Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24struct kmem_cache	*xfs_log_ticket_cache;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
 
 
 
 
  33STATIC void
  34xlog_dealloc_log(
  35	struct xlog		*log);
  36
  37/* local state machine functions */
  38STATIC void xlog_state_done_syncing(
  39	struct xlog_in_core	*iclog);
  40STATIC void xlog_state_do_callback(
  41	struct xlog		*log);
  42STATIC int
  43xlog_state_get_iclog_space(
  44	struct xlog		*log,
  45	int			len,
  46	struct xlog_in_core	**iclog,
  47	struct xlog_ticket	*ticket,
 
  48	int			*logoffsetp);
  49STATIC void
  50xlog_sync(
  51	struct xlog		*log,
  52	struct xlog_in_core	*iclog,
  53	struct xlog_ticket	*ticket);
 
 
 
 
 
 
 
 
  54#if defined(DEBUG)
  55STATIC void
 
 
 
 
 
 
 
  56xlog_verify_iclog(
  57	struct xlog		*log,
  58	struct xlog_in_core	*iclog,
  59	int			count);
  60STATIC void
  61xlog_verify_tail_lsn(
  62	struct xlog		*log,
  63	struct xlog_in_core	*iclog);
  64#else
 
 
  65#define xlog_verify_iclog(a,b,c)
  66#define xlog_verify_tail_lsn(a,b)
  67#endif
  68
  69STATIC int
  70xlog_iclogs_empty(
  71	struct xlog		*log);
  72
  73static int
  74xfs_log_cover(struct xfs_mount *);
  75
  76/*
  77 * We need to make sure the buffer pointer returned is naturally aligned for the
  78 * biggest basic data type we put into it. We have already accounted for this
  79 * padding when sizing the buffer.
  80 *
  81 * However, this padding does not get written into the log, and hence we have to
  82 * track the space used by the log vectors separately to prevent log space hangs
  83 * due to inaccurate accounting (i.e. a leak) of the used log space through the
  84 * CIL context ticket.
  85 *
  86 * We also add space for the xlog_op_header that describes this region in the
  87 * log. This prepends the data region we return to the caller to copy their data
  88 * into, so do all the static initialisation of the ophdr now. Because the ophdr
  89 * is not 8 byte aligned, we have to be careful to ensure that we align the
  90 * start of the buffer such that the region we return to the call is 8 byte
  91 * aligned and packed against the tail of the ophdr.
  92 */
  93void *
  94xlog_prepare_iovec(
  95	struct xfs_log_vec	*lv,
  96	struct xfs_log_iovec	**vecp,
  97	uint			type)
  98{
  99	struct xfs_log_iovec	*vec = *vecp;
 100	struct xlog_op_header	*oph;
 101	uint32_t		len;
 102	void			*buf;
 103
 104	if (vec) {
 105		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
 106		vec++;
 107	} else {
 108		vec = &lv->lv_iovecp[0];
 109	}
 110
 111	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
 112	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
 113		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
 114					sizeof(struct xlog_op_header);
 115	}
 116
 117	vec->i_type = type;
 118	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
 119
 120	oph = vec->i_addr;
 121	oph->oh_clientid = XFS_TRANSACTION;
 122	oph->oh_res2 = 0;
 123	oph->oh_flags = 0;
 124
 125	buf = vec->i_addr + sizeof(struct xlog_op_header);
 126	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
 127
 128	*vecp = vec;
 129	return buf;
 130}
 
 
 131
 132static inline void
 133xlog_grant_sub_space(
 134	struct xlog_grant_head	*head,
 135	int64_t			bytes)
 136{
 137	atomic64_sub(bytes, &head->grant);
 138}
 139
 140static inline void
 141xlog_grant_add_space(
 142	struct xlog_grant_head	*head,
 143	int64_t			bytes)
 
 144{
 145	atomic64_add(bytes, &head->grant);
 146}
 147
 148static void
 149xlog_grant_head_init(
 150	struct xlog_grant_head	*head)
 151{
 152	atomic64_set(&head->grant, 0);
 153	INIT_LIST_HEAD(&head->waiters);
 154	spin_lock_init(&head->lock);
 155}
 156
 157void
 158xlog_grant_return_space(
 159	struct xlog	*log,
 160	xfs_lsn_t	old_head,
 161	xfs_lsn_t	new_head)
 162{
 163	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
 164
 165	xlog_grant_sub_space(&log->l_reserve_head, diff);
 166	xlog_grant_sub_space(&log->l_write_head, diff);
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169/*
 170 * Return the space in the log between the tail and the head.  In the case where
 171 * we have overrun available reservation space, return 0. The memory barrier
 172 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
 173 * vs tail space updates are seen in the correct order and hence avoid
 174 * transients as space is transferred from the grant heads to the AIL on commit
 175 * completion.
 176 */
 177static uint64_t
 178xlog_grant_space_left(
 179	struct xlog		*log,
 180	struct xlog_grant_head	*head)
 181{
 182	int64_t			free_bytes;
 183
 184	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
 185	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
 186			atomic64_read(&head->grant);
 187	if (free_bytes > 0)
 188		return free_bytes;
 189	return 0;
 190}
 191
 192STATIC void
 193xlog_grant_head_wake_all(
 194	struct xlog_grant_head	*head)
 195{
 196	struct xlog_ticket	*tic;
 197
 198	spin_lock(&head->lock);
 199	list_for_each_entry(tic, &head->waiters, t_queue)
 200		wake_up_process(tic->t_task);
 201	spin_unlock(&head->lock);
 202}
 203
 204static inline int
 205xlog_ticket_reservation(
 206	struct xlog		*log,
 207	struct xlog_grant_head	*head,
 208	struct xlog_ticket	*tic)
 209{
 210	if (head == &log->l_write_head) {
 211		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 212		return tic->t_unit_res;
 
 
 
 
 
 213	}
 214
 215	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 216		return tic->t_unit_res * tic->t_cnt;
 217
 218	return tic->t_unit_res;
 219}
 220
 221STATIC bool
 222xlog_grant_head_wake(
 223	struct xlog		*log,
 224	struct xlog_grant_head	*head,
 225	int			*free_bytes)
 226{
 227	struct xlog_ticket	*tic;
 228	int			need_bytes;
 
 229
 230	list_for_each_entry(tic, &head->waiters, t_queue) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231		need_bytes = xlog_ticket_reservation(log, head, tic);
 232		if (*free_bytes < need_bytes)
 
 
 233			return false;
 
 234
 235		*free_bytes -= need_bytes;
 236		trace_xfs_log_grant_wake_up(log, tic);
 237		wake_up_process(tic->t_task);
 
 238	}
 239
 240	return true;
 241}
 242
 243STATIC int
 244xlog_grant_head_wait(
 245	struct xlog		*log,
 246	struct xlog_grant_head	*head,
 247	struct xlog_ticket	*tic,
 248	int			need_bytes) __releases(&head->lock)
 249					    __acquires(&head->lock)
 250{
 251	list_add_tail(&tic->t_queue, &head->waiters);
 252
 253	do {
 254		if (xlog_is_shutdown(log))
 255			goto shutdown;
 
 256
 257		__set_current_state(TASK_UNINTERRUPTIBLE);
 258		spin_unlock(&head->lock);
 259
 260		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 261
 262		/* Push on the AIL to free up all the log space. */
 263		xfs_ail_push_all(log->l_ailp);
 264
 265		trace_xfs_log_grant_sleep(log, tic);
 266		schedule();
 267		trace_xfs_log_grant_wake(log, tic);
 268
 269		spin_lock(&head->lock);
 270		if (xlog_is_shutdown(log))
 271			goto shutdown;
 272	} while (xlog_grant_space_left(log, head) < need_bytes);
 273
 274	list_del_init(&tic->t_queue);
 275	return 0;
 276shutdown:
 277	list_del_init(&tic->t_queue);
 278	return -EIO;
 279}
 280
 281/*
 282 * Atomically get the log space required for a log ticket.
 283 *
 284 * Once a ticket gets put onto head->waiters, it will only return after the
 285 * needed reservation is satisfied.
 286 *
 287 * This function is structured so that it has a lock free fast path. This is
 288 * necessary because every new transaction reservation will come through this
 289 * path. Hence any lock will be globally hot if we take it unconditionally on
 290 * every pass.
 291 *
 292 * As tickets are only ever moved on and off head->waiters under head->lock, we
 293 * only need to take that lock if we are going to add the ticket to the queue
 294 * and sleep. We can avoid taking the lock if the ticket was never added to
 295 * head->waiters because the t_queue list head will be empty and we hold the
 296 * only reference to it so it can safely be checked unlocked.
 297 */
 298STATIC int
 299xlog_grant_head_check(
 300	struct xlog		*log,
 301	struct xlog_grant_head	*head,
 302	struct xlog_ticket	*tic,
 303	int			*need_bytes)
 304{
 305	int			free_bytes;
 306	int			error = 0;
 307
 308	ASSERT(!xlog_in_recovery(log));
 309
 310	/*
 311	 * If there are other waiters on the queue then give them a chance at
 312	 * logspace before us.  Wake up the first waiters, if we do not wake
 313	 * up all the waiters then go to sleep waiting for more free space,
 314	 * otherwise try to get some space for this transaction.
 315	 */
 316	*need_bytes = xlog_ticket_reservation(log, head, tic);
 317	free_bytes = xlog_grant_space_left(log, head);
 318	if (!list_empty_careful(&head->waiters)) {
 319		spin_lock(&head->lock);
 320		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 321		    free_bytes < *need_bytes) {
 322			error = xlog_grant_head_wait(log, head, tic,
 323						     *need_bytes);
 324		}
 325		spin_unlock(&head->lock);
 326	} else if (free_bytes < *need_bytes) {
 327		spin_lock(&head->lock);
 328		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 329		spin_unlock(&head->lock);
 330	}
 331
 332	return error;
 333}
 334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335bool
 336xfs_log_writable(
 337	struct xfs_mount	*mp)
 338{
 339	/*
 340	 * Do not write to the log on norecovery mounts, if the data or log
 341	 * devices are read-only, or if the filesystem is shutdown. Read-only
 342	 * mounts allow internal writes for log recovery and unmount purposes,
 343	 * so don't restrict that case.
 344	 */
 345	if (xfs_has_norecovery(mp))
 346		return false;
 347	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 348		return false;
 349	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 350		return false;
 351	if (xlog_is_shutdown(mp->m_log))
 352		return false;
 353	return true;
 354}
 355
 356/*
 357 * Replenish the byte reservation required by moving the grant write head.
 358 */
 359int
 360xfs_log_regrant(
 361	struct xfs_mount	*mp,
 362	struct xlog_ticket	*tic)
 363{
 364	struct xlog		*log = mp->m_log;
 365	int			need_bytes;
 366	int			error = 0;
 367
 368	if (xlog_is_shutdown(log))
 369		return -EIO;
 370
 371	XFS_STATS_INC(mp, xs_try_logspace);
 372
 373	/*
 374	 * This is a new transaction on the ticket, so we need to change the
 375	 * transaction ID so that the next transaction has a different TID in
 376	 * the log. Just add one to the existing tid so that we can see chains
 377	 * of rolling transactions in the log easily.
 378	 */
 379	tic->t_tid++;
 
 
 
 380	tic->t_curr_res = tic->t_unit_res;
 
 
 381	if (tic->t_cnt > 0)
 382		return 0;
 383
 384	trace_xfs_log_regrant(log, tic);
 385
 386	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 387				      &need_bytes);
 388	if (error)
 389		goto out_error;
 390
 391	xlog_grant_add_space(&log->l_write_head, need_bytes);
 392	trace_xfs_log_regrant_exit(log, tic);
 
 393	return 0;
 394
 395out_error:
 396	/*
 397	 * If we are failing, make sure the ticket doesn't have any current
 398	 * reservations.  We don't want to add this back when the ticket/
 399	 * transaction gets cancelled.
 400	 */
 401	tic->t_curr_res = 0;
 402	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 403	return error;
 404}
 405
 406/*
 407 * Reserve log space and return a ticket corresponding to the reservation.
 408 *
 409 * Each reservation is going to reserve extra space for a log record header.
 410 * When writes happen to the on-disk log, we don't subtract the length of the
 411 * log record header from any reservation.  By wasting space in each
 412 * reservation, we prevent over allocation problems.
 413 */
 414int
 415xfs_log_reserve(
 416	struct xfs_mount	*mp,
 417	int			unit_bytes,
 418	int			cnt,
 419	struct xlog_ticket	**ticp,
 
 420	bool			permanent)
 421{
 422	struct xlog		*log = mp->m_log;
 423	struct xlog_ticket	*tic;
 424	int			need_bytes;
 425	int			error = 0;
 426
 427	if (xlog_is_shutdown(log))
 
 
 428		return -EIO;
 429
 430	XFS_STATS_INC(mp, xs_try_logspace);
 431
 432	ASSERT(*ticp == NULL);
 433	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
 434	*ticp = tic;
 
 
 
 
 435	trace_xfs_log_reserve(log, tic);
 
 436	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 437				      &need_bytes);
 438	if (error)
 439		goto out_error;
 440
 441	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
 442	xlog_grant_add_space(&log->l_write_head, need_bytes);
 443	trace_xfs_log_reserve_exit(log, tic);
 
 444	return 0;
 445
 446out_error:
 447	/*
 448	 * If we are failing, make sure the ticket doesn't have any current
 449	 * reservations.  We don't want to add this back when the ticket/
 450	 * transaction gets cancelled.
 451	 */
 452	tic->t_curr_res = 0;
 453	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 454	return error;
 455}
 456
 457/*
 458 * Run all the pending iclog callbacks and wake log force waiters and iclog
 459 * space waiters so they can process the newly set shutdown state. We really
 460 * don't care what order we process callbacks here because the log is shut down
 461 * and so state cannot change on disk anymore. However, we cannot wake waiters
 462 * until the callbacks have been processed because we may be in unmount and
 463 * we must ensure that all AIL operations the callbacks perform have completed
 464 * before we tear down the AIL.
 465 *
 466 * We avoid processing actively referenced iclogs so that we don't run callbacks
 467 * while the iclog owner might still be preparing the iclog for IO submssion.
 468 * These will be caught by xlog_state_iclog_release() and call this function
 469 * again to process any callbacks that may have been added to that iclog.
 470 */
 471static void
 472xlog_state_shutdown_callbacks(
 473	struct xlog		*log)
 474{
 475	struct xlog_in_core	*iclog;
 476	LIST_HEAD(cb_list);
 477
 478	iclog = log->l_iclog;
 479	do {
 480		if (atomic_read(&iclog->ic_refcnt)) {
 481			/* Reference holder will re-run iclog callbacks. */
 482			continue;
 483		}
 484		list_splice_init(&iclog->ic_callbacks, &cb_list);
 485		spin_unlock(&log->l_icloglock);
 486
 487		xlog_cil_process_committed(&cb_list);
 488
 489		spin_lock(&log->l_icloglock);
 490		wake_up_all(&iclog->ic_write_wait);
 491		wake_up_all(&iclog->ic_force_wait);
 492	} while ((iclog = iclog->ic_next) != log->l_iclog);
 493
 494	wake_up_all(&log->l_flush_wait);
 495}
 496
 497/*
 498 * Flush iclog to disk if this is the last reference to the given iclog and the
 499 * it is in the WANT_SYNC state.
 500 *
 
 
 
 
 
 
 501 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 502 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 503 * written to stable storage, and implies that a commit record is contained
 504 * within the iclog. We need to ensure that the log tail does not move beyond
 505 * the tail that the first commit record in the iclog ordered against, otherwise
 506 * correct recovery of that checkpoint becomes dependent on future operations
 507 * performed on this iclog.
 508 *
 509 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 510 * current tail into iclog. Once the iclog tail is set, future operations must
 511 * not modify it, otherwise they potentially violate ordering constraints for
 512 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 513 * the iclog will get zeroed on activation of the iclog after sync, so we
 514 * always capture the tail lsn on the iclog on the first NEED_FUA release
 515 * regardless of the number of active reference counts on this iclog.
 516 */
 
 517int
 518xlog_state_release_iclog(
 519	struct xlog		*log,
 520	struct xlog_in_core	*iclog,
 521	struct xlog_ticket	*ticket)
 522{
 523	bool			last_ref;
 524
 525	lockdep_assert_held(&log->l_icloglock);
 526
 527	trace_xlog_iclog_release(iclog, _RET_IP_);
 
 
 
 528	/*
 529	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 530	 * of the tail LSN into the iclog so we guarantee that the log tail does
 531	 * not move between the first time we know that the iclog needs to be
 532	 * made stable and when we eventually submit it.
 533	 */
 534	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 535	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
 536	    !iclog->ic_header.h_tail_lsn) {
 537		iclog->ic_header.h_tail_lsn =
 538				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
 539	}
 540
 541	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 
 542
 543	if (xlog_is_shutdown(log)) {
 544		/*
 545		 * If there are no more references to this iclog, process the
 546		 * pending iclog callbacks that were waiting on the release of
 547		 * this iclog.
 548		 */
 549		if (last_ref)
 550			xlog_state_shutdown_callbacks(log);
 551		return -EIO;
 552	}
 553
 554	if (!last_ref)
 555		return 0;
 556
 557	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 558		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 559		return 0;
 560	}
 561
 562	iclog->ic_state = XLOG_STATE_SYNCING;
 
 
 563	xlog_verify_tail_lsn(log, iclog);
 564	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 565
 566	spin_unlock(&log->l_icloglock);
 567	xlog_sync(log, iclog, ticket);
 568	spin_lock(&log->l_icloglock);
 569	return 0;
 570}
 571
 572/*
 573 * Mount a log filesystem
 574 *
 575 * mp		- ubiquitous xfs mount point structure
 576 * log_target	- buftarg of on-disk log device
 577 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 578 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 579 *
 580 * Return error or zero.
 581 */
 582int
 583xfs_log_mount(
 584	xfs_mount_t		*mp,
 585	struct xfs_buftarg	*log_target,
 586	xfs_daddr_t		blk_offset,
 587	int			num_bblks)
 588{
 589	struct xlog		*log;
 590	int			error = 0;
 591	int			min_logfsbs;
 592
 593	if (!xfs_has_norecovery(mp)) {
 594		xfs_notice(mp, "Mounting V%d Filesystem %pU",
 595			   XFS_SB_VERSION_NUM(&mp->m_sb),
 596			   &mp->m_sb.sb_uuid);
 597	} else {
 598		xfs_notice(mp,
 599"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
 600			   XFS_SB_VERSION_NUM(&mp->m_sb),
 601			   &mp->m_sb.sb_uuid);
 602		ASSERT(xfs_is_readonly(mp));
 603	}
 604
 605	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 606	if (IS_ERR(log)) {
 607		error = PTR_ERR(log);
 608		goto out;
 609	}
 610	mp->m_log = log;
 611
 612	/*
 613	 * Now that we have set up the log and it's internal geometry
 614	 * parameters, we can validate the given log space and drop a critical
 615	 * message via syslog if the log size is too small. A log that is too
 616	 * small can lead to unexpected situations in transaction log space
 617	 * reservation stage. The superblock verifier has already validated all
 618	 * the other log geometry constraints, so we don't have to check those
 619	 * here.
 620	 *
 621	 * Note: For v4 filesystems, we can't just reject the mount if the
 622	 * validation fails.  This would mean that people would have to
 623	 * downgrade their kernel just to remedy the situation as there is no
 624	 * way to grow the log (short of black magic surgery with xfs_db).
 625	 *
 626	 * We can, however, reject mounts for V5 format filesystems, as the
 627	 * mkfs binary being used to make the filesystem should never create a
 628	 * filesystem with a log that is too small.
 629	 */
 630	min_logfsbs = xfs_log_calc_minimum_size(mp);
 
 631	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 632		xfs_warn(mp,
 633		"Log size %d blocks too small, minimum size is %d blocks",
 634			 mp->m_sb.sb_logblocks, min_logfsbs);
 635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636		/*
 637		 * Log check errors are always fatal on v5; or whenever bad
 638		 * metadata leads to a crash.
 639		 */
 640		if (xfs_has_crc(mp)) {
 641			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 642			ASSERT(0);
 643			error = -EINVAL;
 644			goto out_free_log;
 645		}
 646		xfs_crit(mp, "Log size out of supported range.");
 647		xfs_crit(mp,
 648"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 649	}
 650
 651	/*
 652	 * Initialize the AIL now we have a log.
 653	 */
 654	error = xfs_trans_ail_init(mp);
 655	if (error) {
 656		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 657		goto out_free_log;
 658	}
 659	log->l_ailp = mp->m_ail;
 660
 661	/*
 662	 * skip log recovery on a norecovery mount.  pretend it all
 663	 * just worked.
 664	 */
 665	if (!xfs_has_norecovery(mp)) {
 666		error = xlog_recover(log);
 
 
 
 
 
 
 
 
 667		if (error) {
 668			xfs_warn(mp, "log mount/recovery failed: error %d",
 669				error);
 670			xlog_recover_cancel(log);
 671			goto out_destroy_ail;
 672		}
 673	}
 674
 675	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 676			       "log");
 677	if (error)
 678		goto out_destroy_ail;
 679
 680	/* Normal transactions can now occur */
 681	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 682
 683	/*
 684	 * Now the log has been fully initialised and we know were our
 685	 * space grant counters are, we can initialise the permanent ticket
 686	 * needed for delayed logging to work.
 687	 */
 688	xlog_cil_init_post_recovery(log);
 689
 690	return 0;
 691
 692out_destroy_ail:
 693	xfs_trans_ail_destroy(mp);
 694out_free_log:
 695	xlog_dealloc_log(log);
 696out:
 697	return error;
 698}
 699
 700/*
 701 * Finish the recovery of the file system.  This is separate from the
 702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 704 * here.
 705 *
 706 * If we finish recovery successfully, start the background log work. If we are
 707 * not doing recovery, then we have a RO filesystem and we don't need to start
 708 * it.
 709 */
 710int
 711xfs_log_mount_finish(
 712	struct xfs_mount	*mp)
 713{
 714	struct xlog		*log = mp->m_log;
 715	int			error = 0;
 
 716
 717	if (xfs_has_norecovery(mp)) {
 718		ASSERT(xfs_is_readonly(mp));
 719		return 0;
 
 
 
