Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel CPU scheduler code
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
9 */
10#include <linux/highmem.h>
11#include <linux/hrtimer_api.h>
12#include <linux/ktime_api.h>
13#include <linux/sched/signal.h>
14#include <linux/syscalls_api.h>
15#include <linux/debug_locks.h>
16#include <linux/prefetch.h>
17#include <linux/capability.h>
18#include <linux/pgtable_api.h>
19#include <linux/wait_bit.h>
20#include <linux/jiffies.h>
21#include <linux/spinlock_api.h>
22#include <linux/cpumask_api.h>
23#include <linux/lockdep_api.h>
24#include <linux/hardirq.h>
25#include <linux/softirq.h>
26#include <linux/refcount_api.h>
27#include <linux/topology.h>
28#include <linux/sched/clock.h>
29#include <linux/sched/cond_resched.h>
30#include <linux/sched/cputime.h>
31#include <linux/sched/debug.h>
32#include <linux/sched/hotplug.h>
33#include <linux/sched/init.h>
34#include <linux/sched/isolation.h>
35#include <linux/sched/loadavg.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/nohz.h>
38#include <linux/sched/rseq_api.h>
39#include <linux/sched/rt.h>
40
41#include <linux/blkdev.h>
42#include <linux/context_tracking.h>
43#include <linux/cpuset.h>
44#include <linux/delayacct.h>
45#include <linux/init_task.h>
46#include <linux/interrupt.h>
47#include <linux/ioprio.h>
48#include <linux/kallsyms.h>
49#include <linux/kcov.h>
50#include <linux/kprobes.h>
51#include <linux/llist_api.h>
52#include <linux/mmu_context.h>
53#include <linux/mmzone.h>
54#include <linux/mutex_api.h>
55#include <linux/nmi.h>
56#include <linux/nospec.h>
57#include <linux/perf_event_api.h>
58#include <linux/profile.h>
59#include <linux/psi.h>
60#include <linux/rcuwait_api.h>
61#include <linux/rseq.h>
62#include <linux/sched/wake_q.h>
63#include <linux/scs.h>
64#include <linux/slab.h>
65#include <linux/syscalls.h>
66#include <linux/vtime.h>
67#include <linux/wait_api.h>
68#include <linux/workqueue_api.h>
69
70#ifdef CONFIG_PREEMPT_DYNAMIC
71# ifdef CONFIG_GENERIC_ENTRY
72# include <linux/entry-common.h>
73# endif
74#endif
75
76#include <uapi/linux/sched/types.h>
77
78#include <asm/irq_regs.h>
79#include <asm/switch_to.h>
80#include <asm/tlb.h>
81
82#define CREATE_TRACE_POINTS
83#include <linux/sched/rseq_api.h>
84#include <trace/events/sched.h>
85#include <trace/events/ipi.h>
86#undef CREATE_TRACE_POINTS
87
88#include "sched.h"
89#include "stats.h"
90
91#include "autogroup.h"
92#include "pelt.h"
93#include "smp.h"
94#include "stats.h"
95
96#include "../workqueue_internal.h"
97#include "../../io_uring/io-wq.h"
98#include "../smpboot.h"
99
100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102
103/*
104 * Export tracepoints that act as a bare tracehook (ie: have no trace event
105 * associated with them) to allow external modules to probe them.
106 */
107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119
120DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121
122#ifdef CONFIG_SCHED_DEBUG
123/*
124 * Debugging: various feature bits
125 *
126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127 * sysctl_sched_features, defined in sched.h, to allow constants propagation
128 * at compile time and compiler optimization based on features default.
129 */
130#define SCHED_FEAT(name, enabled) \
131 (1UL << __SCHED_FEAT_##name) * enabled |
132const_debug unsigned int sysctl_sched_features =
133#include "features.h"
134 0;
135#undef SCHED_FEAT
136
137/*
138 * Print a warning if need_resched is set for the given duration (if
139 * LATENCY_WARN is enabled).
140 *
141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142 * per boot.
143 */
144__read_mostly int sysctl_resched_latency_warn_ms = 100;
145__read_mostly int sysctl_resched_latency_warn_once = 1;
146#endif /* CONFIG_SCHED_DEBUG */
147
148/*
149 * Number of tasks to iterate in a single balance run.
150 * Limited because this is done with IRQs disabled.
151 */
152const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153
154__read_mostly int scheduler_running;
155
156#ifdef CONFIG_SCHED_CORE
157
158DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159
160/* kernel prio, less is more */
161static inline int __task_prio(const struct task_struct *p)
162{
163 if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 return -2;
165
166 if (p->dl_server)
167 return -1; /* deadline */
168
169 if (rt_or_dl_prio(p->prio))
170 return p->prio; /* [-1, 99] */
171
172 if (p->sched_class == &idle_sched_class)
173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174
175 if (task_on_scx(p))
176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177
178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179}
180
181/*
182 * l(a,b)
183 * le(a,b) := !l(b,a)
184 * g(a,b) := l(b,a)
185 * ge(a,b) := !l(a,b)
186 */
187
188/* real prio, less is less */
189static inline bool prio_less(const struct task_struct *a,
190 const struct task_struct *b, bool in_fi)
191{
192
193 int pa = __task_prio(a), pb = __task_prio(b);
194
195 if (-pa < -pb)
196 return true;
197
198 if (-pb < -pa)
199 return false;
200
201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202 const struct sched_dl_entity *a_dl, *b_dl;
203
204 a_dl = &a->dl;
205 /*
206 * Since,'a' and 'b' can be CFS tasks served by DL server,
207 * __task_prio() can return -1 (for DL) even for those. In that
208 * case, get to the dl_server's DL entity.
209 */
210 if (a->dl_server)
211 a_dl = a->dl_server;
212
213 b_dl = &b->dl;
214 if (b->dl_server)
215 b_dl = b->dl_server;
216
217 return !dl_time_before(a_dl->deadline, b_dl->deadline);
218 }
219
220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
221 return cfs_prio_less(a, b, in_fi);
222
223#ifdef CONFIG_SCHED_CLASS_EXT
224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */
225 return scx_prio_less(a, b, in_fi);
226#endif
227
228 return false;
229}
230
231static inline bool __sched_core_less(const struct task_struct *a,
232 const struct task_struct *b)
233{
234 if (a->core_cookie < b->core_cookie)
235 return true;
236
237 if (a->core_cookie > b->core_cookie)
238 return false;
239
240 /* flip prio, so high prio is leftmost */
241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242 return true;
243
244 return false;
245}
246
247#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248
249static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250{
251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252}
253
254static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255{
256 const struct task_struct *p = __node_2_sc(node);
257 unsigned long cookie = (unsigned long)key;
258
259 if (cookie < p->core_cookie)
260 return -1;
261
262 if (cookie > p->core_cookie)
263 return 1;
264
265 return 0;
266}
267
268void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269{
270 if (p->se.sched_delayed)
271 return;
272
273 rq->core->core_task_seq++;
274
275 if (!p->core_cookie)
276 return;
277
278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
279}
280
281void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
282{
283 if (p->se.sched_delayed)
284 return;
285
286 rq->core->core_task_seq++;
287
288 if (sched_core_enqueued(p)) {
289 rb_erase(&p->core_node, &rq->core_tree);
290 RB_CLEAR_NODE(&p->core_node);
291 }
292
293 /*
294 * Migrating the last task off the cpu, with the cpu in forced idle
295 * state. Reschedule to create an accounting edge for forced idle,
296 * and re-examine whether the core is still in forced idle state.
297 */
298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
299 rq->core->core_forceidle_count && rq->curr == rq->idle)
300 resched_curr(rq);
301}
302
303static int sched_task_is_throttled(struct task_struct *p, int cpu)
304{
305 if (p->sched_class->task_is_throttled)
306 return p->sched_class->task_is_throttled(p, cpu);
307
308 return 0;
309}
310
311static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
312{
313 struct rb_node *node = &p->core_node;
314 int cpu = task_cpu(p);
315
316 do {
317 node = rb_next(node);
318 if (!node)
319 return NULL;
320
321 p = __node_2_sc(node);
322 if (p->core_cookie != cookie)
323 return NULL;
324
325 } while (sched_task_is_throttled(p, cpu));
326
327 return p;
328}
329
330/*
331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
332 * If no suitable task is found, NULL will be returned.
333 */
334static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
335{
336 struct task_struct *p;
337 struct rb_node *node;
338
339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
340 if (!node)
341 return NULL;
342
343 p = __node_2_sc(node);
344 if (!sched_task_is_throttled(p, rq->cpu))
345 return p;
346
347 return sched_core_next(p, cookie);
348}
349
350/*
351 * Magic required such that:
352 *
353 * raw_spin_rq_lock(rq);
354 * ...
355 * raw_spin_rq_unlock(rq);
356 *
357 * ends up locking and unlocking the _same_ lock, and all CPUs
358 * always agree on what rq has what lock.
359 *
360 * XXX entirely possible to selectively enable cores, don't bother for now.
361 */
362
363static DEFINE_MUTEX(sched_core_mutex);
364static atomic_t sched_core_count;
365static struct cpumask sched_core_mask;
366
367static void sched_core_lock(int cpu, unsigned long *flags)
368{
369 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
370 int t, i = 0;
371
372 local_irq_save(*flags);
373 for_each_cpu(t, smt_mask)
374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
375}
376
377static void sched_core_unlock(int cpu, unsigned long *flags)
378{
379 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380 int t;
381
382 for_each_cpu(t, smt_mask)
383 raw_spin_unlock(&cpu_rq(t)->__lock);
384 local_irq_restore(*flags);
385}
386
387static void __sched_core_flip(bool enabled)
388{
389 unsigned long flags;
390 int cpu, t;
391
392 cpus_read_lock();
393
394 /*
395 * Toggle the online cores, one by one.
396 */
397 cpumask_copy(&sched_core_mask, cpu_online_mask);
398 for_each_cpu(cpu, &sched_core_mask) {
399 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
400
401 sched_core_lock(cpu, &flags);
402
403 for_each_cpu(t, smt_mask)
404 cpu_rq(t)->core_enabled = enabled;
405
406 cpu_rq(cpu)->core->core_forceidle_start = 0;
407
408 sched_core_unlock(cpu, &flags);
409
410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
411 }
412
413 /*
414 * Toggle the offline CPUs.
415 */
416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
417 cpu_rq(cpu)->core_enabled = enabled;
418
419 cpus_read_unlock();
420}
421
422static void sched_core_assert_empty(void)
423{
424 int cpu;
425
426 for_each_possible_cpu(cpu)
427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
428}
429
430static void __sched_core_enable(void)
431{
432 static_branch_enable(&__sched_core_enabled);
433 /*
434 * Ensure all previous instances of raw_spin_rq_*lock() have finished
435 * and future ones will observe !sched_core_disabled().
436 */
437 synchronize_rcu();
438 __sched_core_flip(true);
439 sched_core_assert_empty();
440}
441
442static void __sched_core_disable(void)
443{
444 sched_core_assert_empty();
445 __sched_core_flip(false);
446 static_branch_disable(&__sched_core_enabled);
447}
448
449void sched_core_get(void)
450{
451 if (atomic_inc_not_zero(&sched_core_count))
452 return;
453
454 mutex_lock(&sched_core_mutex);
455 if (!atomic_read(&sched_core_count))
456 __sched_core_enable();
457
458 smp_mb__before_atomic();
459 atomic_inc(&sched_core_count);
460 mutex_unlock(&sched_core_mutex);
461}
462
463static void __sched_core_put(struct work_struct *work)
464{
465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
466 __sched_core_disable();
467 mutex_unlock(&sched_core_mutex);
468 }
469}
470
471void sched_core_put(void)
472{
473 static DECLARE_WORK(_work, __sched_core_put);
474
475 /*
476 * "There can be only one"
477 *
478 * Either this is the last one, or we don't actually need to do any
479 * 'work'. If it is the last *again*, we rely on
480 * WORK_STRUCT_PENDING_BIT.
481 */
482 if (!atomic_add_unless(&sched_core_count, -1, 1))
483 schedule_work(&_work);
484}
485
486#else /* !CONFIG_SCHED_CORE */
487
488static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
489static inline void
490sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
491
492#endif /* CONFIG_SCHED_CORE */
493
494/*
495 * Serialization rules:
496 *
497 * Lock order:
498 *
499 * p->pi_lock
500 * rq->lock
501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
502 *
503 * rq1->lock
504 * rq2->lock where: rq1 < rq2
505 *
506 * Regular state:
507 *
508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
509 * local CPU's rq->lock, it optionally removes the task from the runqueue and
510 * always looks at the local rq data structures to find the most eligible task
511 * to run next.
512 *
513 * Task enqueue is also under rq->lock, possibly taken from another CPU.
514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
515 * the local CPU to avoid bouncing the runqueue state around [ see
516 * ttwu_queue_wakelist() ]
517 *
518 * Task wakeup, specifically wakeups that involve migration, are horribly
519 * complicated to avoid having to take two rq->locks.
520 *
521 * Special state:
522 *
523 * System-calls and anything external will use task_rq_lock() which acquires
524 * both p->pi_lock and rq->lock. As a consequence the state they change is
525 * stable while holding either lock:
526 *
527 * - sched_setaffinity()/
528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
529 * - set_user_nice(): p->se.load, p->*prio
530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
531 * p->se.load, p->rt_priority,
532 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
533 * - sched_setnuma(): p->numa_preferred_nid
534 * - sched_move_task(): p->sched_task_group
535 * - uclamp_update_active() p->uclamp*
536 *
537 * p->state <- TASK_*:
538 *
539 * is changed locklessly using set_current_state(), __set_current_state() or
540 * set_special_state(), see their respective comments, or by
541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
542 * concurrent self.
543 *
544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
545 *
546 * is set by activate_task() and cleared by deactivate_task(), under
547 * rq->lock. Non-zero indicates the task is runnable, the special
548 * ON_RQ_MIGRATING state is used for migration without holding both
549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
550 *
551 * Additionally it is possible to be ->on_rq but still be considered not
552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue
553 * but will be dequeued as soon as they get picked again. See the
554 * task_is_runnable() helper.
555 *
556 * p->on_cpu <- { 0, 1 }:
557 *
558 * is set by prepare_task() and cleared by finish_task() such that it will be
559 * set before p is scheduled-in and cleared after p is scheduled-out, both
560 * under rq->lock. Non-zero indicates the task is running on its CPU.
561 *
562 * [ The astute reader will observe that it is possible for two tasks on one
563 * CPU to have ->on_cpu = 1 at the same time. ]
564 *
565 * task_cpu(p): is changed by set_task_cpu(), the rules are:
566 *
567 * - Don't call set_task_cpu() on a blocked task:
568 *
569 * We don't care what CPU we're not running on, this simplifies hotplug,
570 * the CPU assignment of blocked tasks isn't required to be valid.
571 *
572 * - for try_to_wake_up(), called under p->pi_lock:
573 *
574 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
575 *
576 * - for migration called under rq->lock:
577 * [ see task_on_rq_migrating() in task_rq_lock() ]
578 *
579 * o move_queued_task()
580 * o detach_task()
581 *
582 * - for migration called under double_rq_lock():
583 *
584 * o __migrate_swap_task()
585 * o push_rt_task() / pull_rt_task()
586 * o push_dl_task() / pull_dl_task()
587 * o dl_task_offline_migration()
588 *
589 */
590
591void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
592{
593 raw_spinlock_t *lock;
594
595 /* Matches synchronize_rcu() in __sched_core_enable() */
596 preempt_disable();
597 if (sched_core_disabled()) {
598 raw_spin_lock_nested(&rq->__lock, subclass);
599 /* preempt_count *MUST* be > 1 */
600 preempt_enable_no_resched();
601 return;
602 }
603
604 for (;;) {
605 lock = __rq_lockp(rq);
606 raw_spin_lock_nested(lock, subclass);
607 if (likely(lock == __rq_lockp(rq))) {
608 /* preempt_count *MUST* be > 1 */
609 preempt_enable_no_resched();
610 return;
611 }
612 raw_spin_unlock(lock);
613 }
614}
615
616bool raw_spin_rq_trylock(struct rq *rq)
617{
618 raw_spinlock_t *lock;
619 bool ret;
620
621 /* Matches synchronize_rcu() in __sched_core_enable() */
622 preempt_disable();
623 if (sched_core_disabled()) {
624 ret = raw_spin_trylock(&rq->__lock);
625 preempt_enable();
626 return ret;
627 }
628
629 for (;;) {
630 lock = __rq_lockp(rq);
631 ret = raw_spin_trylock(lock);
632 if (!ret || (likely(lock == __rq_lockp(rq)))) {
633 preempt_enable();
634 return ret;
635 }
636 raw_spin_unlock(lock);
637 }
638}
639
640void raw_spin_rq_unlock(struct rq *rq)
641{
642 raw_spin_unlock(rq_lockp(rq));
643}
644
645#ifdef CONFIG_SMP
646/*
647 * double_rq_lock - safely lock two runqueues
648 */
649void double_rq_lock(struct rq *rq1, struct rq *rq2)
650{
651 lockdep_assert_irqs_disabled();
652
653 if (rq_order_less(rq2, rq1))
654 swap(rq1, rq2);
655
656 raw_spin_rq_lock(rq1);
657 if (__rq_lockp(rq1) != __rq_lockp(rq2))
658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
659
660 double_rq_clock_clear_update(rq1, rq2);
661}
662#endif
663
664/*
665 * __task_rq_lock - lock the rq @p resides on.
666 */
667struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
668 __acquires(rq->lock)
669{
670 struct rq *rq;
671
672 lockdep_assert_held(&p->pi_lock);
673
674 for (;;) {
675 rq = task_rq(p);
676 raw_spin_rq_lock(rq);
677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
678 rq_pin_lock(rq, rf);
679 return rq;
680 }
681 raw_spin_rq_unlock(rq);
682
683 while (unlikely(task_on_rq_migrating(p)))
684 cpu_relax();
685 }
686}
687
688/*
689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
690 */
691struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
692 __acquires(p->pi_lock)
693 __acquires(rq->lock)
694{
695 struct rq *rq;
696
697 for (;;) {
698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
699 rq = task_rq(p);
700 raw_spin_rq_lock(rq);
701 /*
702 * move_queued_task() task_rq_lock()
703 *
704 * ACQUIRE (rq->lock)
705 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
707 * [S] ->cpu = new_cpu [L] task_rq()
708 * [L] ->on_rq
709 * RELEASE (rq->lock)
710 *
711 * If we observe the old CPU in task_rq_lock(), the acquire of
712 * the old rq->lock will fully serialize against the stores.
713 *
714 * If we observe the new CPU in task_rq_lock(), the address
715 * dependency headed by '[L] rq = task_rq()' and the acquire
716 * will pair with the WMB to ensure we then also see migrating.
717 */
718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
719 rq_pin_lock(rq, rf);
720 return rq;
721 }
722 raw_spin_rq_unlock(rq);
723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
724
725 while (unlikely(task_on_rq_migrating(p)))
726 cpu_relax();
727 }
728}
729
730/*
731 * RQ-clock updating methods:
732 */
733
734static void update_rq_clock_task(struct rq *rq, s64 delta)
735{
736/*
737 * In theory, the compile should just see 0 here, and optimize out the call
738 * to sched_rt_avg_update. But I don't trust it...
739 */
740 s64 __maybe_unused steal = 0, irq_delta = 0;
741
742#ifdef CONFIG_IRQ_TIME_ACCOUNTING
743 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
744
745 /*
746 * Since irq_time is only updated on {soft,}irq_exit, we might run into
747 * this case when a previous update_rq_clock() happened inside a
748 * {soft,}IRQ region.
749 *
750 * When this happens, we stop ->clock_task and only update the
751 * prev_irq_time stamp to account for the part that fit, so that a next
752 * update will consume the rest. This ensures ->clock_task is
753 * monotonic.
754 *
755 * It does however cause some slight miss-attribution of {soft,}IRQ
756 * time, a more accurate solution would be to update the irq_time using
757 * the current rq->clock timestamp, except that would require using
758 * atomic ops.
759 */
760 if (irq_delta > delta)
761 irq_delta = delta;
762
763 rq->prev_irq_time += irq_delta;
764 delta -= irq_delta;
765 delayacct_irq(rq->curr, irq_delta);
766#endif
767#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
768 if (static_key_false((¶virt_steal_rq_enabled))) {
769 u64 prev_steal;
770
771 steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
772 steal -= rq->prev_steal_time_rq;
773
774 if (unlikely(steal > delta))
775 steal = delta;
776
777 rq->prev_steal_time_rq = prev_steal;
778 delta -= steal;
779 }
780#endif
781
782 rq->clock_task += delta;
783
784#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
785 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
786 update_irq_load_avg(rq, irq_delta + steal);
787#endif
788 update_rq_clock_pelt(rq, delta);
789}
790
791void update_rq_clock(struct rq *rq)
792{
793 s64 delta;
794
795 lockdep_assert_rq_held(rq);
796
797 if (rq->clock_update_flags & RQCF_ACT_SKIP)
798 return;
799
800#ifdef CONFIG_SCHED_DEBUG
801 if (sched_feat(WARN_DOUBLE_CLOCK))
802 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
803 rq->clock_update_flags |= RQCF_UPDATED;
804#endif
805
806 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
807 if (delta < 0)
808 return;
809 rq->clock += delta;
810 update_rq_clock_task(rq, delta);
811}
812
813#ifdef CONFIG_SCHED_HRTICK
814/*
815 * Use HR-timers to deliver accurate preemption points.
816 */
817
818static void hrtick_clear(struct rq *rq)
819{
820 if (hrtimer_active(&rq->hrtick_timer))
821 hrtimer_cancel(&rq->hrtick_timer);
822}
823
824/*
825 * High-resolution timer tick.
826 * Runs from hardirq context with interrupts disabled.
827 */
828static enum hrtimer_restart hrtick(struct hrtimer *timer)
829{
830 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
831 struct rq_flags rf;
832
833 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
834
835 rq_lock(rq, &rf);
836 update_rq_clock(rq);
837 rq->donor->sched_class->task_tick(rq, rq->curr, 1);
838 rq_unlock(rq, &rf);
839
840 return HRTIMER_NORESTART;
841}
842
843#ifdef CONFIG_SMP
844
845static void __hrtick_restart(struct rq *rq)
846{
847 struct hrtimer *timer = &rq->hrtick_timer;
848 ktime_t time = rq->hrtick_time;
849
850 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
851}
852
853/*
854 * called from hardirq (IPI) context
855 */
856static void __hrtick_start(void *arg)
857{
858 struct rq *rq = arg;
859 struct rq_flags rf;
860
861 rq_lock(rq, &rf);
862 __hrtick_restart(rq);
863 rq_unlock(rq, &rf);
864}
865
866/*
867 * Called to set the hrtick timer state.
868 *
869 * called with rq->lock held and IRQs disabled
870 */
871void hrtick_start(struct rq *rq, u64 delay)
872{
873 struct hrtimer *timer = &rq->hrtick_timer;
874 s64 delta;
875
876 /*
877 * Don't schedule slices shorter than 10000ns, that just
878 * doesn't make sense and can cause timer DoS.
879 */
880 delta = max_t(s64, delay, 10000LL);
881 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
882
883 if (rq == this_rq())
884 __hrtick_restart(rq);
885 else
886 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
887}
888
889#else
890/*
891 * Called to set the hrtick timer state.
892 *
893 * called with rq->lock held and IRQs disabled
894 */
895void hrtick_start(struct rq *rq, u64 delay)
896{
897 /*
898 * Don't schedule slices shorter than 10000ns, that just
899 * doesn't make sense. Rely on vruntime for fairness.
900 */
901 delay = max_t(u64, delay, 10000LL);
902 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
903 HRTIMER_MODE_REL_PINNED_HARD);
904}
905
906#endif /* CONFIG_SMP */
907
908static void hrtick_rq_init(struct rq *rq)
909{
910#ifdef CONFIG_SMP
911 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
912#endif
913 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
914 rq->hrtick_timer.function = hrtick;
915}
916#else /* CONFIG_SCHED_HRTICK */
917static inline void hrtick_clear(struct rq *rq)
918{
919}
920
921static inline void hrtick_rq_init(struct rq *rq)
922{
923}
924#endif /* CONFIG_SCHED_HRTICK */
925
926/*
927 * try_cmpxchg based fetch_or() macro so it works for different integer types:
928 */
929#define fetch_or(ptr, mask) \
930 ({ \
931 typeof(ptr) _ptr = (ptr); \
932 typeof(mask) _mask = (mask); \
933 typeof(*_ptr) _val = *_ptr; \
934 \
935 do { \
936 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
937 _val; \
938})
939
940#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
941/*
942 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
943 * this avoids any races wrt polling state changes and thereby avoids
944 * spurious IPIs.
945 */
946static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
947{
948 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
949}
950
951/*
952 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
953 *
954 * If this returns true, then the idle task promises to call
955 * sched_ttwu_pending() and reschedule soon.
956 */
957static bool set_nr_if_polling(struct task_struct *p)
958{
959 struct thread_info *ti = task_thread_info(p);
960 typeof(ti->flags) val = READ_ONCE(ti->flags);
961
962 do {
963 if (!(val & _TIF_POLLING_NRFLAG))
964 return false;
965 if (val & _TIF_NEED_RESCHED)
966 return true;
967 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
968
969 return true;
970}
971
972#else
973static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
974{
975 set_ti_thread_flag(ti, tif);
976 return true;
977}
978
979#ifdef CONFIG_SMP
980static inline bool set_nr_if_polling(struct task_struct *p)
981{
982 return false;
983}
984#endif
985#endif
986
987static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
988{
989 struct wake_q_node *node = &task->wake_q;
990
991 /*
992 * Atomically grab the task, if ->wake_q is !nil already it means
993 * it's already queued (either by us or someone else) and will get the
994 * wakeup due to that.
995 *
996 * In order to ensure that a pending wakeup will observe our pending
997 * state, even in the failed case, an explicit smp_mb() must be used.
998 */
999 smp_mb__before_atomic();
1000 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1001 return false;
1002
1003 /*
1004 * The head is context local, there can be no concurrency.
1005 */
1006 *head->lastp = node;
1007 head->lastp = &node->next;
1008 return true;
1009}
1010
1011/**
1012 * wake_q_add() - queue a wakeup for 'later' waking.
1013 * @head: the wake_q_head to add @task to
1014 * @task: the task to queue for 'later' wakeup
1015 *
1016 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1017 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1018 * instantly.
1019 *
1020 * This function must be used as-if it were wake_up_process(); IOW the task
1021 * must be ready to be woken at this location.
1022 */
1023void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1024{
1025 if (__wake_q_add(head, task))
1026 get_task_struct(task);
1027}
1028
1029/**
1030 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1031 * @head: the wake_q_head to add @task to
1032 * @task: the task to queue for 'later' wakeup
1033 *
1034 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1035 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1036 * instantly.
1037 *
1038 * This function must be used as-if it were wake_up_process(); IOW the task
1039 * must be ready to be woken at this location.
1040 *
1041 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1042 * that already hold reference to @task can call the 'safe' version and trust
1043 * wake_q to do the right thing depending whether or not the @task is already
1044 * queued for wakeup.
1045 */
1046void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1047{
1048 if (!__wake_q_add(head, task))
1049 put_task_struct(task);
1050}
1051
1052void wake_up_q(struct wake_q_head *head)
1053{
1054 struct wake_q_node *node = head->first;
1055
1056 while (node != WAKE_Q_TAIL) {
1057 struct task_struct *task;
1058
1059 task = container_of(node, struct task_struct, wake_q);
1060 /* Task can safely be re-inserted now: */
1061 node = node->next;
1062 task->wake_q.next = NULL;
1063
1064 /*
1065 * wake_up_process() executes a full barrier, which pairs with
1066 * the queueing in wake_q_add() so as not to miss wakeups.
1067 */
1068 wake_up_process(task);
1069 put_task_struct(task);
1070 }
1071}
1072
1073/*
1074 * resched_curr - mark rq's current task 'to be rescheduled now'.
1075 *
1076 * On UP this means the setting of the need_resched flag, on SMP it
1077 * might also involve a cross-CPU call to trigger the scheduler on
1078 * the target CPU.
1079 */
1080static void __resched_curr(struct rq *rq, int tif)
1081{
1082 struct task_struct *curr = rq->curr;
1083 struct thread_info *cti = task_thread_info(curr);
1084 int cpu;
1085
1086 lockdep_assert_rq_held(rq);
1087
1088 /*
1089 * Always immediately preempt the idle task; no point in delaying doing
1090 * actual work.
1091 */
1092 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1093 tif = TIF_NEED_RESCHED;
1094
1095 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1096 return;
1097
1098 cpu = cpu_of(rq);
1099
1100 if (cpu == smp_processor_id()) {
1101 set_ti_thread_flag(cti, tif);
1102 if (tif == TIF_NEED_RESCHED)
1103 set_preempt_need_resched();
1104 return;
1105 }
1106
1107 if (set_nr_and_not_polling(cti, tif)) {
1108 if (tif == TIF_NEED_RESCHED)
1109 smp_send_reschedule(cpu);
1110 } else {
1111 trace_sched_wake_idle_without_ipi(cpu);
1112 }
1113}
1114
1115void resched_curr(struct rq *rq)
1116{
1117 __resched_curr(rq, TIF_NEED_RESCHED);
1118}
1119
1120#ifdef CONFIG_PREEMPT_DYNAMIC
1121static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1122static __always_inline bool dynamic_preempt_lazy(void)
1123{
1124 return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1125}
1126#else
1127static __always_inline bool dynamic_preempt_lazy(void)
1128{
1129 return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1130}
1131#endif
1132
1133static __always_inline int get_lazy_tif_bit(void)
1134{
1135 if (dynamic_preempt_lazy())
1136 return TIF_NEED_RESCHED_LAZY;
1137
1138 return TIF_NEED_RESCHED;
1139}
1140
1141void resched_curr_lazy(struct rq *rq)
1142{
1143 __resched_curr(rq, get_lazy_tif_bit());
1144}
1145
1146void resched_cpu(int cpu)
1147{
1148 struct rq *rq = cpu_rq(cpu);
1149 unsigned long flags;
1150
1151 raw_spin_rq_lock_irqsave(rq, flags);
1152 if (cpu_online(cpu) || cpu == smp_processor_id())
1153 resched_curr(rq);
1154 raw_spin_rq_unlock_irqrestore(rq, flags);
1155}
1156
1157#ifdef CONFIG_SMP
1158#ifdef CONFIG_NO_HZ_COMMON
1159/*
1160 * In the semi idle case, use the nearest busy CPU for migrating timers
1161 * from an idle CPU. This is good for power-savings.
1162 *
1163 * We don't do similar optimization for completely idle system, as
1164 * selecting an idle CPU will add more delays to the timers than intended
1165 * (as that CPU's timer base may not be up to date wrt jiffies etc).
1166 */
1167int get_nohz_timer_target(void)
1168{
1169 int i, cpu = smp_processor_id(), default_cpu = -1;
1170 struct sched_domain *sd;
1171 const struct cpumask *hk_mask;
1172
1173 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1174 if (!idle_cpu(cpu))
1175 return cpu;
1176 default_cpu = cpu;
1177 }
1178
1179 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1180
1181 guard(rcu)();
1182
1183 for_each_domain(cpu, sd) {
1184 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1185 if (cpu == i)
1186 continue;
1187
1188 if (!idle_cpu(i))
1189 return i;
1190 }
1191 }
1192
1193 if (default_cpu == -1)
1194 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1195
1196 return default_cpu;
1197}
1198
1199/*
1200 * When add_timer_on() enqueues a timer into the timer wheel of an
1201 * idle CPU then this timer might expire before the next timer event
1202 * which is scheduled to wake up that CPU. In case of a completely
1203 * idle system the next event might even be infinite time into the
1204 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1205 * leaves the inner idle loop so the newly added timer is taken into
1206 * account when the CPU goes back to idle and evaluates the timer
1207 * wheel for the next timer event.
1208 */
1209static void wake_up_idle_cpu(int cpu)
1210{
1211 struct rq *rq = cpu_rq(cpu);
1212
1213 if (cpu == smp_processor_id())
1214 return;
1215
1216 /*
1217 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1218 * part of the idle loop. This forces an exit from the idle loop
1219 * and a round trip to schedule(). Now this could be optimized
1220 * because a simple new idle loop iteration is enough to
1221 * re-evaluate the next tick. Provided some re-ordering of tick
1222 * nohz functions that would need to follow TIF_NR_POLLING
1223 * clearing:
1224 *
1225 * - On most architectures, a simple fetch_or on ti::flags with a
1226 * "0" value would be enough to know if an IPI needs to be sent.
1227 *
1228 * - x86 needs to perform a last need_resched() check between
1229 * monitor and mwait which doesn't take timers into account.
1230 * There a dedicated TIF_TIMER flag would be required to
1231 * fetch_or here and be checked along with TIF_NEED_RESCHED
1232 * before mwait().
1233 *
1234 * However, remote timer enqueue is not such a frequent event
1235 * and testing of the above solutions didn't appear to report
1236 * much benefits.
1237 */
1238 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1239 smp_send_reschedule(cpu);
1240 else
1241 trace_sched_wake_idle_without_ipi(cpu);
1242}
1243
1244static bool wake_up_full_nohz_cpu(int cpu)
1245{
1246 /*
1247 * We just need the target to call irq_exit() and re-evaluate
1248 * the next tick. The nohz full kick at least implies that.
1249 * If needed we can still optimize that later with an
1250 * empty IRQ.
1251 */
1252 if (cpu_is_offline(cpu))
1253 return true; /* Don't try to wake offline CPUs. */
1254 if (tick_nohz_full_cpu(cpu)) {
1255 if (cpu != smp_processor_id() ||
1256 tick_nohz_tick_stopped())
1257 tick_nohz_full_kick_cpu(cpu);
1258 return true;
1259 }
1260
1261 return false;
1262}
1263
1264/*
1265 * Wake up the specified CPU. If the CPU is going offline, it is the
1266 * caller's responsibility to deal with the lost wakeup, for example,
1267 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1268 */
1269void wake_up_nohz_cpu(int cpu)
1270{
1271 if (!wake_up_full_nohz_cpu(cpu))
1272 wake_up_idle_cpu(cpu);
1273}
1274
1275static void nohz_csd_func(void *info)
1276{
1277 struct rq *rq = info;
1278 int cpu = cpu_of(rq);
1279 unsigned int flags;
1280
1281 /*
1282 * Release the rq::nohz_csd.
1283 */
1284 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1285 WARN_ON(!(flags & NOHZ_KICK_MASK));
1286
1287 rq->idle_balance = idle_cpu(cpu);
1288 if (rq->idle_balance) {
1289 rq->nohz_idle_balance = flags;
1290 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1291 }
1292}
1293
1294#endif /* CONFIG_NO_HZ_COMMON */
1295
1296#ifdef CONFIG_NO_HZ_FULL
1297static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1298{
1299 if (rq->nr_running != 1)
1300 return false;
1301
1302 if (p->sched_class != &fair_sched_class)
1303 return false;
1304
1305 if (!task_on_rq_queued(p))
1306 return false;
1307
1308 return true;
1309}
1310
1311bool sched_can_stop_tick(struct rq *rq)
1312{
1313 int fifo_nr_running;
1314
1315 /* Deadline tasks, even if single, need the tick */
1316 if (rq->dl.dl_nr_running)
1317 return false;
1318
1319 /*
1320 * If there are more than one RR tasks, we need the tick to affect the
1321 * actual RR behaviour.
1322 */
1323 if (rq->rt.rr_nr_running) {
1324 if (rq->rt.rr_nr_running == 1)
1325 return true;
1326 else
1327 return false;
1328 }
1329
1330 /*
1331 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1332 * forced preemption between FIFO tasks.
1333 */
1334 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1335 if (fifo_nr_running)
1336 return true;
1337
1338 /*
1339 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1340 * left. For CFS, if there's more than one we need the tick for
1341 * involuntary preemption. For SCX, ask.
1342 */
1343 if (scx_enabled() && !scx_can_stop_tick(rq))
1344 return false;
1345
1346 if (rq->cfs.h_nr_running > 1)
1347 return false;
1348
1349 /*
1350 * If there is one task and it has CFS runtime bandwidth constraints
1351 * and it's on the cpu now we don't want to stop the tick.
1352 * This check prevents clearing the bit if a newly enqueued task here is
1353 * dequeued by migrating while the constrained task continues to run.
1354 * E.g. going from 2->1 without going through pick_next_task().
1355 */
1356 if (__need_bw_check(rq, rq->curr)) {
1357 if (cfs_task_bw_constrained(rq->curr))
1358 return false;
1359 }
1360
1361 return true;
1362}
1363#endif /* CONFIG_NO_HZ_FULL */
1364#endif /* CONFIG_SMP */
1365
1366#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1367 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1368/*
1369 * Iterate task_group tree rooted at *from, calling @down when first entering a
1370 * node and @up when leaving it for the final time.
1371 *
1372 * Caller must hold rcu_lock or sufficient equivalent.
1373 */
1374int walk_tg_tree_from(struct task_group *from,
1375 tg_visitor down, tg_visitor up, void *data)
1376{
1377 struct task_group *parent, *child;
1378 int ret;
1379
1380 parent = from;
1381
1382down:
1383 ret = (*down)(parent, data);
1384 if (ret)
1385 goto out;
1386 list_for_each_entry_rcu(child, &parent->children, siblings) {
1387 parent = child;
1388 goto down;
1389
1390up:
1391 continue;
1392 }
1393 ret = (*up)(parent, data);
1394 if (ret || parent == from)
1395 goto out;
1396
1397 child = parent;
1398 parent = parent->parent;
1399 if (parent)
1400 goto up;
1401out:
1402 return ret;
1403}
1404
1405int tg_nop(struct task_group *tg, void *data)
1406{
1407 return 0;
1408}
1409#endif
1410
1411void set_load_weight(struct task_struct *p, bool update_load)
1412{
1413 int prio = p->static_prio - MAX_RT_PRIO;
1414 struct load_weight lw;
1415
1416 if (task_has_idle_policy(p)) {
1417 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1418 lw.inv_weight = WMULT_IDLEPRIO;
1419 } else {
1420 lw.weight = scale_load(sched_prio_to_weight[prio]);
1421 lw.inv_weight = sched_prio_to_wmult[prio];
1422 }
1423
1424 /*
1425 * SCHED_OTHER tasks have to update their load when changing their
1426 * weight
1427 */
1428 if (update_load && p->sched_class->reweight_task)
1429 p->sched_class->reweight_task(task_rq(p), p, &lw);
1430 else
1431 p->se.load = lw;
1432}
1433
1434#ifdef CONFIG_UCLAMP_TASK
1435/*
1436 * Serializes updates of utilization clamp values
1437 *
1438 * The (slow-path) user-space triggers utilization clamp value updates which
1439 * can require updates on (fast-path) scheduler's data structures used to
1440 * support enqueue/dequeue operations.
1441 * While the per-CPU rq lock protects fast-path update operations, user-space
1442 * requests are serialized using a mutex to reduce the risk of conflicting
1443 * updates or API abuses.
1444 */
1445static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1446
1447/* Max allowed minimum utilization */
1448static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1449
1450/* Max allowed maximum utilization */
1451static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1452
1453/*
1454 * By default RT tasks run at the maximum performance point/capacity of the
1455 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1456 * SCHED_CAPACITY_SCALE.
1457 *
1458 * This knob allows admins to change the default behavior when uclamp is being
1459 * used. In battery powered devices, particularly, running at the maximum
1460 * capacity and frequency will increase energy consumption and shorten the
1461 * battery life.
1462 *
1463 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1464 *
1465 * This knob will not override the system default sched_util_clamp_min defined
1466 * above.
1467 */
1468unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1469
1470/* All clamps are required to be less or equal than these values */
1471static struct uclamp_se uclamp_default[UCLAMP_CNT];
1472
1473/*
1474 * This static key is used to reduce the uclamp overhead in the fast path. It
1475 * primarily disables the call to uclamp_rq_{inc, dec}() in
1476 * enqueue/dequeue_task().
1477 *
1478 * This allows users to continue to enable uclamp in their kernel config with
1479 * minimum uclamp overhead in the fast path.
1480 *
1481 * As soon as userspace modifies any of the uclamp knobs, the static key is
1482 * enabled, since we have an actual users that make use of uclamp
1483 * functionality.
1484 *
1485 * The knobs that would enable this static key are:
1486 *
1487 * * A task modifying its uclamp value with sched_setattr().
1488 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1489 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1490 */
1491DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1492
1493static inline unsigned int
1494uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1495 unsigned int clamp_value)
1496{
1497 /*
1498 * Avoid blocked utilization pushing up the frequency when we go
1499 * idle (which drops the max-clamp) by retaining the last known
1500 * max-clamp.
1501 */
1502 if (clamp_id == UCLAMP_MAX) {
1503 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1504 return clamp_value;
1505 }
1506
1507 return uclamp_none(UCLAMP_MIN);
1508}
1509
1510static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1511 unsigned int clamp_value)
1512{
1513 /* Reset max-clamp retention only on idle exit */
1514 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1515 return;
1516
1517 uclamp_rq_set(rq, clamp_id, clamp_value);
1518}
1519
1520static inline
1521unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1522 unsigned int clamp_value)
1523{
1524 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1525 int bucket_id = UCLAMP_BUCKETS - 1;
1526
1527 /*
1528 * Since both min and max clamps are max aggregated, find the
1529 * top most bucket with tasks in.
1530 */
1531 for ( ; bucket_id >= 0; bucket_id--) {
1532 if (!bucket[bucket_id].tasks)
1533 continue;
1534 return bucket[bucket_id].value;
1535 }
1536
1537 /* No tasks -- default clamp values */
1538 return uclamp_idle_value(rq, clamp_id, clamp_value);
1539}
1540
1541static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1542{
1543 unsigned int default_util_min;
1544 struct uclamp_se *uc_se;
1545
1546 lockdep_assert_held(&p->pi_lock);
1547
1548 uc_se = &p->uclamp_req[UCLAMP_MIN];
1549
1550 /* Only sync if user didn't override the default */
1551 if (uc_se->user_defined)
1552 return;
1553
1554 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1555 uclamp_se_set(uc_se, default_util_min, false);
1556}
1557
1558static void uclamp_update_util_min_rt_default(struct task_struct *p)
1559{
1560 if (!rt_task(p))
1561 return;
1562
1563 /* Protect updates to p->uclamp_* */
1564 guard(task_rq_lock)(p);
1565 __uclamp_update_util_min_rt_default(p);
1566}
1567
1568static inline struct uclamp_se
1569uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1570{
1571 /* Copy by value as we could modify it */
1572 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1573#ifdef CONFIG_UCLAMP_TASK_GROUP
1574 unsigned int tg_min, tg_max, value;
1575
1576 /*
1577 * Tasks in autogroups or root task group will be
1578 * restricted by system defaults.
1579 */
1580 if (task_group_is_autogroup(task_group(p)))
1581 return uc_req;
1582 if (task_group(p) == &root_task_group)
1583 return uc_req;
1584
1585 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1586 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1587 value = uc_req.value;
1588 value = clamp(value, tg_min, tg_max);
1589 uclamp_se_set(&uc_req, value, false);
1590#endif
1591
1592 return uc_req;
1593}
1594
1595/*
1596 * The effective clamp bucket index of a task depends on, by increasing
1597 * priority:
1598 * - the task specific clamp value, when explicitly requested from userspace
1599 * - the task group effective clamp value, for tasks not either in the root
1600 * group or in an autogroup
1601 * - the system default clamp value, defined by the sysadmin
1602 */
1603static inline struct uclamp_se
1604uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1605{
1606 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1607 struct uclamp_se uc_max = uclamp_default[clamp_id];
1608
1609 /* System default restrictions always apply */
1610 if (unlikely(uc_req.value > uc_max.value))
1611 return uc_max;
1612
1613 return uc_req;
1614}
1615
1616unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1617{
1618 struct uclamp_se uc_eff;
1619
1620 /* Task currently refcounted: use back-annotated (effective) value */
1621 if (p->uclamp[clamp_id].active)
1622 return (unsigned long)p->uclamp[clamp_id].value;
1623
1624 uc_eff = uclamp_eff_get(p, clamp_id);
1625
1626 return (unsigned long)uc_eff.value;
1627}
1628
1629/*
1630 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1631 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1632 * updates the rq's clamp value if required.
1633 *
1634 * Tasks can have a task-specific value requested from user-space, track
1635 * within each bucket the maximum value for tasks refcounted in it.
1636 * This "local max aggregation" allows to track the exact "requested" value
1637 * for each bucket when all its RUNNABLE tasks require the same clamp.
1638 */
1639static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1640 enum uclamp_id clamp_id)
1641{
1642 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1643 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1644 struct uclamp_bucket *bucket;
1645
1646 lockdep_assert_rq_held(rq);
1647
1648 /* Update task effective clamp */
1649 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1650
1651 bucket = &uc_rq->bucket[uc_se->bucket_id];
1652 bucket->tasks++;
1653 uc_se->active = true;
1654
1655 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1656
1657 /*
1658 * Local max aggregation: rq buckets always track the max
1659 * "requested" clamp value of its RUNNABLE tasks.
1660 */
1661 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1662 bucket->value = uc_se->value;
1663
1664 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1665 uclamp_rq_set(rq, clamp_id, uc_se->value);
1666}
1667
1668/*
1669 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1670 * is released. If this is the last task reference counting the rq's max
1671 * active clamp value, then the rq's clamp value is updated.
1672 *
1673 * Both refcounted tasks and rq's cached clamp values are expected to be
1674 * always valid. If it's detected they are not, as defensive programming,
1675 * enforce the expected state and warn.
1676 */
1677static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1678 enum uclamp_id clamp_id)
1679{
1680 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1681 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1682 struct uclamp_bucket *bucket;
1683 unsigned int bkt_clamp;
1684 unsigned int rq_clamp;
1685
1686 lockdep_assert_rq_held(rq);
1687
1688 /*
1689 * If sched_uclamp_used was enabled after task @p was enqueued,
1690 * we could end up with unbalanced call to uclamp_rq_dec_id().
1691 *
1692 * In this case the uc_se->active flag should be false since no uclamp
1693 * accounting was performed at enqueue time and we can just return
1694 * here.
1695 *
1696 * Need to be careful of the following enqueue/dequeue ordering
1697 * problem too
1698 *
1699 * enqueue(taskA)
1700 * // sched_uclamp_used gets enabled
1701 * enqueue(taskB)
1702 * dequeue(taskA)
1703 * // Must not decrement bucket->tasks here
1704 * dequeue(taskB)
1705 *
1706 * where we could end up with stale data in uc_se and
1707 * bucket[uc_se->bucket_id].
1708 *
1709 * The following check here eliminates the possibility of such race.
1710 */
1711 if (unlikely(!uc_se->active))
1712 return;
1713
1714 bucket = &uc_rq->bucket[uc_se->bucket_id];
1715
1716 SCHED_WARN_ON(!bucket->tasks);
1717 if (likely(bucket->tasks))
1718 bucket->tasks--;
1719
1720 uc_se->active = false;
1721
1722 /*
1723 * Keep "local max aggregation" simple and accept to (possibly)
1724 * overboost some RUNNABLE tasks in the same bucket.
1725 * The rq clamp bucket value is reset to its base value whenever
1726 * there are no more RUNNABLE tasks refcounting it.
1727 */
1728 if (likely(bucket->tasks))
1729 return;
1730
1731 rq_clamp = uclamp_rq_get(rq, clamp_id);
1732 /*
1733 * Defensive programming: this should never happen. If it happens,
1734 * e.g. due to future modification, warn and fix up the expected value.
1735 */
1736 SCHED_WARN_ON(bucket->value > rq_clamp);
1737 if (bucket->value >= rq_clamp) {
1738 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1739 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1740 }
1741}
1742
1743static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1744{
1745 enum uclamp_id clamp_id;
1746
1747 /*
1748 * Avoid any overhead until uclamp is actually used by the userspace.
1749 *
1750 * The condition is constructed such that a NOP is generated when
1751 * sched_uclamp_used is disabled.
1752 */
1753 if (!static_branch_unlikely(&sched_uclamp_used))
1754 return;
1755
1756 if (unlikely(!p->sched_class->uclamp_enabled))
1757 return;
1758
1759 if (p->se.sched_delayed)
1760 return;
1761
1762 for_each_clamp_id(clamp_id)
1763 uclamp_rq_inc_id(rq, p, clamp_id);
1764
1765 /* Reset clamp idle holding when there is one RUNNABLE task */
1766 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1767 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1768}
1769
1770static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1771{
1772 enum uclamp_id clamp_id;
1773
1774 /*
1775 * Avoid any overhead until uclamp is actually used by the userspace.
1776 *
1777 * The condition is constructed such that a NOP is generated when
1778 * sched_uclamp_used is disabled.
1779 */
1780 if (!static_branch_unlikely(&sched_uclamp_used))
1781 return;
1782
1783 if (unlikely(!p->sched_class->uclamp_enabled))
1784 return;
1785
1786 if (p->se.sched_delayed)
1787 return;
1788
1789 for_each_clamp_id(clamp_id)
1790 uclamp_rq_dec_id(rq, p, clamp_id);
1791}
1792
1793static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1794 enum uclamp_id clamp_id)
1795{
1796 if (!p->uclamp[clamp_id].active)
1797 return;
1798
1799 uclamp_rq_dec_id(rq, p, clamp_id);
1800 uclamp_rq_inc_id(rq, p, clamp_id);
1801
1802 /*
1803 * Make sure to clear the idle flag if we've transiently reached 0
1804 * active tasks on rq.
1805 */
1806 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1807 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1808}
1809
1810static inline void
1811uclamp_update_active(struct task_struct *p)
1812{
1813 enum uclamp_id clamp_id;
1814 struct rq_flags rf;
1815 struct rq *rq;
1816
1817 /*
1818 * Lock the task and the rq where the task is (or was) queued.
1819 *
1820 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1821 * price to pay to safely serialize util_{min,max} updates with
1822 * enqueues, dequeues and migration operations.
1823 * This is the same locking schema used by __set_cpus_allowed_ptr().
1824 */
1825 rq = task_rq_lock(p, &rf);
1826
1827 /*
1828 * Setting the clamp bucket is serialized by task_rq_lock().
1829 * If the task is not yet RUNNABLE and its task_struct is not
1830 * affecting a valid clamp bucket, the next time it's enqueued,
1831 * it will already see the updated clamp bucket value.
1832 */
1833 for_each_clamp_id(clamp_id)
1834 uclamp_rq_reinc_id(rq, p, clamp_id);
1835
1836 task_rq_unlock(rq, p, &rf);
1837}
1838
1839#ifdef CONFIG_UCLAMP_TASK_GROUP
1840static inline void
1841uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1842{
1843 struct css_task_iter it;
1844 struct task_struct *p;
1845
1846 css_task_iter_start(css, 0, &it);
1847 while ((p = css_task_iter_next(&it)))
1848 uclamp_update_active(p);
1849 css_task_iter_end(&it);
1850}
1851
1852static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1853#endif
1854
1855#ifdef CONFIG_SYSCTL
1856#ifdef CONFIG_UCLAMP_TASK_GROUP
1857static void uclamp_update_root_tg(void)
1858{
1859 struct task_group *tg = &root_task_group;
1860
1861 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1862 sysctl_sched_uclamp_util_min, false);
1863 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1864 sysctl_sched_uclamp_util_max, false);
1865
1866 guard(rcu)();
1867 cpu_util_update_eff(&root_task_group.css);
1868}
1869#else
1870static void uclamp_update_root_tg(void) { }
1871#endif
1872
1873static void uclamp_sync_util_min_rt_default(void)
1874{
1875 struct task_struct *g, *p;
1876
1877 /*
1878 * copy_process() sysctl_uclamp
1879 * uclamp_min_rt = X;
1880 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1881 * // link thread smp_mb__after_spinlock()
1882 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1883 * sched_post_fork() for_each_process_thread()
1884 * __uclamp_sync_rt() __uclamp_sync_rt()
1885 *
1886 * Ensures that either sched_post_fork() will observe the new
1887 * uclamp_min_rt or for_each_process_thread() will observe the new
1888 * task.
1889 */
1890 read_lock(&tasklist_lock);
1891 smp_mb__after_spinlock();
1892 read_unlock(&tasklist_lock);
1893
1894 guard(rcu)();
1895 for_each_process_thread(g, p)
1896 uclamp_update_util_min_rt_default(p);
1897}
1898
1899static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1900 void *buffer, size_t *lenp, loff_t *ppos)
1901{
1902 bool update_root_tg = false;
1903 int old_min, old_max, old_min_rt;
1904 int result;
1905
1906 guard(mutex)(&uclamp_mutex);
1907
1908 old_min = sysctl_sched_uclamp_util_min;
1909 old_max = sysctl_sched_uclamp_util_max;
1910 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1911
1912 result = proc_dointvec(table, write, buffer, lenp, ppos);
1913 if (result)
1914 goto undo;
1915 if (!write)
1916 return 0;
1917
1918 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1919 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1920 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1921
1922 result = -EINVAL;
1923 goto undo;
1924 }
1925
1926 if (old_min != sysctl_sched_uclamp_util_min) {
1927 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1928 sysctl_sched_uclamp_util_min, false);
1929 update_root_tg = true;
1930 }
1931 if (old_max != sysctl_sched_uclamp_util_max) {
1932 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1933 sysctl_sched_uclamp_util_max, false);
1934 update_root_tg = true;
1935 }
1936
1937 if (update_root_tg) {
1938 static_branch_enable(&sched_uclamp_used);
1939 uclamp_update_root_tg();
1940 }
1941
1942 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1943 static_branch_enable(&sched_uclamp_used);
1944 uclamp_sync_util_min_rt_default();
1945 }
1946
1947 /*
1948 * We update all RUNNABLE tasks only when task groups are in use.
1949 * Otherwise, keep it simple and do just a lazy update at each next
1950 * task enqueue time.
1951 */
1952 return 0;
1953
1954undo:
1955 sysctl_sched_uclamp_util_min = old_min;
1956 sysctl_sched_uclamp_util_max = old_max;
1957 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1958 return result;
1959}
1960#endif
1961
1962static void uclamp_fork(struct task_struct *p)
1963{
1964 enum uclamp_id clamp_id;
1965
1966 /*
1967 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1968 * as the task is still at its early fork stages.
1969 */
1970 for_each_clamp_id(clamp_id)
1971 p->uclamp[clamp_id].active = false;
1972
1973 if (likely(!p->sched_reset_on_fork))
1974 return;
1975
1976 for_each_clamp_id(clamp_id) {
1977 uclamp_se_set(&p->uclamp_req[clamp_id],
1978 uclamp_none(clamp_id), false);
1979 }
1980}
1981
1982static void uclamp_post_fork(struct task_struct *p)
1983{
1984 uclamp_update_util_min_rt_default(p);
1985}
1986
1987static void __init init_uclamp_rq(struct rq *rq)
1988{
1989 enum uclamp_id clamp_id;
1990 struct uclamp_rq *uc_rq = rq->uclamp;
1991
1992 for_each_clamp_id(clamp_id) {
1993 uc_rq[clamp_id] = (struct uclamp_rq) {
1994 .value = uclamp_none(clamp_id)
1995 };
1996 }
1997
1998 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1999}
2000
2001static void __init init_uclamp(void)
2002{
2003 struct uclamp_se uc_max = {};
2004 enum uclamp_id clamp_id;
2005 int cpu;
2006
2007 for_each_possible_cpu(cpu)
2008 init_uclamp_rq(cpu_rq(cpu));
2009
2010 for_each_clamp_id(clamp_id) {
2011 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2012 uclamp_none(clamp_id), false);
2013 }
2014
2015 /* System defaults allow max clamp values for both indexes */
2016 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2017 for_each_clamp_id(clamp_id) {
2018 uclamp_default[clamp_id] = uc_max;
2019#ifdef CONFIG_UCLAMP_TASK_GROUP
2020 root_task_group.uclamp_req[clamp_id] = uc_max;
2021 root_task_group.uclamp[clamp_id] = uc_max;
2022#endif
2023 }
2024}
2025
2026#else /* !CONFIG_UCLAMP_TASK */
2027static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2028static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2029static inline void uclamp_fork(struct task_struct *p) { }
2030static inline void uclamp_post_fork(struct task_struct *p) { }
2031static inline void init_uclamp(void) { }
2032#endif /* CONFIG_UCLAMP_TASK */
2033
2034bool sched_task_on_rq(struct task_struct *p)
2035{
2036 return task_on_rq_queued(p);
2037}
2038
2039unsigned long get_wchan(struct task_struct *p)
2040{
2041 unsigned long ip = 0;
2042 unsigned int state;
2043
2044 if (!p || p == current)
2045 return 0;
2046
2047 /* Only get wchan if task is blocked and we can keep it that way. */
2048 raw_spin_lock_irq(&p->pi_lock);
2049 state = READ_ONCE(p->__state);
2050 smp_rmb(); /* see try_to_wake_up() */
2051 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2052 ip = __get_wchan(p);
2053 raw_spin_unlock_irq(&p->pi_lock);
2054
2055 return ip;
2056}
2057
2058void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2059{
2060 if (!(flags & ENQUEUE_NOCLOCK))
2061 update_rq_clock(rq);
2062
2063 p->sched_class->enqueue_task(rq, p, flags);
2064 /*
2065 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2066 * ->sched_delayed.
2067 */
2068 uclamp_rq_inc(rq, p);
2069
2070 psi_enqueue(p, flags);
2071
2072 if (!(flags & ENQUEUE_RESTORE))
2073 sched_info_enqueue(rq, p);
2074
2075 if (sched_core_enabled(rq))
2076 sched_core_enqueue(rq, p);
2077}
2078
2079/*
2080 * Must only return false when DEQUEUE_SLEEP.
2081 */
2082inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2083{
2084 if (sched_core_enabled(rq))
2085 sched_core_dequeue(rq, p, flags);
2086
2087 if (!(flags & DEQUEUE_NOCLOCK))
2088 update_rq_clock(rq);
2089
2090 if (!(flags & DEQUEUE_SAVE))
2091 sched_info_dequeue(rq, p);
2092
2093 psi_dequeue(p, flags);
2094
2095 /*
2096 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2097 * and mark the task ->sched_delayed.
2098 */
2099 uclamp_rq_dec(rq, p);
2100 return p->sched_class->dequeue_task(rq, p, flags);
2101}
2102
2103void activate_task(struct rq *rq, struct task_struct *p, int flags)
2104{
2105 if (task_on_rq_migrating(p))
2106 flags |= ENQUEUE_MIGRATED;
2107 if (flags & ENQUEUE_MIGRATED)
2108 sched_mm_cid_migrate_to(rq, p);
2109
2110 enqueue_task(rq, p, flags);
2111
2112 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2113 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2114}
2115
2116void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2117{
2118 SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2119
2120 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2121 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2122
2123 /*
2124 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2125 * dequeue_task() and cleared *after* enqueue_task().
2126 */
2127
2128 dequeue_task(rq, p, flags);
2129}
2130
2131static void block_task(struct rq *rq, struct task_struct *p, int flags)
2132{
2133 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2134 __block_task(rq, p);
2135}
2136
2137/**
2138 * task_curr - is this task currently executing on a CPU?
2139 * @p: the task in question.
2140 *
2141 * Return: 1 if the task is currently executing. 0 otherwise.
2142 */
2143inline int task_curr(const struct task_struct *p)
2144{
2145 return cpu_curr(task_cpu(p)) == p;
2146}
2147
2148/*
2149 * ->switching_to() is called with the pi_lock and rq_lock held and must not
2150 * mess with locking.
2151 */
2152void check_class_changing(struct rq *rq, struct task_struct *p,
2153 const struct sched_class *prev_class)
2154{
2155 if (prev_class != p->sched_class && p->sched_class->switching_to)
2156 p->sched_class->switching_to(rq, p);
2157}
2158
2159/*
2160 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2161 * use the balance_callback list if you want balancing.
2162 *
2163 * this means any call to check_class_changed() must be followed by a call to
2164 * balance_callback().
2165 */
2166void check_class_changed(struct rq *rq, struct task_struct *p,
2167 const struct sched_class *prev_class,
2168 int oldprio)
2169{
2170 if (prev_class != p->sched_class) {
2171 if (prev_class->switched_from)
2172 prev_class->switched_from(rq, p);
2173
2174 p->sched_class->switched_to(rq, p);
2175 } else if (oldprio != p->prio || dl_task(p))
2176 p->sched_class->prio_changed(rq, p, oldprio);
2177}
2178
2179void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2180{
2181 struct task_struct *donor = rq->donor;
2182
2183 if (p->sched_class == donor->sched_class)
2184 donor->sched_class->wakeup_preempt(rq, p, flags);
2185 else if (sched_class_above(p->sched_class, donor->sched_class))
2186 resched_curr(rq);
2187
2188 /*
2189 * A queue event has occurred, and we're going to schedule. In
2190 * this case, we can save a useless back to back clock update.
2191 */
2192 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2193 rq_clock_skip_update(rq);
2194}
2195
2196static __always_inline
2197int __task_state_match(struct task_struct *p, unsigned int state)
2198{
2199 if (READ_ONCE(p->__state) & state)
2200 return 1;
2201
2202 if (READ_ONCE(p->saved_state) & state)
2203 return -1;
2204
2205 return 0;
2206}
2207
2208static __always_inline
2209int task_state_match(struct task_struct *p, unsigned int state)
2210{
2211 /*
2212 * Serialize against current_save_and_set_rtlock_wait_state(),
2213 * current_restore_rtlock_saved_state(), and __refrigerator().
2214 */
2215 guard(raw_spinlock_irq)(&p->pi_lock);
2216 return __task_state_match(p, state);
2217}
2218
2219/*
2220 * wait_task_inactive - wait for a thread to unschedule.
2221 *
2222 * Wait for the thread to block in any of the states set in @match_state.
2223 * If it changes, i.e. @p might have woken up, then return zero. When we
2224 * succeed in waiting for @p to be off its CPU, we return a positive number
2225 * (its total switch count). If a second call a short while later returns the
2226 * same number, the caller can be sure that @p has remained unscheduled the
2227 * whole time.
2228 *
2229 * The caller must ensure that the task *will* unschedule sometime soon,
2230 * else this function might spin for a *long* time. This function can't
2231 * be called with interrupts off, or it may introduce deadlock with
2232 * smp_call_function() if an IPI is sent by the same process we are
2233 * waiting to become inactive.
2234 */
2235unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2236{
2237 int running, queued, match;
2238 struct rq_flags rf;
2239 unsigned long ncsw;
2240 struct rq *rq;
2241
2242 for (;;) {
2243 /*
2244 * We do the initial early heuristics without holding
2245 * any task-queue locks at all. We'll only try to get
2246 * the runqueue lock when things look like they will
2247 * work out!
2248 */
2249 rq = task_rq(p);
2250
2251 /*
2252 * If the task is actively running on another CPU
2253 * still, just relax and busy-wait without holding
2254 * any locks.
2255 *
2256 * NOTE! Since we don't hold any locks, it's not
2257 * even sure that "rq" stays as the right runqueue!
2258 * But we don't care, since "task_on_cpu()" will
2259 * return false if the runqueue has changed and p
2260 * is actually now running somewhere else!
2261 */
2262 while (task_on_cpu(rq, p)) {
2263 if (!task_state_match(p, match_state))
2264 return 0;
2265 cpu_relax();
2266 }
2267
2268 /*
2269 * Ok, time to look more closely! We need the rq
2270 * lock now, to be *sure*. If we're wrong, we'll
2271 * just go back and repeat.
2272 */
2273 rq = task_rq_lock(p, &rf);
2274 trace_sched_wait_task(p);
2275 running = task_on_cpu(rq, p);
2276 queued = task_on_rq_queued(p);
2277 ncsw = 0;
2278 if ((match = __task_state_match(p, match_state))) {
2279 /*
2280 * When matching on p->saved_state, consider this task
2281 * still queued so it will wait.
2282 */
2283 if (match < 0)
2284 queued = 1;
2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2286 }
2287 task_rq_unlock(rq, p, &rf);
2288
2289 /*
2290 * If it changed from the expected state, bail out now.
2291 */
2292 if (unlikely(!ncsw))
2293 break;
2294
2295 /*
2296 * Was it really running after all now that we
2297 * checked with the proper locks actually held?
2298 *
2299 * Oops. Go back and try again..
2300 */
2301 if (unlikely(running)) {
2302 cpu_relax();
2303 continue;
2304 }
2305
2306 /*
2307 * It's not enough that it's not actively running,
2308 * it must be off the runqueue _entirely_, and not
2309 * preempted!
2310 *
2311 * So if it was still runnable (but just not actively
2312 * running right now), it's preempted, and we should
2313 * yield - it could be a while.
2314 */
2315 if (unlikely(queued)) {
2316 ktime_t to = NSEC_PER_SEC / HZ;
2317
2318 set_current_state(TASK_UNINTERRUPTIBLE);
2319 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2320 continue;
2321 }
2322
2323 /*
2324 * Ahh, all good. It wasn't running, and it wasn't
2325 * runnable, which means that it will never become
2326 * running in the future either. We're all done!
2327 */
2328 break;
2329 }
2330
2331 return ncsw;
2332}
2333
2334#ifdef CONFIG_SMP
2335
2336static void
2337__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2338
2339static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2340{
2341 struct affinity_context ac = {
2342 .new_mask = cpumask_of(rq->cpu),
2343 .flags = SCA_MIGRATE_DISABLE,
2344 };
2345
2346 if (likely(!p->migration_disabled))
2347 return;
2348
2349 if (p->cpus_ptr != &p->cpus_mask)
2350 return;
2351
2352 /*
2353 * Violates locking rules! See comment in __do_set_cpus_allowed().
