Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
    1// SPDX-License-Identifier: GPL-2.0-only
    2/*
    3 *  kernel/sched/core.c
    4 *
    5 *  Core kernel CPU scheduler code
    6 *
    7 *  Copyright (C) 1991-2002  Linus Torvalds
    8 *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
    9 */
   10#include <linux/highmem.h>
   11#include <linux/hrtimer_api.h>
   12#include <linux/ktime_api.h>
   13#include <linux/sched/signal.h>
   14#include <linux/syscalls_api.h>
   15#include <linux/debug_locks.h>
   16#include <linux/prefetch.h>
   17#include <linux/capability.h>
   18#include <linux/pgtable_api.h>
   19#include <linux/wait_bit.h>
   20#include <linux/jiffies.h>
   21#include <linux/spinlock_api.h>
   22#include <linux/cpumask_api.h>
   23#include <linux/lockdep_api.h>
   24#include <linux/hardirq.h>
   25#include <linux/softirq.h>
   26#include <linux/refcount_api.h>
   27#include <linux/topology.h>
   28#include <linux/sched/clock.h>
   29#include <linux/sched/cond_resched.h>
   30#include <linux/sched/cputime.h>
   31#include <linux/sched/debug.h>
   32#include <linux/sched/hotplug.h>
   33#include <linux/sched/init.h>
   34#include <linux/sched/isolation.h>
   35#include <linux/sched/loadavg.h>
   36#include <linux/sched/mm.h>
   37#include <linux/sched/nohz.h>
   38#include <linux/sched/rseq_api.h>
   39#include <linux/sched/rt.h>
   40
   41#include <linux/blkdev.h>
   42#include <linux/context_tracking.h>
   43#include <linux/cpuset.h>
   44#include <linux/delayacct.h>
   45#include <linux/init_task.h>
   46#include <linux/interrupt.h>
   47#include <linux/ioprio.h>
   48#include <linux/kallsyms.h>
   49#include <linux/kcov.h>
   50#include <linux/kprobes.h>
   51#include <linux/llist_api.h>
   52#include <linux/mmu_context.h>
   53#include <linux/mmzone.h>
   54#include <linux/mutex_api.h>
   55#include <linux/nmi.h>
   56#include <linux/nospec.h>
   57#include <linux/perf_event_api.h>
   58#include <linux/profile.h>
   59#include <linux/psi.h>
   60#include <linux/rcuwait_api.h>
   61#include <linux/rseq.h>
   62#include <linux/sched/wake_q.h>
   63#include <linux/scs.h>
   64#include <linux/slab.h>
   65#include <linux/syscalls.h>
   66#include <linux/vtime.h>
   67#include <linux/wait_api.h>
   68#include <linux/workqueue_api.h>
   69
   70#ifdef CONFIG_PREEMPT_DYNAMIC
   71# ifdef CONFIG_GENERIC_ENTRY
   72#  include <linux/entry-common.h>
   73# endif
   74#endif
   75
   76#include <uapi/linux/sched/types.h>
   77
   78#include <asm/irq_regs.h>
   79#include <asm/switch_to.h>
   80#include <asm/tlb.h>
   81
   82#define CREATE_TRACE_POINTS
   83#include <linux/sched/rseq_api.h>
   84#include <trace/events/sched.h>
   85#include <trace/events/ipi.h>
   86#undef CREATE_TRACE_POINTS
   87
   88#include "sched.h"
   89#include "stats.h"
   90
   91#include "autogroup.h"
   92#include "pelt.h"
   93#include "smp.h"
   94#include "stats.h"
   95
   96#include "../workqueue_internal.h"
   97#include "../../io_uring/io-wq.h"
   98#include "../smpboot.h"
   99
  100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
  101EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
  102
  103/*
  104 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  105 * associated with them) to allow external modules to probe them.
  106 */
  107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  112EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
  113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
  114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  117EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  118EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
  119
  120DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  121
  122#ifdef CONFIG_SCHED_DEBUG
  123/*
  124 * Debugging: various feature bits
  125 *
  126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  127 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  128 * at compile time and compiler optimization based on features default.
  129 */
  130#define SCHED_FEAT(name, enabled)	\
  131	(1UL << __SCHED_FEAT_##name) * enabled |
  132const_debug unsigned int sysctl_sched_features =
  133#include "features.h"
  134	0;
  135#undef SCHED_FEAT
  136
  137/*
  138 * Print a warning if need_resched is set for the given duration (if
  139 * LATENCY_WARN is enabled).
  140 *
  141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
  142 * per boot.
  143 */
  144__read_mostly int sysctl_resched_latency_warn_ms = 100;
  145__read_mostly int sysctl_resched_latency_warn_once = 1;
  146#endif /* CONFIG_SCHED_DEBUG */
  147
  148/*
  149 * Number of tasks to iterate in a single balance run.
  150 * Limited because this is done with IRQs disabled.
  151 */
  152const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
  153
  154__read_mostly int scheduler_running;
  155
  156#ifdef CONFIG_SCHED_CORE
  157
  158DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
  159
  160/* kernel prio, less is more */
  161static inline int __task_prio(const struct task_struct *p)
  162{
  163	if (p->sched_class == &stop_sched_class) /* trumps deadline */
  164		return -2;
  165
  166	if (p->dl_server)
  167		return -1; /* deadline */
  168
  169	if (rt_or_dl_prio(p->prio))
  170		return p->prio; /* [-1, 99] */
  171
  172	if (p->sched_class == &idle_sched_class)
  173		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
  174
  175	if (task_on_scx(p))
  176		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
  177
  178	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
  179}
  180
  181/*
  182 * l(a,b)
  183 * le(a,b) := !l(b,a)
  184 * g(a,b)  := l(b,a)
  185 * ge(a,b) := !l(a,b)
  186 */
  187
  188/* real prio, less is less */
  189static inline bool prio_less(const struct task_struct *a,
  190			     const struct task_struct *b, bool in_fi)
  191{
  192
  193	int pa = __task_prio(a), pb = __task_prio(b);
  194
  195	if (-pa < -pb)
  196		return true;
  197
  198	if (-pb < -pa)
  199		return false;
  200
  201	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
  202		const struct sched_dl_entity *a_dl, *b_dl;
  203
  204		a_dl = &a->dl;
  205		/*
  206		 * Since,'a' and 'b' can be CFS tasks served by DL server,
  207		 * __task_prio() can return -1 (for DL) even for those. In that
  208		 * case, get to the dl_server's DL entity.
  209		 */
  210		if (a->dl_server)
  211			a_dl = a->dl_server;
  212
  213		b_dl = &b->dl;
  214		if (b->dl_server)
  215			b_dl = b->dl_server;
  216
  217		return !dl_time_before(a_dl->deadline, b_dl->deadline);
  218	}
  219
  220	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
  221		return cfs_prio_less(a, b, in_fi);
  222
  223#ifdef CONFIG_SCHED_CLASS_EXT
  224	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
  225		return scx_prio_less(a, b, in_fi);
  226#endif
  227
  228	return false;
  229}
  230
  231static inline bool __sched_core_less(const struct task_struct *a,
  232				     const struct task_struct *b)
  233{
  234	if (a->core_cookie < b->core_cookie)
  235		return true;
  236
  237	if (a->core_cookie > b->core_cookie)
  238		return false;
  239
  240	/* flip prio, so high prio is leftmost */
  241	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
  242		return true;
  243
  244	return false;
  245}
  246
  247#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
  248
  249static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
  250{
  251	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
  252}
  253
  254static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
  255{
  256	const struct task_struct *p = __node_2_sc(node);
  257	unsigned long cookie = (unsigned long)key;
  258
  259	if (cookie < p->core_cookie)
  260		return -1;
  261
  262	if (cookie > p->core_cookie)
  263		return 1;
  264
  265	return 0;
  266}
  267
  268void sched_core_enqueue(struct rq *rq, struct task_struct *p)
  269{
  270	if (p->se.sched_delayed)
  271		return;
  272
  273	rq->core->core_task_seq++;
  274
  275	if (!p->core_cookie)
  276		return;
  277
  278	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
  279}
  280
  281void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
  282{
  283	if (p->se.sched_delayed)
  284		return;
  285
  286	rq->core->core_task_seq++;
  287
  288	if (sched_core_enqueued(p)) {
  289		rb_erase(&p->core_node, &rq->core_tree);
  290		RB_CLEAR_NODE(&p->core_node);
  291	}
  292
  293	/*
  294	 * Migrating the last task off the cpu, with the cpu in forced idle
  295	 * state. Reschedule to create an accounting edge for forced idle,
  296	 * and re-examine whether the core is still in forced idle state.
  297	 */
  298	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
  299	    rq->core->core_forceidle_count && rq->curr == rq->idle)
  300		resched_curr(rq);
  301}
  302
  303static int sched_task_is_throttled(struct task_struct *p, int cpu)
  304{
  305	if (p->sched_class->task_is_throttled)
  306		return p->sched_class->task_is_throttled(p, cpu);
  307
  308	return 0;
  309}
  310
  311static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
  312{
  313	struct rb_node *node = &p->core_node;
  314	int cpu = task_cpu(p);
  315
  316	do {
  317		node = rb_next(node);
  318		if (!node)
  319			return NULL;
  320
  321		p = __node_2_sc(node);
  322		if (p->core_cookie != cookie)
  323			return NULL;
  324
  325	} while (sched_task_is_throttled(p, cpu));
  326
  327	return p;
  328}
  329
  330/*
  331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
  332 * If no suitable task is found, NULL will be returned.
  333 */
  334static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
  335{
  336	struct task_struct *p;
  337	struct rb_node *node;
  338
  339	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
  340	if (!node)
  341		return NULL;
  342
  343	p = __node_2_sc(node);
  344	if (!sched_task_is_throttled(p, rq->cpu))
  345		return p;
  346
  347	return sched_core_next(p, cookie);
  348}
  349
  350/*
  351 * Magic required such that:
  352 *
  353 *	raw_spin_rq_lock(rq);
  354 *	...
  355 *	raw_spin_rq_unlock(rq);
  356 *
  357 * ends up locking and unlocking the _same_ lock, and all CPUs
  358 * always agree on what rq has what lock.
  359 *
  360 * XXX entirely possible to selectively enable cores, don't bother for now.
  361 */
  362
  363static DEFINE_MUTEX(sched_core_mutex);
  364static atomic_t sched_core_count;
  365static struct cpumask sched_core_mask;
  366
  367static void sched_core_lock(int cpu, unsigned long *flags)
  368{
  369	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  370	int t, i = 0;
  371
  372	local_irq_save(*flags);
  373	for_each_cpu(t, smt_mask)
  374		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
  375}
  376
  377static void sched_core_unlock(int cpu, unsigned long *flags)
  378{
  379	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  380	int t;
  381
  382	for_each_cpu(t, smt_mask)
  383		raw_spin_unlock(&cpu_rq(t)->__lock);
  384	local_irq_restore(*flags);
  385}
  386
  387static void __sched_core_flip(bool enabled)
  388{
  389	unsigned long flags;
  390	int cpu, t;
  391
  392	cpus_read_lock();
  393
  394	/*
  395	 * Toggle the online cores, one by one.
  396	 */
  397	cpumask_copy(&sched_core_mask, cpu_online_mask);
  398	for_each_cpu(cpu, &sched_core_mask) {
  399		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  400
  401		sched_core_lock(cpu, &flags);
  402
  403		for_each_cpu(t, smt_mask)
  404			cpu_rq(t)->core_enabled = enabled;
  405
  406		cpu_rq(cpu)->core->core_forceidle_start = 0;
  407
  408		sched_core_unlock(cpu, &flags);
  409
  410		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
  411	}
  412
  413	/*
  414	 * Toggle the offline CPUs.
  415	 */
  416	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
  417		cpu_rq(cpu)->core_enabled = enabled;
  418
  419	cpus_read_unlock();
  420}
  421
  422static void sched_core_assert_empty(void)
  423{
  424	int cpu;
  425
  426	for_each_possible_cpu(cpu)
  427		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
  428}
  429
  430static void __sched_core_enable(void)
  431{
  432	static_branch_enable(&__sched_core_enabled);
  433	/*
  434	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
  435	 * and future ones will observe !sched_core_disabled().
  436	 */
  437	synchronize_rcu();
  438	__sched_core_flip(true);
  439	sched_core_assert_empty();
  440}
  441
  442static void __sched_core_disable(void)
  443{
  444	sched_core_assert_empty();
  445	__sched_core_flip(false);
  446	static_branch_disable(&__sched_core_enabled);
  447}
  448
  449void sched_core_get(void)
  450{
  451	if (atomic_inc_not_zero(&sched_core_count))
  452		return;
  453
  454	mutex_lock(&sched_core_mutex);
  455	if (!atomic_read(&sched_core_count))
  456		__sched_core_enable();
  457
  458	smp_mb__before_atomic();
  459	atomic_inc(&sched_core_count);
  460	mutex_unlock(&sched_core_mutex);
  461}
  462
  463static void __sched_core_put(struct work_struct *work)
  464{
  465	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
  466		__sched_core_disable();
  467		mutex_unlock(&sched_core_mutex);
  468	}
  469}
  470
  471void sched_core_put(void)
  472{
  473	static DECLARE_WORK(_work, __sched_core_put);
  474
  475	/*
  476	 * "There can be only one"
  477	 *
  478	 * Either this is the last one, or we don't actually need to do any
  479	 * 'work'. If it is the last *again*, we rely on
  480	 * WORK_STRUCT_PENDING_BIT.
  481	 */
  482	if (!atomic_add_unless(&sched_core_count, -1, 1))
  483		schedule_work(&_work);
  484}
  485
  486#else /* !CONFIG_SCHED_CORE */
  487
  488static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
  489static inline void
  490sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
  491
  492#endif /* CONFIG_SCHED_CORE */
  493
  494/*
  495 * Serialization rules:
  496 *
  497 * Lock order:
  498 *
  499 *   p->pi_lock
  500 *     rq->lock
  501 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  502 *
  503 *  rq1->lock
  504 *    rq2->lock  where: rq1 < rq2
  505 *
  506 * Regular state:
  507 *
  508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  509 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  510 * always looks at the local rq data structures to find the most eligible task
  511 * to run next.
  512 *
  513 * Task enqueue is also under rq->lock, possibly taken from another CPU.
  514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
  515 * the local CPU to avoid bouncing the runqueue state around [ see
  516 * ttwu_queue_wakelist() ]
  517 *
  518 * Task wakeup, specifically wakeups that involve migration, are horribly
  519 * complicated to avoid having to take two rq->locks.
  520 *
  521 * Special state:
  522 *
  523 * System-calls and anything external will use task_rq_lock() which acquires
  524 * both p->pi_lock and rq->lock. As a consequence the state they change is
  525 * stable while holding either lock:
  526 *
  527 *  - sched_setaffinity()/
  528 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
  529 *  - set_user_nice():		p->se.load, p->*prio
  530 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
  531 *				p->se.load, p->rt_priority,
  532 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
  533 *  - sched_setnuma():		p->numa_preferred_nid
  534 *  - sched_move_task():	p->sched_task_group
  535 *  - uclamp_update_active()	p->uclamp*
  536 *
  537 * p->state <- TASK_*:
  538 *
  539 *   is changed locklessly using set_current_state(), __set_current_state() or
  540 *   set_special_state(), see their respective comments, or by
  541 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
  542 *   concurrent self.
  543 *
  544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
  545 *
  546 *   is set by activate_task() and cleared by deactivate_task(), under
  547 *   rq->lock. Non-zero indicates the task is runnable, the special
  548 *   ON_RQ_MIGRATING state is used for migration without holding both
  549 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
  550 *
  551 *   Additionally it is possible to be ->on_rq but still be considered not
  552 *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
  553 *   but will be dequeued as soon as they get picked again. See the
  554 *   task_is_runnable() helper.
  555 *
  556 * p->on_cpu <- { 0, 1 }:
  557 *
  558 *   is set by prepare_task() and cleared by finish_task() such that it will be
  559 *   set before p is scheduled-in and cleared after p is scheduled-out, both
  560 *   under rq->lock. Non-zero indicates the task is running on its CPU.
  561 *
  562 *   [ The astute reader will observe that it is possible for two tasks on one
  563 *     CPU to have ->on_cpu = 1 at the same time. ]
  564 *
  565 * task_cpu(p): is changed by set_task_cpu(), the rules are:
  566 *
  567 *  - Don't call set_task_cpu() on a blocked task:
  568 *
  569 *    We don't care what CPU we're not running on, this simplifies hotplug,
  570 *    the CPU assignment of blocked tasks isn't required to be valid.
  571 *
  572 *  - for try_to_wake_up(), called under p->pi_lock:
  573 *
  574 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
  575 *
  576 *  - for migration called under rq->lock:
  577 *    [ see task_on_rq_migrating() in task_rq_lock() ]
  578 *
  579 *    o move_queued_task()
  580 *    o detach_task()
  581 *
  582 *  - for migration called under double_rq_lock():
  583 *
  584 *    o __migrate_swap_task()
  585 *    o push_rt_task() / pull_rt_task()
  586 *    o push_dl_task() / pull_dl_task()
  587 *    o dl_task_offline_migration()
  588 *
  589 */
  590
  591void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
  592{
  593	raw_spinlock_t *lock;
  594
  595	/* Matches synchronize_rcu() in __sched_core_enable() */
  596	preempt_disable();
  597	if (sched_core_disabled()) {
  598		raw_spin_lock_nested(&rq->__lock, subclass);
  599		/* preempt_count *MUST* be > 1 */
  600		preempt_enable_no_resched();
  601		return;
  602	}
  603
  604	for (;;) {
  605		lock = __rq_lockp(rq);
  606		raw_spin_lock_nested(lock, subclass);
  607		if (likely(lock == __rq_lockp(rq))) {
  608			/* preempt_count *MUST* be > 1 */
  609			preempt_enable_no_resched();
  610			return;
  611		}
  612		raw_spin_unlock(lock);
  613	}
  614}
  615
  616bool raw_spin_rq_trylock(struct rq *rq)
  617{
  618	raw_spinlock_t *lock;
  619	bool ret;
  620
  621	/* Matches synchronize_rcu() in __sched_core_enable() */
  622	preempt_disable();
  623	if (sched_core_disabled()) {
  624		ret = raw_spin_trylock(&rq->__lock);
  625		preempt_enable();
  626		return ret;
  627	}
  628
  629	for (;;) {
  630		lock = __rq_lockp(rq);
  631		ret = raw_spin_trylock(lock);
  632		if (!ret || (likely(lock == __rq_lockp(rq)))) {
  633			preempt_enable();
  634			return ret;
  635		}
  636		raw_spin_unlock(lock);
  637	}
  638}
  639
  640void raw_spin_rq_unlock(struct rq *rq)
  641{
  642	raw_spin_unlock(rq_lockp(rq));
  643}
  644
  645#ifdef CONFIG_SMP
  646/*
  647 * double_rq_lock - safely lock two runqueues
  648 */
  649void double_rq_lock(struct rq *rq1, struct rq *rq2)
  650{
  651	lockdep_assert_irqs_disabled();
  652
  653	if (rq_order_less(rq2, rq1))
  654		swap(rq1, rq2);
  655
  656	raw_spin_rq_lock(rq1);
  657	if (__rq_lockp(rq1) != __rq_lockp(rq2))
  658		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
  659
  660	double_rq_clock_clear_update(rq1, rq2);
  661}
  662#endif
  663
  664/*
  665 * __task_rq_lock - lock the rq @p resides on.
  666 */
  667struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  668	__acquires(rq->lock)
  669{
  670	struct rq *rq;
  671
  672	lockdep_assert_held(&p->pi_lock);
  673
  674	for (;;) {
  675		rq = task_rq(p);
  676		raw_spin_rq_lock(rq);
  677		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  678			rq_pin_lock(rq, rf);
  679			return rq;
  680		}
  681		raw_spin_rq_unlock(rq);
  682
  683		while (unlikely(task_on_rq_migrating(p)))
  684			cpu_relax();
  685	}
  686}
  687
  688/*
  689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  690 */
  691struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  692	__acquires(p->pi_lock)
  693	__acquires(rq->lock)
  694{
  695	struct rq *rq;
  696
  697	for (;;) {
  698		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  699		rq = task_rq(p);
  700		raw_spin_rq_lock(rq);
  701		/*
  702		 *	move_queued_task()		task_rq_lock()
  703		 *
  704		 *	ACQUIRE (rq->lock)
  705		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
  706		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
  707		 *	[S] ->cpu = new_cpu		[L] task_rq()
  708		 *					[L] ->on_rq
  709		 *	RELEASE (rq->lock)
  710		 *
  711		 * If we observe the old CPU in task_rq_lock(), the acquire of
  712		 * the old rq->lock will fully serialize against the stores.
  713		 *
  714		 * If we observe the new CPU in task_rq_lock(), the address
  715		 * dependency headed by '[L] rq = task_rq()' and the acquire
  716		 * will pair with the WMB to ensure we then also see migrating.
  717		 */
  718		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  719			rq_pin_lock(rq, rf);
  720			return rq;
  721		}
  722		raw_spin_rq_unlock(rq);
  723		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  724
  725		while (unlikely(task_on_rq_migrating(p)))
  726			cpu_relax();
  727	}
  728}
  729
  730/*
  731 * RQ-clock updating methods:
  732 */
  733
  734static void update_rq_clock_task(struct rq *rq, s64 delta)
  735{
  736/*
  737 * In theory, the compile should just see 0 here, and optimize out the call
  738 * to sched_rt_avg_update. But I don't trust it...
  739 */
  740	s64 __maybe_unused steal = 0, irq_delta = 0;
  741
  742#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  743	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  744
  745	/*
  746	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
  747	 * this case when a previous update_rq_clock() happened inside a
  748	 * {soft,}IRQ region.
  749	 *
  750	 * When this happens, we stop ->clock_task and only update the
  751	 * prev_irq_time stamp to account for the part that fit, so that a next
  752	 * update will consume the rest. This ensures ->clock_task is
  753	 * monotonic.
  754	 *
  755	 * It does however cause some slight miss-attribution of {soft,}IRQ
  756	 * time, a more accurate solution would be to update the irq_time using
  757	 * the current rq->clock timestamp, except that would require using
  758	 * atomic ops.
  759	 */
  760	if (irq_delta > delta)
  761		irq_delta = delta;
  762
  763	rq->prev_irq_time += irq_delta;
  764	delta -= irq_delta;
  765	delayacct_irq(rq->curr, irq_delta);
  766#endif
  767#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  768	if (static_key_false((&paravirt_steal_rq_enabled))) {
  769		u64 prev_steal;
  770
  771		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
  772		steal -= rq->prev_steal_time_rq;
  773
  774		if (unlikely(steal > delta))
  775			steal = delta;
  776
  777		rq->prev_steal_time_rq = prev_steal;
  778		delta -= steal;
  779	}
  780#endif
  781
  782	rq->clock_task += delta;
  783
  784#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
  785	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  786		update_irq_load_avg(rq, irq_delta + steal);
  787#endif
  788	update_rq_clock_pelt(rq, delta);
  789}
  790
  791void update_rq_clock(struct rq *rq)
  792{
  793	s64 delta;
  794
  795	lockdep_assert_rq_held(rq);
  796
  797	if (rq->clock_update_flags & RQCF_ACT_SKIP)
  798		return;
  799
  800#ifdef CONFIG_SCHED_DEBUG
  801	if (sched_feat(WARN_DOUBLE_CLOCK))
  802		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  803	rq->clock_update_flags |= RQCF_UPDATED;
  804#endif
  805
  806	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  807	if (delta < 0)
  808		return;
  809	rq->clock += delta;
  810	update_rq_clock_task(rq, delta);
  811}
  812
  813#ifdef CONFIG_SCHED_HRTICK
  814/*
  815 * Use HR-timers to deliver accurate preemption points.
  816 */
  817
  818static void hrtick_clear(struct rq *rq)
  819{
  820	if (hrtimer_active(&rq->hrtick_timer))
  821		hrtimer_cancel(&rq->hrtick_timer);
  822}
  823
  824/*
  825 * High-resolution timer tick.
  826 * Runs from hardirq context with interrupts disabled.
  827 */
  828static enum hrtimer_restart hrtick(struct hrtimer *timer)
  829{
  830	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  831	struct rq_flags rf;
  832
  833	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  834
  835	rq_lock(rq, &rf);
  836	update_rq_clock(rq);
  837	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
  838	rq_unlock(rq, &rf);
  839
  840	return HRTIMER_NORESTART;
  841}
  842
  843#ifdef CONFIG_SMP
  844
  845static void __hrtick_restart(struct rq *rq)
  846{
  847	struct hrtimer *timer = &rq->hrtick_timer;
  848	ktime_t time = rq->hrtick_time;
  849
  850	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
  851}
  852
  853/*
  854 * called from hardirq (IPI) context
  855 */
  856static void __hrtick_start(void *arg)
  857{
  858	struct rq *rq = arg;
  859	struct rq_flags rf;
  860
  861	rq_lock(rq, &rf);
  862	__hrtick_restart(rq);
  863	rq_unlock(rq, &rf);
  864}
  865
  866/*
  867 * Called to set the hrtick timer state.
  868 *
  869 * called with rq->lock held and IRQs disabled
  870 */
  871void hrtick_start(struct rq *rq, u64 delay)
  872{
  873	struct hrtimer *timer = &rq->hrtick_timer;
  874	s64 delta;
  875
  876	/*
  877	 * Don't schedule slices shorter than 10000ns, that just
  878	 * doesn't make sense and can cause timer DoS.
  879	 */
  880	delta = max_t(s64, delay, 10000LL);
  881	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
  882
  883	if (rq == this_rq())
  884		__hrtick_restart(rq);
  885	else
  886		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  887}
  888
  889#else
  890/*
  891 * Called to set the hrtick timer state.
  892 *
  893 * called with rq->lock held and IRQs disabled
  894 */
  895void hrtick_start(struct rq *rq, u64 delay)
  896{
  897	/*
  898	 * Don't schedule slices shorter than 10000ns, that just
  899	 * doesn't make sense. Rely on vruntime for fairness.
  900	 */
  901	delay = max_t(u64, delay, 10000LL);
  902	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  903		      HRTIMER_MODE_REL_PINNED_HARD);
  904}
  905
  906#endif /* CONFIG_SMP */
  907
  908static void hrtick_rq_init(struct rq *rq)
  909{
  910#ifdef CONFIG_SMP
  911	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
  912#endif
  913	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
  914	rq->hrtick_timer.function = hrtick;
  915}
  916#else	/* CONFIG_SCHED_HRTICK */
  917static inline void hrtick_clear(struct rq *rq)
  918{
  919}
  920
  921static inline void hrtick_rq_init(struct rq *rq)
  922{
  923}
  924#endif	/* CONFIG_SCHED_HRTICK */
  925
  926/*
  927 * try_cmpxchg based fetch_or() macro so it works for different integer types:
  928 */
  929#define fetch_or(ptr, mask)						\
  930	({								\
  931		typeof(ptr) _ptr = (ptr);				\
  932		typeof(mask) _mask = (mask);				\
  933		typeof(*_ptr) _val = *_ptr;				\
  934									\
  935		do {							\
  936		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
  937	_val;								\
  938})
  939
  940#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  941/*
  942 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  943 * this avoids any races wrt polling state changes and thereby avoids
  944 * spurious IPIs.
  945 */
  946static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
  947{
  948	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
  949}
  950
  951/*
  952 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  953 *
  954 * If this returns true, then the idle task promises to call
  955 * sched_ttwu_pending() and reschedule soon.
  956 */
  957static bool set_nr_if_polling(struct task_struct *p)
  958{
  959	struct thread_info *ti = task_thread_info(p);
  960	typeof(ti->flags) val = READ_ONCE(ti->flags);
  961
  962	do {
  963		if (!(val & _TIF_POLLING_NRFLAG))
  964			return false;
  965		if (val & _TIF_NEED_RESCHED)
  966			return true;
  967	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
  968
  969	return true;
  970}
  971
  972#else
  973static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
  974{
  975	set_ti_thread_flag(ti, tif);
  976	return true;
  977}
  978
  979#ifdef CONFIG_SMP
  980static inline bool set_nr_if_polling(struct task_struct *p)
  981{
  982	return false;
  983}
  984#endif
  985#endif
  986
  987static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
  988{
  989	struct wake_q_node *node = &task->wake_q;
  990
  991	/*
  992	 * Atomically grab the task, if ->wake_q is !nil already it means
  993	 * it's already queued (either by us or someone else) and will get the
  994	 * wakeup due to that.
  995	 *
  996	 * In order to ensure that a pending wakeup will observe our pending
  997	 * state, even in the failed case, an explicit smp_mb() must be used.
  998	 */
  999	smp_mb__before_atomic();
 1000	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 1001		return false;
 1002
 1003	/*
 1004	 * The head is context local, there can be no concurrency.
 1005	 */
 1006	*head->lastp = node;
 1007	head->lastp = &node->next;
 1008	return true;
 1009}
 1010
 1011/**
 1012 * wake_q_add() - queue a wakeup for 'later' waking.
 1013 * @head: the wake_q_head to add @task to
 1014 * @task: the task to queue for 'later' wakeup
 1015 *
 1016 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 1017 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 1018 * instantly.
 1019 *
 1020 * This function must be used as-if it were wake_up_process(); IOW the task
 1021 * must be ready to be woken at this location.
 1022 */
 1023void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 1024{
 1025	if (__wake_q_add(head, task))
 1026		get_task_struct(task);
 1027}
 1028
 1029/**
 1030 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 1031 * @head: the wake_q_head to add @task to
 1032 * @task: the task to queue for 'later' wakeup
 1033 *
 1034 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 1035 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 1036 * instantly.
 1037 *
 1038 * This function must be used as-if it were wake_up_process(); IOW the task
 1039 * must be ready to be woken at this location.
 1040 *
 1041 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 1042 * that already hold reference to @task can call the 'safe' version and trust
 1043 * wake_q to do the right thing depending whether or not the @task is already
 1044 * queued for wakeup.
 1045 */
 1046void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 1047{
 1048	if (!__wake_q_add(head, task))
 1049		put_task_struct(task);
 1050}
 1051
 1052void wake_up_q(struct wake_q_head *head)
 1053{
 1054	struct wake_q_node *node = head->first;
 1055
 1056	while (node != WAKE_Q_TAIL) {
 1057		struct task_struct *task;
 1058
 1059		task = container_of(node, struct task_struct, wake_q);
 1060		/* Task can safely be re-inserted now: */
 1061		node = node->next;
 1062		task->wake_q.next = NULL;
 1063
 1064		/*
 1065		 * wake_up_process() executes a full barrier, which pairs with
 1066		 * the queueing in wake_q_add() so as not to miss wakeups.
 1067		 */
 1068		wake_up_process(task);
 1069		put_task_struct(task);
 1070	}
 1071}
 1072
 1073/*
 1074 * resched_curr - mark rq's current task 'to be rescheduled now'.
 1075 *
 1076 * On UP this means the setting of the need_resched flag, on SMP it
 1077 * might also involve a cross-CPU call to trigger the scheduler on
 1078 * the target CPU.
 1079 */
 1080static void __resched_curr(struct rq *rq, int tif)
 1081{
 1082	struct task_struct *curr = rq->curr;
 1083	struct thread_info *cti = task_thread_info(curr);
 1084	int cpu;
 1085
 1086	lockdep_assert_rq_held(rq);
 1087
 1088	/*
 1089	 * Always immediately preempt the idle task; no point in delaying doing
 1090	 * actual work.
 1091	 */
 1092	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
 1093		tif = TIF_NEED_RESCHED;
 1094
 1095	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
 1096		return;
 1097
 1098	cpu = cpu_of(rq);
 1099
 1100	if (cpu == smp_processor_id()) {
 1101		set_ti_thread_flag(cti, tif);
 1102		if (tif == TIF_NEED_RESCHED)
 1103			set_preempt_need_resched();
 1104		return;
 1105	}
 1106
 1107	if (set_nr_and_not_polling(cti, tif)) {
 1108		if (tif == TIF_NEED_RESCHED)
 1109			smp_send_reschedule(cpu);
 1110	} else {
 1111		trace_sched_wake_idle_without_ipi(cpu);
 1112	}
 1113}
 1114
 1115void resched_curr(struct rq *rq)
 1116{
 1117	__resched_curr(rq, TIF_NEED_RESCHED);
 1118}
 1119
 1120#ifdef CONFIG_PREEMPT_DYNAMIC
 1121static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
 1122static __always_inline bool dynamic_preempt_lazy(void)
 1123{
 1124	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
 1125}
 1126#else
 1127static __always_inline bool dynamic_preempt_lazy(void)
 1128{
 1129	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
 1130}
 1131#endif
 1132
 1133static __always_inline int get_lazy_tif_bit(void)
 1134{
 1135	if (dynamic_preempt_lazy())
 1136		return TIF_NEED_RESCHED_LAZY;
 1137
 1138	return TIF_NEED_RESCHED;
 1139}
 1140
 1141void resched_curr_lazy(struct rq *rq)
 1142{
 1143	__resched_curr(rq, get_lazy_tif_bit());
 1144}
 1145
 1146void resched_cpu(int cpu)
 1147{
 1148	struct rq *rq = cpu_rq(cpu);
 1149	unsigned long flags;
 1150
 1151	raw_spin_rq_lock_irqsave(rq, flags);
 1152	if (cpu_online(cpu) || cpu == smp_processor_id())
 1153		resched_curr(rq);
 1154	raw_spin_rq_unlock_irqrestore(rq, flags);
 1155}
 1156
 1157#ifdef CONFIG_SMP
 1158#ifdef CONFIG_NO_HZ_COMMON
 1159/*
 1160 * In the semi idle case, use the nearest busy CPU for migrating timers
 1161 * from an idle CPU.  This is good for power-savings.
 1162 *
 1163 * We don't do similar optimization for completely idle system, as
 1164 * selecting an idle CPU will add more delays to the timers than intended
 1165 * (as that CPU's timer base may not be up to date wrt jiffies etc).
 1166 */
 1167int get_nohz_timer_target(void)
 1168{
 1169	int i, cpu = smp_processor_id(), default_cpu = -1;
 1170	struct sched_domain *sd;
 1171	const struct cpumask *hk_mask;
 1172
 1173	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
 1174		if (!idle_cpu(cpu))
 1175			return cpu;
 1176		default_cpu = cpu;
 1177	}
 1178
 1179	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
 1180
 1181	guard(rcu)();
 1182
 1183	for_each_domain(cpu, sd) {
 1184		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 1185			if (cpu == i)
 1186				continue;
 1187
 1188			if (!idle_cpu(i))
 1189				return i;
 1190		}
 1191	}
 1192
 1193	if (default_cpu == -1)
 1194		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
 1195
 1196	return default_cpu;
 1197}
 1198
 1199/*
 1200 * When add_timer_on() enqueues a timer into the timer wheel of an
 1201 * idle CPU then this timer might expire before the next timer event
 1202 * which is scheduled to wake up that CPU. In case of a completely
 1203 * idle system the next event might even be infinite time into the
 1204 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 1205 * leaves the inner idle loop so the newly added timer is taken into
 1206 * account when the CPU goes back to idle and evaluates the timer
 1207 * wheel for the next timer event.
 1208 */
 1209static void wake_up_idle_cpu(int cpu)
 1210{
 1211	struct rq *rq = cpu_rq(cpu);
 1212
 1213	if (cpu == smp_processor_id())
 1214		return;
 1215
 1216	/*
 1217	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
 1218	 * part of the idle loop. This forces an exit from the idle loop
 1219	 * and a round trip to schedule(). Now this could be optimized
 1220	 * because a simple new idle loop iteration is enough to
 1221	 * re-evaluate the next tick. Provided some re-ordering of tick
 1222	 * nohz functions that would need to follow TIF_NR_POLLING
 1223	 * clearing:
 1224	 *
 1225	 * - On most architectures, a simple fetch_or on ti::flags with a
 1226	 *   "0" value would be enough to know if an IPI needs to be sent.
 1227	 *
 1228	 * - x86 needs to perform a last need_resched() check between
 1229	 *   monitor and mwait which doesn't take timers into account.
 1230	 *   There a dedicated TIF_TIMER flag would be required to
 1231	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
 1232	 *   before mwait().
 1233	 *
 1234	 * However, remote timer enqueue is not such a frequent event
 1235	 * and testing of the above solutions didn't appear to report
 1236	 * much benefits.
 1237	 */
 1238	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
 1239		smp_send_reschedule(cpu);
 1240	else
 1241		trace_sched_wake_idle_without_ipi(cpu);
 1242}
 1243
 1244static bool wake_up_full_nohz_cpu(int cpu)
 1245{
 1246	/*
 1247	 * We just need the target to call irq_exit() and re-evaluate
 1248	 * the next tick. The nohz full kick at least implies that.
 1249	 * If needed we can still optimize that later with an
 1250	 * empty IRQ.
 1251	 */
 1252	if (cpu_is_offline(cpu))
 1253		return true;  /* Don't try to wake offline CPUs. */
 1254	if (tick_nohz_full_cpu(cpu)) {
 1255		if (cpu != smp_processor_id() ||
 1256		    tick_nohz_tick_stopped())
 1257			tick_nohz_full_kick_cpu(cpu);
 1258		return true;
 1259	}
 1260
 1261	return false;
 1262}
 1263
 1264/*
 1265 * Wake up the specified CPU.  If the CPU is going offline, it is the
 1266 * caller's responsibility to deal with the lost wakeup, for example,
 1267 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 1268 */
 1269void wake_up_nohz_cpu(int cpu)
 1270{
 1271	if (!wake_up_full_nohz_cpu(cpu))
 1272		wake_up_idle_cpu(cpu);
 1273}
 1274
 1275static void nohz_csd_func(void *info)
 1276{
 1277	struct rq *rq = info;
 1278	int cpu = cpu_of(rq);
 1279	unsigned int flags;
 1280
 1281	/*
 1282	 * Release the rq::nohz_csd.
 1283	 */
 1284	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
 1285	WARN_ON(!(flags & NOHZ_KICK_MASK));
 1286
 1287	rq->idle_balance = idle_cpu(cpu);
 1288	if (rq->idle_balance) {
 1289		rq->nohz_idle_balance = flags;
 1290		__raise_softirq_irqoff(SCHED_SOFTIRQ);
 1291	}
 1292}
 1293
 1294#endif /* CONFIG_NO_HZ_COMMON */
 1295
 1296#ifdef CONFIG_NO_HZ_FULL
 1297static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
 1298{
 1299	if (rq->nr_running != 1)
 1300		return false;
 1301
 1302	if (p->sched_class != &fair_sched_class)
 1303		return false;
 1304
 1305	if (!task_on_rq_queued(p))
 1306		return false;
 1307
 1308	return true;
 1309}
 1310
 1311bool sched_can_stop_tick(struct rq *rq)
 1312{
 1313	int fifo_nr_running;
 1314
 1315	/* Deadline tasks, even if single, need the tick */
 1316	if (rq->dl.dl_nr_running)
 1317		return false;
 1318
 1319	/*
 1320	 * If there are more than one RR tasks, we need the tick to affect the
 1321	 * actual RR behaviour.
 1322	 */
 1323	if (rq->rt.rr_nr_running) {
 1324		if (rq->rt.rr_nr_running == 1)
 1325			return true;
 1326		else
 1327			return false;
 1328	}
 1329
 1330	/*
 1331	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 1332	 * forced preemption between FIFO tasks.
 1333	 */
 1334	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 1335	if (fifo_nr_running)
 1336		return true;
 1337
 1338	/*
 1339	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
 1340	 * left. For CFS, if there's more than one we need the tick for
 1341	 * involuntary preemption. For SCX, ask.
 1342	 */
 1343	if (scx_enabled() && !scx_can_stop_tick(rq))
 1344		return false;
 1345
 1346	if (rq->cfs.h_nr_running > 1)
 1347		return false;
 1348
 1349	/*
 1350	 * If there is one task and it has CFS runtime bandwidth constraints
 1351	 * and it's on the cpu now we don't want to stop the tick.
 1352	 * This check prevents clearing the bit if a newly enqueued task here is
 1353	 * dequeued by migrating while the constrained task continues to run.
 1354	 * E.g. going from 2->1 without going through pick_next_task().
 1355	 */
 1356	if (__need_bw_check(rq, rq->curr)) {
 1357		if (cfs_task_bw_constrained(rq->curr))
 1358			return false;
 1359	}
 1360
 1361	return true;
 1362}
 1363#endif /* CONFIG_NO_HZ_FULL */
 1364#endif /* CONFIG_SMP */
 1365
 1366#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 1367			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 1368/*
 1369 * Iterate task_group tree rooted at *from, calling @down when first entering a
 1370 * node and @up when leaving it for the final time.
 1371 *
 1372 * Caller must hold rcu_lock or sufficient equivalent.
 1373 */
 1374int walk_tg_tree_from(struct task_group *from,
 1375			     tg_visitor down, tg_visitor up, void *data)
 1376{
 1377	struct task_group *parent, *child;
 1378	int ret;
 1379
 1380	parent = from;
 1381
 1382down:
 1383	ret = (*down)(parent, data);
 1384	if (ret)
 1385		goto out;
 1386	list_for_each_entry_rcu(child, &parent->children, siblings) {
 1387		parent = child;
 1388		goto down;
 1389
 1390up:
 1391		continue;
 1392	}
 1393	ret = (*up)(parent, data);
 1394	if (ret || parent == from)
 1395		goto out;
 1396
 1397	child = parent;
 1398	parent = parent->parent;
 1399	if (parent)
 1400		goto up;
 1401out:
 1402	return ret;
 1403}
 1404
 1405int tg_nop(struct task_group *tg, void *data)
 1406{
 1407	return 0;
 1408}
 1409#endif
 1410
 1411void set_load_weight(struct task_struct *p, bool update_load)
 1412{
 1413	int prio = p->static_prio - MAX_RT_PRIO;
 1414	struct load_weight lw;
 1415
 1416	if (task_has_idle_policy(p)) {
 1417		lw.weight = scale_load(WEIGHT_IDLEPRIO);
 1418		lw.inv_weight = WMULT_IDLEPRIO;
 1419	} else {
 1420		lw.weight = scale_load(sched_prio_to_weight[prio]);
 1421		lw.inv_weight = sched_prio_to_wmult[prio];
 1422	}
 1423
 1424	/*
 1425	 * SCHED_OTHER tasks have to update their load when changing their
 1426	 * weight
 1427	 */
 1428	if (update_load && p->sched_class->reweight_task)
 1429		p->sched_class->reweight_task(task_rq(p), p, &lw);
 1430	else
 1431		p->se.load = lw;
 1432}
 1433
 1434#ifdef CONFIG_UCLAMP_TASK
 1435/*
 1436 * Serializes updates of utilization clamp values
 1437 *
 1438 * The (slow-path) user-space triggers utilization clamp value updates which
 1439 * can require updates on (fast-path) scheduler's data structures used to
 1440 * support enqueue/dequeue operations.
 1441 * While the per-CPU rq lock protects fast-path update operations, user-space
 1442 * requests are serialized using a mutex to reduce the risk of conflicting
 1443 * updates or API abuses.
 1444 */
 1445static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
 1446
 1447/* Max allowed minimum utilization */
 1448static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 1449
 1450/* Max allowed maximum utilization */
 1451static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 1452
 1453/*
 1454 * By default RT tasks run at the maximum performance point/capacity of the
 1455 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 1456 * SCHED_CAPACITY_SCALE.
