Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
 
 
 
 
 
 
 
 
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24struct kmem_cache	*xfs_log_ticket_cache;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC void
  34xlog_dealloc_log(
  35	struct xlog		*log);
  36
  37/* local state machine functions */
  38STATIC void xlog_state_done_syncing(
  39	struct xlog_in_core	*iclog);
  40STATIC void xlog_state_do_callback(
  41	struct xlog		*log);
  42STATIC int
  43xlog_state_get_iclog_space(
  44	struct xlog		*log,
  45	int			len,
  46	struct xlog_in_core	**iclog,
  47	struct xlog_ticket	*ticket,
  48	int			*logoffsetp);
  49STATIC void
  50xlog_sync(
 
 
 
 
 
 
  51	struct xlog		*log,
  52	struct xlog_in_core	*iclog,
  53	struct xlog_ticket	*ticket);
  54#if defined(DEBUG)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55STATIC void
  56xlog_verify_iclog(
  57	struct xlog		*log,
  58	struct xlog_in_core	*iclog,
  59	int			count);
 
 
 
 
 
 
  60STATIC void
  61xlog_verify_tail_lsn(
  62	struct xlog		*log,
  63	struct xlog_in_core	*iclog);
 
 
 
  64#else
  65#define xlog_verify_iclog(a,b,c)
  66#define xlog_verify_tail_lsn(a,b)
 
 
  67#endif
  68
  69STATIC int
  70xlog_iclogs_empty(
  71	struct xlog		*log);
  72
  73static int
  74xfs_log_cover(struct xfs_mount *);
  75
  76/*
  77 * We need to make sure the buffer pointer returned is naturally aligned for the
  78 * biggest basic data type we put into it. We have already accounted for this
  79 * padding when sizing the buffer.
  80 *
  81 * However, this padding does not get written into the log, and hence we have to
  82 * track the space used by the log vectors separately to prevent log space hangs
  83 * due to inaccurate accounting (i.e. a leak) of the used log space through the
  84 * CIL context ticket.
  85 *
  86 * We also add space for the xlog_op_header that describes this region in the
  87 * log. This prepends the data region we return to the caller to copy their data
  88 * into, so do all the static initialisation of the ophdr now. Because the ophdr
  89 * is not 8 byte aligned, we have to be careful to ensure that we align the
  90 * start of the buffer such that the region we return to the call is 8 byte
  91 * aligned and packed against the tail of the ophdr.
  92 */
  93void *
  94xlog_prepare_iovec(
  95	struct xfs_log_vec	*lv,
  96	struct xfs_log_iovec	**vecp,
  97	uint			type)
  98{
  99	struct xfs_log_iovec	*vec = *vecp;
 100	struct xlog_op_header	*oph;
 101	uint32_t		len;
 102	void			*buf;
 103
 104	if (vec) {
 105		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
 106		vec++;
 107	} else {
 108		vec = &lv->lv_iovecp[0];
 109	}
 110
 111	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
 112	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
 113		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
 114					sizeof(struct xlog_op_header);
 115	}
 116
 117	vec->i_type = type;
 118	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
 
 
 
 
 
 
 119
 120	oph = vec->i_addr;
 121	oph->oh_clientid = XFS_TRANSACTION;
 122	oph->oh_res2 = 0;
 123	oph->oh_flags = 0;
 124
 125	buf = vec->i_addr + sizeof(struct xlog_op_header);
 126	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
 127
 128	*vecp = vec;
 129	return buf;
 130}
 
 
 131
 132static inline void
 133xlog_grant_sub_space(
 134	struct xlog_grant_head	*head,
 135	int64_t			bytes)
 136{
 137	atomic64_sub(bytes, &head->grant);
 138}
 139
 140static inline void
 141xlog_grant_add_space(
 142	struct xlog_grant_head	*head,
 143	int64_t			bytes)
 
 144{
 145	atomic64_add(bytes, &head->grant);
 146}
 147
 148static void
 149xlog_grant_head_init(
 150	struct xlog_grant_head	*head)
 151{
 152	atomic64_set(&head->grant, 0);
 153	INIT_LIST_HEAD(&head->waiters);
 154	spin_lock_init(&head->lock);
 155}
 156
 157void
 158xlog_grant_return_space(
 159	struct xlog	*log,
 160	xfs_lsn_t	old_head,
 161	xfs_lsn_t	new_head)
 162{
 163	int64_t		diff = xlog_lsn_sub(log, new_head, old_head);
 164
 165	xlog_grant_sub_space(&log->l_reserve_head, diff);
 166	xlog_grant_sub_space(&log->l_write_head, diff);
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169/*
 170 * Return the space in the log between the tail and the head.  In the case where
 171 * we have overrun available reservation space, return 0. The memory barrier
 172 * pairs with the smp_wmb() in xlog_cil_ail_insert() to ensure that grant head
 173 * vs tail space updates are seen in the correct order and hence avoid
 174 * transients as space is transferred from the grant heads to the AIL on commit
 175 * completion.
 176 */
 177static uint64_t
 178xlog_grant_space_left(
 179	struct xlog		*log,
 180	struct xlog_grant_head	*head)
 181{
 182	int64_t			free_bytes;
 183
 184	smp_rmb();	/* paired with smp_wmb in xlog_cil_ail_insert() */
 185	free_bytes = log->l_logsize - READ_ONCE(log->l_tail_space) -
 186			atomic64_read(&head->grant);
 187	if (free_bytes > 0)
 188		return free_bytes;
 189	return 0;
 190}
 191
 192STATIC void
 193xlog_grant_head_wake_all(
 194	struct xlog_grant_head	*head)
 195{
 196	struct xlog_ticket	*tic;
 197
 198	spin_lock(&head->lock);
 199	list_for_each_entry(tic, &head->waiters, t_queue)
 200		wake_up_process(tic->t_task);
 201	spin_unlock(&head->lock);
 202}
 203
 204static inline int
 205xlog_ticket_reservation(
 206	struct xlog		*log,
 207	struct xlog_grant_head	*head,
 208	struct xlog_ticket	*tic)
 209{
 210	if (head == &log->l_write_head) {
 211		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 212		return tic->t_unit_res;
 
 
 
 
 
 213	}
 214
 215	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 216		return tic->t_unit_res * tic->t_cnt;
 217
 218	return tic->t_unit_res;
 219}
 220
 221STATIC bool
 222xlog_grant_head_wake(
 223	struct xlog		*log,
 224	struct xlog_grant_head	*head,
 225	int			*free_bytes)
 226{
 227	struct xlog_ticket	*tic;
 228	int			need_bytes;
 229
 230	list_for_each_entry(tic, &head->waiters, t_queue) {
 231		need_bytes = xlog_ticket_reservation(log, head, tic);
 232		if (*free_bytes < need_bytes)
 233			return false;
 234
 235		*free_bytes -= need_bytes;
 236		trace_xfs_log_grant_wake_up(log, tic);
 237		wake_up_process(tic->t_task);
 238	}
 239
 240	return true;
 241}
 242
 243STATIC int
 244xlog_grant_head_wait(
 245	struct xlog		*log,
 246	struct xlog_grant_head	*head,
 247	struct xlog_ticket	*tic,
 248	int			need_bytes) __releases(&head->lock)
 249					    __acquires(&head->lock)
 250{
 251	list_add_tail(&tic->t_queue, &head->waiters);
 252
 253	do {
 254		if (xlog_is_shutdown(log))
 255			goto shutdown;
 
 256
 257		__set_current_state(TASK_UNINTERRUPTIBLE);
 258		spin_unlock(&head->lock);
 259
 260		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 261
 262		/* Push on the AIL to free up all the log space. */
 263		xfs_ail_push_all(log->l_ailp);
 264
 265		trace_xfs_log_grant_sleep(log, tic);
 266		schedule();
 267		trace_xfs_log_grant_wake(log, tic);
 268
 269		spin_lock(&head->lock);
 270		if (xlog_is_shutdown(log))
 271			goto shutdown;
 272	} while (xlog_grant_space_left(log, head) < need_bytes);
 273
 274	list_del_init(&tic->t_queue);
 275	return 0;
 276shutdown:
 277	list_del_init(&tic->t_queue);
 278	return -EIO;
 279}
 280
 281/*
 282 * Atomically get the log space required for a log ticket.
 283 *
 284 * Once a ticket gets put onto head->waiters, it will only return after the
 285 * needed reservation is satisfied.
 286 *
 287 * This function is structured so that it has a lock free fast path. This is
 288 * necessary because every new transaction reservation will come through this
 289 * path. Hence any lock will be globally hot if we take it unconditionally on
 290 * every pass.
 291 *
 292 * As tickets are only ever moved on and off head->waiters under head->lock, we
 293 * only need to take that lock if we are going to add the ticket to the queue
 294 * and sleep. We can avoid taking the lock if the ticket was never added to
 295 * head->waiters because the t_queue list head will be empty and we hold the
 296 * only reference to it so it can safely be checked unlocked.
 297 */
 298STATIC int
 299xlog_grant_head_check(
 300	struct xlog		*log,
 301	struct xlog_grant_head	*head,
 302	struct xlog_ticket	*tic,
 303	int			*need_bytes)
 304{
 305	int			free_bytes;
 306	int			error = 0;
 307
 308	ASSERT(!xlog_in_recovery(log));
 309
 310	/*
 311	 * If there are other waiters on the queue then give them a chance at
 312	 * logspace before us.  Wake up the first waiters, if we do not wake
 313	 * up all the waiters then go to sleep waiting for more free space,
 314	 * otherwise try to get some space for this transaction.
 315	 */
 316	*need_bytes = xlog_ticket_reservation(log, head, tic);
 317	free_bytes = xlog_grant_space_left(log, head);
 318	if (!list_empty_careful(&head->waiters)) {
 319		spin_lock(&head->lock);
 320		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 321		    free_bytes < *need_bytes) {
 322			error = xlog_grant_head_wait(log, head, tic,
 323						     *need_bytes);
 324		}
 325		spin_unlock(&head->lock);
 326	} else if (free_bytes < *need_bytes) {
 327		spin_lock(&head->lock);
 328		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 329		spin_unlock(&head->lock);
 330	}
 331
 332	return error;
 333}
 334
 335bool
 336xfs_log_writable(
 337	struct xfs_mount	*mp)
 338{
 339	/*
 340	 * Do not write to the log on norecovery mounts, if the data or log
 341	 * devices are read-only, or if the filesystem is shutdown. Read-only
 342	 * mounts allow internal writes for log recovery and unmount purposes,
 343	 * so don't restrict that case.
 344	 */
 345	if (xfs_has_norecovery(mp))
 346		return false;
 347	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 348		return false;
 349	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 350		return false;
 351	if (xlog_is_shutdown(mp->m_log))
 352		return false;
 353	return true;
 
 
 
 
 354}
 355
 356/*
 357 * Replenish the byte reservation required by moving the grant write head.
 358 */
 359int
 360xfs_log_regrant(
 361	struct xfs_mount	*mp,
 362	struct xlog_ticket	*tic)
 363{
 364	struct xlog		*log = mp->m_log;
 365	int			need_bytes;
 366	int			error = 0;
 367
 368	if (xlog_is_shutdown(log))
 369		return -EIO;
 370
 371	XFS_STATS_INC(mp, xs_try_logspace);
 372
 373	/*
 374	 * This is a new transaction on the ticket, so we need to change the
 375	 * transaction ID so that the next transaction has a different TID in
 376	 * the log. Just add one to the existing tid so that we can see chains
 377	 * of rolling transactions in the log easily.
 378	 */
 379	tic->t_tid++;
 
 
 
 380	tic->t_curr_res = tic->t_unit_res;
 
 
 381	if (tic->t_cnt > 0)
 382		return 0;
 383
 384	trace_xfs_log_regrant(log, tic);
 385
 386	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 387				      &need_bytes);
 388	if (error)
 389		goto out_error;
 390
 391	xlog_grant_add_space(&log->l_write_head, need_bytes);
 392	trace_xfs_log_regrant_exit(log, tic);
 
 393	return 0;
 394
 395out_error:
 396	/*
 397	 * If we are failing, make sure the ticket doesn't have any current
 398	 * reservations.  We don't want to add this back when the ticket/
 399	 * transaction gets cancelled.
 400	 */
 401	tic->t_curr_res = 0;
 402	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 403	return error;
 404}
 405
 406/*
 407 * Reserve log space and return a ticket corresponding to the reservation.
 408 *
 409 * Each reservation is going to reserve extra space for a log record header.
 410 * When writes happen to the on-disk log, we don't subtract the length of the
 411 * log record header from any reservation.  By wasting space in each
 412 * reservation, we prevent over allocation problems.
 413 */
 414int
 415xfs_log_reserve(
 416	struct xfs_mount	*mp,
 417	int			unit_bytes,
 418	int			cnt,
 419	struct xlog_ticket	**ticp,
 420	bool			permanent)
 
 
 421{
 422	struct xlog		*log = mp->m_log;
 423	struct xlog_ticket	*tic;
 424	int			need_bytes;
 425	int			error = 0;
 426
 427	if (xlog_is_shutdown(log))
 428		return -EIO;
 429
 430	XFS_STATS_INC(mp, xs_try_logspace);
 
 
 
 431
 432	ASSERT(*ticp == NULL);
 433	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
 
 
 
 
 
 434	*ticp = tic;
 
 
 
 435	trace_xfs_log_reserve(log, tic);
 
 436	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 437				      &need_bytes);
 438	if (error)
 439		goto out_error;
 440
 441	xlog_grant_add_space(&log->l_reserve_head, need_bytes);
 442	xlog_grant_add_space(&log->l_write_head, need_bytes);
 443	trace_xfs_log_reserve_exit(log, tic);
 
 444	return 0;
 445
 446out_error:
 447	/*
 448	 * If we are failing, make sure the ticket doesn't have any current
 449	 * reservations.  We don't want to add this back when the ticket/
 450	 * transaction gets cancelled.
 451	 */
 452	tic->t_curr_res = 0;
 453	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 454	return error;
 455}
 456
 
 457/*
 458 * Run all the pending iclog callbacks and wake log force waiters and iclog
 459 * space waiters so they can process the newly set shutdown state. We really
 460 * don't care what order we process callbacks here because the log is shut down
 461 * and so state cannot change on disk anymore. However, we cannot wake waiters
 462 * until the callbacks have been processed because we may be in unmount and
 463 * we must ensure that all AIL operations the callbacks perform have completed
 464 * before we tear down the AIL.
 465 *
 466 * We avoid processing actively referenced iclogs so that we don't run callbacks
 467 * while the iclog owner might still be preparing the iclog for IO submssion.
 468 * These will be caught by xlog_state_iclog_release() and call this function
 469 * again to process any callbacks that may have been added to that iclog.
 470 */
 471static void
 472xlog_state_shutdown_callbacks(
 473	struct xlog		*log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474{
 475	struct xlog_in_core	*iclog;
 476	LIST_HEAD(cb_list);
 477
 478	iclog = log->l_iclog;
 479	do {
 480		if (atomic_read(&iclog->ic_refcnt)) {
 481			/* Reference holder will re-run iclog callbacks. */
 482			continue;
 
 
 
 
 
 483		}
 484		list_splice_init(&iclog->ic_callbacks, &cb_list);
 485		spin_unlock(&log->l_icloglock);
 486
 487		xlog_cil_process_committed(&cb_list);
 488
 489		spin_lock(&log->l_icloglock);
 490		wake_up_all(&iclog->ic_write_wait);
 491		wake_up_all(&iclog->ic_force_wait);
 492	} while ((iclog = iclog->ic_next) != log->l_iclog);
 493
 494	wake_up_all(&log->l_flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495}
 496
 497/*
 498 * Flush iclog to disk if this is the last reference to the given iclog and the
 499 * it is in the WANT_SYNC state.
 500 *
 501 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 502 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 503 * written to stable storage, and implies that a commit record is contained
 504 * within the iclog. We need to ensure that the log tail does not move beyond
 505 * the tail that the first commit record in the iclog ordered against, otherwise
 506 * correct recovery of that checkpoint becomes dependent on future operations
 507 * performed on this iclog.
 508 *
 509 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 510 * current tail into iclog. Once the iclog tail is set, future operations must
 511 * not modify it, otherwise they potentially violate ordering constraints for
 512 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 513 * the iclog will get zeroed on activation of the iclog after sync, so we
 514 * always capture the tail lsn on the iclog on the first NEED_FUA release
 515 * regardless of the number of active reference counts on this iclog.
 516 */
 517int
 518xlog_state_release_iclog(
 519	struct xlog		*log,
 520	struct xlog_in_core	*iclog,
 521	struct xlog_ticket	*ticket)
 522{
 523	bool			last_ref;
 524
 525	lockdep_assert_held(&log->l_icloglock);
 526
 527	trace_xlog_iclog_release(iclog, _RET_IP_);
 528	/*
 529	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 530	 * of the tail LSN into the iclog so we guarantee that the log tail does
 531	 * not move between the first time we know that the iclog needs to be
 532	 * made stable and when we eventually submit it.
 533	 */
 534	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 535	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
 536	    !iclog->ic_header.h_tail_lsn) {
 537		iclog->ic_header.h_tail_lsn =
 538				cpu_to_be64(atomic64_read(&log->l_tail_lsn));
 539	}
 540
 541	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 542
 543	if (xlog_is_shutdown(log)) {
 544		/*
 545		 * If there are no more references to this iclog, process the
 546		 * pending iclog callbacks that were waiting on the release of
 547		 * this iclog.
 548		 */
 549		if (last_ref)
 550			xlog_state_shutdown_callbacks(log);
 551		return -EIO;
 552	}
 
 
 
 553
 554	if (!last_ref)
 555		return 0;
 556
 557	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 558		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 559		return 0;
 
 
 560	}
 561
 562	iclog->ic_state = XLOG_STATE_SYNCING;
 563	xlog_verify_tail_lsn(log, iclog);
 564	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 565
 566	spin_unlock(&log->l_icloglock);
 567	xlog_sync(log, iclog, ticket);
 568	spin_lock(&log->l_icloglock);
 569	return 0;
 570}
 571
 572/*
 573 * Mount a log filesystem
 574 *
 575 * mp		- ubiquitous xfs mount point structure
 576 * log_target	- buftarg of on-disk log device
 577 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 578 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 579 *
 580 * Return error or zero.
 581 */
 582int
 583xfs_log_mount(
 584	xfs_mount_t		*mp,
 585	struct xfs_buftarg	*log_target,
 586	xfs_daddr_t		blk_offset,
 587	int			num_bblks)
 588{
 589	struct xlog		*log;
 590	int			error = 0;
 591	int			min_logfsbs;
 592
 593	if (!xfs_has_norecovery(mp)) {
 594		xfs_notice(mp, "Mounting V%d Filesystem %pU",
 595			   XFS_SB_VERSION_NUM(&mp->m_sb),
 596			   &mp->m_sb.sb_uuid);
 597	} else {
 598		xfs_notice(mp,
 599"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
 600			   XFS_SB_VERSION_NUM(&mp->m_sb),
 601			   &mp->m_sb.sb_uuid);
 602		ASSERT(xfs_is_readonly(mp));
 603	}
 604
 605	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 606	if (IS_ERR(log)) {
 607		error = PTR_ERR(log);
 608		goto out;
 609	}
 610	mp->m_log = log;
 611
 612	/*
 613	 * Now that we have set up the log and it's internal geometry
 614	 * parameters, we can validate the given log space and drop a critical
 615	 * message via syslog if the log size is too small. A log that is too
 616	 * small can lead to unexpected situations in transaction log space
 617	 * reservation stage. The superblock verifier has already validated all
 618	 * the other log geometry constraints, so we don't have to check those
 619	 * here.
 620	 *
 621	 * Note: For v4 filesystems, we can't just reject the mount if the
 622	 * validation fails.  This would mean that people would have to
 623	 * downgrade their kernel just to remedy the situation as there is no
 624	 * way to grow the log (short of black magic surgery with xfs_db).
 625	 *
 626	 * We can, however, reject mounts for V5 format filesystems, as the
 627	 * mkfs binary being used to make the filesystem should never create a
 628	 * filesystem with a log that is too small.
 629	 */
 630	min_logfsbs = xfs_log_calc_minimum_size(mp);
 631	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 632		xfs_warn(mp,
 633		"Log size %d blocks too small, minimum size is %d blocks",
 634			 mp->m_sb.sb_logblocks, min_logfsbs);
 635
 636		/*
 637		 * Log check errors are always fatal on v5; or whenever bad
 638		 * metadata leads to a crash.
 639		 */
 640		if (xfs_has_crc(mp)) {
 641			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 642			ASSERT(0);
 643			error = -EINVAL;
 644			goto out_free_log;
 645		}
 646		xfs_crit(mp, "Log size out of supported range.");
 647		xfs_crit(mp,
 648"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 649	}
 650
 651	/*
 652	 * Initialize the AIL now we have a log.
 653	 */
 654	error = xfs_trans_ail_init(mp);
 655	if (error) {
 656		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 657		goto out_free_log;
 658	}
 659	log->l_ailp = mp->m_ail;
 660
 661	/*
 662	 * skip log recovery on a norecovery mount.  pretend it all
 663	 * just worked.
 664	 */
 665	if (!xfs_has_norecovery(mp)) {
 666		error = xlog_recover(log);
 
 
 
 
 
 
 
 
 667		if (error) {
 668			xfs_warn(mp, "log mount/recovery failed: error %d",
 669				error);
 670			xlog_recover_cancel(log);
 671			goto out_destroy_ail;
 672		}
 673	}
 674
 675	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 676			       "log");
 677	if (error)
 678		goto out_destroy_ail;
 679
 680	/* Normal transactions can now occur */
 681	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 682
 683	/*
 684	 * Now the log has been fully initialised and we know were our
 685	 * space grant counters are, we can initialise the permanent ticket
 686	 * needed for delayed logging to work.
 687	 */
 688	xlog_cil_init_post_recovery(log);
 689
 690	return 0;
 691
 692out_destroy_ail:
 693	xfs_trans_ail_destroy(mp);
 694out_free_log:
 695	xlog_dealloc_log(log);
 696out:
 697	return error;
 698}
 699
 700/*
 701 * Finish the recovery of the file system.  This is separate from the
 702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 704 * here.
 705 *
 706 * If we finish recovery successfully, start the background log work. If we are
 707 * not doing recovery, then we have a RO filesystem and we don't need to start
 708 * it.
 709 */
 710int
 711xfs_log_mount_finish(
 712	struct xfs_mount	*mp)
 713{
 714	struct xlog		*log = mp->m_log;
 715	int			error = 0;
 716
 717	if (xfs_has_norecovery(mp)) {
 718		ASSERT(xfs_is_readonly(mp));
 719		return 0;
 
 
 720	}
 721
 722	/*
 723	 * During the second phase of log recovery, we need iget and
 724	 * iput to behave like they do for an active filesystem.
 725	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 726	 * of inodes before we're done replaying log items on those
 727	 * inodes.  Turn it off immediately after recovery finishes
 728	 * so that we don't leak the quota inodes if subsequent mount
 729	 * activities fail.
 730	 *
 731	 * We let all inodes involved in redo item processing end up on
 732	 * the LRU instead of being evicted immediately so that if we do
 733	 * something to an unlinked inode, the irele won't cause
 734	 * premature truncation and freeing of the inode, which results
 735	 * in log recovery failure.  We have to evict the unreferenced
 736	 * lru inodes after clearing SB_ACTIVE because we don't
 737	 * otherwise clean up the lru if there's a subsequent failure in
 738	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 739	 * else (e.g. quotacheck) references the inodes before the
 740	 * mount failure occurs.
 741	 */
 742	mp->m_super->s_flags |= SB_ACTIVE;
 743	xfs_log_work_queue(mp);
 744	if (xlog_recovery_needed(log))
 745		error = xlog_recover_finish(log);
 746	mp->m_super->s_flags &= ~SB_ACTIVE;
 747	evict_inodes(mp->m_super);
 748
 749	/*
 750	 * Drain the buffer LRU after log recovery. This is required for v4
 751	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 752	 * but we do it unconditionally to make sure we're always in a clean
 753	 * cache state after mount.
 754	 *
 755	 * Don't push in the error case because the AIL may have pending intents
 756	 * that aren't removed until recovery is cancelled.
 757	 */
 758	if (xlog_recovery_needed(log)) {
 759		if (!error) {
 760			xfs_log_force(mp, XFS_LOG_SYNC);
 761			xfs_ail_push_all_sync(mp->m_ail);
 762		}
 763		xfs_notice(mp, "Ending recovery (logdev: %s)",
 764				mp->m_logname ? mp->m_logname : "internal");
 765	} else {
 766		xfs_info(mp, "Ending clean mount");
 767	}
 768	xfs_buftarg_drain(mp->m_ddev_targp);
 769
 770	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 771
 772	/* Make sure the log is dead if we're returning failure. */
 773	ASSERT(!error || xlog_is_shutdown(log));
 774
 775	return error;
 776}
 777
 778/*
 779 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 780 * the log.
 781 */
 782void
 783xfs_log_mount_cancel(
 784	struct xfs_mount	*mp)
 785{
 786	xlog_recover_cancel(mp->m_log);
 787	xfs_log_unmount(mp);
 788}
 789
 790/*
 791 * Flush out the iclog to disk ensuring that device caches are flushed and
 792 * the iclog hits stable storage before any completion waiters are woken.
 793 */
 794static inline int
 795xlog_force_iclog(
 796	struct xlog_in_core	*iclog)
 797{
 798	atomic_inc(&iclog->ic_refcnt);
 799	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 800	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 801		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 802	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
 803}
 804
 805/*
 806 * Cycle all the iclogbuf locks to make sure all log IO completion
 807 * is done before we tear down these buffers.
 