 720	}
 721
 722	/*
 723	 * During the second phase of log recovery, we need iget and
 724	 * iput to behave like they do for an active filesystem.
 725	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 726	 * of inodes before we're done replaying log items on those
 727	 * inodes.  Turn it off immediately after recovery finishes
 728	 * so that we don't leak the quota inodes if subsequent mount
 729	 * activities fail.
 730	 *
 731	 * We let all inodes involved in redo item processing end up on
 732	 * the LRU instead of being evicted immediately so that if we do
 733	 * something to an unlinked inode, the irele won't cause
 734	 * premature truncation and freeing of the inode, which results
 735	 * in log recovery failure.  We have to evict the unreferenced
 736	 * lru inodes after clearing SB_ACTIVE because we don't
 737	 * otherwise clean up the lru if there's a subsequent failure in
 738	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 739	 * else (e.g. quotacheck) references the inodes before the
 740	 * mount failure occurs.
 741	 */
 742	mp->m_super->s_flags |= SB_ACTIVE;
 743	xfs_log_work_queue(mp);
 744	if (xlog_recovery_needed(log))
 745		error = xlog_recover_finish(log);
 746	mp->m_super->s_flags &= ~SB_ACTIVE;
 747	evict_inodes(mp->m_super);
 748
 749	/*
 750	 * Drain the buffer LRU after log recovery. This is required for v4
 751	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 752	 * but we do it unconditionally to make sure we're always in a clean
 753	 * cache state after mount.
 754	 *
 755	 * Don't push in the error case because the AIL may have pending intents
 756	 * that aren't removed until recovery is cancelled.
 757	 */
 758	if (xlog_recovery_needed(log)) {
 759		if (!error) {
 760			xfs_log_force(mp, XFS_LOG_SYNC);
 761			xfs_ail_push_all_sync(mp->m_ail);
 762		}
 763		xfs_notice(mp, "Ending recovery (logdev: %s)",
 764				mp->m_logname ? mp->m_logname : "internal");
 765	} else {
 766		xfs_info(mp, "Ending clean mount");
 767	}
 768	xfs_buftarg_drain(mp->m_ddev_targp);
 769
 770	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 
 771
 772	/* Make sure the log is dead if we're returning failure. */
 773	ASSERT(!error || xlog_is_shutdown(log));
 774
 775	return error;
 776}
 777
 778/*
 779 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 780 * the log.
 781 */
 782void
 783xfs_log_mount_cancel(
 784	struct xfs_mount	*mp)
 785{
 786	xlog_recover_cancel(mp->m_log);
 787	xfs_log_unmount(mp);
 788}
 789
 790/*
 791 * Flush out the iclog to disk ensuring that device caches are flushed and
 792 * the iclog hits stable storage before any completion waiters are woken.
 793 */
 794static inline int
 795xlog_force_iclog(
 796	struct xlog_in_core	*iclog)
 797{
 798	atomic_inc(&iclog->ic_refcnt);
 799	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 800	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 801		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 802	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
 803}
 804
 805/*
 806 * Cycle all the iclogbuf locks to make sure all log IO completion
 807 * is done before we tear down these buffers.
 808 */
 809static void
 810xlog_wait_iclog_completion(struct xlog *log)
 811{
 812	int		i;
 813	struct xlog_in_core	*iclog = log->l_iclog;
 814
 815	for (i = 0; i < log->l_iclog_bufs; i++) {
 816		down(&iclog->ic_sema);
 817		up(&iclog->ic_sema);
 818		iclog = iclog->ic_next;
 819	}
 820}
 821
 822/*
 823 * Wait for the iclog and all prior iclogs to be written disk as required by the
 824 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 825 * have been ordered and callbacks run before we are woken here, hence
 826 * guaranteeing that all the iclogs up to this one are on stable storage.
 827 */
 828int
 829xlog_wait_on_iclog(
 830	struct xlog_in_core	*iclog)
 831		__releases(iclog->ic_log->l_icloglock)
 832{
 833	struct xlog		*log = iclog->ic_log;
 834
 835	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 836	if (!xlog_is_shutdown(log) &&
 837	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 838	    iclog->ic_state != XLOG_STATE_DIRTY) {
 839		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 840		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 841	} else {
 842		spin_unlock(&log->l_icloglock);
 843	}
 844
 845	if (xlog_is_shutdown(log))
 846		return -EIO;
 847	return 0;
 848}
 849
 850/*
 851 * Write out an unmount record using the ticket provided. We have to account for
 852 * the data space used in the unmount ticket as this write is not done from a
 853 * transaction context that has already done the accounting for us.
 854 */
 855static int
 856xlog_write_unmount_record(
 857	struct xlog		*log,
 858	struct xlog_ticket	*ticket)
 859{
 860	struct  {
 861		struct xlog_op_header ophdr;
 862		struct xfs_unmount_log_format ulf;
 863	} unmount_rec = {
 864		.ophdr = {
 865			.oh_clientid = XFS_LOG,
 866			.oh_tid = cpu_to_be32(ticket->t_tid),
 867			.oh_flags = XLOG_UNMOUNT_TRANS,
 868		},
 869		.ulf = {
 870			.magic = XLOG_UNMOUNT_TYPE,
 871		},
 872	};
 873	struct xfs_log_iovec reg = {
 874		.i_addr = &unmount_rec,
 875		.i_len = sizeof(unmount_rec),
 876		.i_type = XLOG_REG_TYPE_UNMOUNT,
 877	};
 878	struct xfs_log_vec vec = {
 879		.lv_niovecs = 1,
 880		.lv_iovecp = &reg,
 881	};
 882	LIST_HEAD(lv_chain);
 883	list_add(&vec.lv_list, &lv_chain);
 884
 885	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
 886		      sizeof(struct xfs_unmount_log_format)) !=
 887							sizeof(unmount_rec));
 888
 889	/* account for space used by record data */
 890	ticket->t_curr_res -= sizeof(unmount_rec);
 891
 892	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
 893}
 894
 895/*
 896 * Mark the filesystem clean by writing an unmount record to the head of the
 897 * log.
 898 */
 899static void
 900xlog_unmount_write(
 901	struct xlog		*log)
 902{
 903	struct xfs_mount	*mp = log->l_mp;
 904	struct xlog_in_core	*iclog;
 905	struct xlog_ticket	*tic = NULL;
 906	int			error;
 907
 908	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
 909	if (error)
 910		goto out_err;
 911
 912	error = xlog_write_unmount_record(log, tic);
 913	/*
 914	 * At this point, we're umounting anyway, so there's no point in
 915	 * transitioning log state to shutdown. Just continue...
 916	 */
 917out_err:
 918	if (error)
 919		xfs_alert(mp, "%s: unmount record failed", __func__);
 920
 921	spin_lock(&log->l_icloglock);
 922	iclog = log->l_iclog;
 923	error = xlog_force_iclog(iclog);
 924	xlog_wait_on_iclog(iclog);
 925
 926	if (tic) {
 927		trace_xfs_log_umount_write(log, tic);
 928		xfs_log_ticket_ungrant(log, tic);
 929	}
 930}
 931
 932static void
 933xfs_log_unmount_verify_iclog(
 934	struct xlog		*log)
 935{
 936	struct xlog_in_core	*iclog = log->l_iclog;
 937
 938	do {
 939		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 940		ASSERT(iclog->ic_offset == 0);
 941	} while ((iclog = iclog->ic_next) != log->l_iclog);
 942}
 943
 944/*
 945 * Unmount record used to have a string "Unmount filesystem--" in the
 946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 947 * We just write the magic number now since that particular field isn't
 948 * currently architecture converted and "Unmount" is a bit foo.
 949 * As far as I know, there weren't any dependencies on the old behaviour.
 950 */
 951static void
 952xfs_log_unmount_write(
 953	struct xfs_mount	*mp)
 954{
 955	struct xlog		*log = mp->m_log;
 956
 957	if (!xfs_log_writable(mp))
 958		return;
 959
 960	xfs_log_force(mp, XFS_LOG_SYNC);
 961
 962	if (xlog_is_shutdown(log))
 963		return;
 964
 965	/*
 966	 * If we think the summary counters are bad, avoid writing the unmount
 967	 * record to force log recovery at next mount, after which the summary
 968	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 969	 * more details.
 970	 */
 971	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 972			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 973		xfs_alert(mp, "%s: will fix summary counters at next mount",
 974				__func__);
 975		return;
 976	}
 977
 978	xfs_log_unmount_verify_iclog(log);
 979	xlog_unmount_write(log);
 980}
 981
 982/*
 983 * Empty the log for unmount/freeze.
 984 *
 985 * To do this, we first need to shut down the background log work so it is not
 986 * trying to cover the log as we clean up. We then need to unpin all objects in
 987 * the log so we can then flush them out. Once they have completed their IO and
 988 * run the callbacks removing themselves from the AIL, we can cover the log.
 989 */
 990int
 991xfs_log_quiesce(
 992	struct xfs_mount	*mp)
 993{
 994	/*
 995	 * Clear log incompat features since we're quiescing the log.  Report
 996	 * failures, though it's not fatal to have a higher log feature
 997	 * protection level than the log contents actually require.
 998	 */
 999	if (xfs_clear_incompat_log_features(mp)) {
1000		int error;
1001
1002		error = xfs_sync_sb(mp, false);
1003		if (error)
1004			xfs_warn(mp,
1005	"Failed to clear log incompat features on quiesce");
1006	}
1007
1008	cancel_delayed_work_sync(&mp->m_log->l_work);
1009	xfs_log_force(mp, XFS_LOG_SYNC);
1010
1011	/*
1012	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1014	 * xfs_buf_iowait() cannot be used because it was pushed with the
1015	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016	 * the IO to complete.
1017	 */
1018	xfs_ail_push_all_sync(mp->m_ail);
1019	xfs_buftarg_wait(mp->m_ddev_targp);
1020	xfs_buf_lock(mp->m_sb_bp);
1021	xfs_buf_unlock(mp->m_sb_bp);
1022
1023	return xfs_log_cover(mp);
1024}
1025
1026void
1027xfs_log_clean(
1028	struct xfs_mount	*mp)
1029{
1030	xfs_log_quiesce(mp);
1031	xfs_log_unmount_write(mp);
1032}
1033
1034/*
1035 * Shut down and release the AIL and Log.
1036 *
1037 * During unmount, we need to ensure we flush all the dirty metadata objects
1038 * from the AIL so that the log is empty before we write the unmount record to
1039 * the log. Once this is done, we can tear down the AIL and the log.
1040 */
1041void
1042xfs_log_unmount(
1043	struct xfs_mount	*mp)
1044{
1045	xfs_log_clean(mp);
1046
1047	/*
1048	 * If shutdown has come from iclog IO context, the log
1049	 * cleaning will have been skipped and so we need to wait
1050	 * for the iclog to complete shutdown processing before we
1051	 * tear anything down.
1052	 */
1053	xlog_wait_iclog_completion(mp->m_log);
1054
1055	xfs_buftarg_drain(mp->m_ddev_targp);
1056
1057	xfs_trans_ail_destroy(mp);
1058
1059	xfs_sysfs_del(&mp->m_log->l_kobj);
1060
1061	xlog_dealloc_log(mp->m_log);
1062}
1063
1064void
1065xfs_log_item_init(
1066	struct xfs_mount	*mp,
1067	struct xfs_log_item	*item,
1068	int			type,
1069	const struct xfs_item_ops *ops)
1070{
1071	item->li_log = mp->m_log;
1072	item->li_ailp = mp->m_ail;
1073	item->li_type = type;
1074	item->li_ops = ops;
1075	item->li_lv = NULL;
1076
1077	INIT_LIST_HEAD(&item->li_ail);
1078	INIT_LIST_HEAD(&item->li_cil);
1079	INIT_LIST_HEAD(&item->li_bio_list);
1080	INIT_LIST_HEAD(&item->li_trans);
1081}
1082
1083/*
1084 * Wake up processes waiting for log space after we have moved the log tail.
1085 */
1086void
1087xfs_log_space_wake(
1088	struct xfs_mount	*mp)
1089{
1090	struct xlog		*log = mp->m_log;
1091	int			free_bytes;
1092
1093	if (xlog_is_shutdown(log))
1094		return;
1095
1096	if (!list_empty_careful(&log->l_write_head.waiters)) {
1097		ASSERT(!xlog_in_recovery(log));
1098
1099		spin_lock(&log->l_write_head.lock);
1100		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1101		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1102		spin_unlock(&log->l_write_head.lock);
1103	}
1104
1105	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1106		ASSERT(!xlog_in_recovery(log));
1107
1108		spin_lock(&log->l_reserve_head.lock);
1109		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1110		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1111		spin_unlock(&log->l_reserve_head.lock);
1112	}
1113}
1114
1115/*
1116 * Determine if we have a transaction that has gone to disk that needs to be
1117 * covered. To begin the transition to the idle state firstly the log needs to
1118 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1119 * we start attempting to cover the log.
1120 *
1121 * Only if we are then in a state where covering is needed, the caller is
1122 * informed that dummy transactions are required to move the log into the idle
1123 * state.
1124 *
1125 * If there are any items in the AIl or CIL, then we do not want to attempt to
1126 * cover the log as we may be in a situation where there isn't log space
1127 * available to run a dummy transaction and this can lead to deadlocks when the
1128 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1129 * there's no point in running a dummy transaction at this point because we
1130 * can't start trying to idle the log until both the CIL and AIL are empty.
1131 */
1132static bool
1133xfs_log_need_covered(
1134	struct xfs_mount	*mp)
1135{
1136	struct xlog		*log = mp->m_log;
1137	bool			needed = false;
1138
1139	if (!xlog_cil_empty(log))
1140		return false;
1141
1142	spin_lock(&log->l_icloglock);
1143	switch (log->l_covered_state) {
1144	case XLOG_STATE_COVER_DONE:
1145	case XLOG_STATE_COVER_DONE2:
1146	case XLOG_STATE_COVER_IDLE:
1147		break;
1148	case XLOG_STATE_COVER_NEED:
1149	case XLOG_STATE_COVER_NEED2:
1150		if (xfs_ail_min_lsn(log->l_ailp))
1151			break;
1152		if (!xlog_iclogs_empty(log))
1153			break;
1154
1155		needed = true;
1156		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1157			log->l_covered_state = XLOG_STATE_COVER_DONE;
1158		else
1159			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1160		break;
1161	default:
1162		needed = true;
1163		break;
1164	}
1165	spin_unlock(&log->l_icloglock);
1166	return needed;
1167}
1168
1169/*
1170 * Explicitly cover the log. This is similar to background log covering but
1171 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1172 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1173 * must all be empty.
1174 */
1175static int
1176xfs_log_cover(
1177	struct xfs_mount	*mp)
1178{
1179	int			error = 0;
1180	bool			need_covered;
1181
1182	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1183	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1184		xlog_is_shutdown(mp->m_log));
1185
1186	if (!xfs_log_writable(mp))
1187		return 0;
1188
1189	/*
1190	 * xfs_log_need_covered() is not idempotent because it progresses the
1191	 * state machine if the log requires covering. Therefore, we must call
1192	 * this function once and use the result until we've issued an sb sync.
1193	 * Do so first to make that abundantly clear.
1194	 *
1195	 * Fall into the covering sequence if the log needs covering or the
1196	 * mount has lazy superblock accounting to sync to disk. The sb sync
1197	 * used for covering accumulates the in-core counters, so covering
1198	 * handles this for us.
1199	 */
1200	need_covered = xfs_log_need_covered(mp);
1201	if (!need_covered && !xfs_has_lazysbcount(mp))
1202		return 0;
1203
1204	/*
1205	 * To cover the log, commit the superblock twice (at most) in
1206	 * independent checkpoints. The first serves as a reference for the
1207	 * tail pointer. The sync transaction and AIL push empties the AIL and
1208	 * updates the in-core tail to the LSN of the first checkpoint. The
1209	 * second commit updates the on-disk tail with the in-core LSN,
1210	 * covering the log. Push the AIL one more time to leave it empty, as
1211	 * we found it.
1212	 */
1213	do {
1214		error = xfs_sync_sb(mp, true);
1215		if (error)
1216			break;
1217		xfs_ail_push_all_sync(mp->m_ail);
1218	} while (xfs_log_need_covered(mp));
1219
1220	return error;
1221}
1222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223static void
1224xlog_ioend_work(
1225	struct work_struct	*work)
1226{
1227	struct xlog_in_core     *iclog =
1228		container_of(work, struct xlog_in_core, ic_end_io_work);
1229	struct xlog		*log = iclog->ic_log;
1230	int			error;
1231
1232	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1233#ifdef DEBUG
1234	/* treat writes with injected CRC errors as failed */
1235	if (iclog->ic_fail_crc)
1236		error = -EIO;
1237#endif
1238
1239	/*
1240	 * Race to shutdown the filesystem if we see an error.
1241	 */
1242	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1243		xfs_alert(log->l_mp, "log I/O error %d", error);
1244		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1245	}
1246
1247	xlog_state_done_syncing(iclog);
1248	bio_uninit(&iclog->ic_bio);
1249
1250	/*
1251	 * Drop the lock to signal that we are done. Nothing references the
1252	 * iclog after this, so an unmount waiting on this lock can now tear it
1253	 * down safely. As such, it is unsafe to reference the iclog after the
1254	 * unlock as we could race with it being freed.
1255	 */
1256	up(&iclog->ic_sema);
1257}
1258
1259/*
1260 * Return size of each in-core log record buffer.
1261 *
1262 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1263 *
1264 * If the filesystem blocksize is too large, we may need to choose a
1265 * larger size since the directory code currently logs entire blocks.
1266 */
1267STATIC void
1268xlog_get_iclog_buffer_size(
1269	struct xfs_mount	*mp,
1270	struct xlog		*log)
1271{
1272	if (mp->m_logbufs <= 0)
1273		mp->m_logbufs = XLOG_MAX_ICLOGS;
1274	if (mp->m_logbsize <= 0)
1275		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1276
1277	log->l_iclog_bufs = mp->m_logbufs;
1278	log->l_iclog_size = mp->m_logbsize;
1279
1280	/*
1281	 * # headers = size / 32k - one header holds cycles from 32k of data.
1282	 */
1283	log->l_iclog_heads =
1284		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1285	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1286}
1287
1288void
1289xfs_log_work_queue(
1290	struct xfs_mount        *mp)
1291{
1292	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1293				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1294}
1295
1296/*
1297 * Clear the log incompat flags if we have the opportunity.
1298 *
1299 * This only happens if we're about to log the second dummy transaction as part
1300 * of covering the log.
1301 */
1302static inline void
1303xlog_clear_incompat(
1304	struct xlog		*log)
1305{
1306	struct xfs_mount	*mp = log->l_mp;
1307
1308	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1309				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1310		return;
1311
1312	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1313		return;
1314
1315	xfs_clear_incompat_log_features(mp);
1316}
1317
1318/*
1319 * Every sync period we need to unpin all items in the AIL and push them to
1320 * disk. If there is nothing dirty, then we might need to cover the log to
1321 * indicate that the filesystem is idle.
1322 */
1323static void
1324xfs_log_worker(
1325	struct work_struct	*work)
1326{
1327	struct xlog		*log = container_of(to_delayed_work(work),
1328						struct xlog, l_work);
1329	struct xfs_mount	*mp = log->l_mp;
1330
1331	/* dgc: errors ignored - not fatal and nowhere to report them */
1332	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1333		/*
1334		 * Dump a transaction into the log that contains no real change.
1335		 * This is needed to stamp the current tail LSN into the log
1336		 * during the covering operation.
1337		 *
1338		 * We cannot use an inode here for this - that will push dirty
1339		 * state back up into the VFS and then periodic inode flushing
1340		 * will prevent log covering from making progress. Hence we
1341		 * synchronously log the superblock instead to ensure the
1342		 * superblock is immediately unpinned and can be written back.
1343		 */
1344		xlog_clear_incompat(log);
1345		xfs_sync_sb(mp, true);
1346	} else
1347		xfs_log_force(mp, 0);
1348
1349	/* start pushing all the metadata that is currently dirty */
1350	xfs_ail_push_all(mp->m_ail);
1351
1352	/* queue us up again */
1353	xfs_log_work_queue(mp);
1354}
1355
1356/*
1357 * This routine initializes some of the log structure for a given mount point.
1358 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1359 * some other stuff may be filled in too.
1360 */
1361STATIC struct xlog *
1362xlog_alloc_log(
1363	struct xfs_mount	*mp,
1364	struct xfs_buftarg	*log_target,
1365	xfs_daddr_t		blk_offset,
1366	int			num_bblks)
1367{
1368	struct xlog		*log;
1369	xlog_rec_header_t	*head;
1370	xlog_in_core_t		**iclogp;
1371	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1372	int			i;
1373	int			error = -ENOMEM;
1374	uint			log2_size = 0;
1375
1376	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1377	if (!log) {
1378		xfs_warn(mp, "Log allocation failed: No memory!");
1379		goto out;
1380	}
1381
1382	log->l_mp	   = mp;
1383	log->l_targ	   = log_target;
1384	log->l_logsize     = BBTOB(num_bblks);
1385	log->l_logBBstart  = blk_offset;
1386	log->l_logBBsize   = num_bblks;
1387	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1388	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1389	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1390	INIT_LIST_HEAD(&log->r_dfops);
1391
1392	log->l_prev_block  = -1;
1393	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1394	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
 
1395	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1396
1397	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1398		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1399	else
1400		log->l_iclog_roundoff = BBSIZE;
1401
1402	xlog_grant_head_init(&log->l_reserve_head);
1403	xlog_grant_head_init(&log->l_write_head);
1404
1405	error = -EFSCORRUPTED;
1406	if (xfs_has_sector(mp)) {
1407	        log2_size = mp->m_sb.sb_logsectlog;
1408		if (log2_size < BBSHIFT) {
1409			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1410				log2_size, BBSHIFT);
1411			goto out_free_log;
1412		}
1413
1414	        log2_size -= BBSHIFT;
1415		if (log2_size > mp->m_sectbb_log) {
1416			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1417				log2_size, mp->m_sectbb_log);
1418			goto out_free_log;
1419		}
1420
1421		/* for larger sector sizes, must have v2 or external log */
1422		if (log2_size && log->l_logBBstart > 0 &&
1423			    !xfs_has_logv2(mp)) {
1424			xfs_warn(mp,
1425		"log sector size (0x%x) invalid for configuration.",
1426				log2_size);
1427			goto out_free_log;
1428		}
1429	}
1430	log->l_sectBBsize = 1 << log2_size;
1431
1432	xlog_get_iclog_buffer_size(mp, log);
1433
1434	spin_lock_init(&log->l_icloglock);
1435	init_waitqueue_head(&log->l_flush_wait);
1436
1437	iclogp = &log->l_iclog;
1438	/*
1439	 * The amount of memory to allocate for the iclog structure is
1440	 * rather funky due to the way the structure is defined.  It is
1441	 * done this way so that we can use different sizes for machines
1442	 * with different amounts of memory.  See the definition of
1443	 * xlog_in_core_t in xfs_log_priv.h for details.
1444	 */
1445	ASSERT(log->l_iclog_size >= 4096);
1446	for (i = 0; i < log->l_iclog_bufs; i++) {
 
1447		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1448				sizeof(struct bio_vec);
1449
1450		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1451				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1452		if (!iclog)
1453			goto out_free_iclog;
1454
1455		*iclogp = iclog;
1456		iclog->ic_prev = prev_iclog;
1457		prev_iclog = iclog;
1458
1459		iclog->ic_data = kvzalloc(log->l_iclog_size,
1460				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1461		if (!iclog->ic_data)
1462			goto out_free_iclog;
 
 
 
1463		head = &iclog->ic_header;
1464		memset(head, 0, sizeof(xlog_rec_header_t));
1465		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1466		head->h_version = cpu_to_be32(
1467			xfs_has_logv2(log->l_mp) ? 2 : 1);
1468		head->h_size = cpu_to_be32(log->l_iclog_size);
1469		/* new fields */
1470		head->h_fmt = cpu_to_be32(XLOG_FMT);
1471		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1472
1473		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1474		iclog->ic_state = XLOG_STATE_ACTIVE;
1475		iclog->ic_log = log;
1476		atomic_set(&iclog->ic_refcnt, 0);
1477		INIT_LIST_HEAD(&iclog->ic_callbacks);
1478		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1479
1480		init_waitqueue_head(&iclog->ic_force_wait);
1481		init_waitqueue_head(&iclog->ic_write_wait);
1482		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1483		sema_init(&iclog->ic_sema, 1);
1484
1485		iclogp = &iclog->ic_next;
1486	}
1487	*iclogp = log->l_iclog;			/* complete ring */
1488	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1489
1490	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1491			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1492				    WQ_HIGHPRI),
1493			0, mp->m_super->s_id);
1494	if (!log->l_ioend_workqueue)
1495		goto out_free_iclog;
1496
1497	error = xlog_cil_init(log);
1498	if (error)
1499		goto out_destroy_workqueue;
1500	return log;
1501
1502out_destroy_workqueue:
1503	destroy_workqueue(log->l_ioend_workqueue);
1504out_free_iclog:
1505	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506		prev_iclog = iclog->ic_next;
1507		kvfree(iclog->ic_data);
1508		kfree(iclog);
1509		if (prev_iclog == log->l_iclog)
1510			break;
1511	}
1512out_free_log:
1513	kfree(log);
1514out:
1515	return ERR_PTR(error);
1516}	/* xlog_alloc_log */
1517
1518/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519 * Stamp cycle number in every block
1520 */
1521STATIC void
1522xlog_pack_data(
1523	struct xlog		*log,
1524	struct xlog_in_core	*iclog,
1525	int			roundoff)
1526{
1527	int			i, j, k;
1528	int			size = iclog->ic_offset + roundoff;
1529	__be32			cycle_lsn;
1530	char			*dp;
1531
1532	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1533
1534	dp = iclog->ic_datap;
1535	for (i = 0; i < BTOBB(size); i++) {
1536		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1537			break;
1538		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1539		*(__be32 *)dp = cycle_lsn;
1540		dp += BBSIZE;
1541	}
1542
1543	if (xfs_has_logv2(log->l_mp)) {
1544		xlog_in_core_2_t *xhdr = iclog->ic_data;
1545
1546		for ( ; i < BTOBB(size); i++) {
1547			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1548			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1550			*(__be32 *)dp = cycle_lsn;
1551			dp += BBSIZE;
1552		}
1553
1554		for (i = 1; i < log->l_iclog_heads; i++)
1555			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1556	}
1557}
1558
1559/*
1560 * Calculate the checksum for a log buffer.
1561 *
1562 * This is a little more complicated than it should be because the various
1563 * headers and the actual data are non-contiguous.
1564 */
1565__le32
1566xlog_cksum(
1567	struct xlog		*log,
1568	struct xlog_rec_header	*rhead,
1569	char			*dp,
1570	int			size)
1571{
1572	uint32_t		crc;
1573
1574	/* first generate the crc for the record header ... */
1575	crc = xfs_start_cksum_update((char *)rhead,
1576			      sizeof(struct xlog_rec_header),
1577			      offsetof(struct xlog_rec_header, h_crc));
1578
1579	/* ... then for additional cycle data for v2 logs ... */
1580	if (xfs_has_logv2(log->l_mp)) {
1581		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1582		int		i;
1583		int		xheads;
1584
1585		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1586
1587		for (i = 1; i < xheads; i++) {
1588			crc = crc32c(crc, &xhdr[i].hic_xheader,
1589				     sizeof(struct xlog_rec_ext_header));
1590		}
1591	}
1592
1593	/* ... and finally for the payload */
1594	crc = crc32c(crc, dp, size);
1595
1596	return xfs_end_cksum(crc);
1597}
1598
1599static void
1600xlog_bio_end_io(
1601	struct bio		*bio)
1602{
1603	struct xlog_in_core	*iclog = bio->bi_private;
1604
1605	queue_work(iclog->ic_log->l_ioend_workqueue,
1606		   &iclog->ic_end_io_work);
1607}
1608
1609static int
1610xlog_map_iclog_data(
1611	struct bio		*bio,
1612	void			*data,
1613	size_t			count)
1614{
1615	do {
1616		struct page	*page = kmem_to_page(data);
1617		unsigned int	off = offset_in_page(data);
1618		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1619
1620		if (bio_add_page(bio, page, len, off) != len)
1621			return -EIO;
1622
1623		data += len;
1624		count -= len;
1625	} while (count);
1626
1627	return 0;
1628}
1629
1630STATIC void
1631xlog_write_iclog(
1632	struct xlog		*log,
1633	struct xlog_in_core	*iclog,
1634	uint64_t		bno,
1635	unsigned int		count)
1636{
1637	ASSERT(bno < log->l_logBBsize);
1638	trace_xlog_iclog_write(iclog, _RET_IP_);
1639
1640	/*
1641	 * We lock the iclogbufs here so that we can serialise against I/O
1642	 * completion during unmount.  We might be processing a shutdown
1643	 * triggered during unmount, and that can occur asynchronously to the
1644	 * unmount thread, and hence we need to ensure that completes before
1645	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1646	 * across the log IO to archieve that.
1647	 */
1648	down(&iclog->ic_sema);
1649	if (xlog_is_shutdown(log)) {
1650		/*
1651		 * It would seem logical to return EIO here, but we rely on
1652		 * the log state machine to propagate I/O errors instead of
1653		 * doing it here.  We kick of the state machine and unlock
1654		 * the buffer manually, the code needs to be kept in sync
1655		 * with the I/O completion path.
1656		 */
1657		goto sync;
 
 
1658	}
1659
 
 
 
 
 
 
1660	/*
1661	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1662	 * IOs coming immediately after this one. This prevents the block layer
1663	 * writeback throttle from throttling log writes behind background
1664	 * metadata writeback and causing priority inversions.
1665	 */
1666	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1667		 howmany(count, PAGE_SIZE),
1668		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1669	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1670	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1671	iclog->ic_bio.bi_private = iclog;
1672
1673	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1674		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1675		/*
1676		 * For external log devices, we also need to flush the data
1677		 * device cache first to ensure all metadata writeback covered
1678		 * by the LSN in this iclog is on stable storage. This is slow,
1679		 * but it *must* complete before we issue the external log IO.
1680		 *
1681		 * If the flush fails, we cannot conclude that past metadata
1682		 * writeback from the log succeeded.  Repeating the flush is
1683		 * not possible, hence we must shut down with log IO error to
1684		 * avoid shutdown re-entering this path and erroring out again.
1685		 */
1686		if (log->l_targ != log->l_mp->m_ddev_targp &&
1687		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1688			goto shutdown;
1689	}
1690	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1691		iclog->ic_bio.bi_opf |= REQ_FUA;
1692
1693	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1694
1695	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1696		goto shutdown;
1697
 
1698	if (is_vmalloc_addr(iclog->ic_data))
1699		flush_kernel_vmap_range(iclog->ic_data, count);
1700
1701	/*
1702	 * If this log buffer would straddle the end of the log we will have
1703	 * to split it up into two bios, so that we can continue at the start.
1704	 */
1705	if (bno + BTOBB(count) > log->l_logBBsize) {
1706		struct bio *split;
1707
1708		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1709				  GFP_NOIO, &fs_bio_set);
1710		bio_chain(split, &iclog->ic_bio);
1711		submit_bio(split);
1712
1713		/* restart at logical offset zero for the remainder */
1714		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1715	}
1716
1717	submit_bio(&iclog->ic_bio);
1718	return;
1719shutdown:
1720	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1721sync:
1722	xlog_state_done_syncing(iclog);
1723	up(&iclog->ic_sema);
1724}
1725
1726/*
1727 * We need to bump cycle number for the part of the iclog that is
1728 * written to the start of the log. Watch out for the header magic
1729 * number case, though.
1730 */
1731static void
1732xlog_split_iclog(
1733	struct xlog		*log,
1734	void			*data,
1735	uint64_t		bno,
1736	unsigned int		count)
1737{
1738	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1739	unsigned int		i;
1740
1741	for (i = split_offset; i < count; i += BBSIZE) {
1742		uint32_t cycle = get_unaligned_be32(data + i);
1743
1744		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745			cycle++;
1746		put_unaligned_be32(cycle, data + i);
1747	}
1748}
1749
1750static int
1751xlog_calc_iclog_size(
1752	struct xlog		*log,
1753	struct xlog_in_core	*iclog,
1754	uint32_t		*roundoff)
1755{
1756	uint32_t		count_init, count;
1757
1758	/* Add for LR header */
1759	count_init = log->l_iclog_hsize + iclog->ic_offset;
1760	count = roundup(count_init, log->l_iclog_roundoff);
1761
1762	*roundoff = count - count_init;
1763
1764	ASSERT(count >= count_init);
1765	ASSERT(*roundoff < log->l_iclog_roundoff);
1766	return count;
1767}
1768
1769/*
1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771 * fashion.  Previously, we should have moved the current iclog
1772 * ptr in the log to point to the next available iclog.  This allows further
1773 * write to continue while this code syncs out an iclog ready to go.
1774 * Before an in-core log can be written out, the data section must be scanned
1775 * to save away the 1st word of each BBSIZE block into the header.  We replace
1776 * it with the current cycle count.  Each BBSIZE block is tagged with the
1777 * cycle count because there in an implicit assumption that drives will
1778 * guarantee that entire 512 byte blocks get written at once.  In other words,
1779 * we can't have part of a 512 byte block written and part not written.  By
1780 * tagging each block, we will know which blocks are valid when recovering
1781 * after an unclean shutdown.
1782 *
1783 * This routine is single threaded on the iclog.  No other thread can be in
1784 * this routine with the same iclog.  Changing contents of iclog can there-
1785 * fore be done without grabbing the state machine lock.  Updating the global
1786 * log will require grabbing the lock though.
1787 *
1788 * The entire log manager uses a logical block numbering scheme.  Only
1789 * xlog_write_iclog knows about the fact that the log may not start with
1790 * block zero on a given device.
1791 */
1792STATIC void
1793xlog_sync(
1794	struct xlog		*log,
1795	struct xlog_in_core	*iclog,
1796	struct xlog_ticket	*ticket)
1797{
1798	unsigned int		count;		/* byte count of bwrite */
1799	unsigned int		roundoff;       /* roundoff to BB or stripe */
1800	uint64_t		bno;
1801	unsigned int		size;
1802
1803	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1804	trace_xlog_iclog_sync(iclog, _RET_IP_);
1805
1806	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1807
1808	/*
1809	 * If we have a ticket, account for the roundoff via the ticket
1810	 * reservation to avoid touching the hot grant heads needlessly.
1811	 * Otherwise, we have to move grant heads directly.
1812	 */
1813	if (ticket) {
1814		ticket->t_curr_res -= roundoff;
1815	} else {
1816		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1817		xlog_grant_add_space(&log->l_write_head, roundoff);
1818	}
1819
1820	/* put cycle number in every block */
1821	xlog_pack_data(log, iclog, roundoff);
1822
1823	/* real byte length */
1824	size = iclog->ic_offset;
1825	if (xfs_has_logv2(log->l_mp))
1826		size += roundoff;
1827	iclog->ic_header.h_len = cpu_to_be32(size);
1828
1829	XFS_STATS_INC(log->l_mp, xs_log_writes);
1830	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1831
1832	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1833
1834	/* Do we need to split this write into 2 parts? */
1835	if (bno + BTOBB(count) > log->l_logBBsize)
1836		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1837
1838	/* calculcate the checksum */
1839	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840					    iclog->ic_datap, size);
1841	/*
1842	 * Intentionally corrupt the log record CRC based on the error injection
1843	 * frequency, if defined. This facilitates testing log recovery in the
1844	 * event of torn writes. Hence, set the IOABORT state to abort the log
1845	 * write on I/O completion and shutdown the fs. The subsequent mount
1846	 * detects the bad CRC and attempts to recover.
1847	 */
1848#ifdef DEBUG
1849	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1850		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1851		iclog->ic_fail_crc = true;
1852		xfs_warn(log->l_mp,
1853	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1854			 be64_to_cpu(iclog->ic_header.h_lsn));
1855	}
1856#endif
1857	xlog_verify_iclog(log, iclog, count);
1858	xlog_write_iclog(log, iclog, bno, count);
1859}
1860
1861/*
1862 * Deallocate a log structure
1863 */
1864STATIC void
1865xlog_dealloc_log(
1866	struct xlog	*log)
1867{
1868	xlog_in_core_t	*iclog, *next_iclog;
1869	int		i;
1870
 
 
1871	/*
1872	 * Destroy the CIL after waiting for iclog IO completion because an
1873	 * iclog EIO error will try to shut down the log, which accesses the
1874	 * CIL to wake up the waiters.
1875	 */
1876	xlog_cil_destroy(log);
 
 
 
 
 
1877
1878	iclog = log->l_iclog;
1879	for (i = 0; i < log->l_iclog_bufs; i++) {
1880		next_iclog = iclog->ic_next;
1881		kvfree(iclog->ic_data);
1882		kfree(iclog);
1883		iclog = next_iclog;
1884	}
1885
1886	log->l_mp->m_log = NULL;
1887	destroy_workqueue(log->l_ioend_workqueue);
1888	kfree(log);
1889}
1890
1891/*
1892 * Update counters atomically now that memcpy is done.
1893 */
1894static inline void
1895xlog_state_finish_copy(
1896	struct xlog		*log,
1897	struct xlog_in_core	*iclog,
1898	int			record_cnt,
1899	int			copy_bytes)
1900{
1901	lockdep_assert_held(&log->l_icloglock);
1902
1903	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1904	iclog->ic_offset += copy_bytes;
1905}
1906
1907/*
1908 * print out info relating to regions written which consume
1909 * the reservation
1910 */
1911void
1912xlog_print_tic_res(
1913	struct xfs_mount	*mp,
1914	struct xlog_ticket	*ticket)
1915{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916	xfs_warn(mp, "ticket reservation summary:");
1917	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1918	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1919	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1920	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921}
1922
1923/*
1924 * Print a summary of the transaction.
1925 */
1926void
1927xlog_print_trans(
1928	struct xfs_trans	*tp)
1929{
1930	struct xfs_mount	*mp = tp->t_mountp;
1931	struct xfs_log_item	*lip;
1932
1933	/* dump core transaction and ticket info */
1934	xfs_warn(mp, "transaction summary:");
1935	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1936	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1937	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1938
1939	xlog_print_tic_res(mp, tp->t_ticket);
1940
1941	/* dump each log item */
1942	list_for_each_entry(lip, &tp->t_items, li_trans) {
1943		struct xfs_log_vec	*lv = lip->li_lv;
1944		struct xfs_log_iovec	*vec;
1945		int			i;
1946
1947		xfs_warn(mp, "log item: ");
1948		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1949		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1950		if (!lv)
1951			continue;
1952		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1953		xfs_warn(mp, "  size	= %d", lv->lv_size);
1954		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1955		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
1956
1957		/* dump each iovec for the log item */
1958		vec = lv->lv_iovecp;
1959		for (i = 0; i < lv->lv_niovecs; i++) {
1960			int dumplen = min(vec->i_len, 32);
1961
1962			xfs_warn(mp, "  iovec[%d]", i);
1963			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1964			xfs_warn(mp, "    len	= %d", vec->i_len);
1965			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1966			xfs_hex_dump(vec->i_addr, dumplen);
1967
1968			vec++;
1969		}
1970	}
1971}
1972
1973static inline void
1974xlog_write_iovec(
1975	struct xlog_in_core	*iclog,
1976	uint32_t		*log_offset,
1977	void			*data,
1978	uint32_t		write_len,
1979	int			*bytes_left,
1980	uint32_t		*record_cnt,
1981	uint32_t		*data_cnt)
1982{
1983	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1984	ASSERT(*log_offset % sizeof(int32_t) == 0);
1985	ASSERT(write_len % sizeof(int32_t) == 0);
1986
1987	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1988	*log_offset += write_len;
1989	*bytes_left -= write_len;
1990	(*record_cnt)++;
1991	*data_cnt += write_len;
1992}
1993
1994/*
1995 * Write log vectors into a single iclog which is guaranteed by the caller
1996 * to have enough space to write the entire log vector into.
 