 1457 *
 1458 * This knob allows admins to change the default behavior when uclamp is being
 1459 * used. In battery powered devices, particularly, running at the maximum
 1460 * capacity and frequency will increase energy consumption and shorten the
 1461 * battery life.
 1462 *
 1463 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 1464 *
 1465 * This knob will not override the system default sched_util_clamp_min defined
 1466 * above.
 1467 */
 1468unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 1469
 1470/* All clamps are required to be less or equal than these values */
 1471static struct uclamp_se uclamp_default[UCLAMP_CNT];
 1472
 1473/*
 1474 * This static key is used to reduce the uclamp overhead in the fast path. It
 1475 * primarily disables the call to uclamp_rq_{inc, dec}() in
 1476 * enqueue/dequeue_task().
 1477 *
 1478 * This allows users to continue to enable uclamp in their kernel config with
 1479 * minimum uclamp overhead in the fast path.
 1480 *
 1481 * As soon as userspace modifies any of the uclamp knobs, the static key is
 1482 * enabled, since we have an actual users that make use of uclamp
 1483 * functionality.
 1484 *
 1485 * The knobs that would enable this static key are:
 1486 *
 1487 *   * A task modifying its uclamp value with sched_setattr().
 1488 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 1489 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 1490 */
 1491DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 1492
 1493static inline unsigned int
 1494uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 1495		  unsigned int clamp_value)
 1496{
 1497	/*
 1498	 * Avoid blocked utilization pushing up the frequency when we go
 1499	 * idle (which drops the max-clamp) by retaining the last known
 1500	 * max-clamp.
 1501	 */
 1502	if (clamp_id == UCLAMP_MAX) {
 1503		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 1504		return clamp_value;
 1505	}
 1506
 1507	return uclamp_none(UCLAMP_MIN);
 1508}
 1509
 1510static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 1511				     unsigned int clamp_value)
 1512{
 1513	/* Reset max-clamp retention only on idle exit */
 1514	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1515		return;
 1516
 1517	uclamp_rq_set(rq, clamp_id, clamp_value);
 1518}
 1519
 1520static inline
 1521unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 1522				   unsigned int clamp_value)
 1523{
 1524	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 1525	int bucket_id = UCLAMP_BUCKETS - 1;
 1526
 1527	/*
 1528	 * Since both min and max clamps are max aggregated, find the
 1529	 * top most bucket with tasks in.
 1530	 */
 1531	for ( ; bucket_id >= 0; bucket_id--) {
 1532		if (!bucket[bucket_id].tasks)
 1533			continue;
 1534		return bucket[bucket_id].value;
 1535	}
 1536
 1537	/* No tasks -- default clamp values */
 1538	return uclamp_idle_value(rq, clamp_id, clamp_value);
 1539}
 1540
 1541static void __uclamp_update_util_min_rt_default(struct task_struct *p)
 1542{
 1543	unsigned int default_util_min;
 1544	struct uclamp_se *uc_se;
 1545
 1546	lockdep_assert_held(&p->pi_lock);
 1547
 1548	uc_se = &p->uclamp_req[UCLAMP_MIN];
 1549
 1550	/* Only sync if user didn't override the default */
 1551	if (uc_se->user_defined)
 1552		return;
 1553
 1554	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
 1555	uclamp_se_set(uc_se, default_util_min, false);
 1556}
 1557
 1558static void uclamp_update_util_min_rt_default(struct task_struct *p)
 1559{
 1560	if (!rt_task(p))
 1561		return;
 1562
 1563	/* Protect updates to p->uclamp_* */
 1564	guard(task_rq_lock)(p);
 1565	__uclamp_update_util_min_rt_default(p);
 1566}
 1567
 1568static inline struct uclamp_se
 1569uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
 1570{
 1571	/* Copy by value as we could modify it */
 1572	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 1573#ifdef CONFIG_UCLAMP_TASK_GROUP
 1574	unsigned int tg_min, tg_max, value;
 1575
 1576	/*
 1577	 * Tasks in autogroups or root task group will be
 1578	 * restricted by system defaults.
 1579	 */
 1580	if (task_group_is_autogroup(task_group(p)))
 1581		return uc_req;
 1582	if (task_group(p) == &root_task_group)
 1583		return uc_req;
 1584
 1585	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
 1586	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
 1587	value = uc_req.value;
 1588	value = clamp(value, tg_min, tg_max);
 1589	uclamp_se_set(&uc_req, value, false);
 1590#endif
 1591
 1592	return uc_req;
 1593}
 1594
 1595/*
 1596 * The effective clamp bucket index of a task depends on, by increasing
 1597 * priority:
 1598 * - the task specific clamp value, when explicitly requested from userspace
 1599 * - the task group effective clamp value, for tasks not either in the root
 1600 *   group or in an autogroup
 1601 * - the system default clamp value, defined by the sysadmin
 1602 */
 1603static inline struct uclamp_se
 1604uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
 1605{
 1606	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
 1607	struct uclamp_se uc_max = uclamp_default[clamp_id];
 1608
 1609	/* System default restrictions always apply */
 1610	if (unlikely(uc_req.value > uc_max.value))
 1611		return uc_max;
 1612
 1613	return uc_req;
 1614}
 1615
 1616unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
 1617{
 1618	struct uclamp_se uc_eff;
 1619
 1620	/* Task currently refcounted: use back-annotated (effective) value */
 1621	if (p->uclamp[clamp_id].active)
 1622		return (unsigned long)p->uclamp[clamp_id].value;
 1623
 1624	uc_eff = uclamp_eff_get(p, clamp_id);
 1625
 1626	return (unsigned long)uc_eff.value;
 1627}
 1628
 1629/*
 1630 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 1631 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 1632 * updates the rq's clamp value if required.
 1633 *
 1634 * Tasks can have a task-specific value requested from user-space, track
 1635 * within each bucket the maximum value for tasks refcounted in it.
 1636 * This "local max aggregation" allows to track the exact "requested" value
 1637 * for each bucket when all its RUNNABLE tasks require the same clamp.
 1638 */
 1639static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 1640				    enum uclamp_id clamp_id)
 1641{
 1642	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1643	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1644	struct uclamp_bucket *bucket;
 1645
 1646	lockdep_assert_rq_held(rq);
 1647
 1648	/* Update task effective clamp */
 1649	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 1650
 1651	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1652	bucket->tasks++;
 1653	uc_se->active = true;
 1654
 1655	uclamp_idle_reset(rq, clamp_id, uc_se->value);
 1656
 1657	/*
 1658	 * Local max aggregation: rq buckets always track the max
 1659	 * "requested" clamp value of its RUNNABLE tasks.
 1660	 */
 1661	if (bucket->tasks == 1 || uc_se->value > bucket->value)
 1662		bucket->value = uc_se->value;
 1663
 1664	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
 1665		uclamp_rq_set(rq, clamp_id, uc_se->value);
 1666}
 1667
 1668/*
 1669 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 1670 * is released. If this is the last task reference counting the rq's max
 1671 * active clamp value, then the rq's clamp value is updated.
 1672 *
 1673 * Both refcounted tasks and rq's cached clamp values are expected to be
 1674 * always valid. If it's detected they are not, as defensive programming,
 1675 * enforce the expected state and warn.
 1676 */
 1677static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 1678				    enum uclamp_id clamp_id)
 1679{
 1680	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1681	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1682	struct uclamp_bucket *bucket;
 1683	unsigned int bkt_clamp;
 1684	unsigned int rq_clamp;
 1685
 1686	lockdep_assert_rq_held(rq);
 1687
 1688	/*
 1689	 * If sched_uclamp_used was enabled after task @p was enqueued,
 1690	 * we could end up with unbalanced call to uclamp_rq_dec_id().
 1691	 *
 1692	 * In this case the uc_se->active flag should be false since no uclamp
 1693	 * accounting was performed at enqueue time and we can just return
 1694	 * here.
 1695	 *
 1696	 * Need to be careful of the following enqueue/dequeue ordering
 1697	 * problem too
 1698	 *
 1699	 *	enqueue(taskA)
 1700	 *	// sched_uclamp_used gets enabled
 1701	 *	enqueue(taskB)
 1702	 *	dequeue(taskA)
 1703	 *	// Must not decrement bucket->tasks here
 1704	 *	dequeue(taskB)
 1705	 *
 1706	 * where we could end up with stale data in uc_se and
 1707	 * bucket[uc_se->bucket_id].
 1708	 *
 1709	 * The following check here eliminates the possibility of such race.
 1710	 */
 1711	if (unlikely(!uc_se->active))
 1712		return;
 1713
 1714	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1715
 1716	SCHED_WARN_ON(!bucket->tasks);
 1717	if (likely(bucket->tasks))
 1718		bucket->tasks--;
 1719
 1720	uc_se->active = false;
 1721
 1722	/*
 1723	 * Keep "local max aggregation" simple and accept to (possibly)
 1724	 * overboost some RUNNABLE tasks in the same bucket.
 1725	 * The rq clamp bucket value is reset to its base value whenever
 1726	 * there are no more RUNNABLE tasks refcounting it.
 1727	 */
 1728	if (likely(bucket->tasks))
 1729		return;
 1730
 1731	rq_clamp = uclamp_rq_get(rq, clamp_id);
 1732	/*
 1733	 * Defensive programming: this should never happen. If it happens,
 1734	 * e.g. due to future modification, warn and fix up the expected value.
 1735	 */
 1736	SCHED_WARN_ON(bucket->value > rq_clamp);
 1737	if (bucket->value >= rq_clamp) {
 1738		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
 1739		uclamp_rq_set(rq, clamp_id, bkt_clamp);
 1740	}
 1741}
 1742
 1743static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
 1744{
 1745	enum uclamp_id clamp_id;
 1746
 1747	/*
 1748	 * Avoid any overhead until uclamp is actually used by the userspace.
 1749	 *
 1750	 * The condition is constructed such that a NOP is generated when
 1751	 * sched_uclamp_used is disabled.
 1752	 */
 1753	if (!static_branch_unlikely(&sched_uclamp_used))
 1754		return;
 1755
 1756	if (unlikely(!p->sched_class->uclamp_enabled))
 1757		return;
 1758
 1759	if (p->se.sched_delayed)
 1760		return;
 1761
 1762	for_each_clamp_id(clamp_id)
 1763		uclamp_rq_inc_id(rq, p, clamp_id);
 1764
 1765	/* Reset clamp idle holding when there is one RUNNABLE task */
 1766	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 1767		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1768}
 1769
 1770static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 1771{
 1772	enum uclamp_id clamp_id;
 1773
 1774	/*
 1775	 * Avoid any overhead until uclamp is actually used by the userspace.
 1776	 *
 1777	 * The condition is constructed such that a NOP is generated when
 1778	 * sched_uclamp_used is disabled.
 1779	 */
 1780	if (!static_branch_unlikely(&sched_uclamp_used))
 1781		return;
 1782
 1783	if (unlikely(!p->sched_class->uclamp_enabled))
 1784		return;
 1785
 1786	if (p->se.sched_delayed)
 1787		return;
 1788
 1789	for_each_clamp_id(clamp_id)
 1790		uclamp_rq_dec_id(rq, p, clamp_id);
 1791}
 1792
 1793static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
 1794				      enum uclamp_id clamp_id)
 1795{
 1796	if (!p->uclamp[clamp_id].active)
 1797		return;
 1798
 1799	uclamp_rq_dec_id(rq, p, clamp_id);
 1800	uclamp_rq_inc_id(rq, p, clamp_id);
 1801
 1802	/*
 1803	 * Make sure to clear the idle flag if we've transiently reached 0
 1804	 * active tasks on rq.
 1805	 */
 1806	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1807		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1808}
 1809
 1810static inline void
 1811uclamp_update_active(struct task_struct *p)
 1812{
 1813	enum uclamp_id clamp_id;
 1814	struct rq_flags rf;
 1815	struct rq *rq;
 1816
 1817	/*
 1818	 * Lock the task and the rq where the task is (or was) queued.
 1819	 *
 1820	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
 1821	 * price to pay to safely serialize util_{min,max} updates with
 1822	 * enqueues, dequeues and migration operations.
 1823	 * This is the same locking schema used by __set_cpus_allowed_ptr().
 1824	 */
 1825	rq = task_rq_lock(p, &rf);
 1826
 1827	/*
 1828	 * Setting the clamp bucket is serialized by task_rq_lock().
 1829	 * If the task is not yet RUNNABLE and its task_struct is not
 1830	 * affecting a valid clamp bucket, the next time it's enqueued,
 1831	 * it will already see the updated clamp bucket value.
 1832	 */
 1833	for_each_clamp_id(clamp_id)
 1834		uclamp_rq_reinc_id(rq, p, clamp_id);
 1835
 1836	task_rq_unlock(rq, p, &rf);
 1837}
 1838
 1839#ifdef CONFIG_UCLAMP_TASK_GROUP
 1840static inline void
 1841uclamp_update_active_tasks(struct cgroup_subsys_state *css)
 1842{
 1843	struct css_task_iter it;
 1844	struct task_struct *p;
 1845
 1846	css_task_iter_start(css, 0, &it);
 1847	while ((p = css_task_iter_next(&it)))
 1848		uclamp_update_active(p);
 1849	css_task_iter_end(&it);
 1850}
 1851
 1852static void cpu_util_update_eff(struct cgroup_subsys_state *css);
 1853#endif
 1854
 1855#ifdef CONFIG_SYSCTL
 1856#ifdef CONFIG_UCLAMP_TASK_GROUP
 1857static void uclamp_update_root_tg(void)
 1858{
 1859	struct task_group *tg = &root_task_group;
 1860
 1861	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
 1862		      sysctl_sched_uclamp_util_min, false);
 1863	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
 1864		      sysctl_sched_uclamp_util_max, false);
 1865
 1866	guard(rcu)();
 1867	cpu_util_update_eff(&root_task_group.css);
 1868}
 1869#else
 1870static void uclamp_update_root_tg(void) { }
 1871#endif
 1872
 1873static void uclamp_sync_util_min_rt_default(void)
 1874{
 1875	struct task_struct *g, *p;
 1876
 1877	/*
 1878	 * copy_process()			sysctl_uclamp
 1879	 *					  uclamp_min_rt = X;
 1880	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
 1881	 *   // link thread			  smp_mb__after_spinlock()
 1882	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
 1883	 *   sched_post_fork()			  for_each_process_thread()
 1884	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
 1885	 *
 1886	 * Ensures that either sched_post_fork() will observe the new
 1887	 * uclamp_min_rt or for_each_process_thread() will observe the new
 1888	 * task.
 1889	 */
 1890	read_lock(&tasklist_lock);
 1891	smp_mb__after_spinlock();
 1892	read_unlock(&tasklist_lock);
 1893
 1894	guard(rcu)();
 1895	for_each_process_thread(g, p)
 1896		uclamp_update_util_min_rt_default(p);
 1897}
 1898
 1899static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
 1900				void *buffer, size_t *lenp, loff_t *ppos)
 1901{
 1902	bool update_root_tg = false;
 1903	int old_min, old_max, old_min_rt;
 1904	int result;
 1905
 1906	guard(mutex)(&uclamp_mutex);
 1907
 1908	old_min = sysctl_sched_uclamp_util_min;
 1909	old_max = sysctl_sched_uclamp_util_max;
 1910	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
 1911
 1912	result = proc_dointvec(table, write, buffer, lenp, ppos);
 1913	if (result)
 1914		goto undo;
 1915	if (!write)
 1916		return 0;
 1917
 1918	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
 1919	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
 1920	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
 1921
 1922		result = -EINVAL;
 1923		goto undo;
 1924	}
 1925
 1926	if (old_min != sysctl_sched_uclamp_util_min) {
 1927		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
 1928			      sysctl_sched_uclamp_util_min, false);
 1929		update_root_tg = true;
 1930	}
 1931	if (old_max != sysctl_sched_uclamp_util_max) {
 1932		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
 1933			      sysctl_sched_uclamp_util_max, false);
 1934		update_root_tg = true;
 1935	}
 1936
 1937	if (update_root_tg) {
 1938		static_branch_enable(&sched_uclamp_used);
 1939		uclamp_update_root_tg();
 1940	}
 1941
 1942	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
 1943		static_branch_enable(&sched_uclamp_used);
 1944		uclamp_sync_util_min_rt_default();
 1945	}
 1946
 1947	/*
 1948	 * We update all RUNNABLE tasks only when task groups are in use.
 1949	 * Otherwise, keep it simple and do just a lazy update at each next
 1950	 * task enqueue time.
 1951	 */
 1952	return 0;
 1953
 1954undo:
 1955	sysctl_sched_uclamp_util_min = old_min;
 1956	sysctl_sched_uclamp_util_max = old_max;
 1957	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
 1958	return result;
 1959}
 1960#endif
 1961
 1962static void uclamp_fork(struct task_struct *p)
 1963{
 1964	enum uclamp_id clamp_id;
 1965
 1966	/*
 1967	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
 1968	 * as the task is still at its early fork stages.
 1969	 */
 1970	for_each_clamp_id(clamp_id)
 1971		p->uclamp[clamp_id].active = false;
 1972
 1973	if (likely(!p->sched_reset_on_fork))
 1974		return;
 1975
 1976	for_each_clamp_id(clamp_id) {
 1977		uclamp_se_set(&p->uclamp_req[clamp_id],
 1978			      uclamp_none(clamp_id), false);
 1979	}
 1980}
 1981
 1982static void uclamp_post_fork(struct task_struct *p)
 1983{
 1984	uclamp_update_util_min_rt_default(p);
 1985}
 1986
 1987static void __init init_uclamp_rq(struct rq *rq)
 1988{
 1989	enum uclamp_id clamp_id;
 1990	struct uclamp_rq *uc_rq = rq->uclamp;
 1991
 1992	for_each_clamp_id(clamp_id) {
 1993		uc_rq[clamp_id] = (struct uclamp_rq) {
 1994			.value = uclamp_none(clamp_id)
 1995		};
 1996	}
 1997
 1998	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
 1999}
 2000
 2001static void __init init_uclamp(void)
 2002{
 2003	struct uclamp_se uc_max = {};
 2004	enum uclamp_id clamp_id;
 2005	int cpu;
 2006
 2007	for_each_possible_cpu(cpu)
 2008		init_uclamp_rq(cpu_rq(cpu));
 2009
 2010	for_each_clamp_id(clamp_id) {
 2011		uclamp_se_set(&init_task.uclamp_req[clamp_id],
 2012			      uclamp_none(clamp_id), false);
 2013	}
 2014
 2015	/* System defaults allow max clamp values for both indexes */
 2016	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
 2017	for_each_clamp_id(clamp_id) {
 2018		uclamp_default[clamp_id] = uc_max;
 2019#ifdef CONFIG_UCLAMP_TASK_GROUP
 2020		root_task_group.uclamp_req[clamp_id] = uc_max;
 2021		root_task_group.uclamp[clamp_id] = uc_max;
 2022#endif
 2023	}
 2024}
 2025
 2026#else /* !CONFIG_UCLAMP_TASK */
 2027static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
 2028static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
 2029static inline void uclamp_fork(struct task_struct *p) { }
 2030static inline void uclamp_post_fork(struct task_struct *p) { }
 2031static inline void init_uclamp(void) { }
 2032#endif /* CONFIG_UCLAMP_TASK */
 2033
 2034bool sched_task_on_rq(struct task_struct *p)
 2035{
 2036	return task_on_rq_queued(p);
 2037}
 2038
 2039unsigned long get_wchan(struct task_struct *p)
 2040{
 2041	unsigned long ip = 0;
 2042	unsigned int state;
 2043
 2044	if (!p || p == current)
 2045		return 0;
 2046
 2047	/* Only get wchan if task is blocked and we can keep it that way. */
 2048	raw_spin_lock_irq(&p->pi_lock);
 2049	state = READ_ONCE(p->__state);
 2050	smp_rmb(); /* see try_to_wake_up() */
 2051	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
 2052		ip = __get_wchan(p);
 2053	raw_spin_unlock_irq(&p->pi_lock);
 2054
 2055	return ip;
 2056}
 2057
 2058void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 2059{
 2060	if (!(flags & ENQUEUE_NOCLOCK))
 2061		update_rq_clock(rq);
 2062
 2063	p->sched_class->enqueue_task(rq, p, flags);
 2064	/*
 2065	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
 2066	 * ->sched_delayed.
 2067	 */
 2068	uclamp_rq_inc(rq, p);
 2069
 2070	psi_enqueue(p, flags);
 2071
 2072	if (!(flags & ENQUEUE_RESTORE))
 2073		sched_info_enqueue(rq, p);
 2074
 2075	if (sched_core_enabled(rq))
 2076		sched_core_enqueue(rq, p);
 2077}
 2078
 2079/*
 2080 * Must only return false when DEQUEUE_SLEEP.
 2081 */
 2082inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 2083{
 2084	if (sched_core_enabled(rq))
 2085		sched_core_dequeue(rq, p, flags);
 2086
 2087	if (!(flags & DEQUEUE_NOCLOCK))
 2088		update_rq_clock(rq);
 2089
 2090	if (!(flags & DEQUEUE_SAVE))
 2091		sched_info_dequeue(rq, p);
 2092
 2093	psi_dequeue(p, flags);
 2094
 2095	/*
 2096	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
 2097	 * and mark the task ->sched_delayed.
 2098	 */
 2099	uclamp_rq_dec(rq, p);
 2100	return p->sched_class->dequeue_task(rq, p, flags);
 2101}
 2102
 2103void activate_task(struct rq *rq, struct task_struct *p, int flags)
 2104{
 2105	if (task_on_rq_migrating(p))
 2106		flags |= ENQUEUE_MIGRATED;
 2107	if (flags & ENQUEUE_MIGRATED)
 2108		sched_mm_cid_migrate_to(rq, p);
 2109
 2110	enqueue_task(rq, p, flags);
 2111
 2112	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
 2113	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
 2114}
 2115
 2116void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 2117{
 2118	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
 2119
 2120	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
 2121	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
 2122
 2123	/*
 2124	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
 2125	 * dequeue_task() and cleared *after* enqueue_task().
 2126	 */
 2127
 2128	dequeue_task(rq, p, flags);
 2129}
 2130
 2131static void block_task(struct rq *rq, struct task_struct *p, int flags)
 2132{
 2133	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
 2134		__block_task(rq, p);
 2135}
 2136
 2137/**
 2138 * task_curr - is this task currently executing on a CPU?
 2139 * @p: the task in question.
 2140 *
 2141 * Return: 1 if the task is currently executing. 0 otherwise.
 2142 */
 2143inline int task_curr(const struct task_struct *p)
 2144{
 2145	return cpu_curr(task_cpu(p)) == p;
 2146}
 2147
 2148/*
 2149 * ->switching_to() is called with the pi_lock and rq_lock held and must not
 2150 * mess with locking.
 2151 */
 2152void check_class_changing(struct rq *rq, struct task_struct *p,
 2153			  const struct sched_class *prev_class)
 2154{
 2155	if (prev_class != p->sched_class && p->sched_class->switching_to)
 2156		p->sched_class->switching_to(rq, p);
 2157}
 2158
 2159/*
 2160 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 2161 * use the balance_callback list if you want balancing.
 2162 *
 2163 * this means any call to check_class_changed() must be followed by a call to
 2164 * balance_callback().
 2165 */
 2166void check_class_changed(struct rq *rq, struct task_struct *p,
 2167			 const struct sched_class *prev_class,
 2168			 int oldprio)
 2169{
 2170	if (prev_class != p->sched_class) {
 2171		if (prev_class->switched_from)
 2172			prev_class->switched_from(rq, p);
 2173
 2174		p->sched_class->switched_to(rq, p);
 2175	} else if (oldprio != p->prio || dl_task(p))
 2176		p->sched_class->prio_changed(rq, p, oldprio);
 2177}
 2178
 2179void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
 2180{
 2181	struct task_struct *donor = rq->donor;
 2182
 2183	if (p->sched_class == donor->sched_class)
 2184		donor->sched_class->wakeup_preempt(rq, p, flags);
 2185	else if (sched_class_above(p->sched_class, donor->sched_class))
 2186		resched_curr(rq);
 2187
 2188	/*
 2189	 * A queue event has occurred, and we're going to schedule.  In
 2190	 * this case, we can save a useless back to back clock update.
 2191	 */
 2192	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
 2193		rq_clock_skip_update(rq);
 2194}
 2195
 2196static __always_inline
 2197int __task_state_match(struct task_struct *p, unsigned int state)
 2198{
 2199	if (READ_ONCE(p->__state) & state)
 2200		return 1;
 2201
 2202	if (READ_ONCE(p->saved_state) & state)
 2203		return -1;
 2204
 2205	return 0;
 2206}
 2207
 2208static __always_inline
 2209int task_state_match(struct task_struct *p, unsigned int state)
 2210{
 2211	/*
 2212	 * Serialize against current_save_and_set_rtlock_wait_state(),
 2213	 * current_restore_rtlock_saved_state(), and __refrigerator().
 2214	 */
 2215	guard(raw_spinlock_irq)(&p->pi_lock);
 2216	return __task_state_match(p, state);
 2217}
 2218
 2219/*
 2220 * wait_task_inactive - wait for a thread to unschedule.
 2221 *
 2222 * Wait for the thread to block in any of the states set in @match_state.
 2223 * If it changes, i.e. @p might have woken up, then return zero.  When we
 2224 * succeed in waiting for @p to be off its CPU, we return a positive number
 2225 * (its total switch count).  If a second call a short while later returns the
 2226 * same number, the caller can be sure that @p has remained unscheduled the
 2227 * whole time.
 2228 *
 2229 * The caller must ensure that the task *will* unschedule sometime soon,
 2230 * else this function might spin for a *long* time. This function can't
 2231 * be called with interrupts off, or it may introduce deadlock with
 2232 * smp_call_function() if an IPI is sent by the same process we are
 2233 * waiting to become inactive.
 2234 */
 2235unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
 2236{
 2237	int running, queued, match;
 2238	struct rq_flags rf;
 2239	unsigned long ncsw;
 2240	struct rq *rq;
 2241
 2242	for (;;) {
 2243		/*
 2244		 * We do the initial early heuristics without holding
 2245		 * any task-queue locks at all. We'll only try to get
 2246		 * the runqueue lock when things look like they will
 2247		 * work out!
 2248		 */
 2249		rq = task_rq(p);
 2250
 2251		/*
 2252		 * If the task is actively running on another CPU
 2253		 * still, just relax and busy-wait without holding
 2254		 * any locks.
 2255		 *
 2256		 * NOTE! Since we don't hold any locks, it's not
 2257		 * even sure that "rq" stays as the right runqueue!
 2258		 * But we don't care, since "task_on_cpu()" will
 2259		 * return false if the runqueue has changed and p
 2260		 * is actually now running somewhere else!
 2261		 */
 2262		while (task_on_cpu(rq, p)) {
 2263			if (!task_state_match(p, match_state))
 2264				return 0;
 2265			cpu_relax();
 2266		}
 2267
 2268		/*
 2269		 * Ok, time to look more closely! We need the rq
 2270		 * lock now, to be *sure*. If we're wrong, we'll
 2271		 * just go back and repeat.
 2272		 */
 2273		rq = task_rq_lock(p, &rf);
 2274		trace_sched_wait_task(p);
 2275		running = task_on_cpu(rq, p);
 2276		queued = task_on_rq_queued(p);
 2277		ncsw = 0;
 2278		if ((match = __task_state_match(p, match_state))) {
 2279			/*
 2280			 * When matching on p->saved_state, consider this task
 2281			 * still queued so it will wait.
 2282			 */
 2283			if (match < 0)
 2284				queued = 1;
 2285			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 2286		}
 2287		task_rq_unlock(rq, p, &rf);
 2288
 2289		/*
 2290		 * If it changed from the expected state, bail out now.
 2291		 */
 2292		if (unlikely(!ncsw))
 2293			break;
 2294
 2295		/*
 2296		 * Was it really running after all now that we
 2297		 * checked with the proper locks actually held?
 2298		 *
 2299		 * Oops. Go back and try again..
 2300		 */
 2301		if (unlikely(running)) {
 2302			cpu_relax();
 2303			continue;
 2304		}
 2305
 2306		/*
 2307		 * It's not enough that it's not actively running,
 2308		 * it must be off the runqueue _entirely_, and not
 2309		 * preempted!
 2310		 *
 2311		 * So if it was still runnable (but just not actively
 2312		 * running right now), it's preempted, and we should
 2313		 * yield - it could be a while.
 2314		 */
 2315		if (unlikely(queued)) {
 2316			ktime_t to = NSEC_PER_SEC / HZ;
 2317
 2318			set_current_state(TASK_UNINTERRUPTIBLE);
 2319			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
 2320			continue;
 2321		}
 2322
 2323		/*
 2324		 * Ahh, all good. It wasn't running, and it wasn't
 2325		 * runnable, which means that it will never become
 2326		 * running in the future either. We're all done!
 2327		 */
 2328		break;
 2329	}
 2330
 2331	return ncsw;
 2332}
 2333
 2334#ifdef CONFIG_SMP
 2335
 2336static void
 2337__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
 2338
 2339static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
 2340{
 2341	struct affinity_context ac = {
 2342		.new_mask  = cpumask_of(rq->cpu),
 2343		.flags     = SCA_MIGRATE_DISABLE,
 2344	};
 2345
 2346	if (likely(!p->migration_disabled))
 2347		return;
 2348
 2349	if (p->cpus_ptr != &p->cpus_mask)
 2350		return;
 2351
 2352	/*
 2353	 * Violates locking rules! See comment in __do_set_cpus_allowed().
 2354	 */
 2355	__do_set_cpus_allowed(p, &ac);
 2356}
 2357
 2358void migrate_disable(void)
 2359{
 2360	struct task_struct *p = current;
 2361
 2362	if (p->migration_disabled) {
 2363#ifdef CONFIG_DEBUG_PREEMPT
 2364		/*
 2365		 *Warn about overflow half-way through the range.
 2366		 */
 2367		WARN_ON_ONCE((s16)p->migration_disabled < 0);
 2368#endif
 2369		p->migration_disabled++;
 2370		return;
 2371	}
 2372
 2373	guard(preempt)();
 2374	this_rq()->nr_pinned++;
 2375	p->migration_disabled = 1;
 2376}
 2377EXPORT_SYMBOL_GPL(migrate_disable);
 2378
 2379void migrate_enable(void)
 2380{
 2381	struct task_struct *p = current;
 2382	struct affinity_context ac = {
 2383		.new_mask  = &p->cpus_mask,
 2384		.flags     = SCA_MIGRATE_ENABLE,
 2385	};
 2386
 2387#ifdef CONFIG_DEBUG_PREEMPT
 2388	/*
 2389	 * Check both overflow from migrate_disable() and superfluous
 2390	 * migrate_enable().
 2391	 */
 2392	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
 2393		return;
 2394#endif
 2395
 2396	if (p->migration_disabled > 1) {
 2397		p->migration_disabled--;
 2398		return;
 2399	}
 2400
 2401	/*
 2402	 * Ensure stop_task runs either before or after this, and that
 2403	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
 2404	 */
 2405	guard(preempt)();
 2406	if (p->cpus_ptr != &p->cpus_mask)
 2407		__set_cpus_allowed_ptr(p, &ac);
 2408	/*
 2409	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
 2410	 * regular cpus_mask, otherwise things that race (eg.
 2411	 * select_fallback_rq) get confused.
 2412	 */
 2413	barrier();
 2414	p->migration_disabled = 0;
 2415	this_rq()->nr_pinned--;
 2416}
 2417EXPORT_SYMBOL_GPL(migrate_enable);
 2418
 2419static inline bool rq_has_pinned_tasks(struct rq *rq)
 2420{
 2421	return rq->nr_pinned;
 2422}
 2423
 2424/*
 2425 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
 2426 * __set_cpus_allowed_ptr() and select_fallback_rq().
 2427 */
 2428static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 2429{
 2430	/* When not in the task's cpumask, no point in looking further. */
 2431	if (!task_allowed_on_cpu(p, cpu))
 2432		return false;
 2433
 2434	/* migrate_disabled() must be allowed to finish. */
 2435	if (is_migration_disabled(p))
 2436		return cpu_online(cpu);
 2437
 2438	/* Non kernel threads are not allowed during either online or offline. */
 2439	if (!(p->flags & PF_KTHREAD))
 2440		return cpu_active(cpu);
 2441
 2442	/* KTHREAD_IS_PER_CPU is always allowed. */
 2443	if (kthread_is_per_cpu(p))
 2444		return cpu_online(cpu);
 2445
 2446	/* Regular kernel threads don't get to stay during offline. */
 2447	if (cpu_dying(cpu))
 2448		return false;
 2449
 2450	/* But are allowed during online. */
 2451	return cpu_online(cpu);
 2452}
 2453
 2454/*
 2455 * This is how migration works:
 2456 *
 2457 * 1) we invoke migration_cpu_stop() on the target CPU using
 2458 *    stop_one_cpu().
 2459 * 2) stopper starts to run (implicitly forcing the migrated thread
 2460 *    off the CPU)
 2461 * 3) it checks whether the migrated task is still in the wrong runqueue.
 2462 * 4) if it's in the wrong runqueue then the migration thread removes
 2463 *    it and puts it into the right queue.
 2464 * 5) stopper completes and stop_one_cpu() returns and the migration
 2465 *    is done.
 2466 */
 2467
 2468/*
 2469 * move_queued_task - move a queued task to new rq.
 2470 *
 2471 * Returns (locked) new rq. Old rq's lock is released.
 2472 */
 2473static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 2474				   struct task_struct *p, int new_cpu)
 2475{
 2476	lockdep_assert_rq_held(rq);
 2477
 2478	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 2479	set_task_cpu(p, new_cpu);
 2480	rq_unlock(rq, rf);
 2481
 2482	rq = cpu_rq(new_cpu);
 2483
 2484	rq_lock(rq, rf);
 2485	WARN_ON_ONCE(task_cpu(p) != new_cpu);
 2486	activate_task(rq, p, 0);
 2487	wakeup_preempt(rq, p, 0);
 2488
 2489	return rq;
 2490}
 2491
 2492struct migration_arg {
 2493	struct task_struct		*task;
 2494	int				dest_cpu;
 2495	struct set_affinity_pending	*pending;
 2496};
 2497
 2498/*
 2499 * @refs: number of wait_for_completion()
 2500 * @stop_pending: is @stop_work in use
 2501 */
 2502struct set_affinity_pending {
 2503	refcount_t		refs;
 2504	unsigned int		stop_pending;
 2505	struct completion	done;
 2506	struct cpu_stop_work	stop_work;
 2507	struct migration_arg	arg;
 2508};
 2509
 2510/*
 2511 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 2512 * this because either it can't run here any more (set_cpus_allowed()
 2513 * away from this CPU, or CPU going down), or because we're
 2514 * attempting to rebalance this task on exec (sched_exec).
 2515 *
 2516 * So we race with normal scheduler movements, but that's OK, as long
 2517 * as the task is no longer on this CPU.
 2518 */
 2519static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 2520				 struct task_struct *p, int dest_cpu)
 2521{
 2522	/* Affinity changed (again). */
 2523	if (!is_cpu_allowed(p, dest_cpu))
 2524		return rq;
 2525
 2526	rq = move_queued_task(rq, rf, p, dest_cpu);
 2527
 2528	return rq;
 2529}
 2530
 2531/*
 2532 * migration_cpu_stop - this will be executed by a high-prio stopper thread
 2533 * and performs thread migration by bumping thread off CPU then
 2534 * 'pushing' onto another runqueue.
 2535 */
 2536static int migration_cpu_stop(void *data)
 2537{
 2538	struct migration_arg *arg = data;
 2539	struct set_affinity_pending *pending = arg->pending;
 2540	struct task_struct *p = arg->task;
 2541	struct rq *rq = this_rq();
 2542	bool complete = false;
 2543	struct rq_flags rf;
 2544
 2545	/*
 2546	 * The original target CPU might have gone down and we might
 2547	 * be on another CPU but it doesn't matter.
 2548	 */
 2549	local_irq_save(rf.flags);
 2550	/*
 2551	 * We need to explicitly wake pending tasks before running
 2552	 * __migrate_task() such that we will not miss enforcing cpus_ptr
 2553	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 2554	 */
 2555	flush_smp_call_function_queue();
 2556
 2557	raw_spin_lock(&p->pi_lock);
 2558	rq_lock(rq, &rf);
 2559
 2560	/*
 2561	 * If we were passed a pending, then ->stop_pending was set, thus
 2562	 * p->migration_pending must have remained stable.
 2563	 */
 2564	WARN_ON_ONCE(pending && pending != p->migration_pending);
 2565
 2566	/*
 2567	 * If task_rq(p) != rq, it cannot be migrated here, because we're
 2568	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
 2569	 * we're holding p->pi_lock.
 2570	 */
 2571	if (task_rq(p) == rq) {
 2572		if (is_migration_disabled(p))
 2573			goto out;
 2574
 2575		if (pending) {
 2576			p->migration_pending = NULL;
 2577			complete = true;
 2578
 2579			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
 2580				goto out;
 2581		}
 2582
 2583		if (task_on_rq_queued(p)) {
 2584			update_rq_clock(rq);
 2585			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
 2586		} else {
 2587			p->wake_cpu = arg->dest_cpu;
 2588		}
 2589
 2590		/*
 2591		 * XXX __migrate_task() can fail, at which point we might end
 2592		 * up running on a dodgy CPU, AFAICT this can only happen
 2593		 * during CPU hotplug, at which point we'll get pushed out
 2594		 * anyway, so it's probably not a big deal.
 2595		 */
 2596
 2597	} else if (pending) {
 2598		/*
 2599		 * This happens when we get migrated between migrate_enable()'s
 2600		 * preempt_enable() and scheduling the stopper task. At that
 2601		 * point we're a regular task again and not current anymore.
 2602		 *
 2603		 * A !PREEMPT kernel has a giant hole here, which makes it far
 2604		 * more likely.
 2605		 */
 2606
 2607		/*
 2608		 * The task moved before the stopper got to run. We're holding
 2609		 * ->pi_lock, so the allowed mask is stable - if it got
 2610		 * somewhere allowed, we're done.
 2611		 */
 2612		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
 2613			p->migration_pending = NULL;
 2614			complete = true;
 2615			goto out;
 2616		}
 2617
 2618		/*
 2619		 * When migrate_enable() hits a rq mis-match we can't reliably
 2620		 * determine is_migration_disabled() and so have to chase after
 2621		 * it.
 2622		 */
 2623		WARN_ON_ONCE(!pending->stop_pending);
 2624		preempt_disable();
 2625		task_rq_unlock(rq, p, &rf);
 2626		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
 2627				    &pending->arg, &pending->stop_work);
 2628		preempt_enable();
 2629		return 0;
 2630	}
 2631out:
 2632	if (pending)
 2633		pending->stop_pending = false;
 2634	task_rq_unlock(rq, p, &rf);
 2635
 2636	if (complete)
 2637		complete_all(&pending->done);
 2638
 2639	return 0;
 2640}
 2641
 2642int push_cpu_stop(void *arg)
 2643{
 2644	struct rq *lowest_rq = NULL, *rq = this_rq();
 2645	struct task_struct *p = arg;
 2646
 2647	raw_spin_lock_irq(&p->pi_lock);
 2648	raw_spin_rq_lock(rq);
 2649
 2650	if (task_rq(p) != rq)
 2651		goto out_unlock;
 2652
 2653	if (is_migration_disabled(p)) {
 2654		p->migration_flags |= MDF_PUSH;
 2655		goto out_unlock;
 2656	}
 2657
 2658	p->migration_flags &= ~MDF_PUSH;
 2659
 2660	if (p->sched_class->find_lock_rq)
 2661		lowest_rq = p->sched_class->find_lock_rq(p, rq);
 2662
 2663	if (!lowest_rq)
 2664		goto out_unlock;
 2665
 2666	// XXX validate p is still the highest prio task
 2667	if (task_rq(p) == rq) {
 2668		move_queued_task_locked(rq, lowest_rq, p);
 2669		resched_curr(lowest_rq);
 2670	}
 2671
 2672	double_unlock_balance(rq, lowest_rq);
 2673
 2674out_unlock:
 2675	rq->push_busy = false;
 2676	raw_spin_rq_unlock(rq);
 2677	raw_spin_unlock_irq(&p->pi_lock);
 2678
 2679	put_task_struct(p);
 2680	return 0;
 2681}
 2682
 2683/*
 2684 * sched_class::set_cpus_allowed must do the below, but is not required to
 2685 * actually call this function.
 2686 */
 2687void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
 2688{
 2689	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
 2690		p->cpus_ptr = ctx->new_mask;
 2691		return;
 2692	}
 2693
 2694	cpumask_copy(&p->cpus_mask, ctx->new_mask);
 2695	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
 2696
 2697	/*
 2698	 * Swap in a new user_cpus_ptr if SCA_USER flag set
 2699	 */
 2700	if (ctx->flags & SCA_USER)
 2701		swap(p->user_cpus_ptr, ctx->user_mask);
 2702}
 2703
 2704static void
 2705__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
 2706{
 2707	struct rq *rq = task_rq(p);
 2708	bool queued, running;
 2709
 2710	/*
 2711	 * This here violates the locking rules for affinity, since we're only
 2712	 * supposed to change these variables while holding both rq->lock and
 2713	 * p->pi_lock.
 2714	 *
 2715	 * HOWEVER, it magically works, because ttwu() is the only code that
 2716	 * accesses these variables under p->pi_lock and only does so after
 2717	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
 2718	 * before finish_task().
 2719	 *
 2720	 * XXX do further audits, this smells like something putrid.
 2721	 */
 2722	if (ctx->flags & SCA_MIGRATE_DISABLE)
 2723		SCHED_WARN_ON(!p->on_cpu);
 2724	else
 2725		lockdep_assert_held(&p->pi_lock);
 2726
 2727	queued = task_on_rq_queued(p);
 2728	running = task_current_donor(rq, p);
 2729
 2730	if (queued) {
 2731		/*
 2732		 * Because __kthread_bind() calls this on blocked tasks without
 2733		 * holding rq->lock.
 2734		 */
 2735		lockdep_assert_rq_held(rq);
 2736		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 2737	}
 2738	if (running)
 2739		put_prev_task(rq, p);
 2740
 2741	p->sched_class->set_cpus_allowed(p, ctx);
 2742	mm_set_cpus_allowed(p->mm, ctx->new_mask);
 2743
 2744	if (queued)
 2745		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 2746	if (running)
 2747		set_next_task(rq, p);
 2748}
 2749
 2750/*
 2751 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
 2752 * affinity (if any) should be destroyed too.
 2753 */
 2754void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 2755{
 2756	struct affinity_context ac = {
 2757		.new_mask  = new_mask,
 2758		.user_mask = NULL,
 2759		.flags     = SCA_USER,	/* clear the user requested mask */
 2760	};
 2761	union cpumask_rcuhead {
 2762		cpumask_t cpumask;
 2763		struct rcu_head rcu;
 2764	};
 2765
 2766	__do_set_cpus_allowed(p, &ac);
 2767
 2768	/*
 2769	 * Because this is called with p->pi_lock held, it is not possible
 2770	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
 2771	 * kfree_rcu().
 2772	 */
 2773	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
 2774}
 2775
 2776int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
 2777		      int node)
 2778{
 2779	cpumask_t *user_mask;
 2780	unsigned long flags;
 2781
 2782	/*
 2783	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
 2784	 * may differ by now due to racing.
