Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24struct kmem_cache	*xfs_log_ticket_cache;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
 
 
 
 
  33STATIC void
  34xlog_dealloc_log(
  35	struct xlog		*log);
  36
  37/* local state machine functions */
  38STATIC void xlog_state_done_syncing(
  39	struct xlog_in_core	*iclog);
  40STATIC void xlog_state_do_callback(
  41	struct xlog		*log);
  42STATIC int
  43xlog_state_get_iclog_space(
  44	struct xlog		*log,
  45	int			len,
  46	struct xlog_in_core	**iclog,
  47	struct xlog_ticket	*ticket,
  48	int			*logoffsetp);
  49STATIC void
 
 
 
 
  50xlog_sync(
  51	struct xlog		*log,
  52	struct xlog_in_core	*iclog,
  53	struct xlog_ticket	*ticket);
  54#if defined(DEBUG)
  55STATIC void
 
 
 
  56xlog_verify_iclog(
  57	struct xlog		*log,
  58	struct xlog_in_core	*iclog,
  59	int			count);
  60STATIC void
  61xlog_verify_tail_lsn(
  62	struct xlog		*log,
  63	struct xlog_in_core	*iclog);
  64#else
 
  65#define xlog_verify_iclog(a,b,c)
  66#define xlog_verify_tail_lsn(a,b)
  67#endif
  68
  69STATIC int
  70xlog_iclogs_empty(
  71	struct xlog		*log);
  72
  73static int
  74xfs_log_cover(struct xfs_mount *);
  75
  76/*
  77 * We need to make sure the buffer pointer returned is naturally aligned for the
  78 * biggest basic data type we put into it. We have already accounted for this
  79 * padding when sizing the buffer.
  80 *
  81 * However, this padding does not get written into the log, and hence we have to
  82 * track the space used by the log vectors separately to prevent log space hangs
  83 * due to inaccurate accounting (i.e. a leak) of the used log space through the
  84 * CIL context ticket.
  85 *
  86 * We also add space for the xlog_op_header that describes this region in the
  87 * log. This prepends the data region we return to the caller to copy their data
  88 * into, so do all the static initialisation of the ophdr now. Because the ophdr
  89 * is not 8 byte aligned, we have to be careful to ensure that we align the
  90 * start of the buffer such that the region we return to the call is 8 byte
  91 * aligned and packed against the tail of the ophdr.
  92 */
  93void *
  94xlog_prepare_iovec(
  95	struct xfs_log_vec	*lv,
  96	struct xfs_log_iovec	**vecp,
  97	uint			type)
  98{
  99	struct xfs_log_iovec	*vec = *vecp;
 100	struct xlog_op_header	*oph;
 101	uint32_t		len;
 102	void			*buf;
 103
 104	if (vec) {
 105		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
 106		vec++;
 107	} else {
 108		vec = &lv->lv_iovecp[0];
 109	}
 110
 111	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
 112	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
 113		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
 114					sizeof(struct xlog_op_header);
 115	}
 116
 117	vec->i_type = type;
 118	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
 119
 120	oph = vec->i_addr;
 121	oph->oh_clientid = XFS_TRANSACTION;
 122	oph->oh_res2 = 0;
 123	oph->oh_flags = 0;
 124
 125	buf = vec->i_addr + sizeof(struct xlog_op_header);
 126	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
 127
 128	*vecp = vec;
 129	return buf;
 130}
 131
 132static inline void
 133xlog_grant_sub_space(
 134	struct xlog_grant_head	*head,
 135	int64_t			bytes)
 
 136{
 137	atomic64_sub(bytes, &head->grant);
 138}
 139
 140static inline void
 141xlog_grant_add_space(
 142	struct xlog_grant_head	*head,
 143	int64_t			bytes)
 144{
 145	atomic64_add(bytes, &head->grant);
 
 
 
 
 
 
 
 
 
 146}
 147
 148static void
 149xlog_grant_head_init(
 150	struct xlog_grant_head	*head)
 
 
 151{
 152	atomic64_set(&head->grant, 0);
 153	INIT_LIST_HEAD(&head->waiters);
 154	spin_lock_init(&head->lock);
 155}
 156
 157void
 158xlog_grant_return_space(
 159	struct xlog	*log,
 160	xfs_lsn_t	old_head,
 161	xfs_lsn_t	new_head)
 162{
 163	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
 
 
 
 
 
 
 164
 165	xlog_grant_sub_space(&log->l_reserve_head, diff);
 166	xlog_grant_sub_space(&log->l_write_head, diff);
 
 
 167}
 168
 169/*
 170 * Return the space in the log between the tail and the head.  In the case where
 171 * we have overrun available reservation space, return 0. The memory barrier
 172 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
 173 * vs tail space updates are seen in the correct order and hence avoid
 174 * transients as space is transferred from the grant heads to the AIL on commit
 175 * completion.
 176 */
 177static uint64_t
 178xlog_grant_space_left(
 179	struct xlog		*log,
 180	struct xlog_grant_head	*head)
 181{
 182	int64_t			free_bytes;
 183
 184	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
 185	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
 186			atomic64_read(&head->grant);
 187	if (free_bytes > 0)
 188		return free_bytes;
 189	return 0;
 190}
 191
 192STATIC void
 193xlog_grant_head_wake_all(
 194	struct xlog_grant_head	*head)
 195{
 196	struct xlog_ticket	*tic;
 197
 198	spin_lock(&head->lock);
 199	list_for_each_entry(tic, &head->waiters, t_queue)
 200		wake_up_process(tic->t_task);
 201	spin_unlock(&head->lock);
 202}
 203
 204static inline int
 205xlog_ticket_reservation(
 206	struct xlog		*log,
 207	struct xlog_grant_head	*head,
 208	struct xlog_ticket	*tic)
 209{
 210	if (head == &log->l_write_head) {
 211		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 212		return tic->t_unit_res;
 213	}
 214
 215	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 216		return tic->t_unit_res * tic->t_cnt;
 217
 218	return tic->t_unit_res;
 219}
 220
 221STATIC bool
 222xlog_grant_head_wake(
 223	struct xlog		*log,
 224	struct xlog_grant_head	*head,
 225	int			*free_bytes)
 226{
 227	struct xlog_ticket	*tic;
 228	int			need_bytes;
 
 229
 230	list_for_each_entry(tic, &head->waiters, t_queue) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231		need_bytes = xlog_ticket_reservation(log, head, tic);
 232		if (*free_bytes < need_bytes)
 
 
 233			return false;
 
 234
 235		*free_bytes -= need_bytes;
 236		trace_xfs_log_grant_wake_up(log, tic);
 237		wake_up_process(tic->t_task);
 
 238	}
 239
 240	return true;
 241}
 242
 243STATIC int
 244xlog_grant_head_wait(
 245	struct xlog		*log,
 246	struct xlog_grant_head	*head,
 247	struct xlog_ticket	*tic,
 248	int			need_bytes) __releases(&head->lock)
 249					    __acquires(&head->lock)
 250{
 251	list_add_tail(&tic->t_queue, &head->waiters);
 252
 253	do {
 254		if (xlog_is_shutdown(log))
 255			goto shutdown;
 
 256
 257		__set_current_state(TASK_UNINTERRUPTIBLE);
 258		spin_unlock(&head->lock);
 259
 260		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 261
 262		/* Push on the AIL to free up all the log space. */
 263		xfs_ail_push_all(log->l_ailp);
 264
 265		trace_xfs_log_grant_sleep(log, tic);
 266		schedule();
 267		trace_xfs_log_grant_wake(log, tic);
 268
 269		spin_lock(&head->lock);
 270		if (xlog_is_shutdown(log))
 271			goto shutdown;
 272	} while (xlog_grant_space_left(log, head) < need_bytes);
 273
 274	list_del_init(&tic->t_queue);
 275	return 0;
 276shutdown:
 277	list_del_init(&tic->t_queue);
 278	return -EIO;
 279}
 280
 281/*
 282 * Atomically get the log space required for a log ticket.
 283 *
 284 * Once a ticket gets put onto head->waiters, it will only return after the
 285 * needed reservation is satisfied.
 286 *
 287 * This function is structured so that it has a lock free fast path. This is
 288 * necessary because every new transaction reservation will come through this
 289 * path. Hence any lock will be globally hot if we take it unconditionally on
 290 * every pass.
 291 *
 292 * As tickets are only ever moved on and off head->waiters under head->lock, we
 293 * only need to take that lock if we are going to add the ticket to the queue
 294 * and sleep. We can avoid taking the lock if the ticket was never added to
 295 * head->waiters because the t_queue list head will be empty and we hold the
 296 * only reference to it so it can safely be checked unlocked.
 297 */
 298STATIC int
 299xlog_grant_head_check(
 300	struct xlog		*log,
 301	struct xlog_grant_head	*head,
 302	struct xlog_ticket	*tic,
 303	int			*need_bytes)
 304{
 305	int			free_bytes;
 306	int			error = 0;
 307
 308	ASSERT(!xlog_in_recovery(log));
 309
 310	/*
 311	 * If there are other waiters on the queue then give them a chance at
 312	 * logspace before us.  Wake up the first waiters, if we do not wake
 313	 * up all the waiters then go to sleep waiting for more free space,
 314	 * otherwise try to get some space for this transaction.
 315	 */
 316	*need_bytes = xlog_ticket_reservation(log, head, tic);
 317	free_bytes = xlog_grant_space_left(log, head);
 318	if (!list_empty_careful(&head->waiters)) {
 319		spin_lock(&head->lock);
 320		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 321		    free_bytes < *need_bytes) {
 322			error = xlog_grant_head_wait(log, head, tic,
 323						     *need_bytes);
 324		}
 325		spin_unlock(&head->lock);
 326	} else if (free_bytes < *need_bytes) {
 327		spin_lock(&head->lock);
 328		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 329		spin_unlock(&head->lock);
 330	}
 331
 332	return error;
 333}
 334
 335bool
 336xfs_log_writable(
 337	struct xfs_mount	*mp)
 338{
 339	/*
 340	 * Do not write to the log on norecovery mounts, if the data or log
 341	 * devices are read-only, or if the filesystem is shutdown. Read-only
 342	 * mounts allow internal writes for log recovery and unmount purposes,
 343	 * so don't restrict that case.
 344	 */
 345	if (xfs_has_norecovery(mp))
 346		return false;
 347	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 348		return false;
 349	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 350		return false;
 351	if (xlog_is_shutdown(mp->m_log))
 352		return false;
 353	return true;
 354}
 355
 356/*
 357 * Replenish the byte reservation required by moving the grant write head.
 358 */
 359int
 360xfs_log_regrant(
 361	struct xfs_mount	*mp,
 362	struct xlog_ticket	*tic)
 363{
 364	struct xlog		*log = mp->m_log;
 365	int			need_bytes;
 366	int			error = 0;
 367
 368	if (xlog_is_shutdown(log))
 369		return -EIO;
 370
 371	XFS_STATS_INC(mp, xs_try_logspace);
 372
 373	/*
 374	 * This is a new transaction on the ticket, so we need to change the
 375	 * transaction ID so that the next transaction has a different TID in
 376	 * the log. Just add one to the existing tid so that we can see chains
 377	 * of rolling transactions in the log easily.
 378	 */
 379	tic->t_tid++;
 
 
 
 380	tic->t_curr_res = tic->t_unit_res;
 381	if (tic->t_cnt > 0)
 382		return 0;
 383
 384	trace_xfs_log_regrant(log, tic);
 385
 386	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 387				      &need_bytes);
 388	if (error)
 389		goto out_error;
 390
 391	xlog_grant_add_space(&log->l_write_head, need_bytes);
 392	trace_xfs_log_regrant_exit(log, tic);
 
 393	return 0;
 394
 395out_error:
 396	/*
 397	 * If we are failing, make sure the ticket doesn't have any current
 398	 * reservations.  We don't want to add this back when the ticket/
 399	 * transaction gets cancelled.
 400	 */
 401	tic->t_curr_res = 0;
 402	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 403	return error;
 404}
 405
 406/*
 407 * Reserve log space and return a ticket corresponding to the reservation.
 408 *
 409 * Each reservation is going to reserve extra space for a log record header.
 410 * When writes happen to the on-disk log, we don't subtract the length of the
 411 * log record header from any reservation.  By wasting space in each
 412 * reservation, we prevent over allocation problems.
 413 */
 414int
 415xfs_log_reserve(
 416	struct xfs_mount	*mp,
 417	int			unit_bytes,
 418	int			cnt,
 419	struct xlog_ticket	**ticp,
 420	bool			permanent)
 421{
 422	struct xlog		*log = mp->m_log;
 423	struct xlog_ticket	*tic;
 424	int			need_bytes;
 425	int			error = 0;
 426
 427	if (xlog_is_shutdown(log))
 428		return -EIO;
 429
 430	XFS_STATS_INC(mp, xs_try_logspace);
 431
 432	ASSERT(*ticp == NULL);
 433	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
 434	*ticp = tic;
 
 
 
 
 435	trace_xfs_log_reserve(log, tic);
 
 436	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 437				      &need_bytes);
 438	if (error)
 439		goto out_error;
 440
 441	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
 442	xlog_grant_add_space(&log->l_write_head, need_bytes);
 443	trace_xfs_log_reserve_exit(log, tic);
 
 444	return 0;
 445
 446out_error:
 447	/*
 448	 * If we are failing, make sure the ticket doesn't have any current
 449	 * reservations.  We don't want to add this back when the ticket/
 450	 * transaction gets cancelled.
 451	 */
 452	tic->t_curr_res = 0;
 453	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 454	return error;
 455}
 456
 457/*
 458 * Run all the pending iclog callbacks and wake log force waiters and iclog
 459 * space waiters so they can process the newly set shutdown state. We really
 460 * don't care what order we process callbacks here because the log is shut down
 461 * and so state cannot change on disk anymore. However, we cannot wake waiters
 462 * until the callbacks have been processed because we may be in unmount and
 463 * we must ensure that all AIL operations the callbacks perform have completed
 464 * before we tear down the AIL.
 465 *
 466 * We avoid processing actively referenced iclogs so that we don't run callbacks
 467 * while the iclog owner might still be preparing the iclog for IO submssion.
 468 * These will be caught by xlog_state_iclog_release() and call this function
 469 * again to process any callbacks that may have been added to that iclog.
 470 */
 471static void
 472xlog_state_shutdown_callbacks(
 473	struct xlog		*log)
 474{
 475	struct xlog_in_core	*iclog;
 476	LIST_HEAD(cb_list);
 477
 478	iclog = log->l_iclog;
 479	do {
 480		if (atomic_read(&iclog->ic_refcnt)) {
 481			/* Reference holder will re-run iclog callbacks. */
 482			continue;
 483		}
 484		list_splice_init(&iclog->ic_callbacks, &cb_list);
 485		spin_unlock(&log->l_icloglock);
 486
 487		xlog_cil_process_committed(&cb_list);
 488
 489		spin_lock(&log->l_icloglock);
 490		wake_up_all(&iclog->ic_write_wait);
 491		wake_up_all(&iclog->ic_force_wait);
 492	} while ((iclog = iclog->ic_next) != log->l_iclog);
 493
 494	wake_up_all(&log->l_flush_wait);
 495}
 496
 497/*
 498 * Flush iclog to disk if this is the last reference to the given iclog and the
 499 * it is in the WANT_SYNC state.
 500 *
 501 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 502 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 503 * written to stable storage, and implies that a commit record is contained
 504 * within the iclog. We need to ensure that the log tail does not move beyond
 505 * the tail that the first commit record in the iclog ordered against, otherwise
 506 * correct recovery of that checkpoint becomes dependent on future operations
 507 * performed on this iclog.
 508 *
 509 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 510 * current tail into iclog. Once the iclog tail is set, future operations must
 511 * not modify it, otherwise they potentially violate ordering constraints for
 512 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 513 * the iclog will get zeroed on activation of the iclog after sync, so we
 514 * always capture the tail lsn on the iclog on the first NEED_FUA release
 515 * regardless of the number of active reference counts on this iclog.
 516 */
 517int
 518xlog_state_release_iclog(
 519	struct xlog		*log,
 520	struct xlog_in_core	*iclog,
 521	struct xlog_ticket	*ticket)
 522{
 
 523	bool			last_ref;
 524
 525	lockdep_assert_held(&log->l_icloglock);
 526
 527	trace_xlog_iclog_release(iclog, _RET_IP_);
 528	/*
 529	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 530	 * of the tail LSN into the iclog so we guarantee that the log tail does
 531	 * not move between the first time we know that the iclog needs to be
 532	 * made stable and when we eventually submit it.
 533	 */
 534	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 535	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
 536	    !iclog->ic_header.h_tail_lsn) {
 537		iclog->ic_header.h_tail_lsn =
 538				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
 539	}
 540
 541	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 542
 543	if (xlog_is_shutdown(log)) {
 544		/*
 545		 * If there are no more references to this iclog, process the
 546		 * pending iclog callbacks that were waiting on the release of
 547		 * this iclog.
 548		 */
 549		if (last_ref)
 550			xlog_state_shutdown_callbacks(log);
 551		return -EIO;
 552	}
 553
 554	if (!last_ref)
 555		return 0;
 556
 557	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 558		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 559		return 0;
 560	}
 561
 562	iclog->ic_state = XLOG_STATE_SYNCING;
 563	xlog_verify_tail_lsn(log, iclog);
 564	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 565
 566	spin_unlock(&log->l_icloglock);
 567	xlog_sync(log, iclog, ticket);
 568	spin_lock(&log->l_icloglock);
 569	return 0;
 570}
 571
 572/*
 573 * Mount a log filesystem
 574 *
 575 * mp		- ubiquitous xfs mount point structure
 576 * log_target	- buftarg of on-disk log device
 577 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 578 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 579 *
 580 * Return error or zero.
 581 */
 582int
 583xfs_log_mount(
 584	xfs_mount_t		*mp,
 585	struct xfs_buftarg	*log_target,
 586	xfs_daddr_t		blk_offset,
 587	int			num_bblks)
 588{
 589	struct xlog		*log;
 590	int			error = 0;
 591	int			min_logfsbs;
 592
 593	if (!xfs_has_norecovery(mp)) {
 594		xfs_notice(mp, "Mounting V%d Filesystem %pU",
 595			   XFS_SB_VERSION_NUM(&mp->m_sb),
 596			   &mp->m_sb.sb_uuid);
 597	} else {
 598		xfs_notice(mp,
 599"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
 600			   XFS_SB_VERSION_NUM(&mp->m_sb),
 601			   &mp->m_sb.sb_uuid);
 602		ASSERT(xfs_is_readonly(mp));
 603	}
 604
 605	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 606	if (IS_ERR(log)) {
 607		error = PTR_ERR(log);
 608		goto out;
 609	}
 610	mp->m_log = log;
 611
 612	/*
 613	 * Now that we have set up the log and it's internal geometry
 614	 * parameters, we can validate the given log space and drop a critical
 615	 * message via syslog if the log size is too small. A log that is too
 616	 * small can lead to unexpected situations in transaction log space
 617	 * reservation stage. The superblock verifier has already validated all
 618	 * the other log geometry constraints, so we don't have to check those
 619	 * here.
 620	 *
 621	 * Note: For v4 filesystems, we can't just reject the mount if the
 622	 * validation fails.  This would mean that people would have to
 623	 * downgrade their kernel just to remedy the situation as there is no
 624	 * way to grow the log (short of black magic surgery with xfs_db).
 625	 *
 626	 * We can, however, reject mounts for V5 format filesystems, as the
 627	 * mkfs binary being used to make the filesystem should never create a
 628	 * filesystem with a log that is too small.
 629	 */
 630	min_logfsbs = xfs_log_calc_minimum_size(mp);
 631	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 632		xfs_warn(mp,
 633		"Log size %d blocks too small, minimum size is %d blocks",
 634			 mp->m_sb.sb_logblocks, min_logfsbs);
 635
 636		/*
 637		 * Log check errors are always fatal on v5; or whenever bad
 638		 * metadata leads to a crash.
 639		 */
 640		if (xfs_has_crc(mp)) {
 641			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 642			ASSERT(0);
 643			error = -EINVAL;
 644			goto out_free_log;
 645		}
 646		xfs_crit(mp, "Log size out of supported range.");
 647		xfs_crit(mp,
 648"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 649	}
 650
 651	/*
 652	 * Initialize the AIL now we have a log.
 653	 */
 654	error = xfs_trans_ail_init(mp);
 655	if (error) {
 656		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 657		goto out_free_log;
 658	}
 659	log->l_ailp = mp->m_ail;
 660
 661	/*
 662	 * skip log recovery on a norecovery mount.  pretend it all
 663	 * just worked.
 664	 */
 665	if (!xfs_has_norecovery(mp)) {
 666		error = xlog_recover(log);
 667		if (error) {
 668			xfs_warn(mp, "log mount/recovery failed: error %d",
 669				error);
 670			xlog_recover_cancel(log);
 671			goto out_destroy_ail;
 672		}
 673	}
 674
 675	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 676			       "log");
 677	if (error)
 678		goto out_destroy_ail;
 679
 680	/* Normal transactions can now occur */
 681	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 682
 683	/*
 684	 * Now the log has been fully initialised and we know were our
 685	 * space grant counters are, we can initialise the permanent ticket
 686	 * needed for delayed logging to work.
 687	 */
 688	xlog_cil_init_post_recovery(log);
 689
 690	return 0;
 691
 692out_destroy_ail:
 693	xfs_trans_ail_destroy(mp);
 694out_free_log:
 695	xlog_dealloc_log(log);
 696out:
 697	return error;
 698}
 699
 700/*
 701 * Finish the recovery of the file system.  This is separate from the
 702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 704 * here.
 705 *
 706 * If we finish recovery successfully, start the background log work. If we are
 707 * not doing recovery, then we have a RO filesystem and we don't need to start
 708 * it.
 709 */
 710int
 711xfs_log_mount_finish(
 712	struct xfs_mount	*mp)
 713{
 714	struct xlog		*log = mp->m_log;
 715	int			error = 0;
 716
 717	if (xfs_has_norecovery(mp)) {
 718		ASSERT(xfs_is_readonly(mp));
 719		return 0;
 720	}
 721
 722	/*
 723	 * During the second phase of log recovery, we need iget and
 724	 * iput to behave like they do for an active filesystem.
 725	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 726	 * of inodes before we're done replaying log items on those
 727	 * inodes.  Turn it off immediately after recovery finishes
 728	 * so that we don't leak the quota inodes if subsequent mount
 729	 * activities fail.
 730	 *
 731	 * We let all inodes involved in redo item processing end up on
 732	 * the LRU instead of being evicted immediately so that if we do
 733	 * something to an unlinked inode, the irele won't cause
 734	 * premature truncation and freeing of the inode, which results
 735	 * in log recovery failure.  We have to evict the unreferenced
 736	 * lru inodes after clearing SB_ACTIVE because we don't
 737	 * otherwise clean up the lru if there's a subsequent failure in
 738	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 739	 * else (e.g. quotacheck) references the inodes before the
 740	 * mount failure occurs.
 741	 */
 742	mp->m_super->s_flags |= SB_ACTIVE;
 743	xfs_log_work_queue(mp);
 744	if (xlog_recovery_needed(log))
 745		error = xlog_recover_finish(log);
 746	mp->m_super->s_flags &= ~SB_ACTIVE;
 747	evict_inodes(mp->m_super);
 748
 749	/*
 750	 * Drain the buffer LRU after log recovery. This is required for v4
 751	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 752	 * but we do it unconditionally to make sure we're always in a clean
 753	 * cache state after mount.
 754	 *
 755	 * Don't push in the error case because the AIL may have pending intents
 756	 * that aren't removed until recovery is cancelled.
 757	 */
 758	if (xlog_recovery_needed(log)) {
 759		if (!error) {
 760			xfs_log_force(mp, XFS_LOG_SYNC);
 761			xfs_ail_push_all_sync(mp->m_ail);
 762		}
 763		xfs_notice(mp, "Ending recovery (logdev: %s)",
 764				mp->m_logname ? mp->m_logname : "internal");
 765	} else {
 766		xfs_info(mp, "Ending clean mount");
 767	}
 768	xfs_buftarg_drain(mp->m_ddev_targp);
 769
 770	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 771
 772	/* Make sure the log is dead if we're returning failure. */
 773	ASSERT(!error || xlog_is_shutdown(log));
 774
 775	return error;
 776}
 777
 778/*
 779 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 780 * the log.
 781 */
 782void
 783xfs_log_mount_cancel(
 784	struct xfs_mount	*mp)
 785{
 786	xlog_recover_cancel(mp->m_log);
 787	xfs_log_unmount(mp);
 788}
 789
 790/*
 791 * Flush out the iclog to disk ensuring that device caches are flushed and
 792 * the iclog hits stable storage before any completion waiters are woken.
 793 */
 794static inline int
 795xlog_force_iclog(
 796	struct xlog_in_core	*iclog)
 797{
 798	atomic_inc(&iclog->ic_refcnt);
 799	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 800	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 801		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 802	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
 803}
 804
 805/*
 806 * Cycle all the iclogbuf locks to make sure all log IO completion
 807 * is done before we tear down these buffers.
 808 */
 809static void
 810xlog_wait_iclog_completion(struct xlog *log)
 811{
 812	int		i;
 813	struct xlog_in_core	*iclog = log->l_iclog;
 814
 815	for (i = 0; i < log->l_iclog_bufs; i++) {
 816		down(&iclog->ic_sema);
 817		up(&iclog->ic_sema);
 818		iclog = iclog->ic_next;
 819	}
 820}
 821
 822/*
 823 * Wait for the iclog and all prior iclogs to be written disk as required by the
 824 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 825 * have been ordered and callbacks run before we are woken here, hence
 826 * guaranteeing that all the iclogs up to this one are on stable storage.
 827 */
 828int
 829xlog_wait_on_iclog(
 830	struct xlog_in_core	*iclog)
 831		__releases(iclog->ic_log->l_icloglock)
 832{
 833	struct xlog		*log = iclog->ic_log;
 834
 835	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 836	if (!xlog_is_shutdown(log) &&
 837	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 838	    iclog->ic_state != XLOG_STATE_DIRTY) {
 839		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 840		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 841	} else {
 842		spin_unlock(&log->l_icloglock);
 843	}
 844
 845	if (xlog_is_shutdown(log))
 846		return -EIO;
 847	return 0;
 848}
 849
 850/*
 851 * Write out an unmount record using the ticket provided. We have to account for
 852 * the data space used in the unmount ticket as this write is not done from a
 853 * transaction context that has already done the accounting for us.
 854 */
 855static int
 856xlog_write_unmount_record(
 857	struct xlog		*log,
 858	struct xlog_ticket	*ticket)
 859{
 860	struct  {
 861		struct xlog_op_header ophdr;
 862		struct xfs_unmount_log_format ulf;
 863	} unmount_rec = {
 864		.ophdr = {
 865			.oh_clientid = XFS_LOG,
 866			.oh_tid = cpu_to_be32(ticket->t_tid),
 867			.oh_flags = XLOG_UNMOUNT_TRANS,
 868		},
 869		.ulf = {
 870			.magic = XLOG_UNMOUNT_TYPE,
 871		},
 872	};
 873	struct xfs_log_iovec reg = {
 874		.i_addr = &unmount_rec,
 875		.i_len = sizeof(unmount_rec),
 876		.i_type = XLOG_REG_TYPE_UNMOUNT,
 877	};
 878	struct xfs_log_vec vec = {
 879		.lv_niovecs = 1,
 880		.lv_iovecp = &reg,
 881	};
 882	LIST_HEAD(lv_chain);
 883	list_add(&vec.lv_list, &lv_chain);
 884
 885	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
 886		      sizeof(struct xfs_unmount_log_format)) !=
 887							sizeof(unmount_rec));
 888
 889	/* account for space used by record data */
 890	ticket->t_curr_res -= sizeof(unmount_rec);
 891
 892	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
 893}
 894
 895/*
 896 * Mark the filesystem clean by writing an unmount record to the head of the
 897 * log.
 898 */
 899static void
 900xlog_unmount_write(
 901	struct xlog		*log)
 902{
 903	struct xfs_mount	*mp = log->l_mp;
 904	struct xlog_in_core	*iclog;
 905	struct xlog_ticket	*tic = NULL;
 906	int			error;
 907
 908	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
 909	if (error)
 910		goto out_err;
 911
 912	error = xlog_write_unmount_record(log, tic);
 913	/*
 914	 * At this point, we're umounting anyway, so there's no point in
 915	 * transitioning log state to shutdown. Just continue...
 916	 */
 917out_err:
 918	if (error)
 919		xfs_alert(mp, "%s: unmount record failed", __func__);
 920
 921	spin_lock(&log->l_icloglock);
 922	iclog = log->l_iclog;
 923	error = xlog_force_iclog(iclog);
 924	xlog_wait_on_iclog(iclog);
 925
 926	if (tic) {
 927		trace_xfs_log_umount_write(log, tic);
 928		xfs_log_ticket_ungrant(log, tic);
 929	}
 930}
 931
 932static void
 933xfs_log_unmount_verify_iclog(
 934	struct xlog		*log)
 935{
 936	struct xlog_in_core	*iclog = log->l_iclog;
 937
 938	do {
 939		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 940		ASSERT(iclog->ic_offset == 0);
 941	} while ((iclog = iclog->ic_next) != log->l_iclog);
 942}
 943
 944/*
 945 * Unmount record used to have a string "Unmount filesystem--" in the
 946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 947 * We just write the magic number now since that particular field isn't
 948 * currently architecture converted and "Unmount" is a bit foo.
 949 * As far as I know, there weren't any dependencies on the old behaviour.
 950 */
 951static void
 952xfs_log_unmount_write(
 953	struct xfs_mount	*mp)
 954{
 955	struct xlog		*log = mp->m_log;
 956
 957	if (!xfs_log_writable(mp))
 958		return;
 959
 960	xfs_log_force(mp, XFS_LOG_SYNC);
 961
 962	if (xlog_is_shutdown(log))
 963		return;
 964
 965	/*
 966	 * If we think the summary counters are bad, avoid writing the unmount
 967	 * record to force log recovery at next mount, after which the summary
 968	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 969	 * more details.
 970	 */
 971	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 972			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 973		xfs_alert(mp, "%s: will fix summary counters at next mount",
 974				__func__);
 975		return;
 976	}
 977
 978	xfs_log_unmount_verify_iclog(log);
 979	xlog_unmount_write(log);
 980}
 981
 982/*
 983 * Empty the log for unmount/freeze.
 984 *
 985 * To do this, we first need to shut down the background log work so it is not
 986 * trying to cover the log as we clean up. We then need to unpin all objects in
 987 * the log so we can then flush them out. Once they have completed their IO and
 988 * run the callbacks removing themselves from the AIL, we can cover the log.
 989 */
 990int
 991xfs_log_quiesce(
 992	struct xfs_mount	*mp)
 993{
 994	/*
 995	 * Clear log incompat features since we're quiescing the log.  Report
 996	 * failures, though it's not fatal to have a higher log feature
 997	 * protection level than the log contents actually require.
 998	 */
 999	if (xfs_clear_incompat_log_features(mp)) {
1000		int error;
1001
1002		error = xfs_sync_sb(mp, false);
1003		if (error)
1004			xfs_warn(mp,
1005	"Failed to clear log incompat features on quiesce");
1006	}
1007
1008	cancel_delayed_work_sync(&mp->m_log->l_work);
1009	xfs_log_force(mp, XFS_LOG_SYNC);
1010
1011	/*
1012	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1014	 * xfs_buf_iowait() cannot be used because it was pushed with the
1015	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016	 * the IO to complete.
1017	 */
1018	xfs_ail_push_all_sync(mp->m_ail);
1019	xfs_buftarg_wait(mp->m_ddev_targp);
1020	xfs_buf_lock(mp->m_sb_bp);
1021	xfs_buf_unlock(mp->m_sb_bp);
1022
1023	return xfs_log_cover(mp);
1024}
1025
1026void
1027xfs_log_clean(
1028	struct xfs_mount	*mp)
1029{
1030	xfs_log_quiesce(mp);
1031	xfs_log_unmount_write(mp);
1032}
1033
1034/*
1035 * Shut down and release the AIL and Log.
1036 *
1037 * During unmount, we need to ensure we flush all the dirty metadata objects
1038 * from the AIL so that the log is empty before we write the unmount record to
1039 * the log. Once this is done, we can tear down the AIL and the log.
1040 */
1041void
1042xfs_log_unmount(
1043	struct xfs_mount	*mp)
1044{
1045	xfs_log_clean(mp);
1046
1047	/*
1048	 * If shutdown has come from iclog IO context, the log
1049	 * cleaning will have been skipped and so we need to wait
1050	 * for the iclog to complete shutdown processing before we
1051	 * tear anything down.
1052	 */
1053	xlog_wait_iclog_completion(mp->m_log);
1054
1055	xfs_buftarg_drain(mp->m_ddev_targp);
1056
1057	xfs_trans_ail_destroy(mp);
1058
1059	xfs_sysfs_del(&mp->m_log->l_kobj);
1060
1061	xlog_dealloc_log(mp->m_log);
1062}
1063
1064void
1065xfs_log_item_init(
1066	struct xfs_mount	*mp,
1067	struct xfs_log_item	*item,
1068	int			type,
1069	const struct xfs_item_ops *ops)
1070{
1071	item->li_log = mp->m_log;
1072	item->li_ailp = mp->m_ail;
1073	item->li_type = type;
1074	item->li_ops = ops;
1075	item->li_lv = NULL;
1076
1077	INIT_LIST_HEAD(&item->li_ail);
1078	INIT_LIST_HEAD(&item->li_cil);
1079	INIT_LIST_HEAD(&item->li_bio_list);
1080	INIT_LIST_HEAD(&item->li_trans);
1081}
1082
1083/*
1084 * Wake up processes waiting for log space after we have moved the log tail.
1085 */
1086void
1087xfs_log_space_wake(
1088	struct xfs_mount	*mp)
1089{
1090	struct xlog		*log = mp->m_log;
1091	int			free_bytes;
1092
1093	if (xlog_is_shutdown(log))
1094		return;
1095
1096	if (!list_empty_careful(&log->l_write_head.waiters)) {
1097		ASSERT(!xlog_in_recovery(log));
1098
1099		spin_lock(&log->l_write_head.lock);
1100		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1101		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1102		spin_unlock(&log->l_write_head.lock);
1103	}
1104
1105	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1106		ASSERT(!xlog_in_recovery(log));
1107
1108		spin_lock(&log->l_reserve_head.lock);
1109		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1110		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1111		spin_unlock(&log->l_reserve_head.lock);
1112	}
1113}
1114
1115/*
1116 * Determine if we have a transaction that has gone to disk that needs to be
1117 * covered. To begin the transition to the idle state firstly the log needs to
1118 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1119 * we start attempting to cover the log.
1120 *
1121 * Only if we are then in a state where covering is needed, the caller is
1122 * informed that dummy transactions are required to move the log into the idle
1123 * state.
1124 *
1125 * If there are any items in the AIl or CIL, then we do not want to attempt to
1126 * cover the log as we may be in a situation where there isn't log space
1127 * available to run a dummy transaction and this can lead to deadlocks when the
1128 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1129 * there's no point in running a dummy transaction at this point because we
1130 * can't start trying to idle the log until both the CIL and AIL are empty.
1131 */
1132static bool
1133xfs_log_need_covered(
1134	struct xfs_mount	*mp)
1135{
1136	struct xlog		*log = mp->m_log;
1137	bool			needed = false;
1138
1139	if (!xlog_cil_empty(log))
1140		return false;
1141
1142	spin_lock(&log->l_icloglock);
1143	switch (log->l_covered_state) {
1144	case XLOG_STATE_COVER_DONE:
1145	case XLOG_STATE_COVER_DONE2:
1146	case XLOG_STATE_COVER_IDLE:
1147		break;
1148	case XLOG_STATE_COVER_NEED:
1149	case XLOG_STATE_COVER_NEED2:
1150		if (xfs_ail_min_lsn(log->l_ailp))
1151			break;
1152		if (!xlog_iclogs_empty(log))
1153			break;
1154
1155		needed = true;
1156		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1157			log->l_covered_state = XLOG_STATE_COVER_DONE;
1158		else
1159			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1160		break;
1161	default:
1162		needed = true;
1163		break;
1164	}
1165	spin_unlock(&log->l_icloglock);
1166	return needed;
1167}
1168
1169/*
1170 * Explicitly cover the log. This is similar to background log covering but
1171 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1172 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1173 * must all be empty.
1174 */
1175static int
1176xfs_log_cover(
1177	struct xfs_mount	*mp)
1178{
1179	int			error = 0;
1180	bool			need_covered;
1181
1182	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1183	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1184		xlog_is_shutdown(mp->m_log));
1185
1186	if (!xfs_log_writable(mp))
1187		return 0;
1188
1189	/*
1190	 * xfs_log_need_covered() is not idempotent because it progresses the
1191	 * state machine if the log requires covering. Therefore, we must call
1192	 * this function once and use the result until we've issued an sb sync.
1193	 * Do so first to make that abundantly clear.
1194	 *
1195	 * Fall into the covering sequence if the log needs covering or the
1196	 * mount has lazy superblock accounting to sync to disk. The sb sync
1197	 * used for covering accumulates the in-core counters, so covering
1198	 * handles this for us.
1199	 */
1200	need_covered = xfs_log_need_covered(mp);
1201	if (!need_covered && !xfs_has_lazysbcount(mp))
1202		return 0;
1203
1204	/*
1205	 * To cover the log, commit the superblock twice (at most) in
1206	 * independent checkpoints. The first serves as a reference for the
1207	 * tail pointer. The sync transaction and AIL push empties the AIL and
1208	 * updates the in-core tail to the LSN of the first checkpoint. The
1209	 * second commit updates the on-disk tail with the in-core LSN,
1210	 * covering the log. Push the AIL one more time to leave it empty, as
1211	 * we found it.
1212	 */
1213	do {
1214		error = xfs_sync_sb(mp, true);
1215		if (error)
1216			break;
1217		xfs_ail_push_all_sync(mp->m_ail);
1218	} while (xfs_log_need_covered(mp));
1219
1220	return error;
1221}
1222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223static void
1224xlog_ioend_work(
1225	struct work_struct	*work)
1226{
1227	struct xlog_in_core     *iclog =
1228		container_of(work, struct xlog_in_core, ic_end_io_work);
1229	struct xlog		*log = iclog->ic_log;
1230	int			error;
1231
1232	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1233#ifdef DEBUG
1234	/* treat writes with injected CRC errors as failed */
1235	if (iclog->ic_fail_crc)
1236		error = -EIO;
1237#endif
1238
1239	/*
1240	 * Race to shutdown the filesystem if we see an error.
1241	 */
1242	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1243		xfs_alert(log->l_mp, "log I/O error %d", error);
1244		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1245	}
1246
1247	xlog_state_done_syncing(iclog);
1248	bio_uninit(&iclog->ic_bio);
1249
1250	/*
1251	 * Drop the lock to signal that we are done. Nothing references the
1252	 * iclog after this, so an unmount waiting on this lock can now tear it
1253	 * down safely. As such, it is unsafe to reference the iclog after the
1254	 * unlock as we could race with it being freed.
1255	 */
1256	up(&iclog->ic_sema);
1257}
1258
1259/*
1260 * Return size of each in-core log record buffer.
1261 *
1262 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1263 *
1264 * If the filesystem blocksize is too large, we may need to choose a
1265 * larger size since the directory code currently logs entire blocks.
1266 */
1267STATIC void
1268xlog_get_iclog_buffer_size(
1269	struct xfs_mount	*mp,
1270	struct xlog		*log)
1271{
1272	if (mp->m_logbufs <= 0)
1273		mp->m_logbufs = XLOG_MAX_ICLOGS;
1274	if (mp->m_logbsize <= 0)
1275		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1276
1277	log->l_iclog_bufs = mp->m_logbufs;
1278	log->l_iclog_size = mp->m_logbsize;
1279
1280	/*
1281	 * # headers = size / 32k - one header holds cycles from 32k of data.
1282	 */
1283	log->l_iclog_heads =
1284		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1285	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1286}
1287
1288void
1289xfs_log_work_queue(
1290	struct xfs_mount        *mp)
1291{
1292	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1293				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1294}
1295
1296/*
1297 * Clear the log incompat flags if we have the opportunity.
1298 *
1299 * This only happens if we're about to log the second dummy transaction as part
1300 * of covering the log.
1301 */
1302static inline void
1303xlog_clear_incompat(
1304	struct xlog		*log)
1305{
1306	struct xfs_mount	*mp = log->l_mp;
1307
1308	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1309				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1310		return;
1311
1312	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1313		return;
1314
 