2354 */
2355 __do_set_cpus_allowed(p, &ac);
2356}
2357
2358void migrate_disable(void)
2359{
2360 struct task_struct *p = current;
2361
2362 if (p->migration_disabled) {
2363#ifdef CONFIG_DEBUG_PREEMPT
2364 /*
2365 *Warn about overflow half-way through the range.
2366 */
2367 WARN_ON_ONCE((s16)p->migration_disabled < 0);
2368#endif
2369 p->migration_disabled++;
2370 return;
2371 }
2372
2373 guard(preempt)();
2374 this_rq()->nr_pinned++;
2375 p->migration_disabled = 1;
2376}
2377EXPORT_SYMBOL_GPL(migrate_disable);
2378
2379void migrate_enable(void)
2380{
2381 struct task_struct *p = current;
2382 struct affinity_context ac = {
2383 .new_mask = &p->cpus_mask,
2384 .flags = SCA_MIGRATE_ENABLE,
2385 };
2386
2387#ifdef CONFIG_DEBUG_PREEMPT
2388 /*
2389 * Check both overflow from migrate_disable() and superfluous
2390 * migrate_enable().
2391 */
2392 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2393 return;
2394#endif
2395
2396 if (p->migration_disabled > 1) {
2397 p->migration_disabled--;
2398 return;
2399 }
2400
2401 /*
2402 * Ensure stop_task runs either before or after this, and that
2403 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2404 */
2405 guard(preempt)();
2406 if (p->cpus_ptr != &p->cpus_mask)
2407 __set_cpus_allowed_ptr(p, &ac);
2408 /*
2409 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2410 * regular cpus_mask, otherwise things that race (eg.
2411 * select_fallback_rq) get confused.
2412 */
2413 barrier();
2414 p->migration_disabled = 0;
2415 this_rq()->nr_pinned--;
2416}
2417EXPORT_SYMBOL_GPL(migrate_enable);
2418
2419static inline bool rq_has_pinned_tasks(struct rq *rq)
2420{
2421 return rq->nr_pinned;
2422}
2423
2424/*
2425 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2426 * __set_cpus_allowed_ptr() and select_fallback_rq().
2427 */
2428static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2429{
2430 /* When not in the task's cpumask, no point in looking further. */
2431 if (!task_allowed_on_cpu(p, cpu))
2432 return false;
2433
2434 /* migrate_disabled() must be allowed to finish. */
2435 if (is_migration_disabled(p))
2436 return cpu_online(cpu);
2437
2438 /* Non kernel threads are not allowed during either online or offline. */
2439 if (!(p->flags & PF_KTHREAD))
2440 return cpu_active(cpu);
2441
2442 /* KTHREAD_IS_PER_CPU is always allowed. */
2443 if (kthread_is_per_cpu(p))
2444 return cpu_online(cpu);
2445
2446 /* Regular kernel threads don't get to stay during offline. */
2447 if (cpu_dying(cpu))
2448 return false;
2449
2450 /* But are allowed during online. */
2451 return cpu_online(cpu);
2452}
2453
2454/*
2455 * This is how migration works:
2456 *
2457 * 1) we invoke migration_cpu_stop() on the target CPU using
2458 * stop_one_cpu().
2459 * 2) stopper starts to run (implicitly forcing the migrated thread
2460 * off the CPU)
2461 * 3) it checks whether the migrated task is still in the wrong runqueue.
2462 * 4) if it's in the wrong runqueue then the migration thread removes
2463 * it and puts it into the right queue.
2464 * 5) stopper completes and stop_one_cpu() returns and the migration
2465 * is done.
2466 */
2467
2468/*
2469 * move_queued_task - move a queued task to new rq.
2470 *
2471 * Returns (locked) new rq. Old rq's lock is released.
2472 */
2473static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2474 struct task_struct *p, int new_cpu)
2475{
2476 lockdep_assert_rq_held(rq);
2477
2478 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2479 set_task_cpu(p, new_cpu);
2480 rq_unlock(rq, rf);
2481
2482 rq = cpu_rq(new_cpu);
2483
2484 rq_lock(rq, rf);
2485 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2486 activate_task(rq, p, 0);
2487 wakeup_preempt(rq, p, 0);
2488
2489 return rq;
2490}
2491
2492struct migration_arg {
2493 struct task_struct *task;
2494 int dest_cpu;
2495 struct set_affinity_pending *pending;
2496};
2497
2498/*
2499 * @refs: number of wait_for_completion()
2500 * @stop_pending: is @stop_work in use
2501 */
2502struct set_affinity_pending {
2503 refcount_t refs;
2504 unsigned int stop_pending;
2505 struct completion done;
2506 struct cpu_stop_work stop_work;
2507 struct migration_arg arg;
2508};
2509
2510/*
2511 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2512 * this because either it can't run here any more (set_cpus_allowed()
2513 * away from this CPU, or CPU going down), or because we're
2514 * attempting to rebalance this task on exec (sched_exec).
2515 *
2516 * So we race with normal scheduler movements, but that's OK, as long
2517 * as the task is no longer on this CPU.
2518 */
2519static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2520 struct task_struct *p, int dest_cpu)
2521{
2522 /* Affinity changed (again). */
2523 if (!is_cpu_allowed(p, dest_cpu))
2524 return rq;
2525
2526 rq = move_queued_task(rq, rf, p, dest_cpu);
2527
2528 return rq;
2529}
2530
2531/*
2532 * migration_cpu_stop - this will be executed by a high-prio stopper thread
2533 * and performs thread migration by bumping thread off CPU then
2534 * 'pushing' onto another runqueue.
2535 */
2536static int migration_cpu_stop(void *data)
2537{
2538 struct migration_arg *arg = data;
2539 struct set_affinity_pending *pending = arg->pending;
2540 struct task_struct *p = arg->task;
2541 struct rq *rq = this_rq();
2542 bool complete = false;
2543 struct rq_flags rf;
2544
2545 /*
2546 * The original target CPU might have gone down and we might
2547 * be on another CPU but it doesn't matter.
2548 */
2549 local_irq_save(rf.flags);
2550 /*
2551 * We need to explicitly wake pending tasks before running
2552 * __migrate_task() such that we will not miss enforcing cpus_ptr
2553 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2554 */
2555 flush_smp_call_function_queue();
2556
2557 raw_spin_lock(&p->pi_lock);
2558 rq_lock(rq, &rf);
2559
2560 /*
2561 * If we were passed a pending, then ->stop_pending was set, thus
2562 * p->migration_pending must have remained stable.
2563 */
2564 WARN_ON_ONCE(pending && pending != p->migration_pending);
2565
2566 /*
2567 * If task_rq(p) != rq, it cannot be migrated here, because we're
2568 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2569 * we're holding p->pi_lock.
2570 */
2571 if (task_rq(p) == rq) {
2572 if (is_migration_disabled(p))
2573 goto out;
2574
2575 if (pending) {
2576 p->migration_pending = NULL;
2577 complete = true;
2578
2579 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2580 goto out;
2581 }
2582
2583 if (task_on_rq_queued(p)) {
2584 update_rq_clock(rq);
2585 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2586 } else {
2587 p->wake_cpu = arg->dest_cpu;
2588 }
2589
2590 /*
2591 * XXX __migrate_task() can fail, at which point we might end
2592 * up running on a dodgy CPU, AFAICT this can only happen
2593 * during CPU hotplug, at which point we'll get pushed out
2594 * anyway, so it's probably not a big deal.
2595 */
2596
2597 } else if (pending) {
2598 /*
2599 * This happens when we get migrated between migrate_enable()'s
2600 * preempt_enable() and scheduling the stopper task. At that
2601 * point we're a regular task again and not current anymore.
2602 *
2603 * A !PREEMPT kernel has a giant hole here, which makes it far
2604 * more likely.
2605 */
2606
2607 /*
2608 * The task moved before the stopper got to run. We're holding
2609 * ->pi_lock, so the allowed mask is stable - if it got
2610 * somewhere allowed, we're done.
2611 */
2612 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2613 p->migration_pending = NULL;
2614 complete = true;
2615 goto out;
2616 }
2617
2618 /*
2619 * When migrate_enable() hits a rq mis-match we can't reliably
2620 * determine is_migration_disabled() and so have to chase after
2621 * it.
2622 */
2623 WARN_ON_ONCE(!pending->stop_pending);
2624 preempt_disable();
2625 task_rq_unlock(rq, p, &rf);
2626 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2627 &pending->arg, &pending->stop_work);
2628 preempt_enable();
2629 return 0;
2630 }
2631out:
2632 if (pending)
2633 pending->stop_pending = false;
2634 task_rq_unlock(rq, p, &rf);
2635
2636 if (complete)
2637 complete_all(&pending->done);
2638
2639 return 0;
2640}
2641
2642int push_cpu_stop(void *arg)
2643{
2644 struct rq *lowest_rq = NULL, *rq = this_rq();
2645 struct task_struct *p = arg;
2646
2647 raw_spin_lock_irq(&p->pi_lock);
2648 raw_spin_rq_lock(rq);
2649
2650 if (task_rq(p) != rq)
2651 goto out_unlock;
2652
2653 if (is_migration_disabled(p)) {
2654 p->migration_flags |= MDF_PUSH;
2655 goto out_unlock;
2656 }
2657
2658 p->migration_flags &= ~MDF_PUSH;
2659
2660 if (p->sched_class->find_lock_rq)
2661 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2662
2663 if (!lowest_rq)
2664 goto out_unlock;
2665
2666 // XXX validate p is still the highest prio task
2667 if (task_rq(p) == rq) {
2668 move_queued_task_locked(rq, lowest_rq, p);
2669 resched_curr(lowest_rq);
2670 }
2671
2672 double_unlock_balance(rq, lowest_rq);
2673
2674out_unlock:
2675 rq->push_busy = false;
2676 raw_spin_rq_unlock(rq);
2677 raw_spin_unlock_irq(&p->pi_lock);
2678
2679 put_task_struct(p);
2680 return 0;
2681}
2682
2683/*
2684 * sched_class::set_cpus_allowed must do the below, but is not required to
2685 * actually call this function.
2686 */
2687void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2688{
2689 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2690 p->cpus_ptr = ctx->new_mask;
2691 return;
2692 }
2693
2694 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2695 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2696
2697 /*
2698 * Swap in a new user_cpus_ptr if SCA_USER flag set
2699 */
2700 if (ctx->flags & SCA_USER)
2701 swap(p->user_cpus_ptr, ctx->user_mask);
2702}
2703
2704static void
2705__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2706{
2707 struct rq *rq = task_rq(p);
2708 bool queued, running;
2709
2710 /*
2711 * This here violates the locking rules for affinity, since we're only
2712 * supposed to change these variables while holding both rq->lock and
2713 * p->pi_lock.
2714 *
2715 * HOWEVER, it magically works, because ttwu() is the only code that
2716 * accesses these variables under p->pi_lock and only does so after
2717 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2718 * before finish_task().
2719 *
2720 * XXX do further audits, this smells like something putrid.
2721 */
2722 if (ctx->flags & SCA_MIGRATE_DISABLE)
2723 SCHED_WARN_ON(!p->on_cpu);
2724 else
2725 lockdep_assert_held(&p->pi_lock);
2726
2727 queued = task_on_rq_queued(p);
2728 running = task_current_donor(rq, p);
2729
2730 if (queued) {
2731 /*
2732 * Because __kthread_bind() calls this on blocked tasks without
2733 * holding rq->lock.
2734 */
2735 lockdep_assert_rq_held(rq);
2736 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2737 }
2738 if (running)
2739 put_prev_task(rq, p);
2740
2741 p->sched_class->set_cpus_allowed(p, ctx);
2742 mm_set_cpus_allowed(p->mm, ctx->new_mask);
2743
2744 if (queued)
2745 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2746 if (running)
2747 set_next_task(rq, p);
2748}
2749
2750/*
2751 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2752 * affinity (if any) should be destroyed too.
2753 */
2754void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2755{
2756 struct affinity_context ac = {
2757 .new_mask = new_mask,
2758 .user_mask = NULL,
2759 .flags = SCA_USER, /* clear the user requested mask */
2760 };
2761 union cpumask_rcuhead {
2762 cpumask_t cpumask;
2763 struct rcu_head rcu;
2764 };
2765
2766 __do_set_cpus_allowed(p, &ac);
2767
2768 /*
2769 * Because this is called with p->pi_lock held, it is not possible
2770 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2771 * kfree_rcu().
2772 */
2773 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2774}
2775
2776int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2777 int node)
2778{
2779 cpumask_t *user_mask;
2780 unsigned long flags;
2781
2782 /*
2783 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2784 * may differ by now due to racing.
2785 */
2786 dst->user_cpus_ptr = NULL;
2787
2788 /*
2789 * This check is racy and losing the race is a valid situation.
2790 * It is not worth the extra overhead of taking the pi_lock on
2791 * every fork/clone.
2792 */
2793 if (data_race(!src->user_cpus_ptr))
2794 return 0;
2795
2796 user_mask = alloc_user_cpus_ptr(node);
2797 if (!user_mask)
2798 return -ENOMEM;
2799
2800 /*
2801 * Use pi_lock to protect content of user_cpus_ptr
2802 *
2803 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2804 * do_set_cpus_allowed().
2805 */
2806 raw_spin_lock_irqsave(&src->pi_lock, flags);
2807 if (src->user_cpus_ptr) {
2808 swap(dst->user_cpus_ptr, user_mask);
2809 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2810 }
2811 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2812
2813 if (unlikely(user_mask))
2814 kfree(user_mask);
2815
2816 return 0;
2817}
2818
2819static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2820{
2821 struct cpumask *user_mask = NULL;
2822
2823 swap(p->user_cpus_ptr, user_mask);
2824
2825 return user_mask;
2826}
2827
2828void release_user_cpus_ptr(struct task_struct *p)
2829{
2830 kfree(clear_user_cpus_ptr(p));
2831}
2832
2833/*
2834 * This function is wildly self concurrent; here be dragons.
2835 *
2836 *
2837 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2838 * designated task is enqueued on an allowed CPU. If that task is currently
2839 * running, we have to kick it out using the CPU stopper.
2840 *
2841 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2842 * Consider:
2843 *
2844 * Initial conditions: P0->cpus_mask = [0, 1]
2845 *
2846 * P0@CPU0 P1
2847 *
2848 * migrate_disable();
2849 * <preempted>
2850 * set_cpus_allowed_ptr(P0, [1]);
2851 *
2852 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2853 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2854 * This means we need the following scheme:
2855 *
2856 * P0@CPU0 P1
2857 *
2858 * migrate_disable();
2859 * <preempted>
2860 * set_cpus_allowed_ptr(P0, [1]);
2861 * <blocks>
2862 * <resumes>
2863 * migrate_enable();
2864 * __set_cpus_allowed_ptr();
2865 * <wakes local stopper>
2866 * `--> <woken on migration completion>
2867 *
2868 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2869 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2870 * task p are serialized by p->pi_lock, which we can leverage: the one that
2871 * should come into effect at the end of the Migrate-Disable region is the last
2872 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2873 * but we still need to properly signal those waiting tasks at the appropriate
2874 * moment.
2875 *
2876 * This is implemented using struct set_affinity_pending. The first
2877 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2878 * setup an instance of that struct and install it on the targeted task_struct.
2879 * Any and all further callers will reuse that instance. Those then wait for
2880 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2881 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2882 *
2883 *
2884 * (1) In the cases covered above. There is one more where the completion is
2885 * signaled within affine_move_task() itself: when a subsequent affinity request
2886 * occurs after the stopper bailed out due to the targeted task still being
2887 * Migrate-Disable. Consider:
2888 *
2889 * Initial conditions: P0->cpus_mask = [0, 1]
2890 *
2891 * CPU0 P1 P2
2892 * <P0>
2893 * migrate_disable();
2894 * <preempted>
2895 * set_cpus_allowed_ptr(P0, [1]);
2896 * <blocks>
2897 * <migration/0>
2898 * migration_cpu_stop()
2899 * is_migration_disabled()
2900 * <bails>
2901 * set_cpus_allowed_ptr(P0, [0, 1]);
2902 * <signal completion>
2903 * <awakes>
2904 *
2905 * Note that the above is safe vs a concurrent migrate_enable(), as any
2906 * pending affinity completion is preceded by an uninstallation of
2907 * p->migration_pending done with p->pi_lock held.
2908 */
2909static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2910 int dest_cpu, unsigned int flags)
2911 __releases(rq->lock)
2912 __releases(p->pi_lock)
2913{
2914 struct set_affinity_pending my_pending = { }, *pending = NULL;
2915 bool stop_pending, complete = false;
2916
2917 /* Can the task run on the task's current CPU? If so, we're done */
2918 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2919 struct task_struct *push_task = NULL;
2920
2921 if ((flags & SCA_MIGRATE_ENABLE) &&
2922 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2923 rq->push_busy = true;
2924 push_task = get_task_struct(p);
2925 }
2926
2927 /*
2928 * If there are pending waiters, but no pending stop_work,
2929 * then complete now.
2930 */
2931 pending = p->migration_pending;
2932 if (pending && !pending->stop_pending) {
2933 p->migration_pending = NULL;
2934 complete = true;
2935 }
2936
2937 preempt_disable();
2938 task_rq_unlock(rq, p, rf);
2939 if (push_task) {
2940 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2941 p, &rq->push_work);
2942 }
2943 preempt_enable();
2944
2945 if (complete)
2946 complete_all(&pending->done);
2947
2948 return 0;
2949 }
2950
2951 if (!(flags & SCA_MIGRATE_ENABLE)) {
2952 /* serialized by p->pi_lock */
2953 if (!p->migration_pending) {
2954 /* Install the request */
2955 refcount_set(&my_pending.refs, 1);
2956 init_completion(&my_pending.done);
2957 my_pending.arg = (struct migration_arg) {
2958 .task = p,
2959 .dest_cpu = dest_cpu,
2960 .pending = &my_pending,
2961 };
2962
2963 p->migration_pending = &my_pending;
2964 } else {
2965 pending = p->migration_pending;
2966 refcount_inc(&pending->refs);
2967 /*
2968 * Affinity has changed, but we've already installed a
2969 * pending. migration_cpu_stop() *must* see this, else
2970 * we risk a completion of the pending despite having a
2971 * task on a disallowed CPU.
2972 *
2973 * Serialized by p->pi_lock, so this is safe.
2974 */
2975 pending->arg.dest_cpu = dest_cpu;
2976 }
2977 }
2978 pending = p->migration_pending;
2979 /*
2980 * - !MIGRATE_ENABLE:
2981 * we'll have installed a pending if there wasn't one already.
2982 *
2983 * - MIGRATE_ENABLE:
2984 * we're here because the current CPU isn't matching anymore,
2985 * the only way that can happen is because of a concurrent
2986 * set_cpus_allowed_ptr() call, which should then still be
2987 * pending completion.
2988 *
2989 * Either way, we really should have a @pending here.
2990 */
2991 if (WARN_ON_ONCE(!pending)) {
2992 task_rq_unlock(rq, p, rf);
2993 return -EINVAL;
2994 }
2995
2996 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2997 /*
2998 * MIGRATE_ENABLE gets here because 'p == current', but for
2999 * anything else we cannot do is_migration_disabled(), punt
3000 * and have the stopper function handle it all race-free.
3001 */
3002 stop_pending = pending->stop_pending;
3003 if (!stop_pending)
3004 pending->stop_pending = true;
3005
3006 if (flags & SCA_MIGRATE_ENABLE)
3007 p->migration_flags &= ~MDF_PUSH;
3008
3009 preempt_disable();
3010 task_rq_unlock(rq, p, rf);
3011 if (!stop_pending) {
3012 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3013 &pending->arg, &pending->stop_work);
3014 }
3015 preempt_enable();
3016
3017 if (flags & SCA_MIGRATE_ENABLE)
3018 return 0;
3019 } else {
3020
3021 if (!is_migration_disabled(p)) {
3022 if (task_on_rq_queued(p))
3023 rq = move_queued_task(rq, rf, p, dest_cpu);
3024
3025 if (!pending->stop_pending) {
3026 p->migration_pending = NULL;
3027 complete = true;
3028 }
3029 }
3030 task_rq_unlock(rq, p, rf);
3031
3032 if (complete)
3033 complete_all(&pending->done);
3034 }
3035
3036 wait_for_completion(&pending->done);
3037
3038 if (refcount_dec_and_test(&pending->refs))
3039 wake_up_var(&pending->refs); /* No UaF, just an address */
3040
3041 /*
3042 * Block the original owner of &pending until all subsequent callers
3043 * have seen the completion and decremented the refcount
3044 */
3045 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3046
3047 /* ARGH */
3048 WARN_ON_ONCE(my_pending.stop_pending);
3049
3050 return 0;
3051}
3052
3053/*
3054 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3055 */
3056static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3057 struct affinity_context *ctx,
3058 struct rq *rq,
3059 struct rq_flags *rf)
3060 __releases(rq->lock)
3061 __releases(p->pi_lock)
3062{
3063 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3064 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3065 bool kthread = p->flags & PF_KTHREAD;
3066 unsigned int dest_cpu;
3067 int ret = 0;
3068
3069 update_rq_clock(rq);
3070
3071 if (kthread || is_migration_disabled(p)) {
3072 /*
3073 * Kernel threads are allowed on online && !active CPUs,
3074 * however, during cpu-hot-unplug, even these might get pushed
3075 * away if not KTHREAD_IS_PER_CPU.
3076 *
3077 * Specifically, migration_disabled() tasks must not fail the
3078 * cpumask_any_and_distribute() pick below, esp. so on
3079 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3080 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3081 */
3082 cpu_valid_mask = cpu_online_mask;
3083 }
3084
3085 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3086 ret = -EINVAL;
3087 goto out;
3088 }
3089
3090 /*
3091 * Must re-check here, to close a race against __kthread_bind(),
3092 * sched_setaffinity() is not guaranteed to observe the flag.
3093 */
3094 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3095 ret = -EINVAL;
3096 goto out;
3097 }
3098
3099 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3100 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3101 if (ctx->flags & SCA_USER)
3102 swap(p->user_cpus_ptr, ctx->user_mask);
3103 goto out;
3104 }
3105
3106 if (WARN_ON_ONCE(p == current &&
3107 is_migration_disabled(p) &&
3108 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3109 ret = -EBUSY;
3110 goto out;
3111 }
3112 }
3113
3114 /*
3115 * Picking a ~random cpu helps in cases where we are changing affinity
3116 * for groups of tasks (ie. cpuset), so that load balancing is not
3117 * immediately required to distribute the tasks within their new mask.
3118 */
3119 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3120 if (dest_cpu >= nr_cpu_ids) {
3121 ret = -EINVAL;
3122 goto out;
3123 }
3124
3125 __do_set_cpus_allowed(p, ctx);
3126
3127 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3128
3129out:
3130 task_rq_unlock(rq, p, rf);
3131
3132 return ret;
3133}
3134
3135/*
3136 * Change a given task's CPU affinity. Migrate the thread to a
3137 * proper CPU and schedule it away if the CPU it's executing on
3138 * is removed from the allowed bitmask.
3139 *
3140 * NOTE: the caller must have a valid reference to the task, the
3141 * task must not exit() & deallocate itself prematurely. The
3142 * call is not atomic; no spinlocks may be held.
3143 */
3144int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3145{
3146 struct rq_flags rf;
3147 struct rq *rq;
3148
3149 rq = task_rq_lock(p, &rf);
3150 /*
3151 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3152 * flags are set.
3153 */
3154 if (p->user_cpus_ptr &&
3155 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3156 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3157 ctx->new_mask = rq->scratch_mask;
3158
3159 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3160}
3161
3162int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3163{
3164 struct affinity_context ac = {
3165 .new_mask = new_mask,
3166 .flags = 0,
3167 };
3168
3169 return __set_cpus_allowed_ptr(p, &ac);
3170}
3171EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3172
3173/*
3174 * Change a given task's CPU affinity to the intersection of its current
3175 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3176 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3177 * affinity or use cpu_online_mask instead.
3178 *
3179 * If the resulting mask is empty, leave the affinity unchanged and return
3180 * -EINVAL.
3181 */
3182static int restrict_cpus_allowed_ptr(struct task_struct *p,
3183 struct cpumask *new_mask,
3184 const struct cpumask *subset_mask)
3185{
3186 struct affinity_context ac = {
3187 .new_mask = new_mask,
3188 .flags = 0,
3189 };
3190 struct rq_flags rf;
3191 struct rq *rq;
3192 int err;
3193
3194 rq = task_rq_lock(p, &rf);
3195
3196 /*
3197 * Forcefully restricting the affinity of a deadline task is
3198 * likely to cause problems, so fail and noisily override the
3199 * mask entirely.
3200 */
3201 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3202 err = -EPERM;
3203 goto err_unlock;
3204 }
3205
3206 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3207 err = -EINVAL;
3208 goto err_unlock;
3209 }
3210
3211 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3212
3213err_unlock:
3214 task_rq_unlock(rq, p, &rf);
3215 return err;
3216}
3217
3218/*
3219 * Restrict the CPU affinity of task @p so that it is a subset of
3220 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3221 * old affinity mask. If the resulting mask is empty, we warn and walk
3222 * up the cpuset hierarchy until we find a suitable mask.
3223 */
3224void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3225{
3226 cpumask_var_t new_mask;
3227 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3228
3229 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3230
3231 /*
3232 * __migrate_task() can fail silently in the face of concurrent
3233 * offlining of the chosen destination CPU, so take the hotplug
3234 * lock to ensure that the migration succeeds.
3235 */
3236 cpus_read_lock();
3237 if (!cpumask_available(new_mask))
3238 goto out_set_mask;
3239
3240 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3241 goto out_free_mask;
3242
3243 /*
3244 * We failed to find a valid subset of the affinity mask for the
3245 * task, so override it based on its cpuset hierarchy.
3246 */
3247 cpuset_cpus_allowed(p, new_mask);
3248 override_mask = new_mask;
3249
3250out_set_mask:
3251 if (printk_ratelimit()) {
3252 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3253 task_pid_nr(p), p->comm,
3254 cpumask_pr_args(override_mask));
3255 }
3256
3257 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3258out_free_mask:
3259 cpus_read_unlock();
3260 free_cpumask_var(new_mask);
3261}
3262
3263/*
3264 * Restore the affinity of a task @p which was previously restricted by a
3265 * call to force_compatible_cpus_allowed_ptr().
3266 *
3267 * It is the caller's responsibility to serialise this with any calls to
3268 * force_compatible_cpus_allowed_ptr(@p).
3269 */
3270void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3271{
3272 struct affinity_context ac = {
3273 .new_mask = task_user_cpus(p),
3274 .flags = 0,
3275 };
3276 int ret;
3277
3278 /*
3279 * Try to restore the old affinity mask with __sched_setaffinity().
3280 * Cpuset masking will be done there too.
3281 */
3282 ret = __sched_setaffinity(p, &ac);
3283 WARN_ON_ONCE(ret);
3284}
3285
3286void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3287{
3288#ifdef CONFIG_SCHED_DEBUG
3289 unsigned int state = READ_ONCE(p->__state);
3290
3291 /*
3292 * We should never call set_task_cpu() on a blocked task,
3293 * ttwu() will sort out the placement.
3294 */
3295 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3296
3297 /*
3298 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3299 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3300 * time relying on p->on_rq.
3301 */
3302 WARN_ON_ONCE(state == TASK_RUNNING &&
3303 p->sched_class == &fair_sched_class &&
3304 (p->on_rq && !task_on_rq_migrating(p)));
3305
3306#ifdef CONFIG_LOCKDEP
3307 /*
3308 * The caller should hold either p->pi_lock or rq->lock, when changing
3309 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3310 *
3311 * sched_move_task() holds both and thus holding either pins the cgroup,
3312 * see task_group().
3313 *
3314 * Furthermore, all task_rq users should acquire both locks, see
3315 * task_rq_lock().
3316 */
3317 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3318 lockdep_is_held(__rq_lockp(task_rq(p)))));
3319#endif
3320 /*
3321 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3322 */
3323 WARN_ON_ONCE(!cpu_online(new_cpu));
3324
3325 WARN_ON_ONCE(is_migration_disabled(p));
3326#endif
3327
3328 trace_sched_migrate_task(p, new_cpu);
3329
3330 if (task_cpu(p) != new_cpu) {
3331 if (p->sched_class->migrate_task_rq)
3332 p->sched_class->migrate_task_rq(p, new_cpu);
3333 p->se.nr_migrations++;
3334 rseq_migrate(p);
3335 sched_mm_cid_migrate_from(p);
3336 perf_event_task_migrate(p);
3337 }
3338
3339 __set_task_cpu(p, new_cpu);
3340}
3341
3342#ifdef CONFIG_NUMA_BALANCING
3343static void __migrate_swap_task(struct task_struct *p, int cpu)
3344{
3345 if (task_on_rq_queued(p)) {
3346 struct rq *src_rq, *dst_rq;
3347 struct rq_flags srf, drf;
3348
3349 src_rq = task_rq(p);
3350 dst_rq = cpu_rq(cpu);
3351
3352 rq_pin_lock(src_rq, &srf);
3353 rq_pin_lock(dst_rq, &drf);
3354
3355 move_queued_task_locked(src_rq, dst_rq, p);
3356 wakeup_preempt(dst_rq, p, 0);
3357
3358 rq_unpin_lock(dst_rq, &drf);
3359 rq_unpin_lock(src_rq, &srf);
3360
3361 } else {
3362 /*
3363 * Task isn't running anymore; make it appear like we migrated
3364 * it before it went to sleep. This means on wakeup we make the
3365 * previous CPU our target instead of where it really is.
3366 */
3367 p->wake_cpu = cpu;
3368 }
3369}
3370
3371struct migration_swap_arg {
3372 struct task_struct *src_task, *dst_task;
3373 int src_cpu, dst_cpu;
3374};
3375
3376static int migrate_swap_stop(void *data)
3377{
3378 struct migration_swap_arg *arg = data;
3379 struct rq *src_rq, *dst_rq;
3380
3381 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3382 return -EAGAIN;
3383
3384 src_rq = cpu_rq(arg->src_cpu);
3385 dst_rq = cpu_rq(arg->dst_cpu);
3386
3387 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3388 guard(double_rq_lock)(src_rq, dst_rq);
3389
3390 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3391 return -EAGAIN;
3392
3393 if (task_cpu(arg->src_task) != arg->src_cpu)
3394 return -EAGAIN;
3395
3396 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3397 return -EAGAIN;
3398
3399 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3400 return -EAGAIN;
3401
3402 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3403 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3404
3405 return 0;
3406}
3407
3408/*
3409 * Cross migrate two tasks
3410 */
3411int migrate_swap(struct task_struct *cur, struct task_struct *p,
3412 int target_cpu, int curr_cpu)
3413{
3414 struct migration_swap_arg arg;
3415 int ret = -EINVAL;
3416
3417 arg = (struct migration_swap_arg){
3418 .src_task = cur,
3419 .src_cpu = curr_cpu,
3420 .dst_task = p,
3421 .dst_cpu = target_cpu,
3422 };
3423
3424 if (arg.src_cpu == arg.dst_cpu)
3425 goto out;
3426
3427 /*
3428 * These three tests are all lockless; this is OK since all of them
3429 * will be re-checked with proper locks held further down the line.
3430 */
3431 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3432 goto out;
3433
3434 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3435 goto out;
3436
3437 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3438 goto out;
3439
3440 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3441 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3442
3443out:
3444 return ret;
3445}
3446#endif /* CONFIG_NUMA_BALANCING */
3447
3448/***
3449 * kick_process - kick a running thread to enter/exit the kernel
3450 * @p: the to-be-kicked thread
3451 *
3452 * Cause a process which is running on another CPU to enter
3453 * kernel-mode, without any delay. (to get signals handled.)
3454 *
3455 * NOTE: this function doesn't have to take the runqueue lock,
3456 * because all it wants to ensure is that the remote task enters
3457 * the kernel. If the IPI races and the task has been migrated
3458 * to another CPU then no harm is done and the purpose has been
3459 * achieved as well.
3460 */
3461void kick_process(struct task_struct *p)
3462{
3463 guard(preempt)();
3464 int cpu = task_cpu(p);
3465
3466 if ((cpu != smp_processor_id()) && task_curr(p))
3467 smp_send_reschedule(cpu);
3468}
3469EXPORT_SYMBOL_GPL(kick_process);
3470
3471/*
3472 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3473 *
3474 * A few notes on cpu_active vs cpu_online:
3475 *
3476 * - cpu_active must be a subset of cpu_online
3477 *
3478 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3479 * see __set_cpus_allowed_ptr(). At this point the newly online
3480 * CPU isn't yet part of the sched domains, and balancing will not
3481 * see it.
3482 *
3483 * - on CPU-down we clear cpu_active() to mask the sched domains and
3484 * avoid the load balancer to place new tasks on the to be removed
3485 * CPU. Existing tasks will remain running there and will be taken
3486 * off.
3487 *
3488 * This means that fallback selection must not select !active CPUs.
3489 * And can assume that any active CPU must be online. Conversely
3490 * select_task_rq() below may allow selection of !active CPUs in order
3491 * to satisfy the above rules.
3492 */
3493static int select_fallback_rq(int cpu, struct task_struct *p)
3494{
3495 int nid = cpu_to_node(cpu);
3496 const struct cpumask *nodemask = NULL;
3497 enum { cpuset, possible, fail } state = cpuset;
3498 int dest_cpu;
3499
3500 /*
3501 * If the node that the CPU is on has been offlined, cpu_to_node()
3502 * will return -1. There is no CPU on the node, and we should
3503 * select the CPU on the other node.
3504 */
3505 if (nid != -1) {
3506 nodemask = cpumask_of_node(nid);
3507
3508 /* Look for allowed, online CPU in same node. */
3509 for_each_cpu(dest_cpu, nodemask) {
3510 if (is_cpu_allowed(p, dest_cpu))
3511 return dest_cpu;
3512 }
3513 }
3514
3515 for (;;) {
3516 /* Any allowed, online CPU? */
3517 for_each_cpu(dest_cpu, p->cpus_ptr) {
3518 if (!is_cpu_allowed(p, dest_cpu))
3519 continue;
3520
3521 goto out;
3522 }
3523
3524 /* No more Mr. Nice Guy. */
3525 switch (state) {
3526 case cpuset:
3527 if (cpuset_cpus_allowed_fallback(p)) {
3528 state = possible;
3529 break;
3530 }
3531 fallthrough;
3532 case possible:
3533 /*
3534 * XXX When called from select_task_rq() we only
3535 * hold p->pi_lock and again violate locking order.
3536 *
3537 * More yuck to audit.
3538 */
3539 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3540 state = fail;
3541 break;
3542 case fail:
3543 BUG();
3544 break;
3545 }
3546 }
3547
3548out:
3549 if (state != cpuset) {
3550 /*
3551 * Don't tell them about moving exiting tasks or
3552 * kernel threads (both mm NULL), since they never
3553 * leave kernel.
3554 */
3555 if (p->mm && printk_ratelimit()) {
3556 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3557 task_pid_nr(p), p->comm, cpu);
3558 }
3559 }
3560
3561 return dest_cpu;
3562}
3563
3564/*
3565 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3566 */
3567static inline
3568int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3569{
3570 lockdep_assert_held(&p->pi_lock);
3571
3572 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3573 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3574 *wake_flags |= WF_RQ_SELECTED;
3575 } else {
3576 cpu = cpumask_any(p->cpus_ptr);
3577 }
3578
3579 /*
3580 * In order not to call set_task_cpu() on a blocking task we need
3581 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3582 * CPU.
3583 *
3584 * Since this is common to all placement strategies, this lives here.
3585 *
3586 * [ this allows ->select_task() to simply return task_cpu(p) and
3587 * not worry about this generic constraint ]
3588 */
3589 if (unlikely(!is_cpu_allowed(p, cpu)))
3590 cpu = select_fallback_rq(task_cpu(p), p);
3591
3592 return cpu;
3593}
3594
3595void sched_set_stop_task(int cpu, struct task_struct *stop)
3596{
3597 static struct lock_class_key stop_pi_lock;
3598 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3599 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3600
3601 if (stop) {
3602 /*
3603 * Make it appear like a SCHED_FIFO task, its something
3604 * userspace knows about and won't get confused about.
3605 *
3606 * Also, it will make PI more or less work without too
3607 * much confusion -- but then, stop work should not
3608 * rely on PI working anyway.
3609 */
3610 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3611
3612 stop->sched_class = &stop_sched_class;
3613
3614 /*
3615 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3616 * adjust the effective priority of a task. As a result,
3617 * rt_mutex_setprio() can trigger (RT) balancing operations,
3618 * which can then trigger wakeups of the stop thread to push
3619 * around the current task.
3620 *
3621 * The stop task itself will never be part of the PI-chain, it
3622 * never blocks, therefore that ->pi_lock recursion is safe.
3623 * Tell lockdep about this by placing the stop->pi_lock in its
3624 * own class.
3625 */
3626 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3627 }
3628
3629 cpu_rq(cpu)->stop = stop;
3630
3631 if (old_stop) {
3632 /*
3633 * Reset it back to a normal scheduling class so that
3634 * it can die in pieces.
3635 */
3636 old_stop->sched_class = &rt_sched_class;
3637 }
3638}
3639
3640#else /* CONFIG_SMP */
3641
3642static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3643
3644static inline bool rq_has_pinned_tasks(struct rq *rq)
3645{
3646 return false;
3647}
3648
3649#endif /* !CONFIG_SMP */
3650
3651static void
3652ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3653{
3654 struct rq *rq;
3655
3656 if (!schedstat_enabled())
3657 return;
3658
3659 rq = this_rq();
3660
3661#ifdef CONFIG_SMP
3662 if (cpu == rq->cpu) {
3663 __schedstat_inc(rq->ttwu_local);
3664 __schedstat_inc(p->stats.nr_wakeups_local);
3665 } else {
3666 struct sched_domain *sd;
3667
3668 __schedstat_inc(p->stats.nr_wakeups_remote);
3669
3670 guard(rcu)();
3671 for_each_domain(rq->cpu, sd) {
3672 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3673 __schedstat_inc(sd->ttwu_wake_remote);
3674 break;
3675 }
3676 }
3677 }
3678
3679 if (wake_flags & WF_MIGRATED)
3680 __schedstat_inc(p->stats.nr_wakeups_migrate);
3681#endif /* CONFIG_SMP */
3682
3683 __schedstat_inc(rq->ttwu_count);
3684 __schedstat_inc(p->stats.nr_wakeups);
3685
3686 if (wake_flags & WF_SYNC)
3687 __schedstat_inc(p->stats.nr_wakeups_sync);
3688}
3689
3690/*
3691 * Mark the task runnable.
3692 */
3693static inline void ttwu_do_wakeup(struct task_struct *p)
3694{
3695 WRITE_ONCE(p->__state, TASK_RUNNING);
3696 trace_sched_wakeup(p);
3697}
3698
3699static void
3700ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3701 struct rq_flags *rf)
3702{
3703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3704
3705 lockdep_assert_rq_held(rq);
3706
3707 if (p->sched_contributes_to_load)
3708 rq->nr_uninterruptible--;
3709
3710#ifdef CONFIG_SMP
3711 if (wake_flags & WF_RQ_SELECTED)
3712 en_flags |= ENQUEUE_RQ_SELECTED;
3713 if (wake_flags & WF_MIGRATED)
3714 en_flags |= ENQUEUE_MIGRATED;
3715 else
3716#endif
3717 if (p->in_iowait) {
3718 delayacct_blkio_end(p);
3719 atomic_dec(&task_rq(p)->nr_iowait);
3720 }
3721
3722 activate_task(rq, p, en_flags);
3723 wakeup_preempt(rq, p, wake_flags);
3724
3725 ttwu_do_wakeup(p);
3726
3727#ifdef CONFIG_SMP
3728 if (p->sched_class->task_woken) {
3729 /*
3730 * Our task @p is fully woken up and running; so it's safe to
3731 * drop the rq->lock, hereafter rq is only used for statistics.
3732 */
3733 rq_unpin_lock(rq, rf);
3734 p->sched_class->task_woken(rq, p);
3735 rq_repin_lock(rq, rf);
3736 }
3737
3738 if (rq->idle_stamp) {
3739 u64 delta = rq_clock(rq) - rq->idle_stamp;
3740 u64 max = 2*rq->max_idle_balance_cost;
3741
3742 update_avg(&rq->avg_idle, delta);
3743
3744 if (rq->avg_idle > max)
3745 rq->avg_idle = max;
3746
3747 rq->idle_stamp = 0;
3748 }
3749#endif
3750}
3751
3752/*
3753 * Consider @p being inside a wait loop:
3754 *
3755 * for (;;) {
3756 * set_current_state(TASK_UNINTERRUPTIBLE);
3757 *
3758 * if (CONDITION)
3759 * break;
3760 *
3761 * schedule();
3762 * }
3763 * __set_current_state(TASK_RUNNING);
3764 *
3765 * between set_current_state() and schedule(). In this case @p is still
3766 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3767 * an atomic manner.
3768 *
3769 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3770 * then schedule() must still happen and p->state can be changed to
3771 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3772 * need to do a full wakeup with enqueue.
3773 *
3774 * Returns: %true when the wakeup is done,
3775 * %false otherwise.
3776 */
3777static int ttwu_runnable(struct task_struct *p, int wake_flags)
3778{
3779 struct rq_flags rf;
3780 struct rq *rq;
3781 int ret = 0;
3782
3783 rq = __task_rq_lock(p, &rf);
3784 if (task_on_rq_queued(p)) {
3785 update_rq_clock(rq);
3786 if (p->se.sched_delayed)
3787 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3788 if (!task_on_cpu(rq, p)) {
3789 /*
3790 * When on_rq && !on_cpu the task is preempted, see if
3791 * it should preempt the task that is current now.
3792 */
3793 wakeup_preempt(rq, p, wake_flags);
3794 }
3795 ttwu_do_wakeup(p);
3796 ret = 1;
3797 }
3798 __task_rq_unlock(rq, &rf);
3799
3800 return ret;
3801}
3802
3803#ifdef CONFIG_SMP
3804void sched_ttwu_pending(void *arg)
3805{
3806 struct llist_node *llist = arg;
3807 struct rq *rq = this_rq();
3808 struct task_struct *p, *t;
3809 struct rq_flags rf;
3810
3811 if (!llist)
3812 return;
3813
3814 rq_lock_irqsave(rq, &rf);
3815 update_rq_clock(rq);
3816
3817 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3818 if (WARN_ON_ONCE(p->on_cpu))
3819 smp_cond_load_acquire(&p->on_cpu, !VAL);
3820
3821 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3822 set_task_cpu(p, cpu_of(rq));
3823
3824 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3825 }
3826
3827 /*
3828 * Must be after enqueueing at least once task such that
3829 * idle_cpu() does not observe a false-negative -- if it does,
3830 * it is possible for select_idle_siblings() to stack a number
3831 * of tasks on this CPU during that window.
3832 *
3833 * It is OK to clear ttwu_pending when another task pending.
3834 * We will receive IPI after local IRQ enabled and then enqueue it.
3835 * Since now nr_running > 0, idle_cpu() will always get correct result.
3836 */
3837 WRITE_ONCE(rq->ttwu_pending, 0);
3838 rq_unlock_irqrestore(rq, &rf);
3839}
3840
3841/*
3842 * Prepare the scene for sending an IPI for a remote smp_call
3843 *
3844 * Returns true if the caller can proceed with sending the IPI.
3845 * Returns false otherwise.
3846 */
3847bool call_function_single_prep_ipi(int cpu)
3848{
3849 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3850 trace_sched_wake_idle_without_ipi(cpu);
3851 return false;
3852 }
3853
3854 return true;
3855}
3856
3857/*
3858 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3859 * necessary. The wakee CPU on receipt of the IPI will queue the task
3860 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3861 * of the wakeup instead of the waker.
3862 */
3863static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3864{
3865 struct rq *rq = cpu_rq(cpu);
3866
3867 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3868
3869 WRITE_ONCE(rq->ttwu_pending, 1);
3870 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3871}
3872
3873void wake_up_if_idle(int cpu)
3874{
3875 struct rq *rq = cpu_rq(cpu);
3876
3877 guard(rcu)();
3878 if (is_idle_task(rcu_dereference(rq->curr))) {
3879 guard(rq_lock_irqsave)(rq);
3880 if (is_idle_task(rq->curr))
3881 resched_curr(rq);
3882 }
3883}
3884
3885bool cpus_equal_capacity(int this_cpu, int that_cpu)
3886{
3887 if (!sched_asym_cpucap_active())
3888 return true;
3889
3890 if (this_cpu == that_cpu)
3891 return true;
3892
3893 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3894}
3895
3896bool cpus_share_cache(int this_cpu, int that_cpu)
3897{
3898 if (this_cpu == that_cpu)
3899 return true;
3900
3901 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3902}
3903
3904/*
3905 * Whether CPUs are share cache resources, which means LLC on non-cluster
3906 * machines and LLC tag or L2 on machines with clusters.
3907 */
3908bool cpus_share_resources(int this_cpu, int that_cpu)
3909{
3910 if (this_cpu == that_cpu)
3911 return true;
3912
3913 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3914}
3915
3916static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3917{
3918 /*
3919 * The BPF scheduler may depend on select_task_rq() being invoked during
3920 * wakeups. In addition, @p may end up executing on a different CPU
3921 * regardless of what happens in the wakeup path making the ttwu_queue
3922 * optimization less meaningful. Skip if on SCX.
3923 */
3924 if (task_on_scx(p))
3925 return false;
3926
3927 /*
3928 * Do not complicate things with the async wake_list while the CPU is
3929 * in hotplug state.
3930 */
3931 if (!cpu_active(cpu))
3932 return false;
3933
3934 /* Ensure the task will still be allowed to run on the CPU. */
3935 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3936 return false;
3937
3938 /*
3939 * If the CPU does not share cache, then queue the task on the
3940 * remote rqs wakelist to avoid accessing remote data.
3941 */
3942 if (!cpus_share_cache(smp_processor_id(), cpu))
3943 return true;
3944
3945 if (cpu == smp_processor_id())
3946 return false;
3947
3948 /*
3949 * If the wakee cpu is idle, or the task is descheduling and the
3950 * only running task on the CPU, then use the wakelist to offload
3951 * the task activation to the idle (or soon-to-be-idle) CPU as
3952 * the current CPU is likely busy. nr_running is checked to
3953 * avoid unnecessary task stacking.
3954 *
3955 * Note that we can only get here with (wakee) p->on_rq=0,
3956 * p->on_cpu can be whatever, we've done the dequeue, so
3957 * the wakee has been accounted out of ->nr_running.
3958 */
3959 if (!cpu_rq(cpu)->nr_running)
3960 return true;
3961
3962 return false;
3963}
3964
3965static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3966{
3967 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3968 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3969 __ttwu_queue_wakelist(p, cpu, wake_flags);
3970 return true;
3971 }
3972
3973 return false;
3974}
3975
3976#else /* !CONFIG_SMP */
3977
3978static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3979{
3980 return false;
3981}
3982
3983#endif /* CONFIG_SMP */
3984
3985static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3986{
3987 struct rq *rq = cpu_rq(cpu);
3988 struct rq_flags rf;
3989
3990 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3991 return;
3992
3993 rq_lock(rq, &rf);
3994 update_rq_clock(rq);
3995 ttwu_do_activate(rq, p, wake_flags, &rf);
3996 rq_unlock(rq, &rf);
3997}
3998
3999/*
4000 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4001 *
4002 * The caller holds p::pi_lock if p != current or has preemption
4003 * disabled when p == current.
4004 *
4005 * The rules of saved_state:
4006 *
4007 * The related locking code always holds p::pi_lock when updating
4008 * p::saved_state, which means the code is fully serialized in both cases.
4009 *
4010 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4011 * No other bits set. This allows to distinguish all wakeup scenarios.
4012 *
4013 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4014 * allows us to prevent early wakeup of tasks before they can be run on
4015 * asymmetric ISA architectures (eg ARMv9).
4016 */
4017static __always_inline
4018bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4019{
4020 int match;
4021
4022 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4023 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4024 state != TASK_RTLOCK_WAIT);
4025 }
4026
4027 *success = !!(match = __task_state_match(p, state));
4028
4029 /*
4030 * Saved state preserves the task state across blocking on
4031 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4032 * set p::saved_state to TASK_RUNNING, but do not wake the task
4033 * because it waits for a lock wakeup or __thaw_task(). Also
4034 * indicate success because from the regular waker's point of
4035 * view this has succeeded.
4036 *
4037 * After acquiring the lock the task will restore p::__state
4038 * from p::saved_state which ensures that the regular
4039 * wakeup is not lost. The restore will also set
4040 * p::saved_state to TASK_RUNNING so any further tests will
4041 * not result in false positives vs. @success
4042 */
4043 if (match < 0)
4044 p->saved_state = TASK_RUNNING;
4045
4046 return match > 0;
4047}
4048
4049/*
4050 * Notes on Program-Order guarantees on SMP systems.
4051 *
4052 * MIGRATION
4053 *
4054 * The basic program-order guarantee on SMP systems is that when a task [t]
4055 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4056 * execution on its new CPU [c1].
4057 *
4058 * For migration (of runnable tasks) this is provided by the following means:
4059 *
4060 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4061 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4062 * rq(c1)->lock (if not at the same time, then in that order).
4063 * C) LOCK of the rq(c1)->lock scheduling in task
4064 *
4065 * Release/acquire chaining guarantees that B happens after A and C after B.
4066 * Note: the CPU doing B need not be c0 or c1
4067 *
4068 * Example:
4069 *
4070 * CPU0 CPU1 CPU2
4071 *
4072 * LOCK rq(0)->lock
4073 * sched-out X
4074 * sched-in Y
4075 * UNLOCK rq(0)->lock
4076 *
4077 * LOCK rq(0)->lock // orders against CPU0
4078 * dequeue X
4079 * UNLOCK rq(0)->lock
4080 *
4081 * LOCK rq(1)->lock
4082 * enqueue X
4083 * UNLOCK rq(1)->lock
4084 *
4085 * LOCK rq(1)->lock // orders against CPU2
4086 * sched-out Z
4087 * sched-in X
4088 * UNLOCK rq(1)->lock
4089 *
4090 *
4091 * BLOCKING -- aka. SLEEP + WAKEUP
4092 *
4093 * For blocking we (obviously) need to provide the same guarantee as for
4094 * migration. However the means are completely different as there is no lock
4095 * chain to provide order. Instead we do:
4096 *
4097 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4098 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4099 *
4100 * Example:
4101 *
4102 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4103 *
4104 * LOCK rq(0)->lock LOCK X->pi_lock
4105 * dequeue X
4106 * sched-out X
4107 * smp_store_release(X->on_cpu, 0);
4108 *
4109 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4110 * X->state = WAKING
4111 * set_task_cpu(X,2)
4112 *
4113 * LOCK rq(2)->lock
4114 * enqueue X
4115 * X->state = RUNNING
4116 * UNLOCK rq(2)->lock
4117 *
4118 * LOCK rq(2)->lock // orders against CPU1
4119 * sched-out Z
4120 * sched-in X
4121 * UNLOCK rq(2)->lock
4122 *
4123 * UNLOCK X->pi_lock
4124 * UNLOCK rq(0)->lock
4125 *
4126 *
4127 * However, for wakeups there is a second guarantee we must provide, namely we
4128 * must ensure that CONDITION=1 done by the caller can not be reordered with
4129 * accesses to the task state; see try_to_wake_up() and set_current_state().
4130 */
4131
4132/**
4133 * try_to_wake_up - wake up a thread
4134 * @p: the thread to be awakened
4135 * @state: the mask of task states that can be woken
4136 * @wake_flags: wake modifier flags (WF_*)
4137 *
4138 * Conceptually does:
4139 *
4140 * If (@state & @p->state) @p->state = TASK_RUNNING.
4141 *
4142 * If the task was not queued/runnable, also place it back on a runqueue.
4143 *
4144 * This function is atomic against schedule() which would dequeue the task.
4145 *
4146 * It issues a full memory barrier before accessing @p->state, see the comment
4147 * with set_current_state().
4148 *
4149 * Uses p->pi_lock to serialize against concurrent wake-ups.
4150 *
4151 * Relies on p->pi_lock stabilizing:
4152 * - p->sched_class
4153 * - p->cpus_ptr
4154 * - p->sched_task_group
4155 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4156 *
4157 * Tries really hard to only take one task_rq(p)->lock for performance.
4158 * Takes rq->lock in:
4159 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4160 * - ttwu_queue() -- new rq, for enqueue of the task;
4161 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4162 *
4163 * As a consequence we race really badly with just about everything. See the
4164 * many memory barriers and their comments for details.
4165 *
4166 * Return: %true if @p->state changes (an actual wakeup was done),
4167 * %false otherwise.
4168 */
4169int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4170{
4171 guard(preempt)();
4172 int cpu, success = 0;
4173
4174 wake_flags |= WF_TTWU;
4175
4176 if (p == current) {
4177 /*
4178 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4179 * == smp_processor_id()'. Together this means we can special
4180 * case the whole 'p->on_rq && ttwu_runnable()' case below
4181 * without taking any locks.
4182 *
4183 * Specifically, given current runs ttwu() we must be before
4184 * schedule()'s block_task(), as such this must not observe
4185 * sched_delayed.
4186 *
4187 * In particular:
4188 * - we rely on Program-Order guarantees for all the ordering,
4189 * - we're serialized against set_special_state() by virtue of
4190 * it disabling IRQs (this allows not taking ->pi_lock).
4191 */
4192 SCHED_WARN_ON(p->se.sched_delayed);
4193 if (!ttwu_state_match(p, state, &success))
4194 goto out;
4195
4196 trace_sched_waking(p);
4197 ttwu_do_wakeup(p);
4198 goto out;
4199 }
4200
4201 /*
4202 * If we are going to wake up a thread waiting for CONDITION we
4203 * need to ensure that CONDITION=1 done by the caller can not be
4204 * reordered with p->state check below. This pairs with smp_store_mb()
4205 * in set_current_state() that the waiting thread does.
4206 */
4207 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4208 smp_mb__after_spinlock();
4209 if (!ttwu_state_match(p, state, &success))
4210 break;
4211
4212 trace_sched_waking(p);
4213
4214 /*
4215 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4216 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4217 * in smp_cond_load_acquire() below.
4218 *
4219 * sched_ttwu_pending() try_to_wake_up()
4220 * STORE p->on_rq = 1 LOAD p->state
4221 * UNLOCK rq->lock
4222 *
4223 * __schedule() (switch to task 'p')
4224 * LOCK rq->lock smp_rmb();
4225 * smp_mb__after_spinlock();
4226 * UNLOCK rq->lock
4227 *
4228 * [task p]
4229 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4230 *
4231 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4232 * __schedule(). See the comment for smp_mb__after_spinlock().
4233 *
4234 * A similar smp_rmb() lives in __task_needs_rq_lock().
4235 */
4236 smp_rmb();
4237 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4238 break;
4239
4240#ifdef CONFIG_SMP
4241 /*
4242 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4243 * possible to, falsely, observe p->on_cpu == 0.
4244 *
4245 * One must be running (->on_cpu == 1) in order to remove oneself
4246 * from the runqueue.
4247 *
4248 * __schedule() (switch to task 'p') try_to_wake_up()
4249 * STORE p->on_cpu = 1 LOAD p->on_rq
4250 * UNLOCK rq->lock
4251 *
4252 * __schedule() (put 'p' to sleep)
4253 * LOCK rq->lock smp_rmb();
4254 * smp_mb__after_spinlock();
4255 * STORE p->on_rq = 0 LOAD p->on_cpu
4256 *
4257 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4258 * __schedule(). See the comment for smp_mb__after_spinlock().
4259 *
4260 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4261 * schedule()'s deactivate_task() has 'happened' and p will no longer
4262 * care about it's own p->state. See the comment in __schedule().
4263 */
4264 smp_acquire__after_ctrl_dep();
4265
4266 /*
4267 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4268 * == 0), which means we need to do an enqueue, change p->state to
4269 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4270 * enqueue, such as ttwu_queue_wakelist().
4271 */
4272 WRITE_ONCE(p->__state, TASK_WAKING);
4273
4274 /*
4275 * If the owning (remote) CPU is still in the middle of schedule() with
4276 * this task as prev, considering queueing p on the remote CPUs wake_list
4277 * which potentially sends an IPI instead of spinning on p->on_cpu to
4278 * let the waker make forward progress. This is safe because IRQs are
4279 * disabled and the IPI will deliver after on_cpu is cleared.
4280 *
4281 * Ensure we load task_cpu(p) after p->on_cpu:
4282 *
4283 * set_task_cpu(p, cpu);
4284 * STORE p->cpu = @cpu
4285 * __schedule() (switch to task 'p')
4286 * LOCK rq->lock
4287 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4288 * STORE p->on_cpu = 1 LOAD p->cpu
4289 *
4290 * to ensure we observe the correct CPU on which the task is currently
4291 * scheduling.
4292 */
4293 if (smp_load_acquire(&p->on_cpu) &&
4294 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4295 break;
4296
4297 /*
4298 * If the owning (remote) CPU is still in the middle of schedule() with
4299 * this task as prev, wait until it's done referencing the task.
4300 *
4301 * Pairs with the smp_store_release() in finish_task().
4302 *
4303 * This ensures that tasks getting woken will be fully ordered against
4304 * their previous state and preserve Program Order.
4305 */
4306 smp_cond_load_acquire(&p->on_cpu, !VAL);
4307
4308 cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4309 if (task_cpu(p) != cpu) {
4310 if (p->in_iowait) {
4311 delayacct_blkio_end(p);
4312 atomic_dec(&task_rq(p)->nr_iowait);
4313 }
4314
4315 wake_flags |= WF_MIGRATED;
4316 psi_ttwu_dequeue(p);
4317 set_task_cpu(p, cpu);
4318 }
4319#else
4320 cpu = task_cpu(p);
4321#endif /* CONFIG_SMP */
4322
4323 ttwu_queue(p, cpu, wake_flags);
4324 }
4325out:
4326 if (success)
4327 ttwu_stat(p, task_cpu(p), wake_flags);
4328
4329 return success;
4330}
4331
4332static bool __task_needs_rq_lock(struct task_struct *p)
4333{
4334 unsigned int state = READ_ONCE(p->__state);
4335
4336 /*
4337 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4338 * the task is blocked. Make sure to check @state since ttwu() can drop
4339 * locks at the end, see ttwu_queue_wakelist().
4340 */
4341 if (state == TASK_RUNNING || state == TASK_WAKING)
4342 return true;
4343
4344 /*
4345 * Ensure we load p->on_rq after p->__state, otherwise it would be
4346 * possible to, falsely, observe p->on_rq == 0.
4347 *
4348 * See try_to_wake_up() for a longer comment.
4349 */
4350 smp_rmb();
4351 if (p->on_rq)
4352 return true;
4353
4354#ifdef CONFIG_SMP
4355 /*
4356 * Ensure the task has finished __schedule() and will not be referenced
4357 * anymore. Again, see try_to_wake_up() for a longer comment.
4358 */
4359 smp_rmb();
4360 smp_cond_load_acquire(&p->on_cpu, !VAL);
4361#endif
4362
4363 return false;
4364}
4365
4366/**
4367 * task_call_func - Invoke a function on task in fixed state
4368 * @p: Process for which the function is to be invoked, can be @current.
4369 * @func: Function to invoke.
4370 * @arg: Argument to function.
4371 *
4372 * Fix the task in it's current state by avoiding wakeups and or rq operations
4373 * and call @func(@arg) on it. This function can use task_is_runnable() and
4374 * task_curr() to work out what the state is, if required. Given that @func
4375 * can be invoked with a runqueue lock held, it had better be quite
4376 * lightweight.
4377 *
4378 * Returns:
4379 * Whatever @func returns
4380 */
4381int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4382{
4383 struct rq *rq = NULL;
4384 struct rq_flags rf;
4385 int ret;
4386
4387 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4388
4389 if (__task_needs_rq_lock(p))
4390 rq = __task_rq_lock(p, &rf);
4391
4392 /*
4393 * At this point the task is pinned; either:
4394 * - blocked and we're holding off wakeups (pi->lock)
4395 * - woken, and we're holding off enqueue (rq->lock)
4396 * - queued, and we're holding off schedule (rq->lock)
4397 * - running, and we're holding off de-schedule (rq->lock)
4398 *
4399 * The called function (@func) can use: task_curr(), p->on_rq and
4400 * p->__state to differentiate between these states.
4401 */
4402 ret = func(p, arg);
4403
4404 if (rq)
4405 rq_unlock(rq, &rf);
4406
4407 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4408 return ret;
4409}
4410
4411/**
4412 * cpu_curr_snapshot - Return a snapshot of the currently running task
4413 * @cpu: The CPU on which to snapshot the task.
4414 *
4415 * Returns the task_struct pointer of the task "currently" running on
4416 * the specified CPU.
4417 *
4418 * If the specified CPU was offline, the return value is whatever it
4419 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4420 * task, but there is no guarantee. Callers wishing a useful return
4421 * value must take some action to ensure that the specified CPU remains
4422 * online throughout.
4423 *
4424 * This function executes full memory barriers before and after fetching
4425 * the pointer, which permits the caller to confine this function's fetch
4426 * with respect to the caller's accesses to other shared variables.
4427 */
4428struct task_struct *cpu_curr_snapshot(int cpu)
4429{
4430 struct rq *rq = cpu_rq(cpu);
4431 struct task_struct *t;
4432 struct rq_flags rf;
4433
4434 rq_lock_irqsave(rq, &rf);
4435 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4436 t = rcu_dereference(cpu_curr(cpu));
4437 rq_unlock_irqrestore(rq, &rf);
4438 smp_mb(); /* Pairing determined by caller's synchronization design. */
4439
4440 return t;
4441}
4442
4443/**
4444 * wake_up_process - Wake up a specific process
4445 * @p: The process to be woken up.
4446 *
4447 * Attempt to wake up the nominated process and move it to the set of runnable
4448 * processes.
4449 *
4450 * Return: 1 if the process was woken up, 0 if it was already running.
4451 *
4452 * This function executes a full memory barrier before accessing the task state.
4453 */
4454int wake_up_process(struct task_struct *p)
4455{
4456 return try_to_wake_up(p, TASK_NORMAL, 0);
4457}
4458EXPORT_SYMBOL(wake_up_process);
4459
4460int wake_up_state(struct task_struct *p, unsigned int state)
4461{
4462 return try_to_wake_up(p, state, 0);
4463}
4464
4465/*
4466 * Perform scheduler related setup for a newly forked process p.
4467 * p is forked by current.
4468 *
4469 * __sched_fork() is basic setup which is also used by sched_init() to
4470 * initialize the boot CPU's idle task.