 
 
 808 */
 809static void
 810xlog_wait_iclog_completion(struct xlog *log)
 811{
 812	int		i;
 813	struct xlog_in_core	*iclog = log->l_iclog;
 814
 815	for (i = 0; i < log->l_iclog_bufs; i++) {
 816		down(&iclog->ic_sema);
 817		up(&iclog->ic_sema);
 818		iclog = iclog->ic_next;
 819	}
 820}
 821
 822/*
 823 * Wait for the iclog and all prior iclogs to be written disk as required by the
 824 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 825 * have been ordered and callbacks run before we are woken here, hence
 826 * guaranteeing that all the iclogs up to this one are on stable storage.
 827 */
 828int
 829xlog_wait_on_iclog(
 830	struct xlog_in_core	*iclog)
 831		__releases(iclog->ic_log->l_icloglock)
 832{
 833	struct xlog		*log = iclog->ic_log;
 834
 835	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 836	if (!xlog_is_shutdown(log) &&
 837	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 838	    iclog->ic_state != XLOG_STATE_DIRTY) {
 839		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 840		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 841	} else {
 842		spin_unlock(&log->l_icloglock);
 843	}
 844
 845	if (xlog_is_shutdown(log))
 846		return -EIO;
 847	return 0;
 848}
 849
 850/*
 851 * Write out an unmount record using the ticket provided. We have to account for
 852 * the data space used in the unmount ticket as this write is not done from a
 853 * transaction context that has already done the accounting for us.
 854 */
 855static int
 856xlog_write_unmount_record(
 857	struct xlog		*log,
 858	struct xlog_ticket	*ticket)
 859{
 860	struct  {
 861		struct xlog_op_header ophdr;
 862		struct xfs_unmount_log_format ulf;
 863	} unmount_rec = {
 864		.ophdr = {
 865			.oh_clientid = XFS_LOG,
 866			.oh_tid = cpu_to_be32(ticket->t_tid),
 867			.oh_flags = XLOG_UNMOUNT_TRANS,
 868		},
 869		.ulf = {
 870			.magic = XLOG_UNMOUNT_TYPE,
 871		},
 872	};
 873	struct xfs_log_iovec reg = {
 874		.i_addr = &unmount_rec,
 875		.i_len = sizeof(unmount_rec),
 876		.i_type = XLOG_REG_TYPE_UNMOUNT,
 877	};
 878	struct xfs_log_vec vec = {
 879		.lv_niovecs = 1,
 880		.lv_iovecp = &reg,
 881	};
 882	LIST_HEAD(lv_chain);
 883	list_add(&vec.lv_list, &lv_chain);
 884
 885	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
 886		      sizeof(struct xfs_unmount_log_format)) !=
 887							sizeof(unmount_rec));
 888
 889	/* account for space used by record data */
 890	ticket->t_curr_res -= sizeof(unmount_rec);
 891
 892	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
 893}
 894
 895/*
 896 * Mark the filesystem clean by writing an unmount record to the head of the
 897 * log.
 898 */
 899static void
 900xlog_unmount_write(
 901	struct xlog		*log)
 902{
 903	struct xfs_mount	*mp = log->l_mp;
 904	struct xlog_in_core	*iclog;
 905	struct xlog_ticket	*tic = NULL;
 906	int			error;
 907
 908	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
 909	if (error)
 910		goto out_err;
 911
 912	error = xlog_write_unmount_record(log, tic);
 913	/*
 914	 * At this point, we're umounting anyway, so there's no point in
 915	 * transitioning log state to shutdown. Just continue...
 916	 */
 917out_err:
 918	if (error)
 919		xfs_alert(mp, "%s: unmount record failed", __func__);
 920
 921	spin_lock(&log->l_icloglock);
 922	iclog = log->l_iclog;
 923	error = xlog_force_iclog(iclog);
 924	xlog_wait_on_iclog(iclog);
 925
 926	if (tic) {
 927		trace_xfs_log_umount_write(log, tic);
 928		xfs_log_ticket_ungrant(log, tic);
 929	}
 930}
 931
 932static void
 933xfs_log_unmount_verify_iclog(
 934	struct xlog		*log)
 935{
 936	struct xlog_in_core	*iclog = log->l_iclog;
 937
 
 
 938	do {
 939		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 940		ASSERT(iclog->ic_offset == 0);
 941	} while ((iclog = iclog->ic_next) != log->l_iclog);
 942}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944/*
 945 * Unmount record used to have a string "Unmount filesystem--" in the
 946 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 947 * We just write the magic number now since that particular field isn't
 948 * currently architecture converted and "Unmount" is a bit foo.
 949 * As far as I know, there weren't any dependencies on the old behaviour.
 950 */
 951static void
 952xfs_log_unmount_write(
 953	struct xfs_mount	*mp)
 954{
 955	struct xlog		*log = mp->m_log;
 956
 957	if (!xfs_log_writable(mp))
 958		return;
 959
 960	xfs_log_force(mp, XFS_LOG_SYNC);
 
 
 
 
 
 961
 962	if (xlog_is_shutdown(log))
 963		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964
 965	/*
 966	 * If we think the summary counters are bad, avoid writing the unmount
 967	 * record to force log recovery at next mount, after which the summary
 968	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 969	 * more details.
 970	 */
 971	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 972			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 973		xfs_alert(mp, "%s: will fix summary counters at next mount",
 974				__func__);
 975		return;
 976	}
 977
 978	xfs_log_unmount_verify_iclog(log);
 979	xlog_unmount_write(log);
 980}
 981
 982/*
 983 * Empty the log for unmount/freeze.
 984 *
 985 * To do this, we first need to shut down the background log work so it is not
 986 * trying to cover the log as we clean up. We then need to unpin all objects in
 987 * the log so we can then flush them out. Once they have completed their IO and
 988 * run the callbacks removing themselves from the AIL, we can cover the log.
 989 */
 990int
 991xfs_log_quiesce(
 992	struct xfs_mount	*mp)
 993{
 994	/*
 995	 * Clear log incompat features since we're quiescing the log.  Report
 996	 * failures, though it's not fatal to have a higher log feature
 997	 * protection level than the log contents actually require.
 998	 */
 999	if (xfs_clear_incompat_log_features(mp)) {
1000		int error;
1001
1002		error = xfs_sync_sb(mp, false);
1003		if (error)
1004			xfs_warn(mp,
1005	"Failed to clear log incompat features on quiesce");
 
1006	}
1007
1008	cancel_delayed_work_sync(&mp->m_log->l_work);
1009	xfs_log_force(mp, XFS_LOG_SYNC);
1010
1011	/*
1012	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1013	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1014	 * xfs_buf_iowait() cannot be used because it was pushed with the
1015	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1016	 * the IO to complete.
1017	 */
1018	xfs_ail_push_all_sync(mp->m_ail);
1019	xfs_buftarg_wait(mp->m_ddev_targp);
1020	xfs_buf_lock(mp->m_sb_bp);
1021	xfs_buf_unlock(mp->m_sb_bp);
1022
1023	return xfs_log_cover(mp);
1024}
1025
1026void
1027xfs_log_clean(
1028	struct xfs_mount	*mp)
1029{
1030	xfs_log_quiesce(mp);
1031	xfs_log_unmount_write(mp);
1032}
1033
1034/*
1035 * Shut down and release the AIL and Log.
1036 *
1037 * During unmount, we need to ensure we flush all the dirty metadata objects
1038 * from the AIL so that the log is empty before we write the unmount record to
1039 * the log. Once this is done, we can tear down the AIL and the log.
1040 */
1041void
1042xfs_log_unmount(
1043	struct xfs_mount	*mp)
1044{
1045	xfs_log_clean(mp);
1046
1047	/*
1048	 * If shutdown has come from iclog IO context, the log
1049	 * cleaning will have been skipped and so we need to wait
1050	 * for the iclog to complete shutdown processing before we
1051	 * tear anything down.
1052	 */
1053	xlog_wait_iclog_completion(mp->m_log);
1054
1055	xfs_buftarg_drain(mp->m_ddev_targp);
1056
1057	xfs_trans_ail_destroy(mp);
1058
1059	xfs_sysfs_del(&mp->m_log->l_kobj);
1060
1061	xlog_dealloc_log(mp->m_log);
1062}
1063
1064void
1065xfs_log_item_init(
1066	struct xfs_mount	*mp,
1067	struct xfs_log_item	*item,
1068	int			type,
1069	const struct xfs_item_ops *ops)
1070{
1071	item->li_log = mp->m_log;
1072	item->li_ailp = mp->m_ail;
1073	item->li_type = type;
1074	item->li_ops = ops;
1075	item->li_lv = NULL;
1076
1077	INIT_LIST_HEAD(&item->li_ail);
1078	INIT_LIST_HEAD(&item->li_cil);
1079	INIT_LIST_HEAD(&item->li_bio_list);
1080	INIT_LIST_HEAD(&item->li_trans);
1081}
1082
1083/*
1084 * Wake up processes waiting for log space after we have moved the log tail.
1085 */
1086void
1087xfs_log_space_wake(
1088	struct xfs_mount	*mp)
1089{
1090	struct xlog		*log = mp->m_log;
1091	int			free_bytes;
1092
1093	if (xlog_is_shutdown(log))
1094		return;
1095
1096	if (!list_empty_careful(&log->l_write_head.waiters)) {
1097		ASSERT(!xlog_in_recovery(log));
1098
1099		spin_lock(&log->l_write_head.lock);
1100		free_bytes = xlog_grant_space_left(log, &log->l_write_head);
1101		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1102		spin_unlock(&log->l_write_head.lock);
1103	}
1104
1105	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1106		ASSERT(!xlog_in_recovery(log));
1107
1108		spin_lock(&log->l_reserve_head.lock);
1109		free_bytes = xlog_grant_space_left(log, &log->l_reserve_head);
1110		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1111		spin_unlock(&log->l_reserve_head.lock);
1112	}
1113}
1114
1115/*
1116 * Determine if we have a transaction that has gone to disk that needs to be
1117 * covered. To begin the transition to the idle state firstly the log needs to
1118 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1119 * we start attempting to cover the log.
1120 *
1121 * Only if we are then in a state where covering is needed, the caller is
1122 * informed that dummy transactions are required to move the log into the idle
1123 * state.
1124 *
1125 * If there are any items in the AIl or CIL, then we do not want to attempt to
1126 * cover the log as we may be in a situation where there isn't log space
1127 * available to run a dummy transaction and this can lead to deadlocks when the
1128 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1129 * there's no point in running a dummy transaction at this point because we
1130 * can't start trying to idle the log until both the CIL and AIL are empty.
1131 */
1132static bool
1133xfs_log_need_covered(
1134	struct xfs_mount	*mp)
1135{
1136	struct xlog		*log = mp->m_log;
1137	bool			needed = false;
1138
1139	if (!xlog_cil_empty(log))
1140		return false;
1141
1142	spin_lock(&log->l_icloglock);
1143	switch (log->l_covered_state) {
1144	case XLOG_STATE_COVER_DONE:
1145	case XLOG_STATE_COVER_DONE2:
1146	case XLOG_STATE_COVER_IDLE:
1147		break;
1148	case XLOG_STATE_COVER_NEED:
1149	case XLOG_STATE_COVER_NEED2:
1150		if (xfs_ail_min_lsn(log->l_ailp))
1151			break;
1152		if (!xlog_iclogs_empty(log))
1153			break;
1154
1155		needed = true;
1156		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1157			log->l_covered_state = XLOG_STATE_COVER_DONE;
1158		else
1159			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1160		break;
1161	default:
1162		needed = true;
1163		break;
1164	}
1165	spin_unlock(&log->l_icloglock);
1166	return needed;
1167}
1168
1169/*
1170 * Explicitly cover the log. This is similar to background log covering but
1171 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1172 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1173 * must all be empty.
1174 */
1175static int
1176xfs_log_cover(
1177	struct xfs_mount	*mp)
1178{
1179	int			error = 0;
1180	bool			need_covered;
1181
1182	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1183	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1184		xlog_is_shutdown(mp->m_log));
1185
1186	if (!xfs_log_writable(mp))
1187		return 0;
1188
1189	/*
1190	 * xfs_log_need_covered() is not idempotent because it progresses the
1191	 * state machine if the log requires covering. Therefore, we must call
1192	 * this function once and use the result until we've issued an sb sync.
1193	 * Do so first to make that abundantly clear.
1194	 *
1195	 * Fall into the covering sequence if the log needs covering or the
1196	 * mount has lazy superblock accounting to sync to disk. The sb sync
1197	 * used for covering accumulates the in-core counters, so covering
1198	 * handles this for us.
1199	 */
1200	need_covered = xfs_log_need_covered(mp);
1201	if (!need_covered && !xfs_has_lazysbcount(mp))
1202		return 0;
 
 
 
 
 
1203
1204	/*
1205	 * To cover the log, commit the superblock twice (at most) in
1206	 * independent checkpoints. The first serves as a reference for the
1207	 * tail pointer. The sync transaction and AIL push empties the AIL and
1208	 * updates the in-core tail to the LSN of the first checkpoint. The
1209	 * second commit updates the on-disk tail with the in-core LSN,
1210	 * covering the log. Push the AIL one more time to leave it empty, as
1211	 * we found it.
1212	 */
1213	do {
1214		error = xfs_sync_sb(mp, true);
1215		if (error)
1216			break;
1217		xfs_ail_push_all_sync(mp->m_ail);
1218	} while (xfs_log_need_covered(mp));
1219
1220	return error;
 
 
 
 
1221}
1222
1223static void
1224xlog_ioend_work(
1225	struct work_struct	*work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226{
1227	struct xlog_in_core     *iclog =
1228		container_of(work, struct xlog_in_core, ic_end_io_work);
1229	struct xlog		*log = iclog->ic_log;
1230	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1233#ifdef DEBUG
1234	/* treat writes with injected CRC errors as failed */
1235	if (iclog->ic_fail_crc)
1236		error = -EIO;
1237#endif
 
 
 
 
 
 
 
1238
1239	/*
1240	 * Race to shutdown the filesystem if we see an error.
1241	 */
1242	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1243		xfs_alert(log->l_mp, "log I/O error %d", error);
1244		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
 
 
 
 
 
 
 
 
 
 
1245	}
1246
1247	xlog_state_done_syncing(iclog);
1248	bio_uninit(&iclog->ic_bio);
1249
1250	/*
1251	 * Drop the lock to signal that we are done. Nothing references the
1252	 * iclog after this, so an unmount waiting on this lock can now tear it
1253	 * down safely. As such, it is unsafe to reference the iclog after the
1254	 * unlock as we could race with it being freed.
1255	 */
1256	up(&iclog->ic_sema);
1257}
1258
1259/*
1260 * Return size of each in-core log record buffer.
1261 *
1262 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1263 *
1264 * If the filesystem blocksize is too large, we may need to choose a
1265 * larger size since the directory code currently logs entire blocks.
1266 */
 
1267STATIC void
1268xlog_get_iclog_buffer_size(
1269	struct xfs_mount	*mp,
1270	struct xlog		*log)
1271{
1272	if (mp->m_logbufs <= 0)
1273		mp->m_logbufs = XLOG_MAX_ICLOGS;
1274	if (mp->m_logbsize <= 0)
1275		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1276
1277	log->l_iclog_bufs = mp->m_logbufs;
1278	log->l_iclog_size = mp->m_logbsize;
 
 
1279
1280	/*
1281	 * # headers = size / 32k - one header holds cycles from 32k of data.
1282	 */
1283	log->l_iclog_heads =
1284		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1285	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1286}
1287
1288void
1289xfs_log_work_queue(
1290	struct xfs_mount        *mp)
1291{
1292	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1293				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1294}
1295
1296/*
1297 * Clear the log incompat flags if we have the opportunity.
1298 *
1299 * This only happens if we're about to log the second dummy transaction as part
1300 * of covering the log.
1301 */
1302static inline void
1303xlog_clear_incompat(
1304	struct xlog		*log)
1305{
1306	struct xfs_mount	*mp = log->l_mp;
1307
1308	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1309				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1310		return;
1311
1312	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1313		return;
1314
1315	xfs_clear_incompat_log_features(mp);
1316}
1317
1318/*
1319 * Every sync period we need to unpin all items in the AIL and push them to
1320 * disk. If there is nothing dirty, then we might need to cover the log to
1321 * indicate that the filesystem is idle.
1322 */
1323static void
1324xfs_log_worker(
1325	struct work_struct	*work)
1326{
1327	struct xlog		*log = container_of(to_delayed_work(work),
1328						struct xlog, l_work);
1329	struct xfs_mount	*mp = log->l_mp;
1330
1331	/* dgc: errors ignored - not fatal and nowhere to report them */
1332	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1333		/*
1334		 * Dump a transaction into the log that contains no real change.
1335		 * This is needed to stamp the current tail LSN into the log
1336		 * during the covering operation.
1337		 *
1338		 * We cannot use an inode here for this - that will push dirty
1339		 * state back up into the VFS and then periodic inode flushing
1340		 * will prevent log covering from making progress. Hence we
1341		 * synchronously log the superblock instead to ensure the
1342		 * superblock is immediately unpinned and can be written back.
1343		 */
1344		xlog_clear_incompat(log);
1345		xfs_sync_sb(mp, true);
1346	} else
1347		xfs_log_force(mp, 0);
1348
1349	/* start pushing all the metadata that is currently dirty */
1350	xfs_ail_push_all(mp->m_ail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351
1352	/* queue us up again */
1353	xfs_log_work_queue(mp);
1354}
1355
1356/*
1357 * This routine initializes some of the log structure for a given mount point.
1358 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1359 * some other stuff may be filled in too.
1360 */
1361STATIC struct xlog *
1362xlog_alloc_log(
1363	struct xfs_mount	*mp,
1364	struct xfs_buftarg	*log_target,
1365	xfs_daddr_t		blk_offset,
1366	int			num_bblks)
1367{
1368	struct xlog		*log;
1369	xlog_rec_header_t	*head;
1370	xlog_in_core_t		**iclogp;
1371	xlog_in_core_t		*iclog, *prev_iclog=NULL;
 
1372	int			i;
1373	int			error = -ENOMEM;
1374	uint			log2_size = 0;
1375
1376	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1377	if (!log) {
1378		xfs_warn(mp, "Log allocation failed: No memory!");
1379		goto out;
1380	}
1381
1382	log->l_mp	   = mp;
1383	log->l_targ	   = log_target;
1384	log->l_logsize     = BBTOB(num_bblks);
1385	log->l_logBBstart  = blk_offset;
1386	log->l_logBBsize   = num_bblks;
1387	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1388	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1389	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1390	INIT_LIST_HEAD(&log->r_dfops);
1391
1392	log->l_prev_block  = -1;
1393	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1394	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
 
1395	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1396
1397	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1398		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1399	else
1400		log->l_iclog_roundoff = BBSIZE;
1401
1402	xlog_grant_head_init(&log->l_reserve_head);
1403	xlog_grant_head_init(&log->l_write_head);
1404
1405	error = -EFSCORRUPTED;
1406	if (xfs_has_sector(mp)) {
1407	        log2_size = mp->m_sb.sb_logsectlog;
1408		if (log2_size < BBSHIFT) {
1409			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1410				log2_size, BBSHIFT);
1411			goto out_free_log;
1412		}
1413
1414	        log2_size -= BBSHIFT;
1415		if (log2_size > mp->m_sectbb_log) {
1416			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1417				log2_size, mp->m_sectbb_log);
1418			goto out_free_log;
1419		}
1420
1421		/* for larger sector sizes, must have v2 or external log */
1422		if (log2_size && log->l_logBBstart > 0 &&
1423			    !xfs_has_logv2(mp)) {
1424			xfs_warn(mp,
1425		"log sector size (0x%x) invalid for configuration.",
1426				log2_size);
1427			goto out_free_log;
1428		}
1429	}
1430	log->l_sectBBsize = 1 << log2_size;
1431
1432	xlog_get_iclog_buffer_size(mp, log);
1433
 
 
 
 
 
 
 
 
1434	spin_lock_init(&log->l_icloglock);
1435	init_waitqueue_head(&log->l_flush_wait);
1436
1437	iclogp = &log->l_iclog;
1438	/*
1439	 * The amount of memory to allocate for the iclog structure is
1440	 * rather funky due to the way the structure is defined.  It is
1441	 * done this way so that we can use different sizes for machines
1442	 * with different amounts of memory.  See the definition of
1443	 * xlog_in_core_t in xfs_log_priv.h for details.
1444	 */
1445	ASSERT(log->l_iclog_size >= 4096);
1446	for (i = 0; i < log->l_iclog_bufs; i++) {
1447		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1448				sizeof(struct bio_vec);
1449
1450		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1451				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1452		if (!iclog)
1453			goto out_free_iclog;
1454
1455		*iclogp = iclog;
1456		iclog->ic_prev = prev_iclog;
1457		prev_iclog = iclog;
1458
1459		iclog->ic_data = kvzalloc(log->l_iclog_size,
1460				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1461		if (!iclog->ic_data)
1462			goto out_free_iclog;
 
 
 
 
 
 
 
1463		head = &iclog->ic_header;
1464		memset(head, 0, sizeof(xlog_rec_header_t));
1465		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1466		head->h_version = cpu_to_be32(
1467			xfs_has_logv2(log->l_mp) ? 2 : 1);
1468		head->h_size = cpu_to_be32(log->l_iclog_size);
1469		/* new fields */
1470		head->h_fmt = cpu_to_be32(XLOG_FMT);
1471		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1472
1473		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1474		iclog->ic_state = XLOG_STATE_ACTIVE;
1475		iclog->ic_log = log;
1476		atomic_set(&iclog->ic_refcnt, 0);
1477		INIT_LIST_HEAD(&iclog->ic_callbacks);
1478		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
 
1479
 
1480		init_waitqueue_head(&iclog->ic_force_wait);
1481		init_waitqueue_head(&iclog->ic_write_wait);
1482		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1483		sema_init(&iclog->ic_sema, 1);
1484
1485		iclogp = &iclog->ic_next;
1486	}
1487	*iclogp = log->l_iclog;			/* complete ring */
1488	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1489
1490	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1491			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1492				    WQ_HIGHPRI),
1493			0, mp->m_super->s_id);
1494	if (!log->l_ioend_workqueue)
1495		goto out_free_iclog;
1496
1497	error = xlog_cil_init(log);
1498	if (error)
1499		goto out_destroy_workqueue;
1500	return log;
1501
1502out_destroy_workqueue:
1503	destroy_workqueue(log->l_ioend_workqueue);
1504out_free_iclog:
1505	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506		prev_iclog = iclog->ic_next;
1507		kvfree(iclog->ic_data);
1508		kfree(iclog);
1509		if (prev_iclog == log->l_iclog)
1510			break;
1511	}
 
 
1512out_free_log:
1513	kfree(log);
1514out:
1515	return ERR_PTR(error);
1516}	/* xlog_alloc_log */
1517
 
1518/*
1519 * Stamp cycle number in every block
 
1520 */
1521STATIC void
1522xlog_pack_data(
1523	struct xlog		*log,
1524	struct xlog_in_core	*iclog,
1525	int			roundoff)
 
1526{
1527	int			i, j, k;
1528	int			size = iclog->ic_offset + roundoff;
1529	__be32			cycle_lsn;
1530	char			*dp;
1531
1532	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1533
1534	dp = iclog->ic_datap;
1535	for (i = 0; i < BTOBB(size); i++) {
1536		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1537			break;
1538		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1539		*(__be32 *)dp = cycle_lsn;
1540		dp += BBSIZE;
1541	}
1542
1543	if (xfs_has_logv2(log->l_mp)) {
1544		xlog_in_core_2_t *xhdr = iclog->ic_data;
1545
1546		for ( ; i < BTOBB(size); i++) {
1547			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1548			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1549			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1550			*(__be32 *)dp = cycle_lsn;
1551			dp += BBSIZE;
1552		}
1553
1554		for (i = 1; i < log->l_iclog_heads; i++)
1555			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1556	}
 
 
 
1557}
1558
1559/*
1560 * Calculate the checksum for a log buffer.
1561 *
1562 * This is a little more complicated than it should be because the various
1563 * headers and the actual data are non-contiguous.
 
1564 */
1565__le32
1566xlog_cksum(
1567	struct xlog		*log,
1568	struct xlog_rec_header	*rhead,
1569	char			*dp,
1570	int			size)
1571{
1572	uint32_t		crc;
1573
1574	/* first generate the crc for the record header ... */
1575	crc = xfs_start_cksum_update((char *)rhead,
1576			      sizeof(struct xlog_rec_header),
1577			      offsetof(struct xlog_rec_header, h_crc));
1578
1579	/* ... then for additional cycle data for v2 logs ... */
1580	if (xfs_has_logv2(log->l_mp)) {
1581		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1582		int		i;
1583		int		xheads;
1584
1585		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1586
1587		for (i = 1; i < xheads; i++) {
1588			crc = crc32c(crc, &xhdr[i].hic_xheader,
1589				     sizeof(struct xlog_rec_ext_header));
1590		}
1591	}
1592
1593	/* ... and finally for the payload */
1594	crc = crc32c(crc, dp, size);
1595
1596	return xfs_end_cksum(crc);
1597}
1598
1599static void
1600xlog_bio_end_io(
1601	struct bio		*bio)
1602{
1603	struct xlog_in_core	*iclog = bio->bi_private;
1604
1605	queue_work(iclog->ic_log->l_ioend_workqueue,
1606		   &iclog->ic_end_io_work);
1607}
1608
1609static int
1610xlog_map_iclog_data(
1611	struct bio		*bio,
1612	void			*data,
1613	size_t			count)
1614{
1615	do {
1616		struct page	*page = kmem_to_page(data);
1617		unsigned int	off = offset_in_page(data);
1618		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1619
1620		if (bio_add_page(bio, page, len, off) != len)
1621			return -EIO;
1622
1623		data += len;
1624		count -= len;
1625	} while (count);
1626
1627	return 0;
1628}
1629
1630STATIC void
1631xlog_write_iclog(
1632	struct xlog		*log,
1633	struct xlog_in_core	*iclog,
1634	uint64_t		bno,
1635	unsigned int		count)
1636{
1637	ASSERT(bno < log->l_logBBsize);
1638	trace_xlog_iclog_write(iclog, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639
1640	/*
1641	 * We lock the iclogbufs here so that we can serialise against I/O
1642	 * completion during unmount.  We might be processing a shutdown
1643	 * triggered during unmount, and that can occur asynchronously to the
1644	 * unmount thread, and hence we need to ensure that completes before
1645	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1646	 * across the log IO to archieve that.
1647	 */
1648	down(&iclog->ic_sema);
1649	if (xlog_is_shutdown(log)) {
1650		/*
1651		 * It would seem logical to return EIO here, but we rely on
1652		 * the log state machine to propagate I/O errors instead of
1653		 * doing it here.  We kick of the state machine and unlock
1654		 * the buffer manually, the code needs to be kept in sync
1655		 * with the I/O completion path.
1656		 */
1657		goto sync;
1658	}
1659
 
1660	/*
1661	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1662	 * IOs coming immediately after this one. This prevents the block layer
1663	 * writeback throttle from throttling log writes behind background
1664	 * metadata writeback and causing priority inversions.
1665	 */
1666	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1667		 howmany(count, PAGE_SIZE),
1668		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1669	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1670	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1671	iclog->ic_bio.bi_private = iclog;
1672
1673	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1674		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1675		/*
1676		 * For external log devices, we also need to flush the data
1677		 * device cache first to ensure all metadata writeback covered
1678		 * by the LSN in this iclog is on stable storage. This is slow,
1679		 * but it *must* complete before we issue the external log IO.
1680		 *
1681		 * If the flush fails, we cannot conclude that past metadata
1682		 * writeback from the log succeeded.  Repeating the flush is
1683		 * not possible, hence we must shut down with log IO error to
1684		 * avoid shutdown re-entering this path and erroring out again.
1685		 */
1686		if (log->l_targ != log->l_mp->m_ddev_targp &&
1687		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1688			goto shutdown;
1689	}
1690	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1691		iclog->ic_bio.bi_opf |= REQ_FUA;
1692
1693	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1694
1695	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1696		goto shutdown;
1697
1698	if (is_vmalloc_addr(iclog->ic_data))
1699		flush_kernel_vmap_range(iclog->ic_data, count);
1700
1701	/*
1702	 * If this log buffer would straddle the end of the log we will have
1703	 * to split it up into two bios, so that we can continue at the start.
 
1704	 */
1705	if (bno + BTOBB(count) > log->l_logBBsize) {
1706		struct bio *split;
1707
1708		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1709				  GFP_NOIO, &fs_bio_set);
1710		bio_chain(split, &iclog->ic_bio);
1711		submit_bio(split);
1712
1713		/* restart at logical offset zero for the remainder */
1714		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1715	}
1716
1717	submit_bio(&iclog->ic_bio);
1718	return;
1719shutdown:
1720	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1721sync:
1722	xlog_state_done_syncing(iclog);
1723	up(&iclog->ic_sema);
1724}
1725
1726/*
1727 * We need to bump cycle number for the part of the iclog that is
1728 * written to the start of the log. Watch out for the header magic
1729 * number case, though.
 
 
 
1730 */
1731static void
1732xlog_split_iclog(
1733	struct xlog		*log,
1734	void			*data,
1735	uint64_t		bno,
1736	unsigned int		count)
1737{
1738	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1739	unsigned int		i;
1740
1741	for (i = split_offset; i < count; i += BBSIZE) {
1742		uint32_t cycle = get_unaligned_be32(data + i);
1743
1744		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1745			cycle++;
1746		put_unaligned_be32(cycle, data + i);
 
 
 
 
 
 
 
1747	}
1748}
1749
1750static int
1751xlog_calc_iclog_size(
1752	struct xlog		*log,
1753	struct xlog_in_core	*iclog,
1754	uint32_t		*roundoff)
1755{
1756	uint32_t		count_init, count;
1757
1758	/* Add for LR header */
1759	count_init = log->l_iclog_hsize + iclog->ic_offset;
1760	count = roundup(count_init, log->l_iclog_roundoff);
1761
1762	*roundoff = count - count_init;
1763
1764	ASSERT(count >= count_init);
1765	ASSERT(*roundoff < log->l_iclog_roundoff);
1766	return count;
1767}
1768
1769/*
1770 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1771 * fashion.  Previously, we should have moved the current iclog
1772 * ptr in the log to point to the next available iclog.  This allows further
1773 * write to continue while this code syncs out an iclog ready to go.
1774 * Before an in-core log can be written out, the data section must be scanned
1775 * to save away the 1st word of each BBSIZE block into the header.  We replace
1776 * it with the current cycle count.  Each BBSIZE block is tagged with the
1777 * cycle count because there in an implicit assumption that drives will
1778 * guarantee that entire 512 byte blocks get written at once.  In other words,
1779 * we can't have part of a 512 byte block written and part not written.  By
1780 * tagging each block, we will know which blocks are valid when recovering
1781 * after an unclean shutdown.
1782 *
1783 * This routine is single threaded on the iclog.  No other thread can be in
1784 * this routine with the same iclog.  Changing contents of iclog can there-
1785 * fore be done without grabbing the state machine lock.  Updating the global
1786 * log will require grabbing the lock though.
1787 *
1788 * The entire log manager uses a logical block numbering scheme.  Only
1789 * xlog_write_iclog knows about the fact that the log may not start with
1790 * block zero on a given device.
 