1997 */
1998static void
1999xlog_write_full(
2000	struct xfs_log_vec	*lv,
2001	struct xlog_ticket	*ticket,
2002	struct xlog_in_core	*iclog,
2003	uint32_t		*log_offset,
2004	uint32_t		*len,
2005	uint32_t		*record_cnt,
2006	uint32_t		*data_cnt)
2007{
2008	int			index;
 
 
 
2009
2010	ASSERT(*log_offset + *len <= iclog->ic_size ||
2011		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2012
2013	/*
2014	 * Ordered log vectors have no regions to write so this
2015	 * loop will naturally skip them.
2016	 */
2017	for (index = 0; index < lv->lv_niovecs; index++) {
2018		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2019		struct xlog_op_header	*ophdr = reg->i_addr;
 
 
2020
2021		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2022		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2023				reg->i_len, len, record_cnt, data_cnt);
2024	}
 
 
 
 
 
2025}
2026
2027static int
2028xlog_write_get_more_iclog_space(
2029	struct xlog_ticket	*ticket,
2030	struct xlog_in_core	**iclogp,
2031	uint32_t		*log_offset,
2032	uint32_t		len,
2033	uint32_t		*record_cnt,
2034	uint32_t		*data_cnt)
2035{
2036	struct xlog_in_core	*iclog = *iclogp;
2037	struct xlog		*log = iclog->ic_log;
2038	int			error;
 
 
 
2039
2040	spin_lock(&log->l_icloglock);
2041	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2042	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2043	error = xlog_state_release_iclog(log, iclog, ticket);
2044	spin_unlock(&log->l_icloglock);
2045	if (error)
2046		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047
2048	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2049					log_offset);
2050	if (error)
2051		return error;
2052	*record_cnt = 0;
2053	*data_cnt = 0;
2054	*iclogp = iclog;
2055	return 0;
2056}
2057
2058/*
2059 * Write log vectors into a single iclog which is smaller than the current chain
2060 * length. We write until we cannot fit a full record into the remaining space
2061 * and then stop. We return the log vector that is to be written that cannot
2062 * wholly fit in the iclog.
2063 */
2064static int
2065xlog_write_partial(
2066	struct xfs_log_vec	*lv,
2067	struct xlog_ticket	*ticket,
2068	struct xlog_in_core	**iclogp,
2069	uint32_t		*log_offset,
2070	uint32_t		*len,
2071	uint32_t		*record_cnt,
2072	uint32_t		*data_cnt)
2073{
2074	struct xlog_in_core	*iclog = *iclogp;
2075	struct xlog_op_header	*ophdr;
2076	int			index = 0;
2077	uint32_t		rlen;
2078	int			error;
2079
2080	/* walk the logvec, copying until we run out of space in the iclog */
2081	for (index = 0; index < lv->lv_niovecs; index++) {
2082		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2083		uint32_t		reg_offset = 0;
2084
2085		/*
2086		 * The first region of a continuation must have a non-zero
2087		 * length otherwise log recovery will just skip over it and
2088		 * start recovering from the next opheader it finds. Because we
2089		 * mark the next opheader as a continuation, recovery will then
2090		 * incorrectly add the continuation to the previous region and
2091		 * that breaks stuff.
2092		 *
2093		 * Hence if there isn't space for region data after the
2094		 * opheader, then we need to start afresh with a new iclog.
2095		 */
2096		if (iclog->ic_size - *log_offset <=
2097					sizeof(struct xlog_op_header)) {
2098			error = xlog_write_get_more_iclog_space(ticket,
2099					&iclog, log_offset, *len, record_cnt,
2100					data_cnt);
2101			if (error)
2102				return error;
2103		}
2104
2105		ophdr = reg->i_addr;
2106		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2107
2108		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2110		if (rlen != reg->i_len)
2111			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
 
 
 
 
 
 
 
 
2112
2113		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2114				rlen, len, record_cnt, data_cnt);
2115
2116		/* If we wrote the whole region, move to the next. */
2117		if (rlen == reg->i_len)
2118			continue;
 
 
 
 
 
 
 
 
 
 
2119
 
2120		/*
2121		 * We now have a partially written iovec, but it can span
2122		 * multiple iclogs so we loop here. First we release the iclog
2123		 * we currently have, then we get a new iclog and add a new
2124		 * opheader. Then we continue copying from where we were until
2125		 * we either complete the iovec or fill the iclog. If we
2126		 * complete the iovec, then we increment the index and go right
2127		 * back to the top of the outer loop. if we fill the iclog, we
2128		 * run the inner loop again.
2129		 *
2130		 * This is complicated by the tail of a region using all the
2131		 * space in an iclog and hence requiring us to release the iclog
2132		 * and get a new one before returning to the outer loop. We must
2133		 * always guarantee that we exit this inner loop with at least
2134		 * space for log transaction opheaders left in the current
2135		 * iclog, hence we cannot just terminate the loop at the end
2136		 * of the of the continuation. So we loop while there is no
2137		 * space left in the current iclog, and check for the end of the
2138		 * continuation after getting a new iclog.
2139		 */
2140		do {
2141			/*
2142			 * Ensure we include the continuation opheader in the
2143			 * space we need in the new iclog by adding that size
2144			 * to the length we require. This continuation opheader
2145			 * needs to be accounted to the ticket as the space it
2146			 * consumes hasn't been accounted to the lv we are
2147			 * writing.
2148			 */
2149			error = xlog_write_get_more_iclog_space(ticket,
2150					&iclog, log_offset,
2151					*len + sizeof(struct xlog_op_header),
2152					record_cnt, data_cnt);
2153			if (error)
2154				return error;
2155
2156			ophdr = iclog->ic_datap + *log_offset;
2157			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158			ophdr->oh_clientid = XFS_TRANSACTION;
2159			ophdr->oh_res2 = 0;
2160			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2161
2162			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2163			*log_offset += sizeof(struct xlog_op_header);
2164			*data_cnt += sizeof(struct xlog_op_header);
2165
2166			/*
2167			 * If rlen fits in the iclog, then end the region
2168			 * continuation. Otherwise we're going around again.
2169			 */
2170			reg_offset += rlen;
2171			rlen = reg->i_len - reg_offset;
2172			if (rlen <= iclog->ic_size - *log_offset)
2173				ophdr->oh_flags |= XLOG_END_TRANS;
2174			else
2175				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2176
2177			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2178			ophdr->oh_len = cpu_to_be32(rlen);
2179
2180			xlog_write_iovec(iclog, log_offset,
2181					reg->i_addr + reg_offset,
2182					rlen, len, record_cnt, data_cnt);
 
 
 
2183
2184		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
 
 
 
 
 
 
 
 
 
2185	}
2186
2187	/*
2188	 * No more iovecs remain in this logvec so return the next log vec to
2189	 * the caller so it can go back to fast path copying.
2190	 */
2191	*iclogp = iclog;
2192	return 0;
 
 
 
 
 
2193}
2194
2195/*
2196 * Write some region out to in-core log
2197 *
2198 * This will be called when writing externally provided regions or when
2199 * writing out a commit record for a given transaction.
2200 *
2201 * General algorithm:
2202 *	1. Find total length of this write.  This may include adding to the
2203 *		lengths passed in.
2204 *	2. Check whether we violate the tickets reservation.
2205 *	3. While writing to this iclog
2206 *	    A. Reserve as much space in this iclog as can get
2207 *	    B. If this is first write, save away start lsn
2208 *	    C. While writing this region:
2209 *		1. If first write of transaction, write start record
2210 *		2. Write log operation header (header per region)
2211 *		3. Find out if we can fit entire region into this iclog
2212 *		4. Potentially, verify destination memcpy ptr
2213 *		5. Memcpy (partial) region
2214 *		6. If partial copy, release iclog; otherwise, continue
2215 *			copying more regions into current iclog
2216 *	4. Mark want sync bit (in simulation mode)
2217 *	5. Release iclog for potential flush to on-disk log.
2218 *
2219 * ERRORS:
2220 * 1.	Panic if reservation is overrun.  This should never happen since
2221 *	reservation amounts are generated internal to the filesystem.
2222 * NOTES:
2223 * 1. Tickets are single threaded data structures.
2224 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2225 *	syncing routine.  When a single log_write region needs to span
2226 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2227 *	on all log operation writes which don't contain the end of the
2228 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2229 *	operation which contains the end of the continued log_write region.
2230 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2231 *	we don't really know exactly how much space will be used.  As a result,
2232 *	we don't update ic_offset until the end when we know exactly how many
2233 *	bytes have been written out.
2234 */
2235int
2236xlog_write(
2237	struct xlog		*log,
2238	struct xfs_cil_ctx	*ctx,
2239	struct list_head	*lv_chain,
2240	struct xlog_ticket	*ticket,
2241	uint32_t		len)
2242
 
2243{
2244	struct xlog_in_core	*iclog = NULL;
2245	struct xfs_log_vec	*lv;
2246	uint32_t		record_cnt = 0;
2247	uint32_t		data_cnt = 0;
 
 
 
 
 
 
2248	int			error = 0;
2249	int			log_offset;
2250
 
 
 
 
 
 
 
2251	if (ticket->t_curr_res < 0) {
2252		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2253		     "ctx ticket reservation ran out. Need to up reservation");
2254		xlog_print_tic_res(log->l_mp, ticket);
2255		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2256	}
2257
2258	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2259					   &log_offset);
2260	if (error)
2261		return error;
 
 
2262
2263	ASSERT(log_offset <= iclog->ic_size - 1);
 
 
 
2264
2265	/*
2266	 * If we have a context pointer, pass it the first iclog we are
2267	 * writing to so it can record state needed for iclog write
2268	 * ordering.
2269	 */
2270	if (ctx)
2271		xlog_cil_set_ctx_write_state(ctx, iclog);
2272
2273	list_for_each_entry(lv, lv_chain, lv_list) {
2274		/*
2275		 * If the entire log vec does not fit in the iclog, punt it to
2276		 * the partial copy loop which can handle this case.
2277		 */
2278		if (lv->lv_niovecs &&
2279		    lv->lv_bytes > iclog->ic_size - log_offset) {
2280			error = xlog_write_partial(lv, ticket, &iclog,
2281					&log_offset, &len, &record_cnt,
2282					&data_cnt);
2283			if (error) {
2284				/*
2285				 * We have no iclog to release, so just return
2286				 * the error immediately.
2287				 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288				return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289			}
2290		} else {
2291			xlog_write_full(lv, ticket, iclog, &log_offset,
2292					 &len, &record_cnt, &data_cnt);
2293		}
2294	}
 
2295	ASSERT(len == 0);
2296
2297	/*
2298	 * We've already been guaranteed that the last writes will fit inside
2299	 * the current iclog, and hence it will already have the space used by
2300	 * those writes accounted to it. Hence we do not need to update the
2301	 * iclog with the number of bytes written here.
2302	 */
2303	spin_lock(&log->l_icloglock);
2304	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2305	error = xlog_state_release_iclog(log, iclog, ticket);
 
 
 
 
 
2306	spin_unlock(&log->l_icloglock);
2307
2308	return error;
2309}
2310
2311static void
2312xlog_state_activate_iclog(
2313	struct xlog_in_core	*iclog,
2314	int			*iclogs_changed)
2315{
2316	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2317	trace_xlog_iclog_activate(iclog, _RET_IP_);
2318
2319	/*
2320	 * If the number of ops in this iclog indicate it just contains the
2321	 * dummy transaction, we can change state into IDLE (the second time
2322	 * around). Otherwise we should change the state into NEED a dummy.
2323	 * We don't need to cover the dummy.
2324	 */
2325	if (*iclogs_changed == 0 &&
2326	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2327		*iclogs_changed = 1;
2328	} else {
2329		/*
2330		 * We have two dirty iclogs so start over.  This could also be
2331		 * num of ops indicating this is not the dummy going out.
2332		 */
2333		*iclogs_changed = 2;
2334	}
2335
2336	iclog->ic_state	= XLOG_STATE_ACTIVE;
2337	iclog->ic_offset = 0;
2338	iclog->ic_header.h_num_logops = 0;
2339	memset(iclog->ic_header.h_cycle_data, 0,
2340		sizeof(iclog->ic_header.h_cycle_data));
2341	iclog->ic_header.h_lsn = 0;
2342	iclog->ic_header.h_tail_lsn = 0;
2343}
2344
2345/*
2346 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2347 * ACTIVE after iclog I/O has completed.
2348 */
2349static void
2350xlog_state_activate_iclogs(
2351	struct xlog		*log,
2352	int			*iclogs_changed)
2353{
2354	struct xlog_in_core	*iclog = log->l_iclog;
2355
2356	do {
2357		if (iclog->ic_state == XLOG_STATE_DIRTY)
2358			xlog_state_activate_iclog(iclog, iclogs_changed);
2359		/*
2360		 * The ordering of marking iclogs ACTIVE must be maintained, so
2361		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2362		 */
2363		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2364			break;
2365	} while ((iclog = iclog->ic_next) != log->l_iclog);
2366}
2367
2368static int
2369xlog_covered_state(
2370	int			prev_state,
2371	int			iclogs_changed)
2372{
2373	/*
2374	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2375	 * wrote the first covering record (DONE). We go to IDLE if we just
2376	 * wrote the second covering record (DONE2) and remain in IDLE until a
2377	 * non-covering write occurs.
2378	 */
2379	switch (prev_state) {
2380	case XLOG_STATE_COVER_IDLE:
2381		if (iclogs_changed == 1)
2382			return XLOG_STATE_COVER_IDLE;
2383		fallthrough;
2384	case XLOG_STATE_COVER_NEED:
2385	case XLOG_STATE_COVER_NEED2:
2386		break;
2387	case XLOG_STATE_COVER_DONE:
2388		if (iclogs_changed == 1)
2389			return XLOG_STATE_COVER_NEED2;
2390		break;
2391	case XLOG_STATE_COVER_DONE2:
2392		if (iclogs_changed == 1)
2393			return XLOG_STATE_COVER_IDLE;
2394		break;
2395	default:
2396		ASSERT(0);
2397	}
2398
2399	return XLOG_STATE_COVER_NEED;
2400}
2401
2402STATIC void
2403xlog_state_clean_iclog(
2404	struct xlog		*log,
2405	struct xlog_in_core	*dirty_iclog)
2406{
2407	int			iclogs_changed = 0;
2408
2409	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2410
2411	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2412
2413	xlog_state_activate_iclogs(log, &iclogs_changed);
2414	wake_up_all(&dirty_iclog->ic_force_wait);
2415
2416	if (iclogs_changed) {
2417		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2418				iclogs_changed);
2419	}
2420}
2421
2422STATIC xfs_lsn_t
2423xlog_get_lowest_lsn(
2424	struct xlog		*log)
2425{
2426	struct xlog_in_core	*iclog = log->l_iclog;
2427	xfs_lsn_t		lowest_lsn = 0, lsn;
2428
2429	do {
2430		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2431		    iclog->ic_state == XLOG_STATE_DIRTY)
2432			continue;
2433
2434		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2435		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2436			lowest_lsn = lsn;
2437	} while ((iclog = iclog->ic_next) != log->l_iclog);
2438
2439	return lowest_lsn;
2440}
2441
2442/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443 * Return true if we need to stop processing, false to continue to the next
2444 * iclog. The caller will need to run callbacks if the iclog is returned in the
2445 * XLOG_STATE_CALLBACK state.
2446 */
2447static bool
2448xlog_state_iodone_process_iclog(
2449	struct xlog		*log,
2450	struct xlog_in_core	*iclog)
 
2451{
2452	xfs_lsn_t		lowest_lsn;
2453	xfs_lsn_t		header_lsn;
2454
2455	switch (iclog->ic_state) {
2456	case XLOG_STATE_ACTIVE:
2457	case XLOG_STATE_DIRTY:
2458		/*
2459		 * Skip all iclogs in the ACTIVE & DIRTY states:
2460		 */
2461		return false;
 
 
 
 
 
 
 
 
 
2462	case XLOG_STATE_DONE_SYNC:
2463		/*
2464		 * Now that we have an iclog that is in the DONE_SYNC state, do
2465		 * one more check here to see if we have chased our tail around.
2466		 * If this is not the lowest lsn iclog, then we will leave it
2467		 * for another completion to process.
2468		 */
2469		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2470		lowest_lsn = xlog_get_lowest_lsn(log);
2471		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2472			return false;
2473		/*
2474		 * If there are no callbacks on this iclog, we can mark it clean
2475		 * immediately and return. Otherwise we need to run the
2476		 * callbacks.
2477		 */
2478		if (list_empty(&iclog->ic_callbacks)) {
2479			xlog_state_clean_iclog(log, iclog);
2480			return false;
2481		}
2482		trace_xlog_iclog_callback(iclog, _RET_IP_);
2483		iclog->ic_state = XLOG_STATE_CALLBACK;
2484		return false;
2485	default:
2486		/*
2487		 * Can only perform callbacks in order.  Since this iclog is not
2488		 * in the DONE_SYNC state, we skip the rest and just try to
2489		 * clean up.
2490		 */
2491		return true;
2492	}
2493}
2494
2495/*
2496 * Loop over all the iclogs, running attached callbacks on them. Return true if
2497 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2498 * to handle transient shutdown state here at all because
2499 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2500 * cleanup of the callbacks.
2501 */
2502static bool
2503xlog_state_do_iclog_callbacks(
2504	struct xlog		*log)
2505		__releases(&log->l_icloglock)
2506		__acquires(&log->l_icloglock)
2507{
2508	struct xlog_in_core	*first_iclog = log->l_iclog;
2509	struct xlog_in_core	*iclog = first_iclog;
2510	bool			ran_callback = false;
2511
2512	do {
2513		LIST_HEAD(cb_list);
2514
2515		if (xlog_state_iodone_process_iclog(log, iclog))
2516			break;
2517		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2518			iclog = iclog->ic_next;
2519			continue;
2520		}
2521		list_splice_init(&iclog->ic_callbacks, &cb_list);
2522		spin_unlock(&log->l_icloglock);
2523
2524		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2525		xlog_cil_process_committed(&cb_list);
2526		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2527		ran_callback = true;
2528
2529		spin_lock(&log->l_icloglock);
2530		xlog_state_clean_iclog(log, iclog);
2531		iclog = iclog->ic_next;
2532	} while (iclog != first_iclog);
2533
2534	return ran_callback;
2535}
2536
2537
2538/*
2539 * Loop running iclog completion callbacks until there are no more iclogs in a
2540 * state that can run callbacks.
2541 */
2542STATIC void
2543xlog_state_do_callback(
2544	struct xlog		*log)
2545{
 
 
 
 
2546	int			flushcnt = 0;
2547	int			repeats = 0;
2548
2549	spin_lock(&log->l_icloglock);
2550	while (xlog_state_do_iclog_callbacks(log)) {
2551		if (xlog_is_shutdown(log))
2552			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553
2554		if (++repeats > 5000) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2555			flushcnt += repeats;
2556			repeats = 0;
2557			xfs_warn(log->l_mp,
2558				"%s: possible infinite loop (%d iterations)",
2559				__func__, flushcnt);
2560		}
2561	}
2562
2563	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
 
2564		wake_up_all(&log->l_flush_wait);
2565
2566	spin_unlock(&log->l_icloglock);
2567}
2568
2569
2570/*
2571 * Finish transitioning this iclog to the dirty state.
2572 *
 
 
 
 
 
 
 
2573 * Callbacks could take time, so they are done outside the scope of the
2574 * global state machine log lock.
2575 */
2576STATIC void
2577xlog_state_done_syncing(
2578	struct xlog_in_core	*iclog)
2579{
2580	struct xlog		*log = iclog->ic_log;
2581
2582	spin_lock(&log->l_icloglock);
2583	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2584	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2585
2586	/*
2587	 * If we got an error, either on the first buffer, or in the case of
2588	 * split log writes, on the second, we shut down the file system and
2589	 * no iclogs should ever be attempted to be written to disk again.
2590	 */
2591	if (!xlog_is_shutdown(log)) {
2592		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2593		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2594	}
2595
2596	/*
2597	 * Someone could be sleeping prior to writing out the next
2598	 * iclog buffer, we wake them all, one will get to do the
2599	 * I/O, the others get to wait for the result.
2600	 */
2601	wake_up_all(&iclog->ic_write_wait);
2602	spin_unlock(&log->l_icloglock);
2603	xlog_state_do_callback(log);
2604}
2605
2606/*
2607 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2608 * sleep.  We wait on the flush queue on the head iclog as that should be
2609 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2610 * we will wait here and all new writes will sleep until a sync completes.
2611 *
2612 * The in-core logs are used in a circular fashion. They are not used
2613 * out-of-order even when an iclog past the head is free.
2614 *
2615 * return:
2616 *	* log_offset where xlog_write() can start writing into the in-core
2617 *		log's data space.
2618 *	* in-core log pointer to which xlog_write() should write.
2619 *	* boolean indicating this is a continued write to an in-core log.
2620 *		If this is the last write, then the in-core log's offset field
2621 *		needs to be incremented, depending on the amount of data which
2622 *		is copied.
2623 */
2624STATIC int
2625xlog_state_get_iclog_space(
2626	struct xlog		*log,
2627	int			len,
2628	struct xlog_in_core	**iclogp,
2629	struct xlog_ticket	*ticket,
 
2630	int			*logoffsetp)
2631{
2632	int		  log_offset;
2633	xlog_rec_header_t *head;
2634	xlog_in_core_t	  *iclog;
2635
2636restart:
2637	spin_lock(&log->l_icloglock);
2638	if (xlog_is_shutdown(log)) {
2639		spin_unlock(&log->l_icloglock);
2640		return -EIO;
2641	}
2642
2643	iclog = log->l_iclog;
2644	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2645		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2646
2647		/* Wait for log writes to have flushed */
2648		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2649		goto restart;
2650	}
2651
2652	head = &iclog->ic_header;
2653
2654	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2655	log_offset = iclog->ic_offset;
2656
2657	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2658
2659	/* On the 1st write to an iclog, figure out lsn.  This works
2660	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2661	 * committing to.  If the offset is set, that's how many blocks
2662	 * must be written.
2663	 */
2664	if (log_offset == 0) {
2665		ticket->t_curr_res -= log->l_iclog_hsize;
 
 
 
2666		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2667		head->h_lsn = cpu_to_be64(
2668			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2669		ASSERT(log->l_curr_block >= 0);
2670	}
2671
2672	/* If there is enough room to write everything, then do it.  Otherwise,
2673	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2674	 * bit is on, so this will get flushed out.  Don't update ic_offset
2675	 * until you know exactly how many bytes get copied.  Therefore, wait
2676	 * until later to update ic_offset.
2677	 *
2678	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2679	 * can fit into remaining data section.
2680	 */
2681	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2682		int		error = 0;
2683
2684		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2685
2686		/*
2687		 * If we are the only one writing to this iclog, sync it to
2688		 * disk.  We need to do an atomic compare and decrement here to
2689		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2690		 * xlog_state_release_iclog() when there is more than one
2691		 * reference to the iclog.
2692		 */
2693		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2694			error = xlog_state_release_iclog(log, iclog, ticket);
2695		spin_unlock(&log->l_icloglock);
2696		if (error)
2697			return error;
2698		goto restart;
2699	}
2700
2701	/* Do we have enough room to write the full amount in the remainder
2702	 * of this iclog?  Or must we continue a write on the next iclog and
2703	 * mark this iclog as completely taken?  In the case where we switch
2704	 * iclogs (to mark it taken), this particular iclog will release/sync
2705	 * to disk in xlog_write().
2706	 */
2707	if (len <= iclog->ic_size - iclog->ic_offset)
 
2708		iclog->ic_offset += len;
2709	else
 
2710		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
 
2711	*iclogp = iclog;
2712
2713	ASSERT(iclog->ic_offset <= iclog->ic_size);
2714	spin_unlock(&log->l_icloglock);
2715
2716	*logoffsetp = log_offset;
2717	return 0;
2718}
2719
2720/*
2721 * The first cnt-1 times a ticket goes through here we don't need to move the
2722 * grant write head because the permanent reservation has reserved cnt times the
2723 * unit amount.  Release part of current permanent unit reservation and reset
2724 * current reservation to be one units worth.  Also move grant reservation head
2725 * forward.
2726 */
2727void
2728xfs_log_ticket_regrant(
2729	struct xlog		*log,
2730	struct xlog_ticket	*ticket)
2731{
2732	trace_xfs_log_ticket_regrant(log, ticket);
2733
2734	if (ticket->t_cnt > 0)
2735		ticket->t_cnt--;
2736
2737	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2738	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
 
 
2739	ticket->t_curr_res = ticket->t_unit_res;
 
2740
2741	trace_xfs_log_ticket_regrant_sub(log, ticket);
2742
2743	/* just return if we still have some of the pre-reserved space */
2744	if (!ticket->t_cnt) {
2745		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
 
2746		trace_xfs_log_ticket_regrant_exit(log, ticket);
2747
2748		ticket->t_curr_res = ticket->t_unit_res;
 