 
 
1315	xfs_clear_incompat_log_features(mp);
 
1316}
1317
1318/*
1319 * Every sync period we need to unpin all items in the AIL and push them to
1320 * disk. If there is nothing dirty, then we might need to cover the log to
1321 * indicate that the filesystem is idle.
1322 */
1323static void
1324xfs_log_worker(
1325	struct work_struct	*work)
1326{
1327	struct xlog		*log = container_of(to_delayed_work(work),
1328						struct xlog, l_work);
1329	struct xfs_mount	*mp = log->l_mp;
1330
1331	/* dgc: errors ignored - not fatal and nowhere to report them */
1332	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1333		/*
1334		 * Dump a transaction into the log that contains no real change.
1335		 * This is needed to stamp the current tail LSN into the log
1336		 * during the covering operation.
1337		 *
1338		 * We cannot use an inode here for this - that will push dirty
1339		 * state back up into the VFS and then periodic inode flushing
1340		 * will prevent log covering from making progress. Hence we
1341		 * synchronously log the superblock instead to ensure the
1342		 * superblock is immediately unpinned and can be written back.
1343		 */
1344		xlog_clear_incompat(log);
1345		xfs_sync_sb(mp, true);
1346	} else
1347		xfs_log_force(mp, 0);
1348
1349	/* start pushing all the metadata that is currently dirty */
1350	xfs_ail_push_all(mp->m_ail);
1351
1352	/* queue us up again */
1353	xfs_log_work_queue(mp);
1354}
1355
1356/*
1357 * This routine initializes some of the log structure for a given mount point.
1358 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1359 * some other stuff may be filled in too.
1360 */
1361STATIC struct xlog *
1362xlog_alloc_log(
1363	struct xfs_mount	*mp,
1364	struct xfs_buftarg	*log_target,
1365	xfs_daddr_t		blk_offset,
1366	int			num_bblks)
1367{
1368	struct xlog		*log;
1369	xlog_rec_header_t	*head;
1370	xlog_in_core_t		**iclogp;
1371	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1372	int			i;
1373	int			error = -ENOMEM;
1374	uint			log2_size = 0;
1375
1376	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1377	if (!log) {
1378		xfs_warn(mp, "Log allocation failed: No memory!");
1379		goto out;
1380	}
1381
1382	log->l_mp	   = mp;
1383	log->l_targ	   = log_target;
1384	log->l_logsize     = BBTOB(num_bblks);
1385	log->l_logBBstart  = blk_offset;
1386	log->l_logBBsize   = num_bblks;
1387	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1388	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1389	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1390	INIT_LIST_HEAD(&log->r_dfops);
1391
1392	log->l_prev_block  = -1;
1393	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1394	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
 
1395	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1396
1397	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1398		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1399	else
1400		log->l_iclog_roundoff = BBSIZE;
1401
1402	xlog_grant_head_init(&log->l_reserve_head);
1403	xlog_grant_head_init(&log->l_write_head);
1404
1405	error = -EFSCORRUPTED;
1406	if (xfs_has_sector(mp)) {
1407	        log2_size = mp->m_sb.sb_logsectlog;
1408		if (log2_size < BBSHIFT) {
1409			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1410				log2_size, BBSHIFT);
1411			goto out_free_log;
1412		}
1413
1414	        log2_size -= BBSHIFT;
1415		if (log2_size > mp->m_sectbb_log) {
1416			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1417				log2_size, mp->m_sectbb_log);
1418			goto out_free_log;
1419		}
1420
1421		/* for larger sector sizes, must have v2 or external log */
1422		if (log2_size && log->l_logBBstart > 0 &&
1423			    !xfs_has_logv2(mp)) {
1424			xfs_warn(mp,
1425		"log sector size (0x%x) invalid for configuration.",
1426				log2_size);
1427			goto out_free_log;
1428		}
1429	}
1430	log->l_sectBBsize = 1 << log2_size;
1431
 