1791 */
1792STATIC void
1793xlog_sync(
1794	struct xlog		*log,
1795	struct xlog_in_core	*iclog,
1796	struct xlog_ticket	*ticket)
1797{
1798	unsigned int		count;		/* byte count of bwrite */
1799	unsigned int		roundoff;       /* roundoff to BB or stripe */
1800	uint64_t		bno;
1801	unsigned int		size;
 
 
 
 
 
1802
 
1803	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1804	trace_xlog_iclog_sync(iclog, _RET_IP_);
1805
1806	count = xlog_calc_iclog_size(log, iclog, &roundoff);
 
1807
1808	/*
1809	 * If we have a ticket, account for the roundoff via the ticket
1810	 * reservation to avoid touching the hot grant heads needlessly.
1811	 * Otherwise, we have to move grant heads directly.
1812	 */
1813	if (ticket) {
1814		ticket->t_curr_res -= roundoff;
1815	} else {
1816		xlog_grant_add_space(&log->l_reserve_head, roundoff);
1817		xlog_grant_add_space(&log->l_write_head, roundoff);
1818	}
 
 
 
 
 
 
 
 
 
 
 
1819
1820	/* put cycle number in every block */
1821	xlog_pack_data(log, iclog, roundoff);
1822
1823	/* real byte length */
1824	size = iclog->ic_offset;
1825	if (xfs_has_logv2(log->l_mp))
1826		size += roundoff;
1827	iclog->ic_header.h_len = cpu_to_be32(size);
 
 
 
1828
1829	XFS_STATS_INC(log->l_mp, xs_log_writes);
1830	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1831
1832	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1833
1834	/* Do we need to split this write into 2 parts? */
1835	if (bno + BTOBB(count) > log->l_logBBsize)
1836		xlog_split_iclog(log, &iclog->ic_header, bno, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
1837
1838	/* calculcate the checksum */
1839	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840					    iclog->ic_datap, size);
1841	/*
1842	 * Intentionally corrupt the log record CRC based on the error injection
1843	 * frequency, if defined. This facilitates testing log recovery in the
1844	 * event of torn writes. Hence, set the IOABORT state to abort the log
1845	 * write on I/O completion and shutdown the fs. The subsequent mount
1846	 * detects the bad CRC and attempts to recover.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847	 */
1848#ifdef DEBUG
1849	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1850		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1851		iclog->ic_fail_crc = true;
1852		xfs_warn(log->l_mp,
1853	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1854			 be64_to_cpu(iclog->ic_header.h_lsn));
1855	}
1856#endif
1857	xlog_verify_iclog(log, iclog, count);
1858	xlog_write_iclog(log, iclog, bno, count);
1859}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860
1861/*
1862 * Deallocate a log structure
1863 */
1864STATIC void
1865xlog_dealloc_log(
1866	struct xlog	*log)
1867{
1868	xlog_in_core_t	*iclog, *next_iclog;
1869	int		i;
1870
 
 
1871	/*
1872	 * Destroy the CIL after waiting for iclog IO completion because an
1873	 * iclog EIO error will try to shut down the log, which accesses the
1874	 * CIL to wake up the waiters.
1875	 */
1876	xlog_cil_destroy(log);
 
1877
1878	iclog = log->l_iclog;
1879	for (i = 0; i < log->l_iclog_bufs; i++) {
 
1880		next_iclog = iclog->ic_next;
1881		kvfree(iclog->ic_data);
1882		kfree(iclog);
1883		iclog = next_iclog;
1884	}
 
1885
1886	log->l_mp->m_log = NULL;
1887	destroy_workqueue(log->l_ioend_workqueue);
1888	kfree(log);
1889}
1890
1891/*
1892 * Update counters atomically now that memcpy is done.
1893 */
 
1894static inline void
1895xlog_state_finish_copy(
1896	struct xlog		*log,
1897	struct xlog_in_core	*iclog,
1898	int			record_cnt,
1899	int			copy_bytes)
1900{
1901	lockdep_assert_held(&log->l_icloglock);
1902
1903	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1904	iclog->ic_offset += copy_bytes;
1905}
 
 
 
 
 
1906
1907/*
1908 * print out info relating to regions written which consume
1909 * the reservation
1910 */
1911void
1912xlog_print_tic_res(
1913	struct xfs_mount	*mp,
1914	struct xlog_ticket	*ticket)
1915{
1916	xfs_warn(mp, "ticket reservation summary:");
1917	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
1918	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
1919	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
1920	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921}
1922
1923/*
1924 * Print a summary of the transaction.
 
1925 */
1926void
1927xlog_print_trans(
1928	struct xfs_trans	*tp)
 
1929{
1930	struct xfs_mount	*mp = tp->t_mountp;
1931	struct xfs_log_item	*lip;
 
 
1932
1933	/* dump core transaction and ticket info */
1934	xfs_warn(mp, "transaction summary:");
1935	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
1936	xfs_warn(mp, "  log count = %d", tp->t_log_count);
1937	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
1938
1939	xlog_print_tic_res(mp, tp->t_ticket);
1940
1941	/* dump each log item */
1942	list_for_each_entry(lip, &tp->t_items, li_trans) {
1943		struct xfs_log_vec	*lv = lip->li_lv;
1944		struct xfs_log_iovec	*vec;
1945		int			i;
1946
1947		xfs_warn(mp, "log item: ");
1948		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
1949		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
1950		if (!lv)
1951			continue;
1952		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
1953		xfs_warn(mp, "  size	= %d", lv->lv_size);
1954		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
1955		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
1956
1957		/* dump each iovec for the log item */
1958		vec = lv->lv_iovecp;
1959		for (i = 0; i < lv->lv_niovecs; i++) {
1960			int dumplen = min(vec->i_len, 32);
1961
1962			xfs_warn(mp, "  iovec[%d]", i);
1963			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
1964			xfs_warn(mp, "    len	= %d", vec->i_len);
1965			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
1966			xfs_hex_dump(vec->i_addr, dumplen);
1967
1968			vec++;
 
1969		}
1970	}
1971}
1972
1973static inline void
1974xlog_write_iovec(
1975	struct xlog_in_core	*iclog,
1976	uint32_t		*log_offset,
1977	void			*data,
1978	uint32_t		write_len,
1979	int			*bytes_left,
1980	uint32_t		*record_cnt,
1981	uint32_t		*data_cnt)
1982{
1983	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
1984	ASSERT(*log_offset % sizeof(int32_t) == 0);
1985	ASSERT(write_len % sizeof(int32_t) == 0);
1986
1987	memcpy(iclog->ic_datap + *log_offset, data, write_len);
1988	*log_offset += write_len;
1989	*bytes_left -= write_len;
1990	(*record_cnt)++;
1991	*data_cnt += write_len;
1992}
1993
1994/*
1995 * Write log vectors into a single iclog which is guaranteed by the caller
1996 * to have enough space to write the entire log vector into.
1997 */
1998static void
1999xlog_write_full(
2000	struct xfs_log_vec	*lv,
2001	struct xlog_ticket	*ticket,
2002	struct xlog_in_core	*iclog,
2003	uint32_t		*log_offset,
2004	uint32_t		*len,
2005	uint32_t		*record_cnt,
2006	uint32_t		*data_cnt)
2007{
2008	int			index;
 
2009
2010	ASSERT(*log_offset + *len <= iclog->ic_size ||
2011		iclog->ic_state == XLOG_STATE_WANT_SYNC);
 
 
 
2012
2013	/*
2014	 * Ordered log vectors have no regions to write so this
2015	 * loop will naturally skip them.
2016	 */
2017	for (index = 0; index < lv->lv_niovecs; index++) {
2018		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2019		struct xlog_op_header	*ophdr = reg->i_addr;
2020
2021		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2022		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2023				reg->i_len, len, record_cnt, data_cnt);
2024	}
2025}
2026
2027static int
2028xlog_write_get_more_iclog_space(
 
 
2029	struct xlog_ticket	*ticket,
2030	struct xlog_in_core	**iclogp,
2031	uint32_t		*log_offset,
2032	uint32_t		len,
2033	uint32_t		*record_cnt,
2034	uint32_t		*data_cnt)
2035{
2036	struct xlog_in_core	*iclog = *iclogp;
2037	struct xlog		*log = iclog->ic_log;
2038	int			error;
2039
2040	spin_lock(&log->l_icloglock);
2041	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2042	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2043	error = xlog_state_release_iclog(log, iclog, ticket);
2044	spin_unlock(&log->l_icloglock);
2045	if (error)
2046		return error;
 
 
 
 
 
 
 
 
 
 
 
 
2047
2048	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2049					log_offset);
2050	if (error)
2051		return error;
2052	*record_cnt = 0;
2053	*data_cnt = 0;
2054	*iclogp = iclog;
2055	return 0;
2056}
2057
2058/*
2059 * Write log vectors into a single iclog which is smaller than the current chain
2060 * length. We write until we cannot fit a full record into the remaining space
2061 * and then stop. We return the log vector that is to be written that cannot
2062 * wholly fit in the iclog.
2063 */
2064static int
2065xlog_write_partial(
2066	struct xfs_log_vec	*lv,
2067	struct xlog_ticket	*ticket,
2068	struct xlog_in_core	**iclogp,
2069	uint32_t		*log_offset,
2070	uint32_t		*len,
2071	uint32_t		*record_cnt,
2072	uint32_t		*data_cnt)
2073{
2074	struct xlog_in_core	*iclog = *iclogp;
2075	struct xlog_op_header	*ophdr;
2076	int			index = 0;
2077	uint32_t		rlen;
2078	int			error;
2079
2080	/* walk the logvec, copying until we run out of space in the iclog */
2081	for (index = 0; index < lv->lv_niovecs; index++) {
2082		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2083		uint32_t		reg_offset = 0;
2084
2085		/*
2086		 * The first region of a continuation must have a non-zero
2087		 * length otherwise log recovery will just skip over it and
2088		 * start recovering from the next opheader it finds. Because we
2089		 * mark the next opheader as a continuation, recovery will then
2090		 * incorrectly add the continuation to the previous region and
2091		 * that breaks stuff.
2092		 *
2093		 * Hence if there isn't space for region data after the
2094		 * opheader, then we need to start afresh with a new iclog.
2095		 */
2096		if (iclog->ic_size - *log_offset <=
2097					sizeof(struct xlog_op_header)) {
2098			error = xlog_write_get_more_iclog_space(ticket,
2099					&iclog, log_offset, *len, record_cnt,
2100					data_cnt);
2101			if (error)
2102				return error;
2103		}
2104
2105		ophdr = reg->i_addr;
2106		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2107
2108		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2109		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2110		if (rlen != reg->i_len)
2111			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2112
2113		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2114				rlen, len, record_cnt, data_cnt);
 
 
 
 
 
 
 
 
 
 
2115
2116		/* If we wrote the whole region, move to the next. */
2117		if (rlen == reg->i_len)
2118			continue;
2119
 
 
 
 
 
 
 
 
 
 
 
 
 
2120		/*
2121		 * We now have a partially written iovec, but it can span
2122		 * multiple iclogs so we loop here. First we release the iclog
2123		 * we currently have, then we get a new iclog and add a new
2124		 * opheader. Then we continue copying from where we were until
2125		 * we either complete the iovec or fill the iclog. If we
2126		 * complete the iovec, then we increment the index and go right
2127		 * back to the top of the outer loop. if we fill the iclog, we
2128		 * run the inner loop again.
2129		 *
2130		 * This is complicated by the tail of a region using all the
2131		 * space in an iclog and hence requiring us to release the iclog
2132		 * and get a new one before returning to the outer loop. We must
2133		 * always guarantee that we exit this inner loop with at least
2134		 * space for log transaction opheaders left in the current
2135		 * iclog, hence we cannot just terminate the loop at the end
2136		 * of the of the continuation. So we loop while there is no
2137		 * space left in the current iclog, and check for the end of the
2138		 * continuation after getting a new iclog.
2139		 */
2140		do {
2141			/*
2142			 * Ensure we include the continuation opheader in the
2143			 * space we need in the new iclog by adding that size
2144			 * to the length we require. This continuation opheader
2145			 * needs to be accounted to the ticket as the space it
2146			 * consumes hasn't been accounted to the lv we are
2147			 * writing.
2148			 */
2149			error = xlog_write_get_more_iclog_space(ticket,
2150					&iclog, log_offset,
2151					*len + sizeof(struct xlog_op_header),
2152					record_cnt, data_cnt);
2153			if (error)
2154				return error;
2155
2156			ophdr = iclog->ic_datap + *log_offset;
2157			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158			ophdr->oh_clientid = XFS_TRANSACTION;
2159			ophdr->oh_res2 = 0;
2160			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2161
2162			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2163			*log_offset += sizeof(struct xlog_op_header);
2164			*data_cnt += sizeof(struct xlog_op_header);
2165
2166			/*
2167			 * If rlen fits in the iclog, then end the region
2168			 * continuation. Otherwise we're going around again.
2169			 */
2170			reg_offset += rlen;
2171			rlen = reg->i_len - reg_offset;
2172			if (rlen <= iclog->ic_size - *log_offset)
2173				ophdr->oh_flags |= XLOG_END_TRANS;
2174			else
2175				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2176
2177			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2178			ophdr->oh_len = cpu_to_be32(rlen);
2179
2180			xlog_write_iovec(iclog, log_offset,
2181					reg->i_addr + reg_offset,
2182					rlen, len, record_cnt, data_cnt);
2183
2184		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
 
 
 
2185	}
2186
2187	/*
2188	 * No more iovecs remain in this logvec so return the next log vec to
2189	 * the caller so it can go back to fast path copying.
2190	 */
2191	*iclogp = iclog;
2192	return 0;
2193}
2194
2195/*
2196 * Write some region out to in-core log
2197 *
2198 * This will be called when writing externally provided regions or when
2199 * writing out a commit record for a given transaction.
2200 *
2201 * General algorithm:
2202 *	1. Find total length of this write.  This may include adding to the
2203 *		lengths passed in.
2204 *	2. Check whether we violate the tickets reservation.
2205 *	3. While writing to this iclog
2206 *	    A. Reserve as much space in this iclog as can get
2207 *	    B. If this is first write, save away start lsn
2208 *	    C. While writing this region:
2209 *		1. If first write of transaction, write start record
2210 *		2. Write log operation header (header per region)
2211 *		3. Find out if we can fit entire region into this iclog
2212 *		4. Potentially, verify destination memcpy ptr
2213 *		5. Memcpy (partial) region
2214 *		6. If partial copy, release iclog; otherwise, continue
2215 *			copying more regions into current iclog
2216 *	4. Mark want sync bit (in simulation mode)
2217 *	5. Release iclog for potential flush to on-disk log.
2218 *
2219 * ERRORS:
2220 * 1.	Panic if reservation is overrun.  This should never happen since
2221 *	reservation amounts are generated internal to the filesystem.
2222 * NOTES:
2223 * 1. Tickets are single threaded data structures.
2224 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2225 *	syncing routine.  When a single log_write region needs to span
2226 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2227 *	on all log operation writes which don't contain the end of the
2228 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2229 *	operation which contains the end of the continued log_write region.
2230 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2231 *	we don't really know exactly how much space will be used.  As a result,
2232 *	we don't update ic_offset until the end when we know exactly how many
2233 *	bytes have been written out.
2234 */
2235int
2236xlog_write(
2237	struct xlog		*log,
2238	struct xfs_cil_ctx	*ctx,
2239	struct list_head	*lv_chain,
2240	struct xlog_ticket	*ticket,
2241	uint32_t		len)
2242
 
2243{
2244	struct xlog_in_core	*iclog = NULL;
 
2245	struct xfs_log_vec	*lv;
2246	uint32_t		record_cnt = 0;
2247	uint32_t		data_cnt = 0;
2248	int			error = 0;
2249	int			log_offset;
 
 
 
 
2250
2251	if (ticket->t_curr_res < 0) {
2252		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2253		     "ctx ticket reservation ran out. Need to up reservation");
2254		xlog_print_tic_res(log->l_mp, ticket);
2255		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2256	}
2257
2258	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2259					   &log_offset);
2260	if (error)
2261		return error;
2262
2263	ASSERT(log_offset <= iclog->ic_size - 1);
 
 
 
 
 
 
2264
2265	/*
2266	 * If we have a context pointer, pass it the first iclog we are
2267	 * writing to so it can record state needed for iclog write
2268	 * ordering.
2269	 */
2270	if (ctx)
2271		xlog_cil_set_ctx_write_state(ctx, iclog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2272
2273	list_for_each_entry(lv, lv_chain, lv_list) {
2274		/*
2275		 * If the entire log vec does not fit in the iclog, punt it to
2276		 * the partial copy loop which can handle this case.
2277		 */
2278		if (lv->lv_niovecs &&
2279		    lv->lv_bytes > iclog->ic_size - log_offset) {
2280			error = xlog_write_partial(lv, ticket, &iclog,
2281					&log_offset, &len, &record_cnt,
2282					&data_cnt);
2283			if (error) {
2284				/*
2285				 * We have no iclog to release, so just return
2286				 * the error immediately.
2287				 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288				return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289			}
2290		} else {
2291			xlog_write_full(lv, ticket, iclog, &log_offset,
2292					 &len, &record_cnt, &data_cnt);
2293		}
2294	}
 
2295	ASSERT(len == 0);
2296
2297	/*
2298	 * We've already been guaranteed that the last writes will fit inside
2299	 * the current iclog, and hence it will already have the space used by
2300	 * those writes accounted to it. Hence we do not need to update the
2301	 * iclog with the number of bytes written here.
2302	 */
2303	spin_lock(&log->l_icloglock);
2304	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2305	error = xlog_state_release_iclog(log, iclog, ticket);
2306	spin_unlock(&log->l_icloglock);
2307
2308	return error;
 
 
2309}
2310
2311static void
2312xlog_state_activate_iclog(
2313	struct xlog_in_core	*iclog,
2314	int			*iclogs_changed)
2315{
2316	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2317	trace_xlog_iclog_activate(iclog, _RET_IP_);
2318
2319	/*
2320	 * If the number of ops in this iclog indicate it just contains the
2321	 * dummy transaction, we can change state into IDLE (the second time
2322	 * around). Otherwise we should change the state into NEED a dummy.
2323	 * We don't need to cover the dummy.
2324	 */
2325	if (*iclogs_changed == 0 &&
2326	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2327		*iclogs_changed = 1;
2328	} else {
2329		/*
2330		 * We have two dirty iclogs so start over.  This could also be
2331		 * num of ops indicating this is not the dummy going out.
2332		 */
2333		*iclogs_changed = 2;
2334	}
2335
2336	iclog->ic_state	= XLOG_STATE_ACTIVE;
2337	iclog->ic_offset = 0;
2338	iclog->ic_header.h_num_logops = 0;
2339	memset(iclog->ic_header.h_cycle_data, 0,
2340		sizeof(iclog->ic_header.h_cycle_data));
2341	iclog->ic_header.h_lsn = 0;
2342	iclog->ic_header.h_tail_lsn = 0;
2343}
2344
2345/*
2346 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2347 * ACTIVE after iclog I/O has completed.
 
 
 
 
2348 */
2349static void
2350xlog_state_activate_iclogs(
2351	struct xlog		*log,
2352	int			*iclogs_changed)
2353{
2354	struct xlog_in_core	*iclog = log->l_iclog;
 
2355
 
2356	do {
2357		if (iclog->ic_state == XLOG_STATE_DIRTY)
2358			xlog_state_activate_iclog(iclog, iclogs_changed);
2359		/*
2360		 * The ordering of marking iclogs ACTIVE must be maintained, so
2361		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2362		 */
2363		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2364			break;
2365	} while ((iclog = iclog->ic_next) != log->l_iclog);
2366}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2367
2368static int
2369xlog_covered_state(
2370	int			prev_state,
2371	int			iclogs_changed)
2372{
2373	/*
2374	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2375	 * wrote the first covering record (DONE). We go to IDLE if we just
2376	 * wrote the second covering record (DONE2) and remain in IDLE until a
2377	 * non-covering write occurs.
2378	 */
2379	switch (prev_state) {
2380	case XLOG_STATE_COVER_IDLE:
2381		if (iclogs_changed == 1)
2382			return XLOG_STATE_COVER_IDLE;
2383		fallthrough;
2384	case XLOG_STATE_COVER_NEED:
2385	case XLOG_STATE_COVER_NEED2:
2386		break;
2387	case XLOG_STATE_COVER_DONE:
2388		if (iclogs_changed == 1)
2389			return XLOG_STATE_COVER_NEED2;
2390		break;
2391	case XLOG_STATE_COVER_DONE2:
2392		if (iclogs_changed == 1)
2393			return XLOG_STATE_COVER_IDLE;
2394		break;
2395	default:
2396		ASSERT(0);
2397	}
2398
2399	return XLOG_STATE_COVER_NEED;
2400}
2401
2402STATIC void
2403xlog_state_clean_iclog(
2404	struct xlog		*log,
2405	struct xlog_in_core	*dirty_iclog)
2406{
2407	int			iclogs_changed = 0;
2408
2409	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2410
2411	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
 
 
 
 
 
2412
2413	xlog_state_activate_iclogs(log, &iclogs_changed);
2414	wake_up_all(&dirty_iclog->ic_force_wait);
 
 
 
 
2415
2416	if (iclogs_changed) {
2417		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2418				iclogs_changed);
2419	}
2420}
2421
2422STATIC xfs_lsn_t
2423xlog_get_lowest_lsn(
2424	struct xlog		*log)
2425{
2426	struct xlog_in_core	*iclog = log->l_iclog;
2427	xfs_lsn_t		lowest_lsn = 0, lsn;
2428
 
 
2429	do {
2430		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2431		    iclog->ic_state == XLOG_STATE_DIRTY)
2432			continue;
2433
2434		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2435		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2436			lowest_lsn = lsn;
2437	} while ((iclog = iclog->ic_next) != log->l_iclog);
2438
 
 
2439	return lowest_lsn;
2440}
2441
2442/*
2443 * Return true if we need to stop processing, false to continue to the next
2444 * iclog. The caller will need to run callbacks if the iclog is returned in the
2445 * XLOG_STATE_CALLBACK state.
2446 */
2447static bool
2448xlog_state_iodone_process_iclog(
2449	struct xlog		*log,
2450	struct xlog_in_core	*iclog)
2451{
2452	xfs_lsn_t		lowest_lsn;
2453	xfs_lsn_t		header_lsn;
2454
2455	switch (iclog->ic_state) {
2456	case XLOG_STATE_ACTIVE:
2457	case XLOG_STATE_DIRTY:
2458		/*
2459		 * Skip all iclogs in the ACTIVE & DIRTY states:
2460		 */
2461		return false;
2462	case XLOG_STATE_DONE_SYNC:
2463		/*
2464		 * Now that we have an iclog that is in the DONE_SYNC state, do
2465		 * one more check here to see if we have chased our tail around.
2466		 * If this is not the lowest lsn iclog, then we will leave it
2467		 * for another completion to process.
2468		 */
2469		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2470		lowest_lsn = xlog_get_lowest_lsn(log);
2471		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2472			return false;
2473		/*
2474		 * If there are no callbacks on this iclog, we can mark it clean
2475		 * immediately and return. Otherwise we need to run the
2476		 * callbacks.
2477		 */
2478		if (list_empty(&iclog->ic_callbacks)) {
2479			xlog_state_clean_iclog(log, iclog);
2480			return false;
2481		}
2482		trace_xlog_iclog_callback(iclog, _RET_IP_);
2483		iclog->ic_state = XLOG_STATE_CALLBACK;
2484		return false;
2485	default:
2486		/*
2487		 * Can only perform callbacks in order.  Since this iclog is not
2488		 * in the DONE_SYNC state, we skip the rest and just try to
2489		 * clean up.
 
 
 
2490		 */
2491		return true;
2492	}
2493}
 
2494
2495/*
2496 * Loop over all the iclogs, running attached callbacks on them. Return true if
2497 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2498 * to handle transient shutdown state here at all because
2499 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2500 * cleanup of the callbacks.
2501 */
2502static bool
2503xlog_state_do_iclog_callbacks(
2504	struct xlog		*log)
2505		__releases(&log->l_icloglock)
2506		__acquires(&log->l_icloglock)
2507{
2508	struct xlog_in_core	*first_iclog = log->l_iclog;
2509	struct xlog_in_core	*iclog = first_iclog;
2510	bool			ran_callback = false;
2511
2512	do {
2513		LIST_HEAD(cb_list);
 
 
 
 
2514
2515		if (xlog_state_iodone_process_iclog(log, iclog))
2516			break;
2517		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2518			iclog = iclog->ic_next;
2519			continue;
2520		}
2521		list_splice_init(&iclog->ic_callbacks, &cb_list);
2522		spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523
2524		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2525		xlog_cil_process_committed(&cb_list);
2526		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2527		ran_callback = true;
 
 
 
 
2528
2529		spin_lock(&log->l_icloglock);
2530		xlog_state_clean_iclog(log, iclog);
2531		iclog = iclog->ic_next;
2532	} while (iclog != first_iclog);
2533
2534	return ran_callback;
2535}
2536
 
 
 
 
 
 
 
 
 
2537
2538/*
2539 * Loop running iclog completion callbacks until there are no more iclogs in a
2540 * state that can run callbacks.
2541 */
2542STATIC void
2543xlog_state_do_callback(
2544	struct xlog		*log)
2545{
2546	int			flushcnt = 0;
2547	int			repeats = 0;
2548
2549	spin_lock(&log->l_icloglock);
2550	while (xlog_state_do_iclog_callbacks(log)) {
2551		if (xlog_is_shutdown(log))
2552			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553
2554		if (++repeats > 5000) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555			flushcnt += repeats;
2556			repeats = 0;
2557			xfs_warn(log->l_mp,
2558				"%s: possible infinite loop (%d iterations)",
2559				__func__, flushcnt);
2560		}
2561	}
2562
2563	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2564		wake_up_all(&log->l_flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565
 
 
2566	spin_unlock(&log->l_icloglock);
 
 
 
2567}
2568
2569
2570/*
2571 * Finish transitioning this iclog to the dirty state.
2572 *
 
 
 
 
 
 
 
2573 * Callbacks could take time, so they are done outside the scope of the
2574 * global state machine log lock.
2575 */
2576STATIC void
2577xlog_state_done_syncing(
2578	struct xlog_in_core	*iclog)
 
2579{
2580	struct xlog		*log = iclog->ic_log;
2581
2582	spin_lock(&log->l_icloglock);
 
 
 
2583	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2584	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
 
2585
2586	/*
2587	 * If we got an error, either on the first buffer, or in the case of
2588	 * split log writes, on the second, we shut down the file system and
2589	 * no iclogs should ever be attempted to be written to disk again.
2590	 */
2591	if (!xlog_is_shutdown(log)) {
2592		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
 
 
 
 
2593		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2594	}
2595
2596	/*
2597	 * Someone could be sleeping prior to writing out the next
2598	 * iclog buffer, we wake them all, one will get to do the
2599	 * I/O, the others get to wait for the result.
2600	 */
2601	wake_up_all(&iclog->ic_write_wait);
2602	spin_unlock(&log->l_icloglock);
2603	xlog_state_do_callback(log);
2604}
 
2605
2606/*
2607 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2608 * sleep.  We wait on the flush queue on the head iclog as that should be
2609 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2610 * we will wait here and all new writes will sleep until a sync completes.
2611 *
2612 * The in-core logs are used in a circular fashion. They are not used
2613 * out-of-order even when an iclog past the head is free.
2614 *
2615 * return:
2616 *	* log_offset where xlog_write() can start writing into the in-core
2617 *		log's data space.
2618 *	* in-core log pointer to which xlog_write() should write.
2619 *	* boolean indicating this is a continued write to an in-core log.
2620 *		If this is the last write, then the in-core log's offset field
2621 *		needs to be incremented, depending on the amount of data which
2622 *		is copied.
2623 */
2624STATIC int
2625xlog_state_get_iclog_space(
2626	struct xlog		*log,
2627	int			len,
2628	struct xlog_in_core	**iclogp,
2629	struct xlog_ticket	*ticket,
2630	int			*logoffsetp)
2631{
2632	int		  log_offset;
2633	xlog_rec_header_t *head;
2634	xlog_in_core_t	  *iclog;
 
2635
2636restart:
2637	spin_lock(&log->l_icloglock);
2638	if (xlog_is_shutdown(log)) {
2639		spin_unlock(&log->l_icloglock);
2640		return -EIO;
2641	}
2642
2643	iclog = log->l_iclog;
2644	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2645		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2646
2647		/* Wait for log writes to have flushed */
2648		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2649		goto restart;
2650	}
2651
2652	head = &iclog->ic_header;
2653
2654	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2655	log_offset = iclog->ic_offset;
2656
2657	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2658
2659	/* On the 1st write to an iclog, figure out lsn.  This works
2660	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2661	 * committing to.  If the offset is set, that's how many blocks
2662	 * must be written.
2663	 */
2664	if (log_offset == 0) {
2665		ticket->t_curr_res -= log->l_iclog_hsize;
 
 
 
2666		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2667		head->h_lsn = cpu_to_be64(
2668			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2669		ASSERT(log->l_curr_block >= 0);
2670	}
2671
2672	/* If there is enough room to write everything, then do it.  Otherwise,
2673	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2674	 * bit is on, so this will get flushed out.  Don't update ic_offset
2675	 * until you know exactly how many bytes get copied.  Therefore, wait
2676	 * until later to update ic_offset.
2677	 *
2678	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2679	 * can fit into remaining data section.
2680	 */
2681	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2682		int		error = 0;
2683
2684		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2685
2686		/*
2687		 * If we are the only one writing to this iclog, sync it to
2688		 * disk.  We need to do an atomic compare and decrement here to
2689		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2690		 * xlog_state_release_iclog() when there is more than one
2691		 * reference to the iclog.
2692		 */
2693		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2694			error = xlog_state_release_iclog(log, iclog, ticket);
2695		spin_unlock(&log->l_icloglock);
2696		if (error)
2697			return error;
 
 
 
 
2698		goto restart;
2699	}
2700
2701	/* Do we have enough room to write the full amount in the remainder
2702	 * of this iclog?  Or must we continue a write on the next iclog and
2703	 * mark this iclog as completely taken?  In the case where we switch
2704	 * iclogs (to mark it taken), this particular iclog will release/sync
2705	 * to disk in xlog_write().
2706	 */
2707	if (len <= iclog->ic_size - iclog->ic_offset)
 
2708		iclog->ic_offset += len;
2709	else
 
2710		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
 
2711	*iclogp = iclog;
2712
2713	ASSERT(iclog->ic_offset <= iclog->ic_size);
2714	spin_unlock(&log->l_icloglock);
2715
2716	*logoffsetp = log_offset;
2717	return 0;
2718}
2719
2720/*
2721 * The first cnt-1 times a ticket goes through here we don't need to move the
2722 * grant write head because the permanent reservation has reserved cnt times the
2723 * unit amount.  Release part of current permanent unit reservation and reset
2724 * current reservation to be one units worth.  Also move grant reservation head
2725 * forward.
2726 */
2727void
2728xfs_log_ticket_regrant(
2729	struct xlog		*log,
2730	struct xlog_ticket	*ticket)
2731{
2732	trace_xfs_log_ticket_regrant(log, ticket);
2733
2734	if (ticket->t_cnt > 0)
2735		ticket->t_cnt--;
2736
2737	xlog_grant_sub_space(&log->l_reserve_head, ticket->t_curr_res);
2738	xlog_grant_sub_space(&log->l_write_head, ticket->t_curr_res);
 
 
2739	ticket->t_curr_res = ticket->t_unit_res;
 
2740
2741	trace_xfs_log_ticket_regrant_sub(log, ticket);
2742
2743	/* just return if we still have some of the pre-reserved space */
2744	if (!ticket->t_cnt) {
2745		xlog_grant_add_space(&log->l_reserve_head, ticket->t_unit_res);
2746		trace_xfs_log_ticket_regrant_exit(log, ticket);
2747
2748		ticket->t_curr_res = ticket->t_unit_res;
2749	}
 
 
 
 
 
 
2750
2751	xfs_log_ticket_put(ticket);
2752}
2753
2754/*
2755 * Give back the space left from a reservation.
2756 *
2757 * All the information we need to make a correct determination of space left
2758 * is present.  For non-permanent reservations, things are quite easy.  The
2759 * count should have been decremented to zero.  We only need to deal with the
2760 * space remaining in the current reservation part of the ticket.  If the
2761 * ticket contains a permanent reservation, there may be left over space which
2762 * needs to be released.  A count of N means that N-1 refills of the current
2763 * reservation can be done before we need to ask for more space.  The first
2764 * one goes to fill up the first current reservation.  Once we run out of
2765 * space, the count will stay at zero and the only space remaining will be
2766 * in the current reservation field.
2767 */
2768void
2769xfs_log_ticket_ungrant(
2770	struct xlog		*log,
2771	struct xlog_ticket	*ticket)
2772{
2773	int			bytes;
2774
2775	trace_xfs_log_ticket_ungrant(log, ticket);
2776
2777	if (ticket->t_cnt > 0)
2778		ticket->t_cnt--;
2779
2780	trace_xfs_log_ticket_ungrant_sub(log, ticket);
 
2781
2782	/*
2783	 * If this is a permanent reservation ticket, we may be able to free
2784	 * up more space based on the remaining count.
2785	 */
2786	bytes = ticket->t_curr_res;
2787	if (ticket->t_cnt > 0) {
2788		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2789		bytes += ticket->t_unit_res*ticket->t_cnt;
2790	}
2791
2792	xlog_grant_sub_space(&log->l_reserve_head, bytes);
2793	xlog_grant_sub_space(&log->l_write_head, bytes);
2794
2795	trace_xfs_log_ticket_ungrant_exit(log, ticket);
2796
2797	xfs_log_space_wake(log->l_mp);
2798	xfs_log_ticket_put(ticket);
2799}
2800
2801/*
2802 * This routine will mark the current iclog in the ring as WANT_SYNC and move
2803 * the current iclog pointer to the next iclog in the ring.
 