 2785	 */
 2786	dst->user_cpus_ptr = NULL;
 2787
 2788	/*
 2789	 * This check is racy and losing the race is a valid situation.
 2790	 * It is not worth the extra overhead of taking the pi_lock on
 2791	 * every fork/clone.
 2792	 */
 2793	if (data_race(!src->user_cpus_ptr))
 2794		return 0;
 2795
 2796	user_mask = alloc_user_cpus_ptr(node);
 2797	if (!user_mask)
 2798		return -ENOMEM;
 2799
 2800	/*
 2801	 * Use pi_lock to protect content of user_cpus_ptr
 2802	 *
 2803	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
 2804	 * do_set_cpus_allowed().
 2805	 */
 2806	raw_spin_lock_irqsave(&src->pi_lock, flags);
 2807	if (src->user_cpus_ptr) {
 2808		swap(dst->user_cpus_ptr, user_mask);
 2809		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
 2810	}
 2811	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
 2812
 2813	if (unlikely(user_mask))
 2814		kfree(user_mask);
 2815
 2816	return 0;
 2817}
 2818
 2819static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
 2820{
 2821	struct cpumask *user_mask = NULL;
 2822
 2823	swap(p->user_cpus_ptr, user_mask);
 2824
 2825	return user_mask;
 2826}
 2827
 2828void release_user_cpus_ptr(struct task_struct *p)
 2829{
 2830	kfree(clear_user_cpus_ptr(p));
 2831}
 2832
 2833/*
 2834 * This function is wildly self concurrent; here be dragons.
 2835 *
 2836 *
 2837 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
 2838 * designated task is enqueued on an allowed CPU. If that task is currently
 2839 * running, we have to kick it out using the CPU stopper.
 2840 *
 2841 * Migrate-Disable comes along and tramples all over our nice sandcastle.
 2842 * Consider:
 2843 *
 2844 *     Initial conditions: P0->cpus_mask = [0, 1]
 2845 *
 2846 *     P0@CPU0                  P1
 2847 *
 2848 *     migrate_disable();
 2849 *     <preempted>
 2850 *                              set_cpus_allowed_ptr(P0, [1]);
 2851 *
 2852 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
 2853 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
 2854 * This means we need the following scheme:
 2855 *
 2856 *     P0@CPU0                  P1
 2857 *
 2858 *     migrate_disable();
 2859 *     <preempted>
 2860 *                              set_cpus_allowed_ptr(P0, [1]);
 2861 *                                <blocks>
 2862 *     <resumes>
 2863 *     migrate_enable();
 2864 *       __set_cpus_allowed_ptr();
 2865 *       <wakes local stopper>
 2866 *                         `--> <woken on migration completion>
 2867 *
 2868 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
 2869 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
 2870 * task p are serialized by p->pi_lock, which we can leverage: the one that
 2871 * should come into effect at the end of the Migrate-Disable region is the last
 2872 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
 2873 * but we still need to properly signal those waiting tasks at the appropriate
 2874 * moment.
 2875 *
 2876 * This is implemented using struct set_affinity_pending. The first
 2877 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
 2878 * setup an instance of that struct and install it on the targeted task_struct.
 2879 * Any and all further callers will reuse that instance. Those then wait for
 2880 * a completion signaled at the tail of the CPU stopper callback (1), triggered
 2881 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
 2882 *
 2883 *
 2884 * (1) In the cases covered above. There is one more where the completion is
 2885 * signaled within affine_move_task() itself: when a subsequent affinity request
 2886 * occurs after the stopper bailed out due to the targeted task still being
 2887 * Migrate-Disable. Consider:
 2888 *
 2889 *     Initial conditions: P0->cpus_mask = [0, 1]
 2890 *
 2891 *     CPU0		  P1				P2
 2892 *     <P0>
 2893 *       migrate_disable();
 2894 *       <preempted>
 2895 *                        set_cpus_allowed_ptr(P0, [1]);
 2896 *                          <blocks>
 2897 *     <migration/0>
 2898 *       migration_cpu_stop()
 2899 *         is_migration_disabled()
 2900 *           <bails>
 2901 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
 2902 *                                                         <signal completion>
 2903 *                          <awakes>
 2904 *
 2905 * Note that the above is safe vs a concurrent migrate_enable(), as any
 2906 * pending affinity completion is preceded by an uninstallation of
 2907 * p->migration_pending done with p->pi_lock held.
 2908 */
 2909static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
 2910			    int dest_cpu, unsigned int flags)
 2911	__releases(rq->lock)
 2912	__releases(p->pi_lock)
 2913{
 2914	struct set_affinity_pending my_pending = { }, *pending = NULL;
 2915	bool stop_pending, complete = false;
 2916
 2917	/* Can the task run on the task's current CPU? If so, we're done */
 2918	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
 2919		struct task_struct *push_task = NULL;
 2920
 2921		if ((flags & SCA_MIGRATE_ENABLE) &&
 2922		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
 2923			rq->push_busy = true;
 2924			push_task = get_task_struct(p);
 2925		}
 2926
 2927		/*
 2928		 * If there are pending waiters, but no pending stop_work,
 2929		 * then complete now.
 2930		 */
 2931		pending = p->migration_pending;
 2932		if (pending && !pending->stop_pending) {
 2933			p->migration_pending = NULL;
 2934			complete = true;
 2935		}
 2936
 2937		preempt_disable();
 2938		task_rq_unlock(rq, p, rf);
 2939		if (push_task) {
 2940			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
 2941					    p, &rq->push_work);
 2942		}
 2943		preempt_enable();
 2944
 2945		if (complete)
 2946			complete_all(&pending->done);
 2947
 2948		return 0;
 2949	}
 2950
 2951	if (!(flags & SCA_MIGRATE_ENABLE)) {
 2952		/* serialized by p->pi_lock */
 2953		if (!p->migration_pending) {
 2954			/* Install the request */
 2955			refcount_set(&my_pending.refs, 1);
 2956			init_completion(&my_pending.done);
 2957			my_pending.arg = (struct migration_arg) {
 2958				.task = p,
 2959				.dest_cpu = dest_cpu,
 2960				.pending = &my_pending,
 2961			};
 2962
 2963			p->migration_pending = &my_pending;
 2964		} else {
 2965			pending = p->migration_pending;
 2966			refcount_inc(&pending->refs);
 2967			/*
 2968			 * Affinity has changed, but we've already installed a
 2969			 * pending. migration_cpu_stop() *must* see this, else
 2970			 * we risk a completion of the pending despite having a
 2971			 * task on a disallowed CPU.
 2972			 *
 2973			 * Serialized by p->pi_lock, so this is safe.
 2974			 */
 2975			pending->arg.dest_cpu = dest_cpu;
 2976		}
 2977	}
 2978	pending = p->migration_pending;
 2979	/*
 2980	 * - !MIGRATE_ENABLE:
 2981	 *   we'll have installed a pending if there wasn't one already.
 2982	 *
 2983	 * - MIGRATE_ENABLE:
 2984	 *   we're here because the current CPU isn't matching anymore,
 2985	 *   the only way that can happen is because of a concurrent
 2986	 *   set_cpus_allowed_ptr() call, which should then still be
 2987	 *   pending completion.
 2988	 *
 2989	 * Either way, we really should have a @pending here.
 2990	 */
 2991	if (WARN_ON_ONCE(!pending)) {
 2992		task_rq_unlock(rq, p, rf);
 2993		return -EINVAL;
 2994	}
 2995
 2996	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
 2997		/*
 2998		 * MIGRATE_ENABLE gets here because 'p == current', but for
 2999		 * anything else we cannot do is_migration_disabled(), punt
 3000		 * and have the stopper function handle it all race-free.
 3001		 */
 3002		stop_pending = pending->stop_pending;
 3003		if (!stop_pending)
 3004			pending->stop_pending = true;
 3005
 3006		if (flags & SCA_MIGRATE_ENABLE)
 3007			p->migration_flags &= ~MDF_PUSH;
 3008
 3009		preempt_disable();
 3010		task_rq_unlock(rq, p, rf);
 3011		if (!stop_pending) {
 3012			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
 3013					    &pending->arg, &pending->stop_work);
 3014		}
 3015		preempt_enable();
 3016
 3017		if (flags & SCA_MIGRATE_ENABLE)
 3018			return 0;
 3019	} else {
 3020
 3021		if (!is_migration_disabled(p)) {
 3022			if (task_on_rq_queued(p))
 3023				rq = move_queued_task(rq, rf, p, dest_cpu);
 3024
 3025			if (!pending->stop_pending) {
 3026				p->migration_pending = NULL;
 3027				complete = true;
 3028			}
 3029		}
 3030		task_rq_unlock(rq, p, rf);
 3031
 3032		if (complete)
 3033			complete_all(&pending->done);
 3034	}
 3035
 3036	wait_for_completion(&pending->done);
 3037
 3038	if (refcount_dec_and_test(&pending->refs))
 3039		wake_up_var(&pending->refs); /* No UaF, just an address */
 3040
 3041	/*
 3042	 * Block the original owner of &pending until all subsequent callers
 3043	 * have seen the completion and decremented the refcount
 3044	 */
 3045	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
 3046
 3047	/* ARGH */
 3048	WARN_ON_ONCE(my_pending.stop_pending);
 3049
 3050	return 0;
 3051}
 3052
 3053/*
 3054 * Called with both p->pi_lock and rq->lock held; drops both before returning.
 3055 */
 3056static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
 3057					 struct affinity_context *ctx,
 3058					 struct rq *rq,
 3059					 struct rq_flags *rf)
 3060	__releases(rq->lock)
 3061	__releases(p->pi_lock)
 3062{
 3063	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
 3064	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 3065	bool kthread = p->flags & PF_KTHREAD;
 3066	unsigned int dest_cpu;
 3067	int ret = 0;
 3068
 3069	update_rq_clock(rq);
 3070
 3071	if (kthread || is_migration_disabled(p)) {
 3072		/*
 3073		 * Kernel threads are allowed on online && !active CPUs,
 3074		 * however, during cpu-hot-unplug, even these might get pushed
 3075		 * away if not KTHREAD_IS_PER_CPU.
 3076		 *
 3077		 * Specifically, migration_disabled() tasks must not fail the
 3078		 * cpumask_any_and_distribute() pick below, esp. so on
 3079		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
 3080		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
 3081		 */
 3082		cpu_valid_mask = cpu_online_mask;
 3083	}
 3084
 3085	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
 3086		ret = -EINVAL;
 3087		goto out;
 3088	}
 3089
 3090	/*
 3091	 * Must re-check here, to close a race against __kthread_bind(),
 3092	 * sched_setaffinity() is not guaranteed to observe the flag.
 3093	 */
 3094	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
 3095		ret = -EINVAL;
 3096		goto out;
 3097	}
 3098
 3099	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
 3100		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
 3101			if (ctx->flags & SCA_USER)
 3102				swap(p->user_cpus_ptr, ctx->user_mask);
 3103			goto out;
 3104		}
 3105
 3106		if (WARN_ON_ONCE(p == current &&
 3107				 is_migration_disabled(p) &&
 3108				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
 3109			ret = -EBUSY;
 3110			goto out;
 3111		}
 3112	}
 3113
 3114	/*
 3115	 * Picking a ~random cpu helps in cases where we are changing affinity
 3116	 * for groups of tasks (ie. cpuset), so that load balancing is not
 3117	 * immediately required to distribute the tasks within their new mask.
 3118	 */
 3119	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
 3120	if (dest_cpu >= nr_cpu_ids) {
 3121		ret = -EINVAL;
 3122		goto out;
 3123	}
 3124
 3125	__do_set_cpus_allowed(p, ctx);
 3126
 3127	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
 3128
 3129out:
 3130	task_rq_unlock(rq, p, rf);
 3131
 3132	return ret;
 3133}
 3134
 3135/*
 3136 * Change a given task's CPU affinity. Migrate the thread to a
 3137 * proper CPU and schedule it away if the CPU it's executing on
 3138 * is removed from the allowed bitmask.
 3139 *
 3140 * NOTE: the caller must have a valid reference to the task, the
 3141 * task must not exit() & deallocate itself prematurely. The
 3142 * call is not atomic; no spinlocks may be held.
 3143 */
 3144int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
 3145{
 3146	struct rq_flags rf;
 3147	struct rq *rq;
 3148
 3149	rq = task_rq_lock(p, &rf);
 3150	/*
 3151	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
 3152	 * flags are set.
 3153	 */
 3154	if (p->user_cpus_ptr &&
 3155	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
 3156	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
 3157		ctx->new_mask = rq->scratch_mask;
 3158
 3159	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
 3160}
 3161
 3162int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 3163{
 3164	struct affinity_context ac = {
 3165		.new_mask  = new_mask,
 3166		.flags     = 0,
 3167	};
 3168
 3169	return __set_cpus_allowed_ptr(p, &ac);
 3170}
 3171EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 3172
 3173/*
 3174 * Change a given task's CPU affinity to the intersection of its current
 3175 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
 3176 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
 3177 * affinity or use cpu_online_mask instead.
 3178 *
 3179 * If the resulting mask is empty, leave the affinity unchanged and return
 3180 * -EINVAL.
 3181 */
 3182static int restrict_cpus_allowed_ptr(struct task_struct *p,
 3183				     struct cpumask *new_mask,
 3184				     const struct cpumask *subset_mask)
 3185{
 3186	struct affinity_context ac = {
 3187		.new_mask  = new_mask,
 3188		.flags     = 0,
 3189	};
 3190	struct rq_flags rf;
 3191	struct rq *rq;
 3192	int err;
 3193
 3194	rq = task_rq_lock(p, &rf);
 3195
 3196	/*
 3197	 * Forcefully restricting the affinity of a deadline task is
 3198	 * likely to cause problems, so fail and noisily override the
 3199	 * mask entirely.
 3200	 */
 3201	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
 3202		err = -EPERM;
 3203		goto err_unlock;
 3204	}
 3205
 3206	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
 3207		err = -EINVAL;
 3208		goto err_unlock;
 3209	}
 3210
 3211	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
 3212
 3213err_unlock:
 3214	task_rq_unlock(rq, p, &rf);
 3215	return err;
 3216}
 3217
 3218/*
 3219 * Restrict the CPU affinity of task @p so that it is a subset of
 3220 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
 3221 * old affinity mask. If the resulting mask is empty, we warn and walk
 3222 * up the cpuset hierarchy until we find a suitable mask.
 3223 */
 3224void force_compatible_cpus_allowed_ptr(struct task_struct *p)
 3225{
 3226	cpumask_var_t new_mask;
 3227	const struct cpumask *override_mask = task_cpu_possible_mask(p);
 3228
 3229	alloc_cpumask_var(&new_mask, GFP_KERNEL);
 3230
 3231	/*
 3232	 * __migrate_task() can fail silently in the face of concurrent
 3233	 * offlining of the chosen destination CPU, so take the hotplug
 3234	 * lock to ensure that the migration succeeds.
 3235	 */
 3236	cpus_read_lock();
 3237	if (!cpumask_available(new_mask))
 3238		goto out_set_mask;
 3239
 3240	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
 3241		goto out_free_mask;
 3242
 3243	/*
 3244	 * We failed to find a valid subset of the affinity mask for the
 3245	 * task, so override it based on its cpuset hierarchy.
 3246	 */
 3247	cpuset_cpus_allowed(p, new_mask);
 3248	override_mask = new_mask;
 3249
 3250out_set_mask:
 3251	if (printk_ratelimit()) {
 3252		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
 3253				task_pid_nr(p), p->comm,
 3254				cpumask_pr_args(override_mask));
 3255	}
 3256
 3257	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
 3258out_free_mask:
 3259	cpus_read_unlock();
 3260	free_cpumask_var(new_mask);
 3261}
 3262
 3263/*
 3264 * Restore the affinity of a task @p which was previously restricted by a
 3265 * call to force_compatible_cpus_allowed_ptr().
 3266 *
 3267 * It is the caller's responsibility to serialise this with any calls to
 3268 * force_compatible_cpus_allowed_ptr(@p).
 3269 */
 3270void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
 3271{
 3272	struct affinity_context ac = {
 3273		.new_mask  = task_user_cpus(p),
 3274		.flags     = 0,
 3275	};
 3276	int ret;
 3277
 3278	/*
 3279	 * Try to restore the old affinity mask with __sched_setaffinity().
 3280	 * Cpuset masking will be done there too.
 3281	 */
 3282	ret = __sched_setaffinity(p, &ac);
 3283	WARN_ON_ONCE(ret);
 3284}
 3285
 3286void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 3287{
 3288#ifdef CONFIG_SCHED_DEBUG
 3289	unsigned int state = READ_ONCE(p->__state);
 3290
 3291	/*
 3292	 * We should never call set_task_cpu() on a blocked task,
 3293	 * ttwu() will sort out the placement.
 3294	 */
 3295	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
 3296
 3297	/*
 3298	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
 3299	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
 3300	 * time relying on p->on_rq.
 3301	 */
 3302	WARN_ON_ONCE(state == TASK_RUNNING &&
 3303		     p->sched_class == &fair_sched_class &&
 3304		     (p->on_rq && !task_on_rq_migrating(p)));
 3305
 3306#ifdef CONFIG_LOCKDEP
 3307	/*
 3308	 * The caller should hold either p->pi_lock or rq->lock, when changing
 3309	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 3310	 *
 3311	 * sched_move_task() holds both and thus holding either pins the cgroup,
 3312	 * see task_group().
 3313	 *
 3314	 * Furthermore, all task_rq users should acquire both locks, see
 3315	 * task_rq_lock().
 3316	 */
 3317	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 3318				      lockdep_is_held(__rq_lockp(task_rq(p)))));
 3319#endif
 3320	/*
 3321	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
 3322	 */
 3323	WARN_ON_ONCE(!cpu_online(new_cpu));
 3324
 3325	WARN_ON_ONCE(is_migration_disabled(p));
 3326#endif
 3327
 3328	trace_sched_migrate_task(p, new_cpu);
 3329
 3330	if (task_cpu(p) != new_cpu) {
 3331		if (p->sched_class->migrate_task_rq)
 3332			p->sched_class->migrate_task_rq(p, new_cpu);
 3333		p->se.nr_migrations++;
 3334		rseq_migrate(p);
 3335		sched_mm_cid_migrate_from(p);
 3336		perf_event_task_migrate(p);
 3337	}
 3338
 3339	__set_task_cpu(p, new_cpu);
 3340}
 3341
 3342#ifdef CONFIG_NUMA_BALANCING
 3343static void __migrate_swap_task(struct task_struct *p, int cpu)
 3344{
 3345	if (task_on_rq_queued(p)) {
 3346		struct rq *src_rq, *dst_rq;
 3347		struct rq_flags srf, drf;
 3348
 3349		src_rq = task_rq(p);
 3350		dst_rq = cpu_rq(cpu);
 3351
 3352		rq_pin_lock(src_rq, &srf);
 3353		rq_pin_lock(dst_rq, &drf);
 3354
 3355		move_queued_task_locked(src_rq, dst_rq, p);
 3356		wakeup_preempt(dst_rq, p, 0);
 3357
 3358		rq_unpin_lock(dst_rq, &drf);
 3359		rq_unpin_lock(src_rq, &srf);
 3360
 3361	} else {
 3362		/*
 3363		 * Task isn't running anymore; make it appear like we migrated
 3364		 * it before it went to sleep. This means on wakeup we make the
 3365		 * previous CPU our target instead of where it really is.
 3366		 */
 3367		p->wake_cpu = cpu;
 3368	}
 3369}
 3370
 3371struct migration_swap_arg {
 3372	struct task_struct *src_task, *dst_task;
 3373	int src_cpu, dst_cpu;
 3374};
 3375
 3376static int migrate_swap_stop(void *data)
 3377{
 3378	struct migration_swap_arg *arg = data;
 3379	struct rq *src_rq, *dst_rq;
 3380
 3381	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
 3382		return -EAGAIN;
 3383
 3384	src_rq = cpu_rq(arg->src_cpu);
 3385	dst_rq = cpu_rq(arg->dst_cpu);
 3386
 3387	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
 3388	guard(double_rq_lock)(src_rq, dst_rq);
 3389
 3390	if (task_cpu(arg->dst_task) != arg->dst_cpu)
 3391		return -EAGAIN;
 3392
 3393	if (task_cpu(arg->src_task) != arg->src_cpu)
 3394		return -EAGAIN;
 3395
 3396	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
 3397		return -EAGAIN;
 3398
 3399	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
 3400		return -EAGAIN;
 3401
 3402	__migrate_swap_task(arg->src_task, arg->dst_cpu);
 3403	__migrate_swap_task(arg->dst_task, arg->src_cpu);
 3404
 3405	return 0;
 3406}
 3407
 3408/*
 3409 * Cross migrate two tasks
 3410 */
 3411int migrate_swap(struct task_struct *cur, struct task_struct *p,
 3412		int target_cpu, int curr_cpu)
 3413{
 3414	struct migration_swap_arg arg;
 3415	int ret = -EINVAL;
 3416
 3417	arg = (struct migration_swap_arg){
 3418		.src_task = cur,
 3419		.src_cpu = curr_cpu,
 3420		.dst_task = p,
 3421		.dst_cpu = target_cpu,
 3422	};
 3423
 3424	if (arg.src_cpu == arg.dst_cpu)
 3425		goto out;
 3426
 3427	/*
 3428	 * These three tests are all lockless; this is OK since all of them
 3429	 * will be re-checked with proper locks held further down the line.
 3430	 */
 3431	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
 3432		goto out;
 3433
 3434	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
 3435		goto out;
 3436
 3437	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
 3438		goto out;
 3439
 3440	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
 3441	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
 3442
 3443out:
 3444	return ret;
 3445}
 3446#endif /* CONFIG_NUMA_BALANCING */
 3447
 3448/***
 3449 * kick_process - kick a running thread to enter/exit the kernel
 3450 * @p: the to-be-kicked thread
 3451 *
 3452 * Cause a process which is running on another CPU to enter
 3453 * kernel-mode, without any delay. (to get signals handled.)
 3454 *
 3455 * NOTE: this function doesn't have to take the runqueue lock,
 3456 * because all it wants to ensure is that the remote task enters
 3457 * the kernel. If the IPI races and the task has been migrated
 3458 * to another CPU then no harm is done and the purpose has been
 3459 * achieved as well.
 3460 */
 3461void kick_process(struct task_struct *p)
 3462{
 3463	guard(preempt)();
 3464	int cpu = task_cpu(p);
 3465
 3466	if ((cpu != smp_processor_id()) && task_curr(p))
 3467		smp_send_reschedule(cpu);
 3468}
 3469EXPORT_SYMBOL_GPL(kick_process);
 3470
 3471/*
 3472 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
 3473 *
 3474 * A few notes on cpu_active vs cpu_online:
 3475 *
 3476 *  - cpu_active must be a subset of cpu_online
 3477 *
 3478 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
 3479 *    see __set_cpus_allowed_ptr(). At this point the newly online
 3480 *    CPU isn't yet part of the sched domains, and balancing will not
 3481 *    see it.
 3482 *
 3483 *  - on CPU-down we clear cpu_active() to mask the sched domains and
 3484 *    avoid the load balancer to place new tasks on the to be removed
 3485 *    CPU. Existing tasks will remain running there and will be taken
 3486 *    off.
 3487 *
 3488 * This means that fallback selection must not select !active CPUs.
 3489 * And can assume that any active CPU must be online. Conversely
 3490 * select_task_rq() below may allow selection of !active CPUs in order
 3491 * to satisfy the above rules.
 3492 */
 3493static int select_fallback_rq(int cpu, struct task_struct *p)
 3494{
 3495	int nid = cpu_to_node(cpu);
 3496	const struct cpumask *nodemask = NULL;
 3497	enum { cpuset, possible, fail } state = cpuset;
 3498	int dest_cpu;
 3499
 3500	/*
 3501	 * If the node that the CPU is on has been offlined, cpu_to_node()
 3502	 * will return -1. There is no CPU on the node, and we should
 3503	 * select the CPU on the other node.
 3504	 */
 3505	if (nid != -1) {
 3506		nodemask = cpumask_of_node(nid);
 3507
 3508		/* Look for allowed, online CPU in same node. */
 3509		for_each_cpu(dest_cpu, nodemask) {
 3510			if (is_cpu_allowed(p, dest_cpu))
 3511				return dest_cpu;
 3512		}
 3513	}
 3514
 3515	for (;;) {
 3516		/* Any allowed, online CPU? */
 3517		for_each_cpu(dest_cpu, p->cpus_ptr) {
 3518			if (!is_cpu_allowed(p, dest_cpu))
 3519				continue;
 3520
 3521			goto out;
 3522		}
 3523
 3524		/* No more Mr. Nice Guy. */
 3525		switch (state) {
 3526		case cpuset:
 3527			if (cpuset_cpus_allowed_fallback(p)) {
 3528				state = possible;
 3529				break;
 3530			}
 3531			fallthrough;
 3532		case possible:
 3533			/*
 3534			 * XXX When called from select_task_rq() we only
 3535			 * hold p->pi_lock and again violate locking order.
 3536			 *
 3537			 * More yuck to audit.
 3538			 */
 3539			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
 3540			state = fail;
 3541			break;
 3542		case fail:
 3543			BUG();
 3544			break;
 3545		}
 3546	}
 3547
 3548out:
 3549	if (state != cpuset) {
 3550		/*
 3551		 * Don't tell them about moving exiting tasks or
 3552		 * kernel threads (both mm NULL), since they never
 3553		 * leave kernel.
 3554		 */
 3555		if (p->mm && printk_ratelimit()) {
 3556			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
 3557					task_pid_nr(p), p->comm, cpu);
 3558		}
 3559	}
 3560
 3561	return dest_cpu;
 3562}
 3563
 3564/*
 3565 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
 3566 */
 3567static inline
 3568int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
 3569{
 3570	lockdep_assert_held(&p->pi_lock);
 3571
 3572	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
 3573		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
 3574		*wake_flags |= WF_RQ_SELECTED;
 3575	} else {
 3576		cpu = cpumask_any(p->cpus_ptr);
 3577	}
 3578
 3579	/*
 3580	 * In order not to call set_task_cpu() on a blocking task we need
 3581	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
 3582	 * CPU.
 3583	 *
 3584	 * Since this is common to all placement strategies, this lives here.
 3585	 *
 3586	 * [ this allows ->select_task() to simply return task_cpu(p) and
 3587	 *   not worry about this generic constraint ]
 3588	 */
 3589	if (unlikely(!is_cpu_allowed(p, cpu)))
 3590		cpu = select_fallback_rq(task_cpu(p), p);
 3591
 3592	return cpu;
 3593}
 3594
 3595void sched_set_stop_task(int cpu, struct task_struct *stop)
 3596{
 3597	static struct lock_class_key stop_pi_lock;
 3598	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 3599	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 3600
 3601	if (stop) {
 3602		/*
 3603		 * Make it appear like a SCHED_FIFO task, its something
 3604		 * userspace knows about and won't get confused about.
 3605		 *
 3606		 * Also, it will make PI more or less work without too
 3607		 * much confusion -- but then, stop work should not
 3608		 * rely on PI working anyway.
 3609		 */
 3610		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 3611
 3612		stop->sched_class = &stop_sched_class;
 3613
 3614		/*
 3615		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
 3616		 * adjust the effective priority of a task. As a result,
 3617		 * rt_mutex_setprio() can trigger (RT) balancing operations,
 3618		 * which can then trigger wakeups of the stop thread to push
 3619		 * around the current task.
 3620		 *
 3621		 * The stop task itself will never be part of the PI-chain, it
 3622		 * never blocks, therefore that ->pi_lock recursion is safe.
 3623		 * Tell lockdep about this by placing the stop->pi_lock in its
 3624		 * own class.
 3625		 */
 3626		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
 3627	}
 3628
 3629	cpu_rq(cpu)->stop = stop;
 3630
 3631	if (old_stop) {
 3632		/*
 3633		 * Reset it back to a normal scheduling class so that
 3634		 * it can die in pieces.
 3635		 */
 3636		old_stop->sched_class = &rt_sched_class;
 3637	}
 3638}
 3639
 3640#else /* CONFIG_SMP */
 3641
 3642static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
 3643
 3644static inline bool rq_has_pinned_tasks(struct rq *rq)
 3645{
 3646	return false;
 3647}
 3648
 3649#endif /* !CONFIG_SMP */
 3650
 3651static void
 3652ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 3653{
 3654	struct rq *rq;
 3655
 3656	if (!schedstat_enabled())
 3657		return;
 3658
 3659	rq = this_rq();
 3660
 3661#ifdef CONFIG_SMP
 3662	if (cpu == rq->cpu) {
 3663		__schedstat_inc(rq->ttwu_local);
 3664		__schedstat_inc(p->stats.nr_wakeups_local);
 3665	} else {
 3666		struct sched_domain *sd;
 3667
 3668		__schedstat_inc(p->stats.nr_wakeups_remote);
 3669
 3670		guard(rcu)();
 3671		for_each_domain(rq->cpu, sd) {
 3672			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 3673				__schedstat_inc(sd->ttwu_wake_remote);
 3674				break;
 3675			}
 3676		}
 3677	}
 3678
 3679	if (wake_flags & WF_MIGRATED)
 3680		__schedstat_inc(p->stats.nr_wakeups_migrate);
 3681#endif /* CONFIG_SMP */
 3682
 3683	__schedstat_inc(rq->ttwu_count);
 3684	__schedstat_inc(p->stats.nr_wakeups);
 3685
 3686	if (wake_flags & WF_SYNC)
 3687		__schedstat_inc(p->stats.nr_wakeups_sync);
 3688}
 3689
 3690/*
 3691 * Mark the task runnable.
 3692 */
 3693static inline void ttwu_do_wakeup(struct task_struct *p)
 3694{
 3695	WRITE_ONCE(p->__state, TASK_RUNNING);
 3696	trace_sched_wakeup(p);
 3697}
 3698
 3699static void
 3700ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
 3701		 struct rq_flags *rf)
 3702{
 3703	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
 3704
 3705	lockdep_assert_rq_held(rq);
 3706
 3707	if (p->sched_contributes_to_load)
 3708		rq->nr_uninterruptible--;
 3709
 3710#ifdef CONFIG_SMP
 3711	if (wake_flags & WF_RQ_SELECTED)
 3712		en_flags |= ENQUEUE_RQ_SELECTED;
 3713	if (wake_flags & WF_MIGRATED)
 3714		en_flags |= ENQUEUE_MIGRATED;
 3715	else
 3716#endif
 3717	if (p->in_iowait) {
 3718		delayacct_blkio_end(p);
 3719		atomic_dec(&task_rq(p)->nr_iowait);
 3720	}
 3721
 3722	activate_task(rq, p, en_flags);
 3723	wakeup_preempt(rq, p, wake_flags);
 3724
 3725	ttwu_do_wakeup(p);
 3726
 3727#ifdef CONFIG_SMP
 3728	if (p->sched_class->task_woken) {
 3729		/*
 3730		 * Our task @p is fully woken up and running; so it's safe to
 3731		 * drop the rq->lock, hereafter rq is only used for statistics.
 3732		 */
 3733		rq_unpin_lock(rq, rf);
 3734		p->sched_class->task_woken(rq, p);
 3735		rq_repin_lock(rq, rf);
 3736	}
 3737
 3738	if (rq->idle_stamp) {
 3739		u64 delta = rq_clock(rq) - rq->idle_stamp;
 3740		u64 max = 2*rq->max_idle_balance_cost;
 3741
 3742		update_avg(&rq->avg_idle, delta);
 3743
 3744		if (rq->avg_idle > max)
 3745			rq->avg_idle = max;
 3746
 3747		rq->idle_stamp = 0;
 3748	}
 3749#endif
 3750}
 3751
 3752/*
 3753 * Consider @p being inside a wait loop:
 3754 *
 3755 *   for (;;) {
 3756 *      set_current_state(TASK_UNINTERRUPTIBLE);
 3757 *
 3758 *      if (CONDITION)
 3759 *         break;
 3760 *
 3761 *      schedule();
 3762 *   }
 3763 *   __set_current_state(TASK_RUNNING);
 3764 *
 3765 * between set_current_state() and schedule(). In this case @p is still
 3766 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
 3767 * an atomic manner.
 3768 *
 3769 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
 3770 * then schedule() must still happen and p->state can be changed to
 3771 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
 3772 * need to do a full wakeup with enqueue.
 3773 *
 3774 * Returns: %true when the wakeup is done,
 3775 *          %false otherwise.
 3776 */
 3777static int ttwu_runnable(struct task_struct *p, int wake_flags)
 3778{
 3779	struct rq_flags rf;
 3780	struct rq *rq;
 3781	int ret = 0;
 3782
 3783	rq = __task_rq_lock(p, &rf);
 3784	if (task_on_rq_queued(p)) {
 3785		update_rq_clock(rq);
 3786		if (p->se.sched_delayed)
 3787			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
 3788		if (!task_on_cpu(rq, p)) {
 3789			/*
 3790			 * When on_rq && !on_cpu the task is preempted, see if
 3791			 * it should preempt the task that is current now.
 3792			 */
 3793			wakeup_preempt(rq, p, wake_flags);
 3794		}
 3795		ttwu_do_wakeup(p);
 3796		ret = 1;
 3797	}
 3798	__task_rq_unlock(rq, &rf);
 3799
 3800	return ret;
 3801}
 3802
 3803#ifdef CONFIG_SMP
 3804void sched_ttwu_pending(void *arg)
 3805{
 3806	struct llist_node *llist = arg;
 3807	struct rq *rq = this_rq();
 3808	struct task_struct *p, *t;
 3809	struct rq_flags rf;
 3810
 3811	if (!llist)
 3812		return;
 3813
 3814	rq_lock_irqsave(rq, &rf);
 3815	update_rq_clock(rq);
 3816
 3817	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
 3818		if (WARN_ON_ONCE(p->on_cpu))
 3819			smp_cond_load_acquire(&p->on_cpu, !VAL);
 3820
 3821		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
 3822			set_task_cpu(p, cpu_of(rq));
 3823
 3824		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 3825	}
 3826
 3827	/*
 3828	 * Must be after enqueueing at least once task such that
 3829	 * idle_cpu() does not observe a false-negative -- if it does,
 3830	 * it is possible for select_idle_siblings() to stack a number
 3831	 * of tasks on this CPU during that window.
 3832	 *
 3833	 * It is OK to clear ttwu_pending when another task pending.
 3834	 * We will receive IPI after local IRQ enabled and then enqueue it.
 3835	 * Since now nr_running > 0, idle_cpu() will always get correct result.
 3836	 */
 3837	WRITE_ONCE(rq->ttwu_pending, 0);
 3838	rq_unlock_irqrestore(rq, &rf);
 3839}
 3840
 3841/*
 3842 * Prepare the scene for sending an IPI for a remote smp_call
 3843 *
 3844 * Returns true if the caller can proceed with sending the IPI.
 3845 * Returns false otherwise.
 3846 */
 3847bool call_function_single_prep_ipi(int cpu)
 3848{
 3849	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
 3850		trace_sched_wake_idle_without_ipi(cpu);
 3851		return false;
 3852	}
 3853
 3854	return true;
 3855}
 3856
 3857/*
 3858 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
 3859 * necessary. The wakee CPU on receipt of the IPI will queue the task
 3860 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
 3861 * of the wakeup instead of the waker.
 3862 */
 3863static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3864{
 3865	struct rq *rq = cpu_rq(cpu);
 3866
 3867	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
 3868
 3869	WRITE_ONCE(rq->ttwu_pending, 1);
 3870	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 3871}
 3872
 3873void wake_up_if_idle(int cpu)
 3874{
 3875	struct rq *rq = cpu_rq(cpu);
 3876
 3877	guard(rcu)();
 3878	if (is_idle_task(rcu_dereference(rq->curr))) {
 3879		guard(rq_lock_irqsave)(rq);
 3880		if (is_idle_task(rq->curr))
 3881			resched_curr(rq);
 3882	}
 3883}
 3884
 3885bool cpus_equal_capacity(int this_cpu, int that_cpu)
 3886{
 3887	if (!sched_asym_cpucap_active())
 3888		return true;
 3889
 3890	if (this_cpu == that_cpu)
 3891		return true;
 3892
 3893	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
 3894}
 3895
 3896bool cpus_share_cache(int this_cpu, int that_cpu)
 3897{
 3898	if (this_cpu == that_cpu)
 3899		return true;
 3900
 3901	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
 3902}
 3903
 3904/*
 3905 * Whether CPUs are share cache resources, which means LLC on non-cluster
 3906 * machines and LLC tag or L2 on machines with clusters.
 3907 */
 3908bool cpus_share_resources(int this_cpu, int that_cpu)
 3909{
 3910	if (this_cpu == that_cpu)
 3911		return true;
 3912
 3913	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
 3914}
 3915
 3916static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
 3917{
 3918	/*
 3919	 * The BPF scheduler may depend on select_task_rq() being invoked during
 3920	 * wakeups. In addition, @p may end up executing on a different CPU
 3921	 * regardless of what happens in the wakeup path making the ttwu_queue
 3922	 * optimization less meaningful. Skip if on SCX.
 3923	 */
 3924	if (task_on_scx(p))
 3925		return false;
 3926
 3927	/*
 3928	 * Do not complicate things with the async wake_list while the CPU is
 3929	 * in hotplug state.
 3930	 */
 3931	if (!cpu_active(cpu))
 3932		return false;
 3933
 3934	/* Ensure the task will still be allowed to run on the CPU. */
 3935	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 3936		return false;
 3937
 3938	/*
 3939	 * If the CPU does not share cache, then queue the task on the
 3940	 * remote rqs wakelist to avoid accessing remote data.
 3941	 */
 3942	if (!cpus_share_cache(smp_processor_id(), cpu))
 3943		return true;
 3944
 3945	if (cpu == smp_processor_id())
 3946		return false;
 3947
 3948	/*
 3949	 * If the wakee cpu is idle, or the task is descheduling and the
 3950	 * only running task on the CPU, then use the wakelist to offload
 3951	 * the task activation to the idle (or soon-to-be-idle) CPU as
 3952	 * the current CPU is likely busy. nr_running is checked to
 3953	 * avoid unnecessary task stacking.
 3954	 *
 3955	 * Note that we can only get here with (wakee) p->on_rq=0,
 3956	 * p->on_cpu can be whatever, we've done the dequeue, so
 3957	 * the wakee has been accounted out of ->nr_running.
 3958	 */
 3959	if (!cpu_rq(cpu)->nr_running)
 3960		return true;
 3961
 3962	return false;
 3963}
 3964
 3965static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3966{
 3967	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
 3968		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
 3969		__ttwu_queue_wakelist(p, cpu, wake_flags);
 3970		return true;
 3971	}
 3972
 3973	return false;
 3974}
 3975
 3976#else /* !CONFIG_SMP */
 3977
 3978static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3979{
 3980	return false;
 3981}
 3982
 3983#endif /* CONFIG_SMP */
 3984
 3985static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
 3986{
 3987	struct rq *rq = cpu_rq(cpu);
 3988	struct rq_flags rf;
 3989
 3990	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 3991		return;
 3992
 3993	rq_lock(rq, &rf);
 3994	update_rq_clock(rq);
 3995	ttwu_do_activate(rq, p, wake_flags, &rf);
 3996	rq_unlock(rq, &rf);
 3997}
 3998
 3999/*
 4000 * Invoked from try_to_wake_up() to check whether the task can be woken up.
 4001 *
 4002 * The caller holds p::pi_lock if p != current or has preemption
 4003 * disabled when p == current.
 4004 *
 4005 * The rules of saved_state:
 4006 *
 4007 *   The related locking code always holds p::pi_lock when updating
 4008 *   p::saved_state, which means the code is fully serialized in both cases.
 4009 *
 4010 *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
 4011 *   No other bits set. This allows to distinguish all wakeup scenarios.
 4012 *
 4013 *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
 4014 *   allows us to prevent early wakeup of tasks before they can be run on
 4015 *   asymmetric ISA architectures (eg ARMv9).
 4016 */
 4017static __always_inline
 4018bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
 4019{
 4020	int match;
 4021
 4022	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 4023		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
 4024			     state != TASK_RTLOCK_WAIT);
 4025	}
 4026
 4027	*success = !!(match = __task_state_match(p, state));
 4028
 4029	/*
 4030	 * Saved state preserves the task state across blocking on
 4031	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
 4032	 * set p::saved_state to TASK_RUNNING, but do not wake the task
 4033	 * because it waits for a lock wakeup or __thaw_task(). Also
 4034	 * indicate success because from the regular waker's point of
 4035	 * view this has succeeded.
 4036	 *
 4037	 * After acquiring the lock the task will restore p::__state
 4038	 * from p::saved_state which ensures that the regular
 4039	 * wakeup is not lost. The restore will also set
 4040	 * p::saved_state to TASK_RUNNING so any further tests will
 4041	 * not result in false positives vs. @success
 4042	 */
 4043	if (match < 0)
 4044		p->saved_state = TASK_RUNNING;
 4045
 4046	return match > 0;
 4047}
 4048
 4049/*
 4050 * Notes on Program-Order guarantees on SMP systems.
 4051 *
 4052 *  MIGRATION
 4053 *
 4054 * The basic program-order guarantee on SMP systems is that when a task [t]
 4055 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 4056 * execution on its new CPU [c1].
 4057 *
 4058 * For migration (of runnable tasks) this is provided by the following means:
 4059 *
 4060 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 4061 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 4062 *     rq(c1)->lock (if not at the same time, then in that order).
 4063 *  C) LOCK of the rq(c1)->lock scheduling in task
 4064 *
 4065 * Release/acquire chaining guarantees that B happens after A and C after B.
 4066 * Note: the CPU doing B need not be c0 or c1
 4067 *
 4068 * Example:
 4069 *
 4070 *   CPU0            CPU1            CPU2
 4071 *
 4072 *   LOCK rq(0)->lock
 4073 *   sched-out X
 4074 *   sched-in Y
 4075 *   UNLOCK rq(0)->lock
 4076 *
 4077 *                                   LOCK rq(0)->lock // orders against CPU0
 4078 *                                   dequeue X
 4079 *                                   UNLOCK rq(0)->lock
 4080 *
 4081 *                                   LOCK rq(1)->lock
 4082 *                                   enqueue X
 4083 *                                   UNLOCK rq(1)->lock
 4084 *
 4085 *                   LOCK rq(1)->lock // orders against CPU2
 4086 *                   sched-out Z
 4087 *                   sched-in X
 4088 *                   UNLOCK rq(1)->lock
 4089 *
 4090 *
 4091 *  BLOCKING -- aka. SLEEP + WAKEUP
 4092 *
 4093 * For blocking we (obviously) need to provide the same guarantee as for
 4094 * migration. However the means are completely different as there is no lock
 4095 * chain to provide order. Instead we do:
 4096 *
 4097 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
 4098 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
 4099 *
 4100 * Example:
 4101 *
 4102 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 4103 *
 4104 *   LOCK rq(0)->lock LOCK X->pi_lock
 4105 *   dequeue X
 4106 *   sched-out X
 4107 *   smp_store_release(X->on_cpu, 0);
 4108 *
 4109 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
 4110 *                    X->state = WAKING
 4111 *                    set_task_cpu(X,2)
 4112 *
 4113 *                    LOCK rq(2)->lock
 4114 *                    enqueue X
 4115 *                    X->state = RUNNING
 4116 *                    UNLOCK rq(2)->lock
 4117 *
 4118 *                                          LOCK rq(2)->lock // orders against CPU1
 4119 *                                          sched-out Z
 4120 *                                          sched-in X
 4121 *                                          UNLOCK rq(2)->lock
 4122 *
 4123 *                    UNLOCK X->pi_lock
 4124 *   UNLOCK rq(0)->lock
 4125 *
 4126 *
 4127 * However, for wakeups there is a second guarantee we must provide, namely we
 4128 * must ensure that CONDITION=1 done by the caller can not be reordered with
 4129 * accesses to the task state; see try_to_wake_up() and set_current_state().