 
1432	xlog_get_iclog_buffer_size(mp, log);
1433
1434	spin_lock_init(&log->l_icloglock);
1435	init_waitqueue_head(&log->l_flush_wait);
1436
1437	iclogp = &log->l_iclog;
1438	/*
1439	 * The amount of memory to allocate for the iclog structure is
1440	 * rather funky due to the way the structure is defined.  It is
1441	 * done this way so that we can use different sizes for machines
1442	 * with different amounts of memory.  See the definition of
1443	 * xlog_in_core_t in xfs_log_priv.h for details.
1444	 */
1445	ASSERT(log->l_iclog_size >= 4096);
1446	for (i = 0; i < log->l_iclog_bufs; i++) {
1447		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1448				sizeof(struct bio_vec);
1449
1450		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1451				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1452		if (!iclog)
1453			goto out_free_iclog;
1454
1455		*iclogp = iclog;
1456		iclog->ic_prev = prev_iclog;
1457		prev_iclog = iclog;
1458
1459		iclog->ic_data = kvzalloc(log->l_iclog_size,
1460				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1461		if (!iclog->ic_data)
1462			goto out_free_iclog;
1463		head = &iclog->ic_header;
1464		memset(head, 0, sizeof(xlog_rec_header_t));
1465		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1466		head->h_version = cpu_to_be32(
1467			xfs_has_logv2(log->l_mp) ? 2 : 1);
1468		head->h_size = cpu_to_be32(log->l_iclog_size);
1469		/* new fields */
1470		head->h_fmt = cpu_to_be32(XLOG_FMT);
1471		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1472
1473		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1474		iclog->ic_state = XLOG_STATE_ACTIVE;
1475		iclog->ic_log = log;
1476		atomic_set(&iclog->ic_refcnt, 0);
1477		INIT_LIST_HEAD(&iclog->ic_callbacks);
1478		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1479
1480		init_waitqueue_head(&iclog->ic_force_wait);
1481		init_waitqueue_head(&iclog->ic_write_wait);
1482		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1483		sema_init(&iclog->ic_sema, 1);
1484
1485		iclogp = &iclog->ic_next;
1486	}
1487	*iclogp = log->l_iclog;			/* complete ring */
1488	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1489
1490	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1491			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1492				    WQ_HIGHPRI),
1493			0, mp->m_super->s_id);
1494	if (!log->l_ioend_workqueue)
1495		goto out_free_iclog;
1496
1497	error = xlog_cil_init(log);
1498	if (error)
1499		goto out_destroy_workqueue;
1500	return log;
1501
1502out_destroy_workqueue:
1503	destroy_workqueue(log->l_ioend_workqueue);
1504out_free_iclog:
1505	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506		prev_iclog = iclog->ic_next;
1507		kvfree(iclog->ic_data);
1508		kfree(iclog);
1509		if (prev_iclog == log->l_iclog)
1510			break;
1511	}
1512out_free_log:
1513	kfree(log);
1514out:
1515	return ERR_PTR(error);
1516}	/* xlog_alloc_log */
1517
1518/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519 * Stamp cycle number in every block
1520 */
1521STATIC void
1522xlog_pack_data(
1523	struct xlog		*log,
1524	struct xlog_in_core	*iclog,
1525	int			roundoff)
1526{
1527	int			i, j, k;
1528	int			size = iclog->ic_offset + roundoff;
1529	__be32			cycle_lsn;
1530	char			*dp;
1531
1532	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1533
1534	dp = iclog->ic_datap;
1535	for (i = 0; i < BTOBB(size); i++) {
1536		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1537			break;
1538		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1539		*(__be32 *)dp = cycle_lsn;
1540		dp += BBSIZE;
1541	}
1542
1543	if (xfs_has_logv2(log->l_mp)) {
1544		xlog_in_core_2_t *xhdr = iclog->ic_data;
1545
1546		for ( ; i < BTOBB(size); i++) {
1547			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1548			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1550			*(__be32 *)dp = cycle_lsn;
1551			dp += BBSIZE;
1552		}
1553
1554		for (i = 1; i < log->l_iclog_heads; i++)
1555			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1556	}
1557}
1558
1559/*
1560 * Calculate the checksum for a log buffer.
1561 *
1562 * This is a little more complicated than it should be because the various
1563 * headers and the actual data are non-contiguous.
1564 */
1565__le32
1566xlog_cksum(
1567	struct xlog		*log,
1568	struct xlog_rec_header	*rhead,
1569	char			*dp,
1570	int			size)
1571{
1572	uint32_t		crc;
1573
1574	/* first generate the crc for the record header ... */
1575	crc = xfs_start_cksum_update((char *)rhead,
1576			      sizeof(struct xlog_rec_header),
1577			      offsetof(struct xlog_rec_header, h_crc));
1578
1579	/* ... then for additional cycle data for v2 logs ... */
1580	if (xfs_has_logv2(log->l_mp)) {
1581		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1582		int		i;
1583		int		xheads;
1584
1585		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1586
1587		for (i = 1; i < xheads; i++) {
1588			crc = crc32c(crc, &xhdr[i].hic_xheader,
1589				     sizeof(struct xlog_rec_ext_header));
1590		}
1591	}
1592
1593	/* ... and finally for the payload */
1594	crc = crc32c(crc, dp, size);
1595
1596	return xfs_end_cksum(crc);
1597}
1598
1599static void
1600xlog_bio_end_io(
1601	struct bio		*bio)
1602{
1603	struct xlog_in_core	*iclog = bio->bi_private;
1604
1605	queue_work(iclog->ic_log->l_ioend_workqueue,
1606		   &iclog->ic_end_io_work);
1607}
1608
1609static int
1610xlog_map_iclog_data(
1611	struct bio		*bio,
1612	void			*data,
1613	size_t			count)
1614{
1615	do {
1616		struct page	*page = kmem_to_page(data);
1617		unsigned int	off = offset_in_page(data);
1618		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1619
1620		if (bio_add_page(bio, page, len, off) != len)
1621			return -EIO;
1622
1623		data += len;
1624		count -= len;
1625	} while (count);
1626
1627	return 0;
1628}
1629
1630STATIC void
1631xlog_write_iclog(
1632	struct xlog		*log,
1633	struct xlog_in_core	*iclog,
1634	uint64_t		bno,
1635	unsigned int		count)
1636{
1637	ASSERT(bno < log->l_logBBsize);
1638	trace_xlog_iclog_write(iclog, _RET_IP_);
1639
1640	/*
1641	 * We lock the iclogbufs here so that we can serialise against I/O
1642	 * completion during unmount.  We might be processing a shutdown
1643	 * triggered during unmount, and that can occur asynchronously to the
1644	 * unmount thread, and hence we need to ensure that completes before
1645	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1646	 * across the log IO to archieve that.
1647	 */
1648	down(&iclog->ic_sema);
1649	if (xlog_is_shutdown(log)) {
1650		/*
1651		 * It would seem logical to return EIO here, but we rely on
1652		 * the log state machine to propagate I/O errors instead of
1653		 * doing it here.  We kick of the state machine and unlock
1654		 * the buffer manually, the code needs to be kept in sync
1655		 * with the I/O completion path.
1656		 */
1657		goto sync;
1658	}
1659
1660	/*
1661	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1662	 * IOs coming immediately after this one. This prevents the block layer
1663	 * writeback throttle from throttling log writes behind background
1664	 * metadata writeback and causing priority inversions.
1665	 */
1666	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1667		 howmany(count, PAGE_SIZE),
1668		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1669	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1670	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1671	iclog->ic_bio.bi_private = iclog;
1672
1673	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1674		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1675		/*
1676		 * For external log devices, we also need to flush the data
1677		 * device cache first to ensure all metadata writeback covered
1678		 * by the LSN in this iclog is on stable storage. This is slow,
1679		 * but it *must* complete before we issue the external log IO.
1680		 *
1681		 * If the flush fails, we cannot conclude that past metadata
1682		 * writeback from the log succeeded.  Repeating the flush is
1683		 * not possible, hence we must shut down with log IO error to
1684		 * avoid shutdown re-entering this path and erroring out again.
1685		 */
1686		if (log->l_targ != log->l_mp->m_ddev_targp &&
1687		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1688			goto shutdown;
1689	}
1690	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1691		iclog->ic_bio.bi_opf |= REQ_FUA;
1692
1693	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1694
1695	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1696		goto shutdown;
1697
1698	if (is_vmalloc_addr(iclog->ic_data))
1699		flush_kernel_vmap_range(iclog->ic_data, count);
1700
1701	/*
1702	 * If this log buffer would straddle the end of the log we will have
1703	 * to split it up into two bios, so that we can continue at the start.
1704	 */
1705	if (bno + BTOBB(count) > log->l_logBBsize) {
1706		struct bio *split;
1707
1708		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1709				  GFP_NOIO, &fs_bio_set);
1710		bio_chain(split, &iclog->ic_bio);
1711		submit_bio(split);
1712
1713		/* restart at logical offset zero for the remainder */
1714		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1715	}
1716
1717	submit_bio(&iclog->ic_bio);
1718	return;
1719shutdown:
1720	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1721sync:
1722	xlog_state_done_syncing(iclog);
1723	up(&iclog->ic_sema);
1724}
1725
1726/*
1727 * We need to bump cycle number for the part of the iclog that is
1728 * written to the start of the log. Watch out for the header magic
1729 * number case, though.
1730 */
1731static void
1732xlog_split_iclog(
1733	struct xlog		*log,
1734	void			*data,
1735	uint64_t		bno,
1736	unsigned int		count)
1737{
1738	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1739	unsigned int		i;
1740
1741	for (i = split_offset; i < count; i += BBSIZE) {
1742		uint32_t cycle = get_unaligned_be32(data + i);
1743
1744		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745			cycle++;
1746		put_unaligned_be32(cycle, data + i);
1747	}
1748}
1749
1750static int
1751xlog_calc_iclog_size(
1752	struct xlog		*log,
1753	struct xlog_in_core	*iclog,
1754	uint32_t		*roundoff)
1755{
1756	uint32_t		count_init, count;
1757
1758	/* Add for LR header */
1759	count_init = log->l_iclog_hsize + iclog->ic_offset;
1760	count = roundup(count_init, log->l_iclog_roundoff);
1761
1762	*roundoff = count - count_init;
1763
1764	ASSERT(count >= count_init);
1765	ASSERT(*roundoff < log->l_iclog_roundoff);
1766	return count;
1767}
1768
1769/*
1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771 * fashion.  Previously, we should have moved the current iclog
1772 * ptr in the log to point to the next available iclog.  This allows further
1773 * write to continue while this code syncs out an iclog ready to go.
1774 * Before an in-core log can be written out, the data section must be scanned
1775 * to save away the 1st word of each BBSIZE block into the header.  We replace
1776 * it with the current cycle count.  Each BBSIZE block is tagged with the
1777 * cycle count because there in an implicit assumption that drives will
1778 * guarantee that entire 512 byte blocks get written at once.  In other words,
1779 * we can't have part of a 512 byte block written and part not written.  By
1780 * tagging each block, we will know which blocks are valid when recovering
1781 * after an unclean shutdown.
1782 *
1783 * This routine is single threaded on the iclog.  No other thread can be in
1784 * this routine with the same iclog.  Changing contents of iclog can there-
1785 * fore be done without grabbing the state machine lock.  Updating the global
1786 * log will require grabbing the lock though.
1787 *
1788 * The entire log manager uses a logical block numbering scheme.  Only
1789 * xlog_write_iclog knows about the fact that the log may not start with
1790 * block zero on a given device.
1791 */
1792STATIC void
1793xlog_sync(
1794	struct xlog		*log,
1795	struct xlog_in_core	*iclog,
1796	struct xlog_ticket	*ticket)
1797{
1798	unsigned int		count;		/* byte count of bwrite */
1799	unsigned int		roundoff;       /* roundoff to BB or stripe */
1800	uint64_t		bno;
1801	unsigned int		size;
1802
1803	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1804	trace_xlog_iclog_sync(iclog, _RET_IP_);
1805
1806	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1807
1808	/*
1809	 * If we have a ticket, account for the roundoff via the ticket
1810	 * reservation to avoid touching the hot grant heads needlessly.
1811	 * Otherwise, we have to move grant heads directly.
1812	 */
1813	if (ticket) {
1814		ticket->t_curr_res -= roundoff;
1815	} else {
1816		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1817		xlog_grant_add_space(&log->l_write_head, roundoff);
1818	}
1819
1820	/* put cycle number in every block */
1821	xlog_pack_data(log, iclog, roundoff);
1822
1823	/* real byte length */
1824	size = iclog->ic_offset;
1825	if (xfs_has_logv2(log->l_mp))
1826		size += roundoff;
1827	iclog->ic_header.h_len = cpu_to_be32(size);
1828
1829	XFS_STATS_INC(log->l_mp, xs_log_writes);
1830	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1831
1832	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1833
1834	/* Do we need to split this write into 2 parts? */
1835	if (bno + BTOBB(count) > log->l_logBBsize)
1836		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1837
1838	/* calculcate the checksum */
1839	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840					    iclog->ic_datap, size);
1841	/*
1842	 * Intentionally corrupt the log record CRC based on the error injection
1843	 * frequency, if defined. This facilitates testing log recovery in the
1844	 * event of torn writes. Hence, set the IOABORT state to abort the log
1845	 * write on I/O completion and shutdown the fs. The subsequent mount
1846	 * detects the bad CRC and attempts to recover.
1847	 */
1848#ifdef DEBUG
1849	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1850		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1851		iclog->ic_fail_crc = true;
1852		xfs_warn(log->l_mp,
1853	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1854			 be64_to_cpu(iclog->ic_header.h_lsn));
1855	}
1856#endif
1857	xlog_verify_iclog(log, iclog, count);
1858	xlog_write_iclog(log, iclog, bno, count);
1859}
1860
1861/*
1862 * Deallocate a log structure
1863 */
1864STATIC void
1865xlog_dealloc_log(
1866	struct xlog	*log)
1867{
1868	xlog_in_core_t	*iclog, *next_iclog;
1869	int		i;
1870
1871	/*
1872	 * Destroy the CIL after waiting for iclog IO completion because an
1873	 * iclog EIO error will try to shut down the log, which accesses the
1874	 * CIL to wake up the waiters.
1875	 */
1876	xlog_cil_destroy(log);
1877
1878	iclog = log->l_iclog;
1879	for (i = 0; i < log->l_iclog_bufs; i++) {
1880		next_iclog = iclog->ic_next;
1881		kvfree(iclog->ic_data);
1882		kfree(iclog);
1883		iclog = next_iclog;
1884	}
1885
1886	log->l_mp->m_log = NULL;
1887	destroy_workqueue(log->l_ioend_workqueue);
1888	kfree(log);
1889}
1890
1891/*
1892 * Update counters atomically now that memcpy is done.
1893 */
1894static inline void
1895xlog_state_finish_copy(
1896	struct xlog		*log,
1897	struct xlog_in_core	*iclog,
1898	int			record_cnt,
1899	int			copy_bytes)
1900{
1901	lockdep_assert_held(&log->l_icloglock);
1902
1903	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1904	iclog->ic_offset += copy_bytes;
1905}
1906
1907/*
1908 * print out info relating to regions written which consume
1909 * the reservation
1910 */
1911void
1912xlog_print_tic_res(
1913	struct xfs_mount	*mp,
1914	struct xlog_ticket	*ticket)
1915{
1916	xfs_warn(mp, "ticket reservation summary:");
1917	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1918	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1919	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1920	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
1921}
1922
1923/*
1924 * Print a summary of the transaction.
1925 */
1926void
1927xlog_print_trans(
1928	struct xfs_trans	*tp)
1929{
1930	struct xfs_mount	*mp = tp->t_mountp;
1931	struct xfs_log_item	*lip;
1932
1933	/* dump core transaction and ticket info */
1934	xfs_warn(mp, "transaction summary:");
1935	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1936	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1937	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1938
1939	xlog_print_tic_res(mp, tp->t_ticket);
1940
1941	/* dump each log item */
1942	list_for_each_entry(lip, &tp->t_items, li_trans) {
1943		struct xfs_log_vec	*lv = lip->li_lv;
1944		struct xfs_log_iovec	*vec;
1945		int			i;
1946
1947		xfs_warn(mp, "log item: ");
1948		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1949		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1950		if (!lv)
1951			continue;
1952		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1953		xfs_warn(mp, "  size	= %d", lv->lv_size);
1954		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1955		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
1956
1957		/* dump each iovec for the log item */
1958		vec = lv->lv_iovecp;
1959		for (i = 0; i < lv->lv_niovecs; i++) {
1960			int dumplen = min(vec->i_len, 32);
1961
1962			xfs_warn(mp, "  iovec[%d]", i);
1963			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1964			xfs_warn(mp, "    len	= %d", vec->i_len);
1965			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1966			xfs_hex_dump(vec->i_addr, dumplen);
1967
1968			vec++;
1969		}
1970	}
1971}
1972
1973static inline void
1974xlog_write_iovec(
1975	struct xlog_in_core	*iclog,
1976	uint32_t		*log_offset,
1977	void			*data,
1978	uint32_t		write_len,
1979	int			*bytes_left,
1980	uint32_t		*record_cnt,
1981	uint32_t		*data_cnt)
1982{
1983	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1984	ASSERT(*log_offset % sizeof(int32_t) == 0);
1985	ASSERT(write_len % sizeof(int32_t) == 0);
1986
1987	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1988	*log_offset += write_len;
1989	*bytes_left -= write_len;
1990	(*record_cnt)++;
1991	*data_cnt += write_len;
1992}
1993
1994/*
1995 * Write log vectors into a single iclog which is guaranteed by the caller
1996 * to have enough space to write the entire log vector into.
1997 */
1998static void
1999xlog_write_full(
2000	struct xfs_log_vec	*lv,
2001	struct xlog_ticket	*ticket,
2002	struct xlog_in_core	*iclog,
2003	uint32_t		*log_offset,
2004	uint32_t		*len,
2005	uint32_t		*record_cnt,
2006	uint32_t		*data_cnt)
2007{
2008	int			index;
2009
2010	ASSERT(*log_offset + *len <= iclog->ic_size ||
2011		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2012
2013	/*
2014	 * Ordered log vectors have no regions to write so this
2015	 * loop will naturally skip them.
2016	 */
2017	for (index = 0; index < lv->lv_niovecs; index++) {
2018		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2019		struct xlog_op_header	*ophdr = reg->i_addr;
2020
2021		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2022		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2023				reg->i_len, len, record_cnt, data_cnt);
2024	}
2025}
2026
2027static int
2028xlog_write_get_more_iclog_space(
2029	struct xlog_ticket	*ticket,
2030	struct xlog_in_core	**iclogp,
2031	uint32_t		*log_offset,
2032	uint32_t		len,
2033	uint32_t		*record_cnt,
2034	uint32_t		*data_cnt)
2035{
2036	struct xlog_in_core	*iclog = *iclogp;
2037	struct xlog		*log = iclog->ic_log;
2038	int			error;
2039
2040	spin_lock(&log->l_icloglock);
2041	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2042	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2043	error = xlog_state_release_iclog(log, iclog, ticket);
2044	spin_unlock(&log->l_icloglock);
2045	if (error)
2046		return error;
2047
2048	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2049					log_offset);
2050	if (error)
2051		return error;
2052	*record_cnt = 0;
2053	*data_cnt = 0;
2054	*iclogp = iclog;
2055	return 0;
2056}
2057
2058/*
2059 * Write log vectors into a single iclog which is smaller than the current chain
2060 * length. We write until we cannot fit a full record into the remaining space
2061 * and then stop. We return the log vector that is to be written that cannot
2062 * wholly fit in the iclog.
2063 */
2064static int
2065xlog_write_partial(
2066	struct xfs_log_vec	*lv,
2067	struct xlog_ticket	*ticket,
2068	struct xlog_in_core	**iclogp,
2069	uint32_t		*log_offset,
2070	uint32_t		*len,
2071	uint32_t		*record_cnt,
2072	uint32_t		*data_cnt)
2073{
2074	struct xlog_in_core	*iclog = *iclogp;
2075	struct xlog_op_header	*ophdr;
2076	int			index = 0;
2077	uint32_t		rlen;
2078	int			error;
2079
2080	/* walk the logvec, copying until we run out of space in the iclog */
2081	for (index = 0; index < lv->lv_niovecs; index++) {
2082		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2083		uint32_t		reg_offset = 0;
2084
2085		/*
2086		 * The first region of a continuation must have a non-zero
2087		 * length otherwise log recovery will just skip over it and
2088		 * start recovering from the next opheader it finds. Because we
2089		 * mark the next opheader as a continuation, recovery will then
2090		 * incorrectly add the continuation to the previous region and
2091		 * that breaks stuff.
2092		 *
2093		 * Hence if there isn't space for region data after the
2094		 * opheader, then we need to start afresh with a new iclog.
2095		 */
2096		if (iclog->ic_size - *log_offset <=
2097					sizeof(struct xlog_op_header)) {
2098			error = xlog_write_get_more_iclog_space(ticket,
2099					&iclog, log_offset, *len, record_cnt,
2100					data_cnt);
2101			if (error)
2102				return error;
2103		}
2104
2105		ophdr = reg->i_addr;
2106		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2107
2108		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2110		if (rlen != reg->i_len)
2111			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2112
2113		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2114				rlen, len, record_cnt, data_cnt);
2115
2116		/* If we wrote the whole region, move to the next. */
2117		if (rlen == reg->i_len)
2118			continue;
2119
2120		/*
2121		 * We now have a partially written iovec, but it can span
2122		 * multiple iclogs so we loop here. First we release the iclog
2123		 * we currently have, then we get a new iclog and add a new
2124		 * opheader. Then we continue copying from where we were until
2125		 * we either complete the iovec or fill the iclog. If we
2126		 * complete the iovec, then we increment the index and go right
2127		 * back to the top of the outer loop. if we fill the iclog, we
2128		 * run the inner loop again.
2129		 *
2130		 * This is complicated by the tail of a region using all the
2131		 * space in an iclog and hence requiring us to release the iclog
2132		 * and get a new one before returning to the outer loop. We must
2133		 * always guarantee that we exit this inner loop with at least
2134		 * space for log transaction opheaders left in the current
2135		 * iclog, hence we cannot just terminate the loop at the end
2136		 * of the of the continuation. So we loop while there is no
2137		 * space left in the current iclog, and check for the end of the
2138		 * continuation after getting a new iclog.
2139		 */
2140		do {
2141			/*
2142			 * Ensure we include the continuation opheader in the
2143			 * space we need in the new iclog by adding that size
2144			 * to the length we require. This continuation opheader
2145			 * needs to be accounted to the ticket as the space it
2146			 * consumes hasn't been accounted to the lv we are
2147			 * writing.
2148			 */
2149			error = xlog_write_get_more_iclog_space(ticket,
2150					&iclog, log_offset,
2151					*len + sizeof(struct xlog_op_header),
2152					record_cnt, data_cnt);
2153			if (error)
2154				return error;
2155
2156			ophdr = iclog->ic_datap + *log_offset;
2157			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158			ophdr->oh_clientid = XFS_TRANSACTION;
2159			ophdr->oh_res2 = 0;
2160			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2161
2162			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2163			*log_offset += sizeof(struct xlog_op_header);
2164			*data_cnt += sizeof(struct xlog_op_header);
2165
2166			/*
2167			 * If rlen fits in the iclog, then end the region
2168			 * continuation. Otherwise we're going around again.
2169			 */
2170			reg_offset += rlen;
2171			rlen = reg->i_len - reg_offset;
2172			if (rlen <= iclog->ic_size - *log_offset)
2173				ophdr->oh_flags |= XLOG_END_TRANS;
2174			else
2175				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2176
2177			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2178			ophdr->oh_len = cpu_to_be32(rlen);
2179
2180			xlog_write_iovec(iclog, log_offset,
2181					reg->i_addr + reg_offset,
2182					rlen, len, record_cnt, data_cnt);
2183
2184		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2185	}
2186
2187	/*
2188	 * No more iovecs remain in this logvec so return the next log vec to
2189	 * the caller so it can go back to fast path copying.
2190	 */
2191	*iclogp = iclog;
2192	return 0;
2193}
2194
2195/*
2196 * Write some region out to in-core log
2197 *
2198 * This will be called when writing externally provided regions or when
2199 * writing out a commit record for a given transaction.
2200 *
2201 * General algorithm:
2202 *	1. Find total length of this write.  This may include adding to the
2203 *		lengths passed in.
2204 *	2. Check whether we violate the tickets reservation.
2205 *	3. While writing to this iclog
2206 *	    A. Reserve as much space in this iclog as can get
2207 *	    B. If this is first write, save away start lsn
2208 *	    C. While writing this region:
2209 *		1. If first write of transaction, write start record
2210 *		2. Write log operation header (header per region)
2211 *		3. Find out if we can fit entire region into this iclog
2212 *		4. Potentially, verify destination memcpy ptr
2213 *		5. Memcpy (partial) region
2214 *		6. If partial copy, release iclog; otherwise, continue
2215 *			copying more regions into current iclog
2216 *	4. Mark want sync bit (in simulation mode)
2217 *	5. Release iclog for potential flush to on-disk log.
2218 *
2219 * ERRORS:
2220 * 1.	Panic if reservation is overrun.  This should never happen since
2221 *	reservation amounts are generated internal to the filesystem.
2222 * NOTES:
2223 * 1. Tickets are single threaded data structures.
2224 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2225 *	syncing routine.  When a single log_write region needs to span
2226 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2227 *	on all log operation writes which don't contain the end of the
2228 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2229 *	operation which contains the end of the continued log_write region.
2230 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2231 *	we don't really know exactly how much space will be used.  As a result,
2232 *	we don't update ic_offset until the end when we know exactly how many
2233 *	bytes have been written out.
2234 */
2235int
2236xlog_write(
2237	struct xlog		*log,
2238	struct xfs_cil_ctx	*ctx,
2239	struct list_head	*lv_chain,
2240	struct xlog_ticket	*ticket,
2241	uint32_t		len)
2242
2243{
2244	struct xlog_in_core	*iclog = NULL;
2245	struct xfs_log_vec	*lv;
2246	uint32_t		record_cnt = 0;
2247	uint32_t		data_cnt = 0;
2248	int			error = 0;
2249	int			log_offset;
2250
2251	if (ticket->t_curr_res < 0) {
2252		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2253		     "ctx ticket reservation ran out. Need to up reservation");
2254		xlog_print_tic_res(log->l_mp, ticket);
2255		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2256	}
2257
2258	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2259					   &log_offset);
2260	if (error)
2261		return error;
2262
2263	ASSERT(log_offset <= iclog->ic_size - 1);
2264
2265	/*
2266	 * If we have a context pointer, pass it the first iclog we are
2267	 * writing to so it can record state needed for iclog write
2268	 * ordering.
2269	 */
2270	if (ctx)
2271		xlog_cil_set_ctx_write_state(ctx, iclog);
2272
2273	list_for_each_entry(lv, lv_chain, lv_list) {
2274		/*
2275		 * If the entire log vec does not fit in the iclog, punt it to
2276		 * the partial copy loop which can handle this case.
2277		 */
2278		if (lv->lv_niovecs &&
2279		    lv->lv_bytes > iclog->ic_size - log_offset) {
2280			error = xlog_write_partial(lv, ticket, &iclog,
2281					&log_offset, &len, &record_cnt,
2282					&data_cnt);
2283			if (error) {
2284				/*
2285				 * We have no iclog to release, so just return
2286				 * the error immediately.
2287				 */
2288				return error;
2289			}
2290		} else {
2291			xlog_write_full(lv, ticket, iclog, &log_offset,
2292					 &len, &record_cnt, &data_cnt);
2293		}
2294	}
2295	ASSERT(len == 0);
2296
2297	/*
2298	 * We've already been guaranteed that the last writes will fit inside
2299	 * the current iclog, and hence it will already have the space used by
2300	 * those writes accounted to it. Hence we do not need to update the
2301	 * iclog with the number of bytes written here.
2302	 */
2303	spin_lock(&log->l_icloglock);
2304	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2305	error = xlog_state_release_iclog(log, iclog, ticket);
2306	spin_unlock(&log->l_icloglock);
2307
2308	return error;
2309}
2310
2311static void
2312xlog_state_activate_iclog(
2313	struct xlog_in_core	*iclog,
2314	int			*iclogs_changed)
2315{
2316	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2317	trace_xlog_iclog_activate(iclog, _RET_IP_);
2318
2319	/*
2320	 * If the number of ops in this iclog indicate it just contains the
2321	 * dummy transaction, we can change state into IDLE (the second time
2322	 * around). Otherwise we should change the state into NEED a dummy.
2323	 * We don't need to cover the dummy.
2324	 */
2325	if (*iclogs_changed == 0 &&
2326	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2327		*iclogs_changed = 1;
2328	} else {
2329		/*
2330		 * We have two dirty iclogs so start over.  This could also be
2331		 * num of ops indicating this is not the dummy going out.
2332		 */
2333		*iclogs_changed = 2;
2334	}
2335
2336	iclog->ic_state	= XLOG_STATE_ACTIVE;
2337	iclog->ic_offset = 0;
2338	iclog->ic_header.h_num_logops = 0;
2339	memset(iclog->ic_header.h_cycle_data, 0,
2340		sizeof(iclog->ic_header.h_cycle_data));
2341	iclog->ic_header.h_lsn = 0;
2342	iclog->ic_header.h_tail_lsn = 0;
2343}
2344
2345/*
2346 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2347 * ACTIVE after iclog I/O has completed.
2348 */
2349static void
2350xlog_state_activate_iclogs(
2351	struct xlog		*log,
2352	int			*iclogs_changed)
2353{
2354	struct xlog_in_core	*iclog = log->l_iclog;
2355
2356	do {
2357		if (iclog->ic_state == XLOG_STATE_DIRTY)
2358			xlog_state_activate_iclog(iclog, iclogs_changed);
2359		/*
2360		 * The ordering of marking iclogs ACTIVE must be maintained, so
2361		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2362		 */
2363		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2364			break;
2365	} while ((iclog = iclog->ic_next) != log->l_iclog);
2366}
2367
2368static int
2369xlog_covered_state(
2370	int			prev_state,
2371	int			iclogs_changed)
2372{
2373	/*
2374	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2375	 * wrote the first covering record (DONE). We go to IDLE if we just
2376	 * wrote the second covering record (DONE2) and remain in IDLE until a
2377	 * non-covering write occurs.
2378	 */
2379	switch (prev_state) {
2380	case XLOG_STATE_COVER_IDLE:
2381		if (iclogs_changed == 1)
2382			return XLOG_STATE_COVER_IDLE;
2383		fallthrough;
2384	case XLOG_STATE_COVER_NEED:
2385	case XLOG_STATE_COVER_NEED2:
2386		break;
2387	case XLOG_STATE_COVER_DONE:
2388		if (iclogs_changed == 1)
2389			return XLOG_STATE_COVER_NEED2;
2390		break;
2391	case XLOG_STATE_COVER_DONE2:
2392		if (iclogs_changed == 1)
2393			return XLOG_STATE_COVER_IDLE;
2394		break;
2395	default:
2396		ASSERT(0);
2397	}
2398
2399	return XLOG_STATE_COVER_NEED;
2400}
2401
2402STATIC void
2403xlog_state_clean_iclog(
2404	struct xlog		*log,
2405	struct xlog_in_core	*dirty_iclog)
2406{
2407	int			iclogs_changed = 0;
2408
2409	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2410
2411	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2412
2413	xlog_state_activate_iclogs(log, &iclogs_changed);
2414	wake_up_all(&dirty_iclog->ic_force_wait);
2415
2416	if (iclogs_changed) {
2417		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2418				iclogs_changed);
2419	}
2420}
2421
2422STATIC xfs_lsn_t
2423xlog_get_lowest_lsn(
2424	struct xlog		*log)
2425{
2426	struct xlog_in_core	*iclog = log->l_iclog;
2427	xfs_lsn_t		lowest_lsn = 0, lsn;
2428
2429	do {
2430		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2431		    iclog->ic_state == XLOG_STATE_DIRTY)
2432			continue;
2433
2434		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2435		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2436			lowest_lsn = lsn;
2437	} while ((iclog = iclog->ic_next) != log->l_iclog);
2438
2439	return lowest_lsn;
2440}
2441
2442/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443 * Return true if we need to stop processing, false to continue to the next
2444 * iclog. The caller will need to run callbacks if the iclog is returned in the
2445 * XLOG_STATE_CALLBACK state.
2446 */
2447static bool
2448xlog_state_iodone_process_iclog(
2449	struct xlog		*log,
2450	struct xlog_in_core	*iclog)
2451{
2452	xfs_lsn_t		lowest_lsn;
2453	xfs_lsn_t		header_lsn;
2454
2455	switch (iclog->ic_state) {
2456	case XLOG_STATE_ACTIVE:
2457	case XLOG_STATE_DIRTY:
2458		/*
2459		 * Skip all iclogs in the ACTIVE & DIRTY states:
2460		 */
2461		return false;
2462	case XLOG_STATE_DONE_SYNC:
2463		/*
2464		 * Now that we have an iclog that is in the DONE_SYNC state, do
2465		 * one more check here to see if we have chased our tail around.
2466		 * If this is not the lowest lsn iclog, then we will leave it
2467		 * for another completion to process.
2468		 */
2469		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2470		lowest_lsn = xlog_get_lowest_lsn(log);
2471		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2472			return false;
2473		/*
2474		 * If there are no callbacks on this iclog, we can mark it clean
2475		 * immediately and return. Otherwise we need to run the
2476		 * callbacks.
2477		 */
2478		if (list_empty(&iclog->ic_callbacks)) {
2479			xlog_state_clean_iclog(log, iclog);
2480			return false;
2481		}
2482		trace_xlog_iclog_callback(iclog, _RET_IP_);
2483		iclog->ic_state = XLOG_STATE_CALLBACK;
2484		return false;
2485	default:
2486		/*
2487		 * Can only perform callbacks in order.  Since this iclog is not
2488		 * in the DONE_SYNC state, we skip the rest and just try to
2489		 * clean up.
2490		 */
2491		return true;
2492	}
2493}
2494
2495/*
2496 * Loop over all the iclogs, running attached callbacks on them. Return true if
2497 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2498 * to handle transient shutdown state here at all because
2499 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2500 * cleanup of the callbacks.
2501 */
2502static bool
2503xlog_state_do_iclog_callbacks(
2504	struct xlog		*log)
2505		__releases(&log->l_icloglock)
2506		__acquires(&log->l_icloglock)
2507{
2508	struct xlog_in_core	*first_iclog = log->l_iclog;
2509	struct xlog_in_core	*iclog = first_iclog;
2510	bool			ran_callback = false;
2511
2512	do {
2513		LIST_HEAD(cb_list);
2514
2515		if (xlog_state_iodone_process_iclog(log, iclog))
2516			break;
2517		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2518			iclog = iclog->ic_next;
2519			continue;
2520		}
2521		list_splice_init(&iclog->ic_callbacks, &cb_list);
2522		spin_unlock(&log->l_icloglock);
2523
2524		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2525		xlog_cil_process_committed(&cb_list);
2526		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2527		ran_callback = true;
2528
2529		spin_lock(&log->l_icloglock);
2530		xlog_state_clean_iclog(log, iclog);
2531		iclog = iclog->ic_next;
2532	} while (iclog != first_iclog);
2533
2534	return ran_callback;
2535}
2536
2537
2538/*
2539 * Loop running iclog completion callbacks until there are no more iclogs in a
2540 * state that can run callbacks.
2541 */
2542STATIC void
2543xlog_state_do_callback(
2544	struct xlog		*log)
2545{
2546	int			flushcnt = 0;
2547	int			repeats = 0;
2548
2549	spin_lock(&log->l_icloglock);
2550	while (xlog_state_do_iclog_callbacks(log)) {
2551		if (xlog_is_shutdown(log))
2552			break;
2553
2554		if (++repeats > 5000) {
2555			flushcnt += repeats;
2556			repeats = 0;
2557			xfs_warn(log->l_mp,
2558				"%s: possible infinite loop (%d iterations)",
2559				__func__, flushcnt);
2560		}
2561	}
2562
2563	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2564		wake_up_all(&log->l_flush_wait);
2565
2566	spin_unlock(&log->l_icloglock);
2567}
2568
2569
2570/*
2571 * Finish transitioning this iclog to the dirty state.
2572 *
2573 * Callbacks could take time, so they are done outside the scope of the
2574 * global state machine log lock.
2575 */
2576STATIC void
2577xlog_state_done_syncing(
2578	struct xlog_in_core	*iclog)
2579{
2580	struct xlog		*log = iclog->ic_log;
2581
2582	spin_lock(&log->l_icloglock);
2583	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2584	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2585
2586	/*
2587	 * If we got an error, either on the first buffer, or in the case of
2588	 * split log writes, on the second, we shut down the file system and
2589	 * no iclogs should ever be attempted to be written to disk again.
2590	 */
2591	if (!xlog_is_shutdown(log)) {
2592		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2593		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2594	}
2595
2596	/*
2597	 * Someone could be sleeping prior to writing out the next
2598	 * iclog buffer, we wake them all, one will get to do the
2599	 * I/O, the others get to wait for the result.
2600	 */
2601	wake_up_all(&iclog->ic_write_wait);
2602	spin_unlock(&log->l_icloglock);
2603	xlog_state_do_callback(log);
2604}
2605
2606/*
2607 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2608 * sleep.  We wait on the flush queue on the head iclog as that should be
2609 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2610 * we will wait here and all new writes will sleep until a sync completes.
2611 *
2612 * The in-core logs are used in a circular fashion. They are not used
2613 * out-of-order even when an iclog past the head is free.
2614 *
2615 * return:
2616 *	* log_offset where xlog_write() can start writing into the in-core
2617 *		log's data space.
2618 *	* in-core log pointer to which xlog_write() should write.
2619 *	* boolean indicating this is a continued write to an in-core log.
2620 *		If this is the last write, then the in-core log's offset field
2621 *		needs to be incremented, depending on the amount of data which
2622 *		is copied.
2623 */
2624STATIC int
2625xlog_state_get_iclog_space(
2626	struct xlog		*log,
2627	int			len,
2628	struct xlog_in_core	**iclogp,
2629	struct xlog_ticket	*ticket,
2630	int			*logoffsetp)
2631{
2632	int		  log_offset;
2633	xlog_rec_header_t *head;
2634	xlog_in_core_t	  *iclog;
2635
2636restart:
2637	spin_lock(&log->l_icloglock);
2638	if (xlog_is_shutdown(log)) {
2639		spin_unlock(&log->l_icloglock);
2640		return -EIO;
2641	}
2642
2643	iclog = log->l_iclog;
2644	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2645		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2646
2647		/* Wait for log writes to have flushed */
2648		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2649		goto restart;
2650	}
2651
2652	head = &iclog->ic_header;
2653
2654	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2655	log_offset = iclog->ic_offset;
2656
2657	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2658
2659	/* On the 1st write to an iclog, figure out lsn.  This works
2660	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2661	 * committing to.  If the offset is set, that's how many blocks
2662	 * must be written.
2663	 */
2664	if (log_offset == 0) {
2665		ticket->t_curr_res -= log->l_iclog_hsize;
2666		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2667		head->h_lsn = cpu_to_be64(
2668			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2669		ASSERT(log->l_curr_block >= 0);
2670	}
2671
2672	/* If there is enough room to write everything, then do it.  Otherwise,
2673	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2674	 * bit is on, so this will get flushed out.  Don't update ic_offset
2675	 * until you know exactly how many bytes get copied.  Therefore, wait
2676	 * until later to update ic_offset.
2677	 *
2678	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2679	 * can fit into remaining data section.
2680	 */
2681	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2682		int		error = 0;
2683
2684		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2685
2686		/*
2687		 * If we are the only one writing to this iclog, sync it to
2688		 * disk.  We need to do an atomic compare and decrement here to
2689		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2690		 * xlog_state_release_iclog() when there is more than one
2691		 * reference to the iclog.
2692		 */
2693		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2694			error = xlog_state_release_iclog(log, iclog, ticket);
2695		spin_unlock(&log->l_icloglock);
2696		if (error)
2697			return error;
2698		goto restart;
2699	}
2700
2701	/* Do we have enough room to write the full amount in the remainder
2702	 * of this iclog?  Or must we continue a write on the next iclog and
2703	 * mark this iclog as completely taken?  In the case where we switch
2704	 * iclogs (to mark it taken), this particular iclog will release/sync
2705	 * to disk in xlog_write().
2706	 */
2707	if (len <= iclog->ic_size - iclog->ic_offset)
2708		iclog->ic_offset += len;
2709	else
2710		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2711	*iclogp = iclog;
2712
2713	ASSERT(iclog->ic_offset <= iclog->ic_size);
2714	spin_unlock(&log->l_icloglock);
2715
2716	*logoffsetp = log_offset;
2717	return 0;
2718}
2719
2720/*
2721 * The first cnt-1 times a ticket goes through here we don't need to move the
2722 * grant write head because the permanent reservation has reserved cnt times the
2723 * unit amount.  Release part of current permanent unit reservation and reset
2724 * current reservation to be one units worth.  Also move grant reservation head
2725 * forward.
2726 */
2727void
2728xfs_log_ticket_regrant(
2729	struct xlog		*log,
2730	struct xlog_ticket	*ticket)
2731{
2732	trace_xfs_log_ticket_regrant(log, ticket);
2733
2734	if (ticket->t_cnt > 0)
2735		ticket->t_cnt--;
2736
2737	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2738	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
 
 
2739	ticket->t_curr_res = ticket->t_unit_res;
2740
2741	trace_xfs_log_ticket_regrant_sub(log, ticket);
2742
2743	/* just return if we still have some of the pre-reserved space */
2744	if (!ticket->t_cnt) {
2745		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
 