4471 */
4472static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4473{
4474 p->on_rq = 0;
4475
4476 p->se.on_rq = 0;
4477 p->se.exec_start = 0;
4478 p->se.sum_exec_runtime = 0;
4479 p->se.prev_sum_exec_runtime = 0;
4480 p->se.nr_migrations = 0;
4481 p->se.vruntime = 0;
4482 p->se.vlag = 0;
4483 INIT_LIST_HEAD(&p->se.group_node);
4484
4485 /* A delayed task cannot be in clone(). */
4486 SCHED_WARN_ON(p->se.sched_delayed);
4487
4488#ifdef CONFIG_FAIR_GROUP_SCHED
4489 p->se.cfs_rq = NULL;
4490#endif
4491
4492#ifdef CONFIG_SCHEDSTATS
4493 /* Even if schedstat is disabled, there should not be garbage */
4494 memset(&p->stats, 0, sizeof(p->stats));
4495#endif
4496
4497 init_dl_entity(&p->dl);
4498
4499 INIT_LIST_HEAD(&p->rt.run_list);
4500 p->rt.timeout = 0;
4501 p->rt.time_slice = sched_rr_timeslice;
4502 p->rt.on_rq = 0;
4503 p->rt.on_list = 0;
4504
4505#ifdef CONFIG_SCHED_CLASS_EXT
4506 init_scx_entity(&p->scx);
4507#endif
4508
4509#ifdef CONFIG_PREEMPT_NOTIFIERS
4510 INIT_HLIST_HEAD(&p->preempt_notifiers);
4511#endif
4512
4513#ifdef CONFIG_COMPACTION
4514 p->capture_control = NULL;
4515#endif
4516 init_numa_balancing(clone_flags, p);
4517#ifdef CONFIG_SMP
4518 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4519 p->migration_pending = NULL;
4520#endif
4521 init_sched_mm_cid(p);
4522}
4523
4524DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4525
4526#ifdef CONFIG_NUMA_BALANCING
4527
4528int sysctl_numa_balancing_mode;
4529
4530static void __set_numabalancing_state(bool enabled)
4531{
4532 if (enabled)
4533 static_branch_enable(&sched_numa_balancing);
4534 else
4535 static_branch_disable(&sched_numa_balancing);
4536}
4537
4538void set_numabalancing_state(bool enabled)
4539{
4540 if (enabled)
4541 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4542 else
4543 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4544 __set_numabalancing_state(enabled);
4545}
4546
4547#ifdef CONFIG_PROC_SYSCTL
4548static void reset_memory_tiering(void)
4549{
4550 struct pglist_data *pgdat;
4551
4552 for_each_online_pgdat(pgdat) {
4553 pgdat->nbp_threshold = 0;
4554 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4555 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4556 }
4557}
4558
4559static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4560 void *buffer, size_t *lenp, loff_t *ppos)
4561{
4562 struct ctl_table t;
4563 int err;
4564 int state = sysctl_numa_balancing_mode;
4565
4566 if (write && !capable(CAP_SYS_ADMIN))
4567 return -EPERM;
4568
4569 t = *table;
4570 t.data = &state;
4571 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4572 if (err < 0)
4573 return err;
4574 if (write) {
4575 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4576 (state & NUMA_BALANCING_MEMORY_TIERING))
4577 reset_memory_tiering();
4578 sysctl_numa_balancing_mode = state;
4579 __set_numabalancing_state(state);
4580 }
4581 return err;
4582}
4583#endif
4584#endif
4585
4586#ifdef CONFIG_SCHEDSTATS
4587
4588DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4589
4590static void set_schedstats(bool enabled)
4591{
4592 if (enabled)
4593 static_branch_enable(&sched_schedstats);
4594 else
4595 static_branch_disable(&sched_schedstats);
4596}
4597
4598void force_schedstat_enabled(void)
4599{
4600 if (!schedstat_enabled()) {
4601 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4602 static_branch_enable(&sched_schedstats);
4603 }
4604}
4605
4606static int __init setup_schedstats(char *str)
4607{
4608 int ret = 0;
4609 if (!str)
4610 goto out;
4611
4612 if (!strcmp(str, "enable")) {
4613 set_schedstats(true);
4614 ret = 1;
4615 } else if (!strcmp(str, "disable")) {
4616 set_schedstats(false);
4617 ret = 1;
4618 }
4619out:
4620 if (!ret)
4621 pr_warn("Unable to parse schedstats=\n");
4622
4623 return ret;
4624}
4625__setup("schedstats=", setup_schedstats);
4626
4627#ifdef CONFIG_PROC_SYSCTL
4628static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4629 size_t *lenp, loff_t *ppos)
4630{
4631 struct ctl_table t;
4632 int err;
4633 int state = static_branch_likely(&sched_schedstats);
4634
4635 if (write && !capable(CAP_SYS_ADMIN))
4636 return -EPERM;
4637
4638 t = *table;
4639 t.data = &state;
4640 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4641 if (err < 0)
4642 return err;
4643 if (write)
4644 set_schedstats(state);
4645 return err;
4646}
4647#endif /* CONFIG_PROC_SYSCTL */
4648#endif /* CONFIG_SCHEDSTATS */
4649
4650#ifdef CONFIG_SYSCTL
4651static struct ctl_table sched_core_sysctls[] = {
4652#ifdef CONFIG_SCHEDSTATS
4653 {
4654 .procname = "sched_schedstats",
4655 .data = NULL,
4656 .maxlen = sizeof(unsigned int),
4657 .mode = 0644,
4658 .proc_handler = sysctl_schedstats,
4659 .extra1 = SYSCTL_ZERO,
4660 .extra2 = SYSCTL_ONE,
4661 },
4662#endif /* CONFIG_SCHEDSTATS */
4663#ifdef CONFIG_UCLAMP_TASK
4664 {
4665 .procname = "sched_util_clamp_min",
4666 .data = &sysctl_sched_uclamp_util_min,
4667 .maxlen = sizeof(unsigned int),
4668 .mode = 0644,
4669 .proc_handler = sysctl_sched_uclamp_handler,
4670 },
4671 {
4672 .procname = "sched_util_clamp_max",
4673 .data = &sysctl_sched_uclamp_util_max,
4674 .maxlen = sizeof(unsigned int),
4675 .mode = 0644,
4676 .proc_handler = sysctl_sched_uclamp_handler,
4677 },
4678 {
4679 .procname = "sched_util_clamp_min_rt_default",
4680 .data = &sysctl_sched_uclamp_util_min_rt_default,
4681 .maxlen = sizeof(unsigned int),
4682 .mode = 0644,
4683 .proc_handler = sysctl_sched_uclamp_handler,
4684 },
4685#endif /* CONFIG_UCLAMP_TASK */
4686#ifdef CONFIG_NUMA_BALANCING
4687 {
4688 .procname = "numa_balancing",
4689 .data = NULL, /* filled in by handler */
4690 .maxlen = sizeof(unsigned int),
4691 .mode = 0644,
4692 .proc_handler = sysctl_numa_balancing,
4693 .extra1 = SYSCTL_ZERO,
4694 .extra2 = SYSCTL_FOUR,
4695 },
4696#endif /* CONFIG_NUMA_BALANCING */
4697};
4698static int __init sched_core_sysctl_init(void)
4699{
4700 register_sysctl_init("kernel", sched_core_sysctls);
4701 return 0;
4702}
4703late_initcall(sched_core_sysctl_init);
4704#endif /* CONFIG_SYSCTL */
4705
4706/*
4707 * fork()/clone()-time setup:
4708 */
4709int sched_fork(unsigned long clone_flags, struct task_struct *p)
4710{
4711 __sched_fork(clone_flags, p);
4712 /*
4713 * We mark the process as NEW here. This guarantees that
4714 * nobody will actually run it, and a signal or other external
4715 * event cannot wake it up and insert it on the runqueue either.
4716 */
4717 p->__state = TASK_NEW;
4718
4719 /*
4720 * Make sure we do not leak PI boosting priority to the child.
4721 */
4722 p->prio = current->normal_prio;
4723
4724 uclamp_fork(p);
4725
4726 /*
4727 * Revert to default priority/policy on fork if requested.
4728 */
4729 if (unlikely(p->sched_reset_on_fork)) {
4730 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4731 p->policy = SCHED_NORMAL;
4732 p->static_prio = NICE_TO_PRIO(0);
4733 p->rt_priority = 0;
4734 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4735 p->static_prio = NICE_TO_PRIO(0);
4736
4737 p->prio = p->normal_prio = p->static_prio;
4738 set_load_weight(p, false);
4739 p->se.custom_slice = 0;
4740 p->se.slice = sysctl_sched_base_slice;
4741
4742 /*
4743 * We don't need the reset flag anymore after the fork. It has
4744 * fulfilled its duty:
4745 */
4746 p->sched_reset_on_fork = 0;
4747 }
4748
4749 if (dl_prio(p->prio))
4750 return -EAGAIN;
4751
4752 scx_pre_fork(p);
4753
4754 if (rt_prio(p->prio)) {
4755 p->sched_class = &rt_sched_class;
4756#ifdef CONFIG_SCHED_CLASS_EXT
4757 } else if (task_should_scx(p->policy)) {
4758 p->sched_class = &ext_sched_class;
4759#endif
4760 } else {
4761 p->sched_class = &fair_sched_class;
4762 }
4763
4764 init_entity_runnable_average(&p->se);
4765
4766
4767#ifdef CONFIG_SCHED_INFO
4768 if (likely(sched_info_on()))
4769 memset(&p->sched_info, 0, sizeof(p->sched_info));
4770#endif
4771#if defined(CONFIG_SMP)
4772 p->on_cpu = 0;
4773#endif
4774 init_task_preempt_count(p);
4775#ifdef CONFIG_SMP
4776 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4777 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4778#endif
4779 return 0;
4780}
4781
4782int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4783{
4784 unsigned long flags;
4785
4786 /*
4787 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4788 * required yet, but lockdep gets upset if rules are violated.
4789 */
4790 raw_spin_lock_irqsave(&p->pi_lock, flags);
4791#ifdef CONFIG_CGROUP_SCHED
4792 if (1) {
4793 struct task_group *tg;
4794 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4795 struct task_group, css);
4796 tg = autogroup_task_group(p, tg);
4797 p->sched_task_group = tg;
4798 }
4799#endif
4800 rseq_migrate(p);
4801 /*
4802 * We're setting the CPU for the first time, we don't migrate,
4803 * so use __set_task_cpu().
4804 */
4805 __set_task_cpu(p, smp_processor_id());
4806 if (p->sched_class->task_fork)
4807 p->sched_class->task_fork(p);
4808 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4809
4810 return scx_fork(p);
4811}
4812
4813void sched_cancel_fork(struct task_struct *p)
4814{
4815 scx_cancel_fork(p);
4816}
4817
4818void sched_post_fork(struct task_struct *p)
4819{
4820 uclamp_post_fork(p);
4821 scx_post_fork(p);
4822}
4823
4824unsigned long to_ratio(u64 period, u64 runtime)
4825{
4826 if (runtime == RUNTIME_INF)
4827 return BW_UNIT;
4828
4829 /*
4830 * Doing this here saves a lot of checks in all
4831 * the calling paths, and returning zero seems
4832 * safe for them anyway.
4833 */
4834 if (period == 0)
4835 return 0;
4836
4837 return div64_u64(runtime << BW_SHIFT, period);
4838}
4839
4840/*
4841 * wake_up_new_task - wake up a newly created task for the first time.
4842 *
4843 * This function will do some initial scheduler statistics housekeeping
4844 * that must be done for every newly created context, then puts the task
4845 * on the runqueue and wakes it.
4846 */
4847void wake_up_new_task(struct task_struct *p)
4848{
4849 struct rq_flags rf;
4850 struct rq *rq;
4851 int wake_flags = WF_FORK;
4852
4853 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4854 WRITE_ONCE(p->__state, TASK_RUNNING);
4855#ifdef CONFIG_SMP
4856 /*
4857 * Fork balancing, do it here and not earlier because:
4858 * - cpus_ptr can change in the fork path
4859 * - any previously selected CPU might disappear through hotplug
4860 *
4861 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4862 * as we're not fully set-up yet.
4863 */
4864 p->recent_used_cpu = task_cpu(p);
4865 rseq_migrate(p);
4866 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4867#endif
4868 rq = __task_rq_lock(p, &rf);
4869 update_rq_clock(rq);
4870 post_init_entity_util_avg(p);
4871
4872 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4873 trace_sched_wakeup_new(p);
4874 wakeup_preempt(rq, p, wake_flags);
4875#ifdef CONFIG_SMP
4876 if (p->sched_class->task_woken) {
4877 /*
4878 * Nothing relies on rq->lock after this, so it's fine to
4879 * drop it.
4880 */
4881 rq_unpin_lock(rq, &rf);
4882 p->sched_class->task_woken(rq, p);
4883 rq_repin_lock(rq, &rf);
4884 }
4885#endif
4886 task_rq_unlock(rq, p, &rf);
4887}
4888
4889#ifdef CONFIG_PREEMPT_NOTIFIERS
4890
4891static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4892
4893void preempt_notifier_inc(void)
4894{
4895 static_branch_inc(&preempt_notifier_key);
4896}
4897EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4898
4899void preempt_notifier_dec(void)
4900{
4901 static_branch_dec(&preempt_notifier_key);
4902}
4903EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4904
4905/**
4906 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4907 * @notifier: notifier struct to register
4908 */
4909void preempt_notifier_register(struct preempt_notifier *notifier)
4910{
4911 if (!static_branch_unlikely(&preempt_notifier_key))
4912 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4913
4914 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4915}
4916EXPORT_SYMBOL_GPL(preempt_notifier_register);
4917
4918/**
4919 * preempt_notifier_unregister - no longer interested in preemption notifications
4920 * @notifier: notifier struct to unregister
4921 *
4922 * This is *not* safe to call from within a preemption notifier.
4923 */
4924void preempt_notifier_unregister(struct preempt_notifier *notifier)
4925{
4926 hlist_del(¬ifier->link);
4927}
4928EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4929
4930static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4931{
4932 struct preempt_notifier *notifier;
4933
4934 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4935 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4936}
4937
4938static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4939{
4940 if (static_branch_unlikely(&preempt_notifier_key))
4941 __fire_sched_in_preempt_notifiers(curr);
4942}
4943
4944static void
4945__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4946 struct task_struct *next)
4947{
4948 struct preempt_notifier *notifier;
4949
4950 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4951 notifier->ops->sched_out(notifier, next);
4952}
4953
4954static __always_inline void
4955fire_sched_out_preempt_notifiers(struct task_struct *curr,
4956 struct task_struct *next)
4957{
4958 if (static_branch_unlikely(&preempt_notifier_key))
4959 __fire_sched_out_preempt_notifiers(curr, next);
4960}
4961
4962#else /* !CONFIG_PREEMPT_NOTIFIERS */
4963
4964static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4965{
4966}
4967
4968static inline void
4969fire_sched_out_preempt_notifiers(struct task_struct *curr,
4970 struct task_struct *next)
4971{
4972}
4973
4974#endif /* CONFIG_PREEMPT_NOTIFIERS */
4975
4976static inline void prepare_task(struct task_struct *next)
4977{
4978#ifdef CONFIG_SMP
4979 /*
4980 * Claim the task as running, we do this before switching to it
4981 * such that any running task will have this set.
4982 *
4983 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4984 * its ordering comment.
4985 */
4986 WRITE_ONCE(next->on_cpu, 1);
4987#endif
4988}
4989
4990static inline void finish_task(struct task_struct *prev)
4991{
4992#ifdef CONFIG_SMP
4993 /*
4994 * This must be the very last reference to @prev from this CPU. After
4995 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4996 * must ensure this doesn't happen until the switch is completely
4997 * finished.
4998 *
4999 * In particular, the load of prev->state in finish_task_switch() must
5000 * happen before this.
5001 *
5002 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5003 */
5004 smp_store_release(&prev->on_cpu, 0);
5005#endif
5006}
5007
5008#ifdef CONFIG_SMP
5009
5010static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5011{
5012 void (*func)(struct rq *rq);
5013 struct balance_callback *next;
5014
5015 lockdep_assert_rq_held(rq);
5016
5017 while (head) {
5018 func = (void (*)(struct rq *))head->func;
5019 next = head->next;
5020 head->next = NULL;
5021 head = next;
5022
5023 func(rq);
5024 }
5025}
5026
5027static void balance_push(struct rq *rq);
5028
5029/*
5030 * balance_push_callback is a right abuse of the callback interface and plays
5031 * by significantly different rules.
5032 *
5033 * Where the normal balance_callback's purpose is to be ran in the same context
5034 * that queued it (only later, when it's safe to drop rq->lock again),
5035 * balance_push_callback is specifically targeted at __schedule().
5036 *
5037 * This abuse is tolerated because it places all the unlikely/odd cases behind
5038 * a single test, namely: rq->balance_callback == NULL.
5039 */
5040struct balance_callback balance_push_callback = {
5041 .next = NULL,
5042 .func = balance_push,
5043};
5044
5045static inline struct balance_callback *
5046__splice_balance_callbacks(struct rq *rq, bool split)
5047{
5048 struct balance_callback *head = rq->balance_callback;
5049
5050 if (likely(!head))
5051 return NULL;
5052
5053 lockdep_assert_rq_held(rq);
5054 /*
5055 * Must not take balance_push_callback off the list when
5056 * splice_balance_callbacks() and balance_callbacks() are not
5057 * in the same rq->lock section.
5058 *
5059 * In that case it would be possible for __schedule() to interleave
5060 * and observe the list empty.
5061 */
5062 if (split && head == &balance_push_callback)
5063 head = NULL;
5064 else
5065 rq->balance_callback = NULL;
5066
5067 return head;
5068}
5069
5070struct balance_callback *splice_balance_callbacks(struct rq *rq)
5071{
5072 return __splice_balance_callbacks(rq, true);
5073}
5074
5075static void __balance_callbacks(struct rq *rq)
5076{
5077 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5078}
5079
5080void balance_callbacks(struct rq *rq, struct balance_callback *head)
5081{
5082 unsigned long flags;
5083
5084 if (unlikely(head)) {
5085 raw_spin_rq_lock_irqsave(rq, flags);
5086 do_balance_callbacks(rq, head);
5087 raw_spin_rq_unlock_irqrestore(rq, flags);
5088 }
5089}
5090
5091#else
5092
5093static inline void __balance_callbacks(struct rq *rq)
5094{
5095}
5096
5097#endif
5098
5099static inline void
5100prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5101{
5102 /*
5103 * Since the runqueue lock will be released by the next
5104 * task (which is an invalid locking op but in the case
5105 * of the scheduler it's an obvious special-case), so we
5106 * do an early lockdep release here:
5107 */
5108 rq_unpin_lock(rq, rf);
5109 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5110#ifdef CONFIG_DEBUG_SPINLOCK
5111 /* this is a valid case when another task releases the spinlock */
5112 rq_lockp(rq)->owner = next;
5113#endif
5114}
5115
5116static inline void finish_lock_switch(struct rq *rq)
5117{
5118 /*
5119 * If we are tracking spinlock dependencies then we have to
5120 * fix up the runqueue lock - which gets 'carried over' from
5121 * prev into current:
5122 */
5123 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5124 __balance_callbacks(rq);
5125 raw_spin_rq_unlock_irq(rq);
5126}
5127
5128/*
5129 * NOP if the arch has not defined these:
5130 */
5131
5132#ifndef prepare_arch_switch
5133# define prepare_arch_switch(next) do { } while (0)
5134#endif
5135
5136#ifndef finish_arch_post_lock_switch
5137# define finish_arch_post_lock_switch() do { } while (0)
5138#endif
5139
5140static inline void kmap_local_sched_out(void)
5141{
5142#ifdef CONFIG_KMAP_LOCAL
5143 if (unlikely(current->kmap_ctrl.idx))
5144 __kmap_local_sched_out();
5145#endif
5146}
5147
5148static inline void kmap_local_sched_in(void)
5149{
5150#ifdef CONFIG_KMAP_LOCAL
5151 if (unlikely(current->kmap_ctrl.idx))
5152 __kmap_local_sched_in();
5153#endif
5154}
5155
5156/**
5157 * prepare_task_switch - prepare to switch tasks
5158 * @rq: the runqueue preparing to switch
5159 * @prev: the current task that is being switched out
5160 * @next: the task we are going to switch to.
5161 *
5162 * This is called with the rq lock held and interrupts off. It must
5163 * be paired with a subsequent finish_task_switch after the context
5164 * switch.
5165 *
5166 * prepare_task_switch sets up locking and calls architecture specific
5167 * hooks.
5168 */
5169static inline void
5170prepare_task_switch(struct rq *rq, struct task_struct *prev,
5171 struct task_struct *next)
5172{
5173 kcov_prepare_switch(prev);
5174 sched_info_switch(rq, prev, next);
5175 perf_event_task_sched_out(prev, next);
5176 rseq_preempt(prev);
5177 fire_sched_out_preempt_notifiers(prev, next);
5178 kmap_local_sched_out();
5179 prepare_task(next);
5180 prepare_arch_switch(next);
5181}
5182
5183/**
5184 * finish_task_switch - clean up after a task-switch
5185 * @prev: the thread we just switched away from.
5186 *
5187 * finish_task_switch must be called after the context switch, paired
5188 * with a prepare_task_switch call before the context switch.
5189 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5190 * and do any other architecture-specific cleanup actions.
5191 *
5192 * Note that we may have delayed dropping an mm in context_switch(). If
5193 * so, we finish that here outside of the runqueue lock. (Doing it
5194 * with the lock held can cause deadlocks; see schedule() for
5195 * details.)
5196 *
5197 * The context switch have flipped the stack from under us and restored the
5198 * local variables which were saved when this task called schedule() in the
5199 * past. 'prev == current' is still correct but we need to recalculate this_rq
5200 * because prev may have moved to another CPU.
5201 */
5202static struct rq *finish_task_switch(struct task_struct *prev)
5203 __releases(rq->lock)
5204{
5205 struct rq *rq = this_rq();
5206 struct mm_struct *mm = rq->prev_mm;
5207 unsigned int prev_state;
5208
5209 /*
5210 * The previous task will have left us with a preempt_count of 2
5211 * because it left us after:
5212 *
5213 * schedule()
5214 * preempt_disable(); // 1
5215 * __schedule()
5216 * raw_spin_lock_irq(&rq->lock) // 2
5217 *
5218 * Also, see FORK_PREEMPT_COUNT.
5219 */
5220 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5221 "corrupted preempt_count: %s/%d/0x%x\n",
5222 current->comm, current->pid, preempt_count()))
5223 preempt_count_set(FORK_PREEMPT_COUNT);
5224
5225 rq->prev_mm = NULL;
5226
5227 /*
5228 * A task struct has one reference for the use as "current".
5229 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5230 * schedule one last time. The schedule call will never return, and
5231 * the scheduled task must drop that reference.
5232 *
5233 * We must observe prev->state before clearing prev->on_cpu (in
5234 * finish_task), otherwise a concurrent wakeup can get prev
5235 * running on another CPU and we could rave with its RUNNING -> DEAD
5236 * transition, resulting in a double drop.
5237 */
5238 prev_state = READ_ONCE(prev->__state);
5239 vtime_task_switch(prev);
5240 perf_event_task_sched_in(prev, current);
5241 finish_task(prev);
5242 tick_nohz_task_switch();
5243 finish_lock_switch(rq);
5244 finish_arch_post_lock_switch();
5245 kcov_finish_switch(current);
5246 /*
5247 * kmap_local_sched_out() is invoked with rq::lock held and
5248 * interrupts disabled. There is no requirement for that, but the
5249 * sched out code does not have an interrupt enabled section.
5250 * Restoring the maps on sched in does not require interrupts being
5251 * disabled either.
5252 */
5253 kmap_local_sched_in();
5254
5255 fire_sched_in_preempt_notifiers(current);
5256 /*
5257 * When switching through a kernel thread, the loop in
5258 * membarrier_{private,global}_expedited() may have observed that
5259 * kernel thread and not issued an IPI. It is therefore possible to
5260 * schedule between user->kernel->user threads without passing though
5261 * switch_mm(). Membarrier requires a barrier after storing to
5262 * rq->curr, before returning to userspace, so provide them here:
5263 *
5264 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5265 * provided by mmdrop_lazy_tlb(),
5266 * - a sync_core for SYNC_CORE.
5267 */
5268 if (mm) {
5269 membarrier_mm_sync_core_before_usermode(mm);
5270 mmdrop_lazy_tlb_sched(mm);
5271 }
5272
5273 if (unlikely(prev_state == TASK_DEAD)) {
5274 if (prev->sched_class->task_dead)
5275 prev->sched_class->task_dead(prev);
5276
5277 /* Task is done with its stack. */
5278 put_task_stack(prev);
5279
5280 put_task_struct_rcu_user(prev);
5281 }
5282
5283 return rq;
5284}
5285
5286/**
5287 * schedule_tail - first thing a freshly forked thread must call.
5288 * @prev: the thread we just switched away from.
5289 */
5290asmlinkage __visible void schedule_tail(struct task_struct *prev)
5291 __releases(rq->lock)
5292{
5293 /*
5294 * New tasks start with FORK_PREEMPT_COUNT, see there and
5295 * finish_task_switch() for details.
5296 *
5297 * finish_task_switch() will drop rq->lock() and lower preempt_count
5298 * and the preempt_enable() will end up enabling preemption (on
5299 * PREEMPT_COUNT kernels).
5300 */
5301
5302 finish_task_switch(prev);
5303 preempt_enable();
5304
5305 if (current->set_child_tid)
5306 put_user(task_pid_vnr(current), current->set_child_tid);
5307
5308 calculate_sigpending();
5309}
5310
5311/*
5312 * context_switch - switch to the new MM and the new thread's register state.
5313 */
5314static __always_inline struct rq *
5315context_switch(struct rq *rq, struct task_struct *prev,
5316 struct task_struct *next, struct rq_flags *rf)
5317{
5318 prepare_task_switch(rq, prev, next);
5319
5320 /*
5321 * For paravirt, this is coupled with an exit in switch_to to
5322 * combine the page table reload and the switch backend into
5323 * one hypercall.
5324 */
5325 arch_start_context_switch(prev);
5326
5327 /*
5328 * kernel -> kernel lazy + transfer active
5329 * user -> kernel lazy + mmgrab_lazy_tlb() active
5330 *
5331 * kernel -> user switch + mmdrop_lazy_tlb() active
5332 * user -> user switch
5333 *
5334 * switch_mm_cid() needs to be updated if the barriers provided
5335 * by context_switch() are modified.
5336 */
5337 if (!next->mm) { // to kernel
5338 enter_lazy_tlb(prev->active_mm, next);
5339
5340 next->active_mm = prev->active_mm;
5341 if (prev->mm) // from user
5342 mmgrab_lazy_tlb(prev->active_mm);
5343 else
5344 prev->active_mm = NULL;
5345 } else { // to user
5346 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5347 /*
5348 * sys_membarrier() requires an smp_mb() between setting
5349 * rq->curr / membarrier_switch_mm() and returning to userspace.
5350 *
5351 * The below provides this either through switch_mm(), or in
5352 * case 'prev->active_mm == next->mm' through
5353 * finish_task_switch()'s mmdrop().
5354 */
5355 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5356 lru_gen_use_mm(next->mm);
5357
5358 if (!prev->mm) { // from kernel
5359 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5360 rq->prev_mm = prev->active_mm;
5361 prev->active_mm = NULL;
5362 }
5363 }
5364
5365 /* switch_mm_cid() requires the memory barriers above. */
5366 switch_mm_cid(rq, prev, next);
5367
5368 prepare_lock_switch(rq, next, rf);
5369
5370 /* Here we just switch the register state and the stack. */
5371 switch_to(prev, next, prev);
5372 barrier();
5373
5374 return finish_task_switch(prev);
5375}
5376
5377/*
5378 * nr_running and nr_context_switches:
5379 *
5380 * externally visible scheduler statistics: current number of runnable
5381 * threads, total number of context switches performed since bootup.
5382 */
5383unsigned int nr_running(void)
5384{
5385 unsigned int i, sum = 0;
5386
5387 for_each_online_cpu(i)
5388 sum += cpu_rq(i)->nr_running;
5389
5390 return sum;
5391}
5392
5393/*
5394 * Check if only the current task is running on the CPU.
5395 *
5396 * Caution: this function does not check that the caller has disabled
5397 * preemption, thus the result might have a time-of-check-to-time-of-use
5398 * race. The caller is responsible to use it correctly, for example:
5399 *
5400 * - from a non-preemptible section (of course)
5401 *
5402 * - from a thread that is bound to a single CPU
5403 *
5404 * - in a loop with very short iterations (e.g. a polling loop)
5405 */
5406bool single_task_running(void)
5407{
5408 return raw_rq()->nr_running == 1;
5409}
5410EXPORT_SYMBOL(single_task_running);
5411
5412unsigned long long nr_context_switches_cpu(int cpu)
5413{
5414 return cpu_rq(cpu)->nr_switches;
5415}
5416
5417unsigned long long nr_context_switches(void)
5418{
5419 int i;
5420 unsigned long long sum = 0;
5421
5422 for_each_possible_cpu(i)
5423 sum += cpu_rq(i)->nr_switches;
5424
5425 return sum;
5426}
5427
5428/*
5429 * Consumers of these two interfaces, like for example the cpuidle menu
5430 * governor, are using nonsensical data. Preferring shallow idle state selection
5431 * for a CPU that has IO-wait which might not even end up running the task when
5432 * it does become runnable.
5433 */
5434
5435unsigned int nr_iowait_cpu(int cpu)
5436{
5437 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5438}
5439
5440/*
5441 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5442 *
5443 * The idea behind IO-wait account is to account the idle time that we could
5444 * have spend running if it were not for IO. That is, if we were to improve the
5445 * storage performance, we'd have a proportional reduction in IO-wait time.
5446 *
5447 * This all works nicely on UP, where, when a task blocks on IO, we account
5448 * idle time as IO-wait, because if the storage were faster, it could've been
5449 * running and we'd not be idle.
5450 *
5451 * This has been extended to SMP, by doing the same for each CPU. This however
5452 * is broken.
5453 *
5454 * Imagine for instance the case where two tasks block on one CPU, only the one
5455 * CPU will have IO-wait accounted, while the other has regular idle. Even
5456 * though, if the storage were faster, both could've ran at the same time,
5457 * utilising both CPUs.
5458 *
5459 * This means, that when looking globally, the current IO-wait accounting on
5460 * SMP is a lower bound, by reason of under accounting.
5461 *
5462 * Worse, since the numbers are provided per CPU, they are sometimes
5463 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5464 * associated with any one particular CPU, it can wake to another CPU than it
5465 * blocked on. This means the per CPU IO-wait number is meaningless.
5466 *
5467 * Task CPU affinities can make all that even more 'interesting'.
5468 */
5469
5470unsigned int nr_iowait(void)
5471{
5472 unsigned int i, sum = 0;
5473
5474 for_each_possible_cpu(i)
5475 sum += nr_iowait_cpu(i);
5476
5477 return sum;
5478}
5479
5480#ifdef CONFIG_SMP
5481
5482/*
5483 * sched_exec - execve() is a valuable balancing opportunity, because at
5484 * this point the task has the smallest effective memory and cache footprint.
5485 */
5486void sched_exec(void)
5487{
5488 struct task_struct *p = current;
5489 struct migration_arg arg;
5490 int dest_cpu;
5491
5492 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5493 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5494 if (dest_cpu == smp_processor_id())
5495 return;
5496
5497 if (unlikely(!cpu_active(dest_cpu)))
5498 return;
5499
5500 arg = (struct migration_arg){ p, dest_cpu };
5501 }
5502 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5503}
5504
5505#endif
5506
5507DEFINE_PER_CPU(struct kernel_stat, kstat);
5508DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5509
5510EXPORT_PER_CPU_SYMBOL(kstat);
5511EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5512
5513/*
5514 * The function fair_sched_class.update_curr accesses the struct curr
5515 * and its field curr->exec_start; when called from task_sched_runtime(),
5516 * we observe a high rate of cache misses in practice.
5517 * Prefetching this data results in improved performance.
5518 */
5519static inline void prefetch_curr_exec_start(struct task_struct *p)
5520{
5521#ifdef CONFIG_FAIR_GROUP_SCHED
5522 struct sched_entity *curr = p->se.cfs_rq->curr;
5523#else
5524 struct sched_entity *curr = task_rq(p)->cfs.curr;
5525#endif
5526 prefetch(curr);
5527 prefetch(&curr->exec_start);
5528}
5529
5530/*
5531 * Return accounted runtime for the task.
5532 * In case the task is currently running, return the runtime plus current's
5533 * pending runtime that have not been accounted yet.
5534 */
5535unsigned long long task_sched_runtime(struct task_struct *p)
5536{
5537 struct rq_flags rf;
5538 struct rq *rq;
5539 u64 ns;
5540
5541#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5542 /*
5543 * 64-bit doesn't need locks to atomically read a 64-bit value.
5544 * So we have a optimization chance when the task's delta_exec is 0.
5545 * Reading ->on_cpu is racy, but this is OK.
5546 *
5547 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5548 * If we race with it entering CPU, unaccounted time is 0. This is
5549 * indistinguishable from the read occurring a few cycles earlier.
5550 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5551 * been accounted, so we're correct here as well.
5552 */
5553 if (!p->on_cpu || !task_on_rq_queued(p))
5554 return p->se.sum_exec_runtime;
5555#endif
5556
5557 rq = task_rq_lock(p, &rf);
5558 /*
5559 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5560 * project cycles that may never be accounted to this
5561 * thread, breaking clock_gettime().
5562 */
5563 if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5564 prefetch_curr_exec_start(p);
5565 update_rq_clock(rq);
5566 p->sched_class->update_curr(rq);
5567 }
5568 ns = p->se.sum_exec_runtime;
5569 task_rq_unlock(rq, p, &rf);
5570
5571 return ns;
5572}
5573
5574#ifdef CONFIG_SCHED_DEBUG
5575static u64 cpu_resched_latency(struct rq *rq)
5576{
5577 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5578 u64 resched_latency, now = rq_clock(rq);
5579 static bool warned_once;
5580
5581 if (sysctl_resched_latency_warn_once && warned_once)
5582 return 0;
5583
5584 if (!need_resched() || !latency_warn_ms)
5585 return 0;
5586
5587 if (system_state == SYSTEM_BOOTING)
5588 return 0;
5589
5590 if (!rq->last_seen_need_resched_ns) {
5591 rq->last_seen_need_resched_ns = now;
5592 rq->ticks_without_resched = 0;
5593 return 0;
5594 }
5595
5596 rq->ticks_without_resched++;
5597 resched_latency = now - rq->last_seen_need_resched_ns;
5598 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5599 return 0;
5600
5601 warned_once = true;
5602
5603 return resched_latency;
5604}
5605
5606static int __init setup_resched_latency_warn_ms(char *str)
5607{
5608 long val;
5609
5610 if ((kstrtol(str, 0, &val))) {
5611 pr_warn("Unable to set resched_latency_warn_ms\n");
5612 return 1;
5613 }
5614
5615 sysctl_resched_latency_warn_ms = val;
5616 return 1;
5617}
5618__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5619#else
5620static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5621#endif /* CONFIG_SCHED_DEBUG */
5622
5623/*
5624 * This function gets called by the timer code, with HZ frequency.
5625 * We call it with interrupts disabled.
5626 */
5627void sched_tick(void)
5628{
5629 int cpu = smp_processor_id();
5630 struct rq *rq = cpu_rq(cpu);
5631 /* accounting goes to the donor task */
5632 struct task_struct *donor;
5633 struct rq_flags rf;
5634 unsigned long hw_pressure;
5635 u64 resched_latency;
5636
5637 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5638 arch_scale_freq_tick();
5639
5640 sched_clock_tick();
5641
5642 rq_lock(rq, &rf);
5643 donor = rq->donor;
5644
5645 psi_account_irqtime(rq, donor, NULL);
5646
5647 update_rq_clock(rq);
5648 hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5649 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5650
5651 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5652 resched_curr(rq);
5653
5654 donor->sched_class->task_tick(rq, donor, 0);
5655 if (sched_feat(LATENCY_WARN))
5656 resched_latency = cpu_resched_latency(rq);
5657 calc_global_load_tick(rq);
5658 sched_core_tick(rq);
5659 task_tick_mm_cid(rq, donor);
5660 scx_tick(rq);
5661
5662 rq_unlock(rq, &rf);
5663
5664 if (sched_feat(LATENCY_WARN) && resched_latency)
5665 resched_latency_warn(cpu, resched_latency);
5666
5667 perf_event_task_tick();
5668
5669 if (donor->flags & PF_WQ_WORKER)
5670 wq_worker_tick(donor);
5671
5672#ifdef CONFIG_SMP
5673 if (!scx_switched_all()) {
5674 rq->idle_balance = idle_cpu(cpu);
5675 sched_balance_trigger(rq);
5676 }
5677#endif
5678}
5679
5680#ifdef CONFIG_NO_HZ_FULL
5681
5682struct tick_work {
5683 int cpu;
5684 atomic_t state;
5685 struct delayed_work work;
5686};
5687/* Values for ->state, see diagram below. */
5688#define TICK_SCHED_REMOTE_OFFLINE 0
5689#define TICK_SCHED_REMOTE_OFFLINING 1
5690#define TICK_SCHED_REMOTE_RUNNING 2
5691
5692/*
5693 * State diagram for ->state:
5694 *
5695 *
5696 * TICK_SCHED_REMOTE_OFFLINE
5697 * | ^
5698 * | |
5699 * | | sched_tick_remote()
5700 * | |
5701 * | |
5702 * +--TICK_SCHED_REMOTE_OFFLINING
5703 * | ^
5704 * | |
5705 * sched_tick_start() | | sched_tick_stop()
5706 * | |
5707 * V |
5708 * TICK_SCHED_REMOTE_RUNNING
5709 *
5710 *
5711 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5712 * and sched_tick_start() are happy to leave the state in RUNNING.
5713 */
5714
5715static struct tick_work __percpu *tick_work_cpu;
5716
5717static void sched_tick_remote(struct work_struct *work)
5718{
5719 struct delayed_work *dwork = to_delayed_work(work);
5720 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5721 int cpu = twork->cpu;
5722 struct rq *rq = cpu_rq(cpu);
5723 int os;
5724
5725 /*
5726 * Handle the tick only if it appears the remote CPU is running in full
5727 * dynticks mode. The check is racy by nature, but missing a tick or
5728 * having one too much is no big deal because the scheduler tick updates
5729 * statistics and checks timeslices in a time-independent way, regardless
5730 * of when exactly it is running.
5731 */
5732 if (tick_nohz_tick_stopped_cpu(cpu)) {
5733 guard(rq_lock_irq)(rq);
5734 struct task_struct *curr = rq->curr;
5735
5736 if (cpu_online(cpu)) {
5737 /*
5738 * Since this is a remote tick for full dynticks mode,
5739 * we are always sure that there is no proxy (only a
5740 * single task is running).
5741 */
5742 SCHED_WARN_ON(rq->curr != rq->donor);
5743 update_rq_clock(rq);
5744
5745 if (!is_idle_task(curr)) {
5746 /*
5747 * Make sure the next tick runs within a
5748 * reasonable amount of time.
5749 */
5750 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5751 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5752 }
5753 curr->sched_class->task_tick(rq, curr, 0);
5754
5755 calc_load_nohz_remote(rq);
5756 }
5757 }
5758
5759 /*
5760 * Run the remote tick once per second (1Hz). This arbitrary
5761 * frequency is large enough to avoid overload but short enough
5762 * to keep scheduler internal stats reasonably up to date. But
5763 * first update state to reflect hotplug activity if required.
5764 */
5765 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5766 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5767 if (os == TICK_SCHED_REMOTE_RUNNING)
5768 queue_delayed_work(system_unbound_wq, dwork, HZ);
5769}
5770
5771static void sched_tick_start(int cpu)
5772{
5773 int os;
5774 struct tick_work *twork;
5775
5776 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5777 return;
5778
5779 WARN_ON_ONCE(!tick_work_cpu);
5780
5781 twork = per_cpu_ptr(tick_work_cpu, cpu);
5782 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5783 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5784 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5785 twork->cpu = cpu;
5786 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5787 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5788 }
5789}
5790
5791#ifdef CONFIG_HOTPLUG_CPU
5792static void sched_tick_stop(int cpu)
5793{
5794 struct tick_work *twork;
5795 int os;
5796
5797 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5798 return;
5799
5800 WARN_ON_ONCE(!tick_work_cpu);
5801
5802 twork = per_cpu_ptr(tick_work_cpu, cpu);
5803 /* There cannot be competing actions, but don't rely on stop-machine. */
5804 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5805 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5806 /* Don't cancel, as this would mess up the state machine. */
5807}
5808#endif /* CONFIG_HOTPLUG_CPU */
5809
5810int __init sched_tick_offload_init(void)
5811{
5812 tick_work_cpu = alloc_percpu(struct tick_work);
5813 BUG_ON(!tick_work_cpu);
5814 return 0;
5815}
5816
5817#else /* !CONFIG_NO_HZ_FULL */
5818static inline void sched_tick_start(int cpu) { }
5819static inline void sched_tick_stop(int cpu) { }
5820#endif
5821
5822#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5823 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5824/*
5825 * If the value passed in is equal to the current preempt count
5826 * then we just disabled preemption. Start timing the latency.
5827 */
5828static inline void preempt_latency_start(int val)
5829{
5830 if (preempt_count() == val) {
5831 unsigned long ip = get_lock_parent_ip();
5832#ifdef CONFIG_DEBUG_PREEMPT
5833 current->preempt_disable_ip = ip;
5834#endif
5835 trace_preempt_off(CALLER_ADDR0, ip);
5836 }
5837}
5838
5839void preempt_count_add(int val)
5840{
5841#ifdef CONFIG_DEBUG_PREEMPT
5842 /*
5843 * Underflow?
5844 */
5845 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5846 return;
5847#endif
5848 __preempt_count_add(val);
5849#ifdef CONFIG_DEBUG_PREEMPT
5850 /*
5851 * Spinlock count overflowing soon?
5852 */
5853 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5854 PREEMPT_MASK - 10);
5855#endif
5856 preempt_latency_start(val);
5857}
5858EXPORT_SYMBOL(preempt_count_add);
5859NOKPROBE_SYMBOL(preempt_count_add);
5860
5861/*
5862 * If the value passed in equals to the current preempt count
5863 * then we just enabled preemption. Stop timing the latency.
5864 */
5865static inline void preempt_latency_stop(int val)
5866{
5867 if (preempt_count() == val)
5868 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5869}
5870
5871void preempt_count_sub(int val)
5872{
5873#ifdef CONFIG_DEBUG_PREEMPT
5874 /*
5875 * Underflow?
5876 */
5877 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5878 return;
5879 /*
5880 * Is the spinlock portion underflowing?
5881 */
5882 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5883 !(preempt_count() & PREEMPT_MASK)))
5884 return;
5885#endif
5886
5887 preempt_latency_stop(val);
5888 __preempt_count_sub(val);
5889}
5890EXPORT_SYMBOL(preempt_count_sub);
5891NOKPROBE_SYMBOL(preempt_count_sub);
5892
5893#else
5894static inline void preempt_latency_start(int val) { }
5895static inline void preempt_latency_stop(int val) { }
5896#endif
5897
5898static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5899{
5900#ifdef CONFIG_DEBUG_PREEMPT
5901 return p->preempt_disable_ip;
5902#else
5903 return 0;
5904#endif
5905}
5906
5907/*
5908 * Print scheduling while atomic bug:
5909 */
5910static noinline void __schedule_bug(struct task_struct *prev)
5911{
5912 /* Save this before calling printk(), since that will clobber it */
5913 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5914
5915 if (oops_in_progress)
5916 return;
5917
5918 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5919 prev->comm, prev->pid, preempt_count());
5920
5921 debug_show_held_locks(prev);
5922 print_modules();
5923 if (irqs_disabled())
5924 print_irqtrace_events(prev);
5925 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5926 pr_err("Preemption disabled at:");
5927 print_ip_sym(KERN_ERR, preempt_disable_ip);
5928 }
5929 check_panic_on_warn("scheduling while atomic");
5930
5931 dump_stack();
5932 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5933}
5934
5935/*
5936 * Various schedule()-time debugging checks and statistics:
5937 */
5938static inline void schedule_debug(struct task_struct *prev, bool preempt)
5939{
5940#ifdef CONFIG_SCHED_STACK_END_CHECK
5941 if (task_stack_end_corrupted(prev))
5942 panic("corrupted stack end detected inside scheduler\n");
5943
5944 if (task_scs_end_corrupted(prev))
5945 panic("corrupted shadow stack detected inside scheduler\n");
5946#endif
5947
5948#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5949 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5950 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5951 prev->comm, prev->pid, prev->non_block_count);
5952 dump_stack();
5953 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5954 }
5955#endif
5956
5957 if (unlikely(in_atomic_preempt_off())) {
5958 __schedule_bug(prev);
5959 preempt_count_set(PREEMPT_DISABLED);
5960 }
5961 rcu_sleep_check();
5962 SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5963
5964 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5965
5966 schedstat_inc(this_rq()->sched_count);
5967}
5968
5969static void prev_balance(struct rq *rq, struct task_struct *prev,
5970 struct rq_flags *rf)
5971{
5972 const struct sched_class *start_class = prev->sched_class;
5973 const struct sched_class *class;
5974
5975#ifdef CONFIG_SCHED_CLASS_EXT
5976 /*
5977 * SCX requires a balance() call before every pick_task() including when
5978 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5979 * SCX instead. Also, set a flag to detect missing balance() call.
5980 */
5981 if (scx_enabled()) {
5982 rq->scx.flags |= SCX_RQ_BAL_PENDING;
5983 if (sched_class_above(&ext_sched_class, start_class))
5984 start_class = &ext_sched_class;
5985 }
5986#endif
5987
5988 /*
5989 * We must do the balancing pass before put_prev_task(), such
5990 * that when we release the rq->lock the task is in the same
5991 * state as before we took rq->lock.
5992 *
5993 * We can terminate the balance pass as soon as we know there is
5994 * a runnable task of @class priority or higher.
5995 */
5996 for_active_class_range(class, start_class, &idle_sched_class) {
5997 if (class->balance && class->balance(rq, prev, rf))
5998 break;
5999 }
6000}
6001
6002/*
6003 * Pick up the highest-prio task:
6004 */
6005static inline struct task_struct *
6006__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6007{
6008 const struct sched_class *class;
6009 struct task_struct *p;
6010
6011 rq->dl_server = NULL;
6012
6013 if (scx_enabled())
6014 goto restart;
6015
6016 /*
6017 * Optimization: we know that if all tasks are in the fair class we can
6018 * call that function directly, but only if the @prev task wasn't of a
6019 * higher scheduling class, because otherwise those lose the
6020 * opportunity to pull in more work from other CPUs.
6021 */
6022 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6023 rq->nr_running == rq->cfs.h_nr_running)) {
6024
6025 p = pick_next_task_fair(rq, prev, rf);
6026 if (unlikely(p == RETRY_TASK))
6027 goto restart;
6028
6029 /* Assume the next prioritized class is idle_sched_class */
6030 if (!p) {
6031 p = pick_task_idle(rq);
6032 put_prev_set_next_task(rq, prev, p);
6033 }
6034
6035 return p;
6036 }
6037
6038restart:
6039 prev_balance(rq, prev, rf);
6040
6041 for_each_active_class(class) {
6042 if (class->pick_next_task) {
6043 p = class->pick_next_task(rq, prev);
6044 if (p)
6045 return p;
6046 } else {
6047 p = class->pick_task(rq);
6048 if (p) {
6049 put_prev_set_next_task(rq, prev, p);
6050 return p;
6051 }
6052 }
6053 }
6054
6055 BUG(); /* The idle class should always have a runnable task. */
6056}
6057
6058#ifdef CONFIG_SCHED_CORE
6059static inline bool is_task_rq_idle(struct task_struct *t)
6060{
6061 return (task_rq(t)->idle == t);
6062}
6063
6064static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6065{
6066 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6067}
6068
6069static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6070{
6071 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6072 return true;
6073
6074 return a->core_cookie == b->core_cookie;
6075}
6076
6077static inline struct task_struct *pick_task(struct rq *rq)
6078{
6079 const struct sched_class *class;
6080 struct task_struct *p;
6081
6082 rq->dl_server = NULL;
6083
6084 for_each_active_class(class) {
6085 p = class->pick_task(rq);
6086 if (p)
6087 return p;
6088 }
6089
6090 BUG(); /* The idle class should always have a runnable task. */
6091}
6092
6093extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6094
6095static void queue_core_balance(struct rq *rq);
6096
6097static struct task_struct *
6098pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6099{
6100 struct task_struct *next, *p, *max = NULL;
6101 const struct cpumask *smt_mask;
6102 bool fi_before = false;
6103 bool core_clock_updated = (rq == rq->core);
6104 unsigned long cookie;
6105 int i, cpu, occ = 0;
6106 struct rq *rq_i;
6107 bool need_sync;
6108
6109 if (!sched_core_enabled(rq))
6110 return __pick_next_task(rq, prev, rf);
6111
6112 cpu = cpu_of(rq);
6113
6114 /* Stopper task is switching into idle, no need core-wide selection. */
6115 if (cpu_is_offline(cpu)) {
6116 /*
6117 * Reset core_pick so that we don't enter the fastpath when
6118 * coming online. core_pick would already be migrated to
6119 * another cpu during offline.
6120 */
6121 rq->core_pick = NULL;
6122 rq->core_dl_server = NULL;
6123 return __pick_next_task(rq, prev, rf);
6124 }
6125
6126 /*
6127 * If there were no {en,de}queues since we picked (IOW, the task
6128 * pointers are all still valid), and we haven't scheduled the last
6129 * pick yet, do so now.
6130 *
6131 * rq->core_pick can be NULL if no selection was made for a CPU because
6132 * it was either offline or went offline during a sibling's core-wide
6133 * selection. In this case, do a core-wide selection.
6134 */
6135 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6136 rq->core->core_pick_seq != rq->core_sched_seq &&
6137 rq->core_pick) {
6138 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6139
6140 next = rq->core_pick;
6141 rq->dl_server = rq->core_dl_server;
6142 rq->core_pick = NULL;
6143 rq->core_dl_server = NULL;
6144 goto out_set_next;
6145 }
6146
6147 prev_balance(rq, prev, rf);
6148
6149 smt_mask = cpu_smt_mask(cpu);
6150 need_sync = !!rq->core->core_cookie;
6151
6152 /* reset state */
6153 rq->core->core_cookie = 0UL;
6154 if (rq->core->core_forceidle_count) {
6155 if (!core_clock_updated) {
6156 update_rq_clock(rq->core);
6157 core_clock_updated = true;
6158 }
6159 sched_core_account_forceidle(rq);
6160 /* reset after accounting force idle */
6161 rq->core->core_forceidle_start = 0;
6162 rq->core->core_forceidle_count = 0;
6163 rq->core->core_forceidle_occupation = 0;
6164 need_sync = true;
6165 fi_before = true;
6166 }
6167
6168 /*
6169 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6170 *
6171 * @task_seq guards the task state ({en,de}queues)
6172 * @pick_seq is the @task_seq we did a selection on
6173 * @sched_seq is the @pick_seq we scheduled
6174 *
6175 * However, preemptions can cause multiple picks on the same task set.
6176 * 'Fix' this by also increasing @task_seq for every pick.
6177 */
6178 rq->core->core_task_seq++;
6179
6180 /*
6181 * Optimize for common case where this CPU has no cookies
6182 * and there are no cookied tasks running on siblings.
6183 */
6184 if (!need_sync) {
6185 next = pick_task(rq);
6186 if (!next->core_cookie) {
6187 rq->core_pick = NULL;
6188 rq->core_dl_server = NULL;
6189 /*
6190 * For robustness, update the min_vruntime_fi for
6191 * unconstrained picks as well.
6192 */
6193 WARN_ON_ONCE(fi_before);
6194 task_vruntime_update(rq, next, false);
6195 goto out_set_next;
6196 }
6197 }
6198
6199 /*
6200 * For each thread: do the regular task pick and find the max prio task
6201 * amongst them.
6202 *
6203 * Tie-break prio towards the current CPU
6204 */
6205 for_each_cpu_wrap(i, smt_mask, cpu) {
6206 rq_i = cpu_rq(i);
6207
6208 /*
6209 * Current cpu always has its clock updated on entrance to
6210 * pick_next_task(). If the current cpu is not the core,
6211 * the core may also have been updated above.
6212 */
6213 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6214 update_rq_clock(rq_i);
6215
6216 rq_i->core_pick = p = pick_task(rq_i);
6217 rq_i->core_dl_server = rq_i->dl_server;
6218
6219 if (!max || prio_less(max, p, fi_before))
6220 max = p;
6221 }
6222
6223 cookie = rq->core->core_cookie = max->core_cookie;
6224
6225 /*
6226 * For each thread: try and find a runnable task that matches @max or
6227 * force idle.
6228 */
6229 for_each_cpu(i, smt_mask) {
6230 rq_i = cpu_rq(i);
6231 p = rq_i->core_pick;
6232
6233 if (!cookie_equals(p, cookie)) {
6234 p = NULL;
6235 if (cookie)
6236 p = sched_core_find(rq_i, cookie);
6237 if (!p)
6238 p = idle_sched_class.pick_task(rq_i);
6239 }
6240
6241 rq_i->core_pick = p;
6242 rq_i->core_dl_server = NULL;
6243
6244 if (p == rq_i->idle) {
6245 if (rq_i->nr_running) {
6246 rq->core->core_forceidle_count++;
6247 if (!fi_before)
6248 rq->core->core_forceidle_seq++;
6249 }
6250 } else {
6251 occ++;
6252 }
6253 }
6254
6255 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6256 rq->core->core_forceidle_start = rq_clock(rq->core);
6257 rq->core->core_forceidle_occupation = occ;
6258 }
6259
6260 rq->core->core_pick_seq = rq->core->core_task_seq;
6261 next = rq->core_pick;
6262 rq->core_sched_seq = rq->core->core_pick_seq;
6263
6264 /* Something should have been selected for current CPU */
6265 WARN_ON_ONCE(!next);
6266
6267 /*
6268 * Reschedule siblings
6269 *
6270 * NOTE: L1TF -- at this point we're no longer running the old task and
6271 * sending an IPI (below) ensures the sibling will no longer be running
6272 * their task. This ensures there is no inter-sibling overlap between
6273 * non-matching user state.
6274 */
6275 for_each_cpu(i, smt_mask) {
6276 rq_i = cpu_rq(i);
6277
6278 /*
6279 * An online sibling might have gone offline before a task
6280 * could be picked for it, or it might be offline but later
6281 * happen to come online, but its too late and nothing was
6282 * picked for it. That's Ok - it will pick tasks for itself,
6283 * so ignore it.
6284 */
6285 if (!rq_i->core_pick)
6286 continue;
6287
6288 /*
6289 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6290 * fi_before fi update?
6291 * 0 0 1
6292 * 0 1 1
6293 * 1 0 1
6294 * 1 1 0
6295 */
6296 if (!(fi_before && rq->core->core_forceidle_count))
6297 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6298
6299 rq_i->core_pick->core_occupation = occ;
6300
6301 if (i == cpu) {
6302 rq_i->core_pick = NULL;
6303 rq_i->core_dl_server = NULL;
6304 continue;
6305 }
6306
6307 /* Did we break L1TF mitigation requirements? */
6308 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6309
6310 if (rq_i->curr == rq_i->core_pick) {
6311 rq_i->core_pick = NULL;
6312 rq_i->core_dl_server = NULL;
6313 continue;
6314 }
6315
6316 resched_curr(rq_i);
6317 }
6318
6319out_set_next:
6320 put_prev_set_next_task(rq, prev, next);
6321 if (rq->core->core_forceidle_count && next == rq->idle)
6322 queue_core_balance(rq);
6323
6324 return next;
6325}
6326
6327static bool try_steal_cookie(int this, int that)
6328{
6329 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6330 struct task_struct *p;
6331 unsigned long cookie;
6332 bool success = false;
6333
6334 guard(irq)();
6335 guard(double_rq_lock)(dst, src);
6336
6337 cookie = dst->core->core_cookie;
6338 if (!cookie)
6339 return false;
6340
6341 if (dst->curr != dst->idle)
6342 return false;
6343
6344 p = sched_core_find(src, cookie);
6345 if (!p)
6346 return false;
6347
6348 do {
6349 if (p == src->core_pick || p == src->curr)
6350 goto next;
6351
6352 if (!is_cpu_allowed(p, this))
6353 goto next;
6354
6355 if (p->core_occupation > dst->idle->core_occupation)
6356 goto next;
6357 /*
6358 * sched_core_find() and sched_core_next() will ensure
6359 * that task @p is not throttled now, we also need to
6360 * check whether the runqueue of the destination CPU is
6361 * being throttled.
6362 */
6363 if (sched_task_is_throttled(p, this))
6364 goto next;
6365
6366 move_queued_task_locked(src, dst, p);
6367 resched_curr(dst);
6368
6369 success = true;
6370 break;
6371
6372next:
6373 p = sched_core_next(p, cookie);
6374 } while (p);
6375
6376 return success;
6377}
6378
6379static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6380{
6381 int i;
6382
6383 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6384 if (i == cpu)
6385 continue;
6386
6387 if (need_resched())
6388 break;
6389
6390 if (try_steal_cookie(cpu, i))
6391 return true;
6392 }
6393
6394 return false;
6395}
6396
6397static void sched_core_balance(struct rq *rq)
6398{
6399 struct sched_domain *sd;
6400 int cpu = cpu_of(rq);
6401
6402 guard(preempt)();
6403 guard(rcu)();
6404
6405 raw_spin_rq_unlock_irq(rq);
6406 for_each_domain(cpu, sd) {
6407 if (need_resched())
6408 break;
6409
6410 if (steal_cookie_task(cpu, sd))
6411 break;
6412 }
6413 raw_spin_rq_lock_irq(rq);
6414}
6415
6416static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6417
6418static void queue_core_balance(struct rq *rq)
6419{
6420 if (!sched_core_enabled(rq))
6421 return;
6422
6423 if (!rq->core->core_cookie)
6424 return;
6425
6426 if (!rq->nr_running) /* not forced idle */
6427 return;
6428
6429 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6430}
6431
6432DEFINE_LOCK_GUARD_1(core_lock, int,
6433 sched_core_lock(*_T->lock, &_T->flags),
6434 sched_core_unlock(*_T->lock, &_T->flags),
6435 unsigned long flags)
6436
6437static void sched_core_cpu_starting(unsigned int cpu)
6438{
6439 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6440 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6441 int t;
6442
6443 guard(core_lock)(&cpu);
6444
6445 WARN_ON_ONCE(rq->core != rq);
6446
6447 /* if we're the first, we'll be our own leader */
6448 if (cpumask_weight(smt_mask) == 1)
6449 return;
6450
6451 /* find the leader */
6452 for_each_cpu(t, smt_mask) {
6453 if (t == cpu)
6454 continue;
6455 rq = cpu_rq(t);
6456 if (rq->core == rq) {
6457 core_rq = rq;
6458 break;
6459 }
6460 }
6461
6462 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6463 return;
6464
6465 /* install and validate core_rq */
6466 for_each_cpu(t, smt_mask) {
6467 rq = cpu_rq(t);
6468
6469 if (t == cpu)
6470 rq->core = core_rq;
6471
6472 WARN_ON_ONCE(rq->core != core_rq);
6473 }
6474}
6475
6476static void sched_core_cpu_deactivate(unsigned int cpu)
6477{
6478 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6479 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6480 int t;
6481
6482 guard(core_lock)(&cpu);
6483
6484 /* if we're the last man standing, nothing to do */
6485 if (cpumask_weight(smt_mask) == 1) {
6486 WARN_ON_ONCE(rq->core != rq);
6487 return;
6488 }
6489
6490 /* if we're not the leader, nothing to do */
6491 if (rq->core != rq)
6492 return;
6493
6494 /* find a new leader */
6495 for_each_cpu(t, smt_mask) {
6496 if (t == cpu)
6497 continue;
6498 core_rq = cpu_rq(t);
6499 break;
6500 }
6501
6502 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6503 return;
6504
6505 /* copy the shared state to the new leader */
6506 core_rq->core_task_seq = rq->core_task_seq;
6507 core_rq->core_pick_seq = rq->core_pick_seq;
6508 core_rq->core_cookie = rq->core_cookie;
6509 core_rq->core_forceidle_count = rq->core_forceidle_count;
6510 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6511 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6512
6513 /*
6514 * Accounting edge for forced idle is handled in pick_next_task().
6515 * Don't need another one here, since the hotplug thread shouldn't
6516 * have a cookie.
6517 */
6518 core_rq->core_forceidle_start = 0;
6519
6520 /* install new leader */
6521 for_each_cpu(t, smt_mask) {
6522 rq = cpu_rq(t);
6523 rq->core = core_rq;
6524 }
6525}
6526
6527static inline void sched_core_cpu_dying(unsigned int cpu)
6528{
6529 struct rq *rq = cpu_rq(cpu);
6530
6531 if (rq->core != rq)
6532 rq->core = rq;
6533}
6534
6535#else /* !CONFIG_SCHED_CORE */
6536
6537static inline void sched_core_cpu_starting(unsigned int cpu) {}
6538static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6539static inline void sched_core_cpu_dying(unsigned int cpu) {}
6540
6541static struct task_struct *
6542pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6543{
6544 return __pick_next_task(rq, prev, rf);
6545}
6546
6547#endif /* CONFIG_SCHED_CORE */
6548
6549/*
6550 * Constants for the sched_mode argument of __schedule().
6551 *
6552 * The mode argument allows RT enabled kernels to differentiate a
6553 * preemption from blocking on an 'sleeping' spin/rwlock.
6554 */
6555#define SM_IDLE (-1)
6556#define SM_NONE 0
6557#define SM_PREEMPT 1
6558#define SM_RTLOCK_WAIT 2
6559
6560/*
6561 * Helper function for __schedule()
6562 *
6563 * If a task does not have signals pending, deactivate it
6564 * Otherwise marks the task's __state as RUNNING
6565 */
6566static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6567 unsigned long task_state)
6568{
6569 int flags = DEQUEUE_NOCLOCK;
6570
6571 if (signal_pending_state(task_state, p)) {
6572 WRITE_ONCE(p->__state, TASK_RUNNING);
6573 return false;
6574 }
6575
6576 p->sched_contributes_to_load =
6577 (task_state & TASK_UNINTERRUPTIBLE) &&
6578 !(task_state & TASK_NOLOAD) &&
6579 !(task_state & TASK_FROZEN);
6580
6581 if (unlikely(is_special_task_state(task_state)))
6582 flags |= DEQUEUE_SPECIAL;
6583
6584 /*
6585 * __schedule() ttwu()
6586 * prev_state = prev->state; if (p->on_rq && ...)
6587 * if (prev_state) goto out;
6588 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6589 * p->state = TASK_WAKING
6590 *
6591 * Where __schedule() and ttwu() have matching control dependencies.
6592 *
6593 * After this, schedule() must not care about p->state any more.
6594 */
6595 block_task(rq, p, flags);
6596 return true;
6597}
6598
6599/*
6600 * __schedule() is the main scheduler function.
6601 *
6602 * The main means of driving the scheduler and thus entering this function are:
6603 *
6604 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6605 *
6606 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6607 * paths. For example, see arch/x86/entry_64.S.
6608 *
6609 * To drive preemption between tasks, the scheduler sets the flag in timer
6610 * interrupt handler sched_tick().
6611 *
6612 * 3. Wakeups don't really cause entry into schedule(). They add a
6613 * task to the run-queue and that's it.
6614 *
6615 * Now, if the new task added to the run-queue preempts the current
6616 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6617 * called on the nearest possible occasion:
6618 *
6619 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6620 *
6621 * - in syscall or exception context, at the next outmost
6622 * preempt_enable(). (this might be as soon as the wake_up()'s
6623 * spin_unlock()!)
6624 *
6625 * - in IRQ context, return from interrupt-handler to
6626 * preemptible context
6627 *
6628 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6629 * then at the next:
6630 *
6631 * - cond_resched() call
6632 * - explicit schedule() call
6633 * - return from syscall or exception to user-space
6634 * - return from interrupt-handler to user-space
6635 *
6636 * WARNING: must be called with preemption disabled!
6637 */
6638static void __sched notrace __schedule(int sched_mode)
6639{
6640 struct task_struct *prev, *next;
6641 /*
6642 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6643 * as a preemption by schedule_debug() and RCU.
6644 */
6645 bool preempt = sched_mode > SM_NONE;
6646 unsigned long *switch_count;
6647 unsigned long prev_state;
6648 struct rq_flags rf;
6649 struct rq *rq;
6650 int cpu;
6651
6652 cpu = smp_processor_id();
6653 rq = cpu_rq(cpu);
6654 prev = rq->curr;
6655
6656 schedule_debug(prev, preempt);
6657
6658 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6659 hrtick_clear(rq);
6660
6661 local_irq_disable();
6662 rcu_note_context_switch(preempt);
6663
6664 /*
6665 * Make sure that signal_pending_state()->signal_pending() below
6666 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6667 * done by the caller to avoid the race with signal_wake_up():
6668 *
6669 * __set_current_state(@state) signal_wake_up()
6670 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6671 * wake_up_state(p, state)
6672 * LOCK rq->lock LOCK p->pi_state
6673 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6674 * if (signal_pending_state()) if (p->state & @state)
6675 *
6676 * Also, the membarrier system call requires a full memory barrier
6677 * after coming from user-space, before storing to rq->curr; this
6678 * barrier matches a full barrier in the proximity of the membarrier
6679 * system call exit.
6680 */
6681 rq_lock(rq, &rf);
6682 smp_mb__after_spinlock();
6683
6684 /* Promote REQ to ACT */
6685 rq->clock_update_flags <<= 1;
6686 update_rq_clock(rq);
6687 rq->clock_update_flags = RQCF_UPDATED;
6688
6689 switch_count = &prev->nivcsw;
6690
6691 /* Task state changes only considers SM_PREEMPT as preemption */
6692 preempt = sched_mode == SM_PREEMPT;
6693
6694 /*
6695 * We must load prev->state once (task_struct::state is volatile), such
6696 * that we form a control dependency vs deactivate_task() below.
6697 */
6698 prev_state = READ_ONCE(prev->__state);
6699 if (sched_mode == SM_IDLE) {
6700 /* SCX must consult the BPF scheduler to tell if rq is empty */
6701 if (!rq->nr_running && !scx_enabled()) {
6702 next = prev;
6703 goto picked;
6704 }
6705 } else if (!preempt && prev_state) {
6706 try_to_block_task(rq, prev, prev_state);
6707 switch_count = &prev->nvcsw;
6708 }
6709
6710 next = pick_next_task(rq, prev, &rf);
6711 rq_set_donor(rq, next);
6712picked:
6713 clear_tsk_need_resched(prev);
6714 clear_preempt_need_resched();
6715#ifdef CONFIG_SCHED_DEBUG
6716 rq->last_seen_need_resched_ns = 0;
6717#endif
6718
6719 if (likely(prev != next)) {
6720 rq->nr_switches++;
6721 /*
6722 * RCU users of rcu_dereference(rq->curr) may not see
6723 * changes to task_struct made by pick_next_task().
6724 */
6725 RCU_INIT_POINTER(rq->curr, next);
6726 /*
6727 * The membarrier system call requires each architecture
6728 * to have a full memory barrier after updating
6729 * rq->curr, before returning to user-space.
6730 *
6731 * Here are the schemes providing that barrier on the
6732 * various architectures:
6733 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6734 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6735 * on PowerPC and on RISC-V.
6736 * - finish_lock_switch() for weakly-ordered
6737 * architectures where spin_unlock is a full barrier,
6738 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6739 * is a RELEASE barrier),
6740 *
6741 * The barrier matches a full barrier in the proximity of
6742 * the membarrier system call entry.
6743 *
6744 * On RISC-V, this barrier pairing is also needed for the
6745 * SYNC_CORE command when switching between processes, cf.
6746 * the inline comments in membarrier_arch_switch_mm().