2749	}
2750
2751	xfs_log_ticket_put(ticket);
2752}
2753
2754/*
2755 * Give back the space left from a reservation.
2756 *
2757 * All the information we need to make a correct determination of space left
2758 * is present.  For non-permanent reservations, things are quite easy.  The
2759 * count should have been decremented to zero.  We only need to deal with the
2760 * space remaining in the current reservation part of the ticket.  If the
2761 * ticket contains a permanent reservation, there may be left over space which
2762 * needs to be released.  A count of N means that N-1 refills of the current
2763 * reservation can be done before we need to ask for more space.  The first
2764 * one goes to fill up the first current reservation.  Once we run out of
2765 * space, the count will stay at zero and the only space remaining will be
2766 * in the current reservation field.
2767 */
2768void
2769xfs_log_ticket_ungrant(
2770	struct xlog		*log,
2771	struct xlog_ticket	*ticket)
2772{
2773	int			bytes;
2774
2775	trace_xfs_log_ticket_ungrant(log, ticket);
2776
2777	if (ticket->t_cnt > 0)
2778		ticket->t_cnt--;
2779
2780	trace_xfs_log_ticket_ungrant_sub(log, ticket);
2781
2782	/*
2783	 * If this is a permanent reservation ticket, we may be able to free
2784	 * up more space based on the remaining count.
2785	 */
2786	bytes = ticket->t_curr_res;
2787	if (ticket->t_cnt > 0) {
2788		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2789		bytes += ticket->t_unit_res*ticket->t_cnt;
2790	}
2791
2792	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2793	xlog_grant_sub_space(&log->l_write_head, bytes);
2794
2795	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2796
2797	xfs_log_space_wake(log->l_mp);
2798	xfs_log_ticket_put(ticket);
2799}
2800
2801/*
2802 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2803 * the current iclog pointer to the next iclog in the ring.
2804 */
2805void
2806xlog_state_switch_iclogs(
2807	struct xlog		*log,
2808	struct xlog_in_core	*iclog,
2809	int			eventual_size)
2810{
2811	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2812	assert_spin_locked(&log->l_icloglock);
2813	trace_xlog_iclog_switch(iclog, _RET_IP_);
2814
2815	if (!eventual_size)
2816		eventual_size = iclog->ic_offset;
2817	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2818	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2819	log->l_prev_block = log->l_curr_block;
2820	log->l_prev_cycle = log->l_curr_cycle;
2821
2822	/* roll log?: ic_offset changed later */
2823	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2824
2825	/* Round up to next log-sunit */
2826	if (log->l_iclog_roundoff > BBSIZE) {
2827		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2828		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2829	}
2830
2831	if (log->l_curr_block >= log->l_logBBsize) {
2832		/*
2833		 * Rewind the current block before the cycle is bumped to make
2834		 * sure that the combined LSN never transiently moves forward
2835		 * when the log wraps to the next cycle. This is to support the
2836		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2837		 * other cases should acquire l_icloglock.
2838		 */
2839		log->l_curr_block -= log->l_logBBsize;
2840		ASSERT(log->l_curr_block >= 0);
2841		smp_wmb();
2842		log->l_curr_cycle++;
2843		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2844			log->l_curr_cycle++;
2845	}
2846	ASSERT(iclog == log->l_iclog);
2847	log->l_iclog = iclog->ic_next;
2848}
2849
2850/*
2851 * Force the iclog to disk and check if the iclog has been completed before
2852 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2853 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2854 * If completion has already occurred, tell the caller so that it can avoid an
2855 * unnecessary wait on the iclog.
2856 */
2857static int
2858xlog_force_and_check_iclog(
2859	struct xlog_in_core	*iclog,
2860	bool			*completed)
2861{
2862	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2863	int			error;
2864
2865	*completed = false;
2866	error = xlog_force_iclog(iclog);
2867	if (error)
2868		return error;
2869
2870	/*
2871	 * If the iclog has already been completed and reused the header LSN
2872	 * will have been rewritten by completion
2873	 */
2874	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2875		*completed = true;
2876	return 0;
2877}
2878
2879/*
2880 * Write out all data in the in-core log as of this exact moment in time.
2881 *
2882 * Data may be written to the in-core log during this call.  However,
2883 * we don't guarantee this data will be written out.  A change from past
2884 * implementation means this routine will *not* write out zero length LRs.
2885 *
2886 * Basically, we try and perform an intelligent scan of the in-core logs.
2887 * If we determine there is no flushable data, we just return.  There is no
2888 * flushable data if:
2889 *
2890 *	1. the current iclog is active and has no data; the previous iclog
2891 *		is in the active or dirty state.
2892 *	2. the current iclog is drity, and the previous iclog is in the
2893 *		active or dirty state.
2894 *
2895 * We may sleep if:
2896 *
2897 *	1. the current iclog is not in the active nor dirty state.
2898 *	2. the current iclog dirty, and the previous iclog is not in the
2899 *		active nor dirty state.
2900 *	3. the current iclog is active, and there is another thread writing
2901 *		to this particular iclog.
2902 *	4. a) the current iclog is active and has no other writers
2903 *	   b) when we return from flushing out this iclog, it is still
2904 *		not in the active nor dirty state.
2905 */
2906int
2907xfs_log_force(
2908	struct xfs_mount	*mp,
2909	uint			flags)
2910{
2911	struct xlog		*log = mp->m_log;
2912	struct xlog_in_core	*iclog;
2913
2914	XFS_STATS_INC(mp, xs_log_force);
2915	trace_xfs_log_force(mp, 0, _RET_IP_);
2916
2917	xlog_cil_force(log);
2918
2919	spin_lock(&log->l_icloglock);
2920	if (xlog_is_shutdown(log))
 
2921		goto out_error;
2922
2923	iclog = log->l_iclog;
2924	trace_xlog_iclog_force(iclog, _RET_IP_);
2925
2926	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2927	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2928	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2929		/*
2930		 * If the head is dirty or (active and empty), then we need to
2931		 * look at the previous iclog.
2932		 *
2933		 * If the previous iclog is active or dirty we are done.  There
2934		 * is nothing to sync out. Otherwise, we attach ourselves to the
2935		 * previous iclog and go to sleep.
2936		 */
2937		iclog = iclog->ic_prev;
2938	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2939		if (atomic_read(&iclog->ic_refcnt) == 0) {
2940			/* We have exclusive access to this iclog. */
2941			bool	completed;
2942
2943			if (xlog_force_and_check_iclog(iclog, &completed))
2944				goto out_error;
2945
2946			if (completed)
2947				goto out_unlock;
2948		} else {
2949			/*
2950			 * Someone else is still writing to this iclog, so we
2951			 * need to ensure that when they release the iclog it
2952			 * gets synced immediately as we may be waiting on it.
2953			 */
2954			xlog_state_switch_iclogs(log, iclog, 0);
2955		}
2956	}
2957
2958	/*
2959	 * The iclog we are about to wait on may contain the checkpoint pushed
2960	 * by the above xlog_cil_force() call, but it may not have been pushed
2961	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2962	 * are flushed when this iclog is written.
2963	 */
2964	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2965		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2966
2967	if (flags & XFS_LOG_SYNC)
2968		return xlog_wait_on_iclog(iclog);
2969out_unlock:
2970	spin_unlock(&log->l_icloglock);
2971	return 0;
2972out_error:
2973	spin_unlock(&log->l_icloglock);
2974	return -EIO;
2975}
2976
2977/*
2978 * Force the log to a specific LSN.
2979 *
2980 * If an iclog with that lsn can be found:
2981 *	If it is in the DIRTY state, just return.
2982 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2983 *		state and go to sleep or return.
2984 *	If it is in any other state, go to sleep or return.
2985 *
2986 * Synchronous forces are implemented with a wait queue.  All callers trying
2987 * to force a given lsn to disk must wait on the queue attached to the
2988 * specific in-core log.  When given in-core log finally completes its write
2989 * to disk, that thread will wake up all threads waiting on the queue.
2990 */
2991static int
2992xlog_force_lsn(
2993	struct xlog		*log,
2994	xfs_lsn_t		lsn,
2995	uint			flags,
2996	int			*log_flushed,
2997	bool			already_slept)
2998{
2999	struct xlog_in_core	*iclog;
3000	bool			completed;
3001
3002	spin_lock(&log->l_icloglock);
3003	if (xlog_is_shutdown(log))
 
3004		goto out_error;
3005
3006	iclog = log->l_iclog;
3007	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3008		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3009		iclog = iclog->ic_next;
3010		if (iclog == log->l_iclog)
3011			goto out_unlock;
3012	}
3013
3014	switch (iclog->ic_state) {
3015	case XLOG_STATE_ACTIVE:
3016		/*
3017		 * We sleep here if we haven't already slept (e.g. this is the
3018		 * first time we've looked at the correct iclog buf) and the
3019		 * buffer before us is going to be sync'ed.  The reason for this
3020		 * is that if we are doing sync transactions here, by waiting
3021		 * for the previous I/O to complete, we can allow a few more
3022		 * transactions into this iclog before we close it down.
3023		 *
3024		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3025		 * refcnt so we can release the log (which drops the ref count).
3026		 * The state switch keeps new transaction commits from using
3027		 * this buffer.  When the current commits finish writing into
3028		 * the buffer, the refcount will drop to zero and the buffer
3029		 * will go out then.
3030		 */
3031		if (!already_slept &&
3032		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3033		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3034			xlog_wait(&iclog->ic_prev->ic_write_wait,
3035					&log->l_icloglock);
3036			return -EAGAIN;
3037		}
3038		if (xlog_force_and_check_iclog(iclog, &completed))
3039			goto out_error;
3040		if (log_flushed)
3041			*log_flushed = 1;
3042		if (completed)
3043			goto out_unlock;
3044		break;
3045	case XLOG_STATE_WANT_SYNC:
3046		/*
3047		 * This iclog may contain the checkpoint pushed by the
3048		 * xlog_cil_force_seq() call, but there are other writers still
3049		 * accessing it so it hasn't been pushed to disk yet. Like the
3050		 * ACTIVE case above, we need to make sure caches are flushed
3051		 * when this iclog is written.
3052		 */
3053		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3054		break;
3055	default:
3056		/*
3057		 * The entire checkpoint was written by the CIL force and is on
3058		 * its way to disk already. It will be stable when it
3059		 * completes, so we don't need to manipulate caches here at all.
3060		 * We just need to wait for completion if necessary.
3061		 */
3062		break;
3063	}
3064
3065	if (flags & XFS_LOG_SYNC)
3066		return xlog_wait_on_iclog(iclog);
3067out_unlock:
3068	spin_unlock(&log->l_icloglock);
3069	return 0;
3070out_error:
3071	spin_unlock(&log->l_icloglock);
3072	return -EIO;
3073}
3074
3075/*
3076 * Force the log to a specific checkpoint sequence.
 
 
 
 
 
 
3077 *
3078 * First force the CIL so that all the required changes have been flushed to the
3079 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3080 * the iclog that needs to be flushed to stable storage. If the caller needs
3081 * a synchronous log force, we will wait on the iclog with the LSN returned by
3082 * xlog_cil_force_seq() to be completed.
3083 */
3084int
3085xfs_log_force_seq(
3086	struct xfs_mount	*mp,
3087	xfs_csn_t		seq,
3088	uint			flags,
3089	int			*log_flushed)
3090{
3091	struct xlog		*log = mp->m_log;
3092	xfs_lsn_t		lsn;
3093	int			ret;
3094	ASSERT(seq != 0);
3095
3096	XFS_STATS_INC(mp, xs_log_force);
3097	trace_xfs_log_force(mp, seq, _RET_IP_);
3098
3099	lsn = xlog_cil_force_seq(log, seq);
3100	if (lsn == NULLCOMMITLSN)
3101		return 0;
3102
3103	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3104	if (ret == -EAGAIN) {
3105		XFS_STATS_INC(mp, xs_log_force_sleep);
3106		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3107	}
3108	return ret;
3109}
3110
3111/*
3112 * Free a used ticket when its refcount falls to zero.
3113 */
3114void
3115xfs_log_ticket_put(
3116	xlog_ticket_t	*ticket)
3117{
3118	ASSERT(atomic_read(&ticket->t_ref) > 0);
3119	if (atomic_dec_and_test(&ticket->t_ref))
3120		kmem_cache_free(xfs_log_ticket_cache, ticket);
3121}
3122
3123xlog_ticket_t *
3124xfs_log_ticket_get(
3125	xlog_ticket_t	*ticket)
3126{
3127	ASSERT(atomic_read(&ticket->t_ref) > 0);
3128	atomic_inc(&ticket->t_ref);
3129	return ticket;
3130}
3131
3132/*
3133 * Figure out the total log space unit (in bytes) that would be
3134 * required for a log ticket.
3135 */
3136static int
3137xlog_calc_unit_res(
3138	struct xlog		*log,
3139	int			unit_bytes,
3140	int			*niclogs)
3141{
3142	int			iclog_space;
3143	uint			num_headers;
3144
3145	/*
3146	 * Permanent reservations have up to 'cnt'-1 active log operations
3147	 * in the log.  A unit in this case is the amount of space for one
3148	 * of these log operations.  Normal reservations have a cnt of 1
3149	 * and their unit amount is the total amount of space required.
3150	 *
3151	 * The following lines of code account for non-transaction data
3152	 * which occupy space in the on-disk log.
3153	 *
3154	 * Normal form of a transaction is:
3155	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3156	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3157	 *
3158	 * We need to account for all the leadup data and trailer data
3159	 * around the transaction data.
3160	 * And then we need to account for the worst case in terms of using
3161	 * more space.
3162	 * The worst case will happen if:
3163	 * - the placement of the transaction happens to be such that the
3164	 *   roundoff is at its maximum
3165	 * - the transaction data is synced before the commit record is synced
3166	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3167	 *   Therefore the commit record is in its own Log Record.
3168	 *   This can happen as the commit record is called with its
3169	 *   own region to xlog_write().
3170	 *   This then means that in the worst case, roundoff can happen for
3171	 *   the commit-rec as well.
3172	 *   The commit-rec is smaller than padding in this scenario and so it is
3173	 *   not added separately.
3174	 */
3175
3176	/* for trans header */
3177	unit_bytes += sizeof(xlog_op_header_t);
3178	unit_bytes += sizeof(xfs_trans_header_t);
3179
3180	/* for start-rec */
3181	unit_bytes += sizeof(xlog_op_header_t);
3182
3183	/*
3184	 * for LR headers - the space for data in an iclog is the size minus
3185	 * the space used for the headers. If we use the iclog size, then we
3186	 * undercalculate the number of headers required.
3187	 *
3188	 * Furthermore - the addition of op headers for split-recs might
3189	 * increase the space required enough to require more log and op
3190	 * headers, so take that into account too.
3191	 *
3192	 * IMPORTANT: This reservation makes the assumption that if this
3193	 * transaction is the first in an iclog and hence has the LR headers
3194	 * accounted to it, then the remaining space in the iclog is
3195	 * exclusively for this transaction.  i.e. if the transaction is larger
3196	 * than the iclog, it will be the only thing in that iclog.
3197	 * Fundamentally, this means we must pass the entire log vector to
3198	 * xlog_write to guarantee this.
3199	 */
3200	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3201	num_headers = howmany(unit_bytes, iclog_space);
3202
3203	/* for split-recs - ophdrs added when data split over LRs */
3204	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3205
3206	/* add extra header reservations if we overrun */
3207	while (!num_headers ||
3208	       howmany(unit_bytes, iclog_space) > num_headers) {
3209		unit_bytes += sizeof(xlog_op_header_t);
3210		num_headers++;
3211	}
3212	unit_bytes += log->l_iclog_hsize * num_headers;
3213
3214	/* for commit-rec LR header - note: padding will subsume the ophdr */
3215	unit_bytes += log->l_iclog_hsize;
3216
3217	/* roundoff padding for transaction data and one for commit record */
3218	unit_bytes += 2 * log->l_iclog_roundoff;
3219
3220	if (niclogs)
3221		*niclogs = num_headers;
3222	return unit_bytes;
3223}
3224
3225int
3226xfs_log_calc_unit_res(
3227	struct xfs_mount	*mp,
3228	int			unit_bytes)
3229{
3230	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3231}
3232
3233/*
3234 * Allocate and initialise a new log ticket.
3235 */
3236struct xlog_ticket *
3237xlog_ticket_alloc(
3238	struct xlog		*log,
3239	int			unit_bytes,
3240	int			cnt,
 
3241	bool			permanent)
3242{
3243	struct xlog_ticket	*tic;
3244	int			unit_res;
3245
3246	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3247			GFP_KERNEL | __GFP_NOFAIL);
3248
3249	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3250
3251	atomic_set(&tic->t_ref, 1);
3252	tic->t_task		= current;
3253	INIT_LIST_HEAD(&tic->t_queue);
3254	tic->t_unit_res		= unit_res;
3255	tic->t_curr_res		= unit_res;
3256	tic->t_cnt		= cnt;
3257	tic->t_ocnt		= cnt;
3258	tic->t_tid		= get_random_u32();
 
3259	if (permanent)
3260		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3261
 
 
3262	return tic;
3263}
3264
3265#if defined(DEBUG)
3266static void
3267xlog_verify_dump_tail(
3268	struct xlog		*log,
3269	struct xlog_in_core	*iclog)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3270{
3271	xfs_alert(log->l_mp,
3272"ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3273			iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3274			atomic64_read(&log->l_tail_lsn),
3275			log->l_ailp->ail_head_lsn,
3276			log->l_curr_cycle, log->l_curr_block,
3277			log->l_prev_cycle, log->l_prev_block);
3278	xfs_alert(log->l_mp,
3279"write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3280			atomic64_read(&log->l_write_head.grant),
3281			atomic64_read(&log->l_reserve_head.grant),
3282			log->l_tail_space, log->l_logsize,
3283			iclog ? iclog->ic_flags : -1);
 
 
 
 
 
 
 
3284}
3285
3286/* Check if the new iclog will fit in the log. */
3287STATIC void
3288xlog_verify_tail_lsn(
3289	struct xlog		*log,
3290	struct xlog_in_core	*iclog)
3291{
3292	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3293	int		blocks;
3294
3295	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3296		blocks = log->l_logBBsize -
3297				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3298		if (blocks < BTOBB(iclog->ic_offset) +
3299					BTOBB(log->l_iclog_hsize)) {
3300			xfs_emerg(log->l_mp,
3301					"%s: ran out of log space", __func__);
3302			xlog_verify_dump_tail(log, iclog);
3303		}
3304		return;
3305	}
3306
3307	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3308		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3309		xlog_verify_dump_tail(log, iclog);
3310		return;
3311	}
3312	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3313		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3314		xlog_verify_dump_tail(log, iclog);
3315		return;
3316	}
3317
3318	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3319	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3320		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3321		xlog_verify_dump_tail(log, iclog);
3322	}
3323}
3324
3325/*
3326 * Perform a number of checks on the iclog before writing to disk.
3327 *
3328 * 1. Make sure the iclogs are still circular
3329 * 2. Make sure we have a good magic number
3330 * 3. Make sure we don't have magic numbers in the data
3331 * 4. Check fields of each log operation header for:
3332 *	A. Valid client identifier
3333 *	B. tid ptr value falls in valid ptr space (user space code)
3334 *	C. Length in log record header is correct according to the
3335 *		individual operation headers within record.
3336 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3337 *	log, check the preceding blocks of the physical log to make sure all
3338 *	the cycle numbers agree with the current cycle number.
3339 */
3340STATIC void
3341xlog_verify_iclog(
3342	struct xlog		*log,
3343	struct xlog_in_core	*iclog,
3344	int			count)
3345{
3346	xlog_op_header_t	*ophead;
3347	xlog_in_core_t		*icptr;
3348	xlog_in_core_2_t	*xhdr;
3349	void			*base_ptr, *ptr, *p;
3350	ptrdiff_t		field_offset;
3351	uint8_t			clientid;
3352	int			len, i, j, k, op_len;
3353	int			idx;
3354
3355	/* check validity of iclog pointers */
3356	spin_lock(&log->l_icloglock);
3357	icptr = log->l_iclog;
3358	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3359		ASSERT(icptr);
3360
3361	if (icptr != log->l_iclog)
3362		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3363	spin_unlock(&log->l_icloglock);
3364
3365	/* check log magic numbers */
3366	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3367		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3368
3369	base_ptr = ptr = &iclog->ic_header;
3370	p = &iclog->ic_header;
3371	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3372		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3373			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3374				__func__);
3375	}
3376
3377	/* check fields */
3378	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3379	base_ptr = ptr = iclog->ic_datap;
3380	ophead = ptr;
3381	xhdr = iclog->ic_data;
3382	for (i = 0; i < len; i++) {
3383		ophead = ptr;
3384
3385		/* clientid is only 1 byte */
3386		p = &ophead->oh_clientid;
3387		field_offset = p - base_ptr;
3388		if (field_offset & 0x1ff) {
3389			clientid = ophead->oh_clientid;
3390		} else {
3391			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3392			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3393				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3394				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3395				clientid = xlog_get_client_id(
3396					xhdr[j].hic_xheader.xh_cycle_data[k]);
3397			} else {
3398				clientid = xlog_get_client_id(
3399					iclog->ic_header.h_cycle_data[idx]);
3400			}
3401		}
3402		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3403			xfs_warn(log->l_mp,
3404				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3405				__func__, i, clientid, ophead,
3406				(unsigned long)field_offset);
3407		}
3408
3409		/* check length */
3410		p = &ophead->oh_len;
3411		field_offset = p - base_ptr;
3412		if (field_offset & 0x1ff) {
3413			op_len = be32_to_cpu(ophead->oh_len);
3414		} else {
3415			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
 
3416			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3417				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3418				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3419				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3420			} else {
3421				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3422			}
3423		}
3424		ptr += sizeof(xlog_op_header_t) + op_len;
3425	}
3426}
3427#endif
3428
3429/*
3430 * Perform a forced shutdown on the log.
3431 *
3432 * This can be called from low level log code to trigger a shutdown, or from the
3433 * high level mount shutdown code when the mount shuts down.
3434 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435 * Our main objectives here are to make sure that:
3436 *	a. if the shutdown was not due to a log IO error, flush the logs to
3437 *	   disk. Anything modified after this is ignored.
3438 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3439 *	   parties to find out. Nothing new gets queued after this is done.
3440 *	c. Tasks sleeping on log reservations, pinned objects and
3441 *	   other resources get woken up.
3442 *	d. The mount is also marked as shut down so that log triggered shutdowns
3443 *	   still behave the same as if they called xfs_forced_shutdown().
3444 *
3445 * Return true if the shutdown cause was a log IO error and we actually shut the
3446 * log down.
3447 */
3448bool
3449xlog_force_shutdown(
3450	struct xlog	*log,
3451	uint32_t	shutdown_flags)
3452{
3453	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
 
3454
3455	if (!log)
3456		return false;
3457
3458	/*
3459	 * Ensure that there is only ever one log shutdown being processed.
3460	 * If we allow the log force below on a second pass after shutting
3461	 * down the log, we risk deadlocking the CIL push as it may require
3462	 * locks on objects the current shutdown context holds (e.g. taking
3463	 * buffer locks to abort buffers on last unpin of buf log items).
3464	 */
3465	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3466		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3467
3468	/*
3469	 * Flush all the completed transactions to disk before marking the log
3470	 * being shut down. We need to do this first as shutting down the log
3471	 * before the force will prevent the log force from flushing the iclogs
3472	 * to disk.
3473	 *
3474	 * When we are in recovery, there are no transactions to flush, and
3475	 * we don't want to touch the log because we don't want to perturb the
3476	 * current head/tail for future recovery attempts. Hence we need to
3477	 * avoid a log force in this case.
3478	 *
3479	 * If we are shutting down due to a log IO error, then we must avoid
3480	 * trying to write the log as that may just result in more IO errors and
3481	 * an endless shutdown/force loop.
3482	 */
3483	if (!log_error && !xlog_in_recovery(log))
3484		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3485
3486	/*
3487	 * Atomically set the shutdown state. If the shutdown state is already
3488	 * set, there someone else is performing the shutdown and so we are done
3489	 * here. This should never happen because we should only ever get called
3490	 * once by the first shutdown caller.
3491	 *
3492	 * Much of the log state machine transitions assume that shutdown state
3493	 * cannot change once they hold the log->l_icloglock. Hence we need to
3494	 * hold that lock here, even though we use the atomic test_and_set_bit()
3495	 * operation to set the shutdown state.
3496	 */
3497	spin_lock(&log->l_icloglock);
3498	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3499		spin_unlock(&log->l_icloglock);
3500		ASSERT(0);
3501		return false;
3502	}
3503	spin_unlock(&log->l_icloglock);
3504
3505	/*
3506	 * If this log shutdown also sets the mount shutdown state, issue a
3507	 * shutdown warning message.
3508	 */
3509	if (!xfs_set_shutdown(log->l_mp)) {
3510		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3511"Filesystem has been shut down due to log error (0x%x).",
3512				shutdown_flags);
3513		xfs_alert(log->l_mp,
3514"Please unmount the filesystem and rectify the problem(s).");
3515		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3516			xfs_stack_trace();
3517	}
3518
3519	/*
3520	 * We don't want anybody waiting for log reservations after this. That
3521	 * means we have to wake up everybody queued up on reserveq as well as
3522	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3523	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3524	 * action is protected by the grant locks.
3525	 */
3526	xlog_grant_head_wake_all(&log->l_reserve_head);
3527	xlog_grant_head_wake_all(&log->l_write_head);
3528
3529	/*
3530	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3531	 * as if the log writes were completed. The abort handling in the log
3532	 * item committed callback functions will do this again under lock to
3533	 * avoid races.
3534	 */
3535	spin_lock(&log->l_cilp->xc_push_lock);
3536	wake_up_all(&log->l_cilp->xc_start_wait);
3537	wake_up_all(&log->l_cilp->xc_commit_wait);
3538	spin_unlock(&log->l_cilp->xc_push_lock);
 
3539
3540	spin_lock(&log->l_icloglock);
3541	xlog_state_shutdown_callbacks(log);
3542	spin_unlock(&log->l_icloglock);
3543
3544	wake_up_var(&log->l_opstate);
3545	return log_error;
3546}
3547
3548STATIC int
3549xlog_iclogs_empty(
3550	struct xlog	*log)
3551{
3552	xlog_in_core_t	*iclog;
3553
3554	iclog = log->l_iclog;
3555	do {
3556		/* endianness does not matter here, zero is zero in
3557		 * any language.
3558		 */
3559		if (iclog->ic_header.h_num_logops)
3560			return 0;
3561		iclog = iclog->ic_next;
3562	} while (iclog != log->l_iclog);
3563	return 1;
3564}
3565
3566/*
3567 * Verify that an LSN stamped into a piece of metadata is valid. This is
3568 * intended for use in read verifiers on v5 superblocks.
3569 */
3570bool
3571xfs_log_check_lsn(
3572	struct xfs_mount	*mp,
3573	xfs_lsn_t		lsn)
3574{
3575	struct xlog		*log = mp->m_log;
3576	bool			valid;
3577
3578	/*
3579	 * norecovery mode skips mount-time log processing and unconditionally
3580	 * resets the in-core LSN. We can't validate in this mode, but
3581	 * modifications are not allowed anyways so just return true.
3582	 */
3583	if (xfs_has_norecovery(mp))
3584		return true;
3585
3586	/*
3587	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3588	 * handled by recovery and thus safe to ignore here.
3589	 */
3590	if (lsn == NULLCOMMITLSN)
3591		return true;
3592
3593	valid = xlog_valid_lsn(mp->m_log, lsn);
3594
3595	/* warn the user about what's gone wrong before verifier failure */
3596	if (!valid) {
3597		spin_lock(&log->l_icloglock);
3598		xfs_warn(mp,
3599"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3600"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3601			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3602			 log->l_curr_cycle, log->l_curr_block);
3603		spin_unlock(&log->l_icloglock);
3604	}
3605
3606	return valid;
 
 
 
 
 
 
 
 
 
3607}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t	*xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC int
  34xlog_space_left(
  35	struct xlog		*log,
  36	atomic64_t		*head);
  37STATIC void
  38xlog_dealloc_log(
  39	struct xlog		*log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
  43	struct xlog_in_core	*iclog);
 
 
  44STATIC int
  45xlog_state_get_iclog_space(
  46	struct xlog		*log,
  47	int			len,
  48	struct xlog_in_core	**iclog,
  49	struct xlog_ticket	*ticket,
  50	int			*continued_write,
  51	int			*logoffsetp);
  52STATIC void
  53xlog_state_switch_iclogs(
  54	struct xlog		*log,
  55	struct xlog_in_core	*iclog,
  56	int			eventual_size);
  57STATIC void
  58xlog_grant_push_ail(
  59	struct xlog		*log,
  60	int			need_bytes);
  61STATIC void
  62xlog_sync(
  63	struct xlog		*log,
  64	struct xlog_in_core	*iclog);
  65#if defined(DEBUG)
  66STATIC void
  67xlog_verify_dest_ptr(
  68	struct xlog		*log,
  69	void			*ptr);
  70STATIC void
  71xlog_verify_grant_tail(
  72	struct xlog *log);
  73STATIC void
  74xlog_verify_iclog(
  75	struct xlog		*log,
  76	struct xlog_in_core	*iclog,
  77	int			count);
  78STATIC void
  79xlog_verify_tail_lsn(
  80	struct xlog		*log,
  81	struct xlog_in_core	*iclog);
  82#else
  83#define xlog_verify_dest_ptr(a,b)
  84#define xlog_verify_grant_tail(a)
  85#define xlog_verify_iclog(a,b,c)
  86#define xlog_verify_tail_lsn(a,b)
  87#endif
  88
  89STATIC int
  90xlog_iclogs_empty(
  91	struct xlog		*log);
  92
  93static int
  94xfs_log_cover(struct xfs_mount *);
  95
  96static void
  97xlog_grant_sub_space(
  98	struct xlog		*log,
  99	atomic64_t		*head,
 100	int			bytes)
 101{
 102	int64_t	head_val = atomic64_read(head);
 103	int64_t new, old;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	do {
 106		int	cycle, space;
 
 
 107
 108		xlog_crack_grant_head_val(head_val, &cycle, &space);
 
 109
 110		space -= bytes;
 111		if (space < 0) {
 112			space += log->l_logsize;
 113			cycle--;
 114		}
 115
 116		old = head_val;
 117		new = xlog_assign_grant_head_val(cycle, space);
 118		head_val = atomic64_cmpxchg(head, old, new);
 119	} while (head_val != old);
 
 
 120}
 121
 122static void
 123xlog_grant_add_space(
 124	struct xlog		*log,
 125	atomic64_t		*head,
 126	int			bytes)
 127{
 128	int64_t	head_val = atomic64_read(head);
 129	int64_t new, old;
 130
 131	do {
 132		int		tmp;
 133		int		cycle, space;
 
 
 
 
 
 134
 135		xlog_crack_grant_head_val(head_val, &cycle, &space);
 
 
 
 
 
 
 136
 137		tmp = log->l_logsize - space;
 138		if (tmp > bytes)
 139			space += bytes;
 140		else {
 141			space = bytes - tmp;
 142			cycle++;
 143		}
 144
 145		old = head_val;
 146		new = xlog_assign_grant_head_val(cycle, space);
 147		head_val = atomic64_cmpxchg(head, old, new);
 148	} while (head_val != old);
 149}
 150
 151STATIC void
 152xlog_grant_head_init(
 
 
 
 
 
 
 
 
 
 153	struct xlog_grant_head	*head)
 154{
 155	xlog_assign_grant_head(&head->grant, 1, 0);
 156	INIT_LIST_HEAD(&head->waiters);
 157	spin_lock_init(&head->lock);
 
 
 
 
 
 158}
 159
 160STATIC void
 161xlog_grant_head_wake_all(
 162	struct xlog_grant_head	*head)
 163{
 164	struct xlog_ticket	*tic;
 165
 166	spin_lock(&head->lock);
 167	list_for_each_entry(tic, &head->waiters, t_queue)
 168		wake_up_process(tic->t_task);
 169	spin_unlock(&head->lock);
 170}
 171
 172static inline int
 173xlog_ticket_reservation(
 174	struct xlog		*log,
 175	struct xlog_grant_head	*head,
 176	struct xlog_ticket	*tic)
 177{
 178	if (head == &log->l_write_head) {
 179		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 180		return tic->t_unit_res;
 181	} else {
 182		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 183			return tic->t_unit_res * tic->t_cnt;
 184		else
 185			return tic->t_unit_res;
 186	}
 