 
 
 
 
2804 */
2805void
2806xlog_state_switch_iclogs(
2807	struct xlog		*log,
2808	struct xlog_in_core	*iclog,
2809	int			eventual_size)
2810{
2811	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2812	assert_spin_locked(&log->l_icloglock);
2813	trace_xlog_iclog_switch(iclog, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2814
 
 
 
 
 
 
 
 
 
 
 
 
 
2815	if (!eventual_size)
2816		eventual_size = iclog->ic_offset;
2817	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2818	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2819	log->l_prev_block = log->l_curr_block;
2820	log->l_prev_cycle = log->l_curr_cycle;
2821
2822	/* roll log?: ic_offset changed later */
2823	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2824
2825	/* Round up to next log-sunit */
2826	if (log->l_iclog_roundoff > BBSIZE) {
2827		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
 
2828		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2829	}
2830
2831	if (log->l_curr_block >= log->l_logBBsize) {
2832		/*
2833		 * Rewind the current block before the cycle is bumped to make
2834		 * sure that the combined LSN never transiently moves forward
2835		 * when the log wraps to the next cycle. This is to support the
2836		 * unlocked sample of these fields from xlog_valid_lsn(). Most
2837		 * other cases should acquire l_icloglock.
2838		 */
2839		log->l_curr_block -= log->l_logBBsize;
2840		ASSERT(log->l_curr_block >= 0);
2841		smp_wmb();
2842		log->l_curr_cycle++;
2843		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2844			log->l_curr_cycle++;
 
 
2845	}
2846	ASSERT(iclog == log->l_iclog);
2847	log->l_iclog = iclog->ic_next;
2848}
2849
2850/*
2851 * Force the iclog to disk and check if the iclog has been completed before
2852 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
2853 * pmem) or fast async storage because we drop the icloglock to issue the IO.
2854 * If completion has already occurred, tell the caller so that it can avoid an
2855 * unnecessary wait on the iclog.
2856 */
2857static int
2858xlog_force_and_check_iclog(
2859	struct xlog_in_core	*iclog,
2860	bool			*completed)
2861{
2862	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2863	int			error;
2864
2865	*completed = false;
2866	error = xlog_force_iclog(iclog);
2867	if (error)
2868		return error;
2869
2870	/*
2871	 * If the iclog has already been completed and reused the header LSN
2872	 * will have been rewritten by completion
2873	 */
2874	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
2875		*completed = true;
2876	return 0;
2877}
2878
2879/*
2880 * Write out all data in the in-core log as of this exact moment in time.
2881 *
2882 * Data may be written to the in-core log during this call.  However,
2883 * we don't guarantee this data will be written out.  A change from past
2884 * implementation means this routine will *not* write out zero length LRs.
2885 *
2886 * Basically, we try and perform an intelligent scan of the in-core logs.
2887 * If we determine there is no flushable data, we just return.  There is no
2888 * flushable data if:
2889 *
2890 *	1. the current iclog is active and has no data; the previous iclog
2891 *		is in the active or dirty state.
2892 *	2. the current iclog is drity, and the previous iclog is in the
2893 *		active or dirty state.
2894 *
2895 * We may sleep if:
2896 *
2897 *	1. the current iclog is not in the active nor dirty state.
2898 *	2. the current iclog dirty, and the previous iclog is not in the
2899 *		active nor dirty state.
2900 *	3. the current iclog is active, and there is another thread writing
2901 *		to this particular iclog.
2902 *	4. a) the current iclog is active and has no other writers
2903 *	   b) when we return from flushing out this iclog, it is still
2904 *		not in the active nor dirty state.
2905 */
2906int
2907xfs_log_force(
2908	struct xfs_mount	*mp,
2909	uint			flags)
 
2910{
2911	struct xlog		*log = mp->m_log;
2912	struct xlog_in_core	*iclog;
 
2913
2914	XFS_STATS_INC(mp, xs_log_force);
2915	trace_xfs_log_force(mp, 0, _RET_IP_);
2916
2917	xlog_cil_force(log);
2918
2919	spin_lock(&log->l_icloglock);
2920	if (xlog_is_shutdown(log))
2921		goto out_error;
2922
2923	iclog = log->l_iclog;
2924	trace_xlog_iclog_force(iclog, _RET_IP_);
 
 
 
2925
2926	if (iclog->ic_state == XLOG_STATE_DIRTY ||
2927	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
2928	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
 
 
2929		/*
2930		 * If the head is dirty or (active and empty), then we need to
2931		 * look at the previous iclog.
2932		 *
2933		 * If the previous iclog is active or dirty we are done.  There
2934		 * is nothing to sync out. Otherwise, we attach ourselves to the
2935		 * previous iclog and go to sleep.
2936		 */
2937		iclog = iclog->ic_prev;
2938	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2939		if (atomic_read(&iclog->ic_refcnt) == 0) {
2940			/* We have exclusive access to this iclog. */
2941			bool	completed;
2942
2943			if (xlog_force_and_check_iclog(iclog, &completed))
2944				goto out_error;
2945
2946			if (completed)
2947				goto out_unlock;
2948		} else {
2949			/*
2950			 * Someone else is still writing to this iclog, so we
2951			 * need to ensure that when they release the iclog it
2952			 * gets synced immediately as we may be waiting on it.
2953			 */
2954			xlog_state_switch_iclogs(log, iclog, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2955		}
2956	}
2957
2958	/*
2959	 * The iclog we are about to wait on may contain the checkpoint pushed
2960	 * by the above xlog_cil_force() call, but it may not have been pushed
2961	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
2962	 * are flushed when this iclog is written.
2963	 */
2964	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
2965		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
2966
2967	if (flags & XFS_LOG_SYNC)
2968		return xlog_wait_on_iclog(iclog);
2969out_unlock:
2970	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971	return 0;
2972out_error:
2973	spin_unlock(&log->l_icloglock);
2974	return -EIO;
2975}
2976
2977/*
2978 * Force the log to a specific LSN.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979 *
2980 * If an iclog with that lsn can be found:
2981 *	If it is in the DIRTY state, just return.
2982 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2983 *		state and go to sleep or return.
2984 *	If it is in any other state, go to sleep or return.
2985 *
2986 * Synchronous forces are implemented with a wait queue.  All callers trying
2987 * to force a given lsn to disk must wait on the queue attached to the
2988 * specific in-core log.  When given in-core log finally completes its write
2989 * to disk, that thread will wake up all threads waiting on the queue.
 
2990 */
2991static int
2992xlog_force_lsn(
2993	struct xlog		*log,
2994	xfs_lsn_t		lsn,
2995	uint			flags,
2996	int			*log_flushed,
2997	bool			already_slept)
2998{
 
2999	struct xlog_in_core	*iclog;
3000	bool			completed;
3001
3002	spin_lock(&log->l_icloglock);
3003	if (xlog_is_shutdown(log))
3004		goto out_error;
3005
 
 
 
 
 
 
3006	iclog = log->l_iclog;
3007	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3008		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3009		iclog = iclog->ic_next;
3010		if (iclog == log->l_iclog)
3011			goto out_unlock;
3012	}
3013
3014	switch (iclog->ic_state) {
3015	case XLOG_STATE_ACTIVE:
3016		/*
3017		 * We sleep here if we haven't already slept (e.g. this is the
3018		 * first time we've looked at the correct iclog buf) and the
3019		 * buffer before us is going to be sync'ed.  The reason for this
3020		 * is that if we are doing sync transactions here, by waiting
3021		 * for the previous I/O to complete, we can allow a few more
3022		 * transactions into this iclog before we close it down.
3023		 *
3024		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3025		 * refcnt so we can release the log (which drops the ref count).
3026		 * The state switch keeps new transaction commits from using
3027		 * this buffer.  When the current commits finish writing into
3028		 * the buffer, the refcount will drop to zero and the buffer
3029		 * will go out then.
3030		 */
3031		if (!already_slept &&
3032		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3033		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3034			xlog_wait(&iclog->ic_prev->ic_write_wait,
3035					&log->l_icloglock);
3036			return -EAGAIN;
3037		}
3038		if (xlog_force_and_check_iclog(iclog, &completed))
3039			goto out_error;
3040		if (log_flushed)
3041			*log_flushed = 1;
3042		if (completed)
3043			goto out_unlock;
3044		break;
3045	case XLOG_STATE_WANT_SYNC:
3046		/*
3047		 * This iclog may contain the checkpoint pushed by the
3048		 * xlog_cil_force_seq() call, but there are other writers still
3049		 * accessing it so it hasn't been pushed to disk yet. Like the
3050		 * ACTIVE case above, we need to make sure caches are flushed
3051		 * when this iclog is written.
3052		 */
3053		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3054		break;
3055	default:
3056		/*
3057		 * The entire checkpoint was written by the CIL force and is on
3058		 * its way to disk already. It will be stable when it
3059		 * completes, so we don't need to manipulate caches here at all.
3060		 * We just need to wait for completion if necessary.
3061		 */
3062		break;
3063	}
3064
3065	if (flags & XFS_LOG_SYNC)
3066		return xlog_wait_on_iclog(iclog);
3067out_unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068	spin_unlock(&log->l_icloglock);
3069	return 0;
3070out_error:
3071	spin_unlock(&log->l_icloglock);
3072	return -EIO;
3073}
3074
3075/*
3076 * Force the log to a specific checkpoint sequence.
3077 *
3078 * First force the CIL so that all the required changes have been flushed to the
3079 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3080 * the iclog that needs to be flushed to stable storage. If the caller needs
3081 * a synchronous log force, we will wait on the iclog with the LSN returned by
3082 * xlog_cil_force_seq() to be completed.
3083 */
3084int
3085xfs_log_force_seq(
3086	struct xfs_mount	*mp,
3087	xfs_csn_t		seq,
3088	uint			flags,
3089	int			*log_flushed)
3090{
3091	struct xlog		*log = mp->m_log;
3092	xfs_lsn_t		lsn;
3093	int			ret;
3094	ASSERT(seq != 0);
3095
3096	XFS_STATS_INC(mp, xs_log_force);
3097	trace_xfs_log_force(mp, seq, _RET_IP_);
 
 
 
3098
3099	lsn = xlog_cil_force_seq(log, seq);
3100	if (lsn == NULLCOMMITLSN)
3101		return 0;
 
 
 
 
 
3102
3103	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3104	if (ret == -EAGAIN) {
3105		XFS_STATS_INC(mp, xs_log_force_sleep);
3106		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
 
3107	}
3108	return ret;
3109}
3110
 
 
 
 
 
 
 
 
3111/*
3112 * Free a used ticket when its refcount falls to zero.
3113 */
3114void
3115xfs_log_ticket_put(
3116	xlog_ticket_t	*ticket)
3117{
3118	ASSERT(atomic_read(&ticket->t_ref) > 0);
3119	if (atomic_dec_and_test(&ticket->t_ref))
3120		kmem_cache_free(xfs_log_ticket_cache, ticket);
3121}
3122
3123xlog_ticket_t *
3124xfs_log_ticket_get(
3125	xlog_ticket_t	*ticket)
3126{
3127	ASSERT(atomic_read(&ticket->t_ref) > 0);
3128	atomic_inc(&ticket->t_ref);
3129	return ticket;
3130}
3131
3132/*
3133 * Figure out the total log space unit (in bytes) that would be
3134 * required for a log ticket.
3135 */
3136static int
3137xlog_calc_unit_res(
3138	struct xlog		*log,
3139	int			unit_bytes,
3140	int			*niclogs)
3141{
3142	int			iclog_space;
3143	uint			num_headers;
 
 
 
 
 
 
 
 
3144
3145	/*
3146	 * Permanent reservations have up to 'cnt'-1 active log operations
3147	 * in the log.  A unit in this case is the amount of space for one
3148	 * of these log operations.  Normal reservations have a cnt of 1
3149	 * and their unit amount is the total amount of space required.
3150	 *
3151	 * The following lines of code account for non-transaction data
3152	 * which occupy space in the on-disk log.
3153	 *
3154	 * Normal form of a transaction is:
3155	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3156	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3157	 *
3158	 * We need to account for all the leadup data and trailer data
3159	 * around the transaction data.
3160	 * And then we need to account for the worst case in terms of using
3161	 * more space.
3162	 * The worst case will happen if:
3163	 * - the placement of the transaction happens to be such that the
3164	 *   roundoff is at its maximum
3165	 * - the transaction data is synced before the commit record is synced
3166	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3167	 *   Therefore the commit record is in its own Log Record.
3168	 *   This can happen as the commit record is called with its
3169	 *   own region to xlog_write().
3170	 *   This then means that in the worst case, roundoff can happen for
3171	 *   the commit-rec as well.
3172	 *   The commit-rec is smaller than padding in this scenario and so it is
3173	 *   not added separately.
3174	 */
3175
3176	/* for trans header */
3177	unit_bytes += sizeof(xlog_op_header_t);
3178	unit_bytes += sizeof(xfs_trans_header_t);
3179
3180	/* for start-rec */
3181	unit_bytes += sizeof(xlog_op_header_t);
3182
3183	/*
3184	 * for LR headers - the space for data in an iclog is the size minus
3185	 * the space used for the headers. If we use the iclog size, then we
3186	 * undercalculate the number of headers required.
3187	 *
3188	 * Furthermore - the addition of op headers for split-recs might
3189	 * increase the space required enough to require more log and op
3190	 * headers, so take that into account too.
3191	 *
3192	 * IMPORTANT: This reservation makes the assumption that if this
3193	 * transaction is the first in an iclog and hence has the LR headers
3194	 * accounted to it, then the remaining space in the iclog is
3195	 * exclusively for this transaction.  i.e. if the transaction is larger
3196	 * than the iclog, it will be the only thing in that iclog.
3197	 * Fundamentally, this means we must pass the entire log vector to
3198	 * xlog_write to guarantee this.
3199	 */
3200	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3201	num_headers = howmany(unit_bytes, iclog_space);
3202
3203	/* for split-recs - ophdrs added when data split over LRs */
3204	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3205
3206	/* add extra header reservations if we overrun */
3207	while (!num_headers ||
3208	       howmany(unit_bytes, iclog_space) > num_headers) {
3209		unit_bytes += sizeof(xlog_op_header_t);
3210		num_headers++;
3211	}
3212	unit_bytes += log->l_iclog_hsize * num_headers;
3213
3214	/* for commit-rec LR header - note: padding will subsume the ophdr */
3215	unit_bytes += log->l_iclog_hsize;
3216
3217	/* roundoff padding for transaction data and one for commit record */
3218	unit_bytes += 2 * log->l_iclog_roundoff;
3219
3220	if (niclogs)
3221		*niclogs = num_headers;
3222	return unit_bytes;
3223}
3224
3225int
3226xfs_log_calc_unit_res(
3227	struct xfs_mount	*mp,
3228	int			unit_bytes)
3229{
3230	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3231}
3232
3233/*
3234 * Allocate and initialise a new log ticket.
3235 */
3236struct xlog_ticket *
3237xlog_ticket_alloc(
3238	struct xlog		*log,
3239	int			unit_bytes,
3240	int			cnt,
3241	bool			permanent)
3242{
3243	struct xlog_ticket	*tic;
3244	int			unit_res;
3245
3246	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3247			GFP_KERNEL | __GFP_NOFAIL);
3248
3249	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3250
3251	atomic_set(&tic->t_ref, 1);
3252	tic->t_task		= current;
3253	INIT_LIST_HEAD(&tic->t_queue);
3254	tic->t_unit_res		= unit_res;
3255	tic->t_curr_res		= unit_res;
3256	tic->t_cnt		= cnt;
3257	tic->t_ocnt		= cnt;
3258	tic->t_tid		= get_random_u32();
 
 
 
3259	if (permanent)
3260		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3261
 
 
3262	return tic;
3263}
3264
 
 
 
 
 
 
 
3265#if defined(DEBUG)
3266static void
3267xlog_verify_dump_tail(
3268	struct xlog		*log,
3269	struct xlog_in_core	*iclog)
 
 
 
 
 
3270{
3271	xfs_alert(log->l_mp,
3272"ran out of log space tail 0x%llx/0x%llx, head lsn 0x%llx, head 0x%x/0x%x, prev head 0x%x/0x%x",
3273			iclog ? be64_to_cpu(iclog->ic_header.h_tail_lsn) : -1,
3274			atomic64_read(&log->l_tail_lsn),
3275			log->l_ailp->ail_head_lsn,
3276			log->l_curr_cycle, log->l_curr_block,
3277			log->l_prev_cycle, log->l_prev_block);
3278	xfs_alert(log->l_mp,
3279"write grant 0x%llx, reserve grant 0x%llx, tail_space 0x%llx, size 0x%x, iclog flags 0x%x",
3280			atomic64_read(&log->l_write_head.grant),
3281			atomic64_read(&log->l_reserve_head.grant),
3282			log->l_tail_space, log->l_logsize,
3283			iclog ? iclog->ic_flags : -1);
3284}
3285
3286/* Check if the new iclog will fit in the log. */
 
 
 
 
 
 
 
 
 
 
3287STATIC void
3288xlog_verify_tail_lsn(
3289	struct xlog		*log,
3290	struct xlog_in_core	*iclog)
3291{
3292	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3293	int		blocks;
3294
3295	if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3296		blocks = log->l_logBBsize -
3297				(log->l_prev_block - BLOCK_LSN(tail_lsn));
3298		if (blocks < BTOBB(iclog->ic_offset) +
3299					BTOBB(log->l_iclog_hsize)) {
3300			xfs_emerg(log->l_mp,
3301					"%s: ran out of log space", __func__);
3302			xlog_verify_dump_tail(log, iclog);
3303		}
3304		return;
3305	}
3306
3307	if (CYCLE_LSN(tail_lsn) + 1 != log->l_prev_cycle) {
3308		xfs_emerg(log->l_mp, "%s: head has wrapped tail.", __func__);
3309		xlog_verify_dump_tail(log, iclog);
3310		return;
 
 
3311	}
3312	if (BLOCK_LSN(tail_lsn) == log->l_prev_block) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3313		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3314		xlog_verify_dump_tail(log, iclog);
3315		return;
3316	}
3317
3318	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3319	if (blocks < BTOBB(iclog->ic_offset) + 1) {
3320		xfs_emerg(log->l_mp, "%s: ran out of iclog space", __func__);
3321		xlog_verify_dump_tail(log, iclog);
3322	}
3323}
3324
3325/*
3326 * Perform a number of checks on the iclog before writing to disk.
3327 *
3328 * 1. Make sure the iclogs are still circular
3329 * 2. Make sure we have a good magic number
3330 * 3. Make sure we don't have magic numbers in the data
3331 * 4. Check fields of each log operation header for:
3332 *	A. Valid client identifier
3333 *	B. tid ptr value falls in valid ptr space (user space code)
3334 *	C. Length in log record header is correct according to the
3335 *		individual operation headers within record.
3336 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3337 *	log, check the preceding blocks of the physical log to make sure all
3338 *	the cycle numbers agree with the current cycle number.
3339 */
3340STATIC void
3341xlog_verify_iclog(
3342	struct xlog		*log,
3343	struct xlog_in_core	*iclog,
3344	int			count)
3345{
3346	xlog_op_header_t	*ophead;
3347	xlog_in_core_t		*icptr;
3348	xlog_in_core_2_t	*xhdr;
3349	void			*base_ptr, *ptr, *p;
3350	ptrdiff_t		field_offset;
3351	uint8_t			clientid;
 
3352	int			len, i, j, k, op_len;
3353	int			idx;
3354
3355	/* check validity of iclog pointers */
3356	spin_lock(&log->l_icloglock);
3357	icptr = log->l_iclog;
3358	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3359		ASSERT(icptr);
3360
 
 
3361	if (icptr != log->l_iclog)
3362		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3363	spin_unlock(&log->l_icloglock);
3364
3365	/* check log magic numbers */
3366	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3367		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3368
3369	base_ptr = ptr = &iclog->ic_header;
3370	p = &iclog->ic_header;
3371	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3372		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3373			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3374				__func__);
3375	}
3376
3377	/* check fields */
3378	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3379	base_ptr = ptr = iclog->ic_datap;
3380	ophead = ptr;
 
3381	xhdr = iclog->ic_data;
3382	for (i = 0; i < len; i++) {
3383		ophead = ptr;
3384
3385		/* clientid is only 1 byte */
3386		p = &ophead->oh_clientid;
3387		field_offset = p - base_ptr;
3388		if (field_offset & 0x1ff) {
3389			clientid = ophead->oh_clientid;
3390		} else {
3391			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3392			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3393				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3394				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3395				clientid = xlog_get_client_id(
3396					xhdr[j].hic_xheader.xh_cycle_data[k]);
3397			} else {
3398				clientid = xlog_get_client_id(
3399					iclog->ic_header.h_cycle_data[idx]);
3400			}
3401		}
3402		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3403			xfs_warn(log->l_mp,
3404				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3405				__func__, i, clientid, ophead,
3406				(unsigned long)field_offset);
3407		}
3408
3409		/* check length */
3410		p = &ophead->oh_len;
3411		field_offset = p - base_ptr;
3412		if (field_offset & 0x1ff) {
3413			op_len = be32_to_cpu(ophead->oh_len);
3414		} else {
3415			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
 
3416			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3417				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3418				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3419				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3420			} else {
3421				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3422			}
3423		}
3424		ptr += sizeof(xlog_op_header_t) + op_len;
3425	}
3426}
3427#endif
3428
3429/*
3430 * Perform a forced shutdown on the log.
3431 *
3432 * This can be called from low level log code to trigger a shutdown, or from the
3433 * high level mount shutdown code when the mount shuts down.
3434 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435 * Our main objectives here are to make sure that:
3436 *	a. if the shutdown was not due to a log IO error, flush the logs to
3437 *	   disk. Anything modified after this is ignored.
3438 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3439 *	   parties to find out. Nothing new gets queued after this is done.
3440 *	c. Tasks sleeping on log reservations, pinned objects and
3441 *	   other resources get woken up.
3442 *	d. The mount is also marked as shut down so that log triggered shutdowns
3443 *	   still behave the same as if they called xfs_forced_shutdown().
3444 *
3445 * Return true if the shutdown cause was a log IO error and we actually shut the
3446 * log down.
 
3447 */
3448bool
3449xlog_force_shutdown(
3450	struct xlog	*log,
3451	uint32_t	shutdown_flags)
3452{
3453	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
 
3454
3455	if (!log)
3456		return false;
3457
3458	/*
3459	 * Ensure that there is only ever one log shutdown being processed.
3460	 * If we allow the log force below on a second pass after shutting
3461	 * down the log, we risk deadlocking the CIL push as it may require
3462	 * locks on objects the current shutdown context holds (e.g. taking
3463	 * buffer locks to abort buffers on last unpin of buf log items).
3464	 */
3465	if (test_and_set_bit(XLOG_SHUTDOWN_STARTED, &log->l_opstate))
3466		return false;
 
 
 
 
 
3467
3468	/*
3469	 * Flush all the completed transactions to disk before marking the log
3470	 * being shut down. We need to do this first as shutting down the log
3471	 * before the force will prevent the log force from flushing the iclogs
3472	 * to disk.
3473	 *
3474	 * When we are in recovery, there are no transactions to flush, and
3475	 * we don't want to touch the log because we don't want to perturb the
3476	 * current head/tail for future recovery attempts. Hence we need to
3477	 * avoid a log force in this case.
3478	 *
3479	 * If we are shutting down due to a log IO error, then we must avoid
3480	 * trying to write the log as that may just result in more IO errors and
3481	 * an endless shutdown/force loop.
3482	 */
3483	if (!log_error && !xlog_in_recovery(log))
3484		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3485
3486	/*
3487	 * Atomically set the shutdown state. If the shutdown state is already
3488	 * set, there someone else is performing the shutdown and so we are done
3489	 * here. This should never happen because we should only ever get called
3490	 * once by the first shutdown caller.
3491	 *
3492	 * Much of the log state machine transitions assume that shutdown state
3493	 * cannot change once they hold the log->l_icloglock. Hence we need to
3494	 * hold that lock here, even though we use the atomic test_and_set_bit()
3495	 * operation to set the shutdown state.
 
 
3496	 */
3497	spin_lock(&log->l_icloglock);
3498	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3499		spin_unlock(&log->l_icloglock);
3500		ASSERT(0);
3501		return false;
3502	}
3503	spin_unlock(&log->l_icloglock);
3504
3505	/*
3506	 * If this log shutdown also sets the mount shutdown state, issue a
3507	 * shutdown warning message.
 
