354#ifdef CONFIG_SMP
4355 /*
4356 * Ensure the task has finished __schedule() and will not be referenced
4357 * anymore. Again, see try_to_wake_up() for a longer comment.
4358 */
4359 smp_rmb();
4360 smp_cond_load_acquire(&p->on_cpu, !VAL);
4361#endif
4362
4363 return false;
4364}
4365
4366/**
4367 * task_call_func - Invoke a function on task in fixed state
4368 * @p: Process for which the function is to be invoked, can be @current.
4369 * @func: Function to invoke.
4370 * @arg: Argument to function.
4371 *
4372 * Fix the task in it's current state by avoiding wakeups and or rq operations
4373 * and call @func(@arg) on it. This function can use task_is_runnable() and
4374 * task_curr() to work out what the state is, if required. Given that @func
4375 * can be invoked with a runqueue lock held, it had better be quite
4376 * lightweight.
4377 *
4378 * Returns:
4379 * Whatever @func returns
4380 */
4381int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4382{
4383 struct rq *rq = NULL;
4384 struct rq_flags rf;
4385 int ret;
4386
4387 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4388
4389 if (__task_needs_rq_lock(p))
4390 rq = __task_rq_lock(p, &rf);
4391
4392 /*
4393 * At this point the task is pinned; either:
4394 * - blocked and we're holding off wakeups (pi->lock)
4395 * - woken, and we're holding off enqueue (rq->lock)
4396 * - queued, and we're holding off schedule (rq->lock)
4397 * - running, and we're holding off de-schedule (rq->lock)
4398 *
4399 * The called function (@func) can use: task_curr(), p->on_rq and
4400 * p->__state to differentiate between these states.
4401 */
4402 ret = func(p, arg);
4403
4404 if (rq)
4405 rq_unlock(rq, &rf);
4406
4407 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4408 return ret;
4409}
4410
4411/**
4412 * cpu_curr_snapshot - Return a snapshot of the currently running task
4413 * @cpu: The CPU on which to snapshot the task.
4414 *
4415 * Returns the task_struct pointer of the task "currently" running on
4416 * the specified CPU.
4417 *
4418 * If the specified CPU was offline, the return value is whatever it
4419 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4420 * task, but there is no guarantee. Callers wishing a useful return
4421 * value must take some action to ensure that the specified CPU remains
4422 * online throughout.
4423 *
4424 * This function executes full memory barriers before and after fetching
4425 * the pointer, which permits the caller to confine this function's fetch
4426 * with respect to the caller's accesses to other shared variables.
4427 */
4428struct task_struct *cpu_curr_snapshot(int cpu)
4429{
4430 struct rq *rq = cpu_rq(cpu);
4431 struct task_struct *t;
4432 struct rq_flags rf;
4433
4434 rq_lock_irqsave(rq, &rf);
4435 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4436 t = rcu_dereference(cpu_curr(cpu));
4437 rq_unlock_irqrestore(rq, &rf);
4438 smp_mb(); /* Pairing determined by caller's synchronization design. */
4439
4440 return t;
4441}
4442
4443/**
4444 * wake_up_process - Wake up a specific process
4445 * @p: The process to be woken up.
4446 *
4447 * Attempt to wake up the nominated process and move it to the set of runnable
4448 * processes.
4449 *
4450 * Return: 1 if the process was woken up, 0 if it was already running.
4451 *
4452 * This function executes a full memory barrier before accessing the task state.
4453 */
4454int wake_up_process(struct task_struct *p)
4455{
4456 return try_to_wake_up(p, TASK_NORMAL, 0);
4457}
4458EXPORT_SYMBOL(wake_up_process);
4459
4460int wake_up_state(struct task_struct *p, unsigned int state)
4461{
4462 return try_to_wake_up(p, state, 0);
4463}
4464
4465/*
4466 * Perform scheduler related setup for a newly forked process p.
4467 * p is forked by current.
4468 *
4469 * __sched_fork() is basic setup which is also used by sched_init() to
4470 * initialize the boot CPU's idle task.
4471 */
4472static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4473{
4474 p->on_rq = 0;
4475
4476 p->se.on_rq = 0;
4477 p->se.exec_start = 0;
4478 p->se.sum_exec_runtime = 0;
4479 p->se.prev_sum_exec_runtime = 0;
4480 p->se.nr_migrations = 0;
4481 p->se.vruntime = 0;
4482 p->se.vlag = 0;
4483 INIT_LIST_HEAD(&p->se.group_node);
4484
4485 /* A delayed task cannot be in clone(). */
4486 SCHED_WARN_ON(p->se.sched_delayed);
4487
4488#ifdef CONFIG_FAIR_GROUP_SCHED
4489 p->se.cfs_rq = NULL;
4490#endif
4491
4492#ifdef CONFIG_SCHEDSTATS
4493 /* Even if schedstat is disabled, there should not be garbage */
4494 memset(&p->stats, 0, sizeof(p->stats));
4495#endif
4496
4497 init_dl_entity(&p->dl);
4498
4499 INIT_LIST_HEAD(&p->rt.run_list);
4500 p->rt.timeout = 0;
4501 p->rt.time_slice = sched_rr_timeslice;
4502 p->rt.on_rq = 0;
4503 p->rt.on_list = 0;
4504
4505#ifdef CONFIG_SCHED_CLASS_EXT
4506 init_scx_entity(&p->scx);
4507#endif
4508
4509#ifdef CONFIG_PREEMPT_NOTIFIERS
4510 INIT_HLIST_HEAD(&p->preempt_notifiers);
4511#endif
4512
4513#ifdef CONFIG_COMPACTION
4514 p->capture_control = NULL;
4515#endif
4516 init_numa_balancing(clone_flags, p);
4517#ifdef CONFIG_SMP
4518 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4519 p->migration_pending = NULL;
4520#endif
4521 init_sched_mm_cid(p);
4522}
4523
4524DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4525
4526#ifdef CONFIG_NUMA_BALANCING
4527
4528int sysctl_numa_balancing_mode;
4529
4530static void __set_numabalancing_state(bool enabled)
4531{
4532 if (enabled)
4533 static_branch_enable(&sched_numa_balancing);
4534 else
4535 static_branch_disable(&sched_numa_balancing);
4536}
4537
4538void set_numabalancing_state(bool enabled)
4539{
4540 if (enabled)
4541 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4542 else
4543 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4544 __set_numabalancing_state(enabled);
4545}
4546
4547#ifdef CONFIG_PROC_SYSCTL
4548static void reset_memory_tiering(void)
4549{
4550 struct pglist_data *pgdat;
4551
4552 for_each_online_pgdat(pgdat) {
4553 pgdat->nbp_threshold = 0;
4554 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4555 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4556 }
4557}
4558
4559static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4560 void *buffer, size_t *lenp, loff_t *ppos)
4561{
4562 struct ctl_table t;
4563 int err;
4564 int state = sysctl_numa_balancing_mode;
4565
4566 if (write && !capable(CAP_SYS_ADMIN))
4567 return -EPERM;
4568
4569 t = *table;
4570 t.data = &state;
4571 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4572 if (err < 0)
4573 return err;
4574 if (write) {
4575 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4576 (state & NUMA_BALANCING_MEMORY_TIERING))
4577 reset_memory_tiering();
4578 sysctl_numa_balancing_mode = state;
4579 __set_numabalancing_state(state);
4580 }
4581 return err;
4582}
4583#endif
4584#endif
4585
4586#ifdef CONFIG_SCHEDSTATS
4587
4588DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4589
4590static void set_schedstats(bool enabled)
4591{
4592 if (enabled)
4593 static_branch_enable(&sched_schedstats);
4594 else
4595 static_branch_disable(&sched_schedstats);
4596}
4597
4598void force_schedstat_enabled(void)
4599{
4600 if (!schedstat_enabled()) {
4601 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4602 static_branch_enable(&sched_schedstats);
4603 }
4604}
4605
4606static int __init setup_schedstats(char *str)
4607{
4608 int ret = 0;
4609 if (!str)
4610 goto out;
4611
4612 if (!strcmp(str, "enable")) {
4613 set_schedstats(true);
4614 ret = 1;
4615 } else if (!strcmp(str, "disable")) {
4616 set_schedstats(false);
4617 ret = 1;
4618 }
4619out:
4620 if (!ret)
4621 pr_warn("Unable to parse schedstats=\n");
4622
4623 return ret;
4624}
4625__setup("schedstats=", setup_schedstats);
4626
4627#ifdef CONFIG_PROC_SYSCTL
4628static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4629 size_t *lenp, loff_t *ppos)
4630{
4631 struct ctl_table t;
4632 int err;
4633 int state = static_branch_likely(&sched_schedstats);
4634
4635 if (write && !capable(CAP_SYS_ADMIN))
4636 return -EPERM;
4637
4638 t = *table;
4639 t.data = &state;
4640 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4641 if (err < 0)
4642 return err;
4643 if (write)
4644 set_schedstats(state);
4645 return err;
4646}
4647#endif /* CONFIG_PROC_SYSCTL */
4648#endif /* CONFIG_SCHEDSTATS */
4649
4650#ifdef CONFIG_SYSCTL
4651static struct ctl_table sched_core_sysctls[] = {
4652#ifdef CONFIG_SCHEDSTATS
4653 {
4654 .procname = "sched_schedstats",
4655 .data = NULL,
4656 .maxlen = sizeof(unsigned int),
4657 .mode = 0644,
4658 .proc_handler = sysctl_schedstats,
4659 .extra1 = SYSCTL_ZERO,
4660 .extra2 = SYSCTL_ONE,
4661 },
4662#endif /* CONFIG_SCHEDSTATS */
4663#ifdef CONFIG_UCLAMP_TASK
4664 {
4665 .procname = "sched_util_clamp_min",
4666 .data = &sysctl_sched_uclamp_util_min,
4667 .maxlen = sizeof(unsigned int),
4668 .mode = 0644,
4669 .proc_handler = sysctl_sched_uclamp_handler,
4670 },
4671 {
4672 .procname = "sched_util_clamp_max",
4673 .data = &sysctl_sched_uclamp_util_max,
4674 .maxlen = sizeof(unsigned int),
4675 .mode = 0644,
4676 .proc_handler = sysctl_sched_uclamp_handler,
4677 },
4678 {
4679 .procname = "sched_util_clamp_min_rt_default",
4680 .data = &sysctl_sched_uclamp_util_min_rt_default,
4681 .maxlen = sizeof(unsigned int),
4682 .mode = 0644,
4683 .proc_handler = sysctl_sched_uclamp_handler,
4684 },
4685#endif /* CONFIG_UCLAMP_TASK */
4686#ifdef CONFIG_NUMA_BALANCING
4687 {
4688 .procname = "numa_balancing",
4689 .data = NULL, /* filled in by handler */
4690 .maxlen = sizeof(unsigned int),
4691 .mode = 0644,
4692 .proc_handler = sysctl_numa_balancing,
4693 .extra1 = SYSCTL_ZERO,
4694 .extra2 = SYSCTL_FOUR,
4695 },
4696#endif /* CONFIG_NUMA_BALANCING */
4697};
4698static int __init sched_core_sysctl_init(void)
4699{
4700 register_sysctl_init("kernel", sched_core_sysctls);
4701 return 0;
4702}
4703late_initcall(sched_core_sysctl_init);
4704#endif /* CONFIG_SYSCTL */
4705
4706/*
4707 * fork()/clone()-time setup:
4708 */
4709int sched_fork(unsigned long clone_flags, struct task_struct *p)
4710{
4711 __sched_fork(clone_flags, p);
4712 /*
4713 * We mark the process as NEW here. This guarantees that
4714 * nobody will actually run it, and a signal or other external
4715 * event cannot wake it up and insert it on the runqueue either.
4716 */
4717 p->__state = TASK_NEW;
4718
4719 /*
4720 * Make sure we do not leak PI boosting priority to the child.
4721 */
4722 p->prio = current->normal_prio;
4723
4724 uclamp_fork(p);
4725
4726 /*
4727 * Revert to default priority/policy on fork if requested.
4728 */
4729 if (unlikely(p->sched_reset_on_fork)) {
4730 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4731 p->policy = SCHED_NORMAL;
4732 p->static_prio = NICE_TO_PRIO(0);
4733 p->rt_priority = 0;
4734 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4735 p->static_prio = NICE_TO_PRIO(0);
4736
4737 p->prio = p->normal_prio = p->static_prio;
4738 set_load_weight(p, false);
4739 p->se.custom_slice = 0;
4740 p->se.slice = sysctl_sched_base_slice;
4741
4742 /*
4743 * We don't need the reset flag anymore after the fork. It has
4744 * fulfilled its duty:
4745 */
4746 p->sched_reset_on_fork = 0;
4747 }
4748
4749 if (dl_prio(p->prio))
4750 return -EAGAIN;
4751
4752 scx_pre_fork(p);
4753
4754 if (rt_prio(p->prio)) {
4755 p->sched_class = &rt_sched_class;
4756#ifdef CONFIG_SCHED_CLASS_EXT
4757 } else if (task_should_scx(p->policy)) {
4758 p->sched_class = &ext_sched_class;
4759#endif
4760 } else {
4761 p->sched_class = &fair_sched_class;
4762 }
4763
4764 init_entity_runnable_average(&p->se);
4765
4766
4767#ifdef CONFIG_SCHED_INFO
4768 if (likely(sched_info_on()))
4769 memset(&p->sched_info, 0, sizeof(p->sched_info));
4770#endif
4771#if defined(CONFIG_SMP)
4772 p->on_cpu = 0;
4773#endif
4774 init_task_preempt_count(p);
4775#ifdef CONFIG_SMP
4776 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4777 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4778#endif
4779 return 0;
4780}
4781
4782int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4783{
4784 unsigned long flags;
4785
4786 /*
4787 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4788 * required yet, but lockdep gets upset if rules are violated.
4789 */
4790 raw_spin_lock_irqsave(&p->pi_lock, flags);
4791#ifdef CONFIG_CGROUP_SCHED
4792 if (1) {
4793 struct task_group *tg;
4794 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4795 struct task_group, css);
4796 tg = autogroup_task_group(p, tg);
4797 p->sched_task_group = tg;
4798 }
4799#endif
4800 rseq_migrate(p);
4801 /*
4802 * We're setting the CPU for the first time, we don't migrate,
4803 * so use __set_task_cpu().
4804 */
4805 __set_task_cpu(p, smp_processor_id());
4806 if (p->sched_class->task_fork)
4807 p->sched_class->task_fork(p);
4808 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4809
4810 return scx_fork(p);
4811}
4812
4813void sched_cancel_fork(struct task_struct *p)
4814{
4815 scx_cancel_fork(p);
4816}
4817
4818void sched_post_fork(struct task_struct *p)
4819{
4820 uclamp_post_fork(p);
4821 scx_post_fork(p);
4822}
4823
4824unsigned long to_ratio(u64 period, u64 runtime)
4825{
4826 if (runtime == RUNTIME_INF)
4827 return BW_UNIT;
4828
4829 /*
4830 * Doing this here saves a lot of checks in all
4831 * the calling paths, and returning zero seems
4832 * safe for them anyway.
4833 */
4834 if (period == 0)
4835 return 0;
4836
4837 return div64_u64(runtime << BW_SHIFT, period);
4838}
4839
4840/*
4841 * wake_up_new_task - wake up a newly created task for the first time.
4842 *
4843 * This function will do some initial scheduler statistics housekeeping
4844 * that must be done for every newly created context, then puts the task
4845 * on the runqueue and wakes it.
4846 */
4847void wake_up_new_task(struct task_struct *p)
4848{
4849 struct rq_flags rf;
4850 struct rq *rq;
4851 int wake_flags = WF_FORK;
4852
4853 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4854 WRITE_ONCE(p->__state, TASK_RUNNING);
4855#ifdef CONFIG_SMP
4856 /*
4857 * Fork balancing, do it here and not earlier because:
4858 * - cpus_ptr can change in the fork path
4859 * - any previously selected CPU might disappear through hotplug
4860 *
4861 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4862 * as we're not fully set-up yet.
4863 */
4864 p->recent_used_cpu = task_cpu(p);
4865 rseq_migrate(p);
4866 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4867#endif
4868 rq = __task_rq_lock(p, &rf);
4869 update_rq_clock(rq);
4870 post_init_entity_util_avg(p);
4871
4872 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4873 trace_sched_wakeup_new(p);
4874 wakeup_preempt(rq, p, wake_flags);
4875#ifdef CONFIG_SMP
4876 if (p->sched_class->task_woken) {
4877 /*
4878 * Nothing relies on rq->lock after this, so it's fine to
4879 * drop it.
4880 */
4881 rq_unpin_lock(rq, &rf);
4882 p->sched_class->task_woken(rq, p);
4883 rq_repin_lock(rq, &rf);
4884 }
4885#endif
4886 task_rq_unlock(rq, p, &rf);
4887}
4888
4889#ifdef CONFIG_PREEMPT_NOTIFIERS
4890
4891static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4892
4893void preempt_notifier_inc(void)
4894{
4895 static_branch_inc(&preempt_notifier_key);
4896}
4897EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4898
4899void preempt_notifier_dec(void)
4900{
4901 static_branch_dec(&preempt_notifier_key);
4902}
4903EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4904
4905/**
4906 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4907 * @notifier: notifier struct to register
4908 */
4909void preempt_notifier_register(struct preempt_notifier *notifier)
4910{
4911 if (!static_branch_unlikely(&preempt_notifier_key))
4912 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4913
4914 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4915}
4916EXPORT_SYMBOL_GPL(preempt_notifier_register);
4917
4918/**
4919 * preempt_notifier_unregister - no longer interested in preemption notifications
4920 * @notifier: notifier struct to unregister
4921 *
4922 * This is *not* safe to call from within a preemption notifier.
4923 */
4924void preempt_notifier_unregister(struct preempt_notifier *notifier)
4925{
4926 hlist_del(¬ifier->link);
4927}
4928EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4929
4930static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4931{
4932 struct preempt_notifier *notifier;
4933
4934 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4935 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4936}
4937
4938static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4939{
4940 if (static_branch_unlikely(&preempt_notifier_key))
4941 __fire_sched_in_preempt_notifiers(curr);
4942}
4943
4944static void
4945__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4946 struct task_struct *next)
4947{
4948 struct preempt_notifier *notifier;
4949
4950 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4951 notifier->ops->sched_out(notifier, next);
4952}
4953
4954static __always_inline void
4955fire_sched_out_preempt_notifiers(struct task_struct *curr,
4956 struct task_struct *next)
4957{
4958 if (static_branch_unlikely(&preempt_notifier_key))
4959 __fire_sched_out_preempt_notifiers(curr, next);
4960}
4961
4962#else /* !CONFIG_PREEMPT_NOTIFIERS */
4963
4964static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4965{
4966}
4967
4968static inline void
4969fire_sched_out_preempt_notifiers(struct task_struct *curr,
4970 struct task_struct *next)
4971{
4972}
4973
4974#endif /* CONFIG_PREEMPT_NOTIFIERS */
4975
4976static inline void prepare_task(struct task_struct *next)
4977{
4978#ifdef CONFIG_SMP
4979 /*
4980 * Claim the task as running, we do this before switching to it
4981 * such that any running task will have this set.
4982 *
4983 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4984 * its ordering comment.
4985 */
4986 WRITE_ONCE(next->on_cpu, 1);
4987#endif
4988}
4989
4990static inline void finish_task(struct task_struct *prev)
4991{
4992#ifdef CONFIG_SMP
4993 /*
4994 * This must be the very last reference to @prev from this CPU. After
4995 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4996 * must ensure this doesn't happen until the switch is completely
4997 * finished.
4998 *
4999 * In particular, the load of prev->state in finish_task_switch() must
5000 * happen before this.
5001 *
5002 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5003 */
5004 smp_store_release(&prev->on_cpu, 0);
5005#endif
5006}
5007
5008#ifdef CONFIG_SMP
5009
5010static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5011{
5012 void (*func)(struct rq *rq);
5013 struct balance_callback *next;
5014
5015 lockdep_assert_rq_held(rq);
5016
5017 while (head) {
5018 func = (void (*)(struct rq *))head->func;
5019 next = head->next;
5020 head->next = NULL;
5021 head = next;
5022
5023 func(rq);
5024 }
5025}
5026
5027static void balance_push(struct rq *rq);
5028
5029/*
5030 * balance_push_callback is a right abuse of the callback interface and plays
5031 * by significantly different rules.
5032 *
5033 * Where the normal balance_callback's purpose is to be ran in the same context
5034 * that queued it (only later, when it's safe to drop rq->lock again),
5035 * balance_push_callback is specifically targeted at __schedule().
5036 *
5037 * This abuse is tolerated because it places all the unlikely/odd cases behind
5038 * a single test, namely: rq->balance_callback == NULL.
5039 */
5040struct balance_callback balance_push_callback = {
5041 .next = NULL,
5042 .func = balance_push,
5043};
5044
5045static inline struct balance_callback *
5046__splice_balance_callbacks(struct rq *rq, bool split)
5047{
5048 struct balance_callback *head = rq->balance_callback;
5049
5050 if (likely(!head))
5051 return NULL;
5052
5053 lockdep_assert_rq_held(rq);
5054 /*
5055 * Must not take balance_push_callback off the list when
5056 * splice_balance_callbacks() and balance_callbacks() are not
5057 * in the same rq->lock section.
5058 *
5059 * In that case it would be possible for __schedule() to interleave
5060 * and observe the list empty.
5061 */
5062 if (split && head == &balance_push_callback)
5063 head = NULL;
5064 else
5065 rq->balance_callback = NULL;
5066
5067 return head;
5068}
5069
5070struct balance_callback *splice_balance_callbacks(struct rq *rq)
5071{
5072 return __splice_balance_callbacks(rq, true);
5073}
5074
5075static void __balance_callbacks(struct rq *rq)
5076{
5077 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5078}
5079
5080void balance_callbacks(struct rq *rq, struct balance_callback *head)
5081{
5082 unsigned long flags;
5083
5084 if (unlikely(head)) {
5085 raw_spin_rq_lock_irqsave(rq, flags);
5086 do_balance_callbacks(rq, head);
5087 raw_spin_rq_unlock_irqrestore(rq, flags);
5088 }
5089}
5090
5091#else
5092
5093static inline void __balance_callbacks(struct rq *rq)
5094{
5095}
5096
5097#endif
5098
5099static inline void
5100prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5101{
5102 /*
5103 * Since the runqueue lock will be released by the next
5104 * task (which is an invalid locking op but in the case
5105 * of the scheduler it's an obvious special-case), so we
5106 * do an early lockdep release here:
5107 */
5108 rq_unpin_lock(rq, rf);
5109 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5110#ifdef CONFIG_DEBUG_SPINLOCK
5111 /* this is a valid case when another task releases the spinlock */
5112 rq_lockp(rq)->owner = next;
5113#endif
5114}
5115
5116static inline void finish_lock_switch(struct rq *rq)
5117{
5118 /*
5119 * If we are tracking spinlock dependencies then we have to
5120 * fix up the runqueue lock - which gets 'carried over' from
5121 * prev into current:
5122 */
5123 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5124 __balance_callbacks(rq);
5125 raw_spin_rq_unlock_irq(rq);
5126}
5127
5128/*
5129 * NOP if the arch has not defined these:
5130 */
5131
5132#ifndef prepare_arch_switch
5133# define prepare_arch_switch(next) do { } while (0)
5134#endif
5135
5136#ifndef finish_arch_post_lock_switch
5137# define finish_arch_post_lock_switch() do { } while (0)
5138#endif
5139
5140static inline void kmap_local_sched_out(void)
5141{
5142#ifdef CONFIG_KMAP_LOCAL
5143 if (unlikely(current->kmap_ctrl.idx))
5144 __kmap_local_sched_out();
5145#endif
5146}
5147
5148static inline void kmap_local_sched_in(void)
5149{
5150#ifdef CONFIG_KMAP_LOCAL
5151 if (unlikely(current->kmap_ctrl.idx))
5152 __kmap_local_sched_in();
5153#endif
5154}
5155
5156/**
5157 * prepare_task_switch - prepare to switch tasks
5158 * @rq: the runqueue preparing to switch
5159 * @prev: the current task that is being switched out
5160 * @next: the task we are going to switch to.
5161 *
5162 * This is called with the rq lock held and interrupts off. It must
5163 * be paired with a subsequent finish_task_switch after the context
5164 * switch.
5165 *
5166 * prepare_task_switch sets up locking and calls architecture specific
5167 * hooks.
5168 */
5169static inline void
5170prepare_task_switch(struct rq *rq, struct task_struct *prev,
5171 struct task_struct *next)
5172{
5173 kcov_prepare_switch(prev);
5174 sched_info_switch(rq, prev, next);
5175 perf_event_task_sched_out(prev, next);
5176 rseq_preempt(prev);
5177 fire_sched_out_preempt_notifiers(prev, next);
5178 kmap_local_sched_out();
5179 prepare_task(next);
5180 prepare_arch_switch(next);
5181}
5182
5183/**
5184 * finish_task_switch - clean up after a task-switch
5185 * @prev: the thread we just switched away from.
5186 *
5187 * finish_task_switch must be called after the context switch, paired
5188 * with a prepare_task_switch call before the context switch.
5189 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5190 * and do any other architecture-specific cleanup actions.
5191 *
5192 * Note that we may have delayed dropping an mm in context_switch(). If
5193 * so, we finish that here outside of the runqueue lock. (Doing it
5194 * with the lock held can cause deadlocks; see schedule() for
5195 * details.)
5196 *
5197 * The context switch have flipped the stack from under us and restored the
5198 * local variables which were saved when this task called schedule() in the
5199 * past. 'prev == current' is still correct but we need to recalculate this_rq
5200 * because prev may have moved to another CPU.
5201 */
5202static struct rq *finish_task_switch(struct task_struct *prev)
5203 __releases(rq->lock)
5204{
5205 struct rq *rq = this_rq();
5206 struct mm_struct *mm = rq->prev_mm;
5207 unsigned int prev_state;
5208
5209 /*
5210 * The previous task will have left us with a preempt_count of 2
5211 * because it left us after:
5212 *
5213 * schedule()
5214 * preempt_disable(); // 1
5215 * __schedule()
5216 * raw_spin_lock_irq(&rq->lock) // 2
5217 *
5218 * Also, see FORK_PREEMPT_COUNT.
5219 */
5220 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5221 "corrupted preempt_count: %s/%d/0x%x\n",
5222 current->comm, current->pid, preempt_count()))
5223 preempt_count_set(FORK_PREEMPT_COUNT);
5224
5225 rq->prev_mm = NULL;
5226
5227 /*
5228 * A task struct has one reference for the use as "current".
5229 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5230 * schedule one last time. The schedule call will never return, and
5231 * the scheduled task must drop that reference.
5232 *
5233 * We must observe prev->state before clearing prev->on_cpu (in
5234 * finish_task), otherwise a concurrent wakeup can get prev
5235 * running on another CPU and we could rave with its RUNNING -> DEAD
5236 * transition, resulting in a double drop.
5237 */
5238 prev_state = READ_ONCE(prev->__state);
5239 vtime_task_switch(prev);
5240 perf_event_task_sched_in(prev, current);
5241 finish_task(prev);
5242 tick_nohz_task_switch();
5243 finish_lock_switch(rq);
5244 finish_arch_post_lock_switch();
5245 kcov_finish_switch(current);
5246 /*
5247 * kmap_local_sched_out() is invoked with rq::lock held and
5248 * interrupts disabled. There is no requirement for that, but the
5249 * sched out code does not have an interrupt enabled section.
5250 * Restoring the maps on sched in does not require interrupts being
5251 * disabled either.
5252 */
5253 kmap_local_sched_in();
5254
5255 fire_sched_in_preempt_notifiers(current);
5256 /*
5257 * When switching through a kernel thread, the loop in
5258 * membarrier_{private,global}_expedited() may have observed that
5259 * kernel thread and not issued an IPI. It is therefore possible to
5260 * schedule between user->kernel->user threads without passing though
5261 * switch_mm(). Membarrier requires a barrier after storing to
5262 * rq->curr, before returning to userspace, so provide them here:
5263 *
5264 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5265 * provided by mmdrop_lazy_tlb(),
5266 * - a sync_core for SYNC_CORE.
5267 */
5268 if (mm) {
5269 membarrier_mm_sync_core_before_usermode(mm);
5270 mmdrop_lazy_tlb_sched(mm);
5271 }
5272
5273 if (unlikely(prev_state == TASK_DEAD)) {
5274 if (prev->sched_class->task_dead)
5275 prev->sched_class->task_dead(prev);
5276
5277 /* Task is done with its stack. */
5278 put_task_stack(prev);
5279
5280 put_task_struct_rcu_user(prev);
5281 }
5282
5283 return rq;
5284}
5285
5286/**
5287 * schedule_tail - first thing a freshly forked thread must call.
5288 * @prev: the thread we just switched away from.
5289 */
5290asmlinkage __visible void schedule_tail(struct task_struct *prev)
5291 __releases(rq->lock)
5292{
5293 /*
5294 * New tasks start with FORK_PREEMPT_COUNT, see there and
5295 * finish_task_switch() for details.
5296 *
5297 * finish_task_switch() will drop rq->lock() and lower preempt_count
5298 * and the preempt_enable() will end up enabling preemption (on
5299 * PREEMPT_COUNT kernels).
5300 */
5301
5302 finish_task_switch(prev);
5303 preempt_enable();
5304
5305 if (current->set_child_tid)
5306 put_user(task_pid_vnr(current), current->set_child_tid);
5307
5308 calculate_sigpending();
5309}
5310
5311/*
5312 * context_switch - switch to the new MM and the new thread's register state.
5313 */
5314static __always_inline struct rq *
5315context_switch(struct rq *rq, struct task_struct *prev,
5316 struct task_struct *next, struct rq_flags *rf)
5317{
5318 prepare_task_switch(rq, prev, next);
5319
5320 /*
5321 * For paravirt, this is coupled with an exit in switch_to to
5322 * combine the page table reload and the switch backend into
5323 * one hypercall.
5324 */
5325 arch_start_context_switch(prev);
5326
5327 /*
5328 * kernel -> kernel lazy + transfer active
5329 * user -> kernel lazy + mmgrab_lazy_tlb() active
5330 *
5331 * kernel -> user switch + mmdrop_lazy_tlb() active
5332 * user -> user switch
5333 *
5334 * switch_mm_cid() needs to be updated if the barriers provided
5335 * by context_switch() are modified.
5336 */
5337 if (!next->mm) { // to kernel
5338 enter_lazy_tlb(prev->active_mm, next);
5339
5340 next->active_mm = prev->active_mm;
5341 if (prev->mm) // from user
5342 mmgrab_lazy_tlb(prev->active_mm);
5343 else
5344 prev->active_mm = NULL;
5345 } else { // to user
5346 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5347 /*
5348 * sys_membarrier() requires an smp_mb() between setting
5349 * rq->curr / membarrier_switch_mm() and returning to userspace.
5350 *
5351 * The below provides this either through switch_mm(), or in
5352 * case 'prev->active_mm == next->mm' through
5353 * finish_task_switch()'s mmdrop().
5354 */
5355 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5356 lru_gen_use_mm(next->mm);
5357
5358 if (!prev->mm) { // from kernel
5359 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5360 rq->prev_mm = prev->active_mm;
5361 prev->active_mm = NULL;
5362 }
5363 }
5364
5365 /* switch_mm_cid() requires the memory barriers above. */
5366 switch_mm_cid(rq, prev, next);
5367
5368 prepare_lock_switch(rq, next, rf);
5369
5370 /* Here we just switch the register state and the stack. */
5371 switch_to(prev, next, prev);
5372 barrier();
5373
5374 return finish_task_switch(prev);
5375}
5376
5377/*
5378 * nr_running and nr_context_switches:
5379 *
5380 * externally visible scheduler statistics: current number of runnable
5381 * threads, total number of context switches performed since bootup.
5382 */
5383unsigned int nr_running(void)
5384{
5385 unsigned int i, sum = 0;
5386
5387 for_each_online_cpu(i)
5388 sum += cpu_rq(i)->nr_running;
5389
5390 return sum;
5391}
5392
5393/*
5394 * Check if only the current task is running on the CPU.
5395 *
5396 * Caution: this function does not check that the caller has disabled
5397 * preemption, thus the result might have a time-of-check-to-time-of-use
5398 * race. The caller is responsible to use it correctly, for example:
5399 *
5400 * - from a non-preemptible section (of course)
5401 *
5402 * - from a thread that is bound to a single CPU
5403 *
5404 * - in a loop with very short iterations (e.g. a polling loop)
5405 */
5406bool single_task_running(void)
5407{
5408 return raw_rq()->nr_running == 1;
5409}
5410EXPORT_SYMBOL(single_task_running);
5411
5412unsigned long long nr_context_switches_cpu(int cpu)
5413{
5414 return cpu_rq(cpu)->nr_switches;
5415}
5416
5417unsigned long long nr_context_switches(void)
5418{
5419 int i;
5420 unsigned long long sum = 0;
5421
5422 for_each_possible_cpu(i)
5423 sum += cpu_rq(i)->nr_switches;
5424
5425 return sum;
5426}
5427
5428/*
5429 * Consumers of these two interfaces, like for example the cpuidle menu
5430 * governor, are using nonsensical data. Preferring shallow idle state selection
5431 * for a CPU that has IO-wait which might not even end up running the task when
5432 * it does become runnable.
5433 */
5434
5435unsigned int nr_iowait_cpu(int cpu)
5436{
5437 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5438}
5439
5440/*
5441 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5442 *
5443 * The idea behind IO-wait account is to account the idle time that we could
5444 * have spend running if it were not for IO. That is, if we were to improve the
5445 * storage performance, we'd have a proportional reduction in IO-wait time.
5446 *
5447 * This all works nicely on UP, where, when a task blocks on IO, we account
5448 * idle time as IO-wait, because if the storage were faster, it could've been
5449 * running and we'd not be idle.
5450 *
5451 * This has been extended to SMP, by doing the same for each CPU. This however
5452 * is broken.
5453 *
5454 * Imagine for instance the case where two tasks block on one CPU, only the one
5455 * CPU will have IO-wait accounted, while the other has regular idle. Even
5456 * though, if the storage were faster, both could've ran at the same time,
5457 * utilising both CPUs.
5458 *
5459 * This means, that when looking globally, the current IO-wait accounting on
5460 * SMP is a lower bound, by reason of under accounting.
5461 *
5462 * Worse, since the numbers are provided per CPU, they are sometimes
5463 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5464 * associated with any one particular CPU, it can wake to another CPU than it
5465 * blocked on. This means the per CPU IO-wait number is meaningless.
5466 *
5467 * Task CPU affinities can make all that even more 'interesting'.
5468 */
5469
5470unsigned int nr_iowait(void)
5471{
5472 unsigned int i, sum = 0;
5473
5474 for_each_possible_cpu(i)
5475 sum += nr_iowait_cpu(i);
5476
5477 return sum;
5478}
5479
5480#ifdef CONFIG_SMP
5481
5482/*
5483 * sched_exec - execve() is a valuable balancing opportunity, because at
5484 * this point the task has the smallest effective memory and cache footprint.
5485 */
5486void sched_exec(void)
5487{
5488 struct task_struct *p = current;
5489 struct migration_arg arg;
5490 int dest_cpu;
5491
5492 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5493 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5494 if (dest_cpu == smp_processor_id())
5495 return;
5496
5497 if (unlikely(!cpu_active(dest_cpu)))
5498 return;
5499
5500 arg = (struct migration_arg){ p, dest_cpu };
5501 }
5502 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5503}
5504
5505#endif
5506
5507DEFINE_PER_CPU(struct kernel_stat, kstat);
5508DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5509
5510EXPORT_PER_CPU_SYMBOL(kstat);
5511EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5512
5513/*
5514 * The function fair_sched_class.update_curr accesses the struct curr
5515 * and its field curr->exec_start; when called from task_sched_runtime(),
5516 * we observe a high rate of cache misses in practice.
5517 * Prefetching this data results in improved performance.
5518 */
5519static inline void prefetch_curr_exec_start(struct task_struct *p)
5520{
5521#ifdef CONFIG_FAIR_GROUP_SCHED
5522 struct sched_entity *curr = p->se.cfs_rq->curr;
5523#else
5524 struct sched_entity *curr = task_rq(p)->cfs.curr;
5525#endif
5526 prefetch(curr);
5527 prefetch(&curr->exec_start);
5528}
5529
5530/*
5531 * Return accounted runtime for the task.
5532 * In case the task is currently running, return the runtime plus current's
5533 * pending runtime that have not been accounted yet.
5534 */
5535unsigned long long task_sched_runtime(struct task_struct *p)
5536{
5537 struct rq_flags rf;
5538 struct rq *rq;
5539 u64 ns;
5540
5541#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5542 /*
5543 * 64-bit doesn't need locks to atomically read a 64-bit value.
5544 * So we have a optimization chance when the task's delta_exec is 0.
5545 * Reading ->on_cpu is racy, but this is OK.
5546 *
5547 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5548 * If we race with it entering CPU, unaccounted time is 0. This is
5549 * indistinguishable from the read occurring a few cycles earlier.
5550 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5551 * been accounted, so we're correct here as well.
5552 */
5553 if (!p->on_cpu || !task_on_rq_queued(p))
5554 return p->se.sum_exec_runtime;
5555#endif
5556
5557 rq = task_rq_lock(p, &rf);
5558 /*
5559 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5560 * project cycles that may never be accounted to this
5561 * thread, breaking clock_gettime().
5562 */
5563 if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5564 prefetch_curr_exec_start(p);
5565 update_rq_clock(rq);
5566 p->sched_class->update_curr(rq);
5567 }
5568 ns = p->se.sum_exec_runtime;
5569 task_rq_unlock(rq, p, &rf);
5570
5571 return ns;
5572}
5573
5574#ifdef CONFIG_SCHED_DEBUG
5575static u64 cpu_resched_latency(struct rq *rq)
5576{
5577 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5578 u64 resched_latency, now = rq_clock(rq);
5579 static bool warned_once;
5580
5581 if (sysctl_resched_latency_warn_once && warned_once)
5582 return 0;
5583
5584 if (!need_resched() || !latency_warn_ms)
5585 return 0;
5586
5587 if (system_state == SYSTEM_BOOTING)
5588 return 0;
5589
5590 if (!rq->last_seen_need_resched_ns) {
5591 rq->last_seen_need_resched_ns = now;
5592 rq->ticks_without_resched = 0;
5593 return 0;
5594 }
5595
5596 rq->ticks_without_resched++;
5597 resched_latency = now - rq->last_seen_need_resched_ns;
5598 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5599 return 0;
5600
5601 warned_once = true;
5602
5603 return resched_latency;
5604}
5605
5606static int __init setup_resched_latency_warn_ms(char *str)
5607{
5608 long val;
5609
5610 if ((kstrtol(str, 0, &val))) {
5611 pr_warn("Unable to set resched_latency_warn_ms\n");
5612 return 1;
5613 }
5614
5615 sysctl_resched_latency_warn_ms = val;
5616 return 1;
5617}
5618__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5619#else
5620static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5621#endif /* CONFIG_SCHED_DEBUG */
5622
5623/*
5624 * This function gets called by the timer code, with HZ frequency.
5625 * We call it with interrupts disabled.
5626 */
5627void sched_tick(void)
5628{
5629 int cpu = smp_processor_id();
5630 struct rq *rq = cpu_rq(cpu);
5631 /* accounting goes to the donor task */
5632 struct task_struct *donor;
5633 struct rq_flags rf;
5634 unsigned long hw_pressure;
5635 u64 resched_latency;
5636
5637 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5638 arch_scale_freq_tick();
5639
5640 sched_clock_tick();
5641
5642 rq_lock(rq, &rf);
5643 donor = rq->donor;
5644
5645 psi_account_irqtime(rq, donor, NULL);
5646
5647 update_rq_clock(rq);
5648 hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5649 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5650
5651 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5652 resched_curr(rq);
5653
5654 donor->sched_class->task_tick(rq, donor, 0);
5655 if (sched_feat(LATENCY_WARN))
5656 resched_latency = cpu_resched_latency(rq);
5657 calc_global_load_tick(rq);
5658 sched_core_tick(rq);
5659 task_tick_mm_cid(rq, donor);
5660 scx_tick(rq);
5661
5662 rq_unlock(rq, &rf);
5663
5664 if (sched_feat(LATENCY_WARN) && resched_latency)
5665 resched_latency_warn(cpu, resched_latency);
5666
5667 perf_event_task_tick();
5668
5669 if (donor->flags & PF_WQ_WORKER)
5670 wq_worker_tick(donor);
5671
5672#ifdef CONFIG_SMP
5673 if (!scx_switched_all()) {
5674 rq->idle_balance = idle_cpu(cpu);
5675 sched_balance_trigger(rq);
5676 }
5677#endif
5678}
5679
5680#ifdef CONFIG_NO_HZ_FULL
5681
5682struct tick_work {
5683 int cpu;
5684 atomic_t state;
5685 struct delayed_work work;
5686};
5687/* Values for ->state, see diagram below. */
5688#define TICK_SCHED_REMOTE_OFFLINE 0
5689#define TICK_SCHED_REMOTE_OFFLINING 1
5690#define TICK_SCHED_REMOTE_RUNNING 2
5691
5692/*
5693 * State diagram for ->state:
5694 *
5695 *
5696 * TICK_SCHED_REMOTE_OFFLINE
5697 * | ^
5698 * | |
5699 * | | sched_tick_remote()
5700 * | |
5701 * | |
5702 * +--TICK_SCHED_REMOTE_OFFLINING
5703 * | ^
5704 * | |
5705 * sched_tick_start() | | sched_tick_stop()
5706 * | |
5707 * V |
5708 * TICK_SCHED_REMOTE_RUNNING
5709 *
5710 *
5711 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5712 * and sched_tick_start() are happy to leave the state in RUNNING.
5713 */
5714
5715static struct tick_work __percpu *tick_work_cpu;
5716
5717static void sched_tick_remote(struct work_struct *work)
5718{
5719 struct delayed_work *dwork = to_delayed_work(work);
5720 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5721 int cpu = twork->cpu;
5722 struct rq *rq = cpu_rq(cpu);
5723 int os;
5724
5725 /*
5726 * Handle the tick only if it appears the remote CPU is running in full
5727 * dynticks mode. The check is racy by nature, but missing a tick or
5728 * having one too much is no big deal because the scheduler tick updates
5729 * statistics and checks timeslices in a time-independent way, regardless
5730 * of when exactly it is running.
5731 */
5732 if (tick_nohz_tick_stopped_cpu(cpu)) {
5733 guard(rq_lock_irq)(rq);
5734 struct task_struct *curr = rq->curr;
5735
5736 if (cpu_online(cpu)) {
5737 /*
5738 * Since this is a remote tick for full dynticks mode,
5739 * we are always sure that there is no proxy (only a
5740 * single task is running).
5741 */
5742 SCHED_WARN_ON(rq->curr != rq->donor);
5743 update_rq_clock(rq);
5744
5745 if (!is_idle_task(curr)) {
5746 /*
5747 * Make sure the next tick runs within a
5748 * reasonable amount of time.
5749 */
5750 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5751 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5752 }
5753 curr->sched_class->task_tick(rq, curr, 0);
5754
5755 calc_load_nohz_remote(rq);
5756 }
5757 }
5758
5759 /*
5760 * Run the remote tick once per second (1Hz). This arbitrary
5761 * frequency is large enough to avoid overload but short enough
5762 * to keep scheduler internal stats reasonably up to date. But
5763 * first update state to reflect hotplug activity if required.
5764 */
5765 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5766 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5767 if (os == TICK_SCHED_REMOTE_RUNNING)
5768 queue_delayed_work(system_unbound_wq, dwork, HZ);
5769}
5770
5771static void sched_tick_start(int cpu)
5772{
5773 int os;
5774 struct tick_work *twork;
5775
5776 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5777 return;
5778
5779 WARN_ON_ONCE(!tick_work_cpu);
5780
5781 twork = per_cpu_ptr(tick_work_cpu, cpu);
5782 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5783 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5784 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5785 twork->cpu = cpu;
5786 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5787 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5788 }
5789}
5790
5791#ifdef CONFIG_HOTPLUG_CPU
5792static void sched_tick_stop(int cpu)
5793{
5794 struct tick_work *twork;
5795 int os;
5796
5797 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5798 return;
5799
5800 WARN_ON_ONCE(!tick_work_cpu);
5801
5802 twork = per_cpu_ptr(tick_work_cpu, cpu);
5803 /* There cannot be competing actions, but don't rely on stop-machine. */
5804 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5805 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5806 /* Don't cancel, as this would mess up the state machine. */
5807}
5808#endif /* CONFIG_HOTPLUG_CPU */
5809
5810int __init sched_tick_offload_init(void)
5811{
5812 tick_work_cpu = alloc_percpu(struct tick_work);
5813 BUG_ON(!tick_work_cpu);
5814 return 0;
5815}
5816
5817#else /* !CONFIG_NO_HZ_FULL */
5818static inline void sched_tick_start(int cpu) { }
5819static inline void sched_tick_stop(int cpu) { }
5820#endif
5821
5822#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5823 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5824/*
5825 * If the value passed in is equal to the current preempt count
5826 * then we just disabled preemption. Start timing the latency.
5827 */
5828static inline void preempt_latency_start(int val)
5829{
5830 if (preempt_count() == val) {
5831 unsigned long ip = get_lock_parent_ip();
5832#ifdef CONFIG_DEBUG_PREEMPT
5833 current->preempt_disable_ip = ip;
5834#endif
5835 trace_preempt_off(CALLER_ADDR0, ip);
5836 }
5837}
5838
5839void preempt_count_add(int val)
5840{
5841#ifdef CONFIG_DEBUG_PREEMPT
5842 /*
5843 * Underflow?
5844 */
5845 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5846 return;
5847#endif
5848 __preempt_count_add(val);
5849#ifdef CONFIG_DEBUG_PREEMPT
5850 /*
5851 * Spinlock count overflowing soon?
5852 */
5853 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5854 PREEMPT_MASK - 10);
5855#endif
5856 preempt_latency_start(val);
5857}
5858EXPORT_SYMBOL(preempt_count_add);
5859NOKPROBE_SYMBOL(preempt_count_add);
5860
5861/*
5862 * If the value passed in equals to the current preempt count
5863 * then we just enabled preemption. Stop timing the latency.
5864 */
5865static inline void preempt_latency_stop(int val)
5866{
5867 if (preempt_count() == val)
5868 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5869}
5870
5871void preempt_count_sub(int val)
5872{
5873#ifdef CONFIG_DEBUG_PREEMPT
5874 /*
5875 * Underflow?
5876 */
5877 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5878 return;
5879 /*
5880 * Is the spinlock portion underflowing?
5881 */
5882 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5883 !(preempt_count() & PREEMPT_MASK)))
5884 return;
5885#endif
5886
5887 preempt_latency_stop(val);
5888 __preempt_count_sub(val);
5889}
5890EXPORT_SYMBOL(preempt_count_sub);
5891NOKPROBE_SYMBOL(preempt_count_sub);
5892
5893#else
5894static inline void preempt_latency_start(int val) { }
5895static inline void preempt_latency_stop(int val) { }
5896#endif
5897
5898static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5899{
5900#ifdef CONFIG_DEBUG_PREEMPT
5901 return p->preempt_disable_ip;
5902#else
5903 return 0;
5904#endif
5905}
5906
5907/*
5908 * Print scheduling while atomic bug:
5909 */
5910static noinline void __schedule_bug(struct task_struct *prev)
5911{
5912 /* Save this before calling printk(), since that will clobber it */
5913 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5914
5915 if (oops_in_progress)
5916 return;
5917
5918 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5919 prev->comm, prev->pid, preempt_count());
5920
5921 debug_show_held_locks(prev);
5922 print_modules();
5923 if (irqs_disabled())
5924 print_irqtrace_events(prev);
5925 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5926 pr_err("Preemption disabled at:");
5927 print_ip_sym(KERN_ERR, preempt_disable_ip);
5928 }
5929 check_panic_on_warn("scheduling while atomic");
5930
5931 dump_stack();
5932 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5933}
5934
5935/*
5936 * Various schedule()-time debugging checks and statistics:
5937 */
5938static inline void schedule_debug(struct task_struct *prev, bool preempt)
5939{
5940#ifdef CONFIG_SCHED_STACK_END_CHECK
5941 if (task_stack_end_corrupted(prev))
5942 panic("corrupted stack end detected inside scheduler\n");
5943
5944 if (task_scs_end_corrupted(prev))
5945 panic("corrupted shadow stack detected inside scheduler\n");
5946#endif
5947
5948#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5949 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5950 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5951 prev->comm, prev->pid, prev->non_block_count);
5952 dump_stack();
5953 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5954 }
5955#endif
5956
5957 if (unlikely(in_atomic_preempt_off())) {
5958 __schedule_bug(prev);
5959 preempt_count_set(PREEMPT_DISABLED);
5960 }
5961 rcu_sleep_check();
5962 SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5963
5964 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5965
5966 schedstat_inc(this_rq()->sched_count);
5967}
5968
5969static void prev_balance(struct rq *rq, struct task_struct *prev,
5970 struct rq_flags *rf)
5971{
5972 const struct sched_class *start_class = prev->sched_class;
5973 const struct sched_class *class;
5974
5975#ifdef CONFIG_SCHED_CLASS_EXT
5976 /*
5977 * SCX requires a balance() call before every pick_task() including when
5978 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5979 * SCX instead. Also, set a flag to detect missing balance() call.
5980 */
5981 if (scx_enabled()) {
5982 rq->scx.flags |= SCX_RQ_BAL_PENDING;
5983 if (sched_class_above(&ext_sched_class, start_class))
5984 start_class = &ext_sched_class;
5985 }
5986#endif
5987
5988 /*
5989 * We must do the balancing pass before put_prev_task(), such
5990 * that when we release the rq->lock the task is in the same
5991 * state as before we took rq->lock.
5992 *
5993 * We can terminate the balance pass as soon as we know there is
5994 * a runnable task of @class priority or higher.
5995 */
5996 for_active_class_range(class, start_class, &idle_sched_class) {
5997 if (class->balance && class->balance(rq, prev, rf))
5998 break;
5999 }
6000}
6001
6002/*
6003 * Pick up the highest-prio task:
6004 */
6005static inline struct task_struct *
6006__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6007{
6008 const struct sched_class *class;
6009 struct task_struct *p;
6010
6011 rq->dl_server = NULL;
6012
6013 if (scx_enabled())
6014 goto restart;
6015
6016 /*
6017 * Optimization: we know that if all tasks are in the fair class we can
6018 * call that function directly, but only if the @prev task wasn't of a
6019 * higher scheduling class, because otherwise those lose the
6020 * opportunity to pull in more work from other CPUs.
6021 */
6022 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6023 rq->nr_running == rq->cfs.h_nr_running)) {
6024
6025 p = pick_next_task_fair(rq, prev, rf);
6026 if (unlikely(p == RETRY_TASK))
6027 goto restart;
6028
6029 /* Assume the next prioritized class is idle_sched_class */
6030 if (!p) {
6031 p = pick_task_idle(rq);
6032 put_prev_set_next_task(rq, prev, p);
6033 }
6034
6035 return p;
6036 }
6037
6038restart:
6039 prev_balance(rq, prev, rf);
6040
6041 for_each_active_class(class) {
6042 if (class->pick_next_task) {
6043 p = class->pick_next_task(rq, prev);
6044 if (p)
6045 return p;
6046 } else {
6047 p = class->pick_task(rq);
6048 if (p) {
6049 put_prev_set_next_task(rq, prev, p);
6050 return p;
6051 }
6052 }
6053 }
6054
6055 BUG(); /* The idle class should always have a runnable task. */
6056}
6057
6058#ifdef CONFIG_SCHED_CORE
6059static inline bool is_task_rq_idle(struct task_struct *t)
6060{
6061 return (task_rq(t)->idle == t);
6062}
6063
6064static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6065{
6066 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6067}
6068
6069static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6070{
6071 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6072 return true;
6073
6074 return a->core_cookie == b->core_cookie;
6075}
6076
6077static inline struct task_struct *pick_task(struct rq *rq)
6078{
6079 const struct sched_class *class;
6080 struct task_struct *p;
6081
6082 rq->dl_server = NULL;
6083
6084 for_each_active_class(class) {
6085 p = class->pick_task(rq);
6086 if (p)
6087 return p;
6088 }
6089
6090 BUG(); /* The idle class should always have a runnable task. */
6091}
6092
6093extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6094
6095static void queue_core_balance(struct rq *rq);
6096
6097static struct task_struct *
6098pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6099{
6100 struct task_struct *next, *p, *max = NULL;
6101 const struct cpumask *smt_mask;
6102 bool fi_before = false;
6103 bool core_clock_updated = (rq == rq->core);
6104 unsigned long cookie;
6105 int i, cpu, occ = 0;
6106 struct rq *rq_i;
6107 bool need_sync;
6108
6109 if (!sched_core_enabled(rq))
6110 return __pick_next_task(rq, prev, rf);
6111
6112 cpu = cpu_of(rq);
6113
6114 /* Stopper task is switching into idle, no need core-wide selection. */
6115 if (cpu_is_offline(cpu)) {
6116 /*
6117 * Reset core_pick so that we don't enter the fastpath when
6118 * coming online. core_pick would already be migrated to
6119 * another cpu during offline.
6120 */
6121 rq->core_pick = NULL;
6122 rq->core_dl_server = NULL;
6123 return __pick_next_task(rq, prev, rf);
6124 }
6125
6126 /*
6127 * If there were no {en,de}queues since we picked (IOW, the task
6128 * pointers are all still valid), and we haven't scheduled the last
6129 * pick yet, do so now.
6130 *
6131 * rq->core_pick can be NULL if no selection was made for a CPU because
6132 * it was either offline or went offline during a sibling's core-wide
6133 * selection. In this case, do a core-wide selection.
6134 */
6135 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6136 rq->core->core_pick_seq != rq->core_sched_seq &&
6137 rq->core_pick) {
6138 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6139
6140 next = rq->core_pick;
6141 rq->dl_server = rq->core_dl_server;
6142 rq->core_pick = NULL;
6143 rq->core_dl_server = NULL;
6144 goto out_set_next;
6145 }
6146
6147 prev_balance(rq, prev, rf);
6148
6149 smt_mask = cpu_smt_mask(cpu);
6150 need_sync = !!rq->core->core_cookie;
6151
6152 /* reset state */
6153 rq->core->core_cookie = 0UL;
6154 if (rq->core->core_forceidle_count) {
6155 if (!core_clock_updated) {
6156 update_rq_clock(rq->core);
6157 core_clock_updated = true;
6158 }
6159 sched_core_account_forceidle(rq);
6160 /* reset after accounting force idle */
6161 rq->core->core_forceidle_start = 0;
6162 rq->core->core_forceidle_count = 0;
6163 rq->core->core_forceidle_occupation = 0;
6164 need_sync = true;
6165 fi_before = true;
6166 }
6167
6168 /*
6169 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6170 *
6171 * @task_seq guards the task state ({en,de}queues)
6172 * @pick_seq is the @task_seq we did a selection on
6173 * @sched_seq is the @pick_seq we scheduled
6174 *
6175 * However, preemptions can cause multiple picks on the same task set.
6176 * 'Fix' this by also increasing @task_seq for every pick.
6177 */
6178 rq->core->core_task_seq++;
6179
6180 /*
6181 * Optimize for common case where this CPU has no cookies
6182 * and there are no cookied tasks running on siblings.
6183 */
6184 if (!need_sync) {
6185 next = pick_task(rq);
6186 if (!next->core_cookie) {
6187 rq->core_pick = NULL;
6188 rq->core_dl_server = NULL;
6189 /*
6190 * For robustness, update the min_vruntime_fi for
6191 * unconstrained picks as well.
6192 */
6193 WARN_ON_ONCE(fi_before);
6194 task_vruntime_update(rq, next, false);
6195 goto out_set_next;
6196 }
6197 }
6198
6199 /*
6200 * For each thread: do the regular task pick and find the max prio task
6201 * amongst them.
6202 *
6203 * Tie-break prio towards the current CPU
6204 */
6205 for_each_cpu_wrap(i, smt_mask, cpu) {
6206 rq_i = cpu_rq(i);
6207
6208 /*
6209 * Current cpu always has its clock updated on entrance to
6210 * pick_next_task(). If the current cpu is not the core,
6211 * the core may also have been updated above.
6212 */
6213 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6214 update_rq_clock(rq_i);
6215
6216 rq_i->core_pick = p = pick_task(rq_i);
6217 rq_i->core_dl_server = rq_i->dl_server;
6218
6219 if (!max || prio_less(max, p, fi_before))
6220 max = p;
6221 }
6222
6223 cookie = rq->core->core_cookie = max->core_cookie;
6224
6225 /*
6226 * For each thread: try and find a runnable task that matches @max or
6227 * force idle.
6228 */
6229 for_each_cpu(i, smt_mask) {
6230 rq_i = cpu_rq(i);
6231 p = rq_i->core_pick;
6232
6233 if (!cookie_equals(p, cookie)) {
6234 p = NULL;
6235 if (cookie)
6236 p = sched_core_find(rq_i, cookie);
6237 if (!p)
6238 p = idle_sched_class.pick_task(rq_i);
6239 }
6240
6241 rq_i->core_pick = p;
6242 rq_i->core_dl_server = NULL;
6243
6244 if (p == rq_i->idle) {
6245 if (rq_i->nr_running) {
6246 rq->core->core_forceidle_count++;
6247 if (!fi_before)
6248 rq->core->core_forceidle_seq++;
6249 }
6250 } else {
6251 occ++;
6252 }
6253 }
6254
6255 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6256 rq->core->core_forceidle_start = rq_clock(rq->core);
6257 rq->core->core_forceidle_occupation = occ;
6258 }
6259
6260 rq->core->core_pick_seq = rq->core->core_task_seq;
6261 next = rq->core_pick;
6262 rq->core_sched_seq = rq->core->core_pick_seq;
6263
6264 /* Something should have been selected for current CPU */
6265 WARN_ON_ONCE(!next);
6266
6267 /*
6268 * Reschedule siblings
6269 *
6270 * NOTE: L1TF -- at this point we're no longer running the old task and
6271 * sending an IPI (below) ensures the sibling will no longer be running
6272 * their task. This ensures there is no inter-sibling overlap between
6273 * non-matching user state.
6274 */
6275 for_each_cpu(i, smt_mask) {
6276 rq_i = cpu_rq(i);
6277
6278 /*
6279 * An online sibling might have gone offline before a task
6280 * could be picked for it, or it might be offline but later
6281 * happen to come online, but its too late and nothing was
6282 * picked for it. That's Ok - it will pick tasks for itself,
6283 * so ignore it.
6284 */
6285 if (!rq_i->core_pick)
6286 continue;
6287
6288 /*
6289 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6290 * fi_before fi update?
6291 * 0 0 1
6292 * 0 1 1
6293 * 1 0 1
6294 * 1 1 0
6295 */
6296 if (!(fi_before && rq->core->core_forceidle_count))
6297 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6298
6299 rq_i->core_pick->core_occupation = occ;
6300
6301 if (i == cpu) {
6302 rq_i->core_pick = NULL;
6303 rq_i->core_dl_server = NULL;
6304 continue;
6305 }
6306
6307 /* Did we break L1TF mitigation requirements? */
6308 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6309
6310 if (rq_i->curr == rq_i->core_pick) {
6311 rq_i->core_pick = NULL;
6312 rq_i->core_dl_server = NULL;
6313 continue;
6314 }
6315
6316 resched_curr(rq_i);
6317 }
6318
6319out_set_next:
6320 put_prev_set_next_task(rq, prev, next);
6321 if (rq->core->core_forceidle_count && next == rq->idle)
6322 queue_core_balance(rq);
6323
6324 return next;
6325}
6326
6327static bool try_steal_cookie(int this, int that)
6328{
6329 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6330 struct task_struct *p;
6331 unsigned long cookie;
6332 bool success = false;
6333
6334 guard(irq)();
6335 guard(double_rq_lock)(dst, src);
6336
6337 cookie = dst->core->core_cookie;
6338 if (!cookie)
6339 return false;
6340
6341 if (dst->curr != dst->idle)
6342 return false;
6343
6344 p = sched_core_find(src, cookie);
6345 if (!p)
6346 return false;
6347
6348 do {
6349 if (p == src->core_pick || p == src->curr)
6350 goto next;
6351
6352 if (!is_cpu_allowed(p, this))
6353 goto next;
6354
6355 if (p->core_occupation > dst->idle->core_occupation)
6356 goto next;
6357 /*
6358 * sched_core_find() and sched_core_next() will ensure
6359 * that task @p is not throttled now, we also need to
6360 * check whether the runqueue of the destination CPU is
6361 * being throttled.