2746		trace_xfs_log_ticket_regrant_exit(log, ticket);
2747
2748		ticket->t_curr_res = ticket->t_unit_res;
2749	}
2750
2751	xfs_log_ticket_put(ticket);
2752}
2753
2754/*
2755 * Give back the space left from a reservation.
2756 *
2757 * All the information we need to make a correct determination of space left
2758 * is present.  For non-permanent reservations, things are quite easy.  The
2759 * count should have been decremented to zero.  We only need to deal with the
2760 * space remaining in the current reservation part of the ticket.  If the
2761 * ticket contains a permanent reservation, there may be left over space which
2762 * needs to be released.  A count of N means that N-1 refills of the current
2763 * reservation can be done before we need to ask for more space.  The first
2764 * one goes to fill up the first current reservation.  Once we run out of
2765 * space, the count will stay at zero and the only space remaining will be
2766 * in the current reservation field.
2767 */
2768void
2769xfs_log_ticket_ungrant(
2770	struct xlog		*log,
2771	struct xlog_ticket	*ticket)
2772{
2773	int			bytes;
2774
2775	trace_xfs_log_ticket_ungrant(log, ticket);
2776
2777	if (ticket->t_cnt > 0)
2778		ticket->t_cnt--;
2779
2780	trace_xfs_log_ticket_ungrant_sub(log, ticket);
2781
2782	/*
2783	 * If this is a permanent reservation ticket, we may be able to free
2784	 * up more space based on the remaining count.
2785	 */
2786	bytes = ticket->t_curr_res;
2787	if (ticket->t_cnt > 0) {
2788		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2789		bytes += ticket->t_unit_res*ticket->t_cnt;
2790	}
2791
2792	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2793	xlog_grant_sub_space(&log->l_write_head, bytes);
2794
2795	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2796
2797	xfs_log_space_wake(log->l_mp);
2798	xfs_log_ticket_put(ticket);
2799}
2800
2801/*
2802 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2803 * the current iclog pointer to the next iclog in the ring.
2804 */
2805void
2806xlog_state_switch_iclogs(
2807	struct xlog		*log,
2808	struct xlog_in_core	*iclog,
2809	int			eventual_size)
2810{
2811	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2812	assert_spin_locked(&log->l_icloglock);
2813	trace_xlog_iclog_switch(iclog, _RET_IP_);
2814
2815	if (!eventual_size)
2816		eventual_size = iclog->ic_offset;
2817	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2818	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2819	log->l_prev_block = log->l_curr_block;
2820	log->l_prev_cycle = log->l_curr_cycle;
2821
2822	/* roll log?: ic_offset changed later */
2823	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2824
2825	/* Round up to next log-sunit */
2826	if (log->l_iclog_roundoff > BBSIZE) {
2827		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
2828		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2829	}
2830
2831	if (log->l_curr_block >= log->l_logBBsize) {
2832		/*
2833		 * Rewind the current block before the cycle is bumped to make
2834		 * sure that the combined LSN never transiently moves forward
2835		 * when the log wraps to the next cycle. This is to support the
2836		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2837		 * other cases should acquire l_icloglock.
2838		 */
2839		log->l_curr_block -= log->l_logBBsize;
2840		ASSERT(log->l_curr_block >= 0);
2841		smp_wmb();
2842		log->l_curr_cycle++;
2843		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2844			log->l_curr_cycle++;
2845	}
2846	ASSERT(iclog == log->l_iclog);
2847	log->l_iclog = iclog->ic_next;
2848}
2849
2850/*
2851 * Force the iclog to disk and check if the iclog has been completed before
2852 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2853 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2854 * If completion has already occurred, tell the caller so that it can avoid an
2855 * unnecessary wait on the iclog.
2856 */
2857static int
2858xlog_force_and_check_iclog(
2859	struct xlog_in_core	*iclog,
2860	bool			*completed)
2861{
2862	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2863	int			error;
2864
2865	*completed = false;
2866	error = xlog_force_iclog(iclog);
2867	if (error)
2868		return error;
2869
2870	/*
2871	 * If the iclog has already been completed and reused the header LSN
2872	 * will have been rewritten by completion
2873	 */
2874	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2875		*completed = true;
2876	return 0;
2877}
2878
2879/*
2880 * Write out all data in the in-core log as of this exact moment in time.
2881 *
2882 * Data may be written to the in-core log during this call.  However,
2883 * we don't guarantee this data will be written out.  A change from past
2884 * implementation means this routine will *not* write out zero length LRs.
2885 *
2886 * Basically, we try and perform an intelligent scan of the in-core logs.
2887 * If we determine there is no flushable data, we just return.  There is no
2888 * flushable data if:
2889 *
2890 *	1. the current iclog is active and has no data; the previous iclog
2891 *		is in the active or dirty state.
2892 *	2. the current iclog is drity, and the previous iclog is in the
2893 *		active or dirty state.
2894 *
2895 * We may sleep if:
2896 *
2897 *	1. the current iclog is not in the active nor dirty state.
2898 *	2. the current iclog dirty, and the previous iclog is not in the
2899 *		active nor dirty state.
2900 *	3. the current iclog is active, and there is another thread writing
2901 *		to this particular iclog.
2902 *	4. a) the current iclog is active and has no other writers
2903 *	   b) when we return from flushing out this iclog, it is still
2904 *		not in the active nor dirty state.
2905 */
2906int
2907xfs_log_force(
2908	struct xfs_mount	*mp,
2909	uint			flags)
2910{
2911	struct xlog		*log = mp->m_log;
2912	struct xlog_in_core	*iclog;
2913
2914	XFS_STATS_INC(mp, xs_log_force);
2915	trace_xfs_log_force(mp, 0, _RET_IP_);
2916
2917	xlog_cil_force(log);
2918
2919	spin_lock(&log->l_icloglock);
2920	if (xlog_is_shutdown(log))
2921		goto out_error;
2922
2923	iclog = log->l_iclog;
2924	trace_xlog_iclog_force(iclog, _RET_IP_);
2925
2926	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2927	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2928	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
2929		/*
2930		 * If the head is dirty or (active and empty), then we need to
2931		 * look at the previous iclog.
2932		 *
2933		 * If the previous iclog is active or dirty we are done.  There
2934		 * is nothing to sync out. Otherwise, we attach ourselves to the
2935		 * previous iclog and go to sleep.
2936		 */
2937		iclog = iclog->ic_prev;
2938	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2939		if (atomic_read(&iclog->ic_refcnt) == 0) {
2940			/* We have exclusive access to this iclog. */
2941			bool	completed;
2942
2943			if (xlog_force_and_check_iclog(iclog, &completed))
2944				goto out_error;
2945
2946			if (completed)
2947				goto out_unlock;
2948		} else {
2949			/*
2950			 * Someone else is still writing to this iclog, so we
2951			 * need to ensure that when they release the iclog it
2952			 * gets synced immediately as we may be waiting on it.
2953			 */
2954			xlog_state_switch_iclogs(log, iclog, 0);
2955		}
2956	}
2957
2958	/*
2959	 * The iclog we are about to wait on may contain the checkpoint pushed
2960	 * by the above xlog_cil_force() call, but it may not have been pushed
2961	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2962	 * are flushed when this iclog is written.
2963	 */
2964	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2965		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2966
2967	if (flags & XFS_LOG_SYNC)
2968		return xlog_wait_on_iclog(iclog);
2969out_unlock:
2970	spin_unlock(&log->l_icloglock);
2971	return 0;
2972out_error:
2973	spin_unlock(&log->l_icloglock);
2974	return -EIO;
2975}
2976
2977/*
2978 * Force the log to a specific LSN.
2979 *
2980 * If an iclog with that lsn can be found:
2981 *	If it is in the DIRTY state, just return.
2982 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2983 *		state and go to sleep or return.
2984 *	If it is in any other state, go to sleep or return.
2985 *
2986 * Synchronous forces are implemented with a wait queue.  All callers trying
2987 * to force a given lsn to disk must wait on the queue attached to the
2988 * specific in-core log.  When given in-core log finally completes its write
2989 * to disk, that thread will wake up all threads waiting on the queue.
2990 */
2991static int
2992xlog_force_lsn(
2993	struct xlog		*log,
2994	xfs_lsn_t		lsn,
2995	uint			flags,
2996	int			*log_flushed,
2997	bool			already_slept)
2998{
2999	struct xlog_in_core	*iclog;
3000	bool			completed;
3001
3002	spin_lock(&log->l_icloglock);
3003	if (xlog_is_shutdown(log))
3004		goto out_error;
3005
3006	iclog = log->l_iclog;
3007	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3008		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3009		iclog = iclog->ic_next;
3010		if (iclog == log->l_iclog)
3011			goto out_unlock;
3012	}
3013
3014	switch (iclog->ic_state) {
3015	case XLOG_STATE_ACTIVE:
3016		/*
3017		 * We sleep here if we haven't already slept (e.g. this is the
3018		 * first time we've looked at the correct iclog buf) and the
3019		 * buffer before us is going to be sync'ed.  The reason for this
3020		 * is that if we are doing sync transactions here, by waiting
3021		 * for the previous I/O to complete, we can allow a few more
3022		 * transactions into this iclog before we close it down.
3023		 *
3024		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3025		 * refcnt so we can release the log (which drops the ref count).
3026		 * The state switch keeps new transaction commits from using
3027		 * this buffer.  When the current commits finish writing into
3028		 * the buffer, the refcount will drop to zero and the buffer
3029		 * will go out then.
3030		 */
3031		if (!already_slept &&
3032		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3033		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3034			xlog_wait(&iclog->ic_prev->ic_write_wait,
3035					&log->l_icloglock);
3036			return -EAGAIN;
3037		}
3038		if (xlog_force_and_check_iclog(iclog, &completed))
3039			goto out_error;
3040		if (log_flushed)
3041			*log_flushed = 1;
3042		if (completed)
3043			goto out_unlock;
3044		break;
3045	case XLOG_STATE_WANT_SYNC:
3046		/*
3047		 * This iclog may contain the checkpoint pushed by the
3048		 * xlog_cil_force_seq() call, but there are other writers still
3049		 * accessing it so it hasn't been pushed to disk yet. Like the
3050		 * ACTIVE case above, we need to make sure caches are flushed
3051		 * when this iclog is written.
3052		 */
3053		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3054		break;
3055	default:
3056		/*
3057		 * The entire checkpoint was written by the CIL force and is on
3058		 * its way to disk already. It will be stable when it
3059		 * completes, so we don't need to manipulate caches here at all.
3060		 * We just need to wait for completion if necessary.
3061		 */
3062		break;
3063	}
3064
3065	if (flags & XFS_LOG_SYNC)
3066		return xlog_wait_on_iclog(iclog);
3067out_unlock:
3068	spin_unlock(&log->l_icloglock);
3069	return 0;
3070out_error:
3071	spin_unlock(&log->l_icloglock);
3072	return -EIO;
3073}
3074
3075/*
3076 * Force the log to a specific checkpoint sequence.
3077 *
3078 * First force the CIL so that all the required changes have been flushed to the
3079 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3080 * the iclog that needs to be flushed to stable storage. If the caller needs
3081 * a synchronous log force, we will wait on the iclog with the LSN returned by
3082 * xlog_cil_force_seq() to be completed.
3083 */
3084int
3085xfs_log_force_seq(
3086	struct xfs_mount	*mp,
3087	xfs_csn_t		seq,
3088	uint			flags,
3089	int			*log_flushed)
3090{
3091	struct xlog		*log = mp->m_log;
3092	xfs_lsn_t		lsn;
3093	int			ret;
3094	ASSERT(seq != 0);
3095
3096	XFS_STATS_INC(mp, xs_log_force);
3097	trace_xfs_log_force(mp, seq, _RET_IP_);
3098
3099	lsn = xlog_cil_force_seq(log, seq);
3100	if (lsn == NULLCOMMITLSN)
3101		return 0;
3102
3103	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3104	if (ret == -EAGAIN) {
3105		XFS_STATS_INC(mp, xs_log_force_sleep);
3106		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3107	}
3108	return ret;
3109}
3110
3111/*
3112 * Free a used ticket when its refcount falls to zero.
3113 */
3114void
3115xfs_log_ticket_put(
3116	xlog_ticket_t	*ticket)
3117{
3118	ASSERT(atomic_read(&ticket->t_ref) > 0);
3119	if (atomic_dec_and_test(&ticket->t_ref))
3120		kmem_cache_free(xfs_log_ticket_cache, ticket);
3121}
3122
3123xlog_ticket_t *
3124xfs_log_ticket_get(
3125	xlog_ticket_t	*ticket)
3126{
3127	ASSERT(atomic_read(&ticket->t_ref) > 0);
3128	atomic_inc(&ticket->t_ref);
3129	return ticket;
3130}
3131
3132/*
3133 * Figure out the total log space unit (in bytes) that would be
3134 * required for a log ticket.
3135 */
3136static int
3137xlog_calc_unit_res(
3138	struct xlog		*log,
3139	int			unit_bytes,
3140	int			*niclogs)
3141{
3142	int			iclog_space;
3143	uint			num_headers;
3144
3145	/*
3146	 * Permanent reservations have up to 'cnt'-1 active log operations
3147	 * in the log.  A unit in this case is the amount of space for one
3148	 * of these log operations.  Normal reservations have a cnt of 1
3149	 * and their unit amount is the total amount of space required.
3150	 *
3151	 * The following lines of code account for non-transaction data
3152	 * which occupy space in the on-disk log.
3153	 *
3154	 * Normal form of a transaction is:
3155	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3156	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3157	 *
3158	 * We need to account for all the leadup data and trailer data
3159	 * around the transaction data.
3160	 * And then we need to account for the worst case in terms of using
3161	 * more space.
3162	 * The worst case will happen if:
3163	 * - the placement of the transaction happens to be such that the
3164	 *   roundoff is at its maximum
3165	 * - the transaction data is synced before the commit record is synced
3166	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3167	 *   Therefore the commit record is in its own Log Record.
3168	 *   This can happen as the commit record is called with its
3169	 *   own region to xlog_write().
3170	 *   This then means that in the worst case, roundoff can happen for
3171	 *   the commit-rec as well.
3172	 *   The commit-rec is smaller than padding in this scenario and so it is
3173	 *   not added separately.
3174	 */
3175
3176	/* for trans header */
3177	unit_bytes += sizeof(xlog_op_header_t);
3178	unit_bytes += sizeof(xfs_trans_header_t);
3179
3180	/* for start-rec */
3181	unit_bytes += sizeof(xlog_op_header_t);
3182
3183	/*
3184	 * for LR headers - the space for data in an iclog is the size minus
3185	 * the space used for the headers. If we use the iclog size, then we
3186	 * undercalculate the number of headers required.
3187	 *
3188	 * Furthermore - the addition of op headers for split-recs might
3189	 * increase the space required enough to require more log and op
3190	 * headers, so take that into account too.
3191	 *
3192	 * IMPORTANT: This reservation makes the assumption that if this
3193	 * transaction is the first in an iclog and hence has the LR headers
3194	 * accounted to it, then the remaining space in the iclog is
3195	 * exclusively for this transaction.  i.e. if the transaction is larger
3196	 * than the iclog, it will be the only thing in that iclog.
3197	 * Fundamentally, this means we must pass the entire log vector to
3198	 * xlog_write to guarantee this.
3199	 */
3200	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3201	num_headers = howmany(unit_bytes, iclog_space);
3202
3203	/* for split-recs - ophdrs added when data split over LRs */
3204	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3205
3206	/* add extra header reservations if we overrun */
3207	while (!num_headers ||
3208	       howmany(unit_bytes, iclog_space) > num_headers) {
3209		unit_bytes += sizeof(xlog_op_header_t);
3210		num_headers++;
3211	}
3212	unit_bytes += log->l_iclog_hsize * num_headers;
3213
3214	/* for commit-rec LR header - note: padding will subsume the ophdr */
3215	unit_bytes += log->l_iclog_hsize;
3216
3217	/* roundoff padding for transaction data and one for commit record */
3218	unit_bytes += 2 * log->l_iclog_roundoff;
3219
3220	if (niclogs)
3221		*niclogs = num_headers;
3222	return unit_bytes;
3223}
3224
3225int
3226xfs_log_calc_unit_res(
3227	struct xfs_mount	*mp,
3228	int			unit_bytes)
3229{
3230	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3231}
3232
3233/*
3234 * Allocate and initialise a new log ticket.
3235 */
3236struct xlog_ticket *
3237xlog_ticket_alloc(
3238	struct xlog		*log,
3239	int			unit_bytes,
3240	int			cnt,
3241	bool			permanent)
3242{
3243	struct xlog_ticket	*tic;
3244	int			unit_res;
3245
3246	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3247			GFP_KERNEL | __GFP_NOFAIL);
3248
3249	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3250
3251	atomic_set(&tic->t_ref, 1);
3252	tic->t_task		= current;
3253	INIT_LIST_HEAD(&tic->t_queue);
3254	tic->t_unit_res		= unit_res;
3255	tic->t_curr_res		= unit_res;
3256	tic->t_cnt		= cnt;
3257	tic->t_ocnt		= cnt;
3258	tic->t_tid		= get_random_u32();
3259	if (permanent)
3260		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3261
3262	return tic;
3263}
3264
3265#if defined(DEBUG)
3266static void
3267xlog_verify_dump_tail(
3268	struct xlog		*log,
3269	struct xlog_in_core	*iclog)
 
 
 
 
 
 
 
 
 
 
3270{
3271	xfs_alert(log->l_mp,
3272"ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3273			iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3274			atomic64_read(&log->l_tail_lsn),
3275			log->l_ailp->ail_head_lsn,
3276			log->l_curr_cycle, log->l_curr_block,
3277			log->l_prev_cycle, log->l_prev_block);
3278	xfs_alert(log->l_mp,
3279"write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3280			atomic64_read(&log->l_write_head.grant),
3281			atomic64_read(&log->l_reserve_head.grant),
3282			log->l_tail_space, log->l_logsize,
3283			iclog ? iclog->ic_flags : -1);
 
 
 
 
 
3284}
3285
3286/* Check if the new iclog will fit in the log. */
3287STATIC void
3288xlog_verify_tail_lsn(
3289	struct xlog		*log,
3290	struct xlog_in_core	*iclog)
3291{
3292	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3293	int		blocks;
3294
3295	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3296		blocks = log->l_logBBsize -
3297				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3298		if (blocks < BTOBB(iclog->ic_offset) +
3299					BTOBB(log->l_iclog_hsize)) {
3300			xfs_emerg(log->l_mp,
3301					"%s: ran out of log space", __func__);
3302			xlog_verify_dump_tail(log, iclog);
3303		}
3304		return;
3305	}
3306
3307	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3308		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3309		xlog_verify_dump_tail(log, iclog);
3310		return;
3311	}
3312	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
3313		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3314		xlog_verify_dump_tail(log, iclog);
3315		return;
3316	}
3317
3318	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3319	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3320		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3321		xlog_verify_dump_tail(log, iclog);
3322	}
3323}
3324
3325/*
3326 * Perform a number of checks on the iclog before writing to disk.
3327 *
3328 * 1. Make sure the iclogs are still circular
3329 * 2. Make sure we have a good magic number
3330 * 3. Make sure we don't have magic numbers in the data
3331 * 4. Check fields of each log operation header for:
3332 *	A. Valid client identifier
3333 *	B. tid ptr value falls in valid ptr space (user space code)
3334 *	C. Length in log record header is correct according to the
3335 *		individual operation headers within record.
3336 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3337 *	log, check the preceding blocks of the physical log to make sure all
3338 *	the cycle numbers agree with the current cycle number.
3339 */
3340STATIC void
3341xlog_verify_iclog(
3342	struct xlog		*log,
3343	struct xlog_in_core	*iclog,
3344	int			count)
3345{
3346	xlog_op_header_t	*ophead;
3347	xlog_in_core_t		*icptr;
3348	xlog_in_core_2_t	*xhdr;
3349	void			*base_ptr, *ptr, *p;
3350	ptrdiff_t		field_offset;
3351	uint8_t			clientid;
3352	int			len, i, j, k, op_len;
3353	int			idx;
3354
3355	/* check validity of iclog pointers */
3356	spin_lock(&log->l_icloglock);
3357	icptr = log->l_iclog;
3358	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3359		ASSERT(icptr);
3360
3361	if (icptr != log->l_iclog)
3362		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3363	spin_unlock(&log->l_icloglock);
3364
3365	/* check log magic numbers */
3366	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3367		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3368
3369	base_ptr = ptr = &iclog->ic_header;
3370	p = &iclog->ic_header;
3371	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3372		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3373			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3374				__func__);
3375	}
3376
3377	/* check fields */
3378	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3379	base_ptr = ptr = iclog->ic_datap;
3380	ophead = ptr;
3381	xhdr = iclog->ic_data;
3382	for (i = 0; i < len; i++) {
3383		ophead = ptr;
3384
3385		/* clientid is only 1 byte */
3386		p = &ophead->oh_clientid;
3387		field_offset = p - base_ptr;
3388		if (field_offset & 0x1ff) {
3389			clientid = ophead->oh_clientid;
3390		} else {
3391			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3392			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3393				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3394				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3395				clientid = xlog_get_client_id(
3396					xhdr[j].hic_xheader.xh_cycle_data[k]);
3397			} else {
3398				clientid = xlog_get_client_id(
3399					iclog->ic_header.h_cycle_data[idx]);
3400			}
3401		}
3402		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3403			xfs_warn(log->l_mp,
3404				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3405				__func__, i, clientid, ophead,
3406				(unsigned long)field_offset);
3407		}
3408
3409		/* check length */
3410		p = &ophead->oh_len;
3411		field_offset = p - base_ptr;
3412		if (field_offset & 0x1ff) {
3413			op_len = be32_to_cpu(ophead->oh_len);
3414		} else {
3415			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3416			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3417				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3418				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3419				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3420			} else {
3421				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3422			}
3423		}
3424		ptr += sizeof(xlog_op_header_t) + op_len;
3425	}
3426}
3427#endif
3428
3429/*
3430 * Perform a forced shutdown on the log.
3431 *
3432 * This can be called from low level log code to trigger a shutdown, or from the
3433 * high level mount shutdown code when the mount shuts down.
3434 *
3435 * Our main objectives here are to make sure that:
3436 *	a. if the shutdown was not due to a log IO error, flush the logs to
3437 *	   disk. Anything modified after this is ignored.
3438 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3439 *	   parties to find out. Nothing new gets queued after this is done.
3440 *	c. Tasks sleeping on log reservations, pinned objects and
3441 *	   other resources get woken up.
3442 *	d. The mount is also marked as shut down so that log triggered shutdowns
3443 *	   still behave the same as if they called xfs_forced_shutdown().
3444 *
3445 * Return true if the shutdown cause was a log IO error and we actually shut the
3446 * log down.
3447 */
3448bool
3449xlog_force_shutdown(
3450	struct xlog	*log,
3451	uint32_t	shutdown_flags)
3452{
3453	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3454
3455	if (!log)
3456		return false;
3457
3458	/*
3459	 * Ensure that there is only ever one log shutdown being processed.
3460	 * If we allow the log force below on a second pass after shutting
3461	 * down the log, we risk deadlocking the CIL push as it may require
3462	 * locks on objects the current shutdown context holds (e.g. taking
3463	 * buffer locks to abort buffers on last unpin of buf log items).
3464	 */
3465	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3466		return false;
3467
3468	/*
3469	 * Flush all the completed transactions to disk before marking the log
3470	 * being shut down. We need to do this first as shutting down the log
3471	 * before the force will prevent the log force from flushing the iclogs
3472	 * to disk.
3473	 *
3474	 * When we are in recovery, there are no transactions to flush, and
3475	 * we don't want to touch the log because we don't want to perturb the
3476	 * current head/tail for future recovery attempts. Hence we need to
3477	 * avoid a log force in this case.
3478	 *
3479	 * If we are shutting down due to a log IO error, then we must avoid
3480	 * trying to write the log as that may just result in more IO errors and
3481	 * an endless shutdown/force loop.
3482	 */
3483	if (!log_error && !xlog_in_recovery(log))
3484		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3485
3486	/*
3487	 * Atomically set the shutdown state. If the shutdown state is already
3488	 * set, there someone else is performing the shutdown and so we are done
3489	 * here. This should never happen because we should only ever get called
3490	 * once by the first shutdown caller.
3491	 *
3492	 * Much of the log state machine transitions assume that shutdown state
3493	 * cannot change once they hold the log->l_icloglock. Hence we need to
3494	 * hold that lock here, even though we use the atomic test_and_set_bit()
3495	 * operation to set the shutdown state.
3496	 */
3497	spin_lock(&log->l_icloglock);
3498	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3499		spin_unlock(&log->l_icloglock);
3500		ASSERT(0);
3501		return false;
3502	}
3503	spin_unlock(&log->l_icloglock);
3504
3505	/*
3506	 * If this log shutdown also sets the mount shutdown state, issue a
3507	 * shutdown warning message.
3508	 */
3509	if (!xfs_set_shutdown(log->l_mp)) {
3510		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3511"Filesystem has been shut down due to log error (0x%x).",
3512				shutdown_flags);
3513		xfs_alert(log->l_mp,
3514"Please unmount the filesystem and rectify the problem(s).");
3515		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3516			xfs_stack_trace();
3517	}
3518
3519	/*
3520	 * We don't want anybody waiting for log reservations after this. That
3521	 * means we have to wake up everybody queued up on reserveq as well as
3522	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3523	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3524	 * action is protected by the grant locks.
3525	 */
3526	xlog_grant_head_wake_all(&log->l_reserve_head);
3527	xlog_grant_head_wake_all(&log->l_write_head);
3528
3529	/*
3530	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3531	 * as if the log writes were completed. The abort handling in the log
3532	 * item committed callback functions will do this again under lock to
3533	 * avoid races.
3534	 */
3535	spin_lock(&log->l_cilp->xc_push_lock);
3536	wake_up_all(&log->l_cilp->xc_start_wait);
3537	wake_up_all(&log->l_cilp->xc_commit_wait);
3538	spin_unlock(&log->l_cilp->xc_push_lock);
3539
3540	spin_lock(&log->l_icloglock);
3541	xlog_state_shutdown_callbacks(log);
3542	spin_unlock(&log->l_icloglock);
3543
3544	wake_up_var(&log->l_opstate);
3545	return log_error;
3546}
3547
3548STATIC int
3549xlog_iclogs_empty(
3550	struct xlog	*log)
3551{
3552	xlog_in_core_t	*iclog;
3553
3554	iclog = log->l_iclog;
3555	do {
3556		/* endianness does not matter here, zero is zero in
3557		 * any language.
3558		 */
3559		if (iclog->ic_header.h_num_logops)
3560			return 0;
3561		iclog = iclog->ic_next;
3562	} while (iclog != log->l_iclog);
3563	return 1;
3564}
3565
3566/*
3567 * Verify that an LSN stamped into a piece of metadata is valid. This is
3568 * intended for use in read verifiers on v5 superblocks.
3569 */
3570bool
3571xfs_log_check_lsn(
3572	struct xfs_mount	*mp,
3573	xfs_lsn_t		lsn)
3574{
3575	struct xlog		*log = mp->m_log;
3576	bool			valid;
3577
3578	/*
3579	 * norecovery mode skips mount-time log processing and unconditionally
3580	 * resets the in-core LSN. We can't validate in this mode, but
3581	 * modifications are not allowed anyways so just return true.
3582	 */
3583	if (xfs_has_norecovery(mp))
3584		return true;
3585
3586	/*
3587	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3588	 * handled by recovery and thus safe to ignore here.
3589	 */
3590	if (lsn == NULLCOMMITLSN)
3591		return true;
3592
3593	valid = xlog_valid_lsn(mp->m_log, lsn);
3594
3595	/* warn the user about what's gone wrong before verifier failure */
3596	if (!valid) {
3597		spin_lock(&log->l_icloglock);
3598		xfs_warn(mp,
3599"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3600"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3601			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3602			 log->l_curr_cycle, log->l_curr_block);
3603		spin_unlock(&log->l_icloglock);
3604	}
3605
3606	return valid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3607}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24struct kmem_cache	*xfs_log_ticket_cache;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC int
  34xlog_space_left(
  35	struct xlog		*log,
  36	atomic64_t		*head);
  37STATIC void
  38xlog_dealloc_log(
  39	struct xlog		*log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
  43	struct xlog_in_core	*iclog);
  44STATIC void xlog_state_do_callback(
  45	struct xlog		*log);
  46STATIC int
  47xlog_state_get_iclog_space(
  48	struct xlog		*log,
  49	int			len,
  50	struct xlog_in_core	**iclog,
  51	struct xlog_ticket	*ticket,
  52	int			*logoffsetp);
  53STATIC void
  54xlog_grant_push_ail(
  55	struct xlog		*log,
  56	int			need_bytes);
  57STATIC void
  58xlog_sync(
  59	struct xlog		*log,
  60	struct xlog_in_core	*iclog,
  61	struct xlog_ticket	*ticket);
  62#if defined(DEBUG)
  63STATIC void
  64xlog_verify_grant_tail(
  65	struct xlog *log);
  66STATIC void
  67xlog_verify_iclog(
  68	struct xlog		*log,
  69	struct xlog_in_core	*iclog,
  70	int			count);
  71STATIC void
  72xlog_verify_tail_lsn(
  73	struct xlog		*log,
  74	struct xlog_in_core	*iclog);
  75#else
  76#define xlog_verify_grant_tail(a)
  77#define xlog_verify_iclog(a,b,c)
  78#define xlog_verify_tail_lsn(a,b)
  79#endif
  80
  81STATIC int
  82xlog_iclogs_empty(
  83	struct xlog		*log);
  84
  85static int
  86xfs_log_cover(struct xfs_mount *);
  87
  88/*
  89 * We need to make sure the buffer pointer returned is naturally aligned for the
  90 * biggest basic data type we put into it. We have already accounted for this
  91 * padding when sizing the buffer.
  92 *
  93 * However, this padding does not get written into the log, and hence we have to
  94 * track the space used by the log vectors separately to prevent log space hangs
  95 * due to inaccurate accounting (i.e. a leak) of the used log space through the
  96 * CIL context ticket.
  97 *
  98 * We also add space for the xlog_op_header that describes this region in the
  99 * log. This prepends the data region we return to the caller to copy their data
 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr
 101 * is not 8 byte aligned, we have to be careful to ensure that we align the
 102 * start of the buffer such that the region we return to the call is 8 byte
 103 * aligned and packed against the tail of the ophdr.
 104 */
 105void *
 106xlog_prepare_iovec(
 107	struct xfs_log_vec	*lv,
 108	struct xfs_log_iovec	**vecp,
 109	uint			type)
 110{
 111	struct xfs_log_iovec	*vec = *vecp;
 112	struct xlog_op_header	*oph;
 113	uint32_t		len;
 114	void			*buf;
 115
 116	if (vec) {
 117		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
 118		vec++;
 119	} else {
 120		vec = &lv->lv_iovecp[0];
 121	}
 122
 123	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
 124	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
 125		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
 126					sizeof(struct xlog_op_header);
 127	}
 128
 129	vec->i_type = type;
 130	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
 131
 132	oph = vec->i_addr;
 133	oph->oh_clientid = XFS_TRANSACTION;
 134	oph->oh_res2 = 0;
 135	oph->oh_flags = 0;
 136
 137	buf = vec->i_addr + sizeof(struct xlog_op_header);
 138	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
 139
 140	*vecp = vec;
 141	return buf;
 142}
 143
 144static void
 145xlog_grant_sub_space(
 146	struct xlog		*log,
 147	atomic64_t		*head,
 148	int			bytes)
 149{
 150	int64_t	head_val = atomic64_read(head);
 151	int64_t new, old;
 152
 153	do {
 154		int	cycle, space;
 155
 156		xlog_crack_grant_head_val(head_val, &cycle, &space);
 157
 158		space -= bytes;
 159		if (space < 0) {
 160			space += log->l_logsize;
 161			cycle--;
 162		}
 163
 164		old = head_val;
 165		new = xlog_assign_grant_head_val(cycle, space);
 166		head_val = atomic64_cmpxchg(head, old, new);
 167	} while (head_val != old);
 168}
 169
 170static void
 171xlog_grant_add_space(
 172	struct xlog		*log,
 173	atomic64_t		*head,
 174	int			bytes)
 175{
 176	int64_t	head_val = atomic64_read(head);
 177	int64_t new, old;
 
