Linux Audio

Check our new training course

Loading...
v6.13.7
    1// SPDX-License-Identifier: GPL-2.0-only
    2/*
    3 *  kernel/sched/core.c
    4 *
    5 *  Core kernel CPU scheduler code
    6 *
    7 *  Copyright (C) 1991-2002  Linus Torvalds
    8 *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
    9 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   10#include <linux/highmem.h>
   11#include <linux/hrtimer_api.h>
   12#include <linux/ktime_api.h>
   13#include <linux/sched/signal.h>
   14#include <linux/syscalls_api.h>
   15#include <linux/debug_locks.h>
   16#include <linux/prefetch.h>
   17#include <linux/capability.h>
   18#include <linux/pgtable_api.h>
   19#include <linux/wait_bit.h>
   20#include <linux/jiffies.h>
   21#include <linux/spinlock_api.h>
   22#include <linux/cpumask_api.h>
   23#include <linux/lockdep_api.h>
   24#include <linux/hardirq.h>
   25#include <linux/softirq.h>
   26#include <linux/refcount_api.h>
   27#include <linux/topology.h>
   28#include <linux/sched/clock.h>
   29#include <linux/sched/cond_resched.h>
   30#include <linux/sched/cputime.h>
   31#include <linux/sched/debug.h>
   32#include <linux/sched/hotplug.h>
   33#include <linux/sched/init.h>
   34#include <linux/sched/isolation.h>
   35#include <linux/sched/loadavg.h>
   36#include <linux/sched/mm.h>
   37#include <linux/sched/nohz.h>
   38#include <linux/sched/rseq_api.h>
   39#include <linux/sched/rt.h>
   40
   41#include <linux/blkdev.h>
   42#include <linux/context_tracking.h>
 
 
 
 
 
 
   43#include <linux/cpuset.h>
   44#include <linux/delayacct.h>
   45#include <linux/init_task.h>
   46#include <linux/interrupt.h>
   47#include <linux/ioprio.h>
   48#include <linux/kallsyms.h>
   49#include <linux/kcov.h>
 
   50#include <linux/kprobes.h>
   51#include <linux/llist_api.h>
   52#include <linux/mmu_context.h>
   53#include <linux/mmzone.h>
   54#include <linux/mutex_api.h>
   55#include <linux/nmi.h>
   56#include <linux/nospec.h>
   57#include <linux/perf_event_api.h>
   58#include <linux/profile.h>
   59#include <linux/psi.h>
   60#include <linux/rcuwait_api.h>
   61#include <linux/rseq.h>
   62#include <linux/sched/wake_q.h>
   63#include <linux/scs.h>
   64#include <linux/slab.h>
   65#include <linux/syscalls.h>
   66#include <linux/vtime.h>
   67#include <linux/wait_api.h>
   68#include <linux/workqueue_api.h>
   69
   70#ifdef CONFIG_PREEMPT_DYNAMIC
   71# ifdef CONFIG_GENERIC_ENTRY
   72#  include <linux/entry-common.h>
   73# endif
   74#endif
   75
   76#include <uapi/linux/sched/types.h>
   77
   78#include <asm/irq_regs.h>
   79#include <asm/switch_to.h>
   80#include <asm/tlb.h>
   81
   82#define CREATE_TRACE_POINTS
   83#include <linux/sched/rseq_api.h>
   84#include <trace/events/sched.h>
   85#include <trace/events/ipi.h>
   86#undef CREATE_TRACE_POINTS
   87
   88#include "sched.h"
   89#include "stats.h"
   90
   91#include "autogroup.h"
   92#include "pelt.h"
   93#include "smp.h"
   94#include "stats.h"
   95
   96#include "../workqueue_internal.h"
   97#include "../../io_uring/io-wq.h"
   98#include "../smpboot.h"
   99
  100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
  101EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
  102
  103/*
  104 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  105 * associated with them) to allow external modules to probe them.
  106 */
  107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  112EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
  113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
  114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  117EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  118EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
  119
 
  120DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  121
  122#ifdef CONFIG_SCHED_DEBUG
  123/*
  124 * Debugging: various feature bits
  125 *
  126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  127 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  128 * at compile time and compiler optimization based on features default.
  129 */
  130#define SCHED_FEAT(name, enabled)	\
  131	(1UL << __SCHED_FEAT_##name) * enabled |
  132const_debug unsigned int sysctl_sched_features =
  133#include "features.h"
  134	0;
  135#undef SCHED_FEAT
  136
  137/*
  138 * Print a warning if need_resched is set for the given duration (if
  139 * LATENCY_WARN is enabled).
  140 *
  141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
  142 * per boot.
  143 */
  144__read_mostly int sysctl_resched_latency_warn_ms = 100;
  145__read_mostly int sysctl_resched_latency_warn_once = 1;
  146#endif /* CONFIG_SCHED_DEBUG */
  147
  148/*
  149 * Number of tasks to iterate in a single balance run.
  150 * Limited because this is done with IRQs disabled.
  151 */
  152const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
  153
  154__read_mostly int scheduler_running;
  155
  156#ifdef CONFIG_SCHED_CORE
  157
  158DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
  159
  160/* kernel prio, less is more */
  161static inline int __task_prio(const struct task_struct *p)
  162{
  163	if (p->sched_class == &stop_sched_class) /* trumps deadline */
  164		return -2;
  165
  166	if (p->dl_server)
  167		return -1; /* deadline */
  168
  169	if (rt_or_dl_prio(p->prio))
  170		return p->prio; /* [-1, 99] */
  171
  172	if (p->sched_class == &idle_sched_class)
  173		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
  174
  175	if (task_on_scx(p))
  176		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
  177
  178	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
  179}
  180
  181/*
  182 * l(a,b)
  183 * le(a,b) := !l(b,a)
  184 * g(a,b)  := l(b,a)
  185 * ge(a,b) := !l(a,b)
  186 */
  187
  188/* real prio, less is less */
  189static inline bool prio_less(const struct task_struct *a,
  190			     const struct task_struct *b, bool in_fi)
  191{
  192
  193	int pa = __task_prio(a), pb = __task_prio(b);
  194
  195	if (-pa < -pb)
  196		return true;
  197
  198	if (-pb < -pa)
  199		return false;
  200
  201	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
  202		const struct sched_dl_entity *a_dl, *b_dl;
  203
  204		a_dl = &a->dl;
  205		/*
  206		 * Since,'a' and 'b' can be CFS tasks served by DL server,
  207		 * __task_prio() can return -1 (for DL) even for those. In that
  208		 * case, get to the dl_server's DL entity.
  209		 */
  210		if (a->dl_server)
  211			a_dl = a->dl_server;
  212
  213		b_dl = &b->dl;
  214		if (b->dl_server)
  215			b_dl = b->dl_server;
  216
  217		return !dl_time_before(a_dl->deadline, b_dl->deadline);
  218	}
  219
  220	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
  221		return cfs_prio_less(a, b, in_fi);
  222
  223#ifdef CONFIG_SCHED_CLASS_EXT
  224	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
  225		return scx_prio_less(a, b, in_fi);
  226#endif
  227
  228	return false;
  229}
  230
  231static inline bool __sched_core_less(const struct task_struct *a,
  232				     const struct task_struct *b)
  233{
  234	if (a->core_cookie < b->core_cookie)
  235		return true;
  236
  237	if (a->core_cookie > b->core_cookie)
  238		return false;
  239
  240	/* flip prio, so high prio is leftmost */
  241	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
  242		return true;
  243
  244	return false;
  245}
  246
  247#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
  248
  249static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
  250{
  251	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
  252}
  253
  254static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
  255{
  256	const struct task_struct *p = __node_2_sc(node);
  257	unsigned long cookie = (unsigned long)key;
  258
  259	if (cookie < p->core_cookie)
  260		return -1;
  261
  262	if (cookie > p->core_cookie)
  263		return 1;
  264
  265	return 0;
  266}
  267
  268void sched_core_enqueue(struct rq *rq, struct task_struct *p)
  269{
  270	if (p->se.sched_delayed)
  271		return;
  272
  273	rq->core->core_task_seq++;
  274
  275	if (!p->core_cookie)
  276		return;
  277
  278	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
  279}
  280
  281void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
  282{
  283	if (p->se.sched_delayed)
  284		return;
  285
  286	rq->core->core_task_seq++;
  287
  288	if (sched_core_enqueued(p)) {
  289		rb_erase(&p->core_node, &rq->core_tree);
  290		RB_CLEAR_NODE(&p->core_node);
  291	}
  292
  293	/*
  294	 * Migrating the last task off the cpu, with the cpu in forced idle
  295	 * state. Reschedule to create an accounting edge for forced idle,
  296	 * and re-examine whether the core is still in forced idle state.
  297	 */
  298	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
  299	    rq->core->core_forceidle_count && rq->curr == rq->idle)
  300		resched_curr(rq);
  301}
  302
  303static int sched_task_is_throttled(struct task_struct *p, int cpu)
  304{
  305	if (p->sched_class->task_is_throttled)
  306		return p->sched_class->task_is_throttled(p, cpu);
  307
  308	return 0;
  309}
  310
  311static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
  312{
  313	struct rb_node *node = &p->core_node;
  314	int cpu = task_cpu(p);
  315
  316	do {
  317		node = rb_next(node);
  318		if (!node)
  319			return NULL;
  320
  321		p = __node_2_sc(node);
  322		if (p->core_cookie != cookie)
  323			return NULL;
  324
  325	} while (sched_task_is_throttled(p, cpu));
  326
  327	return p;
  328}
  329
  330/*
  331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
  332 * If no suitable task is found, NULL will be returned.
  333 */
  334static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
  335{
  336	struct task_struct *p;
  337	struct rb_node *node;
  338
  339	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
  340	if (!node)
  341		return NULL;
  342
  343	p = __node_2_sc(node);
  344	if (!sched_task_is_throttled(p, rq->cpu))
  345		return p;
  346
  347	return sched_core_next(p, cookie);
  348}
  349
  350/*
  351 * Magic required such that:
  352 *
  353 *	raw_spin_rq_lock(rq);
  354 *	...
  355 *	raw_spin_rq_unlock(rq);
  356 *
  357 * ends up locking and unlocking the _same_ lock, and all CPUs
  358 * always agree on what rq has what lock.
  359 *
  360 * XXX entirely possible to selectively enable cores, don't bother for now.
  361 */
  362
  363static DEFINE_MUTEX(sched_core_mutex);
  364static atomic_t sched_core_count;
  365static struct cpumask sched_core_mask;
  366
  367static void sched_core_lock(int cpu, unsigned long *flags)
  368{
  369	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  370	int t, i = 0;
  371
  372	local_irq_save(*flags);
  373	for_each_cpu(t, smt_mask)
  374		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
  375}
  376
  377static void sched_core_unlock(int cpu, unsigned long *flags)
  378{
  379	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  380	int t;
  381
  382	for_each_cpu(t, smt_mask)
  383		raw_spin_unlock(&cpu_rq(t)->__lock);
  384	local_irq_restore(*flags);
  385}
  386
  387static void __sched_core_flip(bool enabled)
  388{
  389	unsigned long flags;
  390	int cpu, t;
  391
  392	cpus_read_lock();
  393
  394	/*
  395	 * Toggle the online cores, one by one.
  396	 */
  397	cpumask_copy(&sched_core_mask, cpu_online_mask);
  398	for_each_cpu(cpu, &sched_core_mask) {
  399		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  400
  401		sched_core_lock(cpu, &flags);
  402
  403		for_each_cpu(t, smt_mask)
  404			cpu_rq(t)->core_enabled = enabled;
  405
  406		cpu_rq(cpu)->core->core_forceidle_start = 0;
  407
  408		sched_core_unlock(cpu, &flags);
  409
  410		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
  411	}
  412
  413	/*
  414	 * Toggle the offline CPUs.
  415	 */
  416	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
  417		cpu_rq(cpu)->core_enabled = enabled;
  418
  419	cpus_read_unlock();
  420}
  421
  422static void sched_core_assert_empty(void)
  423{
  424	int cpu;
  425
  426	for_each_possible_cpu(cpu)
  427		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
  428}
  429
  430static void __sched_core_enable(void)
  431{
  432	static_branch_enable(&__sched_core_enabled);
  433	/*
  434	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
  435	 * and future ones will observe !sched_core_disabled().
  436	 */
  437	synchronize_rcu();
  438	__sched_core_flip(true);
  439	sched_core_assert_empty();
  440}
  441
  442static void __sched_core_disable(void)
  443{
  444	sched_core_assert_empty();
  445	__sched_core_flip(false);
  446	static_branch_disable(&__sched_core_enabled);
  447}
  448
  449void sched_core_get(void)
  450{
  451	if (atomic_inc_not_zero(&sched_core_count))
  452		return;
  453
  454	mutex_lock(&sched_core_mutex);
  455	if (!atomic_read(&sched_core_count))
  456		__sched_core_enable();
  457
  458	smp_mb__before_atomic();
  459	atomic_inc(&sched_core_count);
  460	mutex_unlock(&sched_core_mutex);
  461}
  462
  463static void __sched_core_put(struct work_struct *work)
  464{
  465	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
  466		__sched_core_disable();
  467		mutex_unlock(&sched_core_mutex);
  468	}
  469}
  470
  471void sched_core_put(void)
  472{
  473	static DECLARE_WORK(_work, __sched_core_put);
  474
  475	/*
  476	 * "There can be only one"
  477	 *
  478	 * Either this is the last one, or we don't actually need to do any
  479	 * 'work'. If it is the last *again*, we rely on
  480	 * WORK_STRUCT_PENDING_BIT.
  481	 */
  482	if (!atomic_add_unless(&sched_core_count, -1, 1))
  483		schedule_work(&_work);
  484}
  485
  486#else /* !CONFIG_SCHED_CORE */
  487
  488static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
  489static inline void
  490sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
  491
  492#endif /* CONFIG_SCHED_CORE */
  493
  494/*
  495 * Serialization rules:
  496 *
  497 * Lock order:
  498 *
  499 *   p->pi_lock
  500 *     rq->lock
  501 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  502 *
  503 *  rq1->lock
  504 *    rq2->lock  where: rq1 < rq2
  505 *
  506 * Regular state:
  507 *
  508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  509 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  510 * always looks at the local rq data structures to find the most eligible task
  511 * to run next.
  512 *
  513 * Task enqueue is also under rq->lock, possibly taken from another CPU.
  514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
  515 * the local CPU to avoid bouncing the runqueue state around [ see
  516 * ttwu_queue_wakelist() ]
  517 *
  518 * Task wakeup, specifically wakeups that involve migration, are horribly
  519 * complicated to avoid having to take two rq->locks.
  520 *
  521 * Special state:
  522 *
  523 * System-calls and anything external will use task_rq_lock() which acquires
  524 * both p->pi_lock and rq->lock. As a consequence the state they change is
  525 * stable while holding either lock:
  526 *
  527 *  - sched_setaffinity()/
  528 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
  529 *  - set_user_nice():		p->se.load, p->*prio
  530 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
  531 *				p->se.load, p->rt_priority,
  532 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
  533 *  - sched_setnuma():		p->numa_preferred_nid
  534 *  - sched_move_task():	p->sched_task_group
  535 *  - uclamp_update_active()	p->uclamp*
  536 *
  537 * p->state <- TASK_*:
  538 *
  539 *   is changed locklessly using set_current_state(), __set_current_state() or
  540 *   set_special_state(), see their respective comments, or by
  541 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
  542 *   concurrent self.
  543 *
  544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
  545 *
  546 *   is set by activate_task() and cleared by deactivate_task(), under
  547 *   rq->lock. Non-zero indicates the task is runnable, the special
  548 *   ON_RQ_MIGRATING state is used for migration without holding both
  549 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
  550 *
  551 *   Additionally it is possible to be ->on_rq but still be considered not
  552 *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
  553 *   but will be dequeued as soon as they get picked again. See the
  554 *   task_is_runnable() helper.
  555 *
  556 * p->on_cpu <- { 0, 1 }:
  557 *
  558 *   is set by prepare_task() and cleared by finish_task() such that it will be
  559 *   set before p is scheduled-in and cleared after p is scheduled-out, both
  560 *   under rq->lock. Non-zero indicates the task is running on its CPU.
  561 *
  562 *   [ The astute reader will observe that it is possible for two tasks on one
  563 *     CPU to have ->on_cpu = 1 at the same time. ]
  564 *
  565 * task_cpu(p): is changed by set_task_cpu(), the rules are:
  566 *
  567 *  - Don't call set_task_cpu() on a blocked task:
  568 *
  569 *    We don't care what CPU we're not running on, this simplifies hotplug,
  570 *    the CPU assignment of blocked tasks isn't required to be valid.
  571 *
  572 *  - for try_to_wake_up(), called under p->pi_lock:
  573 *
  574 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
  575 *
  576 *  - for migration called under rq->lock:
  577 *    [ see task_on_rq_migrating() in task_rq_lock() ]
  578 *
  579 *    o move_queued_task()
  580 *    o detach_task()
  581 *
  582 *  - for migration called under double_rq_lock():
  583 *
  584 *    o __migrate_swap_task()
  585 *    o push_rt_task() / pull_rt_task()
  586 *    o push_dl_task() / pull_dl_task()
  587 *    o dl_task_offline_migration()
  588 *
 
  589 */
 
  590
  591void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
  592{
  593	raw_spinlock_t *lock;
  594
  595	/* Matches synchronize_rcu() in __sched_core_enable() */
  596	preempt_disable();
  597	if (sched_core_disabled()) {
  598		raw_spin_lock_nested(&rq->__lock, subclass);
  599		/* preempt_count *MUST* be > 1 */
  600		preempt_enable_no_resched();
  601		return;
  602	}
  603
  604	for (;;) {
  605		lock = __rq_lockp(rq);
  606		raw_spin_lock_nested(lock, subclass);
  607		if (likely(lock == __rq_lockp(rq))) {
  608			/* preempt_count *MUST* be > 1 */
  609			preempt_enable_no_resched();
  610			return;
  611		}
  612		raw_spin_unlock(lock);
  613	}
  614}
  615
  616bool raw_spin_rq_trylock(struct rq *rq)
  617{
  618	raw_spinlock_t *lock;
  619	bool ret;
  620
  621	/* Matches synchronize_rcu() in __sched_core_enable() */
  622	preempt_disable();
  623	if (sched_core_disabled()) {
  624		ret = raw_spin_trylock(&rq->__lock);
  625		preempt_enable();
  626		return ret;
  627	}
  628
  629	for (;;) {
  630		lock = __rq_lockp(rq);
  631		ret = raw_spin_trylock(lock);
  632		if (!ret || (likely(lock == __rq_lockp(rq)))) {
  633			preempt_enable();
  634			return ret;
  635		}
  636		raw_spin_unlock(lock);
  637	}
  638}
  639
  640void raw_spin_rq_unlock(struct rq *rq)
  641{
  642	raw_spin_unlock(rq_lockp(rq));
  643}
  644
  645#ifdef CONFIG_SMP
  646/*
  647 * double_rq_lock - safely lock two runqueues
 
  648 */
  649void double_rq_lock(struct rq *rq1, struct rq *rq2)
  650{
  651	lockdep_assert_irqs_disabled();
  652
  653	if (rq_order_less(rq2, rq1))
  654		swap(rq1, rq2);
  655
  656	raw_spin_rq_lock(rq1);
  657	if (__rq_lockp(rq1) != __rq_lockp(rq2))
  658		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
  659
  660	double_rq_clock_clear_update(rq1, rq2);
  661}
  662#endif
  663
  664/*
  665 * __task_rq_lock - lock the rq @p resides on.
 
  666 */
  667struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  668	__acquires(rq->lock)
  669{
  670	struct rq *rq;
  671
  672	lockdep_assert_held(&p->pi_lock);
  673
  674	for (;;) {
  675		rq = task_rq(p);
  676		raw_spin_rq_lock(rq);
  677		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  678			rq_pin_lock(rq, rf);
  679			return rq;
  680		}
  681		raw_spin_rq_unlock(rq);
  682
  683		while (unlikely(task_on_rq_migrating(p)))
  684			cpu_relax();
  685	}
  686}
  687
  688/*
  689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  690 */
  691struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  692	__acquires(p->pi_lock)
  693	__acquires(rq->lock)
  694{
  695	struct rq *rq;
  696
  697	for (;;) {
  698		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  699		rq = task_rq(p);
  700		raw_spin_rq_lock(rq);
  701		/*
  702		 *	move_queued_task()		task_rq_lock()
  703		 *
  704		 *	ACQUIRE (rq->lock)
  705		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
  706		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
  707		 *	[S] ->cpu = new_cpu		[L] task_rq()
  708		 *					[L] ->on_rq
  709		 *	RELEASE (rq->lock)
  710		 *
  711		 * If we observe the old CPU in task_rq_lock(), the acquire of
  712		 * the old rq->lock will fully serialize against the stores.
  713		 *
  714		 * If we observe the new CPU in task_rq_lock(), the address
  715		 * dependency headed by '[L] rq = task_rq()' and the acquire
  716		 * will pair with the WMB to ensure we then also see migrating.
  717		 */
  718		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  719			rq_pin_lock(rq, rf);
  720			return rq;
  721		}
  722		raw_spin_rq_unlock(rq);
  723		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  724
  725		while (unlikely(task_on_rq_migrating(p)))
  726			cpu_relax();
  727	}
  728}
  729
  730/*
  731 * RQ-clock updating methods:
  732 */
  733
  734static void update_rq_clock_task(struct rq *rq, s64 delta)
  735{
  736/*
  737 * In theory, the compile should just see 0 here, and optimize out the call
  738 * to sched_rt_avg_update. But I don't trust it...
  739 */
  740	s64 __maybe_unused steal = 0, irq_delta = 0;
  741
  742#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  743	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  744
  745	/*
  746	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
  747	 * this case when a previous update_rq_clock() happened inside a
  748	 * {soft,}IRQ region.
  749	 *
  750	 * When this happens, we stop ->clock_task and only update the
  751	 * prev_irq_time stamp to account for the part that fit, so that a next
  752	 * update will consume the rest. This ensures ->clock_task is
  753	 * monotonic.
  754	 *
  755	 * It does however cause some slight miss-attribution of {soft,}IRQ
  756	 * time, a more accurate solution would be to update the irq_time using
  757	 * the current rq->clock timestamp, except that would require using
  758	 * atomic ops.
  759	 */
  760	if (irq_delta > delta)
  761		irq_delta = delta;
  762
  763	rq->prev_irq_time += irq_delta;
  764	delta -= irq_delta;
  765	delayacct_irq(rq->curr, irq_delta);
  766#endif
  767#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  768	if (static_key_false((&paravirt_steal_rq_enabled))) {
  769		u64 prev_steal;
  770
  771		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
  772		steal -= rq->prev_steal_time_rq;
  773
  774		if (unlikely(steal > delta))
  775			steal = delta;
  776
  777		rq->prev_steal_time_rq = prev_steal;
  778		delta -= steal;
  779	}
  780#endif
  781
  782	rq->clock_task += delta;
  783
  784#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
  785	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  786		update_irq_load_avg(rq, irq_delta + steal);
  787#endif
  788	update_rq_clock_pelt(rq, delta);
  789}
  790
  791void update_rq_clock(struct rq *rq)
  792{
  793	s64 delta;
  794
  795	lockdep_assert_rq_held(rq);
  796
  797	if (rq->clock_update_flags & RQCF_ACT_SKIP)
  798		return;
  799
  800#ifdef CONFIG_SCHED_DEBUG
  801	if (sched_feat(WARN_DOUBLE_CLOCK))
  802		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  803	rq->clock_update_flags |= RQCF_UPDATED;
  804#endif
  805
  806	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  807	if (delta < 0)
  808		return;
  809	rq->clock += delta;
  810	update_rq_clock_task(rq, delta);
  811}
  812
  813#ifdef CONFIG_SCHED_HRTICK
  814/*
  815 * Use HR-timers to deliver accurate preemption points.
  816 */
  817
  818static void hrtick_clear(struct rq *rq)
  819{
  820	if (hrtimer_active(&rq->hrtick_timer))
  821		hrtimer_cancel(&rq->hrtick_timer);
  822}
  823
  824/*
  825 * High-resolution timer tick.
  826 * Runs from hardirq context with interrupts disabled.
  827 */
  828static enum hrtimer_restart hrtick(struct hrtimer *timer)
  829{
  830	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  831	struct rq_flags rf;
  832
  833	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  834
  835	rq_lock(rq, &rf);
  836	update_rq_clock(rq);
  837	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
  838	rq_unlock(rq, &rf);
  839
  840	return HRTIMER_NORESTART;
  841}
  842
  843#ifdef CONFIG_SMP
  844
  845static void __hrtick_restart(struct rq *rq)
  846{
  847	struct hrtimer *timer = &rq->hrtick_timer;
  848	ktime_t time = rq->hrtick_time;
  849
  850	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
  851}
  852
  853/*
  854 * called from hardirq (IPI) context
  855 */
  856static void __hrtick_start(void *arg)
  857{
  858	struct rq *rq = arg;
  859	struct rq_flags rf;
  860
  861	rq_lock(rq, &rf);
  862	__hrtick_restart(rq);
  863	rq_unlock(rq, &rf);
 
  864}
  865
  866/*
  867 * Called to set the hrtick timer state.
  868 *
  869 * called with rq->lock held and IRQs disabled
  870 */
  871void hrtick_start(struct rq *rq, u64 delay)
  872{
  873	struct hrtimer *timer = &rq->hrtick_timer;
 
  874	s64 delta;
  875
  876	/*
  877	 * Don't schedule slices shorter than 10000ns, that just
  878	 * doesn't make sense and can cause timer DoS.
  879	 */
  880	delta = max_t(s64, delay, 10000LL);
  881	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
 
 
  882
  883	if (rq == this_rq())
  884		__hrtick_restart(rq);
  885	else
  886		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  887}
  888
 
 
 
 
  889#else
  890/*
  891 * Called to set the hrtick timer state.
  892 *
  893 * called with rq->lock held and IRQs disabled
  894 */
  895void hrtick_start(struct rq *rq, u64 delay)
  896{
  897	/*
  898	 * Don't schedule slices shorter than 10000ns, that just
  899	 * doesn't make sense. Rely on vruntime for fairness.
  900	 */
  901	delay = max_t(u64, delay, 10000LL);
  902	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  903		      HRTIMER_MODE_REL_PINNED_HARD);
  904}
  905
 
 
 
  906#endif /* CONFIG_SMP */
  907
  908static void hrtick_rq_init(struct rq *rq)
  909{
  910#ifdef CONFIG_SMP
  911	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
 
 
 
 
  912#endif
  913	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 
  914	rq->hrtick_timer.function = hrtick;
  915}
  916#else	/* CONFIG_SCHED_HRTICK */
  917static inline void hrtick_clear(struct rq *rq)
  918{
  919}
  920
  921static inline void hrtick_rq_init(struct rq *rq)
 
 
 
 
  922{
  923}
  924#endif	/* CONFIG_SCHED_HRTICK */
  925
  926/*
  927 * try_cmpxchg based fetch_or() macro so it works for different integer types:
  928 */
  929#define fetch_or(ptr, mask)						\
  930	({								\
  931		typeof(ptr) _ptr = (ptr);				\
  932		typeof(mask) _mask = (mask);				\
  933		typeof(*_ptr) _val = *_ptr;				\
  934									\
  935		do {							\
  936		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
  937	_val;								\
 
 
 
 
  938})
  939
  940#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  941/*
  942 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  943 * this avoids any races wrt polling state changes and thereby avoids
  944 * spurious IPIs.
  945 */
  946static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
  947{
  948	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
 
  949}
  950
  951/*
  952 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  953 *
  954 * If this returns true, then the idle task promises to call
  955 * sched_ttwu_pending() and reschedule soon.
  956 */
  957static bool set_nr_if_polling(struct task_struct *p)
  958{
  959	struct thread_info *ti = task_thread_info(p);
  960	typeof(ti->flags) val = READ_ONCE(ti->flags);
  961
  962	do {
  963		if (!(val & _TIF_POLLING_NRFLAG))
  964			return false;
  965		if (val & _TIF_NEED_RESCHED)
  966			return true;
  967	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
  968
 
 
 
  969	return true;
  970}
  971
  972#else
  973static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
  974{
  975	set_ti_thread_flag(ti, tif);
  976	return true;
  977}
  978
  979#ifdef CONFIG_SMP
  980static inline bool set_nr_if_polling(struct task_struct *p)
  981{
  982	return false;
  983}
  984#endif
  985#endif
  986
  987static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
  988{
  989	struct wake_q_node *node = &task->wake_q;
  990
  991	/*
  992	 * Atomically grab the task, if ->wake_q is !nil already it means
  993	 * it's already queued (either by us or someone else) and will get the
  994	 * wakeup due to that.
  995	 *
  996	 * In order to ensure that a pending wakeup will observe our pending
  997	 * state, even in the failed case, an explicit smp_mb() must be used.
  998	 */
  999	smp_mb__before_atomic();
 1000	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 1001		return false;
 
 1002
 1003	/*
 1004	 * The head is context local, there can be no concurrency.
 1005	 */
 1006	*head->lastp = node;
 1007	head->lastp = &node->next;
 1008	return true;
 1009}
 1010
 1011/**
 1012 * wake_q_add() - queue a wakeup for 'later' waking.
 1013 * @head: the wake_q_head to add @task to
 1014 * @task: the task to queue for 'later' wakeup
 1015 *
 1016 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 1017 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 1018 * instantly.
 1019 *
 1020 * This function must be used as-if it were wake_up_process(); IOW the task
 1021 * must be ready to be woken at this location.
 1022 */
 1023void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 1024{
 1025	if (__wake_q_add(head, task))
 1026		get_task_struct(task);
 1027}
 1028
 1029/**
 1030 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 1031 * @head: the wake_q_head to add @task to
 1032 * @task: the task to queue for 'later' wakeup
 1033 *
 1034 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 1035 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 1036 * instantly.
 1037 *
 1038 * This function must be used as-if it were wake_up_process(); IOW the task
 1039 * must be ready to be woken at this location.
 1040 *
 1041 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 1042 * that already hold reference to @task can call the 'safe' version and trust
 1043 * wake_q to do the right thing depending whether or not the @task is already
 1044 * queued for wakeup.
 1045 */
 1046void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 1047{
 1048	if (!__wake_q_add(head, task))
 1049		put_task_struct(task);
 1050}
 1051
 1052void wake_up_q(struct wake_q_head *head)
 1053{
 1054	struct wake_q_node *node = head->first;
 1055
 1056	while (node != WAKE_Q_TAIL) {
 1057		struct task_struct *task;
 1058
 1059		task = container_of(node, struct task_struct, wake_q);
 1060		/* Task can safely be re-inserted now: */
 
 1061		node = node->next;
 1062		task->wake_q.next = NULL;
 1063
 1064		/*
 1065		 * wake_up_process() executes a full barrier, which pairs with
 1066		 * the queueing in wake_q_add() so as not to miss wakeups.
 1067		 */
 1068		wake_up_process(task);
 1069		put_task_struct(task);
 1070	}
 1071}
 1072
 1073/*
 1074 * resched_curr - mark rq's current task 'to be rescheduled now'.
 1075 *
 1076 * On UP this means the setting of the need_resched flag, on SMP it
 1077 * might also involve a cross-CPU call to trigger the scheduler on
 1078 * the target CPU.
 1079 */
 1080static void __resched_curr(struct rq *rq, int tif)
 1081{
 1082	struct task_struct *curr = rq->curr;
 1083	struct thread_info *cti = task_thread_info(curr);
 1084	int cpu;
 1085
 1086	lockdep_assert_rq_held(rq);
 1087
 1088	/*
 1089	 * Always immediately preempt the idle task; no point in delaying doing
 1090	 * actual work.
 1091	 */
 1092	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
 1093		tif = TIF_NEED_RESCHED;
 1094
 1095	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
 1096		return;
 1097
 1098	cpu = cpu_of(rq);
 1099
 1100	if (cpu == smp_processor_id()) {
 1101		set_ti_thread_flag(cti, tif);
 1102		if (tif == TIF_NEED_RESCHED)
 1103			set_preempt_need_resched();
 1104		return;
 1105	}
 1106
 1107	if (set_nr_and_not_polling(cti, tif)) {
 1108		if (tif == TIF_NEED_RESCHED)
 1109			smp_send_reschedule(cpu);
 1110	} else {
 1111		trace_sched_wake_idle_without_ipi(cpu);
 1112	}
 1113}
 1114
 1115void resched_curr(struct rq *rq)
 1116{
 1117	__resched_curr(rq, TIF_NEED_RESCHED);
 1118}
 1119
 1120#ifdef CONFIG_PREEMPT_DYNAMIC
 1121static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
 1122static __always_inline bool dynamic_preempt_lazy(void)
 1123{
 1124	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
 1125}
 1126#else
 1127static __always_inline bool dynamic_preempt_lazy(void)
 1128{
 1129	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
 1130}
 1131#endif
 1132
 1133static __always_inline int get_lazy_tif_bit(void)
 1134{
 1135	if (dynamic_preempt_lazy())
 1136		return TIF_NEED_RESCHED_LAZY;
 1137
 1138	return TIF_NEED_RESCHED;
 1139}
 1140
 1141void resched_curr_lazy(struct rq *rq)
 1142{
 1143	__resched_curr(rq, get_lazy_tif_bit());
 1144}
 1145
 1146void resched_cpu(int cpu)
 1147{
 1148	struct rq *rq = cpu_rq(cpu);
 1149	unsigned long flags;
 1150
 1151	raw_spin_rq_lock_irqsave(rq, flags);
 1152	if (cpu_online(cpu) || cpu == smp_processor_id())
 1153		resched_curr(rq);
 1154	raw_spin_rq_unlock_irqrestore(rq, flags);
 1155}
 1156
 1157#ifdef CONFIG_SMP
 1158#ifdef CONFIG_NO_HZ_COMMON
 1159/*
 1160 * In the semi idle case, use the nearest busy CPU for migrating timers
 1161 * from an idle CPU.  This is good for power-savings.
 1162 *
 1163 * We don't do similar optimization for completely idle system, as
 1164 * selecting an idle CPU will add more delays to the timers than intended
 1165 * (as that CPU's timer base may not be up to date wrt jiffies etc).
 1166 */
 1167int get_nohz_timer_target(void)
 1168{
 1169	int i, cpu = smp_processor_id(), default_cpu = -1;
 1170	struct sched_domain *sd;
 1171	const struct cpumask *hk_mask;
 1172
 1173	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
 1174		if (!idle_cpu(cpu))
 1175			return cpu;
 1176		default_cpu = cpu;
 1177	}
 1178
 1179	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
 1180
 1181	guard(rcu)();
 1182
 
 1183	for_each_domain(cpu, sd) {
 1184		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 1185			if (cpu == i)
 1186				continue;
 1187
 1188			if (!idle_cpu(i))
 1189				return i;
 1190		}
 1191	}
 1192
 1193	if (default_cpu == -1)
 1194		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
 1195
 1196	return default_cpu;
 
 1197}
 1198
 1199/*
 1200 * When add_timer_on() enqueues a timer into the timer wheel of an
 1201 * idle CPU then this timer might expire before the next timer event
 1202 * which is scheduled to wake up that CPU. In case of a completely
 1203 * idle system the next event might even be infinite time into the
 1204 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 1205 * leaves the inner idle loop so the newly added timer is taken into
 1206 * account when the CPU goes back to idle and evaluates the timer
 1207 * wheel for the next timer event.
 1208 */
 1209static void wake_up_idle_cpu(int cpu)
 1210{
 1211	struct rq *rq = cpu_rq(cpu);
 1212
 1213	if (cpu == smp_processor_id())
 1214		return;
 1215
 1216	/*
 1217	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
 1218	 * part of the idle loop. This forces an exit from the idle loop
 1219	 * and a round trip to schedule(). Now this could be optimized
 1220	 * because a simple new idle loop iteration is enough to
 1221	 * re-evaluate the next tick. Provided some re-ordering of tick
 1222	 * nohz functions that would need to follow TIF_NR_POLLING
 1223	 * clearing:
 1224	 *
 1225	 * - On most architectures, a simple fetch_or on ti::flags with a
 1226	 *   "0" value would be enough to know if an IPI needs to be sent.
 1227	 *
 1228	 * - x86 needs to perform a last need_resched() check between
 1229	 *   monitor and mwait which doesn't take timers into account.
 1230	 *   There a dedicated TIF_TIMER flag would be required to
 1231	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
 1232	 *   before mwait().
 1233	 *
 1234	 * However, remote timer enqueue is not such a frequent event
 1235	 * and testing of the above solutions didn't appear to report
 1236	 * much benefits.
 1237	 */
 1238	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
 1239		smp_send_reschedule(cpu);
 1240	else
 1241		trace_sched_wake_idle_without_ipi(cpu);
 1242}
 1243
 1244static bool wake_up_full_nohz_cpu(int cpu)
 1245{
 1246	/*
 1247	 * We just need the target to call irq_exit() and re-evaluate
 1248	 * the next tick. The nohz full kick at least implies that.
 1249	 * If needed we can still optimize that later with an
 1250	 * empty IRQ.
 1251	 */
 1252	if (cpu_is_offline(cpu))
 1253		return true;  /* Don't try to wake offline CPUs. */
 1254	if (tick_nohz_full_cpu(cpu)) {
 1255		if (cpu != smp_processor_id() ||
 1256		    tick_nohz_tick_stopped())
 1257			tick_nohz_full_kick_cpu(cpu);
 1258		return true;
 1259	}
 1260
 1261	return false;
 1262}
 1263
 1264/*
 1265 * Wake up the specified CPU.  If the CPU is going offline, it is the
 1266 * caller's responsibility to deal with the lost wakeup, for example,
 1267 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 1268 */
 1269void wake_up_nohz_cpu(int cpu)
 1270{
 1271	if (!wake_up_full_nohz_cpu(cpu))
 1272		wake_up_idle_cpu(cpu);
 1273}
 1274
 1275static void nohz_csd_func(void *info)
 1276{
 1277	struct rq *rq = info;
 1278	int cpu = cpu_of(rq);
 1279	unsigned int flags;
 
 
 
 
 1280
 1281	/*
 1282	 * Release the rq::nohz_csd.
 
 1283	 */
 1284	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
 1285	WARN_ON(!(flags & NOHZ_KICK_MASK));
 1286
 1287	rq->idle_balance = idle_cpu(cpu);
 1288	if (rq->idle_balance) {
 1289		rq->nohz_idle_balance = flags;
 1290		__raise_softirq_irqoff(SCHED_SOFTIRQ);
 1291	}
 1292}
 1293
 1294#endif /* CONFIG_NO_HZ_COMMON */
 1295
 1296#ifdef CONFIG_NO_HZ_FULL
 1297static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
 1298{
 1299	if (rq->nr_running != 1)
 1300		return false;
 1301
 1302	if (p->sched_class != &fair_sched_class)
 1303		return false;
 1304
 1305	if (!task_on_rq_queued(p))
 1306		return false;
 1307
 1308	return true;
 1309}
 1310
 
 
 
 1311bool sched_can_stop_tick(struct rq *rq)
 1312{
 1313	int fifo_nr_running;
 1314
 1315	/* Deadline tasks, even if single, need the tick */
 1316	if (rq->dl.dl_nr_running)
 1317		return false;
 1318
 1319	/*
 1320	 * If there are more than one RR tasks, we need the tick to affect the
 1321	 * actual RR behaviour.
 1322	 */
 1323	if (rq->rt.rr_nr_running) {
 1324		if (rq->rt.rr_nr_running == 1)
 1325			return true;
 1326		else
 1327			return false;
 1328	}
 1329
 1330	/*
 1331	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 1332	 * forced preemption between FIFO tasks.
 1333	 */
 1334	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 1335	if (fifo_nr_running)
 1336		return true;
 1337
 1338	/*
 1339	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
 1340	 * left. For CFS, if there's more than one we need the tick for
 1341	 * involuntary preemption. For SCX, ask.
 1342	 */
 1343	if (scx_enabled() && !scx_can_stop_tick(rq))
 1344		return false;
 1345
 1346	if (rq->cfs.h_nr_running > 1)
 1347		return false;
 1348
 1349	/*
 1350	 * If there is one task and it has CFS runtime bandwidth constraints
 1351	 * and it's on the cpu now we don't want to stop the tick.
 1352	 * This check prevents clearing the bit if a newly enqueued task here is
 1353	 * dequeued by migrating while the constrained task continues to run.
 1354	 * E.g. going from 2->1 without going through pick_next_task().
 1355	 */
 1356	if (__need_bw_check(rq, rq->curr)) {
 1357		if (cfs_task_bw_constrained(rq->curr))
 1358			return false;
 1359	}
 1360
 1361	return true;
 1362}
 1363#endif /* CONFIG_NO_HZ_FULL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1364#endif /* CONFIG_SMP */
 1365
 1366#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 1367			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 1368/*
 1369 * Iterate task_group tree rooted at *from, calling @down when first entering a
 1370 * node and @up when leaving it for the final time.
 1371 *
 1372 * Caller must hold rcu_lock or sufficient equivalent.
 1373 */
 1374int walk_tg_tree_from(struct task_group *from,
 1375			     tg_visitor down, tg_visitor up, void *data)
 1376{
 1377	struct task_group *parent, *child;
 1378	int ret;
 1379
 1380	parent = from;
 1381
 1382down:
 1383	ret = (*down)(parent, data);
 1384	if (ret)
 1385		goto out;
 1386	list_for_each_entry_rcu(child, &parent->children, siblings) {
 1387		parent = child;
 1388		goto down;
 1389
 1390up:
 1391		continue;
 1392	}
 1393	ret = (*up)(parent, data);
 1394	if (ret || parent == from)
 1395		goto out;
 1396
 1397	child = parent;
 1398	parent = parent->parent;
 1399	if (parent)
 1400		goto up;
 1401out:
 1402	return ret;
 1403}
 1404
 1405int tg_nop(struct task_group *tg, void *data)
 1406{
 1407	return 0;
 1408}
 1409#endif
 1410
 1411void set_load_weight(struct task_struct *p, bool update_load)
 1412{
 1413	int prio = p->static_prio - MAX_RT_PRIO;
 1414	struct load_weight lw;
 1415
 1416	if (task_has_idle_policy(p)) {
 1417		lw.weight = scale_load(WEIGHT_IDLEPRIO);
 1418		lw.inv_weight = WMULT_IDLEPRIO;
 1419	} else {
 1420		lw.weight = scale_load(sched_prio_to_weight[prio]);
 1421		lw.inv_weight = sched_prio_to_wmult[prio];
 1422	}
 1423
 1424	/*
 1425	 * SCHED_OTHER tasks have to update their load when changing their
 1426	 * weight
 1427	 */
 1428	if (update_load && p->sched_class->reweight_task)
 1429		p->sched_class->reweight_task(task_rq(p), p, &lw);
 1430	else
 1431		p->se.load = lw;
 1432}
 1433
 1434#ifdef CONFIG_UCLAMP_TASK
 1435/*
 1436 * Serializes updates of utilization clamp values
 1437 *
 1438 * The (slow-path) user-space triggers utilization clamp value updates which
 1439 * can require updates on (fast-path) scheduler's data structures used to
 1440 * support enqueue/dequeue operations.
 1441 * While the per-CPU rq lock protects fast-path update operations, user-space
 1442 * requests are serialized using a mutex to reduce the risk of conflicting
 1443 * updates or API abuses.
 1444 */
 1445static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
 1446
 1447/* Max allowed minimum utilization */
 1448static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 1449
 1450/* Max allowed maximum utilization */
 1451static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 1452
 1453/*
 1454 * By default RT tasks run at the maximum performance point/capacity of the
 1455 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 1456 * SCHED_CAPACITY_SCALE.
 1457 *
 1458 * This knob allows admins to change the default behavior when uclamp is being
 1459 * used. In battery powered devices, particularly, running at the maximum
 1460 * capacity and frequency will increase energy consumption and shorten the
 1461 * battery life.
 1462 *
 1463 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 1464 *
 1465 * This knob will not override the system default sched_util_clamp_min defined
 1466 * above.
 1467 */
 1468unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 1469
 1470/* All clamps are required to be less or equal than these values */
 1471static struct uclamp_se uclamp_default[UCLAMP_CNT];
 1472
 1473/*
 1474 * This static key is used to reduce the uclamp overhead in the fast path. It
 1475 * primarily disables the call to uclamp_rq_{inc, dec}() in
 1476 * enqueue/dequeue_task().
 1477 *
 1478 * This allows users to continue to enable uclamp in their kernel config with
 1479 * minimum uclamp overhead in the fast path.
 1480 *
 1481 * As soon as userspace modifies any of the uclamp knobs, the static key is
 1482 * enabled, since we have an actual users that make use of uclamp
 1483 * functionality.
 1484 *
 1485 * The knobs that would enable this static key are:
 1486 *
 1487 *   * A task modifying its uclamp value with sched_setattr().
 1488 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 1489 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 1490 */
 1491DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 1492
 1493static inline unsigned int
 1494uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 1495		  unsigned int clamp_value)
 1496{
 1497	/*
 1498	 * Avoid blocked utilization pushing up the frequency when we go
 1499	 * idle (which drops the max-clamp) by retaining the last known
 1500	 * max-clamp.
 1501	 */
 1502	if (clamp_id == UCLAMP_MAX) {
 1503		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 1504		return clamp_value;
 1505	}
 1506
 1507	return uclamp_none(UCLAMP_MIN);
 1508}
 1509
 1510static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 1511				     unsigned int clamp_value)
 1512{
 1513	/* Reset max-clamp retention only on idle exit */
 1514	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1515		return;
 1516
 1517	uclamp_rq_set(rq, clamp_id, clamp_value);
 1518}
 1519
 1520static inline
 1521unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 1522				   unsigned int clamp_value)
 1523{
 1524	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 1525	int bucket_id = UCLAMP_BUCKETS - 1;
 1526
 1527	/*
 1528	 * Since both min and max clamps are max aggregated, find the
 1529	 * top most bucket with tasks in.
 1530	 */
 1531	for ( ; bucket_id >= 0; bucket_id--) {
 1532		if (!bucket[bucket_id].tasks)
 1533			continue;
 1534		return bucket[bucket_id].value;
 1535	}
 1536
 1537	/* No tasks -- default clamp values */
 1538	return uclamp_idle_value(rq, clamp_id, clamp_value);
 1539}
 1540
 1541static void __uclamp_update_util_min_rt_default(struct task_struct *p)
 1542{
 1543	unsigned int default_util_min;
 1544	struct uclamp_se *uc_se;
 1545
 1546	lockdep_assert_held(&p->pi_lock);
 1547
 1548	uc_se = &p->uclamp_req[UCLAMP_MIN];
 1549
 1550	/* Only sync if user didn't override the default */
 1551	if (uc_se->user_defined)
 1552		return;
 1553
 1554	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
 1555	uclamp_se_set(uc_se, default_util_min, false);
 1556}
 1557
 1558static void uclamp_update_util_min_rt_default(struct task_struct *p)
 1559{
 1560	if (!rt_task(p))
 1561		return;
 1562
 1563	/* Protect updates to p->uclamp_* */
 1564	guard(task_rq_lock)(p);
 1565	__uclamp_update_util_min_rt_default(p);
 1566}
 1567
 1568static inline struct uclamp_se
 1569uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
 1570{
 1571	/* Copy by value as we could modify it */
 1572	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 1573#ifdef CONFIG_UCLAMP_TASK_GROUP
 1574	unsigned int tg_min, tg_max, value;
 1575
 1576	/*
 1577	 * Tasks in autogroups or root task group will be
 1578	 * restricted by system defaults.
 1579	 */
 1580	if (task_group_is_autogroup(task_group(p)))
 1581		return uc_req;
 1582	if (task_group(p) == &root_task_group)
 1583		return uc_req;
 1584
 1585	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
 1586	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
 1587	value = uc_req.value;
 1588	value = clamp(value, tg_min, tg_max);
 1589	uclamp_se_set(&uc_req, value, false);
 1590#endif
 1591
 1592	return uc_req;
 1593}
 1594
 1595/*
 1596 * The effective clamp bucket index of a task depends on, by increasing
 1597 * priority:
 1598 * - the task specific clamp value, when explicitly requested from userspace
 1599 * - the task group effective clamp value, for tasks not either in the root
 1600 *   group or in an autogroup
 1601 * - the system default clamp value, defined by the sysadmin
 1602 */
 1603static inline struct uclamp_se
 1604uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
 1605{
 1606	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
 1607	struct uclamp_se uc_max = uclamp_default[clamp_id];
 1608
 1609	/* System default restrictions always apply */
 1610	if (unlikely(uc_req.value > uc_max.value))
 1611		return uc_max;
 1612
 1613	return uc_req;
 1614}
 1615
 1616unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
 1617{
 1618	struct uclamp_se uc_eff;
 1619
 1620	/* Task currently refcounted: use back-annotated (effective) value */
 1621	if (p->uclamp[clamp_id].active)
 1622		return (unsigned long)p->uclamp[clamp_id].value;
 1623
 1624	uc_eff = uclamp_eff_get(p, clamp_id);
 1625
 1626	return (unsigned long)uc_eff.value;
 1627}
 1628
 1629/*
 1630 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 1631 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 1632 * updates the rq's clamp value if required.
 1633 *
 1634 * Tasks can have a task-specific value requested from user-space, track
 1635 * within each bucket the maximum value for tasks refcounted in it.
 1636 * This "local max aggregation" allows to track the exact "requested" value
 1637 * for each bucket when all its RUNNABLE tasks require the same clamp.
 1638 */
 1639static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 1640				    enum uclamp_id clamp_id)
 1641{
 1642	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1643	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1644	struct uclamp_bucket *bucket;
 1645
 1646	lockdep_assert_rq_held(rq);
 1647
 1648	/* Update task effective clamp */
 1649	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 1650
 1651	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1652	bucket->tasks++;
 1653	uc_se->active = true;
 1654
 1655	uclamp_idle_reset(rq, clamp_id, uc_se->value);
 1656
 1657	/*
 1658	 * Local max aggregation: rq buckets always track the max
 1659	 * "requested" clamp value of its RUNNABLE tasks.
 1660	 */
 1661	if (bucket->tasks == 1 || uc_se->value > bucket->value)
 1662		bucket->value = uc_se->value;
 1663
 1664	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
 1665		uclamp_rq_set(rq, clamp_id, uc_se->value);
 1666}
 1667
 1668/*
 1669 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 1670 * is released. If this is the last task reference counting the rq's max
 1671 * active clamp value, then the rq's clamp value is updated.
 1672 *
 1673 * Both refcounted tasks and rq's cached clamp values are expected to be
 1674 * always valid. If it's detected they are not, as defensive programming,
 1675 * enforce the expected state and warn.
 1676 */
 1677static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 1678				    enum uclamp_id clamp_id)
 1679{
 1680	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1681	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1682	struct uclamp_bucket *bucket;
 1683	unsigned int bkt_clamp;
 1684	unsigned int rq_clamp;
 1685
 1686	lockdep_assert_rq_held(rq);
 1687
 1688	/*
 1689	 * If sched_uclamp_used was enabled after task @p was enqueued,
 1690	 * we could end up with unbalanced call to uclamp_rq_dec_id().
 1691	 *
 1692	 * In this case the uc_se->active flag should be false since no uclamp
 1693	 * accounting was performed at enqueue time and we can just return
 1694	 * here.
 1695	 *
 1696	 * Need to be careful of the following enqueue/dequeue ordering
 1697	 * problem too
 1698	 *
 1699	 *	enqueue(taskA)
 1700	 *	// sched_uclamp_used gets enabled
 1701	 *	enqueue(taskB)
 1702	 *	dequeue(taskA)
 1703	 *	// Must not decrement bucket->tasks here
 1704	 *	dequeue(taskB)
 1705	 *
 1706	 * where we could end up with stale data in uc_se and
 1707	 * bucket[uc_se->bucket_id].
 1708	 *
 1709	 * The following check here eliminates the possibility of such race.
 1710	 */
 1711	if (unlikely(!uc_se->active))
 1712		return;
 1713
 1714	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1715
 1716	SCHED_WARN_ON(!bucket->tasks);
 1717	if (likely(bucket->tasks))
 1718		bucket->tasks--;
 1719
 1720	uc_se->active = false;
 1721
 1722	/*
 1723	 * Keep "local max aggregation" simple and accept to (possibly)
 1724	 * overboost some RUNNABLE tasks in the same bucket.
 1725	 * The rq clamp bucket value is reset to its base value whenever
 1726	 * there are no more RUNNABLE tasks refcounting it.
 1727	 */
 1728	if (likely(bucket->tasks))
 1729		return;
 1730
 1731	rq_clamp = uclamp_rq_get(rq, clamp_id);
 1732	/*
 1733	 * Defensive programming: this should never happen. If it happens,
 1734	 * e.g. due to future modification, warn and fix up the expected value.
 1735	 */
 1736	SCHED_WARN_ON(bucket->value > rq_clamp);
 1737	if (bucket->value >= rq_clamp) {
 1738		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
 1739		uclamp_rq_set(rq, clamp_id, bkt_clamp);
 1740	}
 1741}
 1742
 1743static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
 1744{
 1745	enum uclamp_id clamp_id;
 1746
 1747	/*
 1748	 * Avoid any overhead until uclamp is actually used by the userspace.
 1749	 *
 1750	 * The condition is constructed such that a NOP is generated when
 1751	 * sched_uclamp_used is disabled.
 1752	 */
 1753	if (!static_branch_unlikely(&sched_uclamp_used))
 1754		return;
 1755
 1756	if (unlikely(!p->sched_class->uclamp_enabled))
 1757		return;
 1758
 1759	if (p->se.sched_delayed)
 1760		return;
 1761
 1762	for_each_clamp_id(clamp_id)
 1763		uclamp_rq_inc_id(rq, p, clamp_id);
 1764
 1765	/* Reset clamp idle holding when there is one RUNNABLE task */
 1766	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 1767		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1768}
 1769
 1770static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 1771{
 1772	enum uclamp_id clamp_id;
 1773
 1774	/*
 1775	 * Avoid any overhead until uclamp is actually used by the userspace.
 
 
 1776	 *
 1777	 * The condition is constructed such that a NOP is generated when
 1778	 * sched_uclamp_used is disabled.
 1779	 */
 1780	if (!static_branch_unlikely(&sched_uclamp_used))
 1781		return;
 1782
 1783	if (unlikely(!p->sched_class->uclamp_enabled))
 1784		return;
 1785
 1786	if (p->se.sched_delayed)
 1787		return;
 1788
 1789	for_each_clamp_id(clamp_id)
 1790		uclamp_rq_dec_id(rq, p, clamp_id);
 1791}
 1792
 1793static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
 1794				      enum uclamp_id clamp_id)
 1795{
 1796	if (!p->uclamp[clamp_id].active)
 1797		return;
 1798
 1799	uclamp_rq_dec_id(rq, p, clamp_id);
 1800	uclamp_rq_inc_id(rq, p, clamp_id);
 1801
 1802	/*
 1803	 * Make sure to clear the idle flag if we've transiently reached 0
 1804	 * active tasks on rq.
 1805	 */
 1806	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1807		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1808}
 1809
 1810static inline void
 1811uclamp_update_active(struct task_struct *p)
 1812{
 1813	enum uclamp_id clamp_id;
 1814	struct rq_flags rf;
 1815	struct rq *rq;
 1816
 1817	/*
 1818	 * Lock the task and the rq where the task is (or was) queued.
 1819	 *
 1820	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
 1821	 * price to pay to safely serialize util_{min,max} updates with
 1822	 * enqueues, dequeues and migration operations.
 1823	 * This is the same locking schema used by __set_cpus_allowed_ptr().
 1824	 */
 1825	rq = task_rq_lock(p, &rf);
 1826
 1827	/*
 1828	 * Setting the clamp bucket is serialized by task_rq_lock().
 1829	 * If the task is not yet RUNNABLE and its task_struct is not
 1830	 * affecting a valid clamp bucket, the next time it's enqueued,
 1831	 * it will already see the updated clamp bucket value.
 1832	 */
 1833	for_each_clamp_id(clamp_id)
 1834		uclamp_rq_reinc_id(rq, p, clamp_id);
 1835
 1836	task_rq_unlock(rq, p, &rf);
 1837}
 1838
 1839#ifdef CONFIG_UCLAMP_TASK_GROUP
 1840static inline void
 1841uclamp_update_active_tasks(struct cgroup_subsys_state *css)
 1842{
 1843	struct css_task_iter it;
 1844	struct task_struct *p;
 1845
 1846	css_task_iter_start(css, 0, &it);
 1847	while ((p = css_task_iter_next(&it)))
 1848		uclamp_update_active(p);
 1849	css_task_iter_end(&it);
 1850}
 1851
 1852static void cpu_util_update_eff(struct cgroup_subsys_state *css);
 1853#endif
 1854
 1855#ifdef CONFIG_SYSCTL
 1856#ifdef CONFIG_UCLAMP_TASK_GROUP
 1857static void uclamp_update_root_tg(void)
 1858{
 1859	struct task_group *tg = &root_task_group;
 1860
 1861	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
 1862		      sysctl_sched_uclamp_util_min, false);
 1863	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
 1864		      sysctl_sched_uclamp_util_max, false);
 1865
 1866	guard(rcu)();
 1867	cpu_util_update_eff(&root_task_group.css);
 1868}
 1869#else
 1870static void uclamp_update_root_tg(void) { }
 1871#endif
 
 
 
 
 1872
 1873static void uclamp_sync_util_min_rt_default(void)
 1874{
 1875	struct task_struct *g, *p;
 1876
 1877	/*
 1878	 * copy_process()			sysctl_uclamp
 1879	 *					  uclamp_min_rt = X;
 1880	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
 1881	 *   // link thread			  smp_mb__after_spinlock()
 1882	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
 1883	 *   sched_post_fork()			  for_each_process_thread()
 1884	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
 1885	 *
 1886	 * Ensures that either sched_post_fork() will observe the new
 1887	 * uclamp_min_rt or for_each_process_thread() will observe the new
 1888	 * task.
 1889	 */
 1890	read_lock(&tasklist_lock);
 1891	smp_mb__after_spinlock();
 1892	read_unlock(&tasklist_lock);
 1893
 1894	guard(rcu)();
 1895	for_each_process_thread(g, p)
 1896		uclamp_update_util_min_rt_default(p);
 1897}
 1898
 1899static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
 1900				void *buffer, size_t *lenp, loff_t *ppos)
 1901{
 1902	bool update_root_tg = false;
 1903	int old_min, old_max, old_min_rt;
 1904	int result;
 1905
 1906	guard(mutex)(&uclamp_mutex);
 1907
 1908	old_min = sysctl_sched_uclamp_util_min;
 1909	old_max = sysctl_sched_uclamp_util_max;
 1910	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
 1911
 1912	result = proc_dointvec(table, write, buffer, lenp, ppos);
 1913	if (result)
 1914		goto undo;
 1915	if (!write)
 1916		return 0;
 1917
 1918	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
 1919	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
 1920	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
 1921
 1922		result = -EINVAL;
 1923		goto undo;
 1924	}
 1925
 1926	if (old_min != sysctl_sched_uclamp_util_min) {
 1927		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
 1928			      sysctl_sched_uclamp_util_min, false);
 1929		update_root_tg = true;
 1930	}
 1931	if (old_max != sysctl_sched_uclamp_util_max) {
 1932		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
 1933			      sysctl_sched_uclamp_util_max, false);
 1934		update_root_tg = true;
 1935	}
 1936
 1937	if (update_root_tg) {
 1938		static_branch_enable(&sched_uclamp_used);
 1939		uclamp_update_root_tg();
 1940	}
 1941
 1942	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
 1943		static_branch_enable(&sched_uclamp_used);
 1944		uclamp_sync_util_min_rt_default();
 1945	}
 1946
 1947	/*
 1948	 * We update all RUNNABLE tasks only when task groups are in use.
 1949	 * Otherwise, keep it simple and do just a lazy update at each next
 1950	 * task enqueue time.
 1951	 */
 1952	return 0;
 1953
 1954undo:
 1955	sysctl_sched_uclamp_util_min = old_min;
 1956	sysctl_sched_uclamp_util_max = old_max;
 1957	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
 1958	return result;
 1959}
 1960#endif
 1961
 1962static void uclamp_fork(struct task_struct *p)
 1963{
 1964	enum uclamp_id clamp_id;
 1965
 1966	/*
 1967	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
 1968	 * as the task is still at its early fork stages.
 1969	 */
 1970	for_each_clamp_id(clamp_id)
 1971		p->uclamp[clamp_id].active = false;
 1972
 1973	if (likely(!p->sched_reset_on_fork))
 1974		return;
 1975
 1976	for_each_clamp_id(clamp_id) {
 1977		uclamp_se_set(&p->uclamp_req[clamp_id],
 1978			      uclamp_none(clamp_id), false);
 1979	}
 1980}
 1981
 1982static void uclamp_post_fork(struct task_struct *p)
 1983{
 1984	uclamp_update_util_min_rt_default(p);
 1985}
 1986
 1987static void __init init_uclamp_rq(struct rq *rq)
 1988{
 1989	enum uclamp_id clamp_id;
 1990	struct uclamp_rq *uc_rq = rq->uclamp;
 
 
 
 
 
 
 1991
 1992	for_each_clamp_id(clamp_id) {
 1993		uc_rq[clamp_id] = (struct uclamp_rq) {
 1994			.value = uclamp_none(clamp_id)
 1995		};
 1996	}
 1997
 1998	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
 1999}
 2000
 2001static void __init init_uclamp(void)
 2002{
 2003	struct uclamp_se uc_max = {};
 2004	enum uclamp_id clamp_id;
 2005	int cpu;
 2006
 2007	for_each_possible_cpu(cpu)
 2008		init_uclamp_rq(cpu_rq(cpu));
 2009
 2010	for_each_clamp_id(clamp_id) {
 2011		uclamp_se_set(&init_task.uclamp_req[clamp_id],
 2012			      uclamp_none(clamp_id), false);
 2013	}
 2014
 2015	/* System defaults allow max clamp values for both indexes */
 2016	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
 2017	for_each_clamp_id(clamp_id) {
 2018		uclamp_default[clamp_id] = uc_max;
 2019#ifdef CONFIG_UCLAMP_TASK_GROUP
 2020		root_task_group.uclamp_req[clamp_id] = uc_max;
 2021		root_task_group.uclamp[clamp_id] = uc_max;
 2022#endif
 2023	}
 2024}
 2025
 2026#else /* !CONFIG_UCLAMP_TASK */
 2027static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
 2028static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
 2029static inline void uclamp_fork(struct task_struct *p) { }
 2030static inline void uclamp_post_fork(struct task_struct *p) { }
 2031static inline void init_uclamp(void) { }
 2032#endif /* CONFIG_UCLAMP_TASK */
 2033
 2034bool sched_task_on_rq(struct task_struct *p)
 2035{
 2036	return task_on_rq_queued(p);
 2037}
 2038
 2039unsigned long get_wchan(struct task_struct *p)
 2040{
 2041	unsigned long ip = 0;
 2042	unsigned int state;
 2043
 2044	if (!p || p == current)
 2045		return 0;
 2046
 2047	/* Only get wchan if task is blocked and we can keep it that way. */
 2048	raw_spin_lock_irq(&p->pi_lock);
 2049	state = READ_ONCE(p->__state);
 2050	smp_rmb(); /* see try_to_wake_up() */
 2051	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
 2052		ip = __get_wchan(p);
 2053	raw_spin_unlock_irq(&p->pi_lock);
 2054
 2055	return ip;
 2056}
 2057
 2058void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 2059{
 2060	if (!(flags & ENQUEUE_NOCLOCK))
 2061		update_rq_clock(rq);
 2062
 2063	p->sched_class->enqueue_task(rq, p, flags);
 2064	/*
 2065	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
 2066	 * ->sched_delayed.
 2067	 */
 2068	uclamp_rq_inc(rq, p);
 2069
 2070	psi_enqueue(p, flags);
 2071
 2072	if (!(flags & ENQUEUE_RESTORE))
 2073		sched_info_enqueue(rq, p);
 2074
 2075	if (sched_core_enabled(rq))
 2076		sched_core_enqueue(rq, p);
 2077}
 2078
 2079/*
 2080 * Must only return false when DEQUEUE_SLEEP.
 2081 */
 2082inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 2083{
 2084	if (sched_core_enabled(rq))
 2085		sched_core_dequeue(rq, p, flags);
 2086
 2087	if (!(flags & DEQUEUE_NOCLOCK))
 2088		update_rq_clock(rq);
 2089
 2090	if (!(flags & DEQUEUE_SAVE))
 2091		sched_info_dequeue(rq, p);
 2092
 2093	psi_dequeue(p, flags);
 2094
 2095	/*
 2096	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
 2097	 * and mark the task ->sched_delayed.
 2098	 */
 2099	uclamp_rq_dec(rq, p);
 2100	return p->sched_class->dequeue_task(rq, p, flags);
 2101}
 2102
 2103void activate_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 2104{
 2105	if (task_on_rq_migrating(p))
 2106		flags |= ENQUEUE_MIGRATED;
 2107	if (flags & ENQUEUE_MIGRATED)
 2108		sched_mm_cid_migrate_to(rq, p);
 2109
 2110	enqueue_task(rq, p, flags);
 2111
 2112	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
 2113	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
 
 
 
 
 
 2114}
 2115
 2116void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 2117{
 2118	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
 2119
 2120	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
 2121	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
 2122
 2123	/*
 2124	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
 2125	 * dequeue_task() and cleared *after* enqueue_task().
 