6747 */
6748 ++*switch_count;
6749
6750 migrate_disable_switch(rq, prev);
6751 psi_account_irqtime(rq, prev, next);
6752 psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6753 prev->se.sched_delayed);
6754
6755 trace_sched_switch(preempt, prev, next, prev_state);
6756
6757 /* Also unlocks the rq: */
6758 rq = context_switch(rq, prev, next, &rf);
6759 } else {
6760 rq_unpin_lock(rq, &rf);
6761 __balance_callbacks(rq);
6762 raw_spin_rq_unlock_irq(rq);
6763 }
6764}
6765
6766void __noreturn do_task_dead(void)
6767{
6768 /* Causes final put_task_struct in finish_task_switch(): */
6769 set_special_state(TASK_DEAD);
6770
6771 /* Tell freezer to ignore us: */
6772 current->flags |= PF_NOFREEZE;
6773
6774 __schedule(SM_NONE);
6775 BUG();
6776
6777 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6778 for (;;)
6779 cpu_relax();
6780}
6781
6782static inline void sched_submit_work(struct task_struct *tsk)
6783{
6784 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6785 unsigned int task_flags;
6786
6787 /*
6788 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6789 * will use a blocking primitive -- which would lead to recursion.
6790 */
6791 lock_map_acquire_try(&sched_map);
6792
6793 task_flags = tsk->flags;
6794 /*
6795 * If a worker goes to sleep, notify and ask workqueue whether it
6796 * wants to wake up a task to maintain concurrency.
6797 */
6798 if (task_flags & PF_WQ_WORKER)
6799 wq_worker_sleeping(tsk);
6800 else if (task_flags & PF_IO_WORKER)
6801 io_wq_worker_sleeping(tsk);
6802
6803 /*
6804 * spinlock and rwlock must not flush block requests. This will
6805 * deadlock if the callback attempts to acquire a lock which is
6806 * already acquired.
6807 */
6808 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6809
6810 /*
6811 * If we are going to sleep and we have plugged IO queued,
6812 * make sure to submit it to avoid deadlocks.
6813 */
6814 blk_flush_plug(tsk->plug, true);
6815
6816 lock_map_release(&sched_map);
6817}
6818
6819static void sched_update_worker(struct task_struct *tsk)
6820{
6821 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6822 if (tsk->flags & PF_BLOCK_TS)
6823 blk_plug_invalidate_ts(tsk);
6824 if (tsk->flags & PF_WQ_WORKER)
6825 wq_worker_running(tsk);
6826 else if (tsk->flags & PF_IO_WORKER)
6827 io_wq_worker_running(tsk);
6828 }
6829}
6830
6831static __always_inline void __schedule_loop(int sched_mode)
6832{
6833 do {
6834 preempt_disable();
6835 __schedule(sched_mode);
6836 sched_preempt_enable_no_resched();
6837 } while (need_resched());
6838}
6839
6840asmlinkage __visible void __sched schedule(void)
6841{
6842 struct task_struct *tsk = current;
6843
6844#ifdef CONFIG_RT_MUTEXES
6845 lockdep_assert(!tsk->sched_rt_mutex);
6846#endif
6847
6848 if (!task_is_running(tsk))
6849 sched_submit_work(tsk);
6850 __schedule_loop(SM_NONE);
6851 sched_update_worker(tsk);
6852}
6853EXPORT_SYMBOL(schedule);
6854
6855/*
6856 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6857 * state (have scheduled out non-voluntarily) by making sure that all
6858 * tasks have either left the run queue or have gone into user space.
6859 * As idle tasks do not do either, they must not ever be preempted
6860 * (schedule out non-voluntarily).
6861 *
6862 * schedule_idle() is similar to schedule_preempt_disable() except that it
6863 * never enables preemption because it does not call sched_submit_work().
6864 */
6865void __sched schedule_idle(void)
6866{
6867 /*
6868 * As this skips calling sched_submit_work(), which the idle task does
6869 * regardless because that function is a NOP when the task is in a
6870 * TASK_RUNNING state, make sure this isn't used someplace that the
6871 * current task can be in any other state. Note, idle is always in the
6872 * TASK_RUNNING state.
6873 */
6874 WARN_ON_ONCE(current->__state);
6875 do {
6876 __schedule(SM_IDLE);
6877 } while (need_resched());
6878}
6879
6880#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6881asmlinkage __visible void __sched schedule_user(void)
6882{
6883 /*
6884 * If we come here after a random call to set_need_resched(),
6885 * or we have been woken up remotely but the IPI has not yet arrived,
6886 * we haven't yet exited the RCU idle mode. Do it here manually until
6887 * we find a better solution.
6888 *
6889 * NB: There are buggy callers of this function. Ideally we
6890 * should warn if prev_state != CT_STATE_USER, but that will trigger
6891 * too frequently to make sense yet.
6892 */
6893 enum ctx_state prev_state = exception_enter();
6894 schedule();
6895 exception_exit(prev_state);
6896}
6897#endif
6898
6899/**
6900 * schedule_preempt_disabled - called with preemption disabled
6901 *
6902 * Returns with preemption disabled. Note: preempt_count must be 1
6903 */
6904void __sched schedule_preempt_disabled(void)
6905{
6906 sched_preempt_enable_no_resched();
6907 schedule();
6908 preempt_disable();
6909}
6910
6911#ifdef CONFIG_PREEMPT_RT
6912void __sched notrace schedule_rtlock(void)
6913{
6914 __schedule_loop(SM_RTLOCK_WAIT);
6915}
6916NOKPROBE_SYMBOL(schedule_rtlock);
6917#endif
6918
6919static void __sched notrace preempt_schedule_common(void)
6920{
6921 do {
6922 /*
6923 * Because the function tracer can trace preempt_count_sub()
6924 * and it also uses preempt_enable/disable_notrace(), if
6925 * NEED_RESCHED is set, the preempt_enable_notrace() called
6926 * by the function tracer will call this function again and
6927 * cause infinite recursion.
6928 *
6929 * Preemption must be disabled here before the function
6930 * tracer can trace. Break up preempt_disable() into two
6931 * calls. One to disable preemption without fear of being
6932 * traced. The other to still record the preemption latency,
6933 * which can also be traced by the function tracer.
6934 */
6935 preempt_disable_notrace();
6936 preempt_latency_start(1);
6937 __schedule(SM_PREEMPT);
6938 preempt_latency_stop(1);
6939 preempt_enable_no_resched_notrace();
6940
6941 /*
6942 * Check again in case we missed a preemption opportunity
6943 * between schedule and now.
6944 */
6945 } while (need_resched());
6946}
6947
6948#ifdef CONFIG_PREEMPTION
6949/*
6950 * This is the entry point to schedule() from in-kernel preemption
6951 * off of preempt_enable.
6952 */
6953asmlinkage __visible void __sched notrace preempt_schedule(void)
6954{
6955 /*
6956 * If there is a non-zero preempt_count or interrupts are disabled,
6957 * we do not want to preempt the current task. Just return..
6958 */
6959 if (likely(!preemptible()))
6960 return;
6961 preempt_schedule_common();
6962}
6963NOKPROBE_SYMBOL(preempt_schedule);
6964EXPORT_SYMBOL(preempt_schedule);
6965
6966#ifdef CONFIG_PREEMPT_DYNAMIC
6967#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6968#ifndef preempt_schedule_dynamic_enabled
6969#define preempt_schedule_dynamic_enabled preempt_schedule
6970#define preempt_schedule_dynamic_disabled NULL
6971#endif
6972DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6973EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6974#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6975static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6976void __sched notrace dynamic_preempt_schedule(void)
6977{
6978 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6979 return;
6980 preempt_schedule();
6981}
6982NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6983EXPORT_SYMBOL(dynamic_preempt_schedule);
6984#endif
6985#endif
6986
6987/**
6988 * preempt_schedule_notrace - preempt_schedule called by tracing
6989 *
6990 * The tracing infrastructure uses preempt_enable_notrace to prevent
6991 * recursion and tracing preempt enabling caused by the tracing
6992 * infrastructure itself. But as tracing can happen in areas coming
6993 * from userspace or just about to enter userspace, a preempt enable
6994 * can occur before user_exit() is called. This will cause the scheduler
6995 * to be called when the system is still in usermode.
6996 *
6997 * To prevent this, the preempt_enable_notrace will use this function
6998 * instead of preempt_schedule() to exit user context if needed before
6999 * calling the scheduler.
7000 */
7001asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7002{
7003 enum ctx_state prev_ctx;
7004
7005 if (likely(!preemptible()))
7006 return;
7007
7008 do {
7009 /*
7010 * Because the function tracer can trace preempt_count_sub()
7011 * and it also uses preempt_enable/disable_notrace(), if
7012 * NEED_RESCHED is set, the preempt_enable_notrace() called
7013 * by the function tracer will call this function again and
7014 * cause infinite recursion.
7015 *
7016 * Preemption must be disabled here before the function
7017 * tracer can trace. Break up preempt_disable() into two
7018 * calls. One to disable preemption without fear of being
7019 * traced. The other to still record the preemption latency,
7020 * which can also be traced by the function tracer.
7021 */
7022 preempt_disable_notrace();
7023 preempt_latency_start(1);
7024 /*
7025 * Needs preempt disabled in case user_exit() is traced
7026 * and the tracer calls preempt_enable_notrace() causing
7027 * an infinite recursion.
7028 */
7029 prev_ctx = exception_enter();
7030 __schedule(SM_PREEMPT);
7031 exception_exit(prev_ctx);
7032
7033 preempt_latency_stop(1);
7034 preempt_enable_no_resched_notrace();
7035 } while (need_resched());
7036}
7037EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7038
7039#ifdef CONFIG_PREEMPT_DYNAMIC
7040#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7041#ifndef preempt_schedule_notrace_dynamic_enabled
7042#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7043#define preempt_schedule_notrace_dynamic_disabled NULL
7044#endif
7045DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7046EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7047#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7048static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7049void __sched notrace dynamic_preempt_schedule_notrace(void)
7050{
7051 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7052 return;
7053 preempt_schedule_notrace();
7054}
7055NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7056EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7057#endif
7058#endif
7059
7060#endif /* CONFIG_PREEMPTION */
7061
7062/*
7063 * This is the entry point to schedule() from kernel preemption
7064 * off of IRQ context.
7065 * Note, that this is called and return with IRQs disabled. This will
7066 * protect us against recursive calling from IRQ contexts.
7067 */
7068asmlinkage __visible void __sched preempt_schedule_irq(void)
7069{
7070 enum ctx_state prev_state;
7071
7072 /* Catch callers which need to be fixed */
7073 BUG_ON(preempt_count() || !irqs_disabled());
7074
7075 prev_state = exception_enter();
7076
7077 do {
7078 preempt_disable();
7079 local_irq_enable();
7080 __schedule(SM_PREEMPT);
7081 local_irq_disable();
7082 sched_preempt_enable_no_resched();
7083 } while (need_resched());
7084
7085 exception_exit(prev_state);
7086}
7087
7088int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7089 void *key)
7090{
7091 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7092 return try_to_wake_up(curr->private, mode, wake_flags);
7093}
7094EXPORT_SYMBOL(default_wake_function);
7095
7096const struct sched_class *__setscheduler_class(int policy, int prio)
7097{
7098 if (dl_prio(prio))
7099 return &dl_sched_class;
7100
7101 if (rt_prio(prio))
7102 return &rt_sched_class;
7103
7104#ifdef CONFIG_SCHED_CLASS_EXT
7105 if (task_should_scx(policy))
7106 return &ext_sched_class;
7107#endif
7108
7109 return &fair_sched_class;
7110}
7111
7112#ifdef CONFIG_RT_MUTEXES
7113
7114/*
7115 * Would be more useful with typeof()/auto_type but they don't mix with
7116 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7117 * name such that if someone were to implement this function we get to compare
7118 * notes.
7119 */
7120#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7121
7122void rt_mutex_pre_schedule(void)
7123{
7124 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7125 sched_submit_work(current);
7126}
7127
7128void rt_mutex_schedule(void)
7129{
7130 lockdep_assert(current->sched_rt_mutex);
7131 __schedule_loop(SM_NONE);
7132}
7133
7134void rt_mutex_post_schedule(void)
7135{
7136 sched_update_worker(current);
7137 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7138}
7139
7140/*
7141 * rt_mutex_setprio - set the current priority of a task
7142 * @p: task to boost
7143 * @pi_task: donor task
7144 *
7145 * This function changes the 'effective' priority of a task. It does
7146 * not touch ->normal_prio like __setscheduler().
7147 *
7148 * Used by the rt_mutex code to implement priority inheritance
7149 * logic. Call site only calls if the priority of the task changed.
7150 */
7151void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7152{
7153 int prio, oldprio, queued, running, queue_flag =
7154 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7155 const struct sched_class *prev_class, *next_class;
7156 struct rq_flags rf;
7157 struct rq *rq;
7158
7159 /* XXX used to be waiter->prio, not waiter->task->prio */
7160 prio = __rt_effective_prio(pi_task, p->normal_prio);
7161
7162 /*
7163 * If nothing changed; bail early.
7164 */
7165 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7166 return;
7167
7168 rq = __task_rq_lock(p, &rf);
7169 update_rq_clock(rq);
7170 /*
7171 * Set under pi_lock && rq->lock, such that the value can be used under
7172 * either lock.
7173 *
7174 * Note that there is loads of tricky to make this pointer cache work
7175 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7176 * ensure a task is de-boosted (pi_task is set to NULL) before the
7177 * task is allowed to run again (and can exit). This ensures the pointer
7178 * points to a blocked task -- which guarantees the task is present.
7179 */
7180 p->pi_top_task = pi_task;
7181
7182 /*
7183 * For FIFO/RR we only need to set prio, if that matches we're done.
7184 */
7185 if (prio == p->prio && !dl_prio(prio))
7186 goto out_unlock;
7187
7188 /*
7189 * Idle task boosting is a no-no in general. There is one
7190 * exception, when PREEMPT_RT and NOHZ is active:
7191 *
7192 * The idle task calls get_next_timer_interrupt() and holds
7193 * the timer wheel base->lock on the CPU and another CPU wants
7194 * to access the timer (probably to cancel it). We can safely
7195 * ignore the boosting request, as the idle CPU runs this code
7196 * with interrupts disabled and will complete the lock
7197 * protected section without being interrupted. So there is no
7198 * real need to boost.
7199 */
7200 if (unlikely(p == rq->idle)) {
7201 WARN_ON(p != rq->curr);
7202 WARN_ON(p->pi_blocked_on);
7203 goto out_unlock;
7204 }
7205
7206 trace_sched_pi_setprio(p, pi_task);
7207 oldprio = p->prio;
7208
7209 if (oldprio == prio)
7210 queue_flag &= ~DEQUEUE_MOVE;
7211
7212 prev_class = p->sched_class;
7213 next_class = __setscheduler_class(p->policy, prio);
7214
7215 if (prev_class != next_class && p->se.sched_delayed)
7216 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7217
7218 queued = task_on_rq_queued(p);
7219 running = task_current_donor(rq, p);
7220 if (queued)
7221 dequeue_task(rq, p, queue_flag);
7222 if (running)
7223 put_prev_task(rq, p);
7224
7225 /*
7226 * Boosting condition are:
7227 * 1. -rt task is running and holds mutex A
7228 * --> -dl task blocks on mutex A
7229 *
7230 * 2. -dl task is running and holds mutex A
7231 * --> -dl task blocks on mutex A and could preempt the
7232 * running task
7233 */
7234 if (dl_prio(prio)) {
7235 if (!dl_prio(p->normal_prio) ||
7236 (pi_task && dl_prio(pi_task->prio) &&
7237 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7238 p->dl.pi_se = pi_task->dl.pi_se;
7239 queue_flag |= ENQUEUE_REPLENISH;
7240 } else {
7241 p->dl.pi_se = &p->dl;
7242 }
7243 } else if (rt_prio(prio)) {
7244 if (dl_prio(oldprio))
7245 p->dl.pi_se = &p->dl;
7246 if (oldprio < prio)
7247 queue_flag |= ENQUEUE_HEAD;
7248 } else {
7249 if (dl_prio(oldprio))
7250 p->dl.pi_se = &p->dl;
7251 if (rt_prio(oldprio))
7252 p->rt.timeout = 0;
7253 }
7254
7255 p->sched_class = next_class;
7256 p->prio = prio;
7257
7258 check_class_changing(rq, p, prev_class);
7259
7260 if (queued)
7261 enqueue_task(rq, p, queue_flag);
7262 if (running)
7263 set_next_task(rq, p);
7264
7265 check_class_changed(rq, p, prev_class, oldprio);
7266out_unlock:
7267 /* Avoid rq from going away on us: */
7268 preempt_disable();
7269
7270 rq_unpin_lock(rq, &rf);
7271 __balance_callbacks(rq);
7272 raw_spin_rq_unlock(rq);
7273
7274 preempt_enable();
7275}
7276#endif
7277
7278#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7279int __sched __cond_resched(void)
7280{
7281 if (should_resched(0) && !irqs_disabled()) {
7282 preempt_schedule_common();
7283 return 1;
7284 }
7285 /*
7286 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7287 * whether the current CPU is in an RCU read-side critical section,
7288 * so the tick can report quiescent states even for CPUs looping
7289 * in kernel context. In contrast, in non-preemptible kernels,
7290 * RCU readers leave no in-memory hints, which means that CPU-bound
7291 * processes executing in kernel context might never report an
7292 * RCU quiescent state. Therefore, the following code causes
7293 * cond_resched() to report a quiescent state, but only when RCU
7294 * is in urgent need of one.
7295 */
7296#ifndef CONFIG_PREEMPT_RCU
7297 rcu_all_qs();
7298#endif
7299 return 0;
7300}
7301EXPORT_SYMBOL(__cond_resched);
7302#endif
7303
7304#ifdef CONFIG_PREEMPT_DYNAMIC
7305#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7306#define cond_resched_dynamic_enabled __cond_resched
7307#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
7308DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7309EXPORT_STATIC_CALL_TRAMP(cond_resched);
7310
7311#define might_resched_dynamic_enabled __cond_resched
7312#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7313DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7314EXPORT_STATIC_CALL_TRAMP(might_resched);
7315#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7316static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7317int __sched dynamic_cond_resched(void)
7318{
7319 klp_sched_try_switch();
7320 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7321 return 0;
7322 return __cond_resched();
7323}
7324EXPORT_SYMBOL(dynamic_cond_resched);
7325
7326static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7327int __sched dynamic_might_resched(void)
7328{
7329 if (!static_branch_unlikely(&sk_dynamic_might_resched))
7330 return 0;
7331 return __cond_resched();
7332}
7333EXPORT_SYMBOL(dynamic_might_resched);
7334#endif
7335#endif
7336
7337/*
7338 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7339 * call schedule, and on return reacquire the lock.
7340 *
7341 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7342 * operations here to prevent schedule() from being called twice (once via
7343 * spin_unlock(), once by hand).
7344 */
7345int __cond_resched_lock(spinlock_t *lock)
7346{
7347 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7348 int ret = 0;
7349
7350 lockdep_assert_held(lock);
7351
7352 if (spin_needbreak(lock) || resched) {
7353 spin_unlock(lock);
7354 if (!_cond_resched())
7355 cpu_relax();
7356 ret = 1;
7357 spin_lock(lock);
7358 }
7359 return ret;
7360}
7361EXPORT_SYMBOL(__cond_resched_lock);
7362
7363int __cond_resched_rwlock_read(rwlock_t *lock)
7364{
7365 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7366 int ret = 0;
7367
7368 lockdep_assert_held_read(lock);
7369
7370 if (rwlock_needbreak(lock) || resched) {
7371 read_unlock(lock);
7372 if (!_cond_resched())
7373 cpu_relax();
7374 ret = 1;
7375 read_lock(lock);
7376 }
7377 return ret;
7378}
7379EXPORT_SYMBOL(__cond_resched_rwlock_read);
7380
7381int __cond_resched_rwlock_write(rwlock_t *lock)
7382{
7383 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7384 int ret = 0;
7385
7386 lockdep_assert_held_write(lock);
7387
7388 if (rwlock_needbreak(lock) || resched) {
7389 write_unlock(lock);
7390 if (!_cond_resched())
7391 cpu_relax();
7392 ret = 1;
7393 write_lock(lock);
7394 }
7395 return ret;
7396}
7397EXPORT_SYMBOL(__cond_resched_rwlock_write);
7398
7399#ifdef CONFIG_PREEMPT_DYNAMIC
7400
7401#ifdef CONFIG_GENERIC_ENTRY
7402#include <linux/entry-common.h>
7403#endif
7404
7405/*
7406 * SC:cond_resched
7407 * SC:might_resched
7408 * SC:preempt_schedule
7409 * SC:preempt_schedule_notrace
7410 * SC:irqentry_exit_cond_resched
7411 *
7412 *
7413 * NONE:
7414 * cond_resched <- __cond_resched
7415 * might_resched <- RET0
7416 * preempt_schedule <- NOP
7417 * preempt_schedule_notrace <- NOP
7418 * irqentry_exit_cond_resched <- NOP
7419 * dynamic_preempt_lazy <- false
7420 *
7421 * VOLUNTARY:
7422 * cond_resched <- __cond_resched
7423 * might_resched <- __cond_resched
7424 * preempt_schedule <- NOP
7425 * preempt_schedule_notrace <- NOP
7426 * irqentry_exit_cond_resched <- NOP
7427 * dynamic_preempt_lazy <- false
7428 *
7429 * FULL:
7430 * cond_resched <- RET0
7431 * might_resched <- RET0
7432 * preempt_schedule <- preempt_schedule
7433 * preempt_schedule_notrace <- preempt_schedule_notrace
7434 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7435 * dynamic_preempt_lazy <- false
7436 *
7437 * LAZY:
7438 * cond_resched <- RET0
7439 * might_resched <- RET0
7440 * preempt_schedule <- preempt_schedule
7441 * preempt_schedule_notrace <- preempt_schedule_notrace
7442 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7443 * dynamic_preempt_lazy <- true
7444 */
7445
7446enum {
7447 preempt_dynamic_undefined = -1,
7448 preempt_dynamic_none,
7449 preempt_dynamic_voluntary,
7450 preempt_dynamic_full,
7451 preempt_dynamic_lazy,
7452};
7453
7454int preempt_dynamic_mode = preempt_dynamic_undefined;
7455
7456int sched_dynamic_mode(const char *str)
7457{
7458#ifndef CONFIG_PREEMPT_RT
7459 if (!strcmp(str, "none"))
7460 return preempt_dynamic_none;
7461
7462 if (!strcmp(str, "voluntary"))
7463 return preempt_dynamic_voluntary;
7464#endif
7465
7466 if (!strcmp(str, "full"))
7467 return preempt_dynamic_full;
7468
7469#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7470 if (!strcmp(str, "lazy"))
7471 return preempt_dynamic_lazy;
7472#endif
7473
7474 return -EINVAL;
7475}
7476
7477#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
7478#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
7479
7480#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7481#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
7482#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
7483#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7484#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
7485#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
7486#else
7487#error "Unsupported PREEMPT_DYNAMIC mechanism"
7488#endif
7489
7490static DEFINE_MUTEX(sched_dynamic_mutex);
7491static bool klp_override;
7492
7493static void __sched_dynamic_update(int mode)
7494{
7495 /*
7496 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7497 * the ZERO state, which is invalid.
7498 */
7499 if (!klp_override)
7500 preempt_dynamic_enable(cond_resched);
7501 preempt_dynamic_enable(might_resched);
7502 preempt_dynamic_enable(preempt_schedule);
7503 preempt_dynamic_enable(preempt_schedule_notrace);
7504 preempt_dynamic_enable(irqentry_exit_cond_resched);
7505 preempt_dynamic_key_disable(preempt_lazy);
7506
7507 switch (mode) {
7508 case preempt_dynamic_none:
7509 if (!klp_override)
7510 preempt_dynamic_enable(cond_resched);
7511 preempt_dynamic_disable(might_resched);
7512 preempt_dynamic_disable(preempt_schedule);
7513 preempt_dynamic_disable(preempt_schedule_notrace);
7514 preempt_dynamic_disable(irqentry_exit_cond_resched);
7515 preempt_dynamic_key_disable(preempt_lazy);
7516 if (mode != preempt_dynamic_mode)
7517 pr_info("Dynamic Preempt: none\n");
7518 break;
7519
7520 case preempt_dynamic_voluntary:
7521 if (!klp_override)
7522 preempt_dynamic_enable(cond_resched);
7523 preempt_dynamic_enable(might_resched);
7524 preempt_dynamic_disable(preempt_schedule);
7525 preempt_dynamic_disable(preempt_schedule_notrace);
7526 preempt_dynamic_disable(irqentry_exit_cond_resched);
7527 preempt_dynamic_key_disable(preempt_lazy);
7528 if (mode != preempt_dynamic_mode)
7529 pr_info("Dynamic Preempt: voluntary\n");
7530 break;
7531
7532 case preempt_dynamic_full:
7533 if (!klp_override)
7534 preempt_dynamic_disable(cond_resched);
7535 preempt_dynamic_disable(might_resched);
7536 preempt_dynamic_enable(preempt_schedule);
7537 preempt_dynamic_enable(preempt_schedule_notrace);
7538 preempt_dynamic_enable(irqentry_exit_cond_resched);
7539 preempt_dynamic_key_disable(preempt_lazy);
7540 if (mode != preempt_dynamic_mode)
7541 pr_info("Dynamic Preempt: full\n");
7542 break;
7543
7544 case preempt_dynamic_lazy:
7545 if (!klp_override)
7546 preempt_dynamic_disable(cond_resched);
7547 preempt_dynamic_disable(might_resched);
7548 preempt_dynamic_enable(preempt_schedule);
7549 preempt_dynamic_enable(preempt_schedule_notrace);
7550 preempt_dynamic_enable(irqentry_exit_cond_resched);
7551 preempt_dynamic_key_enable(preempt_lazy);
7552 if (mode != preempt_dynamic_mode)
7553 pr_info("Dynamic Preempt: lazy\n");
7554 break;
7555 }
7556
7557 preempt_dynamic_mode = mode;
7558}
7559
7560void sched_dynamic_update(int mode)
7561{
7562 mutex_lock(&sched_dynamic_mutex);
7563 __sched_dynamic_update(mode);
7564 mutex_unlock(&sched_dynamic_mutex);
7565}
7566
7567#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7568
7569static int klp_cond_resched(void)
7570{
7571 __klp_sched_try_switch();
7572 return __cond_resched();
7573}
7574
7575void sched_dynamic_klp_enable(void)
7576{
7577 mutex_lock(&sched_dynamic_mutex);
7578
7579 klp_override = true;
7580 static_call_update(cond_resched, klp_cond_resched);
7581
7582 mutex_unlock(&sched_dynamic_mutex);
7583}
7584
7585void sched_dynamic_klp_disable(void)
7586{
7587 mutex_lock(&sched_dynamic_mutex);
7588
7589 klp_override = false;
7590 __sched_dynamic_update(preempt_dynamic_mode);
7591
7592 mutex_unlock(&sched_dynamic_mutex);
7593}
7594
7595#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7596
7597static int __init setup_preempt_mode(char *str)
7598{
7599 int mode = sched_dynamic_mode(str);
7600 if (mode < 0) {
7601 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7602 return 0;
7603 }
7604
7605 sched_dynamic_update(mode);
7606 return 1;
7607}
7608__setup("preempt=", setup_preempt_mode);
7609
7610static void __init preempt_dynamic_init(void)
7611{
7612 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7613 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7614 sched_dynamic_update(preempt_dynamic_none);
7615 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7616 sched_dynamic_update(preempt_dynamic_voluntary);
7617 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7618 sched_dynamic_update(preempt_dynamic_lazy);
7619 } else {
7620 /* Default static call setting, nothing to do */
7621 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7622 preempt_dynamic_mode = preempt_dynamic_full;
7623 pr_info("Dynamic Preempt: full\n");
7624 }
7625 }
7626}
7627
7628#define PREEMPT_MODEL_ACCESSOR(mode) \
7629 bool preempt_model_##mode(void) \
7630 { \
7631 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7632 return preempt_dynamic_mode == preempt_dynamic_##mode; \
7633 } \
7634 EXPORT_SYMBOL_GPL(preempt_model_##mode)
7635
7636PREEMPT_MODEL_ACCESSOR(none);
7637PREEMPT_MODEL_ACCESSOR(voluntary);
7638PREEMPT_MODEL_ACCESSOR(full);
7639PREEMPT_MODEL_ACCESSOR(lazy);
7640
7641#else /* !CONFIG_PREEMPT_DYNAMIC: */
7642
7643static inline void preempt_dynamic_init(void) { }
7644
7645#endif /* CONFIG_PREEMPT_DYNAMIC */
7646
7647int io_schedule_prepare(void)
7648{
7649 int old_iowait = current->in_iowait;
7650
7651 current->in_iowait = 1;
7652 blk_flush_plug(current->plug, true);
7653 return old_iowait;
7654}
7655
7656void io_schedule_finish(int token)
7657{
7658 current->in_iowait = token;
7659}
7660
7661/*
7662 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7663 * that process accounting knows that this is a task in IO wait state.
7664 */
7665long __sched io_schedule_timeout(long timeout)
7666{
7667 int token;
7668 long ret;
7669
7670 token = io_schedule_prepare();
7671 ret = schedule_timeout(timeout);
7672 io_schedule_finish(token);
7673
7674 return ret;
7675}
7676EXPORT_SYMBOL(io_schedule_timeout);
7677
7678void __sched io_schedule(void)
7679{
7680 int token;
7681
7682 token = io_schedule_prepare();
7683 schedule();
7684 io_schedule_finish(token);
7685}
7686EXPORT_SYMBOL(io_schedule);
7687
7688void sched_show_task(struct task_struct *p)
7689{
7690 unsigned long free;
7691 int ppid;
7692
7693 if (!try_get_task_stack(p))
7694 return;
7695
7696 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7697
7698 if (task_is_running(p))
7699 pr_cont(" running task ");
7700 free = stack_not_used(p);
7701 ppid = 0;
7702 rcu_read_lock();
7703 if (pid_alive(p))
7704 ppid = task_pid_nr(rcu_dereference(p->real_parent));
7705 rcu_read_unlock();
7706 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7707 free, task_pid_nr(p), task_tgid_nr(p),
7708 ppid, read_task_thread_flags(p));
7709
7710 print_worker_info(KERN_INFO, p);
7711 print_stop_info(KERN_INFO, p);
7712 print_scx_info(KERN_INFO, p);
7713 show_stack(p, NULL, KERN_INFO);
7714 put_task_stack(p);
7715}
7716EXPORT_SYMBOL_GPL(sched_show_task);
7717
7718static inline bool
7719state_filter_match(unsigned long state_filter, struct task_struct *p)
7720{
7721 unsigned int state = READ_ONCE(p->__state);
7722
7723 /* no filter, everything matches */
7724 if (!state_filter)
7725 return true;
7726
7727 /* filter, but doesn't match */
7728 if (!(state & state_filter))
7729 return false;
7730
7731 /*
7732 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7733 * TASK_KILLABLE).
7734 */
7735 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7736 return false;
7737
7738 return true;
7739}
7740
7741
7742void show_state_filter(unsigned int state_filter)
7743{
7744 struct task_struct *g, *p;
7745
7746 rcu_read_lock();
7747 for_each_process_thread(g, p) {
7748 /*
7749 * reset the NMI-timeout, listing all files on a slow
7750 * console might take a lot of time:
7751 * Also, reset softlockup watchdogs on all CPUs, because
7752 * another CPU might be blocked waiting for us to process
7753 * an IPI.
7754 */
7755 touch_nmi_watchdog();
7756 touch_all_softlockup_watchdogs();
7757 if (state_filter_match(state_filter, p))
7758 sched_show_task(p);
7759 }
7760
7761#ifdef CONFIG_SCHED_DEBUG
7762 if (!state_filter)
7763 sysrq_sched_debug_show();
7764#endif
7765 rcu_read_unlock();
7766 /*
7767 * Only show locks if all tasks are dumped:
7768 */
7769 if (!state_filter)
7770 debug_show_all_locks();
7771}
7772
7773/**
7774 * init_idle - set up an idle thread for a given CPU
7775 * @idle: task in question
7776 * @cpu: CPU the idle task belongs to
7777 *
7778 * NOTE: this function does not set the idle thread's NEED_RESCHED
7779 * flag, to make booting more robust.
7780 */
7781void __init init_idle(struct task_struct *idle, int cpu)
7782{
7783#ifdef CONFIG_SMP
7784 struct affinity_context ac = (struct affinity_context) {
7785 .new_mask = cpumask_of(cpu),
7786 .flags = 0,
7787 };
7788#endif
7789 struct rq *rq = cpu_rq(cpu);
7790 unsigned long flags;
7791
7792 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7793 raw_spin_rq_lock(rq);
7794
7795 idle->__state = TASK_RUNNING;
7796 idle->se.exec_start = sched_clock();
7797 /*
7798 * PF_KTHREAD should already be set at this point; regardless, make it
7799 * look like a proper per-CPU kthread.
7800 */
7801 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7802 kthread_set_per_cpu(idle, cpu);
7803
7804#ifdef CONFIG_SMP
7805 /*
7806 * No validation and serialization required at boot time and for
7807 * setting up the idle tasks of not yet online CPUs.
7808 */
7809 set_cpus_allowed_common(idle, &ac);
7810#endif
7811 /*
7812 * We're having a chicken and egg problem, even though we are
7813 * holding rq->lock, the CPU isn't yet set to this CPU so the
7814 * lockdep check in task_group() will fail.
7815 *
7816 * Similar case to sched_fork(). / Alternatively we could
7817 * use task_rq_lock() here and obtain the other rq->lock.
7818 *
7819 * Silence PROVE_RCU
7820 */
7821 rcu_read_lock();
7822 __set_task_cpu(idle, cpu);
7823 rcu_read_unlock();
7824
7825 rq->idle = idle;
7826 rq_set_donor(rq, idle);
7827 rcu_assign_pointer(rq->curr, idle);
7828 idle->on_rq = TASK_ON_RQ_QUEUED;
7829#ifdef CONFIG_SMP
7830 idle->on_cpu = 1;
7831#endif
7832 raw_spin_rq_unlock(rq);
7833 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7834
7835 /* Set the preempt count _outside_ the spinlocks! */
7836 init_idle_preempt_count(idle, cpu);
7837
7838 /*
7839 * The idle tasks have their own, simple scheduling class:
7840 */
7841 idle->sched_class = &idle_sched_class;
7842 ftrace_graph_init_idle_task(idle, cpu);
7843 vtime_init_idle(idle, cpu);
7844#ifdef CONFIG_SMP
7845 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7846#endif
7847}
7848
7849#ifdef CONFIG_SMP
7850
7851int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7852 const struct cpumask *trial)
7853{
7854 int ret = 1;
7855
7856 if (cpumask_empty(cur))
7857 return ret;
7858
7859 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7860
7861 return ret;
7862}
7863
7864int task_can_attach(struct task_struct *p)
7865{
7866 int ret = 0;
7867
7868 /*
7869 * Kthreads which disallow setaffinity shouldn't be moved
7870 * to a new cpuset; we don't want to change their CPU
7871 * affinity and isolating such threads by their set of
7872 * allowed nodes is unnecessary. Thus, cpusets are not
7873 * applicable for such threads. This prevents checking for
7874 * success of set_cpus_allowed_ptr() on all attached tasks
7875 * before cpus_mask may be changed.
7876 */
7877 if (p->flags & PF_NO_SETAFFINITY)
7878 ret = -EINVAL;
7879
7880 return ret;
7881}
7882
7883bool sched_smp_initialized __read_mostly;
7884
7885#ifdef CONFIG_NUMA_BALANCING
7886/* Migrate current task p to target_cpu */
7887int migrate_task_to(struct task_struct *p, int target_cpu)
7888{
7889 struct migration_arg arg = { p, target_cpu };
7890 int curr_cpu = task_cpu(p);
7891
7892 if (curr_cpu == target_cpu)
7893 return 0;
7894
7895 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7896 return -EINVAL;
7897
7898 /* TODO: This is not properly updating schedstats */
7899
7900 trace_sched_move_numa(p, curr_cpu, target_cpu);
7901 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7902}
7903
7904/*
7905 * Requeue a task on a given node and accurately track the number of NUMA
7906 * tasks on the runqueues
7907 */
7908void sched_setnuma(struct task_struct *p, int nid)
7909{
7910 bool queued, running;
7911 struct rq_flags rf;
7912 struct rq *rq;
7913
7914 rq = task_rq_lock(p, &rf);
7915 queued = task_on_rq_queued(p);
7916 running = task_current_donor(rq, p);
7917
7918 if (queued)
7919 dequeue_task(rq, p, DEQUEUE_SAVE);
7920 if (running)
7921 put_prev_task(rq, p);
7922
7923 p->numa_preferred_nid = nid;
7924
7925 if (queued)
7926 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7927 if (running)
7928 set_next_task(rq, p);
7929 task_rq_unlock(rq, p, &rf);
7930}
7931#endif /* CONFIG_NUMA_BALANCING */
7932
7933#ifdef CONFIG_HOTPLUG_CPU
7934/*
7935 * Ensure that the idle task is using init_mm right before its CPU goes
7936 * offline.
7937 */
7938void idle_task_exit(void)
7939{
7940 struct mm_struct *mm = current->active_mm;
7941
7942 BUG_ON(cpu_online(smp_processor_id()));
7943 BUG_ON(current != this_rq()->idle);
7944
7945 if (mm != &init_mm) {
7946 switch_mm(mm, &init_mm, current);
7947 finish_arch_post_lock_switch();
7948 }
7949
7950 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7951}
7952
7953static int __balance_push_cpu_stop(void *arg)
7954{
7955 struct task_struct *p = arg;
7956 struct rq *rq = this_rq();
7957 struct rq_flags rf;
7958 int cpu;
7959
7960 raw_spin_lock_irq(&p->pi_lock);
7961 rq_lock(rq, &rf);
7962
7963 update_rq_clock(rq);
7964
7965 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7966 cpu = select_fallback_rq(rq->cpu, p);
7967 rq = __migrate_task(rq, &rf, p, cpu);
7968 }
7969
7970 rq_unlock(rq, &rf);
7971 raw_spin_unlock_irq(&p->pi_lock);
7972
7973 put_task_struct(p);
7974
7975 return 0;
7976}
7977
7978static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7979
7980/*
7981 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7982 *
7983 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7984 * effective when the hotplug motion is down.
7985 */
7986static void balance_push(struct rq *rq)
7987{
7988 struct task_struct *push_task = rq->curr;
7989
7990 lockdep_assert_rq_held(rq);
7991
7992 /*
7993 * Ensure the thing is persistent until balance_push_set(.on = false);
7994 */
7995 rq->balance_callback = &balance_push_callback;
7996
7997 /*
7998 * Only active while going offline and when invoked on the outgoing
7999 * CPU.
8000 */
8001 if (!cpu_dying(rq->cpu) || rq != this_rq())
8002 return;
8003
8004 /*
8005 * Both the cpu-hotplug and stop task are in this case and are
8006 * required to complete the hotplug process.
8007 */
8008 if (kthread_is_per_cpu(push_task) ||
8009 is_migration_disabled(push_task)) {
8010
8011 /*
8012 * If this is the idle task on the outgoing CPU try to wake
8013 * up the hotplug control thread which might wait for the
8014 * last task to vanish. The rcuwait_active() check is
8015 * accurate here because the waiter is pinned on this CPU
8016 * and can't obviously be running in parallel.
8017 *
8018 * On RT kernels this also has to check whether there are
8019 * pinned and scheduled out tasks on the runqueue. They
8020 * need to leave the migrate disabled section first.
8021 */
8022 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8023 rcuwait_active(&rq->hotplug_wait)) {
8024 raw_spin_rq_unlock(rq);
8025 rcuwait_wake_up(&rq->hotplug_wait);
8026 raw_spin_rq_lock(rq);
8027 }
8028 return;
8029 }
8030
8031 get_task_struct(push_task);
8032 /*
8033 * Temporarily drop rq->lock such that we can wake-up the stop task.
8034 * Both preemption and IRQs are still disabled.
8035 */
8036 preempt_disable();
8037 raw_spin_rq_unlock(rq);
8038 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8039 this_cpu_ptr(&push_work));
8040 preempt_enable();
8041 /*
8042 * At this point need_resched() is true and we'll take the loop in
8043 * schedule(). The next pick is obviously going to be the stop task
8044 * which kthread_is_per_cpu() and will push this task away.
8045 */
8046 raw_spin_rq_lock(rq);
8047}
8048
8049static void balance_push_set(int cpu, bool on)
8050{
8051 struct rq *rq = cpu_rq(cpu);
8052 struct rq_flags rf;
8053
8054 rq_lock_irqsave(rq, &rf);
8055 if (on) {
8056 WARN_ON_ONCE(rq->balance_callback);
8057 rq->balance_callback = &balance_push_callback;
8058 } else if (rq->balance_callback == &balance_push_callback) {
8059 rq->balance_callback = NULL;
8060 }
8061 rq_unlock_irqrestore(rq, &rf);
8062}
8063
8064/*
8065 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8066 * inactive. All tasks which are not per CPU kernel threads are either
8067 * pushed off this CPU now via balance_push() or placed on a different CPU
8068 * during wakeup. Wait until the CPU is quiescent.
8069 */
8070static void balance_hotplug_wait(void)
8071{
8072 struct rq *rq = this_rq();
8073
8074 rcuwait_wait_event(&rq->hotplug_wait,
8075 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8076 TASK_UNINTERRUPTIBLE);
8077}
8078
8079#else
8080
8081static inline void balance_push(struct rq *rq)
8082{
8083}
8084
8085static inline void balance_push_set(int cpu, bool on)
8086{
8087}
8088
8089static inline void balance_hotplug_wait(void)
8090{
8091}
8092
8093#endif /* CONFIG_HOTPLUG_CPU */
8094
8095void set_rq_online(struct rq *rq)
8096{
8097 if (!rq->online) {
8098 const struct sched_class *class;
8099
8100 cpumask_set_cpu(rq->cpu, rq->rd->online);
8101 rq->online = 1;
8102
8103 for_each_class(class) {
8104 if (class->rq_online)
8105 class->rq_online(rq);
8106 }
8107 }
8108}
8109
8110void set_rq_offline(struct rq *rq)
8111{
8112 if (rq->online) {
8113 const struct sched_class *class;
8114
8115 update_rq_clock(rq);
8116 for_each_class(class) {
8117 if (class->rq_offline)
8118 class->rq_offline(rq);
8119 }
8120
8121 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8122 rq->online = 0;
8123 }
8124}
8125
8126static inline void sched_set_rq_online(struct rq *rq, int cpu)
8127{
8128 struct rq_flags rf;
8129
8130 rq_lock_irqsave(rq, &rf);
8131 if (rq->rd) {
8132 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8133 set_rq_online(rq);
8134 }
8135 rq_unlock_irqrestore(rq, &rf);
8136}
8137
8138static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8139{
8140 struct rq_flags rf;
8141
8142 rq_lock_irqsave(rq, &rf);
8143 if (rq->rd) {
8144 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8145 set_rq_offline(rq);
8146 }
8147 rq_unlock_irqrestore(rq, &rf);
8148}
8149
8150/*
8151 * used to mark begin/end of suspend/resume:
8152 */
8153static int num_cpus_frozen;
8154
8155/*
8156 * Update cpusets according to cpu_active mask. If cpusets are
8157 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8158 * around partition_sched_domains().
8159 *
8160 * If we come here as part of a suspend/resume, don't touch cpusets because we
8161 * want to restore it back to its original state upon resume anyway.
8162 */
8163static void cpuset_cpu_active(void)
8164{
8165 if (cpuhp_tasks_frozen) {
8166 /*
8167 * num_cpus_frozen tracks how many CPUs are involved in suspend
8168 * resume sequence. As long as this is not the last online
8169 * operation in the resume sequence, just build a single sched
8170 * domain, ignoring cpusets.
8171 */
8172 partition_sched_domains(1, NULL, NULL);
8173 if (--num_cpus_frozen)
8174 return;
8175 /*
8176 * This is the last CPU online operation. So fall through and
8177 * restore the original sched domains by considering the
8178 * cpuset configurations.
8179 */
8180 cpuset_force_rebuild();
8181 }
8182 cpuset_update_active_cpus();
8183}
8184
8185static int cpuset_cpu_inactive(unsigned int cpu)
8186{
8187 if (!cpuhp_tasks_frozen) {
8188 int ret = dl_bw_check_overflow(cpu);
8189
8190 if (ret)
8191 return ret;
8192 cpuset_update_active_cpus();
8193 } else {
8194 num_cpus_frozen++;
8195 partition_sched_domains(1, NULL, NULL);
8196 }
8197 return 0;
8198}
8199
8200static inline void sched_smt_present_inc(int cpu)
8201{
8202#ifdef CONFIG_SCHED_SMT
8203 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8204 static_branch_inc_cpuslocked(&sched_smt_present);
8205#endif
8206}
8207
8208static inline void sched_smt_present_dec(int cpu)
8209{
8210#ifdef CONFIG_SCHED_SMT
8211 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8212 static_branch_dec_cpuslocked(&sched_smt_present);
8213#endif
8214}
8215
8216int sched_cpu_activate(unsigned int cpu)
8217{
8218 struct rq *rq = cpu_rq(cpu);
8219
8220 /*
8221 * Clear the balance_push callback and prepare to schedule
8222 * regular tasks.
8223 */
8224 balance_push_set(cpu, false);
8225
8226 /*
8227 * When going up, increment the number of cores with SMT present.
8228 */
8229 sched_smt_present_inc(cpu);
8230 set_cpu_active(cpu, true);
8231
8232 if (sched_smp_initialized) {
8233 sched_update_numa(cpu, true);
8234 sched_domains_numa_masks_set(cpu);
8235 cpuset_cpu_active();
8236 }
8237
8238 scx_rq_activate(rq);
8239
8240 /*
8241 * Put the rq online, if not already. This happens:
8242 *
8243 * 1) In the early boot process, because we build the real domains
8244 * after all CPUs have been brought up.
8245 *
8246 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8247 * domains.
8248 */
8249 sched_set_rq_online(rq, cpu);
8250
8251 return 0;
8252}
8253
8254int sched_cpu_deactivate(unsigned int cpu)
8255{
8256 struct rq *rq = cpu_rq(cpu);
8257 int ret;
8258
8259 /*
8260 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8261 * load balancing when not active
8262 */
8263 nohz_balance_exit_idle(rq);
8264
8265 set_cpu_active(cpu, false);
8266
8267 /*
8268 * From this point forward, this CPU will refuse to run any task that
8269 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8270 * push those tasks away until this gets cleared, see
8271 * sched_cpu_dying().
8272 */
8273 balance_push_set(cpu, true);
8274
8275 /*
8276 * We've cleared cpu_active_mask / set balance_push, wait for all
8277 * preempt-disabled and RCU users of this state to go away such that
8278 * all new such users will observe it.
8279 *
8280 * Specifically, we rely on ttwu to no longer target this CPU, see
8281 * ttwu_queue_cond() and is_cpu_allowed().
8282 *
8283 * Do sync before park smpboot threads to take care the RCU boost case.
8284 */
8285 synchronize_rcu();
8286
8287 sched_set_rq_offline(rq, cpu);
8288
8289 scx_rq_deactivate(rq);
8290
8291 /*
8292 * When going down, decrement the number of cores with SMT present.
8293 */
8294 sched_smt_present_dec(cpu);
8295
8296#ifdef CONFIG_SCHED_SMT
8297 sched_core_cpu_deactivate(cpu);
8298#endif
8299
8300 if (!sched_smp_initialized)
8301 return 0;
8302
8303 sched_update_numa(cpu, false);
8304 ret = cpuset_cpu_inactive(cpu);
8305 if (ret) {
8306 sched_smt_present_inc(cpu);
8307 sched_set_rq_online(rq, cpu);
8308 balance_push_set(cpu, false);
8309 set_cpu_active(cpu, true);
8310 sched_update_numa(cpu, true);
8311 return ret;
8312 }
8313 sched_domains_numa_masks_clear(cpu);
8314 return 0;
8315}
8316
8317static void sched_rq_cpu_starting(unsigned int cpu)
8318{
8319 struct rq *rq = cpu_rq(cpu);
8320
8321 rq->calc_load_update = calc_load_update;
8322 update_max_interval();
8323}
8324
8325int sched_cpu_starting(unsigned int cpu)
8326{
8327 sched_core_cpu_starting(cpu);
8328 sched_rq_cpu_starting(cpu);
8329 sched_tick_start(cpu);
8330 return 0;
8331}
8332
8333#ifdef CONFIG_HOTPLUG_CPU
8334
8335/*
8336 * Invoked immediately before the stopper thread is invoked to bring the
8337 * CPU down completely. At this point all per CPU kthreads except the
8338 * hotplug thread (current) and the stopper thread (inactive) have been
8339 * either parked or have been unbound from the outgoing CPU. Ensure that
8340 * any of those which might be on the way out are gone.
8341 *
8342 * If after this point a bound task is being woken on this CPU then the
8343 * responsible hotplug callback has failed to do it's job.
8344 * sched_cpu_dying() will catch it with the appropriate fireworks.
8345 */
8346int sched_cpu_wait_empty(unsigned int cpu)
8347{
8348 balance_hotplug_wait();
8349 return 0;
8350}
8351
8352/*
8353 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8354 * might have. Called from the CPU stopper task after ensuring that the
8355 * stopper is the last running task on the CPU, so nr_active count is
8356 * stable. We need to take the tear-down thread which is calling this into
8357 * account, so we hand in adjust = 1 to the load calculation.
8358 *
8359 * Also see the comment "Global load-average calculations".
8360 */
8361static void calc_load_migrate(struct rq *rq)
8362{
8363 long delta = calc_load_fold_active(rq, 1);
8364
8365 if (delta)
8366 atomic_long_add(delta, &calc_load_tasks);
8367}
8368
8369static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8370{
8371 struct task_struct *g, *p;
8372 int cpu = cpu_of(rq);
8373
8374 lockdep_assert_rq_held(rq);
8375
8376 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8377 for_each_process_thread(g, p) {
8378 if (task_cpu(p) != cpu)
8379 continue;
8380
8381 if (!task_on_rq_queued(p))
8382 continue;
8383
8384 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8385 }
8386}
8387
8388int sched_cpu_dying(unsigned int cpu)
8389{
8390 struct rq *rq = cpu_rq(cpu);
8391 struct rq_flags rf;
8392
8393 /* Handle pending wakeups and then migrate everything off */
8394 sched_tick_stop(cpu);
8395
8396 rq_lock_irqsave(rq, &rf);
8397 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8398 WARN(true, "Dying CPU not properly vacated!");
8399 dump_rq_tasks(rq, KERN_WARNING);
8400 }
8401 rq_unlock_irqrestore(rq, &rf);
8402
8403 calc_load_migrate(rq);
8404 update_max_interval();
8405 hrtick_clear(rq);
8406 sched_core_cpu_dying(cpu);
8407 return 0;
8408}
8409#endif
8410
8411void __init sched_init_smp(void)
8412{
8413 sched_init_numa(NUMA_NO_NODE);
8414
8415 /*
8416 * There's no userspace yet to cause hotplug operations; hence all the
8417 * CPU masks are stable and all blatant races in the below code cannot
8418 * happen.
8419 */
8420 mutex_lock(&sched_domains_mutex);
8421 sched_init_domains(cpu_active_mask);
8422 mutex_unlock(&sched_domains_mutex);
8423
8424 /* Move init over to a non-isolated CPU */
8425 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8426 BUG();
8427 current->flags &= ~PF_NO_SETAFFINITY;
8428 sched_init_granularity();
8429
8430 init_sched_rt_class();
8431 init_sched_dl_class();
8432
8433 sched_smp_initialized = true;
8434}
8435
8436static int __init migration_init(void)
8437{
8438 sched_cpu_starting(smp_processor_id());
8439 return 0;
8440}
8441early_initcall(migration_init);
8442
8443#else
8444void __init sched_init_smp(void)
8445{
8446 sched_init_granularity();
8447}
8448#endif /* CONFIG_SMP */
8449
8450int in_sched_functions(unsigned long addr)
8451{
8452 return in_lock_functions(addr) ||
8453 (addr >= (unsigned long)__sched_text_start
8454 && addr < (unsigned long)__sched_text_end);
8455}
8456
8457#ifdef CONFIG_CGROUP_SCHED
8458/*
8459 * Default task group.
8460 * Every task in system belongs to this group at bootup.
8461 */
8462struct task_group root_task_group;
8463LIST_HEAD(task_groups);
8464
8465/* Cacheline aligned slab cache for task_group */
8466static struct kmem_cache *task_group_cache __ro_after_init;
8467#endif
8468
8469void __init sched_init(void)
8470{
8471 unsigned long ptr = 0;
8472 int i;
8473
8474 /* Make sure the linker didn't screw up */
8475#ifdef CONFIG_SMP
8476 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8477#endif
8478 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8479 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8480 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8481#ifdef CONFIG_SCHED_CLASS_EXT
8482 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8483 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8484#endif
8485
8486 wait_bit_init();
8487
8488#ifdef CONFIG_FAIR_GROUP_SCHED
8489 ptr += 2 * nr_cpu_ids * sizeof(void **);
8490#endif
8491#ifdef CONFIG_RT_GROUP_SCHED
8492 ptr += 2 * nr_cpu_ids * sizeof(void **);
8493#endif
8494 if (ptr) {
8495 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8496
8497#ifdef CONFIG_FAIR_GROUP_SCHED
8498 root_task_group.se = (struct sched_entity **)ptr;
8499 ptr += nr_cpu_ids * sizeof(void **);
8500
8501 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8502 ptr += nr_cpu_ids * sizeof(void **);
8503
8504 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8505 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8506#endif /* CONFIG_FAIR_GROUP_SCHED */
8507#ifdef CONFIG_EXT_GROUP_SCHED
8508 root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8509#endif /* CONFIG_EXT_GROUP_SCHED */
8510#ifdef CONFIG_RT_GROUP_SCHED
8511 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8512 ptr += nr_cpu_ids * sizeof(void **);
8513
8514 root_task_group.rt_rq = (struct rt_rq **)ptr;
8515 ptr += nr_cpu_ids * sizeof(void **);
8516
8517#endif /* CONFIG_RT_GROUP_SCHED */
8518 }
8519
8520#ifdef CONFIG_SMP
8521 init_defrootdomain();
8522#endif
8523
8524#ifdef CONFIG_RT_GROUP_SCHED
8525 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8526 global_rt_period(), global_rt_runtime());
8527#endif /* CONFIG_RT_GROUP_SCHED */
8528
8529#ifdef CONFIG_CGROUP_SCHED
8530 task_group_cache = KMEM_CACHE(task_group, 0);
8531
8532 list_add(&root_task_group.list, &task_groups);
8533 INIT_LIST_HEAD(&root_task_group.children);
8534 INIT_LIST_HEAD(&root_task_group.siblings);
8535 autogroup_init(&init_task);
8536#endif /* CONFIG_CGROUP_SCHED */
8537
8538 for_each_possible_cpu(i) {
8539 struct rq *rq;
8540
8541 rq = cpu_rq(i);
8542 raw_spin_lock_init(&rq->__lock);
8543 rq->nr_running = 0;
8544 rq->calc_load_active = 0;
8545 rq->calc_load_update = jiffies + LOAD_FREQ;
8546 init_cfs_rq(&rq->cfs);
8547 init_rt_rq(&rq->rt);
8548 init_dl_rq(&rq->dl);
8549#ifdef CONFIG_FAIR_GROUP_SCHED
8550 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8551 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8552 /*
8553 * How much CPU bandwidth does root_task_group get?
8554 *
8555 * In case of task-groups formed through the cgroup filesystem, it
8556 * gets 100% of the CPU resources in the system. This overall
8557 * system CPU resource is divided among the tasks of
8558 * root_task_group and its child task-groups in a fair manner,
8559 * based on each entity's (task or task-group's) weight
8560 * (se->load.weight).
8561 *
8562 * In other words, if root_task_group has 10 tasks of weight
8563 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8564 * then A0's share of the CPU resource is:
8565 *
8566 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8567 *
8568 * We achieve this by letting root_task_group's tasks sit
8569 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8570 */
8571 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8572#endif /* CONFIG_FAIR_GROUP_SCHED */
8573
8574#ifdef CONFIG_RT_GROUP_SCHED
8575 /*
8576 * This is required for init cpu because rt.c:__enable_runtime()
8577 * starts working after scheduler_running, which is not the case
8578 * yet.
8579 */
8580 rq->rt.rt_runtime = global_rt_runtime();
8581 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8582#endif
8583#ifdef CONFIG_SMP
8584 rq->sd = NULL;
8585 rq->rd = NULL;
8586 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8587 rq->balance_callback = &balance_push_callback;
8588 rq->active_balance = 0;
8589 rq->next_balance = jiffies;
8590 rq->push_cpu = 0;
8591 rq->cpu = i;
8592 rq->online = 0;
8593 rq->idle_stamp = 0;
8594 rq->avg_idle = 2*sysctl_sched_migration_cost;
8595 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8596
8597 INIT_LIST_HEAD(&rq->cfs_tasks);
8598
8599 rq_attach_root(rq, &def_root_domain);
8600#ifdef CONFIG_NO_HZ_COMMON
8601 rq->last_blocked_load_update_tick = jiffies;
8602 atomic_set(&rq->nohz_flags, 0);
8603
8604 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8605#endif
8606#ifdef CONFIG_HOTPLUG_CPU
8607 rcuwait_init(&rq->hotplug_wait);
8608#endif
8609#endif /* CONFIG_SMP */
8610 hrtick_rq_init(rq);
8611 atomic_set(&rq->nr_iowait, 0);
8612 fair_server_init(rq);
8613
8614#ifdef CONFIG_SCHED_CORE
8615 rq->core = rq;
8616 rq->core_pick = NULL;
8617 rq->core_dl_server = NULL;
8618 rq->core_enabled = 0;
8619 rq->core_tree = RB_ROOT;
8620 rq->core_forceidle_count = 0;
8621 rq->core_forceidle_occupation = 0;
8622 rq->core_forceidle_start = 0;
8623
8624 rq->core_cookie = 0UL;
8625#endif
8626 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8627 }
8628
8629 set_load_weight(&init_task, false);
8630 init_task.se.slice = sysctl_sched_base_slice,
8631
8632 /*
8633 * The boot idle thread does lazy MMU switching as well:
8634 */
8635 mmgrab_lazy_tlb(&init_mm);
8636 enter_lazy_tlb(&init_mm, current);
8637
8638 /*
8639 * The idle task doesn't need the kthread struct to function, but it
8640 * is dressed up as a per-CPU kthread and thus needs to play the part
8641 * if we want to avoid special-casing it in code that deals with per-CPU
8642 * kthreads.
8643 */
8644 WARN_ON(!set_kthread_struct(current));
8645
8646 /*
8647 * Make us the idle thread. Technically, schedule() should not be
8648 * called from this thread, however somewhere below it might be,
8649 * but because we are the idle thread, we just pick up running again
8650 * when this runqueue becomes "idle".
8651 */
8652 __sched_fork(0, current);
8653 init_idle(current, smp_processor_id());
8654
8655 calc_load_update = jiffies + LOAD_FREQ;
8656
8657#ifdef CONFIG_SMP
8658 idle_thread_set_boot_cpu();
8659 balance_push_set(smp_processor_id(), false);
8660#endif
8661 init_sched_fair_class();
8662 init_sched_ext_class();
8663
8664 psi_init();
8665
8666 init_uclamp();
8667
8668 preempt_dynamic_init();
8669
8670 scheduler_running = 1;
8671}
8672
8673#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8674
8675void __might_sleep(const char *file, int line)
8676{
8677 unsigned int state = get_current_state();
8678 /*
8679 * Blocking primitives will set (and therefore destroy) current->state,
8680 * since we will exit with TASK_RUNNING make sure we enter with it,
8681 * otherwise we will destroy state.
8682 */
8683 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8684 "do not call blocking ops when !TASK_RUNNING; "
8685 "state=%x set at [<%p>] %pS\n", state,
8686 (void *)current->task_state_change,
8687 (void *)current->task_state_change);
8688
8689 __might_resched(file, line, 0);
8690}
8691EXPORT_SYMBOL(__might_sleep);
8692
8693static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8694{
8695 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8696 return;
8697
8698 if (preempt_count() == preempt_offset)
8699 return;
8700
8701 pr_err("Preemption disabled at:");
8702 print_ip_sym(KERN_ERR, ip);
8703}
8704
8705static inline bool resched_offsets_ok(unsigned int offsets)
8706{
8707 unsigned int nested = preempt_count();
8708
8709 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8710
8711 return nested == offsets;
8712}
8713
8714void __might_resched(const char *file, int line, unsigned int offsets)
8715{
8716 /* Ratelimiting timestamp: */
8717 static unsigned long prev_jiffy;
8718
8719 unsigned long preempt_disable_ip;
8720
8721 /* WARN_ON_ONCE() by default, no rate limit required: */
8722 rcu_sleep_check();
8723
8724 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8725 !is_idle_task(current) && !current->non_block_count) ||
8726 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8727 oops_in_progress)
8728 return;
8729
8730 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8731 return;
8732 prev_jiffy = jiffies;
8733
8734 /* Save this before calling printk(), since that will clobber it: */
8735 preempt_disable_ip = get_preempt_disable_ip(current);
8736
8737 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8738 file, line);
8739 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8740 in_atomic(), irqs_disabled(), current->non_block_count,
8741 current->pid, current->comm);
8742 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8743 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8744
8745 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8746 pr_err("RCU nest depth: %d, expected: %u\n",
8747 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8748 }
8749
8750 if (task_stack_end_corrupted(current))
8751 pr_emerg("Thread overran stack, or stack corrupted\n");
8752
8753 debug_show_held_locks(current);
8754 if (irqs_disabled())
8755 print_irqtrace_events(current);
8756
8757 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8758 preempt_disable_ip);
8759
8760 dump_stack();
8761 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8762}
8763EXPORT_SYMBOL(__might_resched);
8764
8765void __cant_sleep(const char *file, int line, int preempt_offset)
8766{
8767 static unsigned long prev_jiffy;
8768
8769 if (irqs_disabled())
8770 return;
8771
8772 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8773 return;
8774
8775 if (preempt_count() > preempt_offset)
8776 return;
8777
8778 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8779 return;
8780 prev_jiffy = jiffies;
8781
8782 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8783 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8784 in_atomic(), irqs_disabled(),
8785 current->pid, current->comm);
8786
8787 debug_show_held_locks(current);
8788 dump_stack();
8789 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8790}
8791EXPORT_SYMBOL_GPL(__cant_sleep);
8792
8793#ifdef CONFIG_SMP
8794void __cant_migrate(const char *file, int line)
8795{
8796 static unsigned long prev_jiffy;
8797
8798 if (irqs_disabled())
8799 return;
8800
8801 if (is_migration_disabled(current))
8802 return;
8803
8804 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8805 return;
8806
8807 if (preempt_count() > 0)
8808 return;
8809
8810 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8811 return;
8812 prev_jiffy = jiffies;
8813
8814 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8815 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8816 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8817 current->pid, current->comm);
8818
8819 debug_show_held_locks(current);
8820 dump_stack();
8821 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8822}
8823EXPORT_SYMBOL_GPL(__cant_migrate);
8824#endif
8825#endif
8826
8827#ifdef CONFIG_MAGIC_SYSRQ
8828void normalize_rt_tasks(void)
8829{
8830 struct task_struct *g, *p;
8831 struct sched_attr attr = {
8832 .sched_policy = SCHED_NORMAL,
8833 };
8834
8835 read_lock(&tasklist_lock);
8836 for_each_process_thread(g, p) {
8837 /*
8838 * Only normalize user tasks:
8839 */
8840 if (p->flags & PF_KTHREAD)
8841 continue;
8842
8843 p->se.exec_start = 0;
8844 schedstat_set(p->stats.wait_start, 0);
8845 schedstat_set(p->stats.sleep_start, 0);
8846 schedstat_set(p->stats.block_start, 0);
8847
8848 if (!rt_or_dl_task(p)) {
8849 /*
8850 * Renice negative nice level userspace
8851 * tasks back to 0:
8852 */
8853 if (task_nice(p) < 0)
8854 set_user_nice(p, 0);
8855 continue;
8856 }
8857
8858 __sched_setscheduler(p, &attr, false, false);
8859 }
8860 read_unlock(&tasklist_lock);
8861}
8862
8863#endif /* CONFIG_MAGIC_SYSRQ */
8864
8865#if defined(CONFIG_KGDB_KDB)
8866/*
8867 * These functions are only useful for KDB.
8868 *
8869 * They can only be called when the whole system has been
8870 * stopped - every CPU needs to be quiescent, and no scheduling
8871 * activity can take place. Using them for anything else would
8872 * be a serious bug, and as a result, they aren't even visible
8873 * under any other configuration.
8874 */
8875
8876/**
8877 * curr_task - return the current task for a given CPU.
8878 * @cpu: the processor in question.
8879 *
8880 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8881 *
8882 * Return: The current task for @cpu.
8883 */
8884struct task_struct *curr_task(int cpu)
8885{
8886 return cpu_curr(cpu);
8887}
8888
8889#endif /* defined(CONFIG_KGDB_KDB) */
8890
8891#ifdef CONFIG_CGROUP_SCHED
8892/* task_group_lock serializes the addition/removal of task groups */
8893static DEFINE_SPINLOCK(task_group_lock);
8894
8895static inline void alloc_uclamp_sched_group(struct task_group *tg,
8896 struct task_group *parent)
8897{
8898#ifdef CONFIG_UCLAMP_TASK_GROUP
8899 enum uclamp_id clamp_id;
8900
8901 for_each_clamp_id(clamp_id) {
8902 uclamp_se_set(&tg->uclamp_req[clamp_id],
8903 uclamp_none(clamp_id), false);
8904 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8905 }
8906#endif
8907}
8908
8909static void sched_free_group(struct task_group *tg)
8910{
8911 free_fair_sched_group(tg);
8912 free_rt_sched_group(tg);
8913 autogroup_free(tg);
8914 kmem_cache_free(task_group_cache, tg);
8915}
8916
8917static void sched_free_group_rcu(struct rcu_head *rcu)
8918{
8919 sched_free_group(container_of(rcu, struct task_group, rcu));
8920}
8921
8922static void sched_unregister_group(struct task_group *tg)
8923{
8924 unregister_fair_sched_group(tg);
8925 unregister_rt_sched_group(tg);
8926 /*
8927 * We have to wait for yet another RCU grace period to expire, as
8928 * print_cfs_stats() might run concurrently.