 
 178
 179	do {
 180		int		tmp;
 181		int		cycle, space;
 182
 183		xlog_crack_grant_head_val(head_val, &cycle, &space);
 184
 185		tmp = log->l_logsize - space;
 186		if (tmp > bytes)
 187			space += bytes;
 188		else {
 189			space = bytes - tmp;
 190			cycle++;
 191		}
 192
 193		old = head_val;
 194		new = xlog_assign_grant_head_val(cycle, space);
 195		head_val = atomic64_cmpxchg(head, old, new);
 196	} while (head_val != old);
 197}
 198
 199STATIC void
 200xlog_grant_head_init(
 
 
 
 
 
 
 
 
 
 201	struct xlog_grant_head	*head)
 202{
 203	xlog_assign_grant_head(&head->grant, 1, 0);
 204	INIT_LIST_HEAD(&head->waiters);
 205	spin_lock_init(&head->lock);
 
 
 
 
 
 206}
 207
 208STATIC void
 209xlog_grant_head_wake_all(
 210	struct xlog_grant_head	*head)
 211{
 212	struct xlog_ticket	*tic;
 213
 214	spin_lock(&head->lock);
 215	list_for_each_entry(tic, &head->waiters, t_queue)
 216		wake_up_process(tic->t_task);
 217	spin_unlock(&head->lock);
 218}
 219
 220static inline int
 221xlog_ticket_reservation(
 222	struct xlog		*log,
 223	struct xlog_grant_head	*head,
 224	struct xlog_ticket	*tic)
 225{
 226	if (head == &log->l_write_head) {
 227		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 228		return tic->t_unit_res;
 229	}
 230
 231	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 232		return tic->t_unit_res * tic->t_cnt;
 233
 234	return tic->t_unit_res;
 235}
 236
 237STATIC bool
 238xlog_grant_head_wake(
 239	struct xlog		*log,
 240	struct xlog_grant_head	*head,
 241	int			*free_bytes)
 242{
 243	struct xlog_ticket	*tic;
 244	int			need_bytes;
 245	bool			woken_task = false;
 246
 247	list_for_each_entry(tic, &head->waiters, t_queue) {
 248
 249		/*
 250		 * There is a chance that the size of the CIL checkpoints in
 251		 * progress at the last AIL push target calculation resulted in
 252		 * limiting the target to the log head (l_last_sync_lsn) at the
 253		 * time. This may not reflect where the log head is now as the
 254		 * CIL checkpoints may have completed.
 255		 *
 256		 * Hence when we are woken here, it may be that the head of the
 257		 * log that has moved rather than the tail. As the tail didn't
 258		 * move, there still won't be space available for the
 259		 * reservation we require.  However, if the AIL has already
 260		 * pushed to the target defined by the old log head location, we
 261		 * will hang here waiting for something else to update the AIL
 262		 * push target.
 263		 *
 264		 * Therefore, if there isn't space to wake the first waiter on
 265		 * the grant head, we need to push the AIL again to ensure the
 266		 * target reflects both the current log tail and log head
 267		 * position before we wait for the tail to move again.
 268		 */
 269
 270		need_bytes = xlog_ticket_reservation(log, head, tic);
 271		if (*free_bytes < need_bytes) {
 272			if (!woken_task)
 273				xlog_grant_push_ail(log, need_bytes);
 274			return false;
 275		}
 276
 277		*free_bytes -= need_bytes;
 278		trace_xfs_log_grant_wake_up(log, tic);
 279		wake_up_process(tic->t_task);
 280		woken_task = true;
 281	}
 282
 283	return true;
 284}
 285
 286STATIC int
 287xlog_grant_head_wait(
 288	struct xlog		*log,
 289	struct xlog_grant_head	*head,
 290	struct xlog_ticket	*tic,
 291	int			need_bytes) __releases(&head->lock)
 292					    __acquires(&head->lock)
 293{
 294	list_add_tail(&tic->t_queue, &head->waiters);
 295
 296	do {
 297		if (xlog_is_shutdown(log))
 298			goto shutdown;
 299		xlog_grant_push_ail(log, need_bytes);
 300
 301		__set_current_state(TASK_UNINTERRUPTIBLE);
 302		spin_unlock(&head->lock);
 303
 304		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 305
 
 
 
 306		trace_xfs_log_grant_sleep(log, tic);
 307		schedule();
 308		trace_xfs_log_grant_wake(log, tic);
 309
 310		spin_lock(&head->lock);
 311		if (xlog_is_shutdown(log))
 312			goto shutdown;
 313	} while (xlog_space_left(log, &head->grant) < need_bytes);
 314
 315	list_del_init(&tic->t_queue);
 316	return 0;
 317shutdown:
 318	list_del_init(&tic->t_queue);
 319	return -EIO;
 320}
 321
 322/*
 323 * Atomically get the log space required for a log ticket.
 324 *
 325 * Once a ticket gets put onto head->waiters, it will only return after the
 326 * needed reservation is satisfied.
 327 *
 328 * This function is structured so that it has a lock free fast path. This is
 329 * necessary because every new transaction reservation will come through this
 330 * path. Hence any lock will be globally hot if we take it unconditionally on
 331 * every pass.
 332 *
 333 * As tickets are only ever moved on and off head->waiters under head->lock, we
 334 * only need to take that lock if we are going to add the ticket to the queue
 335 * and sleep. We can avoid taking the lock if the ticket was never added to
 336 * head->waiters because the t_queue list head will be empty and we hold the
 337 * only reference to it so it can safely be checked unlocked.
 338 */
 339STATIC int
 340xlog_grant_head_check(
 341	struct xlog		*log,
 342	struct xlog_grant_head	*head,
 343	struct xlog_ticket	*tic,
 344	int			*need_bytes)
 345{
 346	int			free_bytes;
 347	int			error = 0;
 348
 349	ASSERT(!xlog_in_recovery(log));
 350
 351	/*
 352	 * If there are other waiters on the queue then give them a chance at
 353	 * logspace before us.  Wake up the first waiters, if we do not wake
 354	 * up all the waiters then go to sleep waiting for more free space,
 355	 * otherwise try to get some space for this transaction.
 356	 */
 357	*need_bytes = xlog_ticket_reservation(log, head, tic);
 358	free_bytes = xlog_space_left(log, &head->grant);
 359	if (!list_empty_careful(&head->waiters)) {
 360		spin_lock(&head->lock);
 361		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 362		    free_bytes < *need_bytes) {
 363			error = xlog_grant_head_wait(log, head, tic,
 364						     *need_bytes);
 365		}
 366		spin_unlock(&head->lock);
 367	} else if (free_bytes < *need_bytes) {
 368		spin_lock(&head->lock);
 369		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 370		spin_unlock(&head->lock);
 371	}
 372
 373	return error;
 374}
 375
 376bool
 377xfs_log_writable(
 378	struct xfs_mount	*mp)
 379{
 380	/*
 381	 * Do not write to the log on norecovery mounts, if the data or log
 382	 * devices are read-only, or if the filesystem is shutdown. Read-only
 383	 * mounts allow internal writes for log recovery and unmount purposes,
 384	 * so don't restrict that case.
 385	 */
 386	if (xfs_has_norecovery(mp))
 387		return false;
 388	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 389		return false;
 390	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 391		return false;
 392	if (xlog_is_shutdown(mp->m_log))
 393		return false;
 394	return true;
 395}
 396
 397/*
 398 * Replenish the byte reservation required by moving the grant write head.
 399 */
 400int
 401xfs_log_regrant(
 402	struct xfs_mount	*mp,
 403	struct xlog_ticket	*tic)
 404{
 405	struct xlog		*log = mp->m_log;
 406	int			need_bytes;
 407	int			error = 0;
 408
 409	if (xlog_is_shutdown(log))
 410		return -EIO;
 411
 412	XFS_STATS_INC(mp, xs_try_logspace);
 413
 414	/*
 415	 * This is a new transaction on the ticket, so we need to change the
 416	 * transaction ID so that the next transaction has a different TID in
 417	 * the log. Just add one to the existing tid so that we can see chains
 418	 * of rolling transactions in the log easily.
 419	 */
 420	tic->t_tid++;
 421
 422	xlog_grant_push_ail(log, tic->t_unit_res);
 423
 424	tic->t_curr_res = tic->t_unit_res;
 425	if (tic->t_cnt > 0)
 426		return 0;
 427
 428	trace_xfs_log_regrant(log, tic);
 429
 430	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 431				      &need_bytes);
 432	if (error)
 433		goto out_error;
 434
 435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 436	trace_xfs_log_regrant_exit(log, tic);
 437	xlog_verify_grant_tail(log);
 438	return 0;
 439
 440out_error:
 441	/*
 442	 * If we are failing, make sure the ticket doesn't have any current
 443	 * reservations.  We don't want to add this back when the ticket/
 444	 * transaction gets cancelled.
 445	 */
 446	tic->t_curr_res = 0;
 447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 448	return error;
 449}
 450
 451/*
 452 * Reserve log space and return a ticket corresponding to the reservation.
 453 *
 454 * Each reservation is going to reserve extra space for a log record header.
 455 * When writes happen to the on-disk log, we don't subtract the length of the
 456 * log record header from any reservation.  By wasting space in each
 457 * reservation, we prevent over allocation problems.
 458 */
 459int
 460xfs_log_reserve(
 461	struct xfs_mount	*mp,
 462	int			unit_bytes,
 463	int			cnt,
 464	struct xlog_ticket	**ticp,
 465	bool			permanent)
 466{
 467	struct xlog		*log = mp->m_log;
 468	struct xlog_ticket	*tic;
 469	int			need_bytes;
 470	int			error = 0;
 471
 472	if (xlog_is_shutdown(log))
 473		return -EIO;
 474
 475	XFS_STATS_INC(mp, xs_try_logspace);
 476
 477	ASSERT(*ticp == NULL);
 478	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
 479	*ticp = tic;
 480
 481	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 482					    : tic->t_unit_res);
 483
 484	trace_xfs_log_reserve(log, tic);
 485
 486	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 487				      &need_bytes);
 488	if (error)
 489		goto out_error;
 490
 491	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 492	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 493	trace_xfs_log_reserve_exit(log, tic);
 494	xlog_verify_grant_tail(log);
 495	return 0;
 496
 497out_error:
 498	/*
 499	 * If we are failing, make sure the ticket doesn't have any current
 500	 * reservations.  We don't want to add this back when the ticket/
 501	 * transaction gets cancelled.
 502	 */
 503	tic->t_curr_res = 0;
 504	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 505	return error;
 506}
 507
 508/*
 509 * Run all the pending iclog callbacks and wake log force waiters and iclog
 510 * space waiters so they can process the newly set shutdown state. We really
 511 * don't care what order we process callbacks here because the log is shut down
 512 * and so state cannot change on disk anymore. However, we cannot wake waiters
 513 * until the callbacks have been processed because we may be in unmount and
 514 * we must ensure that all AIL operations the callbacks perform have completed
 515 * before we tear down the AIL.
 516 *
 517 * We avoid processing actively referenced iclogs so that we don't run callbacks
 518 * while the iclog owner might still be preparing the iclog for IO submssion.
 519 * These will be caught by xlog_state_iclog_release() and call this function
 520 * again to process any callbacks that may have been added to that iclog.
 521 */
 522static void
 523xlog_state_shutdown_callbacks(
 524	struct xlog		*log)
 525{
 526	struct xlog_in_core	*iclog;
 527	LIST_HEAD(cb_list);
 528
 529	iclog = log->l_iclog;
 530	do {
 531		if (atomic_read(&iclog->ic_refcnt)) {
 532			/* Reference holder will re-run iclog callbacks. */
 533			continue;
 534		}
 535		list_splice_init(&iclog->ic_callbacks, &cb_list);
 536		spin_unlock(&log->l_icloglock);
 537
 538		xlog_cil_process_committed(&cb_list);
 539
 540		spin_lock(&log->l_icloglock);
 541		wake_up_all(&iclog->ic_write_wait);
 542		wake_up_all(&iclog->ic_force_wait);
 543	} while ((iclog = iclog->ic_next) != log->l_iclog);
 544
 545	wake_up_all(&log->l_flush_wait);
 546}
 547
 548/*
 549 * Flush iclog to disk if this is the last reference to the given iclog and the
 550 * it is in the WANT_SYNC state.
 551 *
 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 554 * written to stable storage, and implies that a commit record is contained
 555 * within the iclog. We need to ensure that the log tail does not move beyond
 556 * the tail that the first commit record in the iclog ordered against, otherwise
 557 * correct recovery of that checkpoint becomes dependent on future operations
 558 * performed on this iclog.
 559 *
 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 561 * current tail into iclog. Once the iclog tail is set, future operations must
 562 * not modify it, otherwise they potentially violate ordering constraints for
 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 564 * the iclog will get zeroed on activation of the iclog after sync, so we
 565 * always capture the tail lsn on the iclog on the first NEED_FUA release
 566 * regardless of the number of active reference counts on this iclog.
 567 */
 568int
 569xlog_state_release_iclog(
 570	struct xlog		*log,
 571	struct xlog_in_core	*iclog,
 572	struct xlog_ticket	*ticket)
 573{
 574	xfs_lsn_t		tail_lsn;
 575	bool			last_ref;
 576
 577	lockdep_assert_held(&log->l_icloglock);
 578
 579	trace_xlog_iclog_release(iclog, _RET_IP_);
 580	/*
 581	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 582	 * of the tail LSN into the iclog so we guarantee that the log tail does
 583	 * not move between the first time we know that the iclog needs to be
 584	 * made stable and when we eventually submit it.
 585	 */
 586	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 587	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
 588	    !iclog->ic_header.h_tail_lsn) {
 589		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 590		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 591	}
 592
 593	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 594
 595	if (xlog_is_shutdown(log)) {
 596		/*
 597		 * If there are no more references to this iclog, process the
 598		 * pending iclog callbacks that were waiting on the release of
 599		 * this iclog.
 600		 */
 601		if (last_ref)
 602			xlog_state_shutdown_callbacks(log);
 603		return -EIO;
 604	}
 605
 606	if (!last_ref)
 607		return 0;
 608
 609	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 610		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 611		return 0;
 612	}
 613
 614	iclog->ic_state = XLOG_STATE_SYNCING;
 615	xlog_verify_tail_lsn(log, iclog);
 616	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 617
 618	spin_unlock(&log->l_icloglock);
 619	xlog_sync(log, iclog, ticket);
 620	spin_lock(&log->l_icloglock);
 621	return 0;
 622}
 623
 624/*
 625 * Mount a log filesystem
 626 *
 627 * mp		- ubiquitous xfs mount point structure
 628 * log_target	- buftarg of on-disk log device
 629 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 630 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 631 *
 632 * Return error or zero.
 633 */
 634int
 635xfs_log_mount(
 636	xfs_mount_t	*mp,
 637	xfs_buftarg_t	*log_target,
 638	xfs_daddr_t	blk_offset,
 639	int		num_bblks)
 640{
 641	struct xlog	*log;
 642	int		error = 0;
 643	int		min_logfsbs;
 644
 645	if (!xfs_has_norecovery(mp)) {
 646		xfs_notice(mp, "Mounting V%d Filesystem %pU",
 647			   XFS_SB_VERSION_NUM(&mp->m_sb),
 648			   &mp->m_sb.sb_uuid);
 649	} else {
 650		xfs_notice(mp,
 651"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
 652			   XFS_SB_VERSION_NUM(&mp->m_sb),
 653			   &mp->m_sb.sb_uuid);
 654		ASSERT(xfs_is_readonly(mp));
 655	}
 656
 657	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 658	if (IS_ERR(log)) {
 659		error = PTR_ERR(log);
 660		goto out;
 661	}
 662	mp->m_log = log;
 663
 664	/*
 665	 * Now that we have set up the log and it's internal geometry
 666	 * parameters, we can validate the given log space and drop a critical
 667	 * message via syslog if the log size is too small. A log that is too
 668	 * small can lead to unexpected situations in transaction log space
 669	 * reservation stage. The superblock verifier has already validated all
 670	 * the other log geometry constraints, so we don't have to check those
 671	 * here.
 672	 *
 673	 * Note: For v4 filesystems, we can't just reject the mount if the
 674	 * validation fails.  This would mean that people would have to
 675	 * downgrade their kernel just to remedy the situation as there is no
 676	 * way to grow the log (short of black magic surgery with xfs_db).
 677	 *
 678	 * We can, however, reject mounts for V5 format filesystems, as the
 679	 * mkfs binary being used to make the filesystem should never create a
 680	 * filesystem with a log that is too small.
 681	 */
 682	min_logfsbs = xfs_log_calc_minimum_size(mp);
 683	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 684		xfs_warn(mp,
 685		"Log size %d blocks too small, minimum size is %d blocks",
 686			 mp->m_sb.sb_logblocks, min_logfsbs);
 687
 688		/*
 689		 * Log check errors are always fatal on v5; or whenever bad
 690		 * metadata leads to a crash.
 691		 */
 692		if (xfs_has_crc(mp)) {
 693			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 694			ASSERT(0);
 695			error = -EINVAL;
 696			goto out_free_log;
 697		}
 698		xfs_crit(mp, "Log size out of supported range.");
 699		xfs_crit(mp,
 700"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 701	}
 702
 703	/*
 704	 * Initialize the AIL now we have a log.
 705	 */
 706	error = xfs_trans_ail_init(mp);
 707	if (error) {
 708		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 709		goto out_free_log;
 710	}
 711	log->l_ailp = mp->m_ail;
 712
 713	/*
 714	 * skip log recovery on a norecovery mount.  pretend it all
 715	 * just worked.
 716	 */
 717	if (!xfs_has_norecovery(mp)) {
 718		error = xlog_recover(log);
 719		if (error) {
 720			xfs_warn(mp, "log mount/recovery failed: error %d",
 721				error);
 722			xlog_recover_cancel(log);
 723			goto out_destroy_ail;
 724		}
 725	}
 726
 727	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 728			       "log");
 729	if (error)
 730		goto out_destroy_ail;
 731
 732	/* Normal transactions can now occur */
 733	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 734
 735	/*
 736	 * Now the log has been fully initialised and we know were our
 737	 * space grant counters are, we can initialise the permanent ticket
 738	 * needed for delayed logging to work.
 739	 */
 740	xlog_cil_init_post_recovery(log);
 741
 742	return 0;
 743
 744out_destroy_ail:
 745	xfs_trans_ail_destroy(mp);
 746out_free_log:
 747	xlog_dealloc_log(log);
 748out:
 749	return error;
 750}
 751
 752/*
 753 * Finish the recovery of the file system.  This is separate from the
 754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 756 * here.
 757 *
 758 * If we finish recovery successfully, start the background log work. If we are
 759 * not doing recovery, then we have a RO filesystem and we don't need to start
 760 * it.
 761 */
 762int
 763xfs_log_mount_finish(
 764	struct xfs_mount	*mp)
 765{
 766	struct xlog		*log = mp->m_log;
 767	int			error = 0;
 768
 769	if (xfs_has_norecovery(mp)) {
 770		ASSERT(xfs_is_readonly(mp));
 771		return 0;
 772	}
 773
 774	/*
 775	 * During the second phase of log recovery, we need iget and
 776	 * iput to behave like they do for an active filesystem.
 777	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 778	 * of inodes before we're done replaying log items on those
 779	 * inodes.  Turn it off immediately after recovery finishes
 780	 * so that we don't leak the quota inodes if subsequent mount
 781	 * activities fail.
 782	 *
 783	 * We let all inodes involved in redo item processing end up on
 784	 * the LRU instead of being evicted immediately so that if we do
 785	 * something to an unlinked inode, the irele won't cause
 786	 * premature truncation and freeing of the inode, which results
 787	 * in log recovery failure.  We have to evict the unreferenced
 788	 * lru inodes after clearing SB_ACTIVE because we don't
 789	 * otherwise clean up the lru if there's a subsequent failure in
 790	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 791	 * else (e.g. quotacheck) references the inodes before the
 792	 * mount failure occurs.
 793	 */
 794	mp->m_super->s_flags |= SB_ACTIVE;
 795	xfs_log_work_queue(mp);
 796	if (xlog_recovery_needed(log))
 797		error = xlog_recover_finish(log);
 798	mp->m_super->s_flags &= ~SB_ACTIVE;
 799	evict_inodes(mp->m_super);
 800
 801	/*
 802	 * Drain the buffer LRU after log recovery. This is required for v4
 803	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 804	 * but we do it unconditionally to make sure we're always in a clean
 805	 * cache state after mount.
 806	 *
 807	 * Don't push in the error case because the AIL may have pending intents
 808	 * that aren't removed until recovery is cancelled.
 809	 */
 810	if (xlog_recovery_needed(log)) {
 811		if (!error) {
 812			xfs_log_force(mp, XFS_LOG_SYNC);
 813			xfs_ail_push_all_sync(mp->m_ail);
 814		}
 815		xfs_notice(mp, "Ending recovery (logdev: %s)",
 816				mp->m_logname ? mp->m_logname : "internal");
 817	} else {
 818		xfs_info(mp, "Ending clean mount");
 819	}
 820	xfs_buftarg_drain(mp->m_ddev_targp);
 821
 822	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 823
 824	/* Make sure the log is dead if we're returning failure. */
 825	ASSERT(!error || xlog_is_shutdown(log));
 826
 827	return error;
 828}
 829
 830/*
 831 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 832 * the log.
 833 */
 834void
 835xfs_log_mount_cancel(
 836	struct xfs_mount	*mp)
 837{
 838	xlog_recover_cancel(mp->m_log);
 839	xfs_log_unmount(mp);
 840}
 841
 842/*
 843 * Flush out the iclog to disk ensuring that device caches are flushed and
 844 * the iclog hits stable storage before any completion waiters are woken.
 845 */
 846static inline int
 847xlog_force_iclog(
 848	struct xlog_in_core	*iclog)
 849{
 850	atomic_inc(&iclog->ic_refcnt);
 851	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 852	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 853		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 854	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
 855}
 856
 857/*
 858 * Cycle all the iclogbuf locks to make sure all log IO completion
 859 * is done before we tear down these buffers.
 860 */
 861static void
 862xlog_wait_iclog_completion(struct xlog *log)
 863{
 864	int		i;
 865	struct xlog_in_core	*iclog = log->l_iclog;
 866
 867	for (i = 0; i < log->l_iclog_bufs; i++) {
 868		down(&iclog->ic_sema);
 869		up(&iclog->ic_sema);
 870		iclog = iclog->ic_next;
 871	}
 872}
 873
 874/*
 875 * Wait for the iclog and all prior iclogs to be written disk as required by the
 876 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 877 * have been ordered and callbacks run before we are woken here, hence
 878 * guaranteeing that all the iclogs up to this one are on stable storage.
 879 */
 880int
 881xlog_wait_on_iclog(
 882	struct xlog_in_core	*iclog)
 883		__releases(iclog->ic_log->l_icloglock)
 884{
 885	struct xlog		*log = iclog->ic_log;
 886