 2126	 */
 2127
 2128	dequeue_task(rq, p, flags);
 2129}
 2130
 2131static void block_task(struct rq *rq, struct task_struct *p, int flags)
 2132{
 2133	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
 2134		__block_task(rq, p);
 2135}
 2136
 2137/**
 2138 * task_curr - is this task currently executing on a CPU?
 2139 * @p: the task in question.
 2140 *
 2141 * Return: 1 if the task is currently executing. 0 otherwise.
 2142 */
 2143inline int task_curr(const struct task_struct *p)
 2144{
 2145	return cpu_curr(task_cpu(p)) == p;
 2146}
 2147
 2148/*
 2149 * ->switching_to() is called with the pi_lock and rq_lock held and must not
 2150 * mess with locking.
 2151 */
 2152void check_class_changing(struct rq *rq, struct task_struct *p,
 2153			  const struct sched_class *prev_class)
 2154{
 2155	if (prev_class != p->sched_class && p->sched_class->switching_to)
 2156		p->sched_class->switching_to(rq, p);
 2157}
 2158
 2159/*
 2160 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 2161 * use the balance_callback list if you want balancing.
 2162 *
 2163 * this means any call to check_class_changed() must be followed by a call to
 2164 * balance_callback().
 2165 */
 2166void check_class_changed(struct rq *rq, struct task_struct *p,
 2167			 const struct sched_class *prev_class,
 2168			 int oldprio)
 2169{
 2170	if (prev_class != p->sched_class) {
 2171		if (prev_class->switched_from)
 2172			prev_class->switched_from(rq, p);
 2173
 2174		p->sched_class->switched_to(rq, p);
 2175	} else if (oldprio != p->prio || dl_task(p))
 2176		p->sched_class->prio_changed(rq, p, oldprio);
 2177}
 2178
 2179void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
 2180{
 2181	struct task_struct *donor = rq->donor;
 2182
 2183	if (p->sched_class == donor->sched_class)
 2184		donor->sched_class->wakeup_preempt(rq, p, flags);
 2185	else if (sched_class_above(p->sched_class, donor->sched_class))
 2186		resched_curr(rq);
 
 
 
 
 
 
 
 
 2187
 2188	/*
 2189	 * A queue event has occurred, and we're going to schedule.  In
 2190	 * this case, we can save a useless back to back clock update.
 2191	 */
 2192	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
 2193		rq_clock_skip_update(rq);
 2194}
 2195
 2196static __always_inline
 2197int __task_state_match(struct task_struct *p, unsigned int state)
 2198{
 2199	if (READ_ONCE(p->__state) & state)
 2200		return 1;
 2201
 2202	if (READ_ONCE(p->saved_state) & state)
 2203		return -1;
 2204
 2205	return 0;
 2206}
 2207
 2208static __always_inline
 2209int task_state_match(struct task_struct *p, unsigned int state)
 2210{
 2211	/*
 2212	 * Serialize against current_save_and_set_rtlock_wait_state(),
 2213	 * current_restore_rtlock_saved_state(), and __refrigerator().
 2214	 */
 2215	guard(raw_spinlock_irq)(&p->pi_lock);
 2216	return __task_state_match(p, state);
 2217}
 2218
 2219/*
 2220 * wait_task_inactive - wait for a thread to unschedule.
 2221 *
 2222 * Wait for the thread to block in any of the states set in @match_state.
 2223 * If it changes, i.e. @p might have woken up, then return zero.  When we
 2224 * succeed in waiting for @p to be off its CPU, we return a positive number
 2225 * (its total switch count).  If a second call a short while later returns the
 2226 * same number, the caller can be sure that @p has remained unscheduled the
 2227 * whole time.
 2228 *
 2229 * The caller must ensure that the task *will* unschedule sometime soon,
 2230 * else this function might spin for a *long* time. This function can't
 2231 * be called with interrupts off, or it may introduce deadlock with
 2232 * smp_call_function() if an IPI is sent by the same process we are
 2233 * waiting to become inactive.
 2234 */
 2235unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
 2236{
 2237	int running, queued, match;
 2238	struct rq_flags rf;
 2239	unsigned long ncsw;
 2240	struct rq *rq;
 2241
 2242	for (;;) {
 2243		/*
 2244		 * We do the initial early heuristics without holding
 2245		 * any task-queue locks at all. We'll only try to get
 2246		 * the runqueue lock when things look like they will
 2247		 * work out!
 2248		 */
 2249		rq = task_rq(p);
 2250
 2251		/*
 2252		 * If the task is actively running on another CPU
 2253		 * still, just relax and busy-wait without holding
 2254		 * any locks.
 2255		 *
 2256		 * NOTE! Since we don't hold any locks, it's not
 2257		 * even sure that "rq" stays as the right runqueue!
 2258		 * But we don't care, since "task_on_cpu()" will
 2259		 * return false if the runqueue has changed and p
 2260		 * is actually now running somewhere else!
 2261		 */
 2262		while (task_on_cpu(rq, p)) {
 2263			if (!task_state_match(p, match_state))
 2264				return 0;
 2265			cpu_relax();
 2266		}
 2267
 2268		/*
 2269		 * Ok, time to look more closely! We need the rq
 2270		 * lock now, to be *sure*. If we're wrong, we'll
 2271		 * just go back and repeat.
 2272		 */
 2273		rq = task_rq_lock(p, &rf);
 2274		trace_sched_wait_task(p);
 2275		running = task_on_cpu(rq, p);
 2276		queued = task_on_rq_queued(p);
 2277		ncsw = 0;
 2278		if ((match = __task_state_match(p, match_state))) {
 2279			/*
 2280			 * When matching on p->saved_state, consider this task
 2281			 * still queued so it will wait.
 2282			 */
 2283			if (match < 0)
 2284				queued = 1;
 2285			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 2286		}
 2287		task_rq_unlock(rq, p, &rf);
 2288
 2289		/*
 2290		 * If it changed from the expected state, bail out now.
 2291		 */
 2292		if (unlikely(!ncsw))
 2293			break;
 2294
 2295		/*
 2296		 * Was it really running after all now that we
 2297		 * checked with the proper locks actually held?
 2298		 *
 2299		 * Oops. Go back and try again..
 2300		 */
 2301		if (unlikely(running)) {
 2302			cpu_relax();
 2303			continue;
 2304		}
 2305
 2306		/*
 2307		 * It's not enough that it's not actively running,
 2308		 * it must be off the runqueue _entirely_, and not
 2309		 * preempted!
 2310		 *
 2311		 * So if it was still runnable (but just not actively
 2312		 * running right now), it's preempted, and we should
 2313		 * yield - it could be a while.
 2314		 */
 2315		if (unlikely(queued)) {
 2316			ktime_t to = NSEC_PER_SEC / HZ;
 2317
 2318			set_current_state(TASK_UNINTERRUPTIBLE);
 2319			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
 2320			continue;
 2321		}
 2322
 2323		/*
 2324		 * Ahh, all good. It wasn't running, and it wasn't
 2325		 * runnable, which means that it will never become
 2326		 * running in the future either. We're all done!
 2327		 */
 2328		break;
 2329	}
 2330
 2331	return ncsw;
 2332}
 2333
 2334#ifdef CONFIG_SMP
 2335
 2336static void
 2337__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
 2338
 2339static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
 2340{
 2341	struct affinity_context ac = {
 2342		.new_mask  = cpumask_of(rq->cpu),
 2343		.flags     = SCA_MIGRATE_DISABLE,
 2344	};
 2345
 2346	if (likely(!p->migration_disabled))
 2347		return;
 2348
 2349	if (p->cpus_ptr != &p->cpus_mask)
 2350		return;
 2351
 2352	/*
 2353	 * Violates locking rules! See comment in __do_set_cpus_allowed().
 2354	 */
 2355	__do_set_cpus_allowed(p, &ac);
 2356}
 2357
 2358void migrate_disable(void)
 2359{
 2360	struct task_struct *p = current;
 2361
 2362	if (p->migration_disabled) {
 2363#ifdef CONFIG_DEBUG_PREEMPT
 2364		/*
 2365		 *Warn about overflow half-way through the range.
 2366		 */
 2367		WARN_ON_ONCE((s16)p->migration_disabled < 0);
 2368#endif
 2369		p->migration_disabled++;
 2370		return;
 2371	}
 2372
 2373	guard(preempt)();
 2374	this_rq()->nr_pinned++;
 2375	p->migration_disabled = 1;
 2376}
 2377EXPORT_SYMBOL_GPL(migrate_disable);
 2378
 2379void migrate_enable(void)
 2380{
 2381	struct task_struct *p = current;
 2382	struct affinity_context ac = {
 2383		.new_mask  = &p->cpus_mask,
 2384		.flags     = SCA_MIGRATE_ENABLE,
 2385	};
 2386
 2387#ifdef CONFIG_DEBUG_PREEMPT
 2388	/*
 2389	 * Check both overflow from migrate_disable() and superfluous
 2390	 * migrate_enable().
 2391	 */
 2392	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
 2393		return;
 2394#endif
 2395
 2396	if (p->migration_disabled > 1) {
 2397		p->migration_disabled--;
 2398		return;
 2399	}
 2400
 2401	/*
 2402	 * Ensure stop_task runs either before or after this, and that
 2403	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
 2404	 */
 2405	guard(preempt)();
 2406	if (p->cpus_ptr != &p->cpus_mask)
 2407		__set_cpus_allowed_ptr(p, &ac);
 2408	/*
 2409	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
 2410	 * regular cpus_mask, otherwise things that race (eg.
 2411	 * select_fallback_rq) get confused.
 2412	 */
 2413	barrier();
 2414	p->migration_disabled = 0;
 2415	this_rq()->nr_pinned--;
 2416}
 2417EXPORT_SYMBOL_GPL(migrate_enable);
 2418
 2419static inline bool rq_has_pinned_tasks(struct rq *rq)
 2420{
 2421	return rq->nr_pinned;
 2422}
 2423
 2424/*
 2425 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
 2426 * __set_cpus_allowed_ptr() and select_fallback_rq().
 2427 */
 2428static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 2429{
 2430	/* When not in the task's cpumask, no point in looking further. */
 2431	if (!task_allowed_on_cpu(p, cpu))
 2432		return false;
 2433
 2434	/* migrate_disabled() must be allowed to finish. */
 2435	if (is_migration_disabled(p))
 2436		return cpu_online(cpu);
 2437
 2438	/* Non kernel threads are not allowed during either online or offline. */
 2439	if (!(p->flags & PF_KTHREAD))
 2440		return cpu_active(cpu);
 2441
 2442	/* KTHREAD_IS_PER_CPU is always allowed. */
 2443	if (kthread_is_per_cpu(p))
 2444		return cpu_online(cpu);
 2445
 2446	/* Regular kernel threads don't get to stay during offline. */
 2447	if (cpu_dying(cpu))
 2448		return false;
 2449
 2450	/* But are allowed during online. */
 2451	return cpu_online(cpu);
 2452}
 2453
 2454/*
 2455 * This is how migration works:
 2456 *
 2457 * 1) we invoke migration_cpu_stop() on the target CPU using
 2458 *    stop_one_cpu().
 2459 * 2) stopper starts to run (implicitly forcing the migrated thread
 2460 *    off the CPU)
 2461 * 3) it checks whether the migrated task is still in the wrong runqueue.
 2462 * 4) if it's in the wrong runqueue then the migration thread removes
 2463 *    it and puts it into the right queue.
 2464 * 5) stopper completes and stop_one_cpu() returns and the migration
 2465 *    is done.
 2466 */
 2467
 2468/*
 2469 * move_queued_task - move a queued task to new rq.
 2470 *
 2471 * Returns (locked) new rq. Old rq's lock is released.
 2472 */
 2473static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 2474				   struct task_struct *p, int new_cpu)
 2475{
 2476	lockdep_assert_rq_held(rq);
 2477
 2478	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 
 2479	set_task_cpu(p, new_cpu);
 2480	rq_unlock(rq, rf);
 2481
 2482	rq = cpu_rq(new_cpu);
 2483
 2484	rq_lock(rq, rf);
 2485	WARN_ON_ONCE(task_cpu(p) != new_cpu);
 2486	activate_task(rq, p, 0);
 2487	wakeup_preempt(rq, p, 0);
 
 2488
 2489	return rq;
 2490}
 2491
 2492struct migration_arg {
 2493	struct task_struct		*task;
 2494	int				dest_cpu;
 2495	struct set_affinity_pending	*pending;
 2496};
 2497
 2498/*
 2499 * @refs: number of wait_for_completion()
 2500 * @stop_pending: is @stop_work in use
 2501 */
 2502struct set_affinity_pending {
 2503	refcount_t		refs;
 2504	unsigned int		stop_pending;
 2505	struct completion	done;
 2506	struct cpu_stop_work	stop_work;
 2507	struct migration_arg	arg;
 2508};
 2509
 2510/*
 2511 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 2512 * this because either it can't run here any more (set_cpus_allowed()
 2513 * away from this CPU, or CPU going down), or because we're
 2514 * attempting to rebalance this task on exec (sched_exec).
 2515 *
 2516 * So we race with normal scheduler movements, but that's OK, as long
 2517 * as the task is no longer on this CPU.
 2518 */
 2519static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 2520				 struct task_struct *p, int dest_cpu)
 2521{
 
 
 
 2522	/* Affinity changed (again). */
 2523	if (!is_cpu_allowed(p, dest_cpu))
 2524		return rq;
 2525
 2526	rq = move_queued_task(rq, rf, p, dest_cpu);
 2527
 2528	return rq;
 2529}
 2530
 2531/*
 2532 * migration_cpu_stop - this will be executed by a high-prio stopper thread
 2533 * and performs thread migration by bumping thread off CPU then
 2534 * 'pushing' onto another runqueue.
 2535 */
 2536static int migration_cpu_stop(void *data)
 2537{
 2538	struct migration_arg *arg = data;
 2539	struct set_affinity_pending *pending = arg->pending;
 2540	struct task_struct *p = arg->task;
 2541	struct rq *rq = this_rq();
 2542	bool complete = false;
 2543	struct rq_flags rf;
 2544
 2545	/*
 2546	 * The original target CPU might have gone down and we might
 2547	 * be on another CPU but it doesn't matter.
 2548	 */
 2549	local_irq_save(rf.flags);
 2550	/*
 2551	 * We need to explicitly wake pending tasks before running
 2552	 * __migrate_task() such that we will not miss enforcing cpus_ptr
 2553	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 2554	 */
 2555	flush_smp_call_function_queue();
 2556
 2557	raw_spin_lock(&p->pi_lock);
 2558	rq_lock(rq, &rf);
 2559
 2560	/*
 2561	 * If we were passed a pending, then ->stop_pending was set, thus
 2562	 * p->migration_pending must have remained stable.
 2563	 */
 2564	WARN_ON_ONCE(pending && pending != p->migration_pending);
 2565
 2566	/*
 2567	 * If task_rq(p) != rq, it cannot be migrated here, because we're
 2568	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
 2569	 * we're holding p->pi_lock.
 2570	 */
 2571	if (task_rq(p) == rq) {
 2572		if (is_migration_disabled(p))
 2573			goto out;
 2574
 2575		if (pending) {
 2576			p->migration_pending = NULL;
 2577			complete = true;
 2578
 2579			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
 2580				goto out;
 2581		}
 2582
 2583		if (task_on_rq_queued(p)) {
 2584			update_rq_clock(rq);
 2585			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
 2586		} else {
 2587			p->wake_cpu = arg->dest_cpu;
 2588		}
 2589
 2590		/*
 2591		 * XXX __migrate_task() can fail, at which point we might end
 2592		 * up running on a dodgy CPU, AFAICT this can only happen
 2593		 * during CPU hotplug, at which point we'll get pushed out
 2594		 * anyway, so it's probably not a big deal.
 2595		 */
 2596
 2597	} else if (pending) {
 2598		/*
 2599		 * This happens when we get migrated between migrate_enable()'s
 2600		 * preempt_enable() and scheduling the stopper task. At that
 2601		 * point we're a regular task again and not current anymore.
 2602		 *
 2603		 * A !PREEMPT kernel has a giant hole here, which makes it far
 2604		 * more likely.
 2605		 */
 2606
 2607		/*
 2608		 * The task moved before the stopper got to run. We're holding
 2609		 * ->pi_lock, so the allowed mask is stable - if it got
 2610		 * somewhere allowed, we're done.
 2611		 */
 2612		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
 2613			p->migration_pending = NULL;
 2614			complete = true;
 2615			goto out;
 2616		}
 2617
 2618		/*
 2619		 * When migrate_enable() hits a rq mis-match we can't reliably
 2620		 * determine is_migration_disabled() and so have to chase after
 2621		 * it.
 2622		 */
 2623		WARN_ON_ONCE(!pending->stop_pending);
 2624		preempt_disable();
 2625		task_rq_unlock(rq, p, &rf);
 2626		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
 2627				    &pending->arg, &pending->stop_work);
 2628		preempt_enable();
 2629		return 0;
 2630	}
 2631out:
 2632	if (pending)
 2633		pending->stop_pending = false;
 2634	task_rq_unlock(rq, p, &rf);
 2635
 2636	if (complete)
 2637		complete_all(&pending->done);
 2638
 2639	return 0;
 2640}
 2641
 2642int push_cpu_stop(void *arg)
 2643{
 2644	struct rq *lowest_rq = NULL, *rq = this_rq();
 2645	struct task_struct *p = arg;
 2646
 2647	raw_spin_lock_irq(&p->pi_lock);
 2648	raw_spin_rq_lock(rq);
 2649
 2650	if (task_rq(p) != rq)
 2651		goto out_unlock;
 2652
 2653	if (is_migration_disabled(p)) {
 2654		p->migration_flags |= MDF_PUSH;
 2655		goto out_unlock;
 2656	}
 2657
 2658	p->migration_flags &= ~MDF_PUSH;
 2659
 2660	if (p->sched_class->find_lock_rq)
 2661		lowest_rq = p->sched_class->find_lock_rq(p, rq);
 2662
 2663	if (!lowest_rq)
 2664		goto out_unlock;
 2665
 2666	// XXX validate p is still the highest prio task
 2667	if (task_rq(p) == rq) {
 2668		move_queued_task_locked(rq, lowest_rq, p);
 2669		resched_curr(lowest_rq);
 2670	}
 2671
 2672	double_unlock_balance(rq, lowest_rq);
 2673
 2674out_unlock:
 2675	rq->push_busy = false;
 2676	raw_spin_rq_unlock(rq);
 2677	raw_spin_unlock_irq(&p->pi_lock);
 2678
 2679	put_task_struct(p);
 2680	return 0;
 2681}
 2682
 2683/*
 2684 * sched_class::set_cpus_allowed must do the below, but is not required to
 2685 * actually call this function.
 2686 */
 2687void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
 2688{
 2689	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
 2690		p->cpus_ptr = ctx->new_mask;
 2691		return;
 2692	}
 2693
 2694	cpumask_copy(&p->cpus_mask, ctx->new_mask);
 2695	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
 2696
 2697	/*
 2698	 * Swap in a new user_cpus_ptr if SCA_USER flag set
 2699	 */
 2700	if (ctx->flags & SCA_USER)
 2701		swap(p->user_cpus_ptr, ctx->user_mask);
 2702}
 2703
 2704static void
 2705__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
 2706{
 2707	struct rq *rq = task_rq(p);
 2708	bool queued, running;
 2709
 2710	/*
 2711	 * This here violates the locking rules for affinity, since we're only
 2712	 * supposed to change these variables while holding both rq->lock and
 2713	 * p->pi_lock.
 2714	 *
 2715	 * HOWEVER, it magically works, because ttwu() is the only code that
 2716	 * accesses these variables under p->pi_lock and only does so after
 2717	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
 2718	 * before finish_task().
 2719	 *
 2720	 * XXX do further audits, this smells like something putrid.
 2721	 */
 2722	if (ctx->flags & SCA_MIGRATE_DISABLE)
 2723		SCHED_WARN_ON(!p->on_cpu);
 2724	else
 2725		lockdep_assert_held(&p->pi_lock);
 2726
 2727	queued = task_on_rq_queued(p);
 2728	running = task_current_donor(rq, p);
 2729
 2730	if (queued) {
 2731		/*
 2732		 * Because __kthread_bind() calls this on blocked tasks without
 2733		 * holding rq->lock.
 2734		 */
 2735		lockdep_assert_rq_held(rq);
 2736		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 2737	}
 2738	if (running)
 2739		put_prev_task(rq, p);
 2740
 2741	p->sched_class->set_cpus_allowed(p, ctx);
 2742	mm_set_cpus_allowed(p->mm, ctx->new_mask);
 2743
 2744	if (queued)
 2745		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 2746	if (running)
 2747		set_next_task(rq, p);
 2748}
 2749
 2750/*
 2751 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
 2752 * affinity (if any) should be destroyed too.
 2753 */
 2754void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 2755{
 2756	struct affinity_context ac = {
 2757		.new_mask  = new_mask,
 2758		.user_mask = NULL,
 2759		.flags     = SCA_USER,	/* clear the user requested mask */
 2760	};
 2761	union cpumask_rcuhead {
 2762		cpumask_t cpumask;
 2763		struct rcu_head rcu;
 2764	};
 2765
 2766	__do_set_cpus_allowed(p, &ac);
 2767
 2768	/*
 2769	 * Because this is called with p->pi_lock held, it is not possible
 2770	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
 2771	 * kfree_rcu().
 2772	 */
 2773	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
 2774}
 2775
 2776int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
 2777		      int node)
 2778{
 2779	cpumask_t *user_mask;
 2780	unsigned long flags;
 2781
 2782	/*
 2783	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
 2784	 * may differ by now due to racing.
 2785	 */
 2786	dst->user_cpus_ptr = NULL;
 2787
 2788	/*
 2789	 * This check is racy and losing the race is a valid situation.
 2790	 * It is not worth the extra overhead of taking the pi_lock on
 2791	 * every fork/clone.
 2792	 */
 2793	if (data_race(!src->user_cpus_ptr))
 2794		return 0;
 2795
 2796	user_mask = alloc_user_cpus_ptr(node);
 2797	if (!user_mask)
 2798		return -ENOMEM;
 2799
 2800	/*
 2801	 * Use pi_lock to protect content of user_cpus_ptr
 2802	 *
 2803	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
 2804	 * do_set_cpus_allowed().
 2805	 */
 2806	raw_spin_lock_irqsave(&src->pi_lock, flags);
 2807	if (src->user_cpus_ptr) {
 2808		swap(dst->user_cpus_ptr, user_mask);
 2809		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
 2810	}
 2811	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
 2812
 2813	if (unlikely(user_mask))
 2814		kfree(user_mask);
 2815
 2816	return 0;
 2817}
 2818
 2819static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
 2820{
 2821	struct cpumask *user_mask = NULL;
 2822
 2823	swap(p->user_cpus_ptr, user_mask);
 2824
 2825	return user_mask;
 2826}
 2827
 2828void release_user_cpus_ptr(struct task_struct *p)
 2829{
 2830	kfree(clear_user_cpus_ptr(p));
 2831}
 2832
 2833/*
 2834 * This function is wildly self concurrent; here be dragons.
 2835 *
 2836 *
 2837 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
 2838 * designated task is enqueued on an allowed CPU. If that task is currently
 2839 * running, we have to kick it out using the CPU stopper.
 2840 *
 2841 * Migrate-Disable comes along and tramples all over our nice sandcastle.
 2842 * Consider:
 2843 *
 2844 *     Initial conditions: P0->cpus_mask = [0, 1]
 2845 *
 2846 *     P0@CPU0                  P1
 2847 *
 2848 *     migrate_disable();
 2849 *     <preempted>
 2850 *                              set_cpus_allowed_ptr(P0, [1]);
 2851 *
 2852 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
 2853 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
 2854 * This means we need the following scheme:
 2855 *
 2856 *     P0@CPU0                  P1
 2857 *
 2858 *     migrate_disable();
 2859 *     <preempted>
 2860 *                              set_cpus_allowed_ptr(P0, [1]);
 2861 *                                <blocks>
 2862 *     <resumes>
 2863 *     migrate_enable();
 2864 *       __set_cpus_allowed_ptr();
 2865 *       <wakes local stopper>
 2866 *                         `--> <woken on migration completion>
 2867 *
 2868 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
 2869 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
 2870 * task p are serialized by p->pi_lock, which we can leverage: the one that
 2871 * should come into effect at the end of the Migrate-Disable region is the last
 2872 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
 2873 * but we still need to properly signal those waiting tasks at the appropriate
 2874 * moment.
 2875 *
 2876 * This is implemented using struct set_affinity_pending. The first
 2877 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
 2878 * setup an instance of that struct and install it on the targeted task_struct.
 2879 * Any and all further callers will reuse that instance. Those then wait for
 2880 * a completion signaled at the tail of the CPU stopper callback (1), triggered
 2881 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
 2882 *
 2883 *
 2884 * (1) In the cases covered above. There is one more where the completion is
 2885 * signaled within affine_move_task() itself: when a subsequent affinity request
 2886 * occurs after the stopper bailed out due to the targeted task still being
 2887 * Migrate-Disable. Consider:
 2888 *
 2889 *     Initial conditions: P0->cpus_mask = [0, 1]
 2890 *
 2891 *     CPU0		  P1				P2
 2892 *     <P0>
 2893 *       migrate_disable();
 2894 *       <preempted>
 2895 *                        set_cpus_allowed_ptr(P0, [1]);
 2896 *                          <blocks>
 2897 *     <migration/0>
 2898 *       migration_cpu_stop()
 2899 *         is_migration_disabled()
 2900 *           <bails>
 2901 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
 2902 *                                                         <signal completion>
 2903 *                          <awakes>
 2904 *
 2905 * Note that the above is safe vs a concurrent migrate_enable(), as any
 2906 * pending affinity completion is preceded by an uninstallation of
 2907 * p->migration_pending done with p->pi_lock held.
 2908 */
 2909static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
 2910			    int dest_cpu, unsigned int flags)
 2911	__releases(rq->lock)
 2912	__releases(p->pi_lock)
 2913{
 2914	struct set_affinity_pending my_pending = { }, *pending = NULL;
 2915	bool stop_pending, complete = false;
 2916
 2917	/* Can the task run on the task's current CPU? If so, we're done */
 2918	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
 2919		struct task_struct *push_task = NULL;
 2920
 2921		if ((flags & SCA_MIGRATE_ENABLE) &&
 2922		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
 2923			rq->push_busy = true;
 2924			push_task = get_task_struct(p);
 2925		}
 2926
 2927		/*
 2928		 * If there are pending waiters, but no pending stop_work,
 2929		 * then complete now.
 2930		 */
 2931		pending = p->migration_pending;
 2932		if (pending && !pending->stop_pending) {
 2933			p->migration_pending = NULL;
 2934			complete = true;
 2935		}
 2936
 2937		preempt_disable();
 2938		task_rq_unlock(rq, p, rf);
 2939		if (push_task) {
 2940			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
 2941					    p, &rq->push_work);
 2942		}
 2943		preempt_enable();
 2944
 2945		if (complete)
 2946			complete_all(&pending->done);
 2947
 2948		return 0;
 2949	}
 2950
 2951	if (!(flags & SCA_MIGRATE_ENABLE)) {
 2952		/* serialized by p->pi_lock */
 2953		if (!p->migration_pending) {
 2954			/* Install the request */
 2955			refcount_set(&my_pending.refs, 1);
 2956			init_completion(&my_pending.done);
 2957			my_pending.arg = (struct migration_arg) {
 2958				.task = p,
 2959				.dest_cpu = dest_cpu,
 2960				.pending = &my_pending,
 2961			};
 2962
 2963			p->migration_pending = &my_pending;
 2964		} else {
 2965			pending = p->migration_pending;
 2966			refcount_inc(&pending->refs);
 2967			/*
 2968			 * Affinity has changed, but we've already installed a
 2969			 * pending. migration_cpu_stop() *must* see this, else
 2970			 * we risk a completion of the pending despite having a
 2971			 * task on a disallowed CPU.
 2972			 *
 2973			 * Serialized by p->pi_lock, so this is safe.
 2974			 */
 2975			pending->arg.dest_cpu = dest_cpu;
 2976		}
 2977	}
 2978	pending = p->migration_pending;
 2979	/*
 2980	 * - !MIGRATE_ENABLE:
 2981	 *   we'll have installed a pending if there wasn't one already.
 2982	 *
 2983	 * - MIGRATE_ENABLE:
 2984	 *   we're here because the current CPU isn't matching anymore,
 2985	 *   the only way that can happen is because of a concurrent
 2986	 *   set_cpus_allowed_ptr() call, which should then still be
 2987	 *   pending completion.
 2988	 *
 2989	 * Either way, we really should have a @pending here.
 2990	 */
 2991	if (WARN_ON_ONCE(!pending)) {
 2992		task_rq_unlock(rq, p, rf);
 2993		return -EINVAL;
 2994	}
 2995
 2996	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
 2997		/*
 2998		 * MIGRATE_ENABLE gets here because 'p == current', but for
 2999		 * anything else we cannot do is_migration_disabled(), punt
 3000		 * and have the stopper function handle it all race-free.
 3001		 */
 3002		stop_pending = pending->stop_pending;
 3003		if (!stop_pending)
 3004			pending->stop_pending = true;
 3005
 3006		if (flags & SCA_MIGRATE_ENABLE)
 3007			p->migration_flags &= ~MDF_PUSH;
 3008
 3009		preempt_disable();
 3010		task_rq_unlock(rq, p, rf);
 3011		if (!stop_pending) {
 3012			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
 3013					    &pending->arg, &pending->stop_work);
 3014		}
 3015		preempt_enable();
 3016
 3017		if (flags & SCA_MIGRATE_ENABLE)
 3018			return 0;
 3019	} else {
 3020
 3021		if (!is_migration_disabled(p)) {
 3022			if (task_on_rq_queued(p))
 3023				rq = move_queued_task(rq, rf, p, dest_cpu);
 3024
 3025			if (!pending->stop_pending) {
 3026				p->migration_pending = NULL;
 3027				complete = true;
 3028			}
 3029		}
 3030		task_rq_unlock(rq, p, rf);
 3031
 3032		if (complete)
 3033			complete_all(&pending->done);
 3034	}
 3035
 3036	wait_for_completion(&pending->done);
 3037
 3038	if (refcount_dec_and_test(&pending->refs))
 3039		wake_up_var(&pending->refs); /* No UaF, just an address */
 3040
 3041	/*
 3042	 * Block the original owner of &pending until all subsequent callers
 3043	 * have seen the completion and decremented the refcount
 3044	 */
 3045	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
 3046
 3047	/* ARGH */
 3048	WARN_ON_ONCE(my_pending.stop_pending);
 3049
 3050	return 0;
 3051}
 3052
 3053/*
 3054 * Called with both p->pi_lock and rq->lock held; drops both before returning.
 3055 */
 3056static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
 3057					 struct affinity_context *ctx,
 3058					 struct rq *rq,
 3059					 struct rq_flags *rf)
 3060	__releases(rq->lock)
 3061	__releases(p->pi_lock)
 3062{
 3063	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
 3064	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 3065	bool kthread = p->flags & PF_KTHREAD;
 3066	unsigned int dest_cpu;
 3067	int ret = 0;
 3068
 3069	update_rq_clock(rq);
 3070
 3071	if (kthread || is_migration_disabled(p)) {
 3072		/*
 3073		 * Kernel threads are allowed on online && !active CPUs,
 3074		 * however, during cpu-hot-unplug, even these might get pushed
 3075		 * away if not KTHREAD_IS_PER_CPU.
 3076		 *
 3077		 * Specifically, migration_disabled() tasks must not fail the
 3078		 * cpumask_any_and_distribute() pick below, esp. so on
 3079		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
 3080		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
 3081		 */
 3082		cpu_valid_mask = cpu_online_mask;
 3083	}
 3084
 3085	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
 3086		ret = -EINVAL;
 3087		goto out;
 3088	}
 3089
 3090	/*
 3091	 * Must re-check here, to close a race against __kthread_bind(),
 3092	 * sched_setaffinity() is not guaranteed to observe the flag.
 3093	 */
 3094	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
 3095		ret = -EINVAL;
 3096		goto out;
 3097	}
 3098
 3099	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
 3100		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
 3101			if (ctx->flags & SCA_USER)
 3102				swap(p->user_cpus_ptr, ctx->user_mask);
 3103			goto out;
 3104		}
 3105
 3106		if (WARN_ON_ONCE(p == current &&
 3107				 is_migration_disabled(p) &&
 3108				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
 3109			ret = -EBUSY;
 3110			goto out;
 3111		}
 3112	}
 3113
 3114	/*
 3115	 * Picking a ~random cpu helps in cases where we are changing affinity
 3116	 * for groups of tasks (ie. cpuset), so that load balancing is not
 3117	 * immediately required to distribute the tasks within their new mask.
 3118	 */
 3119	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
 3120	if (dest_cpu >= nr_cpu_ids) {
 3121		ret = -EINVAL;
 3122		goto out;
 3123	}
 3124
 3125	__do_set_cpus_allowed(p, ctx);
 3126
 3127	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
 
 
 3128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3129out:
 3130	task_rq_unlock(rq, p, rf);
 3131
 3132	return ret;
 3133}
 3134
 3135/*
 3136 * Change a given task's CPU affinity. Migrate the thread to a
 3137 * proper CPU and schedule it away if the CPU it's executing on
 3138 * is removed from the allowed bitmask.
 3139 *
 3140 * NOTE: the caller must have a valid reference to the task, the
 3141 * task must not exit() & deallocate itself prematurely. The
 3142 * call is not atomic; no spinlocks may be held.
 3143 */
 3144int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
 3145{
 3146	struct rq_flags rf;
 3147	struct rq *rq;
 3148
 3149	rq = task_rq_lock(p, &rf);
 3150	/*
 3151	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
 3152	 * flags are set.
 3153	 */
 3154	if (p->user_cpus_ptr &&
 3155	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
 3156	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
 3157		ctx->new_mask = rq->scratch_mask;
 3158
 3159	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
 3160}
 3161
 3162int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 3163{
 3164	struct affinity_context ac = {
 3165		.new_mask  = new_mask,
 3166		.flags     = 0,
 3167	};
 3168
 3169	return __set_cpus_allowed_ptr(p, &ac);
 3170}
 3171EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 3172
 3173/*
 3174 * Change a given task's CPU affinity to the intersection of its current
 3175 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
 3176 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
 3177 * affinity or use cpu_online_mask instead.
 3178 *
 3179 * If the resulting mask is empty, leave the affinity unchanged and return
 3180 * -EINVAL.
 3181 */
 3182static int restrict_cpus_allowed_ptr(struct task_struct *p,
 3183				     struct cpumask *new_mask,
 3184				     const struct cpumask *subset_mask)
 3185{
 3186	struct affinity_context ac = {
 3187		.new_mask  = new_mask,
 3188		.flags     = 0,
 3189	};
 3190	struct rq_flags rf;
 3191	struct rq *rq;
 3192	int err;
 3193
 3194	rq = task_rq_lock(p, &rf);
 3195
 3196	/*
 3197	 * Forcefully restricting the affinity of a deadline task is
 3198	 * likely to cause problems, so fail and noisily override the
 3199	 * mask entirely.
 3200	 */
 3201	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
 3202		err = -EPERM;
 3203		goto err_unlock;
 3204	}
 3205
 3206	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
 3207		err = -EINVAL;
 3208		goto err_unlock;
 3209	}
 3210
 3211	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
 3212
 3213err_unlock:
 3214	task_rq_unlock(rq, p, &rf);
 3215	return err;
 3216}
 3217
 3218/*
 3219 * Restrict the CPU affinity of task @p so that it is a subset of
 3220 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
 3221 * old affinity mask. If the resulting mask is empty, we warn and walk
 3222 * up the cpuset hierarchy until we find a suitable mask.
 3223 */
 3224void force_compatible_cpus_allowed_ptr(struct task_struct *p)
 3225{
 3226	cpumask_var_t new_mask;
 3227	const struct cpumask *override_mask = task_cpu_possible_mask(p);
 3228
 3229	alloc_cpumask_var(&new_mask, GFP_KERNEL);
 3230
 3231	/*
 3232	 * __migrate_task() can fail silently in the face of concurrent
 3233	 * offlining of the chosen destination CPU, so take the hotplug
 3234	 * lock to ensure that the migration succeeds.
 3235	 */
 3236	cpus_read_lock();
 3237	if (!cpumask_available(new_mask))
 3238		goto out_set_mask;
 3239
 3240	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
 3241		goto out_free_mask;
 3242
 3243	/*
 3244	 * We failed to find a valid subset of the affinity mask for the
 3245	 * task, so override it based on its cpuset hierarchy.
 3246	 */
 3247	cpuset_cpus_allowed(p, new_mask);
 3248	override_mask = new_mask;
 3249
 3250out_set_mask:
 3251	if (printk_ratelimit()) {
 3252		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
 3253				task_pid_nr(p), p->comm,
 3254				cpumask_pr_args(override_mask));
 3255	}
 3256
 3257	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
 3258out_free_mask:
 3259	cpus_read_unlock();
 3260	free_cpumask_var(new_mask);
 3261}
 3262
 3263/*
 3264 * Restore the affinity of a task @p which was previously restricted by a
 3265 * call to force_compatible_cpus_allowed_ptr().
 3266 *
 3267 * It is the caller's responsibility to serialise this with any calls to
 3268 * force_compatible_cpus_allowed_ptr(@p).
 3269 */
 3270void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
 3271{
 3272	struct affinity_context ac = {
 3273		.new_mask  = task_user_cpus(p),
 3274		.flags     = 0,
 3275	};
 3276	int ret;
 3277
 3278	/*
 3279	 * Try to restore the old affinity mask with __sched_setaffinity().
 3280	 * Cpuset masking will be done there too.
 3281	 */
 3282	ret = __sched_setaffinity(p, &ac);
 3283	WARN_ON_ONCE(ret);
 3284}
 3285
 3286void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 3287{
 3288#ifdef CONFIG_SCHED_DEBUG
 3289	unsigned int state = READ_ONCE(p->__state);
 3290
 3291	/*
 3292	 * We should never call set_task_cpu() on a blocked task,
 3293	 * ttwu() will sort out the placement.
 3294	 */
 3295	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
 
 3296
 3297	/*
 3298	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
 3299	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
 3300	 * time relying on p->on_rq.
 3301	 */
 3302	WARN_ON_ONCE(state == TASK_RUNNING &&
 3303		     p->sched_class == &fair_sched_class &&
 3304		     (p->on_rq && !task_on_rq_migrating(p)));
 3305
 3306#ifdef CONFIG_LOCKDEP
 3307	/*
 3308	 * The caller should hold either p->pi_lock or rq->lock, when changing
 3309	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 3310	 *
 3311	 * sched_move_task() holds both and thus holding either pins the cgroup,
 3312	 * see task_group().
 3313	 *
 3314	 * Furthermore, all task_rq users should acquire both locks, see
 3315	 * task_rq_lock().
 3316	 */
 3317	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 3318				      lockdep_is_held(__rq_lockp(task_rq(p)))));
 3319#endif
 3320	/*
 3321	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
 3322	 */
 3323	WARN_ON_ONCE(!cpu_online(new_cpu));
 3324
 3325	WARN_ON_ONCE(is_migration_disabled(p));
 3326#endif
 3327
 3328	trace_sched_migrate_task(p, new_cpu);
 3329
 3330	if (task_cpu(p) != new_cpu) {
 3331		if (p->sched_class->migrate_task_rq)
 3332			p->sched_class->migrate_task_rq(p, new_cpu);
 3333		p->se.nr_migrations++;
 3334		rseq_migrate(p);
 3335		sched_mm_cid_migrate_from(p);
 3336		perf_event_task_migrate(p);
 3337	}
 3338
 3339	__set_task_cpu(p, new_cpu);
 3340}
 3341
 3342#ifdef CONFIG_NUMA_BALANCING
 3343static void __migrate_swap_task(struct task_struct *p, int cpu)
 3344{
 3345	if (task_on_rq_queued(p)) {
 3346		struct rq *src_rq, *dst_rq;
 3347		struct rq_flags srf, drf;
 3348
 3349		src_rq = task_rq(p);
 3350		dst_rq = cpu_rq(cpu);
 3351
 3352		rq_pin_lock(src_rq, &srf);
 3353		rq_pin_lock(dst_rq, &drf);
 3354
 3355		move_queued_task_locked(src_rq, dst_rq, p);
 3356		wakeup_preempt(dst_rq, p, 0);
 3357
 3358		rq_unpin_lock(dst_rq, &drf);
 3359		rq_unpin_lock(src_rq, &srf);
 3360
 3361	} else {
 3362		/*
 3363		 * Task isn't running anymore; make it appear like we migrated
 3364		 * it before it went to sleep. This means on wakeup we make the
 3365		 * previous CPU our target instead of where it really is.
 3366		 */
 3367		p->wake_cpu = cpu;
 3368	}
 3369}
 3370
 3371struct migration_swap_arg {
 3372	struct task_struct *src_task, *dst_task;
 3373	int src_cpu, dst_cpu;
 3374};
 3375
 3376static int migrate_swap_stop(void *data)
 3377{
 3378	struct migration_swap_arg *arg = data;
 3379	struct rq *src_rq, *dst_rq;
 
 3380
 3381	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
 3382		return -EAGAIN;
 3383
 3384	src_rq = cpu_rq(arg->src_cpu);
 3385	dst_rq = cpu_rq(arg->dst_cpu);
 3386
 3387	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
 3388	guard(double_rq_lock)(src_rq, dst_rq);
 
 3389
 3390	if (task_cpu(arg->dst_task) != arg->dst_cpu)
 3391		return -EAGAIN;
 3392
 3393	if (task_cpu(arg->src_task) != arg->src_cpu)
 3394		return -EAGAIN;
 3395
 3396	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
 3397		return -EAGAIN;
 3398
 3399	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
 3400		return -EAGAIN;
 3401
 3402	__migrate_swap_task(arg->src_task, arg->dst_cpu);
 3403	__migrate_swap_task(arg->dst_task, arg->src_cpu);
 3404
 3405	return 0;
 
 
 
 
 
 
 
 3406}
 3407
 3408/*
 3409 * Cross migrate two tasks
 3410 */
 3411int migrate_swap(struct task_struct *cur, struct task_struct *p,
 3412		int target_cpu, int curr_cpu)
 3413{
 3414	struct migration_swap_arg arg;
 3415	int ret = -EINVAL;
 3416
 3417	arg = (struct migration_swap_arg){
 3418		.src_task = cur,
 3419		.src_cpu = curr_cpu,
 3420		.dst_task = p,
 3421		.dst_cpu = target_cpu,
 3422	};
 3423
 3424	if (arg.src_cpu == arg.dst_cpu)
 3425		goto out;
 3426
 3427	/*
 3428	 * These three tests are all lockless; this is OK since all of them
 3429	 * will be re-checked with proper locks held further down the line.
 3430	 */
 3431	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
 3432		goto out;
 3433
 3434	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
 3435		goto out;
 3436
 3437	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
 3438		goto out;
 3439
 3440	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
 3441	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
 3442
 3443out:
 3444	return ret;
 3445}
 3446#endif /* CONFIG_NUMA_BALANCING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3447
 3448/***
 3449 * kick_process - kick a running thread to enter/exit the kernel
 3450 * @p: the to-be-kicked thread
 3451 *
 3452 * Cause a process which is running on another CPU to enter
 3453 * kernel-mode, without any delay. (to get signals handled.)
 3454 *
 3455 * NOTE: this function doesn't have to take the runqueue lock,
 3456 * because all it wants to ensure is that the remote task enters
 3457 * the kernel. If the IPI races and the task has been migrated
 3458 * to another CPU then no harm is done and the purpose has been
 3459 * achieved as well.
 3460 */
 3461void kick_process(struct task_struct *p)
 3462{
 3463	guard(preempt)();
 3464	int cpu = task_cpu(p);
 3465
 
 
 3466	if ((cpu != smp_processor_id()) && task_curr(p))
 3467		smp_send_reschedule(cpu);
 
 3468}
 3469EXPORT_SYMBOL_GPL(kick_process);
 3470
 3471/*
 3472 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
 3473 *
 3474 * A few notes on cpu_active vs cpu_online:
 3475 *
 3476 *  - cpu_active must be a subset of cpu_online
 3477 *
 3478 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
 3479 *    see __set_cpus_allowed_ptr(). At this point the newly online
 3480 *    CPU isn't yet part of the sched domains, and balancing will not
 3481 *    see it.
 3482 *
 3483 *  - on CPU-down we clear cpu_active() to mask the sched domains and
 3484 *    avoid the load balancer to place new tasks on the to be removed
 3485 *    CPU. Existing tasks will remain running there and will be taken
 3486 *    off.
 3487 *
 3488 * This means that fallback selection must not select !active CPUs.
 3489 * And can assume that any active CPU must be online. Conversely
 3490 * select_task_rq() below may allow selection of !active CPUs in order
 3491 * to satisfy the above rules.
 3492 */
 3493static int select_fallback_rq(int cpu, struct task_struct *p)
 3494{
 3495	int nid = cpu_to_node(cpu);
 3496	const struct cpumask *nodemask = NULL;
 3497	enum { cpuset, possible, fail } state = cpuset;
 3498	int dest_cpu;
 3499
 3500	/*
 3501	 * If the node that the CPU is on has been offlined, cpu_to_node()
 3502	 * will return -1. There is no CPU on the node, and we should
 3503	 * select the CPU on the other node.
 3504	 */
 3505	if (nid != -1) {
 3506		nodemask = cpumask_of_node(nid);
 3507
 3508		/* Look for allowed, online CPU in same node. */
 3509		for_each_cpu(dest_cpu, nodemask) {
 3510			if (is_cpu_allowed(p, dest_cpu))
 
 
 
 
 3511				return dest_cpu;
 3512		}
 3513	}
 3514
 3515	for (;;) {
 3516		/* Any allowed, online CPU? */
 3517		for_each_cpu(dest_cpu, p->cpus_ptr) {
 3518			if (!is_cpu_allowed(p, dest_cpu))
 
 
 3519				continue;
 3520
 3521			goto out;
 3522		}
 3523
 3524		/* No more Mr. Nice Guy. */
 3525		switch (state) {
 3526		case cpuset:
 3527			if (cpuset_cpus_allowed_fallback(p)) {
 
 3528				state = possible;
 3529				break;
 3530			}
 3531			fallthrough;
 3532		case possible:
 3533			/*
 3534			 * XXX When called from select_task_rq() we only
 3535			 * hold p->pi_lock and again violate locking order.
 3536			 *
 3537			 * More yuck to audit.
 3538			 */
 3539			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
 3540			state = fail;
 3541			break;
 
 3542		case fail:
 3543			BUG();
 3544			break;
 3545		}
 3546	}
 3547
 3548out:
 3549	if (state != cpuset) {
 3550		/*
 3551		 * Don't tell them about moving exiting tasks or
 3552		 * kernel threads (both mm NULL), since they never
 3553		 * leave kernel.
 3554		 */
 3555		if (p->mm && printk_ratelimit()) {
 3556			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
 3557					task_pid_nr(p), p->comm, cpu);
 3558		}
 3559	}
 3560
 3561	return dest_cpu;
 3562}
 3563
 3564/*
 3565 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
 3566 */
 3567static inline
 3568int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
 3569{
 3570	lockdep_assert_held(&p->pi_lock);
 3571
 3572	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
 3573		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
 3574		*wake_flags |= WF_RQ_SELECTED;
 3575	} else {
 3576		cpu = cpumask_any(p->cpus_ptr);
 3577	}
 3578
 3579	/*
 3580	 * In order not to call set_task_cpu() on a blocking task we need
 3581	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
 3582	 * CPU.
 3583	 *
 3584	 * Since this is common to all placement strategies, this lives here.
 3585	 *
 3586	 * [ this allows ->select_task() to simply return task_cpu(p) and
 3587	 *   not worry about this generic constraint ]
 3588	 */
 3589	if (unlikely(!is_cpu_allowed(p, cpu)))
 
 3590		cpu = select_fallback_rq(task_cpu(p), p);
 3591
 3592	return cpu;
 3593}
 3594
 3595void sched_set_stop_task(int cpu, struct task_struct *stop)
 3596{
 3597	static struct lock_class_key stop_pi_lock;
 3598	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 3599	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 3600
 3601	if (stop) {
 3602		/*
 3603		 * Make it appear like a SCHED_FIFO task, its something
 3604		 * userspace knows about and won't get confused about.
 3605		 *
 3606		 * Also, it will make PI more or less work without too
 3607		 * much confusion -- but then, stop work should not
 3608		 * rely on PI working anyway.
 3609		 */
 3610		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 3611
 3612		stop->sched_class = &stop_sched_class;
 3613
 3614		/*
 3615		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
 3616		 * adjust the effective priority of a task. As a result,
 3617		 * rt_mutex_setprio() can trigger (RT) balancing operations,
 3618		 * which can then trigger wakeups of the stop thread to push
 3619		 * around the current task.
 3620		 *
 3621		 * The stop task itself will never be part of the PI-chain, it
 3622		 * never blocks, therefore that ->pi_lock recursion is safe.
 3623		 * Tell lockdep about this by placing the stop->pi_lock in its
 3624		 * own class.
 3625		 */
 3626		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
 3627	}
 3628
 3629	cpu_rq(cpu)->stop = stop;
 3630
 3631	if (old_stop) {
 3632		/*
 3633		 * Reset it back to a normal scheduling class so that
 3634		 * it can die in pieces.
 3635		 */
 3636		old_stop->sched_class = &rt_sched_class;
 3637	}
 3638}
 3639
 3640#else /* CONFIG_SMP */
 3641
 3642static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
 3643
 3644static inline bool rq_has_pinned_tasks(struct rq *rq)
 
 3645{
 3646	return false;
 3647}
 3648
 3649#endif /* !CONFIG_SMP */
 3650
 3651static void
 3652ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 3653{
 3654	struct rq *rq;
 3655
 3656	if (!schedstat_enabled())
 3657		return;
 3658
 3659	rq = this_rq();
 3660
 3661#ifdef CONFIG_SMP
 3662	if (cpu == rq->cpu) {
 3663		__schedstat_inc(rq->ttwu_local);
 3664		__schedstat_inc(p->stats.nr_wakeups_local);
 
 
 3665	} else {
 3666		struct sched_domain *sd;
 3667
 3668		__schedstat_inc(p->stats.nr_wakeups_remote);
 3669
 3670		guard(rcu)();
 3671		for_each_domain(rq->cpu, sd) {
 3672			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 3673				__schedstat_inc(sd->ttwu_wake_remote);
 3674				break;
 3675			}
 3676		}
 
 3677	}
 3678
 3679	if (wake_flags & WF_MIGRATED)
 3680		__schedstat_inc(p->stats.nr_wakeups_migrate);
 
 3681#endif /* CONFIG_SMP */
 3682
 3683	__schedstat_inc(rq->ttwu_count);
 3684	__schedstat_inc(p->stats.nr_wakeups);
 3685
 3686	if (wake_flags & WF_SYNC)
 3687		__schedstat_inc(p->stats.nr_wakeups_sync);
 
 
 3688}
 3689
 3690/*
 3691 * Mark the task runnable.
 3692 */
 3693static inline void ttwu_do_wakeup(struct task_struct *p)
 3694{
 3695	WRITE_ONCE(p->__state, TASK_RUNNING);
 3696	trace_sched_wakeup(p);
 
 
 
 
 3697}
 3698
 
 
 
 3699static void
 3700ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
 3701		 struct rq_flags *rf)
 3702{
 3703	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
 3704
 3705	lockdep_assert_rq_held(rq);
 3706
 3707	if (p->sched_contributes_to_load)
 3708		rq->nr_uninterruptible--;
 3709
 3710#ifdef CONFIG_SMP
 3711	if (wake_flags & WF_RQ_SELECTED)
 3712		en_flags |= ENQUEUE_RQ_SELECTED;
 3713	if (wake_flags & WF_MIGRATED)
 3714		en_flags |= ENQUEUE_MIGRATED;
 3715	else
 3716#endif
 3717	if (p->in_iowait) {
 3718		delayacct_blkio_end(p);
 3719		atomic_dec(&task_rq(p)->nr_iowait);
 3720	}
 3721
 3722	activate_task(rq, p, en_flags);
 3723	wakeup_preempt(rq, p, wake_flags);
 3724
 3725	ttwu_do_wakeup(p);
 3726
 3727#ifdef CONFIG_SMP
 3728	if (p->sched_class->task_woken) {
 3729		/*
 3730		 * Our task @p is fully woken up and running; so it's safe to
 3731		 * drop the rq->lock, hereafter rq is only used for statistics.
 3732		 */
 3733		rq_unpin_lock(rq, rf);
 3734		p->sched_class->task_woken(rq, p);
 3735		rq_repin_lock(rq, rf);
 3736	}
 3737
 3738	if (rq->idle_stamp) {
 3739		u64 delta = rq_clock(rq) - rq->idle_stamp;
 3740		u64 max = 2*rq->max_idle_balance_cost;
 3741
 3742		update_avg(&rq->avg_idle, delta);
 3743
 3744		if (rq->avg_idle > max)
 3745			rq->avg_idle = max;
 3746
 3747		rq->idle_stamp = 0;
 3748	}
 3749#endif
 3750}
 3751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3752/*
 3753 * Consider @p being inside a wait loop:
 3754 *
 3755 *   for (;;) {
 3756 *      set_current_state(TASK_UNINTERRUPTIBLE);
 3757 *
 3758 *      if (CONDITION)
 3759 *         break;
 3760 *
 3761 *      schedule();
 3762 *   }
 3763 *   __set_current_state(TASK_RUNNING);
 3764 *
 3765 * between set_current_state() and schedule(). In this case @p is still
 3766 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
 3767 * an atomic manner.
 3768 *
 3769 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
 3770 * then schedule() must still happen and p->state can be changed to
 3771 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
 3772 * need to do a full wakeup with enqueue.
 3773 *
 3774 * Returns: %true when the wakeup is done,
 3775 *          %false otherwise.
 3776 */
 3777static int ttwu_runnable(struct task_struct *p, int wake_flags)
 3778{
 3779	struct rq_flags rf;
 3780	struct rq *rq;
 3781	int ret = 0;
 3782
 3783	rq = __task_rq_lock(p, &rf);
 3784	if (task_on_rq_queued(p)) {
 
 3785		update_rq_clock(rq);
 3786		if (p->se.sched_delayed)
 3787			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
 3788		if (!task_on_cpu(rq, p)) {
 3789			/*
 3790			 * When on_rq && !on_cpu the task is preempted, see if
 3791			 * it should preempt the task that is current now.
 3792			 */
 3793			wakeup_preempt(rq, p, wake_flags);
 3794		}
 3795		ttwu_do_wakeup(p);
 3796		ret = 1;
 3797	}
 3798	__task_rq_unlock(rq, &rf);
 3799
 3800	return ret;
 3801}
 3802
 3803#ifdef CONFIG_SMP
 3804void sched_ttwu_pending(void *arg)
 3805{
 3806	struct llist_node *llist = arg;
 3807	struct rq *rq = this_rq();
 3808	struct task_struct *p, *t;
 3809	struct rq_flags rf;
 
 3810
 3811	if (!llist)
 3812		return;
 3813
 3814	rq_lock_irqsave(rq, &rf);
 3815	update_rq_clock(rq);
 3816
 3817	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
 3818		if (WARN_ON_ONCE(p->on_cpu))
 3819			smp_cond_load_acquire(&p->on_cpu, !VAL);
 
 
 3820
 3821		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
 3822			set_task_cpu(p, cpu_of(rq));
 
 3823
 3824		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 3825	}
 
 
 
 
 
 
 
 
 
 3826
 3827	/*
 3828	 * Must be after enqueueing at least once task such that
 3829	 * idle_cpu() does not observe a false-negative -- if it does,
 3830	 * it is possible for select_idle_siblings() to stack a number
 3831	 * of tasks on this CPU during that window.
 
 
 
 3832	 *
 3833	 * It is OK to clear ttwu_pending when another task pending.
 3834	 * We will receive IPI after local IRQ enabled and then enqueue it.
 3835	 * Since now nr_running > 0, idle_cpu() will always get correct result.
 3836	 */
 3837	WRITE_ONCE(rq->ttwu_pending, 0);
 3838	rq_unlock_irqrestore(rq, &rf);
 3839}
 3840
 3841/*
 3842 * Prepare the scene for sending an IPI for a remote smp_call
 3843 *
 3844 * Returns true if the caller can proceed with sending the IPI.
 3845 * Returns false otherwise.
 3846 */
 3847bool call_function_single_prep_ipi(int cpu)
 3848{
 3849	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
 3850		trace_sched_wake_idle_without_ipi(cpu);
 3851		return false;
 3852	}
 3853
 3854	return true;
 3855}
 3856
 3857/*
 3858 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
 3859 * necessary. The wakee CPU on receipt of the IPI will queue the task
 3860 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
 3861 * of the wakeup instead of the waker.
 3862 */
 3863static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3864{
 3865	struct rq *rq = cpu_rq(cpu);
 3866
 3867	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
 3868
 3869	WRITE_ONCE(rq->ttwu_pending, 1);
 3870	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 
 
 3871}
 3872
 3873void wake_up_if_idle(int cpu)
 3874{
 3875	struct rq *rq = cpu_rq(cpu);
 
 3876
 3877	guard(rcu)();
 3878	if (is_idle_task(rcu_dereference(rq->curr))) {
 3879		guard(rq_lock_irqsave)(rq);
 3880		if (is_idle_task(rq->curr))
 3881			resched_curr(rq);
 3882	}
 3883}
 3884
 3885bool cpus_equal_capacity(int this_cpu, int that_cpu)
 3886{
 3887	if (!sched_asym_cpucap_active())
 3888		return true;
 3889
 3890	if (this_cpu == that_cpu)
 3891		return true;
 
 
 
 
 
 
 
 3892
 3893	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
 
 3894}
 3895
 3896bool cpus_share_cache(int this_cpu, int that_cpu)
 3897{
 3898	if (this_cpu == that_cpu)
 3899		return true;
 3900
 3901	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
 3902}
 3903
 3904/*
 3905 * Whether CPUs are share cache resources, which means LLC on non-cluster
 3906 * machines and LLC tag or L2 on machines with clusters.
 3907 */
 3908bool cpus_share_resources(int this_cpu, int that_cpu)
 3909{
 3910	if (this_cpu == that_cpu)
 3911		return true;
 3912
 3913	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
 3914}
 3915
 3916static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
 3917{
 3918	/*
 3919	 * The BPF scheduler may depend on select_task_rq() being invoked during
 3920	 * wakeups. In addition, @p may end up executing on a different CPU
 3921	 * regardless of what happens in the wakeup path making the ttwu_queue
 3922	 * optimization less meaningful. Skip if on SCX.
 3923	 */
 3924	if (task_on_scx(p))
 3925		return false;
 3926
 3927	/*
 3928	 * Do not complicate things with the async wake_list while the CPU is
 3929	 * in hotplug state.
 3930	 */
 3931	if (!cpu_active(cpu))
 3932		return false;
 3933
 3934	/* Ensure the task will still be allowed to run on the CPU. */
 3935	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 3936		return false;
 3937
 3938	/*
 3939	 * If the CPU does not share cache, then queue the task on the
 3940	 * remote rqs wakelist to avoid accessing remote data.
 3941	 */
 3942	if (!cpus_share_cache(smp_processor_id(), cpu))
 3943		return true;
 3944
 3945	if (cpu == smp_processor_id())
 3946		return false;
 3947
 3948	/*
 3949	 * If the wakee cpu is idle, or the task is descheduling and the
 3950	 * only running task on the CPU, then use the wakelist to offload
 3951	 * the task activation to the idle (or soon-to-be-idle) CPU as
 3952	 * the current CPU is likely busy. nr_running is checked to
 3953	 * avoid unnecessary task stacking.
 3954	 *
 3955	 * Note that we can only get here with (wakee) p->on_rq=0,
 3956	 * p->on_cpu can be whatever, we've done the dequeue, so
 3957	 * the wakee has been accounted out of ->nr_running.
 3958	 */
 3959	if (!cpu_rq(cpu)->nr_running)
 3960		return true;
 3961
 3962	return false;
 3963}
 3964
 3965static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3966{
 3967	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
 3968		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
 3969		__ttwu_queue_wakelist(p, cpu, wake_flags);
 3970		return true;
 3971	}
 3972
 3973	return false;
 3974}
 3975
 3976#else /* !CONFIG_SMP */
 3977
 3978static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3979{
 3980	return false;
 3981}
 3982
 3983#endif /* CONFIG_SMP */
 3984
 3985static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
 3986{
 3987	struct rq *rq = cpu_rq(cpu);
 3988	struct rq_flags rf;
 3989
 3990	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 
 
 
 3991		return;
 3992
 3993	rq_lock(rq, &rf);
 3994	update_rq_clock(rq);
 3995	ttwu_do_activate(rq, p, wake_flags, &rf);
 3996	rq_unlock(rq, &rf);
 3997}
 3998
 3999/*
 4000 * Invoked from try_to_wake_up() to check whether the task can be woken up.
 4001 *
 4002 * The caller holds p::pi_lock if p != current or has preemption
 4003 * disabled when p == current.
 4004 *
 4005 * The rules of saved_state:
 4006 *
 4007 *   The related locking code always holds p::pi_lock when updating
 4008 *   p::saved_state, which means the code is fully serialized in both cases.
 4009 *
 4010 *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
 4011 *   No other bits set. This allows to distinguish all wakeup scenarios.
 4012 *
 4013 *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
 4014 *   allows us to prevent early wakeup of tasks before they can be run on
 4015 *   asymmetric ISA architectures (eg ARMv9).
 4016 */
 4017static __always_inline
 4018bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
 4019{
 4020	int match;
 4021
 4022	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 4023		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
 4024			     state != TASK_RTLOCK_WAIT);
 4025	}
 
 4026
 4027	*success = !!(match = __task_state_match(p, state));
 4028
 4029	/*
 4030	 * Saved state preserves the task state across blocking on
 4031	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
 4032	 * set p::saved_state to TASK_RUNNING, but do not wake the task
 4033	 * because it waits for a lock wakeup or __thaw_task(). Also
 4034	 * indicate success because from the regular waker's point of
 4035	 * view this has succeeded.
 4036	 *
 4037	 * After acquiring the lock the task will restore p::__state
 4038	 * from p::saved_state which ensures that the regular
 4039	 * wakeup is not lost. The restore will also set
 4040	 * p::saved_state to TASK_RUNNING so any further tests will
 4041	 * not result in false positives vs. @success
 4042	 */
 4043	if (match < 0)
 4044		p->saved_state = TASK_RUNNING;
 4045
 4046	return match > 0;
 4047}
 4048
 4049/*
 4050 * Notes on Program-Order guarantees on SMP systems.
 4051 *
 4052 *  MIGRATION
 4053 *
 4054 * The basic program-order guarantee on SMP systems is that when a task [t]
 4055 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 4056 * execution on its new CPU [c1].
 4057 *
 4058 * For migration (of runnable tasks) this is provided by the following means:
 4059 *
 4060 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 4061 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 4062 *     rq(c1)->lock (if not at the same time, then in that order).
 4063 *  C) LOCK of the rq(c1)->lock scheduling in task
 4064 *
 4065 * Release/acquire chaining guarantees that B happens after A and C after B.
 4066 * Note: the CPU doing B need not be c0 or c1
 
 4067 *
 4068 * Example:
 4069 *
 4070 *   CPU0            CPU1            CPU2
 4071 *
 4072 *   LOCK rq(0)->lock
 4073 *   sched-out X
 4074 *   sched-in Y
 4075 *   UNLOCK rq(0)->lock
 4076 *
 4077 *                                   LOCK rq(0)->lock // orders against CPU0
 4078 *                                   dequeue X
 4079 *                                   UNLOCK rq(0)->lock
 4080 *
 4081 *                                   LOCK rq(1)->lock
 4082 *                                   enqueue X
 4083 *                                   UNLOCK rq(1)->lock
 4084 *
 4085 *                   LOCK rq(1)->lock // orders against CPU2
 4086 *                   sched-out Z
 4087 *                   sched-in X
 4088 *                   UNLOCK rq(1)->lock
 4089 *
 4090 *
 4091 *  BLOCKING -- aka. SLEEP + WAKEUP
 4092 *
 4093 * For blocking we (obviously) need to provide the same guarantee as for
 4094 * migration. However the means are completely different as there is no lock
 4095 * chain to provide order. Instead we do:
 4096 *
 4097 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
 4098 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
 4099 *
 4100 * Example:
 4101 *
 4102 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 4103 *
 4104 *   LOCK rq(0)->lock LOCK X->pi_lock
 4105 *   dequeue X
 4106 *   sched-out X
 4107 *   smp_store_release(X->on_cpu, 0);
 4108 *
 4109 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
 4110 *                    X->state = WAKING
 4111 *                    set_task_cpu(X,2)
 4112 *
 4113 *                    LOCK rq(2)->lock
 4114 *                    enqueue X
 4115 *                    X->state = RUNNING
 4116 *                    UNLOCK rq(2)->lock
 4117 *
 4118 *                                          LOCK rq(2)->lock // orders against CPU1
 4119 *                                          sched-out Z
 4120 *                                          sched-in X
 4121 *                                          UNLOCK rq(2)->lock
 4122 *
 4123 *                    UNLOCK X->pi_lock
 4124 *   UNLOCK rq(0)->lock
 4125 *
 4126 *
 4127 * However, for wakeups there is a second guarantee we must provide, namely we
 4128 * must ensure that CONDITION=1 done by the caller can not be reordered with
 4129 * accesses to the task state; see try_to_wake_up() and set_current_state().
 
 
 
 
 
 
 
 4130 */
 4131
 4132/**
 4133 * try_to_wake_up - wake up a thread
 4134 * @p: the thread to be awakened
 4135 * @state: the mask of task states that can be woken
 4136 * @wake_flags: wake modifier flags (WF_*)
 4137 *
 4138 * Conceptually does:
 4139 *
 4140 *   If (@state & @p->state) @p->state = TASK_RUNNING.
 4141 *
 4142 * If the task was not queued/runnable, also place it back on a runqueue.
 4143 *
 4144 * This function is atomic against schedule() which would dequeue the task.
 4145 *
 4146 * It issues a full memory barrier before accessing @p->state, see the comment
 4147 * with set_current_state().
 4148 *
 4149 * Uses p->pi_lock to serialize against concurrent wake-ups.
 4150 *
 4151 * Relies on p->pi_lock stabilizing:
 4152 *  - p->sched_class
 4153 *  - p->cpus_ptr
 4154 *  - p->sched_task_group
 4155 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
 4156 *
 4157 * Tries really hard to only take one task_rq(p)->lock for performance.
 4158 * Takes rq->lock in:
 4159 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
 4160 *  - ttwu_queue()       -- new rq, for enqueue of the task;
 4161 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
 4162 *
 4163 * As a consequence we race really badly with just about everything. See the
 4164 * many memory barriers and their comments for details.
 4165 *
 4166 * Return: %true if @p->state changes (an actual wakeup was done),
 4167 *	   %false otherwise.
 4168 */
 4169int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 
 4170{
 4171	guard(preempt)();
 4172	int cpu, success = 0;
 4173
 4174	wake_flags |= WF_TTWU;
 4175
 4176	if (p == current) {
 4177		/*
 4178		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
 4179		 * == smp_processor_id()'. Together this means we can special
 4180		 * case the whole 'p->on_rq && ttwu_runnable()' case below
 4181		 * without taking any locks.
 4182		 *
 4183		 * Specifically, given current runs ttwu() we must be before
 4184		 * schedule()'s block_task(), as such this must not observe
 4185		 * sched_delayed.
 4186		 *
 4187		 * In particular:
 4188		 *  - we rely on Program-Order guarantees for all the ordering,
 4189		 *  - we're serialized against set_special_state() by virtue of
 4190		 *    it disabling IRQs (this allows not taking ->pi_lock).
 4191		 */
 4192		SCHED_WARN_ON(p->se.sched_delayed);
 4193		if (!ttwu_state_match(p, state, &success))
 4194			goto out;
 4195
 4196		trace_sched_waking(p);
 4197		ttwu_do_wakeup(p);
 4198		goto out;
 4199	}
 4200
 4201	/*
 4202	 * If we are going to wake up a thread waiting for CONDITION we
 4203	 * need to ensure that CONDITION=1 done by the caller can not be
 4204	 * reordered with p->state check below. This pairs with smp_store_mb()
 4205	 * in set_current_state() that the waiting thread does.
 4206	 */
 4207	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
 4208		smp_mb__after_spinlock();
 4209		if (!ttwu_state_match(p, state, &success))
 4210			break;
 4211
 4212		trace_sched_waking(p);
 4213
 4214		/*
 4215		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
 4216		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
 4217		 * in smp_cond_load_acquire() below.
 4218		 *
 4219		 * sched_ttwu_pending()			try_to_wake_up()
 4220		 *   STORE p->on_rq = 1			  LOAD p->state
 4221		 *   UNLOCK rq->lock
 4222		 *
 4223		 * __schedule() (switch to task 'p')
 4224		 *   LOCK rq->lock			  smp_rmb();
 4225		 *   smp_mb__after_spinlock();
 4226		 *   UNLOCK rq->lock
 4227		 *
 4228		 * [task p]
 4229		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
 4230		 *
 4231		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4232		 * __schedule().  See the comment for smp_mb__after_spinlock().
 4233		 *
 4234		 * A similar smp_rmb() lives in __task_needs_rq_lock().
 4235		 */
 4236		smp_rmb();
 4237		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
 4238			break;
 4239
 4240#ifdef CONFIG_SMP
 4241		/*
 4242		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
 4243		 * possible to, falsely, observe p->on_cpu == 0.
 4244		 *
 4245		 * One must be running (->on_cpu == 1) in order to remove oneself
 4246		 * from the runqueue.
 4247		 *
 4248		 * __schedule() (switch to task 'p')	try_to_wake_up()
 4249		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
 4250		 *   UNLOCK rq->lock
 4251		 *
 4252		 * __schedule() (put 'p' to sleep)
 4253		 *   LOCK rq->lock			  smp_rmb();
 4254		 *   smp_mb__after_spinlock();
 4255		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
 4256		 *
 4257		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4258		 * __schedule().  See the comment for smp_mb__after_spinlock().
 4259		 *
 4260		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
 4261		 * schedule()'s deactivate_task() has 'happened' and p will no longer
 4262		 * care about it's own p->state. See the comment in __schedule().
 4263		 */
 4264		smp_acquire__after_ctrl_dep();
 4265
 4266		/*
 4267		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
 4268		 * == 0), which means we need to do an enqueue, change p->state to
 4269		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
 4270		 * enqueue, such as ttwu_queue_wakelist().
 4271		 */
 4272		WRITE_ONCE(p->__state, TASK_WAKING);
 
 
 
 
 
 
 
 
 
 
 
 
 4273
 4274		/*
 4275		 * If the owning (remote) CPU is still in the middle of schedule() with
 4276		 * this task as prev, considering queueing p on the remote CPUs wake_list
 4277		 * which potentially sends an IPI instead of spinning on p->on_cpu to
 4278		 * let the waker make forward progress. This is safe because IRQs are
 4279		 * disabled and the IPI will deliver after on_cpu is cleared.
 4280		 *
 4281		 * Ensure we load task_cpu(p) after p->on_cpu:
 4282		 *
 4283		 * set_task_cpu(p, cpu);
 4284		 *   STORE p->cpu = @cpu
 4285		 * __schedule() (switch to task 'p')
 4286		 *   LOCK rq->lock
 4287		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
 4288		 *   STORE p->on_cpu = 1		LOAD p->cpu
 4289		 *
 4290		 * to ensure we observe the correct CPU on which the task is currently
 4291		 * scheduling.
 4292		 */
 4293		if (smp_load_acquire(&p->on_cpu) &&
 4294		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
 4295			break;
 4296
 4297		/*
 4298		 * If the owning (remote) CPU is still in the middle of schedule() with
 4299		 * this task as prev, wait until it's done referencing the task.
 4300		 *
 4301		 * Pairs with the smp_store_release() in finish_task().
 4302		 *
 4303		 * This ensures that tasks getting woken will be fully ordered against
 4304		 * their previous state and preserve Program Order.
 4305		 */
 4306		smp_cond_load_acquire(&p->on_cpu, !VAL);
 4307
 4308		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
 4309		if (task_cpu(p) != cpu) {
 4310			if (p->in_iowait) {
 4311				delayacct_blkio_end(p);
 4312				atomic_dec(&task_rq(p)->nr_iowait);
 4313			}
 4314
 4315			wake_flags |= WF_MIGRATED;
 4316			psi_ttwu_dequeue(p);
 4317			set_task_cpu(p, cpu);
 4318		}
 4319#else
 4320		cpu = task_cpu(p);
 4321#endif /* CONFIG_SMP */
 4322
 4323		ttwu_queue(p, cpu, wake_flags);
 4324	}
 
 
 4325out:
 4326	if (success)
 4327		ttwu_stat(p, task_cpu(p), wake_flags);
 4328
 4329	return success;
 4330}
 4331
 4332static bool __task_needs_rq_lock(struct task_struct *p)
 4333{
 4334	unsigned int state = READ_ONCE(p->__state);
 4335
 4336	/*
 4337	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
 4338	 * the task is blocked. Make sure to check @state since ttwu() can drop
 4339	 * locks at the end, see ttwu_queue_wakelist().
 4340	 */
 4341	if (state == TASK_RUNNING || state == TASK_WAKING)
 4342		return true;
 4343
 4344	/*
 4345	 * Ensure we load p->on_rq after p->__state, otherwise it would be
 4346	 * possible to, falsely, observe p->on_rq == 0.
 4347	 *
 4348	 * See try_to_wake_up() for a longer comment.
 4349	 */
 4350	smp_rmb();
 4351	if (p->on_rq)
 4352		return true;
 4353
 4354#ifdef CONFIG_SMP
 4355	/*
 4356	 * Ensure the task has finished __schedule() and will not be referenced
 4357	 * anymore. Again, see try_to_wake_up() for a longer comment.
 4358	 */
 4359	smp_rmb();
 4360	smp_cond_load_acquire(&p->on_cpu, !VAL);
 4361#endif
 4362
 4363	return false;
 4364}
 4365
 4366/**
 4367 * task_call_func - Invoke a function on task in fixed state
 4368 * @p: Process for which the function is to be invoked, can be @current.
 4369 * @func: Function to invoke.
 4370 * @arg: Argument to function.
 4371 *
 4372 * Fix the task in it's current state by avoiding wakeups and or rq operations
 4373 * and call @func(@arg) on it.  This function can use task_is_runnable() and
 4374 * task_curr() to work out what the state is, if required.  Given that @func
 4375 * can be invoked with a runqueue lock held, it had better be quite
 4376 * lightweight.
 4377 *
 4378 * Returns:
 4379 *   Whatever @func returns
 
 4380 */
 4381int task_call_func(struct task_struct *p, task_call_f func, void *arg)
 4382{
 4383	struct rq *rq = NULL;
 4384	struct rq_flags rf;
 4385	int ret;
 4386
 4387	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 
 
 4388
 4389	if (__task_needs_rq_lock(p))
 4390		rq = __task_rq_lock(p, &rf);
 4391
 4392	/*
 4393	 * At this point the task is pinned; either:
 4394	 *  - blocked and we're holding off wakeups	 (pi->lock)
 4395	 *  - woken, and we're holding off enqueue	 (rq->lock)
 4396	 *  - queued, and we're holding off schedule	 (rq->lock)
 4397	 *  - running, and we're holding off de-schedule (rq->lock)
 4398	 *
 4399	 * The called function (@func) can use: task_curr(), p->on_rq and
 4400	 * p->__state to differentiate between these states.
 4401	 */
 4402	ret = func(p, arg);
 4403
 4404	if (rq)
 4405		rq_unlock(rq, &rf);
 4406
 4407	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
 4408	return ret;
 4409}
 4410
 4411/**
 4412 * cpu_curr_snapshot - Return a snapshot of the currently running task
 4413 * @cpu: The CPU on which to snapshot the task.
 4414 *
 4415 * Returns the task_struct pointer of the task "currently" running on
 4416 * the specified CPU.
 4417 *
 4418 * If the specified CPU was offline, the return value is whatever it
 4419 * is, perhaps a pointer to the task_struct structure of that CPU's idle
 4420 * task, but there is no guarantee.  Callers wishing a useful return
 4421 * value must take some action to ensure that the specified CPU remains
 4422 * online throughout.
 4423 *
 4424 * This function executes full memory barriers before and after fetching
 4425 * the pointer, which permits the caller to confine this function's fetch
 4426 * with respect to the caller's accesses to other shared variables.
 4427 */
 4428struct task_struct *cpu_curr_snapshot(int cpu)
 4429{
 4430	struct rq *rq = cpu_rq(cpu);
 4431	struct task_struct *t;
 4432	struct rq_flags rf;
 4433
 4434	rq_lock_irqsave(rq, &rf);
 4435	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
 4436	t = rcu_dereference(cpu_curr(cpu));
 4437	rq_unlock_irqrestore(rq, &rf);
 4438	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4439
 4440	return t;
 
 
 
 
 4441}
 4442
 4443/**
 4444 * wake_up_process - Wake up a specific process
 4445 * @p: The process to be woken up.
 4446 *
 4447 * Attempt to wake up the nominated process and move it to the set of runnable
 4448 * processes.
 4449 *
 4450 * Return: 1 if the process was woken up, 0 if it was already running.
 4451 *
 4452 * This function executes a full memory barrier before accessing the task state.
 