 4130 */
 4131
 4132/**
 4133 * try_to_wake_up - wake up a thread
 4134 * @p: the thread to be awakened
 4135 * @state: the mask of task states that can be woken
 4136 * @wake_flags: wake modifier flags (WF_*)
 4137 *
 4138 * Conceptually does:
 4139 *
 4140 *   If (@state & @p->state) @p->state = TASK_RUNNING.
 4141 *
 4142 * If the task was not queued/runnable, also place it back on a runqueue.
 4143 *
 4144 * This function is atomic against schedule() which would dequeue the task.
 4145 *
 4146 * It issues a full memory barrier before accessing @p->state, see the comment
 4147 * with set_current_state().
 4148 *
 4149 * Uses p->pi_lock to serialize against concurrent wake-ups.
 4150 *
 4151 * Relies on p->pi_lock stabilizing:
 4152 *  - p->sched_class
 4153 *  - p->cpus_ptr
 4154 *  - p->sched_task_group
 4155 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
 4156 *
 4157 * Tries really hard to only take one task_rq(p)->lock for performance.
 4158 * Takes rq->lock in:
 4159 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
 4160 *  - ttwu_queue()       -- new rq, for enqueue of the task;
 4161 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
 4162 *
 4163 * As a consequence we race really badly with just about everything. See the
 4164 * many memory barriers and their comments for details.
 4165 *
 4166 * Return: %true if @p->state changes (an actual wakeup was done),
 4167 *	   %false otherwise.
 4168 */
 4169int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 4170{
 4171	guard(preempt)();
 4172	int cpu, success = 0;
 4173
 4174	wake_flags |= WF_TTWU;
 4175
 4176	if (p == current) {
 4177		/*
 4178		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
 4179		 * == smp_processor_id()'. Together this means we can special
 4180		 * case the whole 'p->on_rq && ttwu_runnable()' case below
 4181		 * without taking any locks.
 4182		 *
 4183		 * Specifically, given current runs ttwu() we must be before
 4184		 * schedule()'s block_task(), as such this must not observe
 4185		 * sched_delayed.
 4186		 *
 4187		 * In particular:
 4188		 *  - we rely on Program-Order guarantees for all the ordering,
 4189		 *  - we're serialized against set_special_state() by virtue of
 4190		 *    it disabling IRQs (this allows not taking ->pi_lock).
 4191		 */
 4192		SCHED_WARN_ON(p->se.sched_delayed);
 4193		if (!ttwu_state_match(p, state, &success))
 4194			goto out;
 4195
 4196		trace_sched_waking(p);
 4197		ttwu_do_wakeup(p);
 4198		goto out;
 4199	}
 4200
 4201	/*
 4202	 * If we are going to wake up a thread waiting for CONDITION we
 4203	 * need to ensure that CONDITION=1 done by the caller can not be
 4204	 * reordered with p->state check below. This pairs with smp_store_mb()
 4205	 * in set_current_state() that the waiting thread does.
 4206	 */
 4207	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
 4208		smp_mb__after_spinlock();
 4209		if (!ttwu_state_match(p, state, &success))
 4210			break;
 4211
 4212		trace_sched_waking(p);
 4213
 4214		/*
 4215		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
 4216		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
 4217		 * in smp_cond_load_acquire() below.
 4218		 *
 4219		 * sched_ttwu_pending()			try_to_wake_up()
 4220		 *   STORE p->on_rq = 1			  LOAD p->state
 4221		 *   UNLOCK rq->lock
 4222		 *
 4223		 * __schedule() (switch to task 'p')
 4224		 *   LOCK rq->lock			  smp_rmb();
 4225		 *   smp_mb__after_spinlock();
 4226		 *   UNLOCK rq->lock
 4227		 *
 4228		 * [task p]
 4229		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
 4230		 *
 4231		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4232		 * __schedule().  See the comment for smp_mb__after_spinlock().
 4233		 *
 4234		 * A similar smp_rmb() lives in __task_needs_rq_lock().
 4235		 */
 4236		smp_rmb();
 4237		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
 4238			break;
 4239
 4240#ifdef CONFIG_SMP
 4241		/*
 4242		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
 4243		 * possible to, falsely, observe p->on_cpu == 0.
 4244		 *
 4245		 * One must be running (->on_cpu == 1) in order to remove oneself
 4246		 * from the runqueue.
 4247		 *
 4248		 * __schedule() (switch to task 'p')	try_to_wake_up()
 4249		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
 4250		 *   UNLOCK rq->lock
 4251		 *
 4252		 * __schedule() (put 'p' to sleep)
 4253		 *   LOCK rq->lock			  smp_rmb();
 4254		 *   smp_mb__after_spinlock();
 4255		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
 4256		 *
 4257		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4258		 * __schedule().  See the comment for smp_mb__after_spinlock().
 4259		 *
 4260		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
 4261		 * schedule()'s deactivate_task() has 'happened' and p will no longer
 4262		 * care about it's own p->state. See the comment in __schedule().
 4263		 */
 4264		smp_acquire__after_ctrl_dep();
 4265
 4266		/*
 4267		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
 4268		 * == 0), which means we need to do an enqueue, change p->state to
 4269		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
 4270		 * enqueue, such as ttwu_queue_wakelist().
 4271		 */
 4272		WRITE_ONCE(p->__state, TASK_WAKING);
 4273
 4274		/*
 4275		 * If the owning (remote) CPU is still in the middle of schedule() with
 4276		 * this task as prev, considering queueing p on the remote CPUs wake_list
 4277		 * which potentially sends an IPI instead of spinning on p->on_cpu to
 4278		 * let the waker make forward progress. This is safe because IRQs are
 4279		 * disabled and the IPI will deliver after on_cpu is cleared.
 4280		 *
 4281		 * Ensure we load task_cpu(p) after p->on_cpu:
 4282		 *
 4283		 * set_task_cpu(p, cpu);
 4284		 *   STORE p->cpu = @cpu
 4285		 * __schedule() (switch to task 'p')
 4286		 *   LOCK rq->lock
 4287		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
 4288		 *   STORE p->on_cpu = 1		LOAD p->cpu
 4289		 *
 4290		 * to ensure we observe the correct CPU on which the task is currently
 4291		 * scheduling.
 4292		 */
 4293		if (smp_load_acquire(&p->on_cpu) &&
 4294		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
 4295			break;
 4296
 4297		/*
 4298		 * If the owning (remote) CPU is still in the middle of schedule() with
 4299		 * this task as prev, wait until it's done referencing the task.
 4300		 *
 4301		 * Pairs with the smp_store_release() in finish_task().
 4302		 *
 4303		 * This ensures that tasks getting woken will be fully ordered against
 4304		 * their previous state and preserve Program Order.
 4305		 */
 4306		smp_cond_load_acquire(&p->on_cpu, !VAL);
 4307
 4308		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
 4309		if (task_cpu(p) != cpu) {
 4310			if (p->in_iowait) {
 4311				delayacct_blkio_end(p);
 4312				atomic_dec(&task_rq(p)->nr_iowait);
 4313			}
 4314
 4315			wake_flags |= WF_MIGRATED;
 4316			psi_ttwu_dequeue(p);
 4317			set_task_cpu(p, cpu);
 4318		}
 4319#else
 4320		cpu = task_cpu(p);
 4321#endif /* CONFIG_SMP */
 4322
 4323		ttwu_queue(p, cpu, wake_flags);
 4324	}
 4325out:
 4326	if (success)
 4327		ttwu_stat(p, task_cpu(p), wake_flags);
 4328
 4329	return success;
 4330}
 4331
 4332static bool __task_needs_rq_lock(struct task_struct *p)
 4333{
 4334	unsigned int state = READ_ONCE(p->__state);
 4335
 4336	/*
 4337	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
 4338	 * the task is blocked. Make sure to check @state since ttwu() can drop
 4339	 * locks at the end, see ttwu_queue_wakelist().
 4340	 */
 4341	if (state == TASK_RUNNING || state == TASK_WAKING)
 4342		return true;
 4343
 4344	/*
 4345	 * Ensure we load p->on_rq after p->__state, otherwise it would be
 4346	 * possible to, falsely, observe p->on_rq == 0.
 4347	 *
 4348	 * See try_to_wake_up() for a longer comment.
 4349	 */
 4350	smp_rmb();
 4351	if (p->on_rq)
 4352		return true;
 4353
 4354#ifdef CONFIG_SMP
 4355	/*
 4356	 * Ensure the task has finished __schedule() and will not be referenced
 4357	 * anymore. Again, see try_to_wake_up() for a longer comment.
 4358	 */
 4359	smp_rmb();
 4360	smp_cond_load_acquire(&p->on_cpu, !VAL);
 4361#endif
 4362
 4363	return false;
 4364}
 4365
 4366/**
 4367 * task_call_func - Invoke a function on task in fixed state
 4368 * @p: Process for which the function is to be invoked, can be @current.
 4369 * @func: Function to invoke.
 4370 * @arg: Argument to function.
 4371 *
 4372 * Fix the task in it's current state by avoiding wakeups and or rq operations
 4373 * and call @func(@arg) on it.  This function can use task_is_runnable() and
 4374 * task_curr() to work out what the state is, if required.  Given that @func
 4375 * can be invoked with a runqueue lock held, it had better be quite
 4376 * lightweight.
 4377 *
 4378 * Returns:
 4379 *   Whatever @func returns
 4380 */
 4381int task_call_func(struct task_struct *p, task_call_f func, void *arg)
 4382{
 4383	struct rq *rq = NULL;
 4384	struct rq_flags rf;
 4385	int ret;
 4386
 4387	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4388
 4389	if (__task_needs_rq_lock(p))
 4390		rq = __task_rq_lock(p, &rf);
 4391
 4392	/*
 4393	 * At this point the task is pinned; either:
 4394	 *  - blocked and we're holding off wakeups	 (pi->lock)
 4395	 *  - woken, and we're holding off enqueue	 (rq->lock)
 4396	 *  - queued, and we're holding off schedule	 (rq->lock)
 4397	 *  - running, and we're holding off de-schedule (rq->lock)
 4398	 *
 4399	 * The called function (@func) can use: task_curr(), p->on_rq and
 4400	 * p->__state to differentiate between these states.
 4401	 */
 4402	ret = func(p, arg);
 4403
 4404	if (rq)
 4405		rq_unlock(rq, &rf);
 4406
 4407	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
 4408	return ret;
 4409}
 4410
 4411/**
 4412 * cpu_curr_snapshot - Return a snapshot of the currently running task
 4413 * @cpu: The CPU on which to snapshot the task.
 4414 *
 4415 * Returns the task_struct pointer of the task "currently" running on
 4416 * the specified CPU.
 4417 *
 4418 * If the specified CPU was offline, the return value is whatever it
 4419 * is, perhaps a pointer to the task_struct structure of that CPU's idle
 4420 * task, but there is no guarantee.  Callers wishing a useful return
 4421 * value must take some action to ensure that the specified CPU remains
 4422 * online throughout.
 4423 *
 4424 * This function executes full memory barriers before and after fetching
 4425 * the pointer, which permits the caller to confine this function's fetch
 4426 * with respect to the caller's accesses to other shared variables.
 4427 */
 4428struct task_struct *cpu_curr_snapshot(int cpu)
 4429{
 4430	struct rq *rq = cpu_rq(cpu);
 4431	struct task_struct *t;
 4432	struct rq_flags rf;
 4433
 4434	rq_lock_irqsave(rq, &rf);
 4435	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
 4436	t = rcu_dereference(cpu_curr(cpu));
 4437	rq_unlock_irqrestore(rq, &rf);
 4438	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4439
 4440	return t;
 4441}
 4442
 4443/**
 4444 * wake_up_process - Wake up a specific process
 4445 * @p: The process to be woken up.
 4446 *
 4447 * Attempt to wake up the nominated process and move it to the set of runnable
 4448 * processes.
 4449 *
 4450 * Return: 1 if the process was woken up, 0 if it was already running.
 4451 *
 4452 * This function executes a full memory barrier before accessing the task state.
 4453 */
 4454int wake_up_process(struct task_struct *p)
 4455{
 4456	return try_to_wake_up(p, TASK_NORMAL, 0);
 4457}
 4458EXPORT_SYMBOL(wake_up_process);
 4459
 4460int wake_up_state(struct task_struct *p, unsigned int state)
 4461{
 4462	return try_to_wake_up(p, state, 0);
 4463}
 4464
 4465/*
 4466 * Perform scheduler related setup for a newly forked process p.
 4467 * p is forked by current.
 4468 *
 4469 * __sched_fork() is basic setup which is also used by sched_init() to
 4470 * initialize the boot CPU's idle task.
 4471 */
 4472static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 4473{
 4474	p->on_rq			= 0;
 4475
 4476	p->se.on_rq			= 0;
 4477	p->se.exec_start		= 0;
 4478	p->se.sum_exec_runtime		= 0;
 4479	p->se.prev_sum_exec_runtime	= 0;
 4480	p->se.nr_migrations		= 0;
 4481	p->se.vruntime			= 0;
 4482	p->se.vlag			= 0;
 4483	INIT_LIST_HEAD(&p->se.group_node);
 4484
 4485	/* A delayed task cannot be in clone(). */
 4486	SCHED_WARN_ON(p->se.sched_delayed);
 4487
 4488#ifdef CONFIG_FAIR_GROUP_SCHED
 4489	p->se.cfs_rq			= NULL;
 4490#endif
 4491
 4492#ifdef CONFIG_SCHEDSTATS
 4493	/* Even if schedstat is disabled, there should not be garbage */
 4494	memset(&p->stats, 0, sizeof(p->stats));
 4495#endif
 4496
 4497	init_dl_entity(&p->dl);
 4498
 4499	INIT_LIST_HEAD(&p->rt.run_list);
 4500	p->rt.timeout		= 0;
 4501	p->rt.time_slice	= sched_rr_timeslice;
 4502	p->rt.on_rq		= 0;
 4503	p->rt.on_list		= 0;
 4504
 4505#ifdef CONFIG_SCHED_CLASS_EXT
 4506	init_scx_entity(&p->scx);
 4507#endif
 4508
 4509#ifdef CONFIG_PREEMPT_NOTIFIERS
 4510	INIT_HLIST_HEAD(&p->preempt_notifiers);
 4511#endif
 4512
 4513#ifdef CONFIG_COMPACTION
 4514	p->capture_control = NULL;
 4515#endif
 4516	init_numa_balancing(clone_flags, p);
 4517#ifdef CONFIG_SMP
 4518	p->wake_entry.u_flags = CSD_TYPE_TTWU;
 4519	p->migration_pending = NULL;
 4520#endif
 4521	init_sched_mm_cid(p);
 4522}
 4523
 4524DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
 4525
 4526#ifdef CONFIG_NUMA_BALANCING
 4527
 4528int sysctl_numa_balancing_mode;
 4529
 4530static void __set_numabalancing_state(bool enabled)
 4531{
 4532	if (enabled)
 4533		static_branch_enable(&sched_numa_balancing);
 4534	else
 4535		static_branch_disable(&sched_numa_balancing);
 4536}
 4537
 4538void set_numabalancing_state(bool enabled)
 4539{
 4540	if (enabled)
 4541		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
 4542	else
 4543		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
 4544	__set_numabalancing_state(enabled);
 4545}
 4546
 4547#ifdef CONFIG_PROC_SYSCTL
 4548static void reset_memory_tiering(void)
 4549{
 4550	struct pglist_data *pgdat;
 4551
 4552	for_each_online_pgdat(pgdat) {
 4553		pgdat->nbp_threshold = 0;
 4554		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
 4555		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
 4556	}
 4557}
 4558
 4559static int sysctl_numa_balancing(const struct ctl_table *table, int write,
 4560			  void *buffer, size_t *lenp, loff_t *ppos)
 4561{
 4562	struct ctl_table t;
 4563	int err;
 4564	int state = sysctl_numa_balancing_mode;
 4565
 4566	if (write && !capable(CAP_SYS_ADMIN))
 4567		return -EPERM;
 4568
 4569	t = *table;
 4570	t.data = &state;
 4571	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4572	if (err < 0)
 4573		return err;
 4574	if (write) {
 4575		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 4576		    (state & NUMA_BALANCING_MEMORY_TIERING))
 4577			reset_memory_tiering();
 4578		sysctl_numa_balancing_mode = state;
 4579		__set_numabalancing_state(state);
 4580	}
 4581	return err;
 4582}
 4583#endif
 4584#endif
 4585
 4586#ifdef CONFIG_SCHEDSTATS
 4587
 4588DEFINE_STATIC_KEY_FALSE(sched_schedstats);
 4589
 4590static void set_schedstats(bool enabled)
 4591{
 4592	if (enabled)
 4593		static_branch_enable(&sched_schedstats);
 4594	else
 4595		static_branch_disable(&sched_schedstats);
 4596}
 4597
 4598void force_schedstat_enabled(void)
 4599{
 4600	if (!schedstat_enabled()) {
 4601		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
 4602		static_branch_enable(&sched_schedstats);
 4603	}
 4604}
 4605
 4606static int __init setup_schedstats(char *str)
 4607{
 4608	int ret = 0;
 4609	if (!str)
 4610		goto out;
 4611
 4612	if (!strcmp(str, "enable")) {
 4613		set_schedstats(true);
 4614		ret = 1;
 4615	} else if (!strcmp(str, "disable")) {
 4616		set_schedstats(false);
 4617		ret = 1;
 4618	}
 4619out:
 4620	if (!ret)
 4621		pr_warn("Unable to parse schedstats=\n");
 4622
 4623	return ret;
 4624}
 4625__setup("schedstats=", setup_schedstats);
 4626
 4627#ifdef CONFIG_PROC_SYSCTL
 4628static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
 4629		size_t *lenp, loff_t *ppos)
 4630{
 4631	struct ctl_table t;
 4632	int err;
 4633	int state = static_branch_likely(&sched_schedstats);
 4634
 4635	if (write && !capable(CAP_SYS_ADMIN))
 4636		return -EPERM;
 4637
 4638	t = *table;
 4639	t.data = &state;
 4640	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4641	if (err < 0)
 4642		return err;
 4643	if (write)
 4644		set_schedstats(state);
 4645	return err;
 4646}
 4647#endif /* CONFIG_PROC_SYSCTL */
 4648#endif /* CONFIG_SCHEDSTATS */
 4649
 4650#ifdef CONFIG_SYSCTL
 4651static struct ctl_table sched_core_sysctls[] = {
 4652#ifdef CONFIG_SCHEDSTATS
 4653	{
 4654		.procname       = "sched_schedstats",
 4655		.data           = NULL,
 4656		.maxlen         = sizeof(unsigned int),
 4657		.mode           = 0644,
 4658		.proc_handler   = sysctl_schedstats,
 4659		.extra1         = SYSCTL_ZERO,
 4660		.extra2         = SYSCTL_ONE,
 4661	},
 4662#endif /* CONFIG_SCHEDSTATS */
 4663#ifdef CONFIG_UCLAMP_TASK
 4664	{
 4665		.procname       = "sched_util_clamp_min",
 4666		.data           = &sysctl_sched_uclamp_util_min,
 4667		.maxlen         = sizeof(unsigned int),
 4668		.mode           = 0644,
 4669		.proc_handler   = sysctl_sched_uclamp_handler,
 4670	},
 4671	{
 4672		.procname       = "sched_util_clamp_max",
 4673		.data           = &sysctl_sched_uclamp_util_max,
 4674		.maxlen         = sizeof(unsigned int),
 4675		.mode           = 0644,
 4676		.proc_handler   = sysctl_sched_uclamp_handler,
 4677	},
 4678	{
 4679		.procname       = "sched_util_clamp_min_rt_default",
 4680		.data           = &sysctl_sched_uclamp_util_min_rt_default,
 4681		.maxlen         = sizeof(unsigned int),
 4682		.mode           = 0644,
 4683		.proc_handler   = sysctl_sched_uclamp_handler,
 4684	},
 4685#endif /* CONFIG_UCLAMP_TASK */
 4686#ifdef CONFIG_NUMA_BALANCING
 4687	{
 4688		.procname	= "numa_balancing",
 4689		.data		= NULL, /* filled in by handler */
 4690		.maxlen		= sizeof(unsigned int),
 4691		.mode		= 0644,
 4692		.proc_handler	= sysctl_numa_balancing,
 4693		.extra1		= SYSCTL_ZERO,
 4694		.extra2		= SYSCTL_FOUR,
 4695	},
 4696#endif /* CONFIG_NUMA_BALANCING */
 4697};
 4698static int __init sched_core_sysctl_init(void)
 4699{
 4700	register_sysctl_init("kernel", sched_core_sysctls);
 4701	return 0;
 4702}
 4703late_initcall(sched_core_sysctl_init);
 4704#endif /* CONFIG_SYSCTL */
 4705
 4706/*
 4707 * fork()/clone()-time setup:
 4708 */
 4709int sched_fork(unsigned long clone_flags, struct task_struct *p)
 4710{
 4711	__sched_fork(clone_flags, p);
 4712	/*
 4713	 * We mark the process as NEW here. This guarantees that
 4714	 * nobody will actually run it, and a signal or other external
 4715	 * event cannot wake it up and insert it on the runqueue either.
 4716	 */
 4717	p->__state = TASK_NEW;
 4718
 4719	/*
 4720	 * Make sure we do not leak PI boosting priority to the child.
 4721	 */
 4722	p->prio = current->normal_prio;
 4723
 4724	uclamp_fork(p);
 4725
 4726	/*
 4727	 * Revert to default priority/policy on fork if requested.
 4728	 */
 4729	if (unlikely(p->sched_reset_on_fork)) {
 4730		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 4731			p->policy = SCHED_NORMAL;
 4732			p->static_prio = NICE_TO_PRIO(0);
 4733			p->rt_priority = 0;
 4734		} else if (PRIO_TO_NICE(p->static_prio) < 0)
 4735			p->static_prio = NICE_TO_PRIO(0);
 4736
 4737		p->prio = p->normal_prio = p->static_prio;
 4738		set_load_weight(p, false);
 4739		p->se.custom_slice = 0;
 4740		p->se.slice = sysctl_sched_base_slice;
 4741
 4742		/*
 4743		 * We don't need the reset flag anymore after the fork. It has
 4744		 * fulfilled its duty:
 4745		 */
 4746		p->sched_reset_on_fork = 0;
 4747	}
 4748
 4749	if (dl_prio(p->prio))
 4750		return -EAGAIN;
 4751
 4752	scx_pre_fork(p);
 4753
 4754	if (rt_prio(p->prio)) {
 4755		p->sched_class = &rt_sched_class;
 4756#ifdef CONFIG_SCHED_CLASS_EXT
 4757	} else if (task_should_scx(p->policy)) {
 4758		p->sched_class = &ext_sched_class;
 4759#endif
 4760	} else {
 4761		p->sched_class = &fair_sched_class;
 4762	}
 4763
 4764	init_entity_runnable_average(&p->se);
 4765
 4766
 4767#ifdef CONFIG_SCHED_INFO
 4768	if (likely(sched_info_on()))
 4769		memset(&p->sched_info, 0, sizeof(p->sched_info));
 4770#endif
 4771#if defined(CONFIG_SMP)
 4772	p->on_cpu = 0;
 4773#endif
 4774	init_task_preempt_count(p);
 4775#ifdef CONFIG_SMP
 4776	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 4777	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 4778#endif
 4779	return 0;
 4780}
 4781
 4782int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
 4783{
 4784	unsigned long flags;
 4785
 4786	/*
 4787	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
 4788	 * required yet, but lockdep gets upset if rules are violated.
 4789	 */
 4790	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4791#ifdef CONFIG_CGROUP_SCHED
 4792	if (1) {
 4793		struct task_group *tg;
 4794		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
 4795				  struct task_group, css);
 4796		tg = autogroup_task_group(p, tg);
 4797		p->sched_task_group = tg;
 4798	}
 4799#endif
 4800	rseq_migrate(p);
 4801	/*
 4802	 * We're setting the CPU for the first time, we don't migrate,
 4803	 * so use __set_task_cpu().
 4804	 */
 4805	__set_task_cpu(p, smp_processor_id());
 4806	if (p->sched_class->task_fork)
 4807		p->sched_class->task_fork(p);
 4808	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4809
 4810	return scx_fork(p);
 4811}
 4812
 4813void sched_cancel_fork(struct task_struct *p)
 4814{
 4815	scx_cancel_fork(p);
 4816}
 4817
 4818void sched_post_fork(struct task_struct *p)
 4819{
 4820	uclamp_post_fork(p);
 4821	scx_post_fork(p);
 4822}
 4823
 4824unsigned long to_ratio(u64 period, u64 runtime)
 4825{
 4826	if (runtime == RUNTIME_INF)
 4827		return BW_UNIT;
 4828
 4829	/*
 4830	 * Doing this here saves a lot of checks in all
 4831	 * the calling paths, and returning zero seems
 4832	 * safe for them anyway.
 4833	 */
 4834	if (period == 0)
 4835		return 0;
 4836
 4837	return div64_u64(runtime << BW_SHIFT, period);
 4838}
 4839
 4840/*
 4841 * wake_up_new_task - wake up a newly created task for the first time.
 4842 *
 4843 * This function will do some initial scheduler statistics housekeeping
 4844 * that must be done for every newly created context, then puts the task
 4845 * on the runqueue and wakes it.
 4846 */
 4847void wake_up_new_task(struct task_struct *p)
 4848{
 4849	struct rq_flags rf;
 4850	struct rq *rq;
 4851	int wake_flags = WF_FORK;
 4852
 4853	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4854	WRITE_ONCE(p->__state, TASK_RUNNING);
 4855#ifdef CONFIG_SMP
 4856	/*
 4857	 * Fork balancing, do it here and not earlier because:
 4858	 *  - cpus_ptr can change in the fork path
 4859	 *  - any previously selected CPU might disappear through hotplug
 4860	 *
 4861	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
 4862	 * as we're not fully set-up yet.
 4863	 */
 4864	p->recent_used_cpu = task_cpu(p);
 4865	rseq_migrate(p);
 4866	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
 4867#endif
 4868	rq = __task_rq_lock(p, &rf);
 4869	update_rq_clock(rq);
 4870	post_init_entity_util_avg(p);
 4871
 4872	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
 4873	trace_sched_wakeup_new(p);
 4874	wakeup_preempt(rq, p, wake_flags);
 4875#ifdef CONFIG_SMP
 4876	if (p->sched_class->task_woken) {
 4877		/*
 4878		 * Nothing relies on rq->lock after this, so it's fine to
 4879		 * drop it.
 4880		 */
 4881		rq_unpin_lock(rq, &rf);
 4882		p->sched_class->task_woken(rq, p);
 4883		rq_repin_lock(rq, &rf);
 4884	}
 4885#endif
 4886	task_rq_unlock(rq, p, &rf);
 4887}
 4888
 4889#ifdef CONFIG_PREEMPT_NOTIFIERS
 4890
 4891static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
 4892
 4893void preempt_notifier_inc(void)
 4894{
 4895	static_branch_inc(&preempt_notifier_key);
 4896}
 4897EXPORT_SYMBOL_GPL(preempt_notifier_inc);
 4898
 4899void preempt_notifier_dec(void)
 4900{
 4901	static_branch_dec(&preempt_notifier_key);
 4902}
 4903EXPORT_SYMBOL_GPL(preempt_notifier_dec);
 4904
 4905/**
 4906 * preempt_notifier_register - tell me when current is being preempted & rescheduled
 4907 * @notifier: notifier struct to register
 4908 */
 4909void preempt_notifier_register(struct preempt_notifier *notifier)
 4910{
 4911	if (!static_branch_unlikely(&preempt_notifier_key))
 4912		WARN(1, "registering preempt_notifier while notifiers disabled\n");
 4913
 4914	hlist_add_head(&notifier->link, &current->preempt_notifiers);
 4915}
 4916EXPORT_SYMBOL_GPL(preempt_notifier_register);
 4917
 4918/**
 4919 * preempt_notifier_unregister - no longer interested in preemption notifications
 4920 * @notifier: notifier struct to unregister
 4921 *
 4922 * This is *not* safe to call from within a preemption notifier.
 4923 */
 4924void preempt_notifier_unregister(struct preempt_notifier *notifier)
 4925{
 4926	hlist_del(&notifier->link);
 4927}
 4928EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 4929
 4930static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4931{
 4932	struct preempt_notifier *notifier;
 4933
 4934	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4935		notifier->ops->sched_in(notifier, raw_smp_processor_id());
 4936}
 4937
 4938static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4939{
 4940	if (static_branch_unlikely(&preempt_notifier_key))
 4941		__fire_sched_in_preempt_notifiers(curr);
 4942}
 4943
 4944static void
 4945__fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4946				   struct task_struct *next)
 4947{
 4948	struct preempt_notifier *notifier;
 4949
 4950	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4951		notifier->ops->sched_out(notifier, next);
 4952}
 4953
 4954static __always_inline void
 4955fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4956				 struct task_struct *next)
 4957{
 4958	if (static_branch_unlikely(&preempt_notifier_key))
 4959		__fire_sched_out_preempt_notifiers(curr, next);
 4960}
 4961
 4962#else /* !CONFIG_PREEMPT_NOTIFIERS */
 4963
 4964static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4965{
 4966}
 4967
 4968static inline void
 4969fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4970				 struct task_struct *next)
 4971{
 4972}
 4973
 4974#endif /* CONFIG_PREEMPT_NOTIFIERS */
 4975
 4976static inline void prepare_task(struct task_struct *next)
 4977{
 4978#ifdef CONFIG_SMP
 4979	/*
 4980	 * Claim the task as running, we do this before switching to it
 4981	 * such that any running task will have this set.
 4982	 *
 4983	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
 4984	 * its ordering comment.
 4985	 */
 4986	WRITE_ONCE(next->on_cpu, 1);
 4987#endif
 4988}
 4989
 4990static inline void finish_task(struct task_struct *prev)
 4991{
 4992#ifdef CONFIG_SMP
 4993	/*
 4994	 * This must be the very last reference to @prev from this CPU. After
 4995	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
 4996	 * must ensure this doesn't happen until the switch is completely
 4997	 * finished.
 4998	 *
 4999	 * In particular, the load of prev->state in finish_task_switch() must
 5000	 * happen before this.
 5001	 *
 5002	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
 5003	 */
 5004	smp_store_release(&prev->on_cpu, 0);
 5005#endif
 5006}
 5007
 5008#ifdef CONFIG_SMP
 5009
 5010static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
 5011{
 5012	void (*func)(struct rq *rq);
 5013	struct balance_callback *next;
 5014
 5015	lockdep_assert_rq_held(rq);
 5016
 5017	while (head) {
 5018		func = (void (*)(struct rq *))head->func;
 5019		next = head->next;
 5020		head->next = NULL;
 5021		head = next;
 5022
 5023		func(rq);
 5024	}
 5025}
 5026
 5027static void balance_push(struct rq *rq);
 5028
 5029/*
 5030 * balance_push_callback is a right abuse of the callback interface and plays
 5031 * by significantly different rules.
 5032 *
 5033 * Where the normal balance_callback's purpose is to be ran in the same context
 5034 * that queued it (only later, when it's safe to drop rq->lock again),
 5035 * balance_push_callback is specifically targeted at __schedule().
 5036 *
 5037 * This abuse is tolerated because it places all the unlikely/odd cases behind
 5038 * a single test, namely: rq->balance_callback == NULL.
 5039 */
 5040struct balance_callback balance_push_callback = {
 5041	.next = NULL,
 5042	.func = balance_push,
 5043};
 5044
 5045static inline struct balance_callback *
 5046__splice_balance_callbacks(struct rq *rq, bool split)
 5047{
 5048	struct balance_callback *head = rq->balance_callback;
 5049
 5050	if (likely(!head))
 5051		return NULL;
 5052
 5053	lockdep_assert_rq_held(rq);
 5054	/*
 5055	 * Must not take balance_push_callback off the list when
 5056	 * splice_balance_callbacks() and balance_callbacks() are not
 5057	 * in the same rq->lock section.
 5058	 *
 5059	 * In that case it would be possible for __schedule() to interleave
 5060	 * and observe the list empty.
 5061	 */
 5062	if (split && head == &balance_push_callback)
 5063		head = NULL;
 5064	else
 5065		rq->balance_callback = NULL;
 5066
 5067	return head;
 5068}
 5069
 5070struct balance_callback *splice_balance_callbacks(struct rq *rq)
 5071{
 5072	return __splice_balance_callbacks(rq, true);
 5073}
 5074
 5075static void __balance_callbacks(struct rq *rq)
 5076{
 5077	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
 5078}
 5079
 5080void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5081{
 5082	unsigned long flags;
 5083
 5084	if (unlikely(head)) {
 5085		raw_spin_rq_lock_irqsave(rq, flags);
 5086		do_balance_callbacks(rq, head);
 5087		raw_spin_rq_unlock_irqrestore(rq, flags);
 5088	}
 5089}
 5090
 5091#else
 5092
 5093static inline void __balance_callbacks(struct rq *rq)
 5094{
 5095}
 5096
 5097#endif
 5098
 5099static inline void
 5100prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
 5101{
 5102	/*
 5103	 * Since the runqueue lock will be released by the next
 5104	 * task (which is an invalid locking op but in the case
 5105	 * of the scheduler it's an obvious special-case), so we
 5106	 * do an early lockdep release here:
 5107	 */
 5108	rq_unpin_lock(rq, rf);
 5109	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
 5110#ifdef CONFIG_DEBUG_SPINLOCK
 5111	/* this is a valid case when another task releases the spinlock */
 5112	rq_lockp(rq)->owner = next;
 5113#endif
 5114}
 5115
 5116static inline void finish_lock_switch(struct rq *rq)
 5117{
 5118	/*
 5119	 * If we are tracking spinlock dependencies then we have to
 5120	 * fix up the runqueue lock - which gets 'carried over' from
 5121	 * prev into current:
 5122	 */
 5123	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
 5124	__balance_callbacks(rq);
 5125	raw_spin_rq_unlock_irq(rq);
 5126}
 5127
 5128/*
 5129 * NOP if the arch has not defined these:
 5130 */
 5131
 5132#ifndef prepare_arch_switch
 5133# define prepare_arch_switch(next)	do { } while (0)
 5134#endif
 5135
 5136#ifndef finish_arch_post_lock_switch
 5137# define finish_arch_post_lock_switch()	do { } while (0)
 5138#endif
 5139
 5140static inline void kmap_local_sched_out(void)
 5141{
 5142#ifdef CONFIG_KMAP_LOCAL
 5143	if (unlikely(current->kmap_ctrl.idx))
 5144		__kmap_local_sched_out();
 5145#endif
 5146}
 5147
 5148static inline void kmap_local_sched_in(void)
 5149{
 5150#ifdef CONFIG_KMAP_LOCAL
 5151	if (unlikely(current->kmap_ctrl.idx))
 5152		__kmap_local_sched_in();
 5153#endif
 5154}
 5155
 5156/**
 5157 * prepare_task_switch - prepare to switch tasks
 5158 * @rq: the runqueue preparing to switch
 5159 * @prev: the current task that is being switched out
 5160 * @next: the task we are going to switch to.
 5161 *
 5162 * This is called with the rq lock held and interrupts off. It must
 5163 * be paired with a subsequent finish_task_switch after the context
 5164 * switch.
 5165 *
 5166 * prepare_task_switch sets up locking and calls architecture specific
 5167 * hooks.
 5168 */
 5169static inline void
 5170prepare_task_switch(struct rq *rq, struct task_struct *prev,
 5171		    struct task_struct *next)
 5172{
 5173	kcov_prepare_switch(prev);
 5174	sched_info_switch(rq, prev, next);
 5175	perf_event_task_sched_out(prev, next);
 5176	rseq_preempt(prev);
 5177	fire_sched_out_preempt_notifiers(prev, next);
 5178	kmap_local_sched_out();
 5179	prepare_task(next);
 5180	prepare_arch_switch(next);
 5181}
 5182
 5183/**
 5184 * finish_task_switch - clean up after a task-switch
 5185 * @prev: the thread we just switched away from.
 5186 *
 5187 * finish_task_switch must be called after the context switch, paired
 5188 * with a prepare_task_switch call before the context switch.
 5189 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 5190 * and do any other architecture-specific cleanup actions.
 5191 *
 5192 * Note that we may have delayed dropping an mm in context_switch(). If
 5193 * so, we finish that here outside of the runqueue lock. (Doing it
 5194 * with the lock held can cause deadlocks; see schedule() for
 5195 * details.)
 5196 *
 5197 * The context switch have flipped the stack from under us and restored the
 5198 * local variables which were saved when this task called schedule() in the
 5199 * past. 'prev == current' is still correct but we need to recalculate this_rq
 5200 * because prev may have moved to another CPU.
 5201 */
 5202static struct rq *finish_task_switch(struct task_struct *prev)
 5203	__releases(rq->lock)
 5204{
 5205	struct rq *rq = this_rq();
 5206	struct mm_struct *mm = rq->prev_mm;
 5207	unsigned int prev_state;
 5208
 5209	/*
 5210	 * The previous task will have left us with a preempt_count of 2
 5211	 * because it left us after:
 5212	 *
 5213	 *	schedule()
 5214	 *	  preempt_disable();			// 1
 5215	 *	  __schedule()
 5216	 *	    raw_spin_lock_irq(&rq->lock)	// 2
 5217	 *
 5218	 * Also, see FORK_PREEMPT_COUNT.
 5219	 */
 5220	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
 5221		      "corrupted preempt_count: %s/%d/0x%x\n",
 5222		      current->comm, current->pid, preempt_count()))
 5223		preempt_count_set(FORK_PREEMPT_COUNT);
 5224
 5225	rq->prev_mm = NULL;
 5226
 5227	/*
 5228	 * A task struct has one reference for the use as "current".
 5229	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 5230	 * schedule one last time. The schedule call will never return, and
 5231	 * the scheduled task must drop that reference.
 5232	 *
 5233	 * We must observe prev->state before clearing prev->on_cpu (in
 5234	 * finish_task), otherwise a concurrent wakeup can get prev
 5235	 * running on another CPU and we could rave with its RUNNING -> DEAD
 5236	 * transition, resulting in a double drop.
 5237	 */
 5238	prev_state = READ_ONCE(prev->__state);
 5239	vtime_task_switch(prev);
 5240	perf_event_task_sched_in(prev, current);
 5241	finish_task(prev);
 5242	tick_nohz_task_switch();
 5243	finish_lock_switch(rq);
 5244	finish_arch_post_lock_switch();
 5245	kcov_finish_switch(current);
 5246	/*
 5247	 * kmap_local_sched_out() is invoked with rq::lock held and
 5248	 * interrupts disabled. There is no requirement for that, but the
 5249	 * sched out code does not have an interrupt enabled section.
 5250	 * Restoring the maps on sched in does not require interrupts being
 5251	 * disabled either.
 5252	 */
 5253	kmap_local_sched_in();
 5254
 5255	fire_sched_in_preempt_notifiers(current);
 5256	/*
 5257	 * When switching through a kernel thread, the loop in
 5258	 * membarrier_{private,global}_expedited() may have observed that
 5259	 * kernel thread and not issued an IPI. It is therefore possible to
 5260	 * schedule between user->kernel->user threads without passing though
 5261	 * switch_mm(). Membarrier requires a barrier after storing to
 5262	 * rq->curr, before returning to userspace, so provide them here:
 5263	 *
 5264	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
 5265	 *   provided by mmdrop_lazy_tlb(),
 5266	 * - a sync_core for SYNC_CORE.
 5267	 */
 5268	if (mm) {
 5269		membarrier_mm_sync_core_before_usermode(mm);
 5270		mmdrop_lazy_tlb_sched(mm);
 5271	}
 5272
 5273	if (unlikely(prev_state == TASK_DEAD)) {
 5274		if (prev->sched_class->task_dead)
 5275			prev->sched_class->task_dead(prev);
 5276
 5277		/* Task is done with its stack. */
 5278		put_task_stack(prev);
 5279
 5280		put_task_struct_rcu_user(prev);
 5281	}
 5282
 5283	return rq;
 5284}
 5285
 5286/**
 5287 * schedule_tail - first thing a freshly forked thread must call.
 5288 * @prev: the thread we just switched away from.
 5289 */
 5290asmlinkage __visible void schedule_tail(struct task_struct *prev)
 5291	__releases(rq->lock)
 5292{
 5293	/*
 5294	 * New tasks start with FORK_PREEMPT_COUNT, see there and
 5295	 * finish_task_switch() for details.
 5296	 *
 5297	 * finish_task_switch() will drop rq->lock() and lower preempt_count
 5298	 * and the preempt_enable() will end up enabling preemption (on
 5299	 * PREEMPT_COUNT kernels).
 5300	 */
 5301
 5302	finish_task_switch(prev);
 5303	preempt_enable();
 5304
 5305	if (current->set_child_tid)
 5306		put_user(task_pid_vnr(current), current->set_child_tid);
 5307
 5308	calculate_sigpending();
 5309}
 5310
 5311/*
 5312 * context_switch - switch to the new MM and the new thread's register state.
 5313 */
 5314static __always_inline struct rq *
 5315context_switch(struct rq *rq, struct task_struct *prev,
 5316	       struct task_struct *next, struct rq_flags *rf)
 5317{
 5318	prepare_task_switch(rq, prev, next);
 5319
 5320	/*
 5321	 * For paravirt, this is coupled with an exit in switch_to to
 5322	 * combine the page table reload and the switch backend into
 5323	 * one hypercall.
 5324	 */
 5325	arch_start_context_switch(prev);
 5326
 5327	/*
 5328	 * kernel -> kernel   lazy + transfer active
 5329	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
 5330	 *
 5331	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
 5332	 *   user ->   user   switch
 5333	 *
 5334	 * switch_mm_cid() needs to be updated if the barriers provided
 5335	 * by context_switch() are modified.
 5336	 */
 5337	if (!next->mm) {                                // to kernel
 5338		enter_lazy_tlb(prev->active_mm, next);
 5339
 5340		next->active_mm = prev->active_mm;
 5341		if (prev->mm)                           // from user
 5342			mmgrab_lazy_tlb(prev->active_mm);
 5343		else
 5344			prev->active_mm = NULL;
 5345	} else {                                        // to user
 5346		membarrier_switch_mm(rq, prev->active_mm, next->mm);
 5347		/*
 5348		 * sys_membarrier() requires an smp_mb() between setting
 5349		 * rq->curr / membarrier_switch_mm() and returning to userspace.
 5350		 *
 5351		 * The below provides this either through switch_mm(), or in
 5352		 * case 'prev->active_mm == next->mm' through
 5353		 * finish_task_switch()'s mmdrop().