3508	 */
3509	if (!xfs_set_shutdown(log->l_mp)) {
3510		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3511"Filesystem has been shut down due to log error (0x%x).",
3512				shutdown_flags);
3513		xfs_alert(log->l_mp,
3514"Please unmount the filesystem and rectify the problem(s).");
3515		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3516			xfs_stack_trace();
3517	}
3518
3519	/*
3520	 * We don't want anybody waiting for log reservations after this. That
3521	 * means we have to wake up everybody queued up on reserveq as well as
3522	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3523	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3524	 * action is protected by the grant locks.
3525	 */
3526	xlog_grant_head_wake_all(&log->l_reserve_head);
3527	xlog_grant_head_wake_all(&log->l_write_head);
3528
3529	/*
3530	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3531	 * as if the log writes were completed. The abort handling in the log
3532	 * item committed callback functions will do this again under lock to
3533	 * avoid races.
3534	 */
3535	spin_lock(&log->l_cilp->xc_push_lock);
3536	wake_up_all(&log->l_cilp->xc_start_wait);
3537	wake_up_all(&log->l_cilp->xc_commit_wait);
3538	spin_unlock(&log->l_cilp->xc_push_lock);
3539
3540	spin_lock(&log->l_icloglock);
3541	xlog_state_shutdown_callbacks(log);
3542	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
3543
3544	wake_up_var(&log->l_opstate);
3545	return log_error;
 
 
 
 
 
 
 
 
 
3546}
3547
3548STATIC int
3549xlog_iclogs_empty(
3550	struct xlog	*log)
3551{
3552	xlog_in_core_t	*iclog;
3553
3554	iclog = log->l_iclog;
3555	do {
3556		/* endianness does not matter here, zero is zero in
3557		 * any language.
3558		 */
3559		if (iclog->ic_header.h_num_logops)
3560			return 0;
3561		iclog = iclog->ic_next;
3562	} while (iclog != log->l_iclog);
3563	return 1;
3564}
3565
3566/*
3567 * Verify that an LSN stamped into a piece of metadata is valid. This is
3568 * intended for use in read verifiers on v5 superblocks.
3569 */
3570bool
3571xfs_log_check_lsn(
3572	struct xfs_mount	*mp,
3573	xfs_lsn_t		lsn)
3574{
3575	struct xlog		*log = mp->m_log;
3576	bool			valid;
3577
3578	/*
3579	 * norecovery mode skips mount-time log processing and unconditionally
3580	 * resets the in-core LSN. We can't validate in this mode, but
3581	 * modifications are not allowed anyways so just return true.
3582	 */
3583	if (xfs_has_norecovery(mp))
3584		return true;
3585
3586	/*
3587	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3588	 * handled by recovery and thus safe to ignore here.
3589	 */
3590	if (lsn == NULLCOMMITLSN)
3591		return true;
3592
3593	valid = xlog_valid_lsn(mp->m_log, lsn);
3594
3595	/* warn the user about what's gone wrong before verifier failure */
3596	if (!valid) {
3597		spin_lock(&log->l_icloglock);
3598		xfs_warn(mp,
3599"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3600"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3601			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3602			 log->l_curr_cycle, log->l_curr_block);
3603		spin_unlock(&log->l_icloglock);
3604	}
3605
3606	return valid;
3607}
v3.5.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_log.h"
  22#include "xfs_trans.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_mount.h"
 
  26#include "xfs_error.h"
 
 
 
  27#include "xfs_log_priv.h"
  28#include "xfs_buf_item.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_log_recover.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
  36#include "xfs_trace.h"
 
 
 
  37
  38kmem_zone_t	*xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41STATIC int
  42xlog_commit_record(
  43	struct xlog		*log,
 
 
  44	struct xlog_ticket	*ticket,
  45	struct xlog_in_core	**iclog,
  46	xfs_lsn_t		*commitlsnp);
  47
  48STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
  49				xfs_buftarg_t	*log_target,
  50				xfs_daddr_t	blk_offset,
  51				int		num_bblks);
  52STATIC int
  53xlog_space_left(
  54	struct xlog		*log,
  55	atomic64_t		*head);
  56STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
  57STATIC void	 xlog_dealloc_log(xlog_t *log);
  58
  59/* local state machine functions */
  60STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  61STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
  62STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
  63				       int		len,
  64				       xlog_in_core_t	**iclog,
  65				       xlog_ticket_t	*ticket,
  66				       int		*continued_write,
  67				       int		*logoffsetp);
  68STATIC int  xlog_state_release_iclog(xlog_t		*log,
  69				     xlog_in_core_t	*iclog);
  70STATIC void xlog_state_switch_iclogs(xlog_t		*log,
  71				     xlog_in_core_t *iclog,
  72				     int		eventual_size);
  73STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
  74
  75STATIC void
  76xlog_grant_push_ail(
  77	struct xlog	*log,
  78	int		need_bytes);
  79STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
  80					   xlog_ticket_t *ticket);
  81STATIC void xlog_ungrant_log_space(xlog_t	 *log,
  82				   xlog_ticket_t *ticket);
  83
  84#if defined(DEBUG)
  85STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
  86STATIC void
  87xlog_verify_grant_tail(
  88	struct xlog	*log);
  89STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
  90				  int count, boolean_t syncing);
  91STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
  92				     xfs_lsn_t tail_lsn);
  93#else
  94#define xlog_verify_dest_ptr(a,b)
  95#define xlog_verify_grant_tail(a)
  96#define xlog_verify_iclog(a,b,c,d)
  97#define xlog_verify_tail_lsn(a,b,c)
  98#endif
  99
 100STATIC int	xlog_iclogs_empty(xlog_t *log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101
 102static void
 103xlog_grant_sub_space(
 104	struct xlog		*log,
 105	atomic64_t		*head,
 106	int			bytes)
 107{
 108	int64_t	head_val = atomic64_read(head);
 109	int64_t new, old;
 110
 111	do {
 112		int	cycle, space;
 
 
 113
 114		xlog_crack_grant_head_val(head_val, &cycle, &space);
 
 115
 116		space -= bytes;
 117		if (space < 0) {
 118			space += log->l_logsize;
 119			cycle--;
 120		}
 121
 122		old = head_val;
 123		new = xlog_assign_grant_head_val(cycle, space);
 124		head_val = atomic64_cmpxchg(head, old, new);
 125	} while (head_val != old);
 
 
 126}
 127
 128static void
 129xlog_grant_add_space(
 130	struct xlog		*log,
 131	atomic64_t		*head,
 132	int			bytes)
 133{
 134	int64_t	head_val = atomic64_read(head);
 135	int64_t new, old;
 136
 137	do {
 138		int		tmp;
 139		int		cycle, space;
 
 
 
 
 
 140
 141		xlog_crack_grant_head_val(head_val, &cycle, &space);
 
 
 
 
 
 
 142
 143		tmp = log->l_logsize - space;
 144		if (tmp > bytes)
 145			space += bytes;
 146		else {
 147			space = bytes - tmp;
 148			cycle++;
 149		}
 150
 151		old = head_val;
 152		new = xlog_assign_grant_head_val(cycle, space);
 153		head_val = atomic64_cmpxchg(head, old, new);
 154	} while (head_val != old);
 155}
 156
 157STATIC void
 158xlog_grant_head_init(
 
 
 
 
 
 
 
 
 
 159	struct xlog_grant_head	*head)
 160{
 161	xlog_assign_grant_head(&head->grant, 1, 0);
 162	INIT_LIST_HEAD(&head->waiters);
 163	spin_lock_init(&head->lock);
 
 
 
 
 
 164}
 165
 166STATIC void
 167xlog_grant_head_wake_all(
 168	struct xlog_grant_head	*head)
 169{
 170	struct xlog_ticket	*tic;
 171
 172	spin_lock(&head->lock);
 173	list_for_each_entry(tic, &head->waiters, t_queue)
 174		wake_up_process(tic->t_task);
 175	spin_unlock(&head->lock);
 176}
 177
 178static inline int
 179xlog_ticket_reservation(
 180	struct xlog		*log,
 181	struct xlog_grant_head	*head,
 182	struct xlog_ticket	*tic)
 183{
 184	if (head == &log->l_write_head) {
 185		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 186		return tic->t_unit_res;
 187	} else {
 188		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 189			return tic->t_unit_res * tic->t_cnt;
 190		else
 191			return tic->t_unit_res;
 192	}
 
 
 
 
 
 193}
 194
 195STATIC bool
 196xlog_grant_head_wake(
 197	struct xlog		*log,
 198	struct xlog_grant_head	*head,
 199	int			*free_bytes)
 200{
 201	struct xlog_ticket	*tic;
 202	int			need_bytes;
 203
 204	list_for_each_entry(tic, &head->waiters, t_queue) {
 205		need_bytes = xlog_ticket_reservation(log, head, tic);
 206		if (*free_bytes < need_bytes)
 207			return false;
 208
 209		*free_bytes -= need_bytes;
 210		trace_xfs_log_grant_wake_up(log, tic);
 211		wake_up_process(tic->t_task);
 212	}
 213
 214	return true;
 215}
 216
 217STATIC int
 218xlog_grant_head_wait(
 219	struct xlog		*log,
 220	struct xlog_grant_head	*head,
 221	struct xlog_ticket	*tic,
 222	int			need_bytes)
 
 223{
 224	list_add_tail(&tic->t_queue, &head->waiters);
 225
 226	do {
 227		if (XLOG_FORCED_SHUTDOWN(log))
 228			goto shutdown;
 229		xlog_grant_push_ail(log, need_bytes);
 230
 231		__set_current_state(TASK_UNINTERRUPTIBLE);
 232		spin_unlock(&head->lock);
 233
 234		XFS_STATS_INC(xs_sleep_logspace);
 
 
 
 235
 236		trace_xfs_log_grant_sleep(log, tic);
 237		schedule();
 238		trace_xfs_log_grant_wake(log, tic);
 239
 240		spin_lock(&head->lock);
 241		if (XLOG_FORCED_SHUTDOWN(log))
 242			goto shutdown;
 243	} while (xlog_space_left(log, &head->grant) < need_bytes);
 244
 245	list_del_init(&tic->t_queue);
 246	return 0;
 247shutdown:
 248	list_del_init(&tic->t_queue);
 249	return XFS_ERROR(EIO);
 250}
 251
 252/*
 253 * Atomically get the log space required for a log ticket.
 254 *
 255 * Once a ticket gets put onto head->waiters, it will only return after the
 256 * needed reservation is satisfied.
 257 *
 258 * This function is structured so that it has a lock free fast path. This is
 259 * necessary because every new transaction reservation will come through this
 260 * path. Hence any lock will be globally hot if we take it unconditionally on
 261 * every pass.
 262 *
 263 * As tickets are only ever moved on and off head->waiters under head->lock, we
 264 * only need to take that lock if we are going to add the ticket to the queue
 265 * and sleep. We can avoid taking the lock if the ticket was never added to
 266 * head->waiters because the t_queue list head will be empty and we hold the
 267 * only reference to it so it can safely be checked unlocked.
 268 */
 269STATIC int
 270xlog_grant_head_check(
 271	struct xlog		*log,
 272	struct xlog_grant_head	*head,
 273	struct xlog_ticket	*tic,
 274	int			*need_bytes)
 275{
 276	int			free_bytes;
 277	int			error = 0;
 278
 279	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 280
 281	/*
 282	 * If there are other waiters on the queue then give them a chance at
 283	 * logspace before us.  Wake up the first waiters, if we do not wake
 284	 * up all the waiters then go to sleep waiting for more free space,
 285	 * otherwise try to get some space for this transaction.
 286	 */
 287	*need_bytes = xlog_ticket_reservation(log, head, tic);
 288	free_bytes = xlog_space_left(log, &head->grant);
 289	if (!list_empty_careful(&head->waiters)) {
 290		spin_lock(&head->lock);
 291		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 292		    free_bytes < *need_bytes) {
 293			error = xlog_grant_head_wait(log, head, tic,
 294						     *need_bytes);
 295		}
 296		spin_unlock(&head->lock);
 297	} else if (free_bytes < *need_bytes) {
 298		spin_lock(&head->lock);
 299		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 300		spin_unlock(&head->lock);
 301	}
 302
 303	return error;
 304}
 305
 306static void
 307xlog_tic_reset_res(xlog_ticket_t *tic)
 
 308{
 309	tic->t_res_num = 0;
 310	tic->t_res_arr_sum = 0;
 311	tic->t_res_num_ophdrs = 0;
 312}
 313
 314static void
 315xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 316{
 317	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 318		/* add to overflow and start again */
 319		tic->t_res_o_flow += tic->t_res_arr_sum;
 320		tic->t_res_num = 0;
 321		tic->t_res_arr_sum = 0;
 322	}
 323
 324	tic->t_res_arr[tic->t_res_num].r_len = len;
 325	tic->t_res_arr[tic->t_res_num].r_type = type;
 326	tic->t_res_arr_sum += len;
 327	tic->t_res_num++;
 328}
 329
 330/*
 331 * Replenish the byte reservation required by moving the grant write head.
 332 */
 333int
 334xfs_log_regrant(
 335	struct xfs_mount	*mp,
 336	struct xlog_ticket	*tic)
 337{
 338	struct xlog		*log = mp->m_log;
 339	int			need_bytes;
 340	int			error = 0;
 341
 342	if (XLOG_FORCED_SHUTDOWN(log))
 343		return XFS_ERROR(EIO);
 344
 345	XFS_STATS_INC(xs_try_logspace);
 346
 347	/*
 348	 * This is a new transaction on the ticket, so we need to change the
 349	 * transaction ID so that the next transaction has a different TID in
 350	 * the log. Just add one to the existing tid so that we can see chains
 351	 * of rolling transactions in the log easily.
 352	 */
 353	tic->t_tid++;
 354
 355	xlog_grant_push_ail(log, tic->t_unit_res);
 356
 357	tic->t_curr_res = tic->t_unit_res;
 358	xlog_tic_reset_res(tic);
 359
 360	if (tic->t_cnt > 0)
 361		return 0;
 362
 363	trace_xfs_log_regrant(log, tic);
 364
 365	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 366				      &need_bytes);
 367	if (error)
 368		goto out_error;
 369
 370	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 371	trace_xfs_log_regrant_exit(log, tic);
 372	xlog_verify_grant_tail(log);
 373	return 0;
 374
 375out_error:
 376	/*
 377	 * If we are failing, make sure the ticket doesn't have any current
 378	 * reservations.  We don't want to add this back when the ticket/
 379	 * transaction gets cancelled.
 380	 */
 381	tic->t_curr_res = 0;
 382	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 383	return error;
 384}
 385
 386/*
 387 * Reserve log space and return a ticket corresponding the reservation.
 388 *
 389 * Each reservation is going to reserve extra space for a log record header.
 390 * When writes happen to the on-disk log, we don't subtract the length of the
 391 * log record header from any reservation.  By wasting space in each
 392 * reservation, we prevent over allocation problems.
 393 */
 394int
 395xfs_log_reserve(
 396	struct xfs_mount	*mp,
 397	int		 	unit_bytes,
 398	int		 	cnt,
 399	struct xlog_ticket	**ticp,
 400	__uint8_t	 	client,
 401	bool			permanent,
 402	uint		 	t_type)
 403{
 404	struct xlog		*log = mp->m_log;
 405	struct xlog_ticket	*tic;
 406	int			need_bytes;
 407	int			error = 0;
 408
 409	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 
 410
 411	if (XLOG_FORCED_SHUTDOWN(log))
 412		return XFS_ERROR(EIO);
 413
 414	XFS_STATS_INC(xs_try_logspace);
 415
 416	ASSERT(*ticp == NULL);
 417	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 418				KM_SLEEP | KM_MAYFAIL);
 419	if (!tic)
 420		return XFS_ERROR(ENOMEM);
 421
 422	tic->t_trans_type = t_type;
 423	*ticp = tic;
 424
 425	xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
 426
 427	trace_xfs_log_reserve(log, tic);
 428
 429	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 430				      &need_bytes);
 431	if (error)
 432		goto out_error;
 433
 434	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 436	trace_xfs_log_reserve_exit(log, tic);
 437	xlog_verify_grant_tail(log);
 438	return 0;
 439
 440out_error:
 441	/*
 442	 * If we are failing, make sure the ticket doesn't have any current
 443	 * reservations.  We don't want to add this back when the ticket/
 444	 * transaction gets cancelled.
 445	 */
 446	tic->t_curr_res = 0;
 447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 448	return error;
 449}
 450
 451
 452/*
 453 * NOTES:
 454 *
 455 *	1. currblock field gets updated at startup and after in-core logs
 456 *		marked as with WANT_SYNC.
 
 
 
 
 
 
 
 
 457 */
 458
 459/*
 460 * This routine is called when a user of a log manager ticket is done with
 461 * the reservation.  If the ticket was ever used, then a commit record for
 462 * the associated transaction is written out as a log operation header with
 463 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 464 * a given ticket.  If the ticket was one with a permanent reservation, then
 465 * a few operations are done differently.  Permanent reservation tickets by
 466 * default don't release the reservation.  They just commit the current
 467 * transaction with the belief that the reservation is still needed.  A flag
 468 * must be passed in before permanent reservations are actually released.
 469 * When these type of tickets are not released, they need to be set into
 470 * the inited state again.  By doing this, a start record will be written
 471 * out when the next write occurs.
 472 */
 473xfs_lsn_t
 474xfs_log_done(
 475	struct xfs_mount	*mp,
 476	struct xlog_ticket	*ticket,
 477	struct xlog_in_core	**iclog,
 478	uint			flags)
 479{
 480	struct xlog		*log = mp->m_log;
 481	xfs_lsn_t		lsn = 0;
 482
 483	if (XLOG_FORCED_SHUTDOWN(log) ||
 484	    /*
 485	     * If nothing was ever written, don't write out commit record.
 486	     * If we get an error, just continue and give back the log ticket.
 487	     */
 488	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 489	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 490		lsn = (xfs_lsn_t) -1;
 491		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
 492			flags |= XFS_LOG_REL_PERM_RESERV;
 493		}
 494	}
 
 495
 
 496
 497	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
 498	    (flags & XFS_LOG_REL_PERM_RESERV)) {
 499		trace_xfs_log_done_nonperm(log, ticket);
 500
 501		/*
 502		 * Release ticket if not permanent reservation or a specific
 503		 * request has been made to release a permanent reservation.
 504		 */
 505		xlog_ungrant_log_space(log, ticket);
 506		xfs_log_ticket_put(ticket);
 507	} else {
 508		trace_xfs_log_done_perm(log, ticket);
 509
 510		xlog_regrant_reserve_log_space(log, ticket);
 511		/* If this ticket was a permanent reservation and we aren't
 512		 * trying to release it, reset the inited flags; so next time
 513		 * we write, a start record will be written out.
 514		 */
 515		ticket->t_flags |= XLOG_TIC_INITED;
 516	}
 517
 518	return lsn;
 519}
 520
 521/*
 522 * Attaches a new iclog I/O completion callback routine during
 523 * transaction commit.  If the log is in error state, a non-zero
 524 * return code is handed back and the caller is responsible for
 525 * executing the callback at an appropriate time.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526 */
 527int
 528xfs_log_notify(
 529	struct xfs_mount	*mp,
 530	struct xlog_in_core	*iclog,
 531	xfs_log_callback_t	*cb)
 532{
 533	int	abortflg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535	spin_lock(&iclog->ic_callback_lock);
 536	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 537	if (!abortflg) {
 538		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 539			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 540		cb->cb_next = NULL;
 541		*(iclog->ic_callback_tail) = cb;
 542		iclog->ic_callback_tail = &(cb->cb_next);
 
 
 
 543	}
 544	spin_unlock(&iclog->ic_callback_lock);
 545	return abortflg;
 546}
 547
 548int
 549xfs_log_release_iclog(
 550	struct xfs_mount	*mp,
 551	struct xlog_in_core	*iclog)
 552{
 553	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 554		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 555		return EIO;
 556	}
 557
 
 
 
 
 
 
 
 558	return 0;
 559}
 560
 561/*
 562 * Mount a log filesystem
 563 *
 564 * mp		- ubiquitous xfs mount point structure
 565 * log_target	- buftarg of on-disk log device
 566 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 567 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 568 *
 569 * Return error or zero.
 570 */
 571int
 572xfs_log_mount(
 573	xfs_mount_t	*mp,
 574	xfs_buftarg_t	*log_target,
 575	xfs_daddr_t	blk_offset,
 576	int		num_bblks)
 577{
 578	int		error;
 579
 580	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 581		xfs_notice(mp, "Mounting Filesystem");
 582	else {
 
 
 
 
 583		xfs_notice(mp,
 584"Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
 585		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 
 586	}
 587
 588	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 589	if (IS_ERR(mp->m_log)) {
 590		error = -PTR_ERR(mp->m_log);
 591		goto out;
 592	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593
 594	/*
 595	 * Initialize the AIL now we have a log.
 596	 */
 597	error = xfs_trans_ail_init(mp);
 598	if (error) {
 599		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 600		goto out_free_log;
 601	}
 602	mp->m_log->l_ailp = mp->m_ail;
 603
 604	/*
 605	 * skip log recovery on a norecovery mount.  pretend it all
 606	 * just worked.
 607	 */
 608	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 609		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 610
 611		if (readonly)
 612			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 613
 614		error = xlog_recover(mp->m_log);
 615
 616		if (readonly)
 617			mp->m_flags |= XFS_MOUNT_RDONLY;
 618		if (error) {
 619			xfs_warn(mp, "log mount/recovery failed: error %d",
 620				error);
 
 621			goto out_destroy_ail;
 622		}
 623	}
 624
 
 
 
 
 
 625	/* Normal transactions can now occur */
 626	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 627
 628	/*
 629	 * Now the log has been fully initialised and we know were our
 630	 * space grant counters are, we can initialise the permanent ticket
 631	 * needed for delayed logging to work.
 632	 */
 633	xlog_cil_init_post_recovery(mp->m_log);
 634
 635	return 0;
 636
 637out_destroy_ail:
 638	xfs_trans_ail_destroy(mp);
 639out_free_log:
 640	xlog_dealloc_log(mp->m_log);
 641out:
 642	return error;
 643}
 644
 645/*
 646 * Finish the recovery of the file system.  This is separate from
 647 * the xfs_log_mount() call, because it depends on the code in
 648 * xfs_mountfs() to read in the root and real-time bitmap inodes
 649 * between calling xfs_log_mount() and here.
 650 *
 651 * mp		- ubiquitous xfs mount point structure
 
 
 652 */
 653int
 654xfs_log_mount_finish(xfs_mount_t *mp)
 
 655{
 656	int	error;
 
 657
 658	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 659		error = xlog_recover_finish(mp->m_log);
 660	else {
 661		error = 0;
 662		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 663	}
 664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	return error;
 666}
 667
 668/*
 669 * Final log writes as part of unmount.
 670 *
 671 * Mark the filesystem clean as unmount happens.  Note that during relocation
 672 * this routine needs to be executed as part of source-bag while the
 673 * deallocation must not be done until source-end.
 
 
 
 
 
 
 
 
 
 674 */
 
 
 
 
 
 
 
 
 
 
 675
 676/*
 677 * Unmount record used to have a string "Unmount filesystem--" in the
 678 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 679 * We just write the magic number now since that particular field isn't
 680 * currently architecture converted and "nUmount" is a bit foo.
 681 * As far as I know, there weren't any dependencies on the old behaviour.
 682 */
 
 
 
 
 
 
 
 
 
 
 
 
 683
 
 
 
 
 
 
 684int
 685xfs_log_unmount_write(xfs_mount_t *mp)
 
 
 686{
 687	xlog_t		 *log = mp->m_log;
 688	xlog_in_core_t	 *iclog;
 689#ifdef DEBUG
 690	xlog_in_core_t	 *first_iclog;
 691#endif
 692	xlog_ticket_t	*tic = NULL;
 693	xfs_lsn_t	 lsn;
 694	int		 error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695
 
 696	/*
 697	 * Don't write out unmount record on read-only mounts.
 698	 * Or, if we are doing a forced umount (typically because of IO errors).
 699	 */
 700	if (mp->m_flags & XFS_MOUNT_RDONLY)
 701		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 702
 703	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 704	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 
 
 
 705
 706#ifdef DEBUG
 707	first_iclog = iclog = log->l_iclog;
 708	do {
 709		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 710			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 711			ASSERT(iclog->ic_offset == 0);
 712		}
 713		iclog = iclog->ic_next;
 714	} while (iclog != first_iclog);
 715#endif
 716	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 717		error = xfs_log_reserve(mp, 600, 1, &tic,
 718					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 719		if (!error) {
 720			/* the data section must be 32 bit size aligned */
 721			struct {
 722			    __uint16_t magic;
 723			    __uint16_t pad1;
 724			    __uint32_t pad2; /* may as well make it 64 bits */
 725			} magic = {
 726				.magic = XLOG_UNMOUNT_TYPE,
 727			};
 728			struct xfs_log_iovec reg = {
 729				.i_addr = &magic,
 730				.i_len = sizeof(magic),
 731				.i_type = XLOG_REG_TYPE_UNMOUNT,
 732			};
 733			struct xfs_log_vec vec = {
 734				.lv_niovecs = 1,
 735				.lv_iovecp = &reg,
 736			};
 737
 738			/* remove inited flag, and account for space used */
 739			tic->t_flags = 0;
 740			tic->t_curr_res -= sizeof(magic);
 741			error = xlog_write(log, &vec, tic, &lsn,
 742					   NULL, XLOG_UNMOUNT_TRANS);
 743			/*
 744			 * At this point, we're umounting anyway,
 745			 * so there's no point in transitioning log state
 746			 * to IOERROR. Just continue...
 747			 */
 748		}
 749
 750		if (error)
 751			xfs_alert(mp, "%s: unmount record failed", __func__);
 
 
 
 
 
 
 
 
 
 
 752
 
 
 753
 754		spin_lock(&log->l_icloglock);
 755		iclog = log->l_iclog;
 756		atomic_inc(&iclog->ic_refcnt);
 757		xlog_state_want_sync(log, iclog);
 758		spin_unlock(&log->l_icloglock);
 759		error = xlog_state_release_iclog(log, iclog);
 760
 761		spin_lock(&log->l_icloglock);
 762		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 763		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 764			if (!XLOG_FORCED_SHUTDOWN(log)) {
 765				xlog_wait(&iclog->ic_force_wait,
 766							&log->l_icloglock);
 767			} else {
 768				spin_unlock(&log->l_icloglock);
 769			}
 770		} else {
 771			spin_unlock(&log->l_icloglock);
 772		}
 773		if (tic) {
 774			trace_xfs_log_umount_write(log, tic);
 775			xlog_ungrant_log_space(log, tic);
 776			xfs_log_ticket_put(tic);
 777		}
 778	} else {
 779		/*
 780		 * We're already in forced_shutdown mode, couldn't
 781		 * even attempt to write out the unmount transaction.
 782		 *
 783		 * Go through the motions of sync'ing and releasing
 784		 * the iclog, even though no I/O will actually happen,
 785		 * we need to wait for other log I/Os that may already
 786		 * be in progress.  Do this as a separate section of
 787		 * code so we'll know if we ever get stuck here that
 788		 * we're in this odd situation of trying to unmount
 789		 * a file system that went into forced_shutdown as
 790		 * the result of an unmount..
 791		 */
 792		spin_lock(&log->l_icloglock);
 793		iclog = log->l_iclog;
 794		atomic_inc(&iclog->ic_refcnt);
 795
 796		xlog_state_want_sync(log, iclog);
 797		spin_unlock(&log->l_icloglock);
 798		error =  xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 
 
 
 799
 800		spin_lock(&log->l_icloglock);
 
 
 801
 802		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 803			|| iclog->ic_state == XLOG_STATE_DIRTY
 804			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806				xlog_wait(&iclog->ic_force_wait,
 807							&log->l_icloglock);
 808		} else {
 809			spin_unlock(&log->l_icloglock);
 810		}
 811	}
 812
 813	return error;
 814}	/* xfs_log_unmount_write */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815
 816/*
 817 * Deallocate log structures for unmount/relocation.
 818 *
 819 * We need to stop the aild from running before we destroy
 820 * and deallocate the log as the aild references the log.
 
 821 */
 822void
 823xfs_log_unmount(xfs_mount_t *mp)
 
 824{
 825	cancel_delayed_work_sync(&mp->m_sync_work);
 
 
 
 
 
 
 
 
 
 
 
 826	xfs_trans_ail_destroy(mp);
 
 
 
 827	xlog_dealloc_log(mp->m_log);
 828}
 829
 830void
 831xfs_log_item_init(
 832	struct xfs_mount	*mp,
 833	struct xfs_log_item	*item,
 834	int			type,
 835	const struct xfs_item_ops *ops)
 836{
 837	item->li_mountp = mp;
 838	item->li_ailp = mp->m_ail;
 839	item->li_type = type;
 840	item->li_ops = ops;
 841	item->li_lv = NULL;
 842
 843	INIT_LIST_HEAD(&item->li_ail);
 844	INIT_LIST_HEAD(&item->li_cil);
 
 
 845}
 846
 847/*
 848 * Wake up processes waiting for log space after we have moved the log tail.
 849 */
 850void
 851xfs_log_space_wake(
 852	struct xfs_mount	*mp)
 853{
 854	struct xlog		*log = mp->m_log;
 855	int			free_bytes;
 856
 857	if (XLOG_FORCED_SHUTDOWN(log))
 858		return;
 859
 860	if (!list_empty_careful(&log->l_write_head.waiters)) {
 861		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 862
 863		spin_lock(&log->l_write_head.lock);
 864		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
 865		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
 866		spin_unlock(&log->l_write_head.lock);
 867	}
 868
 869	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
 870		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 871
 872		spin_lock(&log->l_reserve_head.lock);
 873		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
 874		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
 875		spin_unlock(&log->l_reserve_head.lock);
 876	}
 877}
 878
 879/*
 880 * Determine if we have a transaction that has gone to disk
 881 * that needs to be covered. To begin the transition to the idle state
 882 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
 883 * If we are then in a state where covering is needed, the caller is informed
 884 * that dummy transactions are required to move the log into the idle state.
 885 *
 886 * Because this is called as part of the sync process, we should also indicate
 887 * that dummy transactions should be issued in anything but the covered or
 888 * idle states. This ensures that the log tail is accurately reflected in
 889 * the log at the end of the sync, hence if a crash occurrs avoids replay
 890 * of transactions where the metadata is already on disk.
 
 
 
 
 891 */
 892int
 893xfs_log_need_covered(xfs_mount_t *mp)
 
 894{
 895	int		needed = 0;
 896	xlog_t		*log = mp->m_log;
 897
 898	if (!xfs_fs_writable(mp))
 899		return 0;
 900
 901	spin_lock(&log->l_icloglock);
 902	switch (log->l_covered_state) {
 903	case XLOG_STATE_COVER_DONE:
 904	case XLOG_STATE_COVER_DONE2:
 905	case XLOG_STATE_COVER_IDLE:
 906		break;
 907	case XLOG_STATE_COVER_NEED:
 908	case XLOG_STATE_COVER_NEED2:
 909		if (!xfs_ail_min_lsn(log->l_ailp) &&
 910		    xlog_iclogs_empty(log)) {
 911			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
 912				log->l_covered_state = XLOG_STATE_COVER_DONE;
 913			else
 914				log->l_covered_state = XLOG_STATE_COVER_DONE2;
 915		}
 916		/* FALLTHRU */
 
 
 
 917	default:
 918		needed = 1;
 919		break;
 920	}
 921	spin_unlock(&log->l_icloglock);
 922	return needed;
 923}
 924
 925/*
 926 * We may be holding the log iclog lock upon entering this routine.
 