 4453 */
 4454int wake_up_process(struct task_struct *p)
 4455{
 4456	return try_to_wake_up(p, TASK_NORMAL, 0);
 4457}
 4458EXPORT_SYMBOL(wake_up_process);
 4459
 4460int wake_up_state(struct task_struct *p, unsigned int state)
 4461{
 4462	return try_to_wake_up(p, state, 0);
 4463}
 4464
 4465/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4466 * Perform scheduler related setup for a newly forked process p.
 4467 * p is forked by current.
 4468 *
 4469 * __sched_fork() is basic setup which is also used by sched_init() to
 4470 * initialize the boot CPU's idle task.
 4471 */
 4472static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 4473{
 4474	p->on_rq			= 0;
 4475
 4476	p->se.on_rq			= 0;
 4477	p->se.exec_start		= 0;
 4478	p->se.sum_exec_runtime		= 0;
 4479	p->se.prev_sum_exec_runtime	= 0;
 4480	p->se.nr_migrations		= 0;
 4481	p->se.vruntime			= 0;
 4482	p->se.vlag			= 0;
 4483	INIT_LIST_HEAD(&p->se.group_node);
 4484
 4485	/* A delayed task cannot be in clone(). */
 4486	SCHED_WARN_ON(p->se.sched_delayed);
 4487
 4488#ifdef CONFIG_FAIR_GROUP_SCHED
 4489	p->se.cfs_rq			= NULL;
 4490#endif
 4491
 4492#ifdef CONFIG_SCHEDSTATS
 4493	/* Even if schedstat is disabled, there should not be garbage */
 4494	memset(&p->stats, 0, sizeof(p->stats));
 4495#endif
 4496
 4497	init_dl_entity(&p->dl);
 
 
 4498
 4499	INIT_LIST_HEAD(&p->rt.run_list);
 4500	p->rt.timeout		= 0;
 4501	p->rt.time_slice	= sched_rr_timeslice;
 4502	p->rt.on_rq		= 0;
 4503	p->rt.on_list		= 0;
 4504
 4505#ifdef CONFIG_SCHED_CLASS_EXT
 4506	init_scx_entity(&p->scx);
 4507#endif
 4508
 4509#ifdef CONFIG_PREEMPT_NOTIFIERS
 4510	INIT_HLIST_HEAD(&p->preempt_notifiers);
 4511#endif
 4512
 4513#ifdef CONFIG_COMPACTION
 4514	p->capture_control = NULL;
 4515#endif
 4516	init_numa_balancing(clone_flags, p);
 4517#ifdef CONFIG_SMP
 4518	p->wake_entry.u_flags = CSD_TYPE_TTWU;
 4519	p->migration_pending = NULL;
 4520#endif
 4521	init_sched_mm_cid(p);
 
 
 
 
 
 
 
 
 
 
 
 
 4522}
 4523
 4524DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
 4525
 4526#ifdef CONFIG_NUMA_BALANCING
 4527
 4528int sysctl_numa_balancing_mode;
 4529
 4530static void __set_numabalancing_state(bool enabled)
 4531{
 4532	if (enabled)
 4533		static_branch_enable(&sched_numa_balancing);
 4534	else
 4535		static_branch_disable(&sched_numa_balancing);
 4536}
 4537
 4538void set_numabalancing_state(bool enabled)
 4539{
 4540	if (enabled)
 4541		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
 4542	else
 4543		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
 4544	__set_numabalancing_state(enabled);
 4545}
 4546
 4547#ifdef CONFIG_PROC_SYSCTL
 4548static void reset_memory_tiering(void)
 4549{
 4550	struct pglist_data *pgdat;
 4551
 4552	for_each_online_pgdat(pgdat) {
 4553		pgdat->nbp_threshold = 0;
 4554		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
 4555		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
 4556	}
 4557}
 4558
 4559static int sysctl_numa_balancing(const struct ctl_table *table, int write,
 4560			  void *buffer, size_t *lenp, loff_t *ppos)
 4561{
 4562	struct ctl_table t;
 4563	int err;
 4564	int state = sysctl_numa_balancing_mode;
 4565
 4566	if (write && !capable(CAP_SYS_ADMIN))
 4567		return -EPERM;
 4568
 4569	t = *table;
 4570	t.data = &state;
 4571	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4572	if (err < 0)
 4573		return err;
 4574	if (write) {
 4575		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 4576		    (state & NUMA_BALANCING_MEMORY_TIERING))
 4577			reset_memory_tiering();
 4578		sysctl_numa_balancing_mode = state;
 4579		__set_numabalancing_state(state);
 4580	}
 4581	return err;
 4582}
 4583#endif
 4584#endif
 4585
 4586#ifdef CONFIG_SCHEDSTATS
 4587
 4588DEFINE_STATIC_KEY_FALSE(sched_schedstats);
 4589
 
 4590static void set_schedstats(bool enabled)
 4591{
 4592	if (enabled)
 4593		static_branch_enable(&sched_schedstats);
 4594	else
 4595		static_branch_disable(&sched_schedstats);
 4596}
 4597
 4598void force_schedstat_enabled(void)
 4599{
 4600	if (!schedstat_enabled()) {
 4601		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
 4602		static_branch_enable(&sched_schedstats);
 4603	}
 4604}
 4605
 4606static int __init setup_schedstats(char *str)
 4607{
 4608	int ret = 0;
 4609	if (!str)
 4610		goto out;
 4611
 4612	if (!strcmp(str, "enable")) {
 4613		set_schedstats(true);
 4614		ret = 1;
 4615	} else if (!strcmp(str, "disable")) {
 4616		set_schedstats(false);
 4617		ret = 1;
 4618	}
 4619out:
 4620	if (!ret)
 4621		pr_warn("Unable to parse schedstats=\n");
 4622
 4623	return ret;
 4624}
 4625__setup("schedstats=", setup_schedstats);
 4626
 4627#ifdef CONFIG_PROC_SYSCTL
 4628static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
 4629		size_t *lenp, loff_t *ppos)
 4630{
 4631	struct ctl_table t;
 4632	int err;
 4633	int state = static_branch_likely(&sched_schedstats);
 4634
 4635	if (write && !capable(CAP_SYS_ADMIN))
 4636		return -EPERM;
 4637
 4638	t = *table;
 4639	t.data = &state;
 4640	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4641	if (err < 0)
 4642		return err;
 4643	if (write)
 4644		set_schedstats(state);
 4645	return err;
 4646}
 4647#endif /* CONFIG_PROC_SYSCTL */
 4648#endif /* CONFIG_SCHEDSTATS */
 4649
 4650#ifdef CONFIG_SYSCTL
 4651static struct ctl_table sched_core_sysctls[] = {
 4652#ifdef CONFIG_SCHEDSTATS
 4653	{
 4654		.procname       = "sched_schedstats",
 4655		.data           = NULL,
 4656		.maxlen         = sizeof(unsigned int),
 4657		.mode           = 0644,
 4658		.proc_handler   = sysctl_schedstats,
 4659		.extra1         = SYSCTL_ZERO,
 4660		.extra2         = SYSCTL_ONE,
 4661	},
 4662#endif /* CONFIG_SCHEDSTATS */
 4663#ifdef CONFIG_UCLAMP_TASK
 4664	{
 4665		.procname       = "sched_util_clamp_min",
 4666		.data           = &sysctl_sched_uclamp_util_min,
 4667		.maxlen         = sizeof(unsigned int),
 4668		.mode           = 0644,
 4669		.proc_handler   = sysctl_sched_uclamp_handler,
 4670	},
 4671	{
 4672		.procname       = "sched_util_clamp_max",
 4673		.data           = &sysctl_sched_uclamp_util_max,
 4674		.maxlen         = sizeof(unsigned int),
 4675		.mode           = 0644,
 4676		.proc_handler   = sysctl_sched_uclamp_handler,
 4677	},
 4678	{
 4679		.procname       = "sched_util_clamp_min_rt_default",
 4680		.data           = &sysctl_sched_uclamp_util_min_rt_default,
 4681		.maxlen         = sizeof(unsigned int),
 4682		.mode           = 0644,
 4683		.proc_handler   = sysctl_sched_uclamp_handler,
 4684	},
 4685#endif /* CONFIG_UCLAMP_TASK */
 4686#ifdef CONFIG_NUMA_BALANCING
 4687	{
 4688		.procname	= "numa_balancing",
 4689		.data		= NULL, /* filled in by handler */
 4690		.maxlen		= sizeof(unsigned int),
 4691		.mode		= 0644,
 4692		.proc_handler	= sysctl_numa_balancing,
 4693		.extra1		= SYSCTL_ZERO,
 4694		.extra2		= SYSCTL_FOUR,
 4695	},
 4696#endif /* CONFIG_NUMA_BALANCING */
 4697};
 4698static int __init sched_core_sysctl_init(void)
 4699{
 4700	register_sysctl_init("kernel", sched_core_sysctls);
 4701	return 0;
 4702}
 4703late_initcall(sched_core_sysctl_init);
 4704#endif /* CONFIG_SYSCTL */
 4705
 4706/*
 4707 * fork()/clone()-time setup:
 4708 */
 4709int sched_fork(unsigned long clone_flags, struct task_struct *p)
 4710{
 
 
 
 4711	__sched_fork(clone_flags, p);
 4712	/*
 4713	 * We mark the process as NEW here. This guarantees that
 4714	 * nobody will actually run it, and a signal or other external
 4715	 * event cannot wake it up and insert it on the runqueue either.
 4716	 */
 4717	p->__state = TASK_NEW;
 4718
 4719	/*
 4720	 * Make sure we do not leak PI boosting priority to the child.
 4721	 */
 4722	p->prio = current->normal_prio;
 4723
 4724	uclamp_fork(p);
 4725
 4726	/*
 4727	 * Revert to default priority/policy on fork if requested.
 4728	 */
 4729	if (unlikely(p->sched_reset_on_fork)) {
 4730		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 4731			p->policy = SCHED_NORMAL;
 4732			p->static_prio = NICE_TO_PRIO(0);
 4733			p->rt_priority = 0;
 4734		} else if (PRIO_TO_NICE(p->static_prio) < 0)
 4735			p->static_prio = NICE_TO_PRIO(0);
 4736
 4737		p->prio = p->normal_prio = p->static_prio;
 4738		set_load_weight(p, false);
 4739		p->se.custom_slice = 0;
 4740		p->se.slice = sysctl_sched_base_slice;
 4741
 4742		/*
 4743		 * We don't need the reset flag anymore after the fork. It has
 4744		 * fulfilled its duty:
 4745		 */
 4746		p->sched_reset_on_fork = 0;
 4747	}
 4748
 4749	if (dl_prio(p->prio))
 
 4750		return -EAGAIN;
 4751
 4752	scx_pre_fork(p);
 4753
 4754	if (rt_prio(p->prio)) {
 4755		p->sched_class = &rt_sched_class;
 4756#ifdef CONFIG_SCHED_CLASS_EXT
 4757	} else if (task_should_scx(p->policy)) {
 4758		p->sched_class = &ext_sched_class;
 4759#endif
 4760	} else {
 4761		p->sched_class = &fair_sched_class;
 4762	}
 4763
 4764	init_entity_runnable_average(&p->se);
 
 4765
 
 
 
 
 
 
 
 
 
 
 4766
 4767#ifdef CONFIG_SCHED_INFO
 4768	if (likely(sched_info_on()))
 4769		memset(&p->sched_info, 0, sizeof(p->sched_info));
 4770#endif
 4771#if defined(CONFIG_SMP)
 4772	p->on_cpu = 0;
 4773#endif
 4774	init_task_preempt_count(p);
 4775#ifdef CONFIG_SMP
 4776	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 4777	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 4778#endif
 
 
 4779	return 0;
 4780}
 4781
 4782int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
 4783{
 4784	unsigned long flags;
 
 4785
 4786	/*
 4787	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
 4788	 * required yet, but lockdep gets upset if rules are violated.
 4789	 */
 4790	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4791#ifdef CONFIG_CGROUP_SCHED
 4792	if (1) {
 4793		struct task_group *tg;
 4794		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
 4795				  struct task_group, css);
 4796		tg = autogroup_task_group(p, tg);
 4797		p->sched_task_group = tg;
 4798	}
 4799#endif
 4800	rseq_migrate(p);
 4801	/*
 4802	 * We're setting the CPU for the first time, we don't migrate,
 4803	 * so use __set_task_cpu().
 4804	 */
 4805	__set_task_cpu(p, smp_processor_id());
 4806	if (p->sched_class->task_fork)
 4807		p->sched_class->task_fork(p);
 4808	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4809
 4810	return scx_fork(p);
 4811}
 4812
 4813void sched_cancel_fork(struct task_struct *p)
 
 4814{
 4815	scx_cancel_fork(p);
 
 
 4816}
 4817
 4818void sched_post_fork(struct task_struct *p)
 4819{
 4820	uclamp_post_fork(p);
 4821	scx_post_fork(p);
 
 
 
 
 
 
 
 
 
 
 
 
 4822}
 4823
 4824unsigned long to_ratio(u64 period, u64 runtime)
 4825{
 4826	if (runtime == RUNTIME_INF)
 4827		return BW_UNIT;
 
 4828
 4829	/*
 4830	 * Doing this here saves a lot of checks in all
 4831	 * the calling paths, and returning zero seems
 4832	 * safe for them anyway.
 4833	 */
 4834	if (period == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4835		return 0;
 4836
 4837	return div64_u64(runtime << BW_SHIFT, period);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4838}
 4839
 
 
 4840/*
 4841 * wake_up_new_task - wake up a newly created task for the first time.
 4842 *
 4843 * This function will do some initial scheduler statistics housekeeping
 4844 * that must be done for every newly created context, then puts the task
 4845 * on the runqueue and wakes it.
 4846 */
 4847void wake_up_new_task(struct task_struct *p)
 4848{
 4849	struct rq_flags rf;
 4850	struct rq *rq;
 4851	int wake_flags = WF_FORK;
 4852
 4853	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4854	WRITE_ONCE(p->__state, TASK_RUNNING);
 
 4855#ifdef CONFIG_SMP
 4856	/*
 4857	 * Fork balancing, do it here and not earlier because:
 4858	 *  - cpus_ptr can change in the fork path
 4859	 *  - any previously selected CPU might disappear through hotplug
 4860	 *
 4861	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
 4862	 * as we're not fully set-up yet.
 4863	 */
 4864	p->recent_used_cpu = task_cpu(p);
 4865	rseq_migrate(p);
 4866	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
 4867#endif
 4868	rq = __task_rq_lock(p, &rf);
 4869	update_rq_clock(rq);
 4870	post_init_entity_util_avg(p);
 4871
 4872	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
 
 
 4873	trace_sched_wakeup_new(p);
 4874	wakeup_preempt(rq, p, wake_flags);
 4875#ifdef CONFIG_SMP
 4876	if (p->sched_class->task_woken) {
 4877		/*
 4878		 * Nothing relies on rq->lock after this, so it's fine to
 4879		 * drop it.
 4880		 */
 4881		rq_unpin_lock(rq, &rf);
 4882		p->sched_class->task_woken(rq, p);
 4883		rq_repin_lock(rq, &rf);
 4884	}
 4885#endif
 4886	task_rq_unlock(rq, p, &rf);
 4887}
 4888
 4889#ifdef CONFIG_PREEMPT_NOTIFIERS
 4890
 4891static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
 4892
 4893void preempt_notifier_inc(void)
 4894{
 4895	static_branch_inc(&preempt_notifier_key);
 4896}
 4897EXPORT_SYMBOL_GPL(preempt_notifier_inc);
 4898
 4899void preempt_notifier_dec(void)
 4900{
 4901	static_branch_dec(&preempt_notifier_key);
 4902}
 4903EXPORT_SYMBOL_GPL(preempt_notifier_dec);
 4904
 4905/**
 4906 * preempt_notifier_register - tell me when current is being preempted & rescheduled
 4907 * @notifier: notifier struct to register
 4908 */
 4909void preempt_notifier_register(struct preempt_notifier *notifier)
 4910{
 4911	if (!static_branch_unlikely(&preempt_notifier_key))
 4912		WARN(1, "registering preempt_notifier while notifiers disabled\n");
 4913
 4914	hlist_add_head(&notifier->link, &current->preempt_notifiers);
 4915}
 4916EXPORT_SYMBOL_GPL(preempt_notifier_register);
 4917
 4918/**
 4919 * preempt_notifier_unregister - no longer interested in preemption notifications
 4920 * @notifier: notifier struct to unregister
 4921 *
 4922 * This is *not* safe to call from within a preemption notifier.
 4923 */
 4924void preempt_notifier_unregister(struct preempt_notifier *notifier)
 4925{
 4926	hlist_del(&notifier->link);
 4927}
 4928EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 4929
 4930static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4931{
 4932	struct preempt_notifier *notifier;
 4933
 4934	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4935		notifier->ops->sched_in(notifier, raw_smp_processor_id());
 4936}
 4937
 4938static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4939{
 4940	if (static_branch_unlikely(&preempt_notifier_key))
 4941		__fire_sched_in_preempt_notifiers(curr);
 4942}
 4943
 4944static void
 4945__fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4946				   struct task_struct *next)
 4947{
 4948	struct preempt_notifier *notifier;
 4949
 4950	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4951		notifier->ops->sched_out(notifier, next);
 4952}
 4953
 4954static __always_inline void
 4955fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4956				 struct task_struct *next)
 4957{
 4958	if (static_branch_unlikely(&preempt_notifier_key))
 4959		__fire_sched_out_preempt_notifiers(curr, next);
 4960}
 4961
 4962#else /* !CONFIG_PREEMPT_NOTIFIERS */
 4963
 4964static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4965{
 4966}
 4967
 4968static inline void
 4969fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4970				 struct task_struct *next)
 4971{
 4972}
 4973
 4974#endif /* CONFIG_PREEMPT_NOTIFIERS */
 4975
 4976static inline void prepare_task(struct task_struct *next)
 4977{
 4978#ifdef CONFIG_SMP
 4979	/*
 4980	 * Claim the task as running, we do this before switching to it
 4981	 * such that any running task will have this set.
 4982	 *
 4983	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
 4984	 * its ordering comment.
 4985	 */
 4986	WRITE_ONCE(next->on_cpu, 1);
 4987#endif
 4988}
 4989
 4990static inline void finish_task(struct task_struct *prev)
 4991{
 4992#ifdef CONFIG_SMP
 4993	/*
 4994	 * This must be the very last reference to @prev from this CPU. After
 4995	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
 4996	 * must ensure this doesn't happen until the switch is completely
 4997	 * finished.
 4998	 *
 4999	 * In particular, the load of prev->state in finish_task_switch() must
 5000	 * happen before this.
 5001	 *
 5002	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
 5003	 */
 5004	smp_store_release(&prev->on_cpu, 0);
 5005#endif
 5006}
 5007
 5008#ifdef CONFIG_SMP
 5009
 5010static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
 5011{
 5012	void (*func)(struct rq *rq);
 5013	struct balance_callback *next;
 5014
 5015	lockdep_assert_rq_held(rq);
 5016
 5017	while (head) {
 5018		func = (void (*)(struct rq *))head->func;
 5019		next = head->next;
 5020		head->next = NULL;
 5021		head = next;
 5022
 5023		func(rq);
 5024	}
 5025}
 5026
 5027static void balance_push(struct rq *rq);
 5028
 5029/*
 5030 * balance_push_callback is a right abuse of the callback interface and plays
 5031 * by significantly different rules.
 5032 *
 5033 * Where the normal balance_callback's purpose is to be ran in the same context
 5034 * that queued it (only later, when it's safe to drop rq->lock again),
 5035 * balance_push_callback is specifically targeted at __schedule().
 5036 *
 5037 * This abuse is tolerated because it places all the unlikely/odd cases behind
 5038 * a single test, namely: rq->balance_callback == NULL.
 5039 */
 5040struct balance_callback balance_push_callback = {
 5041	.next = NULL,
 5042	.func = balance_push,
 5043};
 5044
 5045static inline struct balance_callback *
 5046__splice_balance_callbacks(struct rq *rq, bool split)
 5047{
 5048	struct balance_callback *head = rq->balance_callback;
 5049
 5050	if (likely(!head))
 5051		return NULL;
 5052
 5053	lockdep_assert_rq_held(rq);
 5054	/*
 5055	 * Must not take balance_push_callback off the list when
 5056	 * splice_balance_callbacks() and balance_callbacks() are not
 5057	 * in the same rq->lock section.
 5058	 *
 5059	 * In that case it would be possible for __schedule() to interleave
 5060	 * and observe the list empty.
 5061	 */
 5062	if (split && head == &balance_push_callback)
 5063		head = NULL;
 5064	else
 5065		rq->balance_callback = NULL;
 5066
 5067	return head;
 5068}
 5069
 5070struct balance_callback *splice_balance_callbacks(struct rq *rq)
 5071{
 5072	return __splice_balance_callbacks(rq, true);
 5073}
 5074
 5075static void __balance_callbacks(struct rq *rq)
 5076{
 5077	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
 5078}
 5079
 5080void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5081{
 5082	unsigned long flags;
 5083
 5084	if (unlikely(head)) {
 5085		raw_spin_rq_lock_irqsave(rq, flags);
 5086		do_balance_callbacks(rq, head);
 5087		raw_spin_rq_unlock_irqrestore(rq, flags);
 5088	}
 5089}
 5090
 5091#else
 5092
 5093static inline void __balance_callbacks(struct rq *rq)
 5094{
 5095}
 5096
 5097#endif
 5098
 5099static inline void
 5100prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
 5101{
 5102	/*
 5103	 * Since the runqueue lock will be released by the next
 5104	 * task (which is an invalid locking op but in the case
 5105	 * of the scheduler it's an obvious special-case), so we
 5106	 * do an early lockdep release here:
 5107	 */
 5108	rq_unpin_lock(rq, rf);
 5109	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
 5110#ifdef CONFIG_DEBUG_SPINLOCK
 5111	/* this is a valid case when another task releases the spinlock */
 5112	rq_lockp(rq)->owner = next;
 5113#endif
 5114}
 5115
 5116static inline void finish_lock_switch(struct rq *rq)
 5117{
 5118	/*
 5119	 * If we are tracking spinlock dependencies then we have to
 5120	 * fix up the runqueue lock - which gets 'carried over' from
 5121	 * prev into current:
 5122	 */
 5123	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
 5124	__balance_callbacks(rq);
 5125	raw_spin_rq_unlock_irq(rq);
 5126}
 5127
 5128/*
 5129 * NOP if the arch has not defined these:
 5130 */
 5131
 5132#ifndef prepare_arch_switch
 5133# define prepare_arch_switch(next)	do { } while (0)
 5134#endif
 5135
 5136#ifndef finish_arch_post_lock_switch
 5137# define finish_arch_post_lock_switch()	do { } while (0)
 5138#endif
 5139
 5140static inline void kmap_local_sched_out(void)
 5141{
 5142#ifdef CONFIG_KMAP_LOCAL
 5143	if (unlikely(current->kmap_ctrl.idx))
 5144		__kmap_local_sched_out();
 5145#endif
 5146}
 5147
 5148static inline void kmap_local_sched_in(void)
 5149{
 5150#ifdef CONFIG_KMAP_LOCAL
 5151	if (unlikely(current->kmap_ctrl.idx))
 5152		__kmap_local_sched_in();
 5153#endif
 5154}
 5155
 5156/**
 5157 * prepare_task_switch - prepare to switch tasks
 5158 * @rq: the runqueue preparing to switch
 5159 * @prev: the current task that is being switched out
 5160 * @next: the task we are going to switch to.
 5161 *
 5162 * This is called with the rq lock held and interrupts off. It must
 5163 * be paired with a subsequent finish_task_switch after the context
 5164 * switch.
 5165 *
 5166 * prepare_task_switch sets up locking and calls architecture specific
 5167 * hooks.
 5168 */
 5169static inline void
 5170prepare_task_switch(struct rq *rq, struct task_struct *prev,
 5171		    struct task_struct *next)
 5172{
 5173	kcov_prepare_switch(prev);
 5174	sched_info_switch(rq, prev, next);
 5175	perf_event_task_sched_out(prev, next);
 5176	rseq_preempt(prev);
 5177	fire_sched_out_preempt_notifiers(prev, next);
 5178	kmap_local_sched_out();
 5179	prepare_task(next);
 5180	prepare_arch_switch(next);
 5181}
 5182
 5183/**
 5184 * finish_task_switch - clean up after a task-switch
 5185 * @prev: the thread we just switched away from.
 5186 *
 5187 * finish_task_switch must be called after the context switch, paired
 5188 * with a prepare_task_switch call before the context switch.
 5189 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 5190 * and do any other architecture-specific cleanup actions.
 5191 *
 5192 * Note that we may have delayed dropping an mm in context_switch(). If
 5193 * so, we finish that here outside of the runqueue lock. (Doing it
 5194 * with the lock held can cause deadlocks; see schedule() for
 5195 * details.)
 5196 *
 5197 * The context switch have flipped the stack from under us and restored the
 5198 * local variables which were saved when this task called schedule() in the
 5199 * past. 'prev == current' is still correct but we need to recalculate this_rq
 5200 * because prev may have moved to another CPU.
 5201 */
 5202static struct rq *finish_task_switch(struct task_struct *prev)
 5203	__releases(rq->lock)
 5204{
 5205	struct rq *rq = this_rq();
 5206	struct mm_struct *mm = rq->prev_mm;
 5207	unsigned int prev_state;
 5208
 5209	/*
 5210	 * The previous task will have left us with a preempt_count of 2
 5211	 * because it left us after:
 5212	 *
 5213	 *	schedule()
 5214	 *	  preempt_disable();			// 1
 5215	 *	  __schedule()
 5216	 *	    raw_spin_lock_irq(&rq->lock)	// 2
 5217	 *
 5218	 * Also, see FORK_PREEMPT_COUNT.
 5219	 */
 5220	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
 5221		      "corrupted preempt_count: %s/%d/0x%x\n",
 5222		      current->comm, current->pid, preempt_count()))
 5223		preempt_count_set(FORK_PREEMPT_COUNT);
 5224
 5225	rq->prev_mm = NULL;
 5226
 5227	/*
 5228	 * A task struct has one reference for the use as "current".
 5229	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 5230	 * schedule one last time. The schedule call will never return, and
 5231	 * the scheduled task must drop that reference.
 5232	 *
 5233	 * We must observe prev->state before clearing prev->on_cpu (in
 5234	 * finish_task), otherwise a concurrent wakeup can get prev
 5235	 * running on another CPU and we could rave with its RUNNING -> DEAD
 5236	 * transition, resulting in a double drop.
 5237	 */
 5238	prev_state = READ_ONCE(prev->__state);
 5239	vtime_task_switch(prev);
 5240	perf_event_task_sched_in(prev, current);
 5241	finish_task(prev);
 5242	tick_nohz_task_switch();
 5243	finish_lock_switch(rq);
 5244	finish_arch_post_lock_switch();
 5245	kcov_finish_switch(current);
 5246	/*
 5247	 * kmap_local_sched_out() is invoked with rq::lock held and
 5248	 * interrupts disabled. There is no requirement for that, but the
 5249	 * sched out code does not have an interrupt enabled section.
 5250	 * Restoring the maps on sched in does not require interrupts being
 5251	 * disabled either.
 5252	 */
 5253	kmap_local_sched_in();
 5254
 5255	fire_sched_in_preempt_notifiers(current);
 5256	/*
 5257	 * When switching through a kernel thread, the loop in
 5258	 * membarrier_{private,global}_expedited() may have observed that
 5259	 * kernel thread and not issued an IPI. It is therefore possible to
 5260	 * schedule between user->kernel->user threads without passing though
 5261	 * switch_mm(). Membarrier requires a barrier after storing to
 5262	 * rq->curr, before returning to userspace, so provide them here:
 5263	 *
 5264	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
 5265	 *   provided by mmdrop_lazy_tlb(),
 5266	 * - a sync_core for SYNC_CORE.
 5267	 */
 5268	if (mm) {
 5269		membarrier_mm_sync_core_before_usermode(mm);
 5270		mmdrop_lazy_tlb_sched(mm);
 5271	}
 5272
 5273	if (unlikely(prev_state == TASK_DEAD)) {
 5274		if (prev->sched_class->task_dead)
 5275			prev->sched_class->task_dead(prev);
 5276
 5277		/* Task is done with its stack. */
 5278		put_task_stack(prev);
 5279
 5280		put_task_struct_rcu_user(prev);
 
 
 5281	}
 5282
 
 5283	return rq;
 5284}
 5285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5286/**
 5287 * schedule_tail - first thing a freshly forked thread must call.
 5288 * @prev: the thread we just switched away from.
 5289 */
 5290asmlinkage __visible void schedule_tail(struct task_struct *prev)
 5291	__releases(rq->lock)
 5292{
 
 
 5293	/*
 5294	 * New tasks start with FORK_PREEMPT_COUNT, see there and
 5295	 * finish_task_switch() for details.
 5296	 *
 5297	 * finish_task_switch() will drop rq->lock() and lower preempt_count
 5298	 * and the preempt_enable() will end up enabling preemption (on
 5299	 * PREEMPT_COUNT kernels).
 5300	 */
 5301
 5302	finish_task_switch(prev);
 
 5303	preempt_enable();
 5304
 5305	if (current->set_child_tid)
 5306		put_user(task_pid_vnr(current), current->set_child_tid);
 5307
 5308	calculate_sigpending();
 5309}
 5310
 5311/*
 5312 * context_switch - switch to the new MM and the new thread's register state.
 5313 */
 5314static __always_inline struct rq *
 5315context_switch(struct rq *rq, struct task_struct *prev,
 5316	       struct task_struct *next, struct rq_flags *rf)
 5317{
 
 
 5318	prepare_task_switch(rq, prev, next);
 5319
 
 
 5320	/*
 5321	 * For paravirt, this is coupled with an exit in switch_to to
 5322	 * combine the page table reload and the switch backend into
 5323	 * one hypercall.
 5324	 */
 5325	arch_start_context_switch(prev);
 5326
 
 
 
 
 
 
 
 
 
 
 
 5327	/*
 5328	 * kernel -> kernel   lazy + transfer active
 5329	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
 5330	 *
 5331	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
 5332	 *   user ->   user   switch
 5333	 *
 5334	 * switch_mm_cid() needs to be updated if the barriers provided
 5335	 * by context_switch() are modified.
 5336	 */
 5337	if (!next->mm) {                                // to kernel
 5338		enter_lazy_tlb(prev->active_mm, next);
 5339
 5340		next->active_mm = prev->active_mm;
 5341		if (prev->mm)                           // from user
 5342			mmgrab_lazy_tlb(prev->active_mm);
 5343		else
 5344			prev->active_mm = NULL;
 5345	} else {                                        // to user
 5346		membarrier_switch_mm(rq, prev->active_mm, next->mm);
 5347		/*
 5348		 * sys_membarrier() requires an smp_mb() between setting
 5349		 * rq->curr / membarrier_switch_mm() and returning to userspace.
 5350		 *
 5351		 * The below provides this either through switch_mm(), or in
 5352		 * case 'prev->active_mm == next->mm' through
 5353		 * finish_task_switch()'s mmdrop().
 5354		 */
 5355		switch_mm_irqs_off(prev->active_mm, next->mm, next);
 5356		lru_gen_use_mm(next->mm);
 5357
 5358		if (!prev->mm) {                        // from kernel
 5359			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
 5360			rq->prev_mm = prev->active_mm;
 5361			prev->active_mm = NULL;
 5362		}
 5363	}
 5364
 5365	/* switch_mm_cid() requires the memory barriers above. */
 5366	switch_mm_cid(rq, prev, next);
 5367
 5368	prepare_lock_switch(rq, next, rf);
 5369
 5370	/* Here we just switch the register state and the stack. */
 5371	switch_to(prev, next, prev);
 5372	barrier();
 5373
 5374	return finish_task_switch(prev);
 5375}
 5376
 5377/*
 5378 * nr_running and nr_context_switches:
 5379 *
 5380 * externally visible scheduler statistics: current number of runnable
 5381 * threads, total number of context switches performed since bootup.
 5382 */
 5383unsigned int nr_running(void)
 5384{
 5385	unsigned int i, sum = 0;
 5386
 5387	for_each_online_cpu(i)
 5388		sum += cpu_rq(i)->nr_running;
 5389
 5390	return sum;
 5391}
 5392
 5393/*
 5394 * Check if only the current task is running on the CPU.
 5395 *
 5396 * Caution: this function does not check that the caller has disabled
 5397 * preemption, thus the result might have a time-of-check-to-time-of-use
 5398 * race.  The caller is responsible to use it correctly, for example:
 5399 *
 5400 * - from a non-preemptible section (of course)
 5401 *
 5402 * - from a thread that is bound to a single CPU
 5403 *
 5404 * - in a loop with very short iterations (e.g. a polling loop)
 5405 */
 5406bool single_task_running(void)
 5407{
 5408	return raw_rq()->nr_running == 1;
 5409}
 5410EXPORT_SYMBOL(single_task_running);
 5411
 5412unsigned long long nr_context_switches_cpu(int cpu)
 5413{
 5414	return cpu_rq(cpu)->nr_switches;
 5415}
 5416
 5417unsigned long long nr_context_switches(void)
 5418{
 5419	int i;
 5420	unsigned long long sum = 0;
 5421
 5422	for_each_possible_cpu(i)
 5423		sum += cpu_rq(i)->nr_switches;
 5424
 5425	return sum;
 5426}
 5427
 5428/*
 5429 * Consumers of these two interfaces, like for example the cpuidle menu
 5430 * governor, are using nonsensical data. Preferring shallow idle state selection
 5431 * for a CPU that has IO-wait which might not even end up running the task when
 5432 * it does become runnable.
 5433 */
 5434
 5435unsigned int nr_iowait_cpu(int cpu)
 5436{
 5437	return atomic_read(&cpu_rq(cpu)->nr_iowait);
 5438}
 5439
 5440/*
 5441 * IO-wait accounting, and how it's mostly bollocks (on SMP).
 5442 *
 5443 * The idea behind IO-wait account is to account the idle time that we could
 5444 * have spend running if it were not for IO. That is, if we were to improve the
 5445 * storage performance, we'd have a proportional reduction in IO-wait time.
 5446 *
 5447 * This all works nicely on UP, where, when a task blocks on IO, we account
 5448 * idle time as IO-wait, because if the storage were faster, it could've been
 5449 * running and we'd not be idle.
 5450 *
 5451 * This has been extended to SMP, by doing the same for each CPU. This however
 5452 * is broken.
 5453 *
 5454 * Imagine for instance the case where two tasks block on one CPU, only the one
 5455 * CPU will have IO-wait accounted, while the other has regular idle. Even
 5456 * though, if the storage were faster, both could've ran at the same time,
 5457 * utilising both CPUs.
 5458 *
 5459 * This means, that when looking globally, the current IO-wait accounting on
 5460 * SMP is a lower bound, by reason of under accounting.
 5461 *
 5462 * Worse, since the numbers are provided per CPU, they are sometimes
 5463 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 5464 * associated with any one particular CPU, it can wake to another CPU than it
 5465 * blocked on. This means the per CPU IO-wait number is meaningless.
 5466 *
 5467 * Task CPU affinities can make all that even more 'interesting'.
 5468 */
 5469
 5470unsigned int nr_iowait(void)
 5471{
 5472	unsigned int i, sum = 0;
 5473
 5474	for_each_possible_cpu(i)
 5475		sum += nr_iowait_cpu(i);
 5476
 5477	return sum;
 5478}
 5479
 
 
 
 
 
 
 
 
 
 
 
 
 
 5480#ifdef CONFIG_SMP
 5481
 5482/*
 5483 * sched_exec - execve() is a valuable balancing opportunity, because at
 5484 * this point the task has the smallest effective memory and cache footprint.
 5485 */
 5486void sched_exec(void)
 5487{
 5488	struct task_struct *p = current;
 5489	struct migration_arg arg;
 5490	int dest_cpu;
 5491
 5492	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
 5493		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
 5494		if (dest_cpu == smp_processor_id())
 5495			return;
 5496
 5497		if (unlikely(!cpu_active(dest_cpu)))
 5498			return;
 5499
 5500		arg = (struct migration_arg){ p, dest_cpu };
 
 
 5501	}
 5502	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 
 5503}
 5504
 5505#endif
 5506
 5507DEFINE_PER_CPU(struct kernel_stat, kstat);
 5508DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
 5509
 5510EXPORT_PER_CPU_SYMBOL(kstat);
 5511EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
 5512
 5513/*
 5514 * The function fair_sched_class.update_curr accesses the struct curr
 5515 * and its field curr->exec_start; when called from task_sched_runtime(),
 5516 * we observe a high rate of cache misses in practice.
 5517 * Prefetching this data results in improved performance.
 5518 */
 5519static inline void prefetch_curr_exec_start(struct task_struct *p)
 5520{
 5521#ifdef CONFIG_FAIR_GROUP_SCHED
 5522	struct sched_entity *curr = p->se.cfs_rq->curr;
 5523#else
 5524	struct sched_entity *curr = task_rq(p)->cfs.curr;
 5525#endif
 5526	prefetch(curr);
 5527	prefetch(&curr->exec_start);
 5528}
 5529
 5530/*
 5531 * Return accounted runtime for the task.
 5532 * In case the task is currently running, return the runtime plus current's
 5533 * pending runtime that have not been accounted yet.
 5534 */
 5535unsigned long long task_sched_runtime(struct task_struct *p)
 5536{
 5537	struct rq_flags rf;
 5538	struct rq *rq;
 5539	u64 ns;
 5540
 5541#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 5542	/*
 5543	 * 64-bit doesn't need locks to atomically read a 64-bit value.
 5544	 * So we have a optimization chance when the task's delta_exec is 0.
 5545	 * Reading ->on_cpu is racy, but this is OK.
 5546	 *
 5547	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
 5548	 * If we race with it entering CPU, unaccounted time is 0. This is
 5549	 * indistinguishable from the read occurring a few cycles earlier.
 5550	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
 5551	 * been accounted, so we're correct here as well.
 5552	 */
 5553	if (!p->on_cpu || !task_on_rq_queued(p))
 5554		return p->se.sum_exec_runtime;
 5555#endif
 5556
 5557	rq = task_rq_lock(p, &rf);
 5558	/*
 5559	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
 5560	 * project cycles that may never be accounted to this
 5561	 * thread, breaking clock_gettime().
 5562	 */
 5563	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
 5564		prefetch_curr_exec_start(p);
 5565		update_rq_clock(rq);
 5566		p->sched_class->update_curr(rq);
 5567	}
 5568	ns = p->se.sum_exec_runtime;
 5569	task_rq_unlock(rq, p, &rf);
 5570
 5571	return ns;
 5572}
 5573
 5574#ifdef CONFIG_SCHED_DEBUG
 5575static u64 cpu_resched_latency(struct rq *rq)
 5576{
 5577	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
 5578	u64 resched_latency, now = rq_clock(rq);
 5579	static bool warned_once;
 5580
 5581	if (sysctl_resched_latency_warn_once && warned_once)
 5582		return 0;
 5583
 5584	if (!need_resched() || !latency_warn_ms)
 5585		return 0;
 5586
 5587	if (system_state == SYSTEM_BOOTING)
 5588		return 0;
 5589
 5590	if (!rq->last_seen_need_resched_ns) {
 5591		rq->last_seen_need_resched_ns = now;
 5592		rq->ticks_without_resched = 0;
 5593		return 0;
 5594	}
 5595
 5596	rq->ticks_without_resched++;
 5597	resched_latency = now - rq->last_seen_need_resched_ns;
 5598	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
 5599		return 0;
 5600
 5601	warned_once = true;
 5602
 5603	return resched_latency;
 5604}
 5605
 5606static int __init setup_resched_latency_warn_ms(char *str)
 5607{
 5608	long val;
 5609
 5610	if ((kstrtol(str, 0, &val))) {
 5611		pr_warn("Unable to set resched_latency_warn_ms\n");
 5612		return 1;
 5613	}
 5614
 5615	sysctl_resched_latency_warn_ms = val;
 5616	return 1;
 5617}
 5618__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
 5619#else
 5620static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
 5621#endif /* CONFIG_SCHED_DEBUG */
 5622
 5623/*
 5624 * This function gets called by the timer code, with HZ frequency.
 5625 * We call it with interrupts disabled.
 5626 */
 5627void sched_tick(void)
 5628{
 5629	int cpu = smp_processor_id();
 5630	struct rq *rq = cpu_rq(cpu);
 5631	/* accounting goes to the donor task */
 5632	struct task_struct *donor;
 5633	struct rq_flags rf;
 5634	unsigned long hw_pressure;
 5635	u64 resched_latency;
 5636
 5637	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5638		arch_scale_freq_tick();
 5639
 5640	sched_clock_tick();
 5641
 5642	rq_lock(rq, &rf);
 5643	donor = rq->donor;
 5644
 5645	psi_account_irqtime(rq, donor, NULL);
 5646
 5647	update_rq_clock(rq);
 5648	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
 5649	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
 5650
 5651	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
 5652		resched_curr(rq);
 5653
 5654	donor->sched_class->task_tick(rq, donor, 0);
 5655	if (sched_feat(LATENCY_WARN))
 5656		resched_latency = cpu_resched_latency(rq);
 5657	calc_global_load_tick(rq);
 5658	sched_core_tick(rq);
 5659	task_tick_mm_cid(rq, donor);
 5660	scx_tick(rq);
 5661
 5662	rq_unlock(rq, &rf);
 5663
 5664	if (sched_feat(LATENCY_WARN) && resched_latency)
 5665		resched_latency_warn(cpu, resched_latency);
 5666
 5667	perf_event_task_tick();
 5668
 5669	if (donor->flags & PF_WQ_WORKER)
 5670		wq_worker_tick(donor);
 5671
 5672#ifdef CONFIG_SMP
 5673	if (!scx_switched_all()) {
 5674		rq->idle_balance = idle_cpu(cpu);
 5675		sched_balance_trigger(rq);
 5676	}
 5677#endif
 
 5678}
 5679
 5680#ifdef CONFIG_NO_HZ_FULL
 5681
 5682struct tick_work {
 5683	int			cpu;
 5684	atomic_t		state;
 5685	struct delayed_work	work;
 5686};
 5687/* Values for ->state, see diagram below. */
 5688#define TICK_SCHED_REMOTE_OFFLINE	0
 5689#define TICK_SCHED_REMOTE_OFFLINING	1
 5690#define TICK_SCHED_REMOTE_RUNNING	2
 5691
 5692/*
 5693 * State diagram for ->state:
 5694 *
 5695 *
 5696 *          TICK_SCHED_REMOTE_OFFLINE
 5697 *                    |   ^
 5698 *                    |   |
 5699 *                    |   | sched_tick_remote()
 5700 *                    |   |
 5701 *                    |   |
 5702 *                    +--TICK_SCHED_REMOTE_OFFLINING
 5703 *                    |   ^
 5704 *                    |   |
 5705 * sched_tick_start() |   | sched_tick_stop()
 5706 *                    |   |
 5707 *                    V   |
 5708 *          TICK_SCHED_REMOTE_RUNNING
 5709 *
 
 
 
 5710 *
 5711 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 5712 * and sched_tick_start() are happy to leave the state in RUNNING.
 5713 */
 5714
 5715static struct tick_work __percpu *tick_work_cpu;
 5716
 5717static void sched_tick_remote(struct work_struct *work)
 5718{
 5719	struct delayed_work *dwork = to_delayed_work(work);
 5720	struct tick_work *twork = container_of(dwork, struct tick_work, work);
 5721	int cpu = twork->cpu;
 5722	struct rq *rq = cpu_rq(cpu);
 5723	int os;
 5724
 5725	/*
 5726	 * Handle the tick only if it appears the remote CPU is running in full
 5727	 * dynticks mode. The check is racy by nature, but missing a tick or
 5728	 * having one too much is no big deal because the scheduler tick updates
 5729	 * statistics and checks timeslices in a time-independent way, regardless
 5730	 * of when exactly it is running.
 5731	 */
 5732	if (tick_nohz_tick_stopped_cpu(cpu)) {
 5733		guard(rq_lock_irq)(rq);
 5734		struct task_struct *curr = rq->curr;
 5735
 5736		if (cpu_online(cpu)) {
 5737			/*
 5738			 * Since this is a remote tick for full dynticks mode,
 5739			 * we are always sure that there is no proxy (only a
 5740			 * single task is running).
 5741			 */
 5742			SCHED_WARN_ON(rq->curr != rq->donor);
 5743			update_rq_clock(rq);
 5744
 5745			if (!is_idle_task(curr)) {
 5746				/*
 5747				 * Make sure the next tick runs within a
 5748				 * reasonable amount of time.
 5749				 */
 5750				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
 5751				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
 5752			}
 5753			curr->sched_class->task_tick(rq, curr, 0);
 5754
 5755			calc_load_nohz_remote(rq);
 5756		}
 5757	}
 5758
 5759	/*
 5760	 * Run the remote tick once per second (1Hz). This arbitrary
 5761	 * frequency is large enough to avoid overload but short enough
 5762	 * to keep scheduler internal stats reasonably up to date.  But
 5763	 * first update state to reflect hotplug activity if required.
 5764	 */
 5765	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
 5766	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
 5767	if (os == TICK_SCHED_REMOTE_RUNNING)
 5768		queue_delayed_work(system_unbound_wq, dwork, HZ);
 5769}
 5770
 5771static void sched_tick_start(int cpu)
 5772{
 5773	int os;
 5774	struct tick_work *twork;
 5775
 5776	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5777		return;
 5778
 5779	WARN_ON_ONCE(!tick_work_cpu);
 5780
 5781	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5782	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
 5783	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
 5784	if (os == TICK_SCHED_REMOTE_OFFLINE) {
 5785		twork->cpu = cpu;
 5786		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
 5787		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 5788	}
 5789}
 5790
 5791#ifdef CONFIG_HOTPLUG_CPU
 5792static void sched_tick_stop(int cpu)
 5793{
 5794	struct tick_work *twork;
 5795	int os;
 5796
 5797	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5798		return;
 5799
 5800	WARN_ON_ONCE(!tick_work_cpu);
 5801
 5802	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5803	/* There cannot be competing actions, but don't rely on stop-machine. */
 5804	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
 5805	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
 5806	/* Don't cancel, as this would mess up the state machine. */
 5807}
 5808#endif /* CONFIG_HOTPLUG_CPU */
 5809
 5810int __init sched_tick_offload_init(void)
 5811{
 5812	tick_work_cpu = alloc_percpu(struct tick_work);
 5813	BUG_ON(!tick_work_cpu);
 5814	return 0;
 5815}
 5816
 5817#else /* !CONFIG_NO_HZ_FULL */
 5818static inline void sched_tick_start(int cpu) { }
 5819static inline void sched_tick_stop(int cpu) { }
 5820#endif
 5821
 5822#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
 5823				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
 5824/*
 5825 * If the value passed in is equal to the current preempt count
 5826 * then we just disabled preemption. Start timing the latency.
 5827 */
 5828static inline void preempt_latency_start(int val)
 5829{
 5830	if (preempt_count() == val) {
 5831		unsigned long ip = get_lock_parent_ip();
 5832#ifdef CONFIG_DEBUG_PREEMPT
 5833		current->preempt_disable_ip = ip;
 5834#endif
 5835		trace_preempt_off(CALLER_ADDR0, ip);
 5836	}
 5837}
 5838
 5839void preempt_count_add(int val)
 5840{
 5841#ifdef CONFIG_DEBUG_PREEMPT
 5842	/*
 5843	 * Underflow?
 5844	 */
 5845	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 5846		return;
 5847#endif
 5848	__preempt_count_add(val);
 5849#ifdef CONFIG_DEBUG_PREEMPT
 5850	/*
 5851	 * Spinlock count overflowing soon?
 5852	 */
 5853	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 5854				PREEMPT_MASK - 10);
 5855#endif
 5856	preempt_latency_start(val);
 
 
 
 
 
 
 5857}
 5858EXPORT_SYMBOL(preempt_count_add);
 5859NOKPROBE_SYMBOL(preempt_count_add);
 5860
 5861/*
 5862 * If the value passed in equals to the current preempt count
 5863 * then we just enabled preemption. Stop timing the latency.
 5864 */
 5865static inline void preempt_latency_stop(int val)
 5866{
 5867	if (preempt_count() == val)
 5868		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
 5869}
 5870
 5871void preempt_count_sub(int val)
 5872{
 5873#ifdef CONFIG_DEBUG_PREEMPT
 5874	/*
 5875	 * Underflow?
 5876	 */
 5877	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 5878		return;
 5879	/*
 5880	 * Is the spinlock portion underflowing?
 5881	 */
 5882	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 5883			!(preempt_count() & PREEMPT_MASK)))
 5884		return;
 5885#endif
 5886
 5887	preempt_latency_stop(val);
 
 5888	__preempt_count_sub(val);
 5889}
 5890EXPORT_SYMBOL(preempt_count_sub);
 5891NOKPROBE_SYMBOL(preempt_count_sub);
 5892
 5893#else
 5894static inline void preempt_latency_start(int val) { }
 5895static inline void preempt_latency_stop(int val) { }
 5896#endif
 5897
 5898static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
 5899{
 5900#ifdef CONFIG_DEBUG_PREEMPT
 5901	return p->preempt_disable_ip;
 5902#else
 5903	return 0;
 5904#endif
 5905}
 5906
 5907/*
 5908 * Print scheduling while atomic bug:
 5909 */
 5910static noinline void __schedule_bug(struct task_struct *prev)
 5911{
 5912	/* Save this before calling printk(), since that will clobber it */
 5913	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
 5914
 5915	if (oops_in_progress)
 5916		return;
 5917
 5918	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 5919		prev->comm, prev->pid, preempt_count());
 5920
 5921	debug_show_held_locks(prev);
 5922	print_modules();
 5923	if (irqs_disabled())
 5924		print_irqtrace_events(prev);
 5925	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 
 5926		pr_err("Preemption disabled at:");
 5927		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
 5928	}
 5929	check_panic_on_warn("scheduling while atomic");
 5930
 5931	dump_stack();
 5932	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5933}
 5934
 5935/*
 5936 * Various schedule()-time debugging checks and statistics:
 5937 */
 5938static inline void schedule_debug(struct task_struct *prev, bool preempt)
 5939{
 5940#ifdef CONFIG_SCHED_STACK_END_CHECK
 5941	if (task_stack_end_corrupted(prev))
 5942		panic("corrupted stack end detected inside scheduler\n");
 5943
 5944	if (task_scs_end_corrupted(prev))
 5945		panic("corrupted shadow stack detected inside scheduler\n");
 5946#endif
 5947
 5948#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 5949	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
 5950		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
 5951			prev->comm, prev->pid, prev->non_block_count);
 5952		dump_stack();
 5953		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5954	}
 5955#endif
 5956
 5957	if (unlikely(in_atomic_preempt_off())) {
 5958		__schedule_bug(prev);
 5959		preempt_count_set(PREEMPT_DISABLED);
 5960	}
 5961	rcu_sleep_check();
 5962	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
 5963
 5964	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 5965
 5966	schedstat_inc(this_rq()->sched_count);
 5967}
 5968
 5969static void prev_balance(struct rq *rq, struct task_struct *prev,
 5970			 struct rq_flags *rf)
 5971{
 5972	const struct sched_class *start_class = prev->sched_class;
 5973	const struct sched_class *class;
 5974
 5975#ifdef CONFIG_SCHED_CLASS_EXT
 5976	/*
 5977	 * SCX requires a balance() call before every pick_task() including when
 5978	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
 5979	 * SCX instead. Also, set a flag to detect missing balance() call.
 5980	 */
 5981	if (scx_enabled()) {
 5982		rq->scx.flags |= SCX_RQ_BAL_PENDING;
 5983		if (sched_class_above(&ext_sched_class, start_class))
 5984			start_class = &ext_sched_class;
 5985	}
 5986#endif
 5987
 5988	/*
 5989	 * We must do the balancing pass before put_prev_task(), such
 5990	 * that when we release the rq->lock the task is in the same
 5991	 * state as before we took rq->lock.
 5992	 *
 5993	 * We can terminate the balance pass as soon as we know there is
 5994	 * a runnable task of @class priority or higher.
 5995	 */
 5996	for_active_class_range(class, start_class, &idle_sched_class) {
 5997		if (class->balance && class->balance(rq, prev, rf))
 5998			break;
 5999	}
 6000}
 6001
 6002/*
 6003 * Pick up the highest-prio task:
 6004 */
 6005static inline struct task_struct *
 6006__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6007{
 6008	const struct sched_class *class;
 6009	struct task_struct *p;
 6010
 6011	rq->dl_server = NULL;
 6012
 6013	if (scx_enabled())
 6014		goto restart;
 6015
 6016	/*
 6017	 * Optimization: we know that if all tasks are in the fair class we can
 6018	 * call that function directly, but only if the @prev task wasn't of a
 6019	 * higher scheduling class, because otherwise those lose the
 6020	 * opportunity to pull in more work from other CPUs.
 6021	 */
 6022	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
 6023		   rq->nr_running == rq->cfs.h_nr_running)) {
 6024
 6025		p = pick_next_task_fair(rq, prev, rf);
 6026		if (unlikely(p == RETRY_TASK))
 6027			goto restart;
 6028
 6029		/* Assume the next prioritized class is idle_sched_class */
 6030		if (!p) {
 6031			p = pick_task_idle(rq);
 6032			put_prev_set_next_task(rq, prev, p);
 6033		}
 6034
 6035		return p;
 6036	}
 6037
 6038restart:
 6039	prev_balance(rq, prev, rf);
 6040
 6041	for_each_active_class(class) {
 6042		if (class->pick_next_task) {
 6043			p = class->pick_next_task(rq, prev);
 6044			if (p)
 6045				return p;
 6046		} else {
 6047			p = class->pick_task(rq);
 6048			if (p) {
 6049				put_prev_set_next_task(rq, prev, p);
 6050				return p;
 6051			}
 6052		}
 6053	}
 6054
 6055	BUG(); /* The idle class should always have a runnable task. */
 6056}
 6057
 6058#ifdef CONFIG_SCHED_CORE
 6059static inline bool is_task_rq_idle(struct task_struct *t)
 6060{
 6061	return (task_rq(t)->idle == t);
 6062}
 6063
 6064static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
 6065{
 6066	return is_task_rq_idle(a) || (a->core_cookie == cookie);
 6067}
 6068
 6069static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
 6070{
 6071	if (is_task_rq_idle(a) || is_task_rq_idle(b))
 6072		return true;
 6073
 6074	return a->core_cookie == b->core_cookie;
 6075}
 6076
 6077static inline struct task_struct *pick_task(struct rq *rq)
 6078{
 6079	const struct sched_class *class;
 6080	struct task_struct *p;
 6081
 6082	rq->dl_server = NULL;
 6083
 6084	for_each_active_class(class) {
 6085		p = class->pick_task(rq);
 6086		if (p)
 6087			return p;
 6088	}
 6089
 6090	BUG(); /* The idle class should always have a runnable task. */
 6091}
 6092
 6093extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
 6094
 6095static void queue_core_balance(struct rq *rq);
 6096
 6097static struct task_struct *
 6098pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6099{
 6100	struct task_struct *next, *p, *max = NULL;
 6101	const struct cpumask *smt_mask;
 6102	bool fi_before = false;
 6103	bool core_clock_updated = (rq == rq->core);
 6104	unsigned long cookie;
 6105	int i, cpu, occ = 0;
 6106	struct rq *rq_i;
 6107	bool need_sync;
 6108
 6109	if (!sched_core_enabled(rq))
 6110		return __pick_next_task(rq, prev, rf);
 6111
 6112	cpu = cpu_of(rq);
 6113
 6114	/* Stopper task is switching into idle, no need core-wide selection. */
 6115	if (cpu_is_offline(cpu)) {
 6116		/*
 6117		 * Reset core_pick so that we don't enter the fastpath when
 6118		 * coming online. core_pick would already be migrated to
 6119		 * another cpu during offline.
 6120		 */
 6121		rq->core_pick = NULL;
 6122		rq->core_dl_server = NULL;
 6123		return __pick_next_task(rq, prev, rf);
 6124	}
 6125
 6126	/*
 6127	 * If there were no {en,de}queues since we picked (IOW, the task
 6128	 * pointers are all still valid), and we haven't scheduled the last
 6129	 * pick yet, do so now.
 6130	 *
 6131	 * rq->core_pick can be NULL if no selection was made for a CPU because
 6132	 * it was either offline or went offline during a sibling's core-wide
 6133	 * selection. In this case, do a core-wide selection.
 6134	 */
 6135	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
 6136	    rq->core->core_pick_seq != rq->core_sched_seq &&
 6137	    rq->core_pick) {
 6138		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
 6139
 6140		next = rq->core_pick;
 6141		rq->dl_server = rq->core_dl_server;
 6142		rq->core_pick = NULL;
 6143		rq->core_dl_server = NULL;
 6144		goto out_set_next;
 6145	}
 6146
 6147	prev_balance(rq, prev, rf);
 6148
 6149	smt_mask = cpu_smt_mask(cpu);
 6150	need_sync = !!rq->core->core_cookie;
 6151
 6152	/* reset state */
 6153	rq->core->core_cookie = 0UL;
 6154	if (rq->core->core_forceidle_count) {
 6155		if (!core_clock_updated) {
 6156			update_rq_clock(rq->core);
 6157			core_clock_updated = true;
 6158		}
 6159		sched_core_account_forceidle(rq);
 6160		/* reset after accounting force idle */
 6161		rq->core->core_forceidle_start = 0;
 6162		rq->core->core_forceidle_count = 0;
 6163		rq->core->core_forceidle_occupation = 0;
 6164		need_sync = true;
 6165		fi_before = true;
 6166	}
 6167
 6168	/*
 6169	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
 6170	 *
 6171	 * @task_seq guards the task state ({en,de}queues)
 6172	 * @pick_seq is the @task_seq we did a selection on
 6173	 * @sched_seq is the @pick_seq we scheduled
 6174	 *
 6175	 * However, preemptions can cause multiple picks on the same task set.
 6176	 * 'Fix' this by also increasing @task_seq for every pick.
 6177	 */
 6178	rq->core->core_task_seq++;
 6179
 6180	/*
 6181	 * Optimize for common case where this CPU has no cookies
 6182	 * and there are no cookied tasks running on siblings.
 6183	 */
 6184	if (!need_sync) {
 6185		next = pick_task(rq);
 6186		if (!next->core_cookie) {
 6187			rq->core_pick = NULL;
 6188			rq->core_dl_server = NULL;
 6189			/*
 6190			 * For robustness, update the min_vruntime_fi for
 6191			 * unconstrained picks as well.
 6192			 */
 6193			WARN_ON_ONCE(fi_before);
 6194			task_vruntime_update(rq, next, false);
 6195			goto out_set_next;
 6196		}
 6197	}
 6198
 6199	/*
 6200	 * For each thread: do the regular task pick and find the max prio task
 6201	 * amongst them.
 6202	 *
 6203	 * Tie-break prio towards the current CPU
 6204	 */
 6205	for_each_cpu_wrap(i, smt_mask, cpu) {
 6206		rq_i = cpu_rq(i);
 6207
 6208		/*
 6209		 * Current cpu always has its clock updated on entrance to
 6210		 * pick_next_task(). If the current cpu is not the core,
 6211		 * the core may also have been updated above.
 6212		 */
 6213		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
 6214			update_rq_clock(rq_i);
 6215
 6216		rq_i->core_pick = p = pick_task(rq_i);
 6217		rq_i->core_dl_server = rq_i->dl_server;
 6218
 6219		if (!max || prio_less(max, p, fi_before))
 6220			max = p;
 6221	}
 6222
 6223	cookie = rq->core->core_cookie = max->core_cookie;
 6224
 6225	/*
 6226	 * For each thread: try and find a runnable task that matches @max or
 6227	 * force idle.
 6228	 */
 6229	for_each_cpu(i, smt_mask) {
 6230		rq_i = cpu_rq(i);
 6231		p = rq_i->core_pick;
 6232
 6233		if (!cookie_equals(p, cookie)) {
 6234			p = NULL;
 6235			if (cookie)
 6236				p = sched_core_find(rq_i, cookie);
 6237			if (!p)
 6238				p = idle_sched_class.pick_task(rq_i);
 6239		}
 6240
 6241		rq_i->core_pick = p;
 6242		rq_i->core_dl_server = NULL;
 6243
 6244		if (p == rq_i->idle) {
 6245			if (rq_i->nr_running) {
 6246				rq->core->core_forceidle_count++;
 6247				if (!fi_before)
 6248					rq->core->core_forceidle_seq++;
 6249			}
 6250		} else {
 6251			occ++;
 6252		}
 6253	}
 6254
 6255	if (schedstat_enabled() && rq->core->core_forceidle_count) {
 6256		rq->core->core_forceidle_start = rq_clock(rq->core);
 6257		rq->core->core_forceidle_occupation = occ;
 6258	}
 6259
 6260	rq->core->core_pick_seq = rq->core->core_task_seq;
 6261	next = rq->core_pick;
 6262	rq->core_sched_seq = rq->core->core_pick_seq;
 6263
 6264	/* Something should have been selected for current CPU */
 6265	WARN_ON_ONCE(!next);
 6266
 6267	/*
 6268	 * Reschedule siblings
 6269	 *
 6270	 * NOTE: L1TF -- at this point we're no longer running the old task and
 6271	 * sending an IPI (below) ensures the sibling will no longer be running
 6272	 * their task. This ensures there is no inter-sibling overlap between
 6273	 * non-matching user state.
 6274	 */
 6275	for_each_cpu(i, smt_mask) {
 6276		rq_i = cpu_rq(i);
 6277
 6278		/*
 6279		 * An online sibling might have gone offline before a task
 6280		 * could be picked for it, or it might be offline but later
 6281		 * happen to come online, but its too late and nothing was
 6282		 * picked for it.  That's Ok - it will pick tasks for itself,
 6283		 * so ignore it.
 6284		 */
 6285		if (!rq_i->core_pick)
 6286			continue;
 6287
 6288		/*
 6289		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
 6290		 * fi_before     fi      update?
 6291		 *  0            0       1
 6292		 *  0            1       1
 6293		 *  1            0       1
 6294		 *  1            1       0
 6295		 */
 6296		if (!(fi_before && rq->core->core_forceidle_count))
 6297			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
 6298
 6299		rq_i->core_pick->core_occupation = occ;
 6300
 6301		if (i == cpu) {
 6302			rq_i->core_pick = NULL;
 6303			rq_i->core_dl_server = NULL;
 6304			continue;
 6305		}
 6306
 6307		/* Did we break L1TF mitigation requirements? */
 6308		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
 6309
 6310		if (rq_i->curr == rq_i->core_pick) {
 6311			rq_i->core_pick = NULL;
 6312			rq_i->core_dl_server = NULL;
 6313			continue;
 6314		}
 6315
 6316		resched_curr(rq_i);
 6317	}
 6318
 6319out_set_next:
 6320	put_prev_set_next_task(rq, prev, next);
 6321	if (rq->core->core_forceidle_count && next == rq->idle)
 6322		queue_core_balance(rq);
 6323
 6324	return next;
 6325}
 6326
 6327static bool try_steal_cookie(int this, int that)
 6328{
 6329	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
 6330	struct task_struct *p;
 6331	unsigned long cookie;
 6332	bool success = false;
 6333
 6334	guard(irq)();
 6335	guard(double_rq_lock)(dst, src);
 6336
 6337	cookie = dst->core->core_cookie;
 6338	if (!cookie)
 6339		return false;
 6340
 6341	if (dst->curr != dst->idle)
 6342		return false;
 6343
 6344	p = sched_core_find(src, cookie);
 6345	if (!p)
 6346		return false;
 6347
 6348	do {
 6349		if (p == src->core_pick || p == src->curr)
 6350			goto next;
 6351
 6352		if (!is_cpu_allowed(p, this))
 6353			goto next;
 6354
 6355		if (p->core_occupation > dst->idle->core_occupation)
 6356			goto next;
 6357		/*
 6358		 * sched_core_find() and sched_core_next() will ensure
 6359		 * that task @p is not throttled now, we also need to
 6360		 * check whether the runqueue of the destination CPU is
 6361		 * being throttled.
 6362		 */
 6363		if (sched_task_is_throttled(p, this))
 6364			goto next;
 6365
 6366		move_queued_task_locked(src, dst, p);
 6367		resched_curr(dst);
 6368
 6369		success = true;
 6370		break;
 6371
 6372next:
 6373		p = sched_core_next(p, cookie);
 6374	} while (p);
 6375
 6376	return success;
 6377}
 6378
 6379static bool steal_cookie_task(int cpu, struct sched_domain *sd)
 6380{
 6381	int i;
 6382
 6383	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
 6384		if (i == cpu)
 6385			continue;
 6386
 6387		if (need_resched())
 6388			break;
 6389
 6390		if (try_steal_cookie(cpu, i))
 6391			return true;
 6392	}
 6393
 6394	return false;
 6395}
 6396
 6397static void sched_core_balance(struct rq *rq)
 6398{
 6399	struct sched_domain *sd;
 6400	int cpu = cpu_of(rq);
 6401
 6402	guard(preempt)();
 6403	guard(rcu)();
 6404
 6405	raw_spin_rq_unlock_irq(rq);
 6406	for_each_domain(cpu, sd) {
 6407		if (need_resched())
 6408			break;
 6409
 6410		if (steal_cookie_task(cpu, sd))
 6411			break;
 6412	}
 6413	raw_spin_rq_lock_irq(rq);
 6414}
 6415
 6416static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
 6417
 6418static void queue_core_balance(struct rq *rq)
 6419{
 6420	if (!sched_core_enabled(rq))
 6421		return;
 6422
 6423	if (!rq->core->core_cookie)
 6424		return;
 6425
 6426	if (!rq->nr_running) /* not forced idle */
 6427		return;
 6428
 6429	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
 6430}
 6431
 6432DEFINE_LOCK_GUARD_1(core_lock, int,
 6433		    sched_core_lock(*_T->lock, &_T->flags),
 6434		    sched_core_unlock(*_T->lock, &_T->flags),
 6435		    unsigned long flags)
 6436
 6437static void sched_core_cpu_starting(unsigned int cpu)
 6438{
 6439	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6440	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6441	int t;
 6442
 6443	guard(core_lock)(&cpu);
 6444
 6445	WARN_ON_ONCE(rq->core != rq);
 6446
 6447	/* if we're the first, we'll be our own leader */
 6448	if (cpumask_weight(smt_mask) == 1)
 6449		return;
 6450
 6451	/* find the leader */
 6452	for_each_cpu(t, smt_mask) {
 6453		if (t == cpu)
 6454			continue;
 6455		rq = cpu_rq(t);
 6456		if (rq->core == rq) {
 6457			core_rq = rq;
 6458			break;
 6459		}
 6460	}
 6461
 6462	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
 6463		return;
 6464
 6465	/* install and validate core_rq */
 6466	for_each_cpu(t, smt_mask) {
 6467		rq = cpu_rq(t);
 6468
 6469		if (t == cpu)
 6470			rq->core = core_rq;
 6471
 6472		WARN_ON_ONCE(rq->core != core_rq);
 6473	}
 6474}
 6475
 6476static void sched_core_cpu_deactivate(unsigned int cpu)
 6477{
 6478	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6479	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6480	int t;
 6481
 6482	guard(core_lock)(&cpu);
 6483
 6484	/* if we're the last man standing, nothing to do */
 6485	if (cpumask_weight(smt_mask) == 1) {
 6486		WARN_ON_ONCE(rq->core != rq);
 6487		return;
 6488	}
 6489
 6490	/* if we're not the leader, nothing to do */
 6491	if (rq->core != rq)
 6492		return;
 6493
 6494	/* find a new leader */
 6495	for_each_cpu(t, smt_mask) {
 6496		if (t == cpu)
 6497			continue;
 6498		core_rq = cpu_rq(t);
 6499		break;
 6500	}
 6501
 6502	if (WARN_ON_ONCE(!core_rq)) /* impossible */
 6503		return;
 6504
 6505	/* copy the shared state to the new leader */
 6506	core_rq->core_task_seq             = rq->core_task_seq;
 6507	core_rq->core_pick_seq             = rq->core_pick_seq;
 6508	core_rq->core_cookie               = rq->core_cookie;
 6509	core_rq->core_forceidle_count      = rq->core_forceidle_count;
 6510	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
 6511	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
 6512
 6513	/*
 6514	 * Accounting edge for forced idle is handled in pick_next_task().
 6515	 * Don't need another one here, since the hotplug thread shouldn't
 6516	 * have a cookie.
 6517	 */
 6518	core_rq->core_forceidle_start = 0;
 6519
 6520	/* install new leader */
 6521	for_each_cpu(t, smt_mask) {
 6522		rq = cpu_rq(t);
 6523		rq->core = core_rq;
 6524	}
 6525}
 6526
 6527static inline void sched_core_cpu_dying(unsigned int cpu)
 6528{
 6529	struct rq *rq = cpu_rq(cpu);
 6530
 6531	if (rq->core != rq)
 6532		rq->core = rq;
 6533}
 6534
 6535#else /* !CONFIG_SCHED_CORE */
 6536
 6537static inline void sched_core_cpu_starting(unsigned int cpu) {}
 6538static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
 6539static inline void sched_core_cpu_dying(unsigned int cpu) {}
 6540
 6541static struct task_struct *
 6542pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6543{
 6544	return __pick_next_task(rq, prev, rf);
 6545}
 6546
 6547#endif /* CONFIG_SCHED_CORE */
 6548
 6549/*
 6550 * Constants for the sched_mode argument of __schedule().
 6551 *
 6552 * The mode argument allows RT enabled kernels to differentiate a
 6553 * preemption from blocking on an 'sleeping' spin/rwlock.
 6554 */
 6555#define SM_IDLE			(-1)
 6556#define SM_NONE			0
 6557#define SM_PREEMPT		1
 6558#define SM_RTLOCK_WAIT		2
 6559
 6560/*
 6561 * Helper function for __schedule()
 6562 *
 6563 * If a task does not have signals pending, deactivate it
 6564 * Otherwise marks the task's __state as RUNNING
 6565 */
 6566static bool try_to_block_task(struct rq *rq, struct task_struct *p,
 6567			      unsigned long task_state)
 6568{
 6569	int flags = DEQUEUE_NOCLOCK;
 6570
 6571	if (signal_pending_state(task_state, p)) {
 6572		WRITE_ONCE(p->__state, TASK_RUNNING);
 6573		return false;
 6574	}
 6575
 6576	p->sched_contributes_to_load =
 6577		(task_state & TASK_UNINTERRUPTIBLE) &&
 6578		!(task_state & TASK_NOLOAD) &&
 6579		!(task_state & TASK_FROZEN);
 6580
 6581	if (unlikely(is_special_task_state(task_state)))
 6582		flags |= DEQUEUE_SPECIAL;
 6583
 6584	/*
 6585	 * __schedule()			ttwu()
 6586	 *   prev_state = prev->state;    if (p->on_rq && ...)
 6587	 *   if (prev_state)		    goto out;
 6588	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
 6589	 *				  p->state = TASK_WAKING
 6590	 *
 6591	 * Where __schedule() and ttwu() have matching control dependencies.
 6592	 *
 6593	 * After this, schedule() must not care about p->state any more.
 6594	 */
 6595	block_task(rq, p, flags);
 6596	return true;
 6597}
 6598
 6599/*
 6600 * __schedule() is the main scheduler function.
 6601 *
 6602 * The main means of driving the scheduler and thus entering this function are:
 6603 *
 6604 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 6605 *
 6606 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 6607 *      paths. For example, see arch/x86/entry_64.S.
 6608 *
 6609 *      To drive preemption between tasks, the scheduler sets the flag in timer
 6610 *      interrupt handler sched_tick().
 6611 *
 6612 *   3. Wakeups don't really cause entry into schedule(). They add a
 6613 *      task to the run-queue and that's it.
 6614 *
 6615 *      Now, if the new task added to the run-queue preempts the current
 6616 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 6617 *      called on the nearest possible occasion:
 6618 *
 6619 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
 6620 *
 6621 *         - in syscall or exception context, at the next outmost
 6622 *           preempt_enable(). (this might be as soon as the wake_up()'s
 6623 *           spin_unlock()!)
 6624 *
 6625 *         - in IRQ context, return from interrupt-handler to
 6626 *           preemptible context
 6627 *
 6628 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
 6629 *         then at the next:
 6630 *
 6631 *          - cond_resched() call
 6632 *          - explicit schedule() call
 6633 *          - return from syscall or exception to user-space
 6634 *          - return from interrupt-handler to user-space
 6635 *
 6636 * WARNING: must be called with preemption disabled!
 6637 */
 6638static void __sched notrace __schedule(int sched_mode)
 6639{
 6640	struct task_struct *prev, *next;
 6641	/*
 6642	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
 6643	 * as a preemption by schedule_debug() and RCU.
 6644	 */
 6645	bool preempt = sched_mode > SM_NONE;
 6646	unsigned long *switch_count;
 6647	unsigned long prev_state;
 6648	struct rq_flags rf;
 6649	struct rq *rq;
 6650	int cpu;
 6651
 6652	cpu = smp_processor_id();
 6653	rq = cpu_rq(cpu);
 6654	prev = rq->curr;
 6655
 6656	schedule_debug(prev, preempt);
 
 
 
 
 
 
 
 
 
 
 
 6657
 6658	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
 6659		hrtick_clear(rq);
 6660
 6661	local_irq_disable();
 6662	rcu_note_context_switch(preempt);
 6663
 6664	/*
 6665	 * Make sure that signal_pending_state()->signal_pending() below
 6666	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
 6667	 * done by the caller to avoid the race with signal_wake_up():
 6668	 *
 6669	 * __set_current_state(@state)		signal_wake_up()
 6670	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
 6671	 *					  wake_up_state(p, state)
 6672	 *   LOCK rq->lock			    LOCK p->pi_state
 6673	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
 6674	 *     if (signal_pending_state())	    if (p->state & @state)
 6675	 *
 6676	 * Also, the membarrier system call requires a full memory barrier
 6677	 * after coming from user-space, before storing to rq->curr; this
 6678	 * barrier matches a full barrier in the proximity of the membarrier
 6679	 * system call exit.
 6680	 */
 6681	rq_lock(rq, &rf);
 6682	smp_mb__after_spinlock();
 
 6683
 6684	/* Promote REQ to ACT */
 6685	rq->clock_update_flags <<= 1;
 6686	update_rq_clock(rq);
 6687	rq->clock_update_flags = RQCF_UPDATED;
 6688
 6689	switch_count = &prev->nivcsw;
 
 
 
 
 
 
 6690
 6691	/* Task state changes only considers SM_PREEMPT as preemption */
 6692	preempt = sched_mode == SM_PREEMPT;
 
 
 
 
 
 6693
 6694	/*
 6695	 * We must load prev->state once (task_struct::state is volatile), such
 6696	 * that we form a control dependency vs deactivate_task() below.
 6697	 */
 6698	prev_state = READ_ONCE(prev->__state);
 6699	if (sched_mode == SM_IDLE) {
 6700		/* SCX must consult the BPF scheduler to tell if rq is empty */
 6701		if (!rq->nr_running && !scx_enabled()) {
 6702			next = prev;
 6703			goto picked;
 6704		}
 6705	} else if (!preempt && prev_state) {
 6706		try_to_block_task(rq, prev, prev_state);
 6707		switch_count = &prev->nvcsw;
 6708	}
 6709
 6710	next = pick_next_task(rq, prev, &rf);
 6711	rq_set_donor(rq, next);
 6712picked:
 
 6713	clear_tsk_need_resched(prev);
 6714	clear_preempt_need_resched();
 6715#ifdef CONFIG_SCHED_DEBUG
 6716	rq->last_seen_need_resched_ns = 0;
 6717#endif
 6718
 6719	if (likely(prev != next)) {
 6720		rq->nr_switches++;
 6721		/*
 6722		 * RCU users of rcu_dereference(rq->curr) may not see
 6723		 * changes to task_struct made by pick_next_task().
 6724		 */
 6725		RCU_INIT_POINTER(rq->curr, next);
 6726		/*
 6727		 * The membarrier system call requires each architecture
 6728		 * to have a full memory barrier after updating
 6729		 * rq->curr, before returning to user-space.
 6730		 *
 6731		 * Here are the schemes providing that barrier on the
 6732		 * various architectures:
 6733		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
 6734		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
 6735		 *   on PowerPC and on RISC-V.
 6736		 * - finish_lock_switch() for weakly-ordered
 6737		 *   architectures where spin_unlock is a full barrier,
 6738		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
 6739		 *   is a RELEASE barrier),
 6740		 *
 6741		 * The barrier matches a full barrier in the proximity of
 6742		 * the membarrier system call entry.
 6743		 *
 6744		 * On RISC-V, this barrier pairing is also needed for the
 6745		 * SYNC_CORE command when switching between processes, cf.
 6746		 * the inline comments in membarrier_arch_switch_mm().
 6747		 */
 6748		++*switch_count;
 6749
 6750		migrate_disable_switch(rq, prev);
 6751		psi_account_irqtime(rq, prev, next);
 6752		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
 6753					     prev->se.sched_delayed);
 6754
 6755		trace_sched_switch(preempt, prev, next, prev_state);
 6756
 6757		/* Also unlocks the rq: */
 6758		rq = context_switch(rq, prev, next, &rf);
 6759	} else {
 6760		rq_unpin_lock(rq, &rf);
 6761		__balance_callbacks(rq);
 6762		raw_spin_rq_unlock_irq(rq);
 6763	}
 6764}
 6765
 6766void __noreturn do_task_dead(void)
 6767{
 6768	/* Causes final put_task_struct in finish_task_switch(): */
 6769	set_special_state(TASK_DEAD);
 6770
 6771	/* Tell freezer to ignore us: */
 6772	current->flags |= PF_NOFREEZE;
 6773
 6774	__schedule(SM_NONE);
 6775	BUG();
 6776
 6777	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
 6778	for (;;)
 6779		cpu_relax();
 6780}
 
 6781
 6782static inline void sched_submit_work(struct task_struct *tsk)
 6783{
 6784	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
 6785	unsigned int task_flags;
 6786
 6787	/*
 6788	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
 6789	 * will use a blocking primitive -- which would lead to recursion.
 6790	 */
 6791	lock_map_acquire_try(&sched_map);
 6792
 6793	task_flags = tsk->flags;
 6794	/*
 6795	 * If a worker goes to sleep, notify and ask workqueue whether it
 6796	 * wants to wake up a task to maintain concurrency.
 6797	 */
 6798	if (task_flags & PF_WQ_WORKER)
 6799		wq_worker_sleeping(tsk);
 6800	else if (task_flags & PF_IO_WORKER)
 6801		io_wq_worker_sleeping(tsk);
 6802
 6803	/*
 6804	 * spinlock and rwlock must not flush block requests.  This will
 6805	 * deadlock if the callback attempts to acquire a lock which is
 6806	 * already acquired.
 6807	 */
 6808	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
 6809
 6810	/*
 6811	 * If we are going to sleep and we have plugged IO queued,
 6812	 * make sure to submit it to avoid deadlocks.
 6813	 */
 6814	blk_flush_plug(tsk->plug, true);
 6815
 6816	lock_map_release(&sched_map);
 6817}
 6818
 6819static void sched_update_worker(struct task_struct *tsk)
 6820{
 6821	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
 6822		if (tsk->flags & PF_BLOCK_TS)
 6823			blk_plug_invalidate_ts(tsk);
 6824		if (tsk->flags & PF_WQ_WORKER)
 6825			wq_worker_running(tsk);
 6826		else if (tsk->flags & PF_IO_WORKER)
 6827			io_wq_worker_running(tsk);
 6828	}
 6829}
 6830
 6831static __always_inline void __schedule_loop(int sched_mode)
 6832{
 6833	do {
 6834		preempt_disable();
 6835		__schedule(sched_mode);
 6836		sched_preempt_enable_no_resched();
 6837	} while (need_resched());
 6838}
 6839
 6840asmlinkage __visible void __sched schedule(void)
 6841{
 6842	struct task_struct *tsk = current;
 6843
 6844#ifdef CONFIG_RT_MUTEXES
 6845	lockdep_assert(!tsk->sched_rt_mutex);
 6846#endif
 6847
 6848	if (!task_is_running(tsk))
 6849		sched_submit_work(tsk);
 6850	__schedule_loop(SM_NONE);
 6851	sched_update_worker(tsk);
 6852}
 6853EXPORT_SYMBOL(schedule);
 6854
 6855/*
 6856 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 6857 * state (have scheduled out non-voluntarily) by making sure that all
 6858 * tasks have either left the run queue or have gone into user space.
 6859 * As idle tasks do not do either, they must not ever be preempted
 6860 * (schedule out non-voluntarily).
 6861 *
 6862 * schedule_idle() is similar to schedule_preempt_disable() except that it
 6863 * never enables preemption because it does not call sched_submit_work().
 6864 */
 6865void __sched schedule_idle(void)
 6866{
 6867	/*
 6868	 * As this skips calling sched_submit_work(), which the idle task does
 6869	 * regardless because that function is a NOP when the task is in a
 6870	 * TASK_RUNNING state, make sure this isn't used someplace that the
 6871	 * current task can be in any other state. Note, idle is always in the
 6872	 * TASK_RUNNING state.
 6873	 */
 6874	WARN_ON_ONCE(current->__state);
 6875	do {
 6876		__schedule(SM_IDLE);
 6877	} while (need_resched());
 6878}
 6879
 6880#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
 6881asmlinkage __visible void __sched schedule_user(void)
 6882{
 6883	/*
 6884	 * If we come here after a random call to set_need_resched(),
 6885	 * or we have been woken up remotely but the IPI has not yet arrived,
 6886	 * we haven't yet exited the RCU idle mode. Do it here manually until
 6887	 * we find a better solution.
 6888	 *
 6889	 * NB: There are buggy callers of this function.  Ideally we
 6890	 * should warn if prev_state != CT_STATE_USER, but that will trigger
 6891	 * too frequently to make sense yet.
 6892	 */
 6893	enum ctx_state prev_state = exception_enter();
 6894	schedule();
 6895	exception_exit(prev_state);
 6896}
 6897#endif
 6898
 6899/**
 6900 * schedule_preempt_disabled - called with preemption disabled
 6901 *
 6902 * Returns with preemption disabled. Note: preempt_count must be 1
 6903 */
 6904void __sched schedule_preempt_disabled(void)
 6905{
 6906	sched_preempt_enable_no_resched();
 6907	schedule();
 6908	preempt_disable();
 6909}
 6910
 6911#ifdef CONFIG_PREEMPT_RT
 6912void __sched notrace schedule_rtlock(void)
 6913{
 6914	__schedule_loop(SM_RTLOCK_WAIT);
 6915}
 6916NOKPROBE_SYMBOL(schedule_rtlock);
 6917#endif
 6918
 6919static void __sched notrace preempt_schedule_common(void)
 6920{
 6921	do {
 6922		/*
 6923		 * Because the function tracer can trace preempt_count_sub()
 6924		 * and it also uses preempt_enable/disable_notrace(), if
 6925		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6926		 * by the function tracer will call this function again and
 6927		 * cause infinite recursion.
 6928		 *
 6929		 * Preemption must be disabled here before the function
 6930		 * tracer can trace. Break up preempt_disable() into two
 6931		 * calls. One to disable preemption without fear of being
 6932		 * traced. The other to still record the preemption latency,
 6933		 * which can also be traced by the function tracer.
 6934		 */
 6935		preempt_disable_notrace();
 6936		preempt_latency_start(1);
 6937		__schedule(SM_PREEMPT);
 6938		preempt_latency_stop(1);
 6939		preempt_enable_no_resched_notrace();
 6940
 6941		/*
 6942		 * Check again in case we missed a preemption opportunity
 6943		 * between schedule and now.
 6944		 */
 6945	} while (need_resched());
 6946}
 6947
 6948#ifdef CONFIG_PREEMPTION
 6949/*
 6950 * This is the entry point to schedule() from in-kernel preemption
 6951 * off of preempt_enable.
 