 5354		 */
 5355		switch_mm_irqs_off(prev->active_mm, next->mm, next);
 5356		lru_gen_use_mm(next->mm);
 5357
 5358		if (!prev->mm) {                        // from kernel
 5359			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
 5360			rq->prev_mm = prev->active_mm;
 5361			prev->active_mm = NULL;
 5362		}
 5363	}
 5364
 5365	/* switch_mm_cid() requires the memory barriers above. */
 5366	switch_mm_cid(rq, prev, next);
 5367
 5368	prepare_lock_switch(rq, next, rf);
 5369
 5370	/* Here we just switch the register state and the stack. */
 5371	switch_to(prev, next, prev);
 5372	barrier();
 5373
 5374	return finish_task_switch(prev);
 5375}
 5376
 5377/*
 5378 * nr_running and nr_context_switches:
 5379 *
 5380 * externally visible scheduler statistics: current number of runnable
 5381 * threads, total number of context switches performed since bootup.
 5382 */
 5383unsigned int nr_running(void)
 5384{
 5385	unsigned int i, sum = 0;
 5386
 5387	for_each_online_cpu(i)
 5388		sum += cpu_rq(i)->nr_running;
 5389
 5390	return sum;
 5391}
 5392
 5393/*
 5394 * Check if only the current task is running on the CPU.
 5395 *
 5396 * Caution: this function does not check that the caller has disabled
 5397 * preemption, thus the result might have a time-of-check-to-time-of-use
 5398 * race.  The caller is responsible to use it correctly, for example:
 5399 *
 5400 * - from a non-preemptible section (of course)
 5401 *
 5402 * - from a thread that is bound to a single CPU
 5403 *
 5404 * - in a loop with very short iterations (e.g. a polling loop)
 5405 */
 5406bool single_task_running(void)
 5407{
 5408	return raw_rq()->nr_running == 1;
 5409}
 5410EXPORT_SYMBOL(single_task_running);
 5411
 5412unsigned long long nr_context_switches_cpu(int cpu)
 5413{
 5414	return cpu_rq(cpu)->nr_switches;
 5415}
 5416
 5417unsigned long long nr_context_switches(void)
 5418{
 5419	int i;
 5420	unsigned long long sum = 0;
 5421
 5422	for_each_possible_cpu(i)
 5423		sum += cpu_rq(i)->nr_switches;
 5424
 5425	return sum;
 5426}
 5427
 5428/*
 5429 * Consumers of these two interfaces, like for example the cpuidle menu
 5430 * governor, are using nonsensical data. Preferring shallow idle state selection
 5431 * for a CPU that has IO-wait which might not even end up running the task when
 5432 * it does become runnable.
 5433 */
 5434
 5435unsigned int nr_iowait_cpu(int cpu)
 5436{
 5437	return atomic_read(&cpu_rq(cpu)->nr_iowait);
 5438}
 5439
 5440/*
 5441 * IO-wait accounting, and how it's mostly bollocks (on SMP).
 5442 *
 5443 * The idea behind IO-wait account is to account the idle time that we could
 5444 * have spend running if it were not for IO. That is, if we were to improve the
 5445 * storage performance, we'd have a proportional reduction in IO-wait time.
 5446 *
 5447 * This all works nicely on UP, where, when a task blocks on IO, we account
 5448 * idle time as IO-wait, because if the storage were faster, it could've been
 5449 * running and we'd not be idle.
 5450 *
 5451 * This has been extended to SMP, by doing the same for each CPU. This however
 5452 * is broken.
 5453 *
 5454 * Imagine for instance the case where two tasks block on one CPU, only the one
 5455 * CPU will have IO-wait accounted, while the other has regular idle. Even
 5456 * though, if the storage were faster, both could've ran at the same time,
 5457 * utilising both CPUs.
 5458 *
 5459 * This means, that when looking globally, the current IO-wait accounting on
 5460 * SMP is a lower bound, by reason of under accounting.
 5461 *
 5462 * Worse, since the numbers are provided per CPU, they are sometimes
 5463 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 5464 * associated with any one particular CPU, it can wake to another CPU than it
 5465 * blocked on. This means the per CPU IO-wait number is meaningless.
 5466 *
 5467 * Task CPU affinities can make all that even more 'interesting'.
 5468 */
 5469
 5470unsigned int nr_iowait(void)
 5471{
 5472	unsigned int i, sum = 0;
 5473
 5474	for_each_possible_cpu(i)
 5475		sum += nr_iowait_cpu(i);
 5476
 5477	return sum;
 5478}
 5479
 5480#ifdef CONFIG_SMP
 5481
 5482/*
 5483 * sched_exec - execve() is a valuable balancing opportunity, because at
 5484 * this point the task has the smallest effective memory and cache footprint.
 5485 */
 5486void sched_exec(void)
 5487{
 5488	struct task_struct *p = current;
 5489	struct migration_arg arg;
 5490	int dest_cpu;
 5491
 5492	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
 5493		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
 5494		if (dest_cpu == smp_processor_id())
 5495			return;
 5496
 5497		if (unlikely(!cpu_active(dest_cpu)))
 5498			return;
 5499
 5500		arg = (struct migration_arg){ p, dest_cpu };
 5501	}
 5502	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 5503}
 5504
 5505#endif
 5506
 5507DEFINE_PER_CPU(struct kernel_stat, kstat);
 5508DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
 5509
 5510EXPORT_PER_CPU_SYMBOL(kstat);
 5511EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
 5512
 5513/*
 5514 * The function fair_sched_class.update_curr accesses the struct curr
 5515 * and its field curr->exec_start; when called from task_sched_runtime(),
 5516 * we observe a high rate of cache misses in practice.
 5517 * Prefetching this data results in improved performance.
 5518 */
 5519static inline void prefetch_curr_exec_start(struct task_struct *p)
 5520{
 5521#ifdef CONFIG_FAIR_GROUP_SCHED
 5522	struct sched_entity *curr = p->se.cfs_rq->curr;
 5523#else
 5524	struct sched_entity *curr = task_rq(p)->cfs.curr;
 5525#endif
 5526	prefetch(curr);
 5527	prefetch(&curr->exec_start);
 5528}
 5529
 5530/*
 5531 * Return accounted runtime for the task.
 5532 * In case the task is currently running, return the runtime plus current's
 5533 * pending runtime that have not been accounted yet.
 5534 */
 5535unsigned long long task_sched_runtime(struct task_struct *p)
 5536{
 5537	struct rq_flags rf;
 5538	struct rq *rq;
 5539	u64 ns;
 5540
 5541#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 5542	/*
 5543	 * 64-bit doesn't need locks to atomically read a 64-bit value.
 5544	 * So we have a optimization chance when the task's delta_exec is 0.
 5545	 * Reading ->on_cpu is racy, but this is OK.
 5546	 *
 5547	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
 5548	 * If we race with it entering CPU, unaccounted time is 0. This is
 5549	 * indistinguishable from the read occurring a few cycles earlier.
 5550	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
 5551	 * been accounted, so we're correct here as well.
 5552	 */
 5553	if (!p->on_cpu || !task_on_rq_queued(p))
 5554		return p->se.sum_exec_runtime;
 5555#endif
 5556
 5557	rq = task_rq_lock(p, &rf);
 5558	/*
 5559	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
 5560	 * project cycles that may never be accounted to this
 5561	 * thread, breaking clock_gettime().
 5562	 */
 5563	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
 5564		prefetch_curr_exec_start(p);
 5565		update_rq_clock(rq);
 5566		p->sched_class->update_curr(rq);
 5567	}
 5568	ns = p->se.sum_exec_runtime;
 5569	task_rq_unlock(rq, p, &rf);
 5570
 5571	return ns;
 5572}
 5573
 5574#ifdef CONFIG_SCHED_DEBUG
 5575static u64 cpu_resched_latency(struct rq *rq)
 5576{
 5577	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
 5578	u64 resched_latency, now = rq_clock(rq);
 5579	static bool warned_once;
 5580
 5581	if (sysctl_resched_latency_warn_once && warned_once)
 5582		return 0;
 5583
 5584	if (!need_resched() || !latency_warn_ms)
 5585		return 0;
 5586
 5587	if (system_state == SYSTEM_BOOTING)
 5588		return 0;
 5589
 5590	if (!rq->last_seen_need_resched_ns) {
 5591		rq->last_seen_need_resched_ns = now;
 5592		rq->ticks_without_resched = 0;
 5593		return 0;
 5594	}
 5595
 5596	rq->ticks_without_resched++;
 5597	resched_latency = now - rq->last_seen_need_resched_ns;
 5598	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
 5599		return 0;
 5600
 5601	warned_once = true;
 5602
 5603	return resched_latency;
 5604}
 5605
 5606static int __init setup_resched_latency_warn_ms(char *str)
 5607{
 5608	long val;
 5609
 5610	if ((kstrtol(str, 0, &val))) {
 5611		pr_warn("Unable to set resched_latency_warn_ms\n");
 5612		return 1;
 5613	}
 5614
 5615	sysctl_resched_latency_warn_ms = val;
 5616	return 1;
 5617}
 5618__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
 5619#else
 5620static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
 5621#endif /* CONFIG_SCHED_DEBUG */
 5622
 5623/*
 5624 * This function gets called by the timer code, with HZ frequency.
 5625 * We call it with interrupts disabled.
 5626 */
 5627void sched_tick(void)
 5628{
 5629	int cpu = smp_processor_id();
 5630	struct rq *rq = cpu_rq(cpu);
 5631	/* accounting goes to the donor task */
 5632	struct task_struct *donor;
 5633	struct rq_flags rf;
 5634	unsigned long hw_pressure;
 5635	u64 resched_latency;
 5636
 5637	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5638		arch_scale_freq_tick();
 5639
 5640	sched_clock_tick();
 5641
 5642	rq_lock(rq, &rf);
 5643	donor = rq->donor;
 5644
 5645	psi_account_irqtime(rq, donor, NULL);
 5646
 5647	update_rq_clock(rq);
 5648	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
 5649	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
 5650
 5651	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
 5652		resched_curr(rq);
 5653
 5654	donor->sched_class->task_tick(rq, donor, 0);
 5655	if (sched_feat(LATENCY_WARN))
 5656		resched_latency = cpu_resched_latency(rq);
 5657	calc_global_load_tick(rq);
 5658	sched_core_tick(rq);
 5659	task_tick_mm_cid(rq, donor);
 5660	scx_tick(rq);
 5661
 5662	rq_unlock(rq, &rf);
 5663
 5664	if (sched_feat(LATENCY_WARN) && resched_latency)
 5665		resched_latency_warn(cpu, resched_latency);
 5666
 5667	perf_event_task_tick();
 5668
 5669	if (donor->flags & PF_WQ_WORKER)
 5670		wq_worker_tick(donor);
 5671
 5672#ifdef CONFIG_SMP
 5673	if (!scx_switched_all()) {
 5674		rq->idle_balance = idle_cpu(cpu);
 5675		sched_balance_trigger(rq);
 5676	}
 5677#endif
 5678}
 5679
 5680#ifdef CONFIG_NO_HZ_FULL
 5681
 5682struct tick_work {
 5683	int			cpu;
 5684	atomic_t		state;
 5685	struct delayed_work	work;
 5686};
 5687/* Values for ->state, see diagram below. */
 5688#define TICK_SCHED_REMOTE_OFFLINE	0
 5689#define TICK_SCHED_REMOTE_OFFLINING	1
 5690#define TICK_SCHED_REMOTE_RUNNING	2
 5691
 5692/*
 5693 * State diagram for ->state:
 5694 *
 5695 *
 5696 *          TICK_SCHED_REMOTE_OFFLINE
 5697 *                    |   ^
 5698 *                    |   |
 5699 *                    |   | sched_tick_remote()
 5700 *                    |   |
 5701 *                    |   |
 5702 *                    +--TICK_SCHED_REMOTE_OFFLINING
 5703 *                    |   ^
 5704 *                    |   |
 5705 * sched_tick_start() |   | sched_tick_stop()
 5706 *                    |   |
 5707 *                    V   |
 5708 *          TICK_SCHED_REMOTE_RUNNING
 5709 *
 5710 *
 5711 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 5712 * and sched_tick_start() are happy to leave the state in RUNNING.
 5713 */
 5714
 5715static struct tick_work __percpu *tick_work_cpu;
 5716
 5717static void sched_tick_remote(struct work_struct *work)
 5718{
 5719	struct delayed_work *dwork = to_delayed_work(work);
 5720	struct tick_work *twork = container_of(dwork, struct tick_work, work);
 5721	int cpu = twork->cpu;
 5722	struct rq *rq = cpu_rq(cpu);
 5723	int os;
 5724
 5725	/*
 5726	 * Handle the tick only if it appears the remote CPU is running in full
 5727	 * dynticks mode. The check is racy by nature, but missing a tick or
 5728	 * having one too much is no big deal because the scheduler tick updates
 5729	 * statistics and checks timeslices in a time-independent way, regardless
 5730	 * of when exactly it is running.
 5731	 */
 5732	if (tick_nohz_tick_stopped_cpu(cpu)) {
 5733		guard(rq_lock_irq)(rq);
 5734		struct task_struct *curr = rq->curr;
 5735
 5736		if (cpu_online(cpu)) {
 5737			/*
 5738			 * Since this is a remote tick for full dynticks mode,
 5739			 * we are always sure that there is no proxy (only a
 5740			 * single task is running).
 5741			 */
 5742			SCHED_WARN_ON(rq->curr != rq->donor);
 5743			update_rq_clock(rq);
 5744
 5745			if (!is_idle_task(curr)) {
 5746				/*
 5747				 * Make sure the next tick runs within a
 5748				 * reasonable amount of time.
 5749				 */
 5750				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
 5751				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
 5752			}
 5753			curr->sched_class->task_tick(rq, curr, 0);
 5754
 5755			calc_load_nohz_remote(rq);
 5756		}
 5757	}
 5758
 5759	/*
 5760	 * Run the remote tick once per second (1Hz). This arbitrary
 5761	 * frequency is large enough to avoid overload but short enough
 5762	 * to keep scheduler internal stats reasonably up to date.  But
 5763	 * first update state to reflect hotplug activity if required.
 5764	 */
 5765	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
 5766	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
 5767	if (os == TICK_SCHED_REMOTE_RUNNING)
 5768		queue_delayed_work(system_unbound_wq, dwork, HZ);
 5769}
 5770
 5771static void sched_tick_start(int cpu)
 5772{
 5773	int os;
 5774	struct tick_work *twork;
 5775
 5776	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5777		return;
 5778
 5779	WARN_ON_ONCE(!tick_work_cpu);
 5780
 5781	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5782	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
 5783	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
 5784	if (os == TICK_SCHED_REMOTE_OFFLINE) {
 5785		twork->cpu = cpu;
 5786		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
 5787		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 5788	}
 5789}
 5790
 5791#ifdef CONFIG_HOTPLUG_CPU
 5792static void sched_tick_stop(int cpu)
 5793{
 5794	struct tick_work *twork;
 5795	int os;
 5796
 5797	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5798		return;
 5799
 5800	WARN_ON_ONCE(!tick_work_cpu);
 5801
 5802	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5803	/* There cannot be competing actions, but don't rely on stop-machine. */
 5804	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
 5805	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
 5806	/* Don't cancel, as this would mess up the state machine. */
 5807}
 5808#endif /* CONFIG_HOTPLUG_CPU */
 5809
 5810int __init sched_tick_offload_init(void)
 5811{
 5812	tick_work_cpu = alloc_percpu(struct tick_work);
 5813	BUG_ON(!tick_work_cpu);
 5814	return 0;
 5815}
 5816
 5817#else /* !CONFIG_NO_HZ_FULL */
 5818static inline void sched_tick_start(int cpu) { }
 5819static inline void sched_tick_stop(int cpu) { }
 5820#endif
 5821
 5822#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
 5823				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
 5824/*
 5825 * If the value passed in is equal to the current preempt count
 5826 * then we just disabled preemption. Start timing the latency.
 5827 */
 5828static inline void preempt_latency_start(int val)
 5829{
 5830	if (preempt_count() == val) {
 5831		unsigned long ip = get_lock_parent_ip();
 5832#ifdef CONFIG_DEBUG_PREEMPT
 5833		current->preempt_disable_ip = ip;
 5834#endif
 5835		trace_preempt_off(CALLER_ADDR0, ip);
 5836	}
 5837}
 5838
 5839void preempt_count_add(int val)
 5840{
 5841#ifdef CONFIG_DEBUG_PREEMPT
 5842	/*
 5843	 * Underflow?
 5844	 */
 5845	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 5846		return;
 5847#endif
 5848	__preempt_count_add(val);
 5849#ifdef CONFIG_DEBUG_PREEMPT
 5850	/*
 5851	 * Spinlock count overflowing soon?
 5852	 */
 5853	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 5854				PREEMPT_MASK - 10);
 5855#endif
 5856	preempt_latency_start(val);
 5857}
 5858EXPORT_SYMBOL(preempt_count_add);
 5859NOKPROBE_SYMBOL(preempt_count_add);
 5860
 5861/*
 5862 * If the value passed in equals to the current preempt count
 5863 * then we just enabled preemption. Stop timing the latency.
 5864 */
 5865static inline void preempt_latency_stop(int val)
 5866{
 5867	if (preempt_count() == val)
 5868		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
 5869}
 5870
 5871void preempt_count_sub(int val)
 5872{
 5873#ifdef CONFIG_DEBUG_PREEMPT
 5874	/*
 5875	 * Underflow?
 5876	 */
 5877	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 5878		return;
 5879	/*
 5880	 * Is the spinlock portion underflowing?
 5881	 */
 5882	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 5883			!(preempt_count() & PREEMPT_MASK)))
 5884		return;
 5885#endif
 5886
 5887	preempt_latency_stop(val);
 5888	__preempt_count_sub(val);
 5889}
 5890EXPORT_SYMBOL(preempt_count_sub);
 5891NOKPROBE_SYMBOL(preempt_count_sub);
 5892
 5893#else
 5894static inline void preempt_latency_start(int val) { }
 5895static inline void preempt_latency_stop(int val) { }
 5896#endif
 5897
 5898static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
 5899{
 5900#ifdef CONFIG_DEBUG_PREEMPT
 5901	return p->preempt_disable_ip;
 5902#else
 5903	return 0;
 5904#endif
 5905}
 5906
 5907/*
 5908 * Print scheduling while atomic bug:
 5909 */
 5910static noinline void __schedule_bug(struct task_struct *prev)
 5911{
 5912	/* Save this before calling printk(), since that will clobber it */
 5913	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
 5914
 5915	if (oops_in_progress)
 5916		return;
 5917
 5918	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 5919		prev->comm, prev->pid, preempt_count());
 5920
 5921	debug_show_held_locks(prev);
 5922	print_modules();
 5923	if (irqs_disabled())
 5924		print_irqtrace_events(prev);
 5925	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 5926		pr_err("Preemption disabled at:");
 5927		print_ip_sym(KERN_ERR, preempt_disable_ip);
 5928	}
 5929	check_panic_on_warn("scheduling while atomic");
 5930
 5931	dump_stack();
 5932	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5933}
 5934
 5935/*
 5936 * Various schedule()-time debugging checks and statistics:
 5937 */
 5938static inline void schedule_debug(struct task_struct *prev, bool preempt)
 5939{
 5940#ifdef CONFIG_SCHED_STACK_END_CHECK
 5941	if (task_stack_end_corrupted(prev))
 5942		panic("corrupted stack end detected inside scheduler\n");
 5943
 5944	if (task_scs_end_corrupted(prev))
 5945		panic("corrupted shadow stack detected inside scheduler\n");
 5946#endif
 5947
 5948#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 5949	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
 5950		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
 5951			prev->comm, prev->pid, prev->non_block_count);
 5952		dump_stack();
 5953		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5954	}
 5955#endif
 5956
 5957	if (unlikely(in_atomic_preempt_off())) {
 5958		__schedule_bug(prev);
 5959		preempt_count_set(PREEMPT_DISABLED);
 5960	}
 5961	rcu_sleep_check();
 5962	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
 5963
 5964	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 5965
 5966	schedstat_inc(this_rq()->sched_count);
 5967}
 5968
 5969static void prev_balance(struct rq *rq, struct task_struct *prev,
 5970			 struct rq_flags *rf)
 5971{
 5972	const struct sched_class *start_class = prev->sched_class;
 5973	const struct sched_class *class;
 5974
 5975#ifdef CONFIG_SCHED_CLASS_EXT
 5976	/*
 5977	 * SCX requires a balance() call before every pick_task() including when
 5978	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
 5979	 * SCX instead. Also, set a flag to detect missing balance() call.
 5980	 */
 5981	if (scx_enabled()) {
 5982		rq->scx.flags |= SCX_RQ_BAL_PENDING;
 5983		if (sched_class_above(&ext_sched_class, start_class))
 5984			start_class = &ext_sched_class;
 5985	}
 5986#endif
 5987
 5988	/*
 5989	 * We must do the balancing pass before put_prev_task(), such
 5990	 * that when we release the rq->lock the task is in the same
 5991	 * state as before we took rq->lock.
 5992	 *
 5993	 * We can terminate the balance pass as soon as we know there is
 5994	 * a runnable task of @class priority or higher.
 5995	 */
 5996	for_active_class_range(class, start_class, &idle_sched_class) {
 5997		if (class->balance && class->balance(rq, prev, rf))
 5998			break;
 5999	}
 6000}
 6001
 6002/*
 6003 * Pick up the highest-prio task:
 6004 */
 6005static inline struct task_struct *
 6006__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6007{
 6008	const struct sched_class *class;
 6009	struct task_struct *p;
 6010
 6011	rq->dl_server = NULL;
 6012
 6013	if (scx_enabled())
 6014		goto restart;
 6015
 6016	/*
 6017	 * Optimization: we know that if all tasks are in the fair class we can
 6018	 * call that function directly, but only if the @prev task wasn't of a
 6019	 * higher scheduling class, because otherwise those lose the
 6020	 * opportunity to pull in more work from other CPUs.
 6021	 */
 6022	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
 6023		   rq->nr_running == rq->cfs.h_nr_running)) {
 6024
 6025		p = pick_next_task_fair(rq, prev, rf);
 6026		if (unlikely(p == RETRY_TASK))
 6027			goto restart;
 6028
 6029		/* Assume the next prioritized class is idle_sched_class */
 6030		if (!p) {
 6031			p = pick_task_idle(rq);
 6032			put_prev_set_next_task(rq, prev, p);
 6033		}
 6034
 6035		return p;
 6036	}
 6037
 6038restart:
 6039	prev_balance(rq, prev, rf);
 6040
 6041	for_each_active_class(class) {
 6042		if (class->pick_next_task) {
 6043			p = class->pick_next_task(rq, prev);
 6044			if (p)
 6045				return p;
 6046		} else {
 6047			p = class->pick_task(rq);
 6048			if (p) {
 6049				put_prev_set_next_task(rq, prev, p);
 6050				return p;
 6051			}
 6052		}
 6053	}
 6054
 6055	BUG(); /* The idle class should always have a runnable task. */
 6056}
 6057
 6058#ifdef CONFIG_SCHED_CORE
 6059static inline bool is_task_rq_idle(struct task_struct *t)
 6060{
 6061	return (task_rq(t)->idle == t);
 6062}
 6063
 6064static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
 6065{
 6066	return is_task_rq_idle(a) || (a->core_cookie == cookie);
 6067}
 6068
 6069static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
 6070{
 6071	if (is_task_rq_idle(a) || is_task_rq_idle(b))
 6072		return true;
 6073
 6074	return a->core_cookie == b->core_cookie;
 6075}
 6076
 6077static inline struct task_struct *pick_task(struct rq *rq)
 6078{
 6079	const struct sched_class *class;
 6080	struct task_struct *p;
 6081
 6082	rq->dl_server = NULL;
 6083
 6084	for_each_active_class(class) {
 6085		p = class->pick_task(rq);
 6086		if (p)
 6087			return p;
 6088	}
 6089
 6090	BUG(); /* The idle class should always have a runnable task. */
 6091}
 6092
 6093extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
 6094
 6095static void queue_core_balance(struct rq *rq);
 6096
 6097static struct task_struct *
 6098pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6099{
 6100	struct task_struct *next, *p, *max = NULL;
 6101	const struct cpumask *smt_mask;
 6102	bool fi_before = false;
 6103	bool core_clock_updated = (rq == rq->core);
 6104	unsigned long cookie;
 6105	int i, cpu, occ = 0;
 6106	struct rq *rq_i;
 6107	bool need_sync;
 6108
 6109	if (!sched_core_enabled(rq))
 6110		return __pick_next_task(rq, prev, rf);
 6111
 6112	cpu = cpu_of(rq);
 6113
 6114	/* Stopper task is switching into idle, no need core-wide selection. */
 6115	if (cpu_is_offline(cpu)) {
 6116		/*
 6117		 * Reset core_pick so that we don't enter the fastpath when
 6118		 * coming online. core_pick would already be migrated to
 6119		 * another cpu during offline.
 6120		 */
 6121		rq->core_pick = NULL;
 6122		rq->core_dl_server = NULL;
 6123		return __pick_next_task(rq, prev, rf);
 6124	}
 6125
 6126	/*
 6127	 * If there were no {en,de}queues since we picked (IOW, the task
 6128	 * pointers are all still valid), and we haven't scheduled the last
 6129	 * pick yet, do so now.
 6130	 *
 6131	 * rq->core_pick can be NULL if no selection was made for a CPU because
 6132	 * it was either offline or went offline during a sibling's core-wide
 6133	 * selection. In this case, do a core-wide selection.
 6134	 */
 6135	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
 6136	    rq->core->core_pick_seq != rq->core_sched_seq &&
 6137	    rq->core_pick) {
 6138		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
 6139
 6140		next = rq->core_pick;
 6141		rq->dl_server = rq->core_dl_server;
 6142		rq->core_pick = NULL;
 6143		rq->core_dl_server = NULL;
 6144		goto out_set_next;
 6145	}
 6146
 6147	prev_balance(rq, prev, rf);
 6148
 6149	smt_mask = cpu_smt_mask(cpu);
 6150	need_sync = !!rq->core->core_cookie;
 6151
 6152	/* reset state */
 6153	rq->core->core_cookie = 0UL;
 6154	if (rq->core->core_forceidle_count) {
 6155		if (!core_clock_updated) {
 6156			update_rq_clock(rq->core);
 6157			core_clock_updated = true;
 6158		}
 6159		sched_core_account_forceidle(rq);
 6160		/* reset after accounting force idle */
 6161		rq->core->core_forceidle_start = 0;
 6162		rq->core->core_forceidle_count = 0;
 6163		rq->core->core_forceidle_occupation = 0;
 6164		need_sync = true;
 6165		fi_before = true;
 6166	}
 6167
 6168	/*
 6169	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
 6170	 *
 6171	 * @task_seq guards the task state ({en,de}queues)
 6172	 * @pick_seq is the @task_seq we did a selection on
 6173	 * @sched_seq is the @pick_seq we scheduled
 6174	 *
 6175	 * However, preemptions can cause multiple picks on the same task set.
 6176	 * 'Fix' this by also increasing @task_seq for every pick.
 6177	 */
 6178	rq->core->core_task_seq++;
 6179
 6180	/*
 6181	 * Optimize for common case where this CPU has no cookies
 6182	 * and there are no cookied tasks running on siblings.
 6183	 */
 6184	if (!need_sync) {
 6185		next = pick_task(rq);
 6186		if (!next->core_cookie) {
 6187			rq->core_pick = NULL;
 6188			rq->core_dl_server = NULL;
 6189			/*
 6190			 * For robustness, update the min_vruntime_fi for
 6191			 * unconstrained picks as well.
 6192			 */
 6193			WARN_ON_ONCE(fi_before);
 6194			task_vruntime_update(rq, next, false);
 6195			goto out_set_next;
 6196		}
 6197	}
 6198
 6199	/*
 6200	 * For each thread: do the regular task pick and find the max prio task
 6201	 * amongst them.
 6202	 *
 6203	 * Tie-break prio towards the current CPU
 6204	 */
 6205	for_each_cpu_wrap(i, smt_mask, cpu) {
 6206		rq_i = cpu_rq(i);
 6207
 6208		/*
 6209		 * Current cpu always has its clock updated on entrance to
 6210		 * pick_next_task(). If the current cpu is not the core,
 6211		 * the core may also have been updated above.
 6212		 */
 6213		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
 6214			update_rq_clock(rq_i);
 6215
 6216		rq_i->core_pick = p = pick_task(rq_i);
 6217		rq_i->core_dl_server = rq_i->dl_server;
 6218
 6219		if (!max || prio_less(max, p, fi_before))
 6220			max = p;
 6221	}
 6222
 6223	cookie = rq->core->core_cookie = max->core_cookie;
 6224
 6225	/*
 6226	 * For each thread: try and find a runnable task that matches @max or
 6227	 * force idle.
 6228	 */
 6229	for_each_cpu(i, smt_mask) {
 6230		rq_i = cpu_rq(i);
 6231		p = rq_i->core_pick;
 6232
 6233		if (!cookie_equals(p, cookie)) {
 6234			p = NULL;
 6235			if (cookie)
 6236				p = sched_core_find(rq_i, cookie);
 6237			if (!p)
 6238				p = idle_sched_class.pick_task(rq_i);
 6239		}
 6240
 6241		rq_i->core_pick = p;
 6242		rq_i->core_dl_server = NULL;
 6243
 6244		if (p == rq_i->idle) {
 6245			if (rq_i->nr_running) {
 6246				rq->core->core_forceidle_count++;
 6247				if (!fi_before)
 6248					rq->core->core_forceidle_seq++;
 6249			}
 6250		} else {
 6251			occ++;
 6252		}
 6253	}
 6254
 6255	if (schedstat_enabled() && rq->core->core_forceidle_count) {
 6256		rq->core->core_forceidle_start = rq_clock(rq->core);
 6257		rq->core->core_forceidle_occupation = occ;
 6258	}
 6259
 6260	rq->core->core_pick_seq = rq->core->core_task_seq;
 6261	next = rq->core_pick;
 6262	rq->core_sched_seq = rq->core->core_pick_seq;
 6263
 6264	/* Something should have been selected for current CPU */
 6265	WARN_ON_ONCE(!next);
 6266
 6267	/*
 6268	 * Reschedule siblings
 6269	 *
 6270	 * NOTE: L1TF -- at this point we're no longer running the old task and
 6271	 * sending an IPI (below) ensures the sibling will no longer be running
 6272	 * their task. This ensures there is no inter-sibling overlap between
 6273	 * non-matching user state.
 6274	 */
 6275	for_each_cpu(i, smt_mask) {
 6276		rq_i = cpu_rq(i);
 6277
 6278		/*
 6279		 * An online sibling might have gone offline before a task
 6280		 * could be picked for it, or it might be offline but later
 6281		 * happen to come online, but its too late and nothing was
 6282		 * picked for it.  That's Ok - it will pick tasks for itself,
 6283		 * so ignore it.
 6284		 */
 6285		if (!rq_i->core_pick)
 6286			continue;
 6287
 6288		/*
 6289		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
 6290		 * fi_before     fi      update?
 6291		 *  0            0       1
 6292		 *  0            1       1
 6293		 *  1            0       1
 6294		 *  1            1       0
 6295		 */
 6296		if (!(fi_before && rq->core->core_forceidle_count))
 6297			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
 6298
 6299		rq_i->core_pick->core_occupation = occ;
 6300
 6301		if (i == cpu) {
 6302			rq_i->core_pick = NULL;
 6303			rq_i->core_dl_server = NULL;
 6304			continue;
 6305		}
 6306
 6307		/* Did we break L1TF mitigation requirements? */
 6308		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
 6309
 6310		if (rq_i->curr == rq_i->core_pick) {
 6311			rq_i->core_pick = NULL;
 6312			rq_i->core_dl_server = NULL;
 6313			continue;
 6314		}
 6315
 6316		resched_curr(rq_i);
 6317	}
 6318
 6319out_set_next:
 6320	put_prev_set_next_task(rq, prev, next);
 6321	if (rq->core->core_forceidle_count && next == rq->idle)
 6322		queue_core_balance(rq);
 6323
 6324	return next;
 6325}
 6326
 6327static bool try_steal_cookie(int this, int that)
 6328{
 6329	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
 6330	struct task_struct *p;
 6331	unsigned long cookie;
 6332	bool success = false;
 6333
 6334	guard(irq)();
 6335	guard(double_rq_lock)(dst, src);
 6336
 6337	cookie = dst->core->core_cookie;
 6338	if (!cookie)
 6339		return false;
 6340
 6341	if (dst->curr != dst->idle)
 6342		return false;
 6343
 6344	p = sched_core_find(src, cookie);
 6345	if (!p)
 6346		return false;
 6347
 6348	do {
 6349		if (p == src->core_pick || p == src->curr)
 6350			goto next;
 6351
 6352		if (!is_cpu_allowed(p, this))
 6353			goto next;
 6354
 6355		if (p->core_occupation > dst->idle->core_occupation)
 6356			goto next;
 6357		/*
 6358		 * sched_core_find() and sched_core_next() will ensure
 6359		 * that task @p is not throttled now, we also need to
 6360		 * check whether the runqueue of the destination CPU is
 6361		 * being throttled.
 6362		 */
 6363		if (sched_task_is_throttled(p, this))
 6364			goto next;
 6365
 6366		move_queued_task_locked(src, dst, p);
 6367		resched_curr(dst);
 6368
 6369		success = true;
 6370		break;
 6371
 6372next:
 6373		p = sched_core_next(p, cookie);
 6374	} while (p);
 6375
 6376	return success;
 6377}
 6378
 6379static bool steal_cookie_task(int cpu, struct sched_domain *sd)
 6380{
 6381	int i;
 6382
 6383	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
 6384		if (i == cpu)
 6385			continue;
 6386
 6387		if (need_resched())
 6388			break;
 6389
 6390		if (try_steal_cookie(cpu, i))
 6391			return true;
 6392	}
 6393
 6394	return false;
 6395}
 6396
 6397static void sched_core_balance(struct rq *rq)
 6398{
 6399	struct sched_domain *sd;
 6400	int cpu = cpu_of(rq);
 6401
 6402	guard(preempt)();
 6403	guard(rcu)();
 6404
 6405	raw_spin_rq_unlock_irq(rq);
 6406	for_each_domain(cpu, sd) {
 6407		if (need_resched())
 6408			break;
 6409
 6410		if (steal_cookie_task(cpu, sd))
 6411			break;
 6412	}
 6413	raw_spin_rq_lock_irq(rq);
 6414}
 6415
 6416static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
 6417
 6418static void queue_core_balance(struct rq *rq)
 6419{
 6420	if (!sched_core_enabled(rq))
 6421		return;
 6422
 6423	if (!rq->core->core_cookie)
 6424		return;
 6425
 6426	if (!rq->nr_running) /* not forced idle */
 6427		return;
 6428
 6429	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
 6430}
 6431
 6432DEFINE_LOCK_GUARD_1(core_lock, int,
 6433		    sched_core_lock(*_T->lock, &_T->flags),
 6434		    sched_core_unlock(*_T->lock, &_T->flags),
 6435		    unsigned long flags)
 6436
 6437static void sched_core_cpu_starting(unsigned int cpu)
 6438{
 6439	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6440	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6441	int t;
 6442
 6443	guard(core_lock)(&cpu);
 6444
 6445	WARN_ON_ONCE(rq->core != rq);
 6446
 6447	/* if we're the first, we'll be our own leader */
 6448	if (cpumask_weight(smt_mask) == 1)
 6449		return;
 6450
 6451	/* find the leader */
 6452	for_each_cpu(t, smt_mask) {
 6453		if (t == cpu)
 6454			continue;
 6455		rq = cpu_rq(t);
 6456		if (rq->core == rq) {
 6457			core_rq = rq;
 6458			break;
 6459		}
 6460	}
 6461
 6462	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
 6463		return;
 6464
 6465	/* install and validate core_rq */
 6466	for_each_cpu(t, smt_mask) {
 6467		rq = cpu_rq(t);
 6468
 6469		if (t == cpu)
 6470			rq->core = core_rq;
 6471
 6472		WARN_ON_ONCE(rq->core != core_rq);
 6473	}
 6474}
 6475
 6476static void sched_core_cpu_deactivate(unsigned int cpu)
 6477{
 6478	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6479	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6480	int t;
 6481
 6482	guard(core_lock)(&cpu);
 6483
 6484	/* if we're the last man standing, nothing to do */
 6485	if (cpumask_weight(smt_mask) == 1) {
 6486		WARN_ON_ONCE(rq->core != rq);
 6487		return;
 6488	}
 6489
 6490	/* if we're not the leader, nothing to do */
 6491	if (rq->core != rq)
 6492		return;
 6493
 6494	/* find a new leader */
 6495	for_each_cpu(t, smt_mask) {
 6496		if (t == cpu)
 6497			continue;
 6498		core_rq = cpu_rq(t);
 6499		break;
 6500	}
 6501
 6502	if (WARN_ON_ONCE(!core_rq)) /* impossible */
 6503		return;
 6504
 6505	/* copy the shared state to the new leader */
 6506	core_rq->core_task_seq             = rq->core_task_seq;
 6507	core_rq->core_pick_seq             = rq->core_pick_seq;
 6508	core_rq->core_cookie               = rq->core_cookie;
 6509	core_rq->core_forceidle_count      = rq->core_forceidle_count;
 6510	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
 6511	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
 6512
 6513	/*
 6514	 * Accounting edge for forced idle is handled in pick_next_task().
 6515	 * Don't need another one here, since the hotplug thread shouldn't
 6516	 * have a cookie.
 6517	 */
 6518	core_rq->core_forceidle_start = 0;
 6519
 6520	/* install new leader */
 6521	for_each_cpu(t, smt_mask) {
 6522		rq = cpu_rq(t);
 6523		rq->core = core_rq;
 6524	}
 6525}
 6526
 6527static inline void sched_core_cpu_dying(unsigned int cpu)
 6528{
 6529	struct rq *rq = cpu_rq(cpu);
 6530
 6531	if (rq->core != rq)
 6532		rq->core = rq;
 6533}
 6534
 6535#else /* !CONFIG_SCHED_CORE */
 6536
 6537static inline void sched_core_cpu_starting(unsigned int cpu) {}
 6538static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
 6539static inline void sched_core_cpu_dying(unsigned int cpu) {}
 6540
 6541static struct task_struct *
 6542pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6543{
 6544	return __pick_next_task(rq, prev, rf);
 6545}
 6546
 6547#endif /* CONFIG_SCHED_CORE */
 6548
 6549/*
 6550 * Constants for the sched_mode argument of __schedule().
 6551 *
 6552 * The mode argument allows RT enabled kernels to differentiate a
 6553 * preemption from blocking on an 'sleeping' spin/rwlock.
 6554 */
 6555#define SM_IDLE			(-1)
 6556#define SM_NONE			0
 6557#define SM_PREEMPT		1
 6558#define SM_RTLOCK_WAIT		2
 6559
 6560/*
 6561 * Helper function for __schedule()
 6562 *
 6563 * If a task does not have signals pending, deactivate it
 6564 * Otherwise marks the task's __state as RUNNING
 6565 */
 6566static bool try_to_block_task(struct rq *rq, struct task_struct *p,
 6567			      unsigned long task_state)
 6568{
 6569	int flags = DEQUEUE_NOCLOCK;
 6570
 6571	if (signal_pending_state(task_state, p)) {
 6572		WRITE_ONCE(p->__state, TASK_RUNNING);
 6573		return false;
 6574	}
 6575
 6576	p->sched_contributes_to_load =
 6577		(task_state & TASK_UNINTERRUPTIBLE) &&
 6578		!(task_state & TASK_NOLOAD) &&
 6579		!(task_state & TASK_FROZEN);
 6580
 6581	if (unlikely(is_special_task_state(task_state)))
 6582		flags |= DEQUEUE_SPECIAL;
 6583
 6584	/*
 6585	 * __schedule()			ttwu()
 6586	 *   prev_state = prev->state;    if (p->on_rq && ...)
 6587	 *   if (prev_state)		    goto out;
 6588	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
 6589	 *				  p->state = TASK_WAKING
 6590	 *
 6591	 * Where __schedule() and ttwu() have matching control dependencies.
 6592	 *
 6593	 * After this, schedule() must not care about p->state any more.
 6594	 */
 6595	block_task(rq, p, flags);
 6596	return true;
 6597}
 6598
 6599/*
 6600 * __schedule() is the main scheduler function.
 6601 *
 6602 * The main means of driving the scheduler and thus entering this function are:
 6603 *
 6604 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 6605 *
 6606 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 6607 *      paths. For example, see arch/x86/entry_64.S.
 6608 *
 6609 *      To drive preemption between tasks, the scheduler sets the flag in timer
 6610 *      interrupt handler sched_tick().
 6611 *
 6612 *   3. Wakeups don't really cause entry into schedule(). They add a
 6613 *      task to the run-queue and that's it.
 6614 *
 6615 *      Now, if the new task added to the run-queue preempts the current
 6616 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 6617 *      called on the nearest possible occasion:
 6618 *
 6619 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
 6620 *
 6621 *         - in syscall or exception context, at the next outmost
 6622 *           preempt_enable(). (this might be as soon as the wake_up()'s
 6623 *           spin_unlock()!)
 6624 *
 6625 *         - in IRQ context, return from interrupt-handler to
 6626 *           preemptible context
 6627 *
 6628 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
 6629 *         then at the next:
 6630 *
 6631 *          - cond_resched() call
 6632 *          - explicit schedule() call
 6633 *          - return from syscall or exception to user-space
 6634 *          - return from interrupt-handler to user-space
 6635 *
 6636 * WARNING: must be called with preemption disabled!
 6637 */
 6638static void __sched notrace __schedule(int sched_mode)
 6639{
 6640	struct task_struct *prev, *next;
 6641	/*
 6642	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
 6643	 * as a preemption by schedule_debug() and RCU.
 6644	 */
 6645	bool preempt = sched_mode > SM_NONE;
 6646	unsigned long *switch_count;
 6647	unsigned long prev_state;
 6648	struct rq_flags rf;
 6649	struct rq *rq;
 6650	int cpu;
 6651
 6652	cpu = smp_processor_id();
 6653	rq = cpu_rq(cpu);
 6654	prev = rq->curr;
 6655
 6656	schedule_debug(prev, preempt);
 6657
 6658	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
 6659		hrtick_clear(rq);
 6660
 6661	local_irq_disable();
 6662	rcu_note_context_switch(preempt);
 6663
 6664	/*
 6665	 * Make sure that signal_pending_state()->signal_pending() below
 6666	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
 6667	 * done by the caller to avoid the race with signal_wake_up():
 6668	 *
 6669	 * __set_current_state(@state)		signal_wake_up()
 6670	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
 6671	 *					  wake_up_state(p, state)
 6672	 *   LOCK rq->lock			    LOCK p->pi_state
 6673	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
 6674	 *     if (signal_pending_state())	    if (p->state & @state)
 6675	 *
 6676	 * Also, the membarrier system call requires a full memory barrier
 6677	 * after coming from user-space, before storing to rq->curr; this
 6678	 * barrier matches a full barrier in the proximity of the membarrier
 6679	 * system call exit.
 6680	 */
 6681	rq_lock(rq, &rf);
 6682	smp_mb__after_spinlock();
 6683
 6684	/* Promote REQ to ACT */
 6685	rq->clock_update_flags <<= 1;
 6686	update_rq_clock(rq);
 6687	rq->clock_update_flags = RQCF_UPDATED;
 6688
 6689	switch_count = &prev->nivcsw;
 6690
 6691	/* Task state changes only considers SM_PREEMPT as preemption */
 6692	preempt = sched_mode == SM_PREEMPT;
 6693
 6694	/*
 6695	 * We must load prev->state once (task_struct::state is volatile), such
 6696	 * that we form a control dependency vs deactivate_task() below.