 887	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 888	if (!xlog_is_shutdown(log) &&
 889	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 890	    iclog->ic_state != XLOG_STATE_DIRTY) {
 891		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 892		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 893	} else {
 894		spin_unlock(&log->l_icloglock);
 895	}
 896
 897	if (xlog_is_shutdown(log))
 898		return -EIO;
 899	return 0;
 900}
 901
 902/*
 903 * Write out an unmount record using the ticket provided. We have to account for
 904 * the data space used in the unmount ticket as this write is not done from a
 905 * transaction context that has already done the accounting for us.
 906 */
 907static int
 908xlog_write_unmount_record(
 909	struct xlog		*log,
 910	struct xlog_ticket	*ticket)
 911{
 912	struct  {
 913		struct xlog_op_header ophdr;
 914		struct xfs_unmount_log_format ulf;
 915	} unmount_rec = {
 916		.ophdr = {
 917			.oh_clientid = XFS_LOG,
 918			.oh_tid = cpu_to_be32(ticket->t_tid),
 919			.oh_flags = XLOG_UNMOUNT_TRANS,
 920		},
 921		.ulf = {
 922			.magic = XLOG_UNMOUNT_TYPE,
 923		},
 924	};
 925	struct xfs_log_iovec reg = {
 926		.i_addr = &unmount_rec,
 927		.i_len = sizeof(unmount_rec),
 928		.i_type = XLOG_REG_TYPE_UNMOUNT,
 929	};
 930	struct xfs_log_vec vec = {
 931		.lv_niovecs = 1,
 932		.lv_iovecp = &reg,
 933	};
 934	LIST_HEAD(lv_chain);
 935	list_add(&vec.lv_list, &lv_chain);
 936
 937	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
 938		      sizeof(struct xfs_unmount_log_format)) !=
 939							sizeof(unmount_rec));
 940
 941	/* account for space used by record data */
 942	ticket->t_curr_res -= sizeof(unmount_rec);
 943
 944	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
 945}
 946
 947/*
 948 * Mark the filesystem clean by writing an unmount record to the head of the
 949 * log.
 950 */
 951static void
 952xlog_unmount_write(
 953	struct xlog		*log)
 954{
 955	struct xfs_mount	*mp = log->l_mp;
 956	struct xlog_in_core	*iclog;
 957	struct xlog_ticket	*tic = NULL;
 958	int			error;
 959
 960	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
 961	if (error)
 962		goto out_err;
 963
 964	error = xlog_write_unmount_record(log, tic);
 965	/*
 966	 * At this point, we're umounting anyway, so there's no point in
 967	 * transitioning log state to shutdown. Just continue...
 968	 */
 969out_err:
 970	if (error)
 971		xfs_alert(mp, "%s: unmount record failed", __func__);
 972
 973	spin_lock(&log->l_icloglock);
 974	iclog = log->l_iclog;
 975	error = xlog_force_iclog(iclog);
 976	xlog_wait_on_iclog(iclog);
 977
 978	if (tic) {
 979		trace_xfs_log_umount_write(log, tic);
 980		xfs_log_ticket_ungrant(log, tic);
 981	}
 982}
 983
 984static void
 985xfs_log_unmount_verify_iclog(
 986	struct xlog		*log)
 987{
 988	struct xlog_in_core	*iclog = log->l_iclog;
 989
 990	do {
 991		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 992		ASSERT(iclog->ic_offset == 0);
 993	} while ((iclog = iclog->ic_next) != log->l_iclog);
 994}
 995
 996/*
 997 * Unmount record used to have a string "Unmount filesystem--" in the
 998 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 999 * We just write the magic number now since that particular field isn't
1000 * currently architecture converted and "Unmount" is a bit foo.
1001 * As far as I know, there weren't any dependencies on the old behaviour.
1002 */
1003static void
1004xfs_log_unmount_write(
1005	struct xfs_mount	*mp)
1006{
1007	struct xlog		*log = mp->m_log;
1008
1009	if (!xfs_log_writable(mp))
1010		return;
1011
1012	xfs_log_force(mp, XFS_LOG_SYNC);
1013
1014	if (xlog_is_shutdown(log))
1015		return;
1016
1017	/*
1018	 * If we think the summary counters are bad, avoid writing the unmount
1019	 * record to force log recovery at next mount, after which the summary
1020	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1021	 * more details.
1022	 */
1023	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1024			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1025		xfs_alert(mp, "%s: will fix summary counters at next mount",
1026				__func__);
1027		return;
1028	}
1029
1030	xfs_log_unmount_verify_iclog(log);
1031	xlog_unmount_write(log);
1032}
1033
1034/*
1035 * Empty the log for unmount/freeze.
1036 *
1037 * To do this, we first need to shut down the background log work so it is not
1038 * trying to cover the log as we clean up. We then need to unpin all objects in
1039 * the log so we can then flush them out. Once they have completed their IO and
1040 * run the callbacks removing themselves from the AIL, we can cover the log.
1041 */
1042int
1043xfs_log_quiesce(
1044	struct xfs_mount	*mp)
1045{
1046	/*
1047	 * Clear log incompat features since we're quiescing the log.  Report
1048	 * failures, though it's not fatal to have a higher log feature
1049	 * protection level than the log contents actually require.
1050	 */
1051	if (xfs_clear_incompat_log_features(mp)) {
1052		int error;
1053
1054		error = xfs_sync_sb(mp, false);
1055		if (error)
1056			xfs_warn(mp,
1057	"Failed to clear log incompat features on quiesce");
1058	}
1059
1060	cancel_delayed_work_sync(&mp->m_log->l_work);
1061	xfs_log_force(mp, XFS_LOG_SYNC);
1062
1063	/*
1064	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1065	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1066	 * xfs_buf_iowait() cannot be used because it was pushed with the
1067	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1068	 * the IO to complete.
1069	 */
1070	xfs_ail_push_all_sync(mp->m_ail);
1071	xfs_buftarg_wait(mp->m_ddev_targp);
1072	xfs_buf_lock(mp->m_sb_bp);
1073	xfs_buf_unlock(mp->m_sb_bp);
1074
1075	return xfs_log_cover(mp);
1076}
1077
1078void
1079xfs_log_clean(
1080	struct xfs_mount	*mp)
1081{
1082	xfs_log_quiesce(mp);
1083	xfs_log_unmount_write(mp);
1084}
1085
1086/*
1087 * Shut down and release the AIL and Log.
1088 *
1089 * During unmount, we need to ensure we flush all the dirty metadata objects
1090 * from the AIL so that the log is empty before we write the unmount record to
1091 * the log. Once this is done, we can tear down the AIL and the log.
1092 */
1093void
1094xfs_log_unmount(
1095	struct xfs_mount	*mp)
1096{
1097	xfs_log_clean(mp);
1098
1099	/*
1100	 * If shutdown has come from iclog IO context, the log
1101	 * cleaning will have been skipped and so we need to wait
1102	 * for the iclog to complete shutdown processing before we
1103	 * tear anything down.
1104	 */
1105	xlog_wait_iclog_completion(mp->m_log);
1106
1107	xfs_buftarg_drain(mp->m_ddev_targp);
1108
1109	xfs_trans_ail_destroy(mp);
1110
1111	xfs_sysfs_del(&mp->m_log->l_kobj);
1112
1113	xlog_dealloc_log(mp->m_log);
1114}
1115
1116void
1117xfs_log_item_init(
1118	struct xfs_mount	*mp,
1119	struct xfs_log_item	*item,
1120	int			type,
1121	const struct xfs_item_ops *ops)
1122{
1123	item->li_log = mp->m_log;
1124	item->li_ailp = mp->m_ail;
1125	item->li_type = type;
1126	item->li_ops = ops;
1127	item->li_lv = NULL;
1128
1129	INIT_LIST_HEAD(&item->li_ail);
1130	INIT_LIST_HEAD(&item->li_cil);
1131	INIT_LIST_HEAD(&item->li_bio_list);
1132	INIT_LIST_HEAD(&item->li_trans);
1133}
1134
1135/*
1136 * Wake up processes waiting for log space after we have moved the log tail.
1137 */
1138void
1139xfs_log_space_wake(
1140	struct xfs_mount	*mp)
1141{
1142	struct xlog		*log = mp->m_log;
1143	int			free_bytes;
1144
1145	if (xlog_is_shutdown(log))
1146		return;
1147
1148	if (!list_empty_careful(&log->l_write_head.waiters)) {
1149		ASSERT(!xlog_in_recovery(log));
1150
1151		spin_lock(&log->l_write_head.lock);
1152		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1153		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1154		spin_unlock(&log->l_write_head.lock);
1155	}
1156
1157	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1158		ASSERT(!xlog_in_recovery(log));
1159
1160		spin_lock(&log->l_reserve_head.lock);
1161		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1162		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1163		spin_unlock(&log->l_reserve_head.lock);
1164	}
1165}
1166
1167/*
1168 * Determine if we have a transaction that has gone to disk that needs to be
1169 * covered. To begin the transition to the idle state firstly the log needs to
1170 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1171 * we start attempting to cover the log.
1172 *
1173 * Only if we are then in a state where covering is needed, the caller is
1174 * informed that dummy transactions are required to move the log into the idle
1175 * state.
1176 *
1177 * If there are any items in the AIl or CIL, then we do not want to attempt to
1178 * cover the log as we may be in a situation where there isn't log space
1179 * available to run a dummy transaction and this can lead to deadlocks when the
1180 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1181 * there's no point in running a dummy transaction at this point because we
1182 * can't start trying to idle the log until both the CIL and AIL are empty.
1183 */
1184static bool
1185xfs_log_need_covered(
1186	struct xfs_mount	*mp)
1187{
1188	struct xlog		*log = mp->m_log;
1189	bool			needed = false;
1190
1191	if (!xlog_cil_empty(log))
1192		return false;
1193
1194	spin_lock(&log->l_icloglock);
1195	switch (log->l_covered_state) {
1196	case XLOG_STATE_COVER_DONE:
1197	case XLOG_STATE_COVER_DONE2:
1198	case XLOG_STATE_COVER_IDLE:
1199		break;
1200	case XLOG_STATE_COVER_NEED:
1201	case XLOG_STATE_COVER_NEED2:
1202		if (xfs_ail_min_lsn(log->l_ailp))
1203			break;
1204		if (!xlog_iclogs_empty(log))
1205			break;
1206
1207		needed = true;
1208		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1209			log->l_covered_state = XLOG_STATE_COVER_DONE;
1210		else
1211			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1212		break;
1213	default:
1214		needed = true;
1215		break;
1216	}
1217	spin_unlock(&log->l_icloglock);
1218	return needed;
1219}
1220
1221/*
1222 * Explicitly cover the log. This is similar to background log covering but
1223 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1224 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1225 * must all be empty.
1226 */
1227static int
1228xfs_log_cover(
1229	struct xfs_mount	*mp)
1230{
1231	int			error = 0;
1232	bool			need_covered;
1233
1234	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1235	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1236		xlog_is_shutdown(mp->m_log));
1237
1238	if (!xfs_log_writable(mp))
1239		return 0;
1240
1241	/*
1242	 * xfs_log_need_covered() is not idempotent because it progresses the
1243	 * state machine if the log requires covering. Therefore, we must call
1244	 * this function once and use the result until we've issued an sb sync.
1245	 * Do so first to make that abundantly clear.
1246	 *
1247	 * Fall into the covering sequence if the log needs covering or the
1248	 * mount has lazy superblock accounting to sync to disk. The sb sync
1249	 * used for covering accumulates the in-core counters, so covering
1250	 * handles this for us.
1251	 */
1252	need_covered = xfs_log_need_covered(mp);
1253	if (!need_covered && !xfs_has_lazysbcount(mp))
1254		return 0;
1255
1256	/*
1257	 * To cover the log, commit the superblock twice (at most) in
1258	 * independent checkpoints. The first serves as a reference for the
1259	 * tail pointer. The sync transaction and AIL push empties the AIL and
1260	 * updates the in-core tail to the LSN of the first checkpoint. The
1261	 * second commit updates the on-disk tail with the in-core LSN,
1262	 * covering the log. Push the AIL one more time to leave it empty, as
1263	 * we found it.
1264	 */
1265	do {
1266		error = xfs_sync_sb(mp, true);
1267		if (error)
1268			break;
1269		xfs_ail_push_all_sync(mp->m_ail);
1270	} while (xfs_log_need_covered(mp));
1271
1272	return error;
1273}
1274
1275/*
1276 * We may be holding the log iclog lock upon entering this routine.
1277 */
1278xfs_lsn_t
1279xlog_assign_tail_lsn_locked(
1280	struct xfs_mount	*mp)
1281{
1282	struct xlog		*log = mp->m_log;
1283	struct xfs_log_item	*lip;
1284	xfs_lsn_t		tail_lsn;
1285
1286	assert_spin_locked(&mp->m_ail->ail_lock);
1287
1288	/*
1289	 * To make sure we always have a valid LSN for the log tail we keep
1290	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1291	 * and use that when the AIL was empty.
1292	 */
1293	lip = xfs_ail_min(mp->m_ail);
1294	if (lip)
1295		tail_lsn = lip->li_lsn;
1296	else
1297		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1298	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1299	atomic64_set(&log->l_tail_lsn, tail_lsn);
1300	return tail_lsn;
1301}
1302
1303xfs_lsn_t
1304xlog_assign_tail_lsn(
1305	struct xfs_mount	*mp)
1306{
1307	xfs_lsn_t		tail_lsn;
1308
1309	spin_lock(&mp->m_ail->ail_lock);
1310	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1311	spin_unlock(&mp->m_ail->ail_lock);
1312
1313	return tail_lsn;
1314}
1315
1316/*
1317 * Return the space in the log between the tail and the head.  The head
1318 * is passed in the cycle/bytes formal parms.  In the special case where
1319 * the reserve head has wrapped passed the tail, this calculation is no
1320 * longer valid.  In this case, just return 0 which means there is no space
1321 * in the log.  This works for all places where this function is called
1322 * with the reserve head.  Of course, if the write head were to ever
1323 * wrap the tail, we should blow up.  Rather than catch this case here,
1324 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1325 *
1326 * If reservation head is behind the tail, we have a problem. Warn about it,
1327 * but then treat it as if the log is empty.
1328 *
1329 * If the log is shut down, the head and tail may be invalid or out of whack, so
1330 * shortcut invalidity asserts in this case so that we don't trigger them
1331 * falsely.
1332 */
1333STATIC int
1334xlog_space_left(
1335	struct xlog	*log,
1336	atomic64_t	*head)
1337{
1338	int		tail_bytes;
1339	int		tail_cycle;
1340	int		head_cycle;
1341	int		head_bytes;
1342
1343	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1344	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1345	tail_bytes = BBTOB(tail_bytes);
1346	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1347		return log->l_logsize - (head_bytes - tail_bytes);
1348	if (tail_cycle + 1 < head_cycle)
1349		return 0;
1350
1351	/* Ignore potential inconsistency when shutdown. */
1352	if (xlog_is_shutdown(log))
1353		return log->l_logsize;
1354
1355	if (tail_cycle < head_cycle) {
1356		ASSERT(tail_cycle == (head_cycle - 1));
1357		return tail_bytes - head_bytes;
1358	}
1359
1360	/*
1361	 * The reservation head is behind the tail. In this case we just want to
1362	 * return the size of the log as the amount of space left.
1363	 */
1364	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1365	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1366		  tail_cycle, tail_bytes);
1367	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1368		  head_cycle, head_bytes);
1369	ASSERT(0);
1370	return log->l_logsize;
1371}
1372
1373
1374static void
1375xlog_ioend_work(
1376	struct work_struct	*work)
1377{
1378	struct xlog_in_core     *iclog =
1379		container_of(work, struct xlog_in_core, ic_end_io_work);
1380	struct xlog		*log = iclog->ic_log;
1381	int			error;
1382
1383	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1384#ifdef DEBUG
1385	/* treat writes with injected CRC errors as failed */
1386	if (iclog->ic_fail_crc)
1387		error = -EIO;
1388#endif
1389
1390	/*
1391	 * Race to shutdown the filesystem if we see an error.
1392	 */
1393	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1394		xfs_alert(log->l_mp, "log I/O error %d", error);
1395		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1396	}
1397
1398	xlog_state_done_syncing(iclog);
1399	bio_uninit(&iclog->ic_bio);
1400
1401	/*
1402	 * Drop the lock to signal that we are done. Nothing references the
1403	 * iclog after this, so an unmount waiting on this lock can now tear it
1404	 * down safely. As such, it is unsafe to reference the iclog after the
1405	 * unlock as we could race with it being freed.
1406	 */
1407	up(&iclog->ic_sema);
1408}
1409
1410/*
1411 * Return size of each in-core log record buffer.
1412 *
1413 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1414 *
1415 * If the filesystem blocksize is too large, we may need to choose a
1416 * larger size since the directory code currently logs entire blocks.
1417 */
1418STATIC void
1419xlog_get_iclog_buffer_size(
1420	struct xfs_mount	*mp,
1421	struct xlog		*log)
1422{
1423	if (mp->m_logbufs <= 0)
1424		mp->m_logbufs = XLOG_MAX_ICLOGS;
1425	if (mp->m_logbsize <= 0)
1426		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1427
1428	log->l_iclog_bufs = mp->m_logbufs;
1429	log->l_iclog_size = mp->m_logbsize;
1430
1431	/*
1432	 * # headers = size / 32k - one header holds cycles from 32k of data.
1433	 */
1434	log->l_iclog_heads =
1435		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1436	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1437}
1438
1439void
1440xfs_log_work_queue(
1441	struct xfs_mount        *mp)
1442{
1443	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1444				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1445}
1446
1447/*
1448 * Clear the log incompat flags if we have the opportunity.
1449 *
1450 * This only happens if we're about to log the second dummy transaction as part
1451 * of covering the log and we can get the log incompat feature usage lock.
1452 */
1453static inline void
1454xlog_clear_incompat(
1455	struct xlog		*log)
1456{
1457	struct xfs_mount	*mp = log->l_mp;
1458
1459	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1460				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1461		return;
1462
1463	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1464		return;
1465
1466	if (!down_write_trylock(&log->l_incompat_users))
1467		return;
1468
1469	xfs_clear_incompat_log_features(mp);
1470	up_write(&log->l_incompat_users);
1471}
1472
1473/*
1474 * Every sync period we need to unpin all items in the AIL and push them to
1475 * disk. If there is nothing dirty, then we might need to cover the log to
1476 * indicate that the filesystem is idle.
1477 */
1478static void
1479xfs_log_worker(
1480	struct work_struct	*work)
1481{
1482	struct xlog		*log = container_of(to_delayed_work(work),
1483						struct xlog, l_work);
1484	struct xfs_mount	*mp = log->l_mp;
1485
1486	/* dgc: errors ignored - not fatal and nowhere to report them */
1487	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1488		/*
1489		 * Dump a transaction into the log that contains no real change.
1490		 * This is needed to stamp the current tail LSN into the log
1491		 * during the covering operation.
1492		 *
1493		 * We cannot use an inode here for this - that will push dirty
1494		 * state back up into the VFS and then periodic inode flushing
1495		 * will prevent log covering from making progress. Hence we
1496		 * synchronously log the superblock instead to ensure the
1497		 * superblock is immediately unpinned and can be written back.
1498		 */
1499		xlog_clear_incompat(log);
1500		xfs_sync_sb(mp, true);
1501	} else
1502		xfs_log_force(mp, 0);
1503
1504	/* start pushing all the metadata that is currently dirty */
1505	xfs_ail_push_all(mp->m_ail);
1506
1507	/* queue us up again */
1508	xfs_log_work_queue(mp);
1509}
1510
1511/*
1512 * This routine initializes some of the log structure for a given mount point.
1513 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1514 * some other stuff may be filled in too.
1515 */
1516STATIC struct xlog *
1517xlog_alloc_log(
1518	struct xfs_mount	*mp,
1519	struct xfs_buftarg	*log_target,
1520	xfs_daddr_t		blk_offset,
1521	int			num_bblks)
1522{
1523	struct xlog		*log;
1524	xlog_rec_header_t	*head;
1525	xlog_in_core_t		**iclogp;
1526	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1527	int			i;
1528	int			error = -ENOMEM;
1529	uint			log2_size = 0;
1530
1531	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1532	if (!log) {
1533		xfs_warn(mp, "Log allocation failed: No memory!");
1534		goto out;
1535	}
1536
1537	log->l_mp	   = mp;
1538	log->l_targ	   = log_target;
1539	log->l_logsize     = BBTOB(num_bblks);
1540	log->l_logBBstart  = blk_offset;
1541	log->l_logBBsize   = num_bblks;
1542	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1543	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1544	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1545	INIT_LIST_HEAD(&log->r_dfops);
1546
1547	log->l_prev_block  = -1;
1548	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1549	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1550	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1551	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1552
1553	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1554		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1555	else
1556		log->l_iclog_roundoff = BBSIZE;
1557
1558	xlog_grant_head_init(&log->l_reserve_head);
1559	xlog_grant_head_init(&log->l_write_head);
1560
1561	error = -EFSCORRUPTED;
1562	if (xfs_has_sector(mp)) {
1563	        log2_size = mp->m_sb.sb_logsectlog;
1564		if (log2_size < BBSHIFT) {
1565			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1566				log2_size, BBSHIFT);
1567			goto out_free_log;
1568		}
1569
1570	        log2_size -= BBSHIFT;
1571		if (log2_size > mp->m_sectbb_log) {
1572			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1573				log2_size, mp->m_sectbb_log);
1574			goto out_free_log;
1575		}
1576
1577		/* for larger sector sizes, must have v2 or external log */
1578		if (log2_size && log->l_logBBstart > 0 &&
1579			    !xfs_has_logv2(mp)) {
1580			xfs_warn(mp,
1581		"log sector size (0x%x) invalid for configuration.",
1582				log2_size);
1583			goto out_free_log;
1584		}
1585	}
1586	log->l_sectBBsize = 1 << log2_size;
1587
1588	init_rwsem(&log->l_incompat_users);
1589
1590	xlog_get_iclog_buffer_size(mp, log);
1591
1592	spin_lock_init(&log->l_icloglock);
1593	init_waitqueue_head(&log->l_flush_wait);
1594
1595	iclogp = &log->l_iclog;
1596	/*
1597	 * The amount of memory to allocate for the iclog structure is
1598	 * rather funky due to the way the structure is defined.  It is
1599	 * done this way so that we can use different sizes for machines
1600	 * with different amounts of memory.  See the definition of
1601	 * xlog_in_core_t in xfs_log_priv.h for details.
1602	 */
1603	ASSERT(log->l_iclog_size >= 4096);
1604	for (i = 0; i < log->l_iclog_bufs; i++) {
1605		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1606				sizeof(struct bio_vec);
1607
1608		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
 