 
 
 927 */
 928xfs_lsn_t
 929xlog_assign_tail_lsn_locked(
 930	struct xfs_mount	*mp)
 931{
 932	struct xlog		*log = mp->m_log;
 933	struct xfs_log_item	*lip;
 934	xfs_lsn_t		tail_lsn;
 
 
 
 935
 936	assert_spin_locked(&mp->m_ail->xa_lock);
 
 937
 938	/*
 939	 * To make sure we always have a valid LSN for the log tail we keep
 940	 * track of the last LSN which was committed in log->l_last_sync_lsn,
 941	 * and use that when the AIL was empty.
 
 
 
 
 
 
 942	 */
 943	lip = xfs_ail_min(mp->m_ail);
 944	if (lip)
 945		tail_lsn = lip->li_lsn;
 946	else
 947		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
 948	atomic64_set(&log->l_tail_lsn, tail_lsn);
 949	return tail_lsn;
 950}
 951
 952xfs_lsn_t
 953xlog_assign_tail_lsn(
 954	struct xfs_mount	*mp)
 955{
 956	xfs_lsn_t		tail_lsn;
 
 
 
 
 
 
 
 
 
 
 957
 958	spin_lock(&mp->m_ail->xa_lock);
 959	tail_lsn = xlog_assign_tail_lsn_locked(mp);
 960	spin_unlock(&mp->m_ail->xa_lock);
 961
 962	return tail_lsn;
 963}
 964
 965/*
 966 * Return the space in the log between the tail and the head.  The head
 967 * is passed in the cycle/bytes formal parms.  In the special case where
 968 * the reserve head has wrapped passed the tail, this calculation is no
 969 * longer valid.  In this case, just return 0 which means there is no space
 970 * in the log.  This works for all places where this function is called
 971 * with the reserve head.  Of course, if the write head were to ever
 972 * wrap the tail, we should blow up.  Rather than catch this case here,
 973 * we depend on other ASSERTions in other parts of the code.   XXXmiken
 974 *
 975 * This code also handles the case where the reservation head is behind
 976 * the tail.  The details of this case are described below, but the end
 977 * result is that we return the size of the log as the amount of space left.
 978 */
 979STATIC int
 980xlog_space_left(
 981	struct xlog	*log,
 982	atomic64_t	*head)
 983{
 984	int		free_bytes;
 985	int		tail_bytes;
 986	int		tail_cycle;
 987	int		head_cycle;
 988	int		head_bytes;
 989
 990	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
 991	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
 992	tail_bytes = BBTOB(tail_bytes);
 993	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
 994		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
 995	else if (tail_cycle + 1 < head_cycle)
 996		return 0;
 997	else if (tail_cycle < head_cycle) {
 998		ASSERT(tail_cycle == (head_cycle - 1));
 999		free_bytes = tail_bytes - head_bytes;
1000	} else {
1001		/*
1002		 * The reservation head is behind the tail.
1003		 * In this case we just want to return the size of the
1004		 * log as the amount of space left.
1005		 */
1006		xfs_alert(log->l_mp,
1007			"xlog_space_left: head behind tail\n"
1008			"  tail_cycle = %d, tail_bytes = %d\n"
1009			"  GH   cycle = %d, GH   bytes = %d",
1010			tail_cycle, tail_bytes, head_cycle, head_bytes);
1011		ASSERT(0);
1012		free_bytes = log->l_logsize;
1013	}
1014	return free_bytes;
1015}
1016
1017
1018/*
1019 * Log function which is called when an io completes.
1020 *
1021 * The log manager needs its own routine, in order to control what
1022 * happens with the buffer after the write completes.
1023 */
1024void
1025xlog_iodone(xfs_buf_t *bp)
1026{
1027	xlog_in_core_t	*iclog = bp->b_fspriv;
1028	xlog_t		*l = iclog->ic_log;
1029	int		aborted = 0;
1030
1031	/*
1032	 * Race to shutdown the filesystem if we see an error.
1033	 */
1034	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1035			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1036		xfs_buf_ioerror_alert(bp, __func__);
1037		xfs_buf_stale(bp);
1038		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1039		/*
1040		 * This flag will be propagated to the trans-committed
1041		 * callback routines to let them know that the log-commit
1042		 * didn't succeed.
1043		 */
1044		aborted = XFS_LI_ABORTED;
1045	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1046		aborted = XFS_LI_ABORTED;
1047	}
1048
1049	/* log I/O is always issued ASYNC */
1050	ASSERT(XFS_BUF_ISASYNC(bp));
1051	xlog_state_done_syncing(iclog, aborted);
1052	/*
1053	 * do not reference the buffer (bp) here as we could race
1054	 * with it being freed after writing the unmount record to the
1055	 * log.
 
1056	 */
1057
1058}	/* xlog_iodone */
1059
1060/*
1061 * Return size of each in-core log record buffer.
1062 *
1063 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1064 *
1065 * If the filesystem blocksize is too large, we may need to choose a
1066 * larger size since the directory code currently logs entire blocks.
1067 */
1068
1069STATIC void
1070xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
1071			   xlog_t	*log)
 
1072{
1073	int size;
1074	int xhdrs;
 
 
1075
1076	if (mp->m_logbufs <= 0)
1077		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1078	else
1079		log->l_iclog_bufs = mp->m_logbufs;
1080
1081	/*
1082	 * Buffer size passed in from mount system call.
1083	 */
1084	if (mp->m_logbsize > 0) {
1085		size = log->l_iclog_size = mp->m_logbsize;
1086		log->l_iclog_size_log = 0;
1087		while (size != 1) {
1088			log->l_iclog_size_log++;
1089			size >>= 1;
1090		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
1092		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1093			/* # headers = size / 32k
1094			 * one header holds cycles from 32k of data
1095			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1096
1097			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1098			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1099				xhdrs++;
1100			log->l_iclog_hsize = xhdrs << BBSHIFT;
1101			log->l_iclog_heads = xhdrs;
1102		} else {
1103			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1104			log->l_iclog_hsize = BBSIZE;
1105			log->l_iclog_heads = 1;
1106		}
1107		goto done;
1108	}
1109
1110	/* All machines use 32kB buffers by default. */
1111	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1112	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1113
1114	/* the default log size is 16k or 32k which is one header sector */
1115	log->l_iclog_hsize = BBSIZE;
1116	log->l_iclog_heads = 1;
1117
1118done:
1119	/* are we being asked to make the sizes selected above visible? */
1120	if (mp->m_logbufs == 0)
1121		mp->m_logbufs = log->l_iclog_bufs;
1122	if (mp->m_logbsize == 0)
1123		mp->m_logbsize = log->l_iclog_size;
1124}	/* xlog_get_iclog_buffer_size */
1125
 
 
 
1126
1127/*
1128 * This routine initializes some of the log structure for a given mount point.
1129 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1130 * some other stuff may be filled in too.
1131 */
1132STATIC xlog_t *
1133xlog_alloc_log(xfs_mount_t	*mp,
1134	       xfs_buftarg_t	*log_target,
1135	       xfs_daddr_t	blk_offset,
1136	       int		num_bblks)
 
1137{
1138	xlog_t			*log;
1139	xlog_rec_header_t	*head;
1140	xlog_in_core_t		**iclogp;
1141	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1142	xfs_buf_t		*bp;
1143	int			i;
1144	int			error = ENOMEM;
1145	uint			log2_size = 0;
1146
1147	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1148	if (!log) {
1149		xfs_warn(mp, "Log allocation failed: No memory!");
1150		goto out;
1151	}
1152
1153	log->l_mp	   = mp;
1154	log->l_targ	   = log_target;
1155	log->l_logsize     = BBTOB(num_bblks);
1156	log->l_logBBstart  = blk_offset;
1157	log->l_logBBsize   = num_bblks;
1158	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1159	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
 
 
1160
1161	log->l_prev_block  = -1;
1162	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1163	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1164	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1165	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1166
 
 
 
 
 
1167	xlog_grant_head_init(&log->l_reserve_head);
1168	xlog_grant_head_init(&log->l_write_head);
1169
1170	error = EFSCORRUPTED;
1171	if (xfs_sb_version_hassector(&mp->m_sb)) {
1172	        log2_size = mp->m_sb.sb_logsectlog;
1173		if (log2_size < BBSHIFT) {
1174			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1175				log2_size, BBSHIFT);
1176			goto out_free_log;
1177		}
1178
1179	        log2_size -= BBSHIFT;
1180		if (log2_size > mp->m_sectbb_log) {
1181			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1182				log2_size, mp->m_sectbb_log);
1183			goto out_free_log;
1184		}
1185
1186		/* for larger sector sizes, must have v2 or external log */
1187		if (log2_size && log->l_logBBstart > 0 &&
1188			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1189			xfs_warn(mp,
1190		"log sector size (0x%x) invalid for configuration.",
1191				log2_size);
1192			goto out_free_log;
1193		}
1194	}
1195	log->l_sectBBsize = 1 << log2_size;
1196
1197	xlog_get_iclog_buffer_size(mp, log);
1198
1199	error = ENOMEM;
1200	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1201	if (!bp)
1202		goto out_free_log;
1203	bp->b_iodone = xlog_iodone;
1204	ASSERT(xfs_buf_islocked(bp));
1205	log->l_xbuf = bp;
1206
1207	spin_lock_init(&log->l_icloglock);
1208	init_waitqueue_head(&log->l_flush_wait);
1209
1210	iclogp = &log->l_iclog;
1211	/*
1212	 * The amount of memory to allocate for the iclog structure is
1213	 * rather funky due to the way the structure is defined.  It is
1214	 * done this way so that we can use different sizes for machines
1215	 * with different amounts of memory.  See the definition of
1216	 * xlog_in_core_t in xfs_log_priv.h for details.
1217	 */
1218	ASSERT(log->l_iclog_size >= 4096);
1219	for (i=0; i < log->l_iclog_bufs; i++) {
1220		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1221		if (!*iclogp)
 
 
 
 
1222			goto out_free_iclog;
1223
1224		iclog = *iclogp;
1225		iclog->ic_prev = prev_iclog;
1226		prev_iclog = iclog;
1227
1228		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1229						BTOBB(log->l_iclog_size), 0);
1230		if (!bp)
1231			goto out_free_iclog;
1232
1233		bp->b_iodone = xlog_iodone;
1234		iclog->ic_bp = bp;
1235		iclog->ic_data = bp->b_addr;
1236#ifdef DEBUG
1237		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1238#endif
1239		head = &iclog->ic_header;
1240		memset(head, 0, sizeof(xlog_rec_header_t));
1241		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1242		head->h_version = cpu_to_be32(
1243			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1244		head->h_size = cpu_to_be32(log->l_iclog_size);
1245		/* new fields */
1246		head->h_fmt = cpu_to_be32(XLOG_FMT);
1247		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1248
1249		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1250		iclog->ic_state = XLOG_STATE_ACTIVE;
1251		iclog->ic_log = log;
1252		atomic_set(&iclog->ic_refcnt, 0);
1253		spin_lock_init(&iclog->ic_callback_lock);
1254		iclog->ic_callback_tail = &(iclog->ic_callback);
1255		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1256
1257		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1258		init_waitqueue_head(&iclog->ic_force_wait);
1259		init_waitqueue_head(&iclog->ic_write_wait);
 
 
1260
1261		iclogp = &iclog->ic_next;
1262	}
1263	*iclogp = log->l_iclog;			/* complete ring */
1264	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1265
 
 
 
 
 
 
 
1266	error = xlog_cil_init(log);
1267	if (error)
1268		goto out_free_iclog;
1269	return log;
1270
 
 
1271out_free_iclog:
1272	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1273		prev_iclog = iclog->ic_next;
1274		if (iclog->ic_bp)
1275			xfs_buf_free(iclog->ic_bp);
1276		kmem_free(iclog);
 
1277	}
1278	spinlock_destroy(&log->l_icloglock);
1279	xfs_buf_free(log->l_xbuf);
1280out_free_log:
1281	kmem_free(log);
1282out:
1283	return ERR_PTR(-error);
1284}	/* xlog_alloc_log */
1285
1286
1287/*
1288 * Write out the commit record of a transaction associated with the given
1289 * ticket.  Return the lsn of the commit record.
1290 */
1291STATIC int
1292xlog_commit_record(
1293	struct xlog		*log,
1294	struct xlog_ticket	*ticket,
1295	struct xlog_in_core	**iclog,
1296	xfs_lsn_t		*commitlsnp)
1297{
1298	struct xfs_mount *mp = log->l_mp;
1299	int	error;
1300	struct xfs_log_iovec reg = {
1301		.i_addr = NULL,
1302		.i_len = 0,
1303		.i_type = XLOG_REG_TYPE_COMMIT,
1304	};
1305	struct xfs_log_vec vec = {
1306		.lv_niovecs = 1,
1307		.lv_iovecp = &reg,
1308	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310	ASSERT_ALWAYS(iclog);
1311	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1312					XLOG_COMMIT_TRANS);
1313	if (error)
1314		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1315	return error;
1316}
1317
1318/*
1319 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1320 * log space.  This code pushes on the lsn which would supposedly free up
1321 * the 25% which we want to leave free.  We may need to adopt a policy which
1322 * pushes on an lsn which is further along in the log once we reach the high
1323 * water mark.  In this manner, we would be creating a low water mark.
1324 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325STATIC void
1326xlog_grant_push_ail(
1327	struct xlog	*log,
1328	int		need_bytes)
 
 
1329{
1330	xfs_lsn_t	threshold_lsn = 0;
1331	xfs_lsn_t	last_sync_lsn;
1332	int		free_blocks;
1333	int		free_bytes;
1334	int		threshold_block;
1335	int		threshold_cycle;
1336	int		free_threshold;
1337
1338	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1339
1340	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1341	free_blocks = BTOBBT(free_bytes);
1342
1343	/*
1344	 * Set the threshold for the minimum number of free blocks in the
1345	 * log to the maximum of what the caller needs, one quarter of the
1346	 * log, and 256 blocks.
1347	 */
1348	free_threshold = BTOBB(need_bytes);
1349	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1350	free_threshold = MAX(free_threshold, 256);
1351	if (free_blocks >= free_threshold)
1352		return;
1353
1354	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1355						&threshold_block);
1356	threshold_block += free_threshold;
1357	if (threshold_block >= log->l_logBBsize) {
1358		threshold_block -= log->l_logBBsize;
1359		threshold_cycle += 1;
 
 
 
 
 
 
 
 
 
 
 
 
1360	}
1361	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1362					threshold_block);
1363	/*
1364	 * Don't pass in an lsn greater than the lsn of the last
1365	 * log record known to be on disk. Use a snapshot of the last sync lsn
1366	 * so that it doesn't change between the compare and the set.
 
1367	 */
1368	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1369	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1370		threshold_lsn = last_sync_lsn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372	/*
1373	 * Get the transaction layer to kick the dirty buffers out to
1374	 * disk asynchronously. No point in trying to do this if
1375	 * the filesystem is shutting down.
1376	 */
1377	if (!XLOG_FORCED_SHUTDOWN(log))
1378		xfs_ail_push(log->l_ailp, threshold_lsn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379}
1380
1381/*
1382 * The bdstrat callback function for log bufs. This gives us a central
1383 * place to trap bufs in case we get hit by a log I/O error and need to
1384 * shutdown. Actually, in practice, even when we didn't get a log error,
1385 * we transition the iclogs to IOERROR state *after* flushing all existing
1386 * iclogs to disk. This is because we don't want anymore new transactions to be
1387 * started or completed afterwards.
1388 */
1389STATIC int
1390xlog_bdstrat(
1391	struct xfs_buf		*bp)
 
 
 
1392{
1393	struct xlog_in_core	*iclog = bp->b_fspriv;
 
 
 
 
1394
1395	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1396		xfs_buf_ioerror(bp, EIO);
1397		xfs_buf_stale(bp);
1398		xfs_buf_ioend(bp, 0);
1399		/*
1400		 * It would seem logical to return EIO here, but we rely on
1401		 * the log state machine to propagate I/O errors instead of
1402		 * doing it here.
1403		 */
1404		return 0;
1405	}
 
1406
1407	xfs_buf_iorequest(bp);
1408	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409}
1410
1411/*
1412 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1413 * fashion.  Previously, we should have moved the current iclog
1414 * ptr in the log to point to the next available iclog.  This allows further
1415 * write to continue while this code syncs out an iclog ready to go.
1416 * Before an in-core log can be written out, the data section must be scanned
1417 * to save away the 1st word of each BBSIZE block into the header.  We replace
1418 * it with the current cycle count.  Each BBSIZE block is tagged with the
1419 * cycle count because there in an implicit assumption that drives will
1420 * guarantee that entire 512 byte blocks get written at once.  In other words,
1421 * we can't have part of a 512 byte block written and part not written.  By
1422 * tagging each block, we will know which blocks are valid when recovering
1423 * after an unclean shutdown.
1424 *
1425 * This routine is single threaded on the iclog.  No other thread can be in
1426 * this routine with the same iclog.  Changing contents of iclog can there-
1427 * fore be done without grabbing the state machine lock.  Updating the global
1428 * log will require grabbing the lock though.
1429 *
1430 * The entire log manager uses a logical block numbering scheme.  Only
1431 * log_sync (and then only bwrite()) know about the fact that the log may
1432 * not start with block zero on a given device.  The log block start offset
1433 * is added immediately before calling bwrite().
1434 */
1435
1436STATIC int
1437xlog_sync(xlog_t		*log,
1438	  xlog_in_core_t	*iclog)
 
1439{
1440	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1441	xfs_buf_t	*bp;
1442	int		i;
1443	uint		count;		/* byte count of bwrite */
1444	uint		count_init;	/* initial count before roundup */
1445	int		roundoff;       /* roundoff to BB or stripe */
1446	int		split = 0;	/* split write into two regions */
1447	int		error;
1448	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1449
1450	XFS_STATS_INC(xs_log_writes);
1451	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
 
1452
1453	/* Add for LR header */
1454	count_init = log->l_iclog_hsize + iclog->ic_offset;
1455
1456	/* Round out the log write size */
1457	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1458		/* we have a v2 stripe unit to use */
1459		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
 
 
 
1460	} else {
1461		count = BBTOB(BTOBB(count_init));
 
1462	}
1463	roundoff = count - count_init;
1464	ASSERT(roundoff >= 0);
1465	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1466                roundoff < log->l_mp->m_sb.sb_logsunit)
1467		|| 
1468		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1469		 roundoff < BBTOB(1)));
1470
1471	/* move grant heads by roundoff in sync */
1472	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1473	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1474
1475	/* put cycle number in every block */
1476	xlog_pack_data(log, iclog, roundoff); 
1477
1478	/* real byte length */
1479	if (v2) {
1480		iclog->ic_header.h_len =
1481			cpu_to_be32(iclog->ic_offset + roundoff);
1482	} else {
1483		iclog->ic_header.h_len =
1484			cpu_to_be32(iclog->ic_offset);
1485	}
1486
1487	bp = iclog->ic_bp;
1488	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1489
1490	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1491
1492	/* Do we need to split this write into 2 parts? */
1493	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1494		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1495		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1496		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1497	} else {
1498		iclog->ic_bwritecnt = 1;
1499	}
1500	bp->b_io_length = BTOBB(count);
1501	bp->b_fspriv = iclog;
1502	XFS_BUF_ZEROFLAGS(bp);
1503	XFS_BUF_ASYNC(bp);
1504	bp->b_flags |= XBF_SYNCIO;
1505
1506	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1507		bp->b_flags |= XBF_FUA;
1508
1509		/*
1510		 * Flush the data device before flushing the log to make
1511		 * sure all meta data written back from the AIL actually made
1512		 * it to disk before stamping the new log tail LSN into the
1513		 * log buffer.  For an external log we need to issue the
1514		 * flush explicitly, and unfortunately synchronously here;
1515		 * for an internal log we can simply use the block layer
1516		 * state machine for preflushes.
1517		 */
1518		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1519			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1520		else
1521			bp->b_flags |= XBF_FLUSH;
1522	}
1523
1524	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1525	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1526
1527	xlog_verify_iclog(log, iclog, count, B_TRUE);
1528
1529	/* account for log which doesn't start at block #0 */
1530	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1531	/*
1532	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1533	 * is shutting down.
1534	 */
1535	XFS_BUF_WRITE(bp);
1536
1537	error = xlog_bdstrat(bp);
1538	if (error) {
1539		xfs_buf_ioerror_alert(bp, "xlog_sync");
1540		return error;
 
1541	}
1542	if (split) {
1543		bp = iclog->ic_log->l_xbuf;
1544		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1545		xfs_buf_associate_memory(bp,
1546				(char *)&iclog->ic_header + count, split);
1547		bp->b_fspriv = iclog;
1548		XFS_BUF_ZEROFLAGS(bp);
1549		XFS_BUF_ASYNC(bp);
1550		bp->b_flags |= XBF_SYNCIO;
1551		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1552			bp->b_flags |= XBF_FUA;
1553		dptr = bp->b_addr;
1554		/*
1555		 * Bump the cycle numbers at the start of each block
1556		 * since this part of the buffer is at the start of
1557		 * a new cycle.  Watch out for the header magic number
1558		 * case, though.
1559		 */
1560		for (i = 0; i < split; i += BBSIZE) {
1561			be32_add_cpu((__be32 *)dptr, 1);
1562			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1563				be32_add_cpu((__be32 *)dptr, 1);
1564			dptr += BBSIZE;
1565		}
1566
1567		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1568		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1569
1570		/* account for internal log which doesn't start at block #0 */
1571		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1572		XFS_BUF_WRITE(bp);
1573		error = xlog_bdstrat(bp);
1574		if (error) {
1575			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1576			return error;
1577		}
1578	}
1579	return 0;
1580}	/* xlog_sync */
1581
1582
1583/*
1584 * Deallocate a log structure
1585 */
1586STATIC void
1587xlog_dealloc_log(xlog_t *log)
 
1588{
1589	xlog_in_core_t	*iclog, *next_iclog;
1590	int		i;
1591
1592	xlog_cil_destroy(log);
1593
1594	/*
1595	 * always need to ensure that the extra buffer does not point to memory
1596	 * owned by another log buffer before we free it.
 
1597	 */
1598	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1599	xfs_buf_free(log->l_xbuf);
1600
1601	iclog = log->l_iclog;
1602	for (i=0; i<log->l_iclog_bufs; i++) {
1603		xfs_buf_free(iclog->ic_bp);
1604		next_iclog = iclog->ic_next;
1605		kmem_free(iclog);
 
1606		iclog = next_iclog;
1607	}
1608	spinlock_destroy(&log->l_icloglock);
1609
1610	log->l_mp->m_log = NULL;
1611	kmem_free(log);
1612}	/* xlog_dealloc_log */
 
1613
1614/*
1615 * Update counters atomically now that memcpy is done.
1616 */
1617/* ARGSUSED */
1618static inline void
1619xlog_state_finish_copy(xlog_t		*log,
1620		       xlog_in_core_t	*iclog,
1621		       int		record_cnt,
1622		       int		copy_bytes)
 
1623{
1624	spin_lock(&log->l_icloglock);
1625
1626	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1627	iclog->ic_offset += copy_bytes;
1628
1629	spin_unlock(&log->l_icloglock);
1630}	/* xlog_state_finish_copy */
1631
1632
1633
1634
1635/*
1636 * print out info relating to regions written which consume
1637 * the reservation
1638 */
1639void
1640xlog_print_tic_res(
1641	struct xfs_mount	*mp,
1642	struct xlog_ticket	*ticket)
1643{
1644	uint i;
1645	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1646
1647	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1648	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1649	    "bformat",
1650	    "bchunk",
1651	    "efi_format",
1652	    "efd_format",
1653	    "iformat",
1654	    "icore",
1655	    "iext",
1656	    "ibroot",
1657	    "ilocal",
1658	    "iattr_ext",
1659	    "iattr_broot",
1660	    "iattr_local",
1661	    "qformat",
1662	    "dquot",
1663	    "quotaoff",
1664	    "LR header",
1665	    "unmount",
1666	    "commit",
1667	    "trans header"
1668	};
1669	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1670	    "SETATTR_NOT_SIZE",
1671	    "SETATTR_SIZE",
1672	    "INACTIVE",
1673	    "CREATE",
1674	    "CREATE_TRUNC",
1675	    "TRUNCATE_FILE",
1676	    "REMOVE",
1677	    "LINK",
1678	    "RENAME",
1679	    "MKDIR",
1680	    "RMDIR",
1681	    "SYMLINK",
1682	    "SET_DMATTRS",
1683	    "GROWFS",
1684	    "STRAT_WRITE",
1685	    "DIOSTRAT",
1686	    "WRITE_SYNC",
1687	    "WRITEID",
1688	    "ADDAFORK",
1689	    "ATTRINVAL",
1690	    "ATRUNCATE",
1691	    "ATTR_SET",
1692	    "ATTR_RM",
1693	    "ATTR_FLAG",
1694	    "CLEAR_AGI_BUCKET",
1695	    "QM_SBCHANGE",
1696	    "DUMMY1",
1697	    "DUMMY2",
1698	    "QM_QUOTAOFF",
1699	    "QM_DQALLOC",
1700	    "QM_SETQLIM",
1701	    "QM_DQCLUSTER",
1702	    "QM_QINOCREATE",
1703	    "QM_QUOTAOFF_END",
1704	    "SB_UNIT",
1705	    "FSYNC_TS",
1706	    "GROWFSRT_ALLOC",
1707	    "GROWFSRT_ZERO",
1708	    "GROWFSRT_FREE",
1709	    "SWAPEXT"
1710	};
1711
1712	xfs_warn(mp,
1713		"xlog_write: reservation summary:\n"
1714		"  trans type  = %s (%u)\n"
1715		"  unit res    = %d bytes\n"
1716		"  current res = %d bytes\n"
1717		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1718		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1719		"  ophdr + reg = %u bytes\n"
1720		"  num regions = %u\n",
1721		((ticket->t_trans_type <= 0 ||
1722		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1723		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1724		ticket->t_trans_type,
1725		ticket->t_unit_res,
1726		ticket->t_curr_res,
1727		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1728		ticket->t_res_num_ophdrs, ophdr_spc,
1729		ticket->t_res_arr_sum +
1730		ticket->t_res_o_flow + ophdr_spc,
1731		ticket->t_res_num);
1732
1733	for (i = 0; i < ticket->t_res_num; i++) {
1734		uint r_type = ticket->t_res_arr[i].r_type;
1735		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1736			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1737			    "bad-rtype" : res_type_str[r_type-1]),
1738			    ticket->t_res_arr[i].r_len);
1739	}
1740
1741	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1742		"xlog_write: reservation ran out. Need to up reservation");
1743	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1744}
1745
1746/*
1747 * Calculate the potential space needed by the log vector.  Each region gets
1748 * its own xlog_op_header_t and may need to be double word aligned.
1749 */
1750static int
1751xlog_write_calc_vec_length(
1752	struct xlog_ticket	*ticket,
1753	struct xfs_log_vec	*log_vector)
1754{
1755	struct xfs_log_vec	*lv;
1756	int			headers = 0;
1757	int			len = 0;
1758	int			i;
1759
1760	/* acct for start rec of xact */
1761	if (ticket->t_flags & XLOG_TIC_INITED)
1762		headers++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1763
1764	for (lv = log_vector; lv; lv = lv->lv_next) {
1765		headers += lv->lv_niovecs;
 
 
1766
1767		for (i = 0; i < lv->lv_niovecs; i++) {
1768			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
 
 
 
1769
1770			len += vecp->i_len;
1771			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1772		}
1773	}
 
1774
1775	ticket->t_res_num_ophdrs += headers;
1776	len += headers * sizeof(struct xlog_op_header);
1777
1778	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779}
1780
1781/*
1782 * If first write for transaction, insert start record  We can't be trying to
1783 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1784 */
1785static int
1786xlog_write_start_rec(
1787	struct xlog_op_header	*ophdr,
1788	struct xlog_ticket	*ticket)
 
 
 
 
 
1789{
1790	if (!(ticket->t_flags & XLOG_TIC_INITED))
1791		return 0;
1792
1793	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1794	ophdr->oh_clientid = ticket->t_clientid;
1795	ophdr->oh_len = 0;
1796	ophdr->oh_flags = XLOG_START_TRANS;
1797	ophdr->oh_res2 = 0;
1798
1799	ticket->t_flags &= ~XLOG_TIC_INITED;
 
 
 
 
 
 
1800
1801	return sizeof(struct xlog_op_header);
 
 
 
1802}
1803
1804static xlog_op_header_t *
1805xlog_write_setup_ophdr(
1806	struct xlog		*log,
1807	struct xlog_op_header	*ophdr,
1808	struct xlog_ticket	*ticket,
1809	uint			flags)
 
 
 
 
1810{
1811	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1812	ophdr->oh_clientid = ticket->t_clientid;
1813	ophdr->oh_res2 = 0;
1814
1815	/* are we copying a commit or unmount record? */
1816	ophdr->oh_flags = flags;
1817
1818	/*
1819	 * We've seen logs corrupted with bad transaction client ids.  This
1820	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1821	 * and shut down the filesystem.
1822	 */
1823	switch (ophdr->oh_clientid)  {
1824	case XFS_TRANSACTION:
1825	case XFS_VOLUME:
1826	case XFS_LOG:
1827		break;
1828	default:
1829		xfs_warn(log->l_mp,
1830			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1831			ophdr->oh_clientid, ticket);
1832		return NULL;
1833	}
1834
1835	return ophdr;
 