 6697	 */
 6698	prev_state = READ_ONCE(prev->__state);
 6699	if (sched_mode == SM_IDLE) {
 6700		/* SCX must consult the BPF scheduler to tell if rq is empty */
 6701		if (!rq->nr_running && !scx_enabled()) {
 6702			next = prev;
 6703			goto picked;
 6704		}
 6705	} else if (!preempt && prev_state) {
 6706		try_to_block_task(rq, prev, prev_state);
 6707		switch_count = &prev->nvcsw;
 6708	}
 6709
 6710	next = pick_next_task(rq, prev, &rf);
 6711	rq_set_donor(rq, next);
 6712picked:
 6713	clear_tsk_need_resched(prev);
 6714	clear_preempt_need_resched();
 6715#ifdef CONFIG_SCHED_DEBUG
 6716	rq->last_seen_need_resched_ns = 0;
 6717#endif
 6718
 6719	if (likely(prev != next)) {
 6720		rq->nr_switches++;
 6721		/*
 6722		 * RCU users of rcu_dereference(rq->curr) may not see
 6723		 * changes to task_struct made by pick_next_task().
 6724		 */
 6725		RCU_INIT_POINTER(rq->curr, next);
 6726		/*
 6727		 * The membarrier system call requires each architecture
 6728		 * to have a full memory barrier after updating
 6729		 * rq->curr, before returning to user-space.
 6730		 *
 6731		 * Here are the schemes providing that barrier on the
 6732		 * various architectures:
 6733		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
 6734		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
 6735		 *   on PowerPC and on RISC-V.
 6736		 * - finish_lock_switch() for weakly-ordered
 6737		 *   architectures where spin_unlock is a full barrier,
 6738		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
 6739		 *   is a RELEASE barrier),
 6740		 *
 6741		 * The barrier matches a full barrier in the proximity of
 6742		 * the membarrier system call entry.
 6743		 *
 6744		 * On RISC-V, this barrier pairing is also needed for the
 6745		 * SYNC_CORE command when switching between processes, cf.
 6746		 * the inline comments in membarrier_arch_switch_mm().
 6747		 */
 6748		++*switch_count;
 6749
 6750		migrate_disable_switch(rq, prev);
 6751		psi_account_irqtime(rq, prev, next);
 6752		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
 6753					     prev->se.sched_delayed);
 6754
 6755		trace_sched_switch(preempt, prev, next, prev_state);
 6756
 6757		/* Also unlocks the rq: */
 6758		rq = context_switch(rq, prev, next, &rf);
 6759	} else {
 6760		rq_unpin_lock(rq, &rf);
 6761		__balance_callbacks(rq);
 6762		raw_spin_rq_unlock_irq(rq);
 6763	}
 6764}
 6765
 6766void __noreturn do_task_dead(void)
 6767{
 6768	/* Causes final put_task_struct in finish_task_switch(): */
 6769	set_special_state(TASK_DEAD);
 6770
 6771	/* Tell freezer to ignore us: */
 6772	current->flags |= PF_NOFREEZE;
 6773
 6774	__schedule(SM_NONE);
 6775	BUG();
 6776
 6777	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
 6778	for (;;)
 6779		cpu_relax();
 6780}
 6781
 6782static inline void sched_submit_work(struct task_struct *tsk)
 6783{
 6784	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
 6785	unsigned int task_flags;
 6786
 6787	/*
 6788	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
 6789	 * will use a blocking primitive -- which would lead to recursion.
 6790	 */
 6791	lock_map_acquire_try(&sched_map);
 6792
 6793	task_flags = tsk->flags;
 6794	/*
 6795	 * If a worker goes to sleep, notify and ask workqueue whether it
 6796	 * wants to wake up a task to maintain concurrency.
 6797	 */
 6798	if (task_flags & PF_WQ_WORKER)
 6799		wq_worker_sleeping(tsk);
 6800	else if (task_flags & PF_IO_WORKER)
 6801		io_wq_worker_sleeping(tsk);
 6802
 6803	/*
 6804	 * spinlock and rwlock must not flush block requests.  This will
 6805	 * deadlock if the callback attempts to acquire a lock which is
 6806	 * already acquired.
 6807	 */
 6808	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
 6809
 6810	/*
 6811	 * If we are going to sleep and we have plugged IO queued,
 6812	 * make sure to submit it to avoid deadlocks.
 6813	 */
 6814	blk_flush_plug(tsk->plug, true);
 6815
 6816	lock_map_release(&sched_map);
 6817}
 6818
 6819static void sched_update_worker(struct task_struct *tsk)
 6820{
 6821	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
 6822		if (tsk->flags & PF_BLOCK_TS)
 6823			blk_plug_invalidate_ts(tsk);
 6824		if (tsk->flags & PF_WQ_WORKER)
 6825			wq_worker_running(tsk);
 6826		else if (tsk->flags & PF_IO_WORKER)
 6827			io_wq_worker_running(tsk);
 6828	}
 6829}
 6830
 6831static __always_inline void __schedule_loop(int sched_mode)
 6832{
 6833	do {
 6834		preempt_disable();
 6835		__schedule(sched_mode);
 6836		sched_preempt_enable_no_resched();
 6837	} while (need_resched());
 6838}
 6839
 6840asmlinkage __visible void __sched schedule(void)
 6841{
 6842	struct task_struct *tsk = current;
 6843
 6844#ifdef CONFIG_RT_MUTEXES
 6845	lockdep_assert(!tsk->sched_rt_mutex);
 6846#endif
 6847
 6848	if (!task_is_running(tsk))
 6849		sched_submit_work(tsk);
 6850	__schedule_loop(SM_NONE);
 6851	sched_update_worker(tsk);
 6852}
 6853EXPORT_SYMBOL(schedule);
 6854
 6855/*
 6856 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 6857 * state (have scheduled out non-voluntarily) by making sure that all
 6858 * tasks have either left the run queue or have gone into user space.
 6859 * As idle tasks do not do either, they must not ever be preempted
 6860 * (schedule out non-voluntarily).
 6861 *
 6862 * schedule_idle() is similar to schedule_preempt_disable() except that it
 6863 * never enables preemption because it does not call sched_submit_work().
 6864 */
 6865void __sched schedule_idle(void)
 6866{
 6867	/*
 6868	 * As this skips calling sched_submit_work(), which the idle task does
 6869	 * regardless because that function is a NOP when the task is in a
 6870	 * TASK_RUNNING state, make sure this isn't used someplace that the
 6871	 * current task can be in any other state. Note, idle is always in the
 6872	 * TASK_RUNNING state.
 6873	 */
 6874	WARN_ON_ONCE(current->__state);
 6875	do {
 6876		__schedule(SM_IDLE);
 6877	} while (need_resched());
 6878}
 6879
 6880#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
 6881asmlinkage __visible void __sched schedule_user(void)
 6882{
 6883	/*
 6884	 * If we come here after a random call to set_need_resched(),
 6885	 * or we have been woken up remotely but the IPI has not yet arrived,
 6886	 * we haven't yet exited the RCU idle mode. Do it here manually until
 6887	 * we find a better solution.
 6888	 *
 6889	 * NB: There are buggy callers of this function.  Ideally we
 6890	 * should warn if prev_state != CT_STATE_USER, but that will trigger
 6891	 * too frequently to make sense yet.
 6892	 */
 6893	enum ctx_state prev_state = exception_enter();
 6894	schedule();
 6895	exception_exit(prev_state);
 6896}
 6897#endif
 6898
 6899/**
 6900 * schedule_preempt_disabled - called with preemption disabled
 6901 *
 6902 * Returns with preemption disabled. Note: preempt_count must be 1
 6903 */
 6904void __sched schedule_preempt_disabled(void)
 6905{
 6906	sched_preempt_enable_no_resched();
 6907	schedule();
 6908	preempt_disable();
 6909}
 6910
 6911#ifdef CONFIG_PREEMPT_RT
 6912void __sched notrace schedule_rtlock(void)
 6913{
 6914	__schedule_loop(SM_RTLOCK_WAIT);
 6915}
 6916NOKPROBE_SYMBOL(schedule_rtlock);
 6917#endif
 6918
 6919static void __sched notrace preempt_schedule_common(void)
 6920{
 6921	do {
 6922		/*
 6923		 * Because the function tracer can trace preempt_count_sub()
 6924		 * and it also uses preempt_enable/disable_notrace(), if
 6925		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6926		 * by the function tracer will call this function again and
 6927		 * cause infinite recursion.
 6928		 *
 6929		 * Preemption must be disabled here before the function
 6930		 * tracer can trace. Break up preempt_disable() into two
 6931		 * calls. One to disable preemption without fear of being
 6932		 * traced. The other to still record the preemption latency,
 6933		 * which can also be traced by the function tracer.
 6934		 */
 6935		preempt_disable_notrace();
 6936		preempt_latency_start(1);
 6937		__schedule(SM_PREEMPT);
 6938		preempt_latency_stop(1);
 6939		preempt_enable_no_resched_notrace();
 6940
 6941		/*
 6942		 * Check again in case we missed a preemption opportunity
 6943		 * between schedule and now.
 6944		 */
 6945	} while (need_resched());
 6946}
 6947
 6948#ifdef CONFIG_PREEMPTION
 6949/*
 6950 * This is the entry point to schedule() from in-kernel preemption
 6951 * off of preempt_enable.
 6952 */
 6953asmlinkage __visible void __sched notrace preempt_schedule(void)
 6954{
 6955	/*
 6956	 * If there is a non-zero preempt_count or interrupts are disabled,
 6957	 * we do not want to preempt the current task. Just return..
 6958	 */
 6959	if (likely(!preemptible()))
 6960		return;
 6961	preempt_schedule_common();
 6962}
 6963NOKPROBE_SYMBOL(preempt_schedule);
 6964EXPORT_SYMBOL(preempt_schedule);
 6965
 6966#ifdef CONFIG_PREEMPT_DYNAMIC
 6967#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 6968#ifndef preempt_schedule_dynamic_enabled
 6969#define preempt_schedule_dynamic_enabled	preempt_schedule
 6970#define preempt_schedule_dynamic_disabled	NULL
 6971#endif
 6972DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
 6973EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
 6974#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 6975static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
 6976void __sched notrace dynamic_preempt_schedule(void)
 6977{
 6978	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
 6979		return;
 6980	preempt_schedule();
 6981}
 6982NOKPROBE_SYMBOL(dynamic_preempt_schedule);
 6983EXPORT_SYMBOL(dynamic_preempt_schedule);
 6984#endif
 6985#endif
 6986
 6987/**
 6988 * preempt_schedule_notrace - preempt_schedule called by tracing
 6989 *
 6990 * The tracing infrastructure uses preempt_enable_notrace to prevent
 6991 * recursion and tracing preempt enabling caused by the tracing
 6992 * infrastructure itself. But as tracing can happen in areas coming
 6993 * from userspace or just about to enter userspace, a preempt enable
 6994 * can occur before user_exit() is called. This will cause the scheduler
 6995 * to be called when the system is still in usermode.
 6996 *
 6997 * To prevent this, the preempt_enable_notrace will use this function
 6998 * instead of preempt_schedule() to exit user context if needed before
 6999 * calling the scheduler.
 7000 */
 7001asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
 7002{
 7003	enum ctx_state prev_ctx;
 7004
 7005	if (likely(!preemptible()))
 7006		return;
 7007
 7008	do {
 7009		/*
 7010		 * Because the function tracer can trace preempt_count_sub()
 7011		 * and it also uses preempt_enable/disable_notrace(), if
 7012		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 7013		 * by the function tracer will call this function again and
 7014		 * cause infinite recursion.
 7015		 *
 7016		 * Preemption must be disabled here before the function
 7017		 * tracer can trace. Break up preempt_disable() into two
 7018		 * calls. One to disable preemption without fear of being
 7019		 * traced. The other to still record the preemption latency,
 7020		 * which can also be traced by the function tracer.
 7021		 */
 7022		preempt_disable_notrace();
 7023		preempt_latency_start(1);
 7024		/*
 7025		 * Needs preempt disabled in case user_exit() is traced
 7026		 * and the tracer calls preempt_enable_notrace() causing
 7027		 * an infinite recursion.
 7028		 */
 7029		prev_ctx = exception_enter();
 7030		__schedule(SM_PREEMPT);
 7031		exception_exit(prev_ctx);
 7032
 7033		preempt_latency_stop(1);
 7034		preempt_enable_no_resched_notrace();
 7035	} while (need_resched());
 7036}
 7037EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
 7038
 7039#ifdef CONFIG_PREEMPT_DYNAMIC
 7040#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 7041#ifndef preempt_schedule_notrace_dynamic_enabled
 7042#define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
 7043#define preempt_schedule_notrace_dynamic_disabled	NULL
 7044#endif
 7045DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
 7046EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
 7047#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 7048static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
 7049void __sched notrace dynamic_preempt_schedule_notrace(void)
 7050{
 7051	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
 7052		return;
 7053	preempt_schedule_notrace();
 7054}
 7055NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
 7056EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
 7057#endif
 7058#endif
 7059
 7060#endif /* CONFIG_PREEMPTION */
 7061
 7062/*
 7063 * This is the entry point to schedule() from kernel preemption
 7064 * off of IRQ context.
 7065 * Note, that this is called and return with IRQs disabled. This will
 7066 * protect us against recursive calling from IRQ contexts.
 7067 */
 7068asmlinkage __visible void __sched preempt_schedule_irq(void)
 7069{
 7070	enum ctx_state prev_state;
 7071
 7072	/* Catch callers which need to be fixed */
 7073	BUG_ON(preempt_count() || !irqs_disabled());
 7074
 7075	prev_state = exception_enter();
 7076
 7077	do {
 7078		preempt_disable();
 7079		local_irq_enable();
 7080		__schedule(SM_PREEMPT);
 7081		local_irq_disable();
 7082		sched_preempt_enable_no_resched();
 7083	} while (need_resched());
 7084
 7085	exception_exit(prev_state);
 7086}
 7087
 7088int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
 7089			  void *key)
 7090{
 7091	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
 7092	return try_to_wake_up(curr->private, mode, wake_flags);
 7093}
 7094EXPORT_SYMBOL(default_wake_function);
 7095
 7096const struct sched_class *__setscheduler_class(int policy, int prio)
 7097{
 7098	if (dl_prio(prio))
 7099		return &dl_sched_class;
 7100
 7101	if (rt_prio(prio))
 7102		return &rt_sched_class;
 7103
 7104#ifdef CONFIG_SCHED_CLASS_EXT
 7105	if (task_should_scx(policy))
 7106		return &ext_sched_class;
 7107#endif
 7108
 7109	return &fair_sched_class;
 7110}
 7111
 7112#ifdef CONFIG_RT_MUTEXES
 7113
 7114/*
 7115 * Would be more useful with typeof()/auto_type but they don't mix with
 7116 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
 7117 * name such that if someone were to implement this function we get to compare
 7118 * notes.
 7119 */
 7120#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
 7121
 7122void rt_mutex_pre_schedule(void)
 7123{
 7124	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
 7125	sched_submit_work(current);
 7126}
 7127
 7128void rt_mutex_schedule(void)
 7129{
 7130	lockdep_assert(current->sched_rt_mutex);
 7131	__schedule_loop(SM_NONE);
 7132}
 7133
 7134void rt_mutex_post_schedule(void)
 7135{
 7136	sched_update_worker(current);
 7137	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
 7138}
 7139
 7140/*
 7141 * rt_mutex_setprio - set the current priority of a task
 7142 * @p: task to boost
 7143 * @pi_task: donor task
 7144 *
 7145 * This function changes the 'effective' priority of a task. It does
 7146 * not touch ->normal_prio like __setscheduler().
 7147 *
 7148 * Used by the rt_mutex code to implement priority inheritance
 7149 * logic. Call site only calls if the priority of the task changed.
 7150 */
 7151void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
 7152{
 7153	int prio, oldprio, queued, running, queue_flag =
 7154		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 7155	const struct sched_class *prev_class, *next_class;
 7156	struct rq_flags rf;
 7157	struct rq *rq;
 7158
 7159	/* XXX used to be waiter->prio, not waiter->task->prio */
 7160	prio = __rt_effective_prio(pi_task, p->normal_prio);
 7161
 7162	/*
 7163	 * If nothing changed; bail early.
 7164	 */
 7165	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
 7166		return;
 7167
 7168	rq = __task_rq_lock(p, &rf);
 7169	update_rq_clock(rq);
 7170	/*
 7171	 * Set under pi_lock && rq->lock, such that the value can be used under
 7172	 * either lock.
 7173	 *
 7174	 * Note that there is loads of tricky to make this pointer cache work
 7175	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
 7176	 * ensure a task is de-boosted (pi_task is set to NULL) before the
 7177	 * task is allowed to run again (and can exit). This ensures the pointer
 7178	 * points to a blocked task -- which guarantees the task is present.
 7179	 */
 7180	p->pi_top_task = pi_task;
 7181
 7182	/*
 7183	 * For FIFO/RR we only need to set prio, if that matches we're done.
 7184	 */
 7185	if (prio == p->prio && !dl_prio(prio))
 7186		goto out_unlock;
 7187
 7188	/*
 7189	 * Idle task boosting is a no-no in general. There is one
 7190	 * exception, when PREEMPT_RT and NOHZ is active:
 7191	 *
 7192	 * The idle task calls get_next_timer_interrupt() and holds
 7193	 * the timer wheel base->lock on the CPU and another CPU wants
 7194	 * to access the timer (probably to cancel it). We can safely
 7195	 * ignore the boosting request, as the idle CPU runs this code
 7196	 * with interrupts disabled and will complete the lock
 7197	 * protected section without being interrupted. So there is no
 7198	 * real need to boost.
 7199	 */
 7200	if (unlikely(p == rq->idle)) {
 7201		WARN_ON(p != rq->curr);
 7202		WARN_ON(p->pi_blocked_on);
 7203		goto out_unlock;
 7204	}
 7205
 7206	trace_sched_pi_setprio(p, pi_task);
 7207	oldprio = p->prio;
 7208
 7209	if (oldprio == prio)
 7210		queue_flag &= ~DEQUEUE_MOVE;
 7211
 7212	prev_class = p->sched_class;
 7213	next_class = __setscheduler_class(p->policy, prio);
 7214
 7215	if (prev_class != next_class && p->se.sched_delayed)
 7216		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
 7217
 7218	queued = task_on_rq_queued(p);
 7219	running = task_current_donor(rq, p);
 7220	if (queued)
 7221		dequeue_task(rq, p, queue_flag);
 7222	if (running)
 7223		put_prev_task(rq, p);
 7224
 7225	/*
 7226	 * Boosting condition are:
 7227	 * 1. -rt task is running and holds mutex A
 7228	 *      --> -dl task blocks on mutex A
 7229	 *
 7230	 * 2. -dl task is running and holds mutex A
 7231	 *      --> -dl task blocks on mutex A and could preempt the
 7232	 *          running task
 7233	 */
 7234	if (dl_prio(prio)) {
 7235		if (!dl_prio(p->normal_prio) ||
 7236		    (pi_task && dl_prio(pi_task->prio) &&
 7237		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
 7238			p->dl.pi_se = pi_task->dl.pi_se;
 7239			queue_flag |= ENQUEUE_REPLENISH;
 7240		} else {
 7241			p->dl.pi_se = &p->dl;
 7242		}
 7243	} else if (rt_prio(prio)) {
 7244		if (dl_prio(oldprio))
 7245			p->dl.pi_se = &p->dl;
 7246		if (oldprio < prio)
 7247			queue_flag |= ENQUEUE_HEAD;
 7248	} else {
 7249		if (dl_prio(oldprio))
 7250			p->dl.pi_se = &p->dl;
 7251		if (rt_prio(oldprio))
 7252			p->rt.timeout = 0;
 7253	}
 7254
 7255	p->sched_class = next_class;
 7256	p->prio = prio;
 7257
 7258	check_class_changing(rq, p, prev_class);
 7259
 7260	if (queued)
 7261		enqueue_task(rq, p, queue_flag);
 7262	if (running)
 7263		set_next_task(rq, p);
 7264
 7265	check_class_changed(rq, p, prev_class, oldprio);
 7266out_unlock:
 7267	/* Avoid rq from going away on us: */
 7268	preempt_disable();
 7269
 7270	rq_unpin_lock(rq, &rf);
 7271	__balance_callbacks(rq);
 7272	raw_spin_rq_unlock(rq);
 7273
 7274	preempt_enable();
 7275}
 7276#endif
 7277
 7278#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
 7279int __sched __cond_resched(void)
 7280{
 7281	if (should_resched(0) && !irqs_disabled()) {
 7282		preempt_schedule_common();
 7283		return 1;
 7284	}
 7285	/*
 7286	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
 7287	 * whether the current CPU is in an RCU read-side critical section,
 7288	 * so the tick can report quiescent states even for CPUs looping
 7289	 * in kernel context.  In contrast, in non-preemptible kernels,
 7290	 * RCU readers leave no in-memory hints, which means that CPU-bound
 7291	 * processes executing in kernel context might never report an
 7292	 * RCU quiescent state.  Therefore, the following code causes
 7293	 * cond_resched() to report a quiescent state, but only when RCU
 7294	 * is in urgent need of one.
 7295	 */
 7296#ifndef CONFIG_PREEMPT_RCU
 7297	rcu_all_qs();
 7298#endif
 7299	return 0;
 7300}
 7301EXPORT_SYMBOL(__cond_resched);
 7302#endif
 7303
 7304#ifdef CONFIG_PREEMPT_DYNAMIC
 7305#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 7306#define cond_resched_dynamic_enabled	__cond_resched
 7307#define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
 7308DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
 7309EXPORT_STATIC_CALL_TRAMP(cond_resched);
 7310
 7311#define might_resched_dynamic_enabled	__cond_resched
 7312#define might_resched_dynamic_disabled	((void *)&__static_call_return0)
 7313DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
 7314EXPORT_STATIC_CALL_TRAMP(might_resched);
 7315#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 7316static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
 7317int __sched dynamic_cond_resched(void)
 7318{
 7319	klp_sched_try_switch();
 7320	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
 7321		return 0;
 7322	return __cond_resched();
 7323}
 7324EXPORT_SYMBOL(dynamic_cond_resched);
 7325
 7326static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
 7327int __sched dynamic_might_resched(void)
 7328{
 7329	if (!static_branch_unlikely(&sk_dynamic_might_resched))
 7330		return 0;
 7331	return __cond_resched();
 7332}
 7333EXPORT_SYMBOL(dynamic_might_resched);
 7334#endif
 7335#endif
 7336
 7337/*
 7338 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 7339 * call schedule, and on return reacquire the lock.
 7340 *
 7341 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
 7342 * operations here to prevent schedule() from being called twice (once via
 7343 * spin_unlock(), once by hand).
 7344 */
 7345int __cond_resched_lock(spinlock_t *lock)
 7346{
 7347	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7348	int ret = 0;
 7349
 7350	lockdep_assert_held(lock);
 7351
 7352	if (spin_needbreak(lock) || resched) {
 7353		spin_unlock(lock);
 7354		if (!_cond_resched())
 7355			cpu_relax();
 7356		ret = 1;
 7357		spin_lock(lock);
 7358	}
 7359	return ret;
 7360}
 7361EXPORT_SYMBOL(__cond_resched_lock);
 7362
 7363int __cond_resched_rwlock_read(rwlock_t *lock)
 7364{
 7365	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7366	int ret = 0;
 7367
 7368	lockdep_assert_held_read(lock);
 7369
 7370	if (rwlock_needbreak(lock) || resched) {
 7371		read_unlock(lock);
 7372		if (!_cond_resched())
 7373			cpu_relax();
 7374		ret = 1;
 7375		read_lock(lock);
 7376	}
 7377	return ret;
 7378}
 7379EXPORT_SYMBOL(__cond_resched_rwlock_read);
 7380
 7381int __cond_resched_rwlock_write(rwlock_t *lock)
 7382{
 7383	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 7384	int ret = 0;
 7385
 7386	lockdep_assert_held_write(lock);
 7387
 7388	if (rwlock_needbreak(lock) || resched) {
 7389		write_unlock(lock);
 7390		if (!_cond_resched())
 7391			cpu_relax();
 7392		ret = 1;
 7393		write_lock(lock);
 7394	}
 7395	return ret;
 7396}
 7397EXPORT_SYMBOL(__cond_resched_rwlock_write);
 7398
 7399#ifdef CONFIG_PREEMPT_DYNAMIC
 7400
 7401#ifdef CONFIG_GENERIC_ENTRY
 7402#include <linux/entry-common.h>
 7403#endif
 7404
 7405/*
 7406 * SC:cond_resched
 7407 * SC:might_resched
 7408 * SC:preempt_schedule
 7409 * SC:preempt_schedule_notrace
 7410 * SC:irqentry_exit_cond_resched
 7411 *
 7412 *
 7413 * NONE:
 7414 *   cond_resched               <- __cond_resched
 7415 *   might_resched              <- RET0
 7416 *   preempt_schedule           <- NOP
 7417 *   preempt_schedule_notrace   <- NOP
 7418 *   irqentry_exit_cond_resched <- NOP
 7419 *   dynamic_preempt_lazy       <- false
 7420 *
 7421 * VOLUNTARY:
 7422 *   cond_resched               <- __cond_resched
 7423 *   might_resched              <- __cond_resched
 7424 *   preempt_schedule           <- NOP
 7425 *   preempt_schedule_notrace   <- NOP
 7426 *   irqentry_exit_cond_resched <- NOP
 7427 *   dynamic_preempt_lazy       <- false
 7428 *
 7429 * FULL:
 7430 *   cond_resched               <- RET0
 7431 *   might_resched              <- RET0
 7432 *   preempt_schedule           <- preempt_schedule
 7433 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 7434 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 7435 *   dynamic_preempt_lazy       <- false
 7436 *
 7437 * LAZY:
 7438 *   cond_resched               <- RET0
 7439 *   might_resched              <- RET0
 7440 *   preempt_schedule           <- preempt_schedule
 7441 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 7442 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 7443 *   dynamic_preempt_lazy       <- true
 7444 */
 7445
 7446enum {
 7447	preempt_dynamic_undefined = -1,
 7448	preempt_dynamic_none,
 7449	preempt_dynamic_voluntary,
 7450	preempt_dynamic_full,
 7451	preempt_dynamic_lazy,
 7452};
 7453
 7454int preempt_dynamic_mode = preempt_dynamic_undefined;
 7455
 7456int sched_dynamic_mode(const char *str)
 7457{
 7458#ifndef CONFIG_PREEMPT_RT
 7459	if (!strcmp(str, "none"))
 7460		return preempt_dynamic_none;
 7461
 7462	if (!strcmp(str, "voluntary"))
 7463		return preempt_dynamic_voluntary;
 7464#endif
 7465
 7466	if (!strcmp(str, "full"))
 7467		return preempt_dynamic_full;
 7468
 7469#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
 7470	if (!strcmp(str, "lazy"))
 7471		return preempt_dynamic_lazy;
 7472#endif
 7473
 7474	return -EINVAL;
 7475}
 7476
 7477#define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
 7478#define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
 7479
 7480#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 7481#define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
 7482#define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
 7483#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 7484#define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
 7485#define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
 7486#else
 7487#error "Unsupported PREEMPT_DYNAMIC mechanism"
 7488#endif
 7489
 7490static DEFINE_MUTEX(sched_dynamic_mutex);
 7491static bool klp_override;
 7492
 7493static void __sched_dynamic_update(int mode)
 7494{
 7495	/*
 7496	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
 7497	 * the ZERO state, which is invalid.
 7498	 */
 7499	if (!klp_override)
 7500		preempt_dynamic_enable(cond_resched);
 7501	preempt_dynamic_enable(might_resched);
 7502	preempt_dynamic_enable(preempt_schedule);
 7503	preempt_dynamic_enable(preempt_schedule_notrace);
 7504	preempt_dynamic_enable(irqentry_exit_cond_resched);
 7505	preempt_dynamic_key_disable(preempt_lazy);
 7506
 7507	switch (mode) {
 7508	case preempt_dynamic_none:
 7509		if (!klp_override)
 7510			preempt_dynamic_enable(cond_resched);
 7511		preempt_dynamic_disable(might_resched);
 7512		preempt_dynamic_disable(preempt_schedule);
 7513		preempt_dynamic_disable(preempt_schedule_notrace);
 7514		preempt_dynamic_disable(irqentry_exit_cond_resched);
 7515		preempt_dynamic_key_disable(preempt_lazy);
 7516		if (mode != preempt_dynamic_mode)
 7517			pr_info("Dynamic Preempt: none\n");
 7518		break;
 7519
 7520	case preempt_dynamic_voluntary:
 7521		if (!klp_override)
 7522			preempt_dynamic_enable(cond_resched);
 7523		preempt_dynamic_enable(might_resched);
 7524		preempt_dynamic_disable(preempt_schedule);
 7525		preempt_dynamic_disable(preempt_schedule_notrace);
 7526		preempt_dynamic_disable(irqentry_exit_cond_resched);
 7527		preempt_dynamic_key_disable(preempt_lazy);
 7528		if (mode != preempt_dynamic_mode)
 7529			pr_info("Dynamic Preempt: voluntary\n");
 7530		break;
 7531
 7532	case preempt_dynamic_full:
 7533		if (!klp_override)
 7534			preempt_dynamic_disable(cond_resched);
 7535		preempt_dynamic_disable(might_resched);
 7536		preempt_dynamic_enable(preempt_schedule);
 7537		preempt_dynamic_enable(preempt_schedule_notrace);
 7538		preempt_dynamic_enable(irqentry_exit_cond_resched);
 7539		preempt_dynamic_key_disable(preempt_lazy);
 7540		if (mode != preempt_dynamic_mode)
 7541			pr_info("Dynamic Preempt: full\n");
 7542		break;
 7543
 7544	case preempt_dynamic_lazy:
 7545		if (!klp_override)
 7546			preempt_dynamic_disable(cond_resched);
 7547		preempt_dynamic_disable(might_resched);
 7548		preempt_dynamic_enable(preempt_schedule);
 7549		preempt_dynamic_enable(preempt_schedule_notrace);
 7550		preempt_dynamic_enable(irqentry_exit_cond_resched);
 7551		preempt_dynamic_key_enable(preempt_lazy);
 7552		if (mode != preempt_dynamic_mode)
 7553			pr_info("Dynamic Preempt: lazy\n");
 7554		break;
 7555	}
 7556
 7557	preempt_dynamic_mode = mode;
 7558}
 7559
 7560void sched_dynamic_update(int mode)
 7561{
 7562	mutex_lock(&sched_dynamic_mutex);
 7563	__sched_dynamic_update(mode);
 7564	mutex_unlock(&sched_dynamic_mutex);
 7565}
 7566
 7567#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
 7568
 7569static int klp_cond_resched(void)
 7570{
 7571	__klp_sched_try_switch();
 7572	return __cond_resched();
 7573}
 7574
 7575void sched_dynamic_klp_enable(void)
 7576{
 7577	mutex_lock(&sched_dynamic_mutex);
 7578
 7579	klp_override = true;
 7580	static_call_update(cond_resched, klp_cond_resched);
 7581
 7582	mutex_unlock(&sched_dynamic_mutex);
 7583}
 7584
 7585void sched_dynamic_klp_disable(void)
 7586{
 7587	mutex_lock(&sched_dynamic_mutex);
 7588
 7589	klp_override = false;
 7590	__sched_dynamic_update(preempt_dynamic_mode);
 7591
 7592	mutex_unlock(&sched_dynamic_mutex);
 7593}
 7594
 7595#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
 7596
 7597static int __init setup_preempt_mode(char *str)
 7598{
 7599	int mode = sched_dynamic_mode(str);
 7600	if (mode < 0) {
 7601		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
 7602		return 0;
 7603	}
 7604
 7605	sched_dynamic_update(mode);
 7606	return 1;
 7607}
 7608__setup("preempt=", setup_preempt_mode);
 7609
 7610static void __init preempt_dynamic_init(void)
 7611{
 7612	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
 7613		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
 7614			sched_dynamic_update(preempt_dynamic_none);
 7615		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
 7616			sched_dynamic_update(preempt_dynamic_voluntary);
 7617		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
 7618			sched_dynamic_update(preempt_dynamic_lazy);
 7619		} else {
 7620			/* Default static call setting, nothing to do */
 7621			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
 7622			preempt_dynamic_mode = preempt_dynamic_full;
 7623			pr_info("Dynamic Preempt: full\n");
 7624		}
 7625	}
 7626}
 7627
 7628#define PREEMPT_MODEL_ACCESSOR(mode) \
 7629	bool preempt_model_##mode(void)						 \
 7630	{									 \
 7631		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
 7632		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
 7633	}									 \
 7634	EXPORT_SYMBOL_GPL(preempt_model_##mode)
 7635
 7636PREEMPT_MODEL_ACCESSOR(none);
 7637PREEMPT_MODEL_ACCESSOR(voluntary);
 7638PREEMPT_MODEL_ACCESSOR(full);
 7639PREEMPT_MODEL_ACCESSOR(lazy);
 7640
 7641#else /* !CONFIG_PREEMPT_DYNAMIC: */
 7642
 7643static inline void preempt_dynamic_init(void) { }
 7644
 7645#endif /* CONFIG_PREEMPT_DYNAMIC */
 7646
 7647int io_schedule_prepare(void)
 7648{
 7649	int old_iowait = current->in_iowait;
 7650
 7651	current->in_iowait = 1;
 7652	blk_flush_plug(current->plug, true);
 7653	return old_iowait;
 7654}
 7655
 7656void io_schedule_finish(int token)
 7657{
 7658	current->in_iowait = token;
 7659}
 7660
 7661/*
 7662 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 7663 * that process accounting knows that this is a task in IO wait state.
 7664 */
 7665long __sched io_schedule_timeout(long timeout)
 7666{
 7667	int token;
 7668	long ret;
 7669
 7670	token = io_schedule_prepare();
 7671	ret = schedule_timeout(timeout);
 7672	io_schedule_finish(token);
 7673
 7674	return ret;
 7675}
 7676EXPORT_SYMBOL(io_schedule_timeout);
 7677
 7678void __sched io_schedule(void)
 7679{
 7680	int token;
 7681
 7682	token = io_schedule_prepare();
 7683	schedule();
 7684	io_schedule_finish(token);
 7685}
 7686EXPORT_SYMBOL(io_schedule);
 7687
 7688void sched_show_task(struct task_struct *p)
 7689{
 7690	unsigned long free;
 7691	int ppid;
 7692
 7693	if (!try_get_task_stack(p))
 7694		return;
 7695
 7696	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
 7697
 7698	if (task_is_running(p))
 7699		pr_cont("  running task    ");
 7700	free = stack_not_used(p);
 7701	ppid = 0;
 7702	rcu_read_lock();
 7703	if (pid_alive(p))
 7704		ppid = task_pid_nr(rcu_dereference(p->real_parent));
 7705	rcu_read_unlock();
 7706	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
 7707		free, task_pid_nr(p), task_tgid_nr(p),
 7708		ppid, read_task_thread_flags(p));
 7709
 7710	print_worker_info(KERN_INFO, p);
 7711	print_stop_info(KERN_INFO, p);
 7712	print_scx_info(KERN_INFO, p);
 7713	show_stack(p, NULL, KERN_INFO);
 7714	put_task_stack(p);
 7715}
 7716EXPORT_SYMBOL_GPL(sched_show_task);
 7717
 7718static inline bool
 7719state_filter_match(unsigned long state_filter, struct task_struct *p)
 7720{
 7721	unsigned int state = READ_ONCE(p->__state);
 7722
 7723	/* no filter, everything matches */
 7724	if (!state_filter)
 7725		return true;
 7726
 7727	/* filter, but doesn't match */
 7728	if (!(state & state_filter))
 7729		return false;
 7730
 7731	/*
 7732	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
 7733	 * TASK_KILLABLE).
 7734	 */
 7735	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
 7736		return false;
 7737
 7738	return true;
 7739}
 7740
 7741
 7742void show_state_filter(unsigned int state_filter)
 7743{
 7744	struct task_struct *g, *p;
 7745
 7746	rcu_read_lock();
 7747	for_each_process_thread(g, p) {
 7748		/*
 7749		 * reset the NMI-timeout, listing all files on a slow
 7750		 * console might take a lot of time:
 7751		 * Also, reset softlockup watchdogs on all CPUs, because
 7752		 * another CPU might be blocked waiting for us to process
 7753		 * an IPI.
 7754		 */
 7755		touch_nmi_watchdog();
 7756		touch_all_softlockup_watchdogs();
 7757		if (state_filter_match(state_filter, p))
 7758			sched_show_task(p);
 7759	}
 7760
 7761#ifdef CONFIG_SCHED_DEBUG
 7762	if (!state_filter)
 7763		sysrq_sched_debug_show();
 7764#endif
 7765	rcu_read_unlock();
 7766	/*
 7767	 * Only show locks if all tasks are dumped:
 7768	 */
 7769	if (!state_filter)
 7770		debug_show_all_locks();
 7771}
 7772
 7773/**
 7774 * init_idle - set up an idle thread for a given CPU
 7775 * @idle: task in question
 7776 * @cpu: CPU the idle task belongs to
 7777 *
 7778 * NOTE: this function does not set the idle thread's NEED_RESCHED
 7779 * flag, to make booting more robust.
 7780 */
 7781void __init init_idle(struct task_struct *idle, int cpu)
 7782{
 7783#ifdef CONFIG_SMP
 7784	struct affinity_context ac = (struct affinity_context) {
 7785		.new_mask  = cpumask_of(cpu),
 7786		.flags     = 0,
 7787	};
 7788#endif
 7789	struct rq *rq = cpu_rq(cpu);
 7790	unsigned long flags;
 7791
 7792	raw_spin_lock_irqsave(&idle->pi_lock, flags);
 7793	raw_spin_rq_lock(rq);
 7794
 7795	idle->__state = TASK_RUNNING;
 7796	idle->se.exec_start = sched_clock();
 7797	/*
 7798	 * PF_KTHREAD should already be set at this point; regardless, make it
 7799	 * look like a proper per-CPU kthread.
 7800	 */
 7801	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
 7802	kthread_set_per_cpu(idle, cpu);
 7803
 7804#ifdef CONFIG_SMP
 7805	/*
 7806	 * No validation and serialization required at boot time and for
 7807	 * setting up the idle tasks of not yet online CPUs.
 7808	 */
 7809	set_cpus_allowed_common(idle, &ac);
 7810#endif
 7811	/*
 7812	 * We're having a chicken and egg problem, even though we are
 7813	 * holding rq->lock, the CPU isn't yet set to this CPU so the
 7814	 * lockdep check in task_group() will fail.
 7815	 *
 7816	 * Similar case to sched_fork(). / Alternatively we could
 7817	 * use task_rq_lock() here and obtain the other rq->lock.
 7818	 *
 7819	 * Silence PROVE_RCU
 7820	 */
 7821	rcu_read_lock();
 7822	__set_task_cpu(idle, cpu);
 7823	rcu_read_unlock();
 7824
 7825	rq->idle = idle;
 7826	rq_set_donor(rq, idle);
 7827	rcu_assign_pointer(rq->curr, idle);
 7828	idle->on_rq = TASK_ON_RQ_QUEUED;
 7829#ifdef CONFIG_SMP
 7830	idle->on_cpu = 1;
 7831#endif
 7832	raw_spin_rq_unlock(rq);
 7833	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
 7834
 7835	/* Set the preempt count _outside_ the spinlocks! */
 7836	init_idle_preempt_count(idle, cpu);
 7837
 7838	/*
 7839	 * The idle tasks have their own, simple scheduling class:
 7840	 */
 7841	idle->sched_class = &idle_sched_class;
 7842	ftrace_graph_init_idle_task(idle, cpu);
 7843	vtime_init_idle(idle, cpu);
 7844#ifdef CONFIG_SMP
 7845	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
 7846#endif
 7847}
 7848
 7849#ifdef CONFIG_SMP
 7850
 7851int cpuset_cpumask_can_shrink(const struct cpumask *cur,
 7852			      const struct cpumask *trial)
 7853{
 7854	int ret = 1;
 7855
 7856	if (cpumask_empty(cur))
 7857		return ret;
 7858
 7859	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
 7860
 7861	return ret;
 7862}
 7863
 7864int task_can_attach(struct task_struct *p)
 7865{
 7866	int ret = 0;
 7867
 7868	/*
 7869	 * Kthreads which disallow setaffinity shouldn't be moved
 7870	 * to a new cpuset; we don't want to change their CPU
 7871	 * affinity and isolating such threads by their set of
 7872	 * allowed nodes is unnecessary.  Thus, cpusets are not
 7873	 * applicable for such threads.  This prevents checking for
 7874	 * success of set_cpus_allowed_ptr() on all attached tasks
 7875	 * before cpus_mask may be changed.
 7876	 */
 7877	if (p->flags & PF_NO_SETAFFINITY)
 7878		ret = -EINVAL;
 7879
 7880	return ret;
 7881}
 7882
 7883bool sched_smp_initialized __read_mostly;
 7884
 7885#ifdef CONFIG_NUMA_BALANCING
 7886/* Migrate current task p to target_cpu */
 7887int migrate_task_to(struct task_struct *p, int target_cpu)
 7888{
 7889	struct migration_arg arg = { p, target_cpu };
 7890	int curr_cpu = task_cpu(p);
 7891
 7892	if (curr_cpu == target_cpu)
 7893		return 0;
 7894
 7895	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
 7896		return -EINVAL;
 7897
 7898	/* TODO: This is not properly updating schedstats */
 7899
 7900	trace_sched_move_numa(p, curr_cpu, target_cpu);
 7901	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 7902}
 7903
 7904/*
 7905 * Requeue a task on a given node and accurately track the number of NUMA
 7906 * tasks on the runqueues
 7907 */
 7908void sched_setnuma(struct task_struct *p, int nid)
 7909{
 7910	bool queued, running;
 7911	struct rq_flags rf;
 7912	struct rq *rq;
 7913
 7914	rq = task_rq_lock(p, &rf);
 7915	queued = task_on_rq_queued(p);
 7916	running = task_current_donor(rq, p);
 7917
 7918	if (queued)
 7919		dequeue_task(rq, p, DEQUEUE_SAVE);
 7920	if (running)
 7921		put_prev_task(rq, p);
 7922
 7923	p->numa_preferred_nid = nid;
 7924
 7925	if (queued)
 7926		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 7927	if (running)
 7928		set_next_task(rq, p);
 7929	task_rq_unlock(rq, p, &rf);
 7930}
 7931#endif /* CONFIG_NUMA_BALANCING */
 7932
 7933#ifdef CONFIG_HOTPLUG_CPU
 7934/*
 7935 * Ensure that the idle task is using init_mm right before its CPU goes
 7936 * offline.
 7937 */
 7938void idle_task_exit(void)
 7939{
 7940	struct mm_struct *mm = current->active_mm;
 7941
 7942	BUG_ON(cpu_online(smp_processor_id()));
 7943	BUG_ON(current != this_rq()->idle);
 7944
 7945	if (mm != &init_mm) {
 7946		switch_mm(mm, &init_mm, current);
 7947		finish_arch_post_lock_switch();
 7948	}
 7949
 7950	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
 7951}
 7952
 7953static int __balance_push_cpu_stop(void *arg)
 7954{
 7955	struct task_struct *p = arg;
 7956	struct rq *rq = this_rq();
 7957	struct rq_flags rf;
 7958	int cpu;
 7959
 7960	raw_spin_lock_irq(&p->pi_lock);
 7961	rq_lock(rq, &rf);
 7962
 7963	update_rq_clock(rq);
 7964
 7965	if (task_rq(p) == rq && task_on_rq_queued(p)) {
 7966		cpu = select_fallback_rq(rq->cpu, p);
 7967		rq = __migrate_task(rq, &rf, p, cpu);
 7968	}
 7969
 7970	rq_unlock(rq, &rf);
 7971	raw_spin_unlock_irq(&p->pi_lock);
 7972
 7973	put_task_struct(p);
 7974
 7975	return 0;
 7976}
 7977
 7978static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
 7979
 7980/*
 7981 * Ensure we only run per-cpu kthreads once the CPU goes !active.