8929 */
8930 call_rcu(&tg->rcu, sched_free_group_rcu);
8931}
8932
8933/* allocate runqueue etc for a new task group */
8934struct task_group *sched_create_group(struct task_group *parent)
8935{
8936 struct task_group *tg;
8937
8938 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8939 if (!tg)
8940 return ERR_PTR(-ENOMEM);
8941
8942 if (!alloc_fair_sched_group(tg, parent))
8943 goto err;
8944
8945 if (!alloc_rt_sched_group(tg, parent))
8946 goto err;
8947
8948 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8949 alloc_uclamp_sched_group(tg, parent);
8950
8951 return tg;
8952
8953err:
8954 sched_free_group(tg);
8955 return ERR_PTR(-ENOMEM);
8956}
8957
8958void sched_online_group(struct task_group *tg, struct task_group *parent)
8959{
8960 unsigned long flags;
8961
8962 spin_lock_irqsave(&task_group_lock, flags);
8963 list_add_rcu(&tg->list, &task_groups);
8964
8965 /* Root should already exist: */
8966 WARN_ON(!parent);
8967
8968 tg->parent = parent;
8969 INIT_LIST_HEAD(&tg->children);
8970 list_add_rcu(&tg->siblings, &parent->children);
8971 spin_unlock_irqrestore(&task_group_lock, flags);
8972
8973 online_fair_sched_group(tg);
8974}
8975
8976/* RCU callback to free various structures associated with a task group */
8977static void sched_unregister_group_rcu(struct rcu_head *rhp)
8978{
8979 /* Now it should be safe to free those cfs_rqs: */
8980 sched_unregister_group(container_of(rhp, struct task_group, rcu));
8981}
8982
8983void sched_destroy_group(struct task_group *tg)
8984{
8985 /* Wait for possible concurrent references to cfs_rqs complete: */
8986 call_rcu(&tg->rcu, sched_unregister_group_rcu);
8987}
8988
8989void sched_release_group(struct task_group *tg)
8990{
8991 unsigned long flags;
8992
8993 /*
8994 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8995 * sched_cfs_period_timer()).
8996 *
8997 * For this to be effective, we have to wait for all pending users of
8998 * this task group to leave their RCU critical section to ensure no new
8999 * user will see our dying task group any more. Specifically ensure
9000 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9001 *
9002 * We therefore defer calling unregister_fair_sched_group() to
9003 * sched_unregister_group() which is guarantied to get called only after the
9004 * current RCU grace period has expired.
9005 */
9006 spin_lock_irqsave(&task_group_lock, flags);
9007 list_del_rcu(&tg->list);
9008 list_del_rcu(&tg->siblings);
9009 spin_unlock_irqrestore(&task_group_lock, flags);
9010}
9011
9012static struct task_group *sched_get_task_group(struct task_struct *tsk)
9013{
9014 struct task_group *tg;
9015
9016 /*
9017 * All callers are synchronized by task_rq_lock(); we do not use RCU
9018 * which is pointless here. Thus, we pass "true" to task_css_check()
9019 * to prevent lockdep warnings.
9020 */
9021 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9022 struct task_group, css);
9023 tg = autogroup_task_group(tsk, tg);
9024
9025 return tg;
9026}
9027
9028static void sched_change_group(struct task_struct *tsk, struct task_group *group)
9029{
9030 tsk->sched_task_group = group;
9031
9032#ifdef CONFIG_FAIR_GROUP_SCHED
9033 if (tsk->sched_class->task_change_group)
9034 tsk->sched_class->task_change_group(tsk);
9035 else
9036#endif
9037 set_task_rq(tsk, task_cpu(tsk));
9038}
9039
9040/*
9041 * Change task's runqueue when it moves between groups.
9042 *
9043 * The caller of this function should have put the task in its new group by
9044 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9045 * its new group.
9046 */
9047void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9048{
9049 int queued, running, queue_flags =
9050 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9051 struct task_group *group;
9052 struct rq *rq;
9053
9054 CLASS(task_rq_lock, rq_guard)(tsk);
9055 rq = rq_guard.rq;
9056
9057 /*
9058 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
9059 * group changes.
9060 */
9061 group = sched_get_task_group(tsk);
9062 if (group == tsk->sched_task_group)
9063 return;
9064
9065 update_rq_clock(rq);
9066
9067 running = task_current_donor(rq, tsk);
9068 queued = task_on_rq_queued(tsk);
9069
9070 if (queued)
9071 dequeue_task(rq, tsk, queue_flags);
9072 if (running)
9073 put_prev_task(rq, tsk);
9074
9075 sched_change_group(tsk, group);
9076 if (!for_autogroup)
9077 scx_cgroup_move_task(tsk);
9078
9079 if (queued)
9080 enqueue_task(rq, tsk, queue_flags);
9081 if (running) {
9082 set_next_task(rq, tsk);
9083 /*
9084 * After changing group, the running task may have joined a
9085 * throttled one but it's still the running task. Trigger a
9086 * resched to make sure that task can still run.
9087 */
9088 resched_curr(rq);
9089 }
9090}
9091
9092static struct cgroup_subsys_state *
9093cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9094{
9095 struct task_group *parent = css_tg(parent_css);
9096 struct task_group *tg;
9097
9098 if (!parent) {
9099 /* This is early initialization for the top cgroup */
9100 return &root_task_group.css;
9101 }
9102
9103 tg = sched_create_group(parent);
9104 if (IS_ERR(tg))
9105 return ERR_PTR(-ENOMEM);
9106
9107 return &tg->css;
9108}
9109
9110/* Expose task group only after completing cgroup initialization */
9111static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9112{
9113 struct task_group *tg = css_tg(css);
9114 struct task_group *parent = css_tg(css->parent);
9115 int ret;
9116
9117 ret = scx_tg_online(tg);
9118 if (ret)
9119 return ret;
9120
9121 if (parent)
9122 sched_online_group(tg, parent);
9123
9124#ifdef CONFIG_UCLAMP_TASK_GROUP
9125 /* Propagate the effective uclamp value for the new group */
9126 guard(mutex)(&uclamp_mutex);
9127 guard(rcu)();
9128 cpu_util_update_eff(css);
9129#endif
9130
9131 return 0;
9132}
9133
9134static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9135{
9136 struct task_group *tg = css_tg(css);
9137
9138 scx_tg_offline(tg);
9139}
9140
9141static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9142{
9143 struct task_group *tg = css_tg(css);
9144
9145 sched_release_group(tg);
9146}
9147
9148static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9149{
9150 struct task_group *tg = css_tg(css);
9151
9152 /*
9153 * Relies on the RCU grace period between css_released() and this.
9154 */
9155 sched_unregister_group(tg);
9156}
9157
9158static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9159{
9160#ifdef CONFIG_RT_GROUP_SCHED
9161 struct task_struct *task;
9162 struct cgroup_subsys_state *css;
9163
9164 cgroup_taskset_for_each(task, css, tset) {
9165 if (!sched_rt_can_attach(css_tg(css), task))
9166 return -EINVAL;
9167 }
9168#endif
9169 return scx_cgroup_can_attach(tset);
9170}
9171
9172static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9173{
9174 struct task_struct *task;
9175 struct cgroup_subsys_state *css;
9176
9177 cgroup_taskset_for_each(task, css, tset)
9178 sched_move_task(task, false);
9179
9180 scx_cgroup_finish_attach();
9181}
9182
9183static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9184{
9185 scx_cgroup_cancel_attach(tset);
9186}
9187
9188#ifdef CONFIG_UCLAMP_TASK_GROUP
9189static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9190{
9191 struct cgroup_subsys_state *top_css = css;
9192 struct uclamp_se *uc_parent = NULL;
9193 struct uclamp_se *uc_se = NULL;
9194 unsigned int eff[UCLAMP_CNT];
9195 enum uclamp_id clamp_id;
9196 unsigned int clamps;
9197
9198 lockdep_assert_held(&uclamp_mutex);
9199 SCHED_WARN_ON(!rcu_read_lock_held());
9200
9201 css_for_each_descendant_pre(css, top_css) {
9202 uc_parent = css_tg(css)->parent
9203 ? css_tg(css)->parent->uclamp : NULL;
9204
9205 for_each_clamp_id(clamp_id) {
9206 /* Assume effective clamps matches requested clamps */
9207 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9208 /* Cap effective clamps with parent's effective clamps */
9209 if (uc_parent &&
9210 eff[clamp_id] > uc_parent[clamp_id].value) {
9211 eff[clamp_id] = uc_parent[clamp_id].value;
9212 }
9213 }
9214 /* Ensure protection is always capped by limit */
9215 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9216
9217 /* Propagate most restrictive effective clamps */
9218 clamps = 0x0;
9219 uc_se = css_tg(css)->uclamp;
9220 for_each_clamp_id(clamp_id) {
9221 if (eff[clamp_id] == uc_se[clamp_id].value)
9222 continue;
9223 uc_se[clamp_id].value = eff[clamp_id];
9224 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9225 clamps |= (0x1 << clamp_id);
9226 }
9227 if (!clamps) {
9228 css = css_rightmost_descendant(css);
9229 continue;
9230 }
9231
9232 /* Immediately update descendants RUNNABLE tasks */
9233 uclamp_update_active_tasks(css);
9234 }
9235}
9236
9237/*
9238 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9239 * C expression. Since there is no way to convert a macro argument (N) into a
9240 * character constant, use two levels of macros.
9241 */
9242#define _POW10(exp) ((unsigned int)1e##exp)
9243#define POW10(exp) _POW10(exp)
9244
9245struct uclamp_request {
9246#define UCLAMP_PERCENT_SHIFT 2
9247#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9248 s64 percent;
9249 u64 util;
9250 int ret;
9251};
9252
9253static inline struct uclamp_request
9254capacity_from_percent(char *buf)
9255{
9256 struct uclamp_request req = {
9257 .percent = UCLAMP_PERCENT_SCALE,
9258 .util = SCHED_CAPACITY_SCALE,
9259 .ret = 0,
9260 };
9261
9262 buf = strim(buf);
9263 if (strcmp(buf, "max")) {
9264 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9265 &req.percent);
9266 if (req.ret)
9267 return req;
9268 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9269 req.ret = -ERANGE;
9270 return req;
9271 }
9272
9273 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9274 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9275 }
9276
9277 return req;
9278}
9279
9280static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9281 size_t nbytes, loff_t off,
9282 enum uclamp_id clamp_id)
9283{
9284 struct uclamp_request req;
9285 struct task_group *tg;
9286
9287 req = capacity_from_percent(buf);
9288 if (req.ret)
9289 return req.ret;
9290
9291 static_branch_enable(&sched_uclamp_used);
9292
9293 guard(mutex)(&uclamp_mutex);
9294 guard(rcu)();
9295
9296 tg = css_tg(of_css(of));
9297 if (tg->uclamp_req[clamp_id].value != req.util)
9298 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9299
9300 /*
9301 * Because of not recoverable conversion rounding we keep track of the
9302 * exact requested value
9303 */
9304 tg->uclamp_pct[clamp_id] = req.percent;
9305
9306 /* Update effective clamps to track the most restrictive value */
9307 cpu_util_update_eff(of_css(of));
9308
9309 return nbytes;
9310}
9311
9312static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9313 char *buf, size_t nbytes,
9314 loff_t off)
9315{
9316 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9317}
9318
9319static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9320 char *buf, size_t nbytes,
9321 loff_t off)
9322{
9323 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9324}
9325
9326static inline void cpu_uclamp_print(struct seq_file *sf,
9327 enum uclamp_id clamp_id)
9328{
9329 struct task_group *tg;
9330 u64 util_clamp;
9331 u64 percent;
9332 u32 rem;
9333
9334 scoped_guard (rcu) {
9335 tg = css_tg(seq_css(sf));
9336 util_clamp = tg->uclamp_req[clamp_id].value;
9337 }
9338
9339 if (util_clamp == SCHED_CAPACITY_SCALE) {
9340 seq_puts(sf, "max\n");
9341 return;
9342 }
9343
9344 percent = tg->uclamp_pct[clamp_id];
9345 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9346 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9347}
9348
9349static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9350{
9351 cpu_uclamp_print(sf, UCLAMP_MIN);
9352 return 0;
9353}
9354
9355static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9356{
9357 cpu_uclamp_print(sf, UCLAMP_MAX);
9358 return 0;
9359}
9360#endif /* CONFIG_UCLAMP_TASK_GROUP */
9361
9362#ifdef CONFIG_GROUP_SCHED_WEIGHT
9363static unsigned long tg_weight(struct task_group *tg)
9364{
9365#ifdef CONFIG_FAIR_GROUP_SCHED
9366 return scale_load_down(tg->shares);
9367#else
9368 return sched_weight_from_cgroup(tg->scx_weight);
9369#endif
9370}
9371
9372static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9373 struct cftype *cftype, u64 shareval)
9374{
9375 int ret;
9376
9377 if (shareval > scale_load_down(ULONG_MAX))
9378 shareval = MAX_SHARES;
9379 ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9380 if (!ret)
9381 scx_group_set_weight(css_tg(css),
9382 sched_weight_to_cgroup(shareval));
9383 return ret;
9384}
9385
9386static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9387 struct cftype *cft)
9388{
9389 return tg_weight(css_tg(css));
9390}
9391#endif /* CONFIG_GROUP_SCHED_WEIGHT */
9392
9393#ifdef CONFIG_CFS_BANDWIDTH
9394static DEFINE_MUTEX(cfs_constraints_mutex);
9395
9396const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9397static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9398/* More than 203 days if BW_SHIFT equals 20. */
9399static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9400
9401static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9402
9403static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9404 u64 burst)
9405{
9406 int i, ret = 0, runtime_enabled, runtime_was_enabled;
9407 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9408
9409 if (tg == &root_task_group)
9410 return -EINVAL;
9411
9412 /*
9413 * Ensure we have at some amount of bandwidth every period. This is
9414 * to prevent reaching a state of large arrears when throttled via
9415 * entity_tick() resulting in prolonged exit starvation.
9416 */
9417 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9418 return -EINVAL;
9419
9420 /*
9421 * Likewise, bound things on the other side by preventing insane quota
9422 * periods. This also allows us to normalize in computing quota
9423 * feasibility.
9424 */
9425 if (period > max_cfs_quota_period)
9426 return -EINVAL;
9427
9428 /*
9429 * Bound quota to defend quota against overflow during bandwidth shift.
9430 */
9431 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9432 return -EINVAL;
9433
9434 if (quota != RUNTIME_INF && (burst > quota ||
9435 burst + quota > max_cfs_runtime))
9436 return -EINVAL;
9437
9438 /*
9439 * Prevent race between setting of cfs_rq->runtime_enabled and
9440 * unthrottle_offline_cfs_rqs().
9441 */
9442 guard(cpus_read_lock)();
9443 guard(mutex)(&cfs_constraints_mutex);
9444
9445 ret = __cfs_schedulable(tg, period, quota);
9446 if (ret)
9447 return ret;
9448
9449 runtime_enabled = quota != RUNTIME_INF;
9450 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9451 /*
9452 * If we need to toggle cfs_bandwidth_used, off->on must occur
9453 * before making related changes, and on->off must occur afterwards
9454 */
9455 if (runtime_enabled && !runtime_was_enabled)
9456 cfs_bandwidth_usage_inc();
9457
9458 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9459 cfs_b->period = ns_to_ktime(period);
9460 cfs_b->quota = quota;
9461 cfs_b->burst = burst;
9462
9463 __refill_cfs_bandwidth_runtime(cfs_b);
9464
9465 /*
9466 * Restart the period timer (if active) to handle new
9467 * period expiry:
9468 */
9469 if (runtime_enabled)
9470 start_cfs_bandwidth(cfs_b);
9471 }
9472
9473 for_each_online_cpu(i) {
9474 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9475 struct rq *rq = cfs_rq->rq;
9476
9477 guard(rq_lock_irq)(rq);
9478 cfs_rq->runtime_enabled = runtime_enabled;
9479 cfs_rq->runtime_remaining = 0;
9480
9481 if (cfs_rq->throttled)
9482 unthrottle_cfs_rq(cfs_rq);
9483 }
9484
9485 if (runtime_was_enabled && !runtime_enabled)
9486 cfs_bandwidth_usage_dec();
9487
9488 return 0;
9489}
9490
9491static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9492{
9493 u64 quota, period, burst;
9494
9495 period = ktime_to_ns(tg->cfs_bandwidth.period);
9496 burst = tg->cfs_bandwidth.burst;
9497 if (cfs_quota_us < 0)
9498 quota = RUNTIME_INF;
9499 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9500 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9501 else
9502 return -EINVAL;
9503
9504 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9505}
9506
9507static long tg_get_cfs_quota(struct task_group *tg)
9508{
9509 u64 quota_us;
9510
9511 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9512 return -1;
9513
9514 quota_us = tg->cfs_bandwidth.quota;
9515 do_div(quota_us, NSEC_PER_USEC);
9516
9517 return quota_us;
9518}
9519
9520static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9521{
9522 u64 quota, period, burst;
9523
9524 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9525 return -EINVAL;
9526
9527 period = (u64)cfs_period_us * NSEC_PER_USEC;
9528 quota = tg->cfs_bandwidth.quota;
9529 burst = tg->cfs_bandwidth.burst;
9530
9531 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9532}
9533
9534static long tg_get_cfs_period(struct task_group *tg)
9535{
9536 u64 cfs_period_us;
9537
9538 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9539 do_div(cfs_period_us, NSEC_PER_USEC);
9540
9541 return cfs_period_us;
9542}
9543
9544static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9545{
9546 u64 quota, period, burst;
9547
9548 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9549 return -EINVAL;
9550
9551 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9552 period = ktime_to_ns(tg->cfs_bandwidth.period);
9553 quota = tg->cfs_bandwidth.quota;
9554
9555 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9556}
9557
9558static long tg_get_cfs_burst(struct task_group *tg)
9559{
9560 u64 burst_us;
9561
9562 burst_us = tg->cfs_bandwidth.burst;
9563 do_div(burst_us, NSEC_PER_USEC);
9564
9565 return burst_us;
9566}
9567
9568static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9569 struct cftype *cft)
9570{
9571 return tg_get_cfs_quota(css_tg(css));
9572}
9573
9574static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9575 struct cftype *cftype, s64 cfs_quota_us)
9576{
9577 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9578}
9579
9580static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9581 struct cftype *cft)
9582{
9583 return tg_get_cfs_period(css_tg(css));
9584}
9585
9586static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9587 struct cftype *cftype, u64 cfs_period_us)
9588{
9589 return tg_set_cfs_period(css_tg(css), cfs_period_us);
9590}
9591
9592static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9593 struct cftype *cft)
9594{
9595 return tg_get_cfs_burst(css_tg(css));
9596}
9597
9598static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9599 struct cftype *cftype, u64 cfs_burst_us)
9600{
9601 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9602}
9603
9604struct cfs_schedulable_data {
9605 struct task_group *tg;
9606 u64 period, quota;
9607};
9608
9609/*
9610 * normalize group quota/period to be quota/max_period
9611 * note: units are usecs
9612 */
9613static u64 normalize_cfs_quota(struct task_group *tg,
9614 struct cfs_schedulable_data *d)
9615{
9616 u64 quota, period;
9617
9618 if (tg == d->tg) {
9619 period = d->period;
9620 quota = d->quota;
9621 } else {
9622 period = tg_get_cfs_period(tg);
9623 quota = tg_get_cfs_quota(tg);
9624 }
9625
9626 /* note: these should typically be equivalent */
9627 if (quota == RUNTIME_INF || quota == -1)
9628 return RUNTIME_INF;
9629
9630 return to_ratio(period, quota);
9631}
9632
9633static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9634{
9635 struct cfs_schedulable_data *d = data;
9636 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9637 s64 quota = 0, parent_quota = -1;
9638
9639 if (!tg->parent) {
9640 quota = RUNTIME_INF;
9641 } else {
9642 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9643
9644 quota = normalize_cfs_quota(tg, d);
9645 parent_quota = parent_b->hierarchical_quota;
9646
9647 /*
9648 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9649 * always take the non-RUNTIME_INF min. On cgroup1, only
9650 * inherit when no limit is set. In both cases this is used
9651 * by the scheduler to determine if a given CFS task has a
9652 * bandwidth constraint at some higher level.
9653 */
9654 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9655 if (quota == RUNTIME_INF)
9656 quota = parent_quota;
9657 else if (parent_quota != RUNTIME_INF)
9658 quota = min(quota, parent_quota);
9659 } else {
9660 if (quota == RUNTIME_INF)
9661 quota = parent_quota;
9662 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9663 return -EINVAL;
9664 }
9665 }
9666 cfs_b->hierarchical_quota = quota;
9667
9668 return 0;
9669}
9670
9671static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9672{
9673 struct cfs_schedulable_data data = {
9674 .tg = tg,
9675 .period = period,
9676 .quota = quota,
9677 };
9678
9679 if (quota != RUNTIME_INF) {
9680 do_div(data.period, NSEC_PER_USEC);
9681 do_div(data.quota, NSEC_PER_USEC);
9682 }
9683
9684 guard(rcu)();
9685 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9686}
9687
9688static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9689{
9690 struct task_group *tg = css_tg(seq_css(sf));
9691 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9692
9693 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9694 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9695 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9696
9697 if (schedstat_enabled() && tg != &root_task_group) {
9698 struct sched_statistics *stats;
9699 u64 ws = 0;
9700 int i;
9701
9702 for_each_possible_cpu(i) {
9703 stats = __schedstats_from_se(tg->se[i]);
9704 ws += schedstat_val(stats->wait_sum);
9705 }
9706
9707 seq_printf(sf, "wait_sum %llu\n", ws);
9708 }
9709
9710 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9711 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9712
9713 return 0;
9714}
9715
9716static u64 throttled_time_self(struct task_group *tg)
9717{
9718 int i;
9719 u64 total = 0;
9720
9721 for_each_possible_cpu(i) {
9722 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9723 }
9724
9725 return total;
9726}
9727
9728static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9729{
9730 struct task_group *tg = css_tg(seq_css(sf));
9731
9732 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9733
9734 return 0;
9735}
9736#endif /* CONFIG_CFS_BANDWIDTH */
9737
9738#ifdef CONFIG_RT_GROUP_SCHED
9739static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9740 struct cftype *cft, s64 val)
9741{
9742 return sched_group_set_rt_runtime(css_tg(css), val);
9743}
9744
9745static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9746 struct cftype *cft)
9747{
9748 return sched_group_rt_runtime(css_tg(css));
9749}
9750
9751static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9752 struct cftype *cftype, u64 rt_period_us)
9753{
9754 return sched_group_set_rt_period(css_tg(css), rt_period_us);
9755}
9756
9757static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9758 struct cftype *cft)
9759{
9760 return sched_group_rt_period(css_tg(css));
9761}
9762#endif /* CONFIG_RT_GROUP_SCHED */
9763
9764#ifdef CONFIG_GROUP_SCHED_WEIGHT
9765static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9766 struct cftype *cft)
9767{
9768 return css_tg(css)->idle;
9769}
9770
9771static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9772 struct cftype *cft, s64 idle)
9773{
9774 int ret;
9775
9776 ret = sched_group_set_idle(css_tg(css), idle);
9777 if (!ret)
9778 scx_group_set_idle(css_tg(css), idle);
9779 return ret;
9780}
9781#endif
9782
9783static struct cftype cpu_legacy_files[] = {
9784#ifdef CONFIG_GROUP_SCHED_WEIGHT
9785 {
9786 .name = "shares",
9787 .read_u64 = cpu_shares_read_u64,
9788 .write_u64 = cpu_shares_write_u64,
9789 },
9790 {
9791 .name = "idle",
9792 .read_s64 = cpu_idle_read_s64,
9793 .write_s64 = cpu_idle_write_s64,
9794 },
9795#endif
9796#ifdef CONFIG_CFS_BANDWIDTH
9797 {
9798 .name = "cfs_quota_us",
9799 .read_s64 = cpu_cfs_quota_read_s64,
9800 .write_s64 = cpu_cfs_quota_write_s64,
9801 },
9802 {
9803 .name = "cfs_period_us",
9804 .read_u64 = cpu_cfs_period_read_u64,
9805 .write_u64 = cpu_cfs_period_write_u64,
9806 },
9807 {
9808 .name = "cfs_burst_us",
9809 .read_u64 = cpu_cfs_burst_read_u64,
9810 .write_u64 = cpu_cfs_burst_write_u64,
9811 },
9812 {
9813 .name = "stat",
9814 .seq_show = cpu_cfs_stat_show,
9815 },
9816 {
9817 .name = "stat.local",
9818 .seq_show = cpu_cfs_local_stat_show,
9819 },
9820#endif
9821#ifdef CONFIG_RT_GROUP_SCHED
9822 {
9823 .name = "rt_runtime_us",
9824 .read_s64 = cpu_rt_runtime_read,
9825 .write_s64 = cpu_rt_runtime_write,
9826 },
9827 {
9828 .name = "rt_period_us",
9829 .read_u64 = cpu_rt_period_read_uint,
9830 .write_u64 = cpu_rt_period_write_uint,
9831 },
9832#endif
9833#ifdef CONFIG_UCLAMP_TASK_GROUP
9834 {
9835 .name = "uclamp.min",
9836 .flags = CFTYPE_NOT_ON_ROOT,
9837 .seq_show = cpu_uclamp_min_show,
9838 .write = cpu_uclamp_min_write,
9839 },
9840 {
9841 .name = "uclamp.max",
9842 .flags = CFTYPE_NOT_ON_ROOT,
9843 .seq_show = cpu_uclamp_max_show,
9844 .write = cpu_uclamp_max_write,
9845 },
9846#endif
9847 { } /* Terminate */
9848};
9849
9850static int cpu_extra_stat_show(struct seq_file *sf,
9851 struct cgroup_subsys_state *css)
9852{
9853#ifdef CONFIG_CFS_BANDWIDTH
9854 {
9855 struct task_group *tg = css_tg(css);
9856 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9857 u64 throttled_usec, burst_usec;
9858
9859 throttled_usec = cfs_b->throttled_time;
9860 do_div(throttled_usec, NSEC_PER_USEC);
9861 burst_usec = cfs_b->burst_time;
9862 do_div(burst_usec, NSEC_PER_USEC);
9863
9864 seq_printf(sf, "nr_periods %d\n"
9865 "nr_throttled %d\n"
9866 "throttled_usec %llu\n"
9867 "nr_bursts %d\n"
9868 "burst_usec %llu\n",
9869 cfs_b->nr_periods, cfs_b->nr_throttled,
9870 throttled_usec, cfs_b->nr_burst, burst_usec);
9871 }
9872#endif
9873 return 0;
9874}
9875
9876static int cpu_local_stat_show(struct seq_file *sf,
9877 struct cgroup_subsys_state *css)
9878{
9879#ifdef CONFIG_CFS_BANDWIDTH
9880 {
9881 struct task_group *tg = css_tg(css);
9882 u64 throttled_self_usec;
9883
9884 throttled_self_usec = throttled_time_self(tg);
9885 do_div(throttled_self_usec, NSEC_PER_USEC);
9886
9887 seq_printf(sf, "throttled_usec %llu\n",
9888 throttled_self_usec);
9889 }
9890#endif
9891 return 0;
9892}
9893
9894#ifdef CONFIG_GROUP_SCHED_WEIGHT
9895
9896static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9897 struct cftype *cft)
9898{
9899 return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9900}
9901
9902static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9903 struct cftype *cft, u64 cgrp_weight)
9904{
9905 unsigned long weight;
9906 int ret;
9907
9908 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9909 return -ERANGE;
9910
9911 weight = sched_weight_from_cgroup(cgrp_weight);
9912
9913 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9914 if (!ret)
9915 scx_group_set_weight(css_tg(css), cgrp_weight);
9916 return ret;
9917}
9918
9919static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9920 struct cftype *cft)
9921{
9922 unsigned long weight = tg_weight(css_tg(css));
9923 int last_delta = INT_MAX;
9924 int prio, delta;
9925
9926 /* find the closest nice value to the current weight */
9927 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9928 delta = abs(sched_prio_to_weight[prio] - weight);
9929 if (delta >= last_delta)
9930 break;
9931 last_delta = delta;
9932 }
9933
9934 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9935}
9936
9937static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9938 struct cftype *cft, s64 nice)
9939{
9940 unsigned long weight;
9941 int idx, ret;
9942
9943 if (nice < MIN_NICE || nice > MAX_NICE)
9944 return -ERANGE;
9945
9946 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9947 idx = array_index_nospec(idx, 40);
9948 weight = sched_prio_to_weight[idx];
9949
9950 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9951 if (!ret)
9952 scx_group_set_weight(css_tg(css),
9953 sched_weight_to_cgroup(weight));
9954 return ret;
9955}
9956#endif /* CONFIG_GROUP_SCHED_WEIGHT */
9957
9958static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9959 long period, long quota)
9960{
9961 if (quota < 0)
9962 seq_puts(sf, "max");
9963 else
9964 seq_printf(sf, "%ld", quota);
9965
9966 seq_printf(sf, " %ld\n", period);
9967}
9968
9969/* caller should put the current value in *@periodp before calling */
9970static int __maybe_unused cpu_period_quota_parse(char *buf,
9971 u64 *periodp, u64 *quotap)
9972{
9973 char tok[21]; /* U64_MAX */
9974
9975 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9976 return -EINVAL;
9977
9978 *periodp *= NSEC_PER_USEC;
9979
9980 if (sscanf(tok, "%llu", quotap))
9981 *quotap *= NSEC_PER_USEC;
9982 else if (!strcmp(tok, "max"))
9983 *quotap = RUNTIME_INF;
9984 else
9985 return -EINVAL;
9986
9987 return 0;
9988}
9989
9990#ifdef CONFIG_CFS_BANDWIDTH
9991static int cpu_max_show(struct seq_file *sf, void *v)
9992{
9993 struct task_group *tg = css_tg(seq_css(sf));
9994
9995 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9996 return 0;
9997}
9998
9999static ssize_t cpu_max_write(struct kernfs_open_file *of,
10000 char *buf, size_t nbytes, loff_t off)
10001{
10002 struct task_group *tg = css_tg(of_css(of));
10003 u64 period = tg_get_cfs_period(tg);
10004 u64 burst = tg->cfs_bandwidth.burst;
10005 u64 quota;
10006 int ret;
10007
10008 ret = cpu_period_quota_parse(buf, &period, "a);
10009 if (!ret)
10010 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10011 return ret ?: nbytes;
10012}
10013#endif
10014
10015static struct cftype cpu_files[] = {
10016#ifdef CONFIG_GROUP_SCHED_WEIGHT
10017 {
10018 .name = "weight",
10019 .flags = CFTYPE_NOT_ON_ROOT,
10020 .read_u64 = cpu_weight_read_u64,
10021 .write_u64 = cpu_weight_write_u64,
10022 },
10023 {
10024 .name = "weight.nice",
10025 .flags = CFTYPE_NOT_ON_ROOT,
10026 .read_s64 = cpu_weight_nice_read_s64,
10027 .write_s64 = cpu_weight_nice_write_s64,
10028 },
10029 {
10030 .name = "idle",
10031 .flags = CFTYPE_NOT_ON_ROOT,
10032 .read_s64 = cpu_idle_read_s64,
10033 .write_s64 = cpu_idle_write_s64,
10034 },
10035#endif
10036#ifdef CONFIG_CFS_BANDWIDTH
10037 {
10038 .name = "max",
10039 .flags = CFTYPE_NOT_ON_ROOT,
10040 .seq_show = cpu_max_show,
10041 .write = cpu_max_write,
10042 },
10043 {
10044 .name = "max.burst",
10045 .flags = CFTYPE_NOT_ON_ROOT,
10046 .read_u64 = cpu_cfs_burst_read_u64,
10047 .write_u64 = cpu_cfs_burst_write_u64,
10048 },
10049#endif
10050#ifdef CONFIG_UCLAMP_TASK_GROUP
10051 {
10052 .name = "uclamp.min",
10053 .flags = CFTYPE_NOT_ON_ROOT,
10054 .seq_show = cpu_uclamp_min_show,
10055 .write = cpu_uclamp_min_write,
10056 },
10057 {
10058 .name = "uclamp.max",
10059 .flags = CFTYPE_NOT_ON_ROOT,
10060 .seq_show = cpu_uclamp_max_show,
10061 .write = cpu_uclamp_max_write,
10062 },
10063#endif
10064 { } /* terminate */
10065};
10066
10067struct cgroup_subsys cpu_cgrp_subsys = {
10068 .css_alloc = cpu_cgroup_css_alloc,
10069 .css_online = cpu_cgroup_css_online,
10070 .css_offline = cpu_cgroup_css_offline,
10071 .css_released = cpu_cgroup_css_released,
10072 .css_free = cpu_cgroup_css_free,
10073 .css_extra_stat_show = cpu_extra_stat_show,
10074 .css_local_stat_show = cpu_local_stat_show,
10075 .can_attach = cpu_cgroup_can_attach,
10076 .attach = cpu_cgroup_attach,
10077 .cancel_attach = cpu_cgroup_cancel_attach,
10078 .legacy_cftypes = cpu_legacy_files,
10079 .dfl_cftypes = cpu_files,
10080 .early_init = true,
10081 .threaded = true,
10082};
10083
10084#endif /* CONFIG_CGROUP_SCHED */
10085
10086void dump_cpu_task(int cpu)
10087{
10088 if (in_hardirq() && cpu == smp_processor_id()) {
10089 struct pt_regs *regs;
10090
10091 regs = get_irq_regs();
10092 if (regs) {
10093 show_regs(regs);
10094 return;
10095 }
10096 }
10097
10098 if (trigger_single_cpu_backtrace(cpu))
10099 return;
10100
10101 pr_info("Task dump for CPU %d:\n", cpu);
10102 sched_show_task(cpu_curr(cpu));
10103}
10104
10105/*
10106 * Nice levels are multiplicative, with a gentle 10% change for every
10107 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10108 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10109 * that remained on nice 0.
10110 *
10111 * The "10% effect" is relative and cumulative: from _any_ nice level,
10112 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10113 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10114 * If a task goes up by ~10% and another task goes down by ~10% then
10115 * the relative distance between them is ~25%.)
10116 */
10117const int sched_prio_to_weight[40] = {
10118 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10119 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10120 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10121 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10122 /* 0 */ 1024, 820, 655, 526, 423,
10123 /* 5 */ 335, 272, 215, 172, 137,
10124 /* 10 */ 110, 87, 70, 56, 45,
10125 /* 15 */ 36, 29, 23, 18, 15,
10126};
10127
10128/*
10129 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10130 *
10131 * In cases where the weight does not change often, we can use the
10132 * pre-calculated inverse to speed up arithmetics by turning divisions
10133 * into multiplications:
10134 */
10135const u32 sched_prio_to_wmult[40] = {
10136 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10137 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10138 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10139 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10140 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10141 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10142 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10143 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10144};
10145
10146void call_trace_sched_update_nr_running(struct rq *rq, int count)
10147{
10148 trace_sched_update_nr_running_tp(rq, count);
10149}
10150
10151#ifdef CONFIG_SCHED_MM_CID
10152
10153/*
10154 * @cid_lock: Guarantee forward-progress of cid allocation.
10155 *
10156 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10157 * is only used when contention is detected by the lock-free allocation so
10158 * forward progress can be guaranteed.
10159 */
10160DEFINE_RAW_SPINLOCK(cid_lock);
10161
10162/*
10163 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10164 *
10165 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10166 * detected, it is set to 1 to ensure that all newly coming allocations are
10167 * serialized by @cid_lock until the allocation which detected contention
10168 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10169 * of a cid allocation.
10170 */
10171int use_cid_lock;
10172
10173/*
10174 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10175 * concurrently with respect to the execution of the source runqueue context
10176 * switch.
10177 *
10178 * There is one basic properties we want to guarantee here:
10179 *
10180 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10181 * used by a task. That would lead to concurrent allocation of the cid and
10182 * userspace corruption.
10183 *
10184 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10185 * that a pair of loads observe at least one of a pair of stores, which can be
10186 * shown as:
10187 *
10188 * X = Y = 0
10189 *
10190 * w[X]=1 w[Y]=1
10191 * MB MB
10192 * r[Y]=y r[X]=x
10193 *
10194 * Which guarantees that x==0 && y==0 is impossible. But rather than using
10195 * values 0 and 1, this algorithm cares about specific state transitions of the
10196 * runqueue current task (as updated by the scheduler context switch), and the
10197 * per-mm/cpu cid value.
10198 *
10199 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10200 * task->mm != mm for the rest of the discussion. There are two scheduler state
10201 * transitions on context switch we care about:
10202 *
10203 * (TSA) Store to rq->curr with transition from (N) to (Y)
10204 *
10205 * (TSB) Store to rq->curr with transition from (Y) to (N)
10206 *
10207 * On the remote-clear side, there is one transition we care about:
10208 *
10209 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10210 *
10211 * There is also a transition to UNSET state which can be performed from all
10212 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10213 * guarantees that only a single thread will succeed:
10214 *
10215 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10216 *
10217 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10218 * when a thread is actively using the cid (property (1)).
10219 *
10220 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10221 *
10222 * Scenario A) (TSA)+(TMA) (from next task perspective)
10223 *
10224 * CPU0 CPU1
10225 *
10226 * Context switch CS-1 Remote-clear
10227 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
10228 * (implied barrier after cmpxchg)
10229 * - switch_mm_cid()
10230 * - memory barrier (see switch_mm_cid()
10231 * comment explaining how this barrier
10232 * is combined with other scheduler
10233 * barriers)
10234 * - mm_cid_get (next)
10235 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
10236 *
10237 * This Dekker ensures that either task (Y) is observed by the
10238 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10239 * observed.
10240 *
10241 * If task (Y) store is observed by rcu_dereference(), it means that there is
10242 * still an active task on the cpu. Remote-clear will therefore not transition
10243 * to UNSET, which fulfills property (1).
10244 *
10245 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10246 * it will move its state to UNSET, which clears the percpu cid perhaps
10247 * uselessly (which is not an issue for correctness). Because task (Y) is not
10248 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10249 * state to UNSET is done with a cmpxchg expecting that the old state has the
10250 * LAZY flag set, only one thread will successfully UNSET.
10251 *
10252 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10253 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10254 * CPU1 will observe task (Y) and do nothing more, which is fine.
10255 *
10256 * What we are effectively preventing with this Dekker is a scenario where
10257 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10258 * because this would UNSET a cid which is actively used.
10259 */
10260
10261void sched_mm_cid_migrate_from(struct task_struct *t)
10262{
10263 t->migrate_from_cpu = task_cpu(t);
10264}
10265
10266static
10267int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10268 struct task_struct *t,
10269 struct mm_cid *src_pcpu_cid)
10270{
10271 struct mm_struct *mm = t->mm;
10272 struct task_struct *src_task;
10273 int src_cid, last_mm_cid;
10274
10275 if (!mm)
10276 return -1;
10277
10278 last_mm_cid = t->last_mm_cid;
10279 /*
10280 * If the migrated task has no last cid, or if the current
10281 * task on src rq uses the cid, it means the source cid does not need
10282 * to be moved to the destination cpu.
10283 */
10284 if (last_mm_cid == -1)
10285 return -1;
10286 src_cid = READ_ONCE(src_pcpu_cid->cid);
10287 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10288 return -1;
10289
10290 /*
10291 * If we observe an active task using the mm on this rq, it means we
10292 * are not the last task to be migrated from this cpu for this mm, so
10293 * there is no need to move src_cid to the destination cpu.
10294 */
10295 guard(rcu)();
10296 src_task = rcu_dereference(src_rq->curr);
10297 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10298 t->last_mm_cid = -1;
10299 return -1;
10300 }
10301
10302 return src_cid;
10303}
10304
10305static
10306int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10307 struct task_struct *t,
10308 struct mm_cid *src_pcpu_cid,
10309 int src_cid)
10310{
10311 struct task_struct *src_task;
10312 struct mm_struct *mm = t->mm;
10313 int lazy_cid;
10314
10315 if (src_cid == -1)
10316 return -1;
10317
10318 /*
10319 * Attempt to clear the source cpu cid to move it to the destination
10320 * cpu.
10321 */
10322 lazy_cid = mm_cid_set_lazy_put(src_cid);
10323 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10324 return -1;
10325
10326 /*
10327 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10328 * rq->curr->mm matches the scheduler barrier in context_switch()
10329 * between store to rq->curr and load of prev and next task's
10330 * per-mm/cpu cid.
10331 *
10332 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10333 * rq->curr->mm_cid_active matches the barrier in
10334 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10335 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10336 * load of per-mm/cpu cid.
10337 */
10338
10339 /*
10340 * If we observe an active task using the mm on this rq after setting
10341 * the lazy-put flag, this task will be responsible for transitioning
10342 * from lazy-put flag set to MM_CID_UNSET.
10343 */
10344 scoped_guard (rcu) {
10345 src_task = rcu_dereference(src_rq->curr);
10346 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10347 /*
10348 * We observed an active task for this mm, there is therefore
10349 * no point in moving this cid to the destination cpu.
10350 */
10351 t->last_mm_cid = -1;
10352 return -1;
10353 }
10354 }
10355
10356 /*
10357 * The src_cid is unused, so it can be unset.
10358 */
10359 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10360 return -1;
10361 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10362 return src_cid;
10363}
10364
10365/*
10366 * Migration to dst cpu. Called with dst_rq lock held.
10367 * Interrupts are disabled, which keeps the window of cid ownership without the
10368 * source rq lock held small.
10369 */
10370void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10371{
10372 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10373 struct mm_struct *mm = t->mm;
10374 int src_cid, src_cpu;
10375 bool dst_cid_is_set;
10376 struct rq *src_rq;
10377
10378 lockdep_assert_rq_held(dst_rq);
10379
10380 if (!mm)
10381 return;
10382 src_cpu = t->migrate_from_cpu;
10383 if (src_cpu == -1) {
10384 t->last_mm_cid = -1;
10385 return;
10386 }
10387 /*
10388 * Move the src cid if the dst cid is unset. This keeps id
10389 * allocation closest to 0 in cases where few threads migrate around
10390 * many CPUs.
10391 *
10392 * If destination cid or recent cid is already set, we may have
10393 * to just clear the src cid to ensure compactness in frequent
10394 * migrations scenarios.
10395 *
10396 * It is not useful to clear the src cid when the number of threads is
10397 * greater or equal to the number of allowed CPUs, because user-space
10398 * can expect that the number of allowed cids can reach the number of
10399 * allowed CPUs.
10400 */
10401 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10402 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10403 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10404 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10405 return;
10406 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10407 src_rq = cpu_rq(src_cpu);
10408 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10409 if (src_cid == -1)
10410 return;
10411 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10412 src_cid);
10413 if (src_cid == -1)
10414 return;
10415 if (dst_cid_is_set) {
10416 __mm_cid_put(mm, src_cid);
10417 return;
10418 }
10419 /* Move src_cid to dst cpu. */
10420 mm_cid_snapshot_time(dst_rq, mm);
10421 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10422 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10423}
10424
10425static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10426 int cpu)
10427{
10428 struct rq *rq = cpu_rq(cpu);
10429 struct task_struct *t;
10430 int cid, lazy_cid;
10431
10432 cid = READ_ONCE(pcpu_cid->cid);
10433 if (!mm_cid_is_valid(cid))
10434 return;
10435
10436 /*
10437 * Clear the cpu cid if it is set to keep cid allocation compact. If
10438 * there happens to be other tasks left on the source cpu using this
10439 * mm, the next task using this mm will reallocate its cid on context
10440 * switch.
10441 */
10442 lazy_cid = mm_cid_set_lazy_put(cid);
10443 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10444 return;
10445
10446 /*
10447 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10448 * rq->curr->mm matches the scheduler barrier in context_switch()
10449 * between store to rq->curr and load of prev and next task's
10450 * per-mm/cpu cid.
10451 *
10452 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10453 * rq->curr->mm_cid_active matches the barrier in
10454 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10455 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10456 * load of per-mm/cpu cid.
10457 */
10458
10459 /*
10460 * If we observe an active task using the mm on this rq after setting
10461 * the lazy-put flag, that task will be responsible for transitioning
10462 * from lazy-put flag set to MM_CID_UNSET.
10463 */
10464 scoped_guard (rcu) {
10465 t = rcu_dereference(rq->curr);
10466 if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10467 return;
10468 }
10469
10470 /*
10471 * The cid is unused, so it can be unset.
10472 * Disable interrupts to keep the window of cid ownership without rq
10473 * lock small.
10474 */
10475 scoped_guard (irqsave) {
10476 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10477 __mm_cid_put(mm, cid);
10478 }
10479}
10480
10481static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10482{
10483 struct rq *rq = cpu_rq(cpu);
10484 struct mm_cid *pcpu_cid;
10485 struct task_struct *curr;
10486 u64 rq_clock;
10487
10488 /*
10489 * rq->clock load is racy on 32-bit but one spurious clear once in a
10490 * while is irrelevant.
10491 */
10492 rq_clock = READ_ONCE(rq->clock);
10493 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10494
10495 /*
10496 * In order to take care of infrequently scheduled tasks, bump the time
10497 * snapshot associated with this cid if an active task using the mm is
10498 * observed on this rq.
10499 */
10500 scoped_guard (rcu) {
10501 curr = rcu_dereference(rq->curr);
10502 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10503 WRITE_ONCE(pcpu_cid->time, rq_clock);
10504 return;
10505 }
10506 }
10507
10508 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10509 return;
10510 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10511}
10512
10513static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10514 int weight)
10515{
10516 struct mm_cid *pcpu_cid;
10517 int cid;
10518
10519 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10520 cid = READ_ONCE(pcpu_cid->cid);
10521 if (!mm_cid_is_valid(cid) || cid < weight)
10522 return;
10523 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10524}
10525
10526static void task_mm_cid_work(struct callback_head *work)
10527{
10528 unsigned long now = jiffies, old_scan, next_scan;
10529 struct task_struct *t = current;
10530 struct cpumask *cidmask;
10531 struct mm_struct *mm;
10532 int weight, cpu;
10533
10534 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10535
10536 work->next = work; /* Prevent double-add */
10537 if (t->flags & PF_EXITING)
10538 return;
10539 mm = t->mm;
10540 if (!mm)
10541 return;
10542 old_scan = READ_ONCE(mm->mm_cid_next_scan);
10543 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10544 if (!old_scan) {
10545 unsigned long res;
10546
10547 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10548 if (res != old_scan)
10549 old_scan = res;
10550 else
10551 old_scan = next_scan;
10552 }
10553 if (time_before(now, old_scan))
10554 return;
10555 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10556 return;
10557 cidmask = mm_cidmask(mm);
10558 /* Clear cids that were not recently used. */
10559 for_each_possible_cpu(cpu)
10560 sched_mm_cid_remote_clear_old(mm, cpu);
10561 weight = cpumask_weight(cidmask);
10562 /*
10563 * Clear cids that are greater or equal to the cidmask weight to
10564 * recompact it.
10565 */
10566 for_each_possible_cpu(cpu)
10567 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10568}
10569
10570void init_sched_mm_cid(struct task_struct *t)
10571{
10572 struct mm_struct *mm = t->mm;
10573 int mm_users = 0;
10574
10575 if (mm) {
10576 mm_users = atomic_read(&mm->mm_users);
10577 if (mm_users == 1)
10578 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10579 }
10580 t->cid_work.next = &t->cid_work; /* Protect against double add */
10581 init_task_work(&t->cid_work, task_mm_cid_work);
10582}
10583
10584void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10585{
10586 struct callback_head *work = &curr->cid_work;
10587 unsigned long now = jiffies;
10588
10589 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10590 work->next != work)
10591 return;
10592 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10593 return;
10594
10595 /* No page allocation under rq lock */
10596 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
10597}
10598
10599void sched_mm_cid_exit_signals(struct task_struct *t)
10600{
10601 struct mm_struct *mm = t->mm;
10602 struct rq *rq;
10603
10604 if (!mm)
10605 return;
10606
10607 preempt_disable();
10608 rq = this_rq();
10609 guard(rq_lock_irqsave)(rq);
10610 preempt_enable_no_resched(); /* holding spinlock */
10611 WRITE_ONCE(t->mm_cid_active, 0);
10612 /*
10613 * Store t->mm_cid_active before loading per-mm/cpu cid.
10614 * Matches barrier in sched_mm_cid_remote_clear_old().
10615 */
10616 smp_mb();
10617 mm_cid_put(mm);
10618 t->last_mm_cid = t->mm_cid = -1;
10619}
10620
10621void sched_mm_cid_before_execve(struct task_struct *t)
10622{
10623 struct mm_struct *mm = t->mm;
10624 struct rq *rq;
10625
10626 if (!mm)
10627 return;
10628
10629 preempt_disable();
10630 rq = this_rq();
10631 guard(rq_lock_irqsave)(rq);
10632 preempt_enable_no_resched(); /* holding spinlock */
10633 WRITE_ONCE(t->mm_cid_active, 0);
10634 /*
10635 * Store t->mm_cid_active before loading per-mm/cpu cid.
10636 * Matches barrier in sched_mm_cid_remote_clear_old().
10637 */
10638 smp_mb();
10639 mm_cid_put(mm);
10640 t->last_mm_cid = t->mm_cid = -1;
10641}
10642
10643void sched_mm_cid_after_execve(struct task_struct *t)
10644{
10645 struct mm_struct *mm = t->mm;
10646 struct rq *rq;
10647
10648 if (!mm)
10649 return;
10650
10651 preempt_disable();
10652 rq = this_rq();
10653 scoped_guard (rq_lock_irqsave, rq) {
10654 preempt_enable_no_resched(); /* holding spinlock */
10655 WRITE_ONCE(t->mm_cid_active, 1);
10656 /*
10657 * Store t->mm_cid_active before loading per-mm/cpu cid.
10658 * Matches barrier in sched_mm_cid_remote_clear_old().
10659 */
10660 smp_mb();
10661 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10662 }
10663 rseq_set_notify_resume(t);
10664}
10665
10666void sched_mm_cid_fork(struct task_struct *t)
10667{
10668 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10669 t->mm_cid_active = 1;
10670}
10671#endif
10672
10673#ifdef CONFIG_SCHED_CLASS_EXT
10674void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10675 struct sched_enq_and_set_ctx *ctx)
10676{
10677 struct rq *rq = task_rq(p);
10678
10679 lockdep_assert_rq_held(rq);
10680
10681 *ctx = (struct sched_enq_and_set_ctx){
10682 .p = p,
10683 .queue_flags = queue_flags,
10684 .queued = task_on_rq_queued(p),
10685 .running = task_current(rq, p),
10686 };
10687
10688 update_rq_clock(rq);
10689 if (ctx->queued)
10690 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10691 if (ctx->running)
10692 put_prev_task(rq, p);
10693}
10694
10695void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10696{
10697 struct rq *rq = task_rq(ctx->p);
10698
10699 lockdep_assert_rq_held(rq);
10700
10701 if (ctx->queued)
10702 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10703 if (ctx->running)
10704 set_next_task(rq, ctx->p);
10705}
10706#endif /* CONFIG_SCHED_CLASS_EXT */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#include "sched.h"
10
11#include <linux/nospec.h>
12
13#include <linux/kcov.h>
14
15#include <asm/switch_to.h>
16#include <asm/tlb.h>
17
18#include "../workqueue_internal.h"
19#include "../smpboot.h"
20
21#include "pelt.h"
22
23#define CREATE_TRACE_POINTS
24#include <trace/events/sched.h>
25
26/*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38
39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40/*
41 * Debugging: various feature bits
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
46 */
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
49const_debug unsigned int sysctl_sched_features =
50#include "features.h"
51 0;
52#undef SCHED_FEAT
53#endif
54
55/*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
61/*
62 * period over which we measure -rt task CPU usage in us.
63 * default: 1s
64 */
65unsigned int sysctl_sched_rt_period = 1000000;
66
67__read_mostly int scheduler_running;
68
69/*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73int sysctl_sched_rt_runtime = 950000;
74
75/*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 __acquires(rq->lock)
80{
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 rq_pin_lock(rq, rf);
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97}
98
99/*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105{
106 struct rq *rq;
107
108 for (;;) {
109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
122 * If we observe the old CPU in task_rq_lock(), the acquire of
123 * the old rq->lock will fully serialize against the stores.
124 *
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 rq_pin_lock(rq, rf);
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139}
140
141/*
142 * RQ-clock updating methods:
143 */
144
145static void update_rq_clock_task(struct rq *rq, s64 delta)
146{
147/*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176#endif
177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((¶virt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188#endif
189
190 rq->clock_task += delta;
191
192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 update_irq_load_avg(rq, irq_delta + steal);
195#endif
196 update_rq_clock_pelt(rq, delta);
197}
198
199void update_rq_clock(struct rq *rq)
200{
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208#ifdef CONFIG_SCHED_DEBUG
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 rq->clock_update_flags |= RQCF_UPDATED;
212#endif
213
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219}
220
221
222#ifdef CONFIG_SCHED_HRTICK
223/*
224 * Use HR-timers to deliver accurate preemption points.
225 */
226
227static void hrtick_clear(struct rq *rq)
228{
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231}
232
233/*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237static enum hrtimer_restart hrtick(struct hrtimer *timer)
238{
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 struct rq_flags rf;
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
244 rq_lock(rq, &rf);
245 update_rq_clock(rq);
246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 rq_unlock(rq, &rf);
248
249 return HRTIMER_NORESTART;
250}
251
252#ifdef CONFIG_SMP
253
254static void __hrtick_restart(struct rq *rq)
255{
256 struct hrtimer *timer = &rq->hrtick_timer;
257
258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
259}
260
261/*
262 * called from hardirq (IPI) context
263 */
264static void __hrtick_start(void *arg)
265{
266 struct rq *rq = arg;
267 struct rq_flags rf;
268
269 rq_lock(rq, &rf);
270 __hrtick_restart(rq);
271 rq->hrtick_csd_pending = 0;
272 rq_unlock(rq, &rf);
273}
274
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
280void hrtick_start(struct rq *rq, u64 delay)
281{
282 struct hrtimer *timer = &rq->hrtick_timer;
283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
292
293 hrtimer_set_expires(timer, time);
294
295 if (rq == this_rq()) {
296 __hrtick_restart(rq);
297 } else if (!rq->hrtick_csd_pending) {
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 rq->hrtick_csd_pending = 1;
300 }
301}
302
303#else
304/*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
309void hrtick_start(struct rq *rq, u64 delay)
310{
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED_HARD);
318}
319#endif /* CONFIG_SMP */
320
321static void hrtick_rq_init(struct rq *rq)
322{
323#ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
325
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329#endif
330
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
332 rq->hrtick_timer.function = hrtick;
333}
334#else /* CONFIG_SCHED_HRTICK */
335static inline void hrtick_clear(struct rq *rq)
336{
337}
338
339static inline void hrtick_rq_init(struct rq *rq)
340{
341}
342#endif /* CONFIG_SCHED_HRTICK */
343
344/*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347#define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360})
361
362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363/*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368static bool set_nr_and_not_polling(struct task_struct *p)
369{
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372}
373
374/*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396}
397
398#else
399static bool set_nr_and_not_polling(struct task_struct *p)
400{
401 set_tsk_need_resched(p);
402 return true;
403}
404
405#ifdef CONFIG_SMP
406static bool set_nr_if_polling(struct task_struct *p)
407{
408 return false;
409}
410#endif
411#endif
412
413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414{
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
424 */
425 smp_mb__before_atomic();
426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 return false;
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
434 return true;
435}
436
437/**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450{
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453}
454
455/**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473{
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
476}
477
478void wake_up_q(struct wake_q_head *head)
479{
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
487 /* Task can safely be re-inserted now: */
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498}
499
500/*
501 * resched_curr - mark rq's current task 'to be rescheduled now'.
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
507void resched_curr(struct rq *rq)
508{
509 struct task_struct *curr = rq->curr;
510 int cpu;
511
512 lockdep_assert_held(&rq->lock);
513
514 if (test_tsk_need_resched(curr))
515 return;
516
517 cpu = cpu_of(rq);
518
519 if (cpu == smp_processor_id()) {
520 set_tsk_need_resched(curr);
521 set_preempt_need_resched();
522 return;
523 }
524
525 if (set_nr_and_not_polling(curr))
526 smp_send_reschedule(cpu);
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
529}
530
531void resched_cpu(int cpu)
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
536 raw_spin_lock_irqsave(&rq->lock, flags);
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
539 raw_spin_unlock_irqrestore(&rq->lock, flags);
540}
541
542#ifdef CONFIG_SMP
543#ifdef CONFIG_NO_HZ_COMMON
544/*
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int i, cpu = smp_processor_id();
555 struct sched_domain *sd;
556
557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 return cpu;
559
560 rcu_read_lock();
561 for_each_domain(cpu, sd) {
562 for_each_cpu(i, sched_domain_span(sd)) {
563 if (cpu == i)
564 continue;
565
566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 cpu = i;
568 goto unlock;
569 }
570 }
571 }
572
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575unlock:
576 rcu_read_unlock();
577 return cpu;
578}
579
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590static void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 if (set_nr_and_not_polling(rq->idle))
598 smp_send_reschedule(cpu);
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
601}
602
603static bool wake_up_full_nohz_cpu(int cpu)
604{
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
613 if (tick_nohz_full_cpu(cpu)) {
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
616 tick_nohz_full_kick_cpu(cpu);
617 return true;
618 }
619
620 return false;
621}
622
623/*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
628void wake_up_nohz_cpu(int cpu)
629{
630 if (!wake_up_full_nohz_cpu(cpu))
631 wake_up_idle_cpu(cpu);
632}
633
634static inline bool got_nohz_idle_kick(void)
635{
636 int cpu = smp_processor_id();
637
638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 return false;
650}
651
652#else /* CONFIG_NO_HZ_COMMON */
653
654static inline bool got_nohz_idle_kick(void)
655{
656 return false;
657}
658
659#endif /* CONFIG_NO_HZ_COMMON */
660
661#ifdef CONFIG_NO_HZ_FULL
662bool sched_can_stop_tick(struct rq *rq)
663{
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
670 /*
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
673 */
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
679 }
680
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
695 return false;
696
697 return true;
698}
699#endif /* CONFIG_NO_HZ_FULL */
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712{
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737out:
738 return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743 return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p, bool update_load)
748{
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (task_has_idle_policy(p)) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 p->se.runnable_weight = load->weight;
759 return;
760 }
761
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 p->se.runnable_weight = load->weight;
772 }
773}
774
775#ifdef CONFIG_UCLAMP_TASK
776/*
777 * Serializes updates of utilization clamp values
778 *
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
785 */
786static DEFINE_MUTEX(uclamp_mutex);
787
788/* Max allowed minimum utilization */
789unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790
791/* Max allowed maximum utilization */
792unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793
794/* All clamps are required to be less or equal than these values */
795static struct uclamp_se uclamp_default[UCLAMP_CNT];
796
797/* Integer rounded range for each bucket */
798#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799
800#define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802
803static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804{
805 return clamp_value / UCLAMP_BUCKET_DELTA;
806}
807
808static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809{
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811}
812
813static inline enum uclamp_id uclamp_none(enum uclamp_id clamp_id)
814{
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
818}
819
820static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
822{
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
826}
827
828static inline unsigned int
829uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
831{
832 /*
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
836 */
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
840 }
841
842 return uclamp_none(UCLAMP_MIN);
843}
844
845static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
847{
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
851
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853}
854
855static inline
856enum uclamp_id uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
858{
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
861
862 /*
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
865 */
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
870 }
871
872 /* No tasks -- default clamp values */
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
874}
875
876static inline struct uclamp_se
877uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878{
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880#ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
882
883 /*
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
886 */
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
891
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895#endif
896
897 return uc_req;
898}
899
900/*
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
906 * - the system default clamp value, defined by the sysadmin
907 */
908static inline struct uclamp_se
909uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910{
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
913
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
917
918 return uc_req;
919}
920
921enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922{
923 struct uclamp_se uc_eff;
924
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
927 return p->uclamp[clamp_id].value;
928
929 uc_eff = uclamp_eff_get(p, clamp_id);
930
931 return uc_eff.value;
932}
933
934/*
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
938 *
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
943 */
944static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
946{
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950
951 lockdep_assert_held(&rq->lock);
952
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
959
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
961
962 /*
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
965 */
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
968
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
971}
972
973/*
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
977 *
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
981 */
982static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
984{
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
990
991 lockdep_assert_held(&rq->lock);
992
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
998
999 /*
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1004 */
1005 if (likely(bucket->tasks))
1006 return;
1007
1008 rq_clamp = READ_ONCE(uc_rq->value);
1009 /*
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1012 */
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 }
1018}
1019
1020static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021{
1022 enum uclamp_id clamp_id;
1023
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1026
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1029
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033}
1034
1035static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036{
1037 enum uclamp_id clamp_id;
1038
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1041
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1044}
1045
1046static inline void
1047uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048{
1049 struct rq_flags rf;
1050 struct rq *rq;
1051
1052 /*
1053 * Lock the task and the rq where the task is (or was) queued.
1054 *
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 */
1060 rq = task_rq_lock(p, &rf);
1061
1062 /*
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1067 */
1068 if (p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1071 }
1072
1073 task_rq_unlock(rq, p, &rf);
1074}
1075
1076#ifdef CONFIG_UCLAMP_TASK_GROUP
1077static inline void
1078uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1080{
1081 enum uclamp_id clamp_id;
1082 struct css_task_iter it;
1083 struct task_struct *p;
1084
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1090 }
1091 }
1092 css_task_iter_end(&it);
1093}
1094
1095static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096static void uclamp_update_root_tg(void)
1097{
1098 struct task_group *tg = &root_task_group;
1099
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1104
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1108}
1109#else
1110static void uclamp_update_root_tg(void) { }
1111#endif
1112
1113int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void __user *buffer, size_t *lenp,
1115 loff_t *ppos)
1116{
1117 bool update_root_tg = false;
1118 int old_min, old_max;
1119 int result;
1120
1121 mutex_lock(&uclamp_mutex);
1122 old_min = sysctl_sched_uclamp_util_min;
1123 old_max = sysctl_sched_uclamp_util_max;
1124
1125 result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 if (result)
1127 goto undo;
1128 if (!write)
1129 goto done;
1130
1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 result = -EINVAL;
1134 goto undo;
1135 }
1136
1137 if (old_min != sysctl_sched_uclamp_util_min) {
1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 sysctl_sched_uclamp_util_min, false);
1140 update_root_tg = true;
1141 }
1142 if (old_max != sysctl_sched_uclamp_util_max) {
1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 sysctl_sched_uclamp_util_max, false);
1145 update_root_tg = true;
1146 }
1147
1148 if (update_root_tg)
1149 uclamp_update_root_tg();
1150
1151 /*
1152 * We update all RUNNABLE tasks only when task groups are in use.
1153 * Otherwise, keep it simple and do just a lazy update at each next
1154 * task enqueue time.
1155 */
1156
1157 goto done;
1158
1159undo:
1160 sysctl_sched_uclamp_util_min = old_min;
1161 sysctl_sched_uclamp_util_max = old_max;
1162done:
1163 mutex_unlock(&uclamp_mutex);
1164
1165 return result;
1166}
1167
1168static int uclamp_validate(struct task_struct *p,
1169 const struct sched_attr *attr)
1170{
1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 lower_bound = attr->sched_util_min;
1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 upper_bound = attr->sched_util_max;
1178
1179 if (lower_bound > upper_bound)
1180 return -EINVAL;
1181 if (upper_bound > SCHED_CAPACITY_SCALE)
1182 return -EINVAL;
1183
1184 return 0;
1185}
1186
1187static void __setscheduler_uclamp(struct task_struct *p,
1188 const struct sched_attr *attr)
1189{
1190 enum uclamp_id clamp_id;
1191
1192 /*
1193 * On scheduling class change, reset to default clamps for tasks
1194 * without a task-specific value.