6362 */
6363 if (sched_task_is_throttled(p, this))
6364 goto next;
6365
6366 move_queued_task_locked(src, dst, p);
6367 resched_curr(dst);
6368
6369 success = true;
6370 break;
6371
6372next:
6373 p = sched_core_next(p, cookie);
6374 } while (p);
6375
6376 return success;
6377}
6378
6379static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6380{
6381 int i;
6382
6383 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6384 if (i == cpu)
6385 continue;
6386
6387 if (need_resched())
6388 break;
6389
6390 if (try_steal_cookie(cpu, i))
6391 return true;
6392 }
6393
6394 return false;
6395}
6396
6397static void sched_core_balance(struct rq *rq)
6398{
6399 struct sched_domain *sd;
6400 int cpu = cpu_of(rq);
6401
6402 guard(preempt)();
6403 guard(rcu)();
6404
6405 raw_spin_rq_unlock_irq(rq);
6406 for_each_domain(cpu, sd) {
6407 if (need_resched())
6408 break;
6409
6410 if (steal_cookie_task(cpu, sd))
6411 break;
6412 }
6413 raw_spin_rq_lock_irq(rq);
6414}
6415
6416static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6417
6418static void queue_core_balance(struct rq *rq)
6419{
6420 if (!sched_core_enabled(rq))
6421 return;
6422
6423 if (!rq->core->core_cookie)
6424 return;
6425
6426 if (!rq->nr_running) /* not forced idle */
6427 return;
6428
6429 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6430}
6431
6432DEFINE_LOCK_GUARD_1(core_lock, int,
6433 sched_core_lock(*_T->lock, &_T->flags),
6434 sched_core_unlock(*_T->lock, &_T->flags),
6435 unsigned long flags)
6436
6437static void sched_core_cpu_starting(unsigned int cpu)
6438{
6439 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6440 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6441 int t;
6442
6443 guard(core_lock)(&cpu);
6444
6445 WARN_ON_ONCE(rq->core != rq);
6446
6447 /* if we're the first, we'll be our own leader */
6448 if (cpumask_weight(smt_mask) == 1)
6449 return;
6450
6451 /* find the leader */
6452 for_each_cpu(t, smt_mask) {
6453 if (t == cpu)
6454 continue;
6455 rq = cpu_rq(t);
6456 if (rq->core == rq) {
6457 core_rq = rq;
6458 break;
6459 }
6460 }
6461
6462 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6463 return;
6464
6465 /* install and validate core_rq */
6466 for_each_cpu(t, smt_mask) {
6467 rq = cpu_rq(t);
6468
6469 if (t == cpu)
6470 rq->core = core_rq;
6471
6472 WARN_ON_ONCE(rq->core != core_rq);
6473 }
6474}
6475
6476static void sched_core_cpu_deactivate(unsigned int cpu)
6477{
6478 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6479 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6480 int t;
6481
6482 guard(core_lock)(&cpu);
6483
6484 /* if we're the last man standing, nothing to do */
6485 if (cpumask_weight(smt_mask) == 1) {
6486 WARN_ON_ONCE(rq->core != rq);
6487 return;
6488 }
6489
6490 /* if we're not the leader, nothing to do */
6491 if (rq->core != rq)
6492 return;
6493
6494 /* find a new leader */
6495 for_each_cpu(t, smt_mask) {
6496 if (t == cpu)
6497 continue;
6498 core_rq = cpu_rq(t);
6499 break;
6500 }
6501
6502 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6503 return;
6504
6505 /* copy the shared state to the new leader */
6506 core_rq->core_task_seq = rq->core_task_seq;
6507 core_rq->core_pick_seq = rq->core_pick_seq;
6508 core_rq->core_cookie = rq->core_cookie;
6509 core_rq->core_forceidle_count = rq->core_forceidle_count;
6510 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6511 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6512
6513 /*
6514 * Accounting edge for forced idle is handled in pick_next_task().
6515 * Don't need another one here, since the hotplug thread shouldn't
6516 * have a cookie.
6517 */
6518 core_rq->core_forceidle_start = 0;
6519
6520 /* install new leader */
6521 for_each_cpu(t, smt_mask) {
6522 rq = cpu_rq(t);
6523 rq->core = core_rq;
6524 }
6525}
6526
6527static inline void sched_core_cpu_dying(unsigned int cpu)
6528{
6529 struct rq *rq = cpu_rq(cpu);
6530
6531 if (rq->core != rq)
6532 rq->core = rq;
6533}
6534
6535#else /* !CONFIG_SCHED_CORE */
6536
6537static inline void sched_core_cpu_starting(unsigned int cpu) {}
6538static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6539static inline void sched_core_cpu_dying(unsigned int cpu) {}
6540
6541static struct task_struct *
6542pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6543{
6544 return __pick_next_task(rq, prev, rf);
6545}
6546
6547#endif /* CONFIG_SCHED_CORE */
6548
6549/*
6550 * Constants for the sched_mode argument of __schedule().
6551 *
6552 * The mode argument allows RT enabled kernels to differentiate a
6553 * preemption from blocking on an 'sleeping' spin/rwlock.
6554 */
6555#define SM_IDLE (-1)
6556#define SM_NONE 0
6557#define SM_PREEMPT 1
6558#define SM_RTLOCK_WAIT 2
6559
6560/*
6561 * Helper function for __schedule()
6562 *
6563 * If a task does not have signals pending, deactivate it
6564 * Otherwise marks the task's __state as RUNNING
6565 */
6566static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6567 unsigned long task_state)
6568{
6569 int flags = DEQUEUE_NOCLOCK;
6570
6571 if (signal_pending_state(task_state, p)) {
6572 WRITE_ONCE(p->__state, TASK_RUNNING);
6573 return false;
6574 }
6575
6576 p->sched_contributes_to_load =
6577 (task_state & TASK_UNINTERRUPTIBLE) &&
6578 !(task_state & TASK_NOLOAD) &&
6579 !(task_state & TASK_FROZEN);
6580
6581 if (unlikely(is_special_task_state(task_state)))
6582 flags |= DEQUEUE_SPECIAL;
6583
6584 /*
6585 * __schedule() ttwu()
6586 * prev_state = prev->state; if (p->on_rq && ...)
6587 * if (prev_state) goto out;
6588 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6589 * p->state = TASK_WAKING
6590 *
6591 * Where __schedule() and ttwu() have matching control dependencies.
6592 *
6593 * After this, schedule() must not care about p->state any more.
6594 */
6595 block_task(rq, p, flags);
6596 return true;
6597}
6598
6599/*
6600 * __schedule() is the main scheduler function.
6601 *
6602 * The main means of driving the scheduler and thus entering this function are:
6603 *
6604 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6605 *
6606 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6607 * paths. For example, see arch/x86/entry_64.S.
6608 *
6609 * To drive preemption between tasks, the scheduler sets the flag in timer
6610 * interrupt handler sched_tick().
6611 *
6612 * 3. Wakeups don't really cause entry into schedule(). They add a
6613 * task to the run-queue and that's it.
6614 *
6615 * Now, if the new task added to the run-queue preempts the current
6616 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6617 * called on the nearest possible occasion:
6618 *
6619 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6620 *
6621 * - in syscall or exception context, at the next outmost
6622 * preempt_enable(). (this might be as soon as the wake_up()'s
6623 * spin_unlock()!)
6624 *
6625 * - in IRQ context, return from interrupt-handler to
6626 * preemptible context
6627 *
6628 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6629 * then at the next:
6630 *
6631 * - cond_resched() call
6632 * - explicit schedule() call
6633 * - return from syscall or exception to user-space
6634 * - return from interrupt-handler to user-space
6635 *
6636 * WARNING: must be called with preemption disabled!
6637 */
6638static void __sched notrace __schedule(int sched_mode)
6639{
6640 struct task_struct *prev, *next;
6641 /*
6642 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6643 * as a preemption by schedule_debug() and RCU.
6644 */
6645 bool preempt = sched_mode > SM_NONE;
6646 unsigned long *switch_count;
6647 unsigned long prev_state;
6648 struct rq_flags rf;
6649 struct rq *rq;
6650 int cpu;
6651
6652 cpu = smp_processor_id();
6653 rq = cpu_rq(cpu);
6654 prev = rq->curr;
6655
6656 schedule_debug(prev, preempt);
6657
6658 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6659 hrtick_clear(rq);
6660
6661 local_irq_disable();
6662 rcu_note_context_switch(preempt);
6663
6664 /*
6665 * Make sure that signal_pending_state()->signal_pending() below
6666 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6667 * done by the caller to avoid the race with signal_wake_up():
6668 *
6669 * __set_current_state(@state) signal_wake_up()
6670 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6671 * wake_up_state(p, state)
6672 * LOCK rq->lock LOCK p->pi_state
6673 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6674 * if (signal_pending_state()) if (p->state & @state)
6675 *
6676 * Also, the membarrier system call requires a full memory barrier
6677 * after coming from user-space, before storing to rq->curr; this
6678 * barrier matches a full barrier in the proximity of the membarrier
6679 * system call exit.
6680 */
6681 rq_lock(rq, &rf);
6682 smp_mb__after_spinlock();
6683
6684 /* Promote REQ to ACT */
6685 rq->clock_update_flags <<= 1;
6686 update_rq_clock(rq);
6687 rq->clock_update_flags = RQCF_UPDATED;
6688
6689 switch_count = &prev->nivcsw;
6690
6691 /* Task state changes only considers SM_PREEMPT as preemption */
6692 preempt = sched_mode == SM_PREEMPT;
6693
6694 /*
6695 * We must load prev->state once (task_struct::state is volatile), such
6696 * that we form a control dependency vs deactivate_task() below.
6697 */
6698 prev_state = READ_ONCE(prev->__state);
6699 if (sched_mode == SM_IDLE) {
6700 /* SCX must consult the BPF scheduler to tell if rq is empty */
6701 if (!rq->nr_running && !scx_enabled()) {
6702 next = prev;
6703 goto picked;
6704 }
6705 } else if (!preempt && prev_state) {
6706 try_to_block_task(rq, prev, prev_state);
6707 switch_count = &prev->nvcsw;
6708 }
6709
6710 next = pick_next_task(rq, prev, &rf);
6711 rq_set_donor(rq, next);
6712picked:
6713 clear_tsk_need_resched(prev);
6714 clear_preempt_need_resched();
6715#ifdef CONFIG_SCHED_DEBUG
6716 rq->last_seen_need_resched_ns = 0;
6717#endif
6718
6719 if (likely(prev != next)) {
6720 rq->nr_switches++;
6721 /*
6722 * RCU users of rcu_dereference(rq->curr) may not see
6723 * changes to task_struct made by pick_next_task().
6724 */
6725 RCU_INIT_POINTER(rq->curr, next);
6726 /*
6727 * The membarrier system call requires each architecture
6728 * to have a full memory barrier after updating
6729 * rq->curr, before returning to user-space.
6730 *
6731 * Here are the schemes providing that barrier on the
6732 * various architectures:
6733 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6734 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6735 * on PowerPC and on RISC-V.
6736 * - finish_lock_switch() for weakly-ordered
6737 * architectures where spin_unlock is a full barrier,
6738 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6739 * is a RELEASE barrier),
6740 *
6741 * The barrier matches a full barrier in the proximity of
6742 * the membarrier system call entry.
6743 *
6744 * On RISC-V, this barrier pairing is also needed for the
6745 * SYNC_CORE command when switching between processes, cf.
6746 * the inline comments in membarrier_arch_switch_mm().
6747 */
6748 ++*switch_count;
6749
6750 migrate_disable_switch(rq, prev);
6751 psi_account_irqtime(rq, prev, next);
6752 psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6753 prev->se.sched_delayed);
6754
6755 trace_sched_switch(preempt, prev, next, prev_state);
6756
6757 /* Also unlocks the rq: */
6758 rq = context_switch(rq, prev, next, &rf);
6759 } else {
6760 rq_unpin_lock(rq, &rf);
6761 __balance_callbacks(rq);
6762 raw_spin_rq_unlock_irq(rq);
6763 }
6764}
6765
6766void __noreturn do_task_dead(void)
6767{
6768 /* Causes final put_task_struct in finish_task_switch(): */
6769 set_special_state(TASK_DEAD);
6770
6771 /* Tell freezer to ignore us: */
6772 current->flags |= PF_NOFREEZE;
6773
6774 __schedule(SM_NONE);
6775 BUG();
6776
6777 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6778 for (;;)
6779 cpu_relax();
6780}
6781
6782static inline void sched_submit_work(struct task_struct *tsk)
6783{
6784 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6785 unsigned int task_flags;
6786
6787 /*
6788 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6789 * will use a blocking primitive -- which would lead to recursion.
6790 */
6791 lock_map_acquire_try(&sched_map);
6792
6793 task_flags = tsk->flags;
6794 /*
6795 * If a worker goes to sleep, notify and ask workqueue whether it
6796 * wants to wake up a task to maintain concurrency.
6797 */
6798 if (task_flags & PF_WQ_WORKER)
6799 wq_worker_sleeping(tsk);
6800 else if (task_flags & PF_IO_WORKER)
6801 io_wq_worker_sleeping(tsk);
6802
6803 /*
6804 * spinlock and rwlock must not flush block requests. This will
6805 * deadlock if the callback attempts to acquire a lock which is
6806 * already acquired.
6807 */
6808 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6809
6810 /*
6811 * If we are going to sleep and we have plugged IO queued,
6812 * make sure to submit it to avoid deadlocks.
6813 */
6814 blk_flush_plug(tsk->plug, true);
6815
6816 lock_map_release(&sched_map);
6817}
6818
6819static void sched_update_worker(struct task_struct *tsk)
6820{
6821 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6822 if (tsk->flags & PF_BLOCK_TS)
6823 blk_plug_invalidate_ts(tsk);
6824 if (tsk->flags & PF_WQ_WORKER)
6825 wq_worker_running(tsk);
6826 else if (tsk->flags & PF_IO_WORKER)
6827 io_wq_worker_running(tsk);
6828 }
6829}
6830
6831static __always_inline void __schedule_loop(int sched_mode)
6832{
6833 do {
6834 preempt_disable();
6835 __schedule(sched_mode);
6836 sched_preempt_enable_no_resched();
6837 } while (need_resched());
6838}
6839
6840asmlinkage __visible void __sched schedule(void)
6841{
6842 struct task_struct *tsk = current;
6843
6844#ifdef CONFIG_RT_MUTEXES
6845 lockdep_assert(!tsk->sched_rt_mutex);
6846#endif
6847
6848 if (!task_is_running(tsk))
6849 sched_submit_work(tsk);
6850 __schedule_loop(SM_NONE);
6851 sched_update_worker(tsk);
6852}
6853EXPORT_SYMBOL(schedule);
6854
6855/*
6856 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6857 * state (have scheduled out non-voluntarily) by making sure that all
6858 * tasks have either left the run queue or have gone into user space.
6859 * As idle tasks do not do either, they must not ever be preempted
6860 * (schedule out non-voluntarily).
6861 *
6862 * schedule_idle() is similar to schedule_preempt_disable() except that it
6863 * never enables preemption because it does not call sched_submit_work().
6864 */
6865void __sched schedule_idle(void)
6866{
6867 /*
6868 * As this skips calling sched_submit_work(), which the idle task does
6869 * regardless because that function is a NOP when the task is in a
6870 * TASK_RUNNING state, make sure this isn't used someplace that the
6871 * current task can be in any other state. Note, idle is always in the
6872 * TASK_RUNNING state.
6873 */
6874 WARN_ON_ONCE(current->__state);
6875 do {
6876 __schedule(SM_IDLE);
6877 } while (need_resched());
6878}
6879
6880#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6881asmlinkage __visible void __sched schedule_user(void)
6882{
6883 /*
6884 * If we come here after a random call to set_need_resched(),
6885 * or we have been woken up remotely but the IPI has not yet arrived,
6886 * we haven't yet exited the RCU idle mode. Do it here manually until
6887 * we find a better solution.
6888 *
6889 * NB: There are buggy callers of this function. Ideally we
6890 * should warn if prev_state != CT_STATE_USER, but that will trigger
6891 * too frequently to make sense yet.
6892 */
6893 enum ctx_state prev_state = exception_enter();
6894 schedule();
6895 exception_exit(prev_state);
6896}
6897#endif
6898
6899/**
6900 * schedule_preempt_disabled - called with preemption disabled
6901 *
6902 * Returns with preemption disabled. Note: preempt_count must be 1
6903 */
6904void __sched schedule_preempt_disabled(void)
6905{
6906 sched_preempt_enable_no_resched();
6907 schedule();
6908 preempt_disable();
6909}
6910
6911#ifdef CONFIG_PREEMPT_RT
6912void __sched notrace schedule_rtlock(void)
6913{
6914 __schedule_loop(SM_RTLOCK_WAIT);
6915}
6916NOKPROBE_SYMBOL(schedule_rtlock);
6917#endif
6918
6919static void __sched notrace preempt_schedule_common(void)
6920{
6921 do {
6922 /*
6923 * Because the function tracer can trace preempt_count_sub()
6924 * and it also uses preempt_enable/disable_notrace(), if
6925 * NEED_RESCHED is set, the preempt_enable_notrace() called
6926 * by the function tracer will call this function again and
6927 * cause infinite recursion.
6928 *
6929 * Preemption must be disabled here before the function
6930 * tracer can trace. Break up preempt_disable() into two
6931 * calls. One to disable preemption without fear of being
6932 * traced. The other to still record the preemption latency,
6933 * which can also be traced by the function tracer.
6934 */
6935 preempt_disable_notrace();
6936 preempt_latency_start(1);
6937 __schedule(SM_PREEMPT);
6938 preempt_latency_stop(1);
6939 preempt_enable_no_resched_notrace();
6940
6941 /*
6942 * Check again in case we missed a preemption opportunity
6943 * between schedule and now.
6944 */
6945 } while (need_resched());
6946}
6947
6948#ifdef CONFIG_PREEMPTION
6949/*
6950 * This is the entry point to schedule() from in-kernel preemption
6951 * off of preempt_enable.
6952 */
6953asmlinkage __visible void __sched notrace preempt_schedule(void)
6954{
6955 /*
6956 * If there is a non-zero preempt_count or interrupts are disabled,
6957 * we do not want to preempt the current task. Just return..
6958 */
6959 if (likely(!preemptible()))
6960 return;
6961 preempt_schedule_common();
6962}
6963NOKPROBE_SYMBOL(preempt_schedule);
6964EXPORT_SYMBOL(preempt_schedule);
6965
6966#ifdef CONFIG_PREEMPT_DYNAMIC
6967#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6968#ifndef preempt_schedule_dynamic_enabled
6969#define preempt_schedule_dynamic_enabled preempt_schedule
6970#define preempt_schedule_dynamic_disabled NULL
6971#endif
6972DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6973EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6974#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6975static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6976void __sched notrace dynamic_preempt_schedule(void)
6977{
6978 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6979 return;
6980 preempt_schedule();
6981}
6982NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6983EXPORT_SYMBOL(dynamic_preempt_schedule);
6984#endif
6985#endif
6986
6987/**
6988 * preempt_schedule_notrace - preempt_schedule called by tracing
6989 *
6990 * The tracing infrastructure uses preempt_enable_notrace to prevent
6991 * recursion and tracing preempt enabling caused by the tracing
6992 * infrastructure itself. But as tracing can happen in areas coming
6993 * from userspace or just about to enter userspace, a preempt enable
6994 * can occur before user_exit() is called. This will cause the scheduler
6995 * to be called when the system is still in usermode.
6996 *
6997 * To prevent this, the preempt_enable_notrace will use this function
6998 * instead of preempt_schedule() to exit user context if needed before
6999 * calling the scheduler.
7000 */
7001asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7002{
7003 enum ctx_state prev_ctx;
7004
7005 if (likely(!preemptible()))
7006 return;
7007
7008 do {
7009 /*
7010 * Because the function tracer can trace preempt_count_sub()
7011 * and it also uses preempt_enable/disable_notrace(), if
7012 * NEED_RESCHED is set, the preempt_enable_notrace() called
7013 * by the function tracer will call this function again and
7014 * cause infinite recursion.
7015 *
7016 * Preemption must be disabled here before the function
7017 * tracer can trace. Break up preempt_disable() into two
7018 * calls. One to disable preemption without fear of being
7019 * traced. The other to still record the preemption latency,
7020 * which can also be traced by the function tracer.
7021 */
7022 preempt_disable_notrace();
7023 preempt_latency_start(1);
7024 /*
7025 * Needs preempt disabled in case user_exit() is traced
7026 * and the tracer calls preempt_enable_notrace() causing
7027 * an infinite recursion.
7028 */
7029 prev_ctx = exception_enter();
7030 __schedule(SM_PREEMPT);
7031 exception_exit(prev_ctx);
7032
7033 preempt_latency_stop(1);
7034 preempt_enable_no_resched_notrace();
7035 } while (need_resched());
7036}
7037EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7038
7039#ifdef CONFIG_PREEMPT_DYNAMIC
7040#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7041#ifndef preempt_schedule_notrace_dynamic_enabled
7042#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7043#define preempt_schedule_notrace_dynamic_disabled NULL
7044#endif
7045DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7046EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7047#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7048static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7049void __sched notrace dynamic_preempt_schedule_notrace(void)
7050{
7051 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7052 return;
7053 preempt_schedule_notrace();
7054}
7055NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7056EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7057#endif
7058#endif
7059
7060#endif /* CONFIG_PREEMPTION */
7061
7062/*
7063 * This is the entry point to schedule() from kernel preemption
7064 * off of IRQ context.
7065 * Note, that this is called and return with IRQs disabled. This will
7066 * protect us against recursive calling from IRQ contexts.
7067 */
7068asmlinkage __visible void __sched preempt_schedule_irq(void)
7069{
7070 enum ctx_state prev_state;
7071
7072 /* Catch callers which need to be fixed */
7073 BUG_ON(preempt_count() || !irqs_disabled());
7074
7075 prev_state = exception_enter();
7076
7077 do {
7078 preempt_disable();
7079 local_irq_enable();
7080 __schedule(SM_PREEMPT);
7081 local_irq_disable();
7082 sched_preempt_enable_no_resched();
7083 } while (need_resched());
7084
7085 exception_exit(prev_state);
7086}
7087
7088int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7089 void *key)
7090{
7091 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7092 return try_to_wake_up(curr->private, mode, wake_flags);
7093}
7094EXPORT_SYMBOL(default_wake_function);
7095
7096const struct sched_class *__setscheduler_class(int policy, int prio)
7097{
7098 if (dl_prio(prio))
7099 return &dl_sched_class;
7100
7101 if (rt_prio(prio))
7102 return &rt_sched_class;
7103
7104#ifdef CONFIG_SCHED_CLASS_EXT
7105 if (task_should_scx(policy))
7106 return &ext_sched_class;
7107#endif
7108
7109 return &fair_sched_class;
7110}
7111
7112#ifdef CONFIG_RT_MUTEXES
7113
7114/*
7115 * Would be more useful with typeof()/auto_type but they don't mix with
7116 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7117 * name such that if someone were to implement this function we get to compare
7118 * notes.
7119 */
7120#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7121
7122void rt_mutex_pre_schedule(void)
7123{
7124 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7125 sched_submit_work(current);
7126}
7127
7128void rt_mutex_schedule(void)
7129{
7130 lockdep_assert(current->sched_rt_mutex);
7131 __schedule_loop(SM_NONE);
7132}
7133
7134void rt_mutex_post_schedule(void)
7135{
7136 sched_update_worker(current);
7137 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7138}
7139
7140/*
7141 * rt_mutex_setprio - set the current priority of a task
7142 * @p: task to boost
7143 * @pi_task: donor task
7144 *
7145 * This function changes the 'effective' priority of a task. It does
7146 * not touch ->normal_prio like __setscheduler().
7147 *
7148 * Used by the rt_mutex code to implement priority inheritance
7149 * logic. Call site only calls if the priority of the task changed.
7150 */
7151void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7152{
7153 int prio, oldprio, queued, running, queue_flag =
7154 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7155 const struct sched_class *prev_class, *next_class;
7156 struct rq_flags rf;
7157 struct rq *rq;
7158
7159 /* XXX used to be waiter->prio, not waiter->task->prio */
7160 prio = __rt_effective_prio(pi_task, p->normal_prio);
7161
7162 /*
7163 * If nothing changed; bail early.
7164 */
7165 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7166 return;
7167
7168 rq = __task_rq_lock(p, &rf);
7169 update_rq_clock(rq);
7170 /*
7171 * Set under pi_lock && rq->lock, such that the value can be used under
7172 * either lock.
7173 *
7174 * Note that there is loads of tricky to make this pointer cache work
7175 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7176 * ensure a task is de-boosted (pi_task is set to NULL) before the
7177 * task is allowed to run again (and can exit). This ensures the pointer
7178 * points to a blocked task -- which guarantees the task is present.
7179 */
7180 p->pi_top_task = pi_task;
7181
7182 /*
7183 * For FIFO/RR we only need to set prio, if that matches we're done.
7184 */
7185 if (prio == p->prio && !dl_prio(prio))
7186 goto out_unlock;
7187
7188 /*
7189 * Idle task boosting is a no-no in general. There is one
7190 * exception, when PREEMPT_RT and NOHZ is active:
7191 *
7192 * The idle task calls get_next_timer_interrupt() and holds
7193 * the timer wheel base->lock on the CPU and another CPU wants
7194 * to access the timer (probably to cancel it). We can safely
7195 * ignore the boosting request, as the idle CPU runs this code
7196 * with interrupts disabled and will complete the lock
7197 * protected section without being interrupted. So there is no
7198 * real need to boost.
7199 */
7200 if (unlikely(p == rq->idle)) {
7201 WARN_ON(p != rq->curr);
7202 WARN_ON(p->pi_blocked_on);
7203 goto out_unlock;
7204 }
7205
7206 trace_sched_pi_setprio(p, pi_task);
7207 oldprio = p->prio;
7208
7209 if (oldprio == prio)
7210 queue_flag &= ~DEQUEUE_MOVE;
7211
7212 prev_class = p->sched_class;
7213 next_class = __setscheduler_class(p->policy, prio);
7214
7215 if (prev_class != next_class && p->se.sched_delayed)
7216 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7217
7218 queued = task_on_rq_queued(p);
7219 running = task_current_donor(rq, p);
7220 if (queued)
7221 dequeue_task(rq, p, queue_flag);
7222 if (running)
7223 put_prev_task(rq, p);
7224
7225 /*
7226 * Boosting condition are:
7227 * 1. -rt task is running and holds mutex A
7228 * --> -dl task blocks on mutex A
7229 *
7230 * 2. -dl task is running and holds mutex A
7231 * --> -dl task blocks on mutex A and could preempt the
7232 * running task
7233 */
7234 if (dl_prio(prio)) {
7235 if (!dl_prio(p->normal_prio) ||
7236 (pi_task && dl_prio(pi_task->prio) &&
7237 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7238 p->dl.pi_se = pi_task->dl.pi_se;
7239 queue_flag |= ENQUEUE_REPLENISH;
7240 } else {
7241 p->dl.pi_se = &p->dl;
7242 }
7243 } else if (rt_prio(prio)) {
7244 if (dl_prio(oldprio))
7245 p->dl.pi_se = &p->dl;
7246 if (oldprio < prio)
7247 queue_flag |= ENQUEUE_HEAD;
7248 } else {
7249 if (dl_prio(oldprio))
7250 p->dl.pi_se = &p->dl;
7251 if (rt_prio(oldprio))
7252 p->rt.timeout = 0;
7253 }
7254
7255 p->sched_class = next_class;
7256 p->prio = prio;
7257
7258 check_class_changing(rq, p, prev_class);
7259
7260 if (queued)
7261 enqueue_task(rq, p, queue_flag);
7262 if (running)
7263 set_next_task(rq, p);
7264
7265 check_class_changed(rq, p, prev_class, oldprio);
7266out_unlock:
7267 /* Avoid rq from going away on us: */
7268 preempt_disable();
7269
7270 rq_unpin_lock(rq, &rf);
7271 __balance_callbacks(rq);
7272 raw_spin_rq_unlock(rq);
7273
7274 preempt_enable();
7275}
7276#endif
7277
7278#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7279int __sched __cond_resched(void)
7280{
7281 if (should_resched(0) && !irqs_disabled()) {
7282 preempt_schedule_common();
7283 return 1;
7284 }
7285 /*
7286 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7287 * whether the current CPU is in an RCU read-side critical section,
7288 * so the tick can report quiescent states even for CPUs looping
7289 * in kernel context. In contrast, in non-preemptible kernels,
7290 * RCU readers leave no in-memory hints, which means that CPU-bound
7291 * processes executing in kernel context might never report an
7292 * RCU quiescent state. Therefore, the following code causes
7293 * cond_resched() to report a quiescent state, but only when RCU
7294 * is in urgent need of one.
7295 */
7296#ifndef CONFIG_PREEMPT_RCU
7297 rcu_all_qs();
7298#endif
7299 return 0;
7300}
7301EXPORT_SYMBOL(__cond_resched);
7302#endif
7303
7304#ifdef CONFIG_PREEMPT_DYNAMIC
7305#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7306#define cond_resched_dynamic_enabled __cond_resched
7307#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
7308DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7309EXPORT_STATIC_CALL_TRAMP(cond_resched);
7310
7311#define might_resched_dynamic_enabled __cond_resched
7312#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7313DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7314EXPORT_STATIC_CALL_TRAMP(might_resched);
7315#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7316static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7317int __sched dynamic_cond_resched(void)
7318{
7319 klp_sched_try_switch();
7320 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7321 return 0;
7322 return __cond_resched();
7323}
7324EXPORT_SYMBOL(dynamic_cond_resched);
7325
7326static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7327int __sched dynamic_might_resched(void)
7328{
7329 if (!static_branch_unlikely(&sk_dynamic_might_resched))
7330 return 0;
7331 return __cond_resched();
7332}
7333EXPORT_SYMBOL(dynamic_might_resched);
7334#endif
7335#endif
7336
7337/*
7338 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7339 * call schedule, and on return reacquire the lock.
7340 *
7341 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7342 * operations here to prevent schedule() from being called twice (once via
7343 * spin_unlock(), once by hand).
7344 */
7345int __cond_resched_lock(spinlock_t *lock)
7346{
7347 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7348 int ret = 0;
7349
7350 lockdep_assert_held(lock);
7351
7352 if (spin_needbreak(lock) || resched) {
7353 spin_unlock(lock);
7354 if (!_cond_resched())
7355 cpu_relax();
7356 ret = 1;
7357 spin_lock(lock);
7358 }
7359 return ret;
7360}
7361EXPORT_SYMBOL(__cond_resched_lock);
7362
7363int __cond_resched_rwlock_read(rwlock_t *lock)
7364{
7365 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7366 int ret = 0;
7367
7368 lockdep_assert_held_read(lock);
7369
7370 if (rwlock_needbreak(lock) || resched) {
7371 read_unlock(lock);
7372 if (!_cond_resched())
7373 cpu_relax();
7374 ret = 1;
7375 read_lock(lock);
7376 }
7377 return ret;
7378}
7379EXPORT_SYMBOL(__cond_resched_rwlock_read);
7380
7381int __cond_resched_rwlock_write(rwlock_t *lock)
7382{
7383 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7384 int ret = 0;
7385
7386 lockdep_assert_held_write(lock);
7387
7388 if (rwlock_needbreak(lock) || resched) {
7389 write_unlock(lock);
7390 if (!_cond_resched())
7391 cpu_relax();
7392 ret = 1;
7393 write_lock(lock);
7394 }
7395 return ret;
7396}
7397EXPORT_SYMBOL(__cond_resched_rwlock_write);
7398
7399#ifdef CONFIG_PREEMPT_DYNAMIC
7400
7401#ifdef CONFIG_GENERIC_ENTRY
7402#include <linux/entry-common.h>
7403#endif
7404
7405/*
7406 * SC:cond_resched
7407 * SC:might_resched
7408 * SC:preempt_schedule
7409 * SC:preempt_schedule_notrace
7410 * SC:irqentry_exit_cond_resched
7411 *
7412 *
7413 * NONE:
7414 * cond_resched <- __cond_resched
7415 * might_resched <- RET0
7416 * preempt_schedule <- NOP
7417 * preempt_schedule_notrace <- NOP
7418 * irqentry_exit_cond_resched <- NOP
7419 * dynamic_preempt_lazy <- false
7420 *
7421 * VOLUNTARY:
7422 * cond_resched <- __cond_resched
7423 * might_resched <- __cond_resched
7424 * preempt_schedule <- NOP
7425 * preempt_schedule_notrace <- NOP
7426 * irqentry_exit_cond_resched <- NOP
7427 * dynamic_preempt_lazy <- false
7428 *
7429 * FULL:
7430 * cond_resched <- RET0
7431 * might_resched <- RET0
7432 * preempt_schedule <- preempt_schedule
7433 * preempt_schedule_notrace <- preempt_schedule_notrace
7434 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7435 * dynamic_preempt_lazy <- false
7436 *
7437 * LAZY:
7438 * cond_resched <- RET0
7439 * might_resched <- RET0
7440 * preempt_schedule <- preempt_schedule
7441 * preempt_schedule_notrace <- preempt_schedule_notrace
7442 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7443 * dynamic_preempt_lazy <- true
7444 */
7445
7446enum {
7447 preempt_dynamic_undefined = -1,
7448 preempt_dynamic_none,
7449 preempt_dynamic_voluntary,
7450 preempt_dynamic_full,
7451 preempt_dynamic_lazy,
7452};
7453
7454int preempt_dynamic_mode = preempt_dynamic_undefined;
7455
7456int sched_dynamic_mode(const char *str)
7457{
7458#ifndef CONFIG_PREEMPT_RT
7459 if (!strcmp(str, "none"))
7460 return preempt_dynamic_none;
7461
7462 if (!strcmp(str, "voluntary"))
7463 return preempt_dynamic_voluntary;
7464#endif
7465
7466 if (!strcmp(str, "full"))
7467 return preempt_dynamic_full;
7468
7469#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7470 if (!strcmp(str, "lazy"))
7471 return preempt_dynamic_lazy;
7472#endif
7473
7474 return -EINVAL;
7475}
7476
7477#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
7478#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
7479
7480#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7481#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
7482#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
7483#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7484#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
7485#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
7486#else
7487#error "Unsupported PREEMPT_DYNAMIC mechanism"
7488#endif
7489
7490static DEFINE_MUTEX(sched_dynamic_mutex);
7491static bool klp_override;
7492
7493static void __sched_dynamic_update(int mode)
7494{
7495 /*
7496 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7497 * the ZERO state, which is invalid.
7498 */
7499 if (!klp_override)
7500 preempt_dynamic_enable(cond_resched);
7501 preempt_dynamic_enable(might_resched);
7502 preempt_dynamic_enable(preempt_schedule);
7503 preempt_dynamic_enable(preempt_schedule_notrace);
7504 preempt_dynamic_enable(irqentry_exit_cond_resched);
7505 preempt_dynamic_key_disable(preempt_lazy);
7506
7507 switch (mode) {
7508 case preempt_dynamic_none:
7509 if (!klp_override)
7510 preempt_dynamic_enable(cond_resched);
7511 preempt_dynamic_disable(might_resched);
7512 preempt_dynamic_disable(preempt_schedule);
7513 preempt_dynamic_disable(preempt_schedule_notrace);
7514 preempt_dynamic_disable(irqentry_exit_cond_resched);
7515 preempt_dynamic_key_disable(preempt_lazy);
7516 if (mode != preempt_dynamic_mode)
7517 pr_info("Dynamic Preempt: none\n");
7518 break;
7519
7520 case preempt_dynamic_voluntary:
7521 if (!klp_override)
7522 preempt_dynamic_enable(cond_resched);
7523 preempt_dynamic_enable(might_resched);
7524 preempt_dynamic_disable(preempt_schedule);
7525 preempt_dynamic_disable(preempt_schedule_notrace);
7526 preempt_dynamic_disable(irqentry_exit_cond_resched);
7527 preempt_dynamic_key_disable(preempt_lazy);
7528 if (mode != preempt_dynamic_mode)
7529 pr_info("Dynamic Preempt: voluntary\n");
7530 break;
7531
7532 case preempt_dynamic_full:
7533 if (!klp_override)
7534 preempt_dynamic_disable(cond_resched);
7535 preempt_dynamic_disable(might_resched);
7536 preempt_dynamic_enable(preempt_schedule);
7537 preempt_dynamic_enable(preempt_schedule_notrace);
7538 preempt_dynamic_enable(irqentry_exit_cond_resched);
7539 preempt_dynamic_key_disable(preempt_lazy);
7540 if (mode != preempt_dynamic_mode)
7541 pr_info("Dynamic Preempt: full\n");
7542 break;
7543
7544 case preempt_dynamic_lazy:
7545 if (!klp_override)
7546 preempt_dynamic_disable(cond_resched);
7547 preempt_dynamic_disable(might_resched);
7548 preempt_dynamic_enable(preempt_schedule);
7549 preempt_dynamic_enable(preempt_schedule_notrace);
7550 preempt_dynamic_enable(irqentry_exit_cond_resched);
7551 preempt_dynamic_key_enable(preempt_lazy);
7552 if (mode != preempt_dynamic_mode)
7553 pr_info("Dynamic Preempt: lazy\n");
7554 break;
7555 }
7556
7557 preempt_dynamic_mode = mode;
7558}
7559
7560void sched_dynamic_update(int mode)
7561{
7562 mutex_lock(&sched_dynamic_mutex);
7563 __sched_dynamic_update(mode);
7564 mutex_unlock(&sched_dynamic_mutex);
7565}
7566
7567#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7568
7569static int klp_cond_resched(void)
7570{
7571 __klp_sched_try_switch();
7572 return __cond_resched();
7573}
7574
7575void sched_dynamic_klp_enable(void)
7576{
7577 mutex_lock(&sched_dynamic_mutex);
7578
7579 klp_override = true;
7580 static_call_update(cond_resched, klp_cond_resched);
7581
7582 mutex_unlock(&sched_dynamic_mutex);
7583}
7584
7585void sched_dynamic_klp_disable(void)
7586{
7587 mutex_lock(&sched_dynamic_mutex);
7588
7589 klp_override = false;
7590 __sched_dynamic_update(preempt_dynamic_mode);
7591
7592 mutex_unlock(&sched_dynamic_mutex);
7593}
7594
7595#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7596
7597static int __init setup_preempt_mode(char *str)
7598{
7599 int mode = sched_dynamic_mode(str);
7600 if (mode < 0) {
7601 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7602 return 0;
7603 }
7604
7605 sched_dynamic_update(mode);
7606 return 1;
7607}
7608__setup("preempt=", setup_preempt_mode);
7609
7610static void __init preempt_dynamic_init(void)
7611{
7612 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7613 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7614 sched_dynamic_update(preempt_dynamic_none);
7615 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7616 sched_dynamic_update(preempt_dynamic_voluntary);
7617 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7618 sched_dynamic_update(preempt_dynamic_lazy);
7619 } else {
7620 /* Default static call setting, nothing to do */
7621 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7622 preempt_dynamic_mode = preempt_dynamic_full;
7623 pr_info("Dynamic Preempt: full\n");
7624 }
7625 }
7626}
7627
7628#define PREEMPT_MODEL_ACCESSOR(mode) \
7629 bool preempt_model_##mode(void) \
7630 { \
7631 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7632 return preempt_dynamic_mode == preempt_dynamic_##mode; \
7633 } \
7634 EXPORT_SYMBOL_GPL(preempt_model_##mode)
7635
7636PREEMPT_MODEL_ACCESSOR(none);
7637PREEMPT_MODEL_ACCESSOR(voluntary);
7638PREEMPT_MODEL_ACCESSOR(full);
7639PREEMPT_MODEL_ACCESSOR(lazy);
7640
7641#else /* !CONFIG_PREEMPT_DYNAMIC: */
7642
7643static inline void preempt_dynamic_init(void) { }
7644
7645#endif /* CONFIG_PREEMPT_DYNAMIC */
7646
7647int io_schedule_prepare(void)
7648{
7649 int old_iowait = current->in_iowait;
7650
7651 current->in_iowait = 1;
7652 blk_flush_plug(current->plug, true);
7653 return old_iowait;
7654}
7655
7656void io_schedule_finish(int token)
7657{
7658 current->in_iowait = token;
7659}
7660
7661/*
7662 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7663 * that process accounting knows that this is a task in IO wait state.
7664 */
7665long __sched io_schedule_timeout(long timeout)
7666{
7667 int token;
7668 long ret;
7669
7670 token = io_schedule_prepare();
7671 ret = schedule_timeout(timeout);
7672 io_schedule_finish(token);
7673
7674 return ret;
7675}
7676EXPORT_SYMBOL(io_schedule_timeout);
7677
7678void __sched io_schedule(void)
7679{
7680 int token;
7681
7682 token = io_schedule_prepare();
7683 schedule();
7684 io_schedule_finish(token);
7685}
7686EXPORT_SYMBOL(io_schedule);
7687
7688void sched_show_task(struct task_struct *p)
7689{
7690 unsigned long free;
7691 int ppid;
7692
7693 if (!try_get_task_stack(p))
7694 return;
7695
7696 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7697
7698 if (task_is_running(p))
7699 pr_cont(" running task ");
7700 free = stack_not_used(p);
7701 ppid = 0;
7702 rcu_read_lock();
7703 if (pid_alive(p))
7704 ppid = task_pid_nr(rcu_dereference(p->real_parent));
7705 rcu_read_unlock();
7706 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7707 free, task_pid_nr(p), task_tgid_nr(p),
7708 ppid, read_task_thread_flags(p));
7709
7710 print_worker_info(KERN_INFO, p);
7711 print_stop_info(KERN_INFO, p);
7712 print_scx_info(KERN_INFO, p);
7713 show_stack(p, NULL, KERN_INFO);
7714 put_task_stack(p);
7715}
7716EXPORT_SYMBOL_GPL(sched_show_task);
7717
7718static inline bool
7719state_filter_match(unsigned long state_filter, struct task_struct *p)
7720{
7721 unsigned int state = READ_ONCE(p->__state);
7722
7723 /* no filter, everything matches */
7724 if (!state_filter)
7725 return true;
7726
7727 /* filter, but doesn't match */
7728 if (!(state & state_filter))
7729 return false;
7730
7731 /*
7732 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7733 * TASK_KILLABLE).
7734 */
7735 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7736 return false;
7737
7738 return true;
7739}
7740
7741
7742void show_state_filter(unsigned int state_filter)
7743{
7744 struct task_struct *g, *p;
7745
7746 rcu_read_lock();
7747 for_each_process_thread(g, p) {
7748 /*
7749 * reset the NMI-timeout, listing all files on a slow
7750 * console might take a lot of time:
7751 * Also, reset softlockup watchdogs on all CPUs, because
7752 * another CPU might be blocked waiting for us to process
7753 * an IPI.
7754 */
7755 touch_nmi_watchdog();
7756 touch_all_softlockup_watchdogs();
7757 if (state_filter_match(state_filter, p))
7758 sched_show_task(p);
7759 }
7760
7761#ifdef CONFIG_SCHED_DEBUG
7762 if (!state_filter)
7763 sysrq_sched_debug_show();
7764#endif
7765 rcu_read_unlock();
7766 /*
7767 * Only show locks if all tasks are dumped:
7768 */
7769 if (!state_filter)
7770 debug_show_all_locks();
7771}
7772
7773/**
7774 * init_idle - set up an idle thread for a given CPU
7775 * @idle: task in question
7776 * @cpu: CPU the idle task belongs to
7777 *
7778 * NOTE: this function does not set the idle thread's NEED_RESCHED
7779 * flag, to make booting more robust.
7780 */
7781void __init init_idle(struct task_struct *idle, int cpu)
7782{
7783#ifdef CONFIG_SMP
7784 struct affinity_context ac = (struct affinity_context) {
7785 .new_mask = cpumask_of(cpu),
7786 .flags = 0,
7787 };
7788#endif
7789 struct rq *rq = cpu_rq(cpu);
7790 unsigned long flags;
7791
7792 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7793 raw_spin_rq_lock(rq);
7794
7795 idle->__state = TASK_RUNNING;
7796 idle->se.exec_start = sched_clock();
7797 /*
7798 * PF_KTHREAD should already be set at this point; regardless, make it
7799 * look like a proper per-CPU kthread.
7800 */
7801 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7802 kthread_set_per_cpu(idle, cpu);
7803
7804#ifdef CONFIG_SMP
7805 /*
7806 * No validation and serialization required at boot time and for
7807 * setting up the idle tasks of not yet online CPUs.
7808 */
7809 set_cpus_allowed_common(idle, &ac);
7810#endif
7811 /*
7812 * We're having a chicken and egg problem, even though we are
7813 * holding rq->lock, the CPU isn't yet set to this CPU so the
7814 * lockdep check in task_group() will fail.
7815 *
7816 * Similar case to sched_fork(). / Alternatively we could
7817 * use task_rq_lock() here and obtain the other rq->lock.
7818 *
7819 * Silence PROVE_RCU
7820 */
7821 rcu_read_lock();
7822 __set_task_cpu(idle, cpu);
7823 rcu_read_unlock();
7824
7825 rq->idle = idle;
7826 rq_set_donor(rq, idle);
7827 rcu_assign_pointer(rq->curr, idle);
7828 idle->on_rq = TASK_ON_RQ_QUEUED;
7829#ifdef CONFIG_SMP
7830 idle->on_cpu = 1;
7831#endif
7832 raw_spin_rq_unlock(rq);
7833 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7834
7835 /* Set the preempt count _outside_ the spinlocks! */
7836 init_idle_preempt_count(idle, cpu);
7837
7838 /*
7839 * The idle tasks have their own, simple scheduling class:
7840 */
7841 idle->sched_class = &idle_sched_class;
7842 ftrace_graph_init_idle_task(idle, cpu);
7843 vtime_init_idle(idle, cpu);
7844#ifdef CONFIG_SMP
7845 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7846#endif
7847}
7848
7849#ifdef CONFIG_SMP
7850
7851int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7852 const struct cpumask *trial)
7853{
7854 int ret = 1;
7855
7856 if (cpumask_empty(cur))
7857 return ret;
7858
7859 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7860
7861 return ret;
7862}
7863
7864int task_can_attach(struct task_struct *p)
7865{
7866 int ret = 0;
7867
7868 /*
7869 * Kthreads which disallow setaffinity shouldn't be moved
7870 * to a new cpuset; we don't want to change their CPU
7871 * affinity and isolating such threads by their set of
7872 * allowed nodes is unnecessary. Thus, cpusets are not
7873 * applicable for such threads. This prevents checking for
7874 * success of set_cpus_allowed_ptr() on all attached tasks
7875 * before cpus_mask may be changed.
7876 */
7877 if (p->flags & PF_NO_SETAFFINITY)
7878 ret = -EINVAL;
7879
7880 return ret;
7881}
7882
7883bool sched_smp_initialized __read_mostly;
7884
7885#ifdef CONFIG_NUMA_BALANCING
7886/* Migrate current task p to target_cpu */
7887int migrate_task_to(struct task_struct *p, int target_cpu)
7888{
7889 struct migration_arg arg = { p, target_cpu };
7890 int curr_cpu = task_cpu(p);
7891
7892 if (curr_cpu == target_cpu)
7893 return 0;
7894
7895 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7896 return -EINVAL;
7897
7898 /* TODO: This is not properly updating schedstats */
7899
7900 trace_sched_move_numa(p, curr_cpu, target_cpu);
7901 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7902}
7903
7904/*
7905 * Requeue a task on a given node and accurately track the number of NUMA
7906 * tasks on the runqueues
7907 */
7908void sched_setnuma(struct task_struct *p, int nid)
7909{
7910 bool queued, running;
7911 struct rq_flags rf;
7912 struct rq *rq;
7913
7914 rq = task_rq_lock(p, &rf);
7915 queued = task_on_rq_queued(p);
7916 running = task_current_donor(rq, p);
7917
7918 if (queued)
7919 dequeue_task(rq, p, DEQUEUE_SAVE);
7920 if (running)
7921 put_prev_task(rq, p);
7922
7923 p->numa_preferred_nid = nid;
7924
7925 if (queued)
7926 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7927 if (running)
7928 set_next_task(rq, p);
7929 task_rq_unlock(rq, p, &rf);
7930}
7931#endif /* CONFIG_NUMA_BALANCING */
7932
7933#ifdef CONFIG_HOTPLUG_CPU
7934/*
7935 * Ensure that the idle task is using init_mm right before its CPU goes
7936 * offline.
7937 */
7938void idle_task_exit(void)
7939{
7940 struct mm_struct *mm = current->active_mm;
7941
7942 BUG_ON(cpu_online(smp_processor_id()));
7943 BUG_ON(current != this_rq()->idle);
7944
7945 if (mm != &init_mm) {
7946 switch_mm(mm, &init_mm, current);
7947 finish_arch_post_lock_switch();
7948 }
7949
7950 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7951}
7952
7953static int __balance_push_cpu_stop(void *arg)
7954{
7955 struct task_struct *p = arg;
7956 struct rq *rq = this_rq();
7957 struct rq_flags rf;
7958 int cpu;
7959
7960 raw_spin_lock_irq(&p->pi_lock);
7961 rq_lock(rq, &rf);
7962
7963 update_rq_clock(rq);
7964
7965 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7966 cpu = select_fallback_rq(rq->cpu, p);
7967 rq = __migrate_task(rq, &rf, p, cpu);
7968 }
7969
7970 rq_unlock(rq, &rf);
7971 raw_spin_unlock_irq(&p->pi_lock);
7972
7973 put_task_struct(p);
7974
7975 return 0;
7976}
7977
7978static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7979
7980/*
7981 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7982 *
7983 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7984 * effective when the hotplug motion is down.
7985 */
7986static void balance_push(struct rq *rq)
7987{
7988 struct task_struct *push_task = rq->curr;
7989
7990 lockdep_assert_rq_held(rq);
7991
7992 /*
7993 * Ensure the thing is persistent until balance_push_set(.on = false);
7994 */
7995 rq->balance_callback = &balance_push_callback;
7996
7997 /*
7998 * Only active while going offline and when invoked on the outgoing
7999 * CPU.
8000 */
8001 if (!cpu_dying(rq->cpu) || rq != this_rq())
8002 return;
8003
8004 /*
8005 * Both the cpu-hotplug and stop task are in this case and are
8006 * required to complete the hotplug process.
8007 */
8008 if (kthread_is_per_cpu(push_task) ||
8009 is_migration_disabled(push_task)) {
8010
8011 /*
8012 * If this is the idle task on the outgoing CPU try to wake
8013 * up the hotplug control thread which might wait for the
8014 * last task to vanish. The rcuwait_active() check is
8015 * accurate here because the waiter is pinned on this CPU
8016 * and can't obviously be running in parallel.
8017 *
8018 * On RT kernels this also has to check whether there are
8019 * pinned and scheduled out tasks on the runqueue. They
8020 * need to leave the migrate disabled section first.
8021 */
8022 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8023 rcuwait_active(&rq->hotplug_wait)) {
8024 raw_spin_rq_unlock(rq);
8025 rcuwait_wake_up(&rq->hotplug_wait);
8026 raw_spin_rq_lock(rq);
8027 }
8028 return;
8029 }
8030
8031 get_task_struct(push_task);
8032 /*
8033 * Temporarily drop rq->lock such that we can wake-up the stop task.
8034 * Both preemption and IRQs are still disabled.
8035 */
8036 preempt_disable();
8037 raw_spin_rq_unlock(rq);
8038 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8039 this_cpu_ptr(&push_work));
8040 preempt_enable();
8041 /*
8042 * At this point need_resched() is true and we'll take the loop in
8043 * schedule(). The next pick is obviously going to be the stop task
8044 * which kthread_is_per_cpu() and will push this task away.
8045 */
8046 raw_spin_rq_lock(rq);
8047}
8048
8049static void balance_push_set(int cpu, bool on)
8050{
8051 struct rq *rq = cpu_rq(cpu);
8052 struct rq_flags rf;
8053
8054 rq_lock_irqsave(rq, &rf);
8055 if (on) {
8056 WARN_ON_ONCE(rq->balance_callback);
8057 rq->balance_callback = &balance_push_callback;
8058 } else if (rq->balance_callback == &balance_push_callback) {
8059 rq->balance_callback = NULL;
8060 }
8061 rq_unlock_irqrestore(rq, &rf);
8062}
8063
8064/*
8065 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8066 * inactive. All tasks which are not per CPU kernel threads are either
8067 * pushed off this CPU now via balance_push() or placed on a different CPU
8068 * during wakeup. Wait until the CPU is quiescent.
8069 */
8070static void balance_hotplug_wait(void)
8071{
8072 struct rq *rq = this_rq();
8073
8074 rcuwait_wait_event(&rq->hotplug_wait,
8075 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8076 TASK_UNINTERRUPTIBLE);
8077}
8078
8079#else
8080
8081static inline void balance_push(struct rq *rq)
8082{
8083}
8084
8085static inline void balance_push_set(int cpu, bool on)
8086{
8087}
8088
8089static inline void balance_hotplug_wait(void)
8090{
8091}
8092
8093#endif /* CONFIG_HOTPLUG_CPU */
8094
8095void set_rq_online(struct rq *rq)
8096{
8097 if (!rq->online) {
8098 const struct sched_class *class;
8099
8100 cpumask_set_cpu(rq->cpu, rq->rd->online);
8101 rq->online = 1;
8102
8103 for_each_class(class) {
8104 if (class->rq_online)
8105 class->rq_online(rq);
8106 }
8107 }
8108}
8109
8110void set_rq_offline(struct rq *rq)
8111{
8112 if (rq->online) {
8113 const struct sched_class *class;
8114
8115 update_rq_clock(rq);
8116 for_each_class(class) {
8117 if (class->rq_offline)
8118 class->rq_offline(rq);
8119 }
8120
8121 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8122 rq->online = 0;
8123 }
8124}
8125
8126static inline void sched_set_rq_online(struct rq *rq, int cpu)
8127{
8128 struct rq_flags rf;
8129
8130 rq_lock_irqsave(rq, &rf);
8131 if (rq->rd) {
8132 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8133 set_rq_online(rq);
8134 }
8135 rq_unlock_irqrestore(rq, &rf);
8136}
8137
8138static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8139{
8140 struct rq_flags rf;
8141
8142 rq_lock_irqsave(rq, &rf);
8143 if (rq->rd) {
8144 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8145 set_rq_offline(rq);
8146 }
8147 rq_unlock_irqrestore(rq, &rf);
8148}
8149
8150/*
8151 * used to mark begin/end of suspend/resume:
8152 */
8153static int num_cpus_frozen;
8154
8155/*
8156 * Update cpusets according to cpu_active mask. If cpusets are
8157 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8158 * around partition_sched_domains().
8159 *
8160 * If we come here as part of a suspend/resume, don't touch cpusets because we
8161 * want to restore it back to its original state upon resume anyway.
8162 */
8163static void cpuset_cpu_active(void)
8164{
8165 if (cpuhp_tasks_frozen) {
8166 /*
8167 * num_cpus_frozen tracks how many CPUs are involved in suspend
8168 * resume sequence. As long as this is not the last online
8169 * operation in the resume sequence, just build a single sched
8170 * domain, ignoring cpusets.
8171 */
8172 partition_sched_domains(1, NULL, NULL);
8173 if (--num_cpus_frozen)
8174 return;
8175 /*
8176 * This is the last CPU online operation. So fall through and
8177 * restore the original sched domains by considering the
8178 * cpuset configurations.
8179 */
8180 cpuset_force_rebuild();
8181 }
8182 cpuset_update_active_cpus();
8183}
8184
8185static int cpuset_cpu_inactive(unsigned int cpu)
8186{
8187 if (!cpuhp_tasks_frozen) {
8188 int ret = dl_bw_check_overflow(cpu);
8189
8190 if (ret)
8191 return ret;
8192 cpuset_update_active_cpus();
8193 } else {
8194 num_cpus_frozen++;
8195 partition_sched_domains(1, NULL, NULL);
8196 }
8197 return 0;
8198}
8199
8200static inline void sched_smt_present_inc(int cpu)
8201{
8202#ifdef CONFIG_SCHED_SMT
8203 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8204 static_branch_inc_cpuslocked(&sched_smt_present);
8205#endif
8206}
8207
8208static inline void sched_smt_present_dec(int cpu)
8209{
8210#ifdef CONFIG_SCHED_SMT
8211 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8212 static_branch_dec_cpuslocked(&sched_smt_present);
8213#endif
8214}
8215
8216int sched_cpu_activate(unsigned int cpu)
8217{
8218 struct rq *rq = cpu_rq(cpu);
8219
8220 /*
8221 * Clear the balance_push callback and prepare to schedule
8222 * regular tasks.
8223 */
8224 balance_push_set(cpu, false);
8225
8226 /*
8227 * When going up, increment the number of cores with SMT present.
8228 */
8229 sched_smt_present_inc(cpu);
8230 set_cpu_active(cpu, true);
8231
8232 if (sched_smp_initialized) {
8233 sched_update_numa(cpu, true);
8234 sched_domains_numa_masks_set(cpu);
8235 cpuset_cpu_active();
8236 }
8237
8238 scx_rq_activate(rq);
8239
8240 /*
8241 * Put the rq online, if not already. This happens:
8242 *
8243 * 1) In the early boot process, because we build the real domains
8244 * after all CPUs have been brought up.
8245 *
8246 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8247 * domains.
8248 */
8249 sched_set_rq_online(rq, cpu);
8250
8251 return 0;
8252}
8253
8254int sched_cpu_deactivate(unsigned int cpu)
8255{
8256 struct rq *rq = cpu_rq(cpu);
8257 int ret;
8258
8259 /*
8260 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8261 * load balancing when not active
8262 */
8263 nohz_balance_exit_idle(rq);
8264
8265 set_cpu_active(cpu, false);
8266
8267 /*
8268 * From this point forward, this CPU will refuse to run any task that
8269 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8270 * push those tasks away until this gets cleared, see
8271 * sched_cpu_dying().
8272 */
8273 balance_push_set(cpu, true);
8274
8275 /*
8276 * We've cleared cpu_active_mask / set balance_push, wait for all
8277 * preempt-disabled and RCU users of this state to go away such that
8278 * all new such users will observe it.
8279 *
8280 * Specifically, we rely on ttwu to no longer target this CPU, see
8281 * ttwu_queue_cond() and is_cpu_allowed().
8282 *
8283 * Do sync before park smpboot threads to take care the RCU boost case.
8284 */
8285 synchronize_rcu();
8286
8287 sched_set_rq_offline(rq, cpu);
8288
8289 scx_rq_deactivate(rq);
8290
8291 /*
8292 * When going down, decrement the number of cores with SMT present.
8293 */
8294 sched_smt_present_dec(cpu);
8295
8296#ifdef CONFIG_SCHED_SMT
8297 sched_core_cpu_deactivate(cpu);
8298#endif
8299
8300 if (!sched_smp_initialized)
8301 return 0;
8302
8303 sched_update_numa(cpu, false);
8304 ret = cpuset_cpu_inactive(cpu);
8305 if (ret) {
8306 sched_smt_present_inc(cpu);
8307 sched_set_rq_online(rq, cpu);
8308 balance_push_set(cpu, false);
8309 set_cpu_active(cpu, true);
8310 sched_update_numa(cpu, true);
8311 return ret;
8312 }
8313 sched_domains_numa_masks_clear(cpu);
8314 return 0;
8315}
8316
8317static void sched_rq_cpu_starting(unsigned int cpu)
8318{
8319 struct rq *rq = cpu_rq(cpu);
8320
8321 rq->calc_load_update = calc_load_update;
8322 update_max_interval();
8323}
8324
8325int sched_cpu_starting(unsigned int cpu)
8326{
8327 sched_core_cpu_starting(cpu);
8328 sched_rq_cpu_starting(cpu);
8329 sched_tick_start(cpu);
8330 return 0;
8331}
8332
8333#ifdef CONFIG_HOTPLUG_CPU
8334
8335/*
8336 * Invoked immediately before the stopper thread is invoked to bring the
8337 * CPU down completely. At this point all per CPU kthreads except the
8338 * hotplug thread (current) and the stopper thread (inactive) have been
8339 * either parked or have been unbound from the outgoing CPU. Ensure that
8340 * any of those which might be on the way out are gone.
8341 *
8342 * If after this point a bound task is being woken on this CPU then the
8343 * responsible hotplug callback has failed to do it's job.
8344 * sched_cpu_dying() will catch it with the appropriate fireworks.
8345 */
8346int sched_cpu_wait_empty(unsigned int cpu)
8347{
8348 balance_hotplug_wait();
8349 return 0;
8350}
8351
8352/*
8353 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8354 * might have. Called from the CPU stopper task after ensuring that the
8355 * stopper is the last running task on the CPU, so nr_active count is
8356 * stable. We need to take the tear-down thread which is calling this into
8357 * account, so we hand in adjust = 1 to the load calculation.
8358 *
8359 * Also see the comment "Global load-average calculations".