1609		if (!iclog)
1610			goto out_free_iclog;
1611
1612		*iclogp = iclog;
1613		iclog->ic_prev = prev_iclog;
1614		prev_iclog = iclog;
1615
1616		iclog->ic_data = kvzalloc(log->l_iclog_size,
1617				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1618		if (!iclog->ic_data)
1619			goto out_free_iclog;
1620		head = &iclog->ic_header;
1621		memset(head, 0, sizeof(xlog_rec_header_t));
1622		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1623		head->h_version = cpu_to_be32(
1624			xfs_has_logv2(log->l_mp) ? 2 : 1);
1625		head->h_size = cpu_to_be32(log->l_iclog_size);
1626		/* new fields */
1627		head->h_fmt = cpu_to_be32(XLOG_FMT);
1628		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1629
1630		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1631		iclog->ic_state = XLOG_STATE_ACTIVE;
1632		iclog->ic_log = log;
1633		atomic_set(&iclog->ic_refcnt, 0);
1634		INIT_LIST_HEAD(&iclog->ic_callbacks);
1635		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1636
1637		init_waitqueue_head(&iclog->ic_force_wait);
1638		init_waitqueue_head(&iclog->ic_write_wait);
1639		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1640		sema_init(&iclog->ic_sema, 1);
1641
1642		iclogp = &iclog->ic_next;
1643	}
1644	*iclogp = log->l_iclog;			/* complete ring */
1645	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1646
1647	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1648			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1649				    WQ_HIGHPRI),
1650			0, mp->m_super->s_id);
1651	if (!log->l_ioend_workqueue)
1652		goto out_free_iclog;
1653
1654	error = xlog_cil_init(log);
1655	if (error)
1656		goto out_destroy_workqueue;
1657	return log;
1658
1659out_destroy_workqueue:
1660	destroy_workqueue(log->l_ioend_workqueue);
1661out_free_iclog:
1662	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1663		prev_iclog = iclog->ic_next;
1664		kmem_free(iclog->ic_data);
1665		kmem_free(iclog);
1666		if (prev_iclog == log->l_iclog)
1667			break;
1668	}
1669out_free_log:
1670	kmem_free(log);
1671out:
1672	return ERR_PTR(error);
1673}	/* xlog_alloc_log */
1674
1675/*
1676 * Compute the LSN that we'd need to push the log tail towards in order to have
1677 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1678 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1679 * log free space already meets all three thresholds, this function returns
1680 * NULLCOMMITLSN.
1681 */
1682xfs_lsn_t
1683xlog_grant_push_threshold(
1684	struct xlog	*log,
1685	int		need_bytes)
1686{
1687	xfs_lsn_t	threshold_lsn = 0;
1688	xfs_lsn_t	last_sync_lsn;
1689	int		free_blocks;
1690	int		free_bytes;
1691	int		threshold_block;
1692	int		threshold_cycle;
1693	int		free_threshold;
1694
1695	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1696
1697	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1698	free_blocks = BTOBBT(free_bytes);
1699
1700	/*
1701	 * Set the threshold for the minimum number of free blocks in the
1702	 * log to the maximum of what the caller needs, one quarter of the
1703	 * log, and 256 blocks.
1704	 */
1705	free_threshold = BTOBB(need_bytes);
1706	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1707	free_threshold = max(free_threshold, 256);
1708	if (free_blocks >= free_threshold)
1709		return NULLCOMMITLSN;
1710
1711	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1712						&threshold_block);
1713	threshold_block += free_threshold;
1714	if (threshold_block >= log->l_logBBsize) {
1715		threshold_block -= log->l_logBBsize;
1716		threshold_cycle += 1;
1717	}
1718	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1719					threshold_block);
1720	/*
1721	 * Don't pass in an lsn greater than the lsn of the last
1722	 * log record known to be on disk. Use a snapshot of the last sync lsn
1723	 * so that it doesn't change between the compare and the set.
1724	 */
1725	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1726	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1727		threshold_lsn = last_sync_lsn;
1728
1729	return threshold_lsn;
1730}
1731
1732/*
1733 * Push the tail of the log if we need to do so to maintain the free log space
1734 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1735 * policy which pushes on an lsn which is further along in the log once we
1736 * reach the high water mark.  In this manner, we would be creating a low water
1737 * mark.
1738 */
1739STATIC void
1740xlog_grant_push_ail(
1741	struct xlog	*log,
1742	int		need_bytes)
1743{
1744	xfs_lsn_t	threshold_lsn;
1745
1746	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1747	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1748		return;
1749
1750	/*
1751	 * Get the transaction layer to kick the dirty buffers out to
1752	 * disk asynchronously. No point in trying to do this if
1753	 * the filesystem is shutting down.
1754	 */
1755	xfs_ail_push(log->l_ailp, threshold_lsn);
1756}
1757
1758/*
1759 * Stamp cycle number in every block
1760 */
1761STATIC void
1762xlog_pack_data(
1763	struct xlog		*log,
1764	struct xlog_in_core	*iclog,
1765	int			roundoff)
1766{
1767	int			i, j, k;
1768	int			size = iclog->ic_offset + roundoff;
1769	__be32			cycle_lsn;
1770	char			*dp;
1771
1772	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1773
1774	dp = iclog->ic_datap;
1775	for (i = 0; i < BTOBB(size); i++) {
1776		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1777			break;
1778		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1779		*(__be32 *)dp = cycle_lsn;
1780		dp += BBSIZE;
1781	}
1782
1783	if (xfs_has_logv2(log->l_mp)) {
1784		xlog_in_core_2_t *xhdr = iclog->ic_data;
1785
1786		for ( ; i < BTOBB(size); i++) {
1787			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1788			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1789			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1790			*(__be32 *)dp = cycle_lsn;
1791			dp += BBSIZE;
1792		}
1793
1794		for (i = 1; i < log->l_iclog_heads; i++)
1795			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1796	}
1797}
1798
1799/*
1800 * Calculate the checksum for a log buffer.
1801 *
1802 * This is a little more complicated than it should be because the various
1803 * headers and the actual data are non-contiguous.
1804 */
1805__le32
1806xlog_cksum(
1807	struct xlog		*log,
1808	struct xlog_rec_header	*rhead,
1809	char			*dp,
1810	int			size)
1811{
1812	uint32_t		crc;
1813
1814	/* first generate the crc for the record header ... */
1815	crc = xfs_start_cksum_update((char *)rhead,
1816			      sizeof(struct xlog_rec_header),
1817			      offsetof(struct xlog_rec_header, h_crc));
1818
1819	/* ... then for additional cycle data for v2 logs ... */
1820	if (xfs_has_logv2(log->l_mp)) {
1821		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1822		int		i;
1823		int		xheads;
1824
1825		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1826
1827		for (i = 1; i < xheads; i++) {
1828			crc = crc32c(crc, &xhdr[i].hic_xheader,
1829				     sizeof(struct xlog_rec_ext_header));
1830		}
1831	}
1832
1833	/* ... and finally for the payload */
1834	crc = crc32c(crc, dp, size);
1835
1836	return xfs_end_cksum(crc);
1837}
1838
1839static void
1840xlog_bio_end_io(
1841	struct bio		*bio)
1842{
1843	struct xlog_in_core	*iclog = bio->bi_private;
1844
1845	queue_work(iclog->ic_log->l_ioend_workqueue,
1846		   &iclog->ic_end_io_work);
1847}
1848
1849static int
1850xlog_map_iclog_data(
1851	struct bio		*bio,
1852	void			*data,
1853	size_t			count)
1854{
1855	do {
1856		struct page	*page = kmem_to_page(data);
1857		unsigned int	off = offset_in_page(data);
1858		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1859
1860		if (bio_add_page(bio, page, len, off) != len)
1861			return -EIO;
1862
1863		data += len;
1864		count -= len;
1865	} while (count);
1866
1867	return 0;
1868}
1869
1870STATIC void
1871xlog_write_iclog(
1872	struct xlog		*log,
1873	struct xlog_in_core	*iclog,
1874	uint64_t		bno,
1875	unsigned int		count)
1876{
1877	ASSERT(bno < log->l_logBBsize);
1878	trace_xlog_iclog_write(iclog, _RET_IP_);
1879
1880	/*
1881	 * We lock the iclogbufs here so that we can serialise against I/O
1882	 * completion during unmount.  We might be processing a shutdown
1883	 * triggered during unmount, and that can occur asynchronously to the
1884	 * unmount thread, and hence we need to ensure that completes before
1885	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1886	 * across the log IO to archieve that.
1887	 */
1888	down(&iclog->ic_sema);
1889	if (xlog_is_shutdown(log)) {
1890		/*
1891		 * It would seem logical to return EIO here, but we rely on
1892		 * the log state machine to propagate I/O errors instead of
1893		 * doing it here.  We kick of the state machine and unlock
1894		 * the buffer manually, the code needs to be kept in sync
1895		 * with the I/O completion path.
1896		 */
1897		goto sync;
1898	}
1899
1900	/*
1901	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1902	 * IOs coming immediately after this one. This prevents the block layer
1903	 * writeback throttle from throttling log writes behind background
1904	 * metadata writeback and causing priority inversions.
1905	 */
1906	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1907		 howmany(count, PAGE_SIZE),
1908		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1909	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1910	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1911	iclog->ic_bio.bi_private = iclog;
1912
1913	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1914		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1915		/*
1916		 * For external log devices, we also need to flush the data
1917		 * device cache first to ensure all metadata writeback covered
1918		 * by the LSN in this iclog is on stable storage. This is slow,
1919		 * but it *must* complete before we issue the external log IO.
1920		 *
1921		 * If the flush fails, we cannot conclude that past metadata
1922		 * writeback from the log succeeded.  Repeating the flush is
1923		 * not possible, hence we must shut down with log IO error to
1924		 * avoid shutdown re-entering this path and erroring out again.
1925		 */
1926		if (log->l_targ != log->l_mp->m_ddev_targp &&
1927		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1928			goto shutdown;
1929	}
1930	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1931		iclog->ic_bio.bi_opf |= REQ_FUA;
1932
1933	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1934
1935	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1936		goto shutdown;
1937
1938	if (is_vmalloc_addr(iclog->ic_data))
1939		flush_kernel_vmap_range(iclog->ic_data, count);
1940
1941	/*
1942	 * If this log buffer would straddle the end of the log we will have
1943	 * to split it up into two bios, so that we can continue at the start.
1944	 */
1945	if (bno + BTOBB(count) > log->l_logBBsize) {
1946		struct bio *split;
1947
1948		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1949				  GFP_NOIO, &fs_bio_set);
1950		bio_chain(split, &iclog->ic_bio);
1951		submit_bio(split);
1952
1953		/* restart at logical offset zero for the remainder */
1954		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1955	}
1956
1957	submit_bio(&iclog->ic_bio);
1958	return;
1959shutdown:
1960	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1961sync:
1962	xlog_state_done_syncing(iclog);
1963	up(&iclog->ic_sema);
1964}
1965
1966/*
1967 * We need to bump cycle number for the part of the iclog that is
1968 * written to the start of the log. Watch out for the header magic
1969 * number case, though.
1970 */
1971static void
1972xlog_split_iclog(
1973	struct xlog		*log,
1974	void			*data,
1975	uint64_t		bno,
1976	unsigned int		count)
1977{
1978	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1979	unsigned int		i;
1980
1981	for (i = split_offset; i < count; i += BBSIZE) {
1982		uint32_t cycle = get_unaligned_be32(data + i);
1983
1984		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1985			cycle++;
1986		put_unaligned_be32(cycle, data + i);
1987	}
1988}
1989
1990static int
1991xlog_calc_iclog_size(
1992	struct xlog		*log,
1993	struct xlog_in_core	*iclog,
1994	uint32_t		*roundoff)
1995{
1996	uint32_t		count_init, count;
1997
1998	/* Add for LR header */
1999	count_init = log->l_iclog_hsize + iclog->ic_offset;
2000	count = roundup(count_init, log->l_iclog_roundoff);
2001
2002	*roundoff = count - count_init;
2003
2004	ASSERT(count >= count_init);
2005	ASSERT(*roundoff < log->l_iclog_roundoff);
2006	return count;
2007}
2008
2009/*
2010 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2011 * fashion.  Previously, we should have moved the current iclog
2012 * ptr in the log to point to the next available iclog.  This allows further
2013 * write to continue while this code syncs out an iclog ready to go.
2014 * Before an in-core log can be written out, the data section must be scanned
2015 * to save away the 1st word of each BBSIZE block into the header.  We replace
2016 * it with the current cycle count.  Each BBSIZE block is tagged with the
2017 * cycle count because there in an implicit assumption that drives will
2018 * guarantee that entire 512 byte blocks get written at once.  In other words,
2019 * we can't have part of a 512 byte block written and part not written.  By
2020 * tagging each block, we will know which blocks are valid when recovering
2021 * after an unclean shutdown.
2022 *
2023 * This routine is single threaded on the iclog.  No other thread can be in
2024 * this routine with the same iclog.  Changing contents of iclog can there-
2025 * fore be done without grabbing the state machine lock.  Updating the global
2026 * log will require grabbing the lock though.
2027 *
2028 * The entire log manager uses a logical block numbering scheme.  Only
2029 * xlog_write_iclog knows about the fact that the log may not start with
2030 * block zero on a given device.
2031 */
2032STATIC void
2033xlog_sync(
2034	struct xlog		*log,
2035	struct xlog_in_core	*iclog,
2036	struct xlog_ticket	*ticket)
2037{
2038	unsigned int		count;		/* byte count of bwrite */
2039	unsigned int		roundoff;       /* roundoff to BB or stripe */
2040	uint64_t		bno;
2041	unsigned int		size;
2042
2043	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2044	trace_xlog_iclog_sync(iclog, _RET_IP_);
2045
2046	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2047
2048	/*
2049	 * If we have a ticket, account for the roundoff via the ticket
2050	 * reservation to avoid touching the hot grant heads needlessly.
2051	 * Otherwise, we have to move grant heads directly.
2052	 */
2053	if (ticket) {
2054		ticket->t_curr_res -= roundoff;
2055	} else {
2056		xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2057		xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2058	}
2059
2060	/* put cycle number in every block */
2061	xlog_pack_data(log, iclog, roundoff);
2062
2063	/* real byte length */
2064	size = iclog->ic_offset;
2065	if (xfs_has_logv2(log->l_mp))
2066		size += roundoff;
2067	iclog->ic_header.h_len = cpu_to_be32(size);
2068
2069	XFS_STATS_INC(log->l_mp, xs_log_writes);
2070	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2071
2072	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2073
2074	/* Do we need to split this write into 2 parts? */
2075	if (bno + BTOBB(count) > log->l_logBBsize)
2076		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2077
2078	/* calculcate the checksum */
2079	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2080					    iclog->ic_datap, size);
2081	/*
2082	 * Intentionally corrupt the log record CRC based on the error injection
2083	 * frequency, if defined. This facilitates testing log recovery in the
2084	 * event of torn writes. Hence, set the IOABORT state to abort the log
2085	 * write on I/O completion and shutdown the fs. The subsequent mount
2086	 * detects the bad CRC and attempts to recover.
2087	 */
2088#ifdef DEBUG
2089	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2090		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2091		iclog->ic_fail_crc = true;
2092		xfs_warn(log->l_mp,
2093	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2094			 be64_to_cpu(iclog->ic_header.h_lsn));
2095	}
2096#endif
2097	xlog_verify_iclog(log, iclog, count);
2098	xlog_write_iclog(log, iclog, bno, count);
2099}
2100
2101/*
2102 * Deallocate a log structure
2103 */
2104STATIC void
2105xlog_dealloc_log(
2106	struct xlog	*log)
2107{
2108	xlog_in_core_t	*iclog, *next_iclog;
2109	int		i;
2110
2111	/*
2112	 * Destroy the CIL after waiting for iclog IO completion because an
2113	 * iclog EIO error will try to shut down the log, which accesses the
2114	 * CIL to wake up the waiters.
2115	 */
2116	xlog_cil_destroy(log);
2117
2118	iclog = log->l_iclog;
2119	for (i = 0; i < log->l_iclog_bufs; i++) {
2120		next_iclog = iclog->ic_next;
2121		kmem_free(iclog->ic_data);
2122		kmem_free(iclog);
2123		iclog = next_iclog;
2124	}
2125
2126	log->l_mp->m_log = NULL;
2127	destroy_workqueue(log->l_ioend_workqueue);
2128	kmem_free(log);
2129}
2130
2131/*
2132 * Update counters atomically now that memcpy is done.
2133 */
2134static inline void
2135xlog_state_finish_copy(
2136	struct xlog		*log,
2137	struct xlog_in_core	*iclog,
2138	int			record_cnt,
2139	int			copy_bytes)
2140{
2141	lockdep_assert_held(&log->l_icloglock);
2142
2143	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2144	iclog->ic_offset += copy_bytes;
2145}
2146
2147/*
2148 * print out info relating to regions written which consume
2149 * the reservation
2150 */
2151void
2152xlog_print_tic_res(
2153	struct xfs_mount	*mp,
2154	struct xlog_ticket	*ticket)
2155{
2156	xfs_warn(mp, "ticket reservation summary:");
2157	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2158	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2159	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2160	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
2161}
2162
2163/*
2164 * Print a summary of the transaction.
2165 */
2166void
2167xlog_print_trans(
2168	struct xfs_trans	*tp)
2169{
2170	struct xfs_mount	*mp = tp->t_mountp;
2171	struct xfs_log_item	*lip;
2172
2173	/* dump core transaction and ticket info */
2174	xfs_warn(mp, "transaction summary:");
2175	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2176	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2177	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2178
2179	xlog_print_tic_res(mp, tp->t_ticket);
2180
2181	/* dump each log item */
2182	list_for_each_entry(lip, &tp->t_items, li_trans) {
2183		struct xfs_log_vec	*lv = lip->li_lv;
2184		struct xfs_log_iovec	*vec;
2185		int			i;
2186
2187		xfs_warn(mp, "log item: ");
2188		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2189		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2190		if (!lv)
2191			continue;
2192		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2193		xfs_warn(mp, "  size	= %d", lv->lv_size);
2194		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2195		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2196
2197		/* dump each iovec for the log item */
2198		vec = lv->lv_iovecp;
2199		for (i = 0; i < lv->lv_niovecs; i++) {
2200			int dumplen = min(vec->i_len, 32);
2201
2202			xfs_warn(mp, "  iovec[%d]", i);
2203			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2204			xfs_warn(mp, "    len	= %d", vec->i_len);
2205			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2206			xfs_hex_dump(vec->i_addr, dumplen);
2207
2208			vec++;
2209		}
2210	}
2211}
2212
2213static inline void
2214xlog_write_iovec(
2215	struct xlog_in_core	*iclog,
2216	uint32_t		*log_offset,
2217	void			*data,
2218	uint32_t		write_len,
2219	int			*bytes_left,
2220	uint32_t		*record_cnt,
2221	uint32_t		*data_cnt)
2222{
2223	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2224	ASSERT(*log_offset % sizeof(int32_t) == 0);
2225	ASSERT(write_len % sizeof(int32_t) == 0);
2226
2227	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2228	*log_offset += write_len;
2229	*bytes_left -= write_len;
2230	(*record_cnt)++;
2231	*data_cnt += write_len;
2232}
2233
2234/*
2235 * Write log vectors into a single iclog which is guaranteed by the caller
2236 * to have enough space to write the entire log vector into.
2237 */
2238static void
2239xlog_write_full(
2240	struct xfs_log_vec	*lv,
2241	struct xlog_ticket	*ticket,
2242	struct xlog_in_core	*iclog,
2243	uint32_t		*log_offset,
2244	uint32_t		*len,
2245	uint32_t		*record_cnt,
2246	uint32_t		*data_cnt)
2247{
2248	int			index;
2249
2250	ASSERT(*log_offset + *len <= iclog->ic_size ||
2251		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2252
2253	/*
2254	 * Ordered log vectors have no regions to write so this
2255	 * loop will naturally skip them.
2256	 */
2257	for (index = 0; index < lv->lv_niovecs; index++) {
2258		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2259		struct xlog_op_header	*ophdr = reg->i_addr;
2260
2261		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2262		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2263				reg->i_len, len, record_cnt, data_cnt);
2264	}
2265}
2266
2267static int
2268xlog_write_get_more_iclog_space(
2269	struct xlog_ticket	*ticket,
2270	struct xlog_in_core	**iclogp,
2271	uint32_t		*log_offset,
2272	uint32_t		len,
2273	uint32_t		*record_cnt,
2274	uint32_t		*data_cnt)
2275{
2276	struct xlog_in_core	*iclog = *iclogp;
2277	struct xlog		*log = iclog->ic_log;
2278	int			error;
2279
2280	spin_lock(&log->l_icloglock);
2281	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2282	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2283	error = xlog_state_release_iclog(log, iclog, ticket);
2284	spin_unlock(&log->l_icloglock);
2285	if (error)
2286		return error;
2287
2288	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2289					log_offset);
2290	if (error)
2291		return error;
2292	*record_cnt = 0;
2293	*data_cnt = 0;
2294	*iclogp = iclog;
2295	return 0;
2296}
2297
2298/*
2299 * Write log vectors into a single iclog which is smaller than the current chain
2300 * length. We write until we cannot fit a full record into the remaining space
2301 * and then stop. We return the log vector that is to be written that cannot
2302 * wholly fit in the iclog.
2303 */
2304static int
2305xlog_write_partial(
2306	struct xfs_log_vec	*lv,
2307	struct xlog_ticket	*ticket,
2308	struct xlog_in_core	**iclogp,
2309	uint32_t		*log_offset,
2310	uint32_t		*len,
2311	uint32_t		*record_cnt,
2312	uint32_t		*data_cnt)
2313{
2314	struct xlog_in_core	*iclog = *iclogp;
2315	struct xlog_op_header	*ophdr;
2316	int			index = 0;
2317	uint32_t		rlen;
2318	int			error;
2319
2320	/* walk the logvec, copying until we run out of space in the iclog */
2321	for (index = 0; index < lv->lv_niovecs; index++) {
2322		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2323		uint32_t		reg_offset = 0;
2324
2325		/*
2326		 * The first region of a continuation must have a non-zero
2327		 * length otherwise log recovery will just skip over it and
2328		 * start recovering from the next opheader it finds. Because we
2329		 * mark the next opheader as a continuation, recovery will then
2330		 * incorrectly add the continuation to the previous region and
2331		 * that breaks stuff.
2332		 *
2333		 * Hence if there isn't space for region data after the
2334		 * opheader, then we need to start afresh with a new iclog.
2335		 */
2336		if (iclog->ic_size - *log_offset <=
2337					sizeof(struct xlog_op_header)) {
2338			error = xlog_write_get_more_iclog_space(ticket,
2339					&iclog, log_offset, *len, record_cnt,
2340					data_cnt);
2341			if (error)
2342				return error;
2343		}
2344
2345		ophdr = reg->i_addr;
2346		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2347
2348		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2349		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2350		if (rlen != reg->i_len)
2351			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2352
2353		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2354				rlen, len, record_cnt, data_cnt);
2355
2356		/* If we wrote the whole region, move to the next. */
2357		if (rlen == reg->i_len)
2358			continue;
2359
2360		/*
2361		 * We now have a partially written iovec, but it can span
2362		 * multiple iclogs so we loop here. First we release the iclog
2363		 * we currently have, then we get a new iclog and add a new
2364		 * opheader. Then we continue copying from where we were until
2365		 * we either complete the iovec or fill the iclog. If we
2366		 * complete the iovec, then we increment the index and go right
2367		 * back to the top of the outer loop. if we fill the iclog, we
2368		 * run the inner loop again.
2369		 *
2370		 * This is complicated by the tail of a region using all the
2371		 * space in an iclog and hence requiring us to release the iclog
2372		 * and get a new one before returning to the outer loop. We must
2373		 * always guarantee that we exit this inner loop with at least
2374		 * space for log transaction opheaders left in the current
2375		 * iclog, hence we cannot just terminate the loop at the end
2376		 * of the of the continuation. So we loop while there is no
2377		 * space left in the current iclog, and check for the end of the
2378		 * continuation after getting a new iclog.
2379		 */
2380		do {
2381			/*
2382			 * Ensure we include the continuation opheader in the
2383			 * space we need in the new iclog by adding that size
2384			 * to the length we require. This continuation opheader
2385			 * needs to be accounted to the ticket as the space it
2386			 * consumes hasn't been accounted to the lv we are
2387			 * writing.
2388			 */
2389			error = xlog_write_get_more_iclog_space(ticket,
2390					&iclog, log_offset,
2391					*len + sizeof(struct xlog_op_header),
2392					record_cnt, data_cnt);
2393			if (error)
2394				return error;
2395
2396			ophdr = iclog->ic_datap + *log_offset;
2397			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2398			ophdr->oh_clientid = XFS_TRANSACTION;
2399			ophdr->oh_res2 = 0;
2400			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2401
2402			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2403			*log_offset += sizeof(struct xlog_op_header);
2404			*data_cnt += sizeof(struct xlog_op_header);
2405
2406			/*
2407			 * If rlen fits in the iclog, then end the region
2408			 * continuation. Otherwise we're going around again.
2409			 */
2410			reg_offset += rlen;
2411			rlen = reg->i_len - reg_offset;
2412			if (rlen <= iclog->ic_size - *log_offset)
2413				ophdr->oh_flags |= XLOG_END_TRANS;
2414			else
2415				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2416
2417			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2418			ophdr->oh_len = cpu_to_be32(rlen);
2419
2420			xlog_write_iovec(iclog, log_offset,
2421					reg->i_addr + reg_offset,
2422					rlen, len, record_cnt, data_cnt);
2423
2424		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2425	}
2426
2427	/*
2428	 * No more iovecs remain in this logvec so return the next log vec to
2429	 * the caller so it can go back to fast path copying.
2430	 */
2431	*iclogp = iclog;
2432	return 0;
2433}
2434
2435/*
2436 * Write some region out to in-core log
2437 *
2438 * This will be called when writing externally provided regions or when
2439 * writing out a commit record for a given transaction.
2440 *
2441 * General algorithm:
2442 *	1. Find total length of this write.  This may include adding to the
2443 *		lengths passed in.
2444 *	2. Check whether we violate the tickets reservation.
2445 *	3. While writing to this iclog
2446 *	    A. Reserve as much space in this iclog as can get
2447 *	    B. If this is first write, save away start lsn
2448 *	    C. While writing this region:
2449 *		1. If first write of transaction, write start record
2450 *		2. Write log operation header (header per region)
2451 *		3. Find out if we can fit entire region into this iclog
2452 *		4. Potentially, verify destination memcpy ptr
2453 *		5. Memcpy (partial) region
2454 *		6. If partial copy, release iclog; otherwise, continue
2455 *			copying more regions into current iclog
2456 *	4. Mark want sync bit (in simulation mode)
2457 *	5. Release iclog for potential flush to on-disk log.
2458 *
2459 * ERRORS:
2460 * 1.	Panic if reservation is overrun.  This should never happen since
2461 *	reservation amounts are generated internal to the filesystem.
2462 * NOTES:
2463 * 1. Tickets are single threaded data structures.
2464 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2465 *	syncing routine.  When a single log_write region needs to span
2466 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2467 *	on all log operation writes which don't contain the end of the
2468 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2469 *	operation which contains the end of the continued log_write region.
2470 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2471 *	we don't really know exactly how much space will be used.  As a result,
2472 *	we don't update ic_offset until the end when we know exactly how many
2473 *	bytes have been written out.
2474 */
2475int
2476xlog_write(
2477	struct xlog		*log,
2478	struct xfs_cil_ctx	*ctx,
2479	struct list_head	*lv_chain,
2480	struct xlog_ticket	*ticket,
2481	uint32_t		len)
2482
2483{
2484	struct xlog_in_core	*iclog = NULL;
2485	struct xfs_log_vec	*lv;
2486	uint32_t		record_cnt = 0;
2487	uint32_t		data_cnt = 0;
2488	int			error = 0;
2489	int			log_offset;
2490
2491	if (ticket->t_curr_res < 0) {
2492		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2493		     "ctx ticket reservation ran out. Need to up reservation");
2494		xlog_print_tic_res(log->l_mp, ticket);
2495		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2496	}
2497
2498	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2499					   &log_offset);
2500	if (error)
2501		return error;
2502
2503	ASSERT(log_offset <= iclog->ic_size - 1);
2504
2505	/*
2506	 * If we have a context pointer, pass it the first iclog we are
2507	 * writing to so it can record state needed for iclog write
2508	 * ordering.
2509	 */
2510	if (ctx)
2511		xlog_cil_set_ctx_write_state(ctx, iclog);
2512
2513	list_for_each_entry(lv, lv_chain, lv_list) {
2514		/*
2515		 * If the entire log vec does not fit in the iclog, punt it to
2516		 * the partial copy loop which can handle this case.
2517		 */
2518		if (lv->lv_niovecs &&
2519		    lv->lv_bytes > iclog->ic_size - log_offset) {
2520			error = xlog_write_partial(lv, ticket, &iclog,
2521					&log_offset, &len, &record_cnt,
2522					&data_cnt);
2523			if (error) {
2524				/*
2525				 * We have no iclog to release, so just return
2526				 * the error immediately.
2527				 */
2528				return error;
2529			}
2530		} else {
2531			xlog_write_full(lv, ticket, iclog, &log_offset,
2532					 &len, &record_cnt, &data_cnt);
2533		}
2534	}
2535	ASSERT(len == 0);
2536
2537	/*
2538	 * We've already been guaranteed that the last writes will fit inside
2539	 * the current iclog, and hence it will already have the space used by
2540	 * those writes accounted to it. Hence we do not need to update the
2541	 * iclog with the number of bytes written here.
2542	 */
2543	spin_lock(&log->l_icloglock);
2544	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2545	error = xlog_state_release_iclog(log, iclog, ticket);
2546	spin_unlock(&log->l_icloglock);
2547
2548	return error;
2549}
2550
2551static void
2552xlog_state_activate_iclog(
2553	struct xlog_in_core	*iclog,
2554	int			*iclogs_changed)
2555{
2556	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2557	trace_xlog_iclog_activate(iclog, _RET_IP_);
2558
2559	/*
2560	 * If the number of ops in this iclog indicate it just contains the
2561	 * dummy transaction, we can change state into IDLE (the second time
2562	 * around). Otherwise we should change the state into NEED a dummy.
2563	 * We don't need to cover the dummy.
2564	 */
2565	if (*iclogs_changed == 0 &&
2566	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2567		*iclogs_changed = 1;
2568	} else {
2569		/*
2570		 * We have two dirty iclogs so start over.  This could also be
2571		 * num of ops indicating this is not the dummy going out.
2572		 */
2573		*iclogs_changed = 2;
2574	}
2575
2576	iclog->ic_state	= XLOG_STATE_ACTIVE;
2577	iclog->ic_offset = 0;
2578	iclog->ic_header.h_num_logops = 0;
2579	memset(iclog->ic_header.h_cycle_data, 0,
2580		sizeof(iclog->ic_header.h_cycle_data));
2581	iclog->ic_header.h_lsn = 0;
2582	iclog->ic_header.h_tail_lsn = 0;
2583}
2584
2585/*
2586 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2587 * ACTIVE after iclog I/O has completed.
2588 */
2589static void
2590xlog_state_activate_iclogs(
2591	struct xlog		*log,
2592	int			*iclogs_changed)
2593{
2594	struct xlog_in_core	*iclog = log->l_iclog;
2595
2596	do {
2597		if (iclog->ic_state == XLOG_STATE_DIRTY)
2598			xlog_state_activate_iclog(iclog, iclogs_changed);
2599		/*
2600		 * The ordering of marking iclogs ACTIVE must be maintained, so
2601		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2602		 */
2603		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2604			break;
2605	} while ((iclog = iclog->ic_next) != log->l_iclog);
2606}
2607
2608static int
2609xlog_covered_state(
2610	int			prev_state,
2611	int			iclogs_changed)
2612{
2613	/*
2614	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2615	 * wrote the first covering record (DONE). We go to IDLE if we just
2616	 * wrote the second covering record (DONE2) and remain in IDLE until a
2617	 * non-covering write occurs.
2618	 */
2619	switch (prev_state) {
2620	case XLOG_STATE_COVER_IDLE:
2621		if (iclogs_changed == 1)
2622			return XLOG_STATE_COVER_IDLE;
2623		fallthrough;
2624	case XLOG_STATE_COVER_NEED:
2625	case XLOG_STATE_COVER_NEED2:
2626		break;
2627	case XLOG_STATE_COVER_DONE:
2628		if (iclogs_changed == 1)
2629			return XLOG_STATE_COVER_NEED2;
2630		break;
2631	case XLOG_STATE_COVER_DONE2:
2632		if (iclogs_changed == 1)
2633			return XLOG_STATE_COVER_IDLE;
2634		break;
2635	default:
2636		ASSERT(0);
2637	}
2638
2639	return XLOG_STATE_COVER_NEED;
2640}
2641
2642STATIC void
2643xlog_state_clean_iclog(
2644	struct xlog		*log,
2645	struct xlog_in_core	*dirty_iclog)
2646{
2647	int			iclogs_changed = 0;
2648
2649	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2650
2651	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2652
2653	xlog_state_activate_iclogs(log, &iclogs_changed);
2654	wake_up_all(&dirty_iclog->ic_force_wait);
2655
2656	if (iclogs_changed) {
2657		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2658				iclogs_changed);
2659	}
2660}
2661
2662STATIC xfs_lsn_t
2663xlog_get_lowest_lsn(
2664	struct xlog		*log)
2665{
2666	struct xlog_in_core	*iclog = log->l_iclog;
2667	xfs_lsn_t		lowest_lsn = 0, lsn;
2668
2669	do {
2670		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2671		    iclog->ic_state == XLOG_STATE_DIRTY)
2672			continue;
2673
2674		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2675		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2676			lowest_lsn = lsn;
2677	} while ((iclog = iclog->ic_next) != log->l_iclog);
2678
2679	return lowest_lsn;
2680}
2681
2682/*
2683 * Completion of a iclog IO does not imply that a transaction has completed, as
2684 * transactions can be large enough to span many iclogs. We cannot change the
2685 * tail of the log half way through a transaction as this may be the only
2686 * transaction in the log and moving the tail to point to the middle of it
2687 * will prevent recovery from finding the start of the transaction. Hence we
2688 * should only update the last_sync_lsn if this iclog contains transaction
2689 * completion callbacks on it.
2690 *
2691 * We have to do this before we drop the icloglock to ensure we are the only one
2692 * that can update it.
2693 *
2694 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2695 * the reservation grant head pushing. This is due to the fact that the push
2696 * target is bound by the current last_sync_lsn value. Hence if we have a large
2697 * amount of log space bound up in this committing transaction then the
2698 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2699 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2700 * should push the AIL to ensure the push target (and hence the grant head) is
2701 * no longer bound by the old log head location and can move forwards and make
2702 * progress again.
2703 */
2704static void
2705xlog_state_set_callback(
2706	struct xlog		*log,
2707	struct xlog_in_core	*iclog,
2708	xfs_lsn_t		header_lsn)
2709{
2710	trace_xlog_iclog_callback(iclog, _RET_IP_);
2711	iclog->ic_state = XLOG_STATE_CALLBACK;
2712
2713	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2714			   header_lsn) <= 0);
2715
2716	if (list_empty_careful(&iclog->ic_callbacks))
2717		return;
2718
2719	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2720	xlog_grant_push_ail(log, 0);
2721}
2722
2723/*
2724 * Return true if we need to stop processing, false to continue to the next
2725 * iclog. The caller will need to run callbacks if the iclog is returned in the
2726 * XLOG_STATE_CALLBACK state.
2727 */
2728static bool
2729xlog_state_iodone_process_iclog(
2730	struct xlog		*log,
2731	struct xlog_in_core	*iclog)
2732{
2733	xfs_lsn_t		lowest_lsn;
2734	xfs_lsn_t		header_lsn;
2735
2736	switch (iclog->ic_state) {
2737	case XLOG_STATE_ACTIVE:
2738	case XLOG_STATE_DIRTY:
2739		/*
2740		 * Skip all iclogs in the ACTIVE & DIRTY states:
2741		 */
2742		return false;
2743	case XLOG_STATE_DONE_SYNC:
2744		/*
2745		 * Now that we have an iclog that is in the DONE_SYNC state, do
2746		 * one more check here to see if we have chased our tail around.
2747		 * If this is not the lowest lsn iclog, then we will leave it
2748		 * for another completion to process.
2749		 */
2750		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2751		lowest_lsn = xlog_get_lowest_lsn(log);
2752		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2753			return false;
2754		xlog_state_set_callback(log, iclog, header_lsn);
 