1195 */
1196 for_each_clamp_id(clamp_id) {
1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200 /* Keep using defined clamps across class changes */
1201 if (uc_se->user_defined)
1202 continue;
1203
1204 /* By default, RT tasks always get 100% boost */
1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208 uclamp_se_set(uc_se, clamp_value, false);
1209 }
1210
1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 return;
1213
1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 attr->sched_util_min, true);
1217 }
1218
1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 attr->sched_util_max, true);
1222 }
1223}
1224
1225static void uclamp_fork(struct task_struct *p)
1226{
1227 enum uclamp_id clamp_id;
1228
1229 for_each_clamp_id(clamp_id)
1230 p->uclamp[clamp_id].active = false;
1231
1232 if (likely(!p->sched_reset_on_fork))
1233 return;
1234
1235 for_each_clamp_id(clamp_id) {
1236 unsigned int clamp_value = uclamp_none(clamp_id);
1237
1238 /* By default, RT tasks always get 100% boost */
1239 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1240 clamp_value = uclamp_none(UCLAMP_MAX);
1241
1242 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1243 }
1244}
1245
1246static void __init init_uclamp(void)
1247{
1248 struct uclamp_se uc_max = {};
1249 enum uclamp_id clamp_id;
1250 int cpu;
1251
1252 mutex_init(&uclamp_mutex);
1253
1254 for_each_possible_cpu(cpu) {
1255 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1256 cpu_rq(cpu)->uclamp_flags = 0;
1257 }
1258
1259 for_each_clamp_id(clamp_id) {
1260 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1261 uclamp_none(clamp_id), false);
1262 }
1263
1264 /* System defaults allow max clamp values for both indexes */
1265 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1266 for_each_clamp_id(clamp_id) {
1267 uclamp_default[clamp_id] = uc_max;
1268#ifdef CONFIG_UCLAMP_TASK_GROUP
1269 root_task_group.uclamp_req[clamp_id] = uc_max;
1270 root_task_group.uclamp[clamp_id] = uc_max;
1271#endif
1272 }
1273}
1274
1275#else /* CONFIG_UCLAMP_TASK */
1276static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1277static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1278static inline int uclamp_validate(struct task_struct *p,
1279 const struct sched_attr *attr)
1280{
1281 return -EOPNOTSUPP;
1282}
1283static void __setscheduler_uclamp(struct task_struct *p,
1284 const struct sched_attr *attr) { }
1285static inline void uclamp_fork(struct task_struct *p) { }
1286static inline void init_uclamp(void) { }
1287#endif /* CONFIG_UCLAMP_TASK */
1288
1289static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1290{
1291 if (!(flags & ENQUEUE_NOCLOCK))
1292 update_rq_clock(rq);
1293
1294 if (!(flags & ENQUEUE_RESTORE)) {
1295 sched_info_queued(rq, p);
1296 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297 }
1298
1299 uclamp_rq_inc(rq, p);
1300 p->sched_class->enqueue_task(rq, p, flags);
1301}
1302
1303static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1304{
1305 if (!(flags & DEQUEUE_NOCLOCK))
1306 update_rq_clock(rq);
1307
1308 if (!(flags & DEQUEUE_SAVE)) {
1309 sched_info_dequeued(rq, p);
1310 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1311 }
1312
1313 uclamp_rq_dec(rq, p);
1314 p->sched_class->dequeue_task(rq, p, flags);
1315}
1316
1317void activate_task(struct rq *rq, struct task_struct *p, int flags)
1318{
1319 if (task_contributes_to_load(p))
1320 rq->nr_uninterruptible--;
1321
1322 enqueue_task(rq, p, flags);
1323
1324 p->on_rq = TASK_ON_RQ_QUEUED;
1325}
1326
1327void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1328{
1329 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330
1331 if (task_contributes_to_load(p))
1332 rq->nr_uninterruptible++;
1333
1334 dequeue_task(rq, p, flags);
1335}
1336
1337/*
1338 * __normal_prio - return the priority that is based on the static prio
1339 */
1340static inline int __normal_prio(struct task_struct *p)
1341{
1342 return p->static_prio;
1343}
1344
1345/*
1346 * Calculate the expected normal priority: i.e. priority
1347 * without taking RT-inheritance into account. Might be
1348 * boosted by interactivity modifiers. Changes upon fork,
1349 * setprio syscalls, and whenever the interactivity
1350 * estimator recalculates.
1351 */
1352static inline int normal_prio(struct task_struct *p)
1353{
1354 int prio;
1355
1356 if (task_has_dl_policy(p))
1357 prio = MAX_DL_PRIO-1;
1358 else if (task_has_rt_policy(p))
1359 prio = MAX_RT_PRIO-1 - p->rt_priority;
1360 else
1361 prio = __normal_prio(p);
1362 return prio;
1363}
1364
1365/*
1366 * Calculate the current priority, i.e. the priority
1367 * taken into account by the scheduler. This value might
1368 * be boosted by RT tasks, or might be boosted by
1369 * interactivity modifiers. Will be RT if the task got
1370 * RT-boosted. If not then it returns p->normal_prio.
1371 */
1372static int effective_prio(struct task_struct *p)
1373{
1374 p->normal_prio = normal_prio(p);
1375 /*
1376 * If we are RT tasks or we were boosted to RT priority,
1377 * keep the priority unchanged. Otherwise, update priority
1378 * to the normal priority:
1379 */
1380 if (!rt_prio(p->prio))
1381 return p->normal_prio;
1382 return p->prio;
1383}
1384
1385/**
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
1388 *
1389 * Return: 1 if the task is currently executing. 0 otherwise.
1390 */
1391inline int task_curr(const struct task_struct *p)
1392{
1393 return cpu_curr(task_cpu(p)) == p;
1394}
1395
1396/*
1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398 * use the balance_callback list if you want balancing.
1399 *
1400 * this means any call to check_class_changed() must be followed by a call to
1401 * balance_callback().
1402 */
1403static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404 const struct sched_class *prev_class,
1405 int oldprio)
1406{
1407 if (prev_class != p->sched_class) {
1408 if (prev_class->switched_from)
1409 prev_class->switched_from(rq, p);
1410
1411 p->sched_class->switched_to(rq, p);
1412 } else if (oldprio != p->prio || dl_task(p))
1413 p->sched_class->prio_changed(rq, p, oldprio);
1414}
1415
1416void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1417{
1418 const struct sched_class *class;
1419
1420 if (p->sched_class == rq->curr->sched_class) {
1421 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422 } else {
1423 for_each_class(class) {
1424 if (class == rq->curr->sched_class)
1425 break;
1426 if (class == p->sched_class) {
1427 resched_curr(rq);
1428 break;
1429 }
1430 }
1431 }
1432
1433 /*
1434 * A queue event has occurred, and we're going to schedule. In
1435 * this case, we can save a useless back to back clock update.
1436 */
1437 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1438 rq_clock_skip_update(rq);
1439}
1440
1441#ifdef CONFIG_SMP
1442
1443static inline bool is_per_cpu_kthread(struct task_struct *p)
1444{
1445 if (!(p->flags & PF_KTHREAD))
1446 return false;
1447
1448 if (p->nr_cpus_allowed != 1)
1449 return false;
1450
1451 return true;
1452}
1453
1454/*
1455 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1456 * __set_cpus_allowed_ptr() and select_fallback_rq().
1457 */
1458static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1459{
1460 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1461 return false;
1462
1463 if (is_per_cpu_kthread(p))
1464 return cpu_online(cpu);
1465
1466 return cpu_active(cpu);
1467}
1468
1469/*
1470 * This is how migration works:
1471 *
1472 * 1) we invoke migration_cpu_stop() on the target CPU using
1473 * stop_one_cpu().
1474 * 2) stopper starts to run (implicitly forcing the migrated thread
1475 * off the CPU)
1476 * 3) it checks whether the migrated task is still in the wrong runqueue.
1477 * 4) if it's in the wrong runqueue then the migration thread removes
1478 * it and puts it into the right queue.
1479 * 5) stopper completes and stop_one_cpu() returns and the migration
1480 * is done.
1481 */
1482
1483/*
1484 * move_queued_task - move a queued task to new rq.
1485 *
1486 * Returns (locked) new rq. Old rq's lock is released.
1487 */
1488static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1489 struct task_struct *p, int new_cpu)
1490{
1491 lockdep_assert_held(&rq->lock);
1492
1493 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1494 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1495 set_task_cpu(p, new_cpu);
1496 rq_unlock(rq, rf);
1497
1498 rq = cpu_rq(new_cpu);
1499
1500 rq_lock(rq, rf);
1501 BUG_ON(task_cpu(p) != new_cpu);
1502 enqueue_task(rq, p, 0);
1503 p->on_rq = TASK_ON_RQ_QUEUED;
1504 check_preempt_curr(rq, p, 0);
1505
1506 return rq;
1507}
1508
1509struct migration_arg {
1510 struct task_struct *task;
1511 int dest_cpu;
1512};
1513
1514/*
1515 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1516 * this because either it can't run here any more (set_cpus_allowed()
1517 * away from this CPU, or CPU going down), or because we're
1518 * attempting to rebalance this task on exec (sched_exec).
1519 *
1520 * So we race with normal scheduler movements, but that's OK, as long
1521 * as the task is no longer on this CPU.
1522 */
1523static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1524 struct task_struct *p, int dest_cpu)
1525{
1526 /* Affinity changed (again). */
1527 if (!is_cpu_allowed(p, dest_cpu))
1528 return rq;
1529
1530 update_rq_clock(rq);
1531 rq = move_queued_task(rq, rf, p, dest_cpu);
1532
1533 return rq;
1534}
1535
1536/*
1537 * migration_cpu_stop - this will be executed by a highprio stopper thread
1538 * and performs thread migration by bumping thread off CPU then
1539 * 'pushing' onto another runqueue.
1540 */
1541static int migration_cpu_stop(void *data)
1542{
1543 struct migration_arg *arg = data;
1544 struct task_struct *p = arg->task;
1545 struct rq *rq = this_rq();
1546 struct rq_flags rf;
1547
1548 /*
1549 * The original target CPU might have gone down and we might
1550 * be on another CPU but it doesn't matter.
1551 */
1552 local_irq_disable();
1553 /*
1554 * We need to explicitly wake pending tasks before running
1555 * __migrate_task() such that we will not miss enforcing cpus_ptr
1556 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1557 */
1558 sched_ttwu_pending();
1559
1560 raw_spin_lock(&p->pi_lock);
1561 rq_lock(rq, &rf);
1562 /*
1563 * If task_rq(p) != rq, it cannot be migrated here, because we're
1564 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1565 * we're holding p->pi_lock.
1566 */
1567 if (task_rq(p) == rq) {
1568 if (task_on_rq_queued(p))
1569 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1570 else
1571 p->wake_cpu = arg->dest_cpu;
1572 }
1573 rq_unlock(rq, &rf);
1574 raw_spin_unlock(&p->pi_lock);
1575
1576 local_irq_enable();
1577 return 0;
1578}
1579
1580/*
1581 * sched_class::set_cpus_allowed must do the below, but is not required to
1582 * actually call this function.
1583 */
1584void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1585{
1586 cpumask_copy(&p->cpus_mask, new_mask);
1587 p->nr_cpus_allowed = cpumask_weight(new_mask);
1588}
1589
1590void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1591{
1592 struct rq *rq = task_rq(p);
1593 bool queued, running;
1594
1595 lockdep_assert_held(&p->pi_lock);
1596
1597 queued = task_on_rq_queued(p);
1598 running = task_current(rq, p);
1599
1600 if (queued) {
1601 /*
1602 * Because __kthread_bind() calls this on blocked tasks without
1603 * holding rq->lock.
1604 */
1605 lockdep_assert_held(&rq->lock);
1606 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1607 }
1608 if (running)
1609 put_prev_task(rq, p);
1610
1611 p->sched_class->set_cpus_allowed(p, new_mask);
1612
1613 if (queued)
1614 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1615 if (running)
1616 set_next_task(rq, p);
1617}
1618
1619/*
1620 * Change a given task's CPU affinity. Migrate the thread to a
1621 * proper CPU and schedule it away if the CPU it's executing on
1622 * is removed from the allowed bitmask.
1623 *
1624 * NOTE: the caller must have a valid reference to the task, the
1625 * task must not exit() & deallocate itself prematurely. The
1626 * call is not atomic; no spinlocks may be held.
1627 */
1628static int __set_cpus_allowed_ptr(struct task_struct *p,
1629 const struct cpumask *new_mask, bool check)
1630{
1631 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1632 unsigned int dest_cpu;
1633 struct rq_flags rf;
1634 struct rq *rq;
1635 int ret = 0;
1636
1637 rq = task_rq_lock(p, &rf);
1638 update_rq_clock(rq);
1639
1640 if (p->flags & PF_KTHREAD) {
1641 /*
1642 * Kernel threads are allowed on online && !active CPUs
1643 */
1644 cpu_valid_mask = cpu_online_mask;
1645 }
1646
1647 /*
1648 * Must re-check here, to close a race against __kthread_bind(),
1649 * sched_setaffinity() is not guaranteed to observe the flag.
1650 */
1651 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1652 ret = -EINVAL;
1653 goto out;
1654 }
1655
1656 if (cpumask_equal(p->cpus_ptr, new_mask))
1657 goto out;
1658
1659 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1660 if (dest_cpu >= nr_cpu_ids) {
1661 ret = -EINVAL;
1662 goto out;
1663 }
1664
1665 do_set_cpus_allowed(p, new_mask);
1666
1667 if (p->flags & PF_KTHREAD) {
1668 /*
1669 * For kernel threads that do indeed end up on online &&
1670 * !active we want to ensure they are strict per-CPU threads.
1671 */
1672 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1673 !cpumask_intersects(new_mask, cpu_active_mask) &&
1674 p->nr_cpus_allowed != 1);
1675 }
1676
1677 /* Can the task run on the task's current CPU? If so, we're done */
1678 if (cpumask_test_cpu(task_cpu(p), new_mask))
1679 goto out;
1680
1681 if (task_running(rq, p) || p->state == TASK_WAKING) {
1682 struct migration_arg arg = { p, dest_cpu };
1683 /* Need help from migration thread: drop lock and wait. */
1684 task_rq_unlock(rq, p, &rf);
1685 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1686 return 0;
1687 } else if (task_on_rq_queued(p)) {
1688 /*
1689 * OK, since we're going to drop the lock immediately
1690 * afterwards anyway.
1691 */
1692 rq = move_queued_task(rq, &rf, p, dest_cpu);
1693 }
1694out:
1695 task_rq_unlock(rq, p, &rf);
1696
1697 return ret;
1698}
1699
1700int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1701{
1702 return __set_cpus_allowed_ptr(p, new_mask, false);
1703}
1704EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1705
1706void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1707{
1708#ifdef CONFIG_SCHED_DEBUG
1709 /*
1710 * We should never call set_task_cpu() on a blocked task,
1711 * ttwu() will sort out the placement.
1712 */
1713 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1714 !p->on_rq);
1715
1716 /*
1717 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1718 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1719 * time relying on p->on_rq.
1720 */
1721 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1722 p->sched_class == &fair_sched_class &&
1723 (p->on_rq && !task_on_rq_migrating(p)));
1724
1725#ifdef CONFIG_LOCKDEP
1726 /*
1727 * The caller should hold either p->pi_lock or rq->lock, when changing
1728 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1729 *
1730 * sched_move_task() holds both and thus holding either pins the cgroup,
1731 * see task_group().
1732 *
1733 * Furthermore, all task_rq users should acquire both locks, see
1734 * task_rq_lock().
1735 */
1736 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1737 lockdep_is_held(&task_rq(p)->lock)));
1738#endif
1739 /*
1740 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1741 */
1742 WARN_ON_ONCE(!cpu_online(new_cpu));
1743#endif
1744
1745 trace_sched_migrate_task(p, new_cpu);
1746
1747 if (task_cpu(p) != new_cpu) {
1748 if (p->sched_class->migrate_task_rq)
1749 p->sched_class->migrate_task_rq(p, new_cpu);
1750 p->se.nr_migrations++;
1751 rseq_migrate(p);
1752 perf_event_task_migrate(p);
1753 }
1754
1755 __set_task_cpu(p, new_cpu);
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759static void __migrate_swap_task(struct task_struct *p, int cpu)
1760{
1761 if (task_on_rq_queued(p)) {
1762 struct rq *src_rq, *dst_rq;
1763 struct rq_flags srf, drf;
1764
1765 src_rq = task_rq(p);
1766 dst_rq = cpu_rq(cpu);
1767
1768 rq_pin_lock(src_rq, &srf);
1769 rq_pin_lock(dst_rq, &drf);
1770
1771 deactivate_task(src_rq, p, 0);
1772 set_task_cpu(p, cpu);
1773 activate_task(dst_rq, p, 0);
1774 check_preempt_curr(dst_rq, p, 0);
1775
1776 rq_unpin_lock(dst_rq, &drf);
1777 rq_unpin_lock(src_rq, &srf);
1778
1779 } else {
1780 /*
1781 * Task isn't running anymore; make it appear like we migrated
1782 * it before it went to sleep. This means on wakeup we make the
1783 * previous CPU our target instead of where it really is.
1784 */
1785 p->wake_cpu = cpu;
1786 }
1787}
1788
1789struct migration_swap_arg {
1790 struct task_struct *src_task, *dst_task;
1791 int src_cpu, dst_cpu;
1792};
1793
1794static int migrate_swap_stop(void *data)
1795{
1796 struct migration_swap_arg *arg = data;
1797 struct rq *src_rq, *dst_rq;
1798 int ret = -EAGAIN;
1799
1800 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1801 return -EAGAIN;
1802
1803 src_rq = cpu_rq(arg->src_cpu);
1804 dst_rq = cpu_rq(arg->dst_cpu);
1805
1806 double_raw_lock(&arg->src_task->pi_lock,
1807 &arg->dst_task->pi_lock);
1808 double_rq_lock(src_rq, dst_rq);
1809
1810 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1811 goto unlock;
1812
1813 if (task_cpu(arg->src_task) != arg->src_cpu)
1814 goto unlock;
1815
1816 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1817 goto unlock;
1818
1819 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1820 goto unlock;
1821
1822 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1823 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1824
1825 ret = 0;
1826
1827unlock:
1828 double_rq_unlock(src_rq, dst_rq);
1829 raw_spin_unlock(&arg->dst_task->pi_lock);
1830 raw_spin_unlock(&arg->src_task->pi_lock);
1831
1832 return ret;
1833}
1834
1835/*
1836 * Cross migrate two tasks
1837 */
1838int migrate_swap(struct task_struct *cur, struct task_struct *p,
1839 int target_cpu, int curr_cpu)
1840{
1841 struct migration_swap_arg arg;
1842 int ret = -EINVAL;
1843
1844 arg = (struct migration_swap_arg){
1845 .src_task = cur,
1846 .src_cpu = curr_cpu,
1847 .dst_task = p,
1848 .dst_cpu = target_cpu,
1849 };
1850
1851 if (arg.src_cpu == arg.dst_cpu)
1852 goto out;
1853
1854 /*
1855 * These three tests are all lockless; this is OK since all of them
1856 * will be re-checked with proper locks held further down the line.
1857 */
1858 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1859 goto out;
1860
1861 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1862 goto out;
1863
1864 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1865 goto out;
1866
1867 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1868 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1869
1870out:
1871 return ret;
1872}
1873#endif /* CONFIG_NUMA_BALANCING */
1874
1875/*
1876 * wait_task_inactive - wait for a thread to unschedule.
1877 *
1878 * If @match_state is nonzero, it's the @p->state value just checked and
1879 * not expected to change. If it changes, i.e. @p might have woken up,
1880 * then return zero. When we succeed in waiting for @p to be off its CPU,
1881 * we return a positive number (its total switch count). If a second call
1882 * a short while later returns the same number, the caller can be sure that
1883 * @p has remained unscheduled the whole time.
1884 *
1885 * The caller must ensure that the task *will* unschedule sometime soon,
1886 * else this function might spin for a *long* time. This function can't
1887 * be called with interrupts off, or it may introduce deadlock with
1888 * smp_call_function() if an IPI is sent by the same process we are
1889 * waiting to become inactive.
1890 */
1891unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1892{
1893 int running, queued;
1894 struct rq_flags rf;
1895 unsigned long ncsw;
1896 struct rq *rq;
1897
1898 for (;;) {
1899 /*
1900 * We do the initial early heuristics without holding
1901 * any task-queue locks at all. We'll only try to get
1902 * the runqueue lock when things look like they will
1903 * work out!
1904 */
1905 rq = task_rq(p);
1906
1907 /*
1908 * If the task is actively running on another CPU
1909 * still, just relax and busy-wait without holding
1910 * any locks.
1911 *
1912 * NOTE! Since we don't hold any locks, it's not
1913 * even sure that "rq" stays as the right runqueue!
1914 * But we don't care, since "task_running()" will
1915 * return false if the runqueue has changed and p
1916 * is actually now running somewhere else!
1917 */
1918 while (task_running(rq, p)) {
1919 if (match_state && unlikely(p->state != match_state))
1920 return 0;
1921 cpu_relax();
1922 }
1923
1924 /*
1925 * Ok, time to look more closely! We need the rq
1926 * lock now, to be *sure*. If we're wrong, we'll
1927 * just go back and repeat.
1928 */
1929 rq = task_rq_lock(p, &rf);
1930 trace_sched_wait_task(p);
1931 running = task_running(rq, p);
1932 queued = task_on_rq_queued(p);
1933 ncsw = 0;
1934 if (!match_state || p->state == match_state)
1935 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1936 task_rq_unlock(rq, p, &rf);
1937
1938 /*
1939 * If it changed from the expected state, bail out now.
1940 */
1941 if (unlikely(!ncsw))
1942 break;
1943
1944 /*
1945 * Was it really running after all now that we
1946 * checked with the proper locks actually held?
1947 *
1948 * Oops. Go back and try again..
1949 */
1950 if (unlikely(running)) {
1951 cpu_relax();
1952 continue;
1953 }
1954
1955 /*
1956 * It's not enough that it's not actively running,
1957 * it must be off the runqueue _entirely_, and not
1958 * preempted!
1959 *
1960 * So if it was still runnable (but just not actively
1961 * running right now), it's preempted, and we should
1962 * yield - it could be a while.
1963 */
1964 if (unlikely(queued)) {
1965 ktime_t to = NSEC_PER_SEC / HZ;
1966
1967 set_current_state(TASK_UNINTERRUPTIBLE);
1968 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1969 continue;
1970 }
1971
1972 /*
1973 * Ahh, all good. It wasn't running, and it wasn't
1974 * runnable, which means that it will never become
1975 * running in the future either. We're all done!
1976 */
1977 break;
1978 }
1979
1980 return ncsw;
1981}
1982
1983/***
1984 * kick_process - kick a running thread to enter/exit the kernel
1985 * @p: the to-be-kicked thread
1986 *
1987 * Cause a process which is running on another CPU to enter
1988 * kernel-mode, without any delay. (to get signals handled.)
1989 *
1990 * NOTE: this function doesn't have to take the runqueue lock,
1991 * because all it wants to ensure is that the remote task enters
1992 * the kernel. If the IPI races and the task has been migrated
1993 * to another CPU then no harm is done and the purpose has been
1994 * achieved as well.
1995 */
1996void kick_process(struct task_struct *p)
1997{
1998 int cpu;
1999
2000 preempt_disable();
2001 cpu = task_cpu(p);
2002 if ((cpu != smp_processor_id()) && task_curr(p))
2003 smp_send_reschedule(cpu);
2004 preempt_enable();
2005}
2006EXPORT_SYMBOL_GPL(kick_process);
2007
2008/*
2009 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2010 *
2011 * A few notes on cpu_active vs cpu_online:
2012 *
2013 * - cpu_active must be a subset of cpu_online
2014 *
2015 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2016 * see __set_cpus_allowed_ptr(). At this point the newly online
2017 * CPU isn't yet part of the sched domains, and balancing will not
2018 * see it.
2019 *
2020 * - on CPU-down we clear cpu_active() to mask the sched domains and
2021 * avoid the load balancer to place new tasks on the to be removed
2022 * CPU. Existing tasks will remain running there and will be taken
2023 * off.
2024 *
2025 * This means that fallback selection must not select !active CPUs.
2026 * And can assume that any active CPU must be online. Conversely
2027 * select_task_rq() below may allow selection of !active CPUs in order
2028 * to satisfy the above rules.
2029 */
2030static int select_fallback_rq(int cpu, struct task_struct *p)
2031{
2032 int nid = cpu_to_node(cpu);
2033 const struct cpumask *nodemask = NULL;
2034 enum { cpuset, possible, fail } state = cpuset;
2035 int dest_cpu;
2036
2037 /*
2038 * If the node that the CPU is on has been offlined, cpu_to_node()
2039 * will return -1. There is no CPU on the node, and we should
2040 * select the CPU on the other node.
2041 */
2042 if (nid != -1) {
2043 nodemask = cpumask_of_node(nid);
2044
2045 /* Look for allowed, online CPU in same node. */
2046 for_each_cpu(dest_cpu, nodemask) {
2047 if (!cpu_active(dest_cpu))
2048 continue;
2049 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2050 return dest_cpu;
2051 }
2052 }
2053
2054 for (;;) {
2055 /* Any allowed, online CPU? */
2056 for_each_cpu(dest_cpu, p->cpus_ptr) {
2057 if (!is_cpu_allowed(p, dest_cpu))
2058 continue;
2059
2060 goto out;
2061 }
2062
2063 /* No more Mr. Nice Guy. */
2064 switch (state) {
2065 case cpuset:
2066 if (IS_ENABLED(CONFIG_CPUSETS)) {
2067 cpuset_cpus_allowed_fallback(p);
2068 state = possible;
2069 break;
2070 }
2071 /* Fall-through */
2072 case possible:
2073 do_set_cpus_allowed(p, cpu_possible_mask);
2074 state = fail;
2075 break;
2076
2077 case fail:
2078 BUG();
2079 break;
2080 }
2081 }
2082
2083out:
2084 if (state != cpuset) {
2085 /*
2086 * Don't tell them about moving exiting tasks or
2087 * kernel threads (both mm NULL), since they never
2088 * leave kernel.
2089 */
2090 if (p->mm && printk_ratelimit()) {
2091 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2092 task_pid_nr(p), p->comm, cpu);
2093 }
2094 }
2095
2096 return dest_cpu;
2097}
2098
2099/*
2100 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2101 */
2102static inline
2103int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2104{
2105 lockdep_assert_held(&p->pi_lock);
2106
2107 if (p->nr_cpus_allowed > 1)
2108 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2109 else
2110 cpu = cpumask_any(p->cpus_ptr);
2111
2112 /*
2113 * In order not to call set_task_cpu() on a blocking task we need
2114 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2115 * CPU.
2116 *
2117 * Since this is common to all placement strategies, this lives here.
2118 *
2119 * [ this allows ->select_task() to simply return task_cpu(p) and
2120 * not worry about this generic constraint ]
2121 */
2122 if (unlikely(!is_cpu_allowed(p, cpu)))
2123 cpu = select_fallback_rq(task_cpu(p), p);
2124
2125 return cpu;
2126}
2127
2128static void update_avg(u64 *avg, u64 sample)
2129{
2130 s64 diff = sample - *avg;
2131 *avg += diff >> 3;
2132}
2133
2134void sched_set_stop_task(int cpu, struct task_struct *stop)
2135{
2136 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2137 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2138
2139 if (stop) {
2140 /*
2141 * Make it appear like a SCHED_FIFO task, its something
2142 * userspace knows about and won't get confused about.
2143 *
2144 * Also, it will make PI more or less work without too
2145 * much confusion -- but then, stop work should not
2146 * rely on PI working anyway.
2147 */
2148 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2149
2150 stop->sched_class = &stop_sched_class;
2151 }
2152
2153 cpu_rq(cpu)->stop = stop;
2154
2155 if (old_stop) {
2156 /*
2157 * Reset it back to a normal scheduling class so that
2158 * it can die in pieces.
2159 */
2160 old_stop->sched_class = &rt_sched_class;
2161 }
2162}
2163
2164#else
2165
2166static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2167 const struct cpumask *new_mask, bool check)
2168{
2169 return set_cpus_allowed_ptr(p, new_mask);
2170}
2171
2172#endif /* CONFIG_SMP */
2173
2174static void
2175ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2176{
2177 struct rq *rq;
2178
2179 if (!schedstat_enabled())
2180 return;
2181
2182 rq = this_rq();
2183
2184#ifdef CONFIG_SMP
2185 if (cpu == rq->cpu) {
2186 __schedstat_inc(rq->ttwu_local);
2187 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2188 } else {
2189 struct sched_domain *sd;
2190
2191 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2192 rcu_read_lock();
2193 for_each_domain(rq->cpu, sd) {
2194 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2195 __schedstat_inc(sd->ttwu_wake_remote);
2196 break;
2197 }
2198 }
2199 rcu_read_unlock();
2200 }
2201
2202 if (wake_flags & WF_MIGRATED)
2203 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2204#endif /* CONFIG_SMP */
2205
2206 __schedstat_inc(rq->ttwu_count);
2207 __schedstat_inc(p->se.statistics.nr_wakeups);
2208
2209 if (wake_flags & WF_SYNC)
2210 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2211}
2212
2213/*
2214 * Mark the task runnable and perform wakeup-preemption.
2215 */
2216static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2217 struct rq_flags *rf)
2218{
2219 check_preempt_curr(rq, p, wake_flags);
2220 p->state = TASK_RUNNING;
2221 trace_sched_wakeup(p);
2222
2223#ifdef CONFIG_SMP
2224 if (p->sched_class->task_woken) {
2225 /*
2226 * Our task @p is fully woken up and running; so its safe to
2227 * drop the rq->lock, hereafter rq is only used for statistics.
2228 */
2229 rq_unpin_lock(rq, rf);
2230 p->sched_class->task_woken(rq, p);
2231 rq_repin_lock(rq, rf);
2232 }
2233
2234 if (rq->idle_stamp) {
2235 u64 delta = rq_clock(rq) - rq->idle_stamp;
2236 u64 max = 2*rq->max_idle_balance_cost;
2237
2238 update_avg(&rq->avg_idle, delta);
2239
2240 if (rq->avg_idle > max)
2241 rq->avg_idle = max;
2242
2243 rq->idle_stamp = 0;
2244 }
2245#endif
2246}
2247
2248static void
2249ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2250 struct rq_flags *rf)
2251{
2252 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2253
2254 lockdep_assert_held(&rq->lock);
2255
2256#ifdef CONFIG_SMP
2257 if (p->sched_contributes_to_load)
2258 rq->nr_uninterruptible--;
2259
2260 if (wake_flags & WF_MIGRATED)
2261 en_flags |= ENQUEUE_MIGRATED;
2262#endif
2263
2264 activate_task(rq, p, en_flags);
2265 ttwu_do_wakeup(rq, p, wake_flags, rf);
2266}
2267
2268/*
2269 * Called in case the task @p isn't fully descheduled from its runqueue,
2270 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2271 * since all we need to do is flip p->state to TASK_RUNNING, since
2272 * the task is still ->on_rq.
2273 */
2274static int ttwu_remote(struct task_struct *p, int wake_flags)
2275{
2276 struct rq_flags rf;
2277 struct rq *rq;
2278 int ret = 0;
2279
2280 rq = __task_rq_lock(p, &rf);
2281 if (task_on_rq_queued(p)) {
2282 /* check_preempt_curr() may use rq clock */
2283 update_rq_clock(rq);
2284 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2285 ret = 1;
2286 }
2287 __task_rq_unlock(rq, &rf);
2288
2289 return ret;
2290}
2291
2292#ifdef CONFIG_SMP
2293void sched_ttwu_pending(void)
2294{
2295 struct rq *rq = this_rq();
2296 struct llist_node *llist = llist_del_all(&rq->wake_list);
2297 struct task_struct *p, *t;
2298 struct rq_flags rf;
2299
2300 if (!llist)
2301 return;
2302
2303 rq_lock_irqsave(rq, &rf);
2304 update_rq_clock(rq);
2305
2306 llist_for_each_entry_safe(p, t, llist, wake_entry)
2307 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2308
2309 rq_unlock_irqrestore(rq, &rf);
2310}
2311
2312void scheduler_ipi(void)
2313{
2314 /*
2315 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2316 * TIF_NEED_RESCHED remotely (for the first time) will also send
2317 * this IPI.
2318 */
2319 preempt_fold_need_resched();
2320
2321 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2322 return;
2323
2324 /*
2325 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2326 * traditionally all their work was done from the interrupt return
2327 * path. Now that we actually do some work, we need to make sure
2328 * we do call them.
2329 *
2330 * Some archs already do call them, luckily irq_enter/exit nest
2331 * properly.
2332 *
2333 * Arguably we should visit all archs and update all handlers,
2334 * however a fair share of IPIs are still resched only so this would
2335 * somewhat pessimize the simple resched case.
2336 */
2337 irq_enter();
2338 sched_ttwu_pending();
2339
2340 /*
2341 * Check if someone kicked us for doing the nohz idle load balance.
2342 */
2343 if (unlikely(got_nohz_idle_kick())) {
2344 this_rq()->idle_balance = 1;
2345 raise_softirq_irqoff(SCHED_SOFTIRQ);
2346 }
2347 irq_exit();
2348}
2349
2350static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2351{
2352 struct rq *rq = cpu_rq(cpu);
2353
2354 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2355
2356 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2357 if (!set_nr_if_polling(rq->idle))
2358 smp_send_reschedule(cpu);
2359 else
2360 trace_sched_wake_idle_without_ipi(cpu);
2361 }
2362}
2363
2364void wake_up_if_idle(int cpu)
2365{
2366 struct rq *rq = cpu_rq(cpu);
2367 struct rq_flags rf;
2368
2369 rcu_read_lock();
2370
2371 if (!is_idle_task(rcu_dereference(rq->curr)))
2372 goto out;
2373
2374 if (set_nr_if_polling(rq->idle)) {
2375 trace_sched_wake_idle_without_ipi(cpu);
2376 } else {
2377 rq_lock_irqsave(rq, &rf);
2378 if (is_idle_task(rq->curr))
2379 smp_send_reschedule(cpu);
2380 /* Else CPU is not idle, do nothing here: */
2381 rq_unlock_irqrestore(rq, &rf);
2382 }
2383
2384out:
2385 rcu_read_unlock();
2386}
2387
2388bool cpus_share_cache(int this_cpu, int that_cpu)
2389{
2390 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2391}
2392#endif /* CONFIG_SMP */
2393
2394static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2395{
2396 struct rq *rq = cpu_rq(cpu);
2397 struct rq_flags rf;
2398
2399#if defined(CONFIG_SMP)
2400 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2401 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2402 ttwu_queue_remote(p, cpu, wake_flags);
2403 return;
2404 }
2405#endif
2406
2407 rq_lock(rq, &rf);
2408 update_rq_clock(rq);
2409 ttwu_do_activate(rq, p, wake_flags, &rf);
2410 rq_unlock(rq, &rf);
2411}
2412
2413/*
2414 * Notes on Program-Order guarantees on SMP systems.
2415 *
2416 * MIGRATION
2417 *
2418 * The basic program-order guarantee on SMP systems is that when a task [t]
2419 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2420 * execution on its new CPU [c1].
2421 *
2422 * For migration (of runnable tasks) this is provided by the following means:
2423 *
2424 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2425 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2426 * rq(c1)->lock (if not at the same time, then in that order).
2427 * C) LOCK of the rq(c1)->lock scheduling in task
2428 *
2429 * Release/acquire chaining guarantees that B happens after A and C after B.
2430 * Note: the CPU doing B need not be c0 or c1
2431 *
2432 * Example:
2433 *
2434 * CPU0 CPU1 CPU2
2435 *
2436 * LOCK rq(0)->lock
2437 * sched-out X
2438 * sched-in Y
2439 * UNLOCK rq(0)->lock
2440 *
2441 * LOCK rq(0)->lock // orders against CPU0
2442 * dequeue X
2443 * UNLOCK rq(0)->lock
2444 *
2445 * LOCK rq(1)->lock
2446 * enqueue X
2447 * UNLOCK rq(1)->lock
2448 *
2449 * LOCK rq(1)->lock // orders against CPU2
2450 * sched-out Z
2451 * sched-in X
2452 * UNLOCK rq(1)->lock
2453 *
2454 *
2455 * BLOCKING -- aka. SLEEP + WAKEUP
2456 *
2457 * For blocking we (obviously) need to provide the same guarantee as for
2458 * migration. However the means are completely different as there is no lock
2459 * chain to provide order. Instead we do:
2460 *
2461 * 1) smp_store_release(X->on_cpu, 0)
2462 * 2) smp_cond_load_acquire(!X->on_cpu)
2463 *
2464 * Example:
2465 *
2466 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2467 *
2468 * LOCK rq(0)->lock LOCK X->pi_lock
2469 * dequeue X
2470 * sched-out X
2471 * smp_store_release(X->on_cpu, 0);
2472 *
2473 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2474 * X->state = WAKING
2475 * set_task_cpu(X,2)
2476 *
2477 * LOCK rq(2)->lock
2478 * enqueue X
2479 * X->state = RUNNING
2480 * UNLOCK rq(2)->lock
2481 *
2482 * LOCK rq(2)->lock // orders against CPU1
2483 * sched-out Z
2484 * sched-in X
2485 * UNLOCK rq(2)->lock
2486 *
2487 * UNLOCK X->pi_lock
2488 * UNLOCK rq(0)->lock
2489 *
2490 *
2491 * However, for wakeups there is a second guarantee we must provide, namely we
2492 * must ensure that CONDITION=1 done by the caller can not be reordered with
2493 * accesses to the task state; see try_to_wake_up() and set_current_state().
2494 */
2495
2496/**
2497 * try_to_wake_up - wake up a thread
2498 * @p: the thread to be awakened
2499 * @state: the mask of task states that can be woken
2500 * @wake_flags: wake modifier flags (WF_*)
2501 *
2502 * If (@state & @p->state) @p->state = TASK_RUNNING.
2503 *
2504 * If the task was not queued/runnable, also place it back on a runqueue.
2505 *
2506 * Atomic against schedule() which would dequeue a task, also see
2507 * set_current_state().
2508 *
2509 * This function executes a full memory barrier before accessing the task
2510 * state; see set_current_state().
2511 *
2512 * Return: %true if @p->state changes (an actual wakeup was done),
2513 * %false otherwise.
2514 */
2515static int
2516try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2517{
2518 unsigned long flags;
2519 int cpu, success = 0;
2520
2521 preempt_disable();
2522 if (p == current) {
2523 /*
2524 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2525 * == smp_processor_id()'. Together this means we can special
2526 * case the whole 'p->on_rq && ttwu_remote()' case below
2527 * without taking any locks.
2528 *
2529 * In particular:
2530 * - we rely on Program-Order guarantees for all the ordering,
2531 * - we're serialized against set_special_state() by virtue of
2532 * it disabling IRQs (this allows not taking ->pi_lock).
2533 */
2534 if (!(p->state & state))
2535 goto out;
2536
2537 success = 1;
2538 cpu = task_cpu(p);
2539 trace_sched_waking(p);
2540 p->state = TASK_RUNNING;
2541 trace_sched_wakeup(p);
2542 goto out;
2543 }
2544
2545 /*
2546 * If we are going to wake up a thread waiting for CONDITION we
2547 * need to ensure that CONDITION=1 done by the caller can not be
2548 * reordered with p->state check below. This pairs with mb() in
2549 * set_current_state() the waiting thread does.
2550 */
2551 raw_spin_lock_irqsave(&p->pi_lock, flags);
2552 smp_mb__after_spinlock();
2553 if (!(p->state & state))
2554 goto unlock;
2555
2556 trace_sched_waking(p);
2557
2558 /* We're going to change ->state: */
2559 success = 1;
2560 cpu = task_cpu(p);
2561
2562 /*
2563 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2564 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2565 * in smp_cond_load_acquire() below.
2566 *
2567 * sched_ttwu_pending() try_to_wake_up()
2568 * STORE p->on_rq = 1 LOAD p->state
2569 * UNLOCK rq->lock
2570 *
2571 * __schedule() (switch to task 'p')
2572 * LOCK rq->lock smp_rmb();
2573 * smp_mb__after_spinlock();
2574 * UNLOCK rq->lock
2575 *
2576 * [task p]
2577 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2578 *
2579 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2580 * __schedule(). See the comment for smp_mb__after_spinlock().
2581 */
2582 smp_rmb();
2583 if (p->on_rq && ttwu_remote(p, wake_flags))
2584 goto unlock;
2585
2586#ifdef CONFIG_SMP
2587 /*
2588 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2589 * possible to, falsely, observe p->on_cpu == 0.
2590 *
2591 * One must be running (->on_cpu == 1) in order to remove oneself
2592 * from the runqueue.
2593 *
2594 * __schedule() (switch to task 'p') try_to_wake_up()
2595 * STORE p->on_cpu = 1 LOAD p->on_rq
2596 * UNLOCK rq->lock
2597 *
2598 * __schedule() (put 'p' to sleep)
2599 * LOCK rq->lock smp_rmb();
2600 * smp_mb__after_spinlock();
2601 * STORE p->on_rq = 0 LOAD p->on_cpu
2602 *
2603 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2604 * __schedule(). See the comment for smp_mb__after_spinlock().
2605 */
2606 smp_rmb();
2607
2608 /*
2609 * If the owning (remote) CPU is still in the middle of schedule() with
2610 * this task as prev, wait until its done referencing the task.
2611 *
2612 * Pairs with the smp_store_release() in finish_task().
2613 *
2614 * This ensures that tasks getting woken will be fully ordered against
2615 * their previous state and preserve Program Order.
2616 */
2617 smp_cond_load_acquire(&p->on_cpu, !VAL);
2618
2619 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2620 p->state = TASK_WAKING;
2621
2622 if (p->in_iowait) {
2623 delayacct_blkio_end(p);
2624 atomic_dec(&task_rq(p)->nr_iowait);
2625 }
2626
2627 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2628 if (task_cpu(p) != cpu) {
2629 wake_flags |= WF_MIGRATED;
2630 psi_ttwu_dequeue(p);
2631 set_task_cpu(p, cpu);
2632 }
2633
2634#else /* CONFIG_SMP */
2635
2636 if (p->in_iowait) {
2637 delayacct_blkio_end(p);
2638 atomic_dec(&task_rq(p)->nr_iowait);
2639 }
2640
2641#endif /* CONFIG_SMP */
2642
2643 ttwu_queue(p, cpu, wake_flags);
2644unlock:
2645 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2646out:
2647 if (success)
2648 ttwu_stat(p, cpu, wake_flags);
2649 preempt_enable();
2650
2651 return success;
2652}
2653
2654/**
2655 * wake_up_process - Wake up a specific process
2656 * @p: The process to be woken up.
2657 *
2658 * Attempt to wake up the nominated process and move it to the set of runnable
2659 * processes.
2660 *
2661 * Return: 1 if the process was woken up, 0 if it was already running.
2662 *
2663 * This function executes a full memory barrier before accessing the task state.
2664 */
2665int wake_up_process(struct task_struct *p)
2666{
2667 return try_to_wake_up(p, TASK_NORMAL, 0);
2668}
2669EXPORT_SYMBOL(wake_up_process);
2670
2671int wake_up_state(struct task_struct *p, unsigned int state)
2672{
2673 return try_to_wake_up(p, state, 0);
2674}
2675
2676/*
2677 * Perform scheduler related setup for a newly forked process p.
2678 * p is forked by current.
2679 *
2680 * __sched_fork() is basic setup used by init_idle() too:
2681 */
2682static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2683{
2684 p->on_rq = 0;
2685
2686 p->se.on_rq = 0;
2687 p->se.exec_start = 0;
2688 p->se.sum_exec_runtime = 0;
2689 p->se.prev_sum_exec_runtime = 0;
2690 p->se.nr_migrations = 0;
2691 p->se.vruntime = 0;
2692 INIT_LIST_HEAD(&p->se.group_node);
2693
2694#ifdef CONFIG_FAIR_GROUP_SCHED
2695 p->se.cfs_rq = NULL;
2696#endif
2697
2698#ifdef CONFIG_SCHEDSTATS
2699 /* Even if schedstat is disabled, there should not be garbage */
2700 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2701#endif
2702
2703 RB_CLEAR_NODE(&p->dl.rb_node);
2704 init_dl_task_timer(&p->dl);
2705 init_dl_inactive_task_timer(&p->dl);
2706 __dl_clear_params(p);
2707
2708 INIT_LIST_HEAD(&p->rt.run_list);
2709 p->rt.timeout = 0;
2710 p->rt.time_slice = sched_rr_timeslice;
2711 p->rt.on_rq = 0;
2712 p->rt.on_list = 0;
2713
2714#ifdef CONFIG_PREEMPT_NOTIFIERS
2715 INIT_HLIST_HEAD(&p->preempt_notifiers);
2716#endif
2717
2718#ifdef CONFIG_COMPACTION
2719 p->capture_control = NULL;
2720#endif
2721 init_numa_balancing(clone_flags, p);
2722}
2723
2724DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2725
2726#ifdef CONFIG_NUMA_BALANCING
2727
2728void set_numabalancing_state(bool enabled)
2729{
2730 if (enabled)
2731 static_branch_enable(&sched_numa_balancing);
2732 else
2733 static_branch_disable(&sched_numa_balancing);
2734}
2735
2736#ifdef CONFIG_PROC_SYSCTL
2737int sysctl_numa_balancing(struct ctl_table *table, int write,
2738 void __user *buffer, size_t *lenp, loff_t *ppos)
2739{
2740 struct ctl_table t;
2741 int err;
2742 int state = static_branch_likely(&sched_numa_balancing);
2743
2744 if (write && !capable(CAP_SYS_ADMIN))
2745 return -EPERM;
2746
2747 t = *table;
2748 t.data = &state;
2749 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2750 if (err < 0)
2751 return err;
2752 if (write)
2753 set_numabalancing_state(state);
2754 return err;
2755}
2756#endif
2757#endif
2758
2759#ifdef CONFIG_SCHEDSTATS
2760
2761DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2762static bool __initdata __sched_schedstats = false;
2763
2764static void set_schedstats(bool enabled)
2765{
2766 if (enabled)
2767 static_branch_enable(&sched_schedstats);
2768 else
2769 static_branch_disable(&sched_schedstats);
2770}
2771
2772void force_schedstat_enabled(void)
2773{
2774 if (!schedstat_enabled()) {
2775 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2776 static_branch_enable(&sched_schedstats);
2777 }
2778}
2779
2780static int __init setup_schedstats(char *str)
2781{
2782 int ret = 0;
2783 if (!str)
2784 goto out;
2785
2786 /*
2787 * This code is called before jump labels have been set up, so we can't
2788 * change the static branch directly just yet. Instead set a temporary
2789 * variable so init_schedstats() can do it later.
2790 */
2791 if (!strcmp(str, "enable")) {
2792 __sched_schedstats = true;
2793 ret = 1;
2794 } else if (!strcmp(str, "disable")) {
2795 __sched_schedstats = false;
2796 ret = 1;
2797 }
2798out:
2799 if (!ret)
2800 pr_warn("Unable to parse schedstats=\n");
2801
2802 return ret;
2803}
2804__setup("schedstats=", setup_schedstats);
2805
2806static void __init init_schedstats(void)
2807{
2808 set_schedstats(__sched_schedstats);
2809}
2810
2811#ifdef CONFIG_PROC_SYSCTL
2812int sysctl_schedstats(struct ctl_table *table, int write,
2813 void __user *buffer, size_t *lenp, loff_t *ppos)
2814{
2815 struct ctl_table t;
2816 int err;
2817 int state = static_branch_likely(&sched_schedstats);
2818
2819 if (write && !capable(CAP_SYS_ADMIN))
2820 return -EPERM;
2821
2822 t = *table;
2823 t.data = &state;
2824 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2825 if (err < 0)
2826 return err;
2827 if (write)
2828 set_schedstats(state);
2829 return err;
2830}
2831#endif /* CONFIG_PROC_SYSCTL */
2832#else /* !CONFIG_SCHEDSTATS */
2833static inline void init_schedstats(void) {}
2834#endif /* CONFIG_SCHEDSTATS */
2835
2836/*
2837 * fork()/clone()-time setup:
2838 */
2839int sched_fork(unsigned long clone_flags, struct task_struct *p)
2840{
2841 unsigned long flags;
2842
2843 __sched_fork(clone_flags, p);
2844 /*
2845 * We mark the process as NEW here. This guarantees that
2846 * nobody will actually run it, and a signal or other external
2847 * event cannot wake it up and insert it on the runqueue either.
2848 */
2849 p->state = TASK_NEW;
2850
2851 /*
2852 * Make sure we do not leak PI boosting priority to the child.
2853 */
2854 p->prio = current->normal_prio;
2855
2856 uclamp_fork(p);
2857
2858 /*
2859 * Revert to default priority/policy on fork if requested.
2860 */
2861 if (unlikely(p->sched_reset_on_fork)) {
2862 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2863 p->policy = SCHED_NORMAL;
2864 p->static_prio = NICE_TO_PRIO(0);
2865 p->rt_priority = 0;
2866 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2867 p->static_prio = NICE_TO_PRIO(0);
2868
2869 p->prio = p->normal_prio = __normal_prio(p);
2870 set_load_weight(p, false);
2871
2872 /*
2873 * We don't need the reset flag anymore after the fork. It has
2874 * fulfilled its duty:
2875 */
2876 p->sched_reset_on_fork = 0;
2877 }
2878
2879 if (dl_prio(p->prio))
2880 return -EAGAIN;
2881 else if (rt_prio(p->prio))
2882 p->sched_class = &rt_sched_class;
2883 else
2884 p->sched_class = &fair_sched_class;
2885
2886 init_entity_runnable_average(&p->se);
2887
2888 /*
2889 * The child is not yet in the pid-hash so no cgroup attach races,
2890 * and the cgroup is pinned to this child due to cgroup_fork()
2891 * is ran before sched_fork().
2892 *
2893 * Silence PROVE_RCU.
2894 */
2895 raw_spin_lock_irqsave(&p->pi_lock, flags);
2896 /*
2897 * We're setting the CPU for the first time, we don't migrate,
2898 * so use __set_task_cpu().
2899 */
2900 __set_task_cpu(p, smp_processor_id());
2901 if (p->sched_class->task_fork)
2902 p->sched_class->task_fork(p);
2903 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904
2905#ifdef CONFIG_SCHED_INFO
2906 if (likely(sched_info_on()))
2907 memset(&p->sched_info, 0, sizeof(p->sched_info));
2908#endif
2909#if defined(CONFIG_SMP)
2910 p->on_cpu = 0;
2911#endif
2912 init_task_preempt_count(p);
2913#ifdef CONFIG_SMP
2914 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2915 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2916#endif
2917 return 0;
2918}
2919
2920unsigned long to_ratio(u64 period, u64 runtime)
2921{
2922 if (runtime == RUNTIME_INF)
2923 return BW_UNIT;
2924
2925 /*
2926 * Doing this here saves a lot of checks in all
2927 * the calling paths, and returning zero seems
2928 * safe for them anyway.
2929 */
2930 if (period == 0)
2931 return 0;
2932
2933 return div64_u64(runtime << BW_SHIFT, period);
2934}
2935
2936/*
2937 * wake_up_new_task - wake up a newly created task for the first time.
2938 *
2939 * This function will do some initial scheduler statistics housekeeping
2940 * that must be done for every newly created context, then puts the task
2941 * on the runqueue and wakes it.
2942 */
2943void wake_up_new_task(struct task_struct *p)
2944{
2945 struct rq_flags rf;
2946 struct rq *rq;
2947
2948 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2949 p->state = TASK_RUNNING;
2950#ifdef CONFIG_SMP
2951 /*
2952 * Fork balancing, do it here and not earlier because:
2953 * - cpus_ptr can change in the fork path
2954 * - any previously selected CPU might disappear through hotplug
2955 *
2956 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2957 * as we're not fully set-up yet.
2958 */
2959 p->recent_used_cpu = task_cpu(p);
2960 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2961#endif
2962 rq = __task_rq_lock(p, &rf);
2963 update_rq_clock(rq);
2964 post_init_entity_util_avg(p);
2965
2966 activate_task(rq, p, ENQUEUE_NOCLOCK);
2967 trace_sched_wakeup_new(p);
2968 check_preempt_curr(rq, p, WF_FORK);
2969#ifdef CONFIG_SMP
2970 if (p->sched_class->task_woken) {
2971 /*
2972 * Nothing relies on rq->lock after this, so its fine to
2973 * drop it.
2974 */
2975 rq_unpin_lock(rq, &rf);
2976 p->sched_class->task_woken(rq, p);
2977 rq_repin_lock(rq, &rf);
2978 }
2979#endif
2980 task_rq_unlock(rq, p, &rf);
2981}
2982
2983#ifdef CONFIG_PREEMPT_NOTIFIERS
2984
2985static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2986
2987void preempt_notifier_inc(void)
2988{
2989 static_branch_inc(&preempt_notifier_key);
2990}
2991EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2992
2993void preempt_notifier_dec(void)
2994{
2995 static_branch_dec(&preempt_notifier_key);
2996}
2997EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2998
2999/**
3000 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3001 * @notifier: notifier struct to register
3002 */
3003void preempt_notifier_register(struct preempt_notifier *notifier)
3004{
3005 if (!static_branch_unlikely(&preempt_notifier_key))
3006 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3007
3008 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3009}
3010EXPORT_SYMBOL_GPL(preempt_notifier_register);
3011
3012/**
3013 * preempt_notifier_unregister - no longer interested in preemption notifications
3014 * @notifier: notifier struct to unregister
3015 *
3016 * This is *not* safe to call from within a preemption notifier.
3017 */
3018void preempt_notifier_unregister(struct preempt_notifier *notifier)
3019{
3020 hlist_del(¬ifier->link);
3021}
3022EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3023
3024static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3025{
3026 struct preempt_notifier *notifier;
3027
3028 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3029 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3030}
3031
3032static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3033{
3034 if (static_branch_unlikely(&preempt_notifier_key))
3035 __fire_sched_in_preempt_notifiers(curr);
3036}
3037
3038static void
3039__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3040 struct task_struct *next)
3041{
3042 struct preempt_notifier *notifier;
3043
3044 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3045 notifier->ops->sched_out(notifier, next);
3046}
3047
3048static __always_inline void
3049fire_sched_out_preempt_notifiers(struct task_struct *curr,
3050 struct task_struct *next)
3051{
3052 if (static_branch_unlikely(&preempt_notifier_key))
3053 __fire_sched_out_preempt_notifiers(curr, next);
3054}
3055
3056#else /* !CONFIG_PREEMPT_NOTIFIERS */
3057
3058static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3059{
3060}
3061
3062static inline void
3063fire_sched_out_preempt_notifiers(struct task_struct *curr,
3064 struct task_struct *next)
3065{
3066}
3067
3068#endif /* CONFIG_PREEMPT_NOTIFIERS */
3069
3070static inline void prepare_task(struct task_struct *next)
3071{
3072#ifdef CONFIG_SMP
3073 /*
3074 * Claim the task as running, we do this before switching to it
3075 * such that any running task will have this set.
3076 */
3077 next->on_cpu = 1;
3078#endif
3079}
3080
3081static inline void finish_task(struct task_struct *prev)
3082{
3083#ifdef CONFIG_SMP
3084 /*
3085 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3086 * We must ensure this doesn't happen until the switch is completely
3087 * finished.
3088 *
3089 * In particular, the load of prev->state in finish_task_switch() must
3090 * happen before this.
3091 *
3092 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3093 */
3094 smp_store_release(&prev->on_cpu, 0);
3095#endif
3096}
3097
3098static inline void
3099prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3100{
3101 /*
3102 * Since the runqueue lock will be released by the next
3103 * task (which is an invalid locking op but in the case
3104 * of the scheduler it's an obvious special-case), so we
3105 * do an early lockdep release here:
3106 */
3107 rq_unpin_lock(rq, rf);
3108 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3109#ifdef CONFIG_DEBUG_SPINLOCK
3110 /* this is a valid case when another task releases the spinlock */
3111 rq->lock.owner = next;
3112#endif
3113}
3114
3115static inline void finish_lock_switch(struct rq *rq)
3116{
3117 /*
3118 * If we are tracking spinlock dependencies then we have to
3119 * fix up the runqueue lock - which gets 'carried over' from
3120 * prev into current:
3121 */
3122 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3123 raw_spin_unlock_irq(&rq->lock);
3124}
3125
3126/*
3127 * NOP if the arch has not defined these:
3128 */
3129
3130#ifndef prepare_arch_switch
3131# define prepare_arch_switch(next) do { } while (0)
3132#endif
3133
3134#ifndef finish_arch_post_lock_switch
3135# define finish_arch_post_lock_switch() do { } while (0)
3136#endif
3137
3138/**
3139 * prepare_task_switch - prepare to switch tasks
3140 * @rq: the runqueue preparing to switch
3141 * @prev: the current task that is being switched out
3142 * @next: the task we are going to switch to.
3143 *
3144 * This is called with the rq lock held and interrupts off. It must
3145 * be paired with a subsequent finish_task_switch after the context
3146 * switch.
3147 *
3148 * prepare_task_switch sets up locking and calls architecture specific
3149 * hooks.
3150 */
3151static inline void
3152prepare_task_switch(struct rq *rq, struct task_struct *prev,
3153 struct task_struct *next)
3154{
3155 kcov_prepare_switch(prev);
3156 sched_info_switch(rq, prev, next);
3157 perf_event_task_sched_out(prev, next);
3158 rseq_preempt(prev);
3159 fire_sched_out_preempt_notifiers(prev, next);
3160 prepare_task(next);
3161 prepare_arch_switch(next);
3162}
3163
3164/**
3165 * finish_task_switch - clean up after a task-switch
3166 * @prev: the thread we just switched away from.
3167 *
3168 * finish_task_switch must be called after the context switch, paired
3169 * with a prepare_task_switch call before the context switch.
3170 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3171 * and do any other architecture-specific cleanup actions.
3172 *
3173 * Note that we may have delayed dropping an mm in context_switch(). If
3174 * so, we finish that here outside of the runqueue lock. (Doing it
3175 * with the lock held can cause deadlocks; see schedule() for
3176 * details.)
3177 *
3178 * The context switch have flipped the stack from under us and restored the
3179 * local variables which were saved when this task called schedule() in the
3180 * past. prev == current is still correct but we need to recalculate this_rq
3181 * because prev may have moved to another CPU.
3182 */
3183static struct rq *finish_task_switch(struct task_struct *prev)
3184 __releases(rq->lock)
3185{
3186 struct rq *rq = this_rq();
3187 struct mm_struct *mm = rq->prev_mm;
3188 long prev_state;
3189
3190 /*
3191 * The previous task will have left us with a preempt_count of 2
3192 * because it left us after:
3193 *
3194 * schedule()
3195 * preempt_disable(); // 1
3196 * __schedule()
3197 * raw_spin_lock_irq(&rq->lock) // 2
3198 *
3199 * Also, see FORK_PREEMPT_COUNT.
3200 */
3201 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3202 "corrupted preempt_count: %s/%d/0x%x\n",
3203 current->comm, current->pid, preempt_count()))
3204 preempt_count_set(FORK_PREEMPT_COUNT);
3205
3206 rq->prev_mm = NULL;
3207
3208 /*
3209 * A task struct has one reference for the use as "current".
3210 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3211 * schedule one last time. The schedule call will never return, and
3212 * the scheduled task must drop that reference.
3213 *
3214 * We must observe prev->state before clearing prev->on_cpu (in
3215 * finish_task), otherwise a concurrent wakeup can get prev
3216 * running on another CPU and we could rave with its RUNNING -> DEAD
3217 * transition, resulting in a double drop.
3218 */
3219 prev_state = prev->state;
3220 vtime_task_switch(prev);
3221 perf_event_task_sched_in(prev, current);
3222 finish_task(prev);
3223 finish_lock_switch(rq);
3224 finish_arch_post_lock_switch();
3225 kcov_finish_switch(current);
3226
3227 fire_sched_in_preempt_notifiers(current);
3228 /*
3229 * When switching through a kernel thread, the loop in
3230 * membarrier_{private,global}_expedited() may have observed that
3231 * kernel thread and not issued an IPI. It is therefore possible to
3232 * schedule between user->kernel->user threads without passing though
3233 * switch_mm(). Membarrier requires a barrier after storing to
3234 * rq->curr, before returning to userspace, so provide them here:
3235 *
3236 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3237 * provided by mmdrop(),
3238 * - a sync_core for SYNC_CORE.
3239 */
3240 if (mm) {
3241 membarrier_mm_sync_core_before_usermode(mm);
3242 mmdrop(mm);
3243 }
3244 if (unlikely(prev_state == TASK_DEAD)) {
3245 if (prev->sched_class->task_dead)
3246 prev->sched_class->task_dead(prev);
3247
3248 /*
3249 * Remove function-return probe instances associated with this
3250 * task and put them back on the free list.
3251 */
3252 kprobe_flush_task(prev);
3253
3254 /* Task is done with its stack. */
3255 put_task_stack(prev);
3256
3257 put_task_struct_rcu_user(prev);
3258 }
3259
3260 tick_nohz_task_switch();
3261 return rq;
3262}
3263
3264#ifdef CONFIG_SMP
3265
3266/* rq->lock is NOT held, but preemption is disabled */
3267static void __balance_callback(struct rq *rq)
3268{
3269 struct callback_head *head, *next;
3270 void (*func)(struct rq *rq);
3271 unsigned long flags;
3272
3273 raw_spin_lock_irqsave(&rq->lock, flags);
3274 head = rq->balance_callback;
3275 rq->balance_callback = NULL;
3276 while (head) {
3277 func = (void (*)(struct rq *))head->func;
3278 next = head->next;
3279 head->next = NULL;
3280 head = next;
3281
3282 func(rq);
3283 }
3284 raw_spin_unlock_irqrestore(&rq->lock, flags);
3285}
3286
3287static inline void balance_callback(struct rq *rq)
3288{
3289 if (unlikely(rq->balance_callback))
3290 __balance_callback(rq);
3291}
3292
3293#else
3294
3295static inline void balance_callback(struct rq *rq)
3296{
3297}
3298
3299#endif
3300
3301/**
3302 * schedule_tail - first thing a freshly forked thread must call.
3303 * @prev: the thread we just switched away from.
3304 */
3305asmlinkage __visible void schedule_tail(struct task_struct *prev)
3306 __releases(rq->lock)
3307{
3308 struct rq *rq;
3309
3310 /*
3311 * New tasks start with FORK_PREEMPT_COUNT, see there and
3312 * finish_task_switch() for details.
3313 *
3314 * finish_task_switch() will drop rq->lock() and lower preempt_count
3315 * and the preempt_enable() will end up enabling preemption (on
3316 * PREEMPT_COUNT kernels).
3317 */
3318
3319 rq = finish_task_switch(prev);
3320 balance_callback(rq);
3321 preempt_enable();
3322
3323 if (current->set_child_tid)
3324 put_user(task_pid_vnr(current), current->set_child_tid);
3325
3326 calculate_sigpending();
3327}
3328
3329/*
3330 * context_switch - switch to the new MM and the new thread's register state.
3331 */
3332static __always_inline struct rq *
3333context_switch(struct rq *rq, struct task_struct *prev,
3334 struct task_struct *next, struct rq_flags *rf)
3335{
3336 prepare_task_switch(rq, prev, next);
3337
3338 /*
3339 * For paravirt, this is coupled with an exit in switch_to to
3340 * combine the page table reload and the switch backend into
3341 * one hypercall.
3342 */
3343 arch_start_context_switch(prev);
3344
3345 /*
3346 * kernel -> kernel lazy + transfer active
3347 * user -> kernel lazy + mmgrab() active
3348 *
3349 * kernel -> user switch + mmdrop() active
3350 * user -> user switch
3351 */
3352 if (!next->mm) { // to kernel
3353 enter_lazy_tlb(prev->active_mm, next);
3354
3355 next->active_mm = prev->active_mm;
3356 if (prev->mm) // from user
3357 mmgrab(prev->active_mm);
3358 else
3359 prev->active_mm = NULL;
3360 } else { // to user
3361 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3362 /*
3363 * sys_membarrier() requires an smp_mb() between setting
3364 * rq->curr / membarrier_switch_mm() and returning to userspace.
3365 *
3366 * The below provides this either through switch_mm(), or in
3367 * case 'prev->active_mm == next->mm' through
3368 * finish_task_switch()'s mmdrop().
3369 */
3370 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3371
3372 if (!prev->mm) { // from kernel
3373 /* will mmdrop() in finish_task_switch(). */
3374 rq->prev_mm = prev->active_mm;
3375 prev->active_mm = NULL;
3376 }
3377 }
3378
3379 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3380
3381 prepare_lock_switch(rq, next, rf);
3382
3383 /* Here we just switch the register state and the stack. */
3384 switch_to(prev, next, prev);
3385 barrier();
3386
3387 return finish_task_switch(prev);
3388}
3389
3390/*
3391 * nr_running and nr_context_switches:
3392 *
3393 * externally visible scheduler statistics: current number of runnable
3394 * threads, total number of context switches performed since bootup.
3395 */
3396unsigned long nr_running(void)
3397{
3398 unsigned long i, sum = 0;
3399
3400 for_each_online_cpu(i)
3401 sum += cpu_rq(i)->nr_running;
3402
3403 return sum;
3404}
3405
3406/*
3407 * Check if only the current task is running on the CPU.
3408 *
3409 * Caution: this function does not check that the caller has disabled
3410 * preemption, thus the result might have a time-of-check-to-time-of-use
3411 * race. The caller is responsible to use it correctly, for example:
3412 *
3413 * - from a non-preemptible section (of course)
3414 *
3415 * - from a thread that is bound to a single CPU
3416 *
3417 * - in a loop with very short iterations (e.g. a polling loop)
3418 */
3419bool single_task_running(void)
3420{
3421 return raw_rq()->nr_running == 1;
3422}
3423EXPORT_SYMBOL(single_task_running);
3424
3425unsigned long long nr_context_switches(void)
3426{
3427 int i;
3428 unsigned long long sum = 0;
3429
3430 for_each_possible_cpu(i)
3431 sum += cpu_rq(i)->nr_switches;
3432
3433 return sum;
3434}
3435
3436/*
3437 * Consumers of these two interfaces, like for example the cpuidle menu
3438 * governor, are using nonsensical data. Preferring shallow idle state selection
3439 * for a CPU that has IO-wait which might not even end up running the task when
3440 * it does become runnable.
3441 */
3442
3443unsigned long nr_iowait_cpu(int cpu)
3444{
3445 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3446}
3447
3448/*
3449 * IO-wait accounting, and how its mostly bollocks (on SMP).
3450 *
3451 * The idea behind IO-wait account is to account the idle time that we could
3452 * have spend running if it were not for IO. That is, if we were to improve the
3453 * storage performance, we'd have a proportional reduction in IO-wait time.