8360 */
8361static void calc_load_migrate(struct rq *rq)
8362{
8363 long delta = calc_load_fold_active(rq, 1);
8364
8365 if (delta)
8366 atomic_long_add(delta, &calc_load_tasks);
8367}
8368
8369static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8370{
8371 struct task_struct *g, *p;
8372 int cpu = cpu_of(rq);
8373
8374 lockdep_assert_rq_held(rq);
8375
8376 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8377 for_each_process_thread(g, p) {
8378 if (task_cpu(p) != cpu)
8379 continue;
8380
8381 if (!task_on_rq_queued(p))
8382 continue;
8383
8384 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8385 }
8386}
8387
8388int sched_cpu_dying(unsigned int cpu)
8389{
8390 struct rq *rq = cpu_rq(cpu);
8391 struct rq_flags rf;
8392
8393 /* Handle pending wakeups and then migrate everything off */
8394 sched_tick_stop(cpu);
8395
8396 rq_lock_irqsave(rq, &rf);
8397 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8398 WARN(true, "Dying CPU not properly vacated!");
8399 dump_rq_tasks(rq, KERN_WARNING);
8400 }
8401 rq_unlock_irqrestore(rq, &rf);
8402
8403 calc_load_migrate(rq);
8404 update_max_interval();
8405 hrtick_clear(rq);
8406 sched_core_cpu_dying(cpu);
8407 return 0;
8408}
8409#endif
8410
8411void __init sched_init_smp(void)
8412{
8413 sched_init_numa(NUMA_NO_NODE);
8414
8415 /*
8416 * There's no userspace yet to cause hotplug operations; hence all the
8417 * CPU masks are stable and all blatant races in the below code cannot
8418 * happen.
8419 */
8420 mutex_lock(&sched_domains_mutex);
8421 sched_init_domains(cpu_active_mask);
8422 mutex_unlock(&sched_domains_mutex);
8423
8424 /* Move init over to a non-isolated CPU */
8425 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8426 BUG();
8427 current->flags &= ~PF_NO_SETAFFINITY;
8428 sched_init_granularity();
8429
8430 init_sched_rt_class();
8431 init_sched_dl_class();
8432
8433 sched_smp_initialized = true;
8434}
8435
8436static int __init migration_init(void)
8437{
8438 sched_cpu_starting(smp_processor_id());
8439 return 0;
8440}
8441early_initcall(migration_init);
8442
8443#else
8444void __init sched_init_smp(void)
8445{
8446 sched_init_granularity();
8447}
8448#endif /* CONFIG_SMP */
8449
8450int in_sched_functions(unsigned long addr)
8451{
8452 return in_lock_functions(addr) ||
8453 (addr >= (unsigned long)__sched_text_start
8454 && addr < (unsigned long)__sched_text_end);
8455}
8456
8457#ifdef CONFIG_CGROUP_SCHED
8458/*
8459 * Default task group.
8460 * Every task in system belongs to this group at bootup.
8461 */
8462struct task_group root_task_group;
8463LIST_HEAD(task_groups);
8464
8465/* Cacheline aligned slab cache for task_group */
8466static struct kmem_cache *task_group_cache __ro_after_init;
8467#endif
8468
8469void __init sched_init(void)
8470{
8471 unsigned long ptr = 0;
8472 int i;
8473
8474 /* Make sure the linker didn't screw up */
8475#ifdef CONFIG_SMP
8476 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8477#endif
8478 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8479 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8480 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8481#ifdef CONFIG_SCHED_CLASS_EXT
8482 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8483 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8484#endif
8485
8486 wait_bit_init();
8487
8488#ifdef CONFIG_FAIR_GROUP_SCHED
8489 ptr += 2 * nr_cpu_ids * sizeof(void **);
8490#endif
8491#ifdef CONFIG_RT_GROUP_SCHED
8492 ptr += 2 * nr_cpu_ids * sizeof(void **);
8493#endif
8494 if (ptr) {
8495 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8496
8497#ifdef CONFIG_FAIR_GROUP_SCHED
8498 root_task_group.se = (struct sched_entity **)ptr;
8499 ptr += nr_cpu_ids * sizeof(void **);
8500
8501 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8502 ptr += nr_cpu_ids * sizeof(void **);
8503
8504 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8505 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8506#endif /* CONFIG_FAIR_GROUP_SCHED */
8507#ifdef CONFIG_EXT_GROUP_SCHED
8508 root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8509#endif /* CONFIG_EXT_GROUP_SCHED */
8510#ifdef CONFIG_RT_GROUP_SCHED
8511 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8512 ptr += nr_cpu_ids * sizeof(void **);
8513
8514 root_task_group.rt_rq = (struct rt_rq **)ptr;
8515 ptr += nr_cpu_ids * sizeof(void **);
8516
8517#endif /* CONFIG_RT_GROUP_SCHED */
8518 }
8519
8520#ifdef CONFIG_SMP
8521 init_defrootdomain();
8522#endif
8523
8524#ifdef CONFIG_RT_GROUP_SCHED
8525 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8526 global_rt_period(), global_rt_runtime());
8527#endif /* CONFIG_RT_GROUP_SCHED */
8528
8529#ifdef CONFIG_CGROUP_SCHED
8530 task_group_cache = KMEM_CACHE(task_group, 0);
8531
8532 list_add(&root_task_group.list, &task_groups);
8533 INIT_LIST_HEAD(&root_task_group.children);
8534 INIT_LIST_HEAD(&root_task_group.siblings);
8535 autogroup_init(&init_task);
8536#endif /* CONFIG_CGROUP_SCHED */
8537
8538 for_each_possible_cpu(i) {
8539 struct rq *rq;
8540
8541 rq = cpu_rq(i);
8542 raw_spin_lock_init(&rq->__lock);
8543 rq->nr_running = 0;
8544 rq->calc_load_active = 0;
8545 rq->calc_load_update = jiffies + LOAD_FREQ;
8546 init_cfs_rq(&rq->cfs);
8547 init_rt_rq(&rq->rt);
8548 init_dl_rq(&rq->dl);
8549#ifdef CONFIG_FAIR_GROUP_SCHED
8550 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8551 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8552 /*
8553 * How much CPU bandwidth does root_task_group get?
8554 *
8555 * In case of task-groups formed through the cgroup filesystem, it
8556 * gets 100% of the CPU resources in the system. This overall
8557 * system CPU resource is divided among the tasks of
8558 * root_task_group and its child task-groups in a fair manner,
8559 * based on each entity's (task or task-group's) weight
8560 * (se->load.weight).
8561 *
8562 * In other words, if root_task_group has 10 tasks of weight
8563 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8564 * then A0's share of the CPU resource is:
8565 *
8566 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8567 *
8568 * We achieve this by letting root_task_group's tasks sit
8569 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8570 */
8571 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8572#endif /* CONFIG_FAIR_GROUP_SCHED */
8573
8574#ifdef CONFIG_RT_GROUP_SCHED
8575 /*
8576 * This is required for init cpu because rt.c:__enable_runtime()
8577 * starts working after scheduler_running, which is not the case
8578 * yet.
8579 */
8580 rq->rt.rt_runtime = global_rt_runtime();
8581 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8582#endif
8583#ifdef CONFIG_SMP
8584 rq->sd = NULL;
8585 rq->rd = NULL;
8586 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8587 rq->balance_callback = &balance_push_callback;
8588 rq->active_balance = 0;
8589 rq->next_balance = jiffies;
8590 rq->push_cpu = 0;
8591 rq->cpu = i;
8592 rq->online = 0;
8593 rq->idle_stamp = 0;
8594 rq->avg_idle = 2*sysctl_sched_migration_cost;
8595 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8596
8597 INIT_LIST_HEAD(&rq->cfs_tasks);
8598
8599 rq_attach_root(rq, &def_root_domain);
8600#ifdef CONFIG_NO_HZ_COMMON
8601 rq->last_blocked_load_update_tick = jiffies;
8602 atomic_set(&rq->nohz_flags, 0);
8603
8604 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8605#endif
8606#ifdef CONFIG_HOTPLUG_CPU
8607 rcuwait_init(&rq->hotplug_wait);
8608#endif
8609#endif /* CONFIG_SMP */
8610 hrtick_rq_init(rq);
8611 atomic_set(&rq->nr_iowait, 0);
8612 fair_server_init(rq);
8613
8614#ifdef CONFIG_SCHED_CORE
8615 rq->core = rq;
8616 rq->core_pick = NULL;
8617 rq->core_dl_server = NULL;
8618 rq->core_enabled = 0;
8619 rq->core_tree = RB_ROOT;
8620 rq->core_forceidle_count = 0;
8621 rq->core_forceidle_occupation = 0;
8622 rq->core_forceidle_start = 0;
8623
8624 rq->core_cookie = 0UL;
8625#endif
8626 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8627 }
8628
8629 set_load_weight(&init_task, false);
8630 init_task.se.slice = sysctl_sched_base_slice,
8631
8632 /*
8633 * The boot idle thread does lazy MMU switching as well:
8634 */
8635 mmgrab_lazy_tlb(&init_mm);
8636 enter_lazy_tlb(&init_mm, current);
8637
8638 /*
8639 * The idle task doesn't need the kthread struct to function, but it
8640 * is dressed up as a per-CPU kthread and thus needs to play the part
8641 * if we want to avoid special-casing it in code that deals with per-CPU
8642 * kthreads.
8643 */
8644 WARN_ON(!set_kthread_struct(current));
8645
8646 /*
8647 * Make us the idle thread. Technically, schedule() should not be
8648 * called from this thread, however somewhere below it might be,
8649 * but because we are the idle thread, we just pick up running again
8650 * when this runqueue becomes "idle".
8651 */
8652 __sched_fork(0, current);
8653 init_idle(current, smp_processor_id());
8654
8655 calc_load_update = jiffies + LOAD_FREQ;
8656
8657#ifdef CONFIG_SMP
8658 idle_thread_set_boot_cpu();
8659 balance_push_set(smp_processor_id(), false);
8660#endif
8661 init_sched_fair_class();
8662 init_sched_ext_class();
8663
8664 psi_init();
8665
8666 init_uclamp();
8667
8668 preempt_dynamic_init();
8669
8670 scheduler_running = 1;
8671}
8672
8673#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8674
8675void __might_sleep(const char *file, int line)
8676{
8677 unsigned int state = get_current_state();
8678 /*
8679 * Blocking primitives will set (and therefore destroy) current->state,
8680 * since we will exit with TASK_RUNNING make sure we enter with it,
8681 * otherwise we will destroy state.
8682 */
8683 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8684 "do not call blocking ops when !TASK_RUNNING; "
8685 "state=%x set at [<%p>] %pS\n", state,
8686 (void *)current->task_state_change,
8687 (void *)current->task_state_change);
8688
8689 __might_resched(file, line, 0);
8690}
8691EXPORT_SYMBOL(__might_sleep);
8692
8693static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8694{
8695 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8696 return;
8697
8698 if (preempt_count() == preempt_offset)
8699 return;
8700
8701 pr_err("Preemption disabled at:");
8702 print_ip_sym(KERN_ERR, ip);
8703}
8704
8705static inline bool resched_offsets_ok(unsigned int offsets)
8706{
8707 unsigned int nested = preempt_count();
8708
8709 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8710
8711 return nested == offsets;
8712}
8713
8714void __might_resched(const char *file, int line, unsigned int offsets)
8715{
8716 /* Ratelimiting timestamp: */
8717 static unsigned long prev_jiffy;
8718
8719 unsigned long preempt_disable_ip;
8720
8721 /* WARN_ON_ONCE() by default, no rate limit required: */
8722 rcu_sleep_check();
8723
8724 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8725 !is_idle_task(current) && !current->non_block_count) ||
8726 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8727 oops_in_progress)
8728 return;
8729
8730 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8731 return;
8732 prev_jiffy = jiffies;
8733
8734 /* Save this before calling printk(), since that will clobber it: */
8735 preempt_disable_ip = get_preempt_disable_ip(current);
8736
8737 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8738 file, line);
8739 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8740 in_atomic(), irqs_disabled(), current->non_block_count,
8741 current->pid, current->comm);
8742 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8743 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8744
8745 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8746 pr_err("RCU nest depth: %d, expected: %u\n",
8747 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8748 }
8749
8750 if (task_stack_end_corrupted(current))
8751 pr_emerg("Thread overran stack, or stack corrupted\n");
8752
8753 debug_show_held_locks(current);
8754 if (irqs_disabled())
8755 print_irqtrace_events(current);
8756
8757 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8758 preempt_disable_ip);
8759
8760 dump_stack();
8761 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8762}
8763EXPORT_SYMBOL(__might_resched);
8764
8765void __cant_sleep(const char *file, int line, int preempt_offset)
8766{
8767 static unsigned long prev_jiffy;
8768
8769 if (irqs_disabled())
8770 return;
8771
8772 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8773 return;
8774
8775 if (preempt_count() > preempt_offset)
8776 return;
8777
8778 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8779 return;
8780 prev_jiffy = jiffies;
8781
8782 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8783 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8784 in_atomic(), irqs_disabled(),
8785 current->pid, current->comm);
8786
8787 debug_show_held_locks(current);
8788 dump_stack();
8789 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8790}
8791EXPORT_SYMBOL_GPL(__cant_sleep);
8792
8793#ifdef CONFIG_SMP
8794void __cant_migrate(const char *file, int line)
8795{
8796 static unsigned long prev_jiffy;
8797
8798 if (irqs_disabled())
8799 return;
8800
8801 if (is_migration_disabled(current))
8802 return;
8803
8804 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8805 return;
8806
8807 if (preempt_count() > 0)
8808 return;
8809
8810 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8811 return;
8812 prev_jiffy = jiffies;
8813
8814 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8815 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8816 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8817 current->pid, current->comm);
8818
8819 debug_show_held_locks(current);
8820 dump_stack();
8821 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8822}
8823EXPORT_SYMBOL_GPL(__cant_migrate);
8824#endif
8825#endif
8826
8827#ifdef CONFIG_MAGIC_SYSRQ
8828void normalize_rt_tasks(void)
8829{
8830 struct task_struct *g, *p;
8831 struct sched_attr attr = {
8832 .sched_policy = SCHED_NORMAL,
8833 };
8834
8835 read_lock(&tasklist_lock);
8836 for_each_process_thread(g, p) {
8837 /*
8838 * Only normalize user tasks:
8839 */
8840 if (p->flags & PF_KTHREAD)
8841 continue;
8842
8843 p->se.exec_start = 0;
8844 schedstat_set(p->stats.wait_start, 0);
8845 schedstat_set(p->stats.sleep_start, 0);
8846 schedstat_set(p->stats.block_start, 0);
8847
8848 if (!rt_or_dl_task(p)) {
8849 /*
8850 * Renice negative nice level userspace
8851 * tasks back to 0:
8852 */
8853 if (task_nice(p) < 0)
8854 set_user_nice(p, 0);
8855 continue;
8856 }
8857
8858 __sched_setscheduler(p, &attr, false, false);
8859 }
8860 read_unlock(&tasklist_lock);
8861}
8862
8863#endif /* CONFIG_MAGIC_SYSRQ */
8864
8865#if defined(CONFIG_KGDB_KDB)
8866/*
8867 * These functions are only useful for KDB.
8868 *
8869 * They can only be called when the whole system has been
8870 * stopped - every CPU needs to be quiescent, and no scheduling
8871 * activity can take place. Using them for anything else would
8872 * be a serious bug, and as a result, they aren't even visible
8873 * under any other configuration.
8874 */
8875
8876/**
8877 * curr_task - return the current task for a given CPU.
8878 * @cpu: the processor in question.
8879 *
8880 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8881 *
8882 * Return: The current task for @cpu.
8883 */
8884struct task_struct *curr_task(int cpu)
8885{
8886 return cpu_curr(cpu);
8887}
8888
8889#endif /* defined(CONFIG_KGDB_KDB) */
8890
8891#ifdef CONFIG_CGROUP_SCHED
8892/* task_group_lock serializes the addition/removal of task groups */
8893static DEFINE_SPINLOCK(task_group_lock);
8894
8895static inline void alloc_uclamp_sched_group(struct task_group *tg,
8896 struct task_group *parent)
8897{
8898#ifdef CONFIG_UCLAMP_TASK_GROUP
8899 enum uclamp_id clamp_id;
8900
8901 for_each_clamp_id(clamp_id) {
8902 uclamp_se_set(&tg->uclamp_req[clamp_id],
8903 uclamp_none(clamp_id), false);
8904 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8905 }
8906#endif
8907}
8908
8909static void sched_free_group(struct task_group *tg)
8910{
8911 free_fair_sched_group(tg);
8912 free_rt_sched_group(tg);
8913 autogroup_free(tg);
8914 kmem_cache_free(task_group_cache, tg);
8915}
8916
8917static void sched_free_group_rcu(struct rcu_head *rcu)
8918{
8919 sched_free_group(container_of(rcu, struct task_group, rcu));
8920}
8921
8922static void sched_unregister_group(struct task_group *tg)
8923{
8924 unregister_fair_sched_group(tg);
8925 unregister_rt_sched_group(tg);
8926 /*
8927 * We have to wait for yet another RCU grace period to expire, as
8928 * print_cfs_stats() might run concurrently.
8929 */
8930 call_rcu(&tg->rcu, sched_free_group_rcu);
8931}
8932
8933/* allocate runqueue etc for a new task group */
8934struct task_group *sched_create_group(struct task_group *parent)
8935{
8936 struct task_group *tg;
8937
8938 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8939 if (!tg)
8940 return ERR_PTR(-ENOMEM);
8941
8942 if (!alloc_fair_sched_group(tg, parent))
8943 goto err;
8944
8945 if (!alloc_rt_sched_group(tg, parent))
8946 goto err;
8947
8948 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8949 alloc_uclamp_sched_group(tg, parent);
8950
8951 return tg;
8952
8953err:
8954 sched_free_group(tg);
8955 return ERR_PTR(-ENOMEM);
8956}
8957
8958void sched_online_group(struct task_group *tg, struct task_group *parent)
8959{
8960 unsigned long flags;
8961
8962 spin_lock_irqsave(&task_group_lock, flags);
8963 list_add_rcu(&tg->list, &task_groups);
8964
8965 /* Root should already exist: */
8966 WARN_ON(!parent);
8967
8968 tg->parent = parent;
8969 INIT_LIST_HEAD(&tg->children);
8970 list_add_rcu(&tg->siblings, &parent->children);
8971 spin_unlock_irqrestore(&task_group_lock, flags);
8972
8973 online_fair_sched_group(tg);
8974}
8975
8976/* RCU callback to free various structures associated with a task group */
8977static void sched_unregister_group_rcu(struct rcu_head *rhp)
8978{
8979 /* Now it should be safe to free those cfs_rqs: */
8980 sched_unregister_group(container_of(rhp, struct task_group, rcu));
8981}
8982
8983void sched_destroy_group(struct task_group *tg)
8984{
8985 /* Wait for possible concurrent references to cfs_rqs complete: */
8986 call_rcu(&tg->rcu, sched_unregister_group_rcu);
8987}
8988
8989void sched_release_group(struct task_group *tg)
8990{
8991 unsigned long flags;
8992
8993 /*
8994 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8995 * sched_cfs_period_timer()).
8996 *
8997 * For this to be effective, we have to wait for all pending users of
8998 * this task group to leave their RCU critical section to ensure no new
8999 * user will see our dying task group any more. Specifically ensure
9000 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9001 *
9002 * We therefore defer calling unregister_fair_sched_group() to
9003 * sched_unregister_group() which is guarantied to get called only after the
9004 * current RCU grace period has expired.
9005 */
9006 spin_lock_irqsave(&task_group_lock, flags);
9007 list_del_rcu(&tg->list);
9008 list_del_rcu(&tg->siblings);
9009 spin_unlock_irqrestore(&task_group_lock, flags);
9010}
9011
9012static struct task_group *sched_get_task_group(struct task_struct *tsk)
9013{
9014 struct task_group *tg;
9015
9016 /*
9017 * All callers are synchronized by task_rq_lock(); we do not use RCU
9018 * which is pointless here. Thus, we pass "true" to task_css_check()
9019 * to prevent lockdep warnings.
9020 */
9021 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9022 struct task_group, css);
9023 tg = autogroup_task_group(tsk, tg);
9024
9025 return tg;
9026}
9027
9028static void sched_change_group(struct task_struct *tsk, struct task_group *group)
9029{
9030 tsk->sched_task_group = group;
9031
9032#ifdef CONFIG_FAIR_GROUP_SCHED
9033 if (tsk->sched_class->task_change_group)
9034 tsk->sched_class->task_change_group(tsk);
9035 else
9036#endif
9037 set_task_rq(tsk, task_cpu(tsk));
9038}
9039
9040/*
9041 * Change task's runqueue when it moves between groups.
9042 *
9043 * The caller of this function should have put the task in its new group by
9044 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9045 * its new group.
9046 */
9047void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9048{
9049 int queued, running, queue_flags =
9050 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9051 struct task_group *group;
9052 struct rq *rq;
9053
9054 CLASS(task_rq_lock, rq_guard)(tsk);
9055 rq = rq_guard.rq;
9056
9057 /*
9058 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
9059 * group changes.
9060 */
9061 group = sched_get_task_group(tsk);
9062 if (group == tsk->sched_task_group)
9063 return;
9064
9065 update_rq_clock(rq);
9066
9067 running = task_current_donor(rq, tsk);
9068 queued = task_on_rq_queued(tsk);
9069
9070 if (queued)
9071 dequeue_task(rq, tsk, queue_flags);
9072 if (running)
9073 put_prev_task(rq, tsk);
9074
9075 sched_change_group(tsk, group);
9076 if (!for_autogroup)
9077 scx_cgroup_move_task(tsk);
9078
9079 if (queued)
9080 enqueue_task(rq, tsk, queue_flags);
9081 if (running) {
9082 set_next_task(rq, tsk);
9083 /*
9084 * After changing group, the running task may have joined a
9085 * throttled one but it's still the running task. Trigger a
9086 * resched to make sure that task can still run.
9087 */
9088 resched_curr(rq);
9089 }
9090}
9091
9092static struct cgroup_subsys_state *
9093cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9094{
9095 struct task_group *parent = css_tg(parent_css);
9096 struct task_group *tg;
9097
9098 if (!parent) {
9099 /* This is early initialization for the top cgroup */
9100 return &root_task_group.css;
9101 }
9102
9103 tg = sched_create_group(parent);
9104 if (IS_ERR(tg))
9105 return ERR_PTR(-ENOMEM);
9106
9107 return &tg->css;
9108}
9109
9110/* Expose task group only after completing cgroup initialization */
9111static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9112{
9113 struct task_group *tg = css_tg(css);
9114 struct task_group *parent = css_tg(css->parent);
9115 int ret;
9116
9117 ret = scx_tg_online(tg);
9118 if (ret)
9119 return ret;
9120
9121 if (parent)
9122 sched_online_group(tg, parent);
9123
9124#ifdef CONFIG_UCLAMP_TASK_GROUP
9125 /* Propagate the effective uclamp value for the new group */
9126 guard(mutex)(&uclamp_mutex);
9127 guard(rcu)();
9128 cpu_util_update_eff(css);
9129#endif
9130
9131 return 0;
9132}
9133
9134static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9135{
9136 struct task_group *tg = css_tg(css);
9137
9138 scx_tg_offline(tg);
9139}
9140
9141static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9142{
9143 struct task_group *tg = css_tg(css);
9144
9145 sched_release_group(tg);
9146}
9147
9148static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9149{
9150 struct task_group *tg = css_tg(css);
9151
9152 /*
9153 * Relies on the RCU grace period between css_released() and this.
9154 */
9155 sched_unregister_group(tg);
9156}
9157
9158static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9159{
9160#ifdef CONFIG_RT_GROUP_SCHED
9161 struct task_struct *task;
9162 struct cgroup_subsys_state *css;
9163
9164 cgroup_taskset_for_each(task, css, tset) {
9165 if (!sched_rt_can_attach(css_tg(css), task))
9166 return -EINVAL;
9167 }
9168#endif
9169 return scx_cgroup_can_attach(tset);
9170}
9171
9172static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9173{
9174 struct task_struct *task;
9175 struct cgroup_subsys_state *css;
9176
9177 cgroup_taskset_for_each(task, css, tset)
9178 sched_move_task(task, false);
9179
9180 scx_cgroup_finish_attach();
9181}
9182
9183static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9184{
9185 scx_cgroup_cancel_attach(tset);
9186}
9187
9188#ifdef CONFIG_UCLAMP_TASK_GROUP
9189static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9190{
9191 struct cgroup_subsys_state *top_css = css;
9192 struct uclamp_se *uc_parent = NULL;
9193 struct uclamp_se *uc_se = NULL;
9194 unsigned int eff[UCLAMP_CNT];
9195 enum uclamp_id clamp_id;
9196 unsigned int clamps;
9197
9198 lockdep_assert_held(&uclamp_mutex);
9199 SCHED_WARN_ON(!rcu_read_lock_held());
9200
9201 css_for_each_descendant_pre(css, top_css) {
9202 uc_parent = css_tg(css)->parent
9203 ? css_tg(css)->parent->uclamp : NULL;
9204
9205 for_each_clamp_id(clamp_id) {
9206 /* Assume effective clamps matches requested clamps */
9207 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9208 /* Cap effective clamps with parent's effective clamps */
9209 if (uc_parent &&
9210 eff[clamp_id] > uc_parent[clamp_id].value) {
9211 eff[clamp_id] = uc_parent[clamp_id].value;
9212 }
9213 }
9214 /* Ensure protection is always capped by limit */
9215 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9216
9217 /* Propagate most restrictive effective clamps */
9218 clamps = 0x0;
9219 uc_se = css_tg(css)->uclamp;
9220 for_each_clamp_id(clamp_id) {
9221 if (eff[clamp_id] == uc_se[clamp_id].value)
9222 continue;
9223 uc_se[clamp_id].value = eff[clamp_id];
9224 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9225 clamps |= (0x1 << clamp_id);
9226 }
9227 if (!clamps) {
9228 css = css_rightmost_descendant(css);
9229 continue;
9230 }
9231
9232 /* Immediately update descendants RUNNABLE tasks */
9233 uclamp_update_active_tasks(css);
9234 }
9235}
9236
9237/*
9238 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9239 * C expression. Since there is no way to convert a macro argument (N) into a
9240 * character constant, use two levels of macros.
9241 */
9242#define _POW10(exp) ((unsigned int)1e##exp)
9243#define POW10(exp) _POW10(exp)
9244
9245struct uclamp_request {
9246#define UCLAMP_PERCENT_SHIFT 2
9247#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9248 s64 percent;
9249 u64 util;
9250 int ret;
9251};
9252
9253static inline struct uclamp_request
9254capacity_from_percent(char *buf)
9255{
9256 struct uclamp_request req = {
9257 .percent = UCLAMP_PERCENT_SCALE,
9258 .util = SCHED_CAPACITY_SCALE,
9259 .ret = 0,
9260 };
9261
9262 buf = strim(buf);
9263 if (strcmp(buf, "max")) {
9264 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9265 &req.percent);
9266 if (req.ret)
9267 return req;
9268 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9269 req.ret = -ERANGE;
9270 return req;
9271 }
9272
9273 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9274 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9275 }
9276
9277 return req;
9278}
9279
9280static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9281 size_t nbytes, loff_t off,
9282 enum uclamp_id clamp_id)
9283{
9284 struct uclamp_request req;
9285 struct task_group *tg;
9286
9287 req = capacity_from_percent(buf);
9288 if (req.ret)
9289 return req.ret;
9290
9291 static_branch_enable(&sched_uclamp_used);
9292
9293 guard(mutex)(&uclamp_mutex);
9294 guard(rcu)();
9295
9296 tg = css_tg(of_css(of));
9297 if (tg->uclamp_req[clamp_id].value != req.util)
9298 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9299
9300 /*
9301 * Because of not recoverable conversion rounding we keep track of the
9302 * exact requested value
9303 */
9304 tg->uclamp_pct[clamp_id] = req.percent;
9305
9306 /* Update effective clamps to track the most restrictive value */
9307 cpu_util_update_eff(of_css(of));
9308
9309 return nbytes;
9310}
9311
9312static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9313 char *buf, size_t nbytes,
9314 loff_t off)
9315{
9316 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9317}
9318
9319static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9320 char *buf, size_t nbytes,
9321 loff_t off)
9322{
9323 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9324}
9325
9326static inline void cpu_uclamp_print(struct seq_file *sf,
9327 enum uclamp_id clamp_id)
9328{
9329 struct task_group *tg;
9330 u64 util_clamp;
9331 u64 percent;
9332 u32 rem;
9333
9334 scoped_guard (rcu) {
9335 tg = css_tg(seq_css(sf));
9336 util_clamp = tg->uclamp_req[clamp_id].value;
9337 }
9338
9339 if (util_clamp == SCHED_CAPACITY_SCALE) {
9340 seq_puts(sf, "max\n");
9341 return;
9342 }
9343
9344 percent = tg->uclamp_pct[clamp_id];
9345 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9346 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9347}
9348
9349static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9350{
9351 cpu_uclamp_print(sf, UCLAMP_MIN);
9352 return 0;
9353}
9354
9355static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9356{
9357 cpu_uclamp_print(sf, UCLAMP_MAX);
9358 return 0;
9359}
9360#endif /* CONFIG_UCLAMP_TASK_GROUP */
9361
9362#ifdef CONFIG_GROUP_SCHED_WEIGHT
9363static unsigned long tg_weight(struct task_group *tg)
9364{
9365#ifdef CONFIG_FAIR_GROUP_SCHED
9366 return scale_load_down(tg->shares);
9367#else
9368 return sched_weight_from_cgroup(tg->scx_weight);
9369#endif
9370}
9371
9372static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9373 struct cftype *cftype, u64 shareval)
9374{
9375 int ret;
9376
9377 if (shareval > scale_load_down(ULONG_MAX))
9378 shareval = MAX_SHARES;
9379 ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9380 if (!ret)
9381 scx_group_set_weight(css_tg(css),
9382 sched_weight_to_cgroup(shareval));
9383 return ret;
9384}
9385
9386static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9387 struct cftype *cft)
9388{
9389 return tg_weight(css_tg(css));
9390}
9391#endif /* CONFIG_GROUP_SCHED_WEIGHT */
9392
9393#ifdef CONFIG_CFS_BANDWIDTH
9394static DEFINE_MUTEX(cfs_constraints_mutex);
9395
9396const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9397static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9398/* More than 203 days if BW_SHIFT equals 20. */
9399static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9400
9401static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9402
9403static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9404 u64 burst)
9405{
9406 int i, ret = 0, runtime_enabled, runtime_was_enabled;
9407 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9408
9409 if (tg == &root_task_group)
9410 return -EINVAL;
9411
9412 /*
9413 * Ensure we have at some amount of bandwidth every period. This is
9414 * to prevent reaching a state of large arrears when throttled via
9415 * entity_tick() resulting in prolonged exit starvation.
9416 */
9417 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9418 return -EINVAL;
9419
9420 /*
9421 * Likewise, bound things on the other side by preventing insane quota
9422 * periods. This also allows us to normalize in computing quota
9423 * feasibility.
9424 */
9425 if (period > max_cfs_quota_period)
9426 return -EINVAL;
9427
9428 /*
9429 * Bound quota to defend quota against overflow during bandwidth shift.
9430 */
9431 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9432 return -EINVAL;
9433
9434 if (quota != RUNTIME_INF && (burst > quota ||
9435 burst + quota > max_cfs_runtime))
9436 return -EINVAL;
9437
9438 /*
9439 * Prevent race between setting of cfs_rq->runtime_enabled and
9440 * unthrottle_offline_cfs_rqs().
9441 */
9442 guard(cpus_read_lock)();
9443 guard(mutex)(&cfs_constraints_mutex);
9444
9445 ret = __cfs_schedulable(tg, period, quota);
9446 if (ret)
9447 return ret;
9448
9449 runtime_enabled = quota != RUNTIME_INF;
9450 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9451 /*
9452 * If we need to toggle cfs_bandwidth_used, off->on must occur
9453 * before making related changes, and on->off must occur afterwards
9454 */
9455 if (runtime_enabled && !runtime_was_enabled)
9456 cfs_bandwidth_usage_inc();
9457
9458 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9459 cfs_b->period = ns_to_ktime(period);
9460 cfs_b->quota = quota;
9461 cfs_b->burst = burst;
9462
9463 __refill_cfs_bandwidth_runtime(cfs_b);
9464
9465 /*
9466 * Restart the period timer (if active) to handle new
9467 * period expiry:
9468 */
9469 if (runtime_enabled)
9470 start_cfs_bandwidth(cfs_b);
9471 }
9472
9473 for_each_online_cpu(i) {
9474 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9475 struct rq *rq = cfs_rq->rq;
9476
9477 guard(rq_lock_irq)(rq);
9478 cfs_rq->runtime_enabled = runtime_enabled;
9479 cfs_rq->runtime_remaining = 0;
9480
9481 if (cfs_rq->throttled)
9482 unthrottle_cfs_rq(cfs_rq);
9483 }
9484
9485 if (runtime_was_enabled && !runtime_enabled)
9486 cfs_bandwidth_usage_dec();
9487
9488 return 0;
9489}
9490
9491static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9492{
9493 u64 quota, period, burst;
9494
9495 period = ktime_to_ns(tg->cfs_bandwidth.period);
9496 burst = tg->cfs_bandwidth.burst;
9497 if (cfs_quota_us < 0)
9498 quota = RUNTIME_INF;
9499 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9500 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9501 else
9502 return -EINVAL;
9503
9504 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9505}
9506
9507static long tg_get_cfs_quota(struct task_group *tg)
9508{
9509 u64 quota_us;
9510
9511 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9512 return -1;
9513
9514 quota_us = tg->cfs_bandwidth.quota;
9515 do_div(quota_us, NSEC_PER_USEC);
9516
9517 return quota_us;
9518}
9519
9520static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9521{
9522 u64 quota, period, burst;
9523
9524 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9525 return -EINVAL;
9526
9527 period = (u64)cfs_period_us * NSEC_PER_USEC;
9528 quota = tg->cfs_bandwidth.quota;
9529 burst = tg->cfs_bandwidth.burst;
9530
9531 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9532}
9533
9534static long tg_get_cfs_period(struct task_group *tg)
9535{
9536 u64 cfs_period_us;
9537
9538 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9539 do_div(cfs_period_us, NSEC_PER_USEC);
9540
9541 return cfs_period_us;
9542}
9543
9544static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9545{
9546 u64 quota, period, burst;
9547
9548 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9549 return -EINVAL;
9550
9551 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9552 period = ktime_to_ns(tg->cfs_bandwidth.period);
9553 quota = tg->cfs_bandwidth.quota;
9554
9555 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9556}
9557
9558static long tg_get_cfs_burst(struct task_group *tg)
9559{
9560 u64 burst_us;
9561
9562 burst_us = tg->cfs_bandwidth.burst;
9563 do_div(burst_us, NSEC_PER_USEC);
9564
9565 return burst_us;
9566}
9567
9568static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9569 struct cftype *cft)
9570{
9571 return tg_get_cfs_quota(css_tg(css));
9572}
9573
9574static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9575 struct cftype *cftype, s64 cfs_quota_us)
9576{
9577 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9578}
9579
9580static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9581 struct cftype *cft)
9582{
9583 return tg_get_cfs_period(css_tg(css));
9584}
9585
9586static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9587 struct cftype *cftype, u64 cfs_period_us)
9588{
9589 return tg_set_cfs_period(css_tg(css), cfs_period_us);
9590}
9591
9592static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9593 struct cftype *cft)
9594{
9595 return tg_get_cfs_burst(css_tg(css));
9596}
9597
9598static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9599 struct cftype *cftype, u64 cfs_burst_us)
9600{
9601 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9602}
9603
9604struct cfs_schedulable_data {
9605 struct task_group *tg;
9606 u64 period, quota;
9607};
9608
9609/*
9610 * normalize group quota/period to be quota/max_period
9611 * note: units are usecs
9612 */
9613static u64 normalize_cfs_quota(struct task_group *tg,
9614 struct cfs_schedulable_data *d)
9615{
9616 u64 quota, period;
9617
9618 if (tg == d->tg) {
9619 period = d->period;
9620 quota = d->quota;
9621 } else {
9622 period = tg_get_cfs_period(tg);
9623 quota = tg_get_cfs_quota(tg);
9624 }
9625
9626 /* note: these should typically be equivalent */
9627 if (quota == RUNTIME_INF || quota == -1)
9628 return RUNTIME_INF;
9629
9630 return to_ratio(period, quota);
9631}
9632
9633static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9634{
9635 struct cfs_schedulable_data *d = data;
9636 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9637 s64 quota = 0, parent_quota = -1;
9638
9639 if (!tg->parent) {
9640 quota = RUNTIME_INF;
9641 } else {
9642 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9643
9644 quota = normalize_cfs_quota(tg, d);
9645 parent_quota = parent_b->hierarchical_quota;
9646
9647 /*
9648 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9649 * always take the non-RUNTIME_INF min. On cgroup1, only
9650 * inherit when no limit is set. In both cases this is used
9651 * by the scheduler to determine if a given CFS task has a
9652 * bandwidth constraint at some higher level.
9653 */
9654 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9655 if (quota == RUNTIME_INF)
9656 quota = parent_quota;
9657 else if (parent_quota != RUNTIME_INF)
9658 quota = min(quota, parent_quota);
9659 } else {
9660 if (quota == RUNTIME_INF)
9661 quota = parent_quota;
9662 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9663 return -EINVAL;
9664 }
9665 }
9666 cfs_b->hierarchical_quota = quota;
9667
9668 return 0;
9669}
9670
9671static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9672{
9673 struct cfs_schedulable_data data = {
9674 .tg = tg,
9675 .period = period,
9676 .quota = quota,
9677 };
9678
9679 if (quota != RUNTIME_INF) {
9680 do_div(data.period, NSEC_PER_USEC);
9681 do_div(data.quota, NSEC_PER_USEC);
9682 }
9683
9684 guard(rcu)();
9685 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9686}
9687
9688static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9689{
9690 struct task_group *tg = css_tg(seq_css(sf));
9691 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9692
9693 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9694 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9695 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9696
9697 if (schedstat_enabled() && tg != &root_task_group) {
9698 struct sched_statistics *stats;
9699 u64 ws = 0;
9700 int i;
9701
9702 for_each_possible_cpu(i) {
9703 stats = __schedstats_from_se(tg->se[i]);
9704 ws += schedstat_val(stats->wait_sum);
9705 }
9706
9707 seq_printf(sf, "wait_sum %llu\n", ws);
9708 }
9709
9710 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9711 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9712
9713 return 0;
9714}
9715
9716static u64 throttled_time_self(struct task_group *tg)
9717{
9718 int i;
9719 u64 total = 0;
9720
9721 for_each_possible_cpu(i) {
9722 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9723 }
9724
9725 return total;
9726}
9727
9728static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9729{
9730 struct task_group *tg = css_tg(seq_css(sf));
9731
9732 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9733
9734 return 0;
9735}
9736#endif /* CONFIG_CFS_BANDWIDTH */
9737
9738#ifdef CONFIG_RT_GROUP_SCHED
9739static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9740 struct cftype *cft, s64 val)
9741{
9742 return sched_group_set_rt_runtime(css_tg(css), val);
9743}
9744
9745static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9746 struct cftype *cft)
9747{
9748 return sched_group_rt_runtime(css_tg(css));
9749}
9750
9751static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9752 struct cftype *cftype, u64 rt_period_us)
9753{
9754 return sched_group_set_rt_period(css_tg(css), rt_period_us);
9755}
9756
9757static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9758 struct cftype *cft)
9759{
9760 return sched_group_rt_period(css_tg(css));
9761}
9762#endif /* CONFIG_RT_GROUP_SCHED */
9763
9764#ifdef CONFIG_GROUP_SCHED_WEIGHT
9765static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9766 struct cftype *cft)
9767{
9768 return css_tg(css)->idle;
9769}
9770
9771static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9772 struct cftype *cft, s64 idle)
9773{
9774 int ret;
9775
9776 ret = sched_group_set_idle(css_tg(css), idle);
9777 if (!ret)
9778 scx_group_set_idle(css_tg(css), idle);
9779 return ret;
9780}
9781#endif
9782
9783static struct cftype cpu_legacy_files[] = {
9784#ifdef CONFIG_GROUP_SCHED_WEIGHT
9785 {
9786 .name = "shares",
9787 .read_u64 = cpu_shares_read_u64,
9788 .write_u64 = cpu_shares_write_u64,
9789 },
9790 {
9791 .name = "idle",
9792 .read_s64 = cpu_idle_read_s64,
9793 .write_s64 = cpu_idle_write_s64,
9794 },
9795#endif
9796#ifdef CONFIG_CFS_BANDWIDTH
9797 {
9798 .name = "cfs_quota_us",
9799 .read_s64 = cpu_cfs_quota_read_s64,
9800 .write_s64 = cpu_cfs_quota_write_s64,
9801 },
9802 {
9803 .name = "cfs_period_us",
9804 .read_u64 = cpu_cfs_period_read_u64,
9805 .write_u64 = cpu_cfs_period_write_u64,
9806 },
9807 {
9808 .name = "cfs_burst_us",
9809 .read_u64 = cpu_cfs_burst_read_u64,
9810 .write_u64 = cpu_cfs_burst_write_u64,
9811 },
9812 {
9813 .name = "stat",
9814 .seq_show = cpu_cfs_stat_show,
9815 },
9816 {
9817 .name = "stat.local",
9818 .seq_show = cpu_cfs_local_stat_show,
9819 },
9820#endif
9821#ifdef CONFIG_RT_GROUP_SCHED
9822 {
9823 .name = "rt_runtime_us",
9824 .read_s64 = cpu_rt_runtime_read,
9825 .write_s64 = cpu_rt_runtime_write,
9826 },
9827 {
9828 .name = "rt_period_us",
9829 .read_u64 = cpu_rt_period_read_uint,
9830 .write_u64 = cpu_rt_period_write_uint,
9831 },
9832#endif
9833#ifdef CONFIG_UCLAMP_TASK_GROUP
9834 {
9835 .name = "uclamp.min",
9836 .flags = CFTYPE_NOT_ON_ROOT,
9837 .seq_show = cpu_uclamp_min_show,
9838 .write = cpu_uclamp_min_write,
9839 },
9840 {
9841 .name = "uclamp.max",
9842 .flags = CFTYPE_NOT_ON_ROOT,
9843 .seq_show = cpu_uclamp_max_show,
9844 .write = cpu_uclamp_max_write,
9845 },
9846#endif
9847 { } /* Terminate */
9848};
9849
9850static int cpu_extra_stat_show(struct seq_file *sf,
9851 struct cgroup_subsys_state *css)
9852{
9853#ifdef CONFIG_CFS_BANDWIDTH
9854 {
9855 struct task_group *tg = css_tg(css);
9856 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9857 u64 throttled_usec, burst_usec;
9858
9859 throttled_usec = cfs_b->throttled_time;
9860 do_div(throttled_usec, NSEC_PER_USEC);
9861 burst_usec = cfs_b->burst_time;
9862 do_div(burst_usec, NSEC_PER_USEC);
9863
9864 seq_printf(sf, "nr_periods %d\n"
9865 "nr_throttled %d\n"
9866 "throttled_usec %llu\n"
9867 "nr_bursts %d\n"
9868 "burst_usec %llu\n",
9869 cfs_b->nr_periods, cfs_b->nr_throttled,
9870 throttled_usec, cfs_b->nr_burst, burst_usec);
9871 }
9872#endif
9873 return 0;
9874}
9875
9876static int cpu_local_stat_show(struct seq_file *sf,
9877 struct cgroup_subsys_state *css)
9878{
9879#ifdef CONFIG_CFS_BANDWIDTH
9880 {
9881 struct task_group *tg = css_tg(css);
9882 u64 throttled_self_usec;
9883
9884 throttled_self_usec = throttled_time_self(tg);
9885 do_div(throttled_self_usec, NSEC_PER_USEC);
9886
9887 seq_printf(sf, "throttled_usec %llu\n",
9888 throttled_self_usec);
9889 }
9890#endif
9891 return 0;
9892}
9893
9894#ifdef CONFIG_GROUP_SCHED_WEIGHT
9895
9896static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9897 struct cftype *cft)
9898{
9899 return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9900}
9901
9902static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9903 struct cftype *cft, u64 cgrp_weight)
9904{
9905 unsigned long weight;
9906 int ret;
9907
9908 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9909 return -ERANGE;
9910
9911 weight = sched_weight_from_cgroup(cgrp_weight);
9912
9913 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9914 if (!ret)
9915 scx_group_set_weight(css_tg(css), cgrp_weight);
9916 return ret;
9917}
9918
9919static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9920 struct cftype *cft)
9921{
9922 unsigned long weight = tg_weight(css_tg(css));
9923 int last_delta = INT_MAX;
9924 int prio, delta;
9925
9926 /* find the closest nice value to the current weight */
9927 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9928 delta = abs(sched_prio_to_weight[prio] - weight);
9929 if (delta >= last_delta)
9930 break;
9931 last_delta = delta;
9932 }
9933
9934 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9935}
9936
9937static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9938 struct cftype *cft, s64 nice)
9939{
9940 unsigned long weight;
9941 int idx, ret;
9942
9943 if (nice < MIN_NICE || nice > MAX_NICE)
9944 return -ERANGE;
9945
9946 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9947 idx = array_index_nospec(idx, 40);
9948 weight = sched_prio_to_weight[idx];
9949
9950 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9951 if (!ret)
9952 scx_group_set_weight(css_tg(css),
9953 sched_weight_to_cgroup(weight));
9954 return ret;
9955}
9956#endif /* CONFIG_GROUP_SCHED_WEIGHT */
9957
9958static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9959 long period, long quota)
9960{
9961 if (quota < 0)
9962 seq_puts(sf, "max");
9963 else
9964 seq_printf(sf, "%ld", quota);
9965
9966 seq_printf(sf, " %ld\n", period);
9967}
9968
9969/* caller should put the current value in *@periodp before calling */
9970static int __maybe_unused cpu_period_quota_parse(char *buf,
9971 u64 *periodp, u64 *quotap)
9972{
9973 char tok[21]; /* U64_MAX */
9974
9975 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9976 return -EINVAL;
9977
9978 *periodp *= NSEC_PER_USEC;
9979
9980 if (sscanf(tok, "%llu", quotap))
9981 *quotap *= NSEC_PER_USEC;
9982 else if (!strcmp(tok, "max"))
9983 *quotap = RUNTIME_INF;
9984 else
9985 return -EINVAL;
9986
9987 return 0;
9988}
9989
9990#ifdef CONFIG_CFS_BANDWIDTH
9991static int cpu_max_show(struct seq_file *sf, void *v)
9992{
9993 struct task_group *tg = css_tg(seq_css(sf));
9994
9995 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9996 return 0;
9997}
9998
9999static ssize_t cpu_max_write(struct kernfs_open_file *of,
10000 char *buf, size_t nbytes, loff_t off)
10001{
10002 struct task_group *tg = css_tg(of_css(of));
10003 u64 period = tg_get_cfs_period(tg);
10004 u64 burst = tg->cfs_bandwidth.burst;
10005 u64 quota;
10006 int ret;
10007
10008 ret = cpu_period_quota_parse(buf, &period, "a);
10009 if (!ret)
10010 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10011 return ret ?: nbytes;
10012}
10013#endif
10014
10015static struct cftype cpu_files[] = {
10016#ifdef CONFIG_GROUP_SCHED_WEIGHT
10017 {
10018 .name = "weight",
10019 .flags = CFTYPE_NOT_ON_ROOT,
10020 .read_u64 = cpu_weight_read_u64,
10021 .write_u64 = cpu_weight_write_u64,
10022 },
10023 {
10024 .name = "weight.nice",
10025 .flags = CFTYPE_NOT_ON_ROOT,
10026 .read_s64 = cpu_weight_nice_read_s64,
10027 .write_s64 = cpu_weight_nice_write_s64,
10028 },
10029 {
10030 .name = "idle",
10031 .flags = CFTYPE_NOT_ON_ROOT,
10032 .read_s64 = cpu_idle_read_s64,
10033 .write_s64 = cpu_idle_write_s64,
10034 },
10035#endif
10036#ifdef CONFIG_CFS_BANDWIDTH
10037 {
10038 .name = "max",
10039 .flags = CFTYPE_NOT_ON_ROOT,
10040 .seq_show = cpu_max_show,
10041 .write = cpu_max_write,
10042 },
10043 {
10044 .name = "max.burst",
10045 .flags = CFTYPE_NOT_ON_ROOT,
10046 .read_u64 = cpu_cfs_burst_read_u64,
10047 .write_u64 = cpu_cfs_burst_write_u64,
10048 },
10049#endif
10050#ifdef CONFIG_UCLAMP_TASK_GROUP
10051 {
10052 .name = "uclamp.min",
10053 .flags = CFTYPE_NOT_ON_ROOT,
10054 .seq_show = cpu_uclamp_min_show,
10055 .write = cpu_uclamp_min_write,
10056 },
10057 {
10058 .name = "uclamp.max",
10059 .flags = CFTYPE_NOT_ON_ROOT,
10060 .seq_show = cpu_uclamp_max_show,
10061 .write = cpu_uclamp_max_write,
10062 },
10063#endif
10064 { } /* terminate */
10065};
10066
10067struct cgroup_subsys cpu_cgrp_subsys = {
10068 .css_alloc = cpu_cgroup_css_alloc,
10069 .css_online = cpu_cgroup_css_online,
10070 .css_offline = cpu_cgroup_css_offline,
10071 .css_released = cpu_cgroup_css_released,
10072 .css_free = cpu_cgroup_css_free,
10073 .css_extra_stat_show = cpu_extra_stat_show,
10074 .css_local_stat_show = cpu_local_stat_show,
10075 .can_attach = cpu_cgroup_can_attach,
10076 .attach = cpu_cgroup_attach,
10077 .cancel_attach = cpu_cgroup_cancel_attach,
10078 .legacy_cftypes = cpu_legacy_files,
10079 .dfl_cftypes = cpu_files,
10080 .early_init = true,
10081 .threaded = true,
10082};
10083
10084#endif /* CONFIG_CGROUP_SCHED */
10085
10086void dump_cpu_task(int cpu)
10087{
10088 if (in_hardirq() && cpu == smp_processor_id()) {
10089 struct pt_regs *regs;
10090
10091 regs = get_irq_regs();
10092 if (regs) {
10093 show_regs(regs);
10094 return;
10095 }
10096 }
10097
10098 if (trigger_single_cpu_backtrace(cpu))
10099 return;
10100
10101 pr_info("Task dump for CPU %d:\n", cpu);
10102 sched_show_task(cpu_curr(cpu));
10103}
10104
10105/*
10106 * Nice levels are multiplicative, with a gentle 10% change for every
10107 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10108 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10109 * that remained on nice 0.
10110 *
10111 * The "10% effect" is relative and cumulative: from _any_ nice level,
10112 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10113 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10114 * If a task goes up by ~10% and another task goes down by ~10% then
10115 * the relative distance between them is ~25%.)
10116 */
10117const int sched_prio_to_weight[40] = {
10118 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10119 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10120 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10121 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10122 /* 0 */ 1024, 820, 655, 526, 423,
10123 /* 5 */ 335, 272, 215, 172, 137,
10124 /* 10 */ 110, 87, 70, 56, 45,
10125 /* 15 */ 36, 29, 23, 18, 15,
10126};
10127
10128/*
10129 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10130 *
10131 * In cases where the weight does not change often, we can use the
10132 * pre-calculated inverse to speed up arithmetics by turning divisions
10133 * into multiplications:
10134 */
10135const u32 sched_prio_to_wmult[40] = {
10136 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10137 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10138 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10139 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10140 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10141 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10142 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10143 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10144};
10145
10146void call_trace_sched_update_nr_running(struct rq *rq, int count)
10147{
10148 trace_sched_update_nr_running_tp(rq, count);
10149}
10150
10151#ifdef CONFIG_SCHED_MM_CID
10152
10153/*
10154 * @cid_lock: Guarantee forward-progress of cid allocation.
10155 *
10156 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10157 * is only used when contention is detected by the lock-free allocation so
10158 * forward progress can be guaranteed.
10159 */
10160DEFINE_RAW_SPINLOCK(cid_lock);
10161
10162/*
10163 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10164 *
10165 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10166 * detected, it is set to 1 to ensure that all newly coming allocations are
10167 * serialized by @cid_lock until the allocation which detected contention
10168 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10169 * of a cid allocation.
10170 */
10171int use_cid_lock;
10172
10173/*
10174 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10175 * concurrently with respect to the execution of the source runqueue context
10176 * switch.
10177 *
10178 * There is one basic properties we want to guarantee here:
10179 *
10180 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10181 * used by a task. That would lead to concurrent allocation of the cid and
10182 * userspace corruption.
10183 *
10184 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10185 * that a pair of loads observe at least one of a pair of stores, which can be
10186 * shown as:
10187 *
10188 * X = Y = 0
10189 *
10190 * w[X]=1 w[Y]=1
10191 * MB MB
10192 * r[Y]=y r[X]=x
10193 *
10194 * Which guarantees that x==0 && y==0 is impossible. But rather than using
10195 * values 0 and 1, this algorithm cares about specific state transitions of the
10196 * runqueue current task (as updated by the scheduler context switch), and the
10197 * per-mm/cpu cid value.
10198 *
10199 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10200 * task->mm != mm for the rest of the discussion. There are two scheduler state
10201 * transitions on context switch we care about:
10202 *
10203 * (TSA) Store to rq->curr with transition from (N) to (Y)
10204 *
10205 * (TSB) Store to rq->curr with transition from (Y) to (N)
10206 *
10207 * On the remote-clear side, there is one transition we care about:
10208 *
10209 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10210 *
10211 * There is also a transition to UNSET state which can be performed from all
10212 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10213 * guarantees that only a single thread will succeed:
10214 *
10215 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10216 *
10217 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10218 * when a thread is actively using the cid (property (1)).
10219 *
10220 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10221 *
10222 * Scenario A) (TSA)+(TMA) (from next task perspective)
10223 *
10224 * CPU0 CPU1
10225 *
10226 * Context switch CS-1 Remote-clear
10227 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
10228 * (implied barrier after cmpxchg)
10229 * - switch_mm_cid()
10230 * - memory barrier (see switch_mm_cid()
10231 * comment explaining how this barrier
10232 * is combined with other scheduler
10233 * barriers)
10234 * - mm_cid_get (next)
10235 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
10236 *
10237 * This Dekker ensures that either task (Y) is observed by the
10238 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10239 * observed.
10240 *
10241 * If task (Y) store is observed by rcu_dereference(), it means that there is
10242 * still an active task on the cpu. Remote-clear will therefore not transition
10243 * to UNSET, which fulfills property (1).
10244 *
10245 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10246 * it will move its state to UNSET, which clears the percpu cid perhaps
10247 * uselessly (which is not an issue for correctness). Because task (Y) is not
10248 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10249 * state to UNSET is done with a cmpxchg expecting that the old state has the
10250 * LAZY flag set, only one thread will successfully UNSET.
10251 *
10252 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10253 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10254 * CPU1 will observe task (Y) and do nothing more, which is fine.
10255 *
10256 * What we are effectively preventing with this Dekker is a scenario where
10257 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10258 * because this would UNSET a cid which is actively used.
10259 */
10260
10261void sched_mm_cid_migrate_from(struct task_struct *t)
10262{
10263 t->migrate_from_cpu = task_cpu(t);
10264}
10265
10266static
10267int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10268 struct task_struct *t,
10269 struct mm_cid *src_pcpu_cid)
10270{
10271 struct mm_struct *mm = t->mm;
10272 struct task_struct *src_task;
10273 int src_cid, last_mm_cid;
10274
10275 if (!mm)
10276 return -1;
10277
10278 last_mm_cid = t->last_mm_cid;
10279 /*
10280 * If the migrated task has no last cid, or if the current
10281 * task on src rq uses the cid, it means the source cid does not need
10282 * to be moved to the destination cpu.
10283 */
10284 if (last_mm_cid == -1)
10285 return -1;
10286 src_cid = READ_ONCE(src_pcpu_cid->cid);
10287 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10288 return -1;
10289
10290 /*
10291 * If we observe an active task using the mm on this rq, it means we
10292 * are not the last task to be migrated from this cpu for this mm, so
10293 * there is no need to move src_cid to the destination cpu.
10294 */
10295 guard(rcu)();
10296 src_task = rcu_dereference(src_rq->curr);
10297 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10298 t->last_mm_cid = -1;
10299 return -1;
10300 }
10301
10302 return src_cid;
10303}
10304
10305static
10306int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10307 struct task_struct *t,
10308 struct mm_cid *src_pcpu_cid,
10309 int src_cid)
10310{
10311 struct task_struct *src_task;
10312 struct mm_struct *mm = t->mm;
10313 int lazy_cid;
10314
10315 if (src_cid == -1)
10316 return -1;
10317
10318 /*
10319 * Attempt to clear the source cpu cid to move it to the destination
10320 * cpu.
10321 */
10322 lazy_cid = mm_cid_set_lazy_put(src_cid);
10323 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10324 return -1;
10325
10326 /*
10327 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10328 * rq->curr->mm matches the scheduler barrier in context_switch()
10329 * between store to rq->curr and load of prev and next task's
10330 * per-mm/cpu cid.
10331 *
10332 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10333 * rq->curr->mm_cid_active matches the barrier in
10334 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10335 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10336 * load of per-mm/cpu cid.
10337 */
10338
10339 /*
10340 * If we observe an active task using the mm on this rq after setting
10341 * the lazy-put flag, this task will be responsible for transitioning
10342 * from lazy-put flag set to MM_CID_UNSET.
10343 */
10344 scoped_guard (rcu) {
10345 src_task = rcu_dereference(src_rq->curr);
10346 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10347 /*
10348 * We observed an active task for this mm, there is therefore
10349 * no point in moving this cid to the destination cpu.
10350 */
10351 t->last_mm_cid = -1;
10352 return -1;
10353 }
10354 }
10355
10356 /*
10357 * The src_cid is unused, so it can be unset.
10358 */
10359 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10360 return -1;
10361 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10362 return src_cid;
10363}
10364
10365/*
10366 * Migration to dst cpu. Called with dst_rq lock held.
10367 * Interrupts are disabled, which keeps the window of cid ownership without the
10368 * source rq lock held small.
10369 */
10370void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10371{
10372 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10373 struct mm_struct *mm = t->mm;
10374 int src_cid, src_cpu;
10375 bool dst_cid_is_set;
10376 struct rq *src_rq;
10377
10378 lockdep_assert_rq_held(dst_rq);
10379
10380 if (!mm)
10381 return;
10382 src_cpu = t->migrate_from_cpu;
10383 if (src_cpu == -1) {
10384 t->last_mm_cid = -1;
10385 return;
10386 }
10387 /*
10388 * Move the src cid if the dst cid is unset. This keeps id
10389 * allocation closest to 0 in cases where few threads migrate around
10390 * many CPUs.
10391 *
10392 * If destination cid or recent cid is already set, we may have
10393 * to just clear the src cid to ensure compactness in frequent
10394 * migrations scenarios.
10395 *
10396 * It is not useful to clear the src cid when the number of threads is
10397 * greater or equal to the number of allowed CPUs, because user-space
10398 * can expect that the number of allowed cids can reach the number of
10399 * allowed CPUs.
10400 */
10401 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10402 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10403 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10404 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10405 return;
10406 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10407 src_rq = cpu_rq(src_cpu);
10408 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10409 if (src_cid == -1)
10410 return;
10411 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10412 src_cid);
10413 if (src_cid == -1)
10414 return;
10415 if (dst_cid_is_set) {
10416 __mm_cid_put(mm, src_cid);
10417 return;
10418 }
10419 /* Move src_cid to dst cpu. */
10420 mm_cid_snapshot_time(dst_rq, mm);
10421 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10422 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10423}
10424
10425static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10426 int cpu)
10427{
10428 struct rq *rq = cpu_rq(cpu);
10429 struct task_struct *t;
10430 int cid, lazy_cid;
10431
10432 cid = READ_ONCE(pcpu_cid->cid);
10433 if (!mm_cid_is_valid(cid))
10434 return;
10435
10436 /*
10437 * Clear the cpu cid if it is set to keep cid allocation compact. If
10438 * there happens to be other tasks left on the source cpu using this
10439 * mm, the next task using this mm will reallocate its cid on context
10440 * switch.
10441 */
10442 lazy_cid = mm_cid_set_lazy_put(cid);
10443 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10444 return;
10445
10446 /*
10447 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10448 * rq->curr->mm matches the scheduler barrier in context_switch()
10449 * between store to rq->curr and load of prev and next task's
10450 * per-mm/cpu cid.
10451 *
10452 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10453 * rq->curr->mm_cid_active matches the barrier in
10454 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10455 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10456 * load of per-mm/cpu cid.
10457 */
10458
10459 /*
10460 * If we observe an active task using the mm on this rq after setting
10461 * the lazy-put flag, that task will be responsible for transitioning
10462 * from lazy-put flag set to MM_CID_UNSET.
10463 */
10464 scoped_guard (rcu) {
10465 t = rcu_dereference(rq->curr);
10466 if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10467 return;
10468 }
10469
10470 /*
10471 * The cid is unused, so it can be unset.
10472 * Disable interrupts to keep the window of cid ownership without rq
10473 * lock small.
10474 */
10475 scoped_guard (irqsave) {
10476 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10477 __mm_cid_put(mm, cid);
10478 }
10479}
10480
10481static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10482{
10483 struct rq *rq = cpu_rq(cpu);
10484 struct mm_cid *pcpu_cid;
10485 struct task_struct *curr;
10486 u64 rq_clock;
10487
10488 /*
10489 * rq->clock load is racy on 32-bit but one spurious clear once in a
10490 * while is irrelevant.