 7982 *
 7983 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
 7984 * effective when the hotplug motion is down.
 7985 */
 7986static void balance_push(struct rq *rq)
 7987{
 7988	struct task_struct *push_task = rq->curr;
 7989
 7990	lockdep_assert_rq_held(rq);
 7991
 7992	/*
 7993	 * Ensure the thing is persistent until balance_push_set(.on = false);
 7994	 */
 7995	rq->balance_callback = &balance_push_callback;
 7996
 7997	/*
 7998	 * Only active while going offline and when invoked on the outgoing
 7999	 * CPU.
 8000	 */
 8001	if (!cpu_dying(rq->cpu) || rq != this_rq())
 8002		return;
 8003
 8004	/*
 8005	 * Both the cpu-hotplug and stop task are in this case and are
 8006	 * required to complete the hotplug process.
 8007	 */
 8008	if (kthread_is_per_cpu(push_task) ||
 8009	    is_migration_disabled(push_task)) {
 8010
 8011		/*
 8012		 * If this is the idle task on the outgoing CPU try to wake
 8013		 * up the hotplug control thread which might wait for the
 8014		 * last task to vanish. The rcuwait_active() check is
 8015		 * accurate here because the waiter is pinned on this CPU
 8016		 * and can't obviously be running in parallel.
 8017		 *
 8018		 * On RT kernels this also has to check whether there are
 8019		 * pinned and scheduled out tasks on the runqueue. They
 8020		 * need to leave the migrate disabled section first.
 8021		 */
 8022		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
 8023		    rcuwait_active(&rq->hotplug_wait)) {
 8024			raw_spin_rq_unlock(rq);
 8025			rcuwait_wake_up(&rq->hotplug_wait);
 8026			raw_spin_rq_lock(rq);
 8027		}
 8028		return;
 8029	}
 8030
 8031	get_task_struct(push_task);
 8032	/*
 8033	 * Temporarily drop rq->lock such that we can wake-up the stop task.
 8034	 * Both preemption and IRQs are still disabled.
 8035	 */
 8036	preempt_disable();
 8037	raw_spin_rq_unlock(rq);
 8038	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
 8039			    this_cpu_ptr(&push_work));
 8040	preempt_enable();
 8041	/*
 8042	 * At this point need_resched() is true and we'll take the loop in
 8043	 * schedule(). The next pick is obviously going to be the stop task
 8044	 * which kthread_is_per_cpu() and will push this task away.
 8045	 */
 8046	raw_spin_rq_lock(rq);
 8047}
 8048
 8049static void balance_push_set(int cpu, bool on)
 8050{
 8051	struct rq *rq = cpu_rq(cpu);
 8052	struct rq_flags rf;
 8053
 8054	rq_lock_irqsave(rq, &rf);
 8055	if (on) {
 8056		WARN_ON_ONCE(rq->balance_callback);
 8057		rq->balance_callback = &balance_push_callback;
 8058	} else if (rq->balance_callback == &balance_push_callback) {
 8059		rq->balance_callback = NULL;
 8060	}
 8061	rq_unlock_irqrestore(rq, &rf);
 8062}
 8063
 8064/*
 8065 * Invoked from a CPUs hotplug control thread after the CPU has been marked
 8066 * inactive. All tasks which are not per CPU kernel threads are either
 8067 * pushed off this CPU now via balance_push() or placed on a different CPU
 8068 * during wakeup. Wait until the CPU is quiescent.
 8069 */
 8070static void balance_hotplug_wait(void)
 8071{
 8072	struct rq *rq = this_rq();
 8073
 8074	rcuwait_wait_event(&rq->hotplug_wait,
 8075			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
 8076			   TASK_UNINTERRUPTIBLE);
 8077}
 8078
 8079#else
 8080
 8081static inline void balance_push(struct rq *rq)
 8082{
 8083}
 8084
 8085static inline void balance_push_set(int cpu, bool on)
 8086{
 8087}
 8088
 8089static inline void balance_hotplug_wait(void)
 8090{
 8091}
 8092
 8093#endif /* CONFIG_HOTPLUG_CPU */
 8094
 8095void set_rq_online(struct rq *rq)
 8096{
 8097	if (!rq->online) {
 8098		const struct sched_class *class;
 8099
 8100		cpumask_set_cpu(rq->cpu, rq->rd->online);
 8101		rq->online = 1;
 8102
 8103		for_each_class(class) {
 8104			if (class->rq_online)
 8105				class->rq_online(rq);
 8106		}
 8107	}
 8108}
 8109
 8110void set_rq_offline(struct rq *rq)
 8111{
 8112	if (rq->online) {
 8113		const struct sched_class *class;
 8114
 8115		update_rq_clock(rq);
 8116		for_each_class(class) {
 8117			if (class->rq_offline)
 8118				class->rq_offline(rq);
 8119		}
 8120
 8121		cpumask_clear_cpu(rq->cpu, rq->rd->online);
 8122		rq->online = 0;
 8123	}
 8124}
 8125
 8126static inline void sched_set_rq_online(struct rq *rq, int cpu)
 8127{
 8128	struct rq_flags rf;
 8129
 8130	rq_lock_irqsave(rq, &rf);
 8131	if (rq->rd) {
 8132		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 8133		set_rq_online(rq);
 8134	}
 8135	rq_unlock_irqrestore(rq, &rf);
 8136}
 8137
 8138static inline void sched_set_rq_offline(struct rq *rq, int cpu)
 8139{
 8140	struct rq_flags rf;
 8141
 8142	rq_lock_irqsave(rq, &rf);
 8143	if (rq->rd) {
 8144		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 8145		set_rq_offline(rq);
 8146	}
 8147	rq_unlock_irqrestore(rq, &rf);
 8148}
 8149
 8150/*
 8151 * used to mark begin/end of suspend/resume:
 8152 */
 8153static int num_cpus_frozen;
 8154
 8155/*
 8156 * Update cpusets according to cpu_active mask.  If cpusets are
 8157 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 8158 * around partition_sched_domains().
 8159 *
 8160 * If we come here as part of a suspend/resume, don't touch cpusets because we
 8161 * want to restore it back to its original state upon resume anyway.
 8162 */
 8163static void cpuset_cpu_active(void)
 8164{
 8165	if (cpuhp_tasks_frozen) {
 8166		/*
 8167		 * num_cpus_frozen tracks how many CPUs are involved in suspend
 8168		 * resume sequence. As long as this is not the last online
 8169		 * operation in the resume sequence, just build a single sched
 8170		 * domain, ignoring cpusets.
 8171		 */
 8172		partition_sched_domains(1, NULL, NULL);
 8173		if (--num_cpus_frozen)
 8174			return;
 8175		/*
 8176		 * This is the last CPU online operation. So fall through and
 8177		 * restore the original sched domains by considering the
 8178		 * cpuset configurations.
 8179		 */
 8180		cpuset_force_rebuild();
 8181	}
 8182	cpuset_update_active_cpus();
 8183}
 8184
 8185static int cpuset_cpu_inactive(unsigned int cpu)
 8186{
 8187	if (!cpuhp_tasks_frozen) {
 8188		int ret = dl_bw_check_overflow(cpu);
 8189
 8190		if (ret)
 8191			return ret;
 8192		cpuset_update_active_cpus();
 8193	} else {
 8194		num_cpus_frozen++;
 8195		partition_sched_domains(1, NULL, NULL);
 8196	}
 8197	return 0;
 8198}
 8199
 8200static inline void sched_smt_present_inc(int cpu)
 8201{
 8202#ifdef CONFIG_SCHED_SMT
 8203	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 8204		static_branch_inc_cpuslocked(&sched_smt_present);
 8205#endif
 8206}
 8207
 8208static inline void sched_smt_present_dec(int cpu)
 8209{
 8210#ifdef CONFIG_SCHED_SMT
 8211	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 8212		static_branch_dec_cpuslocked(&sched_smt_present);
 8213#endif
 8214}
 8215
 8216int sched_cpu_activate(unsigned int cpu)
 8217{
 8218	struct rq *rq = cpu_rq(cpu);
 8219
 8220	/*
 8221	 * Clear the balance_push callback and prepare to schedule
 8222	 * regular tasks.
 8223	 */
 8224	balance_push_set(cpu, false);
 8225
 8226	/*
 8227	 * When going up, increment the number of cores with SMT present.
 8228	 */
 8229	sched_smt_present_inc(cpu);
 8230	set_cpu_active(cpu, true);
 8231
 8232	if (sched_smp_initialized) {
 8233		sched_update_numa(cpu, true);
 8234		sched_domains_numa_masks_set(cpu);
 8235		cpuset_cpu_active();
 8236	}
 8237
 8238	scx_rq_activate(rq);
 8239
 8240	/*
 8241	 * Put the rq online, if not already. This happens:
 8242	 *
 8243	 * 1) In the early boot process, because we build the real domains
 8244	 *    after all CPUs have been brought up.
 8245	 *
 8246	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
 8247	 *    domains.
 8248	 */
 8249	sched_set_rq_online(rq, cpu);
 8250
 8251	return 0;
 8252}
 8253
 8254int sched_cpu_deactivate(unsigned int cpu)
 8255{
 8256	struct rq *rq = cpu_rq(cpu);
 8257	int ret;
 8258
 8259	/*
 8260	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
 8261	 * load balancing when not active
 8262	 */
 8263	nohz_balance_exit_idle(rq);
 8264
 8265	set_cpu_active(cpu, false);
 8266
 8267	/*
 8268	 * From this point forward, this CPU will refuse to run any task that
 8269	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
 8270	 * push those tasks away until this gets cleared, see
 8271	 * sched_cpu_dying().
 8272	 */
 8273	balance_push_set(cpu, true);
 8274
 8275	/*
 8276	 * We've cleared cpu_active_mask / set balance_push, wait for all
 8277	 * preempt-disabled and RCU users of this state to go away such that
 8278	 * all new such users will observe it.
 8279	 *
 8280	 * Specifically, we rely on ttwu to no longer target this CPU, see
 8281	 * ttwu_queue_cond() and is_cpu_allowed().
 8282	 *
 8283	 * Do sync before park smpboot threads to take care the RCU boost case.
 8284	 */
 8285	synchronize_rcu();
 8286
 8287	sched_set_rq_offline(rq, cpu);
 8288
 8289	scx_rq_deactivate(rq);
 8290
 8291	/*
 8292	 * When going down, decrement the number of cores with SMT present.
 8293	 */
 8294	sched_smt_present_dec(cpu);
 8295
 8296#ifdef CONFIG_SCHED_SMT
 8297	sched_core_cpu_deactivate(cpu);
 8298#endif
 8299
 8300	if (!sched_smp_initialized)
 8301		return 0;
 8302
 8303	sched_update_numa(cpu, false);
 8304	ret = cpuset_cpu_inactive(cpu);
 8305	if (ret) {
 8306		sched_smt_present_inc(cpu);
 8307		sched_set_rq_online(rq, cpu);
 8308		balance_push_set(cpu, false);
 8309		set_cpu_active(cpu, true);
 8310		sched_update_numa(cpu, true);
 8311		return ret;
 8312	}
 8313	sched_domains_numa_masks_clear(cpu);
 8314	return 0;
 8315}
 8316
 8317static void sched_rq_cpu_starting(unsigned int cpu)
 8318{
 8319	struct rq *rq = cpu_rq(cpu);
 8320
 8321	rq->calc_load_update = calc_load_update;
 8322	update_max_interval();
 8323}
 8324
 8325int sched_cpu_starting(unsigned int cpu)
 8326{
 8327	sched_core_cpu_starting(cpu);
 8328	sched_rq_cpu_starting(cpu);
 8329	sched_tick_start(cpu);
 8330	return 0;
 8331}
 8332
 8333#ifdef CONFIG_HOTPLUG_CPU
 8334
 8335/*
 8336 * Invoked immediately before the stopper thread is invoked to bring the
 8337 * CPU down completely. At this point all per CPU kthreads except the
 8338 * hotplug thread (current) and the stopper thread (inactive) have been
 8339 * either parked or have been unbound from the outgoing CPU. Ensure that
 8340 * any of those which might be on the way out are gone.
 8341 *
 8342 * If after this point a bound task is being woken on this CPU then the
 8343 * responsible hotplug callback has failed to do it's job.
 8344 * sched_cpu_dying() will catch it with the appropriate fireworks.
 8345 */
 8346int sched_cpu_wait_empty(unsigned int cpu)
 8347{
 8348	balance_hotplug_wait();
 8349	return 0;
 8350}
 8351
 8352/*
 8353 * Since this CPU is going 'away' for a while, fold any nr_active delta we
 8354 * might have. Called from the CPU stopper task after ensuring that the
 8355 * stopper is the last running task on the CPU, so nr_active count is
 8356 * stable. We need to take the tear-down thread which is calling this into
 8357 * account, so we hand in adjust = 1 to the load calculation.
 8358 *
 8359 * Also see the comment "Global load-average calculations".
 8360 */
 8361static void calc_load_migrate(struct rq *rq)
 8362{
 8363	long delta = calc_load_fold_active(rq, 1);
 8364
 8365	if (delta)
 8366		atomic_long_add(delta, &calc_load_tasks);
 8367}
 8368
 8369static void dump_rq_tasks(struct rq *rq, const char *loglvl)
 8370{
 8371	struct task_struct *g, *p;
 8372	int cpu = cpu_of(rq);
 8373
 8374	lockdep_assert_rq_held(rq);
 8375
 8376	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
 8377	for_each_process_thread(g, p) {
 8378		if (task_cpu(p) != cpu)
 8379			continue;
 8380
 8381		if (!task_on_rq_queued(p))
 8382			continue;
 8383
 8384		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
 8385	}
 8386}
 8387
 8388int sched_cpu_dying(unsigned int cpu)
 8389{
 8390	struct rq *rq = cpu_rq(cpu);
 8391	struct rq_flags rf;
 8392
 8393	/* Handle pending wakeups and then migrate everything off */
 8394	sched_tick_stop(cpu);
 8395
 8396	rq_lock_irqsave(rq, &rf);
 8397	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
 8398		WARN(true, "Dying CPU not properly vacated!");
 8399		dump_rq_tasks(rq, KERN_WARNING);
 8400	}
 8401	rq_unlock_irqrestore(rq, &rf);
 8402
 8403	calc_load_migrate(rq);
 8404	update_max_interval();
 8405	hrtick_clear(rq);
 8406	sched_core_cpu_dying(cpu);
 8407	return 0;
 8408}
 8409#endif
 8410
 8411void __init sched_init_smp(void)
 8412{
 8413	sched_init_numa(NUMA_NO_NODE);
 8414
 8415	/*
 8416	 * There's no userspace yet to cause hotplug operations; hence all the
 8417	 * CPU masks are stable and all blatant races in the below code cannot
 8418	 * happen.
 8419	 */
 8420	mutex_lock(&sched_domains_mutex);
 8421	sched_init_domains(cpu_active_mask);
 8422	mutex_unlock(&sched_domains_mutex);
 8423
 8424	/* Move init over to a non-isolated CPU */
 8425	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
 8426		BUG();
 8427	current->flags &= ~PF_NO_SETAFFINITY;
 8428	sched_init_granularity();
 8429
 8430	init_sched_rt_class();
 8431	init_sched_dl_class();
 8432
 8433	sched_smp_initialized = true;
 8434}
 8435
 8436static int __init migration_init(void)
 8437{
 8438	sched_cpu_starting(smp_processor_id());
 8439	return 0;
 8440}
 8441early_initcall(migration_init);
 8442
 8443#else
 8444void __init sched_init_smp(void)
 8445{
 8446	sched_init_granularity();
 8447}
 8448#endif /* CONFIG_SMP */
 8449
 8450int in_sched_functions(unsigned long addr)
 8451{
 8452	return in_lock_functions(addr) ||
 8453		(addr >= (unsigned long)__sched_text_start
 8454		&& addr < (unsigned long)__sched_text_end);
 8455}
 8456
 8457#ifdef CONFIG_CGROUP_SCHED
 8458/*
 8459 * Default task group.
 8460 * Every task in system belongs to this group at bootup.
 8461 */
 8462struct task_group root_task_group;
 8463LIST_HEAD(task_groups);
 8464
 8465/* Cacheline aligned slab cache for task_group */
 8466static struct kmem_cache *task_group_cache __ro_after_init;
 8467#endif
 8468
 8469void __init sched_init(void)
 8470{
 8471	unsigned long ptr = 0;
 8472	int i;
 8473
 8474	/* Make sure the linker didn't screw up */
 8475#ifdef CONFIG_SMP
 8476	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
 8477#endif
 8478	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
 8479	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
 8480	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
 8481#ifdef CONFIG_SCHED_CLASS_EXT
 8482	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
 8483	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
 8484#endif
 8485
 8486	wait_bit_init();
 8487
 8488#ifdef CONFIG_FAIR_GROUP_SCHED
 8489	ptr += 2 * nr_cpu_ids * sizeof(void **);
 8490#endif
 8491#ifdef CONFIG_RT_GROUP_SCHED
 8492	ptr += 2 * nr_cpu_ids * sizeof(void **);
 8493#endif
 8494	if (ptr) {
 8495		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
 8496
 8497#ifdef CONFIG_FAIR_GROUP_SCHED
 8498		root_task_group.se = (struct sched_entity **)ptr;
 8499		ptr += nr_cpu_ids * sizeof(void **);
 8500
 8501		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 8502		ptr += nr_cpu_ids * sizeof(void **);
 8503
 8504		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
 8505		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
 8506#endif /* CONFIG_FAIR_GROUP_SCHED */
 8507#ifdef CONFIG_EXT_GROUP_SCHED
 8508		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
 8509#endif /* CONFIG_EXT_GROUP_SCHED */
 8510#ifdef CONFIG_RT_GROUP_SCHED
 8511		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 8512		ptr += nr_cpu_ids * sizeof(void **);
 8513
 8514		root_task_group.rt_rq = (struct rt_rq **)ptr;
 8515		ptr += nr_cpu_ids * sizeof(void **);
 8516
 8517#endif /* CONFIG_RT_GROUP_SCHED */
 8518	}
 8519
 8520#ifdef CONFIG_SMP
 8521	init_defrootdomain();
 8522#endif
 8523
 8524#ifdef CONFIG_RT_GROUP_SCHED
 8525	init_rt_bandwidth(&root_task_group.rt_bandwidth,
 8526			global_rt_period(), global_rt_runtime());
 8527#endif /* CONFIG_RT_GROUP_SCHED */
 8528
 8529#ifdef CONFIG_CGROUP_SCHED
 8530	task_group_cache = KMEM_CACHE(task_group, 0);
 8531
 8532	list_add(&root_task_group.list, &task_groups);
 8533	INIT_LIST_HEAD(&root_task_group.children);
 8534	INIT_LIST_HEAD(&root_task_group.siblings);
 8535	autogroup_init(&init_task);
 8536#endif /* CONFIG_CGROUP_SCHED */
 8537
 8538	for_each_possible_cpu(i) {
 8539		struct rq *rq;
 8540
 8541		rq = cpu_rq(i);
 8542		raw_spin_lock_init(&rq->__lock);
 8543		rq->nr_running = 0;
 8544		rq->calc_load_active = 0;
 8545		rq->calc_load_update = jiffies + LOAD_FREQ;
 8546		init_cfs_rq(&rq->cfs);
 8547		init_rt_rq(&rq->rt);
 8548		init_dl_rq(&rq->dl);
 8549#ifdef CONFIG_FAIR_GROUP_SCHED
 8550		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 8551		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 8552		/*
 8553		 * How much CPU bandwidth does root_task_group get?
 8554		 *
 8555		 * In case of task-groups formed through the cgroup filesystem, it
 8556		 * gets 100% of the CPU resources in the system. This overall
 8557		 * system CPU resource is divided among the tasks of
 8558		 * root_task_group and its child task-groups in a fair manner,
 8559		 * based on each entity's (task or task-group's) weight
 8560		 * (se->load.weight).
 8561		 *
 8562		 * In other words, if root_task_group has 10 tasks of weight
 8563		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
 8564		 * then A0's share of the CPU resource is:
 8565		 *
 8566		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
 8567		 *
 8568		 * We achieve this by letting root_task_group's tasks sit
 8569		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
 8570		 */
 8571		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
 8572#endif /* CONFIG_FAIR_GROUP_SCHED */
 8573
 8574#ifdef CONFIG_RT_GROUP_SCHED
 8575		/*
 8576		 * This is required for init cpu because rt.c:__enable_runtime()
 8577		 * starts working after scheduler_running, which is not the case
 8578		 * yet.
 8579		 */
 8580		rq->rt.rt_runtime = global_rt_runtime();
 8581		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
 8582#endif
 8583#ifdef CONFIG_SMP
 8584		rq->sd = NULL;
 8585		rq->rd = NULL;
 8586		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
 8587		rq->balance_callback = &balance_push_callback;
 8588		rq->active_balance = 0;
 8589		rq->next_balance = jiffies;
 8590		rq->push_cpu = 0;
 8591		rq->cpu = i;
 8592		rq->online = 0;
 8593		rq->idle_stamp = 0;
 8594		rq->avg_idle = 2*sysctl_sched_migration_cost;
 8595		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
 8596
 8597		INIT_LIST_HEAD(&rq->cfs_tasks);
 8598
 8599		rq_attach_root(rq, &def_root_domain);
 8600#ifdef CONFIG_NO_HZ_COMMON
 8601		rq->last_blocked_load_update_tick = jiffies;
 8602		atomic_set(&rq->nohz_flags, 0);
 8603
 8604		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
 8605#endif
 8606#ifdef CONFIG_HOTPLUG_CPU
 8607		rcuwait_init(&rq->hotplug_wait);
 8608#endif
 8609#endif /* CONFIG_SMP */
 8610		hrtick_rq_init(rq);
 8611		atomic_set(&rq->nr_iowait, 0);
 8612		fair_server_init(rq);
 8613
 8614#ifdef CONFIG_SCHED_CORE
 8615		rq->core = rq;
 8616		rq->core_pick = NULL;
 8617		rq->core_dl_server = NULL;
 8618		rq->core_enabled = 0;
 8619		rq->core_tree = RB_ROOT;
 8620		rq->core_forceidle_count = 0;
 8621		rq->core_forceidle_occupation = 0;
 8622		rq->core_forceidle_start = 0;
 8623
 8624		rq->core_cookie = 0UL;
 8625#endif
 8626		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
 8627	}
 8628
 8629	set_load_weight(&init_task, false);
 8630	init_task.se.slice = sysctl_sched_base_slice,
 8631
 8632	/*
 8633	 * The boot idle thread does lazy MMU switching as well:
 8634	 */
 8635	mmgrab_lazy_tlb(&init_mm);
 8636	enter_lazy_tlb(&init_mm, current);
 8637
 8638	/*
 8639	 * The idle task doesn't need the kthread struct to function, but it
 8640	 * is dressed up as a per-CPU kthread and thus needs to play the part
 8641	 * if we want to avoid special-casing it in code that deals with per-CPU
 8642	 * kthreads.
 8643	 */
 8644	WARN_ON(!set_kthread_struct(current));
 8645
 8646	/*
 8647	 * Make us the idle thread. Technically, schedule() should not be
 8648	 * called from this thread, however somewhere below it might be,
 8649	 * but because we are the idle thread, we just pick up running again
 8650	 * when this runqueue becomes "idle".
 8651	 */
 8652	__sched_fork(0, current);
 8653	init_idle(current, smp_processor_id());
 8654
 8655	calc_load_update = jiffies + LOAD_FREQ;
 8656
 8657#ifdef CONFIG_SMP
 8658	idle_thread_set_boot_cpu();
 8659	balance_push_set(smp_processor_id(), false);
 8660#endif
 8661	init_sched_fair_class();
 8662	init_sched_ext_class();
 8663
 8664	psi_init();
 8665
 8666	init_uclamp();
 8667
 8668	preempt_dynamic_init();
 8669
 8670	scheduler_running = 1;
 8671}
 8672
 8673#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 8674
 8675void __might_sleep(const char *file, int line)
 8676{
 8677	unsigned int state = get_current_state();
 8678	/*
 8679	 * Blocking primitives will set (and therefore destroy) current->state,
 8680	 * since we will exit with TASK_RUNNING make sure we enter with it,
 8681	 * otherwise we will destroy state.
 8682	 */
 8683	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
 8684			"do not call blocking ops when !TASK_RUNNING; "
 8685			"state=%x set at [<%p>] %pS\n", state,
 8686			(void *)current->task_state_change,
 8687			(void *)current->task_state_change);
 8688
 8689	__might_resched(file, line, 0);
 8690}
 8691EXPORT_SYMBOL(__might_sleep);
 8692
 8693static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
 8694{
 8695	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
 8696		return;
 8697
 8698	if (preempt_count() == preempt_offset)
 8699		return;
 8700
 8701	pr_err("Preemption disabled at:");
 8702	print_ip_sym(KERN_ERR, ip);
 8703}
 8704
 8705static inline bool resched_offsets_ok(unsigned int offsets)
 8706{
 8707	unsigned int nested = preempt_count();
 8708
 8709	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
 8710
 8711	return nested == offsets;
 8712}
 8713
 8714void __might_resched(const char *file, int line, unsigned int offsets)
 8715{
 8716	/* Ratelimiting timestamp: */
 8717	static unsigned long prev_jiffy;
 8718
 8719	unsigned long preempt_disable_ip;
 8720
 8721	/* WARN_ON_ONCE() by default, no rate limit required: */
 8722	rcu_sleep_check();
 8723
 8724	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
 8725	     !is_idle_task(current) && !current->non_block_count) ||
 8726	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
 8727	    oops_in_progress)
 8728		return;
 8729
 8730	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 8731		return;
 8732	prev_jiffy = jiffies;
 8733
 8734	/* Save this before calling printk(), since that will clobber it: */
 8735	preempt_disable_ip = get_preempt_disable_ip(current);
 8736
 8737	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
 8738	       file, line);
 8739	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
 8740	       in_atomic(), irqs_disabled(), current->non_block_count,
 8741	       current->pid, current->comm);
 8742	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
 8743	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
 8744
 8745	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
 8746		pr_err("RCU nest depth: %d, expected: %u\n",
 8747		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
 8748	}
 8749
 8750	if (task_stack_end_corrupted(current))
 8751		pr_emerg("Thread overran stack, or stack corrupted\n");
 8752
 8753	debug_show_held_locks(current);
 8754	if (irqs_disabled())
 8755		print_irqtrace_events(current);
 8756
 8757	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
 8758				 preempt_disable_ip);
 8759
 8760	dump_stack();
 8761	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 8762}
 8763EXPORT_SYMBOL(__might_resched);
 8764
 8765void __cant_sleep(const char *file, int line, int preempt_offset)
 8766{
 8767	static unsigned long prev_jiffy;
 8768
 8769	if (irqs_disabled())
 8770		return;
 8771
 8772	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
 8773		return;
 8774
 8775	if (preempt_count() > preempt_offset)
 8776		return;
 8777
 8778	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 8779		return;
 8780	prev_jiffy = jiffies;
 8781
 8782	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
 8783	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
 8784			in_atomic(), irqs_disabled(),
 8785			current->pid, current->comm);
 8786
 8787	debug_show_held_locks(current);
 8788	dump_stack();
 8789	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 8790}
 8791EXPORT_SYMBOL_GPL(__cant_sleep);
 8792
 8793#ifdef CONFIG_SMP
 8794void __cant_migrate(const char *file, int line)
 8795{
 8796	static unsigned long prev_jiffy;
 8797
 8798	if (irqs_disabled())
 8799		return;
 8800
 8801	if (is_migration_disabled(current))
 8802		return;
 8803
 8804	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
 8805		return;
 8806
 8807	if (preempt_count() > 0)
 8808		return;
 8809
 8810	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 8811		return;
 8812	prev_jiffy = jiffies;
 8813
 8814	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
 8815	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
 8816	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
 8817	       current->pid, current->comm);
 8818
 8819	debug_show_held_locks(current);
 8820	dump_stack();
 8821	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 8822}
 8823EXPORT_SYMBOL_GPL(__cant_migrate);
 8824#endif
 8825#endif
 8826
 8827#ifdef CONFIG_MAGIC_SYSRQ
 8828void normalize_rt_tasks(void)
 8829{
 8830	struct task_struct *g, *p;
 8831	struct sched_attr attr = {
 8832		.sched_policy = SCHED_NORMAL,
 8833	};
 8834
 8835	read_lock(&tasklist_lock);
 8836	for_each_process_thread(g, p) {
 8837		/*
 8838		 * Only normalize user tasks:
 8839		 */
 8840		if (p->flags & PF_KTHREAD)
 8841			continue;
 8842
 8843		p->se.exec_start = 0;
 8844		schedstat_set(p->stats.wait_start,  0);
 8845		schedstat_set(p->stats.sleep_start, 0);
 8846		schedstat_set(p->stats.block_start, 0);
 8847
 8848		if (!rt_or_dl_task(p)) {
 8849			/*
 8850			 * Renice negative nice level userspace
 8851			 * tasks back to 0:
 8852			 */
 8853			if (task_nice(p) < 0)
 8854				set_user_nice(p, 0);
 8855			continue;
 8856		}
 8857
 8858		__sched_setscheduler(p, &attr, false, false);
 8859	}
 8860	read_unlock(&tasklist_lock);
 8861}
 8862
 8863#endif /* CONFIG_MAGIC_SYSRQ */
 8864
 8865#if defined(CONFIG_KGDB_KDB)
 8866/*
 8867 * These functions are only useful for KDB.
 8868 *
 8869 * They can only be called when the whole system has been
 8870 * stopped - every CPU needs to be quiescent, and no scheduling
 8871 * activity can take place. Using them for anything else would
 8872 * be a serious bug, and as a result, they aren't even visible
 8873 * under any other configuration.
 8874 */
 8875
 8876/**
 8877 * curr_task - return the current task for a given CPU.
 8878 * @cpu: the processor in question.
 8879 *
 8880 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 8881 *
 8882 * Return: The current task for @cpu.
 8883 */
 8884struct task_struct *curr_task(int cpu)
 8885{
 8886	return cpu_curr(cpu);
 8887}
 8888
 8889#endif /* defined(CONFIG_KGDB_KDB) */
 8890
 8891#ifdef CONFIG_CGROUP_SCHED
 8892/* task_group_lock serializes the addition/removal of task groups */
 8893static DEFINE_SPINLOCK(task_group_lock);
 8894
 8895static inline void alloc_uclamp_sched_group(struct task_group *tg,
 8896					    struct task_group *parent)
 8897{
 8898#ifdef CONFIG_UCLAMP_TASK_GROUP
 8899	enum uclamp_id clamp_id;
 8900
 8901	for_each_clamp_id(clamp_id) {
 8902		uclamp_se_set(&tg->uclamp_req[clamp_id],
 8903			      uclamp_none(clamp_id), false);
 8904		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
 8905	}
 8906#endif
 8907}
 8908
 8909static void sched_free_group(struct task_group *tg)
 8910{
 8911	free_fair_sched_group(tg);
 8912	free_rt_sched_group(tg);
 8913	autogroup_free(tg);
 8914	kmem_cache_free(task_group_cache, tg);
 8915}
 8916
 8917static void sched_free_group_rcu(struct rcu_head *rcu)
 8918{
 8919	sched_free_group(container_of(rcu, struct task_group, rcu));
 8920}
 8921
 8922static void sched_unregister_group(struct task_group *tg)
 8923{
 8924	unregister_fair_sched_group(tg);
 8925	unregister_rt_sched_group(tg);
 8926	/*
 8927	 * We have to wait for yet another RCU grace period to expire, as
 8928	 * print_cfs_stats() might run concurrently.
 8929	 */
 8930	call_rcu(&tg->rcu, sched_free_group_rcu);
 8931}
 8932
 8933/* allocate runqueue etc for a new task group */
 8934struct task_group *sched_create_group(struct task_group *parent)
 8935{
 8936	struct task_group *tg;
 8937
 8938	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
 8939	if (!tg)
 8940		return ERR_PTR(-ENOMEM);
 8941
 8942	if (!alloc_fair_sched_group(tg, parent))
 8943		goto err;
 8944
 8945	if (!alloc_rt_sched_group(tg, parent))
 8946		goto err;
 8947
 8948	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
 8949	alloc_uclamp_sched_group(tg, parent);
 8950
 8951	return tg;
 8952
 8953err:
 8954	sched_free_group(tg);
 8955	return ERR_PTR(-ENOMEM);
 8956}
 8957
 8958void sched_online_group(struct task_group *tg, struct task_group *parent)
 8959{
 8960	unsigned long flags;
 8961
 8962	spin_lock_irqsave(&task_group_lock, flags);
 8963	list_add_rcu(&tg->list, &task_groups);
 8964
 8965	/* Root should already exist: */
 8966	WARN_ON(!parent);
 8967
 8968	tg->parent = parent;
 8969	INIT_LIST_HEAD(&tg->children);
 8970	list_add_rcu(&tg->siblings, &parent->children);
 8971	spin_unlock_irqrestore(&task_group_lock, flags);
 8972
 8973	online_fair_sched_group(tg);
 8974}
 8975
 8976/* RCU callback to free various structures associated with a task group */
 8977static void sched_unregister_group_rcu(struct rcu_head *rhp)
 8978{
 8979	/* Now it should be safe to free those cfs_rqs: */
 8980	sched_unregister_group(container_of(rhp, struct task_group, rcu));
 8981}
 8982
 8983void sched_destroy_group(struct task_group *tg)
 8984{
 8985	/* Wait for possible concurrent references to cfs_rqs complete: */
 8986	call_rcu(&tg->rcu, sched_unregister_group_rcu);
 8987}
 8988
 8989void sched_release_group(struct task_group *tg)
 8990{
 8991	unsigned long flags;
 8992
 8993	/*
 8994	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
 8995	 * sched_cfs_period_timer()).
 8996	 *
 8997	 * For this to be effective, we have to wait for all pending users of
 8998	 * this task group to leave their RCU critical section to ensure no new
 8999	 * user will see our dying task group any more. Specifically ensure
 9000	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
 9001	 *
 9002	 * We therefore defer calling unregister_fair_sched_group() to
 9003	 * sched_unregister_group() which is guarantied to get called only after the
 9004	 * current RCU grace period has expired.
 9005	 */
 9006	spin_lock_irqsave(&task_group_lock, flags);
 9007	list_del_rcu(&tg->list);
 9008	list_del_rcu(&tg->siblings);
 9009	spin_unlock_irqrestore(&task_group_lock, flags);
 9010}
 9011
 9012static struct task_group *sched_get_task_group(struct task_struct *tsk)
 9013{
 9014	struct task_group *tg;
 9015
 9016	/*
 9017	 * All callers are synchronized by task_rq_lock(); we do not use RCU
 9018	 * which is pointless here. Thus, we pass "true" to task_css_check()
 9019	 * to prevent lockdep warnings.
 9020	 */
 9021	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
 9022			  struct task_group, css);
 9023	tg = autogroup_task_group(tsk, tg);
 9024
 9025	return tg;
 9026}
 9027
 9028static void sched_change_group(struct task_struct *tsk, struct task_group *group)
 9029{
 9030	tsk->sched_task_group = group;
 9031
 9032#ifdef CONFIG_FAIR_GROUP_SCHED
 9033	if (tsk->sched_class->task_change_group)
 9034		tsk->sched_class->task_change_group(tsk);
 9035	else
 9036#endif
 9037		set_task_rq(tsk, task_cpu(tsk));
 9038}
 9039
 9040/*
 9041 * Change task's runqueue when it moves between groups.
 9042 *
 9043 * The caller of this function should have put the task in its new group by
 9044 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 9045 * its new group.
 9046 */
 9047void sched_move_task(struct task_struct *tsk, bool for_autogroup)
 9048{
 9049	int queued, running, queue_flags =
 9050		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 9051	struct task_group *group;
 9052	struct rq *rq;
 9053
 9054	CLASS(task_rq_lock, rq_guard)(tsk);
 9055	rq = rq_guard.rq;
 9056
 9057	/*
 9058	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
 9059	 * group changes.
 9060	 */
 9061	group = sched_get_task_group(tsk);
 9062	if (group == tsk->sched_task_group)
 9063		return;
 9064
 9065	update_rq_clock(rq);
 9066
 9067	running = task_current_donor(rq, tsk);
 9068	queued = task_on_rq_queued(tsk);
 9069
 9070	if (queued)
 9071		dequeue_task(rq, tsk, queue_flags);
 9072	if (running)
 9073		put_prev_task(rq, tsk);
 9074
 9075	sched_change_group(tsk, group);
 9076	if (!for_autogroup)
 9077		scx_cgroup_move_task(tsk);
 9078
 9079	if (queued)
 9080		enqueue_task(rq, tsk, queue_flags);
 9081	if (running) {
 9082		set_next_task(rq, tsk);
 9083		/*
 9084		 * After changing group, the running task may have joined a
 9085		 * throttled one but it's still the running task. Trigger a
 9086		 * resched to make sure that task can still run.
 9087		 */
 9088		resched_curr(rq);
 9089	}
 9090}
 9091
 9092static struct cgroup_subsys_state *
 9093cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 9094{
 9095	struct task_group *parent = css_tg(parent_css);
 9096	struct task_group *tg;
 9097
 9098	if (!parent) {
 9099		/* This is early initialization for the top cgroup */
 9100		return &root_task_group.css;
 9101	}
 9102
 9103	tg = sched_create_group(parent);
 9104	if (IS_ERR(tg))
 9105		return ERR_PTR(-ENOMEM);
 9106
 9107	return &tg->css;
 9108}
 9109
 9110/* Expose task group only after completing cgroup initialization */
 9111static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
 9112{
 9113	struct task_group *tg = css_tg(css);
 9114	struct task_group *parent = css_tg(css->parent);
 9115	int ret;
 9116
 9117	ret = scx_tg_online(tg);
 9118	if (ret)
 9119		return ret;
 9120
 9121	if (parent)
 9122		sched_online_group(tg, parent);
 9123
 9124#ifdef CONFIG_UCLAMP_TASK_GROUP
 9125	/* Propagate the effective uclamp value for the new group */
 9126	guard(mutex)(&uclamp_mutex);
 9127	guard(rcu)();
 9128	cpu_util_update_eff(css);
 9129#endif
 9130
 9131	return 0;
 9132}
 9133
 9134static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
 9135{
 9136	struct task_group *tg = css_tg(css);
 9137
 9138	scx_tg_offline(tg);
 9139}
 9140
 9141static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
 9142{
 9143	struct task_group *tg = css_tg(css);
 9144
 9145	sched_release_group(tg);
 9146}
 9147
 9148static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
 9149{
 9150	struct task_group *tg = css_tg(css);
 9151
 9152	/*
 9153	 * Relies on the RCU grace period between css_released() and this.
 9154	 */
 9155	sched_unregister_group(tg);
 9156}
 9157
 9158static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
 9159{
 9160#ifdef CONFIG_RT_GROUP_SCHED
 9161	struct task_struct *task;
 9162	struct cgroup_subsys_state *css;
 9163
 9164	cgroup_taskset_for_each(task, css, tset) {
 9165		if (!sched_rt_can_attach(css_tg(css), task))
 9166			return -EINVAL;
 9167	}
 9168#endif
 9169	return scx_cgroup_can_attach(tset);
 9170}
 9171
 9172static void cpu_cgroup_attach(struct cgroup_taskset *tset)
 9173{
 9174	struct task_struct *task;
 9175	struct cgroup_subsys_state *css;
 9176
 9177	cgroup_taskset_for_each(task, css, tset)
 9178		sched_move_task(task, false);
 9179
 9180	scx_cgroup_finish_attach();
 9181}
 9182
 9183static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
 9184{
 9185	scx_cgroup_cancel_attach(tset);
 9186}
 9187
 9188#ifdef CONFIG_UCLAMP_TASK_GROUP
 9189static void cpu_util_update_eff(struct cgroup_subsys_state *css)
 9190{
 9191	struct cgroup_subsys_state *top_css = css;
 9192	struct uclamp_se *uc_parent = NULL;
 9193	struct uclamp_se *uc_se = NULL;
 9194	unsigned int eff[UCLAMP_CNT];
 9195	enum uclamp_id clamp_id;
 9196	unsigned int clamps;
 9197
 9198	lockdep_assert_held(&uclamp_mutex);
 9199	SCHED_WARN_ON(!rcu_read_lock_held());
 9200
 9201	css_for_each_descendant_pre(css, top_css) {
 9202		uc_parent = css_tg(css)->parent
 9203			? css_tg(css)->parent->uclamp : NULL;
 9204
 9205		for_each_clamp_id(clamp_id) {
 9206			/* Assume effective clamps matches requested clamps */
 9207			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
 9208			/* Cap effective clamps with parent's effective clamps */
 9209			if (uc_parent &&
 9210			    eff[clamp_id] > uc_parent[clamp_id].value) {
 9211				eff[clamp_id] = uc_parent[clamp_id].value;
 9212			}
 9213		}
 9214		/* Ensure protection is always capped by limit */
 9215		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
 9216
 9217		/* Propagate most restrictive effective clamps */
 9218		clamps = 0x0;
 9219		uc_se = css_tg(css)->uclamp;
 9220		for_each_clamp_id(clamp_id) {
 9221			if (eff[clamp_id] == uc_se[clamp_id].value)
 9222				continue;
 9223			uc_se[clamp_id].value = eff[clamp_id];
 9224			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
 9225			clamps |= (0x1 << clamp_id);
 9226		}
 9227		if (!clamps) {
 9228			css = css_rightmost_descendant(css);
 9229			continue;
 9230		}
 9231
 9232		/* Immediately update descendants RUNNABLE tasks */
 9233		uclamp_update_active_tasks(css);
 9234	}
 9235}
 9236
 9237/*
 9238 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
 9239 * C expression. Since there is no way to convert a macro argument (N) into a
 9240 * character constant, use two levels of macros.