 
 
 
 
 187}
 188
 189STATIC bool
 190xlog_grant_head_wake(
 191	struct xlog		*log,
 192	struct xlog_grant_head	*head,
 193	int			*free_bytes)
 194{
 195	struct xlog_ticket	*tic;
 196	int			need_bytes;
 197	bool			woken_task = false;
 198
 199	list_for_each_entry(tic, &head->waiters, t_queue) {
 200
 201		/*
 202		 * There is a chance that the size of the CIL checkpoints in
 203		 * progress at the last AIL push target calculation resulted in
 204		 * limiting the target to the log head (l_last_sync_lsn) at the
 205		 * time. This may not reflect where the log head is now as the
 206		 * CIL checkpoints may have completed.
 207		 *
 208		 * Hence when we are woken here, it may be that the head of the
 209		 * log that has moved rather than the tail. As the tail didn't
 210		 * move, there still won't be space available for the
 211		 * reservation we require.  However, if the AIL has already
 212		 * pushed to the target defined by the old log head location, we
 213		 * will hang here waiting for something else to update the AIL
 214		 * push target.
 215		 *
 216		 * Therefore, if there isn't space to wake the first waiter on
 217		 * the grant head, we need to push the AIL again to ensure the
 218		 * target reflects both the current log tail and log head
 219		 * position before we wait for the tail to move again.
 220		 */
 221
 222		need_bytes = xlog_ticket_reservation(log, head, tic);
 223		if (*free_bytes < need_bytes) {
 224			if (!woken_task)
 225				xlog_grant_push_ail(log, need_bytes);
 226			return false;
 227		}
 228
 229		*free_bytes -= need_bytes;
 230		trace_xfs_log_grant_wake_up(log, tic);
 231		wake_up_process(tic->t_task);
 232		woken_task = true;
 233	}
 234
 235	return true;
 236}
 237
 238STATIC int
 239xlog_grant_head_wait(
 240	struct xlog		*log,
 241	struct xlog_grant_head	*head,
 242	struct xlog_ticket	*tic,
 243	int			need_bytes) __releases(&head->lock)
 244					    __acquires(&head->lock)
 245{
 246	list_add_tail(&tic->t_queue, &head->waiters);
 247
 248	do {
 249		if (XLOG_FORCED_SHUTDOWN(log))
 250			goto shutdown;
 251		xlog_grant_push_ail(log, need_bytes);
 252
 253		__set_current_state(TASK_UNINTERRUPTIBLE);
 254		spin_unlock(&head->lock);
 255
 256		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 257
 
 
 
 258		trace_xfs_log_grant_sleep(log, tic);
 259		schedule();
 260		trace_xfs_log_grant_wake(log, tic);
 261
 262		spin_lock(&head->lock);
 263		if (XLOG_FORCED_SHUTDOWN(log))
 264			goto shutdown;
 265	} while (xlog_space_left(log, &head->grant) < need_bytes);
 266
 267	list_del_init(&tic->t_queue);
 268	return 0;
 269shutdown:
 270	list_del_init(&tic->t_queue);
 271	return -EIO;
 272}
 273
 274/*
 275 * Atomically get the log space required for a log ticket.
 276 *
 277 * Once a ticket gets put onto head->waiters, it will only return after the
 278 * needed reservation is satisfied.
 279 *
 280 * This function is structured so that it has a lock free fast path. This is
 281 * necessary because every new transaction reservation will come through this
 282 * path. Hence any lock will be globally hot if we take it unconditionally on
 283 * every pass.
 284 *
 285 * As tickets are only ever moved on and off head->waiters under head->lock, we
 286 * only need to take that lock if we are going to add the ticket to the queue
 287 * and sleep. We can avoid taking the lock if the ticket was never added to
 288 * head->waiters because the t_queue list head will be empty and we hold the
 289 * only reference to it so it can safely be checked unlocked.
 290 */
 291STATIC int
 292xlog_grant_head_check(
 293	struct xlog		*log,
 294	struct xlog_grant_head	*head,
 295	struct xlog_ticket	*tic,
 296	int			*need_bytes)
 297{
 298	int			free_bytes;
 299	int			error = 0;
 300
 301	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 302
 303	/*
 304	 * If there are other waiters on the queue then give them a chance at
 305	 * logspace before us.  Wake up the first waiters, if we do not wake
 306	 * up all the waiters then go to sleep waiting for more free space,
 307	 * otherwise try to get some space for this transaction.
 308	 */
 309	*need_bytes = xlog_ticket_reservation(log, head, tic);
 310	free_bytes = xlog_space_left(log, &head->grant);
 311	if (!list_empty_careful(&head->waiters)) {
 312		spin_lock(&head->lock);
 313		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 314		    free_bytes < *need_bytes) {
 315			error = xlog_grant_head_wait(log, head, tic,
 316						     *need_bytes);
 317		}
 318		spin_unlock(&head->lock);
 319	} else if (free_bytes < *need_bytes) {
 320		spin_lock(&head->lock);
 321		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 322		spin_unlock(&head->lock);
 323	}
 324
 325	return error;
 326}
 327
 328static void
 329xlog_tic_reset_res(xlog_ticket_t *tic)
 330{
 331	tic->t_res_num = 0;
 332	tic->t_res_arr_sum = 0;
 333	tic->t_res_num_ophdrs = 0;
 334}
 335
 336static void
 337xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 338{
 339	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 340		/* add to overflow and start again */
 341		tic->t_res_o_flow += tic->t_res_arr_sum;
 342		tic->t_res_num = 0;
 343		tic->t_res_arr_sum = 0;
 344	}
 345
 346	tic->t_res_arr[tic->t_res_num].r_len = len;
 347	tic->t_res_arr[tic->t_res_num].r_type = type;
 348	tic->t_res_arr_sum += len;
 349	tic->t_res_num++;
 350}
 351
 352bool
 353xfs_log_writable(
 354	struct xfs_mount	*mp)
 355{
 356	/*
 357	 * Do not write to the log on norecovery mounts, if the data or log
 358	 * devices are read-only, or if the filesystem is shutdown. Read-only
 359	 * mounts allow internal writes for log recovery and unmount purposes,
 360	 * so don't restrict that case.
 361	 */
 362	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
 363		return false;
 364	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 365		return false;
 366	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 367		return false;
 368	if (XFS_FORCED_SHUTDOWN(mp))
 369		return false;
 370	return true;
 371}
 372
 373/*
 374 * Replenish the byte reservation required by moving the grant write head.
 375 */
 376int
 377xfs_log_regrant(
 378	struct xfs_mount	*mp,
 379	struct xlog_ticket	*tic)
 380{
 381	struct xlog		*log = mp->m_log;
 382	int			need_bytes;
 383	int			error = 0;
 384
 385	if (XLOG_FORCED_SHUTDOWN(log))
 386		return -EIO;
 387
 388	XFS_STATS_INC(mp, xs_try_logspace);
 389
 390	/*
 391	 * This is a new transaction on the ticket, so we need to change the
 392	 * transaction ID so that the next transaction has a different TID in
 393	 * the log. Just add one to the existing tid so that we can see chains
 394	 * of rolling transactions in the log easily.
 395	 */
 396	tic->t_tid++;
 397
 398	xlog_grant_push_ail(log, tic->t_unit_res);
 399
 400	tic->t_curr_res = tic->t_unit_res;
 401	xlog_tic_reset_res(tic);
 402
 403	if (tic->t_cnt > 0)
 404		return 0;
 405
 406	trace_xfs_log_regrant(log, tic);
 407
 408	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 409				      &need_bytes);
 410	if (error)
 411		goto out_error;
 412
 413	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 414	trace_xfs_log_regrant_exit(log, tic);
 415	xlog_verify_grant_tail(log);
 416	return 0;
 417
 418out_error:
 419	/*
 420	 * If we are failing, make sure the ticket doesn't have any current
 421	 * reservations.  We don't want to add this back when the ticket/
 422	 * transaction gets cancelled.
 423	 */
 424	tic->t_curr_res = 0;
 425	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 426	return error;
 427}
 428
 429/*
 430 * Reserve log space and return a ticket corresponding to the reservation.
 431 *
 432 * Each reservation is going to reserve extra space for a log record header.
 433 * When writes happen to the on-disk log, we don't subtract the length of the
 434 * log record header from any reservation.  By wasting space in each
 435 * reservation, we prevent over allocation problems.
 436 */
 437int
 438xfs_log_reserve(
 439	struct xfs_mount	*mp,
 440	int		 	unit_bytes,
 441	int		 	cnt,
 442	struct xlog_ticket	**ticp,
 443	uint8_t		 	client,
 444	bool			permanent)
 445{
 446	struct xlog		*log = mp->m_log;
 447	struct xlog_ticket	*tic;
 448	int			need_bytes;
 449	int			error = 0;
 450
 451	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 452
 453	if (XLOG_FORCED_SHUTDOWN(log))
 454		return -EIO;
 455
 456	XFS_STATS_INC(mp, xs_try_logspace);
 457
 458	ASSERT(*ticp == NULL);
 459	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
 460	*ticp = tic;
 461
 462	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 463					    : tic->t_unit_res);
 464
 465	trace_xfs_log_reserve(log, tic);
 466
 467	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 468				      &need_bytes);
 469	if (error)
 470		goto out_error;
 471
 472	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 473	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 474	trace_xfs_log_reserve_exit(log, tic);
 475	xlog_verify_grant_tail(log);
 476	return 0;
 477
 478out_error:
 479	/*
 480	 * If we are failing, make sure the ticket doesn't have any current
 481	 * reservations.  We don't want to add this back when the ticket/
 482	 * transaction gets cancelled.
 483	 */
 484	tic->t_curr_res = 0;
 485	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 486	return error;
 487}
 488
 489/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490 * Flush iclog to disk if this is the last reference to the given iclog and the
 491 * it is in the WANT_SYNC state.
 492 *
 493 * If the caller passes in a non-zero @old_tail_lsn and the current log tail
 494 * does not match, there may be metadata on disk that must be persisted before
 495 * this iclog is written.  To satisfy that requirement, set the
 496 * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
 497 * log tail value.
 498 *
 499 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 500 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 501 * written to stable storage, and implies that a commit record is contained
 502 * within the iclog. We need to ensure that the log tail does not move beyond
 503 * the tail that the first commit record in the iclog ordered against, otherwise
 504 * correct recovery of that checkpoint becomes dependent on future operations
 505 * performed on this iclog.
 506 *
 507 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 508 * current tail into iclog. Once the iclog tail is set, future operations must
 509 * not modify it, otherwise they potentially violate ordering constraints for
 510 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 511 * the iclog will get zeroed on activation of the iclog after sync, so we
 512 * always capture the tail lsn on the iclog on the first NEED_FUA release
 513 * regardless of the number of active reference counts on this iclog.
 514 */
 515
 516int
 517xlog_state_release_iclog(
 518	struct xlog		*log,
 519	struct xlog_in_core	*iclog,
 520	xfs_lsn_t		old_tail_lsn)
 521{
 522	xfs_lsn_t		tail_lsn;
 
 523	lockdep_assert_held(&log->l_icloglock);
 524
 525	trace_xlog_iclog_release(iclog, _RET_IP_);
 526	if (iclog->ic_state == XLOG_STATE_IOERROR)
 527		return -EIO;
 528
 529	/*
 530	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 531	 * of the tail LSN into the iclog so we guarantee that the log tail does
 532	 * not move between deciding if a cache flush is required and writing
 533	 * the LSN into the iclog below.
 534	 */
 535	if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
 536		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 
 
 
 
 537
 538		if (old_tail_lsn && tail_lsn != old_tail_lsn)
 539			iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
 540
 541		if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
 542		    !iclog->ic_header.h_tail_lsn)
 543			iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 
 
 
 
 
 
 544	}
 545
 546	if (!atomic_dec_and_test(&iclog->ic_refcnt))
 547		return 0;
 548
 549	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 550		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 551		return 0;
 552	}
 553
 554	iclog->ic_state = XLOG_STATE_SYNCING;
 555	if (!iclog->ic_header.h_tail_lsn)
 556		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 557	xlog_verify_tail_lsn(log, iclog);
 558	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 559
 560	spin_unlock(&log->l_icloglock);
 561	xlog_sync(log, iclog);
 562	spin_lock(&log->l_icloglock);
 563	return 0;
 564}
 565
 566/*
 567 * Mount a log filesystem
 568 *
 569 * mp		- ubiquitous xfs mount point structure
 570 * log_target	- buftarg of on-disk log device
 571 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 572 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 573 *
 574 * Return error or zero.
 575 */
 576int
 577xfs_log_mount(
 578	xfs_mount_t	*mp,
 579	xfs_buftarg_t	*log_target,
 580	xfs_daddr_t	blk_offset,
 581	int		num_bblks)
 582{
 583	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
 584	int		error = 0;
 585	int		min_logfsbs;
 586
 587	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 588		xfs_notice(mp, "Mounting V%d Filesystem",
 589			   XFS_SB_VERSION_NUM(&mp->m_sb));
 
 590	} else {
 591		xfs_notice(mp,
 592"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 593			   XFS_SB_VERSION_NUM(&mp->m_sb));
 594		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 595	}
 596
 597	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 598	if (IS_ERR(mp->m_log)) {
 599		error = PTR_ERR(mp->m_log);
 600		goto out;
 601	}
 
 602
 603	/*
 604	 * Validate the given log space and drop a critical message via syslog
 605	 * if the log size is too small that would lead to some unexpected
 606	 * situations in transaction log space reservation stage.
 
 
 
 
 607	 *
 608	 * Note: we can't just reject the mount if the validation fails.  This
 609	 * would mean that people would have to downgrade their kernel just to
 610	 * remedy the situation as there is no way to grow the log (short of
 611	 * black magic surgery with xfs_db).
 612	 *
 613	 * We can, however, reject mounts for CRC format filesystems, as the
 614	 * mkfs binary being used to make the filesystem should never create a
 615	 * filesystem with a log that is too small.
 616	 */
 617	min_logfsbs = xfs_log_calc_minimum_size(mp);
 618
 619	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 620		xfs_warn(mp,
 621		"Log size %d blocks too small, minimum size is %d blocks",
 622			 mp->m_sb.sb_logblocks, min_logfsbs);
 623		error = -EINVAL;
 624	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 625		xfs_warn(mp,
 626		"Log size %d blocks too large, maximum size is %lld blocks",
 627			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 628		error = -EINVAL;
 629	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 630		xfs_warn(mp,
 631		"log size %lld bytes too large, maximum size is %lld bytes",
 632			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 633			 XFS_MAX_LOG_BYTES);
 634		error = -EINVAL;
 635	} else if (mp->m_sb.sb_logsunit > 1 &&
 636		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 637		xfs_warn(mp,
 638		"log stripe unit %u bytes must be a multiple of block size",
 639			 mp->m_sb.sb_logsunit);
 640		error = -EINVAL;
 641		fatal = true;
 642	}
 643	if (error) {
 644		/*
 645		 * Log check errors are always fatal on v5; or whenever bad
 646		 * metadata leads to a crash.
 647		 */
 648		if (fatal) {
 649			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 650			ASSERT(0);
 
 651			goto out_free_log;
 652		}
 653		xfs_crit(mp, "Log size out of supported range.");
 654		xfs_crit(mp,
 655"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 656	}
 657
 658	/*
 659	 * Initialize the AIL now we have a log.
 660	 */
 661	error = xfs_trans_ail_init(mp);
 662	if (error) {
 663		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 664		goto out_free_log;
 665	}
 666	mp->m_log->l_ailp = mp->m_ail;
 667
 668	/*
 669	 * skip log recovery on a norecovery mount.  pretend it all
 670	 * just worked.
 671	 */
 672	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 673		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 674
 675		if (readonly)
 676			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 677
 678		error = xlog_recover(mp->m_log);
 679
 680		if (readonly)
 681			mp->m_flags |= XFS_MOUNT_RDONLY;
 682		if (error) {
 683			xfs_warn(mp, "log mount/recovery failed: error %d",
 684				error);
 685			xlog_recover_cancel(mp->m_log);
 686			goto out_destroy_ail;
 687		}
 688	}
 689
 690	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 691			       "log");
 692	if (error)
 693		goto out_destroy_ail;
 694
 695	/* Normal transactions can now occur */
 696	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 697
 698	/*
 699	 * Now the log has been fully initialised and we know were our
 700	 * space grant counters are, we can initialise the permanent ticket
 701	 * needed for delayed logging to work.
 702	 */
 703	xlog_cil_init_post_recovery(mp->m_log);
 704
 705	return 0;
 706
 707out_destroy_ail:
 708	xfs_trans_ail_destroy(mp);
 709out_free_log:
 710	xlog_dealloc_log(mp->m_log);
 711out:
 712	return error;
 713}
 714
 715/*
 716 * Finish the recovery of the file system.  This is separate from the
 717 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 718 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 719 * here.
 720 *
 721 * If we finish recovery successfully, start the background log work. If we are
 722 * not doing recovery, then we have a RO filesystem and we don't need to start
 723 * it.
 724 */
 725int
 726xfs_log_mount_finish(
 727	struct xfs_mount	*mp)
 728{
 729	int	error = 0;
 730	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 731	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 732
 733	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 734		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 735		return 0;
 736	} else if (readonly) {
 737		/* Allow unlinked processing to proceed */
 738		mp->m_flags &= ~XFS_MOUNT_RDONLY;
 739	}
 740
 741	/*
 742	 * During the second phase of log recovery, we need iget and
 743	 * iput to behave like they do for an active filesystem.
 744	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 745	 * of inodes before we're done replaying log items on those
 746	 * inodes.  Turn it off immediately after recovery finishes
 747	 * so that we don't leak the quota inodes if subsequent mount
 748	 * activities fail.
 749	 *
 750	 * We let all inodes involved in redo item processing end up on
 751	 * the LRU instead of being evicted immediately so that if we do
 752	 * something to an unlinked inode, the irele won't cause
 753	 * premature truncation and freeing of the inode, which results
 754	 * in log recovery failure.  We have to evict the unreferenced
 755	 * lru inodes after clearing SB_ACTIVE because we don't
 756	 * otherwise clean up the lru if there's a subsequent failure in
 757	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 758	 * else (e.g. quotacheck) references the inodes before the
 759	 * mount failure occurs.
 760	 */
 761	mp->m_super->s_flags |= SB_ACTIVE;
 762	error = xlog_recover_finish(mp->m_log);
 763	if (!error)
 764		xfs_log_work_queue(mp);
 765	mp->m_super->s_flags &= ~SB_ACTIVE;
 766	evict_inodes(mp->m_super);
 767
 768	/*
 769	 * Drain the buffer LRU after log recovery. This is required for v4
 770	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 771	 * but we do it unconditionally to make sure we're always in a clean
 772	 * cache state after mount.
 773	 *
 774	 * Don't push in the error case because the AIL may have pending intents
 775	 * that aren't removed until recovery is cancelled.
 776	 */
 777	if (!error && recovered) {
 778		xfs_log_force(mp, XFS_LOG_SYNC);
 779		xfs_ail_push_all_sync(mp->m_ail);
 
 
 
 
 
 
 780	}
 781	xfs_buftarg_drain(mp->m_ddev_targp);
 782
 783	if (readonly)
 784		mp->m_flags |= XFS_MOUNT_RDONLY;
 785
 786	/* Make sure the log is dead if we're returning failure. */
 787	ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
 788
 789	return error;
 790}
 791
 792/*
 793 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 794 * the log.
 795 */
 796void
 797xfs_log_mount_cancel(
 798	struct xfs_mount	*mp)
 799{
 800	xlog_recover_cancel(mp->m_log);
 801	xfs_log_unmount(mp);
 802}
 803
 804/*
 805 * Flush out the iclog to disk ensuring that device caches are flushed and
 806 * the iclog hits stable storage before any completion waiters are woken.
 807 */
 808static inline int
 809xlog_force_iclog(
 810	struct xlog_in_core	*iclog)
 811{
 812	atomic_inc(&iclog->ic_refcnt);
 813	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 814	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 815		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 816	return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817}
 818
 819/*
 820 * Wait for the iclog and all prior iclogs to be written disk as required by the
 821 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 822 * have been ordered and callbacks run before we are woken here, hence
 823 * guaranteeing that all the iclogs up to this one are on stable storage.
 824 */
 825int
 826xlog_wait_on_iclog(
 827	struct xlog_in_core	*iclog)
 828		__releases(iclog->ic_log->l_icloglock)
 829{
 830	struct xlog		*log = iclog->ic_log;
 831
 832	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 833	if (!XLOG_FORCED_SHUTDOWN(log) &&
 834	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 835	    iclog->ic_state != XLOG_STATE_DIRTY) {
 836		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 837		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 838	} else {
 839		spin_unlock(&log->l_icloglock);
 840	}
 841
 842	if (XLOG_FORCED_SHUTDOWN(log))
 843		return -EIO;
 844	return 0;
 845}
 846
 847/*
 848 * Write out an unmount record using the ticket provided. We have to account for
 849 * the data space used in the unmount ticket as this write is not done from a
 850 * transaction context that has already done the accounting for us.
 851 */
 852static int
 853xlog_write_unmount_record(
 854	struct xlog		*log,
 855	struct xlog_ticket	*ticket)
 856{
 857	struct xfs_unmount_log_format ulf = {
 858		.magic = XLOG_UNMOUNT_TYPE,
 
 
 
 
 
 
 
 
 
 
 859	};
 860	struct xfs_log_iovec reg = {
 861		.i_addr = &ulf,
 862		.i_len = sizeof(ulf),
 863		.i_type = XLOG_REG_TYPE_UNMOUNT,
 864	};
 865	struct xfs_log_vec vec = {
 866		.lv_niovecs = 1,
 867		.lv_iovecp = &reg,
 868	};
 
 
 
 
 
 
 869
 870	/* account for space used by record data */
 871	ticket->t_curr_res -= sizeof(ulf);
 872
 873	return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS);
 874}
 875
 876/*
 877 * Mark the filesystem clean by writing an unmount record to the head of the
 878 * log.
 879 */
 880static void
 881xlog_unmount_write(
 882	struct xlog		*log)
 883{
 884	struct xfs_mount	*mp = log->l_mp;
 885	struct xlog_in_core	*iclog;
 886	struct xlog_ticket	*tic = NULL;
 887	int			error;
 888
 889	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 890	if (error)
 891		goto out_err;
 892
 893	error = xlog_write_unmount_record(log, tic);
 894	/*
 895	 * At this point, we're umounting anyway, so there's no point in
 896	 * transitioning log state to IOERROR. Just continue...
 897	 */
 898out_err:
 899	if (error)
 900		xfs_alert(mp, "%s: unmount record failed", __func__);
 901
 902	spin_lock(&log->l_icloglock);
 903	iclog = log->l_iclog;
 904	error = xlog_force_iclog(iclog);
 905	xlog_wait_on_iclog(iclog);
 906
 907	if (tic) {
 908		trace_xfs_log_umount_write(log, tic);
 909		xfs_log_ticket_ungrant(log, tic);
 910	}
 911}
 912
 913static void
 914xfs_log_unmount_verify_iclog(
 915	struct xlog		*log)
 916{
 917	struct xlog_in_core	*iclog = log->l_iclog;
 918
 919	do {
 920		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 921		ASSERT(iclog->ic_offset == 0);
 922	} while ((iclog = iclog->ic_next) != log->l_iclog);
 923}
 924
 925/*
 926 * Unmount record used to have a string "Unmount filesystem--" in the
 927 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 928 * We just write the magic number now since that particular field isn't
 929 * currently architecture converted and "Unmount" is a bit foo.
 930 * As far as I know, there weren't any dependencies on the old behaviour.
 931 */
 932static void
 933xfs_log_unmount_write(
 934	struct xfs_mount	*mp)
 935{
 936	struct xlog		*log = mp->m_log;
 937
 938	if (!xfs_log_writable(mp))
 939		return;
 940
 941	xfs_log_force(mp, XFS_LOG_SYNC);
 942
 943	if (XLOG_FORCED_SHUTDOWN(log))
 944		return;
 945
 946	/*
 947	 * If we think the summary counters are bad, avoid writing the unmount
 948	 * record to force log recovery at next mount, after which the summary
 949	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 950	 * more details.
 951	 */
 952	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 953			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 954		xfs_alert(mp, "%s: will fix summary counters at next mount",
 955				__func__);
 956		return;
 957	}
 958
 959	xfs_log_unmount_verify_iclog(log);
 960	xlog_unmount_write(log);
 961}
 962
 963/*
 964 * Empty the log for unmount/freeze.
 965 *
 966 * To do this, we first need to shut down the background log work so it is not
 967 * trying to cover the log as we clean up. We then need to unpin all objects in
 968 * the log so we can then flush them out. Once they have completed their IO and
 969 * run the callbacks removing themselves from the AIL, we can cover the log.
 970 */
 971int
 972xfs_log_quiesce(
 973	struct xfs_mount	*mp)
 974{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	cancel_delayed_work_sync(&mp->m_log->l_work);
 976	xfs_log_force(mp, XFS_LOG_SYNC);
 977
 978	/*
 979	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 980	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
 981	 * xfs_buf_iowait() cannot be used because it was pushed with the
 982	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 983	 * the IO to complete.
 984	 */
 985	xfs_ail_push_all_sync(mp->m_ail);
 986	xfs_buftarg_wait(mp->m_ddev_targp);
 987	xfs_buf_lock(mp->m_sb_bp);
 988	xfs_buf_unlock(mp->m_sb_bp);
 989
 990	return xfs_log_cover(mp);
 991}
 992
 993void
 994xfs_log_clean(
 995	struct xfs_mount	*mp)
 996{
 997	xfs_log_quiesce(mp);
 998	xfs_log_unmount_write(mp);
 999}
1000
1001/*
1002 * Shut down and release the AIL and Log.
1003 *
1004 * During unmount, we need to ensure we flush all the dirty metadata objects
1005 * from the AIL so that the log is empty before we write the unmount record to
1006 * the log. Once this is done, we can tear down the AIL and the log.
1007 */
1008void
1009xfs_log_unmount(
1010	struct xfs_mount	*mp)
1011{
1012	xfs_log_clean(mp);
1013
 
 
 
 
 
 
 