10491 */
10492 rq_clock = READ_ONCE(rq->clock);
10493 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10494
10495 /*
10496 * In order to take care of infrequently scheduled tasks, bump the time
10497 * snapshot associated with this cid if an active task using the mm is
10498 * observed on this rq.
10499 */
10500 scoped_guard (rcu) {
10501 curr = rcu_dereference(rq->curr);
10502 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10503 WRITE_ONCE(pcpu_cid->time, rq_clock);
10504 return;
10505 }
10506 }
10507
10508 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10509 return;
10510 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10511}
10512
10513static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10514 int weight)
10515{
10516 struct mm_cid *pcpu_cid;
10517 int cid;
10518
10519 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10520 cid = READ_ONCE(pcpu_cid->cid);
10521 if (!mm_cid_is_valid(cid) || cid < weight)
10522 return;
10523 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10524}
10525
10526static void task_mm_cid_work(struct callback_head *work)
10527{
10528 unsigned long now = jiffies, old_scan, next_scan;
10529 struct task_struct *t = current;
10530 struct cpumask *cidmask;
10531 struct mm_struct *mm;
10532 int weight, cpu;
10533
10534 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10535
10536 work->next = work; /* Prevent double-add */
10537 if (t->flags & PF_EXITING)
10538 return;
10539 mm = t->mm;
10540 if (!mm)
10541 return;
10542 old_scan = READ_ONCE(mm->mm_cid_next_scan);
10543 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10544 if (!old_scan) {
10545 unsigned long res;
10546
10547 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10548 if (res != old_scan)
10549 old_scan = res;
10550 else
10551 old_scan = next_scan;
10552 }
10553 if (time_before(now, old_scan))
10554 return;
10555 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10556 return;
10557 cidmask = mm_cidmask(mm);
10558 /* Clear cids that were not recently used. */
10559 for_each_possible_cpu(cpu)
10560 sched_mm_cid_remote_clear_old(mm, cpu);
10561 weight = cpumask_weight(cidmask);
10562 /*
10563 * Clear cids that are greater or equal to the cidmask weight to
10564 * recompact it.
10565 */
10566 for_each_possible_cpu(cpu)
10567 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10568}
10569
10570void init_sched_mm_cid(struct task_struct *t)
10571{
10572 struct mm_struct *mm = t->mm;
10573 int mm_users = 0;
10574
10575 if (mm) {
10576 mm_users = atomic_read(&mm->mm_users);
10577 if (mm_users == 1)
10578 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10579 }
10580 t->cid_work.next = &t->cid_work; /* Protect against double add */
10581 init_task_work(&t->cid_work, task_mm_cid_work);
10582}
10583
10584void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10585{
10586 struct callback_head *work = &curr->cid_work;
10587 unsigned long now = jiffies;
10588
10589 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10590 work->next != work)
10591 return;
10592 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10593 return;
10594
10595 /* No page allocation under rq lock */
10596 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
10597}
10598
10599void sched_mm_cid_exit_signals(struct task_struct *t)
10600{
10601 struct mm_struct *mm = t->mm;
10602 struct rq *rq;
10603
10604 if (!mm)
10605 return;
10606
10607 preempt_disable();
10608 rq = this_rq();
10609 guard(rq_lock_irqsave)(rq);
10610 preempt_enable_no_resched(); /* holding spinlock */
10611 WRITE_ONCE(t->mm_cid_active, 0);
10612 /*
10613 * Store t->mm_cid_active before loading per-mm/cpu cid.
10614 * Matches barrier in sched_mm_cid_remote_clear_old().
10615 */
10616 smp_mb();
10617 mm_cid_put(mm);
10618 t->last_mm_cid = t->mm_cid = -1;
10619}
10620
10621void sched_mm_cid_before_execve(struct task_struct *t)
10622{
10623 struct mm_struct *mm = t->mm;
10624 struct rq *rq;
10625
10626 if (!mm)
10627 return;
10628
10629 preempt_disable();
10630 rq = this_rq();
10631 guard(rq_lock_irqsave)(rq);
10632 preempt_enable_no_resched(); /* holding spinlock */
10633 WRITE_ONCE(t->mm_cid_active, 0);
10634 /*
10635 * Store t->mm_cid_active before loading per-mm/cpu cid.
10636 * Matches barrier in sched_mm_cid_remote_clear_old().
10637 */
10638 smp_mb();
10639 mm_cid_put(mm);
10640 t->last_mm_cid = t->mm_cid = -1;
10641}
10642
10643void sched_mm_cid_after_execve(struct task_struct *t)
10644{
10645 struct mm_struct *mm = t->mm;
10646 struct rq *rq;
10647
10648 if (!mm)
10649 return;
10650
10651 preempt_disable();
10652 rq = this_rq();
10653 scoped_guard (rq_lock_irqsave, rq) {
10654 preempt_enable_no_resched(); /* holding spinlock */
10655 WRITE_ONCE(t->mm_cid_active, 1);
10656 /*
10657 * Store t->mm_cid_active before loading per-mm/cpu cid.
10658 * Matches barrier in sched_mm_cid_remote_clear_old().
10659 */
10660 smp_mb();
10661 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10662 }
10663 rseq_set_notify_resume(t);
10664}
10665
10666void sched_mm_cid_fork(struct task_struct *t)
10667{
10668 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10669 t->mm_cid_active = 1;
10670}
10671#endif
10672
10673#ifdef CONFIG_SCHED_CLASS_EXT
10674void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10675 struct sched_enq_and_set_ctx *ctx)
10676{
10677 struct rq *rq = task_rq(p);
10678
10679 lockdep_assert_rq_held(rq);
10680
10681 *ctx = (struct sched_enq_and_set_ctx){
10682 .p = p,
10683 .queue_flags = queue_flags,
10684 .queued = task_on_rq_queued(p),
10685 .running = task_current(rq, p),
10686 };
10687
10688 update_rq_clock(rq);
10689 if (ctx->queued)
10690 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10691 if (ctx->running)
10692 put_prev_task(rq, p);
10693}
10694
10695void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10696{
10697 struct rq *rq = task_rq(ctx->p);
10698
10699 lockdep_assert_rq_held(rq);
10700
10701 if (ctx->queued)
10702 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10703 if (ctx->running)
10704 set_next_task(rq, ctx->p);
10705}
10706#endif /* CONFIG_SCHED_CLASS_EXT */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
13#include "sched.h"
14
15#include <linux/nospec.h>
16
17#include <linux/kcov.h>
18#include <linux/scs.h>
19
20#include <asm/switch_to.h>
21#include <asm/tlb.h>
22
23#include "../workqueue_internal.h"
24#include "../../fs/io-wq.h"
25#include "../smpboot.h"
26
27#include "pelt.h"
28#include "smp.h"
29
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47#ifdef CONFIG_SCHED_DEBUG
48/*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57const_debug unsigned int sysctl_sched_features =
58#include "features.h"
59 0;
60#undef SCHED_FEAT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
72
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
79/*
80 * period over which we measure -rt task CPU usage in us.
81 * default: 1s
82 */
83unsigned int sysctl_sched_rt_period = 1000000;
84
85__read_mostly int scheduler_running;
86
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181{
182 rq->core->core_task_seq++;
183
184 if (!sched_core_enqueued(p))
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
188 RB_CLEAR_NODE(&p->core_node);
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
237static atomic_t sched_core_count;
238static struct cpumask sched_core_mask;
239
240static void sched_core_lock(int cpu, unsigned long *flags)
241{
242 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243 int t, i = 0;
244
245 local_irq_save(*flags);
246 for_each_cpu(t, smt_mask)
247 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248}
249
250static void sched_core_unlock(int cpu, unsigned long *flags)
251{
252 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253 int t;
254
255 for_each_cpu(t, smt_mask)
256 raw_spin_unlock(&cpu_rq(t)->__lock);
257 local_irq_restore(*flags);
258}
259
260static void __sched_core_flip(bool enabled)
261{
262 unsigned long flags;
263 int cpu, t;
264
265 cpus_read_lock();
266
267 /*
268 * Toggle the online cores, one by one.
269 */
270 cpumask_copy(&sched_core_mask, cpu_online_mask);
271 for_each_cpu(cpu, &sched_core_mask) {
272 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273
274 sched_core_lock(cpu, &flags);
275
276 for_each_cpu(t, smt_mask)
277 cpu_rq(t)->core_enabled = enabled;
278
279 sched_core_unlock(cpu, &flags);
280
281 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282 }
283
284 /*
285 * Toggle the offline CPUs.
286 */
287 cpumask_copy(&sched_core_mask, cpu_possible_mask);
288 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289
290 for_each_cpu(cpu, &sched_core_mask)
291 cpu_rq(cpu)->core_enabled = enabled;
292
293 cpus_read_unlock();
294}
295
296static void sched_core_assert_empty(void)
297{
298 int cpu;
299
300 for_each_possible_cpu(cpu)
301 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302}
303
304static void __sched_core_enable(void)
305{
306 static_branch_enable(&__sched_core_enabled);
307 /*
308 * Ensure all previous instances of raw_spin_rq_*lock() have finished
309 * and future ones will observe !sched_core_disabled().
310 */
311 synchronize_rcu();
312 __sched_core_flip(true);
313 sched_core_assert_empty();
314}
315
316static void __sched_core_disable(void)
317{
318 sched_core_assert_empty();
319 __sched_core_flip(false);
320 static_branch_disable(&__sched_core_enabled);
321}
322
323void sched_core_get(void)
324{
325 if (atomic_inc_not_zero(&sched_core_count))
326 return;
327
328 mutex_lock(&sched_core_mutex);
329 if (!atomic_read(&sched_core_count))
330 __sched_core_enable();
331
332 smp_mb__before_atomic();
333 atomic_inc(&sched_core_count);
334 mutex_unlock(&sched_core_mutex);
335}
336
337static void __sched_core_put(struct work_struct *work)
338{
339 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
340 __sched_core_disable();
341 mutex_unlock(&sched_core_mutex);
342 }
343}
344
345void sched_core_put(void)
346{
347 static DECLARE_WORK(_work, __sched_core_put);
348
349 /*
350 * "There can be only one"
351 *
352 * Either this is the last one, or we don't actually need to do any
353 * 'work'. If it is the last *again*, we rely on
354 * WORK_STRUCT_PENDING_BIT.
355 */
356 if (!atomic_add_unless(&sched_core_count, -1, 1))
357 schedule_work(&_work);
358}
359
360#else /* !CONFIG_SCHED_CORE */
361
362static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
363static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364
365#endif /* CONFIG_SCHED_CORE */
366
367/*
368 * part of the period that we allow rt tasks to run in us.
369 * default: 0.95s
370 */
371int sysctl_sched_rt_runtime = 950000;
372
373
374/*
375 * Serialization rules:
376 *
377 * Lock order:
378 *
379 * p->pi_lock
380 * rq->lock
381 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382 *
383 * rq1->lock
384 * rq2->lock where: rq1 < rq2
385 *
386 * Regular state:
387 *
388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
390 * always looks at the local rq data structures to find the most eligible task
391 * to run next.
392 *
393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395 * the local CPU to avoid bouncing the runqueue state around [ see
396 * ttwu_queue_wakelist() ]
397 *
398 * Task wakeup, specifically wakeups that involve migration, are horribly
399 * complicated to avoid having to take two rq->locks.
400 *
401 * Special state:
402 *
403 * System-calls and anything external will use task_rq_lock() which acquires
404 * both p->pi_lock and rq->lock. As a consequence the state they change is
405 * stable while holding either lock:
406 *
407 * - sched_setaffinity()/
408 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
409 * - set_user_nice(): p->se.load, p->*prio
410 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
411 * p->se.load, p->rt_priority,
412 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
413 * - sched_setnuma(): p->numa_preferred_nid
414 * - sched_move_task()/
415 * cpu_cgroup_fork(): p->sched_task_group
416 * - uclamp_update_active() p->uclamp*
417 *
418 * p->state <- TASK_*:
419 *
420 * is changed locklessly using set_current_state(), __set_current_state() or
421 * set_special_state(), see their respective comments, or by
422 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
423 * concurrent self.
424 *
425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426 *
427 * is set by activate_task() and cleared by deactivate_task(), under
428 * rq->lock. Non-zero indicates the task is runnable, the special
429 * ON_RQ_MIGRATING state is used for migration without holding both
430 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431 *
432 * p->on_cpu <- { 0, 1 }:
433 *
434 * is set by prepare_task() and cleared by finish_task() such that it will be
435 * set before p is scheduled-in and cleared after p is scheduled-out, both
436 * under rq->lock. Non-zero indicates the task is running on its CPU.
437 *
438 * [ The astute reader will observe that it is possible for two tasks on one
439 * CPU to have ->on_cpu = 1 at the same time. ]
440 *
441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
442 *
443 * - Don't call set_task_cpu() on a blocked task:
444 *
445 * We don't care what CPU we're not running on, this simplifies hotplug,
446 * the CPU assignment of blocked tasks isn't required to be valid.
447 *
448 * - for try_to_wake_up(), called under p->pi_lock:
449 *
450 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
451 *
452 * - for migration called under rq->lock:
453 * [ see task_on_rq_migrating() in task_rq_lock() ]
454 *
455 * o move_queued_task()
456 * o detach_task()
457 *
458 * - for migration called under double_rq_lock():
459 *
460 * o __migrate_swap_task()
461 * o push_rt_task() / pull_rt_task()
462 * o push_dl_task() / pull_dl_task()
463 * o dl_task_offline_migration()
464 *
465 */
466
467void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468{
469 raw_spinlock_t *lock;
470
471 /* Matches synchronize_rcu() in __sched_core_enable() */
472 preempt_disable();
473 if (sched_core_disabled()) {
474 raw_spin_lock_nested(&rq->__lock, subclass);
475 /* preempt_count *MUST* be > 1 */
476 preempt_enable_no_resched();
477 return;
478 }
479
480 for (;;) {
481 lock = __rq_lockp(rq);
482 raw_spin_lock_nested(lock, subclass);
483 if (likely(lock == __rq_lockp(rq))) {
484 /* preempt_count *MUST* be > 1 */
485 preempt_enable_no_resched();
486 return;
487 }
488 raw_spin_unlock(lock);
489 }
490}
491
492bool raw_spin_rq_trylock(struct rq *rq)
493{
494 raw_spinlock_t *lock;
495 bool ret;
496
497 /* Matches synchronize_rcu() in __sched_core_enable() */
498 preempt_disable();
499 if (sched_core_disabled()) {
500 ret = raw_spin_trylock(&rq->__lock);
501 preempt_enable();
502 return ret;
503 }
504
505 for (;;) {
506 lock = __rq_lockp(rq);
507 ret = raw_spin_trylock(lock);
508 if (!ret || (likely(lock == __rq_lockp(rq)))) {
509 preempt_enable();
510 return ret;
511 }
512 raw_spin_unlock(lock);
513 }
514}
515
516void raw_spin_rq_unlock(struct rq *rq)
517{
518 raw_spin_unlock(rq_lockp(rq));
519}
520
521#ifdef CONFIG_SMP
522/*
523 * double_rq_lock - safely lock two runqueues
524 */
525void double_rq_lock(struct rq *rq1, struct rq *rq2)
526{
527 lockdep_assert_irqs_disabled();
528
529 if (rq_order_less(rq2, rq1))
530 swap(rq1, rq2);
531
532 raw_spin_rq_lock(rq1);
533 if (__rq_lockp(rq1) == __rq_lockp(rq2))
534 return;
535
536 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537}
538#endif
539
540/*
541 * __task_rq_lock - lock the rq @p resides on.
542 */
543struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
544 __acquires(rq->lock)
545{
546 struct rq *rq;
547
548 lockdep_assert_held(&p->pi_lock);
549
550 for (;;) {
551 rq = task_rq(p);
552 raw_spin_rq_lock(rq);
553 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
554 rq_pin_lock(rq, rf);
555 return rq;
556 }
557 raw_spin_rq_unlock(rq);
558
559 while (unlikely(task_on_rq_migrating(p)))
560 cpu_relax();
561 }
562}
563
564/*
565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566 */
567struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
568 __acquires(p->pi_lock)
569 __acquires(rq->lock)
570{
571 struct rq *rq;
572
573 for (;;) {
574 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
575 rq = task_rq(p);
576 raw_spin_rq_lock(rq);
577 /*
578 * move_queued_task() task_rq_lock()
579 *
580 * ACQUIRE (rq->lock)
581 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
582 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
583 * [S] ->cpu = new_cpu [L] task_rq()
584 * [L] ->on_rq
585 * RELEASE (rq->lock)
586 *
587 * If we observe the old CPU in task_rq_lock(), the acquire of
588 * the old rq->lock will fully serialize against the stores.
589 *
590 * If we observe the new CPU in task_rq_lock(), the address
591 * dependency headed by '[L] rq = task_rq()' and the acquire
592 * will pair with the WMB to ensure we then also see migrating.
593 */
594 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
595 rq_pin_lock(rq, rf);
596 return rq;
597 }
598 raw_spin_rq_unlock(rq);
599 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
600
601 while (unlikely(task_on_rq_migrating(p)))
602 cpu_relax();
603 }
604}
605
606/*
607 * RQ-clock updating methods:
608 */
609
610static void update_rq_clock_task(struct rq *rq, s64 delta)
611{
612/*
613 * In theory, the compile should just see 0 here, and optimize out the call
614 * to sched_rt_avg_update. But I don't trust it...
615 */
616 s64 __maybe_unused steal = 0, irq_delta = 0;
617
618#ifdef CONFIG_IRQ_TIME_ACCOUNTING
619 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620
621 /*
622 * Since irq_time is only updated on {soft,}irq_exit, we might run into
623 * this case when a previous update_rq_clock() happened inside a
624 * {soft,}irq region.
625 *
626 * When this happens, we stop ->clock_task and only update the
627 * prev_irq_time stamp to account for the part that fit, so that a next
628 * update will consume the rest. This ensures ->clock_task is
629 * monotonic.
630 *
631 * It does however cause some slight miss-attribution of {soft,}irq
632 * time, a more accurate solution would be to update the irq_time using
633 * the current rq->clock timestamp, except that would require using
634 * atomic ops.
635 */
636 if (irq_delta > delta)
637 irq_delta = delta;
638
639 rq->prev_irq_time += irq_delta;
640 delta -= irq_delta;
641#endif
642#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643 if (static_key_false((¶virt_steal_rq_enabled))) {
644 steal = paravirt_steal_clock(cpu_of(rq));
645 steal -= rq->prev_steal_time_rq;
646
647 if (unlikely(steal > delta))
648 steal = delta;
649
650 rq->prev_steal_time_rq += steal;
651 delta -= steal;
652 }
653#endif
654
655 rq->clock_task += delta;
656
657#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
658 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
659 update_irq_load_avg(rq, irq_delta + steal);
660#endif
661 update_rq_clock_pelt(rq, delta);
662}
663
664void update_rq_clock(struct rq *rq)
665{
666 s64 delta;
667
668 lockdep_assert_rq_held(rq);
669
670 if (rq->clock_update_flags & RQCF_ACT_SKIP)
671 return;
672
673#ifdef CONFIG_SCHED_DEBUG
674 if (sched_feat(WARN_DOUBLE_CLOCK))
675 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
676 rq->clock_update_flags |= RQCF_UPDATED;
677#endif
678
679 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680 if (delta < 0)
681 return;
682 rq->clock += delta;
683 update_rq_clock_task(rq, delta);
684}
685
686#ifdef CONFIG_SCHED_HRTICK
687/*
688 * Use HR-timers to deliver accurate preemption points.
689 */
690
691static void hrtick_clear(struct rq *rq)
692{
693 if (hrtimer_active(&rq->hrtick_timer))
694 hrtimer_cancel(&rq->hrtick_timer);
695}
696
697/*
698 * High-resolution timer tick.
699 * Runs from hardirq context with interrupts disabled.
700 */
701static enum hrtimer_restart hrtick(struct hrtimer *timer)
702{
703 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
704 struct rq_flags rf;
705
706 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707
708 rq_lock(rq, &rf);
709 update_rq_clock(rq);
710 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
711 rq_unlock(rq, &rf);
712
713 return HRTIMER_NORESTART;
714}
715
716#ifdef CONFIG_SMP
717
718static void __hrtick_restart(struct rq *rq)
719{
720 struct hrtimer *timer = &rq->hrtick_timer;
721 ktime_t time = rq->hrtick_time;
722
723 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
724}
725
726/*
727 * called from hardirq (IPI) context
728 */
729static void __hrtick_start(void *arg)
730{
731 struct rq *rq = arg;
732 struct rq_flags rf;
733
734 rq_lock(rq, &rf);
735 __hrtick_restart(rq);
736 rq_unlock(rq, &rf);
737}
738
739/*
740 * Called to set the hrtick timer state.
741 *
742 * called with rq->lock held and irqs disabled
743 */
744void hrtick_start(struct rq *rq, u64 delay)
745{
746 struct hrtimer *timer = &rq->hrtick_timer;
747 s64 delta;
748
749 /*
750 * Don't schedule slices shorter than 10000ns, that just
751 * doesn't make sense and can cause timer DoS.
752 */
753 delta = max_t(s64, delay, 10000LL);
754 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
755
756 if (rq == this_rq())
757 __hrtick_restart(rq);
758 else
759 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
760}
761
762#else
763/*
764 * Called to set the hrtick timer state.
765 *
766 * called with rq->lock held and irqs disabled
767 */
768void hrtick_start(struct rq *rq, u64 delay)
769{
770 /*
771 * Don't schedule slices shorter than 10000ns, that just
772 * doesn't make sense. Rely on vruntime for fairness.
773 */
774 delay = max_t(u64, delay, 10000LL);
775 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
776 HRTIMER_MODE_REL_PINNED_HARD);
777}
778
779#endif /* CONFIG_SMP */
780
781static void hrtick_rq_init(struct rq *rq)
782{
783#ifdef CONFIG_SMP
784 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
785#endif
786 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
787 rq->hrtick_timer.function = hrtick;
788}
789#else /* CONFIG_SCHED_HRTICK */
790static inline void hrtick_clear(struct rq *rq)
791{
792}
793
794static inline void hrtick_rq_init(struct rq *rq)
795{
796}
797#endif /* CONFIG_SCHED_HRTICK */
798
799/*
800 * cmpxchg based fetch_or, macro so it works for different integer types
801 */
802#define fetch_or(ptr, mask) \
803 ({ \
804 typeof(ptr) _ptr = (ptr); \
805 typeof(mask) _mask = (mask); \
806 typeof(*_ptr) _old, _val = *_ptr; \
807 \
808 for (;;) { \
809 _old = cmpxchg(_ptr, _val, _val | _mask); \
810 if (_old == _val) \
811 break; \
812 _val = _old; \
813 } \
814 _old; \
815})
816
817#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
818/*
819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820 * this avoids any races wrt polling state changes and thereby avoids
821 * spurious IPIs.
822 */
823static bool set_nr_and_not_polling(struct task_struct *p)
824{
825 struct thread_info *ti = task_thread_info(p);
826 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827}
828
829/*
830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831 *
832 * If this returns true, then the idle task promises to call
833 * sched_ttwu_pending() and reschedule soon.
834 */
835static bool set_nr_if_polling(struct task_struct *p)
836{
837 struct thread_info *ti = task_thread_info(p);
838 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
839
840 for (;;) {
841 if (!(val & _TIF_POLLING_NRFLAG))
842 return false;
843 if (val & _TIF_NEED_RESCHED)
844 return true;
845 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846 if (old == val)
847 break;
848 val = old;
849 }
850 return true;
851}
852
853#else
854static bool set_nr_and_not_polling(struct task_struct *p)
855{
856 set_tsk_need_resched(p);
857 return true;
858}
859
860#ifdef CONFIG_SMP
861static bool set_nr_if_polling(struct task_struct *p)
862{
863 return false;
864}
865#endif
866#endif
867
868static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
869{
870 struct wake_q_node *node = &task->wake_q;
871
872 /*
873 * Atomically grab the task, if ->wake_q is !nil already it means
874 * it's already queued (either by us or someone else) and will get the
875 * wakeup due to that.
876 *
877 * In order to ensure that a pending wakeup will observe our pending
878 * state, even in the failed case, an explicit smp_mb() must be used.
879 */
880 smp_mb__before_atomic();
881 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
882 return false;
883
884 /*
885 * The head is context local, there can be no concurrency.
886 */
887 *head->lastp = node;
888 head->lastp = &node->next;
889 return true;
890}
891
892/**
893 * wake_q_add() - queue a wakeup for 'later' waking.
894 * @head: the wake_q_head to add @task to
895 * @task: the task to queue for 'later' wakeup
896 *
897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899 * instantly.
900 *
901 * This function must be used as-if it were wake_up_process(); IOW the task
902 * must be ready to be woken at this location.
903 */
904void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905{
906 if (__wake_q_add(head, task))
907 get_task_struct(task);
908}
909
910/**
911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912 * @head: the wake_q_head to add @task to
913 * @task: the task to queue for 'later' wakeup
914 *
915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917 * instantly.
918 *
919 * This function must be used as-if it were wake_up_process(); IOW the task
920 * must be ready to be woken at this location.
921 *
922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923 * that already hold reference to @task can call the 'safe' version and trust
924 * wake_q to do the right thing depending whether or not the @task is already
925 * queued for wakeup.
926 */
927void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928{
929 if (!__wake_q_add(head, task))
930 put_task_struct(task);
931}
932
933void wake_up_q(struct wake_q_head *head)
934{
935 struct wake_q_node *node = head->first;
936
937 while (node != WAKE_Q_TAIL) {
938 struct task_struct *task;
939
940 task = container_of(node, struct task_struct, wake_q);
941 /* Task can safely be re-inserted now: */
942 node = node->next;
943 task->wake_q.next = NULL;
944
945 /*
946 * wake_up_process() executes a full barrier, which pairs with
947 * the queueing in wake_q_add() so as not to miss wakeups.
948 */
949 wake_up_process(task);
950 put_task_struct(task);
951 }
952}
953
954/*
955 * resched_curr - mark rq's current task 'to be rescheduled now'.
956 *
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
959 * the target CPU.
960 */
961void resched_curr(struct rq *rq)
962{
963 struct task_struct *curr = rq->curr;
964 int cpu;
965
966 lockdep_assert_rq_held(rq);
967
968 if (test_tsk_need_resched(curr))
969 return;
970
971 cpu = cpu_of(rq);
972
973 if (cpu == smp_processor_id()) {
974 set_tsk_need_resched(curr);
975 set_preempt_need_resched();
976 return;
977 }
978
979 if (set_nr_and_not_polling(curr))
980 smp_send_reschedule(cpu);
981 else
982 trace_sched_wake_idle_without_ipi(cpu);
983}
984
985void resched_cpu(int cpu)
986{
987 struct rq *rq = cpu_rq(cpu);
988 unsigned long flags;
989
990 raw_spin_rq_lock_irqsave(rq, flags);
991 if (cpu_online(cpu) || cpu == smp_processor_id())
992 resched_curr(rq);
993 raw_spin_rq_unlock_irqrestore(rq, flags);
994}
995
996#ifdef CONFIG_SMP
997#ifdef CONFIG_NO_HZ_COMMON
998/*
999 * In the semi idle case, use the nearest busy CPU for migrating timers
1000 * from an idle CPU. This is good for power-savings.
1001 *
1002 * We don't do similar optimization for completely idle system, as
1003 * selecting an idle CPU will add more delays to the timers than intended
1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005 */
1006int get_nohz_timer_target(void)
1007{
1008 int i, cpu = smp_processor_id(), default_cpu = -1;
1009 struct sched_domain *sd;
1010
1011 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1012 if (!idle_cpu(cpu))
1013 return cpu;
1014 default_cpu = cpu;
1015 }
1016
1017 rcu_read_lock();
1018 for_each_domain(cpu, sd) {
1019 for_each_cpu_and(i, sched_domain_span(sd),
1020 housekeeping_cpumask(HK_FLAG_TIMER)) {
1021 if (cpu == i)
1022 continue;
1023
1024 if (!idle_cpu(i)) {
1025 cpu = i;
1026 goto unlock;
1027 }
1028 }
1029 }
1030
1031 if (default_cpu == -1)
1032 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1033 cpu = default_cpu;
1034unlock:
1035 rcu_read_unlock();
1036 return cpu;
1037}
1038
1039/*
1040 * When add_timer_on() enqueues a timer into the timer wheel of an
1041 * idle CPU then this timer might expire before the next timer event
1042 * which is scheduled to wake up that CPU. In case of a completely
1043 * idle system the next event might even be infinite time into the
1044 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1045 * leaves the inner idle loop so the newly added timer is taken into
1046 * account when the CPU goes back to idle and evaluates the timer
1047 * wheel for the next timer event.
1048 */
1049static void wake_up_idle_cpu(int cpu)
1050{
1051 struct rq *rq = cpu_rq(cpu);
1052
1053 if (cpu == smp_processor_id())
1054 return;
1055
1056 if (set_nr_and_not_polling(rq->idle))
1057 smp_send_reschedule(cpu);
1058 else
1059 trace_sched_wake_idle_without_ipi(cpu);
1060}
1061
1062static bool wake_up_full_nohz_cpu(int cpu)
1063{
1064 /*
1065 * We just need the target to call irq_exit() and re-evaluate
1066 * the next tick. The nohz full kick at least implies that.
1067 * If needed we can still optimize that later with an
1068 * empty IRQ.
1069 */
1070 if (cpu_is_offline(cpu))
1071 return true; /* Don't try to wake offline CPUs. */
1072 if (tick_nohz_full_cpu(cpu)) {
1073 if (cpu != smp_processor_id() ||
1074 tick_nohz_tick_stopped())
1075 tick_nohz_full_kick_cpu(cpu);
1076 return true;
1077 }
1078
1079 return false;
1080}
1081
1082/*
1083 * Wake up the specified CPU. If the CPU is going offline, it is the
1084 * caller's responsibility to deal with the lost wakeup, for example,
1085 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1086 */
1087void wake_up_nohz_cpu(int cpu)
1088{
1089 if (!wake_up_full_nohz_cpu(cpu))
1090 wake_up_idle_cpu(cpu);
1091}
1092
1093static void nohz_csd_func(void *info)
1094{
1095 struct rq *rq = info;
1096 int cpu = cpu_of(rq);
1097 unsigned int flags;
1098
1099 /*
1100 * Release the rq::nohz_csd.
1101 */
1102 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1103 WARN_ON(!(flags & NOHZ_KICK_MASK));
1104
1105 rq->idle_balance = idle_cpu(cpu);
1106 if (rq->idle_balance && !need_resched()) {
1107 rq->nohz_idle_balance = flags;
1108 raise_softirq_irqoff(SCHED_SOFTIRQ);
1109 }
1110}
1111
1112#endif /* CONFIG_NO_HZ_COMMON */
1113
1114#ifdef CONFIG_NO_HZ_FULL
1115bool sched_can_stop_tick(struct rq *rq)
1116{
1117 int fifo_nr_running;
1118
1119 /* Deadline tasks, even if single, need the tick */
1120 if (rq->dl.dl_nr_running)
1121 return false;
1122
1123 /*
1124 * If there are more than one RR tasks, we need the tick to affect the
1125 * actual RR behaviour.
1126 */
1127 if (rq->rt.rr_nr_running) {
1128 if (rq->rt.rr_nr_running == 1)
1129 return true;
1130 else
1131 return false;
1132 }
1133
1134 /*
1135 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1136 * forced preemption between FIFO tasks.
1137 */
1138 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1139 if (fifo_nr_running)
1140 return true;
1141
1142 /*
1143 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1144 * if there's more than one we need the tick for involuntary
1145 * preemption.
1146 */
1147 if (rq->nr_running > 1)
1148 return false;
1149
1150 return true;
1151}
1152#endif /* CONFIG_NO_HZ_FULL */
1153#endif /* CONFIG_SMP */
1154
1155#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1156 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1157/*
1158 * Iterate task_group tree rooted at *from, calling @down when first entering a
1159 * node and @up when leaving it for the final time.
1160 *
1161 * Caller must hold rcu_lock or sufficient equivalent.
1162 */
1163int walk_tg_tree_from(struct task_group *from,
1164 tg_visitor down, tg_visitor up, void *data)
1165{
1166 struct task_group *parent, *child;
1167 int ret;
1168
1169 parent = from;
1170
1171down:
1172 ret = (*down)(parent, data);
1173 if (ret)
1174 goto out;
1175 list_for_each_entry_rcu(child, &parent->children, siblings) {
1176 parent = child;
1177 goto down;
1178
1179up:
1180 continue;
1181 }
1182 ret = (*up)(parent, data);
1183 if (ret || parent == from)
1184 goto out;
1185
1186 child = parent;
1187 parent = parent->parent;
1188 if (parent)
1189 goto up;
1190out:
1191 return ret;
1192}
1193
1194int tg_nop(struct task_group *tg, void *data)
1195{
1196 return 0;
1197}
1198#endif
1199
1200static void set_load_weight(struct task_struct *p, bool update_load)
1201{
1202 int prio = p->static_prio - MAX_RT_PRIO;
1203 struct load_weight *load = &p->se.load;
1204
1205 /*
1206 * SCHED_IDLE tasks get minimal weight:
1207 */
1208 if (task_has_idle_policy(p)) {
1209 load->weight = scale_load(WEIGHT_IDLEPRIO);
1210 load->inv_weight = WMULT_IDLEPRIO;
1211 return;
1212 }
1213
1214 /*
1215 * SCHED_OTHER tasks have to update their load when changing their
1216 * weight
1217 */
1218 if (update_load && p->sched_class == &fair_sched_class) {
1219 reweight_task(p, prio);
1220 } else {
1221 load->weight = scale_load(sched_prio_to_weight[prio]);
1222 load->inv_weight = sched_prio_to_wmult[prio];
1223 }
1224}
1225
1226#ifdef CONFIG_UCLAMP_TASK
1227/*
1228 * Serializes updates of utilization clamp values
1229 *
1230 * The (slow-path) user-space triggers utilization clamp value updates which
1231 * can require updates on (fast-path) scheduler's data structures used to
1232 * support enqueue/dequeue operations.
1233 * While the per-CPU rq lock protects fast-path update operations, user-space
1234 * requests are serialized using a mutex to reduce the risk of conflicting
1235 * updates or API abuses.
1236 */
1237static DEFINE_MUTEX(uclamp_mutex);
1238
1239/* Max allowed minimum utilization */
1240unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1241
1242/* Max allowed maximum utilization */
1243unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1244
1245/*
1246 * By default RT tasks run at the maximum performance point/capacity of the
1247 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1248 * SCHED_CAPACITY_SCALE.
1249 *
1250 * This knob allows admins to change the default behavior when uclamp is being
1251 * used. In battery powered devices, particularly, running at the maximum
1252 * capacity and frequency will increase energy consumption and shorten the
1253 * battery life.
1254 *
1255 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1256 *
1257 * This knob will not override the system default sched_util_clamp_min defined
1258 * above.
1259 */
1260unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1261
1262/* All clamps are required to be less or equal than these values */
1263static struct uclamp_se uclamp_default[UCLAMP_CNT];
1264
1265/*
1266 * This static key is used to reduce the uclamp overhead in the fast path. It
1267 * primarily disables the call to uclamp_rq_{inc, dec}() in
1268 * enqueue/dequeue_task().
1269 *
1270 * This allows users to continue to enable uclamp in their kernel config with
1271 * minimum uclamp overhead in the fast path.
1272 *
1273 * As soon as userspace modifies any of the uclamp knobs, the static key is
1274 * enabled, since we have an actual users that make use of uclamp
1275 * functionality.
1276 *
1277 * The knobs that would enable this static key are:
1278 *
1279 * * A task modifying its uclamp value with sched_setattr().
1280 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1281 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1282 */
1283DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1284
1285/* Integer rounded range for each bucket */
1286#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1287
1288#define for_each_clamp_id(clamp_id) \
1289 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1290
1291static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1292{
1293 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1294}
1295
1296static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1297{
1298 if (clamp_id == UCLAMP_MIN)
1299 return 0;
1300 return SCHED_CAPACITY_SCALE;
1301}
1302
1303static inline void uclamp_se_set(struct uclamp_se *uc_se,
1304 unsigned int value, bool user_defined)
1305{
1306 uc_se->value = value;
1307 uc_se->bucket_id = uclamp_bucket_id(value);
1308 uc_se->user_defined = user_defined;
1309}
1310
1311static inline unsigned int
1312uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1313 unsigned int clamp_value)
1314{
1315 /*
1316 * Avoid blocked utilization pushing up the frequency when we go
1317 * idle (which drops the max-clamp) by retaining the last known
1318 * max-clamp.
1319 */
1320 if (clamp_id == UCLAMP_MAX) {
1321 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1322 return clamp_value;
1323 }
1324
1325 return uclamp_none(UCLAMP_MIN);
1326}
1327
1328static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1329 unsigned int clamp_value)
1330{
1331 /* Reset max-clamp retention only on idle exit */
1332 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1333 return;
1334
1335 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1336}
1337
1338static inline
1339unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1340 unsigned int clamp_value)
1341{
1342 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1343 int bucket_id = UCLAMP_BUCKETS - 1;
1344
1345 /*
1346 * Since both min and max clamps are max aggregated, find the
1347 * top most bucket with tasks in.
1348 */
1349 for ( ; bucket_id >= 0; bucket_id--) {
1350 if (!bucket[bucket_id].tasks)
1351 continue;
1352 return bucket[bucket_id].value;
1353 }
1354
1355 /* No tasks -- default clamp values */
1356 return uclamp_idle_value(rq, clamp_id, clamp_value);
1357}
1358
1359static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1360{
1361 unsigned int default_util_min;
1362 struct uclamp_se *uc_se;
1363
1364 lockdep_assert_held(&p->pi_lock);
1365
1366 uc_se = &p->uclamp_req[UCLAMP_MIN];
1367
1368 /* Only sync if user didn't override the default */
1369 if (uc_se->user_defined)
1370 return;
1371
1372 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1373 uclamp_se_set(uc_se, default_util_min, false);
1374}
1375
1376static void uclamp_update_util_min_rt_default(struct task_struct *p)
1377{
1378 struct rq_flags rf;
1379 struct rq *rq;
1380
1381 if (!rt_task(p))
1382 return;
1383
1384 /* Protect updates to p->uclamp_* */
1385 rq = task_rq_lock(p, &rf);
1386 __uclamp_update_util_min_rt_default(p);
1387 task_rq_unlock(rq, p, &rf);
1388}
1389
1390static void uclamp_sync_util_min_rt_default(void)
1391{
1392 struct task_struct *g, *p;
1393
1394 /*
1395 * copy_process() sysctl_uclamp
1396 * uclamp_min_rt = X;
1397 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1398 * // link thread smp_mb__after_spinlock()
1399 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1400 * sched_post_fork() for_each_process_thread()
1401 * __uclamp_sync_rt() __uclamp_sync_rt()
1402 *
1403 * Ensures that either sched_post_fork() will observe the new
1404 * uclamp_min_rt or for_each_process_thread() will observe the new
1405 * task.
1406 */
1407 read_lock(&tasklist_lock);
1408 smp_mb__after_spinlock();
1409 read_unlock(&tasklist_lock);
1410
1411 rcu_read_lock();
1412 for_each_process_thread(g, p)
1413 uclamp_update_util_min_rt_default(p);
1414 rcu_read_unlock();
1415}
1416
1417static inline struct uclamp_se
1418uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1419{
1420 /* Copy by value as we could modify it */
1421 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1422#ifdef CONFIG_UCLAMP_TASK_GROUP
1423 unsigned int tg_min, tg_max, value;
1424
1425 /*
1426 * Tasks in autogroups or root task group will be
1427 * restricted by system defaults.
1428 */
1429 if (task_group_is_autogroup(task_group(p)))
1430 return uc_req;
1431 if (task_group(p) == &root_task_group)
1432 return uc_req;
1433
1434 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1435 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1436 value = uc_req.value;
1437 value = clamp(value, tg_min, tg_max);
1438 uclamp_se_set(&uc_req, value, false);
1439#endif
1440
1441 return uc_req;
1442}
1443
1444/*
1445 * The effective clamp bucket index of a task depends on, by increasing
1446 * priority:
1447 * - the task specific clamp value, when explicitly requested from userspace
1448 * - the task group effective clamp value, for tasks not either in the root
1449 * group or in an autogroup
1450 * - the system default clamp value, defined by the sysadmin
1451 */
1452static inline struct uclamp_se
1453uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1454{
1455 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1456 struct uclamp_se uc_max = uclamp_default[clamp_id];
1457
1458 /* System default restrictions always apply */
1459 if (unlikely(uc_req.value > uc_max.value))
1460 return uc_max;
1461
1462 return uc_req;
1463}
1464
1465unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1466{
1467 struct uclamp_se uc_eff;
1468
1469 /* Task currently refcounted: use back-annotated (effective) value */
1470 if (p->uclamp[clamp_id].active)
1471 return (unsigned long)p->uclamp[clamp_id].value;
1472
1473 uc_eff = uclamp_eff_get(p, clamp_id);
1474
1475 return (unsigned long)uc_eff.value;
1476}
1477
1478/*
1479 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1480 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1481 * updates the rq's clamp value if required.
1482 *
1483 * Tasks can have a task-specific value requested from user-space, track
1484 * within each bucket the maximum value for tasks refcounted in it.
1485 * This "local max aggregation" allows to track the exact "requested" value
1486 * for each bucket when all its RUNNABLE tasks require the same clamp.
1487 */
1488static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1489 enum uclamp_id clamp_id)
1490{
1491 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1492 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1493 struct uclamp_bucket *bucket;
1494
1495 lockdep_assert_rq_held(rq);
1496
1497 /* Update task effective clamp */
1498 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1499
1500 bucket = &uc_rq->bucket[uc_se->bucket_id];
1501 bucket->tasks++;
1502 uc_se->active = true;
1503
1504 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1505
1506 /*
1507 * Local max aggregation: rq buckets always track the max
1508 * "requested" clamp value of its RUNNABLE tasks.
1509 */
1510 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1511 bucket->value = uc_se->value;
1512
1513 if (uc_se->value > READ_ONCE(uc_rq->value))
1514 WRITE_ONCE(uc_rq->value, uc_se->value);
1515}
1516
1517/*
1518 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1519 * is released. If this is the last task reference counting the rq's max
1520 * active clamp value, then the rq's clamp value is updated.
1521 *
1522 * Both refcounted tasks and rq's cached clamp values are expected to be
1523 * always valid. If it's detected they are not, as defensive programming,
1524 * enforce the expected state and warn.
1525 */
1526static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1527 enum uclamp_id clamp_id)
1528{
1529 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1530 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1531 struct uclamp_bucket *bucket;
1532 unsigned int bkt_clamp;
1533 unsigned int rq_clamp;
1534
1535 lockdep_assert_rq_held(rq);
1536
1537 /*
1538 * If sched_uclamp_used was enabled after task @p was enqueued,
1539 * we could end up with unbalanced call to uclamp_rq_dec_id().
1540 *
1541 * In this case the uc_se->active flag should be false since no uclamp
1542 * accounting was performed at enqueue time and we can just return
1543 * here.
1544 *
1545 * Need to be careful of the following enqueue/dequeue ordering
1546 * problem too
1547 *
1548 * enqueue(taskA)
1549 * // sched_uclamp_used gets enabled
1550 * enqueue(taskB)
1551 * dequeue(taskA)
1552 * // Must not decrement bucket->tasks here
1553 * dequeue(taskB)
1554 *
1555 * where we could end up with stale data in uc_se and
1556 * bucket[uc_se->bucket_id].
1557 *
1558 * The following check here eliminates the possibility of such race.
1559 */
1560 if (unlikely(!uc_se->active))
1561 return;
1562
1563 bucket = &uc_rq->bucket[uc_se->bucket_id];
1564
1565 SCHED_WARN_ON(!bucket->tasks);
1566 if (likely(bucket->tasks))
1567 bucket->tasks--;
1568
1569 uc_se->active = false;
1570
1571 /*
1572 * Keep "local max aggregation" simple and accept to (possibly)
1573 * overboost some RUNNABLE tasks in the same bucket.
1574 * The rq clamp bucket value is reset to its base value whenever
1575 * there are no more RUNNABLE tasks refcounting it.
1576 */
1577 if (likely(bucket->tasks))
1578 return;
1579
1580 rq_clamp = READ_ONCE(uc_rq->value);
1581 /*
1582 * Defensive programming: this should never happen. If it happens,
1583 * e.g. due to future modification, warn and fixup the expected value.
1584 */
1585 SCHED_WARN_ON(bucket->value > rq_clamp);
1586 if (bucket->value >= rq_clamp) {
1587 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1588 WRITE_ONCE(uc_rq->value, bkt_clamp);
1589 }
1590}
1591
1592static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1593{
1594 enum uclamp_id clamp_id;
1595
1596 /*
1597 * Avoid any overhead until uclamp is actually used by the userspace.
1598 *
1599 * The condition is constructed such that a NOP is generated when
1600 * sched_uclamp_used is disabled.
1601 */
1602 if (!static_branch_unlikely(&sched_uclamp_used))
1603 return;
1604
1605 if (unlikely(!p->sched_class->uclamp_enabled))
1606 return;
1607
1608 for_each_clamp_id(clamp_id)
1609 uclamp_rq_inc_id(rq, p, clamp_id);
1610
1611 /* Reset clamp idle holding when there is one RUNNABLE task */
1612 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1613 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1614}
1615
1616static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1617{
1618 enum uclamp_id clamp_id;
1619
1620 /*
1621 * Avoid any overhead until uclamp is actually used by the userspace.
1622 *
1623 * The condition is constructed such that a NOP is generated when
1624 * sched_uclamp_used is disabled.
1625 */
1626 if (!static_branch_unlikely(&sched_uclamp_used))
1627 return;
1628
1629 if (unlikely(!p->sched_class->uclamp_enabled))
1630 return;
1631
1632 for_each_clamp_id(clamp_id)
1633 uclamp_rq_dec_id(rq, p, clamp_id);
1634}
1635
1636static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1637 enum uclamp_id clamp_id)
1638{
1639 if (!p->uclamp[clamp_id].active)
1640 return;
1641
1642 uclamp_rq_dec_id(rq, p, clamp_id);
1643 uclamp_rq_inc_id(rq, p, clamp_id);
1644
1645 /*
1646 * Make sure to clear the idle flag if we've transiently reached 0
1647 * active tasks on rq.
1648 */
1649 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1650 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1651}
1652
1653static inline void
1654uclamp_update_active(struct task_struct *p)
1655{
1656 enum uclamp_id clamp_id;
1657 struct rq_flags rf;
1658 struct rq *rq;
1659
1660 /*
1661 * Lock the task and the rq where the task is (or was) queued.
1662 *
1663 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1664 * price to pay to safely serialize util_{min,max} updates with
1665 * enqueues, dequeues and migration operations.
1666 * This is the same locking schema used by __set_cpus_allowed_ptr().
1667 */
1668 rq = task_rq_lock(p, &rf);
1669
1670 /*
1671 * Setting the clamp bucket is serialized by task_rq_lock().
1672 * If the task is not yet RUNNABLE and its task_struct is not
1673 * affecting a valid clamp bucket, the next time it's enqueued,
1674 * it will already see the updated clamp bucket value.
1675 */
1676 for_each_clamp_id(clamp_id)
1677 uclamp_rq_reinc_id(rq, p, clamp_id);
1678
1679 task_rq_unlock(rq, p, &rf);
1680}
1681
1682#ifdef CONFIG_UCLAMP_TASK_GROUP
1683static inline void
1684uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1685{
1686 struct css_task_iter it;
1687 struct task_struct *p;
1688
1689 css_task_iter_start(css, 0, &it);
1690 while ((p = css_task_iter_next(&it)))
1691 uclamp_update_active(p);
1692 css_task_iter_end(&it);
1693}
1694
1695static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1696static void uclamp_update_root_tg(void)
1697{
1698 struct task_group *tg = &root_task_group;
1699
1700 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1701 sysctl_sched_uclamp_util_min, false);
1702 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1703 sysctl_sched_uclamp_util_max, false);
1704
1705 rcu_read_lock();
1706 cpu_util_update_eff(&root_task_group.css);
1707 rcu_read_unlock();
1708}
1709#else
1710static void uclamp_update_root_tg(void) { }
1711#endif
1712
1713int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1714 void *buffer, size_t *lenp, loff_t *ppos)
1715{
1716 bool update_root_tg = false;
1717 int old_min, old_max, old_min_rt;
1718 int result;
1719
1720 mutex_lock(&uclamp_mutex);
1721 old_min = sysctl_sched_uclamp_util_min;
1722 old_max = sysctl_sched_uclamp_util_max;
1723 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1724
1725 result = proc_dointvec(table, write, buffer, lenp, ppos);
1726 if (result)
1727 goto undo;
1728 if (!write)
1729 goto done;
1730
1731 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1732 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1733 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1734
1735 result = -EINVAL;
1736 goto undo;
1737 }
1738
1739 if (old_min != sysctl_sched_uclamp_util_min) {
1740 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1741 sysctl_sched_uclamp_util_min, false);
1742 update_root_tg = true;
1743 }
1744 if (old_max != sysctl_sched_uclamp_util_max) {
1745 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1746 sysctl_sched_uclamp_util_max, false);
1747 update_root_tg = true;
1748 }
1749
1750 if (update_root_tg) {
1751 static_branch_enable(&sched_uclamp_used);
1752 uclamp_update_root_tg();
1753 }
1754
1755 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1756 static_branch_enable(&sched_uclamp_used);
1757 uclamp_sync_util_min_rt_default();
1758 }
1759
1760 /*
1761 * We update all RUNNABLE tasks only when task groups are in use.
1762 * Otherwise, keep it simple and do just a lazy update at each next
1763 * task enqueue time.
1764 */
1765
1766 goto done;
1767
1768undo:
1769 sysctl_sched_uclamp_util_min = old_min;
1770 sysctl_sched_uclamp_util_max = old_max;
1771 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1772done:
1773 mutex_unlock(&uclamp_mutex);
1774
1775 return result;
1776}
1777
1778static int uclamp_validate(struct task_struct *p,
1779 const struct sched_attr *attr)
1780{
1781 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1782 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1783
1784 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1785 util_min = attr->sched_util_min;
1786
1787 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1788 return -EINVAL;
1789 }
1790
1791 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1792 util_max = attr->sched_util_max;
1793
1794 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1795 return -EINVAL;
1796 }
1797
1798 if (util_min != -1 && util_max != -1 && util_min > util_max)
1799 return -EINVAL;
1800
1801 /*
1802 * We have valid uclamp attributes; make sure uclamp is enabled.
1803 *
1804 * We need to do that here, because enabling static branches is a
1805 * blocking operation which obviously cannot be done while holding
1806 * scheduler locks.
1807 */
1808 static_branch_enable(&sched_uclamp_used);
1809
1810 return 0;
1811}
1812
1813static bool uclamp_reset(const struct sched_attr *attr,
1814 enum uclamp_id clamp_id,
1815 struct uclamp_se *uc_se)
1816{
1817 /* Reset on sched class change for a non user-defined clamp value. */
1818 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1819 !uc_se->user_defined)
1820 return true;
1821
1822 /* Reset on sched_util_{min,max} == -1. */
1823 if (clamp_id == UCLAMP_MIN &&
1824 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1825 attr->sched_util_min == -1) {
1826 return true;
1827 }
1828
1829 if (clamp_id == UCLAMP_MAX &&
1830 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1831 attr->sched_util_max == -1) {
1832 return true;
1833 }
1834
1835 return false;
1836}
1837
1838static void __setscheduler_uclamp(struct task_struct *p,
1839 const struct sched_attr *attr)
1840{
1841 enum uclamp_id clamp_id;
1842
1843 for_each_clamp_id(clamp_id) {
1844 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1845 unsigned int value;
1846
1847 if (!uclamp_reset(attr, clamp_id, uc_se))
1848 continue;
1849
1850 /*
1851 * RT by default have a 100% boost value that could be modified
1852 * at runtime.
1853 */
1854 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1855 value = sysctl_sched_uclamp_util_min_rt_default;
1856 else
1857 value = uclamp_none(clamp_id);
1858
1859 uclamp_se_set(uc_se, value, false);
1860
1861 }
1862
1863 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1864 return;
1865
1866 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1867 attr->sched_util_min != -1) {
1868 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1869 attr->sched_util_min, true);
1870 }
1871
1872 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1873 attr->sched_util_max != -1) {
1874 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1875 attr->sched_util_max, true);
1876 }
1877}
1878
1879static void uclamp_fork(struct task_struct *p)
1880{
1881 enum uclamp_id clamp_id;
1882
1883 /*
1884 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1885 * as the task is still at its early fork stages.
1886 */
1887 for_each_clamp_id(clamp_id)
1888 p->uclamp[clamp_id].active = false;
1889
1890 if (likely(!p->sched_reset_on_fork))
1891 return;
1892
1893 for_each_clamp_id(clamp_id) {
1894 uclamp_se_set(&p->uclamp_req[clamp_id],
1895 uclamp_none(clamp_id), false);
1896 }
1897}
1898
1899static void uclamp_post_fork(struct task_struct *p)
1900{
1901 uclamp_update_util_min_rt_default(p);
1902}
1903
1904static void __init init_uclamp_rq(struct rq *rq)
1905{
1906 enum uclamp_id clamp_id;
1907 struct uclamp_rq *uc_rq = rq->uclamp;
1908
1909 for_each_clamp_id(clamp_id) {
1910 uc_rq[clamp_id] = (struct uclamp_rq) {
1911 .value = uclamp_none(clamp_id)
1912 };
1913 }
1914
1915 rq->uclamp_flags = 0;
1916}
1917
1918static void __init init_uclamp(void)
1919{
1920 struct uclamp_se uc_max = {};
1921 enum uclamp_id clamp_id;
1922 int cpu;
1923
1924 for_each_possible_cpu(cpu)
1925 init_uclamp_rq(cpu_rq(cpu));
1926
1927 for_each_clamp_id(clamp_id) {
1928 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1929 uclamp_none(clamp_id), false);
1930 }
1931
1932 /* System defaults allow max clamp values for both indexes */
1933 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1934 for_each_clamp_id(clamp_id) {
1935 uclamp_default[clamp_id] = uc_max;
1936#ifdef CONFIG_UCLAMP_TASK_GROUP
1937 root_task_group.uclamp_req[clamp_id] = uc_max;
1938 root_task_group.uclamp[clamp_id] = uc_max;
1939#endif
1940 }
1941}
1942
1943#else /* CONFIG_UCLAMP_TASK */
1944static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1945static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1946static inline int uclamp_validate(struct task_struct *p,
1947 const struct sched_attr *attr)
1948{
1949 return -EOPNOTSUPP;
1950}
1951static void __setscheduler_uclamp(struct task_struct *p,
1952 const struct sched_attr *attr) { }
1953static inline void uclamp_fork(struct task_struct *p) { }
1954static inline void uclamp_post_fork(struct task_struct *p) { }
1955static inline void init_uclamp(void) { }
1956#endif /* CONFIG_UCLAMP_TASK */
1957
1958bool sched_task_on_rq(struct task_struct *p)
1959{
1960 return task_on_rq_queued(p);
1961}
1962
1963static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1964{
1965 if (!(flags & ENQUEUE_NOCLOCK))
1966 update_rq_clock(rq);
1967
1968 if (!(flags & ENQUEUE_RESTORE)) {
1969 sched_info_enqueue(rq, p);
1970 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1971 }
1972
1973 uclamp_rq_inc(rq, p);
1974 p->sched_class->enqueue_task(rq, p, flags);
1975
1976 if (sched_core_enabled(rq))
1977 sched_core_enqueue(rq, p);
1978}
1979
1980static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1981{
1982 if (sched_core_enabled(rq))
1983 sched_core_dequeue(rq, p);
1984
1985 if (!(flags & DEQUEUE_NOCLOCK))
1986 update_rq_clock(rq);
1987
1988 if (!(flags & DEQUEUE_SAVE)) {
1989 sched_info_dequeue(rq, p);
1990 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1991 }
1992
1993 uclamp_rq_dec(rq, p);
1994 p->sched_class->dequeue_task(rq, p, flags);
1995}
1996
1997void activate_task(struct rq *rq, struct task_struct *p, int flags)
1998{
1999 enqueue_task(rq, p, flags);
2000
2001 p->on_rq = TASK_ON_RQ_QUEUED;
2002}
2003
2004void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2005{
2006 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2007
2008 dequeue_task(rq, p, flags);
2009}
2010
2011static inline int __normal_prio(int policy, int rt_prio, int nice)
2012{
2013 int prio;
2014
2015 if (dl_policy(policy))
2016 prio = MAX_DL_PRIO - 1;
2017 else if (rt_policy(policy))
2018 prio = MAX_RT_PRIO - 1 - rt_prio;
2019 else
2020 prio = NICE_TO_PRIO(nice);
2021
2022 return prio;
2023}
2024
2025/*
2026 * Calculate the expected normal priority: i.e. priority
2027 * without taking RT-inheritance into account. Might be
2028 * boosted by interactivity modifiers. Changes upon fork,
2029 * setprio syscalls, and whenever the interactivity
2030 * estimator recalculates.
2031 */
2032static inline int normal_prio(struct task_struct *p)
2033{
2034 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2035}
2036
2037/*
2038 * Calculate the current priority, i.e. the priority
2039 * taken into account by the scheduler. This value might
2040 * be boosted by RT tasks, or might be boosted by
2041 * interactivity modifiers. Will be RT if the task got
2042 * RT-boosted. If not then it returns p->normal_prio.
2043 */
2044static int effective_prio(struct task_struct *p)
2045{
2046 p->normal_prio = normal_prio(p);
2047 /*
2048 * If we are RT tasks or we were boosted to RT priority,
2049 * keep the priority unchanged. Otherwise, update priority
2050 * to the normal priority:
2051 */
2052 if (!rt_prio(p->prio))
2053 return p->normal_prio;
2054 return p->prio;
2055}
2056
2057/**
2058 * task_curr - is this task currently executing on a CPU?
2059 * @p: the task in question.
2060 *
2061 * Return: 1 if the task is currently executing. 0 otherwise.
2062 */
2063inline int task_curr(const struct task_struct *p)
2064{
2065 return cpu_curr(task_cpu(p)) == p;
2066}
2067
2068/*
2069 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2070 * use the balance_callback list if you want balancing.
2071 *
2072 * this means any call to check_class_changed() must be followed by a call to
2073 * balance_callback().
2074 */
2075static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2076 const struct sched_class *prev_class,
2077 int oldprio)
2078{
2079 if (prev_class != p->sched_class) {
2080 if (prev_class->switched_from)
2081 prev_class->switched_from(rq, p);
2082
2083 p->sched_class->switched_to(rq, p);
2084 } else if (oldprio != p->prio || dl_task(p))
2085 p->sched_class->prio_changed(rq, p, oldprio);
2086}
2087
2088void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2089{
2090 if (p->sched_class == rq->curr->sched_class)
2091 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2092 else if (p->sched_class > rq->curr->sched_class)
2093 resched_curr(rq);
2094
2095 /*
2096 * A queue event has occurred, and we're going to schedule. In
2097 * this case, we can save a useless back to back clock update.
2098 */
2099 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2100 rq_clock_skip_update(rq);
2101}
2102
2103#ifdef CONFIG_SMP
2104
2105static void
2106__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2107
2108static int __set_cpus_allowed_ptr(struct task_struct *p,
2109 const struct cpumask *new_mask,
2110 u32 flags);
2111
2112static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2113{
2114 if (likely(!p->migration_disabled))
2115 return;
2116
2117 if (p->cpus_ptr != &p->cpus_mask)
2118 return;
2119
2120 /*
2121 * Violates locking rules! see comment in __do_set_cpus_allowed().
2122 */
2123 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2124}
2125
2126void migrate_disable(void)
2127{
2128 struct task_struct *p = current;
2129
2130 if (p->migration_disabled) {
2131 p->migration_disabled++;
2132 return;
2133 }
2134
2135 preempt_disable();
2136 this_rq()->nr_pinned++;
2137 p->migration_disabled = 1;
2138 preempt_enable();
2139}
2140EXPORT_SYMBOL_GPL(migrate_disable);
2141
2142void migrate_enable(void)
2143{
2144 struct task_struct *p = current;
2145
2146 if (p->migration_disabled > 1) {
2147 p->migration_disabled--;
2148 return;
2149 }
2150
2151 /*
2152 * Ensure stop_task runs either before or after this, and that
2153 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2154 */
2155 preempt_disable();
2156 if (p->cpus_ptr != &p->cpus_mask)
2157 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2158 /*
2159 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2160 * regular cpus_mask, otherwise things that race (eg.
2161 * select_fallback_rq) get confused.
2162 */
2163 barrier();
2164 p->migration_disabled = 0;
2165 this_rq()->nr_pinned--;
2166 preempt_enable();
2167}
2168EXPORT_SYMBOL_GPL(migrate_enable);
2169
2170static inline bool rq_has_pinned_tasks(struct rq *rq)
2171{
2172 return rq->nr_pinned;
2173}
2174
2175/*
2176 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2177 * __set_cpus_allowed_ptr() and select_fallback_rq().