 6952 */
 6953asmlinkage __visible void __sched notrace preempt_schedule(void)
 6954{
 6955	/*
 6956	 * If there is a non-zero preempt_count or interrupts are disabled,
 6957	 * we do not want to preempt the current task. Just return..
 6958	 */
 6959	if (likely(!preemptible()))
 6960		return;
 
 6961	preempt_schedule_common();
 6962}
 6963NOKPROBE_SYMBOL(preempt_schedule);
 6964EXPORT_SYMBOL(preempt_schedule);
 6965
 6966#ifdef CONFIG_PREEMPT_DYNAMIC
 6967#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 6968#ifndef preempt_schedule_dynamic_enabled
 6969#define preempt_schedule_dynamic_enabled	preempt_schedule
 6970#define preempt_schedule_dynamic_disabled	NULL
 6971#endif
 6972DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
 6973EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
 6974#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 6975static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
 6976void __sched notrace dynamic_preempt_schedule(void)
 6977{
 6978	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
 6979		return;
 6980	preempt_schedule();
 6981}
 6982NOKPROBE_SYMBOL(dynamic_preempt_schedule);
 6983EXPORT_SYMBOL(dynamic_preempt_schedule);
 6984#endif
 6985#endif
 6986
 6987/**
 6988 * preempt_schedule_notrace - preempt_schedule called by tracing
 6989 *
 6990 * The tracing infrastructure uses preempt_enable_notrace to prevent
 6991 * recursion and tracing preempt enabling caused by the tracing
 6992 * infrastructure itself. But as tracing can happen in areas coming
 6993 * from userspace or just about to enter userspace, a preempt enable
 6994 * can occur before user_exit() is called. This will cause the scheduler
 6995 * to be called when the system is still in usermode.
 6996 *
 6997 * To prevent this, the preempt_enable_notrace will use this function
 6998 * instead of preempt_schedule() to exit user context if needed before
 6999 * calling the scheduler.
 7000 */
 7001asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
 7002{
 7003	enum ctx_state prev_ctx;
 7004
 7005	if (likely(!preemptible()))
 7006		return;
 7007
 7008	do {
 7009		/*
 7010		 * Because the function tracer can trace preempt_count_sub()
 7011		 * and it also uses preempt_enable/disable_notrace(), if
 7012		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 7013		 * by the function tracer will call this function again and
 7014		 * cause infinite recursion.
 7015		 *
 7016		 * Preemption must be disabled here before the function
 7017		 * tracer can trace. Break up preempt_disable() into two
 7018		 * calls. One to disable preemption without fear of being
 7019		 * traced. The other to still record the preemption latency,
 7020		 * which can also be traced by the function tracer.
 7021		 */
 7022		preempt_disable_notrace();
 7023		preempt_latency_start(1);
 7024		/*
 7025		 * Needs preempt disabled in case user_exit() is traced
 7026		 * and the tracer calls preempt_enable_notrace() causing
 7027		 * an infinite recursion.
 7028		 */
 7029		prev_ctx = exception_enter();
 7030		__schedule(SM_PREEMPT);
 7031		exception_exit(prev_ctx);
 7032
 7033		preempt_latency_stop(1);
 7034		preempt_enable_no_resched_notrace();
 7035	} while (need_resched());
 7036}
 7037EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
 7038
 7039#ifdef CONFIG_PREEMPT_DYNAMIC
 7040#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 7041#ifndef preempt_schedule_notrace_dynamic_enabled
 7042#define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
 7043#define preempt_schedule_notrace_dynamic_disabled	NULL
 7044#endif
 7045DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
 7046EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
 7047#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 7048static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
 7049void __sched notrace dynamic_preempt_schedule_notrace(void)
 7050{
 7051	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
 7052		return;
 7053	preempt_schedule_notrace();
 7054}
 7055NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
 7056EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
 7057#endif
 7058#endif
 7059
 7060#endif /* CONFIG_PREEMPTION */
 7061
 7062/*
 7063 * This is the entry point to schedule() from kernel preemption
 7064 * off of IRQ context.
 7065 * Note, that this is called and return with IRQs disabled. This will
 7066 * protect us against recursive calling from IRQ contexts.
 7067 */
 7068asmlinkage __visible void __sched preempt_schedule_irq(void)
 7069{
 7070	enum ctx_state prev_state;
 7071
 7072	/* Catch callers which need to be fixed */
 7073	BUG_ON(preempt_count() || !irqs_disabled());
 7074
 7075	prev_state = exception_enter();
 7076
 7077	do {
 7078		preempt_disable();
 7079		local_irq_enable();
 7080		__schedule(SM_PREEMPT);
 7081		local_irq_disable();
 7082		sched_preempt_enable_no_resched();
 7083	} while (need_resched());
 7084
 7085	exception_exit(prev_state);
 7086}
 7087
 7088int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
 7089			  void *key)
 7090{
 7091	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
 7092	return try_to_wake_up(curr->private, mode, wake_flags);
 7093}
 7094EXPORT_SYMBOL(default_wake_function);
 7095
 7096const struct sched_class *__setscheduler_class(int policy, int prio)
 7097{
 7098	if (dl_prio(prio))
 7099		return &dl_sched_class;
 7100
 7101	if (rt_prio(prio))
 7102		return &rt_sched_class;
 7103
 7104#ifdef CONFIG_SCHED_CLASS_EXT
 7105	if (task_should_scx(policy))
 7106		return &ext_sched_class;
 7107#endif
 7108
 7109	return &fair_sched_class;
 7110}
 7111
 7112#ifdef CONFIG_RT_MUTEXES
 7113
 7114/*
 7115 * Would be more useful with typeof()/auto_type but they don't mix with
 7116 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
 7117 * name such that if someone were to implement this function we get to compare
 7118 * notes.
 7119 */
 7120#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
 7121
 7122void rt_mutex_pre_schedule(void)
 7123{
 7124	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
 7125	sched_submit_work(current);
 7126}
 7127
 7128void rt_mutex_schedule(void)
 7129{
 7130	lockdep_assert(current->sched_rt_mutex);
 7131	__schedule_loop(SM_NONE);
 7132}
 7133
 7134void rt_mutex_post_schedule(void)
 7135{
 7136	sched_update_worker(current);
 7137	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
 7138}
 7139
 7140/*
 7141 * rt_mutex_setprio - set the current priority of a task
 7142 * @p: task to boost
 7143 * @pi_task: donor task
 7144 *
 7145 * This function changes the 'effective' priority of a task. It does
 7146 * not touch ->normal_prio like __setscheduler().
 7147 *
 7148 * Used by the rt_mutex code to implement priority inheritance
 7149 * logic. Call site only calls if the priority of the task changed.
 7150 */
 7151void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
 7152{
 7153	int prio, oldprio, queued, running, queue_flag =
 7154		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 7155	const struct sched_class *prev_class, *next_class;
 7156	struct rq_flags rf;
 7157	struct rq *rq;
 
 7158
 7159	/* XXX used to be waiter->prio, not waiter->task->prio */
 7160	prio = __rt_effective_prio(pi_task, p->normal_prio);
 7161
 7162	/*
 7163	 * If nothing changed; bail early.
 7164	 */
 7165	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
 7166		return;
 7167
 7168	rq = __task_rq_lock(p, &rf);
 7169	update_rq_clock(rq);
 7170	/*
 7171	 * Set under pi_lock && rq->lock, such that the value can be used under
 7172	 * either lock.
 7173	 *
 7174	 * Note that there is loads of tricky to make this pointer cache work
 7175	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
 7176	 * ensure a task is de-boosted (pi_task is set to NULL) before the
 7177	 * task is allowed to run again (and can exit). This ensures the pointer
 7178	 * points to a blocked task -- which guarantees the task is present.
 7179	 */
 7180	p->pi_top_task = pi_task;
 7181
 7182	/*
 7183	 * For FIFO/RR we only need to set prio, if that matches we're done.
 7184	 */
 7185	if (prio == p->prio && !dl_prio(prio))
 7186		goto out_unlock;
 7187
 7188	/*
 7189	 * Idle task boosting is a no-no in general. There is one
 7190	 * exception, when PREEMPT_RT and NOHZ is active:
 7191	 *
 7192	 * The idle task calls get_next_timer_interrupt() and holds
 7193	 * the timer wheel base->lock on the CPU and another CPU wants
 7194	 * to access the timer (probably to cancel it). We can safely
 7195	 * ignore the boosting request, as the idle CPU runs this code
 7196	 * with interrupts disabled and will complete the lock
 7197	 * protected section without being interrupted. So there is no
 7198	 * real need to boost.
 7199	 */
 7200	if (unlikely(p == rq->idle)) {
 7201		WARN_ON(p != rq->curr);
 7202		WARN_ON(p->pi_blocked_on);
 7203		goto out_unlock;
 7204	}
 7205
 7206	trace_sched_pi_setprio(p, pi_task);
 7207	oldprio = p->prio;
 7208
 7209	if (oldprio == prio)
 7210		queue_flag &= ~DEQUEUE_MOVE;
 7211
 7212	prev_class = p->sched_class;
 7213	next_class = __setscheduler_class(p->policy, prio);
 7214
 7215	if (prev_class != next_class && p->se.sched_delayed)
 7216		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
 7217
 7218	queued = task_on_rq_queued(p);
 7219	running = task_current_donor(rq, p);
 7220	if (queued)
 7221		dequeue_task(rq, p, queue_flag);
 7222	if (running)
 7223		put_prev_task(rq, p);
 7224
 7225	/*
 7226	 * Boosting condition are:
 7227	 * 1. -rt task is running and holds mutex A
 7228	 *      --> -dl task blocks on mutex A
 7229	 *
 7230	 * 2. -dl task is running and holds mutex A
 7231	 *      --> -dl task blocks on mutex A and could preempt the
 7232	 *          running task
 7233	 */
 7234	if (dl_prio(prio)) {
 
 7235		if (!dl_prio(p->normal_prio) ||
 7236		    (pi_task && dl_prio(pi_task->prio) &&
 7237		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
 7238			p->dl.pi_se = pi_task->dl.pi_se;
 7239			queue_flag |= ENQUEUE_REPLENISH;
 7240		} else {
 7241			p->dl.pi_se = &p->dl;
 7242		}
 7243	} else if (rt_prio(prio)) {
 7244		if (dl_prio(oldprio))
 7245			p->dl.pi_se = &p->dl;
 7246		if (oldprio < prio)
 7247			queue_flag |= ENQUEUE_HEAD;
 
 7248	} else {
 7249		if (dl_prio(oldprio))
 7250			p->dl.pi_se = &p->dl;
 7251		if (rt_prio(oldprio))
 7252			p->rt.timeout = 0;
 
 7253	}
 7254
 7255	p->sched_class = next_class;
 7256	p->prio = prio;
 7257
 7258	check_class_changing(rq, p, prev_class);
 7259
 7260	if (queued)
 7261		enqueue_task(rq, p, queue_flag);
 7262	if (running)
 7263		set_next_task(rq, p);
 7264
 7265	check_class_changed(rq, p, prev_class, oldprio);
 7266out_unlock:
 7267	/* Avoid rq from going away on us: */
 7268	preempt_disable();
 7269
 7270	rq_unpin_lock(rq, &rf);
 7271	__balance_callbacks(rq);
 7272	raw_spin_rq_unlock(rq);
 7273
 
 7274	preempt_enable();
 7275}
 7276#endif
 7277
 7278#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
 7279int __sched __cond_resched(void)
 7280{
 7281	if (should_resched(0) && !irqs_disabled()) {
 7282		preempt_schedule_common();
 7283		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7284	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7285	/*
 7286	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
 7287	 * whether the current CPU is in an RCU read-side critical section,
 7288	 * so the tick can report quiescent states even for CPUs looping
 7289	 * in kernel context.  In contrast, in non-preemptible kernels,
 7290	 * RCU readers leave no in-memory hints, which means that CPU-bound
 7291	 * processes executing in kernel context might never report an
 7292	 * RCU quiescent state.  Therefore, the following code causes
 7293	 * cond_resched() to report a quiescent state, but only when RCU
 7294	 * is in urgent need of one.
 7295	 */
 7296#ifndef CONFIG_PREEMPT_RCU
 7297	rcu_all_qs();
 7298#endif
 
 
 
 
 
 
 
 
 
 7299	return 0;
 7300}
 7301EXPORT_SYMBOL(__cond_resched);
 7302#endif
 7303
 7304#ifdef CONFIG_PREEMPT_DYNAMIC
 7305#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 7306#define cond_resched_dynamic_enabled	__cond_resched
 7307#define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
 7308DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
 7309EXPORT_STATIC_CALL_TRAMP(cond_resched);
 7310
 7311#define might_resched_dynamic_enabled	__cond_resched
 7312#define might_resched_dynamic_disabled	((void *)&__static_call_return0)
 7313DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
 7314EXPORT_STATIC_CALL_TRAMP(might_resched);
 7315#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 7316static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
 7317int __sched dynamic_cond_resched(void)
 7318{
 7319	klp_sched_try_switch();
 7320	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
 7321		return 0;
 7322	return __cond_resched();
 7323}
 7324EXPORT_SYMBOL(dynamic_cond_resched);
 7325
 7326static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
 7327int __sched dynamic_might_resched(void)
 
 
 
 
 
 7328{
 7329	if (!static_branch_unlikely(&sk_dynamic_might_resched))
 
 
 
 
 
 
 
 
 
 7330		return 0;
 7331	return __cond_resched();
 7332}
 7333EXPORT_SYMBOL(dynamic_might_resched);
 7334#endif
 7335#endif
 7336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7337/*
 7338 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 7339 * call schedule, and on return reacquire the lock.
 7340 *
 7341 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
 7342 * operations here to prevent schedule() from being called twice (once via
 7343 * spin_unlock(), once by hand).
 7344 */
 7345int __cond_resched_lock(spinlock_t *lock)
 
 7346{
 7347	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7348	int ret = 0;
 7349
 7350	lockdep_assert_held(lock);
 
 
 
 
 7351
 7352	if (spin_needbreak(lock) || resched) {
 7353		spin_unlock(lock);
 7354		if (!_cond_resched())
 7355			cpu_relax();
 7356		ret = 1;
 7357		spin_lock(lock);
 7358	}
 7359	return ret;
 
 
 
 
 
 
 
 
 
 
 
 7360}
 7361EXPORT_SYMBOL(__cond_resched_lock);
 7362
 7363int __cond_resched_rwlock_read(rwlock_t *lock)
 
 
 
 
 
 
 
 7364{
 7365	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7366	int ret = 0;
 7367
 7368	lockdep_assert_held_read(lock);
 
 7369
 7370	if (rwlock_needbreak(lock) || resched) {
 7371		read_unlock(lock);
 7372		if (!_cond_resched())
 7373			cpu_relax();
 7374		ret = 1;
 7375		read_lock(lock);
 7376	}
 7377	return ret;
 
 
 
 
 
 
 
 7378}
 7379EXPORT_SYMBOL(__cond_resched_rwlock_read);
 7380
 7381int __cond_resched_rwlock_write(rwlock_t *lock)
 
 
 7382{
 7383	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7384	int ret = 0;
 7385
 7386	lockdep_assert_held_write(lock);
 
 
 
 
 
 
 
 7387
 7388	if (rwlock_needbreak(lock) || resched) {
 7389		write_unlock(lock);
 7390		if (!_cond_resched())
 7391			cpu_relax();
 7392		ret = 1;
 7393		write_lock(lock);
 7394	}
 7395	return ret;
 7396}
 7397EXPORT_SYMBOL(__cond_resched_rwlock_write);
 7398
 7399#ifdef CONFIG_PREEMPT_DYNAMIC
 
 
 
 7400
 7401#ifdef CONFIG_GENERIC_ENTRY
 7402#include <linux/entry-common.h>
 7403#endif
 
 
 
 7404
 7405/*
 7406 * SC:cond_resched
 7407 * SC:might_resched
 7408 * SC:preempt_schedule
 7409 * SC:preempt_schedule_notrace
 7410 * SC:irqentry_exit_cond_resched
 7411 *
 7412 *
 7413 * NONE:
 7414 *   cond_resched               <- __cond_resched
 7415 *   might_resched              <- RET0
 7416 *   preempt_schedule           <- NOP
 7417 *   preempt_schedule_notrace   <- NOP
 7418 *   irqentry_exit_cond_resched <- NOP
 7419 *   dynamic_preempt_lazy       <- false
 7420 *
 7421 * VOLUNTARY:
 7422 *   cond_resched               <- __cond_resched
 7423 *   might_resched              <- __cond_resched
 7424 *   preempt_schedule           <- NOP
 7425 *   preempt_schedule_notrace   <- NOP
 7426 *   irqentry_exit_cond_resched <- NOP
 7427 *   dynamic_preempt_lazy       <- false
 7428 *
 7429 * FULL:
 7430 *   cond_resched               <- RET0
 7431 *   might_resched              <- RET0
 7432 *   preempt_schedule           <- preempt_schedule
 7433 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 7434 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 7435 *   dynamic_preempt_lazy       <- false
 7436 *
 7437 * LAZY:
 7438 *   cond_resched               <- RET0
 7439 *   might_resched              <- RET0
 7440 *   preempt_schedule           <- preempt_schedule
 7441 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 7442 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 7443 *   dynamic_preempt_lazy       <- true
 7444 */
 7445
 7446enum {
 7447	preempt_dynamic_undefined = -1,
 7448	preempt_dynamic_none,
 7449	preempt_dynamic_voluntary,
 7450	preempt_dynamic_full,
 7451	preempt_dynamic_lazy,
 7452};
 7453
 7454int preempt_dynamic_mode = preempt_dynamic_undefined;
 
 
 
 
 
 
 
 
 
 
 
 
 7455
 7456int sched_dynamic_mode(const char *str)
 
 
 
 
 
 
 7457{
 7458#ifndef CONFIG_PREEMPT_RT
 7459	if (!strcmp(str, "none"))
 7460		return preempt_dynamic_none;
 7461
 7462	if (!strcmp(str, "voluntary"))
 7463		return preempt_dynamic_voluntary;
 7464#endif
 
 
 
 
 7465
 7466	if (!strcmp(str, "full"))
 7467		return preempt_dynamic_full;
 
 
 7468
 7469#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
 7470	if (!strcmp(str, "lazy"))
 7471		return preempt_dynamic_lazy;
 7472#endif
 
 7473
 7474	return -EINVAL;
 7475}
 7476
 7477#define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
 7478#define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7479
 7480#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 7481#define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
 7482#define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
 7483#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 7484#define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
 7485#define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
 7486#else
 7487#error "Unsupported PREEMPT_DYNAMIC mechanism"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7488#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7489
 7490static DEFINE_MUTEX(sched_dynamic_mutex);
 7491static bool klp_override;
 
 
 
 
 7492
 7493static void __sched_dynamic_update(int mode)
 7494{
 7495	/*
 7496	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
 7497	 * the ZERO state, which is invalid.
 7498	 */
 7499	if (!klp_override)
 7500		preempt_dynamic_enable(cond_resched);
 7501	preempt_dynamic_enable(might_resched);
 7502	preempt_dynamic_enable(preempt_schedule);
 7503	preempt_dynamic_enable(preempt_schedule_notrace);
 7504	preempt_dynamic_enable(irqentry_exit_cond_resched);
 7505	preempt_dynamic_key_disable(preempt_lazy);
 7506
 7507	switch (mode) {
 7508	case preempt_dynamic_none:
 7509		if (!klp_override)
 7510			preempt_dynamic_enable(cond_resched);
 7511		preempt_dynamic_disable(might_resched);
 7512		preempt_dynamic_disable(preempt_schedule);
 7513		preempt_dynamic_disable(preempt_schedule_notrace);
 7514		preempt_dynamic_disable(irqentry_exit_cond_resched);
 7515		preempt_dynamic_key_disable(preempt_lazy);
 7516		if (mode != preempt_dynamic_mode)
 7517			pr_info("Dynamic Preempt: none\n");
 7518		break;
 7519
 7520	case preempt_dynamic_voluntary:
 7521		if (!klp_override)
 7522			preempt_dynamic_enable(cond_resched);
 7523		preempt_dynamic_enable(might_resched);
 7524		preempt_dynamic_disable(preempt_schedule);
 7525		preempt_dynamic_disable(preempt_schedule_notrace);
 7526		preempt_dynamic_disable(irqentry_exit_cond_resched);
 7527		preempt_dynamic_key_disable(preempt_lazy);
 7528		if (mode != preempt_dynamic_mode)
 7529			pr_info("Dynamic Preempt: voluntary\n");
 7530		break;
 7531
 7532	case preempt_dynamic_full:
 7533		if (!klp_override)
 7534			preempt_dynamic_disable(cond_resched);
 7535		preempt_dynamic_disable(might_resched);
 7536		preempt_dynamic_enable(preempt_schedule);
 7537		preempt_dynamic_enable(preempt_schedule_notrace);
 7538		preempt_dynamic_enable(irqentry_exit_cond_resched);
 7539		preempt_dynamic_key_disable(preempt_lazy);
 7540		if (mode != preempt_dynamic_mode)
 7541			pr_info("Dynamic Preempt: full\n");
 7542		break;
 
 7543
 7544	case preempt_dynamic_lazy:
 7545		if (!klp_override)
 7546			preempt_dynamic_disable(cond_resched);
 7547		preempt_dynamic_disable(might_resched);
 7548		preempt_dynamic_enable(preempt_schedule);
 7549		preempt_dynamic_enable(preempt_schedule_notrace);
 7550		preempt_dynamic_enable(irqentry_exit_cond_resched);
 7551		preempt_dynamic_key_enable(preempt_lazy);
 7552		if (mode != preempt_dynamic_mode)
 7553			pr_info("Dynamic Preempt: lazy\n");
 7554		break;
 
 
 
 
 
 
 
 
 
 
 7555	}
 7556
 7557	preempt_dynamic_mode = mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 7558}
 7559
 7560void sched_dynamic_update(int mode)
 
 7561{
 7562	mutex_lock(&sched_dynamic_mutex);
 7563	__sched_dynamic_update(mode);
 7564	mutex_unlock(&sched_dynamic_mutex);
 
 
 
 
 
 
 
 
 
 
 
 7565}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7566
 7567#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
 
 
 
 
 7568
 7569static int klp_cond_resched(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7570{
 7571	__klp_sched_try_switch();
 7572	return __cond_resched();
 7573}
 
 7574
 7575void sched_dynamic_klp_enable(void)
 
 7576{
 7577	mutex_lock(&sched_dynamic_mutex);
 
 
 7578
 7579	klp_override = true;
 7580	static_call_update(cond_resched, klp_cond_resched);
 
 
 7581
 7582	mutex_unlock(&sched_dynamic_mutex);
 
 
 
 
 
 
 
 7583}
 7584
 7585void sched_dynamic_klp_disable(void)
 
 
 
 
 7586{
 7587	mutex_lock(&sched_dynamic_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7588
 7589	klp_override = false;
 7590	__sched_dynamic_update(preempt_dynamic_mode);
 7591
 7592	mutex_unlock(&sched_dynamic_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7593}
 7594
 7595#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
 
 
 
 
 
 
 
 
 
 
 7596
 7597static int __init setup_preempt_mode(char *str)
 
 
 
 
 
 
 
 7598{
 7599	int mode = sched_dynamic_mode(str);
 7600	if (mode < 0) {
 7601		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
 7602		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7603	}
 
 
 
 7604
 7605	sched_dynamic_update(mode);
 7606	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7607}
 7608__setup("preempt=", setup_preempt_mode);
 7609
 7610static void __init preempt_dynamic_init(void)
 
 
 7611{
 7612	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
 7613		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
 7614			sched_dynamic_update(preempt_dynamic_none);
 7615		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
 7616			sched_dynamic_update(preempt_dynamic_voluntary);
 7617		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
 7618			sched_dynamic_update(preempt_dynamic_lazy);
 7619		} else {
 7620			/* Default static call setting, nothing to do */
 7621			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
 7622			preempt_dynamic_mode = preempt_dynamic_full;
 7623			pr_info("Dynamic Preempt: full\n");
 
 
 
 
 
 
 
 
 7624		}
 
 
 7625	}
 
 
 
 
 
 
 7626}
 7627
 7628#define PREEMPT_MODEL_ACCESSOR(mode) \
 7629	bool preempt_model_##mode(void)						 \
 7630	{									 \
 7631		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
 7632		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
 7633	}									 \
 7634	EXPORT_SYMBOL_GPL(preempt_model_##mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7635
 7636PREEMPT_MODEL_ACCESSOR(none);
 7637PREEMPT_MODEL_ACCESSOR(voluntary);
 7638PREEMPT_MODEL_ACCESSOR(full);
 7639PREEMPT_MODEL_ACCESSOR(lazy);
 
 
 
 
 
 7640
 7641#else /* !CONFIG_PREEMPT_DYNAMIC: */
 7642
 7643static inline void preempt_dynamic_init(void) { }
 
 7644
 7645#endif /* CONFIG_PREEMPT_DYNAMIC */
 
 
 
 7646
 7647int io_schedule_prepare(void)
 7648{
 7649	int old_iowait = current->in_iowait;
 
 
 7650
 7651	current->in_iowait = 1;
 7652	blk_flush_plug(current->plug, true);
 7653	return old_iowait;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7654}
 7655
 7656void io_schedule_finish(int token)
 
 7657{
 7658	current->in_iowait = token;
 
 
 
 
 
 7659}
 7660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7661/*
 7662 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 7663 * that process accounting knows that this is a task in IO wait state.
 7664 */
 7665long __sched io_schedule_timeout(long timeout)
 7666{
 7667	int token;
 
 7668	long ret;
 7669
 7670	token = io_schedule_prepare();
 
 
 
 
 
 7671	ret = schedule_timeout(timeout);
 7672	io_schedule_finish(token);
 
 
 7673
 7674	return ret;
 7675}
 7676EXPORT_SYMBOL(io_schedule_timeout);
 7677
 7678void __sched io_schedule(void)
 
 
 
 
 
 
 
 
 7679{
 7680	int token;
 7681
 7682	token = io_schedule_prepare();
 7683	schedule();
 7684	io_schedule_finish(token);
 
 
 
 
 
 
 
 
 
 
 7685}
 7686EXPORT_SYMBOL(io_schedule);
 7687
 7688void sched_show_task(struct task_struct *p)
 
 
 
 
 
 
 
 
 7689{
 7690	unsigned long free;
 7691	int ppid;
 7692
 7693	if (!try_get_task_stack(p))
 7694		return;
 
 
 
 
 
 
 
 
 
 
 
 7695
 7696	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7697
 7698	if (task_is_running(p))
 7699		pr_cont("  running task    ");
 7700	free = stack_not_used(p);
 7701	ppid = 0;
 7702	rcu_read_lock();
 7703	if (pid_alive(p))
 7704		ppid = task_pid_nr(rcu_dereference(p->real_parent));
 
 
 
 
 
 
 
 
 
 
 
 
 7705	rcu_read_unlock();
 7706	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
 7707		free, task_pid_nr(p), task_tgid_nr(p),
 7708		ppid, read_task_thread_flags(p));
 7709
 7710	print_worker_info(KERN_INFO, p);
 7711	print_stop_info(KERN_INFO, p);
 7712	print_scx_info(KERN_INFO, p);
 7713	show_stack(p, NULL, KERN_INFO);
 7714	put_task_stack(p);
 7715}
 7716EXPORT_SYMBOL_GPL(sched_show_task);
 7717
 7718static inline bool
 7719state_filter_match(unsigned long state_filter, struct task_struct *p)
 7720{
 7721	unsigned int state = READ_ONCE(p->__state);
 7722
 7723	/* no filter, everything matches */
 7724	if (!state_filter)
 7725		return true;
 7726
 7727	/* filter, but doesn't match */
 7728	if (!(state & state_filter))
 7729		return false;
 7730
 7731	/*
 7732	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
 7733	 * TASK_KILLABLE).
 7734	 */
 7735	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
 7736		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7737
 7738	return true;
 
 7739}
 7740
 7741
 7742void show_state_filter(unsigned int state_filter)
 7743{
 7744	struct task_struct *g, *p;
 7745
 
 
 
 
 
 
 
 7746	rcu_read_lock();
 7747	for_each_process_thread(g, p) {
 7748		/*
 7749		 * reset the NMI-timeout, listing all files on a slow
 7750		 * console might take a lot of time:
 7751		 * Also, reset softlockup watchdogs on all CPUs, because
 7752		 * another CPU might be blocked waiting for us to process
 7753		 * an IPI.
 7754		 */
 7755		touch_nmi_watchdog();
 7756		touch_all_softlockup_watchdogs();
 7757		if (state_filter_match(state_filter, p))
 7758			sched_show_task(p);
 7759	}
 7760
 
 
 7761#ifdef CONFIG_SCHED_DEBUG
 7762	if (!state_filter)
 7763		sysrq_sched_debug_show();
 7764#endif
 7765	rcu_read_unlock();
 7766	/*
 7767	 * Only show locks if all tasks are dumped:
 7768	 */
 7769	if (!state_filter)
 7770		debug_show_all_locks();
 7771}
 7772
 
 
 
 
 
 7773/**
 7774 * init_idle - set up an idle thread for a given CPU
 7775 * @idle: task in question
 7776 * @cpu: CPU the idle task belongs to
 7777 *
 7778 * NOTE: this function does not set the idle thread's NEED_RESCHED
 7779 * flag, to make booting more robust.
 7780 */
 7781void __init init_idle(struct task_struct *idle, int cpu)
 7782{
 7783#ifdef CONFIG_SMP
 7784	struct affinity_context ac = (struct affinity_context) {
 7785		.new_mask  = cpumask_of(cpu),
 7786		.flags     = 0,
 7787	};
 7788#endif
 7789	struct rq *rq = cpu_rq(cpu);
 7790	unsigned long flags;
 7791
 7792	raw_spin_lock_irqsave(&idle->pi_lock, flags);
 7793	raw_spin_rq_lock(rq);
 7794
 7795	idle->__state = TASK_RUNNING;
 
 7796	idle->se.exec_start = sched_clock();
 7797	/*
 7798	 * PF_KTHREAD should already be set at this point; regardless, make it
 7799	 * look like a proper per-CPU kthread.
 7800	 */
 7801	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
 7802	kthread_set_per_cpu(idle, cpu);
 7803
 7804#ifdef CONFIG_SMP
 7805	/*
 7806	 * No validation and serialization required at boot time and for
 7807	 * setting up the idle tasks of not yet online CPUs.
 
 
 7808	 */
 7809	set_cpus_allowed_common(idle, &ac);
 7810#endif
 7811	/*
 7812	 * We're having a chicken and egg problem, even though we are
 7813	 * holding rq->lock, the CPU isn't yet set to this CPU so the
 7814	 * lockdep check in task_group() will fail.
 7815	 *
 7816	 * Similar case to sched_fork(). / Alternatively we could
 7817	 * use task_rq_lock() here and obtain the other rq->lock.
 7818	 *
 7819	 * Silence PROVE_RCU
 7820	 */
 7821	rcu_read_lock();
 7822	__set_task_cpu(idle, cpu);
 7823	rcu_read_unlock();
 7824
 7825	rq->idle = idle;
 7826	rq_set_donor(rq, idle);
 7827	rcu_assign_pointer(rq->curr, idle);
 7828	idle->on_rq = TASK_ON_RQ_QUEUED;
 7829#ifdef CONFIG_SMP
 7830	idle->on_cpu = 1;
 7831#endif
 7832	raw_spin_rq_unlock(rq);
 7833	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
 7834
 7835	/* Set the preempt count _outside_ the spinlocks! */
 7836	init_idle_preempt_count(idle, cpu);
 7837
 7838	/*
 7839	 * The idle tasks have their own, simple scheduling class:
 7840	 */
 7841	idle->sched_class = &idle_sched_class;
 7842	ftrace_graph_init_idle_task(idle, cpu);
 7843	vtime_init_idle(idle, cpu);
 7844#ifdef CONFIG_SMP
 7845	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
 7846#endif
 7847}
 7848
 7849#ifdef CONFIG_SMP
 7850
 7851int cpuset_cpumask_can_shrink(const struct cpumask *cur,
 7852			      const struct cpumask *trial)
 7853{
 7854	int ret = 1;
 
 
 7855
 7856	if (cpumask_empty(cur))
 7857		return ret;
 7858
 7859	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
 
 
 
 
 
 
 
 
 
 7860
 7861	return ret;
 7862}
 7863
 7864int task_can_attach(struct task_struct *p)
 
 7865{
 7866	int ret = 0;
 7867
 7868	/*
 7869	 * Kthreads which disallow setaffinity shouldn't be moved
 7870	 * to a new cpuset; we don't want to change their CPU
 7871	 * affinity and isolating such threads by their set of
 7872	 * allowed nodes is unnecessary.  Thus, cpusets are not
 7873	 * applicable for such threads.  This prevents checking for
 7874	 * success of set_cpus_allowed_ptr() on all attached tasks
 7875	 * before cpus_mask may be changed.
 7876	 */
 7877	if (p->flags & PF_NO_SETAFFINITY)
 7878		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7879
 
 
 
 7880	return ret;
 7881}
 7882
 7883bool sched_smp_initialized __read_mostly;
 7884
 7885#ifdef CONFIG_NUMA_BALANCING
 7886/* Migrate current task p to target_cpu */
 7887int migrate_task_to(struct task_struct *p, int target_cpu)
 7888{
 7889	struct migration_arg arg = { p, target_cpu };
 7890	int curr_cpu = task_cpu(p);
 7891
 7892	if (curr_cpu == target_cpu)
 7893		return 0;
 7894
 7895	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
 7896		return -EINVAL;
 7897
 7898	/* TODO: This is not properly updating schedstats */
 7899
 7900	trace_sched_move_numa(p, curr_cpu, target_cpu);
 7901	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 7902}
 7903
 7904/*
 7905 * Requeue a task on a given node and accurately track the number of NUMA
 7906 * tasks on the runqueues
 7907 */
 7908void sched_setnuma(struct task_struct *p, int nid)
 7909{
 7910	bool queued, running;
 7911	struct rq_flags rf;
 7912	struct rq *rq;
 
 
 7913
 7914	rq = task_rq_lock(p, &rf);
 7915	queued = task_on_rq_queued(p);
 7916	running = task_current_donor(rq, p);
 7917
 7918	if (queued)
 7919		dequeue_task(rq, p, DEQUEUE_SAVE);
 7920	if (running)
 7921		put_prev_task(rq, p);
 7922
 7923	p->numa_preferred_nid = nid;
 7924
 7925	if (queued)
 7926		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 7927	if (running)
 7928		set_next_task(rq, p);
 7929	task_rq_unlock(rq, p, &rf);
 
 
 7930}
 7931#endif /* CONFIG_NUMA_BALANCING */
 7932
 7933#ifdef CONFIG_HOTPLUG_CPU
 7934/*
 7935 * Ensure that the idle task is using init_mm right before its CPU goes
 7936 * offline.
 7937 */
 7938void idle_task_exit(void)
 7939{
 7940	struct mm_struct *mm = current->active_mm;
 7941
 7942	BUG_ON(cpu_online(smp_processor_id()));
 7943	BUG_ON(current != this_rq()->idle);
 7944
 7945	if (mm != &init_mm) {
 7946		switch_mm(mm, &init_mm, current);
 7947		finish_arch_post_lock_switch();
 7948	}
 7949
 7950	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
 7951}
 7952
 7953static int __balance_push_cpu_stop(void *arg)
 
 
 
 
 
 
 
 7954{
 7955	struct task_struct *p = arg;
 7956	struct rq *rq = this_rq();
 7957	struct rq_flags rf;
 7958	int cpu;
 7959
 7960	raw_spin_lock_irq(&p->pi_lock);
 7961	rq_lock(rq, &rf);
 7962
 7963	update_rq_clock(rq);
 7964
 7965	if (task_rq(p) == rq && task_on_rq_queued(p)) {
 7966		cpu = select_fallback_rq(rq->cpu, p);
 7967		rq = __migrate_task(rq, &rf, p, cpu);
 7968	}
 7969
 7970	rq_unlock(rq, &rf);
 7971	raw_spin_unlock_irq(&p->pi_lock);
 7972
 7973	put_task_struct(p);
 7974
 7975	return 0;
 
 7976}
 7977
 7978static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
 
 
 
 
 
 
 
 
 
 
 7979
 7980/*
 7981 * Ensure we only run per-cpu kthreads once the CPU goes !active.
 
 7982 *
 7983 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
 7984 * effective when the hotplug motion is down.
 
 7985 */
 7986static void balance_push(struct rq *rq)
 7987{
 7988	struct task_struct *push_task = rq->curr;
 7989
 7990	lockdep_assert_rq_held(rq);
 7991
 7992	/*
 7993	 * Ensure the thing is persistent until balance_push_set(.on = false);
 
 
 
 
 
 
 7994	 */
 7995	rq->balance_callback = &balance_push_callback;
 7996
 7997	/*
 7998	 * Only active while going offline and when invoked on the outgoing
 7999	 * CPU.
 
 8000	 */
 8001	if (!cpu_dying(rq->cpu) || rq != this_rq())
 8002		return;
 8003
 8004	/*
 8005	 * Both the cpu-hotplug and stop task are in this case and are
 8006	 * required to complete the hotplug process.
 8007	 */
 8008	if (kthread_is_per_cpu(push_task) ||
 8009	    is_migration_disabled(push_task)) {
 
 8010
 8011		/*
 8012		 * If this is the idle task on the outgoing CPU try to wake
 8013		 * up the hotplug control thread which might wait for the
 8014		 * last task to vanish. The rcuwait_active() check is
 8015		 * accurate here because the waiter is pinned on this CPU
 8016		 * and can't obviously be running in parallel.
 
 
 
 
 
 
 8017		 *
 8018		 * On RT kernels this also has to check whether there are
 8019		 * pinned and scheduled out tasks on the runqueue. They
 8020		 * need to leave the migrate disabled section first.
 8021		 */
 8022		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
 8023		    rcuwait_active(&rq->hotplug_wait)) {
 8024			raw_spin_rq_unlock(rq);
 8025			rcuwait_wake_up(&rq->hotplug_wait);
 8026			raw_spin_rq_lock(rq);
 
 
 
 
 
 
 
 
 8027		}
 8028		return;
 
 
 
 
 
 
 
 
 
 
 8029	}
 8030
 8031	get_task_struct(push_task);
 8032	/*
 8033	 * Temporarily drop rq->lock such that we can wake-up the stop task.
 8034	 * Both preemption and IRQs are still disabled.
 8035	 */
 8036	preempt_disable();
 8037	raw_spin_rq_unlock(rq);
 8038	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
 8039			    this_cpu_ptr(&push_work));
 8040	preempt_enable();
 8041	/*
 8042	 * At this point need_resched() is true and we'll take the loop in
 8043	 * schedule(). The next pick is obviously going to be the stop task
 8044	 * which kthread_is_per_cpu() and will push this task away.
 8045	 */
 8046	raw_spin_rq_lock(rq);
 8047}
 
 8048
 8049static void balance_push_set(int cpu, bool on)
 8050{
 8051	struct rq *rq = cpu_rq(cpu);
 8052	struct rq_flags rf;
 8053
 8054	rq_lock_irqsave(rq, &rf);
 8055	if (on) {
 8056		WARN_ON_ONCE(rq->balance_callback);
 8057		rq->balance_callback = &balance_push_callback;
 8058	} else if (rq->balance_callback == &balance_push_callback) {
 8059		rq->balance_callback = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8060	}
 8061	rq_unlock_irqrestore(rq, &rf);
 8062}
 8063
 8064/*
 8065 * Invoked from a CPUs hotplug control thread after the CPU has been marked
 8066 * inactive. All tasks which are not per CPU kernel threads are either
 8067 * pushed off this CPU now via balance_push() or placed on a different CPU
 8068 * during wakeup. Wait until the CPU is quiescent.
 8069 */
 8070static void balance_hotplug_wait(void)
 
 8071{
 8072	struct rq *rq = this_rq();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8073
 8074	rcuwait_wait_event(&rq->hotplug_wait,
 8075			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
 8076			   TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8077}
 8078
 8079#else
 
 
 
 
 
 
 
 
 8080
 8081static inline void balance_push(struct rq *rq)
 8082{
 
 
 
 8083}
 8084
 8085static inline void balance_push_set(int cpu, bool on)
 
 8086{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8087}
 8088
 8089static inline void balance_hotplug_wait(void)
 
 8090{
 
 
 
 
 
 
 
 8091}
 8092
 8093#endif /* CONFIG_HOTPLUG_CPU */
 
 
 
 8094
 8095void set_rq_online(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8096{
 8097	if (!rq->online) {
 8098		const struct sched_class *class;
 8099
 8100		cpumask_set_cpu(rq->cpu, rq->rd->online);
 8101		rq->online = 1;
 
 8102
 8103		for_each_class(class) {
 8104			if (class->rq_online)
 8105				class->rq_online(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8106		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8107	}
 8108}
 
 
 
 
 
 
 
 8109
 8110void set_rq_offline(struct rq *rq)
 8111{
 8112	if (rq->online) {
 8113		const struct sched_class *class;
 8114
 8115		update_rq_clock(rq);
 8116		for_each_class(class) {
 8117			if (class->rq_offline)
 8118				class->rq_offline(rq);
 8119		}
 
 
 
 
 
 
 8120
 8121		cpumask_clear_cpu(rq->cpu, rq->rd->online);
 8122		rq->online = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8123	}
 
 
 
 
 8124}
 8125
 8126static inline void sched_set_rq_online(struct rq *rq, int cpu)
 8127{
 8128	struct rq_flags rf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8129
 8130	rq_lock_irqsave(rq, &rf);
 8131	if (rq->rd) {
 8132		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8133		set_rq_online(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8134	}
 8135	rq_unlock_irqrestore(rq, &rf);
 
 8136}
 8137
 8138static inline void sched_set_rq_offline(struct rq *rq, int cpu)
 8139{
 8140	struct rq_flags rf;
 8141
 8142	rq_lock_irqsave(rq, &rf);
 8143	if (rq->rd) {
 8144		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 8145		set_rq_offline(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8146	}
 8147	rq_unlock_irqrestore(rq, &rf);
 
 
 
 
 
 
 
 
 
 
 
 8148}
 8149
 8150/*
 8151 * used to mark begin/end of suspend/resume:
 
 
 
 
 
 
 8152 */
 8153static int num_cpus_frozen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8154
 8155/*
 8156 * Update cpusets according to cpu_active mask.  If cpusets are
 8157 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 8158 * around partition_sched_domains().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8159 *
 8160 * If we come here as part of a suspend/resume, don't touch cpusets because we
 8161 * want to restore it back to its original state upon resume anyway.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8162 */
 8163static void cpuset_cpu_active(void)
 
 
 
 
 
 
 8164{
 8165	if (cpuhp_tasks_frozen) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8166		/*
 8167		 * num_cpus_frozen tracks how many CPUs are involved in suspend
 8168		 * resume sequence. As long as this is not the last online
 8169		 * operation in the resume sequence, just build a single sched
 8170		 * domain, ignoring cpusets.
 8171		 */
 8172		partition_sched_domains(1, NULL, NULL);
 8173		if (--num_cpus_frozen)
 8174			return;
 8175		/*
 8176		 * This is the last CPU online operation. So fall through and
 8177		 * restore the original sched domains by considering the
 8178		 * cpuset configurations.
 8179		 */
 8180		cpuset_force_rebuild();
 
 
 
 
 
 
 
 
 
 8181	}
 8182	cpuset_update_active_cpus();
 
 
 
 
 
 
 
 8183}
 8184
 8185static int cpuset_cpu_inactive(unsigned int cpu)
 8186{
 8187	if (!cpuhp_tasks_frozen) {
 8188		int ret = dl_bw_check_overflow(cpu);
 8189
 8190		if (ret)
 8191			return ret;
 8192		cpuset_update_active_cpus();
 8193	} else {
 8194		num_cpus_frozen++;
 8195		partition_sched_domains(1, NULL, NULL);
 
 8196	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8197	return 0;
 8198}
 8199
 8200static inline void sched_smt_present_inc(int cpu)
 
 
 
 
 
 
 
 
 
 
 8201{
 8202#ifdef CONFIG_SCHED_SMT
 8203	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 8204		static_branch_inc_cpuslocked(&sched_smt_present);
 8205#endif
 
 
 
 
 
 
 
 
 
 
 8206}
 8207
 8208static inline void sched_smt_present_dec(int cpu)
 
 
 
 
 
 
 
 
 8209{
 8210#ifdef CONFIG_SCHED_SMT
 8211	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 8212		static_branch_dec_cpuslocked(&sched_smt_present);
 8213#endif
 8214}
 
 8215
 8216int sched_cpu_activate(unsigned int cpu)
 
 8217{
 8218	struct rq *rq = cpu_rq(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8220	/*
 8221	 * Clear the balance_push callback and prepare to schedule
 8222	 * regular tasks.
 8223	 */
 8224	balance_push_set(cpu, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8225
 8226	/*
 8227	 * When going up, increment the number of cores with SMT present.
 8228	 */
 8229	sched_smt_present_inc(cpu);
 8230	set_cpu_active(cpu, true);
 8231
 8232	if (sched_smp_initialized) {
 8233		sched_update_numa(cpu, true);
 8234		sched_domains_numa_masks_set(cpu);
 8235		cpuset_cpu_active();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8236	}
 8237
 8238	scx_rq_activate(rq);
 8239
 8240	/*
 8241	 * Put the rq online, if not already. This happens:
 8242	 *
 8243	 * 1) In the early boot process, because we build the real domains
 8244	 *    after all CPUs have been brought up.
 8245	 *
 8246	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
 8247	 *    domains.
 8248	 */
 8249	sched_set_rq_online(rq, cpu);
 8250
 8251	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8252}
 8253
 8254int sched_cpu_deactivate(unsigned int cpu)
 
 
 8255{
 8256	struct rq *rq = cpu_rq(cpu);
 8257	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8258
 8259	/*
 8260	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
 8261	 * load balancing when not active
 
 
 
 8262	 */
 8263	nohz_balance_exit_idle(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8264
 8265	set_cpu_active(cpu, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8266
 8267	/*
 8268	 * From this point forward, this CPU will refuse to run any task that
 8269	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
 8270	 * push those tasks away until this gets cleared, see
 8271	 * sched_cpu_dying().
 
 8272	 */
 8273	balance_push_set(cpu, true);
 8274
 8275	/*
 8276	 * We've cleared cpu_active_mask / set balance_push, wait for all
 8277	 * preempt-disabled and RCU users of this state to go away such that
 8278	 * all new such users will observe it.
 
 
 8279	 *
 8280	 * Specifically, we rely on ttwu to no longer target this CPU, see
 8281	 * ttwu_queue_cond() and is_cpu_allowed().
 8282	 *
 8283	 * Do sync before park smpboot threads to take care the RCU boost case.
 
 
 
 
 
 
 
 8284	 */
 8285	synchronize_rcu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8286
 8287	sched_set_rq_offline(rq, cpu);
 
 8288
 8289	scx_rq_deactivate(rq);
 
 
 
 8290
 8291	/*
 8292	 * When going down, decrement the number of cores with SMT present.
 8293	 */
 8294	sched_smt_present_dec(cpu);
 
 8295
 8296#ifdef CONFIG_SCHED_SMT
 8297	sched_core_cpu_deactivate(cpu);
 8298#endif
 
 
 
 
 
 
 
 
 
 8299
 8300	if (!sched_smp_initialized)
 8301		return 0;
 8302
 8303	sched_update_numa(cpu, false);
 8304	ret = cpuset_cpu_inactive(cpu);
 8305	if (ret) {
 8306		sched_smt_present_inc(cpu);
 8307		sched_set_rq_online(rq, cpu);
 8308		balance_push_set(cpu, false);
 8309		set_cpu_active(cpu, true);
 8310		sched_update_numa(cpu, true);
 8311		return ret;
 
 
 
 
 
 
 
 8312	}
 8313	sched_domains_numa_masks_clear(cpu);
 8314	return 0;
 8315}
 8316
 8317static void sched_rq_cpu_starting(unsigned int cpu)
 8318{
 8319	struct rq *rq = cpu_rq(cpu);
 
 
 
 
 
 8320
 8321	rq->calc_load_update = calc_load_update;
 8322	update_max_interval();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8323}
 8324
 8325int sched_cpu_starting(unsigned int cpu)
 
 
 8326{
 8327	sched_core_cpu_starting(cpu);
 8328	sched_rq_cpu_starting(cpu);
 8329	sched_tick_start(cpu);
 8330	return 0;
 8331}
 
 8332
 8333#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8334
 8335/*
 8336 * Invoked immediately before the stopper thread is invoked to bring the
 8337 * CPU down completely. At this point all per CPU kthreads except the
 8338 * hotplug thread (current) and the stopper thread (inactive) have been
 8339 * either parked or have been unbound from the outgoing CPU. Ensure that
 8340 * any of those which might be on the way out are gone.
 8341 *
 8342 * If after this point a bound task is being woken on this CPU then the
 8343 * responsible hotplug callback has failed to do it's job.
 8344 * sched_cpu_dying() will catch it with the appropriate fireworks.
 8345 */
 8346int sched_cpu_wait_empty(unsigned int cpu)
 8347{
 8348	balance_hotplug_wait();
 8349	return 0;
 8350}
 8351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8352/*
 8353 * Since this CPU is going 'away' for a while, fold any nr_active delta we
 8354 * might have. Called from the CPU stopper task after ensuring that the
 8355 * stopper is the last running task on the CPU, so nr_active count is
 8356 * stable. We need to take the tear-down thread which is calling this into
 8357 * account, so we hand in adjust = 1 to the load calculation.
 8358 *
 8359 * Also see the comment "Global load-average calculations".
 8360 */
 8361static void calc_load_migrate(struct rq *rq)
 8362{
 8363	long delta = calc_load_fold_active(rq, 1);
 8364
 8365	if (delta)
 8366		atomic_long_add(delta, &calc_load_tasks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8367}
 8368
 8369static void dump_rq_tasks(struct rq *rq, const char *loglvl)
 
 
 8370{
 8371	struct task_struct *g, *p;
 8372	int cpu = cpu_of(rq);
 8373
 8374	lockdep_assert_rq_held(rq);
 
 
 8375
 8376	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
 8377	for_each_process_thread(g, p) {
 8378		if (task_cpu(p) != cpu)
 8379			continue;
 
 8380
 8381		if (!task_on_rq_queued(p))
 8382			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8383
 8384		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
 8385	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8386}
 8387
 8388int sched_cpu_dying(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 8389{
 8390	struct rq *rq = cpu_rq(cpu);
 8391	struct rq_flags rf;
 
 8392
 8393	/* Handle pending wakeups and then migrate everything off */
 8394	sched_tick_stop(cpu);
 
 
 
 
 
 
 
 
 
 8395
 8396	rq_lock_irqsave(rq, &rf);
 8397	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
 8398		WARN(true, "Dying CPU not properly vacated!");
 8399		dump_rq_tasks(rq, KERN_WARNING);
 
 
 
 
 
 
 
 8400	}
 8401	rq_unlock_irqrestore(rq, &rf);
 
 8402
 8403	calc_load_migrate(rq);
 8404	update_max_interval();
 8405	hrtick_clear(rq);
 8406	sched_core_cpu_dying(cpu);
 8407	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8408}
 8409#endif
 8410
 8411void __init sched_init_smp(void)
 8412{
 8413	sched_init_numa(NUMA_NO_NODE);
 
 
 
 
 
 8414
 8415	/*
 8416	 * There's no userspace yet to cause hotplug operations; hence all the
 8417	 * CPU masks are stable and all blatant races in the below code cannot
 8418	 * happen.
 8419	 */
 8420	mutex_lock(&sched_domains_mutex);
 8421	sched_init_domains(cpu_active_mask);
 
 
 
 8422	mutex_unlock(&sched_domains_mutex);
 8423
 
 
 
 
 
 
 8424	/* Move init over to a non-isolated CPU */
 8425	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
 8426		BUG();
 8427	current->flags &= ~PF_NO_SETAFFINITY;
 8428	sched_init_granularity();
 
 8429
 8430	init_sched_rt_class();
 8431	init_sched_dl_class();
 8432
 8433	sched_smp_initialized = true;
 8434}
 8435
 8436static int __init migration_init(void)
 8437{
 8438	sched_cpu_starting(smp_processor_id());
 8439	return 0;
 8440}
 8441early_initcall(migration_init);
 8442
 8443#else
 8444void __init sched_init_smp(void)
 8445{
 8446	sched_init_granularity();
 8447}
 8448#endif /* CONFIG_SMP */
 8449
 8450int in_sched_functions(unsigned long addr)
 8451{
 8452	return in_lock_functions(addr) ||
 8453		(addr >= (unsigned long)__sched_text_start
 8454		&& addr < (unsigned long)__sched_text_end);
 8455}
 8456
 8457#ifdef CONFIG_CGROUP_SCHED
 8458/*
 8459 * Default task group.
 8460 * Every task in system belongs to this group at bootup.
 8461 */
 8462struct task_group root_task_group;
 8463LIST_HEAD(task_groups);
 8464
 8465/* Cacheline aligned slab cache for task_group */
 8466static struct kmem_cache *task_group_cache __ro_after_init;
 8467#endif
 8468
 
 
 8469void __init sched_init(void)
 8470{
 8471	unsigned long ptr = 0;
 8472	int i;
 8473
 8474	/* Make sure the linker didn't screw up */
 8475#ifdef CONFIG_SMP
 8476	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
 8477#endif
 8478	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
 8479	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
 8480	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
 8481#ifdef CONFIG_SCHED_CLASS_EXT
 8482	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
 8483	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
 8484#endif
 8485
 8486	wait_bit_init();
 8487
 8488#ifdef CONFIG_FAIR_GROUP_SCHED
 8489	ptr += 2 * nr_cpu_ids * sizeof(void **);
 8490#endif
 8491#ifdef CONFIG_RT_GROUP_SCHED
 8492	ptr += 2 * nr_cpu_ids * sizeof(void **);
 8493#endif
 8494	if (ptr) {
 8495		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
 8496
 8497#ifdef CONFIG_FAIR_GROUP_SCHED
 8498		root_task_group.se = (struct sched_entity **)ptr;
 8499		ptr += nr_cpu_ids * sizeof(void **);
 8500
 8501		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 8502		ptr += nr_cpu_ids * sizeof(void **);
 8503
 8504		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
 8505		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
 8506#endif /* CONFIG_FAIR_GROUP_SCHED */
 8507#ifdef CONFIG_EXT_GROUP_SCHED
 8508		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
 8509#endif /* CONFIG_EXT_GROUP_SCHED */
 8510#ifdef CONFIG_RT_GROUP_SCHED
 8511		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 8512		ptr += nr_cpu_ids * sizeof(void **);
 8513
 8514		root_task_group.rt_rq = (struct rt_rq **)ptr;
 8515		ptr += nr_cpu_ids * sizeof(void **);
 8516
 8517#endif /* CONFIG_RT_GROUP_SCHED */
 8518	}
 
 
 
 
 
 
 
 
 
 
 
 8519
 8520#ifdef CONFIG_SMP
 8521	init_defrootdomain();
 8522#endif
 8523
 8524#ifdef CONFIG_RT_GROUP_SCHED
 8525	init_rt_bandwidth(&root_task_group.rt_bandwidth,
 8526			global_rt_period(), global_rt_runtime());
 8527#endif /* CONFIG_RT_GROUP_SCHED */
 8528
 8529#ifdef CONFIG_CGROUP_SCHED
 8530	task_group_cache = KMEM_CACHE(task_group, 0);
 8531
 8532	list_add(&root_task_group.list, &task_groups);
 8533	INIT_LIST_HEAD(&root_task_group.children);
 8534	INIT_LIST_HEAD(&root_task_group.siblings);
 8535	autogroup_init(&init_task);
 8536#endif /* CONFIG_CGROUP_SCHED */
 8537
 8538	for_each_possible_cpu(i) {
 8539		struct rq *rq;
 8540
 8541		rq = cpu_rq(i);
 8542		raw_spin_lock_init(&rq->__lock);
 8543		rq->nr_running = 0;
 8544		rq->calc_load_active = 0;
 8545		rq->calc_load_update = jiffies + LOAD_FREQ;
 8546		init_cfs_rq(&rq->cfs);
 8547		init_rt_rq(&rq->rt);
 8548		init_dl_rq(&rq->dl);
 8549#ifdef CONFIG_FAIR_GROUP_SCHED
 
 8550		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 8551		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 8552		/*
 8553		 * How much CPU bandwidth does root_task_group get?
 8554		 *
 8555		 * In case of task-groups formed through the cgroup filesystem, it
 8556		 * gets 100% of the CPU resources in the system. This overall
 8557		 * system CPU resource is divided among the tasks of
 8558		 * root_task_group and its child task-groups in a fair manner,
 8559		 * based on each entity's (task or task-group's) weight
 8560		 * (se->load.weight).
 8561		 *
 8562		 * In other words, if root_task_group has 10 tasks of weight
 8563		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
 8564		 * then A0's share of the CPU resource is:
 8565		 *
 8566		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
 8567		 *
 8568		 * We achieve this by letting root_task_group's tasks sit
 8569		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
 8570		 */
 
 8571		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
 8572#endif /* CONFIG_FAIR_GROUP_SCHED */
 8573
 
 8574#ifdef CONFIG_RT_GROUP_SCHED
 8575		/*
 8576		 * This is required for init cpu because rt.c:__enable_runtime()
 8577		 * starts working after scheduler_running, which is not the case
 8578		 * yet.
 8579		 */
 8580		rq->rt.rt_runtime = global_rt_runtime();
 8581		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
 8582#endif
 
 
 
 
 
 
 8583#ifdef CONFIG_SMP
 8584		rq->sd = NULL;
 8585		rq->rd = NULL;
 8586		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
 8587		rq->balance_callback = &balance_push_callback;
 8588		rq->active_balance = 0;
 8589		rq->next_balance = jiffies;
 8590		rq->push_cpu = 0;
 8591		rq->cpu = i;
 8592		rq->online = 0;
 8593		rq->idle_stamp = 0;
 8594		rq->avg_idle = 2*sysctl_sched_migration_cost;
 8595		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
 8596
 8597		INIT_LIST_HEAD(&rq->cfs_tasks);
 8598
 8599		rq_attach_root(rq, &def_root_domain);
 8600#ifdef CONFIG_NO_HZ_COMMON
 8601		rq->last_blocked_load_update_tick = jiffies;
 8602		atomic_set(&rq->nohz_flags, 0);
 8603
 8604		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
 8605#endif
 8606#ifdef CONFIG_HOTPLUG_CPU
 8607		rcuwait_init(&rq->hotplug_wait);
 8608#endif
 8609#endif /* CONFIG_SMP */
 8610		hrtick_rq_init(rq);
 8611		atomic_set(&rq->nr_iowait, 0);
 8612		fair_server_init(rq);
 8613
 8614#ifdef CONFIG_SCHED_CORE
 8615		rq->core = rq;
 8616		rq->core_pick = NULL;
 8617		rq->core_dl_server = NULL;
 8618		rq->core_enabled = 0;
 8619		rq->core_tree = RB_ROOT;
 8620		rq->core_forceidle_count = 0;
 8621		rq->core_forceidle_occupation = 0;
 8622		rq->core_forceidle_start = 0;
 8623
 8624		rq->core_cookie = 0UL;
 
 8625#endif
 8626		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
 8627	}
 8628
 8629	set_load_weight(&init_task, false);
 8630	init_task.se.slice = sysctl_sched_base_slice,
 8631
 8632	/*
 8633	 * The boot idle thread does lazy MMU switching as well:
 8634	 */
 8635	mmgrab_lazy_tlb(&init_mm);
 8636	enter_lazy_tlb(&init_mm, current);
 8637
 8638	/*
 8639	 * The idle task doesn't need the kthread struct to function, but it
 8640	 * is dressed up as a per-CPU kthread and thus needs to play the part
 8641	 * if we want to avoid special-casing it in code that deals with per-CPU
 8642	 * kthreads.
 8643	 */
 8644	WARN_ON(!set_kthread_struct(current));
 8645
 8646	/*
 8647	 * Make us the idle thread. Technically, schedule() should not be
 8648	 * called from this thread, however somewhere below it might be,
 8649	 * but because we are the idle thread, we just pick up running again
 8650	 * when this runqueue becomes "idle".
 8651	 */
 8652	__sched_fork(0, current);
 8653	init_idle(current, smp_processor_id());
 8654
 8655	calc_load_update = jiffies + LOAD_FREQ;
 8656
 8657#ifdef CONFIG_SMP
 
 
 
 
 8658	idle_thread_set_boot_cpu();
 8659	balance_push_set(smp_processor_id(), false);
 8660#endif
 8661	init_sched_fair_class();
 8662	init_sched_ext_class();
 8663
 8664	psi_init();
 8665
 8666	init_uclamp();
 8667
 8668	preempt_dynamic_init();
 8669
 8670	scheduler_running = 1;
 8671}
 8672
 8673#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 
 
 
 
 
 
 8674
 8675void __might_sleep(const char *file, int line)
 8676{
 8677	unsigned int state = get_current_state();
 8678	/*
 8679	 * Blocking primitives will set (and therefore destroy) current->state,
 8680	 * since we will exit with TASK_RUNNING make sure we enter with it,
 8681	 * otherwise we will destroy state.
 8682	 */
 8683	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
 8684			"do not call blocking ops when !TASK_RUNNING; "
 8685			"state=%x set at [<%p>] %pS\n", state,
 
 8686			(void *)current->task_state_change,
 8687			(void *)current->task_state_change);
 8688
 8689	__might_resched(file, line, 0);
 8690}
 8691EXPORT_SYMBOL(__might_sleep);
 8692
 8693static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
 8694{
 8695	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
 8696		return;
 8697
 8698	if (preempt_count() == preempt_offset)
 
 
 
 8699		return;
 8700
 8701	pr_err("Preemption disabled at:");
 8702	print_ip_sym(KERN_ERR, ip);
 8703}
 8704
 8705static inline bool resched_offsets_ok(unsigned int offsets)
 8706{
 8707	unsigned int nested = preempt_count();
 8708
 8709	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
 8710
 8711	return nested == offsets;
 8712}
 8713
 8714void __might_resched(const char *file, int line, unsigned int offsets)
 8715{
 8716	/* Ratelimiting timestamp: */
 8717	static unsigned long prev_jiffy;
 8718
 8719	unsigned long preempt_disable_ip;
 8720
 8721	/* WARN_ON_ONCE() by default, no rate limit required: */
 8722	rcu_sleep_check();
 8723
 8724	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
 8725	     !is_idle_task(current) && !current->non_block_count) ||
 8726	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
 8727	    oops_in_progress)
 8728		return;
 8729
 8730	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 8731		return;
 8732	prev_jiffy = jiffies;
 8733
 8734	/* Save this before calling printk(), since that will clobber it: */
 8735	preempt_disable_ip = get_preempt_disable_ip(current);
 8736
 8737	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
 8738	       file, line);
 8739	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
 8740	       in_atomic(), irqs_disabled(), current->non_block_count,
 8741	       current->pid, current->comm);
 8742	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
 8743	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
 8744
 8745	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
 8746		pr_err("RCU nest depth: %d, expected: %u\n",
 8747		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
 8748	}
 8749
 8750	if (task_stack_end_corrupted(current))
 8751		pr_emerg("Thread overran stack, or stack corrupted\n");
 8752
 8753	debug_show_held_locks(current);
 8754	if (irqs_disabled())
 8755		print_irqtrace_events(current);
 8756
 8757	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
 8758				 preempt_disable_ip);
 8759
 8760	dump_stack();
 8761	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 8762}
 8763EXPORT_SYMBOL(__might_resched);
 8764
 8765void __cant_sleep(const char *file, int line, int preempt_offset)
 8766{
 8767	static unsigned long prev_jiffy;
 8768
 8769	if (irqs_disabled())
 8770		return;
 8771
 8772	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
 8773		return;
 8774
 8775	if (preempt_count() > preempt_offset)
 8776		return;
 8777
 8778	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 8779		return;
 8780	prev_jiffy = jiffies;
 8781
 8782	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
 8783	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
 8784			in_atomic(), irqs_disabled(),
 8785			current->pid, current->comm);
 8786
 8787	debug_show_held_locks(current);
 8788	dump_stack();
 8789	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 8790}
 8791EXPORT_SYMBOL_GPL(__cant_sleep);
 8792
 8793#ifdef CONFIG_SMP
 8794void __cant_migrate(const char *file, int line)
 8795{
 8796	static unsigned long prev_jiffy;
 8797
 8798	if (irqs_disabled())
 8799		return;
 8800
 8801	if (is_migration_disabled(current))
 8802		return;
 8803
 8804	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
 8805		return;
 8806
 8807	if (preempt_count() > 0)
 8808		return;
 8809
 8810	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 8811		return;
 8812	prev_jiffy = jiffies;
 8813
 8814	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
 8815	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
 8816	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
 8817	       current->pid, current->comm);
 8818
 8819	debug_show_held_locks(current);
 8820	dump_stack();
 8821	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 8822}
 8823EXPORT_SYMBOL_GPL(__cant_migrate);
 8824#endif
 8825#endif
 8826
 8827#ifdef CONFIG_MAGIC_SYSRQ
 8828void normalize_rt_tasks(void)
 8829{
 8830	struct task_struct *g, *p;
 8831	struct sched_attr attr = {
 8832		.sched_policy = SCHED_NORMAL,
 8833	};
 8834
 8835	read_lock(&tasklist_lock);
 8836	for_each_process_thread(g, p) {
 8837		/*
 8838		 * Only normalize user tasks:
 8839		 */
 8840		if (p->flags & PF_KTHREAD)
 8841			continue;
 8842
 8843		p->se.exec_start = 0;
 8844		schedstat_set(p->stats.wait_start,  0);
 8845		schedstat_set(p->stats.sleep_start, 0);
 8846		schedstat_set(p->stats.block_start, 0);
 
 
 8847
 8848		if (!rt_or_dl_task(p)) {
 8849			/*
 8850			 * Renice negative nice level userspace
 8851			 * tasks back to 0:
 8852			 */
 8853			if (task_nice(p) < 0)
 8854				set_user_nice(p, 0);
 8855			continue;
 8856		}
 8857
 8858		__sched_setscheduler(p, &attr, false, false);
 8859	}
 8860	read_unlock(&tasklist_lock);
 8861}
 8862
 8863#endif /* CONFIG_MAGIC_SYSRQ */
 8864
 8865#if defined(CONFIG_KGDB_KDB)
 8866/*
 8867 * These functions are only useful for KDB.
 8868 *
 8869 * They can only be called when the whole system has been
 8870 * stopped - every CPU needs to be quiescent, and no scheduling
 8871 * activity can take place. Using them for anything else would
 8872 * be a serious bug, and as a result, they aren't even visible
 8873 * under any other configuration.
 8874 */
 8875
 8876/**
 8877 * curr_task - return the current task for a given CPU.
 8878 * @cpu: the processor in question.
 8879 *
 8880 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 8881 *
 8882 * Return: The current task for @cpu.
 8883 */
 8884struct task_struct *curr_task(int cpu)
 8885{
 8886	return cpu_curr(cpu);
 8887}
 8888
 8889#endif /* defined(CONFIG_KGDB_KDB) */
 8890
 8891#ifdef CONFIG_CGROUP_SCHED
 8892/* task_group_lock serializes the addition/removal of task groups */
 8893static DEFINE_SPINLOCK(task_group_lock);
 8894
 8895static inline void alloc_uclamp_sched_group(struct task_group *tg,
 8896					    struct task_group *parent)
 
 
 
 
 
 
 
 
 
 
 
 8897{
 8898#ifdef CONFIG_UCLAMP_TASK_GROUP
 8899	enum uclamp_id clamp_id;
 8900
 8901	for_each_clamp_id(clamp_id) {
 8902		uclamp_se_set(&tg->uclamp_req[clamp_id],
 8903			      uclamp_none(clamp_id), false);
 8904		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
 8905	}
 8906#endif
 8907}
 
 
 