 
1014	xfs_buftarg_drain(mp->m_ddev_targp);
1015
1016	xfs_trans_ail_destroy(mp);
1017
1018	xfs_sysfs_del(&mp->m_log->l_kobj);
1019
1020	xlog_dealloc_log(mp->m_log);
1021}
1022
1023void
1024xfs_log_item_init(
1025	struct xfs_mount	*mp,
1026	struct xfs_log_item	*item,
1027	int			type,
1028	const struct xfs_item_ops *ops)
1029{
1030	item->li_mountp = mp;
1031	item->li_ailp = mp->m_ail;
1032	item->li_type = type;
1033	item->li_ops = ops;
1034	item->li_lv = NULL;
1035
1036	INIT_LIST_HEAD(&item->li_ail);
1037	INIT_LIST_HEAD(&item->li_cil);
1038	INIT_LIST_HEAD(&item->li_bio_list);
1039	INIT_LIST_HEAD(&item->li_trans);
1040}
1041
1042/*
1043 * Wake up processes waiting for log space after we have moved the log tail.
1044 */
1045void
1046xfs_log_space_wake(
1047	struct xfs_mount	*mp)
1048{
1049	struct xlog		*log = mp->m_log;
1050	int			free_bytes;
1051
1052	if (XLOG_FORCED_SHUTDOWN(log))
1053		return;
1054
1055	if (!list_empty_careful(&log->l_write_head.waiters)) {
1056		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1057
1058		spin_lock(&log->l_write_head.lock);
1059		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1060		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1061		spin_unlock(&log->l_write_head.lock);
1062	}
1063
1064	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1065		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1066
1067		spin_lock(&log->l_reserve_head.lock);
1068		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1069		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1070		spin_unlock(&log->l_reserve_head.lock);
1071	}
1072}
1073
1074/*
1075 * Determine if we have a transaction that has gone to disk that needs to be
1076 * covered. To begin the transition to the idle state firstly the log needs to
1077 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1078 * we start attempting to cover the log.
1079 *
1080 * Only if we are then in a state where covering is needed, the caller is
1081 * informed that dummy transactions are required to move the log into the idle
1082 * state.
1083 *
1084 * If there are any items in the AIl or CIL, then we do not want to attempt to
1085 * cover the log as we may be in a situation where there isn't log space
1086 * available to run a dummy transaction and this can lead to deadlocks when the
1087 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1088 * there's no point in running a dummy transaction at this point because we
1089 * can't start trying to idle the log until both the CIL and AIL are empty.
1090 */
1091static bool
1092xfs_log_need_covered(
1093	struct xfs_mount	*mp)
1094{
1095	struct xlog		*log = mp->m_log;
1096	bool			needed = false;
1097
1098	if (!xlog_cil_empty(log))
1099		return false;
1100
1101	spin_lock(&log->l_icloglock);
1102	switch (log->l_covered_state) {
1103	case XLOG_STATE_COVER_DONE:
1104	case XLOG_STATE_COVER_DONE2:
1105	case XLOG_STATE_COVER_IDLE:
1106		break;
1107	case XLOG_STATE_COVER_NEED:
1108	case XLOG_STATE_COVER_NEED2:
1109		if (xfs_ail_min_lsn(log->l_ailp))
1110			break;
1111		if (!xlog_iclogs_empty(log))
1112			break;
1113
1114		needed = true;
1115		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1116			log->l_covered_state = XLOG_STATE_COVER_DONE;
1117		else
1118			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1119		break;
1120	default:
1121		needed = true;
1122		break;
1123	}
1124	spin_unlock(&log->l_icloglock);
1125	return needed;
1126}
1127
1128/*
1129 * Explicitly cover the log. This is similar to background log covering but
1130 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1131 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1132 * must all be empty.
1133 */
1134static int
1135xfs_log_cover(
1136	struct xfs_mount	*mp)
1137{
1138	int			error = 0;
1139	bool			need_covered;
1140
1141	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1142	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1143	       XFS_FORCED_SHUTDOWN(mp));
1144
1145	if (!xfs_log_writable(mp))
1146		return 0;
1147
1148	/*
1149	 * xfs_log_need_covered() is not idempotent because it progresses the
1150	 * state machine if the log requires covering. Therefore, we must call
1151	 * this function once and use the result until we've issued an sb sync.
1152	 * Do so first to make that abundantly clear.
1153	 *
1154	 * Fall into the covering sequence if the log needs covering or the
1155	 * mount has lazy superblock accounting to sync to disk. The sb sync
1156	 * used for covering accumulates the in-core counters, so covering
1157	 * handles this for us.
1158	 */
1159	need_covered = xfs_log_need_covered(mp);
1160	if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1161		return 0;
1162
1163	/*
1164	 * To cover the log, commit the superblock twice (at most) in
1165	 * independent checkpoints. The first serves as a reference for the
1166	 * tail pointer. The sync transaction and AIL push empties the AIL and
1167	 * updates the in-core tail to the LSN of the first checkpoint. The
1168	 * second commit updates the on-disk tail with the in-core LSN,
1169	 * covering the log. Push the AIL one more time to leave it empty, as
1170	 * we found it.
1171	 */
1172	do {
1173		error = xfs_sync_sb(mp, true);
1174		if (error)
1175			break;
1176		xfs_ail_push_all_sync(mp->m_ail);
1177	} while (xfs_log_need_covered(mp));
1178
1179	return error;
1180}
1181
1182/*
1183 * We may be holding the log iclog lock upon entering this routine.
1184 */
1185xfs_lsn_t
1186xlog_assign_tail_lsn_locked(
1187	struct xfs_mount	*mp)
1188{
1189	struct xlog		*log = mp->m_log;
1190	struct xfs_log_item	*lip;
1191	xfs_lsn_t		tail_lsn;
1192
1193	assert_spin_locked(&mp->m_ail->ail_lock);
1194
1195	/*
1196	 * To make sure we always have a valid LSN for the log tail we keep
1197	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1198	 * and use that when the AIL was empty.
1199	 */
1200	lip = xfs_ail_min(mp->m_ail);
1201	if (lip)
1202		tail_lsn = lip->li_lsn;
1203	else
1204		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1205	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1206	atomic64_set(&log->l_tail_lsn, tail_lsn);
1207	return tail_lsn;
1208}
1209
1210xfs_lsn_t
1211xlog_assign_tail_lsn(
1212	struct xfs_mount	*mp)
1213{
1214	xfs_lsn_t		tail_lsn;
1215
1216	spin_lock(&mp->m_ail->ail_lock);
1217	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1218	spin_unlock(&mp->m_ail->ail_lock);
1219
1220	return tail_lsn;
1221}
1222
1223/*
1224 * Return the space in the log between the tail and the head.  The head
1225 * is passed in the cycle/bytes formal parms.  In the special case where
1226 * the reserve head has wrapped passed the tail, this calculation is no
1227 * longer valid.  In this case, just return 0 which means there is no space
1228 * in the log.  This works for all places where this function is called
1229 * with the reserve head.  Of course, if the write head were to ever
1230 * wrap the tail, we should blow up.  Rather than catch this case here,
1231 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1232 *
1233 * This code also handles the case where the reservation head is behind
1234 * the tail.  The details of this case are described below, but the end
1235 * result is that we return the size of the log as the amount of space left.
1236 */
1237STATIC int
1238xlog_space_left(
1239	struct xlog	*log,
1240	atomic64_t	*head)
1241{
1242	int		free_bytes;
1243	int		tail_bytes;
1244	int		tail_cycle;
1245	int		head_cycle;
1246	int		head_bytes;
1247
1248	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1249	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1250	tail_bytes = BBTOB(tail_bytes);
1251	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1252		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1253	else if (tail_cycle + 1 < head_cycle)
1254		return 0;
1255	else if (tail_cycle < head_cycle) {
1256		ASSERT(tail_cycle == (head_cycle - 1));
1257		free_bytes = tail_bytes - head_bytes;
1258	} else {
1259		/*
1260		 * The reservation head is behind the tail.
1261		 * In this case we just want to return the size of the
1262		 * log as the amount of space left.
1263		 */
1264		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1265		xfs_alert(log->l_mp,
1266			  "  tail_cycle = %d, tail_bytes = %d",
1267			  tail_cycle, tail_bytes);
1268		xfs_alert(log->l_mp,
1269			  "  GH   cycle = %d, GH   bytes = %d",
1270			  head_cycle, head_bytes);
1271		ASSERT(0);
1272		free_bytes = log->l_logsize;
1273	}
1274	return free_bytes;
1275}
1276
1277
1278static void
1279xlog_ioend_work(
1280	struct work_struct	*work)
1281{
1282	struct xlog_in_core     *iclog =
1283		container_of(work, struct xlog_in_core, ic_end_io_work);
1284	struct xlog		*log = iclog->ic_log;
1285	int			error;
1286
1287	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1288#ifdef DEBUG
1289	/* treat writes with injected CRC errors as failed */
1290	if (iclog->ic_fail_crc)
1291		error = -EIO;
1292#endif
1293
1294	/*
1295	 * Race to shutdown the filesystem if we see an error.
1296	 */
1297	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1298		xfs_alert(log->l_mp, "log I/O error %d", error);
1299		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1300	}
1301
1302	xlog_state_done_syncing(iclog);
1303	bio_uninit(&iclog->ic_bio);
1304
1305	/*
1306	 * Drop the lock to signal that we are done. Nothing references the
1307	 * iclog after this, so an unmount waiting on this lock can now tear it
1308	 * down safely. As such, it is unsafe to reference the iclog after the
1309	 * unlock as we could race with it being freed.
1310	 */
1311	up(&iclog->ic_sema);
1312}
1313
1314/*
1315 * Return size of each in-core log record buffer.
1316 *
1317 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1318 *
1319 * If the filesystem blocksize is too large, we may need to choose a
1320 * larger size since the directory code currently logs entire blocks.
1321 */
1322STATIC void
1323xlog_get_iclog_buffer_size(
1324	struct xfs_mount	*mp,
1325	struct xlog		*log)
1326{
1327	if (mp->m_logbufs <= 0)
1328		mp->m_logbufs = XLOG_MAX_ICLOGS;
1329	if (mp->m_logbsize <= 0)
1330		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1331
1332	log->l_iclog_bufs = mp->m_logbufs;
1333	log->l_iclog_size = mp->m_logbsize;
1334
1335	/*
1336	 * # headers = size / 32k - one header holds cycles from 32k of data.
1337	 */
1338	log->l_iclog_heads =
1339		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1340	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1341}
1342
1343void
1344xfs_log_work_queue(
1345	struct xfs_mount        *mp)
1346{
1347	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1348				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1349}
1350
1351/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352 * Every sync period we need to unpin all items in the AIL and push them to
1353 * disk. If there is nothing dirty, then we might need to cover the log to
1354 * indicate that the filesystem is idle.
1355 */
1356static void
1357xfs_log_worker(
1358	struct work_struct	*work)
1359{
1360	struct xlog		*log = container_of(to_delayed_work(work),
1361						struct xlog, l_work);
1362	struct xfs_mount	*mp = log->l_mp;
1363
1364	/* dgc: errors ignored - not fatal and nowhere to report them */
1365	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1366		/*
1367		 * Dump a transaction into the log that contains no real change.
1368		 * This is needed to stamp the current tail LSN into the log
1369		 * during the covering operation.
1370		 *
1371		 * We cannot use an inode here for this - that will push dirty
1372		 * state back up into the VFS and then periodic inode flushing
1373		 * will prevent log covering from making progress. Hence we
1374		 * synchronously log the superblock instead to ensure the
1375		 * superblock is immediately unpinned and can be written back.
1376		 */
 
1377		xfs_sync_sb(mp, true);
1378	} else
1379		xfs_log_force(mp, 0);
1380
1381	/* start pushing all the metadata that is currently dirty */
1382	xfs_ail_push_all(mp->m_ail);
1383
1384	/* queue us up again */
1385	xfs_log_work_queue(mp);
1386}
1387
1388/*
1389 * This routine initializes some of the log structure for a given mount point.
1390 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1391 * some other stuff may be filled in too.
1392 */
1393STATIC struct xlog *
1394xlog_alloc_log(
1395	struct xfs_mount	*mp,
1396	struct xfs_buftarg	*log_target,
1397	xfs_daddr_t		blk_offset,
1398	int			num_bblks)
1399{
1400	struct xlog		*log;
1401	xlog_rec_header_t	*head;
1402	xlog_in_core_t		**iclogp;
1403	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1404	int			i;
1405	int			error = -ENOMEM;
1406	uint			log2_size = 0;
1407
1408	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1409	if (!log) {
1410		xfs_warn(mp, "Log allocation failed: No memory!");
1411		goto out;
1412	}
1413
1414	log->l_mp	   = mp;
1415	log->l_targ	   = log_target;
1416	log->l_logsize     = BBTOB(num_bblks);
1417	log->l_logBBstart  = blk_offset;
1418	log->l_logBBsize   = num_bblks;
1419	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1420	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1421	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
 
1422
1423	log->l_prev_block  = -1;
1424	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1425	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1426	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1427	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1428
1429	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1)
1430		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1431	else
1432		log->l_iclog_roundoff = BBSIZE;
1433
1434	xlog_grant_head_init(&log->l_reserve_head);
1435	xlog_grant_head_init(&log->l_write_head);
1436
1437	error = -EFSCORRUPTED;
1438	if (xfs_sb_version_hassector(&mp->m_sb)) {
1439	        log2_size = mp->m_sb.sb_logsectlog;
1440		if (log2_size < BBSHIFT) {
1441			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1442				log2_size, BBSHIFT);
1443			goto out_free_log;
1444		}
1445
1446	        log2_size -= BBSHIFT;
1447		if (log2_size > mp->m_sectbb_log) {
1448			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1449				log2_size, mp->m_sectbb_log);
1450			goto out_free_log;
1451		}
1452
1453		/* for larger sector sizes, must have v2 or external log */
1454		if (log2_size && log->l_logBBstart > 0 &&
1455			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1456			xfs_warn(mp,
1457		"log sector size (0x%x) invalid for configuration.",
1458				log2_size);
1459			goto out_free_log;
1460		}
1461	}
1462	log->l_sectBBsize = 1 << log2_size;
1463
1464	xlog_get_iclog_buffer_size(mp, log);
1465
1466	spin_lock_init(&log->l_icloglock);
1467	init_waitqueue_head(&log->l_flush_wait);
1468
1469	iclogp = &log->l_iclog;
1470	/*
1471	 * The amount of memory to allocate for the iclog structure is
1472	 * rather funky due to the way the structure is defined.  It is
1473	 * done this way so that we can use different sizes for machines
1474	 * with different amounts of memory.  See the definition of
1475	 * xlog_in_core_t in xfs_log_priv.h for details.
1476	 */
1477	ASSERT(log->l_iclog_size >= 4096);
1478	for (i = 0; i < log->l_iclog_bufs; i++) {
1479		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1480		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1481				sizeof(struct bio_vec);
1482
1483		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
 
1484		if (!iclog)
1485			goto out_free_iclog;
1486
1487		*iclogp = iclog;
1488		iclog->ic_prev = prev_iclog;
1489		prev_iclog = iclog;
1490
1491		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1492						KM_MAYFAIL | KM_ZERO);
1493		if (!iclog->ic_data)
1494			goto out_free_iclog;
1495#ifdef DEBUG
1496		log->l_iclog_bak[i] = &iclog->ic_header;
1497#endif
1498		head = &iclog->ic_header;
1499		memset(head, 0, sizeof(xlog_rec_header_t));
1500		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1501		head->h_version = cpu_to_be32(
1502			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1503		head->h_size = cpu_to_be32(log->l_iclog_size);
1504		/* new fields */
1505		head->h_fmt = cpu_to_be32(XLOG_FMT);
1506		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1507
1508		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1509		iclog->ic_state = XLOG_STATE_ACTIVE;
1510		iclog->ic_log = log;
1511		atomic_set(&iclog->ic_refcnt, 0);
1512		INIT_LIST_HEAD(&iclog->ic_callbacks);
1513		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1514
1515		init_waitqueue_head(&iclog->ic_force_wait);
1516		init_waitqueue_head(&iclog->ic_write_wait);
1517		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1518		sema_init(&iclog->ic_sema, 1);
1519
1520		iclogp = &iclog->ic_next;
1521	}
1522	*iclogp = log->l_iclog;			/* complete ring */
1523	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1524
1525	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1526			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1527				    WQ_HIGHPRI),
1528			0, mp->m_super->s_id);
1529	if (!log->l_ioend_workqueue)
1530		goto out_free_iclog;
1531
1532	error = xlog_cil_init(log);
1533	if (error)
1534		goto out_destroy_workqueue;
1535	return log;
1536
1537out_destroy_workqueue:
1538	destroy_workqueue(log->l_ioend_workqueue);
1539out_free_iclog:
1540	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1541		prev_iclog = iclog->ic_next;
1542		kmem_free(iclog->ic_data);
1543		kmem_free(iclog);
1544		if (prev_iclog == log->l_iclog)
1545			break;
1546	}
1547out_free_log:
1548	kmem_free(log);
1549out:
1550	return ERR_PTR(error);
1551}	/* xlog_alloc_log */
1552
1553/*
1554 * Write out the commit record of a transaction associated with the given
1555 * ticket to close off a running log write. Return the lsn of the commit record.
1556 */
1557int
1558xlog_commit_record(
1559	struct xlog		*log,
1560	struct xlog_ticket	*ticket,
1561	struct xlog_in_core	**iclog,
1562	xfs_lsn_t		*lsn)
1563{
1564	struct xfs_log_iovec reg = {
1565		.i_addr = NULL,
1566		.i_len = 0,
1567		.i_type = XLOG_REG_TYPE_COMMIT,
1568	};
1569	struct xfs_log_vec vec = {
1570		.lv_niovecs = 1,
1571		.lv_iovecp = &reg,
1572	};
1573	int	error;
1574
1575	if (XLOG_FORCED_SHUTDOWN(log))
1576		return -EIO;
1577
1578	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS);
1579	if (error)
1580		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1581	return error;
1582}
1583
1584/*
1585 * Compute the LSN that we'd need to push the log tail towards in order to have
1586 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1587 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1588 * log free space already meets all three thresholds, this function returns
1589 * NULLCOMMITLSN.
1590 */
1591xfs_lsn_t
1592xlog_grant_push_threshold(
1593	struct xlog	*log,
1594	int		need_bytes)
1595{
1596	xfs_lsn_t	threshold_lsn = 0;
1597	xfs_lsn_t	last_sync_lsn;
1598	int		free_blocks;
1599	int		free_bytes;
1600	int		threshold_block;
1601	int		threshold_cycle;
1602	int		free_threshold;
1603
1604	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1605
1606	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1607	free_blocks = BTOBBT(free_bytes);
1608
1609	/*
1610	 * Set the threshold for the minimum number of free blocks in the
1611	 * log to the maximum of what the caller needs, one quarter of the
1612	 * log, and 256 blocks.
1613	 */
1614	free_threshold = BTOBB(need_bytes);
1615	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1616	free_threshold = max(free_threshold, 256);
1617	if (free_blocks >= free_threshold)
1618		return NULLCOMMITLSN;
1619
1620	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1621						&threshold_block);
1622	threshold_block += free_threshold;
1623	if (threshold_block >= log->l_logBBsize) {
1624		threshold_block -= log->l_logBBsize;
1625		threshold_cycle += 1;
1626	}
1627	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1628					threshold_block);
1629	/*
1630	 * Don't pass in an lsn greater than the lsn of the last
1631	 * log record known to be on disk. Use a snapshot of the last sync lsn
1632	 * so that it doesn't change between the compare and the set.
1633	 */
1634	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1635	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1636		threshold_lsn = last_sync_lsn;
1637
1638	return threshold_lsn;
1639}
1640
1641/*
1642 * Push the tail of the log if we need to do so to maintain the free log space
1643 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1644 * policy which pushes on an lsn which is further along in the log once we
1645 * reach the high water mark.  In this manner, we would be creating a low water
1646 * mark.
1647 */
1648STATIC void
1649xlog_grant_push_ail(
1650	struct xlog	*log,
1651	int		need_bytes)
1652{
1653	xfs_lsn_t	threshold_lsn;
1654
1655	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1656	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1657		return;
1658
1659	/*
1660	 * Get the transaction layer to kick the dirty buffers out to
1661	 * disk asynchronously. No point in trying to do this if
1662	 * the filesystem is shutting down.
1663	 */
1664	xfs_ail_push(log->l_ailp, threshold_lsn);
1665}
1666
1667/*
1668 * Stamp cycle number in every block
1669 */
1670STATIC void
1671xlog_pack_data(
1672	struct xlog		*log,
1673	struct xlog_in_core	*iclog,
1674	int			roundoff)
1675{
1676	int			i, j, k;
1677	int			size = iclog->ic_offset + roundoff;
1678	__be32			cycle_lsn;
1679	char			*dp;
1680
1681	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1682
1683	dp = iclog->ic_datap;
1684	for (i = 0; i < BTOBB(size); i++) {
1685		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1686			break;
1687		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1688		*(__be32 *)dp = cycle_lsn;
1689		dp += BBSIZE;
1690	}
1691
1692	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1693		xlog_in_core_2_t *xhdr = iclog->ic_data;
1694
1695		for ( ; i < BTOBB(size); i++) {
1696			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1697			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1698			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1699			*(__be32 *)dp = cycle_lsn;
1700			dp += BBSIZE;
1701		}
1702
1703		for (i = 1; i < log->l_iclog_heads; i++)
1704			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1705	}
1706}
1707
1708/*
1709 * Calculate the checksum for a log buffer.
1710 *
1711 * This is a little more complicated than it should be because the various
1712 * headers and the actual data are non-contiguous.
1713 */
1714__le32
1715xlog_cksum(
1716	struct xlog		*log,
1717	struct xlog_rec_header	*rhead,
1718	char			*dp,
1719	int			size)
1720{
1721	uint32_t		crc;
1722
1723	/* first generate the crc for the record header ... */
1724	crc = xfs_start_cksum_update((char *)rhead,
1725			      sizeof(struct xlog_rec_header),
1726			      offsetof(struct xlog_rec_header, h_crc));
1727
1728	/* ... then for additional cycle data for v2 logs ... */
1729	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1730		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1731		int		i;
1732		int		xheads;
1733
1734		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1735
1736		for (i = 1; i < xheads; i++) {
1737			crc = crc32c(crc, &xhdr[i].hic_xheader,
1738				     sizeof(struct xlog_rec_ext_header));
1739		}
1740	}
1741
1742	/* ... and finally for the payload */
1743	crc = crc32c(crc, dp, size);
1744
1745	return xfs_end_cksum(crc);
1746}
1747
1748static void
1749xlog_bio_end_io(
1750	struct bio		*bio)
1751{
1752	struct xlog_in_core	*iclog = bio->bi_private;
1753
1754	queue_work(iclog->ic_log->l_ioend_workqueue,
1755		   &iclog->ic_end_io_work);
1756}
1757
1758static int
1759xlog_map_iclog_data(
1760	struct bio		*bio,
1761	void			*data,
1762	size_t			count)
1763{
1764	do {
1765		struct page	*page = kmem_to_page(data);
1766		unsigned int	off = offset_in_page(data);
1767		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1768
1769		if (bio_add_page(bio, page, len, off) != len)
1770			return -EIO;
1771
1772		data += len;
1773		count -= len;
1774	} while (count);
1775
1776	return 0;
1777}
1778
1779STATIC void
1780xlog_write_iclog(
1781	struct xlog		*log,
1782	struct xlog_in_core	*iclog,
1783	uint64_t		bno,
1784	unsigned int		count)
1785{
1786	ASSERT(bno < log->l_logBBsize);
1787	trace_xlog_iclog_write(iclog, _RET_IP_);
1788
1789	/*
1790	 * We lock the iclogbufs here so that we can serialise against I/O
1791	 * completion during unmount.  We might be processing a shutdown
1792	 * triggered during unmount, and that can occur asynchronously to the
1793	 * unmount thread, and hence we need to ensure that completes before
1794	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1795	 * across the log IO to archieve that.
1796	 */
1797	down(&iclog->ic_sema);
1798	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1799		/*
1800		 * It would seem logical to return EIO here, but we rely on
1801		 * the log state machine to propagate I/O errors instead of
1802		 * doing it here.  We kick of the state machine and unlock
1803		 * the buffer manually, the code needs to be kept in sync
1804		 * with the I/O completion path.
1805		 */
1806		xlog_state_done_syncing(iclog);
1807		up(&iclog->ic_sema);
1808		return;
1809	}
1810
1811	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1812	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1813	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1814	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1815	iclog->ic_bio.bi_private = iclog;
1816
1817	/*
1818	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1819	 * IOs coming immediately after this one. This prevents the block layer
1820	 * writeback throttle from throttling log writes behind background
1821	 * metadata writeback and causing priority inversions.
1822	 */
1823	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
 
 
 
 
 
 
1824	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1825		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1826		/*
1827		 * For external log devices, we also need to flush the data
1828		 * device cache first to ensure all metadata writeback covered
1829		 * by the LSN in this iclog is on stable storage. This is slow,
1830		 * but it *must* complete before we issue the external log IO.
 
 
 
 
 
1831		 */
1832		if (log->l_targ != log->l_mp->m_ddev_targp)
1833			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
 
1834	}
1835	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1836		iclog->ic_bio.bi_opf |= REQ_FUA;
1837
1838	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1839
1840	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1841		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1842		return;
1843	}
1844	if (is_vmalloc_addr(iclog->ic_data))
1845		flush_kernel_vmap_range(iclog->ic_data, count);
1846
1847	/*
1848	 * If this log buffer would straddle the end of the log we will have
1849	 * to split it up into two bios, so that we can continue at the start.
1850	 */
1851	if (bno + BTOBB(count) > log->l_logBBsize) {
1852		struct bio *split;
1853
1854		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1855				  GFP_NOIO, &fs_bio_set);
1856		bio_chain(split, &iclog->ic_bio);
1857		submit_bio(split);
1858
1859		/* restart at logical offset zero for the remainder */
1860		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1861	}
1862
1863	submit_bio(&iclog->ic_bio);
 
 
 
 
 
 
1864}
1865
1866/*
1867 * We need to bump cycle number for the part of the iclog that is
1868 * written to the start of the log. Watch out for the header magic
1869 * number case, though.
1870 */
1871static void
1872xlog_split_iclog(
1873	struct xlog		*log,
1874	void			*data,
1875	uint64_t		bno,
1876	unsigned int		count)
1877{
1878	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1879	unsigned int		i;
1880
1881	for (i = split_offset; i < count; i += BBSIZE) {
1882		uint32_t cycle = get_unaligned_be32(data + i);
1883
1884		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1885			cycle++;
1886		put_unaligned_be32(cycle, data + i);
1887	}
1888}
1889
1890static int
1891xlog_calc_iclog_size(
1892	struct xlog		*log,
1893	struct xlog_in_core	*iclog,
1894	uint32_t		*roundoff)
1895{
1896	uint32_t		count_init, count;
1897
1898	/* Add for LR header */
1899	count_init = log->l_iclog_hsize + iclog->ic_offset;
1900	count = roundup(count_init, log->l_iclog_roundoff);
1901
1902	*roundoff = count - count_init;
1903
1904	ASSERT(count >= count_init);
1905	ASSERT(*roundoff < log->l_iclog_roundoff);
1906	return count;
1907}
1908
1909/*
1910 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1911 * fashion.  Previously, we should have moved the current iclog
1912 * ptr in the log to point to the next available iclog.  This allows further
1913 * write to continue while this code syncs out an iclog ready to go.
1914 * Before an in-core log can be written out, the data section must be scanned
1915 * to save away the 1st word of each BBSIZE block into the header.  We replace
1916 * it with the current cycle count.  Each BBSIZE block is tagged with the
1917 * cycle count because there in an implicit assumption that drives will
1918 * guarantee that entire 512 byte blocks get written at once.  In other words,
1919 * we can't have part of a 512 byte block written and part not written.  By
1920 * tagging each block, we will know which blocks are valid when recovering
1921 * after an unclean shutdown.
1922 *
1923 * This routine is single threaded on the iclog.  No other thread can be in
1924 * this routine with the same iclog.  Changing contents of iclog can there-
1925 * fore be done without grabbing the state machine lock.  Updating the global
1926 * log will require grabbing the lock though.
1927 *
1928 * The entire log manager uses a logical block numbering scheme.  Only
1929 * xlog_write_iclog knows about the fact that the log may not start with
1930 * block zero on a given device.
1931 */
1932STATIC void
1933xlog_sync(
1934	struct xlog		*log,
1935	struct xlog_in_core	*iclog)
 
1936{
1937	unsigned int		count;		/* byte count of bwrite */
1938	unsigned int		roundoff;       /* roundoff to BB or stripe */
1939	uint64_t		bno;
1940	unsigned int		size;
1941
1942	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1943	trace_xlog_iclog_sync(iclog, _RET_IP_);
1944
1945	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1946
1947	/* move grant heads by roundoff in sync */
1948	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1949	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
 
 
 
 
 
 
 
 
1950
1951	/* put cycle number in every block */
1952	xlog_pack_data(log, iclog, roundoff); 
1953
1954	/* real byte length */
1955	size = iclog->ic_offset;
1956	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1957		size += roundoff;
1958	iclog->ic_header.h_len = cpu_to_be32(size);
1959
1960	XFS_STATS_INC(log->l_mp, xs_log_writes);
1961	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1962
1963	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1964
1965	/* Do we need to split this write into 2 parts? */
1966	if (bno + BTOBB(count) > log->l_logBBsize)
1967		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1968
1969	/* calculcate the checksum */
1970	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1971					    iclog->ic_datap, size);
1972	/*
1973	 * Intentionally corrupt the log record CRC based on the error injection
1974	 * frequency, if defined. This facilitates testing log recovery in the
1975	 * event of torn writes. Hence, set the IOABORT state to abort the log
1976	 * write on I/O completion and shutdown the fs. The subsequent mount
1977	 * detects the bad CRC and attempts to recover.
1978	 */
1979#ifdef DEBUG
1980	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1981		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1982		iclog->ic_fail_crc = true;
1983		xfs_warn(log->l_mp,
1984	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1985			 be64_to_cpu(iclog->ic_header.h_lsn));
1986	}
1987#endif
1988	xlog_verify_iclog(log, iclog, count);
1989	xlog_write_iclog(log, iclog, bno, count);
1990}
1991
1992/*
1993 * Deallocate a log structure
1994 */
1995STATIC void
1996xlog_dealloc_log(
1997	struct xlog	*log)
1998{
1999	xlog_in_core_t	*iclog, *next_iclog;
2000	int		i;
2001
2002	xlog_cil_destroy(log);
2003
2004	/*
2005	 * Cycle all the iclogbuf locks to make sure all log IO completion
2006	 * is done before we tear down these buffers.
 