2178 */
2179static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2180{
2181 /* When not in the task's cpumask, no point in looking further. */
2182 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2183 return false;
2184
2185 /* migrate_disabled() must be allowed to finish. */
2186 if (is_migration_disabled(p))
2187 return cpu_online(cpu);
2188
2189 /* Non kernel threads are not allowed during either online or offline. */
2190 if (!(p->flags & PF_KTHREAD))
2191 return cpu_active(cpu);
2192
2193 /* KTHREAD_IS_PER_CPU is always allowed. */
2194 if (kthread_is_per_cpu(p))
2195 return cpu_online(cpu);
2196
2197 /* Regular kernel threads don't get to stay during offline. */
2198 if (cpu_dying(cpu))
2199 return false;
2200
2201 /* But are allowed during online. */
2202 return cpu_online(cpu);
2203}
2204
2205/*
2206 * This is how migration works:
2207 *
2208 * 1) we invoke migration_cpu_stop() on the target CPU using
2209 * stop_one_cpu().
2210 * 2) stopper starts to run (implicitly forcing the migrated thread
2211 * off the CPU)
2212 * 3) it checks whether the migrated task is still in the wrong runqueue.
2213 * 4) if it's in the wrong runqueue then the migration thread removes
2214 * it and puts it into the right queue.
2215 * 5) stopper completes and stop_one_cpu() returns and the migration
2216 * is done.
2217 */
2218
2219/*
2220 * move_queued_task - move a queued task to new rq.
2221 *
2222 * Returns (locked) new rq. Old rq's lock is released.
2223 */
2224static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2225 struct task_struct *p, int new_cpu)
2226{
2227 lockdep_assert_rq_held(rq);
2228
2229 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2230 set_task_cpu(p, new_cpu);
2231 rq_unlock(rq, rf);
2232
2233 rq = cpu_rq(new_cpu);
2234
2235 rq_lock(rq, rf);
2236 BUG_ON(task_cpu(p) != new_cpu);
2237 activate_task(rq, p, 0);
2238 check_preempt_curr(rq, p, 0);
2239
2240 return rq;
2241}
2242
2243struct migration_arg {
2244 struct task_struct *task;
2245 int dest_cpu;
2246 struct set_affinity_pending *pending;
2247};
2248
2249/*
2250 * @refs: number of wait_for_completion()
2251 * @stop_pending: is @stop_work in use
2252 */
2253struct set_affinity_pending {
2254 refcount_t refs;
2255 unsigned int stop_pending;
2256 struct completion done;
2257 struct cpu_stop_work stop_work;
2258 struct migration_arg arg;
2259};
2260
2261/*
2262 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2263 * this because either it can't run here any more (set_cpus_allowed()
2264 * away from this CPU, or CPU going down), or because we're
2265 * attempting to rebalance this task on exec (sched_exec).
2266 *
2267 * So we race with normal scheduler movements, but that's OK, as long
2268 * as the task is no longer on this CPU.
2269 */
2270static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2271 struct task_struct *p, int dest_cpu)
2272{
2273 /* Affinity changed (again). */
2274 if (!is_cpu_allowed(p, dest_cpu))
2275 return rq;
2276
2277 update_rq_clock(rq);
2278 rq = move_queued_task(rq, rf, p, dest_cpu);
2279
2280 return rq;
2281}
2282
2283/*
2284 * migration_cpu_stop - this will be executed by a highprio stopper thread
2285 * and performs thread migration by bumping thread off CPU then
2286 * 'pushing' onto another runqueue.
2287 */
2288static int migration_cpu_stop(void *data)
2289{
2290 struct migration_arg *arg = data;
2291 struct set_affinity_pending *pending = arg->pending;
2292 struct task_struct *p = arg->task;
2293 struct rq *rq = this_rq();
2294 bool complete = false;
2295 struct rq_flags rf;
2296
2297 /*
2298 * The original target CPU might have gone down and we might
2299 * be on another CPU but it doesn't matter.
2300 */
2301 local_irq_save(rf.flags);
2302 /*
2303 * We need to explicitly wake pending tasks before running
2304 * __migrate_task() such that we will not miss enforcing cpus_ptr
2305 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2306 */
2307 flush_smp_call_function_from_idle();
2308
2309 raw_spin_lock(&p->pi_lock);
2310 rq_lock(rq, &rf);
2311
2312 /*
2313 * If we were passed a pending, then ->stop_pending was set, thus
2314 * p->migration_pending must have remained stable.
2315 */
2316 WARN_ON_ONCE(pending && pending != p->migration_pending);
2317
2318 /*
2319 * If task_rq(p) != rq, it cannot be migrated here, because we're
2320 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2321 * we're holding p->pi_lock.
2322 */
2323 if (task_rq(p) == rq) {
2324 if (is_migration_disabled(p))
2325 goto out;
2326
2327 if (pending) {
2328 p->migration_pending = NULL;
2329 complete = true;
2330
2331 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2332 goto out;
2333 }
2334
2335 if (task_on_rq_queued(p))
2336 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2337 else
2338 p->wake_cpu = arg->dest_cpu;
2339
2340 /*
2341 * XXX __migrate_task() can fail, at which point we might end
2342 * up running on a dodgy CPU, AFAICT this can only happen
2343 * during CPU hotplug, at which point we'll get pushed out
2344 * anyway, so it's probably not a big deal.
2345 */
2346
2347 } else if (pending) {
2348 /*
2349 * This happens when we get migrated between migrate_enable()'s
2350 * preempt_enable() and scheduling the stopper task. At that
2351 * point we're a regular task again and not current anymore.
2352 *
2353 * A !PREEMPT kernel has a giant hole here, which makes it far
2354 * more likely.
2355 */
2356
2357 /*
2358 * The task moved before the stopper got to run. We're holding
2359 * ->pi_lock, so the allowed mask is stable - if it got
2360 * somewhere allowed, we're done.
2361 */
2362 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2363 p->migration_pending = NULL;
2364 complete = true;
2365 goto out;
2366 }
2367
2368 /*
2369 * When migrate_enable() hits a rq mis-match we can't reliably
2370 * determine is_migration_disabled() and so have to chase after
2371 * it.
2372 */
2373 WARN_ON_ONCE(!pending->stop_pending);
2374 task_rq_unlock(rq, p, &rf);
2375 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2376 &pending->arg, &pending->stop_work);
2377 return 0;
2378 }
2379out:
2380 if (pending)
2381 pending->stop_pending = false;
2382 task_rq_unlock(rq, p, &rf);
2383
2384 if (complete)
2385 complete_all(&pending->done);
2386
2387 return 0;
2388}
2389
2390int push_cpu_stop(void *arg)
2391{
2392 struct rq *lowest_rq = NULL, *rq = this_rq();
2393 struct task_struct *p = arg;
2394
2395 raw_spin_lock_irq(&p->pi_lock);
2396 raw_spin_rq_lock(rq);
2397
2398 if (task_rq(p) != rq)
2399 goto out_unlock;
2400
2401 if (is_migration_disabled(p)) {
2402 p->migration_flags |= MDF_PUSH;
2403 goto out_unlock;
2404 }
2405
2406 p->migration_flags &= ~MDF_PUSH;
2407
2408 if (p->sched_class->find_lock_rq)
2409 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2410
2411 if (!lowest_rq)
2412 goto out_unlock;
2413
2414 // XXX validate p is still the highest prio task
2415 if (task_rq(p) == rq) {
2416 deactivate_task(rq, p, 0);
2417 set_task_cpu(p, lowest_rq->cpu);
2418 activate_task(lowest_rq, p, 0);
2419 resched_curr(lowest_rq);
2420 }
2421
2422 double_unlock_balance(rq, lowest_rq);
2423
2424out_unlock:
2425 rq->push_busy = false;
2426 raw_spin_rq_unlock(rq);
2427 raw_spin_unlock_irq(&p->pi_lock);
2428
2429 put_task_struct(p);
2430 return 0;
2431}
2432
2433/*
2434 * sched_class::set_cpus_allowed must do the below, but is not required to
2435 * actually call this function.
2436 */
2437void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2438{
2439 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2440 p->cpus_ptr = new_mask;
2441 return;
2442 }
2443
2444 cpumask_copy(&p->cpus_mask, new_mask);
2445 p->nr_cpus_allowed = cpumask_weight(new_mask);
2446}
2447
2448static void
2449__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2450{
2451 struct rq *rq = task_rq(p);
2452 bool queued, running;
2453
2454 /*
2455 * This here violates the locking rules for affinity, since we're only
2456 * supposed to change these variables while holding both rq->lock and
2457 * p->pi_lock.
2458 *
2459 * HOWEVER, it magically works, because ttwu() is the only code that
2460 * accesses these variables under p->pi_lock and only does so after
2461 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2462 * before finish_task().
2463 *
2464 * XXX do further audits, this smells like something putrid.
2465 */
2466 if (flags & SCA_MIGRATE_DISABLE)
2467 SCHED_WARN_ON(!p->on_cpu);
2468 else
2469 lockdep_assert_held(&p->pi_lock);
2470
2471 queued = task_on_rq_queued(p);
2472 running = task_current(rq, p);
2473
2474 if (queued) {
2475 /*
2476 * Because __kthread_bind() calls this on blocked tasks without
2477 * holding rq->lock.
2478 */
2479 lockdep_assert_rq_held(rq);
2480 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2481 }
2482 if (running)
2483 put_prev_task(rq, p);
2484
2485 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2486
2487 if (queued)
2488 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2489 if (running)
2490 set_next_task(rq, p);
2491}
2492
2493void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2494{
2495 __do_set_cpus_allowed(p, new_mask, 0);
2496}
2497
2498/*
2499 * This function is wildly self concurrent; here be dragons.
2500 *
2501 *
2502 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2503 * designated task is enqueued on an allowed CPU. If that task is currently
2504 * running, we have to kick it out using the CPU stopper.
2505 *
2506 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2507 * Consider:
2508 *
2509 * Initial conditions: P0->cpus_mask = [0, 1]
2510 *
2511 * P0@CPU0 P1
2512 *
2513 * migrate_disable();
2514 * <preempted>
2515 * set_cpus_allowed_ptr(P0, [1]);
2516 *
2517 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2518 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2519 * This means we need the following scheme:
2520 *
2521 * P0@CPU0 P1
2522 *
2523 * migrate_disable();
2524 * <preempted>
2525 * set_cpus_allowed_ptr(P0, [1]);
2526 * <blocks>
2527 * <resumes>
2528 * migrate_enable();
2529 * __set_cpus_allowed_ptr();
2530 * <wakes local stopper>
2531 * `--> <woken on migration completion>
2532 *
2533 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2534 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2535 * task p are serialized by p->pi_lock, which we can leverage: the one that
2536 * should come into effect at the end of the Migrate-Disable region is the last
2537 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2538 * but we still need to properly signal those waiting tasks at the appropriate
2539 * moment.
2540 *
2541 * This is implemented using struct set_affinity_pending. The first
2542 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2543 * setup an instance of that struct and install it on the targeted task_struct.
2544 * Any and all further callers will reuse that instance. Those then wait for
2545 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2546 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2547 *
2548 *
2549 * (1) In the cases covered above. There is one more where the completion is
2550 * signaled within affine_move_task() itself: when a subsequent affinity request
2551 * occurs after the stopper bailed out due to the targeted task still being
2552 * Migrate-Disable. Consider:
2553 *
2554 * Initial conditions: P0->cpus_mask = [0, 1]
2555 *
2556 * CPU0 P1 P2
2557 * <P0>
2558 * migrate_disable();
2559 * <preempted>
2560 * set_cpus_allowed_ptr(P0, [1]);
2561 * <blocks>
2562 * <migration/0>
2563 * migration_cpu_stop()
2564 * is_migration_disabled()
2565 * <bails>
2566 * set_cpus_allowed_ptr(P0, [0, 1]);
2567 * <signal completion>
2568 * <awakes>
2569 *
2570 * Note that the above is safe vs a concurrent migrate_enable(), as any
2571 * pending affinity completion is preceded by an uninstallation of
2572 * p->migration_pending done with p->pi_lock held.
2573 */
2574static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2575 int dest_cpu, unsigned int flags)
2576{
2577 struct set_affinity_pending my_pending = { }, *pending = NULL;
2578 bool stop_pending, complete = false;
2579
2580 /* Can the task run on the task's current CPU? If so, we're done */
2581 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2582 struct task_struct *push_task = NULL;
2583
2584 if ((flags & SCA_MIGRATE_ENABLE) &&
2585 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2586 rq->push_busy = true;
2587 push_task = get_task_struct(p);
2588 }
2589
2590 /*
2591 * If there are pending waiters, but no pending stop_work,
2592 * then complete now.
2593 */
2594 pending = p->migration_pending;
2595 if (pending && !pending->stop_pending) {
2596 p->migration_pending = NULL;
2597 complete = true;
2598 }
2599
2600 task_rq_unlock(rq, p, rf);
2601
2602 if (push_task) {
2603 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2604 p, &rq->push_work);
2605 }
2606
2607 if (complete)
2608 complete_all(&pending->done);
2609
2610 return 0;
2611 }
2612
2613 if (!(flags & SCA_MIGRATE_ENABLE)) {
2614 /* serialized by p->pi_lock */
2615 if (!p->migration_pending) {
2616 /* Install the request */
2617 refcount_set(&my_pending.refs, 1);
2618 init_completion(&my_pending.done);
2619 my_pending.arg = (struct migration_arg) {
2620 .task = p,
2621 .dest_cpu = dest_cpu,
2622 .pending = &my_pending,
2623 };
2624
2625 p->migration_pending = &my_pending;
2626 } else {
2627 pending = p->migration_pending;
2628 refcount_inc(&pending->refs);
2629 /*
2630 * Affinity has changed, but we've already installed a
2631 * pending. migration_cpu_stop() *must* see this, else
2632 * we risk a completion of the pending despite having a
2633 * task on a disallowed CPU.
2634 *
2635 * Serialized by p->pi_lock, so this is safe.
2636 */
2637 pending->arg.dest_cpu = dest_cpu;
2638 }
2639 }
2640 pending = p->migration_pending;
2641 /*
2642 * - !MIGRATE_ENABLE:
2643 * we'll have installed a pending if there wasn't one already.
2644 *
2645 * - MIGRATE_ENABLE:
2646 * we're here because the current CPU isn't matching anymore,
2647 * the only way that can happen is because of a concurrent
2648 * set_cpus_allowed_ptr() call, which should then still be
2649 * pending completion.
2650 *
2651 * Either way, we really should have a @pending here.
2652 */
2653 if (WARN_ON_ONCE(!pending)) {
2654 task_rq_unlock(rq, p, rf);
2655 return -EINVAL;
2656 }
2657
2658 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2659 /*
2660 * MIGRATE_ENABLE gets here because 'p == current', but for
2661 * anything else we cannot do is_migration_disabled(), punt
2662 * and have the stopper function handle it all race-free.
2663 */
2664 stop_pending = pending->stop_pending;
2665 if (!stop_pending)
2666 pending->stop_pending = true;
2667
2668 if (flags & SCA_MIGRATE_ENABLE)
2669 p->migration_flags &= ~MDF_PUSH;
2670
2671 task_rq_unlock(rq, p, rf);
2672
2673 if (!stop_pending) {
2674 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2675 &pending->arg, &pending->stop_work);
2676 }
2677
2678 if (flags & SCA_MIGRATE_ENABLE)
2679 return 0;
2680 } else {
2681
2682 if (!is_migration_disabled(p)) {
2683 if (task_on_rq_queued(p))
2684 rq = move_queued_task(rq, rf, p, dest_cpu);
2685
2686 if (!pending->stop_pending) {
2687 p->migration_pending = NULL;
2688 complete = true;
2689 }
2690 }
2691 task_rq_unlock(rq, p, rf);
2692
2693 if (complete)
2694 complete_all(&pending->done);
2695 }
2696
2697 wait_for_completion(&pending->done);
2698
2699 if (refcount_dec_and_test(&pending->refs))
2700 wake_up_var(&pending->refs); /* No UaF, just an address */
2701
2702 /*
2703 * Block the original owner of &pending until all subsequent callers
2704 * have seen the completion and decremented the refcount
2705 */
2706 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2707
2708 /* ARGH */
2709 WARN_ON_ONCE(my_pending.stop_pending);
2710
2711 return 0;
2712}
2713
2714/*
2715 * Change a given task's CPU affinity. Migrate the thread to a
2716 * proper CPU and schedule it away if the CPU it's executing on
2717 * is removed from the allowed bitmask.
2718 *
2719 * NOTE: the caller must have a valid reference to the task, the
2720 * task must not exit() & deallocate itself prematurely. The
2721 * call is not atomic; no spinlocks may be held.
2722 */
2723static int __set_cpus_allowed_ptr(struct task_struct *p,
2724 const struct cpumask *new_mask,
2725 u32 flags)
2726{
2727 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2728 unsigned int dest_cpu;
2729 struct rq_flags rf;
2730 struct rq *rq;
2731 int ret = 0;
2732
2733 rq = task_rq_lock(p, &rf);
2734 update_rq_clock(rq);
2735
2736 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2737 /*
2738 * Kernel threads are allowed on online && !active CPUs,
2739 * however, during cpu-hot-unplug, even these might get pushed
2740 * away if not KTHREAD_IS_PER_CPU.
2741 *
2742 * Specifically, migration_disabled() tasks must not fail the
2743 * cpumask_any_and_distribute() pick below, esp. so on
2744 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2745 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2746 */
2747 cpu_valid_mask = cpu_online_mask;
2748 }
2749
2750 /*
2751 * Must re-check here, to close a race against __kthread_bind(),
2752 * sched_setaffinity() is not guaranteed to observe the flag.
2753 */
2754 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2755 ret = -EINVAL;
2756 goto out;
2757 }
2758
2759 if (!(flags & SCA_MIGRATE_ENABLE)) {
2760 if (cpumask_equal(&p->cpus_mask, new_mask))
2761 goto out;
2762
2763 if (WARN_ON_ONCE(p == current &&
2764 is_migration_disabled(p) &&
2765 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2766 ret = -EBUSY;
2767 goto out;
2768 }
2769 }
2770
2771 /*
2772 * Picking a ~random cpu helps in cases where we are changing affinity
2773 * for groups of tasks (ie. cpuset), so that load balancing is not
2774 * immediately required to distribute the tasks within their new mask.
2775 */
2776 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2777 if (dest_cpu >= nr_cpu_ids) {
2778 ret = -EINVAL;
2779 goto out;
2780 }
2781
2782 __do_set_cpus_allowed(p, new_mask, flags);
2783
2784 return affine_move_task(rq, p, &rf, dest_cpu, flags);
2785
2786out:
2787 task_rq_unlock(rq, p, &rf);
2788
2789 return ret;
2790}
2791
2792int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2793{
2794 return __set_cpus_allowed_ptr(p, new_mask, 0);
2795}
2796EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2797
2798void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2799{
2800#ifdef CONFIG_SCHED_DEBUG
2801 unsigned int state = READ_ONCE(p->__state);
2802
2803 /*
2804 * We should never call set_task_cpu() on a blocked task,
2805 * ttwu() will sort out the placement.
2806 */
2807 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2808
2809 /*
2810 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2811 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2812 * time relying on p->on_rq.
2813 */
2814 WARN_ON_ONCE(state == TASK_RUNNING &&
2815 p->sched_class == &fair_sched_class &&
2816 (p->on_rq && !task_on_rq_migrating(p)));
2817
2818#ifdef CONFIG_LOCKDEP
2819 /*
2820 * The caller should hold either p->pi_lock or rq->lock, when changing
2821 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2822 *
2823 * sched_move_task() holds both and thus holding either pins the cgroup,
2824 * see task_group().
2825 *
2826 * Furthermore, all task_rq users should acquire both locks, see
2827 * task_rq_lock().
2828 */
2829 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2830 lockdep_is_held(__rq_lockp(task_rq(p)))));
2831#endif
2832 /*
2833 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2834 */
2835 WARN_ON_ONCE(!cpu_online(new_cpu));
2836
2837 WARN_ON_ONCE(is_migration_disabled(p));
2838#endif
2839
2840 trace_sched_migrate_task(p, new_cpu);
2841
2842 if (task_cpu(p) != new_cpu) {
2843 if (p->sched_class->migrate_task_rq)
2844 p->sched_class->migrate_task_rq(p, new_cpu);
2845 p->se.nr_migrations++;
2846 rseq_migrate(p);
2847 perf_event_task_migrate(p);
2848 }
2849
2850 __set_task_cpu(p, new_cpu);
2851}
2852
2853#ifdef CONFIG_NUMA_BALANCING
2854static void __migrate_swap_task(struct task_struct *p, int cpu)
2855{
2856 if (task_on_rq_queued(p)) {
2857 struct rq *src_rq, *dst_rq;
2858 struct rq_flags srf, drf;
2859
2860 src_rq = task_rq(p);
2861 dst_rq = cpu_rq(cpu);
2862
2863 rq_pin_lock(src_rq, &srf);
2864 rq_pin_lock(dst_rq, &drf);
2865
2866 deactivate_task(src_rq, p, 0);
2867 set_task_cpu(p, cpu);
2868 activate_task(dst_rq, p, 0);
2869 check_preempt_curr(dst_rq, p, 0);
2870
2871 rq_unpin_lock(dst_rq, &drf);
2872 rq_unpin_lock(src_rq, &srf);
2873
2874 } else {
2875 /*
2876 * Task isn't running anymore; make it appear like we migrated
2877 * it before it went to sleep. This means on wakeup we make the
2878 * previous CPU our target instead of where it really is.
2879 */
2880 p->wake_cpu = cpu;
2881 }
2882}
2883
2884struct migration_swap_arg {
2885 struct task_struct *src_task, *dst_task;
2886 int src_cpu, dst_cpu;
2887};
2888
2889static int migrate_swap_stop(void *data)
2890{
2891 struct migration_swap_arg *arg = data;
2892 struct rq *src_rq, *dst_rq;
2893 int ret = -EAGAIN;
2894
2895 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2896 return -EAGAIN;
2897
2898 src_rq = cpu_rq(arg->src_cpu);
2899 dst_rq = cpu_rq(arg->dst_cpu);
2900
2901 double_raw_lock(&arg->src_task->pi_lock,
2902 &arg->dst_task->pi_lock);
2903 double_rq_lock(src_rq, dst_rq);
2904
2905 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2906 goto unlock;
2907
2908 if (task_cpu(arg->src_task) != arg->src_cpu)
2909 goto unlock;
2910
2911 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2912 goto unlock;
2913
2914 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2915 goto unlock;
2916
2917 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2918 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2919
2920 ret = 0;
2921
2922unlock:
2923 double_rq_unlock(src_rq, dst_rq);
2924 raw_spin_unlock(&arg->dst_task->pi_lock);
2925 raw_spin_unlock(&arg->src_task->pi_lock);
2926
2927 return ret;
2928}
2929
2930/*
2931 * Cross migrate two tasks
2932 */
2933int migrate_swap(struct task_struct *cur, struct task_struct *p,
2934 int target_cpu, int curr_cpu)
2935{
2936 struct migration_swap_arg arg;
2937 int ret = -EINVAL;
2938
2939 arg = (struct migration_swap_arg){
2940 .src_task = cur,
2941 .src_cpu = curr_cpu,
2942 .dst_task = p,
2943 .dst_cpu = target_cpu,
2944 };
2945
2946 if (arg.src_cpu == arg.dst_cpu)
2947 goto out;
2948
2949 /*
2950 * These three tests are all lockless; this is OK since all of them
2951 * will be re-checked with proper locks held further down the line.
2952 */
2953 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2954 goto out;
2955
2956 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2957 goto out;
2958
2959 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2960 goto out;
2961
2962 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2963 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2964
2965out:
2966 return ret;
2967}
2968#endif /* CONFIG_NUMA_BALANCING */
2969
2970/*
2971 * wait_task_inactive - wait for a thread to unschedule.
2972 *
2973 * If @match_state is nonzero, it's the @p->state value just checked and
2974 * not expected to change. If it changes, i.e. @p might have woken up,
2975 * then return zero. When we succeed in waiting for @p to be off its CPU,
2976 * we return a positive number (its total switch count). If a second call
2977 * a short while later returns the same number, the caller can be sure that
2978 * @p has remained unscheduled the whole time.
2979 *
2980 * The caller must ensure that the task *will* unschedule sometime soon,
2981 * else this function might spin for a *long* time. This function can't
2982 * be called with interrupts off, or it may introduce deadlock with
2983 * smp_call_function() if an IPI is sent by the same process we are
2984 * waiting to become inactive.
2985 */
2986unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2987{
2988 int running, queued;
2989 struct rq_flags rf;
2990 unsigned long ncsw;
2991 struct rq *rq;
2992
2993 for (;;) {
2994 /*
2995 * We do the initial early heuristics without holding
2996 * any task-queue locks at all. We'll only try to get
2997 * the runqueue lock when things look like they will
2998 * work out!
2999 */
3000 rq = task_rq(p);
3001
3002 /*
3003 * If the task is actively running on another CPU
3004 * still, just relax and busy-wait without holding
3005 * any locks.
3006 *
3007 * NOTE! Since we don't hold any locks, it's not
3008 * even sure that "rq" stays as the right runqueue!
3009 * But we don't care, since "task_running()" will
3010 * return false if the runqueue has changed and p
3011 * is actually now running somewhere else!
3012 */
3013 while (task_running(rq, p)) {
3014 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3015 return 0;
3016 cpu_relax();
3017 }
3018
3019 /*
3020 * Ok, time to look more closely! We need the rq
3021 * lock now, to be *sure*. If we're wrong, we'll
3022 * just go back and repeat.
3023 */
3024 rq = task_rq_lock(p, &rf);
3025 trace_sched_wait_task(p);
3026 running = task_running(rq, p);
3027 queued = task_on_rq_queued(p);
3028 ncsw = 0;
3029 if (!match_state || READ_ONCE(p->__state) == match_state)
3030 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3031 task_rq_unlock(rq, p, &rf);
3032
3033 /*
3034 * If it changed from the expected state, bail out now.
3035 */
3036 if (unlikely(!ncsw))
3037 break;
3038
3039 /*
3040 * Was it really running after all now that we
3041 * checked with the proper locks actually held?
3042 *
3043 * Oops. Go back and try again..
3044 */
3045 if (unlikely(running)) {
3046 cpu_relax();
3047 continue;
3048 }
3049
3050 /*
3051 * It's not enough that it's not actively running,
3052 * it must be off the runqueue _entirely_, and not
3053 * preempted!
3054 *
3055 * So if it was still runnable (but just not actively
3056 * running right now), it's preempted, and we should
3057 * yield - it could be a while.
3058 */
3059 if (unlikely(queued)) {
3060 ktime_t to = NSEC_PER_SEC / HZ;
3061
3062 set_current_state(TASK_UNINTERRUPTIBLE);
3063 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3064 continue;
3065 }
3066
3067 /*
3068 * Ahh, all good. It wasn't running, and it wasn't
3069 * runnable, which means that it will never become
3070 * running in the future either. We're all done!
3071 */
3072 break;
3073 }
3074
3075 return ncsw;
3076}
3077
3078/***
3079 * kick_process - kick a running thread to enter/exit the kernel
3080 * @p: the to-be-kicked thread
3081 *
3082 * Cause a process which is running on another CPU to enter
3083 * kernel-mode, without any delay. (to get signals handled.)
3084 *
3085 * NOTE: this function doesn't have to take the runqueue lock,
3086 * because all it wants to ensure is that the remote task enters
3087 * the kernel. If the IPI races and the task has been migrated
3088 * to another CPU then no harm is done and the purpose has been
3089 * achieved as well.
3090 */
3091void kick_process(struct task_struct *p)
3092{
3093 int cpu;
3094
3095 preempt_disable();
3096 cpu = task_cpu(p);
3097 if ((cpu != smp_processor_id()) && task_curr(p))
3098 smp_send_reschedule(cpu);
3099 preempt_enable();
3100}
3101EXPORT_SYMBOL_GPL(kick_process);
3102
3103/*
3104 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3105 *
3106 * A few notes on cpu_active vs cpu_online:
3107 *
3108 * - cpu_active must be a subset of cpu_online
3109 *
3110 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3111 * see __set_cpus_allowed_ptr(). At this point the newly online
3112 * CPU isn't yet part of the sched domains, and balancing will not
3113 * see it.
3114 *
3115 * - on CPU-down we clear cpu_active() to mask the sched domains and
3116 * avoid the load balancer to place new tasks on the to be removed
3117 * CPU. Existing tasks will remain running there and will be taken
3118 * off.
3119 *
3120 * This means that fallback selection must not select !active CPUs.
3121 * And can assume that any active CPU must be online. Conversely
3122 * select_task_rq() below may allow selection of !active CPUs in order
3123 * to satisfy the above rules.
3124 */
3125static int select_fallback_rq(int cpu, struct task_struct *p)
3126{
3127 int nid = cpu_to_node(cpu);
3128 const struct cpumask *nodemask = NULL;
3129 enum { cpuset, possible, fail } state = cpuset;
3130 int dest_cpu;
3131
3132 /*
3133 * If the node that the CPU is on has been offlined, cpu_to_node()
3134 * will return -1. There is no CPU on the node, and we should
3135 * select the CPU on the other node.
3136 */
3137 if (nid != -1) {
3138 nodemask = cpumask_of_node(nid);
3139
3140 /* Look for allowed, online CPU in same node. */
3141 for_each_cpu(dest_cpu, nodemask) {
3142 if (!cpu_active(dest_cpu))
3143 continue;
3144 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
3145 return dest_cpu;
3146 }
3147 }
3148
3149 for (;;) {
3150 /* Any allowed, online CPU? */
3151 for_each_cpu(dest_cpu, p->cpus_ptr) {
3152 if (!is_cpu_allowed(p, dest_cpu))
3153 continue;
3154
3155 goto out;
3156 }
3157
3158 /* No more Mr. Nice Guy. */
3159 switch (state) {
3160 case cpuset:
3161 if (IS_ENABLED(CONFIG_CPUSETS)) {
3162 cpuset_cpus_allowed_fallback(p);
3163 state = possible;
3164 break;
3165 }
3166 fallthrough;
3167 case possible:
3168 /*
3169 * XXX When called from select_task_rq() we only
3170 * hold p->pi_lock and again violate locking order.
3171 *
3172 * More yuck to audit.
3173 */
3174 do_set_cpus_allowed(p, cpu_possible_mask);
3175 state = fail;
3176 break;
3177
3178 case fail:
3179 BUG();
3180 break;
3181 }
3182 }
3183
3184out:
3185 if (state != cpuset) {
3186 /*
3187 * Don't tell them about moving exiting tasks or
3188 * kernel threads (both mm NULL), since they never
3189 * leave kernel.
3190 */
3191 if (p->mm && printk_ratelimit()) {
3192 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3193 task_pid_nr(p), p->comm, cpu);
3194 }
3195 }
3196
3197 return dest_cpu;
3198}
3199
3200/*
3201 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3202 */
3203static inline
3204int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3205{
3206 lockdep_assert_held(&p->pi_lock);
3207
3208 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3209 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3210 else
3211 cpu = cpumask_any(p->cpus_ptr);
3212
3213 /*
3214 * In order not to call set_task_cpu() on a blocking task we need
3215 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3216 * CPU.
3217 *
3218 * Since this is common to all placement strategies, this lives here.
3219 *
3220 * [ this allows ->select_task() to simply return task_cpu(p) and
3221 * not worry about this generic constraint ]
3222 */
3223 if (unlikely(!is_cpu_allowed(p, cpu)))
3224 cpu = select_fallback_rq(task_cpu(p), p);
3225
3226 return cpu;
3227}
3228
3229void sched_set_stop_task(int cpu, struct task_struct *stop)
3230{
3231 static struct lock_class_key stop_pi_lock;
3232 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3233 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3234
3235 if (stop) {
3236 /*
3237 * Make it appear like a SCHED_FIFO task, its something
3238 * userspace knows about and won't get confused about.
3239 *
3240 * Also, it will make PI more or less work without too
3241 * much confusion -- but then, stop work should not
3242 * rely on PI working anyway.
3243 */
3244 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3245
3246 stop->sched_class = &stop_sched_class;
3247
3248 /*
3249 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3250 * adjust the effective priority of a task. As a result,
3251 * rt_mutex_setprio() can trigger (RT) balancing operations,
3252 * which can then trigger wakeups of the stop thread to push
3253 * around the current task.
3254 *
3255 * The stop task itself will never be part of the PI-chain, it
3256 * never blocks, therefore that ->pi_lock recursion is safe.
3257 * Tell lockdep about this by placing the stop->pi_lock in its
3258 * own class.
3259 */
3260 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3261 }
3262
3263 cpu_rq(cpu)->stop = stop;
3264
3265 if (old_stop) {
3266 /*
3267 * Reset it back to a normal scheduling class so that
3268 * it can die in pieces.
3269 */
3270 old_stop->sched_class = &rt_sched_class;
3271 }
3272}
3273
3274#else /* CONFIG_SMP */
3275
3276static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3277 const struct cpumask *new_mask,
3278 u32 flags)
3279{
3280 return set_cpus_allowed_ptr(p, new_mask);
3281}
3282
3283static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3284
3285static inline bool rq_has_pinned_tasks(struct rq *rq)
3286{
3287 return false;
3288}
3289
3290#endif /* !CONFIG_SMP */
3291
3292static void
3293ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3294{
3295 struct rq *rq;
3296
3297 if (!schedstat_enabled())
3298 return;
3299
3300 rq = this_rq();
3301
3302#ifdef CONFIG_SMP
3303 if (cpu == rq->cpu) {
3304 __schedstat_inc(rq->ttwu_local);
3305 __schedstat_inc(p->se.statistics.nr_wakeups_local);
3306 } else {
3307 struct sched_domain *sd;
3308
3309 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
3310 rcu_read_lock();
3311 for_each_domain(rq->cpu, sd) {
3312 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3313 __schedstat_inc(sd->ttwu_wake_remote);
3314 break;
3315 }
3316 }
3317 rcu_read_unlock();
3318 }
3319
3320 if (wake_flags & WF_MIGRATED)
3321 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3322#endif /* CONFIG_SMP */
3323
3324 __schedstat_inc(rq->ttwu_count);
3325 __schedstat_inc(p->se.statistics.nr_wakeups);
3326
3327 if (wake_flags & WF_SYNC)
3328 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
3329}
3330
3331/*
3332 * Mark the task runnable and perform wakeup-preemption.
3333 */
3334static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3335 struct rq_flags *rf)
3336{
3337 check_preempt_curr(rq, p, wake_flags);
3338 WRITE_ONCE(p->__state, TASK_RUNNING);
3339 trace_sched_wakeup(p);
3340
3341#ifdef CONFIG_SMP
3342 if (p->sched_class->task_woken) {
3343 /*
3344 * Our task @p is fully woken up and running; so it's safe to
3345 * drop the rq->lock, hereafter rq is only used for statistics.
3346 */
3347 rq_unpin_lock(rq, rf);
3348 p->sched_class->task_woken(rq, p);
3349 rq_repin_lock(rq, rf);
3350 }
3351
3352 if (rq->idle_stamp) {
3353 u64 delta = rq_clock(rq) - rq->idle_stamp;
3354 u64 max = 2*rq->max_idle_balance_cost;
3355
3356 update_avg(&rq->avg_idle, delta);
3357
3358 if (rq->avg_idle > max)
3359 rq->avg_idle = max;
3360
3361 rq->wake_stamp = jiffies;
3362 rq->wake_avg_idle = rq->avg_idle / 2;
3363
3364 rq->idle_stamp = 0;
3365 }
3366#endif
3367}
3368
3369static void
3370ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3371 struct rq_flags *rf)
3372{
3373 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3374
3375 lockdep_assert_rq_held(rq);
3376
3377 if (p->sched_contributes_to_load)
3378 rq->nr_uninterruptible--;
3379
3380#ifdef CONFIG_SMP
3381 if (wake_flags & WF_MIGRATED)
3382 en_flags |= ENQUEUE_MIGRATED;
3383 else
3384#endif
3385 if (p->in_iowait) {
3386 delayacct_blkio_end(p);
3387 atomic_dec(&task_rq(p)->nr_iowait);
3388 }
3389
3390 activate_task(rq, p, en_flags);
3391 ttwu_do_wakeup(rq, p, wake_flags, rf);
3392}
3393
3394/*
3395 * Consider @p being inside a wait loop:
3396 *
3397 * for (;;) {
3398 * set_current_state(TASK_UNINTERRUPTIBLE);
3399 *
3400 * if (CONDITION)
3401 * break;
3402 *
3403 * schedule();
3404 * }
3405 * __set_current_state(TASK_RUNNING);
3406 *
3407 * between set_current_state() and schedule(). In this case @p is still
3408 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3409 * an atomic manner.
3410 *
3411 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3412 * then schedule() must still happen and p->state can be changed to
3413 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3414 * need to do a full wakeup with enqueue.
3415 *
3416 * Returns: %true when the wakeup is done,
3417 * %false otherwise.
3418 */
3419static int ttwu_runnable(struct task_struct *p, int wake_flags)
3420{
3421 struct rq_flags rf;
3422 struct rq *rq;
3423 int ret = 0;
3424
3425 rq = __task_rq_lock(p, &rf);
3426 if (task_on_rq_queued(p)) {
3427 /* check_preempt_curr() may use rq clock */
3428 update_rq_clock(rq);
3429 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3430 ret = 1;
3431 }
3432 __task_rq_unlock(rq, &rf);
3433
3434 return ret;
3435}
3436
3437#ifdef CONFIG_SMP
3438void sched_ttwu_pending(void *arg)
3439{
3440 struct llist_node *llist = arg;
3441 struct rq *rq = this_rq();
3442 struct task_struct *p, *t;
3443 struct rq_flags rf;
3444
3445 if (!llist)
3446 return;
3447
3448 /*
3449 * rq::ttwu_pending racy indication of out-standing wakeups.
3450 * Races such that false-negatives are possible, since they
3451 * are shorter lived that false-positives would be.
3452 */
3453 WRITE_ONCE(rq->ttwu_pending, 0);
3454
3455 rq_lock_irqsave(rq, &rf);
3456 update_rq_clock(rq);
3457
3458 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3459 if (WARN_ON_ONCE(p->on_cpu))
3460 smp_cond_load_acquire(&p->on_cpu, !VAL);
3461
3462 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3463 set_task_cpu(p, cpu_of(rq));
3464
3465 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3466 }
3467
3468 rq_unlock_irqrestore(rq, &rf);
3469}
3470
3471void send_call_function_single_ipi(int cpu)
3472{
3473 struct rq *rq = cpu_rq(cpu);
3474
3475 if (!set_nr_if_polling(rq->idle))
3476 arch_send_call_function_single_ipi(cpu);
3477 else
3478 trace_sched_wake_idle_without_ipi(cpu);
3479}
3480
3481/*
3482 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3483 * necessary. The wakee CPU on receipt of the IPI will queue the task
3484 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3485 * of the wakeup instead of the waker.
3486 */
3487static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3488{
3489 struct rq *rq = cpu_rq(cpu);
3490
3491 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3492
3493 WRITE_ONCE(rq->ttwu_pending, 1);
3494 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3495}
3496
3497void wake_up_if_idle(int cpu)
3498{
3499 struct rq *rq = cpu_rq(cpu);
3500 struct rq_flags rf;
3501
3502 rcu_read_lock();
3503
3504 if (!is_idle_task(rcu_dereference(rq->curr)))
3505 goto out;
3506
3507 if (set_nr_if_polling(rq->idle)) {
3508 trace_sched_wake_idle_without_ipi(cpu);
3509 } else {
3510 rq_lock_irqsave(rq, &rf);
3511 if (is_idle_task(rq->curr))
3512 smp_send_reschedule(cpu);
3513 /* Else CPU is not idle, do nothing here: */
3514 rq_unlock_irqrestore(rq, &rf);
3515 }
3516
3517out:
3518 rcu_read_unlock();
3519}
3520
3521bool cpus_share_cache(int this_cpu, int that_cpu)
3522{
3523 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3524}
3525
3526static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3527{
3528 /*
3529 * Do not complicate things with the async wake_list while the CPU is
3530 * in hotplug state.
3531 */
3532 if (!cpu_active(cpu))
3533 return false;
3534
3535 /*
3536 * If the CPU does not share cache, then queue the task on the
3537 * remote rqs wakelist to avoid accessing remote data.
3538 */
3539 if (!cpus_share_cache(smp_processor_id(), cpu))
3540 return true;
3541
3542 /*
3543 * If the task is descheduling and the only running task on the
3544 * CPU then use the wakelist to offload the task activation to
3545 * the soon-to-be-idle CPU as the current CPU is likely busy.
3546 * nr_running is checked to avoid unnecessary task stacking.
3547 */
3548 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3549 return true;
3550
3551 return false;
3552}
3553
3554static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3555{
3556 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3557 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3558 return false;
3559
3560 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3561 __ttwu_queue_wakelist(p, cpu, wake_flags);
3562 return true;
3563 }
3564
3565 return false;
3566}
3567
3568#else /* !CONFIG_SMP */
3569
3570static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3571{
3572 return false;
3573}
3574
3575#endif /* CONFIG_SMP */
3576
3577static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3578{
3579 struct rq *rq = cpu_rq(cpu);
3580 struct rq_flags rf;
3581
3582 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3583 return;
3584
3585 rq_lock(rq, &rf);
3586 update_rq_clock(rq);
3587 ttwu_do_activate(rq, p, wake_flags, &rf);
3588 rq_unlock(rq, &rf);
3589}
3590
3591/*
3592 * Notes on Program-Order guarantees on SMP systems.
3593 *
3594 * MIGRATION
3595 *
3596 * The basic program-order guarantee on SMP systems is that when a task [t]
3597 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3598 * execution on its new CPU [c1].
3599 *
3600 * For migration (of runnable tasks) this is provided by the following means:
3601 *
3602 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3603 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3604 * rq(c1)->lock (if not at the same time, then in that order).
3605 * C) LOCK of the rq(c1)->lock scheduling in task
3606 *
3607 * Release/acquire chaining guarantees that B happens after A and C after B.
3608 * Note: the CPU doing B need not be c0 or c1
3609 *
3610 * Example:
3611 *
3612 * CPU0 CPU1 CPU2
3613 *
3614 * LOCK rq(0)->lock
3615 * sched-out X
3616 * sched-in Y
3617 * UNLOCK rq(0)->lock
3618 *
3619 * LOCK rq(0)->lock // orders against CPU0
3620 * dequeue X
3621 * UNLOCK rq(0)->lock
3622 *
3623 * LOCK rq(1)->lock
3624 * enqueue X
3625 * UNLOCK rq(1)->lock
3626 *
3627 * LOCK rq(1)->lock // orders against CPU2
3628 * sched-out Z
3629 * sched-in X
3630 * UNLOCK rq(1)->lock
3631 *
3632 *
3633 * BLOCKING -- aka. SLEEP + WAKEUP
3634 *
3635 * For blocking we (obviously) need to provide the same guarantee as for
3636 * migration. However the means are completely different as there is no lock
3637 * chain to provide order. Instead we do:
3638 *
3639 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3640 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3641 *
3642 * Example:
3643 *
3644 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3645 *
3646 * LOCK rq(0)->lock LOCK X->pi_lock
3647 * dequeue X
3648 * sched-out X
3649 * smp_store_release(X->on_cpu, 0);
3650 *
3651 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3652 * X->state = WAKING
3653 * set_task_cpu(X,2)
3654 *
3655 * LOCK rq(2)->lock
3656 * enqueue X
3657 * X->state = RUNNING
3658 * UNLOCK rq(2)->lock
3659 *
3660 * LOCK rq(2)->lock // orders against CPU1
3661 * sched-out Z
3662 * sched-in X
3663 * UNLOCK rq(2)->lock
3664 *
3665 * UNLOCK X->pi_lock
3666 * UNLOCK rq(0)->lock
3667 *
3668 *
3669 * However, for wakeups there is a second guarantee we must provide, namely we
3670 * must ensure that CONDITION=1 done by the caller can not be reordered with
3671 * accesses to the task state; see try_to_wake_up() and set_current_state().
3672 */
3673
3674/**
3675 * try_to_wake_up - wake up a thread
3676 * @p: the thread to be awakened
3677 * @state: the mask of task states that can be woken
3678 * @wake_flags: wake modifier flags (WF_*)
3679 *
3680 * Conceptually does:
3681 *
3682 * If (@state & @p->state) @p->state = TASK_RUNNING.
3683 *
3684 * If the task was not queued/runnable, also place it back on a runqueue.
3685 *
3686 * This function is atomic against schedule() which would dequeue the task.
3687 *
3688 * It issues a full memory barrier before accessing @p->state, see the comment
3689 * with set_current_state().
3690 *
3691 * Uses p->pi_lock to serialize against concurrent wake-ups.
3692 *
3693 * Relies on p->pi_lock stabilizing:
3694 * - p->sched_class
3695 * - p->cpus_ptr
3696 * - p->sched_task_group
3697 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3698 *
3699 * Tries really hard to only take one task_rq(p)->lock for performance.
3700 * Takes rq->lock in:
3701 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3702 * - ttwu_queue() -- new rq, for enqueue of the task;
3703 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3704 *
3705 * As a consequence we race really badly with just about everything. See the
3706 * many memory barriers and their comments for details.
3707 *
3708 * Return: %true if @p->state changes (an actual wakeup was done),
3709 * %false otherwise.
3710 */
3711static int
3712try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3713{
3714 unsigned long flags;
3715 int cpu, success = 0;
3716
3717 preempt_disable();
3718 if (p == current) {
3719 /*
3720 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3721 * == smp_processor_id()'. Together this means we can special
3722 * case the whole 'p->on_rq && ttwu_runnable()' case below
3723 * without taking any locks.
3724 *
3725 * In particular:
3726 * - we rely on Program-Order guarantees for all the ordering,
3727 * - we're serialized against set_special_state() by virtue of
3728 * it disabling IRQs (this allows not taking ->pi_lock).
3729 */
3730 if (!(READ_ONCE(p->__state) & state))
3731 goto out;
3732
3733 success = 1;
3734 trace_sched_waking(p);
3735 WRITE_ONCE(p->__state, TASK_RUNNING);
3736 trace_sched_wakeup(p);
3737 goto out;
3738 }
3739
3740 /*
3741 * If we are going to wake up a thread waiting for CONDITION we
3742 * need to ensure that CONDITION=1 done by the caller can not be
3743 * reordered with p->state check below. This pairs with smp_store_mb()
3744 * in set_current_state() that the waiting thread does.
3745 */
3746 raw_spin_lock_irqsave(&p->pi_lock, flags);
3747 smp_mb__after_spinlock();
3748 if (!(READ_ONCE(p->__state) & state))
3749 goto unlock;
3750
3751 trace_sched_waking(p);
3752
3753 /* We're going to change ->state: */
3754 success = 1;
3755
3756 /*
3757 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3758 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3759 * in smp_cond_load_acquire() below.
3760 *
3761 * sched_ttwu_pending() try_to_wake_up()
3762 * STORE p->on_rq = 1 LOAD p->state
3763 * UNLOCK rq->lock
3764 *
3765 * __schedule() (switch to task 'p')
3766 * LOCK rq->lock smp_rmb();
3767 * smp_mb__after_spinlock();
3768 * UNLOCK rq->lock
3769 *
3770 * [task p]
3771 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3772 *
3773 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3774 * __schedule(). See the comment for smp_mb__after_spinlock().
3775 *
3776 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3777 */
3778 smp_rmb();
3779 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3780 goto unlock;
3781
3782#ifdef CONFIG_SMP
3783 /*
3784 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3785 * possible to, falsely, observe p->on_cpu == 0.
3786 *
3787 * One must be running (->on_cpu == 1) in order to remove oneself
3788 * from the runqueue.
3789 *
3790 * __schedule() (switch to task 'p') try_to_wake_up()
3791 * STORE p->on_cpu = 1 LOAD p->on_rq
3792 * UNLOCK rq->lock
3793 *
3794 * __schedule() (put 'p' to sleep)
3795 * LOCK rq->lock smp_rmb();
3796 * smp_mb__after_spinlock();
3797 * STORE p->on_rq = 0 LOAD p->on_cpu
3798 *
3799 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3800 * __schedule(). See the comment for smp_mb__after_spinlock().
3801 *
3802 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3803 * schedule()'s deactivate_task() has 'happened' and p will no longer
3804 * care about it's own p->state. See the comment in __schedule().
3805 */
3806 smp_acquire__after_ctrl_dep();
3807
3808 /*
3809 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3810 * == 0), which means we need to do an enqueue, change p->state to
3811 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3812 * enqueue, such as ttwu_queue_wakelist().
3813 */
3814 WRITE_ONCE(p->__state, TASK_WAKING);
3815
3816 /*
3817 * If the owning (remote) CPU is still in the middle of schedule() with
3818 * this task as prev, considering queueing p on the remote CPUs wake_list
3819 * which potentially sends an IPI instead of spinning on p->on_cpu to
3820 * let the waker make forward progress. This is safe because IRQs are
3821 * disabled and the IPI will deliver after on_cpu is cleared.
3822 *
3823 * Ensure we load task_cpu(p) after p->on_cpu:
3824 *
3825 * set_task_cpu(p, cpu);
3826 * STORE p->cpu = @cpu
3827 * __schedule() (switch to task 'p')
3828 * LOCK rq->lock
3829 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3830 * STORE p->on_cpu = 1 LOAD p->cpu
3831 *
3832 * to ensure we observe the correct CPU on which the task is currently
3833 * scheduling.
3834 */
3835 if (smp_load_acquire(&p->on_cpu) &&
3836 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3837 goto unlock;
3838
3839 /*
3840 * If the owning (remote) CPU is still in the middle of schedule() with
3841 * this task as prev, wait until it's done referencing the task.
3842 *
3843 * Pairs with the smp_store_release() in finish_task().
3844 *
3845 * This ensures that tasks getting woken will be fully ordered against
3846 * their previous state and preserve Program Order.
3847 */
3848 smp_cond_load_acquire(&p->on_cpu, !VAL);
3849
3850 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3851 if (task_cpu(p) != cpu) {
3852 if (p->in_iowait) {
3853 delayacct_blkio_end(p);
3854 atomic_dec(&task_rq(p)->nr_iowait);
3855 }
3856
3857 wake_flags |= WF_MIGRATED;
3858 psi_ttwu_dequeue(p);
3859 set_task_cpu(p, cpu);
3860 }
3861#else
3862 cpu = task_cpu(p);
3863#endif /* CONFIG_SMP */
3864
3865 ttwu_queue(p, cpu, wake_flags);
3866unlock:
3867 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3868out:
3869 if (success)
3870 ttwu_stat(p, task_cpu(p), wake_flags);
3871 preempt_enable();
3872
3873 return success;
3874}
3875
3876/**
3877 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3878 * @p: Process for which the function is to be invoked, can be @current.
3879 * @func: Function to invoke.
3880 * @arg: Argument to function.
3881 *
3882 * If the specified task can be quickly locked into a definite state
3883 * (either sleeping or on a given runqueue), arrange to keep it in that
3884 * state while invoking @func(@arg). This function can use ->on_rq and
3885 * task_curr() to work out what the state is, if required. Given that
3886 * @func can be invoked with a runqueue lock held, it had better be quite
3887 * lightweight.
3888 *
3889 * Returns:
3890 * @false if the task slipped out from under the locks.
3891 * @true if the task was locked onto a runqueue or is sleeping.
3892 * However, @func can override this by returning @false.
3893 */
3894bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3895{
3896 struct rq_flags rf;
3897 bool ret = false;
3898 struct rq *rq;
3899
3900 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3901 if (p->on_rq) {
3902 rq = __task_rq_lock(p, &rf);
3903 if (task_rq(p) == rq)
3904 ret = func(p, arg);
3905 rq_unlock(rq, &rf);
3906 } else {
3907 switch (READ_ONCE(p->__state)) {
3908 case TASK_RUNNING:
3909 case TASK_WAKING:
3910 break;
3911 default:
3912 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3913 if (!p->on_rq)
3914 ret = func(p, arg);
3915 }
3916 }
3917 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3918 return ret;
3919}
3920
3921/**
3922 * wake_up_process - Wake up a specific process
3923 * @p: The process to be woken up.
3924 *
3925 * Attempt to wake up the nominated process and move it to the set of runnable
3926 * processes.
3927 *
3928 * Return: 1 if the process was woken up, 0 if it was already running.
3929 *
3930 * This function executes a full memory barrier before accessing the task state.
3931 */
3932int wake_up_process(struct task_struct *p)
3933{
3934 return try_to_wake_up(p, TASK_NORMAL, 0);
3935}
3936EXPORT_SYMBOL(wake_up_process);
3937
3938int wake_up_state(struct task_struct *p, unsigned int state)
3939{
3940 return try_to_wake_up(p, state, 0);
3941}
3942
3943/*
3944 * Perform scheduler related setup for a newly forked process p.
3945 * p is forked by current.
3946 *
3947 * __sched_fork() is basic setup used by init_idle() too:
3948 */
3949static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3950{
3951 p->on_rq = 0;
3952
3953 p->se.on_rq = 0;
3954 p->se.exec_start = 0;
3955 p->se.sum_exec_runtime = 0;
3956 p->se.prev_sum_exec_runtime = 0;
3957 p->se.nr_migrations = 0;
3958 p->se.vruntime = 0;
3959 INIT_LIST_HEAD(&p->se.group_node);
3960
3961#ifdef CONFIG_FAIR_GROUP_SCHED
3962 p->se.cfs_rq = NULL;
3963#endif
3964
3965#ifdef CONFIG_SCHEDSTATS
3966 /* Even if schedstat is disabled, there should not be garbage */
3967 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3968#endif
3969
3970 RB_CLEAR_NODE(&p->dl.rb_node);
3971 init_dl_task_timer(&p->dl);
3972 init_dl_inactive_task_timer(&p->dl);
3973 __dl_clear_params(p);
3974
3975 INIT_LIST_HEAD(&p->rt.run_list);
3976 p->rt.timeout = 0;
3977 p->rt.time_slice = sched_rr_timeslice;
3978 p->rt.on_rq = 0;
3979 p->rt.on_list = 0;
3980
3981#ifdef CONFIG_PREEMPT_NOTIFIERS
3982 INIT_HLIST_HEAD(&p->preempt_notifiers);
3983#endif
3984
3985#ifdef CONFIG_COMPACTION
3986 p->capture_control = NULL;
3987#endif
3988 init_numa_balancing(clone_flags, p);
3989#ifdef CONFIG_SMP
3990 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3991 p->migration_pending = NULL;
3992#endif
3993}
3994
3995DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3996
3997#ifdef CONFIG_NUMA_BALANCING
3998
3999void set_numabalancing_state(bool enabled)
4000{
4001 if (enabled)
4002 static_branch_enable(&sched_numa_balancing);
4003 else
4004 static_branch_disable(&sched_numa_balancing);
4005}
4006
4007#ifdef CONFIG_PROC_SYSCTL
4008int sysctl_numa_balancing(struct ctl_table *table, int write,
4009 void *buffer, size_t *lenp, loff_t *ppos)
4010{
4011 struct ctl_table t;
4012 int err;
4013 int state = static_branch_likely(&sched_numa_balancing);
4014
4015 if (write && !capable(CAP_SYS_ADMIN))
4016 return -EPERM;
4017
4018 t = *table;
4019 t.data = &state;
4020 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4021 if (err < 0)
4022 return err;
4023 if (write)
4024 set_numabalancing_state(state);
4025 return err;
4026}
4027#endif
4028#endif
4029
4030#ifdef CONFIG_SCHEDSTATS
4031
4032DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4033
4034static void set_schedstats(bool enabled)
4035{
4036 if (enabled)
4037 static_branch_enable(&sched_schedstats);
4038 else
4039 static_branch_disable(&sched_schedstats);
4040}
4041
4042void force_schedstat_enabled(void)
4043{
4044 if (!schedstat_enabled()) {
4045 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4046 static_branch_enable(&sched_schedstats);
4047 }
4048}
4049
4050static int __init setup_schedstats(char *str)
4051{
4052 int ret = 0;
4053 if (!str)
4054 goto out;
4055
4056 if (!strcmp(str, "enable")) {
4057 set_schedstats(true);
4058 ret = 1;
4059 } else if (!strcmp(str, "disable")) {
4060 set_schedstats(false);
4061 ret = 1;
4062 }
4063out:
4064 if (!ret)
4065 pr_warn("Unable to parse schedstats=\n");
4066
4067 return ret;
4068}
4069__setup("schedstats=", setup_schedstats);
4070
4071#ifdef CONFIG_PROC_SYSCTL
4072int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4073 size_t *lenp, loff_t *ppos)
4074{
4075 struct ctl_table t;
4076 int err;
4077 int state = static_branch_likely(&sched_schedstats);
4078
4079 if (write && !capable(CAP_SYS_ADMIN))
4080 return -EPERM;
4081
4082 t = *table;
4083 t.data = &state;
4084 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4085 if (err < 0)
4086 return err;
4087 if (write)
4088 set_schedstats(state);
4089 return err;
4090}
4091#endif /* CONFIG_PROC_SYSCTL */
4092#endif /* CONFIG_SCHEDSTATS */
4093
4094/*
4095 * fork()/clone()-time setup:
4096 */
4097int sched_fork(unsigned long clone_flags, struct task_struct *p)
4098{
4099 unsigned long flags;
4100
4101 __sched_fork(clone_flags, p);
4102 /*
4103 * We mark the process as NEW here. This guarantees that
4104 * nobody will actually run it, and a signal or other external
4105 * event cannot wake it up and insert it on the runqueue either.
4106 */
4107 p->__state = TASK_NEW;
4108
4109 /*
4110 * Make sure we do not leak PI boosting priority to the child.
4111 */
4112 p->prio = current->normal_prio;
4113
4114 uclamp_fork(p);
4115
4116 /*
4117 * Revert to default priority/policy on fork if requested.
4118 */
4119 if (unlikely(p->sched_reset_on_fork)) {
4120 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4121 p->policy = SCHED_NORMAL;
4122 p->static_prio = NICE_TO_PRIO(0);
4123 p->rt_priority = 0;
4124 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4125 p->static_prio = NICE_TO_PRIO(0);
4126
4127 p->prio = p->normal_prio = p->static_prio;
4128 set_load_weight(p, false);
4129
4130 /*
4131 * We don't need the reset flag anymore after the fork. It has
4132 * fulfilled its duty:
4133 */
4134 p->sched_reset_on_fork = 0;
4135 }
4136
4137 if (dl_prio(p->prio))
4138 return -EAGAIN;
4139 else if (rt_prio(p->prio))
4140 p->sched_class = &rt_sched_class;
4141 else
4142 p->sched_class = &fair_sched_class;
4143
4144 init_entity_runnable_average(&p->se);
4145
4146 /*
4147 * The child is not yet in the pid-hash so no cgroup attach races,
4148 * and the cgroup is pinned to this child due to cgroup_fork()
4149 * is ran before sched_fork().
4150 *
4151 * Silence PROVE_RCU.
4152 */
4153 raw_spin_lock_irqsave(&p->pi_lock, flags);
4154 rseq_migrate(p);
4155 /*
4156 * We're setting the CPU for the first time, we don't migrate,
4157 * so use __set_task_cpu().
4158 */
4159 __set_task_cpu(p, smp_processor_id());
4160 if (p->sched_class->task_fork)
4161 p->sched_class->task_fork(p);
4162 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4163
4164#ifdef CONFIG_SCHED_INFO
4165 if (likely(sched_info_on()))
4166 memset(&p->sched_info, 0, sizeof(p->sched_info));
4167#endif
4168#if defined(CONFIG_SMP)
4169 p->on_cpu = 0;
4170#endif
4171 init_task_preempt_count(p);
4172#ifdef CONFIG_SMP
4173 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4174 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4175#endif
4176 return 0;
4177}
4178
4179void sched_post_fork(struct task_struct *p)
4180{
4181 uclamp_post_fork(p);
4182}
4183
4184unsigned long to_ratio(u64 period, u64 runtime)
4185{
4186 if (runtime == RUNTIME_INF)
4187 return BW_UNIT;
4188
4189 /*
4190 * Doing this here saves a lot of checks in all
4191 * the calling paths, and returning zero seems
4192 * safe for them anyway.
4193 */
4194 if (period == 0)
4195 return 0;
4196
4197 return div64_u64(runtime << BW_SHIFT, period);
4198}
4199
4200/*
4201 * wake_up_new_task - wake up a newly created task for the first time.
4202 *
4203 * This function will do some initial scheduler statistics housekeeping
4204 * that must be done for every newly created context, then puts the task
4205 * on the runqueue and wakes it.
4206 */
4207void wake_up_new_task(struct task_struct *p)
4208{
4209 struct rq_flags rf;
4210 struct rq *rq;
4211
4212 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4213 WRITE_ONCE(p->__state, TASK_RUNNING);
4214#ifdef CONFIG_SMP
4215 /*
4216 * Fork balancing, do it here and not earlier because:
4217 * - cpus_ptr can change in the fork path
4218 * - any previously selected CPU might disappear through hotplug
4219 *
4220 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4221 * as we're not fully set-up yet.