 8908
 8909static void sched_free_group(struct task_group *tg)
 8910{
 8911	free_fair_sched_group(tg);
 8912	free_rt_sched_group(tg);
 8913	autogroup_free(tg);
 8914	kmem_cache_free(task_group_cache, tg);
 8915}
 8916
 8917static void sched_free_group_rcu(struct rcu_head *rcu)
 8918{
 8919	sched_free_group(container_of(rcu, struct task_group, rcu));
 8920}
 8921
 8922static void sched_unregister_group(struct task_group *tg)
 8923{
 8924	unregister_fair_sched_group(tg);
 8925	unregister_rt_sched_group(tg);
 8926	/*
 8927	 * We have to wait for yet another RCU grace period to expire, as
 8928	 * print_cfs_stats() might run concurrently.
 8929	 */
 8930	call_rcu(&tg->rcu, sched_free_group_rcu);
 8931}
 8932
 8933/* allocate runqueue etc for a new task group */
 8934struct task_group *sched_create_group(struct task_group *parent)
 8935{
 8936	struct task_group *tg;
 8937
 8938	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
 8939	if (!tg)
 8940		return ERR_PTR(-ENOMEM);
 8941
 8942	if (!alloc_fair_sched_group(tg, parent))
 8943		goto err;
 8944
 8945	if (!alloc_rt_sched_group(tg, parent))
 8946		goto err;
 8947
 8948	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
 8949	alloc_uclamp_sched_group(tg, parent);
 8950
 8951	return tg;
 8952
 8953err:
 8954	sched_free_group(tg);
 8955	return ERR_PTR(-ENOMEM);
 8956}
 8957
 8958void sched_online_group(struct task_group *tg, struct task_group *parent)
 8959{
 8960	unsigned long flags;
 8961
 8962	spin_lock_irqsave(&task_group_lock, flags);
 8963	list_add_rcu(&tg->list, &task_groups);
 8964
 8965	/* Root should already exist: */
 8966	WARN_ON(!parent);
 8967
 8968	tg->parent = parent;
 8969	INIT_LIST_HEAD(&tg->children);
 8970	list_add_rcu(&tg->siblings, &parent->children);
 8971	spin_unlock_irqrestore(&task_group_lock, flags);
 8972
 8973	online_fair_sched_group(tg);
 8974}
 8975
 8976/* RCU callback to free various structures associated with a task group */
 8977static void sched_unregister_group_rcu(struct rcu_head *rhp)
 8978{
 8979	/* Now it should be safe to free those cfs_rqs: */
 8980	sched_unregister_group(container_of(rhp, struct task_group, rcu));
 8981}
 8982
 8983void sched_destroy_group(struct task_group *tg)
 8984{
 8985	/* Wait for possible concurrent references to cfs_rqs complete: */
 8986	call_rcu(&tg->rcu, sched_unregister_group_rcu);
 8987}
 8988
 8989void sched_release_group(struct task_group *tg)
 8990{
 8991	unsigned long flags;
 8992
 8993	/*
 8994	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
 8995	 * sched_cfs_period_timer()).
 8996	 *
 8997	 * For this to be effective, we have to wait for all pending users of
 8998	 * this task group to leave their RCU critical section to ensure no new
 8999	 * user will see our dying task group any more. Specifically ensure
 9000	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
 9001	 *
 9002	 * We therefore defer calling unregister_fair_sched_group() to
 9003	 * sched_unregister_group() which is guarantied to get called only after the
 9004	 * current RCU grace period has expired.
 9005	 */
 9006	spin_lock_irqsave(&task_group_lock, flags);
 9007	list_del_rcu(&tg->list);
 9008	list_del_rcu(&tg->siblings);
 9009	spin_unlock_irqrestore(&task_group_lock, flags);
 9010}
 9011
 9012static struct task_group *sched_get_task_group(struct task_struct *tsk)
 
 
 
 
 
 9013{
 9014	struct task_group *tg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 9015
 9016	/*
 9017	 * All callers are synchronized by task_rq_lock(); we do not use RCU
 9018	 * which is pointless here. Thus, we pass "true" to task_css_check()
 9019	 * to prevent lockdep warnings.
 9020	 */
 9021	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
 9022			  struct task_group, css);
 9023	tg = autogroup_task_group(tsk, tg);
 9024
 9025	return tg;
 9026}
 9027
 9028static void sched_change_group(struct task_struct *tsk, struct task_group *group)
 9029{
 9030	tsk->sched_task_group = group;
 9031
 9032#ifdef CONFIG_FAIR_GROUP_SCHED
 9033	if (tsk->sched_class->task_change_group)
 9034		tsk->sched_class->task_change_group(tsk);
 9035	else
 9036#endif
 9037		set_task_rq(tsk, task_cpu(tsk));
 
 
 
 
 
 
 
 9038}
 
 9039
 
 9040/*
 9041 * Change task's runqueue when it moves between groups.
 9042 *
 9043 * The caller of this function should have put the task in its new group by
 9044 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 9045 * its new group.
 9046 */
 9047void sched_move_task(struct task_struct *tsk, bool for_autogroup)
 
 
 
 9048{
 9049	int queued, running, queue_flags =
 9050		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 9051	struct task_group *group;
 9052	struct rq *rq;
 9053
 9054	CLASS(task_rq_lock, rq_guard)(tsk);
 9055	rq = rq_guard.rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9056
 9057	/*
 9058	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
 9059	 * group changes.
 9060	 */
 9061	group = sched_get_task_group(tsk);
 9062	if (group == tsk->sched_task_group)
 9063		return;
 9064
 9065	update_rq_clock(rq);
 
 
 
 
 9066
 9067	running = task_current_donor(rq, tsk);
 9068	queued = task_on_rq_queued(tsk);
 9069
 9070	if (queued)
 9071		dequeue_task(rq, tsk, queue_flags);
 9072	if (running)
 9073		put_prev_task(rq, tsk);
 
 9074
 9075	sched_change_group(tsk, group);
 9076	if (!for_autogroup)
 9077		scx_cgroup_move_task(tsk);
 
 
 
 9078
 9079	if (queued)
 9080		enqueue_task(rq, tsk, queue_flags);
 9081	if (running) {
 9082		set_next_task(rq, tsk);
 9083		/*
 9084		 * After changing group, the running task may have joined a
 9085		 * throttled one but it's still the running task. Trigger a
 9086		 * resched to make sure that task can still run.
 9087		 */
 9088		resched_curr(rq);
 9089	}
 
 
 
 
 
 9090}
 9091
 9092static struct cgroup_subsys_state *
 9093cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 9094{
 9095	struct task_group *parent = css_tg(parent_css);
 9096	struct task_group *tg;
 9097
 9098	if (!parent) {
 9099		/* This is early initialization for the top cgroup */
 9100		return &root_task_group.css;
 9101	}
 
 9102
 9103	tg = sched_create_group(parent);
 9104	if (IS_ERR(tg))
 9105		return ERR_PTR(-ENOMEM);
 9106
 9107	return &tg->css;
 9108}
 9109
 9110/* Expose task group only after completing cgroup initialization */
 9111static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
 9112{
 9113	struct task_group *tg = css_tg(css);
 9114	struct task_group *parent = css_tg(css->parent);
 9115	int ret;
 9116
 9117	ret = scx_tg_online(tg);
 9118	if (ret)
 9119		return ret;
 
 
 
 9120
 9121	if (parent)
 9122		sched_online_group(tg, parent);
 
 9123
 9124#ifdef CONFIG_UCLAMP_TASK_GROUP
 9125	/* Propagate the effective uclamp value for the new group */
 9126	guard(mutex)(&uclamp_mutex);
 9127	guard(rcu)();
 9128	cpu_util_update_eff(css);
 9129#endif
 
 
 
 9130
 9131	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 9132}
 9133
 9134static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
 9135{
 9136	struct task_group *tg = css_tg(css);
 9137
 9138	scx_tg_offline(tg);
 
 
 
 
 
 9139}
 9140
 9141static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
 9142{
 9143	struct task_group *tg = css_tg(css);
 
 
 
 9144
 9145	sched_release_group(tg);
 
 
 9146}
 9147
 9148static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
 9149{
 9150	struct task_group *tg = css_tg(css);
 9151
 9152	/*
 9153	 * Relies on the RCU grace period between css_released() and this.
 9154	 */
 9155	sched_unregister_group(tg);
 9156}
 9157
 9158static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
 9159{
 9160#ifdef CONFIG_RT_GROUP_SCHED
 9161	struct task_struct *task;
 9162	struct cgroup_subsys_state *css;
 9163
 9164	cgroup_taskset_for_each(task, css, tset) {
 9165		if (!sched_rt_can_attach(css_tg(css), task))
 9166			return -EINVAL;
 9167	}
 9168#endif
 9169	return scx_cgroup_can_attach(tset);
 9170}
 
 9171
 9172static void cpu_cgroup_attach(struct cgroup_taskset *tset)
 
 9173{
 9174	struct task_struct *task;
 9175	struct cgroup_subsys_state *css;
 9176
 9177	cgroup_taskset_for_each(task, css, tset)
 9178		sched_move_task(task, false);
 
 
 
 9179
 9180	scx_cgroup_finish_attach();
 9181}
 9182
 9183static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
 9184{
 9185	scx_cgroup_cancel_attach(tset);
 
 
 
 
 9186}
 9187
 9188#ifdef CONFIG_UCLAMP_TASK_GROUP
 9189static void cpu_util_update_eff(struct cgroup_subsys_state *css)
 9190{
 9191	struct cgroup_subsys_state *top_css = css;
 9192	struct uclamp_se *uc_parent = NULL;
 9193	struct uclamp_se *uc_se = NULL;
 9194	unsigned int eff[UCLAMP_CNT];
 9195	enum uclamp_id clamp_id;
 9196	unsigned int clamps;
 9197
 9198	lockdep_assert_held(&uclamp_mutex);
 9199	SCHED_WARN_ON(!rcu_read_lock_held());
 
 9200
 9201	css_for_each_descendant_pre(css, top_css) {
 9202		uc_parent = css_tg(css)->parent
 9203			? css_tg(css)->parent->uclamp : NULL;
 
 
 9204
 9205		for_each_clamp_id(clamp_id) {
 9206			/* Assume effective clamps matches requested clamps */
 9207			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
 9208			/* Cap effective clamps with parent's effective clamps */
 9209			if (uc_parent &&
 9210			    eff[clamp_id] > uc_parent[clamp_id].value) {
 9211				eff[clamp_id] = uc_parent[clamp_id].value;
 9212			}
 9213		}
 9214		/* Ensure protection is always capped by limit */
 9215		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
 9216
 9217		/* Propagate most restrictive effective clamps */
 9218		clamps = 0x0;
 9219		uc_se = css_tg(css)->uclamp;
 9220		for_each_clamp_id(clamp_id) {
 9221			if (eff[clamp_id] == uc_se[clamp_id].value)
 9222				continue;
 9223			uc_se[clamp_id].value = eff[clamp_id];
 9224			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
 9225			clamps |= (0x1 << clamp_id);
 9226		}
 9227		if (!clamps) {
 9228			css = css_rightmost_descendant(css);
 9229			continue;
 9230		}
 9231
 9232		/* Immediately update descendants RUNNABLE tasks */
 9233		uclamp_update_active_tasks(css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9234	}
 
 
 9235}
 9236
 9237/*
 9238 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
 9239 * C expression. Since there is no way to convert a macro argument (N) into a
 9240 * character constant, use two levels of macros.
 9241 */
 9242#define _POW10(exp) ((unsigned int)1e##exp)
 9243#define POW10(exp) _POW10(exp)
 9244
 9245struct uclamp_request {
 9246#define UCLAMP_PERCENT_SHIFT	2
 9247#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
 9248	s64 percent;
 9249	u64 util;
 9250	int ret;
 9251};
 9252
 9253static inline struct uclamp_request
 9254capacity_from_percent(char *buf)
 9255{
 9256	struct uclamp_request req = {
 9257		.percent = UCLAMP_PERCENT_SCALE,
 9258		.util = SCHED_CAPACITY_SCALE,
 9259		.ret = 0,
 9260	};
 9261
 9262	buf = strim(buf);
 9263	if (strcmp(buf, "max")) {
 9264		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
 9265					     &req.percent);
 9266		if (req.ret)
 9267			return req;
 9268		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
 9269			req.ret = -ERANGE;
 9270			return req;
 9271		}
 9272
 9273		req.util = req.percent << SCHED_CAPACITY_SHIFT;
 9274		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
 9275	}
 
 
 
 
 
 
 
 
 
 
 9276
 9277	return req;
 9278}
 9279
 9280static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
 9281				size_t nbytes, loff_t off,
 9282				enum uclamp_id clamp_id)
 9283{
 9284	struct uclamp_request req;
 9285	struct task_group *tg;
 
 9286
 9287	req = capacity_from_percent(buf);
 9288	if (req.ret)
 9289		return req.ret;
 
 
 
 
 9290
 9291	static_branch_enable(&sched_uclamp_used);
 
 
 9292
 9293	guard(mutex)(&uclamp_mutex);
 9294	guard(rcu)();
 9295
 9296	tg = css_tg(of_css(of));
 9297	if (tg->uclamp_req[clamp_id].value != req.util)
 9298		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
 
 9299
 9300	/*
 9301	 * Because of not recoverable conversion rounding we keep track of the
 9302	 * exact requested value
 9303	 */
 9304	tg->uclamp_pct[clamp_id] = req.percent;
 9305
 9306	/* Update effective clamps to track the most restrictive value */
 9307	cpu_util_update_eff(of_css(of));
 
 9308
 9309	return nbytes;
 
 
 
 
 
 
 
 
 
 
 9310}
 9311
 9312static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
 9313				    char *buf, size_t nbytes,
 9314				    loff_t off)
 9315{
 9316	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
 
 
 
 
 
 
 
 
 
 
 
 
 9317}
 9318
 9319static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
 9320				    char *buf, size_t nbytes,
 9321				    loff_t off)
 9322{
 9323	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
 9324}
 9325
 9326static inline void cpu_uclamp_print(struct seq_file *sf,
 9327				    enum uclamp_id clamp_id)
 9328{
 
 9329	struct task_group *tg;
 9330	u64 util_clamp;
 9331	u64 percent;
 9332	u32 rem;
 9333
 9334	scoped_guard (rcu) {
 9335		tg = css_tg(seq_css(sf));
 9336		util_clamp = tg->uclamp_req[clamp_id].value;
 9337	}
 9338
 9339	if (util_clamp == SCHED_CAPACITY_SCALE) {
 9340		seq_puts(sf, "max\n");
 9341		return;
 9342	}
 9343
 9344	percent = tg->uclamp_pct[clamp_id];
 9345	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
 9346	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
 9347}
 9348
 9349static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
 9350{
 9351	cpu_uclamp_print(sf, UCLAMP_MIN);
 9352	return 0;
 
 9353}
 9354
 9355static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
 9356{
 9357	cpu_uclamp_print(sf, UCLAMP_MAX);
 9358	return 0;
 
 
 
 
 9359}
 9360#endif /* CONFIG_UCLAMP_TASK_GROUP */
 9361
 9362#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9363static unsigned long tg_weight(struct task_group *tg)
 9364{
 9365#ifdef CONFIG_FAIR_GROUP_SCHED
 9366	return scale_load_down(tg->shares);
 
 
 
 
 
 
 
 
 
 
 9367#else
 9368	return sched_weight_from_cgroup(tg->scx_weight);
 
 
 9369#endif
 
 
 9370}
 9371
 
 
 
 
 
 
 
 
 
 
 9372static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
 9373				struct cftype *cftype, u64 shareval)
 9374{
 9375	int ret;
 9376
 9377	if (shareval > scale_load_down(ULONG_MAX))
 9378		shareval = MAX_SHARES;
 9379	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
 9380	if (!ret)
 9381		scx_group_set_weight(css_tg(css),
 9382				     sched_weight_to_cgroup(shareval));
 9383	return ret;
 9384}
 9385
 9386static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
 9387			       struct cftype *cft)
 9388{
 9389	return tg_weight(css_tg(css));
 
 
 9390}
 9391#endif /* CONFIG_GROUP_SCHED_WEIGHT */
 9392
 9393#ifdef CONFIG_CFS_BANDWIDTH
 9394static DEFINE_MUTEX(cfs_constraints_mutex);
 9395
 9396const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
 9397static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 9398/* More than 203 days if BW_SHIFT equals 20. */
 9399static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
 9400
 9401static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
 9402
 9403static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
 9404				u64 burst)
 9405{
 9406	int i, ret = 0, runtime_enabled, runtime_was_enabled;
 9407	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9408
 9409	if (tg == &root_task_group)
 9410		return -EINVAL;
 9411
 9412	/*
 9413	 * Ensure we have at some amount of bandwidth every period.  This is
 9414	 * to prevent reaching a state of large arrears when throttled via
 9415	 * entity_tick() resulting in prolonged exit starvation.
 9416	 */
 9417	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
 9418		return -EINVAL;
 9419
 9420	/*
 9421	 * Likewise, bound things on the other side by preventing insane quota
 9422	 * periods.  This also allows us to normalize in computing quota
 9423	 * feasibility.
 9424	 */
 9425	if (period > max_cfs_quota_period)
 9426		return -EINVAL;
 9427
 9428	/*
 9429	 * Bound quota to defend quota against overflow during bandwidth shift.
 9430	 */
 9431	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
 9432		return -EINVAL;
 9433
 9434	if (quota != RUNTIME_INF && (burst > quota ||
 9435				     burst + quota > max_cfs_runtime))
 9436		return -EINVAL;
 9437
 9438	/*
 9439	 * Prevent race between setting of cfs_rq->runtime_enabled and
 9440	 * unthrottle_offline_cfs_rqs().
 9441	 */
 9442	guard(cpus_read_lock)();
 9443	guard(mutex)(&cfs_constraints_mutex);
 9444
 9445	ret = __cfs_schedulable(tg, period, quota);
 9446	if (ret)
 9447		return ret;
 9448
 9449	runtime_enabled = quota != RUNTIME_INF;
 9450	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
 9451	/*
 9452	 * If we need to toggle cfs_bandwidth_used, off->on must occur
 9453	 * before making related changes, and on->off must occur afterwards
 9454	 */
 9455	if (runtime_enabled && !runtime_was_enabled)
 9456		cfs_bandwidth_usage_inc();
 9457
 9458	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
 9459		cfs_b->period = ns_to_ktime(period);
 9460		cfs_b->quota = quota;
 9461		cfs_b->burst = burst;
 9462
 9463		__refill_cfs_bandwidth_runtime(cfs_b);
 9464
 9465		/*
 9466		 * Restart the period timer (if active) to handle new
 9467		 * period expiry:
 9468		 */
 9469		if (runtime_enabled)
 9470			start_cfs_bandwidth(cfs_b);
 9471	}
 9472
 9473	for_each_online_cpu(i) {
 9474		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
 9475		struct rq *rq = cfs_rq->rq;
 9476
 9477		guard(rq_lock_irq)(rq);
 9478		cfs_rq->runtime_enabled = runtime_enabled;
 9479		cfs_rq->runtime_remaining = 0;
 9480
 9481		if (cfs_rq->throttled)
 9482			unthrottle_cfs_rq(cfs_rq);
 
 9483	}
 9484
 9485	if (runtime_was_enabled && !runtime_enabled)
 9486		cfs_bandwidth_usage_dec();
 
 
 
 9487
 9488	return 0;
 9489}
 9490
 9491static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
 9492{
 9493	u64 quota, period, burst;
 9494
 9495	period = ktime_to_ns(tg->cfs_bandwidth.period);
 9496	burst = tg->cfs_bandwidth.burst;
 9497	if (cfs_quota_us < 0)
 9498		quota = RUNTIME_INF;
 9499	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
 9500		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
 9501	else
 9502		return -EINVAL;
 9503
 9504	return tg_set_cfs_bandwidth(tg, period, quota, burst);
 9505}
 9506
 9507static long tg_get_cfs_quota(struct task_group *tg)
 9508{
 9509	u64 quota_us;
 9510
 9511	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
 9512		return -1;
 9513
 9514	quota_us = tg->cfs_bandwidth.quota;
 9515	do_div(quota_us, NSEC_PER_USEC);
 9516
 9517	return quota_us;
 9518}
 9519
 9520static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
 9521{
 9522	u64 quota, period, burst;
 9523
 9524	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
 9525		return -EINVAL;
 9526
 9527	period = (u64)cfs_period_us * NSEC_PER_USEC;
 9528	quota = tg->cfs_bandwidth.quota;
 9529	burst = tg->cfs_bandwidth.burst;
 9530
 9531	return tg_set_cfs_bandwidth(tg, period, quota, burst);
 9532}
 9533
 9534static long tg_get_cfs_period(struct task_group *tg)
 9535{
 9536	u64 cfs_period_us;
 9537
 9538	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
 9539	do_div(cfs_period_us, NSEC_PER_USEC);
 9540
 9541	return cfs_period_us;
 9542}
 9543
 9544static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
 9545{
 9546	u64 quota, period, burst;
 9547
 9548	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
 9549		return -EINVAL;
 9550
 9551	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
 9552	period = ktime_to_ns(tg->cfs_bandwidth.period);
 9553	quota = tg->cfs_bandwidth.quota;
 9554
 9555	return tg_set_cfs_bandwidth(tg, period, quota, burst);
 9556}
 9557
 9558static long tg_get_cfs_burst(struct task_group *tg)
 9559{
 9560	u64 burst_us;
 9561
 9562	burst_us = tg->cfs_bandwidth.burst;
 9563	do_div(burst_us, NSEC_PER_USEC);
 9564
 9565	return burst_us;
 9566}
 9567
 9568static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
 9569				  struct cftype *cft)
 9570{
 9571	return tg_get_cfs_quota(css_tg(css));
 9572}
 9573
 9574static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
 9575				   struct cftype *cftype, s64 cfs_quota_us)
 9576{
 9577	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
 9578}
 9579
 9580static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
 9581				   struct cftype *cft)
 9582{
 9583	return tg_get_cfs_period(css_tg(css));
 9584}
 9585
 9586static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
 9587				    struct cftype *cftype, u64 cfs_period_us)
 9588{
 9589	return tg_set_cfs_period(css_tg(css), cfs_period_us);
 9590}
 9591
 9592static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
 9593				  struct cftype *cft)
 9594{
 9595	return tg_get_cfs_burst(css_tg(css));
 9596}
 9597
 9598static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
 9599				   struct cftype *cftype, u64 cfs_burst_us)
 9600{
 9601	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
 9602}
 9603
 9604struct cfs_schedulable_data {
 9605	struct task_group *tg;
 9606	u64 period, quota;
 9607};
 9608
 9609/*
 9610 * normalize group quota/period to be quota/max_period
 9611 * note: units are usecs
 9612 */
 9613static u64 normalize_cfs_quota(struct task_group *tg,
 9614			       struct cfs_schedulable_data *d)
 9615{
 9616	u64 quota, period;
 9617
 9618	if (tg == d->tg) {
 9619		period = d->period;
 9620		quota = d->quota;
 9621	} else {
 9622		period = tg_get_cfs_period(tg);
 9623		quota = tg_get_cfs_quota(tg);
 9624	}
 9625
 9626	/* note: these should typically be equivalent */
 9627	if (quota == RUNTIME_INF || quota == -1)
 9628		return RUNTIME_INF;
 9629
 9630	return to_ratio(period, quota);
 9631}
 9632
 9633static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
 9634{
 9635	struct cfs_schedulable_data *d = data;
 9636	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9637	s64 quota = 0, parent_quota = -1;
 9638
 9639	if (!tg->parent) {
 9640		quota = RUNTIME_INF;
 9641	} else {
 9642		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
 9643
 9644		quota = normalize_cfs_quota(tg, d);
 9645		parent_quota = parent_b->hierarchical_quota;
 9646
 9647		/*
 9648		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
 9649		 * always take the non-RUNTIME_INF min.  On cgroup1, only
 9650		 * inherit when no limit is set. In both cases this is used
 9651		 * by the scheduler to determine if a given CFS task has a
 9652		 * bandwidth constraint at some higher level.
 9653		 */
 9654		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
 9655			if (quota == RUNTIME_INF)
 9656				quota = parent_quota;
 9657			else if (parent_quota != RUNTIME_INF)
 9658				quota = min(quota, parent_quota);
 9659		} else {
 9660			if (quota == RUNTIME_INF)
 9661				quota = parent_quota;
 9662			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
 9663				return -EINVAL;
 9664		}
 9665	}
 9666	cfs_b->hierarchical_quota = quota;
 9667
 9668	return 0;
 9669}
 9670
 9671static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
 9672{
 
 9673	struct cfs_schedulable_data data = {
 9674		.tg = tg,
 9675		.period = period,
 9676		.quota = quota,
 9677	};
 9678
 9679	if (quota != RUNTIME_INF) {
 9680		do_div(data.period, NSEC_PER_USEC);
 9681		do_div(data.quota, NSEC_PER_USEC);
 9682	}
 9683
 9684	guard(rcu)();
 9685	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
 
 
 
 9686}
 9687
 9688static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
 9689{
 9690	struct task_group *tg = css_tg(seq_css(sf));
 9691	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9692
 9693	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
 9694	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
 9695	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
 9696
 9697	if (schedstat_enabled() && tg != &root_task_group) {
 9698		struct sched_statistics *stats;
 9699		u64 ws = 0;
 9700		int i;
 9701
 9702		for_each_possible_cpu(i) {
 9703			stats = __schedstats_from_se(tg->se[i]);
 9704			ws += schedstat_val(stats->wait_sum);
 9705		}
 9706
 9707		seq_printf(sf, "wait_sum %llu\n", ws);
 9708	}
 9709
 9710	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
 9711	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
 9712
 9713	return 0;
 9714}
 9715
 9716static u64 throttled_time_self(struct task_group *tg)
 9717{
 9718	int i;
 9719	u64 total = 0;
 9720
 9721	for_each_possible_cpu(i) {
 9722		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
 9723	}
 9724
 9725	return total;
 9726}
 9727
 9728static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
 9729{
 9730	struct task_group *tg = css_tg(seq_css(sf));
 9731
 9732	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
 9733
 9734	return 0;
 9735}
 9736#endif /* CONFIG_CFS_BANDWIDTH */
 
 9737
 9738#ifdef CONFIG_RT_GROUP_SCHED
 9739static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
 9740				struct cftype *cft, s64 val)
 9741{
 9742	return sched_group_set_rt_runtime(css_tg(css), val);
 9743}
 9744
 9745static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
 9746			       struct cftype *cft)
 9747{
 9748	return sched_group_rt_runtime(css_tg(css));
 9749}
 9750
 9751static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
 9752				    struct cftype *cftype, u64 rt_period_us)
 9753{
 9754	return sched_group_set_rt_period(css_tg(css), rt_period_us);
 9755}
 9756
 9757static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
 9758				   struct cftype *cft)
 9759{
 9760	return sched_group_rt_period(css_tg(css));
 9761}
 9762#endif /* CONFIG_RT_GROUP_SCHED */
 9763
 9764#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9765static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
 9766			       struct cftype *cft)
 9767{
 9768	return css_tg(css)->idle;
 9769}
 9770
 9771static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
 9772				struct cftype *cft, s64 idle)
 9773{
 9774	int ret;
 9775
 9776	ret = sched_group_set_idle(css_tg(css), idle);
 9777	if (!ret)
 9778		scx_group_set_idle(css_tg(css), idle);
 9779	return ret;
 9780}
 9781#endif
 9782
 9783static struct cftype cpu_legacy_files[] = {
 9784#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9785	{
 9786		.name = "shares",
 9787		.read_u64 = cpu_shares_read_u64,
 9788		.write_u64 = cpu_shares_write_u64,
 9789	},
 9790	{
 9791		.name = "idle",
 9792		.read_s64 = cpu_idle_read_s64,
 9793		.write_s64 = cpu_idle_write_s64,
 9794	},
 9795#endif
 9796#ifdef CONFIG_CFS_BANDWIDTH
 9797	{
 9798		.name = "cfs_quota_us",
 9799		.read_s64 = cpu_cfs_quota_read_s64,
 9800		.write_s64 = cpu_cfs_quota_write_s64,
 9801	},
 9802	{
 9803		.name = "cfs_period_us",
 9804		.read_u64 = cpu_cfs_period_read_u64,
 9805		.write_u64 = cpu_cfs_period_write_u64,
 9806	},
 9807	{
 9808		.name = "cfs_burst_us",
 9809		.read_u64 = cpu_cfs_burst_read_u64,
 9810		.write_u64 = cpu_cfs_burst_write_u64,
 9811	},
 9812	{
 9813		.name = "stat",
 9814		.seq_show = cpu_cfs_stat_show,
 9815	},
 9816	{
 9817		.name = "stat.local",
 9818		.seq_show = cpu_cfs_local_stat_show,
 9819	},
 9820#endif
 9821#ifdef CONFIG_RT_GROUP_SCHED
 9822	{
 9823		.name = "rt_runtime_us",
 9824		.read_s64 = cpu_rt_runtime_read,
 9825		.write_s64 = cpu_rt_runtime_write,
 9826	},
 9827	{
 9828		.name = "rt_period_us",
 9829		.read_u64 = cpu_rt_period_read_uint,
 9830		.write_u64 = cpu_rt_period_write_uint,
 9831	},
 9832#endif
 9833#ifdef CONFIG_UCLAMP_TASK_GROUP
 9834	{
 9835		.name = "uclamp.min",
 9836		.flags = CFTYPE_NOT_ON_ROOT,
 9837		.seq_show = cpu_uclamp_min_show,
 9838		.write = cpu_uclamp_min_write,
 9839	},
 9840	{
 9841		.name = "uclamp.max",
 9842		.flags = CFTYPE_NOT_ON_ROOT,
 9843		.seq_show = cpu_uclamp_max_show,
 9844		.write = cpu_uclamp_max_write,
 9845	},
 9846#endif
 9847	{ }	/* Terminate */
 9848};
 9849
 9850static int cpu_extra_stat_show(struct seq_file *sf,
 9851			       struct cgroup_subsys_state *css)
 9852{
 9853#ifdef CONFIG_CFS_BANDWIDTH
 9854	{
 9855		struct task_group *tg = css_tg(css);
 9856		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9857		u64 throttled_usec, burst_usec;
 9858
 9859		throttled_usec = cfs_b->throttled_time;
 9860		do_div(throttled_usec, NSEC_PER_USEC);
 9861		burst_usec = cfs_b->burst_time;
 9862		do_div(burst_usec, NSEC_PER_USEC);
 9863
 9864		seq_printf(sf, "nr_periods %d\n"
 9865			   "nr_throttled %d\n"
 9866			   "throttled_usec %llu\n"
 9867			   "nr_bursts %d\n"
 9868			   "burst_usec %llu\n",
 9869			   cfs_b->nr_periods, cfs_b->nr_throttled,
 9870			   throttled_usec, cfs_b->nr_burst, burst_usec);
 9871	}
 9872#endif
 9873	return 0;
 9874}
 9875
 9876static int cpu_local_stat_show(struct seq_file *sf,
 9877			       struct cgroup_subsys_state *css)
 9878{
 9879#ifdef CONFIG_CFS_BANDWIDTH
 9880	{
 9881		struct task_group *tg = css_tg(css);
 9882		u64 throttled_self_usec;
 9883
 9884		throttled_self_usec = throttled_time_self(tg);
 9885		do_div(throttled_self_usec, NSEC_PER_USEC);
 9886
 9887		seq_printf(sf, "throttled_usec %llu\n",
 9888			   throttled_self_usec);
 9889	}
 9890#endif
 9891	return 0;
 9892}
 9893
 9894#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9895
 9896static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
 9897			       struct cftype *cft)
 9898{
 9899	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
 9900}
 9901
 9902static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
 9903				struct cftype *cft, u64 cgrp_weight)
 9904{
 9905	unsigned long weight;
 9906	int ret;
 9907
 9908	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
 9909		return -ERANGE;
 9910
 9911	weight = sched_weight_from_cgroup(cgrp_weight);
 9912
 9913	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
 9914	if (!ret)
 9915		scx_group_set_weight(css_tg(css), cgrp_weight);
 9916	return ret;
 9917}
 9918
 9919static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
 9920				    struct cftype *cft)
 9921{
 9922	unsigned long weight = tg_weight(css_tg(css));
 9923	int last_delta = INT_MAX;
 9924	int prio, delta;
 9925
 9926	/* find the closest nice value to the current weight */
 9927	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
 9928		delta = abs(sched_prio_to_weight[prio] - weight);
 9929		if (delta >= last_delta)
 9930			break;
 9931		last_delta = delta;
 9932	}
 9933
 9934	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
 9935}
 9936
 9937static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
 9938				     struct cftype *cft, s64 nice)
 9939{
 9940	unsigned long weight;
 9941	int idx, ret;
 9942
 9943	if (nice < MIN_NICE || nice > MAX_NICE)
 9944		return -ERANGE;
 9945
 9946	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
 9947	idx = array_index_nospec(idx, 40);
 9948	weight = sched_prio_to_weight[idx];
 9949
 9950	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
 9951	if (!ret)
 9952		scx_group_set_weight(css_tg(css),
 9953				     sched_weight_to_cgroup(weight));
 9954	return ret;
 9955}
 9956#endif /* CONFIG_GROUP_SCHED_WEIGHT */
 9957
 9958static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
 9959						  long period, long quota)
 9960{
 9961	if (quota < 0)
 9962		seq_puts(sf, "max");
 9963	else
 9964		seq_printf(sf, "%ld", quota);
 9965
 9966	seq_printf(sf, " %ld\n", period);
 9967}
 9968
 9969/* caller should put the current value in *@periodp before calling */
 9970static int __maybe_unused cpu_period_quota_parse(char *buf,
 9971						 u64 *periodp, u64 *quotap)
 9972{
 9973	char tok[21];	/* U64_MAX */
 9974
 9975	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
 9976		return -EINVAL;
 9977
 9978	*periodp *= NSEC_PER_USEC;
 9979
 9980	if (sscanf(tok, "%llu", quotap))
 9981		*quotap *= NSEC_PER_USEC;
 9982	else if (!strcmp(tok, "max"))
 9983		*quotap = RUNTIME_INF;
 9984	else
 9985		return -EINVAL;
 9986
 9987	return 0;
 9988}
 9989
 9990#ifdef CONFIG_CFS_BANDWIDTH
 9991static int cpu_max_show(struct seq_file *sf, void *v)
 9992{
 9993	struct task_group *tg = css_tg(seq_css(sf));
 9994
 9995	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
 9996	return 0;
 9997}
 9998
 9999static ssize_t cpu_max_write(struct kernfs_open_file *of,
10000			     char *buf, size_t nbytes, loff_t off)
10001{
10002	struct task_group *tg = css_tg(of_css(of));
10003	u64 period = tg_get_cfs_period(tg);
10004	u64 burst = tg->cfs_bandwidth.burst;
10005	u64 quota;
10006	int ret;
10007
10008	ret = cpu_period_quota_parse(buf, &period, &quota);
10009	if (!ret)
10010		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10011	return ret ?: nbytes;
10012}
10013#endif
10014
10015static struct cftype cpu_files[] = {
10016#ifdef CONFIG_GROUP_SCHED_WEIGHT
10017	{
10018		.name = "weight",
10019		.flags = CFTYPE_NOT_ON_ROOT,
10020		.read_u64 = cpu_weight_read_u64,
10021		.write_u64 = cpu_weight_write_u64,
10022	},
10023	{
10024		.name = "weight.nice",
10025		.flags = CFTYPE_NOT_ON_ROOT,
10026		.read_s64 = cpu_weight_nice_read_s64,
10027		.write_s64 = cpu_weight_nice_write_s64,
10028	},
10029	{
10030		.name = "idle",
10031		.flags = CFTYPE_NOT_ON_ROOT,
10032		.read_s64 = cpu_idle_read_s64,
10033		.write_s64 = cpu_idle_write_s64,
10034	},
10035#endif
10036#ifdef CONFIG_CFS_BANDWIDTH
10037	{
10038		.name = "max",
10039		.flags = CFTYPE_NOT_ON_ROOT,
10040		.seq_show = cpu_max_show,
10041		.write = cpu_max_write,
10042	},
10043	{
10044		.name = "max.burst",
10045		.flags = CFTYPE_NOT_ON_ROOT,
10046		.read_u64 = cpu_cfs_burst_read_u64,
10047		.write_u64 = cpu_cfs_burst_write_u64,
10048	},
10049#endif
10050#ifdef CONFIG_UCLAMP_TASK_GROUP
10051	{
10052		.name = "uclamp.min",
10053		.flags = CFTYPE_NOT_ON_ROOT,
10054		.seq_show = cpu_uclamp_min_show,
10055		.write = cpu_uclamp_min_write,
10056	},
10057	{
10058		.name = "uclamp.max",
10059		.flags = CFTYPE_NOT_ON_ROOT,
10060		.seq_show = cpu_uclamp_max_show,
10061		.write = cpu_uclamp_max_write,
10062	},
10063#endif
10064	{ }	/* terminate */
10065};
10066
10067struct cgroup_subsys cpu_cgrp_subsys = {
10068	.css_alloc	= cpu_cgroup_css_alloc,
10069	.css_online	= cpu_cgroup_css_online,
10070	.css_offline	= cpu_cgroup_css_offline,
10071	.css_released	= cpu_cgroup_css_released,
10072	.css_free	= cpu_cgroup_css_free,
10073	.css_extra_stat_show = cpu_extra_stat_show,
10074	.css_local_stat_show = cpu_local_stat_show,
10075	.can_attach	= cpu_cgroup_can_attach,
10076	.attach		= cpu_cgroup_attach,
10077	.cancel_attach	= cpu_cgroup_cancel_attach,
10078	.legacy_cftypes	= cpu_legacy_files,
10079	.dfl_cftypes	= cpu_files,
10080	.early_init	= true,
10081	.threaded	= true,
10082};
10083
10084#endif	/* CONFIG_CGROUP_SCHED */
10085
10086void dump_cpu_task(int cpu)
10087{
10088	if (in_hardirq() && cpu == smp_processor_id()) {
10089		struct pt_regs *regs;
10090
10091		regs = get_irq_regs();
10092		if (regs) {
10093			show_regs(regs);
10094			return;
10095		}
10096	}
10097
10098	if (trigger_single_cpu_backtrace(cpu))
10099		return;
10100
10101	pr_info("Task dump for CPU %d:\n", cpu);
10102	sched_show_task(cpu_curr(cpu));
10103}
10104
10105/*
10106 * Nice levels are multiplicative, with a gentle 10% change for every
10107 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10108 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10109 * that remained on nice 0.
10110 *
10111 * The "10% effect" is relative and cumulative: from _any_ nice level,
10112 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10113 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10114 * If a task goes up by ~10% and another task goes down by ~10% then
10115 * the relative distance between them is ~25%.)
10116 */
10117const int sched_prio_to_weight[40] = {
10118 /* -20 */     88761,     71755,     56483,     46273,     36291,
10119 /* -15 */     29154,     23254,     18705,     14949,     11916,
10120 /* -10 */      9548,      7620,      6100,      4904,      3906,
10121 /*  -5 */      3121,      2501,      1991,      1586,      1277,
10122 /*   0 */      1024,       820,       655,       526,       423,
10123 /*   5 */       335,       272,       215,       172,       137,
10124 /*  10 */       110,        87,        70,        56,        45,
10125 /*  15 */        36,        29,        23,        18,        15,
10126};
10127
10128/*
10129 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10130 *
10131 * In cases where the weight does not change often, we can use the
10132 * pre-calculated inverse to speed up arithmetics by turning divisions
10133 * into multiplications:
10134 */
10135const u32 sched_prio_to_wmult[40] = {
10136 /* -20 */     48388,     59856,     76040,     92818,    118348,
10137 /* -15 */    147320,    184698,    229616,    287308,    360437,
10138 /* -10 */    449829,    563644,    704093,    875809,   1099582,
10139 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10140 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10141 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10142 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10143 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10144};
10145
10146void call_trace_sched_update_nr_running(struct rq *rq, int count)
10147{
10148        trace_sched_update_nr_running_tp(rq, count);
10149}
10150
10151#ifdef CONFIG_SCHED_MM_CID
10152
10153/*
10154 * @cid_lock: Guarantee forward-progress of cid allocation.
10155 *
10156 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10157 * is only used when contention is detected by the lock-free allocation so
10158 * forward progress can be guaranteed.
10159 */
10160DEFINE_RAW_SPINLOCK(cid_lock);
10161
10162/*
10163 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10164 *
10165 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10166 * detected, it is set to 1 to ensure that all newly coming allocations are
10167 * serialized by @cid_lock until the allocation which detected contention
10168 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10169 * of a cid allocation.
10170 */
10171int use_cid_lock;
10172
10173/*
10174 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10175 * concurrently with respect to the execution of the source runqueue context
10176 * switch.
10177 *
10178 * There is one basic properties we want to guarantee here:
10179 *
10180 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10181 * used by a task. That would lead to concurrent allocation of the cid and
10182 * userspace corruption.
10183 *
10184 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10185 * that a pair of loads observe at least one of a pair of stores, which can be
10186 * shown as:
10187 *
10188 *      X = Y = 0
10189 *
10190 *      w[X]=1          w[Y]=1
10191 *      MB              MB
10192 *      r[Y]=y          r[X]=x
10193 *
10194 * Which guarantees that x==0 && y==0 is impossible. But rather than using
10195 * values 0 and 1, this algorithm cares about specific state transitions of the
10196 * runqueue current task (as updated by the scheduler context switch), and the
10197 * per-mm/cpu cid value.
10198 *
10199 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10200 * task->mm != mm for the rest of the discussion. There are two scheduler state
10201 * transitions on context switch we care about:
10202 *
10203 * (TSA) Store to rq->curr with transition from (N) to (Y)
10204 *
10205 * (TSB) Store to rq->curr with transition from (Y) to (N)
10206 *
10207 * On the remote-clear side, there is one transition we care about:
10208 *
10209 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10210 *
10211 * There is also a transition to UNSET state which can be performed from all
10212 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10213 * guarantees that only a single thread will succeed:
10214 *
10215 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10216 *
10217 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10218 * when a thread is actively using the cid (property (1)).
10219 *
10220 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10221 *
10222 * Scenario A) (TSA)+(TMA) (from next task perspective)
10223 *
10224 * CPU0                                      CPU1
10225 *
10226 * Context switch CS-1                       Remote-clear
10227 *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10228 *                                             (implied barrier after cmpxchg)
10229 *   - switch_mm_cid()
10230 *     - memory barrier (see switch_mm_cid()
10231 *       comment explaining how this barrier
10232 *       is combined with other scheduler
10233 *       barriers)
10234 *     - mm_cid_get (next)
10235 *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10236 *
10237 * This Dekker ensures that either task (Y) is observed by the
10238 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10239 * observed.
10240 *
10241 * If task (Y) store is observed by rcu_dereference(), it means that there is
10242 * still an active task on the cpu. Remote-clear will therefore not transition
10243 * to UNSET, which fulfills property (1).
10244 *
10245 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10246 * it will move its state to UNSET, which clears the percpu cid perhaps
10247 * uselessly (which is not an issue for correctness). Because task (Y) is not
10248 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10249 * state to UNSET is done with a cmpxchg expecting that the old state has the
10250 * LAZY flag set, only one thread will successfully UNSET.
10251 *
10252 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10253 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10254 * CPU1 will observe task (Y) and do nothing more, which is fine.
10255 *
10256 * What we are effectively preventing with this Dekker is a scenario where
10257 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10258 * because this would UNSET a cid which is actively used.
10259 */
10260
10261void sched_mm_cid_migrate_from(struct task_struct *t)
10262{
10263	t->migrate_from_cpu = task_cpu(t);
10264}
10265
10266static
10267int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10268					  struct task_struct *t,
10269					  struct mm_cid *src_pcpu_cid)
10270{
10271	struct mm_struct *mm = t->mm;
10272	struct task_struct *src_task;
10273	int src_cid, last_mm_cid;
10274
10275	if (!mm)
10276		return -1;
10277
10278	last_mm_cid = t->last_mm_cid;
10279	/*
10280	 * If the migrated task has no last cid, or if the current
10281	 * task on src rq uses the cid, it means the source cid does not need
10282	 * to be moved to the destination cpu.
10283	 */
10284	if (last_mm_cid == -1)
10285		return -1;
10286	src_cid = READ_ONCE(src_pcpu_cid->cid);
10287	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10288		return -1;
10289
10290	/*
10291	 * If we observe an active task using the mm on this rq, it means we
10292	 * are not the last task to be migrated from this cpu for this mm, so
10293	 * there is no need to move src_cid to the destination cpu.
10294	 */
10295	guard(rcu)();
10296	src_task = rcu_dereference(src_rq->curr);
10297	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10298		t->last_mm_cid = -1;
10299		return -1;
10300	}
10301
10302	return src_cid;
10303}
10304
10305static
10306int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10307					      struct task_struct *t,
10308					      struct mm_cid *src_pcpu_cid,
10309					      int src_cid)
10310{
10311	struct task_struct *src_task;
10312	struct mm_struct *mm = t->mm;
10313	int lazy_cid;
10314
10315	if (src_cid == -1)
10316		return -1;
10317
10318	/*
10319	 * Attempt to clear the source cpu cid to move it to the destination
10320	 * cpu.
10321	 */
10322	lazy_cid = mm_cid_set_lazy_put(src_cid);
10323	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10324		return -1;
10325
10326	/*
10327	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10328	 * rq->curr->mm matches the scheduler barrier in context_switch()
10329	 * between store to rq->curr and load of prev and next task's
10330	 * per-mm/cpu cid.
10331	 *
10332	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10333	 * rq->curr->mm_cid_active matches the barrier in
10334	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10335	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10336	 * load of per-mm/cpu cid.
10337	 */
10338
10339	/*
10340	 * If we observe an active task using the mm on this rq after setting
10341	 * the lazy-put flag, this task will be responsible for transitioning
10342	 * from lazy-put flag set to MM_CID_UNSET.
10343	 */
10344	scoped_guard (rcu) {
10345		src_task = rcu_dereference(src_rq->curr);
10346		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10347			/*
10348			 * We observed an active task for this mm, there is therefore
10349			 * no point in moving this cid to the destination cpu.
10350			 */
10351			t->last_mm_cid = -1;
10352			return -1;
10353		}
10354	}
10355
10356	/*
10357	 * The src_cid is unused, so it can be unset.
10358	 */
10359	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10360		return -1;
10361	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10362	return src_cid;
10363}
10364
10365/*
10366 * Migration to dst cpu. Called with dst_rq lock held.
10367 * Interrupts are disabled, which keeps the window of cid ownership without the
10368 * source rq lock held small.
10369 */
10370void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10371{
10372	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10373	struct mm_struct *mm = t->mm;
10374	int src_cid, src_cpu;
10375	bool dst_cid_is_set;
10376	struct rq *src_rq;
10377
10378	lockdep_assert_rq_held(dst_rq);
10379
10380	if (!mm)
10381		return;
10382	src_cpu = t->migrate_from_cpu;
10383	if (src_cpu == -1) {
10384		t->last_mm_cid = -1;
10385		return;
10386	}
10387	/*
10388	 * Move the src cid if the dst cid is unset. This keeps id
10389	 * allocation closest to 0 in cases where few threads migrate around
10390	 * many CPUs.
10391	 *
10392	 * If destination cid or recent cid is already set, we may have
10393	 * to just clear the src cid to ensure compactness in frequent
10394	 * migrations scenarios.
10395	 *
10396	 * It is not useful to clear the src cid when the number of threads is
10397	 * greater or equal to the number of allowed CPUs, because user-space
10398	 * can expect that the number of allowed cids can reach the number of
10399	 * allowed CPUs.
10400	 */
10401	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10402	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10403			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10404	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10405		return;
10406	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10407	src_rq = cpu_rq(src_cpu);
10408	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10409	if (src_cid == -1)
10410		return;
10411	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10412							    src_cid);
10413	if (src_cid == -1)
10414		return;
10415	if (dst_cid_is_set) {
10416		__mm_cid_put(mm, src_cid);
10417		return;
10418	}
10419	/* Move src_cid to dst cpu. */
10420	mm_cid_snapshot_time(dst_rq, mm);
10421	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10422	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10423}
10424
10425static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10426				      int cpu)
10427{
10428	struct rq *rq = cpu_rq(cpu);
10429	struct task_struct *t;
10430	int cid, lazy_cid;
10431
10432	cid = READ_ONCE(pcpu_cid->cid);
10433	if (!mm_cid_is_valid(cid))
10434		return;
10435
10436	/*
10437	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10438	 * there happens to be other tasks left on the source cpu using this
10439	 * mm, the next task using this mm will reallocate its cid on context
10440	 * switch.
10441	 */
10442	lazy_cid = mm_cid_set_lazy_put(cid);
10443	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10444		return;
10445
10446	/*
10447	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10448	 * rq->curr->mm matches the scheduler barrier in context_switch()
10449	 * between store to rq->curr and load of prev and next task's
10450	 * per-mm/cpu cid.
10451	 *
10452	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10453	 * rq->curr->mm_cid_active matches the barrier in
10454	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10455	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10456	 * load of per-mm/cpu cid.
10457	 */
10458
10459	/*
10460	 * If we observe an active task using the mm on this rq after setting
10461	 * the lazy-put flag, that task will be responsible for transitioning
10462	 * from lazy-put flag set to MM_CID_UNSET.
10463	 */
10464	scoped_guard (rcu) {
10465		t = rcu_dereference(rq->curr);
10466		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10467			return;
10468	}
10469
10470	/*
10471	 * The cid is unused, so it can be unset.
10472	 * Disable interrupts to keep the window of cid ownership without rq
10473	 * lock small.
10474	 */
10475	scoped_guard (irqsave) {
10476		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10477			__mm_cid_put(mm, cid);
10478	}
10479}
10480
10481static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10482{
10483	struct rq *rq = cpu_rq(cpu);
10484	struct mm_cid *pcpu_cid;
10485	struct task_struct *curr;
10486	u64 rq_clock;
10487
10488	/*
10489	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10490	 * while is irrelevant.
10491	 */
10492	rq_clock = READ_ONCE(rq->clock);
10493	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10494
10495	/*
10496	 * In order to take care of infrequently scheduled tasks, bump the time
10497	 * snapshot associated with this cid if an active task using the mm is
10498	 * observed on this rq.
10499	 */
10500	scoped_guard (rcu) {
10501		curr = rcu_dereference(rq->curr);
10502		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10503			WRITE_ONCE(pcpu_cid->time, rq_clock);
10504			return;
10505		}
10506	}
10507
10508	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10509		return;
10510	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10511}
10512
10513static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10514					     int weight)
10515{
10516	struct mm_cid *pcpu_cid;
10517	int cid;
10518
10519	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10520	cid = READ_ONCE(pcpu_cid->cid);
10521	if (!mm_cid_is_valid(cid) || cid < weight)
10522		return;
10523	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10524}
10525
10526static void task_mm_cid_work(struct callback_head *work)
10527{
10528	unsigned long now = jiffies, old_scan, next_scan;
10529	struct task_struct *t = current;
10530	struct cpumask *cidmask;
10531	struct mm_struct *mm;
10532	int weight, cpu;
10533
10534	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10535
10536	work->next = work;	/* Prevent double-add */
10537	if (t->flags & PF_EXITING)
10538		return;
10539	mm = t->mm;
10540	if (!mm)
10541		return;
10542	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10543	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10544	if (!old_scan) {
10545		unsigned long res;
10546
10547		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10548		if (res != old_scan)
10549			old_scan = res;
10550		else
10551			old_scan = next_scan;
10552	}
10553	if (time_before(now, old_scan))
10554		return;
10555	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10556		return;
10557	cidmask = mm_cidmask(mm);
10558	/* Clear cids that were not recently used. */
10559	for_each_possible_cpu(cpu)
10560		sched_mm_cid_remote_clear_old(mm, cpu);
10561	weight = cpumask_weight(cidmask);
10562	/*
10563	 * Clear cids that are greater or equal to the cidmask weight to
10564	 * recompact it.
10565	 */
10566	for_each_possible_cpu(cpu)
10567		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10568}
10569
10570void init_sched_mm_cid(struct task_struct *t)
10571{
10572	struct mm_struct *mm = t->mm;
10573	int mm_users = 0;
10574
10575	if (mm) {
10576		mm_users = atomic_read(&mm->mm_users);
10577		if (mm_users == 1)
10578			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10579	}
10580	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10581	init_task_work(&t->cid_work, task_mm_cid_work);
10582}
10583
10584void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10585{
10586	struct callback_head *work = &curr->cid_work;
10587	unsigned long now = jiffies;
10588
10589	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10590	    work->next != work)
10591		return;
10592	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10593		return;
10594
10595	/* No page allocation under rq lock */
10596	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
10597}
10598
10599void sched_mm_cid_exit_signals(struct task_struct *t)
10600{
10601	struct mm_struct *mm = t->mm;
10602	struct rq *rq;
10603
10604	if (!mm)
10605		return;
10606
10607	preempt_disable();
10608	rq = this_rq();
10609	guard(rq_lock_irqsave)(rq);
10610	preempt_enable_no_resched();	/* holding spinlock */
10611	WRITE_ONCE(t->mm_cid_active, 0);
10612	/*
10613	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10614	 * Matches barrier in sched_mm_cid_remote_clear_old().
10615	 */
10616	smp_mb();
10617	mm_cid_put(mm);
10618	t->last_mm_cid = t->mm_cid = -1;
10619}
10620
10621void sched_mm_cid_before_execve(struct task_struct *t)
10622{
10623	struct mm_struct *mm = t->mm;
10624	struct rq *rq;
10625
10626	if (!mm)
10627		return;
10628
10629	preempt_disable();
10630	rq = this_rq();
10631	guard(rq_lock_irqsave)(rq);
10632	preempt_enable_no_resched();	/* holding spinlock */
10633	WRITE_ONCE(t->mm_cid_active, 0);
10634	/*
10635	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10636	 * Matches barrier in sched_mm_cid_remote_clear_old().
10637	 */
10638	smp_mb();
10639	mm_cid_put(mm);
10640	t->last_mm_cid = t->mm_cid = -1;
10641}
10642
10643void sched_mm_cid_after_execve(struct task_struct *t)
10644{
10645	struct mm_struct *mm = t->mm;
10646	struct rq *rq;
10647
10648	if (!mm)
10649		return;
10650
10651	preempt_disable();
10652	rq = this_rq();
10653	scoped_guard (rq_lock_irqsave, rq) {
10654		preempt_enable_no_resched();	/* holding spinlock */
10655		WRITE_ONCE(t->mm_cid_active, 1);
10656		/*
10657		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10658		 * Matches barrier in sched_mm_cid_remote_clear_old().
10659		 */
10660		smp_mb();
10661		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10662	}
10663	rseq_set_notify_resume(t);
10664}
10665
10666void sched_mm_cid_fork(struct task_struct *t)
10667{
10668	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10669	t->mm_cid_active = 1;
10670}
10671#endif
10672
10673#ifdef CONFIG_SCHED_CLASS_EXT
10674void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10675			    struct sched_enq_and_set_ctx *ctx)
10676{
10677	struct rq *rq = task_rq(p);
10678
10679	lockdep_assert_rq_held(rq);
10680
10681	*ctx = (struct sched_enq_and_set_ctx){
10682		.p = p,
10683		.queue_flags = queue_flags,
10684		.queued = task_on_rq_queued(p),
10685		.running = task_current(rq, p),
10686	};
10687
10688	update_rq_clock(rq);
10689	if (ctx->queued)
10690		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10691	if (ctx->running)
10692		put_prev_task(rq, p);
10693}
10694
10695void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10696{
10697	struct rq *rq = task_rq(ctx->p);
10698
10699	lockdep_assert_rq_held(rq);
10700
10701	if (ctx->queued)
10702		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10703	if (ctx->running)
10704		set_next_task(rq, ctx->p);
10705}
10706#endif	/* CONFIG_SCHED_CLASS_EXT */
v4.6
 
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *		make semaphores SMP safe
  10 *  1998-11-19	Implemented schedule_timeout() and related stuff
  11 *		by Andrea Arcangeli
  12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *		hybrid priority-list and round-robin design with
  14 *		an array-switch method of distributing timeslices
  15 *		and per-CPU runqueues.  Cleanups and useful suggestions
  16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03	Interactivity tuning by Con Kolivas.
  18 *  2004-04-02	Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/kasan.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/nmi.h>
  33#include <linux/init.h>
  34#include <linux/uaccess.h>
  35#include <linux/highmem.h>
  36#include <asm/mmu_context.h>
  37#include <linux/interrupt.h>
 
 
 
 
  38#include <linux/capability.h>
  39#include <linux/completion.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/debug_locks.h>
  42#include <linux/perf_event.h>
  43#include <linux/security.h>
  44#include <linux/notifier.h>
  45#include <linux/profile.h>
  46#include <linux/freezer.h>
  47#include <linux/vmalloc.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48#include <linux/blkdev.h>
  49#include <linux/delay.h>
  50#include <linux/pid_namespace.h>
  51#include <linux/smp.h>
  52#include <linux/threads.h>
  53#include <linux/timer.h>
  54#include <linux/rcupdate.h>
  55#include <linux/cpu.h>
  56#include <linux/cpuset.h>
  57#include <linux/percpu.h>
  58#include <linux/proc_fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/sysctl.h>
  61#include <linux/syscalls.h>
  62#include <linux/times.h>
  63#include <linux/tsacct_kern.h>
  64#include <linux/kprobes.h>
  65#include <linux/delayacct.h>
  66#include <linux/unistd.h>
  67#include <linux/pagemap.h>
  68#include <linux/hrtimer.h>
  69#include <linux/tick.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
 
 
 
 
 
 
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/context_tracking.h>
  75#include <linux/compiler.h>
  76#include <linux/frame.h>
 
 
 
 
 
 
 
 
  77
 
  78#include <asm/switch_to.h>
  79#include <asm/tlb.h>
  80#include <asm/irq_regs.h>
  81#include <asm/mutex.h>
  82#ifdef CONFIG_PARAVIRT
  83#include <asm/paravirt.h>
  84#endif
 
  85
  86#include "sched.h"
 
 
 
 
 
 
 
  87#include "../workqueue_internal.h"
 
  88#include "../smpboot.h"
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/sched.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92
  93DEFINE_MUTEX(sched_domains_mutex);
  94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  95
  96static void update_rq_clock_task(struct rq *rq, s64 delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98void update_rq_clock(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99{
 100	s64 delta;
 
 101
 102	lockdep_assert_held(&rq->lock);
 103
 104	if (rq->clock_skip_update & RQCF_ACT_SKIP)
 105		return;
 106
 107	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 108	if (delta < 0)
 
 
 
 
 109		return;
 110	rq->clock += delta;
 111	update_rq_clock_task(rq, delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112}
 113
 114/*
 115 * Debugging: various feature bits
 
 116 */
 
 
 
 
 117
 118#define SCHED_FEAT(name, enabled)	\
 119	(1UL << __SCHED_FEAT_##name) * enabled |
 
 120
 121const_debug unsigned int sysctl_sched_features =
 122#include "features.h"
 123	0;
 124
 125#undef SCHED_FEAT
 
 126
 127/*
 128 * Number of tasks to iterate in a single balance run.
 129 * Limited because this is done with IRQs disabled.
 
 
 
 
 
 
 
 
 130 */
 131const_debug unsigned int sysctl_sched_nr_migrate = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133/*
 134 * period over which we average the RT time consumption, measured
 135 * in ms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136 *
 137 * default: 1s
 138 */
 139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141/*
 142 * period over which we measure -rt task cpu usage in us.
 143 * default: 1s
 144 */
 145unsigned int sysctl_sched_rt_period = 1000000;
 
 
 146
 147__read_mostly int scheduler_running;
 
 
 
 
 
 
 
 
 
 148
 149/*
 150 * part of the period that we allow rt tasks to run in us.
 151 * default: 0.95s
 152 */
 153int sysctl_sched_rt_runtime = 950000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155/* cpus with isolated domains */
 156cpumask_var_t cpu_isolated_map;
 
 
 157
 158/*
 159 * this_rq_lock - lock this runqueue and disable interrupts.
 160 */
 161static struct rq *this_rq_lock(void)
 
 162	__acquires(rq->lock)
 163{
 164	struct rq *rq;
 165
 166	local_irq_disable();
 167	rq = this_rq();
 168	raw_spin_lock(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169
 170	return rq;
 
 
 
 
 171}
 172
 173#ifdef CONFIG_SCHED_HRTICK
 174/*
 175 * Use HR-timers to deliver accurate preemption points.
 176 */
 177
 178static void hrtick_clear(struct rq *rq)
 179{
 180	if (hrtimer_active(&rq->hrtick_timer))
 181		hrtimer_cancel(&rq->hrtick_timer);
 182}
 183
 184/*
 185 * High-resolution timer tick.
 186 * Runs from hardirq context with interrupts disabled.
 187 */
 188static enum hrtimer_restart hrtick(struct hrtimer *timer)
 189{
 190	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 
 191
 192	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 193
 194	raw_spin_lock(&rq->lock);
 195	update_rq_clock(rq);
 196	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 197	raw_spin_unlock(&rq->lock);
 198
 199	return HRTIMER_NORESTART;
 200}
 201
 202#ifdef CONFIG_SMP
 203
 204static void __hrtick_restart(struct rq *rq)
 205{
 206	struct hrtimer *timer = &rq->hrtick_timer;
 
 207
 208	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 209}
 210
 211/*
 212 * called from hardirq (IPI) context
 213 */
 214static void __hrtick_start(void *arg)
 215{
 216	struct rq *rq = arg;
 
 217
 218	raw_spin_lock(&rq->lock);
 219	__hrtick_restart(rq);
 220	rq->hrtick_csd_pending = 0;
 221	raw_spin_unlock(&rq->lock);
 222}
 223
 224/*
 225 * Called to set the hrtick timer state.
 226 *
 227 * called with rq->lock held and irqs disabled
 228 */
 229void hrtick_start(struct rq *rq, u64 delay)
 230{
 231	struct hrtimer *timer = &rq->hrtick_timer;
 232	ktime_t time;
 233	s64 delta;
 234
 235	/*
 236	 * Don't schedule slices shorter than 10000ns, that just
 237	 * doesn't make sense and can cause timer DoS.
 238	 */
 239	delta = max_t(s64, delay, 10000LL);
 240	time = ktime_add_ns(timer->base->get_time(), delta);
 241
 242	hrtimer_set_expires(timer, time);
 243
 244	if (rq == this_rq()) {
 245		__hrtick_restart(rq);
 246	} else if (!rq->hrtick_csd_pending) {
 247		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 248		rq->hrtick_csd_pending = 1;
 249	}
 250}
 251
 252static int
 253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 254{
 255	int cpu = (int)(long)hcpu;
 256
 257	switch (action) {
 258	case CPU_UP_CANCELED:
 259	case CPU_UP_CANCELED_FROZEN:
 260	case CPU_DOWN_PREPARE:
 261	case CPU_DOWN_PREPARE_FROZEN:
 262	case CPU_DEAD:
 263	case CPU_DEAD_FROZEN:
 264		hrtick_clear(cpu_rq(cpu));
 265		return NOTIFY_OK;
 266	}
 267
 268	return NOTIFY_DONE;
 269}
 270
 271static __init void init_hrtick(void)
 272{
 273	hotcpu_notifier(hotplug_hrtick, 0);
 274}
 275#else
 276/*
 277 * Called to set the hrtick timer state.
 278 *
 279 * called with rq->lock held and irqs disabled
 280 */
 281void hrtick_start(struct rq *rq, u64 delay)
 282{
 283	/*
 284	 * Don't schedule slices shorter than 10000ns, that just
 285	 * doesn't make sense. Rely on vruntime for fairness.
 286	 */
 287	delay = max_t(u64, delay, 10000LL);
 288	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 289		      HRTIMER_MODE_REL_PINNED);
 290}
 291
 292static inline void init_hrtick(void)
 293{
 294}
 295#endif /* CONFIG_SMP */
 296
 297static void init_rq_hrtick(struct rq *rq)
 298{
 299#ifdef CONFIG_SMP
 300	rq->hrtick_csd_pending = 0;
 301
 302	rq->hrtick_csd.flags = 0;
 303	rq->hrtick_csd.func = __hrtick_start;
 304	rq->hrtick_csd.info = rq;
 305#endif
 306
 307	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 308	rq->hrtick_timer.function = hrtick;
 309}
 310#else	/* CONFIG_SCHED_HRTICK */
 311static inline void hrtick_clear(struct rq *rq)
 312{
 313}
 314
 315static inline void init_rq_hrtick(struct rq *rq)
 316{
 317}
 318
 319static inline void init_hrtick(void)
 320{
 321}
 322#endif	/* CONFIG_SCHED_HRTICK */
 323
 324/*
 325 * cmpxchg based fetch_or, macro so it works for different integer types
 326 */
 327#define fetch_or(ptr, mask)						\
 328	({								\
 329		typeof(ptr) _ptr = (ptr);				\
 330		typeof(mask) _mask = (mask);				\
 331		typeof(*_ptr) _old, _val = *_ptr;			\
 332									\
 333		for (;;) {						\
 334			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 335			if (_old == _val)				\
 336				break;					\
 337			_val = _old;					\
 338		}							\
 339	_old;								\
 340})
 341
 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 343/*
 344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 345 * this avoids any races wrt polling state changes and thereby avoids
 346 * spurious IPIs.
 347 */
 348static bool set_nr_and_not_polling(struct task_struct *p)
 349{
 350	struct thread_info *ti = task_thread_info(p);
 351	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 352}
 353
 354/*
 355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 356 *
 357 * If this returns true, then the idle task promises to call
 358 * sched_ttwu_pending() and reschedule soon.
 359 */
 360static bool set_nr_if_polling(struct task_struct *p)
 361{
 362	struct thread_info *ti = task_thread_info(p);
 363	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 364
 365	for (;;) {
 366		if (!(val & _TIF_POLLING_NRFLAG))
 367			return false;
 368		if (val & _TIF_NEED_RESCHED)
 369			return true;
 370		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 371		if (old == val)
 372			break;
 373		val = old;
 374	}
 375	return true;
 376}
 377
 378#else
 379static bool set_nr_and_not_polling(struct task_struct *p)
 380{
 381	set_tsk_need_resched(p);
 382	return true;
 383}
 384
 385#ifdef CONFIG_SMP
 386static bool set_nr_if_polling(struct task_struct *p)
 387{
 388	return false;
 389}
 390#endif
 391#endif
 392
 393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 394{
 395	struct wake_q_node *node = &task->wake_q;
 396
 397	/*
 398	 * Atomically grab the task, if ->wake_q is !nil already it means
 399	 * its already queued (either by us or someone else) and will get the
 400	 * wakeup due to that.
 401	 *
 402	 * This cmpxchg() implies a full barrier, which pairs with the write
 403	 * barrier implied by the wakeup in wake_up_list().
 404	 */
 405	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 406		return;
 407
 408	get_task_struct(task);
 409
 410	/*
 411	 * The head is context local, there can be no concurrency.
 412	 */
 413	*head->lastp = node;
 414	head->lastp = &node->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415}
 416
 417void wake_up_q(struct wake_q_head *head)
 418{
 419	struct wake_q_node *node = head->first;
 420
 421	while (node != WAKE_Q_TAIL) {
 422		struct task_struct *task;
 423
 424		task = container_of(node, struct task_struct, wake_q);
 425		BUG_ON(!task);
 426		/* task can safely be re-inserted now */
 427		node = node->next;
 428		task->wake_q.next = NULL;
 429
 430		/*
 431		 * wake_up_process() implies a wmb() to pair with the queueing
 432		 * in wake_q_add() so as not to miss wakeups.
 433		 */
 434		wake_up_process(task);
 435		put_task_struct(task);
 436	}
 437}
 438
 439/*
 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
 441 *
 442 * On UP this means the setting of the need_resched flag, on SMP it
 443 * might also involve a cross-CPU call to trigger the scheduler on
 444 * the target CPU.
 445 */
 446void resched_curr(struct rq *rq)
 447{
 448	struct task_struct *curr = rq->curr;
 
 449	int cpu;
 450
 451	lockdep_assert_held(&rq->lock);
 452
 453	if (test_tsk_need_resched(curr))
 
 
 
 
 
 
 
 454		return;
 455
 456	cpu = cpu_of(rq);
 457
 458	if (cpu == smp_processor_id()) {
 459		set_tsk_need_resched(curr);
 460		set_preempt_need_resched();
 
 461		return;
 462	}
 463
 464	if (set_nr_and_not_polling(curr))
 465		smp_send_reschedule(cpu);
 466	else
 
 467		trace_sched_wake_idle_without_ipi(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468}
 469
 470void resched_cpu(int cpu)
 471{
 472	struct rq *rq = cpu_rq(cpu);
 473	unsigned long flags;
 474
 475	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 476		return;
 477	resched_curr(rq);
 478	raw_spin_unlock_irqrestore(&rq->lock, flags);
 479}
 480
 481#ifdef CONFIG_SMP
 482#ifdef CONFIG_NO_HZ_COMMON
 483/*
 484 * In the semi idle case, use the nearest busy cpu for migrating timers
 485 * from an idle cpu.  This is good for power-savings.
 486 *
 487 * We don't do similar optimization for completely idle system, as
 488 * selecting an idle cpu will add more delays to the timers than intended
 489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 490 */
 491int get_nohz_timer_target(void)
 492{
 493	int i, cpu = smp_processor_id();
 494	struct sched_domain *sd;
 
 
 
 
 
 
 
 495
 496	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
 497		return cpu;
 
 498
 499	rcu_read_lock();
 500	for_each_domain(cpu, sd) {
 501		for_each_cpu(i, sched_domain_span(sd)) {
 502			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
 503				cpu = i;
 504				goto unlock;
 505			}
 
 506		}
 507	}
 508
 509	if (!is_housekeeping_cpu(cpu))
 510		cpu = housekeeping_any_cpu();
 511unlock:
 512	rcu_read_unlock();
 513	return cpu;
 514}
 
 515/*
 516 * When add_timer_on() enqueues a timer into the timer wheel of an
 517 * idle CPU then this timer might expire before the next timer event
 518 * which is scheduled to wake up that CPU. In case of a completely
 519 * idle system the next event might even be infinite time into the
 520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 521 * leaves the inner idle loop so the newly added timer is taken into
 522 * account when the CPU goes back to idle and evaluates the timer
 523 * wheel for the next timer event.
 524 */
 525static void wake_up_idle_cpu(int cpu)
 526{
 527	struct rq *rq = cpu_rq(cpu);
 528
 529	if (cpu == smp_processor_id())
 530		return;
 531
 532	if (set_nr_and_not_polling(rq->idle))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533		smp_send_reschedule(cpu);
 534	else
 535		trace_sched_wake_idle_without_ipi(cpu);
 536}
 537
 538static bool wake_up_full_nohz_cpu(int cpu)
 539{
 540	/*
 541	 * We just need the target to call irq_exit() and re-evaluate
 542	 * the next tick. The nohz full kick at least implies that.
 543	 * If needed we can still optimize that later with an
 544	 * empty IRQ.
 545	 */
 
 
 546	if (tick_nohz_full_cpu(cpu)) {
 547		if (cpu != smp_processor_id() ||
 548		    tick_nohz_tick_stopped())
 549			tick_nohz_full_kick_cpu(cpu);
 550		return true;
 551	}
 552
 553	return false;
 554}
 555
 
 
 
 
 
 556void wake_up_nohz_cpu(int cpu)
 557{
 558	if (!wake_up_full_nohz_cpu(cpu))
 559		wake_up_idle_cpu(cpu);
 560}
 561
 562static inline bool got_nohz_idle_kick(void)
 563{
 564	int cpu = smp_processor_id();
 565
 566	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 567		return false;
 568
 569	if (idle_cpu(cpu) && !need_resched())
 570		return true;
 571
 572	/*
 573	 * We can't run Idle Load Balance on this CPU for this time so we
 574	 * cancel it and clear NOHZ_BALANCE_KICK
 575	 */
 576	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 577	return false;
 
 
 
 
 
 
 578}
 579
 580#else /* CONFIG_NO_HZ_COMMON */
 581
 582static inline bool got_nohz_idle_kick(void)
 
 583{
 584	return false;
 
 
 
 
 
 
 
 
 
 585}
 586
 587#endif /* CONFIG_NO_HZ_COMMON */
 588
 589#ifdef CONFIG_NO_HZ_FULL
 590bool sched_can_stop_tick(struct rq *rq)
 591{
 592	int fifo_nr_running;
 593
 594	/* Deadline tasks, even if single, need the tick */
 595	if (rq->dl.dl_nr_running)
 596		return false;
 597
 598	/*
 599	 * If there are more than one RR tasks, we need the tick to effect the
 600	 * actual RR behaviour.
 601	 */
 602	if (rq->rt.rr_nr_running) {
 603		if (rq->rt.rr_nr_running == 1)
 604			return true;
 605		else
 606			return false;
 607	}
 608
 609	/*
 610	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 611	 * forced preemption between FIFO tasks.
 612	 */
 613	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 614	if (fifo_nr_running)
 615		return true;
 616
 617	/*
 618	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 619	 * if there's more than one we need the tick for involuntary
 620	 * preemption.
 621	 */
 622	if (rq->nr_running > 1)
 
 
 
 623		return false;
 624
 
 
 
 
 
 
 
 
 
 
 
 
 625	return true;
 626}
 627#endif /* CONFIG_NO_HZ_FULL */
 628
 629void sched_avg_update(struct rq *rq)
 630{
 631	s64 period = sched_avg_period();
 632
 633	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 634		/*
 635		 * Inline assembly required to prevent the compiler
 636		 * optimising this loop into a divmod call.
 637		 * See __iter_div_u64_rem() for another example of this.
 638		 */
 639		asm("" : "+rm" (rq->age_stamp));
 640		rq->age_stamp += period;
 641		rq->rt_avg /= 2;
 642	}
 643}
 644
 645#endif /* CONFIG_SMP */
 646
 647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 648			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 649/*
 650 * Iterate task_group tree rooted at *from, calling @down when first entering a
 651 * node and @up when leaving it for the final time.
 652 *
 653 * Caller must hold rcu_lock or sufficient equivalent.
 654 */
 655int walk_tg_tree_from(struct task_group *from,
 656			     tg_visitor down, tg_visitor up, void *data)
 657{
 658	struct task_group *parent, *child;
 659	int ret;
 660
 661	parent = from;
 662
 663down:
 664	ret = (*down)(parent, data);
 665	if (ret)
 666		goto out;
 667	list_for_each_entry_rcu(child, &parent->children, siblings) {
 668		parent = child;
 669		goto down;
 670
 671up:
 672		continue;
 673	}
 674	ret = (*up)(parent, data);
 675	if (ret || parent == from)
 676		goto out;
 677
 678	child = parent;
 679	parent = parent->parent;
 680	if (parent)
 681		goto up;
 682out:
 683	return ret;
 684}
 685
 686int tg_nop(struct task_group *tg, void *data)
 687{
 688	return 0;
 689}
 690#endif
 691
 692static void set_load_weight(struct task_struct *p)
 693{
 694	int prio = p->static_prio - MAX_RT_PRIO;
 695	struct load_weight *load = &p->se.load;
 
 
 
 
 
 
 
 
 696
 697	/*
 698	 * SCHED_IDLE tasks get minimal weight:
 
 699	 */
 700	if (idle_policy(p->policy)) {
 701		load->weight = scale_load(WEIGHT_IDLEPRIO);
 702		load->inv_weight = WMULT_IDLEPRIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704	}
 705
 706	load->weight = scale_load(sched_prio_to_weight[prio]);
 707	load->inv_weight = sched_prio_to_wmult[prio];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708}
 709
 710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 711{
 712	update_rq_clock(rq);
 713	if (!(flags & ENQUEUE_RESTORE))
 714		sched_info_queued(rq, p);
 715	p->sched_class->enqueue_task(rq, p, flags);
 
 
 716}
 717
 718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 
 719{
 720	update_rq_clock(rq);
 721	if (!(flags & DEQUEUE_SAVE))
 722		sched_info_dequeued(rq, p);
 723	p->sched_class->dequeue_task(rq, p, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724}
 725
 726void activate_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 
 
 727{
 728	if (task_contributes_to_load(p))
 729		rq->nr_uninterruptible--;
 
 
 
 
 730
 731	enqueue_task(rq, p, flags);
 732}
 733
 734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 735{
 736	if (task_contributes_to_load(p))
 737		rq->nr_uninterruptible++;
 
 
 
 738
 739	dequeue_task(rq, p, flags);
 
 
 740}
 741
 742static void update_rq_clock_task(struct rq *rq, s64 delta)
 
 
 
 
 
 
 
 
 
 
 
 743{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744/*
 745 * In theory, the compile should just see 0 here, and optimize out the call
 746 * to sched_rt_avg_update. But I don't trust it...
 