3454 *
3455 * This all works nicely on UP, where, when a task blocks on IO, we account
3456 * idle time as IO-wait, because if the storage were faster, it could've been
3457 * running and we'd not be idle.
3458 *
3459 * This has been extended to SMP, by doing the same for each CPU. This however
3460 * is broken.
3461 *
3462 * Imagine for instance the case where two tasks block on one CPU, only the one
3463 * CPU will have IO-wait accounted, while the other has regular idle. Even
3464 * though, if the storage were faster, both could've ran at the same time,
3465 * utilising both CPUs.
3466 *
3467 * This means, that when looking globally, the current IO-wait accounting on
3468 * SMP is a lower bound, by reason of under accounting.
3469 *
3470 * Worse, since the numbers are provided per CPU, they are sometimes
3471 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3472 * associated with any one particular CPU, it can wake to another CPU than it
3473 * blocked on. This means the per CPU IO-wait number is meaningless.
3474 *
3475 * Task CPU affinities can make all that even more 'interesting'.
3476 */
3477
3478unsigned long nr_iowait(void)
3479{
3480 unsigned long i, sum = 0;
3481
3482 for_each_possible_cpu(i)
3483 sum += nr_iowait_cpu(i);
3484
3485 return sum;
3486}
3487
3488#ifdef CONFIG_SMP
3489
3490/*
3491 * sched_exec - execve() is a valuable balancing opportunity, because at
3492 * this point the task has the smallest effective memory and cache footprint.
3493 */
3494void sched_exec(void)
3495{
3496 struct task_struct *p = current;
3497 unsigned long flags;
3498 int dest_cpu;
3499
3500 raw_spin_lock_irqsave(&p->pi_lock, flags);
3501 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3502 if (dest_cpu == smp_processor_id())
3503 goto unlock;
3504
3505 if (likely(cpu_active(dest_cpu))) {
3506 struct migration_arg arg = { p, dest_cpu };
3507
3508 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3509 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3510 return;
3511 }
3512unlock:
3513 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3514}
3515
3516#endif
3517
3518DEFINE_PER_CPU(struct kernel_stat, kstat);
3519DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3520
3521EXPORT_PER_CPU_SYMBOL(kstat);
3522EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3523
3524/*
3525 * The function fair_sched_class.update_curr accesses the struct curr
3526 * and its field curr->exec_start; when called from task_sched_runtime(),
3527 * we observe a high rate of cache misses in practice.
3528 * Prefetching this data results in improved performance.
3529 */
3530static inline void prefetch_curr_exec_start(struct task_struct *p)
3531{
3532#ifdef CONFIG_FAIR_GROUP_SCHED
3533 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3534#else
3535 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3536#endif
3537 prefetch(curr);
3538 prefetch(&curr->exec_start);
3539}
3540
3541/*
3542 * Return accounted runtime for the task.
3543 * In case the task is currently running, return the runtime plus current's
3544 * pending runtime that have not been accounted yet.
3545 */
3546unsigned long long task_sched_runtime(struct task_struct *p)
3547{
3548 struct rq_flags rf;
3549 struct rq *rq;
3550 u64 ns;
3551
3552#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3553 /*
3554 * 64-bit doesn't need locks to atomically read a 64-bit value.
3555 * So we have a optimization chance when the task's delta_exec is 0.
3556 * Reading ->on_cpu is racy, but this is ok.
3557 *
3558 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3559 * If we race with it entering CPU, unaccounted time is 0. This is
3560 * indistinguishable from the read occurring a few cycles earlier.
3561 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3562 * been accounted, so we're correct here as well.
3563 */
3564 if (!p->on_cpu || !task_on_rq_queued(p))
3565 return p->se.sum_exec_runtime;
3566#endif
3567
3568 rq = task_rq_lock(p, &rf);
3569 /*
3570 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3571 * project cycles that may never be accounted to this
3572 * thread, breaking clock_gettime().
3573 */
3574 if (task_current(rq, p) && task_on_rq_queued(p)) {
3575 prefetch_curr_exec_start(p);
3576 update_rq_clock(rq);
3577 p->sched_class->update_curr(rq);
3578 }
3579 ns = p->se.sum_exec_runtime;
3580 task_rq_unlock(rq, p, &rf);
3581
3582 return ns;
3583}
3584
3585/*
3586 * This function gets called by the timer code, with HZ frequency.
3587 * We call it with interrupts disabled.
3588 */
3589void scheduler_tick(void)
3590{
3591 int cpu = smp_processor_id();
3592 struct rq *rq = cpu_rq(cpu);
3593 struct task_struct *curr = rq->curr;
3594 struct rq_flags rf;
3595
3596 sched_clock_tick();
3597
3598 rq_lock(rq, &rf);
3599
3600 update_rq_clock(rq);
3601 curr->sched_class->task_tick(rq, curr, 0);
3602 calc_global_load_tick(rq);
3603 psi_task_tick(rq);
3604
3605 rq_unlock(rq, &rf);
3606
3607 perf_event_task_tick();
3608
3609#ifdef CONFIG_SMP
3610 rq->idle_balance = idle_cpu(cpu);
3611 trigger_load_balance(rq);
3612#endif
3613}
3614
3615#ifdef CONFIG_NO_HZ_FULL
3616
3617struct tick_work {
3618 int cpu;
3619 atomic_t state;
3620 struct delayed_work work;
3621};
3622/* Values for ->state, see diagram below. */
3623#define TICK_SCHED_REMOTE_OFFLINE 0
3624#define TICK_SCHED_REMOTE_OFFLINING 1
3625#define TICK_SCHED_REMOTE_RUNNING 2
3626
3627/*
3628 * State diagram for ->state:
3629 *
3630 *
3631 * TICK_SCHED_REMOTE_OFFLINE
3632 * | ^
3633 * | |
3634 * | | sched_tick_remote()
3635 * | |
3636 * | |
3637 * +--TICK_SCHED_REMOTE_OFFLINING
3638 * | ^
3639 * | |
3640 * sched_tick_start() | | sched_tick_stop()
3641 * | |
3642 * V |
3643 * TICK_SCHED_REMOTE_RUNNING
3644 *
3645 *
3646 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3647 * and sched_tick_start() are happy to leave the state in RUNNING.
3648 */
3649
3650static struct tick_work __percpu *tick_work_cpu;
3651
3652static void sched_tick_remote(struct work_struct *work)
3653{
3654 struct delayed_work *dwork = to_delayed_work(work);
3655 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3656 int cpu = twork->cpu;
3657 struct rq *rq = cpu_rq(cpu);
3658 struct task_struct *curr;
3659 struct rq_flags rf;
3660 u64 delta;
3661 int os;
3662
3663 /*
3664 * Handle the tick only if it appears the remote CPU is running in full
3665 * dynticks mode. The check is racy by nature, but missing a tick or
3666 * having one too much is no big deal because the scheduler tick updates
3667 * statistics and checks timeslices in a time-independent way, regardless
3668 * of when exactly it is running.
3669 */
3670 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3671 goto out_requeue;
3672
3673 rq_lock_irq(rq, &rf);
3674 curr = rq->curr;
3675 if (is_idle_task(curr) || cpu_is_offline(cpu))
3676 goto out_unlock;
3677
3678 update_rq_clock(rq);
3679 delta = rq_clock_task(rq) - curr->se.exec_start;
3680
3681 /*
3682 * Make sure the next tick runs within a reasonable
3683 * amount of time.
3684 */
3685 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3686 curr->sched_class->task_tick(rq, curr, 0);
3687
3688out_unlock:
3689 rq_unlock_irq(rq, &rf);
3690
3691out_requeue:
3692 /*
3693 * Run the remote tick once per second (1Hz). This arbitrary
3694 * frequency is large enough to avoid overload but short enough
3695 * to keep scheduler internal stats reasonably up to date. But
3696 * first update state to reflect hotplug activity if required.
3697 */
3698 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3699 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3700 if (os == TICK_SCHED_REMOTE_RUNNING)
3701 queue_delayed_work(system_unbound_wq, dwork, HZ);
3702}
3703
3704static void sched_tick_start(int cpu)
3705{
3706 int os;
3707 struct tick_work *twork;
3708
3709 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3710 return;
3711
3712 WARN_ON_ONCE(!tick_work_cpu);
3713
3714 twork = per_cpu_ptr(tick_work_cpu, cpu);
3715 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3716 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3717 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3718 twork->cpu = cpu;
3719 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3720 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3721 }
3722}
3723
3724#ifdef CONFIG_HOTPLUG_CPU
3725static void sched_tick_stop(int cpu)
3726{
3727 struct tick_work *twork;
3728 int os;
3729
3730 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3731 return;
3732
3733 WARN_ON_ONCE(!tick_work_cpu);
3734
3735 twork = per_cpu_ptr(tick_work_cpu, cpu);
3736 /* There cannot be competing actions, but don't rely on stop-machine. */
3737 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3738 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3739 /* Don't cancel, as this would mess up the state machine. */
3740}
3741#endif /* CONFIG_HOTPLUG_CPU */
3742
3743int __init sched_tick_offload_init(void)
3744{
3745 tick_work_cpu = alloc_percpu(struct tick_work);
3746 BUG_ON(!tick_work_cpu);
3747 return 0;
3748}
3749
3750#else /* !CONFIG_NO_HZ_FULL */
3751static inline void sched_tick_start(int cpu) { }
3752static inline void sched_tick_stop(int cpu) { }
3753#endif
3754
3755#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3756 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3757/*
3758 * If the value passed in is equal to the current preempt count
3759 * then we just disabled preemption. Start timing the latency.
3760 */
3761static inline void preempt_latency_start(int val)
3762{
3763 if (preempt_count() == val) {
3764 unsigned long ip = get_lock_parent_ip();
3765#ifdef CONFIG_DEBUG_PREEMPT
3766 current->preempt_disable_ip = ip;
3767#endif
3768 trace_preempt_off(CALLER_ADDR0, ip);
3769 }
3770}
3771
3772void preempt_count_add(int val)
3773{
3774#ifdef CONFIG_DEBUG_PREEMPT
3775 /*
3776 * Underflow?
3777 */
3778 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3779 return;
3780#endif
3781 __preempt_count_add(val);
3782#ifdef CONFIG_DEBUG_PREEMPT
3783 /*
3784 * Spinlock count overflowing soon?
3785 */
3786 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3787 PREEMPT_MASK - 10);
3788#endif
3789 preempt_latency_start(val);
3790}
3791EXPORT_SYMBOL(preempt_count_add);
3792NOKPROBE_SYMBOL(preempt_count_add);
3793
3794/*
3795 * If the value passed in equals to the current preempt count
3796 * then we just enabled preemption. Stop timing the latency.
3797 */
3798static inline void preempt_latency_stop(int val)
3799{
3800 if (preempt_count() == val)
3801 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3802}
3803
3804void preempt_count_sub(int val)
3805{
3806#ifdef CONFIG_DEBUG_PREEMPT
3807 /*
3808 * Underflow?
3809 */
3810 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3811 return;
3812 /*
3813 * Is the spinlock portion underflowing?
3814 */
3815 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3816 !(preempt_count() & PREEMPT_MASK)))
3817 return;
3818#endif
3819
3820 preempt_latency_stop(val);
3821 __preempt_count_sub(val);
3822}
3823EXPORT_SYMBOL(preempt_count_sub);
3824NOKPROBE_SYMBOL(preempt_count_sub);
3825
3826#else
3827static inline void preempt_latency_start(int val) { }
3828static inline void preempt_latency_stop(int val) { }
3829#endif
3830
3831static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3832{
3833#ifdef CONFIG_DEBUG_PREEMPT
3834 return p->preempt_disable_ip;
3835#else
3836 return 0;
3837#endif
3838}
3839
3840/*
3841 * Print scheduling while atomic bug:
3842 */
3843static noinline void __schedule_bug(struct task_struct *prev)
3844{
3845 /* Save this before calling printk(), since that will clobber it */
3846 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3847
3848 if (oops_in_progress)
3849 return;
3850
3851 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3852 prev->comm, prev->pid, preempt_count());
3853
3854 debug_show_held_locks(prev);
3855 print_modules();
3856 if (irqs_disabled())
3857 print_irqtrace_events(prev);
3858 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3859 && in_atomic_preempt_off()) {
3860 pr_err("Preemption disabled at:");
3861 print_ip_sym(preempt_disable_ip);
3862 pr_cont("\n");
3863 }
3864 if (panic_on_warn)
3865 panic("scheduling while atomic\n");
3866
3867 dump_stack();
3868 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3869}
3870
3871/*
3872 * Various schedule()-time debugging checks and statistics:
3873 */
3874static inline void schedule_debug(struct task_struct *prev, bool preempt)
3875{
3876#ifdef CONFIG_SCHED_STACK_END_CHECK
3877 if (task_stack_end_corrupted(prev))
3878 panic("corrupted stack end detected inside scheduler\n");
3879#endif
3880
3881#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3882 if (!preempt && prev->state && prev->non_block_count) {
3883 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3884 prev->comm, prev->pid, prev->non_block_count);
3885 dump_stack();
3886 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3887 }
3888#endif
3889
3890 if (unlikely(in_atomic_preempt_off())) {
3891 __schedule_bug(prev);
3892 preempt_count_set(PREEMPT_DISABLED);
3893 }
3894 rcu_sleep_check();
3895
3896 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3897
3898 schedstat_inc(this_rq()->sched_count);
3899}
3900
3901/*
3902 * Pick up the highest-prio task:
3903 */
3904static inline struct task_struct *
3905pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3906{
3907 const struct sched_class *class;
3908 struct task_struct *p;
3909
3910 /*
3911 * Optimization: we know that if all tasks are in the fair class we can
3912 * call that function directly, but only if the @prev task wasn't of a
3913 * higher scheduling class, because otherwise those loose the
3914 * opportunity to pull in more work from other CPUs.
3915 */
3916 if (likely((prev->sched_class == &idle_sched_class ||
3917 prev->sched_class == &fair_sched_class) &&
3918 rq->nr_running == rq->cfs.h_nr_running)) {
3919
3920 p = fair_sched_class.pick_next_task(rq, prev, rf);
3921 if (unlikely(p == RETRY_TASK))
3922 goto restart;
3923
3924 /* Assumes fair_sched_class->next == idle_sched_class */
3925 if (unlikely(!p))
3926 p = idle_sched_class.pick_next_task(rq, prev, rf);
3927
3928 return p;
3929 }
3930
3931restart:
3932#ifdef CONFIG_SMP
3933 /*
3934 * We must do the balancing pass before put_next_task(), such
3935 * that when we release the rq->lock the task is in the same
3936 * state as before we took rq->lock.
3937 *
3938 * We can terminate the balance pass as soon as we know there is
3939 * a runnable task of @class priority or higher.
3940 */
3941 for_class_range(class, prev->sched_class, &idle_sched_class) {
3942 if (class->balance(rq, prev, rf))
3943 break;
3944 }
3945#endif
3946
3947 put_prev_task(rq, prev);
3948
3949 for_each_class(class) {
3950 p = class->pick_next_task(rq, NULL, NULL);
3951 if (p)
3952 return p;
3953 }
3954
3955 /* The idle class should always have a runnable task: */
3956 BUG();
3957}
3958
3959/*
3960 * __schedule() is the main scheduler function.
3961 *
3962 * The main means of driving the scheduler and thus entering this function are:
3963 *
3964 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3965 *
3966 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3967 * paths. For example, see arch/x86/entry_64.S.
3968 *
3969 * To drive preemption between tasks, the scheduler sets the flag in timer
3970 * interrupt handler scheduler_tick().
3971 *
3972 * 3. Wakeups don't really cause entry into schedule(). They add a
3973 * task to the run-queue and that's it.
3974 *
3975 * Now, if the new task added to the run-queue preempts the current
3976 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3977 * called on the nearest possible occasion:
3978 *
3979 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3980 *
3981 * - in syscall or exception context, at the next outmost
3982 * preempt_enable(). (this might be as soon as the wake_up()'s
3983 * spin_unlock()!)
3984 *
3985 * - in IRQ context, return from interrupt-handler to
3986 * preemptible context
3987 *
3988 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3989 * then at the next:
3990 *
3991 * - cond_resched() call
3992 * - explicit schedule() call
3993 * - return from syscall or exception to user-space
3994 * - return from interrupt-handler to user-space
3995 *
3996 * WARNING: must be called with preemption disabled!
3997 */
3998static void __sched notrace __schedule(bool preempt)
3999{
4000 struct task_struct *prev, *next;
4001 unsigned long *switch_count;
4002 struct rq_flags rf;
4003 struct rq *rq;
4004 int cpu;
4005
4006 cpu = smp_processor_id();
4007 rq = cpu_rq(cpu);
4008 prev = rq->curr;
4009
4010 schedule_debug(prev, preempt);
4011
4012 if (sched_feat(HRTICK))
4013 hrtick_clear(rq);
4014
4015 local_irq_disable();
4016 rcu_note_context_switch(preempt);
4017
4018 /*
4019 * Make sure that signal_pending_state()->signal_pending() below
4020 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4021 * done by the caller to avoid the race with signal_wake_up().
4022 *
4023 * The membarrier system call requires a full memory barrier
4024 * after coming from user-space, before storing to rq->curr.
4025 */
4026 rq_lock(rq, &rf);
4027 smp_mb__after_spinlock();
4028
4029 /* Promote REQ to ACT */
4030 rq->clock_update_flags <<= 1;
4031 update_rq_clock(rq);
4032
4033 switch_count = &prev->nivcsw;
4034 if (!preempt && prev->state) {
4035 if (signal_pending_state(prev->state, prev)) {
4036 prev->state = TASK_RUNNING;
4037 } else {
4038 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4039
4040 if (prev->in_iowait) {
4041 atomic_inc(&rq->nr_iowait);
4042 delayacct_blkio_start();
4043 }
4044 }
4045 switch_count = &prev->nvcsw;
4046 }
4047
4048 next = pick_next_task(rq, prev, &rf);
4049 clear_tsk_need_resched(prev);
4050 clear_preempt_need_resched();
4051
4052 if (likely(prev != next)) {
4053 rq->nr_switches++;
4054 /*
4055 * RCU users of rcu_dereference(rq->curr) may not see
4056 * changes to task_struct made by pick_next_task().
4057 */
4058 RCU_INIT_POINTER(rq->curr, next);
4059 /*
4060 * The membarrier system call requires each architecture
4061 * to have a full memory barrier after updating
4062 * rq->curr, before returning to user-space.
4063 *
4064 * Here are the schemes providing that barrier on the
4065 * various architectures:
4066 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4067 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4068 * - finish_lock_switch() for weakly-ordered
4069 * architectures where spin_unlock is a full barrier,
4070 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4071 * is a RELEASE barrier),
4072 */
4073 ++*switch_count;
4074
4075 trace_sched_switch(preempt, prev, next);
4076
4077 /* Also unlocks the rq: */
4078 rq = context_switch(rq, prev, next, &rf);
4079 } else {
4080 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4081 rq_unlock_irq(rq, &rf);
4082 }
4083
4084 balance_callback(rq);
4085}
4086
4087void __noreturn do_task_dead(void)
4088{
4089 /* Causes final put_task_struct in finish_task_switch(): */
4090 set_special_state(TASK_DEAD);
4091
4092 /* Tell freezer to ignore us: */
4093 current->flags |= PF_NOFREEZE;
4094
4095 __schedule(false);
4096 BUG();
4097
4098 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4099 for (;;)
4100 cpu_relax();
4101}
4102
4103static inline void sched_submit_work(struct task_struct *tsk)
4104{
4105 if (!tsk->state)
4106 return;
4107
4108 /*
4109 * If a worker went to sleep, notify and ask workqueue whether
4110 * it wants to wake up a task to maintain concurrency.
4111 * As this function is called inside the schedule() context,
4112 * we disable preemption to avoid it calling schedule() again
4113 * in the possible wakeup of a kworker.
4114 */
4115 if (tsk->flags & PF_WQ_WORKER) {
4116 preempt_disable();
4117 wq_worker_sleeping(tsk);
4118 preempt_enable_no_resched();
4119 }
4120
4121 if (tsk_is_pi_blocked(tsk))
4122 return;
4123
4124 /*
4125 * If we are going to sleep and we have plugged IO queued,
4126 * make sure to submit it to avoid deadlocks.
4127 */
4128 if (blk_needs_flush_plug(tsk))
4129 blk_schedule_flush_plug(tsk);
4130}
4131
4132static void sched_update_worker(struct task_struct *tsk)
4133{
4134 if (tsk->flags & PF_WQ_WORKER)
4135 wq_worker_running(tsk);
4136}
4137
4138asmlinkage __visible void __sched schedule(void)
4139{
4140 struct task_struct *tsk = current;
4141
4142 sched_submit_work(tsk);
4143 do {
4144 preempt_disable();
4145 __schedule(false);
4146 sched_preempt_enable_no_resched();
4147 } while (need_resched());
4148 sched_update_worker(tsk);
4149}
4150EXPORT_SYMBOL(schedule);
4151
4152/*
4153 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4154 * state (have scheduled out non-voluntarily) by making sure that all
4155 * tasks have either left the run queue or have gone into user space.
4156 * As idle tasks do not do either, they must not ever be preempted
4157 * (schedule out non-voluntarily).
4158 *
4159 * schedule_idle() is similar to schedule_preempt_disable() except that it
4160 * never enables preemption because it does not call sched_submit_work().
4161 */
4162void __sched schedule_idle(void)
4163{
4164 /*
4165 * As this skips calling sched_submit_work(), which the idle task does
4166 * regardless because that function is a nop when the task is in a
4167 * TASK_RUNNING state, make sure this isn't used someplace that the
4168 * current task can be in any other state. Note, idle is always in the
4169 * TASK_RUNNING state.
4170 */
4171 WARN_ON_ONCE(current->state);
4172 do {
4173 __schedule(false);
4174 } while (need_resched());
4175}
4176
4177#ifdef CONFIG_CONTEXT_TRACKING
4178asmlinkage __visible void __sched schedule_user(void)
4179{
4180 /*
4181 * If we come here after a random call to set_need_resched(),
4182 * or we have been woken up remotely but the IPI has not yet arrived,
4183 * we haven't yet exited the RCU idle mode. Do it here manually until
4184 * we find a better solution.
4185 *
4186 * NB: There are buggy callers of this function. Ideally we
4187 * should warn if prev_state != CONTEXT_USER, but that will trigger
4188 * too frequently to make sense yet.
4189 */
4190 enum ctx_state prev_state = exception_enter();
4191 schedule();
4192 exception_exit(prev_state);
4193}
4194#endif
4195
4196/**
4197 * schedule_preempt_disabled - called with preemption disabled
4198 *
4199 * Returns with preemption disabled. Note: preempt_count must be 1
4200 */
4201void __sched schedule_preempt_disabled(void)
4202{
4203 sched_preempt_enable_no_resched();
4204 schedule();
4205 preempt_disable();
4206}
4207
4208static void __sched notrace preempt_schedule_common(void)
4209{
4210 do {
4211 /*
4212 * Because the function tracer can trace preempt_count_sub()
4213 * and it also uses preempt_enable/disable_notrace(), if
4214 * NEED_RESCHED is set, the preempt_enable_notrace() called
4215 * by the function tracer will call this function again and
4216 * cause infinite recursion.
4217 *
4218 * Preemption must be disabled here before the function
4219 * tracer can trace. Break up preempt_disable() into two
4220 * calls. One to disable preemption without fear of being
4221 * traced. The other to still record the preemption latency,
4222 * which can also be traced by the function tracer.
4223 */
4224 preempt_disable_notrace();
4225 preempt_latency_start(1);
4226 __schedule(true);
4227 preempt_latency_stop(1);
4228 preempt_enable_no_resched_notrace();
4229
4230 /*
4231 * Check again in case we missed a preemption opportunity
4232 * between schedule and now.
4233 */
4234 } while (need_resched());
4235}
4236
4237#ifdef CONFIG_PREEMPTION
4238/*
4239 * This is the entry point to schedule() from in-kernel preemption
4240 * off of preempt_enable.
4241 */
4242asmlinkage __visible void __sched notrace preempt_schedule(void)
4243{
4244 /*
4245 * If there is a non-zero preempt_count or interrupts are disabled,
4246 * we do not want to preempt the current task. Just return..
4247 */
4248 if (likely(!preemptible()))
4249 return;
4250
4251 preempt_schedule_common();
4252}
4253NOKPROBE_SYMBOL(preempt_schedule);
4254EXPORT_SYMBOL(preempt_schedule);
4255
4256/**
4257 * preempt_schedule_notrace - preempt_schedule called by tracing
4258 *
4259 * The tracing infrastructure uses preempt_enable_notrace to prevent
4260 * recursion and tracing preempt enabling caused by the tracing
4261 * infrastructure itself. But as tracing can happen in areas coming
4262 * from userspace or just about to enter userspace, a preempt enable
4263 * can occur before user_exit() is called. This will cause the scheduler
4264 * to be called when the system is still in usermode.
4265 *
4266 * To prevent this, the preempt_enable_notrace will use this function
4267 * instead of preempt_schedule() to exit user context if needed before
4268 * calling the scheduler.
4269 */
4270asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4271{
4272 enum ctx_state prev_ctx;
4273
4274 if (likely(!preemptible()))
4275 return;
4276
4277 do {
4278 /*
4279 * Because the function tracer can trace preempt_count_sub()
4280 * and it also uses preempt_enable/disable_notrace(), if
4281 * NEED_RESCHED is set, the preempt_enable_notrace() called
4282 * by the function tracer will call this function again and
4283 * cause infinite recursion.
4284 *
4285 * Preemption must be disabled here before the function
4286 * tracer can trace. Break up preempt_disable() into two
4287 * calls. One to disable preemption without fear of being
4288 * traced. The other to still record the preemption latency,
4289 * which can also be traced by the function tracer.
4290 */
4291 preempt_disable_notrace();
4292 preempt_latency_start(1);
4293 /*
4294 * Needs preempt disabled in case user_exit() is traced
4295 * and the tracer calls preempt_enable_notrace() causing
4296 * an infinite recursion.
4297 */
4298 prev_ctx = exception_enter();
4299 __schedule(true);
4300 exception_exit(prev_ctx);
4301
4302 preempt_latency_stop(1);
4303 preempt_enable_no_resched_notrace();
4304 } while (need_resched());
4305}
4306EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4307
4308#endif /* CONFIG_PREEMPTION */
4309
4310/*
4311 * This is the entry point to schedule() from kernel preemption
4312 * off of irq context.
4313 * Note, that this is called and return with irqs disabled. This will
4314 * protect us against recursive calling from irq.
4315 */
4316asmlinkage __visible void __sched preempt_schedule_irq(void)
4317{
4318 enum ctx_state prev_state;
4319
4320 /* Catch callers which need to be fixed */
4321 BUG_ON(preempt_count() || !irqs_disabled());
4322
4323 prev_state = exception_enter();
4324
4325 do {
4326 preempt_disable();
4327 local_irq_enable();
4328 __schedule(true);
4329 local_irq_disable();
4330 sched_preempt_enable_no_resched();
4331 } while (need_resched());
4332
4333 exception_exit(prev_state);
4334}
4335
4336int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4337 void *key)
4338{
4339 return try_to_wake_up(curr->private, mode, wake_flags);
4340}
4341EXPORT_SYMBOL(default_wake_function);
4342
4343#ifdef CONFIG_RT_MUTEXES
4344
4345static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4346{
4347 if (pi_task)
4348 prio = min(prio, pi_task->prio);
4349
4350 return prio;
4351}
4352
4353static inline int rt_effective_prio(struct task_struct *p, int prio)
4354{
4355 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4356
4357 return __rt_effective_prio(pi_task, prio);
4358}
4359
4360/*
4361 * rt_mutex_setprio - set the current priority of a task
4362 * @p: task to boost
4363 * @pi_task: donor task
4364 *
4365 * This function changes the 'effective' priority of a task. It does
4366 * not touch ->normal_prio like __setscheduler().
4367 *
4368 * Used by the rt_mutex code to implement priority inheritance
4369 * logic. Call site only calls if the priority of the task changed.
4370 */
4371void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4372{
4373 int prio, oldprio, queued, running, queue_flag =
4374 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4375 const struct sched_class *prev_class;
4376 struct rq_flags rf;
4377 struct rq *rq;
4378
4379 /* XXX used to be waiter->prio, not waiter->task->prio */
4380 prio = __rt_effective_prio(pi_task, p->normal_prio);
4381
4382 /*
4383 * If nothing changed; bail early.
4384 */
4385 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4386 return;
4387
4388 rq = __task_rq_lock(p, &rf);
4389 update_rq_clock(rq);
4390 /*
4391 * Set under pi_lock && rq->lock, such that the value can be used under
4392 * either lock.
4393 *
4394 * Note that there is loads of tricky to make this pointer cache work
4395 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4396 * ensure a task is de-boosted (pi_task is set to NULL) before the
4397 * task is allowed to run again (and can exit). This ensures the pointer
4398 * points to a blocked task -- which guaratees the task is present.
4399 */
4400 p->pi_top_task = pi_task;
4401
4402 /*
4403 * For FIFO/RR we only need to set prio, if that matches we're done.
4404 */
4405 if (prio == p->prio && !dl_prio(prio))
4406 goto out_unlock;
4407
4408 /*
4409 * Idle task boosting is a nono in general. There is one
4410 * exception, when PREEMPT_RT and NOHZ is active:
4411 *
4412 * The idle task calls get_next_timer_interrupt() and holds
4413 * the timer wheel base->lock on the CPU and another CPU wants
4414 * to access the timer (probably to cancel it). We can safely
4415 * ignore the boosting request, as the idle CPU runs this code
4416 * with interrupts disabled and will complete the lock
4417 * protected section without being interrupted. So there is no
4418 * real need to boost.
4419 */
4420 if (unlikely(p == rq->idle)) {
4421 WARN_ON(p != rq->curr);
4422 WARN_ON(p->pi_blocked_on);
4423 goto out_unlock;
4424 }
4425
4426 trace_sched_pi_setprio(p, pi_task);
4427 oldprio = p->prio;
4428
4429 if (oldprio == prio)
4430 queue_flag &= ~DEQUEUE_MOVE;
4431
4432 prev_class = p->sched_class;
4433 queued = task_on_rq_queued(p);
4434 running = task_current(rq, p);
4435 if (queued)
4436 dequeue_task(rq, p, queue_flag);
4437 if (running)
4438 put_prev_task(rq, p);
4439
4440 /*
4441 * Boosting condition are:
4442 * 1. -rt task is running and holds mutex A
4443 * --> -dl task blocks on mutex A
4444 *
4445 * 2. -dl task is running and holds mutex A
4446 * --> -dl task blocks on mutex A and could preempt the
4447 * running task
4448 */
4449 if (dl_prio(prio)) {
4450 if (!dl_prio(p->normal_prio) ||
4451 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4452 p->dl.dl_boosted = 1;
4453 queue_flag |= ENQUEUE_REPLENISH;
4454 } else
4455 p->dl.dl_boosted = 0;
4456 p->sched_class = &dl_sched_class;
4457 } else if (rt_prio(prio)) {
4458 if (dl_prio(oldprio))
4459 p->dl.dl_boosted = 0;
4460 if (oldprio < prio)
4461 queue_flag |= ENQUEUE_HEAD;
4462 p->sched_class = &rt_sched_class;
4463 } else {
4464 if (dl_prio(oldprio))
4465 p->dl.dl_boosted = 0;
4466 if (rt_prio(oldprio))
4467 p->rt.timeout = 0;
4468 p->sched_class = &fair_sched_class;
4469 }
4470
4471 p->prio = prio;
4472
4473 if (queued)
4474 enqueue_task(rq, p, queue_flag);
4475 if (running)
4476 set_next_task(rq, p);
4477
4478 check_class_changed(rq, p, prev_class, oldprio);
4479out_unlock:
4480 /* Avoid rq from going away on us: */
4481 preempt_disable();
4482 __task_rq_unlock(rq, &rf);
4483
4484 balance_callback(rq);
4485 preempt_enable();
4486}
4487#else
4488static inline int rt_effective_prio(struct task_struct *p, int prio)
4489{
4490 return prio;
4491}
4492#endif
4493
4494void set_user_nice(struct task_struct *p, long nice)
4495{
4496 bool queued, running;
4497 int old_prio, delta;
4498 struct rq_flags rf;
4499 struct rq *rq;
4500
4501 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4502 return;
4503 /*
4504 * We have to be careful, if called from sys_setpriority(),
4505 * the task might be in the middle of scheduling on another CPU.
4506 */
4507 rq = task_rq_lock(p, &rf);
4508 update_rq_clock(rq);
4509
4510 /*
4511 * The RT priorities are set via sched_setscheduler(), but we still
4512 * allow the 'normal' nice value to be set - but as expected
4513 * it wont have any effect on scheduling until the task is
4514 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4515 */
4516 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4517 p->static_prio = NICE_TO_PRIO(nice);
4518 goto out_unlock;
4519 }
4520 queued = task_on_rq_queued(p);
4521 running = task_current(rq, p);
4522 if (queued)
4523 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4524 if (running)
4525 put_prev_task(rq, p);
4526
4527 p->static_prio = NICE_TO_PRIO(nice);
4528 set_load_weight(p, true);
4529 old_prio = p->prio;
4530 p->prio = effective_prio(p);
4531 delta = p->prio - old_prio;
4532
4533 if (queued) {
4534 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4535 /*
4536 * If the task increased its priority or is running and
4537 * lowered its priority, then reschedule its CPU:
4538 */
4539 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4540 resched_curr(rq);
4541 }
4542 if (running)
4543 set_next_task(rq, p);
4544out_unlock:
4545 task_rq_unlock(rq, p, &rf);
4546}
4547EXPORT_SYMBOL(set_user_nice);
4548
4549/*
4550 * can_nice - check if a task can reduce its nice value
4551 * @p: task
4552 * @nice: nice value
4553 */
4554int can_nice(const struct task_struct *p, const int nice)
4555{
4556 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4557 int nice_rlim = nice_to_rlimit(nice);
4558
4559 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4560 capable(CAP_SYS_NICE));
4561}
4562
4563#ifdef __ARCH_WANT_SYS_NICE
4564
4565/*
4566 * sys_nice - change the priority of the current process.
4567 * @increment: priority increment
4568 *
4569 * sys_setpriority is a more generic, but much slower function that
4570 * does similar things.
4571 */
4572SYSCALL_DEFINE1(nice, int, increment)
4573{
4574 long nice, retval;
4575
4576 /*
4577 * Setpriority might change our priority at the same moment.
4578 * We don't have to worry. Conceptually one call occurs first
4579 * and we have a single winner.
4580 */
4581 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4582 nice = task_nice(current) + increment;
4583
4584 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4585 if (increment < 0 && !can_nice(current, nice))
4586 return -EPERM;
4587
4588 retval = security_task_setnice(current, nice);
4589 if (retval)
4590 return retval;
4591
4592 set_user_nice(current, nice);
4593 return 0;
4594}
4595
4596#endif
4597
4598/**
4599 * task_prio - return the priority value of a given task.
4600 * @p: the task in question.
4601 *
4602 * Return: The priority value as seen by users in /proc.
4603 * RT tasks are offset by -200. Normal tasks are centered
4604 * around 0, value goes from -16 to +15.
4605 */
4606int task_prio(const struct task_struct *p)
4607{
4608 return p->prio - MAX_RT_PRIO;
4609}
4610
4611/**
4612 * idle_cpu - is a given CPU idle currently?
4613 * @cpu: the processor in question.
4614 *
4615 * Return: 1 if the CPU is currently idle. 0 otherwise.
4616 */
4617int idle_cpu(int cpu)
4618{
4619 struct rq *rq = cpu_rq(cpu);
4620
4621 if (rq->curr != rq->idle)
4622 return 0;
4623
4624 if (rq->nr_running)
4625 return 0;
4626
4627#ifdef CONFIG_SMP
4628 if (!llist_empty(&rq->wake_list))
4629 return 0;
4630#endif
4631
4632 return 1;
4633}
4634
4635/**
4636 * available_idle_cpu - is a given CPU idle for enqueuing work.
4637 * @cpu: the CPU in question.
4638 *
4639 * Return: 1 if the CPU is currently idle. 0 otherwise.
4640 */
4641int available_idle_cpu(int cpu)
4642{
4643 if (!idle_cpu(cpu))
4644 return 0;
4645
4646 if (vcpu_is_preempted(cpu))
4647 return 0;
4648
4649 return 1;
4650}
4651
4652/**
4653 * idle_task - return the idle task for a given CPU.
4654 * @cpu: the processor in question.
4655 *
4656 * Return: The idle task for the CPU @cpu.
4657 */
4658struct task_struct *idle_task(int cpu)
4659{
4660 return cpu_rq(cpu)->idle;
4661}
4662
4663/**
4664 * find_process_by_pid - find a process with a matching PID value.
4665 * @pid: the pid in question.
4666 *
4667 * The task of @pid, if found. %NULL otherwise.
4668 */
4669static struct task_struct *find_process_by_pid(pid_t pid)
4670{
4671 return pid ? find_task_by_vpid(pid) : current;
4672}
4673
4674/*
4675 * sched_setparam() passes in -1 for its policy, to let the functions
4676 * it calls know not to change it.
4677 */
4678#define SETPARAM_POLICY -1
4679
4680static void __setscheduler_params(struct task_struct *p,
4681 const struct sched_attr *attr)
4682{
4683 int policy = attr->sched_policy;
4684
4685 if (policy == SETPARAM_POLICY)
4686 policy = p->policy;
4687
4688 p->policy = policy;
4689
4690 if (dl_policy(policy))
4691 __setparam_dl(p, attr);
4692 else if (fair_policy(policy))
4693 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4694
4695 /*
4696 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4697 * !rt_policy. Always setting this ensures that things like
4698 * getparam()/getattr() don't report silly values for !rt tasks.
4699 */
4700 p->rt_priority = attr->sched_priority;
4701 p->normal_prio = normal_prio(p);
4702 set_load_weight(p, true);
4703}
4704
4705/* Actually do priority change: must hold pi & rq lock. */
4706static void __setscheduler(struct rq *rq, struct task_struct *p,
4707 const struct sched_attr *attr, bool keep_boost)
4708{
4709 /*
4710 * If params can't change scheduling class changes aren't allowed
4711 * either.
4712 */
4713 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4714 return;
4715
4716 __setscheduler_params(p, attr);
4717
4718 /*
4719 * Keep a potential priority boosting if called from
4720 * sched_setscheduler().
4721 */
4722 p->prio = normal_prio(p);
4723 if (keep_boost)
4724 p->prio = rt_effective_prio(p, p->prio);
4725
4726 if (dl_prio(p->prio))
4727 p->sched_class = &dl_sched_class;
4728 else if (rt_prio(p->prio))
4729 p->sched_class = &rt_sched_class;
4730 else
4731 p->sched_class = &fair_sched_class;
4732}
4733
4734/*
4735 * Check the target process has a UID that matches the current process's:
4736 */
4737static bool check_same_owner(struct task_struct *p)
4738{
4739 const struct cred *cred = current_cred(), *pcred;
4740 bool match;
4741
4742 rcu_read_lock();
4743 pcred = __task_cred(p);
4744 match = (uid_eq(cred->euid, pcred->euid) ||
4745 uid_eq(cred->euid, pcred->uid));
4746 rcu_read_unlock();
4747 return match;
4748}
4749
4750static int __sched_setscheduler(struct task_struct *p,
4751 const struct sched_attr *attr,
4752 bool user, bool pi)
4753{
4754 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4755 MAX_RT_PRIO - 1 - attr->sched_priority;
4756 int retval, oldprio, oldpolicy = -1, queued, running;
4757 int new_effective_prio, policy = attr->sched_policy;
4758 const struct sched_class *prev_class;
4759 struct rq_flags rf;
4760 int reset_on_fork;
4761 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4762 struct rq *rq;
4763
4764 /* The pi code expects interrupts enabled */
4765 BUG_ON(pi && in_interrupt());
4766recheck:
4767 /* Double check policy once rq lock held: */
4768 if (policy < 0) {
4769 reset_on_fork = p->sched_reset_on_fork;
4770 policy = oldpolicy = p->policy;
4771 } else {
4772 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4773
4774 if (!valid_policy(policy))
4775 return -EINVAL;
4776 }
4777
4778 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4779 return -EINVAL;
4780
4781 /*
4782 * Valid priorities for SCHED_FIFO and SCHED_RR are
4783 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4784 * SCHED_BATCH and SCHED_IDLE is 0.
4785 */
4786 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4787 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4788 return -EINVAL;
4789 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4790 (rt_policy(policy) != (attr->sched_priority != 0)))
4791 return -EINVAL;
4792
4793 /*
4794 * Allow unprivileged RT tasks to decrease priority:
4795 */
4796 if (user && !capable(CAP_SYS_NICE)) {
4797 if (fair_policy(policy)) {
4798 if (attr->sched_nice < task_nice(p) &&
4799 !can_nice(p, attr->sched_nice))
4800 return -EPERM;
4801 }
4802
4803 if (rt_policy(policy)) {
4804 unsigned long rlim_rtprio =
4805 task_rlimit(p, RLIMIT_RTPRIO);
4806
4807 /* Can't set/change the rt policy: */
4808 if (policy != p->policy && !rlim_rtprio)
4809 return -EPERM;
4810
4811 /* Can't increase priority: */
4812 if (attr->sched_priority > p->rt_priority &&
4813 attr->sched_priority > rlim_rtprio)
4814 return -EPERM;
4815 }
4816
4817 /*
4818 * Can't set/change SCHED_DEADLINE policy at all for now
4819 * (safest behavior); in the future we would like to allow
4820 * unprivileged DL tasks to increase their relative deadline
4821 * or reduce their runtime (both ways reducing utilization)
4822 */
4823 if (dl_policy(policy))
4824 return -EPERM;
4825
4826 /*
4827 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4828 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4829 */
4830 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4831 if (!can_nice(p, task_nice(p)))
4832 return -EPERM;
4833 }
4834
4835 /* Can't change other user's priorities: */
4836 if (!check_same_owner(p))
4837 return -EPERM;
4838
4839 /* Normal users shall not reset the sched_reset_on_fork flag: */
4840 if (p->sched_reset_on_fork && !reset_on_fork)
4841 return -EPERM;
4842 }
4843
4844 if (user) {
4845 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4846 return -EINVAL;
4847
4848 retval = security_task_setscheduler(p);
4849 if (retval)
4850 return retval;
4851 }
4852
4853 /* Update task specific "requested" clamps */
4854 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4855 retval = uclamp_validate(p, attr);
4856 if (retval)
4857 return retval;
4858 }
4859
4860 if (pi)
4861 cpuset_read_lock();
4862
4863 /*
4864 * Make sure no PI-waiters arrive (or leave) while we are
4865 * changing the priority of the task:
4866 *
4867 * To be able to change p->policy safely, the appropriate
4868 * runqueue lock must be held.
4869 */
4870 rq = task_rq_lock(p, &rf);
4871 update_rq_clock(rq);
4872
4873 /*
4874 * Changing the policy of the stop threads its a very bad idea:
4875 */
4876 if (p == rq->stop) {
4877 retval = -EINVAL;
4878 goto unlock;
4879 }
4880
4881 /*
4882 * If not changing anything there's no need to proceed further,
4883 * but store a possible modification of reset_on_fork.
4884 */
4885 if (unlikely(policy == p->policy)) {
4886 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4887 goto change;
4888 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4889 goto change;
4890 if (dl_policy(policy) && dl_param_changed(p, attr))
4891 goto change;
4892 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4893 goto change;
4894
4895 p->sched_reset_on_fork = reset_on_fork;
4896 retval = 0;
4897 goto unlock;
4898 }
4899change:
4900
4901 if (user) {
4902#ifdef CONFIG_RT_GROUP_SCHED
4903 /*
4904 * Do not allow realtime tasks into groups that have no runtime
4905 * assigned.
4906 */
4907 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4908 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4909 !task_group_is_autogroup(task_group(p))) {
4910 retval = -EPERM;
4911 goto unlock;
4912 }
4913#endif
4914#ifdef CONFIG_SMP
4915 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4916 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4917 cpumask_t *span = rq->rd->span;
4918
4919 /*
4920 * Don't allow tasks with an affinity mask smaller than
4921 * the entire root_domain to become SCHED_DEADLINE. We
4922 * will also fail if there's no bandwidth available.
4923 */
4924 if (!cpumask_subset(span, p->cpus_ptr) ||
4925 rq->rd->dl_bw.bw == 0) {
4926 retval = -EPERM;
4927 goto unlock;
4928 }
4929 }
4930#endif
4931 }
4932
4933 /* Re-check policy now with rq lock held: */
4934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4935 policy = oldpolicy = -1;
4936 task_rq_unlock(rq, p, &rf);
4937 if (pi)
4938 cpuset_read_unlock();
4939 goto recheck;
4940 }
4941
4942 /*
4943 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4944 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4945 * is available.
4946 */
4947 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4948 retval = -EBUSY;
4949 goto unlock;
4950 }
4951
4952 p->sched_reset_on_fork = reset_on_fork;
4953 oldprio = p->prio;
4954
4955 if (pi) {
4956 /*
4957 * Take priority boosted tasks into account. If the new
4958 * effective priority is unchanged, we just store the new
4959 * normal parameters and do not touch the scheduler class and
4960 * the runqueue. This will be done when the task deboost
4961 * itself.
4962 */
4963 new_effective_prio = rt_effective_prio(p, newprio);
4964 if (new_effective_prio == oldprio)
4965 queue_flags &= ~DEQUEUE_MOVE;
4966 }
4967
4968 queued = task_on_rq_queued(p);
4969 running = task_current(rq, p);
4970 if (queued)
4971 dequeue_task(rq, p, queue_flags);
4972 if (running)
4973 put_prev_task(rq, p);
4974
4975 prev_class = p->sched_class;
4976
4977 __setscheduler(rq, p, attr, pi);
4978 __setscheduler_uclamp(p, attr);
4979
4980 if (queued) {
4981 /*
4982 * We enqueue to tail when the priority of a task is
4983 * increased (user space view).
4984 */
4985 if (oldprio < p->prio)
4986 queue_flags |= ENQUEUE_HEAD;
4987
4988 enqueue_task(rq, p, queue_flags);
4989 }
4990 if (running)
4991 set_next_task(rq, p);
4992
4993 check_class_changed(rq, p, prev_class, oldprio);
4994
4995 /* Avoid rq from going away on us: */
4996 preempt_disable();
4997 task_rq_unlock(rq, p, &rf);
4998
4999 if (pi) {
5000 cpuset_read_unlock();
5001 rt_mutex_adjust_pi(p);
5002 }
5003
5004 /* Run balance callbacks after we've adjusted the PI chain: */
5005 balance_callback(rq);
5006 preempt_enable();
5007
5008 return 0;
5009
5010unlock:
5011 task_rq_unlock(rq, p, &rf);
5012 if (pi)
5013 cpuset_read_unlock();
5014 return retval;
5015}
5016
5017static int _sched_setscheduler(struct task_struct *p, int policy,
5018 const struct sched_param *param, bool check)
5019{
5020 struct sched_attr attr = {
5021 .sched_policy = policy,
5022 .sched_priority = param->sched_priority,
5023 .sched_nice = PRIO_TO_NICE(p->static_prio),
5024 };
5025
5026 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5027 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5028 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5029 policy &= ~SCHED_RESET_ON_FORK;
5030 attr.sched_policy = policy;
5031 }
5032
5033 return __sched_setscheduler(p, &attr, check, true);
5034}
5035/**
5036 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5037 * @p: the task in question.
5038 * @policy: new policy.
5039 * @param: structure containing the new RT priority.
5040 *
5041 * Return: 0 on success. An error code otherwise.
5042 *
5043 * NOTE that the task may be already dead.
5044 */
5045int sched_setscheduler(struct task_struct *p, int policy,
5046 const struct sched_param *param)
5047{
5048 return _sched_setscheduler(p, policy, param, true);
5049}
5050EXPORT_SYMBOL_GPL(sched_setscheduler);
5051
5052int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5053{
5054 return __sched_setscheduler(p, attr, true, true);
5055}
5056EXPORT_SYMBOL_GPL(sched_setattr);
5057
5058int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5059{
5060 return __sched_setscheduler(p, attr, false, true);
5061}
5062
5063/**
5064 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5065 * @p: the task in question.
5066 * @policy: new policy.
5067 * @param: structure containing the new RT priority.
5068 *
5069 * Just like sched_setscheduler, only don't bother checking if the
5070 * current context has permission. For example, this is needed in
5071 * stop_machine(): we create temporary high priority worker threads,
5072 * but our caller might not have that capability.
5073 *
5074 * Return: 0 on success. An error code otherwise.
5075 */
5076int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5077 const struct sched_param *param)
5078{
5079 return _sched_setscheduler(p, policy, param, false);
5080}
5081EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5082
5083static int
5084do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5085{
5086 struct sched_param lparam;
5087 struct task_struct *p;
5088 int retval;
5089
5090 if (!param || pid < 0)
5091 return -EINVAL;
5092 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5093 return -EFAULT;
5094
5095 rcu_read_lock();
5096 retval = -ESRCH;
5097 p = find_process_by_pid(pid);
5098 if (likely(p))
5099 get_task_struct(p);
5100 rcu_read_unlock();
5101
5102 if (likely(p)) {
5103 retval = sched_setscheduler(p, policy, &lparam);
5104 put_task_struct(p);
5105 }
5106
5107 return retval;
5108}
5109
5110/*
5111 * Mimics kernel/events/core.c perf_copy_attr().
5112 */
5113static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5114{
5115 u32 size;
5116 int ret;
5117
5118 /* Zero the full structure, so that a short copy will be nice: */
5119 memset(attr, 0, sizeof(*attr));
5120
5121 ret = get_user(size, &uattr->size);
5122 if (ret)
5123 return ret;
5124
5125 /* ABI compatibility quirk: */
5126 if (!size)
5127 size = SCHED_ATTR_SIZE_VER0;
5128 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5129 goto err_size;
5130
5131 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5132 if (ret) {
5133 if (ret == -E2BIG)
5134 goto err_size;
5135 return ret;
5136 }
5137
5138 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5139 size < SCHED_ATTR_SIZE_VER1)
5140 return -EINVAL;
5141
5142 /*
5143 * XXX: Do we want to be lenient like existing syscalls; or do we want
5144 * to be strict and return an error on out-of-bounds values?
5145 */
5146 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5147
5148 return 0;
5149
5150err_size:
5151 put_user(sizeof(*attr), &uattr->size);
5152 return -E2BIG;
5153}
5154
5155/**
5156 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5157 * @pid: the pid in question.
5158 * @policy: new policy.
5159 * @param: structure containing the new RT priority.
5160 *
5161 * Return: 0 on success. An error code otherwise.
5162 */
5163SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5164{
5165 if (policy < 0)
5166 return -EINVAL;
5167
5168 return do_sched_setscheduler(pid, policy, param);
5169}
5170
5171/**
5172 * sys_sched_setparam - set/change the RT priority of a thread
5173 * @pid: the pid in question.
5174 * @param: structure containing the new RT priority.
5175 *
5176 * Return: 0 on success. An error code otherwise.
5177 */
5178SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5179{
5180 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5181}
5182
5183/**
5184 * sys_sched_setattr - same as above, but with extended sched_attr
5185 * @pid: the pid in question.
5186 * @uattr: structure containing the extended parameters.
5187 * @flags: for future extension.
5188 */
5189SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5190 unsigned int, flags)
5191{
5192 struct sched_attr attr;
5193 struct task_struct *p;
5194 int retval;
5195
5196 if (!uattr || pid < 0 || flags)
5197 return -EINVAL;
5198
5199 retval = sched_copy_attr(uattr, &attr);
5200 if (retval)
5201 return retval;
5202
5203 if ((int)attr.sched_policy < 0)
5204 return -EINVAL;
5205 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5206 attr.sched_policy = SETPARAM_POLICY;
5207
5208 rcu_read_lock();
5209 retval = -ESRCH;
5210 p = find_process_by_pid(pid);
5211 if (likely(p))
5212 get_task_struct(p);
5213 rcu_read_unlock();
5214
5215 if (likely(p)) {
5216 retval = sched_setattr(p, &attr);
5217 put_task_struct(p);
5218 }
5219
5220 return retval;
5221}
5222
5223/**
5224 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5225 * @pid: the pid in question.
5226 *
5227 * Return: On success, the policy of the thread. Otherwise, a negative error
5228 * code.
5229 */
5230SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5231{
5232 struct task_struct *p;
5233 int retval;
5234
5235 if (pid < 0)
5236 return -EINVAL;
5237
5238 retval = -ESRCH;
5239 rcu_read_lock();
5240 p = find_process_by_pid(pid);
5241 if (p) {
5242 retval = security_task_getscheduler(p);
5243 if (!retval)
5244 retval = p->policy
5245 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5246 }
5247 rcu_read_unlock();
5248 return retval;
5249}
5250
5251/**
5252 * sys_sched_getparam - get the RT priority of a thread
5253 * @pid: the pid in question.
5254 * @param: structure containing the RT priority.
5255 *
5256 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5257 * code.
5258 */
5259SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5260{
5261 struct sched_param lp = { .sched_priority = 0 };
5262 struct task_struct *p;
5263 int retval;
5264
5265 if (!param || pid < 0)
5266 return -EINVAL;
5267
5268 rcu_read_lock();
5269 p = find_process_by_pid(pid);
5270 retval = -ESRCH;
5271 if (!p)
5272 goto out_unlock;
5273
5274 retval = security_task_getscheduler(p);
5275 if (retval)
5276 goto out_unlock;
5277
5278 if (task_has_rt_policy(p))
5279 lp.sched_priority = p->rt_priority;
5280 rcu_read_unlock();
5281
5282 /*
5283 * This one might sleep, we cannot do it with a spinlock held ...
5284 */
5285 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5286
5287 return retval;
5288
5289out_unlock:
5290 rcu_read_unlock();
5291 return retval;
5292}
5293
5294/*
5295 * Copy the kernel size attribute structure (which might be larger
5296 * than what user-space knows about) to user-space.
5297 *
5298 * Note that all cases are valid: user-space buffer can be larger or
5299 * smaller than the kernel-space buffer. The usual case is that both
5300 * have the same size.
5301 */
5302static int
5303sched_attr_copy_to_user(struct sched_attr __user *uattr,
5304 struct sched_attr *kattr,
5305 unsigned int usize)
5306{
5307 unsigned int ksize = sizeof(*kattr);
5308
5309 if (!access_ok(uattr, usize))
5310 return -EFAULT;
5311
5312 /*
5313 * sched_getattr() ABI forwards and backwards compatibility:
5314 *
5315 * If usize == ksize then we just copy everything to user-space and all is good.
5316 *
5317 * If usize < ksize then we only copy as much as user-space has space for,
5318 * this keeps ABI compatibility as well. We skip the rest.
5319 *
5320 * If usize > ksize then user-space is using a newer version of the ABI,
5321 * which part the kernel doesn't know about. Just ignore it - tooling can
5322 * detect the kernel's knowledge of attributes from the attr->size value
5323 * which is set to ksize in this case.
5324 */
5325 kattr->size = min(usize, ksize);
5326
5327 if (copy_to_user(uattr, kattr, kattr->size))
5328 return -EFAULT;
5329
5330 return 0;
5331}
5332
5333/**
5334 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5335 * @pid: the pid in question.
5336 * @uattr: structure containing the extended parameters.
5337 * @usize: sizeof(attr) for fwd/bwd comp.
5338 * @flags: for future extension.
5339 */
5340SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5341 unsigned int, usize, unsigned int, flags)
5342{
5343 struct sched_attr kattr = { };
5344 struct task_struct *p;
5345 int retval;
5346
5347 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5348 usize < SCHED_ATTR_SIZE_VER0 || flags)
5349 return -EINVAL;
5350
5351 rcu_read_lock();
5352 p = find_process_by_pid(pid);
5353 retval = -ESRCH;
5354 if (!p)
5355 goto out_unlock;
5356
5357 retval = security_task_getscheduler(p);
5358 if (retval)
5359 goto out_unlock;
5360
5361 kattr.sched_policy = p->policy;
5362 if (p->sched_reset_on_fork)
5363 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5364 if (task_has_dl_policy(p))
5365 __getparam_dl(p, &kattr);
5366 else if (task_has_rt_policy(p))
5367 kattr.sched_priority = p->rt_priority;
5368 else
5369 kattr.sched_nice = task_nice(p);
5370
5371#ifdef CONFIG_UCLAMP_TASK
5372 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5373 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5374#endif
5375
5376 rcu_read_unlock();
5377
5378 return sched_attr_copy_to_user(uattr, &kattr, usize);
5379
5380out_unlock:
5381 rcu_read_unlock();
5382 return retval;
5383}
5384
5385long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5386{
5387 cpumask_var_t cpus_allowed, new_mask;
5388 struct task_struct *p;
5389 int retval;
5390
5391 rcu_read_lock();
5392
5393 p = find_process_by_pid(pid);
5394 if (!p) {
5395 rcu_read_unlock();
5396 return -ESRCH;
5397 }
5398
5399 /* Prevent p going away */
5400 get_task_struct(p);
5401 rcu_read_unlock();
5402
5403 if (p->flags & PF_NO_SETAFFINITY) {
5404 retval = -EINVAL;
5405 goto out_put_task;
5406 }
5407 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5408 retval = -ENOMEM;
5409 goto out_put_task;
5410 }
5411 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5412 retval = -ENOMEM;
5413 goto out_free_cpus_allowed;
5414 }
5415 retval = -EPERM;
5416 if (!check_same_owner(p)) {
5417 rcu_read_lock();
5418 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5419 rcu_read_unlock();
5420 goto out_free_new_mask;
5421 }
5422 rcu_read_unlock();
5423 }
5424
5425 retval = security_task_setscheduler(p);
5426 if (retval)
5427 goto out_free_new_mask;
5428
5429
5430 cpuset_cpus_allowed(p, cpus_allowed);
5431 cpumask_and(new_mask, in_mask, cpus_allowed);
5432
5433 /*
5434 * Since bandwidth control happens on root_domain basis,
5435 * if admission test is enabled, we only admit -deadline
5436 * tasks allowed to run on all the CPUs in the task's
5437 * root_domain.
5438 */
5439#ifdef CONFIG_SMP
5440 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5441 rcu_read_lock();
5442 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5443 retval = -EBUSY;
5444 rcu_read_unlock();
5445 goto out_free_new_mask;
5446 }
5447 rcu_read_unlock();
5448 }
5449#endif
5450again:
5451 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5452
5453 if (!retval) {
5454 cpuset_cpus_allowed(p, cpus_allowed);
5455 if (!cpumask_subset(new_mask, cpus_allowed)) {
5456 /*
5457 * We must have raced with a concurrent cpuset
5458 * update. Just reset the cpus_allowed to the
5459 * cpuset's cpus_allowed
5460 */
5461 cpumask_copy(new_mask, cpus_allowed);
5462 goto again;
5463 }
5464 }
5465out_free_new_mask:
5466 free_cpumask_var(new_mask);
5467out_free_cpus_allowed:
5468 free_cpumask_var(cpus_allowed);
5469out_put_task:
5470 put_task_struct(p);
5471 return retval;
5472}
5473
5474static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5475 struct cpumask *new_mask)
5476{
5477 if (len < cpumask_size())
5478 cpumask_clear(new_mask);
5479 else if (len > cpumask_size())
5480 len = cpumask_size();
5481
5482 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5483}
5484
5485/**
5486 * sys_sched_setaffinity - set the CPU affinity of a process
5487 * @pid: pid of the process
5488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5489 * @user_mask_ptr: user-space pointer to the new CPU mask
5490 *
5491 * Return: 0 on success. An error code otherwise.
5492 */
5493SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5494 unsigned long __user *, user_mask_ptr)
5495{
5496 cpumask_var_t new_mask;
5497 int retval;
5498
5499 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5500 return -ENOMEM;
5501
5502 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5503 if (retval == 0)
5504 retval = sched_setaffinity(pid, new_mask);
5505 free_cpumask_var(new_mask);
5506 return retval;
5507}
5508
5509long sched_getaffinity(pid_t pid, struct cpumask *mask)
5510{
5511 struct task_struct *p;
5512 unsigned long flags;
5513 int retval;
5514
5515 rcu_read_lock();
5516
5517 retval = -ESRCH;
5518 p = find_process_by_pid(pid);
5519 if (!p)
5520 goto out_unlock;
5521
5522 retval = security_task_getscheduler(p);
5523 if (retval)
5524 goto out_unlock;
5525
5526 raw_spin_lock_irqsave(&p->pi_lock, flags);
5527 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5528 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5529
5530out_unlock:
5531 rcu_read_unlock();
5532
5533 return retval;
5534}
5535
5536/**
5537 * sys_sched_getaffinity - get the CPU affinity of a process
5538 * @pid: pid of the process
5539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5540 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5541 *
5542 * Return: size of CPU mask copied to user_mask_ptr on success. An
5543 * error code otherwise.
5544 */
5545SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5546 unsigned long __user *, user_mask_ptr)
5547{
5548 int ret;
5549 cpumask_var_t mask;
5550
5551 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5552 return -EINVAL;
5553 if (len & (sizeof(unsigned long)-1))
5554 return -EINVAL;
5555
5556 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5557 return -ENOMEM;
5558
5559 ret = sched_getaffinity(pid, mask);
5560 if (ret == 0) {
5561 unsigned int retlen = min(len, cpumask_size());
5562
5563 if (copy_to_user(user_mask_ptr, mask, retlen))
5564 ret = -EFAULT;
5565 else
5566 ret = retlen;
5567 }
5568 free_cpumask_var(mask);
5569
5570 return ret;
5571}
5572
5573/**
5574 * sys_sched_yield - yield the current processor to other threads.
5575 *
5576 * This function yields the current CPU to other tasks. If there are no
5577 * other threads running on this CPU then this function will return.
5578 *
5579 * Return: 0.
5580 */
5581static void do_sched_yield(void)
5582{
5583 struct rq_flags rf;
5584 struct rq *rq;
5585
5586 rq = this_rq_lock_irq(&rf);
5587
5588 schedstat_inc(rq->yld_count);
5589 current->sched_class->yield_task(rq);
5590
5591 /*
5592 * Since we are going to call schedule() anyway, there's
5593 * no need to preempt or enable interrupts:
5594 */
5595 preempt_disable();
5596 rq_unlock(rq, &rf);
5597 sched_preempt_enable_no_resched();
5598
5599 schedule();
5600}
5601
5602SYSCALL_DEFINE0(sched_yield)
5603{
5604 do_sched_yield();
5605 return 0;
5606}
5607
5608#ifndef CONFIG_PREEMPTION
5609int __sched _cond_resched(void)
5610{
5611 if (should_resched(0)) {
5612 preempt_schedule_common();
5613 return 1;
5614 }
5615 rcu_all_qs();
5616 return 0;
5617}
5618EXPORT_SYMBOL(_cond_resched);
5619#endif
5620
5621/*
5622 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5623 * call schedule, and on return reacquire the lock.
5624 *
5625 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5626 * operations here to prevent schedule() from being called twice (once via
5627 * spin_unlock(), once by hand).
5628 */
5629int __cond_resched_lock(spinlock_t *lock)
5630{
5631 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5632 int ret = 0;
5633
5634 lockdep_assert_held(lock);
5635
5636 if (spin_needbreak(lock) || resched) {
5637 spin_unlock(lock);
5638 if (resched)
5639 preempt_schedule_common();
5640 else
5641 cpu_relax();
5642 ret = 1;
5643 spin_lock(lock);
5644 }
5645 return ret;
5646}
5647EXPORT_SYMBOL(__cond_resched_lock);
5648
5649/**
5650 * yield - yield the current processor to other threads.
5651 *
5652 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5653 *
5654 * The scheduler is at all times free to pick the calling task as the most
5655 * eligible task to run, if removing the yield() call from your code breaks
5656 * it, its already broken.
5657 *
5658 * Typical broken usage is:
5659 *
5660 * while (!event)
5661 * yield();
5662 *
5663 * where one assumes that yield() will let 'the other' process run that will
5664 * make event true. If the current task is a SCHED_FIFO task that will never
5665 * happen. Never use yield() as a progress guarantee!!
5666 *
5667 * If you want to use yield() to wait for something, use wait_event().
5668 * If you want to use yield() to be 'nice' for others, use cond_resched().
5669 * If you still want to use yield(), do not!
5670 */
5671void __sched yield(void)
5672{
5673 set_current_state(TASK_RUNNING);
5674 do_sched_yield();
5675}
5676EXPORT_SYMBOL(yield);
5677
5678/**
5679 * yield_to - yield the current processor to another thread in
5680 * your thread group, or accelerate that thread toward the
5681 * processor it's on.
5682 * @p: target task
5683 * @preempt: whether task preemption is allowed or not
5684 *
5685 * It's the caller's job to ensure that the target task struct
5686 * can't go away on us before we can do any checks.
5687 *
5688 * Return:
5689 * true (>0) if we indeed boosted the target task.
5690 * false (0) if we failed to boost the target.
5691 * -ESRCH if there's no task to yield to.
5692 */
5693int __sched yield_to(struct task_struct *p, bool preempt)
5694{
5695 struct task_struct *curr = current;
5696 struct rq *rq, *p_rq;
5697 unsigned long flags;
5698 int yielded = 0;
5699
5700 local_irq_save(flags);
5701 rq = this_rq();
5702
5703again:
5704 p_rq = task_rq(p);
5705 /*
5706 * If we're the only runnable task on the rq and target rq also
5707 * has only one task, there's absolutely no point in yielding.