 
 
 
 
 
 
1836}
1837
1838/*
1839 * Set up the parameters of the region copy into the log. This has
1840 * to handle region write split across multiple log buffers - this
1841 * state is kept external to this function so that this code can
1842 * can be written in an obvious, self documenting manner.
1843 */
1844static int
1845xlog_write_setup_copy(
 
1846	struct xlog_ticket	*ticket,
1847	struct xlog_op_header	*ophdr,
1848	int			space_available,
1849	int			space_required,
1850	int			*copy_off,
1851	int			*copy_len,
1852	int			*last_was_partial_copy,
1853	int			*bytes_consumed)
1854{
1855	int			still_to_copy;
1856
1857	still_to_copy = space_required - *bytes_consumed;
1858	*copy_off = *bytes_consumed;
1859
1860	if (still_to_copy <= space_available) {
1861		/* write of region completes here */
1862		*copy_len = still_to_copy;
1863		ophdr->oh_len = cpu_to_be32(*copy_len);
1864		if (*last_was_partial_copy)
1865			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1866		*last_was_partial_copy = 0;
1867		*bytes_consumed = 0;
1868		return 0;
1869	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870
1871	/* partial write of region, needs extra log op header reservation */
1872	*copy_len = space_available;
1873	ophdr->oh_len = cpu_to_be32(*copy_len);
1874	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1875	if (*last_was_partial_copy)
1876		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1877	*bytes_consumed += *copy_len;
1878	(*last_was_partial_copy)++;
1879
1880	/* account for new log op header */
1881	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1882	ticket->t_res_num_ophdrs++;
1883
1884	return sizeof(struct xlog_op_header);
1885}
 
1886
1887static int
1888xlog_write_copy_finish(
1889	struct xlog		*log,
1890	struct xlog_in_core	*iclog,
1891	uint			flags,
1892	int			*record_cnt,
1893	int			*data_cnt,
1894	int			*partial_copy,
1895	int			*partial_copy_len,
1896	int			log_offset,
1897	struct xlog_in_core	**commit_iclog)
1898{
1899	if (*partial_copy) {
1900		/*
1901		 * This iclog has already been marked WANT_SYNC by
1902		 * xlog_state_get_iclog_space.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903		 */
1904		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1905		*record_cnt = 0;
1906		*data_cnt = 0;
1907		return xlog_state_release_iclog(log, iclog);
1908	}
1909
1910	*partial_copy = 0;
1911	*partial_copy_len = 0;
1912
1913	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1914		/* no more space in this iclog - push it. */
1915		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1916		*record_cnt = 0;
1917		*data_cnt = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1918
1919		spin_lock(&log->l_icloglock);
1920		xlog_state_want_sync(log, iclog);
1921		spin_unlock(&log->l_icloglock);
1922
1923		if (!commit_iclog)
1924			return xlog_state_release_iclog(log, iclog);
1925		ASSERT(flags & XLOG_COMMIT_TRANS);
1926		*commit_iclog = iclog;
1927	}
1928
 
 
 
 
 
1929	return 0;
1930}
1931
1932/*
1933 * Write some region out to in-core log
1934 *
1935 * This will be called when writing externally provided regions or when
1936 * writing out a commit record for a given transaction.
1937 *
1938 * General algorithm:
1939 *	1. Find total length of this write.  This may include adding to the
1940 *		lengths passed in.
1941 *	2. Check whether we violate the tickets reservation.
1942 *	3. While writing to this iclog
1943 *	    A. Reserve as much space in this iclog as can get
1944 *	    B. If this is first write, save away start lsn
1945 *	    C. While writing this region:
1946 *		1. If first write of transaction, write start record
1947 *		2. Write log operation header (header per region)
1948 *		3. Find out if we can fit entire region into this iclog
1949 *		4. Potentially, verify destination memcpy ptr
1950 *		5. Memcpy (partial) region
1951 *		6. If partial copy, release iclog; otherwise, continue
1952 *			copying more regions into current iclog
1953 *	4. Mark want sync bit (in simulation mode)
1954 *	5. Release iclog for potential flush to on-disk log.
1955 *
1956 * ERRORS:
1957 * 1.	Panic if reservation is overrun.  This should never happen since
1958 *	reservation amounts are generated internal to the filesystem.
1959 * NOTES:
1960 * 1. Tickets are single threaded data structures.
1961 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1962 *	syncing routine.  When a single log_write region needs to span
1963 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1964 *	on all log operation writes which don't contain the end of the
1965 *	region.  The XLOG_END_TRANS bit is used for the in-core log
1966 *	operation which contains the end of the continued log_write region.
1967 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1968 *	we don't really know exactly how much space will be used.  As a result,
1969 *	we don't update ic_offset until the end when we know exactly how many
1970 *	bytes have been written out.
1971 */
1972int
1973xlog_write(
1974	struct xlog		*log,
1975	struct xfs_log_vec	*log_vector,
 
1976	struct xlog_ticket	*ticket,
1977	xfs_lsn_t		*start_lsn,
1978	struct xlog_in_core	**commit_iclog,
1979	uint			flags)
1980{
1981	struct xlog_in_core	*iclog = NULL;
1982	struct xfs_log_iovec	*vecp;
1983	struct xfs_log_vec	*lv;
1984	int			len;
1985	int			index;
1986	int			partial_copy = 0;
1987	int			partial_copy_len = 0;
1988	int			contwr = 0;
1989	int			record_cnt = 0;
1990	int			data_cnt = 0;
1991	int			error;
1992
1993	*start_lsn = 0;
 
 
 
 
 
1994
1995	len = xlog_write_calc_vec_length(ticket, log_vector);
 
 
 
1996
1997	/*
1998	 * Region headers and bytes are already accounted for.
1999	 * We only need to take into account start records and
2000	 * split regions in this function.
2001	 */
2002	if (ticket->t_flags & XLOG_TIC_INITED)
2003		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2004
2005	/*
2006	 * Commit record headers need to be accounted for. These
2007	 * come in as separate writes so are easy to detect.
 
2008	 */
2009	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2010		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2011
2012	if (ticket->t_curr_res < 0)
2013		xlog_print_tic_res(log->l_mp, ticket);
2014
2015	index = 0;
2016	lv = log_vector;
2017	vecp = lv->lv_iovecp;
2018	while (lv && index < lv->lv_niovecs) {
2019		void		*ptr;
2020		int		log_offset;
2021
2022		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2023						   &contwr, &log_offset);
2024		if (error)
2025			return error;
2026
2027		ASSERT(log_offset <= iclog->ic_size - 1);
2028		ptr = iclog->ic_datap + log_offset;
2029
2030		/* start_lsn is the first lsn written to. That's all we need. */
2031		if (!*start_lsn)
2032			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2033
 
2034		/*
2035		 * This loop writes out as many regions as can fit in the amount
2036		 * of space which was allocated by xlog_state_get_iclog_space().
2037		 */
2038		while (lv && index < lv->lv_niovecs) {
2039			struct xfs_log_iovec	*reg = &vecp[index];
2040			struct xlog_op_header	*ophdr;
2041			int			start_rec_copy;
2042			int			copy_len;
2043			int			copy_off;
2044
2045			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2046			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2047
2048			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2049			if (start_rec_copy) {
2050				record_cnt++;
2051				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2052						   start_rec_copy);
2053			}
2054
2055			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2056			if (!ophdr)
2057				return XFS_ERROR(EIO);
2058
2059			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2060					   sizeof(struct xlog_op_header));
2061
2062			len += xlog_write_setup_copy(ticket, ophdr,
2063						     iclog->ic_size-log_offset,
2064						     reg->i_len,
2065						     &copy_off, &copy_len,
2066						     &partial_copy,
2067						     &partial_copy_len);
2068			xlog_verify_dest_ptr(log, ptr);
2069
2070			/* copy region */
2071			ASSERT(copy_len >= 0);
2072			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2073			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2074
2075			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2076			record_cnt++;
2077			data_cnt += contwr ? copy_len : 0;
2078
2079			error = xlog_write_copy_finish(log, iclog, flags,
2080						       &record_cnt, &data_cnt,
2081						       &partial_copy,
2082						       &partial_copy_len,
2083						       log_offset,
2084						       commit_iclog);
2085			if (error)
2086				return error;
2087
2088			/*
2089			 * if we had a partial copy, we need to get more iclog
2090			 * space but we don't want to increment the region
2091			 * index because there is still more is this region to
2092			 * write.
2093			 *
2094			 * If we completed writing this region, and we flushed
2095			 * the iclog (indicated by resetting of the record
2096			 * count), then we also need to get more log space. If
2097			 * this was the last record, though, we are done and
2098			 * can just return.
2099			 */
2100			if (partial_copy)
2101				break;
2102
2103			if (++index == lv->lv_niovecs) {
2104				lv = lv->lv_next;
2105				index = 0;
2106				if (lv)
2107					vecp = lv->lv_iovecp;
2108			}
2109			if (record_cnt == 0) {
2110				if (!lv)
2111					return 0;
2112				break;
2113			}
 
 
 
2114		}
2115	}
2116
2117	ASSERT(len == 0);
2118
2119	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2120	if (!commit_iclog)
2121		return xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 
2122
2123	ASSERT(flags & XLOG_COMMIT_TRANS);
2124	*commit_iclog = iclog;
2125	return 0;
2126}
2127
 
 
 
 
 
 
 
2128
2129/*****************************************************************************
2130 *
2131 *		State Machine functions
2132 *
2133 *****************************************************************************
2134 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135
2136/* Clean iclogs starting from the head.  This ordering must be
2137 * maintained, so an iclog doesn't become ACTIVE beyond one that
2138 * is SYNCING.  This is also required to maintain the notion that we use
2139 * a ordered wait queue to hold off would be writers to the log when every
2140 * iclog is trying to sync to disk.
2141 *
2142 * State Change: DIRTY -> ACTIVE
2143 */
2144STATIC void
2145xlog_state_clean_log(xlog_t *log)
 
 
2146{
2147	xlog_in_core_t	*iclog;
2148	int changed = 0;
2149
2150	iclog = log->l_iclog;
2151	do {
2152		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2153			iclog->ic_state	= XLOG_STATE_ACTIVE;
2154			iclog->ic_offset       = 0;
2155			ASSERT(iclog->ic_callback == NULL);
2156			/*
2157			 * If the number of ops in this iclog indicate it just
2158			 * contains the dummy transaction, we can
2159			 * change state into IDLE (the second time around).
2160			 * Otherwise we should change the state into
2161			 * NEED a dummy.
2162			 * We don't need to cover the dummy.
2163			 */
2164			if (!changed &&
2165			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2166			   		XLOG_COVER_OPS)) {
2167				changed = 1;
2168			} else {
2169				/*
2170				 * We have two dirty iclogs so start over
2171				 * This could also be num of ops indicates
2172				 * this is not the dummy going out.
2173				 */
2174				changed = 2;
2175			}
2176			iclog->ic_header.h_num_logops = 0;
2177			memset(iclog->ic_header.h_cycle_data, 0,
2178			      sizeof(iclog->ic_header.h_cycle_data));
2179			iclog->ic_header.h_lsn = 0;
2180		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2181			/* do nothing */;
2182		else
2183			break;	/* stop cleaning */
2184		iclog = iclog->ic_next;
2185	} while (iclog != log->l_iclog);
2186
2187	/* log is locked when we are called */
 
 
 
 
2188	/*
2189	 * Change state for the dummy log recording.
2190	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2191	 * we are done writing the dummy record.
2192	 * If we are done with the second dummy recored (DONE2), then
2193	 * we go to IDLE.
2194	 */
2195	if (changed) {
2196		switch (log->l_covered_state) {
2197		case XLOG_STATE_COVER_IDLE:
2198		case XLOG_STATE_COVER_NEED:
2199		case XLOG_STATE_COVER_NEED2:
2200			log->l_covered_state = XLOG_STATE_COVER_NEED;
2201			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202
2203		case XLOG_STATE_COVER_DONE:
2204			if (changed == 1)
2205				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2206			else
2207				log->l_covered_state = XLOG_STATE_COVER_NEED;
2208			break;
2209
2210		case XLOG_STATE_COVER_DONE2:
2211			if (changed == 1)
2212				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2213			else
2214				log->l_covered_state = XLOG_STATE_COVER_NEED;
2215			break;
2216
2217		default:
2218			ASSERT(0);
2219		}
2220	}
2221}	/* xlog_state_clean_log */
2222
2223STATIC xfs_lsn_t
2224xlog_get_lowest_lsn(
2225	xlog_t		*log)
2226{
2227	xlog_in_core_t  *lsn_log;
2228	xfs_lsn_t	lowest_lsn, lsn;
2229
2230	lsn_log = log->l_iclog;
2231	lowest_lsn = 0;
2232	do {
2233	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2234		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2235		if ((lsn && !lowest_lsn) ||
2236		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
 
 
2237			lowest_lsn = lsn;
2238		}
2239	    }
2240	    lsn_log = lsn_log->ic_next;
2241	} while (lsn_log != log->l_iclog);
2242	return lowest_lsn;
2243}
2244
 
 
 
 
 
 
 
 
 
 
 
 
2245
2246STATIC void
2247xlog_state_do_callback(
2248	xlog_t		*log,
2249	int		aborted,
2250	xlog_in_core_t	*ciclog)
2251{
2252	xlog_in_core_t	   *iclog;
2253	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2254						 * processed all iclogs once */
2255	xfs_log_callback_t *cb, *cb_next;
2256	int		   flushcnt = 0;
2257	xfs_lsn_t	   lowest_lsn;
2258	int		   ioerrors;	/* counter: iclogs with errors */
2259	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2260	int		   funcdidcallbacks; /* flag: function did callbacks */
2261	int		   repeats;	/* for issuing console warnings if
2262					 * looping too many times */
2263	int		   wake = 0;
2264
2265	spin_lock(&log->l_icloglock);
2266	first_iclog = iclog = log->l_iclog;
2267	ioerrors = 0;
2268	funcdidcallbacks = 0;
2269	repeats = 0;
2270
2271	do {
 
 
 
 
 
2272		/*
2273		 * Scan all iclogs starting with the one pointed to by the
2274		 * log.  Reset this starting point each time the log is
2275		 * unlocked (during callbacks).
2276		 *
2277		 * Keep looping through iclogs until one full pass is made
2278		 * without running any callbacks.
2279		 */
2280		first_iclog = log->l_iclog;
2281		iclog = log->l_iclog;
2282		loopdidcallbacks = 0;
2283		repeats++;
2284
2285		do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286
2287			/* skip all iclogs in the ACTIVE & DIRTY states */
2288			if (iclog->ic_state &
2289			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2290				iclog = iclog->ic_next;
2291				continue;
2292			}
2293
2294			/*
2295			 * Between marking a filesystem SHUTDOWN and stopping
2296			 * the log, we do flush all iclogs to disk (if there
2297			 * wasn't a log I/O error). So, we do want things to
2298			 * go smoothly in case of just a SHUTDOWN  w/o a
2299			 * LOG_IO_ERROR.
2300			 */
2301			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2302				/*
2303				 * Can only perform callbacks in order.  Since
2304				 * this iclog is not in the DONE_SYNC/
2305				 * DO_CALLBACK state, we skip the rest and
2306				 * just try to clean up.  If we set our iclog
2307				 * to DO_CALLBACK, we will not process it when
2308				 * we retry since a previous iclog is in the
2309				 * CALLBACK and the state cannot change since
2310				 * we are holding the l_icloglock.
2311				 */
2312				if (!(iclog->ic_state &
2313					(XLOG_STATE_DONE_SYNC |
2314						 XLOG_STATE_DO_CALLBACK))) {
2315					if (ciclog && (ciclog->ic_state ==
2316							XLOG_STATE_DONE_SYNC)) {
2317						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2318					}
2319					break;
2320				}
2321				/*
2322				 * We now have an iclog that is in either the
2323				 * DO_CALLBACK or DONE_SYNC states. The other
2324				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2325				 * caught by the above if and are going to
2326				 * clean (i.e. we aren't doing their callbacks)
2327				 * see the above if.
2328				 */
2329
2330				/*
2331				 * We will do one more check here to see if we
2332				 * have chased our tail around.
2333				 */
2334
2335				lowest_lsn = xlog_get_lowest_lsn(log);
2336				if (lowest_lsn &&
2337				    XFS_LSN_CMP(lowest_lsn,
2338						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2339					iclog = iclog->ic_next;
2340					continue; /* Leave this iclog for
2341						   * another thread */
2342				}
2343
2344				iclog->ic_state = XLOG_STATE_CALLBACK;
 
 
 
2345
 
 
2346
2347				/*
2348				 * update the last_sync_lsn before we drop the
2349				 * icloglock to ensure we are the only one that
2350				 * can update it.
2351				 */
2352				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2353					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2354				atomic64_set(&log->l_last_sync_lsn,
2355					be64_to_cpu(iclog->ic_header.h_lsn));
2356
2357			} else
2358				ioerrors++;
 
 
 
 
 
 
 
 
2359
2360			spin_unlock(&log->l_icloglock);
2361
2362			/*
2363			 * Keep processing entries in the callback list until
2364			 * we come around and it is empty.  We need to
2365			 * atomically see that the list is empty and change the
2366			 * state to DIRTY so that we don't miss any more
2367			 * callbacks being added.
2368			 */
2369			spin_lock(&iclog->ic_callback_lock);
2370			cb = iclog->ic_callback;
2371			while (cb) {
2372				iclog->ic_callback_tail = &(iclog->ic_callback);
2373				iclog->ic_callback = NULL;
2374				spin_unlock(&iclog->ic_callback_lock);
2375
2376				/* perform callbacks in the order given */
2377				for (; cb; cb = cb_next) {
2378					cb_next = cb->cb_next;
2379					cb->cb_func(cb->cb_arg, aborted);
2380				}
2381				spin_lock(&iclog->ic_callback_lock);
2382				cb = iclog->ic_callback;
2383			}
2384
2385			loopdidcallbacks++;
2386			funcdidcallbacks++;
2387
2388			spin_lock(&log->l_icloglock);
2389			ASSERT(iclog->ic_callback == NULL);
2390			spin_unlock(&iclog->ic_callback_lock);
2391			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2392				iclog->ic_state = XLOG_STATE_DIRTY;
2393
2394			/*
2395			 * Transition from DIRTY to ACTIVE if applicable.
2396			 * NOP if STATE_IOERROR.
2397			 */
2398			xlog_state_clean_log(log);
2399
2400			/* wake up threads waiting in xfs_log_force() */
2401			wake_up_all(&iclog->ic_force_wait);
2402
2403			iclog = iclog->ic_next;
2404		} while (first_iclog != iclog);
2405
2406		if (repeats > 5000) {
2407			flushcnt += repeats;
2408			repeats = 0;
2409			xfs_warn(log->l_mp,
2410				"%s: possible infinite loop (%d iterations)",
2411				__func__, flushcnt);
2412		}
2413	} while (!ioerrors && loopdidcallbacks);
2414
2415	/*
2416	 * make one last gasp attempt to see if iclogs are being left in
2417	 * limbo..
2418	 */
2419#ifdef DEBUG
2420	if (funcdidcallbacks) {
2421		first_iclog = iclog = log->l_iclog;
2422		do {
2423			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2424			/*
2425			 * Terminate the loop if iclogs are found in states
2426			 * which will cause other threads to clean up iclogs.
2427			 *
2428			 * SYNCING - i/o completion will go through logs
2429			 * DONE_SYNC - interrupt thread should be waiting for
2430			 *              l_icloglock
2431			 * IOERROR - give up hope all ye who enter here
2432			 */
2433			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2434			    iclog->ic_state == XLOG_STATE_SYNCING ||
2435			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2436			    iclog->ic_state == XLOG_STATE_IOERROR )
2437				break;
2438			iclog = iclog->ic_next;
2439		} while (first_iclog != iclog);
2440	}
2441#endif
2442
2443	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2444		wake = 1;
2445	spin_unlock(&log->l_icloglock);
2446
2447	if (wake)
2448		wake_up_all(&log->l_flush_wait);
2449}
2450
2451
2452/*
2453 * Finish transitioning this iclog to the dirty state.
2454 *
2455 * Make sure that we completely execute this routine only when this is
2456 * the last call to the iclog.  There is a good chance that iclog flushes,
2457 * when we reach the end of the physical log, get turned into 2 separate
2458 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2459 * routine.  By using the reference count bwritecnt, we guarantee that only
2460 * the second completion goes through.
2461 *
2462 * Callbacks could take time, so they are done outside the scope of the
2463 * global state machine log lock.
2464 */
2465STATIC void
2466xlog_state_done_syncing(
2467	xlog_in_core_t	*iclog,
2468	int		aborted)
2469{
2470	xlog_t		   *log = iclog->ic_log;
2471
2472	spin_lock(&log->l_icloglock);
2473
2474	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2475	       iclog->ic_state == XLOG_STATE_IOERROR);
2476	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2477	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2478
2479
2480	/*
2481	 * If we got an error, either on the first buffer, or in the case of
2482	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2483	 * and none should ever be attempted to be written to disk
2484	 * again.
2485	 */
2486	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2487		if (--iclog->ic_bwritecnt == 1) {
2488			spin_unlock(&log->l_icloglock);
2489			return;
2490		}
2491		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2492	}
2493
2494	/*
2495	 * Someone could be sleeping prior to writing out the next
2496	 * iclog buffer, we wake them all, one will get to do the
2497	 * I/O, the others get to wait for the result.
2498	 */
2499	wake_up_all(&iclog->ic_write_wait);
2500	spin_unlock(&log->l_icloglock);
2501	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2502}	/* xlog_state_done_syncing */
2503
2504
2505/*
2506 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2507 * sleep.  We wait on the flush queue on the head iclog as that should be
2508 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2509 * we will wait here and all new writes will sleep until a sync completes.
2510 *
2511 * The in-core logs are used in a circular fashion. They are not used
2512 * out-of-order even when an iclog past the head is free.
2513 *
2514 * return:
2515 *	* log_offset where xlog_write() can start writing into the in-core
2516 *		log's data space.
2517 *	* in-core log pointer to which xlog_write() should write.
2518 *	* boolean indicating this is a continued write to an in-core log.
2519 *		If this is the last write, then the in-core log's offset field
2520 *		needs to be incremented, depending on the amount of data which
2521 *		is copied.
2522 */
2523STATIC int
2524xlog_state_get_iclog_space(xlog_t	  *log,
2525			   int		  len,
2526			   xlog_in_core_t **iclogp,
2527			   xlog_ticket_t  *ticket,
2528			   int		  *continued_write,
2529			   int		  *logoffsetp)
2530{
2531	int		  log_offset;
2532	xlog_rec_header_t *head;
2533	xlog_in_core_t	  *iclog;
2534	int		  error;
2535
2536restart:
2537	spin_lock(&log->l_icloglock);
2538	if (XLOG_FORCED_SHUTDOWN(log)) {
2539		spin_unlock(&log->l_icloglock);
2540		return XFS_ERROR(EIO);
2541	}
2542
2543	iclog = log->l_iclog;
2544	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2545		XFS_STATS_INC(xs_log_noiclogs);
2546
2547		/* Wait for log writes to have flushed */
2548		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2549		goto restart;
2550	}
2551
2552	head = &iclog->ic_header;
2553
2554	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2555	log_offset = iclog->ic_offset;
2556
 
 
2557	/* On the 1st write to an iclog, figure out lsn.  This works
2558	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2559	 * committing to.  If the offset is set, that's how many blocks
2560	 * must be written.
2561	 */
2562	if (log_offset == 0) {
2563		ticket->t_curr_res -= log->l_iclog_hsize;
2564		xlog_tic_add_region(ticket,
2565				    log->l_iclog_hsize,
2566				    XLOG_REG_TYPE_LRHEADER);
2567		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2568		head->h_lsn = cpu_to_be64(
2569			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2570		ASSERT(log->l_curr_block >= 0);
2571	}
2572
2573	/* If there is enough room to write everything, then do it.  Otherwise,
2574	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2575	 * bit is on, so this will get flushed out.  Don't update ic_offset
2576	 * until you know exactly how many bytes get copied.  Therefore, wait
2577	 * until later to update ic_offset.
2578	 *
2579	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2580	 * can fit into remaining data section.
2581	 */
2582	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
 
 
2583		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2584
2585		/*
2586		 * If I'm the only one writing to this iclog, sync it to disk.
2587		 * We need to do an atomic compare and decrement here to avoid
2588		 * racing with concurrent atomic_dec_and_lock() calls in
2589		 * xlog_state_release_iclog() when there is more than one
2590		 * reference to the iclog.
2591		 */
2592		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2593			/* we are the only one */
2594			spin_unlock(&log->l_icloglock);
2595			error = xlog_state_release_iclog(log, iclog);
2596			if (error)
2597				return error;
2598		} else {
2599			spin_unlock(&log->l_icloglock);
2600		}
2601		goto restart;
2602	}
2603
2604	/* Do we have enough room to write the full amount in the remainder
2605	 * of this iclog?  Or must we continue a write on the next iclog and
2606	 * mark this iclog as completely taken?  In the case where we switch
2607	 * iclogs (to mark it taken), this particular iclog will release/sync
2608	 * to disk in xlog_write().
2609	 */
2610	if (len <= iclog->ic_size - iclog->ic_offset) {
2611		*continued_write = 0;
2612		iclog->ic_offset += len;
2613	} else {
2614		*continued_write = 1;
2615		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2616	}
2617	*iclogp = iclog;
2618
2619	ASSERT(iclog->ic_offset <= iclog->ic_size);
2620	spin_unlock(&log->l_icloglock);
2621
2622	*logoffsetp = log_offset;
2623	return 0;
2624}	/* xlog_state_get_iclog_space */
2625
2626/* The first cnt-1 times through here we don't need to
2627 * move the grant write head because the permanent
2628 * reservation has reserved cnt times the unit amount.
2629 * Release part of current permanent unit reservation and
2630 * reset current reservation to be one units worth.  Also
2631 * move grant reservation head forward.
2632 */
2633STATIC void
2634xlog_regrant_reserve_log_space(xlog_t	     *log,
2635			       xlog_ticket_t *ticket)
 
2636{
2637	trace_xfs_log_regrant_reserve_enter(log, ticket);
2638
2639	if (ticket->t_cnt > 0)
2640		ticket->t_cnt--;
2641
2642	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2643					ticket->t_curr_res);
2644	xlog_grant_sub_space(log, &log->l_write_head.grant,
2645					ticket->t_curr_res);
2646	ticket->t_curr_res = ticket->t_unit_res;
2647	xlog_tic_reset_res(ticket);
2648
2649	trace_xfs_log_regrant_reserve_sub(log, ticket);
2650
2651	/* just return if we still have some of the pre-reserved space */
2652	if (ticket->t_cnt > 0)
2653		return;
 
2654
2655	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2656					ticket->t_unit_res);
2657
2658	trace_xfs_log_regrant_reserve_exit(log, ticket);
2659
2660	ticket->t_curr_res = ticket->t_unit_res;
2661	xlog_tic_reset_res(ticket);
2662}	/* xlog_regrant_reserve_log_space */
2663
 
 
2664
2665/*
2666 * Give back the space left from a reservation.
2667 *
2668 * All the information we need to make a correct determination of space left
2669 * is present.  For non-permanent reservations, things are quite easy.  The
2670 * count should have been decremented to zero.  We only need to deal with the
2671 * space remaining in the current reservation part of the ticket.  If the
2672 * ticket contains a permanent reservation, there may be left over space which
2673 * needs to be released.  A count of N means that N-1 refills of the current
2674 * reservation can be done before we need to ask for more space.  The first
2675 * one goes to fill up the first current reservation.  Once we run out of
2676 * space, the count will stay at zero and the only space remaining will be
2677 * in the current reservation field.
2678 */
2679STATIC void
2680xlog_ungrant_log_space(xlog_t	     *log,
2681		       xlog_ticket_t *ticket)
 
2682{
2683	int	bytes;
 
 
2684
2685	if (ticket->t_cnt > 0)
2686		ticket->t_cnt--;
2687
2688	trace_xfs_log_ungrant_enter(log, ticket);
2689	trace_xfs_log_ungrant_sub(log, ticket);
2690
2691	/*
2692	 * If this is a permanent reservation ticket, we may be able to free
2693	 * up more space based on the remaining count.
2694	 */
2695	bytes = ticket->t_curr_res;
2696	if (ticket->t_cnt > 0) {
2697		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2698		bytes += ticket->t_unit_res*ticket->t_cnt;
2699	}
2700
2701	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2702	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2703
2704	trace_xfs_log_ungrant_exit(log, ticket);
2705
2706	xfs_log_space_wake(log->l_mp);
 
2707}
2708
2709/*
2710 * Flush iclog to disk if this is the last reference to the given iclog and
2711 * the WANT_SYNC bit is set.
2712 *
2713 * When this function is entered, the iclog is not necessarily in the
2714 * WANT_SYNC state.  It may be sitting around waiting to get filled.
2715 *
2716 *
2717 */
2718STATIC int
2719xlog_state_release_iclog(
2720	xlog_t		*log,
2721	xlog_in_core_t	*iclog)
 