 
 
 
 
 747 */
 748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 749	s64 steal = 0, irq_delta = 0;
 750#endif
 751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 752	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	/*
 755	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 756	 * this case when a previous update_rq_clock() happened inside a
 757	 * {soft,}irq region.
 758	 *
 759	 * When this happens, we stop ->clock_task and only update the
 760	 * prev_irq_time stamp to account for the part that fit, so that a next
 761	 * update will consume the rest. This ensures ->clock_task is
 762	 * monotonic.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	 *
 764	 * It does however cause some slight miss-attribution of {soft,}irq
 765	 * time, a more accurate solution would be to update the irq_time using
 766	 * the current rq->clock timestamp, except that would require using
 767	 * atomic ops.
 
 
 
 
 
 
 
 
 768	 */
 769	if (irq_delta > delta)
 770		irq_delta = delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772	rq->prev_irq_time += irq_delta;
 773	delta -= irq_delta;
 
 
 
 774#endif
 775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 776	if (static_key_false((&paravirt_steal_rq_enabled))) {
 777		steal = paravirt_steal_clock(cpu_of(rq));
 778		steal -= rq->prev_steal_time_rq;
 779
 780		if (unlikely(steal > delta))
 781			steal = delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782
 783		rq->prev_steal_time_rq += steal;
 784		delta -= steal;
 
 785	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786#endif
 787
 788	rq->clock_task += delta;
 
 
 
 
 
 
 
 
 
 
 
 
 789
 790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 791	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 792		sched_rt_avg_update(rq, irq_delta + steal);
 793#endif
 794}
 795
 796void sched_set_stop_task(int cpu, struct task_struct *stop)
 797{
 798	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 799	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 800
 801	if (stop) {
 802		/*
 803		 * Make it appear like a SCHED_FIFO task, its something
 804		 * userspace knows about and won't get confused about.
 805		 *
 806		 * Also, it will make PI more or less work without too
 807		 * much confusion -- but then, stop work should not
 808		 * rely on PI working anyway.
 809		 */
 810		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 811
 812		stop->sched_class = &stop_sched_class;
 
 
 
 813	}
 814
 815	cpu_rq(cpu)->stop = stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817	if (old_stop) {
 818		/*
 819		 * Reset it back to a normal scheduling class so that
 820		 * it can die in pieces.
 821		 */
 822		old_stop->sched_class = &rt_sched_class;
 
 
 823	}
 824}
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826/*
 827 * __normal_prio - return the priority that is based on the static prio
 828 */
 829static inline int __normal_prio(struct task_struct *p)
 830{
 831	return p->static_prio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832}
 833
 834/*
 835 * Calculate the expected normal priority: i.e. priority
 836 * without taking RT-inheritance into account. Might be
 837 * boosted by interactivity modifiers. Changes upon fork,
 838 * setprio syscalls, and whenever the interactivity
 839 * estimator recalculates.
 840 */
 841static inline int normal_prio(struct task_struct *p)
 842{
 843	int prio;
 
 
 
 
 
 844
 845	if (task_has_dl_policy(p))
 846		prio = MAX_DL_PRIO-1;
 847	else if (task_has_rt_policy(p))
 848		prio = MAX_RT_PRIO-1 - p->rt_priority;
 849	else
 850		prio = __normal_prio(p);
 851	return prio;
 852}
 853
 854/*
 855 * Calculate the current priority, i.e. the priority
 856 * taken into account by the scheduler. This value might
 857 * be boosted by RT tasks, or might be boosted by
 858 * interactivity modifiers. Will be RT if the task got
 859 * RT-boosted. If not then it returns p->normal_prio.
 860 */
 861static int effective_prio(struct task_struct *p)
 862{
 863	p->normal_prio = normal_prio(p);
 
 
 
 
 864	/*
 865	 * If we are RT tasks or we were boosted to RT priority,
 866	 * keep the priority unchanged. Otherwise, update priority
 867	 * to the normal priority:
 868	 */
 869	if (!rt_prio(p->prio))
 870		return p->normal_prio;
 871	return p->prio;
 
 
 
 
 
 872}
 873
 874/**
 875 * task_curr - is this task currently executing on a CPU?
 876 * @p: the task in question.
 877 *
 878 * Return: 1 if the task is currently executing. 0 otherwise.
 879 */
 880inline int task_curr(const struct task_struct *p)
 881{
 882	return cpu_curr(task_cpu(p)) == p;
 883}
 884
 885/*
 
 
 
 
 
 
 
 
 
 
 
 886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 887 * use the balance_callback list if you want balancing.
 888 *
 889 * this means any call to check_class_changed() must be followed by a call to
 890 * balance_callback().
 891 */
 892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 893				       const struct sched_class *prev_class,
 894				       int oldprio)
 895{
 896	if (prev_class != p->sched_class) {
 897		if (prev_class->switched_from)
 898			prev_class->switched_from(rq, p);
 899
 900		p->sched_class->switched_to(rq, p);
 901	} else if (oldprio != p->prio || dl_task(p))
 902		p->sched_class->prio_changed(rq, p, oldprio);
 903}
 904
 905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 906{
 907	const struct sched_class *class;
 908
 909	if (p->sched_class == rq->curr->sched_class) {
 910		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 911	} else {
 912		for_each_class(class) {
 913			if (class == rq->curr->sched_class)
 914				break;
 915			if (class == p->sched_class) {
 916				resched_curr(rq);
 917				break;
 918			}
 919		}
 920	}
 921
 922	/*
 923	 * A queue event has occurred, and we're going to schedule.  In
 924	 * this case, we can save a useless back to back clock update.
 925	 */
 926	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 927		rq_clock_skip_update(rq, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928}
 929
 930#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931/*
 932 * This is how migration works:
 933 *
 934 * 1) we invoke migration_cpu_stop() on the target CPU using
 935 *    stop_one_cpu().
 936 * 2) stopper starts to run (implicitly forcing the migrated thread
 937 *    off the CPU)
 938 * 3) it checks whether the migrated task is still in the wrong runqueue.
 939 * 4) if it's in the wrong runqueue then the migration thread removes
 940 *    it and puts it into the right queue.
 941 * 5) stopper completes and stop_one_cpu() returns and the migration
 942 *    is done.
 943 */
 944
 945/*
 946 * move_queued_task - move a queued task to new rq.
 947 *
 948 * Returns (locked) new rq. Old rq's lock is released.
 949 */
 950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
 
 951{
 952	lockdep_assert_held(&rq->lock);
 953
 954	p->on_rq = TASK_ON_RQ_MIGRATING;
 955	dequeue_task(rq, p, 0);
 956	set_task_cpu(p, new_cpu);
 957	raw_spin_unlock(&rq->lock);
 958
 959	rq = cpu_rq(new_cpu);
 960
 961	raw_spin_lock(&rq->lock);
 962	BUG_ON(task_cpu(p) != new_cpu);
 963	enqueue_task(rq, p, 0);
 964	p->on_rq = TASK_ON_RQ_QUEUED;
 965	check_preempt_curr(rq, p, 0);
 966
 967	return rq;
 968}
 969
 970struct migration_arg {
 971	struct task_struct *task;
 972	int dest_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 973};
 974
 975/*
 976 * Move (not current) task off this cpu, onto dest cpu. We're doing
 977 * this because either it can't run here any more (set_cpus_allowed()
 978 * away from this CPU, or CPU going down), or because we're
 979 * attempting to rebalance this task on exec (sched_exec).
 980 *
 981 * So we race with normal scheduler movements, but that's OK, as long
 982 * as the task is no longer on this CPU.
 983 */
 984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
 
 985{
 986	if (unlikely(!cpu_active(dest_cpu)))
 987		return rq;
 988
 989	/* Affinity changed (again). */
 990	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
 991		return rq;
 992
 993	rq = move_queued_task(rq, p, dest_cpu);
 994
 995	return rq;
 996}
 997
 998/*
 999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005	struct migration_arg *arg = data;
 
1006	struct task_struct *p = arg->task;
1007	struct rq *rq = this_rq();
 
 
1008
1009	/*
1010	 * The original target cpu might have gone down and we might
1011	 * be on another cpu but it doesn't matter.
1012	 */
1013	local_irq_disable();
1014	/*
1015	 * We need to explicitly wake pending tasks before running
1016	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018	 */
1019	sched_ttwu_pending();
1020
1021	raw_spin_lock(&p->pi_lock);
1022	raw_spin_lock(&rq->lock);
 
 
 
 
 
 
 
1023	/*
1024	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026	 * we're holding p->pi_lock.
1027	 */
1028	if (task_rq(p) == rq && task_on_rq_queued(p))
1029		rq = __migrate_task(rq, p, arg->dest_cpu);
1030	raw_spin_unlock(&rq->lock);
1031	raw_spin_unlock(&p->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033	local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	return 0;
1035}
1036
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042{
1043	cpumask_copy(&p->cpus_allowed, new_mask);
1044	p->nr_cpus_allowed = cpumask_weight(new_mask);
 
 
 
 
 
 
 
 
 
 
 
1045}
1046
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 
1048{
1049	struct rq *rq = task_rq(p);
1050	bool queued, running;
1051
1052	lockdep_assert_held(&p->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053
1054	queued = task_on_rq_queued(p);
1055	running = task_current(rq, p);
1056
1057	if (queued) {
1058		/*
1059		 * Because __kthread_bind() calls this on blocked tasks without
1060		 * holding rq->lock.
1061		 */
1062		lockdep_assert_held(&rq->lock);
1063		dequeue_task(rq, p, DEQUEUE_SAVE);
1064	}
1065	if (running)
1066		put_prev_task(rq, p);
1067
1068	p->sched_class->set_cpus_allowed(p, new_mask);
 
1069
 
 
1070	if (running)
1071		p->sched_class->set_curr_task(rq);
1072	if (queued)
1073		enqueue_task(rq, p, ENQUEUE_RESTORE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074}
1075
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084 */
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086				  const struct cpumask *new_mask, bool check)
 
 
 
 
1087{
1088	unsigned long flags;
1089	struct rq *rq;
 
1090	unsigned int dest_cpu;
1091	int ret = 0;
1092
1093	rq = task_rq_lock(p, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095	/*
1096	 * Must re-check here, to close a race against __kthread_bind(),
1097	 * sched_setaffinity() is not guaranteed to observe the flag.
1098	 */
1099	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100		ret = -EINVAL;
1101		goto out;
1102	}
1103
1104	if (cpumask_equal(&p->cpus_allowed, new_mask))
1105		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1106
1107	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 
 
 
 
 
 
1108		ret = -EINVAL;
1109		goto out;
1110	}
1111
1112	do_set_cpus_allowed(p, new_mask);
1113
1114	/* Can the task run on the task's current CPU? If so, we're done */
1115	if (cpumask_test_cpu(task_cpu(p), new_mask))
1116		goto out;
1117
1118	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119	if (task_running(rq, p) || p->state == TASK_WAKING) {
1120		struct migration_arg arg = { p, dest_cpu };
1121		/* Need help from migration thread: drop lock and wait. */
1122		task_rq_unlock(rq, p, &flags);
1123		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124		tlb_migrate_finish(p->mm);
1125		return 0;
1126	} else if (task_on_rq_queued(p)) {
1127		/*
1128		 * OK, since we're going to drop the lock immediately
1129		 * afterwards anyway.
1130		 */
1131		lockdep_unpin_lock(&rq->lock);
1132		rq = move_queued_task(rq, p, dest_cpu);
1133		lockdep_pin_lock(&rq->lock);
1134	}
1135out:
1136	task_rq_unlock(rq, p, &flags);
1137
1138	return ret;
1139}
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143	return __set_cpus_allowed_ptr(p, new_mask, false);
 
 
 
 
 
1144}
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148{
1149#ifdef CONFIG_SCHED_DEBUG
 
 
1150	/*
1151	 * We should never call set_task_cpu() on a blocked task,
1152	 * ttwu() will sort out the placement.
1153	 */
1154	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155			!p->on_rq);
1156
1157	/*
1158	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160	 * time relying on p->on_rq.
1161	 */
1162	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163		     p->sched_class == &fair_sched_class &&
1164		     (p->on_rq && !task_on_rq_migrating(p)));
1165
1166#ifdef CONFIG_LOCKDEP
1167	/*
1168	 * The caller should hold either p->pi_lock or rq->lock, when changing
1169	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170	 *
1171	 * sched_move_task() holds both and thus holding either pins the cgroup,
1172	 * see task_group().
1173	 *
1174	 * Furthermore, all task_rq users should acquire both locks, see
1175	 * task_rq_lock().
1176	 */
1177	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178				      lockdep_is_held(&task_rq(p)->lock)));
1179#endif
 
 
 
 
 
 
1180#endif
1181
1182	trace_sched_migrate_task(p, new_cpu);
1183
1184	if (task_cpu(p) != new_cpu) {
1185		if (p->sched_class->migrate_task_rq)
1186			p->sched_class->migrate_task_rq(p);
1187		p->se.nr_migrations++;
 
 
1188		perf_event_task_migrate(p);
1189	}
1190
1191	__set_task_cpu(p, new_cpu);
1192}
1193
 
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
1196	if (task_on_rq_queued(p)) {
1197		struct rq *src_rq, *dst_rq;
 
1198
1199		src_rq = task_rq(p);
1200		dst_rq = cpu_rq(cpu);
1201
1202		p->on_rq = TASK_ON_RQ_MIGRATING;
1203		deactivate_task(src_rq, p, 0);
1204		set_task_cpu(p, cpu);
1205		activate_task(dst_rq, p, 0);
1206		p->on_rq = TASK_ON_RQ_QUEUED;
1207		check_preempt_curr(dst_rq, p, 0);
 
 
 
1208	} else {
1209		/*
1210		 * Task isn't running anymore; make it appear like we migrated
1211		 * it before it went to sleep. This means on wakeup we make the
1212		 * previous cpu our targer instead of where it really is.
1213		 */
1214		p->wake_cpu = cpu;
1215	}
1216}
1217
1218struct migration_swap_arg {
1219	struct task_struct *src_task, *dst_task;
1220	int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225	struct migration_swap_arg *arg = data;
1226	struct rq *src_rq, *dst_rq;
1227	int ret = -EAGAIN;
1228
1229	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230		return -EAGAIN;
1231
1232	src_rq = cpu_rq(arg->src_cpu);
1233	dst_rq = cpu_rq(arg->dst_cpu);
1234
1235	double_raw_lock(&arg->src_task->pi_lock,
1236			&arg->dst_task->pi_lock);
1237	double_rq_lock(src_rq, dst_rq);
1238
1239	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240		goto unlock;
1241
1242	if (task_cpu(arg->src_task) != arg->src_cpu)
1243		goto unlock;
1244
1245	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246		goto unlock;
1247
1248	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249		goto unlock;
1250
1251	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1252	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254	ret = 0;
1255
1256unlock:
1257	double_rq_unlock(src_rq, dst_rq);
1258	raw_spin_unlock(&arg->dst_task->pi_lock);
1259	raw_spin_unlock(&arg->src_task->pi_lock);
1260
1261	return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
 
1268{
1269	struct migration_swap_arg arg;
1270	int ret = -EINVAL;
1271
1272	arg = (struct migration_swap_arg){
1273		.src_task = cur,
1274		.src_cpu = task_cpu(cur),
1275		.dst_task = p,
1276		.dst_cpu = task_cpu(p),
1277	};
1278
1279	if (arg.src_cpu == arg.dst_cpu)
1280		goto out;
1281
1282	/*
1283	 * These three tests are all lockless; this is OK since all of them
1284	 * will be re-checked with proper locks held further down the line.
1285	 */
1286	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287		goto out;
1288
1289	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290		goto out;
1291
1292	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293		goto out;
1294
1295	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
1299	return ret;
1300}
1301
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change.  If it changes, i.e. @p might have woken up,
1307 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count).  If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319{
1320	unsigned long flags;
1321	int running, queued;
1322	unsigned long ncsw;
1323	struct rq *rq;
1324
1325	for (;;) {
1326		/*
1327		 * We do the initial early heuristics without holding
1328		 * any task-queue locks at all. We'll only try to get
1329		 * the runqueue lock when things look like they will
1330		 * work out!
1331		 */
1332		rq = task_rq(p);
1333
1334		/*
1335		 * If the task is actively running on another CPU
1336		 * still, just relax and busy-wait without holding
1337		 * any locks.
1338		 *
1339		 * NOTE! Since we don't hold any locks, it's not
1340		 * even sure that "rq" stays as the right runqueue!
1341		 * But we don't care, since "task_running()" will
1342		 * return false if the runqueue has changed and p
1343		 * is actually now running somewhere else!
1344		 */
1345		while (task_running(rq, p)) {
1346			if (match_state && unlikely(p->state != match_state))
1347				return 0;
1348			cpu_relax();
1349		}
1350
1351		/*
1352		 * Ok, time to look more closely! We need the rq
1353		 * lock now, to be *sure*. If we're wrong, we'll
1354		 * just go back and repeat.
1355		 */
1356		rq = task_rq_lock(p, &flags);
1357		trace_sched_wait_task(p);
1358		running = task_running(rq, p);
1359		queued = task_on_rq_queued(p);
1360		ncsw = 0;
1361		if (!match_state || p->state == match_state)
1362			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363		task_rq_unlock(rq, p, &flags);
1364
1365		/*
1366		 * If it changed from the expected state, bail out now.
1367		 */
1368		if (unlikely(!ncsw))
1369			break;
1370
1371		/*
1372		 * Was it really running after all now that we
1373		 * checked with the proper locks actually held?
1374		 *
1375		 * Oops. Go back and try again..
1376		 */
1377		if (unlikely(running)) {
1378			cpu_relax();
1379			continue;
1380		}
1381
1382		/*
1383		 * It's not enough that it's not actively running,
1384		 * it must be off the runqueue _entirely_, and not
1385		 * preempted!
1386		 *
1387		 * So if it was still runnable (but just not actively
1388		 * running right now), it's preempted, and we should
1389		 * yield - it could be a while.
1390		 */
1391		if (unlikely(queued)) {
1392			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394			set_current_state(TASK_UNINTERRUPTIBLE);
1395			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396			continue;
1397		}
1398
1399		/*
1400		 * Ahh, all good. It wasn't running, and it wasn't
1401		 * runnable, which means that it will never become
1402		 * running in the future either. We're all done!
1403		 */
1404		break;
1405	}
1406
1407	return ncsw;
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
1417 * NOTE: this function doesn't have to take the runqueue lock,
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
1423void kick_process(struct task_struct *p)
1424{
1425	int cpu;
 
1426
1427	preempt_disable();
1428	cpu = task_cpu(p);
1429	if ((cpu != smp_processor_id()) && task_curr(p))
1430		smp_send_reschedule(cpu);
1431	preempt_enable();
1432}
1433EXPORT_SYMBOL_GPL(kick_process);
1434
1435/*
1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437 */
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
1440	int nid = cpu_to_node(cpu);
1441	const struct cpumask *nodemask = NULL;
1442	enum { cpuset, possible, fail } state = cpuset;
1443	int dest_cpu;
1444
1445	/*
1446	 * If the node that the cpu is on has been offlined, cpu_to_node()
1447	 * will return -1. There is no cpu on the node, and we should
1448	 * select the cpu on the other node.
1449	 */
1450	if (nid != -1) {
1451		nodemask = cpumask_of_node(nid);
1452
1453		/* Look for allowed, online CPU in same node. */
1454		for_each_cpu(dest_cpu, nodemask) {
1455			if (!cpu_online(dest_cpu))
1456				continue;
1457			if (!cpu_active(dest_cpu))
1458				continue;
1459			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460				return dest_cpu;
1461		}
1462	}
1463
1464	for (;;) {
1465		/* Any allowed, online CPU? */
1466		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467			if (!cpu_online(dest_cpu))
1468				continue;
1469			if (!cpu_active(dest_cpu))
1470				continue;
 
1471			goto out;
1472		}
1473
1474		/* No more Mr. Nice Guy. */
1475		switch (state) {
1476		case cpuset:
1477			if (IS_ENABLED(CONFIG_CPUSETS)) {
1478				cpuset_cpus_allowed_fallback(p);
1479				state = possible;
1480				break;
1481			}
1482			/* fall-through */
1483		case possible:
1484			do_set_cpus_allowed(p, cpu_possible_mask);
 
 
 
 
 
 
1485			state = fail;
1486			break;
1487
1488		case fail:
1489			BUG();
1490			break;
1491		}
1492	}
1493
1494out:
1495	if (state != cpuset) {
1496		/*
1497		 * Don't tell them about moving exiting tasks or
1498		 * kernel threads (both mm NULL), since they never
1499		 * leave kernel.
1500		 */
1501		if (p->mm && printk_ratelimit()) {
1502			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503					task_pid_nr(p), p->comm, cpu);
1504		}
1505	}
1506
1507	return dest_cpu;
1508}
1509
1510/*
1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512 */
1513static inline
1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515{
1516	lockdep_assert_held(&p->pi_lock);
1517
1518	if (p->nr_cpus_allowed > 1)
1519		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
 
 
 
 
1520
1521	/*
1522	 * In order not to call set_task_cpu() on a blocking task we need
1523	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524	 * cpu.
1525	 *
1526	 * Since this is common to all placement strategies, this lives here.
1527	 *
1528	 * [ this allows ->select_task() to simply return task_cpu(p) and
1529	 *   not worry about this generic constraint ]
1530	 */
1531	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532		     !cpu_online(cpu)))
1533		cpu = select_fallback_rq(task_cpu(p), p);
1534
1535	return cpu;
1536}
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540	s64 diff = sample - *avg;
1541	*avg += diff >> 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542}
1543
1544#else
 
 
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547					 const struct cpumask *new_mask, bool check)
1548{
1549	return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
1552#endif /* CONFIG_SMP */
1553
1554static void
1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556{
1557#ifdef CONFIG_SCHEDSTATS
1558	struct rq *rq = this_rq();
 
 
 
 
1559
1560#ifdef CONFIG_SMP
1561	int this_cpu = smp_processor_id();
1562
1563	if (cpu == this_cpu) {
1564		schedstat_inc(rq, ttwu_local);
1565		schedstat_inc(p, se.statistics.nr_wakeups_local);
1566	} else {
1567		struct sched_domain *sd;
1568
1569		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570		rcu_read_lock();
1571		for_each_domain(this_cpu, sd) {
 
1572			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573				schedstat_inc(sd, ttwu_wake_remote);
1574				break;
1575			}
1576		}
1577		rcu_read_unlock();
1578	}
1579
1580	if (wake_flags & WF_MIGRATED)
1581		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
1583#endif /* CONFIG_SMP */
1584
1585	schedstat_inc(rq, ttwu_count);
1586	schedstat_inc(p, se.statistics.nr_wakeups);
1587
1588	if (wake_flags & WF_SYNC)
1589		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
 
 
 
1595{
1596	activate_task(rq, p, en_flags);
1597	p->on_rq = TASK_ON_RQ_QUEUED;
1598
1599	/* if a worker is waking up, notify workqueue */
1600	if (p->flags & PF_WQ_WORKER)
1601		wq_worker_waking_up(p, cpu_of(rq));
1602}
1603
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
1607static void
1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 
1609{
1610	check_preempt_curr(rq, p, wake_flags);
1611	p->state = TASK_RUNNING;
1612	trace_sched_wakeup(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613
1614#ifdef CONFIG_SMP
1615	if (p->sched_class->task_woken) {
1616		/*
1617		 * Our task @p is fully woken up and running; so its safe to
1618		 * drop the rq->lock, hereafter rq is only used for statistics.
1619		 */
1620		lockdep_unpin_lock(&rq->lock);
1621		p->sched_class->task_woken(rq, p);
1622		lockdep_pin_lock(&rq->lock);
1623	}
1624
1625	if (rq->idle_stamp) {
1626		u64 delta = rq_clock(rq) - rq->idle_stamp;
1627		u64 max = 2*rq->max_idle_balance_cost;
1628
1629		update_avg(&rq->avg_idle, delta);
1630
1631		if (rq->avg_idle > max)
1632			rq->avg_idle = max;
1633
1634		rq->idle_stamp = 0;
1635	}
1636#endif
1637}
1638
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641{
1642	lockdep_assert_held(&rq->lock);
1643
1644#ifdef CONFIG_SMP
1645	if (p->sched_contributes_to_load)
1646		rq->nr_uninterruptible--;
1647#endif
1648
1649	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650	ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
 
1661	struct rq *rq;
1662	int ret = 0;
1663
1664	rq = __task_rq_lock(p);
1665	if (task_on_rq_queued(p)) {
1666		/* check_preempt_curr() may use rq clock */
1667		update_rq_clock(rq);
1668		ttwu_do_wakeup(rq, p, wake_flags);
 
 
 
 
 
 
 
 
 
1669		ret = 1;
1670	}
1671	__task_rq_unlock(rq);
1672
1673	return ret;
1674}
1675
1676#ifdef CONFIG_SMP
1677void sched_ttwu_pending(void)
1678{
 
1679	struct rq *rq = this_rq();
1680	struct llist_node *llist = llist_del_all(&rq->wake_list);
1681	struct task_struct *p;
1682	unsigned long flags;
1683
1684	if (!llist)
1685		return;
1686
1687	raw_spin_lock_irqsave(&rq->lock, flags);
1688	lockdep_pin_lock(&rq->lock);
1689
1690	while (llist) {
1691		p = llist_entry(llist, struct task_struct, wake_entry);
1692		llist = llist_next(llist);
1693		ttwu_do_activate(rq, p, 0);
1694	}
1695
1696	lockdep_unpin_lock(&rq->lock);
1697	raw_spin_unlock_irqrestore(&rq->lock, flags);
1698}
1699
1700void scheduler_ipi(void)
1701{
1702	/*
1703	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705	 * this IPI.
1706	 */
1707	preempt_fold_need_resched();
1708
1709	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710		return;
1711
1712	/*
1713	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714	 * traditionally all their work was done from the interrupt return
1715	 * path. Now that we actually do some work, we need to make sure
1716	 * we do call them.
1717	 *
1718	 * Some archs already do call them, luckily irq_enter/exit nest
1719	 * properly.
1720	 *
1721	 * Arguably we should visit all archs and update all handlers,
1722	 * however a fair share of IPIs are still resched only so this would
1723	 * somewhat pessimize the simple resched case.
1724	 */
1725	irq_enter();
1726	sched_ttwu_pending();
 
1727
1728	/*
1729	 * Check if someone kicked us for doing the nohz idle load balance.
1730	 */
1731	if (unlikely(got_nohz_idle_kick())) {
1732		this_rq()->idle_balance = 1;
1733		raise_softirq_irqoff(SCHED_SOFTIRQ);
 
 
 
 
 
1734	}
1735	irq_exit();
 
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
 
 
 
 
 
 
1739{
1740	struct rq *rq = cpu_rq(cpu);
1741
1742	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743		if (!set_nr_if_polling(rq->idle))
1744			smp_send_reschedule(cpu);
1745		else
1746			trace_sched_wake_idle_without_ipi(cpu);
1747	}
1748}
1749
1750void wake_up_if_idle(int cpu)
1751{
1752	struct rq *rq = cpu_rq(cpu);
1753	unsigned long flags;
1754
1755	rcu_read_lock();
 
 
 
 
 
 
1756
1757	if (!is_idle_task(rcu_dereference(rq->curr)))
1758		goto out;
 
 
1759
1760	if (set_nr_if_polling(rq->idle)) {
1761		trace_sched_wake_idle_without_ipi(cpu);
1762	} else {
1763		raw_spin_lock_irqsave(&rq->lock, flags);
1764		if (is_idle_task(rq->curr))
1765			smp_send_reschedule(cpu);
1766		/* Else cpu is not in idle, do nothing here */
1767		raw_spin_unlock_irqrestore(&rq->lock, flags);
1768	}
1769
1770out:
1771	rcu_read_unlock();
1772}
1773
1774bool cpus_share_cache(int this_cpu, int that_cpu)
1775{
 
 
 
1776	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778#endif /* CONFIG_SMP */
1779
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782	struct rq *rq = cpu_rq(cpu);
 
1783
1784#if defined(CONFIG_SMP)
1785	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787		ttwu_queue_remote(p, cpu);
1788		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789	}
1790#endif
1791
1792	raw_spin_lock(&rq->lock);
1793	lockdep_pin_lock(&rq->lock);
1794	ttwu_do_activate(rq, p, 0);
1795	lockdep_unpin_lock(&rq->lock);
1796	raw_spin_unlock(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797}
1798
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 *  MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 *     rq(c1)->lock (if not at the same time, then in that order).
1813 *  C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 *   CPU0            CPU1            CPU2
1822 *
1823 *   LOCK rq(0)->lock
1824 *   sched-out X
1825 *   sched-in Y
1826 *   UNLOCK rq(0)->lock
1827 *
1828 *                                   LOCK rq(0)->lock // orders against CPU0
1829 *                                   dequeue X
1830 *                                   UNLOCK rq(0)->lock
1831 *
1832 *                                   LOCK rq(1)->lock
1833 *                                   enqueue X
1834 *                                   UNLOCK rq(1)->lock
1835 *
1836 *                   LOCK rq(1)->lock // orders against CPU2
1837 *                   sched-out Z
1838 *                   sched-in X
1839 *                   UNLOCK rq(1)->lock
1840 *
1841 *
1842 *  BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 *   1) smp_store_release(X->on_cpu, 0)
1849 *   2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 *   LOCK rq(0)->lock LOCK X->pi_lock
1856 *   dequeue X
1857 *   sched-out X
1858 *   smp_store_release(X->on_cpu, 0);
1859 *
1860 *                    smp_cond_acquire(!X->on_cpu);
1861 *                    X->state = WAKING
1862 *                    set_task_cpu(X,2)
1863 *
1864 *                    LOCK rq(2)->lock
1865 *                    enqueue X
1866 *                    X->state = RUNNING
1867 *                    UNLOCK rq(2)->lock
1868 *
1869 *                                          LOCK rq(2)->lock // orders against CPU1
1870 *                                          sched-out Z
1871 *                                          sched-in X
1872 *                                          UNLOCK rq(2)->lock
1873 *
1874 *                    UNLOCK X->pi_lock
1875 *   UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
1890/**
1891 * try_to_wake_up - wake up a thread
1892 * @p: the thread to be awakened
1893 * @state: the mask of task states that can be woken
1894 * @wake_flags: wake modifier flags (WF_*)
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901 *
1902 * Return: %true if @p was woken up, %false if it was already running.
1903 * or @state didn't match @p's state.
1904 */
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907{
1908	unsigned long flags;
1909	int cpu, success = 0;
1910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911	/*
1912	 * If we are going to wake up a thread waiting for CONDITION we
1913	 * need to ensure that CONDITION=1 done by the caller can not be
1914	 * reordered with p->state check below. This pairs with mb() in
1915	 * set_current_state() the waiting thread does.
1916	 */
1917	smp_mb__before_spinlock();
1918	raw_spin_lock_irqsave(&p->pi_lock, flags);
1919	if (!(p->state & state))
1920		goto out;
1921
1922	trace_sched_waking(p);
1923
1924	success = 1; /* we're going to change ->state */
1925	cpu = task_cpu(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926
1927	if (p->on_rq && ttwu_remote(p, wake_flags))
1928		goto stat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929
1930#ifdef CONFIG_SMP
1931	/*
1932	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933	 * possible to, falsely, observe p->on_cpu == 0.
1934	 *
1935	 * One must be running (->on_cpu == 1) in order to remove oneself
1936	 * from the runqueue.
1937	 *
1938	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1939	 *      UNLOCK rq->lock
1940	 *			RMB
1941	 *      LOCK   rq->lock
1942	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1943	 *
1944	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945	 * from the consecutive calls to schedule(); the first switching to our
1946	 * task, the second putting it to sleep.
1947	 */
1948	smp_rmb();
1949
1950	/*
1951	 * If the owning (remote) cpu is still in the middle of schedule() with
1952	 * this task as prev, wait until its done referencing the task.
1953	 *
1954	 * Pairs with the smp_store_release() in finish_lock_switch().
1955	 *
1956	 * This ensures that tasks getting woken will be fully ordered against
1957	 * their previous state and preserve Program Order.
1958	 */
1959	smp_cond_acquire(!p->on_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
1960
1961	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962	p->state = TASK_WAKING;
 
 
 
 
 
 
 
 
1963
1964	if (p->sched_class->task_waking)
1965		p->sched_class->task_waking(p);
 
 
 
 
1966
1967	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968	if (task_cpu(p) != cpu) {
1969		wake_flags |= WF_MIGRATED;
1970		set_task_cpu(p, cpu);
1971	}
 
1972#endif /* CONFIG_SMP */
1973
1974	ttwu_queue(p, cpu);
1975stat:
1976	if (schedstat_enabled())
1977		ttwu_stat(p, cpu, wake_flags);
1978out:
1979	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 
1980
1981	return success;
1982}
1983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
 
 
 
 
 
 
 
 
1987 *
1988 * Put @p on the run-queue if it's not already there. The caller must
1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990 * the current task.
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994	struct rq *rq = task_rq(p);
 
 
1995
1996	if (WARN_ON_ONCE(rq != this_rq()) ||
1997	    WARN_ON_ONCE(p == current))
1998		return;
1999
2000	lockdep_assert_held(&rq->lock);
 
2001
2002	if (!raw_spin_trylock(&p->pi_lock)) {
2003		/*
2004		 * This is OK, because current is on_cpu, which avoids it being
2005		 * picked for load-balance and preemption/IRQs are still
2006		 * disabled avoiding further scheduler activity on it and we've
2007		 * not yet picked a replacement task.
2008		 */
2009		lockdep_unpin_lock(&rq->lock);
2010		raw_spin_unlock(&rq->lock);
2011		raw_spin_lock(&p->pi_lock);
2012		raw_spin_lock(&rq->lock);
2013		lockdep_pin_lock(&rq->lock);
2014	}
 
2015
2016	if (!(p->state & TASK_NORMAL))
2017		goto out;
 
2018
2019	trace_sched_waking(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020
2021	if (!task_on_rq_queued(p))
2022		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
 
 
 
2023
2024	ttwu_do_wakeup(rq, p, 0);
2025	if (schedstat_enabled())
2026		ttwu_stat(p, smp_processor_id(), 0);
2027out:
2028	raw_spin_unlock(&p->pi_lock);
2029}
2030
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
2043int wake_up_process(struct task_struct *p)
2044{
2045	return try_to_wake_up(p, TASK_NORMAL, 0);
2046}
2047EXPORT_SYMBOL(wake_up_process);
2048
2049int wake_up_state(struct task_struct *p, unsigned int state)
2050{
2051	return try_to_wake_up(p, state, 0);
2052}
2053
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059	struct sched_dl_entity *dl_se = &p->dl;
2060
2061	dl_se->dl_runtime = 0;
2062	dl_se->dl_deadline = 0;
2063	dl_se->dl_period = 0;
2064	dl_se->flags = 0;
2065	dl_se->dl_bw = 0;
2066
2067	dl_se->dl_throttled = 0;
2068	dl_se->dl_yielded = 0;
2069}
2070
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
 
2076 */
2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078{
2079	p->on_rq			= 0;
2080
2081	p->se.on_rq			= 0;
2082	p->se.exec_start		= 0;
2083	p->se.sum_exec_runtime		= 0;
2084	p->se.prev_sum_exec_runtime	= 0;
2085	p->se.nr_migrations		= 0;
2086	p->se.vruntime			= 0;
 
2087	INIT_LIST_HEAD(&p->se.group_node);
2088
 
 
 
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090	p->se.cfs_rq			= NULL;
2091#endif
2092
2093#ifdef CONFIG_SCHEDSTATS
2094	/* Even if schedstat is disabled, there should not be garbage */
2095	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096#endif
2097
2098	RB_CLEAR_NODE(&p->dl.rb_node);
2099	init_dl_task_timer(&p->dl);
2100	__dl_clear_params(p);
2101
2102	INIT_LIST_HEAD(&p->rt.run_list);
2103	p->rt.timeout		= 0;
2104	p->rt.time_slice	= sched_rr_timeslice;
2105	p->rt.on_rq		= 0;
2106	p->rt.on_list		= 0;
2107
 
 
 
 
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109	INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115		p->mm->numa_scan_seq = 0;
2116	}
2117
2118	if (clone_flags & CLONE_VM)
2119		p->numa_preferred_nid = current->numa_preferred_nid;
2120	else
2121		p->numa_preferred_nid = -1;
2122
2123	p->node_stamp = 0ULL;
2124	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126	p->numa_work.next = &p->numa_work;
2127	p->numa_faults = NULL;
2128	p->last_task_numa_placement = 0;
2129	p->last_sum_exec_runtime = 0;
2130
2131	p->numa_group = NULL;
2132#endif /* CONFIG_NUMA_BALANCING */
2133}
2134
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
2137#ifdef CONFIG_NUMA_BALANCING
2138
2139void set_numabalancing_state(bool enabled)
 
 
2140{
2141	if (enabled)
2142		static_branch_enable(&sched_numa_balancing);
2143	else
2144		static_branch_disable(&sched_numa_balancing);
2145}
2146
 
 
 
 
 
 
 
 
 
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149			 void __user *buffer, size_t *lenp, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
2150{
2151	struct ctl_table t;
2152	int err;
2153	int state = static_branch_likely(&sched_numa_balancing);
2154
2155	if (write && !capable(CAP_SYS_ADMIN))
2156		return -EPERM;
2157
2158	t = *table;
2159	t.data = &state;
2160	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161	if (err < 0)
2162		return err;
2163	if (write)
2164		set_numabalancing_state(state);
 
 
 
 
 
2165	return err;
2166}
2167#endif
2168#endif
2169
 
 
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175	if (enabled)
2176		static_branch_enable(&sched_schedstats);
2177	else
2178		static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183	if (!schedstat_enabled()) {
2184		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185		static_branch_enable(&sched_schedstats);
2186	}
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191	int ret = 0;
2192	if (!str)
2193		goto out;
2194
2195	if (!strcmp(str, "enable")) {
2196		set_schedstats(true);
2197		ret = 1;
2198	} else if (!strcmp(str, "disable")) {
2199		set_schedstats(false);
2200		ret = 1;
2201	}
2202out:
2203	if (!ret)
2204		pr_warn("Unable to parse schedstats=\n");
2205
2206	return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212			 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214	struct ctl_table t;
2215	int err;
2216	int state = static_branch_likely(&sched_schedstats);
2217
2218	if (write && !capable(CAP_SYS_ADMIN))
2219		return -EPERM;
2220
2221	t = *table;
2222	t.data = &state;
2223	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224	if (err < 0)
2225		return err;
2226	if (write)
2227		set_schedstats(state);
2228	return err;
2229}
2230#endif
2231#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232
2233/*
2234 * fork()/clone()-time setup:
2235 */
2236int sched_fork(unsigned long clone_flags, struct task_struct *p)
2237{
2238	unsigned long flags;
2239	int cpu = get_cpu();
2240
2241	__sched_fork(clone_flags, p);
2242	/*
2243	 * We mark the process as running here. This guarantees that
2244	 * nobody will actually run it, and a signal or other external
2245	 * event cannot wake it up and insert it on the runqueue either.
2246	 */
2247	p->state = TASK_RUNNING;
2248
2249	/*
2250	 * Make sure we do not leak PI boosting priority to the child.
2251	 */
2252	p->prio = current->normal_prio;
2253
 
 
2254	/*
2255	 * Revert to default priority/policy on fork if requested.
2256	 */
2257	if (unlikely(p->sched_reset_on_fork)) {
2258		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2259			p->policy = SCHED_NORMAL;
2260			p->static_prio = NICE_TO_PRIO(0);
2261			p->rt_priority = 0;
2262		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2263			p->static_prio = NICE_TO_PRIO(0);
2264
2265		p->prio = p->normal_prio = __normal_prio(p);
2266		set_load_weight(p);
 
 
2267
2268		/*
2269		 * We don't need the reset flag anymore after the fork. It has
2270		 * fulfilled its duty:
2271		 */
2272		p->sched_reset_on_fork = 0;
2273	}
2274
2275	if (dl_prio(p->prio)) {
2276		put_cpu();
2277		return -EAGAIN;
2278	} else if (rt_prio(p->prio)) {
 
 
 
2279		p->sched_class = &rt_sched_class;
 
 
 
 
2280	} else {
2281		p->sched_class = &fair_sched_class;
2282	}
2283
2284	if (p->sched_class->task_fork)
2285		p->sched_class->task_fork(p);
2286
2287	/*
2288	 * The child is not yet in the pid-hash so no cgroup attach races,
2289	 * and the cgroup is pinned to this child due to cgroup_fork()
2290	 * is ran before sched_fork().
2291	 *
2292	 * Silence PROVE_RCU.
2293	 */
2294	raw_spin_lock_irqsave(&p->pi_lock, flags);
2295	set_task_cpu(p, cpu);
2296	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2297
2298#ifdef CONFIG_SCHED_INFO
2299	if (likely(sched_info_on()))
2300		memset(&p->sched_info, 0, sizeof(p->sched_info));
2301#endif
2302#if defined(CONFIG_SMP)
2303	p->on_cpu = 0;
2304#endif
2305	init_task_preempt_count(p);
2306#ifdef CONFIG_SMP
2307	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2308	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2309#endif
2310
2311	put_cpu();
2312	return 0;
2313}
2314
2315unsigned long to_ratio(u64 period, u64 runtime)
2316{
2317	if (runtime == RUNTIME_INF)
2318		return 1ULL << 20;
2319
2320	/*
2321	 * Doing this here saves a lot of checks in all
2322	 * the calling paths, and returning zero seems
2323	 * safe for them anyway.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2324	 */
2325	if (period == 0)
2326		return 0;
 
 
2327
2328	return div64_u64(runtime << 20, period);
2329}
2330
2331#ifdef CONFIG_SMP
2332inline struct dl_bw *dl_bw_of(int i)
2333{
2334	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335			 "sched RCU must be held");
2336	return &cpu_rq(i)->rd->dl_bw;
2337}
2338
2339static inline int dl_bw_cpus(int i)
2340{
2341	struct root_domain *rd = cpu_rq(i)->rd;
2342	int cpus = 0;
2343
2344	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345			 "sched RCU must be held");
2346	for_each_cpu_and(i, rd->span, cpu_active_mask)
2347		cpus++;
2348
2349	return cpus;
2350}
2351#else
2352inline struct dl_bw *dl_bw_of(int i)
2353{
2354	return &cpu_rq(i)->dl.dl_bw;
2355}
2356
2357static inline int dl_bw_cpus(int i)
2358{
2359	return 1;
2360}
2361#endif
2362
2363/*
2364 * We must be sure that accepting a new task (or allowing changing the
2365 * parameters of an existing one) is consistent with the bandwidth
2366 * constraints. If yes, this function also accordingly updates the currently
2367 * allocated bandwidth to reflect the new situation.
2368 *
2369 * This function is called while holding p's rq->lock.
2370 *
2371 * XXX we should delay bw change until the task's 0-lag point, see
2372 * __setparam_dl().
2373 */
2374static int dl_overflow(struct task_struct *p, int policy,
2375		       const struct sched_attr *attr)
2376{
2377
2378	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2379	u64 period = attr->sched_period ?: attr->sched_deadline;
2380	u64 runtime = attr->sched_runtime;
2381	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2382	int cpus, err = -1;
2383
2384	if (new_bw == p->dl.dl_bw)
2385		return 0;
2386
2387	/*
2388	 * Either if a task, enters, leave, or stays -deadline but changes
2389	 * its parameters, we may need to update accordingly the total
2390	 * allocated bandwidth of the container.
2391	 */
2392	raw_spin_lock(&dl_b->lock);
2393	cpus = dl_bw_cpus(task_cpu(p));
2394	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2395	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2396		__dl_add(dl_b, new_bw);
2397		err = 0;
2398	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2399		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2400		__dl_clear(dl_b, p->dl.dl_bw);
2401		__dl_add(dl_b, new_bw);
2402		err = 0;
2403	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2404		__dl_clear(dl_b, p->dl.dl_bw);
2405		err = 0;
2406	}
2407	raw_spin_unlock(&dl_b->lock);
2408
2409	return err;
2410}
2411
2412extern void init_dl_bw(struct dl_bw *dl_b);
2413
2414/*
2415 * wake_up_new_task - wake up a newly created task for the first time.
2416 *
2417 * This function will do some initial scheduler statistics housekeeping
2418 * that must be done for every newly created context, then puts the task
2419 * on the runqueue and wakes it.
2420 */
2421void wake_up_new_task(struct task_struct *p)
2422{
2423	unsigned long flags;
2424	struct rq *rq;
 
2425
2426	raw_spin_lock_irqsave(&p->pi_lock, flags);
2427	/* Initialize new task's runnable average */
2428	init_entity_runnable_average(&p->se);
2429#ifdef CONFIG_SMP
2430	/*
2431	 * Fork balancing, do it here and not earlier because:
2432	 *  - cpus_allowed can change in the fork path
2433	 *  - any previously selected cpu might disappear through hotplug
 
 
 
2434	 */
2435	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
 
 
2436#endif
 
 
 
2437
2438	rq = __task_rq_lock(p);
2439	activate_task(rq, p, 0);
2440	p->on_rq = TASK_ON_RQ_QUEUED;
2441	trace_sched_wakeup_new(p);
2442	check_preempt_curr(rq, p, WF_FORK);
2443#ifdef CONFIG_SMP
2444	if (p->sched_class->task_woken) {
2445		/*
2446		 * Nothing relies on rq->lock after this, so its fine to
2447		 * drop it.
2448		 */
2449		lockdep_unpin_lock(&rq->lock);
2450		p->sched_class->task_woken(rq, p);
2451		lockdep_pin_lock(&rq->lock);
2452	}
2453#endif
2454	task_rq_unlock(rq, p, &flags);
2455}
2456
2457#ifdef CONFIG_PREEMPT_NOTIFIERS
2458
2459static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460
2461void preempt_notifier_inc(void)
2462{
2463	static_key_slow_inc(&preempt_notifier_key);
2464}
2465EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466
2467void preempt_notifier_dec(void)
2468{
2469	static_key_slow_dec(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472
2473/**
2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2475 * @notifier: notifier struct to register
2476 */
2477void preempt_notifier_register(struct preempt_notifier *notifier)
2478{
2479	if (!static_key_false(&preempt_notifier_key))
2480		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481
2482	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2483}
2484EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485
2486/**
2487 * preempt_notifier_unregister - no longer interested in preemption notifications
2488 * @notifier: notifier struct to unregister
2489 *
2490 * This is *not* safe to call from within a preemption notifier.
2491 */
2492void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493{
2494	hlist_del(&notifier->link);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497
2498static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2499{
2500	struct preempt_notifier *notifier;
2501
2502	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
2506static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508	if (static_key_false(&preempt_notifier_key))
2509		__fire_sched_in_preempt_notifiers(curr);
2510}
2511
2512static void
2513__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514				   struct task_struct *next)
2515{
2516	struct preempt_notifier *notifier;
2517
2518	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2519		notifier->ops->sched_out(notifier, next);
2520}
2521
2522static __always_inline void
2523fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524				 struct task_struct *next)
2525{
2526	if (static_key_false(&preempt_notifier_key))
2527		__fire_sched_out_preempt_notifiers(curr, next);
2528}
2529
2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
2531
2532static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534}
2535
2536static inline void
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538				 struct task_struct *next)
2539{
2540}
2541
2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
2543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
2547 * @prev: the current task that is being switched out
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559		    struct task_struct *next)
2560{
 
2561	sched_info_switch(rq, prev, next);
2562	perf_event_task_sched_out(prev, next);
 
2563	fire_sched_out_preempt_notifiers(prev, next);
2564	prepare_lock_switch(rq, next);
 
2565	prepare_arch_switch(next);
2566}
2567
2568/**
2569 * finish_task_switch - clean up after a task-switch
2570 * @prev: the thread we just switched away from.
2571 *
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
2578 * so, we finish that here outside of the runqueue lock. (Doing it
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
2581 *
2582 * The context switch have flipped the stack from under us and restored the
2583 * local variables which were saved when this task called schedule() in the
2584 * past. prev == current is still correct but we need to recalculate this_rq
2585 * because prev may have moved to another CPU.
2586 */
2587static struct rq *finish_task_switch(struct task_struct *prev)
2588	__releases(rq->lock)
2589{
2590	struct rq *rq = this_rq();
2591	struct mm_struct *mm = rq->prev_mm;
2592	long prev_state;
2593
2594	/*
2595	 * The previous task will have left us with a preempt_count of 2
2596	 * because it left us after:
2597	 *
2598	 *	schedule()
2599	 *	  preempt_disable();			// 1
2600	 *	  __schedule()
2601	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2602	 *
2603	 * Also, see FORK_PREEMPT_COUNT.
2604	 */
2605	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606		      "corrupted preempt_count: %s/%d/0x%x\n",
2607		      current->comm, current->pid, preempt_count()))
2608		preempt_count_set(FORK_PREEMPT_COUNT);
2609
2610	rq->prev_mm = NULL;
2611
2612	/*
2613	 * A task struct has one reference for the use as "current".
2614	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2615	 * schedule one last time. The schedule call will never return, and
2616	 * the scheduled task must drop that reference.
2617	 *
2618	 * We must observe prev->state before clearing prev->on_cpu (in
2619	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620	 * running on another CPU and we could rave with its RUNNING -> DEAD
2621	 * transition, resulting in a double drop.
2622	 */
2623	prev_state = prev->state;
2624	vtime_task_switch(prev);
2625	perf_event_task_sched_in(prev, current);
2626	finish_lock_switch(rq, prev);
 
 
2627	finish_arch_post_lock_switch();
 
 
 
 
 
 
 
 
 
2628
2629	fire_sched_in_preempt_notifiers(current);
2630	if (mm)
2631		mmdrop(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2632	if (unlikely(prev_state == TASK_DEAD)) {
2633		if (prev->sched_class->task_dead)
2634			prev->sched_class->task_dead(prev);
2635
2636		/*
2637		 * Remove function-return probe instances associated with this
2638		 * task and put them back on the free list.
2639		 */
2640		kprobe_flush_task(prev);
2641		put_task_struct(prev);
2642	}
2643
2644	tick_nohz_task_switch();
2645	return rq;
2646}
2647
2648#ifdef CONFIG_SMP
2649
2650/* rq->lock is NOT held, but preemption is disabled */
2651static void __balance_callback(struct rq *rq)
2652{
2653	struct callback_head *head, *next;
2654	void (*func)(struct rq *rq);
2655	unsigned long flags;
2656
2657	raw_spin_lock_irqsave(&rq->lock, flags);
2658	head = rq->balance_callback;
2659	rq->balance_callback = NULL;
2660	while (head) {
2661		func = (void (*)(struct rq *))head->func;
2662		next = head->next;
2663		head->next = NULL;
2664		head = next;
2665
2666		func(rq);
2667	}
2668	raw_spin_unlock_irqrestore(&rq->lock, flags);
2669}
2670
2671static inline void balance_callback(struct rq *rq)
2672{
2673	if (unlikely(rq->balance_callback))
2674		__balance_callback(rq);
2675}
2676
2677#else
2678
2679static inline void balance_callback(struct rq *rq)
2680{
2681}
2682
2683#endif
2684
2685/**
2686 * schedule_tail - first thing a freshly forked thread must call.
2687 * @prev: the thread we just switched away from.
2688 */
2689asmlinkage __visible void schedule_tail(struct task_struct *prev)
2690	__releases(rq->lock)
2691{
2692	struct rq *rq;
2693
2694	/*
2695	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696	 * finish_task_switch() for details.
2697	 *
2698	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699	 * and the preempt_enable() will end up enabling preemption (on
2700	 * PREEMPT_COUNT kernels).
2701	 */
2702
2703	rq = finish_task_switch(prev);
2704	balance_callback(rq);
2705	preempt_enable();
2706
2707	if (current->set_child_tid)
2708		put_user(task_pid_vnr(current), current->set_child_tid);
 
 
2709}
2710
2711/*
2712 * context_switch - switch to the new MM and the new thread's register state.
2713 */
2714static __always_inline struct rq *
2715context_switch(struct rq *rq, struct task_struct *prev,
2716	       struct task_struct *next)
2717{
2718	struct mm_struct *mm, *oldmm;
2719
2720	prepare_task_switch(rq, prev, next);
2721
2722	mm = next->mm;
2723	oldmm = prev->active_mm;
2724	/*
2725	 * For paravirt, this is coupled with an exit in switch_to to
2726	 * combine the page table reload and the switch backend into
2727	 * one hypercall.
2728	 */
2729	arch_start_context_switch(prev);
2730
2731	if (!mm) {
2732		next->active_mm = oldmm;
2733		atomic_inc(&oldmm->mm_count);
2734		enter_lazy_tlb(oldmm, next);
2735	} else
2736		switch_mm(oldmm, mm, next);
2737
2738	if (!prev->mm) {
2739		prev->active_mm = NULL;
2740		rq->prev_mm = oldmm;
2741	}
2742	/*
2743	 * Since the runqueue lock will be released by the next
2744	 * task (which is an invalid locking op but in the case
2745	 * of the scheduler it's an obvious special-case), so we
2746	 * do an early lockdep release here:
 
 
 
 
2747	 */
2748	lockdep_unpin_lock(&rq->lock);
2749	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750
2751	/* Here we just switch the register state and the stack. */
2752	switch_to(prev, next, prev);
2753	barrier();
2754
2755	return finish_task_switch(prev);
2756}
2757
2758/*
2759 * nr_running and nr_context_switches:
2760 *
2761 * externally visible scheduler statistics: current number of runnable
2762 * threads, total number of context switches performed since bootup.
2763 */
2764unsigned long nr_running(void)
2765{
2766	unsigned long i, sum = 0;
2767
2768	for_each_online_cpu(i)
2769		sum += cpu_rq(i)->nr_running;
2770
2771	return sum;
2772}
2773
2774/*
2775 * Check if only the current task is running on the cpu.
2776 *
2777 * Caution: this function does not check that the caller has disabled
2778 * preemption, thus the result might have a time-of-check-to-time-of-use
2779 * race.  The caller is responsible to use it correctly, for example:
2780 *
2781 * - from a non-preemptable section (of course)
2782 *
2783 * - from a thread that is bound to a single CPU
2784 *
2785 * - in a loop with very short iterations (e.g. a polling loop)
2786 */
2787bool single_task_running(void)
2788{
2789	return raw_rq()->nr_running == 1;
2790}
2791EXPORT_SYMBOL(single_task_running);
2792
 
 
 
 
 
2793unsigned long long nr_context_switches(void)
2794{
2795	int i;
2796	unsigned long long sum = 0;
2797
2798	for_each_possible_cpu(i)
2799		sum += cpu_rq(i)->nr_switches;
2800
2801	return sum;
2802}
2803
2804unsigned long nr_iowait(void)
 
 
 
 
 
 
 
2805{
2806	unsigned long i, sum = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2807
2808	for_each_possible_cpu(i)
2809		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2810
2811	return sum;
2812}
2813
2814unsigned long nr_iowait_cpu(int cpu)
2815{
2816	struct rq *this = cpu_rq(cpu);
2817	return atomic_read(&this->nr_iowait);
2818}
2819
2820void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821{
2822	struct rq *rq = this_rq();
2823	*nr_waiters = atomic_read(&rq->nr_iowait);
2824	*load = rq->load.weight;
2825}
2826
2827#ifdef CONFIG_SMP
2828
2829/*
2830 * sched_exec - execve() is a valuable balancing opportunity, because at
2831 * this point the task has the smallest effective memory and cache footprint.
2832 */
2833void sched_exec(void)
2834{
2835	struct task_struct *p = current;
2836	unsigned long flags;
2837	int dest_cpu;
2838
2839	raw_spin_lock_irqsave(&p->pi_lock, flags);
2840	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2841	if (dest_cpu == smp_processor_id())
2842		goto unlock;
2843
2844	if (likely(cpu_active(dest_cpu))) {
2845		struct migration_arg arg = { p, dest_cpu };
2846
2847		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2849		return;
2850	}
2851unlock:
2852	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2853}
2854
2855#endif
2856
2857DEFINE_PER_CPU(struct kernel_stat, kstat);
2858DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2859
2860EXPORT_PER_CPU_SYMBOL(kstat);
2861EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2862
2863/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864 * Return accounted runtime for the task.
2865 * In case the task is currently running, return the runtime plus current's
2866 * pending runtime that have not been accounted yet.
2867 */
2868unsigned long long task_sched_runtime(struct task_struct *p)
2869{
2870	unsigned long flags;
2871	struct rq *rq;
2872	u64 ns;
2873
2874#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875	/*
2876	 * 64-bit doesn't need locks to atomically read a 64bit value.
2877	 * So we have a optimization chance when the task's delta_exec is 0.
2878	 * Reading ->on_cpu is racy, but this is ok.
2879	 *
2880	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881	 * If we race with it entering cpu, unaccounted time is 0. This is
2882	 * indistinguishable from the read occurring a few cycles earlier.
2883	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884	 * been accounted, so we're correct here as well.
2885	 */
2886	if (!p->on_cpu || !task_on_rq_queued(p))
2887		return p->se.sum_exec_runtime;
2888#endif
2889
2890	rq = task_rq_lock(p, &flags);
2891	/*
2892	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2893	 * project cycles that may never be accounted to this
2894	 * thread, breaking clock_gettime().
2895	 */
2896	if (task_current(rq, p) && task_on_rq_queued(p)) {
 
2897		update_rq_clock(rq);
2898		p->sched_class->update_curr(rq);
2899	}
2900	ns = p->se.sum_exec_runtime;
2901	task_rq_unlock(rq, p, &flags);
2902
2903	return ns;
2904}
2905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906/*
2907 * This function gets called by the timer code, with HZ frequency.
2908 * We call it with interrupts disabled.
2909 */
2910void scheduler_tick(void)
2911{
2912	int cpu = smp_processor_id();
2913	struct rq *rq = cpu_rq(cpu);
2914	struct task_struct *curr = rq->curr;
 
 
 
 
 
 
 
2915
2916	sched_clock_tick();
2917
2918	raw_spin_lock(&rq->lock);
 
 
 
 
2919	update_rq_clock(rq);
2920	curr->sched_class->task_tick(rq, curr, 0);
2921	update_cpu_load_active(rq);
 
 
 
 
 
 
 
2922	calc_global_load_tick(rq);
2923	raw_spin_unlock(&rq->lock);
 
 
 
 
 
 
 
2924
2925	perf_event_task_tick();
2926
 
 
 
2927#ifdef CONFIG_SMP
2928	rq->idle_balance = idle_cpu(cpu);
2929	trigger_load_balance(rq);
 
 
2930#endif
2931	rq_last_tick_reset(rq);
2932}
2933
2934#ifdef CONFIG_NO_HZ_FULL
2935/**
2936 * scheduler_tick_max_deferment
 
 
 
 
 
 
 
 
 
 
 
 
2937 *
2938 * Keep at least one tick per second when a single
2939 * active task is running because the scheduler doesn't
2940 * yet completely support full dynticks environment.
 
 
 
 
 
 
 
 
 
 
2941 *
2942 * This makes sure that uptime, CFS vruntime, load
2943 * balancing, etc... continue to move forward, even
2944 * with a very low granularity.
2945 *
2946 * Return: Maximum deferment in nanoseconds.
 
2947 */
2948u64 scheduler_tick_max_deferment(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2949{
2950	struct rq *rq = this_rq();
2951	unsigned long next, now = READ_ONCE(jiffies);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952
2953	next = rq->last_sched_tick + HZ;
2954
2955	if (time_before_eq(next, now))
2956		return 0;
 
 
 
 
 
2957
2958	return jiffies_to_nsecs(next - now);
 
 
 
 
2959}
 
 
 
 
2960#endif
2961
2962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963				defined(CONFIG_PREEMPT_TRACER))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964
2965void preempt_count_add(int val)
2966{
2967#ifdef CONFIG_DEBUG_PREEMPT
2968	/*
2969	 * Underflow?
2970	 */
2971	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2972		return;
2973#endif
2974	__preempt_count_add(val);
2975#ifdef CONFIG_DEBUG_PREEMPT
2976	/*
2977	 * Spinlock count overflowing soon?
2978	 */
2979	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2980				PREEMPT_MASK - 10);
2981#endif
2982	if (preempt_count() == val) {
2983		unsigned long ip = get_lock_parent_ip();
2984#ifdef CONFIG_DEBUG_PREEMPT
2985		current->preempt_disable_ip = ip;
2986#endif
2987		trace_preempt_off(CALLER_ADDR0, ip);
2988	}
2989}
2990EXPORT_SYMBOL(preempt_count_add);
2991NOKPROBE_SYMBOL(preempt_count_add);
2992
 
 
 
 
 
 
 
 
 
 
2993void preempt_count_sub(int val)
2994{
2995#ifdef CONFIG_DEBUG_PREEMPT
2996	/*
2997	 * Underflow?
2998	 */
2999	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3000		return;
3001	/*
3002	 * Is the spinlock portion underflowing?
3003	 */
3004	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3005			!(preempt_count() & PREEMPT_MASK)))
3006		return;
3007#endif
3008
3009	if (preempt_count() == val)
3010		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3011	__preempt_count_sub(val);
3012}
3013EXPORT_SYMBOL(preempt_count_sub);
3014NOKPROBE_SYMBOL(preempt_count_sub);
3015
 
 
 
3016#endif
3017
 
 
 
 
 
 
 
 
 
3018/*
3019 * Print scheduling while atomic bug:
3020 */
3021static noinline void __schedule_bug(struct task_struct *prev)
3022{
 
 
 
3023	if (oops_in_progress)
3024		return;
3025
3026	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3027		prev->comm, prev->pid, preempt_count());
3028
3029	debug_show_held_locks(prev);
3030	print_modules();
3031	if (irqs_disabled())
3032		print_irqtrace_events(prev);
3033#ifdef CONFIG_DEBUG_PREEMPT
3034	if (in_atomic_preempt_off()) {
3035		pr_err("Preemption disabled at:");
3036		print_ip_sym(current->preempt_disable_ip);
3037		pr_cont("\n");
3038	}
3039#endif
 
3040	dump_stack();
3041	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3042}
3043
3044/*
3045 * Various schedule()-time debugging checks and statistics:
3046 */
3047static inline void schedule_debug(struct task_struct *prev)
3048{
3049#ifdef CONFIG_SCHED_STACK_END_CHECK
3050	BUG_ON(task_stack_end_corrupted(prev));
 
 
 
 
 
 
 
 
 
 
 
 
 
3051#endif
3052
3053	if (unlikely(in_atomic_preempt_off())) {
3054		__schedule_bug(prev);
3055		preempt_count_set(PREEMPT_DISABLED);
3056	}
3057	rcu_sleep_check();
 
3058
3059	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3060
3061	schedstat_inc(this_rq(), sched_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062}
3063
3064/*
3065 * Pick up the highest-prio task:
3066 */
3067static inline struct task_struct *
3068pick_next_task(struct rq *rq, struct task_struct *prev)
3069{
3070	const struct sched_class *class = &fair_sched_class;
3071	struct task_struct *p;
3072
 
 
 
 
 
3073	/*
3074	 * Optimization: we know that if all tasks are in
3075	 * the fair class we can call that function directly:
 
 
3076	 */
3077	if (likely(prev->sched_class == class &&
3078		   rq->nr_running == rq->cfs.h_nr_running)) {
3079		p = fair_sched_class.pick_next_task(rq, prev);
 
3080		if (unlikely(p == RETRY_TASK))
3081			goto again;
3082
3083		/* assumes fair_sched_class->next == idle_sched_class */
3084		if (unlikely(!p))
3085			p = idle_sched_class.pick_next_task(rq, prev);
 
 
3086
3087		return p;
3088	}
3089
3090again:
3091	for_each_class(class) {
3092		p = class->pick_next_task(rq, prev);
3093		if (p) {
3094			if (unlikely(p == RETRY_TASK))
3095				goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096			return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3097		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098	}
3099
3100	BUG(); /* the idle class will always have a runnable task */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101}
3102
3103/*
3104 * __schedule() is the main scheduler function.
3105 *
3106 * The main means of driving the scheduler and thus entering this function are:
3107 *
3108 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3109 *
3110 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3111 *      paths. For example, see arch/x86/entry_64.S.
3112 *
3113 *      To drive preemption between tasks, the scheduler sets the flag in timer
3114 *      interrupt handler scheduler_tick().
3115 *
3116 *   3. Wakeups don't really cause entry into schedule(). They add a
3117 *      task to the run-queue and that's it.
3118 *
3119 *      Now, if the new task added to the run-queue preempts the current
3120 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3121 *      called on the nearest possible occasion:
3122 *
3123 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3124 *
3125 *         - in syscall or exception context, at the next outmost
3126 *           preempt_enable(). (this might be as soon as the wake_up()'s
3127 *           spin_unlock()!)
3128 *
3129 *         - in IRQ context, return from interrupt-handler to
3130 *           preemptible context
3131 *
3132 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3133 *         then at the next:
3134 *
3135 *          - cond_resched() call
3136 *          - explicit schedule() call
3137 *          - return from syscall or exception to user-space
3138 *          - return from interrupt-handler to user-space
3139 *
3140 * WARNING: must be called with preemption disabled!
3141 */
3142static void __sched notrace __schedule(bool preempt)
3143{
3144	struct task_struct *prev, *next;
 
 
 
 
 
3145	unsigned long *switch_count;
 
 
3146	struct rq *rq;
3147	int cpu;
3148
3149	cpu = smp_processor_id();
3150	rq = cpu_rq(cpu);
3151	prev = rq->curr;
3152
3153	/*
3154	 * do_exit() calls schedule() with preemption disabled as an exception;
3155	 * however we must fix that up, otherwise the next task will see an
3156	 * inconsistent (higher) preempt count.
3157	 *
3158	 * It also avoids the below schedule_debug() test from complaining
3159	 * about this.
3160	 */
3161	if (unlikely(prev->state == TASK_DEAD))
3162		preempt_enable_no_resched_notrace();
3163
3164	schedule_debug(prev);
3165
3166	if (sched_feat(HRTICK))
3167		hrtick_clear(rq);
3168
3169	local_irq_disable();
3170	rcu_note_context_switch();
3171
3172	/*
3173	 * Make sure that signal_pending_state()->signal_pending() below
3174	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3175	 * done by the caller to avoid the race with signal_wake_up().
 