2007	 */
2008	iclog = log->l_iclog;
2009	for (i = 0; i < log->l_iclog_bufs; i++) {
2010		down(&iclog->ic_sema);
2011		up(&iclog->ic_sema);
2012		iclog = iclog->ic_next;
2013	}
2014
2015	iclog = log->l_iclog;
2016	for (i = 0; i < log->l_iclog_bufs; i++) {
2017		next_iclog = iclog->ic_next;
2018		kmem_free(iclog->ic_data);
2019		kmem_free(iclog);
2020		iclog = next_iclog;
2021	}
2022
2023	log->l_mp->m_log = NULL;
2024	destroy_workqueue(log->l_ioend_workqueue);
2025	kmem_free(log);
2026}
2027
2028/*
2029 * Update counters atomically now that memcpy is done.
2030 */
2031static inline void
2032xlog_state_finish_copy(
2033	struct xlog		*log,
2034	struct xlog_in_core	*iclog,
2035	int			record_cnt,
2036	int			copy_bytes)
2037{
2038	lockdep_assert_held(&log->l_icloglock);
2039
2040	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2041	iclog->ic_offset += copy_bytes;
2042}
2043
2044/*
2045 * print out info relating to regions written which consume
2046 * the reservation
2047 */
2048void
2049xlog_print_tic_res(
2050	struct xfs_mount	*mp,
2051	struct xlog_ticket	*ticket)
2052{
2053	uint i;
2054	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2055
2056	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2057#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2058	static char *res_type_str[] = {
2059	    REG_TYPE_STR(BFORMAT, "bformat"),
2060	    REG_TYPE_STR(BCHUNK, "bchunk"),
2061	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2062	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2063	    REG_TYPE_STR(IFORMAT, "iformat"),
2064	    REG_TYPE_STR(ICORE, "icore"),
2065	    REG_TYPE_STR(IEXT, "iext"),
2066	    REG_TYPE_STR(IBROOT, "ibroot"),
2067	    REG_TYPE_STR(ILOCAL, "ilocal"),
2068	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2069	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2070	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2071	    REG_TYPE_STR(QFORMAT, "qformat"),
2072	    REG_TYPE_STR(DQUOT, "dquot"),
2073	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2074	    REG_TYPE_STR(LRHEADER, "LR header"),
2075	    REG_TYPE_STR(UNMOUNT, "unmount"),
2076	    REG_TYPE_STR(COMMIT, "commit"),
2077	    REG_TYPE_STR(TRANSHDR, "trans header"),
2078	    REG_TYPE_STR(ICREATE, "inode create"),
2079	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2080	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2081	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2082	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2083	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2084	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2085	};
2086	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2087#undef REG_TYPE_STR
2088
2089	xfs_warn(mp, "ticket reservation summary:");
2090	xfs_warn(mp, "  unit res    = %d bytes",
2091		 ticket->t_unit_res);
2092	xfs_warn(mp, "  current res = %d bytes",
2093		 ticket->t_curr_res);
2094	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2095		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2096	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2097		 ticket->t_res_num_ophdrs, ophdr_spc);
2098	xfs_warn(mp, "  ophdr + reg = %u bytes",
2099		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2100	xfs_warn(mp, "  num regions = %u",
2101		 ticket->t_res_num);
2102
2103	for (i = 0; i < ticket->t_res_num; i++) {
2104		uint r_type = ticket->t_res_arr[i].r_type;
2105		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2106			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2107			    "bad-rtype" : res_type_str[r_type]),
2108			    ticket->t_res_arr[i].r_len);
2109	}
2110}
2111
2112/*
2113 * Print a summary of the transaction.
2114 */
2115void
2116xlog_print_trans(
2117	struct xfs_trans	*tp)
2118{
2119	struct xfs_mount	*mp = tp->t_mountp;
2120	struct xfs_log_item	*lip;
2121
2122	/* dump core transaction and ticket info */
2123	xfs_warn(mp, "transaction summary:");
2124	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2125	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2126	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2127
2128	xlog_print_tic_res(mp, tp->t_ticket);
2129
2130	/* dump each log item */
2131	list_for_each_entry(lip, &tp->t_items, li_trans) {
2132		struct xfs_log_vec	*lv = lip->li_lv;
2133		struct xfs_log_iovec	*vec;
2134		int			i;
2135
2136		xfs_warn(mp, "log item: ");
2137		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2138		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2139		if (!lv)
2140			continue;
2141		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2142		xfs_warn(mp, "  size	= %d", lv->lv_size);
2143		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2144		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2145
2146		/* dump each iovec for the log item */
2147		vec = lv->lv_iovecp;
2148		for (i = 0; i < lv->lv_niovecs; i++) {
2149			int dumplen = min(vec->i_len, 32);
2150
2151			xfs_warn(mp, "  iovec[%d]", i);
2152			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2153			xfs_warn(mp, "    len	= %d", vec->i_len);
2154			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2155			xfs_hex_dump(vec->i_addr, dumplen);
2156
2157			vec++;
2158		}
2159	}
2160}
2161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162/*
2163 * Calculate the potential space needed by the log vector.  We may need a start
2164 * record, and each region gets its own struct xlog_op_header and may need to be
2165 * double word aligned.
2166 */
2167static int
2168xlog_write_calc_vec_length(
 
2169	struct xlog_ticket	*ticket,
2170	struct xfs_log_vec	*log_vector,
2171	uint			optype)
 
 
 
2172{
2173	struct xfs_log_vec	*lv;
2174	int			headers = 0;
2175	int			len = 0;
2176	int			i;
2177
2178	if (optype & XLOG_START_TRANS)
2179		headers++;
2180
2181	for (lv = log_vector; lv; lv = lv->lv_next) {
2182		/* we don't write ordered log vectors */
2183		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2184			continue;
2185
2186		headers += lv->lv_niovecs;
2187
2188		for (i = 0; i < lv->lv_niovecs; i++) {
2189			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2190
2191			len += vecp->i_len;
2192			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2193		}
2194	}
2195
2196	ticket->t_res_num_ophdrs += headers;
2197	len += headers * sizeof(struct xlog_op_header);
2198
2199	return len;
2200}
2201
2202static void
2203xlog_write_start_rec(
2204	struct xlog_op_header	*ophdr,
2205	struct xlog_ticket	*ticket)
 
 
 
 
2206{
2207	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2208	ophdr->oh_clientid = ticket->t_clientid;
2209	ophdr->oh_len = 0;
2210	ophdr->oh_flags = XLOG_START_TRANS;
2211	ophdr->oh_res2 = 0;
2212}
2213
2214static xlog_op_header_t *
2215xlog_write_setup_ophdr(
2216	struct xlog		*log,
2217	struct xlog_op_header	*ophdr,
2218	struct xlog_ticket	*ticket,
2219	uint			flags)
2220{
2221	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2222	ophdr->oh_clientid = ticket->t_clientid;
2223	ophdr->oh_res2 = 0;
2224
2225	/* are we copying a commit or unmount record? */
2226	ophdr->oh_flags = flags;
2227
2228	/*
2229	 * We've seen logs corrupted with bad transaction client ids.  This
2230	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2231	 * and shut down the filesystem.
2232	 */
2233	switch (ophdr->oh_clientid)  {
2234	case XFS_TRANSACTION:
2235	case XFS_VOLUME:
2236	case XFS_LOG:
2237		break;
2238	default:
2239		xfs_warn(log->l_mp,
2240			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2241			ophdr->oh_clientid, ticket);
2242		return NULL;
2243	}
2244
2245	return ophdr;
 
 
 
 
 
 
 
2246}
2247
2248/*
2249 * Set up the parameters of the region copy into the log. This has
2250 * to handle region write split across multiple log buffers - this
2251 * state is kept external to this function so that this code can
2252 * be written in an obvious, self documenting manner.
2253 */
2254static int
2255xlog_write_setup_copy(
 
2256	struct xlog_ticket	*ticket,
2257	struct xlog_op_header	*ophdr,
2258	int			space_available,
2259	int			space_required,
2260	int			*copy_off,
2261	int			*copy_len,
2262	int			*last_was_partial_copy,
2263	int			*bytes_consumed)
2264{
2265	int			still_to_copy;
2266
2267	still_to_copy = space_required - *bytes_consumed;
2268	*copy_off = *bytes_consumed;
2269
2270	if (still_to_copy <= space_available) {
2271		/* write of region completes here */
2272		*copy_len = still_to_copy;
2273		ophdr->oh_len = cpu_to_be32(*copy_len);
2274		if (*last_was_partial_copy)
2275			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2276		*last_was_partial_copy = 0;
2277		*bytes_consumed = 0;
2278		return 0;
2279	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2280
2281	/* partial write of region, needs extra log op header reservation */
2282	*copy_len = space_available;
2283	ophdr->oh_len = cpu_to_be32(*copy_len);
2284	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2285	if (*last_was_partial_copy)
2286		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2287	*bytes_consumed += *copy_len;
2288	(*last_was_partial_copy)++;
2289
2290	/* account for new log op header */
2291	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2292	ticket->t_res_num_ophdrs++;
2293
2294	return sizeof(struct xlog_op_header);
2295}
2296
2297static int
2298xlog_write_copy_finish(
2299	struct xlog		*log,
2300	struct xlog_in_core	*iclog,
2301	uint			flags,
2302	int			*record_cnt,
2303	int			*data_cnt,
2304	int			*partial_copy,
2305	int			*partial_copy_len,
2306	int			log_offset,
2307	struct xlog_in_core	**commit_iclog)
2308{
2309	int			error;
2310
2311	if (*partial_copy) {
2312		/*
2313		 * This iclog has already been marked WANT_SYNC by
2314		 * xlog_state_get_iclog_space.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315		 */
2316		spin_lock(&log->l_icloglock);
2317		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2318		*record_cnt = 0;
2319		*data_cnt = 0;
2320		goto release_iclog;
2321	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322
2323	*partial_copy = 0;
2324	*partial_copy_len = 0;
2325
2326	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2327		/* no more space in this iclog - push it. */
2328		spin_lock(&log->l_icloglock);
2329		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2330		*record_cnt = 0;
2331		*data_cnt = 0;
2332
2333		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2334			xlog_state_switch_iclogs(log, iclog, 0);
2335		else
2336			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2337			       iclog->ic_state == XLOG_STATE_IOERROR);
2338		if (!commit_iclog)
2339			goto release_iclog;
2340		spin_unlock(&log->l_icloglock);
2341		ASSERT(flags & XLOG_COMMIT_TRANS);
2342		*commit_iclog = iclog;
2343	}
2344
 
 
 
 
 
2345	return 0;
2346
2347release_iclog:
2348	error = xlog_state_release_iclog(log, iclog, 0);
2349	spin_unlock(&log->l_icloglock);
2350	return error;
2351}
2352
2353/*
2354 * Write some region out to in-core log
2355 *
2356 * This will be called when writing externally provided regions or when
2357 * writing out a commit record for a given transaction.
2358 *
2359 * General algorithm:
2360 *	1. Find total length of this write.  This may include adding to the
2361 *		lengths passed in.
2362 *	2. Check whether we violate the tickets reservation.
2363 *	3. While writing to this iclog
2364 *	    A. Reserve as much space in this iclog as can get
2365 *	    B. If this is first write, save away start lsn
2366 *	    C. While writing this region:
2367 *		1. If first write of transaction, write start record
2368 *		2. Write log operation header (header per region)
2369 *		3. Find out if we can fit entire region into this iclog
2370 *		4. Potentially, verify destination memcpy ptr
2371 *		5. Memcpy (partial) region
2372 *		6. If partial copy, release iclog; otherwise, continue
2373 *			copying more regions into current iclog
2374 *	4. Mark want sync bit (in simulation mode)
2375 *	5. Release iclog for potential flush to on-disk log.
2376 *
2377 * ERRORS:
2378 * 1.	Panic if reservation is overrun.  This should never happen since
2379 *	reservation amounts are generated internal to the filesystem.
2380 * NOTES:
2381 * 1. Tickets are single threaded data structures.
2382 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2383 *	syncing routine.  When a single log_write region needs to span
2384 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2385 *	on all log operation writes which don't contain the end of the
2386 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2387 *	operation which contains the end of the continued log_write region.
2388 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2389 *	we don't really know exactly how much space will be used.  As a result,
2390 *	we don't update ic_offset until the end when we know exactly how many
2391 *	bytes have been written out.
2392 */
2393int
2394xlog_write(
2395	struct xlog		*log,
2396	struct xfs_log_vec	*log_vector,
 
2397	struct xlog_ticket	*ticket,
2398	xfs_lsn_t		*start_lsn,
2399	struct xlog_in_core	**commit_iclog,
2400	uint			optype)
2401{
2402	struct xlog_in_core	*iclog = NULL;
2403	struct xfs_log_vec	*lv = log_vector;
2404	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2405	int			index = 0;
2406	int			len;
2407	int			partial_copy = 0;
2408	int			partial_copy_len = 0;
2409	int			contwr = 0;
2410	int			record_cnt = 0;
2411	int			data_cnt = 0;
2412	int			error = 0;
 
2413
2414	/*
2415	 * If this is a commit or unmount transaction, we don't need a start
2416	 * record to be written.  We do, however, have to account for the
2417	 * commit or unmount header that gets written. Hence we always have
2418	 * to account for an extra xlog_op_header here.
2419	 */
2420	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2421	if (ticket->t_curr_res < 0) {
2422		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2423		     "ctx ticket reservation ran out. Need to up reservation");
2424		xlog_print_tic_res(log->l_mp, ticket);
2425		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2426	}
2427
2428	len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2429	if (start_lsn)
2430		*start_lsn = 0;
2431	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2432		void		*ptr;
2433		int		log_offset;
2434
2435		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2436						   &contwr, &log_offset);
2437		if (error)
2438			return error;
2439
2440		ASSERT(log_offset <= iclog->ic_size - 1);
2441		ptr = iclog->ic_datap + log_offset;
2442
2443		/* Start_lsn is the first lsn written to. */
2444		if (start_lsn && !*start_lsn)
2445			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2446
2447		/*
2448		 * This loop writes out as many regions as can fit in the amount
2449		 * of space which was allocated by xlog_state_get_iclog_space().
2450		 */
2451		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2452			struct xfs_log_iovec	*reg;
2453			struct xlog_op_header	*ophdr;
2454			int			copy_len;
2455			int			copy_off;
2456			bool			ordered = false;
2457			bool			wrote_start_rec = false;
2458
2459			/* ordered log vectors have no regions to write */
2460			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2461				ASSERT(lv->lv_niovecs == 0);
2462				ordered = true;
2463				goto next_lv;
2464			}
2465
2466			reg = &vecp[index];
2467			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2468			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2469
2470			/*
2471			 * Before we start formatting log vectors, we need to
2472			 * write a start record. Only do this for the first
2473			 * iclog we write to.
2474			 */
2475			if (optype & XLOG_START_TRANS) {
2476				xlog_write_start_rec(ptr, ticket);
2477				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2478						sizeof(struct xlog_op_header));
2479				optype &= ~XLOG_START_TRANS;
2480				wrote_start_rec = true;
2481			}
2482
2483			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
2484			if (!ophdr)
2485				return -EIO;
2486
2487			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488					   sizeof(struct xlog_op_header));
2489
2490			len += xlog_write_setup_copy(ticket, ophdr,
2491						     iclog->ic_size-log_offset,
2492						     reg->i_len,
2493						     &copy_off, &copy_len,
2494						     &partial_copy,
2495						     &partial_copy_len);
2496			xlog_verify_dest_ptr(log, ptr);
2497
2498			/*
2499			 * Copy region.
2500			 *
2501			 * Unmount records just log an opheader, so can have
2502			 * empty payloads with no data region to copy. Hence we
2503			 * only copy the payload if the vector says it has data
2504			 * to copy.
2505			 */
2506			ASSERT(copy_len >= 0);
2507			if (copy_len > 0) {
2508				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2509				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2510						   copy_len);
2511			}
2512			copy_len += sizeof(struct xlog_op_header);
2513			record_cnt++;
2514			if (wrote_start_rec) {
2515				copy_len += sizeof(struct xlog_op_header);
2516				record_cnt++;
2517			}
2518			data_cnt += contwr ? copy_len : 0;
2519
2520			error = xlog_write_copy_finish(log, iclog, optype,
2521						       &record_cnt, &data_cnt,
2522						       &partial_copy,
2523						       &partial_copy_len,
2524						       log_offset,
2525						       commit_iclog);
2526			if (error)
2527				return error;
2528
2529			/*
2530			 * if we had a partial copy, we need to get more iclog
2531			 * space but we don't want to increment the region
2532			 * index because there is still more is this region to
2533			 * write.
2534			 *
2535			 * If we completed writing this region, and we flushed
2536			 * the iclog (indicated by resetting of the record
2537			 * count), then we also need to get more log space. If
2538			 * this was the last record, though, we are done and
2539			 * can just return.
2540			 */
2541			if (partial_copy)
2542				break;
2543
2544			if (++index == lv->lv_niovecs) {
2545next_lv:
2546				lv = lv->lv_next;
2547				index = 0;
2548				if (lv)
2549					vecp = lv->lv_iovecp;
2550			}
2551			if (record_cnt == 0 && !ordered) {
2552				if (!lv)
2553					return 0;
2554				break;
2555			}
 
 
 
2556		}
2557	}
2558
2559	ASSERT(len == 0);
2560
 
 
 
 
 
 
2561	spin_lock(&log->l_icloglock);
2562	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2563	if (commit_iclog) {
2564		ASSERT(optype & XLOG_COMMIT_TRANS);
2565		*commit_iclog = iclog;
2566	} else {
2567		error = xlog_state_release_iclog(log, iclog, 0);
2568	}
2569	spin_unlock(&log->l_icloglock);
2570
2571	return error;
2572}
2573
2574static void
2575xlog_state_activate_iclog(
2576	struct xlog_in_core	*iclog,
2577	int			*iclogs_changed)
2578{
2579	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2580	trace_xlog_iclog_activate(iclog, _RET_IP_);
2581
2582	/*
2583	 * If the number of ops in this iclog indicate it just contains the
2584	 * dummy transaction, we can change state into IDLE (the second time
2585	 * around). Otherwise we should change the state into NEED a dummy.
2586	 * We don't need to cover the dummy.
2587	 */
2588	if (*iclogs_changed == 0 &&
2589	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2590		*iclogs_changed = 1;
2591	} else {
2592		/*
2593		 * We have two dirty iclogs so start over.  This could also be
2594		 * num of ops indicating this is not the dummy going out.
2595		 */
2596		*iclogs_changed = 2;
2597	}
2598
2599	iclog->ic_state	= XLOG_STATE_ACTIVE;
2600	iclog->ic_offset = 0;
2601	iclog->ic_header.h_num_logops = 0;
2602	memset(iclog->ic_header.h_cycle_data, 0,
2603		sizeof(iclog->ic_header.h_cycle_data));
2604	iclog->ic_header.h_lsn = 0;
2605	iclog->ic_header.h_tail_lsn = 0;
2606}
2607
2608/*
2609 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2610 * ACTIVE after iclog I/O has completed.
2611 */
2612static void
2613xlog_state_activate_iclogs(
2614	struct xlog		*log,
2615	int			*iclogs_changed)
2616{
2617	struct xlog_in_core	*iclog = log->l_iclog;
2618
2619	do {
2620		if (iclog->ic_state == XLOG_STATE_DIRTY)
2621			xlog_state_activate_iclog(iclog, iclogs_changed);
2622		/*
2623		 * The ordering of marking iclogs ACTIVE must be maintained, so
2624		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2625		 */
2626		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2627			break;
2628	} while ((iclog = iclog->ic_next) != log->l_iclog);
2629}
2630
2631static int
2632xlog_covered_state(
2633	int			prev_state,
2634	int			iclogs_changed)
2635{
2636	/*
2637	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2638	 * wrote the first covering record (DONE). We go to IDLE if we just
2639	 * wrote the second covering record (DONE2) and remain in IDLE until a
2640	 * non-covering write occurs.
2641	 */
2642	switch (prev_state) {
2643	case XLOG_STATE_COVER_IDLE:
2644		if (iclogs_changed == 1)
2645			return XLOG_STATE_COVER_IDLE;
2646		fallthrough;
2647	case XLOG_STATE_COVER_NEED:
2648	case XLOG_STATE_COVER_NEED2:
2649		break;
2650	case XLOG_STATE_COVER_DONE:
2651		if (iclogs_changed == 1)
2652			return XLOG_STATE_COVER_NEED2;
2653		break;
2654	case XLOG_STATE_COVER_DONE2:
2655		if (iclogs_changed == 1)
2656			return XLOG_STATE_COVER_IDLE;
2657		break;
2658	default:
2659		ASSERT(0);
2660	}
2661
2662	return XLOG_STATE_COVER_NEED;
2663}
2664
2665STATIC void
2666xlog_state_clean_iclog(
2667	struct xlog		*log,
2668	struct xlog_in_core	*dirty_iclog)
2669{
2670	int			iclogs_changed = 0;
2671
2672	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2673
2674	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2675
2676	xlog_state_activate_iclogs(log, &iclogs_changed);
2677	wake_up_all(&dirty_iclog->ic_force_wait);
2678
2679	if (iclogs_changed) {
2680		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2681				iclogs_changed);
2682	}
2683}
2684
2685STATIC xfs_lsn_t
2686xlog_get_lowest_lsn(
2687	struct xlog		*log)
2688{
2689	struct xlog_in_core	*iclog = log->l_iclog;
2690	xfs_lsn_t		lowest_lsn = 0, lsn;
2691
2692	do {
2693		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2694		    iclog->ic_state == XLOG_STATE_DIRTY)
2695			continue;
2696
2697		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2698		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2699			lowest_lsn = lsn;
2700	} while ((iclog = iclog->ic_next) != log->l_iclog);
2701
2702	return lowest_lsn;
2703}
2704
2705/*
2706 * Completion of a iclog IO does not imply that a transaction has completed, as
2707 * transactions can be large enough to span many iclogs. We cannot change the
2708 * tail of the log half way through a transaction as this may be the only
2709 * transaction in the log and moving the tail to point to the middle of it
2710 * will prevent recovery from finding the start of the transaction. Hence we
2711 * should only update the last_sync_lsn if this iclog contains transaction
2712 * completion callbacks on it.
2713 *
2714 * We have to do this before we drop the icloglock to ensure we are the only one
2715 * that can update it.
2716 *
2717 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2718 * the reservation grant head pushing. This is due to the fact that the push
2719 * target is bound by the current last_sync_lsn value. Hence if we have a large
2720 * amount of log space bound up in this committing transaction then the
2721 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2722 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2723 * should push the AIL to ensure the push target (and hence the grant head) is
2724 * no longer bound by the old log head location and can move forwards and make
2725 * progress again.
2726 */
2727static void
2728xlog_state_set_callback(
2729	struct xlog		*log,
2730	struct xlog_in_core	*iclog,
2731	xfs_lsn_t		header_lsn)
2732{
2733	trace_xlog_iclog_callback(iclog, _RET_IP_);
2734	iclog->ic_state = XLOG_STATE_CALLBACK;
2735
2736	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737			   header_lsn) <= 0);
2738
2739	if (list_empty_careful(&iclog->ic_callbacks))
2740		return;
2741
2742	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2743	xlog_grant_push_ail(log, 0);
2744}
2745
2746/*
2747 * Return true if we need to stop processing, false to continue to the next
2748 * iclog. The caller will need to run callbacks if the iclog is returned in the
2749 * XLOG_STATE_CALLBACK state.
2750 */
2751static bool
2752xlog_state_iodone_process_iclog(
2753	struct xlog		*log,
2754	struct xlog_in_core	*iclog,
2755	bool			*ioerror)
2756{
2757	xfs_lsn_t		lowest_lsn;
2758	xfs_lsn_t		header_lsn;
2759
2760	switch (iclog->ic_state) {
2761	case XLOG_STATE_ACTIVE:
2762	case XLOG_STATE_DIRTY:
2763		/*
2764		 * Skip all iclogs in the ACTIVE & DIRTY states:
2765		 */
2766		return false;
2767	case XLOG_STATE_IOERROR:
2768		/*
2769		 * Between marking a filesystem SHUTDOWN and stopping the log,
2770		 * we do flush all iclogs to disk (if there wasn't a log I/O
2771		 * error). So, we do want things to go smoothly in case of just
2772		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2773		 */
2774		*ioerror = true;
2775		return false;
2776	case XLOG_STATE_DONE_SYNC:
2777		/*
2778		 * Now that we have an iclog that is in the DONE_SYNC state, do
2779		 * one more check here to see if we have chased our tail around.
2780		 * If this is not the lowest lsn iclog, then we will leave it
2781		 * for another completion to process.
2782		 */
2783		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2784		lowest_lsn = xlog_get_lowest_lsn(log);
2785		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2786			return false;
2787		xlog_state_set_callback(log, iclog, header_lsn);
 
 
 
 
 
 
 
 
 
 
2788		return false;
2789	default:
2790		/*
2791		 * Can only perform callbacks in order.  Since this iclog is not
2792		 * in the DONE_SYNC state, we skip the rest and just try to
2793		 * clean up.
2794		 */
2795		return true;
2796	}
2797}
2798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799STATIC void
2800xlog_state_do_callback(
2801	struct xlog		*log)
2802{
2803	struct xlog_in_core	*iclog;
2804	struct xlog_in_core	*first_iclog;
2805	bool			cycled_icloglock;
2806	bool			ioerror;
2807	int			flushcnt = 0;
2808	int			repeats = 0;
2809
2810	spin_lock(&log->l_icloglock);
2811	do {
2812		/*
2813		 * Scan all iclogs starting with the one pointed to by the
2814		 * log.  Reset this starting point each time the log is
2815		 * unlocked (during callbacks).
2816		 *
2817		 * Keep looping through iclogs until one full pass is made
2818		 * without running any callbacks.
2819		 */
2820		first_iclog = log->l_iclog;
2821		iclog = log->l_iclog;
2822		cycled_icloglock = false;
2823		ioerror = false;
2824		repeats++;
2825
2826		do {
2827			LIST_HEAD(cb_list);
2828
2829			if (xlog_state_iodone_process_iclog(log, iclog,
2830							&ioerror))
2831				break;
2832
2833			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2834			    iclog->ic_state != XLOG_STATE_IOERROR) {
2835				iclog = iclog->ic_next;
2836				continue;
2837			}
2838			list_splice_init(&iclog->ic_callbacks, &cb_list);
2839			spin_unlock(&log->l_icloglock);
2840
2841			trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2842			xlog_cil_process_committed(&cb_list);
2843			trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2844			cycled_icloglock = true;
2845
2846			spin_lock(&log->l_icloglock);
2847			if (XLOG_FORCED_SHUTDOWN(log))
2848				wake_up_all(&iclog->ic_force_wait);
2849			else
2850				xlog_state_clean_iclog(log, iclog);
2851			iclog = iclog->ic_next;
2852		} while (first_iclog != iclog);
2853
2854		if (repeats > 5000) {
2855			flushcnt += repeats;
2856			repeats = 0;
2857			xfs_warn(log->l_mp,
2858				"%s: possible infinite loop (%d iterations)",
2859				__func__, flushcnt);
2860		}
2861	} while (!ioerror && cycled_icloglock);
2862
2863	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2864	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2865		wake_up_all(&log->l_flush_wait);
2866
2867	spin_unlock(&log->l_icloglock);
2868}
2869
2870
2871/*
2872 * Finish transitioning this iclog to the dirty state.
2873 *
2874 * Make sure that we completely execute this routine only when this is
2875 * the last call to the iclog.  There is a good chance that iclog flushes,
2876 * when we reach the end of the physical log, get turned into 2 separate
2877 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2878 * routine.  By using the reference count bwritecnt, we guarantee that only
2879 * the second completion goes through.
2880 *
2881 * Callbacks could take time, so they are done outside the scope of the
2882 * global state machine log lock.
2883 */
2884STATIC void
2885xlog_state_done_syncing(
2886	struct xlog_in_core	*iclog)
2887{
2888	struct xlog		*log = iclog->ic_log;
2889
2890	spin_lock(&log->l_icloglock);
2891	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2892	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2893
2894	/*
2895	 * If we got an error, either on the first buffer, or in the case of
2896	 * split log writes, on the second, we shut down the file system and
2897	 * no iclogs should ever be attempted to be written to disk again.
2898	 */
2899	if (!XLOG_FORCED_SHUTDOWN(log)) {
2900		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2901		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2902	}
2903
2904	/*
2905	 * Someone could be sleeping prior to writing out the next
2906	 * iclog buffer, we wake them all, one will get to do the
2907	 * I/O, the others get to wait for the result.
2908	 */
2909	wake_up_all(&iclog->ic_write_wait);
2910	spin_unlock(&log->l_icloglock);
2911	xlog_state_do_callback(log);
2912}
2913
2914/*
2915 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2916 * sleep.  We wait on the flush queue on the head iclog as that should be
2917 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2918 * we will wait here and all new writes will sleep until a sync completes.
2919 *
2920 * The in-core logs are used in a circular fashion. They are not used
2921 * out-of-order even when an iclog past the head is free.
2922 *
2923 * return:
2924 *	* log_offset where xlog_write() can start writing into the in-core
2925 *		log's data space.
2926 *	* in-core log pointer to which xlog_write() should write.
2927 *	* boolean indicating this is a continued write to an in-core log.
2928 *		If this is the last write, then the in-core log's offset field
2929 *		needs to be incremented, depending on the amount of data which
2930 *		is copied.
2931 */
2932STATIC int
2933xlog_state_get_iclog_space(
2934	struct xlog		*log,
2935	int			len,
2936	struct xlog_in_core	**iclogp,
2937	struct xlog_ticket	*ticket,
2938	int			*continued_write,
2939	int			*logoffsetp)
2940{
2941	int		  log_offset;
2942	xlog_rec_header_t *head;
2943	xlog_in_core_t	  *iclog;
2944
2945restart:
2946	spin_lock(&log->l_icloglock);
2947	if (XLOG_FORCED_SHUTDOWN(log)) {
2948		spin_unlock(&log->l_icloglock);
2949		return -EIO;
2950	}
2951
2952	iclog = log->l_iclog;
2953	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2954		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2955
2956		/* Wait for log writes to have flushed */
2957		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2958		goto restart;
2959	}
2960
2961	head = &iclog->ic_header;
2962
2963	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2964	log_offset = iclog->ic_offset;
2965
2966	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2967
2968	/* On the 1st write to an iclog, figure out lsn.  This works
2969	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2970	 * committing to.  If the offset is set, that's how many blocks
2971	 * must be written.
2972	 */
2973	if (log_offset == 0) {
2974		ticket->t_curr_res -= log->l_iclog_hsize;
2975		xlog_tic_add_region(ticket,
2976				    log->l_iclog_hsize,
2977				    XLOG_REG_TYPE_LRHEADER);
2978		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2979		head->h_lsn = cpu_to_be64(
2980			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2981		ASSERT(log->l_curr_block >= 0);
2982	}
2983
2984	/* If there is enough room to write everything, then do it.  Otherwise,
2985	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2986	 * bit is on, so this will get flushed out.  Don't update ic_offset
2987	 * until you know exactly how many bytes get copied.  Therefore, wait
2988	 * until later to update ic_offset.
2989	 *
2990	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2991	 * can fit into remaining data section.
2992	 */
2993	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2994		int		error = 0;
2995
2996		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997
2998		/*
2999		 * If we are the only one writing to this iclog, sync it to
3000		 * disk.  We need to do an atomic compare and decrement here to
3001		 * avoid racing with concurrent atomic_dec_and_lock() calls in
3002		 * xlog_state_release_iclog() when there is more than one
3003		 * reference to the iclog.
3004		 */
3005		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3006			error = xlog_state_release_iclog(log, iclog, 0);
3007		spin_unlock(&log->l_icloglock);
3008		if (error)
3009			return error;
3010		goto restart;
3011	}
3012
3013	/* Do we have enough room to write the full amount in the remainder
3014	 * of this iclog?  Or must we continue a write on the next iclog and
3015	 * mark this iclog as completely taken?  In the case where we switch
3016	 * iclogs (to mark it taken), this particular iclog will release/sync
3017	 * to disk in xlog_write().
3018	 */
3019	if (len <= iclog->ic_size - iclog->ic_offset) {
3020		*continued_write = 0;
3021		iclog->ic_offset += len;
3022	} else {
3023		*continued_write = 1;
3024		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3025	}
3026	*iclogp = iclog;
3027
3028	ASSERT(iclog->ic_offset <= iclog->ic_size);
3029	spin_unlock(&log->l_icloglock);
3030
3031	*logoffsetp = log_offset;
3032	return 0;
3033}
3034
3035/*
3036 * The first cnt-1 times a ticket goes through here we don't need to move the
3037 * grant write head because the permanent reservation has reserved cnt times the
3038 * unit amount.  Release part of current permanent unit reservation and reset
3039 * current reservation to be one units worth.  Also move grant reservation head
3040 * forward.
3041 */
3042void
3043xfs_log_ticket_regrant(
3044	struct xlog		*log,
3045	struct xlog_ticket	*ticket)
3046{
3047	trace_xfs_log_ticket_regrant(log, ticket);
3048
3049	if (ticket->t_cnt > 0)
3050		ticket->t_cnt--;
3051
3052	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3053					ticket->t_curr_res);
3054	xlog_grant_sub_space(log, &log->l_write_head.grant,
3055					ticket->t_curr_res);
3056	ticket->t_curr_res = ticket->t_unit_res;
3057	xlog_tic_reset_res(ticket);
3058
3059	trace_xfs_log_ticket_regrant_sub(log, ticket);
3060
3061	/* just return if we still have some of the pre-reserved space */
3062	if (!ticket->t_cnt) {
3063		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3064				     ticket->t_unit_res);
3065		trace_xfs_log_ticket_regrant_exit(log, ticket);
3066
3067		ticket->t_curr_res = ticket->t_unit_res;
3068		xlog_tic_reset_res(ticket);
3069	}
3070
3071	xfs_log_ticket_put(ticket);
3072}
3073
3074/*
3075 * Give back the space left from a reservation.
3076 *
3077 * All the information we need to make a correct determination of space left
3078 * is present.  For non-permanent reservations, things are quite easy.  The
3079 * count should have been decremented to zero.  We only need to deal with the
3080 * space remaining in the current reservation part of the ticket.  If the
3081 * ticket contains a permanent reservation, there may be left over space which
3082 * needs to be released.  A count of N means that N-1 refills of the current
3083 * reservation can be done before we need to ask for more space.  The first
3084 * one goes to fill up the first current reservation.  Once we run out of
3085 * space, the count will stay at zero and the only space remaining will be
3086 * in the current reservation field.
3087 */
3088void
3089xfs_log_ticket_ungrant(
3090	struct xlog		*log,
3091	struct xlog_ticket	*ticket)
3092{
3093	int			bytes;
3094
3095	trace_xfs_log_ticket_ungrant(log, ticket);
3096
3097	if (ticket->t_cnt > 0)
3098		ticket->t_cnt--;
3099
3100	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3101
3102	/*
3103	 * If this is a permanent reservation ticket, we may be able to free
3104	 * up more space based on the remaining count.
3105	 */
3106	bytes = ticket->t_curr_res;
3107	if (ticket->t_cnt > 0) {
3108		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3109		bytes += ticket->t_unit_res*ticket->t_cnt;
3110	}
3111
3112	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3113	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3114
3115	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3116
3117	xfs_log_space_wake(log->l_mp);
3118	xfs_log_ticket_put(ticket);
3119}
3120
3121/*
3122 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3123 * the current iclog pointer to the next iclog in the ring.
3124 */
3125STATIC void
3126xlog_state_switch_iclogs(
3127	struct xlog		*log,
3128	struct xlog_in_core	*iclog,
3129	int			eventual_size)
3130{
3131	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3132	assert_spin_locked(&log->l_icloglock);
3133	trace_xlog_iclog_switch(iclog, _RET_IP_);
3134
3135	if (!eventual_size)
3136		eventual_size = iclog->ic_offset;
3137	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3138	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3139	log->l_prev_block = log->l_curr_block;
3140	log->l_prev_cycle = log->l_curr_cycle;
3141
3142	/* roll log?: ic_offset changed later */
3143	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3144
3145	/* Round up to next log-sunit */
3146	if (log->l_iclog_roundoff > BBSIZE) {
3147		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3148		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3149	}
3150
3151	if (log->l_curr_block >= log->l_logBBsize) {
3152		/*
3153		 * Rewind the current block before the cycle is bumped to make
3154		 * sure that the combined LSN never transiently moves forward
3155		 * when the log wraps to the next cycle. This is to support the
3156		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3157		 * other cases should acquire l_icloglock.
3158		 */
3159		log->l_curr_block -= log->l_logBBsize;
3160		ASSERT(log->l_curr_block >= 0);
3161		smp_wmb();
3162		log->l_curr_cycle++;
3163		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3164			log->l_curr_cycle++;
3165	}
3166	ASSERT(iclog == log->l_iclog);
3167	log->l_iclog = iclog->ic_next;
3168}
3169
3170/*
3171 * Force the iclog to disk and check if the iclog has been completed before
3172 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3173 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3174 * If completion has already occurred, tell the caller so that it can avoid an
3175 * unnecessary wait on the iclog.
3176 */
3177static int
3178xlog_force_and_check_iclog(
3179	struct xlog_in_core	*iclog,
3180	bool			*completed)
3181{
3182	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3183	int			error;
3184
3185	*completed = false;
3186	error = xlog_force_iclog(iclog);
3187	if (error)
3188		return error;
3189
3190	/*
3191	 * If the iclog has already been completed and reused the header LSN
3192	 * will have been rewritten by completion
3193	 */
3194	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3195		*completed = true;
3196	return 0;
3197}
3198
3199/*
3200 * Write out all data in the in-core log as of this exact moment in time.
3201 *
3202 * Data may be written to the in-core log during this call.  However,
3203 * we don't guarantee this data will be written out.  A change from past
3204 * implementation means this routine will *not* write out zero length LRs.
3205 *
3206 * Basically, we try and perform an intelligent scan of the in-core logs.
3207 * If we determine there is no flushable data, we just return.  There is no
3208 * flushable data if:
3209 *
3210 *	1. the current iclog is active and has no data; the previous iclog
3211 *		is in the active or dirty state.
3212 *	2. the current iclog is drity, and the previous iclog is in the
3213 *		active or dirty state.
3214 *
3215 * We may sleep if:
3216 *
3217 *	1. the current iclog is not in the active nor dirty state.
3218 *	2. the current iclog dirty, and the previous iclog is not in the
3219 *		active nor dirty state.
3220 *	3. the current iclog is active, and there is another thread writing
3221 *		to this particular iclog.
3222 *	4. a) the current iclog is active and has no other writers
3223 *	   b) when we return from flushing out this iclog, it is still
3224 *		not in the active nor dirty state.
3225 */
3226int
3227xfs_log_force(
3228	struct xfs_mount	*mp,
3229	uint			flags)
3230{
3231	struct xlog		*log = mp->m_log;
3232	struct xlog_in_core	*iclog;
3233
3234	XFS_STATS_INC(mp, xs_log_force);
3235	trace_xfs_log_force(mp, 0, _RET_IP_);
3236
3237	xlog_cil_force(log);
3238
3239	spin_lock(&log->l_icloglock);
3240	iclog = log->l_iclog;
3241	if (iclog->ic_state == XLOG_STATE_IOERROR)
3242		goto out_error;
3243
 