4222 */
4223 p->recent_used_cpu = task_cpu(p);
4224 rseq_migrate(p);
4225 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4226#endif
4227 rq = __task_rq_lock(p, &rf);
4228 update_rq_clock(rq);
4229 post_init_entity_util_avg(p);
4230
4231 activate_task(rq, p, ENQUEUE_NOCLOCK);
4232 trace_sched_wakeup_new(p);
4233 check_preempt_curr(rq, p, WF_FORK);
4234#ifdef CONFIG_SMP
4235 if (p->sched_class->task_woken) {
4236 /*
4237 * Nothing relies on rq->lock after this, so it's fine to
4238 * drop it.
4239 */
4240 rq_unpin_lock(rq, &rf);
4241 p->sched_class->task_woken(rq, p);
4242 rq_repin_lock(rq, &rf);
4243 }
4244#endif
4245 task_rq_unlock(rq, p, &rf);
4246}
4247
4248#ifdef CONFIG_PREEMPT_NOTIFIERS
4249
4250static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4251
4252void preempt_notifier_inc(void)
4253{
4254 static_branch_inc(&preempt_notifier_key);
4255}
4256EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4257
4258void preempt_notifier_dec(void)
4259{
4260 static_branch_dec(&preempt_notifier_key);
4261}
4262EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4263
4264/**
4265 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4266 * @notifier: notifier struct to register
4267 */
4268void preempt_notifier_register(struct preempt_notifier *notifier)
4269{
4270 if (!static_branch_unlikely(&preempt_notifier_key))
4271 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4272
4273 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4274}
4275EXPORT_SYMBOL_GPL(preempt_notifier_register);
4276
4277/**
4278 * preempt_notifier_unregister - no longer interested in preemption notifications
4279 * @notifier: notifier struct to unregister
4280 *
4281 * This is *not* safe to call from within a preemption notifier.
4282 */
4283void preempt_notifier_unregister(struct preempt_notifier *notifier)
4284{
4285 hlist_del(¬ifier->link);
4286}
4287EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4288
4289static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4290{
4291 struct preempt_notifier *notifier;
4292
4293 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4294 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4295}
4296
4297static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4298{
4299 if (static_branch_unlikely(&preempt_notifier_key))
4300 __fire_sched_in_preempt_notifiers(curr);
4301}
4302
4303static void
4304__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4305 struct task_struct *next)
4306{
4307 struct preempt_notifier *notifier;
4308
4309 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4310 notifier->ops->sched_out(notifier, next);
4311}
4312
4313static __always_inline void
4314fire_sched_out_preempt_notifiers(struct task_struct *curr,
4315 struct task_struct *next)
4316{
4317 if (static_branch_unlikely(&preempt_notifier_key))
4318 __fire_sched_out_preempt_notifiers(curr, next);
4319}
4320
4321#else /* !CONFIG_PREEMPT_NOTIFIERS */
4322
4323static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4324{
4325}
4326
4327static inline void
4328fire_sched_out_preempt_notifiers(struct task_struct *curr,
4329 struct task_struct *next)
4330{
4331}
4332
4333#endif /* CONFIG_PREEMPT_NOTIFIERS */
4334
4335static inline void prepare_task(struct task_struct *next)
4336{
4337#ifdef CONFIG_SMP
4338 /*
4339 * Claim the task as running, we do this before switching to it
4340 * such that any running task will have this set.
4341 *
4342 * See the ttwu() WF_ON_CPU case and its ordering comment.
4343 */
4344 WRITE_ONCE(next->on_cpu, 1);
4345#endif
4346}
4347
4348static inline void finish_task(struct task_struct *prev)
4349{
4350#ifdef CONFIG_SMP
4351 /*
4352 * This must be the very last reference to @prev from this CPU. After
4353 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4354 * must ensure this doesn't happen until the switch is completely
4355 * finished.
4356 *
4357 * In particular, the load of prev->state in finish_task_switch() must
4358 * happen before this.
4359 *
4360 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4361 */
4362 smp_store_release(&prev->on_cpu, 0);
4363#endif
4364}
4365
4366#ifdef CONFIG_SMP
4367
4368static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4369{
4370 void (*func)(struct rq *rq);
4371 struct callback_head *next;
4372
4373 lockdep_assert_rq_held(rq);
4374
4375 while (head) {
4376 func = (void (*)(struct rq *))head->func;
4377 next = head->next;
4378 head->next = NULL;
4379 head = next;
4380
4381 func(rq);
4382 }
4383}
4384
4385static void balance_push(struct rq *rq);
4386
4387struct callback_head balance_push_callback = {
4388 .next = NULL,
4389 .func = (void (*)(struct callback_head *))balance_push,
4390};
4391
4392static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4393{
4394 struct callback_head *head = rq->balance_callback;
4395
4396 lockdep_assert_rq_held(rq);
4397 if (head)
4398 rq->balance_callback = NULL;
4399
4400 return head;
4401}
4402
4403static void __balance_callbacks(struct rq *rq)
4404{
4405 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4406}
4407
4408static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4409{
4410 unsigned long flags;
4411
4412 if (unlikely(head)) {
4413 raw_spin_rq_lock_irqsave(rq, flags);
4414 do_balance_callbacks(rq, head);
4415 raw_spin_rq_unlock_irqrestore(rq, flags);
4416 }
4417}
4418
4419#else
4420
4421static inline void __balance_callbacks(struct rq *rq)
4422{
4423}
4424
4425static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4426{
4427 return NULL;
4428}
4429
4430static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4431{
4432}
4433
4434#endif
4435
4436static inline void
4437prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4438{
4439 /*
4440 * Since the runqueue lock will be released by the next
4441 * task (which is an invalid locking op but in the case
4442 * of the scheduler it's an obvious special-case), so we
4443 * do an early lockdep release here:
4444 */
4445 rq_unpin_lock(rq, rf);
4446 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4447#ifdef CONFIG_DEBUG_SPINLOCK
4448 /* this is a valid case when another task releases the spinlock */
4449 rq_lockp(rq)->owner = next;
4450#endif
4451}
4452
4453static inline void finish_lock_switch(struct rq *rq)
4454{
4455 /*
4456 * If we are tracking spinlock dependencies then we have to
4457 * fix up the runqueue lock - which gets 'carried over' from
4458 * prev into current:
4459 */
4460 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4461 __balance_callbacks(rq);
4462 raw_spin_rq_unlock_irq(rq);
4463}
4464
4465/*
4466 * NOP if the arch has not defined these:
4467 */
4468
4469#ifndef prepare_arch_switch
4470# define prepare_arch_switch(next) do { } while (0)
4471#endif
4472
4473#ifndef finish_arch_post_lock_switch
4474# define finish_arch_post_lock_switch() do { } while (0)
4475#endif
4476
4477static inline void kmap_local_sched_out(void)
4478{
4479#ifdef CONFIG_KMAP_LOCAL
4480 if (unlikely(current->kmap_ctrl.idx))
4481 __kmap_local_sched_out();
4482#endif
4483}
4484
4485static inline void kmap_local_sched_in(void)
4486{
4487#ifdef CONFIG_KMAP_LOCAL
4488 if (unlikely(current->kmap_ctrl.idx))
4489 __kmap_local_sched_in();
4490#endif
4491}
4492
4493/**
4494 * prepare_task_switch - prepare to switch tasks
4495 * @rq: the runqueue preparing to switch
4496 * @prev: the current task that is being switched out
4497 * @next: the task we are going to switch to.
4498 *
4499 * This is called with the rq lock held and interrupts off. It must
4500 * be paired with a subsequent finish_task_switch after the context
4501 * switch.
4502 *
4503 * prepare_task_switch sets up locking and calls architecture specific
4504 * hooks.
4505 */
4506static inline void
4507prepare_task_switch(struct rq *rq, struct task_struct *prev,
4508 struct task_struct *next)
4509{
4510 kcov_prepare_switch(prev);
4511 sched_info_switch(rq, prev, next);
4512 perf_event_task_sched_out(prev, next);
4513 rseq_preempt(prev);
4514 fire_sched_out_preempt_notifiers(prev, next);
4515 kmap_local_sched_out();
4516 prepare_task(next);
4517 prepare_arch_switch(next);
4518}
4519
4520/**
4521 * finish_task_switch - clean up after a task-switch
4522 * @prev: the thread we just switched away from.
4523 *
4524 * finish_task_switch must be called after the context switch, paired
4525 * with a prepare_task_switch call before the context switch.
4526 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4527 * and do any other architecture-specific cleanup actions.
4528 *
4529 * Note that we may have delayed dropping an mm in context_switch(). If
4530 * so, we finish that here outside of the runqueue lock. (Doing it
4531 * with the lock held can cause deadlocks; see schedule() for
4532 * details.)
4533 *
4534 * The context switch have flipped the stack from under us and restored the
4535 * local variables which were saved when this task called schedule() in the
4536 * past. prev == current is still correct but we need to recalculate this_rq
4537 * because prev may have moved to another CPU.
4538 */
4539static struct rq *finish_task_switch(struct task_struct *prev)
4540 __releases(rq->lock)
4541{
4542 struct rq *rq = this_rq();
4543 struct mm_struct *mm = rq->prev_mm;
4544 long prev_state;
4545
4546 /*
4547 * The previous task will have left us with a preempt_count of 2
4548 * because it left us after:
4549 *
4550 * schedule()
4551 * preempt_disable(); // 1
4552 * __schedule()
4553 * raw_spin_lock_irq(&rq->lock) // 2
4554 *
4555 * Also, see FORK_PREEMPT_COUNT.
4556 */
4557 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4558 "corrupted preempt_count: %s/%d/0x%x\n",
4559 current->comm, current->pid, preempt_count()))
4560 preempt_count_set(FORK_PREEMPT_COUNT);
4561
4562 rq->prev_mm = NULL;
4563
4564 /*
4565 * A task struct has one reference for the use as "current".
4566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4567 * schedule one last time. The schedule call will never return, and
4568 * the scheduled task must drop that reference.
4569 *
4570 * We must observe prev->state before clearing prev->on_cpu (in
4571 * finish_task), otherwise a concurrent wakeup can get prev
4572 * running on another CPU and we could rave with its RUNNING -> DEAD
4573 * transition, resulting in a double drop.
4574 */
4575 prev_state = READ_ONCE(prev->__state);
4576 vtime_task_switch(prev);
4577 perf_event_task_sched_in(prev, current);
4578 finish_task(prev);
4579 tick_nohz_task_switch();
4580 finish_lock_switch(rq);
4581 finish_arch_post_lock_switch();
4582 kcov_finish_switch(current);
4583 /*
4584 * kmap_local_sched_out() is invoked with rq::lock held and
4585 * interrupts disabled. There is no requirement for that, but the
4586 * sched out code does not have an interrupt enabled section.
4587 * Restoring the maps on sched in does not require interrupts being
4588 * disabled either.
4589 */
4590 kmap_local_sched_in();
4591
4592 fire_sched_in_preempt_notifiers(current);
4593 /*
4594 * When switching through a kernel thread, the loop in
4595 * membarrier_{private,global}_expedited() may have observed that
4596 * kernel thread and not issued an IPI. It is therefore possible to
4597 * schedule between user->kernel->user threads without passing though
4598 * switch_mm(). Membarrier requires a barrier after storing to
4599 * rq->curr, before returning to userspace, so provide them here:
4600 *
4601 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4602 * provided by mmdrop(),
4603 * - a sync_core for SYNC_CORE.
4604 */
4605 if (mm) {
4606 membarrier_mm_sync_core_before_usermode(mm);
4607 mmdrop(mm);
4608 }
4609 if (unlikely(prev_state == TASK_DEAD)) {
4610 if (prev->sched_class->task_dead)
4611 prev->sched_class->task_dead(prev);
4612
4613 /*
4614 * Remove function-return probe instances associated with this
4615 * task and put them back on the free list.
4616 */
4617 kprobe_flush_task(prev);
4618
4619 /* Task is done with its stack. */
4620 put_task_stack(prev);
4621
4622 put_task_struct_rcu_user(prev);
4623 }
4624
4625 return rq;
4626}
4627
4628/**
4629 * schedule_tail - first thing a freshly forked thread must call.
4630 * @prev: the thread we just switched away from.
4631 */
4632asmlinkage __visible void schedule_tail(struct task_struct *prev)
4633 __releases(rq->lock)
4634{
4635 /*
4636 * New tasks start with FORK_PREEMPT_COUNT, see there and
4637 * finish_task_switch() for details.
4638 *
4639 * finish_task_switch() will drop rq->lock() and lower preempt_count
4640 * and the preempt_enable() will end up enabling preemption (on
4641 * PREEMPT_COUNT kernels).
4642 */
4643
4644 finish_task_switch(prev);
4645 preempt_enable();
4646
4647 if (current->set_child_tid)
4648 put_user(task_pid_vnr(current), current->set_child_tid);
4649
4650 calculate_sigpending();
4651}
4652
4653/*
4654 * context_switch - switch to the new MM and the new thread's register state.
4655 */
4656static __always_inline struct rq *
4657context_switch(struct rq *rq, struct task_struct *prev,
4658 struct task_struct *next, struct rq_flags *rf)
4659{
4660 prepare_task_switch(rq, prev, next);
4661
4662 /*
4663 * For paravirt, this is coupled with an exit in switch_to to
4664 * combine the page table reload and the switch backend into
4665 * one hypercall.
4666 */
4667 arch_start_context_switch(prev);
4668
4669 /*
4670 * kernel -> kernel lazy + transfer active
4671 * user -> kernel lazy + mmgrab() active
4672 *
4673 * kernel -> user switch + mmdrop() active
4674 * user -> user switch
4675 */
4676 if (!next->mm) { // to kernel
4677 enter_lazy_tlb(prev->active_mm, next);
4678
4679 next->active_mm = prev->active_mm;
4680 if (prev->mm) // from user
4681 mmgrab(prev->active_mm);
4682 else
4683 prev->active_mm = NULL;
4684 } else { // to user
4685 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4686 /*
4687 * sys_membarrier() requires an smp_mb() between setting
4688 * rq->curr / membarrier_switch_mm() and returning to userspace.
4689 *
4690 * The below provides this either through switch_mm(), or in
4691 * case 'prev->active_mm == next->mm' through
4692 * finish_task_switch()'s mmdrop().
4693 */
4694 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4695
4696 if (!prev->mm) { // from kernel
4697 /* will mmdrop() in finish_task_switch(). */
4698 rq->prev_mm = prev->active_mm;
4699 prev->active_mm = NULL;
4700 }
4701 }
4702
4703 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4704
4705 prepare_lock_switch(rq, next, rf);
4706
4707 /* Here we just switch the register state and the stack. */
4708 switch_to(prev, next, prev);
4709 barrier();
4710
4711 return finish_task_switch(prev);
4712}
4713
4714/*
4715 * nr_running and nr_context_switches:
4716 *
4717 * externally visible scheduler statistics: current number of runnable
4718 * threads, total number of context switches performed since bootup.
4719 */
4720unsigned int nr_running(void)
4721{
4722 unsigned int i, sum = 0;
4723
4724 for_each_online_cpu(i)
4725 sum += cpu_rq(i)->nr_running;
4726
4727 return sum;
4728}
4729
4730/*
4731 * Check if only the current task is running on the CPU.
4732 *
4733 * Caution: this function does not check that the caller has disabled
4734 * preemption, thus the result might have a time-of-check-to-time-of-use
4735 * race. The caller is responsible to use it correctly, for example:
4736 *
4737 * - from a non-preemptible section (of course)
4738 *
4739 * - from a thread that is bound to a single CPU
4740 *
4741 * - in a loop with very short iterations (e.g. a polling loop)
4742 */
4743bool single_task_running(void)
4744{
4745 return raw_rq()->nr_running == 1;
4746}
4747EXPORT_SYMBOL(single_task_running);
4748
4749unsigned long long nr_context_switches(void)
4750{
4751 int i;
4752 unsigned long long sum = 0;
4753
4754 for_each_possible_cpu(i)
4755 sum += cpu_rq(i)->nr_switches;
4756
4757 return sum;
4758}
4759
4760/*
4761 * Consumers of these two interfaces, like for example the cpuidle menu
4762 * governor, are using nonsensical data. Preferring shallow idle state selection
4763 * for a CPU that has IO-wait which might not even end up running the task when
4764 * it does become runnable.
4765 */
4766
4767unsigned int nr_iowait_cpu(int cpu)
4768{
4769 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4770}
4771
4772/*
4773 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4774 *
4775 * The idea behind IO-wait account is to account the idle time that we could
4776 * have spend running if it were not for IO. That is, if we were to improve the
4777 * storage performance, we'd have a proportional reduction in IO-wait time.
4778 *
4779 * This all works nicely on UP, where, when a task blocks on IO, we account
4780 * idle time as IO-wait, because if the storage were faster, it could've been
4781 * running and we'd not be idle.
4782 *
4783 * This has been extended to SMP, by doing the same for each CPU. This however
4784 * is broken.
4785 *
4786 * Imagine for instance the case where two tasks block on one CPU, only the one
4787 * CPU will have IO-wait accounted, while the other has regular idle. Even
4788 * though, if the storage were faster, both could've ran at the same time,
4789 * utilising both CPUs.
4790 *
4791 * This means, that when looking globally, the current IO-wait accounting on
4792 * SMP is a lower bound, by reason of under accounting.
4793 *
4794 * Worse, since the numbers are provided per CPU, they are sometimes
4795 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4796 * associated with any one particular CPU, it can wake to another CPU than it
4797 * blocked on. This means the per CPU IO-wait number is meaningless.
4798 *
4799 * Task CPU affinities can make all that even more 'interesting'.
4800 */
4801
4802unsigned int nr_iowait(void)
4803{
4804 unsigned int i, sum = 0;
4805
4806 for_each_possible_cpu(i)
4807 sum += nr_iowait_cpu(i);
4808
4809 return sum;
4810}
4811
4812#ifdef CONFIG_SMP
4813
4814/*
4815 * sched_exec - execve() is a valuable balancing opportunity, because at
4816 * this point the task has the smallest effective memory and cache footprint.
4817 */
4818void sched_exec(void)
4819{
4820 struct task_struct *p = current;
4821 unsigned long flags;
4822 int dest_cpu;
4823
4824 raw_spin_lock_irqsave(&p->pi_lock, flags);
4825 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4826 if (dest_cpu == smp_processor_id())
4827 goto unlock;
4828
4829 if (likely(cpu_active(dest_cpu))) {
4830 struct migration_arg arg = { p, dest_cpu };
4831
4832 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4833 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4834 return;
4835 }
4836unlock:
4837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4838}
4839
4840#endif
4841
4842DEFINE_PER_CPU(struct kernel_stat, kstat);
4843DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4844
4845EXPORT_PER_CPU_SYMBOL(kstat);
4846EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4847
4848/*
4849 * The function fair_sched_class.update_curr accesses the struct curr
4850 * and its field curr->exec_start; when called from task_sched_runtime(),
4851 * we observe a high rate of cache misses in practice.
4852 * Prefetching this data results in improved performance.
4853 */
4854static inline void prefetch_curr_exec_start(struct task_struct *p)
4855{
4856#ifdef CONFIG_FAIR_GROUP_SCHED
4857 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4858#else
4859 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4860#endif
4861 prefetch(curr);
4862 prefetch(&curr->exec_start);
4863}
4864
4865/*
4866 * Return accounted runtime for the task.
4867 * In case the task is currently running, return the runtime plus current's
4868 * pending runtime that have not been accounted yet.
4869 */
4870unsigned long long task_sched_runtime(struct task_struct *p)
4871{
4872 struct rq_flags rf;
4873 struct rq *rq;
4874 u64 ns;
4875
4876#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4877 /*
4878 * 64-bit doesn't need locks to atomically read a 64-bit value.
4879 * So we have a optimization chance when the task's delta_exec is 0.
4880 * Reading ->on_cpu is racy, but this is ok.
4881 *
4882 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4883 * If we race with it entering CPU, unaccounted time is 0. This is
4884 * indistinguishable from the read occurring a few cycles earlier.
4885 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4886 * been accounted, so we're correct here as well.
4887 */
4888 if (!p->on_cpu || !task_on_rq_queued(p))
4889 return p->se.sum_exec_runtime;
4890#endif
4891
4892 rq = task_rq_lock(p, &rf);
4893 /*
4894 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4895 * project cycles that may never be accounted to this
4896 * thread, breaking clock_gettime().
4897 */
4898 if (task_current(rq, p) && task_on_rq_queued(p)) {
4899 prefetch_curr_exec_start(p);
4900 update_rq_clock(rq);
4901 p->sched_class->update_curr(rq);
4902 }
4903 ns = p->se.sum_exec_runtime;
4904 task_rq_unlock(rq, p, &rf);
4905
4906 return ns;
4907}
4908
4909#ifdef CONFIG_SCHED_DEBUG
4910static u64 cpu_resched_latency(struct rq *rq)
4911{
4912 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4913 u64 resched_latency, now = rq_clock(rq);
4914 static bool warned_once;
4915
4916 if (sysctl_resched_latency_warn_once && warned_once)
4917 return 0;
4918
4919 if (!need_resched() || !latency_warn_ms)
4920 return 0;
4921
4922 if (system_state == SYSTEM_BOOTING)
4923 return 0;
4924
4925 if (!rq->last_seen_need_resched_ns) {
4926 rq->last_seen_need_resched_ns = now;
4927 rq->ticks_without_resched = 0;
4928 return 0;
4929 }
4930
4931 rq->ticks_without_resched++;
4932 resched_latency = now - rq->last_seen_need_resched_ns;
4933 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4934 return 0;
4935
4936 warned_once = true;
4937
4938 return resched_latency;
4939}
4940
4941static int __init setup_resched_latency_warn_ms(char *str)
4942{
4943 long val;
4944
4945 if ((kstrtol(str, 0, &val))) {
4946 pr_warn("Unable to set resched_latency_warn_ms\n");
4947 return 1;
4948 }
4949
4950 sysctl_resched_latency_warn_ms = val;
4951 return 1;
4952}
4953__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4954#else
4955static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4956#endif /* CONFIG_SCHED_DEBUG */
4957
4958/*
4959 * This function gets called by the timer code, with HZ frequency.
4960 * We call it with interrupts disabled.
4961 */
4962void scheduler_tick(void)
4963{
4964 int cpu = smp_processor_id();
4965 struct rq *rq = cpu_rq(cpu);
4966 struct task_struct *curr = rq->curr;
4967 struct rq_flags rf;
4968 unsigned long thermal_pressure;
4969 u64 resched_latency;
4970
4971 arch_scale_freq_tick();
4972 sched_clock_tick();
4973
4974 rq_lock(rq, &rf);
4975
4976 update_rq_clock(rq);
4977 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4978 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4979 curr->sched_class->task_tick(rq, curr, 0);
4980 if (sched_feat(LATENCY_WARN))
4981 resched_latency = cpu_resched_latency(rq);
4982 calc_global_load_tick(rq);
4983
4984 rq_unlock(rq, &rf);
4985
4986 if (sched_feat(LATENCY_WARN) && resched_latency)
4987 resched_latency_warn(cpu, resched_latency);
4988
4989 perf_event_task_tick();
4990
4991#ifdef CONFIG_SMP
4992 rq->idle_balance = idle_cpu(cpu);
4993 trigger_load_balance(rq);
4994#endif
4995}
4996
4997#ifdef CONFIG_NO_HZ_FULL
4998
4999struct tick_work {
5000 int cpu;
5001 atomic_t state;
5002 struct delayed_work work;
5003};
5004/* Values for ->state, see diagram below. */
5005#define TICK_SCHED_REMOTE_OFFLINE 0
5006#define TICK_SCHED_REMOTE_OFFLINING 1
5007#define TICK_SCHED_REMOTE_RUNNING 2
5008
5009/*
5010 * State diagram for ->state:
5011 *
5012 *
5013 * TICK_SCHED_REMOTE_OFFLINE
5014 * | ^
5015 * | |
5016 * | | sched_tick_remote()
5017 * | |
5018 * | |
5019 * +--TICK_SCHED_REMOTE_OFFLINING
5020 * | ^
5021 * | |
5022 * sched_tick_start() | | sched_tick_stop()
5023 * | |
5024 * V |
5025 * TICK_SCHED_REMOTE_RUNNING
5026 *
5027 *
5028 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5029 * and sched_tick_start() are happy to leave the state in RUNNING.
5030 */
5031
5032static struct tick_work __percpu *tick_work_cpu;
5033
5034static void sched_tick_remote(struct work_struct *work)
5035{
5036 struct delayed_work *dwork = to_delayed_work(work);
5037 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5038 int cpu = twork->cpu;
5039 struct rq *rq = cpu_rq(cpu);
5040 struct task_struct *curr;
5041 struct rq_flags rf;
5042 u64 delta;
5043 int os;
5044
5045 /*
5046 * Handle the tick only if it appears the remote CPU is running in full
5047 * dynticks mode. The check is racy by nature, but missing a tick or
5048 * having one too much is no big deal because the scheduler tick updates
5049 * statistics and checks timeslices in a time-independent way, regardless
5050 * of when exactly it is running.
5051 */
5052 if (!tick_nohz_tick_stopped_cpu(cpu))
5053 goto out_requeue;
5054
5055 rq_lock_irq(rq, &rf);
5056 curr = rq->curr;
5057 if (cpu_is_offline(cpu))
5058 goto out_unlock;
5059
5060 update_rq_clock(rq);
5061
5062 if (!is_idle_task(curr)) {
5063 /*
5064 * Make sure the next tick runs within a reasonable
5065 * amount of time.
5066 */
5067 delta = rq_clock_task(rq) - curr->se.exec_start;
5068 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5069 }
5070 curr->sched_class->task_tick(rq, curr, 0);
5071
5072 calc_load_nohz_remote(rq);
5073out_unlock:
5074 rq_unlock_irq(rq, &rf);
5075out_requeue:
5076
5077 /*
5078 * Run the remote tick once per second (1Hz). This arbitrary
5079 * frequency is large enough to avoid overload but short enough
5080 * to keep scheduler internal stats reasonably up to date. But
5081 * first update state to reflect hotplug activity if required.
5082 */
5083 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5084 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5085 if (os == TICK_SCHED_REMOTE_RUNNING)
5086 queue_delayed_work(system_unbound_wq, dwork, HZ);
5087}
5088
5089static void sched_tick_start(int cpu)
5090{
5091 int os;
5092 struct tick_work *twork;
5093
5094 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5095 return;
5096
5097 WARN_ON_ONCE(!tick_work_cpu);
5098
5099 twork = per_cpu_ptr(tick_work_cpu, cpu);
5100 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5101 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5102 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5103 twork->cpu = cpu;
5104 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5105 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5106 }
5107}
5108
5109#ifdef CONFIG_HOTPLUG_CPU
5110static void sched_tick_stop(int cpu)
5111{
5112 struct tick_work *twork;
5113 int os;
5114
5115 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5116 return;
5117
5118 WARN_ON_ONCE(!tick_work_cpu);
5119
5120 twork = per_cpu_ptr(tick_work_cpu, cpu);
5121 /* There cannot be competing actions, but don't rely on stop-machine. */
5122 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5123 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5124 /* Don't cancel, as this would mess up the state machine. */
5125}
5126#endif /* CONFIG_HOTPLUG_CPU */
5127
5128int __init sched_tick_offload_init(void)
5129{
5130 tick_work_cpu = alloc_percpu(struct tick_work);
5131 BUG_ON(!tick_work_cpu);
5132 return 0;
5133}
5134
5135#else /* !CONFIG_NO_HZ_FULL */
5136static inline void sched_tick_start(int cpu) { }
5137static inline void sched_tick_stop(int cpu) { }
5138#endif
5139
5140#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5141 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5142/*
5143 * If the value passed in is equal to the current preempt count
5144 * then we just disabled preemption. Start timing the latency.
5145 */
5146static inline void preempt_latency_start(int val)
5147{
5148 if (preempt_count() == val) {
5149 unsigned long ip = get_lock_parent_ip();
5150#ifdef CONFIG_DEBUG_PREEMPT
5151 current->preempt_disable_ip = ip;
5152#endif
5153 trace_preempt_off(CALLER_ADDR0, ip);
5154 }
5155}
5156
5157void preempt_count_add(int val)
5158{
5159#ifdef CONFIG_DEBUG_PREEMPT
5160 /*
5161 * Underflow?
5162 */
5163 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5164 return;
5165#endif
5166 __preempt_count_add(val);
5167#ifdef CONFIG_DEBUG_PREEMPT
5168 /*
5169 * Spinlock count overflowing soon?
5170 */
5171 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5172 PREEMPT_MASK - 10);
5173#endif
5174 preempt_latency_start(val);
5175}
5176EXPORT_SYMBOL(preempt_count_add);
5177NOKPROBE_SYMBOL(preempt_count_add);
5178
5179/*
5180 * If the value passed in equals to the current preempt count
5181 * then we just enabled preemption. Stop timing the latency.
5182 */
5183static inline void preempt_latency_stop(int val)
5184{
5185 if (preempt_count() == val)
5186 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5187}
5188
5189void preempt_count_sub(int val)
5190{
5191#ifdef CONFIG_DEBUG_PREEMPT
5192 /*
5193 * Underflow?
5194 */
5195 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5196 return;
5197 /*
5198 * Is the spinlock portion underflowing?
5199 */
5200 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5201 !(preempt_count() & PREEMPT_MASK)))
5202 return;
5203#endif
5204
5205 preempt_latency_stop(val);
5206 __preempt_count_sub(val);
5207}
5208EXPORT_SYMBOL(preempt_count_sub);
5209NOKPROBE_SYMBOL(preempt_count_sub);
5210
5211#else
5212static inline void preempt_latency_start(int val) { }
5213static inline void preempt_latency_stop(int val) { }
5214#endif
5215
5216static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5217{
5218#ifdef CONFIG_DEBUG_PREEMPT
5219 return p->preempt_disable_ip;
5220#else
5221 return 0;
5222#endif
5223}
5224
5225/*
5226 * Print scheduling while atomic bug:
5227 */
5228static noinline void __schedule_bug(struct task_struct *prev)
5229{
5230 /* Save this before calling printk(), since that will clobber it */
5231 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5232
5233 if (oops_in_progress)
5234 return;
5235
5236 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5237 prev->comm, prev->pid, preempt_count());
5238
5239 debug_show_held_locks(prev);
5240 print_modules();
5241 if (irqs_disabled())
5242 print_irqtrace_events(prev);
5243 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5244 && in_atomic_preempt_off()) {
5245 pr_err("Preemption disabled at:");
5246 print_ip_sym(KERN_ERR, preempt_disable_ip);
5247 }
5248 if (panic_on_warn)
5249 panic("scheduling while atomic\n");
5250
5251 dump_stack();
5252 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5253}
5254
5255/*
5256 * Various schedule()-time debugging checks and statistics:
5257 */
5258static inline void schedule_debug(struct task_struct *prev, bool preempt)
5259{
5260#ifdef CONFIG_SCHED_STACK_END_CHECK
5261 if (task_stack_end_corrupted(prev))
5262 panic("corrupted stack end detected inside scheduler\n");
5263
5264 if (task_scs_end_corrupted(prev))
5265 panic("corrupted shadow stack detected inside scheduler\n");
5266#endif
5267
5268#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5269 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5270 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5271 prev->comm, prev->pid, prev->non_block_count);
5272 dump_stack();
5273 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5274 }
5275#endif
5276
5277 if (unlikely(in_atomic_preempt_off())) {
5278 __schedule_bug(prev);
5279 preempt_count_set(PREEMPT_DISABLED);
5280 }
5281 rcu_sleep_check();
5282 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5283
5284 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5285
5286 schedstat_inc(this_rq()->sched_count);
5287}
5288
5289static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5290 struct rq_flags *rf)
5291{
5292#ifdef CONFIG_SMP
5293 const struct sched_class *class;
5294 /*
5295 * We must do the balancing pass before put_prev_task(), such
5296 * that when we release the rq->lock the task is in the same
5297 * state as before we took rq->lock.
5298 *
5299 * We can terminate the balance pass as soon as we know there is
5300 * a runnable task of @class priority or higher.
5301 */
5302 for_class_range(class, prev->sched_class, &idle_sched_class) {
5303 if (class->balance(rq, prev, rf))
5304 break;
5305 }
5306#endif
5307
5308 put_prev_task(rq, prev);
5309}
5310
5311/*
5312 * Pick up the highest-prio task:
5313 */
5314static inline struct task_struct *
5315__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5316{
5317 const struct sched_class *class;
5318 struct task_struct *p;
5319
5320 /*
5321 * Optimization: we know that if all tasks are in the fair class we can
5322 * call that function directly, but only if the @prev task wasn't of a
5323 * higher scheduling class, because otherwise those lose the
5324 * opportunity to pull in more work from other CPUs.
5325 */
5326 if (likely(prev->sched_class <= &fair_sched_class &&
5327 rq->nr_running == rq->cfs.h_nr_running)) {
5328
5329 p = pick_next_task_fair(rq, prev, rf);
5330 if (unlikely(p == RETRY_TASK))
5331 goto restart;
5332
5333 /* Assume the next prioritized class is idle_sched_class */
5334 if (!p) {
5335 put_prev_task(rq, prev);
5336 p = pick_next_task_idle(rq);
5337 }
5338
5339 return p;
5340 }
5341
5342restart:
5343 put_prev_task_balance(rq, prev, rf);
5344
5345 for_each_class(class) {
5346 p = class->pick_next_task(rq);
5347 if (p)
5348 return p;
5349 }
5350
5351 /* The idle class should always have a runnable task: */
5352 BUG();
5353}
5354
5355#ifdef CONFIG_SCHED_CORE
5356static inline bool is_task_rq_idle(struct task_struct *t)
5357{
5358 return (task_rq(t)->idle == t);
5359}
5360
5361static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5362{
5363 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5364}
5365
5366static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5367{
5368 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5369 return true;
5370
5371 return a->core_cookie == b->core_cookie;
5372}
5373
5374// XXX fairness/fwd progress conditions
5375/*
5376 * Returns
5377 * - NULL if there is no runnable task for this class.
5378 * - the highest priority task for this runqueue if it matches
5379 * rq->core->core_cookie or its priority is greater than max.
5380 * - Else returns idle_task.
5381 */
5382static struct task_struct *
5383pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5384{
5385 struct task_struct *class_pick, *cookie_pick;
5386 unsigned long cookie = rq->core->core_cookie;
5387
5388 class_pick = class->pick_task(rq);
5389 if (!class_pick)
5390 return NULL;
5391
5392 if (!cookie) {
5393 /*
5394 * If class_pick is tagged, return it only if it has
5395 * higher priority than max.
5396 */
5397 if (max && class_pick->core_cookie &&
5398 prio_less(class_pick, max, in_fi))
5399 return idle_sched_class.pick_task(rq);
5400
5401 return class_pick;
5402 }
5403
5404 /*
5405 * If class_pick is idle or matches cookie, return early.
5406 */
5407 if (cookie_equals(class_pick, cookie))
5408 return class_pick;
5409
5410 cookie_pick = sched_core_find(rq, cookie);
5411
5412 /*
5413 * If class > max && class > cookie, it is the highest priority task on
5414 * the core (so far) and it must be selected, otherwise we must go with
5415 * the cookie pick in order to satisfy the constraint.
5416 */
5417 if (prio_less(cookie_pick, class_pick, in_fi) &&
5418 (!max || prio_less(max, class_pick, in_fi)))
5419 return class_pick;
5420
5421 return cookie_pick;
5422}
5423
5424extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5425
5426static struct task_struct *
5427pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5428{
5429 struct task_struct *next, *max = NULL;
5430 const struct sched_class *class;
5431 const struct cpumask *smt_mask;
5432 bool fi_before = false;
5433 int i, j, cpu, occ = 0;
5434 bool need_sync;
5435
5436 if (!sched_core_enabled(rq))
5437 return __pick_next_task(rq, prev, rf);
5438
5439 cpu = cpu_of(rq);
5440
5441 /* Stopper task is switching into idle, no need core-wide selection. */
5442 if (cpu_is_offline(cpu)) {
5443 /*
5444 * Reset core_pick so that we don't enter the fastpath when
5445 * coming online. core_pick would already be migrated to
5446 * another cpu during offline.
5447 */
5448 rq->core_pick = NULL;
5449 return __pick_next_task(rq, prev, rf);
5450 }
5451
5452 /*
5453 * If there were no {en,de}queues since we picked (IOW, the task
5454 * pointers are all still valid), and we haven't scheduled the last
5455 * pick yet, do so now.
5456 *
5457 * rq->core_pick can be NULL if no selection was made for a CPU because
5458 * it was either offline or went offline during a sibling's core-wide
5459 * selection. In this case, do a core-wide selection.
5460 */
5461 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5462 rq->core->core_pick_seq != rq->core_sched_seq &&
5463 rq->core_pick) {
5464 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5465
5466 next = rq->core_pick;
5467 if (next != prev) {
5468 put_prev_task(rq, prev);
5469 set_next_task(rq, next);
5470 }
5471
5472 rq->core_pick = NULL;
5473 return next;
5474 }
5475
5476 put_prev_task_balance(rq, prev, rf);
5477
5478 smt_mask = cpu_smt_mask(cpu);
5479 need_sync = !!rq->core->core_cookie;
5480
5481 /* reset state */
5482 rq->core->core_cookie = 0UL;
5483 if (rq->core->core_forceidle) {
5484 need_sync = true;
5485 fi_before = true;
5486 rq->core->core_forceidle = false;
5487 }
5488
5489 /*
5490 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5491 *
5492 * @task_seq guards the task state ({en,de}queues)
5493 * @pick_seq is the @task_seq we did a selection on
5494 * @sched_seq is the @pick_seq we scheduled
5495 *
5496 * However, preemptions can cause multiple picks on the same task set.
5497 * 'Fix' this by also increasing @task_seq for every pick.
5498 */
5499 rq->core->core_task_seq++;
5500
5501 /*
5502 * Optimize for common case where this CPU has no cookies
5503 * and there are no cookied tasks running on siblings.
5504 */
5505 if (!need_sync) {
5506 for_each_class(class) {
5507 next = class->pick_task(rq);
5508 if (next)
5509 break;
5510 }
5511
5512 if (!next->core_cookie) {
5513 rq->core_pick = NULL;
5514 /*
5515 * For robustness, update the min_vruntime_fi for
5516 * unconstrained picks as well.
5517 */
5518 WARN_ON_ONCE(fi_before);
5519 task_vruntime_update(rq, next, false);
5520 goto done;
5521 }
5522 }
5523
5524 for_each_cpu(i, smt_mask) {
5525 struct rq *rq_i = cpu_rq(i);
5526
5527 rq_i->core_pick = NULL;
5528
5529 if (i != cpu)
5530 update_rq_clock(rq_i);
5531 }
5532
5533 /*
5534 * Try and select tasks for each sibling in descending sched_class
5535 * order.
5536 */
5537 for_each_class(class) {
5538again:
5539 for_each_cpu_wrap(i, smt_mask, cpu) {
5540 struct rq *rq_i = cpu_rq(i);
5541 struct task_struct *p;
5542
5543 if (rq_i->core_pick)
5544 continue;
5545
5546 /*
5547 * If this sibling doesn't yet have a suitable task to
5548 * run; ask for the most eligible task, given the
5549 * highest priority task already selected for this
5550 * core.
5551 */
5552 p = pick_task(rq_i, class, max, fi_before);
5553 if (!p)
5554 continue;
5555
5556 if (!is_task_rq_idle(p))
5557 occ++;
5558
5559 rq_i->core_pick = p;
5560 if (rq_i->idle == p && rq_i->nr_running) {
5561 rq->core->core_forceidle = true;
5562 if (!fi_before)
5563 rq->core->core_forceidle_seq++;
5564 }
5565
5566 /*
5567 * If this new candidate is of higher priority than the
5568 * previous; and they're incompatible; we need to wipe
5569 * the slate and start over. pick_task makes sure that
5570 * p's priority is more than max if it doesn't match
5571 * max's cookie.
5572 *
5573 * NOTE: this is a linear max-filter and is thus bounded
5574 * in execution time.
5575 */
5576 if (!max || !cookie_match(max, p)) {
5577 struct task_struct *old_max = max;
5578
5579 rq->core->core_cookie = p->core_cookie;
5580 max = p;
5581
5582 if (old_max) {
5583 rq->core->core_forceidle = false;
5584 for_each_cpu(j, smt_mask) {
5585 if (j == i)
5586 continue;
5587
5588 cpu_rq(j)->core_pick = NULL;
5589 }
5590 occ = 1;
5591 goto again;
5592 }
5593 }
5594 }
5595 }
5596
5597 rq->core->core_pick_seq = rq->core->core_task_seq;
5598 next = rq->core_pick;
5599 rq->core_sched_seq = rq->core->core_pick_seq;
5600
5601 /* Something should have been selected for current CPU */
5602 WARN_ON_ONCE(!next);
5603
5604 /*
5605 * Reschedule siblings
5606 *
5607 * NOTE: L1TF -- at this point we're no longer running the old task and
5608 * sending an IPI (below) ensures the sibling will no longer be running
5609 * their task. This ensures there is no inter-sibling overlap between
5610 * non-matching user state.
5611 */
5612 for_each_cpu(i, smt_mask) {
5613 struct rq *rq_i = cpu_rq(i);
5614
5615 /*
5616 * An online sibling might have gone offline before a task
5617 * could be picked for it, or it might be offline but later
5618 * happen to come online, but its too late and nothing was
5619 * picked for it. That's Ok - it will pick tasks for itself,
5620 * so ignore it.
5621 */
5622 if (!rq_i->core_pick)
5623 continue;
5624
5625 /*
5626 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5627 * fi_before fi update?
5628 * 0 0 1
5629 * 0 1 1
5630 * 1 0 1
5631 * 1 1 0
5632 */
5633 if (!(fi_before && rq->core->core_forceidle))
5634 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5635
5636 rq_i->core_pick->core_occupation = occ;
5637
5638 if (i == cpu) {
5639 rq_i->core_pick = NULL;
5640 continue;
5641 }
5642
5643 /* Did we break L1TF mitigation requirements? */
5644 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5645
5646 if (rq_i->curr == rq_i->core_pick) {
5647 rq_i->core_pick = NULL;
5648 continue;
5649 }
5650
5651 resched_curr(rq_i);
5652 }
5653
5654done:
5655 set_next_task(rq, next);
5656 return next;
5657}
5658
5659static bool try_steal_cookie(int this, int that)
5660{
5661 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5662 struct task_struct *p;
5663 unsigned long cookie;
5664 bool success = false;
5665
5666 local_irq_disable();
5667 double_rq_lock(dst, src);
5668
5669 cookie = dst->core->core_cookie;
5670 if (!cookie)
5671 goto unlock;
5672
5673 if (dst->curr != dst->idle)
5674 goto unlock;
5675
5676 p = sched_core_find(src, cookie);
5677 if (p == src->idle)
5678 goto unlock;
5679
5680 do {
5681 if (p == src->core_pick || p == src->curr)
5682 goto next;
5683
5684 if (!cpumask_test_cpu(this, &p->cpus_mask))
5685 goto next;
5686
5687 if (p->core_occupation > dst->idle->core_occupation)
5688 goto next;
5689
5690 p->on_rq = TASK_ON_RQ_MIGRATING;
5691 deactivate_task(src, p, 0);
5692 set_task_cpu(p, this);
5693 activate_task(dst, p, 0);
5694 p->on_rq = TASK_ON_RQ_QUEUED;
5695
5696 resched_curr(dst);
5697
5698 success = true;
5699 break;
5700
5701next:
5702 p = sched_core_next(p, cookie);
5703 } while (p);
5704
5705unlock:
5706 double_rq_unlock(dst, src);
5707 local_irq_enable();
5708
5709 return success;
5710}
5711
5712static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5713{
5714 int i;
5715
5716 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5717 if (i == cpu)
5718 continue;
5719
5720 if (need_resched())
5721 break;
5722
5723 if (try_steal_cookie(cpu, i))
5724 return true;
5725 }
5726
5727 return false;
5728}
5729
5730static void sched_core_balance(struct rq *rq)
5731{
5732 struct sched_domain *sd;
5733 int cpu = cpu_of(rq);
5734
5735 preempt_disable();
5736 rcu_read_lock();
5737 raw_spin_rq_unlock_irq(rq);
5738 for_each_domain(cpu, sd) {
5739 if (need_resched())
5740 break;
5741
5742 if (steal_cookie_task(cpu, sd))
5743 break;
5744 }
5745 raw_spin_rq_lock_irq(rq);
5746 rcu_read_unlock();
5747 preempt_enable();
5748}
5749
5750static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5751
5752void queue_core_balance(struct rq *rq)
5753{
5754 if (!sched_core_enabled(rq))
5755 return;
5756
5757 if (!rq->core->core_cookie)
5758 return;
5759
5760 if (!rq->nr_running) /* not forced idle */
5761 return;
5762
5763 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5764}
5765
5766static void sched_core_cpu_starting(unsigned int cpu)
5767{
5768 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5769 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5770 unsigned long flags;
5771 int t;
5772
5773 sched_core_lock(cpu, &flags);
5774
5775 WARN_ON_ONCE(rq->core != rq);
5776
5777 /* if we're the first, we'll be our own leader */
5778 if (cpumask_weight(smt_mask) == 1)
5779 goto unlock;
5780
5781 /* find the leader */
5782 for_each_cpu(t, smt_mask) {
5783 if (t == cpu)
5784 continue;
5785 rq = cpu_rq(t);
5786 if (rq->core == rq) {
5787 core_rq = rq;
5788 break;
5789 }
5790 }
5791
5792 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5793 goto unlock;
5794
5795 /* install and validate core_rq */
5796 for_each_cpu(t, smt_mask) {
5797 rq = cpu_rq(t);
5798
5799 if (t == cpu)
5800 rq->core = core_rq;
5801
5802 WARN_ON_ONCE(rq->core != core_rq);
5803 }
5804
5805unlock:
5806 sched_core_unlock(cpu, &flags);
5807}
5808
5809static void sched_core_cpu_deactivate(unsigned int cpu)
5810{
5811 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5812 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5813 unsigned long flags;
5814 int t;
5815
5816 sched_core_lock(cpu, &flags);
5817
5818 /* if we're the last man standing, nothing to do */
5819 if (cpumask_weight(smt_mask) == 1) {
5820 WARN_ON_ONCE(rq->core != rq);
5821 goto unlock;
5822 }
5823
5824 /* if we're not the leader, nothing to do */
5825 if (rq->core != rq)
5826 goto unlock;
5827
5828 /* find a new leader */
5829 for_each_cpu(t, smt_mask) {
5830 if (t == cpu)
5831 continue;
5832 core_rq = cpu_rq(t);
5833 break;
5834 }
5835
5836 if (WARN_ON_ONCE(!core_rq)) /* impossible */
5837 goto unlock;
5838
5839 /* copy the shared state to the new leader */
5840 core_rq->core_task_seq = rq->core_task_seq;
5841 core_rq->core_pick_seq = rq->core_pick_seq;
5842 core_rq->core_cookie = rq->core_cookie;
5843 core_rq->core_forceidle = rq->core_forceidle;
5844 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
5845
5846 /* install new leader */
5847 for_each_cpu(t, smt_mask) {
5848 rq = cpu_rq(t);
5849 rq->core = core_rq;
5850 }
5851
5852unlock:
5853 sched_core_unlock(cpu, &flags);
5854}
5855
5856static inline void sched_core_cpu_dying(unsigned int cpu)
5857{
5858 struct rq *rq = cpu_rq(cpu);
5859
5860 if (rq->core != rq)
5861 rq->core = rq;
5862}
5863
5864#else /* !CONFIG_SCHED_CORE */
5865
5866static inline void sched_core_cpu_starting(unsigned int cpu) {}
5867static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
5868static inline void sched_core_cpu_dying(unsigned int cpu) {}
5869
5870static struct task_struct *
5871pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5872{
5873 return __pick_next_task(rq, prev, rf);
5874}
5875
5876#endif /* CONFIG_SCHED_CORE */
5877
5878/*
5879 * __schedule() is the main scheduler function.
5880 *
5881 * The main means of driving the scheduler and thus entering this function are:
5882 *
5883 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5884 *
5885 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5886 * paths. For example, see arch/x86/entry_64.S.
5887 *
5888 * To drive preemption between tasks, the scheduler sets the flag in timer
5889 * interrupt handler scheduler_tick().
5890 *
5891 * 3. Wakeups don't really cause entry into schedule(). They add a
5892 * task to the run-queue and that's it.
5893 *
5894 * Now, if the new task added to the run-queue preempts the current
5895 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5896 * called on the nearest possible occasion:
5897 *
5898 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5899 *
5900 * - in syscall or exception context, at the next outmost
5901 * preempt_enable(). (this might be as soon as the wake_up()'s
5902 * spin_unlock()!)
5903 *
5904 * - in IRQ context, return from interrupt-handler to
5905 * preemptible context
5906 *
5907 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5908 * then at the next:
5909 *
5910 * - cond_resched() call
5911 * - explicit schedule() call
5912 * - return from syscall or exception to user-space
5913 * - return from interrupt-handler to user-space
5914 *
5915 * WARNING: must be called with preemption disabled!
5916 */
5917static void __sched notrace __schedule(bool preempt)
5918{
5919 struct task_struct *prev, *next;
5920 unsigned long *switch_count;
5921 unsigned long prev_state;
5922 struct rq_flags rf;
5923 struct rq *rq;
5924 int cpu;
5925
5926 cpu = smp_processor_id();
5927 rq = cpu_rq(cpu);
5928 prev = rq->curr;
5929
5930 schedule_debug(prev, preempt);
5931
5932 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5933 hrtick_clear(rq);
5934
5935 local_irq_disable();
5936 rcu_note_context_switch(preempt);
5937
5938 /*
5939 * Make sure that signal_pending_state()->signal_pending() below
5940 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5941 * done by the caller to avoid the race with signal_wake_up():
5942 *
5943 * __set_current_state(@state) signal_wake_up()
5944 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5945 * wake_up_state(p, state)
5946 * LOCK rq->lock LOCK p->pi_state
5947 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5948 * if (signal_pending_state()) if (p->state & @state)
5949 *
5950 * Also, the membarrier system call requires a full memory barrier
5951 * after coming from user-space, before storing to rq->curr.
5952 */
5953 rq_lock(rq, &rf);
5954 smp_mb__after_spinlock();
5955
5956 /* Promote REQ to ACT */
5957 rq->clock_update_flags <<= 1;
5958 update_rq_clock(rq);
5959
5960 switch_count = &prev->nivcsw;
5961
5962 /*
5963 * We must load prev->state once (task_struct::state is volatile), such
5964 * that:
5965 *
5966 * - we form a control dependency vs deactivate_task() below.
5967 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
5968 */
5969 prev_state = READ_ONCE(prev->__state);
5970 if (!preempt && prev_state) {
5971 if (signal_pending_state(prev_state, prev)) {
5972 WRITE_ONCE(prev->__state, TASK_RUNNING);
5973 } else {
5974 prev->sched_contributes_to_load =
5975 (prev_state & TASK_UNINTERRUPTIBLE) &&
5976 !(prev_state & TASK_NOLOAD) &&
5977 !(prev->flags & PF_FROZEN);
5978
5979 if (prev->sched_contributes_to_load)
5980 rq->nr_uninterruptible++;
5981
5982 /*
5983 * __schedule() ttwu()
5984 * prev_state = prev->state; if (p->on_rq && ...)
5985 * if (prev_state) goto out;
5986 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5987 * p->state = TASK_WAKING
5988 *
5989 * Where __schedule() and ttwu() have matching control dependencies.
5990 *
5991 * After this, schedule() must not care about p->state any more.
5992 */
5993 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5994
5995 if (prev->in_iowait) {
5996 atomic_inc(&rq->nr_iowait);
5997 delayacct_blkio_start();
5998 }
5999 }
6000 switch_count = &prev->nvcsw;
6001 }
6002
6003 next = pick_next_task(rq, prev, &rf);
6004 clear_tsk_need_resched(prev);
6005 clear_preempt_need_resched();
6006#ifdef CONFIG_SCHED_DEBUG
6007 rq->last_seen_need_resched_ns = 0;
6008#endif
6009
6010 if (likely(prev != next)) {
6011 rq->nr_switches++;
6012 /*
6013 * RCU users of rcu_dereference(rq->curr) may not see
6014 * changes to task_struct made by pick_next_task().
6015 */
6016 RCU_INIT_POINTER(rq->curr, next);
6017 /*
6018 * The membarrier system call requires each architecture
6019 * to have a full memory barrier after updating
6020 * rq->curr, before returning to user-space.
6021 *
6022 * Here are the schemes providing that barrier on the
6023 * various architectures:
6024 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6025 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6026 * - finish_lock_switch() for weakly-ordered
6027 * architectures where spin_unlock is a full barrier,
6028 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6029 * is a RELEASE barrier),
6030 */
6031 ++*switch_count;
6032
6033 migrate_disable_switch(rq, prev);
6034 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6035
6036 trace_sched_switch(preempt, prev, next);
6037
6038 /* Also unlocks the rq: */
6039 rq = context_switch(rq, prev, next, &rf);
6040 } else {
6041 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6042
6043 rq_unpin_lock(rq, &rf);
6044 __balance_callbacks(rq);
6045 raw_spin_rq_unlock_irq(rq);
6046 }
6047}
6048
6049void __noreturn do_task_dead(void)
6050{
6051 /* Causes final put_task_struct in finish_task_switch(): */
6052 set_special_state(TASK_DEAD);
6053
6054 /* Tell freezer to ignore us: */
6055 current->flags |= PF_NOFREEZE;
6056
6057 __schedule(false);
6058 BUG();
6059
6060 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6061 for (;;)
6062 cpu_relax();
6063}
6064
6065static inline void sched_submit_work(struct task_struct *tsk)
6066{
6067 unsigned int task_flags;
6068
6069 if (task_is_running(tsk))
6070 return;
6071
6072 task_flags = tsk->flags;
6073 /*
6074 * If a worker went to sleep, notify and ask workqueue whether
6075 * it wants to wake up a task to maintain concurrency.
6076 * As this function is called inside the schedule() context,
6077 * we disable preemption to avoid it calling schedule() again
6078 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6079 * requires it.
6080 */
6081 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6082 preempt_disable();
6083 if (task_flags & PF_WQ_WORKER)
6084 wq_worker_sleeping(tsk);
6085 else
6086 io_wq_worker_sleeping(tsk);
6087 preempt_enable_no_resched();
6088 }
6089
6090 if (tsk_is_pi_blocked(tsk))
6091 return;
6092
6093 /*
6094 * If we are going to sleep and we have plugged IO queued,
6095 * make sure to submit it to avoid deadlocks.
6096 */
6097 if (blk_needs_flush_plug(tsk))
6098 blk_schedule_flush_plug(tsk);
6099}
6100
6101static void sched_update_worker(struct task_struct *tsk)
6102{
6103 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6104 if (tsk->flags & PF_WQ_WORKER)
6105 wq_worker_running(tsk);
6106 else
6107 io_wq_worker_running(tsk);
6108 }
6109}
6110
6111asmlinkage __visible void __sched schedule(void)
6112{
6113 struct task_struct *tsk = current;
6114
6115 sched_submit_work(tsk);
6116 do {
6117 preempt_disable();
6118 __schedule(false);
6119 sched_preempt_enable_no_resched();
6120 } while (need_resched());
6121 sched_update_worker(tsk);
6122}
6123EXPORT_SYMBOL(schedule);
6124
6125/*
6126 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6127 * state (have scheduled out non-voluntarily) by making sure that all
6128 * tasks have either left the run queue or have gone into user space.
6129 * As idle tasks do not do either, they must not ever be preempted
6130 * (schedule out non-voluntarily).
6131 *
6132 * schedule_idle() is similar to schedule_preempt_disable() except that it
6133 * never enables preemption because it does not call sched_submit_work().
6134 */
6135void __sched schedule_idle(void)
6136{
6137 /*
6138 * As this skips calling sched_submit_work(), which the idle task does
6139 * regardless because that function is a nop when the task is in a
6140 * TASK_RUNNING state, make sure this isn't used someplace that the
6141 * current task can be in any other state. Note, idle is always in the
6142 * TASK_RUNNING state.
6143 */
6144 WARN_ON_ONCE(current->__state);
6145 do {
6146 __schedule(false);
6147 } while (need_resched());
6148}
6149
6150#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6151asmlinkage __visible void __sched schedule_user(void)
6152{
6153 /*
6154 * If we come here after a random call to set_need_resched(),
6155 * or we have been woken up remotely but the IPI has not yet arrived,
6156 * we haven't yet exited the RCU idle mode. Do it here manually until
6157 * we find a better solution.
6158 *
6159 * NB: There are buggy callers of this function. Ideally we
6160 * should warn if prev_state != CONTEXT_USER, but that will trigger
6161 * too frequently to make sense yet.
6162 */
6163 enum ctx_state prev_state = exception_enter();
6164 schedule();
6165 exception_exit(prev_state);
6166}
6167#endif
6168
6169/**
6170 * schedule_preempt_disabled - called with preemption disabled
6171 *
6172 * Returns with preemption disabled. Note: preempt_count must be 1
6173 */
6174void __sched schedule_preempt_disabled(void)
6175{
6176 sched_preempt_enable_no_resched();
6177 schedule();
6178 preempt_disable();
6179}
6180
6181static void __sched notrace preempt_schedule_common(void)
6182{
6183 do {
6184 /*
6185 * Because the function tracer can trace preempt_count_sub()
6186 * and it also uses preempt_enable/disable_notrace(), if
6187 * NEED_RESCHED is set, the preempt_enable_notrace() called
6188 * by the function tracer will call this function again and
6189 * cause infinite recursion.
6190 *
6191 * Preemption must be disabled here before the function
6192 * tracer can trace. Break up preempt_disable() into two
6193 * calls. One to disable preemption without fear of being
6194 * traced. The other to still record the preemption latency,
6195 * which can also be traced by the function tracer.
6196 */
6197 preempt_disable_notrace();
6198 preempt_latency_start(1);
6199 __schedule(true);
6200 preempt_latency_stop(1);
6201 preempt_enable_no_resched_notrace();
6202
6203 /*
6204 * Check again in case we missed a preemption opportunity
6205 * between schedule and now.
6206 */
6207 } while (need_resched());
6208}
6209
6210#ifdef CONFIG_PREEMPTION
6211/*
6212 * This is the entry point to schedule() from in-kernel preemption
6213 * off of preempt_enable.
6214 */
6215asmlinkage __visible void __sched notrace preempt_schedule(void)
6216{
6217 /*
6218 * If there is a non-zero preempt_count or interrupts are disabled,
6219 * we do not want to preempt the current task. Just return..
6220 */
6221 if (likely(!preemptible()))
6222 return;
6223
6224 preempt_schedule_common();
6225}
6226NOKPROBE_SYMBOL(preempt_schedule);
6227EXPORT_SYMBOL(preempt_schedule);
6228
6229#ifdef CONFIG_PREEMPT_DYNAMIC
6230DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6231EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6232#endif
6233
6234
6235/**
6236 * preempt_schedule_notrace - preempt_schedule called by tracing
6237 *
6238 * The tracing infrastructure uses preempt_enable_notrace to prevent
6239 * recursion and tracing preempt enabling caused by the tracing
6240 * infrastructure itself. But as tracing can happen in areas coming
6241 * from userspace or just about to enter userspace, a preempt enable
6242 * can occur before user_exit() is called. This will cause the scheduler
6243 * to be called when the system is still in usermode.
6244 *
6245 * To prevent this, the preempt_enable_notrace will use this function
6246 * instead of preempt_schedule() to exit user context if needed before
6247 * calling the scheduler.
6248 */
6249asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6250{
6251 enum ctx_state prev_ctx;
6252
6253 if (likely(!preemptible()))
6254 return;
6255
6256 do {
6257 /*
6258 * Because the function tracer can trace preempt_count_sub()
6259 * and it also uses preempt_enable/disable_notrace(), if
6260 * NEED_RESCHED is set, the preempt_enable_notrace() called
6261 * by the function tracer will call this function again and
6262 * cause infinite recursion.
6263 *
6264 * Preemption must be disabled here before the function
6265 * tracer can trace. Break up preempt_disable() into two
6266 * calls. One to disable preemption without fear of being
6267 * traced. The other to still record the preemption latency,
6268 * which can also be traced by the function tracer.
6269 */
6270 preempt_disable_notrace();
6271 preempt_latency_start(1);
6272 /*
6273 * Needs preempt disabled in case user_exit() is traced
6274 * and the tracer calls preempt_enable_notrace() causing
6275 * an infinite recursion.