5708 */
5709 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5710 yielded = -ESRCH;
5711 goto out_irq;
5712 }
5713
5714 double_rq_lock(rq, p_rq);
5715 if (task_rq(p) != p_rq) {
5716 double_rq_unlock(rq, p_rq);
5717 goto again;
5718 }
5719
5720 if (!curr->sched_class->yield_to_task)
5721 goto out_unlock;
5722
5723 if (curr->sched_class != p->sched_class)
5724 goto out_unlock;
5725
5726 if (task_running(p_rq, p) || p->state)
5727 goto out_unlock;
5728
5729 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5730 if (yielded) {
5731 schedstat_inc(rq->yld_count);
5732 /*
5733 * Make p's CPU reschedule; pick_next_entity takes care of
5734 * fairness.
5735 */
5736 if (preempt && rq != p_rq)
5737 resched_curr(p_rq);
5738 }
5739
5740out_unlock:
5741 double_rq_unlock(rq, p_rq);
5742out_irq:
5743 local_irq_restore(flags);
5744
5745 if (yielded > 0)
5746 schedule();
5747
5748 return yielded;
5749}
5750EXPORT_SYMBOL_GPL(yield_to);
5751
5752int io_schedule_prepare(void)
5753{
5754 int old_iowait = current->in_iowait;
5755
5756 current->in_iowait = 1;
5757 blk_schedule_flush_plug(current);
5758
5759 return old_iowait;
5760}
5761
5762void io_schedule_finish(int token)
5763{
5764 current->in_iowait = token;
5765}
5766
5767/*
5768 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5769 * that process accounting knows that this is a task in IO wait state.
5770 */
5771long __sched io_schedule_timeout(long timeout)
5772{
5773 int token;
5774 long ret;
5775
5776 token = io_schedule_prepare();
5777 ret = schedule_timeout(timeout);
5778 io_schedule_finish(token);
5779
5780 return ret;
5781}
5782EXPORT_SYMBOL(io_schedule_timeout);
5783
5784void __sched io_schedule(void)
5785{
5786 int token;
5787
5788 token = io_schedule_prepare();
5789 schedule();
5790 io_schedule_finish(token);
5791}
5792EXPORT_SYMBOL(io_schedule);
5793
5794/**
5795 * sys_sched_get_priority_max - return maximum RT priority.
5796 * @policy: scheduling class.
5797 *
5798 * Return: On success, this syscall returns the maximum
5799 * rt_priority that can be used by a given scheduling class.
5800 * On failure, a negative error code is returned.
5801 */
5802SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5803{
5804 int ret = -EINVAL;
5805
5806 switch (policy) {
5807 case SCHED_FIFO:
5808 case SCHED_RR:
5809 ret = MAX_USER_RT_PRIO-1;
5810 break;
5811 case SCHED_DEADLINE:
5812 case SCHED_NORMAL:
5813 case SCHED_BATCH:
5814 case SCHED_IDLE:
5815 ret = 0;
5816 break;
5817 }
5818 return ret;
5819}
5820
5821/**
5822 * sys_sched_get_priority_min - return minimum RT priority.
5823 * @policy: scheduling class.
5824 *
5825 * Return: On success, this syscall returns the minimum
5826 * rt_priority that can be used by a given scheduling class.
5827 * On failure, a negative error code is returned.
5828 */
5829SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5830{
5831 int ret = -EINVAL;
5832
5833 switch (policy) {
5834 case SCHED_FIFO:
5835 case SCHED_RR:
5836 ret = 1;
5837 break;
5838 case SCHED_DEADLINE:
5839 case SCHED_NORMAL:
5840 case SCHED_BATCH:
5841 case SCHED_IDLE:
5842 ret = 0;
5843 }
5844 return ret;
5845}
5846
5847static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5848{
5849 struct task_struct *p;
5850 unsigned int time_slice;
5851 struct rq_flags rf;
5852 struct rq *rq;
5853 int retval;
5854
5855 if (pid < 0)
5856 return -EINVAL;
5857
5858 retval = -ESRCH;
5859 rcu_read_lock();
5860 p = find_process_by_pid(pid);
5861 if (!p)
5862 goto out_unlock;
5863
5864 retval = security_task_getscheduler(p);
5865 if (retval)
5866 goto out_unlock;
5867
5868 rq = task_rq_lock(p, &rf);
5869 time_slice = 0;
5870 if (p->sched_class->get_rr_interval)
5871 time_slice = p->sched_class->get_rr_interval(rq, p);
5872 task_rq_unlock(rq, p, &rf);
5873
5874 rcu_read_unlock();
5875 jiffies_to_timespec64(time_slice, t);
5876 return 0;
5877
5878out_unlock:
5879 rcu_read_unlock();
5880 return retval;
5881}
5882
5883/**
5884 * sys_sched_rr_get_interval - return the default timeslice of a process.
5885 * @pid: pid of the process.
5886 * @interval: userspace pointer to the timeslice value.
5887 *
5888 * this syscall writes the default timeslice value of a given process
5889 * into the user-space timespec buffer. A value of '0' means infinity.
5890 *
5891 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5892 * an error code.
5893 */
5894SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5895 struct __kernel_timespec __user *, interval)
5896{
5897 struct timespec64 t;
5898 int retval = sched_rr_get_interval(pid, &t);
5899
5900 if (retval == 0)
5901 retval = put_timespec64(&t, interval);
5902
5903 return retval;
5904}
5905
5906#ifdef CONFIG_COMPAT_32BIT_TIME
5907SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5908 struct old_timespec32 __user *, interval)
5909{
5910 struct timespec64 t;
5911 int retval = sched_rr_get_interval(pid, &t);
5912
5913 if (retval == 0)
5914 retval = put_old_timespec32(&t, interval);
5915 return retval;
5916}
5917#endif
5918
5919void sched_show_task(struct task_struct *p)
5920{
5921 unsigned long free = 0;
5922 int ppid;
5923
5924 if (!try_get_task_stack(p))
5925 return;
5926
5927 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5928
5929 if (p->state == TASK_RUNNING)
5930 printk(KERN_CONT " running task ");
5931#ifdef CONFIG_DEBUG_STACK_USAGE
5932 free = stack_not_used(p);
5933#endif
5934 ppid = 0;
5935 rcu_read_lock();
5936 if (pid_alive(p))
5937 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5938 rcu_read_unlock();
5939 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5940 task_pid_nr(p), ppid,
5941 (unsigned long)task_thread_info(p)->flags);
5942
5943 print_worker_info(KERN_INFO, p);
5944 show_stack(p, NULL);
5945 put_task_stack(p);
5946}
5947EXPORT_SYMBOL_GPL(sched_show_task);
5948
5949static inline bool
5950state_filter_match(unsigned long state_filter, struct task_struct *p)
5951{
5952 /* no filter, everything matches */
5953 if (!state_filter)
5954 return true;
5955
5956 /* filter, but doesn't match */
5957 if (!(p->state & state_filter))
5958 return false;
5959
5960 /*
5961 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5962 * TASK_KILLABLE).
5963 */
5964 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5965 return false;
5966
5967 return true;
5968}
5969
5970
5971void show_state_filter(unsigned long state_filter)
5972{
5973 struct task_struct *g, *p;
5974
5975#if BITS_PER_LONG == 32
5976 printk(KERN_INFO
5977 " task PC stack pid father\n");
5978#else
5979 printk(KERN_INFO
5980 " task PC stack pid father\n");
5981#endif
5982 rcu_read_lock();
5983 for_each_process_thread(g, p) {
5984 /*
5985 * reset the NMI-timeout, listing all files on a slow
5986 * console might take a lot of time:
5987 * Also, reset softlockup watchdogs on all CPUs, because
5988 * another CPU might be blocked waiting for us to process
5989 * an IPI.
5990 */
5991 touch_nmi_watchdog();
5992 touch_all_softlockup_watchdogs();
5993 if (state_filter_match(state_filter, p))
5994 sched_show_task(p);
5995 }
5996
5997#ifdef CONFIG_SCHED_DEBUG
5998 if (!state_filter)
5999 sysrq_sched_debug_show();
6000#endif
6001 rcu_read_unlock();
6002 /*
6003 * Only show locks if all tasks are dumped:
6004 */
6005 if (!state_filter)
6006 debug_show_all_locks();
6007}
6008
6009/**
6010 * init_idle - set up an idle thread for a given CPU
6011 * @idle: task in question
6012 * @cpu: CPU the idle task belongs to
6013 *
6014 * NOTE: this function does not set the idle thread's NEED_RESCHED
6015 * flag, to make booting more robust.
6016 */
6017void init_idle(struct task_struct *idle, int cpu)
6018{
6019 struct rq *rq = cpu_rq(cpu);
6020 unsigned long flags;
6021
6022 __sched_fork(0, idle);
6023
6024 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6025 raw_spin_lock(&rq->lock);
6026
6027 idle->state = TASK_RUNNING;
6028 idle->se.exec_start = sched_clock();
6029 idle->flags |= PF_IDLE;
6030
6031 kasan_unpoison_task_stack(idle);
6032
6033#ifdef CONFIG_SMP
6034 /*
6035 * Its possible that init_idle() gets called multiple times on a task,
6036 * in that case do_set_cpus_allowed() will not do the right thing.
6037 *
6038 * And since this is boot we can forgo the serialization.
6039 */
6040 set_cpus_allowed_common(idle, cpumask_of(cpu));
6041#endif
6042 /*
6043 * We're having a chicken and egg problem, even though we are
6044 * holding rq->lock, the CPU isn't yet set to this CPU so the
6045 * lockdep check in task_group() will fail.
6046 *
6047 * Similar case to sched_fork(). / Alternatively we could
6048 * use task_rq_lock() here and obtain the other rq->lock.
6049 *
6050 * Silence PROVE_RCU
6051 */
6052 rcu_read_lock();
6053 __set_task_cpu(idle, cpu);
6054 rcu_read_unlock();
6055
6056 rq->idle = idle;
6057 rcu_assign_pointer(rq->curr, idle);
6058 idle->on_rq = TASK_ON_RQ_QUEUED;
6059#ifdef CONFIG_SMP
6060 idle->on_cpu = 1;
6061#endif
6062 raw_spin_unlock(&rq->lock);
6063 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6064
6065 /* Set the preempt count _outside_ the spinlocks! */
6066 init_idle_preempt_count(idle, cpu);
6067
6068 /*
6069 * The idle tasks have their own, simple scheduling class:
6070 */
6071 idle->sched_class = &idle_sched_class;
6072 ftrace_graph_init_idle_task(idle, cpu);
6073 vtime_init_idle(idle, cpu);
6074#ifdef CONFIG_SMP
6075 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6076#endif
6077}
6078
6079#ifdef CONFIG_SMP
6080
6081int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6082 const struct cpumask *trial)
6083{
6084 int ret = 1;
6085
6086 if (!cpumask_weight(cur))
6087 return ret;
6088
6089 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6090
6091 return ret;
6092}
6093
6094int task_can_attach(struct task_struct *p,
6095 const struct cpumask *cs_cpus_allowed)
6096{
6097 int ret = 0;
6098
6099 /*
6100 * Kthreads which disallow setaffinity shouldn't be moved
6101 * to a new cpuset; we don't want to change their CPU
6102 * affinity and isolating such threads by their set of
6103 * allowed nodes is unnecessary. Thus, cpusets are not
6104 * applicable for such threads. This prevents checking for
6105 * success of set_cpus_allowed_ptr() on all attached tasks
6106 * before cpus_mask may be changed.
6107 */
6108 if (p->flags & PF_NO_SETAFFINITY) {
6109 ret = -EINVAL;
6110 goto out;
6111 }
6112
6113 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6114 cs_cpus_allowed))
6115 ret = dl_task_can_attach(p, cs_cpus_allowed);
6116
6117out:
6118 return ret;
6119}
6120
6121bool sched_smp_initialized __read_mostly;
6122
6123#ifdef CONFIG_NUMA_BALANCING
6124/* Migrate current task p to target_cpu */
6125int migrate_task_to(struct task_struct *p, int target_cpu)
6126{
6127 struct migration_arg arg = { p, target_cpu };
6128 int curr_cpu = task_cpu(p);
6129
6130 if (curr_cpu == target_cpu)
6131 return 0;
6132
6133 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6134 return -EINVAL;
6135
6136 /* TODO: This is not properly updating schedstats */
6137
6138 trace_sched_move_numa(p, curr_cpu, target_cpu);
6139 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6140}
6141
6142/*
6143 * Requeue a task on a given node and accurately track the number of NUMA
6144 * tasks on the runqueues
6145 */
6146void sched_setnuma(struct task_struct *p, int nid)
6147{
6148 bool queued, running;
6149 struct rq_flags rf;
6150 struct rq *rq;
6151
6152 rq = task_rq_lock(p, &rf);
6153 queued = task_on_rq_queued(p);
6154 running = task_current(rq, p);
6155
6156 if (queued)
6157 dequeue_task(rq, p, DEQUEUE_SAVE);
6158 if (running)
6159 put_prev_task(rq, p);
6160
6161 p->numa_preferred_nid = nid;
6162
6163 if (queued)
6164 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6165 if (running)
6166 set_next_task(rq, p);
6167 task_rq_unlock(rq, p, &rf);
6168}
6169#endif /* CONFIG_NUMA_BALANCING */
6170
6171#ifdef CONFIG_HOTPLUG_CPU
6172/*
6173 * Ensure that the idle task is using init_mm right before its CPU goes
6174 * offline.
6175 */
6176void idle_task_exit(void)
6177{
6178 struct mm_struct *mm = current->active_mm;
6179
6180 BUG_ON(cpu_online(smp_processor_id()));
6181
6182 if (mm != &init_mm) {
6183 switch_mm(mm, &init_mm, current);
6184 current->active_mm = &init_mm;
6185 finish_arch_post_lock_switch();
6186 }
6187 mmdrop(mm);
6188}
6189
6190/*
6191 * Since this CPU is going 'away' for a while, fold any nr_active delta
6192 * we might have. Assumes we're called after migrate_tasks() so that the
6193 * nr_active count is stable. We need to take the teardown thread which
6194 * is calling this into account, so we hand in adjust = 1 to the load
6195 * calculation.
6196 *
6197 * Also see the comment "Global load-average calculations".
6198 */
6199static void calc_load_migrate(struct rq *rq)
6200{
6201 long delta = calc_load_fold_active(rq, 1);
6202 if (delta)
6203 atomic_long_add(delta, &calc_load_tasks);
6204}
6205
6206static struct task_struct *__pick_migrate_task(struct rq *rq)
6207{
6208 const struct sched_class *class;
6209 struct task_struct *next;
6210
6211 for_each_class(class) {
6212 next = class->pick_next_task(rq, NULL, NULL);
6213 if (next) {
6214 next->sched_class->put_prev_task(rq, next);
6215 return next;
6216 }
6217 }
6218
6219 /* The idle class should always have a runnable task */
6220 BUG();
6221}
6222
6223/*
6224 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6225 * try_to_wake_up()->select_task_rq().
6226 *
6227 * Called with rq->lock held even though we'er in stop_machine() and
6228 * there's no concurrency possible, we hold the required locks anyway
6229 * because of lock validation efforts.
6230 */
6231static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6232{
6233 struct rq *rq = dead_rq;
6234 struct task_struct *next, *stop = rq->stop;
6235 struct rq_flags orf = *rf;
6236 int dest_cpu;
6237
6238 /*
6239 * Fudge the rq selection such that the below task selection loop
6240 * doesn't get stuck on the currently eligible stop task.
6241 *
6242 * We're currently inside stop_machine() and the rq is either stuck
6243 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6244 * either way we should never end up calling schedule() until we're
6245 * done here.
6246 */
6247 rq->stop = NULL;
6248
6249 /*
6250 * put_prev_task() and pick_next_task() sched
6251 * class method both need to have an up-to-date
6252 * value of rq->clock[_task]
6253 */
6254 update_rq_clock(rq);
6255
6256 for (;;) {
6257 /*
6258 * There's this thread running, bail when that's the only
6259 * remaining thread:
6260 */
6261 if (rq->nr_running == 1)
6262 break;
6263
6264 next = __pick_migrate_task(rq);
6265
6266 /*
6267 * Rules for changing task_struct::cpus_mask are holding
6268 * both pi_lock and rq->lock, such that holding either
6269 * stabilizes the mask.
6270 *
6271 * Drop rq->lock is not quite as disastrous as it usually is
6272 * because !cpu_active at this point, which means load-balance
6273 * will not interfere. Also, stop-machine.
6274 */
6275 rq_unlock(rq, rf);
6276 raw_spin_lock(&next->pi_lock);
6277 rq_relock(rq, rf);
6278
6279 /*
6280 * Since we're inside stop-machine, _nothing_ should have
6281 * changed the task, WARN if weird stuff happened, because in
6282 * that case the above rq->lock drop is a fail too.
6283 */
6284 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6285 raw_spin_unlock(&next->pi_lock);
6286 continue;
6287 }
6288
6289 /* Find suitable destination for @next, with force if needed. */
6290 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6291 rq = __migrate_task(rq, rf, next, dest_cpu);
6292 if (rq != dead_rq) {
6293 rq_unlock(rq, rf);
6294 rq = dead_rq;
6295 *rf = orf;
6296 rq_relock(rq, rf);
6297 }
6298 raw_spin_unlock(&next->pi_lock);
6299 }
6300
6301 rq->stop = stop;
6302}
6303#endif /* CONFIG_HOTPLUG_CPU */
6304
6305void set_rq_online(struct rq *rq)
6306{
6307 if (!rq->online) {
6308 const struct sched_class *class;
6309
6310 cpumask_set_cpu(rq->cpu, rq->rd->online);
6311 rq->online = 1;
6312
6313 for_each_class(class) {
6314 if (class->rq_online)
6315 class->rq_online(rq);
6316 }
6317 }
6318}
6319
6320void set_rq_offline(struct rq *rq)
6321{
6322 if (rq->online) {
6323 const struct sched_class *class;
6324
6325 for_each_class(class) {
6326 if (class->rq_offline)
6327 class->rq_offline(rq);
6328 }
6329
6330 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6331 rq->online = 0;
6332 }
6333}
6334
6335/*
6336 * used to mark begin/end of suspend/resume:
6337 */
6338static int num_cpus_frozen;
6339
6340/*
6341 * Update cpusets according to cpu_active mask. If cpusets are
6342 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6343 * around partition_sched_domains().
6344 *
6345 * If we come here as part of a suspend/resume, don't touch cpusets because we
6346 * want to restore it back to its original state upon resume anyway.
6347 */
6348static void cpuset_cpu_active(void)
6349{
6350 if (cpuhp_tasks_frozen) {
6351 /*
6352 * num_cpus_frozen tracks how many CPUs are involved in suspend
6353 * resume sequence. As long as this is not the last online
6354 * operation in the resume sequence, just build a single sched
6355 * domain, ignoring cpusets.
6356 */
6357 partition_sched_domains(1, NULL, NULL);
6358 if (--num_cpus_frozen)
6359 return;
6360 /*
6361 * This is the last CPU online operation. So fall through and
6362 * restore the original sched domains by considering the
6363 * cpuset configurations.
6364 */
6365 cpuset_force_rebuild();
6366 }
6367 cpuset_update_active_cpus();
6368}
6369
6370static int cpuset_cpu_inactive(unsigned int cpu)
6371{
6372 if (!cpuhp_tasks_frozen) {
6373 if (dl_cpu_busy(cpu))
6374 return -EBUSY;
6375 cpuset_update_active_cpus();
6376 } else {
6377 num_cpus_frozen++;
6378 partition_sched_domains(1, NULL, NULL);
6379 }
6380 return 0;
6381}
6382
6383int sched_cpu_activate(unsigned int cpu)
6384{
6385 struct rq *rq = cpu_rq(cpu);
6386 struct rq_flags rf;
6387
6388#ifdef CONFIG_SCHED_SMT
6389 /*
6390 * When going up, increment the number of cores with SMT present.
6391 */
6392 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6393 static_branch_inc_cpuslocked(&sched_smt_present);
6394#endif
6395 set_cpu_active(cpu, true);
6396
6397 if (sched_smp_initialized) {
6398 sched_domains_numa_masks_set(cpu);
6399 cpuset_cpu_active();
6400 }
6401
6402 /*
6403 * Put the rq online, if not already. This happens:
6404 *
6405 * 1) In the early boot process, because we build the real domains
6406 * after all CPUs have been brought up.
6407 *
6408 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6409 * domains.
6410 */
6411 rq_lock_irqsave(rq, &rf);
6412 if (rq->rd) {
6413 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6414 set_rq_online(rq);
6415 }
6416 rq_unlock_irqrestore(rq, &rf);
6417
6418 return 0;
6419}
6420
6421int sched_cpu_deactivate(unsigned int cpu)
6422{
6423 int ret;
6424
6425 set_cpu_active(cpu, false);
6426 /*
6427 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6428 * users of this state to go away such that all new such users will
6429 * observe it.
6430 *
6431 * Do sync before park smpboot threads to take care the rcu boost case.
6432 */
6433 synchronize_rcu();
6434
6435#ifdef CONFIG_SCHED_SMT
6436 /*
6437 * When going down, decrement the number of cores with SMT present.
6438 */
6439 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6440 static_branch_dec_cpuslocked(&sched_smt_present);
6441#endif
6442
6443 if (!sched_smp_initialized)
6444 return 0;
6445
6446 ret = cpuset_cpu_inactive(cpu);
6447 if (ret) {
6448 set_cpu_active(cpu, true);
6449 return ret;
6450 }
6451 sched_domains_numa_masks_clear(cpu);
6452 return 0;
6453}
6454
6455static void sched_rq_cpu_starting(unsigned int cpu)
6456{
6457 struct rq *rq = cpu_rq(cpu);
6458
6459 rq->calc_load_update = calc_load_update;
6460 update_max_interval();
6461}
6462
6463int sched_cpu_starting(unsigned int cpu)
6464{
6465 sched_rq_cpu_starting(cpu);
6466 sched_tick_start(cpu);
6467 return 0;
6468}
6469
6470#ifdef CONFIG_HOTPLUG_CPU
6471int sched_cpu_dying(unsigned int cpu)
6472{
6473 struct rq *rq = cpu_rq(cpu);
6474 struct rq_flags rf;
6475
6476 /* Handle pending wakeups and then migrate everything off */
6477 sched_ttwu_pending();
6478 sched_tick_stop(cpu);
6479
6480 rq_lock_irqsave(rq, &rf);
6481 if (rq->rd) {
6482 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6483 set_rq_offline(rq);
6484 }
6485 migrate_tasks(rq, &rf);
6486 BUG_ON(rq->nr_running != 1);
6487 rq_unlock_irqrestore(rq, &rf);
6488
6489 calc_load_migrate(rq);
6490 update_max_interval();
6491 nohz_balance_exit_idle(rq);
6492 hrtick_clear(rq);
6493 return 0;
6494}
6495#endif
6496
6497void __init sched_init_smp(void)
6498{
6499 sched_init_numa();
6500
6501 /*
6502 * There's no userspace yet to cause hotplug operations; hence all the
6503 * CPU masks are stable and all blatant races in the below code cannot
6504 * happen.
6505 */
6506 mutex_lock(&sched_domains_mutex);
6507 sched_init_domains(cpu_active_mask);
6508 mutex_unlock(&sched_domains_mutex);
6509
6510 /* Move init over to a non-isolated CPU */
6511 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6512 BUG();
6513 sched_init_granularity();
6514
6515 init_sched_rt_class();
6516 init_sched_dl_class();
6517
6518 sched_smp_initialized = true;
6519}
6520
6521static int __init migration_init(void)
6522{
6523 sched_cpu_starting(smp_processor_id());
6524 return 0;
6525}
6526early_initcall(migration_init);
6527
6528#else
6529void __init sched_init_smp(void)
6530{
6531 sched_init_granularity();
6532}
6533#endif /* CONFIG_SMP */
6534
6535int in_sched_functions(unsigned long addr)
6536{
6537 return in_lock_functions(addr) ||
6538 (addr >= (unsigned long)__sched_text_start
6539 && addr < (unsigned long)__sched_text_end);
6540}
6541
6542#ifdef CONFIG_CGROUP_SCHED
6543/*
6544 * Default task group.
6545 * Every task in system belongs to this group at bootup.
6546 */
6547struct task_group root_task_group;
6548LIST_HEAD(task_groups);
6549
6550/* Cacheline aligned slab cache for task_group */
6551static struct kmem_cache *task_group_cache __read_mostly;
6552#endif
6553
6554DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6555DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6556
6557void __init sched_init(void)
6558{
6559 unsigned long ptr = 0;
6560 int i;
6561
6562 wait_bit_init();
6563
6564#ifdef CONFIG_FAIR_GROUP_SCHED
6565 ptr += 2 * nr_cpu_ids * sizeof(void **);
6566#endif
6567#ifdef CONFIG_RT_GROUP_SCHED
6568 ptr += 2 * nr_cpu_ids * sizeof(void **);
6569#endif
6570 if (ptr) {
6571 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6572
6573#ifdef CONFIG_FAIR_GROUP_SCHED
6574 root_task_group.se = (struct sched_entity **)ptr;
6575 ptr += nr_cpu_ids * sizeof(void **);
6576
6577 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6578 ptr += nr_cpu_ids * sizeof(void **);
6579
6580#endif /* CONFIG_FAIR_GROUP_SCHED */
6581#ifdef CONFIG_RT_GROUP_SCHED
6582 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6583 ptr += nr_cpu_ids * sizeof(void **);
6584
6585 root_task_group.rt_rq = (struct rt_rq **)ptr;
6586 ptr += nr_cpu_ids * sizeof(void **);
6587
6588#endif /* CONFIG_RT_GROUP_SCHED */
6589 }
6590#ifdef CONFIG_CPUMASK_OFFSTACK
6591 for_each_possible_cpu(i) {
6592 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6593 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6594 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6595 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6596 }
6597#endif /* CONFIG_CPUMASK_OFFSTACK */
6598
6599 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6600 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6601
6602#ifdef CONFIG_SMP
6603 init_defrootdomain();
6604#endif
6605
6606#ifdef CONFIG_RT_GROUP_SCHED
6607 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6608 global_rt_period(), global_rt_runtime());
6609#endif /* CONFIG_RT_GROUP_SCHED */
6610
6611#ifdef CONFIG_CGROUP_SCHED
6612 task_group_cache = KMEM_CACHE(task_group, 0);
6613
6614 list_add(&root_task_group.list, &task_groups);
6615 INIT_LIST_HEAD(&root_task_group.children);
6616 INIT_LIST_HEAD(&root_task_group.siblings);
6617 autogroup_init(&init_task);
6618#endif /* CONFIG_CGROUP_SCHED */
6619
6620 for_each_possible_cpu(i) {
6621 struct rq *rq;
6622
6623 rq = cpu_rq(i);
6624 raw_spin_lock_init(&rq->lock);
6625 rq->nr_running = 0;
6626 rq->calc_load_active = 0;
6627 rq->calc_load_update = jiffies + LOAD_FREQ;
6628 init_cfs_rq(&rq->cfs);
6629 init_rt_rq(&rq->rt);
6630 init_dl_rq(&rq->dl);
6631#ifdef CONFIG_FAIR_GROUP_SCHED
6632 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6633 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6634 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6635 /*
6636 * How much CPU bandwidth does root_task_group get?
6637 *
6638 * In case of task-groups formed thr' the cgroup filesystem, it
6639 * gets 100% of the CPU resources in the system. This overall
6640 * system CPU resource is divided among the tasks of
6641 * root_task_group and its child task-groups in a fair manner,
6642 * based on each entity's (task or task-group's) weight
6643 * (se->load.weight).
6644 *
6645 * In other words, if root_task_group has 10 tasks of weight
6646 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6647 * then A0's share of the CPU resource is:
6648 *
6649 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6650 *
6651 * We achieve this by letting root_task_group's tasks sit
6652 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6653 */
6654 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6655 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6656#endif /* CONFIG_FAIR_GROUP_SCHED */
6657
6658 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6659#ifdef CONFIG_RT_GROUP_SCHED
6660 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6661#endif
6662#ifdef CONFIG_SMP
6663 rq->sd = NULL;
6664 rq->rd = NULL;
6665 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6666 rq->balance_callback = NULL;
6667 rq->active_balance = 0;
6668 rq->next_balance = jiffies;
6669 rq->push_cpu = 0;
6670 rq->cpu = i;
6671 rq->online = 0;
6672 rq->idle_stamp = 0;
6673 rq->avg_idle = 2*sysctl_sched_migration_cost;
6674 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6675
6676 INIT_LIST_HEAD(&rq->cfs_tasks);
6677
6678 rq_attach_root(rq, &def_root_domain);
6679#ifdef CONFIG_NO_HZ_COMMON
6680 rq->last_load_update_tick = jiffies;
6681 rq->last_blocked_load_update_tick = jiffies;
6682 atomic_set(&rq->nohz_flags, 0);
6683#endif
6684#endif /* CONFIG_SMP */
6685 hrtick_rq_init(rq);
6686 atomic_set(&rq->nr_iowait, 0);
6687 }
6688
6689 set_load_weight(&init_task, false);
6690
6691 /*
6692 * The boot idle thread does lazy MMU switching as well:
6693 */
6694 mmgrab(&init_mm);
6695 enter_lazy_tlb(&init_mm, current);
6696
6697 /*
6698 * Make us the idle thread. Technically, schedule() should not be
6699 * called from this thread, however somewhere below it might be,
6700 * but because we are the idle thread, we just pick up running again
6701 * when this runqueue becomes "idle".
6702 */
6703 init_idle(current, smp_processor_id());
6704
6705 calc_load_update = jiffies + LOAD_FREQ;
6706
6707#ifdef CONFIG_SMP
6708 idle_thread_set_boot_cpu();
6709#endif
6710 init_sched_fair_class();
6711
6712 init_schedstats();
6713
6714 psi_init();
6715
6716 init_uclamp();
6717
6718 scheduler_running = 1;
6719}
6720
6721#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6722static inline int preempt_count_equals(int preempt_offset)
6723{
6724 int nested = preempt_count() + rcu_preempt_depth();
6725
6726 return (nested == preempt_offset);
6727}
6728
6729void __might_sleep(const char *file, int line, int preempt_offset)
6730{
6731 /*
6732 * Blocking primitives will set (and therefore destroy) current->state,
6733 * since we will exit with TASK_RUNNING make sure we enter with it,
6734 * otherwise we will destroy state.
6735 */
6736 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6737 "do not call blocking ops when !TASK_RUNNING; "
6738 "state=%lx set at [<%p>] %pS\n",
6739 current->state,
6740 (void *)current->task_state_change,
6741 (void *)current->task_state_change);
6742
6743 ___might_sleep(file, line, preempt_offset);
6744}
6745EXPORT_SYMBOL(__might_sleep);
6746
6747void ___might_sleep(const char *file, int line, int preempt_offset)
6748{
6749 /* Ratelimiting timestamp: */
6750 static unsigned long prev_jiffy;
6751
6752 unsigned long preempt_disable_ip;
6753
6754 /* WARN_ON_ONCE() by default, no rate limit required: */
6755 rcu_sleep_check();
6756
6757 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6758 !is_idle_task(current) && !current->non_block_count) ||
6759 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6760 oops_in_progress)
6761 return;
6762
6763 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6764 return;
6765 prev_jiffy = jiffies;
6766
6767 /* Save this before calling printk(), since that will clobber it: */
6768 preempt_disable_ip = get_preempt_disable_ip(current);
6769
6770 printk(KERN_ERR
6771 "BUG: sleeping function called from invalid context at %s:%d\n",
6772 file, line);
6773 printk(KERN_ERR
6774 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6775 in_atomic(), irqs_disabled(), current->non_block_count,
6776 current->pid, current->comm);
6777
6778 if (task_stack_end_corrupted(current))
6779 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6780
6781 debug_show_held_locks(current);
6782 if (irqs_disabled())
6783 print_irqtrace_events(current);
6784 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6785 && !preempt_count_equals(preempt_offset)) {
6786 pr_err("Preemption disabled at:");
6787 print_ip_sym(preempt_disable_ip);
6788 pr_cont("\n");
6789 }
6790 dump_stack();
6791 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6792}
6793EXPORT_SYMBOL(___might_sleep);
6794
6795void __cant_sleep(const char *file, int line, int preempt_offset)
6796{
6797 static unsigned long prev_jiffy;
6798
6799 if (irqs_disabled())
6800 return;
6801
6802 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6803 return;
6804
6805 if (preempt_count() > preempt_offset)
6806 return;
6807
6808 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6809 return;
6810 prev_jiffy = jiffies;
6811
6812 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6813 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6814 in_atomic(), irqs_disabled(),
6815 current->pid, current->comm);
6816
6817 debug_show_held_locks(current);
6818 dump_stack();
6819 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6820}
6821EXPORT_SYMBOL_GPL(__cant_sleep);
6822#endif
6823
6824#ifdef CONFIG_MAGIC_SYSRQ
6825void normalize_rt_tasks(void)
6826{
6827 struct task_struct *g, *p;
6828 struct sched_attr attr = {
6829 .sched_policy = SCHED_NORMAL,
6830 };
6831
6832 read_lock(&tasklist_lock);
6833 for_each_process_thread(g, p) {
6834 /*
6835 * Only normalize user tasks:
6836 */
6837 if (p->flags & PF_KTHREAD)
6838 continue;
6839
6840 p->se.exec_start = 0;
6841 schedstat_set(p->se.statistics.wait_start, 0);
6842 schedstat_set(p->se.statistics.sleep_start, 0);
6843 schedstat_set(p->se.statistics.block_start, 0);
6844
6845 if (!dl_task(p) && !rt_task(p)) {
6846 /*
6847 * Renice negative nice level userspace
6848 * tasks back to 0:
6849 */
6850 if (task_nice(p) < 0)
6851 set_user_nice(p, 0);
6852 continue;
6853 }
6854
6855 __sched_setscheduler(p, &attr, false, false);
6856 }
6857 read_unlock(&tasklist_lock);
6858}
6859
6860#endif /* CONFIG_MAGIC_SYSRQ */
6861
6862#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6863/*
6864 * These functions are only useful for the IA64 MCA handling, or kdb.
6865 *
6866 * They can only be called when the whole system has been
6867 * stopped - every CPU needs to be quiescent, and no scheduling
6868 * activity can take place. Using them for anything else would
6869 * be a serious bug, and as a result, they aren't even visible
6870 * under any other configuration.
6871 */
6872
6873/**
6874 * curr_task - return the current task for a given CPU.
6875 * @cpu: the processor in question.
6876 *
6877 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6878 *
6879 * Return: The current task for @cpu.
6880 */
6881struct task_struct *curr_task(int cpu)
6882{
6883 return cpu_curr(cpu);
6884}
6885
6886#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6887
6888#ifdef CONFIG_IA64
6889/**
6890 * ia64_set_curr_task - set the current task for a given CPU.
6891 * @cpu: the processor in question.
6892 * @p: the task pointer to set.
6893 *
6894 * Description: This function must only be used when non-maskable interrupts
6895 * are serviced on a separate stack. It allows the architecture to switch the
6896 * notion of the current task on a CPU in a non-blocking manner. This function
6897 * must be called with all CPU's synchronized, and interrupts disabled, the
6898 * and caller must save the original value of the current task (see
6899 * curr_task() above) and restore that value before reenabling interrupts and
6900 * re-starting the system.
6901 *
6902 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6903 */
6904void ia64_set_curr_task(int cpu, struct task_struct *p)
6905{
6906 cpu_curr(cpu) = p;
6907}
6908
6909#endif
6910
6911#ifdef CONFIG_CGROUP_SCHED
6912/* task_group_lock serializes the addition/removal of task groups */
6913static DEFINE_SPINLOCK(task_group_lock);
6914
6915static inline void alloc_uclamp_sched_group(struct task_group *tg,
6916 struct task_group *parent)
6917{
6918#ifdef CONFIG_UCLAMP_TASK_GROUP
6919 enum uclamp_id clamp_id;
6920
6921 for_each_clamp_id(clamp_id) {
6922 uclamp_se_set(&tg->uclamp_req[clamp_id],
6923 uclamp_none(clamp_id), false);
6924 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6925 }
6926#endif
6927}
6928
6929static void sched_free_group(struct task_group *tg)
6930{
6931 free_fair_sched_group(tg);
6932 free_rt_sched_group(tg);
6933 autogroup_free(tg);
6934 kmem_cache_free(task_group_cache, tg);
6935}
6936
6937/* allocate runqueue etc for a new task group */
6938struct task_group *sched_create_group(struct task_group *parent)
6939{
6940 struct task_group *tg;
6941
6942 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6943 if (!tg)
6944 return ERR_PTR(-ENOMEM);
6945
6946 if (!alloc_fair_sched_group(tg, parent))
6947 goto err;
6948
6949 if (!alloc_rt_sched_group(tg, parent))
6950 goto err;
6951
6952 alloc_uclamp_sched_group(tg, parent);
6953
6954 return tg;
6955
6956err:
6957 sched_free_group(tg);
6958 return ERR_PTR(-ENOMEM);
6959}
6960
6961void sched_online_group(struct task_group *tg, struct task_group *parent)
6962{
6963 unsigned long flags;
6964
6965 spin_lock_irqsave(&task_group_lock, flags);
6966 list_add_rcu(&tg->list, &task_groups);
6967
6968 /* Root should already exist: */
6969 WARN_ON(!parent);
6970
6971 tg->parent = parent;
6972 INIT_LIST_HEAD(&tg->children);
6973 list_add_rcu(&tg->siblings, &parent->children);
6974 spin_unlock_irqrestore(&task_group_lock, flags);
6975
6976 online_fair_sched_group(tg);
6977}
6978
6979/* rcu callback to free various structures associated with a task group */
6980static void sched_free_group_rcu(struct rcu_head *rhp)
6981{
6982 /* Now it should be safe to free those cfs_rqs: */
6983 sched_free_group(container_of(rhp, struct task_group, rcu));
6984}
6985
6986void sched_destroy_group(struct task_group *tg)
6987{
6988 /* Wait for possible concurrent references to cfs_rqs complete: */
6989 call_rcu(&tg->rcu, sched_free_group_rcu);
6990}
6991
6992void sched_offline_group(struct task_group *tg)
6993{
6994 unsigned long flags;
6995
6996 /* End participation in shares distribution: */
6997 unregister_fair_sched_group(tg);
6998
6999 spin_lock_irqsave(&task_group_lock, flags);
7000 list_del_rcu(&tg->list);
7001 list_del_rcu(&tg->siblings);
7002 spin_unlock_irqrestore(&task_group_lock, flags);
7003}
7004
7005static void sched_change_group(struct task_struct *tsk, int type)
7006{
7007 struct task_group *tg;
7008
7009 /*
7010 * All callers are synchronized by task_rq_lock(); we do not use RCU
7011 * which is pointless here. Thus, we pass "true" to task_css_check()
7012 * to prevent lockdep warnings.
7013 */
7014 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7015 struct task_group, css);
7016 tg = autogroup_task_group(tsk, tg);
7017 tsk->sched_task_group = tg;
7018
7019#ifdef CONFIG_FAIR_GROUP_SCHED
7020 if (tsk->sched_class->task_change_group)
7021 tsk->sched_class->task_change_group(tsk, type);
7022 else
7023#endif
7024 set_task_rq(tsk, task_cpu(tsk));
7025}
7026
7027/*
7028 * Change task's runqueue when it moves between groups.
7029 *
7030 * The caller of this function should have put the task in its new group by
7031 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7032 * its new group.
7033 */
7034void sched_move_task(struct task_struct *tsk)
7035{
7036 int queued, running, queue_flags =
7037 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7038 struct rq_flags rf;
7039 struct rq *rq;
7040
7041 rq = task_rq_lock(tsk, &rf);
7042 update_rq_clock(rq);
7043
7044 running = task_current(rq, tsk);
7045 queued = task_on_rq_queued(tsk);
7046
7047 if (queued)
7048 dequeue_task(rq, tsk, queue_flags);
7049 if (running)
7050 put_prev_task(rq, tsk);
7051
7052 sched_change_group(tsk, TASK_MOVE_GROUP);
7053
7054 if (queued)
7055 enqueue_task(rq, tsk, queue_flags);
7056 if (running)
7057 set_next_task(rq, tsk);
7058
7059 task_rq_unlock(rq, tsk, &rf);
7060}
7061
7062static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7063{
7064 return css ? container_of(css, struct task_group, css) : NULL;
7065}
7066
7067static struct cgroup_subsys_state *
7068cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7069{
7070 struct task_group *parent = css_tg(parent_css);
7071 struct task_group *tg;
7072
7073 if (!parent) {
7074 /* This is early initialization for the top cgroup */
7075 return &root_task_group.css;
7076 }
7077
7078 tg = sched_create_group(parent);
7079 if (IS_ERR(tg))
7080 return ERR_PTR(-ENOMEM);
7081
7082 return &tg->css;
7083}
7084
7085/* Expose task group only after completing cgroup initialization */
7086static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7087{
7088 struct task_group *tg = css_tg(css);
7089 struct task_group *parent = css_tg(css->parent);
7090
7091 if (parent)
7092 sched_online_group(tg, parent);
7093 return 0;
7094}
7095
7096static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7097{
7098 struct task_group *tg = css_tg(css);
7099
7100 sched_offline_group(tg);
7101}
7102
7103static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7104{
7105 struct task_group *tg = css_tg(css);
7106
7107 /*
7108 * Relies on the RCU grace period between css_released() and this.
7109 */
7110 sched_free_group(tg);
7111}
7112
7113/*
7114 * This is called before wake_up_new_task(), therefore we really only
7115 * have to set its group bits, all the other stuff does not apply.
7116 */
7117static void cpu_cgroup_fork(struct task_struct *task)
7118{
7119 struct rq_flags rf;
7120 struct rq *rq;
7121
7122 rq = task_rq_lock(task, &rf);
7123
7124 update_rq_clock(rq);
7125 sched_change_group(task, TASK_SET_GROUP);
7126
7127 task_rq_unlock(rq, task, &rf);
7128}
7129
7130static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7131{
7132 struct task_struct *task;
7133 struct cgroup_subsys_state *css;
7134 int ret = 0;
7135
7136 cgroup_taskset_for_each(task, css, tset) {
7137#ifdef CONFIG_RT_GROUP_SCHED
7138 if (!sched_rt_can_attach(css_tg(css), task))
7139 return -EINVAL;
7140#endif
7141 /*
7142 * Serialize against wake_up_new_task() such that if its
7143 * running, we're sure to observe its full state.
7144 */
7145 raw_spin_lock_irq(&task->pi_lock);
7146 /*
7147 * Avoid calling sched_move_task() before wake_up_new_task()
7148 * has happened. This would lead to problems with PELT, due to
7149 * move wanting to detach+attach while we're not attached yet.
7150 */
7151 if (task->state == TASK_NEW)
7152 ret = -EINVAL;
7153 raw_spin_unlock_irq(&task->pi_lock);
7154
7155 if (ret)
7156 break;
7157 }
7158 return ret;
7159}
7160
7161static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7162{
7163 struct task_struct *task;
7164 struct cgroup_subsys_state *css;
7165
7166 cgroup_taskset_for_each(task, css, tset)
7167 sched_move_task(task);
7168}
7169
7170#ifdef CONFIG_UCLAMP_TASK_GROUP
7171static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7172{
7173 struct cgroup_subsys_state *top_css = css;
7174 struct uclamp_se *uc_parent = NULL;
7175 struct uclamp_se *uc_se = NULL;
7176 unsigned int eff[UCLAMP_CNT];
7177 enum uclamp_id clamp_id;
7178 unsigned int clamps;
7179
7180 css_for_each_descendant_pre(css, top_css) {
7181 uc_parent = css_tg(css)->parent
7182 ? css_tg(css)->parent->uclamp : NULL;
7183
7184 for_each_clamp_id(clamp_id) {
7185 /* Assume effective clamps matches requested clamps */
7186 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7187 /* Cap effective clamps with parent's effective clamps */
7188 if (uc_parent &&
7189 eff[clamp_id] > uc_parent[clamp_id].value) {
7190 eff[clamp_id] = uc_parent[clamp_id].value;
7191 }
7192 }
7193 /* Ensure protection is always capped by limit */
7194 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7195
7196 /* Propagate most restrictive effective clamps */
7197 clamps = 0x0;
7198 uc_se = css_tg(css)->uclamp;
7199 for_each_clamp_id(clamp_id) {
7200 if (eff[clamp_id] == uc_se[clamp_id].value)
7201 continue;
7202 uc_se[clamp_id].value = eff[clamp_id];
7203 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7204 clamps |= (0x1 << clamp_id);
7205 }
7206 if (!clamps) {
7207 css = css_rightmost_descendant(css);
7208 continue;
7209 }
7210
7211 /* Immediately update descendants RUNNABLE tasks */
7212 uclamp_update_active_tasks(css, clamps);
7213 }
7214}
7215
7216/*
7217 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7218 * C expression. Since there is no way to convert a macro argument (N) into a
7219 * character constant, use two levels of macros.
7220 */
7221#define _POW10(exp) ((unsigned int)1e##exp)
7222#define POW10(exp) _POW10(exp)
7223
7224struct uclamp_request {
7225#define UCLAMP_PERCENT_SHIFT 2
7226#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7227 s64 percent;
7228 u64 util;
7229 int ret;
7230};
7231
7232static inline struct uclamp_request
7233capacity_from_percent(char *buf)
7234{
7235 struct uclamp_request req = {
7236 .percent = UCLAMP_PERCENT_SCALE,
7237 .util = SCHED_CAPACITY_SCALE,
7238 .ret = 0,
7239 };
7240
7241 buf = strim(buf);
7242 if (strcmp(buf, "max")) {
7243 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7244 &req.percent);
7245 if (req.ret)
7246 return req;
7247 if (req.percent > UCLAMP_PERCENT_SCALE) {
7248 req.ret = -ERANGE;
7249 return req;
7250 }
7251
7252 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7253 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7254 }
7255
7256 return req;
7257}
7258
7259static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7260 size_t nbytes, loff_t off,
7261 enum uclamp_id clamp_id)
7262{
7263 struct uclamp_request req;
7264 struct task_group *tg;
7265
7266 req = capacity_from_percent(buf);
7267 if (req.ret)
7268 return req.ret;
7269
7270 mutex_lock(&uclamp_mutex);
7271 rcu_read_lock();
7272
7273 tg = css_tg(of_css(of));
7274 if (tg->uclamp_req[clamp_id].value != req.util)
7275 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7276
7277 /*
7278 * Because of not recoverable conversion rounding we keep track of the
7279 * exact requested value
7280 */
7281 tg->uclamp_pct[clamp_id] = req.percent;
7282
7283 /* Update effective clamps to track the most restrictive value */
7284 cpu_util_update_eff(of_css(of));
7285
7286 rcu_read_unlock();
7287 mutex_unlock(&uclamp_mutex);
7288
7289 return nbytes;
7290}
7291
7292static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7293 char *buf, size_t nbytes,
7294 loff_t off)
7295{
7296 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7297}
7298
7299static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7300 char *buf, size_t nbytes,
7301 loff_t off)
7302{
7303 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7304}
7305
7306static inline void cpu_uclamp_print(struct seq_file *sf,
7307 enum uclamp_id clamp_id)
7308{
7309 struct task_group *tg;
7310 u64 util_clamp;
7311 u64 percent;
7312 u32 rem;
7313
7314 rcu_read_lock();
7315 tg = css_tg(seq_css(sf));
7316 util_clamp = tg->uclamp_req[clamp_id].value;
7317 rcu_read_unlock();
7318
7319 if (util_clamp == SCHED_CAPACITY_SCALE) {
7320 seq_puts(sf, "max\n");
7321 return;
7322 }
7323
7324 percent = tg->uclamp_pct[clamp_id];
7325 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7326 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7327}
7328
7329static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7330{
7331 cpu_uclamp_print(sf, UCLAMP_MIN);
7332 return 0;
7333}
7334
7335static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7336{
7337 cpu_uclamp_print(sf, UCLAMP_MAX);
7338 return 0;
7339}
7340#endif /* CONFIG_UCLAMP_TASK_GROUP */
7341
7342#ifdef CONFIG_FAIR_GROUP_SCHED
7343static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7344 struct cftype *cftype, u64 shareval)
7345{
7346 if (shareval > scale_load_down(ULONG_MAX))
7347 shareval = MAX_SHARES;
7348 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7349}
7350
7351static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7352 struct cftype *cft)
7353{
7354 struct task_group *tg = css_tg(css);
7355
7356 return (u64) scale_load_down(tg->shares);
7357}
7358
7359#ifdef CONFIG_CFS_BANDWIDTH
7360static DEFINE_MUTEX(cfs_constraints_mutex);
7361
7362const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7363static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7364
7365static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7366
7367static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7368{
7369 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7370 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7371
7372 if (tg == &root_task_group)
7373 return -EINVAL;
7374
7375 /*
7376 * Ensure we have at some amount of bandwidth every period. This is
7377 * to prevent reaching a state of large arrears when throttled via
7378 * entity_tick() resulting in prolonged exit starvation.
7379 */
7380 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7381 return -EINVAL;
7382
7383 /*
7384 * Likewise, bound things on the otherside by preventing insane quota
7385 * periods. This also allows us to normalize in computing quota
7386 * feasibility.
7387 */
7388 if (period > max_cfs_quota_period)
7389 return -EINVAL;
7390
7391 /*
7392 * Prevent race between setting of cfs_rq->runtime_enabled and
7393 * unthrottle_offline_cfs_rqs().
7394 */
7395 get_online_cpus();
7396 mutex_lock(&cfs_constraints_mutex);
7397 ret = __cfs_schedulable(tg, period, quota);
7398 if (ret)
7399 goto out_unlock;
7400
7401 runtime_enabled = quota != RUNTIME_INF;
7402 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7403 /*
7404 * If we need to toggle cfs_bandwidth_used, off->on must occur
7405 * before making related changes, and on->off must occur afterwards
7406 */
7407 if (runtime_enabled && !runtime_was_enabled)
7408 cfs_bandwidth_usage_inc();
7409 raw_spin_lock_irq(&cfs_b->lock);
7410 cfs_b->period = ns_to_ktime(period);
7411 cfs_b->quota = quota;
7412
7413 __refill_cfs_bandwidth_runtime(cfs_b);
7414
7415 /* Restart the period timer (if active) to handle new period expiry: */
7416 if (runtime_enabled)
7417 start_cfs_bandwidth(cfs_b);
7418
7419 raw_spin_unlock_irq(&cfs_b->lock);
7420
7421 for_each_online_cpu(i) {
7422 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7423 struct rq *rq = cfs_rq->rq;
7424 struct rq_flags rf;
7425
7426 rq_lock_irq(rq, &rf);
7427 cfs_rq->runtime_enabled = runtime_enabled;
7428 cfs_rq->runtime_remaining = 0;
7429
7430 if (cfs_rq->throttled)
7431 unthrottle_cfs_rq(cfs_rq);
7432 rq_unlock_irq(rq, &rf);
7433 }
7434 if (runtime_was_enabled && !runtime_enabled)
7435 cfs_bandwidth_usage_dec();
7436out_unlock:
7437 mutex_unlock(&cfs_constraints_mutex);
7438 put_online_cpus();
7439
7440 return ret;
7441}
7442
7443static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7444{
7445 u64 quota, period;
7446
7447 period = ktime_to_ns(tg->cfs_bandwidth.period);
7448 if (cfs_quota_us < 0)
7449 quota = RUNTIME_INF;
7450 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7451 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7452 else
7453 return -EINVAL;
7454
7455 return tg_set_cfs_bandwidth(tg, period, quota);
7456}
7457
7458static long tg_get_cfs_quota(struct task_group *tg)
7459{
7460 u64 quota_us;
7461
7462 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7463 return -1;
7464
7465 quota_us = tg->cfs_bandwidth.quota;
7466 do_div(quota_us, NSEC_PER_USEC);
7467
7468 return quota_us;
7469}
7470
7471static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7472{
7473 u64 quota, period;
7474
7475 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7476 return -EINVAL;
7477
7478 period = (u64)cfs_period_us * NSEC_PER_USEC;
7479 quota = tg->cfs_bandwidth.quota;
7480
7481 return tg_set_cfs_bandwidth(tg, period, quota);
7482}
7483
7484static long tg_get_cfs_period(struct task_group *tg)
7485{
7486 u64 cfs_period_us;
7487
7488 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7489 do_div(cfs_period_us, NSEC_PER_USEC);
7490
7491 return cfs_period_us;
7492}
7493
7494static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7495 struct cftype *cft)
7496{
7497 return tg_get_cfs_quota(css_tg(css));
7498}
7499
7500static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7501 struct cftype *cftype, s64 cfs_quota_us)
7502{
7503 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7504}
7505
7506static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7507 struct cftype *cft)
7508{
7509 return tg_get_cfs_period(css_tg(css));
7510}
7511
7512static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7513 struct cftype *cftype, u64 cfs_period_us)
7514{
7515 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7516}
7517
7518struct cfs_schedulable_data {
7519 struct task_group *tg;
7520 u64 period, quota;
7521};
7522
7523/*
7524 * normalize group quota/period to be quota/max_period
7525 * note: units are usecs
7526 */
7527static u64 normalize_cfs_quota(struct task_group *tg,
7528 struct cfs_schedulable_data *d)
7529{
7530 u64 quota, period;
7531
7532 if (tg == d->tg) {
7533 period = d->period;
7534 quota = d->quota;
7535 } else {
7536 period = tg_get_cfs_period(tg);
7537 quota = tg_get_cfs_quota(tg);
7538 }
7539
7540 /* note: these should typically be equivalent */
7541 if (quota == RUNTIME_INF || quota == -1)
7542 return RUNTIME_INF;
7543
7544 return to_ratio(period, quota);
7545}
7546
7547static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7548{
7549 struct cfs_schedulable_data *d = data;
7550 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7551 s64 quota = 0, parent_quota = -1;
7552
7553 if (!tg->parent) {
7554 quota = RUNTIME_INF;
7555 } else {
7556 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7557
7558 quota = normalize_cfs_quota(tg, d);
7559 parent_quota = parent_b->hierarchical_quota;
7560
7561 /*
7562 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7563 * always take the min. On cgroup1, only inherit when no
7564 * limit is set:
7565 */
7566 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7567 quota = min(quota, parent_quota);
7568 } else {
7569 if (quota == RUNTIME_INF)
7570 quota = parent_quota;
7571 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7572 return -EINVAL;
7573 }
7574 }
7575 cfs_b->hierarchical_quota = quota;
7576
7577 return 0;
7578}
7579
7580static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7581{
7582 int ret;
7583 struct cfs_schedulable_data data = {
7584 .tg = tg,
7585 .period = period,
7586 .quota = quota,
7587 };
7588
7589 if (quota != RUNTIME_INF) {
7590 do_div(data.period, NSEC_PER_USEC);
7591 do_div(data.quota, NSEC_PER_USEC);
7592 }
7593
7594 rcu_read_lock();
7595 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7596 rcu_read_unlock();
7597
7598 return ret;
7599}
7600
7601static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7602{
7603 struct task_group *tg = css_tg(seq_css(sf));
7604 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7605
7606 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7607 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7608 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7609
7610 if (schedstat_enabled() && tg != &root_task_group) {
7611 u64 ws = 0;
7612 int i;
7613
7614 for_each_possible_cpu(i)
7615 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7616
7617 seq_printf(sf, "wait_sum %llu\n", ws);
7618 }
7619
7620 return 0;
7621}
7622#endif /* CONFIG_CFS_BANDWIDTH */
7623#endif /* CONFIG_FAIR_GROUP_SCHED */
7624
7625#ifdef CONFIG_RT_GROUP_SCHED
7626static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7627 struct cftype *cft, s64 val)
7628{
7629 return sched_group_set_rt_runtime(css_tg(css), val);
7630}
7631
7632static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7633 struct cftype *cft)
7634{
7635 return sched_group_rt_runtime(css_tg(css));
7636}
7637
7638static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7639 struct cftype *cftype, u64 rt_period_us)
7640{
7641 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7642}
7643
7644static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7645 struct cftype *cft)
7646{
7647 return sched_group_rt_period(css_tg(css));
7648}
7649#endif /* CONFIG_RT_GROUP_SCHED */
7650
7651static struct cftype cpu_legacy_files[] = {
7652#ifdef CONFIG_FAIR_GROUP_SCHED
7653 {
7654 .name = "shares",
7655 .read_u64 = cpu_shares_read_u64,
7656 .write_u64 = cpu_shares_write_u64,
7657 },
7658#endif
7659#ifdef CONFIG_CFS_BANDWIDTH
7660 {
7661 .name = "cfs_quota_us",
7662 .read_s64 = cpu_cfs_quota_read_s64,
7663 .write_s64 = cpu_cfs_quota_write_s64,
7664 },
7665 {
7666 .name = "cfs_period_us",
7667 .read_u64 = cpu_cfs_period_read_u64,
7668 .write_u64 = cpu_cfs_period_write_u64,
7669 },
7670 {
7671 .name = "stat",
7672 .seq_show = cpu_cfs_stat_show,
7673 },
7674#endif
7675#ifdef CONFIG_RT_GROUP_SCHED
7676 {
7677 .name = "rt_runtime_us",
7678 .read_s64 = cpu_rt_runtime_read,
7679 .write_s64 = cpu_rt_runtime_write,
7680 },
7681 {
7682 .name = "rt_period_us",
7683 .read_u64 = cpu_rt_period_read_uint,
7684 .write_u64 = cpu_rt_period_write_uint,
7685 },
7686#endif
7687#ifdef CONFIG_UCLAMP_TASK_GROUP
7688 {
7689 .name = "uclamp.min",
7690 .flags = CFTYPE_NOT_ON_ROOT,
7691 .seq_show = cpu_uclamp_min_show,
7692 .write = cpu_uclamp_min_write,
7693 },
7694 {
7695 .name = "uclamp.max",
7696 .flags = CFTYPE_NOT_ON_ROOT,
7697 .seq_show = cpu_uclamp_max_show,
7698 .write = cpu_uclamp_max_write,
7699 },
7700#endif
7701 { } /* Terminate */
7702};
7703
7704static int cpu_extra_stat_show(struct seq_file *sf,
7705 struct cgroup_subsys_state *css)
7706{
7707#ifdef CONFIG_CFS_BANDWIDTH
7708 {
7709 struct task_group *tg = css_tg(css);
7710 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7711 u64 throttled_usec;
7712
7713 throttled_usec = cfs_b->throttled_time;
7714 do_div(throttled_usec, NSEC_PER_USEC);
7715
7716 seq_printf(sf, "nr_periods %d\n"
7717 "nr_throttled %d\n"
7718 "throttled_usec %llu\n",
7719 cfs_b->nr_periods, cfs_b->nr_throttled,
7720 throttled_usec);
7721 }
7722#endif
7723 return 0;
7724}
7725
7726#ifdef CONFIG_FAIR_GROUP_SCHED
7727static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7728 struct cftype *cft)
7729{
7730 struct task_group *tg = css_tg(css);
7731 u64 weight = scale_load_down(tg->shares);
7732
7733 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7734}
7735
7736static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7737 struct cftype *cft, u64 weight)
7738{
7739 /*
7740 * cgroup weight knobs should use the common MIN, DFL and MAX
7741 * values which are 1, 100 and 10000 respectively. While it loses
7742 * a bit of range on both ends, it maps pretty well onto the shares
7743 * value used by scheduler and the round-trip conversions preserve
7744 * the original value over the entire range.
7745 */
7746 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7747 return -ERANGE;
7748
7749 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7750
7751 return sched_group_set_shares(css_tg(css), scale_load(weight));
7752}
7753
7754static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7755 struct cftype *cft)
7756{
7757 unsigned long weight = scale_load_down(css_tg(css)->shares);
7758 int last_delta = INT_MAX;
7759 int prio, delta;
7760
7761 /* find the closest nice value to the current weight */
7762 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7763 delta = abs(sched_prio_to_weight[prio] - weight);
7764 if (delta >= last_delta)
7765 break;
7766 last_delta = delta;
7767 }
7768
7769 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7770}
7771
7772static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7773 struct cftype *cft, s64 nice)
7774{
7775 unsigned long weight;
7776 int idx;
7777
7778 if (nice < MIN_NICE || nice > MAX_NICE)
7779 return -ERANGE;
7780
7781 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7782 idx = array_index_nospec(idx, 40);
7783 weight = sched_prio_to_weight[idx];
7784
7785 return sched_group_set_shares(css_tg(css), scale_load(weight));
7786}
7787#endif
7788
7789static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7790 long period, long quota)
7791{
7792 if (quota < 0)
7793 seq_puts(sf, "max");
7794 else
7795 seq_printf(sf, "%ld", quota);
7796
7797 seq_printf(sf, " %ld\n", period);
7798}
7799
7800/* caller should put the current value in *@periodp before calling */
7801static int __maybe_unused cpu_period_quota_parse(char *buf,
7802 u64 *periodp, u64 *quotap)
7803{
7804 char tok[21]; /* U64_MAX */
7805
7806 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7807 return -EINVAL;
7808
7809 *periodp *= NSEC_PER_USEC;
7810
7811 if (sscanf(tok, "%llu", quotap))
7812 *quotap *= NSEC_PER_USEC;
7813 else if (!strcmp(tok, "max"))
7814 *quotap = RUNTIME_INF;
7815 else
7816 return -EINVAL;
7817
7818 return 0;
7819}
7820
7821#ifdef CONFIG_CFS_BANDWIDTH
7822static int cpu_max_show(struct seq_file *sf, void *v)
7823{
7824 struct task_group *tg = css_tg(seq_css(sf));
7825
7826 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7827 return 0;
7828}
7829
7830static ssize_t cpu_max_write(struct kernfs_open_file *of,
7831 char *buf, size_t nbytes, loff_t off)
7832{
7833 struct task_group *tg = css_tg(of_css(of));
7834 u64 period = tg_get_cfs_period(tg);
7835 u64 quota;
7836 int ret;
7837
7838 ret = cpu_period_quota_parse(buf, &period, "a);
7839 if (!ret)
7840 ret = tg_set_cfs_bandwidth(tg, period, quota);
7841 return ret ?: nbytes;
7842}
7843#endif
7844
7845static struct cftype cpu_files[] = {
7846#ifdef CONFIG_FAIR_GROUP_SCHED
7847 {
7848 .name = "weight",
7849 .flags = CFTYPE_NOT_ON_ROOT,
7850 .read_u64 = cpu_weight_read_u64,
7851 .write_u64 = cpu_weight_write_u64,
7852 },
7853 {
7854 .name = "weight.nice",
7855 .flags = CFTYPE_NOT_ON_ROOT,
7856 .read_s64 = cpu_weight_nice_read_s64,
7857 .write_s64 = cpu_weight_nice_write_s64,
7858 },
7859#endif
7860#ifdef CONFIG_CFS_BANDWIDTH
7861 {
7862 .name = "max",
7863 .flags = CFTYPE_NOT_ON_ROOT,
7864 .seq_show = cpu_max_show,
7865 .write = cpu_max_write,
7866 },
7867#endif
7868#ifdef CONFIG_UCLAMP_TASK_GROUP
7869 {
7870 .name = "uclamp.min",
7871 .flags = CFTYPE_NOT_ON_ROOT,
7872 .seq_show = cpu_uclamp_min_show,
7873 .write = cpu_uclamp_min_write,
7874 },
7875 {
7876 .name = "uclamp.max",
7877 .flags = CFTYPE_NOT_ON_ROOT,
7878 .seq_show = cpu_uclamp_max_show,
7879 .write = cpu_uclamp_max_write,
7880 },
7881#endif
7882 { } /* terminate */
7883};
7884
7885struct cgroup_subsys cpu_cgrp_subsys = {
7886 .css_alloc = cpu_cgroup_css_alloc,
7887 .css_online = cpu_cgroup_css_online,
7888 .css_released = cpu_cgroup_css_released,
7889 .css_free = cpu_cgroup_css_free,
7890 .css_extra_stat_show = cpu_extra_stat_show,
7891 .fork = cpu_cgroup_fork,
7892 .can_attach = cpu_cgroup_can_attach,
7893 .attach = cpu_cgroup_attach,
7894 .legacy_cftypes = cpu_legacy_files,
7895 .dfl_cftypes = cpu_files,
7896 .early_init = true,
7897 .threaded = true,
7898};
7899
7900#endif /* CONFIG_CGROUP_SCHED */
7901
7902void dump_cpu_task(int cpu)
7903{
7904 pr_info("Task dump for CPU %d:\n", cpu);
7905 sched_show_task(cpu_curr(cpu));
7906}
7907
7908/*
7909 * Nice levels are multiplicative, with a gentle 10% change for every
7910 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7911 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7912 * that remained on nice 0.
7913 *
7914 * The "10% effect" is relative and cumulative: from _any_ nice level,
7915 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7916 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7917 * If a task goes up by ~10% and another task goes down by ~10% then
7918 * the relative distance between them is ~25%.)
7919 */
7920const int sched_prio_to_weight[40] = {
7921 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7922 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7923 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7924 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7925 /* 0 */ 1024, 820, 655, 526, 423,
7926 /* 5 */ 335, 272, 215, 172, 137,
7927 /* 10 */ 110, 87, 70, 56, 45,
7928 /* 15 */ 36, 29, 23, 18, 15,
7929};
7930
7931/*
7932 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7933 *
7934 * In cases where the weight does not change often, we can use the
7935 * precalculated inverse to speed up arithmetics by turning divisions
7936 * into multiplications:
7937 */
7938const u32 sched_prio_to_wmult[40] = {
7939 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7940 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7941 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7942 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7943 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7944 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7945 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7946 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7947};
7948
7949#undef CREATE_TRACE_POINTS