 
 
 
 
 
 
 
 
 
 
 
3176	 */
3177	smp_mb__before_spinlock();
3178	raw_spin_lock(&rq->lock);
3179	lockdep_pin_lock(&rq->lock);
3180
3181	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
 
 
 
3182
3183	switch_count = &prev->nivcsw;
3184	if (!preempt && prev->state) {
3185		if (unlikely(signal_pending_state(prev->state, prev))) {
3186			prev->state = TASK_RUNNING;
3187		} else {
3188			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3189			prev->on_rq = 0;
3190
3191			/*
3192			 * If a worker went to sleep, notify and ask workqueue
3193			 * whether it wants to wake up a task to maintain
3194			 * concurrency.
3195			 */
3196			if (prev->flags & PF_WQ_WORKER) {
3197				struct task_struct *to_wakeup;
3198
3199				to_wakeup = wq_worker_sleeping(prev);
3200				if (to_wakeup)
3201					try_to_wake_up_local(to_wakeup);
3202			}
 
 
 
 
 
 
3203		}
 
 
3204		switch_count = &prev->nvcsw;
3205	}
3206
3207	if (task_on_rq_queued(prev))
3208		update_rq_clock(rq);
3209
3210	next = pick_next_task(rq, prev);
3211	clear_tsk_need_resched(prev);
3212	clear_preempt_need_resched();
3213	rq->clock_skip_update = 0;
 
 
3214
3215	if (likely(prev != next)) {
3216		rq->nr_switches++;
3217		rq->curr = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218		++*switch_count;
3219
3220		trace_sched_switch(preempt, prev, next);
3221		rq = context_switch(rq, prev, next); /* unlocks the rq */
 
 
 
 
 
 
 
3222	} else {
3223		lockdep_unpin_lock(&rq->lock);
3224		raw_spin_unlock_irq(&rq->lock);
 
3225	}
 
 
 
 
 
 
3226
3227	balance_callback(rq);
 
 
 
 
 
 
 
 
3228}
3229STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3230
3231static inline void sched_submit_work(struct task_struct *tsk)
3232{
3233	if (!tsk->state || tsk_is_pi_blocked(tsk))
3234		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235	/*
3236	 * If we are going to sleep and we have plugged IO queued,
3237	 * make sure to submit it to avoid deadlocks.
3238	 */
3239	if (blk_needs_flush_plug(tsk))
3240		blk_schedule_flush_plug(tsk);
 
3241}
3242
3243asmlinkage __visible void __sched schedule(void)
3244{
3245	struct task_struct *tsk = current;
 
 
 
 
 
 
 
 
3246
3247	sched_submit_work(tsk);
 
3248	do {
3249		preempt_disable();
3250		__schedule(false);
3251		sched_preempt_enable_no_resched();
3252	} while (need_resched());
3253}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254EXPORT_SYMBOL(schedule);
3255
3256#ifdef CONFIG_CONTEXT_TRACKING
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257asmlinkage __visible void __sched schedule_user(void)
3258{
3259	/*
3260	 * If we come here after a random call to set_need_resched(),
3261	 * or we have been woken up remotely but the IPI has not yet arrived,
3262	 * we haven't yet exited the RCU idle mode. Do it here manually until
3263	 * we find a better solution.
3264	 *
3265	 * NB: There are buggy callers of this function.  Ideally we
3266	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3267	 * too frequently to make sense yet.
3268	 */
3269	enum ctx_state prev_state = exception_enter();
3270	schedule();
3271	exception_exit(prev_state);
3272}
3273#endif
3274
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
3282	sched_preempt_enable_no_resched();
3283	schedule();
3284	preempt_disable();
3285}
3286
 
 
 
 
 
 
 
 
3287static void __sched notrace preempt_schedule_common(void)
3288{
3289	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
3290		preempt_disable_notrace();
3291		__schedule(true);
 
 
3292		preempt_enable_no_resched_notrace();
3293
3294		/*
3295		 * Check again in case we missed a preemption opportunity
3296		 * between schedule and now.
3297		 */
3298	} while (need_resched());
3299}
3300
3301#ifdef CONFIG_PREEMPT
3302/*
3303 * this is the entry point to schedule() from in-kernel preemption
3304 * off of preempt_enable. Kernel preemptions off return from interrupt
3305 * occur there and call schedule directly.
3306 */
3307asmlinkage __visible void __sched notrace preempt_schedule(void)
3308{
3309	/*
3310	 * If there is a non-zero preempt_count or interrupts are disabled,
3311	 * we do not want to preempt the current task. Just return..
3312	 */
3313	if (likely(!preemptible()))
3314		return;
3315
3316	preempt_schedule_common();
3317}
3318NOKPROBE_SYMBOL(preempt_schedule);
3319EXPORT_SYMBOL(preempt_schedule);
3320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3321/**
3322 * preempt_schedule_notrace - preempt_schedule called by tracing
3323 *
3324 * The tracing infrastructure uses preempt_enable_notrace to prevent
3325 * recursion and tracing preempt enabling caused by the tracing
3326 * infrastructure itself. But as tracing can happen in areas coming
3327 * from userspace or just about to enter userspace, a preempt enable
3328 * can occur before user_exit() is called. This will cause the scheduler
3329 * to be called when the system is still in usermode.
3330 *
3331 * To prevent this, the preempt_enable_notrace will use this function
3332 * instead of preempt_schedule() to exit user context if needed before
3333 * calling the scheduler.
3334 */
3335asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3336{
3337	enum ctx_state prev_ctx;
3338
3339	if (likely(!preemptible()))
3340		return;
3341
3342	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
3343		preempt_disable_notrace();
 
3344		/*
3345		 * Needs preempt disabled in case user_exit() is traced
3346		 * and the tracer calls preempt_enable_notrace() causing
3347		 * an infinite recursion.
3348		 */
3349		prev_ctx = exception_enter();
3350		__schedule(true);
3351		exception_exit(prev_ctx);
3352
 
3353		preempt_enable_no_resched_notrace();
3354	} while (need_resched());
3355}
3356EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3357
3358#endif /* CONFIG_PREEMPT */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359
3360/*
3361 * this is the entry point to schedule() from kernel preemption
3362 * off of irq context.
3363 * Note, that this is called and return with irqs disabled. This will
3364 * protect us against recursive calling from irq.
3365 */
3366asmlinkage __visible void __sched preempt_schedule_irq(void)
3367{
3368	enum ctx_state prev_state;
3369
3370	/* Catch callers which need to be fixed */
3371	BUG_ON(preempt_count() || !irqs_disabled());
3372
3373	prev_state = exception_enter();
3374
3375	do {
3376		preempt_disable();
3377		local_irq_enable();
3378		__schedule(true);
3379		local_irq_disable();
3380		sched_preempt_enable_no_resched();
3381	} while (need_resched());
3382
3383	exception_exit(prev_state);
3384}
3385
3386int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3387			  void *key)
3388{
 
3389	return try_to_wake_up(curr->private, mode, wake_flags);
3390}
3391EXPORT_SYMBOL(default_wake_function);
3392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3393#ifdef CONFIG_RT_MUTEXES
3394
3395/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396 * rt_mutex_setprio - set the current priority of a task
3397 * @p: task
3398 * @prio: prio value (kernel-internal form)
3399 *
3400 * This function changes the 'effective' priority of a task. It does
3401 * not touch ->normal_prio like __setscheduler().
3402 *
3403 * Used by the rt_mutex code to implement priority inheritance
3404 * logic. Call site only calls if the priority of the task changed.
3405 */
3406void rt_mutex_setprio(struct task_struct *p, int prio)
3407{
3408	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
 
 
 
3409	struct rq *rq;
3410	const struct sched_class *prev_class;
3411
3412	BUG_ON(prio > MAX_PRIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3413
3414	rq = __task_rq_lock(p);
 
 
 
 
3415
3416	/*
3417	 * Idle task boosting is a nono in general. There is one
3418	 * exception, when PREEMPT_RT and NOHZ is active:
3419	 *
3420	 * The idle task calls get_next_timer_interrupt() and holds
3421	 * the timer wheel base->lock on the CPU and another CPU wants
3422	 * to access the timer (probably to cancel it). We can safely
3423	 * ignore the boosting request, as the idle CPU runs this code
3424	 * with interrupts disabled and will complete the lock
3425	 * protected section without being interrupted. So there is no
3426	 * real need to boost.
3427	 */
3428	if (unlikely(p == rq->idle)) {
3429		WARN_ON(p != rq->curr);
3430		WARN_ON(p->pi_blocked_on);
3431		goto out_unlock;
3432	}
3433
3434	trace_sched_pi_setprio(p, prio);
3435	oldprio = p->prio;
3436
3437	if (oldprio == prio)
3438		queue_flag &= ~DEQUEUE_MOVE;
3439
3440	prev_class = p->sched_class;
 
 
 
 
 
3441	queued = task_on_rq_queued(p);
3442	running = task_current(rq, p);
3443	if (queued)
3444		dequeue_task(rq, p, queue_flag);
3445	if (running)
3446		put_prev_task(rq, p);
3447
3448	/*
3449	 * Boosting condition are:
3450	 * 1. -rt task is running and holds mutex A
3451	 *      --> -dl task blocks on mutex A
3452	 *
3453	 * 2. -dl task is running and holds mutex A
3454	 *      --> -dl task blocks on mutex A and could preempt the
3455	 *          running task
3456	 */
3457	if (dl_prio(prio)) {
3458		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3459		if (!dl_prio(p->normal_prio) ||
3460		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3461			p->dl.dl_boosted = 1;
 
3462			queue_flag |= ENQUEUE_REPLENISH;
3463		} else
3464			p->dl.dl_boosted = 0;
3465		p->sched_class = &dl_sched_class;
3466	} else if (rt_prio(prio)) {
3467		if (dl_prio(oldprio))
3468			p->dl.dl_boosted = 0;
3469		if (oldprio < prio)
3470			queue_flag |= ENQUEUE_HEAD;
3471		p->sched_class = &rt_sched_class;
3472	} else {
3473		if (dl_prio(oldprio))
3474			p->dl.dl_boosted = 0;
3475		if (rt_prio(oldprio))
3476			p->rt.timeout = 0;
3477		p->sched_class = &fair_sched_class;
3478	}
3479
 
3480	p->prio = prio;
3481
3482	if (running)
3483		p->sched_class->set_curr_task(rq);
3484	if (queued)
3485		enqueue_task(rq, p, queue_flag);
 
 
3486
3487	check_class_changed(rq, p, prev_class, oldprio);
3488out_unlock:
3489	preempt_disable(); /* avoid rq from going away on us */
3490	__task_rq_unlock(rq);
 
 
 
 
3491
3492	balance_callback(rq);
3493	preempt_enable();
3494}
3495#endif
3496
3497void set_user_nice(struct task_struct *p, long nice)
 
3498{
3499	int old_prio, delta, queued;
3500	unsigned long flags;
3501	struct rq *rq;
3502
3503	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3504		return;
3505	/*
3506	 * We have to be careful, if called from sys_setpriority(),
3507	 * the task might be in the middle of scheduling on another CPU.
3508	 */
3509	rq = task_rq_lock(p, &flags);
3510	/*
3511	 * The RT priorities are set via sched_setscheduler(), but we still
3512	 * allow the 'normal' nice value to be set - but as expected
3513	 * it wont have any effect on scheduling until the task is
3514	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3515	 */
3516	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3517		p->static_prio = NICE_TO_PRIO(nice);
3518		goto out_unlock;
3519	}
3520	queued = task_on_rq_queued(p);
3521	if (queued)
3522		dequeue_task(rq, p, DEQUEUE_SAVE);
3523
3524	p->static_prio = NICE_TO_PRIO(nice);
3525	set_load_weight(p);
3526	old_prio = p->prio;
3527	p->prio = effective_prio(p);
3528	delta = p->prio - old_prio;
3529
3530	if (queued) {
3531		enqueue_task(rq, p, ENQUEUE_RESTORE);
3532		/*
3533		 * If the task increased its priority or is running and
3534		 * lowered its priority, then reschedule its CPU:
3535		 */
3536		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3537			resched_curr(rq);
3538	}
3539out_unlock:
3540	task_rq_unlock(rq, p, &flags);
3541}
3542EXPORT_SYMBOL(set_user_nice);
3543
3544/*
3545 * can_nice - check if a task can reduce its nice value
3546 * @p: task
3547 * @nice: nice value
3548 */
3549int can_nice(const struct task_struct *p, const int nice)
3550{
3551	/* convert nice value [19,-20] to rlimit style value [1,40] */
3552	int nice_rlim = nice_to_rlimit(nice);
3553
3554	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3555		capable(CAP_SYS_NICE));
3556}
3557
3558#ifdef __ARCH_WANT_SYS_NICE
3559
3560/*
3561 * sys_nice - change the priority of the current process.
3562 * @increment: priority increment
3563 *
3564 * sys_setpriority is a more generic, but much slower function that
3565 * does similar things.
3566 */
3567SYSCALL_DEFINE1(nice, int, increment)
3568{
3569	long nice, retval;
3570
3571	/*
3572	 * Setpriority might change our priority at the same moment.
3573	 * We don't have to worry. Conceptually one call occurs first
3574	 * and we have a single winner.
 
 
 
 
 
 
3575	 */
3576	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3577	nice = task_nice(current) + increment;
3578
3579	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3580	if (increment < 0 && !can_nice(current, nice))
3581		return -EPERM;
3582
3583	retval = security_task_setnice(current, nice);
3584	if (retval)
3585		return retval;
3586
3587	set_user_nice(current, nice);
3588	return 0;
3589}
3590
3591#endif
3592
3593/**
3594 * task_prio - return the priority value of a given task.
3595 * @p: the task in question.
3596 *
3597 * Return: The priority value as seen by users in /proc.
3598 * RT tasks are offset by -200. Normal tasks are centered
3599 * around 0, value goes from -16 to +15.
3600 */
3601int task_prio(const struct task_struct *p)
 
 
 
 
 
3602{
3603	return p->prio - MAX_RT_PRIO;
 
 
 
3604}
 
3605
3606/**
3607 * idle_cpu - is a given cpu idle currently?
3608 * @cpu: the processor in question.
3609 *
3610 * Return: 1 if the CPU is currently idle. 0 otherwise.
3611 */
3612int idle_cpu(int cpu)
3613{
3614	struct rq *rq = cpu_rq(cpu);
3615
3616	if (rq->curr != rq->idle)
3617		return 0;
3618
3619	if (rq->nr_running)
3620		return 0;
3621
3622#ifdef CONFIG_SMP
3623	if (!llist_empty(&rq->wake_list))
3624		return 0;
 
 
 
 
3625#endif
3626
3627	return 1;
3628}
3629
3630/**
3631 * idle_task - return the idle task for a given cpu.
3632 * @cpu: the processor in question.
3633 *
3634 * Return: The idle task for the cpu @cpu.
3635 */
3636struct task_struct *idle_task(int cpu)
3637{
3638	return cpu_rq(cpu)->idle;
3639}
3640
3641/**
3642 * find_process_by_pid - find a process with a matching PID value.
3643 * @pid: the pid in question.
3644 *
3645 * The task of @pid, if found. %NULL otherwise.
3646 */
3647static struct task_struct *find_process_by_pid(pid_t pid)
3648{
3649	return pid ? find_task_by_vpid(pid) : current;
3650}
3651
3652/*
3653 * This function initializes the sched_dl_entity of a newly becoming
3654 * SCHED_DEADLINE task.
3655 *
3656 * Only the static values are considered here, the actual runtime and the
3657 * absolute deadline will be properly calculated when the task is enqueued
3658 * for the first time with its new policy.
3659 */
3660static void
3661__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3662{
3663	struct sched_dl_entity *dl_se = &p->dl;
 
3664
3665	dl_se->dl_runtime = attr->sched_runtime;
3666	dl_se->dl_deadline = attr->sched_deadline;
3667	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3668	dl_se->flags = attr->sched_flags;
3669	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3670
3671	/*
3672	 * Changing the parameters of a task is 'tricky' and we're not doing
3673	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3674	 *
3675	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3676	 * point. This would include retaining the task_struct until that time
3677	 * and change dl_overflow() to not immediately decrement the current
3678	 * amount.
3679	 *
3680	 * Instead we retain the current runtime/deadline and let the new
3681	 * parameters take effect after the current reservation period lapses.
3682	 * This is safe (albeit pessimistic) because the 0-lag point is always
3683	 * before the current scheduling deadline.
3684	 *
3685	 * We can still have temporary overloads because we do not delay the
3686	 * change in bandwidth until that time; so admission control is
3687	 * not on the safe side. It does however guarantee tasks will never
3688	 * consume more than promised.
3689	 */
3690}
 
3691
3692/*
3693 * sched_setparam() passes in -1 for its policy, to let the functions
3694 * it calls know not to change it.
3695 */
3696#define SETPARAM_POLICY	-1
3697
3698static void __setscheduler_params(struct task_struct *p,
3699		const struct sched_attr *attr)
3700{
3701	int policy = attr->sched_policy;
 
3702
3703	if (policy == SETPARAM_POLICY)
3704		policy = p->policy;
3705
3706	p->policy = policy;
3707
3708	if (dl_policy(policy))
3709		__setparam_dl(p, attr);
3710	else if (fair_policy(policy))
3711		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3712
3713	/*
3714	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3715	 * !rt_policy. Always setting this ensures that things like
3716	 * getparam()/getattr() don't report silly values for !rt tasks.
3717	 */
3718	p->rt_priority = attr->sched_priority;
3719	p->normal_prio = normal_prio(p);
3720	set_load_weight(p);
3721}
 
3722
3723/* Actually do priority change: must hold pi & rq lock. */
3724static void __setscheduler(struct rq *rq, struct task_struct *p,
3725			   const struct sched_attr *attr, bool keep_boost)
3726{
3727	__setscheduler_params(p, attr);
 
3728
3729	/*
3730	 * Keep a potential priority boosting if called from
3731	 * sched_setscheduler().
3732	 */
3733	if (keep_boost)
3734		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3735	else
3736		p->prio = normal_prio(p);
3737
3738	if (dl_prio(p->prio))
3739		p->sched_class = &dl_sched_class;
3740	else if (rt_prio(p->prio))
3741		p->sched_class = &rt_sched_class;
3742	else
3743		p->sched_class = &fair_sched_class;
 
 
3744}
 
3745
3746static void
3747__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3748{
3749	struct sched_dl_entity *dl_se = &p->dl;
3750
3751	attr->sched_priority = p->rt_priority;
3752	attr->sched_runtime = dl_se->dl_runtime;
3753	attr->sched_deadline = dl_se->dl_deadline;
3754	attr->sched_period = dl_se->dl_period;
3755	attr->sched_flags = dl_se->flags;
3756}
3757
3758/*
3759 * This function validates the new parameters of a -deadline task.
3760 * We ask for the deadline not being zero, and greater or equal
3761 * than the runtime, as well as the period of being zero or
3762 * greater than deadline. Furthermore, we have to be sure that
3763 * user parameters are above the internal resolution of 1us (we
3764 * check sched_runtime only since it is always the smaller one) and
3765 * below 2^63 ns (we have to check both sched_deadline and
3766 * sched_period, as the latter can be zero).
3767 */
3768static bool
3769__checkparam_dl(const struct sched_attr *attr)
3770{
3771	/* deadline != 0 */
3772	if (attr->sched_deadline == 0)
3773		return false;
3774
3775	/*
3776	 * Since we truncate DL_SCALE bits, make sure we're at least
3777	 * that big.
3778	 */
3779	if (attr->sched_runtime < (1ULL << DL_SCALE))
3780		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3781
3782	/*
3783	 * Since we use the MSB for wrap-around and sign issues, make
3784	 * sure it's not set (mind that period can be equal to zero).
3785	 */
3786	if (attr->sched_deadline & (1ULL << 63) ||
3787	    attr->sched_period & (1ULL << 63))
3788		return false;
3789
3790	/* runtime <= deadline <= period (if period != 0) */
3791	if ((attr->sched_period != 0 &&
3792	     attr->sched_period < attr->sched_deadline) ||
3793	    attr->sched_deadline < attr->sched_runtime)
3794		return false;
3795
3796	return true;
3797}
3798
3799/*
3800 * check the target process has a UID that matches the current process's
3801 */
3802static bool check_same_owner(struct task_struct *p)
3803{
3804	const struct cred *cred = current_cred(), *pcred;
3805	bool match;
 
3806
3807	rcu_read_lock();
3808	pcred = __task_cred(p);
3809	match = (uid_eq(cred->euid, pcred->euid) ||
3810		 uid_eq(cred->euid, pcred->uid));
3811	rcu_read_unlock();
3812	return match;
3813}
3814
3815static bool dl_param_changed(struct task_struct *p,
3816		const struct sched_attr *attr)
3817{
3818	struct sched_dl_entity *dl_se = &p->dl;
3819
3820	if (dl_se->dl_runtime != attr->sched_runtime ||
3821		dl_se->dl_deadline != attr->sched_deadline ||
3822		dl_se->dl_period != attr->sched_period ||
3823		dl_se->flags != attr->sched_flags)
3824		return true;
3825
3826	return false;
3827}
3828
3829static int __sched_setscheduler(struct task_struct *p,
3830				const struct sched_attr *attr,
3831				bool user, bool pi)
3832{
3833	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3834		      MAX_RT_PRIO - 1 - attr->sched_priority;
3835	int retval, oldprio, oldpolicy = -1, queued, running;
3836	int new_effective_prio, policy = attr->sched_policy;
3837	unsigned long flags;
3838	const struct sched_class *prev_class;
3839	struct rq *rq;
3840	int reset_on_fork;
3841	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3842
3843	/* may grab non-irq protected spin_locks */
3844	BUG_ON(in_interrupt());
3845recheck:
3846	/* double check policy once rq lock held */
3847	if (policy < 0) {
3848		reset_on_fork = p->sched_reset_on_fork;
3849		policy = oldpolicy = p->policy;
3850	} else {
3851		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3852
3853		if (!valid_policy(policy))
3854			return -EINVAL;
3855	}
3856
3857	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3858		return -EINVAL;
3859
3860	/*
3861	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3862	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863	 * SCHED_BATCH and SCHED_IDLE is 0.
3864	 */
3865	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3866	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3867		return -EINVAL;
3868	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3869	    (rt_policy(policy) != (attr->sched_priority != 0)))
3870		return -EINVAL;
3871
3872	/*
3873	 * Allow unprivileged RT tasks to decrease priority:
3874	 */
3875	if (user && !capable(CAP_SYS_NICE)) {
3876		if (fair_policy(policy)) {
3877			if (attr->sched_nice < task_nice(p) &&
3878			    !can_nice(p, attr->sched_nice))
3879				return -EPERM;
3880		}
3881
3882		if (rt_policy(policy)) {
3883			unsigned long rlim_rtprio =
3884					task_rlimit(p, RLIMIT_RTPRIO);
3885
3886			/* can't set/change the rt policy */
3887			if (policy != p->policy && !rlim_rtprio)
3888				return -EPERM;
3889
3890			/* can't increase priority */
3891			if (attr->sched_priority > p->rt_priority &&
3892			    attr->sched_priority > rlim_rtprio)
3893				return -EPERM;
3894		}
3895
3896		 /*
3897		  * Can't set/change SCHED_DEADLINE policy at all for now
3898		  * (safest behavior); in the future we would like to allow
3899		  * unprivileged DL tasks to increase their relative deadline
3900		  * or reduce their runtime (both ways reducing utilization)
3901		  */
3902		if (dl_policy(policy))
3903			return -EPERM;
3904
3905		/*
3906		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3907		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3908		 */
3909		if (idle_policy(p->policy) && !idle_policy(policy)) {
3910			if (!can_nice(p, task_nice(p)))
3911				return -EPERM;
3912		}
3913
3914		/* can't change other user's priorities */
3915		if (!check_same_owner(p))
3916			return -EPERM;
3917
3918		/* Normal users shall not reset the sched_reset_on_fork flag */
3919		if (p->sched_reset_on_fork && !reset_on_fork)
3920			return -EPERM;
3921	}
3922
3923	if (user) {
3924		retval = security_task_setscheduler(p);
3925		if (retval)
3926			return retval;
3927	}
3928
3929	/*
3930	 * make sure no PI-waiters arrive (or leave) while we are
3931	 * changing the priority of the task:
3932	 *
3933	 * To be able to change p->policy safely, the appropriate
3934	 * runqueue lock must be held.
3935	 */
3936	rq = task_rq_lock(p, &flags);
3937
3938	/*
3939	 * Changing the policy of the stop threads its a very bad idea
3940	 */
3941	if (p == rq->stop) {
3942		task_rq_unlock(rq, p, &flags);
3943		return -EINVAL;
3944	}
3945
3946	/*
3947	 * If not changing anything there's no need to proceed further,
3948	 * but store a possible modification of reset_on_fork.
3949	 */
3950	if (unlikely(policy == p->policy)) {
3951		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3952			goto change;
3953		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3954			goto change;
3955		if (dl_policy(policy) && dl_param_changed(p, attr))
3956			goto change;
3957
3958		p->sched_reset_on_fork = reset_on_fork;
3959		task_rq_unlock(rq, p, &flags);
3960		return 0;
3961	}
3962change:
3963
3964	if (user) {
3965#ifdef CONFIG_RT_GROUP_SCHED
3966		/*
3967		 * Do not allow realtime tasks into groups that have no runtime
3968		 * assigned.
3969		 */
3970		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3971				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3972				!task_group_is_autogroup(task_group(p))) {
3973			task_rq_unlock(rq, p, &flags);
3974			return -EPERM;
3975		}
3976#endif
3977#ifdef CONFIG_SMP
3978		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3979			cpumask_t *span = rq->rd->span;
3980
3981			/*
3982			 * Don't allow tasks with an affinity mask smaller than
3983			 * the entire root_domain to become SCHED_DEADLINE. We
3984			 * will also fail if there's no bandwidth available.
3985			 */
3986			if (!cpumask_subset(span, &p->cpus_allowed) ||
3987			    rq->rd->dl_bw.bw == 0) {
3988				task_rq_unlock(rq, p, &flags);
3989				return -EPERM;
3990			}
3991		}
3992#endif
3993	}
3994
3995	/* recheck policy now with rq lock held */
3996	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3997		policy = oldpolicy = -1;
3998		task_rq_unlock(rq, p, &flags);
3999		goto recheck;
4000	}
4001
 
 
4002	/*
4003	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4004	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4005	 * is available.
4006	 */
4007	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4008		task_rq_unlock(rq, p, &flags);
4009		return -EBUSY;
4010	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4011
4012	p->sched_reset_on_fork = reset_on_fork;
4013	oldprio = p->prio;
 
 
 
 
 
 
 
 
 
4014
4015	if (pi) {
4016		/*
4017		 * Take priority boosted tasks into account. If the new
4018		 * effective priority is unchanged, we just store the new
4019		 * normal parameters and do not touch the scheduler class and
4020		 * the runqueue. This will be done when the task deboost
4021		 * itself.
4022		 */
4023		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4024		if (new_effective_prio == oldprio)
4025			queue_flags &= ~DEQUEUE_MOVE;
4026	}
4027
4028	queued = task_on_rq_queued(p);
4029	running = task_current(rq, p);
4030	if (queued)
4031		dequeue_task(rq, p, queue_flags);
4032	if (running)
4033		put_prev_task(rq, p);
4034
4035	prev_class = p->sched_class;
4036	__setscheduler(rq, p, attr, pi);
4037
4038	if (running)
4039		p->sched_class->set_curr_task(rq);
4040	if (queued) {
4041		/*
4042		 * We enqueue to tail when the priority of a task is
4043		 * increased (user space view).
4044		 */
4045		if (oldprio < p->prio)
4046			queue_flags |= ENQUEUE_HEAD;
4047
4048		enqueue_task(rq, p, queue_flags);
4049	}
4050
4051	check_class_changed(rq, p, prev_class, oldprio);
4052	preempt_disable(); /* avoid rq from going away on us */
4053	task_rq_unlock(rq, p, &flags);
4054
4055	if (pi)
4056		rt_mutex_adjust_pi(p);
4057
4058	/*
4059	 * Run balance callbacks after we've adjusted the PI chain.
4060	 */
4061	balance_callback(rq);
4062	preempt_enable();
4063
4064	return 0;
4065}
4066
4067static int _sched_setscheduler(struct task_struct *p, int policy,
4068			       const struct sched_param *param, bool check)
4069{
4070	struct sched_attr attr = {
4071		.sched_policy   = policy,
4072		.sched_priority = param->sched_priority,
4073		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4074	};
4075
4076	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4077	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4078		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4079		policy &= ~SCHED_RESET_ON_FORK;
4080		attr.sched_policy = policy;
4081	}
4082
4083	return __sched_setscheduler(p, &attr, check, true);
4084}
4085/**
4086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4090 *
4091 * Return: 0 on success. An error code otherwise.
4092 *
4093 * NOTE that the task may be already dead.
4094 */
4095int sched_setscheduler(struct task_struct *p, int policy,
4096		       const struct sched_param *param)
4097{
4098	return _sched_setscheduler(p, policy, param, true);
4099}
4100EXPORT_SYMBOL_GPL(sched_setscheduler);
4101
4102int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4103{
4104	return __sched_setscheduler(p, attr, true, true);
4105}
4106EXPORT_SYMBOL_GPL(sched_setattr);
4107
4108/**
4109 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4110 * @p: the task in question.
4111 * @policy: new policy.
4112 * @param: structure containing the new RT priority.
4113 *
4114 * Just like sched_setscheduler, only don't bother checking if the
4115 * current context has permission.  For example, this is needed in
4116 * stop_machine(): we create temporary high priority worker threads,
4117 * but our caller might not have that capability.
4118 *
4119 * Return: 0 on success. An error code otherwise.
4120 */
4121int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4122			       const struct sched_param *param)
4123{
4124	return _sched_setscheduler(p, policy, param, false);
 
4125}
4126EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4127
4128static int
4129do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4130{
4131	struct sched_param lparam;
4132	struct task_struct *p;
4133	int retval;
4134
4135	if (!param || pid < 0)
4136		return -EINVAL;
4137	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138		return -EFAULT;
4139
4140	rcu_read_lock();
4141	retval = -ESRCH;
4142	p = find_process_by_pid(pid);
4143	if (p != NULL)
4144		retval = sched_setscheduler(p, policy, &lparam);
4145	rcu_read_unlock();
4146
4147	return retval;
4148}
4149
4150/*
4151 * Mimics kernel/events/core.c perf_copy_attr().
4152 */
4153static int sched_copy_attr(struct sched_attr __user *uattr,
4154			   struct sched_attr *attr)
4155{
4156	u32 size;
4157	int ret;
4158
4159	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4160		return -EFAULT;
4161
4162	/*
4163	 * zero the full structure, so that a short copy will be nice.
4164	 */
4165	memset(attr, 0, sizeof(*attr));
4166
4167	ret = get_user(size, &uattr->size);
4168	if (ret)
4169		return ret;
4170
4171	if (size > PAGE_SIZE)	/* silly large */
4172		goto err_size;
4173
4174	if (!size)		/* abi compat */
4175		size = SCHED_ATTR_SIZE_VER0;
4176
4177	if (size < SCHED_ATTR_SIZE_VER0)
4178		goto err_size;
4179
4180	/*
4181	 * If we're handed a bigger struct than we know of,
4182	 * ensure all the unknown bits are 0 - i.e. new
4183	 * user-space does not rely on any kernel feature
4184	 * extensions we dont know about yet.
4185	 */
4186	if (size > sizeof(*attr)) {
4187		unsigned char __user *addr;
4188		unsigned char __user *end;
4189		unsigned char val;
4190
4191		addr = (void __user *)uattr + sizeof(*attr);
4192		end  = (void __user *)uattr + size;
4193
4194		for (; addr < end; addr++) {
4195			ret = get_user(val, addr);
4196			if (ret)
4197				return ret;
4198			if (val)
4199				goto err_size;
4200		}
4201		size = sizeof(*attr);
4202	}
4203
4204	ret = copy_from_user(attr, uattr, size);
4205	if (ret)
4206		return -EFAULT;
4207
4208	/*
4209	 * XXX: do we want to be lenient like existing syscalls; or do we want
4210	 * to be strict and return an error on out-of-bounds values?
4211	 */
4212	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4213
4214	return 0;
4215
4216err_size:
4217	put_user(sizeof(*attr), &uattr->size);
4218	return -E2BIG;
4219}
4220
4221/**
4222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4223 * @pid: the pid in question.
4224 * @policy: new policy.
4225 * @param: structure containing the new RT priority.
4226 *
4227 * Return: 0 on success. An error code otherwise.
4228 */
4229SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4230		struct sched_param __user *, param)
4231{
4232	/* negative values for policy are not valid */
4233	if (policy < 0)
4234		return -EINVAL;
4235
4236	return do_sched_setscheduler(pid, policy, param);
4237}
4238
4239/**
4240 * sys_sched_setparam - set/change the RT priority of a thread
4241 * @pid: the pid in question.
4242 * @param: structure containing the new RT priority.
4243 *
4244 * Return: 0 on success. An error code otherwise.
4245 */
4246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4247{
4248	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4249}
4250
4251/**
4252 * sys_sched_setattr - same as above, but with extended sched_attr
4253 * @pid: the pid in question.
4254 * @uattr: structure containing the extended parameters.
4255 * @flags: for future extension.
4256 */
4257SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4258			       unsigned int, flags)
4259{
4260	struct sched_attr attr;
4261	struct task_struct *p;
4262	int retval;
4263
4264	if (!uattr || pid < 0 || flags)
4265		return -EINVAL;
4266
4267	retval = sched_copy_attr(uattr, &attr);
4268	if (retval)
4269		return retval;
4270
4271	if ((int)attr.sched_policy < 0)
4272		return -EINVAL;
4273
4274	rcu_read_lock();
4275	retval = -ESRCH;
4276	p = find_process_by_pid(pid);
4277	if (p != NULL)
4278		retval = sched_setattr(p, &attr);
4279	rcu_read_unlock();
4280
4281	return retval;
4282}
4283
4284/**
4285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4286 * @pid: the pid in question.
4287 *
4288 * Return: On success, the policy of the thread. Otherwise, a negative error
4289 * code.
4290 */
4291SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4292{
4293	struct task_struct *p;
4294	int retval;
4295
4296	if (pid < 0)
4297		return -EINVAL;
4298
4299	retval = -ESRCH;
4300	rcu_read_lock();
4301	p = find_process_by_pid(pid);
4302	if (p) {
4303		retval = security_task_getscheduler(p);
4304		if (!retval)
4305			retval = p->policy
4306				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4307	}
4308	rcu_read_unlock();
4309	return retval;
4310}
4311
4312/**
4313 * sys_sched_getparam - get the RT priority of a thread
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
4316 *
4317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4318 * code.
4319 */
4320SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4321{
4322	struct sched_param lp = { .sched_priority = 0 };
4323	struct task_struct *p;
4324	int retval;
4325
4326	if (!param || pid < 0)
4327		return -EINVAL;
4328
4329	rcu_read_lock();
4330	p = find_process_by_pid(pid);
4331	retval = -ESRCH;
4332	if (!p)
4333		goto out_unlock;
4334
4335	retval = security_task_getscheduler(p);
4336	if (retval)
4337		goto out_unlock;
4338
4339	if (task_has_rt_policy(p))
4340		lp.sched_priority = p->rt_priority;
4341	rcu_read_unlock();
4342
4343	/*
4344	 * This one might sleep, we cannot do it with a spinlock held ...
4345	 */
4346	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347
4348	return retval;
4349
4350out_unlock:
4351	rcu_read_unlock();
4352	return retval;
4353}
 
4354
4355static int sched_read_attr(struct sched_attr __user *uattr,
4356			   struct sched_attr *attr,
4357			   unsigned int usize)
4358{
4359	int ret;
4360
4361	if (!access_ok(VERIFY_WRITE, uattr, usize))
4362		return -EFAULT;
4363
4364	/*
4365	 * If we're handed a smaller struct than we know of,
4366	 * ensure all the unknown bits are 0 - i.e. old
4367	 * user-space does not get uncomplete information.
4368	 */
4369	if (usize < sizeof(*attr)) {
4370		unsigned char *addr;
4371		unsigned char *end;
4372
4373		addr = (void *)attr + usize;
4374		end  = (void *)attr + sizeof(*attr);
4375
4376		for (; addr < end; addr++) {
4377			if (*addr)
4378				return -EFBIG;
4379		}
4380
4381		attr->size = usize;
4382	}
4383
4384	ret = copy_to_user(uattr, attr, attr->size);
4385	if (ret)
4386		return -EFAULT;
4387
4388	return 0;
4389}
4390
4391/**
4392 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4393 * @pid: the pid in question.
4394 * @uattr: structure containing the extended parameters.
4395 * @size: sizeof(attr) for fwd/bwd comp.
4396 * @flags: for future extension.
4397 */
4398SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4399		unsigned int, size, unsigned int, flags)
4400{
4401	struct sched_attr attr = {
4402		.size = sizeof(struct sched_attr),
4403	};
4404	struct task_struct *p;
4405	int retval;
4406
4407	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4408	    size < SCHED_ATTR_SIZE_VER0 || flags)
4409		return -EINVAL;
4410
4411	rcu_read_lock();
4412	p = find_process_by_pid(pid);
4413	retval = -ESRCH;
4414	if (!p)
4415		goto out_unlock;
4416
4417	retval = security_task_getscheduler(p);
4418	if (retval)
4419		goto out_unlock;
4420
4421	attr.sched_policy = p->policy;
4422	if (p->sched_reset_on_fork)
4423		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4424	if (task_has_dl_policy(p))
4425		__getparam_dl(p, &attr);
4426	else if (task_has_rt_policy(p))
4427		attr.sched_priority = p->rt_priority;
4428	else
4429		attr.sched_nice = task_nice(p);
4430
4431	rcu_read_unlock();
4432
4433	retval = sched_read_attr(uattr, &attr, size);
4434	return retval;
4435
4436out_unlock:
4437	rcu_read_unlock();
4438	return retval;
4439}
4440
4441long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4442{
4443	cpumask_var_t cpus_allowed, new_mask;
4444	struct task_struct *p;
4445	int retval;
4446
4447	rcu_read_lock();
4448
4449	p = find_process_by_pid(pid);
4450	if (!p) {
4451		rcu_read_unlock();
4452		return -ESRCH;
4453	}
4454
4455	/* Prevent p going away */
4456	get_task_struct(p);
4457	rcu_read_unlock();
4458
4459	if (p->flags & PF_NO_SETAFFINITY) {
4460		retval = -EINVAL;
4461		goto out_put_task;
4462	}
4463	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4464		retval = -ENOMEM;
4465		goto out_put_task;
4466	}
4467	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4468		retval = -ENOMEM;
4469		goto out_free_cpus_allowed;
4470	}
4471	retval = -EPERM;
4472	if (!check_same_owner(p)) {
4473		rcu_read_lock();
4474		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4475			rcu_read_unlock();
4476			goto out_free_new_mask;
4477		}
4478		rcu_read_unlock();
4479	}
4480
4481	retval = security_task_setscheduler(p);
4482	if (retval)
4483		goto out_free_new_mask;
4484
4485
4486	cpuset_cpus_allowed(p, cpus_allowed);
4487	cpumask_and(new_mask, in_mask, cpus_allowed);
4488
4489	/*
4490	 * Since bandwidth control happens on root_domain basis,
4491	 * if admission test is enabled, we only admit -deadline
4492	 * tasks allowed to run on all the CPUs in the task's
4493	 * root_domain.
4494	 */
4495#ifdef CONFIG_SMP
4496	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4497		rcu_read_lock();
4498		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4499			retval = -EBUSY;
4500			rcu_read_unlock();
4501			goto out_free_new_mask;
4502		}
4503		rcu_read_unlock();
4504	}
4505#endif
4506again:
4507	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4508
4509	if (!retval) {
4510		cpuset_cpus_allowed(p, cpus_allowed);
4511		if (!cpumask_subset(new_mask, cpus_allowed)) {
4512			/*
4513			 * We must have raced with a concurrent cpuset
4514			 * update. Just reset the cpus_allowed to the
4515			 * cpuset's cpus_allowed
4516			 */
4517			cpumask_copy(new_mask, cpus_allowed);
4518			goto again;
4519		}
4520	}
4521out_free_new_mask:
4522	free_cpumask_var(new_mask);
4523out_free_cpus_allowed:
4524	free_cpumask_var(cpus_allowed);
4525out_put_task:
4526	put_task_struct(p);
4527	return retval;
4528}
4529
4530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4531			     struct cpumask *new_mask)
4532{
4533	if (len < cpumask_size())
4534		cpumask_clear(new_mask);
4535	else if (len > cpumask_size())
4536		len = cpumask_size();
4537
4538	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4539}
4540
4541/**
4542 * sys_sched_setaffinity - set the cpu affinity of a process
4543 * @pid: pid of the process
4544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4545 * @user_mask_ptr: user-space pointer to the new cpu mask
4546 *
4547 * Return: 0 on success. An error code otherwise.
4548 */
4549SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4550		unsigned long __user *, user_mask_ptr)
4551{
4552	cpumask_var_t new_mask;
4553	int retval;
4554
4555	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4556		return -ENOMEM;
4557
4558	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4559	if (retval == 0)
4560		retval = sched_setaffinity(pid, new_mask);
4561	free_cpumask_var(new_mask);
4562	return retval;
4563}
4564
4565long sched_getaffinity(pid_t pid, struct cpumask *mask)
4566{
4567	struct task_struct *p;
4568	unsigned long flags;
4569	int retval;
4570
4571	rcu_read_lock();
4572
4573	retval = -ESRCH;
4574	p = find_process_by_pid(pid);
4575	if (!p)
4576		goto out_unlock;
4577
4578	retval = security_task_getscheduler(p);
4579	if (retval)
4580		goto out_unlock;
4581
4582	raw_spin_lock_irqsave(&p->pi_lock, flags);
4583	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4584	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4585
4586out_unlock:
4587	rcu_read_unlock();
4588
4589	return retval;
4590}
4591
4592/**
4593 * sys_sched_getaffinity - get the cpu affinity of a process
4594 * @pid: pid of the process
4595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4596 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4597 *
4598 * Return: 0 on success. An error code otherwise.
4599 */
4600SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4601		unsigned long __user *, user_mask_ptr)
4602{
4603	int ret;
4604	cpumask_var_t mask;
4605
4606	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4607		return -EINVAL;
4608	if (len & (sizeof(unsigned long)-1))
4609		return -EINVAL;
4610
4611	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4612		return -ENOMEM;
4613
4614	ret = sched_getaffinity(pid, mask);
4615	if (ret == 0) {
4616		size_t retlen = min_t(size_t, len, cpumask_size());
4617
4618		if (copy_to_user(user_mask_ptr, mask, retlen))
4619			ret = -EFAULT;
4620		else
4621			ret = retlen;
4622	}
4623	free_cpumask_var(mask);
4624
4625	return ret;
4626}
4627
4628/**
4629 * sys_sched_yield - yield the current processor to other threads.
4630 *
4631 * This function yields the current CPU to other tasks. If there are no
4632 * other threads running on this CPU then this function will return.
4633 *
4634 * Return: 0.
4635 */
4636SYSCALL_DEFINE0(sched_yield)
4637{
4638	struct rq *rq = this_rq_lock();
4639
4640	schedstat_inc(rq, yld_count);
4641	current->sched_class->yield_task(rq);
4642
4643	/*
4644	 * Since we are going to call schedule() anyway, there's
4645	 * no need to preempt or enable interrupts:
4646	 */
4647	__release(rq->lock);
4648	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4649	do_raw_spin_unlock(&rq->lock);
4650	sched_preempt_enable_no_resched();
4651
4652	schedule();
4653
4654	return 0;
4655}
4656
4657int __sched _cond_resched(void)
4658{
4659	if (should_resched(0)) {
4660		preempt_schedule_common();
4661		return 1;
4662	}
4663	return 0;
4664}
4665EXPORT_SYMBOL(_cond_resched);
4666
4667/*
4668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4669 * call schedule, and on return reacquire the lock.
4670 *
4671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4672 * operations here to prevent schedule() from being called twice (once via
4673 * spin_unlock(), once by hand).
4674 */
4675int __cond_resched_lock(spinlock_t *lock)
4676{
4677	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4678	int ret = 0;
4679
4680	lockdep_assert_held(lock);
4681
4682	if (spin_needbreak(lock) || resched) {
4683		spin_unlock(lock);
4684		if (resched)
4685			preempt_schedule_common();
4686		else
4687			cpu_relax();
4688		ret = 1;
4689		spin_lock(lock);
4690	}
4691	return ret;
4692}
4693EXPORT_SYMBOL(__cond_resched_lock);
4694
4695int __sched __cond_resched_softirq(void)
4696{
4697	BUG_ON(!in_softirq());
4698
4699	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4700		local_bh_enable();
4701		preempt_schedule_common();
4702		local_bh_disable();
4703		return 1;
4704	}
4705	return 0;
4706}
4707EXPORT_SYMBOL(__cond_resched_softirq);
4708
4709/**
4710 * yield - yield the current processor to other threads.
4711 *
4712 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4713 *
4714 * The scheduler is at all times free to pick the calling task as the most
4715 * eligible task to run, if removing the yield() call from your code breaks
4716 * it, its already broken.
4717 *
4718 * Typical broken usage is:
4719 *
4720 * while (!event)
4721 * 	yield();
4722 *
4723 * where one assumes that yield() will let 'the other' process run that will
4724 * make event true. If the current task is a SCHED_FIFO task that will never
4725 * happen. Never use yield() as a progress guarantee!!
4726 *
4727 * If you want to use yield() to wait for something, use wait_event().
4728 * If you want to use yield() to be 'nice' for others, use cond_resched().
4729 * If you still want to use yield(), do not!
4730 */
4731void __sched yield(void)
4732{
4733	set_current_state(TASK_RUNNING);
4734	sys_sched_yield();
4735}
4736EXPORT_SYMBOL(yield);
4737
4738/**
4739 * yield_to - yield the current processor to another thread in
4740 * your thread group, or accelerate that thread toward the
4741 * processor it's on.
4742 * @p: target task
4743 * @preempt: whether task preemption is allowed or not
4744 *
4745 * It's the caller's job to ensure that the target task struct
4746 * can't go away on us before we can do any checks.
4747 *
4748 * Return:
4749 *	true (>0) if we indeed boosted the target task.
4750 *	false (0) if we failed to boost the target.
4751 *	-ESRCH if there's no task to yield to.
4752 */
4753int __sched yield_to(struct task_struct *p, bool preempt)
4754{
4755	struct task_struct *curr = current;
4756	struct rq *rq, *p_rq;
4757	unsigned long flags;
4758	int yielded = 0;
4759
4760	local_irq_save(flags);
4761	rq = this_rq();
4762
4763again:
4764	p_rq = task_rq(p);
4765	/*
4766	 * If we're the only runnable task on the rq and target rq also
4767	 * has only one task, there's absolutely no point in yielding.
4768	 */
4769	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4770		yielded = -ESRCH;
4771		goto out_irq;
4772	}
4773
4774	double_rq_lock(rq, p_rq);
4775	if (task_rq(p) != p_rq) {
4776		double_rq_unlock(rq, p_rq);
4777		goto again;
4778	}
4779
4780	if (!curr->sched_class->yield_to_task)
4781		goto out_unlock;
4782
4783	if (curr->sched_class != p->sched_class)
4784		goto out_unlock;
4785
4786	if (task_running(p_rq, p) || p->state)
4787		goto out_unlock;
4788
4789	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4790	if (yielded) {
4791		schedstat_inc(rq, yld_count);
4792		/*
4793		 * Make p's CPU reschedule; pick_next_entity takes care of
4794		 * fairness.
4795		 */
4796		if (preempt && rq != p_rq)
4797			resched_curr(p_rq);
4798	}
4799
4800out_unlock:
4801	double_rq_unlock(rq, p_rq);
4802out_irq:
4803	local_irq_restore(flags);
4804
4805	if (yielded > 0)
4806		schedule();
4807
4808	return yielded;
4809}
4810EXPORT_SYMBOL_GPL(yield_to);
4811
4812/*
4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4814 * that process accounting knows that this is a task in IO wait state.
4815 */
4816long __sched io_schedule_timeout(long timeout)
4817{
4818	int old_iowait = current->in_iowait;
4819	struct rq *rq;
4820	long ret;
4821
4822	current->in_iowait = 1;
4823	blk_schedule_flush_plug(current);
4824
4825	delayacct_blkio_start();
4826	rq = raw_rq();
4827	atomic_inc(&rq->nr_iowait);
4828	ret = schedule_timeout(timeout);
4829	current->in_iowait = old_iowait;
4830	atomic_dec(&rq->nr_iowait);
4831	delayacct_blkio_end();
4832
4833	return ret;
4834}
4835EXPORT_SYMBOL(io_schedule_timeout);
4836
4837/**
4838 * sys_sched_get_priority_max - return maximum RT priority.
4839 * @policy: scheduling class.
4840 *
4841 * Return: On success, this syscall returns the maximum
4842 * rt_priority that can be used by a given scheduling class.
4843 * On failure, a negative error code is returned.
4844 */
4845SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4846{
4847	int ret = -EINVAL;
4848
4849	switch (policy) {
4850	case SCHED_FIFO:
4851	case SCHED_RR:
4852		ret = MAX_USER_RT_PRIO-1;
4853		break;
4854	case SCHED_DEADLINE:
4855	case SCHED_NORMAL:
4856	case SCHED_BATCH:
4857	case SCHED_IDLE:
4858		ret = 0;
4859		break;
4860	}
4861	return ret;
4862}
 
4863
4864/**
4865 * sys_sched_get_priority_min - return minimum RT priority.
4866 * @policy: scheduling class.
4867 *
4868 * Return: On success, this syscall returns the minimum
4869 * rt_priority that can be used by a given scheduling class.
4870 * On failure, a negative error code is returned.
4871 */
4872SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4873{
4874	int ret = -EINVAL;
 
4875
4876	switch (policy) {
4877	case SCHED_FIFO:
4878	case SCHED_RR:
4879		ret = 1;
4880		break;
4881	case SCHED_DEADLINE:
4882	case SCHED_NORMAL:
4883	case SCHED_BATCH:
4884	case SCHED_IDLE:
4885		ret = 0;
4886	}
4887	return ret;
4888}
4889
4890/**
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4894 *
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
4897 *
4898 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4899 * an error code.
4900 */
4901SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4902		struct timespec __user *, interval)
4903{
4904	struct task_struct *p;
4905	unsigned int time_slice;
4906	unsigned long flags;
4907	struct rq *rq;
4908	int retval;
4909	struct timespec t;
4910
4911	if (pid < 0)
4912		return -EINVAL;
4913
4914	retval = -ESRCH;
4915	rcu_read_lock();
4916	p = find_process_by_pid(pid);
4917	if (!p)
4918		goto out_unlock;
4919
4920	retval = security_task_getscheduler(p);
4921	if (retval)
4922		goto out_unlock;
4923
4924	rq = task_rq_lock(p, &flags);
4925	time_slice = 0;
4926	if (p->sched_class->get_rr_interval)
4927		time_slice = p->sched_class->get_rr_interval(rq, p);
4928	task_rq_unlock(rq, p, &flags);
4929
4930	rcu_read_unlock();
4931	jiffies_to_timespec(time_slice, &t);
4932	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4933	return retval;
4934
4935out_unlock:
4936	rcu_read_unlock();
4937	return retval;
 
 
4938}
 
4939
4940static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
 
 
 
4941
4942void sched_show_task(struct task_struct *p)
4943{
4944	unsigned long free = 0;
4945	int ppid;
4946	unsigned long state = p->state;
 
 
4947
4948	if (state)
4949		state = __ffs(state) + 1;
4950	printk(KERN_INFO "%-15.15s %c", p->comm,
4951		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4952#if BITS_PER_LONG == 32
4953	if (state == TASK_RUNNING)
4954		printk(KERN_CONT " running  ");
4955	else
4956		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4957#else
4958	if (state == TASK_RUNNING)
4959		printk(KERN_CONT "  running task    ");
4960	else
4961		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4962#endif
4963#ifdef CONFIG_DEBUG_STACK_USAGE
4964	free = stack_not_used(p);
4965#endif
4966	ppid = 0;
4967	rcu_read_lock();
4968	if (pid_alive(p))
4969		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4970	rcu_read_unlock();
4971	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4972		task_pid_nr(p), ppid,
4973		(unsigned long)task_thread_info(p)->flags);
4974
4975	print_worker_info(KERN_INFO, p);
4976	show_stack(p, NULL);
4977}
4978
4979void show_state_filter(unsigned long state_filter)
 
4980{
4981	struct task_struct *g, *p;
4982
4983#if BITS_PER_LONG == 32
4984	printk(KERN_INFO
4985		"  task                PC stack   pid father\n");
4986#else
4987	printk(KERN_INFO
4988		"  task                        PC stack   pid father\n");
4989#endif
4990	rcu_read_lock();
4991	for_each_process_thread(g, p) {
4992		/*
4993		 * reset the NMI-timeout, listing all files on a slow
4994		 * console might take a lot of time:
 
 
 
4995		 */
4996		touch_nmi_watchdog();
4997		if (!state_filter || (p->state & state_filter))
 
4998			sched_show_task(p);
4999	}
5000
5001	touch_all_softlockup_watchdogs();
5002
5003#ifdef CONFIG_SCHED_DEBUG
5004	sysrq_sched_debug_show();
 
5005#endif
5006	rcu_read_unlock();
5007	/*
5008	 * Only show locks if all tasks are dumped:
5009	 */
5010	if (!state_filter)
5011		debug_show_all_locks();
5012}
5013
5014void init_idle_bootup_task(struct task_struct *idle)
5015{
5016	idle->sched_class = &idle_sched_class;
5017}
5018
5019/**
5020 * init_idle - set up an idle thread for a given CPU
5021 * @idle: task in question
5022 * @cpu: cpu the idle task belongs to
5023 *
5024 * NOTE: this function does not set the idle thread's NEED_RESCHED
5025 * flag, to make booting more robust.
5026 */
5027void init_idle(struct task_struct *idle, int cpu)
5028{
 
 
 
 
 
 
5029	struct rq *rq = cpu_rq(cpu);
5030	unsigned long flags;
5031
5032	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5033	raw_spin_lock(&rq->lock);
5034
5035	__sched_fork(0, idle);
5036	idle->state = TASK_RUNNING;
5037	idle->se.exec_start = sched_clock();
5038
5039	kasan_unpoison_task_stack(idle);
 
 
 
 
5040
5041#ifdef CONFIG_SMP
5042	/*
5043	 * Its possible that init_idle() gets called multiple times on a task,
5044	 * in that case do_set_cpus_allowed() will not do the right thing.
5045	 *
5046	 * And since this is boot we can forgo the serialization.
5047	 */
5048	set_cpus_allowed_common(idle, cpumask_of(cpu));
5049#endif
5050	/*
5051	 * We're having a chicken and egg problem, even though we are
5052	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5053	 * lockdep check in task_group() will fail.
5054	 *
5055	 * Similar case to sched_fork(). / Alternatively we could
5056	 * use task_rq_lock() here and obtain the other rq->lock.
5057	 *
5058	 * Silence PROVE_RCU
5059	 */
5060	rcu_read_lock();
5061	__set_task_cpu(idle, cpu);
5062	rcu_read_unlock();
5063
5064	rq->curr = rq->idle = idle;
 
 
5065	idle->on_rq = TASK_ON_RQ_QUEUED;
5066#ifdef CONFIG_SMP
5067	idle->on_cpu = 1;
5068#endif
5069	raw_spin_unlock(&rq->lock);
5070	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5071
5072	/* Set the preempt count _outside_ the spinlocks! */
5073	init_idle_preempt_count(idle, cpu);
5074
5075	/*
5076	 * The idle tasks have their own, simple scheduling class:
5077	 */
5078	idle->sched_class = &idle_sched_class;
5079	ftrace_graph_init_idle_task(idle, cpu);
5080	vtime_init_idle(idle, cpu);
5081#ifdef CONFIG_SMP
5082	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5083#endif
5084}
5085
 
 
5086int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5087			      const struct cpumask *trial)
5088{
5089	int ret = 1, trial_cpus;
5090	struct dl_bw *cur_dl_b;
5091	unsigned long flags;
5092
5093	if (!cpumask_weight(cur))
5094		return ret;
5095
5096	rcu_read_lock_sched();
5097	cur_dl_b = dl_bw_of(cpumask_any(cur));
5098	trial_cpus = cpumask_weight(trial);
5099
5100	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5101	if (cur_dl_b->bw != -1 &&
5102	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5103		ret = 0;
5104	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5105	rcu_read_unlock_sched();
5106
5107	return ret;
5108}
5109
5110int task_can_attach(struct task_struct *p,
5111		    const struct cpumask *cs_cpus_allowed)
5112{
5113	int ret = 0;
5114
5115	/*
5116	 * Kthreads which disallow setaffinity shouldn't be moved
5117	 * to a new cpuset; we don't want to change their cpu
5118	 * affinity and isolating such threads by their set of
5119	 * allowed nodes is unnecessary.  Thus, cpusets are not
5120	 * applicable for such threads.  This prevents checking for
5121	 * success of set_cpus_allowed_ptr() on all attached tasks
5122	 * before cpus_allowed may be changed.
5123	 */
5124	if (p->flags & PF_NO_SETAFFINITY) {
5125		ret = -EINVAL;
5126		goto out;
5127	}
5128
5129#ifdef CONFIG_SMP
5130	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5131					      cs_cpus_allowed)) {
5132		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5133							cs_cpus_allowed);
5134		struct dl_bw *dl_b;
5135		bool overflow;
5136		int cpus;
5137		unsigned long flags;
5138
5139		rcu_read_lock_sched();
5140		dl_b = dl_bw_of(dest_cpu);
5141		raw_spin_lock_irqsave(&dl_b->lock, flags);
5142		cpus = dl_bw_cpus(dest_cpu);
5143		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5144		if (overflow)
5145			ret = -EBUSY;
5146		else {
5147			/*
5148			 * We reserve space for this task in the destination
5149			 * root_domain, as we can't fail after this point.
5150			 * We will free resources in the source root_domain
5151			 * later on (see set_cpus_allowed_dl()).
5152			 */
5153			__dl_add(dl_b, p->dl.dl_bw);
5154		}
5155		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5156		rcu_read_unlock_sched();
5157
5158	}
5159#endif
5160out:
5161	return ret;
5162}
5163
5164#ifdef CONFIG_SMP
5165
5166#ifdef CONFIG_NUMA_BALANCING
5167/* Migrate current task p to target_cpu */
5168int migrate_task_to(struct task_struct *p, int target_cpu)
5169{
5170	struct migration_arg arg = { p, target_cpu };
5171	int curr_cpu = task_cpu(p);
5172
5173	if (curr_cpu == target_cpu)
5174		return 0;
5175
5176	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5177		return -EINVAL;
5178
5179	/* TODO: This is not properly updating schedstats */
5180
5181	trace_sched_move_numa(p, curr_cpu, target_cpu);
5182	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5183}
5184
5185/*
5186 * Requeue a task on a given node and accurately track the number of NUMA
5187 * tasks on the runqueues
5188 */
5189void sched_setnuma(struct task_struct *p, int nid)
5190{
 
 
5191	struct rq *rq;
5192	unsigned long flags;
5193	bool queued, running;
5194
5195	rq = task_rq_lock(p, &flags);
5196	queued = task_on_rq_queued(p);
5197	running = task_current(rq, p);
5198
5199	if (queued)
5200		dequeue_task(rq, p, DEQUEUE_SAVE);
5201	if (running)
5202		put_prev_task(rq, p);
5203
5204	p->numa_preferred_nid = nid;
5205
 
 
5206	if (running)
5207		p->sched_class->set_curr_task(rq);
5208	if (queued)
5209		enqueue_task(rq, p, ENQUEUE_RESTORE);
5210	task_rq_unlock(rq, p, &flags);
5211}
5212#endif /* CONFIG_NUMA_BALANCING */
5213
5214#ifdef CONFIG_HOTPLUG_CPU
5215/*
5216 * Ensures that the idle task is using init_mm right before its cpu goes
5217 * offline.
5218 */
5219void idle_task_exit(void)
5220{
5221	struct mm_struct *mm = current->active_mm;
5222
5223	BUG_ON(cpu_online(smp_processor_id()));
 
5224
5225	if (mm != &init_mm) {
5226		switch_mm(mm, &init_mm, current);
5227		finish_arch_post_lock_switch();
5228	}
5229	mmdrop(mm);
 
5230}
5231
5232/*
5233 * Since this CPU is going 'away' for a while, fold any nr_active delta
5234 * we might have. Assumes we're called after migrate_tasks() so that the
5235 * nr_active count is stable.
5236 *
5237 * Also see the comment "Global load-average calculations".
5238 */
5239static void calc_load_migrate(struct rq *rq)
5240{
5241	long delta = calc_load_fold_active(rq);
5242	if (delta)
5243		atomic_long_add(delta, &calc_load_tasks);
5244}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5245
5246static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5247{
5248}
5249
5250static const struct sched_class fake_sched_class = {
5251	.put_prev_task = put_prev_task_fake,
5252};
5253
5254static struct task_struct fake_task = {
5255	/*
5256	 * Avoid pull_{rt,dl}_task()
5257	 */
5258	.prio = MAX_PRIO + 1,
5259	.sched_class = &fake_sched_class,
5260};
5261
5262/*
5263 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5264 * try_to_wake_up()->select_task_rq().
5265 *
5266 * Called with rq->lock held even though we'er in stop_machine() and
5267 * there's no concurrency possible, we hold the required locks anyway
5268 * because of lock validation efforts.
5269 */
5270static void migrate_tasks(struct rq *dead_rq)
5271{
5272	struct rq *rq = dead_rq;
5273	struct task_struct *next, *stop = rq->stop;
5274	int dest_cpu;
5275
5276	/*
5277	 * Fudge the rq selection such that the below task selection loop
5278	 * doesn't get stuck on the currently eligible stop task.
5279	 *
5280	 * We're currently inside stop_machine() and the rq is either stuck
5281	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5282	 * either way we should never end up calling schedule() until we're
5283	 * done here.
5284	 */
5285	rq->stop = NULL;
5286
5287	/*
5288	 * put_prev_task() and pick_next_task() sched
5289	 * class method both need to have an up-to-date
5290	 * value of rq->clock[_task]
5291	 */
5292	update_rq_clock(rq);
 
5293
5294	for (;;) {
5295		/*
5296		 * There's this thread running, bail when that's the only
5297		 * remaining thread.
5298		 */
5299		if (rq->nr_running == 1)
5300			break;
5301
5302		/*
5303		 * pick_next_task assumes pinned rq->lock.
5304		 */
5305		lockdep_pin_lock(&rq->lock);
5306		next = pick_next_task(rq, &fake_task);
5307		BUG_ON(!next);
5308		next->sched_class->put_prev_task(rq, next);
5309
5310		/*
5311		 * Rules for changing task_struct::cpus_allowed are holding
5312		 * both pi_lock and rq->lock, such that holding either
5313		 * stabilizes the mask.
5314		 *
5315		 * Drop rq->lock is not quite as disastrous as it usually is
5316		 * because !cpu_active at this point, which means load-balance
5317		 * will not interfere. Also, stop-machine.
5318		 */
5319		lockdep_unpin_lock(&rq->lock);
5320		raw_spin_unlock(&rq->lock);
5321		raw_spin_lock(&next->pi_lock);
5322		raw_spin_lock(&rq->lock);
5323
5324		/*
5325		 * Since we're inside stop-machine, _nothing_ should have
5326		 * changed the task, WARN if weird stuff happened, because in
5327		 * that case the above rq->lock drop is a fail too.
5328		 */
5329		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5330			raw_spin_unlock(&next->pi_lock);
5331			continue;
5332		}
5333
5334		/* Find suitable destination for @next, with force if needed. */
5335		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5336
5337		rq = __migrate_task(rq, next, dest_cpu);
5338		if (rq != dead_rq) {
5339			raw_spin_unlock(&rq->lock);
5340			rq = dead_rq;
5341			raw_spin_lock(&rq->lock);
5342		}
5343		raw_spin_unlock(&next->pi_lock);
5344	}
5345
5346	rq->stop = stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5347}
5348#endif /* CONFIG_HOTPLUG_CPU */
5349
5350static void set_rq_online(struct rq *rq)
5351{
5352	if (!rq->online) {
5353		const struct sched_class *class;
5354
5355		cpumask_set_cpu(rq->cpu, rq->rd->online);
5356		rq->online = 1;
5357
5358		for_each_class(class) {
5359			if (class->rq_online)
5360				class->rq_online(rq);
5361		}
5362	}
5363}
5364
5365static void set_rq_offline(struct rq *rq)
5366{
5367	if (rq->online) {
5368		const struct sched_class *class;
5369
5370		for_each_class(class) {
5371			if (class->rq_offline)
5372				class->rq_offline(rq);
5373		}
5374
5375		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5376		rq->online = 0;
5377	}
 
5378}
5379
5380/*
5381 * migration_call - callback that gets triggered when a CPU is added.
5382 * Here we can start up the necessary migration thread for the new CPU.
 
 
5383 */
5384static int
5385migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5386{
5387	int cpu = (long)hcpu;
5388	unsigned long flags;
5389	struct rq *rq = cpu_rq(cpu);
5390
5391	switch (action & ~CPU_TASKS_FROZEN) {
5392
5393	case CPU_UP_PREPARE:
5394		rq->calc_load_update = calc_load_update;
5395		account_reset_rq(rq);
5396		break;
5397
5398	case CPU_ONLINE:
5399		/* Update our root-domain */
5400		raw_spin_lock_irqsave(&rq->lock, flags);
5401		if (rq->rd) {
5402			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5403
5404			set_rq_online(rq);
5405		}
5406		raw_spin_unlock_irqrestore(&rq->lock, flags);
5407		break;
5408
5409#ifdef CONFIG_HOTPLUG_CPU
5410	case CPU_DYING:
5411		sched_ttwu_pending();
5412		/* Update our root-domain */
5413		raw_spin_lock_irqsave(&rq->lock, flags);
5414		if (rq->rd) {
5415			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416			set_rq_offline(rq);
5417		}
5418		migrate_tasks(rq);
5419		BUG_ON(rq->nr_running != 1); /* the migration thread */
5420		raw_spin_unlock_irqrestore(&rq->lock, flags);
5421		break;
5422
5423	case CPU_DEAD:
5424		calc_load_migrate(rq);
5425		break;
5426#endif
5427	}
5428
5429	update_max_interval();
5430
5431	return NOTIFY_OK;
5432}
5433
5434/*
5435 * Register at high priority so that task migration (migrate_all_tasks)
5436 * happens before everything else.  This has to be lower priority than
5437 * the notifier in the perf_event subsystem, though.
5438 */
5439static struct notifier_block migration_notifier = {
5440	.notifier_call = migration_call,
5441	.priority = CPU_PRI_MIGRATION,
5442};
5443
5444static void set_cpu_rq_start_time(void)
5445{
5446	int cpu = smp_processor_id();
5447	struct rq *rq = cpu_rq(cpu);
5448	rq->age_stamp = sched_clock_cpu(cpu);
5449}
5450
5451static int sched_cpu_active(struct notifier_block *nfb,
5452				      unsigned long action, void *hcpu)
5453{
5454	int cpu = (long)hcpu;
5455
5456	switch (action & ~CPU_TASKS_FROZEN) {
5457	case CPU_STARTING:
5458		set_cpu_rq_start_time();
5459		return NOTIFY_OK;
5460
5461	case CPU_DOWN_FAILED:
5462		set_cpu_active(cpu, true);
5463		return NOTIFY_OK;
5464
5465	default:
5466		return NOTIFY_DONE;
5467	}
5468}
5469
5470static int sched_cpu_inactive(struct notifier_block *nfb,
5471					unsigned long action, void *hcpu)
5472{
5473	switch (action & ~CPU_TASKS_FROZEN) {
5474	case CPU_DOWN_PREPARE:
5475		set_cpu_active((long)hcpu, false);
5476		return NOTIFY_OK;
5477	default:
5478		return NOTIFY_DONE;
5479	}
5480}
5481
5482static int __init migration_init(void)
5483{
5484	void *cpu = (void *)(long)smp_processor_id();
5485	int err;
5486
5487	/* Initialize migration for the boot CPU */
5488	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489	BUG_ON(err == NOTIFY_BAD);
5490	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491	register_cpu_notifier(&migration_notifier);
5492
5493	/* Register cpu active notifiers */
5494	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5495	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5496
5497	return 0;
5498}
5499early_initcall(migration_init);
5500
5501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502
5503#ifdef CONFIG_SCHED_DEBUG
5504
5505static __read_mostly int sched_debug_enabled;
5506
5507static int __init sched_debug_setup(char *str)
5508{
5509	sched_debug_enabled = 1;
 
5510
5511	return 0;
5512}
5513early_param("sched_debug", sched_debug_setup);
5514
5515static inline bool sched_debug(void)
5516{
5517	return sched_debug_enabled;
5518}
5519
5520static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5521				  struct cpumask *groupmask)
5522{
5523	struct sched_group *group = sd->groups;
5524
5525	cpumask_clear(groupmask);
5526
5527	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5528
5529	if (!(sd->flags & SD_LOAD_BALANCE)) {
5530		printk("does not load-balance\n");
5531		if (sd->parent)
5532			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533					" has parent");
5534		return -1;
5535	}
5536
5537	printk(KERN_CONT "span %*pbl level %s\n",
5538	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5539
5540	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5541		printk(KERN_ERR "ERROR: domain->span does not contain "
5542				"CPU%d\n", cpu);
5543	}
5544	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5545		printk(KERN_ERR "ERROR: domain->groups does not contain"
5546				" CPU%d\n", cpu);
5547	}
5548
5549	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5550	do {
5551		if (!group) {
5552			printk("\n");
5553			printk(KERN_ERR "ERROR: group is NULL\n");
5554			break;
5555		}
5556
5557		if (!cpumask_weight(sched_group_cpus(group))) {
5558			printk(KERN_CONT "\n");
5559			printk(KERN_ERR "ERROR: empty group\n");
5560			break;
5561		}
5562
5563		if (!(sd->flags & SD_OVERLAP) &&
5564		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5565			printk(KERN_CONT "\n");
5566			printk(KERN_ERR "ERROR: repeated CPUs\n");
5567			break;
5568		}
5569
5570		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5571
5572		printk(KERN_CONT " %*pbl",
5573		       cpumask_pr_args(sched_group_cpus(group)));
5574		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5575			printk(KERN_CONT " (cpu_capacity = %d)",
5576				group->sgc->capacity);
5577		}
5578
5579		group = group->next;
5580	} while (group != sd->groups);
5581	printk(KERN_CONT "\n");
5582
5583	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585
5586	if (sd->parent &&
5587	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588		printk(KERN_ERR "ERROR: parent span is not a superset "
5589			"of domain->span\n");
5590	return 0;
5591}
5592
5593static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594{
5595	int level = 0;
5596
5597	if (!sched_debug_enabled)
5598		return;
5599
5600	if (!sd) {
5601		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602		return;
5603	}
5604
5605	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607	for (;;) {
5608		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609			break;
5610		level++;
5611		sd = sd->parent;
5612		if (!sd)
5613			break;
5614	}
5615}
5616#else /* !CONFIG_SCHED_DEBUG */
5617# define sched_domain_debug(sd, cpu) do { } while (0)
5618static inline bool sched_debug(void)
5619{
5620	return false;
5621}
5622#endif /* CONFIG_SCHED_DEBUG */
5623
5624static int sd_degenerate(struct sched_domain *sd)
5625{
5626	if (cpumask_weight(sched_domain_span(sd)) == 1)
5627		return 1;
5628
5629	/* Following flags need at least 2 groups */
5630	if (sd->flags & (SD_LOAD_BALANCE |
5631			 SD_BALANCE_NEWIDLE |
5632			 SD_BALANCE_FORK |
5633			 SD_BALANCE_EXEC |
5634			 SD_SHARE_CPUCAPACITY |
5635			 SD_SHARE_PKG_RESOURCES |
5636			 SD_SHARE_POWERDOMAIN)) {
5637		if (sd->groups != sd->groups->next)
5638			return 0;
5639	}
5640
5641	/* Following flags don't use groups */
5642	if (sd->flags & (SD_WAKE_AFFINE))
5643		return 0;
5644
5645	return 1;
5646}
5647
5648static int
5649sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650{
5651	unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653	if (sd_degenerate(parent))
5654		return 1;
5655
5656	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657		return 0;
5658
5659	/* Flags needing groups don't count if only 1 group in parent */
5660	if (parent->groups == parent->groups->next) {
5661		pflags &= ~(SD_LOAD_BALANCE |
5662				SD_BALANCE_NEWIDLE |
5663				SD_BALANCE_FORK |
5664				SD_BALANCE_EXEC |
5665				SD_SHARE_CPUCAPACITY |
5666				SD_SHARE_PKG_RESOURCES |
5667				SD_PREFER_SIBLING |
5668				SD_SHARE_POWERDOMAIN);
5669		if (nr_node_ids == 1)
5670			pflags &= ~SD_SERIALIZE;
5671	}
5672	if (~cflags & pflags)
5673		return 0;
5674
5675	return 1;
5676}
5677
5678static void free_rootdomain(struct rcu_head *rcu)
5679{
5680	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5681
5682	cpupri_cleanup(&rd->cpupri);
5683	cpudl_cleanup(&rd->cpudl);
5684	free_cpumask_var(rd->dlo_mask);
5685	free_cpumask_var(rd->rto_mask);
5686	free_cpumask_var(rd->online);
5687	free_cpumask_var(rd->span);
5688	kfree(rd);
5689}
5690
5691static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5692{
5693	struct root_domain *old_rd = NULL;
5694	unsigned long flags;
5695
5696	raw_spin_lock_irqsave(&rq->lock, flags);
5697
 
5698	if (rq->rd) {
5699		old_rd = rq->rd;
5700
5701		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5702			set_rq_offline(rq);
5703
5704		cpumask_clear_cpu(rq->cpu, old_rd->span);
5705
5706		/*
5707		 * If we dont want to free the old_rd yet then
5708		 * set old_rd to NULL to skip the freeing later
5709		 * in this function:
5710		 */
5711		if (!atomic_dec_and_test(&old_rd->refcount))
5712			old_rd = NULL;
5713	}
5714
5715	atomic_inc(&rd->refcount);
5716	rq->rd = rd;
5717
5718	cpumask_set_cpu(rq->cpu, rd->span);
5719	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5720		set_rq_online(rq);
5721
5722	raw_spin_unlock_irqrestore(&rq->lock, flags);
5723
5724	if (old_rd)
5725		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5726}
5727
5728static int init_rootdomain(struct root_domain *rd)
5729{
5730	memset(rd, 0, sizeof(*rd));
5731
5732	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5733		goto out;
5734	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5735		goto free_span;
5736	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5737		goto free_online;
5738	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5739		goto free_dlo_mask;
5740
5741	init_dl_bw(&rd->dl_bw);
5742	if (cpudl_init(&rd->cpudl) != 0)
5743		goto free_dlo_mask;
5744
5745	if (cpupri_init(&rd->cpupri) != 0)
5746		goto free_rto_mask;
5747	return 0;
5748
5749free_rto_mask:
5750	free_cpumask_var(rd->rto_mask);
5751free_dlo_mask:
5752	free_cpumask_var(rd->dlo_mask);
5753free_online:
5754	free_cpumask_var(rd->online);
5755free_span:
5756	free_cpumask_var(rd->span);
5757out:
5758	return -ENOMEM;
5759}
5760
5761/*
5762 * By default the system creates a single root-domain with all cpus as
5763 * members (mimicking the global state we have today).
5764 */
5765struct root_domain def_root_domain;
5766
5767static void init_defrootdomain(void)
5768{
5769	init_rootdomain(&def_root_domain);
5770
5771	atomic_set(&def_root_domain.refcount, 1);
5772}
5773
5774static struct root_domain *alloc_rootdomain(void)
5775{
5776	struct root_domain *rd;
5777
5778	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5779	if (!rd)
5780		return NULL;
5781
5782	if (init_rootdomain(rd) != 0) {
5783		kfree(rd);
5784		return NULL;
5785	}
5786
5787	return rd;
5788}
5789
5790static void free_sched_groups(struct sched_group *sg, int free_sgc)
5791{
5792	struct sched_group *tmp, *first;
5793
5794	if (!sg)
5795		return;
5796
5797	first = sg;
5798	do {
5799		tmp = sg->next;
5800
5801		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5802			kfree(sg->sgc);
5803
5804		kfree(sg);
5805		sg = tmp;
5806	} while (sg != first);
5807}
5808
5809static void free_sched_domain(struct rcu_head *rcu)
5810{
5811	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5812
5813	/*
5814	 * If its an overlapping domain it has private groups, iterate and
5815	 * nuke them all.
5816	 */
5817	if (sd->flags & SD_OVERLAP) {
5818		free_sched_groups(sd->groups, 1);
5819	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5820		kfree(sd->groups->sgc);
5821		kfree(sd->groups);
5822	}
5823	kfree(sd);
5824}
5825
5826static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5827{
5828	call_rcu(&sd->rcu, free_sched_domain);
5829}
5830
5831static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5832{
5833	for (; sd; sd = sd->parent)
5834		destroy_sched_domain(sd, cpu);
5835}
5836
5837/*
5838 * Keep a special pointer to the highest sched_domain that has
5839 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5840 * allows us to avoid some pointer chasing select_idle_sibling().
5841 *
5842 * Also keep a unique ID per domain (we use the first cpu number in
5843 * the cpumask of the domain), this allows us to quickly tell if
5844 * two cpus are in the same cache domain, see cpus_share_cache().
5845 */
5846DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5847DEFINE_PER_CPU(int, sd_llc_size);
5848DEFINE_PER_CPU(int, sd_llc_id);
5849DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5850DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5851DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5852
5853static void update_top_cache_domain(int cpu)
5854{
5855	struct sched_domain *sd;
5856	struct sched_domain *busy_sd = NULL;
5857	int id = cpu;
5858	int size = 1;
5859
5860	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5861	if (sd) {
5862		id = cpumask_first(sched_domain_span(sd));
5863		size = cpumask_weight(sched_domain_span(sd));
5864		busy_sd = sd->parent; /* sd_busy */
5865	}
5866	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5867
5868	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5869	per_cpu(sd_llc_size, cpu) = size;
5870	per_cpu(sd_llc_id, cpu) = id;
5871
5872	sd = lowest_flag_domain(cpu, SD_NUMA);
5873	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5874
5875	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5876	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5877}
5878
5879/*
5880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5881 * hold the hotplug lock.
5882 */
5883static void
5884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5885{
5886	struct rq *rq = cpu_rq(cpu);
5887	struct sched_domain *tmp;
5888
5889	/* Remove the sched domains which do not contribute to scheduling. */
5890	for (tmp = sd; tmp; ) {
5891		struct sched_domain *parent = tmp->parent;
5892		if (!parent)
5893			break;
5894
5895		if (sd_parent_degenerate(tmp, parent)) {
5896			tmp->parent = parent->parent;
5897			if (parent->parent)
5898				parent->parent->child = tmp;
5899			/*
5900			 * Transfer SD_PREFER_SIBLING down in case of a
5901			 * degenerate parent; the spans match for this
5902			 * so the property transfers.
5903			 */
5904			if (parent->flags & SD_PREFER_SIBLING)
5905				tmp->flags |= SD_PREFER_SIBLING;
5906			destroy_sched_domain(parent, cpu);
5907		} else
5908			tmp = tmp->parent;
5909	}
5910
5911	if (sd && sd_degenerate(sd)) {
5912		tmp = sd;
5913		sd = sd->parent;
5914		destroy_sched_domain(tmp, cpu);
5915		if (sd)
5916			sd->child = NULL;
5917	}
5918
5919	sched_domain_debug(sd, cpu);
5920
5921	rq_attach_root(rq, rd);
5922	tmp = rq->sd;
5923	rcu_assign_pointer(rq->sd, sd);
5924	destroy_sched_domains(tmp, cpu);
5925
5926	update_top_cache_domain(cpu);
5927}
5928
5929/* Setup the mask of cpus configured for isolated domains */
5930static int __init isolated_cpu_setup(char *str)
5931{
5932	int ret;
5933
5934	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5935	ret = cpulist_parse(str, cpu_isolated_map);
5936	if (ret) {
5937		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5938		return 0;
5939	}
5940	return 1;
5941}
5942__setup("isolcpus=", isolated_cpu_setup);
5943
5944struct s_data {
5945	struct sched_domain ** __percpu sd;
5946	struct root_domain	*rd;
5947};
5948
5949enum s_alloc {
5950	sa_rootdomain,
5951	sa_sd,
5952	sa_sd_storage,
5953	sa_none,
5954};
5955
5956/*
5957 * Build an iteration mask that can exclude certain CPUs from the upwards
5958 * domain traversal.
5959 *
5960 * Asymmetric node setups can result in situations where the domain tree is of
5961 * unequal depth, make sure to skip domains that already cover the entire
5962 * range.
5963 *
5964 * In that case build_sched_domains() will have terminated the iteration early
5965 * and our sibling sd spans will be empty. Domains should always include the
5966 * cpu they're built on, so check that.
5967 *
5968 */
5969static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5970{
5971	const struct cpumask *span = sched_domain_span(sd);
5972	struct sd_data *sdd = sd->private;
5973	struct sched_domain *sibling;
5974	int i;
5975
5976	for_each_cpu(i, span) {
5977		sibling = *per_cpu_ptr(sdd->sd, i);
5978		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5979			continue;
5980
5981		cpumask_set_cpu(i, sched_group_mask(sg));
5982	}
5983}
5984
5985/*
5986 * Return the canonical balance cpu for this group, this is the first cpu
5987 * of this group that's also in the iteration mask.
5988 */
5989int group_balance_cpu(struct sched_group *sg)
5990{
5991	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5992}
5993
5994static int
5995build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5996{
5997	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5998	const struct cpumask *span = sched_domain_span(sd);
5999	struct cpumask *covered = sched_domains_tmpmask;
6000	struct sd_data *sdd = sd->private;
6001	struct sched_domain *sibling;
6002	int i;
6003
6004	cpumask_clear(covered);
6005
6006	for_each_cpu(i, span) {
6007		struct cpumask *sg_span;
6008
6009		if (cpumask_test_cpu(i, covered))
6010			continue;
6011
6012		sibling = *per_cpu_ptr(sdd->sd, i);
6013
6014		/* See the comment near build_group_mask(). */
6015		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6016			continue;
6017
6018		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6019				GFP_KERNEL, cpu_to_node(cpu));
6020
6021		if (!sg)
6022			goto fail;
6023
6024		sg_span = sched_group_cpus(sg);
6025		if (sibling->child)
6026			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6027		else
6028			cpumask_set_cpu(i, sg_span);
6029
6030		cpumask_or(covered, covered, sg_span);
6031
6032		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6033		if (atomic_inc_return(&sg->sgc->ref) == 1)
6034			build_group_mask(sd, sg);
6035
6036		/*
6037		 * Initialize sgc->capacity such that even if we mess up the
6038		 * domains and no possible iteration will get us here, we won't
6039		 * die on a /0 trap.
 