6276 */
6277 prev_ctx = exception_enter();
6278 __schedule(true);
6279 exception_exit(prev_ctx);
6280
6281 preempt_latency_stop(1);
6282 preempt_enable_no_resched_notrace();
6283 } while (need_resched());
6284}
6285EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6286
6287#ifdef CONFIG_PREEMPT_DYNAMIC
6288DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6289EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6290#endif
6291
6292#endif /* CONFIG_PREEMPTION */
6293
6294#ifdef CONFIG_PREEMPT_DYNAMIC
6295
6296#include <linux/entry-common.h>
6297
6298/*
6299 * SC:cond_resched
6300 * SC:might_resched
6301 * SC:preempt_schedule
6302 * SC:preempt_schedule_notrace
6303 * SC:irqentry_exit_cond_resched
6304 *
6305 *
6306 * NONE:
6307 * cond_resched <- __cond_resched
6308 * might_resched <- RET0
6309 * preempt_schedule <- NOP
6310 * preempt_schedule_notrace <- NOP
6311 * irqentry_exit_cond_resched <- NOP
6312 *
6313 * VOLUNTARY:
6314 * cond_resched <- __cond_resched
6315 * might_resched <- __cond_resched
6316 * preempt_schedule <- NOP
6317 * preempt_schedule_notrace <- NOP
6318 * irqentry_exit_cond_resched <- NOP
6319 *
6320 * FULL:
6321 * cond_resched <- RET0
6322 * might_resched <- RET0
6323 * preempt_schedule <- preempt_schedule
6324 * preempt_schedule_notrace <- preempt_schedule_notrace
6325 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6326 */
6327
6328enum {
6329 preempt_dynamic_none = 0,
6330 preempt_dynamic_voluntary,
6331 preempt_dynamic_full,
6332};
6333
6334int preempt_dynamic_mode = preempt_dynamic_full;
6335
6336int sched_dynamic_mode(const char *str)
6337{
6338 if (!strcmp(str, "none"))
6339 return preempt_dynamic_none;
6340
6341 if (!strcmp(str, "voluntary"))
6342 return preempt_dynamic_voluntary;
6343
6344 if (!strcmp(str, "full"))
6345 return preempt_dynamic_full;
6346
6347 return -EINVAL;
6348}
6349
6350void sched_dynamic_update(int mode)
6351{
6352 /*
6353 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6354 * the ZERO state, which is invalid.
6355 */
6356 static_call_update(cond_resched, __cond_resched);
6357 static_call_update(might_resched, __cond_resched);
6358 static_call_update(preempt_schedule, __preempt_schedule_func);
6359 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6360 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6361
6362 switch (mode) {
6363 case preempt_dynamic_none:
6364 static_call_update(cond_resched, __cond_resched);
6365 static_call_update(might_resched, (void *)&__static_call_return0);
6366 static_call_update(preempt_schedule, NULL);
6367 static_call_update(preempt_schedule_notrace, NULL);
6368 static_call_update(irqentry_exit_cond_resched, NULL);
6369 pr_info("Dynamic Preempt: none\n");
6370 break;
6371
6372 case preempt_dynamic_voluntary:
6373 static_call_update(cond_resched, __cond_resched);
6374 static_call_update(might_resched, __cond_resched);
6375 static_call_update(preempt_schedule, NULL);
6376 static_call_update(preempt_schedule_notrace, NULL);
6377 static_call_update(irqentry_exit_cond_resched, NULL);
6378 pr_info("Dynamic Preempt: voluntary\n");
6379 break;
6380
6381 case preempt_dynamic_full:
6382 static_call_update(cond_resched, (void *)&__static_call_return0);
6383 static_call_update(might_resched, (void *)&__static_call_return0);
6384 static_call_update(preempt_schedule, __preempt_schedule_func);
6385 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6386 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6387 pr_info("Dynamic Preempt: full\n");
6388 break;
6389 }
6390
6391 preempt_dynamic_mode = mode;
6392}
6393
6394static int __init setup_preempt_mode(char *str)
6395{
6396 int mode = sched_dynamic_mode(str);
6397 if (mode < 0) {
6398 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6399 return 1;
6400 }
6401
6402 sched_dynamic_update(mode);
6403 return 0;
6404}
6405__setup("preempt=", setup_preempt_mode);
6406
6407#endif /* CONFIG_PREEMPT_DYNAMIC */
6408
6409/*
6410 * This is the entry point to schedule() from kernel preemption
6411 * off of irq context.
6412 * Note, that this is called and return with irqs disabled. This will
6413 * protect us against recursive calling from irq.
6414 */
6415asmlinkage __visible void __sched preempt_schedule_irq(void)
6416{
6417 enum ctx_state prev_state;
6418
6419 /* Catch callers which need to be fixed */
6420 BUG_ON(preempt_count() || !irqs_disabled());
6421
6422 prev_state = exception_enter();
6423
6424 do {
6425 preempt_disable();
6426 local_irq_enable();
6427 __schedule(true);
6428 local_irq_disable();
6429 sched_preempt_enable_no_resched();
6430 } while (need_resched());
6431
6432 exception_exit(prev_state);
6433}
6434
6435int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6436 void *key)
6437{
6438 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6439 return try_to_wake_up(curr->private, mode, wake_flags);
6440}
6441EXPORT_SYMBOL(default_wake_function);
6442
6443static void __setscheduler_prio(struct task_struct *p, int prio)
6444{
6445 if (dl_prio(prio))
6446 p->sched_class = &dl_sched_class;
6447 else if (rt_prio(prio))
6448 p->sched_class = &rt_sched_class;
6449 else
6450 p->sched_class = &fair_sched_class;
6451
6452 p->prio = prio;
6453}
6454
6455#ifdef CONFIG_RT_MUTEXES
6456
6457static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6458{
6459 if (pi_task)
6460 prio = min(prio, pi_task->prio);
6461
6462 return prio;
6463}
6464
6465static inline int rt_effective_prio(struct task_struct *p, int prio)
6466{
6467 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6468
6469 return __rt_effective_prio(pi_task, prio);
6470}
6471
6472/*
6473 * rt_mutex_setprio - set the current priority of a task
6474 * @p: task to boost
6475 * @pi_task: donor task
6476 *
6477 * This function changes the 'effective' priority of a task. It does
6478 * not touch ->normal_prio like __setscheduler().
6479 *
6480 * Used by the rt_mutex code to implement priority inheritance
6481 * logic. Call site only calls if the priority of the task changed.
6482 */
6483void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6484{
6485 int prio, oldprio, queued, running, queue_flag =
6486 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6487 const struct sched_class *prev_class;
6488 struct rq_flags rf;
6489 struct rq *rq;
6490
6491 /* XXX used to be waiter->prio, not waiter->task->prio */
6492 prio = __rt_effective_prio(pi_task, p->normal_prio);
6493
6494 /*
6495 * If nothing changed; bail early.
6496 */
6497 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6498 return;
6499
6500 rq = __task_rq_lock(p, &rf);
6501 update_rq_clock(rq);
6502 /*
6503 * Set under pi_lock && rq->lock, such that the value can be used under
6504 * either lock.
6505 *
6506 * Note that there is loads of tricky to make this pointer cache work
6507 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6508 * ensure a task is de-boosted (pi_task is set to NULL) before the
6509 * task is allowed to run again (and can exit). This ensures the pointer
6510 * points to a blocked task -- which guarantees the task is present.
6511 */
6512 p->pi_top_task = pi_task;
6513
6514 /*
6515 * For FIFO/RR we only need to set prio, if that matches we're done.
6516 */
6517 if (prio == p->prio && !dl_prio(prio))
6518 goto out_unlock;
6519
6520 /*
6521 * Idle task boosting is a nono in general. There is one
6522 * exception, when PREEMPT_RT and NOHZ is active:
6523 *
6524 * The idle task calls get_next_timer_interrupt() and holds
6525 * the timer wheel base->lock on the CPU and another CPU wants
6526 * to access the timer (probably to cancel it). We can safely
6527 * ignore the boosting request, as the idle CPU runs this code
6528 * with interrupts disabled and will complete the lock
6529 * protected section without being interrupted. So there is no
6530 * real need to boost.
6531 */
6532 if (unlikely(p == rq->idle)) {
6533 WARN_ON(p != rq->curr);
6534 WARN_ON(p->pi_blocked_on);
6535 goto out_unlock;
6536 }
6537
6538 trace_sched_pi_setprio(p, pi_task);
6539 oldprio = p->prio;
6540
6541 if (oldprio == prio)
6542 queue_flag &= ~DEQUEUE_MOVE;
6543
6544 prev_class = p->sched_class;
6545 queued = task_on_rq_queued(p);
6546 running = task_current(rq, p);
6547 if (queued)
6548 dequeue_task(rq, p, queue_flag);
6549 if (running)
6550 put_prev_task(rq, p);
6551
6552 /*
6553 * Boosting condition are:
6554 * 1. -rt task is running and holds mutex A
6555 * --> -dl task blocks on mutex A
6556 *
6557 * 2. -dl task is running and holds mutex A
6558 * --> -dl task blocks on mutex A and could preempt the
6559 * running task
6560 */
6561 if (dl_prio(prio)) {
6562 if (!dl_prio(p->normal_prio) ||
6563 (pi_task && dl_prio(pi_task->prio) &&
6564 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6565 p->dl.pi_se = pi_task->dl.pi_se;
6566 queue_flag |= ENQUEUE_REPLENISH;
6567 } else {
6568 p->dl.pi_se = &p->dl;
6569 }
6570 } else if (rt_prio(prio)) {
6571 if (dl_prio(oldprio))
6572 p->dl.pi_se = &p->dl;
6573 if (oldprio < prio)
6574 queue_flag |= ENQUEUE_HEAD;
6575 } else {
6576 if (dl_prio(oldprio))
6577 p->dl.pi_se = &p->dl;
6578 if (rt_prio(oldprio))
6579 p->rt.timeout = 0;
6580 }
6581
6582 __setscheduler_prio(p, prio);
6583
6584 if (queued)
6585 enqueue_task(rq, p, queue_flag);
6586 if (running)
6587 set_next_task(rq, p);
6588
6589 check_class_changed(rq, p, prev_class, oldprio);
6590out_unlock:
6591 /* Avoid rq from going away on us: */
6592 preempt_disable();
6593
6594 rq_unpin_lock(rq, &rf);
6595 __balance_callbacks(rq);
6596 raw_spin_rq_unlock(rq);
6597
6598 preempt_enable();
6599}
6600#else
6601static inline int rt_effective_prio(struct task_struct *p, int prio)
6602{
6603 return prio;
6604}
6605#endif
6606
6607void set_user_nice(struct task_struct *p, long nice)
6608{
6609 bool queued, running;
6610 int old_prio;
6611 struct rq_flags rf;
6612 struct rq *rq;
6613
6614 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6615 return;
6616 /*
6617 * We have to be careful, if called from sys_setpriority(),
6618 * the task might be in the middle of scheduling on another CPU.
6619 */
6620 rq = task_rq_lock(p, &rf);
6621 update_rq_clock(rq);
6622
6623 /*
6624 * The RT priorities are set via sched_setscheduler(), but we still
6625 * allow the 'normal' nice value to be set - but as expected
6626 * it won't have any effect on scheduling until the task is
6627 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6628 */
6629 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6630 p->static_prio = NICE_TO_PRIO(nice);
6631 goto out_unlock;
6632 }
6633 queued = task_on_rq_queued(p);
6634 running = task_current(rq, p);
6635 if (queued)
6636 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6637 if (running)
6638 put_prev_task(rq, p);
6639
6640 p->static_prio = NICE_TO_PRIO(nice);
6641 set_load_weight(p, true);
6642 old_prio = p->prio;
6643 p->prio = effective_prio(p);
6644
6645 if (queued)
6646 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6647 if (running)
6648 set_next_task(rq, p);
6649
6650 /*
6651 * If the task increased its priority or is running and
6652 * lowered its priority, then reschedule its CPU:
6653 */
6654 p->sched_class->prio_changed(rq, p, old_prio);
6655
6656out_unlock:
6657 task_rq_unlock(rq, p, &rf);
6658}
6659EXPORT_SYMBOL(set_user_nice);
6660
6661/*
6662 * can_nice - check if a task can reduce its nice value
6663 * @p: task
6664 * @nice: nice value
6665 */
6666int can_nice(const struct task_struct *p, const int nice)
6667{
6668 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6669 int nice_rlim = nice_to_rlimit(nice);
6670
6671 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6672 capable(CAP_SYS_NICE));
6673}
6674
6675#ifdef __ARCH_WANT_SYS_NICE
6676
6677/*
6678 * sys_nice - change the priority of the current process.
6679 * @increment: priority increment
6680 *
6681 * sys_setpriority is a more generic, but much slower function that
6682 * does similar things.
6683 */
6684SYSCALL_DEFINE1(nice, int, increment)
6685{
6686 long nice, retval;
6687
6688 /*
6689 * Setpriority might change our priority at the same moment.
6690 * We don't have to worry. Conceptually one call occurs first
6691 * and we have a single winner.
6692 */
6693 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6694 nice = task_nice(current) + increment;
6695
6696 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6697 if (increment < 0 && !can_nice(current, nice))
6698 return -EPERM;
6699
6700 retval = security_task_setnice(current, nice);
6701 if (retval)
6702 return retval;
6703
6704 set_user_nice(current, nice);
6705 return 0;
6706}
6707
6708#endif
6709
6710/**
6711 * task_prio - return the priority value of a given task.
6712 * @p: the task in question.
6713 *
6714 * Return: The priority value as seen by users in /proc.
6715 *
6716 * sched policy return value kernel prio user prio/nice
6717 *
6718 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6719 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6720 * deadline -101 -1 0
6721 */
6722int task_prio(const struct task_struct *p)
6723{
6724 return p->prio - MAX_RT_PRIO;
6725}
6726
6727/**
6728 * idle_cpu - is a given CPU idle currently?
6729 * @cpu: the processor in question.
6730 *
6731 * Return: 1 if the CPU is currently idle. 0 otherwise.
6732 */
6733int idle_cpu(int cpu)
6734{
6735 struct rq *rq = cpu_rq(cpu);
6736
6737 if (rq->curr != rq->idle)
6738 return 0;
6739
6740 if (rq->nr_running)
6741 return 0;
6742
6743#ifdef CONFIG_SMP
6744 if (rq->ttwu_pending)
6745 return 0;
6746#endif
6747
6748 return 1;
6749}
6750
6751/**
6752 * available_idle_cpu - is a given CPU idle for enqueuing work.
6753 * @cpu: the CPU in question.
6754 *
6755 * Return: 1 if the CPU is currently idle. 0 otherwise.
6756 */
6757int available_idle_cpu(int cpu)
6758{
6759 if (!idle_cpu(cpu))
6760 return 0;
6761
6762 if (vcpu_is_preempted(cpu))
6763 return 0;
6764
6765 return 1;
6766}
6767
6768/**
6769 * idle_task - return the idle task for a given CPU.
6770 * @cpu: the processor in question.
6771 *
6772 * Return: The idle task for the CPU @cpu.
6773 */
6774struct task_struct *idle_task(int cpu)
6775{
6776 return cpu_rq(cpu)->idle;
6777}
6778
6779#ifdef CONFIG_SMP
6780/*
6781 * This function computes an effective utilization for the given CPU, to be
6782 * used for frequency selection given the linear relation: f = u * f_max.
6783 *
6784 * The scheduler tracks the following metrics:
6785 *
6786 * cpu_util_{cfs,rt,dl,irq}()
6787 * cpu_bw_dl()
6788 *
6789 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6790 * synchronized windows and are thus directly comparable.
6791 *
6792 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6793 * which excludes things like IRQ and steal-time. These latter are then accrued
6794 * in the irq utilization.
6795 *
6796 * The DL bandwidth number otoh is not a measured metric but a value computed
6797 * based on the task model parameters and gives the minimal utilization
6798 * required to meet deadlines.
6799 */
6800unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6801 unsigned long max, enum cpu_util_type type,
6802 struct task_struct *p)
6803{
6804 unsigned long dl_util, util, irq;
6805 struct rq *rq = cpu_rq(cpu);
6806
6807 if (!uclamp_is_used() &&
6808 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6809 return max;
6810 }
6811
6812 /*
6813 * Early check to see if IRQ/steal time saturates the CPU, can be
6814 * because of inaccuracies in how we track these -- see
6815 * update_irq_load_avg().
6816 */
6817 irq = cpu_util_irq(rq);
6818 if (unlikely(irq >= max))
6819 return max;
6820
6821 /*
6822 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6823 * CFS tasks and we use the same metric to track the effective
6824 * utilization (PELT windows are synchronized) we can directly add them
6825 * to obtain the CPU's actual utilization.
6826 *
6827 * CFS and RT utilization can be boosted or capped, depending on
6828 * utilization clamp constraints requested by currently RUNNABLE
6829 * tasks.
6830 * When there are no CFS RUNNABLE tasks, clamps are released and
6831 * frequency will be gracefully reduced with the utilization decay.
6832 */
6833 util = util_cfs + cpu_util_rt(rq);
6834 if (type == FREQUENCY_UTIL)
6835 util = uclamp_rq_util_with(rq, util, p);
6836
6837 dl_util = cpu_util_dl(rq);
6838
6839 /*
6840 * For frequency selection we do not make cpu_util_dl() a permanent part
6841 * of this sum because we want to use cpu_bw_dl() later on, but we need
6842 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6843 * that we select f_max when there is no idle time.
6844 *
6845 * NOTE: numerical errors or stop class might cause us to not quite hit
6846 * saturation when we should -- something for later.
6847 */
6848 if (util + dl_util >= max)
6849 return max;
6850
6851 /*
6852 * OTOH, for energy computation we need the estimated running time, so
6853 * include util_dl and ignore dl_bw.
6854 */
6855 if (type == ENERGY_UTIL)
6856 util += dl_util;
6857
6858 /*
6859 * There is still idle time; further improve the number by using the
6860 * irq metric. Because IRQ/steal time is hidden from the task clock we
6861 * need to scale the task numbers:
6862 *
6863 * max - irq
6864 * U' = irq + --------- * U
6865 * max
6866 */
6867 util = scale_irq_capacity(util, irq, max);
6868 util += irq;
6869
6870 /*
6871 * Bandwidth required by DEADLINE must always be granted while, for
6872 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6873 * to gracefully reduce the frequency when no tasks show up for longer
6874 * periods of time.
6875 *
6876 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6877 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6878 * an interface. So, we only do the latter for now.
6879 */
6880 if (type == FREQUENCY_UTIL)
6881 util += cpu_bw_dl(rq);
6882
6883 return min(max, util);
6884}
6885
6886unsigned long sched_cpu_util(int cpu, unsigned long max)
6887{
6888 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6889 ENERGY_UTIL, NULL);
6890}
6891#endif /* CONFIG_SMP */
6892
6893/**
6894 * find_process_by_pid - find a process with a matching PID value.
6895 * @pid: the pid in question.
6896 *
6897 * The task of @pid, if found. %NULL otherwise.
6898 */
6899static struct task_struct *find_process_by_pid(pid_t pid)
6900{
6901 return pid ? find_task_by_vpid(pid) : current;
6902}
6903
6904/*
6905 * sched_setparam() passes in -1 for its policy, to let the functions
6906 * it calls know not to change it.
6907 */
6908#define SETPARAM_POLICY -1
6909
6910static void __setscheduler_params(struct task_struct *p,
6911 const struct sched_attr *attr)
6912{
6913 int policy = attr->sched_policy;
6914
6915 if (policy == SETPARAM_POLICY)
6916 policy = p->policy;
6917
6918 p->policy = policy;
6919
6920 if (dl_policy(policy))
6921 __setparam_dl(p, attr);
6922 else if (fair_policy(policy))
6923 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6924
6925 /*
6926 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6927 * !rt_policy. Always setting this ensures that things like
6928 * getparam()/getattr() don't report silly values for !rt tasks.
6929 */
6930 p->rt_priority = attr->sched_priority;
6931 p->normal_prio = normal_prio(p);
6932 set_load_weight(p, true);
6933}
6934
6935/*
6936 * Check the target process has a UID that matches the current process's:
6937 */
6938static bool check_same_owner(struct task_struct *p)
6939{
6940 const struct cred *cred = current_cred(), *pcred;
6941 bool match;
6942
6943 rcu_read_lock();
6944 pcred = __task_cred(p);
6945 match = (uid_eq(cred->euid, pcred->euid) ||
6946 uid_eq(cred->euid, pcred->uid));
6947 rcu_read_unlock();
6948 return match;
6949}
6950
6951static int __sched_setscheduler(struct task_struct *p,
6952 const struct sched_attr *attr,
6953 bool user, bool pi)
6954{
6955 int oldpolicy = -1, policy = attr->sched_policy;
6956 int retval, oldprio, newprio, queued, running;
6957 const struct sched_class *prev_class;
6958 struct callback_head *head;
6959 struct rq_flags rf;
6960 int reset_on_fork;
6961 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6962 struct rq *rq;
6963
6964 /* The pi code expects interrupts enabled */
6965 BUG_ON(pi && in_interrupt());
6966recheck:
6967 /* Double check policy once rq lock held: */
6968 if (policy < 0) {
6969 reset_on_fork = p->sched_reset_on_fork;
6970 policy = oldpolicy = p->policy;
6971 } else {
6972 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6973
6974 if (!valid_policy(policy))
6975 return -EINVAL;
6976 }
6977
6978 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6979 return -EINVAL;
6980
6981 /*
6982 * Valid priorities for SCHED_FIFO and SCHED_RR are
6983 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6984 * SCHED_BATCH and SCHED_IDLE is 0.
6985 */
6986 if (attr->sched_priority > MAX_RT_PRIO-1)
6987 return -EINVAL;
6988 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6989 (rt_policy(policy) != (attr->sched_priority != 0)))
6990 return -EINVAL;
6991
6992 /*
6993 * Allow unprivileged RT tasks to decrease priority:
6994 */
6995 if (user && !capable(CAP_SYS_NICE)) {
6996 if (fair_policy(policy)) {
6997 if (attr->sched_nice < task_nice(p) &&
6998 !can_nice(p, attr->sched_nice))
6999 return -EPERM;
7000 }
7001
7002 if (rt_policy(policy)) {
7003 unsigned long rlim_rtprio =
7004 task_rlimit(p, RLIMIT_RTPRIO);
7005
7006 /* Can't set/change the rt policy: */
7007 if (policy != p->policy && !rlim_rtprio)
7008 return -EPERM;
7009
7010 /* Can't increase priority: */
7011 if (attr->sched_priority > p->rt_priority &&
7012 attr->sched_priority > rlim_rtprio)
7013 return -EPERM;
7014 }
7015
7016 /*
7017 * Can't set/change SCHED_DEADLINE policy at all for now
7018 * (safest behavior); in the future we would like to allow
7019 * unprivileged DL tasks to increase their relative deadline
7020 * or reduce their runtime (both ways reducing utilization)
7021 */
7022 if (dl_policy(policy))
7023 return -EPERM;
7024
7025 /*
7026 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7027 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7028 */
7029 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7030 if (!can_nice(p, task_nice(p)))
7031 return -EPERM;
7032 }
7033
7034 /* Can't change other user's priorities: */
7035 if (!check_same_owner(p))
7036 return -EPERM;
7037
7038 /* Normal users shall not reset the sched_reset_on_fork flag: */
7039 if (p->sched_reset_on_fork && !reset_on_fork)
7040 return -EPERM;
7041 }
7042
7043 if (user) {
7044 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7045 return -EINVAL;
7046
7047 retval = security_task_setscheduler(p);
7048 if (retval)
7049 return retval;
7050 }
7051
7052 /* Update task specific "requested" clamps */
7053 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7054 retval = uclamp_validate(p, attr);
7055 if (retval)
7056 return retval;
7057 }
7058
7059 if (pi)
7060 cpuset_read_lock();
7061
7062 /*
7063 * Make sure no PI-waiters arrive (or leave) while we are
7064 * changing the priority of the task:
7065 *
7066 * To be able to change p->policy safely, the appropriate
7067 * runqueue lock must be held.
7068 */
7069 rq = task_rq_lock(p, &rf);
7070 update_rq_clock(rq);
7071
7072 /*
7073 * Changing the policy of the stop threads its a very bad idea:
7074 */
7075 if (p == rq->stop) {
7076 retval = -EINVAL;
7077 goto unlock;
7078 }
7079
7080 /*
7081 * If not changing anything there's no need to proceed further,
7082 * but store a possible modification of reset_on_fork.
7083 */
7084 if (unlikely(policy == p->policy)) {
7085 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7086 goto change;
7087 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7088 goto change;
7089 if (dl_policy(policy) && dl_param_changed(p, attr))
7090 goto change;
7091 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7092 goto change;
7093
7094 p->sched_reset_on_fork = reset_on_fork;
7095 retval = 0;
7096 goto unlock;
7097 }
7098change:
7099
7100 if (user) {
7101#ifdef CONFIG_RT_GROUP_SCHED
7102 /*
7103 * Do not allow realtime tasks into groups that have no runtime
7104 * assigned.
7105 */
7106 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7107 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7108 !task_group_is_autogroup(task_group(p))) {
7109 retval = -EPERM;
7110 goto unlock;
7111 }
7112#endif
7113#ifdef CONFIG_SMP
7114 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7115 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7116 cpumask_t *span = rq->rd->span;
7117
7118 /*
7119 * Don't allow tasks with an affinity mask smaller than
7120 * the entire root_domain to become SCHED_DEADLINE. We
7121 * will also fail if there's no bandwidth available.
7122 */
7123 if (!cpumask_subset(span, p->cpus_ptr) ||
7124 rq->rd->dl_bw.bw == 0) {
7125 retval = -EPERM;
7126 goto unlock;
7127 }
7128 }
7129#endif
7130 }
7131
7132 /* Re-check policy now with rq lock held: */
7133 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7134 policy = oldpolicy = -1;
7135 task_rq_unlock(rq, p, &rf);
7136 if (pi)
7137 cpuset_read_unlock();
7138 goto recheck;
7139 }
7140
7141 /*
7142 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7143 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7144 * is available.
7145 */
7146 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7147 retval = -EBUSY;
7148 goto unlock;
7149 }
7150
7151 p->sched_reset_on_fork = reset_on_fork;
7152 oldprio = p->prio;
7153
7154 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7155 if (pi) {
7156 /*
7157 * Take priority boosted tasks into account. If the new
7158 * effective priority is unchanged, we just store the new
7159 * normal parameters and do not touch the scheduler class and
7160 * the runqueue. This will be done when the task deboost
7161 * itself.
7162 */
7163 newprio = rt_effective_prio(p, newprio);
7164 if (newprio == oldprio)
7165 queue_flags &= ~DEQUEUE_MOVE;
7166 }
7167
7168 queued = task_on_rq_queued(p);
7169 running = task_current(rq, p);
7170 if (queued)
7171 dequeue_task(rq, p, queue_flags);
7172 if (running)
7173 put_prev_task(rq, p);
7174
7175 prev_class = p->sched_class;
7176
7177 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7178 __setscheduler_params(p, attr);
7179 __setscheduler_prio(p, newprio);
7180 }
7181 __setscheduler_uclamp(p, attr);
7182
7183 if (queued) {
7184 /*
7185 * We enqueue to tail when the priority of a task is
7186 * increased (user space view).
7187 */
7188 if (oldprio < p->prio)
7189 queue_flags |= ENQUEUE_HEAD;
7190
7191 enqueue_task(rq, p, queue_flags);
7192 }
7193 if (running)
7194 set_next_task(rq, p);
7195
7196 check_class_changed(rq, p, prev_class, oldprio);
7197
7198 /* Avoid rq from going away on us: */
7199 preempt_disable();
7200 head = splice_balance_callbacks(rq);
7201 task_rq_unlock(rq, p, &rf);
7202
7203 if (pi) {
7204 cpuset_read_unlock();
7205 rt_mutex_adjust_pi(p);
7206 }
7207
7208 /* Run balance callbacks after we've adjusted the PI chain: */
7209 balance_callbacks(rq, head);
7210 preempt_enable();
7211
7212 return 0;
7213
7214unlock:
7215 task_rq_unlock(rq, p, &rf);
7216 if (pi)
7217 cpuset_read_unlock();
7218 return retval;
7219}
7220
7221static int _sched_setscheduler(struct task_struct *p, int policy,
7222 const struct sched_param *param, bool check)
7223{
7224 struct sched_attr attr = {
7225 .sched_policy = policy,
7226 .sched_priority = param->sched_priority,
7227 .sched_nice = PRIO_TO_NICE(p->static_prio),
7228 };
7229
7230 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7231 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7232 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7233 policy &= ~SCHED_RESET_ON_FORK;
7234 attr.sched_policy = policy;
7235 }
7236
7237 return __sched_setscheduler(p, &attr, check, true);
7238}
7239/**
7240 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7241 * @p: the task in question.
7242 * @policy: new policy.
7243 * @param: structure containing the new RT priority.
7244 *
7245 * Use sched_set_fifo(), read its comment.
7246 *
7247 * Return: 0 on success. An error code otherwise.
7248 *
7249 * NOTE that the task may be already dead.
7250 */
7251int sched_setscheduler(struct task_struct *p, int policy,
7252 const struct sched_param *param)
7253{
7254 return _sched_setscheduler(p, policy, param, true);
7255}
7256
7257int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7258{
7259 return __sched_setscheduler(p, attr, true, true);
7260}
7261
7262int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7263{
7264 return __sched_setscheduler(p, attr, false, true);
7265}
7266EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7267
7268/**
7269 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7270 * @p: the task in question.
7271 * @policy: new policy.
7272 * @param: structure containing the new RT priority.
7273 *
7274 * Just like sched_setscheduler, only don't bother checking if the
7275 * current context has permission. For example, this is needed in
7276 * stop_machine(): we create temporary high priority worker threads,
7277 * but our caller might not have that capability.
7278 *
7279 * Return: 0 on success. An error code otherwise.
7280 */
7281int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7282 const struct sched_param *param)
7283{
7284 return _sched_setscheduler(p, policy, param, false);
7285}
7286
7287/*
7288 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7289 * incapable of resource management, which is the one thing an OS really should
7290 * be doing.
7291 *
7292 * This is of course the reason it is limited to privileged users only.
7293 *
7294 * Worse still; it is fundamentally impossible to compose static priority
7295 * workloads. You cannot take two correctly working static prio workloads
7296 * and smash them together and still expect them to work.
7297 *
7298 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7299 *
7300 * MAX_RT_PRIO / 2
7301 *
7302 * The administrator _MUST_ configure the system, the kernel simply doesn't
7303 * know enough information to make a sensible choice.
7304 */
7305void sched_set_fifo(struct task_struct *p)
7306{
7307 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7308 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7309}
7310EXPORT_SYMBOL_GPL(sched_set_fifo);
7311
7312/*
7313 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7314 */
7315void sched_set_fifo_low(struct task_struct *p)
7316{
7317 struct sched_param sp = { .sched_priority = 1 };
7318 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7319}
7320EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7321
7322void sched_set_normal(struct task_struct *p, int nice)
7323{
7324 struct sched_attr attr = {
7325 .sched_policy = SCHED_NORMAL,
7326 .sched_nice = nice,
7327 };
7328 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7329}
7330EXPORT_SYMBOL_GPL(sched_set_normal);
7331
7332static int
7333do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7334{
7335 struct sched_param lparam;
7336 struct task_struct *p;
7337 int retval;
7338
7339 if (!param || pid < 0)
7340 return -EINVAL;
7341 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7342 return -EFAULT;
7343
7344 rcu_read_lock();
7345 retval = -ESRCH;
7346 p = find_process_by_pid(pid);
7347 if (likely(p))
7348 get_task_struct(p);
7349 rcu_read_unlock();
7350
7351 if (likely(p)) {
7352 retval = sched_setscheduler(p, policy, &lparam);
7353 put_task_struct(p);
7354 }
7355
7356 return retval;
7357}
7358
7359/*
7360 * Mimics kernel/events/core.c perf_copy_attr().
7361 */
7362static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7363{
7364 u32 size;
7365 int ret;
7366
7367 /* Zero the full structure, so that a short copy will be nice: */
7368 memset(attr, 0, sizeof(*attr));
7369
7370 ret = get_user(size, &uattr->size);
7371 if (ret)
7372 return ret;
7373
7374 /* ABI compatibility quirk: */
7375 if (!size)
7376 size = SCHED_ATTR_SIZE_VER0;
7377 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7378 goto err_size;
7379
7380 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7381 if (ret) {
7382 if (ret == -E2BIG)
7383 goto err_size;
7384 return ret;
7385 }
7386
7387 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7388 size < SCHED_ATTR_SIZE_VER1)
7389 return -EINVAL;
7390
7391 /*
7392 * XXX: Do we want to be lenient like existing syscalls; or do we want
7393 * to be strict and return an error on out-of-bounds values?
7394 */
7395 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7396
7397 return 0;
7398
7399err_size:
7400 put_user(sizeof(*attr), &uattr->size);
7401 return -E2BIG;
7402}
7403
7404/**
7405 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7406 * @pid: the pid in question.
7407 * @policy: new policy.
7408 * @param: structure containing the new RT priority.
7409 *
7410 * Return: 0 on success. An error code otherwise.
7411 */
7412SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7413{
7414 if (policy < 0)
7415 return -EINVAL;
7416
7417 return do_sched_setscheduler(pid, policy, param);
7418}
7419
7420/**
7421 * sys_sched_setparam - set/change the RT priority of a thread
7422 * @pid: the pid in question.
7423 * @param: structure containing the new RT priority.
7424 *
7425 * Return: 0 on success. An error code otherwise.
7426 */
7427SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7428{
7429 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7430}
7431
7432/**
7433 * sys_sched_setattr - same as above, but with extended sched_attr
7434 * @pid: the pid in question.
7435 * @uattr: structure containing the extended parameters.
7436 * @flags: for future extension.
7437 */
7438SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7439 unsigned int, flags)
7440{
7441 struct sched_attr attr;
7442 struct task_struct *p;
7443 int retval;
7444
7445 if (!uattr || pid < 0 || flags)
7446 return -EINVAL;
7447
7448 retval = sched_copy_attr(uattr, &attr);
7449 if (retval)
7450 return retval;
7451
7452 if ((int)attr.sched_policy < 0)
7453 return -EINVAL;
7454 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7455 attr.sched_policy = SETPARAM_POLICY;
7456
7457 rcu_read_lock();
7458 retval = -ESRCH;
7459 p = find_process_by_pid(pid);
7460 if (likely(p))
7461 get_task_struct(p);
7462 rcu_read_unlock();
7463
7464 if (likely(p)) {
7465 retval = sched_setattr(p, &attr);
7466 put_task_struct(p);
7467 }
7468
7469 return retval;
7470}
7471
7472/**
7473 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7474 * @pid: the pid in question.
7475 *
7476 * Return: On success, the policy of the thread. Otherwise, a negative error
7477 * code.
7478 */
7479SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7480{
7481 struct task_struct *p;
7482 int retval;
7483
7484 if (pid < 0)
7485 return -EINVAL;
7486
7487 retval = -ESRCH;
7488 rcu_read_lock();
7489 p = find_process_by_pid(pid);
7490 if (p) {
7491 retval = security_task_getscheduler(p);
7492 if (!retval)
7493 retval = p->policy
7494 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7495 }
7496 rcu_read_unlock();
7497 return retval;
7498}
7499
7500/**
7501 * sys_sched_getparam - get the RT priority of a thread
7502 * @pid: the pid in question.
7503 * @param: structure containing the RT priority.
7504 *
7505 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7506 * code.
7507 */
7508SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7509{
7510 struct sched_param lp = { .sched_priority = 0 };
7511 struct task_struct *p;
7512 int retval;
7513
7514 if (!param || pid < 0)
7515 return -EINVAL;
7516
7517 rcu_read_lock();
7518 p = find_process_by_pid(pid);
7519 retval = -ESRCH;
7520 if (!p)
7521 goto out_unlock;
7522
7523 retval = security_task_getscheduler(p);
7524 if (retval)
7525 goto out_unlock;
7526
7527 if (task_has_rt_policy(p))
7528 lp.sched_priority = p->rt_priority;
7529 rcu_read_unlock();
7530
7531 /*
7532 * This one might sleep, we cannot do it with a spinlock held ...
7533 */
7534 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7535
7536 return retval;
7537
7538out_unlock:
7539 rcu_read_unlock();
7540 return retval;
7541}
7542
7543/*
7544 * Copy the kernel size attribute structure (which might be larger
7545 * than what user-space knows about) to user-space.
7546 *
7547 * Note that all cases are valid: user-space buffer can be larger or
7548 * smaller than the kernel-space buffer. The usual case is that both
7549 * have the same size.
7550 */
7551static int
7552sched_attr_copy_to_user(struct sched_attr __user *uattr,
7553 struct sched_attr *kattr,
7554 unsigned int usize)
7555{
7556 unsigned int ksize = sizeof(*kattr);
7557
7558 if (!access_ok(uattr, usize))
7559 return -EFAULT;
7560
7561 /*
7562 * sched_getattr() ABI forwards and backwards compatibility:
7563 *
7564 * If usize == ksize then we just copy everything to user-space and all is good.
7565 *
7566 * If usize < ksize then we only copy as much as user-space has space for,
7567 * this keeps ABI compatibility as well. We skip the rest.
7568 *
7569 * If usize > ksize then user-space is using a newer version of the ABI,
7570 * which part the kernel doesn't know about. Just ignore it - tooling can
7571 * detect the kernel's knowledge of attributes from the attr->size value
7572 * which is set to ksize in this case.
7573 */
7574 kattr->size = min(usize, ksize);
7575
7576 if (copy_to_user(uattr, kattr, kattr->size))
7577 return -EFAULT;
7578
7579 return 0;
7580}
7581
7582/**
7583 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7584 * @pid: the pid in question.
7585 * @uattr: structure containing the extended parameters.
7586 * @usize: sizeof(attr) for fwd/bwd comp.
7587 * @flags: for future extension.
7588 */
7589SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7590 unsigned int, usize, unsigned int, flags)
7591{
7592 struct sched_attr kattr = { };
7593 struct task_struct *p;
7594 int retval;
7595
7596 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7597 usize < SCHED_ATTR_SIZE_VER0 || flags)
7598 return -EINVAL;
7599
7600 rcu_read_lock();
7601 p = find_process_by_pid(pid);
7602 retval = -ESRCH;
7603 if (!p)
7604 goto out_unlock;
7605
7606 retval = security_task_getscheduler(p);
7607 if (retval)
7608 goto out_unlock;
7609
7610 kattr.sched_policy = p->policy;
7611 if (p->sched_reset_on_fork)
7612 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7613 if (task_has_dl_policy(p))
7614 __getparam_dl(p, &kattr);
7615 else if (task_has_rt_policy(p))
7616 kattr.sched_priority = p->rt_priority;
7617 else
7618 kattr.sched_nice = task_nice(p);
7619
7620#ifdef CONFIG_UCLAMP_TASK
7621 /*
7622 * This could race with another potential updater, but this is fine
7623 * because it'll correctly read the old or the new value. We don't need
7624 * to guarantee who wins the race as long as it doesn't return garbage.
7625 */
7626 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7627 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7628#endif
7629
7630 rcu_read_unlock();
7631
7632 return sched_attr_copy_to_user(uattr, &kattr, usize);
7633
7634out_unlock:
7635 rcu_read_unlock();
7636 return retval;
7637}
7638
7639long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7640{
7641 cpumask_var_t cpus_allowed, new_mask;
7642 struct task_struct *p;
7643 int retval;
7644
7645 rcu_read_lock();
7646
7647 p = find_process_by_pid(pid);
7648 if (!p) {
7649 rcu_read_unlock();
7650 return -ESRCH;
7651 }
7652
7653 /* Prevent p going away */
7654 get_task_struct(p);
7655 rcu_read_unlock();
7656
7657 if (p->flags & PF_NO_SETAFFINITY) {
7658 retval = -EINVAL;
7659 goto out_put_task;
7660 }
7661 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7662 retval = -ENOMEM;
7663 goto out_put_task;
7664 }
7665 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7666 retval = -ENOMEM;
7667 goto out_free_cpus_allowed;
7668 }
7669 retval = -EPERM;
7670 if (!check_same_owner(p)) {
7671 rcu_read_lock();
7672 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7673 rcu_read_unlock();
7674 goto out_free_new_mask;
7675 }
7676 rcu_read_unlock();
7677 }
7678
7679 retval = security_task_setscheduler(p);
7680 if (retval)
7681 goto out_free_new_mask;
7682
7683
7684 cpuset_cpus_allowed(p, cpus_allowed);
7685 cpumask_and(new_mask, in_mask, cpus_allowed);
7686
7687 /*
7688 * Since bandwidth control happens on root_domain basis,
7689 * if admission test is enabled, we only admit -deadline
7690 * tasks allowed to run on all the CPUs in the task's
7691 * root_domain.
7692 */
7693#ifdef CONFIG_SMP
7694 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7695 rcu_read_lock();
7696 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
7697 retval = -EBUSY;
7698 rcu_read_unlock();
7699 goto out_free_new_mask;
7700 }
7701 rcu_read_unlock();
7702 }
7703#endif
7704again:
7705 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
7706
7707 if (!retval) {
7708 cpuset_cpus_allowed(p, cpus_allowed);
7709 if (!cpumask_subset(new_mask, cpus_allowed)) {
7710 /*
7711 * We must have raced with a concurrent cpuset
7712 * update. Just reset the cpus_allowed to the
7713 * cpuset's cpus_allowed
7714 */
7715 cpumask_copy(new_mask, cpus_allowed);
7716 goto again;
7717 }
7718 }
7719out_free_new_mask:
7720 free_cpumask_var(new_mask);
7721out_free_cpus_allowed:
7722 free_cpumask_var(cpus_allowed);
7723out_put_task:
7724 put_task_struct(p);
7725 return retval;
7726}
7727
7728static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7729 struct cpumask *new_mask)
7730{
7731 if (len < cpumask_size())
7732 cpumask_clear(new_mask);
7733 else if (len > cpumask_size())
7734 len = cpumask_size();
7735
7736 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7737}
7738
7739/**
7740 * sys_sched_setaffinity - set the CPU affinity of a process
7741 * @pid: pid of the process
7742 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7743 * @user_mask_ptr: user-space pointer to the new CPU mask
7744 *
7745 * Return: 0 on success. An error code otherwise.
7746 */
7747SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7748 unsigned long __user *, user_mask_ptr)
7749{
7750 cpumask_var_t new_mask;
7751 int retval;
7752
7753 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7754 return -ENOMEM;
7755
7756 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7757 if (retval == 0)
7758 retval = sched_setaffinity(pid, new_mask);
7759 free_cpumask_var(new_mask);
7760 return retval;
7761}
7762
7763long sched_getaffinity(pid_t pid, struct cpumask *mask)
7764{
7765 struct task_struct *p;
7766 unsigned long flags;
7767 int retval;
7768
7769 rcu_read_lock();
7770
7771 retval = -ESRCH;
7772 p = find_process_by_pid(pid);
7773 if (!p)
7774 goto out_unlock;
7775
7776 retval = security_task_getscheduler(p);
7777 if (retval)
7778 goto out_unlock;
7779
7780 raw_spin_lock_irqsave(&p->pi_lock, flags);
7781 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
7782 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
7783
7784out_unlock:
7785 rcu_read_unlock();
7786
7787 return retval;
7788}
7789
7790/**
7791 * sys_sched_getaffinity - get the CPU affinity of a process
7792 * @pid: pid of the process
7793 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7794 * @user_mask_ptr: user-space pointer to hold the current CPU mask
7795 *
7796 * Return: size of CPU mask copied to user_mask_ptr on success. An
7797 * error code otherwise.
7798 */
7799SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7800 unsigned long __user *, user_mask_ptr)
7801{
7802 int ret;
7803 cpumask_var_t mask;
7804
7805 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
7806 return -EINVAL;
7807 if (len & (sizeof(unsigned long)-1))
7808 return -EINVAL;
7809
7810 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7811 return -ENOMEM;
7812
7813 ret = sched_getaffinity(pid, mask);
7814 if (ret == 0) {
7815 unsigned int retlen = min(len, cpumask_size());
7816
7817 if (copy_to_user(user_mask_ptr, mask, retlen))
7818 ret = -EFAULT;
7819 else
7820 ret = retlen;
7821 }
7822 free_cpumask_var(mask);
7823
7824 return ret;
7825}
7826
7827static void do_sched_yield(void)
7828{
7829 struct rq_flags rf;
7830 struct rq *rq;
7831
7832 rq = this_rq_lock_irq(&rf);
7833
7834 schedstat_inc(rq->yld_count);
7835 current->sched_class->yield_task(rq);
7836
7837 preempt_disable();
7838 rq_unlock_irq(rq, &rf);
7839 sched_preempt_enable_no_resched();
7840
7841 schedule();
7842}
7843
7844/**
7845 * sys_sched_yield - yield the current processor to other threads.
7846 *
7847 * This function yields the current CPU to other tasks. If there are no
7848 * other threads running on this CPU then this function will return.
7849 *
7850 * Return: 0.
7851 */
7852SYSCALL_DEFINE0(sched_yield)
7853{
7854 do_sched_yield();
7855 return 0;
7856}
7857
7858#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7859int __sched __cond_resched(void)
7860{
7861 if (should_resched(0)) {
7862 preempt_schedule_common();
7863 return 1;
7864 }
7865#ifndef CONFIG_PREEMPT_RCU
7866 rcu_all_qs();
7867#endif
7868 return 0;
7869}
7870EXPORT_SYMBOL(__cond_resched);
7871#endif
7872
7873#ifdef CONFIG_PREEMPT_DYNAMIC
7874DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7875EXPORT_STATIC_CALL_TRAMP(cond_resched);
7876
7877DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7878EXPORT_STATIC_CALL_TRAMP(might_resched);
7879#endif
7880
7881/*
7882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7883 * call schedule, and on return reacquire the lock.
7884 *
7885 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7886 * operations here to prevent schedule() from being called twice (once via
7887 * spin_unlock(), once by hand).
7888 */
7889int __cond_resched_lock(spinlock_t *lock)
7890{
7891 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7892 int ret = 0;
7893
7894 lockdep_assert_held(lock);
7895
7896 if (spin_needbreak(lock) || resched) {
7897 spin_unlock(lock);
7898 if (resched)
7899 preempt_schedule_common();
7900 else
7901 cpu_relax();
7902 ret = 1;
7903 spin_lock(lock);
7904 }
7905 return ret;
7906}
7907EXPORT_SYMBOL(__cond_resched_lock);
7908
7909int __cond_resched_rwlock_read(rwlock_t *lock)
7910{
7911 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7912 int ret = 0;
7913
7914 lockdep_assert_held_read(lock);
7915
7916 if (rwlock_needbreak(lock) || resched) {
7917 read_unlock(lock);
7918 if (resched)
7919 preempt_schedule_common();
7920 else
7921 cpu_relax();
7922 ret = 1;
7923 read_lock(lock);
7924 }
7925 return ret;
7926}
7927EXPORT_SYMBOL(__cond_resched_rwlock_read);
7928
7929int __cond_resched_rwlock_write(rwlock_t *lock)
7930{
7931 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7932 int ret = 0;
7933
7934 lockdep_assert_held_write(lock);
7935
7936 if (rwlock_needbreak(lock) || resched) {
7937 write_unlock(lock);
7938 if (resched)
7939 preempt_schedule_common();
7940 else
7941 cpu_relax();
7942 ret = 1;
7943 write_lock(lock);
7944 }
7945 return ret;
7946}
7947EXPORT_SYMBOL(__cond_resched_rwlock_write);
7948
7949/**
7950 * yield - yield the current processor to other threads.
7951 *
7952 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7953 *
7954 * The scheduler is at all times free to pick the calling task as the most
7955 * eligible task to run, if removing the yield() call from your code breaks
7956 * it, it's already broken.
7957 *
7958 * Typical broken usage is:
7959 *
7960 * while (!event)
7961 * yield();
7962 *
7963 * where one assumes that yield() will let 'the other' process run that will
7964 * make event true. If the current task is a SCHED_FIFO task that will never
7965 * happen. Never use yield() as a progress guarantee!!
7966 *
7967 * If you want to use yield() to wait for something, use wait_event().
7968 * If you want to use yield() to be 'nice' for others, use cond_resched().
7969 * If you still want to use yield(), do not!
7970 */
7971void __sched yield(void)
7972{
7973 set_current_state(TASK_RUNNING);
7974 do_sched_yield();
7975}
7976EXPORT_SYMBOL(yield);
7977
7978/**
7979 * yield_to - yield the current processor to another thread in
7980 * your thread group, or accelerate that thread toward the
7981 * processor it's on.
7982 * @p: target task
7983 * @preempt: whether task preemption is allowed or not
7984 *
7985 * It's the caller's job to ensure that the target task struct
7986 * can't go away on us before we can do any checks.
7987 *
7988 * Return:
7989 * true (>0) if we indeed boosted the target task.
7990 * false (0) if we failed to boost the target.
7991 * -ESRCH if there's no task to yield to.
7992 */
7993int __sched yield_to(struct task_struct *p, bool preempt)
7994{
7995 struct task_struct *curr = current;
7996 struct rq *rq, *p_rq;
7997 unsigned long flags;
7998 int yielded = 0;
7999
8000 local_irq_save(flags);
8001 rq = this_rq();
8002
8003again:
8004 p_rq = task_rq(p);
8005 /*
8006 * If we're the only runnable task on the rq and target rq also
8007 * has only one task, there's absolutely no point in yielding.
8008 */
8009 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8010 yielded = -ESRCH;
8011 goto out_irq;
8012 }
8013
8014 double_rq_lock(rq, p_rq);
8015 if (task_rq(p) != p_rq) {
8016 double_rq_unlock(rq, p_rq);
8017 goto again;
8018 }
8019
8020 if (!curr->sched_class->yield_to_task)
8021 goto out_unlock;
8022
8023 if (curr->sched_class != p->sched_class)
8024 goto out_unlock;
8025
8026 if (task_running(p_rq, p) || !task_is_running(p))
8027 goto out_unlock;
8028
8029 yielded = curr->sched_class->yield_to_task(rq, p);
8030 if (yielded) {
8031 schedstat_inc(rq->yld_count);
8032 /*
8033 * Make p's CPU reschedule; pick_next_entity takes care of
8034 * fairness.
8035 */
8036 if (preempt && rq != p_rq)
8037 resched_curr(p_rq);
8038 }
8039
8040out_unlock:
8041 double_rq_unlock(rq, p_rq);
8042out_irq:
8043 local_irq_restore(flags);
8044
8045 if (yielded > 0)
8046 schedule();
8047
8048 return yielded;
8049}
8050EXPORT_SYMBOL_GPL(yield_to);
8051
8052int io_schedule_prepare(void)
8053{
8054 int old_iowait = current->in_iowait;
8055
8056 current->in_iowait = 1;
8057 blk_schedule_flush_plug(current);
8058
8059 return old_iowait;
8060}
8061
8062void io_schedule_finish(int token)
8063{
8064 current->in_iowait = token;
8065}
8066
8067/*
8068 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8069 * that process accounting knows that this is a task in IO wait state.
8070 */
8071long __sched io_schedule_timeout(long timeout)
8072{
8073 int token;
8074 long ret;
8075
8076 token = io_schedule_prepare();
8077 ret = schedule_timeout(timeout);
8078 io_schedule_finish(token);
8079
8080 return ret;
8081}
8082EXPORT_SYMBOL(io_schedule_timeout);
8083
8084void __sched io_schedule(void)
8085{
8086 int token;
8087
8088 token = io_schedule_prepare();
8089 schedule();
8090 io_schedule_finish(token);
8091}
8092EXPORT_SYMBOL(io_schedule);
8093
8094/**
8095 * sys_sched_get_priority_max - return maximum RT priority.
8096 * @policy: scheduling class.
8097 *
8098 * Return: On success, this syscall returns the maximum
8099 * rt_priority that can be used by a given scheduling class.
8100 * On failure, a negative error code is returned.
8101 */
8102SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8103{
8104 int ret = -EINVAL;
8105
8106 switch (policy) {
8107 case SCHED_FIFO:
8108 case SCHED_RR:
8109 ret = MAX_RT_PRIO-1;
8110 break;
8111 case SCHED_DEADLINE:
8112 case SCHED_NORMAL:
8113 case SCHED_BATCH:
8114 case SCHED_IDLE:
8115 ret = 0;
8116 break;
8117 }
8118 return ret;
8119}
8120
8121/**
8122 * sys_sched_get_priority_min - return minimum RT priority.
8123 * @policy: scheduling class.
8124 *
8125 * Return: On success, this syscall returns the minimum
8126 * rt_priority that can be used by a given scheduling class.
8127 * On failure, a negative error code is returned.
8128 */
8129SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8130{
8131 int ret = -EINVAL;
8132
8133 switch (policy) {
8134 case SCHED_FIFO:
8135 case SCHED_RR:
8136 ret = 1;
8137 break;
8138 case SCHED_DEADLINE:
8139 case SCHED_NORMAL:
8140 case SCHED_BATCH:
8141 case SCHED_IDLE:
8142 ret = 0;
8143 }
8144 return ret;
8145}
8146
8147static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8148{
8149 struct task_struct *p;
8150 unsigned int time_slice;
8151 struct rq_flags rf;
8152 struct rq *rq;
8153 int retval;
8154
8155 if (pid < 0)
8156 return -EINVAL;
8157
8158 retval = -ESRCH;
8159 rcu_read_lock();
8160 p = find_process_by_pid(pid);
8161 if (!p)
8162 goto out_unlock;
8163
8164 retval = security_task_getscheduler(p);
8165 if (retval)
8166 goto out_unlock;
8167
8168 rq = task_rq_lock(p, &rf);
8169 time_slice = 0;
8170 if (p->sched_class->get_rr_interval)
8171 time_slice = p->sched_class->get_rr_interval(rq, p);
8172 task_rq_unlock(rq, p, &rf);
8173
8174 rcu_read_unlock();
8175 jiffies_to_timespec64(time_slice, t);
8176 return 0;
8177
8178out_unlock:
8179 rcu_read_unlock();
8180 return retval;
8181}
8182
8183/**
8184 * sys_sched_rr_get_interval - return the default timeslice of a process.
8185 * @pid: pid of the process.
8186 * @interval: userspace pointer to the timeslice value.
8187 *
8188 * this syscall writes the default timeslice value of a given process
8189 * into the user-space timespec buffer. A value of '0' means infinity.
8190 *
8191 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8192 * an error code.
8193 */
8194SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8195 struct __kernel_timespec __user *, interval)
8196{
8197 struct timespec64 t;
8198 int retval = sched_rr_get_interval(pid, &t);
8199
8200 if (retval == 0)
8201 retval = put_timespec64(&t, interval);
8202
8203 return retval;
8204}
8205
8206#ifdef CONFIG_COMPAT_32BIT_TIME
8207SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8208 struct old_timespec32 __user *, interval)
8209{
8210 struct timespec64 t;
8211 int retval = sched_rr_get_interval(pid, &t);
8212
8213 if (retval == 0)
8214 retval = put_old_timespec32(&t, interval);
8215 return retval;
8216}
8217#endif
8218
8219void sched_show_task(struct task_struct *p)
8220{
8221 unsigned long free = 0;
8222 int ppid;
8223
8224 if (!try_get_task_stack(p))
8225 return;
8226
8227 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8228
8229 if (task_is_running(p))
8230 pr_cont(" running task ");
8231#ifdef CONFIG_DEBUG_STACK_USAGE
8232 free = stack_not_used(p);
8233#endif
8234 ppid = 0;
8235 rcu_read_lock();
8236 if (pid_alive(p))
8237 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8238 rcu_read_unlock();
8239 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8240 free, task_pid_nr(p), ppid,
8241 (unsigned long)task_thread_info(p)->flags);
8242
8243 print_worker_info(KERN_INFO, p);
8244 print_stop_info(KERN_INFO, p);
8245 show_stack(p, NULL, KERN_INFO);
8246 put_task_stack(p);
8247}
8248EXPORT_SYMBOL_GPL(sched_show_task);
8249
8250static inline bool
8251state_filter_match(unsigned long state_filter, struct task_struct *p)
8252{
8253 unsigned int state = READ_ONCE(p->__state);
8254
8255 /* no filter, everything matches */
8256 if (!state_filter)
8257 return true;
8258
8259 /* filter, but doesn't match */
8260 if (!(state & state_filter))
8261 return false;
8262
8263 /*
8264 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8265 * TASK_KILLABLE).
8266 */
8267 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8268 return false;
8269
8270 return true;
8271}
8272
8273
8274void show_state_filter(unsigned int state_filter)
8275{
8276 struct task_struct *g, *p;
8277
8278 rcu_read_lock();
8279 for_each_process_thread(g, p) {
8280 /*
8281 * reset the NMI-timeout, listing all files on a slow
8282 * console might take a lot of time:
8283 * Also, reset softlockup watchdogs on all CPUs, because
8284 * another CPU might be blocked waiting for us to process
8285 * an IPI.
8286 */
8287 touch_nmi_watchdog();
8288 touch_all_softlockup_watchdogs();
8289 if (state_filter_match(state_filter, p))
8290 sched_show_task(p);
8291 }
8292
8293#ifdef CONFIG_SCHED_DEBUG
8294 if (!state_filter)
8295 sysrq_sched_debug_show();
8296#endif
8297 rcu_read_unlock();
8298 /*
8299 * Only show locks if all tasks are dumped:
8300 */
8301 if (!state_filter)
8302 debug_show_all_locks();
8303}
8304
8305/**
8306 * init_idle - set up an idle thread for a given CPU
8307 * @idle: task in question
8308 * @cpu: CPU the idle task belongs to
8309 *
8310 * NOTE: this function does not set the idle thread's NEED_RESCHED
8311 * flag, to make booting more robust.
8312 */
8313void __init init_idle(struct task_struct *idle, int cpu)
8314{
8315 struct rq *rq = cpu_rq(cpu);
8316 unsigned long flags;
8317
8318 __sched_fork(0, idle);
8319
8320 /*
8321 * The idle task doesn't need the kthread struct to function, but it
8322 * is dressed up as a per-CPU kthread and thus needs to play the part
8323 * if we want to avoid special-casing it in code that deals with per-CPU
8324 * kthreads.
8325 */
8326 set_kthread_struct(idle);
8327
8328 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8329 raw_spin_rq_lock(rq);
8330
8331 idle->__state = TASK_RUNNING;
8332 idle->se.exec_start = sched_clock();
8333 /*
8334 * PF_KTHREAD should already be set at this point; regardless, make it
8335 * look like a proper per-CPU kthread.
8336 */
8337 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8338 kthread_set_per_cpu(idle, cpu);
8339
8340 scs_task_reset(idle);
8341 kasan_unpoison_task_stack(idle);
8342
8343#ifdef CONFIG_SMP
8344 /*
8345 * It's possible that init_idle() gets called multiple times on a task,
8346 * in that case do_set_cpus_allowed() will not do the right thing.
8347 *
8348 * And since this is boot we can forgo the serialization.
8349 */
8350 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8351#endif
8352 /*
8353 * We're having a chicken and egg problem, even though we are
8354 * holding rq->lock, the CPU isn't yet set to this CPU so the
8355 * lockdep check in task_group() will fail.
8356 *
8357 * Similar case to sched_fork(). / Alternatively we could
8358 * use task_rq_lock() here and obtain the other rq->lock.
8359 *
8360 * Silence PROVE_RCU
8361 */
8362 rcu_read_lock();
8363 __set_task_cpu(idle, cpu);
8364 rcu_read_unlock();
8365
8366 rq->idle = idle;
8367 rcu_assign_pointer(rq->curr, idle);
8368 idle->on_rq = TASK_ON_RQ_QUEUED;
8369#ifdef CONFIG_SMP
8370 idle->on_cpu = 1;
8371#endif
8372 raw_spin_rq_unlock(rq);
8373 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8374
8375 /* Set the preempt count _outside_ the spinlocks! */
8376 init_idle_preempt_count(idle, cpu);
8377
8378 /*
8379 * The idle tasks have their own, simple scheduling class:
8380 */
8381 idle->sched_class = &idle_sched_class;
8382 ftrace_graph_init_idle_task(idle, cpu);
8383 vtime_init_idle(idle, cpu);
8384#ifdef CONFIG_SMP
8385 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8386#endif
8387}
8388
8389#ifdef CONFIG_SMP
8390
8391int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8392 const struct cpumask *trial)
8393{
8394 int ret = 1;
8395
8396 if (!cpumask_weight(cur))
8397 return ret;
8398
8399 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8400
8401 return ret;
8402}
8403
8404int task_can_attach(struct task_struct *p,
8405 const struct cpumask *cs_cpus_allowed)
8406{
8407 int ret = 0;
8408
8409 /*
8410 * Kthreads which disallow setaffinity shouldn't be moved
8411 * to a new cpuset; we don't want to change their CPU
8412 * affinity and isolating such threads by their set of
8413 * allowed nodes is unnecessary. Thus, cpusets are not
8414 * applicable for such threads. This prevents checking for
8415 * success of set_cpus_allowed_ptr() on all attached tasks
8416 * before cpus_mask may be changed.