2722{
2723	int		sync = 0;	/* do we sync? */
2724
2725	if (iclog->ic_state & XLOG_STATE_IOERROR)
2726		return XFS_ERROR(EIO);
2727
2728	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2729	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2730		return 0;
2731
2732	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2733		spin_unlock(&log->l_icloglock);
2734		return XFS_ERROR(EIO);
2735	}
2736	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2737	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2738
2739	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2740		/* update tail before writing to iclog */
2741		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2742		sync++;
2743		iclog->ic_state = XLOG_STATE_SYNCING;
2744		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2745		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2746		/* cycle incremented when incrementing curr_block */
2747	}
2748	spin_unlock(&log->l_icloglock);
2749
2750	/*
2751	 * We let the log lock go, so it's possible that we hit a log I/O
2752	 * error or some other SHUTDOWN condition that marks the iclog
2753	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2754	 * this iclog has consistent data, so we ignore IOERROR
2755	 * flags after this point.
2756	 */
2757	if (sync)
2758		return xlog_sync(log, iclog);
2759	return 0;
2760}	/* xlog_state_release_iclog */
2761
2762
2763/*
2764 * This routine will mark the current iclog in the ring as WANT_SYNC
2765 * and move the current iclog pointer to the next iclog in the ring.
2766 * When this routine is called from xlog_state_get_iclog_space(), the
2767 * exact size of the iclog has not yet been determined.  All we know is
2768 * that every data block.  We have run out of space in this log record.
2769 */
2770STATIC void
2771xlog_state_switch_iclogs(xlog_t		*log,
2772			 xlog_in_core_t *iclog,
2773			 int		eventual_size)
2774{
2775	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2776	if (!eventual_size)
2777		eventual_size = iclog->ic_offset;
2778	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2779	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2780	log->l_prev_block = log->l_curr_block;
2781	log->l_prev_cycle = log->l_curr_cycle;
2782
2783	/* roll log?: ic_offset changed later */
2784	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2785
2786	/* Round up to next log-sunit */
2787	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2788	    log->l_mp->m_sb.sb_logsunit > 1) {
2789		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2790		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2791	}
2792
2793	if (log->l_curr_block >= log->l_logBBsize) {
 
 
 
 
 
 
 
 
 
 
2794		log->l_curr_cycle++;
2795		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2796			log->l_curr_cycle++;
2797		log->l_curr_block -= log->l_logBBsize;
2798		ASSERT(log->l_curr_block >= 0);
2799	}
2800	ASSERT(iclog == log->l_iclog);
2801	log->l_iclog = iclog->ic_next;
2802}	/* xlog_state_switch_iclogs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803
2804/*
2805 * Write out all data in the in-core log as of this exact moment in time.
2806 *
2807 * Data may be written to the in-core log during this call.  However,
2808 * we don't guarantee this data will be written out.  A change from past
2809 * implementation means this routine will *not* write out zero length LRs.
2810 *
2811 * Basically, we try and perform an intelligent scan of the in-core logs.
2812 * If we determine there is no flushable data, we just return.  There is no
2813 * flushable data if:
2814 *
2815 *	1. the current iclog is active and has no data; the previous iclog
2816 *		is in the active or dirty state.
2817 *	2. the current iclog is drity, and the previous iclog is in the
2818 *		active or dirty state.
2819 *
2820 * We may sleep if:
2821 *
2822 *	1. the current iclog is not in the active nor dirty state.
2823 *	2. the current iclog dirty, and the previous iclog is not in the
2824 *		active nor dirty state.
2825 *	3. the current iclog is active, and there is another thread writing
2826 *		to this particular iclog.
2827 *	4. a) the current iclog is active and has no other writers
2828 *	   b) when we return from flushing out this iclog, it is still
2829 *		not in the active nor dirty state.
2830 */
2831int
2832_xfs_log_force(
2833	struct xfs_mount	*mp,
2834	uint			flags,
2835	int			*log_flushed)
2836{
2837	struct xlog		*log = mp->m_log;
2838	struct xlog_in_core	*iclog;
2839	xfs_lsn_t		lsn;
2840
2841	XFS_STATS_INC(xs_log_force);
 
2842
2843	xlog_cil_force(log);
2844
2845	spin_lock(&log->l_icloglock);
 
 
2846
2847	iclog = log->l_iclog;
2848	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2849		spin_unlock(&log->l_icloglock);
2850		return XFS_ERROR(EIO);
2851	}
2852
2853	/* If the head iclog is not active nor dirty, we just attach
2854	 * ourselves to the head and go to sleep.
2855	 */
2856	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2857	    iclog->ic_state == XLOG_STATE_DIRTY) {
2858		/*
2859		 * If the head is dirty or (active and empty), then
2860		 * we need to look at the previous iclog.  If the previous
2861		 * iclog is active or dirty we are done.  There is nothing
2862		 * to sync out.  Otherwise, we attach ourselves to the
 
2863		 * previous iclog and go to sleep.
2864		 */
2865		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2866		    (atomic_read(&iclog->ic_refcnt) == 0
2867		     && iclog->ic_offset == 0)) {
2868			iclog = iclog->ic_prev;
2869			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2870			    iclog->ic_state == XLOG_STATE_DIRTY)
2871				goto no_sleep;
2872			else
2873				goto maybe_sleep;
 
 
2874		} else {
2875			if (atomic_read(&iclog->ic_refcnt) == 0) {
2876				/* We are the only one with access to this
2877				 * iclog.  Flush it out now.  There should
2878				 * be a roundoff of zero to show that someone
2879				 * has already taken care of the roundoff from
2880				 * the previous sync.
2881				 */
2882				atomic_inc(&iclog->ic_refcnt);
2883				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2884				xlog_state_switch_iclogs(log, iclog, 0);
2885				spin_unlock(&log->l_icloglock);
2886
2887				if (xlog_state_release_iclog(log, iclog))
2888					return XFS_ERROR(EIO);
2889
2890				if (log_flushed)
2891					*log_flushed = 1;
2892				spin_lock(&log->l_icloglock);
2893				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2894				    iclog->ic_state != XLOG_STATE_DIRTY)
2895					goto maybe_sleep;
2896				else
2897					goto no_sleep;
2898			} else {
2899				/* Someone else is writing to this iclog.
2900				 * Use its call to flush out the data.  However,
2901				 * the other thread may not force out this LR,
2902				 * so we mark it WANT_SYNC.
2903				 */
2904				xlog_state_switch_iclogs(log, iclog, 0);
2905				goto maybe_sleep;
2906			}
2907		}
2908	}
2909
2910	/* By the time we come around again, the iclog could've been filled
2911	 * which would give it another lsn.  If we have a new lsn, just
2912	 * return because the relevant data has been flushed.
2913	 */
2914maybe_sleep:
2915	if (flags & XFS_LOG_SYNC) {
2916		/*
2917		 * We must check if we're shutting down here, before
2918		 * we wait, while we're holding the l_icloglock.
2919		 * Then we check again after waking up, in case our
2920		 * sleep was disturbed by a bad news.
2921		 */
2922		if (iclog->ic_state & XLOG_STATE_IOERROR) {
2923			spin_unlock(&log->l_icloglock);
2924			return XFS_ERROR(EIO);
2925		}
2926		XFS_STATS_INC(xs_log_force_sleep);
2927		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2928		/*
2929		 * No need to grab the log lock here since we're
2930		 * only deciding whether or not to return EIO
2931		 * and the memory read should be atomic.
2932		 */
2933		if (iclog->ic_state & XLOG_STATE_IOERROR)
2934			return XFS_ERROR(EIO);
2935		if (log_flushed)
2936			*log_flushed = 1;
2937	} else {
2938
2939no_sleep:
2940		spin_unlock(&log->l_icloglock);
2941	}
2942	return 0;
 
 
 
2943}
2944
2945/*
2946 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2947 * about errors or whether the log was flushed or not. This is the normal
2948 * interface to use when trying to unpin items or move the log forward.
2949 */
2950void
2951xfs_log_force(
2952	xfs_mount_t	*mp,
2953	uint		flags)
2954{
2955	int	error;
2956
2957	trace_xfs_log_force(mp, 0);
2958	error = _xfs_log_force(mp, flags, NULL);
2959	if (error)
2960		xfs_warn(mp, "%s: error %d returned.", __func__, error);
2961}
2962
2963/*
2964 * Force the in-core log to disk for a specific LSN.
2965 *
2966 * Find in-core log with lsn.
2967 *	If it is in the DIRTY state, just return.
2968 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2969 *		state and go to sleep or return.
2970 *	If it is in any other state, go to sleep or return.
2971 *
2972 * Synchronous forces are implemented with a signal variable. All callers
2973 * to force a given lsn to disk will wait on a the sv attached to the
2974 * specific in-core log.  When given in-core log finally completes its
2975 * write to disk, that thread will wake up all threads waiting on the
2976 * sv.
2977 */
2978int
2979_xfs_log_force_lsn(
2980	struct xfs_mount	*mp,
2981	xfs_lsn_t		lsn,
2982	uint			flags,
2983	int			*log_flushed)
 
2984{
2985	struct xlog		*log = mp->m_log;
2986	struct xlog_in_core	*iclog;
2987	int			already_slept = 0;
2988
2989	ASSERT(lsn != 0);
2990
2991	XFS_STATS_INC(xs_log_force);
2992
2993	lsn = xlog_cil_force_lsn(log, lsn);
2994	if (lsn == NULLCOMMITLSN)
2995		return 0;
2996
2997try_again:
2998	spin_lock(&log->l_icloglock);
2999	iclog = log->l_iclog;
3000	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3001		spin_unlock(&log->l_icloglock);
3002		return XFS_ERROR(EIO);
 
 
3003	}
3004
3005	do {
3006		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3007			iclog = iclog->ic_next;
3008			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3010
3011		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3012			spin_unlock(&log->l_icloglock);
3013			return 0;
3014		}
3015
3016		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3017			/*
3018			 * We sleep here if we haven't already slept (e.g.
3019			 * this is the first time we've looked at the correct
3020			 * iclog buf) and the buffer before us is going to
3021			 * be sync'ed. The reason for this is that if we
3022			 * are doing sync transactions here, by waiting for
3023			 * the previous I/O to complete, we can allow a few
3024			 * more transactions into this iclog before we close
3025			 * it down.
3026			 *
3027			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3028			 * up the refcnt so we can release the log (which
3029			 * drops the ref count).  The state switch keeps new
3030			 * transaction commits from using this buffer.  When
3031			 * the current commits finish writing into the buffer,
3032			 * the refcount will drop to zero and the buffer will
3033			 * go out then.
3034			 */
3035			if (!already_slept &&
3036			    (iclog->ic_prev->ic_state &
3037			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3038				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3039
3040				XFS_STATS_INC(xs_log_force_sleep);
3041
3042				xlog_wait(&iclog->ic_prev->ic_write_wait,
3043							&log->l_icloglock);
3044				if (log_flushed)
3045					*log_flushed = 1;
3046				already_slept = 1;
3047				goto try_again;
3048			}
3049			atomic_inc(&iclog->ic_refcnt);
3050			xlog_state_switch_iclogs(log, iclog, 0);
3051			spin_unlock(&log->l_icloglock);
3052			if (xlog_state_release_iclog(log, iclog))
3053				return XFS_ERROR(EIO);
3054			if (log_flushed)
3055				*log_flushed = 1;
3056			spin_lock(&log->l_icloglock);
3057		}
3058
3059		if ((flags & XFS_LOG_SYNC) && /* sleep */
3060		    !(iclog->ic_state &
3061		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3062			/*
3063			 * Don't wait on completion if we know that we've
3064			 * gotten a log write error.
3065			 */
3066			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3067				spin_unlock(&log->l_icloglock);
3068				return XFS_ERROR(EIO);
3069			}
3070			XFS_STATS_INC(xs_log_force_sleep);
3071			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3072			/*
3073			 * No need to grab the log lock here since we're
3074			 * only deciding whether or not to return EIO
3075			 * and the memory read should be atomic.
3076			 */
3077			if (iclog->ic_state & XLOG_STATE_IOERROR)
3078				return XFS_ERROR(EIO);
3079
3080			if (log_flushed)
3081				*log_flushed = 1;
3082		} else {		/* just return */
3083			spin_unlock(&log->l_icloglock);
3084		}
3085
3086		return 0;
3087	} while (iclog != log->l_iclog);
3088
3089	spin_unlock(&log->l_icloglock);
3090	return 0;
 
 
 
3091}
3092
3093/*
3094 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3095 * about errors or whether the log was flushed or not. This is the normal
3096 * interface to use when trying to unpin items or move the log forward.
 
 
 
 
3097 */
3098void
3099xfs_log_force_lsn(
3100	xfs_mount_t	*mp,
3101	xfs_lsn_t	lsn,
3102	uint		flags)
 
3103{
3104	int	error;
 
 
 
3105
3106	trace_xfs_log_force(mp, lsn);
3107	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3108	if (error)
3109		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3110}
3111
3112/*
3113 * Called when we want to mark the current iclog as being ready to sync to
3114 * disk.
3115 */
3116STATIC void
3117xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3118{
3119	assert_spin_locked(&log->l_icloglock);
3120
3121	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3122		xlog_state_switch_iclogs(log, iclog, 0);
3123	} else {
3124		ASSERT(iclog->ic_state &
3125			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3126	}
 
3127}
3128
3129
3130/*****************************************************************************
3131 *
3132 *		TICKET functions
3133 *
3134 *****************************************************************************
3135 */
3136
3137/*
3138 * Free a used ticket when its refcount falls to zero.
3139 */
3140void
3141xfs_log_ticket_put(
3142	xlog_ticket_t	*ticket)
3143{
3144	ASSERT(atomic_read(&ticket->t_ref) > 0);
3145	if (atomic_dec_and_test(&ticket->t_ref))
3146		kmem_zone_free(xfs_log_ticket_zone, ticket);
3147}
3148
3149xlog_ticket_t *
3150xfs_log_ticket_get(
3151	xlog_ticket_t	*ticket)
3152{
3153	ASSERT(atomic_read(&ticket->t_ref) > 0);
3154	atomic_inc(&ticket->t_ref);
3155	return ticket;
3156}
3157
3158/*
3159 * Allocate and initialise a new log ticket.
 
3160 */
3161xlog_ticket_t *
3162xlog_ticket_alloc(
3163	struct xlog	*log,
3164	int		unit_bytes,
3165	int		cnt,
3166	char		client,
3167	bool		permanent,
3168	xfs_km_flags_t	alloc_flags)
3169{
3170	struct xlog_ticket *tic;
3171	uint		num_headers;
3172	int		iclog_space;
3173
3174	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3175	if (!tic)
3176		return NULL;
3177
3178	/*
3179	 * Permanent reservations have up to 'cnt'-1 active log operations
3180	 * in the log.  A unit in this case is the amount of space for one
3181	 * of these log operations.  Normal reservations have a cnt of 1
3182	 * and their unit amount is the total amount of space required.
3183	 *
3184	 * The following lines of code account for non-transaction data
3185	 * which occupy space in the on-disk log.
3186	 *
3187	 * Normal form of a transaction is:
3188	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3189	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3190	 *
3191	 * We need to account for all the leadup data and trailer data
3192	 * around the transaction data.
3193	 * And then we need to account for the worst case in terms of using
3194	 * more space.
3195	 * The worst case will happen if:
3196	 * - the placement of the transaction happens to be such that the
3197	 *   roundoff is at its maximum
3198	 * - the transaction data is synced before the commit record is synced
3199	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3200	 *   Therefore the commit record is in its own Log Record.
3201	 *   This can happen as the commit record is called with its
3202	 *   own region to xlog_write().
3203	 *   This then means that in the worst case, roundoff can happen for
3204	 *   the commit-rec as well.
3205	 *   The commit-rec is smaller than padding in this scenario and so it is
3206	 *   not added separately.
3207	 */
3208
3209	/* for trans header */
3210	unit_bytes += sizeof(xlog_op_header_t);
3211	unit_bytes += sizeof(xfs_trans_header_t);
3212
3213	/* for start-rec */
3214	unit_bytes += sizeof(xlog_op_header_t);
3215
3216	/*
3217	 * for LR headers - the space for data in an iclog is the size minus
3218	 * the space used for the headers. If we use the iclog size, then we
3219	 * undercalculate the number of headers required.
3220	 *
3221	 * Furthermore - the addition of op headers for split-recs might
3222	 * increase the space required enough to require more log and op
3223	 * headers, so take that into account too.
3224	 *
3225	 * IMPORTANT: This reservation makes the assumption that if this
3226	 * transaction is the first in an iclog and hence has the LR headers
3227	 * accounted to it, then the remaining space in the iclog is
3228	 * exclusively for this transaction.  i.e. if the transaction is larger
3229	 * than the iclog, it will be the only thing in that iclog.
3230	 * Fundamentally, this means we must pass the entire log vector to
3231	 * xlog_write to guarantee this.
3232	 */
3233	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3234	num_headers = howmany(unit_bytes, iclog_space);
3235
3236	/* for split-recs - ophdrs added when data split over LRs */
3237	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3238
3239	/* add extra header reservations if we overrun */
3240	while (!num_headers ||
3241	       howmany(unit_bytes, iclog_space) > num_headers) {
3242		unit_bytes += sizeof(xlog_op_header_t);
3243		num_headers++;
3244	}
3245	unit_bytes += log->l_iclog_hsize * num_headers;
3246
3247	/* for commit-rec LR header - note: padding will subsume the ophdr */
3248	unit_bytes += log->l_iclog_hsize;
3249
3250	/* for roundoff padding for transaction data and one for commit record */
3251	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3252	    log->l_mp->m_sb.sb_logsunit > 1) {
3253		/* log su roundoff */
3254		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3255	} else {
3256		/* BB roundoff */
3257		unit_bytes += 2*BBSIZE;
3258        }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3259
3260	atomic_set(&tic->t_ref, 1);
3261	tic->t_task		= current;
3262	INIT_LIST_HEAD(&tic->t_queue);
3263	tic->t_unit_res		= unit_bytes;
3264	tic->t_curr_res		= unit_bytes;
3265	tic->t_cnt		= cnt;
3266	tic->t_ocnt		= cnt;
3267	tic->t_tid		= random32();
3268	tic->t_clientid		= client;
3269	tic->t_flags		= XLOG_TIC_INITED;
3270	tic->t_trans_type	= 0;
3271	if (permanent)
3272		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3273
3274	xlog_tic_reset_res(tic);
3275
3276	return tic;
3277}
3278
3279
3280/******************************************************************************
3281 *
3282 *		Log debug routines
3283 *
3284 ******************************************************************************
3285 */
3286#if defined(DEBUG)
3287/*
3288 * Make sure that the destination ptr is within the valid data region of
3289 * one of the iclogs.  This uses backup pointers stored in a different
3290 * part of the log in case we trash the log structure.
3291 */
3292void
3293xlog_verify_dest_ptr(
3294	struct xlog	*log,
3295	char		*ptr)
3296{
3297	int i;
3298	int good_ptr = 0;
3299
3300	for (i = 0; i < log->l_iclog_bufs; i++) {
3301		if (ptr >= log->l_iclog_bak[i] &&
3302		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3303			good_ptr++;
3304	}
3305
3306	if (!good_ptr)
3307		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
 
 
3308}
3309
3310/*
3311 * Check to make sure the grant write head didn't just over lap the tail.  If
3312 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3313 * the cycles differ by exactly one and check the byte count.
3314 *
3315 * This check is run unlocked, so can give false positives. Rather than assert
3316 * on failures, use a warn-once flag and a panic tag to allow the admin to
3317 * determine if they want to panic the machine when such an error occurs. For
3318 * debug kernels this will have the same effect as using an assert but, unlinke
3319 * an assert, it can be turned off at runtime.
3320 */
3321STATIC void
3322xlog_verify_grant_tail(
3323	struct xlog	*log)
 
3324{
3325	int		tail_cycle, tail_blocks;
3326	int		cycle, space;
3327
3328	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3329	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3330	if (tail_cycle != cycle) {
3331		if (cycle - 1 != tail_cycle &&
3332		    !(log->l_flags & XLOG_TAIL_WARN)) {
3333			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3334				"%s: cycle - 1 != tail_cycle", __func__);
3335			log->l_flags |= XLOG_TAIL_WARN;
3336		}
 
 
3337
3338		if (space > BBTOB(tail_blocks) &&
3339		    !(log->l_flags & XLOG_TAIL_WARN)) {
3340			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3341				"%s: space > BBTOB(tail_blocks)", __func__);
3342			log->l_flags |= XLOG_TAIL_WARN;
3343		}
3344	}
3345}
3346
3347/* check if it will fit */
3348STATIC void
3349xlog_verify_tail_lsn(xlog_t	    *log,
3350		     xlog_in_core_t *iclog,
3351		     xfs_lsn_t	    tail_lsn)
3352{
3353    int blocks;
3354
3355    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3356	blocks =
3357	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3358	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3359		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3360    } else {
3361	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3362
3363	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3364		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
 
 
 
3365
3366	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3367	if (blocks < BTOBB(iclog->ic_offset) + 1)
3368		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3369    }
3370}	/* xlog_verify_tail_lsn */
 
3371
3372/*
3373 * Perform a number of checks on the iclog before writing to disk.
3374 *
3375 * 1. Make sure the iclogs are still circular
3376 * 2. Make sure we have a good magic number
3377 * 3. Make sure we don't have magic numbers in the data
3378 * 4. Check fields of each log operation header for:
3379 *	A. Valid client identifier
3380 *	B. tid ptr value falls in valid ptr space (user space code)
3381 *	C. Length in log record header is correct according to the
3382 *		individual operation headers within record.
3383 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3384 *	log, check the preceding blocks of the physical log to make sure all
3385 *	the cycle numbers agree with the current cycle number.
3386 */
3387STATIC void
3388xlog_verify_iclog(xlog_t	 *log,
3389		  xlog_in_core_t *iclog,
3390		  int		 count,
3391		  boolean_t	 syncing)
3392{
3393	xlog_op_header_t	*ophead;
3394	xlog_in_core_t		*icptr;
3395	xlog_in_core_2_t	*xhdr;
3396	xfs_caddr_t		ptr;
3397	xfs_caddr_t		base_ptr;
3398	__psint_t		field_offset;
3399	__uint8_t		clientid;
3400	int			len, i, j, k, op_len;
3401	int			idx;
3402
3403	/* check validity of iclog pointers */
3404	spin_lock(&log->l_icloglock);
3405	icptr = log->l_iclog;
3406	for (i=0; i < log->l_iclog_bufs; i++) {
3407		if (icptr == NULL)
3408			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3409		icptr = icptr->ic_next;
3410	}
3411	if (icptr != log->l_iclog)
3412		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3413	spin_unlock(&log->l_icloglock);
3414
3415	/* check log magic numbers */
3416	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3417		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3418
3419	ptr = (xfs_caddr_t) &iclog->ic_header;
3420	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3421	     ptr += BBSIZE) {
3422		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3423			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3424				__func__);
3425	}
3426
3427	/* check fields */
3428	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3429	ptr = iclog->ic_datap;
3430	base_ptr = ptr;
3431	ophead = (xlog_op_header_t *)ptr;
3432	xhdr = iclog->ic_data;
3433	for (i = 0; i < len; i++) {
3434		ophead = (xlog_op_header_t *)ptr;
3435
3436		/* clientid is only 1 byte */
3437		field_offset = (__psint_t)
3438			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3439		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3440			clientid = ophead->oh_clientid;
3441		} else {
3442			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3443			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3444				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3445				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3446				clientid = xlog_get_client_id(
3447					xhdr[j].hic_xheader.xh_cycle_data[k]);
3448			} else {
3449				clientid = xlog_get_client_id(
3450					iclog->ic_header.h_cycle_data[idx]);
3451			}
3452		}
3453		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3454			xfs_warn(log->l_mp,
3455				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3456				__func__, clientid, ophead,
3457				(unsigned long)field_offset);
 
3458
3459		/* check length */
3460		field_offset = (__psint_t)
3461			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3462		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3463			op_len = be32_to_cpu(ophead->oh_len);
3464		} else {
3465			idx = BTOBBT((__psint_t)&ophead->oh_len -
3466				    (__psint_t)iclog->ic_datap);
3467			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3468				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3469				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3470				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3471			} else {
3472				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3473			}
3474		}
3475		ptr += sizeof(xlog_op_header_t) + op_len;
3476	}
3477}	/* xlog_verify_iclog */
3478#endif
3479
3480/*
3481 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3482 */
3483STATIC int
3484xlog_state_ioerror(
3485	xlog_t	*log)
3486{
3487	xlog_in_core_t	*iclog, *ic;
3488
3489	iclog = log->l_iclog;
3490	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3491		/*
3492		 * Mark all the incore logs IOERROR.
3493		 * From now on, no log flushes will result.
3494		 */
3495		ic = iclog;
3496		do {
3497			ic->ic_state = XLOG_STATE_IOERROR;
3498			ic = ic->ic_next;
3499		} while (ic != iclog);
3500		return 0;
3501	}
3502	/*
3503	 * Return non-zero, if state transition has already happened.
3504	 */
3505	return 1;
3506}
3507
3508/*
3509 * This is called from xfs_force_shutdown, when we're forcibly
3510 * shutting down the filesystem, typically because of an IO error.
3511 * Our main objectives here are to make sure that:
3512 *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3513 *	   parties to find out, 'atomically'.
3514 *	b. those who're sleeping on log reservations, pinned objects and
3515 *	    other resources get woken up, and be told the bad news.
3516 *	c. nothing new gets queued up after (a) and (b) are done.
3517 *	d. if !logerror, flush the iclogs to disk, then seal them off
3518 *	   for business.
3519 *
3520 * Note: for delayed logging the !logerror case needs to flush the regions
3521 * held in memory out to the iclogs before flushing them to disk. This needs
3522 * to be done before the log is marked as shutdown, otherwise the flush to the
3523 * iclogs will fail.
3524 */
3525int
3526xfs_log_force_umount(
3527	struct xfs_mount	*mp,
3528	int			logerror)
3529{
3530	xlog_t		*log;
3531	int		retval;
3532
3533	log = mp->m_log;
 
3534
3535	/*
3536	 * If this happens during log recovery, don't worry about
3537	 * locking; the log isn't open for business yet.
 
 
 
3538	 */
3539	if (!log ||
3540	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3541		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3542		if (mp->m_sb_bp)
3543			XFS_BUF_DONE(mp->m_sb_bp);
3544		return 0;
3545	}
3546
3547	/*
3548	 * Somebody could've already done the hard work for us.
3549	 * No need to get locks for this.
3550	 */
3551	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3552		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3553		return 1;
3554	}
3555	retval = 0;
 
 
 
 
 
 
 
 
3556
3557	/*
3558	 * Flush the in memory commit item list before marking the log as
3559	 * being shut down. We need to do it in this order to ensure all the
3560	 * completed transactions are flushed to disk with the xfs_log_force()
3561	 * call below.
3562	 */
3563	if (!logerror)
3564		xlog_cil_force(log);
3565
3566	/*
3567	 * mark the filesystem and the as in a shutdown state and wake
3568	 * everybody up to tell them the bad news.
3569	 */
3570	spin_lock(&log->l_icloglock);
3571	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3572	if (mp->m_sb_bp)
3573		XFS_BUF_DONE(mp->m_sb_bp);
 
 
 
3574
3575	/*
3576	 * This flag is sort of redundant because of the mount flag, but
3577	 * it's good to maintain the separation between the log and the rest
3578	 * of XFS.
3579	 */
3580	log->l_flags |= XLOG_IO_ERROR;
3581
3582	/*
3583	 * If we hit a log error, we want to mark all the iclogs IOERROR
3584	 * while we're still holding the loglock.
3585	 */
3586	if (logerror)
3587		retval = xlog_state_ioerror(log);
3588	spin_unlock(&log->l_icloglock);
3589
3590	/*
3591	 * We don't want anybody waiting for log reservations after this. That
3592	 * means we have to wake up everybody queued up on reserveq as well as
3593	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3594	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3595	 * action is protected by the grant locks.
3596	 */
3597	xlog_grant_head_wake_all(&log->l_reserve_head);
3598	xlog_grant_head_wake_all(&log->l_write_head);
3599
3600	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3601		ASSERT(!logerror);
3602		/*
3603		 * Force the incore logs to disk before shutting the
3604		 * log down completely.
3605		 */
3606		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 
 
 
3607
3608		spin_lock(&log->l_icloglock);
3609		retval = xlog_state_ioerror(log);
3610		spin_unlock(&log->l_icloglock);
3611	}
3612	/*
3613	 * Wake up everybody waiting on xfs_log_force.
3614	 * Callback all log item committed functions as if the
3615	 * log writes were completed.
3616	 */
3617	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3618
3619#ifdef XFSERRORDEBUG
3620	{
3621		xlog_in_core_t	*iclog;
3622
3623		spin_lock(&log->l_icloglock);
3624		iclog = log->l_iclog;
3625		do {
3626			ASSERT(iclog->ic_callback == 0);
3627			iclog = iclog->ic_next;
3628		} while (iclog != log->l_iclog);
3629		spin_unlock(&log->l_icloglock);
3630	}
3631#endif
3632	/* return non-zero if log IOERROR transition had already happened */
3633	return retval;
3634}
3635
3636STATIC int
3637xlog_iclogs_empty(xlog_t *log)
 
3638{
3639	xlog_in_core_t	*iclog;
3640
3641	iclog = log->l_iclog;
3642	do {
3643		/* endianness does not matter here, zero is zero in
3644		 * any language.
3645		 */
3646		if (iclog->ic_header.h_num_logops)
3647			return 0;
3648		iclog = iclog->ic_next;
3649	} while (iclog != log->l_iclog);
3650	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651}