 9241 */
 9242#define _POW10(exp) ((unsigned int)1e##exp)
 9243#define POW10(exp) _POW10(exp)
 9244
 9245struct uclamp_request {
 9246#define UCLAMP_PERCENT_SHIFT	2
 9247#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
 9248	s64 percent;
 9249	u64 util;
 9250	int ret;
 9251};
 9252
 9253static inline struct uclamp_request
 9254capacity_from_percent(char *buf)
 9255{
 9256	struct uclamp_request req = {
 9257		.percent = UCLAMP_PERCENT_SCALE,
 9258		.util = SCHED_CAPACITY_SCALE,
 9259		.ret = 0,
 9260	};
 9261
 9262	buf = strim(buf);
 9263	if (strcmp(buf, "max")) {
 9264		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
 9265					     &req.percent);
 9266		if (req.ret)
 9267			return req;
 9268		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
 9269			req.ret = -ERANGE;
 9270			return req;
 9271		}
 9272
 9273		req.util = req.percent << SCHED_CAPACITY_SHIFT;
 9274		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
 9275	}
 9276
 9277	return req;
 9278}
 9279
 9280static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
 9281				size_t nbytes, loff_t off,
 9282				enum uclamp_id clamp_id)
 9283{
 9284	struct uclamp_request req;
 9285	struct task_group *tg;
 9286
 9287	req = capacity_from_percent(buf);
 9288	if (req.ret)
 9289		return req.ret;
 9290
 9291	static_branch_enable(&sched_uclamp_used);
 9292
 9293	guard(mutex)(&uclamp_mutex);
 9294	guard(rcu)();
 9295
 9296	tg = css_tg(of_css(of));
 9297	if (tg->uclamp_req[clamp_id].value != req.util)
 9298		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
 9299
 9300	/*
 9301	 * Because of not recoverable conversion rounding we keep track of the
 9302	 * exact requested value
 9303	 */
 9304	tg->uclamp_pct[clamp_id] = req.percent;
 9305
 9306	/* Update effective clamps to track the most restrictive value */
 9307	cpu_util_update_eff(of_css(of));
 9308
 9309	return nbytes;
 9310}
 9311
 9312static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
 9313				    char *buf, size_t nbytes,
 9314				    loff_t off)
 9315{
 9316	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
 9317}
 9318
 9319static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
 9320				    char *buf, size_t nbytes,
 9321				    loff_t off)
 9322{
 9323	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
 9324}
 9325
 9326static inline void cpu_uclamp_print(struct seq_file *sf,
 9327				    enum uclamp_id clamp_id)
 9328{
 9329	struct task_group *tg;
 9330	u64 util_clamp;
 9331	u64 percent;
 9332	u32 rem;
 9333
 9334	scoped_guard (rcu) {
 9335		tg = css_tg(seq_css(sf));
 9336		util_clamp = tg->uclamp_req[clamp_id].value;
 9337	}
 9338
 9339	if (util_clamp == SCHED_CAPACITY_SCALE) {
 9340		seq_puts(sf, "max\n");
 9341		return;
 9342	}
 9343
 9344	percent = tg->uclamp_pct[clamp_id];
 9345	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
 9346	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
 9347}
 9348
 9349static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
 9350{
 9351	cpu_uclamp_print(sf, UCLAMP_MIN);
 9352	return 0;
 9353}
 9354
 9355static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
 9356{
 9357	cpu_uclamp_print(sf, UCLAMP_MAX);
 9358	return 0;
 9359}
 9360#endif /* CONFIG_UCLAMP_TASK_GROUP */
 9361
 9362#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9363static unsigned long tg_weight(struct task_group *tg)
 9364{
 9365#ifdef CONFIG_FAIR_GROUP_SCHED
 9366	return scale_load_down(tg->shares);
 9367#else
 9368	return sched_weight_from_cgroup(tg->scx_weight);
 9369#endif
 9370}
 9371
 9372static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
 9373				struct cftype *cftype, u64 shareval)
 9374{
 9375	int ret;
 9376
 9377	if (shareval > scale_load_down(ULONG_MAX))
 9378		shareval = MAX_SHARES;
 9379	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
 9380	if (!ret)
 9381		scx_group_set_weight(css_tg(css),
 9382				     sched_weight_to_cgroup(shareval));
 9383	return ret;
 9384}
 9385
 9386static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
 9387			       struct cftype *cft)
 9388{
 9389	return tg_weight(css_tg(css));
 9390}
 9391#endif /* CONFIG_GROUP_SCHED_WEIGHT */
 9392
 9393#ifdef CONFIG_CFS_BANDWIDTH
 9394static DEFINE_MUTEX(cfs_constraints_mutex);
 9395
 9396const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
 9397static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 9398/* More than 203 days if BW_SHIFT equals 20. */
 9399static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
 9400
 9401static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
 9402
 9403static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
 9404				u64 burst)
 9405{
 9406	int i, ret = 0, runtime_enabled, runtime_was_enabled;
 9407	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9408
 9409	if (tg == &root_task_group)
 9410		return -EINVAL;
 9411
 9412	/*
 9413	 * Ensure we have at some amount of bandwidth every period.  This is
 9414	 * to prevent reaching a state of large arrears when throttled via
 9415	 * entity_tick() resulting in prolonged exit starvation.
 9416	 */
 9417	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
 9418		return -EINVAL;
 9419
 9420	/*
 9421	 * Likewise, bound things on the other side by preventing insane quota
 9422	 * periods.  This also allows us to normalize in computing quota
 9423	 * feasibility.
 9424	 */
 9425	if (period > max_cfs_quota_period)
 9426		return -EINVAL;
 9427
 9428	/*
 9429	 * Bound quota to defend quota against overflow during bandwidth shift.
 9430	 */
 9431	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
 9432		return -EINVAL;
 9433
 9434	if (quota != RUNTIME_INF && (burst > quota ||
 9435				     burst + quota > max_cfs_runtime))
 9436		return -EINVAL;
 9437
 9438	/*
 9439	 * Prevent race between setting of cfs_rq->runtime_enabled and
 9440	 * unthrottle_offline_cfs_rqs().
 9441	 */
 9442	guard(cpus_read_lock)();
 9443	guard(mutex)(&cfs_constraints_mutex);
 9444
 9445	ret = __cfs_schedulable(tg, period, quota);
 9446	if (ret)
 9447		return ret;
 9448
 9449	runtime_enabled = quota != RUNTIME_INF;
 9450	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
 9451	/*
 9452	 * If we need to toggle cfs_bandwidth_used, off->on must occur
 9453	 * before making related changes, and on->off must occur afterwards
 9454	 */
 9455	if (runtime_enabled && !runtime_was_enabled)
 9456		cfs_bandwidth_usage_inc();
 9457
 9458	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
 9459		cfs_b->period = ns_to_ktime(period);
 9460		cfs_b->quota = quota;
 9461		cfs_b->burst = burst;
 9462
 9463		__refill_cfs_bandwidth_runtime(cfs_b);
 9464
 9465		/*
 9466		 * Restart the period timer (if active) to handle new
 9467		 * period expiry:
 9468		 */
 9469		if (runtime_enabled)
 9470			start_cfs_bandwidth(cfs_b);
 9471	}
 9472
 9473	for_each_online_cpu(i) {
 9474		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
 9475		struct rq *rq = cfs_rq->rq;
 9476
 9477		guard(rq_lock_irq)(rq);
 9478		cfs_rq->runtime_enabled = runtime_enabled;
 9479		cfs_rq->runtime_remaining = 0;
 9480
 9481		if (cfs_rq->throttled)
 9482			unthrottle_cfs_rq(cfs_rq);
 9483	}
 9484
 9485	if (runtime_was_enabled && !runtime_enabled)
 9486		cfs_bandwidth_usage_dec();
 9487
 9488	return 0;
 9489}
 9490
 9491static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
 9492{
 9493	u64 quota, period, burst;
 9494
 9495	period = ktime_to_ns(tg->cfs_bandwidth.period);
 9496	burst = tg->cfs_bandwidth.burst;
 9497	if (cfs_quota_us < 0)
 9498		quota = RUNTIME_INF;
 9499	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
 9500		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
 9501	else
 9502		return -EINVAL;
 9503
 9504	return tg_set_cfs_bandwidth(tg, period, quota, burst);
 9505}
 9506
 9507static long tg_get_cfs_quota(struct task_group *tg)
 9508{
 9509	u64 quota_us;
 9510
 9511	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
 9512		return -1;
 9513
 9514	quota_us = tg->cfs_bandwidth.quota;
 9515	do_div(quota_us, NSEC_PER_USEC);
 9516
 9517	return quota_us;
 9518}
 9519
 9520static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
 9521{
 9522	u64 quota, period, burst;
 9523
 9524	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
 9525		return -EINVAL;
 9526
 9527	period = (u64)cfs_period_us * NSEC_PER_USEC;
 9528	quota = tg->cfs_bandwidth.quota;
 9529	burst = tg->cfs_bandwidth.burst;
 9530
 9531	return tg_set_cfs_bandwidth(tg, period, quota, burst);
 9532}
 9533
 9534static long tg_get_cfs_period(struct task_group *tg)
 9535{
 9536	u64 cfs_period_us;
 9537
 9538	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
 9539	do_div(cfs_period_us, NSEC_PER_USEC);
 9540
 9541	return cfs_period_us;
 9542}
 9543
 9544static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
 9545{
 9546	u64 quota, period, burst;
 9547
 9548	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
 9549		return -EINVAL;
 9550
 9551	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
 9552	period = ktime_to_ns(tg->cfs_bandwidth.period);
 9553	quota = tg->cfs_bandwidth.quota;
 9554
 9555	return tg_set_cfs_bandwidth(tg, period, quota, burst);
 9556}
 9557
 9558static long tg_get_cfs_burst(struct task_group *tg)
 9559{
 9560	u64 burst_us;
 9561
 9562	burst_us = tg->cfs_bandwidth.burst;
 9563	do_div(burst_us, NSEC_PER_USEC);
 9564
 9565	return burst_us;
 9566}
 9567
 9568static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
 9569				  struct cftype *cft)
 9570{
 9571	return tg_get_cfs_quota(css_tg(css));
 9572}
 9573
 9574static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
 9575				   struct cftype *cftype, s64 cfs_quota_us)
 9576{
 9577	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
 9578}
 9579
 9580static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
 9581				   struct cftype *cft)
 9582{
 9583	return tg_get_cfs_period(css_tg(css));
 9584}
 9585
 9586static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
 9587				    struct cftype *cftype, u64 cfs_period_us)
 9588{
 9589	return tg_set_cfs_period(css_tg(css), cfs_period_us);
 9590}
 9591
 9592static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
 9593				  struct cftype *cft)
 9594{
 9595	return tg_get_cfs_burst(css_tg(css));
 9596}
 9597
 9598static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
 9599				   struct cftype *cftype, u64 cfs_burst_us)
 9600{
 9601	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
 9602}
 9603
 9604struct cfs_schedulable_data {
 9605	struct task_group *tg;
 9606	u64 period, quota;
 9607};
 9608
 9609/*
 9610 * normalize group quota/period to be quota/max_period
 9611 * note: units are usecs
 9612 */
 9613static u64 normalize_cfs_quota(struct task_group *tg,
 9614			       struct cfs_schedulable_data *d)
 9615{
 9616	u64 quota, period;
 9617
 9618	if (tg == d->tg) {
 9619		period = d->period;
 9620		quota = d->quota;
 9621	} else {
 9622		period = tg_get_cfs_period(tg);
 9623		quota = tg_get_cfs_quota(tg);
 9624	}
 9625
 9626	/* note: these should typically be equivalent */
 9627	if (quota == RUNTIME_INF || quota == -1)
 9628		return RUNTIME_INF;
 9629
 9630	return to_ratio(period, quota);
 9631}
 9632
 9633static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
 9634{
 9635	struct cfs_schedulable_data *d = data;
 9636	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9637	s64 quota = 0, parent_quota = -1;
 9638
 9639	if (!tg->parent) {
 9640		quota = RUNTIME_INF;
 9641	} else {
 9642		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
 9643
 9644		quota = normalize_cfs_quota(tg, d);
 9645		parent_quota = parent_b->hierarchical_quota;
 9646
 9647		/*
 9648		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
 9649		 * always take the non-RUNTIME_INF min.  On cgroup1, only
 9650		 * inherit when no limit is set. In both cases this is used
 9651		 * by the scheduler to determine if a given CFS task has a
 9652		 * bandwidth constraint at some higher level.
 9653		 */
 9654		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
 9655			if (quota == RUNTIME_INF)
 9656				quota = parent_quota;
 9657			else if (parent_quota != RUNTIME_INF)
 9658				quota = min(quota, parent_quota);
 9659		} else {
 9660			if (quota == RUNTIME_INF)
 9661				quota = parent_quota;
 9662			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
 9663				return -EINVAL;
 9664		}
 9665	}
 9666	cfs_b->hierarchical_quota = quota;
 9667
 9668	return 0;
 9669}
 9670
 9671static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
 9672{
 9673	struct cfs_schedulable_data data = {
 9674		.tg = tg,
 9675		.period = period,
 9676		.quota = quota,
 9677	};
 9678
 9679	if (quota != RUNTIME_INF) {
 9680		do_div(data.period, NSEC_PER_USEC);
 9681		do_div(data.quota, NSEC_PER_USEC);
 9682	}
 9683
 9684	guard(rcu)();
 9685	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
 9686}
 9687
 9688static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
 9689{
 9690	struct task_group *tg = css_tg(seq_css(sf));
 9691	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9692
 9693	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
 9694	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
 9695	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
 9696
 9697	if (schedstat_enabled() && tg != &root_task_group) {
 9698		struct sched_statistics *stats;
 9699		u64 ws = 0;
 9700		int i;
 9701
 9702		for_each_possible_cpu(i) {
 9703			stats = __schedstats_from_se(tg->se[i]);
 9704			ws += schedstat_val(stats->wait_sum);
 9705		}
 9706
 9707		seq_printf(sf, "wait_sum %llu\n", ws);
 9708	}
 9709
 9710	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
 9711	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
 9712
 9713	return 0;
 9714}
 9715
 9716static u64 throttled_time_self(struct task_group *tg)
 9717{
 9718	int i;
 9719	u64 total = 0;
 9720
 9721	for_each_possible_cpu(i) {
 9722		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
 9723	}
 9724
 9725	return total;
 9726}
 9727
 9728static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
 9729{
 9730	struct task_group *tg = css_tg(seq_css(sf));
 9731
 9732	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
 9733
 9734	return 0;
 9735}
 9736#endif /* CONFIG_CFS_BANDWIDTH */
 9737
 9738#ifdef CONFIG_RT_GROUP_SCHED
 9739static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
 9740				struct cftype *cft, s64 val)
 9741{
 9742	return sched_group_set_rt_runtime(css_tg(css), val);
 9743}
 9744
 9745static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
 9746			       struct cftype *cft)
 9747{
 9748	return sched_group_rt_runtime(css_tg(css));
 9749}
 9750
 9751static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
 9752				    struct cftype *cftype, u64 rt_period_us)
 9753{
 9754	return sched_group_set_rt_period(css_tg(css), rt_period_us);
 9755}
 9756
 9757static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
 9758				   struct cftype *cft)
 9759{
 9760	return sched_group_rt_period(css_tg(css));
 9761}
 9762#endif /* CONFIG_RT_GROUP_SCHED */
 9763
 9764#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9765static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
 9766			       struct cftype *cft)
 9767{
 9768	return css_tg(css)->idle;
 9769}
 9770
 9771static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
 9772				struct cftype *cft, s64 idle)
 9773{
 9774	int ret;
 9775
 9776	ret = sched_group_set_idle(css_tg(css), idle);
 9777	if (!ret)
 9778		scx_group_set_idle(css_tg(css), idle);
 9779	return ret;
 9780}
 9781#endif
 9782
 9783static struct cftype cpu_legacy_files[] = {
 9784#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9785	{
 9786		.name = "shares",
 9787		.read_u64 = cpu_shares_read_u64,
 9788		.write_u64 = cpu_shares_write_u64,
 9789	},
 9790	{
 9791		.name = "idle",
 9792		.read_s64 = cpu_idle_read_s64,
 9793		.write_s64 = cpu_idle_write_s64,
 9794	},
 9795#endif
 9796#ifdef CONFIG_CFS_BANDWIDTH
 9797	{
 9798		.name = "cfs_quota_us",
 9799		.read_s64 = cpu_cfs_quota_read_s64,
 9800		.write_s64 = cpu_cfs_quota_write_s64,
 9801	},
 9802	{
 9803		.name = "cfs_period_us",
 9804		.read_u64 = cpu_cfs_period_read_u64,
 9805		.write_u64 = cpu_cfs_period_write_u64,
 9806	},
 9807	{
 9808		.name = "cfs_burst_us",
 9809		.read_u64 = cpu_cfs_burst_read_u64,
 9810		.write_u64 = cpu_cfs_burst_write_u64,
 9811	},
 9812	{
 9813		.name = "stat",
 9814		.seq_show = cpu_cfs_stat_show,
 9815	},
 9816	{
 9817		.name = "stat.local",
 9818		.seq_show = cpu_cfs_local_stat_show,
 9819	},
 9820#endif
 9821#ifdef CONFIG_RT_GROUP_SCHED
 9822	{
 9823		.name = "rt_runtime_us",
 9824		.read_s64 = cpu_rt_runtime_read,
 9825		.write_s64 = cpu_rt_runtime_write,
 9826	},
 9827	{
 9828		.name = "rt_period_us",
 9829		.read_u64 = cpu_rt_period_read_uint,
 9830		.write_u64 = cpu_rt_period_write_uint,
 9831	},
 9832#endif
 9833#ifdef CONFIG_UCLAMP_TASK_GROUP
 9834	{
 9835		.name = "uclamp.min",
 9836		.flags = CFTYPE_NOT_ON_ROOT,
 9837		.seq_show = cpu_uclamp_min_show,
 9838		.write = cpu_uclamp_min_write,
 9839	},
 9840	{
 9841		.name = "uclamp.max",
 9842		.flags = CFTYPE_NOT_ON_ROOT,
 9843		.seq_show = cpu_uclamp_max_show,
 9844		.write = cpu_uclamp_max_write,
 9845	},
 9846#endif
 9847	{ }	/* Terminate */
 9848};
 9849
 9850static int cpu_extra_stat_show(struct seq_file *sf,
 9851			       struct cgroup_subsys_state *css)
 9852{
 9853#ifdef CONFIG_CFS_BANDWIDTH
 9854	{
 9855		struct task_group *tg = css_tg(css);
 9856		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
 9857		u64 throttled_usec, burst_usec;
 9858
 9859		throttled_usec = cfs_b->throttled_time;
 9860		do_div(throttled_usec, NSEC_PER_USEC);
 9861		burst_usec = cfs_b->burst_time;
 9862		do_div(burst_usec, NSEC_PER_USEC);
 9863
 9864		seq_printf(sf, "nr_periods %d\n"
 9865			   "nr_throttled %d\n"
 9866			   "throttled_usec %llu\n"
 9867			   "nr_bursts %d\n"
 9868			   "burst_usec %llu\n",
 9869			   cfs_b->nr_periods, cfs_b->nr_throttled,
 9870			   throttled_usec, cfs_b->nr_burst, burst_usec);
 9871	}
 9872#endif
 9873	return 0;
 9874}
 9875
 9876static int cpu_local_stat_show(struct seq_file *sf,
 9877			       struct cgroup_subsys_state *css)
 9878{
 9879#ifdef CONFIG_CFS_BANDWIDTH
 9880	{
 9881		struct task_group *tg = css_tg(css);
 9882		u64 throttled_self_usec;
 9883
 9884		throttled_self_usec = throttled_time_self(tg);
 9885		do_div(throttled_self_usec, NSEC_PER_USEC);
 9886
 9887		seq_printf(sf, "throttled_usec %llu\n",
 9888			   throttled_self_usec);
 9889	}
 9890#endif
 9891	return 0;
 9892}
 9893
 9894#ifdef CONFIG_GROUP_SCHED_WEIGHT
 9895
 9896static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
 9897			       struct cftype *cft)
 9898{
 9899	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
 9900}
 9901
 9902static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
 9903				struct cftype *cft, u64 cgrp_weight)
 9904{
 9905	unsigned long weight;
 9906	int ret;
 9907
 9908	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
 9909		return -ERANGE;
 9910
 9911	weight = sched_weight_from_cgroup(cgrp_weight);
 9912
 9913	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
 9914	if (!ret)
 9915		scx_group_set_weight(css_tg(css), cgrp_weight);
 9916	return ret;
 9917}
 9918
 9919static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
 9920				    struct cftype *cft)
 9921{
 9922	unsigned long weight = tg_weight(css_tg(css));
 9923	int last_delta = INT_MAX;
 9924	int prio, delta;
 9925
 9926	/* find the closest nice value to the current weight */
 9927	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
 9928		delta = abs(sched_prio_to_weight[prio] - weight);
 9929		if (delta >= last_delta)
 9930			break;
 9931		last_delta = delta;
 9932	}
 9933
 9934	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
 9935}
 9936
 9937static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
 9938				     struct cftype *cft, s64 nice)
 9939{
 9940	unsigned long weight;
 9941	int idx, ret;
 9942
 9943	if (nice < MIN_NICE || nice > MAX_NICE)
 9944		return -ERANGE;
 9945
 9946	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
 9947	idx = array_index_nospec(idx, 40);
 9948	weight = sched_prio_to_weight[idx];
 9949
 9950	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
 9951	if (!ret)
 9952		scx_group_set_weight(css_tg(css),
 9953				     sched_weight_to_cgroup(weight));
 9954	return ret;
 9955}
 9956#endif /* CONFIG_GROUP_SCHED_WEIGHT */
 9957
 9958static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
 9959						  long period, long quota)
 9960{
 9961	if (quota < 0)
 9962		seq_puts(sf, "max");
 9963	else
 9964		seq_printf(sf, "%ld", quota);
 9965
 9966	seq_printf(sf, " %ld\n", period);
 9967}
 9968
 9969/* caller should put the current value in *@periodp before calling */
 9970static int __maybe_unused cpu_period_quota_parse(char *buf,
 9971						 u64 *periodp, u64 *quotap)
 9972{
 9973	char tok[21];	/* U64_MAX */
 9974
 9975	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
 9976		return -EINVAL;
 9977
 9978	*periodp *= NSEC_PER_USEC;
 9979
 9980	if (sscanf(tok, "%llu", quotap))
 9981		*quotap *= NSEC_PER_USEC;
 9982	else if (!strcmp(tok, "max"))
 9983		*quotap = RUNTIME_INF;
 9984	else
 9985		return -EINVAL;
 9986
 9987	return 0;
 9988}
 9989
 9990#ifdef CONFIG_CFS_BANDWIDTH
 9991static int cpu_max_show(struct seq_file *sf, void *v)
 9992{
 9993	struct task_group *tg = css_tg(seq_css(sf));
 9994
 9995	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
 9996	return 0;
 9997}
 9998
 9999static ssize_t cpu_max_write(struct kernfs_open_file *of,
10000			     char *buf, size_t nbytes, loff_t off)
10001{
10002	struct task_group *tg = css_tg(of_css(of));
10003	u64 period = tg_get_cfs_period(tg);
10004	u64 burst = tg->cfs_bandwidth.burst;
10005	u64 quota;
10006	int ret;
10007
10008	ret = cpu_period_quota_parse(buf, &period, &quota);
10009	if (!ret)
10010		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10011	return ret ?: nbytes;
10012}
10013#endif
10014
10015static struct cftype cpu_files[] = {
10016#ifdef CONFIG_GROUP_SCHED_WEIGHT
10017	{
10018		.name = "weight",
10019		.flags = CFTYPE_NOT_ON_ROOT,
10020		.read_u64 = cpu_weight_read_u64,
10021		.write_u64 = cpu_weight_write_u64,
10022	},
10023	{
10024		.name = "weight.nice",
10025		.flags = CFTYPE_NOT_ON_ROOT,
10026		.read_s64 = cpu_weight_nice_read_s64,
10027		.write_s64 = cpu_weight_nice_write_s64,
10028	},
10029	{
10030		.name = "idle",
10031		.flags = CFTYPE_NOT_ON_ROOT,
10032		.read_s64 = cpu_idle_read_s64,
10033		.write_s64 = cpu_idle_write_s64,
10034	},
10035#endif
10036#ifdef CONFIG_CFS_BANDWIDTH
10037	{
10038		.name = "max",
10039		.flags = CFTYPE_NOT_ON_ROOT,
10040		.seq_show = cpu_max_show,
10041		.write = cpu_max_write,
10042	},
10043	{
10044		.name = "max.burst",
10045		.flags = CFTYPE_NOT_ON_ROOT,
10046		.read_u64 = cpu_cfs_burst_read_u64,
10047		.write_u64 = cpu_cfs_burst_write_u64,
10048	},
10049#endif
10050#ifdef CONFIG_UCLAMP_TASK_GROUP
10051	{
10052		.name = "uclamp.min",
10053		.flags = CFTYPE_NOT_ON_ROOT,
10054		.seq_show = cpu_uclamp_min_show,
10055		.write = cpu_uclamp_min_write,
10056	},
10057	{
10058		.name = "uclamp.max",
10059		.flags = CFTYPE_NOT_ON_ROOT,
10060		.seq_show = cpu_uclamp_max_show,
10061		.write = cpu_uclamp_max_write,
10062	},
10063#endif
10064	{ }	/* terminate */
10065};
10066
10067struct cgroup_subsys cpu_cgrp_subsys = {
10068	.css_alloc	= cpu_cgroup_css_alloc,
10069	.css_online	= cpu_cgroup_css_online,
10070	.css_offline	= cpu_cgroup_css_offline,
10071	.css_released	= cpu_cgroup_css_released,
10072	.css_free	= cpu_cgroup_css_free,
10073	.css_extra_stat_show = cpu_extra_stat_show,
10074	.css_local_stat_show = cpu_local_stat_show,
10075	.can_attach	= cpu_cgroup_can_attach,
10076	.attach		= cpu_cgroup_attach,
10077	.cancel_attach	= cpu_cgroup_cancel_attach,
10078	.legacy_cftypes	= cpu_legacy_files,
10079	.dfl_cftypes	= cpu_files,
10080	.early_init	= true,
10081	.threaded	= true,
10082};
10083
10084#endif	/* CONFIG_CGROUP_SCHED */
10085
10086void dump_cpu_task(int cpu)
10087{
10088	if (in_hardirq() && cpu == smp_processor_id()) {
10089		struct pt_regs *regs;
10090
10091		regs = get_irq_regs();
10092		if (regs) {
10093			show_regs(regs);
10094			return;
10095		}
10096	}
10097
10098	if (trigger_single_cpu_backtrace(cpu))
10099		return;
10100
10101	pr_info("Task dump for CPU %d:\n", cpu);
10102	sched_show_task(cpu_curr(cpu));
10103}
10104
10105/*
10106 * Nice levels are multiplicative, with a gentle 10% change for every
10107 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10108 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10109 * that remained on nice 0.
10110 *
10111 * The "10% effect" is relative and cumulative: from _any_ nice level,
10112 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10113 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10114 * If a task goes up by ~10% and another task goes down by ~10% then
10115 * the relative distance between them is ~25%.)
10116 */
10117const int sched_prio_to_weight[40] = {
10118 /* -20 */     88761,     71755,     56483,     46273,     36291,
10119 /* -15 */     29154,     23254,     18705,     14949,     11916,
10120 /* -10 */      9548,      7620,      6100,      4904,      3906,
10121 /*  -5 */      3121,      2501,      1991,      1586,      1277,
10122 /*   0 */      1024,       820,       655,       526,       423,
10123 /*   5 */       335,       272,       215,       172,       137,
10124 /*  10 */       110,        87,        70,        56,        45,
10125 /*  15 */        36,        29,        23,        18,        15,
10126};
10127
10128/*
10129 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10130 *
10131 * In cases where the weight does not change often, we can use the
10132 * pre-calculated inverse to speed up arithmetics by turning divisions
10133 * into multiplications:
10134 */
10135const u32 sched_prio_to_wmult[40] = {
10136 /* -20 */     48388,     59856,     76040,     92818,    118348,
10137 /* -15 */    147320,    184698,    229616,    287308,    360437,
10138 /* -10 */    449829,    563644,    704093,    875809,   1099582,
10139 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10140 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10141 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10142 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10143 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10144};
10145
10146void call_trace_sched_update_nr_running(struct rq *rq, int count)
10147{
10148        trace_sched_update_nr_running_tp(rq, count);
10149}
10150
10151#ifdef CONFIG_SCHED_MM_CID
10152
10153/*
10154 * @cid_lock: Guarantee forward-progress of cid allocation.
10155 *
10156 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10157 * is only used when contention is detected by the lock-free allocation so
10158 * forward progress can be guaranteed.
10159 */
10160DEFINE_RAW_SPINLOCK(cid_lock);
10161
10162/*
10163 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10164 *
10165 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10166 * detected, it is set to 1 to ensure that all newly coming allocations are
10167 * serialized by @cid_lock until the allocation which detected contention
10168 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10169 * of a cid allocation.
10170 */
10171int use_cid_lock;
10172
10173/*
10174 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10175 * concurrently with respect to the execution of the source runqueue context
10176 * switch.
10177 *
10178 * There is one basic properties we want to guarantee here:
10179 *
10180 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10181 * used by a task. That would lead to concurrent allocation of the cid and
10182 * userspace corruption.
10183 *
10184 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10185 * that a pair of loads observe at least one of a pair of stores, which can be
10186 * shown as:
10187 *
10188 *      X = Y = 0
10189 *
10190 *      w[X]=1          w[Y]=1
10191 *      MB              MB
10192 *      r[Y]=y          r[X]=x
10193 *
10194 * Which guarantees that x==0 && y==0 is impossible. But rather than using
10195 * values 0 and 1, this algorithm cares about specific state transitions of the
10196 * runqueue current task (as updated by the scheduler context switch), and the
10197 * per-mm/cpu cid value.
10198 *
10199 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10200 * task->mm != mm for the rest of the discussion. There are two scheduler state
10201 * transitions on context switch we care about:
10202 *
10203 * (TSA) Store to rq->curr with transition from (N) to (Y)
10204 *
10205 * (TSB) Store to rq->curr with transition from (Y) to (N)
10206 *
10207 * On the remote-clear side, there is one transition we care about:
10208 *
10209 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10210 *
10211 * There is also a transition to UNSET state which can be performed from all
10212 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10213 * guarantees that only a single thread will succeed:
10214 *
10215 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10216 *
10217 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10218 * when a thread is actively using the cid (property (1)).
10219 *
10220 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10221 *
10222 * Scenario A) (TSA)+(TMA) (from next task perspective)
10223 *
10224 * CPU0                                      CPU1
10225 *
10226 * Context switch CS-1                       Remote-clear
10227 *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10228 *                                             (implied barrier after cmpxchg)
10229 *   - switch_mm_cid()
10230 *     - memory barrier (see switch_mm_cid()
10231 *       comment explaining how this barrier
10232 *       is combined with other scheduler
10233 *       barriers)
10234 *     - mm_cid_get (next)
10235 *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10236 *
10237 * This Dekker ensures that either task (Y) is observed by the
10238 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10239 * observed.
10240 *
10241 * If task (Y) store is observed by rcu_dereference(), it means that there is
10242 * still an active task on the cpu. Remote-clear will therefore not transition
10243 * to UNSET, which fulfills property (1).
10244 *
10245 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10246 * it will move its state to UNSET, which clears the percpu cid perhaps
10247 * uselessly (which is not an issue for correctness). Because task (Y) is not
10248 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10249 * state to UNSET is done with a cmpxchg expecting that the old state has the
10250 * LAZY flag set, only one thread will successfully UNSET.
10251 *
10252 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10253 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10254 * CPU1 will observe task (Y) and do nothing more, which is fine.
10255 *
10256 * What we are effectively preventing with this Dekker is a scenario where
10257 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10258 * because this would UNSET a cid which is actively used.
10259 */
10260
10261void sched_mm_cid_migrate_from(struct task_struct *t)
10262{
10263	t->migrate_from_cpu = task_cpu(t);
10264}
10265
10266static
10267int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10268					  struct task_struct *t,
10269					  struct mm_cid *src_pcpu_cid)
10270{
10271	struct mm_struct *mm = t->mm;
10272	struct task_struct *src_task;
10273	int src_cid, last_mm_cid;
10274
10275	if (!mm)
10276		return -1;
10277
10278	last_mm_cid = t->last_mm_cid;
10279	/*
10280	 * If the migrated task has no last cid, or if the current
10281	 * task on src rq uses the cid, it means the source cid does not need
10282	 * to be moved to the destination cpu.
10283	 */
10284	if (last_mm_cid == -1)
10285		return -1;
10286	src_cid = READ_ONCE(src_pcpu_cid->cid);
10287	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10288		return -1;
10289
10290	/*
10291	 * If we observe an active task using the mm on this rq, it means we
10292	 * are not the last task to be migrated from this cpu for this mm, so
10293	 * there is no need to move src_cid to the destination cpu.
10294	 */
10295	guard(rcu)();
10296	src_task = rcu_dereference(src_rq->curr);
10297	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10298		t->last_mm_cid = -1;
10299		return -1;
10300	}
10301
10302	return src_cid;
10303}
10304
10305static
10306int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10307					      struct task_struct *t,
10308					      struct mm_cid *src_pcpu_cid,
10309					      int src_cid)
10310{
10311	struct task_struct *src_task;
10312	struct mm_struct *mm = t->mm;
10313	int lazy_cid;
10314
10315	if (src_cid == -1)
10316		return -1;
10317
10318	/*
10319	 * Attempt to clear the source cpu cid to move it to the destination
10320	 * cpu.
10321	 */
10322	lazy_cid = mm_cid_set_lazy_put(src_cid);
10323	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10324		return -1;
10325
10326	/*
10327	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10328	 * rq->curr->mm matches the scheduler barrier in context_switch()
10329	 * between store to rq->curr and load of prev and next task's
10330	 * per-mm/cpu cid.
10331	 *
10332	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10333	 * rq->curr->mm_cid_active matches the barrier in
10334	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10335	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10336	 * load of per-mm/cpu cid.
10337	 */
10338
10339	/*
10340	 * If we observe an active task using the mm on this rq after setting
10341	 * the lazy-put flag, this task will be responsible for transitioning
10342	 * from lazy-put flag set to MM_CID_UNSET.
10343	 */
10344	scoped_guard (rcu) {
10345		src_task = rcu_dereference(src_rq->curr);
10346		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10347			/*
10348			 * We observed an active task for this mm, there is therefore
10349			 * no point in moving this cid to the destination cpu.
10350			 */
10351			t->last_mm_cid = -1;
10352			return -1;
10353		}
10354	}
10355
10356	/*
10357	 * The src_cid is unused, so it can be unset.
10358	 */
10359	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10360		return -1;
10361	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10362	return src_cid;
10363}
10364
10365/*
10366 * Migration to dst cpu. Called with dst_rq lock held.
10367 * Interrupts are disabled, which keeps the window of cid ownership without the
10368 * source rq lock held small.
10369 */
10370void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10371{
10372	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10373	struct mm_struct *mm = t->mm;
10374	int src_cid, src_cpu;
10375	bool dst_cid_is_set;
10376	struct rq *src_rq;
10377
10378	lockdep_assert_rq_held(dst_rq);
10379
10380	if (!mm)
10381		return;
10382	src_cpu = t->migrate_from_cpu;
10383	if (src_cpu == -1) {
10384		t->last_mm_cid = -1;
10385		return;
10386	}
10387	/*
10388	 * Move the src cid if the dst cid is unset. This keeps id
10389	 * allocation closest to 0 in cases where few threads migrate around
10390	 * many CPUs.
10391	 *
10392	 * If destination cid or recent cid is already set, we may have
10393	 * to just clear the src cid to ensure compactness in frequent
10394	 * migrations scenarios.
10395	 *
10396	 * It is not useful to clear the src cid when the number of threads is
10397	 * greater or equal to the number of allowed CPUs, because user-space
10398	 * can expect that the number of allowed cids can reach the number of
10399	 * allowed CPUs.
10400	 */
10401	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10402	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10403			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10404	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10405		return;
10406	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10407	src_rq = cpu_rq(src_cpu);
10408	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10409	if (src_cid == -1)
10410		return;
10411	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10412							    src_cid);
10413	if (src_cid == -1)
10414		return;
10415	if (dst_cid_is_set) {
10416		__mm_cid_put(mm, src_cid);
10417		return;
10418	}
10419	/* Move src_cid to dst cpu. */
10420	mm_cid_snapshot_time(dst_rq, mm);
10421	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10422	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10423}
10424
10425static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10426				      int cpu)
10427{
10428	struct rq *rq = cpu_rq(cpu);
10429	struct task_struct *t;
10430	int cid, lazy_cid;
10431
10432	cid = READ_ONCE(pcpu_cid->cid);
10433	if (!mm_cid_is_valid(cid))
10434		return;
10435
10436	/*
10437	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10438	 * there happens to be other tasks left on the source cpu using this
10439	 * mm, the next task using this mm will reallocate its cid on context
10440	 * switch.
10441	 */
10442	lazy_cid = mm_cid_set_lazy_put(cid);
10443	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10444		return;
10445
10446	/*
10447	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10448	 * rq->curr->mm matches the scheduler barrier in context_switch()
10449	 * between store to rq->curr and load of prev and next task's
10450	 * per-mm/cpu cid.
10451	 *
10452	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10453	 * rq->curr->mm_cid_active matches the barrier in
10454	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10455	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10456	 * load of per-mm/cpu cid.
10457	 */
10458
10459	/*
10460	 * If we observe an active task using the mm on this rq after setting
10461	 * the lazy-put flag, that task will be responsible for transitioning
10462	 * from lazy-put flag set to MM_CID_UNSET.
10463	 */
10464	scoped_guard (rcu) {
10465		t = rcu_dereference(rq->curr);
10466		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10467			return;
10468	}
10469
10470	/*
10471	 * The cid is unused, so it can be unset.
10472	 * Disable interrupts to keep the window of cid ownership without rq
10473	 * lock small.
10474	 */
10475	scoped_guard (irqsave) {
10476		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10477			__mm_cid_put(mm, cid);
10478	}
10479}
10480
10481static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10482{
10483	struct rq *rq = cpu_rq(cpu);
10484	struct mm_cid *pcpu_cid;
10485	struct task_struct *curr;
10486	u64 rq_clock;
10487
10488	/*
10489	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10490	 * while is irrelevant.
10491	 */
10492	rq_clock = READ_ONCE(rq->clock);
10493	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10494
10495	/*
10496	 * In order to take care of infrequently scheduled tasks, bump the time
10497	 * snapshot associated with this cid if an active task using the mm is
10498	 * observed on this rq.
10499	 */
10500	scoped_guard (rcu) {
10501		curr = rcu_dereference(rq->curr);
10502		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10503			WRITE_ONCE(pcpu_cid->time, rq_clock);
10504			return;
10505		}
10506	}
10507
10508	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10509		return;
10510	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10511}
10512
10513static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10514					     int weight)
10515{
10516	struct mm_cid *pcpu_cid;
10517	int cid;
10518
10519	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10520	cid = READ_ONCE(pcpu_cid->cid);
10521	if (!mm_cid_is_valid(cid) || cid < weight)
10522		return;
10523	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10524}
10525
10526static void task_mm_cid_work(struct callback_head *work)
10527{
10528	unsigned long now = jiffies, old_scan, next_scan;
10529	struct task_struct *t = current;
10530	struct cpumask *cidmask;
10531	struct mm_struct *mm;
10532	int weight, cpu;
10533
10534	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10535
10536	work->next = work;	/* Prevent double-add */
10537	if (t->flags & PF_EXITING)
10538		return;
10539	mm = t->mm;
10540	if (!mm)
10541		return;
10542	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10543	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10544	if (!old_scan) {
10545		unsigned long res;
10546
10547		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10548		if (res != old_scan)
10549			old_scan = res;
10550		else
10551			old_scan = next_scan;
10552	}
10553	if (time_before(now, old_scan))
10554		return;
10555	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10556		return;
10557	cidmask = mm_cidmask(mm);
10558	/* Clear cids that were not recently used. */
10559	for_each_possible_cpu(cpu)
10560		sched_mm_cid_remote_clear_old(mm, cpu);
10561	weight = cpumask_weight(cidmask);
10562	/*
10563	 * Clear cids that are greater or equal to the cidmask weight to
10564	 * recompact it.
10565	 */
10566	for_each_possible_cpu(cpu)
10567		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10568}
10569
10570void init_sched_mm_cid(struct task_struct *t)
10571{
10572	struct mm_struct *mm = t->mm;
10573	int mm_users = 0;
10574
10575	if (mm) {
10576		mm_users = atomic_read(&mm->mm_users);
10577		if (mm_users == 1)
10578			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10579	}
10580	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10581	init_task_work(&t->cid_work, task_mm_cid_work);
10582}
10583
10584void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10585{
10586	struct callback_head *work = &curr->cid_work;
10587	unsigned long now = jiffies;
10588
10589	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10590	    work->next != work)
10591		return;
10592	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10593		return;
10594
10595	/* No page allocation under rq lock */
10596	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
10597}
10598
10599void sched_mm_cid_exit_signals(struct task_struct *t)
10600{
10601	struct mm_struct *mm = t->mm;
10602	struct rq *rq;
10603
10604	if (!mm)
10605		return;
10606
10607	preempt_disable();
10608	rq = this_rq();
10609	guard(rq_lock_irqsave)(rq);
10610	preempt_enable_no_resched();	/* holding spinlock */
10611	WRITE_ONCE(t->mm_cid_active, 0);
10612	/*
10613	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10614	 * Matches barrier in sched_mm_cid_remote_clear_old().
10615	 */
10616	smp_mb();
10617	mm_cid_put(mm);
10618	t->last_mm_cid = t->mm_cid = -1;
10619}
10620
10621void sched_mm_cid_before_execve(struct task_struct *t)
10622{
10623	struct mm_struct *mm = t->mm;
10624	struct rq *rq;
10625
10626	if (!mm)
10627		return;
10628
10629	preempt_disable();
10630	rq = this_rq();
10631	guard(rq_lock_irqsave)(rq);
10632	preempt_enable_no_resched();	/* holding spinlock */
10633	WRITE_ONCE(t->mm_cid_active, 0);
10634	/*
10635	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10636	 * Matches barrier in sched_mm_cid_remote_clear_old().
10637	 */
10638	smp_mb();
10639	mm_cid_put(mm);
10640	t->last_mm_cid = t->mm_cid = -1;
10641}
10642
10643void sched_mm_cid_after_execve(struct task_struct *t)
10644{
10645	struct mm_struct *mm = t->mm;
10646	struct rq *rq;
10647
10648	if (!mm)
10649		return;
10650
10651	preempt_disable();
10652	rq = this_rq();
10653	scoped_guard (rq_lock_irqsave, rq) {
10654		preempt_enable_no_resched();	/* holding spinlock */
10655		WRITE_ONCE(t->mm_cid_active, 1);
10656		/*
10657		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10658		 * Matches barrier in sched_mm_cid_remote_clear_old().
10659		 */
10660		smp_mb();
10661		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10662	}
10663	rseq_set_notify_resume(t);
10664}
10665
10666void sched_mm_cid_fork(struct task_struct *t)
10667{
10668	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10669	t->mm_cid_active = 1;
10670}
10671#endif
10672
10673#ifdef CONFIG_SCHED_CLASS_EXT
10674void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10675			    struct sched_enq_and_set_ctx *ctx)
10676{
10677	struct rq *rq = task_rq(p);
10678
10679	lockdep_assert_rq_held(rq);
10680
10681	*ctx = (struct sched_enq_and_set_ctx){
10682		.p = p,
10683		.queue_flags = queue_flags,
10684		.queued = task_on_rq_queued(p),
10685		.running = task_current(rq, p),
10686	};
10687
10688	update_rq_clock(rq);
10689	if (ctx->queued)
10690		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10691	if (ctx->running)
10692		put_prev_task(rq, p);
10693}
10694
10695void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10696{
10697	struct rq *rq = task_rq(ctx->p);
10698
10699	lockdep_assert_rq_held(rq);
10700
10701	if (ctx->queued)
10702		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10703	if (ctx->running)
10704		set_next_task(rq, ctx->p);
10705}
10706#endif	/* CONFIG_SCHED_CLASS_EXT */