6040		 */
6041		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6042
 
6043		/*
6044		 * Make sure the first group of this domain contains the
6045		 * canonical balance cpu. Otherwise the sched_domain iteration
6046		 * breaks. See update_sg_lb_stats().
6047		 */
6048		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6049		    group_balance_cpu(sg) == cpu)
6050			groups = sg;
6051
6052		if (!first)
6053			first = sg;
6054		if (last)
6055			last->next = sg;
6056		last = sg;
6057		last->next = first;
6058	}
6059	sd->groups = groups;
6060
6061	return 0;
6062
6063fail:
6064	free_sched_groups(first, 0);
6065
6066	return -ENOMEM;
6067}
6068
6069static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6070{
6071	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6072	struct sched_domain *child = sd->child;
6073
6074	if (child)
6075		cpu = cpumask_first(sched_domain_span(child));
6076
6077	if (sg) {
6078		*sg = *per_cpu_ptr(sdd->sg, cpu);
6079		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6080		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6081	}
6082
6083	return cpu;
6084}
6085
6086/*
6087 * build_sched_groups will build a circular linked list of the groups
6088 * covered by the given span, and will set each group's ->cpumask correctly,
6089 * and ->cpu_capacity to 0.
6090 *
6091 * Assumes the sched_domain tree is fully constructed
6092 */
6093static int
6094build_sched_groups(struct sched_domain *sd, int cpu)
6095{
6096	struct sched_group *first = NULL, *last = NULL;
6097	struct sd_data *sdd = sd->private;
6098	const struct cpumask *span = sched_domain_span(sd);
6099	struct cpumask *covered;
6100	int i;
6101
6102	get_group(cpu, sdd, &sd->groups);
6103	atomic_inc(&sd->groups->ref);
6104
6105	if (cpu != cpumask_first(span))
6106		return 0;
6107
6108	lockdep_assert_held(&sched_domains_mutex);
6109	covered = sched_domains_tmpmask;
6110
6111	cpumask_clear(covered);
6112
6113	for_each_cpu(i, span) {
6114		struct sched_group *sg;
6115		int group, j;
6116
6117		if (cpumask_test_cpu(i, covered))
6118			continue;
6119
6120		group = get_group(i, sdd, &sg);
6121		cpumask_setall(sched_group_mask(sg));
6122
6123		for_each_cpu(j, span) {
6124			if (get_group(j, sdd, NULL) != group)
6125				continue;
6126
6127			cpumask_set_cpu(j, covered);
6128			cpumask_set_cpu(j, sched_group_cpus(sg));
6129		}
6130
6131		if (!first)
6132			first = sg;
6133		if (last)
6134			last->next = sg;
6135		last = sg;
6136	}
6137	last->next = first;
6138
6139	return 0;
6140}
6141
6142/*
6143 * Initialize sched groups cpu_capacity.
6144 *
6145 * cpu_capacity indicates the capacity of sched group, which is used while
6146 * distributing the load between different sched groups in a sched domain.
6147 * Typically cpu_capacity for all the groups in a sched domain will be same
6148 * unless there are asymmetries in the topology. If there are asymmetries,
6149 * group having more cpu_capacity will pickup more load compared to the
6150 * group having less cpu_capacity.
6151 */
6152static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6153{
6154	struct sched_group *sg = sd->groups;
6155
6156	WARN_ON(!sg);
6157
6158	do {
6159		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6160		sg = sg->next;
6161	} while (sg != sd->groups);
6162
6163	if (cpu != group_balance_cpu(sg))
6164		return;
6165
6166	update_group_capacity(sd, cpu);
6167	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6168}
6169
6170/*
6171 * Initializers for schedule domains
6172 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6173 */
6174
6175static int default_relax_domain_level = -1;
6176int sched_domain_level_max;
6177
6178static int __init setup_relax_domain_level(char *str)
6179{
6180	if (kstrtoint(str, 0, &default_relax_domain_level))
6181		pr_warn("Unable to set relax_domain_level\n");
6182
6183	return 1;
6184}
6185__setup("relax_domain_level=", setup_relax_domain_level);
6186
6187static void set_domain_attribute(struct sched_domain *sd,
6188				 struct sched_domain_attr *attr)
6189{
6190	int request;
6191
6192	if (!attr || attr->relax_domain_level < 0) {
6193		if (default_relax_domain_level < 0)
6194			return;
6195		else
6196			request = default_relax_domain_level;
6197	} else
6198		request = attr->relax_domain_level;
6199	if (request < sd->level) {
6200		/* turn off idle balance on this domain */
6201		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202	} else {
6203		/* turn on idle balance on this domain */
6204		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6205	}
6206}
6207
6208static void __sdt_free(const struct cpumask *cpu_map);
6209static int __sdt_alloc(const struct cpumask *cpu_map);
6210
6211static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6212				 const struct cpumask *cpu_map)
6213{
6214	switch (what) {
6215	case sa_rootdomain:
6216		if (!atomic_read(&d->rd->refcount))
6217			free_rootdomain(&d->rd->rcu); /* fall through */
6218	case sa_sd:
6219		free_percpu(d->sd); /* fall through */
6220	case sa_sd_storage:
6221		__sdt_free(cpu_map); /* fall through */
6222	case sa_none:
6223		break;
6224	}
6225}
6226
6227static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6228						   const struct cpumask *cpu_map)
6229{
6230	memset(d, 0, sizeof(*d));
6231
6232	if (__sdt_alloc(cpu_map))
6233		return sa_sd_storage;
6234	d->sd = alloc_percpu(struct sched_domain *);
6235	if (!d->sd)
6236		return sa_sd_storage;
6237	d->rd = alloc_rootdomain();
6238	if (!d->rd)
6239		return sa_sd;
6240	return sa_rootdomain;
6241}
6242
6243/*
6244 * NULL the sd_data elements we've used to build the sched_domain and
6245 * sched_group structure so that the subsequent __free_domain_allocs()
6246 * will not free the data we're using.
6247 */
6248static void claim_allocations(int cpu, struct sched_domain *sd)
6249{
6250	struct sd_data *sdd = sd->private;
6251
6252	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6253	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6254
6255	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6256		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6257
6258	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6259		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6260}
6261
6262#ifdef CONFIG_NUMA
6263static int sched_domains_numa_levels;
6264enum numa_topology_type sched_numa_topology_type;
6265static int *sched_domains_numa_distance;
6266int sched_max_numa_distance;
6267static struct cpumask ***sched_domains_numa_masks;
6268static int sched_domains_curr_level;
6269#endif
6270
6271/*
6272 * SD_flags allowed in topology descriptions.
6273 *
6274 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6275 * SD_SHARE_PKG_RESOURCES - describes shared caches
6276 * SD_NUMA                - describes NUMA topologies
6277 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6278 *
6279 * Odd one out:
6280 * SD_ASYM_PACKING        - describes SMT quirks
6281 */
6282#define TOPOLOGY_SD_FLAGS		\
6283	(SD_SHARE_CPUCAPACITY |		\
6284	 SD_SHARE_PKG_RESOURCES |	\
6285	 SD_NUMA |			\
6286	 SD_ASYM_PACKING |		\
6287	 SD_SHARE_POWERDOMAIN)
6288
6289static struct sched_domain *
6290sd_init(struct sched_domain_topology_level *tl, int cpu)
6291{
6292	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6293	int sd_weight, sd_flags = 0;
6294
6295#ifdef CONFIG_NUMA
6296	/*
6297	 * Ugly hack to pass state to sd_numa_mask()...
 
6298	 */
6299	sched_domains_curr_level = tl->numa_level;
6300#endif
6301
6302	sd_weight = cpumask_weight(tl->mask(cpu));
6303
6304	if (tl->sd_flags)
6305		sd_flags = (*tl->sd_flags)();
6306	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6307			"wrong sd_flags in topology description\n"))
6308		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6309
6310	*sd = (struct sched_domain){
6311		.min_interval		= sd_weight,
6312		.max_interval		= 2*sd_weight,
6313		.busy_factor		= 32,
6314		.imbalance_pct		= 125,
6315
6316		.cache_nice_tries	= 0,
6317		.busy_idx		= 0,
6318		.idle_idx		= 0,
6319		.newidle_idx		= 0,
6320		.wake_idx		= 0,
6321		.forkexec_idx		= 0,
6322
6323		.flags			= 1*SD_LOAD_BALANCE
6324					| 1*SD_BALANCE_NEWIDLE
6325					| 1*SD_BALANCE_EXEC
6326					| 1*SD_BALANCE_FORK
6327					| 0*SD_BALANCE_WAKE
6328					| 1*SD_WAKE_AFFINE
6329					| 0*SD_SHARE_CPUCAPACITY
6330					| 0*SD_SHARE_PKG_RESOURCES
6331					| 0*SD_SERIALIZE
6332					| 0*SD_PREFER_SIBLING
6333					| 0*SD_NUMA
6334					| sd_flags
6335					,
6336
6337		.last_balance		= jiffies,
6338		.balance_interval	= sd_weight,
6339		.smt_gain		= 0,
6340		.max_newidle_lb_cost	= 0,
6341		.next_decay_max_lb_cost	= jiffies,
6342#ifdef CONFIG_SCHED_DEBUG
6343		.name			= tl->name,
6344#endif
6345	};
6346
6347	/*
6348	 * Convert topological properties into behaviour.
6349	 */
 
 
6350
6351	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6352		sd->flags |= SD_PREFER_SIBLING;
6353		sd->imbalance_pct = 110;
6354		sd->smt_gain = 1178; /* ~15% */
6355
6356	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6357		sd->imbalance_pct = 117;
6358		sd->cache_nice_tries = 1;
6359		sd->busy_idx = 2;
6360
6361#ifdef CONFIG_NUMA
6362	} else if (sd->flags & SD_NUMA) {
6363		sd->cache_nice_tries = 2;
6364		sd->busy_idx = 3;
6365		sd->idle_idx = 2;
6366
6367		sd->flags |= SD_SERIALIZE;
6368		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6369			sd->flags &= ~(SD_BALANCE_EXEC |
6370				       SD_BALANCE_FORK |
6371				       SD_WAKE_AFFINE);
6372		}
6373
6374#endif
6375	} else {
6376		sd->flags |= SD_PREFER_SIBLING;
6377		sd->cache_nice_tries = 1;
6378		sd->busy_idx = 2;
6379		sd->idle_idx = 1;
6380	}
6381
6382	sd->private = &tl->data;
6383
6384	return sd;
6385}
 
 
 
 
 
 
 
 
6386
6387/*
6388 * Topology list, bottom-up.
6389 */
6390static struct sched_domain_topology_level default_topology[] = {
6391#ifdef CONFIG_SCHED_SMT
6392	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6393#endif
6394#ifdef CONFIG_SCHED_MC
6395	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6396#endif
6397	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6398	{ NULL, },
6399};
6400
6401static struct sched_domain_topology_level *sched_domain_topology =
6402	default_topology;
6403
6404#define for_each_sd_topology(tl)			\
6405	for (tl = sched_domain_topology; tl->mask; tl++)
6406
6407void set_sched_topology(struct sched_domain_topology_level *tl)
6408{
6409	sched_domain_topology = tl;
6410}
6411
6412#ifdef CONFIG_NUMA
6413
6414static const struct cpumask *sd_numa_mask(int cpu)
6415{
6416	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417}
6418
6419static void sched_numa_warn(const char *str)
6420{
6421	static int done = false;
6422	int i,j;
6423
6424	if (done)
6425		return;
6426
6427	done = true;
6428
6429	printk(KERN_WARNING "ERROR: %s\n\n", str);
6430
6431	for (i = 0; i < nr_node_ids; i++) {
6432		printk(KERN_WARNING "  ");
6433		for (j = 0; j < nr_node_ids; j++)
6434			printk(KERN_CONT "%02d ", node_distance(i,j));
6435		printk(KERN_CONT "\n");
6436	}
6437	printk(KERN_WARNING "\n");
6438}
6439
6440bool find_numa_distance(int distance)
6441{
6442	int i;
6443
6444	if (distance == node_distance(0, 0))
6445		return true;
6446
6447	for (i = 0; i < sched_domains_numa_levels; i++) {
6448		if (sched_domains_numa_distance[i] == distance)
6449			return true;
6450	}
6451
6452	return false;
6453}
6454
6455/*
6456 * A system can have three types of NUMA topology:
6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460 *
6461 * The difference between a glueless mesh topology and a backplane
6462 * topology lies in whether communication between not directly
6463 * connected nodes goes through intermediary nodes (where programs
6464 * could run), or through backplane controllers. This affects
6465 * placement of programs.
6466 *
6467 * The type of topology can be discerned with the following tests:
6468 * - If the maximum distance between any nodes is 1 hop, the system
6469 *   is directly connected.
6470 * - If for two nodes A and B, located N > 1 hops away from each other,
6471 *   there is an intermediary node C, which is < N hops away from both
6472 *   nodes A and B, the system is a glueless mesh.
6473 */
6474static void init_numa_topology_type(void)
6475{
6476	int a, b, c, n;
6477
6478	n = sched_max_numa_distance;
6479
6480	if (sched_domains_numa_levels <= 1) {
6481		sched_numa_topology_type = NUMA_DIRECT;
6482		return;
6483	}
6484
6485	for_each_online_node(a) {
6486		for_each_online_node(b) {
6487			/* Find two nodes furthest removed from each other. */
6488			if (node_distance(a, b) < n)
6489				continue;
6490
6491			/* Is there an intermediary node between a and b? */
6492			for_each_online_node(c) {
6493				if (node_distance(a, c) < n &&
6494				    node_distance(b, c) < n) {
6495					sched_numa_topology_type =
6496							NUMA_GLUELESS_MESH;
6497					return;
6498				}
6499			}
6500
6501			sched_numa_topology_type = NUMA_BACKPLANE;
6502			return;
6503		}
6504	}
6505}
6506
6507static void sched_init_numa(void)
6508{
6509	int next_distance, curr_distance = node_distance(0, 0);
6510	struct sched_domain_topology_level *tl;
6511	int level = 0;
6512	int i, j, k;
6513
6514	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515	if (!sched_domains_numa_distance)
6516		return;
6517
6518	/*
6519	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520	 * unique distances in the node_distance() table.
6521	 *
6522	 * Assumes node_distance(0,j) includes all distances in
6523	 * node_distance(i,j) in order to avoid cubic time.
6524	 */
6525	next_distance = curr_distance;
6526	for (i = 0; i < nr_node_ids; i++) {
6527		for (j = 0; j < nr_node_ids; j++) {
6528			for (k = 0; k < nr_node_ids; k++) {
6529				int distance = node_distance(i, k);
6530
6531				if (distance > curr_distance &&
6532				    (distance < next_distance ||
6533				     next_distance == curr_distance))
6534					next_distance = distance;
6535
6536				/*
6537				 * While not a strong assumption it would be nice to know
6538				 * about cases where if node A is connected to B, B is not
6539				 * equally connected to A.
6540				 */
6541				if (sched_debug() && node_distance(k, i) != distance)
6542					sched_numa_warn("Node-distance not symmetric");
6543
6544				if (sched_debug() && i && !find_numa_distance(distance))
6545					sched_numa_warn("Node-0 not representative");
6546			}
6547			if (next_distance != curr_distance) {
6548				sched_domains_numa_distance[level++] = next_distance;
6549				sched_domains_numa_levels = level;
6550				curr_distance = next_distance;
6551			} else break;
6552		}
6553
6554		/*
6555		 * In case of sched_debug() we verify the above assumption.
6556		 */
6557		if (!sched_debug())
6558			break;
6559	}
6560
6561	if (!level)
6562		return;
6563
6564	/*
6565	 * 'level' contains the number of unique distances, excluding the
6566	 * identity distance node_distance(i,i).
6567	 *
6568	 * The sched_domains_numa_distance[] array includes the actual distance
6569	 * numbers.
6570	 */
 
6571
6572	/*
6573	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575	 * the array will contain less then 'level' members. This could be
6576	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577	 * in other functions.
6578	 *
6579	 * We reset it to 'level' at the end of this function.
6580	 */
6581	sched_domains_numa_levels = 0;
6582
6583	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584	if (!sched_domains_numa_masks)
6585		return;
6586
6587	/*
6588	 * Now for each level, construct a mask per node which contains all
6589	 * cpus of nodes that are that many hops away from us.
6590	 */
6591	for (i = 0; i < level; i++) {
6592		sched_domains_numa_masks[i] =
6593			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594		if (!sched_domains_numa_masks[i])
6595			return;
6596
6597		for (j = 0; j < nr_node_ids; j++) {
6598			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599			if (!mask)
6600				return;
6601
6602			sched_domains_numa_masks[i][j] = mask;
6603
6604			for_each_node(k) {
6605				if (node_distance(j, k) > sched_domains_numa_distance[i])
6606					continue;
6607
6608				cpumask_or(mask, mask, cpumask_of_node(k));
6609			}
6610		}
6611	}
6612
6613	/* Compute default topology size */
6614	for (i = 0; sched_domain_topology[i].mask; i++);
6615
6616	tl = kzalloc((i + level + 1) *
6617			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618	if (!tl)
6619		return;
6620
6621	/*
6622	 * Copy the default topology bits..
6623	 */
6624	for (i = 0; sched_domain_topology[i].mask; i++)
6625		tl[i] = sched_domain_topology[i];
6626
6627	/*
6628	 * .. and append 'j' levels of NUMA goodness.
6629	 */
6630	for (j = 0; j < level; i++, j++) {
6631		tl[i] = (struct sched_domain_topology_level){
6632			.mask = sd_numa_mask,
6633			.sd_flags = cpu_numa_flags,
6634			.flags = SDTL_OVERLAP,
6635			.numa_level = j,
6636			SD_INIT_NAME(NUMA)
6637		};
6638	}
6639
6640	sched_domain_topology = tl;
 
6641
6642	sched_domains_numa_levels = level;
6643	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644
6645	init_numa_topology_type();
6646}
6647
6648static void sched_domains_numa_masks_set(int cpu)
6649{
6650	int i, j;
6651	int node = cpu_to_node(cpu);
6652
6653	for (i = 0; i < sched_domains_numa_levels; i++) {
6654		for (j = 0; j < nr_node_ids; j++) {
6655			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657		}
6658	}
 
 
6659}
6660
6661static void sched_domains_numa_masks_clear(int cpu)
6662{
6663	int i, j;
6664	for (i = 0; i < sched_domains_numa_levels; i++) {
6665		for (j = 0; j < nr_node_ids; j++)
6666			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667	}
6668}
6669
6670/*
6671 * Update sched_domains_numa_masks[level][node] array when new cpus
6672 * are onlined.
6673 */
6674static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675					   unsigned long action,
6676					   void *hcpu)
6677{
6678	int cpu = (long)hcpu;
6679
6680	switch (action & ~CPU_TASKS_FROZEN) {
6681	case CPU_ONLINE:
6682		sched_domains_numa_masks_set(cpu);
6683		break;
6684
6685	case CPU_DEAD:
6686		sched_domains_numa_masks_clear(cpu);
6687		break;
6688
6689	default:
6690		return NOTIFY_DONE;
6691	}
6692
6693	return NOTIFY_OK;
6694}
6695#else
6696static inline void sched_init_numa(void)
6697{
6698}
6699
6700static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701					   unsigned long action,
6702					   void *hcpu)
6703{
 
 
 
6704	return 0;
6705}
6706#endif /* CONFIG_NUMA */
6707
6708static int __sdt_alloc(const struct cpumask *cpu_map)
6709{
6710	struct sched_domain_topology_level *tl;
6711	int j;
6712
6713	for_each_sd_topology(tl) {
6714		struct sd_data *sdd = &tl->data;
6715
6716		sdd->sd = alloc_percpu(struct sched_domain *);
6717		if (!sdd->sd)
6718			return -ENOMEM;
6719
6720		sdd->sg = alloc_percpu(struct sched_group *);
6721		if (!sdd->sg)
6722			return -ENOMEM;
6723
6724		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725		if (!sdd->sgc)
6726			return -ENOMEM;
6727
6728		for_each_cpu(j, cpu_map) {
6729			struct sched_domain *sd;
6730			struct sched_group *sg;
6731			struct sched_group_capacity *sgc;
6732
6733			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734					GFP_KERNEL, cpu_to_node(j));
6735			if (!sd)
6736				return -ENOMEM;
6737
6738			*per_cpu_ptr(sdd->sd, j) = sd;
6739
6740			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741					GFP_KERNEL, cpu_to_node(j));
6742			if (!sg)
6743				return -ENOMEM;
6744
6745			sg->next = sg;
6746
6747			*per_cpu_ptr(sdd->sg, j) = sg;
6748
6749			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750					GFP_KERNEL, cpu_to_node(j));
6751			if (!sgc)
6752				return -ENOMEM;
6753
6754			*per_cpu_ptr(sdd->sgc, j) = sgc;
6755		}
6756	}
6757
6758	return 0;
6759}
6760
6761static void __sdt_free(const struct cpumask *cpu_map)
6762{
6763	struct sched_domain_topology_level *tl;
6764	int j;
6765
6766	for_each_sd_topology(tl) {
6767		struct sd_data *sdd = &tl->data;
6768
6769		for_each_cpu(j, cpu_map) {
6770			struct sched_domain *sd;
6771
6772			if (sdd->sd) {
6773				sd = *per_cpu_ptr(sdd->sd, j);
6774				if (sd && (sd->flags & SD_OVERLAP))
6775					free_sched_groups(sd->groups, 0);
6776				kfree(*per_cpu_ptr(sdd->sd, j));
6777			}
6778
6779			if (sdd->sg)
6780				kfree(*per_cpu_ptr(sdd->sg, j));
6781			if (sdd->sgc)
6782				kfree(*per_cpu_ptr(sdd->sgc, j));
6783		}
6784		free_percpu(sdd->sd);
6785		sdd->sd = NULL;
6786		free_percpu(sdd->sg);
6787		sdd->sg = NULL;
6788		free_percpu(sdd->sgc);
6789		sdd->sgc = NULL;
6790	}
6791}
6792
6793struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795		struct sched_domain *child, int cpu)
6796{
6797	struct sched_domain *sd = sd_init(tl, cpu);
6798	if (!sd)
6799		return child;
6800
6801	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802	if (child) {
6803		sd->level = child->level + 1;
6804		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805		child->parent = sd;
6806		sd->child = child;
6807
6808		if (!cpumask_subset(sched_domain_span(child),
6809				    sched_domain_span(sd))) {
6810			pr_err("BUG: arch topology borken\n");
6811#ifdef CONFIG_SCHED_DEBUG
6812			pr_err("     the %s domain not a subset of the %s domain\n",
6813					child->name, sd->name);
6814#endif
6815			/* Fixup, ensure @sd has at least @child cpus. */
6816			cpumask_or(sched_domain_span(sd),
6817				   sched_domain_span(sd),
6818				   sched_domain_span(child));
6819		}
6820
6821	}
6822	set_domain_attribute(sd, attr);
6823
6824	return sd;
6825}
6826
6827/*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
6830 */
6831static int build_sched_domains(const struct cpumask *cpu_map,
6832			       struct sched_domain_attr *attr)
6833{
6834	enum s_alloc alloc_state;
6835	struct sched_domain *sd;
6836	struct s_data d;
6837	int i, ret = -ENOMEM;
6838
6839	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840	if (alloc_state != sa_rootdomain)
6841		goto error;
6842
6843	/* Set up domains for cpus specified by the cpu_map. */
6844	for_each_cpu(i, cpu_map) {
6845		struct sched_domain_topology_level *tl;
6846
6847		sd = NULL;
6848		for_each_sd_topology(tl) {
6849			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850			if (tl == sched_domain_topology)
6851				*per_cpu_ptr(d.sd, i) = sd;
6852			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853				sd->flags |= SD_OVERLAP;
6854			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855				break;
6856		}
6857	}
6858
6859	/* Build the groups for the domains */
6860	for_each_cpu(i, cpu_map) {
6861		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863			if (sd->flags & SD_OVERLAP) {
6864				if (build_overlap_sched_groups(sd, i))
6865					goto error;
6866			} else {
6867				if (build_sched_groups(sd, i))
6868					goto error;
6869			}
6870		}
6871	}
6872
6873	/* Calculate CPU capacity for physical packages and nodes */
6874	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875		if (!cpumask_test_cpu(i, cpu_map))
6876			continue;
6877
6878		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879			claim_allocations(i, sd);
6880			init_sched_groups_capacity(i, sd);
6881		}
6882	}
6883
6884	/* Attach the domains */
6885	rcu_read_lock();
6886	for_each_cpu(i, cpu_map) {
6887		sd = *per_cpu_ptr(d.sd, i);
6888		cpu_attach_domain(sd, d.rd, i);
6889	}
6890	rcu_read_unlock();
6891
6892	ret = 0;
6893error:
6894	__free_domain_allocs(&d, alloc_state, cpu_map);
6895	return ret;
6896}
6897
6898static cpumask_var_t *doms_cur;	/* current sched domains */
6899static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6900static struct sched_domain_attr *dattr_cur;
6901				/* attribues of custom domains in 'doms_cur' */
6902
6903/*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
6907 */
6908static cpumask_var_t fallback_doms;
6909
6910/*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
 
 
 
 
 
 
6914 */
6915int __weak arch_update_cpu_topology(void)
6916{
 
6917	return 0;
6918}
6919
6920cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921{
6922	int i;
6923	cpumask_var_t *doms;
6924
6925	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926	if (!doms)
6927		return NULL;
6928	for (i = 0; i < ndoms; i++) {
6929		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930			free_sched_domains(doms, i);
6931			return NULL;
6932		}
6933	}
6934	return doms;
6935}
6936
6937void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938{
6939	unsigned int i;
6940	for (i = 0; i < ndoms; i++)
6941		free_cpumask_var(doms[i]);
6942	kfree(doms);
6943}
6944
6945/*
6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
 
 
 
 
6949 */
6950static int init_sched_domains(const struct cpumask *cpu_map)
6951{
6952	int err;
6953
6954	arch_update_cpu_topology();
6955	ndoms_cur = 1;
6956	doms_cur = alloc_sched_domains(ndoms_cur);
6957	if (!doms_cur)
6958		doms_cur = &fallback_doms;
6959	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960	err = build_sched_domains(doms_cur[0], NULL);
6961	register_sched_domain_sysctl();
6962
6963	return err;
6964}
6965
6966/*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
6970static void detach_destroy_domains(const struct cpumask *cpu_map)
6971{
6972	int i;
6973
6974	rcu_read_lock();
6975	for_each_cpu(i, cpu_map)
6976		cpu_attach_domain(NULL, &def_root_domain, i);
6977	rcu_read_unlock();
6978}
6979
6980/* handle null as "default" */
6981static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982			struct sched_domain_attr *new, int idx_new)
6983{
6984	struct sched_domain_attr tmp;
 
6985
6986	/* fast path */
6987	if (!new && !cur)
6988		return 1;
6989
6990	tmp = SD_ATTR_INIT;
6991	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992			new ? (new + idx_new) : &tmp,
6993			sizeof(struct sched_domain_attr));
6994}
6995
6996/*
6997 * Partition sched domains as specified by the 'ndoms_new'
6998 * cpumasks in the array doms_new[] of cpumasks. This compares
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains.  This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
7015 *
7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
7019 *
7020 * Call with hotplug lock held
7021 */
7022void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023			     struct sched_domain_attr *dattr_new)
7024{
7025	int i, j, n;
7026	int new_topology;
7027
7028	mutex_lock(&sched_domains_mutex);
7029
7030	/* always unregister in case we don't destroy any domains */
7031	unregister_sched_domain_sysctl();
7032
7033	/* Let architecture update cpu core mappings. */
7034	new_topology = arch_update_cpu_topology();
7035
7036	n = doms_new ? ndoms_new : 0;
7037
7038	/* Destroy deleted domains */
7039	for (i = 0; i < ndoms_cur; i++) {
7040		for (j = 0; j < n && !new_topology; j++) {
7041			if (cpumask_equal(doms_cur[i], doms_new[j])
7042			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7043				goto match1;
7044		}
7045		/* no match - a current sched domain not in new doms_new[] */
7046		detach_destroy_domains(doms_cur[i]);
7047match1:
7048		;
7049	}
7050
7051	n = ndoms_cur;
7052	if (doms_new == NULL) {
7053		n = 0;
7054		doms_new = &fallback_doms;
7055		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056		WARN_ON_ONCE(dattr_new);
7057	}
7058
7059	/* Build new domains */
7060	for (i = 0; i < ndoms_new; i++) {
7061		for (j = 0; j < n && !new_topology; j++) {
7062			if (cpumask_equal(doms_new[i], doms_cur[j])
7063			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7064				goto match2;
7065		}
7066		/* no match - add a new doms_new */
7067		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068match2:
7069		;
7070	}
7071
7072	/* Remember the new sched domains */
7073	if (doms_cur != &fallback_doms)
7074		free_sched_domains(doms_cur, ndoms_cur);
7075	kfree(dattr_cur);	/* kfree(NULL) is safe */
7076	doms_cur = doms_new;
7077	dattr_cur = dattr_new;
7078	ndoms_cur = ndoms_new;
7079
7080	register_sched_domain_sysctl();
7081
7082	mutex_unlock(&sched_domains_mutex);
7083}
7084
7085static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7086
7087/*
7088 * Update cpusets according to cpu_active mask.  If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
7094 */
7095static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096			     void *hcpu)
7097{
7098	switch (action) {
7099	case CPU_ONLINE_FROZEN:
7100	case CPU_DOWN_FAILED_FROZEN:
7101
7102		/*
7103		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104		 * resume sequence. As long as this is not the last online
7105		 * operation in the resume sequence, just build a single sched
7106		 * domain, ignoring cpusets.
7107		 */
7108		num_cpus_frozen--;
7109		if (likely(num_cpus_frozen)) {
7110			partition_sched_domains(1, NULL, NULL);
7111			break;
7112		}
7113
7114		/*
7115		 * This is the last CPU online operation. So fall through and
7116		 * restore the original sched domains by considering the
7117		 * cpuset configurations.
7118		 */
7119
7120	case CPU_ONLINE:
7121		cpuset_update_active_cpus(true);
7122		break;
7123	default:
7124		return NOTIFY_DONE;
7125	}
7126	return NOTIFY_OK;
7127}
7128
7129static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130			       void *hcpu)
7131{
7132	unsigned long flags;
7133	long cpu = (long)hcpu;
7134	struct dl_bw *dl_b;
7135	bool overflow;
7136	int cpus;
7137
7138	switch (action) {
7139	case CPU_DOWN_PREPARE:
7140		rcu_read_lock_sched();
7141		dl_b = dl_bw_of(cpu);
7142
7143		raw_spin_lock_irqsave(&dl_b->lock, flags);
7144		cpus = dl_bw_cpus(cpu);
7145		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147
7148		rcu_read_unlock_sched();
7149
7150		if (overflow)
7151			return notifier_from_errno(-EBUSY);
7152		cpuset_update_active_cpus(false);
7153		break;
7154	case CPU_DOWN_PREPARE_FROZEN:
7155		num_cpus_frozen++;
7156		partition_sched_domains(1, NULL, NULL);
7157		break;
7158	default:
7159		return NOTIFY_DONE;
7160	}
7161	return NOTIFY_OK;
7162}
 
7163
7164void __init sched_init_smp(void)
7165{
7166	cpumask_var_t non_isolated_cpus;
7167
7168	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170
7171	sched_init_numa();
7172
7173	/*
7174	 * There's no userspace yet to cause hotplug operations; hence all the
7175	 * cpu masks are stable and all blatant races in the below code cannot
7176	 * happen.
7177	 */
7178	mutex_lock(&sched_domains_mutex);
7179	init_sched_domains(cpu_active_mask);
7180	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7181	if (cpumask_empty(non_isolated_cpus))
7182		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7183	mutex_unlock(&sched_domains_mutex);
7184
7185	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7186	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7187	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7188
7189	init_hrtick();
7190
7191	/* Move init over to a non-isolated CPU */
7192	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7193		BUG();
 
7194	sched_init_granularity();
7195	free_cpumask_var(non_isolated_cpus);
7196
7197	init_sched_rt_class();
7198	init_sched_dl_class();
 
 
7199}
 
 
 
 
 
 
 
 
7200#else
7201void __init sched_init_smp(void)
7202{
7203	sched_init_granularity();
7204}
7205#endif /* CONFIG_SMP */
7206
7207int in_sched_functions(unsigned long addr)
7208{
7209	return in_lock_functions(addr) ||
7210		(addr >= (unsigned long)__sched_text_start
7211		&& addr < (unsigned long)__sched_text_end);
7212}
7213
7214#ifdef CONFIG_CGROUP_SCHED
7215/*
7216 * Default task group.
7217 * Every task in system belongs to this group at bootup.
7218 */
7219struct task_group root_task_group;
7220LIST_HEAD(task_groups);
7221
7222/* Cacheline aligned slab cache for task_group */
7223static struct kmem_cache *task_group_cache __read_mostly;
7224#endif
7225
7226DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7227
7228void __init sched_init(void)
7229{
7230	int i, j;
7231	unsigned long alloc_size = 0, ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
7239	if (alloc_size) {
7240		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241
7242#ifdef CONFIG_FAIR_GROUP_SCHED
7243		root_task_group.se = (struct sched_entity **)ptr;
7244		ptr += nr_cpu_ids * sizeof(void **);
7245
7246		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247		ptr += nr_cpu_ids * sizeof(void **);
7248
 
 
7249#endif /* CONFIG_FAIR_GROUP_SCHED */
 
 
 
7250#ifdef CONFIG_RT_GROUP_SCHED
7251		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252		ptr += nr_cpu_ids * sizeof(void **);
7253
7254		root_task_group.rt_rq = (struct rt_rq **)ptr;
7255		ptr += nr_cpu_ids * sizeof(void **);
7256
7257#endif /* CONFIG_RT_GROUP_SCHED */
7258	}
7259#ifdef CONFIG_CPUMASK_OFFSTACK
7260	for_each_possible_cpu(i) {
7261		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7263	}
7264#endif /* CONFIG_CPUMASK_OFFSTACK */
7265
7266	init_rt_bandwidth(&def_rt_bandwidth,
7267			global_rt_period(), global_rt_runtime());
7268	init_dl_bandwidth(&def_dl_bandwidth,
7269			global_rt_period(), global_rt_runtime());
7270
7271#ifdef CONFIG_SMP
7272	init_defrootdomain();
7273#endif
7274
7275#ifdef CONFIG_RT_GROUP_SCHED
7276	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277			global_rt_period(), global_rt_runtime());
7278#endif /* CONFIG_RT_GROUP_SCHED */
7279
7280#ifdef CONFIG_CGROUP_SCHED
7281	task_group_cache = KMEM_CACHE(task_group, 0);
7282
7283	list_add(&root_task_group.list, &task_groups);
7284	INIT_LIST_HEAD(&root_task_group.children);
7285	INIT_LIST_HEAD(&root_task_group.siblings);
7286	autogroup_init(&init_task);
7287#endif /* CONFIG_CGROUP_SCHED */
7288
7289	for_each_possible_cpu(i) {
7290		struct rq *rq;
7291
7292		rq = cpu_rq(i);
7293		raw_spin_lock_init(&rq->lock);
7294		rq->nr_running = 0;
7295		rq->calc_load_active = 0;
7296		rq->calc_load_update = jiffies + LOAD_FREQ;
7297		init_cfs_rq(&rq->cfs);
7298		init_rt_rq(&rq->rt);
7299		init_dl_rq(&rq->dl);
7300#ifdef CONFIG_FAIR_GROUP_SCHED
7301		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7302		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 
7303		/*
7304		 * How much cpu bandwidth does root_task_group get?
7305		 *
7306		 * In case of task-groups formed thr' the cgroup filesystem, it
7307		 * gets 100% of the cpu resources in the system. This overall
7308		 * system cpu resource is divided among the tasks of
7309		 * root_task_group and its child task-groups in a fair manner,
7310		 * based on each entity's (task or task-group's) weight
7311		 * (se->load.weight).
7312		 *
7313		 * In other words, if root_task_group has 10 tasks of weight
7314		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7315		 * then A0's share of the cpu resource is:
7316		 *
7317		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7318		 *
7319		 * We achieve this by letting root_task_group's tasks sit
7320		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7321		 */
7322		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7323		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7324#endif /* CONFIG_FAIR_GROUP_SCHED */
7325
7326		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7327#ifdef CONFIG_RT_GROUP_SCHED
 
 
 
 
 
 
7328		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7329#endif
7330
7331		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7332			rq->cpu_load[j] = 0;
7333
7334		rq->last_load_update_tick = jiffies;
7335
7336#ifdef CONFIG_SMP
7337		rq->sd = NULL;
7338		rq->rd = NULL;
7339		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7340		rq->balance_callback = NULL;
7341		rq->active_balance = 0;
7342		rq->next_balance = jiffies;
7343		rq->push_cpu = 0;
7344		rq->cpu = i;
7345		rq->online = 0;
7346		rq->idle_stamp = 0;
7347		rq->avg_idle = 2*sysctl_sched_migration_cost;
7348		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7349
7350		INIT_LIST_HEAD(&rq->cfs_tasks);
7351
7352		rq_attach_root(rq, &def_root_domain);
7353#ifdef CONFIG_NO_HZ_COMMON
7354		rq->nohz_flags = 0;
 
 
 
7355#endif
7356#ifdef CONFIG_NO_HZ_FULL
7357		rq->last_sched_tick = 0;
7358#endif
7359#endif
7360		init_rq_hrtick(rq);
7361		atomic_set(&rq->nr_iowait, 0);
7362	}
7363
7364	set_load_weight(&init_task);
 
 
 
 
 
 
 
 
7365
7366#ifdef CONFIG_PREEMPT_NOTIFIERS
7367	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7368#endif
 
 
 
 
 
7369
7370	/*
7371	 * The boot idle thread does lazy MMU switching as well:
7372	 */
7373	atomic_inc(&init_mm.mm_count);
7374	enter_lazy_tlb(&init_mm, current);
7375
7376	/*
7377	 * During early bootup we pretend to be a normal task:
 
 
 
7378	 */
7379	current->sched_class = &fair_sched_class;
7380
7381	/*
7382	 * Make us the idle thread. Technically, schedule() should not be
7383	 * called from this thread, however somewhere below it might be,
7384	 * but because we are the idle thread, we just pick up running again
7385	 * when this runqueue becomes "idle".
7386	 */
 
7387	init_idle(current, smp_processor_id());
7388
7389	calc_load_update = jiffies + LOAD_FREQ;
7390
7391#ifdef CONFIG_SMP
7392	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7393	/* May be allocated at isolcpus cmdline parse time */
7394	if (cpu_isolated_map == NULL)
7395		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7396	idle_thread_set_boot_cpu();
7397	set_cpu_rq_start_time();
7398#endif
7399	init_sched_fair_class();
 
 
 
 
 
 
 
7400
7401	scheduler_running = 1;
7402}
7403
7404#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7405static inline int preempt_count_equals(int preempt_offset)
7406{
7407	int nested = preempt_count() + rcu_preempt_depth();
7408
7409	return (nested == preempt_offset);
7410}
7411
7412void __might_sleep(const char *file, int line, int preempt_offset)
7413{
 
7414	/*
7415	 * Blocking primitives will set (and therefore destroy) current->state,
7416	 * since we will exit with TASK_RUNNING make sure we enter with it,
7417	 * otherwise we will destroy state.
7418	 */
7419	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7420			"do not call blocking ops when !TASK_RUNNING; "
7421			"state=%lx set at [<%p>] %pS\n",
7422			current->state,
7423			(void *)current->task_state_change,
7424			(void *)current->task_state_change);
7425
7426	___might_sleep(file, line, preempt_offset);
7427}
7428EXPORT_SYMBOL(__might_sleep);
7429
7430void ___might_sleep(const char *file, int line, int preempt_offset)
7431{
7432	static unsigned long prev_jiffy;	/* ratelimiting */
 
7433
7434	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7435	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7436	     !is_idle_task(current)) ||
7437	    system_state != SYSTEM_RUNNING || oops_in_progress)
7438		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7439	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7440		return;
7441	prev_jiffy = jiffies;
7442
7443	printk(KERN_ERR
7444		"BUG: sleeping function called from invalid context at %s:%d\n",
7445			file, line);
7446	printk(KERN_ERR
7447		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7448			in_atomic(), irqs_disabled(),
7449			current->pid, current->comm);
 
 
 
 
 
 
 
 
7450
7451	if (task_stack_end_corrupted(current))
7452		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7453
7454	debug_show_held_locks(current);
7455	if (irqs_disabled())
7456		print_irqtrace_events(current);
7457#ifdef CONFIG_DEBUG_PREEMPT
7458	if (!preempt_count_equals(preempt_offset)) {
7459		pr_err("Preemption disabled at:");
7460		print_ip_sym(current->preempt_disable_ip);
7461		pr_cont("\n");
7462	}
7463#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7464	dump_stack();
 
7465}
7466EXPORT_SYMBOL(___might_sleep);
 
7467#endif
7468
7469#ifdef CONFIG_MAGIC_SYSRQ
7470void normalize_rt_tasks(void)
7471{
7472	struct task_struct *g, *p;
7473	struct sched_attr attr = {
7474		.sched_policy = SCHED_NORMAL,
7475	};
7476
7477	read_lock(&tasklist_lock);
7478	for_each_process_thread(g, p) {
7479		/*
7480		 * Only normalize user tasks:
7481		 */
7482		if (p->flags & PF_KTHREAD)
7483			continue;
7484
7485		p->se.exec_start		= 0;
7486#ifdef CONFIG_SCHEDSTATS
7487		p->se.statistics.wait_start	= 0;
7488		p->se.statistics.sleep_start	= 0;
7489		p->se.statistics.block_start	= 0;
7490#endif
7491
7492		if (!dl_task(p) && !rt_task(p)) {
7493			/*
7494			 * Renice negative nice level userspace
7495			 * tasks back to 0:
7496			 */
7497			if (task_nice(p) < 0)
7498				set_user_nice(p, 0);
7499			continue;
7500		}
7501
7502		__sched_setscheduler(p, &attr, false, false);
7503	}
7504	read_unlock(&tasklist_lock);
7505}
7506
7507#endif /* CONFIG_MAGIC_SYSRQ */
7508
7509#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7510/*
7511 * These functions are only useful for the IA64 MCA handling, or kdb.
7512 *
7513 * They can only be called when the whole system has been
7514 * stopped - every CPU needs to be quiescent, and no scheduling
7515 * activity can take place. Using them for anything else would
7516 * be a serious bug, and as a result, they aren't even visible
7517 * under any other configuration.
7518 */
7519
7520/**
7521 * curr_task - return the current task for a given cpu.
7522 * @cpu: the processor in question.
7523 *
7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7525 *
7526 * Return: The current task for @cpu.
7527 */
7528struct task_struct *curr_task(int cpu)
7529{
7530	return cpu_curr(cpu);
7531}
7532
7533#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7534
7535#ifdef CONFIG_IA64
7536/**
7537 * set_curr_task - set the current task for a given cpu.
7538 * @cpu: the processor in question.
7539 * @p: the task pointer to set.
7540 *
7541 * Description: This function must only be used when non-maskable interrupts
7542 * are serviced on a separate stack. It allows the architecture to switch the
7543 * notion of the current task on a cpu in a non-blocking manner. This function
7544 * must be called with all CPU's synchronized, and interrupts disabled, the
7545 * and caller must save the original value of the current task (see
7546 * curr_task() above) and restore that value before reenabling interrupts and
7547 * re-starting the system.
7548 *
7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550 */
7551void set_curr_task(int cpu, struct task_struct *p)
7552{
7553	cpu_curr(cpu) = p;
7554}
7555
 
 
 
 
 
7556#endif
7557
7558#ifdef CONFIG_CGROUP_SCHED
7559/* task_group_lock serializes the addition/removal of task groups */
7560static DEFINE_SPINLOCK(task_group_lock);
7561
7562static void sched_free_group(struct task_group *tg)
7563{
7564	free_fair_sched_group(tg);
7565	free_rt_sched_group(tg);
7566	autogroup_free(tg);
7567	kmem_cache_free(task_group_cache, tg);
7568}
7569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7570/* allocate runqueue etc for a new task group */
7571struct task_group *sched_create_group(struct task_group *parent)
7572{
7573	struct task_group *tg;
7574
7575	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7576	if (!tg)
7577		return ERR_PTR(-ENOMEM);
7578
7579	if (!alloc_fair_sched_group(tg, parent))
7580		goto err;
7581
7582	if (!alloc_rt_sched_group(tg, parent))
7583		goto err;
7584
 
 
 
7585	return tg;
7586
7587err:
7588	sched_free_group(tg);
7589	return ERR_PTR(-ENOMEM);
7590}
7591
7592void sched_online_group(struct task_group *tg, struct task_group *parent)
7593{
7594	unsigned long flags;
7595
7596	spin_lock_irqsave(&task_group_lock, flags);
7597	list_add_rcu(&tg->list, &task_groups);
7598
7599	WARN_ON(!parent); /* root should already exist */
 
7600
7601	tg->parent = parent;
7602	INIT_LIST_HEAD(&tg->children);
7603	list_add_rcu(&tg->siblings, &parent->children);
7604	spin_unlock_irqrestore(&task_group_lock, flags);
 
 
7605}
7606
7607/* rcu callback to free various structures associated with a task group */
7608static void sched_free_group_rcu(struct rcu_head *rhp)
7609{
7610	/* now it should be safe to free those cfs_rqs */
7611	sched_free_group(container_of(rhp, struct task_group, rcu));
7612}
7613
7614void sched_destroy_group(struct task_group *tg)
7615{
7616	/* wait for possible concurrent references to cfs_rqs complete */
7617	call_rcu(&tg->rcu, sched_free_group_rcu);
7618}
7619
7620void sched_offline_group(struct task_group *tg)
7621{
7622	unsigned long flags;
7623
7624	/* end participation in shares distribution */
7625	unregister_fair_sched_group(tg);
7626
 
 
 
 
 
 
 
 
 
 
7627	spin_lock_irqsave(&task_group_lock, flags);
7628	list_del_rcu(&tg->list);
7629	list_del_rcu(&tg->siblings);
7630	spin_unlock_irqrestore(&task_group_lock, flags);
7631}
7632
7633/* change task's runqueue when it moves between groups.
7634 *	The caller of this function should have put the task in its new group
7635 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7636 *	reflect its new group.
7637 */
7638void sched_move_task(struct task_struct *tsk)
7639{
7640	struct task_group *tg;
7641	int queued, running;
7642	unsigned long flags;
7643	struct rq *rq;
7644
7645	rq = task_rq_lock(tsk, &flags);
7646
7647	running = task_current(rq, tsk);
7648	queued = task_on_rq_queued(tsk);
7649
7650	if (queued)
7651		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7652	if (unlikely(running))
7653		put_prev_task(rq, tsk);
7654
7655	/*
7656	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7657	 * which is pointless here. Thus, we pass "true" to task_css_check()
7658	 * to prevent lockdep warnings.
7659	 */
7660	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7661			  struct task_group, css);
7662	tg = autogroup_task_group(tsk, tg);
7663	tsk->sched_task_group = tg;
 
 
 
 
 
 
7664
7665#ifdef CONFIG_FAIR_GROUP_SCHED
7666	if (tsk->sched_class->task_move_group)
7667		tsk->sched_class->task_move_group(tsk);
7668	else
7669#endif
7670		set_task_rq(tsk, task_cpu(tsk));
7671
7672	if (unlikely(running))
7673		tsk->sched_class->set_curr_task(rq);
7674	if (queued)
7675		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7676
7677	task_rq_unlock(rq, tsk, &flags);
7678}
7679#endif /* CONFIG_CGROUP_SCHED */
7680
7681#ifdef CONFIG_RT_GROUP_SCHED
7682/*
7683 * Ensure that the real time constraints are schedulable.
 
 
 
 
7684 */
7685static DEFINE_MUTEX(rt_constraints_mutex);
7686
7687/* Must be called with tasklist_lock held */
7688static inline int tg_has_rt_tasks(struct task_group *tg)
7689{
7690	struct task_struct *g, *p;
 
 
 
7691
7692	/*
7693	 * Autogroups do not have RT tasks; see autogroup_create().
7694	 */
7695	if (task_group_is_autogroup(tg))
7696		return 0;
7697
7698	for_each_process_thread(g, p) {
7699		if (rt_task(p) && task_group(p) == tg)
7700			return 1;
7701	}
7702
7703	return 0;
7704}
7705
7706struct rt_schedulable_data {
7707	struct task_group *tg;
7708	u64 rt_period;
7709	u64 rt_runtime;
7710};
7711
7712static int tg_rt_schedulable(struct task_group *tg, void *data)
7713{
7714	struct rt_schedulable_data *d = data;
7715	struct task_group *child;
7716	unsigned long total, sum = 0;
7717	u64 period, runtime;
7718
7719	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7720	runtime = tg->rt_bandwidth.rt_runtime;
7721
7722	if (tg == d->tg) {
7723		period = d->rt_period;
7724		runtime = d->rt_runtime;
7725	}
7726
7727	/*
7728	 * Cannot have more runtime than the period.
 
7729	 */
7730	if (runtime > period && runtime != RUNTIME_INF)
7731		return -EINVAL;
 
7732
7733	/*
7734	 * Ensure we don't starve existing RT tasks.
7735	 */
7736	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7737		return -EBUSY;
7738
7739	total = to_ratio(period, runtime);
 
7740
7741	/*
7742	 * Nobody can have more than the global setting allows.
7743	 */
7744	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7745		return -EINVAL;
7746
7747	/*
7748	 * The sum of our children's runtime should not exceed our own.
7749	 */
7750	list_for_each_entry_rcu(child, &tg->children, siblings) {
7751		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7752		runtime = child->rt_bandwidth.rt_runtime;
7753
7754		if (child == d->tg) {
7755			period = d->rt_period;
7756			runtime = d->rt_runtime;
7757		}
7758
7759		sum += to_ratio(period, runtime);
 
 
 
 
7760	}
7761
7762	if (sum > total)
7763		return -EINVAL;
7764
7765	return 0;
7766}
7767
7768static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
 
7769{
7770	int ret;
 
7771
7772	struct rt_schedulable_data data = {
7773		.tg = tg,
7774		.rt_period = period,
7775		.rt_runtime = runtime,
7776	};
7777
7778	rcu_read_lock();
7779	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7780	rcu_read_unlock();
7781
7782	return ret;
7783}
7784
7785static int tg_set_rt_bandwidth(struct task_group *tg,
7786		u64 rt_period, u64 rt_runtime)
7787{
7788	int i, err = 0;
 
 
7789
7790	/*
7791	 * Disallowing the root group RT runtime is BAD, it would disallow the
7792	 * kernel creating (and or operating) RT threads.
7793	 */
7794	if (tg == &root_task_group && rt_runtime == 0)
7795		return -EINVAL;
7796
7797	/* No period doesn't make any sense. */
7798	if (rt_period == 0)
7799		return -EINVAL;
7800
7801	mutex_lock(&rt_constraints_mutex);
7802	read_lock(&tasklist_lock);
7803	err = __rt_schedulable(tg, rt_period, rt_runtime);
7804	if (err)
7805		goto unlock;
7806
7807	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7808	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7809	tg->rt_bandwidth.rt_runtime = rt_runtime;
7810
7811	for_each_possible_cpu(i) {
7812		struct rt_rq *rt_rq = tg->rt_rq[i];
7813
7814		raw_spin_lock(&rt_rq->rt_runtime_lock);
7815		rt_rq->rt_runtime = rt_runtime;
7816		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7817	}
7818	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7819unlock:
7820	read_unlock(&tasklist_lock);
7821	mutex_unlock(&rt_constraints_mutex);
7822
7823	return err;
7824}
7825
7826static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7827{
7828	u64 rt_runtime, rt_period;
7829
7830	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7832	if (rt_runtime_us < 0)
7833		rt_runtime = RUNTIME_INF;
7834
7835	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7836}
7837
7838static long sched_group_rt_runtime(struct task_group *tg)
7839{
7840	u64 rt_runtime_us;
7841
7842	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7843		return -1;
7844
7845	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7846	do_div(rt_runtime_us, NSEC_PER_USEC);
7847	return rt_runtime_us;
7848}
7849
7850static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7851{
7852	u64 rt_runtime, rt_period;
7853
7854	rt_period = rt_period_us * NSEC_PER_USEC;
7855	rt_runtime = tg->rt_bandwidth.rt_runtime;
7856
7857	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7858}
7859
7860static long sched_group_rt_period(struct task_group *tg)
7861{
7862	u64 rt_period_us;
 
 
7863
7864	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7865	do_div(rt_period_us, NSEC_PER_USEC);
7866	return rt_period_us;
 
 
 
7867}
7868#endif /* CONFIG_RT_GROUP_SCHED */
7869
7870#ifdef CONFIG_RT_GROUP_SCHED
7871static int sched_rt_global_constraints(void)
7872{
7873	int ret = 0;
 
7874
7875	mutex_lock(&rt_constraints_mutex);
7876	read_lock(&tasklist_lock);
7877	ret = __rt_schedulable(NULL, 0, 0);
7878	read_unlock(&tasklist_lock);
7879	mutex_unlock(&rt_constraints_mutex);
7880
7881	return ret;
7882}
7883
7884static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7885{
7886	/* Don't accept realtime tasks when there is no way for them to run */
7887	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7888		return 0;
7889
7890	return 1;
7891}
7892
7893#else /* !CONFIG_RT_GROUP_SCHED */
7894static int sched_rt_global_constraints(void)
7895{
7896	unsigned long flags;
7897	int i, ret = 0;
 
 
 
 
7898
7899	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7900	for_each_possible_cpu(i) {
7901		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7902
7903		raw_spin_lock(&rt_rq->rt_runtime_lock);
7904		rt_rq->rt_runtime = global_rt_runtime();
7905		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906	}
7907	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7908
7909	return ret;
7910}
7911#endif /* CONFIG_RT_GROUP_SCHED */
 
 
 
 
 
 
 
 
7912
7913static int sched_dl_global_validate(void)
7914{
7915	u64 runtime = global_rt_runtime();
7916	u64 period = global_rt_period();
7917	u64 new_bw = to_ratio(period, runtime);
7918	struct dl_bw *dl_b;
7919	int cpu, ret = 0;
7920	unsigned long flags;
 
 
 
 
 
 
7921
7922	/*
7923	 * Here we want to check the bandwidth not being set to some
7924	 * value smaller than the currently allocated bandwidth in
7925	 * any of the root_domains.
7926	 *
7927	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7928	 * cycling on root_domains... Discussion on different/better
7929	 * solutions is welcome!
7930	 */
7931	for_each_possible_cpu(cpu) {
7932		rcu_read_lock_sched();
7933		dl_b = dl_bw_of(cpu);
7934
7935		raw_spin_lock_irqsave(&dl_b->lock, flags);
7936		if (new_bw < dl_b->total_bw)
7937			ret = -EBUSY;
7938		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7939
7940		rcu_read_unlock_sched();
7941
7942		if (ret)
7943			break;
7944	}
7945
7946	return ret;
7947}
7948
7949static void sched_dl_do_global(void)
7950{
7951	u64 new_bw = -1;
7952	struct dl_bw *dl_b;
7953	int cpu;
7954	unsigned long flags;
 
7955
7956	def_dl_bandwidth.dl_period = global_rt_period();
7957	def_dl_bandwidth.dl_runtime = global_rt_runtime();
 
 
 
 
 
7958
7959	if (global_rt_runtime() != RUNTIME_INF)
7960		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
 
 
 
 
 
 
7961
7962	/*
7963	 * FIXME: As above...
7964	 */
7965	for_each_possible_cpu(cpu) {
7966		rcu_read_lock_sched();
7967		dl_b = dl_bw_of(cpu);
7968
7969		raw_spin_lock_irqsave(&dl_b->lock, flags);
7970		dl_b->bw = new_bw;
7971		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7972
7973		rcu_read_unlock_sched();
 
7974	}
7975}
7976
7977static int sched_rt_global_validate(void)
7978{
7979	if (sysctl_sched_rt_period <= 0)
7980		return -EINVAL;
7981
7982	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7983		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7984		return -EINVAL;
7985
7986	return 0;
7987}
7988
7989static void sched_rt_do_global(void)
 
 
7990{
7991	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7992	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7993}
7994
7995int sched_rt_handler(struct ctl_table *table, int write,
7996		void __user *buffer, size_t *lenp,
7997		loff_t *ppos)
7998{
7999	int old_period, old_runtime;
8000	static DEFINE_MUTEX(mutex);
8001	int ret;
8002
8003	mutex_lock(&mutex);
8004	old_period = sysctl_sched_rt_period;
8005	old_runtime = sysctl_sched_rt_runtime;
8006
8007	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 
8008
8009	if (!ret && write) {
8010		ret = sched_rt_global_validate();
8011		if (ret)
8012			goto undo;
8013
8014		ret = sched_dl_global_validate();
8015		if (ret)
8016			goto undo;
 
 
8017
8018		ret = sched_rt_global_constraints();
8019		if (ret)
8020			goto undo;
8021
8022		sched_rt_do_global();
8023		sched_dl_do_global();
8024	}
8025	if (0) {
8026undo:
8027		sysctl_sched_rt_period = old_period;
8028		sysctl_sched_rt_runtime = old_runtime;
8029	}
8030	mutex_unlock(&mutex);
8031
8032	return ret;
8033}
8034
8035int sched_rr_handler(struct ctl_table *table, int write,
8036		void __user *buffer, size_t *lenp,
8037		loff_t *ppos)
8038{
8039	int ret;
8040	static DEFINE_MUTEX(mutex);
8041
8042	mutex_lock(&mutex);
8043	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8044	/* make sure that internally we keep jiffies */
8045	/* also, writing zero resets timeslice to default */
8046	if (!ret && write) {
8047		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8048			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8049	}
8050	mutex_unlock(&mutex);
8051	return ret;
8052}
8053
8054#ifdef CONFIG_CGROUP_SCHED
8055
8056static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8057{
8058	return css ? container_of(css, struct task_group, css) : NULL;
8059}
8060
8061static struct cgroup_subsys_state *
8062cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8063{
8064	struct task_group *parent = css_tg(parent_css);
8065	struct task_group *tg;
 
 
 
8066
8067	if (!parent) {
8068		/* This is early initialization for the top cgroup */
8069		return &root_task_group.css;
8070	}
8071
8072	tg = sched_create_group(parent);
8073	if (IS_ERR(tg))
8074		return ERR_PTR(-ENOMEM);
 
8075
8076	sched_online_group(tg, parent);
8077
8078	return &tg->css;
8079}
8080
8081static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8082{
8083	struct task_group *tg = css_tg(css);
8084
8085	sched_offline_group(tg);
8086}
8087
8088static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8089{
8090	struct task_group *tg = css_tg(css);
8091
8092	/*
8093	 * Relies on the RCU grace period between css_released() and this.
8094	 */
8095	sched_free_group(tg);
8096}
 
8097
8098static void cpu_cgroup_fork(struct task_struct *task)
 
8099{
8100	sched_move_task(task);
8101}
8102
8103static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8104{
8105	struct task_struct *task;
8106	struct cgroup_subsys_state *css;
8107
8108	cgroup_taskset_for_each(task, css, tset) {
8109#ifdef CONFIG_RT_GROUP_SCHED
8110		if (!sched_rt_can_attach(css_tg(css), task))
8111			return -EINVAL;
8112#else
8113		/* We don't support RT-tasks being in separate groups */
8114		if (task->sched_class != &fair_sched_class)
8115			return -EINVAL;
8116#endif
8117	}
8118	return 0;
8119}
8120
8121static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8122{
8123	struct task_struct *task;
8124	struct cgroup_subsys_state *css;
8125
8126	cgroup_taskset_for_each(task, css, tset)
8127		sched_move_task(task);
8128}
8129
8130#ifdef CONFIG_FAIR_GROUP_SCHED
8131static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8132				struct cftype *cftype, u64 shareval)
8133{
8134	return sched_group_set_shares(css_tg(css), scale_load(shareval));
 
 
 
 
 
 
 
 
8135}
8136
8137static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8138			       struct cftype *cft)
8139{
8140	struct task_group *tg = css_tg(css);
8141
8142	return (u64) scale_load_down(tg->shares);
8143}
 
8144
8145#ifdef CONFIG_CFS_BANDWIDTH
8146static DEFINE_MUTEX(cfs_constraints_mutex);
8147
8148const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8149const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 
 
8150
8151static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8152
8153static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
 
8154{
8155	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8156	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8157
8158	if (tg == &root_task_group)
8159		return -EINVAL;
8160
8161	/*
8162	 * Ensure we have at some amount of bandwidth every period.  This is
8163	 * to prevent reaching a state of large arrears when throttled via
8164	 * entity_tick() resulting in prolonged exit starvation.
8165	 */
8166	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8167		return -EINVAL;
8168
8169	/*
8170	 * Likewise, bound things on the otherside by preventing insane quota
8171	 * periods.  This also allows us to normalize in computing quota
8172	 * feasibility.
8173	 */
8174	if (period > max_cfs_quota_period)
8175		return -EINVAL;
8176
8177	/*
 
 
 
 
 
 
 
 
 
 
8178	 * Prevent race between setting of cfs_rq->runtime_enabled and
8179	 * unthrottle_offline_cfs_rqs().
8180	 */
8181	get_online_cpus();
8182	mutex_lock(&cfs_constraints_mutex);
 
8183	ret = __cfs_schedulable(tg, period, quota);
8184	if (ret)
8185		goto out_unlock;
8186
8187	runtime_enabled = quota != RUNTIME_INF;
8188	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8189	/*
8190	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8191	 * before making related changes, and on->off must occur afterwards
8192	 */
8193	if (runtime_enabled && !runtime_was_enabled)
8194		cfs_bandwidth_usage_inc();
8195	raw_spin_lock_irq(&cfs_b->lock);
8196	cfs_b->period = ns_to_ktime(period);
8197	cfs_b->quota = quota;
8198
8199	__refill_cfs_bandwidth_runtime(cfs_b);
8200	/* restart the period timer (if active) to handle new period expiry */
8201	if (runtime_enabled)
8202		start_cfs_bandwidth(cfs_b);
8203	raw_spin_unlock_irq(&cfs_b->lock);
 
 
 
 
 
 
8204
8205	for_each_online_cpu(i) {
8206		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8207		struct rq *rq = cfs_rq->rq;
8208
8209		raw_spin_lock_irq(&rq->lock);
8210		cfs_rq->runtime_enabled = runtime_enabled;
8211		cfs_rq->runtime_remaining = 0;
8212
8213		if (cfs_rq->throttled)
8214			unthrottle_cfs_rq(cfs_rq);
8215		raw_spin_unlock_irq(&rq->lock);
8216	}
 
8217	if (runtime_was_enabled && !runtime_enabled)
8218		cfs_bandwidth_usage_dec();
8219out_unlock:
8220	mutex_unlock(&cfs_constraints_mutex);
8221	put_online_cpus();
8222
8223	return ret;
8224}
8225
8226int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8227{
8228	u64 quota, period;
8229
8230	period = ktime_to_ns(tg->cfs_bandwidth.period);
 
8231	if (cfs_quota_us < 0)
8232		quota = RUNTIME_INF;
 
 
8233	else
8234		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8235
8236	return tg_set_cfs_bandwidth(tg, period, quota);
8237}
8238
8239long tg_get_cfs_quota(struct task_group *tg)
8240{
8241	u64 quota_us;
8242
8243	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8244		return -1;
8245
8246	quota_us = tg->cfs_bandwidth.quota;
8247	do_div(quota_us, NSEC_PER_USEC);
8248
8249	return quota_us;
8250}
8251
8252int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8253{
8254	u64 quota, period;
 
 
 
8255
8256	period = (u64)cfs_period_us * NSEC_PER_USEC;
8257	quota = tg->cfs_bandwidth.quota;
 
8258
8259	return tg_set_cfs_bandwidth(tg, period, quota);
8260}
8261
8262long tg_get_cfs_period(struct task_group *tg)
8263{
8264	u64 cfs_period_us;
8265
8266	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8267	do_div(cfs_period_us, NSEC_PER_USEC);
8268
8269	return cfs_period_us;
8270}
8271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8272static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8273				  struct cftype *cft)
8274{
8275	return tg_get_cfs_quota(css_tg(css));
8276}
8277
8278static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8279				   struct cftype *cftype, s64 cfs_quota_us)
8280{
8281	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8282}
8283
8284static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8285				   struct cftype *cft)
8286{
8287	return tg_get_cfs_period(css_tg(css));
8288}
8289
8290static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8291				    struct cftype *cftype, u64 cfs_period_us)
8292{
8293	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8294}
8295
 
 
 
 
 
 
 
 
 
 
 
 
8296struct cfs_schedulable_data {
8297	struct task_group *tg;
8298	u64 period, quota;
8299};
8300
8301/*
8302 * normalize group quota/period to be quota/max_period
8303 * note: units are usecs
8304 */
8305static u64 normalize_cfs_quota(struct task_group *tg,
8306			       struct cfs_schedulable_data *d)
8307{
8308	u64 quota, period;
8309
8310	if (tg == d->tg) {
8311		period = d->period;
8312		quota = d->quota;
8313	} else {
8314		period = tg_get_cfs_period(tg);
8315		quota = tg_get_cfs_quota(tg);
8316	}
8317
8318	/* note: these should typically be equivalent */
8319	if (quota == RUNTIME_INF || quota == -1)
8320		return RUNTIME_INF;
8321
8322	return to_ratio(period, quota);
8323}
8324
8325static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8326{
8327	struct cfs_schedulable_data *d = data;
8328	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8329	s64 quota = 0, parent_quota = -1;
8330
8331	if (!tg->parent) {
8332		quota = RUNTIME_INF;
8333	} else {
8334		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8335
8336		quota = normalize_cfs_quota(tg, d);
8337		parent_quota = parent_b->hierarchical_quota;
8338
8339		/*
8340		 * ensure max(child_quota) <= parent_quota, inherit when no
8341		 * limit is set
8342		 */
8343		if (quota == RUNTIME_INF)
8344			quota = parent_quota;
8345		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8346			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
8347	}
8348	cfs_b->hierarchical_quota = quota;
8349
8350	return 0;
8351}
8352
8353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8354{
8355	int ret;
8356	struct cfs_schedulable_data data = {
8357		.tg = tg,
8358		.period = period,
8359		.quota = quota,
8360	};
8361
8362	if (quota != RUNTIME_INF) {
8363		do_div(data.period, NSEC_PER_USEC);
8364		do_div(data.quota, NSEC_PER_USEC);
8365	}
8366
8367	rcu_read_lock();
8368	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8369	rcu_read_unlock();
8370
8371	return ret;
8372}
8373
8374static int cpu_stats_show(struct seq_file *sf, void *v)
8375{
8376	struct task_group *tg = css_tg(seq_css(sf));
8377	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8378
8379	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8380	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8381	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8383	return 0;
8384}
8385#endif /* CONFIG_CFS_BANDWIDTH */
8386#endif /* CONFIG_FAIR_GROUP_SCHED */
8387
8388#ifdef CONFIG_RT_GROUP_SCHED
8389static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8390				struct cftype *cft, s64 val)
8391{
8392	return sched_group_set_rt_runtime(css_tg(css), val);
8393}
8394
8395static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8396			       struct cftype *cft)
8397{
8398	return sched_group_rt_runtime(css_tg(css));
8399}
8400
8401static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8402				    struct cftype *cftype, u64 rt_period_us)
8403{
8404	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8405}
8406
8407static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8408				   struct cftype *cft)
8409{
8410	return sched_group_rt_period(css_tg(css));
8411}
8412#endif /* CONFIG_RT_GROUP_SCHED */
8413
8414static struct cftype cpu_files[] = {
8415#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8416	{
8417		.name = "shares",
8418		.read_u64 = cpu_shares_read_u64,
8419		.write_u64 = cpu_shares_write_u64,
8420	},
 
 
 
 
 
8421#endif
8422#ifdef CONFIG_CFS_BANDWIDTH
8423	{
8424		.name = "cfs_quota_us",
8425		.read_s64 = cpu_cfs_quota_read_s64,
8426		.write_s64 = cpu_cfs_quota_write_s64,
8427	},
8428	{
8429		.name = "cfs_period_us",
8430		.read_u64 = cpu_cfs_period_read_u64,
8431		.write_u64 = cpu_cfs_period_write_u64,
8432	},
8433	{
 
 
 
 
 
8434		.name = "stat",
8435		.seq_show = cpu_stats_show,
 
 
 
 
8436	},
8437#endif
8438#ifdef CONFIG_RT_GROUP_SCHED
8439	{
8440		.name = "rt_runtime_us",
8441		.read_s64 = cpu_rt_runtime_read,
8442		.write_s64 = cpu_rt_runtime_write,
8443	},
8444	{
8445		.name = "rt_period_us",
8446		.read_u64 = cpu_rt_period_read_uint,
8447		.write_u64 = cpu_rt_period_write_uint,
8448	},
8449#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8450	{ }	/* terminate */
8451};
8452
8453struct cgroup_subsys cpu_cgrp_subsys = {
8454	.css_alloc	= cpu_cgroup_css_alloc,
 
 
8455	.css_released	= cpu_cgroup_css_released,
8456	.css_free	= cpu_cgroup_css_free,
8457	.fork		= cpu_cgroup_fork,
 
8458	.can_attach	= cpu_cgroup_can_attach,
8459	.attach		= cpu_cgroup_attach,
8460	.legacy_cftypes	= cpu_files,
 
 
8461	.early_init	= true,
 
8462};
8463
8464#endif	/* CONFIG_CGROUP_SCHED */
8465
8466void dump_cpu_task(int cpu)
8467{
 
 
 
 
 
 
 
 
 
 
 
 
 
8468	pr_info("Task dump for CPU %d:\n", cpu);
8469	sched_show_task(cpu_curr(cpu));
8470}
8471
8472/*
8473 * Nice levels are multiplicative, with a gentle 10% change for every
8474 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8475 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8476 * that remained on nice 0.
8477 *
8478 * The "10% effect" is relative and cumulative: from _any_ nice level,
8479 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8480 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8481 * If a task goes up by ~10% and another task goes down by ~10% then
8482 * the relative distance between them is ~25%.)
8483 */
8484const int sched_prio_to_weight[40] = {
8485 /* -20 */     88761,     71755,     56483,     46273,     36291,
8486 /* -15 */     29154,     23254,     18705,     14949,     11916,
8487 /* -10 */      9548,      7620,      6100,      4904,      3906,
8488 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8489 /*   0 */      1024,       820,       655,       526,       423,
8490 /*   5 */       335,       272,       215,       172,       137,
8491 /*  10 */       110,        87,        70,        56,        45,
8492 /*  15 */        36,        29,        23,        18,        15,
8493};
8494
8495/*
8496 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8497 *
8498 * In cases where the weight does not change often, we can use the
8499 * precalculated inverse to speed up arithmetics by turning divisions
8500 * into multiplications:
8501 */
8502const u32 sched_prio_to_wmult[40] = {
8503 /* -20 */     48388,     59856,     76040,     92818,    118348,
8504 /* -15 */    147320,    184698,    229616,    287308,    360437,
8505 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8506 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8507 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8508 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8509 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8510 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8511};