3244	trace_xlog_iclog_force(iclog, _RET_IP_);
3245
3246	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3247	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3248	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3249		/*
3250		 * If the head is dirty or (active and empty), then we need to
3251		 * look at the previous iclog.
3252		 *
3253		 * If the previous iclog is active or dirty we are done.  There
3254		 * is nothing to sync out. Otherwise, we attach ourselves to the
3255		 * previous iclog and go to sleep.
3256		 */
3257		iclog = iclog->ic_prev;
3258	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3259		if (atomic_read(&iclog->ic_refcnt) == 0) {
3260			/* We have exclusive access to this iclog. */
3261			bool	completed;
3262
3263			if (xlog_force_and_check_iclog(iclog, &completed))
3264				goto out_error;
3265
3266			if (completed)
3267				goto out_unlock;
3268		} else {
3269			/*
3270			 * Someone else is still writing to this iclog, so we
3271			 * need to ensure that when they release the iclog it
3272			 * gets synced immediately as we may be waiting on it.
3273			 */
3274			xlog_state_switch_iclogs(log, iclog, 0);
3275		}
3276	}
3277
3278	/*
3279	 * The iclog we are about to wait on may contain the checkpoint pushed
3280	 * by the above xlog_cil_force() call, but it may not have been pushed
3281	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3282	 * are flushed when this iclog is written.
3283	 */
3284	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3285		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3286
3287	if (flags & XFS_LOG_SYNC)
3288		return xlog_wait_on_iclog(iclog);
3289out_unlock:
3290	spin_unlock(&log->l_icloglock);
3291	return 0;
3292out_error:
3293	spin_unlock(&log->l_icloglock);
3294	return -EIO;
3295}
3296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297static int
3298xlog_force_lsn(
3299	struct xlog		*log,
3300	xfs_lsn_t		lsn,
3301	uint			flags,
3302	int			*log_flushed,
3303	bool			already_slept)
3304{
3305	struct xlog_in_core	*iclog;
3306	bool			completed;
3307
3308	spin_lock(&log->l_icloglock);
3309	iclog = log->l_iclog;
3310	if (iclog->ic_state == XLOG_STATE_IOERROR)
3311		goto out_error;
3312
 
3313	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3314		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3315		iclog = iclog->ic_next;
3316		if (iclog == log->l_iclog)
3317			goto out_unlock;
3318	}
3319
3320	switch (iclog->ic_state) {
3321	case XLOG_STATE_ACTIVE:
3322		/*
3323		 * We sleep here if we haven't already slept (e.g. this is the
3324		 * first time we've looked at the correct iclog buf) and the
3325		 * buffer before us is going to be sync'ed.  The reason for this
3326		 * is that if we are doing sync transactions here, by waiting
3327		 * for the previous I/O to complete, we can allow a few more
3328		 * transactions into this iclog before we close it down.
3329		 *
3330		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3331		 * refcnt so we can release the log (which drops the ref count).
3332		 * The state switch keeps new transaction commits from using
3333		 * this buffer.  When the current commits finish writing into
3334		 * the buffer, the refcount will drop to zero and the buffer
3335		 * will go out then.
3336		 */
3337		if (!already_slept &&
3338		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3339		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3340			xlog_wait(&iclog->ic_prev->ic_write_wait,
3341					&log->l_icloglock);
3342			return -EAGAIN;
3343		}
3344		if (xlog_force_and_check_iclog(iclog, &completed))
3345			goto out_error;
3346		if (log_flushed)
3347			*log_flushed = 1;
3348		if (completed)
3349			goto out_unlock;
3350		break;
3351	case XLOG_STATE_WANT_SYNC:
3352		/*
3353		 * This iclog may contain the checkpoint pushed by the
3354		 * xlog_cil_force_seq() call, but there are other writers still
3355		 * accessing it so it hasn't been pushed to disk yet. Like the
3356		 * ACTIVE case above, we need to make sure caches are flushed
3357		 * when this iclog is written.
3358		 */
3359		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3360		break;
3361	default:
3362		/*
3363		 * The entire checkpoint was written by the CIL force and is on
3364		 * its way to disk already. It will be stable when it
3365		 * completes, so we don't need to manipulate caches here at all.
3366		 * We just need to wait for completion if necessary.
3367		 */
3368		break;
3369	}
3370
3371	if (flags & XFS_LOG_SYNC)
3372		return xlog_wait_on_iclog(iclog);
3373out_unlock:
3374	spin_unlock(&log->l_icloglock);
3375	return 0;
3376out_error:
3377	spin_unlock(&log->l_icloglock);
3378	return -EIO;
3379}
3380
3381/*
3382 * Force the in-core log to disk for a specific LSN.
3383 *
3384 * Find in-core log with lsn.
3385 *	If it is in the DIRTY state, just return.
3386 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3387 *		state and go to sleep or return.
3388 *	If it is in any other state, go to sleep or return.
3389 *
3390 * Synchronous forces are implemented with a wait queue.  All callers trying
3391 * to force a given lsn to disk must wait on the queue attached to the
3392 * specific in-core log.  When given in-core log finally completes its write
3393 * to disk, that thread will wake up all threads waiting on the queue.
 
3394 */
3395int
3396xfs_log_force_seq(
3397	struct xfs_mount	*mp,
3398	xfs_csn_t		seq,
3399	uint			flags,
3400	int			*log_flushed)
3401{
3402	struct xlog		*log = mp->m_log;
3403	xfs_lsn_t		lsn;
3404	int			ret;
3405	ASSERT(seq != 0);
3406
3407	XFS_STATS_INC(mp, xs_log_force);
3408	trace_xfs_log_force(mp, seq, _RET_IP_);
3409
3410	lsn = xlog_cil_force_seq(log, seq);
3411	if (lsn == NULLCOMMITLSN)
3412		return 0;
3413
3414	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3415	if (ret == -EAGAIN) {
3416		XFS_STATS_INC(mp, xs_log_force_sleep);
3417		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3418	}
3419	return ret;
3420}
3421
3422/*
3423 * Free a used ticket when its refcount falls to zero.
3424 */
3425void
3426xfs_log_ticket_put(
3427	xlog_ticket_t	*ticket)
3428{
3429	ASSERT(atomic_read(&ticket->t_ref) > 0);
3430	if (atomic_dec_and_test(&ticket->t_ref))
3431		kmem_cache_free(xfs_log_ticket_zone, ticket);
3432}
3433
3434xlog_ticket_t *
3435xfs_log_ticket_get(
3436	xlog_ticket_t	*ticket)
3437{
3438	ASSERT(atomic_read(&ticket->t_ref) > 0);
3439	atomic_inc(&ticket->t_ref);
3440	return ticket;
3441}
3442
3443/*
3444 * Figure out the total log space unit (in bytes) that would be
3445 * required for a log ticket.
3446 */
3447static int
3448xlog_calc_unit_res(
3449	struct xlog		*log,
3450	int			unit_bytes)
 
3451{
3452	int			iclog_space;
3453	uint			num_headers;
3454
3455	/*
3456	 * Permanent reservations have up to 'cnt'-1 active log operations
3457	 * in the log.  A unit in this case is the amount of space for one
3458	 * of these log operations.  Normal reservations have a cnt of 1
3459	 * and their unit amount is the total amount of space required.
3460	 *
3461	 * The following lines of code account for non-transaction data
3462	 * which occupy space in the on-disk log.
3463	 *
3464	 * Normal form of a transaction is:
3465	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3466	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3467	 *
3468	 * We need to account for all the leadup data and trailer data
3469	 * around the transaction data.
3470	 * And then we need to account for the worst case in terms of using
3471	 * more space.
3472	 * The worst case will happen if:
3473	 * - the placement of the transaction happens to be such that the
3474	 *   roundoff is at its maximum
3475	 * - the transaction data is synced before the commit record is synced
3476	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3477	 *   Therefore the commit record is in its own Log Record.
3478	 *   This can happen as the commit record is called with its
3479	 *   own region to xlog_write().
3480	 *   This then means that in the worst case, roundoff can happen for
3481	 *   the commit-rec as well.
3482	 *   The commit-rec is smaller than padding in this scenario and so it is
3483	 *   not added separately.
3484	 */
3485
3486	/* for trans header */
3487	unit_bytes += sizeof(xlog_op_header_t);
3488	unit_bytes += sizeof(xfs_trans_header_t);
3489
3490	/* for start-rec */
3491	unit_bytes += sizeof(xlog_op_header_t);
3492
3493	/*
3494	 * for LR headers - the space for data in an iclog is the size minus
3495	 * the space used for the headers. If we use the iclog size, then we
3496	 * undercalculate the number of headers required.
3497	 *
3498	 * Furthermore - the addition of op headers for split-recs might
3499	 * increase the space required enough to require more log and op
3500	 * headers, so take that into account too.
3501	 *
3502	 * IMPORTANT: This reservation makes the assumption that if this
3503	 * transaction is the first in an iclog and hence has the LR headers
3504	 * accounted to it, then the remaining space in the iclog is
3505	 * exclusively for this transaction.  i.e. if the transaction is larger
3506	 * than the iclog, it will be the only thing in that iclog.
3507	 * Fundamentally, this means we must pass the entire log vector to
3508	 * xlog_write to guarantee this.
3509	 */
3510	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3511	num_headers = howmany(unit_bytes, iclog_space);
3512
3513	/* for split-recs - ophdrs added when data split over LRs */
3514	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3515
3516	/* add extra header reservations if we overrun */
3517	while (!num_headers ||
3518	       howmany(unit_bytes, iclog_space) > num_headers) {
3519		unit_bytes += sizeof(xlog_op_header_t);
3520		num_headers++;
3521	}
3522	unit_bytes += log->l_iclog_hsize * num_headers;
3523
3524	/* for commit-rec LR header - note: padding will subsume the ophdr */
3525	unit_bytes += log->l_iclog_hsize;
3526
3527	/* roundoff padding for transaction data and one for commit record */
3528	unit_bytes += 2 * log->l_iclog_roundoff;
3529
 
 
3530	return unit_bytes;
3531}
3532
3533int
3534xfs_log_calc_unit_res(
3535	struct xfs_mount	*mp,
3536	int			unit_bytes)
3537{
3538	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3539}
3540
3541/*
3542 * Allocate and initialise a new log ticket.
3543 */
3544struct xlog_ticket *
3545xlog_ticket_alloc(
3546	struct xlog		*log,
3547	int			unit_bytes,
3548	int			cnt,
3549	char			client,
3550	bool			permanent)
3551{
3552	struct xlog_ticket	*tic;
3553	int			unit_res;
3554
3555	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
 
3556
3557	unit_res = xlog_calc_unit_res(log, unit_bytes);
3558
3559	atomic_set(&tic->t_ref, 1);
3560	tic->t_task		= current;
3561	INIT_LIST_HEAD(&tic->t_queue);
3562	tic->t_unit_res		= unit_res;
3563	tic->t_curr_res		= unit_res;
3564	tic->t_cnt		= cnt;
3565	tic->t_ocnt		= cnt;
3566	tic->t_tid		= prandom_u32();
3567	tic->t_clientid		= client;
3568	if (permanent)
3569		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3570
3571	xlog_tic_reset_res(tic);
3572
3573	return tic;
3574}
3575
3576#if defined(DEBUG)
3577/*
3578 * Make sure that the destination ptr is within the valid data region of
3579 * one of the iclogs.  This uses backup pointers stored in a different
3580 * part of the log in case we trash the log structure.
3581 */
3582STATIC void
3583xlog_verify_dest_ptr(
3584	struct xlog	*log,
3585	void		*ptr)
3586{
3587	int i;
3588	int good_ptr = 0;
3589
3590	for (i = 0; i < log->l_iclog_bufs; i++) {
3591		if (ptr >= log->l_iclog_bak[i] &&
3592		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3593			good_ptr++;
3594	}
3595
3596	if (!good_ptr)
3597		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3598}
3599
3600/*
3601 * Check to make sure the grant write head didn't just over lap the tail.  If
3602 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3603 * the cycles differ by exactly one and check the byte count.
3604 *
3605 * This check is run unlocked, so can give false positives. Rather than assert
3606 * on failures, use a warn-once flag and a panic tag to allow the admin to
3607 * determine if they want to panic the machine when such an error occurs. For
3608 * debug kernels this will have the same effect as using an assert but, unlinke
3609 * an assert, it can be turned off at runtime.
3610 */
3611STATIC void
3612xlog_verify_grant_tail(
3613	struct xlog	*log)
3614{
3615	int		tail_cycle, tail_blocks;
3616	int		cycle, space;
3617
3618	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3619	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3620	if (tail_cycle != cycle) {
3621		if (cycle - 1 != tail_cycle &&
3622		    !(log->l_flags & XLOG_TAIL_WARN)) {
3623			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3624				"%s: cycle - 1 != tail_cycle", __func__);
3625			log->l_flags |= XLOG_TAIL_WARN;
3626		}
3627
3628		if (space > BBTOB(tail_blocks) &&
3629		    !(log->l_flags & XLOG_TAIL_WARN)) {
3630			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3631				"%s: space > BBTOB(tail_blocks)", __func__);
3632			log->l_flags |= XLOG_TAIL_WARN;
3633		}
3634	}
3635}
3636
3637/* check if it will fit */
3638STATIC void
3639xlog_verify_tail_lsn(
3640	struct xlog		*log,
3641	struct xlog_in_core	*iclog)
3642{
3643	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3644	int		blocks;
3645
3646    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3647	blocks =
3648	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3649	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3650		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3651    } else {
3652	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
 
 
 
 
3653
3654	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
 
 
 
 
 
3655		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
 
 
 
3656
3657	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3658	if (blocks < BTOBB(iclog->ic_offset) + 1)
3659		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3660    }
 
3661}
3662
3663/*
3664 * Perform a number of checks on the iclog before writing to disk.
3665 *
3666 * 1. Make sure the iclogs are still circular
3667 * 2. Make sure we have a good magic number
3668 * 3. Make sure we don't have magic numbers in the data
3669 * 4. Check fields of each log operation header for:
3670 *	A. Valid client identifier
3671 *	B. tid ptr value falls in valid ptr space (user space code)
3672 *	C. Length in log record header is correct according to the
3673 *		individual operation headers within record.
3674 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3675 *	log, check the preceding blocks of the physical log to make sure all
3676 *	the cycle numbers agree with the current cycle number.
3677 */
3678STATIC void
3679xlog_verify_iclog(
3680	struct xlog		*log,
3681	struct xlog_in_core	*iclog,
3682	int			count)
3683{
3684	xlog_op_header_t	*ophead;
3685	xlog_in_core_t		*icptr;
3686	xlog_in_core_2_t	*xhdr;
3687	void			*base_ptr, *ptr, *p;
3688	ptrdiff_t		field_offset;
3689	uint8_t			clientid;
3690	int			len, i, j, k, op_len;
3691	int			idx;
3692
3693	/* check validity of iclog pointers */
3694	spin_lock(&log->l_icloglock);
3695	icptr = log->l_iclog;
3696	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3697		ASSERT(icptr);
3698
3699	if (icptr != log->l_iclog)
3700		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3701	spin_unlock(&log->l_icloglock);
3702
3703	/* check log magic numbers */
3704	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3705		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3706
3707	base_ptr = ptr = &iclog->ic_header;
3708	p = &iclog->ic_header;
3709	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3710		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3711			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3712				__func__);
3713	}
3714
3715	/* check fields */
3716	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3717	base_ptr = ptr = iclog->ic_datap;
3718	ophead = ptr;
3719	xhdr = iclog->ic_data;
3720	for (i = 0; i < len; i++) {
3721		ophead = ptr;
3722
3723		/* clientid is only 1 byte */
3724		p = &ophead->oh_clientid;
3725		field_offset = p - base_ptr;
3726		if (field_offset & 0x1ff) {
3727			clientid = ophead->oh_clientid;
3728		} else {
3729			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3730			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3731				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3732				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3733				clientid = xlog_get_client_id(
3734					xhdr[j].hic_xheader.xh_cycle_data[k]);
3735			} else {
3736				clientid = xlog_get_client_id(
3737					iclog->ic_header.h_cycle_data[idx]);
3738			}
3739		}
3740		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3741			xfs_warn(log->l_mp,
3742				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3743				__func__, clientid, ophead,
3744				(unsigned long)field_offset);
 
3745
3746		/* check length */
3747		p = &ophead->oh_len;
3748		field_offset = p - base_ptr;
3749		if (field_offset & 0x1ff) {
3750			op_len = be32_to_cpu(ophead->oh_len);
3751		} else {
3752			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3753				    (uintptr_t)iclog->ic_datap);
3754			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3755				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3756				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3757				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3758			} else {
3759				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3760			}
3761		}
3762		ptr += sizeof(xlog_op_header_t) + op_len;
3763	}
3764}
3765#endif
3766
3767/*
3768 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3769 */
3770STATIC int
3771xlog_state_ioerror(
3772	struct xlog	*log)
3773{
3774	xlog_in_core_t	*iclog, *ic;
3775
3776	iclog = log->l_iclog;
3777	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3778		/*
3779		 * Mark all the incore logs IOERROR.
3780		 * From now on, no log flushes will result.
3781		 */
3782		ic = iclog;
3783		do {
3784			ic->ic_state = XLOG_STATE_IOERROR;
3785			ic = ic->ic_next;
3786		} while (ic != iclog);
3787		return 0;
3788	}
3789	/*
3790	 * Return non-zero, if state transition has already happened.
3791	 */
3792	return 1;
3793}
3794
3795/*
3796 * This is called from xfs_force_shutdown, when we're forcibly
3797 * shutting down the filesystem, typically because of an IO error.
3798 * Our main objectives here are to make sure that:
3799 *	a. if !logerror, flush the logs to disk. Anything modified
3800 *	   after this is ignored.
3801 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3802 *	   parties to find out, 'atomically'.
3803 *	c. those who're sleeping on log reservations, pinned objects and
3804 *	    other resources get woken up, and be told the bad news.
3805 *	d. nothing new gets queued up after (b) and (c) are done.
3806 *
3807 * Note: for the !logerror case we need to flush the regions held in memory out
3808 * to disk first. This needs to be done before the log is marked as shutdown,
3809 * otherwise the iclog writes will fail.
3810 */
3811int
3812xfs_log_force_umount(
3813	struct xfs_mount	*mp,
3814	int			logerror)
3815{
3816	struct xlog	*log;
3817	int		retval;
3818
3819	log = mp->m_log;
 
3820
3821	/*
3822	 * If this happens during log recovery, don't worry about
3823	 * locking; the log isn't open for business yet.
 
 
 
3824	 */
3825	if (!log ||
3826	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3827		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3828		if (mp->m_sb_bp)
3829			mp->m_sb_bp->b_flags |= XBF_DONE;
3830		return 0;
3831	}
3832
3833	/*
3834	 * Somebody could've already done the hard work for us.
3835	 * No need to get locks for this.
3836	 */
3837	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3838		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3839		return 1;
3840	}
3841
3842	/*
3843	 * Flush all the completed transactions to disk before marking the log
3844	 * being shut down. We need to do it in this order to ensure that
3845	 * completed operations are safely on disk before we shut down, and that
3846	 * we don't have to issue any buffer IO after the shutdown flags are set
3847	 * to guarantee this.
3848	 */
3849	if (!logerror)
3850		xfs_log_force(mp, XFS_LOG_SYNC);
 
 
 
 
 
 
 
 
3851
3852	/*
3853	 * mark the filesystem and the as in a shutdown state and wake
3854	 * everybody up to tell them the bad news.
 
 
 
 
 
 
 
3855	 */
3856	spin_lock(&log->l_icloglock);
3857	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3858	if (mp->m_sb_bp)
3859		mp->m_sb_bp->b_flags |= XBF_DONE;
 
 
 
3860
3861	/*
3862	 * Mark the log and the iclogs with IO error flags to prevent any
3863	 * further log IO from being issued or completed.
3864	 */
3865	log->l_flags |= XLOG_IO_ERROR;
3866	retval = xlog_state_ioerror(log);
3867	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
3868
3869	/*
3870	 * We don't want anybody waiting for log reservations after this. That
3871	 * means we have to wake up everybody queued up on reserveq as well as
3872	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3873	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3874	 * action is protected by the grant locks.
3875	 */
3876	xlog_grant_head_wake_all(&log->l_reserve_head);
3877	xlog_grant_head_wake_all(&log->l_write_head);
3878
3879	/*
3880	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3881	 * as if the log writes were completed. The abort handling in the log
3882	 * item committed callback functions will do this again under lock to
3883	 * avoid races.
3884	 */
3885	spin_lock(&log->l_cilp->xc_push_lock);
 
3886	wake_up_all(&log->l_cilp->xc_commit_wait);
3887	spin_unlock(&log->l_cilp->xc_push_lock);
3888	xlog_state_do_callback(log);
3889
3890	/* return non-zero if log IOERROR transition had already happened */
3891	return retval;
 
 
 
 
3892}
3893
3894STATIC int
3895xlog_iclogs_empty(
3896	struct xlog	*log)
3897{
3898	xlog_in_core_t	*iclog;
3899
3900	iclog = log->l_iclog;
3901	do {
3902		/* endianness does not matter here, zero is zero in
3903		 * any language.
3904		 */
3905		if (iclog->ic_header.h_num_logops)
3906			return 0;
3907		iclog = iclog->ic_next;
3908	} while (iclog != log->l_iclog);
3909	return 1;
3910}
3911
3912/*
3913 * Verify that an LSN stamped into a piece of metadata is valid. This is
3914 * intended for use in read verifiers on v5 superblocks.
3915 */
3916bool
3917xfs_log_check_lsn(
3918	struct xfs_mount	*mp,
3919	xfs_lsn_t		lsn)
3920{
3921	struct xlog		*log = mp->m_log;
3922	bool			valid;
3923
3924	/*
3925	 * norecovery mode skips mount-time log processing and unconditionally
3926	 * resets the in-core LSN. We can't validate in this mode, but
3927	 * modifications are not allowed anyways so just return true.
3928	 */
3929	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3930		return true;
3931
3932	/*
3933	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3934	 * handled by recovery and thus safe to ignore here.
3935	 */
3936	if (lsn == NULLCOMMITLSN)
3937		return true;
3938
3939	valid = xlog_valid_lsn(mp->m_log, lsn);
3940
3941	/* warn the user about what's gone wrong before verifier failure */
3942	if (!valid) {
3943		spin_lock(&log->l_icloglock);
3944		xfs_warn(mp,
3945"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3946"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3947			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3948			 log->l_curr_cycle, log->l_curr_block);
3949		spin_unlock(&log->l_icloglock);
3950	}
3951
3952	return valid;
3953}
3954
3955bool
3956xfs_log_in_recovery(
3957	struct xfs_mount	*mp)
3958{
3959	struct xlog		*log = mp->m_log;
3960
3961	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3962}