8417 */
8418 if (p->flags & PF_NO_SETAFFINITY) {
8419 ret = -EINVAL;
8420 goto out;
8421 }
8422
8423 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8424 cs_cpus_allowed))
8425 ret = dl_task_can_attach(p, cs_cpus_allowed);
8426
8427out:
8428 return ret;
8429}
8430
8431bool sched_smp_initialized __read_mostly;
8432
8433#ifdef CONFIG_NUMA_BALANCING
8434/* Migrate current task p to target_cpu */
8435int migrate_task_to(struct task_struct *p, int target_cpu)
8436{
8437 struct migration_arg arg = { p, target_cpu };
8438 int curr_cpu = task_cpu(p);
8439
8440 if (curr_cpu == target_cpu)
8441 return 0;
8442
8443 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8444 return -EINVAL;
8445
8446 /* TODO: This is not properly updating schedstats */
8447
8448 trace_sched_move_numa(p, curr_cpu, target_cpu);
8449 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8450}
8451
8452/*
8453 * Requeue a task on a given node and accurately track the number of NUMA
8454 * tasks on the runqueues
8455 */
8456void sched_setnuma(struct task_struct *p, int nid)
8457{
8458 bool queued, running;
8459 struct rq_flags rf;
8460 struct rq *rq;
8461
8462 rq = task_rq_lock(p, &rf);
8463 queued = task_on_rq_queued(p);
8464 running = task_current(rq, p);
8465
8466 if (queued)
8467 dequeue_task(rq, p, DEQUEUE_SAVE);
8468 if (running)
8469 put_prev_task(rq, p);
8470
8471 p->numa_preferred_nid = nid;
8472
8473 if (queued)
8474 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8475 if (running)
8476 set_next_task(rq, p);
8477 task_rq_unlock(rq, p, &rf);
8478}
8479#endif /* CONFIG_NUMA_BALANCING */
8480
8481#ifdef CONFIG_HOTPLUG_CPU
8482/*
8483 * Ensure that the idle task is using init_mm right before its CPU goes
8484 * offline.
8485 */
8486void idle_task_exit(void)
8487{
8488 struct mm_struct *mm = current->active_mm;
8489
8490 BUG_ON(cpu_online(smp_processor_id()));
8491 BUG_ON(current != this_rq()->idle);
8492
8493 if (mm != &init_mm) {
8494 switch_mm(mm, &init_mm, current);
8495 finish_arch_post_lock_switch();
8496 }
8497
8498 scs_task_reset(current);
8499 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8500}
8501
8502static int __balance_push_cpu_stop(void *arg)
8503{
8504 struct task_struct *p = arg;
8505 struct rq *rq = this_rq();
8506 struct rq_flags rf;
8507 int cpu;
8508
8509 raw_spin_lock_irq(&p->pi_lock);
8510 rq_lock(rq, &rf);
8511
8512 update_rq_clock(rq);
8513
8514 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8515 cpu = select_fallback_rq(rq->cpu, p);
8516 rq = __migrate_task(rq, &rf, p, cpu);
8517 }
8518
8519 rq_unlock(rq, &rf);
8520 raw_spin_unlock_irq(&p->pi_lock);
8521
8522 put_task_struct(p);
8523
8524 return 0;
8525}
8526
8527static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8528
8529/*
8530 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8531 *
8532 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8533 * effective when the hotplug motion is down.
8534 */
8535static void balance_push(struct rq *rq)
8536{
8537 struct task_struct *push_task = rq->curr;
8538
8539 lockdep_assert_rq_held(rq);
8540
8541 /*
8542 * Ensure the thing is persistent until balance_push_set(.on = false);
8543 */
8544 rq->balance_callback = &balance_push_callback;
8545
8546 /*
8547 * Only active while going offline and when invoked on the outgoing
8548 * CPU.
8549 */
8550 if (!cpu_dying(rq->cpu) || rq != this_rq())
8551 return;
8552
8553 /*
8554 * Both the cpu-hotplug and stop task are in this case and are
8555 * required to complete the hotplug process.
8556 */
8557 if (kthread_is_per_cpu(push_task) ||
8558 is_migration_disabled(push_task)) {
8559
8560 /*
8561 * If this is the idle task on the outgoing CPU try to wake
8562 * up the hotplug control thread which might wait for the
8563 * last task to vanish. The rcuwait_active() check is
8564 * accurate here because the waiter is pinned on this CPU
8565 * and can't obviously be running in parallel.
8566 *
8567 * On RT kernels this also has to check whether there are
8568 * pinned and scheduled out tasks on the runqueue. They
8569 * need to leave the migrate disabled section first.
8570 */
8571 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8572 rcuwait_active(&rq->hotplug_wait)) {
8573 raw_spin_rq_unlock(rq);
8574 rcuwait_wake_up(&rq->hotplug_wait);
8575 raw_spin_rq_lock(rq);
8576 }
8577 return;
8578 }
8579
8580 get_task_struct(push_task);
8581 /*
8582 * Temporarily drop rq->lock such that we can wake-up the stop task.
8583 * Both preemption and IRQs are still disabled.
8584 */
8585 raw_spin_rq_unlock(rq);
8586 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8587 this_cpu_ptr(&push_work));
8588 /*
8589 * At this point need_resched() is true and we'll take the loop in
8590 * schedule(). The next pick is obviously going to be the stop task
8591 * which kthread_is_per_cpu() and will push this task away.
8592 */
8593 raw_spin_rq_lock(rq);
8594}
8595
8596static void balance_push_set(int cpu, bool on)
8597{
8598 struct rq *rq = cpu_rq(cpu);
8599 struct rq_flags rf;
8600
8601 rq_lock_irqsave(rq, &rf);
8602 if (on) {
8603 WARN_ON_ONCE(rq->balance_callback);
8604 rq->balance_callback = &balance_push_callback;
8605 } else if (rq->balance_callback == &balance_push_callback) {
8606 rq->balance_callback = NULL;
8607 }
8608 rq_unlock_irqrestore(rq, &rf);
8609}
8610
8611/*
8612 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8613 * inactive. All tasks which are not per CPU kernel threads are either
8614 * pushed off this CPU now via balance_push() or placed on a different CPU
8615 * during wakeup. Wait until the CPU is quiescent.
8616 */
8617static void balance_hotplug_wait(void)
8618{
8619 struct rq *rq = this_rq();
8620
8621 rcuwait_wait_event(&rq->hotplug_wait,
8622 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8623 TASK_UNINTERRUPTIBLE);
8624}
8625
8626#else
8627
8628static inline void balance_push(struct rq *rq)
8629{
8630}
8631
8632static inline void balance_push_set(int cpu, bool on)
8633{
8634}
8635
8636static inline void balance_hotplug_wait(void)
8637{
8638}
8639
8640#endif /* CONFIG_HOTPLUG_CPU */
8641
8642void set_rq_online(struct rq *rq)
8643{
8644 if (!rq->online) {
8645 const struct sched_class *class;
8646
8647 cpumask_set_cpu(rq->cpu, rq->rd->online);
8648 rq->online = 1;
8649
8650 for_each_class(class) {
8651 if (class->rq_online)
8652 class->rq_online(rq);
8653 }
8654 }
8655}
8656
8657void set_rq_offline(struct rq *rq)
8658{
8659 if (rq->online) {
8660 const struct sched_class *class;
8661
8662 for_each_class(class) {
8663 if (class->rq_offline)
8664 class->rq_offline(rq);
8665 }
8666
8667 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8668 rq->online = 0;
8669 }
8670}
8671
8672/*
8673 * used to mark begin/end of suspend/resume:
8674 */
8675static int num_cpus_frozen;
8676
8677/*
8678 * Update cpusets according to cpu_active mask. If cpusets are
8679 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8680 * around partition_sched_domains().
8681 *
8682 * If we come here as part of a suspend/resume, don't touch cpusets because we
8683 * want to restore it back to its original state upon resume anyway.
8684 */
8685static void cpuset_cpu_active(void)
8686{
8687 if (cpuhp_tasks_frozen) {
8688 /*
8689 * num_cpus_frozen tracks how many CPUs are involved in suspend
8690 * resume sequence. As long as this is not the last online
8691 * operation in the resume sequence, just build a single sched
8692 * domain, ignoring cpusets.
8693 */
8694 partition_sched_domains(1, NULL, NULL);
8695 if (--num_cpus_frozen)
8696 return;
8697 /*
8698 * This is the last CPU online operation. So fall through and
8699 * restore the original sched domains by considering the
8700 * cpuset configurations.
8701 */
8702 cpuset_force_rebuild();
8703 }
8704 cpuset_update_active_cpus();
8705}
8706
8707static int cpuset_cpu_inactive(unsigned int cpu)
8708{
8709 if (!cpuhp_tasks_frozen) {
8710 if (dl_cpu_busy(cpu))
8711 return -EBUSY;
8712 cpuset_update_active_cpus();
8713 } else {
8714 num_cpus_frozen++;
8715 partition_sched_domains(1, NULL, NULL);
8716 }
8717 return 0;
8718}
8719
8720int sched_cpu_activate(unsigned int cpu)
8721{
8722 struct rq *rq = cpu_rq(cpu);
8723 struct rq_flags rf;
8724
8725 /*
8726 * Clear the balance_push callback and prepare to schedule
8727 * regular tasks.
8728 */
8729 balance_push_set(cpu, false);
8730
8731#ifdef CONFIG_SCHED_SMT
8732 /*
8733 * When going up, increment the number of cores with SMT present.
8734 */
8735 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8736 static_branch_inc_cpuslocked(&sched_smt_present);
8737#endif
8738 set_cpu_active(cpu, true);
8739
8740 if (sched_smp_initialized) {
8741 sched_domains_numa_masks_set(cpu);
8742 cpuset_cpu_active();
8743 }
8744
8745 /*
8746 * Put the rq online, if not already. This happens:
8747 *
8748 * 1) In the early boot process, because we build the real domains
8749 * after all CPUs have been brought up.
8750 *
8751 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8752 * domains.
8753 */
8754 rq_lock_irqsave(rq, &rf);
8755 if (rq->rd) {
8756 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8757 set_rq_online(rq);
8758 }
8759 rq_unlock_irqrestore(rq, &rf);
8760
8761 return 0;
8762}
8763
8764int sched_cpu_deactivate(unsigned int cpu)
8765{
8766 struct rq *rq = cpu_rq(cpu);
8767 struct rq_flags rf;
8768 int ret;
8769
8770 /*
8771 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8772 * load balancing when not active
8773 */
8774 nohz_balance_exit_idle(rq);
8775
8776 set_cpu_active(cpu, false);
8777
8778 /*
8779 * From this point forward, this CPU will refuse to run any task that
8780 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8781 * push those tasks away until this gets cleared, see
8782 * sched_cpu_dying().
8783 */
8784 balance_push_set(cpu, true);
8785
8786 /*
8787 * We've cleared cpu_active_mask / set balance_push, wait for all
8788 * preempt-disabled and RCU users of this state to go away such that
8789 * all new such users will observe it.
8790 *
8791 * Specifically, we rely on ttwu to no longer target this CPU, see
8792 * ttwu_queue_cond() and is_cpu_allowed().
8793 *
8794 * Do sync before park smpboot threads to take care the rcu boost case.
8795 */
8796 synchronize_rcu();
8797
8798 rq_lock_irqsave(rq, &rf);
8799 if (rq->rd) {
8800 update_rq_clock(rq);
8801 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8802 set_rq_offline(rq);
8803 }
8804 rq_unlock_irqrestore(rq, &rf);
8805
8806#ifdef CONFIG_SCHED_SMT
8807 /*
8808 * When going down, decrement the number of cores with SMT present.
8809 */
8810 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8811 static_branch_dec_cpuslocked(&sched_smt_present);
8812
8813 sched_core_cpu_deactivate(cpu);
8814#endif
8815
8816 if (!sched_smp_initialized)
8817 return 0;
8818
8819 ret = cpuset_cpu_inactive(cpu);
8820 if (ret) {
8821 balance_push_set(cpu, false);
8822 set_cpu_active(cpu, true);
8823 return ret;
8824 }
8825 sched_domains_numa_masks_clear(cpu);
8826 return 0;
8827}
8828
8829static void sched_rq_cpu_starting(unsigned int cpu)
8830{
8831 struct rq *rq = cpu_rq(cpu);
8832
8833 rq->calc_load_update = calc_load_update;
8834 update_max_interval();
8835}
8836
8837int sched_cpu_starting(unsigned int cpu)
8838{
8839 sched_core_cpu_starting(cpu);
8840 sched_rq_cpu_starting(cpu);
8841 sched_tick_start(cpu);
8842 return 0;
8843}
8844
8845#ifdef CONFIG_HOTPLUG_CPU
8846
8847/*
8848 * Invoked immediately before the stopper thread is invoked to bring the
8849 * CPU down completely. At this point all per CPU kthreads except the
8850 * hotplug thread (current) and the stopper thread (inactive) have been
8851 * either parked or have been unbound from the outgoing CPU. Ensure that
8852 * any of those which might be on the way out are gone.
8853 *
8854 * If after this point a bound task is being woken on this CPU then the
8855 * responsible hotplug callback has failed to do it's job.
8856 * sched_cpu_dying() will catch it with the appropriate fireworks.
8857 */
8858int sched_cpu_wait_empty(unsigned int cpu)
8859{
8860 balance_hotplug_wait();
8861 return 0;
8862}
8863
8864/*
8865 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8866 * might have. Called from the CPU stopper task after ensuring that the
8867 * stopper is the last running task on the CPU, so nr_active count is
8868 * stable. We need to take the teardown thread which is calling this into
8869 * account, so we hand in adjust = 1 to the load calculation.
8870 *
8871 * Also see the comment "Global load-average calculations".
8872 */
8873static void calc_load_migrate(struct rq *rq)
8874{
8875 long delta = calc_load_fold_active(rq, 1);
8876
8877 if (delta)
8878 atomic_long_add(delta, &calc_load_tasks);
8879}
8880
8881static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8882{
8883 struct task_struct *g, *p;
8884 int cpu = cpu_of(rq);
8885
8886 lockdep_assert_rq_held(rq);
8887
8888 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8889 for_each_process_thread(g, p) {
8890 if (task_cpu(p) != cpu)
8891 continue;
8892
8893 if (!task_on_rq_queued(p))
8894 continue;
8895
8896 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8897 }
8898}
8899
8900int sched_cpu_dying(unsigned int cpu)
8901{
8902 struct rq *rq = cpu_rq(cpu);
8903 struct rq_flags rf;
8904
8905 /* Handle pending wakeups and then migrate everything off */
8906 sched_tick_stop(cpu);
8907
8908 rq_lock_irqsave(rq, &rf);
8909 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8910 WARN(true, "Dying CPU not properly vacated!");
8911 dump_rq_tasks(rq, KERN_WARNING);
8912 }
8913 rq_unlock_irqrestore(rq, &rf);
8914
8915 calc_load_migrate(rq);
8916 update_max_interval();
8917 hrtick_clear(rq);
8918 sched_core_cpu_dying(cpu);
8919 return 0;
8920}
8921#endif
8922
8923void __init sched_init_smp(void)
8924{
8925 sched_init_numa();
8926
8927 /*
8928 * There's no userspace yet to cause hotplug operations; hence all the
8929 * CPU masks are stable and all blatant races in the below code cannot
8930 * happen.
8931 */
8932 mutex_lock(&sched_domains_mutex);
8933 sched_init_domains(cpu_active_mask);
8934 mutex_unlock(&sched_domains_mutex);
8935
8936 /* Move init over to a non-isolated CPU */
8937 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8938 BUG();
8939 current->flags &= ~PF_NO_SETAFFINITY;
8940 sched_init_granularity();
8941
8942 init_sched_rt_class();
8943 init_sched_dl_class();
8944
8945 sched_smp_initialized = true;
8946}
8947
8948static int __init migration_init(void)
8949{
8950 sched_cpu_starting(smp_processor_id());
8951 return 0;
8952}
8953early_initcall(migration_init);
8954
8955#else
8956void __init sched_init_smp(void)
8957{
8958 sched_init_granularity();
8959}
8960#endif /* CONFIG_SMP */
8961
8962int in_sched_functions(unsigned long addr)
8963{
8964 return in_lock_functions(addr) ||
8965 (addr >= (unsigned long)__sched_text_start
8966 && addr < (unsigned long)__sched_text_end);
8967}
8968
8969#ifdef CONFIG_CGROUP_SCHED
8970/*
8971 * Default task group.
8972 * Every task in system belongs to this group at bootup.
8973 */
8974struct task_group root_task_group;
8975LIST_HEAD(task_groups);
8976
8977/* Cacheline aligned slab cache for task_group */
8978static struct kmem_cache *task_group_cache __read_mostly;
8979#endif
8980
8981DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8982DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8983
8984void __init sched_init(void)
8985{
8986 unsigned long ptr = 0;
8987 int i;
8988
8989 /* Make sure the linker didn't screw up */
8990 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8991 &fair_sched_class + 1 != &rt_sched_class ||
8992 &rt_sched_class + 1 != &dl_sched_class);
8993#ifdef CONFIG_SMP
8994 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8995#endif
8996
8997 wait_bit_init();
8998
8999#ifdef CONFIG_FAIR_GROUP_SCHED
9000 ptr += 2 * nr_cpu_ids * sizeof(void **);
9001#endif
9002#ifdef CONFIG_RT_GROUP_SCHED
9003 ptr += 2 * nr_cpu_ids * sizeof(void **);
9004#endif
9005 if (ptr) {
9006 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9007
9008#ifdef CONFIG_FAIR_GROUP_SCHED
9009 root_task_group.se = (struct sched_entity **)ptr;
9010 ptr += nr_cpu_ids * sizeof(void **);
9011
9012 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9013 ptr += nr_cpu_ids * sizeof(void **);
9014
9015 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9016 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9017#endif /* CONFIG_FAIR_GROUP_SCHED */
9018#ifdef CONFIG_RT_GROUP_SCHED
9019 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9020 ptr += nr_cpu_ids * sizeof(void **);
9021
9022 root_task_group.rt_rq = (struct rt_rq **)ptr;
9023 ptr += nr_cpu_ids * sizeof(void **);
9024
9025#endif /* CONFIG_RT_GROUP_SCHED */
9026 }
9027#ifdef CONFIG_CPUMASK_OFFSTACK
9028 for_each_possible_cpu(i) {
9029 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9030 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9031 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9032 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9033 }
9034#endif /* CONFIG_CPUMASK_OFFSTACK */
9035
9036 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9037 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9038
9039#ifdef CONFIG_SMP
9040 init_defrootdomain();
9041#endif
9042
9043#ifdef CONFIG_RT_GROUP_SCHED
9044 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9045 global_rt_period(), global_rt_runtime());
9046#endif /* CONFIG_RT_GROUP_SCHED */
9047
9048#ifdef CONFIG_CGROUP_SCHED
9049 task_group_cache = KMEM_CACHE(task_group, 0);
9050
9051 list_add(&root_task_group.list, &task_groups);
9052 INIT_LIST_HEAD(&root_task_group.children);
9053 INIT_LIST_HEAD(&root_task_group.siblings);
9054 autogroup_init(&init_task);
9055#endif /* CONFIG_CGROUP_SCHED */
9056
9057 for_each_possible_cpu(i) {
9058 struct rq *rq;
9059
9060 rq = cpu_rq(i);
9061 raw_spin_lock_init(&rq->__lock);
9062 rq->nr_running = 0;
9063 rq->calc_load_active = 0;
9064 rq->calc_load_update = jiffies + LOAD_FREQ;
9065 init_cfs_rq(&rq->cfs);
9066 init_rt_rq(&rq->rt);
9067 init_dl_rq(&rq->dl);
9068#ifdef CONFIG_FAIR_GROUP_SCHED
9069 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9070 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9071 /*
9072 * How much CPU bandwidth does root_task_group get?
9073 *
9074 * In case of task-groups formed thr' the cgroup filesystem, it
9075 * gets 100% of the CPU resources in the system. This overall
9076 * system CPU resource is divided among the tasks of
9077 * root_task_group and its child task-groups in a fair manner,
9078 * based on each entity's (task or task-group's) weight
9079 * (se->load.weight).
9080 *
9081 * In other words, if root_task_group has 10 tasks of weight
9082 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9083 * then A0's share of the CPU resource is:
9084 *
9085 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9086 *
9087 * We achieve this by letting root_task_group's tasks sit
9088 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9089 */
9090 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9091#endif /* CONFIG_FAIR_GROUP_SCHED */
9092
9093 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9094#ifdef CONFIG_RT_GROUP_SCHED
9095 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9096#endif
9097#ifdef CONFIG_SMP
9098 rq->sd = NULL;
9099 rq->rd = NULL;
9100 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9101 rq->balance_callback = &balance_push_callback;
9102 rq->active_balance = 0;
9103 rq->next_balance = jiffies;
9104 rq->push_cpu = 0;
9105 rq->cpu = i;
9106 rq->online = 0;
9107 rq->idle_stamp = 0;
9108 rq->avg_idle = 2*sysctl_sched_migration_cost;
9109 rq->wake_stamp = jiffies;
9110 rq->wake_avg_idle = rq->avg_idle;
9111 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9112
9113 INIT_LIST_HEAD(&rq->cfs_tasks);
9114
9115 rq_attach_root(rq, &def_root_domain);
9116#ifdef CONFIG_NO_HZ_COMMON
9117 rq->last_blocked_load_update_tick = jiffies;
9118 atomic_set(&rq->nohz_flags, 0);
9119
9120 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9121#endif
9122#ifdef CONFIG_HOTPLUG_CPU
9123 rcuwait_init(&rq->hotplug_wait);
9124#endif
9125#endif /* CONFIG_SMP */
9126 hrtick_rq_init(rq);
9127 atomic_set(&rq->nr_iowait, 0);
9128
9129#ifdef CONFIG_SCHED_CORE
9130 rq->core = rq;
9131 rq->core_pick = NULL;
9132 rq->core_enabled = 0;
9133 rq->core_tree = RB_ROOT;
9134 rq->core_forceidle = false;
9135
9136 rq->core_cookie = 0UL;
9137#endif
9138 }
9139
9140 set_load_weight(&init_task, false);
9141
9142 /*
9143 * The boot idle thread does lazy MMU switching as well:
9144 */
9145 mmgrab(&init_mm);
9146 enter_lazy_tlb(&init_mm, current);
9147
9148 /*
9149 * Make us the idle thread. Technically, schedule() should not be
9150 * called from this thread, however somewhere below it might be,
9151 * but because we are the idle thread, we just pick up running again
9152 * when this runqueue becomes "idle".
9153 */
9154 init_idle(current, smp_processor_id());
9155
9156 calc_load_update = jiffies + LOAD_FREQ;
9157
9158#ifdef CONFIG_SMP
9159 idle_thread_set_boot_cpu();
9160 balance_push_set(smp_processor_id(), false);
9161#endif
9162 init_sched_fair_class();
9163
9164 psi_init();
9165
9166 init_uclamp();
9167
9168 scheduler_running = 1;
9169}
9170
9171#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9172static inline int preempt_count_equals(int preempt_offset)
9173{
9174 int nested = preempt_count() + rcu_preempt_depth();
9175
9176 return (nested == preempt_offset);
9177}
9178
9179void __might_sleep(const char *file, int line, int preempt_offset)
9180{
9181 unsigned int state = get_current_state();
9182 /*
9183 * Blocking primitives will set (and therefore destroy) current->state,
9184 * since we will exit with TASK_RUNNING make sure we enter with it,
9185 * otherwise we will destroy state.
9186 */
9187 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9188 "do not call blocking ops when !TASK_RUNNING; "
9189 "state=%x set at [<%p>] %pS\n", state,
9190 (void *)current->task_state_change,
9191 (void *)current->task_state_change);
9192
9193 ___might_sleep(file, line, preempt_offset);
9194}
9195EXPORT_SYMBOL(__might_sleep);
9196
9197void ___might_sleep(const char *file, int line, int preempt_offset)
9198{
9199 /* Ratelimiting timestamp: */
9200 static unsigned long prev_jiffy;
9201
9202 unsigned long preempt_disable_ip;
9203
9204 /* WARN_ON_ONCE() by default, no rate limit required: */
9205 rcu_sleep_check();
9206
9207 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9208 !is_idle_task(current) && !current->non_block_count) ||
9209 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9210 oops_in_progress)
9211 return;
9212
9213 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9214 return;
9215 prev_jiffy = jiffies;
9216
9217 /* Save this before calling printk(), since that will clobber it: */
9218 preempt_disable_ip = get_preempt_disable_ip(current);
9219
9220 printk(KERN_ERR
9221 "BUG: sleeping function called from invalid context at %s:%d\n",
9222 file, line);
9223 printk(KERN_ERR
9224 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9225 in_atomic(), irqs_disabled(), current->non_block_count,
9226 current->pid, current->comm);
9227
9228 if (task_stack_end_corrupted(current))
9229 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9230
9231 debug_show_held_locks(current);
9232 if (irqs_disabled())
9233 print_irqtrace_events(current);
9234 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9235 && !preempt_count_equals(preempt_offset)) {
9236 pr_err("Preemption disabled at:");
9237 print_ip_sym(KERN_ERR, preempt_disable_ip);
9238 }
9239 dump_stack();
9240 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9241}
9242EXPORT_SYMBOL(___might_sleep);
9243
9244void __cant_sleep(const char *file, int line, int preempt_offset)
9245{
9246 static unsigned long prev_jiffy;
9247
9248 if (irqs_disabled())
9249 return;
9250
9251 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9252 return;
9253
9254 if (preempt_count() > preempt_offset)
9255 return;
9256
9257 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9258 return;
9259 prev_jiffy = jiffies;
9260
9261 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9262 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9263 in_atomic(), irqs_disabled(),
9264 current->pid, current->comm);
9265
9266 debug_show_held_locks(current);
9267 dump_stack();
9268 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9269}
9270EXPORT_SYMBOL_GPL(__cant_sleep);
9271
9272#ifdef CONFIG_SMP
9273void __cant_migrate(const char *file, int line)
9274{
9275 static unsigned long prev_jiffy;
9276
9277 if (irqs_disabled())
9278 return;
9279
9280 if (is_migration_disabled(current))
9281 return;
9282
9283 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9284 return;
9285
9286 if (preempt_count() > 0)
9287 return;
9288
9289 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9290 return;
9291 prev_jiffy = jiffies;
9292
9293 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9294 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9295 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9296 current->pid, current->comm);
9297
9298 debug_show_held_locks(current);
9299 dump_stack();
9300 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9301}
9302EXPORT_SYMBOL_GPL(__cant_migrate);
9303#endif
9304#endif
9305
9306#ifdef CONFIG_MAGIC_SYSRQ
9307void normalize_rt_tasks(void)
9308{
9309 struct task_struct *g, *p;
9310 struct sched_attr attr = {
9311 .sched_policy = SCHED_NORMAL,
9312 };
9313
9314 read_lock(&tasklist_lock);
9315 for_each_process_thread(g, p) {
9316 /*
9317 * Only normalize user tasks:
9318 */
9319 if (p->flags & PF_KTHREAD)
9320 continue;
9321
9322 p->se.exec_start = 0;
9323 schedstat_set(p->se.statistics.wait_start, 0);
9324 schedstat_set(p->se.statistics.sleep_start, 0);
9325 schedstat_set(p->se.statistics.block_start, 0);
9326
9327 if (!dl_task(p) && !rt_task(p)) {
9328 /*
9329 * Renice negative nice level userspace
9330 * tasks back to 0:
9331 */
9332 if (task_nice(p) < 0)
9333 set_user_nice(p, 0);
9334 continue;
9335 }
9336
9337 __sched_setscheduler(p, &attr, false, false);
9338 }
9339 read_unlock(&tasklist_lock);
9340}
9341
9342#endif /* CONFIG_MAGIC_SYSRQ */
9343
9344#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9345/*
9346 * These functions are only useful for the IA64 MCA handling, or kdb.
9347 *
9348 * They can only be called when the whole system has been
9349 * stopped - every CPU needs to be quiescent, and no scheduling
9350 * activity can take place. Using them for anything else would
9351 * be a serious bug, and as a result, they aren't even visible
9352 * under any other configuration.
9353 */
9354
9355/**
9356 * curr_task - return the current task for a given CPU.
9357 * @cpu: the processor in question.
9358 *
9359 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9360 *
9361 * Return: The current task for @cpu.
9362 */
9363struct task_struct *curr_task(int cpu)
9364{
9365 return cpu_curr(cpu);
9366}
9367
9368#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9369
9370#ifdef CONFIG_IA64
9371/**
9372 * ia64_set_curr_task - set the current task for a given CPU.
9373 * @cpu: the processor in question.
9374 * @p: the task pointer to set.
9375 *
9376 * Description: This function must only be used when non-maskable interrupts
9377 * are serviced on a separate stack. It allows the architecture to switch the
9378 * notion of the current task on a CPU in a non-blocking manner. This function
9379 * must be called with all CPU's synchronized, and interrupts disabled, the
9380 * and caller must save the original value of the current task (see
9381 * curr_task() above) and restore that value before reenabling interrupts and
9382 * re-starting the system.
9383 *
9384 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9385 */
9386void ia64_set_curr_task(int cpu, struct task_struct *p)
9387{
9388 cpu_curr(cpu) = p;
9389}
9390
9391#endif
9392
9393#ifdef CONFIG_CGROUP_SCHED
9394/* task_group_lock serializes the addition/removal of task groups */
9395static DEFINE_SPINLOCK(task_group_lock);
9396
9397static inline void alloc_uclamp_sched_group(struct task_group *tg,
9398 struct task_group *parent)
9399{
9400#ifdef CONFIG_UCLAMP_TASK_GROUP
9401 enum uclamp_id clamp_id;
9402
9403 for_each_clamp_id(clamp_id) {
9404 uclamp_se_set(&tg->uclamp_req[clamp_id],
9405 uclamp_none(clamp_id), false);
9406 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9407 }
9408#endif
9409}
9410
9411static void sched_free_group(struct task_group *tg)
9412{
9413 free_fair_sched_group(tg);
9414 free_rt_sched_group(tg);
9415 autogroup_free(tg);
9416 kmem_cache_free(task_group_cache, tg);
9417}
9418
9419/* allocate runqueue etc for a new task group */
9420struct task_group *sched_create_group(struct task_group *parent)
9421{
9422 struct task_group *tg;
9423
9424 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9425 if (!tg)
9426 return ERR_PTR(-ENOMEM);
9427
9428 if (!alloc_fair_sched_group(tg, parent))
9429 goto err;
9430
9431 if (!alloc_rt_sched_group(tg, parent))
9432 goto err;
9433
9434 alloc_uclamp_sched_group(tg, parent);
9435
9436 return tg;
9437
9438err:
9439 sched_free_group(tg);
9440 return ERR_PTR(-ENOMEM);
9441}
9442
9443void sched_online_group(struct task_group *tg, struct task_group *parent)
9444{
9445 unsigned long flags;
9446
9447 spin_lock_irqsave(&task_group_lock, flags);
9448 list_add_rcu(&tg->list, &task_groups);
9449
9450 /* Root should already exist: */
9451 WARN_ON(!parent);
9452
9453 tg->parent = parent;
9454 INIT_LIST_HEAD(&tg->children);
9455 list_add_rcu(&tg->siblings, &parent->children);
9456 spin_unlock_irqrestore(&task_group_lock, flags);
9457
9458 online_fair_sched_group(tg);
9459}
9460
9461/* rcu callback to free various structures associated with a task group */
9462static void sched_free_group_rcu(struct rcu_head *rhp)
9463{
9464 /* Now it should be safe to free those cfs_rqs: */
9465 sched_free_group(container_of(rhp, struct task_group, rcu));
9466}
9467
9468void sched_destroy_group(struct task_group *tg)
9469{
9470 /* Wait for possible concurrent references to cfs_rqs complete: */
9471 call_rcu(&tg->rcu, sched_free_group_rcu);
9472}
9473
9474void sched_offline_group(struct task_group *tg)
9475{
9476 unsigned long flags;
9477
9478 /* End participation in shares distribution: */
9479 unregister_fair_sched_group(tg);
9480
9481 spin_lock_irqsave(&task_group_lock, flags);
9482 list_del_rcu(&tg->list);
9483 list_del_rcu(&tg->siblings);
9484 spin_unlock_irqrestore(&task_group_lock, flags);
9485}
9486
9487static void sched_change_group(struct task_struct *tsk, int type)
9488{
9489 struct task_group *tg;
9490
9491 /*
9492 * All callers are synchronized by task_rq_lock(); we do not use RCU
9493 * which is pointless here. Thus, we pass "true" to task_css_check()
9494 * to prevent lockdep warnings.
9495 */
9496 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9497 struct task_group, css);
9498 tg = autogroup_task_group(tsk, tg);
9499 tsk->sched_task_group = tg;
9500
9501#ifdef CONFIG_FAIR_GROUP_SCHED
9502 if (tsk->sched_class->task_change_group)
9503 tsk->sched_class->task_change_group(tsk, type);
9504 else
9505#endif
9506 set_task_rq(tsk, task_cpu(tsk));
9507}
9508
9509/*
9510 * Change task's runqueue when it moves between groups.
9511 *
9512 * The caller of this function should have put the task in its new group by
9513 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9514 * its new group.
9515 */
9516void sched_move_task(struct task_struct *tsk)
9517{
9518 int queued, running, queue_flags =
9519 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9520 struct rq_flags rf;
9521 struct rq *rq;
9522
9523 rq = task_rq_lock(tsk, &rf);
9524 update_rq_clock(rq);
9525
9526 running = task_current(rq, tsk);
9527 queued = task_on_rq_queued(tsk);
9528
9529 if (queued)
9530 dequeue_task(rq, tsk, queue_flags);
9531 if (running)
9532 put_prev_task(rq, tsk);
9533
9534 sched_change_group(tsk, TASK_MOVE_GROUP);
9535
9536 if (queued)
9537 enqueue_task(rq, tsk, queue_flags);
9538 if (running) {
9539 set_next_task(rq, tsk);
9540 /*
9541 * After changing group, the running task may have joined a
9542 * throttled one but it's still the running task. Trigger a
9543 * resched to make sure that task can still run.
9544 */
9545 resched_curr(rq);
9546 }
9547
9548 task_rq_unlock(rq, tsk, &rf);
9549}
9550
9551static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9552{
9553 return css ? container_of(css, struct task_group, css) : NULL;
9554}
9555
9556static struct cgroup_subsys_state *
9557cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9558{
9559 struct task_group *parent = css_tg(parent_css);
9560 struct task_group *tg;
9561
9562 if (!parent) {
9563 /* This is early initialization for the top cgroup */
9564 return &root_task_group.css;
9565 }
9566
9567 tg = sched_create_group(parent);
9568 if (IS_ERR(tg))
9569 return ERR_PTR(-ENOMEM);
9570
9571 return &tg->css;
9572}
9573
9574/* Expose task group only after completing cgroup initialization */
9575static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9576{
9577 struct task_group *tg = css_tg(css);
9578 struct task_group *parent = css_tg(css->parent);
9579
9580 if (parent)
9581 sched_online_group(tg, parent);
9582
9583#ifdef CONFIG_UCLAMP_TASK_GROUP
9584 /* Propagate the effective uclamp value for the new group */
9585 mutex_lock(&uclamp_mutex);
9586 rcu_read_lock();
9587 cpu_util_update_eff(css);
9588 rcu_read_unlock();
9589 mutex_unlock(&uclamp_mutex);
9590#endif
9591
9592 return 0;
9593}
9594
9595static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9596{
9597 struct task_group *tg = css_tg(css);
9598
9599 sched_offline_group(tg);
9600}
9601
9602static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9603{
9604 struct task_group *tg = css_tg(css);
9605
9606 /*
9607 * Relies on the RCU grace period between css_released() and this.
9608 */
9609 sched_free_group(tg);
9610}
9611
9612/*
9613 * This is called before wake_up_new_task(), therefore we really only
9614 * have to set its group bits, all the other stuff does not apply.
9615 */
9616static void cpu_cgroup_fork(struct task_struct *task)
9617{
9618 struct rq_flags rf;
9619 struct rq *rq;
9620
9621 rq = task_rq_lock(task, &rf);
9622
9623 update_rq_clock(rq);
9624 sched_change_group(task, TASK_SET_GROUP);
9625
9626 task_rq_unlock(rq, task, &rf);
9627}
9628
9629static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9630{
9631 struct task_struct *task;
9632 struct cgroup_subsys_state *css;
9633 int ret = 0;
9634
9635 cgroup_taskset_for_each(task, css, tset) {
9636#ifdef CONFIG_RT_GROUP_SCHED
9637 if (!sched_rt_can_attach(css_tg(css), task))
9638 return -EINVAL;
9639#endif
9640 /*
9641 * Serialize against wake_up_new_task() such that if it's
9642 * running, we're sure to observe its full state.
9643 */
9644 raw_spin_lock_irq(&task->pi_lock);
9645 /*
9646 * Avoid calling sched_move_task() before wake_up_new_task()
9647 * has happened. This would lead to problems with PELT, due to
9648 * move wanting to detach+attach while we're not attached yet.
9649 */
9650 if (READ_ONCE(task->__state) == TASK_NEW)
9651 ret = -EINVAL;
9652 raw_spin_unlock_irq(&task->pi_lock);
9653
9654 if (ret)
9655 break;
9656 }
9657 return ret;
9658}
9659
9660static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9661{
9662 struct task_struct *task;
9663 struct cgroup_subsys_state *css;
9664
9665 cgroup_taskset_for_each(task, css, tset)
9666 sched_move_task(task);
9667}
9668
9669#ifdef CONFIG_UCLAMP_TASK_GROUP
9670static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9671{
9672 struct cgroup_subsys_state *top_css = css;
9673 struct uclamp_se *uc_parent = NULL;
9674 struct uclamp_se *uc_se = NULL;
9675 unsigned int eff[UCLAMP_CNT];
9676 enum uclamp_id clamp_id;
9677 unsigned int clamps;
9678
9679 lockdep_assert_held(&uclamp_mutex);
9680 SCHED_WARN_ON(!rcu_read_lock_held());
9681
9682 css_for_each_descendant_pre(css, top_css) {
9683 uc_parent = css_tg(css)->parent
9684 ? css_tg(css)->parent->uclamp : NULL;
9685
9686 for_each_clamp_id(clamp_id) {
9687 /* Assume effective clamps matches requested clamps */
9688 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9689 /* Cap effective clamps with parent's effective clamps */
9690 if (uc_parent &&
9691 eff[clamp_id] > uc_parent[clamp_id].value) {
9692 eff[clamp_id] = uc_parent[clamp_id].value;
9693 }
9694 }
9695 /* Ensure protection is always capped by limit */
9696 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9697
9698 /* Propagate most restrictive effective clamps */
9699 clamps = 0x0;
9700 uc_se = css_tg(css)->uclamp;
9701 for_each_clamp_id(clamp_id) {
9702 if (eff[clamp_id] == uc_se[clamp_id].value)
9703 continue;
9704 uc_se[clamp_id].value = eff[clamp_id];
9705 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9706 clamps |= (0x1 << clamp_id);
9707 }
9708 if (!clamps) {
9709 css = css_rightmost_descendant(css);
9710 continue;
9711 }
9712
9713 /* Immediately update descendants RUNNABLE tasks */
9714 uclamp_update_active_tasks(css);
9715 }
9716}
9717
9718/*
9719 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9720 * C expression. Since there is no way to convert a macro argument (N) into a
9721 * character constant, use two levels of macros.
9722 */
9723#define _POW10(exp) ((unsigned int)1e##exp)
9724#define POW10(exp) _POW10(exp)
9725
9726struct uclamp_request {
9727#define UCLAMP_PERCENT_SHIFT 2
9728#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9729 s64 percent;
9730 u64 util;
9731 int ret;
9732};
9733
9734static inline struct uclamp_request
9735capacity_from_percent(char *buf)
9736{
9737 struct uclamp_request req = {
9738 .percent = UCLAMP_PERCENT_SCALE,
9739 .util = SCHED_CAPACITY_SCALE,
9740 .ret = 0,
9741 };
9742
9743 buf = strim(buf);
9744 if (strcmp(buf, "max")) {
9745 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9746 &req.percent);
9747 if (req.ret)
9748 return req;
9749 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9750 req.ret = -ERANGE;
9751 return req;
9752 }
9753
9754 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9755 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9756 }
9757
9758 return req;
9759}
9760
9761static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9762 size_t nbytes, loff_t off,
9763 enum uclamp_id clamp_id)
9764{
9765 struct uclamp_request req;
9766 struct task_group *tg;
9767
9768 req = capacity_from_percent(buf);
9769 if (req.ret)
9770 return req.ret;
9771
9772 static_branch_enable(&sched_uclamp_used);
9773
9774 mutex_lock(&uclamp_mutex);
9775 rcu_read_lock();
9776
9777 tg = css_tg(of_css(of));
9778 if (tg->uclamp_req[clamp_id].value != req.util)
9779 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9780
9781 /*
9782 * Because of not recoverable conversion rounding we keep track of the
9783 * exact requested value
9784 */
9785 tg->uclamp_pct[clamp_id] = req.percent;
9786
9787 /* Update effective clamps to track the most restrictive value */
9788 cpu_util_update_eff(of_css(of));
9789
9790 rcu_read_unlock();
9791 mutex_unlock(&uclamp_mutex);
9792
9793 return nbytes;
9794}
9795
9796static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9797 char *buf, size_t nbytes,
9798 loff_t off)
9799{
9800 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9801}
9802
9803static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9804 char *buf, size_t nbytes,
9805 loff_t off)
9806{
9807 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9808}
9809
9810static inline void cpu_uclamp_print(struct seq_file *sf,
9811 enum uclamp_id clamp_id)
9812{
9813 struct task_group *tg;
9814 u64 util_clamp;
9815 u64 percent;
9816 u32 rem;
9817
9818 rcu_read_lock();
9819 tg = css_tg(seq_css(sf));
9820 util_clamp = tg->uclamp_req[clamp_id].value;
9821 rcu_read_unlock();
9822
9823 if (util_clamp == SCHED_CAPACITY_SCALE) {
9824 seq_puts(sf, "max\n");
9825 return;
9826 }
9827
9828 percent = tg->uclamp_pct[clamp_id];
9829 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9830 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9831}
9832
9833static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9834{
9835 cpu_uclamp_print(sf, UCLAMP_MIN);
9836 return 0;
9837}
9838
9839static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9840{
9841 cpu_uclamp_print(sf, UCLAMP_MAX);
9842 return 0;
9843}
9844#endif /* CONFIG_UCLAMP_TASK_GROUP */
9845
9846#ifdef CONFIG_FAIR_GROUP_SCHED
9847static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9848 struct cftype *cftype, u64 shareval)
9849{
9850 if (shareval > scale_load_down(ULONG_MAX))
9851 shareval = MAX_SHARES;
9852 return sched_group_set_shares(css_tg(css), scale_load(shareval));
9853}
9854
9855static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9856 struct cftype *cft)
9857{
9858 struct task_group *tg = css_tg(css);
9859
9860 return (u64) scale_load_down(tg->shares);
9861}
9862
9863#ifdef CONFIG_CFS_BANDWIDTH
9864static DEFINE_MUTEX(cfs_constraints_mutex);
9865
9866const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9867static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9868/* More than 203 days if BW_SHIFT equals 20. */
9869static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9870
9871static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9872
9873static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9874 u64 burst)
9875{
9876 int i, ret = 0, runtime_enabled, runtime_was_enabled;
9877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9878
9879 if (tg == &root_task_group)
9880 return -EINVAL;
9881
9882 /*
9883 * Ensure we have at some amount of bandwidth every period. This is
9884 * to prevent reaching a state of large arrears when throttled via
9885 * entity_tick() resulting in prolonged exit starvation.
9886 */
9887 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9888 return -EINVAL;
9889
9890 /*
9891 * Likewise, bound things on the other side by preventing insane quota
9892 * periods. This also allows us to normalize in computing quota
9893 * feasibility.
9894 */
9895 if (period > max_cfs_quota_period)
9896 return -EINVAL;
9897
9898 /*
9899 * Bound quota to defend quota against overflow during bandwidth shift.
9900 */
9901 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9902 return -EINVAL;
9903
9904 if (quota != RUNTIME_INF && (burst > quota ||
9905 burst + quota > max_cfs_runtime))
9906 return -EINVAL;
9907
9908 /*
9909 * Prevent race between setting of cfs_rq->runtime_enabled and
9910 * unthrottle_offline_cfs_rqs().
9911 */
9912 get_online_cpus();
9913 mutex_lock(&cfs_constraints_mutex);
9914 ret = __cfs_schedulable(tg, period, quota);
9915 if (ret)
9916 goto out_unlock;
9917
9918 runtime_enabled = quota != RUNTIME_INF;
9919 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9920 /*
9921 * If we need to toggle cfs_bandwidth_used, off->on must occur
9922 * before making related changes, and on->off must occur afterwards
9923 */
9924 if (runtime_enabled && !runtime_was_enabled)
9925 cfs_bandwidth_usage_inc();
9926 raw_spin_lock_irq(&cfs_b->lock);
9927 cfs_b->period = ns_to_ktime(period);
9928 cfs_b->quota = quota;
9929 cfs_b->burst = burst;
9930
9931 __refill_cfs_bandwidth_runtime(cfs_b);
9932
9933 /* Restart the period timer (if active) to handle new period expiry: */
9934 if (runtime_enabled)
9935 start_cfs_bandwidth(cfs_b);
9936
9937 raw_spin_unlock_irq(&cfs_b->lock);
9938
9939 for_each_online_cpu(i) {
9940 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9941 struct rq *rq = cfs_rq->rq;
9942 struct rq_flags rf;
9943
9944 rq_lock_irq(rq, &rf);
9945 cfs_rq->runtime_enabled = runtime_enabled;
9946 cfs_rq->runtime_remaining = 0;
9947
9948 if (cfs_rq->throttled)
9949 unthrottle_cfs_rq(cfs_rq);
9950 rq_unlock_irq(rq, &rf);
9951 }
9952 if (runtime_was_enabled && !runtime_enabled)
9953 cfs_bandwidth_usage_dec();
9954out_unlock:
9955 mutex_unlock(&cfs_constraints_mutex);
9956 put_online_cpus();
9957
9958 return ret;
9959}
9960
9961static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9962{
9963 u64 quota, period, burst;
9964
9965 period = ktime_to_ns(tg->cfs_bandwidth.period);
9966 burst = tg->cfs_bandwidth.burst;
9967 if (cfs_quota_us < 0)
9968 quota = RUNTIME_INF;
9969 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9970 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9971 else
9972 return -EINVAL;
9973
9974 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9975}
9976
9977static long tg_get_cfs_quota(struct task_group *tg)
9978{
9979 u64 quota_us;
9980
9981 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9982 return -1;
9983
9984 quota_us = tg->cfs_bandwidth.quota;
9985 do_div(quota_us, NSEC_PER_USEC);
9986
9987 return quota_us;
9988}
9989
9990static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9991{
9992 u64 quota, period, burst;
9993
9994 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9995 return -EINVAL;
9996
9997 period = (u64)cfs_period_us * NSEC_PER_USEC;
9998 quota = tg->cfs_bandwidth.quota;
9999 burst = tg->cfs_bandwidth.burst;
10000
10001 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10002}
10003
10004static long tg_get_cfs_period(struct task_group *tg)
10005{
10006 u64 cfs_period_us;
10007
10008 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10009 do_div(cfs_period_us, NSEC_PER_USEC);
10010
10011 return cfs_period_us;
10012}
10013
10014static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10015{
10016 u64 quota, period, burst;
10017
10018 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10019 return -EINVAL;
10020
10021 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10022 period = ktime_to_ns(tg->cfs_bandwidth.period);
10023 quota = tg->cfs_bandwidth.quota;
10024
10025 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10026}
10027
10028static long tg_get_cfs_burst(struct task_group *tg)
10029{
10030 u64 burst_us;
10031
10032 burst_us = tg->cfs_bandwidth.burst;
10033 do_div(burst_us, NSEC_PER_USEC);
10034
10035 return burst_us;
10036}
10037
10038static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10039 struct cftype *cft)
10040{
10041 return tg_get_cfs_quota(css_tg(css));
10042}
10043
10044static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10045 struct cftype *cftype, s64 cfs_quota_us)
10046{
10047 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10048}
10049
10050static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10051 struct cftype *cft)
10052{
10053 return tg_get_cfs_period(css_tg(css));
10054}
10055
10056static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10057 struct cftype *cftype, u64 cfs_period_us)
10058{
10059 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10060}
10061
10062static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10063 struct cftype *cft)
10064{
10065 return tg_get_cfs_burst(css_tg(css));
10066}
10067
10068static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10069 struct cftype *cftype, u64 cfs_burst_us)
10070{
10071 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10072}
10073
10074struct cfs_schedulable_data {
10075 struct task_group *tg;
10076 u64 period, quota;
10077};
10078
10079/*
10080 * normalize group quota/period to be quota/max_period
10081 * note: units are usecs
10082 */
10083static u64 normalize_cfs_quota(struct task_group *tg,
10084 struct cfs_schedulable_data *d)
10085{
10086 u64 quota, period;
10087
10088 if (tg == d->tg) {
10089 period = d->period;
10090 quota = d->quota;
10091 } else {
10092 period = tg_get_cfs_period(tg);
10093 quota = tg_get_cfs_quota(tg);
10094 }
10095
10096 /* note: these should typically be equivalent */
10097 if (quota == RUNTIME_INF || quota == -1)
10098 return RUNTIME_INF;
10099
10100 return to_ratio(period, quota);
10101}
10102
10103static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10104{
10105 struct cfs_schedulable_data *d = data;
10106 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10107 s64 quota = 0, parent_quota = -1;
10108
10109 if (!tg->parent) {
10110 quota = RUNTIME_INF;
10111 } else {
10112 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10113
10114 quota = normalize_cfs_quota(tg, d);
10115 parent_quota = parent_b->hierarchical_quota;
10116
10117 /*
10118 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10119 * always take the min. On cgroup1, only inherit when no
10120 * limit is set:
10121 */
10122 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10123 quota = min(quota, parent_quota);
10124 } else {
10125 if (quota == RUNTIME_INF)
10126 quota = parent_quota;
10127 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10128 return -EINVAL;
10129 }
10130 }
10131 cfs_b->hierarchical_quota = quota;
10132
10133 return 0;
10134}
10135
10136static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10137{
10138 int ret;
10139 struct cfs_schedulable_data data = {
10140 .tg = tg,
10141 .period = period,
10142 .quota = quota,
10143 };
10144
10145 if (quota != RUNTIME_INF) {
10146 do_div(data.period, NSEC_PER_USEC);
10147 do_div(data.quota, NSEC_PER_USEC);
10148 }
10149
10150 rcu_read_lock();
10151 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10152 rcu_read_unlock();
10153
10154 return ret;
10155}
10156
10157static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10158{
10159 struct task_group *tg = css_tg(seq_css(sf));
10160 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10161
10162 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10163 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10164 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10165
10166 if (schedstat_enabled() && tg != &root_task_group) {
10167 u64 ws = 0;
10168 int i;
10169
10170 for_each_possible_cpu(i)
10171 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10172
10173 seq_printf(sf, "wait_sum %llu\n", ws);
10174 }
10175
10176 return 0;
10177}
10178#endif /* CONFIG_CFS_BANDWIDTH */
10179#endif /* CONFIG_FAIR_GROUP_SCHED */
10180
10181#ifdef CONFIG_RT_GROUP_SCHED
10182static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10183 struct cftype *cft, s64 val)
10184{
10185 return sched_group_set_rt_runtime(css_tg(css), val);
10186}
10187
10188static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10189 struct cftype *cft)
10190{
10191 return sched_group_rt_runtime(css_tg(css));
10192}
10193
10194static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10195 struct cftype *cftype, u64 rt_period_us)
10196{
10197 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10198}
10199
10200static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10201 struct cftype *cft)
10202{
10203 return sched_group_rt_period(css_tg(css));
10204}
10205#endif /* CONFIG_RT_GROUP_SCHED */
10206
10207static struct cftype cpu_legacy_files[] = {
10208#ifdef CONFIG_FAIR_GROUP_SCHED
10209 {
10210 .name = "shares",
10211 .read_u64 = cpu_shares_read_u64,
10212 .write_u64 = cpu_shares_write_u64,
10213 },
10214#endif
10215#ifdef CONFIG_CFS_BANDWIDTH
10216 {
10217 .name = "cfs_quota_us",
10218 .read_s64 = cpu_cfs_quota_read_s64,
10219 .write_s64 = cpu_cfs_quota_write_s64,
10220 },
10221 {
10222 .name = "cfs_period_us",
10223 .read_u64 = cpu_cfs_period_read_u64,
10224 .write_u64 = cpu_cfs_period_write_u64,
10225 },
10226 {
10227 .name = "cfs_burst_us",
10228 .read_u64 = cpu_cfs_burst_read_u64,
10229 .write_u64 = cpu_cfs_burst_write_u64,
10230 },
10231 {
10232 .name = "stat",
10233 .seq_show = cpu_cfs_stat_show,
10234 },
10235#endif
10236#ifdef CONFIG_RT_GROUP_SCHED
10237 {
10238 .name = "rt_runtime_us",
10239 .read_s64 = cpu_rt_runtime_read,
10240 .write_s64 = cpu_rt_runtime_write,
10241 },
10242 {
10243 .name = "rt_period_us",
10244 .read_u64 = cpu_rt_period_read_uint,
10245 .write_u64 = cpu_rt_period_write_uint,
10246 },
10247#endif
10248#ifdef CONFIG_UCLAMP_TASK_GROUP
10249 {
10250 .name = "uclamp.min",
10251 .flags = CFTYPE_NOT_ON_ROOT,
10252 .seq_show = cpu_uclamp_min_show,
10253 .write = cpu_uclamp_min_write,
10254 },
10255 {
10256 .name = "uclamp.max",
10257 .flags = CFTYPE_NOT_ON_ROOT,
10258 .seq_show = cpu_uclamp_max_show,
10259 .write = cpu_uclamp_max_write,
10260 },
10261#endif
10262 { } /* Terminate */
10263};
10264
10265static int cpu_extra_stat_show(struct seq_file *sf,
10266 struct cgroup_subsys_state *css)
10267{
10268#ifdef CONFIG_CFS_BANDWIDTH
10269 {
10270 struct task_group *tg = css_tg(css);
10271 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10272 u64 throttled_usec;
10273
10274 throttled_usec = cfs_b->throttled_time;
10275 do_div(throttled_usec, NSEC_PER_USEC);
10276
10277 seq_printf(sf, "nr_periods %d\n"
10278 "nr_throttled %d\n"
10279 "throttled_usec %llu\n",
10280 cfs_b->nr_periods, cfs_b->nr_throttled,
10281 throttled_usec);
10282 }
10283#endif
10284 return 0;
10285}
10286
10287#ifdef CONFIG_FAIR_GROUP_SCHED
10288static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10289 struct cftype *cft)
10290{
10291 struct task_group *tg = css_tg(css);
10292 u64 weight = scale_load_down(tg->shares);
10293
10294 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10295}
10296
10297static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10298 struct cftype *cft, u64 weight)
10299{
10300 /*
10301 * cgroup weight knobs should use the common MIN, DFL and MAX
10302 * values which are 1, 100 and 10000 respectively. While it loses
10303 * a bit of range on both ends, it maps pretty well onto the shares
10304 * value used by scheduler and the round-trip conversions preserve
10305 * the original value over the entire range.
10306 */
10307 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10308 return -ERANGE;
10309
10310 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10311
10312 return sched_group_set_shares(css_tg(css), scale_load(weight));
10313}
10314
10315static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10316 struct cftype *cft)
10317{
10318 unsigned long weight = scale_load_down(css_tg(css)->shares);
10319 int last_delta = INT_MAX;
10320 int prio, delta;
10321
10322 /* find the closest nice value to the current weight */
10323 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10324 delta = abs(sched_prio_to_weight[prio] - weight);
10325 if (delta >= last_delta)
10326 break;
10327 last_delta = delta;
10328 }
10329
10330 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10331}
10332
10333static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10334 struct cftype *cft, s64 nice)
10335{
10336 unsigned long weight;
10337 int idx;
10338
10339 if (nice < MIN_NICE || nice > MAX_NICE)
10340 return -ERANGE;
10341
10342 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10343 idx = array_index_nospec(idx, 40);
10344 weight = sched_prio_to_weight[idx];
10345
10346 return sched_group_set_shares(css_tg(css), scale_load(weight));
10347}
10348#endif
10349
10350static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10351 long period, long quota)
10352{
10353 if (quota < 0)
10354 seq_puts(sf, "max");
10355 else
10356 seq_printf(sf, "%ld", quota);
10357
10358 seq_printf(sf, " %ld\n", period);
10359}
10360
10361/* caller should put the current value in *@periodp before calling */
10362static int __maybe_unused cpu_period_quota_parse(char *buf,
10363 u64 *periodp, u64 *quotap)
10364{
10365 char tok[21]; /* U64_MAX */
10366
10367 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10368 return -EINVAL;
10369
10370 *periodp *= NSEC_PER_USEC;
10371
10372 if (sscanf(tok, "%llu", quotap))
10373 *quotap *= NSEC_PER_USEC;
10374 else if (!strcmp(tok, "max"))
10375 *quotap = RUNTIME_INF;
10376 else
10377 return -EINVAL;
10378
10379 return 0;
10380}
10381
10382#ifdef CONFIG_CFS_BANDWIDTH
10383static int cpu_max_show(struct seq_file *sf, void *v)
10384{
10385 struct task_group *tg = css_tg(seq_css(sf));
10386
10387 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10388 return 0;
10389}
10390
10391static ssize_t cpu_max_write(struct kernfs_open_file *of,
10392 char *buf, size_t nbytes, loff_t off)
10393{
10394 struct task_group *tg = css_tg(of_css(of));
10395 u64 period = tg_get_cfs_period(tg);
10396 u64 burst = tg_get_cfs_burst(tg);
10397 u64 quota;
10398 int ret;
10399
10400 ret = cpu_period_quota_parse(buf, &period, "a);
10401 if (!ret)
10402 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10403 return ret ?: nbytes;
10404}
10405#endif
10406
10407static struct cftype cpu_files[] = {
10408#ifdef CONFIG_FAIR_GROUP_SCHED
10409 {
10410 .name = "weight",
10411 .flags = CFTYPE_NOT_ON_ROOT,
10412 .read_u64 = cpu_weight_read_u64,
10413 .write_u64 = cpu_weight_write_u64,
10414 },
10415 {
10416 .name = "weight.nice",
10417 .flags = CFTYPE_NOT_ON_ROOT,
10418 .read_s64 = cpu_weight_nice_read_s64,
10419 .write_s64 = cpu_weight_nice_write_s64,
10420 },
10421#endif
10422#ifdef CONFIG_CFS_BANDWIDTH
10423 {
10424 .name = "max",
10425 .flags = CFTYPE_NOT_ON_ROOT,
10426 .seq_show = cpu_max_show,
10427 .write = cpu_max_write,
10428 },
10429 {
10430 .name = "max.burst",
10431 .flags = CFTYPE_NOT_ON_ROOT,
10432 .read_u64 = cpu_cfs_burst_read_u64,
10433 .write_u64 = cpu_cfs_burst_write_u64,
10434 },
10435#endif
10436#ifdef CONFIG_UCLAMP_TASK_GROUP
10437 {
10438 .name = "uclamp.min",
10439 .flags = CFTYPE_NOT_ON_ROOT,
10440 .seq_show = cpu_uclamp_min_show,
10441 .write = cpu_uclamp_min_write,
10442 },
10443 {
10444 .name = "uclamp.max",
10445 .flags = CFTYPE_NOT_ON_ROOT,
10446 .seq_show = cpu_uclamp_max_show,
10447 .write = cpu_uclamp_max_write,
10448 },
10449#endif
10450 { } /* terminate */
10451};
10452
10453struct cgroup_subsys cpu_cgrp_subsys = {
10454 .css_alloc = cpu_cgroup_css_alloc,
10455 .css_online = cpu_cgroup_css_online,
10456 .css_released = cpu_cgroup_css_released,
10457 .css_free = cpu_cgroup_css_free,
10458 .css_extra_stat_show = cpu_extra_stat_show,
10459 .fork = cpu_cgroup_fork,
10460 .can_attach = cpu_cgroup_can_attach,
10461 .attach = cpu_cgroup_attach,
10462 .legacy_cftypes = cpu_legacy_files,
10463 .dfl_cftypes = cpu_files,
10464 .early_init = true,
10465 .threaded = true,
10466};
10467
10468#endif /* CONFIG_CGROUP_SCHED */
10469
10470void dump_cpu_task(int cpu)
10471{
10472 pr_info("Task dump for CPU %d:\n", cpu);
10473 sched_show_task(cpu_curr(cpu));
10474}
10475
10476/*
10477 * Nice levels are multiplicative, with a gentle 10% change for every
10478 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10479 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10480 * that remained on nice 0.
10481 *
10482 * The "10% effect" is relative and cumulative: from _any_ nice level,
10483 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10484 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10485 * If a task goes up by ~10% and another task goes down by ~10% then
10486 * the relative distance between them is ~25%.)
10487 */
10488const int sched_prio_to_weight[40] = {
10489 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10490 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10491 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10492 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10493 /* 0 */ 1024, 820, 655, 526, 423,
10494 /* 5 */ 335, 272, 215, 172, 137,
10495 /* 10 */ 110, 87, 70, 56, 45,
10496 /* 15 */ 36, 29, 23, 18, 15,
10497};
10498
10499/*
10500 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10501 *
10502 * In cases where the weight does not change often, we can use the
10503 * precalculated inverse to speed up arithmetics by turning divisions
10504 * into multiplications:
10505 */
10506const u32 sched_prio_to_wmult[40] = {
10507 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10508 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10509 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10510 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10511 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10512 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10513 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10514 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10515};
10516
10517void call_trace_sched_update_nr_running(struct rq *rq, int count)
10518{
10519 trace_sched_update_nr_running_tp(rq, count);
10520}