 
 
 
 
 
 
 
 
 
2755		return false;
2756	default:
2757		/*
2758		 * Can only perform callbacks in order.  Since this iclog is not
2759		 * in the DONE_SYNC state, we skip the rest and just try to
2760		 * clean up.
2761		 */
2762		return true;
2763	}
2764}
2765
2766/*
2767 * Loop over all the iclogs, running attached callbacks on them. Return true if
2768 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2769 * to handle transient shutdown state here at all because
2770 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2771 * cleanup of the callbacks.
2772 */
2773static bool
2774xlog_state_do_iclog_callbacks(
2775	struct xlog		*log)
2776		__releases(&log->l_icloglock)
2777		__acquires(&log->l_icloglock)
2778{
2779	struct xlog_in_core	*first_iclog = log->l_iclog;
2780	struct xlog_in_core	*iclog = first_iclog;
2781	bool			ran_callback = false;
2782
2783	do {
2784		LIST_HEAD(cb_list);
2785
2786		if (xlog_state_iodone_process_iclog(log, iclog))
2787			break;
2788		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2789			iclog = iclog->ic_next;
2790			continue;
2791		}
2792		list_splice_init(&iclog->ic_callbacks, &cb_list);
2793		spin_unlock(&log->l_icloglock);
2794
2795		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2796		xlog_cil_process_committed(&cb_list);
2797		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2798		ran_callback = true;
2799
2800		spin_lock(&log->l_icloglock);
2801		xlog_state_clean_iclog(log, iclog);
2802		iclog = iclog->ic_next;
2803	} while (iclog != first_iclog);
2804
2805	return ran_callback;
2806}
2807
2808
2809/*
2810 * Loop running iclog completion callbacks until there are no more iclogs in a
2811 * state that can run callbacks.
2812 */
2813STATIC void
2814xlog_state_do_callback(
2815	struct xlog		*log)
2816{
2817	int			flushcnt = 0;
2818	int			repeats = 0;
2819
2820	spin_lock(&log->l_icloglock);
2821	while (xlog_state_do_iclog_callbacks(log)) {
2822		if (xlog_is_shutdown(log))
2823			break;
2824
2825		if (++repeats > 5000) {
2826			flushcnt += repeats;
2827			repeats = 0;
2828			xfs_warn(log->l_mp,
2829				"%s: possible infinite loop (%d iterations)",
2830				__func__, flushcnt);
2831		}
2832	}
2833
2834	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2835		wake_up_all(&log->l_flush_wait);
2836
2837	spin_unlock(&log->l_icloglock);
2838}
2839
2840
2841/*
2842 * Finish transitioning this iclog to the dirty state.
2843 *
2844 * Callbacks could take time, so they are done outside the scope of the
2845 * global state machine log lock.
2846 */
2847STATIC void
2848xlog_state_done_syncing(
2849	struct xlog_in_core	*iclog)
2850{
2851	struct xlog		*log = iclog->ic_log;
2852
2853	spin_lock(&log->l_icloglock);
2854	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2855	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2856
2857	/*
2858	 * If we got an error, either on the first buffer, or in the case of
2859	 * split log writes, on the second, we shut down the file system and
2860	 * no iclogs should ever be attempted to be written to disk again.
2861	 */
2862	if (!xlog_is_shutdown(log)) {
2863		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2864		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2865	}
2866
2867	/*
2868	 * Someone could be sleeping prior to writing out the next
2869	 * iclog buffer, we wake them all, one will get to do the
2870	 * I/O, the others get to wait for the result.
2871	 */
2872	wake_up_all(&iclog->ic_write_wait);
2873	spin_unlock(&log->l_icloglock);
2874	xlog_state_do_callback(log);
2875}
2876
2877/*
2878 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2879 * sleep.  We wait on the flush queue on the head iclog as that should be
2880 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2881 * we will wait here and all new writes will sleep until a sync completes.
2882 *
2883 * The in-core logs are used in a circular fashion. They are not used
2884 * out-of-order even when an iclog past the head is free.
2885 *
2886 * return:
2887 *	* log_offset where xlog_write() can start writing into the in-core
2888 *		log's data space.
2889 *	* in-core log pointer to which xlog_write() should write.
2890 *	* boolean indicating this is a continued write to an in-core log.
2891 *		If this is the last write, then the in-core log's offset field
2892 *		needs to be incremented, depending on the amount of data which
2893 *		is copied.
2894 */
2895STATIC int
2896xlog_state_get_iclog_space(
2897	struct xlog		*log,
2898	int			len,
2899	struct xlog_in_core	**iclogp,
2900	struct xlog_ticket	*ticket,
2901	int			*logoffsetp)
2902{
2903	int		  log_offset;
2904	xlog_rec_header_t *head;
2905	xlog_in_core_t	  *iclog;
2906
2907restart:
2908	spin_lock(&log->l_icloglock);
2909	if (xlog_is_shutdown(log)) {
2910		spin_unlock(&log->l_icloglock);
2911		return -EIO;
2912	}
2913
2914	iclog = log->l_iclog;
2915	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2916		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2917
2918		/* Wait for log writes to have flushed */
2919		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2920		goto restart;
2921	}
2922
2923	head = &iclog->ic_header;
2924
2925	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2926	log_offset = iclog->ic_offset;
2927
2928	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2929
2930	/* On the 1st write to an iclog, figure out lsn.  This works
2931	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2932	 * committing to.  If the offset is set, that's how many blocks
2933	 * must be written.
2934	 */
2935	if (log_offset == 0) {
2936		ticket->t_curr_res -= log->l_iclog_hsize;
2937		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2938		head->h_lsn = cpu_to_be64(
2939			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2940		ASSERT(log->l_curr_block >= 0);
2941	}
2942
2943	/* If there is enough room to write everything, then do it.  Otherwise,
2944	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2945	 * bit is on, so this will get flushed out.  Don't update ic_offset
2946	 * until you know exactly how many bytes get copied.  Therefore, wait
2947	 * until later to update ic_offset.
2948	 *
2949	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2950	 * can fit into remaining data section.
2951	 */
2952	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2953		int		error = 0;
2954
2955		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2956
2957		/*
2958		 * If we are the only one writing to this iclog, sync it to
2959		 * disk.  We need to do an atomic compare and decrement here to
2960		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2961		 * xlog_state_release_iclog() when there is more than one
2962		 * reference to the iclog.
2963		 */
2964		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2965			error = xlog_state_release_iclog(log, iclog, ticket);
2966		spin_unlock(&log->l_icloglock);
2967		if (error)
2968			return error;
2969		goto restart;
2970	}
2971
2972	/* Do we have enough room to write the full amount in the remainder
2973	 * of this iclog?  Or must we continue a write on the next iclog and
2974	 * mark this iclog as completely taken?  In the case where we switch
2975	 * iclogs (to mark it taken), this particular iclog will release/sync
2976	 * to disk in xlog_write().
2977	 */
2978	if (len <= iclog->ic_size - iclog->ic_offset)
2979		iclog->ic_offset += len;
2980	else
2981		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2982	*iclogp = iclog;
2983
2984	ASSERT(iclog->ic_offset <= iclog->ic_size);
2985	spin_unlock(&log->l_icloglock);
2986
2987	*logoffsetp = log_offset;
2988	return 0;
2989}
2990
2991/*
2992 * The first cnt-1 times a ticket goes through here we don't need to move the
2993 * grant write head because the permanent reservation has reserved cnt times the
2994 * unit amount.  Release part of current permanent unit reservation and reset
2995 * current reservation to be one units worth.  Also move grant reservation head
2996 * forward.
2997 */
2998void
2999xfs_log_ticket_regrant(
3000	struct xlog		*log,
3001	struct xlog_ticket	*ticket)
3002{
3003	trace_xfs_log_ticket_regrant(log, ticket);
3004
3005	if (ticket->t_cnt > 0)
3006		ticket->t_cnt--;
3007
3008	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3009					ticket->t_curr_res);
3010	xlog_grant_sub_space(log, &log->l_write_head.grant,
3011					ticket->t_curr_res);
3012	ticket->t_curr_res = ticket->t_unit_res;
3013
3014	trace_xfs_log_ticket_regrant_sub(log, ticket);
3015
3016	/* just return if we still have some of the pre-reserved space */
3017	if (!ticket->t_cnt) {
3018		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3019				     ticket->t_unit_res);
3020		trace_xfs_log_ticket_regrant_exit(log, ticket);
3021
3022		ticket->t_curr_res = ticket->t_unit_res;
3023	}
3024
3025	xfs_log_ticket_put(ticket);
3026}
3027
3028/*
3029 * Give back the space left from a reservation.
3030 *
3031 * All the information we need to make a correct determination of space left
3032 * is present.  For non-permanent reservations, things are quite easy.  The
3033 * count should have been decremented to zero.  We only need to deal with the
3034 * space remaining in the current reservation part of the ticket.  If the
3035 * ticket contains a permanent reservation, there may be left over space which
3036 * needs to be released.  A count of N means that N-1 refills of the current
3037 * reservation can be done before we need to ask for more space.  The first
3038 * one goes to fill up the first current reservation.  Once we run out of
3039 * space, the count will stay at zero and the only space remaining will be
3040 * in the current reservation field.
3041 */
3042void
3043xfs_log_ticket_ungrant(
3044	struct xlog		*log,
3045	struct xlog_ticket	*ticket)
3046{
3047	int			bytes;
3048
3049	trace_xfs_log_ticket_ungrant(log, ticket);
3050
3051	if (ticket->t_cnt > 0)
3052		ticket->t_cnt--;
3053
3054	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3055
3056	/*
3057	 * If this is a permanent reservation ticket, we may be able to free
3058	 * up more space based on the remaining count.
3059	 */
3060	bytes = ticket->t_curr_res;
3061	if (ticket->t_cnt > 0) {
3062		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3063		bytes += ticket->t_unit_res*ticket->t_cnt;
3064	}
3065
3066	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3067	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3068
3069	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3070
3071	xfs_log_space_wake(log->l_mp);
3072	xfs_log_ticket_put(ticket);
3073}
3074
3075/*
3076 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3077 * the current iclog pointer to the next iclog in the ring.
3078 */
3079void
3080xlog_state_switch_iclogs(
3081	struct xlog		*log,
3082	struct xlog_in_core	*iclog,
3083	int			eventual_size)
3084{
3085	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3086	assert_spin_locked(&log->l_icloglock);
3087	trace_xlog_iclog_switch(iclog, _RET_IP_);
3088
3089	if (!eventual_size)
3090		eventual_size = iclog->ic_offset;
3091	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3092	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3093	log->l_prev_block = log->l_curr_block;
3094	log->l_prev_cycle = log->l_curr_cycle;
3095
3096	/* roll log?: ic_offset changed later */
3097	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3098
3099	/* Round up to next log-sunit */
3100	if (log->l_iclog_roundoff > BBSIZE) {
3101		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3102		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3103	}
3104
3105	if (log->l_curr_block >= log->l_logBBsize) {
3106		/*
3107		 * Rewind the current block before the cycle is bumped to make
3108		 * sure that the combined LSN never transiently moves forward
3109		 * when the log wraps to the next cycle. This is to support the
3110		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3111		 * other cases should acquire l_icloglock.
3112		 */
3113		log->l_curr_block -= log->l_logBBsize;
3114		ASSERT(log->l_curr_block >= 0);
3115		smp_wmb();
3116		log->l_curr_cycle++;
3117		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3118			log->l_curr_cycle++;
3119	}
3120	ASSERT(iclog == log->l_iclog);
3121	log->l_iclog = iclog->ic_next;
3122}
3123
3124/*
3125 * Force the iclog to disk and check if the iclog has been completed before
3126 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3127 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3128 * If completion has already occurred, tell the caller so that it can avoid an
3129 * unnecessary wait on the iclog.
3130 */
3131static int
3132xlog_force_and_check_iclog(
3133	struct xlog_in_core	*iclog,
3134	bool			*completed)
3135{
3136	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3137	int			error;
3138
3139	*completed = false;
3140	error = xlog_force_iclog(iclog);
3141	if (error)
3142		return error;
3143
3144	/*
3145	 * If the iclog has already been completed and reused the header LSN
3146	 * will have been rewritten by completion
3147	 */
3148	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3149		*completed = true;
3150	return 0;
3151}
3152
3153/*
3154 * Write out all data in the in-core log as of this exact moment in time.
3155 *
3156 * Data may be written to the in-core log during this call.  However,
3157 * we don't guarantee this data will be written out.  A change from past
3158 * implementation means this routine will *not* write out zero length LRs.
3159 *
3160 * Basically, we try and perform an intelligent scan of the in-core logs.
3161 * If we determine there is no flushable data, we just return.  There is no
3162 * flushable data if:
3163 *
3164 *	1. the current iclog is active and has no data; the previous iclog
3165 *		is in the active or dirty state.
3166 *	2. the current iclog is drity, and the previous iclog is in the
3167 *		active or dirty state.
3168 *
3169 * We may sleep if:
3170 *
3171 *	1. the current iclog is not in the active nor dirty state.
3172 *	2. the current iclog dirty, and the previous iclog is not in the
3173 *		active nor dirty state.
3174 *	3. the current iclog is active, and there is another thread writing
3175 *		to this particular iclog.
3176 *	4. a) the current iclog is active and has no other writers
3177 *	   b) when we return from flushing out this iclog, it is still
3178 *		not in the active nor dirty state.
3179 */
3180int
3181xfs_log_force(
3182	struct xfs_mount	*mp,
3183	uint			flags)
3184{
3185	struct xlog		*log = mp->m_log;
3186	struct xlog_in_core	*iclog;
3187
3188	XFS_STATS_INC(mp, xs_log_force);
3189	trace_xfs_log_force(mp, 0, _RET_IP_);
3190
3191	xlog_cil_force(log);
3192
3193	spin_lock(&log->l_icloglock);
3194	if (xlog_is_shutdown(log))
3195		goto out_error;
3196
3197	iclog = log->l_iclog;
3198	trace_xlog_iclog_force(iclog, _RET_IP_);
3199
3200	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3201	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3202	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3203		/*
3204		 * If the head is dirty or (active and empty), then we need to
3205		 * look at the previous iclog.
3206		 *
3207		 * If the previous iclog is active or dirty we are done.  There
3208		 * is nothing to sync out. Otherwise, we attach ourselves to the
3209		 * previous iclog and go to sleep.
3210		 */
3211		iclog = iclog->ic_prev;
3212	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3213		if (atomic_read(&iclog->ic_refcnt) == 0) {
3214			/* We have exclusive access to this iclog. */
3215			bool	completed;
3216
3217			if (xlog_force_and_check_iclog(iclog, &completed))
3218				goto out_error;
3219
3220			if (completed)
3221				goto out_unlock;
3222		} else {
3223			/*
3224			 * Someone else is still writing to this iclog, so we
3225			 * need to ensure that when they release the iclog it
3226			 * gets synced immediately as we may be waiting on it.
3227			 */
3228			xlog_state_switch_iclogs(log, iclog, 0);
3229		}
3230	}
3231
3232	/*
3233	 * The iclog we are about to wait on may contain the checkpoint pushed
3234	 * by the above xlog_cil_force() call, but it may not have been pushed
3235	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3236	 * are flushed when this iclog is written.
3237	 */
3238	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3239		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3240
3241	if (flags & XFS_LOG_SYNC)
3242		return xlog_wait_on_iclog(iclog);
3243out_unlock:
3244	spin_unlock(&log->l_icloglock);
3245	return 0;
3246out_error:
3247	spin_unlock(&log->l_icloglock);
3248	return -EIO;
3249}
3250
3251/*
3252 * Force the log to a specific LSN.
3253 *
3254 * If an iclog with that lsn can be found:
3255 *	If it is in the DIRTY state, just return.
3256 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3257 *		state and go to sleep or return.
3258 *	If it is in any other state, go to sleep or return.
3259 *
3260 * Synchronous forces are implemented with a wait queue.  All callers trying
3261 * to force a given lsn to disk must wait on the queue attached to the
3262 * specific in-core log.  When given in-core log finally completes its write
3263 * to disk, that thread will wake up all threads waiting on the queue.
3264 */
3265static int
3266xlog_force_lsn(
3267	struct xlog		*log,
3268	xfs_lsn_t		lsn,
3269	uint			flags,
3270	int			*log_flushed,
3271	bool			already_slept)
3272{
3273	struct xlog_in_core	*iclog;
3274	bool			completed;
3275
3276	spin_lock(&log->l_icloglock);
3277	if (xlog_is_shutdown(log))
3278		goto out_error;
3279
3280	iclog = log->l_iclog;
3281	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3282		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3283		iclog = iclog->ic_next;
3284		if (iclog == log->l_iclog)
3285			goto out_unlock;
3286	}
3287
3288	switch (iclog->ic_state) {
3289	case XLOG_STATE_ACTIVE:
3290		/*
3291		 * We sleep here if we haven't already slept (e.g. this is the
3292		 * first time we've looked at the correct iclog buf) and the
3293		 * buffer before us is going to be sync'ed.  The reason for this
3294		 * is that if we are doing sync transactions here, by waiting
3295		 * for the previous I/O to complete, we can allow a few more
3296		 * transactions into this iclog before we close it down.
3297		 *
3298		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3299		 * refcnt so we can release the log (which drops the ref count).
3300		 * The state switch keeps new transaction commits from using
3301		 * this buffer.  When the current commits finish writing into
3302		 * the buffer, the refcount will drop to zero and the buffer
3303		 * will go out then.
3304		 */
3305		if (!already_slept &&
3306		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3307		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3308			xlog_wait(&iclog->ic_prev->ic_write_wait,
3309					&log->l_icloglock);
3310			return -EAGAIN;
3311		}
3312		if (xlog_force_and_check_iclog(iclog, &completed))
3313			goto out_error;
3314		if (log_flushed)
3315			*log_flushed = 1;
3316		if (completed)
3317			goto out_unlock;
3318		break;
3319	case XLOG_STATE_WANT_SYNC:
3320		/*
3321		 * This iclog may contain the checkpoint pushed by the
3322		 * xlog_cil_force_seq() call, but there are other writers still
3323		 * accessing it so it hasn't been pushed to disk yet. Like the
3324		 * ACTIVE case above, we need to make sure caches are flushed
3325		 * when this iclog is written.
3326		 */
3327		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3328		break;
3329	default:
3330		/*
3331		 * The entire checkpoint was written by the CIL force and is on
3332		 * its way to disk already. It will be stable when it
3333		 * completes, so we don't need to manipulate caches here at all.
3334		 * We just need to wait for completion if necessary.
3335		 */
3336		break;
3337	}
3338
3339	if (flags & XFS_LOG_SYNC)
3340		return xlog_wait_on_iclog(iclog);
3341out_unlock:
3342	spin_unlock(&log->l_icloglock);
3343	return 0;
3344out_error:
3345	spin_unlock(&log->l_icloglock);
3346	return -EIO;
3347}
3348
3349/*
3350 * Force the log to a specific checkpoint sequence.
3351 *
3352 * First force the CIL so that all the required changes have been flushed to the
3353 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3354 * the iclog that needs to be flushed to stable storage. If the caller needs
3355 * a synchronous log force, we will wait on the iclog with the LSN returned by
3356 * xlog_cil_force_seq() to be completed.
3357 */
3358int
3359xfs_log_force_seq(
3360	struct xfs_mount	*mp,
3361	xfs_csn_t		seq,
3362	uint			flags,
3363	int			*log_flushed)
3364{
3365	struct xlog		*log = mp->m_log;
3366	xfs_lsn_t		lsn;
3367	int			ret;
3368	ASSERT(seq != 0);
3369
3370	XFS_STATS_INC(mp, xs_log_force);
3371	trace_xfs_log_force(mp, seq, _RET_IP_);
3372
3373	lsn = xlog_cil_force_seq(log, seq);
3374	if (lsn == NULLCOMMITLSN)
3375		return 0;
3376
3377	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3378	if (ret == -EAGAIN) {
3379		XFS_STATS_INC(mp, xs_log_force_sleep);
3380		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3381	}
3382	return ret;
3383}
3384
3385/*
3386 * Free a used ticket when its refcount falls to zero.
3387 */
3388void
3389xfs_log_ticket_put(
3390	xlog_ticket_t	*ticket)
3391{
3392	ASSERT(atomic_read(&ticket->t_ref) > 0);
3393	if (atomic_dec_and_test(&ticket->t_ref))
3394		kmem_cache_free(xfs_log_ticket_cache, ticket);
3395}
3396
3397xlog_ticket_t *
3398xfs_log_ticket_get(
3399	xlog_ticket_t	*ticket)
3400{
3401	ASSERT(atomic_read(&ticket->t_ref) > 0);
3402	atomic_inc(&ticket->t_ref);
3403	return ticket;
3404}
3405
3406/*
3407 * Figure out the total log space unit (in bytes) that would be
3408 * required for a log ticket.
3409 */
3410static int
3411xlog_calc_unit_res(
3412	struct xlog		*log,
3413	int			unit_bytes,
3414	int			*niclogs)
3415{
3416	int			iclog_space;
3417	uint			num_headers;
3418
3419	/*
3420	 * Permanent reservations have up to 'cnt'-1 active log operations
3421	 * in the log.  A unit in this case is the amount of space for one
3422	 * of these log operations.  Normal reservations have a cnt of 1
3423	 * and their unit amount is the total amount of space required.
3424	 *
3425	 * The following lines of code account for non-transaction data
3426	 * which occupy space in the on-disk log.
3427	 *
3428	 * Normal form of a transaction is:
3429	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3430	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3431	 *
3432	 * We need to account for all the leadup data and trailer data
3433	 * around the transaction data.
3434	 * And then we need to account for the worst case in terms of using
3435	 * more space.
3436	 * The worst case will happen if:
3437	 * - the placement of the transaction happens to be such that the
3438	 *   roundoff is at its maximum
3439	 * - the transaction data is synced before the commit record is synced
3440	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3441	 *   Therefore the commit record is in its own Log Record.
3442	 *   This can happen as the commit record is called with its
3443	 *   own region to xlog_write().
3444	 *   This then means that in the worst case, roundoff can happen for
3445	 *   the commit-rec as well.
3446	 *   The commit-rec is smaller than padding in this scenario and so it is
3447	 *   not added separately.
3448	 */
3449
3450	/* for trans header */
3451	unit_bytes += sizeof(xlog_op_header_t);
3452	unit_bytes += sizeof(xfs_trans_header_t);
3453
3454	/* for start-rec */
3455	unit_bytes += sizeof(xlog_op_header_t);
3456
3457	/*
3458	 * for LR headers - the space for data in an iclog is the size minus
3459	 * the space used for the headers. If we use the iclog size, then we
3460	 * undercalculate the number of headers required.
3461	 *
3462	 * Furthermore - the addition of op headers for split-recs might
3463	 * increase the space required enough to require more log and op
3464	 * headers, so take that into account too.
3465	 *
3466	 * IMPORTANT: This reservation makes the assumption that if this
3467	 * transaction is the first in an iclog and hence has the LR headers
3468	 * accounted to it, then the remaining space in the iclog is
3469	 * exclusively for this transaction.  i.e. if the transaction is larger
3470	 * than the iclog, it will be the only thing in that iclog.
3471	 * Fundamentally, this means we must pass the entire log vector to
3472	 * xlog_write to guarantee this.
3473	 */
3474	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3475	num_headers = howmany(unit_bytes, iclog_space);
3476
3477	/* for split-recs - ophdrs added when data split over LRs */
3478	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3479
3480	/* add extra header reservations if we overrun */
3481	while (!num_headers ||
3482	       howmany(unit_bytes, iclog_space) > num_headers) {
3483		unit_bytes += sizeof(xlog_op_header_t);
3484		num_headers++;
3485	}
3486	unit_bytes += log->l_iclog_hsize * num_headers;
3487
3488	/* for commit-rec LR header - note: padding will subsume the ophdr */
3489	unit_bytes += log->l_iclog_hsize;
3490
3491	/* roundoff padding for transaction data and one for commit record */
3492	unit_bytes += 2 * log->l_iclog_roundoff;
3493
3494	if (niclogs)
3495		*niclogs = num_headers;
3496	return unit_bytes;
3497}
3498
3499int
3500xfs_log_calc_unit_res(
3501	struct xfs_mount	*mp,
3502	int			unit_bytes)
3503{
3504	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3505}
3506
3507/*
3508 * Allocate and initialise a new log ticket.
3509 */
3510struct xlog_ticket *
3511xlog_ticket_alloc(
3512	struct xlog		*log,
3513	int			unit_bytes,
3514	int			cnt,
3515	bool			permanent)
3516{
3517	struct xlog_ticket	*tic;
3518	int			unit_res;
3519
3520	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
 
3521
3522	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3523
3524	atomic_set(&tic->t_ref, 1);
3525	tic->t_task		= current;
3526	INIT_LIST_HEAD(&tic->t_queue);
3527	tic->t_unit_res		= unit_res;
3528	tic->t_curr_res		= unit_res;
3529	tic->t_cnt		= cnt;
3530	tic->t_ocnt		= cnt;
3531	tic->t_tid		= get_random_u32();
3532	if (permanent)
3533		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3534
3535	return tic;
3536}
3537
3538#if defined(DEBUG)
3539/*
3540 * Check to make sure the grant write head didn't just over lap the tail.  If
3541 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3542 * the cycles differ by exactly one and check the byte count.
3543 *
3544 * This check is run unlocked, so can give false positives. Rather than assert
3545 * on failures, use a warn-once flag and a panic tag to allow the admin to
3546 * determine if they want to panic the machine when such an error occurs. For
3547 * debug kernels this will have the same effect as using an assert but, unlinke
3548 * an assert, it can be turned off at runtime.
3549 */
3550STATIC void
3551xlog_verify_grant_tail(
3552	struct xlog	*log)
3553{
3554	int		tail_cycle, tail_blocks;
3555	int		cycle, space;
3556
3557	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3558	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3559	if (tail_cycle != cycle) {
3560		if (cycle - 1 != tail_cycle &&
3561		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3562			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3563				"%s: cycle - 1 != tail_cycle", __func__);
3564		}
3565
3566		if (space > BBTOB(tail_blocks) &&
3567		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3568			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3569				"%s: space > BBTOB(tail_blocks)", __func__);
3570		}
3571	}
3572}
3573
3574/* check if it will fit */
3575STATIC void
3576xlog_verify_tail_lsn(
3577	struct xlog		*log,
3578	struct xlog_in_core	*iclog)
3579{
3580	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3581	int		blocks;
3582
3583    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3584	blocks =
3585	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3586	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3587		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3588    } else {
3589	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
 
 
 
 
3590
3591	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
 
 
 
 
 
3592		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
 
 
 
3593
3594	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3595	if (blocks < BTOBB(iclog->ic_offset) + 1)
3596		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3597    }
 
3598}
3599
3600/*
3601 * Perform a number of checks on the iclog before writing to disk.
3602 *
3603 * 1. Make sure the iclogs are still circular
3604 * 2. Make sure we have a good magic number
3605 * 3. Make sure we don't have magic numbers in the data
3606 * 4. Check fields of each log operation header for:
3607 *	A. Valid client identifier
3608 *	B. tid ptr value falls in valid ptr space (user space code)
3609 *	C. Length in log record header is correct according to the
3610 *		individual operation headers within record.
3611 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3612 *	log, check the preceding blocks of the physical log to make sure all
3613 *	the cycle numbers agree with the current cycle number.
3614 */
3615STATIC void
3616xlog_verify_iclog(
3617	struct xlog		*log,
3618	struct xlog_in_core	*iclog,
3619	int			count)
3620{
3621	xlog_op_header_t	*ophead;
3622	xlog_in_core_t		*icptr;
3623	xlog_in_core_2_t	*xhdr;
3624	void			*base_ptr, *ptr, *p;
3625	ptrdiff_t		field_offset;
3626	uint8_t			clientid;
3627	int			len, i, j, k, op_len;
3628	int			idx;
3629
3630	/* check validity of iclog pointers */
3631	spin_lock(&log->l_icloglock);
3632	icptr = log->l_iclog;
3633	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3634		ASSERT(icptr);
3635
3636	if (icptr != log->l_iclog)
3637		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3638	spin_unlock(&log->l_icloglock);
3639
3640	/* check log magic numbers */
3641	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3642		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3643
3644	base_ptr = ptr = &iclog->ic_header;
3645	p = &iclog->ic_header;
3646	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3647		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3648			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3649				__func__);
3650	}
3651
3652	/* check fields */
3653	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3654	base_ptr = ptr = iclog->ic_datap;
3655	ophead = ptr;
3656	xhdr = iclog->ic_data;
3657	for (i = 0; i < len; i++) {
3658		ophead = ptr;
3659
3660		/* clientid is only 1 byte */
3661		p = &ophead->oh_clientid;
3662		field_offset = p - base_ptr;
3663		if (field_offset & 0x1ff) {
3664			clientid = ophead->oh_clientid;
3665		} else {
3666			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3667			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3668				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3669				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3670				clientid = xlog_get_client_id(
3671					xhdr[j].hic_xheader.xh_cycle_data[k]);
3672			} else {
3673				clientid = xlog_get_client_id(
3674					iclog->ic_header.h_cycle_data[idx]);
3675			}
3676		}
3677		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3678			xfs_warn(log->l_mp,
3679				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3680				__func__, i, clientid, ophead,
3681				(unsigned long)field_offset);
3682		}
3683
3684		/* check length */
3685		p = &ophead->oh_len;
3686		field_offset = p - base_ptr;
3687		if (field_offset & 0x1ff) {
3688			op_len = be32_to_cpu(ophead->oh_len);
3689		} else {
3690			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3691			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3692				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3693				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3694				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3695			} else {
3696				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3697			}
3698		}
3699		ptr += sizeof(xlog_op_header_t) + op_len;
3700	}
3701}
3702#endif
3703
3704/*
3705 * Perform a forced shutdown on the log.
3706 *
3707 * This can be called from low level log code to trigger a shutdown, or from the
3708 * high level mount shutdown code when the mount shuts down.
3709 *
3710 * Our main objectives here are to make sure that:
3711 *	a. if the shutdown was not due to a log IO error, flush the logs to
3712 *	   disk. Anything modified after this is ignored.
3713 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3714 *	   parties to find out. Nothing new gets queued after this is done.
3715 *	c. Tasks sleeping on log reservations, pinned objects and
3716 *	   other resources get woken up.
3717 *	d. The mount is also marked as shut down so that log triggered shutdowns
3718 *	   still behave the same as if they called xfs_forced_shutdown().
3719 *
3720 * Return true if the shutdown cause was a log IO error and we actually shut the
3721 * log down.
3722 */
3723bool
3724xlog_force_shutdown(
3725	struct xlog	*log,
3726	uint32_t	shutdown_flags)
3727{
3728	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3729
3730	if (!log)
3731		return false;
3732
3733	/*
 
 
 
 
 
 
 
 
 
 
3734	 * Flush all the completed transactions to disk before marking the log
3735	 * being shut down. We need to do this first as shutting down the log
3736	 * before the force will prevent the log force from flushing the iclogs
3737	 * to disk.
3738	 *
3739	 * When we are in recovery, there are no transactions to flush, and
3740	 * we don't want to touch the log because we don't want to perturb the
3741	 * current head/tail for future recovery attempts. Hence we need to
3742	 * avoid a log force in this case.
3743	 *
3744	 * If we are shutting down due to a log IO error, then we must avoid
3745	 * trying to write the log as that may just result in more IO errors and
3746	 * an endless shutdown/force loop.
3747	 */
3748	if (!log_error && !xlog_in_recovery(log))
3749		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3750
3751	/*
3752	 * Atomically set the shutdown state. If the shutdown state is already
3753	 * set, there someone else is performing the shutdown and so we are done
3754	 * here. This should never happen because we should only ever get called
3755	 * once by the first shutdown caller.
3756	 *
3757	 * Much of the log state machine transitions assume that shutdown state
3758	 * cannot change once they hold the log->l_icloglock. Hence we need to
3759	 * hold that lock here, even though we use the atomic test_and_set_bit()
3760	 * operation to set the shutdown state.
3761	 */
3762	spin_lock(&log->l_icloglock);
3763	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3764		spin_unlock(&log->l_icloglock);
 
3765		return false;
3766	}
3767	spin_unlock(&log->l_icloglock);
3768
3769	/*
3770	 * If this log shutdown also sets the mount shutdown state, issue a
3771	 * shutdown warning message.
3772	 */
3773	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3774		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3775"Filesystem has been shut down due to log error (0x%x).",
3776				shutdown_flags);
3777		xfs_alert(log->l_mp,
3778"Please unmount the filesystem and rectify the problem(s).");
3779		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3780			xfs_stack_trace();
3781	}
3782
3783	/*
3784	 * We don't want anybody waiting for log reservations after this. That
3785	 * means we have to wake up everybody queued up on reserveq as well as
3786	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3787	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3788	 * action is protected by the grant locks.
3789	 */
3790	xlog_grant_head_wake_all(&log->l_reserve_head);
3791	xlog_grant_head_wake_all(&log->l_write_head);
3792
3793	/*
3794	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3795	 * as if the log writes were completed. The abort handling in the log
3796	 * item committed callback functions will do this again under lock to
3797	 * avoid races.
3798	 */
3799	spin_lock(&log->l_cilp->xc_push_lock);
3800	wake_up_all(&log->l_cilp->xc_start_wait);
3801	wake_up_all(&log->l_cilp->xc_commit_wait);
3802	spin_unlock(&log->l_cilp->xc_push_lock);
3803
3804	spin_lock(&log->l_icloglock);
3805	xlog_state_shutdown_callbacks(log);
3806	spin_unlock(&log->l_icloglock);
3807
3808	wake_up_var(&log->l_opstate);
3809	return log_error;
3810}
3811
3812STATIC int
3813xlog_iclogs_empty(
3814	struct xlog	*log)
3815{
3816	xlog_in_core_t	*iclog;
3817
3818	iclog = log->l_iclog;
3819	do {
3820		/* endianness does not matter here, zero is zero in
3821		 * any language.
3822		 */
3823		if (iclog->ic_header.h_num_logops)
3824			return 0;
3825		iclog = iclog->ic_next;
3826	} while (iclog != log->l_iclog);
3827	return 1;
3828}
3829
3830/*
3831 * Verify that an LSN stamped into a piece of metadata is valid. This is
3832 * intended for use in read verifiers on v5 superblocks.
3833 */
3834bool
3835xfs_log_check_lsn(
3836	struct xfs_mount	*mp,
3837	xfs_lsn_t		lsn)
3838{
3839	struct xlog		*log = mp->m_log;
3840	bool			valid;
3841
3842	/*
3843	 * norecovery mode skips mount-time log processing and unconditionally
3844	 * resets the in-core LSN. We can't validate in this mode, but
3845	 * modifications are not allowed anyways so just return true.
3846	 */
3847	if (xfs_has_norecovery(mp))
3848		return true;
3849
3850	/*
3851	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3852	 * handled by recovery and thus safe to ignore here.
3853	 */
3854	if (lsn == NULLCOMMITLSN)
3855		return true;
3856
3857	valid = xlog_valid_lsn(mp->m_log, lsn);
3858
3859	/* warn the user about what's gone wrong before verifier failure */
3860	if (!valid) {
3861		spin_lock(&log->l_icloglock);
3862		xfs_warn(mp,
3863"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3864"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3865			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3866			 log->l_curr_cycle, log->l_curr_block);
3867		spin_unlock(&log->l_icloglock);
3868	}
3869
3870	return valid;
3871}
3872
3873/*
3874 * Notify the log that we're about to start using a feature that is protected
3875 * by a log incompat feature flag.  This will prevent log covering from
3876 * clearing those flags.
3877 */
3878void
3879xlog_use_incompat_feat(
3880	struct xlog		*log)
3881{
3882	down_read(&log->l_incompat_users);
3883}
3884
3885/* Notify the log that we've finished using log incompat features. */
3886void
3887xlog_drop_incompat_feat(
3888	struct xlog		*log)
3889{
3890	up_read(&log->l_incompat_users);
3891}